

Well Completion Report Seaveiw-1 (W741) BEACH PETROLEUM

BEACH PETROLEUM N.L.

SEAVIEW NO.1

WELL COMPLETION REPORT

OIL and GAS DIVISION

Prepared by J.D.C. Patchett May, 1981

Distribution: Beach

Department of Minerals and Energy 1

2

SUMMARY

Seaview No.l was drilled during early April, 1981 as a new field wildcat well, in the Port Campbell embayment of the Otway Basin.

The well did not encounter any hydrocarbons and was abandoned as a dry hole. The well has been completed as a potential water bore. It is completed as a barefoot completion in the uppermost Paaratte Formation.

The well was drilled with O.D. & E's Rig 8, Ideco Rambler H35 drilling rig, with the following contract services:-

Mark Murtagh	-	On-site supervision
Halliburton	-	Cementing
Schlumberger	-	Electric Logging
Exlog	-	Mud Logging
Magcobar	-	Mud Engineering
Velocity Data Pty.	-	Velocity Survey

CONTENTS

SUMMARY

- PURPOSE OF WELL 1.
- GENERALISED STRATIGRAPHIC TABLE OF THE PORT CAMPBELL EMBAYMENT 2.
- WELL HISTORY 3.
 - 3.1 Location
 - 3.2 General
 - 3.3 Drilling Data
 - 3.4 Formation Sampling and Testing

3.4.1 Cuttings and Cores 3.4.2 Tests

- 3.5 Logging and Surveys
 - 3.5.1 Mud Logging

 - 3.5.2 Electric Logging 3.5.3 Deviation Surveys

RESULTS OF DRILLING 4.

- 4.1 General
- 4.2 Formation Tops
- 4.3 Lithologic Description
- POST DRILLING COMPILATION AND LABORATORY STUDIES 5.
 - 4.1 Composite Well Log

APPENDICES

APPENDIX 1	Details of Drilling Plant
APPENDIX 2	Velocity Survey
APPENDIX 3	Bit Record
APPENDIX 4	Dresser Magobar Mud Recap
APPENDIX 5	Magnetic Survey

FIGURES

1.	Regional	Location	Map
----	----------	----------	-----

2. Detailed Location Map

3. Seaview Prospect - Top Waarre Sandstone Structure Map

4. Completion Details

ī

ENCLOSURES

Exploration Logging Mud Log 1. Composite Well Log 2. 1:200 Dual Laterolog, SP, GR 3. 11 " 11 4. 1:500 1:200 BHC Sonic 5. 11 11 1:500 6.

1. PURPOSE OF WELL

The Seaview No.l well was a new field wildcat well intended to test the hydrocarbon potential of the Waarre Formation on a closed structure mapped to the east of the Port Campbell High. The structure is a faulted anticline.

2. GENERALISED STRATIGRAPHIC TABLE OF THE PORT CAMPBELL EMBAYMENT

Age	Group	Formation
Tertiary	Heytesbury	Port Campbell Limestone Gellibrand Marl Clifton Formation
	Nirranda	Narrawaturk Marl Mepunga Formation
	Wangerrip	Dilwyn Formation Pember Mudstone Pebble Point Formation
Lower Cretaceous	Sherbrook	Paaratte Formation Nullawarre Greensand Belfast Formation Flaxmans Formation Waarre Formation
Lower Cretaceous	Otway	Eumeralla Formation

3. WELL HISTORY

3.1 Location

The well was located as near as practicable to Shot Point 3125 on seismic line 158 of the Princetown, 1963 Frome Broken Hill Seismic Survey. Shot Point 3125 falls approximately immediately south of Boorook Road.

The drill site was prepared on Crown Allotment 49 of the Parish of County of Heytesbury. This land is owned by Mr. D.G.F. Houghton.

The approximate geographical co-ordinates are:-

143⁰ 08 E 38⁰ 35 S

3.2 General Data

- (i) <u>Well Name and Number</u> Beach Seaview No.1
- (ii) <u>Petroleum Title</u> Petroleum Exploration Permit No.93, State of Victoria.
- (iii) <u>District</u>
 1:250,000 map sheet: Colac: sheet
 part of the Western District of Victoria.
 - (iv) Elevation (approximate)
 Ground Level 131 m above mean sea level
 Kelly Bushing (Datum) 134.2 m above mean sea level
 - (v) Total Depth Driller: - 1235 metres Logger: - 1235.5 metres
 - (vi) Date Drilling Commenced 1000 Hours, April 5, 1981
- (vii) Date Total Depth Reached 2130 Hours, April 12, 1981
- (viii) Date Rig Released 0800 Hours, April 14, 1981
 - (ix) <u>Drilling Time in Days to Total Depth</u> 8¹/₂ days

(x) <u>Status</u> Abandoned as a potential water well. Water well

3.3 Drilling Data

3.3.1 <u>Rig</u>

Ideco H-35, details of this rig are contained in Appendix 1.

-3-,

O.D. & E. Pty. Ltd., 50 Bridge Street, Sydney, N.S.W. 2000.

3.3.3 Casing and Cementing Details

Conductor Pipe	
Size: Set at: Cement:	20 in. 7 m. 25 sacks construction cement
Surface Casing	
Size: Set at: Cement:	9 5/8 in. 448 m (1738.8 ft) 600 sacks, construction cement 15.6 lbs/gallon slurry
Cemented to:	Surface with poor returns Single stage two plug. Did not bump plug
Equipment:	Halliburton Twin T-10 Pumps
Casing Weight: Grade: Range: Coupling:	36 lbs/ft J55 3 ST&C

3.3.4 Drilling Fluid

A freshwater-gel-lignosulphanate mud was used throughout

drilling.

(i) $12\frac{1}{4}$ inch hole

The mud used during this drilling phase had the following range of properties:-

MW	8.3-8.6 lb/gal
Visc.	30-40 sec.
Filtrate	20 ml.
Cake	4-6 mm
рН	7.2 to 8.5
Sand	1%

(ii) 8¹/₂ inch hole

Upon drilling out cement a lightweight mud system was

used to TD with the following range of properties:

	-
MW	8.9 to 9.1 lb/gal
Visc.	35 to 40 sec.
Filtrate	6-9 ml.
Cake	2 to 3 mm
рН	8.5-9.7
Sand	tr. to 3/4%

A full Magcobar mud system recap is included as Appendix 5.

3.3.5 Water Supply

Drilling water was carted by a tanker from a dam near the old Waarre No.l well.

3.3.6 Perforations

No perforations were made in this well.

3,3.7 Production Testing

No production testing was made except to determine static water level which was established at approximately 90 m below ground level.

3.4 Formation Sampling and Testing

3.4.1 Cuttings and Cores

Representative lagged cuttings samples were taken as follows:-

surface to 800 m every 10 m 800-1235 m every 5 m

- 5 -

Cuttings were continuously described on the well.

Samples were washed clean of drilling mud and three splits were made. One split was air dried and stored in calico bags, the other two were oven dried and stored in plastic bags. Cuttings were collected for Beach Petroleum N.L. and the Department of Minerals and Energy.

No cores or sidewall cores were cut.

- 3.4.2 Tests
 - (i) Drill Stem Tests

No open hole drill stem tests were run.

(ii) <u>Wireline Tests</u> No wireline tests were run.

3.5 Logging and Surveys

3.5.1 Mud Logging

A trailer mounted standard Exploration logging (EXLOG) unit was contracted to provide a complete mud logging service. Drill penetration rate, continuous drilling mud gas detection and intermittent cuttings gas analyses were performed and the mudlog is enclosed as Enclosure 1.

3.5.2 Electric Logging

One open hole logging run was made by Schlumberger after reaching total depth of 1235 m. The logs run were:-

A. From TD (1235 m) to casing shoe (448 m)

в.

DLL-GR-SP-CAL (GR to surface)

BHCS

From TD (1763 m) to 1458 m MSFL CNL-FDC-GR-CAL istake

? TD= 1235 m Wallaly Cuek-1?

3.5.3 <u>Deviation Surveys</u>

During drilling,	deviation su	urveys were run using a
SURE SHOT survey	instrument.	Results were as follows:-
1 ₂ O	at	68 m
1 <u>2</u> 0	at	112 m
1 <u>0</u>	at	213 m
10 12	at	314 m
3/4 ⁰	at	451 m
l°	at	633 m
ı°	at	798 m
1 3/4 ⁰	at	945 m
1 3/4 [°] 3/4 [°]	at	1083 m
3/4 ⁰	at	1235 m

3.5.4 Velocity Survey

A velocity survey was run after T.D. logging by Velocity Data Pty. Ltd.

The Report on the velocity survey is included as Appendix 2 .

4. RESULTS OF DRILLING

4.1 General

The Seaview No.l was a new field wildcat that was abandoned as a dry hole. However, the discovery of the thick gabbro intrusion within the interval 850-903 m is a first for this part of the basin. The gabbro has a weathered top and rests on a contact metamorphic aureole.

The well has been completed as a barefoot completion in the uppermost Paaratte Formation.

4.2 Formation Tops

The following formation tops have been picked using cuttings description, mudlog and electric log data:- (all figures in metres).

ι.

í

2

FORMATION

	KB	SL	Thickness (Met	res)
Gellibrand Marl	3.2	+131	68	
Clifton Formation	68	+ 66.2	20	
Narrawaturk Marl	88	+ 46.2	67	
Mepunga Formation	155	- 20.8	13.5	
Dilwyn Formation	169.5	- 35.8	240.5	
Pember Mudstone	410	-275.8	46	
Pebble Point Formation	456	321.8	161	
Paaratte Formation	617	482.8	236	
Igneous Intrusive	853	718.8	50	
Metasediments	903	768.8	12	
Top 2nd Paaratte Formatic	on 915	780.8	43	
Skull Creek	958	823.8	50	
Nullawarre Greensand	1008	873.8	102	
Belfast Formation	1110		24.5	
Waarre Formation	1136.5	1002.3	88	
Eumeralla Formation	1224.5	1090.3	9.5+	
Total Depth	n 1 235	1104		

- 7 -

4.3 Detailed Lithological Descriptions

surface (3.2 m) Marl weathered brown-orange at surface grading - 68 m to grey at 30 m. Soft plastic with abundant pebble sized fossils. Amorphous, dispersive and slightly calcareous matrix. Fossils include lammellibranch fragments, bryozoans, echinoid spines, gastropods, forams; both planktonic and benthic forams.

Ironstone grit-grading to ferriginous calcisiltite 68-88 m mid-brown-orange, weathered silt to medium grained to granule sized. Subrounded to subangular. Poorly sorted. Grains dominantly quartz and fossil fragments. Mid brown silt matrix. Ferruginous stained.

88-155 m Marl dark brown grey. Soft, plastic to friable. Slightly calcareous.

- 155-169.5 m Marl grading to silty calcilutite Medium grey brown grading to pale light green. Very fine to clay sized grains. Calcareous amorphous matrix. Occasional glauconite and pyrite.
- Sandstone medium orange brown at top grading to 169-5-41.0 m clear white below 250 m. Loosely cemented. Very fine to pebble sized grains. Subrounded to rounded and generally poor sorting. Limonitic staining with occasional nodules. Rare glauconite. Occasional calcareous cement. Good or poor visual porosity depending on cement. Below 250 m interbedded claystone/siltstones dark brown-grey. Slightly to non calcareous with disseminated pyrite and carbonaceous material. Ratio of siltstone interbeds increases toward the base of the unit.

Silty claystone light and dark grey to pink grey 410-456 m brown, soft, dispersive and soluble. Contains carbonaceous laminae and minor disseminated pyrite. Occasional forams. Trace dolomite.

- 8 -

456-617 m

Sandstone and conglomerate medium grey brown to clear white, friable to hard. Fine to coarse grained occasionally grading to pebble size. Subangular to subrounded with only poor to moderate sorting. Grains are dominantly quartz with minor lithics and chert. Matrix is argillaceous. Moderately common glauconite and pyrite. Trace dolomite and carbonaceous material. Fair to poor porosity.

The gamma ray log through this section of well showed very high natural gamma ray levels. Up to 300 API gamma ray units were recorded.

617-853 m Sandstone clear white, friable, fine to very coarse grained. Angular to subrounded to subrounded. Moderate sorting. Grains predominantly quartz with only very minor grey green lithics. Trace pyrite and rare coally fragments. Fair to good visual porosity. Below 640 m occasional thin beds of silica cemented sandstone. White, hard fine grained, subangular to subrounded. Silica matrix and low visual porosity.

> Between 700-800 m thin siltstone interbeds between 0.5 and 5.0 metres thick were penetrated. Siltstone hard, dark grey brown to dark grey. Carbonaceous and non calcareous. Non fossiliferous. Carbonaceous material may be pyritised along thin laminae.

Igneous body probably a gabbro. Hard salt and pepper colouration of light and dark minerals. Dominantly angular granitic crystal intergrowths. Grains mainly plagioclase and ? quartz with common dark green ferro-magnesium minerals. Hornblende, augite, hypershene tormaline. Section has weathered top indicated by the severe kaolinization of the feldspars in the upper 7 metres.

853-903 m

903-915 m

Thermally altered Meta-Sediments

siltstone mid-dark grey, hard, very, very fine grained, Micro-micaceous with questionable carbonaceous laminae. Occasional intergrowths of silver-white minerals with rhombic shape. Occasional large quartze crystal growths. Common pyrite. Crushing by drill-bit powders this rock. Of apparent metamorphic origin. Finely interbedded with :-

Sandstone white to light grey, slightly green grey. Hard to very hard, fractures across grain boundaries. Dominantly fine grained angular to subangular. Moderate sorting with argillaceous and micromicaceous matrix. Common green-black ferromagnesium metamorphic textured crystal intergrowths. Siliceous cement. Some pyrite with common golden sulphide (? chalcopyrite) rarely sandstone with brick red matrix. This sequence probably relates to a thermal metamorphic aureole beneath the overlying igneous rock.

Sandstone white-clear, friable. Medium coarse to coarse grained. Grading to granules. Angular to subrounded with moderate sorting Quartzose. Rare kaoline matrix. Abundant pyrite and pyritized coal. Occasional dolomite. Below 925 m sandstone, varicoloured, pinky grey and green lithic grains. Minor siliceous cement.

> Below 940 m siltstone interbeds. Siltstone mid-grey, hard slightly calcareous also light brown, soft-firm variety.

Siltstone grading to claystone grey and light brown 958-1008 m grey. Soft to firm, non calcareous, non glauconitic massive. With minor varicolour white, light yellow green, brown, red and orange grains. With stained quartz and chert and minor pyrite. Siltstone becomes more green grey with depth.

915-958 m

1008-1110 m

Sandstone dark green, friable, medium-grained, angular, Moderate sorting. Grains are green stained quartz and dark green lithic grains. Siltstone matrix. Poor visual porosity. Below 1055 incoming of abundant siltstone interbeds. Siltstone mid grey to green grey, soft, dispersive and soluble non calcareous.

1110-1136.5 m Claystone medium grey, soft, plastic. Non calcareous, dispersive. Non fossiliferous. Trace of fine grained well sorted quartzose sandstone. Glauconitic with trace of pyrite.

1136.5-1224 m Dominantly sandstone with minor siltstones. Sandstone white to clear, friable to loose. Medium to coarse grained grading in part to granules and pebbles. Angular to subrounded with occasional suprarounded grains. Moderate sorting. Quartzose with abundant pyrite. Good visual porosity. Trace of coally detritus. Sandstone becomes slightly more finer grained with depth. Below 1200 m incoming of occasional varicoloured lithic grains (red, yellow, brown-orange, light and dark green). Composed of stained quartz, chert, jasper. Occasional beds of siliceous and kaolin cemented to sandstone interbeds. Siltstone medium grey, firm to subfissile. Micro-laminated with thin carbonaceous laminae. Non calcareous. Trace coal, pyritic.

1224.5-1235 m <u>Sandstone claystone</u> light blue grey to white. Kaolinitic matrix with disseminated quartz and lithic grains. Grains angular to subrounded medium grain size. Moderately sorted. Abundant ? zeolites and pyrite.

5. POST DRILLING COMPILATION AND LABORATORY STUDIES

5.1 Composite Well Log

A composite well log has been compiled and is included as Enclosure 2.

5.2 Gas Analyses

Only drilled gas was analysed on-site.

5.3 <u>Magnetic Survey</u>

A magnetic survey was carried out over the Seaview feature. The results are included as Appendix 5.

- 12 -

SEAVIEW PROSPECT

CONTOURS ON TOP WAARRE FORMATION

SEAVIEW No. 1

WATER WELL COMPLETION

WELL STATUS

WELL HEAD STATUS

APPENDIX 1

Details of Drilling Plant

SCHEDULE 1

: Ideco 17-1/2".

pounds.

: Ideco D110-3-24.

: Ideco Squarehex 4-1/4".

6-71 diesel engine.

diesel engine.

diesel engine.

mounted.

: Rumba unit.

engines.

: Ideco TL-120.

: Mast Subbase 8'6" high.

: Ideco H-35 double drum with 15' Hydromatic Brake.

: Ideco KM 103-195-GH Gross nominal capacity 195,000

National K380 74" x 14" Mud Pump powered by GM16V Series 71

: Two (2) GM 6-71 twin diesel units.

: Rig-A-Lite explosion proof system.

Engine with KlO Pulsation Dampener.

: National C150B 7-1/4" x 12" powered by twin GM

: (1) 6 x 4 Warman Centrifugal powered by GM 4-71

: One (1) 35' long x 8' wide x 4'6" high - skid

: Two (2) 75 Kw units powered by GM 6-71 diesel

: One (1) 10" - 3000 psi WP Shaffer Annular BOP.

One (1) 10" - 3000 psi WP Shaffer Doubel Gate BOP.

: Combination unit with 2 x 8" and 8 x 4" cones with Warman 6 x 4 centrifugal pump powered by GM 3-71 -

CONTRACTOR'S RIG \$ 8

DRAWWORKS

ENGINES

ROTARY . TABLE

SUBSTRUCTURE

RIG LIGHTING

MAST

TRAVELLING BLOCK WITH UNITISED HOOK

SWIVEL

KELLY DRIVE

MUD PUMPS

MIXING PUMP

SHALE SHAKER

DESANDER/DESILTER

GENERATORS

 ∞

B.O.P.'S & ACCUMULATOR

Koomey 60 gallon Accumulator system.ELLY COCK: Onsco unit - 10,000 psi.

AIR COMPRESSOR & RECEIVERS : Two

DMPRESSOR & RECEIVERS : Two (2) Ingersoll Rand Compressors with 120 gallon receivers.

One (1) 2 AVC Westinghouse Compressor.

: One (1) 10" - 3000 x 10" - 3000 Drilling Spool with 2" outlets.

One (1) 10" - 3000 x 6" - 3000 Studded Adaptor.

One (1) 10" - 3000 x 10"- 3000 Spacer Spool.

.....

RAT HOLE DRILLER	: C & W unit.
CHOKE MANIFOLD	: 2 Choke 3000 psi WP unit.
DRILL PIPE	7000 ft 4½" internally plastic coated aluminium 8.351b/ with 6-1/8" OD 18 degree taper hard band tool joints. (Weight of drill pipe with tool joints = 10.75 lb/ft).
	6 joints 4-1/2" hevi-wate.
DRILL COLLARS	: 4 x 8" OD with 6-5/8" Regular connections. 12 x 6-1/4" OD with 4" IF connections.
KELLY	: 4-1/4" square with 6-5/8" Regular Box Up.
ISHING TOOLS	 (1) Bowen 7-5/8" series 150 SH Overshot. (1) Bowen 9-5/8" series 150 Overshot. (1) Baash-Ross 6-1/8" OD Bumper Sub. (1) McCullough 6-1/8" OD Rotary Jars. (1) Junk Sub for 8-1/2" hole.
ANDLING TOOLS	 (1) Varco CU Casing Bushing for 17-1/2" Table and to handle 13-3/8" and 9-5/8" casing. (1) set CMS 13-3/8" Casing Slips. (1) set CMS 9-5/8" Casing Slips. (1) set 13-3/8" Side Door Elevators. (1) set 9-5/8" Side Door Elevators. (1) set 13-3/8" Single Joint Elevators. (1) set 9-5/8" Single Joint Elevators. (1) set 9-5/8" Single Joint Elevators. (1) set 5-1/2" CMS Casing Slips. (1) set 5-1/2" Side Door Elevators. (1) set 5-1/2" Side Door Elevators. (1) set 5-1/2" Single Joint Elevators. (1) set 5-1/2" Single Joint Elevators. (1) set 4-1/2" Drill Pipe Slips. (1) set 4-1/2" MAA Drill Pipe Elevators. (1) set 5-1/2" - 7" Drill Collar Slips. (1) set 2 Elevator Links 2-1/4" x 108" (110 ton). (1) set Web Welson type B Tongs with jaws from 3-1/2" to 10-3/4". (1) set BJ type B tongs with 13-3/8" jaws.
INSTRUMENTS & INDICATORS	: Martin Decker Clipper Weight Indicator. Pump Pressure Gauge. Martin Dēcker Tong Torque Indicator. Geolograph G3 Recorder.
D /IATION RECORDER	: Sure Shot $0^{\circ} - 7^{\circ}$ unit.
TOLHOUSE	: (1) 28' long x 8' wide x 7' high.
DOG HOUSE	: (1) 24' long x 8' wide x 7' high.
GE ERATOR HOUSE	: (1) 34' long x 8' wide x 7' high.
VEDING EQUIPMENT	: (1) Lincoln 400 AMP with diesel engine.
•	(1) set Oxygen/Acetylene.
PIE RACKS	: (1) set (6) 26' long x 42" high.
ATVALKS	: (1) 45' long x 5' wide x 42" high.
ATER TANKS	: (1) 28' long x 8' wide x 7' high.

	- 3 -
DAY FUEL T.WK	: (1) 1500 gallon unit.
SUBSTITUTES	 (2) 6-5/8" Reg. Pick up Subs. (2) 4" IF Pick up Subs. (1) 4" IF Box x 6-5/8" Reg Pin Sub. (1) 6-5/8" Reg Box x 4" IF Pin Sub. (1) 4" IF Pin x 4-1/2" FH Pin Sub. (1) 4-1/2" FH Pin x 4" IF Box Sub. (1) 4" IF Pin x 4-1/2" Reg Box Sub. (1) 6-5/8" Reg Pin x 6-5/8" Reg Box Sub. (2) Kelly Saver Subs.
MUD TESTING	: Magcobar Rig Lab complete.
JUNK BOX	: (1) 20' x 8' x 4' high.
MATTING	: (1) set Hardwood mats.
WATER PUMPS	: (2) AEI - 2" x 1-1/2" powered by electric motors.
FIRE EXTINGUISHERS	: (1) set for rig and surrounding areas as per the applicable State Mines Department Regulation.
TOOLPUSHER/OPERATOR OFFICE	: (1) 30' x 10' wide x 9' high with office and living facilities.

.

•

•

•

1

,

.

APPENDIX 2

Velocity Survey

FILE COPY

WELL VELOCITY SURVEY

8

SEAVIEW NO. 1

P.E.P. 93 VICTORIA

for

BEACH PETROLEUM N.L.

by

VELOCITY DATA PTY. LTD.

Brisbane, Australia

April 13, 1981

INDEX

۱

ł

Page

SUMMARY	• • •	•••	1
GENERAL COMMENTS	•••	• • •	1
EQUIPMENT	• • •	• • •	2
RECORDING	• • •	•••	2
COMPUTATIONS	• • •	•••	3
COMPUTATION SHEETS			

Figures:

Figure	1 '	Location Map
Figure	2	Shot Location Sketch
Figure	3	Time-depth points and velocity functions
Figure	4	Time-depth, average velocity and interval velocity curves

Sample Records

SUMMARY

Velocity Data Pty Ltd. conducted a velocity survey for Beach Petroleum No Liability in the Seaview No. 1 well, PEP93, Victoria. The date of the survey was April 13, 1981.

Thirteen shots were taken over seven levels in the well. Record quality was good. Where more than one shot was taken at a level, times are in close agreement.

Explosives were used as an energy source with shots being fired in the mud pit at a depth of 1 metre and offset 36 metres from the well-head. Charge size varied between 100 and 600 grms. of dynamite.

The survey was used to calibrate sonic logs. A calculated depth function of $\Xi = 2813t^{1} \cdot 185$ fits the time-depth points down to the top of the igneous intrusives at 853 metres below K.B. Below the Top 2nd Paaratte Formation a function $\Xi = 2986t^{1} t^{202}$ is a good fit to the curve.

The well was surveyed to a depth of 1235.5 metres below K.B.

GENERAL

The operator for the survey was mobilised from Perth.

Name of Well	:	Seaview No. 1
Location	:	PEP93, Victoria
Co-ordinates	:	Lat 38°35'S. Long. 143°08'E.
Date of Survey	:	April 13, 1981
Elevation K.B.	:	134.2m. A.S.L.
Elevation Datum	:	Sea Level
Logging	:	Schlumberger
Weather	:	Cool, windy
Sonic Interval	:	448 to 1235.5m. below K.B.
Depth surveyed	:	1235m. below K.B.

EQUIPMENT

ł

۰

<u>EQUIPMENT</u>				
Energy Source : Dynamite				
Recording Instruments : S.I.E. RS44W Well-shoot System				
Downhole Geophone : Geospace WLS1050 Wall lock				
Reference Geophone : Mark Ll 4.5Hz				
RECORDING				
Charge Size : 100 to 600 grms. dynamite				
Depth of shots : 1 metre				
Shot offset : 36 metres				
Reference sensors : Refer Fig. 2				
Downhole sensor: 6 HSl 4.5 Hz-215 ohm, high temperature detectors in series parallel. Frequency response 8-300Hz within 3db. Preamplifier -48db fixed gain. Frequency response 5-200Hz within 3db.				
Record Traces:				
1. Time Break				
2. Well Geophone - high gain				
3. Well Geophone - medium gain				
4. Well Geophone - medium gain				
5. Well Geophone - low gain				
6. Reference Geophone No. 1 - well head				
7. Reference Geophone No. 2 - 16 m. offset				
8. Reference Geophone No. 3 - 32 m. offset				
9. Confirmation Time Break				
10. Timing Signal				

Records were produced photographically.

2.

COMPUTING

Sonic times are adjusted to check-shot times using two methods.

1) A linear correction

$$\frac{(t_{L_2} - t_{R_2}) - (t_{L_1} - t_{R_1})}{Z_2 - Z_1} =$$
correction in
 μ secs./ft.

11) A differential correction

100
$$(1 - \frac{(t_{R_2} - t_{R_1})}{(t_{L_2} - t_{L_1})}) =$$
% decrease in interval time

where $t_{T} = \text{sonic log time}$

t_R = record time

and $Z_2 - Z_1 = depth$ interval

Where check-shot interval times are longer than corresponding sonic interval times, errors are assumed to be instrumental and are adjusted using the linear correction. However, if formation characteristics, such as high porosity or the presence of gas are suspected, the differential correction is used.

The differential correction is also applied where check-shot interval times are shorter than corresponding sonic times and these differences are assumed to arise from caving or mud cake effects.

The corrected times from four shots taken at datum are in close agreement and have been averaged to give a datum correction time of $-.080^2$ secs. No other corrections have been applied when relating two-way times to the record section.

No record was obtained for Shot No. 1. Record quality was generally good and all other shots have been used in calculations. Times have been averaged when more than one shot was taken at a level.

The discrepancy between shot interval times and corresponding sonic interval times is moderate (23 µsecs./metre) over the shallow section of the well. Below the igneous intrusives, the discrepancies are small, ranging between three and seven psecs./metre.

A calculated depth function of $\mathbf{E} = 2813t^{1.185}$ fits the time-depth curve to the top of the intrusives. From below the metasediments to total depth, a function $\mathbf{E} = 2986t^{1.202}$ is a good fit to the time depth points.

Time-depth and velocity curves are submitted with this report along with copies of the field records.

L.W. Pfitzner.

PE907671

This is an enclosure indicator page. The enclosure PE907671 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907671 has the following characteristics: ITEM_BARCODE = PE907671 CONTAINER_BARCODE = PE907557 NAME = Check Shot & Sonic Calibration Data BASIN = OTWAY PERMIT = PEP/93TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Check Shot and Sonic Points/Sonic Calibration Table, Page 2 of 2, (enclosure from Velocity Survey of WCR) for Seaveiw-1 REMARKS = DATE_CREATED = 13/04/81DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR =CLIENT_OP_CO = BEACH PETROEUM NL.

(Inserted by DNRE - Vic Govt Mines Dept)

PE907672

.

This is an enclosure indicator page. The enclosure PE907672 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907672 has the following characteristics: ITEM_BARCODE = PE907672 $CONTAINER_BARCODE = PE907557$ NAME = Check Shot & Sonic Calibration Data BASIN = OTWAY PERMIT = PEP/93TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Check Shot and Sonic Points/Sonic Calibration Table, Page 1 of 2, (enclosure from Velocity Survey of WCR) for Seaveiw-1 REMARKS = $DATE_CREATED = 13/04/81$ DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROEUM NL.

(Inserted by DNRE - Vic Govt Mines Dept)
This is an enclosure indicator page. The enclosure PE907673 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907673 has the following characteristics: ITEM_BARCODE = PE907673CONTAINER_BARCODE = PE907557 NAME = Seismic Shot Data BASIN = OTWAY PERMIT = PEP/93TYPE = SEISMIC SUBTYPE = FEILD_DATA DESCRIPTION = Seismic Shot Data from Seaveiw-1 Velocity Survey, Record No.'s 12 & 13, (enclosure from Velocity Survey of WCR) for Seaveiw-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROEUM NL. (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907674 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907674 has the following characteristics: ITEM_BARCODE = PE907674 CONTAINER_BARCODE = PE907557 NAME = Seismic Shot Data BASIN = OTWAY PERMIT = PEP/93 TYPE = SEISMIC SUBTYPE = FEILD_DATA DESCRIPTION = Seismic Shot Data from Seaveiw-1 Velocity Survey, Record No.'s 10 & 11, (enclosure from Velocity Survey of WCR) for Seaveiw-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROEUM NL.

This is an enclosure indicator page. The enclosure PE907675 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907675 has the following characteristics: ITEM_BARCODE = PE907675 CONTAINER_BARCODE = PE907557 NAME = Seismic Shot Data BASIN = OTWAY PERMIT = PEP/93TYPE = SEISMIC SUBTYPE = FEILD_DATA DESCRIPTION = Seismic Shot Data from Seaveiw-1 Velocity Survey, Record No.'s 8 & 9, (enclosure from Velocity Survey of WCR) for Seaveiw-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_{NO} = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROEUM NL.

This is an enclosure indicator page. The enclosure PE907676 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907676 has the following characteristics: ITEM_BARCODE = PE907676 CONTAINER_BARCODE = PE907557 NAME = Seismic Shot Data BASIN = OTWAY PERMIT = PEP/93TYPE = SEISMIC SUBTYPE = FEILD_DATA DESCRIPTION = Seismic Shot Data from Seaveiw-1 Velocity Survey, Record No.'s 6 & 7, (enclosure from Velocity Survey of WCR) for Seaveiw-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROEUM NL.

This is an enclosure indicator page. The enclosure PE907677 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907677 has the following characteristics: ITEM_BARCODE = PE907677CONTAINER_BARCODE = PE907557 NAME = Seismic Shot Data BASIN = OTWAY PERMIT = PEP/93TYPE = SEISMICSUBTYPE = FEILD_DATA DESCRIPTION = Seismic Shot Data from Seaveiw-1 Velocity Survey, Record No.'s 2 & 3, (enclosure from Velocity Survey of WCR) for Seaveiw-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR =CLIENT_OP_CO = BEACH PETROEUM NL. (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907678 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907678 has the following characteristics: ITEM_BARCODE = PE907678 CONTAINER_BARCODE = PE907557 NAME = Seismic Shot Data BASIN = OTWAY PERMIT = PEP/93TYPE = SEISMICSUBTYPE = FEILD_DATA DESCRIPTION = Seismic Shot Data from Seaveiw-1 Velocity Survey, Record No.'s 4 & 5, (enclosure from Velocity Survey of WCR) for Seaveiw-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR =CLIENT_OP_CO = BEACH PETROEUM NL. (Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 3

Bit Record

APPENDIX 4

Dresser Magobar Mud Recap

COMPLETE MUD RECAP FOR BEACH PETROLEUM N.L. WELL: SEAVIEW #1

CONTENTS

WELL SUMMARY

MATERIAL CONSUMPTION BY INTERVAL

TOTAL MATERIAL CONSUMPTION

GRAPHS

Depth vs Days Depth vs Cost Depth vs Mud Weight

DAILY WELL HISTORY SHEET

Section of the section of the

And reaction a

OPERATOR: BEACH PETROLEUM N.L.

CONTRACTOR: 0. D. & E. LTD.

RIG: 8

WELL: SEAVIEW # 1

TOTAL DRILLING DAYS: 6

TOTAL DAYS ON WELL: 10

WELLSITE REP: M. MURTAGH

CONTRACTOR REP: S. ROSE

SPUD DATE: 5th April 1981

TOTAL DEPTH DATE: 12th April 1981

DRILLING FLUID BY INTERVAL MUD COST BY INTERVAL

TOTAL MUD COST

\$ 7,573.00

DRESSER MAGCOBAR ENGINEERING COST

DRESSER MAGCOBAR ENGINEERS

JOHN PLACANICA

Interval: 0 - 448 m (0 - 1469 ft) 12¹/₄" Hole 9.5/8" Casing

The well was spudded on 5th April 1981 and drilling commenced with a $12\frac{1}{4}$ " bit. As in the previous hole, Wallaby Creek #1, there was no engineer on site to monitor conditions for this interval. However, no major problems were encountered and drilling went quite smoothly. The 9.5/8" casing was set at 448 meters and cemented.

Interval: 448 - 1235 m (1469 - 4052 ft) 8¹/₂" Hole

After drilling out the casing shoe and cement, the mud was treated with Sodium Bicarbonate to control cement contamination. As drilling progressed, the mud system utilized was a basic gel/polymer drilling fluid with Spersene, CMC and Magcopolysal used to stablize mud properties, decrease fluid loss and maintain a clean hole. The mud weight was maintained at 9.0 - 9.1 ppg and the viscosity 36 to 38 sec/qt. No problems were encountered while drilling the hole through to T.D. At this depth, the mud was circulated and conditioned for logging and a wiper trip of 10 stands was made, with no major tight spots encountered. Logging operations were completed with no problems, but indicated little evidence of hydrocarbon accumulation. The well was plugged and abandoned with no casing being run.

OPERATOR:

INTERVAL___

BEACH PETROLEUM

WELL: SEAVIEW #1

	HOLE SIZE	12 ¹ / ₄ ''
INTERVAL 0 - 448 meters	CASING SIZE_	9.5/8"
(0 - 1469 ft)		
PRODUCT	QUANTITY	COST
Magcogel	75 sx	1275
CMC	15 sx	825
Caustic Soda	1 drum	70
Magcopolysal	9 sx	665
Spersene	2 sx	72
	TOTAL	\$2907

	HOLE SIZE85
<u>448 - 1235 meters</u>	CASING SIZE
(1469 - 4052 ft)	

PRODUCT	QUANTITY	COST
Magcoge1	110 sx	1870
СМС	21 sx	1155
Caustic	4 drum	280
Magcopolysal	8 sx	590
Spersene	20 sx	720
Sodium Bicarbonate	3 sx	51

TOTAL

\$4666

TOTAL MATERIAL CONSUMPTION

·	OPERATO	R: BEACH PETROLEUM
	WEL	L: SEAVIEW #1
	LOCATION	ł:
PRODUCT:	UNIT:	COST:
Magcogel	185 sx	3,145.00
СМС	36 sx	1,980.00
Caustic Soda	5 drum	350.00
Magcopolysal	17 sx	1,255.00
Spersene	22 sx	792.00
Sodium Bicarbonate	3 sx	51.00

\$ 7,573.00

DEP.

MUD WEIGHT

-							PAGE	1
			<u></u>	CONDUCTOR SIZE DEPTH	BIT S.ZE N AITS	ROTATING DEGASSER DESANDER Houre	ER DESILTER CENTRIFU	UGE SHAKER SCREENS
WFLL RISTORY	BEACH PETROLEUM	CAMPBELL	L/POLYMER /SPERSENE	دد ۵.5/8'۱	0.m 9ft 12¼''			60 x 4
Locobar L	VIEW #1		PUD DATE Sth April 1981	INTERMEDIATE 1235m 4052f1	5m 8 ¹ 2'' 2ft	×	×	60 x 81
Mayburd	CONTRACTOR 0. D. & E. LTD.	NIS	2th April 1981	<u>.</u>				
	PLACANICA	VICTORIA	DAYS TO T C 8	FRODUCTION				
<u>S</u> F	VIS. PAGLE FLOW TEMP. VIS. AND RAUE RELOW TEMP. PV. YP. 0 10 PH 100 TEMP. PV. YP. 0 10 PH 100 PH	API HTHP FLUID FLUID Pr Mr Pm C	SALT OR CHLORIDE S CHLORIDE S CHLORIDE S CHLORIDE S CHLORIDE S C CHLORIDE S C C CHLORIDE S C C CHLORIDE S C CHLORIDE S C C CHLORIDE S C C CHLORIDE S C C CHLORIDE S C C CHLORIDE S C C CHLORIDE S C C CHLORIDE S C C C C C C C C C C C C C C C C C C C	Der Kere	ERSENE			MUD COST
		20+		6				1542.00
head	tace noie	12		22 15 2				1271,00
Drill head to surface	casing depth							
rculate wiper trip.	POOH. Run casing. Nipple up	6		01 01 0				494.00
Drilling head $-5it$ cl	change. [10] 6 3/13 9.7	9.2 0.5 11.2	200 [-]3.5] []	25 5 5				880.00
rill head 3041 9.0 ⁺	37 8 4 2/5 8.5	8.2 0.2 0.5	100 - [3.0 [22.5]	47 61 6				1870.00
Drill head	7 7 7 1 1 1 1 1 1 2 1 3 1 1 1 9 1 7 1 3 1 1 1 9 . 2 1	7.8 0.2 0.6	150 - 3.5 22.5	12 4 2	2			700.00
ill head			- 3.5	16 6 4				816.00
Nole for	ummy wiper trip	vey 0.K. POOH.						
p.2 no compl	No casing run. Plugged and ab	2 0.01 10.8 1 1.01 abandoned.] [
							TOTAL COST	7.573.00
			-					

APPENDIX 5

Magnetic Survey

SEAVIEW IGNEOUS BODY

Survey Carried Out By B.H.P. Geophysicist - D.Isles

ENCLOSED - Report by D. Isles Magnetic Profile along Kolong Rd. Magnetic Profile along Boorook Rd. Modelling . Seismic Line 166 - Integrated seismic data, magnetic data and modelling. Seismic Line 162 - Integrated seismic data and magnetic data. Location Map - 1:100,000. Shotpoint Map - 1:50,000.

PORT CAMPBELL AREA

GROUND MAGNETICS

APRIL 1981

Two ground magnetic traverses were carried out for Beach Petroleum N.L. on the 25th and 26th April, 1981 in the Port Campbell area. The purpose of the work was to determine whether the basic igneous rock encountered in the well SEAVIEW I had a magnetic signature which would enable its edges to be identified from magnetometer traverses. Discussion with M. McNicholl established that the edges of the basic rock appeared traceable from seismic reflection data and the magnetometer work was planned as a possible compliment to the seismic data.

The basic rock was encountered at 870 metres and was around 50 metres thick. A susceptibility test on a crushed sample of the rock showed it to have a quite significant concentration of magnetic minerals. (The measured susceptibility on about 150 grams of grains was 500×10^{-6} cgs), and a measurable magnetic anomaly was therefore expected in the field.

RESULTS

Owing to the situation with local landowners the instructions were to carry out traverses along roads. Two traverses, one of around 9 km in length along the NW Corriemungle-Seaview Road and one of around 7 km in length along the NE Kolong road were conducted using a SCINTREX MP-2 proton precession magnetometer.

The Corriemungle-Seaview Road traverse exhibited excessively noisey field values due to three sources.

- The Scoria surface of the road. readings were taken as far as possible away from the scoria surfaces but it appears to have caused a 10-20nT noise envelope in the data. The effect of the scoria was tested with a short cross-road traverse (see Fig. 2)
- Houses and Sheds these are clearly recognisable as (mainly negative) spices in the data. Their effect is seen at distances of 40 60 metres away.

 Fences and power lines - these have a small and avoidable effect compared to 1 and 2.

Despite the high noise level of the magnetic data along the "EW" traverse a broad positive anomaly is decipherable, consistent with a strongly magnetic body at around 1 km depth. The NW limit of the anomaly is fairly sharp in comparison to that at the SE end. According to the SEISMIC INTERP the magnetic traverse crosses the edges of the basic rock body at shallow angles, so a broad anomaly would be expected. The edges of the causative body are consequently hard to precisely locate from this traverse.

The Kolong Road was found to have only minor amounts of scoria surfacing it. Consequently the magnetic traverse along Kolong Road is much less noisy, being disturbed mainly by buildings. The traverse shows a broad high consistent with a magnetic source in the order of 1 km deep.

A simple model calculated for a 50m thick sill, 2k by 3k in area, at a depth of 900 metres is closely similar to the Kolong Road traverse, and suggests that the northern edge of the sill is around 500m south of Corriemungle-Seaview Road along this traverse. The differences between the field curve and the calculated curve in the central parts of the traverse are due to the wandering path of the field traverse along Kolong road as compared to the straight line calculated traverse.

Given that the basic body of rock generates a substantial magnetic anomaly (80nT) at ground level, 900 metres from the source, it is certain that the body would be detected by an airborne survey at 100 - 200 m altitude with only minor loss of amplitude (the theoretical model would have an amplitude of around 60nT at 200 metres above ground level). If the outlining of this or other possible bodies in the area is deemed necessary an airborne magnetic survey would be the most efficient means. The 'cultural' sources evident in the ground magnetometer work would not be seen in the airborne magnetics and the logistical problem of informing landowners and negotiating access would be overcome.

livid thes.

David Isles Geophysicist BHP Minerals Exploration Dept.

This is an enclosure indicator page. The enclosure PE605030 is enclosed within the container PE907557 at this location in this document.

The enclosure PE605030 has the following characteristics: ITEM_BARCODE = PE605030CONTAINER_BARCODE = PE907557 NAME = Mud Log BASIN = OTWAY PERMIT = PEP/93TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Mud Log, Exploration Logging a subsiduary of Baker International (enclosure from WCR) for Seaveiw-1 REMARKS = $DATE_CREATED = 12/04/81$ DATE_RECEIVED = 3/07/81 $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE605029 is enclosed within the container PE907557 at this location in this document.

The enclosure PE605029 has the following characteristics: ITEM_BARCODE = PE605029 $CONTAINER_BARCODE = PE907557$ NAME = Composite Log BASIN = OTWAY PERMIT = PEP/93TYPE = WELLSUBTYPE = COMPOSITE_LOG DESCRIPTION = Composite Well Log (enclosure from WCR) for Seaveiw-1 REMARKS = Also a Dual Laterolog?? DATE_CREATED = 14/04/81DATE_RECEIVED = 3/07/81 $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = SCHLUMBERGER CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907139 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907139 has the following characteristics: $ITEM_BARCODE = PE907139$ CONTAINER_BARCODE = PE907557 NAME = Parish Map BASIN = OTWAY PERMIT = PEP/93TYPE = WELL SUBTYPE = MAP DESCRIPTION = Parish of Waarre, County of Heytesbury Map, 1:25000, (enclosure from WCR) for Seaveiw-1 REMARKS = $DATE_CREATED =$ DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = DIVISION OF SURVEY AND MAPPING CROWN (STATE OF VICTORAI) CLIENT_OP_CO = BEACH PETROLEUM NL

(Inserted by DNRE - Vic Govt Mines Dept)

•

This is an enclosure indicator page. The enclosure PE907548 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907548 has the following characteristics: ITEM_BARCODE = PE907548 $CONTAINER_BARCODE = PE907557$ NAME = Drilling Program and Geological Prognosis Chart BASIN = OTWAY PERMIT = PEP/93TYPE = WELL÷. SUBTYPE = STRAT_COLUMN DESCRIPTION = Drilling Program and Geological Prognosis Chart (enclosure from WCR) for Seaveiw-1 REMARKS = $DATE_CREATED = 23/03/81$ DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR =CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907554 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907554 has the following characteristics: ITEM_BARCODE = PE907554 $CONTAINER_BARCODE = PE907557$ NAME = Structure Map BASIN = OTWAY PERMIT = PEP/93TYPE = SEISMIC SUBTYPE = HRZN_CNTR_MAP DESCRIPTION = Contours on Top of Waarre Formation, Structure Map, (enclosure from WCR) for Seaveiw-1 REMARKS = DATE_CREATED = 31/03/81DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907549 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907549 has the following characteristics: ITEM_BARCODE = PE907549 $CONTAINER_BARCODE = PE907557$ NAME = Ground Magnetics Chart BASIN = OTWAY PERMIT = PEP/93TYPE = WELLSUBTYPE = DIAGRAM DESCRIPTION = Ground Magnetometer Traverse, Corriemungle-Seaveiw Road, 1 of 3, (enclosure from WCR) for Seaveiw-1 REMARKS = $DATE_CREATED = 25/04/81$ DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = THE BROKEN HILL PROPRIETARY CO LTD CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)

.

This is an enclosure indicator page. The enclosure PE907550 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907550 has the following characteristics: ITEM_BARCODE = PE907550 CONTAINER_BARCODE = PE907557 NAME = Ground Magnetics Chart for Basic Sill BASIN = OTWAY PERMIT = PEP/93TYPE = WELLSUBTYPE = DIAGRAM DESCRIPTION = Sill Model for Port Campbell Magnetic Body, 3 of 3, (enclosure from WCR) for Seaveiw-1 REMARKS = $DATE_CREATED = 28/04/81$ DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = THE BROKEN HILL PROPRIETARY CO LTD CLIENT_OP_CO = BEACH PETROLEUM NL

This is an enclosure indicator page. The enclosure PE907551 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907551 has the following characteristics: ITEM_BARCODE = PE907551 CONTAINER_BARCODE = PE907557 NAME = Ground Magnetics Chart BASIN = OTWAY PERMIT = PEP/93TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Ground Magnetometer Traverse, Kolong Road, 2 of 3, (enclosure from WCR) for Seaveiw-1 REMARKS = DATE_CREATED = 26/04/81DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = THE BROKEN HILL PROPRIETARY CO LTD CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907552 is enclosed within the container PE907557 at this location in this document. and the second

10.00

The enclosure PE907552 has the following characteristics: ITEM_BARCODE = PE907552 CONTAINER_BARCODE = PE907557 NAME = Time Depth Points and Velocity Functions BASIN = OTWAY PERMIT = PEP/93TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Time Depth Points and Velocity Functions (enclosure from WCR) for Seaveiw-1 REMARKS = DATE CREATED = 13/04/81DATE_RECEIVED = $W_{NO} = W741$ WELL NAME = SEAVEIW-1 CONTRACTOR = VELOCITY DATA PTY LTD CLIENT_OP_CO = BEACH PETROLEUM NL

This is an enclosure indicator page. The enclosure PE907553 is enclosed within the container PE907557 at this location in this document. 🛊 menaluga

擯

The enclosure PE907553 has the following characteristics: ITEM_BARCODE = PE907553 CONTAINER_BARCODE = PE907557 NAME = Time Depth and Velocity Curves BASIN = OTWAY PERMIT = PEP/93 TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Time Depth and Velocity Curves (enclosure from WCR) for Seaveiw-1 REMARKS = $DATE_CREATED = 13/04/81$ DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = VELOCITY DATA PTY LTD CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907555 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907555 has the following characteristics: ITEM_BARCODE = PE907555 CONTAINER_BARCODE = PE907557 NAME = Magnetic Profile Line 162 BASIN = OTWAY PERMIT = PEP/93TYPE = SEISMIC SUBTYPE = SECTION DESCRIPTION = Magnetic Profile Line 162 (enclosure from WCR) for Seaveiw-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR = CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907556 is enclosed within the container PE907557 at this location in this document.

The enclosure PE907556 has the following characteristics: ITEM_BARCODE = PE907556 CONTAINER_BARCODE = PE907557 NAME = Magnetic Profile Line 166 BASIN = OTWAY PERMIT = PEP/93TYPE = SEISMIC SUBTYPE = SECTION DESCRIPTION = Magnetic Profile Line 166 (enclosure from WCR) for Seaveiw-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO = W741$ WELL_NAME = SEAVEIW-1 CONTRACTOR =CLIENT_OP_CO = BEACH PETROLEUM NL (Inserted by DNRE - Vic Govt Mines Dept)