MACALISTER NO. 1

PEP 120 0 1 SEP 1988

WELL COMPLETION REPORT

PETROI FLIM DIVISION

PE902194

0 1 SEP 1988

PETROLEUM DIVISION

W 971

MAGALISTER NO. 1

PEP 120

WELL COMPLETION REPORT

D. A. Short for Crusader Resources N.L. July 1988

PE601042

This is an enclosure indicator page.

The enclosure PE601042 is enclosed within the container PE902194 at this location in this document.

The enclosure PE601042 has the following characteristics:

ITEM_BARCODE = PE601042
CONTAINER_BARCODE = PE902194

NAME = Composite Well Log

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = COMPOSITE_LOG

DESCRIPTION = Macalister-1 Composite Well Log.

Enclosure 1 of WCR.

REMARKS =

DATE_CREATED = 01/04/1988 DATE_RECEIVED = 01/09/1988

 $W_NO = W971$

WELL_NAME = Macalister-1

CONTRACTOR = Crusader resources NL CLIENT_OP_CO = Crusader resources NL

(Inserted by DNRE - Vic Govt Mines Dept)

PE601043

This is an enclosure indicator page.

The enclosure PE601043 is enclosed within the container PE902194 at this location in this document.

The enclosure PE601043 has the following characteristics:

ITEM_BARCODE = PE601043
CONTAINER_BARCODE = PE902194

NAME = Gearhart Mud Log

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Macalister-1 Gearhart Mud Log.

Enclosure 2 of WCR.

REMARKS =

DATE_CREATED = 01/04/1988 DATE_RECEIVED = 01/09/1988

 $W_NO = W971$

WELL_NAME = Macalister-1 CONTRACTOR = Gearharty P/L

CLIENT_OP_CO = Crusader resources NL

(Inserted by DNRE - Vic Govt Mines Dept)

CONTENTS

		** ***********************************	PAGE
1.	ABSTR	ACT	4
2.	WELL	DATA CARD	5
3.	GENER	AL DATA	7
4.	ENGIN	EERING:	
	4.1	ENGINEERING SUMMARY	8
*	4.2	RIG DATA	9
r	4.3	DRILLING DATA	
	·	 (a) Hole Sizes and Depths (b) Casing and Cementing Record (c) Mud Summary (d) Water Supply (e) Formation Testing (f) Abandonment Data 	10 10 10 11 11 11
5.	GEOLO	GICAL DATA	
	5.1	GEOLOGICAL SUMMARY	12
	5.2	REASONS FOR DRILLING	13
	5.3	STRATIGRAPHY	13
	5.4	DESCRIPTIVE STRATIGRAPHY	14
	5.5	FORMATION EVALUATION	
		(a) Mud Logging(b) Wireline Logging(c) Temperatures(d) Coring	16 16 16 16
	5.6	RESERVOIR POTENTIAL	17
	5.7	HYDROCARBON SHOWS	17
	5.8	CONTRIBUTIONS TO GEOLOGIC CONCEPTS	17
_			
6.	CONCLU	JSIONS	19

LIST OF FIGURES

- 1. Macalister No. 1 Well Location Map
- 2. Macalister No. 1 Predicted vs Actual Time Depth Curve
- 3. Composite Stratigraphic Column

LIST OF ENCLOSURES

Enclosure 1: Macalister No. 1 Composite Well Log

Enclosure 2: Macalister No. 1 Mudlog

APPENDICES

- 1. Daily Operations Reports
- 2. Bit and Hydraulics Record/Deviation Record
- 3. Mud Record
- 4. Time Analysis
- 5. Drill Stem Test Reports
- 6. Description of Cutting Samples
- 7. Description of Sidewall Cores
- 8. Wireline Log Evaluation
- 9. Water Analysis

- 10. Well Velocity Survey
- 11. Well Location Survey

1. ABSTRACT

Macalister No. 1 was drilled for Crusader Resources N.L. by ATCO-APM Drilling Pty. Ltd. in the north of PEP 120 - Victoria, about 27 kilometres south of the city of Sale and 6 kilometres west north-west of the small coastal resort of Seaspray.

The closest well to Macalister No. 1 was Merriman No. 1 located 3.6 kms to the east. This well was drilled by Arco in 1963 and no shows were noted. The only hydrocarbons recorded from nearby on-shore wells were gas flows up to 100 MCFD from the Strzelecki Group at North Seaspray No. 1 immediately to the north east of the PEP 120 and minor oil recoveries reported from Woodside No. 2 and Sunday Island No. 1 to the southwest in PEP 123. Off-shore are the marginally economic Dolphin and Perch Oilfields.

Drilling commenced on March 20 1988 and was terminated on April 1 1988 in Cretaceous Age Strzelecki Group sediments. The rig was released on April 4 1988. Total depth was 1452 metres.

The well was located on the Macalister Prospect, a small culmination on the Merriman Anticline which plunges off-shore to the east northeast. Mapped areal closure is about 2.6 sq. km. with a vertical closure of 40 metres.

The primary targets were sands at the top of the Latrobe Group while secondary targets were sands of the intra Latrobe Group. The sands at the top of the Latrobe Group are the reservoirs for the Dolphin and Perth Oilfields and also for the Golden Beach Gasfield and the giant Barracouta Gasfield.

The section encountered was as predicted and the Latrobe Group sands were well developed with good reservoir quality but no oil or gas shows were recorded from them. The only gas recorded while drilling was a 35 unit methane gas peak from the top coal of the Latrobe Group. Two attempts were made to test the top sand of the Latrobe Group but both were unsuccessful due to over-gauge hole which prevented the packers seating.

After reaching total depth wireline logs, sidewall cores, a velocity survey and an RFT were run. The wireline logs indicated all prospective reservoir sands to be water saturated and the RFT on the top sand of the Latrobe Group recovered water.

Cement plugs were set across the top of the Latrobe Group, the casing shoe and at surface and the well was abandoned.

MACALISTER NO. 1 - WELL CARD

LATITUDE: 38°21'03.13"S Dry Hole, P & A STATUS: 147°08'15.13"E LONGITUDE: PARTMERS: Omega Oil Ltd. LINE/SP NO.: GCR-87A-14/1070 DRILLER: ATCO-APM Drilling P/L VIC PEP 120 Troy 600 (Rig 7) LEASE: RIG:

OPERATOR: Crusader Limited ELEVATION(K.B.): 20.2m SPUD: 20.03.88 (2300) ELEVATION(G.L.): 16.2m COMPLETION: 01.04.88 (1630) TOTAL DEPTH: 1452m

DATA SOURCE: Well records

FORMATION TOPS:

	Depth (K.B.)	Depth (S.S.)	Thickness	
Jemmy's Point Fm.	Surface	+16.0	108.0	
Seaspray Group:				
Tambo River Fm.	112.0	-82.0	103.0	
Gippsland Limestone	215.0	-195.0	460.5	
("Base Lst. Seismic				
Marker"	612.2	-592.2)		

Lakes Entrance Fm. Seacombe Marl Mbr. 675.5 -655.5 117.0 Giffard Sandstone Absent Latrobe Group: Traralgon Fm. 792.5 -772.5 591.5 Strzelecki Group 1384.0 -1364.068.0

HOLE SIZES: $12\frac{1}{4}$ " to 187m. / $8\frac{1}{2}$ " to 1452m (T.D.)

CASING: Conductor - 13-3/8" set at 21m.

Surface - 15 jts of 9-5/8", 36lb/ft, K-55 set @ 181.6m & cemented with 400 sx

Class A cement + 2% CaCl2.

DRILL STEM TESTS: DST #1 789-814m Top Latrobe Group. Could not seat

packers.

DST #2 765-814m Top Latrobe Group. Could not seat

packers.

REPEAT FORMATION TESTS: A Schlumberger RFT @ 814m recovered approximately

40 litres of water. No chamber pressure was recorded and the field measurement Rw of the

water was 2.9 ohm-m @ 22°C.

WIRELINE LOG DATA: (Queensland Shallow Logging)

DLL-GR-SP-CAL 181.5-1447.0m (GR to surface)

LDL-CNL-NGS-EPT 760.0-1445.0m SHDT-GR 760.0-1450.0m MSFL 760.0-1440.5m SLS-GR 181.5-1447.0m

Velocity Survey

MUD PROPERTIES: Mud Type - Salt/Gel. S.G. 1.16; Vis 49; pH 10;

FL 11; Rm=0.33; Rmf=0.23; Rmc=0.50. (All @ 59°C).

SIDEWALL CORES:

A total of 27 SWC were recovered from the

interval 754.0-1398.0m.

PALYNOLOGY:

WATER ANALYSIS:

TEMPERATURES:

(Recorded from logs at total depth).

52°C after 8.0 hours 55°C after 15.3 hours 58°C after 16.3 hours 59°C after 23.8 hours.

Extrapolated bottom hole temperature

at 1452m is 63°C.

ABANDONMENT PLUGS:

Plug #1 808-777m 125 sacks. Across top of

Latrobe Group.

Plug #2 198-168m 65 sacks. Across surface

casing shoe. (Tagged @ 162m.)

Plug #3 6- 1m sacks. At top of surface

casing.

REMARKS:

Macalister No. 1 tested the Latrobe Group sands on a small culmination on the Merriman Anticline in the north of PEP 120. The sands were well developed with good reservoir quality but no gas or oil shows were recorded form them. The only gas recorded while drilling was a 35 unit methane gas peak recorded from the top coal of the Latrobe Group. A Schlumberger RFT of the top sand in the Latrobe Group recovered only formation water with some filtrate. (Two DST's of the sand were attempted but a packer seat could not be obtained.) No hydrocarbon shows were recorded from any other zones and the well

was plugged and abandoned.

3. GENERAL DATA

Well Name:

MACALISTER NO. 1

Name and Address

of Operator:

Crusader Resources N.L.

27th Level

12 Creek Street

BRISBANE. QLD. 4000.

Interests:

Crusader Limited

50.0% 50.0%

Omega Oil Pty. Ltd.

Petroleum Title:

PEP 120 Victoria

Location:

Latitude - 38° 21' 03.13"S

Longitude - 147° 98' 15.13"E

Elevations:

Ground level - 16.25 metres

Kelly Bushing - 20.05 metres

Dates:

Spudded

- March 20 1988 @ 2300 hours TD Reached - April 1 1988 @ 1630 hours

Rig Released - April 4 1988 @ 1100 hours

Total Depth:

1,452 metres - driller

1,452 metres - logs extrapolated.

Status:

Plugged and Abandoned.

4. ENGINEERING DATA

4.1 ENGINEERING SUMMARY

Macalister No. 1 spudded at 2300 hrs, March 20 1988. 14" conductor pipe had been pre-cemented, in 17½" hole, to a depth of 33m. During drilling of surface hole at 75m, broaching of the conductor to surface occurred, necessitating two cement squeezes to seal the annulus, before drilling could continue. 12½" surface hole continued thereafter, to 187m, without further incident. 15 joints of 9-5/8" 36 lb/ft K-55 LTC casing were run. Due to tight hole, the casing held up and was cemented at 181.6m. Cement was in place at 0230 hours, 23.3.88. Partial loss of returns during the final stages of displacement necessitated that the cement be topped up from surface.

BOPs were installed and successfully pressure tested. Cement was tagged at 166.4m and the cement, float collar, shoe and rat hole were drilled out to a depth of 187m. Prior to drilling further 8½" hole, the mud system was converted to a sodium chloride brine/prehydrated gel system (this was used in an attempt to provide some inhibition but still allow an EPT log to be run at TD).

Drilling of 8½" hole continued to 594m, at which point a wiper trip was made which encountered very tight hole on the way out. At 757m, the bit was pulled and, again, tight hole was encountered - the bit and stabilizer were completely balled. A new bit was run back to bottom, at which time hole conditions necessitated the addition of drilling detergent and dispersant to the mud system to prevent excessive viscosity and bit balling.

At 814m, returns of coal required that the mud be weighted up to 9.4 ppg for control. After conditioning, the bit was pulled and DST No. 2 was attempted, with the same result.

Drilling of $8\frac{1}{2}$ " hole continued and TD of 1452m was reached at 1630 hrs, 2.4.88.

After logging, an RFT survey was run and samples taken. both samples and RFT pressures confirmed the presence of a water column.

Macalister No. 1 was plugged back to surface and abandoned. The rig was released at 1100 hrs, 4.4.88.

4.2 RIG DATA

Contractor:

ATCO APM Drilling Pty. Limited

4 Formation Street WACOL. QLD. 4076

Rig:

A7

Drawworks:

Troy 600. Mechanical drive, Single drum.

Rated Capacity:

2,500 metres.

Power:

Caterpillar D353 diesel engine and National

torque convertor.

Drill String:

Drill Pipe 4½", 16.6 lbs/ft, Grade E
4" IF connections. (API NC46
10 joints 4½" Hevi-Wate drill pipe
4" IF connections. (API NC46)
Drill Collars 3 x 8" (3" ID) 6-5/8"
Reg. connections. (API Reg.)
Drill Collars 21 x 6½" (2-13/16" ID)
4" IF connections. (API NC46).

Mast:

Troy (34m x 4.3m) free standing with GNC 190,000 kg and 127,275 kg with 8 lines.

Mud Pumps:

1 - Continental Emsco D500 (7½" x 16") powered by a D353 Caterpillar engine.
1 - Continental Emsco D500 (7.½" x 14") powered by a GM 6-71 twin set diesel engine.

Blowout Preventors:

Annular - Shafco (11" x 3000 psi)

Rams - 2 Shafco double gate (11" x 3000 psi)

Accumulator - Troy type K-90, 90 gallon,

4 station control.

Choke Manifold - Willis adjustable

(2' x 3000 psi).

4.3 DRILLING DATA

(a) Hole sizes and depths:

Conductor hole:

 $17\frac{1}{2}$ " to 33 m. $12\frac{1}{4}$ " to 187 m.

Surface hole: Main hole:

 $8\frac{1}{2}$ " to 1452 m. (TD)

(b) Casing and Cementing Record:

Conductor:

14" welded conductor was preset to 33m below G.L. and cemented to surface.

Incompetent formation around the conductor shoe resulted in broaching of the conductor annulus to surface and necessitated two squeeze cement jobs to effect a gure

effect a cure.

Surface:

15 joints of 36 lb/ft K-55 LTC 9-5/8" casing fitted with Halliburton guide show and float collar at the first collar. Spring box centralisers were run on the first three collars and at a depth of 6.1m below GL.

deput of o.m. below Gr.

The casing was cemented with 400 sacks of API Class A cement mixed with fresh water containing 2% calcium chloride. A top plug only was used and was bumped with 6,900 kPa and held. Some loss of returns was observed during the last 20 bbl of displacement, presumably around the conductor shoe. The surface annulus was topped with cement.

The casing held up while running and was cemented with the shoe at 181.6m.

(c) Mud Summary:

Surface hole was drilled using a fresh water based native clay system.

After drilling out surface casing, the hole was displaced to a sodium chloride brine drilling fluid. At 594m, due to increasing viscosity, the mud was conditioned with additions of drilling detergent and dispersants. Drilling proceeded into the Latrobe Group where large amounts of coals were encountered and the mud weight was raised to help stabilize the formation.

Drilling continued to total depth with no further problems.

(d) Water Supply:

Water was pumped to the site from Merriman Creek, a distance of 1 km.

Formation Testing:

DST No. 1 789-814m. Latrobe Group. Conventional bottom hole test. Could not seat packers because of

over-gauge hole.

DST No. 1 765-814m Latrobe Group. Conventional

bottom hole test. Could not seat packers because of

over-gauge hole.

RFT No. 1 814m Latrobe Group. Recovered approximately 40 litres of water. (Field Rw = 2.9 ohm-m @ 22C).

(f) Abandonment Data:

Plug No. 1: 808-777m 125 sx. - Across top of Latrobe Gp.

Plug No. 3: 198-168m 65 sx. - Across casing shoe.

Plug No. 3: 6- lm At top of surface casing.

5.1 GEOLOGICAL SUMMARY

Macalister No. 1 spudded on March 20 1988 into loose sands of the Jemmy's Point Formation. The Tambo River Formation was encountered at 112.0 metres, 20.0 metres higher than prognosed.

After drilling $12\frac{1}{4}$ " hole to 187.0m 9 5-8" surface casing was set at 181.6m. $8\frac{1}{2}$ " hole was then drilled to total depth.

The top of the Gippsland Limestone was placed at 215.0m from cuttings (and may be picked from logs) and was 13.0m high to prognosis. However, because of the lithologic similarity between the Tambo River Formation and the Gippsland Limestone there is a degree of uncertainty for this boundary.

The Seacombe Marl Member of the Lakes Entrance Formation was encountered at 675.5m, 12.5m high to prognosis while the Giffard Sandstone Member was not present.

At 720m the cuttings sampling interval was changed from 10 to 30m and the top of the Traralgon Formation of the Latrobe Group was encountered at 792.5m, 12.5m low to prognosis. Samples were circulated at 795m (coal) - 35 units of methane and 814m (sand) - 2 units of background gas (all methane).

Two drill stem tests were attempted over the top sand of the Traralgon Formation but because of over gauge hole the packers would not seat.

Drilling was then resumed and due to high drill rate, 6m samples were collected from 816m to total depth. The top of the Strzelecki Group was encountered at 1384.0m, 126.0m high to prognosis. No oil or gas shows were noted in either the Traralgon Formation or the Strzelecki Group.

After reaching a total depth of 1452.0m on April 1 1988 wireline logs were run as well as a velocity survey and sidewall cores. An RFT was then run at 814m in the top sand of the Traralgon Formation and it recovered water.

Sample monitoring and gas detection while drilling indicated there were no significant hydrocarbons in any of the sands penetrated and this was confirmed by the wireline logs and the RFT which showed all potential reservoirs to be water saturated.

The well was then plugged and abandoned and the rig released on April 4 1988.

5.2 REASONS FOR DRILLING

Macalister No. 1 was drilled to test for hydrocarbons in a northeast - southwest trending structure with four-way dip closure on the Merriman Anticline. Seismic mapping indicated there was early development of structural closure soon after the deposition of the Latrobe Group and that this almost certainly pre-dated any westward migration of hydrocarbons.

The primary target was the top sand of the Latrobe Group and secondary targets were intra Latrobe Group sands.

No significant accumulations of hydrocarbons have yet been discovered in the on-shore Gippsland Basin but off-shore from PEP 120 there are several marginally economic oil and gas fields, Golden Beach, Whiptail, Tarwhine, Dolphin and Perch. The sands at the top of the Latrobe Group are the reservoirs for all of these fields.

On-shore, gas flowed at up to 2800 cu.m (100,000 cu. feet) per day from the Strzelecki Group in North Seaspray No. 1 but other wells in the area failed to encounter the reservoir sand suggesting a strong stratigraphic component in its distribution. In the south of the permit minor oil shows were reported from Sunday Island No. 1 and Woodside No. 2. The closest well was Merriman No. 1, 3.6 km to the east, but although it is mapped on a separate closure up-dip from Macalister No. 1 the latest seismic indicates it to be off the crest of the structure.

5.3 STRATIGRAPHY

AGE	GROUP / FORMATION	TOP KB	TOP MSL	THICK
Pliocene	Jemmys Point	Surface	+16.0	108.0
Miocene Miocene	Seaspray Group Tambo River Gippsland Lst. "Base Lst. Seismic Marker"	112.0 215.0 612.2	-82.0 -195.0 -592.2)	103.0 460.5
Oligocene	Lakes Entrance Seacombe Marl Mbr. Giffard Sst. Mbr.	675.5 Absent	-655.5	117.0
Eocene	Latrobe Group Traralgon	792.5	- 772 . 5	591.5
Cretaceous	Strzelecki Group	1384.0	-1364.0	+68.0
	Total Depth	1452.0	-1432.0	

STRATIGRAPHIC UNITS GIPPSLAND BASIN

5.4 DESCRIPTIVE STRATIGRAPHY

JEMMYS POINT FORMATION (Pliocene)

Surface - 112.0m.

SANDSTONE with rare COAL.

Sandstones are clear to white fine to very coarse, minor granular, angular to sub-rounded, occasional rounded with polished surfaces, poor to moderate sorted, minor to common white, grey-brown and green lithic/quartzite grains, minor white feldspar, trace to common greenish balck mica flakes, loose, no matrix or cement, good porosity.

Coal is dull black, lignitic.

TAMBO RIVER FORMATION (Miocene)

112.0 - 215.0m

Interbedded SANDSTONE and LIMESTONE with minor MARL.

Sandstones are clear, white to yellow-brown, very fine to coarse, angular to sub-rounded, poor to moderate sorted, white, grey-brown and green lithic/quartzite grains, minor white feldspar, trace mica flakes, mostly loose, minor hard limonitic/argillaceous matrix/cement, poor to good porosity.

Limestones are white to cream, grey, very fossiliferous, minor dark grey-green to black glauconite, trace silt and very fine sand grains.

Marl, cream and grey, speckled, firm to hard, fossiliferous, minor glauconite. Grades to limestone.

GIPPSLAND LIMESTONE (Miocene)

215.0 - 657.5m

LIMESTONE and MARL with minor SHALE, predominantly limestone at the top and marl and shale at the base.

Limestone is white to cream, minor light to medium grey, friable, grading to coquina with abundant fossil fragments including bryozoa, foraminifera and molluscs, minor dark green glauconite, trace clear and yellow iron stained silty to very fine quartz grains.

Marl is white, cream, light to dark grey, soft to firm, argillaceous, calcareous, with silt and very fine sand grains, dark green-black glauconite.

Shale, greenish grey, soft, sticky, slightly calcareous, minor glauconite, rare pyrite.

Towards the base of the Formation there is a change in wireline log signature at the top of the gradational unit which overlies the Lakes Entrance. For example, in an uphole direction the sonic log shows an increasing velocity profile through the gradational unit. This changes to a decreasing profile through the remainder of the Gippsland Limestone. This point is seen on

all wireline logs in the area of Macalister No. 1. It has been mapped as a seismic event. The name "Base Limestone Seismic Marker" is not meant to be descriptive as limestone can still occur below this point.

LAKES ENTRANCE FORMATION (Oligocene)

675.5 - 792.5

SEACOMBE MARL MEMBER, MARL with minor SHALE, occasional SANDSTONE and rare LIMESTONE.

Marl is white, blue-grey, blue-green to grey, soft, sticky, grading to calcareous claystone, rare coarse quartz grains, glauconitic throughout but abundant below 770 metres.

Shale is light to medium grey, grey-green, grey-brown, soft, calcareous in part, trace pyrite, glauconite.

Sandstone is clear and yellow, iron stained, fine to very coarse, sub-angular to sub-rounded, minor rounded, poorly sorted, loose, no matrix or cement, good apparent porosity.

Limestone is yellow-brown crystalline, hard.

TRARALGON FORMATION (Eocene)

792.5 - 1384.0

SANDSTONE with interbeds of SHALE and COAL.

Sandstones are clear, white, minor light to dark brown (lignite stained), fine to very coarse, angular to sub-angular, occasional sub-rounded, poor to moderate sorted, loose, no matrix or cement, very good apparent porosity. Minor cream to light brown, very fine to fine, hard, sub-angular, moderate sorted, calcareous/dolomitic cement, poor porosity, bright yellow mineral flourescence with no cut. Below 1160m the sandstones have minor grey lithic and quartzite grains, trace pyrite and mica, rare pink garnet, and trace white, silty, dispersive clay matrix.

Shales are very dark brown, dark grey brown to black, silty, soft to firm, friable, sub-fissile, carbonaceous, lignitic, argillaceous/dispersive and grading to claystone in part.

Coal is dark brown to black, lignitic, shaley in part.

STRZELECKI GROUP (Cretaceous)

1384.0 - 1452.0m

SANDSTONE and CLAYSTONE with traces of TUFF and COAL.

Sandstones are clear white to light grey, grey-green, green and minor pink quartz, lithic/quartzite and feldspar grains, very fine to medium, some coarse to very coarse, sub-angular to sub-rounded, poor to moderate sorted, white dispersive clay matrix, common pyrite and mica, poor to fair porosity.

Claystone is white to grey, light brown, soft, dispersive.

Tuff, cream to buff, soft, waxy, minor carbonaceous specks.

Coal, brown to black, shaley.

5.5 FORMATION EVALUATION

(a) MUD LOGGING

Mud logging services were provided by Gearhart Geodata. Basic rate of penetration, pit level, total gas and FID chromatography services were provided as well as lagged sample collection, description and processing (Enclosure 2). Cuttings were collected at 10 metre intervals from surface to 720m and then at 3m intervals to 816m and finally at 6m intervals total depth. These were examined for oil and gas indications, described then split into two sets of plastic sample packets and two sets of Samplex trays. One set of sample packets was sent to the Victorian Department of Industry, Technology and Resources, and the other to the Operator. One set of Samplex trays was retained by the Operator and the other was sent to Omega Oil Pty. Ltd..

(b) WIRELINE LOGGING

The following logs were run by Schlumberger Seaco Inc. at total depth:

DLL-GR-SP-CAL 181.5 - 1447.0 (GR to surface)
MSFL 760.0 - 1440.5

LDL-CNL-NGS 760.0 - 1445.0

SLS-GR 181.5 - 1447.0

SHDT-GR 760.0 - 1450.0

WST

CST-GR

RFT-HP-GR

(c) TEMPERATURES

The following temperatures were recorded from wireline logs:

52°C after 8.0 hours 55°C after 15.3 hours 58°C after 16.3 hours 59°C after 23.8 hours

A time temperature plot of these gives an extrapolated BHT of 63°C @ 1452 metres.

(d) CORING

No conventional cores were cut.

30 sidewall cores were attempted and 27 were recovered.

5.6 RESERVOIR POTENTIAL

The wireline logs and samples indicated the sands of the Latrobe Group had good porosity and permeability with clean sands having only minor amounts of clay matrix and lithic fragments.

The sands of the Strzelecki Group had poor porosities and permeabilities and in general had a high proportion of lithic fragments, feldspar and argillaceous/clay matrix.

Within the Lakes Entrance Formation the Giffard Sandstone was poorly developed and the reservoir character of the Seacombe Marl Member was poor.

Samples from the Gippsland Limestone and the Tambo River Formation indicate some intervals to be friable and to have good reservoir quality.

(Appendix 8 gives a tabulation of log derived porosities.)

5.7 HYDROCARBON SHOWS

Background gas while drilling was generally less that 1 unit and the only significant gas peak recorded was 35 units of methane from the top coal of the Latrobe Group at 801m. Below this level gas readings decreased back to less than 1 unit with minor peaks to 1 unit in the Strzelecki Group.

No indications of oil or fluorescence were observed but there was dark brown to black lignitic staining on some quartz grains.

Wireline logs indicated all potential reservoir sands to be water saturated and an RFT of the top sand of the Latrobe Group recovered formation water.

5.8 CONTRIBUTIONS-TO-GEOLOGIC-CONCEPTS

Formation tops were generally as prognosed. The lithological distinctions from Tambo River Formation to the Gippsland Limestone and the Gippsland Limestone to the Lakes Entrance are imprecise. However, there is fair agreement between lithologically picked tops and the tops as picked from the wireline logs.

The Giffard Sandstone Member is not identified in Macalister No. 1, though a time equivalent may occur between 762m and 792.5m.

The Traralgon Formation in the Macalister No. 1 well includes 30% coal. This quantity of coal continues to the north of the well. Further to the south the amount of coal is very much less (Wonga Binda No. 1). Typically, in all onshore wells in the region of Macalister No. 1 (except for Wonga Binda No. 1), a coal is present at the top of the Latrobe Group. This coal is 13.5m thick at Macalister No. 1.

The Strzelecki Group was readily picked lithologically and confirmed by the wireline logs.

A small gas peak of 35 units (100% methane) was recorded from within the top Latrobe Group coal. This is thought to be a pooling of gas in the top of the structure with the gas source being more deeply buried rocks, probably of the Strzelecki Group. The gas is not likely to have been generated from within the coal as no other coal gas peaks were seen. There were no other hydrocarbon shows.

6. CONCLUSIONS

Macalister No. 1 was located at a crestal position on a structure showing four way dip closure at all mapped horizons. The Macalister Prospect shows early structuring that began soon after the deposition of the Latrobe Group. On present mapping there are higher structures on the Merriman Anticline but these were developed at a later time. Hence the concept that the Macalister Prospect would be ideally located to trap early migrating hydrocarbons.

Merriman No. 1 tested one of the younger and structurally higher features. Though the well is not a crestal location, there is little up dip potential and no shows were recorded. (Mud weights were as high as 10.3 lbs/gallon in this well which may account for a lack of hydrocarbon shows.)

Hydrocarbons migrating along the Merriman Anticline were not trapped in the Macalister Prospect. The lack of significant shows would indicate that hydrocarbons have not migrated through this prospect either.

Other structurally higher prospects have yet to be drilled on the Merriman Anticline.

LIST OF APPENDICES

- 1. Daily Operations Reports
- 2. Bit and Hydraulics Record/Deviation Record
- 3. Mud Record
- 4. Time Analysis
- 5. Drill Stem Test Reports
- 6. Description of Cutting Samples
- 7. Description of Sidewall Cores
- 8. Wireline Log Evaluation
- 9. Water Analysis
- 10. Well Velocity Survey
- 11. Well Location Survey

APPENDIX 1

APPENDIX 1

DAILY OPERATIONS REPORTS

MORNING REPORT

'-Well Name: MacAlister #1

Date: 5-4-88

Days from Spud: 16

Den at 0700 hrs: 1452 m

Progress Last 24 hrs:

Hole Size: 8.5 in

Last Casing: 9.625" at

181.60 m

0.0 m

-

Viscosity: -

Mud Weight: -

WL: -

.PV/YP: -/-

11-4

Preliminary Formation Tops: Nil

-Deviation Surveys: Nil

Operations Summary:

'-- Complete nipple down BOPs and lay out. Cut off Bradenhead and set 5m. cement plug from 6m. --BGL to 1m. BGL. Dump and clean mud tanks. Rig released at 1100 hrs - 4/4/88.

Testimated Costs: Daily = \$100,879

Cumulative = \$465,720

MORNING REPORT

-Well Name: MacAlister #1

Date: 4-4-88

Days from Spud: 15

Deth at 0700 hrs: 1452 m

Progress Last 24 hrs:

.

Hole Size: 8.5 in

Last Casing: 9.625" at

181.60 m

Mud Weight: -

Viscosity: -

_PV/YP: -/-

· 1F-

1 1

WL: -

-Deviation Surveys: Nil

Preliminary Formation Tops: Nil

"Operations Summary:

Continue logging with Schlumberger. Run #6 RFT (Pressure and Sampling). Run #7 CST (Shot 30 — points - recovered 27). Rig down Schlumberger. R.I.H. with BHA and P.O.O.H. laying down. R.I. H. with open end drillpipe to 808m. Circulate and balance mud. Set plug #1 across top of Latrobe from 808m. back to 777m. with 125 sks class "A" cement. Displace and P.O.O.H. slowly 4 stds plus 2 stds at normal speed. Circulate hole clean. P.O.O.H. to 198.5m. Set plug #2 across shoe of 9.625" csg from 198.5m. back to 168m. with 65 sxs class "A" cement. Displace—and P.O.O.H. slowly 4 stds plus 2 stds normal speed. Circulate hole clean. P.O.O.H. laying down pipe. Lay down surplus pipe in Derrick. R.I.H. and tag plug #2 at 162m. P.O.O.H. laying "down balance of pipe. Nipple down BOPs.

Estimated Costs: Daily = \$12,567 Cumulative = \$364,841

MORNING REPORT

"Well Name: MacAlister #1

Date: 3-4-88

Days from Spud: 14

"[**]**:h at **0700** hrs: 1452 m

Progress Last 24 hrs:

-

-

0.0 m

Hole Size: 8.5 in

Last Casing: 9.625" at

181.60 m

_Mud Weight: 9.4 ppg

Viscosity: 48 sec

-PV/YP: 10/11

WL: 11 ml

-Deviation Surveys: Nil

Preliminary Formation Tops: Nil

"Operations Summary:

Complete first log run. DLL-MSFL-GR-CAL. Second log run LDL-CNL-NGT-EPT. Third log run LSS. Fourth log run WST. One hour wait on new module. Fifth log run SHDT. Sixth log run RFT.

Estimated Costs: Daily = \$12,426

Cumulative = \$352,274

MORNING REPORT

-Well Name: MacAlister #1

Date: 2-4-88

Days from Spud: 13

th at 0700 hrs: 1452 m

Progress Last 24 hrs:

60.0 m

Last Casing: 9.625" at 181.60 m

Hole Size: 8.5 in

Viscosity: 48 sec

Mud Weight: 9.4 ppg

WL: 11 ml

_PV/YP: 10/11

Preliminary Formation Tops: Nil

-Deviation Surveys: ~1.00° at 1,452.0 m

Operations Summary:

_Drill to 1452m. T.D. called 1630 hrs 1.4.88. Circulate hole clean and make 30 std. wiper trip. -Circulate hole clean with 20 BBL. Hi-Vis sweep. Drop survey. Pump slug. P.O.O.H. to log. Rig up Schlumberger and commence R.I.H. with logging tools at 0430 hrs. First log DLL-MFSL-GR-CAL.

_Estimated Costs: Daily = \$11,949

Cumulative = \$339,848

MORNING REPORT

· · Well Name: MacAlister #1

Date: 1-4-88

Days from Spud: 12

oth at 0700 hrs: 1392 m

Progress Last 24 hrs:

Hole Size: 8.5 in

Last Casing: 9.625" at 181.60 m

53.0 m

Mud Weight: 9.7 ppg

Viscosity: 49 sec

WL: 11 ml

Preliminary Formation Tops: Nil

__PV/YP: 12/12

· Deviation Surveys:

- 0.50° at 1,334.0 m

Operations Summary:

___Drill to 1348m. Circulate and drop survey. P.O.O.H. Pick up new bit and R.I.H. to shoe. Slip and cut 60' drill line. R.I.H. and wash and ream 12m. to bottom. Drill to 1392m.

Estimated Costs: Daily = \$14,445

Cumulative = \$327,899

MORNING REPORT

Well Name: MacAlister #1

Date: 31-3-88

Days from Spud: 11

De**n**h at 0700 hrs: 1339 m

Progress Last 24 hrs: 106.0 m

. . . .

Hole Size: 8.5 in

Last Casing: 9.625" at 181.60 m

Mud Weight: 9.5 ppg

Viscosity: 48 sec

. PV/YP: 11/10

WL: 11 ml

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

*Operations Summary:

Drill to 1256m. Circulate up bottom hole sample. Drill to 1281m. Circulate hole clean and make 15 std wiper trip. Hole good. Drill to 1339m.

*Estimated Costs: Daily = \$12,230

Cumulative = \$313,454

MORNING REPORT

-Well Name: MacAlister #1

Date: 30-3-88

Days from Spud: 10

th at **0700** hrs: 1233 m

Progress Last 24 hrs: 184.0 m

Hole Size: 8.5 in

Last Casing: 9.625" at 181.60 m

_Mud Weight: 9.4 ppg

Viscosity: 48 sec

_PV/YP: 13/10

WL: 11 ml

- Deviation Surveys: Nil

Preliminary Formation Tops: Nil

**Operations Summary:

Complete P.O.O.H. Guage the stabiliser - in guage. Bit 5-3-1/8. Pick up new bit and R.I.H. -Wash and ream 5 singles to bottom. Drill to 1064m. Flow check and circulate up sample. Drill

_Estimated Costs: Daily = \$26,703

Cumulative = \$301,224

MORNING REPORT

Well Name: MacAlister #1

Date: 29-3-88

Days from Spud: 9

th at 0700 hrs: 1049 m

Progress Last 24 hrs:

235.0 m

Hole Size: 8.5 in

Mud Weight: 9.4 ppg

Viscosity: 44 sec

. ,.PV/YP: 15/10

£ . . . 1

WL: 5 ml

-Deviation Surveys:

Preliminary Formation Tops: Nil

Last Casing: 9.625" at 181.60 m

'"1.25° at 944.0 m

Operations Summary:

__Complete P.O.O.H. with Test Tools. Break and lay down tools. Pick up bit and stabiliser and R. I.H. to drill ahead. Wash and ream 12m. to bottom. Drill to 1049m. Flow check and circulate - ---up samples at 817m. 852m. 880m. and 978m. Circulate and survey at 944m. Bit quit drilling at 1049m. Circulate hole clean. Slug pipe and P.O.O.H. for bit change. Pulled tight over all the "new hole from 1049m. back to 814m.

Estimated Costs: Daily = \$12,334

Cumulative = \$274,521

MORNING REPORT

Well Name: MacAlister #1

Date: 28-3-88

Days from Spud: 8

th at 0700 hrs: 814 m

Progress Last 24 hrs:

Last Casing: 9.625" at

181.60 m

0.0 m

"Mud Weight: 9.4 ppg

- "Hole Size: 8.5 in

Viscosity: 54 sec

WL: 7 ml

Preliminary Formation Tops:

Latrobe Group/Traralgon Fm

at 794.0 m (14.0L)

F PV/YP: 9/9

Deviation Surveys:

___1.00° at 814.0 m

_Operations Summary:

Complete P.O.O.H. and lay down stabiliser and bit. Pick up and make up DST tools and R.I.H. with D/Cs. Pick up and make up DST head and landing joint and lay down. R.I.H. with test string for DST #1. Tag bottom of hole at 814m. Make up test lines and manifold. Attempt to set packers but packer seat not attained. Make second attempt but no packer seat. P.O.O.H. and break and lay down test tools. Pick up bit and stabiliser and R.I.H. to shoe with drilling BHA. Slip drill line. Continue to R.I.H. to bottom to condition hole and mud prior to DST #2. Circulate and condition mud. Slug pipe and P.O.O.H. Lay down stabiliser and bit. Pick up and make up DST tools and R.I.H. for DST #2. Tag bottom of hole on target and attempt set pkrs at 765m. No packer seat. DST #2 aborted. Pick up and fill annulus. Break and lay bown test head and manifold. P.O.O.H.

Estimated Costs: Daily = \$12,037 Cumulative = \$262,187

MORNING REPORT

Well Name: MacAlister #1

Date: 27-3-88

Days from Spud: 7

th at 0700 hrs: 814 m

Progress Last 24 hrs:

57.0 m

· -Hole Size: 8.5 in

Last Casing: 9.625" at 181.60 m

"Mud Weight: 9.3 ppg

Viscosity: 53 sec

PV/YP: 15/17

1

WL: 9 ml

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

R.I.H. slowly. 90m. fill on bottom. Wash and ream to bottom. Circulate and condition mud add drilling detergent and dispersants. Drill to 795m. Circulate sample. Drill to 814m. Circulate sample. Wiper trip to casing shoe (2m. fill). Circulate hole clean. Second wiper trip to shoe. 21m. fill. Wash and ream from 793m. to 814m. Circulate hole clean and condition mud. Coal commenced coming in. Weight up to 9.4 ppg. Circulate and weight up. Slug pipe and P. _ .O.O.H.

- Estimated Costs: Daily = \$13,888 Cumulative = \$250,150

MORNING REPORT

Name: MacAlister #1

Date: 26-3-88

Days from Spud: 6

Depth at 0700 hrs: 757 m

Progress Last 24 hrs: 167.0 m

--,- opad:

"Hole Size: 8.5 in

riogicas case E+ n

Last Casing: 9.625" at 181.60 m

™Mud Weight: 9.1 ppg

...

Viscosity: 49 sec

PV/YP: 15/10

WL: 7 ml

Deviation Surveys:

Preliminary Formation Tops: Nil

_0.00° at 648.0 m

TOperations Summary:

Drill to 594m. Circulate bottoms up and make wiper trip to 9.625" casing shoe. (Pulling up -to 30000 lbs over - No drag on way back down). Circulate and condition mud. Drill to 661m. Circulate and survey at 648m. Drill to 750m. Circulate and condition mud. Drill to 757m. Bit quit drilling. Circulate bottoms up and P.O.O.H. to check bit. Pulling 30/35000 over string weight and hole swabbing. Pick up kelly and circulate. P.O.O.H. Still tight and swabbing. Pick up kelly and pump out 6 singles. P.O.O.H. stabiliser and bit completely balled -up. Cleaned up (bit in good shape -2-2-I).

imated Costs: Daily = \$13,921

Cumulative = \$236,262

MORNING REPORT

Well Name: MacAlister #1

Date: 25.3.88

Days from Spud: 5

th at 0700 hrs: 590 m

Progress Last 24 hrs: 403.0 m

Last Casing: 9.625" at 181.60 m

-Mud Weight: 8.8 ppg

. . Hole Size: 8.5 in

Viscosity: 43 sec

PV/YP: -/-

WL: 20 ml

Deviation Surveys:

Preliminary Formation Tops:

343.0 m 0.75° at

Gippsland Lst at 199.0 m (3.0H)

"1.00° at 486.0 m

Operations Summary:

Complete top up cement in surface casing annulus (40 sx). Flush out mouse hole and re-install sock. P/U 8.5" bit and drilling BHA and R.I.H. Tag cement at 166.4m and float collar at 168. -8m. Drill cement and float collar and shoe track and rat hole to 187m. Install bradenhead valve. Circulate hole over to brine mud. Drill to 355m. Circulate and survey. Drill to 422m. *Circulate and condition mud. Drill to 499m. Circ. and survey. Drill to 590m.

Estimated Costs: Daily = \$14,773

Cumulative = \$222,341

__REMARKS:

-Operation at 0800 hrs: circulate prior to wiper trip

""Site visited by DITR inspector D. Radford

MORNING REPORT

-Well Name: MacAlister #1

Date: 5-4-88

Days from Spud:

Depth at 0700 hrs: 1452 m

Progress Last 24 hrs:

0.0 m

-Hole Size: 8.5 in

Last Casing: 9.625" at 181.60 m

Mud Weight: -

Viscosity: -

PV/YP: -/-

WL: -

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

Complete nipple down BOPs and lay out. Cut off Bradenhead and set 5m. cement plug from BGL to 1m. BGL. Dump and clean mud tanks. Rig released at 1100 hrs - 4/4/88.

Estimated Costs: Daily = \$100,879

Cumulative = \$465,720

MORNING REPORT

Well Name: MacAlister #1

Date: 24.3.88

Days from Spud: 4

oth at 0700 hrs: 187 m

Progress Last 24 hrs:

- → Hole Size: 12.25 in

Last Casing: 9.625" at

181.60 m

"Mud Weight: 8.7 ppg

Viscosity: 36 sec

- PV/YP: -/-

WL: -

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

_ _W.O.C. till 0830 hrs. Arranged machine shop services to convert C.I.W. bradenhead to slip-on. Organised bradenhead into Sale. Wait on bradenhead until 1430 hrs. Crew continued with safety mitems to comply with DITR regs. Checked level of cement in annulus (approximately 21'). Cut 9-5/8" csg and prepared stub. Installed bradenhead and welded. Wrapped in asbestos blanket for one hour cooling down period. (Completed at 2000 hrs). Pressure test between welds on ___bradenhead to 1500 psi - good - nipple up BOPs etc. Pressure test BOPs as per programme and top up annulus with cement.

Estimated Costs: Daily = \$31,458

Cumulative = \$207,568

-REMARKS:

sed mud chlorides to 20000 ppm. Will drill out shoe track with water & convert to mud prior t __o drilling new formation.

MORNING REPORT

Well Name: MacAlister #1

Date: 23.3.88

Days from Spud: 3

th at 0700 hrs: 187 m

Progress Last 24 hrs:

98.0 m

Hole Size: 12.25 in

Last Casing: 9.625" at 181.60 m

...

Viscosity: -

-Mud Weight: -

WL: -

""PV/YP: -/-

Preliminary Formation Tops: Nil

Deviation Surveys:

1.00° at 154.0 m

"TOperations Summary:

Cleaned 12.25" hole down to 89m. Drilled ahead with light parameters to 187m. Circulated round hi-vis and made wiper trip to top of 8" D/Cs. SLM correct. Spotted 100 BBLs hi-vis mud in hole and P.O.O.H. Rigged up to run 15 Jts 9.625" surface casing. Run casing as per programme. Casing sat up 183.5m. This was 2m. short of target. Tried to circulate it down and worked casing but lost ground. Could move up but not down. Finally cemented casing in with shoe at 181.6m (3.8m short of target). Cemented casing with 400 sas of class "A" cmt. Received good return of fluid during mixing and pumping but returns were intermittent during to 20 BBLs of displacement. No return of cmt slurry. Bumped plug with 1000 psi. Held sssure 10 mins - good. Bed off pressure and checked FLT - good. Cmt in place at 0230 hrs. WOC.

Estimated Costs: Daily = \$21,730

Cumulative = \$176,110

MORNING REPORT

Well Name: MacAlister #1

Date: 22.3.88.

Days from Spud: 2

)th at 0700 hrs: 89 m

Progress Last 24 hrs:

_____ Hole Size: 12.25 in

Last Casing: 13.375" at

21.00 m

0.0 m

-Mud Weight: 8.6 ppg

Viscosity: 40 sec

- ,

-- -- PV/YP: -/-

- ---

WL: -

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

R/U Halliburton and mix and pump 93 sxs class "A" cmt and squeeze to conductor annulus. Slurry returns at surface. Displace conductor with water. Hold pressure for 4 hours. R/D cmt head. R/U conductor riser and flow line. Tried to fill hole but fluid still washing up around conductor. R/D flowline and riser. R/U Halliburton and mix and pump 320 sxs of class "A" cmt. W/- 3% CaCl2. Displace conductor with water and hold pressure on formation 4 hours. R/D cmt head and R.I.H. Tag cmt at 20m. Drill 1m. of cement and wash and ream on down the hole. Lot of sand in returns. Cleaned hole down to 52m. by 0700 hrs.

Estimated Costs: Daily = \$154,380

Cumulative = \$154,380

MORNING REPORT

Well Name: MacAlister #1

Date: 21.3.88

Days from Spud: 1

33.00 m

th at 0700 hrs: 89 m

Progress Last 24 hrs:

Last Casing: 14.000" at

89.0 m

__Hole Size: 12.25 in

_ .Mud Weight: 8.6 ppg

Viscosity: 36 sec

- -PV/YP: -/-

WL: -

Deviation Surveys:

Preliminary Formation Tops: Nil

1.50° at 50.0 m

Operations Summary:

- - Completed rigging up and carrying out work on rig to comply with DITR regulations. Drilled rat hole and mouse hole. Spudded 2300 hrs 20.3.88. M/U 12-1/4" bit and BHA and RIH. Tagged bottom of conductor at 33m. Drilled from 33m to 89m. Circ and survey at 50m. (1-1/2 deg -_suspect calibration of survey instrument - will check). At 75m commenced experiencing broaching of drilling fluid up outside of conductor and through mouse hole. This deteriorated rapidly and decided to take remedial action. FOH to shoe. Asked Halliburton to try to locate 13-3/8" protector and cement head so a cement squeeze job can be performed.

Estimated Costs: Daily =

\$0

Cumulative =

GEOLOGY

ROP: 0.6 - 1.5 min/metre (shows progressively with depth - probably due to the loss of circulation)

LITHOLOGY

33-89m Sandstone: clear and white, quartz with minor grey and green quartzitic lithic grains, fine to coarse, occasionally very coarse to granular, angular to subrounded, occasionally rounded, poor to moderate sorting trace to common green black mica loose with no matrix, or cement, good porosity.

GAS : nil

MORNING REPORT

Well Name: MacAlister #1 Date: 20.3.88 Days from Spud: 0 pth at 0700 hrs: - m Progress Last 24 hrs: 0.0 m ___Hole Size: - in Last Casing: 14.000" at 33.00 m - -Mud Weight: -Viscosity: --- -- PV/YP: -/-WL: -Deviation Surveys: Nil Preliminary Formation Tops: Nil Operations Summary: ___Rigged up & carried out work on rig to meet DITR regulations. . __Estimated Costs: Daily = \$0 Cumulative =

APPENDIX 2

APPENDIX 2

BIT AND HYDRAULICS RECORD

&

DEVIATION RECORD

__BIT & HYDRAULIC RECORD

MacAlister #1

20.3.88 - 4.4.88

~Run No. S/I	Size N (in)	Туре	Nozzles (32nds)	W.O.B. (m 1b)	R.P.M.	Volume (gpm)	Pressure (psi)	Depth in, m	Depth out, m	Total Metres		R.O.P. (m/hr)			
1 HL Remarks:	9497 12.25 -	Smith	3 x 16	5/ 7	140	300	250	33.0	89.0	56.0	2.0	28.0	-	-	-
1 R/R HL		Smith	3 x 16	10	65	340	200	89.0	187.0	98.0	5.0	0.0	2	2	I
	494 8.5 Bit pulled bed	X3A ause of ba	3 x 11 alling	10/25	110/120	235	1,100/1,650	187.0	757.0	570.0	27.5	26.8	2	2	I
3RR KH Remarks:	494 8.5	X3A	3 x 1i	15/20	110/120	235	1,100	757.0	814.0	57.0	4.0	14.3	2	2	I
	494 8.5 Conditioning t	X3A rip only	3 x 11	-	-	-	-	814.0	814.0	-	0.0	-	2	2	I
5RR KH Remarks:	494 8.5 -	X3A	3 x 11	15/20	110/120	235	1,100	814.0	1049.0	235.0	13.0	18.0	7	5	1/8
	046 8.5 Complete row o	V437 of inserts	3 x 11 dropped on	10/30 #1 cone	60/ 80 - B/T	235	1,100	1,049.0	1348.0	299.0	44.5	9.7	3	3	I
7 11 Remarks:	5ND 8.5	JD4	3 x 11	25/35	60/ 80	234/235	1,150	1,348.0	1452.0	104.0	22.0	3.5	6	2	1

APPENDIX 3

MUD REDCORD

OPERATOR: CRUSADER RESOURCES	WELLSITE REP: E. BATT
CONTRACTOR: ATCO	CONTRACTOR REP: C. DANN
RIG: A-7	
WELL: MACALISTER #1	
TOTAL DRILLING DAYS: 13	SPUD DATE: 20.3.88
TOTAL DAYS ON WELL: 16	TOTAL DEPTH DATE: 1.4.88
DRILLING FLUID BY INTERVAL:	MUD COST BY INTERVAL:
SPUD MUD 0.to.182 METRE	s\$1618.70
GEL/SALTWATER182.to.1452 METR	ES\$.13074.70
to	• • • • • • • • • • • • • • • • • • • •
to	• • • • • • • • • • • • • • • • • • •
TOTAL MUD COST:	\$.14693.40
PRESERVING ORDER ENGINEERS.	р смерт

INTRODUCTION

INTRODUCTION

Crusader Resources N.L.'s exploration well Macalister #1 was spudded on the 20th March, 1988 by the ATCO Drilling Company using Rig A-7. This was the first of two wells to be drilled in the Gippsland Basin located in Permit PEP-120 near Seaspray. The primary target was the fluvial sandstones near the top of the Latrobe group and the secondary target was the sandstones of the Strzelecki group.

The well was drilled to a total depth of 1452 metres in 13 drilling days. The geological formation tops as supplied by the wellsite geologist were:-

Age	Formation	Depth	Lithology
	Tambo River	(metres) 111	Sandstone/Marl/ Limestone
Miocene	Gippsland Limestone	193	Limestone/Marl
Late Eocene	Seacombe Marl	764	Marl
Late Cretaceous	Latrobe Group	792.5	Coal/Sandstone/ Shale
Early Cretaceous	Strzelecki Group	1 38 6	Sandstone/Claystone

MUD SUMMARY BY INTERVAL

OBSERVATIONS AND RECOMMENDATIONS

SUMMARY BY INTERVAL

INTERVAL: 0-182 METRES

12 1/4" HOLE

9 5/8" CASING

On the 20 th March, 1988 Macalister #1 was spudded using a 12 1/4" bit to clean out the conductor and cement. At 75 metres the drilling fluid started to return up the outside of the conductor and the mouse hole so remedial cementing was carried out.

Drilling progressed to 182 metres using fresh water and when this depth was reached 100 bbls of high viscosity mud was spotted on bottom. The 9 5/8" casing was run and cemented at 181.6 metres as it had hung up there.

INTERVAL: 182-1452 METRES 8 1/2" HOLE

The surface casing was topped up with cement and an $8\ 1/2$ " bit was run in to tag cement at 166.4 metres. After drilling out cement, float collar and shoe to 187 metres the hole was displaced to a Sodium Chloride Brine drilling fluid.

Drilling proceeded to 590 metres through the Gippsland Formation of Limestone and Marl. At 594 metres a wiper trip was made with tight hole experienced on the way out. Due to increasing viscosity the mud was circulated and conditioned. To reduce the balling of the bit and the viscosity a drilling detergent and dispersants were added. The well proceeded into the Latrobe Formation to 814 metres where a drill stem test was tried twice unsuccessfully. Large amounts of coals were encountered and the mud weight was raised to help stabilize the formation. Both drill stem tests failed due to an inability to seat the packer.

Drilling continued to the total depth of 1452 metres with bit changes at 1049 and 1347 metres. The drilling of the lower sections of hole encountered less problems than had the upper sections.

The following suite of electric logs were run:-

- a) DLL-MSFL-GR
- b) LDL-CNL-NGT-EPT-GR
- c) SLS-GR
- d) SHDT
- e) RFT pressure survey.

On the 3rd April, 1988 Macalister #1 was plugged and abandoned.

OBSERVATIONS AND RECOMMENDATIONS

The Sodium Chloride mud system ran into a number of problems. The mud making ability of the Gippsland overloaded the system with clays and consequently large viscosities and Gel strengths.

For drilling in this permit the extra formation protection offered by an 8% KCl drilling fluid would be recommended. Apart from the salinity the Potassium ion offers protection to the clays by interaction with the clay matrix. The inability of being able to seat packers for a DST also emphasised the wash out experienced in the well.

The second well in the permit Wonga Binda #1, is to be drilled with a KCl mud which should show up favourable comparisons. With tighter control of the mud properties the cost should be comparatively cheaper.

MUD CONSUMPTION BY INTERVAL

TOTAL MATERIAL CONSUMPTION

OPERATOR: CRUSADER RESOURCES

WELL: MACALISTER #1

HOLE SIZE..12 1/4"...

INTERVAL....0-182 METRES.....

CASING SIZE...9 5/8".

PRODUCT		QUANTITY			COST
MAGCOGEL	70 x	100 lb sx		\$	1327.20
CAUSTIC SODA	3 x	25 kg drum		\$	74.25
LIME	7 x	25 kg sx		\$	36.75
MAGCOPOLYPAC	2 x	25 kg sx		<u>\$</u>	180.50
•		INTERVAL COST	:	\$	1618.70

OPERATOR: CRUSADER RESOURCES

WELL: MACALISTER #1

HOLE SIZE...8 1/2"...

INTERVAL....182-1452 METRES.

CASING SIZE...-....

PRODUCT		QUANTITY			COST
BARITE	416 x	100 lb sx		\$	3536.00
MAGCOGEL	170 x	100 lb sx		\$	3223.20
CAUSTIC SODA	38 × x	: 25 kg drum		\$	940.50
LIME	3 x	25 kg sx		\$	15.75
MACGOPOLYPAC	7 x	: 25 kg sx		\$	631.75
MAGCOPOLYSAL	51 x	25 kg sx		\$	2154.75
SALT	140 x	50 kg sx		\$	1400.00
SPERSENE	31 x	25 kg sx		\$	782.75
D-D COMPOUND	1 x	205 lt drum		<u>\$</u>	390.00
		INTERVAL COST	:	\$	13074.70

WELL SUNNARY

TOTAL MATERIAL CONSUMPTION

OPERATOR: CRUSADER RESOURCES

WELL: MACALISTER #1

LOCATION: PEP-120, SEASPRAY,

VICTORIA.

	PRODUCT	UNIT		COST	8
	BARITE	416 x 100 lb sx	\$	3536.00	24.07
١.	MAGCOGEL	240 x 100 lb sx	\$	4550.40	30.97
	CAUSTIC SODA	41 x 25 kg drum	\$	1014.75	6.91
	LIME	10 x 25 kg sx	\$	52.50	0.36
	MACGOPOLYPAC	9 x 25 kg sx	\$	812.25	5.52
	MAGCOPOLYSAL	51 x 25 kg sx	\$	2154.75	14.66
	SALT	140 x 50 kg sx	\$	1400.00	9.52
	SPERSENE	31 x 25 kg sx	\$	782.75	5.33
	D-D COMPOUND	1 x 205 lt drum	<u>\$</u>	390.00	2.66
		TOTAL MATERIAL COST :	\$	14693.40	100.00

GRAPHS

BIT AND HYDRAULICS RECORD

BIT & HYDRAULIC RECORD

	Otractor Rig No. Location Well Well															
	ATCO MACALISTER #1															
Oper	ator CRUS					Nr. SE	ASPRA	Y , V					RS	WEET.		
Pump	1	ł	iner Size/Sti		DRILL C D. x I.D.		Pipe D		Tool Joir Type		Wt/Ft		Pump Output Bbls/Stks			
C-E	D395	/500	14&16>	(5½ 8	3½ & 6	j1 ₂	4½"						/0.1362			
Date	Run No.	Size	Make	Type	Jet Size	Depth Out	Metres Drilled	Hours Run	Weight On Bit	R P M	Pump Pressure	Vert Dev	Stks/min	Ann Vel Ft./min	Condition T-B-G	
	11	12½	SMITH	S 11	3x16	89	66	2.5				1/2	80.		6-4-I	
	1 RR	12½	SMITH	S 11	3x16	182	93	7.5				1	80		6-4-I	
	2	81/2	нтс	хза	3x11	757	575	27.5				1	60	124	5-3-1/8	
	2 RR	81/2	нтс	ХЗА	3x11	1048	291	13.0				1	60.	124	5-3-1/8	
	3	8½	VAREL	437	3x11	1347	299	44.5				1/2	46	117	7-3-I	
	4	815	HTC	JD4	3x11	1452	105	22.0				1	52	119	7-3-I	
															:	
L																
1																
								<u> </u>								
<u> </u>																
		<u> </u>								ļ						
																
<u> </u>							ļ									
	<u> </u>										ļ					
		ļ						ļ								
										ļ						
		ļ														
<u> </u>		ļ		*										<u> </u>		
!	<u> </u> -	ļ							_		ļ					
							<u> </u>		-							
<u> </u>															-	
											<u></u>					
REM	IARKS															
		-														
											· · · · · · · · · · · · · · · · · · ·				-	
	•		,	**************************************		· · · · · · · · · · · · · · · · · · ·										

APPENDIX 3

DAILY MUD REPORTS

DRILLING MUD REPORT

DRESSER MAGOBAR REGIONAL OFFICE

P. O. BOX 6504 HOUSTON, TEXAS 77265

A
(4)

DRILLING MUD REPORT NO.	
DATE 21 - 3 - 19 5	38 DEPTH 8559
20-3-88	PRESENT ACTIVITY

			AR G			Inc					7	T	-		0-3-	තිව	PRES	ENT A	CTIVITY		
Dres											CONTR	ACTOR	`	JD DATE				RIG	NO. A 7		
((/ REPORT FOR	105			k.	<u>CSO</u>	1 E.(()		N. L	• •	REPOR	T FOR		1.1			····	SE	CT., TWNSH	., RANGE .	
ELL NAME A	٠ ٢ .	<u> Ba</u>	7 ;					II FIEL	D OR BL	OCK NO.		II CTY	. PAI	N R. OR QFFS	HORE AREA	· · ·	STATE /		IPPILA	JO 6/11	
19	AC	AL	1571	R				P	<u> p</u>	IZC)		5E 1	4 SPRI	7.7			Vι			
DRILLING A							SING		<u> </u>		LUME (E							ATION DATA			
T SIZE	TYPE	117)	JET SI		SUI SET @	RFACE		FT.		OLE 4.7		PITS 40	PUN		4 × 5	iN.	500 /	ANNUL	AR VEL. (FT)		
DRILL PIPE SIZE	TYPE		LENG	тн	INT SET @	ERMEDI	ATE	FT.	TOTAL	CIRCUL	ATING VOL		PUN	MP MAKE, W		ASSU EFF ₄ *	MED (CIRCU PRESS	LATION JURE (PSI)		
RILL PIPE ZE	TYPE		LENG	тн	INT	ERMEDI	ATE		IN STO	,	WEIGH		BBL	/STK		8	TK/MIN E	BOTTC UP (MI	MS N)		
RILL COLLA	B SIZE		LENG	TH	SET @	@ DUCTION	OR LIN	FT.	24() MUD T	YPE /	,			1362/	.124			TOTAL	CIRC.		
81 /	16-	<u> </u>	180	1.2	SET @			FT.	WA	1, 1, 1	164	ंधाः ।	*	/MIN			AL/MIN	TIME (
•								ROPER				Uwsieus	M		ERTY SPI	ECIFIC					
SAMPLE FROM	М							□ F.L. [☑ PIT	WEIGHT			/ISCOSITY		FILI	RATE			
TIME SAMPLE	TAKEN	1						<u> 20°</u>) (.) 	ा	, to O										
: 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										BY AUTH	ORIT		OPERATOR'S				RILLING CONTRA	CTOR	
DEPTH (ft)											7 2				OPERATOR'S	REPRES		O1			
EIGHT 🗹 (p. G				<u>8</u> :			<u>6-6</u>	II PI	HOD	UCTS	<u> </u>		110	EATM	IEN I		
JNNEL VISC			API @				۰F	36		5	6			OGEL	· FC	يار	- C- L c		Swee	2 (
	ASTIC VISCOSITY CP @ ° F											CAU	157	٠ د		-1	CAL	RUL			
	ELD POINT (lb/100ft²) RENGTH (lb/100ft²) 10 sec./10 min.								,		/	1 64	ے د	•	1,7	<u></u>	10011	<u> </u>	- 60		
FILTRATE API		·····	U Sec./10	THAT.				/	·····		/	 			-						
PI HTHP FILT) min) @	<u>, , , , , , , , , , , , , , , , , , , </u>	·		۰F			 											
AKE THICKN							•		,		/	-									
SOLIDS CONT					RETOR	Т															
QUID CONTI	<u></u>		·			·			,	ļ	/	}									
AND CONTE	NT (% E	3Y Vol.)																			
METHYLENE I	BLUE C	APACIT	Y		b/bbl equ							REMAF			2.4	• 17	33.		GEL	io	
н 🗆	STRIP		□ мете				۰F					PR			-						
ALKALINITY M	1UD (Pm	1)										US	LU	1 ^) ीत) ft	1-10	LE	56	JELM	
LKALINITY F	ILTRATI	E (P _t /M _t)					/	,	,	/	()	116	4.7	OLIL	Lie	16	۲	11711	1861	
LTERNATE A	LKALIN	ITY FIL	TRATE (F	P ₁ /P ₂)				/			/			CR.							
CHLORIDE (m	g/L)											1			50	115	R	O7.7	:0A	SHAKE	
OTAL HARDI	VESS AS	S CALC	IUM (mg/	'L)		·						11									
												860		<u>.</u> .	CONF	1 (5)	URATI	المراح	()	RRENTL	
										ļ		58								**	
		7:	*** /	/		.5//				L	/بغـ	70									
PODUCT	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	/ E .	A. A.		T. A.	20 EE		W 25 25	- (S) X	₹/,	, V. Eup				E(QUIPN	MENT				
PRODUCT NVENTORY			/ <			1/35	/ 🕏	₹ <u>/</u> ×	\ <u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	? /			HOURS			HOUR	s		HOURS	
TARTING VENTORY	20	40		40	200	40	1	40		40		Centrifu	ge	-	Desill	ter	2.5	•	H. S. Cent.	-	
RECEIVED			32				_	30	4	-		Degass	er		Shak	er	2 . s	-1	Super Cyclone		
LAST	-		72	<u> </u>	£ 0			1	T	-		Desand	ler	2.5	Othe	er		\parallel	<u> </u>		
HR.		-			50	-	-	-		F2		DAILY CO		2.3		1	CUMULA	TIVE (COST		
							40								· .						
OST LAST	-56		4450	1050	148.ªC			1000	1		\$1008.00 \$1008 00										
AGCOBAR E	NGINE	BE	27	(5WE	ET					is loc			PALADI	.c S	م خ			3660	53	
OBILE UNIT									WAR		LOCATION						F	HONE			
DINITED IN II	0.1									4110 00	MATIONO	AO OFT FO		ON THE DE	VEDEE SIDE						

P. O. BOX 6504

	DRILLING MUD REPORT NO.	2		
(D)	DATE 22 - 3 - 19	88_	DEPTH _	89.
		PRESE	NT ACTIVIT	Υ
	SPUD DATE 20-3-88		RI	山

					Н	IOUS	TON, TE	XAS 77	265	- 11	471	DATE 22	<u> 3</u>		19 88	DEPTH	<u>9.5 </u>		
	MAGCOE				_					- 1						NT ACTIVITY			
bres	ser In	dus	stri	es,	Inc	•				_	ال	SPUD DATE	<u> 20-</u>	<u> 3-88</u>		RIG NO.			
OPERATOR	SANG	o	nes	00	RCE	٠ ر		NI		CONTRA						A7			
REPORT FOR	→ ~	•	14-		14 6				•	REPOR	FOR					SECT., TWNSH			
WELL NAME A	ND NO.	<u> </u>					FIEL	D OR BL	OCK NO.		₩ CTV.	, PAR. OR OF	FSHORE	AREA	STATE / F	ROVINCE	IIV DUZII		
MA		Sic	٤ -	 				7	12			EASPD.	44		II VIC	V 15.			
DRILLING A	SSEMBLY					SING				LUME (B				CIRCULATION DATA					
BIT SIZE	TYPE	JET S		SUF SET @	RFACE		HOLE FT.			P				5 1 IN.	NULAR VEL. (FT/				
DRILL PIPE SIZE	TYPE	LENG	TH	INT	ERMEDIA	ATE		TOTAL	CIRCULA	ATING VOL	1 ~ ~			ASSU EFF.	MED CI	RCULATION RESSURE (PSI)			
DRILL PIPE SIZE	TYPÉ	LENG	ТН	SET @	@ ERMEDI/	ATE	FT.	IN STO	RAGE	WEIGHT		BBL/STK ,	0 379	•	TK/MIN BO	OTTOMS P (MIN)			
SIZE DRILL COLLAF	2 8175	LENG	TU	SET @	@ DUCTION	ORAU	FT.	MUD T	40	8.6			136			OTAL CIRC.			
	8×6+"	80		SET @		011 211	FT.	FW		661 5	MILPS	BARWING.	172	311.48/34	ALMIN TI	ME (MIN)			
					1	MUD I	PROPER	RTIES	'			MUD PRO	PERT	Y SPECIFI	CATIONS				
SAMPLE FROM	vi .	.,		· · · · · · · · · · · · · · · · · · ·]	☐ F.L.	□⁄éıτ	☐ F.L.		WEIGHT		VISCO	SITY	FILTR	ATE			
TIME SAMPLE	TAKEN		·····				189	·	() (olt	Q	. (-		41)					
i			.,				10				BY AUTH	ORITY		RATOR'S WRITTE		DRILLING CONTRA	OTOD		
DEPTH-(ft)							20	1.5~	80	3.5 M	BI AOTH	Onii i.		RATOR'S WRITTE RATOR'S REPRE		OTHER			
WEIGHT D	opa) 🗆 (lb/cu.	m □ s	p. G				₩ 3			.G *	PF	RODUCTS			TRE	ATMENT			
FUNNEL VISC		····				۰F		6+		0	MAC	COGEL		[O - [N]	(D) AS	L GLL	DEGUT		
PLASTIC VISC	ASTIC VISCOSITY cP @ °F							40 40			11115				1010				
YIELD POINT	IELD POINT (lb/100ft²)										1100	11175			AIE GE	. (_			
STRENG	STRENGTH (Ib/100ft²) 10 sec./10 min.							7	 	/	1 1 1 1 1	· C			<u> </u>		<u> </u>		
FILTRATE API						\neg								.,		<u></u>			
API HTHP FILT			a			۰F					-								
CAKE THICKN								/	t	/	-			 					
SOLIDS CONT				PETOP	т		/		-										
	ENT (% BY Vo			HEION	<u>'</u>		. ,	/	 	/									
SAND CONTE		·								,	 								
METHYLENE I				b/bbl equ	uiv.						REMAR	KS:							
	STRIP	□ меті		cm³ /cm³	mud	۰F					· A00	ED A	F	ORTH	έZ	10 54 0	F GE		
ALKALINITY M	-	C WET	_n @								AND	1 51	O	LIF	TE T	O THE	240 E		
ALKALINITY F		4.)						/	 	/	OF GEL SHEEP MUD TO						INCREA		
ALTERNATE A			P. /P.)				/	/	 	/	VISCOSITY AND TAKE GE								
CHLORIDE (m									 										
TOTAL HARDI		CIUM (ma	 /L)						 			3/BBL					•		
											· KV	AU	(H	LORI)ES [ilsī o	N		
														EST	WATE	R. RESU	LT -		
											1600	ng/L	•						
		1.3 (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	34	<u></u> \.		3	~/		, /{\\$.	,/ २				EQUIPI	MENT				
PRODUCT	/ /					<u>3</u> / .				#/ 'S'		LIQUE	20				HOURE		
INVENTORY	- / 🗓	₹₹		/->	1 200	<u>}</u>	<u> </u>	·/ \	<u>}/५%</u> ₹	5.00		HOUF	15		HOURS		HOURS		
STARTING INVENTORY	420	40		38	150	40	2 120	70	4	40	Centrifu	ge _	_	Desilter		H. S. Cent.	**		
PECEIVED								_		_	Degass	er		Shaker		Super Cyclone	-		
D LAST 24 HR.		<u> </u>	-	,	10						Desand	er		Other .		<u> </u>	-		
CLOSING		 	ļ	1		ļ		-	 	·	DAILY CO	ST	U		CUMULAT	TIVE COST	<u> </u>		
INVENTORY	470	40	30		140		2 120	70	4	40		disc	1.71	0-	at 1	302 0	25		
COST LAST 24 HR.				525	18960				<u></u>			# 1°) '	85	1	202-8			
MAGCOBAR E	NGINEER ROBE	RT	_5r	SEC'	T			12		INCOL		D PAR	10151		A . Pt	10NE 336605	3		
MOBILE UNIT								WAF	EHOUSE	LOCATION	N				PH	ONE			

P	DRILLING MUD REPORT NO.	3	
	DATE 23-3- 19_	<u>88</u>	DEPTH
		PRESE	NT ACTIVITY
	SPUD DATE 20-3-88	WAL	TIMG CE

					49 H		ON, TE		265		μJ	DATE	23	- 3 -	1	19 8 P	[DEPTH16	12 m_
	MAGCOE									1	I					PRI	ESENT	ACTIVITY	
	ser In	dus	stri	es,	Inc	•		· · · · · · · · · · · · · · · · · · ·	w.mc	CONTR	ACTOR	SPU	D DATE	20-	<u>5 - 898</u>	2 <u>W</u>		NG NO.	CANNO
OPERATOR REPORT FOR	RUSA	DER	ئــــــ	RES	OUR	CE	5	N.L	•	REPOR	<u> </u>						s	ECT., TWNSHI	
	F. B/	TIE					II EIEI I	D OR BL	OCK NO.			PAR	OR OFFS	HORE AF	REA	(STATE / PROVINCE			
	1NC AL	157	ER	- 1				5				5£1	YSPR	AY	··			VIC -	
DRILLING A	ASSEMBLY					SING		i		LUME (E				•	CIRCU	LATIO			
BIT SIZE	TYPE	JET S	IZE		RFACE	1 1	ĘĮ.	н	OLE	F	PITS	PUMI	P SIZE	4 X 5	X 5 .< IN.			ULAR VEL. (FT.	
DRILL PIPE SIZE	TYPE	LENG			ERMEDIA		TOTAL CIRCULATIN				16 x 5.5 PUMP MAKE, MODEL AS EF 0375/05(4)					UMED CIRCULATION PRESSURE (PSI)			
DRILL PIPE SIZE	TYPE	LENG	TH	INT	ERMEDIA	ATE		IN STO	WEIGH	Г	, '	8	STK/MIN BOTTOMS						
DRILL COLLA	L COLLAR SIZE LENGTH PRODUCTION OR L									1		8/7 375/312					TOTAL CIRC. TIME (MIN)		
07 11		Щ.,		SET		4UD E	FT.	TIES	1		***	BBL/I	MIN JD PROP	EDTV					
					P	· ·	ROPER		<u> </u>	(==)	WEIGHT	IVIC		VISCOSIT			LTRAT	E	
SAMPLE FROM							☐ F.L. ☐ PIT ☐ F.L.			☐ PIT									
TIME SAMPLE	TAKEN						19°		 		<u>S</u>	<u> </u>		<u> </u>) ÷				
DEPTH (ft)							107		<u> </u>		BY AUTH	IORITY	_		OR'S WRITTE OR'S REPRES			DRILLING CONTRA	CTOR
	ppg) 🔲 (lb/cu.	#\ □ s	en G				<u> 187</u> 8•				PI	RODU	JCTS	TREAT				MENT	
	OSITY (sec./qt		,р. u			∘F	50				CAUSTIC				5 H	1000	1	1	
PLASTIC VISC	OSITY cP @					۰F	<u>ب</u> بـ		<u> </u>		LIME			1	PH costed				
YIELD POINT	(lb/100ft²)						•				MAGCOGEL				(mail sweeps				
STRENG	TH (lb/100ft²) 1	0 sec./10	0 min.				-/- /			/	PO	LYI	PAC	to secret reserves				105.34.	
FILTRATE API	(_{cm³} /30 min.))					-									١.			
API HTHP FILT	TRATE (_{cm³} /3	0 min.) @	<u> </u>			۰F	4												
	IESS (32nd in.						.//				<u> </u>								
SOLIDS CONT				RETOR	Т		 			/									
SAND CONTE	ENT (% BY Vo	<u> </u>	AIEH				• /	•		,									
METHYLENE I				lb/bbl equ			•				REMAF	RKS:							
		□ меті		cm³ /cm³	mud	۰F			 		CONTINUES PROLEING WITH								
ALKALINITY M									 		WATER AND HIGH VISCORITY								SWLL
ALKALINITY F	ILTRATE (P, /M	l _t)					. /	<u>,</u>		/	MADE UP MORE GEL 10						10	rough	
ALTERNATE A	LKALINITY FIL	TRATE ((P ₁ /P ₂)				./	<i>-</i>	/	/	LOSSES LIKOUGH SHELPS.								
CHLORIDE (m	g/L)						-				ADDED POLYPAC TO FUR								HER
TOTAL HARDI	NESS AS CALC	IUM (mg]/L)								INCREASE VISCOSITY FOR HE								
											11					-			
<u> </u>									ļ			b	8 - 5 - 115 -	CLL	VNF:) (OF	$\Delta \sim t0$	WASHE
		. /:	·/	5.7			<u></u>	2.47	L		مناتا		AFTE		<u> </u>	16			
PRODUCT STARTING												HOURS			EQUIPMENT				HOURS
STARTING	1	70°C	ان / ن	1	1	i		1	1		Centrifu	ige	HOURS	— 	esilter	10.	_	H. S. Cent.	HOURS
INVENTORY	420	40	30	37	140	4()	120	70	40	4		-	-				-	Super	-
PECEIVED		-	-	•	-	-	-	 -	-	-	Degass		**		haker	10	,	Cyclone	
24 HR.			1	4	10	2	-	.		•	Desand DAILY CO		10.5		Other	CUM	H ATN	E COST	•
CLOSING INVENTORY	420	40	29	33	130			70	40	4	DAILY CO	اق	.s. A		. ş	JOINIC			•
COST LAST 24 HR.				2100	16910	1805	2						# 4	<u>H) '</u>	•			6187	
MAGCOBAR E	LXT)	JUE						14		NOUL)	PARA	BE		۸		3 <u>6605 3</u>	<u> </u>
MOBILE UNIT										LOCATIO							PHO	NE 	
PRINTED IN U	J.S.A.		TH	IS REPO	RT IS GO	VERNE	D BY THE	E TERMS	AND CO	NDITIONS	AS SET FO	ORTH	ON THE RE	EVERSE S	SIDE				

1	
	ש

DRILLING MUD REPORT NO.	4	
DATE 24-3-	₁₉ <u>රිරි</u>	DEPTH <u>181-9</u>
_	PRESE	NT ACTIVITY

					Н		O. BOX		265	11	U)\	DAT	_E 24 -	3 -	₁₉ පිපි	DEPTH 181	1-7)	
S res	MAGCO						,			7	T			0-3-89	PRESEN	IT ACTIVITY		
PERATOR	SADE		RESO			NI	 L <i>.</i>			CONTR	ACTOR T (()	SPU	D DATE	<u> </u>		RIG NO. A 7	2	
DEDODT FOR						3				REPOR	ORT FOR SECT., TWISH						P., RANGE	
VELL NAME AND NO. MINC NEISTER -1								D OR BLO	OCK NO. 120	1 ~	CTY., PAR. OR OFFSHORE AREA STATE / PROVIDENCE OF STATE / PROVIDEN							
DRILLING A					CAS	SING		Г	·	LUME (E				CIRCU	LATION D			
BIT SIZE	TYPE		SIZE	SUI	RFACE			<u> </u>	OLE		PITS	PUM	IP SIZE 14	1	ANNULAR VEL. (FT/MIN)			
DRILL PIPE	TYPE	LEN	GTH	SET (@ 7. (ERMEDIA		FT.	TOTAL	CIRCULA	ATING VOL	<u></u>	PUM	IP MAKE, MOE	JMED CIE	DP DC D CIRCULATION			
DRILL PIPE SIZE	TYPE	LEN		SET (@ 18	<u>2 M</u>	FT.	IN STO	RAGE	WEIGH	r	BBI	ISTK D S.C	.1 1 %	IN BOTTOMS			
ORILL PIPE SIZE				SET (@		FT.	20	O Bác				1361 1	24	UP	(MIN) TAL CIRC.		
DRILL COLLA	AR SIZE	LEN	GTH	SET (OUCTION @	OR LIN	NER FT.	MUDT		GLL		BBL	MIN	343/	312 TIN	ME (MIN)		
					1	ИUD F	PROPER	TIES				М	JD PROPER	RTY SPECIFI	CATIONS			
SAMPLE FRO	M	···········					□ F.L. [] PIT	☐ F.L.	□ /PIT	WEIGHT		VIS	COSITY	FILTRA	ATE		
TIME SAMPLE	E TAKEN								06	30 414								
											BY AUTH	HORIT	= `	DPERATOR'S WRITTI	_	DRILLING CONTRA	CTOR	
DEPTH (ft)											<u> </u>			OPERATOR'S REPRE	PRESENTATIVE OTHER TREATMENT			
WEIGHT 🗌									8		PRODUC				105			
FUNNEL VISC	·····		·			°F	1 36			6	MAC			}		-		
PLASTIC VISC		® 				۰F					CAUSTIC			1 30	2 B C 13 B		<u> </u>	
YIELD POINT	TH (lb/100ft	2) 10 sec./	10 min.	·						/.	SAU					1. 1.15	1 7	
FILTRATE AP		·									311	<u>, </u>		/ 110.1	<u> </u>			
API HTHP FIL			@			۰F												
CAKE THICK							/ / ./			/.						,		
SOLIDS CON	TENT (% BY	Vol.) 🔲 (CALCD.	RETOR	ıT												-	
LIQUID CONT	ENT (% BY	Vol.) OIL/V	VATER				/	/	-,	/ -								
SAND CONTE	ENT (% BY \	/ol.)					· · · · · · · · · · · · · · · · · · ·									<u>.</u>	,	
METHYLENE	BLUE CAPA	CITY		lb/bbl equ cm³ /cm³							PRUPARLO 200 BRUS SALT/CE						is n	
РН 🖸	STRIP	□ме	TER @			۰F			1.5	I F. R	1 14 14	NLXI		GITTON LUTT 120 BBL				
ALKALINITY N								,	1	1.7								
ALKALINITY F			(D (D)	 			/	,	1.4	<u>/ 1.8 </u>	HU	1 1 14	L 10	りくにし	. OU	7 (6)	11 / Z 1. s	
CHLORIDE (m		FILIRATE	(P ₁ /P ₂)				/		20	000	(4)	A N	GED	SHAKER SCREENS TO				
TOTAL HARD		ALCIUM (m	ng/L)						10		40			GIPPS LAND LIMESTONES				
										60	į.	() ()	2011) Chica Cine 101 - 1090					
													CUR FROM 2020 55 Ministe Ai CL Llull 20					
												$i \in [$	(% B·).	MITTING	Ai (- L LLULL	. ZCKny	
	/						S. C. V. M.	14/2/4/2 24/5/4/2	1. 50 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					EQUIP	MENT			
PRODUCT INVENTORY		\$\J.	<i>૾૽</i>) é	<i>૽૽ૺ</i>		ૻૺૺૢૺ૽ૺ૱ ૱				HOURS		HOURS		HOURS	
STARTING NVENTORY	42		29	33	130	38			4	40	Centrifu	uge		Desilter		H. S. Cent.		
RECEIVED	15		يد خطر	-	1 -	<u> </u>		-		_	Degas	ser		Shaker		Super Cyclone		
LAST 24 HR.			+-	7	70		+_	 		_	Desand	der		Other				
24 HR. CLOSING	11.3		1 2 -	1 2.	25	- ·	1	207	,.	1, 0	DAILY C			L	CUMULAT	II IVE COST	<u> </u>	
INVENTORY	4)	0 40		31	105	38	120		4	40		4)	8 A 4	.00	d d	4 77.70	>	
COST LAST 24 HR.	ENGINEER		147,0	110,0	474 (n.	<u></u>		27000	E ADDRI	ESS	<u> </u>	1	001		1 1 2	- 1 4- 4-		
MAGCOBAR I	ドスて	50	LET	·				112	Lie	J(()(LOCATIO		0	PARAO	156 5		ONE COS3		
MOBILE UNIT	٠.							***		. LOOATIO	• •				. '	-		

PRINTED IN U.S.A.

P. O. BOX 6504 HOUSTON, TEXAS 77265

	DRILLING MUD REPORT NO.
D	DATE 25 - 3-
	20-3-88

DRILLING MUD REPORT NO.	5_		
DATE 25 - 3-	19 <u>88</u>	DEPTH _ \$8	30/1
20-3-88	PRESE	NT ACTIVITY	AHEAI

MAGCOBAR GROUP Bresser Industries, Inc.										7			20)-3-88	PRESE	NT ACTIVITY	AHEAD	
OPERATOR										CONTR	AOTOD	SPUD				RIG NO.		
CRUSADER RESOURCES							N.	<u> </u>		REPOR			NNN	1		SECT, JWNS	HP RANGE	
WELL NAME AND I	. <u>Ba</u>				•		FIELI	D OF BLO	оск по.	<u> </u>			OR OFFSHO		STATE / P		MA NACC	
MA		1571	ER	**			<u> </u>	PE	Y 11	0		761	1/01/1					
DRILLING ASSE	1176	1 3 0	.6.5-	<u> </u>		SING			OLE	LUME (E		PUMP	CIZE		JLATION D		T/MINI) .	
,	gea 	JĘTĄS		SET (М	豇						MAKE, MOI	X 5,5 IN.		NULAR VEL. (F	DC MAT	
DRILL PIRE TY SIZE	PE	LENG	रम [‡]		ERMEDIA P. 7		ET.	TOTAL	CIRCULA	TING VOL		PUMP	MAKE, MOI	DEL ASS EFF	UMED CIP	RCULATION ESSURE (PSI)		
DRILL PIPE TY SIZE	PE	LENG			ERMEDIA		FT.	IN STO	RAGE	WEIGHT	г	BBL/ST	гк / S (-	o u		TTOMS (MIN)		
DRILL COLLAR SIZ	E	LEÑG	一個	PROD	DUCTION	OR LIN	NER	MUD T		GEL		вві/мі			TO	TAL CIRC. ME (MIN)		
	×	<u> </u>		SET (/UD F	FT. PROPER		1011	UL L				RTY SPECIF			· · · · · · · · · · · · · · · · · · ·	
SAMPLE FROM							□ F.L. [ПЕІ	☐ PIT	WEIGHT	9.2	our VIS	COSITY 4	FILTR/	ATE		
TIME SAMPLE TAK	EN						190	<u> </u>		500	l Q	-		43	71	7 +		
						\neg				J	BY AUTHO		[N]	1 1 [1	1 4	DRILLING CONT		
DEPTH (ft)	· ·				<u> </u>		36	0 ~	55	30n	BI AOING	onii i.	=	OPERATOR'S WRIT		OTHER	HACTOR	
WEIGHT (ppg)	☐ (lb/cu.	ft) 🗆 s	p. G				8.		T	.8	PR	RODUC	CTS		TREA	ATMENT		
FUNNEL VISCOSIT						۰F	36			13	CAU	STI	(TO 10	NIROL	эΗ.		
PLASTIC VISCOSIT	Y cP @				-	۰F					MAC			1 '		1	o Hi Vis Si	
YIELD POINT (lb/10	Oft²)										'			10 14	TO FLOCULATE HILVE SHEED			
STRENGTH (Ib)/100ft²) 1	0 sec./10) min.				-/	<u>-</u>	/	/	SALT		10 (0	UIRDL	CL- AT	10×1191		
PILIRATE API (cm3			<u></u>	,						<· +	SPERSENE TO CO.			NTROL	VISCOS	LITY.		
API HTHP FILTRAT						°F	• -			-,								
CAKE THICKNESS	·		<u> </u>				-/- $\frac{1}{3}$			3.2								
SOLIDS CONTENT				RETOR	T	\dashv	-			/								
SAND CONTENT (9		·					1 2 2 7 7			75%								
METHYLENE BLUE	·····			p/ppl equ			1,]	1_/_	-		REMARKS: AT APPROXIMALLY 1700 HR						0 1101	
PH DSTRI		□ мете		m³ /cm³	mua	۰F). 5			•					
ALKALINITY MUD ().7	WHILIT RAPIOLY DRILLING (up							
ALKALINITY FILTRA	ATE (P _I /M	()					0.5/0.7 0.1/			0.4	GIPPSLAND LITESTONES CONTR					TROL O		
ALTERNATE ALKAL	INITY FIL	TRATE (P ₁ /P ₂)				-//			/ _	RELORNS WAS ALMOST LOST 1					WHEN		
CHLORIDE (mg/L)							9000 15			000	STATES CHANNEL OURSTLONE							
TOTAL HARDNESS	AS CALC	IUM (mg	/L)				3			20	11			६ त्रु				
							<u> </u>			FROM						2016KEY		
: :											11		() () () () () () () () () ()	r ich. Rit (re.	race B	By Which	e oneur	
		1/~	/	. /					L	/ !,	16.0				William All	1116 3.º		
PRODUCT INVENTORY	BAALL	13/10/10/10/10/10/10/10/10/10/10/10/10/10/				33/			1	MA SEUSE		-,	HOURS	EQUIF	HOURS	П	HOURS	
	(120	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7 ~		100	<u> </u>	3 20	/ 💢	722	150	Centrifug		(LECTION OF	" Desilter	 	H. S. Cent		
STARTING INVENTORY	470	40	27	31	105	<u> 38</u>	120	43	4	40		PI	ROPLESSE		13.5		-	
RECEIVED	1-	•	-	-	-		ļ.	-		-	Degasse	$-\!\!\!\!+$		Shaker	13.5	Super Cyclone	-	
24 HR.	-		3	1	51	-		18	•	3	Desande		13.5	Other	1000000			
CLOSING INVENTORY	420	40	24	30	54	38	120	25	4	37	DAILY CO			s i	CUMULAT		1	
COST LAST		(BE.		76 JU			180 c		25 25	1	13	02^{-2}	<u>.</u> 1	4 :	37243	•	
MAGCOBAR ENGIN			ا تا ندمو	L-1				НОМ	EADDRE	SSLIA	1000		0	PARADI	S,A PF	875(60)	7 }	
MOBILE UNIT								WAR	EHOUSE	LOCATION	N				PH	ONE		

THIS REPORT IS GOVERNED BY THE TERMS AND CONDITIONS AS SET FORTH ON THE REVERSE SIDE

P. O. BOX 6504 HOUSTON, TEXAS 77265

RILLING MUD REPORT NO.	6	¥.

DRILLING MUD REPORT NO.	<u>(~</u>
DATE 26 - 3 19	88 DEPTH 757.4
	PRESENT ACTIVITY
SPUD DATE 20 3 - 88	TRIPPING
	RIG NO.

						1.1		DAIL		19	.	
MAGCOBAR Dresser Indu	J			0.3-8	en	NT ACTIVITY	r					
OPERATOR						CONTR	ACTOR .	SPUD DATE <u>4</u>		<u> </u>	RIG NO.	" 7
REPORT FOR		OCRCES		VL.	<u></u>	REPOR	T FOR				SECT., TWNSH	
WELL NAME AND NO.	D OR BL	OCK NO.			PAR OR OFFSH	ORE AREA	I STATE / F	GIPPSLA PROVINCE	NO NATI			
MAC ALIS	TEZ -	<u> </u>	P	EP	120		156	ASPRA	ΥΥ		VIC	**************************************
DRILLING ASSEMBLY		CASING	i	N	NUD VC	LUME (E			CIRCU	JLATION D		
	SIZE SU	IRFACE 21 m	EI.	10	OLE O	4	SO	PUMP SIZE 1件	X 5. 5 IN.	Al	NNULAR VEL. (FI	C 214
DRILL PIPE TYPE LEN	GTH INT	TERMEDIATE	0.5h			ATING VOL		PLIMP MAKE MC	DEI ASS	UMED CI	IRCULATION RESSURE (PSI)	
DRILL PIPE TYPE LEN		@ 【とうん m TERMEDIATE	*7;	IN STO	RAGE	WEIGH	r l	BBL/STK		STK/MIN BO	OTTOMS	1
DRILL COLLAR SIZE LEN	SET PRO	@ DUCTION OR L	FT.	MUD T	YPE			1362 1		00	P (MIN) OTAL CIRC.	<u> </u>
	70 _m SET		FT.		"SA	L7/36		ввими '	343/		ME (MIN) 24	<u> </u>
,		MUD	PROPER	RTIES		1		MUD PROPE				<u>.</u>
SAMPLE FROM			□ F.L. [☐ PIT		☐ PIT	WEIGHT	A 1	SCOSITY	FILTR	ATE	
TIME SAMPLE TAKEN			234	၁မ	03	00		~ ·	49 IN	7	γ_{ϵ} :	
							BY AUTHO		OPERATOR'S WRITT		DRILLING CONTR	ACTOR
DEPTH (ft)			750	5		, ,,			OPERATOR'S REPRI		OTHER	
WEIGHT (ppg) (lb/cu. ft)	Sp. G		9.	1	9.	1.4	PR	ODUCTS		TRE	ATMENT	
FUNNEL VISCOSITY (sec./qt.) API @	9	• F	45		4	() 1rl	CAUS	TIC	70 R	AISC	PH	
PLASTIC VISCOSITY cP @		۰F	1,3		İ	5		COGLL	mixco.	TO INCREASE VOCO		
YIELD POINT (lb/100ft²)			9 10			<u>o</u>	POLYSAL FOR				NOGY	CONTR
STRENGTH (lb/100ft²) 10 sec./	10 min.				32	SALF		10	RAISE	CC- L	LULL.	
FILTRATE API (cm3 /30 min.)			14 7			SPERSENE I		10	DECREA	isc VIS	COSITY	
API HTHP FILTRATE (cm3 /30 min.)	·	°F	-	,								
CAKE THICKNESS (32nd in. API/HTI			4/32 4/3			37			<u> </u>			
SOLIDS CONTENT (% BY Vol.)		RT	1			,						
LIQUID CONTENT (% BY Vol.) OIL/V	VATER		/ 93/			/			-			
SAND CONTENT (% BY Vol.)	☐ lb/bbl equ	uiv	1.5 1.5			5	DEMARK	/O.a.				<u>.</u>
METHYLENE BLUE CAPACITY	☐ cm³ /cm³	mud				•	REMARKS: DIFFICULTIES (ONTINUE)					
PH ☐STRIP ☐ ME	TER @	۰F) /) · (,	CONTROLLING VISCOSITY. PI					AND
ALKALINITY MUD (Pm)		•	1.2 1.				CHLORIDEL LEVELS CONTIA					-L9 T
ALKALINITY FILTRATE (P, /M,) ALTERNATE ALKALINITY FILTRATE	(D /Ď \		0.2/0.6 0.2/			/ O.G	PROP. THIS WAS CAUSED A					
CHLORIDE (mg/L)	((() () ()		920	-	140	Λ	1					
TOTAL HARDNESS AS CALCIUM (m	ng/L)				140							
TOTAL TANDALEGO NO GALGIONI (III			160 24			10	COMPLAISATE FOR VOLUME (
							WAS	THE ALSO	SURFACE ADDED		STEM. S	
*1								REAT DE	Ai Di	504.01	GAAZ Z	Merci La
/2/	54/54/	/چ	<u></u>	_~/	in /5	Mr.	FROCT	CALCARE	FOUL FOUL	MENT 1	JUE CIE	PSLAND
PRODUCT INVENTORY	CHOLINE CONTRACTOR		10 10 10 10 10 10 10 10 10 10 10 10 10 1			1. J.		HOURS	11	HOURS		HOURS
		1	i i		70.5	2-3	Centrifuge		Dociltor		H. S. Cent.	1100113
INVENTORY 40	24 30	54 38	3 120	25	4	37	Centriuge	14	Desilter	14		-
		160 -	-	50	_		Degasser	14	Shaker	14	Super Cyclone	-
OGED LAST 24 HR.	4 -	13 -	22	22	-	14	Desander	19	Other		<u> </u>	
CLOSING HZO 40	20 30	201 38	98	53.	4	23	DAILY COS		a	CUMULAT		3 ~.
COST LAST		24648 -	929 50			353.50		1848.4	v	\$ `	573:	C2
MAGGOBAB ENGINEER SWILL		D . 1	Ne.1			SS INCOL		PARADI	51 5	A PE	10NE 336605	
MOBILE UNIT	The Name of	.,				LOCATION				PH	IONE	2

RUSADER

REPORT FOR

VELL NAME AND NO.

MAC DRILLING ASSEMBLY

BIT SIZE

DRILL PIPE SIZE 4

DRILL PIPE

DRILL COLLAR SIZE

SAMPLE FROM

DEPTH (ft)

TIME SAMPLE TAKEN

MAGCOBAR GROUP

ALKTER-1

TYPE, , ,

TYPE

WEIGHT (ppg) (lb/cu. ft) Sp. G

STRENGTH (lb/100ft2) 10 sec./10 min.

SOLIDS CONTENT (% BY Vol.) CALCD. CRETORT

☐ METER @

FUNNEL VISCOSITY (sec./qt.) API @

PLASTIC VISCOSITY CP @

FILTRATE API (cm3 /30 min.)

SAND CONTENT (% BY Vol.)

METHYLENE BLUE CAPACITY

STRIP

ALKALINITY FILTRATE (P, /M,)

ALKALINITY MUD (Pm)

CHLORIDE (mg/L)

EIVED

LAST 24 HR.

OST LAST

API HTHP FILTRATE (cm3 /30 min.) @

CAKE THICKNESS (32nd in. API/HTHP)

LIQUID CONTENT (% BY Vol.) OIL/WATER

ALTERNATE ALKALINITY FILTRATE (P. /P2)

OTAL HARDNESS AS CALCIUM (mg/L)

4 420

4

MAGGOBAR ENGINEER

65

355

40

40

SHEET

YIELD POINT (lb/100ft2)

Tresser Industries, Inc.

JET SIZE

3211

LENGTH 5 72 ~

LENGTH

LENGTH

241

RESOURCES

P. O. BOX 6504 **HOUSTON, TEXAS 77265**

FIELD OR BLOCK NO.

HOLE

IN STORAGE

TOTAL CIRCULATING VOL.

□ F.L. □FIT

0500

813.7m

01.6

53

15

17

9/22

900

2/32

93/

_

90

0.7

-/-

12,000

320

HOME ADDRESS

WEIGHT

NL

CASING

FT.

FT.

FT.

FT.

MUD PROPERTIES

☐ F.L. ØPIT

1700

813

9.5

47

10

11

6/15

llec

2/12

铸件

9.5

0.8

11/15

-/-

21 000

200

96/

۰F

۰F

SUBFACE

INTERMEDIATE
SET @ | 8 2 m
INTERMEDIATE

PRODUCTION OR LINER

SET @

SET @

☐ lb/bbl equiv.

☐ cm³ /cm³ mud

	-7
11	
A L	IJ
1-	

DRESSER MAGOBAR REGIONAL OFFICE DRILLING MUD REPORT NO. 19 8.8 DEPTH_ PRESENT ACTIVITY DST RIG NO. CONTRACTOR ATCO SECT., TWISHP., RANGE REPORT FOR DANN CTY., PAR. OR OFFSHORE AREA STATE / PROVINCE SEASPRAY MUD VOLUME (BBL) CIRCULATION DATA ANNULAR VEL. (ET/MIN) PLIMP SIZE IN. ich XSS DP 34 DC_ 16 PUMP MAKE, MODEL ASSUMED % CIRCULATION PRESSURE (PSI) STK/MIN BBL/STK BOTTOMS 1114 4.4 UP (MIN) TOTAL CIRC. 7 MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE WEIGHT 900 7.3 BY AUTHORITY: OPERATOR'S WRITTEN ☐ DRILLING CONTRACTOR OPERATOR'S REPRESENTATIVE OTHER **PRODUCTS** TREATMENT BARITÉ Mil : Use 13 1 della Asi CAUSTIC MINITOR 111 D O (umfood) 2 MAGROGEL POLYPAC 71. POLY SAL 1400.00 1971 53 ASC NE te 1 361 102 VINCENT SALT 11 1, 1. 13, 17 4. 1 REMARKS: HIGH VISCOSITY READINGS 1700 RUTURNIS BUCANE WA CONSIDERATION MCBCCCI. THE Adding J (CONTROLLED) 111 0.0 134 16-21661 LUISCAL) 1 1700116 COAL Litte LAIROR

PHONE COS 3

MAZA MOG UN MU 10 100 5 3546 - 35 EQUIPMENT Ĭ, S. HOURS HOURS HOURS 30 53 23 38 Centrifuge Desilter H. S. Cent. 201 2 Super Cyclone Degasser Shaker 5 5 14 Desander Other DAILY COST CUMULATIVE COST 9 15 30 28 33 101 4315 887-15 153,22 T.B.A

PARACON

MOBILE UNIT WAREHOUSE LOCATION THIS REPORT IS GOVERNED BY THE TERMS AND CONDITIONS AS SET FORTH ON THE REVERSE SIDE PRINTED IN U.S.A.

P. O. BOX 6504 HOUSTON, TEXAS 77265

5

DRILLING MUD REPORT NO.	8	
DATE 28-3- 19	88	DEPTH 813.7
SPUD DATE 20-3-88	PRESE	NT ACTIVITY DST (2)

<u> </u>					1003	ION, IE	AAS / /	200	- 14	HJI	DATE		19 (70)	DEPTHO	113 /
MAGCOBAR GROUP Presser Industries, Inc.									J		2			DST A	<u>~</u>
OPERATOR					RACTOR	SPUD DATE	- ,		RIG NO. A	=					
REPORT FOR										T FOR				SECT, TWISH	IP., RANGE
WELL NAME AND NO. MAC ALLSTER - L FIELDOB BLOCK NO. PAC ALLSTER - L									<u> </u>	CTY	DANN PAR, OB OFFSH	ORE AREA	STATE / P		MD VALL
	<u> 1155 č</u>	R	-1				PEP	17	0		SEAS MA		Y	IC	
DRILLING ASSEMBLY				-	SING		<u> </u>		DLUME (JLATION DA		
BIT SIZE TYPE HTC	JET SIZ	Έ × 1}	SET	RFACE @	21,	7 EI	7	60		PITS PO	PUMP SIZE	+ X 5.5 IN.	DP		T/MIN) DC
DRILL PIRE TYPE	LENGT) 	INT SET (ERMEDIA	ATE	か 正	TOTAL		ATING VOI		PUMP MAKE, MC		UMED CIF	RCULATION ESSURE (PSI)	
DRILL PIPE TYPE	LENGT	50		ERMEDIA			IN STO	RAGE	WEIGH	т,	BBL/STK 176		STK/MIN BO	TTOMS (MIN) 7	2
DRILL COLLAR SIZE	LENGT			@ DUCTION	OR LI	FT. NER	MUD T		1	·	1		, TO	TAL CIRC.	
- 12 m 26		<u>2n</u>	SET			FT.		<u>ALT</u>	165	<u>L</u>	ввимий		GALAMIN	1E (WINV) Z	! 7
		59 m				PROPER		<u> </u>		WEIGHT	MUD PROPE	SCOSITY	FILTRA	TF.	
SAMPLE FROM						☐ F.L. [⊒MPIT ⊃ Ø		. DAIT	- VEIGHT			112110	-	
TIME SAMPLE TAKEN						19		1 2	200	1 '	7.4	54		lcc	
DEPTH (ft)						813	. 3	61	2 3	BY AUTH		OPERATOR'S WRITT		DRILLING CONTR	ACTOR
WEIGHT (ppg) (lb/cu	ft) 🖂 Sn	G					· <u>'</u>). 4	Р	RODUCTS			TMENT	
FUNNEL VISCOSITY (sec./ql					۰F		+7	1	. 4	FA	VSTIC	Ai) 0c.)	To i	NUREASE	PH
PLASTIC VISCOSITY cP @			,		۰F		0		9	12	IT.				
YIELD POINT (Ib/100ft²)									9				MICREASE (HEORIDES.		
STRENGTH (lb/100ft²)	10 sec./10 r	min.				4/18		6	/21	BP	IRITE		UCRE AS		WEIGH
FILTRATE API (cm3 /30 min.)					500 7		cc							
API HTHP FILTRATE (cm3 /3	30 min.) @				۰F				•						
	CAKE THICKNESS (32nd in. API/HTHP)								32	<u> </u>					
SOLIDS CONTENT (% BY V			RETOR	T		6	,		· 5 ⁻			-			
LIQUID CONTENT (% BY Vo		ER				94/		93.5							
SAND CONTENT (% BY Vol. METHYLENE BLUE CAPACI			o/bbl equ	Jiv.			1/0	1	1/-	 REMAF	BKS: O	+ , -	/*X		A
		□ c	m³ /cm³				<u> </u>	1.	<u> </u>		1/31	1657	•	FAILED	
PH LASTRIP ALKALINITY MUD (Pm)	☐ METEF				۰F				1.0	FURTHER TRIPPING AND					ACKER.
ALKALINITY FILTRATE (P, /A	1,)					 			1.0	FUR					
ALTERNATE ALKALINITY FIL		/P ₂)	· · · · · · · · · · · · · · · · · · ·	A		-//-/			/_	TOOK PLACE FOLLOWED BY					
CHLORIDE (mg/L)						12,000 14			000	MUD CHECK AT 1000 HZ (AUSTI APDED TO RAISE PH, SALT TO K. CHEORIDE) POLYSAL TO MAINTAIN TO AND BARITE TO ENCLEASE MIN PRIPARE SLUGS. MUD IN GOOD					
TOTAL HARDNESS AS CALC	CIUM (mg/L)					40	T	80	ADDL	0 10	RAISE P	11, 54	LT (O	- A4()&
										(1)6	ORIDET, PO	DLYSAL	10 1	AINTAIN	· WILDU
				·				ļ		1 1 N N I	PARE SI	10 E	-^JC#にな つひり - 1	n 600	00 SITA
1. /5			-50/	,			~ 4/	L	-14/	11	057 (2	1 1657	TAILED	DUE TO	PACKER
PRODUCT INVENTORY STARTING 3.55	Columbia Columbia	0.00	<u> </u>		Š.			5/.	100 Class	NOT	SETTIALS.	EQUIP	MENT		
PRODUCT INVENTORY	75/	ব উ		7 2	7 0	3/ 4		7 3	133		HOURS		HOURS		HOURS
STARTING 355 40	15	1	30	201	3	3 77	28	9	4	Centrifu	ge 4	Desilter	4	H. S. Cent.	
RECEIVED	-	-	-	-	_	-	-	-	-	Degass	er 4	Shaker	4	Super Cyclone	_
24 HR. 45 -	4	-	-	-		6	12	_	_	Desand	er 4	Other	-		-
CLOSING 10 40			30	7. 1	33		16	9	4	DAILY CO			CUMULATIN		
. 	 	•)U	201	, , ,		<u> </u>	1	1		1855	.00	4 4	046	- 64
COST LAST SU - 24 HR. 382 - MAGCOBAR ENGINEER	9900	•	-		_	25350		E ADDRI	- ESS		4 033		₩ PHC	• •	
MOBILE UNIT									LOCATION	N			PHO		
PRINTED IN U.S.A.		THIS	S REPO	RT IS GO	VERNE	D BY THE					ORTH ON THE REV	ERSE SIDF			
			01												

MOBILE UNIT

PRINTED IN U.S.A.

MAGCOBAR GROUP

P. O. BOX 6504 HOUSTON, TEXAS 77265

:	12
	IHJI

DRILLING MUD REPORT NO.	9	

/ x \	DRILLING MUD REPORT NO.	
(A)	DATE	88 DEPTH 1048-5
		PRESENT ACTIVITY
	SPUD DATE 20-3-88	

Dres	ser i	Hu	usti.	ıcs,	1110	•				_		SPUD DATE		<u> </u>	$\underline{\omega} _{-}$					
OPERATOR	CRUS	ADE	- R	500	RES		N.L.	··-	,	CONTR	RACTOR	ATCO)			R	IG NO. A 7			
REPORT FOR	Ē.F	BAT			e- a					REPOF	T FOR	C. DP	1 N/A			S	ECT., TWNSH	, RANGE D VALL		
WELL NAME A	AND NO.		ISTE	2 -1			FIEL	D OR BI	OCK NO		CTY.	, PAR. OR OF	FFSHO	RE AREA	STATE			· • • • • • • • • • • • • • • • • • • •		
DRILLING A		-		1	CA	SING	<u></u>	1		LUME (I	BBL)	CIRCULATION DATA								
BIT SIZE	TYPE H	TC JE	Z SIZE	SU	RFACE	13	-	'	HOLE		PITS	PUMP SIZE	14	X 5.5N.		ANNU	JLAR VEL. (FT/	MINI		
DRILL PIPE	TYPE	LE	NGTH	INT	@ 21	ATE 9	<u> </u>	TOTAL	CIRCUL	ATING VO	L.	PUMP MAKE	, MODI	EL ASSI	JMED	CIRC	ULATION SSURE (PSI)	<u>'''-</u>		
DRILL PIPE	TYPE	LE	NGTH	SET	@ 187	ATE	EI.	IN STO	DRAGE	WEIGH	T	BBL/STK	250	0	STK/MIN					
SIZE DRILL COLLAI			NGTH	SET			FT.	MUD]		<u> </u>		.1264	4_		46	UP (N		<u> 8 – </u>		
DRILL COLLAI	n 312E	L		SET		I OR LI	FT.		ALT	16L	L	5.Q BBL/MIN			GAL/MIN					
						MUD	PROPER	RTIES	ļ			MUD PR	OPER	TY SPECIFI	CATION	NS				
SAMPLE FROM	M				<u>I</u>		☐ F.L.		☐ F.L.	PIT	WEIGHT		VISC	COSITY	FIL	TRATE	Ε			
TIME SAMPLE			1500	>	20)° U	1 9	.4		44		5	-) c c	÷						
							BY AUTHO	ORITY:		PERATOR'S WRITTI	EN		DRILLING CONTRA	CTOR						
DEPTH (ft)	,						861		9	53m				PERATOR'S REPRE	SENTATIVE		OTHER			
WEIGHT 🗹 (ppg) 🗌 (lb/	cu. ft)	Sp. G				9.3		3		 	RODUCTS		·······	TI	REAT	MENT			
FUNNEL VISC			@			۰F	43			14	11	RITE				Rini	x + 10	k seuc		
PLASTIC VISC		<u> </u>				۰F	12			5	11	6606	3	•	MICL.		PREMIX			
YIELD POINT							10	, 	- 	-,		WSTIC			Andin		- p H -			
	TH (lb/100ft²	·	:./10 min.					20	10	/38_	38	1CT		10 01	HINIP	100	CHEORY	Be EED.		
API HTHP FILT			1.0			۰F	5			-										
CAKE THICKN							1/	37	1	/32										
SOLIDS CONT				RETOR	T			.5	· /	, 5										
LIQUID CONTE							93.5/	, 	935	,										
SAND CONTE	NT (% BY V	ol.)			*****			7.		7.					***************************************					
METHYLENE E	BLUE CAPA	CITY		lb/bbl equ				4		-	REMARKS: MUD IS NOW SHOWING									
рн ☑	STRIP	Πм	ETER @			۰F	10.	0	10	.0	FAUOURABLE SIGNI OF STARILIZA									
ALKALINITY M	IUD (Pm)						٥.	ገ	1	· 0	WHILST DRILLING THROUGH							LULRAL		
ALKALINITY F	ILTRATE (P	/M ₁)					0.3 /	0.7	04	0.8	-1 1									
ALTERNATE A	LKALINITY	FILTRA	E (P ₁ /P ₂)				-/		- /	<u>/ - </u>	11									
CHLORIDE (mg							14 0			000		MAD TO BE ADDED TO MAINTAIN ACCOUNT THE ACCOUNT REACHER FA								
TOTAL HARDN	NESS AS CA	LCIUM	(mg/L)				16	0		60) : t &	(A) } }	1 116	: AC+	/) 16. 	K.	tive Edelitiv	JEIGH		
									 	-		1.117.1	ы. 1 О≀д	neciji Sp	γ (۵ کشر ^ی حم	the late	AUA		
										-	ADDE) To 9	12 Y 2	in it	: /)	J. N.J.	17 N. 17	NUD DLUMÉ ,		
	. 4. /	رماني ح	/ند/	\$7/	†	<u>.</u>	· ~/		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	S	H (, t , -	STAE	ا بيع (~	7111.						
PRODUCT INVENTORY	1/2 No. 1/2 No	, 100km	2000 S						77 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /	20 (S)				EQUIP	_ 			T		
	ARTING 210 AQ 11 20 33					5/ 5	•- · · · ·				11	HOU	RS		HOU	RS		HOURS		
STARTING INVENTORY	10 4	0 1	1 /	30	33	[]	16	9	201	4	Centrifug	je		Desilter			H. S. Cent.			
BECEIVED			•	-		*	-	-	_	-	Degasse	er		Shaker			Super Cyclone			
D LAST 24 HR.	49 -		6 -	-	-	-	6	•	27	-	Desande	er		Other						
CLOSING INVENTORY 2	61 40)	5 1	30	33				DAILY COST			CUMULATIVE COST								
COST LAST			- 6000 - 51172					\$1,136-92,					\$ 10,183-26							
MAGCOBAR E		19E	BERT		SWI	<u> </u>			IE ADDRE		LIN(OLN R	0,0	MAMAISE)A PHONE 3366053					

WAREHOUSE LOCATION

4

DRILLING MUD REPORT NO.	10)
DATE 30-3-	<u>86</u>	DEPTH 12 33
10-3-88	PRESE	NT ACTIVITY

P. O. BOX 6504 HOUSTON, TEXAS 77265 MAGCOBAR GROUP Dresser Industries, Inc. SPUD DATE _ RIG NO. CONTRACTOR CRUSADER RESOURCES ATCO NL. SECT., TWNSHP., RANGE REPORT FOR REPORT FOR C. DANN E. F. BATT FIELD OR BLOCK NO.
PEP 120 CTY., PAR. OR OFFSHORE AREA WELL NAME AND NO. ALISTER MAC DRILLING ASSEMBLY CASING MUD VOLUME (BBL) CIRCULATION DATA PUMP SIZE 14 X 5 7 IN. JET SIZE JYPE L 742 306 TOTAL CIRCULATING VOL. 3×11 SET@ 21m FT. PUMP MAKE, MODEL KE, MODEL ASSUMED EFF. O % CIRCULATION PRESSURE (PSI) INTERMEDIATE
SET @ 1 6 2 0 LENGTH 5 16 60 STK/MIN BOTTOMS 46 UP (MIN) LENGTH INTERMEDIATE IN STORAGE 1.12645 105 SET @ TOTAL CIRC. HOLE: 42 M PRODUCTION OR LINER 244. DRILL COLLAR SIZE LENGTH MUD TYPE SALT/GEL 228, SET @ FT. GAL/MIN **MUD PROPERTIES** MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE WEIGHT □ F.L. **Ø**PIT ☐ F.L. Z PIT SAMPLE FROM 1900 0600 TIME SAMPLE TAKEN BY AUTHORITY: ☐ DRILLING CONTRACTOR OPERATOR'S WRITTEN 1228 OTHER OPERATOR'S REPRESENTATIVE DEPTH (ft) 1120 **PRODUCTS TREATMENT** WEIGHT 🗹 (ppg) 🗌 (lb/cu. ft) 🔲 Sp. G 9.4 9.4/219-7 44 FUNNEL VISCOSITY (sec./qt.) API @ ۰F 48 CAUSTIC 101 MAJIMANCE OF PH BLOWK ADDID AT ROWLED PLASTIC VISCOSITY CP @ 14 13 GEL (MAGROGIA) 1:15 8 MANGEN PHLOLOGY 10 POLY SAL YIELD POINT (Ib/100ft2) 10 STRENGTH (lb/100ft²) 10 sec./10 min. 11/55 4/70 APRIL TO PROTES AND SYNOL FOR A BARITE CHECK DES FILTRATE API (cm3 /30 min.) 12 cc MAINIAM 11/2 SALT API HTHP FILTRATE (cm3 /30 min.) @ ۰F 7/22 CAKE THICKNESS (32nd in, API/HTHP) 11 SOLIDS CONTENT (% BY Vol.) CALCD. RETORT LIQUID CONTENT (% BY Vol.) OIL/WATER SAND CONTENT (% BY Vol.) 1.5% ☐ lb/bbl equiv. 74 HRY TO 7AM. REMARKS: DURING 1016 METHYLENE BLUE CAPACITY cm3 /cm3 mud WERL 3 x 100 BBL PREHIXES (LL STRIP ☐ METER @ 10.0 10.0 ALKALINITY MUD (Pm) 1-2 1.0 ìo ALKALINITY FILTRATE (P, /M,) .6/1.3 +3 /1.4 ACTIVE TO THE ALTERNATE ALKALINITY FILTRATE (P1 /P2) DECREASES (OMPENSATE FOR CHLORIDE (mg/L) 12000 11.000 FOTAL HARDNESS AS CALCIUM (mg/L) SURFACE VOLUME. POLYSAL WAS 80 40 TO MAINTAIN 42 /72"F Aggen in 146 515 E 15 RESIDIVITY RHEOLOGY: PH ADDED FAUDUR ABLE WITH CAUTIC AND SALT FOR LUCORIDES **EQUIPMENT** HOÜRS HOURS **HOURS** TARTING 10 6 Desilter H. S. Cent. 40 33 30 71 10 174 Super Cyclone 19 14 IVED 32 Degasser Shaker 6 10 55 DAILY COST CUMULATIVE COST CLOSING INVENTORY 200 65 30 33 119 30 1 153 1910000 104781 PR9956605 3 MAGCOBAR ENGINEER HOME ADDRESS NO OLN SWEET PARADICE MOBILE UNIT WAREHOUSE LOCATION PRINTED IN U.S.A.

PRINTED IN U.S.A.

DRILLING MUD REPORT NO.	11	
DATE 31 - 3	₁₉ <u> 88</u>	DEPTH 1338-5
	DDECE	IT ACTIVITY

					Н		'. O. BOX TON, TE		7265		4)	DATE	31	- 3	₁₉ <u> </u>		DEPTH 13	38.5			
D res	MAGCO				Inc	_				7	T			0-3-8	PRE	SENT	LING A	MEAD			
OPERATOR		USA			RÉ50		CES	N.1	 L	CONTE	RACTOR	NT (7 07112				RIG NO.				
REPORT FOR		. F. G			, 50			•	-	REPOF	T EOD		NHA	,		SECT., TWISHP., RANGE					
WELL NAME A	1115 110	Ac.			-		FIEL	PER.	OCK NO)				ORE AREA	STATE	STATE / PROVINCE					
DRILLING A	······································				CAS	SING	MUD VOLU								ULATION	I DA	TA				
BIT SIZE	TYPAREL	JEJ S	IZE	1	RFACE	13	ン _も FT.	별	OLE 54	1 2	DE DE	PUMF		X 5.5 IN.		ANNULAR VEL. (FT/MIN)					
DRILL PIPE SIZE	TYPE	LENG		SET (ERMEDIA	ATE &	うる うる		CIRCUL	ATING VOI		PUMF (E	MAKE MO	DEL AS:	SUMED	CIRC	CULATION SSURE (PSI)				
DRILL PIPE SIZE	RILL PIPE TYPE LENGTH INTERMEDIATE SET @							IN STO		WEIGH	Т	BBL/S		<u> </u>	STK/MIN	BOT UP (TOMS MIN) 3	7			
	RILL COLLAR SIZE LENGTH PRODUCTION OF							MUD T		1000		BBLA			.,	TOT	AL CIRC. 14 DE.	.42			
				SET		4110	FT. PROPEF	<u> </u>	417	IGEL	<u> </u>			RTY SPECII			3451	93			
SAMPLE FRO						כטוו	□ F.L.		П	PIT	WEIGHT			SCOSITY		TRAT	E				
TIME SAMPLE							☐ F.L.			OO	۹ ا	.5	r	112		. 1	11.				
TIME SAWFEE	IANLI								06	•	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	J		70		!	Icc				
DEPTH (ft)							128	Im	13	34	BY AUTH	HORITY	_	OPERATOR'S WRIT			DRILLING CONTRAI OTHER	CTOR			
WEIGHT (ppg) 🔲 (lb/cu	. ft) 🗆 s	Sp. G				J. 9.			5+	PI	RODU	CTS		TF	REAT	TMENT				
FUNNEL VISC						۰F	4		4		BAR	ITÉ		UNEO 11	J PRET	714	io MAINT	Aud M.			
PLASTIC VISC	OSITY cP @					۰F	C)	١	1	CA	USTI	C	USED 1							
YIELD POINT	(lb/100ft²)						c	3	1	0	SAL				JCKEN	LEASE					
STRENG	TH (lb/100ft²)	10 sec./10) min.				4 /	50	4,	45	101	LYS	AL	10 (0	NIROL	ı	JATEL L	.055			
FILTRATE API	(_{cm³} /30 min.)					110	دد	- 11	C6	 										
API HTHP FILT	TRATE (cm³ /	30 min.) @	9	- 1		°F		,		• ,											
CAKE THICKN				. *				32		/32	<u> </u>										
SOLIDS CONT				RETOR	T		11	,	4	.5	-			ļ		•					
LIQUID CONTI							89 /		88.5					 							
SAND CONTE				b/bbl equ	ıiv.		1.5)	1.	>	REMARKS: FURTHER DOWNHOLE LOSSES TO										
	/	. □ мете		cm³ /cm³	mud	۰F	10.	0	10	٠٥	7										
ALKALINITY M		, 🗀 :				\dashv	10		1.		1 CA 1806 COME 1 CONS										
ALKALINITY F	ILTRATE (P, /N	Λ ₁)					·#/	· 8		, 8	COSTEM SINCE PREGUENT APPITION										
ALTERNATE A	LKALINITY FI	LTRATE (P ₁ /P ₂)					<u> </u>	- /		- TO THE MOD STITEM HAS BUEN - REGULARD OVER THE LAST 550~										
CHLORIDE (m	g/L)						10,	000	12	000	REGAL	با ۱۹۹۹	9 es	IEA I	٠.٦	(/1) (() (OUNDAL			
TOTAL HARDN	NESS AS CAL	CIUM (mg.	/L)				40	2	8	0	DKIL	LIN	G. 1	CRICE C	. ec	0.7	71115 E	1.45			
RESISTIL	7710						·43@	84°F	.37	@ 78°1	11408	r F (1	5 A	7116	1000	A()	HOUL JO	ed Date			
							.,.,.				1111.1.1. 5	60A 10:11	(€) -:14≥	1410 - 2 - 36 - 2	KANGLE SIR		A) TIEG	he unity			
	14/5	34/	₩/	3 /	/ =	مخ	\\\\	~/\ <u>~</u>		3/8%	1	REL	क्रेमार है।)	PMENT						
PRODUCT INVENTORY	BA II.	10000 TO	કે.કો જે.કો			3"/ d	12 19 19 19 19 19 19 19 19 19 19 19 19 19	W.C. 1. W.S.	10 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /	18 18 18 18 18 18 18 18 18 18 18 18 18 1			HOURS		HOUF	RS		HOURS			
STARTING 7			33		<u> </u>	9	4	Centrifu		12	Desilter	71.	5	H. S. Cent.	_						
PECEIVED		_		-	_	<u>.</u>	_	30	-	-	Degass	er	21.5	Shaker	21 9	5	Super Cyclone	adms.			
D LAST -	ED LAST 70 - 4						6	9	_	\ \ \	Desand	ler	9.5	Other	-			-			
CLOSING INVENTORY	<u> </u>	26	1	30	119	33		21	9	4	DAILY CO				СПМПГ	_ATIV	E COST	.,			
COST LAST	*	3300	-		-	<u>,</u>	363 (80, 00)				# /	037	7 50		\$13309-11						
MAGCOBAR E		SWE!		ļ	LI		HOME ADDRESS, ALC				ICOLN RO, PARABISE					5.A. PH3N5GGO53					
MOBILE UNIT		·VE	<u> </u>					WAR	EHOUSE	LOCATIO	N					PHO					

DRILLING MUD REPORT

DRESSER MAGOBAR REGIONAL OFFICE

Mogophon	
ı Mautuuar ı	DRESSER
Barrier Res-Lis of State of Barrier State of	BRESSER)

P. O. BOX 6504

	DRILLING MUD REPOR
D	DATE 1-4
	EBIJO DATE 20-3

RT NO. 88 1392

						1003	ION, IE	XAS //	200	- 14	HJI	DATE	E			19 9		EPTH C	1	
M Dress	AGCOE er In				Inc	; .				Ţ		CD: II	D DATE 2	0-3.	88	DR1		ACTIVITY NG AH	ĒΑ	o .
OPERATOR .	RUSA									CONTR	ACTOR		T()					IG NO.	===== }	
REPORT FOR		BA.		<u> </u>	IR(L	<i>y</i>	<u>N.</u>	٠		REPOR	T FOR		DAN	۸)			SI /-	ECT, TWNSHI	2., RAN	IGE
NELL NAME AN	D NO.			<u> </u>			FIELD OR BLOCK NO.				СТҮ	(, PAR. OR OFFSHORE AREA STATE / PROVINCE							<u> </u>	1466
	MUC	AL	157E	X - 1		SING		T	40 VC	DLUME (E		36	CIRCULATION DATA							
DRILLING AS	TYPELIC	JET S	SIZE	SU	RFACE	12 4				l F	PITS	PUMI	P SIZE 1						/M(N)	
(C) 3	504 TYPE	3 v	٠ ا ا	SET	@21 / TERMEDI @182	ATEC	FT.		OLE (5 4-	3C	?(,		Į	6 5.) LACCI	IMPED		ILAR VEL. (FT.	<u>: 70 </u>	<u></u>
SIZE	16.60	110	<u> 60m</u>	SET	@\8Z	7	ÉFT.			70		1 5		00	EFF) O %	PRES	SURE (PSI)		
SIZE	TYPE	LENG		SET			FT.	IN STC		WEIGH	!	BBL	2/-126	45		52	BOTT UP (N	1IN) 5	4	
BRILL COLLAR S	ize Z 1. Hwn?	LENG	18n	PROI	DUCTION @.	OR LI	NER FT.	MUD T	YPE ALT	/GEL	***	BBL	Min		2	5 2 GAL/MIN	TOTA	L CIRC. (4.5) (MIN)		44 55
						MUD	PROPER			1		MU	JD PROP	ERTY S	PECIFI	CATION	IS			
SAMPLE FROM					. I		□ F.L.	PIT	☐ F.L.	. 🏻 PIT	WEIGHT		7	VISCOSITY	′	FIL	TRATE	<u> </u>		
TIME SAMPLE TA	AKEN						190	0	0	000	9	7		4			1	١ د د		
											BY AUTH	HORITY	/: [OPERATO	R'S WRITTI	EN		ORILLING CONTRA	CTOR	
DEPTH (ft)							135	2 m	138	8.~				OPERATO	R'S REPRE	SENTATIVE		OTHER		
WEIGHT (ppg			Sp. G				DUF 3.		DUT C	7.7	H	RODU						MENT		
FUNNEL VISCOS) API @				۰F	49	<u> </u>	4		BAR							10 A Miles	<u> </u>	<u> 3 S L</u>
PLASTIC VISCOS						۰F	15	<u> </u>	1		CAU			10		ATTAN		PH.		
YIELD POINT (Ib/	(lb/100ft²) (lb/100ft²) 1	0 000 /1/	0 min				4 /		 	2	PUL				10 INCREASE YP.					
FILTRATE API	<u> </u>		U 11IIII.				4 /	49		<u> 45</u>	POL		HL	10		MPROU AINT				
API HTHP FILTRA			D			۰F	. 11		1	1	SAL			- Jc	, , ,	MIN I	MIR	, (1)(1	<u> </u>	,
CAKE THICKNES					the term to real wife to real		2/	17	2	/32										
SOLIDS CONTEN	IT (% BY Vo	1.) 🗷 c/	ALCD.	RETOR	T		11 /2									44.7.4	. ———			
IQUID CONTEN	T (% BY Vol	.) OIL/W	ATER				89 /	,	88	/										
SAND CONTENT	(% BY Vol.)						1% 2			7	DEMARKS OF A 1 A 2									
METHYLENE BLU	,	Υ		b/bbl equ m³ /cm³													JN	Α'		
эн □ ∕sт		☐ METI	ER @			۰F).0	WI.	3								
ALKALINITY MUE							1.0	,	1.	,	TO REPAIR SADE DESILIE						Lick	Ko.	J	
ALKALINITY FILT			'D /D \				0.5/1.0 .4/			<u>/ ୦.୬</u> /	INTERNITUT INTERVALS						Λ_{Σ} :	100	14.	
CHLORIDE (mg/L		INAIE (F1 /F2)				10,0	200	100	200	105 17.) (LNGE	i	Jou
TOTAL HARDNES	· ·	IUM (mg	/L)				80		8									io I		er As
Residiv.	}. ,			··-			· 40@			o 784	1							5L D		
110/3/10/	1						, , , , , , , , , , , , , , , , , , , ,		1.46		RUN		$(O_{\alpha})^{T}$	NUC	005	LY	10	500	Betti	701
										1	FOR	ſ,)ESA-0	OER_	Λ.	11)	DL	SILTE	<u>(</u>	
	17/2		<u> </u>	3 ³ (٠/ ,		W. Tal		h/.	1,500 m	1			I	EQUIP	MENT				
PRODUCT INVENTORY													HOURS			HOUF	RS		НОІ	URS
STARTING NVENTORY 30	9 40	26		30	119	33		21	9	4	Centrifu	ige	10	Des	silter	5.	$o\ $	H. S. Cent.	-	*
RECEIVED				-	_	-	-	-	_	_	Degass	er	16.5	Sh	aker	10.	5	Super Cyclone		-
LAST 7	1 -	2	_			7		5			Desand		-	Ot	her	-			-	
CLOSING INVENTORY					21	co		-	4	DAILY CO	AILY COST CUMULATIVE COST						4			
							31 58 16 9			T	<u> </u>					14226.36				
		4950	L			00'	150 42 25 50°0 - HOMESADDRESS				12:	<u>n ^</u>	. 000	10.0		'1		336605		
- KUBEKI JWEET										LOCATION	ULN	KU	+ +/18	aviji			PHON		<u> </u>	
PRINTED IN U.S.	Α.		THI	S REPO	RT IS GO	VERNE	D BY THE	TERMS	AND CO	NDITIONS	AS SET FO	RTH O	N THE RE	VERSE SII	DE	L				

P. O. BOX 6504

	DRILLING MUD F
(A)	DATE
	25.15 BATE 7

DRILLING MUD REPORT NO.	1)	
DATE	88	T.D. 1452
	PRESE	NT ACTIVITY
	DATE 2-4- 19	PRESE

						lous	TON, TE	XAS 77	265	1/	HJ	DAT	E	4 -	ے 19		DEPTH 14	<u> </u>			
	GCOB				I					1	I/		ID DATE 2	() 2. 公	T	PRESENT	ACTIVITY				
Dresse	rin	aus	STPI	es,	inc					CONTR	ACTOR			<u> </u>		RUNA	RIG NO.	<i>OG</i> 5			
REPORT FOR	CRUS	A DE	R	Ric	OUR	(1)	<u> </u>	J.L.		REPOR		I	(0				SECT., TWNSHF	PRANGE			
1	FF	BI	TIA						HEFOR	(_	DANI				APPSLAND	VALLE				
WELL NAME AND N	ió. Mac	Α	LIST	ĖR	-1			OR BL	OCK NO.	0	CTY	I, PAF	OR OFFSH	OVINCE	21						
DRILLING ASSE			- 1			SING		N	LUME (E	BBL)			CIF	CULAT	ION DA	TA					
BIT SIZE TYP	PEHIL	JET S		SUI	RFACE	13-3/	······	ᆟ	0LE 76	3	ors OG	PUMP SIZE 4 X 5 S IN. ANNULAR VEL. (FT/MIN) DP DC DC									
DRILL PIPE TYPE	24	LENG	TH	SET (ERMEDIA	ATE &	' FT. √.≽.		CIRCULA	TING VOL		PUN	IP MAKE, MC	DEL	SSUMED	CIDO	CULATION SSURE (PSI)				
DRILL PIPE TYPE	(O	LENG	O M		<u> Ω</u> ERMEDI/		ў ¥ Т.	IN STO	S RAGE	WEIGH	ř		/STK / S C C		STK/N	IN BOT	TOMS				
SIZE DRILL COLLAR SIZE		LENG	ты	SET (@ DUCTION	OBII	FT.	MUD T	YPF	<u> </u>	•	1	52 1264	<u> </u>	_52	UP (AL CIRC.	6			
	- المالك		28 _m	SET (FT.		12.	GE	<u>L</u>	BBL	Ямій		2 & Z	NIN TIME	E (MIN)				
					P	MUD	PROPER	TIES		1		M	UD PROPE		CIFICAT						
SAMPLE FROM							□ F.L. [⊅∕ PIT		PIT	WEIGHT		VI	SCOSITY		FILTRAT	E				
TIME SAMPLE TAKE	ΕN						110	<u> </u>	16	<i></i>	0	۱ . ۷	+	48			cc				
											BY AUTH	ORIT	_	OPERATOR'S W			DRILLING CONTRA	CTOR			
DEPTH (ft)							142		,	<u>52n</u>	<u> </u>			OPERATOR'S R	EPRESENTA	TREAT	OTHER				
WEIGHT (ppg)			p. G				<u> 9.1</u>		1	<u>·4</u>	 		UCTS								
FUNNEL VISCOSITY	······) API @	.,			۰F	4		-	t8	BAR			1		LUME	in PREMI	x a SLUC			
PLASTIC VISCOSITY						۰F)		<u>o</u>	MAC	:GC	PGEL	FOR	<u>G</u> ċ	4 5	ساوتك				
STRENGTH (Ib/100		0 000 /10) min					سر در '	 	/110	<u> </u>			 							
FILTRATE API (cm ³		0 560.710	, 111111.					45	4,	45				 							
API HTHP FILTRATE) min) @	······			۰F		"	1	100											
CAKE THICKNESS (_	1/	• •	2	3.7											
SOLIDS CONTENT (·			RETOR	т			<u>، د</u>	1	. \$ 											
LIQUID CONTENT (88.5/	<u> </u>	89/	/								······································			
SAND CONTENT (%	BY Vol.)						1.	5 %	1.0%												
METHYLENE BLUE	CAPACIT	Y		b/bbl equ				6	-		REMARKS: RUNNING THE CENTRIFUGE A										
PH □STRIF	>	□ мете				۰F	10	.0	10). <i>O</i>	39/Min. SUCCESSFULLY NIDED IN										
ALKALINITY MUD (F	m)			-			0	· <i>8</i>). ფ	REDUCING SOLIDS SUSPENDED IN TH										
ALKALINITY FILTRA	TE (P, /M	1)	·				0.4/	1.3	0.4	1.1											
ALTERNATE ALKAL	INITY FIL	TRATE (P ₁ /P ₂)				- /	-	- /		WEIGHT FROM 9.7 (at the clase of										
CHLORIDE (mg/L)		 -					14,0	000	1	,000											
TOTAL HARDNESS		IUM (mg	/L)					·O		10	II REA	CH	:0 H	16 1	KLL	rr.	CI IOX	1111 (1000			
RESISTINIT							·41@	810E	1.36	<u>ଇ ଅଟ୍ର</u>				AND	Ĩ).	WAY	, CALLE	2 AT			
											1452	, man									
	1.1. A	8/.	¥ /	3/		5 7	₹/;	T /	1/	- / *	 			FO	JIPMEN	IT					
PRODUCT INVENTORY		<u> </u>		E/ 5		خ / خ	Political States	F/ 3						11		·	<u></u>	1101150			
	TING .				/ <u>~</u>	= / -	/		/~ ~			HOURS	<u> </u>		OURS		HOURS				
STARTING (D	40	24	1	30	119	3	1 58	16	9	4	Centrifu	ige		Desilte			H. S. Cent.	-			
PECEIVED.					۰		-	_	-	Degass	ser		Shaker			Super Cyclone	-				
24 HR. 56		-	_	_	5	-	-	-	-		Desand	ier	•	Other		-					
CLOSING 4	40	24	1	21	114	31	31 58 16		9	4	DAILY CO	OST		CUMULATIV			<i>*</i>				
COST LAST 176 00		44	11		9450		10	10			\$ 570			0 80			14 757 16				
MAGOOBAR ENGINEER HOME ADDRE										SS		e n	· DODA	7	5.7	•	3660s				
MOBILE UNIT	Ĭ.	214	EE.	<u> </u>				WAR	EHOUSE	LOCATIO	N	<u> </u>	PARA	1156	1.1	· S	76002				

P. O. BOX 6504

D	
T	

ı	DRILLING MUD REPORT NO.	14		
	DATE 3 4 -	_ 19 <u>> </u>	DEPTH 1457	,
	ODUD DATE 20.3.88	. 14	NING LOGS	

						-	1008	SION, IE	XAS 7	7265	- 1.	HJI	DATE	-1		19 💆	DEP	гн <u></u>	
Bres				SROU str i		Inc	:_				7		SPUD DATE		3 - 88	PRE	SENT AC	TIVITY)& S
OPERATOR								*			CONT	RACTOR	SPUD DATE	-				10. A 7	
REPORT FOR				£500	RCES	<u> </u>	<u>٧</u> .	<u>.</u> .			REPOR	T FOD		1					
WELL NAME		<u>. B</u>	TTA					II eiei	D OR BI	OCK NO	1	ζ.	. DA NA	V ESHOB	E ADEA	CTATE	PROVIN		P. RANGE VALLE
			1516	١ - ١				177		120	•	31	PAR. OR OF	1 7	E AREA	1°V	12		
DRILLING	ASSE	EMBLY				CA	SING	ì	1	NUD VO	DLUME (BBL)			CIRCU	JLATION	DATA		
BIT SIZE	TY	PE	JET S	SIZE	SET	IRFACE @		FT.		19/E		EITS.	PUMP SIZE	11.	5.5		ANNULAI DP	R VEL. (FT	C 206
DRILL PIPE SIZE	TY	PE	LENG	STH .	IN' SET	TERMEDI. @	ATE	FT.	TOTAL	CIRCUL.	ATING YO	L.	PUMP MAKE	MODE	L ASS 375 EFF	UMED %	CIRCULA PRESSU	TION RE (PSI)	
DRILL PIPE SIZE	TYI	PE	LENG	TH		TERMEDI	ATE	FT.	IN STC	RAGE	WEIGH	iT	BBL/STK	214	5 13	STK/MIN	BOTTOM UP (MIN)	s 36	·
DRILL COLLA	R SIZ	E	LENG	TH	PRO	DUCTION	OR L	INER	MUD-T		100	1	BBL/MIN 6			Z/Z/JI	TOTAL C		46
					SET	 -	ALID	FT.	1	ALT	1GE	L			Y SPECIF			175, ct	: 47
							VIOD	PROPER		 		WEIGHT	WIOD PRO		OSITY		TRATE		
TIME SAMPLE			:					☐ F.L.	PIT	∐ F.L	. 🗆 PIT	1 9	. 4		11 C)		11		
TIME SAMPLE	IAN							alv.		-				-	40		11 0	<u>c</u>	
DEPTH (ft)								145	7	-		BY AUTH	ORITY:		ERATOR'S WRITT ERATOR'S REPRE			LING CONTRA	CTOR
	nna)] (lb/cu		Sn. G				9.				PF	RODUCTS	$\overline{}$			REATME		
FUNNEL VISC							۰F	45		1		NO	E 121	,), A	7100	1317	RIN	/_	THE.
PLASTIC VISC	OSIT	Y cP @					۰F	10	·	1			1115	Tic		0 3/		<u></u>	
YIELD POINT	(lb/10	Oft ²)						1		<u> </u>									
STRENG	TH (lb	/100ft² }	10 sec./1	0 min.					40		/								
FILTRATE API	(cm³	/30 min.)				~		(6										
API HTHP FIL	TRATI	≣ (_{cm³} /3	30 min.) @	7			۰F	-		1									
CAKE THICKN	IESS (32nd in.	API/HTH	P)				7/	, 37		/								
SOLIDS CONT	ENT	(% BY V	ol.) 🖬 6.	ALCD. [] RETOR	RT		ŧ \$,										
LIQUID CONTI	ENT (% BY Vo	I.) OIL/W	ATER				83/	<u>'</u>			<u> </u>							
SAND CONTE	NT (%	BY Vol.)					1											· · · · · · · · · · · · · · · · · · ·
METHYLENE I			TY		lb/bbl eqi cm³ /cm³			-		ļ		REMAR	IKS: CAL						inte
	STRII		☐ MET	ER @			۰F	10.	0			Hori	AEV	67	i Ne AA	1600	IN	PA	0 1-
ALKALINITY M								0	,	-		MAA.	زر)	1/	COAL	. 5	C()10	Notes III	100 i - Rr 73
ALKALINITY F								0.4/	1-1	ļ	/	11/15/C	(10)	5 5	076	174	\sim $a < a$	NE Dis	BE25.
ALTERNATE A CHLORIDE (m		INIIY FII	LIHAIE	P ₁ /P ₂)				-/	~ ~ ~ ~ ~			HOW II	THE	UL 171	1125 E	2166 18087	:>L	,, ,	CUSSED
TOTAL HARDN		AS CALC	CILIM (ma	di.)				17 0				1 100	THE	ا سالسا ما زار	BAZ	() () () () () () () () () ()	WAS	Noi	Î
RESISTI								<u>• 36</u> ন				HAJAIL	بدر ۱۹۹۲ کو						
Kensii	())	' '						.)e (c ₁	01 "			2 . 7	よいとかり で		36416	(191)	Ande.		JERR
<u> </u>					 							SUPPL							,
	3		- N	0.037"C	\$	17.E	37/	10 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /		~/	100 100 100 100 100 100 100 100 100 100				EQUIP	MENT	,		
PRODUCT			<u> </u>				ž/ c		<u>*</u>				HOUF	RS	***************************************	HOUR	RS		HOURS
STARTING NVENTORY-	4	40	23	1	30	120	31		10	(2)	4	Centrifuç	де ~		Desilter	-	н.	S. Cent.	-
RECEIVED 2	-	-	-	-	-	-		-	_	_	_	Degasse	er		Shaker	-		Super Cyclone	_
LAST 24 HR.	-	-	-	-	-	_	-	-	-	-	_	Desande	er -	\parallel	Other	_			-
CLOSING 27	4	40	23	1	30	170	31	69	10	9	4	Himilion	ST 57/6	3 55 4	Aug.	1	ATIVE CO		904
COST LAST 24 HR.	-	-	-	_	-	-	-	-	-	-	-	7713	OF DIN CREDIT	100	P. FREE	\$	14 /	42-	
MAGCOBARYE	NGIN	EER	SW	EET					НОМ	E ADDRE	SSNIC	OLN)	RD PI			5 A.	PHONE	660	53
MOBILE UNIT									WAR	EHOUSE	LOCATIO	N			····		PHONE		
PRINTED IN U.	S.A.			THI	IS REPO	RT IS GO	VERNI	ED BY THE	TERMS	AND CO	NDITIONS	AS SET FO	RTH ON THE	REVERS	SE SIDE				

WELL SUMMARY

WELL HISTORY SHEET

MATERIALS INVENTORY

or 1 PAGE_ 1 CONDUCTOR CENTRIFUGE SHAKER WELL RISTORY COLUMN 60/80 1 CRUSADER PEP 120 SEASPRAY GIPPSLAND 13 3/8 21 SALT/GEL PUD DATE MACALISTER #1 GIPPSLAND BASIN 20.3.88 10 9.5/ D DATE DUNTY/PARISH ATC0 **SEASPRAY** 2.4.88 3 107 40/60 1452 ORILING FLUID SERVICES ROBERT SWEET VICTORIA 13 FLOW LINE TEMP. GELS CAUSTIC BARITE POLYPIC POLYPI ANGLE AND DIREC-TION MEAS-URED DEPTH FLOW RATE (gpm) VIS API H.T.H.P. MUD WT. /11₩E DATE T.V.D PV. YP. PH SOL CILINA Pf Mf Pm 앬 10 °F () DDM D.c El ma/l 21.3 89.5 8.6 36 6 Spud. Drill with water with sweeps. 22.3 89.5 8.6 40 6 1008.00 8.6 40 655 194.85 Drill ahead. Run-9-5/8-casing-Nipple 23.3 182 8.7 50 655 415.85 Drill ahead. Run 9 5/8 casing. 24.3 | 182 | 8.7 36 1.4 | 1.8 | 2.7 | 20000 804.00 2 | 2 | 105 Nipple up 25.3 | 589 8.8 43 655 9.5 | 20 0.1 | 0.4 | 0.7 | 15000 1302.21 1 51 Drill ahead. 26.3 | 757 | 9.1 49 655 15 10 6 82 9.0 7 10.2 | 0.6 | 1.0 | 14000 1848.48 Drill ahead. 9.1 53 27.3 | 814 | 234 115 | 17 | 9 /22 | 9.0 | 9 0.1 | 0.5 | 0.8 | 12000 B20 | 7 | 0 3008.25 Drill ahead 9.4 54 28.3 814 234 9 9 6 21 10.5 7 0.2 0.8 1.0 13000 855.00 280 6.5 0 45 DST #1. DST #2. Both failed 29.3 1049 9.4 44 244 110 10 10 38 10.0 5 0.4 0.8 1.0 14000 1136.92 60 6.5 0 49 Drill ahead 30.3 1233 9.4 48 244 13 10 4/70 10.0 11 0.6 1.3 1.0 11000 1900.09 40 11 0 Drill ahead 31.3 1338 9.5+ 48 252 11 10 4 45 10.0 11 784.00 0.4 0.8 1.0 12000 80 11.5 0 70 Drill ahead 1.4 1392 9.7 49 252 112 12 4 45 10.0 11 0.4 0.9 1.1 10000 875.00 80 12 0 Drill ahead. 2.4 1452 9.4 48 252 10 11 4/45 10.0 11 0.4 1.1 0.9 12000 40 11 0 560.75 Logging at T.D. 3.4 1452 9.4 48 10 11 4/45 10.0 11 0.4 1.1 0.9 12000 40 11 0 Complete logging. P & A

The complete the contract of the confidence that he that the final contract of the contract of the confidence of

APPENDIX 4

APPENDIX 4

TIME ANALYSIS

CRUSADER LIMITED

Ç

	TIME ANALYSIS:	MacA	ıli	ste	er-	#1			.3. MARCH		- E	j.4.	88						
	- Opcode + Description		17	18	19	20	21	22	23	24	25	26	27	28.	29	30	31	Month Total	
r	opende : bestilperum		• /	10	• ,													,	
L-	-																		
Γ	_PREPARATION **********																		
ſ	A 1 Preparation			•	•	•	•	٠	•	•	•	•	•		OTAL	PREPA	RATION:	•	•
L																			
	→ HOBILIZATION/MOVING																		
_	_B 1 Mobilization						•					•					•	•	•
	B 2 Moving		•	•	•	24.0	1 L G	•	•	•	•	•	•	•	•	•	•	AD D	13.9
_	- B 3 Rigging up B 4 Rigging Down			•	•	24.0	10.0	•		•	:	•	•	:			•	70.0	13.7
Γ	B 5 Demobilization							•	•		•		•		•		•		•
L	B 6 Dismantling				•	•		•	•	•	•	•							
													IUIAL	. MUB	1L1 <i>1</i> !	AIIUN/	MOVING:	40.0	13.9
Γ	#TE																		
ا ا	MAKING HOLE																		
	-C10 Drilling						2.5		5.0		15.0	12.5	4.0		13.0	19.0	21.5	92.5	32.1
_	C11 Adding Pipe							•	•										•
Γ	-C12 Survey								•		1.0		•		0.5	•			9.7
L	_C13 Check Trip		•	•	•	^ •		•	2.0	•	•	1.5	6.0	•		7.0	1.0		3.6
	C20 Trip - Bit Change		•	•	•	•	2.0	•	•	•	•	6.0	2.0	•	4.0	3.0	•		5.9
	C21 Trip - Deviation Op C30 Circulation		•	•	•	•	•	5.0	1.0	•	1.5	3.0	8.5	•	1.0	•	0.5	2 0. 5	7.1
	-C31 Reaming/Washing			:		•	:		2.5	:	•	•	2.0	•		0.5			2.3
	C32 Formation Kick				•												•		
	C33 Lost Circulation		•	•	•	•	1.5	7.5	•	٠	•	•	•	•	•	•		9.8	3.1
.	C39 Stuck Pipe C40 Fishing		•	•	•	•	•	•	•	•	•	•	•		•	•			•
1-	- C41 Rig Service		:		•		:	÷		:	•	•				0.5		0.5	0.2
	C42 Repairs						•				•					0.5			0.2
-	C43 Wait Time		•	•	•	•	2.0	10.0	•	•		•	•	•	•	•	•		4.2
Γ	C44 Miscellaneous		•	•	•	•	•		•	•	5.5	0.5	•	• т	ntai	MAKT	46 HOLE:	6.8 177.8	2.1
_	_													•			10 71000		
_																			
	, 																		
Γ	l																		
•	1 :-																		
1-	l _																		•
L	,																		

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Month Total	7,
SECURING HOLE																	
* * ***********************************																	
D <u>10</u> Drilling cement																	
Adding Pipe																	
* 112 Survey														•			
D13 Check Trip				•			•		•								
D14 Reaming																	
020 Trip - Drilling Cement											•			•			
D22 Trip - Reaming	•		•	•										•			
→ D25 Trip - Before Casing	•	•					1.5	•	•					•	•	1.5	0.5
D26 Trip - Bit & Scraper	•			•	•		•			•					•		
-D30 Circulation	•	•	•	•		•		•		•		•			•		
D31 Reaming/Washing		•	•	•	•	•	•	•	•	•		•	•		•	•	•
D32 Formation Kick	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	
_D33 Lost Circulation	•	•	•	•	•	•	•	•		•		•	•		•	•	•
D39 Stuck Pipe	•	•	•	•	•	•	•	•	•	•	•	•	•				
040 Fishing	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
D41 Rig Service	•	•	•	•	•			•		•	•	•		•	•	•	•
D42 Repairs	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
D43 Wait Time	•	•	•	•	•	•	4.5	6.0	•	•	•		•	•	•	10.5	3.6
D44 Miscellaneous	•	•		•	•			•	•	•	•	•	•	•	•	•	•
-D55 Run & Cement Casing	•	•	•	•	•	•	7.5	•	1.0		•	•	•	•		8.5	3.0
_D56 Nippling Up BOP	•	•	•	•	•	•	•	16.5	•	•	•	•	•	•		16.5	5.7
D57 Standing Cement	•	•	•	•	•	•	•	1.5	•	•	•	•	•		G HOLE:	1.5 38.5	0.5
FORMATION EVALUATION																	

· -																	
E10 Coring	•		•														
—Ell Adding Pipe			•					•						•	•		
E12 Survey	•										•					•	
E13 Check Trip	•				•			•	•		•	3.0				3.0	1.0
w.aEi4 Reaming	•	•		•				•						•	•	•	
E20 Trip - Coring	•	•		•	•	•	•	•	•	•	•	•	٠	•	•		•
E22 Trip - Reaming	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•
E23 Trip - Logging	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
E24 Trip - Formation Test	•	•	•	•	•	•	•	•	•	•	•	15.5	3.5	•	•	19.0	6.6
E30 Circulation		•	•	•	•	•	•	•	•	•	•	3.5	•				1.2
E31 Reaming/Washing		•	•	٠	•	•	•	•	•	•	•	0.5	•	•	•	0.5	0.2
⊶ E32 Formation Kick	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
E33 Lost circulation	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
E34 Fmn Strength Test	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
E39 Stuck Pipe	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•
E40 Fishing	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•		
- E41 Rig Service		•	•	•	•	•	•	•	•	•	•	0. 5	•	•	•	0. 5	0.2
E42 Repairs		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
E43 Wait Time	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
E44 Miscellaneous	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
E50 Logging - Open Hole	•	•	•	•	•	•	•	•	•	•	•	,	•	•			
- E60 Testing Formation	•	•	•	•	•	•	•	•	•	•	, ,,	1.0		a =			0.3
E65 Circ - Geol/Res Info	•	•	•	•	•	•	•	•	•	•	1.5	PRES	2.0		1.0		1.7
											TUTAL	. rukfi	HIIUN	EVAL	UATION:	32.5	11.5

•									a.=	5.	67	55		70	7.	Month	v
Opcode + Description	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Total	%
COMPLETION/SUSPENSION																	
* ************************************																	
* 2772777777777774																	
Prilling Cement																	
FII Adding Pipe															•		
F12 Survey															•		
_F13 Check Trip					•											•	•
F14 Reaming			•						•			•	•	•			
-F20 Trip - Drilling Cement					•			•				•				•	
F22 Trip - Reaming				•		•			•		•			•		•	
TF25 Trip - Before Casing				•		•			•		•	•		•	•	•	•
_F26 Trip - Bit & Scraper	•		•				•			٠	•	•	•	•	•	•	•
F30 Circulation					•	•	•	•	•			•.			•	•	•
≖ .F31 Reaming/Washing									•	•			•	•	•	•	•
F32 Formation Kick				•	•	•	•	•	•	•	•			•	•		•
F33 Lost Circulation	•					•						•			•	•	
_F34 Fmn Leak Off Test					•	•		•	•	•					•	•	•
F39 Stuck Pipe					•	•				•	•	•	•		•	•	•
F40 Fishing	•			•	•	•			•	•	•	•	•		•	•	•
F41 Rig Service			•		•			•	•	•	•		•	•	•	•	•
742 Repairs		•	•	•	•	•	•		•		•		•	•		•	•
F43 Wait Time			•	•	•	•		•	•		•	•	•	•		•	•
F44 Miscellaneous			•		•		•		•	•	•	•	•	•		•	•
F50 Logging - Completion		٠			•	•	•	•	•	•	•	•	•	•	•	•	•
F55 Run & Cement Casing	•	٠					•	•	•	•	•	•		•	•	•	•
F56 Nippling Up Wellhead	•	•					•	•	•	•	•		•	•	•	•	•
F57 Standing Cemented	•		•		•	•	•		•	•	•		•	•	•	•	•
F60 Testing & Perforation			•	•	•	•	•	•	•		•	•		•		•	•
Run Tubing	•	•	•	•	•	٠	•	•	•		•	•	•	•	•	•	•
Run Production Pakcer		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•
F72 Run Wireline	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•
F73 Pressure Surveys	•	•		•	•	•	•	•		•	•		•	٠	•	•	•
F80 Well Stimulation	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠
_F81 Sand Exclusion	•	•	•	•	•	•	•	•	•	•						•	•
l f										i	UIAL	CUMPL	.EIIUN	1/5057	ENSION:	•	•
uncal .																-	•
PLUGBACK/ABANDONMENT																	
545 F. 1																	
640 Fishing	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
641 Rig Service	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
642 Repairs	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
G43 Waiting	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
644 Miscellaneous	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
" 690 Abandonment	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
695 Plugback for sidetrack	•	•	•	•	•	•	•	•	•	•	TOTAL	PI III	BALK.	ARANT	ONMENT:	• •	•
											INITE		ununi	UNUME			•

Jpcode + Description	i	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	Month 16Total		Grand Total	%
PESPARATION																			
A 1 Preparation	•	•	•	•	•		•		•	•	•		TOTAL	PREPA	RATION	 : .	•	•	
MOBILIZATION/MOVING																			
B 1 Mobilization					•														
B 2 Moving	•																		
B 3 Rigging up		•							•									40.0	9.8
B 4 Rigging Down					20.0				•							. 20.0	16.7	20.0	4.9
7 —B 5 Demobilization		•			•		•		•										
B 6 Dismantling	•	•	٠	•	•	•	•	•	•	•	TOTAI	HOE.		ATTON/	MOVING		16.7	60.9	14.7
MAKING HOLE																			
Ci0 Drilling	16.5	9.5														. 26.0	21.7	118.5	29.0
C11 Adding Pipe																			
C12 Survey		0.5														. 0.5			0.6
, —C13 Check Trip		4.5														. 4.5	3.8	15.0	3.7
C20 Trip - Bit Change	5.5															. 5.5	4.6	22.5	5.5
¹ —C21 Trip - Deviation Op																			
Circulation	0.5	1.5											•			. 2.0		22.5	5.5
Reaming/Washing	0.5			•	•							•				. 0.5	0.4	7.0	1.7
C32 Formation Kick			•								•								
C33 Lost Circulation	•		•		•													9.0	2.2
C39 Stuck Pipe		•									•	•		•				•	
C40 Fishing	•	•				•		•							•				
C41 Rig Service	1.9			•	•		•	٠	•			•	•		•	. 1.9	0.8		
,C42 Repairs					•													0.5	
C43 Wait Time													•	•				12.0	
¹ - C44 Miscellaneous	•	•			•		•			•	•	•	•		•			6.0	
-												1	TOTAL	MAKIN	6 HOLE	: 40.9	33.3	217.0	53.2

1012 Stack Trip	Opcode + Description	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Mon 16Tot			Grand Total	%
100 Frilling Cesent	SECURING HOLE																				
Display Disp	****																				
Dil Adding Pipe Dil Survey Dil Survey Dil Survey Dil Reasing	***																				
1012 Stack Trip	D10 Drilling cement		•			•				•				•	•	•	•	•	•	•	•
District	→ D11 Adding Pipe			•	•		•	•	•			•				•	•	•	•		•
D14 Reasing	D12 Survey							•					•			•	•		•	•	•
D14 Reasing								•		•				•		•	•	•			•
202 Trip - Reasing 1.5 8																					
1.5 8 2025 Trip - Betaing 1.5 8 2025 Trip - Bit & Scraper 1.5 8 2026 Trip - Beating 2026 Trip - Beating 2026 Trip - Coring 2026 Trip - Coring 2026 Trip - Coring 2027 Trip - Beating 2027 Trip - Coring 2027 Trip - Beating 2027 Tri														•			•	•	•	•	
1.5 a 2025 Trip - Before Casing 1.5 a 2025 Trip - Before Casing 1.5 a 2025 Trip - Before Casing 1.5 a 2025 Trip - Begaing Mashing 1.5 a 2025 Trip - Coring 2.5 a															•			•	•		
D26 Circulation D31 Reasing/Mashing D32 Formation Kick D33 Isset Circulation D33 Isset Circulation D33 Isset Circulation D33 Isset Circulation D35 Isset Circulation D35 Isset Circulation D35 Isset Circulation D48 Fishing D59 Fishing D69 Fishi														•						1.5	0.
D38 Circulation D31 Reaning/Mashing D32 Fornation Kick D33 Lost Circulation D39 Stuck Pipe D41 Rig Service D41 Rig Service D42 Repairs D43 Mait Time D44 Miscellaneous D55 Run & Cement Casing D56 Run & D56																					•
D33 Reasing Mashing D32 Forsation Kick D33 Lost Circulation D33 Stuck Pipe D44 Fishing D44 Rig Service D44 Fishing D44 Rig Service D42 Repairs D43 Wait Time D43 Wait Time D43 Wait Time D45 Rig Service D45 Rigority D46 Rigority D47 Rigority D4	D30 Circulation																				
B32 Lost Circulation	D31 Reaming/Washing																				
D33 Lost Circulation 739 Stuck Pipe 740 Fishing 741 Mig Service 742 Repairs 743 Wait Time 744 Miscellaneous 755 Mun & Cement Casing 757 Standing Cement 757 Standing Cement 757 Standing Cement 757 Standing Cement 758 Mippling Up BOP 758 Mippling Up BOP 759 Mippling Up BOP 759 Mippling Up BOP 750 Mippling Up Mippling																					
339 Stuck Pipe		_		-																	
D49 Fishing D41 Rig Service D42 Repairs D43 Wait Time D44 Miscellaneous D55 Nun & Cesent Casing D56 Mippling Up BDP D57 Standing Cesent D58 Stand Cesent D59 Standing			•	•	•	•															
D41 Rig Service -D42 Repairs -D44 Miscellaneous -D55 Run & Cement Casing -D55 Run & Cement Casing -D55 Run & Cement Casing -D57 Standing Cement -D58 Standin			•	•	•	•	-	-		-											
		•	•	•	•	•	•	•	•	•	•	•	•	•	•						
D43 Wait Time D44 Miscellaneous D55 Run & Cement Casing D56 Nippling Up BOP D57 Standing Cement TOTAL SECURINB HOLE: BECOMMENTATION ***********************************		•	•	•	•	•	•	•	•	•	•	•	•	•	-			_			_
### DA4 Miscellaneous		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19.5	2.
D55 Run & Cement Casing		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	10.0	
16.5		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0.5	,
1.5 8 TOTAL SECURING HOLE: 38.5 9		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
######################################		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
EDBMATION EVALUATION	—D57 Standing Cement	•	•	•	•	•	•	•	•	•	•	•	Tot		DUBIN		• .	•	•		
E18 Coring —E11 Adding Pipe E12 Survey —E13 Check Trip —E14 Reaming E28 Trip - Coring —E27 Trip - Reaming E28 Trip - Logging E28 Trip - Logging E29 Trip - Reaming E39 Circulation E31 Circulation E31 Reaming/Mashing E32 Formation Kick E33 Lost circulation E34 Fan Strength Test E37 Stuck Pipe E40 Fishing —E41 Rig Service E42 Repairs E43 Wit Time E44 Miscellaneous E55 Logging - Open Hole E44 Miscellaneous E55 Logging - Open Hole E55 Circ - Geol/Res Info													101	AL SE	CURIN	ID HULE	::	•	•	28.2	7.
E18 Coring —E11 Adding Pipe E12 Survey —E13 Check Trip —E14 Reaming E28 Trip - Coring —E27 Trip - Reaming E28 Trip - Logging E28 Trip - Logging E29 Trip - Reaming E39 Circulation E31 Circulation E31 Reaming/Mashing E32 Formation Kick E33 Lost circulation E34 Fan Strength Test E37 Stuck Pipe E40 Fishing —E41 Rig Service E42 Repairs E43 Wit Time E44 Miscellaneous E55 Logging - Open Hole E44 Miscellaneous E55 Logging - Open Hole E55 Circ - Geol/Res Info	-																				
E18 Coring —E11 Adding Pipe E12 Survey E13 Check Trip —E14 Reaming E20 Trip - Coring —E21 Trip - Reaming E22 Trip - Logging E23 Trip - Logging E24 Trip - Formation Test E35 Circulation E36 Circulation E37 Reaming/Mashing E38 Circulation E39 Stuck Pipe E40 Fishing E40 Fishing E41 Rig Service E40 Fishing E44 Rig Service E45 Repairs E44 Miscellaneous E55 Logging - Open Hole E44 Miscellaneous E55 Logging - Open Hole E55 Circ - Geol/Res Info																					
-E11 Adding Pipe E12 Survey E13 Check Trip	***************************************																				
E12 Survey E13 Check Trip E14 Reaming E27 Trip - Coring E27 Trip - Reaming E28 Trip - Logging E28 Trip - Logging E29 Trip - Formation Test E39 Circulation E31 Reaming/Mashing E32 Formation Kick E33 Lost circulation E34 Fam Strength Test E39 Stuck Pipe E40 Fishing E40 Fishing E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E55 Logging - Open Hole E55 Circ - Geol/Res Info E55 Circ - Geol/Res Info S. 0	E10 Coring																•				
E12 Survey E13 Check Trip E14 Reaming E27 Trip - Coring E27 Trip - Reaming E28 Trip - Logging E28 Trip - Logging E29 Trip - Formation Test E39 Circulation E31 Reaming/Mashing E32 Formation Kick E33 Lost circulation E34 Fam Strength Test E39 Stuck Pipe E40 Fishing E40 Fishing E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E55 Logging - Open Hole E55 Circ - Geol/Res Info E55 Circ - Geol/Res Info S. 0	-Ell Adding Pipe													•				•			•
### ##################################	F12 Survey																				
E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E38 Circulation E31 Reaming/Mashing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E55 Logging - Open Hole S4.5 28.8 34.5 E56 Testing Formation E56 Circ - Geol/Res Info E57 Sture Info	E13 Check Trip															•				3.0	Ø.
E20 Trip - Coring	F14 Reaming																				
### ### ##############################																					
E23 Trip - Logging 5.0																					
E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing -E32 Formation Kick E33 Lost circulation E34 Fan Strength Test E39 Stuck Pipe E40 Fishing -E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E50 Logging - Open Hole 3.0 24.0 7.5 E60 Testing Formation E65 Circ - Geol/Res Info		-	5.0														. !	5.0	4.2	5.0	1.
		•		-		_		-													
E31 Reaming/Washing	•	•	•	•	•	·	•	-	•	-				_							
-E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing -E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E50 Logging - Open Hole -E60 Testing Formation E65 Circ - Geol/Res Info		•	•	•	•	•	•	•	•	•	•	•	•			-					0
E33 Lost circulation		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-		_
E34 Fmn Strength Test _E39 Stuck Pipe E40 Fishing -E41 Rig Service E42 Repairs E43 Wait Time _E44 Miscellaneous E50 Logging - Open Hole 3.0 24.0 7.5 -E60 Testing Formation E65 Circ - Geol/Res Info		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
_E39 Stuck Pipe E40 FishingE41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E50 Logging - Open Hole E60 Testing Formation E65 Circ - Geol/Res Info		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		
E40 FishingE41 Rig ServiceE42 RepairsE43 Wait TimeE44 Miscellaneous		•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
E41 Rig Service			•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	
E42 Repairs E43 Wait Time E44 Miscellaneous E50 Logging - Open Hole		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	a =	9
E43 Wait Time E44 Miscellaneous E50 Logging - Open Hole 3.0 24.0 7.5 —E60 Testing Formation E65 Circ - Geol/Res Info		•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	6.3	ť
E44 Miscellaneous E50 Logging - Open Hole		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
E50 Logging - Open Hole . 3.0 24.0 7.5					•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
-E60 Testing Formation		•	•	•	•	•	•	•	•	•	•		•	•	•	•	• _				_
E65 Circ - Geol/Res Info		•	3.0	24.0	7.5		•	•	•			•	•	•	•	•	. 3	4.5	28.8		
E65 Circ - Geol/Res Info	—E60 Testing Formation	•	•		•	•		•		•	•	•	•	•	•	•	•	•	•		
TOTAL FORMATION EVALUATION: 39.5 32.9 72.8 1								•	•				•	•	•	•	•	•			

Jpcode + Description	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Ma 16Ta	nth tal	7.	Grand Total	%
- sausi ettau (augseudiau																				
COMPLETION/SUSPENSION																				
,																				
-F10 Drilling Cement		_	_		_		_		_	_	_		_		_		_			
F11 Adding Pipe	·	•	•	•		·	·	:			•		•	•	•	•		•		•
F12 Survey												•	•	•					·	•
F13 Check Trip																				
F14 Reaming																				
F20 Trip - Drilling Cement																• -				
F22 Trip - Reaming																			,	
—F25 Trip - Before Casing																				
F26 Trip - Bit & Scraper																				
F30 Circulation												•								
_F31 Reaming/Washing																				
F32 Formation Kick																				
F33 Lost Circulation																				
F34 Fmn Leak Off Test					•		•													
F39 Stuck Pipe																				
, _F40 Fishing	•	•		•			•													
F41 Rig Service																				
—F42 Repairs													•							
F43 Wait Time																				
'F44 Miscellaneous	•			•		•				•										
F50 Logging - Completion															•					
F55 Run & Cement Casing	•		•			•	•		•		•	•	•		•	•				
- r F56 Nippling Up Wellhead		•	•	•	•	•	•	•	•				٠		•					•
F57 Standing Cemented	•	•	•	•	•	•		•	•	•	•	•	•	•		•				
Testing & Perforation	•	•	•	•	•	•	•	•	•	•	•	•	•		•			•	•	•
Run Tubing	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•
F71 Run Production Pakcer	•	•	•	•		•		•	•	•		•	•	•	•	•		•		•
—F72 Run Wireline	•		•	•	•	•		•	•	•		•	•	•	•	•	•	•		•
F73 Pressure Surveys	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•		•	•	•	•
■ F80 Well Stimulation	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
F81 Sand Exclusion	•	•	•	•	•	•	•	•	•								•	•		•
										11	IIAL L	JUMPLE	:11UN/	SUSPI	ENSION	:	•	•	•	•
DI UPPADY /ADANDONNENT																				
PLUGBACK/ABANDONMENT																				
- ####################################																				
640 Fishing																				
641 Rig Service	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
041 kty service 642 Repairs	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
□G43 Waiting	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
G44 Miscellaneous	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
- 690 Abandonment	•	•	•	16.5	4.0		•	•	•	•	•	•	•	•	•	• າ	a s	17.1	20.5	5.0
695 Plugback for sidetrack	•	•			7:0	•	•	•	•	•	•	•	•	•	•		. . J		LUIJ	U
D'O I Laguack ID: Siveciack	•	•	•	•	•	•	•	•	•	•	INTAI	P) HC	846874	Aranni	DNMENT	. ,	0 S	17.1	20.5	5 B
-										'	UINL		enwit f	.unnut	#4111111111111111111111111111111111111		.	4/11	TO . G	J. U

APPENDIX 5

APPENDIX 5

DRILL STEM TEST REPORTS

TICKET ND. 33003200 25-MAY-88 RDMA

FORMATION TESTING SERVICE REPORT

MAC ALISTER WELL NO TEST NO. FIELD AREA 2588.4 - 2671.0 TESTED INTERVAL CRUSADER DIL NL
ERSE OMNER/COMPANY NAME STATE AUSTRALIA DR

330032-2146

Horallister "I Geospie Cik DST"1

GAUGE NO: 2146 DEPTH: 2545.0 BLANKED OFF: NO HOUR OF CLOCK: 12

ID	DESCRIPTION	PRE	SSURE	T1	ME	TYPF
10	DESCRIPTION	REPORTED	CALCULATED	REPORTED	CALCULATED	J
А	INITIAL HYDROSTATIC					
В	FINAL HYDROSTATIC					

GAUGE NO: 4322 DEPTH: 2565.3 BLANKED OFF: NO HOUR OF CLOCK: 24

TD	DESCRIPTION	PRE	SSURE	TJ	ME	TYPF
10	DESCRIPTION	REPORTED	CALCULATED	REPORTED	CALCULATED	111 -
А	INITIAL HYDROSTATIC	1197	1216 . 4			
В	FINAL HYDROSTATIC	1197	1216 . 4			

山山

336032-6260

INCHLISTER CEUSEDINE CIL VST 11.

1012 1 LUIS HIT 3300 32

1012 1 LUIS HIT 3300 32

GAUGE NO: 6200 DEPTH: 2666.9 BLANKED OFF: YES HOUR OF CLOCK: 24

Γ.	TD	DESCRIPTION	PRE	SSURE	T	ME	TYPF
	ID	DESCRIPTION	REPORTED	CALCULATED	REPORTED	CALCULATED	
	A	INITIAL HYDROSTATIC	1311	1313.4			
	В	FINAL HYDROSTATIC	1311	1313.4			

	EQUIPMENT & HOLE DATA	TICKET NUMBER: 33003200	
	FORMATION TESTED:	DATE: 3-27-88 TEST NO: _	1
	GROSS TESTED FOOTAGE: 82.6 ALL DEPTHS MEASURED FROM: KELLY BUSHING	TYPE DST:OPEN HOLE	<u> </u>
•	CASING PERFS. (ft):	HALLIBURTON CAMP: ROMA TESTER: A. HADWEN	
	FINAL SURFACE CHOKE (in):	WITNESS:	
	ESTIMATED HOLE TEMP. (°F): 100 ACTUAL HOLE TEMP. (°F): @ft	DRILLING CONTRACTOR:ATCO RIG #7	
	FLUID PROPERTIES FOR RECOVERED MUD & WATER SOURCE RESISTIVITY CHLORIDES	SAMPLER DATA Psig AT SURFACE: cu.ft. OF GAS: cc DF OIL: cc DF WATER: cc DF MUD: TOTAL LIQUID cc:	
	HYDROCARBON PROPERTIES OIL GRAVITY ("API): @ "F GAS/OIL RATIO (cu.ft. per bbl): GAS GRAVITY:	CUSHION DATA TYPE AMOUNT WEIG	HT —
	RECOVERED:		MEASURED FROM TESTER VALVE
	REMARKS: Lost packer seat when tool open.		

		SURFACE	GA5	LIQUID		TICKET NO: 3300320
TIME	CHDKE SIZE	PRESSURE PSI	RATE MCF	RATE BPD	REMA	ARKS
3-27-88						
815					MADE UP TOOLS AND WE	NT IN HOLE
.200					MADE UP HEAD	
.210					MADE UP SURFACE EQUI	PMENT
.213					PUT WEIGHT ON TOOL	
.218					OPENED TOOL, LOST AN	NULUS
-					CLOSED TOOL	
.224					OPENED TOOL	
.225					LOST ANNULUS, CLOSED	TOOL AND
					PULLED OUT OF HOLE	
			-			
			-			
						49
						
			VIP.			
			*41.40			J.A. A.
		-				
			<u> </u>			
			. 1			

		_	O.D.	I.D.	LENGTH	DEPTH
	~					
	Ä	DRILL PIPE	4.500	3.826		
		FLEX WEIGHT	4.500	2.764	182,3	
		DRILL COLLARS	Б.250	2.813	4 97 . 7	
0	P	IMPACT REVERSING SUB	Б.000	3.000	1.0	2511.9
3		DRILL COLLARS	Б.250	2.813	31 .1	
58		BAR CATCHER SUB	5.750	2.000	1.0	
0		AP RUNNING CASE	5.000	2.250	4.1	2545 . 0
2	0	DUAL CIP VALVE	5.000	0.870	4.9	
02		SAMPLE CHAMBER	5.000	2.370	5.0	
3	D	DRAIN VALVE	5.250	2.800	1.0	
	0	INDEXING HYDROSPRING TESTER	5 ,000	0.750	5.3	
>		AP RUNNING CASE	5.000	2.250	4 . 1	2565 . 3
1		JAR	5.000	1.750	5.0	
	٧	VR SAFETY JOINT	5.000	1.000	2.8	
		OPEN HOLE PACKER	7.750	1.680	5 .9	2580.6
8	0	DISTRIBUTOR VALVE	5.000	1.680	2.0	
0		OPEN HOLE PACKER	7.750	1.680	5 .8	2588.4
0		FLUSH JOINT ANCHOR	5.000	2.370	43.0	
		CROSSOVER	5.250	2.400	1.0	
1		DRILL COLLARS	6.250	2.813	31.1	
		CROSSOVER	5.750	2.400	1.0	
	0	BLANKED-OFF RUNNING CASE	5.000		4.1	2666 .9
	ד	COTAL DEPTH				2671.0

EQUIPMENT DATA

TICKET ND. 33003300 26-MAY-88 RDMA

FORMATION TESTING SERVICE REPORT

LEGAL LOCATION SEC. - TWP. - RNG MAC ALISTER MELL N_O TEST NO F IELD AREA 2510.1 -10.1 - 2671.0 TESTED INTERVAL VICTORIA CRUSADER OIL NL LEASE OWNER/COMPANY NAME STREE BUSTRALIA 品

330033-2146

Macillaster "I Erusapure Cil Det "2 Wingloval Hi" 330033

GAUGE NO: 2146 DEPTH: 2468.9 BLANKED OFF: NO HOUR OF CLOCK: 12

ID DESCRIPTION PRESSURE TIME TYPE

A INITIAL HYDROSTATIC TO REPORTED CALCULATED CALCULATED

B FINAL HYDROSTATIC

AB

330033 - 4322

PREINISIER 1 CRUSHIPER EIL DET 2 1011/161- 41 330053

	GAUGI	E NO: 4322 DEPTH: 2489.0	BLAN	KED OFF:_	NO HOUR	OF CLOCK	:24
ID DESCRIPTION				SSURE	TIME		TYPF
			REPORTED	CALCULATED	REPORTED	CALCULATED	
	A	INITIAL HYDROSTATIC	1197	1205.8			
	В	FINAL HYDROSTATIC	1197	1205.8			

11 B

FINAL HYDROSTATIC

- +•

В

330033-6200

Biri den Hi " 336C 33

GAUGE NO: 6200 DEPTH: 2666.9 BLANKED OFF: YES HOUR OF CLOCK: 24

ID DESCRIPTION PRESSURE TIME TYPE

A INITIAL HYDROSTATIC 1311 1310.4

1311

1310.4

	EQUIPMENT & HOLE DATA	TICKET NUMBER: 33003300	
	FORMATION TESTED:	DATE: 3-28-88 TEST NO:	2
	GROSS TESTED FOOTAGE: 160.9 ALL DEPTHS MEASURED FROM: KELLY BUSHING	TYPE DST:OPEN HOLE	
٠	CASING PERFS. (ft):	HALLIBURTON CAMP:ROMA	
	TOTAL DEPTH (ft): 2671.0 PACKER DEPTH(S) (ft): 2504, 2510 FINAL SURFACE CHOKE (in):	TESTER: A. HADWEN	
	MUD WEIGHT (1b/gal):	WITNESS:	
	MUD VISCOSITY (sec): ESTIMATED HOLE TEMP. (°F): 100 ACTUAL HOLE TEMP. (°F):	DRILLING CONTRACTOR:ATCO RIG #7	
	FLUID PROPERTIES FOR RECOVERED MUD & WATER SOURCE RESISTIVITY CHLORIDES	SAMPLER DATA Psig AT SURFACE: cu.ft. OF GAS: cc OF DIL: cc OF WATER: cc OF MUD: TOTAL LIQUID cc:	
	HYDROCARBON PROPERTIES OIL GRAVITY (PPI): @ F GAS/OIL RATIO (cu.ft. per bbl): GAS GRAVITY:	CUSHION DATA TYPE AMOUNT WEIG	GHT
	RECOVERED:		MEASURED FROM TESTER VALVE
	REMARKS: Lost annulus when tool opened.		

	1				
TIME	CHOKE SIZE	SURFACE PRESSURE PSI	GAS RATE MCF	LIQUID RATE BPD	REMARKS
3-28-88					
0049					STARTED MAKING UP TOOLS
0515					MADE UP SURFACE EQUIPMENT
0605			·		PUT WEIGHT ON TOOLS
0610					OPENED TOOL
0611					CLOSED TODL, LOST ANNULUS
					PULLED DUT OF HOLE

7			O.D.	I.D.	LENGTH	DEPTH
		-				
1		DRILL PIPE	4.500	3.826	1856 .9	
4		FLEX WEIGHT	4.500	2.764	182.3	
3		DRILL COLLARS	6.250	2.813	373.3	
50	o	IMPACT REVERSING SUB	Б.000	3.000	1.0	2404.5
3		DRILL COLLARS	Б.250	2.813	62.2	
258		BAR CATCHER SUB	5.750	2.000	1.0	
80		AP RUNNING CASE	5.000	2.250	4.1	2468.9
12	0	DUAL CIP VALVE	5.000	0.870	4 .9	
202		SAMPLE CHAMBER	5.000	2.370	5.0	
33	0	DRAIN VALVE	5.250	2.800	1.0	
61		INDEXING HYDROSPRING TESTER	5.000	0.750	5.3	
80		AP RUNNING CASE	5.000	2.250	4.1	2489.0
15		JAR	5.000	1.750	5.0	
16	v	VR SAFETY JOINT	5.000	1.000	2.8	
70		OPEN HOLE PACKER	7.750	1.580	5.8	2504.3
70		OPEN HOLE PACKER	7.750	1.680	5.8	2510.1
5		CROSSOVER	5.250	2.400	1.0	
3		DRILL COLLARS	6.250	2.813	124.4	
5		CRDSSDVER	5.750	2.400	1.0	
20		FLUSH JOINT ANCHOR	5.000	2.370	28.0	
81	D	BLANKED-OFF RUNNING CASE	5.000		4.1	2666 .9
		TOTAL DEPTH				2671.0

EQUIPMENT DATA

DESCRIPTION OF CUTTING SAMPLES

- 50 SANDSTONE, a.a. coarse to very coarse.
 20 MARL, cream and grey, speckled, firm to hard, minor glauconite, fossiliferous. Grades to limestone.
 30 LIMESTONE, a.a. shell fragments.
- 160 40 SANDSTONE, a.a.
 40 MARL, a.a. becoming limestone.
 20 LIMESTONE, a.a. shell fragments.
- 30 SANDSTONE, a.a.
 70 LIMESTONE, cream, grey, fossiliferous, glauconitic, trace silty grains.
- 20 SANDSTONE, a.a.
 80 LIMESTONE, speckled cream and grey with dark grey-green to black glauconitic grains, minor silty grains, very fossiliferous.
- 190 100 LIMESTONE, white, grey, firm, very fossiliferous, trace glauconite, silt and quartz grains.
- 200 100 LIMESTONE, a.a. bryozoa, shell fragments, forams.
- 210 100 LIMESTONE, a.a. grades to coquina.
- 220 100 LIMESTONE, a.a. grades to coquina, abundant bryozoa.
- 230 100 LIMESTONE, white, cream, yellow-cream, friable, very fossiliferous, minor glauconite, trace clear and yellow iron stained silty to very fine quartz grains.
- 240 100 LIMESTONE, a.a. trace glauconite and silty to very fine quartz grains.
- 250 100 LIMESTONE, a.a. trace sandstone and glauconite.
- 230 100 LIMESTONE, a.a.
- 270 198 LIMESTONE, a.a. 5% grey, silty "claystone" with some silty to very fine quartz grains.
- 280 100 LIMESTONE, a.a. light grey, very fossiliferous, with up to 5% grey, silty "claystone" with some silty to very fine quartz grains.
- 290 100 LIMESTONE, white, light to medium grey, very fossiliferous, friable, minor silt and very fine quartz grains, minor glauconite.
- 300 100 LIMESTONE, a.a. fossiliferous, minor glauconite and silty quartz grains.
- 310 100 LIMESTONE, a.a. trace silt and quartz grains.
- 320 100 LIMESTONE, a.a. trace silt and quartz grains.
- 330 30 MARL, grey, calcareous, with silt and very fine sand grains, minor glauconite.
 70 LIMESTONE, a.a.
- 340 50 MARL, grey, calcareous, silt and very fine sand grains, glauconitic. 50 LIMESTONE, cream to grey, fossiliferous, glauconitic, grades to marl.
- 350 20 SANDSTONE, clear, white, medium to very coarse, sub-rounded, moderate sorted, loose quartz grains.
 20 MARL, a.a. grey, silty and sandy.
 - 60 LIMESTONE, a.a. trace glauconite, fossiliferaous.

```
360
       50 MARL, a.a. - approximately 30% is non-calcareous.
       50 LIMESTONE, a.a. - fossiliferous.
370
       30 MARL, white, cream, grey, dark greenish-black specks of glauconite, calcareous, silt and very fine
       70 LIMESTONE, a.a. - white, very fossiliferous.
380
       50 MARL, a.a.
       50 LIMESTONE, a.a.
390
       30 MARL, a.a.
       70 LIMESTONE, a.a. - minor glauconite, fossiliferous.
400
       40 MARL, a.a. - approximately 40% is non-calcareous silty to very fine sand grains, minor glauconite.
       40 LIMESTONE, a.a. - white, cream, fossiliferous.
       50 MARL, a.a.
410
       50 LIMESTONE, a.a.
       60 MARL, a.a. - light to medium grey, glauconitic, silty.
       40 LIMESTONE, a.a.
430
       60 MARL, a.a.
       40 LIMESTONE, a.a.
440
       60 MARL, a.a.
       40 LIMESTONE, a.a.
450
       40 MARL, light to medium grey, dark grey, glauconitic, silty and argillaceous fragments/grains, silty /
       40 LIMESTONE, white, cream, light grey, fossiliferous, trace glauconite, friable.
460
       70 MARL, a.a. - medium grey, also minor green-grey, glauconitic.
      30 LIMESTONE, a.a. - fossiliferous.
470
       70 MARL, light brown-grey, medium grey, firm, argillaceous, silty, glauconitic.
       30 LIMESTONE, white, cream, fossiliferous, glauconitic.
480
       70 MARL, a.a.
      30 LIMESTONE, a.a.
490
       80 MARL, a.a.
      20 LIMESTONE, a.a.
500
      80 MARL, a.a.
      20 LIMESTONE, a.a.
510
      70 MARL, a.a.
      30 LIMESTONE, a.a.
      70 MARL, a.a.
520
```

30 LIMESTONE, a.a.

```
80 MARL, a.a. - minor glauconite.
530
       20 LIMESTONE, a.a.
       80 MARL, a.a.
540
       20 LIMESTONE, a.a.
550
       80 MARL, a.a. - some medium to dark grey.
       20 LIMESTONE, a.a.
560
       80 MARL, light to medium grey, firm to hard, silty, also medium to dark grey, soft to firm, argillaceous.
       20 LIMESTONE, a.a.
570
       80 MARL, a.a.
       20 LIMESTONE, a.a.
580
       80 MARL, a.a. - becoming medium to dark grey, argillaceous.
       20 LIMESTONE, a.a.
590
       70 MARL, a.a. -
       30 LIMESTONE, a.a. - fossiliferous, also white to light grey with moderate to abundant glauconite.
600
       80 MARL, a.a.
       20 LIMESTONE, a.a.
       70 MARL, a.a.
       30 LIMESTONE, a.a.
       40 SMALE, greenish gray, soft, shighti, calcaredus, tiron glauconits, hare pyrite.
620
       20 MARL, a.a.
       SO LIMENTINE, a.a.
630
      30 SPALE, a.a.
       30 MARL, medium to dark grey, hard, silty, trace glauconite, grading to limestone.
       40 LIMESTONE, a.a. - white, cream, grey, hard, some fossiliferous.
640
      30 SHALE, a.a.
       30 MARL, a.a.
       40 LIMESTONE, a.a.
650
      20 SHALE, a.a.
       60 MARL, a.a.
       20 LIMESTONE, a.a.
660
       30 SHALE, a.a. - trace pyrite.
       60 MARL, a.a.
       10 LIMESTONE, a.a.
       20 SHALE, a.a. - sticky.
670
       90 MARL, a.a.
680
       30 SHALE, grey, grey-green, grey-brown, soft, calcareous in part, trace glauconitic.
       70 MARL, blue-grey, soft, sticky, grading to calcareous claystone.
690
       40 SHALE, a.a. - no glauconite.
```

60 MARL, a.a.

```
700
      30 SHALE, a.a.
      70 MARL, a.a.
      30 SHALE, a.a.
710
       70 MARL, a.a.
       40 SHALE, light to medium grey, calcareous, trace pyrite, soft.
720
       60 MARL, light to medium grey, soft.
723
       40 SHALE, a.a.
       60 MARL, a.a.
      Tr LIMESTONE, yellow-brown crystalline, hard.
      40 SHALE, a.a.
726
       60 MARL, a.a. - rare coarse quartz grains.
      Tr LIMESTONE, a.a.
729
       40 SHALE, a.a.
      60 MARL, a.a.
732
      30 SANDSTONE, clear and yellow, iron stained, fine to very coarse, sub-angular to sub-rounded, occasional
         rounded, poorly sorted, loose, no matrix or cement, good apparent porosity.
       20 SHALE, a.a. - trace glauconite.
       50 MARL, a.a.
735
      10 SANDSTONE, a.a.
       30 SHALE, a.a.
      50 MARL, a.a.
738
      30 SHALE, a.a.
      70 MARL, a.a. - trace sand grains.
      Tr SANDSTONE, a.a. - clear coarse, loose quartz grains.
741
      30 SHALE, a.a.
      70 MARL, a.a.
744
      Tr SANDSTONE, a.a.
      30 SHALE, a.a.
      70 MARL, a.a.
      Tr LIMESTONE, yellow, hard, crystalline, minor fossils.
      Tr SHALE, a.a.
      100 MARL, grey-green, minor dark grey, soft.
      Tr LIMESTONE, white, yellow, hard, fossiliferous.
750
     100 MARL, a.a. - minor glauconite.
      Tr LIMESTONE, a.a. - fossiliferous.
753
     100 MARL, a.a. - trace loose, coarse sand grains.
756
      100 MARL, a.a. - trace green glauconitic grains.
```

100 MARL, light blue-green to grey, soft, shaley, trace glauconite.

- 762 100 MARL, a.a.
- 765 Tr SANDSTONE, clear, loose, medium to coarse quartz grains. 100 MARL, a.a.
- 768 100 MARL, a.a. common common green glauconitic grains, rare quartz grains.
- 771 100 MARL, cream, light green-blue to grey, soft, shaley, common dark green glauconitic grains.
- 774 100 MARL, a.a. very_argillaceous, common dark green glauconitic grains.
- 777 100 MARL, white to green-grey, very argillaceous, soft, up to 5% glauconite rounded grains.
- 780 100 MARL, a.a. 5% glauconite.
- 783 100 MARL, a.a. 5% glauconite.
- 786 100 MARL, a.a. 5% glauconite.
- 789 100 MARL, a.a. very argillaceous, 5% glauconite.
- 792 100 MARL, a.a.
- 795 80 MARL, a.a. 20 COAL, dark brown to black, shaley, lignitic.
- 798 50 MARL, a.a. 50 COAL, a.a.
- 801 190 COAL, a.a.
- 804 100 COAL, a.a.
- 807 100 SANDSTONE, clear and brown, lignite stained, fine to coarse, sub-angular to rounded, poor to moderate sorted, polished surfaces on some grains, loose, no matrix or cement, very good apparent porosity. NO FLUORESCENCE.
- 810 100 SANDSTONE, a.a.
- 813 100 SANDSTONE, a.a.
- 816 100 SANDSTONE, clear, fine to very coarse, angular to sub-angular, minor sub-rounded, poor to moderate sorted, loose quartz grains, very good porosity.

 Tr COAL, a.a.
- 822 50 SANDSTONE, a.a.
 - 10 SHALE, very dark brown, sub-fissile, lignitic.
 - 40 COAL, dark brown to black, lignitic.
- 828 20 SANDSTONE, a.a.
 - 80 SHALE, very dark brown, crumbly, grading to lignite/coal.
- 60 SANDSTONE, a.a. sub-angular to sub-rounded, some lignite stained, loose, no matrix or cement, good porosity.

40 SHALE, a.a.

```
60 SANDSTONE, a.a.
840
       40 SHALE, a.a.
846
       70 SANDSTONE, mostly clear, some milky white, medium to very coarse, sub-angular to sub-rounded, minor
         rounded, moderate sorted, very good porosity.
       30 SHALE, a.a. - soft to firm.
852
       80 SANDSTONE, a.a.
       20 SHALE, a.a. - dark brown to black, silty, lignitic.
858
       90 SANDSTONE, a.a.
       10 SHALE, dark grey-brown to black, silty, very carbonaceous.
       70 SANDSTONE, a.a.
864
       30 SHALE, a.a. - grades to clay.
870
       70 SANDSTONE, a.a.
       30 SHALE, very dark brown, sub-fissile, lignitic.
876
       30 SANDSTONE, a.a.
       70 SHALE, dark grey-brown to black, soft to firm, arqillaceous/dispersive in part, very carbonaceous.
882
       50 SANDSTONE, a.a.
       50 SHALE, dark grey-brown to black, silty/argillaceous, dispersive, very carbonaceous.
388
      60 SANDSTONE, a.a.
       40 SHALE, a.a.
994
       60 SANDSTONE, a.a.
       40 SHALE, a.a.
900 100 SANDSTONE, a.a.
      Tr SCAL, a.a.
906
      80 SANDSTONE, a.a.
       20 SHALE, a.a.
912
      80 SANDSTONE, a.a.
       20 SHALE, a.a.
918
       90 SANDSTONE, a.a. - fine to very coarse, mostly coarse to very coarse, sub-rounded, moderate sorted,
          loose, good porosity.
       10 SHALE, a.a.
       90 SANDSTONE, a.a.
924
       10 SHALE, a.a. - grades to coal.
930
       20 SANDSTONE, a.a.
       50 SHALE, a.a.
       30 COAL, brown to black, shaley.
936
       30 SANDSTONE, a.a.
       70 SHALE, dark brown and grey to black, silty, dispersive, very carbonaceous, grading to coal.
```

```
942
      Tr SANDSTONE, a.a.
       100 SHALE/COAL, very dark brown-black, silty, soft to firm, crumbly, argillaceous.
 948
       100 SHALE/COAL, a.a.
 954
        Tr SANDSTONE, a.a.
       100 SHALE/COAL, a.a.
 960
        50 SHALE, a.a. - grades to lignitic coal.
        50 COAL, a.a. - grades to lignitic shale.
 966
       100 SHALE, very dark brown, brown-black, crumbly to hard, lightitic, silty, very carbonaceous, grading to
           coal.
 972 100 SHALE, a.a. - grades to lignitic coal.
 978
        10 SANDSTONE, clear, coarse to very coarse, sub-angular to sub-rounded, moderate sorted loose quartz
           grains, good porosity.
        60 SHALE, a.a.
        30 COAL, a.a.
 984
        70 SANDSTONE, a.a.
        30 SHALE, a.a.
 990
        10 SANDSTONE, a.a.
        90 COAL, a.a.
 996
        50 SANDSTONE, a.a.
        20 SHALE, a.a.
        30 COAL, a.a.
1002
        90 SANDSTONE, clear, coarse to very coarse, sub-angular, moderate sorted, loose, no matrix or cement,
           good porosity.
        10 CCAL, a.a.
        50 SANDSTONE, a.a.
1008
        50 CCAL, a.a.
        80 SANDSTONE, a.a.
1014
        20 CCAL, a.a.
1020
        20 SANDSTONE, a.a.
        80 COAL, brown to black, silty, firm to brittle.
1026
        60 SANDSTONE, a.a.
        40 COAL, a.a.
1032
        80 SANDSTONE, a.a.
        20 COAL, a.a.
        70 SANDSTONE, a.a. - clear, coarse to very coarse.
1038
        30 COAL, a.a. - shaley in part.
1044
        90 SANDSTONE, a.a.
        10 COAL, a.a.
```

```
1050
        20 SANDSTONE, a.a. - also minor cream, very fine to fine, hard, sub-angular, moderate sorted, dolomitic?
           cement, poor porosity.
        80 CCAL, a.a. - large amounts of cavings / fill.
1056
        50 SANDSTONE, mostly a.a. - clear, medium to very coarse, loose, angular to sub-rounded, poor to moderate
           sorted quartz grains, good porosity. Also some cream to light brown, fine, sub-angular, moderate
           sorted, hard, dolomitic cement, poor porosity, bright yellow mineral fluorescence with no cut.
           (c.f. Merriman #1-3 3,295 feet).
        50 COAL, a.a.
        30 SANDSTONE, mostly clear, a.a. - minor dolomitic.
1062
        70 COAL, a.a.
1068
       Tr SANDSTONE, a.a.
       100 COAL, a.a.
1074
        50 SANDSTONE, clear, loose, coarse grains with good porosity.
        50 COAL, black, shaley.
1080
        60 SANDSTONE, a.a.
        40 COAL, a.a.
        80 SANDSTONE, clear, fine to very coarse, angular to sub-rounded, poor to moderate sorted, loose, no
           matrix or cement, good porosity.
        20 COAL, a.a.
1092
        80 SANDSTONE, a.a.
        20 CCAL, a.a.
        80 SANDSTONE, a.a.
1098
        20 CCAL, a.a.
1104
        70 SANDSTONE, a.a.
        30 CCAL, a.a.
1110
        30 SANDSTONE, a.a. - clear quartz grains.
        70 CCAL, a.a.
1116
        30 SANDSTONE, clear, fine to coarse, angular to sub-rounded, poor to moderate sorted.
        70 COAL, a.a. - minor brown, crumbly, lignitic.
1122
        40 SANDSTONE, a.a.
        60 COAL, brown to black, lignitic, grading to carbonaceous shale.
1128
        20 SANDSTONE, a.a.
        80 CCAL, a.a.
1134
        80 SANDSTONE, a.a.
        20 COAL, a.a.
1140
        80 SANDSTONE, a.a.
        29 COAL, a.a.
```

•

5

```
90 SANDSTONE, a.a. - trace white, silty, dispersive clay matrix.
1146
        10 COAL, a.a.
1152
        30 SANDSTONE, a.a. - trace white, silty, dispersive clay matrix.
        20 COAL, a.a.
1158
        90 SANDSTONE, clear, fine to very coarse, angular to sub-angular, poorly sorted quartz grains, loose,
           rare white clay matrix on some grains, good porosity.
        10 COAL, a.a.
       100 SANDSTONE, a.a.
1164
1170
        90 SANDSTONE, a.a. - rare pyrite.
        10 CCAL, a.a.
1176
        90 SANDSTONE, clear, fine to very coarse, angular to sub-rounded, poorly sorted quartz grains, trace
           white dispersive clay matrix, rare pyrite and mica, good porosity.
        10 COAL, a.a.
        60 SANDSTONE, a.a.
1182
        20 CLAYSTONE, white, light brown, soft, dispersive, sticky.
        20 COAL, a.a.
1188
        80 SANDSTONE, a.a. - rare pyrite.
        20 COAL, a.a.
1194
       100 SANDSTONE, a.a. - rare white mica.
       100 SANDSTONE, a.a. - trace clay matrix, rare pyrite and white mica, good porosity.
1200
       100 SANDSTONE, a.a. - angular to sub-rounded, trace clay matrix, rare mica, loose, good porosity.
1206
       Tr COAL, a.a.
       100 SANDSTONE, a.a. - rare pyrite.
1218
       100 SANOSTONE, a.a. - rare grey lithic/quartzite grains.
1224 100 SANDSTONE, a.a.
1230
        90 SANDSTONE, a.a.
        10 CGAL, brown to black, shaley.
1236 100 SANDSTONE, a.a.
       100 SANDSTONE, a.a. - slight increase in pinkish-white mica flakes.
1242
1245
        80 SANDSTONE, a.a. - with trace of mica and grey lithic/quartzite grains, rare pink garnet.
        20 COAL, a.a. - grades to carbonaceous shale.
        50 SANDSTONE, a.a. - rare pyrite.
        50 CCAL, brown to black, shaley and lignitic in part, trace pyrite.
1251
        40 SANDSTONE, a.a.
        60 COAL, a.a.
```

```
1254
       100 SANDSTONE, clear, fine to very coarse, angular to sub-rounded, poorly sorted, minor white to grey
           lithic/quartzite grains, trace pyrite and pinkish-white mica, rare pink garnet, no matrix or cement,
           good porosity.
1257
       100 SANDSTONE, a.a.
1260
        80 SANDSTONE, a.a. - trace grey lithic/quartzite grains, pyrite and mica.
        20 COAL, a.a.
1263
        60 SANDSTONE, a.a.
        40 COAL, a.a.
1266
        10 SANDSTONE, a.a.
        90 COAL, a.a.
1269
        80 SANDSTONE, a.a.
        20 COAL, a.a.
1272
        40 SANDSTONE, a.a. - trace pyrite and mica.
        60 COAL, black, firm, silty and shaley in part.
1275
        10 SANDSTONE, a.a.
        40 SHALE, dark brown to black, coally, very carbonaceous, sub-fissile to fissile.
        50 COAL, a.a.
1278
        20 SANDSTONE, a.a.
        20 SHALE, a.a.
        60 COAL, a.a.
1281
        10 SANDSTONE, a.a.
        30 SHALE, a.a.
        60 COAL, a.a.
1284
        10 SANDSTONE, a.a.
        30 SHALE, a.a. - grades to coal.
        60 COAL, a.a.
1287
        Tr SANDSTONE, a.a.
        20 SHALE, a.a. - grades to coal.
        80 COAL, a.a.
        50 SANDSTONE, a.a. - trace pyrite.
1290
        50 COAL, a.a.
1293
        60 SANDSTONE, a.a.
        40 COAL, a.a.
1296
       100 SANDSTONE, clear, fine to very coarse, angular to sub-rounded, poor to moderate sorting, trace white,
           dispersive clay matrix, rare pyrite, good porosity.
        Tr COAL, a.a.
1299
        90 SANDSTONE, clear, minor white, fine to very coarse, angular to sub-rounded, poorly sorted, trace
           white, dispersive clay matrix, rare white mica and pyrite, good porosity.
```

10 COAL, a.a.

```
1302
     100 SANDSTONE, a.a.
       Tr COAL, a.a.
1305
        40 SANDSTONE, a.a.
        10 SHALE, a.a.
        50 COAL, a.a.
1308
        80 SAMOSTONE, a.a. - trace clay matrix, pyrite, mica and grey lithic/quartzite grains.
        20 COAL, a.a.
1311
        80 SANDSTONE, a.a.
        20 COAL, a.a.
1314
     100 SANDSTONE, a.a. - becoming angular.
1317
     100 SANDSTONE, a.a. - clear quartz, angular, trace mica and grey lithic/quartzite grains.
1320
      100 SANDSTONE, a.a. - clear, fine to very coarse, angular to sub-angular, poor to moderate sorted, trace
          mica and grey lithic/quartzite grains, good porosity.
      100 SANDSTONE, a.a.
       Tr COAL, a.a.
1326
      100 SANDSTONE, a.a.
       Tr COAL, a.a.
1329
        20 SANDSTONE, a.a. - trace pyrite.
        40 CLAYSTONE, white to light grey-brown, soft, silty in part, trace to common carbonaceous material.
          dispersive.
       20 CCAL, a.a.
      190 SANDSTONE, a.a. - trace grey and green lithic/quartzite grains, mica and pyrite.
       Tr CLAYSTONE, a.a.
       Tr CCAL, a.a.
1335 100 SANDSTONE, a.a.
1333 100 SANDSTONE, a.a.
1341
     100 SANDSTONE, a.a.
1344
     100 SANDSTONE, a.a.
1347
       60 SANDSTONE, a.a.
       30 CLAYSTONE, a.a. - silty, soft, dispersive.
       10 COAL, a.a.
       70 SANDSTONE, a.a.
1350
       20 CLAYSTONE, a.a.
       10 CCAL, a.a.
      100 SANDSTONE, clear, fine to very coarse, angular to sub-rounded, poor to moderate sorted, loose, trace
          pyrite and mica, good porosity.
```

1356 100 SANDSTONE, a.a.

```
90 SANDSTONE, a.a. - clear quartz and white to light grey, lithic/quartzite grains in a roughly 50:50
1404
           ratio, quartz grains are generally coarser, more angular and possibly come from the overlying LaTrobe
           Group.
        10 CLAYSTONE, a.a.
1407
        90 SANDSTONE, a.a.
        10 CLAYSTONE, a.a.
1410
        80 SANDSTONE, a.a.
        Tr SHALE, a.a.
        20 CLAYSTONE, a.a.
        Tr TUFF, a.a.
        Tr COAL, a.a.
1413
        60 SANDSTONE, a.a. - common pyrite.
        40 CLAYSTONE, white to light grey, soft, dispersive.
1416
        60 SANDSTONE, a.a.
        40 CLAYSTONE, a.a.
1419
        70 SANDSTONE, clear quartz, white, grey, green, black, pink, yellow lithic/quartzite grains and rock
           fragments, white feldspar, (weathered in part), very fine to medium, occasional coarse to very coarse,
           sub-angular to sub-rounded, some angular, poor to moderate sorted, mostly loose, some aggregates with
           white clay matrix, common mica flakes and pyrite, poor to fair porosity.
        Tr SHALE, grey to dark grey-brown, silty, carbonaceous, firm.
        30 CLAYSTONE, a.a.
        Tr TUFF, buff, soft, waxy, occasional carbonaceous inclusions.
        76 SANDSTONE, a.a.
1422
        30 CLAYSTONE, a.a.
1425
        70 SAVDSTONE, a.a. - very fine to medium, occasional coarse.
        30 CLAYSTONE, a.a.
1428
        70 SANDSTONE, a.a. - 50% clear quartz and 50% coloured lithic/quartzite grains and rock fragments.
           predominantly medium to dark grey and grey-green, fine to medium, sub-angular to sub-rounded, moderate
           sorted, poor porosity.
        30 CLAYSTONE, a.a.
1431
        80 SANDSTONE, a.a. - clear quartz, coloured lithic/quartzite grains and white feldspar.
        20 CLAYSTONE, a.a.
        80 SANDSTONE, a.a.
1434
        20 CLAYSTONE, a.a.
1437
        80 SANDSTONE, a.a.
        20 CLAYSTONE, a.a.
1440
        70 SANDSTONE, a.a.
        30 CLAYSTONE, a.a.
1443
        70 SANDSTONE, a.a.
```

30 CLAYSTONE, a.a.

1446 60 SANDSTONE, a.a.
1449 60 SANDSTONE, a.a.
40 CLAYSTONE, a.a.
1452 60 SANDSTONE, a.a.
40 CLAYSTONE, a.a.
40 CLAYSTONE, a.a.

MACALISTER #1 : SAMPLE DESCRIPTIONS.

Metres % Description

SURFACE CONDUCTOR PIPE WAS PRE-SET TO 21 METRES.

- 30 100 SANDSTONE, clear to white quartz with minor white, orange-pink and green lithic/quartzite and feldspar grains, fine to medium, minor coarse, angular to sub-angular, poorly sorted, common grenish black mica flakes, loose, no matrix or cement, good porosity.
- 40 100 SAMOSTONE, clear and white quartz with minor grey-green lithic/quartzite grains, fine to coarse, angular to sub-rounded, poorly sorted, common grenish black mica flakes, loose, no matrix or cement, good porosity.
- 50 100 SANDSTONE, a.a. sub-angular to sub-rounded, trace brown lithic grains, loose, no matrix or cement, good porosity.
- 50 100 SANDSTONE, clear and white quartz grains, minor grey-brown lithic/quartzite grains, medium to very coarse, sub-rounded to rounded, polished surfaces on some grains, moderate sorted, loose, no matrix or cement, good porosity.
- 70 100 SANDSTONE, a.a. occasionally granular, probably the base of a downward coarsening sequence. Tr COAL, dull black, lignitic.
- 80 100 SANDSTONE, clear quartz with minor light grey quartzite grains, very fine to fine, some medium, angular to sub-angular, poor to moderate sorted, common greenish black mica, loose, no matrix or cement, good porosity.
- 90 100 SANCSTONE, clear to milky white quartz, coarse to very coarse, occasionally granular, sub-rounded to occasionally rounded, moderate sorted, loose, no matrix or cement, good porosity.
- 100 100 SANDSTONE, clear to milky white, very coarse, sub-angular to sub-rounded enderate to well sorted, minor grey lithic/quartite grains, loose, no matrix or cement, good porceity. The COAL, dull black, lignitic.
- 110 100 SANDSTONE, a.a. angular to sub-rounded, minor to common yellow, green and grey lithic/quartzite grains, and minor greenish black mica, loose, no matrix or cement, good porosity.
 - Tr CLAYSTONE, grey, silty.
 - Tr COAL, a.a.
- 120 100 SANDSTONE, a.a. sub-angular to sub-rounded.
 - Tr COAL, a.a.
 - Tr LIMESTONE, a.a. shell fragments.
- 430 60 SANDSTONE, a.a. also minor yellow-brown, fine, sub-rounded, moderate sorted, hard, ferruginous / limonitic / argillaceous matrix and cement (lateritic), very poor porosity.
 - 10 CLAYSTONE, light to dark grey and bluish-grey, soft to firm, silty in part, occasionally calcareous.
 - 30 LIMESTONE, white, cream, shell fragments.
- 140 50 SANDSTONE, a.a.
 - 29 CLAYSTONE, a.a.
 - 30 LIMESTONE, a.a.

```
1359
       100 SANDSTONE, a.a. - trace white dispersive clay matrix.
1362 100 SANDSTONE, a.a.
1365
       100 SANDSTONE, a.a.
        Tr CLAYSTONE, light brown, soft, silty, dispersive, minor carbonaceous material.
        Tr COAL, a.a.
1368
       100 SANDSTONE, a.a.
        Tr CLAYSTONE, a.a.
        Tr COAL, a.a.
1371 100 SANDSTONE, a.a.
       100 SANDSTONE, a.a. - trace pyrite, mica and clay matrix.
        Tr COAL, a.a.
        80 SANDSTONE, a.a.
1377
        10 SHALE, brown to brown-black, sub-fissile, firm, very carbonaceous, silty in part.
        10 CLAYSTONE, light brown, soft, silty, dispersive, minor carbonaceous material.
1380
       100 SANDSTONE, clear, fine to very coarse, angular to sub-angular, poorly sorted, loose, trace mica, good poros
        Tr CLAYSTONE, a.a.
1383
       100 SANDSTONE, a.a. - angular to sub-angular, trace white clay matrix, trace grey lithic/quartzite grains.
        Tr CLAYSTONE, a.a.
1386
       100 SANDSTONE, a.a. - minor grey lithic/quartzite grains.
        Tr CLAYSTONE, a.a.
1389
       100 SANDSTONE, a.a.
1392
        80 SANDSTONE, a.a. - common to abundant grey lithic/quartzite grains.
        20 CLAYSTONE, a.a.
1395
        80 SANDSTONE, clear quartz, white to light grey, grey-green and minor green and plak lithic/quartzite
           grains, very fine to medium, some coarse and very coarse, angular (clear quartz) to sub-rounded
           (!ithic/quartzite grains), poor to moderate sorted, predominantly loose, trace dispersive clay matrix,
           minor pyrite and mica, fair porosity.
        Tr SHALE, brown to black, carbonaceous.
        20 CLAYSTONE, white to light brown, soft, dispersive.
        Tr COAL, a.a.
        Tr TUFF, cream to light yellow-brown, soft, waxy.
        80 SANDSTONE, a.a. - predominantly quartz and lithic/quartzite grains and minor pink, green and black
1393
           rock fragments, trace pyrite and mica, fair porosity.
        Tr SHALE, a.a.
        20 CLAYSTONE, a.a.
        Tr TUFF, a.a.
1401
        90 SANDSTONE, a.a. - mostly loose grains, aggregates have a clay matrix and are poorly cemented, poor to
           fair porosity.
        Tr SHALE, a.a.
        10 CLAYSTONE, a.a.
```

DESCRIPTION OF SIDEWALL CORES

MACALISTER #1 SIDEWALL CORE DESCRIPTIONS

SWC	DEPTH m. (Rec mm)	DESCRIPTION
1	1398.0	NO RECOVERY
2	1389.0	NO RECOVERY
3	1383.5	NO RECOVERY
4	1373.0 (13)	CLAYSTONE, light grey, soft to firm, silty.
	1928.0 (20)	SILTSTONE, light grey, very argillaceous, firm, lithic, micaceous, trace carbonaceous material, grading to very fine sandstone in part.
6	1290.0 (24)	SILTSTONE, light grey, very argillaceous, as for SWC #5.
7	1264.0 (26)	SILTSTONE, light grey-brown, sandy, firm, lithic, carbonaceous with laminae of SANDSTONE, white, very fine, sub-rounded, moderate to well sorted, clay matrix, trace mica, poor porosity.
8	1249.0 (24)	SHALE, dark brown to black, silty, very carbonaceous.
9	1181.0 (30)	SHALE, dark grey to black, silty, very carbonaceous.
10	1154.5 (25)	SILTSTONE, light grey, argillaceous, sandy, micaceous, lithic.
11	1125.0 (40)	CLAYSTONE, buff, soft, trace carbonaceous material.
44-6 17:41	1109.0 (50)	SANDSTONE, white to light grey, very fine to fine, sub-rounded, moderate to well sorted, friable, trace mica and grey black lithics, poor porosity.
13	1105.0 (42)	SANDSTONE, as for SWC #12, trace carbonaceous material and moderate clay matrix.
14	1047.0 (20)	SANDSTONE, white to cream, very fine to fine, sub-angular, moderate sorted, abundant clay matrix, silty in part, trace carbonaceous material, poor porosity.
15	988.0 (32)	SILTSTONE, light grey, very argillaceous, firm, trace coally fragments.

	16	965.0 (52)	SHALE, very dark brown to black, grading to coal.
	17	953.0 (48)	SILTSTONE, medium grey-brown, sandy, micaceous, carbonaceous material and laminae.
	18	924.0 (50)	SILTSTONE, very dark brown to black, very carbonaceous, grading to coally shale.
	19	865.0 (50)	SHALE/COAL, very dark brown to black, minor white to light grey siltstone laminae.
	20	847.0 (50)	SHALE/COAL, as for SWC #19.
	74 1 44 1	939.0 (40)	SANDSTONE, clear quartz grains, medium to very coarse, sub-angular to sub-rounded, poorly sorted, friable, abundant silty clay matrix, fair to good porosity.
	22	826.5 (40)	SANDSTONE, clear, white, very fine, sub-angular to sub-rounded, moderate to well sorted, friable, trace clay matrix, fair porosity, minor silty carbonaceous laminae.
)	23	814.0 (30)	SANDSTONE, dark brown (lignite stain), fine to coarse, sub-rounded, poorly sorted, abundant brown silty carbonaceous matrix, carbonaceous fragments, friable, fair porosity.
	24	810.0 (30)	SANDSTONE, as for SWC #22, but with very abundant lignitic/carbonaceous material, friable, poor to fair porosity.
	京	309.0 (45)	Lignitic SANDSTONE, as for SWC #24.
	26	794.0 (48)	COAL, dark brown to black, crumbly, lignitic.
	27	788.5 (30)	MARL, medium brown, very calcareous, very argillaceous, soft, puggy, common glauconite and fossil fragments.
	28	775.0 (25)	MARL, light to medium grey, abundant white fossil fragments and green glauconite.
	29	763.0 (40)	MARL, green, puggy, common glauconite, trace pyrite, very calcareous.
)	30	754.0 (50)	MARL, medium grey-green, puggy, disseminated pyrite, very calcareous.

And the control of

WIRELINE LOG EVALUATION

900

CRUSADER OIL NL

MACALISTER #1

WIRELINE LOG EVALUATION

BOWLER LOG CONSULTING SERVICES PTY. LTD.

JACK BOWLER Telephone: (051) 56 6170 P.O. BOX 2, PAYNESVILLE, VICTORIA. AUSTRALIA. 3880.

5 April, 1988

Mr. Doug Barrenger Crusader Oil N.L. 27th Floor, AMP Centre 12 Creek Street Brisbane, Queensland 4000

Dear Doug,

Please find my evaluation for the porous intervals of the Latrobe sands of Macalister #1. The evaluation, RFT pressure plot and recovered water samples show the Latrobe sands to be 100% water saturated with very fresh formation waters.

Logs and data available over the zones of interest included:

- -DLL-MSFL-GR-CAL-SP
- -LDL-CNL-NGS-EPT-CAL
- -SLS-GR
- -SHDT-GR
- -RFT-HP-GR and formation water samples.
- -Mudlog
- Rmf=0.468 ohm.m ⊚ 18°C. BHT first log=52°C. Mud weight=9.7#/gal and contains barite.

Log Quality

The Latrobe (793-1390 meters?) from the logs consists of clean porous sandstones, 111 meters of thin to thick coals, three tight streaks and a few 2-3 meter shales. Generally the coals are badly washed out, in some cases to the maximum SHDT caliper reading of 24 inches. Fortunately the sands are usually washed out less than three inches resulting in good quality RHOB and MSFL readings. This is confirmed by the Rmfa=0.25 ohm.m computed from the Rxo-Density porosity plot which is equal to the surface measured value of Rmf converted to reservoir temperature. RHOB in the upper part of the 806-615 sand is useless so the sonic is used for porosity.

The rugosity of the hole through the sands resulted in EPT readings that were of little use over much of the sands. The EPT can be dropped from the next logging program particularly since the MSFL did a good job of evaluating the flushed zone near the borehole and the RFT HP pressures were able to resolve the very high resistivity zones. The RFT with HP gage should be made available for the next well as it was very useful in identifying the fluid content of the rocks where log evaluation techniques were uncertain due to uncertainties in Rw.

The PEF values were degraded by the barite in the mud as can be seen by the negative ARHO corrections, the classic barite response of increasing PEF at small caves such as at 1160 meters and the PEF readings of 2 or more opposite clean, porous sands that should have a PEF of 1.6. However, this was not a problem as the clean sandstone lithology was clearly identified from the RHOB-NPHI plot and the cuttings.

Log Evaluation

Representative data points were taken in the sands and evaluated using MacLog® software. The sands were clean and porous as can be seen on the RHOB-NPHI plot with porosities ranging from 23-35%. Despite the high gamma ray the sands were clean so it was possible to use the Archie water saturation equation which found the sands to be 100% water wet. The NGS suggests that the high gamma ray in some of the sands and coals is due to uranium. The uranium in the sands may be associated with the disseminated lignitic or carbonaceous material reported in the sands recovered in the sidewall cores.

The RHOmaa-Umaa plot shows the barite effect on the data pulling it away from the quartz point in the direction of increasing Umaa.

It appears that the "freshwater wedge" mentioned in the 1986 APEA Journal paper "Freshwater Influx in the Gippsland Basin: Impact on Formation Evaluation, Hydrocarbon Volumes, and Hydrocarbon Migration", by Kuttan, Kulla and Neumann, may be present from 1065-1266 meters. This is suggested by DLL-MSFL log, the Pre Evaluation Rwa values and the RT-Porosity plots. Rw= 6.5 ohm.m (500 PPM NaCl eqv @ 50°C) was used everywhere except from 1065-1266 meters where Rw=22 ohm.m (about 100 PPM NaCl eqv @ 50°C).

Because RHOB was useless from 806-813.9 meters the sonic was used at 809 and 810 meters where it was valid. The Wylie Time Average formula with a sonic porosity compaction factor of 1.5 was used to compute porosity over this interval. This resulted in porosities that agreed with those of the density-neutron which can be seen from the agreement of data and computed Rmfa=0.25 ohm.m from the Rxo-Sonic and Rxo-Density/Neutron plots.

RFT Evaluation

The RFT HP gage pressure profiles of 0.993 g/cc and 1.002 g/cc clearly show that the free fluid within the pore space of the Latrobe sands is fresh water.

The Long Nose Probe was used to obtain HP formation pressures at 10 representative levels throughout the well with particular emphasis on the upper Latrobe sand. An inspection of the SHDT caliper shows that the best chance for a seal from 806-813 meters was at 810 meters where 4 good pressures were obtained. After successful pressures at 814 and 814.4 meters an attempted pressure test at 810 meters resulted in a seal failure. We were fortunate to obtain a pressure reading at 810 meters considering the hole rugosity, 11.5-12 inch hole diameter and hole ovality.

The Martineau Probe, designed for unconsolidated sands, was used to sample the 814 meter interval. The 6 gallon sample chamber was opened first and sampled at 1140 psia HP recovering 4-5 gallons of 1.49 ohm.m water @ 22°C. The final pressure built up to 1175 psia HP. The sample was sealed and the 2 3/4 gallon chamber was opened and sampled at 1163 psia HP and filled to reach a final pressure of 1175 psia HP. Water recovered measured 2.9 ohm.m @ 22°C.

Surface chamber pressure was 35 psi for the 6 gallon chamber which recovered 4-5 gallons of water and 400 psi for the 2 3/4 gallon chamber which recovered 2 gallons of fluid. No gas or oil was reported. The sampling pressures suggested that both the 6 and 2 3/4 gallon chambers were completely filled (unless the pistons jammed). The descrepancy between fluid recovery and sample chamber size may be due to the method used to measure the volumes of recovered water.

Mud salinity and resistivity data extracted from the mud report are:

<u>C1</u>	<u>Rmf</u>	<u>Temperature °F</u>
21-12,000		
14,000		
12,000	0.37	72
	0.42	· 75
10-12,000	0.43	84
	0.37	78
10,000	0.40	76
	0.43	78
	0.468	64.4
е.	0.393	78
	21-12,000 14,000 12,000 10-12,000	21-12,000 14,000 12,000 0.42 10-12,000 0.43 0.37 10,000 0.40 0.43 0.43

The percent formation water recovered (X) can be computed knowing Rmf, Rw and the resistivity of the recovered water (Rrf): 1/Rrf=X/Rw + (1-X)/Rmf

First case where Rmf=0.468 ohm.m @ 64.4 °F:

Rmf=0.407 @ 75°F Rrf 6 gal =1.428 @ 75°F Rw=8.932 @ 75°F K=75% Rrf 2 3/4 gal = 2.779 K=89%

Second case where C1=21,000 or NaC1=34,650 and Rmf=0.19 @ $75^{\circ}F$: Rmf=0.19 @ $75^{\circ}F$ Rrf 6 gal =1.428 @ $75^{\circ}F$ Rrf 2 3/4 gal = 2.779 Rw=8.932 @ $75^{\circ}F$ R=89% R=95%

The high percentage recovery of formation water suggests that mud filtrate invasion is not deep and the Latrobe will produce water from 814 meters.. The DLL-MSFL suggest that the diameter of invasion is 30 inches or less.

Yours truly,
South

Macalister #1 Latrobe

RHOF=1.01.

Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft.

Rw=6.500 everywhere except from 1065.00 to 1270.00 where Rw=22.000.

Rmf=0.250 a=1.00 m=2.00 n=2.00 Sonic por. comp. factor=1.50.

PHIE cutoff sets Sw and Sxo to 100% below 0.0 % porosity.

Coal is detected if RHOB<1.40 or if NPHI>55.0

or if Sonic>140.0 microsec/ft.

SwArch^n=(a*Rw)/(RT*PHIT^m)

**** Sonic porosity when RHOB<=1.95g/cc from 809.00 to 1425.00 meters.

**** Sonic porosity when MSFL<=0.00 from 0.00 to 0.00 meters.

EVALUATION

Depth meters	RHOma	PHIT	Vclay	PHIE	SwArch	SxoArch
809.00	***	26.2	0.0	26.2	100.0	100.0
810.00	***	26.2	0.0	26.2	100.0	100.0
814.00	2.65	28.0	0.0	28.0	100.0	100.0
836.00	2.68	30.1	0.0	30.1	100.0	100.0
841.00	2.67	35.7	0.0	35.7	100.0	100.0
842.00	2.65	33.2	0.0	33.2	99.5	99.5
850.50	2.67	33.0	0.0	33.0	100.0	100.0
855.00	2.66	30.0	0.0	30.0	100.0	100.0
877.50	2.65	30.3	0.0	30.3	98.0	98.0
883.00	2.65	25.8	0.0	25.8	98.6	100.0
894.00	2.65	27.7	0.0	27.7	99.0	100.0
908.00	2.65	35.2	0.0	35.2	92.2	100.0
912.00	2.66	28.5	0.0	28.5	96.0	100.0
919.00	2.66	31.2	0.0	31.2	98.8	100.0
934.60	2.64	26.5	0.0	26.5	100.0	100.0
952.50	2.74	33.0	0.0	33.0	100.0	100.0
976.50	2.65	35.5	0.0	35.5	100.0	100.0
997.00	2.66	28.5	0.0	28.5	83.8	100.0
1002.00	2.66	30.4	0.0	30.4	73.4	94.9
1022.00	2.66	26.3	0.0	26.3	100.0	100.0
1026.50	2.65	32.2	0.0	32.2	100.0	100.0
1032.00	2.64	28.4	0.0	28.4	100.0	100.0
1050.00	2.68	33.5	0.0	33.5	100.0	100.0
1067.00	2.67	30.9	0.0	30.9	96.7	96.7
1081.50	2.65	28.9	0.0	28.9	100.0	100.0
1092.00	2.63	31.7	0.0	31.7	100.0	100.0
1136.00	2.70	24.0	0.0	24.0	100.0	100.0
1146.00	2.68	24.2	0.0	24.2	99.4	99.4
1158.00	2.67	27.9	0.0	27.9	100.0	100.0
1167.00	2.65	28.5	0.0	28.5	100.0	100.0
1186.00	2.65	23.2	0.0	23.2	100.0	100.0
1192.00	2.65	30.1	0.0	30.1	100.0	100.0
1199.00	2.65	29.3	0.0	29.3	100.0	100.0
1208.00	2.66	29.4	0.0	29.4	100.0	100.0
1217.00	2.66	26.4	0.0	26.4	100.0	100.0
1230.00	2.64	26.6	0.0	26.6	100.0	100.0

Macalister #1 Latrobe RHOF=1.01.

Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft.
Rw=6.500 everywhere except from 1065.00 to 1270.00 where Rw=22.000.
Rmf=0.250 a=1.00 m=2.00 n=2.00 Sonic por. comp. factor=1.50.
PHIE cutoff sets Sw and Sxo to 100% below 0.0 % porosity.
Coal is detected if RHOB<1.40 or if NPHI>55.0
or if Sonic>140.0 microsec/ft.

SwArch^n=(a*Rw)/(RT*PHIT^m)

**** Sonic porosity when RHOB<=1.95g/cc from 809.00 to 1425.00 meters.

**** Sonic porosity when MSFL<=0.00 from 0.00 to 0.00 meters.

EVALUATION

Depth meters	RHOma	PHIT	Vclay	PHIE	SwArch	SxoArch
1230.00	2.64	26.6	0.0	26.6	100.0	100.0
1238.00	2.68	28.4	0.0	28.4	100.0	100.0
1251.00	2.67	27.9	0.0	27.9	100.0	100.0
1261.00	2.67	27.9	0.0	27.9	100.0	100.0
1266.00	2.67	25.7	0.0	25.7	100.0	100.0
1288.00	2.67	23.8	0.0	23.8	100.0	100.0
1292.00	2.68	26.9	0.0	26.9	100.0	100.0
1306.00	2.66	24.2	0.0	24.2	100.0	100.0
1315.00	2.64	23.6	0.0	23.6	100.0	100.0
1320.00	2.66	26.4	0.0	26.4	100.0	100.0
1331.00	2.69	25.8	0.0	25.8	100.0	100.0
1342.00	2.66	24.5	0.0	24.5	100.0	100.0
1347.50	2.67	25.0	0.0	25.0	100.0	100.0
1360.00	2.66	24.2	0.0	24.2	100.0	100.0
1366.00	2.67	25.0	0.0	25.0	100.0	100.0
1375.00	2.67	25.0	0.0	25.0	100.0	100.0
1390.00	2.73	25.2	0.0	25.2	100.0	100.0
1425.00	2.71	26.1	0.0	26.1	100.0	100.0

Macalister #1 Latrobe Vclay is min. of VclayDN, VclayGR & VclayRt. PHIE=(1-Vclay)*PHIT. Clean matrix density=2.65 Clay matrix density=2.92 Rt clay=100.0. RHOF=1.01 GR clean=20.00 GR clay=140.00. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. RWA=(RT*PHIT^2.00)/1.00 RMFA=(Rxo*PHIT^2.00)/1.00 Son por comp fac=1.50. **** Sonic porosity when RHOB<=1.95g/cc from 809.00 to 1425.00 meters. **** Sonic porosity when Rxo<=0.00 from 0.00 to 0.00 meters.

PRE EVALUATION

Depth meters	RHOma	PHIT	VclayRt	Vc1ayGR	Vc1ayDN	Vc1 ay	PHIE	RWA	RMFA
809.00	****	26.2	100.0	33.3	****	33.3	17.5	1.827	0.137
810.00	***	26.2	100.0	39.2	****	39.2	15.9	2.692	0.309
814.00	2.65	28.0	100.0	0.0	0.0	0.0	28.0	2.242	0.196
836.00	2.68	30.1	100.0	0.0	10.1	0.0	30.1	4.483	0.254
841.00	2.67	35.7	100.0	14.2	7.9	7.9	32.9	6.274	0.267
842.00	2.65	33.2	100.0	8.3	0.0	0.0	33.2	6.562	0.276
850.50	2.67	33.0	100.0	14.2	5.7	5.7	31.1	5.509	0.251
855.00	2.66	30.0	100.0	8.3	5.2	5.2	28.5	5.621	0.261
877.50	2.65	30.3	100.0	8.3	0.0	0.0	30.3	6.765	0.275
883.00	2.65	25.8	99.6	4.2	0.2	0.2	25.7	6.680	0.213
894.00	2.65	27.7	100.0	4.2	1.2	1.2	27.4	6.637	0.222
908.00	2.65	35.2	100.0	16.7	0.0	0.0	35.2	7.643	0.247
912.00	2.66	28.5	100.0	4.2	2.6	2.6	27.7	7.047	0.227
919.00	2.66	31.2	100.0	0.0	5.0	0.0	31.2	6.658	0.243
934.60	2.64	26.5	100.0	25.0	0.0	0.0	26.5	4.006	0.211
952.50	2.74	33.0	100.0	100.0	31.8	31.8	22.5	4.160	0.425
976.50	2.65	35.5	100.0	4.2	0.0	0.0	35.5	6.241	0.253
997.00	2.66	28.5	87.8	15.0	2.9	2.9	27.7	9.265	0.228
1002.00	2.66	30.4	76.7	8.3	3.8	3.8	29.2	12.061	0.277
1022.00	2.66	26.3	100.0	10.8	3.8	3.8	25.3	5.966	0.138
1026.50	2.65	32.2	100.0	8.3	0.0	0.0	32.2	3.862	0.280
1032.00	2.64	28.4	100.0	33.3	0.0	0.0	28.4	3.581	0.283
1050.00	2.68	33.5	100.0	33.3	9.5	9.5	30.3	5.344	0.326
1067.00	2.67	30.9	40.6	4.2	7.3	4.2	29.6	23.504	0.286
1081.50	2.65	28.9	54.2	29.2	1.3	1.3	28.5	15.399	0.167
1092.00	2.63	31.7	75.7	10.0	0.0	0.0	31.7	13.281	0.503
1136.00	2.70	24.0	35.0	12.5	16.8	12.5	21.0	15.114	0.230
1146.00	2.68	24.2	31.2	8.3	10.0	8.3	22.2	22.276	0.293
1158.00	2.67	27.9	79.4	33.3	7.0	7.0	26.0	9.811	0.234
1167.00	2.65	28.5	67.0	33.3	0.0	0.0	28.5	12.116	0.243
1186.00	2.65	23.2	71.2	25.0	0.0	0.0	23.2	7.584	0.216
1192.00	2.65	30.1	44.4	14.2	1.2	1.2	29.7	20.330	0.271
1199.00	2.65	29.3	79.1	30.8	0.0	0.0	29.3	10.833	0.343
1208.00	2.66	29.4	88.9	45.8	4.9	4.9	27.9	9.710	0.259
1217.00	2.66	26.4	96.9	45.8	4.4	4.4	25.2	7.176	0.264
1230.00	2.64	26.6	72.5	33.3	0.0	0.0	26.6	9.766	0.212

Macalister #1 Latrobe Vclay is min. of VclayDN, VclayGR & VclayRt. PHIE=(1-Vclay)*PHIT. Clean matrix density=2.65 Clay matrix density=2.92 Rt clay=100.0. RHOF=1.01 GR clean=20.00 GR clay=140.00. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. RWA=(RT*PHIT^2.00)/1.00 RMFA=(Rxo*PHIT^2.00)/1.00 Son por comp fac=1.50. **** Sonic porosity when RHOB<=1.95g/cc from 809.00 to 1425.00 meters. **** Sonic porosity when Rxo<=0.00 from 0.00 to 0.00 meters.

PRE EVALUATION

Depth meters	RHOma	PHIT	VclayRt	Vc1ayGR	VclayDN	Vclay	PHIE	RWA	RMFA
1230.00	2.64	26.6	72.5	33.3	0.0	0.0	26.6	9.766	0.212
1238.00	2.68	28.4	84.2	58.3	10.4	10.4	25.4	9.559	0.242
1251.00	2.67	27.9	100.0	41.7	7.3	7.3	25.9	4.885	0.250
1261.00	2.67	27.9	89.6	39.2	7.3	7.3	25.9	8.715	0.250
1266.00	2.67	25.7	80.0	41.7	8.1	8.1	23.6	8.261	0.211
1288.00	2.67	23.8	100.0	33.3	7.2	7.2	22.1	3.555	0.227
1292.00	2.68	26.9	100.0	45.8	12.8	12.8	23.5	4.532	0.254
1306.00	2.66	24.2	100.0	35.8	5.4	5.4	22.8	5.148	0.292
1315.00	2.64	23.6	100.0	45.8	0.0	0.0	23.6	3.147	0.223
1320.00	2.66	26.4	100.0	33.3	4.7	4.7	25.2	4.368	0.349
1331.00	2.69	25.8	100.0	35.8	13.3	13.3	22.4	4.417	0.267
1342.00	2.66	24.5	100.0	26.7	3.7	3.7	23.6	5.941	0.186
1347.50	2.67	25.0	100.0	62.5	6.9	6.9	23.2	3.102	0.249
1360.00	2.66	24.2	100.0	45.8	5.6	5.6	22.8	4.357	0.292
1366.00	2.67	25.0	100.0	45.8	7.0	7.0	23.2	3.990	0.218
1375.00	2.67	25.0	100.0	47.5	7.0	7.0	23.2	1.870	0.249
1390.00	2.73	25.2	100.0	70.8	30.8	30.8	17.5	0.509	0.509
1425.00	2.71	26.1	100.0	58.3	24.0	24.0	19.8	0.409	0.191

Volay from the gamma ray.

GR clean =20.0 GR clay =140.0

GR clean =20.0 GR clay =140.0

0 25 50 75 100 Volay from the gamma ray.

Macalister #1
Mud filtrate density=1.01 g/cc.
Surface temperature=80.00 deg. F. Bottom hole temperature=133.00 deg. F.
Surface depth=0.00 Meters. Total depth=1451.00 Meters.

DATA LISTING

D	MOEL		1 1 Tr	mт	nuan	NITH LT 1 -	NIDLLT	CD.	r-, r r	0
Depth Meters	MSFL	LLS	LLD	RT	KHUB	NPHI1s	NEMIC	GK	FEF	Sonic mcs/ft
809.00	2.00	13.00	21.00	26.58	1.45	33.0	34.7	60.0	2.5	108.0
810.00	4.50	18.00	30.00	39.17	1.70	24.0	25.3	67.0		108.0
814.00	2.50	18.00	23.00	28.59	2.18	23.0	23.8	17.0		125.0
836.00	2.80	30.00	40.00	49.48	2.17	27.0	27.9	20.0		120.0
841.00	2.10	30.00	40.00	49.29	2.07	32.0	33.1	37.0		123.0
842.00	2.50	33.00	48.00	59.37	2.09	28.0	29.0	30.0		122.0
850.50	2.30	31.00	41.00	50.54	2.11	29.0	30.0	37.0		120.0
855.00	2.90	30.00	50.00	62.41	2.16	26.0	26.9	30.0		125.0
877.50	3.00	45.00	60.00	73.90	2.14	25.0	26.0	30.0	2.0	125.0
883.00	3.20	48.00	81.00	100.37	2.22	21.0	21.8	25.0		115.0
894.00	2.90	45.00	70.00	84.53	2.19	23.0	23.9	25.0	2.1	117.0
908.00	2.00	32.00	50.00	61.79	2.06	30.0	31.2	40.0	2.0	122.0
912.00	2.80	40.00	70.00	86.89	2.18	24.0	25.0	25.0	2.0	118.0
919.00	2.50	30.00	55.00	68.60	2.14	27.0	28.0	20.0	2.1	120.0
934.60	3.00	32.00	46.00	57.07	2.20	21.0	21.9	50.0	2.0	125.0
952.50	3.90	20.00	30.00	38.19	2.17	33.0	34.1	180.0	2.0	115.0
976.50	2.00	28.00	40.00	49.41	2.05	30.0	31.3	25.0	3.0	120.0
997.00	2.80	49.00	92.00	113.96	2.18	24.0	25.0	38.0		115.0
1002.00	3.00	50.00	105.00	130.42	2.15	26.0	27.1	30.0		120.0
1022.00	2.00	42.00	70.00	86.32	2.22	22.0	23.0	33.0	2.1	105.0
1026.50	2.70	23.00	30.00	37.21	2.11	27.0	28.2	30.0	2.1	113.0
1032.00	3.50	22.00	35.00	44.32	2.17	23.0	24.1	60.0	2.0	103.0
1050.00	2.90	25.00	38.00	47.49	2.11	30.0	31.3	60.0	2.0	115.0
1067.00	3.00	90.00	200.00	246.48	2.15	27.0	28.2	25.0	2.6	110.0
1081.50	2.00	70.00	150.00	184.53	2.17	24.0	25.1	55.0	3.1	99.0
1092.00	5.00	50.00	105.00	132.13	2.10	25.0	26.2	32.0	2.1	105.0
1136.00	4.00	60.00	210.00	263.27	2.29	22.0	23.0	35.0	2.0	95.0
1146.00	5.00	60.00	300.00	380.32	2.27	21.0	22.0	30.0	2.2	94.0
1158.00	3.00	35.00	100.00	126.01	2.20	24.0	25.2	60.0		120.0
1167.00	3.00	50.00	120.00	149.35	2.17	23.0	24.2	60.0		114.0
1186.00	4.00	35.00	110.00	140.52	2.26	18.0	19.0	50.0		105.0
1192.00	3.00	50.00	180.00	225.08	2.15	25.0	26.3	37.0		112.0
1199.00	4.00	40.00	100.00	126.38	2.16	24.0	25.3	57.0		117.0
1208.00	3.00	40.00	90.00	112.48	2.17	25.0	26.3	75.0		109.0
1217.00	3.80	27.00	80.00	103.23	2.22	22.0	23.2	75.0		107.0
1230.00	3.00	40.00	110.00	137.94	2.20	21.0	22.2	60.0	2.2	117.0
1238.00	3.00	41.00	95.00	118.71	2.20	25.0	26.3	90.0		107.0
1251.00	3.20	30.00	50.00	62.58	2.20	24.0	25.2	70.0		105.0
1261.00	3.20	50.00	90.00	111.60	2.20	24.0	25.3	67.0		114.0
1266.00	3.20	43.00	100.00	125.02	2.24	22.0	23.2	70.0		110.0
1288.00 1292.00	4.00	32.00	50.00	62.70	2.27	20.0	21.1	60.0		105.0
1306.00	3.50 5.00	32.00 40.00	50.00	62.46	2.23	24.0	25.2	75.0		105.0
1315.00	4.00	30.00	70.00 45.00	88.22	2.26	20.0	21.1	63.0		106.0
1320.00	5.00	35.00	50.00	56.42	2.25	18.0	19.1	75.0		101.0
1331.00	4.00	35.00	53.00	62.65 66.19	2.22 2.25	22.0	23.2	60.0		105.0
1342.00	3.10	50.00	80.00	98.90	2.25	23.0 20.0	24.2 21.2	63.0 52.0		107.0
1347.50	4.00	30.00	40.00	49.82	2.25	20.0	22.2	95.0		105.0
1340.00	5.00	50.00	60.00	74.54	2.26	20.0	21.2	75.0	2.2	105.0 93.0
1366.00	3.50	42.00	52.00	64.03	2.25	21.0	22.2	75.0 75.0		105.0
1375.00	4.00	30.00	30.00	30.00	2.25	21.0	22.2	77.0		105.0
1390.00	8.00	8.00	8.00	8.00	2.30	25.0	26.2		2.5	
1425.00	2.80	6.00	6.00	6.00	2.27	25.0	26.3	90.0	3.3	73.0 85.0
				• •	·				~ : ~	0010

MACALISTER #1

Formation Pressure HP (psia)

[(1233.58-1170.07)/((855-810)*3.281)]/0.433=0.993 g/cc

MACALISTER #1

Formation Pressure HP (psia)

[(1952.87-1170.07)/((1360-810)*3.281)]/0.433=1.002 g/cc

Ì

MACALISTER #1

Formation Press	Depth (meters)
1170.07	810
1175.4	814
1176.06	814.4
1207.15	836
1233.58	855
1444.24	998
1653.7	1146
1738.9	1208
1820.87	1266
1952.87	1360

MACALISTER #1
FIELD LOG EVALUATION

MACALISTER #1 Field evaluation

RHOF=1.01.

Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft.

Rw=6.420 everywhere except from 0.00 to 0.00 where Rw=6.420.

Rmf=0.250 a=1.00 m=2.00 n=2.00 Sonic por. comp. factor=1.00.

PHIE cutoff sets Sw and Sxo to 100% below 0.0 % porosity.

Coal is detected if RHOB<1.50 or if NPHI>55.0

or if Sonic>140.0 microsec/ft.

SwArch^n=(a*Rw)/(RT*PHIT^m)

**** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters.

**** Sonic porosity when MSFL<=0.00 from 0.00 to 0.00 meters.

EVALUATION

Depth meters	RHOma	PHIT	Vclay	PHIE	SwArch	SxoArch
814.00	2.65	20.0	0.0	28.0	100.0	100.0
		28.0				
836.00	2.68	30.1	0.0	30.1	100.0	100.0
841.00	2.67	35.7	0.0	35.7	100.0	100.0
842.00	2.66	34.1	0.0	34.1	96.4	96.4
850.50	2.67	33.4	0.0	33.4	100.0	100.0
855.00	2.66	30.0	0.0	30.0	100.0	100.0
877.50	2.65	29.9	0.0	29.9	98.6	98.6
883.00	2.65	25.8	0.0	25.8	98.1	100.0
894.00	2.65	27.7	0.0	27.7	98.4	100.0
908.00	2.65	35.1	0.0	35.1	91.7	100.0
912.00	2.66	28.5	0.0	28.5	95.5	100.0
997.00	2.67	29.4	0.0	29.4	80.8	100.0
1002.00	2.66	30.4	0.0	30.4	73.0	95.0
1022.00	2.66	26.3	0.0	26.3	100.0	100.0
1035.00	2.65	28.8	0.0	28.8	100.0	100.0
1050.00	2.68	33.5	0.0	33.5	100.0	100.0
1092.00	2.69	27.6	0.0	27.6	79.8	81.0
1136.00	2.69	23.9	0.0	23.9	65.2	100.0
1146.00	2.68	24.2	0.0	24.2	53.7	92.5
1158.00	2.67	27.9	0.0	27.9	81.0	100.0
1167.00	2.65	28.9	0.0	28.9	71.7	99.9
1186.00	2.68	25.0	0.0	25.0	85.6	100.0
1199.00	2.65	29.2	0.0	29.2	77.1	85.5
1208.00	2.66	29.4	0.0	29.4	81.4	98.3
1217.00	2.66	26.3	0.0	26.3	94.7	97.4
1230.00	2.64	26.6	0.0	26.6	81.2	100.0
1238.00	2.68	28.3	0.0	28.3	82.0	100.0
1251.00	2.67	27.9	0.0	27.9	100.0	100.0
1261.00	2.67	27.9	0.0	27.9	85.9	100.0
1266.00	2.67	25.7	0.0	25.7	88.4	100.0
1288.00	2.67	23.8	0.0	23.8	100.0	100.0
1292.00	2.68	26.9	0.0	26.9	100.0	100.0
1306.00	2.66	24.1	0.0	24.1	100.0	100.0
1315.00	2.64	23.6	0.0	23.6	100.0	100.0
1320.00	2.66	26.4	0.0	26.4	100.0	100.0
1331.00	2.68	25.4	0.0	25.4	100.0	100.0
1342.00	2.64	25.5	0.0	25.5	99.9	100.0
1347.50	2.67	24.9	0.0	24.9	100.0	100.0
1360.00	2.66	24.1	0.0	24.1	100.0	100.0
1366.00	2.65	24.1	0.0	24.1	100.0	100.0
1375.00	2.67	24.9	0.0	24.9	100.0	100.0
1390.00	2.73	25.2	0.0	25.2	100.0	100.0
1425.00	2.71	26.1	0.0	26.1	100.0	100.0

MACALISTER #1 Field evaluation
Vclay is min. of VclayDN, VclayGR & VclayRt. PHIE=(1-Vclay)*PHIT.
Clean matrix density=2.65 Clay matrix density=2.92 Rt clay=5.0.
RHOF=1.01 GR clean=20.00 GR clay=140.00.
Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft.
RWA=(RT*PHIT^2.00)/1.00 RMFA=(Rxo*PHIT^2.00)/1.00 Son por comp fac=1.00.
**** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters.
**** Sonic porosity when Rxo<=0.00 from 0.00 to 0.00 meters.

PRE EVALUATION

meteres 814,00 2,65 28,0 26,7 0.0 0.0 0.0 28,0 2,239 0.176 836,00 2,68 30,1 21,1 0.0 10,0 0.0 30,1 4,478 0.253 841,00 2,67 35,7 21,2 14,2 7,7 7,7 7,7 32,9 6,262 0.258 842,00 2,66 30,1 19,2 83 5,0 5,0 30,4 0,79 0.257 855,00 2,66 30,0 18,7 8,3 5,1 5,1 28,5 5,613 0.268 883,00 2,65 25,8 13,7 4,2 0,1 0,1 25,9 6,671 0,21 908,00 2,65 25,8 13,7 4,2 0,1 1,1 27,4 6,628 0,222 997,00 2,66 28,5 15,2 4,2 2,5 2,5 27,8 7,632 0,227 1022,0 2,66 26,3	Depth	RHOma	PHIT	Vc1 ayRt	VclayGR	Vc1ayDN	Vclay	PHIE	RWA	RMFA
836.00 2.68 30.1 21.1 0.0 10.0 0.0 30.1 4.478 0.253 841.00 2.67 35.7 21.2 14.2 7.7 7.7 32.9 6.262 0.254 842.00 2.66 30.0 18.7 8.3 5.0 5.0 32.4 6.904 0.291 855.00 2.66 30.0 18.7 8.3 5.1 5.1 29.9 6.605 0.261 877.50 2.65 25.8 13.7 4.2 0.1 0.1 29.9 6.605 0.268 883.00 2.65 25.8 13.7 4.2 0.1 0.1 25.8 6.671 0.213 894.00 2.65 27.7 15.3 4.2 1.1 1.1 1.1 27.4 6.628 0.222 998.00 2.65 25.8 15.2 4.2 2.5 2.5 27.8 7.037 0.227 192.00 2.66 28.5 15.2		0 /F	20.0	0/ 0	^ ^	A A	Α Α		0.000	
841.00 2.67 35.7 21.2 14.2 7.7 7.7 32.9 6.262 0.254 850.50 2.67 33.4 20.9 14.2 8.7 30.5 5.649 0.257 855.50 2.66 30.0 18.7 8.3 5.1 5.1 25.5 5.613 0.261 877.50 2.65 29.9 16.9 8.3 0.1 0.1 29.9 6.605 0.261 883.00 2.65 25.8 13.7 4.2 0.1 0.1 25.8 6.671 0.213 894.00 2.65 27.7 15.3 4.2 1.1 1.1 2.4 6.628 0.222 908.00 2.65 28.5 15.2 4.2 2.5 2.5 27.8 7.037 0.227 971.00 2.66 28.5 15.2 4.2 2.5 25.2 27.8 9.31 0.242 1002.00 2.66 30.4 11.0 12.5 3.7										
842.00 2.66 34.1 19.2 8.3 5.0 5.0 32.4 6.904 0.291 855.00 2.66 30.0 18.7 8.3 5.1 5.1 28.5 5.649 0.256 877.50 2.65 29.9 16.9 8.3 0.1 0.1 29.9 6.605 0.268 883.00 2.65 25.8 13.7 4.2 0.1 0.1 25.8 6.671 0.213 894.00 2.65 35.1 18.8 16.7 0.0 0.0 35.1 7.632 0.222 908.00 2.65 35.1 18.8 16.7 0.0 0.0 35.1 7.632 0.247 912.00 2.66 28.5 15.2 4.2 2.5 2.5 27.8 7.037 0.227 997.00 2.66 26.3 15.3 10.8 3.7 3.7 27.3 15.956 0.138 1035.00 2.65 28.8 24.3 33.3 <td></td>										
850.50 2.67 33.4 20.9 14.2 8.7 8.7 30.5 5.649 0.257 855.00 2.66 30.0 18.7 8.3 5.1 5.1 28.5 5.613 0.261 877.50 2.65 25.8 13.7 4.2 0.1 0.1 27.4 6.628 0.262 883.00 2.65 27.7 15.3 4.2 1.1 1.1 27.4 6.628 0.222 998.00 2.65 35.1 18.8 16.7 0.0 0.0 35.1 7.622 0.247 912.00 2.66 28.5 15.2 4.2 2.5 2.5 27.8 7.037 0.227 977.00 2.67 29.4 12.4 8.3 9.1 8.3 26.9 9.831 0.272 1002.00 2.66 30.4 11.0 12.5 3.7 3.7 25.3 5.956 0.138 1035.00 2.65 28.8 24.3 33.3 <td></td>										
855.00 2.66 30.0 18.7 8.3 5.1 5.1 28.5 5.613 0.261 877.50 2.65 29.9 16.9 8.3 0.1 0.1 29.9 6.605 0.268 883.00 2.65 27.7 15.3 4.2 0.1 0.1 27.4 6.628 0.222 908.00 2.65 35.1 18.8 16.7 0.0 0.0 35.1 7.632 0.247 912.00 2.66 28.5 15.2 4.2 2.5 2.5 27.8 7.037 0.227 977.00 2.67 29.4 11.0 12.5 3.7 3.7 29.3 12.043 0.277 1022.00 2.66 30.4 11.0 12.5 3.7 3.7 29.3 12.043 0.277 1022.00 2.66 28.8 24.3 33.3 1.0 10.0 24.9 10.076 0.381 1035.00 2.67 27.6 10.8 10										
887.50 2.65 29.9 16.9 8.3 0.1 0.1 29.9 6.605 0.268 883.00 2.65 25.8 13.7 4.2 0.1 0.1 25.8 6.671 0.213 908.00 2.65 35.1 18.8 16.7 0.0 0.0 35.1 7.632 0.247 912.00 2.66 28.5 15.2 4.2 2.5 2.5 27.8 7.037 0.227 997.00 2.67 29.4 12.4 8.3 9.1 8.3 26.9 98.31 0.242 1002.00 2.66 26.3 15.3 10.8 3.7 3.7 25.3 5.956 0.138 1035.00 2.65 28.8 24.3 33.3 1.0 1.0 28.6 3.059 0.291 1050.00 2.68 33.5 21.6 29.2 9.3 9.3 30.4 5.336 0.326 1124.00 2.69 23.9 3.6 12.5 </td <td></td>										
883.00 2.65 25.8 13.7 4.2 0.1 0.1 25.8 6.671 0.213 894.00 2.65 27.7 15.3 4.2 1.1 1.1 27.4 6.628 0.222 908.00 2.65 35.1 18.8 16.7 0.0 0.0 35.1 7.632 0.247 912.00 2.66 28.5 15.2 4.2 2.5 2.72 87.037 0.227 997.00 2.67 29.4 12.4 8.3 9.1 8.3 26.9 9.831 0.242 10020.00 2.66 30.4 11.0 12.5 3.7 3.7 25.3 5.96 0.138 1035.00 2.65 28.8 24.3 33.3 1.0 1.0 28.6 3.059 0.291 1050.00 2.68 33.5 21.6 29.2 9.3 9.3 30.4 5.366 0.326 1136.00 2.69 23.9 3.6 12.5 16.6										
894.00 2.65 27.7 15.3 4.2 1.1 1.1 27.4 6.628 0.222 908.00 2.65 35.1 18.8 16.7 0.0 0.0 35.1 7.632 0.247 912.00 2.66 28.5 15.2 4.2 2.5 25.5 27.8 7.037 0.227 997.00 2.66 30.4 11.0 12.5 3.7 3.7 29.3 12.043 0.277 1022.00 2.66 26.3 15.3 10.8 3.7 3.7 29.3 12.043 0.277 1022.00 2.66 26.3 15.3 10.8 3.7 3.7 25.3 5.756 0.138 1035.00 2.68 23.3 33.3 1.0 1.0 28.6 3.059 0.291 1136.00 2.69 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1158.00 2.67 27.9 11.3 33.3										
908.00 2.65 35.1 18.8 16.7 0.0 0.0 35.1 7.632 0.247 912.00 2.66 28.5 15.2 4.2 2.5 2.5 27.8 7.037 0.227 997.00 2.67 29.4 12.4 8.3 9.1 8.3 26.9 9.831 0.242 1002.00 2.66 30.4 11.0 12.5 3.7 3.7 29.3 12.043 0.271 1022.00 2.66 26.3 15.3 10.8 3.7 3.7 29.3 12.043 0.271 1022.00 2.66 26.3 15.3 10.8 3.7 3.7 29.3 12.043 0.291 1050.00 2.65 28.8 24.3 33.3 1.0 1.0 28.6 3.059 0.291 10792.00 2.69 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1136.00 2.69 27.9 11.3										
912.00 2.66 28.5 15.2 4.2 2.5 2.5 27.8 7.037 0.227 997.00 2.67 29.4 12.4 8.3 9.1 8.3 26.9 9.831 0.242 1002.00 2.66 30.4 11.0 12.5 3.7 3.7 29.3 12.043 0.277 1022.00 2.66 26.3 15.3 10.8 3.7 3.7 25.3 5.956 0.138 1035.00 2.65 28.8 24.3 33.3 1.0 1.0 28.6 3.059 0.291 1050.00 2.68 33.5 21.6 29.2 9.3 9.3 30.4 5.336 0.326 1092.00 2.69 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1136.00 2.69 23.9 3.6 12.5 16.6 36.2 23.1 15.080 0.279 11.3 33.3 6.8 8.26.0 9.793										
997.00 2.67 29.4 12.4 8.3 9.1 8.3 26.9 9.831 0.242 1002.00 2.66 30.4 11.0 12.5 3.7 3.7 29.3 12.043 0.277 1022.00 2.66 26.3 15.3 10.8 3.7 3.7 25.3 5.956 0.138 1035.00 2.65 28.8 24.3 33.3 1.0 1.0 28.6 3.059 0.291 1050.00 2.68 33.5 21.6 29.2 9.3 9.3 30.4 5.336 0.326 1092.00 2.69 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1136.00 2.69 23.9 3.6 12.5 16.6 3.6 23.1 15.087 0.229 1146.00 2.68 24.2 0.0 8.3 9.9 0.0 24.2 22.235 0.292 1158.00 2.67 27.9 11.3										
1002.00 2.66 30.4 11.0 12.5 3.7 3.7 29.3 12.043 0.277 1022.00 2.66 26.3 15.3 10.8 3.7 3.7 25.3 5.956 0.138 1035.00 2.65 28.8 24.3 33.3 1.0 1.0 28.6 3.059 0.291 1050.00 2.68 33.5 21.6 29.2 9.3 9.3 30.4 5.336 0.326 1072.00 2.69 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1136.00 2.69 23.9 3.6 12.5 16.6 3.6 23.1 15.087 0.229 1146.00 2.68 24.2 0.0 8.3 9.9 0.0 24.2 22.235 0.299 1158.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.65 29.2 11.3										
1022.00 2.66 26.3 15.3 10.8 3.7 3.7 25.3 5.956 0.138 1035.00 2.65 28.8 24.3 33.3 1.0 1.0 28.6 3.059 0.291 1050.00 2.68 33.5 21.6 29.2 9.3 9.3 30.4 5.336 0.326 1092.00 2.69 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1136.00 2.69 23.9 3.6 12.5 16.6 3.6 23.1 15.087 0.229 1146.00 2.68 24.2 0.0 8.3 9.9 0.0 24.2 22.235 0.292 1158.00 2.67 27.9 11.3 33.3 6.8 6.8 26.0 9.793 0.233 1167.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.68 25.0 10.2										
1035.00 2.65 28.8 24.3 33.3 1.0 1.0 28.6 3.059 0.291 1050.00 2.68 33.5 21.6 29.2 9.3 9.3 30.4 5.336 0.326 1092.00 2.69 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1136.00 2.69 23.9 3.6 12.5 16.6 3.6 23.1 15.087 0.229 1158.00 2.68 24.2 0.0 8.3 9.9 0.0 24.2 22.235 0.292 1158.00 2.67 27.9 11.3 33.3 6.8 8.8 26.0 9.793 0.233 1167.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.68 25.0 10.2 29.2 11.3 10.2 22.4 8.763 0.249 1203.00 2.66 29.4 12.5										
1050.00 2.68 33.5 21.6 29.2 9.3 9.3 30.4 5.336 0.326 1092.00 2.67 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1136.00 2.69 23.9 3.6 12.5 16.6 3.6 23.1 15.087 0.229 1146.00 2.68 24.2 0.0 8.3 9.9 0.0 24.2 22.235 0.292 1158.00 2.67 27.9 11.3 33.3 6.8 6.8 26.0 9.793 0.233 1167.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.68 25.0 10.2 29.2 11.3 10.2 22.4 8.763 0.249 1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1238.00										
1092.00 2.69 27.6 10.8 10.0 13.4 10.0 24.9 10.076 0.381 1136.00 2.69 23.9 3.6 12.5 16.6 3.6 23.1 15.087 0.229 1146.00 2.68 24.2 0.0 8.3 9.9 0.0 24.2 22.235 0.292 1158.00 2.67 27.9 11.3 33.3 6.8 6.8 26.0 9.793 0.233 1167.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.68 25.0 10.2 29.2 11.3 10.2 22.4 8.763 0.249 1199.00 2.65 29.2 11.3 30.8 0.0 0.0 29.2 10.812 0.342 1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1238.00 <td></td>										
1136.00 2.69 23.9 3.6 12.5 16.6 3.6 23.1 15.087 0.229 1146.00 2.68 24.2 0.0 8.3 9.9 0.0 24.2 22.235 0.292 1158.00 2.67 27.9 11.3 33.3 6.8 6.8 26.0 9.793 0.233 1167.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.68 25.0 10.2 29.2 11.3 10.2 22.4 8.763 0.249 1199.00 2.65 29.2 11.3 30.8 0.0 0.0 29.2 10.812 0.342 1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1238.00 2.68 28.3 11.9 33.3 10.2 10.2 25.4 9.541 0.241 1251.00									5.336	0.326
1146.00 2.68 24.2 0.0 8.3 9.9 0.0 24.2 22.235 0.292 1158.00 2.67 27.9 11.3 33.3 6.8 6.8 26.0 9.793 0.233 1167.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.68 25.0 10.2 29.2 11.3 10.2 22.4 8.763 0.249 1197.00 2.65 29.2 11.3 30.8 0.0 0.0 29.2 10.812 0.342 1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1238.00 2.64 26.6 10.4 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 126.00										0.381
1158.00 2.67 27.9 11.3 33.3 6.8 6.8 26.0 9.793 0.233 1167.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.68 25.0 10.2 29.2 11.3 10.2 22.4 8.763 0.249 1197.00 2.65 29.2 11.3 30.8 0.0 0.0 29.2 10.812 0.342 1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1230.00 2.64 26.6 10.4 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1266.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 4.876 0.249 1266.00							3.6			0.229
1167.00 2.65 28.9 9.5 33.3 1.4 1.4 28.5 12.471 0.251 1186.00 2.68 25.0 10.2 29.2 11.3 10.2 22.4 8.763 0.249 1199.00 2.65 29.2 11.3 30.8 0.0 0.0 29.2 10.812 0.342 1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1238.00 2.64 26.6 10.4 33.3 10.0 0.0 26.6 9.747 0.212 1238.00 2.68 28.3 11.9 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1266.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td>24.2</td> <td>22.235</td> <td>0.292</td>							0.0	24.2	22.235	0.292
1186.00 2.68 25.0 10.2 29.2 11.3 10.2 22.4 8.763 0.249 1199.00 2.65 29.2 11.3 30.8 0.0 0.0 29.2 10.812 0.342 1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1230.00 2.64 26.6 10.4 33.3 0.0 0.0 26.6 9.747 0.212 1238.00 2.68 28.3 11.9 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1266.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 8.698 0.249 1266.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00							6.8	26.0	9.793	0.233
1199.00 2.65 29.2 11.3 30.8 0.0 0.0 29.2 10.812 0.342 1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1230.00 2.64 26.6 10.4 33.3 0.0 0.0 26.6 9.747 0.212 1238.00 2.68 28.3 11.9 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1261.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 4.876 0.249 1266.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.211 1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00							1.4	28.5	12.471	0.251
1208.00 2.66 29.4 12.5 45.8 4.7 4.7 28.0 9.692 0.259 1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1230.00 2.64 26.6 10.4 33.3 0.0 0.0 26.6 9.747 0.212 1238.00 2.68 28.3 11.9 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1261.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 8.698 0.249 1266.00 2.67 25.7 11.4 41.7 7.9 7.9 23.6 8.213 0.211 1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1315.00							10.2	22.4	8.763	0.249
1217.00 2.66 26.3 13.4 45.8 4.2 4.2 25.2 7.162 0.264 1230.00 2.64 26.6 10.4 33.3 0.0 0.0 26.6 9.747 0.212 1238.00 2.68 28.3 11.9 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1261.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 8.698 0.249 1266.00 2.67 25.7 11.4 41.7 7.9 7.9 23.6 8.213 0.211 1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1306.00 2.66 24.1 15.1 35.8 5.2 22.9 5.137 0.291 1315.00 2.64							0.0	29.2	10.812	0.342
1230.00 2.64 26.6 10.4 33.3 0.0 0.0 26.6 9.747 0.212 1238.00 2.68 28.3 11.9 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1261.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 8.698 0.249 1266.00 2.67 25.7 11.4 41.7 7.9 7.9 23.6 8.213 0.211 1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1306.00 2.66 24.1 15.1 35.8 5.2 5.2 22.9 5.137 0.291 1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3.140 0.223 1320.00							4.7	28.0	9.692	0.259
1238.00 2.68 28.3 11.9 33.3 10.2 10.2 25.4 9.541 0.241 1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1261.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 8.698 0.249 1266.00 2.67 25.7 11.4 41.7 7.9 7.9 23.6 8.213 0.211 1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1306.00 2.66 24.1 15.1 35.8 5.2 5.2 22.9 5.137 0.291 1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3140 0.223 1320.00 2.66 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00							4.2			0.264
1251.00 2.67 27.9 18.7 41.7 7.1 7.1 25.9 4.876 0.249 1261.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 8.698 0.249 1266.00 2.67 25.7 11.4 41.7 7.9 7.9 23.6 8.213 0.211 1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1306.00 2.66 24.1 15.1 35.8 5.2 5.2 22.9 5.137 0.291 1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3.140 0.223 1320.00 2.66 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00 2.68 25.4 18.1 35.8 9.9 9.9 22.9 4.258 0.257 1342.00										0.212
1261.00 2.67 27.9 12.6 39.2 7.1 7.1 25.9 8.698 0.249 1266.00 2.67 25.7 11.4 41.7 7.9 7.9 23.6 8.213 0.211 1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1306.00 2.66 24.1 15.1 35.8 5.2 5.2 22.9 5.137 0.291 1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3.140 0.223 1320.00 2.66 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00 2.68 25.4 18.1 35.8 9.9 9.9 9.9 22.9 4.258 0.257 1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202										0.241
1266.00 2.67 25.7 11.4 41.7 7.9 7.9 23.6 8.213 0.211 1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1306.00 2.66 24.1 15.1 35.8 5.2 5.2 22.9 5.137 0.291 1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3.140 0.223 1320.00 2.64 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00 2.68 25.4 18.1 35.8 9.9 9.9 22.9 4.258 0.257 1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202 1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1366.00										0.249
1288.00 2.67 23.8 18.6 33.3 7.0 7.0 22.1 3.547 0.226 1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1306.00 2.66 24.1 15.1 35.8 5.2 5.2 22.9 5.137 0.291 1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3.140 0.223 1320.00 2.66 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00 2.68 25.4 18.1 35.8 9.9 9.9 22.9 4.258 0.257 1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202 1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00										0.249
1292.00 2.68 26.9 18.7 45.8 12.6 12.6 23.5 4.523 0.253 1306.00 2.66 24.1 15.1 35.8 5.2 5.2 22.9 5.137 0.291 1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3.140 0.223 1320.00 2.66 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00 2.68 25.4 18.1 35.8 9.9 9.9 22.9 4.258 0.257 1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202 1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1366.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00										0.211
1306.00 2.66 24.1 15.1 35.8 5.2 5.2 22.9 5.137 0.291 1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3.140 0.223 1320.00 2.66 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00 2.68 25.4 18.1 35.8 9.9 9.9 22.9 4.258 0.257 1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202 1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1360.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508										0.226
1315.00 2.64 23.6 19.8 45.8 0.0 0.0 23.6 3.140 0.223 1320.00 2.66 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00 2.68 25.4 18.1 35.8 9.9 9.9 22.9 4.258 0.257 1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202 1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1360.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508									4.523	0.253
1320.00 2.66 26.4 18.7 33.3 4.5 4.5 25.2 4.359 0.348 1331.00 2.68 25.4 18.1 35.8 9.9 9.9 22.9 4.258 0.257 1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202 1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1360.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508									5.137	0.291
1331.00 2.68 25.4 18.1 35.8 9.9 9.9 22.9 4.258 0.257 1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202 1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1360.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508							0.0	23.6	3.140	0.223
1342.00 2.64 25.5 13.9 23.3 0.0 0.0 25.5 6.432 0.202 1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1360.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508								25.2	4.359	0.348
1347.50 2.67 24.9 21.1 62.5 6.7 6.7 23.2 3.095 0.249 1360.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508 1425.00 3.71 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.9</td> <td>22.9</td> <td>4.258</td> <td>0.257</td>							9.9	22.9	4.258	0.257
1360.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508 1425.00 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71							0.0	25.5	6.432	0.202
1360.00 2.66 24.1 16.8 45.8 5.4 5.4 22.9 4.348 0.292 1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508 1425.00 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71									3.095	
1366.00 2.65 24.1 18.4 45.8 0.4 0.4 24.0 3.704 0.202 1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508						5.4	5.4	22.9	4.348	0.292
1375.00 2.67 24.9 26.4 47.5 6.8 6.8 23.2 1.866 0.249 1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508						0.4	0.4	24.0	3.704	
1390.00 2.73 25.2 62.5 70.8 30.5 30.5 17.5 0.508 0.508						6.8	6.8	23.2		
1425 00 2 71 27 1 20 0 5 5 5 5 5 5 5						30.5	30.5	17.5		
	1425.00	2.71	26.1	83.3	58.3	23.7	23.7			

1.5.	From:814.00 To: 1425.00	MACALISTER #1	Field evaluati	on
	F=1.00/Porosity^2.00 RH0F=1.01	n=2.00	Rmfa=0.250	Sxo=100%
	RHOmatrix=2.65		الإر 1	
2,4	GR clean=20.0 GR cla	y=140.0	y	
		5	0 / 0	
		J 2	3000 2 8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
3.6		4.	4 Z3	.Sxo=70%
Rxo		1 328	4 3	
5.4		,∕Ú \$	3	• • • • • • • • • • • • • • • • • • • •
6.0				Sxo=50%
8.4		7	,	JN0-J0%
15.0		J. J		
70 O				Sxo=30%
30.0				• • • • • • • • • • • • • • • • • • • •
6Q.Q				•••••
375.Q				
	A CONTRACTOR OF THE PARTY OF TH			• • • • • • • • • • • • • • • • • • • •
0	.00 1 .09	2.50 ROSITY from Dei	25.00 3	7.50 50.00

7. V.

MACALISTER #1

Formation Press	Depth (meters)
1170.07	810
1175.4	814
1176.06	814.4
1207.15	836
1233.58	855
1444.24	998
1653.7	1146
1738.9	1208
1820.87	1266
1952.87	1360

Formation Pressure HP (psia)

Bowler Log Consulting Services Pty Ltd

APPENDIX 9

APPENDIX 9

WATER ANALYSIS

Method W2/1 Page W1

Sample ID. MACALISTER 1

1	Chemical Composition			Derived Data				
; ; ;		mg/L	me/L	mg/L				
Magnesium Sodium	(Ca) (Mg) (Na) (K)	19.0 680.0	2.046 1.564 29.578 0.422	Total Dissolved Solids A. Based on E.C. 2041 B. Calculated (HCO3=CO3) 2013				
1	(L)	10.5	0.422	Total Hardness 181 181				
	(OH)			Non-Carbonate Hardness				
Carbonate Bi-Carbonate Sulphate	(CO3) (HCO3) (SO4)	578.9 55.0	9.490 1.145	Total Alkalinity				
Chloride	(Cl)	912	25.701	Totals and Balance				
; Nitrate 	(NO3)	<0.1		Cations (me/L) 33.6 Diff= 2.73 Anions (me/L) 36.3 Sum = 69.95				
! ! !				ION BALANCE				
Other Analyse	∋ S			Sodium / Total Cation Ratio 88.0%				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Remarks				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				IMBALANCE UNKNOWN ALL RESULTS CHECKED AND VERIFIED				
Reaction - pl Conductivity	(E.C)	- 0 - 0 - 0	6.9 3550					
(micro - 1 Resistivity (2.817	Note: mg/L = Milligrams per litre me/L = MilliEqivs.per litre				

Name: Address: ATIZVAR PTY LTD P.O BOX 251

NORWOOD

ADELAIDE 5067

Date Collected

3-4-88 6-4-88 Date Received

Collected by

D.A SHORT

Formation

Type Point Time

Interval Geologist

Depth

814METRES

LATROBE GROUP

27 May 1988

NATA CERTIFICATE

Amdel Limited

(Incorporated in S.A.)
31 Flemington Street,
Frewville, S.A. 5063

Telephone: (08) 372 2700

P.O. Box 114, Eastwood, S.A. 5063

Telex: AA82520

Facsimile: (08) 79 6623

Mr D. Barrenger Crusader Resources N.L. 27th Level 12 Creek Street BRISBANE QLD 4000

REPORT AC 2894/88

YOUR REFERENCE:

Letter dated 6 April 1988

REPORT COMPRISING:

Cover Sheet

Page W1

Well: MacAlister #1

DATE RECEIVED:

6 April 1988

Approved Signatory:

Don Patterson

Manager, Chemistry Services

for Dr William G. Spencer General Manager Applied Sciences Group

The report relates specifically to the sample tested and also to the entire batch in so far as the sample is truly representative of the sample source.

Tiំទៀaboratory is registered by the National Association of Testing Authorities. Australia The test(s) reported herein have been performed in accordance with its terms of registration. This document shall not be reproduced except in full.

Offices in Sydney, Melbourne, Perth, Brisbane, Canberra, Darwin, Townsville. Represented world-wide

APPENDIX 10

APPENDIX 10

WELL VELOCITY SURVEY

Schlumberger

CRUSADER RESOURCES N.L. GEOGRAM PROCESSING REPORT

MACALISTER - 1

FIELD: WILDCAT.

STATE: QUEENSLAND

COUNTRY: AUSTRALIA

COORDINATES : 038 deg 21' 02.36" S

147 deg 08' 16.00" E

DATE OF SURVEY : 02-APRIL-1987

REFERENCE NO.: 569150

Contents

1.	Intr	$\operatorname{roduction}$	1
2.	Dat	a Acquisition	2
3.	Son	ic Calibration Processing	3
	3.1	Sonic Calibration	3
	3.2	Checkshot Data	4
	3.3	Correction to Datum	4
	3.4	Open Hole Logs	4
	3.5	Sonic Calibration Results	4
4.	Syn	thetic Seismogram Processing	5
	4.1	Depth to Time Conversion	5
	4.2	Primary Reflection Coefficients	5
	4.3	Primaries with Transmission Loss	6
	4.4	Primaries plus Multiples	6
	4.5	Multiples Only	6
	4.6	Wavelet	6
	4.7	Polarity Convention	6
	4.8	Convolution	6
\mathbf{A}	Sun	nmary of Geophysical Listings	7
	A1	Geophysical Airgun Report	7
	A2	Drift Computation Report	7
	A 3	Sonic Adjustment Parameter Report	8
	A 4	Velocity Report	8
	A 5	Time Converted Velocity Report	9
	A 6	Synthetic Seismogram Table	10
L	ist	of Tables	
	1	Survey Parameters	2

2	Some Difference of the control of th
\mathbf{List}	of Figures
1	Wavelet Polarity Convention
2	Stacked Checkshot Data

1. Introduction

A checkshot survey was shot in the Macalister - 1 well on 2 April 1988. Data was acquired using a dynamite source located near the wellhead. Twenty levels were shot from 1447 metres to 20 metres below KB. All levels are used in the sonic calibration processing.

2. Data Acquisition

The data was acquired using the well seismic tool (WST). Recording was made on the Schlumberger Cyber Service Unit (CSU) using LIS format at a tape density of 800 BPI.

Table 1: Survey Parameters

	3.607
Datum	MSL
Elevation KB	20.0 metres AMSL
Elevation DF	19.5 metres AMSL
Elevation GL	16.0 metres AMSL
Total Depth	1447.0 metres below KB
Energy Source	Dynamite
Source Offset	33 metres
Source Depth	1 metre
Reference Sensor	Hydrophone
Sensor Offset	3 metres from shot
Downhole Geophone	Geospace HS-1
	High Temp. $(350 \deg F)$
	Coil Resist. $225\Omega \pm 10 \%$
	Natural Freq. 8-12 hertz
	Sensitivity 0.45 V/in/sec
	Maximum tilt angle 60 deg

3. Sonic Calibration Processing

3.1 Sonic Calibration

A 'drift' curve is obtained using the sonic log and the vertical check level times. The term 'drift' is defined as the seismic time (from check shots) minus the sonic time (from integration of edited sonic). Commonly the word 'drift' is used to identify the above difference, or to identify the gradient of drift versus increasing depth, or to identify a difference of drift between two levels.

The gradient of drift, that is the slope of the drift curve, can be negative or positive.

For a negative drift $\frac{\Delta drift}{\Delta depth}$ < 0, the sonic time is greater than the seismic time over a certain section of the log.

For a positive drift $\frac{\Delta drift}{\Delta depth} > 0$, the sonic time is less than the seismic time over a certain section of the log.

The drift curve, between two levels, is then an indication of the error on the integrated sonic or an indication of the amount of correction required on the sonic to have the TTI of the corrected sonic match the check shot times.

Two methods of correction to the sonic log are used.

- 1. Uniform or block shift This method applies a uniform correction to all the sonic values over the interval. This uniform correction is applied in the case of positive drift and is the average correction represented by the drift curve gradient expressed in $\mu \sec/ft$.
- 2. ΔT Minimum In the case of negative drift a second method is used, called Δt minimum. This applies a differential correction to the sonic log, where it is assumed that the greatest amount of transit time error is caused by the lower velocity sections of the log. Over a given interval the method will correct only Δt values which are higher than a threshold, the Δt_{min} . Values of Δt which are lower than the threshold are not corrected. The correction is a reduction of the excess of Δt over Δt_{min} , Δt Δt_{min} .

 $\Delta t - \Delta t_{min}$ is reduced through multiplication by a reduction coefficient which remains constant over the interval. This reduction coefficient, named G, can be be defined as:

$$G = 1 + \frac{drift}{\int (\Delta t - \Delta t_{min})dZ}$$

Where drift is the drift over the interval to be corrected and the value $\int (\Delta t - \Delta t_{min}) dZ$ is the time difference between the integrals of the two curves Δt and Δt_{min} , only over the intervals where $\Delta t > \Delta t_{min}$.

Hence the corrected sonic: $\Delta t = G(\Delta t - \Delta t_{min}) + \Delta t_{min}$.

3.2 Checkshot Data

The hydrophone break times are of good quality and are consistent with instantaneous source detonation. The shot delay time of 20 millisecs is used as the zero time reference. The checkshot data quality is good and is displayed in Figure 2.

3.3 Correction to Datum

The sonic calibration processing has been referenced to the seismic datum at MSL. A surface velocity of 700 metres/sec is used to correct transit times to datum. The equivalent static time from source depth to datum is -21.43 msec one way time.

3.4 Open Hole Logs

The sonic log was recorded from 1447 metres to the casing shoe at 179 metres below KB. The density log was recorded up to 750 metres and is extrapolated to the surface at a constant density of 2.1 gm/cc.

The caliper and gamma ray curves are included as correlation curves.

3.5 Sonic Calibration Results

The top of the sonic log (179 metres below KB) is chosen as the origin for the calibration drift curve.

The drift curve indicates a number of corrections to be made to the sonic log. The adjusted sonic curve is considered to be the best result using the available data. A list of shifts used on the sonic data is given below.

Table 2: Sonic Drift

Depth Interval	Block Shift	Δt_{min}	Equiv Block Shift
(metres below KB)	$\mu { m sec/ft}$	$\mu { m sec/ft}$	$\mu { m sec/ft}$
179.0-350.0	0.0	-	0.0
350.0-764.0	4.05	_	4.05
764.0-922.0	4.82	-	4.82
922.0-1063.5	1.08	-	1.08
1063.5-1447.0	2.78	-	2.78

4. Synthetic Seismogram Processing

GEOGRAM plots were generated using 10-80 hertz zero phase ricker wavelets.

The presentations include both normal and reverse polarity on a time scale of 20 cm/sec.

GEOGRAM processing produces synthetic seismic traces based on reflection coefficients generated from sonic and density measurements in the well-bore. The steps in the processing chain are the following:

Depth to time conversion Reflection coefficients Attenuation coefficients Convolution Output.

4.1 Depth to Time Conversion

Open hole logs are recorded from the bottom to top with a depth index. This data is converted to a two-way time index and flipped to read from the top to bottom in order to match the seismic section.

4.2 Primary Reflection Coefficients

Sonic and density data are averaged over chosen time intervals (normally 2 or 4 millisecs). Reflection coefficients are then computed using:

$$R = \frac{\rho_2.\nu_2 - \rho_1.\nu_1}{\rho_2.\nu_2 + \rho_1.\nu_1}$$

where:

 $\rho_1 = \text{density of the layer above the reflection interface}$ $\rho_2 = \text{density of the layer below the reflection interface}$

 ν_1 = compressional wave velocity of the layer above

the reflection interface

 $u_2 = \text{compressional wave velocity of the layer below}$

the reflection interface

This computation is done for each time interval to generate a set of primary reflection coefficients without transmission losses.

4.3 Primaries with Transmission Loss

Transmission loss on two-way attenuation coefficients is computed using:

$$A_n = (1 - R_1^2).(1 - R_2^2).(1 - R_3^2)...(1 - R_n^2)$$

A set of primary reflection coefficients with transmission loss is generated using:

$$Primary_n = R_n.A_{n-1}$$

4.4 Primaries plus Multiples

Multiples are computed from these input reflection coefficients using the transform technique from the top of the well to obtain the impulse response of the earth. The transform outputs primaries plus multiples.

4.5 Multiples Only

By subtracting previously calculated primaries from the above result we obtain multiples only.

4.6 Wavelet

A theoretical wavelet is chosen to use for convolution with the reflection coefficients previously generated. Choices available include:

Klauder wavelet

Ricker zero phase wavelet

Ricker minimum phase wavelet

Butterworth wavelet

User defined wavelet.

Time variant Butterworth filtering can be applied after convolution.

4.7 Polarity Convention

An increase in acoustic impedance gives a positive reflection coefficient and is displayed as a white trough under normal polarity. Polarity conventions are displayed in Figure-1.

4.8 Convolution

Standard procedure of convolution of wavelet with reflection coefficients. The output is the synthetic seismogram.

A Summary of Geophysical Listings

Six geophysical data listings are appended to this report. Following is a brief description of the format of each listing.

A1 Geophysical Airgun Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB :dkb, the depth in metres from kelly bushing .
- 3. Vertical depth from SRD : dsrd, the depth in metres from seismic reference datum.
- 4. Vertical depth from GL: dgl, the depth in metres from ground level.
- 5. Observed travel time HYD to GEO: tim0, the transit time picked from the stacked data by subtracting the surface sensor first break time from the downhole sensor first break time.
- 6. Vertical travel time SRC to GEO: timv, is corrected for source to hydrophone distance and for source offset.
- 7. Vertical travel time SRD to GEO: shtm, is timv corrected for the vertical distance between source and datum.
- 8. Average velocity SRD to GEO: the average seismic velocity from datum to the corresponding checkshot level, $\frac{dsrd}{shtm}$.
- 9. Delta depth between shots: $\Delta depth$, the vertical distance between each level.
- 10. Delta time between shots : $\Delta time$, the difference in vertical travel time (shtm) between each level.
- 11. Interval velocity between shots : the average seismic velocity between each level, $\frac{\Delta depth}{\Delta time}$.

A2 Drift Computation Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB: the depth in metres from kelly bushing.
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum.
- 4. Vertical depth from GL: the depth in metres from ground level.
- 5. Vertical travel time SRD to GEO: the calculated vertical travel time from datum to downhole geophone (see column 7, Geophysical Airgun Report).

- 6. Integrated raw sonic time: the raw sonic log is integrated from top to bottom and listed at each level. An initial value at the top of the sonic log is set equal to the checkshot time at that level. This may be an imposed shot if a shot was not taken at the top of the sonic.
- 7. Computed drift at level: the checkshot time minus the integrated raw sonic time.
- 8. Computed blk-shft correction: the drift gradient between any two checkshot levels $(\frac{\Delta drift}{\Delta depth})$.

A3 Sonic Adjustment Parameter Report

- 1. Knee number: the knee number starting from the highest knee. (The first knees listed will generally be at SRD and the top of sonic. The drift imposed at these knees will normally be zero.)
- 2. Vertical depth from KB: the depth in metres from kelly bushing.
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum.
- 4. Vertical depth from GL: the depth in metres from ground level.
- 5. Drift at knee: the value of drift imposed at each knee.
- 6. Blockshift used: the change in drift divided by the change in depth between any two levels.
- 7. Delta-T minimum used: see section 4 of report for an explanation of Δt_{min} .
- 8. Reduction factor: see section 4 of report.
- 9. Equivalent blockshift: the gradient of the imposed drift curve.

A4 Velocity Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB: the depth in metres from kelly bushing.
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum
- 4. Vertical depth from GL: the depth in metres from ground level
- 5. Vertical travel time SRD to GEOPH: the vertical travel time from SRD to downhole geophone (see column 7, Geophysical Airgun Report)
- 6. Integrated adjusted sonic time: the adjusted sonic log is integrated from top to bottom. An initial value at the top of the sonic is set equal the checkshot time at that level. (The adjusted sonic log is the drift corrected sonic log.)

- 7. Drift=shot time-raw son: the check shot time minus the raw integrated sonic time.
- 8. Residual=shot time-adj son: the check shot time minus the adjusted integrated sonic time. This is the difference between calculated drift and the imposed drift.
- 9. Adjusted interval velocity: the interval velocity calculated from the integrated adjusted sonic time at each level.

A5 Time Converted Velocity Report

The data in this listing has been resampled in time.

- 1. Two way travel time from SRD: This is the index for the data in this listing. The first value is at SRD (0 millisecs) and the sampling rate is 2 millisecs.
- 2. Measured depth from KB: the depth from KB at each corresponding value of two way time.
- 3. Vertical depth from SRD: the vertical depth from SRD at each corresponding value of two way time.
- 4. Average velocity SRD to GEO: the vertical depth from SRD divided by half the two way time.
- 5. RMS velocity: the root mean square velocity from datum to the corresponding value of two way time.

 $v_{rms} = \sqrt{\Sigma_1^n v_i^2 t_i / \Sigma_1^n t_i}$

where v_i is the velocity between each 2 millisecs interval.

6. First normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 3000 feet).

$$\Delta t = \sqrt{t^2 + (\frac{X}{v_{rms}})^2} - t$$

where:

 $\Delta t = ext{normal moveout (secs)}$ $X = ext{moveout distance (metres)}$ $t = ext{two way time (secs)}$ $v_{rms} = ext{rms velocity (metres /sec)}$

- 7. Second normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 4500 feet).
- 8. Third normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 6000 feet).
- 9. Interval velocity: the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.

A6 Synthetic Seismogram Table

- 1. Two way travel time from SRD: This is the index for the data in this listing. The first value is at the top of the sonic. The default sampling rate is 2 millisecs.
- 2. Vertical depth from SRD: the vertical depth from SRD at each corresponding value of two way time.
- 3. Interval velocity: the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.
- 4. Interval density: the average density between two successive values of two way time.
- 5. Reflect. coeff.: the difference in acoustic impedance divided by the sum of the acoustic impedance between any two levels. The acoustic impedance is the product of the interval density and the interval velocity.
- 6. Two way atten. coeff. : is computed from the series

$$A_n = (1 - R_1^2).(1 - R_2^2).(1 - R_3^2)...(1 - R_n^2)$$

7. Sythetic seismo. primary: the product of the reflection coefficient at each depth and the two way attenuation coefficient up to that depth.

$$Primary_n = R_n.A_{n-1}$$

- 8. Primary + multiple: a transform technique is used to calculate multiples from the input reflection coefficients.
- 9. Multiples only: (Primary + multiple) (Synthetic seismo. primary)

SCHLUMBERGER (SEG-1976) WAVELET POLARITY CONVENTION

Figure 1

MINIMUM PHASE RICKER REVERSE POLARITY

MINIMUM PHASE RICKER NORMAL POLARITY

ZERØ PHASE RICKER REVERSE PØLARITY

ZERØ PHASE RICKER NØRMAL PØLARITY

REFLECTION COEFF

INTERVAL VELOCITY

0.3000

-0.3000 5000.00

M/S

1000.00

MACALISTER - 1 STACKED CHECKSHOT DATA

SHOTS

ANALYST: M. SANDERS

12-APR-88 12:09:01 PROGRAM: GSHOT 007.E08

SCHLUMBERGER ******

GEOPHYSICAL AIRGUN REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT

REFERENCE: 569150

LONG DEFINITIONS

```
GLOBAL S
         ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
KΒ
SRD
         ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL
         ELEVATION OF KELLY BUSHING
EK8
       - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD
GL
VELHYD - VELOCITY OF THE MEDIUM BETWEEN THE SOURCE AND THE HYDROPHONE
VĒLSUR - VĒLOCĪTY OF THE MEDĪUM BĒTWĒĒN THE SOŪRCĒ AND THE SRD
           MATRIX
GUNELZ - SOURCE ELEVATION ABOVE SRD (ONE FOR THE WHOLE JOB; OR ONE PER SHOT)
GUNEWZ - SOURCE DISTANCE FROM THE BOREHOLE AXIS IN EW DIRECTION (CF. GUNELZ)
GUNNSZ - SOURCE DISTANCE FROM THE BOREHOLE AXIS IN NS DIRECTION (CF. GUNELZ)
HYDELZ - HYDROPHONE ELEVATION ABOVE SRD (CF. GUNELZ)
HYDEWZ - HYDROPHONE DISTANCE FROM THE BOREH AXIS IN EW DIRECTION (CF GUNELZ)
HYDNSZ - HYDROPHONE DISTANCE FROM THE BORBH AXIS IN NS DIRECTION (CF GUNELZ)
TRIHYD - TRAVEL TIME FROM THE HYDROPHONE TO THE SOURCE
TRISRD - TRAVEL TIME FROM THE SOURCE TO THE SRD
DEVWEL - DEVIATED WELL DATA PER SHOT : MEAS, DEPTH, VERT, DEPTH, FW, NS
            SAMPLED
SHOT.GSH
            - SHOT NUMBER
DKE.GSH
            - MEASURED DEPTH FROM KELLY-BUSHING
DSRD.GSH
            - DEPTH FROM SRD
            - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
DGL.GSH
TIMO.GSH
            - MEASURED TRAVEL TIME FROM HYDROFHONE TO GEOPHONE
TIMV.GSH
            - VERTICAL TRAVEL TIME FROM THE SCURCE TO THE GEOPHONE
SHTM. GSH
           - SHOT TIME (WST)
AVGV.GSH
            - AVERAGE SEISMIC VELOCITY
           - DEPTH INTERVAL BETWEEN SUCCESSIVE SHOTS
- TRAVEL TIME INTERVAL BETWEEN SUCCESSIVE SHOTS
DELZ.GSH
DELT.GSH
INTV.GSH
            - INTERNAL VELOCITY, AVERAGE
  (GLOBAL PARAMETERS)
                                            (VALUE)
ELEV OF KB AB. MSL (WST)
                            KΒ
                                           20.0000
ELEV OF SRD A3. MSL(WST)
ELEVATION OF KELLY BUSHI
                            SRD
                                                    M
                            FKB
                                           20.0000
                                                    M
ELEV OF GL AB. SRD(WST)
                           GL
                                           16.0000
                                                    Μ
VEL SOURCE-HYDRO(WST)
                            VELHYD
                                           1500.00
                                                    M/S
VEL SOURCE-SRD (WST)
                            VEL SUR
                                           700.000
                                                    M/S
```

(MATRIX PARAMETERS)

PAGE 2

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1

1	SOURCE ELV M 15.00	SOURCE EW M	SCURCE M 33.		YDRO ELEV M 15.00	HYDRO EW M	HYDRO NS M 33.00
1	TRT HYD-SC MS	TRT SC-: MS -21					
123,45678901	3 000000000000000000000000000000000000	M 179.00 1295.00 350.50 350.50 449.50 650.00 650.00 754.00	3 S R D E - 3 S R D E - 5 9 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	₩ M	N-S COODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD		
101 112 113 115 1167	90000000000000000000000000000000000000		71.50 62.60 643.50 643.50 643.50 66.00 66.00	0000000000000000000	000000000		

(COMPANY	: CRUSADE	R RESOURC	ES N.L.	WE	LL :	MACALISTE	R #1		PA	GE 3
	LEVEL NUMBER	MEASUR DEPTH FROM KB M	VERTIC DEPTH FROM SRD M	VERTIC DEPTH FROM GL M	OBSERV TRAVEL TIME HYD/GEO MS	VERTIC TRAVEL TIME SRC/GEO MS	VERTIC TRAVEL TIME SRD/GEO MS	AVERAGE VELOC SRD/GEO M/S	DELTA DEPTH BETWEEN SHOTS M	DELTA TIME BETWEEN SHOTS MS	INTERV VELOC BETWEEN SHOTS M/S
	1	179.00	159.00	175.00	112.02	110.06	88.63	1794			
	2	295.00	275.00	291.00	160.44	159.41	137.98	1993	116.00	49.35	2350
	3	350.50	330.50	346.50	182.49	181.66	160.23	2063	55.50	22.25	2494
	4	449.50	429.50	445.50	223.44	222.83	201.40	2133	99.00	41.16	2405
	5	560.00	540.00	556.00	266.77	266.30	244.87	2205	110.50	43.47	2542
	6	650.00	630.00	646.00	299.58	299.19	2 77. 76	2268	90.00	32.89	2736
	7	754.00	734.00	750.00	348.67	348.33	326.90	2245	104.00	49.14	2116
	8	785.00	765.00	781.00	363.38	363.55	342.13	2236	31.00	15.22	2036
	Ģ	891.50	371.50	887.50	411.33	411.54	390.12	2234	106.50	47.99	2219
	10	922.00	902.00	918.00	426.17	425.89	404.47	2230	30.50	14.35	2126
	11	984.00	964.00	980.00	452.33	452.07	430.64	2239	62.00	26.18	2368
	12	1063.50	1043.50	1059.50	482.99	432.76	461.33	2262	79.50	30.68	2591
	13	1155.50	1135.50	1151.50	517.43	517.22	495.79	2290	92.00	34.45	2670
	14	1240.00	1220.00	1236.00	547.70	547.50	526.08	2319	84.50	30.29	2790
÷	15	1303.00	1283.00	1299.00	570.35	570.17			63.00	22.66	2730
:	16	1336.00	1366.00	1382.00			548.74	2333	83.00	25.33	3276
:	17	1447.00	1427.00	1443.00	595.67 615.80	595 . 50 615 . 64	574.07 594.21	2379 2402	61.00	20.14	3029

DRIFT

ANALYST: M. SANDERS 12-APR-88 12:15:56 PROGRAM: GDRIFT 007.E09

SCHLUMBERGER

DRIFT COMPUTATION REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT

REFERENCE: 569150

ANALYST: M. SANDERS

12-APR-88 12:15:56 PROGRAM: GDRIFT 007.E09

SCHLUMBERGER

DRIFT COMPUTATION REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT

REFERENCE: 569150

```
COMPANY : CRUSADER RESOURCES N.L.
                                             WELL
                                                      : MACALISTER #1
        LONG DEFINITIONS
           GLOBAL
       - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
       - ĒLĒVATION OF THĒ SĒĪSMIC REFERENCE DATUM ABOVE MSL OR MWL
SRD
       - ELEVATION OF KELLY BUSHING
       - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD
XSTART - TOP OF ZONE PROCESSED BY WST
XSTOP - BOTTOM OF ZONE PROCESSED BY WST
GADOC1 - RAW SONIC CHANNEL NAME USED FOR WST SONIC ADJUSTMENT
UNFDEN - UNIFORM DENSITY VALUE
           ZONE
LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYDEN - USER SUPPLIED DENSITY DATA
           SAMPLED
SHOT
       - SHOT NUMBER
DKE
       - MEASURED DEPTH FROM KELLY-BUSHING
DSRD
       - DEPTH FROM SRD
DGL
       - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
SHIM
       - SHOT TIME (WST)
RAWS
       - RAW SONIC (WST)
       - DRIFT AT SHOT OR KNEE
SHDR
BLSH
       - BLOCK SHIFT BETWEEN SHOTS OR KNEE
  (GLOBAL PARAMETERS)
                                          (VALUE)
ELEV OF KE AB. MSL (WST)
                                         20.0000
                          K3
ELEV OF SRD AB. MSL(WST)
                           SRD
                                               0
                                                  M
ELEVATION OF KELLY BUSHI
                                         20.0000
                          EKB
ELEV OF GL AB. SRD(WST)
                           GL
                                         16.0000
TOP OF ZONE PROCD (WST)
                          XSTART
                                               0
BOT OF ZONE PROCD (WST)
                                               Ô
                          XSTOP
RAW SONIC CH NAME (WST)
                          GADOO1
                                      : DT.ATT.002.FLP.*
UNIFORM DENSITY VALUE
                                      : 2.30000 G/C3
                          UNFDEN
  (ZONED PARAMETERS)
                                          (VALUE)
                                                               (LIMITS)
LAYER CPTION FLAG DENS
                         LOFDEN
                                      : 1.000000
                                                        30479.7 -
USER SUPPLIED DENSITY DA LAYDEN
                                      :-999.2500 G/C3 30479.7 -
                                                                          0
```

PAGE

LEVEL MEASURED VERTICAL VERTICAL VERTICAL COMPUTED INTEGRATED COMPUTED NUMBER DEPTH DEPTH DEPTH TRAVEL RAW SONIC DRIFT BLK-SHFT FROM FROM FROM TIME TIME AT LEVEL CORRECTION KB M GL SRD/GEO SRD M MS MS MS US/F 0 1 179.00 159.00 175.00 88.63 88.63 0 -.87 2 295.00 275.00 291.00 137.98 138.31 **-.3**3 -5.20 3 350.50 330.50 346.50 160.23 161.51 -1.28 4.49 4 449.50 429.50 445.50 201.40 201.22 .18 5.81 540.00 5 560.00 556.00 244.87 242.58 2.29 3.50 6 650.00 630.00 274.44 646.00 277.76 3.32 6.12 7 321.49 754.00 734.00 750.00 326.90 5.41 20.25 8 785.00 765.00 7.47 781.00 342.13 334.66 .41 9 891.50 871.50 887.50 390.12 382.50 7.61 21.25 10 922.00 902.00 918.00 404.47 394.73 9.74 -11.61 11 984.00 964.00 980.00 423.27 430.64 7.38 1.77 12 453.49 1063.50 1043.50 1059.50 461.33 7.84 7.47 13 1155.50 1135.50 1151.50 495.79 485.69 10.09 3.42 515.03 14 1240.00 1220.00 1236.00 526.08 11.04 5.11 15 1303.00 1283.00 1299.00 548.74 12.10 536.64 -2.83 16 1386.00 1366.00 1382.00 574.07 562.74 11.33 8.06

: MACALISTER #1

PAGE

2

WELL

COMPANY : CRUSADER RESOURCES N.L.

17

1447.00

1427.00

1443.00

594.21

581.27

12.94

ANALYST: M. SANDERS

12-APR-88 14:02:28 PROGRAM: GADJST 008.E08

SCHLUMBERGER

SONIC ADJUSTMENT PARAMETER REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT

REFERENCE: 569150

ANALYST: M. SANDERS 12-APR-88 14:02:28 PROGRAM: GADJST 008.E08

SCHLUMBERGER

SONIC ADJUSTMENT PARAMETER REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT

REFERENCE: 569150

```
COMPANY : CRUSADER RESOURCES N.L.
                                              WELL
                                                       : MACALISTER #1
        LONG DEFINITIONS
           GLOBAL
SRCDRF - ORIGIN OF ADJUSTMENT DATA
CONADJ - CONSTANT ADJUSTMENT TO AUTOMATIC DELTA-T MINIMUM = 7.5 US/F
UNERTH - UNIFORM EARTH VELOCITY (GTRFRM)
           ZONE
ZDRIFT - USER DRIFT AT BOTTOM OF THE ZONE
ADJOPZ - TYPE OF ADJUSTMNENT IN THE DRIFT ZONE : O=DELTA-T MIN, 1=BLOCKSHIFT
ADJUSZ - DELTA-T MINIMUM USED FOR ADJUSTMENT IN THE DRIFT ZONE
LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYVEL - USER SUPPLIED VELOCITY DATA
           SAMPLED
SHOT
       - SHOT NUMBER
VDKE
       - VERTICAL DEPTH RELATIVE TO KB
DSRD
       - DEPTH FROM SRD
       - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
DGL
KNEE
       - KNEE
BLSH
       - BLOCK SHIFT BETWEEN SHOTS OR KNEE
DIMI
       - VALUE OF DELTA-T MINIMUM USED
COEF
       - DELTA-T MIN COEFFICIENT USED IN THE DRIFT ZONE
       - GRADIENT OF DRIFT CURVE
DRGR
  (GLOBAL PARAMETERS)
                                           (VALUE)
ORIG OF ADJ DATA (WST)
                           SRCDRF
                                         2.00000
CONS SCNIC ADJST (WST)
                           CONADJ
                                         7.50000
                                                   US/F
UNIFORM EARTH VELOCITY
                           UNERTH
                                         2133.60
                                                   M/S
  (ZONED PARAMETERS)
                                           (VALUE)
                                                               (LIMITS)
USER DRIFT ZONE (WST)
                          ZDRIFT
                                       : 12.00000
                                                   MS
                                                         1447.00
                                                                  - 1063.50
                                                         1063.50
                                        8.500000
                                                                     922.000
                                        8.000C00
5.500C00
                                                                     764.000
                                                         764.000
                                                                     350.000
                                                         350.000
                                                                     179.000
```

:-999.2500 :-999.2500

: 1.000000

: 1794.000

700.0000

ADJOPZ

ADJUSZ

LOFVEL

LAYVEL

ADJUSMNT MODE (WST)

USER VELOC (WST)

USER DELTA-T MIN (WST)

LAYER OPTION FLAG VELOC

179.000

30479.7

30479.7 179.000

20.0000

US/F

M/S

Ŏ

Ō

20.0000

PAGE

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1

KNEE NUMBER	VERTICAL DEPTH	VERTICAL DEPTH	VERTICAL DEPTH	DRIFT AT	BLOCKSHIFT	DELTA-T MINIMUM	REDUCTION FACTOR	EQUIVALENT
NUMBER	FROM KB	FROM SRD	FROM	KNEE	USED	USED	G	BLOCKSHIFT
	N M	S K U	G L M	MS	US/F	US/F		US/F
_				_	0			0
2	179.00	159.00	175.00	0	е			C
3	350.00	330.00	346.00	0				_
4	764.00	744.0C	760.00	5.50	4.05			4.05
5	922.00	902.00	918.00	8.00	4.82			4.82
					1.08			1.08
6	1063.50	1043.50	1059.50	8.50	2.78			2.78
7	1447 - 00	1427.00	1443-00	12.00	2.10			2.,0

PAGE

)

ANALYST: M. SANDERS 12-APR-88 14:03:53 PROGRAM: GADJST 008.E08

VELOCITY REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT REFERENCE: 569150

ANALYST: M. SANDERS 12-APR-88 14:03:53 PROGRAM: GADJST 008.E08

SCHLUMBERGER

VELOCITY REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT

REFERENCE: 569150

```
LONG DEFINITIONS
            GLOBAL
K 3
       - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
SRD
       - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL
       - ELEVATION OF KELLY BUSHING
EK8
       - ĒLĒVATĪON OF USĒR'S RĒFĒRĒNCE (GENERALLY GROUND LEVEL) ABOVE SRD
GL
UNERTH - UNIFORM EARTH VELOCITY (GTRFRM)
            ZONE
LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYVEL - USER SUPPLIED VELOCITY DATA
           SAMPLED
SHOT
       - SHOT NUMBER
DKE
       - MEASURED DEPTH FROM KELLY-BUSHING
DSRD
       - DEPTH FROM SRD
DGL
       - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
SHTM
       - SHOT TIME (WST)
       - ADJUSTED SONIC TRAVEL TIME
ADJS
SHDR
       - DRIFT AT SHOT OR KNEE
       - RESIDUAL TRAVEL TIME AT KNEE
REST
INTV
       - INTERNAL VELOCITY, AVERAGE
 (GLOBAL PARAMETERS)
                                         (VALUE)
FLEV OF KB AB. MSL (WST)
                           ΚB
                                         20.0000
FLEV OF SRD AB. MSL(WST)
                           SRD
ELEVATION OF KELLY BUSHI
                                         20.0000
                           EKB
                                        16.0000
ELEV OF GL AB. SRD(WST)
                           GL
UNIFORM EARTH VELOCITY
                           UNERTH
                                      : 2133.60 M/S
  (ZONED PARAMETERS)
                                          (VALUE)
                                                              (LIMITS)
                                                        30479.7 -
LAYER OPTION FLAG VELOC LOFVEL
                                      : 1.000000
USER VELOC (WST)
                                      : 1794.CQQ M/S
                                                        179.000 - 20.0000
                          LAYVEL
                                        700.0000
                                                        20.0000
```

WELL

: MACALISTER #1

PAGE

3

COMPANY : CRUSADER RESOURCES N.L.

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1

L EVEL NUMBER	MEASURED DEPTH FROM KB M	VERTICAL DEPTH FROM SRD M	VERTICAL DEPTH FROM GL M	VERTICAL TRAVEL TIME SRD/GEOPH MS	INTEGRATED ADJUSTED SONIC TIME MS	DRIFT = SHOT TIME - RAW SON MS	RESIDUAL = SHOT TIME - ADJ SON MS	ADJUSTED INTERVAL VELOCITY M/S
1	179.00	159.00	175.00	88.63	88.63	0	0	1794
2	295.00	275.00	291.00	137.98	138.31	 33	33	2335
3	350.50	330.50	346.50	160.23	161.51	-1.28	-1.27	2392
4	449.50	429.50	445.50	201.40	202.54	.18	-1.14	2413
5	56C.00	540.00	556.00	244.87	245.36	2.29	48	2581
6	650.00	630.00	646.00	277.76	278.41	3.32	65	2723
7	754.00	734.00	750.00	326.90	326.86	5.41	.04	2146
8	785.00	765.00	781.00	342.13	340.48	7.47	1.64	2276
9	891.50	871.50	887.50	390.12	390.02	7.61	.10	2150
10	922.00	902.00	918.00	404.47	402.72	9.74	1.74	2401
11	984.00	964.00	980.00	430.64	431.48	7.38	83	2156
12	1063.50	1043.50	1059.50	461.33	461.98	7.84	65	2606
13	1155.50	1135.50	1151.50	495.79	495.02	10.09	.77	2784
1 4	1240.00	1220.00	1236.00	526.08	525.12	11.04	.95	2807
15	1303.00	1283.00	1299.00	548.74	547.30	12.10	1.43	2840
16	1386.00	1366.00	1382.00	574.07	574.17	11.33	09	3090
17	1447.00	1427.00	1443.00	594.21	593.26	12.94	.95	3194

PAGE 4

TIME / DEPTH

ANALYST: M. SANDERS 12-APR-88 14:09:38 PROGRAM: GTRFRM 001.E12

SCHLUMBERGER

TIME CONVERTED VELOCITY REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT REFERENCE: 569150

ANALYST: M. SANDERS 12-APR-88 14:09:38 PROGRAM: GTRFRM 001.E12

SCHLUMBERGER

TIME CONVERTED VELOCITY REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT REFERENCE: 569150

```
COMPANY : CRUSADER RESOURCES N.L.
                                    WELL
                                              : MACALISTER #1
       LONG DEFINITIONS
          GLOBAL
      - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
ΚB
SRD
      - ĒLĒVĀTĪON OF THE SĒĪSMIC REFERENCE DATUM ABOVE MSL OR MWL
GL
      - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD
UNERTH - UNIFORM EARTH VELOCITY (GTRFRM)
UNFOEN - UNIFORM DENSITY VALUE
          MATRIX
ZONE
LAYVEL - USER SUPPLIED VELOCITY DATA
LAYDEN - USER SUPPLIED DENSITY DATA
          SAMPLED
TWOT
      - TWO WAY TRAVEL TIME (RELATIVE TO THE SEISMIC REFERENCE
DKE
      - MEASURED DEPTH FROM KELLY-BUSHING
DSRD
      - DEPTH FROM SRD
AVGV
      - AVERAGE SEISMIC VELOCITY
RMSV
      - ROOT MEAN SQUARE VELOCITY (SEISMIC)
MVOT
      - NORMAL MOVE-OUT
IMVOT
      - NORMAL MOVE-OUT
· MVCT
      - NORMAL MOVE-OUT
INTV
      - INTERNAL VELOCITY, AVERAGE
 (GLOBAL PARAMETERS)
                                   (VALUE)
ELEV OF KE AB. MSL (WST)
                                   20.0000 M
                       ΚB
ELEV OF SRD AB. MSL(WST)
                       SRD
                                       0
ELEV OF GL AB. SRD(WST)
UNIFORM EARTH VELOCITY
                                   16.0000
                       GL
                       UNERTH
                                          M/S
UNIFORM DENSITY VALUE
                       UNFDEN
                                   2.30000
                                          G/C3
  (MATRIX PARAMETERS)
```

PAGE

1

M 1000.0 1500-0 2000.0

MVOUT DIST

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE

(ZONED PARAMETERS) (VALUE) (LIMITS)

LAYER OPTION FLAG VELOC LOFVEL : 1.000000 30479.7 - 0
USER VELOC (WST) LAYVEL : 1794.000 M/S 179.000 - 20.0000 0
LAYER OPTION FLAG DENS LOFDEN :-1.000000 30479.7 - 0
USER SUPPLIED DENSITY DA LAYDEN :-999.2500 G/C3 30479.7 - 0

•

2

COMPANY: CRUSADER RESOURCES N.L. WELL: MACALISTER #1 PAGE 3

-	•					•			
	TWO-WAY TRAVEL TIME FRCM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
	MS	^ M	S R D	M/S	M/S	MS	MS	MS	M/S
	0	20.00	0						700
	2.00	21.79	1.79	1794	1794	555.42	834.12	1112.83	1794
	4.00	23.59	3.59	1794	1794	553.43	832.13	1110.83	1794
	6.00	25.38	5.38	1794	1794	551.45	830.14	1108.84	1794
	8.00		7.18	1794	1794	549.47	828.16		1794
		27.18						1106.86	1794
	10.00	28.97	8.97	1794	1794	547.50	826.18	1104.87	1794
	12.00	30.76	10.76	1794	1794	545.54	824.21	1102.89	1794
	14.00	32.56	12.56	1794	1794	543.59	822.24	1100.91	1794
	16.CO	34.35	14.35	1794	1794	541.64	820.27	1098.94	1794
	18.00	36.15	16.15	1794	1794	539.70	818.31	1096.97	1794
	20.00	37.94	17.94	1794	1794	537.77	816.36	1095.01	1794
	22.00	39.73	19.73	1794	1794	535.85	814.41	1093.04	1794
	24.00	41.53	21.53	1794	1794	533.93	812.46	1091.09	1794
	26.00	43.32	23.32	1794	1794	532.02	810.52	1089.13	1794
	28.00	45.12	25 .1 2	1794	1794	530.12	808.59	1087.18	1794
	3C.OO	46.91	26 .91	1794	1794	528.22	806.66	1085.23	1794
	32.00	48.70	28.70	1794	1794	526.33	804.73	1083.29	1794
	34.00	50.50	30.50	1794	1794	524.45	802.81	1081.35	1794
	36.00	52.29	32.29	1794	1794	522.57	800.90	1079.41	1794
	38.00	54.09	34.09	1794	1794	520.71	798.98	1077.47	
	40.00	55.88	35.88	1794	1794	518.85	797.08	1075.54	1794
	42.00	57.67	37.67	1794	1794	516.99	795.17	1073.62	1794
	44.00	59.47	39.47	1794	1794	515.15	793.28	1071.70	1794
	46.00	61.24	41.26	1794	1794	513.31	791.38	1069.78	1794

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE TWO-WAY MEASURED VERTICAL AVERAGE RMS FIRST SECOND THIRD INTERVAL TRAVEL DEPTH DEPTH VELOCITY VELOCITY NORMAL NORMAL NORMAL VELOCITY TIME FROM FROM SRD/GEO MOVEOUT MOVEOUT MOVEOUT FRCM SRD ΚB SRD MS M/S M/S MS М MS MS M/S 1794 48.00 63.06 1794 43.06 1794 511.48 789.50 1067.86 1794 50.00 64.85 44.85 1794 1794 509.65 737.61 1065.95 1794 52.00 66.64 1794 46.64 1794 507.83 785.74 1064.04 1794 54.CO 58.44 1794 48.44 1794 506.02 783.86 1062.13 1794 56.00 70.23 50.23 1794 1794 504.22 781.99 1060.23 1794 58.00 72.03 52.03 1794 1794 502.42 780.13 1058.34 1794 60.00 73.82 53.82 1794 1794 500.63 778.27 1056.44 1794 62.00 75.61 55.61 1794 1794 498.85 776.42 1054.55 1794 64.CO 77.41 57.41 1794 1794 497.08 774.57 1052.66 1794 66.00 79.20 59.20 1794 1794 495.31 772.72 1050.78 1794 68.00 81.00 61.00 1794 1794 493.55 770.88 1048.90 1794 70.00 82.79 62.79 1794 1794 491.79 769.05 1047.02 1794 72.00 84.53 64.58 1794 1794 490.04 767.21 1045.15 1794 74.CO 86.38 66.38 1794 1794 488.30 765.39 1043.28 1794 76.00 88.17 68.17 1794 1794 486.57 763.57 1041.41 1794 78.00 89.97 69.97 1794 1794 484.84 761.75 1039.55 1794 80.00 91.76 71.76 1794 1794 483.13 759.94 1037.69 1794 82.00 93.55 73.55 1794 1794 481.41 758.13 1035.84 1794 84.00 95.35 75.35 1794 1794 479.71 1033.99 756.33 1794 86.00 97.14 77.14 1794 1794 478.01 754.53 1032.14 1794 88.00 98.94 78.94 1794 1794 476.32 752.74 1030.30 1794 90.00 100.73 80.73 1794 1794 474.63 750.95 1028.45 1794

1794

1794

472.95

471.28

749.17

747.39

1026.62

1024.78

1794

92.00

94.00

102.52

104.32

82.52

84.32

1794

1794

.

4

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
96.00	106.11	86.11	1794	1794	469.62	745.61	1022.95	1794
98.00	107.91	87.91	1794	1794	467.96	743.84	1021.13	1794
100.00	109.70	89.70	1794	1794	466.31	742.08	1019.30	1794
102.00	111.49	91.49	1794	1794	464.67	740.32	1017.48	1794
104.00	113.29	93.29	1794	1794	463.03	738.56	1015.67	1794
106.00	115.08	95.08	1794	1794	461.40	736.81	1013.86	1794
108.00	116.88	96.88	1794	1794	459.78	735.07	1012.05	1794
110.00	118.67	98.67	1794	1794	458.16	733.33	1010.24	1794
112.00	120.46	100.46	1794	1794	456.55	731.59	1008.44	1794
114.00	122.26	102.26	1794	1794	454.95	729.86	1006.64	1794
116.00	124.05	104.05	1794	1794	453.36	728.13	1004.85	1794
118.00	125.85	105.85	1794	1794	451.77	726.41	1003.05	1794
120.00	127.64	107.64	1794	1794	450.18	724.69	1001.27	1794
122.00	129.43	109.43	1794	1794	448.61	722.97	999.48	1794
124.00	131.23	111.23	1794	1794	447.04	721.27	997.70	1794
126.00	133.02	113.02	1794	1794	445.48	719.56	995.93	1794
128.00	134.82	114.82	1794	1794	443.92	717.86	994.15	1794
130.00	136.61	116.61	1794	1794	442.37	716.17	992.38	1794
132.00	138.40	118.40	1794	1794	440.83	714.48	990.61	1794
134.00	140.20	120.20	1794	1794	439.29	712.79	988.85	1794
136.00	141.99	121.99	1794	1794	437.76	711.11	987.09	1794
138.00	143.79	123.79	1794	1794	436.24	709.43	985.34	1794
140.00	145.58	125.58	1794	1794	434.73	707.76	983.58	1794
142.00	147.37	127.37	1794	1794	433.22	706.09	981.83	1794

PAGE 5

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE RMS FIRST INTERVAL MEASURED AVERAGE SECOND THIRD TWO-WAY VERTICAL DEPTH DEPTH VELOCITY NORMAL NORMAL VELOCITY TRAVEL VELOCITY NORMAL TIME FROM FROM SRD/GEO MOVEOUT MOVEOUT MOVEOUT FROM SRD ΚB SRD M/S M/S MS MS MS M/S MS 1794 144.00 149.17 129.17 1794 1794 431.71 704.43 980.09 1794 1794 430.22 150.96 130.96 1794 702.77 978.35 146.00 1794 148.00 152.76 132.76 1794 1794 428.73 701.12 976.61 1794 1794 1794 974.87 150.00 154.55 134.55 427.24 699.47 1794 152.00 156.34 136.34 1794 1794 425.77 697.82 973.14 1794 154.00 158.14 138.14 1794 1794 424.30 696.18 971.41 1794 156.00 159.93 139.93 1794 1794 422.83 694.55 969.69 1794 158.00 161.73 141.73 1794 1794 421.37 692.92 967.97 1794 1794 1794 419.92 160.00 163.52 143.52 691.29 966.25 1794 162.00 165.31 145.31 1794 1794 418.48 689.67 964.54 1794 164.00 167.11 147.11 1794 1794 417.04 688.05 962.83 1794 168.90 148.90 1794 1794 415.61 961.12 166.00 686.44 1794 170.70 150.70 1794 1794 414.18 684.83 959.41 168.00 1794 170.00 172.49 152.49 1794 1794 412.76 683.23 957.71 1794 1794 1794 172.00 174.28 154.28 411.35 681.63 956.02 1794 174.00 176.08 156.08 1794 1794 409.94 680.03 954.32 1794 176.00 177.87 157.87 1794 1794 408 - 54 678.44 952.63 1959 178.CO 179.83 159.83 1796 1796 406.57 675.98 949.76 2209 180.00 182.04 162.04 1800 1801 403.68 672.08 944.96 2209 1805 1806 182.00 184.25 164.25 400.85 940.26 668.26 2255 184.00 186.50 166.50 1810 1812 397.89 935.28 664.24 2271 930.29 186.00 138.77 168.77 1815 1817 394.92 660.21 2245 188.00 191.02 171.02 1819 1822 392.11 925.60 656.40 2202

1827

389.51

652.92

921.33

1823

190.00

193.22

173.22

. .

6

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE 7

TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT.	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
192.00	195.58	175.58	1829	1833	386.40	648.62	915.96	2356
194.00	197.95	177.95	1835	1839	383.27	644.31	910.57	2375
196.00	200.28	180.28	1840	1845	380.37	640.32	905.62	2333
198.00	202.58	182.58	1844	1850	377.64	636.61	901.02	2297
200.00	204.85	184.85	1849	1855	375.06	633.10	896.71	2270
202.00	207.09	187.09	1852	1859	372.63	629.83	892.71	2236
204.00	209.34	189.34	1856	1863	370.18	626.52	888.65	2254
206.00	211.62	191.62	1860	1868	367.70	623.16	884.52	2275
208.CO	214.13	194.13	1867	1875	364.47	618.62	878.79	2519
210.00	216.50	196.50	1871	1880	361.81	614.95	874.24	2366
212.00	213.88	198.87	1876	1885	359.17	611.31	869.71	2375
214.00	221.21	201.21	1880	1890	356.69	607.92	865.53	2334
216.00	223.53	203.53	1885	1895	354.28	604.63	861.46	2326
218.00	225.77	205.77	1888	1898	352.16	601.77	857.99	2239
220.00	228.17	208.17	1892	1903	349.62	598.25	853.61	2398
222.00	230.51	210.51	1896	1 90 8	347.28	595.06	849.67	2338
224.00	232.84	212.84	1900	1912	345.00	591.93	845.82	2334
226.00	235.27	215.27	1905	1917	342.49	588.44	841.48	2429
228.00	237.62	217.62	1909	1921	340.26	585.38	837.71	2342
230.00	239.99	219.99	1913	1926	337.97	582.22	833.79	2378
232.00	242.38	222.38	1917	1930	335.70	579.08	829.91	2382
234.CO	244.72	224.72	1921	1934	333.57	576.17	826.33	2340
236.00	247.04	227.04	1924	1938	331.52	573.36	822.89	2322
238.00	249.42	229.42	1928	1942	329.36	570.37	819.19	2380

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE RMS FIRST SECOND THIRD TWO-WAY MEASURED VERTICAL AVERAGE INTERVAL TRAVEL DEPTH DEPTH NORMAL VELOCITY VELOCITY NORMAL NORMAL VELOCITY TIME FROM FROM SRD/GEO MOVEOUT MOVEOUT MOVEOUT FROM SRD KΒ SRD MS M M M/S M/S MS MS MS M/S 2379 240.00 251.80 231.80 1932 1946 327.23 567.43 815.56 2397 811.88 242.00 254.19 234.19 1935 1950 325.09 564.46 2398 1939 1954 244.00 256.59 236.59 322.98 561.52 808.25 2366 258.96 238.96 1943 1958 320.97 558.75 246.00 804.84 2336 248.00 261.29 241.29 1946 1961 319.05 556.12 801.61 2355 250.00 263.65 243.65 1949 1964 317.13 553.46 798.34 2300 252.00 265.95 245.95 1952 1967 795.37 315.34 551.02 2291 254.00 268.24 248.24 1955 1970 313.59 548.64 792.47 2337 256.00 270.58 250.58 1958 1973 311.77 546.13 789.40 2351 252.93 1976 258.00 272.93 1961 309.94 543.60 786.30 2321 260.00 275.25 255.25 1963 1979 308.20 541.20 783.37 2318 277.57 257.57 1966 1982 306.49 780.49 262.00 538.84 2357 279.92 259.92 1969 1985 304.71 536.38 777.46 264.00 2391 1989 266.00 282.31 262.31 1972 302.89 533.83 774.32 2377 264.69 1975 1992 771.28 268.00 284.69 301.12 531.37 2387 270.00 287.08 267.08 1978 1995 299.35 528.90 768 24 2402 297.58 272.00 289.48 269.48 1981 1998 526.41 765.16 2398 291.88 1985 2001 295.83 523.96 762.14 274.00 271.88 2400 274.28 1988 2005 294.10 759.15 276.CO 294.28 521.54 2389 278.00 296.67 276.67 1990 2008 292.41 519.17 756.23 2514 280.00 299.18 279.18 1994 2012 290.51 516.46 752.84 2512 282.00 301.70 281.70 1998 2016 238.64 513.78 749.49 2639 284.00 304.33 284.33 2002 2021 286.56 510.75 745.64 2480 2024 742.52 286.00 306.81 286.81 2006 284.80 508.25

8

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE 9

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	K B M	SRD M	M/S	M/S	MS	MS	MS	M/S
288.00	309.18	289.18	2008	2027	283.26	506.09	739.86	2369 2457
290.00	311.64	291.64	2011	2030	281.58	503.70	736.90	2349
292.00	313.99	293.99	2014	2033	280.11	501.64	734.37	2363
294.00	316.35	296.35	2016	2035	278.63	499.56	731.82	
296.00	318.82	298.82	2019	2038	277.00	497.23	728.92	2463
298.00	321.26	301.26	2022	2041	275.41	494.97	726.11	2447
300.00	323.51	303.51	2023	2043	274.16	493.25	724.04	2244
302.00	325.79	305.79	2025	2044	272.88	491.46	721.87	2279
304.00	328.08	308.08	2027	2046	271.58	489.65	719.67	2294
306.00	330.47	310.47	2029	2049	270.14	487.60	717.14	2394
308.00	332.84	312.84	2031	2051	268.76	485.65	714.74	2365
310.00	335.21	315.21	2034	2053	267.39	483.70	712.35	2367
312.00	337.57	317.57	2036	2055	266.03	481.79	709.99	2363
314.00	339.91	319.91	2038	2057	264.74	479.95	707.74	2337
316.00	342.29	322.29	2040	2059	263.39	478.03	705.37	2380
318.00	344.64	324.64	2042	2061	262.08	476.17	703.08	2358
320.00	346.94	326.94	2043	2063	260.88	474.48	701.03	2293
322.00	349.28	329.28	2045	2065	259.62	472.69	698.32	2344
324.00	351.70	331.70	2048	2067	258.27	470.74	696.41	2417
326.00	353.90	333.90	2048	2068	257.21	469.28	694.65	2206
328.00	356.25	336.25	2050	2070	255.99	467.53	692.50	2342
330.00	358.54	338.54	2052	2071	254.84	465.90	690.51	2297
332.00	361.02	341.02	2054	2074	253.45	463.87	687.97	2479
334.00	363.47	343.47	2057	2076	252.12	461.93	685.54	2451

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
336.00	365.82	345.82	2058	2078	250.93	460.23	683.45	2345
338.00	368.28	348.28	2061	2080	249.61	458.30	681.03	2460
340.00	370.42	350.42	2061	2081	248.70	457.04	679.54	2141
342.00	372.71	352.71	2063	2082	247.62	455.50	677.66	2285
344.CO	375.10	355.10	2065	2084	246.42	453.76	675.49	2393
346.00	377.54	357.54	2067	2086	245.16	451.92	673.19	2444
348.00	379.86	359.86	2068	2088	244.08	450.36	671.28	2313
350.00	382.19	362.19	2070	2089	242.99	448.78	669.33	2330
352.00	384.54	364.54	2071	2091	241.87	447.16	667.32	2358
354.00	386.95	366.95	2073	2093	240.71	445.45	665.19	2408
356.00	389.36	369.36	2075	2095	239.55	443.76	663.07	2408
358.00	391.82	371.82	2077	2097	238.34	441.97	660.82	2462
360.00	394.21	374.21	2079	2098	237.23	440.34	658.80	2385
362.00	396.50	376.50	2080	2100	236.23	438.89	657.02	2299
364.00	398.91	378.91	2082	2101	235.12	437.26	654.97	2404
366.00	401.36	381.36	2084	2103	233.97	435.55	652.82	2448
368.00	403.71	383.71	2085	2105	232.94	434.04	650.94	2350
370.00	406.16	386.16	2087	2107	231.80	432.34	648.81	2456
372.00	408.55	388.55	2089	2109	230.74	430.77	646 84	2393
374.00	410.97	390.97	2091	2110	229.67	429.17	644.84	2417
376.00	413.58	393.58	2094	2113	228.39	427.22	642.33	2610
378.00	416.08	396.08	2096	2116	227.25	425.51	640.16	2494
380.00	418.66	398.66	2098	2118	226.03	423.65	637.78	2580
382.00	421.20	401.20	2100	2121	224.87	421.89	635.53	2539

PAGE 10

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
384.00	423.69	403.69	2103	2123	223.76	420.22	633.42	2494
386.00	425.99	405.99	2104	2124	222.87	418.90	631.78	2300
388.00	428.38	408.38	2105	2125	221.89	417.44	629.95	2388
390.00	430.99	410.99	2108	2128	220.69	415.61	627.58	2609
392.00	433.40	413.40	2109	2129	219.71	414.13	625.72	2413
394.00	435.78	415.78	2111	2131	218.76	412.71	623.95	2380
396.00	438.25	418.25	2112	2133	217.74	411.15	621.96	2475
398.00	440.75	420.75	2114	2135	216.70	409.57	619.95	2492
400.00	443.30	423.30	2117	2137	215.61	407.90	617.80	2556
402.00	445.79	425.79	211 8	2139	214.60	406.36	615.83	2488
404.00	448.22	428.22	2120	2140	213.65	404.91	613.99	2435
406.00	450.54	430.54	2121	2141	212.81	403.65	612.42	2318
408.00	452.96	432.96	2122	2143	211.88	402.24	610.64	2420
410.CO	455.22	435.22	2123	2143	211.11	401.09	609.22	2257
412.00	457.61	437.61	2124	2145	210.22	399.74	607.51	2394
414.00	460.07	440.07	2126	2146	209.28	398.30	605.67	2462
416.00	462.57	442.57	2128	2148	208.32	396.82	603.77	2492
418.00	465.04	445.04	2129	2150	207.38	395.38	601.93	2474
420.00	467.53	447.53	2131	2152	206.44	393.92	600.06	2489
422.00	470.07	450.07	2133	2154	205.46	392.40	598.09	2543
424.00	472.62	452.62	2135	2156	204.49	390.87	596.12	2548
426.00	475.12	455.12	2137	2157	203.56	389.43	594.26	2505
428.00	477.67	457.67	2139	2159	202.60	387.93	592.32	2550
430.00	480.21	460.21	2140	2161	201.66	386.46	590.43	2532

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
432.00	482.73	462.73	2142	2163	200.74	385.02	588.57	2525
434.00	485.30	465.30	2144	2165	199.79	383.52	586.62	2571
436.00	487.81	467.81	2146	2167	198.90	382.13	584.83	2504
438.00	490.38	470.38	2148	2169	197.96	380.65	582.90	2575
440.00	492.94	472.94	2150	2171	197.04	379.21	581.02	2557
442.00	495.55	475.55	21.52	2173	196.09	377.70	579.05	2609
444.00	498.14	478.14	2154	2175	195.16	376.23	577.13	2591
446.00	500.70	480.70	2156	2177	194.27	374.82	575.30	2556
448.00	503.35	483.35	2158	2179	193.31	373.27	573.27	2657
450.00	505.85	485.85	2159	2181	192.48	371.97	571.58	2496
452.00	508.42	488.42	2161	2183	191.60	370.57	569.76	2569
454.00	510.96	490.96	2163	2184	190.75	369.22	568.00	2541
456.00	513.60	493.60	2165	2187	189.83	367.74	566.05	2647
458.00	516.17	496.17	2167	2188	188.98	366.38	564.27	2565
460.00	518.89	498.89	2169	2191	188.02	364.82	562.20	2721
462.00	521.56	501.56	2171	2193	187.10	363.35	560.26	2667
464.00	524.21	504.21	2173	2195	186.21	361.91	558.36	2650
466.00	526.85	506.85	2175	2198	185.34	360.49	556.49	2643
468.00	529.40	509.40	2177	2199	184.53	359.20	554.80	2553
470.00	532.21	512.21	2180	2202	183.55	357.59	552.64	2803
472.00	534.99	514.99	2182	2205	182.59	356.01	550.54	2788
474.00	537.71	517.71	2184	2207	181.69	354.55	548.59	2716
476.00	540.48	520.48	2187	2210	180.76	353.02	546.55	2770
478.00	543.12	523.12	2189	2212	179.93	351.67	544.76	2643

INTERVAL VELOCITY	THIRD NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MOVEOUT	RMS VELOCITY	AVERAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM	MEASURED DEPTH FROM	TWO-WAY TRAVEL TIME
M/S	MS	MS	MS	M/S	M/S	SRD	KB M	FROM SRD MS
2727	542.83	350.23	179.05	2214	2191	525.85	545.85	480.00
2720	540.93	348.81	178.18	2217	2193	528.57	548.57	482.00
2591	539.28	347.55	177.41	2218	2195	531.16	551.16	484.00
2642	537.54	346.25	176.61	2220	2197	533.80	553.80	486.00
2604	535.89	344.99	175.85	2222	2198	536.41	556.41	488.00
2647	534.16	343.70	175.06	2224	2200	539.05	559.05	490.00
2730	532.31	342.32	174.22	2226	2202	541.78	561.78	492.CO
2601	530.69	341.10	173.48	2228	2204	544.38	564.38	494.00
2777	528.78	339.68	172.62	2230	2206	547.16	567.16	496 . 00
2627	527.14	338.45	171.87	2232	2208	549.79	569.79	498.00
2619	525.53	337.23	171.14	2234	2210	552.41	572.41	500.00
2939	523.37	335.65	170.20	2237	2213	555.35	575.35	502.00
2869	521.35	334.16	169.31	2240	2215	558.21	578.21	504.00
2791	519.49	332.79	168.49	2242	2217	561.01	581.01	506.00
2818	517.60	331.39	167.66	2245	2220	563.82	583.82	508.00
2885	515.60	329.92	166.79	2248	2222	566.71	586.71	510.00
3126	513.20	328.17	165.76	2252	2226	569.83	589.83	512.00
3020	511.01	326.58	164.83	2255	2229	572.85	592.85	514.00
3044	508.79	324.97	163.88	2259	2232	575.90	595.90	516.00
2724	507.13	323.74	163.15	2261	2234	578.62	598.62	518.00
2803	505.36	322.43	162.38	2263	2236	581.43	601.43	520.00
2604	503.90	321.34	161.73	2265	2238	584.03	604.03	522.00
2971	501.88	319.87	160.86	2268	2240	587.00	607.00	524.00
2825	500.11	318.57	160.10	2270	2243	589.83	609.83	526.00
	700 - 11	210.21	100 . 10	O		20,00	~ ~ . . ~ . .	

•	MΔ	C	Δí	TS:	TF	R #

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT.	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
528.00	612.58	592.58	2245	2272	159.38	317.36	498.47	2750 2323
530.00	614.90	594.90	2245	2272	158.90	316.57	497.43	2366
532.00	617.26	597.26	2245	2273	158.39	315.74	496.34	2612
534.CO	619.88	599.88	2247	2274	157.77	314.69	494.93	2663
536.00	622.54	602.54	2248	2276	157.12	313.59	493.45	2668
538.CO	625.21	605.21	2250	2277	156.47	312.50	491.97	2816
54C.CO	628.02	608.02	2252	2279	155.75	311.27	490.28	2783
542.00	630.81	610.81	2254	2 2 8 1	155.06	310.08	488.66	
544.00	633.45	613.45	2255	2283	154.44	309.03	487.24	2647 2634
546.00	636.09	616.09	2257	2284	153.83	308.00	485.84	
548.00	638.68	618.68	2258	2285	153.25	307.02	484.52	2590
550.00	641.21	621.21	2259	2286	152.70	306.10	483.28	2529
552.00	643.85	623.85	2260	2288	152.10	305.08	481.90	2642
554.00	646.47	626.47	2262	2289	151.52	304.09	480.55	2623
556.00	648.98	628.98	2263	2290	150.99	303.20	479.35	2512
558.00	651.40	631.40	2263	2290	150.51	302.39	478.27	2421
560.00	653.59	633.59	2263	2290	150.13	301.76	477.46	2189
562.00	656.06	636.06	2264	2291	149.63	300.92	476.33	2469
564.00	658.60	638.60	2265	2292	149.10	300.03	475.12	2535
566.00	660.86	640.86	2265	2292	148.70	299.36	474.24	2260
568.00	663.18	643.18	2265	2292	148.27	298.64	473.29	2328
570.00	665.28	645.28	2264	2291	147.93	298.09	472.59	2099
572.00	667.51	647.51	2264	2 2 9 1	147.55	297.45	471.76	2225
574.00	669.66	649.66	2264	2290	147.19	296.87	471.01	2150
	<i>f</i> .							

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	Ñ	M	M/S	M/S	MS	MS	MS	M/S
576.00	671.79	651.79	2263	2290	146.84	296.31	470.28	2133
578.00	673.96	653.96	2263	2289	146.49	295.71	469.51	2171
580.00	676.25	656.25	2263	2289	146.08	295.04	468.62	2283
582.00	678.34	658.34	2262	2289	145.76	294.51	467.93	2090
584.00	680.39	660.39	2262	2288	145.45	294.00	467.28	2057
586.00	682.51	662.51	2261	2287	145.11	293.45	466.57	2122
588.00	684.61	664.61	2261	2287	144.79	292.91	465.88	2096
590.00	686.72	666.72	2260	2286	144.46	292.37	465.18	2113
592.00	688.88	668.88	2260	2286	144.11	291.80	464.44	2153
594.00	691.06	671.06	2259	2285	143.76	291.22	463.66	2185
596.00	693.21	673.21	2259	2285	143.42	290.65	462.92	2153
598.00	695.32	675.32	2259	2284	143.10	290.12	462.24	2101
600.00	697.46	677.46	2258	2284	142.76	289.56	461.51	2147
602.00	699.55	679.55	2258	2283	142.45	289.04	460.83	2093
604.00	701.68	681.68	2257	2283	142.13	288.50	460.13	2124
606.00	703.84	683.84	2257	2282	141.79	287.94	459.39	2162
608.00	705.86	685.86	2256	2282	141.50	287.47	458.78	2018
610.00	707.93	687.93	2255	2281	141.20	286.97	458.14	2066
612.00	709.99	689.99	2255	2280	140.90	286.47	457.49	2067
614.00	712.00	692.00	2254	2279	140.62	286.02	456.90	2006
616.00	714.15	694.15	2254	2279	140.30	285.47	456.18	2148
618.00	716.19	696.19	2253	2278	140.01	284.99	455.55	2047
620.00	718.29	698.29	2253	2278	139.70	284.48	454.89	2096
622.00	720.30	700.30	2252	2277	139.42	284.02	454.29	2011

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M M	M/S	M/S	MS	MS	MS	M/S
624.00	722.50	702.50	2252	2277	139.08	283.44	453.53	2199
626.00	724.60	704.60	2251	2276	138.78	282.93	452.86	2101
628.00	726.61	706.61	2250	2275	138.51	282.48	452.27	2010
630.00	728.63	708.63	2250	2275	138.23	282.02	451.67	2023
632.00	730.71	710.71	2249	2274	137.94	281.52	451.02	2079
634.00	732.87	712.87	2249	2274	137.62	280.99	450.31	2152
636.00	735.07	715.07	2249	2273	137.29	280.42	449.55	2204
638.00	737.21	717.21	2248	2273	136.98	279.89	448.84	2145
640.00	739.42	719.42	2248	2273	136.65	279.32	448.08	2210
642.00	741.63	721.63	2248	2273	136.32	278.76	447.32	2207
644.00	743.79	723.79	2248	2272	136.00	278.22	446.60	2162
646.00	746.04	726.04	2248	2272	135.66	277.63	445.81	2250
648.00	748.11	728.11	2247	2272	135.38	277.16	445.18	2065
650.00	750.15	730.15	2247	2271	135.11	276.70	444.58	2045
652.00	752.22	732.22	2246	2270	134.83	276.23	443.95	2068
654.00	754.28	734.28	2245	2270	134.56	275.76	443.33	2058
656.00	756.40	736.40	2245	2269	134.26	275.26	442.66	2121
658.00	758.64	738.64	2245	2269	133.94	274.69	441.89	2237
660.00	760.73	740.73	2245	2269	133.65	274.21	441.25	2094
662.00	762.80	742.80	2244	2268	133.38	273.74	440.62	2071
664.00	764.98	744.98	2244	2268	133.07	273.21	439.91	2178
666.00	767.38	747.38	2244	2268	132.70	272.55	438.99	2396
668.00	769.76	749.76	2245	2269	132.33	271.90	438.09	2382
670.00	772.09	752.09	2245	2269	131.98	271.28	437.24	2335

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS MS	M	M	M/S	M/S	MS	MS	MS	M/S
672.00	774.49	754.49	2246	2269	131.61	270.62	436.32	2399
674.00	776.87	756.87	2246	2270	131.24	269.98	435.43	2381
676.CO	779.28	759.28	2246	2270	130.87	269.32	434.52	2406
678.CD	781.53	761.53	2246	2270	130.56	268.76	433.76	2252
680.00	783.89	763.89	2247	2270	130.20	268.14	432.89	2362
682.00	786.23	766.23	2247	2270	129.86	267.54	432.05	2337
684.00	788.42	768.42	2247	2270	129.57	267.02	431.35	2195
686.00	790.63	770.63	2247	2270	129.27	266.50	430.63	2202
688.00	792.82	772.82	2247	2270	128.98	265.98	429.93	2191
690.00	794.70	774.70	2246	2269	128.77	265.63	429.48	1886
692.00	796.55	776.55	2244	2268	128.57	265.30	429.05	1848
694.00	798.33	778.33	2244	2266	128.39	265.00	428.67	1780
								1869
696.00	800.20	780.20	2242	2265	128.18	264.66	428.22	1797
698.00	802.00	782.00	2241	2264	128.00	264.35	427.83	1885
700.00	803.88	783.88	2240	2263	127.79	264.00	427.37	1897
702.00	805.78	785.78	2239	2262	127.59	263.65	426.91	2334
704.00	808.11	788.11	2239	2262	127.26	263.06	426.09	2604
706.00	810.72	790.72	2240	2263	126.84	262.31	425.02	2315
708.00	813.03	793.03	2240	2264	126.52	261.74	424.23	2267
710.00	815.30	795.30	2240	2264	126.22	261.20	423.47	
712.00	817.23	797.23	2239	2263	126.01	260.83	422.99	1928
714.00	819.15	799.15	2239	2262	125.80	260.48	422.52	1922
716.00	821.07	801.07	2238	2261	125.59	260.12	422.04	1924
718.00	822.98	802.98	2237	2260	125.39	259.77	421.58	1903

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
720.00	824.92	804.92	2236	2259	125.18	259.40	421.09	1940
722.00	826.97	806.97	2235	2259	124.94	258.98	420.52	2048
724.00	829.09	809.09	2235	2258	124.68	258.53	419.90	2122
724.00	831.26	811.26	2235	2258				2173
					124.41	258.05	419.24	2011
728.00	833.27	813.27	2234	2257	124.18	257.65	418.70	2177
730.00	835.45	815.45	2234	2257	123.92	257.17	418.04	2337
732.00	837.79	817.79	2234	2257	123.60	256.61	417.24	2317
734.00	840.10	820.10	2235	2258	123.30	256.06	416.47	2290
736.00	842.39	822.39	2235	2258	123.00	255.52	415.72	2049
738.00	844.44	824.44	2234	2257	122.77	255.12	415.16	
74C.CO	846.46	826.46	2234	2257	122.55	254.73	414.63	2015
742.00	848.46	828.46	2233	2256	122.33	254.34	414.10	2007
744.00	850.84	830.84	2233	2256	122.01	253.77	413.29	2373
746.CO	853.14	833.14	2234	2256	121.72	253.24	412.54	2300
748.00	855.46	835.46	2234	2257	121.42	252.69	411.77	2324
750.00	857.79	837.79	2234	2257	121.12	252.15	411.01	2329
752.00	860.15	840.15	2234	2257	120.82	251.59	410.21	2365
754.00	862.35	842.35	2234	2257	120.56	251.12	409.55	2194
756.00	864.44	844.44	2234	2256	120.33	250.71	408.98	2087
758.00	866.51	846.51	2234	2256	120.10	250.30	408.42	2078
760.00	868.64	848.64	2233	2256	119.86	249.87	407.81	2128
762.00	871.30	851.30	2234	2257	119.47	249.15	406.77	2661
764.00	873.57	853.57	2234	2257	119.20	248.65	406.07	2269
766.00	875.67	855.67	2234	2256	118.97	248.24	405.49	2099

COMPANY : CRUSADER RESOURCES N.L.

814.00

930.90

910.90

2238

WELL : MACALISTER #1

TWO-WAY MEASURED VERTICAL RMS FIRST AVERAGE SECOND THIRD INTERVAL TRAVEL DEPTH DEPTH VELOCITY VELOCITY NORMAL NORMAL NORMAL VELOCITY TIME FROM FROM SRD/GEO MOVEDUT MOVEOUT MOVEOUT FROM SRD KΒ SRD M/S MS M/S MS MS MS M/S 2334 768.00 878.00 858.00 2234 2257 118.68 247.71 404.74 2154 770.00 880.16 860.16 2234 2256 118.44 247.27 404.13 2373 772.00 882.53 862.53 2235 2257 118.14 246.73 403.35 2468 774.00 885.00 865.00 2235 2257 117.82 246.13 402.49 2352 867.35 776.00 887.35 2257 2235 117.53 245.60 401.74 2096 778.00 839.45 869.45 2235 2257 117.31 245.20 401.17 2022 780.00 391.47 871.47 2235 2257 117.10 244.83 400.66 2394 782.00 893.86 873.86 2235 2257 116.81 399.83 244.29 2446 784.00 896.31 876.31 2235 2257 116.50 243.71 399.05 2260 786.00 898.57 878.57 2236 2257 116.24 243.24 398.38 2266 788.00 900.84 880.84 2236 2257 115.98 242.76 397.70 2396 790.00 903.23 883.23 2236 2258 115.69 242.22 396.92 2416 792.00 905.65 885.65 2236 2258 115.39 241.68 396.14 2397 794.CO 908.04 888.04 2237 2259 115.11 241.14 395.36 2386 796.00 910.43 890.43 2237 2259 114.82 240.62 394.60 2475 798.00 912.91 892.91 2238 2259 114.52 240.05 393.78 2483 800.00 915.39 895.39 2238 2260 114.21 239.47 392.95 2492 802.00 917.88 897.88 2239 2261 113.90 238.90 392.11 2406 804.00 920.29 900.29 2240 2261 113.62 238.37 391.35 2299 806.00 922.59 902.59 2240 2261 113.36 237.90 390.67 2196 808_00 924.78 904.78 2240 2261 113.13 237.47 390.06 2116 810.00 926.90 906.90 2239 2261 112.92 237.08 389.51 2056 812.00 928.95 908.95 2239 2260 112.72 236.72 389.00 1946

2259

112.54

236.40

388.56

TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
816.00	933.06	913.06	2238	2259	112.32	236.00	387.93	2160
818.00	935.52	915.52	2238	2260	112.04	235.46	387.19	2459
820.00	937.71	917.71	2238	2260	111.81	235.04	386.60	2195 1998
822.00	939.71	919.71	2238	2259	111.63	234.70	386.13	
82 4. CO	941.70	92 1.7 0	2237	2258	111 - 44	234.37	385.67	1991
826.00	943.68	923.68	2237	2258	111.27	234.05	385.21	1973
828.00	945.64	925.64	2236	2257	111.09	233.73	384.77	1968
830.00	947.61	927.61	2235	2256	110.91	233.41	384.32	1969
832.00	949.59	929.59	2235	2256	110.74	233.09	383.87	1972
834.00	951.86	931.86	2235	2256	110.50	232.65	383.23	2272
836.00	954.15	934.15	2235	2256	110.26	232.19	382.57	2294
838.00	956.15	936.15	2234	2255	110.08	231.87	382.11	2000
840.00	958.12	938.12	2234	2255	109.90	231.55	381.67	1973
842.00	960.10	940.10	2233	2254	109.73	231.23	381.22	1978
844.00	962.09	942.09	2232	2253	109.55	230.91	380.76	1993
846.00	964.16	944.16	2232	2253	109.36	230.56	380.27	2061
848.00	966.36	946.36	2232	2253	109.15	230.15	379.68	2202
85C.CO	968.41	948.41	2232	2252	108.96	229.81	379.19	2050
852.00	970.49	950.49	2231	2252	108.77	229.45	378.68	2085
854.00	973.09	953.09	2232	2253	108.46	228.87	377.82	2594
856.00	975.60	955.60	2233	2254	108.18	228.33	377.03	2509
858.00	978.07	958.07	2233	2254	107.91	227.82	376.27	2472
860.00	980.58	960.58	2234	2255	107.63	227.28	375.48	2512
862.00	982.89	962.89	2234	2255	107.39	226.84	374.84	2313

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALIS

: MACALISTER #1

INTERVAL TWO-WAY MEASURED VERTICAL AVERAGE RMS FIRST THIRD SECOND TRAVEL DEPTH DEPTH VELOCITY VELOCITY NORMAL NORMAL VELOCITY NORMAL TIME FROM FROM SRD/GEO MOVEOUT MOVEOUT MOVEOUT FROM SRD KB M SRD M/S M/S MS M/S MS Μ MS MS 2905 864.00 985.80 965.80 2236 2257 107.02 226.12 373.75 2522 866.00 988.32 968.32 2236 2257 106.74 372.96 225.58 2810 868.CO 991.13 971.13 2238 2259 106.39 224.92 371.96 2779 870.00 993.91 973.91 2239 2260 106.06 370.99 224.27 2726 872.00 996.64 976.64 2240 2261 105.74 223.65 370.06 2548 874.00 999.18 979.18 2241 2262 105.46 223.12 369.27 2724 876.00 1001.91 981.91 2242 2263 105.14 222.51 368.36 2747 878.00 1004.66 984.66 2243 2264 104.82 221.89 367.43 2464 880.00 1007.12 987.12 2265 2243 104.57 221.40 366.71 1983 882.00 1009.10 989.10 2243 2264 104.41 221.10 366.29 2481 1011.58 884.00 991.58 2243 2265 104.15 220.61 365.56 2893 886.00 1014.48 994.48 2245 2266 103.80 219.93 364.53 2075 00.888 1016.55 996.55 2244 2266 103.63 219.61 364.06 1977 890.00 1018.53 998.53 2244 2265 103.47 219.32 363.65 2823 892.00 1021.35 1001.35 2245 2267 103.14 218.68 362.68 2876 1004.23 894.00 1024.23 2247 2268 102.80 218.02 361.68 2862 896.00 1027.09 1007.09 2248 2270 102.47 217.37 360.70 2657 898.00 1029.75 1009.75 2249 2271 102.18 216.81 359.87 2713 900.00 1032.46 1012.46 2250 2272 101.89 216.24 359.01 2964 902.00 1035.42 1015.42 2251 2273 101.53 215.55 357.96 2924 904.00 1038.35 1018.35 2253 2275 101.19 214.88 356.95 3142 906.00 1021.49 1041.49 2255 2277 100.80 214.11 355.77 3035 908.00 1044.53 1024.53 2257 2279 100.44 213.40 354.69 3767 1048.29 910.00 1028.29 2260 2284 99.88 212.29 352.97

TWO-WAY	MEASURED	VERTICAL	AVERAGE	RMS	FIRST	SECOND	THIRD	INTERVAL
TRAVEL	DEPTH FROM	DEPTH FROM	VELOCITY SRD/GEO	VELOCITY	NOR MAL MOVEOUT	NOR MAL MOVEOUT	NOR MAL MOVEOUT	VELOCITY
FROM SRD MS	K9 M	SRD	M/S	M/S	MS	MS	MS	M/S
912.00	1051.04	1031.04	2261	2285	99.59	211.72	352.12	2747
914.00	1053.45	1033.45	2261	2285	99.37	211.30	351.49	2411
916.00	1055.46	1035.46	2261	2285	99.22	211.02	351.08	201 2
918.00	1057.41	1037.41	2260	2284	99.08	210.76	350.71	1946
920.00	1059.41	1039.41	2260	2283	98.93	210.48	350.71	2001
922.00	1061.46	1041.46	2259	2283	98.78	210.43	349.88	2051
924.00	1063.59	1043.59	2259	2282	98.61	209.88	349.42	2127
926.00	1066.50	1043.59	2260	2284	98.29			291 8
928.00	1069.38	1048.38	2262	2285	90.29 97.98	209.25 208.64	348.46 347.54	2 8 7 2
930.00	1072.46	1047.38						3086
			2263	2287	97.63	207.94	346.46	3015
932.00	1075.48	1055.48	2265	2289	97.29	207.28	345.45	3014
934.00	1078.49	1058.49	2267	2 2 9 1	96.96	206.62	344.44	3073
936.CO	1081.56	1061.56	2268	2293	96.61	205.94	343.39	3085
938.00	1084.65	1064.65	2270	2295	96.27	205.25	342.35	
940.00	1087.49	1067.49	2271	2296	95.98	204.68	341.48	2842
942.00	1090.50	1070.50	2273	2298	95.65	204.05	340.50	3005
944.00	1093.47	1073.47	2274	2300	95.34	203.43	339.55	2974
946.00	1095.48	1075.49	2274	2299	95.20	203.16	339.16	2015
948.00	1097.55	1077.55	2273	2299	95.05	202.88	338.76	2065
950.00	1099.98	1079.98	2274	22 9 9	94.85	202.49	338.16	2425
952.00	1102.52	1082.52	2274	2299	94.63	202.05	337.49	254 8
954.00	1105.21	1085.21	2275	2300	94.38	201.56	336.75	2685
956.00	1107.83	1087.83	2276	2301	94.14	201.10	336.04	2624
958.00	1110.57	1090.57	2277	2 30 2	93.88	200.59	335.27	2739

TWO-WAY TRAVEL TIME	MEA SURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
960.00	1112.69	1092.69	2276	2 30 2	93.73	200.30	334.85	2116
962.00	1115.20	1095.20	2277	2 30 2	93.52	199.88	334.21	2515
964.00	1118.17	1098.17	2278	2304	93.22	199.29	333.30	2966
966.00	1120.98	1100.98	2279	2305	92.96	198.77	332.49	2810
968.CO	1122.99	1102.99	2279	2304	92.83	198.52	332.13	2009
970.00	1125.21	1105.21	2279	2304	92.66	198.20	331.66	2222
972.00	1127.38	1107.38	2279	2304	92.51	197.91	331.22	2172
974.00	1130.51	1110.51	2280	2306	92.18	197.25	330.21	3128
976.00	1133.52	1113.52	2282	2308	91.88	196.66	329.29	3011
978.00	1136.57	1116.57	2283	2309	91.58	196.05	328.35	3050
980.00	1139.67	1119.67	2285	2311	91.26	195.42	327.37	3104
982.00	1142.93	1122.93	2287	2314	90.92	194.73	326.30	3255
984.00	1146.17	1126.17	2289	2316	90.58	194.05	325.24	3242
986.00	1149.23	1129.23	2291	2318	90.28	193.45	324.32	3063
988.00	1152.16	1132.16	2292	2319	90.01	192.91	323.48	2928
990.00	1155.45	1135.45	2294	2321	89.67	192.22	322.41	3294
992.00	1158.18	1138.18	2295	2322	89.43	191.76	321.70	2729
994.00	1160.85	1140.85	2295	2323	89.21	191.73	321.03	2663
								2861
996.00	1163.71	1143.71	2297	2324	88.96	190.82	320.25	2890
998.00	1166.60	1146.60	2298	2325	88.70	190.31	319.46	2718
1000.00	1169.31	1149.31	2299	2326	88.48	189.86	318.77	2784
1002.00	1172.10	1152.10	2300	2327	88.24	189.39	318.04	2762
1004.00	1174.86	1154.86	2301	2328	88.01	188.93	317.34	2684
1006.00	1177.54	1157.54	2301	2329	87.80	188.50	316.67	

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
1008.00	1180.64	1160.64	2303	2331	87.51	187.93	315.78	3091
1010.00	1183.50	1163.50	2304	2332	87.27	187.44	315.02	2862
1012.00	1186.36	1166.36	2305	2333	87.02	186.96	314.27	2859
1014.00	1189.21	1169.21	2306	2334	86.78	186.48	313.52	2857
1016.00	1191.90	1171.90	2307	2335	86.57	186.06	312.88	2686
1018.00	1194.61	1174.61	2308	2336	86.36	185.63	312.22	2707
1020.00	1197.39	1177.39	2309	2337	86.14	185.18	311.52	2784
1022.00	1200.15	1180.15	2309	2338	85.92	184.74	310.84	2761
1024.00	1203.00	1183.00	2311	2339	85.69	184.28	310.12	2845
1026.00	1205.99	1185.99	2312	2340	85.43	183.76	309.32	2990
1028.00	1208.81	1188.81	2313	2341	85.20	183.31	308.62	2819
1030.00	1211.65	1191.65	2314	2342	84.98	182.85	307.90	2847
1032.00	1214.42	1194.42	2315	2343	84.76	182.42	307.23	2770
1034.00	1217.36	1197.36	2316	2344	84.52	181.93	306.47	2935
1036.00	1220.09	1200.09	2317	2345	84.31	181.52	305.83	2730
1038.00	1222.80	1202.80	2318	2346	84.11	181.11	305.20	2708
1040.00	1225.65	1205.65	2319	2347	83.89	180.66	304.50	2857
1042.00	1228.82	1208.82	2320	2349	83.61	180.10	303.62	3168
1044.00	1231.43	1211.43	2321	2350	83.43	179.74	303.05	2608
1046.00	1234.12	1214.12	2321	2350	83.23	179.34	302.44	2694
1048.00	1236.96	1216.96	2322	2351	83.01	178.91	301.76	2836
1050.00	1239.61	1219.61	2323	2 3 5 2	82.82	178.53	301.17	2656
1052.00	1242.76	1222.76	2325	2354	82.56	177.99	300.32	3150
1054.00	1245.61	1225.61	2326	2355	82.34	177.56	299.65	2843

COMPANY : CRUSADER RESOURCES N.L.

1102.00

1313.98

1293.98

2348

WELL : MACALISTER #1

TWO-WAY MEASURED VERTICAL AVERAGE RMS FIRST SECOND THIRD INTERVAL TRAVEL DEPTH DEPTH VELOCITY VELOCITY NORMAL NORMAL NORMAL VELOCITY TIME FROM FROM SRD/GEO MOVEOUT MOVEOUT MOVEOUT FROM SRD KB SRD MS M/S M/S MS MS MS M/S 3083 1056.00 1248.69 1228.69 2327 2356 82.09 177.05 298.85 3059 1058.00 1251.75 1231.75 2328 2358 81.85 176.55 298.06 2764 1060.00 1254.51 1234.51 2329 2359 81.65 176.15 297.44 2745 1062.00 1257.26 1237.26 2330 2359 81.45 175.75 296.82 2913 1064.00 1260.17 1240.17 2331 2361 31.23 175.31 296.13 2670 1066.00 1262.84 1242.84 2332 2361 81.05 174.94 295.55 3052 1068.00 1265.39 1245.89 2333 2363 80.81 294.79 174.45 2798 1070.00 1268.69 1248.69 2334 2364 80.61 174.05 294.16 2981 1072.00 1271.67 1251.67 2335 2365 80.39 173.59 293.44 2755 1074.00 1274.43 1254.43 2336 2366 80.20 173.21 292.84 2928 1076.00 1277.35 1257.35 2337 79.98 2367 172.77 292.15 2555 1078.00 1279.91 1259.91 2337 2367 79.82 172.45 291.64 2155 1080.00 1282.06 1262.06 2337 2367 79.71 172.22 291.30 2909 1082.00 1284.97 1264.97 2338 2368 79.50 171.80 290.63 3060 1084.00 1288.03 1268.03 2340 2369 79.26 171.33 289.89 3075 1086.00 1291.11 1271.11 2341 2371 79.03 170.85 289.14 2775 1088.00 1293.88 1273.88 2342 2372 78.85 170.47 288.55 2679 1090.00 1296.56 1276.56 2342 2372 78.67 170.12 288.00 2647 1092.00 1299.21 1279.21 2343 2373 78.50 169.78 237.46 2849 1302.06 1094.00 1282.06 2344 2374 78.31 169.39 286.84 3255 1096.00 1305.31 1285.31 2345 2376 78.05 168.87 286.01 2864 1098.00 1308.18 1288.18 2346 2377 77.86 168.47 285.39 2957 1100.00 1311.13 1291.13 2348 2378 77.65 168.05 284.72 2843

2379

77.46

167.66

284.11

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 RMS FIRST THIRD INTERVAL TWO-WAY MEASURED VERTICAL AVERAGE SECOND DEPTH DEPTH VELOCITY NORMAL NORMAL NORMAL TRAVEL VELOCITY VELOCITY TIME FROM FROM SRD/GEO MOVEOUT MOVEOUT MOVEOUT FROM SRD KB. SRD M/S MS M/S M/S MS MS MS 3124 283.37 1104.00 1317.10 1297.10 2350 2380 77.23 157.19 2867 2381 77.04 282.75 1106.00 1319.97 1299.97 2351 166.80 3076 2352 2383 76.82 282.04 1108.00 1323.04 1303.04 166.35 3223 2354 2385 76.58 165.86 281.26 1110.00 1326.27 1306.27 3339 2355 2387 76.32 280.42 1112.00 1329.61 1309.61 165.33 2877 2356 1114.00 1332.48 1312.48 2388 76.14 164.95 279.81 3198 2358 2389 75.90 279.05 1116.00 1335.68 1315.68 164.47 2965 2359 2390 75.71 278.41 1118.00 1338.65 1318.65 164.07 2798 1120.00 1341.44 1321.44 2360 2391 75.53 163.71 277.85 2926 1122.00 1344.37 1324.37 2361 2392 75.34 163.32 277.23 3266 1327.64 1124.00 1347.64 2362 2394 75.10 162.83 276.45 2946 275.83 1126.00 1350.58 1330.58 2363 2395 74.91 162.44 2715 1128.00 1353.30 1333.30 2364 2396 74.75 162.11 275.31 3554 2366 2398 161.54 274.39 1130.00 1356.85 1336.85 74.47 3330 1132.CO 1360.18 1340.18 2368 2400 74.23 161.04 273.60 3094 160.62 1134.00 1363.27 1343.27 2369 2402 74.02 272.92 3061 2370 2403 73.82 160.20 272.26 1136.00 1366.33 1346.33 3169 1138.00 1369.50 1349.50 2372 2405 73.61 159.76 271.56 3352 2373 2407 73.37 270.77 1140.00 1372.86 1352.86 159.27 3028 2375 2408 73.18 158.87 270.14 1142.00 1375.88 1355.88 3154 1144.00 1379.04 1359.04 2376 2409 72.97 158.44 269.45 3186 1362.22 2377 2411 72.76 158.01 268.75 1146.00 1382.22 3240 1148.00 1385.46 1365.46 2379 2413 72.54 157.56 268.03 3313 1150.00 1368.78 2380 2414 72.31 157.09 267.28 1388.78

INTERV.	THIRD NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MOVEOUT	RMS VELOCITY	AVERAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM SRD	MEASURED DEPTH FROM KB	TWO-WAY TRAVEL TIME FROM SRD
M/S	MS	MS	MS	M/S	M/S	SKD	N M	MS MS
31	266.60	156.66	72.10	2416	2382	1371.95	1391.95	1152.00
31	265.95	156.25	71.91	2417	2383	1375.07	1395.07	1154.00
32	265.25	155.82	71.70	2419	2385	1378.29	1398.29	1156.00
31	264.58	155.40	71.49	2420	2386	1381.45	1401.45	1158.00
29	264.01	155.05	71.32	2421	2387	1384.39	1404.39	1160.00
30	263.38	154.65	71.13	2423	2383	1387.48	1407.48	1162.00
31	262.74	154.25	70.94	2424	2389	1390.61	1410.61	1164.00
31	262.11	153.86	70.75	2425	2391	1393.71	1413.71	1166.00
31	261.45	153.45	70.55	2427	239 2	1396.90	1416.90	1168.00
32	260.77	153.02	70.34	2429	2393	1400.13	1420.13	1170.00
3.3	260.03	152.56	70.12	2431	2395	1403.52	1423.52	1172.00
33	259.29	152.10	69.90	2432	2397	1406.91	1426.91	1174.00
32	258.59	151.67	69.69	2 4 3 4	2398	1410.19	1430.19	1176.00
32	257.94	151.26	69.49	2436	2400	1413.40	1433.40	1178.00
33	257.24	150.83	69.28	2437	2401	1416.73	1436.73	1180.00
31	256.63	150.45	69.10	2439	2402	1419.84	1439.84	1182.00
31	256.01	150.07	68.92	2440	2404	1422.98	1442.98	1184.00
31	255.40	149.68	68.73	2442	2405	1426.13	1446.13	1186.CO

SYNTHETIC

TANALYST: M. SANDERS

12-APR-88 19:17:00 PROGRAM: GMULTP 006.E06

SCHLUMBERGER

SYNTHETIC SEISMOGRAM TABLE

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT

REFERENCE: 569150

LOGGED : 02/04/88

ANALYST: M. SANDERS 12-APR-88 19:17:00 PROGRAM: GMULTP 006.E06

SCHLUMBERGER

SYNTHETIC SEISMOGRAM TABLE

COMPANY : CRUSADER RESOURCES N.L.

WELL : MACALISTER #1

FIELD : WILDCAT

REFERENCE: 569150

LOGGED : 02/04/88

: MACALISTER #1

THE HEADINGS AND FLAGS SHOWN IN THE DATA LIST ARE DEFINED AS FOLLOWS:

IGEOFL- FLAG INDICATING MODE OF PROCESSING
IGEOFL = 0 WST DATA AVAILABLE AND PROCESSED
IGEOFL = 1 WST DATA NOT AVAILABLE

| LOG INPUT DATA : | GRF001- CHANNEL NAME FOR INPUT DENSITY LOG DATA | GTR0C1- CHANNEL NAME FOR INPUT SONIC LOG DATA | GCURVE- CORRELATION LOG NAMES

USER DEFINED MODELING

|LOFVEL- LAYER OPTION FLAG FOR VELOCITY |LOFDEN- LAYER OPTION FLAG FOR DENSITY |LAYVEL- LAYERED VELOCITY VALUES FOR USER SUPPLIED ZONE LIMIT

WITH RESPECT TO SONIC LOG DATA

LAYDEN- LAYERED DENSITY VALUES FOR USER SUPPLIED ZONE LIMITS

WITH RESPECT TO SONIC LOG DATA

UNERTH- UNIFORM EARTH VELOCITY UNFDEN- UNIFORM EARTH DENSITY

SRATE SAMPLING RATE IN MS

I INIDÉP START DÉPTH FOR COMPUTING SYNTHETIC SEISMOGRAM

WITH RESPECT TO SONIC LOG DATA

IGESTP STOP DEPTH FOR COMPUTING SYNTHETIC SEISMOGRAM WITH RESPECT TO SONIC LOG DATA

INITAU TWO WAY TRAVEL TIME FROM TOP SCNIC TO SRD

MEAN SEA LEVEL

SROGEO SEISMIC REFERENCE DEPTH WITH RESPECT TO

MEAN SEA LEVEL

ICDP FLAG FOR COMPUTING RESIDUAL MULTIPLES COPTIM TWO WAY TIME INTERVAL FOR COMPUTATION OF

RESIDUAL MULTIPLES
SCRTIM SURFACE REFLECTOR TWO WAY TIME ABOVE INITAU

SCREFL SURFACE REFLECTION COEFFICIENT

RCMAX REFLECTION COEFFICIENTS THAT ARE EQUAL TO OR GREATER THAN THIS VALUE SHALL BE FLAGGED

NOTE IN CASE OF MODELING A SYNTHETIC SEISMOGRAM WITHOUT SONIC LOG DATA , THE DEPTH REFERENCES SHALL BE USER DEFINED

OUTPUT DATA

RMSVWE ROOT MEAN SQUARE VELOCITY FOUND FOR THE WELL SRDTIM TWO WAY TRANSIT TIME BETWEEN INIDEP AND SRDGEO

CHANNNEL NAMES

```
PAGE 2
```

```
COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1
```

```
TWOT- TWO WAY TRAVEL TIME

DSRD- DEPTH OF COMPUTED DATA WITH RESPECT TO SRD

INTV- INTERVAL VELOCITY ON A TIME SCALE

RHOT- INTERVAL DENSITY ON A TIME SCALE

REFL- REFLECTION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES

ATTE- ATTENUATION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES

PRIM- SYNTHETIC SEISMOGRAM - PRIMARIES

MULT- SYNTHETIC SEISMOGRAM - PRIMARIES + MULTIPLES

MUON- MULTIPLES ONLY
```

CHANNEL NAMES

CHAN	1	-	TWOT.GMU.OD2.*
CHAN	2	-	DSRD_GRF_006.*
CHAN	3	-	INTV.GRF.007.*
CHAN	4	-	RHOT_GRF_001.*
CHAN	5	-	REFL GRF . 001 . *
CHAN	6	_	ATTE GRF.001.*
CHAN	7	-	PRIM GRF . 001 . *
CHAN	8	_	MULT_GMU_001.*
CHAN	Ğ	-	MUON_GMU_001.*

(GLOBAL PARAMETERS)

(VALUE)

)

(MATRIX PARAMETERS)

1 GR* 2 CALI*

(ZONED PARAMETERS) (VALUE) (LIMITS)

LAYER OPTION FLAG DENS :-1.000000 LOFDEN 30479.7 -: 1.000000 :-999.2500 :1794.000 700.0000 30479.7 - 0 30479.7 - 0 179.000 - 20.0000 20.0000 0 LAYER OPTION FLAG VELOC LOFVEL USER SUPPLIED DENSITY DA LAYDEN USER VELOC (WST) LAYVEL G/C3 M/S

PAGE

3

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE TWO WAY DEPTH INTERVAL INTERVAL REFLECT. TWO WAY SYNTHETIC PRIMARY MULTIPLES TRAVEL FROM SRD SEISMO. VELOCITY DENSITY COEFF. ATTEN. ONLY TIME (OR TOP) COEFF. PRIMARY MULTIPLES MS M/S G/C3 1941 2.100 159.81 178.0 .065 .99583 .06459 0 .06459 2209 2.100 180.0 162.02 0 .99583 0 -.00417 -.00417 2209 2.100 164.23 .009 182.0 .00851 .99576 .00878 .00027 2247 2.100 .007 .00733 184.0 166.47 .99570 .00621 -.00112 2280 2.100 168.75 186.0 -.009 .99563 -.00863 -.00948 -.00084 2241 2.100 171.00 188.0 -.009 .99555 -.00855 -.00743 .00112 2203 2.100 190.0 173.20 .033 .99445 .03309 .03397 .00089 2354 2.100 192.0 175.55 .003 .00338 .99444 -.00086 -.00424 2370 2.100 177.92 -.008 194.0 .99438 -.00757 -.00735 .00022 2334 2.100 180.26 196.0 -.008 .99432 -.00777 -.00740 .00038 2298 2.100 198.0 182.56 -.006 .99429 -.00552 .00035 -.00518 2273 2.100 184.83 200.0 -.008 .99423 -.00807 -.00671 .00136 2236 2.100 202.0 187.06 .004 .99421 .00391 .00557 .00166 2254 2.100 204.0 189.32 .004 .99420 .00401 .00230 -.00171 2272 2.100 206.0 191.59 .047 .99196 .04713 .04662 -.00051 2498 2.100 208.0 194.09 -.022 .99146 -.02222 -.02795 -.00572 2389 2.100 196.48 210.0 -.005 .99144 -.00513 -.00150 .00363 2364 2.100 212.0 198.84 -.005 .99141 -.00497 -.00519 -.00022 2341 2.100 214.0 201.18 .00098 -.002 -.00212 .99141 -.00114 2331 2.100 203.51 216.0 -.020 .99099 -.02026 -.01919 .00107 2237 2.100 218.0 205.75 .032 .00226 .98998 .03163 .03388 2385 2.100 220.0 208.14 -.007 .98994 -.00687 -.01465 -.00778 2352 2.100 222.0 210.49

-.005

.021

2330

2432

212.82

224.0

2.100

2.100

.98992

.98946

-.00459

.02113

-.00125

.02225

.00334

.00111

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
226.0	215.25	2770	2 400	019	.98909	01928	02194	00266
228.0	217.59	2339	2.100	.008	.98902	.00810	.01170	.00360
230.0	219.97	2377	2.100	.001	.98902	.00085	.00082	00002
232.0	222.35	2382	2.100	008	.98897	00745	01072	00327
234.0	224.69	2346	2.100	005	.98894	00521	00364	.00157
236.0	227.01	2321	2.100	.011	• 98882	.01081	.00952	00129
238.0	229.39	2373	2.100	•002	. 98882	.00187	.00184	00004
240.0	231.77	2382	2.100	.003	.98881	.00292	.00394	.00102
242.0	234.16	2396	2.100	.001	.98881	.00131	.00112	00019
244.0	236.57	2402	2.100	008	.98874	00814	00902	00088
246.0	238.93	2363	2.100	005	.98872	00472	00162	.00311
248.0	241.27	2340	2.100	.003	.98871	.00270	00009	00279
250.0	243.62	2353	2.100	013	. 98855	01252	01111	.00141
252.0	245.92	2294	2.100	•002	.98855	.00155	.00263	.00108
254.0	248.22	2302	2.100	.007	. 98850	.00680	.00431	00249
256.0	250.55	2334	2.100	• 0 0 3	.98849	.00293	.00476	.00184
258.0	252.90	2347	2.100	005	.98847	00518	00546	00027
260.0	255.22	2323	2.100	002	.98846	00158	00159	00001
262.0	257.54	2315	2.100	•009	.98838	.00898	.01026	.00128
264.0	259.90	2358	2.100	.007	.98834	.00670	.00697	.00028
266.0	262.29	2390	2.100	003	. 98833	00310	00731	00421
268.0	264.66	2375	2.100	.003	. 98832	.00268	.00477	.00208
270.0	267.05	2388	2.100	•003	.98831	.00336	.00089	00246
272.0	269.45	2404	2.100	002	. 98831	00155	00162	00007
274.0	271.85	2397	2.100	.001	.98830	.00083	.00374	.00291

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE DEPTH INTERVAL TWO WAY INTERVAL REFLECT. TWO WAY SYNTHETIC PRIMARY MULTIPLES TRAVEL FROM SRD ATTEN. VELOCITY DENSITY COEFF. SEISMO. ONLY TIME (OR TOP) COEFF. PRIMARY MULTIPLES G/C3 M/S MS 2401 2.100 276.0 274.25 -.003 .98830 -.00255 -.00140 -.00395 2389 2.100 278.0 276.64 .025 .98770 .02433 .02376 -.00057 2509 2.100 -.002 280.0 279.15 .98770 -.00176 -.00276 -.00100 2500 2.100 281.65 282.0 .028 .98692 .02775 .02683 -.00092 2645 2.100 284.0 284.29 -.029 **.**98606 -.02902 -.03404 -.00502 2494 2.100 286.0 286.79 -.025 .98545 -.02465 -.01981 .00484 2372 2.100 288.0 289.16 .014 .98526 .01353 .01653 .00299 2438 2.100 290.0 291.60 -.016 .98502 -.01531 -.01754 -.00223 2363 2.100 292.0 293.96 0 .98502 .00029 .00260 .00231 2365 2.100 .020 294.0 296.33 .98463 .01964 .01847 -.00117 2461 2.100 -.004 296.0 298.79 -.00369 .98462 -.00767 -.00399 2443 2.100 298.0 301.23 -.038 .98316 -.03786 .00340 -.03447 2262 2.100 .003 300.0 303.49 .00280 .98315 .00847 .00567 2275 2.100 302.0 305.77 .003 .98314 .00319 .00204 -.00115 2.100 2290 308.06 304.0 .020 .98276 .01935 .02000 .00065 2381 2.100 310.44 306.0 -.003 .98275 -.00278 -.00531 -.00253 2368 2.100 .002 308.0 312.81 .98275 .00219 -.00220 -.00440 2379 2.100 310.0 315.18 .00050 -.004 .98273 -.00435 -.00385 2358 2.100 312.0 317.54 .00147 -.005 .98271 -.00473 -.00326 2335 2.100 .009 314.0 319.88 .98263 .00845 .01434 .00589 2376 2.100 316.0 322.25 -.002 .98263 -.00190 -.00423 -.00233 2366 2.100 318.0 324.62 .98237 -.016 -.01591 -.01817 -.00226 2291 2.100 326.91 320.0 .012 .00211 .98224 -01144 .01355 2345 2.100

.015

.98201

.01497

.01292

-.00204

322.0

329.26

2418

2.100

6

TWO WAY TRAVEL TIME	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY	INTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
MS	M	M/S	G/C3		COEFR.	PRIMARI	MULTIFLES	
324.0	331.67	2244	2.400	045	.98005	04387	04828	00441
326.0	333.88	2211	2.100	.028	.97928	.02750	.03630	.00880
328.0	336.22	2338	2.100	010	.97919	00940	00983	00043
330.0	338.52	2294	2.100	.036	.97794	.03497	.03124	00373
332.0	340.98	2464	2.100	0	.97794	.00003	.00101	.00098
334.0	343.44	2464	2.100	024	.97740	02299	02712	00413
336.0	345.80	2351	2.100	•022	.97693	.02135	.02249	.00114
338.0	348.25	2456	2.100	066	.97264	06480	06311	.00169
340.0	350.40	2150	2.100	.027	.97191	.02657	.03464	.00808
342.0	352.67	2271	2.100	.025	.97128	.02478	.01817	00662
344.0	355.06	2390	2.100	.015	.97107	.01436	.01146	00290
346.0	357.52	2462	2.100	033	.96999	03236	03256	00020
348.0	359.83	2303	2.100	•005	.96996	.00476	.00874	.00398
350.0	362.15	2326	2.100	.007	.96992	.00655	.00518	00137
352.0	364.51	2357	2.100	.011	. 96980	.01095	.01484	.00389
354.0	366.92	2411	2.100	001	.96980	00101	.00025	.00126
356.0	369.33	2406	2.100	.012	.96966	.01140	.00203	00937
358.0	371.79	2463	2.100	015	.96945	01426	01578	00151
360.0	374.18	2392	2.100	021	.96901	02062	01758	.00305
362.0	376.47	2292	2.100	.024	.96846	.02307	.02668	.00360
364.0	378.88	2404	2.100	.008	-96840	•00808	.00628	00179
366.0	381.32	2444	2.100	019	.96806	01795	01823	00027
368.0	383.68	2355	2.100	.019	.96771	.01858	.02155	.00298
370.0	386.13	2448	2.100	009	.96763	00862	01625	00763
372.0	388.53	2404	2.100	001	.96763	00106	.00308	.00414

					• ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• • • • • • • • • • • • • • • • • • • •		, NOL
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO . PRIMARY	PRIMARY H MULTIPLES	MULTIPLES ONLY
374.0 376.0	390.93 393.55	2399 2621 2490	2.100 2.100 2.100	•044 -•026	.96573 .96509	.04283 02484	.04022 02214	00261 .00270
378.0 380.0 382.0	396.04 398.62 401.16	2579 2544	2.100	.018 007 011	.96480 .96475	.01694 00659 01026	.01234 00435 01375	00460 .00224 00350
384.0 386.0	403.65 405.96	2490 2308 2382	2.100 2.100 2.100	038 .016	.96325 .96302	03660 .01517	03566 .02420	.00094
388.0 390.0 392.0	408.35 410.95 413.36	2604 2413 2388	2.100 2.100 2.100	-045 038 005	.96111 .95971 .95969	-04286 03662 00497	.03916 03824 00458	00370 00162 .00039
394.0 396.0 398.0	415.75 418.22 420.72	2470 2499 2553	2.100 2.100 2.100	.017 .006 .011	.95941 .95938 .95927	.01623 .00563 .01026	.01373 .00723 .01338	00250 .00160 .00313
400.0 402.0 404.0	423.27 425.75 428.19	2480 2442	2.100 2.100	015 008 026	.95907 .95901 .95837	01404 00735 02478	01619 00831 02471	00215 00097 .00007
406.0 408.0 410.0	430.51 432.92 435.19	2319 2411 2262	2.100 2.100 2.100	.019 032 .029	.95801 .95703	.01864 03065 .02777	.02135 03531 .03268	.00271 00466 .00491
412.0 414.0 416.0	437.58 440.04 442.53	2397 2460 2487	2.100 2.100 2.100	.013 .005	.95606 .95603	.01248 .00522	.01051 .00966	00197 .00444 00901
418.0 420.0	445.00	2471 2496 2539	2.100 2.100 2.100	.005 .009	•95599 •95592	.00485	.01011	.00526

TWO WAY TRAVEL TIME	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY	INTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
MS	M	M/S	G/C3		COEFF	FRIMAKI	MULTIPLES	
422.0	450.04	2663	2.400	.003	.95592	.00267	.00206	00061
424.0	452.59	2553	2.100	009	.95583	00896	00823	.00073
426.0	455.09	2505	2.100	.009	.95576	.00817	.00957	.00139
428.0	457.64	2549	2.100	003	.95575	00317	01001	00684
430.0	460.17	2532	2.100	002	.95575	00174	.00614	.00788
432.0	462.70	2523	2.100	. 010	. 95565	.00981	.00625	00356
434.0	465.27	2575	2.100	013	.95550	01206	01356	00150
436.0	467.78	2511	2.100	.011	.95537	.01087	.01296	•00209
438.0	470.35	2568	2.100	003	•95536	00280	00043	.00237
440.0	472.90	2553	2.100	.009	.95528	.00895	.00468	00427
442.0	475.51	2602	2.100	. 0	•95528	00005	00044	00039
444.0	478.11	2602	2.100	010	.95518	01002	00589	.00413
446.0	480.65	2548	2.100	.024	.95463	.02288	.01849	00439
448.0	483.33	2673	2.100	037	.95334	03499	04028	00529
45C.O	485.81	2484	2.100	.014	.95317	.01307	.02305	•00997
452.0	488.36	2553	2.100	.001	.95317	.00061	.00196	.00136
454.0	490.92	2556	2.100	.018	.95285	.01729	.01110	00619
456.0	493.57	2650	2.100	016	.95261	01514	01253	.00261
458.0	496.14	2567	2.100	.029	.95181	.02757	.02433	00324
460.0	498.86	2720	2.100	007	.95176	00701	01673	00972
462.0	501.54	2681	2.100	011	.95164	01092	.00179	.01271
464.0	504.16	2620	2.100					
		2654	2.100	.007	.95160	.00623	.00709	.00086
466.0	506.81	2541	2.100	022	.95115	02068	02330	00262
468.0	509.35	2 7 99	2.100	.048	.94893	.04594	.04329	00265
47C.O	512.15			.001	.94893	.00109	.00013	00096

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
472.0	514.96	2806	2.100	018	.94863	01676	 01758	00082
474.0	517.67	2708 2785	2.100 2.100	.014	.94845	.01315	.01372	.00056
476.0	520.45	2635	2.100	028	. 94 7 72	02622	02843	00221
478.0	523.09	2718	2.100	.016	.94749	.01474	.02732	.01259
480.0 482.0	525.80 528.55	2745	2.100	.005 029	.94747 .94669	.00477 02725	 01140	01617
484.0	531.14	2592	2.100	•004	•94667	.00419	02377 .01017	.00348 .00598
486.0	533.76	2615	2.100	001	.94667	00140	00520	00379
488.0	536.36	2607 2644	2.100 2.100	.007	.94662	.00666	.01180	.00514
490.0	539.01	2724	2.100	.015	.94641	.01400	.01599	.00199
492.0	541.73	2592	2.100	025	.94583	02350	02711	00361
494.0 496.0	544.32 547.12	2792	2.100	.037 032	.94451 .94354	.03524 03039	.03153 02262	00372 .00777
498.0	549.73	2618	2.100	0	.94354	.00042	00492	00534
500.0	552.35	2620	2.100	.059	.94031	.05521	.05111	00410
502.0	555.30	2946 2845	2.100 2.100	017	.94002	01641	01445	.00195
504.0	558.15	2808	2.100	007	.93998	00616	00556	.00060
506.0 508.0	560.95	2828	2.100	.003	.93997	.00328	.00030	00298
510.0	563 . 78	2874	2.100	.008 .040	.93991 .93838	.00763 .03791	.00577 .04924	00186 .01133
512.0	569.77	3116	2.100	015	.93816	01436	02492	01056
514.0	572.79	3022 3042	2.100 2.100	.003	.93815	.00320	.00752	.00431
516.0	575.83	2746	2.100	051	.93568	04807	06060	01253
518.0	578 . 58	2788	2.100	•008	.93563	.00709	.01513	.00804

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
520.0	581.37			036	.93438	03413	03105	.00308
522.0	583.96	2592	2.100	.068	.93004	.06369	.06655	•00286
524.0	586.93	2971	2.100	021	.92964	01928	02862	00933
526.0	589.78	2850	2.100	012	.92950	01146	00572	.00574
528.0	592.56	2781	2.100	092	.92162	08560	08991	00431
530.0	594.87	2312	2.100	.003	.92161	.00258	.01371	.01114
532.0	597.20	2325	2.100	.062	.91809	.05700	.05101	00599
534.0	599.83	2631	2.100	.005	.91807	.00416	.01213	.00797
536.0	602.48	2655	2.100	.005	.91805	.00435	.00486	.00051
538.0	605.16	2680	2.100	.022	.91762	.01974	.00664	01310
54C.O	607.96	2798	2.100	.001	.91762	.00047	.00482	.00435
542.0	610.76	2801	2.100	030	.91679	02761	02907	00146
544.0	613.40	2637	2.100	.002	.91679	.00187	.01192	.01006
546.0	616.05	2648	2.100	009	.91672	00788	01094	00305
548.0	618.65	2603	2.100	018	.91642	01653	02728	01076
550.0	621.16	2511	2.100	.027	.91575	.02482	.04300	.01819
552.0	623.81	2651	2.100	007	.91571	00621	03199	02578
554.0	626.43	2615	2.100	017	.91544	01563	00273	.01290
556.0	628.96	2527	2.100	022	.91500	02000	02006	
558.0	631.37	2419	2.100	048	.91289	04394		00006
560.0	633.57	2197	2.100	.058	.90987		02450	.01944
562.0	636.04	2466	2.100	.014		.05253	.04368	00885
564.0	638.57	2537	2.100		.90969	.01294	.00883	00411
566.0	640.85	2271	2.100	055	.90690	05036	05959	00922
568.0	643.17	2327	2.100	•012 - 051	.90676	.01110	.01011	00099
J 0 0 • U	043.17			051	.90437	04661	03036	.01625

TWO WAY TRAVEL	DEPTH FROM SRD	INTERVAL VELOCITY	INTERVAL DENSITY	REFLECT. COEFF.	TWO WAY	SYNTHETIC SEISMO.	PRIMARY	MULTIPLES ONLY
TIME MS	(OR TOP)	M/S	G/C3		COEFF.	PRIMARY	MULTIPLES	
570 0	415 37	2099	2.100	222	007/7	02500	04745	00075
570 . 0	645.27	2223	2.100	.029	.90363	.02590	.01715	00875
572.0	647.50	2152	2.100	016	.90339	01465	.00010	.01475
574.0	649.65	2118	2.100	008	.90333	00731	02499	01767
576.0	651.77	2178	2.100	.014	.90315	.01267	.02079	.00812
578.0	653.94	2288	2.100	•025	.90261	.02217	.02958	.00741
580.0	656.23	2093	2.100	045	.90082	04017	04942	00925
582.0	658.32	2056	2.100	009	.90075	00804	.00689	.01493
584.0	660.38	2120	2.100	. 0 1 5	.90053	.01389	.00791	00598
586.0	662.50	2097	2.100	005	.90051	00487	01950	01463
588.0	664.60	2101	2.100	-001	.90051	•00083	.01944	.01861
590.0	666.70	2161	2.100	.014	.90033	.01270	.00229	01042
592.0	668.86	2187	2.100	.006	.90029	.00542	00457	00999
594.0	671.05	2149	2.100	009	.90023	00788	.01357	.02144
596.0	673.20	2105	2.100	010	.90013	00941	02123	01182
598.0	675.30	2148	2.100	.010	.90004	.00904	.00761	00142
600.0	677.45	2080	2.100	016	.89981	01443	00976	.00467
602.0	679.53	2137	2.100	.014	. 89964	.01226	.01485	.00258
604.0	681.67	2157	2.100	•005	.89962	.00407	00334	00741
606.0	683.82	2026	2.100	031	.89875	02804	02440	.00364
608.0	685.85	2059	2.100	•008	.89869	.00721	.00205	00517
610.0	687.91	2072	2.100	•003	.89868	.00270	.01370	.01099
612.0	689.98	2007	2.100	016	.89845	01421	01942	00521
614.0	691.99	2140	2.100	.032	.89754	.02870	.02497	00372
616.0	694.13	2054	2.100	020	.89717	01824	00557	.01267
	1	2074	2.100					

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
618.0	696.18	2093	2.100	.009	.89709	.00826	00689	01516
62C.O	698.27			020	.89673	01790	00150	.01641
622.0	700.28	2011	2.100	.045	.89489	.04061	.04279	.00218
624.0	702.49	2201	2.100	026	.89429	02319	04345	02026
626.0	704.58	2090	2.100	016	.89405	01468	.00023	.01491
628.0	706.60	2023	2.100	0	.89405	00008	01084	01076
630.0	708.62	2022	2.100	.013	.89389	.01205	.02456	.01250
632.0	710.70	2078	2.100	.014	.89370	.01296	.00986	00309
634.0	712.84	2139	2.100	.018	.89343	.01566	.01686	.00120
636.0	715.05	2215	2.100	015	.89323	01321	01799	00478
638.0	717.20	2150	2.100	.013	.89309	.01133	00532	01665
640.0	719.41	2206	2.100	002	.89308	00206	.01148	.01353
642.0	721.60	2196	2.100	005	.89306	00429	00150	.00279
644.0	723.78	2175	2.100	.016	.89284	.01424	.00896	00528
646.0	726.02	2245	2.100	042	.89130	03706	02991	.00715
648.0	728.09	2066	2.100	006	.89127	00530	00270	.00260
65C . O	730.14	2046	2.095	.001	.89126	.00115	01115	01230
652.0	732.21	2073	2.073	010	.89118	00880	00181	.00699
654.0	734.27	2059	2.047	•026	.89056	.02343	.02817	.00474
656.0	736.38	2117	2.098	.033	.88960	.02931	.02017	00914
658.0	738.62	2240	2.118	050	.88734	04479	03391	.01087
66 0. 0	740.71	2087	2.055	001	.88734	00092	00111	00018
662.0	742.79	2076	2.062	.033	.88640	.02892	.02769	00123
664.0	744.95	2164	2.111	.066	.88248	.05892	.05074	00817
666.0	747.35	2396	2.179	.016	.88226	.01399	.00892	00507

1	TWO WAY TRAVEL TIME	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY	INTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
	MS	M	M/S	G/C3		00211		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	440 0	749.73	2386	2.258	- 0 2 4	.88169	02250	02216	0007/
	668.0		2342	2.186	026				.00034
	670.0	752.08	2386	2.205	.014	.88152	.01199	.02061	.00862
	672.0	754.46	2381	2.198	002	.88152	00213	.00370	.00584
	674.0	756.84	2403	2.229	.011	.88141	.01000	.01039	.00039
	676.0	759.25	2251	2.193	041	.87995	03586	05804	02218
	678.0	761.50			.018	.87965	.01620	.01931	.00311
	680.0	763.87	2372	2.160	010	.87956	00859	00616	.00244
	682.0	766.20	2335	2.151	041	.87810	03590	03101	.00489
	684.0	768.41	2203	2.102	.011	.87799	•00972	.03102	.02130
	686.0	770.61	2199	2.152	017	.87773	01524	04336	02813
	688.0	772.81	2206	2.073	162	.85478	14191	13368	.00823
	690.0	774.70	1885	1.750	009	.85472	00767	01831	01064
			1852	1.750					
	692.0	776.55	1787	1.750	018	.85445	01518	.00035	.01553
	694.0	778.34	1860	1.750	•020	.85410	.01714	.02455	.00741
	696.0	780.20	1797	1.750	017	.85385	01468	02052	00584
	698.0	781.99	1882	1.750	.023	.85339	.01974	.01501	00473
	700.0	783.87			•004	.85338	.00300	.00296	00004
	702.0	785.77	1896	1.750	.1 08	.84347	.09196	.11097	.01900
	704.0	788.08	2306	1.786	.054	.84103	.04536	.02812	01724
	706.0	790.69	2617	1.753	-,050	.83895	04188	04549	00361
	708.0	793.01	2319	1.791	.059	.83607	.04910	.05250	.00340
	710.0	795.29	2278	2.049	160	.81465	 13382	14767	
			1931	1.750					01385
	712.0	797.22	1923	1.750	002	.81465	00179	.00881	.01060
	714.0	799.14	1924	1.750	0	.81465	.00016	00044	00060
		•				_			

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY # MULTIPLES	MULTIPLES ONLY
716.0	801.07	1903	1.750	005	.81463	00433	01302	00869
718.0	802.97	1940	1.750	.010	.81455	.00791	.03548	.02757
720.0	804.91	2047	1.813	.044	.81295	.03609	.01962	01646
722.0	806.96	2115	1.828	•020	.81261	.01659	.02221	.00563
724.0	809.07	2179	1.947	.046	.81086	.03774	.04274	.00501
726.0	811.25	2010	1.747	080	.80562	06517	06528	00012
728.0	813.26			.087	.79952	.07014	.06130	00883
730.0	815.42	2160	1.990	.083	.79399	.06648	.07386	.00738
732.0	817.76	2342	2.169	016	.79379	01261	02023	00762
734.0	820.08	2315 2293	2.125	016	.79359	01263	02932	01669
736.0	822.37		2.078	079	.78866	06257	04580	.01677
738.0	824.43	2059 2015	1.976 1.846	045	.78705	03557	03614	00057
740.0	826.44	2006	1.868	.004	.78704	.00286	.04956	.04670
742.0	828.45	2355	2.077	.133	.77320	.10438	.07018	03420
744.0	830.81	2309		.005	.77318	.00349	01575	01924
746.0	833.11	2320	2.137 2.159	.007	.77314	.00574	.00688	.00113
748.0	835.43			027	.77257	02106	00874	.01232
75C.O	837.76	2324	2.041	020	.77226	01525	01751	00226
752.0	840.13	2370 2206	1.924	038	.77112	02972	02116	.00856
754.0	842.34	2086	1.914	025	.77064	01925	01787	.00139
756.0	844.42	2078	1.925 1.945	.003	.77063	.00244	02203	02447
758.0	846.50	2115	1.943	0	.77063	00015	.01086	.01100
760.0	848.61			.181	.74550	.13917	.12732	01185
762.0	851.28	2661	2.187	1 20	.73473	08962	08315	.00646
764.0	853.55	2270	2.014	079	.73010	05830	03828	.02003

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
766.0	855.65	2107	1.850	.109	.72144	.07953	.07583	00370
768.0	857.98	2323	2.089	053	.71940	03833	04811	00978
770.0	860.14	2166	2.014	.062	.71668	.04426	.04091	00335
772.0 774.0 776.0	862.50 864.97 867.34	2355 2471 2370	2.096 2.152 2.115	.037 029	.71568 .71506	.02675 02109	00661 .01530	03336 .03639
778.0 780.0	869.43 871.45	2093 2019 2380	1.774	132 035 .161	.70259 .70171 .68362	09442 02483 .11269	08992 .00861 .09719	.00450 .03344 01549
782.0	873.83	2443	2.115	.021	.68330	-01464	00945	02408
784.0	876.27	2268	2.060	050	.68157	03445	02371	.01073
786.0	878.54	2267	1.998	016	.68140	01058	01318	00260
788.0	880.81	2393	2.120	.057	.67922	.03855	.03092	00763
790.0	883.20	2414	2.101	0	.67922	0	.00456	.00456
792.0	885.62	2399	2.093	005	.67920	00354	.02893	.03247
794.0	888.02	2383	2.083	006	.67918	00375	01850	01475
796.0	890.40	2472	2.175	.040	.67811	.02700	00092	02792
798.0	892.87	2485	2.171	.002	.67811	.00115	.02196	.02081
8CC.0	895.36	2495	2.112	012	.67802	00791	01114	00323
8C2.0	897.85	2413	2.115	016	.67784	01086	01033	.00054
804.0	900.26	2311	2.017	045	.67644	03079	01424	.01655
806.0 808.0 810.0 812.0	902.57 904.77 906.89 908.95	2194 2116 2060	1.923 1.826 1.751	050 044 034 030	.67477 .67347 .67268	03362 02959 02315 02010	01580 08553 04059 00901	.01782 05594 01744 .01110
	_	1942	1.750		_	-	- -	<u> </u>

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
814.0	910.89	2142	1.841	.074	.66838	.04982	.06344	.01363
816.0	913.03	2458	2.131	.141	.65509	.09426	.14080	.04655
818.0 820.0	915.49 917.70	2214	1.885	 113	.64673 .64180	07400 05652	12510 0785	05110
822.0	917.70	2002	1.750	087 001	.64179	00094	04785 .00624	.00867 .00718
824.0	921.70	1996	1.750	007	.64177	00422	02513	02091
826.0	923.67	1970 1965	1.750 1.750	001	.64176	00085	.01112	.01198
828.0	925.63	1970	1.750	.001	.64176	.00096	02547	02643
830.0	927.60	1969	1.750	0	.64176	00019	00523	00504
832.0	929.57	2250	1.906	.109	.63418	.06976	.06186	00790
834.0 836.0	931.82 934.14	2316	1.974	.032 132	.63352 .62244	.02047 08378	.04375 08781	.02328 00403
838.0	936.14	2003	1.750	007	.62241	00448	.02395	.02843
84C.0	938.12	1974	1.750	.001	.62241	.00053	.00130	.00078
842.0	940.09	1977 1985	1.750 1.750	.002	.62240	.00120	.00250	.00131
844.0	942.08	2061	1.811	.036	.62160	.02233	00115	02348
846.0	944.14	2209	1.935	.068	.61876	.04206	.01303	02903
848.0	946.35	2044	1.761	086	.61421	05302	03101	.02201
85C.0 852.0	948.39 950.47	2083	1.782	.015 .180	.61407 .59426	.00941 .11029	.07917 .06951	.06977 04078
854.0	953.05	2574	2.073	0	.59426	.00019	00807	00826
856.0	955.57	2520	2.119	035	.59351	02103	.01935	.04038
858.0	958.04	2467	2.016	•004	.59350	.00235	03946	04181
860.0	960.55	2514 2309	1.995 1.890	069	.59064	04123	03149	.00974
862.0	962.86	2309	, , ,	.111	.58337	.06555	.07270	.00715

PAGE 17

COMPANY :	CRUSADER RE	SOURCES N.	٠.	WELL :	MACALISTER	R #1		PAGE 18
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
864.0	965.75	2894 2510	1.884 1.926	060	.58127	03495	02248	.01247
866.0 868.0	968 . 26 971 . 09	2827	2.227	.131 041	.57128 .57033	.07620 02334	.10213 07835	.02592 05501
87C.0 872.0	973 . 86	2775 2735	2.090 2.154	.008 038	.57030 .56948	.00429 02160	.06610 06181	.06181 04021
874.0	979.15	2548 2717	2.142 2.137	.031 .010	.56893 .56887	.01763	.03500 00851	.01737 01428
876.0 878.0	981.86 984.60	2737 2508	2.165 1.938	099 168	.56333 .54752	05616 09438	02031 12544	.03585 03106
880.0 882.0	987 .11 989 . 09	1981 2447	1.750 1.946	.157	.53397	.08612 .07867	.07941	00671 03979
884 . 0 886 . 0	991 . 54 994 . 43	2891 2114	2.216 1.874	.147 236	.52238 .49333	12318	06595 01330	.05722
888.0 89C.0	996.54 998.52	1974	1.750 2.147	068 .268	.49103 .45589	03369 .13136	.09984	03153
892.0 894.0	1001.30 1004.17	2867	2.231	.034 001	.45537 .45537	.01538 00065	.00515 .04681	01024 .04746
896 . 0 898 . 0	1007.04	28 7 2 2682	2.064	071 .008	.45310 .45307	03218 .00370	07533 .02185	04314 .01815
900.0 902.0	1012.41	2687 2955	2.094 2.203	.073 011	.45066 .45061	.03300 00492	.03072 .04712	00228 .05204
904.0	1018.29	2924 3137	2.179 2.222	.045 009	.44970 .44966	.02024 00403	02844 .01710	04868 .02113
906.0 908.0	1024.48	3051 3713	2.244	.116 - 171	. 44358 . 43055	.05230 07602	.10654 07673	.05424 00071

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
912.0	1030.99	2450	1.940	126	.42376	05407	07722	02315
914.0	1033.44	2008	1.750	150	.41425	06349	12321	05973
916.0	1035.45	1946	1.750	016	.41415	00649	.01072	.01721
918.0	1037.40	1999	1.750	.013	.41408	.00554	05613	06167
920.0	1039.40	2052	1.750	.013	.41400	.00543	07245	07788
922.0	1041.45	2032	1.757	.010	. 41396	.00433	.08030	.07598
924.0	1043.54	2926	2.250	.285	.38042	.11784	.10709	01075
926.0	1046.46	2926		048	.37955	01811	03689	01878
928.0	1049.32		2.096	.051	.37858	.01925	.11385	.09460
930.0	1052.40	3081	2.151	042	.37792	01577	.00635	.02212
932.0	1055.42	3018	2.020	005	.37791	00188	01571	01383
934.0	1058.44	30 25	1.995	.058	.37664	.02193	02646	04839
936.0	1061.51	3067 3110	2.210	006	.37662	00233	.04433	.04665
938.0	1064.62		2.153	052	.37560	01965	02222	00256
940.0	1067.44	2823	2.137	.030	.37525	.01144	.01646	.00502
942.0	1070.43	2989	2.144	•009	.37522	.00352	01913	02265
944.0	1073.42	2993	2.182	 286	.34456	10726	05468	.05258
946.0	1075.47	2050	1.770	001	.34456	00048	04926	04878
948.0	1077.54	2067	1.750	.119	.33964	.04117	.01286	02832
950.0	1079.94	2395	1.920	.022	.33947	.00738	.02670	.01932
952.0	1082.48	2546	1.887	.085	.33705	.02869	.02280	00589
954.0	1085.17	2687	2.118	026	.33683	00861	.02590	.03452
956.0	1087.78	2610	2.071	.072	.33508	.02428	.02306	00122
958.0	1090.54	2761	2.262	250	.31414	08377	14097	05720
960.0	1092.64	2104	1.782	.137	.30824	.04304	.09884	.05580

			•					
TWO WAY TRAVEL TIME	FROM SRD (OR TOP)	INTERVAL VELOCITY	INTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
MS	M	M/S 2501	G/C3 1.975					
962.0	1095.15	2977	2.280	. 158	.30057	.04862	00009	04871
964.0	1098.12			089	.29816	02690	03302	00612
966.0	1100.94	2819	2.012	222	.28347	06619	05563	.01055
968.0	1102.97	2032	1.778	.065	.28229	.01833	03178	05011
970.0	1105.20	2222	1.850	031	.28202	00866	06132	05267
972.0	1107.32	21 25	1.819	.302	.25624	.08527	.17682	.09155
974.0	1110.46	3134	2.303	082	.25454	02090	.08275	.10366
976.0	1113.47	3014	2.034	.055	.25378	.01391	02921	04312
978.0	1116.51	3043	2.247	.011	.25375	.00269	03117	03386
980.0	1119.61	3094	2.257	.038	.25338	.00965	.02287	.01322
982.0	1122.86	3254	2.316	006	.25337	00149	.05258	.05407
984.0	1126.11	3248	2.294	041	.25295	01038	01580	00542
986.0		3058	2.244	056	.25216	01413	02791	01378
988.0	1132.09	2927	2.097	.111	.24906	.02794	.07878	.05084
990.0	1135.41	3314	2.313	116	.24570	02895	09625	06730
992.0	1138.14	2732	2.221	031	.24547	00750	.02731	.03481
994.0	1140.80	2660	2.146	.036	.24514	.00892	04515	05406
996.0	1143.66	2860	2.147	.027	.24496	.00670	.02322	.01653
998.0	1146.56	2899	2.237	048	.24441	01164	.01722	.02886
1000.0	1149.26	2703	2.182	.016	.24434	.00395	01112	01507
1002.0	1152.07	2806	2.171	.005	.24434	.00128	02984	03111
1004.0	1154.83	2764	2.227	032	.24408	00793	00914	
1006.0	1157.50	2673	2.158	.039	.24371			00121
1008.0	1160.58	3079	2.023			.00943	.08557	.07614
1000.0	1100.30	2871	2.183	.003	.24371	.00072	.00580	•00509

PAGE 20

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1610.0	1163.45	2856	2.213	.004	.24371	.00103	03690	03793
1012.0	1166.31	2852	2.233	.004	.24370	.00092	.00346	.00255
1014.0	1169.16	2695	•	034	.24342	00832	03529	02698
1016.0	1171.86	2709	2.207	002	.24342	00051	.02727	.02778
1018.0	1174.57		2.187	.014	.24337	.00350	.01115	.00764
1020.0	1177.34	2773	2.198	.005	.24336	.00133	05863	05996
1022.0	1180.10	2761	2.232	.006	.24335	.00136	.08756	.08619
1024.0	1182.95	2851	2.186	.028	.24316	.00682	01521	02203
1026.0	1185.92	2973	2.218	022	.24304	00538	07775	07237
1028.0	1188.76	2833	2.226	.004	.24304	.00101	.01871	.01770
1030.0	1191.62	2859	2.225	037	.24270	00904	.04505	.05409
1032.0	1194.37	2754	2.143	.056	.24194	.01362	00225	01588
1034.0	1197.31	2945	2.243	045	.24144	01099	07213	06114
1036.0	1200.05	2734	2.206	010	.24142	00231	.00787	.01018
1038.0	1202.76	2707	2.186	.039	.24105	.00945	. 03293	.02348
1046.0	1205.61	2850	2.246	.024	.24091	.00576	00650	01226
1042.0	1208.78	3178	2.112	078	.23945	01877	.00803	.02680
1044.0	1211.38	2600	2.208	.029	.23924	.00705	.04292	.03587
1046.0	1214.08	2698	2.257	.028	.23905	.00681	.02952	.02272
1048.0	1216.93	2845	2.266	058	.23825	01381	05485	04104
1050.0	1219.56	2635	2.180	.098	.23597	.02329	.02710	.00381
1052.0	1222.72	3154	2.215	071	.23477	01684	01466	.00218
1054.0	1225.54	2821	2.148	.006	.23476	.00151	01902	02054
1056.0	1228.64	3098	1.981	.072	.23355	.01689	.08175	.06485
1058.0	1231.70	3067	2.311	068	.23247	01587	12303	10716

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1060.0	1234.47	2772	2.231	003	. 23247	00074	.08115	.08190
	1237.19	2717	2.262	.042	.23206	.00975	07856	08831
1062.0		2940	2.274	098	.22984	02270	01453	.00816
1064.0	1240.13	2642	2.079	.137	.22553	.03147	.01551	01596
1066.0	1242.77	3075	2.353	081	.22405	01824	.01131	.02955
1068.0	1245.85	2795	2.201	036	.22376	00804	.06358	.07162
1070.0	1248.64	2982	1.921	040	.22340	00904	02366	01462
1072.0	1251.63	2730	1.935	.088	.22166	.01971	05625	07596
1074.0	1254.36	2985	2.112	164	.21567	03644	05361	01716
1076.0	1257.34	2539	1.782	093	.21380	02010	.01831	.03841
1078.0	1259.88	2131	1.761		.20505	.04325	.03555	00770
1080.0	1262.01	2889	1.958	. 202	.20185	.02558	.02871	.00313
1082.0	1264.90	3084	2.357	.125		00168	.01004	.01172
1084.0	1267.99	3064	2.333	008	.20184	01311	.01691	.03002
1086.0	1 271.05	2784	2.255	065	.20099		05187	04879
1088.0	1273.83	2698	2.256	015	.20094	00309		.01139
1090.0	1276.53	2648	2.184	026	.20081	00516	.00623	02992
1092.0	1279.18	2827	2.258	.049	.20032	.00990	02003	
1094.0	1282.01	3260	2.309	.082	.19896	.01652	.03138	.01487
1096.0	1285.27		2.223	084	.19756	01669	.00376	.02045
1098.0	1288.13	2863		.029	.19739	.00581	.01473	.00893
1100.0	1 291 . 09	2961	2.279	045	.19698	00898	.00515	.01412
1102.0	1293.93	2835		.067	.19611	.01311	.00289	01022
1104.0	1297.05	31 23		052	.19558	01019	05401	04382
1106.0	1299.92	2870		.046	.19516	.00903	.03047	.02144
, , , , , ,	, <u>,</u> , , , , ,	3067	2.269		_			

TWO WAY TRAVEL TIME	DEPTH FRCM SRD (OR TOP)	INTERVAL VELOCITY	INTERVAL	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
MS	M	M/S	G/C3					2.22
1108.0	1302.99	3210	2.248	.018	.19510	.00356	.05353	.04996
1110.0	1306.20			.020	.19501	.00399	.02896	.02497
1112.0	1309.55	3354	2.242	072	.19400	01405	.00197	.01602
1114.0	1312.43	2883	2.258	.061	.19329	.01175	01389	02564
1116.0	1315.63	3197	2.299	064	.19250	01233	00979	.00254
1118.0	1318.60	2966	2.180	022	.19241	00433	02029	01596
1120.0	1321.41	2810	2.200	•003	.19240	.00062	01245	01307
1122.0	1324.31	2900	2.146	.027	.19227	.00510	.01637	.01126
1124.0	1327.59	3284	1.998	.007	.19226	.00137	00055	00191
	1330.54	2947	2.259	102	.19024	01968	05169	03201
1126.0		2712	1.998	.195	.18304	.03702	00857	04559
1128.0	1333.25	3501	2.296	020	.18297	00370	.05163	.05534
1130.0	1336.75	3367	2.293				00660	.00238
1132.0	1340.12	3095	2.261	049	.18252	00898		
1134.0	1343.21	3063	2.311	.006	.18252	.00105	.02792	.02687
1136.0	1346.27	3155	2.254	•002	.18252	-00041	00501	00543
1138.0	1349.43	3364	1.965	036	.18228	00665	.00789	.01454
1140.0	1352.79	3022	2.117	016	.18223	00298	00918	00620
1142.0	1355.82			.061	.18155	.01113	.02530	.01417
1144.0	1358.97	3157	2.290	035	.18132	00639	05056	04417
1146.0	1362.16	3184	2.116	002	.18132	00040	01766	01726
1148.0	1365.40	3240	2.071	.034	.18111	.00612	.04855	.04243
1150.0	1368.72	3323	2.159	•005	.18111	.00098	.04514	.04416
1152.0	1371.89	3172	2.287	008	.18110	00140	01182	01042
1154.0	1375.00	3108	2.298	.024	.18099	.00435	00003	00438
		3226	2.323	011	.18097	00195	.04422	.04616
1156.0	1378.23			• 011	. 10071	•00.75		

	PAGE 24
PRIMARY	MULTIPLES
MULTIPLES	ONLY
10484	09386
00657	00933
.01362	.01186
00892	01355
.04198	.03795
.04120	.04178
.02142 05467 .01776	.01770 05280
01136 .06060	.01856 00534 .05307
07024	06241
.00422	.00246
00715	00784
03377	03377
.02273	.02273
00949	00949
.01697	.01697
01257	01257
03544	03544
03104	03104
04135	04135
.06229	.06229

TWO WAY DEPTH INTERVAL INTERVAL REFLECT. TWO WAY SYNTHETIC TRAVEL FROM SRD VELOCITY DENSITY COEFF. ATTEN. SEISMO. (OR TOP) TIME COEFF. PRIMARY ML MS G/C3 M/S 3166 2.317 1381.39 1158.0 -.061 .18031 -.01098 2946 2.205 1384.34 1160.0 .015 .18026 .00276 3084 2.172 1162.0 1387.42 .010 .18025 .00176 2.182 3131 1164.0 1390.55 .026 .00464 .18013 3102 2.318 1166.0 1393.65 .022 .18004 .00404 3177 2.367 1168.0 1396.83 -.003 .18004 -.00058 3234 2.311 1170.0 1400.07 .021 .00372 .17996 3383 2.303 1403.45 1172.0 -.010 -.00187 .17994 3377 2.259 1174.0 1406.83 -.004 .17994 -.00080 2.285 3310 1176.0 1410.14 -.033 .17973 -.00602 3197 2.212 1178.0 1413.33 .042 .17942 .00752 3330 2.309 1180.0 1416.66 -.044 .17908 -.00784 3126 2.254 1182.0 1419.79 .010 .17906 .00176 3137 2.291 1422.93 1184.0 .004 .17906 .00069 2.300 3148 1186.0 1426.07 0 0 0 1188.0 1190.0 1192.0 1194.0 1196.0 1198.0 1200.0 1202.0 1204.0 .02360 .02360

COMPANY :	CRUSADER R	ESOURCES N	.L.	WELL	: MACALIST	ER #1		PAGE 25
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY H MULTIPLES	MULTIPLES ONLY
1206.0							05036	05036
1208.0							01705	01705
1210.0							00121	00121
1212.0							.03155	.03155
1214.0							.07696	.07696
1216.0							11653	11653
1218.0							02353	02353
1220.0							.02620	.02620
1222.0							00282	00282
1224.0							.01763	.01763
1226.0							03447	03447
1228.0							00272	00272
1230.0							.01398	.01398
1232.0							00992	00992
1234.0							.04974	.04974
1236.0							.02597	.02597
1238.0							00815	00815
1240.0							00482	00482
1242.0							.06123	.06123
1244.0			·				.01608	.01608
1246.0							04538	04538
1248.0							01063	01063
1250.0							01688	01688
1252.0							01470	01470
1254.0	•						00338	00338

COMPANY : CRUSADER RESOURCES N.L. WELL : MACALISTER #1 PAGE 26 TWO WAY DEPTH INTERVAL INTERVAL REFLECT. TWO WAY SYNTHETIC PRIMARY MULTIPLES TRAVEL FROM SRD VELOCITY DENSITY COEFF. ATTEN. SEISMO. ONLY COEFF. PRIMARY TIME (OR TOP) MULTIPLES G/C3 MS M/S 1256.0 .01031 .01031 1258.0 -.00654 -.00654 1260.0 .01960 .01960 1262.0 -.03023 -.03023 1264.0 .06941 .06941 1266.0 -.06263 -.06263 1268.0 -.06125 -.06125 1270.0 .06202 .06202 1272.0 .05246 .05246 1274.0 -.02288 -.02288 1276.0 .01251 .01251 1278.0 .01499 .01499 1280.0 .00071 .00071 1282.0 .06067 .06067 1284.0 -.09874 -.09874 1286.0 -.00557 -.00557 1288.0 -.00296 -.00296 1290.0 .00203 .00203 1292.0 .01255 .01255 1294.0 .01529 .01529 1296.0 -.03553 -.03553 1298.0 -.00613 -.00613 1300.0 .05548 .05548 1302.0 -.01901 -.01901

	COMPANY : CRUSADER RESOURCES N.L.			i.L.	WELL	PAGE				
	TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLE ONLY	S
	1304.0							.09148	.0914	8
I	1306.0							10002	1000	2
	1308.0							00024	0002	
	131C.O							04777	0477	
	1312.0							.04227	.0422	
l	1314.0							.01185	.0118	
I	1316.0							.01854	.0185	
	1318.0							01504	0150	
	1320.0							06663	0666	
	1322.0							.02668	.0266	
	1324.0							02341	0234	
-	1326.0							.08308	.0830	
	1328.0							.00666	.0066	
ļ	1330.0							06056	0605	
	1332.0							.04703	.0470	
	1334.0							03648	0364	
	1336.0							01736	0173	
	1338.0							00435	0043	
	1340.0							01672	0167	
	1342.0							06639	06639	
	1344.0							.06221	.0622	
l	1346.0							02574	0257	
	1348.0							.02878	.02878	
	1350.0							.00935	.00935	
	1352.0							.04574	.04574	

COMPANY :	CRUSADER R	ESOURCES N	.L.	WELL	: MACALISTE	ER #1		PAGE 28
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1354.0							04447	04447
1356.0							.01733	.01733
1358.0							00575	00575
1360.0							.04866	.04866
1362.0							05123	05123
1364.0							.01587	.01587
1366.0							.11882	.11882
1368.0							05954	05954
1370.0							03864	03864
1372.0							.03168	.03168
1374.0							.01718	.01718
1376.0							.04785	.04785
1378.0							07542	07542
1380.0							02627	02627
1382.0							.02217	.02217
1384.0							00582	00582
1386.0							.02497	.02497
1388.0							03572	03572
1390.0					•		.00300	.00300
1392.0							.00974	.00974
1394.0				•			03022	03022
1396.0							.02600	.02600
1398.0							02175	02175
1400.0							01671	01671

COMPANY :	CRUSADER R	ESOURCES N	.L.	WELL	: MACALIST	ER #1		PAGE	29
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY # MULTIPLES	MULTIPLE ONLY	: S
1402.0							.05865	.0586	5 5
1404.0							.05711	.0571	1
1406.0							03823	0382	23
1408.0							.04821	.0482	21
1410.0							05575	0557	'5
1412.0							.04974	.0497	4
1414.0							02518	0251	8
1416.0							04103	0410	3
1418.0						•	07927	0792	27
1420.0							.04239	.0423	39
1422.0							.02291	.0229	1
1424.0							.01518	.0151	8
1426.0							06560	0656	0
1428.0							00474	0047	4
1430.0							05677	0567	7
1432.0							.04957	.0495	7
1434.0							.05091	.0509	71
1436.0							00904	0090) 4
1438.0							.00826	.0082	26
1440.0							.03652	.0365	52
1442.0							.05483	.0548	3 3
1444.0							02263	0226	5 3
1446.0							03075	0307	' 5
1448.0							.00480	.0048	30
1450.0	•						05403	0540	3

COMPANY :	WELL	ELL : MACALISTER #1				PAGE 30				
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.		TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLE ONLY	E S
1452.0								.04658	.0465	58
1454.0								11779	1177	79
1456.0								02651	0269	5 1
1458.0								.07544	.0754	44
1460.0								03501	0350)1
1462.0								.02921	.0292	21
1464.0								.06005	.0600) 5
1466.0								.01699	.0169	9
1468.0								05294	0529	94
1470.0								00779	0077	79
1472.0								02274	0227	74
1474.0								.01466	.0146	56
1476.0								01630	0163	30
1478.0								03495	0349	95
1480.0								00515	0051	15
1482.0								00482	0048	3 2
1484.0								.10116	.1011	16
1486.0								.04137	.0413	37
1488.0								.01935	.0193	5 5
1490.0								03544	0354	4
1492.0				·				02570	0257	0
1494.0								.02654	.0265	5 4
1496.0								.02512	.0251	12
1498.0								.00225	.0022	2.5

	COMPANY :	CRUSADER R	ESOURCES N	.L.	WELL	: MACALISTE	ER #1		PAGE	3 1
	TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY	
	1500.0							.01897	.01897	
-	1502.0							04141	04141	
	1504.0							01808	01808	
	1506.0							03890	03890	Í
	1508.0							.03299	.03299	
	1510.0							.02376	.02376	
	1512.0							00463	00463	
	1514.0							03489	03489	
	1516.0							.04335	.04335	
	1518.0							.05397	.05397	
	1520.0							07428	07428)
•	1522.0							.06629	.06629	:
	1524.0					-		05813	05813	,
1	1526.0							02496	02496	1
	1528.0							.00505	.00505	
	1530.0							.00746	.00746	,
	1532.0							.00332	.00332	
	1534.0							.00771	.00771	
	1536.0							.04732	.04732	
	1538.0							05265	05265	,
1	1540.0							03473	03473	,
1	1542.0							.08814	.08814	
I	1544.0							07187	07187	•
	1546.0							08127	08127	
	1548.0							02232	02232	
1		•								

COMPANY :	CRUSADER R	ESOURCES N	·L.	WELL	:	MACALISTE	ER #1		PAGE	32
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.		TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLE ONLY	ES
1550.0								.08213	.0821	13
1552.0								.02191	.0219	91
1554.0								.06480	.0648	30
1556.0								03945	0394	45
1558.0								02197	0219	7
1560.0								.07213	.072	13
1562.0								01405	0140	5
1564.0		•						10465	1046	5 5
1566.0								.04949	.0494	49
1568.0								02709	0270	9
1570.0								.00568	.0056	58
1572.0								.02773	.0277	73
1574.0								.02751	.0279	5 1
1576.0								06853	0685	5 3
1578.0								01979	0197	79
1580.0								.03553	.0359	5 3
1582.0								01547	0154	7
1584.0								.02773	.0277	3
1586.0								00169	0016	59
1588.0				•				01995	0199	5
1590.0				,				.02687	.0268	37
1592.0								05184	0518	34
1594.0								.05200	.0520	oc
1596.0								04780	0478	30

1646.0

PAGE 3		ER #1	MACALISTE	WELL	.L.	RESOURCES N	CRUSADER R	OMPANY :
MULTIPLES ONLY	PRIMARY + MULTIPLES	SYNTHETIC SEISMO. PRIMARY	TWO WAY ATTEN. COEFF.	REFLECT. COEFF.	INTERVAL DENSITY G/C3	INTERVAL VELOCITY M/S	DEPTH FROM SRD (OR TOP) M	TWO WAY TRAVEL TIME MS
00135	00135							1598.0
.00196	.00196							1600.0
00049	00049							1602.0
.06577	.06577							1604.0
.02152	.02152							1606.0
01611	01611							1608.0
00306	00306							1610.0
06215	06215							1612.0
.00297	.00297							1614.0
.03707	.03707							1616.0
00038	00038							1618.0
.03044	.03044							162C.O
04279	04279							1622.0
.03729	.03729							1624.0
05272	05272							1626.0
.02949	.02949							1628.0
.01634	.01634							1630.0
.07262	.07262							1632.0
05735	05735							1634.0
03100	03100							1636.0
00220	00220							1638.0
.02820	.02820							1640.0
.04332	-04332							1642.0
.05429	.05429							1644.0

33

-.07668

-.07668

COMPANY : CRUSADER RESOURCES N.L.			WELL : MACALISTER #1					
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1648.0							.01623	.01623
1650.0							11755	11755
1652.0							.07046	.07046
1654.0							08104	08104
1656.0							.00359	.00359
1658.0							-00060	.00060
1660.0							.03754	.03754
1662.0							08669	08669
1664.0							.07043	.07043
1666.0							.06935	.06935
1668.0							03576	03576
1670.0							.03898	.03898
1672.0							.00971	.00971
1674.0							01990	01990
1676.0							.00194	.00194
1678.0							02464	02464
1680.0							.00277	.00277
1682.0							02192	02192
1684.0							. 07148	.07148
1686.0							06738	06738
1688.0				,		•	.01410	.01410
1690.0							.00147	.00147

PE601045

This is an enclosure indicator page. The enclosure PE601045 is enclosed within the container PE902194 at this location in this document.

The enclosure PE601045 has the following characteristics:

ITEM_BARCODE = PE601045
CONTAINER_BARCODE = PE902194

NAME = Drift Corrected Sonic

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drift Corrected Sonic

REMARKS =

DATE_CREATED = 12/04/1988 DATE_RECEIVED = 01/09/1988

 $W_NO = W971$

WELL_NAME = Macalister-1
CONTRACTOR = Schlumberger

CLIENT_OP_CO = Crusader resources NL

(Inserted by DNRE - Vic Govt Mines Dept)

PE601046

This is an enclosure indicator page. The enclosure PE601046 is enclosed within the container PE902194 at this location in this document.

The enclosure PE601046 has the following characteristics:

ITEM_BARCODE = PE601046
CONTAINER_BARCODE = PE902194

NAME = Seismic Calibration log

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = VELOCITY_CHART

DESCRIPTION = Seismic Calibration log

REMARKS =

DATE_CREATED = 12/04/1988 DATE_RECEIVED = 01/09/1988

 $W_NO = W971$

WELL_NAME = Macalister-1
CONTRACTOR = Schlumberger

CLIENT_OP_CO = Crusader resources NL

(Inserted by DNRE - Vic Govt Mines Dept)

PE902196

This is an enclosure indicator page. The enclosure PE902196 is enclosed within the container PE902194 at this location in this document.

The enclosure PE902196 has the following characteristics:

ITEM_BARCODE = PE902196
CONTAINER_BARCODE = PE902194

NAME = Synthetic Seismogram - Geogram

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = SYNTH_SEISMOGRAM

DESCRIPTION = Synthetic Seismogram - Geogram

REMARKS =

DATE_CREATED = 12/04/1988 DATE_RECEIVED = 01/09/1988

 $W_NO = W971$

WELL_NAME = Macalister-1
CONTRACTOR = Schlumberger

CLIENT_OP_CO = Crusader resources NL

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 11

APPENDIX 11

WELL LOCATION SURVEY

