
2 Top le E. M. R. ded ret las la come any enclosures p. DEPT. NAT

ATTACHMENT TO WCR FINAL WELL REPORT (MUDLOGGING REPORT) YELLOWTAIL-1 (W756)

BASIC

IES WELL REPORT
Yellowtail No !
ESSO AUSTRALIA LTD 2 9 AFR 1982

OIL and GAS DIVISION

CORE LABORATORIES AUSTRALIA (QLD.) LTD.

Petroleum Reservoir Engineering
AUSTRALIA

BRISBANE OFFICE.
1173 KINGSFORD SMITH DRIVE
PINKENBA, Q. 4008.
P.O. BOX 456
HAMILTON CENTRAL, Q. 4007
AUSTRALIA.

CABLE ADDRESS: CORELAB BRISBANE TELEX No.: COREBN AA42513 TELEPHONE: 260 1722 260 1723

lst April, 1982.

Esso Australia Ltd 127 Kent Street SYDNEY. N.S.W.

2000.

ATTENTION

MR K. KUTTAN.

Dear Sir

Please find enclosed copies of the well report for Yellowtail No. 1.

If you have any enquiries please do not hesitate to contact us.

Yours very truly CORE LABORATORIES AUSTRALIA (QLD) LTD.

A. DODSON Signed by

in A. Dodson's absence.

--Jan 1982

ESSO AUSTRALIA LTD. Esso House 127 Kent St. Sydney N.S.W. - 2001

Dear Sir,

Core Laboratories Intermediate Extended Service Well Logging Unit FL802 was in use during the drilling of YELLOWTAIL \$ 1 from surface to a total depth of 2571 metres.

Please find enclosed the IES well report, appended drilling parameter logs and the Corelab grapholog for your reference.

We appreciated being of assistance during the drilling operations and look forward to continuing our association on future wells.

If you require clarification of this report, please do not hesitate to contact us.

Yours very truly, CORE LABORATORIES INTERNATIONAL Ltd.

A.Dodson Unit supervisor

INDEX.

1.	Introduction														
2.	Core Laboratories Equipment														
3.	Core Laboratories Monitoring Equipment														
4.	Intermediate Extended Service Introduction														
5.	Rig Information Sheet														
6.	Well Information Sheet														
7.	Well History														
8.	Progress Report														
9.	Bit Record														
10.	Mud Information Sheets														
11.	Geological Summary														
12.	Overburden Gradient Calculations and Overburden Log														
13.	R.F.T. Data														
14.	Gas Composition Analyses														
15.	Core-O-Graphs														
16.	Pore Pressure Summary and LOT/PIT Data														
17.	Computer Data Listings:- (a) Bit Record (b) Hydraulic Analyses (c) Data List A (d) Data List B (e) Data List C (f) Data List D.														
	Appended Logs:- (a) Drill Data Plot (b) ROP/GAS Plot (c) Temperature Plot														

- (c) (d)
- Pressure Plot Geoplot 1: 5000 and 1: 2000 scales Cost Analyses Plot (e)
- (f)
- (g) Drilling Parameter Plot
- (h) Grapholog.

Yellowtail No. 1 was drilled by ESSO Australia Ltd. in the Bass Strait, Australia.

Well co-ordinates were:

Latitude : 38° 31' 34.67"S Longtitude : 148° 16' 27.34"E

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross" and monitored by Core Laboratories Intermediate Extended Service Field Laboratory 802.

Yellowtail No. 1 was spudded on 17th October, 1981 and reached a total depth of 2571 metres on 1st November, 1981, a total drilling time of 16 days. The main objective of the well was to assess the hydrocarbon potential of a low relief erosional high at the top of the Latrobe, (2389m RKB) southwest of the Mackeral oil field and north-east of the Kingfish oil field.

Elevations were: 21m Kelly bushings to mean seal level

77m Water depth

98m Kelly bushings to mud line.

All depths used in this report and accompanying logs refer to depth below rotary kelly bushines (RKB).

Core Laboratories personnel involved in the logging were as follows:

A. Dodson - Unit Supervisor

J. Ots - Pressure Engineer

K. Breakwell - Pressure Engineer

N. Danker - Logging Crew Chief

B. Giftson - Well Logger

A. McConville - Well Logger

J. Lang - Well Logger

R. Bickerstaff- Well Logger

CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 802 monitoring equipment includes the following :

A. MUD LOGGING

- 1.T.H.M. total gas detector and recorder
- 2. Hot wire total gas detector and recorder
- 3.F.I.D. (Flame Ionization Detector) chromatograph and recorder
- 4. Gas trap and support equipment for the above
- 5.Rate of Penetration recorder and digital dislay
- 6.Pit volume totalizer, display and recorder
- 7.Digital depth counter
- 7. Two integrated pump stroke counters, with digital display
- 9.Ultra-violet fluoroscope
- 10.Binocular microscope

B. INTERMEDIATE EXTENDED SERVICE PACKAGE

- 1.Hewlett Packard 9825B desktop computer 2.Hewlett Packard 9872B plotter 3.Hewlett Packard 2631A printer

- 4. Two Hewlett Packard 2621P visual display units, (one located in the client's office)
- 5.Hookload/weight on bit transducer and recorder
- 6.Rotary speed tachogenerator and recorder
- 7.Standpipe pump pressure transducer and recorder
- 8.Mud flow out sensor and recorder
- 9.Mud temperature sensors and recorder (in and out)
- 10.Mud conductivity sensors end recorder (in and out)
- 11.Rotary torque sensor and recorder
- 12. Shale density apperatus
- 13. Hydrogen sulphide gas detector
- 14.Carbon dioxide gas detector

CORE LABORATORIES MONITORING EQUIPMENT

DEPTH

DEpth registered every 0.2 metres and rate of penetration calculated each metre (or every 0.2 m while coring). ROP displayed on digital panel and chart.

WEIGHT ON BIT

A Tyco 0-1000 psi,solid state pressure transducer is connected to the rig's deadline anchor. The weight on bit is calculated in the Rig Functions panel, and displayed (with hookload) on a digital meter and recorder chart

ROTARY SPEED

This is a DC generator for which 1 volt = 100 rpm, and which is belt -driven from the rotary drive shaft. The value is displayed on digital meter and recorder chart.

PUMP PRESSURE

This is a Tyco 0-5000 psi transducer mounted on the standpipe manifold. The pressure is displayed on digital panel meter and recorder chart.

PIT VOLUME

Six individual pits can be displayed on the meter. The pit volume total is calculated in the PVT panel and displayed on a digital meter. The sensors are vertical floats driving potentiometers accurate to +/- 1 barrel. Each sensor is equiped with a wave compensating device. In addition a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total , and the trip tank.

PUMP STROKES

These are the limit switch type, counting individual strokes. The Pulse Data Box can monitor one or two pumps individually or integrate the total number of strokes from both pumps. The pump rate per minute is displayed on recorder chart.

ROTARY TORQUE

An American aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on digital panel meter and recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer, calibrated $0-100~{
m deg.C.}$ Temperature in and out is displayed on recorder chart and digital meter.

MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor measures the current in a closed loop of solution coupling a pair of toroidal transformer coils.

The conductivity in and out is displayed on analog and digital meters, and recorder chart.

All the sensors are 5 to 24 v DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment ,Core Lab furnished and operated certain other items.

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Dry samples were washed, dried and boxed. Wet samples were washed sacked and boxed. Geochemical samples were canned and boxed.

GAS

1.Flame Ionization Total Hydrocarbon gas detector.
The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.

2.Flame Ionization Detector chromatograph.
The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.

3.Hot wire gas detector(Wheatstone Bridge type) A back up system for total gas detection.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density column.

INTERMEDIATE EXTENDED SERVICE INTRODUCTION

The Core Laboratories Intermediate Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation; for the detection of abnormal formation pressure; and the optimization of drilling.

Presented graphically on Core Laboratories I.E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement and bit performance programmes for the wellsite drilling engineer.

Core Laboratories I.E.S. logs include the following :

I.E.S. PRESSURE LOG

Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is a conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, and formation breakdown tests.

CORELAB DRILL DATA PLOT

This plot,which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected 'd'exponent, which is presented on a logarithmic scale. The 'd' exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight on bit per inch of bit diameter.

The modified 'dc'exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard 'd'exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the 'dc' to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for 'dc' is therefore:

Deviations from the normal "dcs" trend may be interpretated as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure form deviations in the "dcs" plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the 'dcs' plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air dried shale samples in an accurately calibrated density solution.

An interpreted lithology column is also included on the log, as is a plot of mud density in, to assist in interpretation. All relavant information, such as casing points, bit runs, etc. are also included.

I.E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are : rate of penetration, corrected "d" exponent, breakeven analysis, formation pore pressure, mud density in and formation fracture pressure.

Two Geo-plots are included in this report, at scales of 1:2000 and 1:5000.

I.E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END TO END PLOTS

Flowline temperature and end to end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the I.E.S. drill log. Continous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm./cc) and neutron porosity (%), is made, using data supplied by Schlumberger. Two-cycle semilog paper is used, with a vertical scale of 1:10,000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration,weight on bit, rotary speed,pump pressure,hydraulic horsepower,impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 m.

GAS COMPOSITION ANALYSIS

For each significant gas show, the chromatograph results are analysed using two techniques:-

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

GRAPHOLOG

This is plotted on the industry standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relavant drilling data is included, as is bit and mud data.

MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak off test data, and R.F.T. and well test data where appropriate. RIG INFORMATION SHEET.

	RIG INFORMATION SHEET
TANDILL SOME	ANY ESSO AUSTRALIA LTD.
I II I I I I I I I I I I I I I I I I I	YELLOWTAIL No. 1
WNER	SOUTH SEAS DRILLING COMPANY SOUTHERN CROSS (NO 107)
NAME AND NUMBER	SEMI-SUBMERSIBLE, TWIN HULLED.
ERRICK, DRILL FLOOR	DERRICK: LEE C MOORE, 152' HIGH X 40' AT BASE.
SUBSTRUCTURE	LUAD CAPACITY OF 1 000 000 165
HAW VOLAS	DILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC GOTORS.
CROWN BLOCK	LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS.
RAVELING BLOCK	DILWELL A 500
WIVEL	OILWELL PC 425
ELEV/TORS	BYRON JACKSON MODEL GG CAPACITY .350 TCN
KELLY & KELLY SPINNER	DRILLCO 54"x 50' HEX KELLY
OTARY TABLE	OILWELL A 37 SINGLE ELECTRIC MOTOR
ROTARY SLIPS	VARCO DCS-L
MUDIUMIS	TWO DILWELL A 1700PT. RATED AT 1600HP
D ÚD SYSTEM	FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL TANK HAVING A CAPACITY OF 105 BBL. TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100
	HP ELECTRIC MOTORS. DESANDER: 1 DEMCO 4 CONE 12" MODEL NO 124
	DESILTER : 1 DEMCO 4"-16H 16 CONE
	DEGASSER : 1 SWACO MODEL N° 36
	SHALE SHAKERS : 2 BRANDT DUAL UNIT TANDER - GHI DUAL UNIT.
BLOW OUT PREVENTORS	THREE SHAFFER L.W.S. 18¾" - 10 000 psi
	TWO HYDRIL G.L. 18½" – 5000 psi
	FOUR VALCRON ACCUMULATORS. 2" - 10 DODps:
ELL CONTROL EQUIP.	CHOKES:2 C.I.W. ABJ H2 2 1/16" - 10 000 psi,1 SWACO SUPER CHOKE
BULAR DRILLING	DC: $6\frac{1}{4}$ " x 2 13/16" (4" IF TJ)
ECUIPMENT	8 " × 2 13/16" (6 5/8" H9D TJ)
	9 ³ / ₄ " × 3" (7 5/8" H90 YJ)
	HWDP: 5" 501b/ft GRADE G ($6\frac{1}{2}$ " DD $4\frac{1}{2}$ " 1F TJ)
	DP : 5" 19½1b/ft GRADE G&E(6 3/8" OD 4½" IF TJ)
EMENTING UNIT	HALLIBURTON HT-400 UNIT
MONITORING	MARTIN DECKER : MUD VOLUME TOTALIZER
EQUIPMENT	6 CHANNEL DRILLING RECORDER
	4 PRESSURE GAUGES
	FLOWSHOW INDICATOR
POWER SUPPLY	2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH 1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP
DECEMBAL	I FIND IND 12 DIESEL ENGINE RATED AT 1500 AP
RECTIONAL EQUIP.	•
MISCELLANEOUS (E.G. RISE RISER: REGAN FC - 7 T	B, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT) ELESCOPIC 21" ID.PLUS FLOW DIVERTOR.
	ECKEL 13 3/8"(20 000 ft lbs),20" (35 000 ft lbs)
	570cu ft.RISER TENSIONER:6WESTERN GEAR,50'STROKE,80 0001bs.
	570cu ft.GUIDE LINE TENSIONERS : 4 WESTERN GEAR 16 000 lbs,40'STROKE
INCO DOFY IMMYDIDXI	STOLD IL. BULLE LINE ICHSTUNENS : 4 MESIENN BERN ID BUU 185,40°SINONG

0-485 (CL 1151)

WELL INFORMATION SHEET.

	7						WE	LL INFOR	MATIC	ON SH	EET		
	COMP	ANY FE	SO AUSTRA	חדו מדומ	ì								
			LLOWTAIL					Shee	t No	11			
WELL NAME	YELLOW'	TAIL No.	1										
OPERATOR	ESSO E	XPLORATI	ON LTD.										
PARTNERS	B.H.P.	AT EDITATI	UN E 10 1										
TATTINE TO													
RIG	OWNER SOUTH SEAS DRILLING COMPANY												
	NAME OR NUMBER SOUTHERN CROSS												
	TYPE		SEMI-SU	BMERSIBL	.E								
LOCATION	LATITUDE (X)	38° 31'	, 34.67"	' S	LONGIT	UDE (Y)	148 ⁰ 16	• 27.	34" E			
	FIELD			ND BASIN	1	AREA		BASS ST	RAIT				
	COUNTY		VICTORI			STATE		<u> </u>					
	COUNTRY		AUSTRALIA										
D 4 - 1/14	DESCRIPTIO		EVALUAT	IUN									
DATUM POINTS	Ground Eleva		77	·		 	Ground Level	21					
DATES	Mean Water D	eptn	17th OC	T 1081		TOTAL	Water Level	1st NOV	1081				
HOLE	Depth From	Depth To	Bit Size	No. Of Bits	No. o		Date From	Date To			Logged		
SIZES	98	235	26"	1		D	\$	1 18-10-		20	N		
	235	818	15"	1		0	20-10-8	1 21-10-		10孝	Y		
	818	2571	9 7/8"	7		0	23-10-8	1_11_	81	-	Y		
	ļ	ļ											
	ļ	<u> </u>					ļ						
DRILLING	Depth From	Depth To	Weights	L	Type		L						
FLUID	235	818		то	SEAWA	TER							
	818	2571	то		SEAWA	TER GE	L						
			-	го		· · · · · · · · · · · · · · · · · · ·							
			-	το									
				го									
	ļ	ļ		го			······································						
		ļ	f	ГО	L.,								
WIRELINE LOGGING	Depth From 816	Depth To	Hole Size"	Date Rur 21-10-8		Run DUC M	ISFL-GR						
	2565	804	9 7/B	1-11-8		-MSFL-							
	2565	804	9 7/8	2-11-8		-CNL-G							
	2565	804	9 7/8	2-11-8			ISFL-GR-C	AL					
	2565	804	9 7/8	2-11-8	11 HDT								
	-	-		2/3-11-8	i i		SURVEY						
	-	-		3/6-11-8									
	-	-	9 7/8	6-11-8	1 CST	×2		·			·		
RISER, CASING &	Depth From	Depth To	OD "	ID "	Weight	Grade	Threads	Date Run	Cement	Stages	Excess		
LINER	98	98 229	23	21 19 . 124	94	K55	RISER BUTT	19 OCT 81	"N"	1	 		
	98	804	103	9.875	45.5	ł	, ,	22 OCT 81		1	-		
	70		104	2.013	7000	1,33	00.1			 '			
		 							 	 			
								·					
					-								
		<u> </u>					<u> </u>		<u></u>	<u> </u>	<u></u>		
7520-484 (CL 11	50)												

WELL HISTORY.

WELL HISTORY.

Yellowtail No. 1.

- 17/10/81 Spudded in repositioned rig to wash hole to centre of T.G.B. drilled 26" hole to 235m.
- 18/10/81 Circulated 150 bbls. hi-vis mud. Dropped a survey at 235m (misrun). Flushed the hole with salt water. POOH - 80,000 lbs. of pull between 220m and 104 metres. Retrieved survey on wire line. Attempted to R.I.H., but the hole was blocked off. Reamed and washed the well-bore to the bottom. Spotted 20 bbls of hi-vis pills. Circulated Circulated 150 bbls of hi-vis mud. Dropped a survey, then spotted a second 150 bbls of hi-vis mud. POOH to 104 metres. Retrived survey on wire line (0 $^{\circ}$ at 235m). Attempted to R.I.H., but got blocked off at 107 metres. Washed to 137m. Spotted 30 bbls of high-vis mud and worked pipe for 30 minutes. Reamed and washed to 155 metres. R.I.H. to bottom. Circulated, then pumped 300 bbls of hi-vis mud. POOH to 141 metres, then pumped 50 bbls of hi-vis mud. POOH broke out the 26" hole opener and $17\frac{1}{2}$ " bit. Ran 20" casing. Made up the cement stinger and landing string. Landed the 20" casing in the 4-poster guide frame and bolted in place. Circulated and filled the 20" casing with sea water.
- 19/10/81 Ran 20" casing to 226 metres. Rigged up Chicksans. Washed down 3 metres to land casing. The cement lines were tested to 2000 PSI, and were found to be OK. The casing was set at 229 metres. Cement was mixed and pumped as follows: 627 sacks of class "N" cement, 2263 lbs pre-hydrated gel, 194 bbls water, and 1179 lbs of Calcium chloride. The slurry weight was 12.3 ppg. Tailed with 350 sacks class "N" cement mixed with 43 1/3 bbls of sea water. (The average slurry weight was 15.6 ppg). Displaced with 15 bbls of sea water. Rigged down Chicksans, and backed out the running tool. Strapped out of the hole (well-head at 96.24 metres). The well-head was washed. Made up the riser. Tested choke and kill lines to 5000 PSI and function tested the BOP with both pods. Hooked up choke and kill lines, the rucker lines were seated, and the stack was latched.
- 20/10/81 RIH with test plug. Tested upper pipe rams, choke and kill lines (all OK). A full function test was carried out with both pods. Pulled test plug free and POOH. The wear bushing was set. POOH made up B.H.A., R.I.H., and tagged cement at 220 metres. Drilled cement from 220 to 239 metres. Drilled 15" hole from 239 to 718 metres. 45 units of gas was circulated up at 509 metres, and 70 units at 699 metres. This was suspected to be connection gas because of the short time to drill a kelly.

- Drilled 15" hole from 718 to 818 metres, with back-ground gas of 15-20 units. Connection gas reached 53 units at 803 units. The lithology for the interval was Calcarenite. 50 bbls of hi-vis mud were circulated. Dropped a survey and pumped slug. POOH to shoe. Retrieved survey at the shoe (3/4°). RIH (tight hole at 719m) reamed between 719 727 metres. RIH to bottom at 818 metres. Circulated out 11 units of gas. Pumped slug and POOH strapped out. Schlumberger RIH with ISF, BHC, MSFL, and GR. Made up hanger. RIH circulated out, then POOH.
- 22/10/81 Retrived wear bushing. Ran 10 3/4" casing comprising 60 joints of K55, 45.5 lbs/ft, 706 metres in length, and set at 804 metres. Rigged up HANCO lines. Circulated bottoms up, yielding 2.8 units of gas. Repaired leaks in cement lines. Pumped 30 bbls of fresh water ahead of the cement mixture of 850 sacks cement and 105 bbls of fresh water (slurry weight 15.6 ppg). This was followed by 200 sacks of cement mixed with 25 bbls of sea water (slurry weight 15.6 ppg). Dropped a dart. Pumped 10 bbls of fresh water. The above was displaced with 216 bbls of mud POOH. RIH with wash-tool and wash hanger. POOH. RIH with a seal assembly. Tested the BOP to 5000 PSI. POOH. Made up the BHA.
- 23/10/81 RIH tagged cement at 765m. Drilled out cement float and shoe, and washed the hole to 818 metres. Drilled 9 7/8" hole from 818 824 metres with flow checks. Circulated and conditioned mud for PIT. Run Pit with equivalent mud weight of 13.6 ppg (620 psi with 9.1 mud). Drilled gas increase during the interval, with the peak of 32 units occurring at 1135 metres. There was no sign of connection gas.
- Drilled from 1176 to 1298 metres with flow checks, and flushed the riser. Background gas was 5 units in this interval, and the lithology was limestone. Circulated bottoms up at 1298m. Dropped a survey and pumped slug. POOH. Recovered survey (3°). Made up BHA, then RIH to shoe at 804m. RIH with NB No. 4 and drilled 9 7/8" hole from 1298 to 1402 metres. Trip gas at 1298 metres was 28 units. Gas peaks generally increased towards the bottom of the interval, with 83 units originating from 1378m (including traces of C2, C3, and C4). There was an isolated occurrence of connection gas (24 units) at 1384m.
- 25/10/81 Drilled 9 7/8" hole from 1402 to 1496 metres. Spotted 60 bbls of hi-vis mud. Flushed the riser at intervals. Circulated out. Dropped a survey. (Lithology was Calcarenite, silty in part, with an average background gas of 5 units). SCR at 1412m with 9.1 ppg mud. (Pump 1 : 30 spm = 440 psi; 40 spm = 650 psi;Pump 2: 30 spm = 440 psi; 40 spm = 620 psi). Retrieved survey at the shoe: misrun. POOH. Changed the bit due to low ROP's and RIH to the shoe with bit No. 5 (9 7/8", HTC x 3A, 11, 11, 11). "Slip and cut" the drilling line. Broke circulation. RIH. Broke circulation, then drilled 9 7/8" hole from 1496 to 1506m. Circulated out. Drilled from 1506 to 1510 m. The blocks were dropped and the drilling line was untangled.

26/10/81 Cut the drilling line. POOH, inspected the drill pipe, and then broke out the bit. The damaged kelly was changed out, and the drill collars were inspected. Repaired the rig. RIH with bit No. 6, and all the connections were torqued. The hole was good - no tight spots. Fill was tagged at 1492 metres

27/10/81 Broke circulation and washed the hole from 1492 to 1510m. gas was 80 units. Temporary power failure. Drilled 9 7/8" hole from 1510 - 1618 metres. The hole was tight at each connection, therefore the driller reamed and worked pipe (using 200 bbls of hi-vis mud). SCR at 1580m using 9.0 ppg mud (Pump No. 1: 40 spm = 540 psi, 30 spm = 360 psi). Calcarenite was the lithology and yielded a background gas of 5 to 10 units. Drilled 9 7/8" hole to 1527m at which depth the pipe got stuck. Worked pipe (maximum overpull was 220,000 lbs). Flushed the riser, and circulated bottoms up (20 units of gas obtained). Pumped slug. Continued drilling the 9 7/8" hole down to 1666 metre. (The background gas varied between 5 and 10 units, with maximum drilled gas of 17 units at 1633m). The hole was tight at each connection (reamed and worked pipe, and spotted hi-vis mud at each connection). Spotted 50 bbls of hirvis mud. Circulated bottoms up (7 units of gas). The riser was flushed. A survey was dropped at 1666 metres. Pumped a slug and POOH to the shoe at 804m. The hole was good. Overshot the survey with a wireline $(\frac{1}{2})$. POOH. The pipe was hung off the pipe rams, and the BOP stack was function tested.

28/10/81 Finished POOH and broke out the bit. Made up the BHA and ran in the hole to the shoe at 804m. Hung off the drill pipe and filled it. Finished running in the hole. Broke circulation and washed to the bottom of the well (where there was a 2 metre fill). Drilled 9 7/8" hole to 1675 metres. The hole was tight during connections, so the pipe was worked. Continued drilling down to 1771m (20 bbls of Gel mud was spotted prior to each connection). SCR at 1703 metres. Drilling was continued to 2021m, spotting hi-vis mud as necessary. Another SCR routine was carried out at 2021 metres. Background gas over the interval 1666 - 2021m was 5 to 10 units and the lithology was Calcareous silt-stone. Gas peaks were all below 30 units.

29/10/81 Drilled 9 7/8" hole from 2021 to 2187 metres, spotting hi-vis mud as needed. At 2187m it was decided to pull the bit due to a steady decrease in the average rate-of-penetration over the previous 50 metres, from 30m/hr to 20m/hr. Dropped survey, pumped slug, and POOH. Retrieved survey (2° at T.D.). This drilled interval was Calcareous silt-stone yielding 5-12 units background gas (C_1 with a -race of C_2). Made up wear bushing running tool and RIH. Tested the pipe rams and Tested choke and kill valves and lines. RIH with wear bushing, and set same. POOH. RIH with bit No. 8 (9 7/8" HTC x 3A, 13 x 2, 1 x 14) to 2176 metres. Filled pipe at shoe. Picked up kelly, broke circulation, and washed the hole from 2176 to 2187m (there was a 6m fill). The trip gas was 56 units. Drilled 9 7/8" hole from 2187 to 2231 metres. (Background gas in this interval was 5 - 10 units).

- 30/10/81 Drilled 9 7/8" hole from 2231 2414 metres with flow checks. Samples were circulated up at 2393m, 2398m, 2404m, 2407m (no significant gas readings) and 2414m (62 units of gas).

 Dropped survey at 2414m, and pumped slug. SCR at 2290m. Strapped out of hole since the core point had been reached at 2414m.
- 31/10/81 RIH with core barrel (Christensen C-22, 8 15/22"). Broke circulation and tagged bottom at 2414m. Circulated out. Cut core No. 1: 2414 2424m. Circulated out (maximum gas was 16 units over a background of 11 units). Pumped slug and POOH. Retrieved core No. 1 (71%). The core was 100% sandstone with oil fluorescence throughout. Serviced core barrel and changed the core bit (Christensen C-22, 8 15/22"). RIH to shoe. "Slip and cut" the drilling line. Serviced the rig. RIH to 2407m. Picked up kelly, washed and reamed from 2407 2424m. Cut core No. 2 from 2424 2437.5m (100% sandstone). Pumped slug. POOH using Varco spinning wrench. Recovered core (74%). Serviced core barrel RIH with Bit No. 11 (HTC x 3A, 9 7/8", 3 x 13).
- 1/11/81 Broke out Drillco mud check valve from Kelly. Filled pipe at the shoe. Finished RIH. Washed and reamed from 2409m to 2414m. Reamed core hole from 2414 to 2437 metres. Drilled 9 7/8" hole 2437 2571 metres. Trip gas was 15 units. In this sandstone interval, gas peaked at only 16 units over a background of 3 units. Circulated bottoms up. Dropped survey at 2571 metres (TD). Pumped slug. POOH to shoe, and recovered the survey (2°). RIH to 2559m. Circulated bottoms up (there was a 4 metre fill). Pumped slug. POOH using Varco spinning wrench to the shoe. Rigged up Schlumberger.
- 2/11/81 Ran Schlumberger logs:

Run No. 1 : DLL . MSFL . GR

Run No. 2 : LDT . CNL

Run No. 3 : BHC . ISF . SP . GR

Run No. 4 : HDT

Ran in Schlumberger velocity survey - the line jammed in the sheaves - freed it by splicing.

3/11/81 Rigged up and ran velocity survey (Run No. 5). Rigged down velocity survey. Made up bit RR No. 11. RIH to 800 metres. The Hydrils were function tested on the yellow pod. RIH to 2563m. Picked up kelly, broke circulation, and washed to bottom (1 metre fill). Circulated and conditioned the hole. Pumped slug, and POOH. Hole was tight at 2503m. Worked pipe, pulled back to 2473m. Picked up Kelly, broke circulation and worked pipe. Pulled tight pipe to 2158m. RIH to bottom, 2571m. Circulated and conditioned the hole POOH. Rigged up Schlumberger.

4/11/81 Ran Schlumberger logs:

Run No. 6 : WST

Run No. 7 : First RFT (using 3 check too1).

Recovered sample, serviced RFT tool.

Run No. 8 : Second RFT

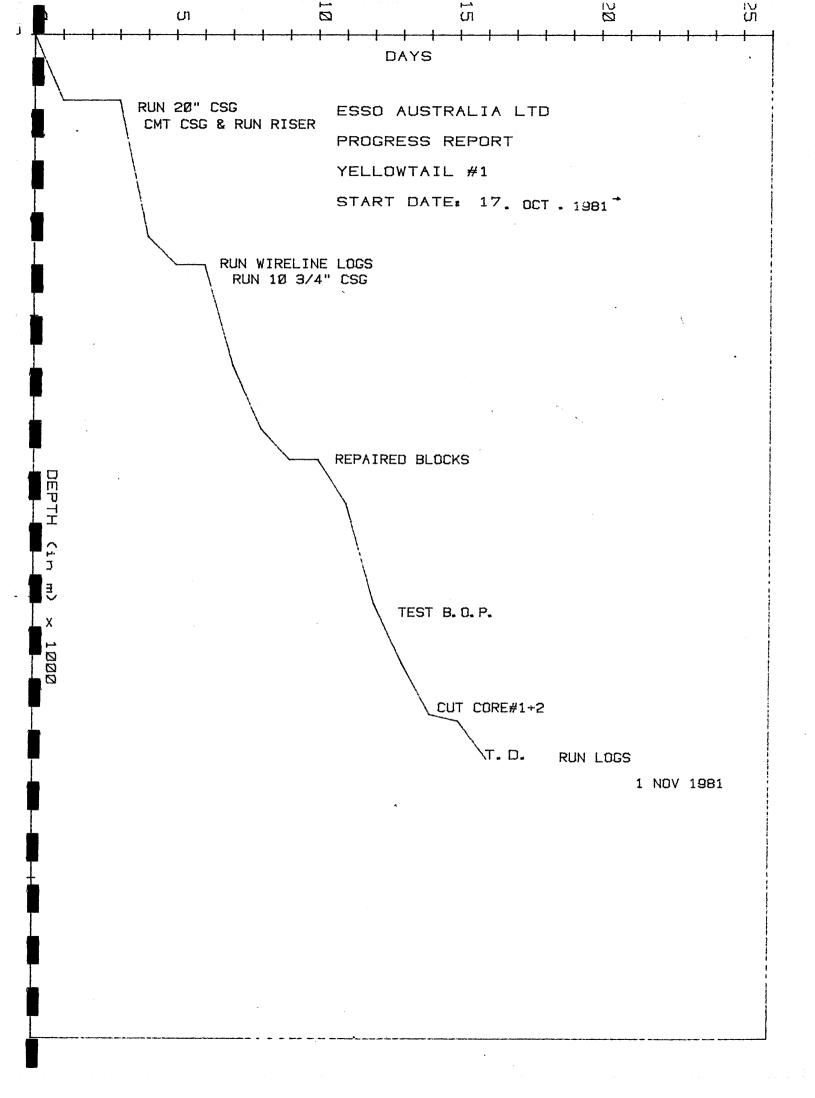
Run No. 9: Third RFT. Rigged down Schlumberger. RIH.

- RIH to 1142m. Picked up Kelly, broke circulation. RIH to 2539m. Tight hole. Laid down 2 singles. Picked up Kelly, broke circulation, and washed and reamed from 2539 2571 metres. Circulated bottoms up. Pumped slug. POOH. Hole was tight from 2427 to 2418 metres. POOH using Varco spinning wrench. Schlumberger run No. 10, 4th RFT. Rig down Schl umberger. RIH to 2360m. Reamed bridge 2371 2435 metres. Reamed 2551 2571m (20 metres of fill). Circulated out. POOH (2571 2416 metres, the hole was tight). Worked pipe free. POOH to 2228m. RIH to 2400m. Reamed from 2400 2418m.
- Reamed from 2418 2502m. Broke off Kelly: RIH to 2549m.

 Picked up Kelly, and reamed from 2549 2571 metres. Circulated out. Pumped 50 bbls of hi-vis slug. Circulated bottoms up.

 Flushed to riser. Spotted 50 bbls hi-weight. Hi-vis slug from 2450 2289m. POOH (tight spot at 2414m). Rigged up Schlumberger. Re-run No. 10 (4th RFT). Recovered sample. Rigged up and ran:

 CST Run No. 1. Cst Run No. 2. Rigged down Schlumberger.


 RIH to 800m. "Slip and cut" 104 feet of drilling line. Picked up and ran 20 joints of drill pipe. RIH to plug and abandon.
- 7/11/81 RIH to 2455m. Rigged up cement lines. Circulated bottoms up. (2.5 units of gas). Tested cement lines OK to 3000 psi. Pumped cement plug No. 1. Pumped 10 bbls of water ahead of 176 sacks of cement mixed with water, and then displaced by 135 bbls of mud. POOH to 2300m. Circulated bottoms up (trace of cement). POOH to 662m. RIH to the shoe. Waited on cement (serviced blocks, draw-works and drill collars). RIH to 2340 and lagged cement. POOH to 835m. Set No. 2 plug at 835m with 202 sacks of class "N" cement. Pulled back to 650m and circulated out. Circulated and cleaned hole. POOH and rigged up Schlumberger. RIH with gauge ring. Schlumberger RIH with bridge plug and set it at 620m.
- 8/11/81 POOH, and rigged up a perforating gun. RIH with the perforator at 180m. POOH. Closed shear rams, attempted to establish injection rate, but failed. Rigged up and RIH with the perforating gun. Second shot at 180m. POOH, and established injection rate of 8 bb1/min at 750 psi. Rigged up and RIH with the cement retainer, set at 165m. POOH. Tagged stinger at 165m. Rigged up Halliburton, established the injection rate, squeezed cement (328 sacks of cement mixed with 47 bbls of seawater, followed by 68 sacks mixed with water above the retainer. POOH to 105m, displacing the cement with seawater. POOH. Tagged in the hole with wear brushing tool, retrieved it, and POOH. Pulled up and rigged down slip joint tool. Disconnected stack. Pulled riser and stack. Rigged up ballast. Made up shot can. RIH and jayed in to base plate. Run wire line primer through drill pipe. Shot. Pulled primer cord out of pipe. Base plate came free pulled to surface. Put on the spider beam.

9/11/81 Pulled and laid down stringer joint and pipe joint.
Rigged down guide frame. Pulled up out of moon pool.
Pulled anchors. Towed to next location.

ail A

PROGRESS REPORT.

20088

BIT RECORD

RIT SIZE inches

BIT COST A dollars

JET SIZE Thirty seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME. . . . Hours

AVERAGE ROP, Metres/hour

AVERAGE COST/METRE . . A dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . inches

BIT RECORD

JAB

COMPANY <u>ESSO AUSTRALIA LTD.</u>
WELL YELLOWTAIL No. 1

Sheet No. _____

Seria	al	NO.
LW 7	81	34
NX	22	29
SN	96	58
SM	3	99
SM	7:	28
SM	2	99
SN	1	71
SP	0	19
81E-0	191	81
81E-	-09	96

WW 379

		- Manusand	TT be be be		,								Stiect No.	
Bit	t No.	Make	Туре	IADC Code	Size	Jets $\frac{1}{3}$ 2	Depth In	Hole Mad e n	Drilling Time	On Bottom Hours	(Turns	Condition T B G	Remarks	A\$ Cost
	1	HTC	OSC 3AJ	111	17 2 26	20 20 20 20 20 20	98	137	8.0	***		-	Out for 20" Csg	
	2	HTC	OSC 3AJ	111	15	20 20 18	235	583	16.5	7.5	75	1	Out for 10%" Csg	2000
	3	нтс	X3 A	114	9 7/8	11 11 11	818	480	21.0	13.2	117	$56\frac{1}{8}$		900
	4	нтс	X3A	114	9 7/8	11 11 11	1298	198	22.0	17.9	165	3 5 I	Broken tooth	900
	5	HTC	ХЗА	114	9 7/8	11 11 11	1496	14	2.0	1.2	10	2 3 Pno	d. Dropped blocks damaging Kelly	900
	6	HTC	X3A	114	9 7/8	11 11 11	1510	156	16.7	10.0	75	2 5 I	Tight hole 1627m	900
	7	HTC	X3A	114	9 7/8	13 13 13	1666	521	28.0	19.5	149	4 5 I		900
	8	HTC	X3A	114	9 7/8	13 13 14	2187	227	14.2	9.7	74	7 8 I	Out for Core No. 1	900
	9	CHRIS	C-22 FD	4		TFA 0.42	2414	10.6	1.8	1.8	11	80%	71% Recovery	15000
1	0	CHRIS	C-22 FD	4	8 75	TFA 0.42	2424.6	13.0	1.5	1.5	9	80%	74% Recovery	15000
1	1	HTC	ХЗА	114	9 7/8	13 13 13	2437.6	133.4	8.0	5.6	42	4 3 I	Out for wireline logs	900
							2571							
				,										
													,	
														1
		i												
-														
-														
-				-										<u> </u>
			L	<u></u>	<u></u>				L		L			

COMPANY _ESSO AUSTRALIA LTD

WELL YELLOWTAIL No. 1

Sheet No.

erial No.

MJ 804

NX 229

SN 968

SM 399

SM 728

SM 299

SN 171

SP 019

1E-0981

81E-096

WW 379

	71.02	WELL		MIVIL				-					Sne	et No. ——	
Bit N		Туре	IADC Code	Size	A Cost \$	Jets 32		M Depth Out	Hole m Made	Time	On Bottom Hours	K Turns	Average ROP	A Average \$ Cost/	Condition T B G
	HTC	OSC 3AJ	111	17 2 26		20 20 20 20 20 20	98	235	137	8.0	-	-	-	-	-
2	2 HTC	OSC 3AJ	111	15	2000	20 20 18	235	818	583	16.5	7.5	75	77.9	i	
:	3 HTC	X 3A	114	9 7/8	900	11 11 11	818	1298	480	21.0	13.2	117	36.2	114.27	
	HTC	X3A	114	9 7/8		11 11 11	1298	1496	198	22.0	17.9	165	11.0	371.05	
	5 HTC	X3A				11 11 11	1496	1510	14	2.0	1.2	10	11.6		
	5 HTC		114	9 7/8		11 11 11	1510	1666	156	16.7	10.0	75	15.6	297.12	
•	7 HTC	X3A	114	9 7/8		13 13 13	1666	2187	521	28.0	19.5	149	26.7		
	в нтс	X3A	114	9 7/8 15	900	13 13 14	2187	2414	227	14.2	9.7	74	23.2	213.43	7 8 I
	CHRIS	C-22 FD	4	8 32	15000	TFA 0.42	2414	2425	10.6	1.8	1.8	11	5.4	3589.60	80%
11	CHRIS	C-22 FD	4	8 32	15000	TFA 0.42	2425	2438	13	1.5	1.5	ģ	8.7	2627.73	80%
1	1 HTC	X3A	114	9 7/8	900	13 13 13	2438	2571	133	8.0	5.6	42	23.6	260.79	4 3 I
			٠												
			·												
			-												
											2		}		

			-												

7520-486 (CL 1152)

MUD INFORMATION SHEETS

DEPTH Metres

MUD WEIGHT Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I. seconds

PLASTIC VISCOSITY, , , Centipoise

YIELD POINT. Pounds/100 square feet

GEL : Initial/10 min , Pounds/100 square feet

FILTRATE A.P.I. cc

CAKE THICKNESS . . . Thirty seconds of an inch

SALINITY: Ca/C1 . . . ppm

SOLIDS/SAND/OIL. , , . Percentage

MUD INFORMATION SHEET

COMPANY_ ESSO AUSTRALIA LTD. WELL____YELLOWTAIL No. 1

L YELLOWTAIL No. 1 Sheet No. 1

DEPTH	235	718	818	906	1150	1314	1402
DATE	18/10	20/10	21/10	23/10	23/10	24/10	24/10
TIME			06:45	13:00	22:30	14:00	23:00
WEIGHT	8.6	8.6	9.0	9.0	9.1	9.1	9.3
FUNNEL VISCOSITY			33	45	33	30	33
PV/YP	S	5	5/15	4/22	4/19	4/13	5/16
N/K	E ·	E			-	-	_
GEL: INITIAL/10 MIN	. A	Α	10/11	11/31	9/22	7/18'	9/18
pH	W	W	9.0	9.1	8.8	8.2	8.3
FILTRATE: API/API HTHP	Α	Α `	-	*** .	_	-	_
CAKE	T	T	-	÷	-	_	i 🕶
SALINITY	Ε .	E	11K	14K	13.5K	13.5K	_
SAND	R	R	-	Tr'	0.25	0.25	0.25
SOLIDS	1.		-	4	4	4	5
OIL			-	-	_	_	-
Ca PPM	•		720	-	_	_	_
							

REMARKS:

DEPTH	1450	1512	1512	1665	2020	2205	2300
DATE	25/10	25/10	26/10	27/10	28/10	29/10	30/10
TIME	09:15	23:30	24:00	21:00	22:00	23:15	08:30
WEIGHT	9.3	9.0	9.0	8.8	8.8	8.9	9.5
FUNNEL VISCOSITY	34	34	32	27	27	33	42
PV/YP	5/15	6/16	4/16	S	5	5/12	10/15
N/K		-	-	Ε	E	-	-
GEL: INITIAL/10 MIN	8/18	8/18	8/18	Α	A	4/10	4/17
рН	10.1	10.0	10.0	W	Ш	4.2	10.8
FILTRATE: API/API HTHP	_		_	Α	Α	4.4	8.4
CAKE				Т	Т	3	1
SALINITY	14.5K	1 5K	1 5K	E	Ε	18.2K	16.5K
SAND	0.25	0.25	0.25	R	R	0.25	Tr
SOLIDS	4	4	5			5	7
OIL	_	-	_	G	G	-	_
Ca ⁺⁺ PPM	420	520	54.0	Ε	E	800	120
				L	L		
		•					

REMARKS:

		SSO AUSTR			MUD IN		ON SHEET
WE WE	ELL Y	'ELLOWTAIL	No. 1			Sh	eet No. 2
DEPTH	2407	2421	2432	2534			
DATE	30/10	31/10	31/10	1/11			
TIME	15:00_	04:00	16:30	10:30			
WEIGHT	9.5	9.5	9.5	9.5			
FUNNEL VISCOSITY		1	1				
PV/YP	12/18	11/17	11/15	42 10/15			
N/K	-	-					
GEL: INITIAL/10 MIN	7/25	4/22	3/18	4/17		•	
рH	10.7	10.5	10.0	10.7			
FILTRATE: API/API HTHP	7.4	7.5/15	7/14.2	7.6/14.8			
CAKE	1	1-3	1-3	1-3		•	
SALINITY	15.5K	15.5K	15.2K	15.2K		•	
SAND	Tr	Tr	Tr	0.25			
SOLIDS	8	7	7	7			•
OIL	-	-	-	-			
Ca ⁺⁺ PPM	120	120	160	120			
REMARKS:		<u> </u>	·			<u> </u>	
•							
1				•			
		•		•			
DEPTH				r			
DATE				 			
TIME				 			
WEIGHT				l			
FUNNEL VISCOSITY	· · · · · · · · · · · · · · · · · · ·			 			
PV/YP				 			
N/K				 		•	
GEL: INITIAL/10 MIN							
pH							
FILTRATE: API/API HTHP							
CAKE							
SALINITY							
SAND							
SOLIDS							
OIL	-						
			1				
REMARKS:				<u> </u>			
			•				. 1
		•	•				Î
٠.							ì

GEOLOGICAL SUMMARY.

GEOLOGICAL PROFILE.

The main objective of the well was to asses the hydrocarbon potential of a low relief erosional high at the top of the Latrobe (2389m RKB) southwest of the Macheral Oil Field and north-east of the King Fish Oil Field.

(Note: All depths are from RKB) GIPPSLAND FORMATION 98m - 1634m.

As predicted the predominant lithology in this section was found to be limestone. The limestone was formed to be calcaranitic, light to dark grey, occasionally tan, firm to medium grained, occasionally sandy to silty in part, and slightly carbonaceous, and with abundant traces of shell fragments at the top of this section, and gradually diminishing in part towards the lower part of this section. Fossils were quite apparent to a minor extent, and traces of dolomite and glauconite were also observed. The other major lithology in this section was sandstone, occuring as minor stringers from 300m, and steadily increasing in thickness to 325m. The sandstone was formed to be clear to white, occasionally light brownish-yellow, grading from medium to coarse grains, well rounded, poorly sorted, and with traces of shell fragments and fossils. Background gas averaged from 2 to 15 units. The maximum gas was about 100 units at 1269 metres.

LAKES ENTRANCE 1634 metres to 2405 metres.

The top portion of this section was found to be limestone, which was quite similar to those described in the Gippsland Formation. Siltstone was encountered as thin seams, and gradually increasing in thickness with depth. The siltstone was light grey to grey, sticky, blocky, very calcaneous, moderately hard, fissile to sub-fissile, and occasionally with either a carbonaceous or sandy matrix. Traces of pyrite and gelauconite, forams were present throughout this section. Towards the base of this zone at 2400m - 2405m, sandstone was present. The sandstone being clear to smoky, coarse to very coarse grained, sub-rounded, moderately sorted, unconsolidated, with moderate intergranular porosity. Background gas averaged about 10 units and the maximum gas was about 60 units at 2405m, Cl to C6 were also present towards the base of this section, and a bright white to pale yellow fluorescence with a fast streaming white cut was observed.

TOP OF GURNARD FORMATION 2405m to 2410m.

Sandstone was the predominant lithology encountered in this section. The sandstone was found to be similar to those described in the above sections. The gas reading was about 50 to 60 units, with C1 to C6 present throughout and the fluorescence was very similar to those of the above section.

TOP OF CLUSTIC TO T.D. 2410m to 2571m.

Two cores were cut consecutively in this zone, the first core was from 2413.6m to 2422.5m and the second was from 2422.5m to 2437.5m and details of the recovery can be found at the tail end of the grapholog. Drilling resumed after coring and major lithologies encountered were sandstone, siltstone and shale. Sandstone was clear to light grey, coarse to very coarse grained, sub-angular to sub-rounded, well sorted and with minor traces of pyrite. Siltstone was similar to those of the above section, and slowly becoming more shaly with depth. Shale was gray to dark gray, slightly calcaveous, sub-fissile, firm to very hard. Average background gas was about 2 - 6 units and the maximum gas in this section was about 15 units @ 2541m, with no significant shows.

OVERBURDEN GRADIENT CALCULATIONS

DEPTH metres

BULK DENSITY gm/cc

OVERBURDEN PRESSURE INCREMENT .psi

CUMULATIVE OVERBURDEN PRESSURE .psi

OVERBURDEN PRESSURE GRADIENT . .psi/ft

OVERBURDEN EQUIVILANT DENSITY .Pounds per gallon

BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, OR FROM SONIC LOG FOR SECTIONS WHERE THE F.D.C.LOG IS NOT AVAILABLE.

OVERBURDEN AND STRESS RATIO WORK SHEET

COMPANY ESSO AUSTRALIA LTD. WELL YELLOWTAIL NO.1

	WEL WEL	L YE	ELLOWTAIL	ND.1			S	heet No1	
DEPTH	То	Average Bulk Density	Overburden Pressure Increment	Cumulative Overburden Pressure	Overburden Pressure Gradient	Overburden Equivalent Density	Fracture Equivalent Density	Pore Pressure Equivalent Density	Stress Ratio
M	M	gm/cc	PSI	PSI	PSI/FT	ppg EMW			
0	98	1.02	43.28	43.28	•442	8,49			
98	350	2.0	218.23	262.51	.7 50	14.42			
350	500	2.15	139.64	402 .1 5	. 804	15.46			
500	600	2.18	94.394	496.54	.827	15.91			
600	700	2.21	95.693	592.23	. 846	16.27			
700	818	2.25	114.96	.707.19	.864	16.62			
818	825	2.28	6.910	714. 90	.865	16.64			
825	850	2.28	24.681	738.81	•869	16.71	`.		
850	895	2.31	45.01	783.82	.875	16.84			
895	900	2.27	24.57	808.39	.898	17.27			
900	925	2,26	24.46	832.85	•900	17.31			
925	950	2.26	24.46	857.31	•902	17.35			
950	975	2.27	24.57	881.88	• 904	17.39			
975	1000	2.29	24.78	906.66	•906	17.43			
1000	1025	2.30	24.89	931.55	.908	17.47			
1025	1050	2.30	24.89	956.44	.910	17.51			
1050	1075	2.31	25.00	981.44	.912	17.55			
1075	1100	2.33	25.22	1006.66	.915	17.59			
1100	1 125	2.34	25.33	1031.99	.917	17.64			
1125	1150	2.32	25 . 1 1	1057.10	.919	17.67			
1150	1175	2.33	25.22	1082.32	.921	17. 71			
1175	1200	2.34	25.33	1107.65	.923	17.75			
1200	1225	2.36	25.54	1133.19	•925	17.78			
1225	1250	2.39	25.87	1 159.06	•927	17.83			
1250	1275	2.41	26.08	1185.14	.929	17.87			
1275	1300	2.42	24.10	1209.24	• 930	17.88			
1300	1325	2,44	26.41	1235.65	.932	17.93			
1325	1350	2.45	26.52	1232.17	• 934	17.97			
1350	1375	2.45	26.52	1258.69	•915	17.60			
1375	1 400	2.45	26,52	1285.21	.918	17.65			
1400	1425	2.45	26.52	1311,73	.920	17.70			
1425	1450	2.46	26.62	1338.35	.923	17.75			
7520-498 (CL 1	1164)			······································					

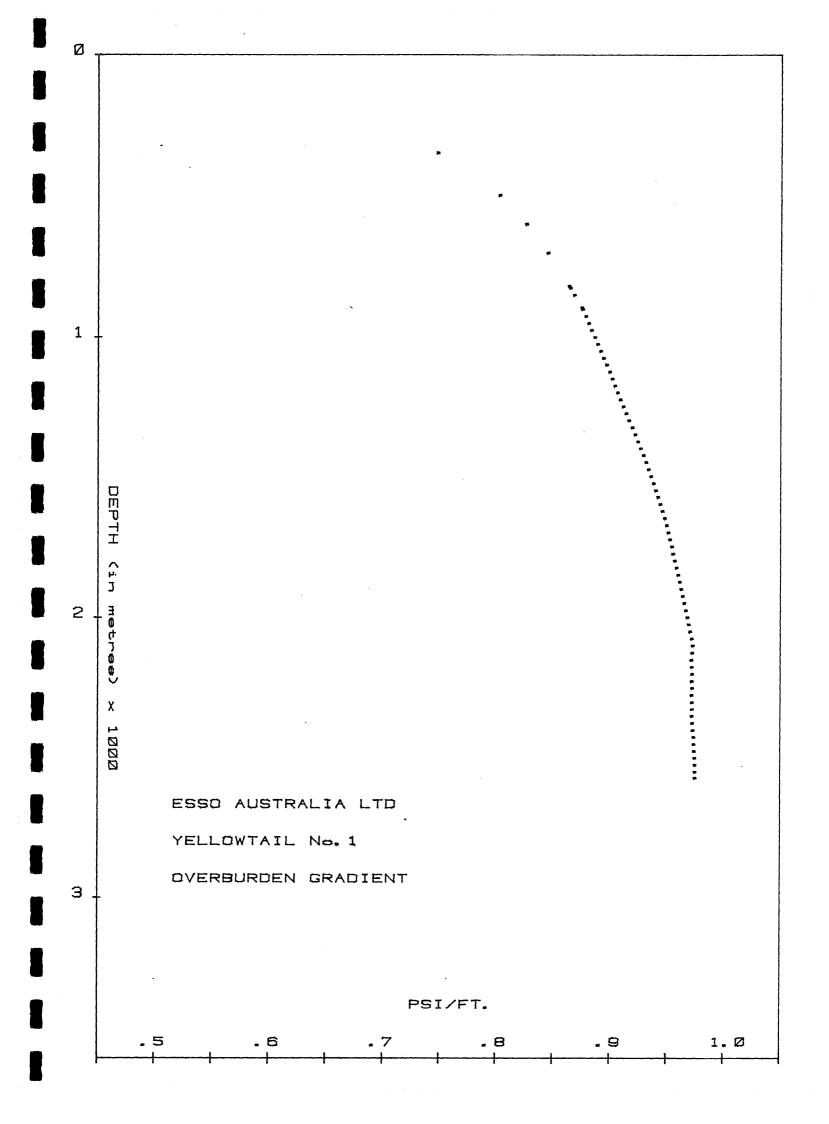
() JAB

OVERBURDEN AND STRESS RATIO WORK SHEET

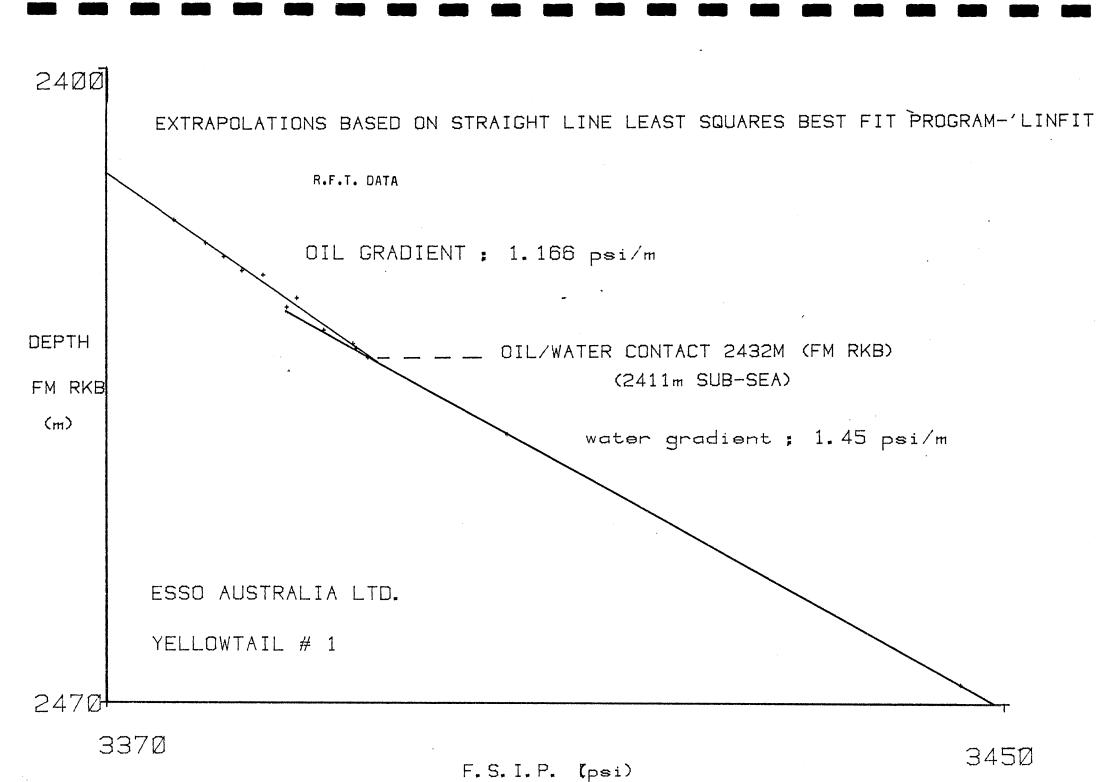
COMPANY ESSD AUSTRALIA LTD.

WELL YELLOWTAIL NO.1 Sheet No. 2

MATION	WEL.	L	LLUWIAIL				51	heet No4	•
DEPTH From	То	Average Bulk Density	Overburden Pressure Increment	Cumulative Overburden Pressure	Overburden Pressure Gradient	Overburden Equivalent Density	Fracture Equivalent Density	Pore Pressure Equivalent Density	Stress Ratio
M	m	gm/cc	PSI	PSI	PSI/FT	ppg EMW			
1450	1475	2.46	26.62	1364.97	.925	17.79			
1475	1500	2,47	26.73	1391.70	.927	17.84			
1500	1525	2.46	26.62	1418.29	•930	17.88			
1525	1550	2.45	26.52	1444.81	•932	17.92			
1550	1 5 75	2.46	26.62	1471.43	• 934	17.96			
1575	1600	2.47	26.73	1498.16	•936	18.00			
1600	1625	2.47	26.73	1528.89	• 940	18:09			
1625	1650	2.47	26.73	1551.62	•940	18.00			
1650	1675	2.46	26.62	1578.23	•942	18.11			
1675	1700	2.43	26.30	1640.53	.943	18.15			
1700	11725	2.43	26.30	1630.83	•945	18.18			
1725	1750	2.45	26.52	1657.35	.947	18.21			
1750	1775	2.42	26.19	1683.54	•962	18.50			
1775	1800	2.44	26.41	11709.95	•949	18.26			
1800	1825.	2.46	26.62	1736.57	•951	18.29			
1825	1850	2.46	26.62	1763.19	•95 3	18.32			
1850	1875	2.46	26.62	1789.81	• 954	18.35			
1875	1900	2.46	26.62	1816.43	•956	18.38			
1900	1925	2.46	26.62	1843.05	.957	18.41			· ·_ ·_ ·_ ·_
1925	1950	2.47	26.73	1869.78	.958	18.43	 		
1950	1975	2.47	26.73	1896.51	.960	18.46			
1975	2000	2.47	26.73	1923.24	.961	18.49			
2000	2025	2.47	26.73	1949.97	.962	18.51			
2025	2050	2.47	26.73	1976.70	•964	18.54			
2050	2075	2.48	26.84	2003.54	.965	18.56			
2075	2100	2.41	26.08	2029.62	•966 ·	18.58			
2100	2125	2.16	23.08	2053.80	.966	18.57	· · · · · · · · · · · · · · · · · · ·		
2125	2150	2.13	23.05	2076.05	.965	18.56			
2150	2175	2.33	25.22	2101.27	.966	18.57			
2175	2200	2.26	24.46	2125.73	•966	18.58			
2200	2225	2.20	23.81	2149.54	.966	18.57			
2225	2250	2.30	24.89	2174.43	.966	18.68			


OVERBURDEN AND STRESS RATIO WORK SHEET

COMPANY ESSO AUSTRALIA LTD.


YELLOWITATI NO. 1

		WEL	L YE	LLOWTAIL	NO.1		-	Si	heet No	3
	DEPTH From	То	Average Bulk Density	Overburden Pressure Increment	Cumulative Overburden Pressure	Overburden Pressure Gradient	Overburden Equivalent Density	Fracture Equivalent Density	Pore Pressure Equivalent Density	Stress Ratio
	M	M	gm/cc	PSI	P5 1	PSI/FT	ppg EMW			
	2250	22 7 5	2.20	23.81	2198.24	• 966	18.58			
	2 2 7 5	2300	2.26	24.46	2222.70	•966	18.58			
7	2300	2325	2.26	24.46	2247,16	•966	18.58			
	2325	2350	2.22	24.03	2271.19	•966	18.58			
	2350	2375	2.31	25.00	2296.19	.966	18.58			
	2375	2400	2.36	25.54	2321.73	•967	18.60			
	2400	2425	2.43	26.30	2348.03	•968	18.62			
	2425	2450	2.23	24.57	2372.60	•968	18.62	` .		
	2450	2475	2.33	25.22	2397.82	•968	18.62			
	2475	2500	2.30	24.89	2422.71	.969	18.63			
	2500	2525	2.31	25.00	2447.71	.969	18.63			
	2525	2550	2.28	24.68	2472.39	• 969	18.63			
	2550	2571	2.27	20.64	2493.03	•969	18.63			
	_									
			·							
1										
					•					
ľ	E20 408 /CL 1									

7520-498 (CL 1164)

R.F.T. DATA.

COPE LABORATORIES INTERNATIONAL

PORE PRESSURE DATA SHEET

DATA FROM R.F.T. PRETESTS

COMPANY : ESSO AUSTRALIA LTD.

WELL	: YELLOWTAI	L No 1		
DEPTH (FROM RKB _.)	DEPTH (FROM MSL)	PORE PRESSURE	PORE PRESSURE GRADIENT E.M.W.(MSL)	PORE PRESSURE GRADIENT
m	m	P.S.I.A.	P.P.G. E.M.W.	P.S.I./FT.
2468.0	2447.0	3450.1	8•26	•429
2440.5	2419.5	3203.9	7.76	•403 ·
2432.0	2411.0	3385.2	8.23	. 428
2431.0	2410.0	3388.5	8•23	•428
2429.0	2408.0	3467•2	8.43	•439
2426.5	2405.5	3337•2	8.13	•423
2422.5	2401.5	3309.6	8.10	•420
2421.0	2400.0	3361.6	8.21	.427
2419.5	2398.5	3376.8	8.26	•429
2417.0	2396.0	3357.8	8.21	.427
2430.5	2409.5	3393.3	8•25	.429
2425.5	2404.5	3387.0	8.25	•429
Separation of the second secon	C Supplier remain real relationship of Supplier Trials			
от дани и при принципа и при дани и пригодина	an an immension (man) of a fighteen decomposition (fightee)	Table 1	And the state of t	
COLUMN COLUMN PER STATE OF THE	And the second s	4	ş	
	en i sammen der der servingen vol. Sammen. I der der der der de de de der de d I	or ga transporter analysis of Sign 1911. I Sign 1944 was arranged to see the		
	A STATE OF THE STA	a mpanilane i paragrafaya nga kanggahupi a limata kala di dalaganganganan di ga Ba Ba Ba Ba	general in the properties of the first of the company of the compa	THE CONTRACTOR OF THE PARTY STATES AND ADDRESS OF THE PARTY ST
	k - menengangangan kanalah kemangan dan beberah b		ana and an angles of the second of the secon	والمهورة والمواركة والمراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة المراجعة
THE STATE OF THE S	aga maga mining aga aga aga aga aga aga aga aga aga a	The second secon	مۇمىيون ئېلىسىدىن يىدىور سىد : :	প্রতার স্থানির স্থান হিচাপে স্থানির সংস্থান সংস্থান সংস্থান সংস্থান সংস্থান সংস্থান সংস্থান সংস্থান সংস্থান সং
	And the their section of the contract of the c	S S S S S S S S S S S S S S S S S S S	1 	and the second section of the second second second second section section second secon
و . و الراب المنافع المنافعة المن و المنافعة	and the second s	The state of the s	rancing and range	a go as seen seen

F.I.T/R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES COMPANY ESSO AUSTRALIA LTD. WELL YELLOWTAIL No 1 PRESSURE GAUGE TYPE 1. 2. CHAMBER No. CHAMB. 1. CHAMB. 2. 2.75 CHAMBER CAPACITY(gal CHOKE SIZE OIL PROPERTIES CONT. 11 11 SEAT No. SMELL 2417 2417 DEPTH (m) (frm.RKB) POUR POINT A RECORDING TIMES HH:MM:SS | HH:MM:SS COMMENTS TOOL SET . . (c)WATER PROPERTIES: PRETEST OPEN 06, 00, 1 @ O RESISTIVITY 0.3 @ 27C (m m) TIME OPEN 00: 93: 00:01: Cl (frm. resis.)(ppm) Cl (frm. titrat)(ppm) 14.5 K CHAMBER OPEN 06, 05, 06:11: 14.2 K CHAMBER FULL 06: 10: 06:14: NO3 30 (ppm) FILL TIME 00: 05: 00:03: Ha START BUILD UP 06: 08: 06:13: OTHR. TRACERS FINISH BUILD UP 06: 09: 06:14: DENSITY BUILD UP TIME 00: 01: 00:01: FLUORESCENCE SEAL CHAMBER 06: 10: 06:17: COLOUR TOOL RETRACT 06:19: 06: 10: COMMENTS TOTAL TIME 00: 10: 00:08: BISAMPLE PRESSURES (d) OTHER SAMPLE IHP 3950 (psi) PROPERTIES ISIP 3371.5 psia IFP E.MUD PROPERTIES: 2462 2998 psia FFP 3370 2892 TYPE psia FSIP @ D RESISTIVITY psia 3375.5 3376.0 (2 D FHP Cl (frm.resis.) (psid 3954 TEMP. CORR. if app Cl (frm.titrat.) COMMENTS NO3Drld/1st. circl C TEMPERATURE рΗ DEPTH TOOL REACHED OTHER TRACERS MAX. REC. TEMP. 88 88 DENSITY. TIME CIRC. STOPPED TIME SINCE CIRC. F. GENERAL COMMENTS • DISAMPLE RECOVERY SURFACE PRESSURE (psig 80 VOL. GAS 1,5 cf) VOL. DIL 2.15 VOL. WATER 2.0 VOL. FILTRATE VOL. CONDENSATE VOL. OTHER ELSAMPLE PROPERTIES (a)GAS COMP.C1 69 120 (ppm) NOTE: Gas volume does not take liquid 80 819 displacement into account, unless noted (ppm) 9 873 C3 (ppm Take mud nitrates when tested zone was 1 886 ppm drilled and last circulation. C₅ 96 (ppm) 12 (ppm) Unless otherwise hoted, pressures are (% 3.0 temperature corrected. (ppm) NIL Chamber 1 is the first chamber to be (b) DIL PROPERTIES opened. 0 DENSITY : HYDROMETER 47.1@60°F n (A.P.I.) REFRACTOMETER @ D COLOUR FLUORESCENCE white G.D.R. cf/bbl 111

F.I.T/R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES WELL YELLOWTAIL No 1 ESSO AUSTRALIA LTD COMPANY H.P. PRESSURE GAUGE TYPE 2 RUN No. 2. CHAMBER No. CHAMB. 2. CHAMB. 1. 2분 CHAMBER CAPACITY (gall 23 CHOKE SIZE (snin) OIL PROPERTIES CONT. 14 13 SEAT No. SMELL 2425.5 2430.5 DEPTH (m) (frm.RKB) POUR POINT ALRECORDING TIMES HH:MM:SS HH:MM:SS COMMENTS TOOL SET : : : : (c)WATER PROPERTIES: 13 :50: PRETEST OPEN 14 127 1 @ D ō RESISTIVITY 00,01: TIME OPEN 80:01: Cl (frm. resis.) CHAMBER OPEN 13:56: 14 :28 : 17 800 Cl (frm. titrat)(ppm 14 600 CHAMBER FULL 14:02: 14:34: NO3 maa 25 - 0 00:06: FILL TIME : 80: 00 рΗ START BUILD UP 14:02: 14 :34 : OTHR. TRACERS 14 : 04 : 14 :36 : FINISH BUILD UP DENSITY 00:02: 00:02: BUILD UP TIME FLUORESCENCE 14 :34 : SEAL CHAMBER 14:04: COLOUR 14:05: 14 :37 : TOOL RETRACT COMMENTS TOTAL TIME : : : : SAMPLE PRESSURES (d) OTHER SAMPLE 3964 3966 psig IHP **PROPERTIES** 3393.3 3387.0 ISIP psià 2592 167. E.MUD PROPERTIES: psià IFP 2029.7 3215 FFP psia TYPE 3387.0 3392.6 FSIP psia RESISTIVITY **a a** ם (xpsia 3974. 3965 FHP Cl (frm.resis.)(TEMP. CORR. if apg Cl (frm.titrat.) COMMENTS NOgDrld/1st circ(CLTEMPERATURE DEPTH TOOL REACHED(OTHER TRACERS 93 93 MAX. REC.TEMP. TIME CIRC. STOPPED DENSITY. F GENERAL COMMENTS TIME SINCE CIRC. SAMPLE RECOVERY HAD PART-SURFACE PRESSURE (PSig) O 0.16 0.50 IAL PLUGG cf) VOL. GAS ING VOL. OIL **PROBLEMS** VOL. WATER 10.4 9.4 VOL. FILTRATE VOL. CONDENSATE VOL. OTHER SAMPLE PROPERTIES (a)GAS COMP.C1 42 458 NOTE: Gas volume does not take liquid (ppm) 25 976 displacement into account, unless noted (ppm) 35 824 C_3 (ppm) Take mud nitrates when tested zone was 20 474 (ppm) drilled and last circulation. 4 124 pom 12 Unless otherwise hoted, pressures are + (ppm) $\overline{CO_2}$ % 14 temperature corrected. NIL NIL Has (ppm) Chamber 1 is the first chamber to be (b)OIL PROPERTIES opened. 0 0 (ai DENSITY : HYDROMETER **a** 0 0 @) REFRACTOMETER a COLOUR **FLUORESCENCE** G.O.R.

(

F.I.T/R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES COMPANY ESSO AUSTRALIA LTD WELL YELLCWTAIL No 1 PRESSURE GAUGE TYPE H.P. RUN No. 1. CHAMBER No. CHAMB. 2. CHAMB. 1. CHAMBER CAPACITY(gal .020 .030 CHOKE SIZE (sgin DIL PROPERTIES CONT.: 15 SEAT No. SMELL 2423.5 2427 DEPTH (m) (frm.RKB) POUR POINT HH:MM:SS ALRECORDING TIMES HH:MM:SS COMMENTS 1918: TOOL SET 19:05: (c)WATER PROPERTIES: 19, 18, PRETEST OPEN 19:05: 0.36700 0.30 @70F RESISTIVITY (m g)00:03: TIME OPEN 00:04: 14 .8 K 14.4 K Cl (frm. resis.)(ppm) 19:24: CHAMBER OPEN 19:09: 14.8 K Cl (frm. titrat)(ppm) 14.2 K 19:32: CHAMBER FULL 19:19: 15 (ppm) 00:07: FILL TIME 00:04: 7.3 8.1 ρΗ 19:13: 19:32: START BUILD UP OTHR.TRACERS 19:35: FINISH BUILD UP 19:15: DENSITY 00:02: 00:03: BUILD UP TIME FLUORESCENCE 19:36: SEAL CHAMBER 1915 : COLOUR 19:37: 19: 15: TOOL RETRACT COMMENTS FILTRATE TOTAL TIME : : FILTRATE : : B SAMPLE PRESSURES (d) OTHER SAMPLE 3952 3956 IHP (osia) **PROPERTIES** 3380 3382 ISIR (psia) 44 E MUD PROPERTIES: IFP 2607 (osia) 1622 TYPE FFP (psia) 3381.6 0 3384.6 @ **a** RESISTIVITY FSIP (osia) 3950 3955 Cl (frm.resis.)(FHP (osiq) Cl (frm.titrat)(TEMP. CORR. if app NO3Drld/1st. circ(COMMENTS **CLTEMPERATURE** DEPTH TOOL REACHED (m) OTHER TRACERS 93 MAX. REC.TEMP. 93 TIME CIRC. STOPPED TIME SINCE CIRC. DENSITY. F.GENERAL COMMENTS D SAMPLE RECOVERY SURFACE PRESSURE (psid) <u>1</u>1 70 .45 VOL. GAS .50 (cf 9.5 VOL. OIL 9.9 VOL. WATER VOL. FILTRATE VOL. CONDENSATE VOL. OTHER E.SAMPLE PROPERTIES (a)GAS COMP.C1 20 655 16 826 NOTE: Gas volume does not take liquid (pom) 11 835 10 014 displacement into account, unless noted (ppm) 11 782 C3 14 244 (maa) Take mud nitrates when tested zone was 6 581 8 130 (maa) drilled and last tirculation. 1 478 1 747 C₅ (mag 10 10 Unless otherwise hoted, pressures are ppm/ C02 temperature corrected. %) 6 200 + H2S ppm) Chamber 1 is the first chamber to be (b)OIL PROPERTIES opened. 0 a 0 DENSITY : HYDROMETER **(a**) <u>a</u> 0) REFRACTOMETER 0 a COLOUR FLUORESCENCE

G.O.R.

CORE LABORATORIES

F.I.T/R.F.T. DATA SHEET - SAMPLING DATA

COMPANY ES	SSO AUSTRALI	IA LTD.	WELL YELLOWTAIL No 1
RUN No.	4	PRES	SSURE GAUGE TYPE H.P.
CHAMBER No.	1	2.	CUAMD 4 CUAMD 3
CHAMBER CAPACITY (gal)	6.0	2.75	CHAMB. 1. CHAMB. 2.
CHOKE SIZE (sqin)	0.040	0.020	TOTAL DEGREE CONTA
SEAT No.	17	17	OIL PROPERTIES CONT.
DEPTH (m) (frm.RKB)	2425.7	2425.	DOUB BOTTLE (D)
A RECORDING TIMES	HH:MM:55	HH:MM:SS	SI FOOK FOINT
TOOL SET	09:37:	: :	COMMENTS
PRETEST OPEN	09:40:	: :	(c)WATER PROPERTIES:
TIME OPEN	00:02:	00 01	(12313114111 (31)
CHAMBER OPEN	09:44:	10:05:	Cl (frm. resis.)
CHAMBER FULL	09 48 :	10:14:	Cl (frm. titrat)()
FILL TIME	00 104 1	00 :12 :	NO ₃
START BUILD UP	09:48:	10 :14 :	pH STUD TRANSFOR (
FINISH BUILD UP	09 :50 :	10:19:	OTHR.TRACERS ()
BUILD UP TIME	00:02:	00 401 :	DENSITY
SEAL CHAMBER	09 :50 :	10 20:	FLUORESCENCE TO THE SOURCE TO
- TOOL RETRACT	1 1	10 20 :	COLOUR
TOTAL TIME	: 1	: :	COMMENTS
B SAMPLE PRESSURES			CA) DTUED CAMPLE
IHP (psid			(d) OTHER SAMPLE
ISIP (psià			PROPERTIES
IFP (psid		568 .	E MUD PROPERTIES:
FFP (psia		890	TYPE
FSIP (psia		3384.6	RESISTIVITY (nm) D.34@270U @ 0
FHP (psid		4045.9	Cl (frm.resis.)()
TEMP. CORR.if app()			Cl (frm.titrat)()
COMMENTS			NOgDrld/1st.circ() / /
C TEMPERATURE			pH
DEPTH TOOL REACHED()			OTHER TRACERS
MAX. REC. TEMP.		87	
TIME CIRC. STOPPED	: /	_ : /_	DENSITY. ()
TIME SINCE CIRC.		3	F GENERAL COMMENTS
D SAMPLE RECOVERY			
SURFACE PRESSURE (psig)	150	160	
VOL. GAS (cf)	6.5	4.62	
VOL. OIL (L)	5.5	8.70	
VOL. WATER (L)	0	0	
VOL. FILTRATE (L)	6.75	0	
VOL. CONDENSATE (L)	0	D	
VOL. OTHER()			
E SAMPLE PROPERTIES			
(a)GAS COMP.C1 (ppm)	204 375	38 012	NOTE:Gas volume does not take liquid
C2 (ppm)	122 358	11 712	displacement into account, unless noted
[C3 (ppm)]	689 664	8 906	Take mud nitrates when tested zone was
[C4 (ppm)]	19 614	<u>1 840</u>	drilled and last circulation.
C5 (ppm)	2 .693	NIL	,
C6 + (ppm)	20	NIL	Unless otherwise noted, pressures are
[CO ₂ (%)]	20.+	1.25	temperature corrected.
(b)OIL PROPERTIES	NIL	N.I.j.	Chamber 1 is the first chamber to be
(b) DIL PROPERTIES	167655	E ZECOUT	
	46.7 @ 6coF 4		opened.
(A.P.I.) REFRACTOMETER	DK BRN (@ O BK BRN	
COLOUR FLUORESCENCE		BRT WH/	
G.O.R. (cf/bbl)	wh/ 188	84	
(61,001)	100	04	

CORE LAE

STRAIGHT LINE LEAST SQUARES BEST FIT

SIP (PSI) ON A LINEAR SCALE AGAINST DEPTH (M) ON A LINEAR SCALE

ENTERED DATA	: DATA FOR OIL GRADIENT	, ·
DATA SET #	ISIP (PSI) '	DEPTH (M)
1 2 3 4 5 5 7 8 9 10	3376.1 3378.9 3380.5 3382.1 3384.0 3387.0 3386.1 3389.4 3392.0	2417.0 2419.5 2421.0 2422.5 2423.0 2425.5 2426.5 2429.0 2430.5

CONFICIENT & CONSTANT:

Y = m.X + c where m = -3.5751273E-01 and c = -4.7799284E-02

 $\frac{1}{m}$ = 1.16 psi/m

CUAL LAB

CAMPIGHT LINE LEAST SULPRES BEST FLY

FSIR (MSI) ON A LINEAR ACALE AGAINST DEPTH (M) ON A LINEAR SCALE

INTERED DATA: DATA FOR WATER GRADIENT

DATA SUT # USA (PS1) DEPTH (M)
1 8093.3 2432.0
2 3405.3 2440.5
3 8445.7 2468.0

COEFFICIENT & CONSTANT:

Y = 0.X + c where M = -8.87012075-01 and c = -1.00771802.02

 $\frac{1}{m} = 1.46 \text{ psi/m}$

SIDEWALL CORE GAS ANALYSIS.

CORE LAB	SIDEWALL	CORE	GAS	ANALYSIS	DATA	SHEET	SHEET#
COMPANY							
WELL							-

I

15	DEPTH	CI	C 2	C3	C4	C5	C 6	COMMENTS
		PPM	PPM	PPM	PPM	PPM	PPM	
	2431 ·	1584	1915	3276	1258	118	-	
	2430	936	3557	5400	2496	504	36	
	2429	360	4469	10080	6400	1904	144	
	2428	1459	3240	3160	680	144		
	2427	1380	2124	1056	204	11	-	
	2426	1610	3456	2560	1428	144	÷	
	2425	3600	6992	2736	1056	204	_	
	2424	1728	966	3240	2368	1734	180	
	2223	1116	3312	3456	656	162	1	
	2422	1476	4232	4032	1408	136	-	
	2421	1440	3956	2736	256	-	-	
	2420	11808	17848	8568	2240	102	-	
	2419	N O	SAMP	LE			-	·
	2418	3456	2760	7488	5888	2448	216	
	2417	1152	736	1296	384	136		
	2416	576	2208	2016	640	102		
	2415	3312	5060	3024	320	16	-	
	2414	2304	5520	4032	1344	170	_	
	2413	2880	1472	5832	3968	320	18	
	2412	23040	14720	22752	11520	1768	144	
	2411	6336	3496	8640	7680	3672	360	
	2410	1152	736	4896	5248	1088	252	
-	2409 *	144	92	864	1344	1344	252	
	* Samp1	e opened p	rior to A	nalvsis.				
				1	· 			
1								
\dashv					<u> </u>			
\dashv					 			
			,					
\dashv								
	<u>·</u>							
\dashv								

GAS COMPOSITION ANALYSIS

The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques however are empirical and by no means definitive.

LOG PLOT

The ratios of C1/C2, C1/C3, C1/C4, C1/C5 and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show. The plots can be evaluated by the following criteria:

- Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- A ratio of C1/C2 between approximately 2 and 15 indicates oil and between 15 and 65,gas. If the C1/C2 ratio is below about 2, or above about 65,the zone is probably non-procuctive.

The actual values of the gas/oil/water limits will vary from area to area.

- 3. If the C1/C2 ratio is low in the oil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5, if oil is used in the mud) is lower than the preceding ratio, the zone is probably non-productive.
- 5. The ratios may not be definitive for low permeability zones; however, steep ratio plots may indicate a tight zone.

TRIANGULATION PLOT

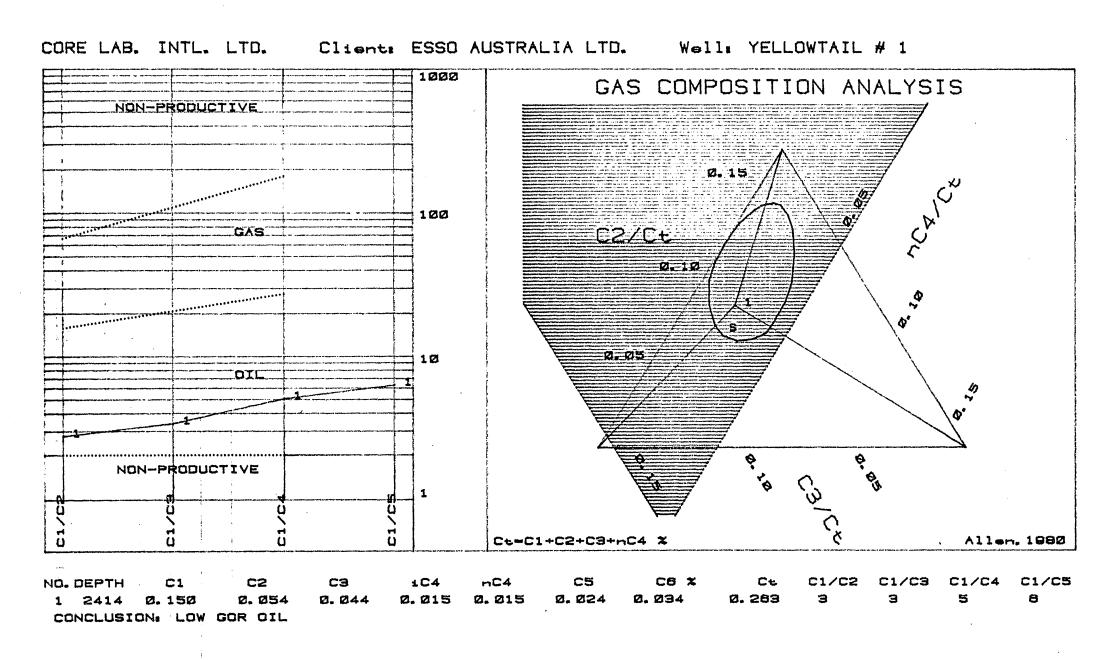
The triangular diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to nC4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.

A large triangle plot represents dry gas or low GOR oil,while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).

GAS COMPOSITION ANALYSES: - Yellowtail No. 1.

Gas composition analyses were made whilst drilling Yellowtail No. I for zones producing gas fractions having butane or heavier.

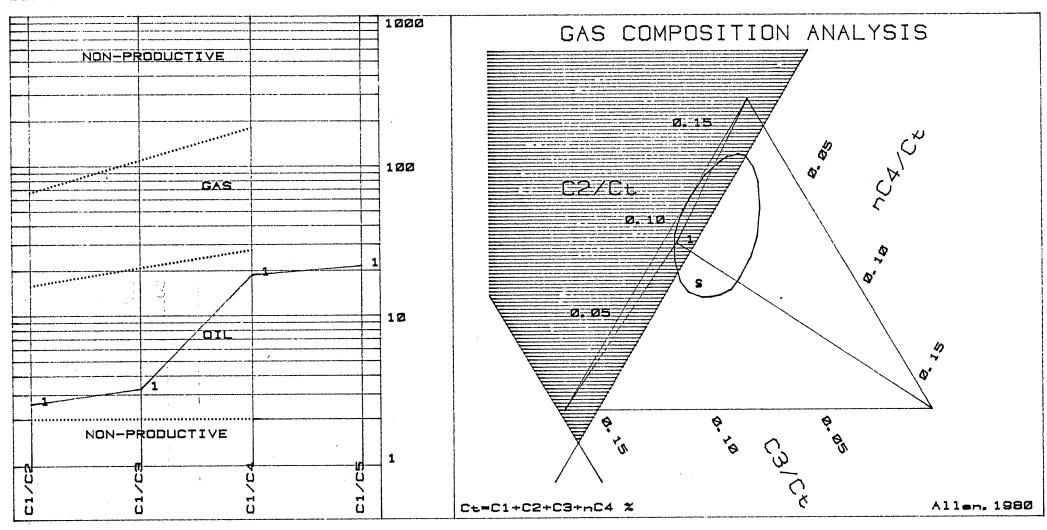
Analyses were made at the following depths:- (all depths are from RKB).

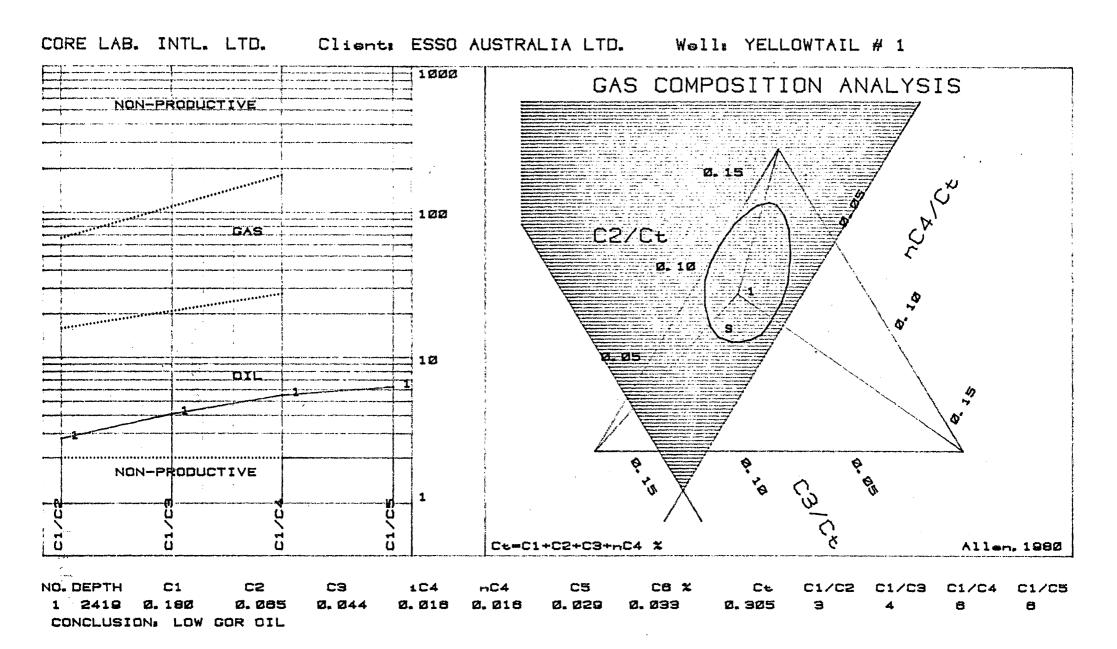

- 2414m This gas sample was taken while cutting core No. 1 after detecting 62u of gas from the drilling break at 2413m.

 This plot suggested that the reservoir fluid was low G.O.R. oil; at the top of the reservoir; this was later verified by R.F.T. runs.
- 2415m This sample was also taken whilst coring, the plot suggested a low G.O.R. oil.
- 2417m This sample was taken whilst coring, it again suggests a low G.O.R. oil.
- 2419m This sample was again taken whilst cutting core No. 1.

 The plot predicts a low G.O.R. oil and good permeability.

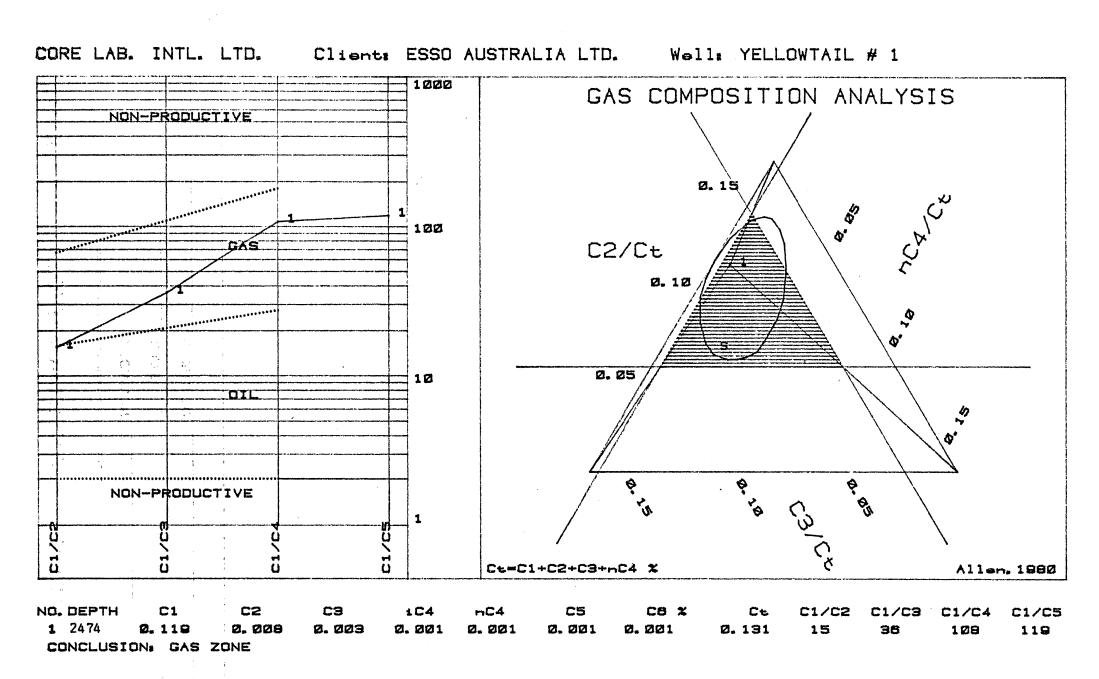
No analyses could be made from 2419m to 2439m as this interval was cored and due to the low circulation rates the gas from this interval was not circulated out whilst coring.


- 2439m This plot suggests that the reservoir fluid at this depth is no longer oil but gas or water.
- 2450m This plot again suggests that the reservoir fluid is water or gas.
- 2462m This plot suggests that the reservoir fluid is water or gas.
- 2474m This plot suggests that the reservoir fluid is water or gas.
- 2520m This plot suggests that the reservoir fluid is dry gas.


CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: YELLOWTAIL # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 GAS 0.05 10 OIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH C2 СЗ ± C4 nC4 C5 C6 % C1/C2 C1/C3 C1/C4 C1/C5 1 2415 Ø. 160 0.061 0.022 0.022 0. 036 0. 033 Ø. 323 CONCLUSION: LOW GOR DIL

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: YELLOWTAIL # 1


C1/C2 C1/C3 C1/C4 C1/C5 C5 C6 % СЗ 1C4 nC4 NO. DEPTH C1 C2 0. 309 3 19 21 1 2417 Ø. 180 0.008 Ø. ØØ8 Ø. Ø69 Ø. Ø55 0.005 CONCLUSION: LOW GOR OIL OR POSS. UNREPRESENTATIVE GAS SAMPLE

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: YELLOWTAIL # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct 10 DIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980 C5 СЭ 1C4 nC4 C5 C1/C5 NO. DEPTH 73 0.001 0.003 Ø. Ø94 25 40 0.004 0.002 0.001 0.001 CONCLUSION: DRY GAS

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: YELLOWTAIL # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 0. 10 10 DIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1960 NO. DEPTH C1 C3 1C4 nC4 C5 CB X C1/C5 0.007 0.001 Ø. 124 0.002 0.002 0.003 15 33 84 CONCLUSION: WET GAS /

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: YELLOWTAIL # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 GAS C2/Ct Ø. 1Ø 10 TIL NON-PRODUCTIVE Allen, 1980 Ct=C1+C2+C3+nC4 % C1/C5 NO. DEPTH C3 1C4 0.009 0.002 0.002 0.007 Ø. 189 10 18 37 67 CONCLUSION: WET GAS /

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: YELLOWTAIL # 1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 C2/Ct Ø. Ø5 10 DIL NON-PRODUCTIVE Allen, 1982 Ct=C1+C2+C3+nC4 % C1/C4 C1/C5 NO. DEPTH C3 C8 % C1/C3 70 124 113 0. 015 0.006 0.002 0.002 0.003 0.003 0.406 1 2520 CONCLUSION: DRY GAS

CORE - O - GRAPHS.

CORE-O-GRAPH

LIENT: ESSO AUSTRALIA LTD.

CORE NO.

YELLOWTAIL No 1

TNTERVAL CORED: 2413.6 - 2424.5 m

10.9 m

ECOVERED : 7.8 m (72 %)

FORMATION GROUP : LATROBE

IT MAKE & TYPE . CHRISTENSEN C-22

BIT SIZE . 8 15/32 " MUD WT. 9.5 ppg

ROP (M/HR) LITH WOB (K LBS) RPM HRS 20 20 0 150 0		•	
-2415m 2426m 2417m 2418m -2419m	ROP (M/HR)		
2422m	-2415m 2426m 2417m 2418m -2419m 2421m 2422m		

CORE-O-GRAPH

CLIENT: ESSO AUSTRA

ORE NO. 2 ESSO AUSTRALIA LTD.

WELL:

YELLOWTAIL No 1

INTERVAL CORED: 2424.5 - 2437.5 m

UT:

13.0 m

RECOVERED # 9.6 m (74%)

FORMATION GROUP : LATROBE

BIT MAKE & TYPE : CHRISTENSEN C-22

BIT SIZE : 8 15/32 MUD WT. 9.5 ppg

ROP (M/HR)	LITH	WOB (K LBS)	RPM	HRS
24 30m 24 30m 24 36m 24 38m				0 5.0

PORE PRESSURE SUMMARY AND LEAK-OFF / P.I.T. DATA.

Yellowtail No. 1 was drilled in the Gippsland Basin region of the Bass Strait. It was correctly thought that this basin is normally pressured and abnormal pressure was therefore not expected. Core Laboratories unit FL 802 monitored and calculated various parameters associated with pressure detection, the primary means of detection being the Drill Data Plot. (See plots at end of report).

The Drill Data Plot shows amongst other information, the d'c exponent trend. As can be seen from the plot a good trend does not develop until around 750m. The calcarenite is still fairly unconsolidated at this depth however, and the normal trend only develops at around 1150m. This normal trend is followed until 1480m where it deviates away from the trend; this could be due to the lowering of the mud weight from 9.4 ppg to 8.8 ppg between 1450m and 1160m. The normal trend is followed again from 1690m to 2185m, the mud weight was uniform throughout this section. Although a change in lithology is noted on the log at 1650m, there is no step in the d'c trend; this is because the lithology change is transitional in reality. At 2190m the d'c trend has a lateral shift; this could again be due to a mud weight change as the mud weight was increased from 8.8 ppg to 9.5 ppg over the interval 2190m to 2380m. This increase in mud weight was a precautionary measure before entering the Coarse Clastics zone. At around 2410m there is a lithology change as the Latrobe Formation is entered; this is a predominantly sand section and the d'c trend is scattered.

No abnormalities in the mud gas plot can be seen. The background gas is considerably higher in the 450m to 800m section; but this is due to the lithology as the calcarenite here was fairly sticky; this raised the yield point of the mud and a greater swabbing action occurs.

No shale density measurements were made as only then isolated beds of true shales occured.

As may be expected from the above discussions, the temperature plot does not show any deviations away from the normal.

A "Wireline Plot" was not drawn as this log plots shale parameters, and the few shale points encountered in the well were insufficient to facilitate an objective plot.

The "Pressure Plot" is the pressure conclusion log for the well. As can be seen it shows that the formations encountered during the drilling of Yellowtail No. 1 are believed to be normally pressured throughout the qualitative data for this log is from is from the R.F.T. tests, and the normal pore pre-sure is around 8.5 ppg, RKB, EMW or 8.3 ppg MSL, EMW.

Overburden gradient calculations and a plot of the gradient are included in the report. It was not possible to derive a true fracture gradient as insufficient L.O.T.'s were taken. In fact only 1 P.I.T. was made:- at the 10¾" casing shoe. L.O.T.'s were not required as high mud weights were not anticipated. The P.I.T. that was carried out gave a value of 13.6 ppg EMW. Bared on this information the fracture gradient on the pressure plot was drawn. The shape of this curve is based on data from wells in the U.S. Gulf Coast basin. The curve is then offset to match local data. A true fracture gradient for the Gippsland Basin cannot be drawn until further leak-off data is available.

COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the Drill program and is stored on the tape at 10,1,or 0.2 m intervals This data is then available at a later date for use in other programs (for example, KICK, SURGE, COST, OPTBIT and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

The following data lists have been made for this well:

- a. Bit record & Bit initialization data
- b. Hydraulic analyses
- c. Data list A
- d. Data list B
- e. Data list C
- f. Data list D

COMPUTER PLOTS

Using the REPORT program, the following plots have been drawn for this well:

GEOPLOT - 1:5000 SCALE - 2m average

GEOPLOT 1:2000 SCALE - 2m average

DRILLING PARAMETER PLOT - 1:5000 SCALE - 2m average

COST ANALYSIS PLOT - 1:2000 SCALE - 2m average

Since all the data is stored on tape, further data lists or plots are available at any time on request.

BIT RECORD

BIT SIZE Inches

BIT COST A dollars

JET SIZE Thirty seconds of an inch

DEPTHS Metres

BIT RUN (HOLE MADE). . Metres

TOTAL HOURS. Hours (the time the bit was actually drilling)

AVERAGE ROP. Metres/hour

CUMULATIVE COST/METRE. A dollars

BIT CONDITION : Teeth

Bearings

Gauge . . . Inches

	IADC CODE MAKE & TYPE	SIZE COST	NOZZLES	DEPTH IN	DEPTH OUT	BIT RUN	TOTAL HOURS	AROP	TRIP TIME	CCOST	TOTAL TURNS	CONDITION T B G
,	111 HUGHES OSC-3AJ	15.000 2000.00	20 20 18	235.0	818.0	583.0	7.48	77 0	Λn	73.19	75.470	3 6 0.00f
3	114 HUGHES X3A	9.875 900.00	11 11 11	818.0	1298.0	480.0	13.25	36.2	5.7	141.71	117216	5 6 0.125
4	114 HUGHES X3A	9.875 900.00	11 11 11	1298.0	1496.0	198.0	17.93	11.0	6.4	439.78	165110	3 5 0.000
5	114 HUGHES X3A	9.875 900.00	11 11 11	1496.0	1510.0	14.0	1.21	11.6	6.4	1990.16	9592	2 3 0.000
6	114 HUGHES X3A	9.875 900.00	11 11 11	1510.0	1666.0	156.0	10.02	15.6	7.0	392.32	74837	2 5 0.000
7	114 HUGHES X3A	9.875 900.00	13 13 13	1666.0	2187.0	521.0	19.49	26.7	8.0	188.62	149236	4 5 0.000
- 8	114 HUGHES X3A	9.875 900.00	13 13 14	2187.0	2413.0	226.0	9.74	23.2	9.8	310.21	73672	780.000
9	4 CHRISTENSEN C-22	8.469 15000.00	23 0 0	2414.0	2423.8	9.8	1.80	5.4	9.8	5723.18	10896	0 0 0.800
10	4 CHRISTENSEN C-22	8.469 15000.00	23 0 0	2424.6	2437.6	13.0	1.50	8.7	9.8	4232.66	9282	0 0 0.800
11	114 HUGHES X3A	9.875 900.00	13 13 13	2437.6	2571.0	133.4	5.64	23.6	10.3	430.06	41606	4 3 0.000

BIT NUMBER: 2 IADC CODE 111	HUGHES OSC-3AJ	
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID RISER LENGTH, ID PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	235.0 2000.00 3542.00 4.0 15.000 20 20 20 2151.00 9.750 68.19 8.000 83.03 5.000 5.000 235.00 19.240 96.24 21.000 0.119 0.119 1.20 8.5 0.00 0.08 10.0 3.0 2.00	18 3.062 2.813 3.000 4.276
FINISHING DEPTH	818.0 7.48 75478 T 3 B 6	G 0.000
BIT NUMBER: 3 * IADC CODE 114	HUGHES X3A	
STARTING DEPTH	818.0 900.00 3542.00 5.7 9.875 11 11 205.00 6.250 83.03 5.000	11 2.813 3.000
DRILL PIPE CENGTH, OD, ID	5.000 804.00 9.950 96.24 21.000 0.119 0.119 1.20 8.5 0.00 0.08 10.0 5.0 2.50	4.276
FINISHING DEPTH	1298.0 13.25 117216 T 5 R 6	G 0.125

BIT NUMBER: 4 IADC CODE 114	HUGHES X3A	
STARTING DEPTH	1298.0	
BIT COST, RIG COST/HOUR	900.00 3542.00	
TRIP TIME	6.4	
•	9.875	
NOZZLES	11 11	11
DRILL COLLAR LENGTH, OD, ID	205.00 6.250	
HW DRILL PIPE LENGTH, OD, ID	83.03 5.000	
DRILL PIPE OD, ID	5.000	4.276
CASING DEPTH, ID	804.00 9.950	
RISER LENGTH, ID	96.24 21.000	
PUMP VOLUMES 1 AND 2	0.119 0.119	
PORE PRESSURE CALC EXPONENT	1.20	
NORMAL PORE PRESSURE	8.5	
OVERBURDEN GRADIENT MODIFIER	0.00	4
STRESS RATIO MODIFIER	0.08	
"d" EXPONENT CORRECTION FACTOR	10.0	
CUTTINGS DIAMETER, DENSITY	5.0 2.50	
FINISHING DEPTH	1496.0	٠
CUMULATIVE HOURS, TURNS		
BIT CONDITION OUT	T 3 B 5	G 0.000
		*

BIT NUMBER:	5 1	CADC	CODE	114	HUGHES X	3A	
STARTING DEP BIT COST, RI TRIP TIME	G COST/	/HOUR			1496.0 900.00 6.4	3543.00	
BIT DIAMETER NOZZLES DRILL COLLAR						11 6.250	11 2.813
HW DRILL PIP DRILL PIPE O	E LENGT D, ID.	ΓĤ, C	id, ID.		83.03	5.000 5.000	3.000
CASING DEPTH RISER LENGTH PUMP VOLUMES	, ID					9.950 21.000 0.119	
PORE PRESSUR NORMAL PORE OVERBURDEN G	PRESSU	RE			8.5		
STRESS RATIO	MODIFI	EER	 FACTO)R	0.08 10.0		
CUTTINGS DIA FINISHING DE						2.50	
CUMULATIVE H BIT CONDITIO	OURS, 1	LURNS			1.21	9592 B 3	G 0.000

### STARTING DEPTH	LIT NUMBER: 6 IADC CODE 11	4 F	HUGHES >	(3A	
DRILL COLLAR LENGTH, OD, ID	BIT COST, RIG COST/HOUR TRIP TIME		900.00	3543.00	
HW DRILL PIPE LENGTH, OD, ID. 83.03 5.000 3.000 DRILL PIPE OD, ID. 5.000 4.276 CASING DEPTH, ID. 804.00 9.950 RISER LENGTH, ID. 96.24 21.000 PUMP VOLUMES 1 AND 2. 0.119 0.119 PORE PRESSURE CALC EXPONENT. 1.20 NORMAL PORE PRESSURE. 8.5 OVERBURDEN GRADIENT MODIFIER. 0.00 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY. 5.0 2.50 FINISHING DEPTH. 1666.0 CUMULATIVE HOURS, TURNS. 10.02 74837 BIT CONDITION OUT. T 2 B 5 G 0.000	NOZZLES				
DRILL PIPE OD, ID					
CASING DEPTH, ID			83.03		
RISER LENGTH, ID					4.276
PUMP VOLUMES 1 AND 2					
PORE PRESSURE CALC EXPONENT	•				
NORMAL PORE PRESSURE				0.119	
OVERBURDEN GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.08 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 5.0 2.50 FINISHING DEPTH 1666.0 CUMULATIVE HOURS, TURNS 10.02 74837 BIT CONDITION OUT T 2 B 5 G 0.000					
STRESS RATIO MODIFIER					
"d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 5.0 2.50 FINISHING DEPTH					
CUTTINGS DIAMETER, DENSITY 5.0 2.50 FINISHING DEPTH					
FINISHING DEPTH					
CUMULATIVE HOURS, TURNS	CUTTINGS DIAMETER, DENSITY		5.0	2.50	
BIT CONDITION OUT T2 B5 G 0.000	FINISHING DEPTH		1666.0		
	CUMULATIVE HOURS, TURNS		10.02	74837	
	BIT CONDITION OUT		Т 2	B 5 🗽	G 0.000
	·				
		•			

BIT NUMBER: 7 IADC CODE 114	HUGHES X	3A	
STARTING DEPTH.			
BIT COST, RIG COST/HOUR		3542.00	
TRIP TIME	8.0		
BIT DIAMETER	9.875		
NOZZLES	13	1 3	13
DRILL COLLAR LENGTH, OD, ID	202.21	6.250	2.813
HW DRILL PIPE LENGTH, OD, ID	83.03	5.000	3.000
DRILL PIPE OD, ID		5.000	4.276
CASING DEPTH, ID	804.00	9.950	
RISER LENGTH, ID	96.24	21.000	
PUMP VOLUMES 1 AND 2	0.119	0.119	
PORE PRESSURE CALC EXPONENT	1.20		
NORMAL PORE PRESSURE	8.5		
OVERBURDEN GRADIENT MODIFIER			
STRESS RATIO MODIFIER			
"d" EXPONENT CORRECTION FACTOR	10.0		
CUTTINGS DIAMETER, DENSITY	3.0	2.50	
FINISHING DEPTH	2187.0		
CUMULATIVE HOURS, TURNS		149236	
BIT CONDITION OUT		B 5	G 0.000

BIT NUMBER: 8 IADC CODE 114	HUGHES X3A
STARTING DEPTH	. 900.00 3542.00 . 9.8 . 9.875 . 13 13 14 . 202.21 6.250 2.813 . 83.03 5.000 3.000 . 5.000 4.276 . 804.00 9.950 . 96.24 21.000 . 0.119 0.119 . 1.20 . 8.5 . 0.00 . 0.08
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	
FINISHING DEPTHCUMULATIVE HOURS, TURNSBIT CONDITION OUT	
BIT NUMBER: 9 IADC CODE 4	CHRISTENSEN C-22
STARTING DEPTH	. 15000.00 3542.00 . 9.8 . 8.469
NOZZLES	. 306.08 6.500 2.813 . 83.03 5.000 3.000 . 5.000 4.276 . 804.00 9.950 . 96.24 21.000 . 0.119 0.119 . 1.20 . 8.5 . 0.00 . 0.08 . 10.0
FINISHING DEPTH	. 1.80 10896

BIT NUMBER: 10 IADC CODE 4	CHRISTENSEN C-22	
STARTING DEPTHBIT COST, RIG COST/HOURTRIP TIME		
NOZZLES DRILL COLLAR LENGTH, OD, ID	23 0 223.05 6.250	
HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID	83.03 5.000 5.000 804.00 9.950	
RISER LENGTH, ID	96.24 21.000 0.119 0.119	
PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER	1.20 8.5 0.00	
STRESS RATIO MODIFIER	0.08 10.0	
CUTTINGS DIAMETER, DENSITY	0.5 2.65 2437.6	
CUMULATIVE HOURS, TURNS		G 0.800

STARTING DEPTH	BIT NUMBER: 11 IADC CODE 114	HUGHES X3A	
FINISHING DEPTH 2571.0	BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER	900.00 3542.00 10.3 9.875 13 13 205.60 6.250 83.03 5.000 5.000 804.00 9.950 96.24 21.000 0.119 0.119 1.20 8.5 0.00 0.08	2.813 3.000
	FINISHING DEPTH	2571.0	
CUMULATIVE HOURS, TURNS 5.64 41606 RIT CONDITION OUT T 4 R 3 G 0.000			G 0.000

HYDRAULIC ANALYSIS

Data listed from data tape every 100m for each bit run.

DEPTH. Metres

FLOW RATE, Rate of mud flow into the well,

in gallons per minute

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which

the flow becomes turbulent

SLIP VELOCITY. . . . The rate of slip of cuttings in the

annulus under laminar flow

ASCEND VELOCITY, , , . The rate of ascent of cuttings in the

annulus under laminar flow

PRESSURE UNITS . . . Pounds per square inch

HHP. Hydraulic horsepower at the bit

IMPACT FORCE The impact force at the bit,

in foot pound per second squared

JET VELOCITY The velocity of mud through the bit

nozzzles, in metres per second

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 300.0 AND TVD 300.0

SPM 1 110 SPM 2 110 FLOW RATE 1100

ANNULAR HYDRAULICS:

_	ANNULUS TYPE	VOL/ UNIT	VOL	ÝEL ANN	CRIT	TYPE OF FLOW	SLIP A	YEL	PRES	DROP
	HWDC/OH HWDC/CSG HWDC/RIS	0.414 0.876 1.102	27 122 106	63 30 24		TURBULENT TURBULENT TURBULENT			•	0.6 0.2 0.1
	TOTAL	VOLUME	255	·		TOTAL	PRESSURE	E DROP		0.9

LAG: 9.7 MINUTES 1070 STROKES #1 AND 1070 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1288.5 HHP 827 IMPACT FORCE 2004 % SURFACE PRESSURE 59.9 HHP/sqin 4.68 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 78.5 STRING 674.2 BIT 1298.5 ANNULUS 0.9

TOTAL 2042.0 PUMP PRESSURE 2150.0 % DIFFERENCE 5.0

BOTTOM HOLE PRESSURES:

_	UNTIR		CINTIE
NOT CIRCULATING: MUD	WEIGHT 8.60	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	440.2
CIRCULATING:	ECD 8.62		441.0
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN 0.03	ESTIMATED SWAB	1.7
	WEIGHT 8.57	BOTTOM HOLE PRESSURE	438.4

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

SPM 1 100

SPM 2 115

FLOW RATE 1075

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	VET ANN	VEL	TYPE OF FLOW	SLIP VEL	ASCEND	PRE	SSURE DROP
HWDC/OH HWDC/CSG HWDC/RIS	0,414 0.876 1.102	68 122 106	62 29 23		TURBULENT TURBULENT TURBULENT			*.	1.5 0.2 0.1
TOTAL	. VOLUME	296			TOTAL	PRESSUR	RE DROP		1.8
	MINHTES	1157	STRUKES	: : : : : : : : : : : : : : : : : : :	מרדר מאם	STRUKES	4: 2		

BIT HYDRAULICS:

P	RESSURE D	ROP	1230.	6	HHP	•	771	IMPACT	FORCE	1914
- %	SURFACE	PRESSURE	60.	9	HHP/sqir	η 4	4.37	JET VE	LOCITY	122

PRESSURE BREAKDOWN:

SURFACE 75.3 STRING 862.4 BIT 1230.6 ANNULUS 1.8

TOTAL 2170.1 PUMP PRESSURE 2020.0 % DIFFERENCE 7.4

BOTTOM HOLE PRESSURES:

•	UNITS	· ·	UNITS
CIRCULATING:	WEIGHT 8.60 ECD 8.63	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	586.9 588.6
PULLING OUT: TRIP	MARGIN 0.05	ESTIMATED SWAB	3.5
EFFECTIVE MUD	WEIGHT 8.55	BOTTOM HOLE PRESSURE	583.4

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

SPM 1 110 SPM 2 105

FLOW RATE 1075

ANNULAR HYDRAULICS:

UNNA T	LUS YPE	VOL/ UNIT	· VOL	ÁET ANN	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	рļ	RESSURE DROP
HWDC/	CSG	0.414 0.876 1.102	110 122 106	62 29 23	23	TURBULENT TURBULENT TURBULENT			ţ	2.5 0.2 0.1
	TOTAL	VOLUME	337			TOTAL	PRESSUF	RE DROP		2.7
LAG:	13.2	MINUTES	1450	STROKES	#1 1	AND 1385	STROKES	#2		

BIT HYDRAULICS:

PRESSURE DROP	1230.6	ннр	771	IMPACT FORCE	1914
% SURFACE PRESSU	RE 57.2	HHP/sqin	4.37	JET VELOCITY	122

PRESSURE BREAKDOWN:

	SURFACE STRING BIT	75.3 1078.1 1230.6			•		·	
1	ANNULUS TOTAL	2.7 2386.6	PUMP	PRESSURE	2150.0	7,,	DIFFERENCE	11.0

AND FOR FROME TREE OF THE PROPERTY OF THE PROP	D	ENSITY UNITS	PRESSURE UNITS	
NOT CIRCULATING: MUI CIRCULATING:	WEIGHT ECD	8.60 8.63	HYDROSTATIC PRESSURE 733.6 CIRCULATING PRESSURE 736.3	
PULLING OUT: TRIF EFFECTIVE MUI		0.06 8.54	ESTIMATED SWAB 5.4 BOTTOM HOLE PRESSURE 728.2	

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

SPM 1 110 SPM 2 105 FLOW RATE 1075

ANNULAR HYDRAULICS:

	ANNULUS TYPE	VOL/ UNIT	VOL	VEL ANN	VEL	TYPE OF FLOW	VEL VEL	VEL	YKE?	DROP
	HWDC/OH HWDC/CSG HWDC/RIS	0.414 0.876 1.102	151 122 106	62 29 23	23	TURBULENT TURBULENT TURBULENT				3.4 0.2 0.1
l	TOTAL	VOLUME	379			TOTAL	PRESSURE	DROP		3.6
•	LAG: 14.8	MINUTES	1628	STROKES	#1 (AND 1554	STROKES #2	2		

BIT HYDRAULICS:

PRESSURE DROP 1230.6 HHP 771 IMPACT FORCE 1914 % SURFACE PRESSURE 55.9 HHP/sqin 4.37 JET VELOCITY 122

PRESSURE BREAKDOWN:

SURFACE 75.3
STRING 1293.7
BIT 1230.6
ANNULUS 3.6
TOTAL 2603.2 PUMP PRESSURE 2200.0 % DIFFERENCE 18.3

BOTTOM HOLE PRESSURES:

	UNITS		UNITS
NOT CIRCULATING: MUD CIRCULATING: PULLING OUT: TRIP EFFECTIVE MUD	 8.60 8.64 0.07 8.53	HYDROSTATIC PRESSURE CIRCULATING PRESSURE ESTIMATED SWAB BOTTOM HOLE PRESSURE	880.3 883.9 7.2 873.1

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 700,0 AND TVD 700.0

SPM 1 110 SPM 2 110 FLOW RATE 1100

ANNULAR HYDRAULICS:

	ANNULUS TYPE	UNIT	VOL	ÁET ANN	CRIT	TYPE OF FLOW	SLIP VEL	ASCEND VEL	I	PRESSURE DROP
	HWDC/OH HWDC/CSG HWDC/RIS	0.414 0.876 1.102	192 122 106	63 30 24	23	TURBULENT TURBULENT TURBULENT			ż	4.5 0.2 0.1
	TOTA	L VOLUME	420			TOTAL	PRESSU	RE DROP		4.7
•	1 AG: 1A.0	MINHITES	1765	STROKES	#:1	AND 1765 9	RTROKES	#:2		

BIT HYDRAULICS:

PRESSURE DROP	1288.5	HHP	827	IMPACT FORCE	2004
% SURFACE PRESSUR	F 59.1	HHP/sain	4.68	JET VELOCITY	124

PRESSURE BREAKDOWN:

)	SURFACE	28.5						
l	STRING	1573,0						
,	BIT	1288.5						
	ANNULUS	4.7						
	TOTAL	2944.7	PUMP	PRESSURE	2180.0	%	DIFFERENCE	35.1

BOTTOM HOLE PRESSURES:

		UNITS		UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT ECD	8.60	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	1027.0 1031.8
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN WEIGHT	0.08 8.52	ESTIMATED SWAB BOTTOM HOLE PRESSURE	9.5 1017.5

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TVD 800.0

SPM 1 110 SPM 2 112 FLOW RATE 1110

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ÁET VN	CRIT	TYPE OF FLOW	SLIP VEL	ASCEND VEL	Ī	PRESSURE DROP
HWDC/OH HWDC/CSG HWDC/RIS	0.414 0.876 1.102	234 122 106	64 30 24	27 22 21	TURBULENT TURBULENT TURBULENT			į	5.7 0.2 0.1
TOTAL	L VOLUME	462			TOTAL	PRESSU	RE DROP		6.0
1 AC - 17 E	MINITEC	1000	етроите	41.4	AND LOUD (emp ny mo	# 47		

LAG: 17.5 MINUTES 1922 STROKES #1 AND 1957 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1357.8 HHP 879 IMPACT FORCE 2111 26 SURFACE PRESSURE 57.0 HHP/sqin 4.97 JET VELOCITY 126

PRESSURE BREAKDOWN:

SURFACE 82.0
STRING 1878.1
BIT 1357.8
ANNULUS 6.0
TOTAL 3323.8 PUMP PRESSURE 2380.0 % DIFFERENCE 39.7

BOTTOM HOLE PRESSURES:

,		CIATID		nuria
NOT CIRCULATING: M	UD WEIGHT	8.90	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	1214.7
CIRCULATING:	ECD	8.94		1220.6
PULLING OUT: TR	IP MARGIN	0.09	ESTIMATED SWAB	11.9
EFFECTIVE M	UD WEIGHT	8.81	BOTTOM HOLE PRESSURE	1202.8

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

SPM 1 0 SPM 2 110 FLOW RATE 550

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	VEL ANN	CRIT VEL	TYPE OF FLOW	SLIP # VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.186	18	70	117	LAMINAR	"5	66	4.7
DC/CSG	0.191	21	69	117	LAMINAR	4	64	5.1
HWDP/CSG	0,236	20	56	114	LAMINAR	3	53	2.5
DP/CSG	0.236	122	56	114	LAMINAR	3	53	15.4
DP/RIS	1.325	128	10	104	LAMINAR	0	10	Σ.0
TOTAL	. VOLUME	307			TOTAL	PRESSURE	DROP	28.0

LAG: 23.5 MINUTES 0 STROKES #1 AND 2583 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 3232.1 HHP 1037 IMPACT FORCE 1623 % SURFACE PRESSURE 100.4 HHP/sqin 13.54 JET VELOCITY 193

PRESSURE BREAKDOWN:

SURFACE 28.1 STRING 420.2 BIT 3232.1 ANNULUS 28.0

TOTAL 3708.3 PUMP PRESSURE 3220.0 % DIFFERENCE 15.2

BOTTOM HOLE PRESSURES:

-	UNITS	UNITS
CIRCULATING:	WEIGHT 9.00 ECD 9.18 MARGIN 0.36 WEIGHT 8.64	HYDROSTATIC PRESSURE 1381.9 CIRCULATING PRESSURE 1409.8 ESTIMATED SWAB 55.9 BOTTOM HOLE PRESSURE 1325.9

WEST TV

DDFCCIDE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1000.0 AND TVD 1000.0

SPM 1 50 SPM 2 55 FLOW RATE 525

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	ÁEL	VEL	FLOW	VEL.	VEL	DROP
DC/OH	0.186	36	67	150	LAMINAR	3	64	14.1
DC/CSG	0.191	2	65	150	LAMINAR	3	63	0.6
HWDP/CSG .	0.236	20	53	149	LAMINAR	2	51	3.9
DP/CSG	0.236	145	53	149	LAMINAR	2	51	28.9
DP/RIS	1.325	128	9	149	LAMINAR	0	9	8.0
TOTAL	VOLUME	330			TOTAL.	PRESSURE	DROP	48.3

LAG: 26.4 MINUTES 1322 STROKES #1 AND 1455 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2944.9 HHP 902 IMPACT FORCE 1479 % SURFACE PRESSURE 96.6 HHP/sqin 11.77 JET VELOCITY 184

PRESSURE BREAKDOWN:

SURFACE 24.7 STRING 383.9 BIT 2944.9 ANNULUS 48.3

TOTAL 3401.7 PUMP PRESSURE 3050.0 % DIFFERENCE 11.5

	DENSITY UNITS	PRESSURE UNITS
CIRCULATING:	WEIGHT 9.00 ECD 9.28 MARGIN 0.57 WEIGHT 8.43	HYDROSTATIC PRESSURE 1535.4 CIRCULATING PRESSURE 1583.7 ESTIMATED SWAB 96.6 BOTTOM HOLE PRESSURE 1438.9

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 58 SPM 2 51 FLOW RATE 545

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	ASCEND	PRESSURE
TYPE	TINU	VOL	ÁET	VEL	FL.OW	VEL	VEL	DROP
DC\OH	0.186	38	70	137	LAMINAR	4	66	12.8
HWDP/OH	0.231	19	56	136	LAMINAR	2	54	3.4
DP/OH	0.231	2	56	136	LAMINAR	2	54	0.3
DP/CSG	0.236	167	55	136	LAMINAR	2	53	28.4
DP/RIS	1.325	128	10	133	LAMINAR	0	10	0.6
TOTAL	VOLUME	354			TOTAL	PRESSURE	EDROP	45.5

LAG: 27.3 MINUTES 1581 STROKES #1 AND 1390 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 3208.8 HHP 1020 IMPACT FORCE 1611 % SURFACE PRESSURE 108.8 HHP/sqin 13.32 JET VELOCITY 191

PRESSURE BREAKDOWN:

SURFACE 26.6 STRING 429.6 BIT 3208.8 ANNULUS 45.5

TOTAL 3710.6 PUMP PRESSURE 2950.0 % DIFFERENCE 25.8

	DENSITY UNITS	PRESSURE UNITS
CIRCULATING:	WEIGHT 9.10 ECD 9.34 MARGIN 0.49 WEIGHT 8.61	HYDROSTATIC PRESSURE 1707.7 CIRCULATING PRESSURE 1753.2 ESTIMATED SWAB 91.1 BOTTOM HOLE PRESSURE 1616.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1200,0 AND TVD 1200,0

SPM 1 58 SPM 2 53 FLOW RATE 555

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ÁET ANN	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DC/OH HWDP/OH DP/OH DP/CSG DP/RIS	0.186 0.231 0.231 0.236 1.325	38 19 25 167	71 57 57 56 10	137 136 136 136 133	LAMINAR LAMINAR LAMINAR LAMINAR LAMINAR	4 2 2 2 0	67 55 55 54 10	12.8 3.4 4.5 28.5
TOTAL		377	x 0.	100	TOTAL			0.6 49.8

LAG: 28.5 MINUTES 1654 STROKES #1 AND 1511 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 3327.7 HHP 1077 IMPACT FORCE 1671 % SURFACE PRESSURE 112.8 HHP/sqin 14.06 JET VELOCITY 194

PRESSURE BREAKDOWN:

SURFACE 27.5 STRING 459.7 BIT 3327.7 ANNULUS 49.8

TOTAL 3864.8 PUMP PRESSURE 2950.0 % DIFFERENCE 31.0

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: 9.10 MUD WEIGHT HYDROSTATIC PRESSURE 1863.0 CIRCULATING: 9.34 ECD CIRCULATING PRESSURE 1912.8 0.49 99.7 PULLING OUT: TRIP MARGIN ESTIMATED SWAR EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 8.61 1763.3

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0

SPM 1 100 SPM 2 0 FLOW RATE 500

ANNULAR HYDRAULICS:

	ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A	SCEND	PRESSURE DROP
-	DC/OH	0.186	38	64	109	LAMINAR	5	59	8.4
	HWDP/OH	0.231	19	52	107	LAMINAR	3	49	2.2
•	DP/OH	0.231	48	52	107	LAMINAR	3	49	5.4
	DP/CSG	0.236	167	50	106	LAMINAR	3	48	18.0
	DP/RIS	1.325	128	9	98	LAMINAR	0	9	8.0
•	TOTAL	VOLUME	400			TOTAL	PRESSURE	DROP	34.3

LAG: 33.6 MINUTES 3360 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2700.8 HHP 788 IMPACT FORCE 1356 % SURFACE PRESSURE 86.6 HHP/sqin 10.28 JET VELOCITY 175

PRESSURE BREAKDOWN:

SURFACE 22.8 STRING 394.2

BIT 2700.8 ANNULUS 34.3

TOTAL 3152.0 PUMP PRESSURE 3120.0 % DIFFERENCE 1.0

BOTTOM HOLE PRESSURES:

UNITS UNITS 9.10 NOT CIRCULATING: HYDROSTATIC PRESSURE 2018.2 MUD WEIGHT CIRCULATING: 9.25 CIRCULATING PRESSURE ECD 2052.5 TRIP MARGIN 0.31 PULLING OUT: ESTIMATED SWAB 68.5 8.79 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 1949.7

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1400.0 AND TVD 1400.0

SPM 1 50 SPM 2 50 FLOW RATE 500

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	TINU	VOL	ÁEL	VEL	FL.OW	VEL	VEL	DROP
DC/OH	0.186	38	64	109	LAMINAR	5	59	8.4
HWDP/OH	0.231	19	52	107	LAMINAR	3	49	2.2
DP/OH	0.231	71	52	107	LAMINAR	3	49	8.0
DP/CSG	0.236	167	50	106	LAMINAR	3	48	18.0
DP/RIS	1.325	128	9	98	LAMINAR	0	9	0.3
TOTAL	VOLUME	423			TOTAL	PRESSUR	E DROP	36.9

LAG: 35.5 MINUTES 1777 STROKES #1 AND 1777 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2700.8 HHP 788 IMPACT FORCE 1356 % SURFACE PRESSURE 93.1 HHP/sqin 10.28 JET VELOCITY 175

PRESSURE BREAKDOWN:

SURFACE 22.8 STRING 407.3 BIT 2700.8 ANNULUS 36.9

TOTAL 3167.8 PUMP PRESSURE 2900.0 % DIFFERENCE 9.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.10 HYDROSTATIC PRESSURE 2173.5 ECD 9.25 TRIP MARGIN 0.31 CIRCULATING: CIRCULATING PRESSURE 2210.3 ESTIMATED SWAB 73.7 PULLING OUT: BOTTOM HOLE PRESSURE 2099.7 EFFECTIVE MUD WEIGHT 8.79

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1500.0

SPM 1 50 SPM 2 50 FLOW RATE 500

ANNULAR HYDRAULICS:

ANNULUS	VOL/	1101	ANN	CRIT	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
TYPE	UNIT	VOL	ÁEL	VEL	r L.UW	VEL	VE.L.	DKOF
DC/OH	0.186	38	64	120	LAMINAR	4	60	10.2
HWDP/OH	0.231	19	52	117	LAMINAR	2	49	2.6
DP/OH	0.231	94	52	117	LAMINAR	2	49	12.7
DP/CSG	0.236	167	50	117	LAMINAR	2	48	21.4
DP/RIS	1.325	128	9	104	LAMINAR	0	9	0.3
TOTAL	VOLUME	446			TOTAL	PRESSURE	DROP	47.2

LAG: 37.5 MINUTES 1874 STROKES #1 AND 1874 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2671.1 HHP 779 IMPACT FORCE 1341 % SURFACE PRESSURE 90.5 HHP/sqin 10.17 JET VELOCITY 175

PRESSURE BREAKDOWN:

SURFACE 24.5 STRING 452.0 BIT 2671.1 ANNULUS 47.2

TOTAL 3194.8 PUMP PRESSURE 2950.0 % DIFFERENCE 8.3

BOTTOM HOLE PRESSURES:

			UNITS		UNITS
1	NOT CIRCULATING: MUCIRCULATING:	D WEIGHT	9.00 9.18	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	2303.1 2350.4
)	PULLING OUT: TRI	P MARGIN	10.37 8.63	ESTIMATED SWAB BOTTOM HOLE PRESSURE	94.5 2208.7

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1600.0

SPM 1 110 SPM 2 0 FLOW RATE 550

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL	FL.OW	VEL	VEL	DROP
DC/OH	0.186	38	70	121	LAMINAR	4	66	10.4
HWDP/OH	0.231	19	57	118	LAMINAR	3	54	2.7
DP/OH	0.231	118	57	118	LAMINAR	3 -	54	16.4
DP/CSG	0.236	167	56	117	LAMINAR	3	53	22.1
DP/RIS	1.325	128	10	104	LAMINAR	0	10	0.3
TOTAL	_ VOLUME	469			TOTAL	PRESSURE	DROP	52.0

LAG: 35.8 MINUTES 3943 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 3196.1 HHP 1025 IMPACT FORCE 1605 % SURFACE PRESSURE 108.0 HHP/sqin 13.39 JET VELOCITY 193

PRESSURE BREAKDOWN:

SURFACE 28.9 STRING 545.4 BIT 3196.1 ANNULUS 52.0

TOTAL 3822.4 PUMP PRESSURE 2960.0 % DIFFERENCE 29.1

	DENSITY UNITS		PRESSURE UNITS
CIRCULATING:	WEIGHT 8.90 ECD 9.09 MARGIN 0.38 WEIGHT 8.52	HYDROSTATIC PRESSURE CIRCULATING PRESSURE ESTIMATED SWAB BOTTOM HOLE PRESSURE	2481.3 104.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1700.0

SPM 1 68 SPM 2 71 FLOW RATE 695

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ииа	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL	ÁEL	VEL	FLOW	VEL	VEL	DROP
DC/OH	0.186	38	89	121	LAMINAR	2	87	11.3
HWDP/OH	0.231	19	72	118	LAMINAR	1	70	2.9
DP/OH	0.231	141	72	118	LAMINAR	1	70	21.3
_ DP/CSG	0.236	167	70	117	LAMINAR	1	69	24.0
DP/RIS	1.325	128	12	104	LAMINAR	0	12	0.4
тот	AL VOLUME	492			TOTAL	PRESSURE	DROP	59.9

29.8 MINUTES 2024 STROKES #1 AND 2113 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2616.2 HHP 1060 IMPACT FORCE 1835 % SURFACE PRESSURE 88.7 HHP/sqin 13.85 JET VELOCITY 174

PRESSURE BREAKDOWN:

SURFACE 44.0

STRING 856.4 BIT 2616.2

ANNULUS 59,9

TOTAL 3576.4 PUMP PRESSURE 2950.0 % DIFFERENCE 21.2

BOTTOM HOLE PRESSURES:

			DENSITY UNITS		PRESSURE UNITS
1	NOT CIRCULATING: MU CIRCULATING:	D WEIG	GHT 8.90 ECD 9.11	HYDROSTATIC CIRCULATING	
,	PULLING OUT: TRI EFFECTIVE MU	P MARG		ESTIMATED SW BOTTOM HOLE	****

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1800.0 AND TVD 1800.0

SPM 1 69 SPM 2 71 FLOW RATE 700

ANNULAR HYDRAULICS:

	ANNULUS TYPE	VOL./ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROF
ı	DC/OH	0.186	38	` 89	122	LAMINAR	2	88	. 11.4
	HWDP/OH	0.188	19	72	118	LAMINAR	1	71	2.9
	DP/OH	0.231	164	72	118	LAMINAR	1	71	24.8
	DP/CSG	0.236	167	71	118	LAMINAR	1	70	24.1
	DP/RIS	1.325	128	1.3	105	LAMINAR	0	13	0.4
,	TOTAL	. VOLUME	515	`		TOTAL	PRESSURE	DROP	63.5

LAG: 30.9 MINUTES 2135 STROKES #1 AND 2197 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2624.1 HHP 1071 IMPACT FORCE 1841 % SURFACE PRESSURE 89.0 HHP/sqin 13.99 JET VELOCITY 176

PRESSURE BREAKDOWN:

SURFACE 44.1 STRING 885.2 BIT 2624.1 ANNULUS 63.5

TOTAL 3617.0 PUMP PRESSURE 2950.0 % DIFFERENCE 22.6

,		D	UNITS		UNITS
NOT CIRCULATING: CIRCULATING:	аим	WEIGHT ECD	8.80	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	
PULLING OUT:	TRIP	MARGIN	0.41	ESTIMATED SWAB	127.0
EFFECTIV	E MUD	WEIGHT	8.39	BOTTOM HOLE PRESSURE	2575.3

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1900.0

SPM 1 0 SPM 2 111 FLOW RATE 555

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ÁET ANN	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DC/OH HWDP/OH	0.186 0.231	38 19	71 57	122 118	LAMINAR LAMINAR	2 1	69 56	10.5
DP/OH DP/CSG	0.231 0.236	187 167	57 56	118 118	LAMINAR LAMINAR	1 1	56 55	26.1 22.2
DP/RIS	1.325	128	10	105	LAMINAR	0	10	0.3
TOTAL	VOLUME	539	ı		TOTAL	PRESSURE	DROP	61.8

LAG: 40.8 MINUTES 0 STROKES #1 AND 4525 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1649.6 HHP 534 IMPACT FORCE 1157 % SURFACE PRESSURE 84.2 HHP/sqin 6.97 JET VELOCITY 139

PRESSURE BREAKDOWN:

SURFACE 29.1 STRING 599.6

BIT 1649.6 ANNULUS 61.8

TOTAL 2340.1 PUMP PRESSURE 1960.0 % DIFFERENCE 19.4

BOTTOM HOLE PRESSURES:

			UNITS		BTINU
		WEIGHT	8.80	HYDROSTATIC PRESSURE	
l	CIRCULATING:	ECD	8.99	CIRCULATING PRESSURE	2914.3
•	PULLING OUT: TRIP	MARGIN	.0.38	ESTIMATED SWAB	123.6
	EFFECTIVE MUD	WEIGHT	8.42	BOTTOM HOLE PRESSURE	2728.8

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2000.0 AND TVD 2000.0

SPM 1 70 SPM 2 65 FLOW RATE 675

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	VEL VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DC/OH HWDP/OH	0.186 0.231	38 19	86 70	122 118	LAMINAR LAMINAR	2	84 68	11.2
DP/OH DP/CSG	0.231 0.236	210 167	70 68	118 118	LAMINAR LAMINAR	1	68 67	31,4 23.8
DP/RIS TOTAL	1.325 VOLUME	128 562	12	105	LAMINAR TOTAL	PRESSURE	12 DROP	0.4 69.6

LAG: 35.0 MINUTES 2447 STROKES #1 AND 2272 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2440.0 HHP 961 · IMPACT FORCE 1711 % SURFACE PRESSURE 83.0 HHP/sqin 12.54 JET VELOCITY 169

PRESSURE BREAKDOWN:

SURFACE 41.3
STRING 876.8
BIT 2440.0
ANNULUS 69.6

TOTAL 3427.8 PUMP PRESSURE 2940.0 % DIFFERENCE 16.6

	UNITS		UNITS
NOT CIRCULATING: MUI	O WEIGHT 8.80	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	3002.6
CIRCULATING:	ECD 9.00		3072.2
PULLING OUT: TRIF	P MARGIN 10.41	ESTIMATED SWAB	139.2
EFFECTIVE MUI	D WEIGHT 8.39	BOTTOM HOLE PRESSURE	2863.3

CORE LAB ======

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2100.0 AND TVD 2100.0

685 SPM 1 65 SPM 2 72 FLOW RATE

ANNULAR HYDRAULICS:

	ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
	TYPE	UNIT	VOL	ÁEL	VEL	FL.OW	VEL	VEL	DROP
	DC/OH	0.186	38	88	122	LAMINAR	2	86	11.3
	HWDP/OH	0.231	19	71	118	LAMINAR	1	69	2.9
ł	DP/OH	0.231	233	71	118	L.AMINAR	1	69	35.1
	DP/CSG	0.236	167	69	118	LAMINAR	1	68	23.9
	DP/RIS	1.325	128	12	105	LAMINAR	0	12	0.4
	TOTAL	VOLUME	585			TOTAL	PRESSURE	DROP	73.4

35.9 MINUTES 2331 STROKES #1 AND 2582 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2512.9 HHP 1004 IMPACT FORCE 1763 % SURFACE PRESSURE 87.0 HHP/sqin 13.11 JET VELOCITY

PRESSURE BREAKDOWN:

SURFACE 42.5 STRING 924.7 2512.9 BIT ANNULUS 73.4

PUMP PRESSURE 2890.0 % DIFFERENCE 23.0 3553.5 TOTAL

BOTTOM HOLE PRESSURES:

	DENSITY UNITS	F	RESSURE UNITS
CIRCULATING:	WEIGHT 8.80	HYDROSTATIC PRESSURE	3152.7
	ECD 9.01	CIRCULATING PRESSURE	3226.2
	MARGIN 0.41	ESTIMATED SWAB	146.9
	WEIGHT 8.39	BOTTOM HOLE PRESSURE	3005.8

CORE LAB ***

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2200.0 AND TVD 2200.0

SPM 1 0 . SPM 2 110 FLOW RATE 550

ANNULAR HYDRAULICS:

	ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
	TYPE	TINU	VOL	ÁET	VEL	FLOW	VEL	VEL	DROP
-	DC/OH	0.186	38	70	102	LAMINAR	2	68	7.8
	HWDP/OH	0.231	19	57	99	LAMINAR	7	55	2.0
	DP/OH	0.231	257	57	99	LAMINAR	1	55	26.4
_	DP/CSG	0.236	167	56	99	LAMINAR	1	54	16.3
	DP/RIS	1.325	128	10	86	LAMINAR	0	10	0.2
_	TOTAL	. VOLUME	608			TOTAL	PRESSURE	DROP	52.8

_AG: 46.4 MINUTES 0 STROKES #1 AND 5108 STROKES #2

PRESSURE

UNITS

BIT HYDRAULICS:

HHP 474 HHP/sqin 6.19 PRESSURE DROP 1476.9 IMPACT FORCE % SURFACE PRESSURE 70.3 JET VELOCITY 131

PRESSURE BREAKDOWN:

SURFACE 27.8 622.1 STRING 1476.9

ANNULUS 52.8

TOTAL 2179.6 PUMP PRESSURE 2100.0 % DIFFERENCE 3.8

BOTTOM HOLE PRESSURES:

8.90 NOT CIRCULATING: MUD WEIGHT HYDROSTATIC PRESSURE 3340.4 CIRCULATING PRESSURE 3393.1 CIRCULATING: ECD 9.04 0.28 PULLING OUT: TRIP MARGIN ESTIMATED SWAB 105.5 BOTTOM HOLE PRESSURE 3234.9 EFFECTIVE MUD WEIGHT 8.62

DENSITY

UNITS

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2300.0

SPM 1 67 SPM 2 66 FLOW RATE 665

ANNULAR HYDRAULICS:

	ANNULUS	VOL/		ИИА	CRIT	TYPE OF		SCEND	PRESSURE
	TYPE	UNIT	VOL	ÁEL	VEL	FL.OW	VEL	VEL	DROP
-	DC/OH	0.186	38	85	101	LAMINAR	2	83	8.4
Į	HWDP/OH	0.231	19	69	97	LAMINAR	1	67	2.1
	DP/OH	0.231	280	69	97	LAMINAR	1	67	30.9
_	DP/CSG	0.236	167	67	97	LAMINAR	1	66	17.5
	DP/RIS	1.325	128	12	84	LAMINAR	0	12	0.3
_	TOTAL	. VOLUME	631			TOTAL	PRESSURE	DROP	59.2

LAG: 39.9 MINUTES 2671 STROKES #1 AND 2631 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2231.9 HHP 866 IMPACT FORCE 1649 % SURFACE PRESSURE 74.9 HHP/sqin 11.30 JET VELOCITY 158

PRESSURE BREAKDOWN:

SURFACE 40.2 STRING 922.3 BIT 2231.9

ANNULUS 59.2

TOTAL 3253.5 PUMP PRESSURE 2980.0 % DIFFERENCE 9.2

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: 9.20 HYDROSTATIC PRESSURE 3609.9 MUD WEIGHT 3669.1 9.35 CIRCULATING PRESSURE -CIRCULATING: ECD 10.30 PULLING OUT: TRIP MARGIN ESTIMATED SWAR 118.3 BOTTOM HOLE PRESSURE EFFECTIVE MUD WEIGHT 8.90 3491.6

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2400.0 AND TVD 2400.0

SPM 1 0 SPM 2 110 FLOW RATE 550

ANNULAR HYDRAULICS:

	ANNULUS TYPE	VOL/ UNIT	VOL.	ÁET ANN	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
ļ	DC/OH	0.186	38	70	99	LAMINAR	2	68	7.8
	HWDP/OH	0.231	19	57	95	LAMINAR	1	55	2.0
)	DP/OH	0.231	303	57	95	LAMINAR	1	55	31.1
	DP/CSG	0.236	167	56	95	LAMINAR	1	54	16.3
	DP/RIS	1.325	128	10	83	LAMINAR	0	10	0.2
	TOTAL	. VOLUME	654			TOTAL	PRESSURE	DROP	57.5

LAG: 50.0 MINUTES 0 STROKES #1 AND 5496 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1576.5 HHP 506 IMPACT FORCE 1165 % SURFACE PRESSURE 70.4 HHP/sqin 6.60 JET VELOCITY 131

PRESSURE BREAKDOWN:

SURFACE 29.3 STRING 689.2 BIT 1576.5 ANNULUS 57.5

TOTAL 2352.5 PUMP PRESSURE 2240.0 % DIFFERENCE 5.0

			D	UNITS		}	UNITS
	NOT CIRCULATING: CIRCULATING:	QUM	WEIGHT ECD	9.50 9.64	HYDROSTATIC CIRCULATING		
!	PULLING OUT: EFFECTIVE		MARGIN WEIGHT	10.28 9.22	ESTIMATED SU-BOTTOM HOLE		115.0 3774.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2500.0 AND TVD 2500.0

SPM 1 60 SPM 2 60 FLOW RATE 600

ANNULAR HYDRAULICS:

VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TINU	VOL	ÁET	VEL	FL.OW	VEL	VEL	DROP
0.186	38	77	122	LAMINAR	1	75	12.5
0.231	19	62	114	LAMINAR	1	61	2.9
0.231	325	62	114	LAMINAR	1	61	49.7
0.236	167	61	114	LAMINAR	1	60	24.2
1.325	128	11	88	L.AMINAR	0	11	0.2
VOLUME	677	-		TOTAL	PRESSURE	DROP	89.6
	UNIT 0.186 0.231 0.231 0.236 1.325	UNIT VOL 0.186 38 0.231 19 0.231 325 0.236 167 1.325 128	UNIT VOL VEL 0.186 38 77 0.231 19 62 0.231 325 62 0.236 167 61 1.325 128 11	UNIT VOL VEL VEL 0.186 38 77 122 0.231 19 62 114 0.231 325 62 114 0.236 167 61 114 1.325 128 11 88	UNIT VOL VEL VEL FLOW 0.186 38 77 122 LAMINAR 0.231 19 62 114 LAMINAR 0.231 325 62 114 LAMINAR 0.236 167 61 114 LAMINAR 1.325 128 11 88 LAMINAR	UNIT VOL VEL VEL FLOW VEL 0.186 38 77 122 LAMINAR 1 0.231 19 62 114 LAMINAR 1 0.231 325 62 114 LAMINAR 1 0.236 167 61 114 LAMINAR 1 1.325 128 11 88 LAMINAR 0	UNIT VOL VEL VEL FLOW VEL VEL 0.186 38 77 122 LAMINAR 1 75 0.231 19 62 114 LAMINAR 1 61 0.231 325 62 114 LAMINAR 1 61 0.236 167 61 114 LAMINAR 1 60 1.325 128 11 88 LAMINAR 0 11

LAG: 47.4 MINUTES 2844 STROKES #1 AND 2844 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 2081.3 HHP 728 IMPACT FORCE 1460 % SURFACE PRESSURE 72.8 HHP/sqin 9.51 JET VELOCITY 150

PRESSURE BREAKDOWN:

SURFACE 40.8 STRING 989.0

STRING 989.0 BIT 2081.3

ANNULUS 89.6

TOTAL 3200.7 PUMP PRESSURE 2860.0 % DIFFERENCE 11.9

	DENSITY		UNITS
NOT CIRCULATING: MUD	WEIGHT 9.50 ECD 9.71	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	
TRIP EFFECTIVE MUD	MARGIN 0.42 WEIGHT 9.08	ESTIMATED SWAB BOTTOM HOLE PRESSURE	179.1 3872.7

COMPUTER DATA LISTING : LIST A

	INTERVA	ìL.	,		1			,	•	All depth records (data not averaged)
•	DEPTH.	•			t	,		•		Well depth, in metres
	ROP.					•		*,		Rate of penetration; in metres/hour
	sow			,	•		,			Weight on bit, in thousands of pounds
	RPM	•	,				ı		ı	Rotary speed, in revoloutions per minute
	MW		•					,		Mud weight in, in pounds per gallon
	"dc" ,	i	•		•		r		•	Calculated "d" exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg
	HOURS.		,	•	•	•	•	•	•	Cumulative bit hours. The number of hours that the bit has actually been "on bottom", recorded in decimal hours
	TURNS.	,			,	ı	,	,	•	Cumulative bit turns. The number of turns made by the bit, while actually "on bottom"
	icosr.			•			•	,		Incremental cost per metre, calculated from the rate of penetration, in A dollars
	ccost.	•	,	ı	r		•	ı	•	Cumulative cost per metre, calculated from the drilling time, in A dollars
	PP	•	•	•	•	•	•	•		Pore pressure gradient, in equivilant pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation
	FG	•	•	•	•	•	•		•	Fracture gradient, in equivilant pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL program using Eaton's equation
										It is dependant on the pore pressure, the overburden gradient and the matrix stress. This value may be modified by leak-off information

235.0- 818.0 BIT NUMBER 2 IADC CODE INTERVAL 111 NOZZLES 20 20 18 15.000 HUGHES OSC-3AJ SIZE 4.0 TRIP TIME BIT RUN 583.0 2000.00 T3 B6 G0.000 75478 CONDITION TOTAL HOURS 7.48 TOTAL TURNS FG PP CCOST MW "d"c HOURS TURNS ICOST DEPTH ROP WOB RPM 8.5 12.1 8.6 0.27 0.02 96 7 1624 500.0 12.0 80 245.0 7 8.5 12.1 144 1085 0.03 250.0 500.0 14.0 80 8.6 0.28 7.08 815.48 8.5 12.2 500.0 12.0 80 8.6 0.27 0.04 192 255.0 8.5 12.2 7.80 653.95 260.0 454.0 12.0 80 8.6 0.29 0.05 245 8.5 12.2 8.6 0.32 8.86 546.43 400.0 12.0 80 0.06 305 265.0 8.5 12.2 99 0.07 7,47 469,44 474.0 13.0 8.6 0.34 368 270.0 8.5 12.2 400,0 10.0 99 8.6 0.36 0.09 442 8,86 411,87 275.0 9.32 367.14 8.5 12.2 380.0 6.0 100 8.6 0.34 0.10 521 280.0 0.11 600 9.32 331.36 8.5 12.3 380.0 7.0 100 8.6 0.35 285.0 681 9,57 302.10 8.5 12.3 0.13 290.0 370.0 6.0 100 8.6 0.35 8.5 12.3 0.14 751 8.24 277.61 295.0 430.0 7.0 100 8,6 0,32 8.5 12.3 0.15 7.08 256.80 500.0 7.0 145 8.6 0.37 838 300.0 8.5 12.3 961 10,42 239,21 305.0 340.0 7.0 140 8.6 0.45 0.16 8.5 12.4 0.17 1069 8.24 223.81 310.0 430.0 7.0 155 8.6 0.42 7.08 210.26 8.5 12.4 315.0 500.0 7,0 155 8.6 0.39 0.18 1162 1258 7.08 198.31 8.5 12.4 320.0 500.0 8.0 160 8.6 0.41 0.19 8.0 160 7.08 187.69 8,5 12,4 325.0 500.0 8.6 0.41 0.20 1354 340.0 9.0 160 8.6 0.51 0.22 1495 10.42 178.36 8.5 12.4 330.0 9.0 160 8.6 0.47 0.23 1615 8.86 169.88 8.5 12.4 400.0 335.0 11.81 162.35 300.0 10.0 145 8.6 0.52 0.25 1760 8.5 12.5 340.0 11.32 155.49 1914 8.5 12.5 0.26 345.0 313.0 10.0 160 8.6 0.54 11.65 149.24 2077 8.5 12.5 9.0 165 0.28 8.6 0.54 350.0 304.0 13.12 143.56 8.5 12.5 0.30 2260 355.0 270.0 10.0 165 8,6 0,58 8.5 12.5 8.6 0.56 2420 11,81 138,29 300.0 11.0 160 0.32 360.0 10.42 133.38 8.5 12.5 365.0 340.0 10.0 165 8.6 0.53 0.33 2565 8.5 12.6 250.0 9.0 165 0.35 2763 14.17 128.96 8.6 0.59 370.0 8.6 0.60 2988 16.10 124.93 8.5 12.6 0.37 220.0 8.0 165 375.0 0.40 3203 16.87 121.20 8.5 12.6 210.0 10.0 150 8.6 0.62 380.0 8.5 12.6 0.42 13.12 117.60 8.6.0.57 3369 270.0 11.0 150 385.0 17.71 114.38 8.5 12.6 200.0 10.0 165 8.6 0.65 0.44 3617 390.0 8.5 12.6 0.47 3892 19.68 111.42 395.0 180.0 10.0 165 8.6 0.68 8.5 12.7 220.0 11.0 170 8.6 0.65 0.49 4124 16.10 108.53 400.0 405.0 180.0 11.0 170 8.6 0.70 0.52 4407 19.68 105.92 8.5 12.7 12.65 103.25 0.54 4589 8.5 12.7 280.0 12.0 170 8.6 0.60 410.0 17.71 200.0 11.0 170 0.56 4844 100.88 8.5 12.7 415.0 8.6 0.67 8.5 12.7 240.0 16.0 180 8.6 0.70 0.58 5069 14.76 98.55 420.0 5407 22.14 96.54 8.5 12.7 425.0 160.0 16.0 180 8.6 0.81 0.61 220.0 18.0 170 8.6 0.73 5639 16.10 94.48 8.5 12.8 0.64 430.0 150.0 17.0 160 5959 92.70 8.5 12.8 0.67 23.61 8.6 0.80 435.0 15.74 90.83 8.5 12.8 225.0 18.0 148 0.69 6156 440.0 8.6 0.68 88.95 300.0 18.0 150 0.71 6306 8.5 12.8 445.0 8.6 0.61 11.81 87.31 6551 8.5 12.8 190.0 15.0 155 0.74 18.64 450.0 8.6 0.71 8.5 12.8 0.77 6851 27.25 85.94 455.0 130.0 15.0 130 8.6 0.76

DEPTH	ROP WOB	RPM MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP FG
460.0 465.0 470.0 475.0 480.0 485.0 490.0 495.0 500.0	145.0 18.0 170.0 18.0 95.0 17.0 100.0 17.0 250.0 17.0 230.0 17.0	145 8.6 150 8.6 150 8.6 150 8.6 150 8.6 155 8.6 146 8.6	0.70 0.80 0.76 0.91 0.90 0.65 0.67 0.57 0.89	0.80 0.84 0.87 0.92 0.97 0.99 1.01 1.02 1.07	7092 7392 7657 8131 8581 8761 8956 9089 9454 9915	19.68 24.43 20.84 37.28 35.42 14.17 15.40 10.12 29.52 37.28	84.47 83.17 81.84 80.91 79.98 78.67 77.43 76.13 75.25 74.55	8.5 12.9 8.5 12.9 8.5 12.9 8.5 12.9 8.5 12.9 8.5 13.0 8.5 13.0 8.5 13.0
510.0 515.0 520.0 525.0 530.0 535.0 540.0 550.0 550.0	85.0 22.0 90.0 18.0 72.0 16.0 72.0 16.0 68.0 16.0 72.0 16.0 54.0 16.0 58.0 18.0 129.0 19.0 69.0 21.0	160 8.6 155 8.6 155 8.6 155 8.6 155 8.6 155 8.6 155 8.6	0.99 0.95 0.98 0.98 1.00 0.98 1.06 1.07 0.88	1.18 1.23 1.30 1.37 1.44 1.51 1.61 1.69 1.73	10431 10964 11610 12256 12939 13585 14446 15248 15632 16349	41.67 39.36 49.19 49.19 52.09 49.19 65.59 61.07 27.46 51.33	73.95 73.33 72.91 72.50 72.16 71.77 71.67 71.50 70.80 70.50	8.5 13.0 8.5 13.1 8.5 13.1 8.5 13.1 8.5 13.1 8.5 13.1 8.5 13.1 8.5 13.1 8.5 13.1
560.0 565.0 570.0 575.0 580.0 585.0 590.0 595.0 600.0	60.0 20.0 69.0 20.0 78.0 19.0 140.0 20.0 130.0 20.0 43.0 20.0 50.0 21.0 78.0 21.0 120.0 23.0	165 8.6 170 8.6 170 8.6 170 8.6 170 8.6 170 8.6 170 8.6	1.11 5 1.06 5 1.02 6 0.87 6 0.89 6 1.20 6 1.18 6 1.05 6 1.13	1.89 1.96 2.02 2.06 2.10 2.21 2.31 2.38 2.42 2.49	17199 17917 18551 18915 19308 20494 21514 22168 22618 23412	59.03 51.33 45.41 25.30 27.25 82.37 70.84 45.41 29.52 52.09	70.32 70.03 69.67 69.01 68.41 68.61 68.64 68.32 67.79 67.57	8.5 13.2 8.5 13.2 8.5 13.2 8.5 13.2 8.5 13.2 8.5 13.3 8.5 13.3 8.5 13.3
610.0 615.0 620.0 625.0 630.0 645.0 645.0 650.0	88.0 21.0 75.0 21.0 50.0 20.0 68.0 20.0 85.0 22.0 88.0 21.0 63.0 21.0 83.0 21.0	180 8.6 179 8.6 179 8.6 179 8.6 179 8.6 185 8.6 185 8.6	5 1.03 5 1.08 5 1.18 6 1.09 5 1.05 6 1.03 6 1.03 6 1.05 6 1.05	2.72 2.79 2.85 2.91 2.99 3.05	24025 24745 25819 26609 27241 27851 28732 29401 30113 30835	40,25 47,23 70,84 52,09 41,67 40,25 56,22 42,67 44,28 44,84	67.21 66.95 67.00 66.81 66.49 66.16 66.04 65.75 65.25	8.5 13.3 8.5 13.4 8.5 13.4 8.5 13.4 8.5 13.4 8.5 13.4 8.5 13.4 8.5 13.4 8.5 13.5
660.0 645.0 670.0 675.0 680.0 685.0 690.0 700.0	83.0 20.0 60.0 20.0 88.0 21.0 75.0 21.0 89.0 20.0 82.0 20.0 62.0 19.0 57.0 19.0 70.0 17.0	180 8. 175 8. 175 8. 180 8. 180 8. 180 8.	6 1.03 6 1.13 6 1.02 6 1.07 6 1.02 6 1.04 6 1.13 6 1.13	3.32 3.37 3.44 3.50 3.56 3.64 3.72 3.80	31485 32385 32982 33682 34289 34947 35818 36766 37537 38519	43.20 57.13 62.14	64.98 64.91 64.63 64.43 64.15 63.92 63.85 63.69	8.5 13.5 8.5 13.5 8.5 13.5 8.5 13.5 8.5 13.5 8.5 13.6 8.5 13.6 8.5 13.6

•

•

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
710.0 715.0 720.0 725.0 730.0 735.0 740.0 745.0 750.0	55.0 69.0 58.0 36.0 28.0 26.0 26.0	19.0 19.0 16.0 16.0 14.0 15.0 19.0 21.0	180 180 180 164 165 170 170	8.6 8.6 8.9 8.9 8.9 8.9	1.08 1.14 1.03 1.08 1.11 1.19 1.28 1.28 1.32	3.96 4.05 4.13 4.21 4.35 4.53 4.72 4.91 5.09 5.23	39325 40307 41089 42020 43387 45155 47116 49078 51043 52672	52.87 64.40 51.33 61.07 98.39 126.50 136.23 136.23 122.14 101.20	63.58 63.59 63.46 63.44 63.79 64.42 65.13 65.83 66.37	8888555555 888888888888888888888888888	13.6 13.6 13.6 13.7 13.7 13.7 13.7
760.0 765.0 770.0 775.0 780.0 785.0 790.0 795.0 800.0	35.0 43.0 28.0 26.0 22.5 25.0 22.4 27.0 39.0	23.0 23.0 21.0 21.0 20.0 22.0 21.0 20.0 20.0	170 170 170 170 170 170 168 160 175	8.9 8.9 8.9 8.9 8.9 8.9	1.26 1.20 1.30	5.37 5.49 5.67 5.86 6.08 6.28 6.50 6.69 6.82 6.96	54129 55315 57137 59098 61365 63405 65655 67432 68779	101.20 82.37 126.50 136.23 157.42 141.68 158.13 131.19 90.82 104.18	67.04 67.18 67.73 68.37 69.19 69.85 70.64 71.18 71.35	55555555555555555555555555555555555555	13.7 13.8 13.8 13.8 13.8 13.8 13.8 13.8
810.0 815.0 818.0	26.0	18.0 18.0 18.0	170	8.9	1.26 1.27 1.30	7.16 7.35 7.48	72198 74159 75478	138.36 136.23 152.67	72.22 72.77 73.19	8.5	13.9 13.9 13.9

•

.

IADC CODE 3 818.0- 1298.0 BIT NUMBER 114 INTERVAL SIZE 9,875 NOZZLES 11 11 11 HUGHES X3A 900.00 TRIP TIME 5.7 BIT RUN 480.0 COST T5 B6 G0.125 TOTAL. HOURS 13.25 TOTAL TURNS 117216 CONDITION MW "d"c HOURS TURNS ICOST CCOST PP FG DEPTH ROP WOB RPM 8,5 13.9 820.0 39.7 22.0 122 9.0 1.24 0.05 369 89 10634 553 89 7119 8.5 13.9 39.8 22.0 122 9.0 1.24 0.08 821.0 127 5371 8.5 13.9 822.0 28.0 22.0 122 9.0 1.34 0.11 814 8.5 13.9 9.0 1.34 125 4322 823.0 28.4 22.0 122 0.15 1072 8.5 13.9 824.0 36.2 22.0 122 9.0 1.26 0.17 1274 98 3618 8.5 13.9 102 3115 34.6 22.0 122 9.0 1.28 0.201486 825.0 0.28 8.5 13.9 13.6 18.0 2759 826.0 95 9.0 1.41 1905 260 2466 8.5 13.9 827.0 28.4 18.0 95 9.0 1.20 0.31 2105 125 0.35 24.0 18.0 95 9.0 1.24 2343 148 2234 8.5 13.9 828.0 8.5 13.9 25.9 18.0 9.0 1.22 137 2043 95 0,39 2563 829.0 34.5 18.0 830.0 95 9.0 1.14 0.42 2728 103 1882 8.5 13.9 33.0 21.0 80 9.0 1.15 0.45 2874 107 1745 8.5 13.9 831.0 832.0 23.3 21.0 80 9.0 1.25 0.49 3080 152 1631 8,5 13.9 833.0 28.0 21.0 110 9.0 1.29 0.53 3315 127 1531 8.5 13.9 834.0 31.2 21.0 110 9.0 1.26 0.56 3527 114 1442 8.5 13.9 8.5 13.9 835.0 20.3 22.0 110 9.0 1.41 0.61 3852 174 1368 43.5 21.0 112 9.0 1.17 0.63 4007 81 1296 8.5 13.9 836.0 837.0 39.8 21.0 112 9.0 1.19 0.66 4175 89 1233 8.5 13.9 49.0 22.0 110 9.0 1.14 0.68 4310 72 1175 8.5 13.9 838.0 44.3 22.0 110 9.0 1.17 0.70 4459 80 1123 8.5 13.9 839.0 0.74 9.0 1.32 4714 137 1078 8.5 14.0 840.0 25.9 21.0 110 9.0 1.20 8.5 14.0 37.9 21.0 110 0.77 1035 841.0 4888 93 842.0 37,9 22,0 110 9.0 1.22 0.79 5062 93,46 995,86 8.5 14.0 84.53 959.41 8.5 14.0 843.0 41.9 22.0 110 9.0 1.19 0.82 5220 8.5 14.0 844.0 29.1 21.0 155 9.0 1.39 0.85 5539 121.72 927.19 0.88 99.49 896.53 845.0 35.6 21.0 155 9.0 1.33 5801 8.5 14.0 846.0 28.7 21.0 155 9.0 1.39 0.91 6125 123.41 868.92 8.5 14.0 0.94 847.0 41.9 19.0 155 9.0 1.24 6347 84.53 841.87 8.5 14.0 9.0 1.27 0.97 8.5 14.0 848.0 37.9 19.0 155 6592 93,46 816,93 849.0 34.5 19.0 155 9.0 1.30 0.99 6861 102.67 793.89 8.5 14.0 8.5 14.0 7257 150.72 773.79 850.0 23.5 19.0 155 9.0 1.41 1.04 7508 105.73 753.54 33.5 18.0 140 9.0 1.26 8.5 14.0 1.07 851.0 8.5 14.0 7755 104.18 734.44 852.0 34.0 20.0 140 9.0 1.29 1.10 1.12 7999 102.97 716.40 8.5 14.0 853.0 34.4 20.0 140 9.0 1.29 1.15 9.0 1.27 854.0 36.7 20.0 140 8228 96.51 699.18 8.5 14.0 855.0 55.9 20.0 140 9.0 1.14 1.17 8378 63.36 682.00 8.5 14.0 1.19 8.5 14.0 52.4 20.0 140 9.0 1.16 8539 67.60 665.83 856.0 49.0 19.0 140 1.21 8710 72.29 650.61 8.5 14.0 857.0 9.0 1.17 1.24 29.7 18.0 140 9.0 1.30 8993 119.26 637.33 8.5 14.0 858.0 48.0 19.0 140 1.26 73.79 623.58 8.5 14.0 859.0 9.0 1.17 9168 9.0 1.28 1.29 35.6 20.0 140 9404 99.49 611.10 8,5 14,0 860.0 9.0 1.29 9647 102.67 599.28 8.5 14.0 34.5 20.0 140 1.32 861.0 9919 114.63 588.26 862.0 30,9 18,0 140 9.0 1.28 1.35 8.5 14.0

DEPTH	ROP	MOR	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
863.0 864.0 865.0 866.0 867.0 868.0 869.0 870.0 871.0	28.4 38.5 24.6 36.7 31.7 34.0 39.8 40.2	20.0 18.0 20.0 20.0 20.0 21.0	140 140 120 120 120 110 110	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.28 1.36 1.25 1.31 1.22 1.27 1.22 1.19 1.34	1,39 1,42 1,45 1,49 1,51 1,55 1,58 1,60 1,63	10480 10698 10991 11187	124.72 92.00 143.98 96.51 111.74 104.18 88.99 88.11	577.67 567.83 557.70 549.08 539.85 531.29 522.91 514.57 506.52 498.83	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
873.0 874.0 875.0 876.0 877.0 878.0 879.0 880.0 881.0	45.2 45.2 50.1 53.6 43.5 78.0 88.0 95.7	25.0 24.0 23.0	155 155 155 155 155	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.25 1.30 1.30 1.27 1.26 1.33 1.14 1.09 1.05 1.08	1.67 1.69 1.71 1.73 1.75 1.78 1.79 1.80 1.81	12427 12633 12838 13024 13197 13411 13530 13636 13733 13834	78.36 78.36 70.70 66.08 81.43 45.41 40.25 37.01	491.02 483.65 476.54 469.54 462.70 456.35 449.61 443.01 436.57 430.35	 	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.1
883.0 884.0 885.0 886.0 887.0 889.0 890.0 891.0	91.1 61.7 58.2 76.5 78.0 84.5 84.6 82.4		155 155 155 155 155 155 155	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.11 1.08 1.20 1.22 1.14 1.13 1.09 1.09 1.08 1.27	1.83 1.84 1.86 1.89 1.89 1.90 1.92 1.93	13945 14047 14198 14357 14479 14598 14708 14818 14920 15106	38.88 57.41 60.86 46.30 45.41 41.92 41.87 42.99	424.37 418.53 413.14 407.96 402.72 397.62 392.61 387.73 383.01 378.89		14.1 14.1 14.1 14.1 14.1 14.1 14.1
893.0 894.0 895.0 896.0 897.0 898.0 899.0 900.0 901.0	76.5 59.1 56.2 71.9 76.5 66.9 45.2	24.0 24.0 24.0 23.0 23.0 23.0 23.0 23.0 22.0 22.0	140 140 140 140 140 140 140	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.08 1.10 1.18 1.19 1.11 1.09 1.13 1.13 1.24 1.05	1.97 1.99 2.00 2.02 2.04 2.05 2.06 2.08 2.10 2.11	15209 15319 15461 15610 15727 15837 15962 16088 16274 16373	46.30 59.93 63.02 49.26 46.30 52.94 52.94 78.36	374.42 370.10 366.08 362.19 358.23 354.33 350.61 346.98 343.74 340.15		14.1 14.1 14.1 14.1
903.0 904.0 905.0 906.0 907.0 908.0 909.0 910.0 911.0 912.0	47.2 61.7 61.6 35.9	22.0 22.0 21.0 22.0 22.0 23.0 23.0	140 140 140 140 140 140 140	9.0 9.0 9.0 9.0 9.0 9.0	1.06 1.05 1.11 1.08 1.16 1.23 1.16 1.16 1.16	2.12 2.14 2.15 2.17 2.18 2.20 2.22 2.24 2.26 2.28	16477 16576 16698 16815 16958 17136 17272 17409 17643 17759	41.87 51.48 49.26 60.44 75.04 57.41 57.50 98.66	336.66 333.23 329.99 326.80 323.81 321.05 318.15 315.32 312.99 310.18	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	14.1 14.1 14.1 14.1

DEPTH	ROP WOB	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
913.0 914.0 915.0 916.0 917.0 918.0 919.0 920.0 921.0 922.0	62.4 24.0 73.1 25.0 64.0 24.0 68.8 24.0 73.1 23.0 68.8 23.0 63.3 23.0 64.3 24.0 42.7 22.0 78.0 22.0	135 135 135 135 135 140 140	9.0 1.17 9.0 1.12 9.0 1.15 9.0 1.13 9.0 1.09 9.0 1.11 9.0 1.15 9.0 1.16 9.0 1.26 9.0 1.07	2.29 2.31 2.32 2.34 2.35 2.37 2.38 2.40 2.42 2.43	17894 18005 18131 18249 18360 18478 18610 18741 18938 19045	48.45 55.34 51.48 48.45 51.48 55.96 55.99 82.95	307.51 304.82 302.24 299.68 297.15 294.69 292.33 290.00 287.99 285.66	88855555555555555555555555555555555555	14.1 14.1 14.1 14.1 14.1 14.1 14.1 14.1
923.0 924.0 925.0 926.0 927.0 928.0 929.0 930.0 931.0 932.0	71.8 23.0 66.9 22.0 66.9 22.0 68.8 22.0 66.9 22.0 58.6 22.0 37.9 24.0 38.8 24.0 71.9 23.0	140 140 140 140 140 140 140	9.0 1.11 9.0 1.12 9.0 1.12 9.0 1.11 9.0 1.12 9.0 1.14 9.0 1.16 9.0 1.32 9.0 1.32 9.0 1.31	2.45 2.46 2.49 2.51 2.52 2.54 2.57 2.61	19162 19288 19414 19536 19661 19794 19937 20159 20375 20492	52.94 52.94 51.48 52.94 55.96 60.44 93.46 91.29	283.41 281.23 279.10 276.99 274.94 272.95 271.03 269.45 267.87 265.95	88 88 88 88 88 88 88 88 88	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
933.0 934.0 935.0 936.0 937.0 938.0 939.0 940.0 941.0 942.0	68.8 23.0 66.9 23.0 63.3 24.0 73.1 23.0 66.8 22.0 56.2 26.0 51.2 25.0 78.0 24.0 37.9 25.0	140 140 140 140 140 140 140	9.0 1.12 9.0 1.13 9.0 1.16 9.0 1.10 9.0 1.12 9.0 1.12 9.0 1.23 9.0 1.24 9.0 1.34	2.62 2.64 2.65 2.66 2.69 2.71 2.73 2.74 2.77	20614 20740 20873 20987 21113 21239 21388 21552 21660 21882	52,94 55,96 48,45 53,02 53,02 63,02 69,18 45,41	264.09 262.27 260.50 258.71 256.98 255.28 253.69 252.18 250.50 249.23	888888555 8888888888888888888888888888	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
943.0 944.0 945.0 946.0 947.0 948.0 949.0 950.0 951.0	66.9 25.0 71.9 25.0 66.9 24.0 71.9 23.0 66.9 25.0 68.2 25.0 62.1 24.0 51.5 23.0 64.5 23.0 61.7 25.0	140 140 140 140 138 138	9.0 1.16 9.0 1.14 9.0 1.15 9.0 1.11 9.0 1.16 9.0 1.15 9.0 1.16 9.0 1.16 9.0 1.21 9.0 1.14	2.79 2.80 2.81 2.83 2.84 2.86 2.87 2.89 2.91	22007 22124 22250 22367 22492 22615 22749 22909 23038 23172	49.26 52.94 49.26 52.94 51.94 57.04 68.78 54.91	247,66 246.08 244.56 243.04 241.56 240.11 238.71 237.42 236.05 234.72		14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
953.0 954.0 955.0 956.0 957.0 958.0 959.0 960.0 961.0 962.0	64.0 25.0 66.9 25.0 58.6 23.0 63.3 23.0 73.1 23.0 71.9 23.0 66.9 23.0 42.7 25.0 68.8 25.0 37.9 26.0	138 138 138 138 138 138 140 140	9.0 1.17 9.0 1.15 9.0 1.17 9.0 1.14 9.0 1.10 9.0 1.11 9.0 1.13 9.0 1.30 9.0 1.35	2.94 2.96 2.97 2.99 3.00 3.02 3.03 3.05 3.05 3.10	23301 23425 23566 23697 23811 23926 24049 24246 24368 24590	52,94 60.44 55.96 48.45 49.26 52.94 82.95 51.48	233.39 232.06 230.81 229.54 228.24 226.96 225.73 224.72 223.51 222.61		14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2

v .

DEPTH	ROP	MOB	RPM	МW	"d"c	HOURS	TURNS	ICOST	ccost	PP	FG
963.0 964.0 965.0 966.0 967.0 968.0 969.0 970.0 971.0	58.6 51.2 61.7 58.6 81.7 35.6 41.9 35.6	26.0 27.0 26.0 27.0 27.0 27.0 27.0 23.0 23.0	140 140 140 140 140 135 135	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.30 1.23 1.26 1.20 1.23 1.12 1.39 1.27 1.32	3.12 3.14 3.16 3.17 3.19 3.20 3.23 3.25 3.25	24780 24923 25087 25223 25366 25469 25705 25898 26126 26268	60.44 69.18 57.41 60.44 43.35 99.49 84.53 99.49	221.62 220.52 219.49 218.39 217.33 216.17 215.40 214.54 213.79 212.76	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14.2 14.3 14.3 14.3 14.3 14.3 14.3 14.3
973.0 974.0 975.0 976.0 977.0 978.0 979.0 980.0 981.0 982.0	47.0 44.3 55.9 58.6 31.2 45.2 40.2 44.3	19.0 20.0 20.0 20.0 19.0 22.0 24.0 22.0 23.0	150 150 150 140 140 140 140	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.15 1.22 1.23 1.16 1.11 1.35 1.27 1.27 1.24	3.31 3.34 3.36 3.39 3.43 3.45 3.47 3.47	27583 27792	75.36 79.95 63.36 60.44 113.53 78.36 88.11 79.95	211.80 210.92 210.09 209.16 208.23 207.63 206.83 206.10 205.32 204.58	555555555 88888888 888	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
983.0 984.0 985.0 986.0 987.0 988.0 989.0 990.0 991.0	41.5 41.9 42.7 34.5 45.2 45.2 44.3	21.0 22.0 21.0 21.0 21.0 21.0 22.0 22.0	140 140 140 140 140 140 140 140	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.28 1.26 1.25 1.24 1.30 1.22 1.24 1.22 1.20	3.54 3.57 3.59 3.62 3.64 3.67 3.69 3.71 3.73	28400 28603 28803 29000 29243 29429 29615 29805 29805 30144	85.35 84.53 82.95 102.67 78.36 78.36 79.95 73.79	203.90 203.19 202.48 201.77 201.18 200.46 199.75 199.05 198.32 197.58	888888855 8888888888888888888888888888	14.3 14.3 14.3 14.3 14.3 14.3 14.3
993.0 994.0 995.0 996.0 997.0 998.0 999.0 1000.0	47.0 50.1 25.9 49.0 46.1 50.1 55.9 47.0		140 140 140 140 140 140 140	9.0 9.0 9.0 9.0 9.0 9.0 9.0		3.77 3.79 3.81 3.85 3.87 3.89 3.91 3.93 3.95	30497 30665	75.36 70.70 136.76 72.29 76.83 70.70 63.36 75.36	196.88 196.18 195.48 195.15 194.46 193.81 193.13 192.41 191.77	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
1003.0 1004.0 1005.0 1006.0 1007.0 1008.0 1009.0 1010.0 1011.0	52.4 34.2 33.0 24.0 38.0 38.1 49.0 53.4		140 140 140 140 140 140 140 140	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.35 1.45 1.31 1.31	3.99 4.01 4.04 4.07 4.11 4.14 4.17 4.19 4.20 4.22	32570 32824 33174 33396 33616 33787 33945	67.60 103.57 107.33 147.58 93.21 92.97 72.29 66.33	190.44 189.78 189.32 188.88 188.66 188.16 187.66 187.06 186.44 185.83	88888888 888888888	14.3 14.3 14.3 14.3 14.4 14.4 14.4

DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST PP FG 1013.0 49.0 23.0 140 9.0 1.37 4.28 4.24 34260 72.29 185.25 8.5 14.4 1014.0 30.9 23.0 140 9.0 1.37 4.28 34525 114.63 184.89 8.5 14.4 1015.0 48.0 23.0 140 9.0 1.24 4.30 34727 73.79 184.33 8.5 14.4 1016.0 25.9 23.0 140 9.0 1.24 4.30 34727 73.79 184.33 8.5 14.4 1017.0 47.0 23.0 140 9.0 1.24 4.36 35230 75.36 183.59 8.5 14.4 1018.0 51.2 22.0 145 9.0 1.21 4.38 3540 69.18 182.97 8.5 14.4 1019.0 52.4 22.0 145 9.0 1.20 4.40 35566 67.60 182.39 8.5 14.4 1021.0 55.9 22.0 145 9.0 1.20 4.43 35892 69.18 182.97 8.5 14.4 1022.0 55.9 22.0 145 9.0 1.20 4.43 35892 69.18 181.25 8.5 14.4 1022.0 55.2 21.0 145 9.0 1.20 4.43 35892 69.18 181.25 8.5 14.4 1023.0 33.0 24.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1023.0 33.0 24.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1023.0 51.2 22.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1023.0 51.2 22.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1023.0 51.2 22.0 145 9.0 1.21 4.50 36481 69.18 199.27 8.5 14.4 1023.0 51.2 22.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1023.0 51.2 22.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1023.0 51.2 22.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1023.0 51.2 22.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1023.0 51.2 22.0 145 9.0 1.21 4.50 36481 69.18 199.26 8.5 14.4 1024.0 55.9 22.0 145 9.0 1.22 4.64 3783 70.70 175.66 8.5 14.4 1025.0 51.2 20.0 145 9.0 1.21 4.50 36481 69.18 199.27 8.5 14.4 1026.0 55.9 22.0 145 9.0 1.21 4.50 3691 66.88 179.2 8.5 14.4 1027.0 53.0 22.0 145 9.0 1.22 4.64 3783 70.70 175.66 8.5 14.4 1028.0 55.9 22.0 145 9.0 1.22 4.66 37853 70.70 175.66 8.5 14.4 1033.0 42.7 23.0 140 9.0 1.22 4.68 38950 82.95 175.2 38 8.5 14.4 1034.0 55.1 23.0 140 9.0 1.22 4.68 38950 82.95 175.2 38 8.5 14.4 1034.0 55.1 23.0 140 9.0 1.22 4.74 38859 69.18 172.00 28.5 14.4 1035.0 53.6 23.0 140 9.0 1.22 4.74 38859 69.18 179.29 175.66 8.5 14.4 1034.0 55.2 23.0 145 9.0 1.22 4.74 38859 69.18 172.20 38.5 14.4 1034.0 55.2 23.0 145 9.0 1.22 4.74 38 38859 69.18 172.0												
1014.0	DEF	TH ROI	e MOB	RPM	ММ	"d"c	HOURS	TURNS	ICOST	ccost	PP	FG
1024.0	1014 1015 1016 1017 1016 1019 1020	30.9 5.0 48.1 6.0 25.9 7.0 47.1 3.0 51.2 9.0 52.4 1.0 51.2	9 23.0 0 23.0 9 23.0 0 23.0 2 22.0 4 22.0 9 22.0 2 21.0	140 140 140 145 145 145 145	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.37 1.24 1.43 1.24 1.21 1.20 1.18 1.20	4.28 4.30 4.34 4.36 4.38 4.40 4.41 4.43	34552 34727 35051 35230 35400 35566 35722 35892	114.63 73.79 136.76 75.36 69.18 67.60 63.36 69.18	184.89 184.09 183.54 182.97 182.39 181.80 181.25	 	14.4 14.4 14.4 14.4 14.4 14.4
1034.0 52.4 23.0 140 9.0 1.21 4.70 38210 67.60 174.73 8.5 14.4 1035.0 53.6 22.0 140 9.0 1.19 4.72 385367 66.08 174.23 8.5 14.4 1037.0 51.2 23.0 140 9.0 1.22 4.76 38695 69.18 173.27 8.5 14.4 1038.0 51.2 23.0 140 9.0 1.22 4.78 38859 69.18 173.27 8.5 14.4 1039.0 52.0 23.0 140 9.0 1.21 4.80 39021 68.12 172.23 8.5 14.4 1040.0 53.6 22.0 140 9.0 1.21 4.80 39717 66.08 171.85 8.5 14.4 1041.0 51.2 22.0 140 9.0 1.23 4.84 39341 69.18 171.39 8.5 14.4 1042.0 50.1 23.0 145 9.0 1.21 4.87 39677 66.08 <t< td=""><td>1024 1025 1026 1026 1026 1036 1036</td><td>4.0 51.2 5.0 51.2 5.0 52.4 7.0 53.1 3.0 51.2 7.0 55.1 0.0 47.1</td><td>2 22.0 2 22.0 4 22.0 0 22.0 2 22.0 7 22.0 0 22.0 0 22.0</td><td>145 145 145 145 145 145 145</td><td>9.0 9.0 9.0 9.0 9.0 9.0 9.0</td><td>1.21 1.20 1.20 1.21 1.18 1.24 1.22</td><td>4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64</td><td>36491 36661 36827 36991 37161 37317 37502 37680</td><td>69.18 69.18 67.60 66.83 69.18 63.36 75.36 72.29</td><td>179.79 179.26 178.72 178.19 177.67 177.13 176.65 176.16</td><td> </td><td>14.4 14.4 14.4 14.4 14.4 14.4</td></t<>	1024 1025 1026 1026 1026 1036 1036	4.0 51.2 5.0 51.2 5.0 52.4 7.0 53.1 3.0 51.2 7.0 55.1 0.0 47.1	2 22.0 2 22.0 4 22.0 0 22.0 2 22.0 7 22.0 0 22.0 0 22.0	145 145 145 145 145 145 145	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.21 1.20 1.20 1.21 1.18 1.24 1.22	4.50 4.52 4.54 4.56 4.58 4.60 4.62 4.64	36491 36661 36827 36991 37161 37317 37502 37680	69.18 69.18 67.60 66.83 69.18 63.36 75.36 72.29	179.79 179.26 178.72 178.19 177.67 177.13 176.65 176.16	 	14.4 14.4 14.4 14.4 14.4 14.4
1044.0 51.2 23.0 145 9.0 1.23 4.89 39847 69.18 170.02 8.5 14.4 1045.0 52.4 23.0 145 9.0 1.22 4.91 40013 67.60 169.57 8.5 14.4 1046.0 50.1 23.0 145 9.0 1.23 4.93 40187 70.70 169.14 8.5 14.4 1047.0 52.4 23.0 145 9.0 1.22 4.95 40353 67.60 168.70 8.5 14.4 1049.0 59.0 22.0 145 9.0 1.22 4.97 40531 72.29 168.28 8.5 14.4 1049.0 59.0 22.0 145 9.0 1.21 4.99 40678 60.03 167.81 8.5 14.4 1050.0 46.1 22.0 145 9.0 1.21 5.03 41037 69.45 167.00 8.5 14.4 1051.0 51.0 22.0 145 9.0 1.22 5.05 41201 66.58 <td< td=""><td>1034 1035 1036 1037 1036 1039</td><td>4.0 52.4 5.0 53.6 5.0 51.2 7.0 51.2 3.0 51.2 9.0 52.6 0.0 53.6 1.0 51.2</td><td>4 23.0 5 22.0 2 23.0 2 23.0 2 23.0 2 23.0 6 22.0 2 22.0</td><td>140 140 140 140 140 140 140</td><td>9.0 9.0 9.0 9.0 9.0 9.0 9.0</td><td>1.21 1.19 1.22 1.22 1.22 1.21 1.21</td><td>4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84</td><td>38210 38367 38531 38695 38859 39021 39177 39341</td><td>67.60 66.08 69.18 69.18 69.18 68.12 66.08 69.18</td><td>174.73 174.23 173.75 173.27 172.80 172.33 171.85 171.39</td><td>88888555555555555555555555555555555555</td><td>14.4 14.4 14.4 14.4 14.4 14.4</td></td<>	1034 1035 1036 1037 1036 1039	4.0 52.4 5.0 53.6 5.0 51.2 7.0 51.2 3.0 51.2 9.0 52.6 0.0 53.6 1.0 51.2	4 23.0 5 22.0 2 23.0 2 23.0 2 23.0 2 23.0 6 22.0 2 22.0	140 140 140 140 140 140 140	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.21 1.19 1.22 1.22 1.22 1.21 1.21	4.70 4.72 4.74 4.76 4.78 4.80 4.82 4.84	38210 38367 38531 38695 38859 39021 39177 39341	67.60 66.08 69.18 69.18 69.18 68.12 66.08 69.18	174.73 174.23 173.75 173.27 172.80 172.33 171.85 171.39	88888555555555555555555555555555555555	14.4 14.4 14.4 14.4 14.4 14.4
1054.0 51.0 22.0 145 9.0 1.21 5.09 41549 69.45 165.76 8.5 14.5 1055.0 49.0 22.0 145 9.0 1.22 5.11 41727 72.29 165.36 8.5 14.5 1056.0 51.2 22.0 145 9.0 1.21 5.13 41897 69.18 164.96 8.5 14.5 1057.0 50.1 22.0 145 9.0 1.22 5.15 42070 70.70 164.56 8.5 14.5 1058.0 43.5 22.0 145 9.0 1.26 5.17 42270 81.43 164.22 8.5 14.5 1059.0 44.3 22.0 145 9.0 1.26 5.20 42467 79.95 163.87 8.5 14.5 1060.0 42.7 22.0 145 9.0 1.27 5.22 42670 82.95 163.53 8.5 14.5 1061.0 53.5 22.0 145 9.0 1.20 5.24 42833 66.21 <td< td=""><td>1044 1045 1046 1046 1046 1046 1050</td><td>4.0 51.2 5.0 52.4 6.0 50.7 7.0 52.4 3.0 49.4 9.0 59.4 1.0 51.7</td><td>2 23.0 4 23.0 1 23.0 4 23.0 0 22.0 0 22.0 1 22.0 0 22.0</td><td>145 145 145 145 145 145 145</td><td>9.0 9.0 9.0 9.0 9.0 9.0 9.0</td><td>1.23 1.22 1.23 1.22 1.22 1.17 1.24</td><td>4.89 4.91 4.93 4.95 4.97 4.99 5.01</td><td>39847 40013 40187 40353 40531 40678 40867 41037</td><td>69.18 67.60 70.70 67.60 72.29 60.03 76.83 69.45</td><td>170.02 169.57 169.14 168.70 168.28 167.81 167.42 167.00</td><td> </td><td>14.4 14.4 14.4 14.4 14.4 14.4</td></td<>	1044 1045 1046 1046 1046 1046 1050	4.0 51.2 5.0 52.4 6.0 50.7 7.0 52.4 3.0 49.4 9.0 59.4 1.0 51.7	2 23.0 4 23.0 1 23.0 4 23.0 0 22.0 0 22.0 1 22.0 0 22.0	145 145 145 145 145 145 145	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.23 1.22 1.23 1.22 1.22 1.17 1.24	4.89 4.91 4.93 4.95 4.97 4.99 5.01	39847 40013 40187 40353 40531 40678 40867 41037	69.18 67.60 70.70 67.60 72.29 60.03 76.83 69.45	170.02 169.57 169.14 168.70 168.28 167.81 167.42 167.00	 	14.4 14.4 14.4 14.4 14.4 14.4
	1054 1056 1056 1057 1056 1059	4.0 51.5 5.0 49.5 5.0 51.3 7.0 50.3 3.0 43.3 7.0 44.3 0.0 42.3 1.0 53.3	0 22.0 0 22.0 2 22.0 1 22.0 5 22.0 3 22.0 7 22.0 5 22.0	145 145 145 145 145 145 145	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.21 1.22 1.21 1.22 1.26 1.26 1.27	5.11 5.13 5.15 5.17 5.20 5.22 5.24	41549 41727 41897 42070 42270 42467 42670 42833	69.45 72.29 69.18 70.70 81.43 79.95 82.95 66.21	165.76 165.36 164.96 164.56 164.22 163.87 163.53 163.13	88888888	14.5 14.5 14.5 14.5 14.5 14.5

DEPTH	ROP	WOB R	PM MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP FG
1063.0 1064.0 1065.0 1066.0 1067.0 1068.0 1069.0 1070.0 1071.0	45.2 2 44.3 2 45.2 2 50.1 2 52.4 2 40.2 2 32.6 2	21.0 1 21.0 1 22.0 1 22.0 1 22.0 1 20.0 1 23.0 1	45 9.0 50 9.0 50 9.0 50 9.0 50 9.0 50 9.0 53 9.0 53 9.0	1.25 1.25 1.24	5.28 5.30 5.33 5.35 5.37 5.39 5.41 5.44 5.48	43217 43410 43613 43812 43992 44163 44387 44669 44848 45040	78.36 79.95 78.36 70.70 67.60 88.11 108.65 69.18	162.44 162.10 161.77 161.43 161.06 160.69 160.40 160.20 159.84 159.50	8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5
1073.0 1074.0 1075.0 1076.0 1077.0 1078.0 1079.0 1080.0 1081.0	50.1 2 44.3 2 40.2 2 16.8 2 25.1 2 41.9 2 40.5 2 34.5 2	25.0 1 25.0 1 25.0 1 25.0 1 25.0 1 25.0 1	55 9.0 55 9.0 55 9.0 55 9.1 55 9.1 55 9.1 45 9.1 45 9.1	1.25 1.28 1.32 1.35 1.61 1.49 1.33 1.32 1.32	5.51 5.55 5.58 5.64 5.46 5.70 5.72 5.75	45256 45442 45651 45883 46436 46807 47029 47244 47496 47819	88.11 70.70 79.95 88.11 210.83 141.12 84.53 87.46 102.67 136.23	158.43 158.14 157.87 157.66	8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5
1083.0 1084.0 1085.0 1086.0 1087.0 1088.0 1089.0 1090.0 1091.0	37.9 2 40.2 2 40.5 2 34.0 2 37.2 2 37.9 2 34.0 2 36.7 2 35.0 2	24.0 1 25.0 1 25.0 1 25.0 1 25.0 1 25.0 1 25.0 1	40 9.1 40 9.1	1.31 1.29 1.30 1.36 1.33 1.36 1.34 1.35	5.82 5.87 5.90 5.92 5.95 6.01 6.04 6.07	48041 48250 48457 48704 48930 49151 49399 49627 49867 50137	88.11 87.46 104.18 95.22	157.34 157.08 156.82 156.62 156.40 156.16 155.97 155.75 155.55	8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5
1093.0 1094.0 1095.0 1096.0 1097.0 1098.0 1099.0 1100.0 1101.0	30.3 2	25.0 1 25.0 1 25.0 1 25.0 1 25.0 1 25.0 1 25.0 1	40 9.1 40 9.1 40 9.1 40 9.1 40 9.1 40 9.1 40 9.1	1.36 1.35 1.40 1.38 1.39 1.39 1.40 1.42 1.41	6.10 6.13 6.16 6.19 6.22 6.25 6.29 6.32 6.35 6.39	50626 50904 51165 51437 51709 51986 52290 52551	103.87 102.67 116.90 110.34 114.63 114.63 116.90 127.87 110.34 114.63	155.02 154.88 154.72 154.58 154.44 154.30 154.21 154.05	8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.5 8.5 14.6 8.5 14.6 8.5 14.6
1103.0 1104.0 1105.0 1106.0 1107.0 1108.0 1109.0 1110.0 1111.0	38.5 2 37.9 2 25.1 2 16.3 2 24.0 2 22.6 2	27.0 1 27.0 1 27.0 1 25.0 1 25.0 1 25.0 1	40 9.1 40 9.1 40 9.1 40 9.1 40 9.1 40 9.1 45 9.1 45 9.1	1.42 1.39 1.46 1.35 1.33 1.45 1.59 1.48 1.50	6.42 6.48 6.51 6.54 6.58 6.64 6.68 6.75	53338 53642 53860 54081 54416 54931 55294	93.46 141.12 217.30 147.58 156.73	153.51 153.30 153.09 153.05 153.27 153.25	8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6

ROP WO	B RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1.5 24. 9.5 25. 9.1 23. 5.1 26. 5.0 26. 8.7 26. 2.6 25. 1.2 25.	0 145 0 140 0 140 0 140 0 140 0 140 0 140 0 140	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.50 1.40 1.38 1.36 1.37 1.43 1.23	6.78 6.83 6.86 6.90 6.93 6.95 7.02 7.04 7.06	56587 56872 57161 57400 57640 57933 58190	164.74 120.07 121.72 100.91 101.20 123.41 108.65 69.18	152.96 152.85 152.74 152.57 152.40 152.30 152.16 151.88	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14.6 14.6 14.6 14.6 14.6 14.6 14.6
4.3 27. 4.2 27. 5.2 27. 7.9 27. 8.1 27. 2.5 27. 2.7 29. 7.0 27.	0 140 0 140 0 140 0 140 0 140 0 140 0 140 0 140	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.30 1.31 1.30 1.35 1.35 1.71 1.34	7.09 7.11 7.14 7.16 7.18 7.21 7.29 7.31 7.34 7.36	58985 59175 59360 59582 59802	79.95 80.14 78.36 93.46 92.97 283.36 82.95 75.36	151.26 151.03 150.79 150.61 150.42 150.85 150.63	 	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
7.0 26. 9.0 27. 7.9 27. 9.8 27. 7.0 27. 1.0 27. 9.0 27. 0.1 27.	0 140 0 140 0 165 0 165 0 165 0 165 0 165 0 165	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.27 1.41 1.39 1.42 1.31 1.33 1.32	7.38 7.40 7.45 7.45 7.52 7.54 7.56 7.58	61196 61375 61546 61808 62056 62324 62518 62720 62918 63122	75.36 72.29 93.46 88.99 95.73 69.45 72.29 70.70	149.66 149.42 149.24 149.06 148.89 148.64 148.40 148.16	8888855555 888888888888888888888888888	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
5.5 27. 3.5 27. 9.8 26. 7.7 32. 2.4 31. 6.3 30. 5.1 32. 2.4 31.	0 165 0 165 0 140 0 165 0 165 0 165 0 165 0 165	9.1 9.1 9.1 9.1 9.1 9.1	1.35 1.36 1.32 1.59 1.36 1.32 1.35	7.67 7.71 7.72 7.74 7.76	63990	77.85 81.43 88.99 127.87 67.60 62.91 64.28 67.60	147.50 147.29 147.12 147.06 146.82 146.56 146.32 146.08	88888555 88888888888888888888888888888	14.6 14.6 14.7 14.7 14.7 14.7 14.7
2.7 31. 0.2 31. 9.8 29. 2.6 28. 9.8 28. 0.5 28. 8.5 28. 3.5 27.	0 165 0 165 0 160 0 140 0 140 0 140 0 140 0 140	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.43 1.45 1.41 1.42 1.35 1.35 1.36	7.82 7.85 7.87 7.90 7.93 7.95 7.98 8.00 8.03	66715 66922 67140	82.95 88.11 88.99 108.65 88.99 87.46 92.00 81.43	145.50 145.33 145.16 145.05 144.89 144.72 144.56 144.38		14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
	199558217 2445782271 6797971908 6539726527 220928282222222222222222222222222222222	9.8 26.0 140 7.7 32.0 165 2.4 31.0 165 6.3 30.0 165 5.1 32.0 165 2.4 31.0 165 7.0 30.0 165 7.0 30.0 165 2.0 31.0 165 2.7 31.0 165 0.2 31.0 165 9.8 29.0 160 2.6 28.0 140 9.8 28.0 140 0.5 28.0 140	1.5 24.0 145 9.1 9.5 25.0 140 9.1 5.1 26.0 140 9.1 5.0 26.0 140 9.1 8.7 26.0 140 9.1 1.2 25.0 140 9.1 2.6 25.0 140 9.1 2.0 26.0 140 9.1 2.1 27.0 140 9.1 2.1 27.0 140 9.1 2.1 27.0 140 9.1 2.2 27.0 140 9.1 2.1 27.0 140 9.1 2.1 27.0 140 9.1 2.1 27.0 140 9.1 2.7 27.0 140 9.1 2.7 27.0 145 9.1 2.0 27.0 165 9.1 2.0 27.0 165 9.1 2.1 27.0 165 9.1 2.1 27.0 165 9.1 <td< td=""><td>1.5 24.0 145 9.1 1.50 9.5 25.0 140 9.1 1.40 9.1 23.0 140 9.1 1.38 5.1 26.0 140 9.1 1.37 8.7 26.0 140 9.1 1.37 8.7 26.0 140 9.1 1.37 1.2 25.0 140 9.1 1.23 7.0 26.0 140 9.1 1.37 1.2 25.0 140 9.1 1.30 7.0 26.0 140 9.1 1.30 7.0 26.0 140 9.1 1.30 4.2 27.0 140 9.1 1.30 4.2 27.0 140 9.1 1.35 2.1 27.0 140 9.1 1.29 7.0 27.0 140 9.1 1.29 7.0 27.0 140 9.1 1.29 7.0 27.0 140 9.1 1.32 9.0 27.0 145<</td><td>1.5 24.0 145 9.1 1.50 6.83 9.5 25.0 140 9.1 1.40 6.86 9.1 23.0 140 9.1 1.38 6.90 5.1 26.0 140 9.1 1.36 6.95 8.7 26.0 140 9.1 1.37 7.02 1.2 25.0 140 9.1 1.23 7.04 7.0 26.0 140 9.1 1.23 7.04 7.0 26.0 140 9.1 1.23 7.04 7.0 26.0 140 9.1 1.37 7.02 1.2 25.0 140 9.1 1.30 7.11 4.3 27.0 140 9.1 1.30 7.16 7.9 27.0 140 9.1 1.30 7.16 7.9 27.0 140 9.1 1.35 7.21 2.7 29.0 140 9.1 1.29 7.34 2.5 27.0 140 9.1 1.29 7.34</td><td>1.5 24.0 145 9.1 1.50 6.83 56587 9.5 25.0 140 9.1 1.40 6.86 56872 9.1 23.0 140 9.1 1.38 6.90 57161 5.1 26.0 140 9.1 1.37 6.95 57640 8.7 26.0 140 9.1 1.37 7.02 58190 1.2 25.0 140 9.1 1.23 7.04 58354 7.0 26.0 140 9.1 1.27 7.06 58753 2.1 27.0 140 9.1 1.30 7.11 58955 4.3 27.0 140 9.1 1.30 7.11 58985 4.3 27.0 140 9.1 1.30 7.14 59175 5.2 27.0 140 9.1 1.30 7.16 59360 7.9 27.0 140 9.1 1.35 7.18 59582 8.1 27.0 140 9.1 1.35 7.13 60671</td><td>1.5 24.0 145 9.1 1.50 6.83 56587 164.74 79.5 25.0 140 9.1 1.40 6.86 56872 120.07 9.1 23.0 140 9.1 1.38 6.90 57161 121.72 5.1 26.0 140 9.1 1.36 6.93 57400 100.91 5.0 26.0 140 9.1 1.37 6.95 57640 101.20 88.7 26.0 140 9.1 1.37 7.02 58190 108.65 1.2 26.0 140 9.1 1.23 7.04 58354 69.18 7.0 26.0 140 9.1 1.23 7.04 58353 75.36 69.18 7.0 26.0 140 9.1 1.23 7.04 58353 75.36 69.18 7.0 26.0 140 9.1 1.23 7.04 58353 75.36 69.18 7.0 22.0 140 9.1 1.30 7.16 58952 79.28 79.18 69.18 79.29 79.29 79.29 79.29 79.29 70.140 9.1 1.33<td>1.5 24.0 145 9.1 1.50 6.83 56587 164.74 152.96 9.5 25.0 140 9.1 1.38 6.90 57161 121.07 152.85 9.1 23.0 140 9.1 1.38 6.90 57161 121.72 152.75 5.0 26.0 140 9.1 1.37 6.95 57400 101.20 152.40 8.7 26.0 140 9.1 1.37 7.02 58190 108.65 152.16 1.2 25.0 140 9.1 1.23 7.04 58354 69.18 151.88 7.0 26.0 140 9.1 1.23 7.04 58873 75.36 151.63 2.1 27.0 140 9.1 1.30 7.11 58985 79.95 151.26 4.3 27.0 140 9.1 1.30 7.11 58985 79.95 151.26 4.2 27.0 140 9.1 1.35 7.16 59360 78.36 150.79 7.2</td><td>1. 5 2. 4. 0 1. 45 9. 1 1. 50 6. 83 56.872 1. 20. 0 1. 52. 85 8. 5 9. 5 2. 5. 0 1. 40 9. 1 1. 30 6. 86 56.872 1. 20. 0 1. 52. 85 8. 5 9. 1 23. 0 1. 40 9. 1 1. 36 6. 93 57.40 1. 01. 20 152. 40 8. 5 5. 1 26. 0 1. 40 9. 1 1. 37 6. 95 57.40 10. 12. 20 152. 40 8. 5 8. 7 26. 0 1. 40 9. 1 1. 37 7. 02 58190 10.8. 65 152. 16 8. 5 8. 7 2. 1 1. 1. 27 7. 06 58533 75. 36 151. 63 8. 5 7. 0 26. 0 1. 40 9. 1 1. 27 7. 06 58795 110. 34 151. 63 8. 5 2. 1 27. 0 1. 40 9. 1 1. 30 7. 11 58985 79. 75 151. 63 8. 5 2. 1 27. 0 1. 40 9. 1 1. 30 7. 11 58986 79. 79 150. 63 8. 5</td></td></td<>	1.5 24.0 145 9.1 1.50 9.5 25.0 140 9.1 1.40 9.1 23.0 140 9.1 1.38 5.1 26.0 140 9.1 1.37 8.7 26.0 140 9.1 1.37 8.7 26.0 140 9.1 1.37 1.2 25.0 140 9.1 1.23 7.0 26.0 140 9.1 1.37 1.2 25.0 140 9.1 1.30 7.0 26.0 140 9.1 1.30 7.0 26.0 140 9.1 1.30 4.2 27.0 140 9.1 1.30 4.2 27.0 140 9.1 1.35 2.1 27.0 140 9.1 1.29 7.0 27.0 140 9.1 1.29 7.0 27.0 140 9.1 1.29 7.0 27.0 140 9.1 1.32 9.0 27.0 145<	1.5 24.0 145 9.1 1.50 6.83 9.5 25.0 140 9.1 1.40 6.86 9.1 23.0 140 9.1 1.38 6.90 5.1 26.0 140 9.1 1.36 6.95 8.7 26.0 140 9.1 1.37 7.02 1.2 25.0 140 9.1 1.23 7.04 7.0 26.0 140 9.1 1.23 7.04 7.0 26.0 140 9.1 1.23 7.04 7.0 26.0 140 9.1 1.37 7.02 1.2 25.0 140 9.1 1.30 7.11 4.3 27.0 140 9.1 1.30 7.16 7.9 27.0 140 9.1 1.30 7.16 7.9 27.0 140 9.1 1.35 7.21 2.7 29.0 140 9.1 1.29 7.34 2.5 27.0 140 9.1 1.29 7.34	1.5 24.0 145 9.1 1.50 6.83 56587 9.5 25.0 140 9.1 1.40 6.86 56872 9.1 23.0 140 9.1 1.38 6.90 57161 5.1 26.0 140 9.1 1.37 6.95 57640 8.7 26.0 140 9.1 1.37 7.02 58190 1.2 25.0 140 9.1 1.23 7.04 58354 7.0 26.0 140 9.1 1.27 7.06 58753 2.1 27.0 140 9.1 1.30 7.11 58955 4.3 27.0 140 9.1 1.30 7.11 58985 4.3 27.0 140 9.1 1.30 7.14 59175 5.2 27.0 140 9.1 1.30 7.16 59360 7.9 27.0 140 9.1 1.35 7.18 59582 8.1 27.0 140 9.1 1.35 7.13 60671	1.5 24.0 145 9.1 1.50 6.83 56587 164.74 79.5 25.0 140 9.1 1.40 6.86 56872 120.07 9.1 23.0 140 9.1 1.38 6.90 57161 121.72 5.1 26.0 140 9.1 1.36 6.93 57400 100.91 5.0 26.0 140 9.1 1.37 6.95 57640 101.20 88.7 26.0 140 9.1 1.37 7.02 58190 108.65 1.2 26.0 140 9.1 1.23 7.04 58354 69.18 7.0 26.0 140 9.1 1.23 7.04 58353 75.36 69.18 7.0 26.0 140 9.1 1.23 7.04 58353 75.36 69.18 7.0 26.0 140 9.1 1.23 7.04 58353 75.36 69.18 7.0 22.0 140 9.1 1.30 7.16 58952 79.28 79.18 69.18 79.29 79.29 79.29 79.29 79.29 70.140 9.1 1.33 <td>1.5 24.0 145 9.1 1.50 6.83 56587 164.74 152.96 9.5 25.0 140 9.1 1.38 6.90 57161 121.07 152.85 9.1 23.0 140 9.1 1.38 6.90 57161 121.72 152.75 5.0 26.0 140 9.1 1.37 6.95 57400 101.20 152.40 8.7 26.0 140 9.1 1.37 7.02 58190 108.65 152.16 1.2 25.0 140 9.1 1.23 7.04 58354 69.18 151.88 7.0 26.0 140 9.1 1.23 7.04 58873 75.36 151.63 2.1 27.0 140 9.1 1.30 7.11 58985 79.95 151.26 4.3 27.0 140 9.1 1.30 7.11 58985 79.95 151.26 4.2 27.0 140 9.1 1.35 7.16 59360 78.36 150.79 7.2</td> <td>1. 5 2. 4. 0 1. 45 9. 1 1. 50 6. 83 56.872 1. 20. 0 1. 52. 85 8. 5 9. 5 2. 5. 0 1. 40 9. 1 1. 30 6. 86 56.872 1. 20. 0 1. 52. 85 8. 5 9. 1 23. 0 1. 40 9. 1 1. 36 6. 93 57.40 1. 01. 20 152. 40 8. 5 5. 1 26. 0 1. 40 9. 1 1. 37 6. 95 57.40 10. 12. 20 152. 40 8. 5 8. 7 26. 0 1. 40 9. 1 1. 37 7. 02 58190 10.8. 65 152. 16 8. 5 8. 7 2. 1 1. 1. 27 7. 06 58533 75. 36 151. 63 8. 5 7. 0 26. 0 1. 40 9. 1 1. 27 7. 06 58795 110. 34 151. 63 8. 5 2. 1 27. 0 1. 40 9. 1 1. 30 7. 11 58985 79. 75 151. 63 8. 5 2. 1 27. 0 1. 40 9. 1 1. 30 7. 11 58986 79. 79 150. 63 8. 5</td>	1.5 24.0 145 9.1 1.50 6.83 56587 164.74 152.96 9.5 25.0 140 9.1 1.38 6.90 57161 121.07 152.85 9.1 23.0 140 9.1 1.38 6.90 57161 121.72 152.75 5.0 26.0 140 9.1 1.37 6.95 57400 101.20 152.40 8.7 26.0 140 9.1 1.37 7.02 58190 108.65 152.16 1.2 25.0 140 9.1 1.23 7.04 58354 69.18 151.88 7.0 26.0 140 9.1 1.23 7.04 58873 75.36 151.63 2.1 27.0 140 9.1 1.30 7.11 58985 79.95 151.26 4.3 27.0 140 9.1 1.30 7.11 58985 79.95 151.26 4.2 27.0 140 9.1 1.35 7.16 59360 78.36 150.79 7.2	1. 5 2. 4. 0 1. 45 9. 1 1. 50 6. 83 56.872 1. 20. 0 1. 52. 85 8. 5 9. 5 2. 5. 0 1. 40 9. 1 1. 30 6. 86 56.872 1. 20. 0 1. 52. 85 8. 5 9. 1 23. 0 1. 40 9. 1 1. 36 6. 93 57.40 1. 01. 20 152. 40 8. 5 5. 1 26. 0 1. 40 9. 1 1. 37 6. 95 57.40 10. 12. 20 152. 40 8. 5 8. 7 26. 0 1. 40 9. 1 1. 37 7. 02 58190 10.8. 65 152. 16 8. 5 8. 7 2. 1 1. 1. 27 7. 06 58533 75. 36 151. 63 8. 5 7. 0 26. 0 1. 40 9. 1 1. 27 7. 06 58795 110. 34 151. 63 8. 5 2. 1 27. 0 1. 40 9. 1 1. 30 7. 11 58985 79. 75 151. 63 8. 5 2. 1 27. 0 1. 40 9. 1 1. 30 7. 11 58986 79. 79 150. 63 8. 5

·

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOȘT	CCOST	PP	FG
1163.0 1164.0 1165.0 1166.0 1167.0 1168.0 1169.0 1170.0 1171.0	46.1 38.1 42.1 25.9 48.0 49.0 48.0 53.6	28.0 28.0 28.0 27.0 27.0 27.0 27.0 27.0 28.0	140 140 140 140 140 140 140 180	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.30 1.31 1.37 1.34 1.48 1.28 1.27 1.28 1.32	8.07 8.10 8.12 8.15 8.20 8.23 8.25 8.26 8.28	67721 67903 68124 68323 68648 68823 68994 69169 69371 69564	76.83 .92.97 .84.13 136.76 .73.79 .72.29 .73.79 .66.08	144.02 143.82 143.68 143.51 143.49 143.29 143.08 142.89 142.45	555555555 88888888	14.7 14.7 14.7 14.7 14.7 14.7 14.7
1173.0 1174.0 1175.0 1176.0 1177.0 1178.0 1179.0 1180.0 1181.0	41.9 49.0 42.6 38.1 49.0 41.9 46.1 27.7	26.0 25.0 26.0 27.0 27.0 29.0 29.0 29.0	180 180 180 130 130 130 130	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.38 1.37 1.34 1.38 1.33 1.25 1.33 1.30	8.31 8.33 8.35 8.37 8.40 8.42 8.44 8.50 8.53	69812 70070 70290 70544 70748 70908 71094 71263 71545 71781	84.53 72.29 83.15 92.97 72.29 84.53 76.83 127.87		55555555555555555555555555555555555555	14.7 14.7 14.7 14.7 14.7 14.7 14.7
1183.0 1184.0 1185.0 1186.0 1187.0 1188.0 1189.0 1190.0 1191.0	36.7 36.2 27.3 47.0 46.1 45.2 40.2 34.5	27.0 27.0 27.0 27.0 26.0 26.0 26.0 25.0	135 135 135 170 175 175 175	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.38 1.35 1.36 1.45 1.33 1.35 1.36 1.39 1.42	8.56 8.59 8.62 8.67 8.70 8.72 8.74 8.77	72244 72468 72764 72981 73209 73441 73703 74007	97.85 129.74 75.36 76.83 78.36	140.73 140.58 140.58 140.24 140.24 140.07 139.93 139.83	55555555555555555555555555555555555555	14.7 14.7 14.7 14.7 14.7 14.7 14.7
1193.0 1194.0 1195.0 1196.0 1197.0 1198.0 1199.0 1200.0 1201.0	29.5 27.7 31.2 35.6 37.3 37.9 43.5 40.2	25.0 25.0 25.0 25.0	175 175 175 175 175 175 175 175	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.46 1.47 1.49 1.46 1.41 1.40 1.35 1.35	8.83 8.87 8.90 8.94 8.96 8.99 9.02 9.04 9.07	75022 75401 75737 76032	120.07 127.87 113.53 99.49 94.96 93.46 81.43 88.11	139.68 139.62 139.59 139.52 139.42 139.30 139.18 139.03 138.90 138.75	8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	14.7 14.8 14.8 14.8 14.8 14.8 14.8
1203.0 1204.0 1205.0 1206.0 1207.0 1208.0 1209.0 1210.0 1211.0	38.1 35.1 33.2 33.0 32.1 35.6 32.1 36.2		175 175 175 175 175 175 175 175	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.40 1.41 1.41 1.40	9.14 9.17 9.20 9.23 9.26 9.28 9.32 9.34	77847 78146 78463 78781 79108 79403 79730 80020	92.97 100.91 106.69 107.33 110.34 99.49 110.34 97.85	138.59 138.48 138.38 138.30 138.22 138.15 138.05 137.98 137.88 137.88	8.5 8.5 8.5 8.5 8.5 8.5	14.8 14.8 14.8 14.8 14.8 14.8

The second state of the second second

DEPTH .	ROP	MOB	мча	MIJ	"d"c	HOURS	TURNS	ICOST	CCOST	PP FO	
1213.0 1214.0 1215.0 1216.0 1217.0 1218.0 1219.0 1220.0 1221.0	33.0 32.0 35.2 40.5 36.2 33.5 29.5 24.6 22.6	26.0 26.0 26.0 24.0 24.0 23.0	175 175 175 175 175 165 165 165	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.46 1.46 1.43 1.36 1.39 1.38 1.42 1.48	9.41 9.44 9.47 9.49 9.55 9.55 9.62 9.70	80685 81013 81311 81570 81860 82156 82492 82894 83332	107.33 110.69 100.63 87.46	137.68 137.58 137.46 137.36 137.28 137.24 137.25 137.30	8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8	
1223.0 1224.0 1225.0 1226.0 1227.0 1228.0 1229.0 1230.0 1231.0	29.5 29.1 27.0 29.7 29.1 26.7 27.7 25.4	24.0 24.0 24.0 24.0 24.0 24.0	150 150 150 150 150 155	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.46 1.44 1.41 1.44 1.41 1.44 1.45	9.74 9.77 9.81 9.85 9.88 9.91 9.95 9.99 10.03	84048 84384 84693 85026 85330 85639 85976 86301 86667	129.74 120.07 121.72 131.19 119.26 121.72 132.66 127.87 139.45	137.21 137.18 137.16 137.12 137.08 137.07 137.05	8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8 8.5 14.8	8 3 3 8 8 8 8
1233.0 1234.0 1235.0 1236.0 1237.0 1238.0 1239.0 1240.0 1241.0	27.3 21.7 21.7 21.1 20.1 22.1 23.3 24.3	23.0 23.0 23.0 23.0 23.0 22.0 22.0 23.0 23	155 155 155 155 155 155 155	9.1 9.1 9.1 9.1 9.1	1.46	10.10 10.14 10.18 10.23 10.28 10.33 10.37 10.41 10.46 10.50	87698 88126 88555 88996 89458 89879 90278 90661	123.41 129.74 163.23 163.23 167.87 176.22 160.27 152.02 145.76 154.00	137.01 137.07 137.13 137.21 137.30 137.35 137.39 137.41	8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6 8.5 14.6	8 8 8 8 8 8 8
1243.0 1244.0 1245.0 1246.0 1247.0 1248.0 1249.0 1250.0 1251.0 1252.0	24.0 27.3 23.5 23.0 24.8 22.6 23.1 22.2	23.0 23.0 26.0 26.0 28.0 28.0 25.0 25.0	155 155 155 163 163 163 163	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.44 1.47 1.48 1.52 1.58 1.56 1.59 1.53 1.65	10.58 10.62 10.66 10.70 10.74 10.79	91811 92151 92547 92972 93367 93799 94223 94663	147.58 129.74 150.72 154.00 142.82 156.73 153.33	137.44 137.45 137.48 137.52 137.53 137.58 137.61 137.66 137.86	8.5 14.6 8.5 14.8 8.5 14.6 8.5 14.6 8.5 14.8 8.5 14.8 8.5 14.8	8 9 9 9 9 9
1253.0 4254.0 1255.0 1256.0 1257.0 1258.0 1259.0 1260.0 1261.0 1262.0	21.1 24.3 23.1 25.4 29.7 21.3 22.1	25.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	163 163 163 163 163 163 163	9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.59 1.55 1.56 1.53 1.48 1.59 1.58	11.03 11.07 11.11 11.15 11.19 11.23	96184 96587 97010 97395 97724 98184 98626 99059	167.87 145.76 153.33 139.45 119.26 166.29 160.27	137.91 137.98 138.00 138.03 138.04 137.99 138.06 138.11 138.15 138.19	8.5 14. 8.5 14. 8.5 14. 8.5 14. 8.5 14. 8.5 14. 8.5 14. 8.5 14. 8.5 14.	9 9 9 9 9 9 9 9

•

DEPTH	ROP	MOB	RPM	ММ	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
1263.0 1264.0 1265.0 1266.0 1267.0 1268.0 1269.0 1270.0 1271.0	19.9 20.5 21.5 18.1 21.3 19.9 17.9 13.1			9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.59 1.58 1.56 1.62 1.57 1.59 1.62 1.72	11.41 11.46 11.51 11.56 11.61 11.66 11.71 11.77 11.84 11.90	101837 102287 102770 103306 104039	177.99 172.78 164.74 195.69	138.58 138.64 138.73 138.86 139.15	8888888888	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9
1273.0 1274.0 1275.0 1276.0 1277.0 1278.0 1279.0 1280.0 1281.0	16.3 16.3 15.7 13.6 17.0 16.8 17.9 22.0	26.0 25.0 25.0 25.0 26.0 26.0	160 160 155 155 155 155	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.64	11.96 12.02 12.09 12.15 12.22 12.28 12.34 12.40 12.44 12.49	105781 106370 106981 107687 108234 108788	217.30 217.30 225.61 260.44 208.35 210.83 197.88 161.00		88888888888888888888888888888888888888	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9
1283.0 1284.0 1285.0 1286.0 1287.0 1288.0 1289.0 1290.0 1291.0	21.3 18.7 21.7 24.0 20.7 21.5 17.3 21.3	26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	155 155 155 155 155	9.1 9.1 9.1	1.55 1.52 1.56 1.55 1.59 1.56	12.53 12.58 12.63 12.68 12.72 12.77 12.82 12.87 12.92	110577 111014 111511 111939 112327 112776 113209 113746 114183 114531	166.29 189.41 163.23 147.58 171.11 164.74 204.74 166.29	140.98 141.03 141.04 141.10 141.15	88.55.55.55 88.88.55.55 88.88.88	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9
1293.0 1294.0 1295.0 1296.0 1297.0 1298.0	16.3 23.5 28.0 20.0	25.0 25.0 25.0 25.0 25.0 25.0	155 155 155 155	9,1 9,1 9,1 9,1	1.45	13.02 13.08 13.13 13.16 13.21 13.25	115690 116086 116418 116883	224.18 217.30 150.72 126.50 177.10 126.50	141.66 141.68 141.64 141.72	8.5 8.5 8.5 8.5	14.9 14.9 14.9 14.9 14.9

114 INTERVAL 1298,0- 1496,0 IADC CODE BIT NUMBER 11 11 11 9.875 NOZZLES HUGHES X3A SIZE 198.0 900.00 TRIP TIME 6.4 BIT RUN COST T3 B5 G0.000 165110 CONDITION TOTAL HOURS 17.93 TOTAL TURNS PP FG TURNS ICOST CCOST DEPTH ROP WOB RPM MW "d"c HOURS 23755 8.5 15.0 1299.0 0.05 411 186 19.0 24.0 130 9.1 1.50 11978 8,5 15,0 9.1 1.53 0.11 854 201 17.6 24.0 130 1300.0 8.5 15.0 1318 196 8051 0.16 1301.0 18.1 24.0 140 9.1 1,54 0.22 8.5 15.0 1782 196 6087 18.1 24.0 140 9.1 1.54 1302.0 4895 8.5 15.0 28.0 23.0 140 9.1 1.39 0.26 2082 127 1303.0 9.1 1.46 8.5 15.0 22.1 23.0 140 0.30 2462 160 4106 1304.0 8.5 15.0 9.1 1.44 9.1 1.43 23,5 23.0 140 0.34 2819 151 3541 1305.0 8.5 15.0 24.3 23.0 140 0.38 3165 146 3116 1306.0 9.1 1.47 0.43 3518 149 2787 8.5 15.0 23.8 25.0 140 1307.0 9.1 1.59 0.49 4063 230 2531 8.5 15.0 1308.0 15.4 24.0 140 8.5 15.0 20.9 23.0 140 9.1 1.48 0.54 4465 169 2316 1309.0 9.1 1.51 21.7 25.0 145 163 2137 8.5 15.0 1310.0 0.59 4866 22.6 24.0 145 9,11,48 8.5 15.0 157 1985 1311.0 0.63 5251 220 8.5 15.0 16.1 25.0 140 9.1 1.59 0.69 5773 1859 1312.0 21.1 23.0 152 9.1 1.50 0.74 6205 168 1746 8.5 15.0 1313.0 6715 198 1649 8.5 15.0 1314.0 17.9 24.0 152 9.1 1.57 0.80 9.1 1.57 0.85 7233 201 1564 8.5 15.0 17.6 24.0 152 1315.0 8.5 15.0 7792 1489 16.3 24.0 152 9.1 1.60 0.91 217 1316.0 8.5 15.0 19.4 23.0 152 9.1 1.53 0.96 8263 183 1420 1317.0 17.7 23.0 152 9.1 1.55 1359 8.5 15.0 1.02 8778 200 1318.0 9.1 1.52 9218 171 1303 8.5 15.0 20.7 24.0 152 1.07 1319.0 9.1 1.48 22.1 23.0 150 160 1251 8.5 15.0 9626 1.11 1320.0 179 1204 8.5 15.0 19.8 25.0 150 9.1 1.55 1.17 10080 1321.0 1.22 10535 179 8.5 15.0 1322.0 19.8 25.0 150 9.1 1.55 1161 1.27 8.5 15.0 19.2 24.0 152 9.1 1.55 11010 184 1122 1323.0 194 . 18.3 23.0 152 9.1 1.54 1.32 11508 1087 8.5 15.0 1324.0 8.5 15.0 15.5 23.0 152 9.1 1.59 1.39 12096 229 1055 1325.0 1.45 12656 217 1025 8.5 15.0 1326.0 16.3 23.0 152 9.1 1.58 17.9 23.0 152 9.1 1.55 1.50 13165 197,88 996,46 8.5 15.0 1327.0 16.1 22.0 152 9.1 1.56 1.57 13732 220.00 970.57 8.5 15.0 1328.0 9.1 1.58 9.1 1.51 14328 231.50 946.73 8.5 15.0 1329.0 15.3 22.0 152 1.63 8.5 15.0 14798 182.58 922.85 19.4 22.0 152 1.68 1330.0 1.75 15375 224.18 901.68 8.5 15.0 1331.0 15.8 22.0 152 9.1 1.57 8.5 15.0 15964 228.52 881.88 1332.0 15.5 22.0 152 9.1 1.57 1.81 8.5 15.0 16534 221.38 863.01 1333.0 16.0 21.0 152 9.1 1.55 1.87 8.5 15.0 18.1 21.0 152 17038 195.69 844.47 1334.0 9.1 1.51 1.93 1.99 1335.0 17.4 22.0 152 9.1 1.54 17562 203.56 827.15 8.5 15.0 19.8 22.0 152 9.1 1.50 2.04 18022 178.89 810.09 8.5 15.0 1336.0 9.1 1.54 16.4 21.0 152 18578 215.98 794.86 8.5 15.0 1337.0 2.10 9.1 1.45 18999 163.23 779.07 8.5 15.0 21.7 21.0 152 2.14 1338.0 18.0 20.0 152 9.1 1.49 2.20 19505 196.78 764.87 8.5 15.0 1339.0 2.25 19990 188.40 751.14 8.5 15.0 9.1 1.48 18.8 20.0 152 1340.0 9.1 1.47 8.5 15.0 1341.0 20.3 21.0 152 2.30 20440 174,48 737,73

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1342.0 1343.0 1344.0 1345.0 1346.0 1347.0 1348.0 1349.0 1350.0	17.7 16.5 18.6 16.0 15.5 14.7 11.1 13.8 13.9	22.0 23.0 23.0 21.0 23.0 22.0 23.0 23.0	124 124 124 145 148 148 148	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.53 1.49 1.48 1.52 1.54 1.60 1.62 1.62 1.41	2.36 2.42 2.47 2.54 2.60 2.67 2.78 2.90 2.97	21399 21799 22264 22825 23429 24229 24873 25512	200.11 214.67 190.43 221.38 228.52 240.95 319.10 256.67 254.82 253.00	714.16 702.77 692.53 682.86 673.85 666.75 658.71 650.94		15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
1356.0	10.5 6.8 10.6 8.9 8.5 9.6 10.1 10.6 10.1	20.0 19.0 20.0 20.0 20.0 20.0 18.0 19.0	130 128 124 120 125 125 128 128	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.59 1.73 1.57 1.64 1.64 1.62 1.60 1.55 1.59	3.07 3.22 3.31 3.42 3.54 3.64 3.74 3.84 3.94 4.03	28109 28833 29669 30516 31298 32040 32765 33525	337.33 520.88 334.15 397.98 416.71 368.96 350.69 334.15 350.69 319.10	635.64 630.26 626.18 622.57 618.27 613.81 609.23 605.06	555555555 888888888	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
	8.5 9.1 10.6 9.1 9.6 10.1 11.4 12.6 12.1	19.0 19.0 18.0 19.0 19.0 19.0 20.0	130 120 130 130 130 130 130	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.67 1.62 1.56 1.50 1.58 1.59 1.56 1.53 1.61	4.14 4.25 4.35 4.46 4.56 4.66 4.75 4.83 4.91	36003 36682 37539 38352 39124 39808 40427 41181	416.71 389.23 334.15 389.23 368.96 350.69 310.70 281.11 292.73 274.57	594.44 590.50 587.49 584.28 580.89 577.03 572.87 568.97	555555555	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1372.0 1373.0 1374.0 1375.0 1376.0 1377.0 1378.0 1379.0 1380.0	10.5 10.4 10.0 11.9 12.9 9.1 8.9	19.0 19.0 19.0 19.0	145 147 152 150 148 150 152	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.62 1.64 1.61 1.62 1.64 1.59 1.56 1.69 1.68	5.08 5.18 5.27 5.37 5.47 5.64 5.75 5.97	43545 44374 45222 46134 46890 47579 48568 49592	368.96 337.33 340.58 354.20 297.65 274.57 389.23	556.13 553.33 550.78 547.58 544.16 542.25 540.49	555555555 888888888	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1382.0 1383.0 1384.0 1385.0 1385.0 1387.0 1388.0 1389.0 1390.0	10.5 10.8 10.8 14.0 13.4 11.5	20.0 21.0 21.0 21.0 20.0 20.0 20.0	140 140 135 133 130 132 135	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.63 1.65 1.65 1.65 1.63 1.52 1.57 1.58 1.63	6.06 6.17 6.26 6.36 6.45 6.52 6.60 6.68 6.78 6.88	52122 52922 53722 54472 55042 55624 56312 57114	337.33 337.33	534.27 531.98 529.74 527.45 524.36 521.47 519.13 517.30	555555555	15.1 15.1 15.1 15.1 15.1 15.1 15.1

		•									
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1392.0 1393.0 1394.0 1395.0 1396.0 1397.0 1398.0 1399.0 1400.0	9.6 9.8 10.8 11.0 10.6 8.9 9.6 8.9	19.0 20.0 21.0 20.0 21.0 21.0 20.0 21.0 21	130 132 140 145 145 145 140 140	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.63 1.65 1.62 1.64 1.65 1.68 1.67 1.70	6.99 7.09 7.20 7.29 7.38 7.47 7.59 7.69 7.80 7.91	59539 60347 61125 61916 62737 63714 64589 65533	397.98 368.96 361.43 327.96 322.00 334.15 397.98 368.96 397.98 389.23	512.55 510.98 509.09 507.18 505.43 504.36 503.02 501.99	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1402.0 1403.0 1404.0 1405.0 1406.0 1407.0 1408.0 1409.0 1410.0	9.1 10.5 11.2 11.2 10.6 10.0 9.6 9.1	20.0 20.0 19.0 19.0 20.0 19.0 19.0 18.0 23.0	130 145 145 145 142 145 148 152	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.68 1.65 1.64 1.59 1.59 1.63 1.63 1.62 1.64	8.03 8.14 8.24 8.33 8.42 8.51 8.61 8.72 8.94	68213 69042 69819 70595 71399 72269 73194 74196	431.95 389.23 337.33 316.25 316.25 334.15 354.20 368.96 389.23 389.23	499.17 497.65 495.95 494.29 492.82 491.56 490.45 489.55	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.1 15.1 15.1 15.1 15.1 15.2 15.2 15.2
1412.0 1413.0 1414.0 1415.0 1416.0 1417.0 1418.0 1419.0 1420.0 1421.0	8.9 9.1 8.9 10.5 10.6 8.5 9.1 9.1	20.0 20.0 20.0 23.0 23.0 23.0 23.0 23.0	150 150 143 143 143 143 163	9.1 9.1 9.1 9.2 9.2 9.2	1.69 1.69 1.69 1.75 1.69 1.67 1.74 1.76	9.05 9.16 9.27 9.38 9.48 9.57 9.69 9.80 9.91	77241 78230 79194 80011 80820 81830 82905 83979	397.98 397.98 389.23 397.98 337.33 334.15 416.71 389.23 389.23 368.96	487.09 486.24 485.49 484.23 482.97 482.42 481.65 480.89	555555555 68888855555	15.2
1422.0 1423.0 1424.0 1425.0 1426.0 1427.0 1428.0 1429.0 1430.0 1431.0	8.6 8.9 8.9 9.5 12.4 12.4	24.0 24.0 24.0 25.0 31.0	167 165 165 165 170 165 170	9.22 9.22 9.22 9.22 9.22 9.2	1.71 1.78 1.79 1.79 1.79 1.80 1.82 1.81 1.77	10.11 10.23 10.34 10.45 10.57 10.67 10.75 10.83 10.90 10.99	87141 88253 89366 90478 91552 92350 93173 93896	354.20 411.86 397.98 397.98 397.98 372.84 285.65 285.65 251.21 287.97	478.43 477.79 477.16 476.54 475.74 474.28 472.84 471.16	88888888888888888888888888888888888888	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
1432.0 1433.0 1434.0 1435.0 1436.0 1437.0 1438.0 1439.0 1440.0	12.8 11.2 11.0 11.9	30.0 31.0 31.0 29.0 29.0 29.0 29.0	170 170 170 170 170 170 170	9.22 9.22 9.22 9.22 9.22 9.22	1.80 1.85 1.87 1.84 1.78 1.85 1.83 1.81	11.06 11.14 11.23 11.32 11.41 11.48 11.58 11.67 11.75 11.83	96319 97230 98157 99014 99793 100774 101684 102542	270.38 340.58 316.25 297.65	466.92 465.81 464.76 463.55	55555555 88888888888888888888888888888	15.2

						•	¥			•		
	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	1442.0 1443.0 1444.0 1445.0 1446.0 1447.0 1448.0 1449.0	12.7 10.7 11.9 12.0 10.7 11.3 11.0	29.0 28.0 28.0 28.0 18.0 18.0 18.0 29.0	170 170 170 172 172 172 172 172	9.222222 9.22222 9.222 9.22	1.77 1.77 1.82 1.79 1.58 1.62 1.60 1.61	11.90 11.98 12.07 12.16 12.24 12.33 12.42 12.51	104862 105815 106672 107532 108497 109410 110348 111331	266.32 278.90 331.03 297.65 295.17 331.03 313.45 322.00 337.33	455.18 454.33 453.26 452.19 451.38 450.46 449.61 448.87	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.2 15.2 15.2 15.2 15.2 15.2 15.2
	1451.0	11.0	29.0	175	9.2	1.84	12.70	112285	322.00	448.04	8.5	15.2
	1452.0 1453.0 1454.0 1455.0 1456.0 1457.0 1458.0 1459.0 1460.0	10.0 12.1 11.2 11.7 10.5 10.7 11.5	29.0 29.0 29.0 29.0 28.0 28.0 28.0 28.0 28.0	175 175 175 175 170 170 170	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.81 1.87 1.81 1.84 1.80 1.83 1.82 1.80 1.81	12.78 12.88 12.96 13.05 13.14 13.23 13.41 13.50 13.60	114189 115057 115994 116892 117863 118817 119703 120614	287.97 354.20 292.73 316.25 302.74 337.33 331.03 308.00 316.25 343.88	446.40 445.42 444.60 443.70 443.03 442.33 441.50 440.72	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
•	1462.0 1463.0 1464.0 1465.0 1466.0 1467.0 1468.0 1469.0 1470.0	11.2 11.8 12.0 16.1 14.2 11.3 12.6 9.1	28.0 28.0 28.0 28.0 28.0 28.0 28.0 28.0	175 175 175 175 175 175 175 145	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.82 1.80 1.80 1.70 1.74 1.82 1.78	13.69 13.78 13.86 13.95 14.01 14.08 14.17 14.25 14.36 14.49	123471 124361 125236 125888 126628 127557 128390 129346	313.45 316.25 300.17 295.17 220.00 249.44 313.45 281.11 389.23 485.21	438.61 437.78 436.92 435.63 434.53 433.82 432.92 432.67	888885555 8888888888888888888888888888	15.2 15.2 15.2 15.3 15.3 15.3 15.3
	1473.0	6.9 7.0 5.4 5.4 7.4	25.0	170 170 170 170 170 170 170	9.2 9.3 9.3 9.3 9.3 9.3 9.3	1.82 1.86 1.80 1.93 1.91	14.60 14.71 14.86 14.99 15.19 15.37 15.56 15.74 15.88 15.98	132792 134270 135595 137635 139524 141413 143302 144680	389.23 393.56 513.33 460.00 708.40 655.93 655.93 478.65 354.20	432.50 432.96 433.11 434.66 435.89 437.11 438.32 438.55	8888555555 888888888888888888888888888	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
	1482.0 1483.0 1484.0 1485.0 1487.0 1488.0 1489.0 1490.0	6.7 6.4 8.5 10.1 9.6 8.9 7.3	23.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	175 170 170 170 170 170 170	9.3 9.3 9.3 9.3 9.3 9.3 9.3	1.86 1.90 1.90 1.82 1.76 1.80 1.86 1.86	16.14 16.29 16.44 16.56 16.66 16.88 17.01 17.14 17.25	148886 150480 151680 152690 153753 154899 156296 157604	562.22 528.66 553.44 416.71 350.69 368.96 397.98 485.21 454.10 389.23	439.25 439.86 439.74 439.26 438.89 438.67 438.92 439.00	888885555 888888888	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3

Ġ.

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1492.0 1493.0 1494.0. 1495.0	9.6 6.4 8.2	23.0 23.0 23.0	170 170 145	9.2 9.2 9.2	1.76 1.88 1.76	17.45 17.61 17.73	159687 160749 162343 163404 165110	368.96 553.44 431.95	437.84 438.43 438.40	8.5 8.5 8.5	15.3 15.3 15.3

.

٠..

`\

BIT NUMBER HUGHES X34 COST TOTAL HOUR	ት ዎ(5 00.00 1.21	5 T		CODE TIME TURNS	114 9.875 6.4 9592	NOZ: BIT	ERVAL ZLES RUN DITION	1496. T2		510.0 11.11 14.0 0.000
DEPTH	ROP	MOB	RPM	мы	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1497.0 1498.0 1499.0	10.1	25.0 27.0 26.0	135 132 135	9.0 9.0 9.0	1.94 1.78 1.72	0.18 0.28 0.36	1446 2231 2917	633 351 300	24208 12279 8286	8.5	15.3 15.3 15.3
1502.0 1503.0 1504.0 1505.0 1506.0 1507.0 1508.0	17.1 12.0 11.2 10.2 11.1 12.7 12.0 14.5	26.0 27.0 27.0 28.0 28.0 28.0 34.0	135 140 138 138 130 132 130	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.76 1.79 1.76 1.72 1.74 1.75	0.43 0.49 0.57 0.66 0.76 0.85 0.93 1.01	3457 3931 4631 5370 6182 6884 7508 8158 8655	236 207 295 316 347 319 279 295 244	6274 5060 4266 3702 3283 2953 2686 2469 2283	0000000000000	15.3 15.3 15.3 15.3
1511.0 1512.0	16.0 15.0 16.8 12.6	33.0 33.0	122 120 120 120	9.0	1.69 1.72 1.68 1.78	1.14 1.21 1.27 1.35	9112 9592 10021 10592	221 236 211 281	2125 1990 1871 1772		15.3 15.3 15.3

114 INTERVAL 1510.0- 1666.0 BIT NUMBER 6 IADC CODE 9.875 11 11 11 SIZE NOZZLES HUGHES X3A 156.0 COST 900.00 TRIP TIME 7.0 BIT RUN CONDITION T2 B5 G0.000 TOTAL HOURS TOTAL TURNS 74837 10.02 PP CCOST FG ICOST ROP WOB RPM MW "d"c: HOURS TURNS DEPTH 273 25974 8.5 15.3 9.0 1.74 80.0 646 1511.0 13.0 28.0 140 8.5 15.3 1292 273 13123 13.0 28.0 140 9.0 1.74 0.15 1512.0 277 8841 8.5 15.3 1513.0 12.8 28.0 140 9.0 1.74 0.23 1949 2590 270 6698 8.5 15.3 13.1 28.0 140 9.0 1.73 0.31 1514.0 5412 8.5 15.3 13.4 28.0 140 9.0 1.73 0.38 3217 264 1515.0 4559 8.5 15.3 11.9 31.0 130 0.47 3872 298 9.0 1.80 1516.0 246 3943 8.5 15.3 0.54 4414 14,4 31.0 130 9.0 1.73 1517.0 216 3477 8.5 15.3 4889 1518.0 16.4 31.0 130 9.0 1.69 0.60 8.5 15.3 16.1 32.0 130 220 3115 1519.0 9.0 1.71 0.66 5374 8.5 15.3 1520.0 18.3 32.0 130 9.0 1.67 0.71 5800 194 2823 17.4 32.0 120 9.0 1.66 0.77 6214 204 2585 8.5 15.3 1521.0 18.0 31.0 120 9.0 1.63 0.83 6614 197 2386 8.5 15.3 1522.0 194 2217 8.5 15.3 9.0 1.57 7007 18.3 28.0 120 0.88 1523.0 8.5 15.3 0.93 7377 175 2071 1524.0 20.3 30.0 125 9.0 1.58 1951 8.5 15.3 7903 270 1525.0 13.1 16.0 115 9.0 1.43 1.01 250 1845 8.5 15.4 9.0 1.59 14.2 24.0 122 1.08 8419 1526.0 1752 8.5 15.4 9.0 1.63 1.15 8964 268 1527.0 13.2 25.0 120 9.0 1.59 8.5 15.4 1.21 9401 215 1667 1528.0 16.5 27.0 120 1.27 1590 8.5 15.4 17.6 28.0 120 9.0 1.59 9810 201 1529.0 1.33 198 1520 8.5 15.4 17.9 27.0 130 9.0 1.59 10246 1530.0 8.5 15.4 220 1458 16.1 29.0 120 9.0 1.63 1.39 10693 1531.0 226 1402 8.5 15.4 15.7 29.0 120 9.0 1.64 1,45 11151 1532.0 17.4 29.0 120 1350 8.5 15.4 9.0 1.61 1.51 11565 204 1533.0 224 1303 8.5 15.4 1.57 12021 15.8 29.0 120 9.0 1.64 1534.0 9.0 1.56 175 1258 8.5 15.4 20.3 29.0 120 1.62 12376 1535.0 8.5 15.4 1216 9.0 1.54 1.67 12719 165 1536.0 21.5 29.0 123 208 1179 8.5 15.4 1.73 13142 1537.0 17.0 30.0 120 9.0 1.63 1143 194 8.5 15.4 1.78 1538.0 18.3 30.0 120 9.0 1.61 13536 8.5 15.4 1539.0 19.2 30.0 120 9.0 1.59 1.83 13911 185 1110 8.5 15.4 19.1 30.0 120 9.0 1.59 1.89 14288 185 1080 1540.0 1.94 9.0 1.54 14646 176 1050 8.5 15.4 20.1 28.0 120 1541.0 9.0 1.57 1.99 15031 189 1024 8.5 15.4 18.7 28.0 120 1542.0 15350 156.77 997.26 8.5 15.4 1543.0 22.6 28.0 120 9.0 1.50 2.03 15691 167.91 972.87 21.1 27.0 120 8.5 15.4 1544.0 9.0 1.51 2.08 1545.0 15987 145,80 949,24 8.5 15.4 24.3 28.0 120 9.0 1.48 2.12 16424 214.73 928.83 8.5 15.4 1546.0 16.5 27.0 120 9.0 1.59 2.18 1547.0 14,4 29,0 120 9.0 1.67 2.25 16924 246.04 910.38 8,5 15,4 15.1 27.0 120 9.0 1.62 2.32 17400 234.64 892.60 8.5 15.4 1548.0 8.5 15.4 14.2 29.0 120 9.0 1.67 2.39 17907 249.51 876.11 1549.0 18363 224.24 859.81 8.5 15.4 15.8 30.0 120 9.0 1.66 2.45 1550.0 2.53 18948 288.05 845.87 8.5 15.4 9.0 1.76 1551.0 12.3 31.0 120 9.0 1.66 19428 236,20 831,35 8.5 15.4 15.0 29.0 120 2.60 1552.0 20055 308.09 819.18 8.5 15.4 11.5 30.0 120 9.0 1.76 2.69 1553.0

DEPTH	ROP WOB RPM	MW "d"c HOURS	TURNS ICOST CCOST	PP FG
1554.0 1555.0 1556.0 1557.0 1558.0 1559.0 1560.0 1561.0 1562.0 1563.0	15.7 30.0 120 15.6 30.0 118 17.9 31.0 120 14.5 30.0 120 14.6 30.0 120 14.2 30.0 120 15.3 30.0 120 17.1 30.0 120 17.0 30.0 120	9.0 1.65 2.82 9.0 1.63 2.87 9.0 1.68 2.94 9.0 1.68 3.01 9.0 1.69 3.08 9.0 1.67 3.14 9.0 1.63 3.20 9.0 1.63 3.26	20513 225.67 805.69 20967 227.12 792.84 21369 197.93 779.90 21866 244.34 768.51 22359 242.67 757.55 22866 249.51 747.18 23337 231.57 736.87 23758 207.19 726.49 24181 208.41 716.52 24600 205.99 706.89	8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4
1564.0 1565.0 1566.0 1567.0 1568.0 1569.0 1570.0 1571.0 1572.0	21.5 30.0 120 14.4 31.0 120 15.8 29.0 120 18.8 29.0 120 20.3 29.0 120 20.0 30.0 120 13.6 30.0 120 14.2 30.0 120 22.9 30.0 120 21.6 28.0 120	9.0 1.70 3.44 9.0 1.64 3.50 9.0 1.58 3.55 9.0 1.56 3.60 9.0 1.58 3.65 9.0 1.71 3.73 9.0 1.69 3.80 9.0 1.53 3.84	24935 164.79 696.85 25435 246.04 688.66 25890 224.24 680.36 26273 188.46 671.73 26628 174.53 663.16 26988 177.15 654.92 27517 260.51 648.35 28024 249.51 641.81 28339 154.72 633.95 28672 164.03 626.50	8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4
1574.0 1575.0 1576.0 1577.0 1578.0 1579.0 1580.0 1581.0 1582.0	13.8 29.0 120 17.1 29.0 120 15.0 30.0 120 14.0 30.0 120 15.4 30.0 120 13.6 30.0 120 14.0 30.0 120 14.6 30.0 120 14.8 29.0 120 18.0 30.0 118	9.0 1.61 4.02 9.0 1.67 4.08 9.0 1.70 4.16 9.0 1.66 4.22 9.0 1.71 4.29 9.0 1.70 4.36 9.0 1.68 4.43 9.0 1.66 4.50	29194 256.74 620.72 29615 207.19 614.36 30095 236.20 608.63 30609 253.07 603.32 31077 230.06 597.83 31606 260.51 592.94 32120 253.07 588.09 32614 242.67 583.22 33100 239.39 578.45 33493 196.83 573.22	8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.4
1584.0 1585.0 1586.0 1587.0 1588.0 1589.0 1590.0 1591.0 1592.0	19.1 31.0 118 14.7 30.0 118 13.3 30.0 120 15.4 29.0 120 18.7 29.0 120 20.2 30.0 120 20.0 30.0 120 18.4 29.0 122 14.6 29.0 122 17.0 29.0 122	9.0 1.67 4.68 9.0 1.71 4.75 9.0 1.65 4.82 9.0 1.58 4.87 9.0 1.57 4.92 9.0 1.58 4.97 9.0 1.59 5.02 9.0 1.67 5.09	34346 241.02 563.62 34887 266.39 559.71 35355 230.06 555.43 35740 189.47 550.74 36096 175.40 545.98 36456 177.15 541.37 36854 192.55 537.07	8.5 15.4 8.5 15.4 8.5 15.4 8.5 15.5 8.5 15.5 8.5 15.5 8.5 15.5 8.5 15.5
1594.0 1595.0 1596.0 1597.0 1598.0 1599.0 1600.0 1601.0 1603.0	13.6 30.0 122 15.0 30.0 120 16.0 30.0 120 18.1 30.0 120 14.1 30.0 120 13.9 30.0 120 15.2 30.0 120 16.8 30.0 120 14.0 30.0 125	9.0 1.67 5.29 8.9 1.67 5.35 8.9 1.63 5.41 8.9 1.71 5.48 8.9 1.72 5.55 8.9 1.69 5.62 8.9 1.65 5.68 8.9 1.73 5.75	38324 260.51 526.36 38804 236.20 522.94 39254 221.44 519.44 39652 195.75 515.72 40163 251.28 512.71 40681 254.89 509.82 41154 233.09 506.74 41583 210.89 503.49 42119 253.07 500.77 42557 207-19 497.61	8.5 15.5 8.5 15.5 8.5 15.5 8.5 15.5 8.5 15.5 8.5 15.5 8.5 15.5 8.5 15.5

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1604.0 1605.0 1606.0 1607.0 1608.0 1609.0 1610.0 1611.0 1612.0 1613.0	15.7 15.7 17.0 19.1 20.7 17.1 14.5 17.3	29.0 29.0 29.0	133 132 135 135 135 135 135	8.9 8.9 8.9 8.9 8.9 8.9 8.9	1.71 1.68 1.67 1.65 1.63 1.61 1.67 1.69 1.63	5.94 6.00 6.06 6.11 6.16 6.22	43572 44077 44542 44967 45358 45832 46390 46858	239.39 225.67 225.67 208.41 185.50 171.16 207.19 244.34 204.80 203.62	492.03 489.26 486.36 483.29 480.14 477.41 475.10 472.45	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1614.0 1615.0 1616.0 1617.0 1618.0 1619.0 1620.0 1621.0 1622.0	18.1 18.7 17.7 17.7 7.9 10.2 9.6 9.6		135 135 135 135 120 130 135 135	8.9 8.9 8.9 8.9 8.9 8.9	1.64 1.60 1.61 1.62 1.62 1.65 1.65 1.68	6.46 6.52 6.57 6.63 6.69 6.81 7.01 7.12 7.22	48251 48684 49141 49599 50511 51275 52119 52963	209.64 195.75 189.47 200.17 200.17 448.48 347.35 369.06 369.06 343.98	464.75 462.16 459.71 457.30 457.22 456.22 455.44 454.67	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1624.0 1625.0 1626.0 1627.0 1628.0 1629.0 1630.0 1631.0 1632.0	12.4 12.8 14.3 15.2 14.4 14.8 16.4 13.2	31.0 32.0	132 135 135 125 130 132 128 130	8.9 8.9 8.9 8.9 8.9 8.9	1.68 1.64 1.65 1.66 1.70 1.77 1.75 1.72	7.31 7.39 7.47 7.54 7.60 7.67 7.74 7.80 7.88 7.96	55135 55768 56334 56828 57369 57904 58373 58964	334.25 285.73 276.80 247.76 233.09 246.04 239.39 216.04 268.41 288.05	451.19 449.69 447.96 446.14 444.46 442.75 440.87 439.46	 	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1634.0 1635.0 1636.0 1637.0 1638.0 1639.0 1640.0 1641.0 1642.0	13.2 16.8 16.9 18.4 20.1 15.5 15.3 23.3	32.0 31.0 33.0 34.0 35.0 33.0	128 125 132 130 120 120 122 124	8,9 8,9 8,9 8,9 8,9 8,9	1.70 1.79 1.68 1.73 1.71 1.67 1.73 1.74 1.60	8.02 8.10 8.16 8.22 8.27 8.32 8.39 8.45 8.45	60618 61065 61533 61957 62315 62780 63258 63578	268.41	433.37 431.61 429.74 427.77 426.24 424.76 422.69	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1644.0 1645.0 1646.0 1647.0 1648.0 1649.0 1650.0 1651.0 1652.0 1653.0	11.8 11.3 14.1 12.6	35.0 34.0 29.0 28.0 28.0 21.0	124 126 125 120 120 122 124 120	8,9 8,9 8,9 8,9 8,9 8,9	1.68 1.75 1.63 1.70 1.74 1.74 1.62 1.64	8.60 8.66 8.70 8.77 8.86 8.94 9.03 9.10 9.18 9.25	64808 65143 65657 66272 66882 67530 68058 68629	178.04 213.43 156.77 242.67 302.82 300.25 313.54 251.28 281.19 239.39	417.57 415.65 414.39 413.58 412.77 412.06 410.92 410.00		15.5 15.5 15.5 15.5 15.5 15.5 15.6 15.6

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1654.0 1655.0 1656.0 1657.0 1658.0 1659.0 1660.0 1661.0 1662.0 1663.0	20.7 16.6 14.5 13.8 12.8 13.2 14.4	26.0 24.0 23.0 23.0 25.0 25.0 21.0 24.0 24.0	122 125 125 124 125 125 125 125	8.9 8.9 8.9 8.9 8.9 8.9	1.62 1.49 1.55 1.59 1.60 1.67 1.55 1.55	9.31 9.36 9.42 9.49 9.56 9.64 9.71 9.78 9.85 9.91	69962 70414 70931 71471 72056 72625 73145 73608	227.12 171.16 213.43 244.34 256.74 276.80 268.41 246.04 231.57 209.64	405.92 404.60 403.51 402.52 401.68 400.79 399.76 398.66	88888888888	15.6 15.6 15.6 15.6 15.6
1664.0 1665.0 1666.0	17.6	25.0 24.0 24.0	120		1.53 1.53 ì.53	9.96 10.02 10.08	74817	190.48 201.31 201.31	394,82		15.6 15.6 15.6

.

.

.

BIT NUMBER IADC CODE 114 INTERVAL 1666.0- 2187.0 SIZE 9.875 NOZZLES 13 13 13 HUGHES X3A 900.00 8.0 BIT RUN 521.0 TRIP TIME COST T4 B5 G0.000 149236 CONDITION TOTAL HOURS 19.49 TOTAL TURNS WOB RPM MW "d"c TURNS ICOST CCOST PP FG DEPTH ROP HOURS 1667.0 19.9 25.0 135 8.9 1.55 0.05 407 178 29414 8.5 15.6 14805 8.5 15.6 1668.0 18.1 25.0 135 8.9 1.58 0.11 855 196 1669.0 21.3 25.0 135 8.9 1.53 0.15 1235 166 9925 8.5 15.6 189 7491 8.5 15.6 8.9 1.57 0.21 1668 1670.0 18,7 25,0 135 2197 232 6039 8.5 15.6 15.3 25.0 135 8.9 1.63 0.27 1671.0 2727 5071 8.5 15.6 232 1672.0 15.3 25.0 135 8.9 1.63 0.34 8.5 15.6 8.9 1.58 0.39 3174 196 4375 1673.0 18.1 25.0 135 8.9 1.72 0.48 3855 298 3865 8.5 15.6 1674.0 11.9 25.0 135 0.54 4329 233 3462 8.5 15.6 15.2 25.0 120 8.9 1.60 1675.0 0.60 4718 191 3135 8.5 15.6 18.5 25.0 8.9 1.54 1676.0 120 8.5 15.6 1677.0 19.2 25.0 120 8.9 1.52 0.65 5093 184 2866 8.5 15.6 1678.0 16.2 25.0 120 8.9 1.58 0.71 5537 219 2646 1679.0 21.7 25.0 120 8.9 1.48 0.76 5869 163 2455 8.5 15.6 2291 8.5 15.6 8.9 1.48 0.80 6201 163 21.7 25.0 120 1680.0 8.9 1.54 8.5 15.6 194 2151 1681.0 18,3 25.0 120 0.86 6594 8.5 15.6 8.9 1.42 133 2025 1682.0 26.7 25.0 120 0.89 6864 0.95 17.9 25.0 120 8.9 1.55 7266 198 1918 8.5 15.6 1683.0 1.02 244 8.5 15.6 14.5 25.0 120 8.9 1.61 7763 1825 1684.0 23.5 25.0 8.9 1.46 1.06 1737 8.5 15.6 1685.0 120 8069 151 8.9 1.41 8.5 15.6 28,4 26.0 125 1656 1686.0 120 1.10 8323 24.6 26.0 120 8.9 1.46 1.14 8615 144 1584 8.5 15.6 1687.0 8.9 1.47 1.18 8934 157 1519 8.5 15.6 1688.0 22.6 25.0 120 19.6 25.0 120 8.9 1.52 1.23 9301 181 1461 8.5 15.6 1689.0 8.5 15.6 9555 125 1405 1690.0 28.4 25.0 120 8.9 1.40 1.27 8.5 15.6 22.9 25.0 120 8.9 1.47 1.31 9869 155 1355 1691.0 12.3 25.0 120 8.9 1.67 1.39 10455 288 1314 8.5 15.6 1692.0 8.5 15.6 1693.0 1.45 1273 17.7 25.0 120 8.9 1.55 10861 200 8.5 15.6 25.9 24.0 120 8.9 1.41 1.49 11139 137 1232 1694.0 1,54 1196 8.5 15.6 1695.0 19.6 24.0 120 8.9 1.50 11507 181 1696.0 25.1 24.0 122 8.9 1.43 1.58 11798 141 1161 8.5 15.6 1697.0 22.9 25.0 122 8.9 1.47 1.62 12118 155 1128 8.5 15.6 1698.0 22.1 25.0 122 8.9 1.48 1.67 12449 160 1098 8.5 15.6 8.9 1.52 178 1070 8.5 15.6 1699.0 19.9 25.0 122 11,72 12817 157 1043 8.5 15.6 22.6 25.0 122 8.9 1.48 1.76 1700.0 13141 200 1019 8.5 15.6 17.7 25.0 122 8.9 1.56 1.82 13555 1701.0 8.5 15.6 13961 196.78 996.49 8.9 1.55 1.87 18.0 25.0 122 1702.0 14368 196.78 974.88 8.5 15.6 1703.0 18.0 25.0 122 8.9 1.55 1.93 1.98 8.9 1.54 14761 190,43 954,23 8.5 15.6 1704.0 18.6 25.0 122 1705.0 17.6 25.0 122 8.9 1.56 2.04 15177 201.25 934.93 8.5 15.6 20.7 25.0 15531 171.11 915.83 8.5 15.6 1706.0 8.9 1.51 2.09 122 1707.0 21.5 25.0 120 8.9 1.49 2.13 15866 164.74 897.51 8.5 15.6 1708.0 30.3 25.0 120 8.9 1.38 2.17 16103 116.90 878.92 8.5 15.6 1709.0 19.9 24.0 120 8.9 1.49 2,22 16465 177.99 862.62 8.5 15.6

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1710.0 1711.0 1712.0 1713.0 1714.0 1715.0 1716.0 1717.0 1718.0	20.7 19.2 21.7 20.5 19.4 21.1 22.1 23.3	24.0 24.0 24.0 24.0 24.0 24.0 24.0 27.0 27.0	120 120 120 120 120 130 130 135	8.9 8.9 8.9 8.9 8.9 8.8	1.48 1.48 1.51 1.47 1.50 1.50 1.50	2.27 2.31 2.37 2.41 2.46 2.51 2.56 2.61 2.68	17161 17536 17868 18219 18590 18590 19313	171.11 184.48 163.23 172.78 182.58 167.87 160.27	817.82 803.89 790.74 778.33 766.12 754.24 742.66	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15.6 15.6 15.6 15.6 15.6 15.6 15.6
1720.0 1721.0 1722.0 1723.0 1724.0 1725.0 1726.0 1727.0 1728.0 1729.0	22.1 21.3 20.5 27.0 24.3 25.1 26.3 21.7	27.0 30.0 30.0 30.0 30.0 30.0 30.0 29.0	130 130 130 130 130 130 130 132	8.8 8.8 8.8 8.8 8.8	1.54 1.61 1.62 1.63 1.54 1.57 1.56 1.53	2.73 2.77 2.82 2.87 2.91 2.95 2.99 3.03 3.11	20587 20953 21334 21623 21944 22255 22551 22916	160.27 166.29 172.78 131.19 145.76 141.12 134.68	700.50 691.24 681.59 672.50 663.65 654.98 647.05	555555555 888888888	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
1730.0 1731.0 1732.0 1733.0 1734.0 1735.0 1736.0 1737.0 1738.0	20.9 24.2 26.3 25.1 27.0 29.1 28.4 28.0	30.0 31.0 30.0 30.0 30.0 35.0 35.0 35.0	130 130 130 130 130 130 130	8.8 8.8 8.8 8.8 8.8	1.53 1.64 1.57 1.55 1.56 1.54 1.58 1.59 1.60	3.15 3.19 3.24 3.27 3.31 3.35 3.42 3.42 3.48	23872 24194 24491 24802 25091 25359 25633 25912	127.87 169.47 146.36 134.68 141.12 131.19 121.72 124.72 124.72 126.50 104.18	623.83 616.59 609.40 602.51 595.68 588.91 582.37 576.04	888888555 888888888	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
	27.7 29.5 35.6 32.1 31.2 30.3	34.0 34.0 35.0 35.0 35.0 35.0	130 135 135 135 135 135 140 140	8.8 8.8 8.8 8.8 8.8 8.8	1.55 1.59 1.54 1.62 1.59 1.53 1.56 1.57 1.58	3.62 3.66 3.68 3.71 3.75 3.78	26677 26923 27215 27490 27718 27970 28239 28516	129.74 111.74 127.87 120.07 99.49 110.34 113.53 116.90	563.42 557.63 551.77 546.26 540.80 535.21 529.90 524.76 519.79 514.74	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
1750.0 1751.0 1752.0 1753.0 1754.0 1755.0 1756.0 1757.0 1758.0	28.4 33.0 35.1 35.6 36.7 31.7 36.2 31.2	35.0 35.0 35.0 34.0 34.0 34.0 34.0 34.0	140 130 130 130 130 130 130	8.8 8.8 8.8 8.8 8.8 8.8	1.56 1.62 1.54 1.50 1.50 1.49 1.54 1.49	3.84 3.87 3.90 3.93 3.96 3.99 4.02 4.05 4.08 4.11	29298 29535 29757 29976 30189 30435 30650 30900	124.72 107.33 100.91 99.49 96.51 111.74 97.85 113.53	496.10 491.59	55555555555555555555555555555555555555	15.7 15.7 15.7 15.7 15.7 15.7 15.7

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1760.0 1761.0 1762.0 1763.0 1764.0 1765.0 1766.0 1767.0 1768.0	19.6 31.7 31.2 37.6 30.3 29.8 34.5 26.3	34.0 34.0 34.0 34.0 34.0 34.0 34.0 34.0	125 125 130 130 135 140 140 145	8.8 8.8 8.8 8.8 8.8	1.56 1.70 1.53 1.55 1.48 1.57 1.59 1.54 1.65	4.19 4.22 4.25 4.28 4.31 4.35	31992 32242 32449 32717 32999 33242 33573	180.71 111.74 113.53 94.20 116.90 118.86 102.67 134.68	463.95 460.28 456.70	88888555555555555555555555555555555555	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
1770.0 1771.0 1772.0 1773.0 1774.0 1775.0 1776.0 1777.0 1778.0	31.3 32.6 35.6 40.2 40.5 36.7 32.0 36.2	30.0 30.0 32.0 32.0 32.0 32.0 32.0 32.0	130 130 125 130 130 130 124 126	8.8 8.8 8.8 8.8 8.8	1.40 1.49 1.47 1.46 1.45 1.43 1.46 1.49	4.53 4.56 4.58 4.60 4.63	34246 34486 34696 34890 35083 35296 35528 35737	113.16 108.65 99.49 88.11 87.46 96.51 110.69 97.85	427.09	88.55.55.55 88.88.88.55 88.88	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
1780.0 1781.0 1782.0 1783.0 1784.0 1785.0 1786.0 1787.0 1788.0	26.0 35.6 33.5 34.0 30.3 35.6 40.5 36.7	34.0 32.0 33.0 33.0 32.0 34.0 35.0 35.0	124 130 132 134 140 142 142 142	8.8 8.8 8.8 8.8 8.8 8.8	1.59 1.56 1.48 1.51 1.55 1.55 1.55 1.50 1.55	4.80 4.83	36537 36756 36992 37229 37506 37745 37955 38188	136.23 99.49 105.73 104.18 116.90 99.49 87.46 96.51	396.88 394.40 392.07 389.63	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.8
1791.0 1792.0 1793.0 1794.0 1795.0 1796.0	31.7 32.6 29.5 30.9 34.0 27.6	32.0 34.0 34.0 35.0 34.0 34.0	133 135 125 128 125 128 125 125	8.8 8.8 8.8 8.8 8.8	1.54 1.53 1.53 1.55 1.55 1.54 1.49 1.56	5.10 5.12 5.16 5.19 5.22 5.25 5.28	38965 39203 39440 39675 39929 40178 40399 40670	119.66 104.18 111.74 108.65 120.07 114.63 104.18 128.33		8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1800.0 1801.0 1802.0 1803.0 1804.0 1805.0 1806.0 1807.0 1808.0	33.5 34.5 36.2 28.0 35.6 36.7 28.5 22.9	33.0 34.0 34.0 34.0 34.0 35.0 30.0 30.0	125 128 128 125 125 135 130	8.8 8.8 8.8 8.8 8.8 8.8	1.57 1.51 1.50 1.49 1.57 1.48 1.49 1.52 1.61	5.39 5.42 5.45 5.52 5.54 5.57 5.61 5.68	41468 41691 41903 42171 42381 42586 42859 43213	96.51 124.28 154.67	358.85 356.96 355.07 353.41 351.59 349.77	8888855555 8888888888	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8

ŧ

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1810.0 1811.0 1812.0 1813.0 1814.0 1815.0 1816.0 1817.0 1818.0	29.7 35.1 30.9 32.6 31.2 31.7 33.0 30.9 28.9 26.0	34.0 32.0 33.0 32.0 32.0 32.0 33.0 33.0	128 129 126 130 134 132 132	8.8 8.8 8.8 8.8 8.8 8.8 8.8	1.55 1.50 1.52 1.50 1.52 1.50 1.54 1.54	5.72 5.74 5.78 5.81 5.87 5.90 5.93 5.97 6.01	43961 44211 44443 44693 44947 45187 45443 45713	119.26 100.91 114.63 108.65 113.53 111.74 107.33 114.63 122.56 136.23	341.94 340.38 338.80 337.28 335.77 334.24 332.79 331.41	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1820.0 1821.0 1822.0 1823.0 1824.0 1825.0 1826.0 1827.0 1828.0 1829.0	28.4 31.7 31.7 29.7 28.4 34.0 35.1 32.6 23.0 26.3	33.0 33.0 33.0 32.0 34.0 33.0 33.0 28.0	130 130 130 134 128 126 128 136	8.8 8.8 8.8 8.8 8.8 8.8	1.55 1.53 1.55 1.55 1.56 1.51 1.48 1.51 1.57	6.04 6.07 6.10 6.14 6.17 6.20 6.23 6.26 6.31 6.34	46538 46784 47047 47330 47556 47771 48007 48362	124.72 111.74 111.74 119.26 124.72 104.18 100.91 108.65 154.00 134.68	327.40 326.02 324.70 323.43 322.05 320.67 319.35 318.33		15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1830.0 1831.0 1832.0 1833.0 1834.0 1835.0 1835.0 1836.0 1837.0	34.0 36.2 31.2 35.6 35.6 37.7 27.3 29.8	34.0 34.0 33.0 35.0 35.0 34.0 28.0 30.0	125 128 125 125 120 124 132 128	8.8 8.8 8.8 8.8 8.8	1.50 1.48 1.54 1.52 1.47 1.48 1.52 1.51 1.43	6.37 6.40 6.43 6.49 6.55 6.55 6.65	49077 49323 49564 49774 49976 50211 50501	111.74 129.74 121.72	314.59 313.38 312.18 310.91 309.66	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1840.0 1841.0 1842.0 1843.0 1844.0 1845.0 1846.0 1847.0 1848.0 1849.0	27.3 34.5 31.7 34.5 33.0 31.2 30.3 30.8 31.7	30.0 31.0 31.0 32.0 31.0 29.0 32.0 30.0	132 134 134 132 132 132 135	8.8 8.8 8.8 8.8 8.8 8.8	1.58 1.46 1.51 1.48 1.51 1.51 1.48 1.53	6.69 6.71 6.75 6.77 6.80 6.84 6.87 6.90	51478 51731 51964 52208 52462 52716 52977 53221	113.53 113.53 116.90 115.00	302.96 301.87 300.74 299.66	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1850.0 1851.0 1852.0 1853.0 1854.0 1855.0 1856.0 1857.0 1858.0	34,0 35,1 34,5 29,5 27,7 28,6 31,7 35,1 32,1	32.0 34.0 33.0 32.0 32.0 32.0 32.0	128 128 135 135 128 128 128		1.47 1.50 1.55 1.55 1.55 1.51 1.51	7.00 7.02 7.05 7.09 7.12 7.16 7.19 7.25 7.25 7.28	53897 54119 54380 54672 54955 55198 55440 55645	100.91 102.67 120.07 127.87 123.85 111.74	291.49 290.58 289.71 288.83 287.90 286.98 286.01	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.8 15.8 15.8 15.8 15.8 15.8 15.8

						•					
DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
1860.0 1861.0 1862.0 1863.0 1864.0 1865.0 1866.0 1867.0 1869.0	33.0 38.1 36.7 35.1 33.5 29.5 25.9 38.1	34.0 35.0 34.0 34.0 35.0 31.0 32.0 32.0	120 122 120 124 124 132 125 124	8.8 8.8 8.8 8.8 8.8	1.53 1.51 1.45 1.46 1.47 1.52 1.53 1.57 1.48	7.31 7.34 7.37 7.40 7.42 7.45 7.53 7.55	56333 56526 56722 56934 57156 57424 57714 57909	113.53 107.33 92.97 96.51 100.91 105.73 120.07 136.76 92.97 107.33	282.34 281.39 280.48 279.60 278.81 278.10 277.18	888888555 8888888555	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1870.0 1871.0 1872.0 1873.0 1874.0 1875.0 1876.0 1877.0 1879.0	29.7 26.7 33.5 27.0 28.0 21.1 29.5 29.1	30.0 29.0 32.0 33.0 33.0	128 135 140 138 130 134 135 135	8.8 8.8 8.8 8.8 8.8	1,49 1,51 1,55 1,46 1,56 1,56 1,56 1,56		58657 58960 59211 59518 59796 60178 60452 60730	119.26 132.66 105.73 131.19 126.50 167.87 120.07 121.72	274.14 273.32 272.64 271.94 271.44	888888555 888888888	15.9 15.9 15.9 15.9 15.9 15.9 15.9
1880.0 1881.0 1882.0 1883.0 1884.0 1885.0 1886.0 1887.0 1888.0	29.5 36.7 29.5 28.7 26.7 32.6 34.0 31.7	36.0 34.0 35.0 32.0 32.0 35.0 35.0 35.0	132 130 130 130 128 128 125	8.8 8.8 8.8 8.8 8.8	1.61 1.57 1.55 1.55 1.55 1.55 1.55 1.54	7.98 8.01 8.04 8.07 8.11 8.14 8.17 8.20 8.24	61549 61765 62030 62301 62594 62829 63055 63292	120.07 96.51 120.07 123.41 132.66 108.65	267.15 266.47 265.82 265.21 264.50 263.77 263.09	 	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1894.0 1895.0 1896.0 1897.0 1898.0	34.0	29.0 30.0 32.0 33.0 35.0 34.0	125 125 132 130 125 128 128	8.8 8.8 8.8 8.8 8.8	1.53 1.55 1.52 1.50 1.55	8.30 8.33 8.36 8.40 8.43 8.47 8.50 8.53 8.55	63986 64214 64510 64807 65059 65286 65533 65793	104.18 107.33 132.66 132.66 114.63 107.33 113.53 120.07		988855555 88888888888888888888888888888	
1900.0 1901.0 1902.0 1903.0 1904.0 1905.0 1906.0 1907.0 1908.0	29.1 28.1 24.3 28.0 24.3 22.1 26.3	35.0 34.0 29.0 31.0 30.0 30.0	128 132 132 132 138 135	8.8 8.8 8.8 8.8 8.8	1.62	8.65 8.69 8.72 8.76 8.80 8.84 8.88	66484 66748 67030 67356 67638 67979 68346 68654	108.65 121.72 126.05 145.76 126.50 145.76 160.27 134.68	255.43 254.80 254.24 253.70 253.25 252.71 252.27 251.89 251.40 250.90	 	15.9 15.9 15.9 15.9 15.9 15.9 15.9

DEPTH	ROP	wob	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	PP	FG
1910.0 1911.0 1912.0 1913.0 1914.0 1915.0 1916.0 1917.0 1918.0	23.3 24.6 19.2 28.0 29.1 23.0 31.7 28.7	29.0 28.0 29.0 30.0 30.0 30.0 30.0 32.0 29.0	132 138 130 126 130 128 128 128	8.8 8.8 8.8 8.8 8.8 8.8	1.54 1.56 1.57 1.65 1.51 1.51 1.59 1.51 1.59	9.00 9.04 9.08 9.13 9.17 9.20 9.25 9.28 9.31 9.35	69598 69935 70341 70611 70879 71213 71455 71723	152.02 143.98 184.48	249.59 249.33 248.83 248.32 247.95 247.40 246.91	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1920.0 1921.0 1922.0 1923.0 1924.0 1925.0 1926.0 1927.0 1928.0 1929.0	28.7 28.9 29.1 35.6 32.6 35.1 35.1	31.0 30.0 31.0 34.0 35.0 35.0 33.0 34.0 33.0	126 120 120 120 120 120 122 122	8.8 8.8 8.8 8.8 8.8 8.8	1.59 1.50 1.55 1.48 1.51 1.46 1.48 1.47	9.39 9.43 9.46 9.50 9.55 9.55 9.61 9.64 9.67	72594 72843 73095 73297 73518 73723 73932 74144	154.67 123.41 122.56 121.72 99.49 108.65 100.91 100.91 102.67 107.33	245.59 245.11 244.63 244.07 243.55 243.00 242.45 241.92	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1930.0 1931.0 1932.0 1933.0 1934.0 1935.0 1936.0 1937.0 1938.0	32.1 29.5 29.1 32.6 33.5 34.0 24.3 30.3	33.0 30.0 30.0 33.0 34.0 34.0 33.0 34.0 34	135 132 128 128 128 122 125 125	8.8 8.8 8.8 8.8 8.8	1.50 1.49 1.51 1.55 1.52 1.54 1.62 1.54	9.70 9.73 9.77 9.80 9.83 9.86 9.89 9.93 9.97	74844 75112 75376 75612 75841 76056 76365 76612	109.32 110.34 120.07 121.72 108.65 105.73 104.18 145.76 116.90 96.51	240.42 239.96 239.52 239.03 238.54 238.04 237.70	8888888 888888888888888888888888888888	15.9 15.9 15.9 15.0 16.0 16.0 16.0
1940.0 1941.0 1942.0 1943.0 1944.0 1945.0 1946.0 1947.0 1948.0	27.8 24.3 31.2 42.7 30.3 34.0 37.8 38.1	32.0 31.0	125 125 126 126 120 120 120	8.8 8.8 8.8 8.8 8.8 8.8	1.48 1.51 1.56 1.49 1.40 1.52 1.44 1.42	10.02 10.06 10.10 10.13 10.15 10.19 10.22 10.24 10.27	77304 77612 77853 78030 78279 78491 78681 78870	127.41 145.76 113.53 82.95 116.90 104.18	235.52 235.08 234.53 234.11 233.65 233.15 232.65	88888555555555555555555555555555555555	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1950.0 1951.0 1952.0 1953.0 1954.0 1955.0 1956.0 1957.0 1958.0	33.5 28.4 32.6 31.7 27.7 26.0 27.0 28.0	28.0 30.0 30.0 31.0 32.0 31.0		8.8 8.8 8.8 8.8 8.8 8.8	1.45 1.43 1.53 1.46 1.48 1.56 1.54 1.52	10.33 10.36 10.39 10.43 10.46 10.49 10.53 10.57 10.60	79565 79848 80078 80315 80585 80881 81152 81418	110.34 105.73 124.72 108.65 111.74 127.87 136.23 131.19 126.50 136.23	231.33 230.96 230.53 230.12 229.77 229.45 229.11 228.76	888888555 8888888 88888888888888888888	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0

_											
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
1960.0 1961.0 1962.0 1963.0 1964.0 1965.0 1966.0 1967.0	31.2 31.7 25.4 28.7 28.0 33.5 28.7	30.0 29.0 29.0 32.0 32.0 31.0 28.0	130 127 125. 125 118 122 122	8.8 8.8 8.8 8.8 8.8	1,55 1,48 1,45 1,53 1,51 1,53 1,46	10.68 10.71 10.74 10.78 10.82 10.85 10.85	82273 82510 82805 83052 83313 83532 83793	139.45 123.41 126.50 105.73 123.41	227.74 227.35 227.05 226.70 226.37 225.97 225.62	55555555 88888888	16.0 16.0 16.0 16.0 16.0 16.0
1968.0 1969.0		32.0 30.0	126 132		1.51	10.95 10.99		114.63 136.23			16.0 16.0
1970.0 1971.0 1972.0 1973.0 1974.0 1975.0 1976.0 1977.0 1978.0	29.1 30.3 27.3 30.3 31.2 28.7 21.5	29.0 33.0 31.0 32.0 31.0	126 122 122 120	8.8 8.8 8.8 8.8 8.8	1.51 1.48 1.52 1.53 1.50 1.49 1.49 1.54	11.02 11.06 11.09 11.13 11.16 11.19 11.22 11.26 11:31	84845 85086 85355 85592 85838 86076 86356 86733	114.63 121.72 116.90 129.74 116.90 116.90 113.53 123.41 164.74 178.89	224.26 223.91 223.61 223.26 222.91 222.56 222.24 222.06		16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1980.0 1981.0 1982.0 1983.0 1984.0 1985.0 1986.0 1987.0 1988.0	21.5 22.3 22.3 22.1 24.8 21.9 30.3 24.6	25.0 25.0 25.0 24.0 24.0 24.0 32.0	125 126 132 132 132 130 122 130 126	8.8 8.8 8.8 8.8 8.8 8.8	1.52 1.52 1.51 1.52 1.51 1.47 1.51 1.50 1.54	11.40 11.45 11.49 11.54 11.58 11.62 11.67 11.70 11.74	87810 88149 88504 88862 89181 89538 89779 90096	164.74 164.74 158.83 158.83 160.27 142.82 161.74 116.90 143.98 124.72	221.36 221.36 221.16 220.97 220.73 220.54 220.22 219.98	88,88888888888888888888888888888888888	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1990.0 1991.0 1992.0 1993.0 1994.0 1995.0 1996.0 1997.0 1998.0	27.0 30.9 29.1 29.7 30.3 30.3 29.6 28.4	32.0 32.0 31.0 30.0 32.0 32.0	135 135 135 126 126 126 126	8.8 8.8 8.8 8.8 8.8 8.8	1.50 1.56 1.53 1.54 1.52 1.52 1.55 1.55 1.57	11.81 11.85 11.88 11.91 11.95 11.98 12.01 12.05 12.08 12.11	90886 91148 91427 91699 91949 92198 92454 92720	110.34 131.19 114.63 121.72 119.26 116.90 116.90 119.66 124.72 110.34	219.08 218.76 218.46 218.16 217.85 217.54 217.25 216.97	88888888888888888888888888888888888888	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
2000.0 2001.0 2002.0 2003.0 2004.0 2005.0 2006.0 2007.0 2008.0 2009.0	24.8 23.3 32.6 29.5 34.0 37.9 29.1	36.0 36.0 37.0 38.0 38.0	128 128 128 124 125 124 120 128	8.8 8.8 8.8 8.8 8.8 8.8	1.55 1.62 1.67 1.55 1.59 1.56 1.55 1.49 1.62	12.15 12.19 12.23 12.26 12.30 12.32 12.35 12.35 12.41 12.45	93519 93848 94084 94336 94557 94775 94965 95229	116.90 142.82 152.02 108.65 120.07 104.18 104.18 93.46 121.72	216.13 215.94 215.62 215.34 215.01 214.69 214.33 214.06	8.5 8.5 8.5 8.5 8.5 8.5 9.5 9.5	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0

95, 5000 505, 500 1 3	nen	LIME	rs rs M	X(1) 1) -3 1	1 1	ימווייי	THEALT	TOBOT	CCOST	PP	FG	
DEPTH		WOB		MW "d'		IOURS	TURNS					
2010.0 2011.0		38.0 38.0		8.8 1.6 8.8 1.5		2.49			213.54 213.27	8.5	16.0 16.1	
2012.0 2013.0		37.0 38.0		8.8 1.6 8.8 1.5		2.55			213.02 212.74		16.1	
2014.0	29.1	38.0	122	8.8 1.6	50 1	2.62	96758	121.72	212.48	8.5	16.1	
2015.0 2016.0		38.0 39.0		8.8 1.6 8.8 1.7		2.66			212.22		16.1	
2017.0	24.6	38.0	122	8.8 1.6	57 1	2.74	97635	143.98	211.88		16.1 16.1	
2018.0 2019.0		38.0 38.0		8.8 1.6 8.8 1.7		2.78			211.49		16.1	
2020.0	29.5	38.0	122	8.8 1.6	50 1	2.86	98473	120.07	211.23	8.5	16.1	•
2021.0 2022.0		38.0		8.8 1.5 8.8 1.5		2.89			210.97		16.1 16.1	
2023.0	29.5	37.0	122	8.8 1.5	58 1	2.96	99218	120.07	210.47	8.5	16.1	
2024.0 2025.0		37.0 37.0		8.8 1.5		3.03	99469 99737		210.22		16.1 16.1	
2026.0 2027.0	27.7 33.5	38.0		8.8 1.6		3.07			209.77		16.1 16.1	
2028.0	31.7	38.0	125	8.8 1.5	58 1	3.13	100469	111.74	209.21	8.5	16.1	
2029.0 •	32.1	38.0	125	8.8 1.5	58 1	3.16	100702	110.34	208.94		16.1	
2030.0 2031.0		38.0 38.0		8.8 1.6 8.8 1.6		3.20			208.72 208.50		16.1 16.1	
2032.0	29.5	38.0	125	8.8 1.6	51 1	3.27	101505	120.07	208.26	8.5	16.1	
2033.0 2034.0		38.0 38.0		8.8 1.5 8.8 1.5		3.30			208.00 207.75		16.1 16.1	
2035.0 2036.0		38.0 38.0		8.8 1.5		3.36			207.50 207.27		16.1 16.1	
2037.0	26.7	37.0	125	8.8 1.6	53 1	3.44	102776	132.66	207:07	8.5	16.1	
2038.0 2039.0		37.0 37.0		8.8 1.6 8.8 1.6		3.47			206.88		16.1 16.1	
2040.0	28.0	37.0	125	8.8 1.6	51 1	3.55	103600	126.50	206.45	8.5	16.1	
2041.0	30.3	39.0	125	8.8 1.6	51 1	3.58	103847	116.90	206.21	8.5	16.1	
2042.0 2043.0		40.0		8.8 1.5		3.64			205.96 205.70		16.1	
2044.0 2045.0	29.7 25.4			8.8 1.6		3.67			205.47		16.1 16.1	
2046.0	31.2	40.0	125	8.8 1.6	51 1	3.74	105099	113.53	205.05	8.5	16.1	
2047.0 2048.0	31.2 32.6			8.8 1.6		3.78 3.81			204.81 204.56		16.1 16.1	
2049.0		39.0		8.8 1.5		3.84	105791	104.48	204.30		16.1	
2050.0		39.0 39.0		8.8 1.3 8.8 1.4		3.87			204.06		16.1 16.1	
2051.0 2052.0	33.0	40.0	125	8.8 1.	59 1	3.90	106495	107.33	203.57	8.5	16.1	
2053.0 2054.0		41.0		8.8 1.8		3.96			203.34		16.1 16.1	
2055.0	31.2	41.0	150	8.8 1.3	70 1	4.03	107322	113.53	202.88	8.5	16.1 16.1	
2056.0 2057.0	24.3 24.3	37.0	130	8.8 1.	58 1	4.07	107977	145.76	202.73 202.59	8.5	16.1	
2058.0 2059.0	27.3 26.0	37.0 36.0		8.8 1.6		4.15			202.40		16.1 16.1	
					•							

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2060.0 2061.0 2062.0 2063.0 2064.0 2065.0 2066.0 2067.0 2068.0 2069.0	24.0 26.7 24.3 23.3 23.3 27.7 24.8 27.0	36.0 37.0 37.0 35.0 35.0 35.0 37.0 37.0	130 130 130 125 125	8.8 8.8 8.8 8.8 8.8	1.61 1.68 1.64 1.65 1.65 1.65 1.66 1.63	14.22 14.26 14.30 14.34 14.38 14.43 14.46 14.50 14.54	109779 110101 110423 110694 110996		201.59 201.46 201.34 201.16 201.01 200.84	555555555 5555555555555555555555555555	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
2070.0 2071.0 2072.0 2073.0 2074.0 2075.0 2075.0 2076.0 2077.0 2078.0	28.4 24.0 22.6 30.3 22.3 20.9 20.9 21.5	35.0 35.0 35.0	130 135 125 125 125 125	8.8 8.8 8.8 8.8 8.8	1.59 1.59 1.65 1.69 1.71 1.72 1.72	14.61 14.65 14.69 14.73 14.77 14.81 14.86 14.91 14.95 14.99	112094 112419 112777 113025 113361 113720 114079 114428	129.74 124.72 147.58 156.73 116.90 158.83 169.47 169.47 164.74	200.29 200.16 200.06 199.85 199.75 199.68 199.61 199.52		16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
2080.0 2081.0 2082.0 2083.0 2084.0 2085.0 2086.0 2087.0 2088.0 2089.0	27.0 24.0 25.0 29.5 25.4 25.1 20.7	38.0 34.0 35.0 36.0 35.0 35.0	125 125 125 125 125 125 125 125 125	8.8 8.8 8.8 8.8 8.8 8.8	1.59 1.64 1.68 1.61 1.57 1.63 1.62 1.69 1.70	15.03 15.06 15.10 15.14 15.18 15.22 15.26 15.31 15.31	115246 115559 115859 116113 116408 116707 117070	119.26 131.19 147.58 141.68 120.07 139.45 141.12 171.11 176.22 141.12	199.01 198.89 198.75 198.56 198.42 198.28 198.22 198.17	88888855 88888888	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
2090.0 2091.0 2092.0 2093.0 2094.0 2095.0 2096.0 2097.0 2098.0 2099.0	23.9 24.6 26.7 19.4 15.9 19.8 19.8	35.0 35.0 35.0 35.0 34.0	125	8.8 8.8 8.8 8.8 8.8 8.8	1.65 1.64 1.63 1.62 1.73 1.82 1.74 1.74 1.72	15.44 15.48 15.52 15.56 15.61 15.67 15.72 15.72 15.83	118692 118984 119386 119895 120304 120722 121131	150.72 148.20 143.98 132.66 182.58 222.77 178.89 182.58 178.89 190.43	197.80 197.68 197.52 197.49 197.55 197.51 197.47	88888888888888888888888888888888888888	16.1 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2100.0 2101.0 2102.0 2103.0 2104.0 2105.0 2106.0 2107.0 2108.0 2109.0	18.0 16.6 25.4 24.8 29.7 24.8 23.8 25.1	35.0 33.0 33.0 34.0	135 128 128 128 127 127 127	8.8 8.8 8.8 8.8 8.8 8.8	1.72 1.75 1.76 1.63 1.64 1.54 1.60 1.63 1.58	15.93 15.98 16.05 16.08 16.12 16.16 16.20 16.24 16.28 16.32	122425 122888 123190 123500 123757 124064 124384 124688	178.89 196.78 213.37 139.45 142.82 119.26 142.82 148.82 141.12 154.00	197.37 197.40 197.27 197.15 196.97 196.85 196.74 196.61	8.5555555 8.85555555	16.2
			'n						·		

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2110.0 2111.0 2112.0 2113.0 2114.0 2115.0 2116.0 2117.0 2118.0 2119.0	24.3 32.1 28.0 32.1 29.7 26.0 40.5 30.9	32.0 35.0 35.0 35.0 35.0 35.0 40.0 40.0	130 130 130 130 130 130 130	8.8 8.8 8.8 8.8 8.8	1.62 1.65 1.55 1.60 1.55 1.58 1.63 1.53	16.37 16.41 16.44 16.48 16.51 16.54 16.54 16.60 16.64	125687 125930 126208 126451 126714 127014 127207	114.63	196.31 196.11 195.96 195.77 195.60 195.46 195.22 195.05	8.555555 8.55555 8.6855	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2120.0 2121.0 2122.0 2123.0 2124.0 2125.0 2126.0 2127.0 2128.0 2129.0	34.2 33.5 31.7 29.1 24.8 29.7 26.0 29.1	40.0 39.0 39.0 40.0 40.0 40.0 40.0 40.0 40.0	125 125 125 125 125 125 125 125	8.8 8.8 8.8 8.8 8.8 8.8	1.58 1.57 1.57 1.61 1.64 1.63 1.68 1.60	16.69 16.72 16.75 16.82 16.86 16.89 16.93 16.96	128123 128347 128583 128841 129143 129396 129684 129942	100.91 103.57 105.73 111.74 121.72 142.82 119.26 136.23 121.72 127.87	194.43 194.24 194.06 193.90 193.79 193.63 193.50 193.35	8.5555555 8.55555 8.6555	16.2 16.2
2130.0 2131.0 2132.0 2133.0 2134.0 2135.0 2136.0 2137.0 2138.0 2139.0	26.0 30.3 38.1 31.7 23.3 24.6 31.7 29.5	40.0 43.0 43.0 41.0 41.0 40.0 40.0	125 125 125 125 125 125 125 125	8.8 8.8 8.8 8.8 8.8	1.63 1.72 1.66 1.58 1.62 1.74 1.70 1.61 1.63	17.03 17.07 17.11 17.13 17.16 17.21 17.25 17.28 17.31	130751 130999 131196 131432 131754 132059 132296 132550	118.07 136.23 116.90 92.97 111.74 152.02 143.98 111.74 120.07 121.72	192.92 192.76 192.54 192.37 192.28 192.18 192.01 191.86	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2140.0 2141.0 2142.0 2143.0 2144.0 2145.0 2146.0 2147.0 2148.0 2149.0	29.1 32.1 26.7 31.2 31.2 33.0 27.7 35.6	40.0 40.0 40.0 41.0	130 130 130 130 135 135 135	8.8 8.8 8.8 8.8 8.8	1.64 1.65 1.62 1.69 1.63 1.63 1.63 1.70 1.61	17.38 17.42 17.45 17.48 17.52 17.55 17.58 17.61 17.64	133334 133577 133870 134120 134370 134615 134907 135135	132.66 113.53 113.53 107.33 127.87 99.49	191.42 191.25 191.12 190.96 190.80 190.63 190.49	8.55555 8.5555 8.555 8.55	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2150.0 2151.0 2152.0 2153.0 2154.0 2155.0 2155.0 2157.0 2159.0	23.3 19.9 17.3 23.3 18.7	42.0 43.0 43.0 43.0 43.0 42.0	125 125 125 125 125 125 125 125	8.8 8.8 8.8 8.8 8.8	1.76 1.75 1.81 1.88 1.77 1.85 1.80 1.76	17.73 17.77 17.82 17.88 17.92 17.98 18.02 18.02 18.12	136137 136514 136947 137269 137670 138019 138381 138707	161.74 152.02 177.99 204.74 152.02 189.41 164.74 171.11 154.00 160.27	190.08 190.06 190.09 190.01 190.01 189.95 189.92 189.84	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2160.0 2161.0 2162.0 2163.0 2164.0 2165.0 2166.0 2167.0 2168.0 2169.0	21.3 27.3 21.5 20.5 25.4 22.6 23.4 22.6	41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0	126 126 132 132 132 132 132	8.8 8.8 8.8 8.8 8.8 8.8	1.84 1.77 1.68 1.79 1.81 1.73 1.76 1.76	18.22 18.26 18.30 18.35 18.40 18.43 18.43 18.52 18.57	139822 140099 140467 140854 141166 141516 141854 142205	195.69 166.29 129.74 164.74 172.78 139.45 156.73 151.37 156.73	189.75 189.63 189.58 189.54 189.44 189.38 189.30	888855555 888888888	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2170.0 2171.0 2172.0 2173.0 2174.0 2175.0 2176.0 2177.0 2178.0 2179.0	28.0 25.4 21.5 19.9 20.3 19.2 22.6 19.5	41.0 41.0 41.0 41.0 40.0 40.0 42.0 40.0 40.0	120 125 125 130 130 130 130	8.8 8.8 8.8 8.8 8.8	1.84 1.65 1.70 1.77 1.80 1.79 1.84 1.78	18.68 18.72 18.76 18.80 18.85 18.90 18.95 19.00 19.05	143323 143618 143967 144359 144743 145150 145495 145879	207.13 126.50 139.45 164.74 177.99 174.48 184.48 156.73 181.64 207.13	189.16 189.06 189.02 188.99 188.97 188.96 188.89 188.88	8.55.55.55 8.55.55 8.55.55 8.55	16.2 16.2 16.3 16.3 16.3 16.3 16.3
2180.0 2181.0 2182.0 2183.0 2184.0 2185.0 2186.0 2187.0	19.8 26.3 16.1 29.5 18.3 21.5	40.0 41.0 41.0 37.0 42.0 39.0 39.0	121 121 128 128 130 130	8.8 8.8 8.8 8.8	1.76 1.79 1.68 1.82 1.67 1.81 1.75	19.16 19.21 19.24 19.31 19.34 19.39 19.44	147043 147320 147797 148057 148483 148846	-169.47 178.89 134.68 220.00 120.07 193.55 164.74 177.10	188.86 188.75 188.81 188.68 188.69 188.64	8.5 8.5 8.5 8.5 8.5	16.3 16.3 16.3 16.3 16.3 16.3

. . . .

BIT NUMBER 8 IADC CODE 114 INTERVAL 2187.0- 2413.0 9.875 13 13 14 HUGHES X3A SIZE NOZZLES 900.00 TRIP TIME 9.8 BIT RUN 226.0 COST 9.74 73672 CONDITION T7 B8 G0.000 TOTAL HOURS TOTAL TURNS PР FG MW "d"c TURNS CCOST DEPTH ROP WOB RPM HOURS ICOST 26.3 25.0 135 8.9 1.46 0.04 308 35746 8.5 16.3 2188.0 135 2189.0 29.5 28.0 135 8.9 1.47 0.07 583 120 17933 8.5 16.3 2190.0 25.1 27.0 135 8.9 1.51 0.11 905 141 12002 8.5 16.3 8.9 1.52 8.5 16.3 2191.0 25.4 28.0 135 0.15 1224 139 9037 21.5 29.0 135 2192.0 8.9 1.59 0.20 1601 165 7262 8.5 16.3 8.9 1.49 0.23 8.5 16.3 2193.0 29.7 29.0 138 1880 119 6072 0.29 16.8 28.0 138 8.9 1.67 2373 5235 8.5 16.3 2194.0 211 19.4 29.0 135 8.9 1.63 8.5 16.3 0.34 2790 4603 2195.0 183 2196.0 20.6 28.0 135 8.9 1.59 0.39 3183 172 4111 8.5 16.3 25.1 32.0 145 8.9 1.61 0.43 3530 141 3714 8.5 16.3 2197.0 8.9 1.48 2198.0 37.9 32.0 150 0.46 3767 93 3385 8.5 16.3 29.7 32.0 150 8.9 1.57 0.49 4070 119 3113 8.5 16.3 2199.0 36.7 31.0 150 8.9 1.48 0.52 4316 97 2881 8.5 16.3 2200.0 8.9 1.45 0.54 4540 88 2681 8.5 16.3 2201.0 40.2 31.0 150 2202.0 34.0 33.0 140 8.9 1.51 0.57 4787 104 2509 8.5 16.3 8.9 1.39 8.5 16.3 4951 2203.0 51.2 35.0 140 0.59 69 2357 8.9 1.44 8.5 16.3 2204.0 44.3 35.0 140 0.61 5140 80 2223 8.5 16.3 42.7 35.0 140 8.9 1.46 2205.0 0.64 5337 83 2104 32.0 35.0 140 8.9 1.56 8.5 16.3 8.5 16.3 2206.0 0.67 5599 111 1999 29.1 33.0 144 8.9 1.57 0.70 5896 1905 2207.0 122 2208.0 38.8 34.0 140 8.9 1.48 0.73 6113 91 1819 8.5 16.3 0.7542.7 34.0 145 8.9 1.46 83 8.5 16.3 2209.0 6317 1740 31,2 34,0 145 8.9 1.57 114 0.78 6595 8.5 16.3 2210.0 1669 43.5 33.0 148 8.9 1.44 0.81 6800 81 1603 8.5 16.3 2211.0 2212.0 30.9 35.0 148 8.9 1.59 0.84 7087 115 1543 8.5 16.3 2213.0 37.9 34.0 148 8.9 1.51 0.87 7321 93 1488 8.5 16.3 8.9 1.56 2214.0 29.7 35.0 130 0.90 7584 119 1437 8.5 16.3 2215.0 30.9 35.0 132 8.9 1.55 0.93 7840 115 1390 8.5 16.3 29.6 35.0 135 8.9 1.57 0.97 8114 1346 8.5 16.3 2216.0 120 8.5 16.3 28.0 34.0 142 8.9 1.60 2217.0 1.00 8418 127 1305 8.9 1.55 8.5 16.3 2218.0 32.1, 34.0 142 1.03 8684 110 1267 8.9 1.46 2219.0 39.8 34.0 138 1.06 8892 89 1230 8.5 16.3 1.09 28.4 35.0 140 8.9 1.60 8.5 16.3 2220.0 9187 125 1197 25.4 35.0 142 2221.0 8.9 1.65 1.13 9523 139 1165 8.5 16.3 8.9 1.61 2222.0 27.3 35.0 138 1.17 9826 130 1136 8.5 16.3 1.20 8.5 16.3 2223.0 31.7 35.0 132 8.9 1.54 10076 112 1107 2224.0 24.6 34.0 130 8.9 1.61 1.24 10393 144 1081 8.5 16.3 8.9 1.53 8.5 16.3 2225.0 32.6 35.0 132 1,27 109 1056 10636 8.5 16.3 8.5 16.3 2226.0 33.5 35.0 132 8.9 1.52 1.30 10872 106 1031 31.7 35.0 130 8.9 1.54 1.33 1008 2227.0 11118 112 2228.0 30.9 35.0 130 8.9 1.55 1.37 11371 114.63 986.60 8.5 16.3 1.40 8.5 16.3 2229.0 27.0 34.0 128 8.9 1.57 11655 131.19 966.23 1.45 2230.0 21.9 35.0 126 8.9 1.66 12001 161,74 947,52 8.5 16.3

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	PP	FG
2231.0 2232.0 2233.0 2234.0 2235.0 2236.0 2237.0 2238.0 2239.0 2240.0	25.4 22.6 20.9 26.3 18.7 21.9 24.0 23.0	34.0 34.0 32.0	130 130 130 130 130 130	8.9 9.0 9.0 9.0 9.0 9.0	1.55 1.63 1.66 1.65 1.56 1.69 1.63 1.61	1.48 1.52 1.57 1.62 1.65 1.71 1.75 1.79 1.84 1.89	12571 12916 13289 13586 14003 14359 14694 15044	123.41 139.45 156.73 169.47 134.68 189.41 161.74 147.58 154.00 172.78	911.25 894.85 879.41 863.90 850.13 836.36 822.86 810.00	55555555555555555555555555555555555555	16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3
2241.0 2242.0 2243.0 2244.0 2245.0 2246.0 2247.0 2247.0 2249.0 2250.0	35.6 35.6 25.0 24.6 23.5 25.9 32.6 32.1	34.0 34.0 34.0 34.0 33.0 34.0	125 125 117 120 120 120 125 125	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.44 1.45 1.55 1.57 1.58 1.58 1.48 1.50	1.91 1.94 1.97 2.01 2.05 2.09 2.13 2.16 2.19 2.22	17224 17455 17688	99.49 99.49 141.68	719.35 709.34 699.68		16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3
2251.0 2252.0 2253.0 2254.0 2255.0 2256.0 2257.0 2258.0 2259.0 2260.0	26.7 28.4 25.0 26.3 30.3 27.3 25.0 33.0	33.0 33.0 35.0 35.0 34.0 34.0	125 125 120 120 128 132 132	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.59 1.54 1.52 1.56 1.56 1.55 1.55 1.66	2.27 2.30 2.34 2.38 2.42 2.45 2.49 2.56 2.56 2.62	18544 18808 19108 19381 19619 19900 20217 20457	154.00 132.66 124.72 141.68 134.68 116.90 129.74 141.68 107.33 220.00	673.47 665.16 657.34 649.66 641.93 634.62 627.68 620.45		16.3 16.3 16.3 16.3 16.3 16.3 16.4 16.4
2261.0 2262.0 2263.0 2264.0 2265.0 2266.0 2267.0 2268.0 2269.0 2270.0	25.0 38.5 30.9 24.3 27.0 33.5 30.3	28.0 33.0 33.0 33.0 33.0 32.0 34.0	120 120 123 123 123 123	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.50 1.50 1.40 1.47 1.56 1.53 1.45 1.47	2.66 2.70 2.73 2.76 2.80 2.84 2.87 2.90 2.98	21571 21758 21991 22294 22568 22788 23032 23332	143.98 141.68 92.00 114.63 145.76 131.19 105.73 116.90 143.98 126.50	602.37 595.66 589.41 583.72 577.99 572.09 566.47 561.32		16.4 16.4 16.4 16.4 16.4 16.4 16.4
2271.0 2272.0 2273.0 2274.0 2275.0 2276.0 2277.0 2278.0 2279.0 2280.0	26.0 38.5 24.0 30.9 25.9 27.3 32.0 29.7	35.0 35.0	120 120 120 120 120 125 125	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.57 1.53 1.41 1.57 1.50 1.56 1.56 1.53	3.02 3.06 3.08 3.12 3.16 3.20 3.23 3.26 3.30 3.32	24212 24399 24699 24932 25210 25485 25719	147.58 136.23 92.00 147.58 114.63 136.76 129.74 110.69 119.26 92.00	546.33 541.05 536.53 531.73 527.30 522.88 518.35	555555555 88888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4

Ì	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2281.0 2282.0 2283.0 2284.0 2285.0 2286.0 2287.0 2288.0 2289.0	26.7 27.0 32.1 22.9 30.9 24.0 25.1 30.3	35.0 35.0 34.0 35.0 35.0 25.0 34.0 33.0	120 120 126 126 120 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.46 1.53 1.52 1.49 1.56 1.48 1.42 1.54	3.35 3.39 3.43 3.50 3.54 3.58 3.62 3.65 3.68	26652 26919 27154 27484 27717 28017 28304 28542	110.69 132.66 131.19 110.34 154.67 114.63 147.58 141.12 116.90 100.91	501.31 497.45 493.46 490.01 486.21 482.83 479.45 475.89	5.55.55.55.5 8.88888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
	2291.0 2292.0 2293.0 2294.0 2295.0 2296.0 2297.0 2298.0 2299.0 2300.0	24.0 21.5 28.4 20.7 22.9 21.7 21.5 24.3 21.0	35.0 35.0 34.0 34.0 34.0 35.0 35.0 35.0	120 125 125 125 125 125 120 125	9.1 9.1 9.1 9.1 9.1 9.2 9.2	1.57 1.62 1.51 1.62 1.59 1.59 1.56 1.58	3.72 3.77 3.80 3.85 3.89 3.94 3.99 4.03 4.08 4.12	29396 29660	163.23 164.74 145.76 168.67	466.23 463.01 460.28 457.45 454.75 452.11	88888888 8888888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
	2301.0 2302.0 2303.0 2304.0 2305.0 2306.0 2307.0 2308.0 2309.0 2310.0	22.6 21.7 22.9 24.8 26.0 21.5 23.8 24.6	35.0 35.0	120 120 120 120 120 120 125 125	9.2 9.2 9.2 9.2 9.2 9.3 9.3	1.54 1.59 1.57 1.54 1.53 1.62 1.55 1.56	4.16 4.20 4.25 4.29 4.33 4.37 4.42 4.46 4.50 4.54	32628 32959 33274 33564 33841 34176 34491	164.74 148.82 143.98	439.12 436.74 434.33 431.86 429.38 427.17 424.87	888885555 8888888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4
	2311.0 2312.0 2313.0 2314.0 2315.0 2316.0 2317.0 2318.0 2319.0 2320.0	21.5 24.8 19.4 20.5 21.9 26.7 21.7	35.0 34.0 35.0 35.0 35.0	125 125 125 120 120 120 120 120	9.3 9.3 9.3 9.3 9.3 9.3 9.3	1.59 1.59 1.54 1.61 1.59 1.57 1.57 1.57	4.59 4.63 4.67 4.73 4.78 4.82 4.86 4.90 4.95 5.01	36101 36488 36839 37168 37437 37769 38101	164.74 164.74 142.82 182.58 172.78 161.74 132.66 163.23 163.23	414.05 412.22 410.35 408.43 406.30 404.45 402.62	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
	2321.0 2322.0 2323.0 2324.0 2325.0 2326.0 2327.0 2328.0 2329.0 2330.0	22.1 19.4 17.9 19.6 19.9 21.3 20.0 19.8	33.0 32.0 34.0 34.0 32.0 32.0 32.0 32.0 33.0	115 120 110 110 110 108 108 110	9.3 9.3 9.3 9.3 9.3 9.3	1.57 1.51 1.60 1.59 1.56 1.53 1.50 1.52 1.54	5.06 5.11 5.16 5.21 5.27 5.32 5.36 5.41 5.52	39156 39527 39896 40232 40564 40868 41192 41526	190.43 160.27 182.58 197.88 180.71 177.99 166.29 177.10 178.89 187.41	397.79 396.21 394.76 393.21 391.66 390.05 388.54 387.06	555555555 888888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	p p	FG
2331.0 2332.0 2333.0 2334.0 2335.0 2336.0 2337.0 2338.0 2339.0 2340.0	20.1 19.8 21.7 23.0 21.1 19.6 19.6 19.2	33.0 33.0 33.0 33.0 34.0 33.0	120 125 125 125 125 125 110	9.3 9.3 9.3 9.3 9.4 9.4	1.60 1.58 1.59 1.56 1.57 1.57 1.55 1.55	5.57 5.67 5.71 5.81 5.86 5.91 5.96 6.02	42604 42983 43329 43655 44010 44393 44730 45089	178.89 163.23	382.82 381.42 379.94 378.41 377.00 375.69 374.40 373.15	88.55.55.55 88.888888888888888888888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
2341.0 2342.0 2343.0 2344.0 2345.0 2346.0 2347.0 2348.0 2349.0 2350.0	19.4 20.9 19.4 23.8 21.5 21.5 17.3	34.0 34.0 36.0 35.0 35.0 35.0	120 120 120 118 118 118 127	9.4 9.4 9.4 9.4 9.4 9.4	1.52 1.55 1.55 1.58 1.55 1.55 1.65 1.61	6.07 6.12 6.17 6.22 6.27 6.31 6.36 6.42 6.47 6.52	46243 46587 46958 47256 47585 47914 48355 48748	188.40 182.58 169.47 182.58 148.82 164.74 164.74 204.74 185.45	369.70 368.42 367.23 365.85 364.58 363.34 362.35 361.26	8888888 888888888888888888888888888888	16.5
2351.0 2352.0 2353.0 2354.0 2355.0 2356.0 2357.0 2358.0 2359.0 2360.0	21.3 20.0 18.0 21.7 19.6 25.1 17.3 22.1	36.0 35.0 35.0 35.0	125 125 120 120 120 120 120	9.4 9.4 9.4 9.4 9.4 9.4	1.60 1.58 1.61 1.63 1.56 1.59 1.51 1.63 1.55	6.57 6.62 6.67 6.72 6.77 6.82 6.86 6.92 6.96	49875 50250 50667 50998 51366 51653 52069 52395	180.71 166.29 177.10 196.78 163.23 180.71 141.12 204.74 160.27 177.99	357.92 356.83 355.87 354.72 353.69 352.44 351.58 350.47	***********	16.5 16.5 16.5 16.5 16.5
2361.0 2362.0 2363.0 2364.0 2365.0 2366.0 2367.0 2368.0 2369.0 2370.0	17.4 23.0 19.9 20.9 20.1 15.6 26.0 28.0	35.0 34.0 35.0 35.0 35.0 35.0 35.0	120	9,4 9,4 9,4 9,4 9,5 9,5	1.58 1.63 1.52 1.58 1.57 1.58 1.65 1.46 1.39	7.06 7.12 7.16 7.21 7.26 7.31 7.37 7.41 7.45 7.48	53484 53797 54159 54503 54861 55304 55569 55783	161.74 203.56 154.00 177.99 169.47 176.22 227.05 136.23 126.50	347.56 346.46 345.51 344.52 343.58 342.93 341.79 340.61	8.555555555555555555555555555555555555	16.5 16.5 16.5 16.5
2371.0 2372.0 2373.0 2374.0 2375.0 2376.0 2377.0 2378.0 2379.0 2380.0	32.1 24.8 24.8 30.9 20.0 27.0 27.0 30.3	35.0 35.0 35.0 35.0 35.0	120 120 120 120 100 100 125 120	9,5 9,5 9,5 9,5 9,5 9,5 9,5	1.59 1.41 1.49 1.49 1.42 1.51 1.48 1.44	7.54 7.57 7.61 7.65 7.68 7.73 7.81 7.84 7.88	56650 56940 57231 57464 57764 57986 58264 58501	114.63	337.39 336.34 335.31 334.14 333.30 332.24 331.19 330.07	8.5 8.5 8.5	16.5 16.5 16.5 16.5 16.5 16.5

. .

DEPTH	ROP	MOB	RPM	ММ	"d "c	HOURS	TURNS	COST	CCOST	PP	FG
2381.0 2382.0 2383.0. 2384.0 2385.0 2386.0 2387.0 2388.0 2389.0 2390.0	27.7 22.1 29.7 27.7 29.1 28.5 27.0 27.6		120 115 120 120 120 120 120 120 125	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.44	7.91 7.95 7.99 8.03 8.06 8.10 8.13 8.17 8.20 8.26	60866 61127	127.87 160.27 119.26 127.87	321.11 320.15	8.5 8.5 8.5	16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2391.0 2392.0 2393.0 2394.0 2395.0 2396.0 2397.0 2398.0 2399.0 2400.0	17.0 20.0 11.0 12.6 14.3 13.0 12.3 13.8	35.0 35.0 35.0 35.0 35.0 35.0 37.0 37.0 37.0	140	9.5 9.5 9.5 9.5 9.5 9.5	1.54 1.67 1.61 1.82 1.77 1.73 1.74 1.79 1.75	8.31 8.37 8.42 8.51 8.59 8.66 8.73 8.81 8.89 8.96	62399 62804 63568 64235 64822 65436 66070 66635	281.11 247.69			16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2401.0 2402.0 2403.0 2404.0 2405.0 2406.0 2407.0 2408.0 2409.0 2410.0	11.3 11.2 10.5 13.2 38.1 15.3 16.6 18.6	39.0 37.0 37.0 38.0 38.0 41.0 36.0 36.0	133 143 143 140 127 127 135 135 135	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.84 1.85 1.85 1.88 1.77 1.41 1.78 1.68	9.05 9.14 9.23 9.32 9.40 9.42 9.49 9.55 9.60 9.64	68699 69465 70265 70843 71043 71572 72060 72496	313.45 316.25 337.33 268.33 92.97 231.50			16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2411.0 2412.0 2413.0	61.7	35.0 40.0 40.0	145 145 145	9.5	1.73 1.31 1.34	9.71 9.72 9.74	73376 73517 73672		312.45 311.31 310.21	8.5	16.5 16.5 16.5

2414.0- 2423.8 IADC CODE INTERVAL BIT NUMBER 23 0 0 8,469 NOZZLES CHRISTENSEN C-22 SIZE 9.8 15000.00 TRIP TIME 9.8 BIT RUN COST TOTAL TURNS . CONDITION TO BO GO.800 TOTAL HOURS 1.80 10896 PP FG ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST DEPTH 9.5 0.97 62 227 248785 8.5 16.5 2414.2 15.6 5.0 80 0.01 124 230 124508 8.5 16.5 9.5 0.97 0.03 5.0 80 2414.4 15.4 8.5 16.5 347 83121 5.0 80 9.5 1.06 0.05 218 2414.6 10.2 347 62427 8.5 16.5 9.5 1.06 0.07 312 2414.8 10.2 5.0 80 8.5 16.5 7.0 9.5 1.13 406 50034 2415.0 7.7 60 0.09 460 8.5 16.5 492 394 41761 2415.2 9.0 8.0 65 9.5 1.15 0.11 2415.4 10.0 8.0 65 9.5 1.12 0.13 570 354 35845 8.5 16.5 9.6 8.0 65 9.5 1.13 0.15 652 369 31411 8.5 16.5 2415.6 65 9.5 1.22 0.18 744 422 27968 8.5 16.5 8.4 10.0 2415.8 9.5 1.24 0.20 842 443 25215 8.5 16.5 2416.0 8.0 10.0 65 8.2 12.0 0.23 937 432 22962 8.5 16.5 65 9.5 1.29 2416.2 0.26 8.5 16.5 2416.4 7.0 12.0 65 9.5 1.33 1048 506 21091 0.29 521 19508 8.5 16.5 6.8 12.0 65 9.5 1.33 1163 2416.6 8.5 16.5 75 1239 300 18136 11.8 10.0 9.5 1.18 0.30 2416.8 8.5 16.5 9.5 1.28 0.32 1354 328 16949 2417.0 10.8 10.0 103 8.5 16.5 9.5 1.38 1505 432 15917 2417.2 8.2 11.0 103 0.35 286 14997 8.5 16.5 2417.4 12.4 11.0 105 9.5 1.28 0.36 1606 8.5 16.5 9.5 1.33 1747 403 14187 2417.6 8.8 10.0 103 0.38 9.5 1.41 0.42 1946 571 13470 8,5 16.5 2417.8 6,2 10.0 103 8.0 12.0 105 9.5 1.42 0.44 2104 443 12819 8.5 16.5 2418.0 12229 8.5 16.5 9.5 1.41 0.47 2257 432 8.2 12.0 105 2418.2 8.5 16.5 9.5 1.37 0.49 377 11690 9.4 12.0 105 2391 2418.4 11204 8.5 16.5 7.0 12.0 105 9.5 1.45 0.52 2571 506 2418.6 10759 2418.8 6.8 12.0 105 9.5 1.46 0.54 2757 521 8.5 16.5 2419.0 7.0 12.0 105 9.5 1.45 0.57 2937 506 10349 8.5 16.5 3287 984 9988 8.5 16.5 3.6 12.0 105 9.5 1.62 0.63 2419.2 3618 932 9653 8.5 16.5 3.8 12.0 105 9.5 1.61 0.68 2419.4 9.5 1.64 3946 922 9341 8.5 16.5 [0.73]2419.6 3.8 13.0 105 9.5 1.53 8.5 16.5 6.4 14.0 0.76 4143 553 9038 2419.8 105 9.5 1.53 8.5 16.5 0.79 4323 506 8754 7.0 15.0 105 2420.0 0.83 9.5 1.60 4548 8492 8.5 16.5 5.6 15.0 105 633 2420.2 4912 8261 8.5 16.5 9.5 1.73 0.89 1,107 3.2 15.0 97 2420,4 8.5 16.5 8049 2.8 15.0 93 9.5 1.75 0.96 5310 1265 2420.6 93 9.5 1.49 0.99 5465 492 7827 8.5 16.5 2420.8 7.2 15.0 93 9.5 1.44 5592 403 7615 8.5 16.5 2421.0 8.8 15.0 1.01 93 9.5 1.41 9.0 14.0 1.04 5716 -394 7414 8.5 16.5 2421.2 8.5 16.5 7229 2421.4 6.3 14.0 93 9.5 1.50 1.07 5892 559 8.5 16.5 2421.6 4.8 14.0 93 9.5 1.58 1.11 6125 738 7058 3.8 14.0 93 9.5 1.64 1.16 6417 927 6901 8.5 16.5 2421.8 8.5 92 9.5 1.40 1.19 467 6740 16.5 2422.0 7.6 12.0 6563 6701 443 6586 8.5 16.5 92 9.5 1.38 1.21 2422.2 8.0 12.0 543 6442 8.5 16.5 92 6870 2422.4 6.512.09.5 1.43 1.24 856 6312 8.5 16.5 4.1 12.0 92 9.5 1.55 1.29 7137 2422.6

Δ

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2422.8	3.0	12.0	92	9.5	1.64	1.36	7510	1197	6196	8.5	16.5
2423.0	2.7	13.0	129	9.5	1.79	1.43	8091	1332	6088	8.5	16.5
2423.2	2.9	13.0	129	9.5	1.77	1.50	8629	1230	5982	8.5	16.5
2423.4	3.0	13.0	129	9.5	1.76	1.57	9145	1181	5880	8.5	16.5
2423.6	2.4	13.0	129	9.5	1.82	1.65	9790	1476	5789	8.5	16.5
2423.8	1.4	13.0	129	9.5	1.96	1.80	10896	2530	5722	8.5	16.5

. . .

Ţ

BIT NUMBER 10 IADC CODE INTERVAL 2424.6- 2437.6 CHRISTENSEN C-22 SIZE 8.469 NOZZLES 23 0 0 COST 15000.00 TRIP TIME 9.8 BIT RUN 13.0 TOTAL HOURS 1.50 TOTAL TURNS 9282 TO BO GO.800 CONDITION DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST PP FG 2424.8 16.3 8.0 72 9.5 1.03 0.01 53 217 248775 8.5 16.5 2425.0 10.5 8.0 72 9.5 1.14 0.03 135 338 124556 8.5 16.5 2425.2 8.0 6.0 75 9.5 1.13 247 0.06 441 83184 8.5 16.5 0.08 2425.4 9.8 12.0 80 9.5 1.29 345 8.5 16.5 361 62479 2425.6 13.4 12.0 80 9.5 1.21 0.09 417 8.5 16.5 265 50036 2425.8 12.3 10.0 90 9.5 1.21 0.11 504 287 41744 8.5 16.5 2426.0 14.6 10.0 90 9.5 1.17 0.12 578 242 35816 8.5 16.5 2426.2 9.0 95 11.2 9.5 1.22 0.14 680 315 31378 8.5 16.5 2426.4 2.1 9.0 95 9.5 1.62 0.24 1228 1703 28081 8.5 16.5 2426.6 12.3 8.0 90 9.5 1.15 0.251315 287 25301 8.5 16.5 2426.8 10.5 90 8.0 9.5 1.19 0.27 1418 338 8.5 16.5 23032 2427.0 15.3 8.0 93 9.5 1.11 0.28 1491 232 21132 8.5 16.5 9.5 1.13 2427.2 13.8 8.0 93 0.30 1572 257 19526 8.5 16.5 2427.4 12.7 8.0 93 9.5 1.15 0.31 1661 280 18151 8.5 16.5 2427.6 14.6 9.0 94 9.5 1.15 0.33 1738 242 16958 8.5 16.5 10.5 2427.8 94 9.5 1.20 8.5 16.5 8.0 0.35 1845 338 15919 2428.0 9.6 9.0 94 1963 369 8.5 16.5 9.5 1.25 0.37 15004 0.38 8.5 16.5 2428.2 15.2 8.0 93 9.5 1.11 2036 233 14183 0.39 2428.4 14.4 10.0 93 9.5 1.18 2114 246 13450 8.5 16.5 9.5 1.20 2428.6 10.5 93 8.0 0.41 2220 338 12794 8.5 16.5 12.3 9.5 1.16 0.43 2428.8 8.0 93 2311 287 12199 8.5 16.5 2429.0 12.8 8.0 93 9.5 1.15 0.45 2398 277 11657 8.5 16.5 2429.2 11.2 7.0 100 0.46 9.5 1.16 2505 317 11164 8.5 16.5 2429.4 10.7 8.0 100 9.5 1.21 0.48 2617 330 10712 8.5 16.5 2429.6 12.8 9.5 1.15 10295 8.0 93 8.5 16.5 0.50 2705 277 17.7 9.5 1.07 2429.8 8.0 93 0.51 2767 200 9907 8.5 16.5 2430.0 12.3 8.0 93 9.5 1.16 0.53 2858 287 9550 8.5 16.5 9.5 1.04 2430.2 20.4 8.0 93 8.5 16.5 0.54 2913 174 9216 2430.4 8.9 9.0 93 9.5 1.27 0.56 3039 8.5 16.5 400 8912 2430.6 8.9 10.0 93 9.5 1.30 0.58 8.5 16.5 3164 400 8628 2430.8 6.6 11.0 110 9.5 1.45 0.61 3364 537 8367 8.5 16.5 2431.0 7.0 9.0 110 9.5 1.37 0.64 3553 505 8121 8.5 16.5 2431,2 7.3 11.0 112 9.5 1.42 0.67 8.5 16.5 3736 483 7890 2431.4 10.2 11.0 112 9.5 1.34 0.69 3867 346 7668 8.5 16.5 5.5 12.0 110 2431.6 9.5 1.53 0.72 4109 649 7467 8.5 16.5 2431.8 6.1 12.0 110 9.5 1.50 0.76 4326 584 7276 8.5 16.5 2432.0 0.79 6.3 12.0 110 9.5 1.49 4535 559 7094 8.5 16.5 2432.2 8.0 11.0 110 9.5 1.40 0.81 4700 445 6920 8.5 16.5 2432.4 7.6 11.0 110 9.5 1.41 0.84 4875 467 6754 8.5 16.5 2432.6 9.0 12.0 110 9.5 1.40 0.86 5021 392 6595 8.5 16.5 2432.8 6.5 11.0 112 9.5 1.45 0.89 5226 8.5 16.5 542 6447 5.7 11.0 112 9.5 1.49 2433.0 0.935460 617 6309 8.5 16.5 9.0 12.0 112 2433.2 9.5 1.40 0.95 5609 392 6171 8.5 16.5

•								•			,	
	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
)	2433,4 2433,6 2433,8	8.1 7.3 3.0	12.0 12.0 10.0	112 112 111	9.5 9.5 9.5	1.43 1.45 1.61	0.97 1.00 1.07	5775 5958 6408	437 483 1197	6041 5917 5815	8.5 8.5 8.5	16.5 16.5 16.5
)	2434.0 2434.2 2434.4	5.8 8.0 16.9	8.0 8.0 8.0	111 111 111	9.5 9.5 9.5	1.38	1.10 1.13 1.14	6637 6803 6881	609 441 209	5704 5594 5484	8.5 8.5 8.5	16.5 16.5 16.5
1	2434.6 2434.8 2435.0	13.4 14.6 15.6	8.0 8.0 8.0	111 111 111	9.5 9.5	1.18	1.15 1.17 1.18	6981 7072 7157	265 242 227	5380 5279 5182	8.5 8.5 8.5	16.5 16.5 16.5
	2435.2	14.4	7.0	111	9.5	1.13	1.19	7250	246	5089	8.5	16.5
	2435.4 2435.6 2435.8	13.8 13.4 11.2	8.0 8.0 10.0	111	9.5 9.5 9.5	1.17 1.18 1.28	1.21 1.22 1.24	7347 7446 7565	257 265 315	4999 4913 4831	8.5 8.5 8.5	16.5 16.5 16.6
1	2436.0 2436.2	12.8 19.1	8.0	111	9.5 9.5	1.19	1.26 1.27	7669 7738	277 185	4751 4673	8.5 8.5	16.6 16.6
	2436.4 2436.6 2436.8	11.8 9.4 6.9	8.0 8.0 11.0	110 110 110		1.21 1.26 1.44	1.28 1.31 1.33	7850 7990 8181	300 377 513	4598 4528 4462	8.5 8.5 8.5	16.6 16.6 16.6
)	2437.0 2437.2	4.3 6.9	11.0	110	9.5 9.5	1.56	1.38	8491 8686	831 513	4404 4342	8.5 8.5	16.6 16.6
	2437.4 2437.6	3.8 5.5	12.0 12.0	112 112	9.5 9.5	1.62	1.46 1.50	9036 9282	922 649	4288 4232		16.6 16.6

•

•

BIT NUMBER 11 HUGHES X3A COST 900.00 TOTAL HOURS 5.64					9.875 10.3			13 13 13 133.4		
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	PP FG
2438.0 2439.0 2440.0	21.9 34.0 59.0	10.0		9.5 9.5 9.5	0.97	0.02 0.05 0.06	121 315 406	162 104 60	93618 26822 15671	8.5 16.6 8.5 16.6 8.5 16.6
2443.0 2444.0 2445.0 2446.0 2447.0 2448.0 2449.0 2450.0	37.0 33.5 35.0 37.0 27.7 27.7 22.6 24.0 23.0	20.0 20.0 20.0 17.0 17.0 20.0 20.0	118 118 130 130 130 130	9.555555555555555555555555555555555555	1.18 1.17 1.15 1.21 1.21 1.32 1.30	0.09 0.12 0.15 0.18 0.21 0.25 0.29 0.34 0.38	552 763 966 1157 1439 1720 2065 2390 2724 3129	96 106 101 96 128 128 157 148 154	11090 8594 7021 5939 5154 4555 4087 3709 3397 3138	8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6
2452.0 2453.0 2454.0 2455.0 2456.0	17.6 9.6 9.1 21.5 18.6 24.0 31.0 24.0 18.0 15.0	20.0 24.0 24.0 24.0 23.0 23.0 23.0	125 105 105 105 126 126 126 126	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.55 1.59 1.34 1.38 1.34 1.27 1.34	0.49 0.59 0.70 0.75 0.80 0.84 0.88 0.92 0.97	3555 4336 5028 5321 5660 5975 6219 6534 6954 7454	201 369 389 165 190 148 114 148 197 236	2919 2742 2589 2441 2312 2194 2087 1992 1908 1833	8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6
2461.0 2462.0 2463.0 2464.0 2465.0 2466.0 2467.0 2468.0 2469.0	14.6 24.3 24.0 26.0 32.1 38.5 42.7 19.9 22.1 20.1	24.0 25.0 24.0 23.0 23.0 25.0 25.0	125 125 125 125 125 125 125 125	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.35 1.37 1.33 1.26 1.20 1.20 1.43	1.11 1.15 1.19 1.23 1.26 1.29 1.31 1.36 1.41	7968 8276 8589 8877 9111 9306 9481 9858 10197	243 146 148 136 110 92 83 178 160 176	1765 1699 1638 1581 1527 1477 1429 1388 1349 1313	8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6
2471.0 2472.0 2473.0 2474.0 2475.0 2476.0 2477.0 2478.0 2479.0 2480.0	17.7 2 28.0 2 33.0 2 25.4 2 25.0 2 38.0 2 42.7 2 52.4 2 27.3 2	26.0 21.0 25.0 27.0 28.0 28.0 28.0	125 125 125 125 125 125 125	9.5	1.34 1.22 1.36 1.40 1.41 1.28 1.24	1.51 1.55 1.58 1.62 1.66 1.70 1.72 1.75 1.77	10994 11262 11489 11785 12090 12390 12587 12763 12906 13181	200 127 107 139 144 142 93 83 68 130	1280 1246 1214 1184 1157 1130 1104 1079 1054 1032	8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6 8.5 16.6

_												
	DEPTH	ROP	MOB	RPM	MM	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
	2481.0 2482.0 2483.0 2484.0 2485.0 2486.0 2487.0 2488.0 2489.0	23.0 27.3 31.2 28.7 36.2 35.8 32.6	28.0 28.0 27.0 28.0 28.0 28.0 29.0 27.0	125 125 125 125 125 125 124 125	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.40 1.43 1.36 1.34 1.29 1.29 1.29 1.23	1.84 1.89 1.92 1.96 1.99 2.02 2.05 2.08 2.10	14077 14317 14578 14785 14995	154.00 129.74 113.53 123.41 97.85 98.94 108.65 82.95	992.46 973.46 954.93 937.38 920.04 903.42	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6
	2491.0 2492.0 2493.0 2494.0 2495.0 2496.0 2497.0 2498.0 2499.0	23.5 28.0 27.0 39.8 32.1 28.7 31.2	28.0 28.0 28.0 28.0 28.0 27.0	125 125 125 125 125 125 120 120	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.52 1.31 1.43 1.37 1.38 1.26 1.31 1.31 1.32	2.18 2.25 2.29 2.33 2.35 2.38 2.42 2.45 2.49	16223 16542 16810 17087 17276 17510 17760 17991	104.18 150.72 126.50 131.19 88.99 110.34 123.41	771.33 760.61 750.07	8 8 8 8 8 8 8 8 8	16.6 16.6 16.6 16.6 16.6 16.6 16.6
	2501.0 2502.0 2503.0 2504.0 2505.0 2506.0 2507.0 2508.0 2509.0	23.5 24.0 23.0 26.7 26.0 24.8		119 118 118 118 118 104 124 124	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.32 1.41 1.40 1.40 1.37 1.38 1.34 1.28 1.32	2.52 2.56 2.60 2.64 2.72 2.76 2.79 2.82 2.86	18792 19090 19398 19663 19935 20187 20396 20634	150.72 147.58 154.00 132.66 136.23 142.82 99.49 113.53		8.555555555555555555555555555555555555	16.6 16.6 16.6
	2511.0 2512.0 2513.0 2514.0 2515.0 2516.0 2517.0 2518.0 2519.0 2520.0	25.9 25.0 22.6 22.3 21.3 11.7	27.0 28.0 29.0 28.0 28.0 28.0 28.0 28.0 29.0	124 125 125 125 125 125 125	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.39 1.43 1.41 1.41 1.44 1.44 1.46 1.64	2.90 2.94 2.98 3.02 3.06 3.11 3.16 3.24 3.33 3.42	21526 21813 22113 22445 22782 23134 23775 24470	152.02 136.76 141.68 156.73 158.83 166.29 302.74 331.03	649.16 642.48 635.77 629.30 623.20 617.28 611.60 607.75 604.35 600.52	8.5555555 8.555555 8.5555	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6
	2521.0 2522.0 2523.0 2524.0 2525.0 2526.0 2527.0 2528.0 2529.0 2530.0	12.3 12.2 32.1 34.0 34.0 22.1 20.5 21.5	28.0 29.0 27.0 28.0 27.0 27.0 27.0 27.0 28.0 31.0	125 125 125 125 125 125 125	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.63 1.65 1.31 1.31 1.30 1.43 1.45 1.45	3.50 3.58 3.66 3.72 3.75 3.80 3.85 3.89	26299 26914 27148 27368 27589 27928 28294 28640	110.34 104.18 104.18 160.27 172.78 164.74	593.14 589.59 584.04 578.55 573.19 568.57	8.55.55.55.55 8.88.88.55.55	16.6 16.6 16.6 16.6 16.6 16.6 16.7

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2531.0	21.1	30.0	124	9.5	1.49	3.99	29380	167.87	551.60	8.5	16.7
2532.0		31.0			1.52	4.04		177.99			16.7
2533.0		28.0			1.45	4.09		164.74			16.7
2534.0		28.0			1.43	4.13			539.62	8.5	16.7
2535.0		30.0			1.42	4.17			535.46		16.7
2536:0		30.0			1.42	4.21			531.39		16.7
2537.0		32.0			1.50	4.25			527.67		
2538.0		29.0			1.45	4.30			523.98		16.7
2539.0		29.0			1.41				520.15		16.7
2540.0		28.0			1.38	4.37			516.35		16.7
2.07010	/ · · ·	2.010	X 5 "Y			7107		A Z 1 Z 7	G 1 G 1 G G	0.0	20,7
2541.0		28.0			1.33	4.41			512.43		16.7
2542,0		28.0			1.39	4.44		136.76			16.7
2543.0		28.0			1.27	4.47		92.97		8.5	16.7
2544.0		27.0			1.24	4.49	33125		500.96	8.5	16.7
2545.0		27.0			1.34	4.53		123.41			16.7
2546.0		27.0			1.56	4.60		245.97			16.7
2547.0		26.0			1.42	4.65			492.14		16.7
2548.0		26.0			1.45	4.70			489.32		16.7
2549.0		26.0			1.48	4.76			486.76		16.7
2550.0	18.8	26.0	123	9,5	1.46	4.81	35440	188.40	484.11	8.5	16.7
2551.0	26.7	28.0	123	9.5	1.38	4.85	35716	132.66	481.01	8.5	16.7
2552.0		30.0			1,43	4,89		142.82		8.5	16.7
2553.0		30.0		9.5	1.43	4.93	36309	142.82	475.15	8.5	16.7
2554.0	20.5	29.0	122	9.5	1.48	4,98	36666	172.78	472,55	8.5	16.7
2555.0	30.3	28.0	122	9.5	1.34	5.01	36908	116.90	469.52	8.5	16.7
2556.0	37,9	28.0	122	9.5	1.27	5.03	37101	93.46	466.34	8.5	16.7
2557.0	31.7	28.0	122	9.5	1.32	5.07	37332	111.74	463.37	8.5	16.7
2558.0	28.0	28.0	122	9.5	1.36	5.10	37593	126.50	460.58	8.5	16.7
2559.0	29.5	29.0	120		1.36	5.14	37837	120.07	457.77	8.5	16.7
2560.0	29.5	30.0	120	9.5	1.37	5.17	38081	120.07	455.01	8.5	16.7
2561.0	27.3	29.0	120	9.5	1.38	5.21	38345	129.74	452.38	8.5	16.7
2562.0		30.0			1.46	5.25		160.27			16.7
2563.0		29.0			1.40		38956	134.68	447.51	8.5	16.7
2564.0		29.0			1.46	5.34		161.74			16.7
2565.0		30.0			1.45	5.38			442.92		
2566.0		31.0			1.51	5.42			440.79		16.7
2567.0	22.6	30.0	125		1.47	5.47		156.73		8.5	16.7
2568.0		30.0	125		1.50	5.52	40671	174.48	436.57	8.5	16.7
2569.0	27.0		125		1.44			131.19			16.7
2570.0	25.1	30.0	125	9.5	1.43	5.60	41248	141.12	432.03	8.5	16.7
2571.0	20.9	29.0	125	9.5	1.48	5.64	41606	169.47	430.06	8.5	16.7

· ·

COMPUTER DATA LISTING : LIST ${\tt B}$

INTERVAL	10 m average
DEPTH	Well depth, in metres
ROP	Rate of penetration, in metres per hour
	Depth interval drilled by the bit, in metres.
	Cumulative bit hours. The number of hours that the bit has actually been "on bottom", recorded in decimal hours
	Cumulative bit turns. The number of turns made by the bit, while actually "on bottom"
TOTAL COST	Cumulative bit cost, in A dollars
ICOST	Incremental cost per metre, calculated from the drilling time, in A dollars
CCOST, ,	Cumulative cost per metre, calculated from the drilling time, in A dollars
IC	ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, this should change from negative to positive

235.0-818.0 IADC CODE INTERVAL 111 BIT NUMBER 20 20 18 15,000 NOZZLES HUGHES OSC-3AJ SIZE BIT RUN 583.0 TRIP TIME 2000.00 4.0 COST T3 B6 G0.000 TOTAL TURNS 75478 CONDITION TOTAL HOURS 7.48 CCOST I-C ICOST TURNS TOTAL COST ROP BIT RUN HOURS DEPTH 7 1085 16274,26 0.03 144 500.0 15.0 250.0 653.95 16348.69 7.44 245 0.05 475.9 25.0 260.0 8.16 469,44 0.07 368 16430.33 35.0 270.0 433,9 9.09 367.14 16521.21 0.10 521 389.7 45.0 280.0 9.45 302.10 681 16615.68 374.9 55.0 0.13 290.0 7.66 256,80 838 16692,28 0.15 462.4 65.0 300.0 9.33 223.81 16785.56 1069 379.7 75.0 0.17 310.0 7.08 198.31 16856.40 1258 320.0 85.0 0.19 500.0 8.75 178,36 16943.91 95,0 0.22 1495 404.8 330.0 162.35 17047.21 10.33 0.25 1760 342.9 105.0 340.0 149.24 11.48 2077 17162.05 115.0 0,28 308.4 350.0 12.46 138.29 17286.68 2420 125.0 0.32360.0 284.2 17409.61 12.29 128,96 2763 0.35 370.0 288.1 135.0 17574.44 16.48 121,20 145.0 0.40 3203 214.9 380.0 15.41 114.38 17728.58 0.44 3617 229.8 155.0 390.0 17.89 108.53 17907.47 0.494124 198.0 165.0 400.0 103.25 16.16 175.0 0.54 4589 18069.11 219.1 410.0 98.55 16.23 0.58 5069 18231.45 185.0 218.2 420.0 94.48 19.12 5639 18422.64 195.0 0.64 185.3 430.0 90.83 0.69 18619.42 19.68 205.0 6156 440.0 180.0 0.74 18771.66 15.22 87.31 6551 450,0 232.7 215,0 23,46 84.47 7092 19006.28 0.80 460.0 151.0 225.0 81.84 19232.59 22.63 7657 470.0 156.5 235.0 0.87 79.98 0.97 36.35 97.4 245.0 8581 19596.12 480.0 77,43 14.78 239.6 1.01 8956 19743.96 255.0 490.0 19.82 75.25 1.07 9454 19942.14 178.7 265.0 500.0 39,48 73.95 10431 20336.91 275.0 1.18 89.7 510.0 1.30 20779.66 44,28 72.91 11610 80.0 285.0 520.0 1.44 12939 21286.08 50.64 72.16 69.9 295.0 530,0 21860.01 57.39 71.67 14446 61.7 305.0 1.61 540.0 44.26 70.80 22302.64 315.0 1.73 15632 550.0 80.0 55.18 70.32 22854.48 17199 325.0 1.89 560.0 64.2 48.37 69.67 23338.19 2.02 18551 570.0 73,2 335.0 68.41 23600.93 26.27 345.0 19308 134.8 2.10 580.0 ·ŀ· 68.64 24366.99 76.61 355.0 2.31 21514 46.2 590.0 67.79 37.46 24741.62 365.0 2.42 22618 94,5 600.0 ----67.21 25203.31 46.17 375.0 2.55 24025 76.7 610.0 ----59,03 67,00 2.72 25819 25793.64 620.0 60.0 385.0 66.49 27241 26262.44 46.88 2.85 75.6 395.0 630.0 66.04 26744.80 48,24 28732 2.99 640.0 73.4 405.0 27179.55 43.47 65.49 3.11 30113 650.0 81.5 415.0 43.76 64.98 3.23 31485 27617.10 81.0 425.0 660.0 49.64 64.63 3,37 32982 28113.52 670.0 71.4 435.0

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
680.0	81.4	445.0	3,50	34289	28548.64	43.51	64.15	****
690.0	70.6	455.0	3.64	35818	29050,26	50.16	63.85	
700.0	62.8	465.0-	3.80	37537	29613.96	56.37	63.69	••••
710.0	60.4	475.0	3.96	39325	30200.29	58.63	63.58	
720.0	61.2	485.0	4.13	41089	30778.96	57.87	63.46	•
730.0	44.4	495.0	4.35	43387	31576.25	79.73	63.79	-∳-
	27.0	505.0	4.72	47116	32889.90	131.37	65.13	+
740.0		515.0	5.09	51043	34181.74	129.18	66.37	-
750.0	27.4						67.04	4
760.0	35.0	525,0	5.37	54129	35193.74	101.20		
770.0	33.9	535.0	5.67	57137	36238.10	104.44	67.73	+
780.0	24.1	545,0	6.08	61365	37706.37	146.83	69.19	4.
790.0	23.6	555.0	6.50	65655	39205.39	149.90	70.64	-†∙
800.0	31.9	565.0	6.82	68779	40315,42	111.00	71.35	·ķ·
810.0	29.2	575.0	7.16	72198	41528.10	121.27	72.22	. 4.
818.0	24.9	583.0	7.48	75478	42667,27	142.40	73.19	+

•

.

BIT NUMBER 3 818.0- 1298.0 IADC CODE 114 INTERVAL HUGHES X3A SIZE 9.875 NOZZLES 11 11 11 900.00 480.0 COST TRIP TIME 5.7 BIT RUN TOTAL HOURS 117216 CONDITION T5. B6 G0.125 13.25 TOTAL TURNS DEPTH ROP BIT RUN HOURS TURNS TOTAL COST ICOST CCOST I-C 820.0 39.7 2.0 0.05 369 21267.84 89 10634 830.0 27.0 12.0 0.42 2728 22580.43 131 1882 840.0 31.3 22.0 0.74 4714 23713.71 113 1078 850.0 33,8 32.0 1.04 7257 24761.17 104,75 773.79 860.0 39.1 42.0 1,29 9404 90.52 611.10 25666.34 870.0 32.5 52.0 1.60 11774 26757,49 109.12 514,57 1.80 70.92 443.01 880.0 49.9 62.0 13636 27466.66 1.93 72.0 45.02 890.0 78.7 14818 27916.88 387.73 900.0 66.2 82.0 2,08 16088 28452.29 53,54 346.98 2.24 55.69 910.0 63.6 92.0 17409 29009.15 315.32 920.0 62.0 102.0 2.40 57,09 290.00 18741 29580.10 2.57 59.2 112.0 59.79 269,45 930.0 20159 30177.96 60.3 2.73 940.0 122.0 21552 30765.60 58.76 252.18 22909 950.0 61.7 132.0 2.89 31339.58 57,40 237.42 960.0 62.1 142.0 3.05 24246 31910.20 57.06 224.72 970.0 50.6 152.0 3,25 25898 32609,95 69.98 214.54 . 3,47 77.79 980.0 45.5 162.0 27792 33387.89 ,206.10 990.0 41.7 172.0 3.71 29805 34236,43 84.85 199.05 1000.0 45.3 182.0 3.93 35019.19 78,28 192.41 31661 187.06 1010.0 39.5 192.0 4.19 33787 35915.87 89.67 1020.0 43.8 202.0 4,41 35722 36724,35 80.85 181,80 1030.0 48.9 212.0 4.62 37502 37449.14 72,48 176.65 50.5 222.0 4,82 39177 38150.49 70.13 171.85 1040.0 1050.0 51.3 232.0 5.01 40867 38840.68 69.02 167,42 1060.0 48.2 242.0 5,22 42670 39574.94 73.43 163.53 44.6 252.0 5.44 79.44 160,20 1070.0 44669 40369.39 5.72 99.38 157.87 35.6 262.0 47244 1080.0 41363.17 155.75 1090.0 35.4 272.0 6.01 49627 42364.63 100.15 6,32 1100.0 52290 43487.15 112.25 154,21 31.6 282.0 1110.0 28.1 292.0 6.68 55294 44748,74 126,16 153.25 29.5 302.0 7,02 45951,29 120.25 152.16 1120.0 58190 150.63 1130.0 33,9 312.0 7.31 60671 46997.36 104.61 . ----1140.0 44.9 322.0 7.54 62720 47786.30 78.89 148,40 64891 1150.0 44.8 332.0 7.76 48576.64 79.03 146,32 41.0 342.0 8.00 67140 49441.09 86.44 144.56 1160.0 352.0 8,25 50296,54 85.55 142.89 1170.0 41,4 69169 1180.0 45.6 362.0 8.47 71263 51074.00 77,75 141.09 8.74 97.99 139.93 1190.0 36.1 372.0 73703 52053,94 33.6 1200.0 9.04 105.56 139.03 382.0 76832 53109.58 9.32 1210.0 36.2 392.0 79730 97.76 137.98 54087.15 1220.0 32.5 402.0 9.62 82894 55175.62 108,85 137.25 ----9.99 1230.0 27.5 412.0 86301 56463.07 128.74 137.05 137.39 57977.95 ·ţ. 1240.0 23.4 422.0 10.41 90278 151.49

DEPTH	ROP 1	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1250.0	24.1	432.0	10.83	94223	59448.87	147.09	137.61	+
1260.0	22.2	442.0	11.28	98626	61043.67	159.48	138.11	•∳∙
1270.0	20.6	452.0	11.77	103306	62764.48	172.08	138.86	4-
1280.0	15.9	462.0	12.40	109307	64998.00	223.35	140.69	- {-
1290.0	21.0	472.0	12.87	113746	66688.65	169.06	141.29	+
1298.0	21.4	480.0	13.25	117216	68009.90	165.16	141.69	· 4 ·

to the state of th

BIT NUMBER HUGHES X3A COST TOTAL HOURS	900 17	91 81 00.	ADC CODE ZE RIP TIME DTAL TURNS	11 9.87 6. 16511	5 NOZZLES 4 BIT RUN		8.0- 149 11 11 19 3 B5 G0.	1 1 1 28 . 0
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1300.0 1310.0 1320.0	18.3 21.0 18.9	2.0 12.0 22.0	0.11 0.59 1.11	854 4866 9626	23956.47 25642.63 27517.73	194 169 188	11978 2137 1251	••••
1330.0 1340.0 1350.0 1360.0	17.6 17.6 15.4 9.7	32.0 42.0 52.0 62.0	1.68 2.25 2.90 3.94	14798 19990 25512 33525	29531.31 31547.90 33849.02 37513.57	201.36 201.66 230.11 366.45	922.85 751.14 650.94 605.06	••••
1370.0 1380.0 1390.0 1400.0	10.3 10.6 10.8 7.8	72.0 82.0 92.0 102.0	4.91 5.86 6.78 7.80	41181 49592 57114 65533	40966.18 44320.35 47591.34 51202.88	345.26 335.42 327.10 361.15	568.97 540.49 517.30 501.99	
1410.0	9.8 9.2	112.0 122.0	8.83 9.91	74196 83979 93896	54829.67 58668.72	362.68 383.90	489.55 480.89 471.16	
1440.0 1450.0 1460.0	11.8 11.7 11.2	142.0 152.0 162.0	11.75 12.61 13.50	102542 111331 120614	65195.16 68228.47 71396.96	300.22 303.33 316.85	459.12 448.87 440.72	
1470.0 1480.0 1490.0 1496.0	11.7 6.6 7.9 7.7	172.0 182.0 192.0 198.0	15.88 17.14	129346 144680 157604 165110	74419.11 79815.27 84287.42 87059.66	302.22 539.62 447.22 462.04	432.67 438.55 439.00 439.70	-+- -+- -+-

Ar Se

BIT NUMBER HUGHES X3A COST TOTAL HOURS	900.0 1.2	SIZ O TRI	• •	114 9.875 6.4 9592	NOZZLES BIT RUN		.0- 151 11 11 1 B3 G0.	11
DEPTH	ROP B	IT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1500.0 1510.0	9.3 12.8	4.0 14.0	0.43	3457 9592	25095.12 27856.66	380 276	6274 1990	

BIT NUMBER HUGHES X3A		6 IA	DC CODE	11 9.87			0.0- 166	
COST	900.		IP TIME	7.				56.0
	10.		TAL TURNS			ON T		
I WITH THOUSE	10,	02 10	irim i divivo	2 -100	y (24.214.22.21.21.	WIY 1	E DO 601	
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1520.0	14.0	10.0	0.71	5800	28231,21	253	2823	****
1530.0	16.3	20.0	1.33	10246	30402.15	217	1520	•
1540.0	17.8	30.0	1.89	14288	32387.11	198	1080	. ••••
1550.0	17.7	40.0	2.45	18363	34392,48	200.54	859.81	••••
1560.0	14.5	50,0	3,14	23337	36843.63	245.11	736.87	••••
1570.0	17.2	60.0	3.73	27517	38900.95	205.73	648.35	
1580.0	15.6	70.0	4.36	32120	41166.05	226.51	588.09	****
1590.0	16.5	80.0	4.97	36456	43309.93	214.39	541.37	****
1600.0	15.4	90.0	5.62	41154	45606.73	229.68	506.74	
1610.0	16.6	100.0	6.22	45832	47740.88	213,41	477.41	
1620.0	14.5	110.0	6.91	51275	50184.67	244.38	456.22	****
1630.0	12.0	120.0	7.74	57904	53129.83	294.52	442.75	•
1640.0	15.5	130.0	8.39	62780	55411.51	228.17	426.24	
						•.,		
1650.0	15.6	140.0	9.03	67530	57688.16	227.67	412.06	
1660.0	14.6	150.0	9.71	72625	60118.02	242.99	400.79	
1666.0	16.6	156.0	10.08	75226	61398.37	213.39	393.58	•

.

٠.,

.

BIT NUMBER HUGHES X3A COST TOTAL HOURS	900.0 19.4	SI: DO TR	DC CODE ZE IP TIME TAL TURNS		5 NOZZLES 0 BIT RUN		6.0- 2187 13 13 521 4 B5 G0.0	13 1.0
DEPTH	ROP H	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost 1	[−C
1670.0 1680.0 1690.0	17.4 16.8 21.5	4.0 14.0 24.0	0.21 0.80 1.27	1668 6201 9555	30457.33 32567.73 34217.68	204 211 165	7614 2326 1426	
1700.0 1710.0 1720.0 1730.0 1740.0	20.2 19.8 21.6 24.0 27.0	34.0 44.0 54.0 64.0 74.0	1.76 2.27 2.73 3.15 3.52	13141 16813 20234 23499 26391	35968.68 37755.88 39393.44 40871.29 42184.74	175 178.72 163.76 147.79 131.35	1058 858.09 729.51 638.61 570.06	
1750.0 1760.0 1770.0 1780.0 1780.0	31.2 33.2 30.7 33.9 33.1	84.0 94.0 104.0 114.0 124.0	3.84 4.14 4.46 4.76 5.06	29003 31373 33997 36250 38695	43319.51 44386.16 45541.40 46585.83 47656.16	113.48 106.67 115.52 104.44 107.03	515.71 472.19 437.90 408.65 384.32	
1800.0 1810.0 1820.0 1830.0 1840.0 1850.0 1860.0	30.2 31.0 30.7 30.2 32.0 32.2 31.5 32.7	134.0 144.0 154.0 164.0 174.0 184.0 194.0	5.39 5.72 6.04 6.37 6.69 7.00 7.31	41244 43742 46292 48870 51248 53678 56115 58399	48830.32 49971.91 51126.83 52300.87 53406.69 54505.95 55629.57 56711.86 57980.33	117.42 114.16 115.49 117.40 110.58 109.93 112.36 108.23 126.85	364.41 347.03 331.99 318.91 306.94 296.23 286.75 278.00 270.94	
1880.0 1890.0 1900.0 1910.0 1920.0 1930.0 1940.0 1950.0 1970.0	27.9 31.0 31.1 26.6 25.3 32.3 31.3 32.4 28.4 29.3	274.0 284.0 294.0 304.0 314.0	7.98 8.30 8.62 9.00 9.39 9.70 10.02 10.33 10.68 11.02	61281 63766 66248 69258 72331 74591 77034 79332 82029 84585 87461 90602	59121.48 60262.11 61595.92 62994.94 64091.93 65222.70 66316.16 67561.24 68770.50 70117.97 71561.16	114.06 133.38 139.90 109.70 113.08 109.35 124.51 120.93 134.75 144.32	263.94 257.53 252.44 248.01 242.77 238.04 233.51 229.80 226.22 223.31 220.87	
1990.0 2000.0 2010.0 2020.0 2030.0 2040.0 2050.0 2060.0 2080.0 2090.0	24.5 29.7 29.6 29.5 28.9 28.9 28.5 24.3	324.0 334.0 354.0 354.0 364.0 374.0 384.0 404.0 414.0 424.0	13.55 13.87 14.22 14.61 15.03	93209 95762 98473 100980 103600 106028 108841	72753.36 73950.04 75268.44 76467.14 77704.47 78850.99 80096.42 81485.95 82949.89	119.22 119.67 131.84 119.87 123.73 114.65 124.54 138.95 146.39 146.02	217.82 214.97 212.62 210.07 207.77 205.34 203.29 201.70 200.36 199.08	

DEPTH	ROP E	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2100.0	20.4	434.0	15.93	121975	86150.01	173.99	198.50	****
2110.0	22.8	444.0	16.37	125366	87702.45	155.24	197.53	
2120.0	30.7.	454.0	16.69	127904	88854.79	115.23	195.72	
2130.0	29.3	464.0	17,03	130463	90063.51	120.87	194.10	
2140.0	28.8	474.0	17.38	133066	91293.00	122.95	192,60	
2150.0	28.7	484.0	17.73	135815	92528.79	123.58	191.18	****
2160.0	20.6	494.0	18.22	139467	94250.78	172.20	190.79	
2170.0	21.6	504.0	18,68	143066	95892.52	164.17	190.26	****
2180.0	21.1	514.0	19.16	146677	97575.14	168,26	189.83	•
2187.0	20.9	521.0	19.49	149234	98764 17	169.86	189.57	

.

.

•

••

. .

	BIT NUMBER HUGHES X3A		8 IA	DC CODE	114 9.87	4 INTERVA	L 218	7.0- 241 13 13	
-		900.		IP TIME		B BIT RUN		22	26.0
	TOTAL HOURS					רבית הבית בדדמאחם פ	ד אס	7 BB G0.	.000
-	I WITH INSULA	, ,	74 10	i m i wikiku	3- / (30/)		Git i	7 20 00	
_									
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	2190.0	26.8	3.0	0.11	905	36007,46	132	12002	****
	2200.0	24.6	13.0	0.52	4316	37446.61	144	2881	***
	2210.0	37.5	23.0	0.78	6595	38391.15	94	1669	
_	2220.0	32,4	33.0	1.09	9187	39484.77	109	1197	
	2230.0	28.1	43.0	1,45	12001	40743.34	125.86	947.52	••••
	2240.0	22.9	53.0	1.89	15436	42292.59	154.93	797.97	
	2250.0	29.6	63.0	2.22	17937	43488.88	119.63	690.30	••••
	2260.0	25.2	73.0	2.62	20942	44892.27	140.34	614.96	••••
	2270.0	28.1	83.0	2,98	23610	46154.62	126.24	556.08	••••
	2280.0	28.9	93.0	3.32	26167	47381.09	122.65	509.47	
		28.1	103.0	3,68	28747	48641.78	126.07	472.25	••••
		22.7	113.0	4.12	32023	50201.67	155.99	444.26	••••
		23.7	123.0	4.54	35101	51697.44		420.30	•••
_	£310.0	£0./	ran i u	~	20101	JIO7/ MM		~ ~ U . O U	
	2320.0	21.4	133.0	5.01	38482	53350.70	165.33	401.13	
		19.7	143.0	5.52	41875	55150.25	179.95	385.67	****
_	2340.0	19.9	153.0	6.02	45505	56932.30	178.21	372.11	•••
	2350.0	19.9	163.0	6.52	49140	58709.28	177.70	360.18	***
	2360.0	20.3	173.0	7.01	52741	60458.22	174.89	349.47	•
	2370.0	21.3	183.0	7.48	56041	62117.48	165.93	339.44	•••
		25.1	193.0	7.88	58820	63530.60	141.31	329.17	****
		26.2	203.0	8.26	61573	64881.72	135.11	319.61	
	2400.0	14.3	213.0	8.96	67258	67354.13	247.24	316.22	. •
1	2410.0	14.8	223.0	9.64	72788	69748.37	239,42	312.77	••••
	2413.0	29.5	226.0	9.74	73672	70108.47	120.03	310.21	

BIT NUMBER CHRISTENSEN COST 1 TOTAL HOURS	9 C-22 5000.00 1.80	SIZI	•	8.465 9.8 10896	NOZZLES BIT RUN		23 (BO GO.	0 9.8
DEPTH	ROP BIT	RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2420.0 2423.8	7.6 3.8	6.0 9.8	0.79 1.80	4323 10896	52522.25 56076.17	468 935	8754 5722	

en de la companya del companya de la companya de la companya del companya de la companya del companya de la companya de la companya de la companya de la companya del companya de la companya del companya de la companya de la companya

BIT NUMBER CHRISTENSEN COST TOTAL HOURS	10 C-22 15000.00 1.50	SIZ TRI	DC CODE ZE IP TIME TAL TURNS	4 8.469 9.8 9282	NOZZLES BIT RUN		.6- 243 23 0 1 B0 G0.	3.0
DEPTH	ROP BIT	RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
2430.0	10.3	5.4 13.0	0.53 1.50	2858 9282	51572.28 55022.14	345 454	9550 4232	****

.

	BIT NUMBER HUGHES X3A			ADC CODE	11 9,87			7.6- 257 13 13	
_	COST	900	. 00 TF	RIP TIME	10.	3 BIT RUN		13	33.4
	TOTAL HOURS			TAL TURNS	4160	6 CONDITI	Т . И	4 B3 G0.	.000
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-0
	2440.0	37.1	2.4	0.06	406	37611.50	95	15671	••••
	2450.0	27.3	12.4	0.43	3129	38910.37	130	3138	
	2460.0	16.4	22,4	1,04	7454	41067.31	216	1833	•
_	2470.0	24.1	32.4	1.46	10571	42539.27	147	1313	****
	2480.0	28.7	42.4	1.80	13181	43771.83	123	1032	
_	2490.0	31.2	52.4	2,12	15585	44908.45	113.66	857,03	
	2500.0	27.7	62.4	2.49	18258	46185.28	127.68	740.15	••••
	2510.0	26.8	72.4	2,86	20907	47505.59	132.03	656.15	
	2520.0	17.9	82.4	3.42	25075	49482.45	197.69	600.52	••••
	2530.0	18.9	92.4	3.94	29028	51352.04	186.96	555.76	****
	2540.0	23.3	102.4	4.37	32226	52874.60	152.26	516.35	
	2550.0	23.0	112.4	4.81	35440	54413.58	153.90	484.11	
	2560.0	27.7	122.4	5.17	38081	55693.39	127.98	455.01	****
	2570.0	23.5	132.4	5.60	41248	57200.38	150.70	432.03	••••
	2571.0	20.9	133.4	5.64	41606	57369.85	169.47	430.06	***
_									

COMPUTER DATA LISTING : LIST C

INTERVAL	•		•	•	10 m average
DEPTH		• ,•		•	Well depth, in metres
FLOW RATE	,				Mud flow into the well, in gallons per minute
PSP	•		ì		Pump pressure, in pounds per square inch
PBIT	•				Bit pressure drop, in pounds per square inch
% PSP	•		•	•	Percentage of surface pressure dropped at the bit
ННР ,	•		•	•	Bit hydraulic horsepower ,
HHP/SQ IN .		j 2	,	•	Bit hydraulic horsepower per square inch of bit diameter
IMPACT FORCE	•	; t		•	Bit impact force, in foot pound per second squared
JET VELOCITY	•				Mud velocity through the bit nozzles, in metres per second

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ HO	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
680.0	110	110	1100	51		41		41	24	20
690.0	110	110	1100	51		41		41	. 24	20
700.0	110	110	1100	51		41		41	24	20
710.0	110	110	1100	51		41		41	24	20
720.0	110	110	1100	51		41		41	24	20
730.0	108	110	1090	51		41		41	24	20
740.0	108	110	1090	51		41		41	24	20
750.0	108	110	1090	51		41		41	24	20
760.0	108	110	1090	51		41		41	24	20
770.0	108	110	1090	51		41		41	24	20
780.0	108	110	1090	51		, 41		41	24	20
790.0	108	110	109Ò	51		41		41	24	50
800.0	110	112	1110	52		41		41	24	20
810.0	110	112	1110	52		41		41	24	20
818.0	110	112	1110	52		41		41	24	20

BIT NUMBER HUGHES X3A COST	900	.00	IADC CODE SIZE TRIP TIME	 	114 9.875 5.7	NOZ: BIT	ERVAL ZLES RUN			11 11 480.0
TOTAL HOUR	b 13	.25	TOTAL TUI	KNS 1	17216	CUNI	NOITIO	1 7	5 B6 G	0.125
DEPTH	SPM1	SPM2	FLOW RATE	DC/	DC/ CSG	HW/ DH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
820.0 830.0 840.0	50 50 50	50 50 50	500 500 500	64 64 64	62 62 62		50 50 50		50 50 50	9 9 9
850.0 860.0 870.0 880.0 890.0 900.0 910.0 920.0 930.0 940.0	50 110 50 0 0 0 0	50 0 55 110 110 110 110 110	50,0 525 550 550 550 550 550 550	64 70 67 70 70 70 70 70	62 69 65 69 69 69 69 69		50 55 55 55 55 55 55 55		50 55 55 55 55 55 55 55 55 55	9 10 9 10 10 10 10 10
950.0 960.0 970.0 980.0 990.0 1000.0 1010.0 1020.0 1030.0	0 0 50 50 58 58 58	110 110 110 55 55 52 52 52 52	550 550 525 525 525 550 550 550	70 70 70 67 67 70 70 70	69 69 69 65 65 65	57 57 57 57	56 56 53 53 56 56 56 56	•	56 56 53 53 56 56 56 56	10 10 10 9 9 10 10
1050.0 1060.0 1070.0 1080.0 1090.0 1100.0 1110.0 1120.0 1130.0	58 58 58 58 58 58 58 58 58	51 51 51 51 51 51 51 51 51	545 545 545 545 545 545 545 545 545	70 70 70 70 70 70 70 70		56656555555555555555555555555555555555	55 55 55 55	56 56 56 56	55555555555555555555555555555555555555	10 10 10 10 10 10 10 10
1150.0 1160.0 1170.0 1180.0 1190.0 1200.0 1210.0 1220.0 1230.0	588888888 5555555555555555555555555555	53 53 53 53 53 53 53 53	555 555 555 555 555 555 555	71 71 71 71 71 71 71 71		57 57 57 57 57 57 57 57 57	ı	57 57 57 57 57 57 57 57	56666655555555555555555555555555555555	10 10 10 10 10 10 10 10

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ HO	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
1250.0 1260.0 1270.0 1280.0 1290.0 1298.0	58 58 58 58 58 58	53 53 53 53 53	555 555 555 555 555 555	71 71 71 71 71 71		57 - 57 - 57 - 57 - 57 - 57		57 57 57 57 57 57	56 56 56 56 56	10 10 10 10 10

BIT NUMBER HUGHES X3A COST TOTAL HOUR	900 S 17	4 .00 .93	IADC CODE SIZE TRIP TIME TOTAL TUR	<u>:</u>	114 2.875 6.4 55110	NOZZ BIT				11 11 198.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DCZ	HW/ OH	HW/ CSG	DP/ OH	DP/	DP/ RIS
1300.0 1310.0 1320.0	100 100 100	0 0	500 500 500	64 64 64		52 52 52		52 52 52	50 50 50	9 9 9
1330.0 1340.0 1350.0	100 100 96	0 0 0	500 500 480	64 64 61		52 52 49		52 52 49	50 50 48	9 9 9
1360.0 1370.0 1380.0	96 96 96	0 0 0	480 480 480	61 61 61		49 49 49		49 49 49	48 48 48	9 9 9
1390.0 1400.0 1410.0 1420.0	96 50 54 54	0 50 44 44	480 500 490 490	61 64 63 63		49 52 50 50		49 52 50 50	48 50 49 49	9 9 9
1430.0	54 50	44 51	490 505	63 65		50 52		50 52	49 51	9 9
1450.0 1460.0 1470.0	50 50 50	51 51 51	505 505 505	65 65 65		52 52 52		52 52 52	51 51	9 9 9
1480.0 1490.0 1496.0	50 50 50	51 51 51	505 505 505	65 65 65		52 52 52		52 52 52	51 51 51	9 9 9

BIT NUMBER HUGHES X3A COST TOTAL HOUR	900	5 .00 .21	IADC CODE SIZE TRIP TIME TOTAL TUE	 	114 9.875 6.4 9592	NOZ:	ERVAL ZLES RUN DITION		11 : 2 B3 G	11 11 14.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
1500.0 1510.0	50 50	50 50	500 500	64 64		52 52		52 52	50 50	9 9

•

	BIT NUMBER HUGHES X3A COST TOTAL HOURS	900 3 10		IADC CODI SIZE TRIP TIMI TOTAL TUI	 	114 9,875 7,0 74837	NOZ: BIT	ERVAL ZLES RUN DITION			11 11 156.0
	DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	csc	HW/ OH	CSG HW/	DP/ OH	DP/ CSG	DP/ RIS
	1520.0	58	54	560	72		58		58	57	10
а	1530.0	58	54	560	72		58		58	57	10
	1540.0	58	54	560	72		58		58	57	10
	1550.0 1560.0 1570.0 1580.0 1590.0 1600.0 1610.0 1620.0 1630.0	58 58 110 110 110 110 56 105	54 54 50 0 0 56 0 52	560 560 550 550 550 560 525 525	72 72 70 70 70 72 67 67		58 58 57 57 57 58 54 56		58 55 55 55 55 55 55 55 55 55 55	57 57 56 56 53 55 55	10 10 10 10 10 10 10 7
	1650.0 1660.0 1666.0	56 56 56	52 52 52	540 540 540	69 69 69		56 56 56		56 56 56	55 55 55	1 0 1 0 1 0

BIT NUMBER HUGHES X3A COST TOTAL HOURS	7 900.00 19.49	IADC CODE SIZE TRIP TIME TOTAL TURNS	114 9.875 8.0 149236	INTERVAL NOZZLES BIT RUN CONDITION		.0- 2187.0 13 13 13 521.0 B5 G0.000
DEPTH	SPM1 SPM2	FLOW DO	DH CSG	HW/ HW/ OH CSG	DP/ OH	DP/ DP/ CSG RIS
1670.0 1680.0 1690.0	65 65 70 69 70 69	695 8	33 39 39	67 72 72	67 72 72	66 12 70 12 70 12
1700.0 1710.0 1720.0 1730.0 1740.0 1750.0 1760.0 1770.0	68 71 68 71 68 71 68 71 68 71 68 71 68 71 68 71	695 695 695 695 695 695 695 695 695	39 39 39 39 39 39 39	72 72 72 72 72 72 72 72 72	72 72 72 72 72 72 72 72	70 12 70 12 70 12 70 12 70 12 70 12 70 12 70 12 70 12
1790.0 1800.0 1810.0 1820.0 1830.0 1840.0 1850.0 1870.0 1880.0 1890.0	68 71 69 71 69 71 69 71 69 71 69 71 69 71 69 71 69 71 69 71 69 71 69 71 108	700 6 700 6 700 6 700 6 700 6 700 6 700 6 700 6	39 39 39 39 39 39 39 39	72 72 72 72 72 72 72 72 72 72	72 72 72 72 72 72 72 72 72 76	70 12 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13 71 13
1900.0 1910.0 1920.0 1930.0 1940.0 1950.0 1960.0 1970.0 1980.0	0 111 0 110 70 65 70 65 70 65 70 65 70 65 70 65 70 65 70 65	555 7 550 7 675 6 675 6 675 6 675 8 675 8	71 70 36 36 36 36 36 36	57 57 70 70 70 70 70 70	57 57 70 70 70 70 70 70 70	56 10 56 10 68 12 68 12 68 12 68 12 68 12 68 12 68 12 68 12
2000.0 2010.0 2020.0 2030.0 2040.0 2050.0 2050.0 2070.0 2080.0 2090.0	70 65 70 65 72 63 72 64 72 64 112 0 74 66 74 66 74 66 74 66 75 72	675 8 675 8 680 8 680 7 700 8 700 8	36 36 37 37 22 39 39	70 70 70 70 70 58 72 72 72 72	70 70 70 70 70 58 72 72 71	68 12 68 12 68 12 69 12 69 12 57 10 71 13 71 13 69 12

DEPTH	SPM1	SPM2	FLOW RATE	DC/	DC/ CSG	HW/ HO	HW/ CSG	DP/ OH	DP/ CSG	DF/ RIS
2100.0	65	72	685	88		71		71	69	12
2110.0	65	72	685	88		71		71	69	12
2120.0	65	72	685	88		71		71	69	12
2130.0	65	72	685	88		71		71	69	12
2140.0	65	72	685	88		71		71	69	12
2150.0	64	74	690	88		71		71	70	12
2160.0	0	110	550	70		57		57	56	10
2170.0	0	110	550	70		57		57	56	10
2180.0	0	110	550	70		57		57	56	10
2187.0	· 0	110	550	70		57		57	56	10
			•							

.

,

BIT NUMBER HUGHES X3A COST TOTAL HOURS	900		IADC CODE SIZE TRIP TIME TOTAL TUE	E	114 9.875 9.8 73672	NOZ: BIT	ERVAL ZLES RUN DITION			13 14 226.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ 0H	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2190.0 2200.0 2210.0	0 0 0	110 110 108	550 550 540	70 70 69		57 57 56		57 57 56	56 56 55	1 0 1 0 1 0
2220.0 2230.0 2240.0	0 0 0	108 108 113	565	69 69 72		56 56 58		56 56 58	55 55 57	1 0 1 0 1 0
2250.0 2260.0 2270.0 2280.0	0 0 0 0	113 113 113 113	565 565 565 565	72 72 72 72		58 58 58 58		58 58 58 58	57 57 57 57	10 10 10 10
2290.0 2300.0 2310.0	67 67 67	66 66 66	665 665 665	85 85 85		69 69 69		69 69 69	67 67 67	12 12 12
2320.0 2330.0 2340.0 2350.0	0 0 0	110 110 110 110	550 550 550 550	70 70 70 70		57 57 57 57		57 57 57 57	56 56 56	10 10 10 10
2360.0 2370.0 2380.0 2390.0	0 0	108 110 110	540 550 550 550	69 70 70 70		56 57 57		56 57 57	55 56 56	10 10 10
2400.0 2410.0	0	110 110	550 550	70 70		57 57 57		57 57 57	56 56 56	10 10 10
2413.0	0	110	550	70		57		57	56	10

. •

•

BIT NUMBER 9 CHRISTENSEN C-22 COST 15000.00 TOTAL HOURS 1.80	SIZE TRIP TIME	4 INTERVAL 8.469 NOZZLES 9.8 BIT RUN 10896 CONDITION	2414.0- 2423.8 23 0 0 9.8 TO BO GO.800
DEPTH SPM1 S 2420.0 0 2423.8 0	FLOW DC/ SPM2 RATE OH 50 250 63 50 250 63	40	DP/ DP/ DP/ OH CSG RIS 40 25 4 40 25 4

BIT NUMBER CHRISTENSE COST TOTAL HOUR	15000	10 .00 .50	IADC CODE SIZE TRIP TIME TOTAL TUE		4 8.469 9.8 9282	NOZ:	ERVAL ZLES RUN DITION	2424 . TO	23	2437.6 0 0 13.0 0.800
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
2430.0 2437.6	0 0	52 52	260 260	59 59		42 42		42 42	26 26	5 5

· · ·

BIT NUMBER HUGHES X3A	ì	11	IADC CODE		114 9.875	NOZ	ERVAL ZLES	2437		13 13
	900		TRIP TIM		10.3		RUN			133.4
TOTAL HOUR	ts 5	. 64	TOTAL TUI	RNS	41606	CON	NOITIO	T.	4 B3 G	0.000
73. 00. 03. 00. 1			FLOW	DC/		HW/	HW/	DP/	DP/	DP/
DEPTH	SPM1	S/PM2	RATE	HO	CSG	OH	CSG	ОН	CSG	RIS
2440.0 2450.0	50 50	53 53		66 66		53 53		53 53	52 52	9 9
2460.0	58	58	580	74		60		60	59	10
2470.0	60	62	610	78		63		63	62	11
2480.0	60	62	610	78		63		63	62	11
2490.0	0	108	540	69		56		. 56	55	10
2500.0	60	60	600	77		62		62	61	11
2510.0	55	55	550	70		57		57	56	10
2520.0	55	55	550	70		57		57	56	10
2530.0	55	55	550	70		57		57	56	10
2540.0	55	55	550	70				57	56	10
2550.0	54	56	550	70		57		57	56	10
2560.0	54		550	70		57		57	56	10
						urr			5.07 Yu7	
2570.0	51	51	510	65		53		53	51	9
2571.0	5 i	51	510	65		53		53	5 i	9

.

`

And the second of the second o

COMPUTER DATA LISTING : LIST D

INTERVAL	•	•		10	M	average

DEPTH Well depth, in metres

SPM1 Stroke rate per minute, for pump No 1

SPM2 Stroke rate per minute, for pump No 2

FLOW RATE Mud flow rate into the well, in gallons per minute

ANNULAR VELOCITIES: (in metres per minute)

DC/OH - Between drill collars and the open hole

DC/CSG - Between drill collars and casing

HW/OH - Between heavyweight drill pipe and the open hole

HW/CSG - Between heavyweight drill pipe and casing

DP/OH - Between drill pipe and open hole

DP/CSG - Between drill pipe and casing

DP/RIS - Between drill pipe and riser

BIT NUMBER HUGHES OSC- COST TOTAL HOURS	-3AJ 2000.0	SI O TR	DC CODE ZE IP TIME TAL TURNS	111 15.000 4.0 75478	INTER NOZZL BIT F COND	_ES	235.0- 20 T3 B6 0	818.0 20 18 583.0 0.000
DEPTH	FLOW RATE	PSP	TEET	%PSP	ннр .	HHP/ sqin	IMPACT FORCE VEL	JET _OCITY
250.0 260.0 270.0	1000 1	700.0 700.0 740.0	1064.9 1064.9 1064.9	62.6 62.6 61.2	621 621 621	3.51 3.51 3.51	1656 1656 1656	113 113 113
280.0 290.0 300.0 310.0 320.0 330.0 340.0 350.0 360.0	1100 2 1100 2 1050 1 1125 2 1125 2 1100 1 1100 1	780.0 150.0 920.0 920.0 110.0 990.0 750.0	1064.9 1288.5 1288.5 1174.0 1347.7 1347.7 1288.5 1288.5 449.9 1118.8	59.8 59.9 59.9 61.1 66.1 63.9 64.7 64.7 60.0	621 827 827 719 884 884 827 827 171 669	3.51 4.68 4.68 4.07 5.00 5.00 4.68 4.68 0.97 3.78	1656 2004 2004 1826 2096 2096 2004 2004 700 1740	113 124 124 119 127 127 124 124 116
380.0 390.0 400.0 410.0 420.0 430.0 440.0 450.0 460.0	1025 2 1075 2 1075 2 1075 2 1100 2 1100 2 1100 2	2200.0 2200.0 2020.0 2020.0 2020.0 2160.0 2160.0 2160.0 2160.0	1118.8 1118.8 1230.6 1230.6 1230.6 1288.5 1288.5 1288.5 1288.5	50.9 50.9 60.9 60.9 59.7 59.7 59.7 59.7	669 669 771 771 771 827 827 827 827 827	3.78 3.76 4.37 4.37 4.68 4.68 4.68 4.68	1740 1740 1914 1914 1914 2004 2004 2004 2004	116 112 122 122 124 124 124 124
480.0 490.0 500.0 510.0 520.0 530.0 540.0 550.0 560.0	1100 1075 1075 1075 1075 1075 1075 1075	2160.0 2160.0 2150.0 2200.0 2200.0 2200.0 2200.0 2200.0 2200.0	1288.5 ,1288.5 1230.6 1230.6 1230.6 1230.6 1230.6 1230.6 1230.6	59.7 59.7 57.2 55.9 55.9 55.9 55.9	827 827 771 771 771 771 771 771 771	4.68 4.68 4.37 4.37 4.37 4.37 4.37 4.37 4.37	2004 2004 1914 1914 1914 1914 1914 1914	124 124 122 122 122 122 122 122 122
580.0 590.0 600.0 610.0 620.0 630.0 640.0 650.0 660.0	1075 1075 1075 1075 1075 1075 1075 1075	2200.0 2200.0 2200.0 2200.0 2200.0 2200.0 2200.0 2200.0 2200.0	1230.6 1230.6 1230.6 1230.6 1230.6 1230.6 1230.6 1230.6 1230.6	55.9 55.9 55.9 55.9 55.9 55.9 55.9	771 771 771 771 771 771 771 771 771	4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37	1914 1914 1914 1914 1914 1914 1914 1914	122 122 122 122 122 122 122 122
_	•							

					,				
2		FLOW	·				HHP/	IMPACT	JET
	DEPTH	RATE	PSP	PRIT	%PSP	HHP	sqin	FORCE	VELOCITY
	680.0	1100	2180.0	1288.5	59.1	827	4.68	2004	124
	690.0	1100	2180.0	1288.5	. 59.1	827	4.68	2004	124
	700.0	1100	2180.0	1288.5	59.1	827	4.68	2004	124
	710.0	1100	2180.0	1288.5	59.1	827	4,68	2004	124
	720.0	1100	2180.0	1288.5	59.1	827	4.68	2004	124
	730.0	1090	2260.0	1309.3	57.9	832	4.71	2036	123
	740.0	1090	2260.0	1309.3	57.9	832	4.71	2036	123
	750.0	1090	2260.0	1309.3	57,9	832	4.71	2036	123
	760.0	1090	2260.0	1309.3	57.9	832	4.71	2036	123
	770.0	1090	2260.0	1309.3	57.9	832	4.71	2036	123
	780.0	1090	2260.0	1309.3	57.9	832	4.71	2036	123
	790.0	1090	2400.0	1309.3	54.6	832	4.71	2036	123
•	800.0	1110	2380.0	1357.8	57.0	879	4.97	2111	126
	810.0	1110	2380.0	1357.8	57.0	879	4.97	2111	126
	818.0	1110	2380.0	1357.8	57.0	879	4.97	2111	126

v., .

114 INTERVAL 818.0- 1298.0 BIT NUMBER 3 IADC CODE NOZZLES 11 11 11 9.875 HUGHES X3A SIZE 480.0 5.7 900.00 TRIP TIME BIT RUN COST 117216 T5 B6 G0.125 13.25 TOTAL TURNS CONDITION TOTAL HOURS HHP/ IMPACT JET FLOW DEPTH PSP PRIT %P SP HHP sgin FORCE VELOCITY RATE 779 10.17 1341 175 500 3080.0 2671.1 86.7 820.0 779 10.17 1341 175 86.7 500 3080.0 2671.1 830.0 1341 175 779 10.17 2671.1 86.7 840.0 500 3080.0 175 779 1341 3080.0 2671.1 86.7 10.17 850.0 500 193 3232.1 102.9 1037 13.54 1623 3140.0 860.0 550 1479 184 11.77 870.0 525 3140.0 2944.9 93.8 902 13.54 1623 193 880.0 550 3140.0 3232.1 102.9 1037 3200.0 3232.1 101.0 1037 13.54 1623 193 890.0 550 100.4 1037 13.54 1623 193 900.0 550 3220.0 3232.1 3170.0 13,54 1623 193 3232.1 102.0 1037 910.0 550 193 1623 3170.0 3232.1 102.0 1037 13.54 920.0 550

102.0 13.54 1623 193 550 3170.0 3232.1 1037 930.0 193 3232.1 100.7 1037 13.54 1623 550 3210.0 940.0 193 3232.1 1623 950.0 550 3210.0 100.7 1037 13,54 100.7 1037 13.54 1623 193 960.0 550 3210.0 3232.1 193 550 3210.0 3232.1 100.7 1037 13.54 1623 970.0 902 11.77 1479 184 980.0 525 3050.0 2944.9 96.6 2944.9 96.6 902 11.77 1479 184 990.0 525 3050.0 2944.9 96.6 902 11.77 1479 184 525 3050.0 1000.0 3232.1 1623 193 109.6 1037 13.54 550 2950.0 1010.0 109.6 13,54 1623 193 1037 2950.0 3232.1 1020.0 550 193 109.6 13,54 1623 550 2950.0 3232.1 1037 1030.0 193 109.6 1037 13.54 1623 1040.0 550 2950.0 3232.1 191 1594 2950.0 3173.6 107.6 1009 13.17 1050.0 545 191 1009 13.17 1594 1060.0 545 2950.0 3173.6 107.6 2950.0 3173.6 107.6 1009 13.17 1594 191 1070.0 545 108.8 1020 13.32 1611 191 545 2950,0 3208.8 1080.0 108.8 1020 13.32 1611 191 545 2950.0 3208.8 1090.0 191 1020 13.32 1611 545 108.8 1100.0 2950.0 3208.8 191 13.32 1611 545 2950.0 3208.8 108.8 1020 1110.0 191 3208.8 108.8 1020 13.32 1611 1120.0 545 2950.0 191 13.32 1611 1130.0 545 2950.0 3208.8 108.8 1020 191 108.8 1020 13.32 1611 545 2950.0 3208.8 1140.0 194 1671 14,06 1150.0 555 3000.0 3327.7 110.9 1077 194 1671 1160.0 555 3000.0 3327.7 110.9 1077 14.06 1077 1170.0 555 2950.0 3327.7 112.8 14.06 1671 194 1671 194 2950.0 3327.7 112.8 1077 14.06 555 1180.0 3327.7 112.8 1077 14.06 1671 194 1190.0 555 2950.0 112.8 1077 14.06 1671 194 2950.0 3327.7 1200.0 555 194 555 112.8 1077 14.06 1671 2950.0 3327.7 1210.0 194 112.8 1077 14.06 1671 2950.0 3327.7 555 1220.0 194 1671 3327.7 112.8 1077 14.06 1230.0 555 2950.0 194 3000.0 3327.7 110.9 1077 14.06 1671 1240.0 555

	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PBIT	ZPSP	HHP	sqin	FORCE	VELOCITY
1250.0	555	3000.0	3327.7	110.9	1077	14.06	1671	194
1260.0	555	3000.0	3327.7	110.9	1077	14.06	1671	194
1270.0	555	3000.0	3327.7	110.9	1077	14.06	1671	194
1280.0	555	3000.0	3327.7	110.9	1077	14.06	1671	194
1290.0	555	3000.0	3327.7	110.9	1077	14.06	1671	194
1298.0	555	3000.0	3327.7	110.9	1077	14.06	1671	194

٧, .

•

BIT NUMBER HUGHES X3A COST 900 TOTAL HOURS 17		S T 00.	ADC CODE IZE RIP TIME OTAL TURNS	114 9.875 6.4 165110	NOZ BIT	ERVAL ZLES RUN DITION	1298.0- 1496.0 11 11 11 198.0 73 B5 G0.000		
DEPTH	FLOW RATE	PSP	PBIT	%P SP	ннр	HHP/ sqin		JET VELOCITY	
1300.0 1310.0 1320.0	500 500 500	3120.0 3120.0 3120.0	2700.8 2700.8 2700.8	86.6 86.6 86.6	788 788 788	10.28 10.28 10.28	1356 1356 1356	175 175 175	
1330.0 1340.0 1350.0 1360.0 1370.0 1380.0 1400.0	500 500 480 480 480 480 480 500 490	3120.0 3120.0 2900.0 2890.0 2890.0 2890.0 2900.0 2900.0	2700.8 2700.8 2489.1 2489.1 2489.1 2489.1 2700.8 2593.8 2622.3	86.6 86.6 85.8 86.1 86.1 86.1 93.1 87.4	788 788 697 697 697 697 788 741 749	10.28 10.28 9.10 9.10 9.10 9.10 9.10 10.28 9.68	1356 1356 1250 1250 1250 1250 1250 1356 1303	175 175 168 168 168 168 175 172	
1420.0 1430.0 1440.0 1450.0 1460.0 1470.0 1480.0 1490.0	490 505 505 505 505 505 505	2900.0 2900.0 2900.0 2900.0 2900.0 2900.0 2900.0	2622.3 2785.4 2785.4 2785.4 2785.4 2815.6 2785.4	90.4 96.0 96.0 96.0 96.0 97.1 96.0	749 820 820 820 820 829 820 820	9.78 10.71 10.71 10.71 10.71 10.83 10.71	1317 1399 1399 1399 1399 1414 1399		

BIT NUMBER HUGHES X3A COST TOTAL HOURS	900.0	5 7 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	114 9.875 6.4 9592	NO2	TERVAL ZZLES RUN NDITION		- 1510.0 11 11 11 14.0 3 G0.000
	FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
1500.0 1510.0		950.0 950.0	2671.1 2671.1	90.5 90.5	779 779	10.17 10.17	1341 1341	175 175

•

.

1510.0- 1666.0 BIT NUMBER IADC CODE 114 INTERVAL 11 11 11 9.875 NOZZLES SIZE HUGHES X3A BIT RUN 156.0 7.0 900.00 TRIP TIME COST T2 B5 G0.000 CONDITION 74837 TOTAL HOURS 10.02 TOTAL TURNS HHP/ IMPACT FLOW FORCE VELOCITY DEPTH RATE PSP PRIT %PSP HHP sqin 3000.0 14,29 1683 196 560 3350.6 111.7 1094 1520.0 1094 14.29 1683 196 3350.6 111.7 560 3000.0 1530.0 1683 196 14.29 3350.6 111.7 1094 1540.0 560 3000.0 196 14,29 1683 3350.6 111.7 1094 1550.0 560 3000.0 196 14.29 1683 3350.6 111.7 1094 1560.0 560 3000.0 196 14.29 1683 3000.0 3350.6 111.7 1094 1570.0 560 1623 193 550 2960.0 3232.1 109.2 1037 13.54 1580.0 3232.1 109.2 1037 13.54 1623 193 2960.0 1590.0 550 13.39 1605 193 3196.1 108.0 1025 1600.0 550 2960.0 14.13 1664 196 1082 560 2950.0 3313.4 112.3 1610.0 1462 184 99.4 892 11.64 1620.0 525 2930.0 2912.2 99.4 892 11.64 1462 184 2912.2 525 2930.0 1630.0 970 12.67 1547 189 103.0 1640.0 540 2990.0 3081.0 970 1547 189 540 2990.0 3081.0 103.0 12.67 1650.0 970 12.67 1547 189 540 2990.0 3081.0 103.0 1660.0

103.0

2990.0

540

1666.0

3081.0

970

12.67

1547

BIT NUMBER IADC CODE 114 INTERVAL 1666.0- 2187.0 HUGHES X3A SIZE 9.875 NOZZLES 13 13 13 COST 900.00 TRIP TIME 8.0 BIT RUN 521.0 TOTAL HOURS 19.49 TOTAL TURNS 149236 CONDITION T4 B5 G0.000 FLOW HHP/ IMPACT DEPTH FORCE VELOCITY RATE PSP PRIT **%PSP** HHP sqin 1670.0 650 73.8 3100.0 2288.4 867 11.33 1605 163 695 1680.0 2950.0 88.7 2616.2 1060 13.85 1835 174 1690.0 695 2950.0 2616.2 88.7 1060 13.85 1835 174 1700.0 695 2950.0 2616.2 88.7 1060 13.85 1835 174 1710.0 695 2950.0 2616.2 88.7 1060 13.85 1835 174 695 2950.0 1720.0 2586.8 87.7 1048 13,69 1814 174 1730.0 695 2950.0 2586.8 87.7 1048 13.69 1814 174 1740.0 695 2950.0 2586.8 87.7 1048 13.69 174 1814 1750.0 695 2950.0 87.7 2586.8 13.69 1048 174 1814 1760.0 695 2950.0 87.7 2586.8 1048 13,69 1814 174 1770.0 695 2950.0 2586.8 87.7 1048 13.69 1814 174 1780.0 695 2950,0 2586.8 87.7 1048 13.69 1814 174 1790.0 695 2950.0 2586.8 87.7 1048 13.69 1814 174 700 1800.0 2950.0 -2624.189.0 1071 13,99 1841 176 1810.0 700 2950.0 2624.1 89.0 1071 13,99 1841 176 700 1820.0 2950.0 2624.1 89.0 1071 13,99 1841 176 1830.0 700 2950.0 2624.1 89.0 1071 13.99 1841 176 1840.0 700 2950.0 2624.1 89.0 1071 13.99 176 1841 1071 1850.0 700 2950.0 2624.1 89.0 13.99 176 1841 700 1860.0 2950.0 89.0 2624.1 1071 13.99 1841 176 1870.0 700 2950.0 2624.1 89.0 1071 13,99 1841 176 1880.0 700 2950.0 2624.1 89.0 1071 13.99 1841 176 1890.0 540 1940.0 1561.6 .80.5 492 6.42 1095 135 555 1900.0 1960.0 1649.6 84.2 534 6.97 1157 139 1910.0 550 1990.0 1620.0 81.4 520 6,78 1136 138 1920.0 675 2940.0 2440.0 83.0 961 12,54 1711 169 1930.0 675 2940.0 2440.0 83.0 961 12.54 1711 169 1940.0 675 2940.0 2440.0 83.0 961 12.54 1711 169 1950.0 675 2940.0 2440.0 961 83.0 12.54 1711 169 675 1960.0 2940.0 2440.0 83.0 961 12,54 1711 169 675 1970.0 2940.0 2440.0 83.0 961 12,54 1711 169 675 1980.0 2940.0 2440.0 83.0 961 12.54 1711 169 1990.0 675 2940.0 2440.0 83.0 961 12.54 1711 169 675 2000.0 2940.0 2440.0 83.0 961 12.54 1711 169 2010.0 675 2940.0 2440.0 83.0 961 12.54 1711 169 675 2020.0 2960.0 2440.0 82.4 961 12,54 1711 169 2030.0 680 2920.0 2476.3 84.8 1737 982 12.82 170 2040.0 680 2920.0 2476.3 84.8 982 12.82 1737 170 2050.0 1950.0 1679.4 560 86.1 548 7.16 1178 140 700 2060.0 2850,0 2624.1 92.1 1071 13.99 1841 176 2624.1 2070.0 700 2850.0 176 92.1 1071 13.99 1841 2080.0 700 2850.0 2624.1 92.1 1071 13,99 1841 176 2090.0 685 2890.0 2512.9 87.0 1004 13.11 172 1763

DEPTH	FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2100.0	685	2890.0	2512.9	87.0	1004	13.11	1763	172
2110.0	685	2890.0	2512.9	87.0	1004	13.11	1763	172
2120.0	685	2890.0	2512.9	87.0	1004	13.11	1763	172
2130.0	685	2890.0	2512.9	87.0	1004	13.11	1763	172
2140.0	685	2890.0	2512.9	87.0	1004	13.11	1763	172
2150.0	690	2910.0	2549.7	87.6	1026	13.40	1788	173
2160.0	550	1900.0	1620.0	85.3	520	6.78	1136	138
2170.0	550	1900.0	1620.0	85.3	520	6.78	1136	138
2180.0	550	1900.0	1620.0	85.3	520	6.78	1136	138
2187.0	550	1900.0	1620.0	85.3	520	6.78	1136	138

 $\frac{\mathbf{v}_{\mathbf{v},\mathbf{v}}}{\mathbf{v}_{\mathbf{v},\mathbf{v}}}$

.. /

No. on				,					
	BIT NUMBER			IADC CODE	114		ERVAL	2187.0	0-2413.0
	HUGHES X3A			SIZE	9.875		ZZLES		13 13 14
	COST	900 9		TRIP TIME TOTAL TURNS	9.8 73672		RUN DITION	ין כיידי	226.0 88 G0.000
	TOTAL HOURS	D 7	174	TOTAL TORNS	/30/2	CON	ANTITOM	1 % 1	50 00,000
		FLOW					HHP/	IMPACT	JET
	DEPTH	RATE	PSP	PEIT	%PSP	ННР	sqin		VELOCITY
	2190.0	550	2100.0	1476.9	70.3	474	6.19	1091	131
	2200.0	550	2100.0	1476.9	70.3	474	6.19	1091	131
_	2210.0	540	1940.0	1423.7	73.4	448	5.85	1052	129
	2220.0	540	1940.0	1423.7	73.4	448	5.85	1052	129
	2230.0	540	1940.0	1423.7	73.4	448	5.85	1052	129
_	2240.0	565	2010.0	1576.1	78.4	519	6.78	1164	134
	2250.0	565	2140.0		73.6	519	6.78	1164	134
	2260.0	565	1980.0	1576.1	79.6	519	6.78	1164	134
	2270.0	565	1980.0		79.6	519	6.78	1164	134
	2280.0	565	1980.0		.79.6	519	6.78	1164	134
	2290.0	665	2980.0	2207.6	74.1	856	11.18	1631	158
	2300.0	665	2980.0		74.9	866	11.30	1649	158
	2310.0	665	2980:0	2256.1	75.7	875	11.42	1667	158
	2320.0	550	2190.0		70.5	495	6.46	11.40	131
_	2330.0	550	2190.0		70.5	495	6.46	1140	131
	2340.0	550	2190.0		71.2	500	6.53	1152	131
	2350.0	550	2190.0		71.2	500	6.53	1152	131
	2360.0	540	2090.0		71.9	474	6.18	1111	129
	2370.0	550	2240.0		70.4	506	6.60	1165	131
	2380.0	550	2240.0		70.4	506	6.60	1165	131
	2390.0	550	2240.0		70.4	506	-6.60	1165	131
	2400.0	550	2240.0		70.4	506	6.60	1165	131
	2410.0	550	2240.0	1576.5	,70.4	506	6.60	1165	131
	2413.0	550	2240.0	1576.5	70.4	506	6,60	1165	131

•

BIT NUMBER IADC CODE INTERVAL 2414.0- 2423.8 23 0 0 9.8 CHRISTENSEN C-22 8.469 NOZZLES SIZE TRIP TIME 9.8 BIT RUN COST 15000.00 TO BO GO.800 10896 CONDITION TOTAL HOURS 1.80 TOTAL TURNS

DEPTH	FLOW RATE	PSP	PRIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2420.0	250	650.0	331.9	51.1	48	0.86	243	60
2423.8	250	650.0	331.9	51.1	48	0.86	243	60

BIT NUMBER 10	IADC CODE	4	INTERVAL	2424.6- 2437.6
CHRISTENSEN C-22	SIZE	8.469	NOZZLES	23 0 0
COST 15000.00	TRIP TIME	9.8	BIT RUN	13.0
TOTAL HOURS 1.50	TOTAL TURNS	9282	CONDITION	TO BO GO.800

•

50 G0 1 D0 0	10 I	1443 T. 1. T. C) 14	L/ L3 i	7 4. 0 4.	TPILL FUNKQ	, t.	, ,,,,,,	OTAL HOUKD	, ,
JET VELOCITY	IMPACT FORCE	HHP/ sqin	ННР	%PSP	PBIT	PSP	FLOW RATE		
62 62	263 263	0.97	54 54	57.0 57.0	359.0 359.0	30.0 30.0		2430.0 2437.6	

·

BIT NUMBER HUGHES X3A COST TOTAL HOUR	900	.00	IADC CODE BIZE TRIP TIME TOTAL TURNS	114 9.875 10.3 41606	BIT	ERVAL ZLES RUN DITION		- 2571.0 13 13 13 133.4 (3 G0.000
DEPTH	FLOW		•	•		HHP/	IMPACT	JET
DEPTH	RATE	PSP	PBIT	%PSP	HHP	sqin		VELOCITY
2440.0	515	2240.0	1533.4	68.5	461	6.01	1076	129
2440.0 2450.0	515	2650.0	1533.4	57.9	461	6.01	1076	129
2460.0	580	2740.0	1944,9	71.0	658	8.59	1364	145
,2470.0	610	2850.0	2151.3	75.5	765	9.99	1509	153
2480.0	610	2850.0	2151.3	75.5	765	9.99	1509	153
2490.0	540	2390.0	1685.8	70.5	531	6.93	1182	135
2500.0 2510.0	600	2860.0	2081.3	72.8	728	9.51	1460	150
2510.0	550	2430.0	1748.9	72.0	561	7.32	1227	138
2520.0	550	2580.0	1748.9	67.8	561	7.32	1227	138
2530.0	550	2320.0	1748.9	75.4	561	7.32	1227	138
2530.0 2540.0	550	2320.0	1748.9	75.4	561	7.32	1227	138
2550.0	550	2540.0	1748.9	68.9	561	7.32	1227	138
2560.0	550	2540.0	1748.9	68.9	561	7.32	1227	138
2570.0	510	2360.0	1503.7	63.7	447	5,84	1 0.55	128
2571.0	510	2360.0	1503.7	63.7	447	5.84	1055	128

ARTON CONTRACTOR

The second secon

This is an enclosure indicator page.

The enclosure PE603995 is enclosed within the container PE905606 at this location in this document.

The enclosure PE603995 has the following characteristics:

ITEM_BARCODE = PE603995
CONTAINER_BARCODE = PE905606

NAME = Drill Data Plot

BASIN = GIPPSLAND

PERMIT = VIC/L5

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drill Data Plot (from Mudlogging

Report--attachment to WCR) for

Yellowtail-1

REMARKS =

DATE_CREATED = 1/11/81

DATE_RECEIVED = 29/04/82

 $W_NO = W756$

WELL_NAME = YELLOWTAIL-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

- 1505s

This is an enclosure indicator page.

The enclosure PE603996 is enclosed within the container PE905606 at this location in this document.

The enclosure PE603996 has the following characteristics:

ITEM_BARCODE = PE603996
CONTAINER_BARCODE = PE905606

NAME = ROP/Gas Plot

BASIN = GIPPSLAND

PERMIT = VIC/L5

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = ROP/Gas Plot (from Mudlogging Report--attachment to WCR) for

Yellowtail-1

REMARKS =

DATE_CREATED = 1/11/81 DATE_RECEIVED = 29/04/82

 $W_NO = W756$

WELL_NAME = YELLOWTAIL-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.
The enclosure PE603997 is enclosed within the container PE905606 at this location in this document.

The enclosure PE603997 has the following characteristics:

ITEM_BARCODE = PE603997

CONTAINER_BARCODE = PE905606

NAME = Temperature Plot

BASIN = GIPPSLAND

PERMIT = VIC/L5

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Temperature Plot (from Mudlogging

Report--attachment to WCR) for

Yellowtail-1

REMARKS =

DATE_CREATED = 1/11/81

DATE_RECEIVED = 29/04/82

 $W_NO = W756$

WELL_NAME = YELLOWTAIL-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

PE603998"

 $(f,\beta_{-1}^{i,j})$

A Paris Spirit

This is an enclosure indicator page. The enclosure PE603998 is enclosed within the container PE905606 at this location in this document.

The enclosure PE603998 has the following characteristics:

ITEM_BARCODE = PE603998
CONTAINER_BARCODE = PE905606

NAME = Pressure Plot

BASIN = GIPPSLAND

PERMIT = VIC/L5

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Plot (from Mudlogging

Report--attachment to WCR) for

Yellowtail-1

REMARKS =

DATE_CREATED = 1/11/81

DATE_RECEIVED = 29/04/82

 $W_NO = W756$

WELL_NAME = YELLOWTAIL-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603999 is enclosed within the container PE905606 at this location in this document.

The enclosure PE603999 has the following characteristics:

ITEM_BARCODE = PE603999
CONTAINER_BARCODE = PE905606

NAME = Geo-Plot

BASIN = GIPPSLAND

PERMIT = VIC/L5

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Geo-Plot (from Mudlogging

Report--attachment to WCR) for

Yellowtail-1

REMARKS =

DATE_CREATED = 1/11/81

DATE_RECEIVED = 29/04/82

 $W_NO = W756$

 $WELL_NAME = YELLOWTAIL-1$

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE610644 is enclosed within the container PE905606 at this location in this document.

The enclosure PE610644 has the following characteristics:

ITEM_BARCODE = PE610644
CONTAINER_BARCODE = PE905606

NAME = Geo-Plot, Scale=1:2000

BASIN = GIPPSLAND

OFFSHORE? = N

DATA_TYPE = WELL

DATA_SUB_TYPE = WELL_LOG

DESCRIPTION = Geo-Plot (from MudLogging

Report--attachment to WCR) for

Yellowtail-1, Scale=1:2000

REMARKS =

DATE_WRITTEN = 01-NOV-1981

DATE_PROCESSED =

DATE_RECEIVED = 29-APR-1982

RECEIVED_FROM = Esso Australia Ltd

WELL_NAME = Yellowtail-1

CONTRACTOR = Esso Australia Ltd

AUTHOR =

ORIGINATOR = Esso Australia Ltd

TOP_DEPTH = 220 BOTTOM_DEPTH = 2571

ROW_CREATED_BY = AL00_SW

This is an enclosure indicator page. The enclosure PE604000 is enclosed within the container PE905606 at this location in this document.

The enclosure PE604000 has the following characteristics:

ITEM_BARCODE = PE604000
CONTAINER_BARCODE = PE905606

NAME = Cost analysis Plot

 ${\tt BASIN} = {\tt GIPPSLAND}$

PERMIT = VIC/L5

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Cost Analysis Plot (from Mudlogging

Report--attachment to WCR) for

Yellowtail-1

REMARKS =

DATE_CREATED = 1/11/81

DATE_RECEIVED = 29/04/82

 $W_NO = W756$

WELL_NAME = YELLOWTAIL-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE604001 is enclosed within the container PE905606 at this location in this document.

The enclosure PE604001 has the following characteristics:

ITEM_BARCODE = PE604001 CONTAINER_BARCODE = PE905606

NAME = Drilling Parameter Plot

BASIN = GIPPSLANDPERMIT = VIC/L5

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drilling Parameter Plot (from

Mudlogging Report--attachment to WCR)

for Yellowtail-1

REMARKS =

 $DATE_CREATED = 1/11/81$

 $DATE_RECEIVED = 29/04/82$

 $W_NO = W756$

WELL_NAME = YELLOWTAIL-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603994 is enclosed within the container PE905606 at this location in this document.

The enclosure PE603994 has the following characteristics:

ITEM_BARCODE = PE603994

CONTAINER_BARCODE = PE905606

NAME = Mudlog (Grapholog)

BASIN = GIPPSLAND

PERMIT = VIC/L5

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Mudlog (from Mudlogging

Report--attachment to WCR) for

Yellowtail-1

REMARKS =

DATE_CREATED = 1/11/81

DATE_RECEIVED = 29/04/82

 $W_NO = W756$

WELL_NAME = YELLOWTAIL-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED