




Attachment to WCR
ES Well Report
Wirrah-3
(W840)



### OIL and GAS DIVISION

18 APR 1984 ES WELL REPORT
WIRRAH NO. 3

#### INDEX

- 1. INTRODUCTION
- 2. RIG SPECIFICATIONS
- 3. WELL INFORMATION, PROGRESS AND HISTORY
- 4. LITHOLOGY AND CORE-O-GRAPHS
- 5. EXTENDED SERVICE PACKAGE :
  - A. INTRODUCTION
  - B. EQUIPMENT
  - C. MONITORING EQUIPMENT
- 6. ESP PLOT DESCRIPTIONS AND CONCLUSIONS
- 7, B.H.T. ESTIMATION
- 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT
- 9. GAS ANALYSES :
  - A. COMPOSITION GRAPHICS
  - B. SIDEWALL CORES
- 10. CORELAB DATA SHEETS :
  - A. BIT RECORDS
  - B. MUD DATA
  - C. R.F.T. DATA
  - D. PRODUCTION TEST DATA

#### COMPUTER DATA LISTINGS :

BIT RECORD AND INITIALIZATION DATA HYDRAULIC ANALYSES
DATA LIST A DATA LIST B DATA LIST C DATA LIST D

### APPENDED PLOTS :

DRILL DATA PLOT TEMPERATURE PLOT PRESSURE PLOT GEOPLOT GRAPHOLOG

### INTRODUCTION

WIRRAH NO. 3 was drilled by ESSO AUSTRALIA LTD. in the Bass Strait, Australia.

#### Well co-ordinates were:

Latitude : 38° 11' 49.40"S Longitude : 147° 48' 27.29"E

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Extended Service Field Laboratory 2007.

WIRRAH NO. 3 was spudded on 27th November 1983 and reached a total depth of 3257 metres on 17th January 1984, a total drilling time of 52 days. The main objective of the well was to confirm a commercial accumulation of oil in the southern segment of the Wirrah structure. Significant hydrocarbons were discovered, so the well was production tested in four separate or combined zones.

### Elevations were:

A. HIGGS

All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging of WIRRAH NO. 3 were as follows:

Well Logger

T. CHARLES Unit Supervisor M. MOWATT Pressure Engineer B. GIFTSON Logging Crew Chief B. PAULET Well Logger P. DENTON Well Logger E. DIESPOSTI Well Logger M. KISSANE Well Logger D. MacKAY Well Logger

2. RIG SPECIFICATIONS

| <u></u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMP                                            | RIG INFORMATION SHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                 | WIRPAH NO.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OWNER                                           | SOUTH SEAS DRILLING COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| NAME AND NUMBER                                 | SOUTHERN CROSS ( Nº 107 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| TYPE                                            | SEMI-SUBMERSIBLE , TWIN HULLED.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DERRICK, DRILL FLOOR                            | DERRICK: LEE C MOORE, 152' HIGH X 40' AT BASE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| & SUBSTRUCTURE                                  | LOAD CAPACITY OF 1 000 000 lbs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DRAWWORKS                                       | OILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| . •                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CROWN BLOCK                                     | LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TRAVELING BLOCK                                 | DILWELL A 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SWIVEL                                          | DILWELL PC 425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ELEVATORS                                       | BYRON JACKSON MODEL GG CAPACITY .350 TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| KELLY & KELLY SPINNER                           | DRILLCO 54"x 50' HEX KELLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ROTARY TABLE                                    | OILWELL A 375 SINGLE ELECTRIC MOTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ROTARY SLIPS                                    | VARCO DCS-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MUD PUMPS                                       | TWO DILWELL A 1700PT. RATED AT 1600HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                                               | COUR MUD TANKE HAVING A TOTAL CARACITY OF ARREST AND COM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ,                                               | FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL TANK HAVING A CAPACITY OF 105 BBL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MUD SYSTEM                                      | TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | HP ELECTRIC MOTORS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                 | DESANDER : 1 DEMCO 4 CONE 12" MODEL NO 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                 | DESILTER : 1 DEMCO 4"-16H 16 CONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                 | DEGASSER: 1 SWACD MODEL No 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | SHALE SHAKERS : 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| BLOW OUT PREVENTORS                             | THREE SHAFFER L.W.S. 182" - 10 000 osi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                 | TWO HYDRIL G.L. 18¼" - 5000 psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | EQUE WALL COMPANY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| WELL CONTROL EQUIP.                             | FOUR VALV CON ACCUMULATORS. 2" - 10 000ps:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TUBULAR DRILLING                                | CHOKES:2 C.I.W. ABJ H2 2 $1/16$ " - 10 000 psi,1 SWACO SUPER CHOKE DC : $6\frac{1}{4}$ " x 2 $13/16$ " (4" IF TJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EQUIPMENT                                       | 8 " x 2 13/16" (6 5/8" H90 TJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 | 9 <sup>3</sup> '' × 3'' (7 5/8'' H90 YJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                 | HWDP: 5" 501b/ft GRADE G (62" DD 42" IF TJ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                 | DP : 5" 19\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\fra |
| CEMENTING UNIT                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MONITORING                                      | HALLIBURTON HT-400 UNIT MARTIN DECKER: MUD VOLUME TOTALIZER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| EQUIPMENT                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | 6 CHANNEL DRILLING RECORDER 4 PRESSURE GAUGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                 | FLOWSHOW INDICATOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| POWER SUPPLY                                    | 2 EMD MO 18 DIESEL ENGINES RATED AT 1950 HP EACH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                 | 1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DIRECTIONAL EQUIP.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MISCELLANEOUS (E.G. RISE<br>RISER: REGAN FC-7 T | R, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT) ELESCOPIC 21" ID. PLUS FLOW DIVERTOR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| LASING POWER TONGS                              | *FFKF! 13 3/8"(20 000 ft 1bc) 20" (35 000 ft 1bc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

CASING POWER TONGS: ECKEL 13 3/8"(20 000 ft lbs),20" (35 000 ft lbs)
CMT BULK TANKS: 3x1570cu ft.RISER TENSIONER: 6WESTERN GEAR,50'STROKE,80 0001bs.

MUD BULK TANKS: 3x1570cu ft.GUIDE LINE TENSIONERS : 4 WESTERN GEAR 16 000 1bs,40'STROKE

7520-485 (CL 1151)

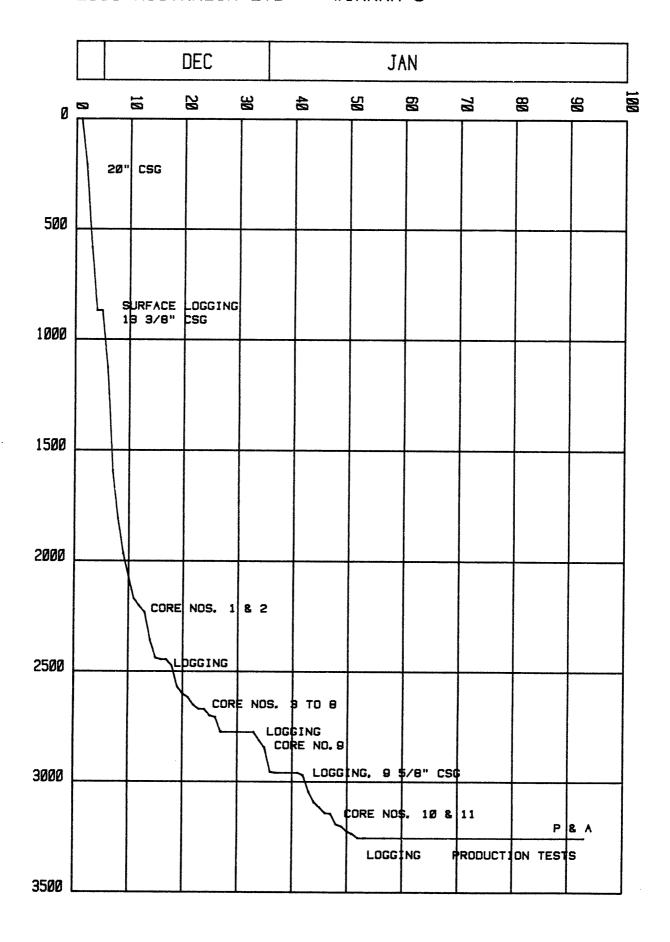
3. WELL INFORMATION, PROGRESS AND HISTORY

with the control of t

|                   |                | ······································ |                     |                |          |                      | WELI                   | INFORM            | IATIO                                 | 1 SH                | EET         |
|-------------------|----------------|----------------------------------------|---------------------|----------------|----------|----------------------|------------------------|-------------------|---------------------------------------|---------------------|-------------|
|                   | LAB CON        | IPANY_#                                | SSO AUST            | TWLTA IT       | D        |                      |                        |                   | Shee                                  | t No.               | 1_          |
| WELL<br>NAME      | WIRRAT         | NO. 3                                  |                     |                |          |                      |                        |                   |                                       |                     |             |
| OPERATOR          |                | USTRA:                                 | : LTD.              |                |          |                      |                        |                   |                                       |                     |             |
| PARTNERS          | BHF            |                                        |                     |                |          |                      |                        |                   |                                       |                     |             |
| RIG               | OWNER          |                                        | gount :             | THE DRIE       | 7707 (   | CI - 17              |                        |                   |                                       |                     |             |
|                   | NAME OR N      | UMBER                                  | SOUTH               | J CROSS        |          |                      |                        |                   |                                       |                     |             |
| 1.004.7104        | TYPE           |                                        | ST.T_01             |                | <u>R</u> | LONGIT               | TIDE (V)               | 4 470 40          | 1 07 0                                | 20 7                | 3           |
| LOCATION          | LATITUDE (     | (X)                                    |                     | 40.40 S        |          | AREA                 | UDE (Y)                | 1479 48           |                                       | <u> </u>            | <u> </u>    |
|                   | FIELD          |                                        | G PISLA             | MIRLE CE       |          | STATE                |                        | PACS S'<br>VICTOR |                                       |                     |             |
|                   | COUNTRY        |                                        | T A CIMPAT          | т.             |          | SIAIE                |                        | V10t              |                                       |                     |             |
|                   | DESCRIPTIO     | ) Ni                                   | AUSTRAL<br>AUSTRALS |                |          |                      |                        |                   |                                       |                     |             |
| DATUM             | Ground Eleva   |                                        | 2 12 1213           | <u> </u>       |          | RKB to               | Ground Level           |                   |                                       |                     |             |
| POINTS            | Mean Water D   |                                        | 4914                |                |          | <del> </del>         | Water Level            | 21M               |                                       |                     |             |
| DATES             | SPUD           |                                        | 27 NOV              | 83             |          | TOTAL                | DEPTH                  | 17 3.33           | 84                                    |                     |             |
| HOLE              | Depth From     | Depth To                               | Bit Size            | No. of Bits    |          |                      | Date From              | Date To           | Cased                                 |                     | ogged       |
| SIZES             | 70M            | 2081                                   | 26"                 | 1              |          | NONE .               | 27/11/93               |                   | 3 <u>Y</u>                            |                     | **<br>-/-   |
|                   | 208M           | 870M                                   | 174.11              | 1              |          | MONT                 | 29/11/83               | 1 - 27 /          | 83 Y                                  |                     | Y           |
|                   | 87011          | 2960M                                  | 125"                | 11             |          | NORG                 | 1/12/8                 | 2/01/             | 84 Y                                  |                     | Y           |
| · .               | 2960M          | 3257M                                  | اا نے8              | 9              |          | NONE                 | 7/01/34                | 17/01/            | 8 <u>4 E</u>                          |                     | Y           |
| ļ                 | .,             |                                        |                     |                |          |                      |                        |                   |                                       |                     |             |
|                   |                |                                        |                     |                |          |                      |                        |                   |                                       | $-\!\!\!+\!\!\!\!-$ |             |
|                   |                |                                        |                     |                |          |                      |                        |                   |                                       |                     |             |
|                   |                | <u> </u>                               |                     |                |          |                      | L                      |                   |                                       |                     |             |
| DRILLING<br>FLUID | Depth From     | Depth To                               | Weights             | <b>TO</b> 0 (  | Type     |                      |                        |                   |                                       |                     |             |
|                   | 70M            | 20SN                                   |                     | TO 8.6         |          | ATHR                 |                        |                   |                                       |                     |             |
|                   | 208M           | 9701°                                  | 8.6                 | TO 9.0         |          |                      | DRILLED                |                   |                                       |                     |             |
|                   | 870M           | 1400M<br>3257M                         | 8.7<br>9.0          | TO 12.2        |          |                      | . <u>DR 11 D</u><br>NL | 1. J. J. J. J. J. |                                       |                     |             |
| 1                 | 1400M          | 74711-                                 | 9.0                 | TO 12.2        | DDA N    | f                    | <u> </u>               |                   |                                       |                     |             |
|                   |                |                                        |                     | то             |          |                      |                        |                   |                                       |                     |             |
|                   |                | <del> </del>                           |                     | то             |          |                      |                        |                   |                                       |                     |             |
| 1                 |                |                                        |                     | то             |          |                      |                        |                   |                                       |                     |             |
| WIRELINE          | Depth From     | Depth To                               | Hole Size           | Date Run       | Logs     | Run                  |                        |                   |                                       |                     |             |
| LOGGING           | 870M           | 70M                                    | 17/511              | 29/11/8        | 33 BH    | C/TR                 |                        |                   |                                       |                     |             |
|                   | 243014         | 855M                                   | 12点"                | 11/17/         | 33 DI.   | !-MSFL               | <b>-3</b> 73           |                   |                                       |                     |             |
|                   | 2430M          | 855M                                   | 12+"                | 11/12/         | 93 LD    | L-CNTH               | -GR                    |                   |                                       |                     |             |
|                   | -              | _                                      | 12="                | 11-12/         | 12/83    | RFT                  | NOS 1, 2,              | 3, 4, 5           | . 6                                   |                     |             |
|                   | 27 <b>70</b> M | 243011                                 | 12를"                | 23/12/         | 33 DL    | L-MSF                | <b>-</b> GR            |                   |                                       |                     |             |
|                   | 2770M          | 2430M                                  | 125"                | 23/12/8        | 33 LD    | m <mark>-ONTH</mark> | <b>-</b> 73            |                   |                                       |                     |             |
|                   | 277011         | 2430%                                  | 12년"                | 23/12/         | 33 I.D   | TV -CNT              | 1-2.                   |                   |                                       |                     | <del></del> |
|                   | 2770E          | 2430                                   | 12="                | 23/12/         |          | Ţ                    |                        |                   | · · · · · · · · · · · · · · · · · · · |                     | T           |
| RISER,            | Depth From     | Depth To                               | OD                  | ID             | Weight   | Grade                |                        |                   | Cement S                              | tages               | Excess      |
| CASING &<br>LINER | OM.            | 70M                                    | 22"                 | 21"            |          |                      |                        | RISER             |                                       |                     | -           |
|                   | /OM            | 1931                                   | 50                  | 19.124         |          |                      |                        | 7/11/83           | 7;                                    | 1_                  |             |
| 1                 | 70M            | 855M                                   | 13""                | 12.615         |          |                      | 1                      | 60/11/ <b>8</b> 3 | N .                                   | 1_                  | -           |
| 1                 | 70M            | 2943M                                  | 9-5/                | <u>8 8.581</u> | 47.0     | NBC                  | BUTT                   | 5/01/81           | 3 +                                   | 2                   |             |
| 1                 |                |                                        |                     | _              |          |                      | 1                      |                   |                                       |                     | -           |
|                   |                | <del> </del>                           |                     |                |          |                      | <del> </del>           |                   |                                       |                     | -           |
| 1                 |                | <del> </del>                           |                     |                |          | <del> </del>         | +                      |                   |                                       |                     | <b>—</b>    |

entropy of the second of the s




COMPANY ESSO AUSTRALIA LTD.
WELL WIRRAH NO. 3

WELL INFORMATION SHEET (SUPPLEMENTARY)

Sheet No. 1

### WIRELINE LOGGING (continued)

|          |              | GGING (d | continu  | ied)               |                                      |
|----------|--------------|----------|----------|--------------------|--------------------------------------|
| Γ        | Depth        | Depth    | Hole,    | Date               |                                      |
| L        | from         | to       | size     | run                | Logs run                             |
|          | **           |          | 121/4    | 24-29/12           | /83 RFT NOJ. 7-22                    |
|          | 2960         | 2700     | 12%      | 2/1/84             | DT.IMS.FIGR                          |
| L        | 2960         | 2700     | 121/4    | 2/1/84             | LDT-CNL-GR                           |
| L        |              |          | 121/4    | 2/1/84             | RFT NO. 23 (PRETESTS)                |
| L        |              |          | 12/4     | 3/1/84             | RFT NOS 24 (PRETESTS), 25            |
|          | 2960         | 855      | 12%      | 3/1/84             | BHC-GR                               |
| $\vdash$ | <u> 2960</u> | 2700     | 121/4    | 4/1/84             |                                      |
| -        |              |          | 12%      | 4/1/84             |                                      |
|          | 3256         | 2943     | 8½       | 18/1/84            | DLL-MSFL-GR                          |
|          | 3256         | 2943     | 81/2     | 18/1/84            |                                      |
|          | 3257         | 2943     | 8½       | 18/1/84            |                                      |
| -        | 2943         | 2500     | 8½       | 18/1/84            | CBI-GR                               |
| $\vdash$ |              |          | 8½       | 18/1/84            | RFT NO. 26 (PRETESTS)                |
| -        | 7040 5       |          | 8½       | 19/1/84            | RFT NO. 27 (PRETESTS)                |
| -        | 3242-5       | 2961     | 81/2     | 19/1/84            | CST NO. 4                            |
| $\vdash$ |              |          | 81/2     | 20/1/84            | RFT NO. 1 (CASED HOLE)               |
| -        | 3253         | 60       | 8½<br>8½ | 21/1/84<br>20/1/84 | RFT NO. 2 (CASED HOLE)               |
| _        | 3253         | 60       |          |                    | VSP (VELOCITY SURVEY)                |
|          | 3253         | 60       | 8½<br>8½ |                    | OFFSET VSP # 1                       |
|          | 3253         | 60       | 8½       | 21/1/84<br>21/1/84 | OFFSLT VSF # 2                       |
|          | 75           |          | 8.681    | 27/1/84            | OFFSET VSF # 3                       |
|          | 2894         | 2883     |          | 29-30/1/           | RFT NO. 3 (CASED HOLE)  84 PWT NO. 1 |
|          | 2872.5       |          | 8-681    |                    | 784 PWT NO. 1A                       |
| Г        |              |          | 8.681    | 2/2/84             | RFT NOS 4. 5. 6 (CASED HOLE)         |
| Г        | _            |          | 8.681    | 3/2/84             | RFT NO. 7 (CASED HOLE)               |
|          | 2822         |          |          | 4-5/2/84           | PAT NO. 2                            |
|          | 788          | 2779.5   | 8.681    | 6-10/2/8           |                                      |
| R .      | 675          | 2666     |          | 11-14/2/           | 84 PWT NO. 3                         |
|          | 2711         |          |          | 15-18/2/           |                                      |
| 1        | 646          |          |          | 19-22/27           | 84 PWT NO. 4; RFT NO. CH 8           |
|          |              |          |          |                    | (TOOL FAILED)                        |
| _        |              |          |          |                    |                                      |
| -        |              |          |          |                    |                                      |
| -        |              |          |          | <u> </u>           |                                      |
| -        |              |          |          |                    |                                      |
| <u> </u> |              |          |          |                    |                                      |
| <b> </b> |              |          |          |                    |                                      |
| <u> </u> |              |          |          |                    |                                      |
| <u>_</u> |              |          |          |                    |                                      |
| -        |              |          |          |                    |                                      |
| -        |              |          |          |                    |                                      |
| _        |              |          |          |                    |                                      |
| $\vdash$ |              |          |          |                    |                                      |
| -        |              |          |          |                    |                                      |
| -        |              |          |          |                    |                                      |
| $\vdash$ |              |          |          |                    |                                      |
| 1        |              | L        |          |                    |                                      |



#### WIRRAH NO. 3 - WELL HISTORY

25th November 1983. Towed to the new location.

 $\underline{26th\ November\ 1983}$ . Arrived at the location of WIRRAH NO. 3. Ran anchors and de-ballasted the rig. Final locational fix was:

38<sup>o</sup> 11' 49.40" S 147<sup>o</sup> 48' 27.29" E

The water depth was 49 metres. Prepared to spud.

 $\frac{27 \text{th November 1983}}{\text{a 26" hole-opener.}}$  Ran the T.G.B., prior to spudding in with a 26" hole-opener. Drilled down to 208.5m. Circulated and displaced the hole with 350 bbls of Hi-vis gel. Made a wiper trip, then P.O.O.H. Ran and set the 20" casing (shoe was at 193m). Ran the stack and riser.

28th November 1983. Landed the stack; nippled up; and tested the BOP's. R.I.H. with a  $17\frac{1}{2}$ " bit (HTC OSC 3AJ); drilled through cement (189 - 208.5m) and then new hole down to 581m. No gas was detected in this section of the Gippsland Limestone.

29th November 1983. Drilled 17½" hole to 847m, the nominated 13-3/8" casing point. However, when bottoms were circulated up, Sandstone was discovered (which is an unfavourable casing seat). So drilling resumed until a suitable seat was found (870m, limestone). A wiper trip to the 20" shoe was then performed. The hole was circulated clean, prior to P.O.O.H. Schlumberger ran a BHC-GR-CAL log. Then the 13-3/8" casing was run.

30 th November 1983. Ran and set 13-3/8" casing at 855m. Tested the seal assembly, and stack. R.I.H. with bit No. 2; tagged cement at 810 metres; and drilled cement.

lst December 1983. Drilled through the remainder of the cement, shoe, and 6 metres of new formation. Tested the casing at 842 metres; and conducted a P.I.T. at the 13-3/8" shoe (19.3 ppg E.M.W. without leak-off). Drilled 12½" hole to 951 metres where the bit was pulled due to a suspected blocked nozzle. R.I.H. with a new Jl, and drilled ahead to 1124 metres. Background gas rose slowly to 2 units in the drilled interval. Maximum gas was 2.3 units. No trip gas was observed.

2nd December 1983. Drilled to 1593 metres. Conducted flow-checks at the following drill-breaks: 1515, 1531, and 1539 metres (all negative). Maximum gas was 72 units (Coal and Sandstone, 1513m). Background gas rose with depth, being 3-4 units between 1124 and 1280m, and 15-25 units between 1500-1578m.

3rd December 1983. Drilled to 1598 metres, at which point the bit was pulled due to very  $1_{\rm OW}$  ROP's. R.I.H. with a J22 and drilled ahead to 1808 metres. Trip gas from 1598 metres was 11-1485-14 units. background drill gas decreased with depth from 12 to 2 units, and the maximum was 282 units (Coal, 1690m).

- 4th December 1983. Drilled  $12\frac{1}{4}$ " hole to 1966 metres. Maximum gas was 135 units (1930m, Coal) over a background of 1-7 units.
- 5th December 1983. Drilled  $12\frac{1}{4}$ " hole to 2016m, where the bit was pulled since it had been on-bottom for over 42 hours. R.I.H. with another J22 and drilled down to 2070 metres. Flow-checked a drill-break at 2053m, but there was no flow. Maximum gas was 142 units (Coal, 1970m) over a background of 4-10 units.
- 6th December 1983. Drilled ahead to 2170 metres. Circulated bottoms-up for the geologist. The bottoms-up sample yielded some fluorescent sandstone cuttings and 68 units of gas. So it was decided to cut a core. P.O.O.H. and R.I.H. with a core barrel.
- 7th December 1983. Ran the core barrel to bottom and circulated bottoms-up (trip gas was 4-23-2 units). Cut Core No. 1 from 2170 2188 metres, and recovered 100%. Maximum gas while cutting the core was 36 units over a background of 3 units. Tested the stack. Cut a second core, from 2188 metres onwards. T.G. from 2188 metres was 7-22-8 units.
- 8th December 1983. Completed cutting Core No. 2 down to 2205.5 metres. Recovered 100% of Core No. 2. R.I.H. with bit No. 6 (J22) and reamed the core rathole. Trip gas from 2205 metres was 2-31-3 units. Drilled ahead to 2232 metres. Checked for flow at 2222, 2224 and 2231 metres. Circulated bottoms-up for the geologist at 2224 and 2231 metres. (Both no shows.) Maximum gas was 21 units over a background of 2-3 units.
- 9th December 1983. Drilled  $12\frac{1}{4}$ " hole to 2357 metres. Maximum gas was 49 units over a background of 3-6 units.
- 10th December 1983. Drilled ahead to 2438 metres. Maximum gas was 38 units over a background of 2-4 units.
- 11th December 1983. Drilled ahead to 2445 metres. P.O.O.H. to run intermediate logs. Conducted a wiper trip. (Wiper trip gas was 5-41-3 units) Schlumberger ran intermediate logs.
- 12th December 1983. Schlumberger continued to run intermediate logs. Recovered oil/gas/water samples from RFT Nos. 3 and 4.
- 13th December 1983. Recovered gas/water samples from RFT Nos. 5 and 6. R.I.H. with bit No. 7 (HTC J22, 12½"). Trip gas from 2445 metres was 6-76-4 units. Drilled ahead to 2473 metres. Maximum gas was 9 units over a background of 2-4 units.
- 14th December 1983. Drilled ahead to 2569 metres. A flow check (negative) was made at 2494 metres following a drill-break of 4m/hr to 9m/hr. Bottoms were also circulated up at this point (only a poor show was seen, so drilling was resumed). Maximum gas for the day was 31 units (2480 metres) over a background of 5-10 units.
- 15th December 1983. Drilled ahead to 2597 metres. At this point, the gas had increased to 88 units, so bottoms-up were circulated. The sample contained sandstone with reasonable fluorescence, so a decision was made to core. P.O.O.H. Tested the stack, then R.I.H. with the core barrel. Bottoms-up were circulated (4-16-4 units) prior to cutting Core No. 3 to 2601.6 metres.

16th December 1983. Continued cutting Core No. 3 down to 2602.1 metres. Pulled the core barrel due to low ROP's. Maximum gas was 26 units over a background of 5 units. Recovered 4.3 metres of core (85%). R.I.H. with a new drill-bit (NB 8, HTC J33). Reamed the rathole, then drilled 12½" hole to 2616.7 metres. At this point, a drill-break prompted a flow-check (negative) plus circulating bottoms-up. The sample manifested sandstone, moderate fluorescence, plus 122 units of gas, so the show was considered good enough to cut another core. Pulled the bit, and R.I.H. with the core barrel and an RC3 bit (Christensen).

17th December 1983. Bottoms-up prior to coring was 1-18-5 units. Cut Core No. 4 from 2616.7 to 2635.2 metres, and recovered 98%. As there were good shows at the bottom of Core No. 4, coring was continued. Cut Core No. 5 from 2635.2 to 2653.0 metres. The core barrel was pulled due to low ROP's. Maximum coring gas was 50 units, and the background gas was 15-20 units.

18th December 1983. Recovered Core No. 5 (100%). Further shows in this core prompted running back in the hole with the core barrel to cut Core No. 6 (2653.0 to 2671.2 metres). Recovered a full barrel of Core No. 6 (100%). Coring operations stopped at this point. R.I.H. with a new bit.

 $\frac{19\text{th December 1983}}{2672 \text{ metres}}$ . Reamed the core rathole, then drilled to  $\frac{2672 \text{ metres}}{1900 \text{ metres}}$ . At this depth, a drill-break lead to the circulation of bottoms-up. The sample revealed a good hydrocarbon show, so coring was resumed. Maximum reaming gas was 36 units over a background of 20 units.

20th December 1983. R.I.H. with the core barrel, circulated bottoms-up (5-15-3 units), and cut Core No. 7 from 2672 to 2690.5 metres. (Recovered 100%.) Sufficient shows were obtained to continue coring. Cut Core No. 8 from 2690.5 metres, reaching 2700 metres by midnight. Maximum gas was 19 units (2691 metres) over a B.G. of 4-5 units.

21st December 1983. Completed cutting Core No. 8 to 2708.3 metres. Pulled the core barrel and recovered 100% of the core. With no shows in the lower sections of the core, drilling was resumed. R.I.H. with NB 10 (HTC J33). Started reaming the rathole, but a loss in pump pressure necessitated a short trip to look for a possible washout. (Found it after 10 stands.) Broke out the washed out single and ran back in the hole. Continued reaming.

22nd December 1983. Reamed to T.D., and drilled 12½" hole to 2766 metres. At 2729 metres, a drill-break was flow-checked but there was no flow. At 2765 metres a 10-10-10 test was conducted due to high gas levels. (The result was 10-8-7 units, so normal formation pressure was indicated, negating any need to weight up the mud.) The bit was pulled at 2766 metres due to high torque. This was nominated as an intermediate logging point, so a wiper trip was performed. Circulated bottoms-up (10-23-11 units). Dropped a survey, then P.O.O.H.

23rd December 1983. Continued to pull out, recovered the survey (7°). Schlumberger ran the following logs:

DLL-MSFL-GR LDTC-CNLH-GR LDTA-CNLA-GR HDT

- 24th December 1983. Schlumberger ran R.F.T. pretests. (Maximum pore pressure measured was 8.5 ppg EMW at 2748 metres.) A wiper trip was made to clean the hole (because of tool-sticking problems). Bottoms-up gas was 3-60-5 units. P.O.O.H. Schlumberger ran R.F.T No. 7, sampling from 2748 metres.
- $\underline{25}$ th December 1983. Schlumberger ran R.F.T. Nos. 8, 9, 10, 11 and 12.
- 26th December 1983. Schlumberger ran R.F.T. Nos. 13, 14, 15 and 16. Hole problems forced another wiper trip (bottoms-up gas was 11-80-8 units). 18 metres of fill was encountered. P.O.O.H.
- 27th December 1983. Completed pulling out. Schlumberger continued with R.F.T.'s. The hole bridged at 2619 metres, so another wiper trip was made, reaming between 2620 and 2635 metres, and washing 3 metres of fill at T.D. Circulated bottoms-up (5-33-5 units). Made a short trip of 41 stands, then pulled out of the hole.
- 28th December 1983. Schlumberger continued running R.F.T.'s until more hole problems forced a further wiper trip. WTG was 2-38-2 units. Made a 10-stand wiper trip after that (SGT was 2-3-2 units), then P.O.O.H.
- 29th December 1983. Continued P.O.O.H. Schlumberger completed the logging suite with three more R.F.T. runs. R.I.H. to drill ahead to the 9-5/8" casing point.
- 30th December 1983. Continued R.I.H. with bit No. 11 (J33,  $12\frac{1}{4}$ ") Drilled  $12\frac{1}{4}$ " hole to 2806 metres, where the bit was pulled to cut core No. 9. Maximum gas was 103 units over a background of 6-10 units. Shows were seen throughout the drilled section. Cut core No. 9 from 2806.8 metres to 2813 metres.
- 31st December 1983. Finished cutting core No. 9, down to 2814 metres, pulling out prematurely due to extremely low penetration rates (0.6m/hr). Recovered 98.6% of the 7.2 metres cut (predominantly sandstones and occasional conglomerates). No further core was required. R.I.H. with bit No. 12 (J44) and drilled to 2848 metres, after reaming the rathole. The shows continued in this drilled interval. Maximum gas was 61 units, over a B.G. of 3-5 units.
- 1st January 1984. Drilled ahead to 2956 metres. Maximum gas was 41 units, over a B.G. of 2-5 units.
- 2nd January 1984. Drilled down to the 9-5/8" casing point, 2960 metres. Conducted a wiper trip, prior to P.O.O.H. for the next logging suite. Schlumberger logged. (DLL-MSFL-GR; LDT-CNL-GR; RFT No. 23)
- 3rd January 1984. Schlumberger ran R.F.T.'s, followed by the Sonic log. The divers jumped twice to repair hoses to the subsea accumulators.

 $\frac{4\text{th January 1984}}{1, 2 \text{ and 3)}}$  Schlumberger continued logging. (HDT, CST Nos 1, 2 and 3) Conducted a wiper trip prior to the casing run. (Trip gas was 2-77-12 units.)

5th January 1984. P.O.O.H. Ran the 9-5/8" casing string.

6th January 1984. Cemented the 9-5/8" shoe at 2943 metres (2-stage cement job). Tested the casing, cement, and BOP stack.

7th January 1984. R.I.H. with a J7 bit. Drilled through the cement, casing shoe, and 6 metres of new formation. Conducted a P.I.T. (16.5 ppg EMW at 2943 metres), then drilled ahead to 2672m, at which point the bit dulled dramatically (so it was pulled). Maximum gas was 185 units (Coal and Sandstone, 2967 metres) over a B.G. of 3-6 units. Ran back in the hole with a J33 having added some stabilizers to the bottom-hole assembly.

8th January 1984. Reamed down to 2972 metres (Bit No 13 was 3/8" out of gauge). Drilled to 3045 metres, then pulled the bit due to high torque. (This bit graded 8-6-5/8.) Another J33 was run in the hole, reaming the last three singles to bottom. Maximum gas in the drilled interval was 82 units over a B.G. of 3-7 units.

9th January 1984. Drilled to 3091 metres. Trip gas from 3045 metres was 1-1015-20 units. Maximum drilled gas was 58 units over a background of 4-20 units. Connection gas was detected from 3055 metres onwards, and after a 10-10-10 test at 3086 metres (11-89-4 units) the mud was weighted up to 10.1 ppg. It was inferred that the pore pressure was 9.4 ppg. Pulled the bit at 3091 metres. Ran back in with a J44, reaming to bottom before drilling ahead to 3093 metres. Trip gas from 3091 metres was 2-110-3 units.

10th January 1984. Drilled 8½" hole to 3116 metres. Circulated bottoms-up for the geologist. The show (from cuttings) was sufficient to justify cutting a core, so the bit was pulled. R.I.H. with the core barrel and a C-20 bit. Circulated bottoms-up before cutting core No. 10. (Trip gas was 5-334-7 units). A connection was made prior to dropping the ball, and in due course, connection gas was detected:

2-39-9 units (3166 metres). As a result, the pore pressure was estimated to have increased to 9.5 ppg from 9.4 at 3114 metres.

llth January 1984. Continued cutting core No. 10 at drill rates of less than 1 m/hr. Pulled core bit after 1.3 metres due to low rates of penetration. Recovered 1.0 metres (77%) of core consisting of Siltstone/Shale with sand lenses. Ran in hole with a J44. Trip gas from 3117.4 metres was 3-392-2 units. The mud weight was then increased to 10.1/10.2 ppg. Connection gas of 26-119-18 units was detected from 3141 metres. The bit was pulled at 3143.4 metres to cut core No. 11. A 10/10/10 was performed prior to circulating, giving 21/61/17 units. The pore pressures were deduced to be 9.7 ppg (3130-3136 metres) increasing to 9.9 ppg EMW over 3137-3143 metres.

 $\frac{12\text{th January }1984}{\text{mud weight to }10.5}$  ppg. Conducted a  $\frac{10}{10}$  with increased mud weight giving 2-3.8-2. P.O.O.H. and R.I.H. with a C-23 to core.

- T.G. from 3143.4 metres was 2-210-2 units. Pulled core bit after 2 metres due to low ROP (0.3m/hr); recovered. 1.62 metres (81%) of Sandstone/Conglomerate. R.I.H. with bit No. 18 (J55).
- 13th January 1984. Continued to run in the hole, T.G. from 3145.4 metres was 2-1570-11 units. Drilled ahead to 3160 metres where background gas increased to 120 units. Circulated and weighted up to 11.1 ppg. Connection gas (7-117-8 units) was observed at 3160.6 metres. A 10-10-10 was performed at 3170 metres giving 15-256-58 units. From this the pore pressure was estimated at 11.1 ppg, so the mud weight was increased to 11.5ppg. Connection gas was further detected at 3180 metres (15-165-15 units) so the mud weight was increased to 11.8 ppg. Further connection gas was detected at 3189.9 metres (5-46-5 units). A 10-10-10 was carried out at 3191.1 metres giving 2.3-5.8-2.4 units with 11.8 ppg mud.
- 14th January 1984. Continued drilling  $8\frac{1}{2}$ " hole to 3202 metres. Connection gas of 3-11-3 at 3199 metres was detected and the mud weight raised to 12.2 ppg while circulating. Drilled ahead to 3203.5 metres where the bit was pulled due to high torque. tested the BOP's.
- 15th January 1984. R.I.H. T.G. 4-34-4 units. Connection gas of 3-7-3 units was detected at 3209 metres. Pore pressure was estimated to be 11.9 ppg EMW. Drilled ahead to 3225.9 metres. Connection gas 7-10-7 units at 3219 metres. P.O.O.H. R.I.H. with bit No. 20 (J55).
- 16th January 1984. Continued R.I.H. T.G. 2-98-20 units. Drilled ahead to 3237.6 metres. P.O.O.H. due to low ROP's. R.I.H. bit No. 21 (J22). Drilled ahead to 3238 metres. (T.G. 4-158-2 units from 3237.6 metres.)
- 17th January 1984. Drilled ahead to 3257 metres. Wiper trip to shoe. W.T.G. 2-28-2 units. P.O.O.H. to log.
- 18th January 1984. Ran logs. LDT-CNT-GR, DLL-MSFL-CR, BHCS-CBL-GR, RFT R.I.H. for wiper trip.
- 19th January 1984. W.T.G. was 4-320-8 units; P.O.O.H.; ran logs (RFT's CST, WST).
- 20th January 1984. Ran vertical and stepout velocity surveys. Ran RFT No. 1 (cased hole). Ran RFT No. 2 (tool failure).
- 21st January 1984. Continued velocity survey (stepout) and made up production tubing.
- $\frac{22 \text{nd January 1984.}}{\text{velocity survey No.}}$  Continued making up production tubing; ran offset
- 23rd January 1984. Continued R.I.H. Circulated; T.G. 2-172-3 units. Circulated till low gas levels were obtained; set cement plugs; reverse circulated and P.O.O.H. Tested B.O.P. (choke valve failure and lower annular failure). Ran casing scraper. Pulled B.O.P. stack.

24th January 1984. Continued to pull B.O.P., inspected, repaired and then ran the stack.

 $\underline{25\text{th January 1984}}$ . Continued running B.O.P. Tested B.O.P. R.I.H. with the casing scraper and circulated to reduce the mud weight to 9.3 ppg, and to condition the mud's flow properties.

26th January 1984. Rig work was suspended for the whole day due to an industrial dispute.

27th January 1984. Schlumberger ran cased hole RFT's as part of the production test program.

28th January 1984. Ran production tubing and surface lines. Pressure tested all the production equipment. Displaced the tubing.

 $\frac{29\text{th January 1984}}{2883-2894}$ . Commenced PWT No. 1 by perforating between the flow remained weak. (Only traces of hydrocarbon gas were detected; no  $\mathrm{CO_2}$ , no  $\mathrm{H_2S}$ ).

30th January 1984. Continued to flow the well though no fluids came to surface. Reverse circulated and recovered samples of mud/filtrate/water/emulsion. Displaced the tubing again.

31st January 1984. Re-perforated the PWT No. 1 zone at dawn, extending the test zone for PWT No. 1A (2861.5 - 2872.5 metres), No formation fluids came to surface.

<u>lst February 1984</u>. Otis took samples of formation fluids using their bottom-hole sampling tools. Reverse-circulated and recovered samples of formation oil and water at the surface. (The oil was foamy and waxy, with an API of 26°. Circulated the hole with mud. (Maximum gas was 1650 units.) Rigged down Otis' equipment and pulled the tubing.

2nd February 1984. Set a bridge plug above the PWT No. 1A zone. Schlumberger ran cased-hole RFT's 4, 5 and 6 (No. 6 was a misrun).

3rd February 1984. Schlumberger ran cased-hole RFT No. 7. Ran the production tubing rigged up the OTIS equipment.

4th February 1984. Commenced PWT No. 2 by perforating between 2813 and 2822 metres. There was no flow to surface. Otis ran their temperature and pressure probes to gauge downhole conditions.

 $\underline{5th\ February\ 1984}.$  The open-hole flowed only briefly, with moderate amounts of C<sub>1</sub> and C<sub>2</sub> detected; no CO<sub>2</sub> or H<sub>2</sub>S. Reverse circulated, and recovered samples of oil and emulsion/water at the Otis choke manifold. The oil was waxy, with an API of 31°. Circulated the hole clean with mud. Maximum gas was 1256 units, which dropped off to 4 units after circulating.

6th February 1984. Began PWT No. 2A by perforating between 2788 and 2779.5 metres. Well-head pressure rose quickly to around 600 psi. A short clean-up flow was followed by the initial flow of hydrocarbon fluids to the surface, which were flared off. Shut the well in temporarily whilst the pressure and temperature gauges were run. Opened the well for the final flow.

22nd February 1984
formation (½ bbls). Attempted to inject water into the units). Circulated the mud until the gas had dropped to 2 units the production to commence the pulled the pulled the tubing. So all the production as plug No. 1 (5-970-10 gas units).

23rd - 27th February 1984. Plug and abandoned WIRRAH NO. 3.

22nd February 1984. Attempted to inject water into the formation (½ bbls). Reverse circulated (maximum gas was 127 units). Circulated the mud until the gas had dropped to 2 units. That concluded the production testing, so all the production equipment was rigged down. Pulled the tubing. R.I.H. with drill-pipe to commence the P & A program. Circulated bottoms-up prior to setting plug No. 1 (5-970-10 gas units).

23rd - 27th February 1984. Plug and abandoned WIRRAH NO. 3.

4. LITHOLOGY AND CORE-O-GRAPHS

#### LITHOLOGICAL SUMMARY

WIRRAH NO. 3 was drilled to evaluate the hydrocarbon potential of the Latrobe Group sediments as well as confirm a commercial accumulation of oil in the southern segment of the WIRRAH structure. The proposed T.D. was 282lm (KB), however, this was extended to 3257m (KB) to further evaluate the lower Latrobe Group sediments.

(NOTE: All formation tops are open to speculation and are based entirely on examination of cuttings. All depths from RKB.)

GIPPSLAND LIMESTONE (210M - 1340M). The Gippsland Limestone consisted of a white, light to medium grey, slightly argillaceous, occasionally glauconitic, moderately sorted, firm to friable calcisiltite/calcarenite. The formation contained abundant fossils with the top section (210m - 1100m) being more fossiliferous and coarser in grain size (calcarenite). Fossils commonly encountered were typically bryozoa, foraminifera, gastropoda, echinodermata, ostracods, and broken shell fragments. The lower section (1100m - 1340m) had significantly less microfossils, more glauconite and became finer in grain size to calcisiltite/ calcilutite. Two small Sandstone beds were encountered from 710m to 730m (RKB) and 800m to 850m (RKB). The Sandstones in both cases were clear to opaque, moderately well sorted, unconsolidated to poorly calcareous-cemented. The grain size was fine to medium, subangular to subrounded with minor traces of glauconite. The background gas was 0.2 - 0.5 units to 1050m increasing to 5.0 units from 1050m to 1240m. The gas steadily increased to 10.0 units with only C, being recorded.

<u>LAKES ENTRANCE FORMATION</u> (1340M - 1510M). The entire section consisted of light to medium grey, soft to firm, argillaceous, calcareous Claystone. The cuttings were angular to blocky and gummy. At varying depths, trace amounts of silt, glauconite, and pyrite were encountered. The background gas ranged from 10.0 to 25 units with  $\rm C_1$  and  $\rm C_2$  being recorded.

LATROBE GROUP SEDIMENTS (1510M - 3257M T.D.). The Latrobe Group was a stratigraphic sequence of channel deposits consisting of interbedded Sandstone, Sandstone/Conglomerate, Siltstone, Coal, Claystone/Shale and altered volcanics. For all intents and purposes, this formation can be separated into four sections for WIRRAH NO. 3.

1510M - 1830M. This section contained predominantly Sandstone with interbedded Coal and Siltstone. The Sandstone was clear, milky, translucent, medium to very coarse grain in size, occasionally granule size, subangular to subrounded, moderately sorted, loose grains to quartozse aggregates, moderate to well dolomitic and siliceous cement, occasional white clay matrix, slightly calcareous with local concentrations of dolomite, moderate to good porosity, patchy cream dolomitic mineral fluorescence, no shows. The Coal was very dark brown to black, massive, laminated in part, occasionally silty, dull to vitreous, hard, angular to blocky, conchoidal fracture, brittle. The Siltstone was light/medium grey to dark brown, soft to firm, argillaceous, angular to blocky, occasionally splintery, calcareous in part, smooth to gritty, slightly glauconitic slightly

micromicaceous, traces of pyrite and carbonaceous material.

The background gas increased from 15 to 50 units upon entering the coarse clastics at the top of the Latrobe Group. The gas gradually dropped back to an average 5 - 20 units. Occasional peaks ranged from 30 to 300 units associated with coal beds.  $^{\rm C}_4$  were recorded throughout this entire top section.

1830M - 2350M. This section was comprised of interbedded Sandstone and Siltstone with minor interbeds of Claystone/Shale, and Coal. The Sandstone was clear to translucent medium to coarse loose grains with associated fine to medium sized quartzose aggregates, moderate sorting, subangular to subrounded, minor dolomitic and pyritic cement, slight to moderately friable, trace clay matrix, slightly miceceous and carbonaceous, grading to siltstone in parts, (2025 - 2070m) and (2145 - 2170m), show a trace of 20% dull to bright cream fluorescence with a slow diffuse milky cut, also a moderate to strong cream crush cut, trace residual cream ring, the Siltstone and Coal bedding are analogous to the top section of the Latrobe Group. The Claystone/Shale was off white to light brown, soft to very firm, occasionally silty, micromicaceous and microcarbonaceous, blocky to subfissile. Core Nos. 1 and 2 were cut in this section at 2170m - 2188m and 2188m - 2205m respectively. Throughout both cores, shows were encountered. 10 - 50% bright cream yellow fluorescence, cuts on various sections ranged from very slow diffuse crush cut to instant streaming cream white cut.

Background gas in this section ranged from 5 to 10 units with occasional peaks of 50 - 200 units associated with Coal seams. C  $_1$  - C  $_4$  were recorded throughout this section with occasional C  $_5^1$  and  $^4$  C  $_6^1$  being recorded with hydrocarbon shows.

2350M - 2800M. This section consisted of interbedded Sandstone and Siltstone with minor interbeds of Coal and Shale with occurrences of altered volcanics and dolerite. The Sandstone was of 3 types: 1). medium to coarse translucent quartz grains, angular to subangular, occasional quartz aggregates, hard, dolomitic cement, trace matrix, poor porosity, 30% moderately bright with fluorescence, very slow to weak streaming cut, weak diffuse crush cut, dull white residual film; 2). white to light grey, quartozse aggregates, fine grain size, well sorted, subangular, friable, dolomitic cement, trace clay matrix, poor to moderate porosity, trace mineral fluorescence; 3). clear to light brown quartz aggregates, fine to medium grain size, subangular to subrounded, moderately well sorted, siliceous and rare pyrite cement, very firm, common oil staining, poor to moderate visible porosity, 30 - 50% moderately bright yellow fluorescence, moderate to fast bright white streaming cut, weak white crush cut, dull to white residual ring. The Siltstone was light to medium grey, buff, firm, angular to blocky, occasionally carbonaceous, micromicaceous, slightly arenaceous, blocky, firm to hard. Coal and Shale bedding is the same as described in the above section. The altered volcanics were cream, medium grey, greyish green, olive brown, and reddish brown, soft to hard, angular to blocky, crystalline texture with alicular crystals common, light brown, clay matrix, common pyrite, occasional silty texture. The dolerite (diabase) was light grey green to very dark green, hard, brittle in part, ophitic texture, light olive grey-green

plagioclase crystals (subhedral to euhedral) in a medium crystalline very dark green pyroxene groundmass matrix, angular to subangular, hard.

Six cores (Nos. 3-8) were cut back to back in this section from 2597m to 2708m. The associated lithology was interbedded Sandstone and Siltstone in all cores. Shows were recorded in all cores ranging from 10-90% dull to bright yellow fluorescence, slow, weak to fast yellow white streaming cut, weak to strong yellow white crush cut, thin bright yellow firm to bright yellow residual ring.

The background gas associated with this section averaged between 3 - 20 units with peaks ranging from 50 - 100 units in the hydrocarbon zones.  $C_1$  -  $C_6$  were recorded throughout the entire section.

2800M - 3257M T.D. The bottom section of the Latrobe Group consisted of predominant Sandstone/Conglomerate with minor interbeds of Siltstone. Occasional interbeds of volcanics and rare coal were also encountered.

The Sandstone/Conglomerate was dominantly loose quartzose fragments, milky to medium grey, coarse to very coarse, angular to very angular, recrystallized texture, silt and pyrite inclusions, occasional quartz veins in silty fragments, broken quartzite grains, also quartz aggregates, fine to dominantly medium grain size, subangular, hard, moderately sorted, moderately cemented, siliceous cement/ matrix, rare pyrite cement, trace dolomitic cement, common lithics, poor visble porosity slightly silty in part, occasional carbonaceous inclusions 10 - 70% dull to bright cream white fluorescence, slow blooming to diffuse milky white cut, occasional weak to strong milky crush cut, thin residual ring. The Siltstone was light to dark brown, firm to hard. Argillaceous, carbonaceous, arenaceous in part, subangular to blocky, occasionally subfissile, grading to very fine grained Sandstone.

Three cores were cut in this bottom section of the Latrobe: Core No. 9 (2807m - 2814m), Core No. 10 (3116m - 3117.5m), and Core No. 11 (3143m - 3145m). The lithology encountered in all 3 cores were interbedded Sandstone and Conglomerate with minor shale. Hydrocarbon shows in all three cores ranged from 5 - 60%.

The background gas throughout this section ranged between 5 - 10 units. Gas peaks ranged from 20 - 130 units in the hydrocarbon zones. At 3155m - 3165m, three gas peaks, ranging from 400 to 800 units were encountered in an overpressured zone. C $_1$  - C $_4$  with traces of C $_5$  were recorded throughout this section.

CLIENT:

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 18.0 m.

FORMATION:

BIT MAKE & TYPE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD

WIRRAH NO. 3

2170.0m. TO 2188.0m.

RECOVERED: 18.0m. ( 100.0% )

LATROBE GROUP

CHRISTENSEN RC4

CORE BARREL SIZE: 6.75in. x 4.00in. x 19.66m.

|      | ROP | m/HR | LITH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | WOB |     | RPM | HR           | S |
|------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|-----|-----|--------------|---|
| - 5  | 20  | ] Ø  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø | ·   | 200 | 100 | <del> </del> |   |
| 2170 |     | 1    | mm and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | ~   |     |     |              |   |
| 2175 |     |      | MAN ANG MAN - MAN ANG  |   |     |     |     |              |   |
| 2180 | -   |      | THE AND THE AN |   |     |     |     |              |   |
| 2185 |     |      | M M MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |     |     |     |              |   |
| 2190 |     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     |     |     |              |   |

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 17.5 m

FORMATION:

BIT MAKE & TYPE:

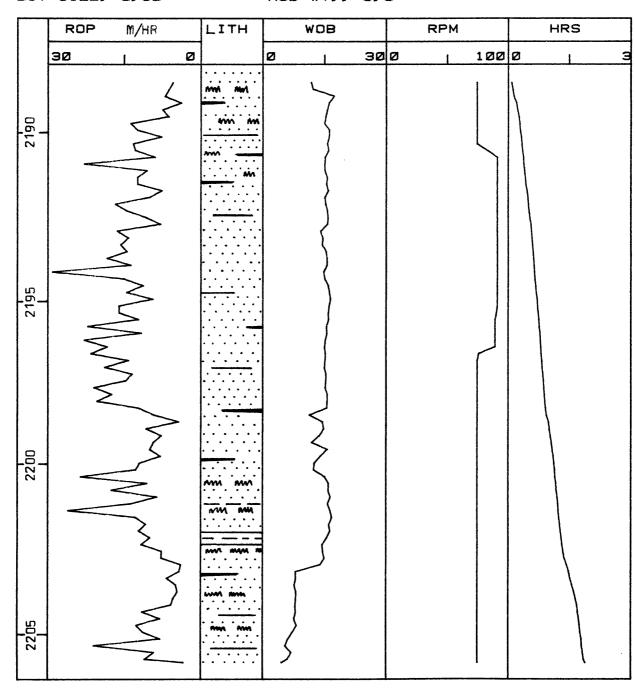
CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD

WIRRAH NO. 3

2


2188. Øm. TO 2205.5m.

RECOVERED: 17.5m. ( 100.0% )

LATROBE GROUP

CHRISTENSEN RC4

6.75in. x 4.00in. x 19.66m.



CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 5.1 m

FORMATION:

BIT MAKE & TYPE:

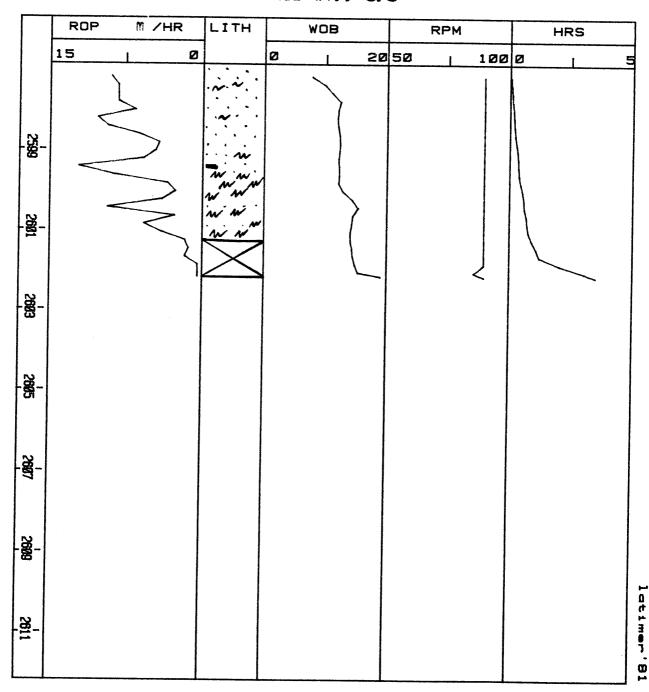
CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH No. 3

3


2597. Øm. TO 2602.1m.

RECOVERED: 4.3m. (84.3%)

LATROBE GROUP

CHRIS. RC4

6.75in.  $\times$  4.00in.  $\times$  19.92m.



CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 18.5m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.5Ø

ESSO AUSTRALIA LTD.

WIRRAH No. 3

4

2616.7m. TO 2635.2m.

RECOVERED: 18.2m. ( 98.2% )

LATROBE GROUP

CHRIS. RC3

6.75in. × 4.00in. × 19.92m.

|                | ROP | M /HR  | LITH                                    |   | WOB       | RPM |     | HRS |   |
|----------------|-----|--------|-----------------------------------------|---|-----------|-----|-----|-----|---|
|                | 30  | ] 0    |                                         | Ø | 25        | 5Ø  | 100 | Ø i | 5 |
| 2619           |     |        | ~                                       |   |           |     |     |     |   |
| 2623           | -   | Jan My |                                         |   | }         |     |     |     |   |
| 2627           |     | N.     | WEN<br>MEN<br>W W<br>W M                |   | <b>\\</b> |     |     |     |   |
| 2631<br>-      |     | MM     | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |   |           |     |     |     |   |
| -263-<br>-263- |     | *      | W M M                                   |   |           |     |     |     |   |
| 2639           |     |        |                                         |   |           |     |     |     |   |
| 2843           |     |        |                                         |   |           |     |     |     |   |

CLIENT:

WELL

CORE NO. .

INTERVAL CORED FROM

CUT: 17.8m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE.

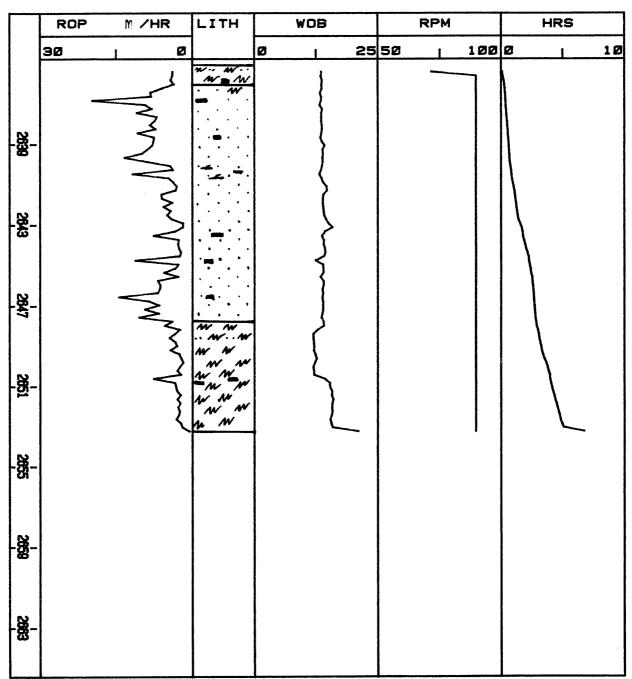
BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH No. 3

5

2635.2m. TO 2653.0m.


RECOVERED: 18.5m. ( 103.9% )

LATROBE GROUP

CHRIS. RC 3

6.75in. x 4.00in. x 19.92m.

MUD WT. : 9.6



latimer'81

CLIENT.

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 18.2m

FORMATION:

BIT MAKE & TYPE.

CORE BARREL SIZE.

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH No. 3

6

2653. Øm. TO 2671. 2m.

RECOVERED: 18.2m. ( 100.0% )

LATROBE GROUP

CHRIS. RC4

6.75in. × 4.00in. × 19.92m.

|               | ROP | M /HR | LITH       |   | MOB |    | R  | PM  |    | HF | ₹S |
|---------------|-----|-------|------------|---|-----|----|----|-----|----|----|----|
|               | 20  |       | WWW WW     | Ø | 7   | 25 | 5Ø | 1 1 | 00 | Ø  |    |
| 285<br>2857 - |     |       | W W        |   |     |    |    |     |    |    |    |
| 2861<br>-     |     |       | W W<br>W M |   | {   |    |    |     |    |    |    |
| )<br>         |     |       | W W<br>W N |   | 5   |    |    |     |    |    |    |
|               |     |       | 1 1        |   |     |    |    |     |    |    |    |
| 2673          |     | 7     | 4. B. C.   |   | (   |    |    |     |    |    | `  |
| <b>2877</b>   |     |       |            |   |     |    |    |     |    |    |    |
| 흋-            |     |       |            |   |     |    |    |     |    |    |    |

CLIENT:

WELL

CORE NO. .

INTERVAL CORED FROM

CUT: 18.5 m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH No. 3

7

2672. Øm. TO 2690.5m.

RECOVERED: 18.5m. ( 100.0% )

LATROBE GROUP

CHRIS. RC4

6.75in. × 4.00in. × 19.92m.

|                 | ROP | M /HR      | LITH                                  |   | MOB |    | RF | PM  | Hf | RS  |
|-----------------|-----|------------|---------------------------------------|---|-----|----|----|-----|----|-----|
| ·               | 30  | <u>j</u> Ø |                                       | Ø |     | 25 | 5Ø | 100 | 0  | 1 5 |
| 2678            | 7   | MM         | W W W W W W W W W W W W W W W W W W W |   |     |    |    |     |    |     |
| 2888            |     |            | W W W W W W W W W W W                 |   |     |    |    |     |    |     |
| 286-<br>-       |     | }          | M M N<br>W M.<br>W M.<br>M. W.        |   |     |    |    |     |    |     |
| 288-<br>288     |     | J. W.      |                                       |   |     |    |    |     |    |     |
| <del>2</del> 8- |     |            | `                                     |   | ζ.  |    |    |     |    | \   |
| <b>3</b> -      |     |            |                                       |   |     |    |    |     |    |     |
| 2700            |     |            |                                       |   |     |    |    |     |    |     |

CLIENT:

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 17.8 m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.47

ESSO AUSTRALIA LTD.

WIRRAH No. 3

2690.5m. TO 2708.3m.

RECOVERED: 17.8m. ( 100.0% )

LATROBE GROUP

CHRIS. C-20

6.75in. x 4.00in. x 19.92m.

latimer'81

| ·            | ROP | M /HR      | LITH  | W | 08          | RF | PM  | HRS |    |
|--------------|-----|------------|-------|---|-------------|----|-----|-----|----|
|              | 30  | 1 8        |       | Ø | <u> </u> 25 | 50 | 100 | Ø   | 12 |
|              |     |            | ≈ w   |   | {           |    |     |     |    |
| <b>16</b> 82 |     |            | N N N |   | >           |    |     |     |    |
| 2698         |     | <b>***</b> | W W W |   |             |    |     |     |    |
| 2782         |     | }          | W     |   |             |    |     |     |    |
| 2798         |     |            | w in  |   |             |    |     |     |    |
| 2718         |     |            |       |   | •           |    | •   |     |    |
| 2714         |     |            |       |   |             |    |     |     |    |
| 2718         |     |            |       |   |             |    | :   |     |    |

CLIENT:

WELL

CORE NO. :

INTERVAL CORED FROM

CUT: 7.2m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE

BIT SIZE: 8.50

ESSO AUSTRALIA LTD

WIRRAH NO. 3

8

28Ø6.8m. TO 2814.0m.

RECOVERED: 7.1m. ( 98.6% )

LATROBE GROUP

CHRISTENSEN RCB

6.00in. x 4.00in. x 19.66m.

|               | ROP | M /HR | LITH                                  |   | MOB |    | F  | RPM |     | HRS |
|---------------|-----|-------|---------------------------------------|---|-----|----|----|-----|-----|-----|
|               | 70  | 1 2   |                                       | Ø | L   | 3Ø | 5Ø | 1   | 100 | Ø   |
| 28 <b>6</b> 7 |     | >     | · · · · · · · · · · · · · · · · · · · |   |     |    |    |     |     |     |
| <b>288</b> 6  | <   |       |                                       |   |     |    |    |     |     |     |
| <b>2818</b>   |     |       | 0 0 0                                 |   |     |    |    |     |     |     |
| 2811          |     |       |                                       |   |     |    |    |     | `   |     |
| 2812          |     |       | 0                                     |   |     |    |    |     |     |     |
| 2813          |     |       | 0.0                                   |   |     |    |    |     |     |     |
| 2814          |     |       | 00                                    |   | 1   |    |    |     |     |     |

CLIENT.

WELL

CORE NO. .

CUT: 1.3 m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH No. 3

10

INTERVAL CORED FROM 3116.1m. TO 3117.4m.

RECOVERED: 1.0m. ( 76.9% )

LATROBE GROUP

CHRISTENSEN C-20

6.00in. × 4.00in. × 19.66m.

MUD WT.: 8.8

|       | ROP | m/hr. | LITH |   | WOB |    | RPM |     | HRS   |
|-------|-----|-------|------|---|-----|----|-----|-----|-------|
|       | 5   | 1 0   |      | Ø | 1   | 35 | 5Ø  | 100 | 0   5 |
| 31,17 |     |       |      |   |     |    |     |     |       |
| 9i18  |     |       |      |   |     |    |     |     |       |
| भं छ  |     |       |      |   |     |    |     |     |       |
| 31,28 |     |       |      |   |     |    |     |     |       |
| 3121  |     |       |      |   |     |    |     |     |       |
| 3122  |     |       |      |   |     |    |     |     |       |
| 3123  |     |       |      |   |     |    |     |     |       |

CLIENT.

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 2.0 m.

FORMATION.

BIT MAKE & TYPE.

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

WIRRAH No. 3

11

3143.4m. TO 3145.4m.

RECOVERED: 1.8m. ( 81.0% )

LATROBE GROUP

CHRISTENSEN C-23

6.00in. × 4.00in. × 19.66m.

MUD WT. . 10.5

| Г     | ROP | m/hr. | LITH | WOB    | RPM                 | HRS   |
|-------|-----|-------|------|--------|---------------------|-------|
|       | 10  | 1 8   |      | Ø   3Ø | 50 <sub> </sub> 100 | 0 1 5 |
| 31,44 |     |       | 0.00 |        |                     |       |
| 31,45 |     |       |      |        |                     |       |
| 31,46 |     | ·     |      |        |                     |       |
| 31,47 | -   |       |      |        |                     |       |
| 31,48 | -   |       |      |        |                     |       |
| 31,49 | -   |       |      |        |                     |       |
| 3158  | •   |       |      |        |                     |       |

5. EXTENDED SERVICE PACKAGE

### EXTENDED SERVICE INTRODUCTION

The Core Laboratories Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling.

Presented graphically on Core Lahoratories E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer.

Core Laboratories E.S. logs include the following :

#### E.S. PRESSURE LOG

Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is the conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, R.F.T.'s, and formation breakdown tests.

#### CORE LAB DRILL DATA PLOT

This plot, which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected "d"exponent, which is presented on a logarithmic scale. The "d" exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of bit diameter.

The modified "dc" exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard "d" exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the "dc" to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for "dc" is therefore:

Deviations from the normal "dc"s trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the "dc"s plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the "dc"s plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air-dried shale samples in an accurately calibrated liquid density column.

An interpreted lithology column is also included on the log, as is a plot of mud density in , to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included.

#### E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure.

A Geo-plot is included in this report, at a scale of 1:5000.

# E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS

Flowline temperature and end-to-end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

## ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), may be made using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

and the state of the second of

### PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

#### DATA RECORDING

Data is recorded on tape while drilling, both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

### MUD DATA SHEETS

These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report.

## DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration, weight—on—bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

# HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This reportincludes a sample hydraulics for each 100 metres.

### GAS COMPOSITION ANALYSIS

For each significant gas show the chromatograph results are analysed using two techniques :-

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

# GRAPHOLOG

This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data.

# MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak-off test data, R.F.T. and well test data where appropriate.

# CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 2007 monitoring equipment includes the following :

# A. MUD LOGGING

- 1. T.H.M. total gas detector and recorder.
- 2. F.I.D. (Flame Ionization Detector) chromatograph and recorder.
- 3. Cuttings gas detector.
- 4. Gas trap and support equipment for the above.
- 5. Pit volume totalizer and recorder.
- 6. Digital depth counter.
- 7. Two integrated pump stroke counters.
- 8. Ultra-violet fluoroscope.
- 9. Binocular microscope.
- 10. Calcimeter.
- 11. Steam-still gas analyzer.

# B. EXTENDED SERVICE PACKAGE

- 1. HEWLETT PACKARD 9825B desktop computer.
- 2. HEWLETT PACKARD 9872B plotter
- 3. HEWLETT PACKARD 2631A printer.
- 4. Two HEWLETT PACKARD 2621P visual display units, (one located in the client's office).
- 5. Hookload/weight-on-bit transducer and recorder.
- 6. Rotary speed sensor and recorder.
- 7. Stand-pipe pump pressure transducer and recorder.
- 8. Mud flow out sensor and recorder.
- 9. Mud temperature sensors and recorders (in and out).
- 10. Mud conductivity sensors and recorders (in and out),
- 11. Mud density sensors (in and out) and recorders.
- 12. Rotary torque sensor and recorder.
- 13. Shale density apparatus.
- 14. Hydrogen sulphide gas detector.
- 15. Carbon dioxide gas detector.
- 16. DATALOGGER computer, monitor and impact printer.
- 17. DIGITAL remote paging display (located in the client's office).
- 18. Casing pressure transducer and recorder.
- All the above sensors and gas detectors have displays on the DATALOGGER monitors except the Cuttings gas detector and steam-still.

# CORE LABORATORIES MONITORING EQUIPMENT

# DEPTH

Depth registered every 0.1 metres and rate of penetration calculated each metre (or every 0.2m while coring); ROP displayed on the computer monitor and chart.

# WEIGHT-ON-BIT

A DeLaval 0-5000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Datalogger, and displayed (with hookload) on the computer monitor and recorder chart.

# ROTARY SPEED

This is a proximity limit switch which pulses once for every revolution of the rotary drive shaft. The value is displayed on the computer monitor and a recorder chart.

# PUMP PRESSURE

This is a DeLaval  $0-5000~\rm psi$  transducer mounted on the stand-pipe manifold. The pressure is displayed on the computer monitor and recorder chart.

#### CASING PRESSURE

This is a DeLaval 0-5000 psi transducer mounted on the choke manifold. The signal is displayed on the computer monitor and on a recorder chart.

### PIT VOLUME

Four individual pits are displayed on the monitor. The pit volume total is calculated by the Datalogger and displayed on the monitor. The sensors are vertical floats triggering magnetic switches accurate to +/-1 barrel.

In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

# PUMP STROKES

These are the limit switch type, counting individual strokes. The pump rates per minute are displayed on the monitor.

# ROTARY TORQUE

An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on the computer monitor and recorder chart.

# MUD TEMPERATURE

This is a platinum probe resistance thermometer, and an electronics module calibrated  $0-100\,$  deg.C. Temperature in and out is displayed on the monitor and recorder.

and the second of the second o

## MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor contains two toroidally-wound coils and a thermistor enclosed in a donut-shaped housing. Current is induced into the mud by the primary coil and is sampled by the secondary coil, the amplitude of the current being directly proportional to the conductivity of the mud.

# MUD DENSITY

Two density sensors (in and out) located in the possum belly and in the pit room, operate on a system of differential pressure. This function is displayed on both chart and monitor.

All the sensors are 12 to 36V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab performed other duties...

# CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Samples were washed, dried, sacked and boxed where necessary. Geochemical samples were canned and boxed.

#### GAS

- 1.Flame Ionization Total Hydrocarbon gas detector. The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph.

  The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3.Cuttings gas detector (Wheatstone Bridge type). An auxiliary system for total gas detection.
- 4. Hydrogen Sulphide detector.

  Two sensors are located at the shale-shakers and in the pit room, linked to a TAC 404B H2S monitor, to detect H2S emanating from the drilling fluid.
- 5.Carbon Dioxide detector.

  An Infra-red gas analyzer determines the percentage of CO2 present in gas samples broken out of the mud by the gas trap.

# SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density liquid column.

6. ESP PLOT DISCUSSIONS AND CONCLUSIONS

# ESP PLOT DISCUSSION AND CONCLUSIONS (WITH PARTICULAR REFERENCE TO PORE PRESSURE)

The estimation of formation pressures was one of the prime aims of the Core Laboratories ESP DL2007 package, and a discussion follows.

WIRRAH NO. 3 was drilled in the Gippsland Basin region of the Bass Strait, and evidence of abnormal pressure had been found from this structure on the two previous Wirrah Wells, so abnormal pressure problems were anticipated.

A useful tool in pressure detection is the "Drill Data Plot" (see logs at end of report). The plot shows a number of parameters: ROP, Gas, 'd'c exponent and mud weight, all related to lithology. In the case of WIRRAH NO. 3, all trends manifested from seabed down to 3040 metres were both "normal" and typical of the Gippsland Basin. Any irregularities in this interval such as increases in background gas or drill-offs were all associated with lithological characteristics rather than with abnormal formation pressures.

However, below 3040 metres, the geopressure story is distinctly different. At this point, the background gas increased dramatically from 5 up to 20 units, with a simultaneous lateral shift (albeit a small one) in the 'd'c exponent trend line. There was no recognizable drill-off, but the Trip gas peak from 3045 metres (1-1015-20 units) definitely heralded abnormal formation pressures.

Conclusive connection gas was detected from 3055 metres (10-18-12 units); 3065 metres (19-62-21 units); 3074 metres (13-35-15 units); and 3084 metres (7-49-8 units) with 9.6 ppg mud. Also a 10-10-10 test was performed at 3086 metres, yielding 11-89-4 units of gas with 9.6 ppg mud. Consequently the mud was weighted up to 10.1 ppg. By reviewing these figures the pore pressure was estimated to have increased from 8.5 ppg to 9.0 ppg at 3041 metres; to 9.3 ppg to 3057 metres; and then to 9.4 ppg at 3083 metres.

With 10.0 ppg mud in the hole, connection gas was detected from 3116 metres (2-39-9 units) thereby indicating another step in pore pressure, this time up to 9.5 - 9.5 ppg. (This also corresponded with an increase in background gas.)

Despite another increment in mud weight (10-10.2 ppg) connection gas was detected from 3141 metres (26-119-18 units), and at 3143 metres a 10-10-10 test yielded 21-61-17 units of gas. This suggested that the geopressure had increased to 10.0 ppg by 3138 metres.

From this point down to 3218 metres, further increases in pore pressure were indicated by Trip gas peaks, background gas trends, 10-10-10 tests, and the detection of connection gas. In particular, consider the following table:

| DEPTH | CONNECTION<br>GAS | 10 - 10 - 10<br>TEST GAS | TRIP GAS  | MUD<br>WEIGHT | ESTIMATED<br>PORE PRESSURE |
|-------|-------------------|--------------------------|-----------|---------------|----------------------------|
| 3143  |                   | 2-4-2                    | 2-210-2   | 10.5          | 10.0                       |
| 3145  |                   |                          | 2-1570-11 | 10.5          | 10.0                       |
| 3170  |                   | 15-256-58                |           | 11.1          | 11.1                       |
| 3180  | 15-165-12         |                          |           | 11.4          | 11.3                       |
| 3189  | 6-46-7            |                          |           | 11.8          | 11.6                       |
| 3191  |                   | 2-6-2                    |           | 11.8          | 11.6                       |
| 3202  |                   | 1-2-1                    |           | 12.1          | 11.6                       |
| 3203  |                   |                          | 4-34-4    | 12.2          | 11.7                       |
| 3209  | 3-7-3             |                          |           | 12.2          | 11.9                       |
| 3219  | 7-10-7            |                          |           | 12.2          | 11.8                       |
| 3225  |                   |                          | 2-98-20   | .12.2         | 11.7                       |

With the presence of conclusive connection gas, the drilling fluid was weighted up in accordance with comfortably overbalanced conditions.

A brief numerical summary of the pore pressures encountered during the well, in tabular form, now follows:

| INT  | ERVAL | PORE PRESSURE |
|------|-------|---------------|
| FROM | TO    | FURE FRESSURE |
| 70   | 2960  | 8.4           |
| 2961 | 3040  | 8.5           |
| 3041 | 3056  | 9.0           |
| 3057 | 3082  | 9.3           |
| 3083 | 3108  | 9.4           |
| 3109 | 3110  | 9.5           |
| 3111 |       | 9.6           |
| 3112 | 3116  | 9.8           |
| 3117 |       | 9.6           |
| 3118 | 3128  | 9.5           |
| 3129 |       | 9.6           |
| 3130 | 3136  | 9.7           |
| 3137 |       | 9.9           |
| 3138 | 3145  | 10.0          |
| 3146 |       | 10.1          |
| 3147 |       | 10.2          |
| 3148 |       | 10.3          |

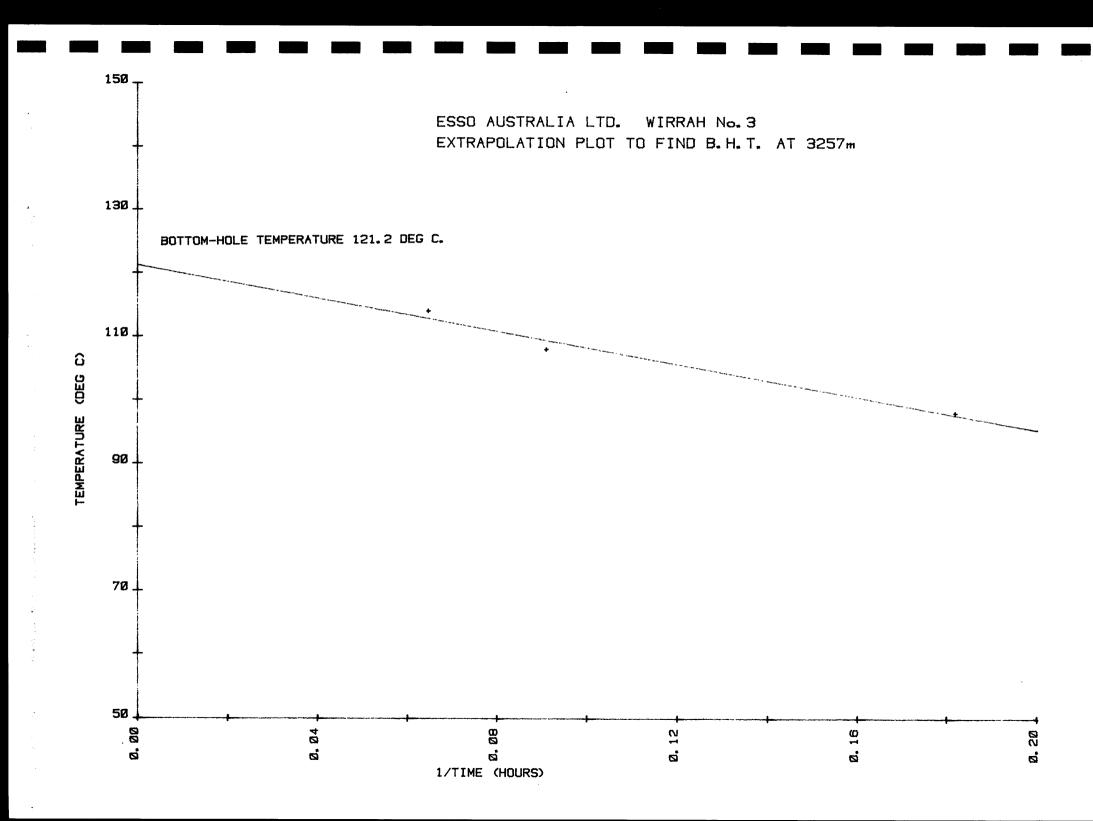
| INTE | ERVAL | PORE PRESSURE |
|------|-------|---------------|
| FROM | то    | FURE FRESSURE |
| 3149 |       | 10.4          |
| 3150 |       | 10.5          |
| 3151 |       | 10.6          |
| 3152 | 3160  | 10.7          |
| 3161 | 3162  | 10.8          |
| 3163 |       | 10.9          |
| 3164 | 3165  | 11.0          |
| 3166 | 3171  | 11.1          |
| 3172 | 3176  | 11.2          |
| 3177 | 3184  | 11.3          |
| 3185 | 3187  | 11.4          |
| 3188 |       | 11.5          |
| 3189 | 3202  | 11.6          |
| 3203 | 3204  | 11.7          |
| 3205 | 3206  | 11.8          |
| 3207 | 3218  | 11.9          |
| 3219 | 3222  | 11.8          |
| 3223 | 3257  | 11.7          |

Returning to the "Drill Data Plot", it can be seen that the progressive increase in pore pressure towards the bottom of the hole is not, in general, represented by the architype drill-off or 'd'c exponent trend. The latter lack of trend is due to the lithology, both its interbedded nature and the very hard composition of the Sandstone/Conglomerate beds. A more homogeneous lithology is required for an objective interpretation of 'd'c exponent trends.

In the overpressured section, overbalanced drilling took place at all times with one possible exception, between 3150 and 3178 metres. However, the largest underbalance in this interval was confined to only 0.1 ppg.

No shale density measurements were made, as there were no beds of true shales encountered.

The Temperature Plot offers no reliable conclusions as to pore pressure, due to the periodic treatment of the mud system (in particular, adding barite to increase the mud weight). The thermal gradient of WIRRAH NO. 3 was calculated to be  $1.99^{\circ}$ F/100 feet, and the bottom-hole temperature at 3257 metres was extrapolated to  $121.2^{\circ}$ C.


The Pressure Plot is the passure conclusion log for the well. This plot shows the estimated pore pressure as described above, along with the mud weight and fracture gradient. As mentioned above, the formations

encountered towards the bottom of the well were overpressured, being 8.4 - 8.5 ppg MSL. EMW down to 3040 metres, rising to 9.0 ppg at 3041 metres, 9.5 ppg at 3109 metres, 10.0 ppg at 3138 metres, 11.0 ppg at 3164 metres, and peaking at 11.9 ppg (3207 metres) before dropping back to 11.7 ppg at 3223 metres, and remaining at that level down to T.D.

Overburden gradient calculations and a plot of the gradient are included in the report. It was not possible to derive a true fracture gradient as insufficient leak-off data is available for this Basin. Two P.I.T.'s were made on WIRRAH NO. 3: at the 13-3/8" casing shoe (855 metres .... 19.3 ppg EMW) and at the 9-5/8" casing shoe (2943 metres .... 16.5 ppg EMW).

Based on this information, the fracture gradient on the pressure plot was drawn, the shape of which was in turn based on data obtained from wells in the U.S. Gulf Coast Basin. The curve was offset to match local data.

7. B.H.T. ESTIMATION



# CORE LAB

STRAIGHT LINE LEAST SQUARES BEST FIT

1/TIME ON A LINEAR SCALE AGAINST TEMP.(DEG C) ON A LINEAR SCALE

# ENTERED DATA:

| DATA SET # | 1/TIME | TEMP. (DEG C) |
|------------|--------|---------------|
| 1          | 0.0909 | 108.0         |
| 22         | 0.0645 | 114.0         |
| 3          | 0.1818 | 98.0          |

# COEFFICIENT & CONSTANT:

Y = M.X + C where M = -1.2959163E 02 and C = -1.2123277E 02

# INTERPOLATED DATA:

1/TIME TEMP.(DEG C)

0.0000 121.2

8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT

# OVERBURDEN GRADIENT CALCULATIONS

DEPTH . . . . . . . . . . . . . . . . metres

BULK DENSITY . . . . . . . . . . . . . . . . . gm/cc

OVERBURDEN PRESSURE INCREMENT, .psi

CUMULATIVE OVERBURDEN PRESSURE .psi

OVERBURDEN PRESSURE GRADIENT . .psi/ft

OVERBURDEN EQUIVALENT DENSITY. . Pounds per gallon

BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, OR FROM SONIC LOG FOR SECTIONS WHERE THE F.D.C. LOG IS NOT AVAILABLE.

# OVERBURDEN GRADIENT CALCULATIONS

| DEPTH<br>from | DEPTH<br>to | AVR.BULK<br>DENSITY | OZBURDEN<br>INC. |          | O/BURDEN<br>GRAD, | O/BURDE  |
|---------------|-------------|---------------------|------------------|----------|-------------------|----------|
| Metres        | metres      | gm/cc               | psi              |          |                   | GRAD     |
| 0             | 70          | 4 5 50              | ·                |          | psi/ft            | p q q    |
| 70            | 855         | 1.02                | 101.43           | 101,43   | 0.442             | 715 A 40 |
| 855           | 875         | 2.00                | 2230,34          | 2331.77  | 0.831             | 8.49     |
| 875           | 900         | 2.30                | 65.35            | 2397.12  | 0.835             | 15,99    |
| 900           | 925         | 2.40                | 85,24            | 2482;36  | 0.841             | 16.06    |
| 925           | 950         | 2.32                | 82,39            | 2564,75  | 0.845             | 16.17    |
| 950           |             | 2.31                | 82.04            | 2646,79  | 0.849             | 16.25    |
| 975           | 975         | 2.30                | 81.68            | 2728,47  |                   | 16.33    |
| 1000          | 1000        | 2.34                | 83,11            | 2811,58  | 0.853             | 16.40    |
| 1025          | 1025        | 2.40                | 85,24            | 2896.82  | 0.857             | 16,48    |
| 1050          | 1050        | 2.43                | 86.30            | 2283,12  | 0.861             | 16.57    |
| 1075          | 1075        | 2,36                | 83.82            | 3066,93  | 0.866             | 16.65    |
| 1100          | 1100        | 2,44                | 86.66            | 3153,59  | 0.870             | 16.72    |
|               | 1125        | 2.42                | 85,95            | 3239,53  | 0.874             | 16.80    |
| 1125          | 1150        | 2.38                | 84.53            | 3324,06  | 0,878             | 16.88    |
| 1150          | 1175        | 2.43                | 86.30            | 3410,36  | 0,881             | 16,94    |
| 1175          | 1200        | 2.35                | 83,46            | 3493.82  | 0.885             | 17.01    |
| 1200          | 1225        | 2.30                | 81,68            | 3575.51  | 0.887             | 17.07    |
| 1225          | 1250        | 2.22                | 78.84            | 3654.35  | 0.890             | 17.11    |
| 1250          | 1275        | 2.27                | 80.62            | 3734,97  | 0.891             | 17,14    |
| 1275          | 1300        | 2.26                | 80.26            | 27 O 4 E | 0.893             | 17.17    |
| 1300          | 1325        | 2.35                | 83.46            | 3815.23  | 0.895             | 17.20    |
| 1325          | 1350        | 2.37                | 84.17            | 3898,69  | 0.897             | 17.25    |
| 1350          | 1375        | 2.36                | 83,82            | 3982,86  | 0,899             | 17.29    |
| 1375          | 1400        | 2,29                | 81.33            | 4066.68  | 0.901             | 17,34    |
| 1400          | 1425        | 2.26                | 80.26            | 4148.01  | 0.903             | 17.37    |
| 1425          | 1450        | 2.32                | 82,39            | 4228.27  | 0.904             | 17.39    |
| 1450          | 1475        | 2,30                | 81.68            | 4310,67  | 0.906             | 17,43    |
| 1475          | 1500        | 2.38                | 84.53            | 4392,35  | 0.908             | 17.45    |
| 1500          | 1525        | 2,29                | 81.33            | 4476.88  | 0.910             | 17,49    |
| 1525          | 1550        | 2.26                | 80.26            | 4558.21  | 0.911             | 17.52    |
| 1550          | 1575        | 2.24                | 79.55            | 4638,47  | 0.912             | 17,54    |
| 1575          | 1600        | 2.28                | 80,97            | 4718.02  | 0.913             | 17.56    |
| 1600          | 1625        | 2.09                | 74.23            | 4799,00  | 0.914             | 17.58    |
| 1625          | 1650        | 2.15                | 76.36            | 4873,22  | 0.914             | 17.58    |
| 1650          | 1675        | 2.19                | 77,78            | 4949,58  | 0.914             | 17.58    |
|               | 1700        | 2.00                | 71.03            | 5027.36  | 0.915             | 17,59    |
| 1700          | 1725        | 2.13                | 75.65            | 5098,39  | 0.914             | 17.58    |
|               | 1750        | 2.18                | 77,42            | 5174,04  | 0.914             | 17.58    |
| 750           | 1775        | 2.29                | 81,33            | 5251.46  | 0.915             | 17.59    |
|               | 1800        | 2.26                | ወደ መረ            | 5332,79  | 0.916             | 17.61    |
| 800           | 1825        | 2.50                | 80.26            | 5413.05  | 0.917             | 17.63    |
| 825           | 1850        | 2.41                | 88,79            | 5501.84  | 0.919             | 17.67    |
| 850           | 1875        | 2.24                | 85,59            | 5587,43  | 0.921             | 17.70    |
| 875           | 900         | 2.08                | 79.55            | 5666,98  | 0.921             | 17,72    |
| J00 10        | 925         | 2.03                | 73.87            | 5740.86  | 0.921             | 17.71    |
|               | ***         | III 1 U (3          | 72.10            | 5812,95  | 0.920             | 17.70    |

| DEPTH<br>from                                                                                                                                                                                                                                                                            | DEPTH<br>to                                                                                                                  | AVR.BULK<br>DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O/BURDEN<br>INC.                                                                                                           | O/BURDEN<br>CUMM.                                                                                                                                                                                                                     | O/BURDEN<br>GRAD.                                                                                                                   | O/BURDEN<br>GRAD.                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| metres                                                                                                                                                                                                                                                                                   | metres                                                                                                                       | gm/cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | psi                                                                                                                        | psi                                                                                                                                                                                                                                   | psi/ft                                                                                                                              | b b d                                                                                                                               |
| from  metres 1925 1975 2000 2025 20075 20075 20125 2150 2150 2150 2150 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 22575 | to                                                                                                                           | DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | INC.                                                                                                                       | CUMM.  psi 5885.40 5965.31 6043.35 6200.77 6282.10 6365.54 6530.44 6530.82 66205.32 66205.32 66205.32 7632.22 7135.32 72135.34 7304.79 7508.49 7508.79 7508.66 7749.79 7508.66 7749.79 7839.50 8108.28 8197.41 8289.41                | GRAD.                                                                                                                               | GRAD.                                                                                                                               |
| 2650<br>2675<br>2770<br>27750<br>28770<br>2825<br>2850<br>2925<br>2925<br>2925<br>2925<br>3025<br>3025<br>3125                                                                                                                                                                           | 2700<br>2725<br>2750<br>2770<br>2800<br>2825<br>2850<br>2925<br>2950<br>2950<br>2950<br>3025<br>3050<br>3075<br>3100<br>3125 | 2.5554<br>2.5554<br>2.552<br>2.5554<br>2.5555556<br>2.55556<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.662<br>2.6 | 90.56<br>90.56<br>90.79<br>81.62<br>89.79<br>89.50<br>89.50<br>89.79<br>89.87<br>89.90<br>90.95<br>90.92<br>93.05<br>93.01 | 8379.97<br>8470.54<br>8470.54<br>8561.46<br>8561.24<br>8722.82<br>8916.96<br>9007.02<br>9185.66<br>9377.02<br>9185.66<br>9375.38<br>9375.38<br>9375.38<br>9375.38<br>9453.94<br>9724.86<br>9817.90<br>9912.73<br>10006.49<br>10093.50 | 0.955<br>0.956<br>0.958<br>0.959<br>0.961<br>0.962<br>0.963<br>0.965<br>0.967<br>0.967<br>0.969<br>0.971<br>0.972<br>0.975<br>0.975 | 18.36<br>18.39<br>18.44<br>18.46<br>18.53<br>18.55<br>18.55<br>18.60<br>18.61<br>18.63<br>18.65<br>18.79<br>18.71<br>18.74<br>18.78 |

|    | O/BURDI<br>GRAI | O/BURDEN<br>GRAD. | O/BURDEN<br>CUMM. | O/BURDEN<br>INC. | AVR.BULK<br>DENSITY | DEPTH<br>to | DEPTH<br>from |
|----|-----------------|-------------------|-------------------|------------------|---------------------|-------------|---------------|
| pg | p               | psi/ft            | psi               | psi.             | gm/cc               | metres      | metres        |
| 79 | 18.7            | 0.977             | 10179.45          | 85.95            | 2,42                | 3175        | 3150          |
| 30 | 18.8            | 0.978             | 10265.75          | 86.30            | 2.43                | 3200        | 3175          |
| 32 | 18.8            | 0.979             | 10354.54          | 88.79            | 2.50                | 3225        | 3200          |
| 34 | 18.8            | 0.980             | 10448.65          | 94.11            | 2.65                | 3250        | 3225          |
| 35 | 18.8            | 0.980             | 10475.20          | 26.55            | 2.67                | 3257        | 3250          |

DEPTH (in metree )  $\times$  1000 ESSO AUSTRALIA LTD. WIRRAH No. 3 OVERBURDEN GRADIENT PSI/FT. Ø. 7 Ø. 9 1.0 Ø. 5 Ø. 6 Ø. 8 ·:

9. GAS ANALYSES

----

# GAS COMPOSITION ANALYSIS

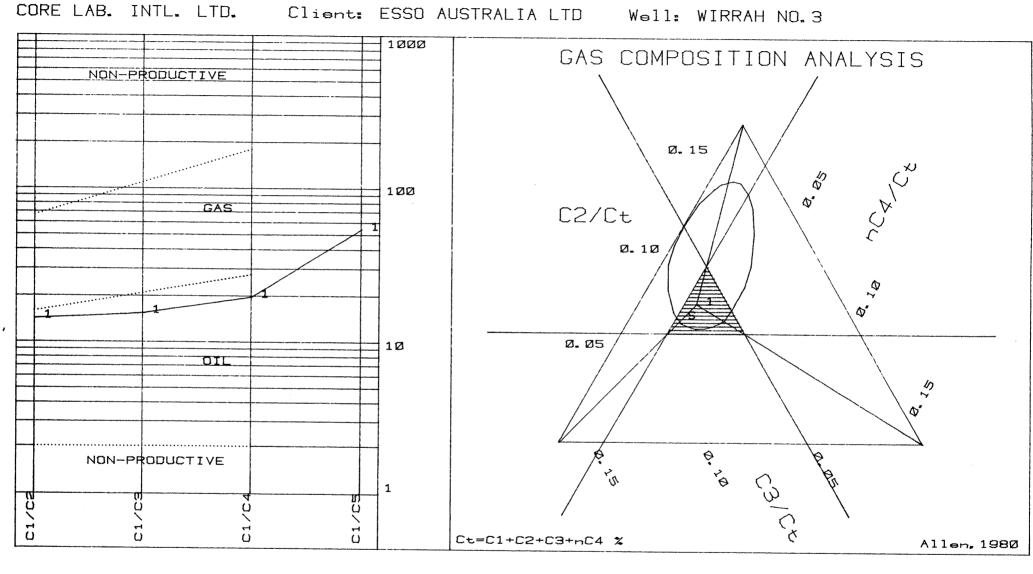
The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques however are empirical and by no means definitive.

## LOG PLOT

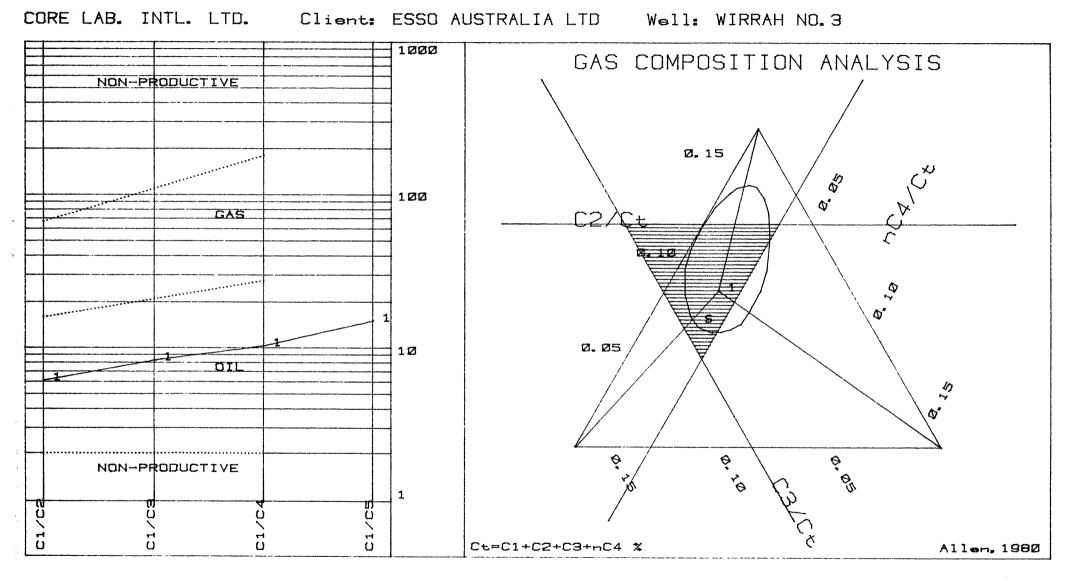
The ratios of C1/C2, C1/C3, C1/C4, C1/C5, and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show. The plots can be evaluated by the following criteria :

- 1. Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- 2. A ratio of C1/C2 between approximately 2 and 15 indicates oil and between 15 and 65, gas. If the C1/C2 ratio is below about 2, or above about 65, the zone is probably non-productive.

The actual values of the gas/oil/water limits will vary from area to area.


- 3. If the C1/C2 ratio is low in the oil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5, if oil is used in the mud) is lower than the preceding ratio, the zone is probably non-productive.
- 5. The ratios may not be definitive for low permeability zones; however, steep ratio plots may indicate a tight zone.

# TRIANGULATION PLOT


The triangulation diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to C4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.

A large triangle plot represents dry gas or low GOR oil, while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).

But the state of t



NO. DEPTH C1 C2 C3 iC4 nC4 C5 C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2088 0.523 Ø. Ø37 0.034 0.013 0.013 0.010 0.002 Ø. 6Ø7 14 15 20 54 CONCLUSION: WET GAS ZONE



NO. DEPTH C1 C2 СЭ 1C4 nC4 C5 C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2090 Ø. 195 Ø. Ø32 Ø. Ø23 0.009 0.009 Ø. Ø13 0.005 Ø. 259 6 8 10 15 CONCLUSION: PRODUCTIVE, PERMEABLE OIL ZONE

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: WIRRAH NO.3 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 GAS P/CL Ø. Ø5 12 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

10. DEPTH C1 C5 CЭ 1C4 nC4 C5 C6 % Ct C1/C5 C1/C3 C1/C4 1 2102 1.267 Ø. 235 Ø. 188 0.024 0.024 Ø. Ø29 0.012 1.714 7 26 44 CONCLUSION: PRODUCTIVE, PERMEABLE OIL ZONE

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: WIRRAH NO.3 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct Ø. Ø5 10 OIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

**YO. DEPTH** C1 CS СЗ 1C4 nC4 C5 C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2145 1. Ø56 Ø. 157 0.042 0.005 0.005 0.010 0.005 1.259 25 CONCLUSION: GAS AND WATER BEARING FORMATION 117 110

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: WIRRAH NO.3 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 0.15 100 C2/Ct 0.05 10 OIL NON-PRODUCTIVE 10g Ct=C1+C2+C3+nC4 % Allen, 1980

C5

0.002

C6 %

Ø. 525

0.000

C1/C2 C1/C3

25

C1/C4

106

C1/C5

248

NO. DEPTH

C1

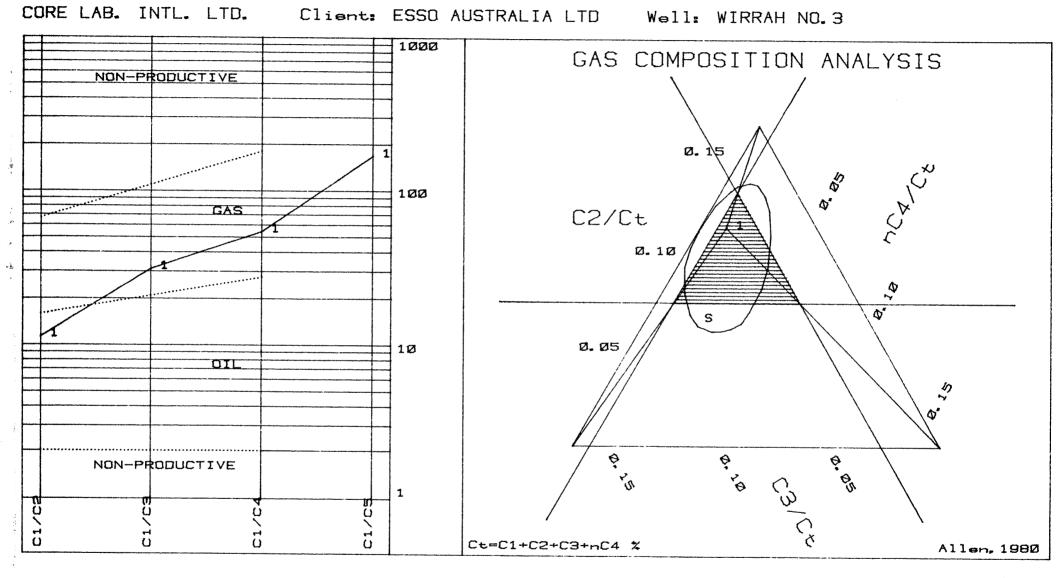
Ø. 446

C2

0.058

CONCLUSION: TIGHT, PRODUCTIVE WET GAS ZONE

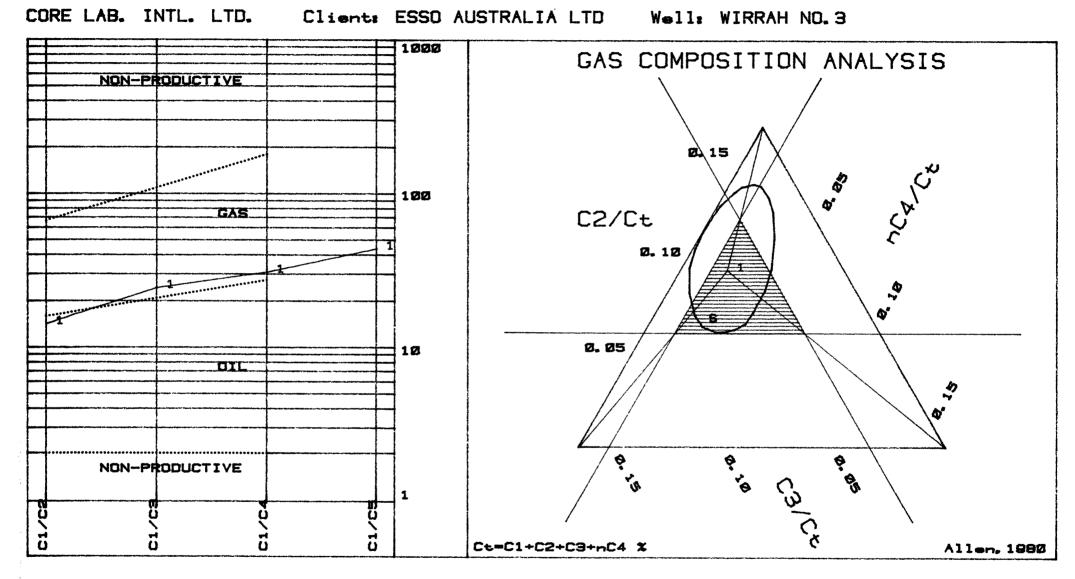
СЭ


0.018

iC4

0.002

nC4


0.002



NO. DEPTH C1 C2 СЗ iC4 nC4 C5 C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 1 2672 Ø. 337 0.030 0.011 0.003 0.003 0.002 0.000 Ø. 381 11 31 54 168 CONCLUSION: MODERATELY PERMEABLE GAS RESERVOIR

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD Well: WIRRAH NO. 3 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 GAS C2/Ct Ø. Ø5 12 NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980

NO. DEPTH C1 C2 C3 1C4 nC4 C5 C6 X C1/C4 C1/C5 C1/C2 C1/C3 Ø. 206 Ø. Ø31 Ø. Ø27 0.009 0.009 Ø. 273 1 2730 0.022 Ø. Ø31 8 11 10 CONCLUSION: VERY PERMEABLE, OIL AND WATER BEARING FORMATION



NO. DEPTH C1 CS C3 1C4 nC4 C5 CB X Ct C1/C4 C1/C5 1 2748 Ø, 762 Ø. Ø54 0.031 Ø. Ø12 Ø. Ø12 0.017 Ø. ØØ3 Ø. 858 14 31 44 CONCLUSION: VERY PERMEABLE, PRODUCTIVE GAS ZONE

| CO | RE | LA | ۱B |
|----|----|----|----|

SIDEWALL CORE GAS ANALYSIS DATA SHEET # 1

COMPANY ESSO AUSTRALIA LTD. LOGGING SUITE NO. CST NO. 4

WELL WIRRAH NO. 3

| NΩ                                               | DEPTH  | CI   | C S         | C3         | C4         | C 5        | C 6        | COMMENTS |
|--------------------------------------------------|--------|------|-------------|------------|------------|------------|------------|----------|
|                                                  |        | PPM  | PPM         | PPM        | PPM        | PPM        | PPM        |          |
| 2                                                | 3241.9 | 105  | 63          | 33         | 20         | <b>1</b> 0 | -          |          |
| 4                                                | 3222.0 | 214  | 176         | 35         | 10         | TR         | -          | ]        |
| 5                                                | 3219.3 | 324  | 193         | 38         | 11         | TR         | TR         | 1        |
| 6                                                | 3211.3 | 231  | 88          | 56         | 28         | <b>1</b> 4 | 6          | 1        |
| 7                                                | 3177.0 | 48   | 13          | 7          | 3          | TR         | TR         |          |
| 9                                                | 3141.0 | 10   | 10          | 8          | <b>1</b> 0 | <b>1</b> 5 | <b>1</b> 3 | 1        |
| 10                                               | 3132.8 | 724  | 202         | 56         | 5          | -          | -          |          |
| <b>1</b> 2                                       | 3116.0 | 1048 | 134         | 48         | TR         | -          |            |          |
| 14                                               | 3105.0 | 48   | 32          | 16         | 10         | 5          | TR         |          |
| 17                                               | 3088.6 | 200  | <b>1</b> 05 | 23         | 12         | -          | -          |          |
| 18                                               | 3088.0 | 2097 | 555         | 93         | 28         | TR         | -          |          |
| 19                                               | 3081.5 | 4    | 5           | 7          | 13         | <b>1</b> 5 | 18         | ]        |
| 20                                               | 3062.4 | 20   | 24          | <b>1</b> 9 | 24         | 30         | 28         |          |
| 21                                               | 3054.5 | 20   | 25          | 23         | 62         | <b>7</b> 5 | 67         |          |
| 23                                               | 3039.0 | 52   | 57          | 82         | 86         | <b>7</b> 5 | 54         |          |
| 24                                               | 3026.4 | 1049 | 140         | 33         | <b>3</b> 5 | 40         | -          | 1        |
| 26                                               | 3002.0 | 18   | 17          | 14         | em         | -          | _          | 1        |
| 28                                               | 2978.2 | 19   | 17          | 14         | 10         |            | -          | 1        |
| 30                                               | 2961.0 | 43   | 38          | 26         | 22         | 20         | 8          |          |
|                                                  |        |      |             |            | ***        |            |            | 1        |
|                                                  |        |      |             |            | ****       |            |            | 1        |
|                                                  |        |      |             |            |            |            |            | 1        |
| <del>*************************************</del> |        |      |             |            |            |            |            | 1        |
|                                                  |        |      |             |            |            |            |            | -        |
|                                                  |        |      |             |            |            |            |            | -        |
|                                                  |        |      |             |            |            |            |            | 4        |
|                                                  |        |      |             |            |            |            |            | 4        |
|                                                  |        |      |             |            |            |            |            | 4        |
|                                                  |        |      |             |            |            |            |            | 1        |
|                                                  |        |      |             |            |            |            |            | 1        |
|                                                  |        |      |             |            |            |            |            | 1        |
|                                                  |        |      |             |            |            |            |            | 1        |
|                                                  |        |      |             |            |            |            |            | 1        |
| <del> </del>                                     |        |      |             |            |            |            |            |          |
| Marchaela de Calabra                             |        |      |             |            |            |            |            |          |
|                                                  |        |      |             |            |            |            |            | 1        |

10. CORELAB DATA SHEETS

BIT SIZE . . . . . . . . . . . Australian dollars

JET SIZE . . . . . . . . . . . . . . . Metres

HOLE MADE. . . . . . . . . . . . . Metres

DRILLING TIME. . . . . . . . . . Metres

AVERAGE COST/METRE . . . . . . Australian dollars

BIT CONDITION. . . . . . . Teeth

Bearings

Gauge . . . Inches

LAB

COMPANY ESSO AUSTRALIA LTD.

Sheet No. 1

|                         |         |       | WE          | ELL_ | W            | IRRAH I         | <del>VO. 3</del>                     |              |                |                               |                    |         |                    | Sheet No                      |
|-------------------------|---------|-------|-------------|------|--------------|-----------------|--------------------------------------|--------------|----------------|-------------------------------|--------------------|---------|--------------------|-------------------------------|
| s/nos.                  | Bit No. | Make  | Type        |      | IADC<br>Code |                 |                                      | Depth In m   | Hole<br>Made m | Drilling<br>Time              | On Bottom<br>Hours | Turns K | Condition<br>T B G | Remarks                       |
| LJ 321                  | RR 1    | HTC   | osc         | 3AJ  | 111          | 26              | 20/20/20                             | 70           | 138.5          | 5                             | 1.13               | 15      | 2-2-I              | POOH FOR 20" CASING.          |
| 047 XR                  | 1       | HTC   | osc         | 3AJ  | 111          | 17 <u>분</u>     | 18/18/18                             | 208.5        | 661.5          | 22 <del>1</del>               | 15.91              | 141     | 2 <b>-1-</b> I     | POUH FOR 133" CASING.         |
| 8 <b>20 LS</b>          | 2       | HTC   | J1          |      | 116          | 124             | 18/18/18                             | 870          | 81             | 44                            | 2.77               | 17      | 2-2-I              | PULLED DUE TO BLOCKED NOZZLE. |
| 819 LS                  | 3       | HTC   | J1          |      | 116          | 124             | 18/18/18                             | 951          | 647            | $37\frac{3}{4}$               | 31.52              | 217     | 6-6-1              | POOH DUE TO VERY LOW ROP'S.   |
| 921 HS                  | 4       | HTC   | J22         |      | 517          | 124             | <b>16/ /1</b> 8                      | <b>15</b> 98 | <b>41</b> 8    | 49 <del>3</del>               | 44•49              | 156     | 4-4-4              | PULLED AFTER 42 HOURS ON      |
|                         |         |       |             |      |              |                 |                                      |              |                |                               |                    |         |                    | BO'TTOM.                      |
| 269 HK                  | 5       | HTC   | J22         |      | 517          | 124             | 16/16/18<br>EQUIVALENT               | 2016         | 154            | 22½                           | 20.48              | 78      | 2-2-I              | PULLED TO CUT CORE NO. 1.     |
| 2 <b>W691</b> 8         | CB 1RR  | CHRIS | RC4         |      | 4            | 8 <u>1</u>      | 14/15/15                             | 2170         | <b>1</b> 8     | 4 <sup>3</sup> / <sub>4</sub> | 4.64               | 20      | 30%                | PULLED TO RECOVER CORE NO. 1. |
| 2 <b>W</b> 6918         | CB 1RR  | CHRIS | RC4         |      | 4            | 81/2            | 14/15/15<br>ECUIVALENT<br>14/15/15   | 2188         | 17.5           | 2                             | 1.88               | 9       | 35%                | PULLED TO RECOVER CORE NO. 2. |
| 151 WK                  | 6       | HTC   | J22         |      | 517          | 124             | 16/16/18                             | 2205.5       | 239•5          | 55 <del>4</del>               | 53.12              | 163     | 3-3-I              | PULLED AT INTERMEDIATE        |
|                         |         |       |             |      |              |                 |                                      |              |                |                               |                    |         |                    | LOGGING PRINT.                |
| ZE 851                  | 7       | HTC   | <b>J</b> 22 |      | 517          | $12\frac{1}{4}$ | 16/16/18                             | 2445         | 159            | 394                           | 37.28              | 120     | 4-4-I              | POOH FOR CORE NO. 3.          |
| 2 <b>W691</b> 8         | CB 1RR  | CHRIS | RC4         |      | 4_           | 81/2            | EQUIVALENT<br>14/15/15               | 2597         | 5.1            | 3 <sup>3</sup> / <sub>4</sub> | 3.50               | 18      | 5%                 | PULLED DUE TO LOW ROP'S.      |
| HC 224                  | 8       | HTC   | J33         |      | 537          | 124             | 16/16/18                             | 2601.2       | 14.6           | 3 3 4                         | 3.52               | 10      | 1-5-I              | POCH FOR CORE NO. 4.          |
| 2W639                   | CB 2RR  | CHRIS | RC3         |      | 4            | 8 <u>1</u>      | EQUIVALENT<br>14/15/15               | 2616.7       | 18.5           | 34                            | 2.89               | 15      | 40%                | RECOVERED CORE NO. 4.         |
| 2W639                   | CB 2RR  | CHRIS | RC3         |      | 4            | 81/2            | EQUIVALENT<br>14/15/15<br>EQUIVALENT | 2635.2       | 17.8           | $5\frac{3}{4}$                | 6.71               | 26      | 80%                | RECOVERED CORE NO. 5.         |
| 2W6918                  | CB 1RR  | CHRIS | RC4         |      | 4            | 81/2            | 14/15/15                             | 2653         | 18.2           | 43/4                          | 4.45               | 24      | 60%                | RECOVERED CORE NO. 6.         |
| 371 SK                  | 9       | HTC   | J22         |      | 517          | 124             | 16/16/18                             | 2671.2       | 0.8            | 14                            | 0.10               | 0.3     | 2-2 <del>-1</del>  | REAMED RATHCLE.               |
| 2W6918                  | CB 1RR  | CHRIS | RC4         |      | 4            | 81/2            | EQUIVALENT<br>14/15/15<br>EQUIVALENT | 2672         | 18.5           | 5                             | 4.67               | 25      | 90%                | RECOVERED CORE NO. 7.         |
| 8 <b>1E1909</b>         | ¢B 3    | CHRIS | C20         |      | 4            | 81/2            | EQUIVALENT<br>14/14/14               | 2690.5       | 17.8           | 94                            | 8.86               | 40      | 30%                | RECOVERED CORE NO. 8.         |
| 0 <b>1</b> 9 BL         | 10      | HTC   | J33         | ,,,, | 537          | 124             | 16/16/18                             | 2708.3       | 68             | 16 <del>3</del>               | 15.72              | 48      | 3-4 <del>-1</del>  | REAMED RATHCLE. FULLED DUE    |
|                         |         |       |             |      |              |                 |                                      |              |                |                               |                    |         |                    | TO HIGH TORQUE.               |
| 0 <b>1</b> 5 B <b>L</b> | 11      | HTC   | J33         |      | 537          | 124             | 15/16/16                             | 2776.3       | 30.5           | 8 <del>3</del>                |                    | 23      | 1-1-I              | PULLED TO CUT CORE NO. 9.     |
| 8 <b>3</b> B0616        | CB 4    | CHRIS | RC6         |      | 4            | 81/2            | EQUIVALENT<br>14/15/15               | 2806.8       | 7.2            | $3\frac{3}{4}$                | 3•54               | 19      | 90%                | RECOVERED CORE NO. 9 PRE-     |

7520-487 (CL 1153)

LAB

COMPANY ESSO AUSTRALIA LTD.

WELL WIRRAH NO. 3

Sheet No. 2

|            |                                        | <del></del>                                                                        | 1                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sheet No. 2                                                                                                                                         |
|------------|----------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit No.    | Make                                   | Туре                                                                               | IADC<br>Code                                                                                                                         | Size **                                                                                                                                                                                  | Jets                                                                                                                                                                                                                       | Depth In m                                                                                                                                                                                                                                                                                                                                                                                                       | Hole<br>Made <sup>m</sup>                                                                                                                                                                                                                                                                                                                                             | ole Drilling On Bottom Adde M Time Hours Turns K Condition T B G                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Condition<br>T B G                                                                                                                                                                                                                                                                                                                              | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                     |
|            |                                        |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MATURELY DUE TO DECREASED                                                                                                                           |
|            |                                        | -                                                                                  |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | POPIS.                                                                                                                                              |
| RR 12      | HTC                                    | J44                                                                                | 617                                                                                                                                  | 124                                                                                                                                                                                      | 15/16/16                                                                                                                                                                                                                   | 2814                                                                                                                                                                                                                                                                                                                                                                                                             | 146.2                                                                                                                                                                                                                                                                                                                                                                 | $35\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                               | 33.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93                                                                                                                                                                                                                                                                                                                                              | 5 <b>-</b> 5-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PULLED AT DESIGNATED                                                                                                                                |
|            |                                        |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CASING POINT.                                                                                                                                       |
| 13         | HTC                                    | J7                                                                                 | 316                                                                                                                                  | 8 <u>1</u>                                                                                                                                                                               | 14/14/14                                                                                                                                                                                                                   | 2960•2                                                                                                                                                                                                                                                                                                                                                                                                           | 12.1                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                                                                                                                                                                                                              | 8 <del>-6-3</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | THIS SOFT FORMATION BIT                                                                                                                             |
|            |                                        |                                                                                    | -                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DRILLED THROUGH THE CEMENT                                                                                                                          |
| 14         | HTC                                    | J33                                                                                | 537                                                                                                                                  | 8 <u>1</u>                                                                                                                                                                               | 14/14/14                                                                                                                                                                                                                   | 2972•3                                                                                                                                                                                                                                                                                                                                                                                                           | <b>7</b> 3•5                                                                                                                                                                                                                                                                                                                                                          | 12½                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                              | 8 <b>-6-</b> §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PULLED DUE TO EXCESSIVE                                                                                                                             |
|            |                                        |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TORQUE.                                                                                                                                             |
| <b>1</b> 5 | HTC                                    | <b>J</b> 33                                                                        | 537                                                                                                                                  | 81/2                                                                                                                                                                                     | 14/14/14                                                                                                                                                                                                                   | 3045.8                                                                                                                                                                                                                                                                                                                                                                                                           | 45.8                                                                                                                                                                                                                                                                                                                                                                  | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                              | 8-6- <del>1</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PULLED DUE TO VERY LOW RATES                                                                                                                        |
|            |                                        |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF PENETRATION.                                                                                                                                     |
|            |                                        | J44                                                                                | 617                                                                                                                                  | 1                                                                                                                                                                                        |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.5                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                                                                                                                                                                                                                                                                                                                                              | 2-2-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PULLED TO CUT CORE NO. 10.                                                                                                                          |
| CB 3RR     | CHRIS                                  | C-20                                                                               | 4                                                                                                                                    | 8 <u>1</u>                                                                                                                                                                               | 14/14/14                                                                                                                                                                                                                   | 3116.1                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                              | 60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PULLED DUE TO VERY LOW RATES                                                                                                                        |
|            |                                        |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OF PENETRATION.                                                                                                                                     |
| 17         | HTC                                    | J44                                                                                | 617                                                                                                                                  | 8 <u>1</u>                                                                                                                                                                               | 14/14/14                                                                                                                                                                                                                   | 3117.4                                                                                                                                                                                                                                                                                                                                                                                                           | 26                                                                                                                                                                                                                                                                                                                                                                    | 81.                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                                                                                                                                                                                                                                                                                                                              | 2-2-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PULLED TO CUT CORE NO. 11.                                                                                                                          |
|            | CHRIS                                  | C-23                                                                               | 4                                                                                                                                    | 8글                                                                                                                                                                                       | 14/14/14                                                                                                                                                                                                                   | 3143•4                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                     | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                                                                                                                                                                                                                                                                                                                                            | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PULLED DUE TO VERY LOW ROP'S.                                                                                                                       |
| 18         | HTC                                    | J55                                                                                | 637                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                                                            | 3145 • 4                                                                                                                                                                                                                                                                                                                                                                                                         | 58.1                                                                                                                                                                                                                                                                                                                                                                  | $24\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70                                                                                                                                                                                                                                                                                                                                              | 8 <b>-4-</b> I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PULLED DUE TO HIGH TORQUE.                                                                                                                          |
| 19         | HTC                                    | J44                                                                                | 617                                                                                                                                  |                                                                                                                                                                                          |                                                                                                                                                                                                                            | 3203.5                                                                                                                                                                                                                                                                                                                                                                                                           | 22•4                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                                                                                                                                                                                                                                                              | 2-2-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PULLED DUE TO LOW ROP'S.                                                                                                                            |
| 20         | HTC                                    | J55                                                                                | 637                                                                                                                                  | 8 <u>1</u>                                                                                                                                                                               | 14/14/15                                                                                                                                                                                                                   | 3225•9                                                                                                                                                                                                                                                                                                                                                                                                           | 11.7                                                                                                                                                                                                                                                                                                                                                                  | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31                                                                                                                                                                                                                                                                                                                                              | 1-1-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PULLED DUE TO LOW ROP'S.                                                                                                                            |
| 21         | HTC                                    | J22                                                                                | 517                                                                                                                                  | 8 <u>1</u>                                                                                                                                                                               | 14/14/15                                                                                                                                                                                                                   | 3237.6                                                                                                                                                                                                                                                                                                                                                                                                           | 19.4                                                                                                                                                                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49                                                                                                                                                                                                                                                                                                                                              | 1-1-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PULLED TO LOG, AT T.D.                                                                                                                              |
|            |                                        |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |
|            |                                        |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |
|            |                                        |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |
|            |                                        |                                                                                    | _                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |
| ·          | ······································ |                                                                                    |                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                     |
|            | 13 14 15 16 CB 3RR 17 CB 5 18 19 20    | 13 HTC  14 HTC  15 HTC  16 HTC  18 HTC  17 HTC  CB 5 CHRIS  18 HTC  19 HTC  20 HTC | RR 12 HTC J44  13 HTC J7  14 HTC J33  15 HTC J44  CB 3RR CHRIS C-20  17 HTC J44  CB 5 CHRIS C-23  18 HTC J55  19 HTC J44  20 HTC J55 | RR 12 HTC J44 617  13 HTC J7 316  14 HTC J33 537  15 HTC J33 537  16 HTC J44 617  CB 3RR CHRIS C-20 4  17 HTC J44 617  CB 5 CHRIS C-23 4  18 HTC J55 637  19 HTC J44 617  20 HTC J55 637 | RR 12 HTC J44 617 12½  13 HTC J7 316 8½  14 HTC J33 537 8½  15 HTC J33 537 8½  16 HTC J44 617 8½  CB 3RR CHRIS C-20 4 8½  17 HTC J44 617 8½  CB 5 CHRIS C-23 4 8½  18 HTC J55 637 8½  19 HTC J44 617 8½  20 HTC J55 637 8½ | RR 12 HTC J44 617 12 15/16/16  13 HTC J7 316 8 1/2 14/14/14  14 HTC J33 537 8 1/2 14/14/14  15 HTC J44 617 8 1/2 14/14/14  16 HTC J44 617 8 1/2 14/14/14  17 HTC J44 617 8 1/2 14/14/14  18 HTC J55 637 8 1/2 14/14/14  19 HTC J44 617 8 1/2 14/14/14  20 HTC J55 637 8 1/2 14/14/15 | RR 12 HTC J44 617 12½ 15/16/16 2814  13 HTC J7 316 8½ 14/14/14 2960.2  14 HTC J33 537 8½ 14/14/14 3045.8  16 HTC J44 617 8½ 14/14/14 3091.6  CB 3RR CHRIS C-20 4 8½ 14/14/14 3116.1  17 HTC J44 617 8½ 14/14/14 3117.4  CB 5 CHRIS C-23 4 8½ 14/14/14 3143.4  18 HTC J55 637 8½ 14/14/14 3145.4  19 HTC J44 617 8½ 14/14/15 3203.5  20 HTC J55 637 8½ 14/14/15 3203.5 | RR 12 HTC J44 617 12 14/14/14 2960.2 12.1  13 HTC J33 537 8 14/14/14 2972.3 73.5  15 HTC J44 617 8 14/14/14 3091.6 24.5  CB 3RR CHRIS C-20 4 8 12/14/14/14 3116.1 1.3  17 HTC J44 617 8 14/14/14 3117.4 26  CB 5 CHRIS C-23 4 8 12/14/14/14 3143.4 2  18 HTC J44 617 8 12/14/14/14 3143.4 2  18 HTC J44 617 8 12/14/14/14 3143.4 2  18 HTC J55 637 8 12/14/14/14 3143.4 2  20 HTC J55 637 8 12/14/14/15 3203.5 22.4  20 HTC J55 637 8 12/14/14/15 3203.5 22.4 | RR 12 HTC J44 617 12½ 15/16/16 2814 146.2 35¾  13 HTC J7 316 8½ 14/14/14 2960.2 12.1 3  14 HTC J33 537 8½ 14/14/14 3045.8 45.8 11⅓  15 HTC J44 617 8½ 14/14/14 3091.6 24.5 12  CB 3RR CHRI3 C-20 4 8½ 14/14/14 3116.1 1.3 4  17 HTC J44 617 8½ 14/14/14 3117.4 26 8⅓  CB 5 CHRIS C-23 4 8½ 14/14/14 3143.4 2 4⅓  18 HTC J55 637 8½ 14/14/14 3143.4 2 4⅓  19 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾  19 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾  19 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾  20 HTC J55 637 8½ 14/14/15 3203.5 22.4 11  20 HTC J22 517 8½ 14/14/15 3237.6 19.4 18 | RR 12 HTC J44 617 8 14/14/14 3091.6 24.5 12 10.96  BR 3RR CHRIS C-20 4 8 14/14/14 3117.4 26 8 7.72  CB 5 CHRIS C-23 4 8 14/14/14 3143.4 2 44/14 4.10  18 HTC J44 617 8 14/14/14 3143.4 2 44/14 4.10  18 HTC J55 637 8 12/14/14/15 3237.6 19.4 18 16.44  10 12 14/14/15 3237.6 19.4 18 16.44  11 HTC J22 517 8 1/2 14/14/15 3237.6 19.4 18 16.44 | RR 12 HTC J44 617 8½ 14/14/14 3045.8 45.8 11½ 10.32 31  16 HTC J44 617 8½ 14/14/14 3091.6 24.5 12 10.96 35  CB 3RR CHRIS C-20 4 8½ 14/14/14 3115.4 26 8½ 7.72 23  CB 5 CHRIS C-23 4 8½ 14/14/14 3145.4 58.1 24¾ 4.10 18.5  18 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾ 4.10 18.5  18 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾ 23.07 70  19 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾ 23.07 70  19 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾ 23.07 70  19 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾ 23.07 70  19 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾ 23.07 70  19 HTC J44 617 8½ 14/14/14 3145.4 58.1 24¾ 23.07 70  19 HTC J44 617 8½ 14/14/15 3203.5 22.4 11 10.02 32  20 HTC J55 637 8½ 14/14/15 3237.6 19.4 18 16.44 49 | RR 12 HTC J44 617 8 14/14/14 3045.8 45.8 112 10.96 35 2-2-I CB 3RR CHRIS C-20 4 8 12/14/14 3145.4 28.1 24.2 3.00 3.06 3.06 3.06 3.06 3.06 3.06 3.06 |

7520-487 (CL 1153)

LAB

COMPANY ESSO AUSTRALIA LTD.
WELL WIRRAH NO. 3

Sheet No. 1

|                 |            |          |             | <u> </u> |              |                 |              |                                 |                       | -              |                |                               |                    |             |                | Sheet                 | : No.1                  |
|-----------------|------------|----------|-------------|----------|--------------|-----------------|--------------|---------------------------------|-----------------------|----------------|----------------|-------------------------------|--------------------|-------------|----------------|-----------------------|-------------------------|
| s/nos.          | Bit No.    | Make     | Type        |          | IADC<br>Code | Size 11         | Cost A\$     | Jets                            | Depth In <sub>M</sub> | Depth Out      | Hole m<br>Made | Drilling<br>Time              | On Bottom<br>Hours | TurnsK      | Average<br>ROP | Average<br>Cost/m A\$ | Condition<br>T B G      |
| LJ 321          | RR 1       | HTC      | osc         | 3AJ      | 111          | 26              | 0            | 20/20/20                        | 70                    | 208.5          | 138.5          | 5                             | 3.13               | 15          | 44.2           | 148.45                | 2-2 <b>-</b> I          |
| 047 XR          | 1          | HTC      | osc         | 3AJ      | 111          | 17½             | 4857         | 18/18/18                        | 208.5                 | 870            | 661.5          | 22 <del>1</del>               | 15.91              | 141         | 41.6           | 115.61                | 2 <b>-1-</b> I          |
| 820 LS          | 2          | HTC      | J1          | ····     | 116          | 124             | 2694         | 18/18/18                        | 870                   | 951            | 81             | $4\frac{1}{4}$                | 2.77               | 17          | 29.2           | 338.49                | 2 <b>-</b> 2-I          |
| 819 LS          | 3          | HTC      | J1          |          | 116          | 124             | 2 <b>694</b> | 18/18/18                        | 951                   | 1598           | 647            | $37\frac{3}{4}$               | 31.52              | 217         | 20.5           | 212.56                | 6-6-1                   |
| 921 HS          | 4          | HTC      | J22         |          | 517          | 124             | 8516         | 16/16/18                        | 1598                  | 2016           | 418            | 49 <del>3</del>               | 44•49              | <b>15</b> 6 | 9•4            | 464.12                | 4-4-1                   |
| 269 HK          | 5          | HTC      | J22         |          | 517          | 12 <del>1</del> | 8516         | 16/16/18                        | 2016                  | 2170           | 154            | $22\frac{1}{2}$               | 20.48              | 78          | 7•5            | 697.48                | 2 <b>-</b> 2 <b>-</b> I |
| <b>2W691</b> 8  | CB 1RR     | CHRIS    | RC4         |          | 4            | 8 <u>1</u>      | 0            | EQUIVALENT<br>14/15/15          | 2170                  | 2188           | 18             | $4\frac{3}{4}$                | 4.64               | 20          | 3.8            | 2359.11               | 30%                     |
| <b>2W691</b> 8  | CB 1RR     | CHRIS    | RC4         |          | 4            | 8 <del>1</del>  | 0            | EQUIVALENT<br>14/15/15          | 2188                  | 2205.5         | 17.5           | 2                             | 1.88               | 9           | 9•3            | 1790.52               | 35%                     |
| 151 WK          | 6          | HTC      | J22         |          | 517          | 124             | 8516         | 16/16/18                        | 2205.5                | 2445           | 239•5          | 55 <del>3</del>               | 53.12              | 163         | 4.5            | 955•34                | 3-3-I                   |
| ZE 851          | 7          | HTC      | J22         |          | 517          | 124             | 8516         | 16/16/18                        | 2445                  | 2597           | 152            | 39 <del>3</del>               | 37 <b>.2</b> 8     | 120         | 4.1            | 1131.92               | 4-4-I                   |
| 2W6918          | CB 1RR     | CHRIS    | RC4         |          | 4            | 8 <u>1</u>      | 0            | EQUIVALENT<br>14/15/15          | 2597                  | 2602.1         | 5.1            | 3 <del>3</del>                | 3.50               | 18          | 1.5            | 7876.86               |                         |
| HC 224          | 8          | HTC      | J33         |          | 537          | 124             | 7774         | 16/16/18                        | 2602.1                | 2616.7         | 14.6           | $3\frac{3}{4}$                | 3•52               | 10          | 4.2            | 3288.40               | 1-5-I                   |
| 2W639           | CB 2RR     | CHRIS    | RC3         |          | 4            | $8\frac{1}{2}$  | 0            | EQUIVALENT<br>14/15/15          | 2616.7                | 2635.2         | 18•5           | 34                            | 2.89               | 15          | 6.4            | 2051.04               | 40%                     |
| 2W639           | CB 2RR     | CHRIS    | RC3         |          | 4            | 8 <u>1</u>      | 0            | EQUI <b>V</b> ALENT<br>14/15/15 | 2635.2                | 2653           | 17.8           | 5 <del>3</del>                | 6.72               | 36          | 2.6            | 2979•05               | 80%                     |
| 2 <b>W</b> 6918 | CB 1RR     | CHRIS    | RC4         |          | 4            | 8 <u>1</u>      | 0            | EQUIVALENT<br>14/15/15          | 2653                  | 2671.2         | 18.2           | 4 <del>3</del>                | 4•45               | 24          | 4.1            | 2417.95               | 60%                     |
| 371 SK          | 9          | HTC      | J22         |          | 517          | 124             | 8516         | 16/16/18                        | 2671.2                | 2672           | 8.0            | 14                            | 0.10               | 0.3         | 8.9            | 545,293               | 2-2-1                   |
| 2 <b>W691</b> 8 | CB 1RR     |          | RC4         |          | 4            | 8 <u>1</u>      | 0            | EQUIVALENT<br>14/15/15          | 2672                  | 2690.5         | 18.5           | 5                             | 4.67               | 25          | 4.0            | 2422.16               | 90%                     |
| 81E1909         | CB 3       | CHRIS    | C20         |          | 4            | 81/2            | 16500        | EQUIVALENT<br>14/14/14          | 2690.5                | 2708.3         | 17.8           | 9 <del>1</del>                | 8.86               | 40          | 2.0            | 3397•59               | 30%                     |
| 019 BL          | 10         | HTC      | J33         |          |              | 81/2            | 7774         | 16/16/18                        | 2708.3                | 2776.3         | 68             | 16 <del>3</del>               | 15.72              | 48          | 4•3            | 1388.23               | 3-4 <del>-1</del>       |
| 015 BL          | 11         | HTC      | J33         |          | 537          | $12\frac{1}{4}$ | 7774         | 15/16/16                        | 2776.3                | 2806.8         | 30.5           | 8 <u>3</u>                    | 7.68               | 23          | 4.0            | 2132.37               | 1-1-I                   |
| 8 3 в 0 6 1 6   | CB 4       | CHRIS    | RC6         |          | 4            | 8 <u>1</u>      | 18300        | EQUIVALENT<br>14/15/15          | 2806.8                | 2814           | 7.2            | 3 <sup>3</sup> / <sub>4</sub> | 3•54               | 19          |                | 8395.01               | 90%                     |
| 073 NK          | 12         | HTC      | J44         |          | 617          | 12 <u>4</u>     | 6844         | 15/16/16                        | 2814                  | 2960.2         | 146.2          | 35 <del>3</del>               | 33.08              | 93          | 4.4            | 1080.46               | 5-5-I                   |
| 484 HK          | 13         | HTC      | J <b>7</b>  |          | 316          | 8 <u>1</u>      | 1494         | 14/14/14                        | 2960.2                |                | 6.1            | 3                             | 2.63               | 11          | 4.6            | 3422•34               | 8-6-3                   |
| 225 MS          | 14         | HTC      | <b>J</b> 33 |          | 537          | 8 <u>1</u>      | 4503         | 14/14/14                        | 2972•3                |                | 73•5           | 12 <del>1</del>               | 10.79              | 32          | 6.8            |                       | 8-6-5                   |
|                 | 7520-486 ( | CL 1152) |             |          |              |                 |              |                                 |                       | باست خبر کیا د |                |                               |                    |             | <u> </u>       | 1017013               | C-0-6                   |

7520-486 (CL 1152)

BIT RECORD

COMPANY ESSO AUSTRALIA LTD.
WELL WIRRAL NC. 3

Sheet No. 2

| s/nos.  |
|---------|
| 226 MS  |
| TL 233  |
| 81E1909 |
| TL 236  |
| 81F0333 |
| 839 MS  |
| TL 238  |
| 838 MS  |
| 770 SS  |

| 10 W 23 C |       | WELL |              |                |          |                        |           |           |                           |                  |                    |         |                |                          | . 110              |
|-----------|-------|------|--------------|----------------|----------|------------------------|-----------|-----------|---------------------------|------------------|--------------------|---------|----------------|--------------------------|--------------------|
| Bit No.   | Make  | Туре | IADC<br>Code | Size 11        | Cost A\$ | Jets                   | Depth Inm | Depth Out | Hole<br>Made <sup>m</sup> | Drilling<br>Time | On Bottom<br>Hours | Turns K | Average<br>ROP | Average<br>Cost/III A:\$ | Condition<br>T B G |
| RR 15     | HTC   | J33  | 537          | 8 <del>1</del> | 4503     | 14/14/14               | 3045.8    | 3091.6    | 45.8                      | 114              | 10.32              | 31      | 4•4            | 1606.96                  |                    |
| 16        | HTC   | J44  | 617          | 81/2           | 4347     | 14/14/14               |           | 3116.1    | 24•5                      | 12               | 10.96              | 35      | 2.2            | 3095.80                  | 2-2-I              |
| CB 3RR    | CHRIS | C-20 | 4            | 81/2           | 0        | EQUIVALENT<br>14/14/14 | 3116.1    | 3117.4    | 1.3                       | 4                | 3•56               | 16      | 0.4            | 34160.25                 | 60%                |
| 17        | HTC   | J44  | 617          | 81/2           | 4347     | 14/14/14               | 3117.4    | 3143•4    | 26.0                      | 8 <u>1</u>       | 7•72               | 23      | 3•4            | 2473.06                  | 2 <b>-2-I</b>      |
| CB 5      | CHRIS | C-23 | 4            | 81/2           | 19000    | EQUIVALENT<br>14/14/14 | 3143•4    | 3145•4    | 2.0                       | 41/4             | 4.10               | 18.5    | 0.5            | 32866.71                 | 10%                |
| 18        | HTC   | J55  | 637          | 81/2           | 4350     | 14/14/14               | 3145•4    | 3203•5    | 58.1                      | 24 <del>3</del>  | 23.07              | 70      | 2•5            | 2071.84                  | 8 <b>-4-I</b>      |
| 19        | HTC   | J44  | 617          | 81/2           | 4347     | 14/14/15               | 3203.5    | 3225•9    | 22•4                      | 11               | 10.22              | 32      | 2.2            | 3295.00                  | 2 <b>-2-I</b>      |
| 20        | HTC   | J55  | 637          | 81/2           | 4350     | 14/14/15               | 3225•9    | 3237.6    | 11.7                      | 11출              | 10.04              | 31      | 1.2            | 6252•45                  | 1-1-I              |
| 21        | HTC   | J22  | 517          | 8 <u>1</u>     | 4139     | 14/14/15               | 3237.6    | 3257      | 19.4                      | 18               | 16.44              | 49      | 1.2            | 4964.72                  | 1-1-I              |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                | -                        |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                | -                        |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
|           |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |
| 7500 400  |       |      |              |                |          |                        |           |           |                           |                  |                    |         |                |                          |                    |

## MUD INFORMATION SHEETS

DEPTH . . . . . . . Metres

MUD WEIGHT . . . . . Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I.seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. . . . . Pounds/100 square feet

GEL : INITIAL/10 min . Pounds/100 square feet

FILTRATE . . . . . . A.P.I. c.c.

CAKE THICKNESS . . . Thirty-seconds of an inch

SALINITY: Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . Percentage

## MUD INFORMATION SHEET

COMPANY ESSO AUSTRALIA LTD.
WELL WIRRAH NO. 3

Sheet No. 1

| f                      |          |          |                   |           |          |          |                  |
|------------------------|----------|----------|-------------------|-----------|----------|----------|------------------|
| DEPTH (M)              |          |          | 870               |           | 1020     | 1580     | 1792             |
| DATE                   | 27/11/83 | 28/11/83 | 29/11/ <b>8</b> 3 | 30/11/83  | 01/12/83 | 02/12/83 | 1792<br>03/12/83 |
| TIME                   |          |          | 14:00             |           | 16:00    | 23:20    | 23:00            |
| WEIGHT                 | S        | S        | 9.0               | NO        | 8.8      | 9.2      | 9.2              |
| FUNNEL VISCOSITY       | E        | E        | 38                |           | 28       | 35       | 43               |
| PV/YP                  | A        | A        | <b>6/2</b> 2      | MUD       | 3/7      | 5/11     | 8/12             |
| N/K                    | W        | W        | .28/4.89          |           | •38/•94  | •39/1•39 | •49/•97          |
| GEL: INITIAL/10 MIN    | A        | A        | 10/21             | CHECK     | 6/7      | 7/20     | 9/14             |
| рH                     | T        | T        | 9.5               |           | 10.0     | 10.0     | 10.6             |
| FILTRATE: API/API HTHP | E        | E        | N.C.              | PERFORMED | N.C.     | 10.0/29  | 6.4/20           |
| CAKE                   | R        | R        | 3                 |           | -        | 2        | 1                |
| SALINITY               |          |          | 22,000            |           | 20,000   | 20,000   | 19,000           |
| SAND                   |          |          | TR                |           | 0        | 0        | TR               |
| SOLIDS                 |          |          | 4                 |           | 3        | 6        | 6                |
| OIL                    |          |          | ***               |           | 0        | 0        | 0                |
| NITRATES (PPM)         |          |          |                   |           | 0        | 110      | 132              |
|                        |          |          |                   |           |          |          |                  |
|                        |          |          |                   |           |          |          |                  |
|                        |          |          |                   |           |          |          |                  |

REMARKS:

SPUD 26" HOLE

17½" HOLE

13-3/8" CASING

DRILLED 124" HOLE

DRILLED 120 HOLE

|                        |          |              |          |         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |          |
|------------------------|----------|--------------|----------|---------|-----------------------------------------|----------|----------|
| DEPTH (m)              | 1958     | 205 <b>9</b> | 2170     | 2200    | 2231                                    | 2349     | 2433     |
| DATE                   | 04/12/83 | 05/12/83     | 06/12/83 |         | 08/12/83                                | 09/12/83 | 10/12/83 |
| TIME                   | 22:32    | 22:53        | 18':00'  | 23:32   | 23:30                                   | 22:30    | 22':20   |
| WEIGHT                 | 9•2      | 9•3          | 9.6      | 9.6+    | 9.6                                     | 9•7      | 9.6+     |
| FUNNEL VISCOSITY       | 43       | 40           | 40       | 40      | 41                                      | 42       | 40       |
| PV/YP                  | 8/19     | 9/15         | 11/16    | 10/14   | 10/16                                   | 12/14    | 13/12    |
| N/K                    | •37/2.62 | .46/1.37     | •49/1•25 | 50/1.05 | •47/1•39                                | .55/.86  | .60/.58  |
| GEL: INITIAL/10 MIN    | 11/22    | 10/26        | 6/25     | 7/25    | 7/28                                    | 6/24     | 4/21     |
| pH                     | 10.7     | 10.8         | 10.6     | 11.1    | 10.0                                    | 11.1     | 10.3     |
| FILTRATE: API/API HTHP | 6.4/13.5 | 7.2/15       | 6.0/14   | 6.2/15  | 6.4/14                                  | 6.7/15   | 6.5/15   |
| CAKE                   | 1        | 1            | 1        | 1       | 1                                       | 1        | 1        |
| SALINITY               | 17,000   | 18,000       | 17,000   | 17,000  | 18,000                                  | 20,000   | 20,000   |
| SAND                   | TR       | TR           | TR       | TR      | TR                                      | TR       | TR       |
| SOLIDS                 | 6        | 6            | 9        | 8       | 8                                       | 9        | 9        |
| OIL                    | 0        | 0            | 0        | 0       | 0                                       | 0        | 0        |
| NITRATES (PPM)         | 44       | 66           | 66       | 220     | 250                                     | 250      | 250      |
|                        |          |              |          |         |                                         |          | _        |
|                        |          |              |          |         |                                         |          |          |
|                        |          |              |          |         |                                         |          |          |

REMARKS:

DRILLED 124" HOLE

CUT CORES NO. 1

AND 2

### MUD INFORMATION SHEET

COMPANY ESSO AUSTRALIA LTD.
WELL WIRRAH NO. 3

Sheet No. 2

| DEPTH (M)              |                  | 2445     | 2464     | <b>255</b> 8 | 2598             | 2616         | 2643     |
|------------------------|------------------|----------|----------|--------------|------------------|--------------|----------|
| DATE                   | <b>11/</b> 12/83 | 12/12/83 | 13/12/83 | 14/12/83     | <b>15/12/8</b> 3 | 16/12/83     | 17/12/83 |
| TIME                   |                  | 22:00    | 21:00    | 21:00        | 21:30            | 20:00        | 18:30    |
| WEIGHT                 |                  | 9.6      | 9.6      | 9•5          | 9.6              | 9•6          | 9.6      |
| FUNNEL VISCOSITY       |                  | 43       | 42       | 48           | 45               | 44           | 42       |
| PV/YP                  | NO               | 10/15    | 13/17    | 12/29        | 12/24            | 11/26        | 12/18    |
| N/K                    |                  | •49/1.21 | •52/1•18 | •37/4.08     | •41/2•71         | .36/3.56     | .49/1.46 |
| GEL: INITIAL/10 MIN    | RELEVANT         | 6/33     | 10/25    | 15/38        | 18/32            | 16/37        | 12/33    |
| pH                     |                  | 10.1     | 10.2     | 10.7         | 10.3             | 10.4         | 10.6     |
| FILTRATE: API/API HTHP | MUD TEST         | 5.4/16.3 | 9.2/21.4 | 7.5/17.8     | 6.8/18.2         | 6.9/17.0     | 7.3/17.6 |
| CAKE                   |                  | 1        | 1.5      | 1.5          | 1                | 1            | 1        |
| SALINITY (PPM)         | PERFORMED        | 19,000   | 21,000   | 21,000       | 21,000           | 22,000<br>TR | 22,000   |
| SAND                   |                  | TR       | TR       | TR           | TR               | TR           | TR       |
| SOLIDS                 |                  | 9        | 9        | 9            | 9                | 9            | 9        |
| OIL                    |                  | 0        | 0        | 0            | _                |              | -        |
| NITRATES (PPM)         |                  | 220      | 240      | 200          | 240              | 240          | 200      |
|                        |                  |          |          |              |                  |              |          |
|                        |                  |          |          |              |                  |              |          |
|                        |                  |          |          |              |                  |              |          |
|                        |                  |          |          |              |                  |              | 1        |

REMARKS:

LOGGING

DRILLED 124" HOLE

CORE 3

CORE 4 CORES

| DEPTH (M)              | 2661     | 267 <b>2</b> | 2698     | 2708     | 2776     |          |          |
|------------------------|----------|--------------|----------|----------|----------|----------|----------|
| DATE                   | 18/12/83 | 19/12/83     | 20/12/83 | 21/12/83 | 22/12/83 | 23/12/83 | 24/12/83 |
| TIME                   | 11:00    | 13:00        | 22:00    | 16:00    | 22:30    |          |          |
| WEIGHT                 | 9•7      | 9.6          | 9•7      | 9.5      | 9•5      |          |          |
| FUNNEL VISCOSITY       | 48       | 41           | 50       | 42       | 43       |          |          |
| PV/YP                  | 12/23    | 12/18        | 12/22    | 11/20    | 13/20    |          |          |
| N/K                    | •43/2•47 | .49/1.46     | •44/2•24 | •44/2.02 | .48/1.67 |          |          |
| GEL: INITIAL/10 MIN    | 15/36    | 15/26        | 13/34    | 12/32    | 9/20     |          |          |
| pH                     | 10.5     | 10.5         | 10.5     | 10.5     | 10.5     |          |          |
| FILTRATE: API/API HTHP | 7.0/12.9 | 8.2/19.8     | 7.9/19.0 | 7.5/16.9 | 6.8/17.1 |          |          |
| CAKE (MM)              | 1        | 1.5          | 1.5      | 1        | 1        |          |          |
| SALINITY (PPM)         | 22,000   | 22,000       | 22,000   | 22,000   | 24,000   |          |          |
| SAND                   | 9.2      | TR           | 0.25     | TR       | TR       |          |          |
| SOLIDS                 | 9        | 9            | 9        | 9        | 9        |          |          |
| OIL                    | _        | _            | -        | _        |          |          |          |
| NITRATES (PPM)         | 220      |              | 220      | 210      | 240      |          |          |
|                        |          |              |          |          |          |          |          |
|                        |          |              |          |          |          |          |          |
|                        |          |              |          |          |          |          |          |
|                        |          |              |          | ·····    |          | <u></u>  |          |

REMARKS:

CORE 6 REAMING RATHOLE

CORE REAM

DRILLED

LOGGING

7 & 8 RATHOLE 12<sup>1</sup>4" HOLE

|                                                                                                                                              |          |               |               |               | MUD IN     | IFORMATIO       | ON SHEET |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|---------------|---------------|------------|-----------------|----------|--|--|
| 1/ 1 // 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /                                                                                                      | MPANY_ES | SO AUSTRAI    |               |               |            | She             | eet No3_ |  |  |
| DEPTH (M)                                                                                                                                    |          | 2776          | 2776          | 2776          | 2776       | 2806            | 2844     |  |  |
| DATE                                                                                                                                         | 25/12/83 |               | 27/12/83      | 28/12/83      |            | 30/12/83        | 21/12/83 |  |  |
|                                                                                                                                              | 2), (2)  | 23:00         | 16:30         | 23:00         | 22:00      | 21:00           | 22:00    |  |  |
| TIME                                                                                                                                         |          | 9.6+          | 9.6+          | 9.6+          | 9.6+       | 9.6             | 9.6      |  |  |
| WEIGHT                                                                                                                                       |          |               |               |               |            |                 |          |  |  |
| FUNNEL VISCOSITY                                                                                                                             |          | 48            | 50            | 48            | 49         | 44              | 47       |  |  |
| PV/YP                                                                                                                                        |          | 12/18         | 12/20         | 12/18         | 12/19      | 10/18           | 12/18    |  |  |
| N/K                                                                                                                                          |          |               | •46/1.83      | •49/1•46      |            | •44/1.80        | •49/1•46 |  |  |
| GEL: INITIAL/10 MIN                                                                                                                          |          | 11/25         | 8/22          | 9/22          | 8/20       | 8/16            | 14/30    |  |  |
| рН                                                                                                                                           |          | 9.8           | 9.8           | 10.1          | 10.0       | 10.3            | 10.2     |  |  |
| FILTRATE: API/API HTHP                                                                                                                       |          | 9/23.2        | 7.8/20.1      | 8.2/21.0      | 8.0/21.2   | 7.4/18.4        | 7.6/18.6 |  |  |
| CAKE                                                                                                                                         |          | 1             | 1             | 1             | 1          | 1               | 1        |  |  |
| SALINITY                                                                                                                                     |          | 16,000        | 16,000        | 16,000        | 16,000     | 16,000          | 16,000   |  |  |
| SAND                                                                                                                                         |          | $\frac{1}{4}$ | 4             | TR            | TR         | TR              | TR       |  |  |
|                                                                                                                                              |          | 9             | 9             | 9             | 9          | 9               | 9        |  |  |
| SOLIDS                                                                                                                                       |          |               |               |               | 0          |                 | 0        |  |  |
| OIL                                                                                                                                          |          | 0             | 0             | 0             |            | 0               |          |  |  |
| NITRATES (PPM)                                                                                                                               |          | 120           | 160           | 140           | 120        | 150             | 200      |  |  |
|                                                                                                                                              |          |               |               |               |            |                 |          |  |  |
|                                                                                                                                              |          |               |               |               |            |                 |          |  |  |
| REMARKS:                                                                                                                                     |          |               | WIPER<br>TRIP | WIPER<br>TRIP |            | DRILLED<br>HOLE | 124"     |  |  |
|                                                                                                                                              |          | LOGGII        | NG            |               | <b>———</b> |                 | UT CORE  |  |  |
| DEPTH (M)                                                                                                                                    | 2940     | 2960          | 2960          | 2966          | 2990       | 3093            | 3116     |  |  |
| DATE                                                                                                                                         | 01/01/84 | 02/01/84      | 03/01/84      | 07/01/84      | 08/01/84   | 09/01/84        | 10/01/84 |  |  |
| TIME                                                                                                                                         | 21:00    | 08:00         | 16:30         | 11:30         | 04:00      | 23:00           | 22:00    |  |  |
| WEIGHT                                                                                                                                       | 9.6      | 9.6           | 9.6           | 9•5+          | 9•5        | 10.1            | 9.9      |  |  |
| FUNNEL VISCOSITY                                                                                                                             | 48       | 48            | 49            | 42            | 47         | 46              | 45       |  |  |
| PV/YP                                                                                                                                        | 11/22    | 11/20         | 10/19         | 8/16          | 10/16      | 15/15           | 12/18    |  |  |
| N/K                                                                                                                                          | •41/2•48 | 11/2.02       | •43/2.02      | •41/1.81      | 11/1.57    | •58/0•78        | •49/1•46 |  |  |
|                                                                                                                                              | 15/35    | 16/36         | 14/32         | 8/16          | 6/22       | 8/16            | 14/29    |  |  |
| GEL: INITIAL/10 MIN                                                                                                                          |          |               |               | 11.1          | 11.1       | 10.7            |          |  |  |
| pH                                                                                                                                           | 10.4     | 10.3          | 10.2          |               |            |                 | 10.7     |  |  |
| FILTRATE: API/API HTHP                                                                                                                       | 8.2/19.6 |               | 8.4/20.0      |               | 6.0/16.8   |                 | 8.1/18.2 |  |  |
| CAKE                                                                                                                                         | 1        | 1             | 1             | 3             | 1          | 1               | 1        |  |  |
| SALINITY                                                                                                                                     | 16,000   | 16,000        | 16,000        | 15,000        | 15,000     | 16,000          | 16,000   |  |  |
| SAND                                                                                                                                         | TR       | TR            | TR            | TR            | TR         | TR              | TR       |  |  |
| SOLIDS                                                                                                                                       | 9        | 9             | 9             | 9             | 9          | 11              | 10       |  |  |
| OIL                                                                                                                                          | Ó        | 0             | 0             | 0             | 0          | 0               | 0        |  |  |
| NITRATES (PPM)                                                                                                                               | 150      | 160           | 150           | 110           | 160        | 160             | 180      |  |  |
|                                                                                                                                              |          |               |               |               |            |                 |          |  |  |
| REMARKS:  DRILLED LOGGED FROM 2-4  12½" JANUARY 1984;  HOLE SET 9-5/8" DRILLED 8½" HOLE  CASING AND CEMENT  SAME, BETWEEN  5-6 JANUARY 1984. |          |               |               |               |            |                 |          |  |  |

## MUD INFORMATION SHEET

COMPANY ESSO AUSTRALIA LTD.
WELL WIRRAH NO. 3

Sheet No. 4

| DEPTH (m)              | 3143     | 3145             | 3151     | 3193        | 3217       | 3237     | 3251     |
|------------------------|----------|------------------|----------|-------------|------------|----------|----------|
| DATE                   | 11/01/84 | <b>1</b> 2/01/84 |          | 13/01/84    | 15/01/84   | 16/01/84 | 17/01/84 |
| TIME                   | 22:30    | 13:30            | 04:00    | 23:00       | 10:30      | 22:00    | 20:00    |
| WEIGHT                 | 10.3     | 10•5             | 10.6     | 12.1        | 12.2       | 12.3     | 12•3     |
| FUNNEL VISCOSITY       | 51       | <b>4</b> 8       | 49       | 58          | 48         | 52       | 52       |
| PV/YP                  | 11/24    | <b>1</b> 5/25    | 15/25    | 22/29       | 18/34      | 17/25    | 20/35    |
| N/K                    | •39/3.00 | •46/2•28         | •46/2•28 | •52/2•03    | •43/3•59   | •49/1•98 | •45/3•38 |
| GEL: INITIAL/10 MIN    | 19/25    | 20/28            | 19/32    | 21/40       | 21/38      | 16/29    | 21/39    |
| рH                     | 10.9     | 11.0             | 10.9     | 10.2        | 10.4       | 10.4     | 10.4     |
| FILTRATE: API/API HTHP | 8/18     | 9/19             | 8/17     | <b>-</b> /8 | 7/17       | 6/16     | 6/16     |
| CAKE                   | 2        | 2                | 2        | 2           | 2          | 2        | 2        |
| SALINITY               | 16,000   | 16,000           | 16,000   | 16,000      | 16,000     | 16,000   | 16,000   |
| SAND                   | 0.25     | TR               | TR       | 0.25        | 0.25       | 0.25     | 0.25     |
| SOLIDS                 | 12       | 13               | 13       | 25          | 2 <b>2</b> | 21       | 20       |
| OIL                    | _        | -                | _        | -           | _          | _        | -        |
| NITRATES (PPM)         | 200      | 160              | 160      | 180         | 200        | 200      | 200      |
|                        |          |                  |          |             |            |          |          |
|                        |          |                  |          |             |            |          |          |
|                        |          |                  |          |             |            |          |          |

REMARKS:

CUT CORE NO. 19

DRILLED 81 HOLE

LOGGING

CUT CORE NO. 11

|                        |          |                  |          | <br>            | <br> |
|------------------------|----------|------------------|----------|-----------------|------|
| DEPTH (m)              | 3257     | 325,7            | 3257     |                 |      |
| DATE                   | 18/01/84 | <b>20/</b> 01/84 | 22/01/84 |                 |      |
| TIME                   | 18:00    | 14:00            | 14:00    |                 |      |
| WEIGHT                 | 12.3     | 12•3             | 12.4     |                 |      |
| FUNNEL VISCOSITY       | 50       | 48 .             | 48       |                 |      |
| PV/YP                  | 19/34    | 18/31            | 17/31    |                 |      |
| N/K                    | •44/3•37 | •45/2•94         |          |                 |      |
| GEL: INITIAL/10 MIN    | 20/36    | 15/35            | 16/36    |                 |      |
| pН                     | 10.3     | 10.2             | 10.7     |                 |      |
| FILTRATE: API/API HTHP | 6/16     | 6/16             | 6/18     |                 | <br> |
| CAKE                   | 2        | 2                | 2        |                 |      |
| SALINITY               | 16,000   | 16,000           | 16,000   |                 |      |
| SAND                   | 0.25     | 0.25             | 0.25     |                 |      |
| SOLIDS                 | 20       | 20               | 20       |                 |      |
| OIL                    | -        | -                |          |                 |      |
| NITRATES (PPM)         | 200      | 200              | 180      |                 |      |
|                        |          |                  |          |                 |      |
|                        |          |                  |          |                 |      |
|                        |          |                  |          |                 |      |
|                        | <u> </u> |                  |          | <br><del></del> | <br> |

REMARKS:

LOGGING AT T.D.

MUD WEIGHT WAS REDUCED TO 9.3 PPG AFTER PLUGGING BACK, PRIOR TO THE PRODUCTION TESTING. R.F.T. DATA SHEETS

|                          |              | DAMA 011               |               | n CANOLTES NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|--------------------------|--------------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------|
| CORE LABORATORIES        | к. Г.        | DATA SII               | EE'           | Γ - SAMPLING DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - T      |                                          |
| COMPANY :                | LTD.         |                        |               | : WIRRAH NO. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | LAB                                      |
|                          | <i></i>      |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | []       |                                          |
| CHAMBER No.              | 1            | 2                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| CHAMBER CAPACITY (LITRES | 22.7         | 10.4                   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| CHOKE SIZE (INCHES)      | 0.020        | 0.020                  |               | OIL PROPERTIES CONT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                          |
| SEAT No.                 | 3/28         | 3/32                   |               | ODOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                          |
| DEPTH (M) (from RKB)     | 2349.2       | 2142.0                 |               | POUR POINT (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26       | 26.5                                     |
| A RECORDING TIMES        |              | ,                      |               | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                          |
| TOOL SET                 | 17:34:1      |                        |               | (c)WATER PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                          |
| PRETEST OPEN             | 17:34:3      | 18:29:3                | 0             | RESISTIVITY ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .298@7   | 71 <sup>0</sup> F .218.71 <sup>0</sup> F |
| TIME OPEN                | 47.76 6      | 40.74.4                |               | Cl (frm. resis.)(PFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                          |
| CHAMBER OPEN             | 1/:35:5      | 5 18:34:1              |               | C1 (frm. titrat)(PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 20,000                                   |
| CHAMBER FULL             |              | 18:41:0                | 5             | NO <sub>3</sub> ( FFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89       |                                          |
| FILL TIME                |              |                        |               | pH CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | 7.5                                      |
| START BUILD UP           |              | 18:41:0                |               | OTHER TRACERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                          |
| FINISH BUILD UP          |              | 18:45:1                | 5             | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                          |
| BUILD UP TIME            |              | ļ                      |               | DENSITY ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                          |
| SEAL CHAMBER             |              | 18:45:1                |               | FLUORESCENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                          |
| TOOL RETRACT             |              | 18:46:1                | 1             | COLOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                          |
| TOTAL TIME               | 20:50        | 16:4                   | 0             | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                          |
| B SAMPLE PRESSURES       | 1 = 0 = 1    | T == /                 |               | (1) 0 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                          |
| IHP (PSIG)               | 3925.6       | <b>3</b> 562 <u>.4</u> |               | (d)OTHER SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| ISIP (PSIA)              | 3338.6       | 3029.9                 |               | PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                          |
| IFP (PSIA)               | 136.8        | 2208.3                 | -             | MID PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l        |                                          |
| FFP (PSIA) FSIP (PSIA)   | 779.0        | 1678.5                 | I             | MUD PROPERTIES TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEALIA   | PER GEL                                  |
| FSIP (PSIA) FHP (FSIA)   | 2457.0       |                        | -             | RESISTIVITY ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIAWA.   | rem (981)                                |
| TEMP CORR ()             | 3922.2       | 3576.6                 | 1             | C1 (frm.resis.)( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                          |
| COMMENTS                 |              |                        | 1             | C1 (frm.titrat)(PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19,000   | <u> </u>                                 |
| C TEMPERATURE            |              | <u> </u>               | ł             | NO Drid/1st.circ(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 250      | J                                        |
| DEPTH TOOL REACHED(      | )            | 2349.2                 | 1             | NO Drld/1st.circ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.0     |                                          |
| MAX.REC.TEMP.(°)         | <del>-</del> | 2 147.2                | 1             | OTHER TRACERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10.0     |                                          |
| TIME CIRC. STOPPED       |              |                        | 1             | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                          |
| TIME SINCE CIRC.         |              |                        | 1             | DENSITY ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                          |
| D SAMPLE RECOVERY        |              | <u> </u>               | G             | GENERAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u> |                                          |
| SURFACE PRESSURE(FS      | TG) 380      | 400                    | <del>اٽ</del> | T COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                          |
|                          | FT) 18.60    | 1.54                   | 1             | THE SAMPLE CHAMBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ERS FAT  | LED TO                                   |
|                          | .)3.75       | 0.20                   | 1             | ACTIVATE ON RET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|                          | .)11.0       | 9.00                   | 1             | THE C. L. WAS WAXY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                          |
| VOL. FILTRATE (          | )            |                        | 1             | The state of the s |          |                                          |
| VOL. CONDENSATE (        | 5            |                        | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| VOL. OTHER (             | 5            |                        | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| E SAMPLE PROPERTIES      |              | <u> </u>               | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|                          | M ) 701,759  | 426,423                | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|                          | M) 89,407    | 62,529                 | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|                          | M ) 25,746   | 16,580                 | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|                          | M ) 5,054    | 3,375                  | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|                          | M)2,025      | 1,403                  | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|                          | M ) 841      | 655                    | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
|                          | )1.4         | 1.6                    | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| P H <sub>2</sub> S (PP)  |              | 0                      | L             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| (b)OIL PROPERTIES        |              |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,       |                                          |
| DENSITY: HYDROMETER      |              | 36.4                   | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| ( API) REFRACTOME        | ETER         |                        | 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |
| REFRACTIVE INDEX         |              |                        | ]             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                          |

DK BRN MED BRN

CRM-YELL BRT CRM -YEL

COLOUR

G.O.R.

FLUORESCENCE

| CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                       |                       |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------|-----------------------|--|--|--|--|--|--|--|
| COMPANY : ESSO AUSTRALI<br>LTD.<br>RUN No. : 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | L : WIRRAH NO. 3 SSURE GAUGE TYPE: HP | LAB                   |  |  |  |  |  |  |  |
| CHAMBER No. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2       |                                       |                       |  |  |  |  |  |  |  |
| CIMITELL 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4     |                                       |                       |  |  |  |  |  |  |  |
| Charles Charles Control of the Contr | .02     | OIL PROPERTIES CONT.                  |                       |  |  |  |  |  |  |  |
| SEAT No. 4/35 4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /35     | ODOUR                                 |                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 023.7   | POUR POINT ( °C)                      | 22                    |  |  |  |  |  |  |  |
| A RECORDING TIMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | COMMENTS                              |                       |  |  |  |  |  |  |  |
| TOOL SET 23:50:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | (c)WATER PROPERTIES                   |                       |  |  |  |  |  |  |  |
| PRETEST OPEN 23:50:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | RESISTIVITY ( )                       | 226367.5°F .224366.5° |  |  |  |  |  |  |  |
| TIME OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Cl (frm. resis.)(PPM) 30              | 0,000 31,000          |  |  |  |  |  |  |  |
| CHAMBER OPEN 23:53:01 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0:05:15 | C1 (frm. titrat)(FPM) 2               | 2,000   19,000        |  |  |  |  |  |  |  |
| CHAMBER FULL 00:01:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | NO <sub>2</sub> (FFF) 1               | 20 140                |  |  |  |  |  |  |  |
| FILL TIME 08:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | pH                                    |                       |  |  |  |  |  |  |  |
| START BUILD UP 01:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | OTHER TRACERS                         |                       |  |  |  |  |  |  |  |
| FINISH BUILD UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ( )                                   |                       |  |  |  |  |  |  |  |
| BUILD UP TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | DENSITY ( )                           |                       |  |  |  |  |  |  |  |
| SEAL CHAMBER 04:43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22:05   | FLUORESCENCE                          |                       |  |  |  |  |  |  |  |
| TOOL RETRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23:50   | COLOUR                                |                       |  |  |  |  |  |  |  |
| TOTAL TIME 14:38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19:07   | COMMENTS                              |                       |  |  |  |  |  |  |  |
| B SAMPLE PRESSURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                       |                       |  |  |  |  |  |  |  |
| IHP (PSIG) 3380.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | (d)OTHER SAMPLE                       |                       |  |  |  |  |  |  |  |
| ISIP (PSIA) 2872.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | PROPERTIES                            |                       |  |  |  |  |  |  |  |
| IFP (PS A) 97.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 442.0   |                                       |                       |  |  |  |  |  |  |  |
| FFP (PSIA) 841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1       | F MUD PROPERTIES                      |                       |  |  |  |  |  |  |  |
| FSIP (PSIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | TYPE                                  | SEAWATER GOL          |  |  |  |  |  |  |  |
| FHP (PSIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3380.5  | RESISTIVITY ( )                       | .246 @ 19.9°C         |  |  |  |  |  |  |  |
| TEMP. CORR. ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | C1 (frm.resis.)( )                    | 23,000                |  |  |  |  |  |  |  |
| COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | C1 (frm.titrat)( )                    | 19,000                |  |  |  |  |  |  |  |
| C TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | NO <sub>3</sub> Drld/1st.circ( )      | 250                   |  |  |  |  |  |  |  |
| DEPTH TOOL REACHED(M) 2023.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2023.7  | рН                                    |                       |  |  |  |  |  |  |  |
| MAX.REC.TEMP.( O )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | OTHER TRACERS                         |                       |  |  |  |  |  |  |  |
| TIME CIRC. STOPPED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | ( )                                   |                       |  |  |  |  |  |  |  |
| TIME SINCE CIRC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | DENSITY ( )                           |                       |  |  |  |  |  |  |  |
| D SAMPLE RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | G GENERAL COMMENTS                    |                       |  |  |  |  |  |  |  |
| SURFACE PRESSURE (PSIG) 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 640     |                                       |                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.37    |                                       |                       |  |  |  |  |  |  |  |
| VOL. OIL ( ) THIN SCUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5     | FILL POINTS WERE                      | UNDETERMINABLE.       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.98    | DID NOT WAIT FOR                      | BUIID-UPs.            |  |  |  |  |  |  |  |
| VOL. FILTRATE ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | THE CIL RECOVERED                     | D WAS VERY WAXI       |  |  |  |  |  |  |  |
| VOL. CONDENSATE ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | VISCOUS AT ROOM S                     | TEMPERATUR.           |  |  |  |  |  |  |  |
| VOL. OTHER ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |                                       | 1                     |  |  |  |  |  |  |  |
| E SAMPLE PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 694 001 |                                       |                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 684,901 |                                       |                       |  |  |  |  |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 197,712 |                                       |                       |  |  |  |  |  |  |  |
| S c3 (ppm) 73,098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 89,521  |                                       |                       |  |  |  |  |  |  |  |
| c4 (PPM) 15,680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25,033  |                                       | 1                     |  |  |  |  |  |  |  |
| C c5 (PPM) 1,522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3,027   |                                       | 1                     |  |  |  |  |  |  |  |
| 0 c6+ (PPM) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -       |                                       |                       |  |  |  |  |  |  |  |
| M CO <sub>2</sub> (%) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5•3     |                                       |                       |  |  |  |  |  |  |  |
| P H <sub>2</sub> S (PPM) O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       |                                       |                       |  |  |  |  |  |  |  |
| (b)OIL PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                       | 1                     |  |  |  |  |  |  |  |
| DENSITY: HYDROMETER (OAPI) REFRACTOMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                                       | İ                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                       | 1                     |  |  |  |  |  |  |  |
| REFRACTIVE INDEX COLOUR YELL- BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EN      |                                       | ·                     |  |  |  |  |  |  |  |
| COLOUR YELL— BY FLUORESCENCE BRT CRM-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                                       |                       |  |  |  |  |  |  |  |
| G.O.R. ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11111   |                                       |                       |  |  |  |  |  |  |  |
| U.U.R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                       |                       |  |  |  |  |  |  |  |

| CORE | LABORATORIES | R.F.T. | DATA | SHEET | - | SAMPLING | DAT |
|------|--------------|--------|------|-------|---|----------|-----|
|      |              |        |      |       |   |          |     |

COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 3

RUN No. : 5



|                           |               | <del></del>                           |      |                                  |             |             |
|---------------------------|---------------|---------------------------------------|------|----------------------------------|-------------|-------------|
| CHAMBER No.               | 1             | 2                                     |      |                                  |             | 1           |
| CHAMBER CAPACITY (LITRES) | 22.7          | 10.4                                  |      |                                  |             |             |
| CHOKE SIZE                | 0.02          | 0.02                                  | _    | OIL PROPERTIES CONT.             |             |             |
| SEAT No.                  | 5/38          | 5/38                                  | L 1- | ODOUR                            |             |             |
| DEPTH (M) (from RKB)      | 2029.0        | 2029.0                                |      | POUR POINT ( )                   |             |             |
| A RECORDING TIMES         |               | ,                                     |      | COMMENTS                         |             |             |
| TOOL SET                  | 04:04:30      |                                       |      | (c)WATER PROPERTIES (FIL         | TRATE)      | 2750600     |
| PRETEST OPEN              | 04:04:30      |                                       |      | RESISTIVITY ( ) 2                | 35@69°F     | .235@69°I   |
| TIME OPEN                 | O A - OF - OF | 04.24.0                               | L    | C1 (frm. resis.)(PPM) 29         | 500         | 29,500      |
| CHAMBER OPEN              |               | 04:34:0                               | •    | Cl (frm. titrat)(PFM) 19         |             | 22,000      |
| CHAMBER FULL              | 04:32:30      | 04:45:0                               | 5    | NO <sub>3</sub> (FFM) 15         | 0           | 120         |
| FILL TIME                 | 27:25         | 10:0                                  |      | pH 7.                            | 4           | 7.1         |
| START BUILD UP            |               |                                       |      | OTHER TRACERS                    |             |             |
| FINISH BUILD UP           |               |                                       |      | ( )                              |             |             |
| BUILD UP TIME             |               |                                       | J 1  | DENSITY ( )                      |             |             |
| SEAL CHAMBER              | 04:33:20      | 04:45:5                               | ł ⊢  | FLUORESCENCE                     |             |             |
| TOOL RETRACT              |               | 04:47:2                               | r 1  | COLOUR                           |             |             |
| TOTAL TIME                |               | 42:5                                  | þſ   | COMMENTS                         |             |             |
| B SAMPLE PRESSURES        |               |                                       | 1    |                                  |             |             |
| IHP (PSIG)                | 3390.3        |                                       | 1    | (d)OTHER SAMPLE                  |             |             |
| ISIP (PSIA)               | 2879.1        |                                       | 1    | PROPERTIES                       |             |             |
| IFP ( PSIA)               | 105.0         | 217.4                                 |      |                                  |             |             |
| FFP (PSIA)                | 2746.0        | 2529.7                                | F    | MUD PROPERTIES                   |             |             |
| FSIP (PSIA)               |               | 2876.8                                |      | TYPE                             |             |             |
| FHP (PSIA)                |               |                                       |      | RESISTIVITY ( )                  |             |             |
| TEMP. CORR. ( )           |               |                                       |      | C1 (frm.resis.)( )               |             |             |
| COMMENTS                  |               |                                       |      | C1 (frm.titrat)( )               |             |             |
| C TEMPERATURE             |               |                                       | ] [  | NO <sub>3</sub> Drld/1st.circ( ) |             |             |
| DEPTH TOOL REACHED(M)     | 2029.1        | 2029.1                                |      | pH                               |             |             |
| MAX.REC.TEMP.( ° )        |               |                                       |      | OTHER TRACERS                    |             |             |
| TIME CIRC. STOPPED        |               |                                       | 1    | ( )                              |             |             |
| TIME SINCE CIRC.          |               |                                       | 1    | DENSITY ( )                      |             |             |
| D SAMPLE RECOVERY         |               | · · · · · · · · · · · · · · · · · · · | G    | GENERAL COMMENTS                 |             |             |
| SURFACE PRESSURE( PSTG    | 260           | 150                                   |      |                                  |             |             |
|                           | 0.35          | 0.35                                  | 1    |                                  |             |             |
| VOL. OIL (                | )             |                                       | 1    |                                  |             |             |
|                           | 21.25         | 9.25                                  | 1    |                                  |             |             |
| VOL. FILTRATE (           | )             |                                       | 1    |                                  |             |             |
| VOL. CONDENSATE (         | )             |                                       | 1    |                                  |             |             |
| VOL. OTHER (              | )             |                                       | ]    |                                  |             |             |
| E SAMPLE PROPERTIES       |               |                                       | ]    |                                  |             |             |
| (a) G c1 (PPM             | 248,729       | 244,94                                | .₿   |                                  |             |             |
| A c2 ( ppm                |               |                                       | 2    |                                  |             |             |
| S <b>c</b> 3 ( ppm        |               |                                       |      |                                  |             |             |
| c4 (PPM                   | . 1           |                                       |      |                                  |             |             |
| C c5 (FPM                 |               |                                       |      |                                  |             |             |
| 0 c6+ ( PPM               | ) 38          | 76                                    | \$   |                                  |             |             |
| M CO <sub>2</sub> (%      | 7.5           | 5.3                                   | _    |                                  |             |             |
| P H <sub>2</sub> S (FPM   |               | 0 (                                   | -    |                                  |             | <del></del> |
| (b)OIL PROPERTIES         |               |                                       | 1    |                                  |             |             |
| DENSITY: HYDROMETER       |               |                                       |      |                                  |             |             |
| ( ) REFRACTOMET           | ER            |                                       |      |                                  |             |             |
| REFRACTIVE INDEX          |               |                                       | ]    |                                  |             |             |
| COLOUR                    |               |                                       |      |                                  |             |             |
| FLUORESCENCE              |               |                                       | 1    |                                  |             |             |
| G.O.R. ()                 |               |                                       | ٦    |                                  |             |             |
|                           | <del></del>   |                                       | _L   |                                  | <del></del> |             |

|      | * * *** * * * * * * * * * * * * * * * | יות מי | $D \wedge T$ |
|------|---------------------------------------|--------|--------------|
| COBE | LABORATORIES                          | R.F.T. | 13/4 1 /     |
|      |                                       |        |              |

A SHEET - SAMPLING DATA

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3

LTD.

RUN No. : 6



|                | BER No.                    | 1 1           |                 | 2            |          |                                  |                                                  |              |
|----------------|----------------------------|---------------|-----------------|--------------|----------|----------------------------------|--------------------------------------------------|--------------|
| CHAM           | BER CAPACITY (LITES)       | 22.7          | -               | 10.4         |          |                                  |                                                  |              |
| CHOK           | E SIZE                     | 0.02          |                 | 0.02         |          | OIL PROPERTIES CONT.             |                                                  |              |
| SEAT           | No.                        | 6/39          | 16              | 5/39         |          | ODOUR                            | ~                                                |              |
|                | CH (M ) (from RKB)         | 1600.         |                 | 1600.7       |          | POUR POINT ( )                   |                                                  |              |
|                | RECORDING TIMES            | 1 1 2 2 2     |                 |              |          | COMMENTS                         |                                                  |              |
|                | OOL SET                    | 07:23         | 3 • 1 \$        |              |          |                                  | FORMATION                                        | WATER)       |
|                | PRETEST OPEN               | 07:23         |                 |              |          | RESISTIVITY ( )                  |                                                  |              |
|                | TIME OPEN                  | <u> </u>      | <del>/• /</del> |              |          | Cl (frm. resis.)( )              |                                                  |              |
|                |                            | 07.31         | 1 . 30          | 07:46:3      | 0        | C1 (frm. titrat)(PPM)            | 12,000                                           | 10,000       |
| i              | CHAMBER OPEN               |               |                 | 07:53:2      |          |                                  | 60                                               | 44           |
|                | CHAMBER FULL               |               |                 | 06:50        | Ĭ        | $\frac{NO}{pH}$ 3 (FPM)          | 7.5                                              | 7.4          |
| 1              | FILL TIME                  |               |                 |              |          | OTHER TRACERS                    | 100                                              | +            |
|                | START BUILD UP             | 07:43         | 2:27            | 07:53:2      | 2        | OTHER TRACERS                    |                                                  |              |
| j L            | FINISH BUILD UP            |               |                 | 07:54:4      | 0        |                                  |                                                  |              |
|                | BUILD UP TIME              |               | 2:15            |              |          | DENSITY ( )                      |                                                  | <del> </del> |
|                | SEAL CHAMBER               | 07:46         | 2:03            | 07:55:1      |          | FLUORESCENCE                     |                                                  |              |
|                | rool retract               |               |                 | 07:56:5      | •        | COLOUR                           |                                                  | <b>_</b>     |
|                | TOTAL TIME                 |               |                 | 33:3         | ל        | COMMENTS                         |                                                  |              |
| В 5            | SAMPLE 'PRESSURES          |               |                 |              |          |                                  |                                                  | <b></b>      |
| 7              | THP (PSIG)                 | 2676.         | .3              |              |          | (d)OTHER SAMPLE                  |                                                  |              |
|                | ISIP (PSIA)                | 2472.         | .6              |              |          | PROPERTIES                       |                                                  |              |
|                | IFP (PSIA)                 | 113.          | 1               | 2067.2       |          |                                  |                                                  |              |
| 1              | FFP (PSIA)                 | 1992          |                 | 2089.8       | F        | MUD PROPERTIES                   |                                                  |              |
|                | FSIP (PSIA)                |               |                 | 2255.0       |          | TYPE                             |                                                  |              |
| ) <del> </del> | FHP (PSIA)                 |               |                 | 2676.2       | 1        | RESISTIVITY ( )                  |                                                  |              |
| I              | TEMP. CORR. ( )            | _             |                 | 2010.2       |          | C1 (frm.resis.)( )               |                                                  |              |
|                | COMMENTS                   |               | +               |              | ł        | C1 (frm.titrat)( )               | <del>                                     </del> |              |
|                | TEMPERATURE                |               |                 |              | 1        | NO <sub>2</sub> Drld/1st.circ( ) |                                                  |              |
|                | DEPTH TOOL REACHED(        | 1             |                 |              | 1        | pH <sup>3</sup>                  |                                                  |              |
|                |                            | <del>/ </del> |                 |              | 1        | OTHER TRACERS                    | <del> </del>                                     |              |
| · ·            | MAX.REC.TEMP.( ° )         |               |                 |              | 1        | OTHER TRACERS                    |                                                  |              |
|                | TIME CIRC. STOPPED         | _             |                 |              | 1        |                                  | ļ                                                |              |
|                | TIME SINCE CIRC.           |               |                 |              | <u> </u> | DENSITY ( )                      |                                                  |              |
|                | SAMPLE RECOVERY            |               |                 |              | G        | GENERAL COMMENTS                 |                                                  |              |
|                | SURFACE PRESSURE(PSI       | G) 400        |                 | 0            | 1        |                                  |                                                  |              |
| 1 L'           | VOL. GAS (CUF              | T) 0.9        | 5               | 0.43         | 1        |                                  |                                                  |              |
| 1 1            | VOL. OIL (                 | )             |                 |              |          |                                  |                                                  |              |
| 1 7            | VOL. WATER (LIT            | .) 21.        | 75              | 9.6          | 1        |                                  |                                                  |              |
| l F            | VOL. FILTRATE (            | )             |                 |              | 1        |                                  |                                                  |              |
| -              | VOL. CONDENSATE (          | )             |                 |              | 1        |                                  |                                                  |              |
| 1 1            | VOL. OTHER (               |               |                 |              | 1        |                                  |                                                  |              |
|                | SAMPLE PROPERTIES          |               |                 |              | 1        |                                  |                                                  |              |
| <del></del>    | (a) G c1 (PPM              | ) 139.        | 288             | 323,348      | 1        |                                  |                                                  |              |
|                | A c2 (PPM)                 |               | 944             | 40,250       | 1        |                                  |                                                  |              |
|                | S c3 (PPM                  |               | 218             | 6,243        | 1        |                                  |                                                  |              |
| 1 1            | c4 (PPN                    |               | 339             | 1,529        | 1        |                                  |                                                  |              |
| 1              | C c5 (PPM                  |               | 138             | 923          | 1        |                                  |                                                  |              |
|                |                            |               | 10              | 306          | ┨        |                                  |                                                  |              |
|                |                            | ) 2.          |                 | 10.8         | 1        |                                  |                                                  |              |
| 1 1            | M CO <sub>2</sub> (%       |               | 1 0             | 8            | 4        |                                  |                                                  |              |
| 1 -            | P H <sub>2</sub> S (PPM    | <u>i ) </u>   | U               | 8            | +        |                                  |                                                  |              |
| , ,            | (b)OIL PROPERTIES          |               |                 | 1            | -        |                                  |                                                  |              |
|                | DENSITY: HYDROMETER        |               |                 | ļ            | 4        |                                  |                                                  |              |
|                | ( ) REFRACTOME             | ETER          |                 |              | 1        |                                  |                                                  |              |
|                | REFRACTIVE INDEX           |               |                 |              | 1        |                                  |                                                  |              |
| 1 [            | COLOUR                     |               |                 |              | J        |                                  |                                                  |              |
| 1 1            |                            |               |                 |              | 7        |                                  |                                                  |              |
|                | FLUORESCENCE               | ļ             |                 | 1            |          |                                  |                                                  |              |
| 1 [            | FLUORESCENCE<br>G.O.R. ( ) |               |                 | <del> </del> | ٦        |                                  |                                                  |              |

| CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA                                    |                                         |                                      |              |                                  |                |              |  |  |
|----------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------|--------------|----------------------------------|----------------|--------------|--|--|
| COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3 LTD. RUN No. : 8 PRESSURE GAUGE TYPE : HP |                                         |                                      |              |                                  |                |              |  |  |
| CHAMPED No                                                                             | 1 1                                     | 2                                    | 1            |                                  |                |              |  |  |
| CHAMBER No. CHAMBER CAPACITY (LITRES)                                                  |                                         |                                      | 1            |                                  |                |              |  |  |
| CHOKE SIZE (INCHES)                                                                    | 0.03                                    | 10.4<br>0.02                         | <del> </del> | OIL PROPERTIES CONT.             |                | <del></del>  |  |  |
| SEAT No.                                                                               | 65                                      | 65                                   | 1            | ODOUR CONT.                      |                |              |  |  |
| DEPTH (M ) (from RKB)                                                                  | 2748.0                                  | 2748.0                               | 1            | POUR POINT (°)                   |                |              |  |  |
| A RECORDING TIMES                                                                      | 1 -140.0                                | -140.0                               | 1            | COMMENTS                         | <del> </del>   |              |  |  |
| TOOL SET                                                                               | 10:30:2                                 |                                      | 1            | (c)WATER PROPERTIES              |                |              |  |  |
| PRETEST OPEN                                                                           |                                         | 11:16:0                              | 5            | RESISTIVITY ( )                  |                |              |  |  |
| TIME OPEN                                                                              | 04:55                                   | 03:4                                 | 9            | Cl (frm. resis.)( )              |                |              |  |  |
| CHAMBER OPEN                                                                           | 10:35:24                                | 11:19:5                              | 1            | C1 (frm. titrat)(PPM)            | •22K           | 20K          |  |  |
| CHAMBER FULL (NOT FULL)                                                                | 11:15:05                                | 11:48:1                              | 9            | NO <sub>2</sub> (PFM )           | 40             | 70 ·         |  |  |
| FILL TIME                                                                              |                                         |                                      |              | NO (PPM )                        | 8              | 7            |  |  |
| START BUILD UP                                                                         |                                         |                                      |              | OTHER TRACERS                    |                |              |  |  |
| FINISH BUILD UP                                                                        |                                         |                                      |              | ( )                              |                |              |  |  |
| BUILD UP TIME                                                                          | <u> </u>                                |                                      | 1            | DENSITY ( )                      |                |              |  |  |
| SEAL CHAMBER                                                                           | 11:16:0                                 | 11:50:C                              | 7            | FLUORESCENCE                     |                |              |  |  |
| TOOL RETRACT                                                                           |                                         | 11:55:0                              | 0            | COLOUR                           |                |              |  |  |
| TOTAL TIME                                                                             | 45:41                                   |                                      | 1            | COMMENTS                         |                |              |  |  |
| B SAMPLE PRESSURES  [ IHP                                                              | 14575 FO                                |                                      | -            | (1) OMITTO CARRY D               |                | <del> </del> |  |  |
| IHP (PSIG) ISIP (PSIA)                                                                 | 4575.52<br>3953.93                      | 3953.64                              |              | (d)OTHER SAMPLE                  |                |              |  |  |
| IFP (PSIA)                                                                             | 800                                     | 817                                  | 1            | PROPERTIES                       |                |              |  |  |
|                                                                                        |                                         |                                      | F            | MUD PROPERTIES                   | <del></del>    | <u> </u>     |  |  |
| FFP (PSIA) FSIP (PSIA)                                                                 | 1152                                    | 1952                                 | <u> </u>     | TYPE                             | CITIAL EARNING | ימח י        |  |  |
| FHP (PSIA)                                                                             | <del> </del>                            | 3954 <b>.7</b> 6<br>4570 <b>.</b> 75 | 1            | RESISTIVITY ( )                  | STAWATER       | GSIL         |  |  |
| TEMP. CORR. ( )                                                                        |                                         | 4710017                              | 1            | C1 (frm.resis.)( )               |                |              |  |  |
| COMMENTS                                                                               |                                         |                                      | 1            | C1 (frm.titrat)( )               | 20,000         | 20,000       |  |  |
| C TEMPERATURE                                                                          |                                         |                                      | 1            | NO <sub>2</sub> Drld/1st.circ( ) | 240/200        |              |  |  |
| DEPTH TOOL REACHED(M)                                                                  | 2748.0                                  | 2748.0                               | 1            | pH <sup>3</sup>                  | ,              | 1-70         |  |  |
| MAX.REC.TEMP.(°F)                                                                      | 193                                     | 203.9                                | 1            | OTHER TRACERS                    |                |              |  |  |
| TIME CIRC. STOPPED                                                                     | † <del>''</del>                         |                                      | 1            | ( )                              |                |              |  |  |
| TIME SINCE CIRC.                                                                       |                                         |                                      | 1            | DENSITY ( )                      | 9.7            | 9•7          |  |  |
| D SAMPLE RECOVERY                                                                      | *************************************** | <del></del>                          | G            | GENERAL COMMENTS                 |                | 7.9.1        |  |  |
| SURFACE PRESSURE( PSIG                                                                 |                                         | 1200                                 |              | CHAMBER 1                        | СНА            | MBER 2       |  |  |
|                                                                                        | 17.6                                    | 26.9                                 | ]            |                                  |                |              |  |  |
| VOL. OIL (                                                                             | )                                       |                                      | 1            |                                  |                |              |  |  |
| VOL. WATER (                                                                           | )                                       |                                      | ]            | NOT FULL AFTER 41 M              | INS NOT        | FULL         |  |  |
| VOL. FILTRATE (                                                                        |                                         |                                      | 1            | OPEN                             |                |              |  |  |
| VOL. CONDENSATE ( VOL. OTHER (                                                         | <u> </u>                                |                                      | 4            |                                  |                |              |  |  |
| E SAMPLE PROPERTIES                                                                    | '                                       |                                      | 1            |                                  |                |              |  |  |
|                                                                                        | 329,728                                 | 329,730                              | 1            |                                  |                |              |  |  |
| A c2 (PPM )                                                                            |                                         | 26,449                               |              |                                  |                |              |  |  |
| s c3 (PPM )                                                                            |                                         | 730                                  |              |                                  |                |              |  |  |
| c4 (PPM )                                                                              | 3,625                                   | 330                                  |              |                                  |                |              |  |  |
| C c5 (PPM )                                                                            | 1,089                                   | 120                                  | -4           |                                  |                |              |  |  |
| 0 c6+ (PPM )                                                                           |                                         | 23                                   |              |                                  |                |              |  |  |
| M CO <sub>2</sub> (%1)                                                                 |                                         | 16                                   |              |                                  |                |              |  |  |
| P H <sub>2</sub> S (FPM )                                                              | Ó                                       | 0                                    | -            |                                  |                |              |  |  |
| (b)OIL PROPERTIES                                                                      |                                         |                                      |              |                                  |                |              |  |  |
| DENSITY: HYDROMETER                                                                    |                                         |                                      | 1            |                                  |                |              |  |  |
| ( ) REFRACTOMETE                                                                       | ER                                      |                                      | 1            |                                  |                |              |  |  |
| REFRACTIVE INDEX                                                                       |                                         |                                      | ]            |                                  |                |              |  |  |
| COLOUR                                                                                 |                                         |                                      |              |                                  |                |              |  |  |
| FLUORESCENCE                                                                           |                                         |                                      |              |                                  |                |              |  |  |
| G.O.R. ( )                                                                             |                                         |                                      | 1            |                                  |                |              |  |  |

| CORE LABORATORIES                         | R.F.Т.                                     | DATA SIII  | ЕЕТ         | - SAMPLING DATA                         |          |             |  |  |
|-------------------------------------------|--------------------------------------------|------------|-------------|-----------------------------------------|----------|-------------|--|--|
| I.                                        | COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 3 |            |             |                                         |          |             |  |  |
| RUN No.: 9 PRESSURE GAUGE TYPE: HP        |                                            |            |             |                                         |          |             |  |  |
| CHAMBER No.                               | 1                                          | 2          |             |                                         |          |             |  |  |
| CHAMBER CAPACITY (LITRES)                 | 22.7                                       | 10.4       | <del></del> | OIL PROPERTIES CONT.                    |          |             |  |  |
| CHOKE SIZE (INCHES)                       | 0 <b>.</b> 03                              | 0.02<br>66 | · -         | ODOUR CONT.                             |          |             |  |  |
| SEAT No. DEPTH ( m ) (from RKB)           | 2731                                       | 2731       |             | POUR POINT ( )                          |          |             |  |  |
| A RECORDING TIMES                         | 1-121                                      |            |             | COMMENTS                                |          |             |  |  |
| TOOL SET                                  | 03:25:51                                   |            |             | (c)WATER PROPERTIES                     |          |             |  |  |
| PRETEST OPEN                              | 03:25:53                                   | 04:15:10   |             | RESISTIVITY ( )                         |          |             |  |  |
| TIME OPEN                                 | 05:18                                      |            |             | C1 (frm. resis.)( )                     |          |             |  |  |
| CHAMBER OPEN                              | 03:31:11                                   | 04:19:4    | 5           | C1 (frm. titrat)(PPM)                   |          | 16K         |  |  |
| CHAMBER FULL (NOT FULL)                   | 04:15:10                                   | 04:39:02   | ?           | NO <sub>3</sub> (PPM)                   | 80       | 40          |  |  |
| FILL TIME                                 |                                            |            |             | pH CERT CONTROL                         | 8.0      | 7.5         |  |  |
| START BUILD UP                            |                                            |            |             | OTHER TRACERS                           |          |             |  |  |
| FINISH BUILD UP                           |                                            |            |             | DENSITY ()                              |          |             |  |  |
| BUILD UP TIME                             |                                            |            |             | FLUORESCENCE                            |          |             |  |  |
| SEAL CHAMBER                              | 04:15:10                                   | 04:39:02   |             | COLOUR                                  |          |             |  |  |
| TOOL RETRACT TOTAL TIME                   | 49:19                                      | 04:40:56   |             | COMMENTS                                |          |             |  |  |
| B SAMPLE PRESSURES                        | 49:19                                      | l          |             | COLUMNIES                               |          |             |  |  |
| IHP (PSIG)                                | 4538.24                                    |            |             | (d)OTHER SAMPLE                         |          |             |  |  |
| ISIP (PSIA)                               | 3920.14                                    | 3920.14    |             | PROPERTIES                              |          |             |  |  |
| IFP (PSIA)                                | 160                                        | 157        |             |                                         | <u> </u> |             |  |  |
| FFP (PSIA)                                | <b>1</b> 500                               | 166.25     | F           | MUD PROPERTIES                          | ,        |             |  |  |
| FSIP (PSIA)                               |                                            | 3909.98    |             | TYPE                                    | SEAWAT   | ER GEL      |  |  |
| FHP (PSIA)                                |                                            | 4533.73    |             | RESISTIVITY ( )                         |          |             |  |  |
| TEMP. CORR. ( )                           |                                            |            |             | C1 (frm.resis.)( ) C1 (frm.titrat)(ppm) | 20 000   |             |  |  |
| C TEMPERATURE                             | <u> </u>                                   | <u> </u>   | 1           | NO <sub>3</sub> Dr1d/1st.circ(ppm)      | 20,000   |             |  |  |
| DEPTH TOOL REACHED(M)                     | 2731                                       | 2731       | 1           | Hall Hall Hall Hall Hall                | 10.5     | J           |  |  |
| MAX.REC.TEMP.( 0)                         | 209                                        | 211        |             | OTHER TRACERS                           | 1111-5   | <del></del> |  |  |
| TIME CIRC. STOPPED                        | 120)                                       |            | 1           | ( )                                     |          |             |  |  |
| TIME SINCE CIRC.                          |                                            |            | 1           | DENSITY (PPG)                           | 9.7      |             |  |  |
| D SAMPLE RECOVERY                         |                                            |            | G           | GENERAL COMMENTS                        |          |             |  |  |
| SURFACE PRESSURE(                         | ) 390                                      | 100        |             |                                         |          |             |  |  |
|                                           | 0.6                                        | 1.5        | 1           |                                         |          |             |  |  |
| VOL. OIL (CC                              | ) 10                                       | 250        | -           |                                         |          |             |  |  |
| VOL. WATER (                              | )                                          | 750        | -           |                                         |          |             |  |  |
| VOL. FILTRATE ( CC VOL. CONDENSATE (      | 3750                                       | 750        | ┨           |                                         |          |             |  |  |
| VOL. OTHER (                              | {                                          |            | ┨           | 4                                       |          |             |  |  |
| E SAMPLE PROPERTIES                       |                                            | <u> </u>   | 1           |                                         |          |             |  |  |
|                                           | 52,756                                     | 224,215    | 4           |                                         |          |             |  |  |
| A c2 (PPM                                 | 14,694                                     | 35,266     |             |                                         |          |             |  |  |
| S c3 (PPM)                                |                                            | 15,022     |             |                                         |          |             |  |  |
| c4 (PPM                                   | ) 141                                      | 896        |             |                                         |          |             |  |  |
| C c5 (PPM                                 |                                            | 226        | 4           |                                         |          |             |  |  |
| 0 c6+ ( PPM                               | <del></del>                                | TR         | 1           |                                         |          |             |  |  |
| M CO <sub>2</sub> (%                      | ) 4.3<br>NIL                               | 5.8<br>NIL | 4           |                                         |          |             |  |  |
| P H <sub>2</sub> S (PPM (b)OIL PROPERTIES | N MIT                                      | ו איז די   | +-          |                                         |          |             |  |  |
| DENSITY: HYDROMETER                       |                                            | 1          | 1           |                                         |          |             |  |  |
| ( ) REFRACTOMET                           | ER                                         |            | 1           |                                         |          |             |  |  |
| REFRACTIVE INDEX                          |                                            | †          | 1           |                                         |          |             |  |  |
| COLOUR                                    |                                            |            | ]           | •                                       |          |             |  |  |

and the control of the control of the state of

FLUORESCENCE

 $G_{\bullet}O_{\bullet}R_{\bullet}$  ( )

R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES

> WELL: WIRRAH NO. 3 COMPANY : ESSO AUSTRALIA

> > LTD.

RUN No. : 10

PRESSURE GAUGE TYPE: HP



CHAMBER No. CHAMBER CAPACITY (LITRES) 22.7 10.4 OIL PROPERTIES CONT. CHOKE SIZE (INCHES) 0.03 0.02 ODOUR SEAT No. 68 68 POUR POINT DEPTH (m) (from RKB) 2707.8 2707.8 COMMENTS RECORDING TIMES (c)WATER PROPERTIES 09:26:55 TOOL SET RESISTIVITY ( ) 09:26:59 10:01:01 PRETEST OPEN 05:07 Cl (frm. resis.)( TIME OPEN 20k 09:35:06 10:01:30 Cl (frm. titrat)( 21K CHAMBER OPEN <u>NO</u>3. (PPM ) 60 09:55:30 10:10:12 40 CHAMBER FULL 7.5 7.5 09:02 рΗ FILL TIME 20:24 OTHER TRACERS 09:55:30 10:10:3 START BUILD UP 10:00:55 FINISH BUILD UP 10:15:**0**3 DENSITY 04:29 BUILD UP TIME 05:29 FLUORESCENCE 10:15:d3 10:01:01 SEAL CHAMBER COLOUR 10:17:13 TOOL RETRACT COMMENTS TOTAL TIME 34:00 16:do SAMPLE PRESSURES (d)OTHER SAMPLE 4498,43 IHP PROPERTIES 3879.83 3874.59 ISIP 956 250 IFP MUD PROPERTIES 1580 1489 FFP 3875.8 3874.59 TYPE FSIP .090@91°C 4494.48 RESISTIVITY ( FHP C1 (frm.resis.)( TEMP. CORR. 20.000 C1 (frm.titrat)( COMMENTS ) 240/200 NO\_Drld/1st.circ( TEMPERATURE ρHσ 17.5 DEPTH TOOL REACHED(m) 2707.8 2707.8 OTHER TRACERS MAX.REC.TEMP.( OF) 212 TIME CIRC. STOPPED (FPG) 9.7 DENSITY TIME SINCE CIRC. GENERAL COMMENTS G SAMPLE RECOVERY SURFACE PRESSURE ( PSI ) 960 1130 8.0 (CUFT) 5.82 VOL. GAS 2.00 (LIT) 1.00 VOL. OIL VOL. WATER VOL. FILTRATE/WAT( LIT ) 21.0 6.00 VOL. CONDENSATE ( VOL. OTHER SAMPLE PROPERTIES ( PPM ) 204,421 | 609,996 (a) G c1  $c\overline{2}$ (PPM) 41,144 47,022 Α S c3 ( PPM) 16,691 10.432 с4 (PPM) 198 2,124 ( PPM ) C **c**5 1,935 45 0 c6+ (PFM) 736 14 CO2 Μ **(**% 27 8 H<sub>2</sub>S (PPM) P 0 0 (b)OIL PROPERTIES 37@60°F HYDROMETER DENSITY: ١, REFRACTOMETER 30.5@339C REFRACTIVE INDEX BROWN WAXY COLOUR BRI YELL/WH FLUORESCENCE G.O.R. ) 925 <u>636</u>

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3

LTD.

RUN No. : 11



| CHAMBER No.                    | 1                  | 2              |                                          |
|--------------------------------|--------------------|----------------|------------------------------------------|
| CHAMBER CAPACITY (LITRES)      |                    | 10.4           | OIL PROPERTIES CONT.                     |
| CHOKE SIZE (INCHES)            |                    | 0.02           |                                          |
| SEAT No.                       | l                  | 69<br>2687.5   | POUR POINT ( )                           |
| DEPTH (m) (from RKB)           | <b>26</b> 87.5     | 2687.5         | COMMENTS                                 |
| A RECORDING TIMES              | 114.16.27          |                | (c)WATER PROPERTIES                      |
| TOOL SET                       | 14:16:37           |                | RESISTIVITY ( )                          |
| PRETEST OPEN                   | 14:16:45           |                | C1 (frm. resis.)( )                      |
| TIME OPEN                      | 02;15              |                |                                          |
| CHAMBER OPEN                   |                    | 14:44:4        |                                          |
| CHAMBER FULL                   |                    | 14:53:5        | 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7  |
| FILL TIME                      | 19:53              |                | 4   2                                    |
| START BUILD UP                 |                    | 14:53:5        |                                          |
| FINISH BUILD UP                |                    | 14:57:5        |                                          |
| BUILD UP TIME                  | 02:50              |                |                                          |
| SEAL CHAMBER                   | 14:14:43           | 14:57:5        |                                          |
| TOOL RETRACT                   |                    | 14:59:5        | CO. Company                              |
| TOTAL TIME                     | 28:05              | 15:0           | COMMENTS                                 |
| B SAMPLE PRESSURES             |                    | ,              | (1) a mump. (1) ml. p.                   |
| IHP (PSIG)                     | 4464.38            |                | (d)OTHER SAMPLE                          |
| ISIP (PSIA)                    | 3854.88            | T              | PROPERTIES                               |
| IFP (PSIA)                     | 214                | 1834.5         |                                          |
| FFP (PSIA)                     | 2308               | 1842.59        |                                          |
| FSIP (PSIA)                    | 3852.38            | 3852.07        | TYPE SEAWATER GEL                        |
| FHP (PS1A)                     |                    | 4462.93        | RESISTIVITY ( ) 0.090@ 91°C              |
| TEMP. CORR. ( )                |                    |                | C1 (frm.resis.)( ) 27,000                |
| COMMENTS                       |                    |                | C1 (frm.titrat)( ) 20,000                |
| C TEMPERATURE                  |                    |                | NO <sub>3</sub> Drld/1st.circ( ) 240/200 |
| DEPTH TOOL REACHED( )          | 2687.5             | 2687.5         | pH 10.5                                  |
| MAX.REC.TEMP.( ° )             | 211                | 211.5          | OTHER TRACERS                            |
| TIME CIRC. STOPPED             |                    |                | ( )                                      |
| TIME SINCE CIRC.               |                    |                | DENSITY ( )                              |
| D SAMPLE RECOVERY              |                    | -l             | G GENERAL COMMENTS                       |
| SURFACE PRESSURE(PSIA          | ) 1510             | 1420           |                                          |
| VOL. GAS CUFT                  |                    | 19             | 1                                        |
| VOL. OIL (LIT                  |                    | 3              | 1                                        |
|                                | ) 15.75            | 4              | 1                                        |
| VOL. FILTRATE (                | )                  |                |                                          |
| VOL. CONDENSATE (              | 3                  |                | 7                                        |
| VOL. OTHER (                   | 3                  |                | 7                                        |
| E SAMPLE PROPERTIES            | <u></u>            |                |                                          |
| (a) G c1 (PPM                  | ) 659,45           | 6 296,755      | 5]                                       |
| A c2 (PPM                      |                    |                | <b>─</b> } I                             |
| S c3 (PPM                      | 1 111              |                |                                          |
| c4 (PPM                        |                    |                |                                          |
| C C5 (ppm                      | 7                  | 32             |                                          |
| 0 c6+ (PPM                     |                    | 23             |                                          |
| M CO <sub>2</sub> (%           | $\frac{7}{2}$      |                |                                          |
| P H <sub>2</sub> S (PPM        |                    | 5              |                                          |
| (b)OIL PROPERTIES              |                    |                |                                          |
| DENSITY: HYDROMETER            | <u>o</u><br> 35@60 | F 36@60 F      | 7                                        |
| ( ) REFRACTOME                 |                    | - 1000 F       | -                                        |
| REFRACTIVE INDEX               |                    |                | -                                        |
|                                |                    | NT 1/4 3/3/    | <del>-</del>                             |
| I LOOT OTTO                    | תוכד (             |                | •                                        |
| COLOUR                         |                    | N WAXY         | ┥                                        |
| COLOUR FLUORESCENCE G.O.R. ( ) |                    | EIT <b>/MH</b> |                                          |

| CORE | LABORATORIES | R.F.T. | DATA | SHEET | - | SAMPLING | DATA |
|------|--------------|--------|------|-------|---|----------|------|
|      |              |        |      |       |   |          |      |

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3

LTD. RUN No. : 12



| <u> </u> |          |                  |             |                   |              |    |                      |               |         |
|----------|----------|------------------|-------------|-------------------|--------------|----|----------------------|---------------|---------|
|          | BER No.  |                  |             | 11                | 2            |    |                      |               |         |
| CHAME    | BER CAPA | CITY (LI         | TRES)       | 22.7              | 3.8          |    |                      |               |         |
| CHOKE    | E SIZE   | (INCH S)         |             | 0.03              | 0.02         |    | OIL PROPERTIES CONT. | .,            |         |
| SEAT     |          | <del>\</del>     |             | 12/70             | 12/70        |    | ODOUR                |               |         |
| DEPTH    | H (m)    | from RK          | В)          | 2672              | 2672         |    | POUR POINT ( )       |               |         |
|          | ECORDIN  |                  |             |                   |              |    | COMMENTS             |               |         |
|          | OOL SET  |                  |             | 07:34:10          |              |    | (c)WATER PROPERTIES  |               |         |
|          | RETEST ( |                  |             | 07:34:31          |              |    | RESISTIVITY ( )      |               |         |
| I —      | IME OPE  |                  |             | 02:53             |              |    | Cl (frm. resis.)(    | )             |         |
| 1        | HAMBER ( |                  |             | 07:37:24          | 07:54:22     | }  | C1 (frm. titrat)(    | 18,000        | 18,000  |
| 1        | HAMBER 1 |                  |             | 07:52:30          |              | 1  | NO <sub>2</sub> (    | 40            | 40      |
| I        | ILL TIM  |                  |             |                   |              | 0  | pH3                  | 8.1           | 7.5     |
|          | TART BU  |                  |             | 15:06<br>07:52:30 |              |    | OTHER TRACERS        | 100,          |         |
|          | INISH B  |                  |             | 07:52:50          | 07.58.00     | ţ  | (                    | <b>N</b>      |         |
| ł        |          |                  |             |                   |              | L  | DENSITY (            | <del>( </del> |         |
| 1 -      | UILD UP  |                  |             | :53               |              | •  | FLUORESCENCE         | 4             |         |
| 1        | EAL CHA  |                  |             | 07:53:27          |              |    |                      | _             |         |
|          | OOL RET  |                  |             |                   | 08:01:52     | ı  | COLOUR               | <del></del>   |         |
|          | OTAL TI  |                  |             | 19:17             | 07:30        | }  | COMMENTS             |               |         |
|          |          | RESSURES         |             | r                 |              |    | (1)000000            |               |         |
| 1 —      | HP       | (PSI             |             | 4440.8            |              |    | (d)OTHER SAMPLE      |               |         |
| i        | SIP      | (PSI             |             | 3839.7            |              |    | PROPERTIES           |               |         |
| I        | FP       | (PSI             | (A)         | 1156.5            | 2114.7       |    |                      |               |         |
| F        | FP       | (PSI             | (A)         | 1934.3            | 1951.2       | F  | MUD PROPERTIES       |               |         |
| F        | SIP      | (PSI             | (A)         |                   | 3835.4       |    | TYPE                 | SEAWAT        | TER GEL |
| F        | HP       | (                | )           |                   | 4434.2       | 1  | RESISTIVITY ( )      | 0.2613        | 21.1°C  |
| <b>3</b> | EMP. CO  | RR. (            | )           |                   |              | 1  | C1 (frm.resis.)( )   |               |         |
| 1 —      | OMMENTS  |                  | <del></del> |                   |              | 1  | C1 (frm.titrat)( )   | 20,000        | )       |
|          | 'EMPERAT |                  |             | L                 | t            | 1  | NO_Dr1d/1st.circ(    | )             |         |
|          |          | OL REACH         | IED(m)      | 2672.0            | 2672.0       | 1  | pH                   |               |         |
|          |          | TEMP.            |             | 213.5             | 213.5        | 1  | OTHER TRACERS        |               |         |
| 1 1      |          | C. STOP          |             | 21707             | 2170         | 1  | ( )                  | . 1           |         |
| 1 —      |          |                  |             |                   |              | 1  | DENSITY (            |               |         |
|          |          | CE CIRC.         | <u> </u>    | l                 | L            | 10 | GENERAL COMMENTS     | 9.7           |         |
|          |          | ECOVERY          | 7707 .      | 1000              | looc         | G  | GENERAL COMMENIS     |               |         |
|          |          | PRESSURI         |             |                   | 280          | -  |                      |               |         |
|          | OL. GAS  |                  | (CUFT)      | 1.7               | 0.4          | -  |                      |               |         |
| 1 -      | OL. OIL  |                  | ( )         |                   |              | 1  |                      |               |         |
| V        | OL. WAT  | ER/FIL           | (LIT )      | 21                | 3.5          |    |                      |               |         |
|          | OL. FIL  |                  | ( )         | )                 |              |    |                      |               |         |
| V        | OL. CON  | DENSATE          |             | )                 |              |    | 1                    |               |         |
|          | OL. OTH  |                  | ( )         |                   |              | j  |                      |               |         |
| E S      | SAMPLE F | ROPERTI          | ES          |                   |              | ]  |                      |               |         |
| 1        | a) G     | c1               | (PPM )      | 105,512           | 171,458      | 3  |                      |               |         |
|          | A        | <b>c</b> 2       | (PPM)       | 13,959            |              |    |                      |               |         |
|          | S        | <b>c</b> 3       | (PPM )      | 4,381             | 3,171        |    |                      |               |         |
|          | Ī        | c4               | (PPM)       | 962               | 1,246        |    |                      |               |         |
|          | С        | <b>c</b> 5       | (PPM)       | 702               | 1.028        | ┥  |                      |               |         |
|          | o        | c6+              | (PPM )      | 195               | 200          |    |                      |               |         |
|          | м        | CO <sub>2</sub>  | (%)         | 195               | 200          | 7  |                      |               |         |
|          | P        | H <sub>2</sub> S | (PPM )      | 3                 |              | 4  |                      |               |         |
| 1 7      |          | ROPERTI          |             |                   | L            | 1  |                      |               |         |
| 1 1      | DENSITY  |                  |             |                   | 7            | 1  |                      |               |         |
|          |          |                  | CTOMETE     | ep -              | -            | -  |                      |               |         |
| 1 1      | )        |                  |             | 717               | <u> </u>     | -  |                      |               |         |
|          |          | VE INDE          | Λ           | <del></del>       |              | 4  |                      |               |         |
| 1 -      | COLOUR   |                  |             |                   | <del> </del> | 4  |                      |               |         |
|          | LUORESC  | ENCE             |             |                   | 1            | 1  |                      |               |         |
|          | G.O.R.   | (                | )           |                   |              | _  |                      |               |         |
| _        |          |                  |             |                   |              |    |                      |               |         |

| CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA |                                       |                      |     |                                |      |                   |             |  |
|-----------------------------------------------------|---------------------------------------|----------------------|-----|--------------------------------|------|-------------------|-------------|--|
| COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 3          |                                       |                      |     |                                |      |                   |             |  |
| RUN No. : 13 PRESSURE GAUGE TYPE : HP               |                                       |                      |     |                                |      |                   |             |  |
| CHAMBER No.                                         | 1                                     | 2                    |     |                                |      |                   |             |  |
| CHAMBER CAPACITY (LITRES)                           | 22.7                                  | 10.4                 |     |                                |      |                   |             |  |
| CHOKE SIZE (INCHES)                                 | 0.03                                  | 0.02                 | Γ   | OIL PROPERTIES CONT.           |      |                   |             |  |
| SEAT No.                                            |                                       | 72                   | 1   | ODOUR                          |      |                   |             |  |
| DEPTH ( m ) (from RKB)                              | 2672                                  | 2672                 |     | POUR POINT ( O )               |      |                   |             |  |
| A RECORDING TIMES                                   |                                       |                      | ]   | COMMENTS                       |      |                   |             |  |
| TOOL SET                                            | 12:18:10                              |                      |     | (c)WATER PROPERTIES            |      |                   |             |  |
| PRETEST OPEN                                        | 12:18:30                              |                      |     | RESISTIVITY ( )                |      |                   |             |  |
| TIME OPEN                                           | 02:15                                 |                      |     | C1 (frm. resis.)(              |      |                   |             |  |
| CHAMBER OPEN                                        | 12:20:45                              | 01:19:00             | )   | C1 (frm. titrat)(              | 18   | 8K                | 17K         |  |
| CHAMBER FULL                                        |                                       | 01:33:00             |     | NO <sub>2</sub> (              | 1    |                   | 80          |  |
| FILL TIME                                           |                                       | 14:00                | 1   | pH                             |      | 3                 | 7           |  |
| START BUILD UP                                      |                                       | 01:33:00             |     | OTHER TRACERS                  |      |                   |             |  |
| FINISH BUILD UP                                     |                                       |                      |     | (                              |      |                   |             |  |
| BUILD UP TIME                                       |                                       |                      | 1   | DENSITY (                      | )    |                   |             |  |
| SEAL CHAMBER                                        | 01:17:10                              | 01:34:00             | 1   | FLUORESCENCE                   | 1    |                   |             |  |
| TOOL RETRACT                                        |                                       | 01:36:00             |     | COLOUR                         | 1    |                   |             |  |
| TOTAL TIME                                          |                                       | 01:17:30             |     | COMMENTS                       | 1    |                   |             |  |
| B SAMPLE PRESSURES                                  | <del></del>                           |                      | 1   |                                |      |                   |             |  |
| IHP (PSIG)                                          | 4433.7                                |                      | 1   | (d)OTHER SAMPLE                |      |                   |             |  |
| ISIP (PSIA)                                         | 3831.7                                |                      | 1   | PROPERTIES                     |      |                   |             |  |
| IFP (PSIA)                                          | r - ''                                | 1068.9               | 1   |                                |      |                   |             |  |
| FFP (PSIA)                                          | 2085.9<br>2367.6                      |                      | F   | MUD PROPERTIES                 |      |                   | <del></del> |  |
| FSIP (PSIA)                                         |                                       | 3835.8               |     | TYPE                           | S    | AWATER            | GEL         |  |
| FHP (PSIA)                                          |                                       | 4439.5               | 1   | RESISTIVITY ( )                | 1~   |                   |             |  |
| TEMP. CORR. ( )                                     |                                       | <del></del>          | 1   | C1 (frm.resis.)( )             | 1    |                   |             |  |
| COMMENTS                                            | <del> </del>                          |                      | ĺ   | C1 (frm.titrat)( )             | 20   | 0,000             |             |  |
| C TEMPERATURE                                       | · · · · · · · · · · · · · · · · · · · | <del></del>          | 1   | NO Drld/1st.circ(              | ) 24 | 10/200            |             |  |
| DEPTH TOOL REACHED(m)                               | 2694.5                                | 2694.5               | 1   | NO <sub>3</sub> Drld/1st.circ( |      | ).5               |             |  |
| MAX.REC.TEMP.(OF)                                   | 221                                   | 224                  | 1   | OTHER TRACERS                  | +    | <del>/ • _/</del> |             |  |
| TIME CIRC. STOPPED                                  |                                       |                      | 1   | ( )                            |      |                   |             |  |
| TIME SINCE CIRC.                                    |                                       |                      | 1   | DENSITY (PPG )                 | 9.   | 7                 |             |  |
| D SAMPLE RECOVERY                                   | <u> </u>                              | L                    | G   | GENERAL COMMENTS               | 1/•  |                   |             |  |
| SURFACE PRESSURE( PSI                               | 190                                   | 1000                 | ۲Ť  |                                |      |                   |             |  |
| VOL. GAS (CUFT                                      |                                       | 5.0                  | 1   |                                |      |                   |             |  |
| VOL. OIL (CC                                        | 100                                   | 500                  | 1   |                                |      |                   |             |  |
| VOL. WATER (                                        |                                       |                      | 1   |                                |      |                   |             |  |
| VOL. FILTRATE (cc                                   | 10,000                                | 8000                 | 1   |                                |      |                   |             |  |
| VOL. CONDENSATE (                                   |                                       |                      | 1   |                                |      |                   |             |  |
| VOL. OTHER (                                        |                                       |                      | 1   |                                |      |                   |             |  |
| E SAMPLE PROPERTIES                                 |                                       | ·                    | 1   |                                |      |                   |             |  |
| (a) G c1 ( PPM)                                     | 16,486                                | 34,621               | 1   |                                |      |                   |             |  |
| A c2 (PPM)                                          |                                       | 64.655               |     |                                |      |                   |             |  |
| S c3 (PPM)                                          |                                       | 1,335                |     |                                |      |                   |             |  |
| c4 (PPM)                                            |                                       | 996                  |     |                                |      |                   |             |  |
| C c5 (PPM)                                          |                                       | 526                  |     |                                |      |                   |             |  |
| 0 c6+ ( PPM)                                        | 96                                    | 106                  |     |                                |      |                   |             |  |
| M CO <sub>2</sub> (%                                | 4.0                                   | 7.0                  | ]   |                                |      |                   |             |  |
| P H <sub>2</sub> S (PPM)                            |                                       | NTL                  |     |                                |      | 1                 |             |  |
| (b)OIL PROPERTIES                                   |                                       |                      |     |                                |      |                   |             |  |
| DENSITY: HYDROMETER                                 |                                       | 38@60 <sup>0</sup> F |     |                                |      |                   |             |  |
| ( ) REFRACTOMETI                                    | ER                                    |                      |     |                                |      |                   |             |  |
| REFRACTIVE INDEX                                    |                                       |                      | L   |                                |      |                   | •           |  |
| COLOUR                                              |                                       | BRN WAX              | 1   |                                |      |                   |             |  |
| FLUORESCENCE                                        |                                       | BRI YEL              | L/W | <b>T</b> H                     |      |                   |             |  |
| G.O.R. ( )                                          |                                       |                      | 1   |                                |      |                   |             |  |

| CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA                                     |          |                                                  |                    |                                |                                                  |              |                                                  |
|-----------------------------------------------------------------------------------------|----------|--------------------------------------------------|--------------------|--------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|
| COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3 LTD. RUN No. : 14 PRESSURE GAUGE TYPE : HP |          |                                                  |                    |                                |                                                  |              |                                                  |
|                                                                                         |          |                                                  |                    |                                |                                                  |              |                                                  |
| CHAMBER No.                                                                             | 1        | 2                                                |                    |                                |                                                  | <del></del>  |                                                  |
| CHAMBER CAPACITY (LITRES)                                                               | 22.7     | 10.4                                             |                    |                                |                                                  |              |                                                  |
| CHOKE SIZE (INCHES)                                                                     | 7602     | 0.02<br>76                                       |                    | OIL PROPERTIES CONT.           | <del>,</del>                                     |              | <del> </del>                                     |
| SEAT No.                                                                                |          | L.i.                                             | 1                  | ODOUR POUR POINT ( )           | <del> </del>                                     |              | <del> </del>                                     |
| DEPTH ( <sup>m</sup> ) (from RKB) A RECORDING TIMES                                     | 2644.7   | 2644.7                                           |                    | COMMENTS                       |                                                  |              |                                                  |
| TOOL SET                                                                                | 06:12:14 | 4                                                |                    | (c)WATER PROPERTIES            | L                                                |              | _l                                               |
| PRETEST OPEN                                                                            | 06:12:18 |                                                  |                    | RESISTIVITY ( )                |                                                  |              |                                                  |
| TIME OPEN                                                                               | 02:49    | •                                                |                    | Cl (frm. resis.)( )            |                                                  |              |                                                  |
| CHAMBER OPEN                                                                            |          | 07:04:0                                          | 0                  | C1 (frm. titrat)( )            | 17,                                              | 000          | 17,000                                           |
| CHAMBER FULL                                                                            | NOT FILI |                                                  |                    | NO <sub>3</sub> ( )            | 60                                               |              | 60                                               |
| FILL TIME                                                                               | NOT FILI | ED                                               |                    | pH and and                     | 8.5                                              | <u> </u>     | 8.3                                              |
| START BUILD UP<br>FINISH BUILD UP                                                       |          |                                                  |                    | OTHER TRACERS                  |                                                  |              |                                                  |
| BUILD UP TIME                                                                           |          |                                                  |                    | DENSITY ( )                    | <u> </u>                                         | <del></del>  | <del>                                     </del> |
| SEAL CHAMBER                                                                            | 07:01:00 | 07:22:0                                          | 0                  | FLUORESCENCE                   |                                                  |              | <del> </del>                                     |
| TOOL RETRACT                                                                            | 0,00.00  | 07:27:0                                          | ı                  | COLOUR                         | <del>                                     </del> | <del> </del> | +                                                |
| TOTAL TIME                                                                              | 48:46    |                                                  |                    | COMMENTS                       | 1                                                |              |                                                  |
| B SAMPLE PRESSURES                                                                      |          |                                                  |                    |                                |                                                  |              |                                                  |
| IHP (PSIA)                                                                              | 4393.72  |                                                  |                    | (d)OTHER SAMPLE                |                                                  |              |                                                  |
| ISIP (PSIA)                                                                             | 3805.07  |                                                  |                    | PROPERTIES                     |                                                  |              |                                                  |
| FFP (PSIA)                                                                              | 260.0    | 98.7                                             | F                  | MID DRODEDTIES                 | <u> </u>                                         |              |                                                  |
| FSIP ( PSIA)                                                                            | 603.9    | 117.7<br>3794.5                                  | -                  | MUD PROPERTIES TYPE            | ISEA                                             | WATER        | G-EU.                                            |
| FHP () 4396.6                                                                           |          |                                                  |                    | RESISTIVITY ( )                |                                                  |              | 18.8 C                                           |
| TEMP. CORR. ( )                                                                         |          |                                                  | Ì                  | C1 (frm.resis.)( )             |                                                  | 000          | 10.00                                            |
| COMMENTS                                                                                |          | l                                                | C1 (frm.titrat)( ) |                                | 000                                              |              |                                                  |
| C TEMPERATURE                                                                           |          |                                                  |                    | NO <sub>3</sub> Dr1d/1st.circ( | )                                                |              |                                                  |
| DEPTH TOOL REACHED(m)                                                                   | 2744.7   | 2744.7                                           |                    | pH                             |                                                  |              |                                                  |
| MAX.REC.TEMP.( OF)                                                                      | 218      | 220.5                                            |                    | OTHER TRACERS                  |                                                  |              |                                                  |
| TIME CIRC. STOPPED                                                                      |          |                                                  |                    | ( )                            | <u> </u>                                         |              |                                                  |
| TIME SINCE CIRC.  D SAMPLE RECOVERY                                                     | <u> </u> |                                                  | _                  | DENSITY ()                     | <u></u>                                          |              |                                                  |
| D SAMPLE RECOVERY SURFACE PRESSURE( PSI )                                               | 152      | 15                                               | G                  | GENERAL COMMENTS               |                                                  | <del></del>  |                                                  |
| VOL. GAS (CUFT)                                                                         |          | 0.25                                             |                    |                                |                                                  |              |                                                  |
| VOL. OIL                                                                                | )        | 0.2)                                             |                    |                                |                                                  |              |                                                  |
| VOL. WATER (                                                                            |          |                                                  |                    |                                |                                                  |              |                                                  |
| VOL. FILTRATE (                                                                         | 4500     | 3000                                             |                    |                                |                                                  |              |                                                  |
| VOL. CONDENSATE (                                                                       | )        |                                                  |                    |                                |                                                  |              |                                                  |
| VOL. OTHER ( E SAMPLE PROPERTIES                                                        | )        | <u> </u>                                         | ł                  |                                |                                                  |              |                                                  |
| E SAMPLE PROPERTIES (a) G c1 (ppM)                                                      | 325,133  | 310,696                                          | 1                  |                                |                                                  |              |                                                  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                   | 41.144   | 40.691                                           | 4                  |                                |                                                  |              |                                                  |
| S c3 (PPM)                                                                              | 6,800    | 5,200                                            |                    |                                |                                                  |              |                                                  |
| c4 (PPM )                                                                               | 220      | 160                                              | 1                  |                                |                                                  |              |                                                  |
| C c5 (PPM )                                                                             | 60       | 30                                               |                    |                                |                                                  |              |                                                  |
| 0 c6+ (PPM )                                                                            | 44       | 12                                               |                    |                                |                                                  |              |                                                  |
| M CO <sub>2</sub> (% )                                                                  | 16       | 14                                               | 1                  |                                |                                                  |              |                                                  |
| P H <sub>2</sub> S ( ) (b)OIL PROPERTIES                                                |          |                                                  | -                  |                                |                                                  |              |                                                  |
| DENSITY: HYDROMETER                                                                     |          | <del>1</del>                                     | 1                  |                                |                                                  |              |                                                  |
| ( ) REFRACTOMETE                                                                        | ER       | 1                                                | 1                  |                                |                                                  |              |                                                  |
| REFRACTIVE INDEX                                                                        |          | <del>                                     </del> | 1                  |                                |                                                  |              |                                                  |
| COLOUR                                                                                  |          |                                                  | 1                  |                                |                                                  |              |                                                  |
| FLUORESCENCE                                                                            |          |                                                  | 1                  |                                |                                                  |              |                                                  |
| G.O.R. ( )                                                                              |          |                                                  | 1                  |                                |                                                  |              |                                                  |
|                                                                                         |          | <del></del>                                      | -                  |                                |                                                  |              |                                                  |

| CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA                                       |               |                                       |         |              |                                       |          |                                        |
|-------------------------------------------------------------------------------------------|---------------|---------------------------------------|---------|--------------|---------------------------------------|----------|----------------------------------------|
| CORE LABORATORIES                                                                         | к. Г.         | DATA SIL                              | E1 - S1 | AMPLING DAT  |                                       | ———      | <del></del>                            |
| COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3  LTD.  RUN No. : 15 PRESSURE GAUGE TYPE : HP |               |                                       |         |              |                                       |          |                                        |
| RUN NO. : 15 PRESSURE GAUGE TIPE.                                                         |               |                                       |         |              |                                       |          |                                        |
| QUAMPED No                                                                                | 1 1           | 2                                     |         |              |                                       |          |                                        |
| CHAMBER No. CHAMBER CAPACITY (LITRES)                                                     | l             | 10.4                                  |         |              |                                       |          |                                        |
| CHOKE SIZE (INCHES)                                                                       | 0.02          | 0.02                                  | OTI.    | PROPERTIES   | CONT.                                 |          |                                        |
| SEAT No.                                                                                  | 1             |                                       | ODOU    |              |                                       |          |                                        |
| DEPTH (m ) (from RKB)                                                                     | 15/78<br>2622 | 15/78<br>2622                         |         | POINT (      | ( 0 )                                 |          |                                        |
| A RECORDING TIMES                                                                         |               |                                       | COMM    | ENTS         |                                       |          |                                        |
| TOOL SET                                                                                  | 10:37:00      |                                       | (c)W    | ATER PROPER  | RTIES                                 |          |                                        |
| PRETEST OPEN                                                                              | 10:37:04      |                                       | RESI    | STIVITY (    | )                                     |          |                                        |
| TIME OPEN                                                                                 | 01:32         |                                       |         | frm. resis.  |                                       |          |                                        |
| CHAMBER OPEN                                                                              | 10:38:36      | 11:04:20                              | C1 (    | frm. titrat  | :)( )                                 | 16,000   | 16,000                                 |
| CHAMBER FULL                                                                              | 10:58:20      | 11:10:12                              | NO 3    |              | ( PPM)                                |          | 20                                     |
| FILL TIME                                                                                 | 19:44         | <del></del>                           | рН      |              |                                       | 6.2      | 6.3                                    |
| START BUILD UP                                                                            | 10:58:20      | 11:13:43                              | OTHE    | R TRACERS    | ,                                     |          |                                        |
| FINISH BUILD UP                                                                           | 11:03:01      |                                       |         | T (11+ •     | ( )                                   | 1        | -                                      |
| BUILD UP TIME                                                                             |               |                                       | DENS    |              | ( )                                   | 1        | <del> </del>                           |
| SEAL CHAMBER                                                                              | 11:03:01      | 11:13:43                              |         | RESCENCE     |                                       |          |                                        |
| TOOL RETRACT                                                                              | ļ             | 11:15:08                              | COLO    |              |                                       |          | <del></del>                            |
| TOTAL TIME                                                                                |               |                                       | COM     | ŒNTS         |                                       |          |                                        |
| B SAMPLE PRESSURES                                                                        | T.===         |                                       | 1115    | יייים ממעיין | 2                                     | +        | <del> </del>                           |
| IHP ( )                                                                                   | 4356.74       | 2774 00                               |         | THER SAMPLI  | Ľ                                     |          |                                        |
| ISIP ()                                                                                   | 12112.63      | 3771.09                               | F       | PROPERTIES   |                                       |          |                                        |
| IFP ( )                                                                                   | 483           | 3101.49<br>3048.21                    | , MILL  | PROPERTIES   |                                       | <u> </u> |                                        |
| FSIP ( )                                                                                  | 3771 00       | 3770.65                               | TYPE    |              |                                       | T        |                                        |
| FHP ( )                                                                                   | 1711107       | 4357.34                               |         | STIVITY (    |                                       | 0.252 @  | 18.8°C                                 |
| TEMP. CORR. ( )                                                                           | <u> </u>      | 17771074                              |         | frm.resis.   | )( )                                  | 27,000   |                                        |
| COMMENTS                                                                                  | <b> </b>      |                                       | C1 (    | frm.titrat   | )(                                    | 20,000   | ······································ |
| C TEMPERATURE                                                                             |               | · · · · · · · · · · · · · · · · · · · | NO. I   | rld/1st.ci   | rc(                                   | )        | <u></u>                                |
| DEPTH TOOL REACHED(m)                                                                     | 2622          | 2622                                  |         | orld/1st.ci  |                                       |          |                                        |
| MAX.REC.TEMP.( %)                                                                         | 210           | 219                                   |         | ER TRACERS   | · · · · · · · · · · · · · · · · · · · |          |                                        |
| TIME CIRC. STOPPED                                                                        | 1             | <del> /</del>                         |         |              | ( )                                   |          |                                        |
| TIME SINCE CIRC.                                                                          |               | 1                                     |         | SITY         | $\langle \rangle$                     |          |                                        |
| D CAMBLE DECOVERY                                                                         |               |                                       |         | ERAL COMMEN  | TS                                    |          |                                        |
| SURFACE PRESSURE( PSIG                                                                    | 1950          | 1900                                  | 1       |              |                                       |          |                                        |
| VOL. GAS (CUFT)                                                                           |               | 51.3                                  | 1       |              |                                       |          |                                        |
| VOL. OIL                                                                                  |               |                                       |         |              |                                       |          |                                        |
| VOL. WATER/FILT. ( LIT                                                                    | 11.2          | 2.25                                  |         |              |                                       |          |                                        |
| VOL. FILTRATE (                                                                           | )             |                                       |         |              |                                       |          |                                        |
| VOL. CONDENSATE/EM LIT                                                                    | 0.2           | 0.2                                   |         |              |                                       |          |                                        |
| VOL. OTHER (                                                                              | 기             |                                       |         |              |                                       |          |                                        |
| E SAMPLE PROPERTIES                                                                       | 1/2= -        | 17                                    |         |              |                                       |          |                                        |
|                                                                                           | 675,942       |                                       |         |              |                                       |          |                                        |
| A c2 (ppm)<br>S c3 (ppm)                                                                  |               |                                       |         |              |                                       |          |                                        |
|                                                                                           |               |                                       |         |              |                                       |          |                                        |
| C C5 (PPM)                                                                                | 7-7-          |                                       |         |              |                                       |          |                                        |
| 0 c6+ (PFM)                                                                               |               |                                       |         |              |                                       |          |                                        |
| M CO <sub>2</sub> (%                                                                      | 9.5           | 12.1                                  |         |              |                                       |          |                                        |
| P H <sub>2</sub> S (                                                                      | 0             | 0                                     |         |              |                                       |          |                                        |
| (b)OIL PROPERTIES                                                                         |               |                                       |         |              |                                       |          |                                        |
|                                                                                           |               | }                                     |         |              |                                       |          |                                        |
| DENSITY: HYDROMETER                                                                       |               |                                       |         |              |                                       |          |                                        |
| DENSITY: HYDROMETER ( ) REFRACTOMETI REFRACTIVE INDEX                                     | ER            |                                       |         |              |                                       |          |                                        |

COLOUR FLUORESCENCE

G.O.R.

| CORE LABORATORIES R.F.T.                                                                 | DATA SIII | EET - SAMPLING DATA                   |  |  |  |  |
|------------------------------------------------------------------------------------------|-----------|---------------------------------------|--|--|--|--|
| COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3 LITD. RUN No. : 16 PRESSURE GAUGE TYPE : HP |           |                                       |  |  |  |  |
| CHAMBER No. 1                                                                            | 2         |                                       |  |  |  |  |
| CHAPIDLIC NO.                                                                            | 10.4      |                                       |  |  |  |  |
| CIMIDEN OILLIGETT (                                                                      |           | OIL PROPERTIES CONT.                  |  |  |  |  |
| CHOKE SIZE (INCH S) 0.03 SEAT No.                                                        | 0.02      | ODOTE                                 |  |  |  |  |
| DEPTH ( m ) (from RKB) 2637.2                                                            | 2637.2    | POUR POINT ( )                        |  |  |  |  |
| A RECORDING TIMES                                                                        |           | COMMENTS                              |  |  |  |  |
| TOOL SET 15:16:04                                                                        |           | (c)WATER PROPERTIES                   |  |  |  |  |
| PRETEST OPEN 15:16:08                                                                    |           | RESISTIVITY ( )                       |  |  |  |  |
| TIME OPEN 02:24                                                                          |           | C1 (frm. resis.)( )                   |  |  |  |  |
| CHAMBER OPEN 15:18:32                                                                    | 16:04:40  | C1 (frm. titrat)( ) 17K 17.5K         |  |  |  |  |
|                                                                                          | 16:15:20  |                                       |  |  |  |  |
| FILL TIME 26:11                                                                          |           | ph 8.0 /1.7                           |  |  |  |  |
|                                                                                          | 16:15:20  |                                       |  |  |  |  |
|                                                                                          | 16:23:20  |                                       |  |  |  |  |
| BUILD UP TIME 18:09                                                                      |           |                                       |  |  |  |  |
|                                                                                          | 16:23:20  |                                       |  |  |  |  |
| TOOL RETRACT TOTAL TIME                                                                  | 16:29:00  | COMMENTS                              |  |  |  |  |
| B SAMPLE PRESSURES                                                                       | J         |                                       |  |  |  |  |
| IHP (FSIA) 439.80                                                                        |           | (d)OTHER SAMPLE                       |  |  |  |  |
|                                                                                          | ITT 3721  | PROPERTIES                            |  |  |  |  |
| IFP ( ) 150                                                                              | 315.0     |                                       |  |  |  |  |
| FFP ( ) 800                                                                              | 566       | F MUD PROPERTIES                      |  |  |  |  |
| FSIP ( ) 3721.0                                                                          | 385N      | 1"                                    |  |  |  |  |
| FHP (PSIG)                                                                               | 4349      | RESISTIVITY ( )                       |  |  |  |  |
| TEMP. CORR. ( )                                                                          |           | C1 (frm.resis.)( ) C1 (frm.titrat)( ) |  |  |  |  |
| C TEMPERATURE                                                                            | <u> </u>  | NO <sub>3</sub> Drld/1st.circ( )      |  |  |  |  |
| C TEMPERATURE DEPTH TOOL REACHED( ) 2537.2                                               | 2637.2    | pH pH                                 |  |  |  |  |
| MAX.REC.TEMP.(°F) 216                                                                    | 1-0/10-   | OTHER TRACERS                         |  |  |  |  |
| TIME CIRC. STOPPED                                                                       | 1         | ( )                                   |  |  |  |  |
| TIME SINCE CIRC.                                                                         |           | DENSITY ( )                           |  |  |  |  |
| D SAMPLE RECOVERY                                                                        |           | G GENERAL COMMENTS                    |  |  |  |  |
| SURFACE PRESSURE( ) 570                                                                  | 290       | 1                                     |  |  |  |  |
| VOL. GAS (CUFT) 2.4                                                                      | <u> </u>  | 4 1                                   |  |  |  |  |
| VOL. OIL ()                                                                              | 03        | 4                                     |  |  |  |  |
| VOL. WATER/FILT (LIT ) 22.3                                                              | 92        |                                       |  |  |  |  |
| VOL. FILTRATE ( ) VOL. CONDENSATE ( )                                                    | -         | 1                                     |  |  |  |  |
| VOL. OTHER ()                                                                            | 1         | 1                                     |  |  |  |  |
| E SAMPLE PROPERTIES                                                                      |           |                                       |  |  |  |  |
|                                                                                          | 310,274   | ]                                     |  |  |  |  |
| A c2 (ppm ) 55,104                                                                       | 34,385    |                                       |  |  |  |  |
| S c3 (ppm ) 13,394                                                                       | 12,184    | 4                                     |  |  |  |  |
| c4 (ppm) 2,604                                                                           | 1,835     |                                       |  |  |  |  |
| C C5 (PFM ) 1,899                                                                        |           | 4                                     |  |  |  |  |
| 0 c6+ (FPM) 377<br>M CO <sub>2</sub> (%) 1.4                                             |           | -                                     |  |  |  |  |
| M CO <sub>2</sub> (% ) 1.4<br>P H <sub>2</sub> S (FPM ) -                                | 1.3       | -                                     |  |  |  |  |
| (b)OIL PROPERTIES                                                                        | _1        |                                       |  |  |  |  |
| DENSITY: HYDROMETER                                                                      | 1         |                                       |  |  |  |  |
| ( ) REFRACTOMETER                                                                        |           |                                       |  |  |  |  |
| REFRACTIVE INDEX                                                                         |           | ]                                     |  |  |  |  |
| COLOUR                                                                                   |           | _                                     |  |  |  |  |
| FLUORESCENCE                                                                             |           | _                                     |  |  |  |  |
| G.O.R. ( )                                                                               |           |                                       |  |  |  |  |

| CORE LABORATORIES              | R.F.T.    | DATA SI      | IEE'I    | r - SAMPLING DATA                  |         |
|--------------------------------|-----------|--------------|----------|------------------------------------|---------|
| LI                             | . T.      |              |          | : WIRRAH NO. 3                     | MAR JAR |
| RUN No. : 1                    | 17        | PI           | KESS     | SURE GAUGE TYPE: HP                |         |
| CHAMBER No.                    | 1 1       | 2            | T        |                                    | L       |
| CHAMBER CAPACITY (LITRES)      |           |              | 1        |                                    |         |
| CHOKE SIZE (INCHES)            | 0.03      |              | 1        | OIL PROPERTIES CONT.               |         |
| SEAT No.                       | 93        |              | ]        | ODOUR                              |         |
| DEPTH (m) (from RKB)           | 2569      |              | 4        | POUR POINT ( )                     |         |
| A RECORDING TIMES              | 1         | T            | 4        | COMMENTS                           |         |
| TOOL SET                       | 07:44:00  |              | -        | (c)WATER PROPERTIES                |         |
| PRETEST OPEN                   | 07:44;00  |              | ┨        | RESISTIVITY ( )                    |         |
| TIME OPEN                      | 07:47:00  |              | 4        | C1 (frm. resis.)( )                | 00      |
| CHAMBER OPEN                   | NOT FULL  |              | -        | C1 (frm. titrat)(FPM) 60           | 00      |
| CHAMBER FULL<br>FILL TIME      | A CTITI   | <del> </del> | -        | NO   PFM   20   9                  | l l     |
| START BUILD UP                 |           |              | 4        | OTHER TRACERS                      |         |
| FINISH BUILD UP                | +         | -            | -        | OTHER TRACERS                      |         |
| BUILD UP TIME                  |           | <del> </del> | 1        | DENSITY ()                         |         |
| SEAL CHAMBER                   | 08:02:00  | <del> </del> | 1        | FLUORESCENCE                       |         |
| TOOL RETRACT                   | 08:04:00  | <del> </del> | 1        | COLOUR                             |         |
| TOTAL TIME                     | 100.04.00 |              | 1        | COMMENTS                           |         |
| B SAMPLE PRESSURES             |           | <u></u>      | 7        |                                    |         |
| IHP (PSIG)                     | 4254.79   |              | ]        | (d)OTHER SAMPLE                    |         |
| ISIP ( )                       | DIDN'T    | VAIT         | ]        | PROPERTIES                         |         |
| IFP (PSIA)                     | 100       | ļ            | <u> </u> | 1                                  |         |
| FFP (PSIA)                     | 180       | ļ            | F        | MUD PROPERTIES                     |         |
| FSIP ()                        | DIDN'T    | WAIT         | 4        | TYPE                               |         |
| TEMP. CORR. ( )                | +         |              | 4        | RESISTIVITY ( ) C1 (frm.resis.)( ) |         |
| COMMENTS                       | -         |              | -        | C1 (from titrat)                   |         |
| C TEMPERATURE                  | .1        | L.,          | 1        | NO Drld/1st.circ(                  |         |
| DEPTH TOOL REACHED(m)          | 2619      |              | 1        | NO <sub>3</sub> Drld/1st.circ( )   |         |
| MAX.REC.TEMP.(°F)              |           |              | 1        | OTHER TRACERS                      |         |
| TIME CIRC. STOPPED             | 23:40/2   | 6/12/83      | 7        | ( )                                |         |
| TIME SINCE CIRC.               | 8HR 4 M   | INS          | 1        | DENSITY ()                         |         |
| D SAMPLE RECOVERY              |           | ,            | G        | GENERAL COMMENTS                   |         |
| SURFACE PRESSURE(PSIA          | ) 18      |              | 1        |                                    |         |
| VOL. GAS (                     | <u> </u>  | ļ            | 4        |                                    |         |
| VOL. OIL (                     | -         | <del> </del> | 4        |                                    |         |
| VOL. WATER ( VOL. FILTRATE (CC | ) 100     |              | -        |                                    |         |
| VOL. CONDENSATE (              | 100       | <u> </u>     | +        |                                    |         |
| VOL. OTHER (                   | Śl        | <del> </del> | 1        |                                    |         |
| E SAMPLE PROPERTIES            | 1         | L            | 1        | ĺ                                  |         |
| (a) G   c1 (                   |           |              | 1        |                                    |         |
| A c2 (                         | )         |              | ]        |                                    |         |
| S <b>c</b> 3 (                 | )         |              | ]        |                                    |         |
| c4 (                           | )         |              | ]        |                                    |         |
| C c5 (                         | )         |              | ]        |                                    |         |
| 0   c6+ ( )                    |           |              | 1        |                                    |         |
| M CO <sub>2</sub> (            | )         | ļ            | -        |                                    |         |
| P H <sub>2</sub> S ( )         | )         | L            | -        | .1                                 |         |
| DENSITY: HYDROMETER            |           | 1            | -        |                                    |         |
| ( ) REFRACTOMETI               | FR        | <del> </del> | $\dashv$ |                                    |         |
| REFRACTIVE INDEX               | 717       | <del> </del> | -        |                                    |         |
| COLOUR                         |           | 1            | 1        |                                    |         |
| FLUORESCENCE                   |           | <del> </del> | 1        |                                    |         |
| G.O.R. ( )                     |           | <del> </del> | 4        |                                    |         |

| CORE LABORATORIES                                               | R.F.T.          | DATA SII                                         | EE' | r - SAMPLING DATA   |              |                 |   |             |
|-----------------------------------------------------------------|-----------------|--------------------------------------------------|-----|---------------------|--------------|-----------------|---|-------------|
| COMPANY :ESSO AUSTRALIA WELL : WIRRAW NO. 3 LITO.  DINN No. 119 |                 |                                                  |     |                     |              |                 |   |             |
| RUN No. : 18                                                    | )               |                                                  | .ES | SURE GAUGE TYPE: HP |              |                 |   |             |
| CHAMBER No.                                                     | 1               | 2                                                |     |                     |              |                 |   |             |
| CHAMBER CAPACITY (LITRES)                                       | 22.7            | 10.4                                             | L   |                     |              |                 |   |             |
| CHOKE SIZE (INCHES)                                             | 0.02            | 0.02                                             |     | OIL PROPERTIES CONT | •            |                 |   |             |
| SEAT No.                                                        |                 |                                                  |     | ODOUR               |              |                 |   |             |
| DEPTH ( m ) (from RKB)                                          | 2645            | 2645                                             | 1   | POUR POINT (        | )            |                 |   |             |
| A RECORDING TIMES                                               |                 |                                                  | ]   | COMMENTS            |              |                 |   |             |
| TOOL SET                                                        | 03:09:24        |                                                  |     | (c)WATER PROPERTIES | 3            |                 |   |             |
| PRETEST OPEN                                                    | 03:09:28        |                                                  |     | RESISTIVITY ( )     |              |                 |   |             |
| TIME OPEN                                                       | 01:23           |                                                  |     | Cl (frm. resis.)(   | _)           |                 |   |             |
| CHAMBER OPEN                                                    | 03:10:51        |                                                  |     | C1 (frm. titrat)(   | _)           | 16K             |   | CC 16000    |
| CHAMBER FULL                                                    |                 | 04:23:00                                         |     | NO <sub>3</sub> (   | )            | 66              |   | 40          |
| ETII TIME                                                       | 70T             | 11:54                                            | 1   | pH                  |              | 7.1             |   | 8.3         |
| START BUILD UP                                                  | MOLD WOLD       | 04:23:00                                         | þ   | OTHER TRACERS       |              |                 |   |             |
| FINISH BUILD UP                                                 | 4777            | -0 174 TMTN                                      | 1   | (                   | _)           |                 |   |             |
| BUILD UP TIME                                                   |                 | NO WATTI                                         | 3   | DENSITY (           | )            |                 |   |             |
| SEAL CHAMBER                                                    | 04:09:56        | 04:35:28                                         | }   | FLUORESCENCE        |              |                 |   |             |
| TOOL RETRACT                                                    | · · · · · · · · | 04:39:16                                         | 1   | COLOUR              |              |                 |   |             |
| TOTAL TIME                                                      | 01:00:32        | 28:10                                            | 1   | COMMENTS            |              |                 |   |             |
| B SAMPLE PRESSURES                                              |                 | 10                                               | 1   |                     |              |                 |   |             |
| IHP (PSTA)                                                      | 4393.35         |                                                  | 1   | (d)OTHER SAMPLE     |              |                 |   |             |
| ISIP (PSIA)                                                     | 3808.19         |                                                  | 1   | PROPERTIES          |              |                 |   |             |
| IFP (PST4)                                                      | 236.0           | 242.00                                           | L   |                     |              |                 |   |             |
| FFP (PSIA)                                                      | 1602.61         |                                                  | F   | MUD PROPERTIES      |              |                 |   |             |
| FSIP ()                                                         |                 |                                                  |     | TYPE                |              |                 |   |             |
| FHP (PST4)                                                      |                 | 439                                              | 1   | RESISTIVITY ( )     |              |                 |   |             |
| TEMP. CORR. ( )                                                 |                 | 177                                              | 1   | C1 (frm.resis.)(    | )            |                 | - |             |
| COMMENTS                                                        |                 |                                                  | 1   | C1 (frm.titrat)(    | )            |                 |   |             |
| C TEMPERATURE                                                   |                 | ······································           | 1   | NO Drld/1st.circ(   | )            |                 |   |             |
| DEPTH TOOL REACHED(m)                                           | 2645.0          | 2645.0                                           | 1   | pH <sub>3</sub>     | <del>-</del> |                 |   | <del></del> |
| MAX. REC. TEMP. ( OF')                                          | 190             | 190                                              | 1   | OTHER TRACERS       |              |                 |   |             |
| TIME CIRC. STOPPED                                              | 17:00/2         | <del>1/12/83</del>                               | 1   | (                   | )            |                 |   |             |
| TIME SINCE CIRC.                                                |                 |                                                  | 1   | DENSITY (           | Ś            | <b> </b>        |   |             |
| D SAMPLE RECOVERY                                               | <del></del>     | <u> </u>                                         | G   |                     | <del>_</del> | <u> </u>        |   |             |
| SURFACE PRESSURE( PSI)                                          | 200             | 375                                              | Ť   |                     |              |                 |   |             |
| VOL. GAS (CUFT)                                                 |                 | 0.3                                              | 1   |                     |              |                 |   |             |
| VOL. OIL ( )                                                    | 1               | •                                                | 1   |                     |              |                 |   |             |
| VOL. WATER ( )                                                  |                 |                                                  | 1   |                     |              |                 |   |             |
| VOL. FILTRATE ( CC )                                            | 17,000          | 9500                                             | 1   |                     |              |                 |   |             |
| VOL. CONDENSATE ( )                                             | , , , , , ,     | 1                                                | 1   |                     |              |                 |   |             |
| VOL. OTHER (                                                    |                 |                                                  | 1   |                     |              |                 |   |             |
| E SAMPLE PROPERTIES                                             | <del></del>     | <del></del>                                      | 1   |                     |              |                 |   |             |
|                                                                 | 65.945          | 64.071                                           | 1   |                     |              |                 |   |             |
| A c2 (PPM)                                                      | 7,347           | 6,903                                            | 1   |                     |              |                 |   |             |
| S c3 (FPM )                                                     | 1,669           | 1,246                                            | 1   |                     |              |                 |   |             |
| c4 (PPM )                                                       |                 | 36                                               | 1   |                     |              |                 |   |             |
| C c5 (PPM)                                                      |                 | TR                                               | 1   |                     |              |                 |   |             |
| 0 c6+ (PPM )                                                    |                 | _                                                | 1   |                     |              |                 |   |             |
| M CO <sub>2</sub> (%)                                           | 2               | 2                                                | 1   |                     |              |                 |   |             |
| P H <sub>2</sub> S ( )                                          |                 |                                                  | 1   |                     |              |                 |   |             |
| (b)OIL PROPERTIES                                               | <del></del>     | ·                                                | Г   |                     |              | <del>- ',</del> |   | <del></del> |
| DENSITY: HYDROMETER                                             | T               | 1                                                | 1   |                     |              |                 |   |             |
| ( ) REFRACTOMETE                                                | ER              | 1                                                | 1   |                     |              |                 |   |             |
| REFRACTIVE INDEX                                                |                 | <del>                                     </del> | 1   |                     |              |                 |   |             |
| COLOUR                                                          |                 |                                                  | 1   |                     |              |                 |   |             |
| FLUORESCENCE                                                    |                 | <del>                                     </del> | 1   |                     |              |                 |   |             |
| G.O.R. ()                                                       |                 |                                                  | 1   |                     |              |                 |   |             |
| 0 · 0 · N ·                                                     | 1               | 1                                                | 1   |                     |              |                 |   |             |

| CORE      | LABORATORIES      | R.F.T.       | DATA SHE | EΤ             | - SAMPLING DATA        |     |       |              |
|-----------|-------------------|--------------|----------|----------------|------------------------|-----|-------|--------------|
| CORE      |                   | ALIA WEL     | L        | : WIRRAH NO. 3 |                        |     | LAB   |              |
| CHAMBER 1 | No -              | 1            | 2        |                |                        |     |       |              |
| CHAMBER I | CAPACITY (LITRES) | 22.7         | 10.4     |                |                        |     |       |              |
| CHOKE SIZ | ZE (INCHES)       | 0.03         | 0.02     |                | OIL PROPERTIES CONT.   |     |       |              |
| SEAT No.  | <u> </u>          | 98           | 98       | ι.             | ODOUR                  |     |       |              |
|           | n) (from RKB)     | 2645         | 2645     |                | POUR POINT ( )         |     |       |              |
|           | DING TIMES        |              |          | [              | COMMENTS               |     |       | L            |
| A RECORI  |                   | 08:08:54     |          |                | (c)WATER PROPERTIES    |     |       | <del>,</del> |
| DDETE     | ST OPEN           | 08:09:00     |          | ľ              | RESISTIVITY ( )        |     |       |              |
| TIME      |                   | 06:37        |          | ı              | C1 (frm. resis.)( )    |     | - ^^^ | 47 000       |
|           | ER OPEN           | 08:15:37     | 09:22:5  |                | C1 (frm. titrat)( ppm) |     | ,000  | 17,000       |
|           | ER FULL           |              | 09:40:0  | )              | NO <sub>3</sub> (PFM)  | 40  |       | 32           |
| FILL      |                   | 59:23        |          |                | pH                     | 6.  | 7     | 6.4          |
|           | BUILD UP          |              | 09:40:0  |                | OTHER TRACERS          |     |       |              |
| STARI     | H BUILD UP        | O9:15:00     |          | ,              | ( )                    |     |       |              |
|           | UP TIME           | DIDN. I. W   | A 1 11   |                | DENSITY ( )            |     |       |              |
|           | CHAMBER           | 00-21-20     | 09:49:4  | 5              | FLUORESCENCE           |     |       |              |
|           |                   | 09:21:20     |          |                | COLOUR                 |     |       |              |
|           | RETRACT           |              | 09:50:3  | ,              | COMMENTS               |     |       |              |
|           | TIME              |              |          |                |                        |     |       |              |
|           | E PRESSURES       | 4398.14      |          |                | (d)OTHER SAMPLE        |     |       |              |
| IHP       | (PSIA)            | 3807.43      |          |                | PROPERTIES             |     |       |              |
| ISIP      |                   | 78           | 288      |                |                        | 1   |       |              |
| IFP       | (PSIA)<br>(PSIA)  | 1300         | 300      | F              | MUD PROPERTIES         |     |       |              |
| FFP       |                   | <del> </del> |          | +              | TYPE                   |     |       |              |
| FSIP      | (PSIA)            | -            | 4707.07  |                | RESISTIVITY ( )        | 1   |       |              |
| FHP       | PSTA )            |              | 4393.23  |                | C1 (frm.resis.)( )     | -   |       |              |
|           | • CORR• ( )       | <del> </del> |          | 1              | C1 (frm.titrat)( )     | -   |       |              |
| COMM      |                   |              | <u> </u> | 1              | NO Drld/1st.circ(      | 1   |       |              |
| C TEMP    | ERATURE           | 12645.0      | 2645.0   | -              | pH3 DITU/ ISC. CITC    | 1—  |       |              |
| DEPT      | H TOOL REACHED(m) | 1            | 1        | -              |                        | -   |       |              |
| MAX.      | REC. TEMP. ( OF)  | 199          | 199      | 1              | OTHER TRACERS          |     |       |              |
| TIME      | CIRC. STOPPED     |              |          | 1              | DENSTTY (PG)           | 1-0 | .6+   |              |
|           | SINCE CIRC.       |              | <u> </u> | L              | DEMOTIT                | 1 7 | • • • |              |
|           | LE RECOVERY       |              |          | G              | GENERAL COMMENTS       |     |       |              |
|           | ACE PRESSURE(     | )            |          | 1              |                        |     |       |              |
|           | GAS (             | )            |          | 1              |                        |     |       |              |
|           | OIL (             | )            |          |                |                        |     |       |              |
|           | WATER (           | )            |          |                |                        |     |       |              |
| VOL.      | FILTRATE (        | )            |          | 1              |                        |     |       |              |

VOL. CONDENSATE (
VOL. OTHER (
SAMPLE PROPERTIES E ( PPM ) 184,647 ( PPM ) 9,184 ( PPM ) 1,752 ( PPM ) 269 183,988 13,959 2,983 (a) G c1 c2 A S с3 427 c4 181 30 (PPM) C c5 TR ( PPM) 0.8 c6+ 0 0.6 (% CO2 М P H<sub>2</sub>S (b)OIL PROPERTIES DENSITY: HYDROMETER ) REFRACTOMETER

REFRACTIVE INDEX

FLUORESCENCE

COLOUR

G.O.R.

| CORE LABORATORIES                                                                        | R.F.T.    | DATA SIII  | EE'I      | C - SAMPLING DATA                      |          |             |       |  |
|------------------------------------------------------------------------------------------|-----------|------------|-----------|----------------------------------------|----------|-------------|-------|--|
| COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3 LTD.  RUN No. : 20 PRESSURE GAUGE TYPE : HP |           |            |           |                                        |          |             |       |  |
| RUN No. : 20                                                                             |           | I K        |           | 56KE 6H66E 111 - 1H                    |          |             |       |  |
| CHAMBER No.                                                                              | 1         | 2          |           |                                        |          |             |       |  |
| CHAMBER CAPACITY (LITRES)                                                                | 22.7      | 10.4       |           |                                        |          |             |       |  |
| CHOKE SIZE (INCHES)                                                                      | 0.03      | 0.02       |           | OIL PROPERTIES CONT.                   |          |             |       |  |
| SEAT No.                                                                                 | 99        |            |           | ODOUR POINT (                          | +        |             |       |  |
| DEPTH (m) (from RKB)                                                                     | 2753.1    | 2753.1     |           | 10011 10-11-                           | -        |             |       |  |
| A RECORDING TIMES                                                                        | 07-00-04  |            |           | COMMENTS                               |          |             |       |  |
| TOOL SET                                                                                 | 06:29:00  |            |           | (c)WATER PROPERTIES RESISTIVITY ( )    | _        |             |       |  |
| PRETEST OPEN                                                                             | 06:29:15  |            |           |                                        | 1        |             |       |  |
| TIME OPEN                                                                                | 00:1      |            |           | C1 (frm. resis.)(<br>C1 (frm. titrat)( | -{       | 14000       | 13000 |  |
| CHAMBER OPEN                                                                             |           | 06:49:0    |           |                                        | -{       | 80          | 60    |  |
| CHAMBER FULL                                                                             |           | 06:56:0    |           | <u>NO</u> 3 (                          | -4       | 7.0         | 6.7   |  |
| FILL TIME                                                                                | 14:15     |            |           | OTHER TRACERS                          | $\dashv$ |             |       |  |
| START BUILD UP                                                                           |           | 06:56:0    | ľ         | OTHER TRACERS                          |          |             |       |  |
| FINISH BUILD UP<br>BUILD UP TIME                                                         |           |            | 1         | DENSITY (                              | 寸        |             |       |  |
| SEAL CHAMBER                                                                             | 06.47.30  | 06:58:0    | 0         | FLUORESCENCE                           | -+       |             |       |  |
| TOOL RETRACT                                                                             | 00.41.7   | 07:04:0    |           | COLOUR                                 | $\dashv$ |             |       |  |
| TOTAL TIME                                                                               |           | 35:0       |           | COMMENTS                               |          |             |       |  |
| B SAMPLE PRESSURES                                                                       | <u> </u>  |            | 1         |                                        |          |             |       |  |
| IHP (PSIG)                                                                               | 4576.0    |            | 1         | (d)OTHER SAMPLE                        |          |             |       |  |
| ISIP (PSIA)                                                                              | 3941.9    |            | 1         | PROPERTIES                             |          |             |       |  |
| IFP (PSIA)                                                                               |           | 2030.2     | 1         |                                        |          |             |       |  |
| FFP (PSIA)                                                                               | 2441.7    | 2020.3     | F         | MUD PROPERTIES                         |          |             |       |  |
| FSIP (PSIA)                                                                              |           | 3933•4     |           | TYPE                                   |          | STAWATER    | GEL   |  |
| FHP (PSIA)                                                                               | -         | 4575.0     | 1         | RESISTIVITY ( )                        |          |             |       |  |
| TEMP. CORR. ( )                                                                          | -         | -          |           | C1 (frm.resis.)(                       | )        | 46000       |       |  |
| COMMENTS                                                                                 |           |            | ]         | C1 (frm.titrat)(                       | )        | 16000       |       |  |
| C TEMPERATURE                                                                            |           |            | 1         | NO <sub>3</sub> Drld/1st.circ(         | )        | 140<br>10.1 |       |  |
| DEPTH TOOL REACHED(m)                                                                    | 2753.1    | 2753.1     | 1         | pH                                     |          | 10.1        |       |  |
| MAX.REC.TEMP.( OF)                                                                       | 180       | 180        | 1         | OTHER TRACERS                          |          |             |       |  |
| TIME CIRC. STOPPED                                                                       |           |            | ]         |                                        | <u>)</u> |             |       |  |
| TIME SINCE CIRC.                                                                         | 6.5 HRS   |            |           | DENSITY (                              | <u>)</u> | 9.6+        |       |  |
| D SAMPLE RECOVERY                                                                        |           |            | G         | GENERAL COMMENTS                       |          |             |       |  |
| SURFACE PRESSURE(PSI                                                                     | ) 600     | 1190       | 4         |                                        |          |             |       |  |
|                                                                                          | 2.0       | 4.0        | 4         | VERY GOOD PE                           | TES      | EST         |       |  |
| VOL. OIL (LIT                                                                            | O L SCU   | M 5        | 4         |                                        |          |             |       |  |
| VOL. WATER (                                                                             | )         | 7 -        | 4         |                                        |          |             |       |  |
| VOL. FILTRATE (LTT                                                                       | ) 22.0    | 7.5        | -         |                                        |          |             |       |  |
| VOL. CONDENSATE (                                                                        |           | -          | 4         |                                        |          |             |       |  |
| VOL. OTHER (                                                                             | 기         | 1          | 4         |                                        |          |             |       |  |
| E SAMPLE PROPERTIES (a) G   c1 (PPM                                                      | 1 253 RON | 260,485    | 4         |                                        |          |             |       |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                  |           | 26,817     |           |                                        |          |             |       |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                    |           |            |           |                                        |          |             |       |  |
| c4 (PPM                                                                                  |           | 1,242      |           |                                        |          |             |       |  |
| C C5 (PPM                                                                                |           |            | $\exists$ |                                        |          |             |       |  |
| 0 c6+ (PPM                                                                               |           |            |           |                                        |          |             |       |  |
| M CO <sub>2</sub> (% 1                                                                   |           |            | 7         |                                        |          |             |       |  |
| P H <sub>2</sub> S (PPM                                                                  |           |            | 1         |                                        |          |             |       |  |
| (b)OIL PROPERTIES                                                                        |           |            |           |                                        |          |             |       |  |
| DENSITY: HYDROMETER                                                                      |           |            |           |                                        |          |             |       |  |
| ( ) REFRACTOMET                                                                          | ER        |            |           |                                        |          |             |       |  |
| REFRACTIVE INDEX                                                                         |           |            |           |                                        |          |             | •     |  |
| COLOUR                                                                                   |           |            |           | SH BRN, WAXY                           |          |             |       |  |
| FLUORESCENCE                                                                             | BRT Y     | EI L-WHITE |           |                                        |          |             |       |  |
| G.O.R. ( )                                                                               |           |            |           |                                        |          |             |       |  |

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA COMPANY : ESSO AUSTRALIA WELL: WIRRAH NO. 3 LTD. RUN No. : 21 PRESSURE GAUGE TYPE: HP CHAMBER No. CHAMBER CAPACITY (LITRES) 22.6 10.4 CHOKE SIZE (INCHES) OIL PROPERTIES CONT. SEAT No. ODOUR 101 101 DEPTH ( m ) (from RKB) POUR POINT 2627.1 2627.1 A RECORDING TIMES COMMENTS TOOL SET 10:44:00 (c)WATER PROPERTIES PRETEST OPEN RESISTIVITY ( ) 10:44:15 02:45 TIME OPEN Cl (frm. resis.)( CHAMBER OPEN 11:48:15 ) 16K 16K C1 (frm. titrat)( <u>w</u>3-CHAMBER FULL 12:22:00 ) 90 70 FILL TIME 33:45 12:22:00 рΗ 8.7 7.5 START BUILD UP OTHER TRACERS FINISH BUILD UP BUILD UP TIME DENSITY 11:47:30 12:24:15 SEAL CHAMBER FLUORESCENCE TOOL RETRACT COLOUR TOTAL TIME COMMENTS SAMPLE PRESSURES (PSI) 4370.5 IHP (d)OTHER SAMPLE 3798.4 ISIP PSI PROPERTIES 710.3 PSI 188.3 IFP 687.9 1355.8 FFP MUD PROPERTIES FSIP TYPE SEAWATER GEL FSI 4370.8 FHP RESISTIVITY ( TEMP. CORR. ( C1 (frm.resis.)( COMMENTS C1 (frm.titrat)( 16K TEMPERATURE NO\_Drld/1st.circ 1401 DEPTH TOOL REACHED(M) 2627.1 2627.1 10.1 MAX. REC. TEMP. ( P) OTHER TRACERS 189 200 TIME CIRC. STOPPED TIME SINCE CIRC. 9.6+ DENSITY SAMPLE RECOVERY GENERAL COMMENTS SURFACE PRESSURE(PSI ) 80 420 VOL. GAS 0.5 0.4 GOOD PRITEST VOL. OIL OIL SCUM SEAL & RE-OPENED TO INTRANCE FLOW VOL. WATER (LIT) 18.5 9.75 VOL. FILTRATE VOL. CONDENSATE (
VOL. OTHER ( SAMPLE PROPERTIES (a) G ( PPM ) SAMPLE c1 12,256 c2 A ( PPM ) TOO SMAII 1.041 S **c**3 PPM) 202 N/A c4 PPM) 86 C **c**5 TRPPM) 0 c6+ ( PPM) М CO2 0.3 P H<sub>2</sub>S (b)OIL PROPERTIES DENSITY: HYDROMETER REFRACTOMETER

a gay we have a series of the

Argungs of the second of the s

REFRACTIVE INDEX

FLUORESCENCE

COLOUR

G.O.R.

| CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA |               |                  |            |                                              |                                       |  |  |  |
|-----------------------------------------------------|---------------|------------------|------------|----------------------------------------------|---------------------------------------|--|--|--|
| COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3        |               |                  |            |                                              |                                       |  |  |  |
| RUN No. : 22 PRESSURE GAUGE TYPE : HP               |               |                  |            |                                              |                                       |  |  |  |
| CHAMBER No.                                         | 1             | 2                |            |                                              |                                       |  |  |  |
| CHAMBER CAPACITY (LITRES)                           | 22.6          | 10.4             | <u> </u>   |                                              |                                       |  |  |  |
| CHOKE SIZE (INCH S)                                 | 0.02          | 0.02             | Π          | OIL PROPERTIES CONT.                         |                                       |  |  |  |
| SEAT No.                                            | 22            | 22               | ]          | ODOUR                                        |                                       |  |  |  |
| DEPTH (M ) (from RKB)                               | 2627.2        | 2627.2           | ]          | POUR POINT ( ° )                             |                                       |  |  |  |
| A RECORDING TIMES                                   |               |                  | ]          | COMMENTS                                     |                                       |  |  |  |
| TOOL SET                                            | 03:39:0       |                  |            | (c)WATER PROPERTIES                          |                                       |  |  |  |
| PRETEST OPEN                                        | 03:39:1       | 5                | 1          | RESISTIVITY ( )                              |                                       |  |  |  |
| TIME OPEN                                           |               |                  | ]          | C1 (frm. resis.)( )                          |                                       |  |  |  |
| CHAMBER OPEN                                        | 03:40:4       | 04:41:           |            | C1 (frm. titrat)( ) 16                       |                                       |  |  |  |
| CHAMBER FULL                                        |               | 05:23:0          |            | $NO_3$ ( ) 66                                |                                       |  |  |  |
| FILL TIME                                           |               | 35:              |            | рН 7.                                        | 4 6.9                                 |  |  |  |
| START BUILD UP                                      |               | 05:23:0          | 90         | OTHER TRACERS                                |                                       |  |  |  |
| FINISH BUILD UP                                     |               |                  |            | ( )                                          |                                       |  |  |  |
| BUILD UP TIME                                       |               |                  |            | DENSITY ( )                                  |                                       |  |  |  |
| SEAL CHAMBER                                        | 04:40:30      | 02;23:3          |            | FLUORESCENCE                                 |                                       |  |  |  |
| TOOL RETRACT                                        |               | 05:24:3          | <b>1</b> 0 | COLOUR                                       |                                       |  |  |  |
| TOTAL TIME                                          |               |                  | ]          | COMMENTS                                     |                                       |  |  |  |
| B SAMPLE PRESSURES                                  | ···           |                  | 1          |                                              |                                       |  |  |  |
| IHP (FSI)                                           | 4367.4        |                  |            | (d)OTHER SAMPLE                              |                                       |  |  |  |
| ISIP ()                                             | 3795.2        |                  | 1          | PROPERTIES                                   |                                       |  |  |  |
| IFP ( )                                             | 73.0          | 170.3            |            |                                              |                                       |  |  |  |
| FFP ( )                                             | 637.4         | 2717.4           | F          | MUD PROPERTIES                               |                                       |  |  |  |
| FSIP ( )                                            |               |                  |            |                                              | AWATER G-L                            |  |  |  |
| FHP ( )                                             |               | 4369.4           | 1          | RESISTIVITY ( )                              |                                       |  |  |  |
| TEMP. CORR. ( ) COMMENTS                            |               |                  | 1          | C1 (frm.resis.)( )                           |                                       |  |  |  |
|                                                     |               |                  | 1          | C1 (frm.titrat)( ) 16                        | · · · · · · · · · · · · · · · · · · · |  |  |  |
| C TEMPERATURE                                       | 0607.0        | 0/07 0           | 1          | NO <sub>3</sub> Drld/1st.circ( ) 14<br>pH 10 |                                       |  |  |  |
| DEPTH TOOL REACHED(m)  MAX.REC.TEMP.(OF)            | 2627.2        | 2627.2           | 1          |                                              | .1                                    |  |  |  |
| TIME CIRC. STOPPED                                  | 203           | 209              |            | OTHER TRACERS                                |                                       |  |  |  |
| TIME SINCE CIRC.                                    | 15:5          | 3 24:00/2        | B          | DENCTORY ( )                                 | <u></u>                               |  |  |  |
| D SAMPLE RECOVERY                                   | 10:0          | 15:5             | G          | DENSITY ( ) 9. GENERAL COMMENTS              | <del>0+</del>                         |  |  |  |
| SURFACE PRESSURE(PSI )                              | 80            | 400              | G          | GENERAL COMMENTS                             |                                       |  |  |  |
| VOL. GAS (CUFT)                                     | 0.6           | 0.5              | ł          | GOOD FRETEST                                 |                                       |  |  |  |
| VOL. OIL                                            |               | CUM              | 1          | GOOD PREIEST                                 |                                       |  |  |  |
| VOL. WATER ()                                       | 111 011 1     | JOON             | 1          |                                              |                                       |  |  |  |
| VOL. FILTRATE ( )                                   | 16.25         | 9.5              | 1          |                                              |                                       |  |  |  |
| VOL. CONDENSATE ( )                                 |               |                  | 1          |                                              |                                       |  |  |  |
| VOL. OTHER ( )                                      |               |                  | 1          |                                              |                                       |  |  |  |
| E SAMPLE PROPERTIES                                 |               |                  | 1          |                                              |                                       |  |  |  |
| (a) G c1 (PPM)                                      | 184,846       | 333 <b>,</b> 025 |            |                                              |                                       |  |  |  |
| A c2 (FPM.)                                         | 23,959        | 36,266           | 1          |                                              |                                       |  |  |  |
| S c3 (FPM )                                         | 3,546         | 6,050            |            |                                              |                                       |  |  |  |
| c4 (FPM)                                            | <b>1</b> 65   | 623              | 1          |                                              |                                       |  |  |  |
| C c5 (TPM )                                         | ΞūΞ           | 30               | 1          |                                              |                                       |  |  |  |
| 0 c6+ (PFM.)                                        | -             | -                |            |                                              |                                       |  |  |  |
| M CO <sub>2</sub> (% )                              | 0             | 0.1              | 1          | 1                                            |                                       |  |  |  |
| P H <sub>2</sub> S (PFM )                           | -             |                  | -          |                                              | <del></del>                           |  |  |  |
| (b)OIL PROPERTIES                                   |               | ·                | 1          |                                              |                                       |  |  |  |
| DENSITY: HYDROMETER                                 |               | ļ                | 1          |                                              |                                       |  |  |  |
| ( ) REFRACTOMETE                                    | K             |                  |            |                                              |                                       |  |  |  |
| REFRACTIVE INDEX COLOUR                             | <del> </del>  | ļ                | 1          | •                                            | •                                     |  |  |  |
| FLUORESCENCE                                        | -             |                  | ł          |                                              |                                       |  |  |  |
|                                                     | <del>- </del> |                  | l          |                                              |                                       |  |  |  |
| G.O.R. ( )                                          |               |                  |            |                                              | · t                                   |  |  |  |

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA

COMPANY : ESSO AUSTRALIA WELL : WIRRAE NO. 3

RUN No. : 25



| CHAMBER No.                         |                           | 1           | 2             |     |                                    |           |           |
|-------------------------------------|---------------------------|-------------|---------------|-----|------------------------------------|-----------|-----------|
| CHAMBER CAP                         | ACITY (GAL)               | 6           | 2.3           |     |                                    |           |           |
| CHOKE SIZE                          | (INCHES)                  | 0.02        | 0.02          |     | OIL PROPERTIES CONT.               |           |           |
| SEAT No.                            |                           | 170         | 170           |     | ODOUR                              |           |           |
| DEPTH ( m )                         | (from RKB)                | 2785.5      | 2785.5        |     | POUR POINT (°C)                    | 26        | 21        |
| A RECORDIN                          | G TIMES                   |             |               |     | COMMENTS                           |           |           |
| TOOL SET                            | 7                         | 03:45:00    | )             |     | (c)WATER PROPERTIES                |           |           |
| PRETEST                             | OPEN                      | 03:51:0     |               |     | RESISTIVITY ( )                    |           |           |
| TIME OPE                            | EN                        | 06:00       | )             |     | Cl (frm. resis.)( )                |           |           |
| CHAMBER                             |                           | 03:53:30    | 04:14:        | 0   | C1 (frm. titrat)(FPM)              | 21000     | 21000     |
| CHAMBER                             |                           | 04:07:00    | 0 04:16:4     | 5   | NO <sub>3</sub> (FFM)              | 40        | 45        |
| FILL TIN                            |                           | 14:30       |               |     | pH <sup>3</sup>                    | 6.5       | 6.5       |
| START BI                            |                           |             | 04:16:4       | 1 - | OTHER TRACERS                      |           |           |
|                                     | BUILD UP                  |             | 04:26:1       |     | ( )                                |           |           |
| BUILD U                             |                           | 06:00       |               | ٠.  | DENSITY ()                         |           |           |
| SEAL CHA                            |                           |             | 04:26:1       |     | FLUORESCENCE                       |           |           |
| TOOL RE                             |                           | 04617500    | 04:27:2       |     | COLOUR                             |           |           |
| TOTAL T                             |                           | 22:00       |               |     | COMMENTS                           |           |           |
|                                     | PRESSURES                 | 1 CC : UI   | ν <u>Ιζ</u> ξ | 1   |                                    |           |           |
| IHP                                 | (PSIG)                    | 4573.2      |               | 1   | (d)OTHER SAMPLE                    |           |           |
| ISIP                                | (PSIA)                    | 3988.2      |               | 1   | PROPERTIES                         |           |           |
| IFP                                 | (PSIA)                    | 145.2       | 1281.09       | 1   |                                    |           |           |
| FFP                                 | (PSIA)                    | 3977.0      | 1300.42       |     | MUD PROPERTIES                     | L         |           |
| FSIP                                | (PSIA)                    | 3977.2      | 3975.36       | 一   | TYPE                               | SEAWATE   | דיםרים מי |
| FHP                                 | (PSIA)                    | 2911.2      | 4568.60       |     | RESISTIVITY ( )                    | 0.225 @   | 26 F      |
| TEMP. C                             |                           |             | 4500.00       | 1   | C1 (frm.resis.)( )                 | U. ZZ ) @ | <u> </u>  |
| COMMENT                             |                           | <del></del> |               | 1   | C1 (frm.titrat)(PPM)               | 16K       |           |
| C TEMPERA                           |                           | <u> </u>    | L             | ł   | NO <sub>3</sub> Drld/1st.circ(PPM) | 1601      |           |
|                                     |                           | 1 2705 E    | 10705 5       | 1   | pH3                                | 1601      |           |
|                                     | OOL REACHED(M)            |             | 2785.5        | -   | OTHER TRACERS                      |           |           |
|                                     | TEMP ( OF)                | 215         | 215           | 1   | OTHER TRACERS                      |           |           |
|                                     | RC. STOPPED               | 09:51       |               |     | ( )                                |           |           |
| 1                                   | NCE CIRC.                 | <u> </u>    |               | -   | DENSITY (FPG)                      | 9.6+      |           |
|                                     | RECOVERY                  | L 7 6 6 6   | 12200         | G   | GENERAL COMMENTS                   |           |           |
|                                     |                           | 1250        | 1100          | 1   | 1                                  |           |           |
| VOL. GA                             |                           |             | 15.30         | 1   | 1                                  |           |           |
| VOL. OI                             |                           | 4.50        | 4.50          | 1   | CHROMATOGRATH CAL                  | TBRATED   | W/ALT     |
| VOL. WA                             |                           | 12.40       | 2.20          | 1   | 6 FEAKS.                           |           | ,         |
| VOL. FI                             |                           |             |               |     | SAMPLE RUNS DONE                   | 4 TIMES   | TO CHECK  |
|                                     | NDENSATE (                | )           |               | 1   | THE PECULIAR COMP                  |           |           |
| VOL. OT                             |                           |             |               |     |                                    |           | =         |
|                                     | PROPERTIES                |             |               | 1   |                                    |           |           |
| (a) G                               | c1 (PPM )                 |             | 296,570       | 1   |                                    |           |           |
| A                                   | c2 (PFM )                 |             | 51,701        | 1   |                                    |           |           |
| S                                   | c3 (PPM )                 | 2,957       |               |     |                                    |           |           |
|                                     | c4 (PPM )                 |             | .1            |     |                                    |           |           |
| C                                   | c5 (FFM )                 | TR          | TR            | 1   |                                    |           |           |
| 0                                   | c6+ (FPM )                | _           | _             | 1   |                                    |           |           |
| М                                   | CO <sub>2</sub> (%        | 1.3         | 1.8           | ]   |                                    |           |           |
| P                                   | H <sub>2</sub> S (PPM )   | 4           | 8             | 1   |                                    |           |           |
|                                     | PROPERTIES                |             |               |     |                                    |           |           |
| I I(D)OTD                           |                           | 36@60       | 35.4@6        | 5b  |                                    |           |           |
|                                     | : HYDROMETER              | 1 30900     |               |     |                                    |           |           |
| DENSITY                             |                           |             | 1 77.46       |     |                                    |           |           |
| DENSITY ( )                         | REFRACTOMETI              |             | 77.48         | -   |                                    |           |           |
| DENSITY<br>( )<br>REFRACT           |                           | ER          |               |     |                                    |           |           |
| DENSITY<br>( )<br>REFRACT<br>COLOUR | REFRACTOMETI<br>IVE INDEX | ER B        | ROWN          | -   |                                    |           |           |
| DENSITY<br>( )<br>REFRACT           | REFRACTOMETI<br>IVE INDEX | ER B        |               |     |                                    |           | ·         |

| CORE LABORATORIES R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F.T. DATA SHE                                                                    | CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|--|--|--|--|
| COMPANY : ESSO A<br>LTD.<br>RUN No. : CH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COMPANY: ESSO AUSTRALIA WELL: WIRRAH NO. 3  RUN No.: CH1 PRESSURE GAUGE TYPE: EP |                                                     |  |  |  |  |  |  |  |
| and the state of t |                                                                                  |                                                     |  |  |  |  |  |  |  |
| CHAMBER No. 1 CHAMBER CAPACITY (LITTE'S) 45.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  |                                                     |  |  |  |  |  |  |  |
| CHOKE SIZE (INCH S) 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  | OIL PROPERTIES CONT.                                |  |  |  |  |  |  |  |
| SEAT No. 28/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | ODOUR                                               |  |  |  |  |  |  |  |
| DEPTH (M ) (from RKB) 2936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                  | POUR POINT ( )                                      |  |  |  |  |  |  |  |
| A RECORDING TIMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | COMMENTS                                            |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2:00                                                                             | (c)WATER PROPERTIES                                 |  |  |  |  |  |  |  |
| PRETEST OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                  | RESISTIVITY ( )                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8:00                                                                             | C1 (frm. resis.)( )                                 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7:00 22:10:00                                                                    |                                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9:00 22:15:00                                                                    |                                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22:00                                                                            | O PH 8.6 OTHER TRACERS                              |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17:00 22:17:0                                                                    | OTHER TRACERS                                       |  |  |  |  |  |  |  |
| FINISH BUILD UP BUILD UP TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | DENSITY ()                                          |  |  |  |  |  |  |  |
| SEAL CHAMBER 22:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 08:00 22:20:0                                                                    |                                                     |  |  |  |  |  |  |  |
| TOOL RETRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22:29:0                                                                          |                                                     |  |  |  |  |  |  |  |
| TOTAL TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>  01:00:0</u>                                                                 |                                                     |  |  |  |  |  |  |  |
| B SAMPLE PRESSURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |                                                     |  |  |  |  |  |  |  |
| IHP (FSIA) 6115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .26                                                                              | (d)OTHER SAMPLE                                     |  |  |  |  |  |  |  |
| ISIP (FSIA) 4787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | PROPERTIES                                          |  |  |  |  |  |  |  |
| l 1 = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.56 3721.8                                                                      |                                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.7 3069. <b>19</b>                                                              |                                                     |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.14 4338.4                                                                      | TYPE                                                |  |  |  |  |  |  |  |
| FHP ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  | RESISTIVITY ( )                                     |  |  |  |  |  |  |  |
| TEMP. CORR. ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | C1 (frm.resis.)( ) C1 (frm.titrat)( PFM) 16K        |  |  |  |  |  |  |  |
| C TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                  | NO <sub>3</sub> Dr1d/1st.circ( ) 200                |  |  |  |  |  |  |  |
| C TEMPERATURE DEPTH TOOL REACHED()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  | pH 10                                               |  |  |  |  |  |  |  |
| MAX.REC.TEMP.(O)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  | OTHER TRACERS                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00/19/1/84                                                                       | ( )                                                 |  |  |  |  |  |  |  |
| TIME SINCE CIRC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 1 1 1 1 1 1 1                                                                  | DENSITY (FPG) 12.3                                  |  |  |  |  |  |  |  |
| D SAMPLE RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | G GENERAL COMMENTS                                  |  |  |  |  |  |  |  |
| SURFACE PRESSURE ( PS G) 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 P                                                                              |                                                     |  |  |  |  |  |  |  |
| VOL. GAS (CUFT) 39.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>1</b> R.                                                                      |                                                     |  |  |  |  |  |  |  |
| VOL. OIL ( CC ) 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E                                                                                | THE CIL RECOVERED FROM CHAMBER NO                   |  |  |  |  |  |  |  |
| VOL. WATER (LIT) 34.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6 S                                                                              | 1 WAS LESS THAN 25° AFI.                            |  |  |  |  |  |  |  |
| VOL. FILTRATE ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B                                                                                |                                                     |  |  |  |  |  |  |  |
| VOL. CONDENSATE ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - R                                                                              |                                                     |  |  |  |  |  |  |  |
| VOL. OTHER ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                  |                                                     |  |  |  |  |  |  |  |
| E SAMPLE PROPERTIES (a) G c1 (PPM) 280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 739                                                                              | 1                                                   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 703                                                                            | 1                                                   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 540                                                                            | 1                                                   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • 308<br>• 308                                                                   | 1                                                   |  |  |  |  |  |  |  |
| C C5 (PFM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 326                                                                              | 1                                                   |  |  |  |  |  |  |  |
| 0 c6+ (FPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                               |                                                     |  |  |  |  |  |  |  |
| M CO <sub>2</sub> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                | ]                                                   |  |  |  |  |  |  |  |
| P H <sub>2</sub> S (PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                               |                                                     |  |  |  |  |  |  |  |
| (b)OIL PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.60                                                                             | 1                                                   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | @60                                                                              | -                                                   |  |  |  |  |  |  |  |
| ( ) REFRACTOMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | 1                                                   |  |  |  |  |  |  |  |
| REFRACTIVE INDEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BRN                                                                              | · ·                                                 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LT YEL                                                                           | 4                                                   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 1.1 1.11                                                                       | 4                                                   |  |  |  |  |  |  |  |
| $ G_{\bullet}O_{\bullet}R_{\bullet}$ ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i                                                                                |                                                     |  |  |  |  |  |  |  |

CORE LABORATORIES R.F.T. DATA SHEET - SAMPLING DATA

COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3

LTD.

RUN No. : CH 3 (CASED HOLE) PRESSURE GAUGE TYPE : HP



| 1.   2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 5 (0110000 | ,                  |                    |                       |                                        |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|--------------------|--------------------|-----------------------|----------------------------------------|------------|
| CHAMBER CAPACITY (LITRES)   45.6   10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CHAMBER No.                             | 1.         | 2.                 |                    |                       |                                        |            |
| OTHER SIZE (INCHES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |            |                    |                    |                       |                                        |            |
| DEPTH (M ) (from RKE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |            | 0.03               |                    |                       |                                        |            |
| DEPTH (N ) (from RKB)   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884.8   2884   | SEAT No.                                |            |                    |                    |                       |                                        |            |
| RECORDING TIMES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DEPTH (M ) (from RKB)                   | 2884.8     | 2884.8             |                    |                       | 30                                     |            |
| PROFEST OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A RECORDING TIMES                       |            |                    |                    |                       |                                        | L          |
| PRETEST OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOOL SET                                |            |                    |                    |                       | (00000                                 | (2(2(2)    |
| CHAMBER OPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |            |                    |                    | RESISTIVITY ( M)      | •69@72 F                               | •696@69 If |
| CHAMBER FULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TIME OPEN                               |            |                    |                    | C1 (frm. resis.)(PPM) | 8500                                   |            |
| CHAMBER FULL   CO.5   CO.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 1          |                    | )                  |                       | 3200                                   |            |
| FILL TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHAMBER FULL                            | 1 -        |                    |                    | 11/03                 | 0                                      | 7          |
| FINISH BUILD UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 21:00      | FILLED             |                    | рН                    |                                        |            |
| FINISH BUILD UP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 08:29:00   |                    | l                  | OTHER TRACERS         |                                        |            |
| DUILD UP TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |            |                    |                    | (                     |                                        |            |
| SEAL CHAMBER   O8:33:00   O8:54:00   FLUORESCENCE   COLOUR   COL   |                                         |            |                    |                    | DENSITY ( )           |                                        |            |
| TOOL RETRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 08:33:00   | 08:54:00           | •                  | FLUORESCENCE          |                                        |            |
| TOTAL TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |            | 08:55:00           | ₽                  | COLOUR                |                                        |            |
| B   SAMPLE PRESSURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |            | 58:00              | Þ                  | COMMENTS              |                                        |            |
| THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |            | <u></u>            | 1                  |                       |                                        |            |
| TISTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 413/37/75                               | 4604.7     |                    | 1                  | (d)OTHER SAMPLE       |                                        |            |
| TPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 111                                   |            | <u> </u>           | 1                  |                       |                                        |            |
| FFP (PSIA) 3850 280 F MUD PROPERTIES FSIP (PSIA) 4312 FHP (PSIA) 4312 TEMP. CORR. () COMMENTS CTEMP. CORR. () DEPTH TOOL REACHED(M) 2885 2885 MAX.REC.TEMP. (°P) 236 236 TIME CIRC. STOPPED 18:15/JAN 26 TIME SINCE CIRC. 13:30:00 D SAMPLE RECOVERY SURFACE PRESSURE(PSIG) 680 2 VOL. GAS (CUPT) 10.5 0.6 VOL. OIL(WAXY) (CC) 220 50(SCUM) VOL. WATER (LIT.) 40.75 2.13 VOL. FILTRATE () VOL. CONDENSATE () VOL. CONDENSATE () VOL. OTHER () SAMPLE PROPERTIES C4 (PPM) 1400 C c5 (PPM) 3,325 SAMPLE S c3 (PPM) 3,825 FOR ANALYSIS C4 (PPM) 1400 C c5 (PPM) 1400 C c5 (PPM) 0 0 O c64 (PPM) 100 O C74 (PPM) 100 O C75 (PPM) 100 O C75 (PPM) 100 O C75 (PPM) 1 |                                         | 3500       | 150                | 1                  |                       |                                        |            |
| FSIP (PSIA) 4312   TYPE   SEAMATEK GEL   FHP (PSIA)   4589   RESISTIVITY (N) 204 © 17.7 C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |            |                    | F                  | MUD PROPERTIES        |                                        |            |
| FHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |            | 200                |                    |                       | SEAWATER                               | GEL        |
| TEMP. CORR. ( ) COMMENTS C TEMPERATURE  DEPTH TOOL REACHED(M) 2885 2885  MAX.REC.TEMP. (°F) 236 236 TIME CIRC. STOPPED 18:15/JAN 26 TIME SINCE CIRC. 13:30:00  D SAMPLE RECOVERY C VOL. GAS (CUFT) 10.5 0.6 VOL. OIL(WAXY) (CC 220 50(SCUN) VOL. WATER (LIT.) 40.75 2.13 VOL. FILTRATE ( ) VOL. CONDENSATE ( ) VOL. OTHER ( ) E SAMPLE PROPERTIES  (a) C c1 (PPM ) 439,420 INSUFFICIENT A c2 (PPM ) 3,825 FOR ANALYSIS C c4 (PPM ) 140 C c5 (PPM ) 0 O c6+ (PPM ) 0 O C7+ (PPM ) 0 O C7 |                                         | 4512       | 4589               | 1                  |                       | .204 @ 17                              | •7°C       |
| COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |            | +700               | 1                  |                       | 26400                                  |            |
| C TEMPERATURE   DEPTH TOOL REACHED(M)   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   2885   28   |                                         | -          | -                  | 1                  |                       |                                        |            |
| DEPTH TOOL REACHED(M) 2885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |            | <u></u>            | 1                  |                       |                                        |            |
| MAX.REC.TEMP.( °F)   236   236   236   TIME CIRC. STOPPED   18:15/JAN 26   DENSITY ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DEPTH TOOL REACHED(M)                   | 2885       | 2885               | 1                  | <u> </u>              |                                        |            |
| TIME CIRC. STOPPED 18:15/JAN 26 TIME SINCE CIRC. 13:30:00  D SAMPLE RECOVERY G GENERAL COMMENTS  SURFACE PRESSURE(PSIG) 68C VOL. GAS (CUFT) 10.5 0.6 VOL. OIL(WAXY) (CC) 220 50(SCUM) VOL. WATER (LIT.) 40.75 2.13 VOL. FILTRATE () VOL. OODENSATE () VOL. OODENSATE () VOL. OTHER () E SAMPLE PROPERTIES  (a) G c1 (PPM ) 439,420 INSUFFICIENT A c2 (PPM ) 7,325 SAMPLE S c3 (PPM ) 3,825 FOR ANALYSIS c4 (PPM ) 140 C c c5 (PPM ) 0 O c6+ (PPM ) 0 M CO2 (% ) 15.5 P HyS () (b)OIL PROPERTIES  DENSITY: HYDROMETER 21@60°F (°API) REFRACTIOMETER COLOUR DARK BROWN FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAY REC TEMP (OF)                       | 236        |                    | 1                  |                       |                                        |            |
| TIME SINCE CIRC.   13:30:00   DENSITY ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |            |                    | 1                  | ( )                   |                                        |            |
| D SAMPLE RECOVERY   G GENERAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 13:3       | 0:00               | 1                  | DENSITY ( )           |                                        |            |
| SURFACE PRESSURE(PSIG) 680   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |            |                    | G                  |                       |                                        |            |
| VOL. GAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | VI 680     | 7 2                | ۴                  |                       | ······································ |            |
| VOL. OIL(WAXY) (CC ) 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |            |                    | ┨                  | THIS WAS A CA         | SED-HOLE F                             | FT.        |
| VOL. WATER (LIT.) 40.75 2.13  VOL. FILTRATE ( )  VOL. CONDENSATE ( )  VOL. OTHER ( )  E SAMPLE PROPERTIES  (a) G c1 (PPM ) 439,420 INSUFFICIENT  A c2 (PPM ) 7,325 SAMPLE  S c3 (PPM ) 3,825 FOR ANALYSIS  c4 (PPM ) 140  C c5 (PPM ) 0  O c6+ (PPM ) 0  M CO2 ( % ) 15.5  P H <sub>2</sub> S ( )  (b)OIL PROPERTIES  DENSITY: HYDROMETER ( CAPI ) REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |            |                    |                    | 1                     |                                        |            |
| VOL.   FILTRATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |                    |                    | <b>`</b> 1            |                                        |            |
| VOL. CONDENSATE ( )  VOL. OTHER ( )  E SAMPLE PROPERTIES  (a) G c1 (PPM ) 439,420 INSUFFICIENT  A c2 (PPM ) 7,325 SAMPLE  S c3 (PPM ) 3,825 FOR ANALYSIS  c4 (PPM ) 140  C c5 (PPM ) 0  O c6+ (PPM ) 0  M CO2 (% ) 15.5  P H <sub>2</sub> S ( )  (b)OIL PROPERTIES  DENSITY: HYDROMETER 21@60°F  (°API) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 1 40.1     | 201                | 1                  |                       |                                        |            |
| VOL. OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | ∜          |                    | $\dashv$           |                       |                                        |            |
| E SAMPLE PROPERTIES  (a) G c1 (PPM ) 439,420 INSUFFICIENT  A c2 (PPM ) 7,325 SAMPLE  S c3 (PPM ) 3,825 FOR ANALYSIS  c4 (PPM ) 140  C c5 (PPM ) 0  O c6+ (PPM ) 0  M CO2 (% ) 15.5  P H <sub>2</sub> S ( )  (b)OIL PROPERTIES  DENSITY: HYDROMETER   21@60 F  ( API ) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | ╣          | <del></del>        | -                  |                       |                                        |            |
| (a) G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | 7          |                    | 4                  |                       |                                        |            |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1 130 120  | THEILSMILL         | <del>.</del>       | an Im                 |                                        |            |
| S C3 (PPM ) 3,825 FOR ANALYSIS  C4 (PPM ) 140  C C5 (PPM ) 0  O C6+ (PPM ) 0  M CO2 (% ) 15•5  P H <sub>2</sub> S ( )  (b)OIL PROPERTIES  DENSITY: HYDROMETER 21@60*F  (^API ) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 C C C C C C C C C C C C C C C C C C C |            |                    | 7                  |                       |                                        |            |
| C4 (PPM ) 140  C c5 (PPM ) 0  O c6+ (PPM ) 0  M CO2 (% ) 15•5  P H <sub>2</sub> S ( )  (b)OIL PROPERTIES  DENSITY: HYDROMETER 21@60°F  (°API) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | ) 1,32     | DAMELE<br>DOD ANA  | Ŧŀ,                | 270                   |                                        |            |
| C C5 (PPM) O O O C6+ (PPM) O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |            |                    |                    | 343                   |                                        |            |
| O C6+ (PPM) O  M CO2 (%) 15•5  P H <sub>2</sub> S ()  (b)OIL PROPERTIES  DENSITY: HYDROMETER 21@60°F  (°API) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                |            |                    | -                  |                       |                                        |            |
| M CO2 (%) 15.5 P H <sub>2</sub> S ()  (b)OIL PROPERTIES  DENSITY: HYDROMETER 21@60°F  (°API) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | / 1        | i                  | 4                  |                       |                                        |            |
| P H <sub>2</sub> S ( )  (b)OIL PROPERTIES  DENSITY: HYDROMETER 21@60°F  (°API) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 71         | - 1                | -                  |                       |                                        |            |
| (b)OIL PROPERTIES  DENSITY: HYDROMETER 21@60°F  (°API) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | 170        | <del>'</del> 1     | $\dashv$           |                       |                                        |            |
| DENSITY: HYDROMETER 21@60°F ( API ) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 71         |                    | +                  |                       |                                        |            |
| ( OAPI ) REFRACTOMETER  REFRACTIVE INDEX  COLOUR DARK BROWN  FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 21640      | e <sub>मा</sub> —— | -                  |                       |                                        |            |
| REFRACTIVE INDEX  COLOUR  DARK BROWN  FLUORESCENCE  BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DENSITY: HYDROMETER                     |            | P                  | $\dashv$           |                       |                                        |            |
| COLOUR DARK BROWN FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | LK         |                    | _                  |                       |                                        |            |
| FLUORESCENCE BRT MILKY WH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | DA DIZ     | DD O WAT           | -                  |                       |                                        |            |
| I DOCKED CHICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |            |                    | -                  |                       |                                        |            |
| G.O.R. (SCF/STB)   7290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 1          | TIKI MH            | _                  |                       |                                        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G.O.R. (SCF/STE)                        | 7590       |                    | $oldsymbol{\perp}$ |                       |                                        |            |

"CASED-HOLE" R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES COMPANY: ESSO AUSTRALIA LTWELL: WIRRAH NO. 3 RUN No. : CH 4 PRESSURE GAUGE TYPE: HP CHAMBER No. 1 2 CHAMBER CAPACITY (LITRES) 45.4 3.8 OIL PROPERTIES CONT. CHOKE SIZE (INCHES) 0.03 0.03 SEAT No. ODOUR DEPTH (M ) (from RKB) 2834.5 POUR POINT 2834.5 RECORDING TIMES COMMENTS (c)WATER PROPERTIES TOOL SET 07:30 .387@75°F .402@76° RESISTIVITY (M) PRETEST OPEN C1 (frm. resis.)(PPM) 15500 14000 07:36 TIME OPEN 08:46 C1 (frm. titrat)(ppm) 16000 13000 CHAMBER OPEN 07:36 08:46 (PPM ) 10\_ CHAMBER FULL 0 08:48 08:00 11.4 10.5 FILL TIME pҤ :02 :24 OTHER TRACERS START BUILD UP 08:00 08:48 FINISH BUILD UP 09:17 08:45 DENSITY BUILD UP TIME FLUORESCENCE SEAL CHAMBER 08:52 08:16 COLOUR 09:17 TOOL RETRACT COMMENTS TOTAL TIME 01:47 SAMPLE PRESSURES (d)OTHER SAMPLE 4516.2 (PSIA) IHP 4060 4176 PROPERTIES (PSIA) ISIP (PSIA) 3100 3000 IFP 2200 F MUD PROPERTIES (PSIA) 3200 FFP SEAWATER GEL 4058 (PSIA) 4082 TYPE **FSIP** .357@69<sup>0</sup>F (PSIA) RESISTIVITY ( M) 4495.9 FHPC1 (frm.resis.)(PPM) TEMP. CORR. ( 29,700 C1 (frm.titrat)(PPM) 18,000 COMMENTS NO\_Drld/1st.circ( TEMPERATURE DEPTH TOOL REACHED(M) |2836 2836 pH OTHER TRACERS MAX.REC.TEMP.( O ) 11:45 1/211:45 1/2 21:30 20:30 TIME CIRC. STOPPED 20:30 TIME SINCE CIRC. DENSITY GENERAL COMMENTS SAMPLE RECOVERY SURFACE PRESSURE (PSIG ) 690 920 THERE WAS INSUFFICIENT GAS (CUFT ) O 6.1VOL. GAS SCUM RECOVERED FROM THE 1-GALLON VOL. OIL CC. 90 VOL. WATER )3.75 LIT. 43.3 CHAMBER FOR GAS ANALYSES. VOL. FILTRATE VOL. CONDENSATE VOL. OTHER SAMPLE PROPERTIES E 58695 (a) G (PPM c1 c2 A (PPM <u> 20685</u> с3 <u>ФРМ</u> 12124 **c**4 ФРМ. 6528 **c**5 (ррм 325 c6+ (PPM 0 TR CO2 М ( % 2ND FEBRUARY 1984. P H<sub>2</sub>S

23 @ 60 F

BRT MIL-WH

DK BRN

(b)OIL PROPERTIES

REFRACTIVE INDEX

FLUORESCENCE

(API)

COLOUR

G.O.R.

DENSITY: HYDROMETER

REFRACTOMETER

### "CASED-HOLE"

R.F.T. DATA SHEET - SAMPLING DATA CORE LABORATORIES COMPANY : ESSO AUSTRALIA WELL : WIRRAH NO. 3 LTD. RUN No. : CH 5 PRESSURE GAUGE TYPE: HP 1 CHAMBER No. CHAMBER CAPACITY (LITRES) 45.4 10.4 OIL PROPERTIES CONT. CHOKE SIZE (INCHES) 0.03 0.03 ODOUR SEAT No. 5 POUR POINT DEPTH (M) (from RKB) 2828.6 2828.6 COMMENTS RECORDING TIMES (c)WATER PROPERTIES 13:14 TOOL SET .311076<sup>0</sup>F RESISTIVITY (M) . 322@74<sup>О</sup>т PRETEST OPEN C1 (frm. resis.)(PPM) 20,000 13:20 19,000 14:20 TIME OPEN C1 (frm. titrat)(ppm) 11,000 13:20 14:20 12,000 CHAMBER OPEN 14:31 (PPM)|0CHAMBER FULL 14:00 TRACE :40 pН 8.3 7.4 FILL TIME OTHER TRACERS 14:00 START BUILD UP 14:31 FINISH BUILD UP 14:20 14:49 :20 DENSITY :18 BUILD UP TIME FLUORESCENCE 14:20 14:44 SEAL CHAMBER COLOUR 14:49 TOOL RETRACT COMMENTS TOTAL TIME 1:35 SAMPLE PRESSURES 4509.5 (d)OTHER SAMPLE (PSIA) IHP 4149 3829.3 PROPERTIES (PSIA) ISIP (PSIA) 3435 3400 IFP MUD PROPERTIES (PSIA) 1895-3600 2497-374年 **FFP** 3829.3 (PSIA) 3871 TYPE FSIP 357@69<sup>0</sup>F RESISTIVITY ( M) (PSIA) 4487 FHPC1 (frm.resis.)(PPM) TEMP. CORR. C1 (frm.titrat)(PPM) 18000 COMMENTS NO3Drld/1st.circ( TEMPERATURE DEPTH TOOL REACHED (M) 2830 2830 MAX. REC. TEMP. ( O ) OTHER TRACERS 11:45 1/2 11:45 1/2 TIME CIRC. STOPPED TIME SINCE CIRC. DENSITY GENERAL COMMENTS SAMPLE RECOVERY SURFACE PRESSURE (PSIG) 1550 1300 CUFT) 54.5 VOL. GAS 3.5 CHAMBER NO. 1 CONTAINED COMPONENTS ) SCUM VOL. OIL SCUM OF C7 AND C8. VOL. WATER(MUDDY)( LIT ) 40.8 9.2 VOL. FILTRATE VOL. CONDENSATE VOL. OTHER SAMPLE PROPERTIES E (a) G c1 ( PPM ) 317,358 195,297 c2 PPM ) 11,850 18,313 Α **c**3 S ( PPM ) 7,322 4,035 ( PPM ) 2,650 c4 1.877 ( PPM ) 1,113 С c5 1,272 ( PPM ) 160 c6+ 1,070 % )3.2 CO2 M 2.8 ( PPM ) 0 H<sub>2</sub>S (b)OIL PROPERTIES DENSITY: HYDROMETER REFRACTOMETER ) REFRACTIVE INDEX COLOUR FLUORESCENCE

G.O.R.

# "CASED HOLE"

CORE LABORATORIES

R.F.T. DATA SHEET - SAMPLING DATA

|                                          | תי           |                                       | : WIRRAH NO. 3 | LAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
|------------------------------------------|--------------|---------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| KOM NO CH                                | I 7          | 110                                   | L              | OKE GAUGE IIIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| CHAMBER No.                              | 1            | 2                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| CHAMBER CAPACITY (LITRES)                | 45.4         | 10.4                                  | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| CHOKE SIZE (INCHES)                      | 0.03         | 0.03                                  |                | OIL PROPERTIES CONT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| SEAT No.                                 | 7            | 7                                     |                | ODOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| DEPTH (M ) (from RKB)                    | 2820.1       | 2820.1                                |                | POUR POINT ( ° )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| A RECORDING TIMES                        |              |                                       | a 1-           | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| TOOL SET                                 | 00:13:14     | 4                                     |                | (c)WATER PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| PRETEST OPEN                             |              |                                       |                | RESISTIVITY ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| TIME OPEN                                |              |                                       |                | Cl (frm. resis.)( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| CHAMBER OPEN                             | 00:19:36     | }                                     |                | C1 (frm. titrat)(PPM) 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,000                                  |
| CHAMBER FULL                             |              |                                       | ] [            | NO <sub>3</sub> ( PPM ) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |
| FILL TIME                                |              |                                       |                | рН 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                                     |
| START BUILD UP                           |              |                                       | 1              | OTHER TRACERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| FINISH BUILD UP                          |              |                                       | 1              | ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| BUILD UP TIME                            |              |                                       | 1              | DENSITY ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| SEAL CHAMBER                             |              |                                       | ]              | FLUORESCENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |
| TOOL RETRACT                             |              |                                       | 1              | COLOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| TOTAL TIME                               |              |                                       | 1              | COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |
| B SAMPLE PRESSURES                       |              | · · · · · · · · · · · · · · · · · · · | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| IHP (PSIA)                               | 4488.5       |                                       | ] [            | (d)OTHER SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| ISIP (PSIA)                              | 4058.4       |                                       |                | PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |
| IFP (PSIA)                               | 4211-428     | 0                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| FFP ( )                                  |              |                                       | F              | MUD PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
| FSIP ()                                  |              |                                       |                | TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |
| FHP ( )                                  |              |                                       | ]              | RESISTIVITY ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| TEMP. CORR. ( )                          |              |                                       | ]              | Cl (frm.resis.)( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| COMMENTS                                 | <u> </u>     |                                       | 4              | C1 (frm.titrat)( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| C TEMPERATURE                            |              | <del>,</del>                          | 4              | NO <sub>pH</sub> 3Drld/1st.circ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | W                                     |
| DEPTH TOOL REACHED( ) MAX.REC.TEMP.( O ) | ļ            |                                       |                | OTHER TRACERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| TIME CIRC. STOPPED                       |              |                                       |                | OTHER TRACERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |
| TIME CIRC. STOFFED                       | <del> </del> |                                       | 1              | DENSITY ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| D SAMPLE RECOVERY                        | <u> </u>     | L                                     |                | GENERAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| SURFACE PRESSURE(PSIG                    | 10           | <del> </del>                          | 16             | GENERAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| VOL. GAS (CUFT)                          |              |                                       | 1 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
|                                          | 0            |                                       | 1 1            | ONE WILLIAM TO THE PROPERTY OF THE PARTY OF |                                       |
|                                          | 0            |                                       | 1              | ONLY WHOLE MUD RECOVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RED.                                  |
| VOL. FILTRATE (                          |              | <del> </del>                          | 1              | NO GAS/OIL/WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |
| VOL. CONDENSATE (                        |              |                                       | 1              | THERE WAS COMMUNICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ON FROM THE                           |
|                                          | 6.0          |                                       | 1              | HYDROSTATIC COLUMN BE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HIND THE                              |
| E SAMPLE PROPERTIES                      | 10.0         | I                                     | 1              | CASING.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
| (a) G c1 (                               |              |                                       | 1              | CASED-HOLE R.F.T. NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 WAS A MISRUN.                       |
| A c2 ( )                                 |              |                                       | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| S c3 ( )                                 |              |                                       | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| c4 ( )                                   |              |                                       | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| C c5 ( )                                 |              |                                       | ]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| 0 c6+ ( )                                |              |                                       | ]              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| M CO <sub>2</sub> ( )                    |              |                                       | ]              | 3RD FEBRUARY 1984.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| P H <sub>2</sub> S ( )                   |              |                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| (b)OIL PROPERTIES                        | ····         |                                       | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| DENSITY: HYDROMETER                      |              |                                       | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| ( ) REFRACTOMETI                         | ER           |                                       | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| REFRACTIVE INDEX                         |              |                                       | 4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                     |
| COLOUR                                   |              |                                       | 4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| FLUORESCENCE                             |              |                                       | 4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |
| G.O.R. ( )                               |              | <u> </u>                              | <u> </u>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |

# PORE PRESSURE DATA SHEET

COMPANY : ESSO AUSTRALIA LTD. DATA FROM RFT'S

WELL : WIRRAH No.3

| ************************** | ************************************** |                    |                                       |                        |
|----------------------------|----------------------------------------|--------------------|---------------------------------------|------------------------|
| DEPTH<br>(FROM RKB)        | DEPTH<br>(FROM MSL)                    | PORE PRESS         | PORE PRESS<br>GRADIENT<br>E.M.W.(MSL) | PORE PRESS<br>GRADIENT |
| METRES                     | TVD, METRES                            | PSIA               | PPG                                   | PSI/M                  |
| 1810.5                     | 1789.5                                 | 2551,40            | 8.357                                 | 1.426                  |
| 1798.6                     | 1777.6                                 | 2535.70            | 8.361                                 | 1.426                  |
| 2395.4                     | 2374.4                                 | 3402.10            | 8.399                                 | 1.433                  |
| 2349.1                     | 2328.1                                 | 3616.80            | 9.106                                 | 1.554                  |
| 2339.5                     | 2318.5                                 | 3317.10            | 8.386                                 | 1.431                  |
| 2314.3                     | 2293.3                                 | 3280,40            | 8.385                                 | 1,430                  |
| . 2282.6                   | 2261.6                                 | 3238.10            | 8.393                                 | 1.432                  |
| 2274,2                     | 2253.2                                 | 3300.10            | 8.585                                 | 1.465                  |
| 2243.6                     | 2222.6                                 | 3179.30            | 8.385                                 | 1.430                  |
| 2339.0                     | 2318.0                                 | 3315.60            | 8.384                                 | 1.430                  |
| 2394.5                     | 2373.5                                 | 3398.40            | 8.393                                 | 1,432                  |
| 2479.3                     | 2458.3                                 | 3519.05            | 8.391                                 | 1.431                  |
| 2536.0                     | 2515.0                                 | 3596.88            | 8.383                                 | 1,430                  |
| 2569.5                     | 2548.5                                 | 3684.95            | 8.475                                 | 1.446                  |
| 2617.0                     | 2596.0                                 | 3769.18            | 8.511                                 | 1,452                  |
| 2622.0                     | 2601.0                                 | <b>3770</b> .58    | 8,497                                 | 1.450                  |
| 2627.2                     | 2606.2                                 | 3800.14            | 8,547                                 | 1,458                  |
| 2630.5                     | 2609.5                                 | 3927.68            | 8.823                                 | 1.505                  |
| 2644.5<br>2672.0           | 2623.5<br>2651.0                       | 3800.59            | 8,492                                 | 1,449                  |
| 2029.0                     | 2008.0                                 | 3834.62<br>2879.10 | 8,479<br>8,404                        | 1,446<br>1,434         |
| 1600.7                     | 1579.7                                 | 2472.60            | 9.175                                 | 1.565                  |
| 2142.0                     | 2121.0                                 | 3029,90            | 8.373                                 | 1.429                  |
| 2022.0                     | 2001.0                                 | 2876.10            | 8.425                                 | 1,437                  |
| 2022.2                     | 2001.2                                 | 2869,90            | 8.406                                 | 1.434                  |
| 2023.7                     | 2002.7                                 | 2872.30            | 8,407                                 | 1,434                  |
| 2147.3                     | 2126.3                                 | 3044,00            | 8.391                                 | 1.432                  |
| 2144.5                     | 2123.5                                 | 3040.10            | 8.392                                 | 1.432                  |
| 2142.0                     | 2121.0                                 | 3037,50            | 8.394                                 | 1.432                  |
| 1780.2                     | 1759.2                                 | 2509.70            | 8.362                                 | 1.427                  |
| 1600.7                     | 1579.7                                 | 2255.30            | 8.368                                 | 1.428                  |
| 1577.8                     | 1556.8                                 | 2220.40            | 8,360                                 | 1.426                  |
| 1535.0                     | 1514.0                                 | 2160.40            | 8.364                                 | 1.427                  |
| 1532.2                     | 1511.2                                 | 2157.10            | 8.367                                 | 1.427                  |
| 2278.5                     | 2257.5                                 | 3241.70            | 8.417                                 | 1.436                  |
| 2080.8                     | 2059.8                                 | 2947.10            | 8.387                                 | 1.431                  |
| 2052.5                     | 2031.5                                 | 2908.50            | 8.392                                 | 1.432                  |
| 2030.8                     | 2009.8                                 | 2877.70            | 8,393                                 | 1.432                  |
| 2028.1                     | 2007.1                                 | 2874.80            | 8.396                                 | 1,432                  |
| 2023.7                     | 2002.7                                 | 2872.70            | 8.408                                 | 1.434                  |

| DEPTH<br>(FROM RKB) | DEPTH<br>(FROM MSL) | PORE PRESS | PORE PRESS<br>GRADIENT<br>E.M.W.(MSL) | PORE PRESS<br>GRADIENT |
|---------------------|---------------------|------------|---------------------------------------|------------------------|
| METRES              | TUD, METRES         | PSIA       | bbC                                   | PSI/M                  |
| 2687.5              | 2666.5              | 3848,20    | 8,459                                 | 1.443                  |
| 2691.0              | 2670.0              | 3854.06    | 8.461                                 | 1,443                  |
| 2707.8              | 2686.8              | 3874.30    | 8,452                                 | 1.442                  |
| 2710.5              | 2689.3              | 3876.38    | 8,449                                 | 1,441                  |
| 2730.2              | 2708.9              | 3911.25    | 8.463                                 | 1,444                  |
| 2748.0              | 2726.6              | 3953,34    | 8.499                                 | 1.450                  |
| 2759.3              | 2737.8              | 3950.45    | 8.458                                 | 1.443                  |
| 2785.3              | 2763.7              | 3976.10    | 8.433                                 | 1,439                  |
| 2536.0              | 2515.0              | 3602.20    | 8.396                                 | 1.432                  |
| 2535.0              | 2514.0              | 3599.10    | 8.392                                 | 1.432                  |
| 2748.0              | 2727.0              | 3956.50    | 8,504                                 | 1,451                  |
| 2781.0              | 2760.0              | 3998,20    | 8.491                                 | 1.449                  |
| 2785.5              | 2764.5              | 3988.20    | 8,456                                 | 1.443                  |

PRODUCTION TEST DATA

| CORE LA     | AB<br>Y ESSO AUSTI | PF<br>RALIA LTD. | RODUCTION  | WELL TES | T DATA SHE | ET  |        | S    | HEET# | 1               |
|-------------|--------------------|------------------|------------|----------|------------|-----|--------|------|-------|-----------------|
| WELL        | WIRRAH NO.         | . 3              | PWT        | # 2A     |            |     | DATE _ | 06/0 | 02/84 |                 |
| PERFOR      | ATIONS_2788 -      | - 2179.5 MJ      | ETR(FM, RK | B)       |            |     |        |      |       |                 |
| TIME        | SAMPLING<br>POINT  | CI               | C2         | C3       | C 4        | C5  | C 6    | cos  | H2S   | REMARK          |
| HH: MM      |                    | РРМ              | PPM        | PPM      | PPM        | PPM | PPM    | %    | PPM   |                 |
| 10:40       | СНОКЕ              | 190              | 46         | 23       | 35         | 24  | 10     | 0    | 0     | CLEAN-          |
| 10:45       | MANIFOLD           | 170              | 35         | 20       | 35         | 23  | 12     | 0    | 0     | UP              |
|             |                    |                  |            |          |            |     |        |      |       | FLOW-<br>DIESEL |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       |                 |
| <del></del> |                    |                  |            |          |            |     |        | -    |       | -               |
| <u> </u>    | <del> </del>       | <u> </u>         |            | <u> </u> |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        | +    |       | 1               |
|             |                    |                  |            |          |            |     |        |      |       | ď.              |
|             | <b>1</b>           |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       | 1               |
|             |                    |                  |            |          |            |     |        |      |       | 1               |
|             |                    |                  |            |          |            |     |        |      |       | 1               |
|             |                    |                  |            |          |            |     |        |      |       | 1               |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       | ]               |
|             |                    |                  |            |          |            |     |        |      |       | ]               |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       | 1               |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        | ,    |       | 1               |
|             |                    |                  |            |          |            |     |        |      |       | 1               |
| ,           |                    |                  |            |          |            |     |        |      |       | 1               |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       |                 |
|             |                    |                  |            |          |            |     |        |      |       | 4               |
|             |                    |                  |            |          |            |     | l      |      |       |                 |

| -       | CORE LAB. PRODUCTION WELL TEST DATA SHEET  COMPANY ESSO AUSTRALIA LTD, |              |              |                                                  |                                                  |                                                  |                                                  |                  |                                                  |                                         | ET SHEET#                                        |              |                                                  |                                                  |               |
|---------|------------------------------------------------------------------------|--------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|---------------|
| COMPANY | ESSC                                                                   | ) A          | USTR         | ALI/                                             | \ LI                                             | 'n,                                              |                                                  |                  |                                                  |                                         |                                                  | DATE         | _ 07                                             | /02                                              | /84           |
| WELL    |                                                                        |              |              |                                                  |                                                  |                                                  | <u> </u>                                         | <u>A</u>         | •                                                |                                         |                                                  | -n 1 &       |                                                  |                                                  |               |
| 1       | TIONS 2779                                                             | 9.5          | -27          | 788                                              | (                                                | FM, F                                            |                                                  |                  |                                                  |                                         |                                                  |              |                                                  |                                                  |               |
|         | 2813                                                                   | 3 –          | 282          | 2 MT                                             | ם סידים                                          | 70                                               |                                                  | TNIAT TO         | זגז                                              |                                         |                                                  |              |                                                  |                                                  | •             |
| S **    | F. gala, + 21 ™                                                        | <u></u>      | 187          | ····                                             |                                                  | -                                                | F                                                | INAL FLO         | ∪ W                                              |                                         |                                                  | ) <u></u>    | A                                                | 2 letter.                                        |               |
| HATHOLE | ; ⊮LUID: '                                                             | ı YP<br>Vo-  | 'E           |                                                  |                                                  |                                                  |                                                  | . KES. J. J      | N                                                |                                         | F                                                | -n           | _cı (1                                           | ITRA                                             | (T) <u>PP</u> |
| CUSHION | FLUID: 7                                                               | TYP          | <u>'</u>     |                                                  | -rM                                              | <u> </u>                                         | -1431 F                                          | YRE\$            | <u>~</u> ~                                       |                                         |                                                  | РН           |                                                  |                                                  |               |
|         | (                                                                      | CI (T        | TITRA        | Γ)                                               |                                                  |                                                  | PPA                                              | M NEWS           | 111                                              |                                         | <u> </u>                                         |              |                                                  |                                                  |               |
| TIME    | SAMPLING                                                               |              | SHAP         | KE OI                                            | UT                                               | API 8                                            | TEM                                              | COLOUR           | POUR                                             |                                         |                                                  | S.G.         | API                                              | то                                               |               |
|         | POINT                                                                  | o.           | -            | <del>'</del>                                     |                                                  | @<br>O                                           |                                                  |                  | OIN!                                             | FLUORE<br>SCENCE                        |                                                  | (OBS)        |                                                  |                                                  | )<br>'        |
| HH: MM  | OTTOTAL                                                                | Z            | OIL          | H20                                              |                                                  |                                                  | • 60                                             |                  |                                                  |                                         |                                                  |              |                                                  |                                                  | COMMENTS      |
| 00:00   | CHOKE<br>MANIFOLD                                                      |              |              |                                                  |                                                  | 33                                               |                                                  | BROWN            | 30                                               | CREAM                                   | 77                                               | .840         | 37                                               |                                                  |               |
| 01:00   |                                                                        | 2            | <u></u>      |                                                  | +                                                | 34                                               |                                                  |                  |                                                  | CREAM<br>WHITE                          | YEL                                              | .832         | 38                                               | -                                                |               |
| 02:00   |                                                                        | 3            |              | <b> </b>                                         |                                                  | 34                                               |                                                  | 11               | 29                                               | 111111111111111111111111111111111111111 |                                                  | .828         | 39                                               | 106                                              |               |
| 03:00   |                                                                        | 4            | <u> </u>     | <u> </u>                                         |                                                  | 35                                               |                                                  | 11               | 31                                               | 11                                      |                                                  | .826         | 39                                               |                                                  |               |
| 04:00   |                                                                        | 5            | <del> </del> |                                                  | <del> </del>                                     | 34                                               |                                                  | 11               | 30                                               | 11                                      |                                                  | .828         | 39                                               | -                                                |               |
| 05:00   | <b></b>                                                                | 6            | <u> </u>     |                                                  | <del> </del>                                     | 35                                               |                                                  | 11               | 30                                               | 11                                      | <b> </b>                                         | .824         | 39                                               | 114                                              |               |
| 06:00   |                                                                        | 7            | ļ            | ļ                                                |                                                  | 34_                                              |                                                  | II               | 29                                               | 11                                      | <u> </u>                                         | .827         | 39                                               | 110                                              |               |
| 07:00   |                                                                        | 8            |              |                                                  |                                                  | 34                                               |                                                  | PKNYEK!          |                                                  | 11                                      |                                                  | .827         | 39                                               | 107                                              |               |
| 08:00   | <u></u>                                                                | 9            |              |                                                  |                                                  | 34                                               |                                                  | BROWN<br>DR YELI | 30                                               | 11                                      |                                                  | .830         | 39                                               | 99                                               |               |
| 09:00   |                                                                        | 10           |              |                                                  |                                                  | 35                                               |                                                  | 11               | 31                                               | 11                                      |                                                  | .825         | 40                                               | 108                                              |               |
| 10:00   |                                                                        | 11           |              |                                                  |                                                  | 35                                               |                                                  | 71               | 29                                               | 11                                      |                                                  | .827         | 40                                               | 100                                              |               |
|         |                                                                        | Π            |              |                                                  | Π                                                |                                                  |                                                  |                  |                                                  |                                         |                                                  |              | 1                                                |                                                  |               |
|         | <del> </del>                                                           | <del> </del> | $\vdash$     | <del>                                     </del> | t                                                | <del>                                     </del> | -                                                | <del> </del>     | <del>                                     </del> |                                         | <del>                                     </del> | <del> </del> | +                                                | <del>                                     </del> |               |
|         | <del> </del>                                                           | +            | +-           | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | -                                                | <del> </del>     | <del> </del>                                     | ļ                                       |                                                  | <del> </del> | +                                                | -                                                |               |
|         | <b></b>                                                                | <u> </u>     | <b> </b>     | <b></b>                                          | <b> </b>                                         | ļ                                                |                                                  | <u> </u>         | <b> </b>                                         |                                         | <b> </b>                                         | ļ            | +                                                |                                                  |               |
|         |                                                                        | L            |              |                                                  | <u></u>                                          |                                                  |                                                  |                  |                                                  |                                         |                                                  |              |                                                  |                                                  |               |
|         |                                                                        |              |              |                                                  |                                                  |                                                  |                                                  |                  | 1                                                |                                         |                                                  |              |                                                  |                                                  |               |
|         | T                                                                      | Γ            |              |                                                  |                                                  |                                                  |                                                  |                  |                                                  |                                         |                                                  |              |                                                  |                                                  |               |
|         |                                                                        | T            |              |                                                  |                                                  |                                                  |                                                  |                  | <b>T</b>                                         |                                         |                                                  | <del> </del> | 1                                                |                                                  |               |
|         | <del> </del>                                                           | $\vdash$     | <del> </del> | <del>                                     </del> | <del> </del>                                     | 1                                                |                                                  | <del> </del>     | <del> </del>                                     | <del> </del>                            | <del>                                     </del> | <del> </del> | +                                                | 1                                                |               |
|         |                                                                        | -            | -            |                                                  | -                                                | <del> </del>                                     | -                                                |                  | <del> </del>                                     |                                         |                                                  | <del> </del> | +                                                | -                                                |               |
|         |                                                                        | _            |              |                                                  |                                                  |                                                  |                                                  |                  | <u> </u>                                         |                                         |                                                  |              |                                                  |                                                  |               |
|         |                                                                        | اً ا         |              | -                                                |                                                  |                                                  |                                                  |                  | _                                                |                                         | _                                                | _            |                                                  |                                                  |               |
|         | <u> </u>                                                               | 1            |              | <del>                                     </del> | 1                                                | <b>T</b>                                         |                                                  |                  |                                                  |                                         | <del>                                     </del> |              | 1                                                |                                                  |               |
|         | <del> </del>                                                           | t            | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>                                     | <del>                                     </del> | <b></b>          | <del>                                     </del> |                                         | <del> </del>                                     | <del> </del> | +                                                |                                                  |               |
|         | <del> </del>                                                           | <b> </b>     | <del> </del> | <del> </del>                                     | -                                                | -                                                |                                                  |                  | <del> </del>                                     |                                         | <u> </u>                                         | -            |                                                  | -                                                |               |
|         | <u></u>                                                                | <u> </u>     | <u> </u>     | <u> </u>                                         | <u> </u>                                         |                                                  |                                                  |                  | <u> </u>                                         |                                         | <b> </b>                                         |              | <del>                                     </del> |                                                  |               |
|         |                                                                        | L            |              |                                                  |                                                  |                                                  |                                                  |                  | <u> </u>                                         |                                         |                                                  |              |                                                  |                                                  |               |
|         |                                                                        |              | L            | L                                                | L                                                |                                                  |                                                  |                  |                                                  |                                         | L                                                | <u></u>      | L                                                |                                                  |               |
|         |                                                                        | Γ            |              |                                                  |                                                  |                                                  |                                                  |                  |                                                  |                                         |                                                  |              |                                                  |                                                  |               |
|         | <del>                                     </del>                       | T            | <b>†</b>     |                                                  |                                                  |                                                  |                                                  |                  |                                                  |                                         |                                                  |              | 1                                                |                                                  |               |
|         | <del> </del>                                                           | +            | <del> </del> | <del> </del>                                     | <del>                                     </del> | <del> </del>                                     | -                                                |                  | <del> </del>                                     | <del> </del>                            | <del> </del>                                     | <del> </del> | +                                                | <del>                                     </del> |               |
|         | <b></b>                                                                | <del> </del> | <u> </u>     | <u> </u>                                         | <del> </del>                                     | <del> </del>                                     | <u> </u>                                         | <del> </del>     | <b> </b>                                         | ļ                                       | <del> </del>                                     |              | -                                                | -                                                |               |
|         |                                                                        | L            |              |                                                  |                                                  |                                                  |                                                  |                  | <u> </u>                                         |                                         |                                                  |              | 4                                                | لـــــا                                          |               |
|         |                                                                        |              |              |                                                  |                                                  |                                                  |                                                  |                  | 1                                                | L                                       |                                                  | L            | _                                                |                                                  |               |
|         |                                                                        | Т            | 1            | 1                                                | 1                                                | <b>T</b>                                         |                                                  |                  | 1                                                |                                         |                                                  |              | <b>T</b>                                         |                                                  |               |

| CORE LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | TRALIA LT | RODUCTION | WELL TES      | T DATA SHE | ET       |         | S             | HEET# |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|-----------|---------------|------------|----------|---------|---------------|-------|----------|
| WELL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·             | 0.3       |           | - <b>≠</b> 2A |            |          |         |               |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATIONS 2779.5 |           |           |               |            |          | DATE _  |               |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2813 -        | 2822 MÈTI | RES       | FINAL         | FLOW       |          |         |               |       |          |
| TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAMPLING      |           |           | i             |            |          |         |               |       | GAS      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POINT         | CI        | C2        | С3            | C4         | C5       | C6      | cos           | H2S   | GRAVIT   |
| HH: MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | РРМ       | PPM       | PPM           | PPM        | PPM      | PPM     | %             | PPM   |          |
| 03:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEPARATOR     | 366,182   | 64,634    | 23,900        | 10,598     | 6,927    | 1,047   | 19.2          | 2     | .955     |
| 04:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11            | 415,006   | 53,862    | 26,301        | 14,131     | 6,243    | 986     | 19.           | . 5   |          |
| 05:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11            | 396,697   | 64,385    | 28,692        | 14,217     | 2,544    | 1,257   | 19.9          | 8     | .930     |
| 06:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79            | 390,595   | 56,016    | 28,771        | 17,664     | 1,193    | 274     | 20.           | 5 6   |          |
| 07:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11            | 416,081   | 60,325    | 28,692        | 15,897     | 1,642    | 937     | 18            | 8     |          |
| 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11            | 402,801   | 54,293    | 26,003        | 3,974      | 795      | 107     | 19.3          | 8     |          |
| 09:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11            | 421,110   | 91,566    | 28,095        | 14,131     | 3,737    | 535     | 17.           | 5 4   |          |
| 10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11            | 390,595   | 96,952    | 32,877        | 5,023      | 1,431    | 214     | 17.           | 0     |          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |           |           |               |            |          |         | -             |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | <u> </u> |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |           |           |               |            |          |         |               |       | 4        |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |           |           |               |            |          |         | -             |       | 4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | ļ         |           |               |            |          |         |               |       | 4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | 4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | 4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | _        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | _        |
| ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |           |           |               |            |          |         |               |       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         | <del>  </del> |       | 1        |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |           |           |               |            |          |         | -             |       | 1        |
| WATER TO A STATE OF THE STATE O |               |           |           |               |            |          |         | 1             |       | 1        |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |           |           |               | ·          |          |         | -             |       | -        |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |           |           |               |            |          |         |               |       | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         | -             |       | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         |               |       | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           |           |               |            |          |         | +             |       | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           | ļ         |               | <b></b>    | <u> </u> | <b></b> | -             |       | 4        |

| CORE LA  | 3.           |              |          |              | PROD   | UCTI     | ON V     | VELL TES       | T DAT        | A SHEE                                           | Ţ        |              |                 | \$H<br>(00/ | EET#_1   |
|----------|--------------|--------------|----------|--------------|--------|----------|----------|----------------|--------------|--------------------------------------------------|----------|--------------|-----------------|-------------|----------|
| COMPANY  | ESSO         | AUS          | TRA]     | LIA          | LTD    |          | _        |                |              |                                                  |          | DATE         | 13/             | /02/        | 84       |
| WELL     | _ WTRRA      | H N          | 0        | 3            | P      | WT #     | 3        |                |              |                                                  |          |              |                 |             |          |
| PERFORA  | TIONS 266    | 6 -          | - 26     | 75 M         | ETR    | FÑ, F    | KB)      |                |              |                                                  |          |              |                 |             |          |
|          | TN           | <b>1</b> TT] | [AL      | FLOV         | J      |          |          |                |              |                                                  |          |              |                 |             |          |
| RATHOLE  | FLUID:       | TYP          | E        |              |        |          |          | RE9 n          | ٠            | •                                                | F        | `H           | _CI (T          | TITRA       | T) PP)   |
|          |              |              |          |              |        | DE       | NSIT     | YRE\$          |              |                                                  |          | PH           |                 |             |          |
| CUSHION  | FLUID        | CICI         | TTRA     | Τ)           |        |          | PPI      | M DENS         | ITY          |                                                  |          |              |                 |             |          |
| TIME     | SAMPLING     | T            | SHA      | KE O         | UT     | API 8    | TEM      | COLOUR         | POUR         | WATER                                            | RES      | CI           | EON             | PH          |          |
|          | POINT        | 0            | <b>-</b> | <del>%</del> | ·      |          | _        |                |              | 8 TEMP                                           |          |              | 1               | $\vdash$    |          |
| нн: мм   |              | Z            | OIL      | H20          | SLOS   | =        | • 60     | o <sub>F</sub> | •C           | տւ-m                                             | ÷        | PPM          | PPM             |             | COMMENTS |
| 04:00    | DOWN         |              |          |              |        | 36.3     |          | GREYISH<br>RED |              |                                                  | ↓        | <u> </u>     | <del> </del>    |             |          |
| 05:00    | STREAM<br>OF |              |          |              |        | 37. 1    |          | TO<br>REDDISH  |              |                                                  | 1        |              | <del> -</del> - | -           |          |
| 06:00    | HEATER       |              |          |              |        | 36.8     |          | BROWN          | 30           | 5 <b>-</b>                                       |          | -            | <del> -</del> - | _           |          |
|          |              |              |          |              |        |          |          |                | <u> </u>     |                                                  |          | <u> </u>     |                 | -           |          |
|          |              |              |          |              |        |          |          |                | <b> </b>     |                                                  |          | <del> </del> | -               | -           |          |
|          |              | _            |          | _            |        |          |          |                | <del> </del> |                                                  | -        |              | <del> </del>    | -           |          |
|          |              |              |          |              |        |          |          |                | 1            |                                                  |          | <b> </b>     | -               | ļ           |          |
|          |              |              |          |              |        | <u> </u> | <u> </u> |                | <u> </u>     |                                                  | -        |              |                 |             |          |
|          |              |              |          |              |        |          |          |                |              |                                                  |          |              |                 |             |          |
|          |              | 7            |          | T            |        |          |          |                |              |                                                  |          |              |                 |             | ·        |
|          | 1            | $\top$       |          |              | 1      |          |          |                |              |                                                  |          |              |                 |             | ]        |
|          | 1            | +            | T        | †            | 1      |          | <b> </b> |                |              |                                                  |          |              |                 |             |          |
|          | 1            | +            | ┼-       | +            | +-     | ┼─       | 1        | <del> </del>   | +            | <del>                                     </del> | +        | +            |                 | 1           | 1        |
|          | <del> </del> | 4-           | ┼        | -            | -      | ┼        | ┼        |                | +            | <del>                                     </del> | +        | +            | +               | +-          | 1        |
|          |              |              | _        |              |        |          |          | ļ              |              | <del> </del>                                     |          | <b>_</b>     |                 | +-          | 4        |
|          |              |              |          |              |        |          |          |                |              |                                                  |          |              |                 | <b>_</b>    | 1        |
|          |              | T            |          |              |        |          |          |                |              |                                                  |          |              |                 |             |          |
|          | 1            | 十            | 1        | 1            | 1      | 1        | 1        |                | 1            |                                                  |          |              |                 |             |          |
|          |              | 十            | +-       | +-           | +-     | 1        | +        | <b>-</b>       | $\top$       |                                                  | 1        |              | $\neg$          | T           | 1        |
| <b></b>  |              | +-           | +-       | +            |        | -        | -        |                | +            | -                                                | -        | +            | +-              | +-          | 1        |
|          |              |              | -        |              | -      |          | -        |                | -            | <del> </del>                                     |          |              |                 | +-          | 4        |
| 1        |              |              |          |              |        |          |          |                |              |                                                  |          |              |                 | _           |          |
|          |              | T            |          |              |        |          |          |                |              |                                                  |          |              |                 |             |          |
|          | <del></del>  | +            | +-       | +            | +      | +        | +-       | 1              | _            | +                                                | 1        | 1            | 1               | T           | 1        |
|          |              | +            | +        |              |        | +        | +-       | -              | -            | <del> </del>                                     | $\dashv$ | +            | +-              | +-          | 1        |
|          |              |              |          | 4-           | _      | -        | -        | -              | -            |                                                  |          |              |                 | +-          | -        |
| L        |              |              |          |              |        |          |          |                |              |                                                  |          |              |                 | 1           | 4        |
|          |              |              |          |              |        |          |          |                |              |                                                  |          |              |                 | _           | 4        |
|          |              | $\top$       |          |              |        |          |          |                |              |                                                  |          |              |                 |             | _        |
| <b>—</b> | +            | 1            | 1        | 1            |        | 1        | T        |                |              |                                                  |          |              |                 |             |          |
|          |              | +            | +-       | +-           | +-     | +-       | +-       | -              | _            | 1                                                | 1        | 1            | 1               | 1           | 1        |
| <b></b>  |              | -            | 4        | -            | +      | +-       | +        |                |              | -                                                |          | <del> </del> |                 | +           | -        |
|          |              | $\bot$       | _        | 1            |        |          | 4        |                |              | <del> </del>                                     |          |              | _ _             | +-          | -        |
|          |              |              |          |              |        |          |          |                |              |                                                  |          |              |                 |             | _        |
|          |              | 十            | 1        | 十            | $\top$ | T        |          |                |              |                                                  |          |              |                 |             |          |
| -        |              | +            | +        | 十            | +      | +        | +        |                | 1            | 1                                                | $\neg$   |              |                 | T           | 7        |

and the second of the second o

| CORE LA  | DRE LAB.  PRODUCTION WELL TEST DATA SHEET  SHEET#  DATE 13/02/84 |         |                 |                |              |           |              |              |            |              |                                                  |              |              |              |          |
|----------|------------------------------------------------------------------|---------|-----------------|----------------|--------------|-----------|--------------|--------------|------------|--------------|--------------------------------------------------|--------------|--------------|--------------|----------|
| COMPANY  | ESSO                                                             |         |                 |                |              |           |              |              |            |              |                                                  | DATE         | 13/          | 02/          | 84       |
| WELL     | WIRR                                                             | AH      | NO.             | 3              | Р            | WT#       | 3            |              |            |              |                                                  |              |              |              |          |
| PERFORA  | TIONS 266                                                        | 6 -     | - 26            | 75 M           | ETRE         | FM, R     | KB)          |              |            |              |                                                  |              |              |              |          |
|          | FT:                                                              | NAT     | . FLO           | WC             |              |           |              |              |            |              |                                                  |              |              |              |          |
| RATHOLE  | FLUID:                                                           | TYP     | E               |                |              |           |              | RES          | ·          |              | P                                                | н            | _CI (T       | ITRA         | T)PP)    |
|          | · · · ·                                                          | EON     | <u> </u>        |                | PPM          | DE        | TIEN.        | YRE\$        |            |              |                                                  |              |              |              |          |
| CUSHION  | FLUID:                                                           | ryp     | E               | -\             |              |           |              | RES.         |            |              |                                                  | PH_          | <u></u>      |              |          |
| TIME     | SAMPLING                                                         | CICT    | CHA             | (F O           | IT           | APIR      | TEM          | DENS         | POUR       | WATER F      | RES                                              | CI           | NO3          | PH           |          |
| IIME     | POINT                                                            | o       | l               | %              |              |           |              | OIL          | POINT      | & TEMP       |                                                  |              | -            |              |          |
| нн: мм   |                                                                  | Ž       | OIL             | H20            | SLOS         | _         | *60°         | F            | <b>⊕</b> C | -r∟-m        | •                                                | PPM          | PPM          |              | COMMENTS |
| 11:00    | HEATER                                                           |         | _               | _              | _            | 36.0      | 11           | GREYISH      | 29.        | 5            |                                                  |              |              |              |          |
| 12:00    | 11                                                               |         | _               | _              |              | 37.0      | 11           | RED TO       | 30.        | 2            |                                                  |              |              |              |          |
| 13:00    | SEPARAT                                                          | φR      | _               | _              |              | 36.3      | "            | BROWN        | 39.        | 1            |                                                  |              | <b></b>      | $\vdash$     |          |
| 14:00    | 11                                                               |         | <u> -</u>       |                |              | 39.0      | "            | 11           | 38.        | ,<br>        |                                                  |              | -            |              |          |
| 15:00    | 11                                                               | _       | <u> </u>        | <u> </u>       | ļ <u>-</u> _ | 39.8      |              |              | 31         | <u> </u>     | <u> </u>                                         | ļ            | -            |              |          |
| 16:00    | 11                                                               |         | <del> -</del> - | <del>  -</del> | <del> </del> | 38.6      | <b>†</b>     | 11           | 26         |              | <del> </del>                                     | <del> </del> | -            | $\vdash$     |          |
| 17:00    | "                                                                | ┼       | <del> -</del>   | -              |              | 38. 1     | 1            | ***          | 28         | <del> </del> |                                                  |              | +-           |              |          |
| 18:00    | 11                                                               | +       | <del> -</del> - | -              |              | 37.3      |              | 11           | 27         |              |                                                  | -            | +            | -            |          |
| 19:00    |                                                                  | _       | 丰               | <del> </del> - |              | 38.0      | 1            | ļ            | 30         | <del> </del> | -                                                | <del> </del> | <del> </del> | -            |          |
| 20:00    | 11                                                               | -       | ╄-              | <del>  -</del> | ├-           | 38.9      | +            | "            | 28         | <del> </del> | -                                                | <del> </del> |              | -            | ,        |
| 21:00    | 11                                                               | 1       | <del> -</del>   | <u> -</u>      | <u> </u>     | 37.8      | <del> </del> | "            | 28         | -            | ├                                                | <b> </b>     |              | -            |          |
| 22:00    | "                                                                | $\perp$ | <u> </u>        | _              | <u> -</u>    | 38.4      | 4 "          | "            | 28         |              | <del>                                     </del> | ļ            | <del> </del> | -            |          |
| 23:00    | 11                                                               |         | <u> </u>        |                |              | 38.2      | 2 "          | 11           | 32         |              |                                                  |              |              |              |          |
|          |                                                                  |         |                 |                |              |           |              |              |            |              |                                                  |              |              |              |          |
|          |                                                                  | T       |                 |                |              |           |              |              |            |              |                                                  |              |              |              |          |
| <b> </b> | <del> </del>                                                     | T       | 1               | +              | T            | T         | 1            | <u> </u>     | 1          |              | 1                                                | 1            |              | T            |          |
| <b> </b> | 1                                                                | +       | +-              | +              | +-           | +         | <del> </del> | <del> </del> | +          |              | <del> </del>                                     | <del> </del> |              | 1-           |          |
|          | <del> </del>                                                     | +       | +-              | +-             | +-           | ┼         | ┼─           | <del> </del> | +          | +            | <del> </del>                                     |              |              | +-           |          |
|          |                                                                  | 4       | -               | -              | -            | ┼         | <del> </del> | -            | -          | <b> </b>     | ╂—                                               | <del> </del> |              | +-           |          |
|          |                                                                  | $\perp$ | <u> </u>        | _              |              |           |              | <b></b>      |            | <b></b>      |                                                  | <b>_</b>     |              | <del> </del> |          |
|          |                                                                  |         |                 |                |              |           |              |              |            |              |                                                  |              |              |              |          |
|          |                                                                  | T       |                 |                |              |           |              |              |            |              |                                                  |              |              |              |          |
| -        |                                                                  | +       | +-              | 1              | +            | $\dagger$ | +            | <del> </del> | +          |              | 1                                                | 1            | 1            | T            | 1        |
|          | -                                                                | +       | +               | ┼              | -            | +         | +-           | <del> </del> | +-         | -            | +-                                               | +            |              | +            | 1        |
| <b></b>  |                                                                  | +       | +-              | -              | ┼            | -         | +            | -            |            |              | +-                                               | +            | +-           | +            | 1        |
|          | <b></b>                                                          | 4       | _               |                | —            | 4-        | -            |              |            |              | +-                                               | <del> </del> | <del>-</del> | +            | -        |
|          |                                                                  | 4       |                 | -              | -            | 4         | -            | <b></b>      | -          | -            | 4-                                               |              | _            | +-           | 4        |
|          |                                                                  | $\perp$ |                 |                | 1_           |           |              | 1            |            | <b>-</b>     | -                                                | -            | _            | +-           | -        |
|          |                                                                  |         |                 |                |              |           |              |              |            |              | 1_                                               |              |              | -            | 4        |
|          |                                                                  |         |                 |                |              |           |              |              |            |              |                                                  |              |              |              | 1        |
|          |                                                                  | T       |                 | 1.             | T            |           |              |              |            |              |                                                  |              |              |              |          |
|          |                                                                  | +       | 1               | 1              | 1            | 1         |              |              |            |              |                                                  |              |              | Τ            |          |
|          |                                                                  | +       | +               | +-             | +-           | +-        | +            | +            | +-         | -            | 十                                                | 1            | _            | 1            | •        |
| <b> </b> |                                                                  | +       |                 | +              | +            | +-        | +-           | <del> </del> |            |              | +-                                               | <del> </del> | +-           | +-           | 1        |

| CORE LA     |               | P <u>e</u><br>STRALIA LTI | RODUCTION | WELL TES     | T DATA SHE | <u>ET</u>    |                                                  | 5        | SHEET#        |           |
|-------------|---------------|---------------------------|-----------|--------------|------------|--------------|--------------------------------------------------|----------|---------------|-----------|
| COMPAN'     | WIRRAH N      |                           | PWT       | r. <b></b> 3 |            |              |                                                  |          |               |           |
|             | ATIONS 2666 - |                           |           |              |            |              | DATE _                                           | _13/(    | <u>12/84</u>  |           |
|             |               | L FLOW                    | -         |              |            |              |                                                  |          |               |           |
| TIME        | SAMPLING      |                           |           | i            |            |              | <u> </u>                                         | T        |               | T         |
| ·           | POINT         | CI                        | C 2       | C 3          | C4         | C5 PI        | US<br>C6                                         | C02      | H2S           | <u>L_</u> |
| H: MM       |               | PPM                       | PPM       | PPM          | PPM        | PPM          | PPM                                              | %        | PPM           |           |
| 13:00       | SEPARATOR     | 319,096                   | 65,673    | 28,629       | 14,196     | 6,986        | 1,074                                            | 16       | 8             |           |
| 4:00        | 11            | 344,121                   | 66,931    | 28,796       | 14,616     | 7,026        | 1,126                                            | 17       | 9             | 1         |
| 5:00        | 11            | 295,291                   | 28,961    | 19,691       | 13,426     | 7,691        | _                                                | 18       | 10            | 1         |
| 6:00        | 11            | 292,945                   | 86,179    |              | 14,261     | <del> </del> | -                                                | 12.      |               | 1         |
| 7:00        | 17            | 291,695                   | 85,296    | 25,696       | 14,391     | 6,786        | _                                                | 12       | 10            | 1         |
| 8:00        | 11            | 294,616                   | 86,395    |              | 14,646     |              | _                                                | 12       | 8             | 1         |
| 9:00        | 11            | 287,619                   | 85,692    |              | 13,961     |              | <del>                                     </del> | 11.      | 7 8           | 1         |
| 0:00        | 11            | 269,718                   | 83,621    | 1            | 11,681     | 1            | _                                                | 12.4     |               | İ         |
| 1:00        | 11            | 276,912                   | 86,179    |              | 14,216     |              | _                                                | 15.3     |               | †         |
| 2:00        | 11            | 246,296                   | 84,106    | 17,267       | 13,313     |              | -                                                | 13.8     |               |           |
| 3:00        | 11            | 259,691                   | 85,161    | 18,606       | 14,626     | 6,061        | -                                                | 15.3     | 3 6           |           |
|             |               |                           |           |              |            |              |                                                  |          |               | 1         |
|             |               |                           |           |              |            |              |                                                  |          |               | 1         |
|             |               |                           |           |              |            |              |                                                  | 1        |               |           |
|             |               |                           |           |              |            |              |                                                  | 1        | !             | 1         |
|             |               |                           |           |              |            |              | <del> </del>                                     | +        |               | 1         |
|             |               |                           |           | ·            |            |              |                                                  | +-       | , <del></del> | 1         |
|             |               |                           |           |              |            |              | <del></del>                                      | +-+      | <del></del>   | 1         |
|             |               |                           |           |              |            |              | <del> </del>                                     | +-+      |               | 1         |
|             |               |                           |           |              |            |              |                                                  | +        |               | 1         |
| <del></del> |               |                           |           |              |            |              |                                                  | +        |               | -         |
|             |               |                           |           |              |            |              |                                                  | +        |               | 1         |
|             |               |                           |           |              |            |              |                                                  |          |               | -         |
|             |               |                           |           |              |            |              |                                                  | 1_1      |               | 1         |
|             |               |                           | ļ         |              |            |              |                                                  |          |               |           |
|             |               |                           |           |              |            |              |                                                  |          |               |           |
|             |               |                           |           |              | ·          |              |                                                  |          |               |           |
|             |               |                           |           |              |            |              |                                                  | 1        |               |           |
| ,           |               |                           |           |              |            |              |                                                  | +++      |               |           |
|             |               |                           |           |              | ·          |              |                                                  | +-+      |               |           |
|             |               |                           |           |              |            |              |                                                  | +-+      |               |           |
|             |               |                           |           |              |            |              |                                                  | +-+      |               |           |
|             |               |                           |           |              |            |              |                                                  | +-+      |               |           |
|             |               |                           |           |              |            |              |                                                  | ┼─┼      |               |           |
|             |               |                           |           |              |            |              |                                                  | $\vdash$ |               | l         |

•.,

| CORE LA        |                                                  |          |              |                 |                                                  |              | ON V         | VELL TES        | T DAT          | A SHEE          | <u>T</u> |               |       | \$                                               | HEET#                    |
|----------------|--------------------------------------------------|----------|--------------|-----------------|--------------------------------------------------|--------------|--------------|-----------------|----------------|-----------------|----------|---------------|-------|--------------------------------------------------|--------------------------|
| COMPANY        | ESSO                                             | A        | USTR         | ALIA            | LT                                               | D.           | _            |                 |                |                 |          | DATE          | 16/   | 02/                                              | 84                       |
| WELL           | WIRR                                             | ÁН       | NO.          | 3_              | F                                                | wT#          |              | Α               |                |                 |          |               |       |                                                  |                          |
| PERFORA        | <u>WIRR</u><br>268<br>TI <b>ONS</b> 271          | 6        | - 26<br>- 27 | 95 <del>1</del> | œtk                                              | EM, F        | RKB)         |                 |                |                 |          |               |       |                                                  |                          |
|                |                                                  |          |              |                 |                                                  |              |              |                 |                |                 |          |               |       |                                                  |                          |
| - ATUOL 5      | FLUID:                                           |          |              | <del></del>     | <del></del>                                      |              |              | RFS. o. r       | <del></del>    | •               | F        | H             | CI (1 | TITR/                                            | AT) PP                   |
| RAIHULE        |                                                  |          | S            |                 |                                                  |              | NSIT         |                 |                |                 |          |               |       |                                                  |                          |
| CUSHION        |                                                  |          | Ε            |                 |                                                  |              |              |                 | .r. m _        |                 |          | PH.           |       |                                                  |                          |
|                | (                                                |          | TITRA        |                 |                                                  |              | PPI          |                 |                |                 |          | r 2:          | 1225  | 15                                               |                          |
| TIME           | SAMPLING                                         |          | SHA          | KE OI           | UT                                               | APIE         | TEMP         | COLOUR          | POUR           | WATER<br>8 TEMP | RES      | CI            | EON   | PH                                               | i .                      |
|                | POINT                                            | Ĝ        | OIL          |                 | e. ~                                             |              | •60          | F.              | ° <sub>C</sub> | տւ - m          | •        | PPM           | PPM   |                                                  | FLUORESCENCE<br>COMMENTS |
| 10.00          |                                                  | -        | 1012         | 120             | 344                                              | 35.5         |              | REDDIS<br>BROWN | 31.            |                 | T        |               | +     | F                                                | CREAM YELLO              |
| 10:00          | SEPARATO                                         | R        | -            | ├               | <del>                                     </del> | 36.0         |              | BROWN           | 28             |                 | $\vdash$ |               | +     |                                                  | "                        |
| 11:00          |                                                  | ┝        | ├            | -               | -                                                | 35. 7        | 1            | 11              | 29             | <del> </del>    | +        | <u> </u>      | -     |                                                  | 1 "                      |
| 12:00          | <del>                                     </del> | -        | ╂──          | ├               | ├─                                               | 1            | 1            | 11              | 29             |                 | +-       |               | +     | 十一                                               | 1 "                      |
| 13:00          |                                                  | +        | -            | +-              | -                                                | 40.8<br>39.4 |              | 11              | 28             |                 | 1        |               | 1-    |                                                  | ,,                       |
| 14:00<br>15:00 | 11                                               | +-       | +            | +               | <del>                                     </del> | 37.4         | <b>!</b>     | 11              | 28             |                 | 1        |               | 1     | 1                                                | "                        |
| 16:00          | 11                                               | -        | ┼─           | ┼─              | -                                                | 36.8         | +            | 11              | 28             |                 | 1        |               |       | T                                                | "                        |
|                | 11                                               | $\vdash$ | ┼─           | ╁               | $\vdash$                                         | 37.8         | <del> </del> | 11              | 24             | <del></del>     |          |               |       | Т                                                | "                        |
| 17:00          | 11                                               | ╁        | +            | +               | $\vdash$                                         | 38.0         | +            | 11              | 26             |                 | 1        |               |       | T                                                | "                        |
| 18:00          | "                                                | ╁        | -            | ┼               | ┼                                                | +            | 1            | n               | 26             | <del></del>     | +-       | <del> </del>  | -     | <del>                                     </del> | 1                        |
| 19:00          | .                                                | ╁        |              | ┼               | ┼                                                | 37.          | -            | - "             |                | 6               | +-       | 1             |       | †                                                | <b>-</b>   "             |
| 20:00          | "                                                | ┼-       | ┼            | ┼─              | -                                                | 37.          | 4            |                 | <del> </del>   | <del> </del>    | +-       | -             |       | ╫                                                | ┪ "                      |
| 21:00          | 11                                               |          |              | <u> </u>        |                                                  | 38.          | 9 ''         | 11              | 28             | 0               | -        | ļ             |       | ┼                                                | 4 "                      |
|                |                                                  | _        |              |                 |                                                  |              |              | <u> </u>        |                | <u> </u>        |          |               |       | <u> </u>                                         | 4                        |
|                |                                                  | Π        |              |                 |                                                  |              |              |                 |                |                 |          |               |       |                                                  | 1                        |
|                | <del> </del>                                     | 十        | 1            | 1               | 1                                                | 1            | 1            |                 |                |                 |          |               |       |                                                  | 1                        |
|                |                                                  | ╁        | ┼─           | +               | +                                                | +-           | -            | <del> </del>    | ╫              | -               |          | 1             | _     | +                                                | 1                        |
|                |                                                  | +        | -            | -               | ┼                                                | ╂            |              |                 |                | <del> </del>    |          | -             |       | ╫                                                | -                        |
|                |                                                  | _        |              | <del> </del>    |                                                  |              | <del> </del> |                 | <del> </del>   | <del> </del>    |          | <del>- </del> |       | ┼                                                | -                        |
|                |                                                  |          | _            |                 |                                                  |              |              |                 |                |                 |          |               |       |                                                  | _                        |
|                |                                                  | T        |              |                 |                                                  |              |              |                 |                |                 |          |               |       |                                                  |                          |
|                | 1                                                | 十        | 1            | 1               | 十一                                               | †            | 1            |                 |                | 1               |          |               |       |                                                  |                          |
|                |                                                  | +        | -            |                 | +-                                               | +-           | -            | -               | +              | -               |          |               |       | ┿                                                |                          |
|                |                                                  |          |              |                 |                                                  |              |              |                 |                |                 |          |               |       |                                                  | 4                        |
|                |                                                  |          |              |                 |                                                  |              |              |                 |                |                 |          |               |       |                                                  | _                        |
|                |                                                  | T        |              |                 |                                                  |              |              |                 |                |                 | 1        |               |       |                                                  |                          |
|                | +                                                | 十        | +-           | 1               | 1                                                | 1            | 1            |                 |                |                 |          |               | 1     | T                                                | 7                        |
| <u> </u>       |                                                  | +        | +-           | +-              | +                                                | +-           | +-           | -               | +-             |                 | $\dashv$ | 1             | _     | 十                                                | 7                        |
|                |                                                  | +        | -            | +-              | -                                                | +-           | $\dashv$     | +               | +-             | +               | +        | +             |       | 十                                                | 7                        |
|                |                                                  | +        | -            | -               | +-                                               | +            | -            |                 | +              | +               |          | -             |       | 十                                                | 7                        |
|                |                                                  | 4        | 4-           |                 |                                                  | 4            | -            | <del> </del>    |                |                 |          |               | +-    | +-                                               | -                        |
|                |                                                  |          |              |                 |                                                  | $\bot$       |              |                 |                |                 |          | _             |       | _                                                | 4                        |
|                |                                                  | T        |              | ŀ               |                                                  |              |              |                 |                |                 |          |               |       |                                                  | _                        |
|                |                                                  | 1        | 丁            | 1               | 1                                                | 1            |              |                 |                |                 |          |               |       |                                                  |                          |
|                | _                                                | 十        | +            | +-              | +                                                | +            | +            | 1               | $\dashv$       | 1               | 1        |               | _     | 丁                                                | 7                        |
|                |                                                  | +        |              | +-              | +                                                | +            | +-           |                 | -              | -               |          |               |       | 十                                                | 7                        |
| =              |                                                  |          |              |                 |                                                  |              |              |                 |                |                 |          |               | •     |                                                  |                          |

| CORE LAB | PRODUCTION WELL TEST DATA SHEET                  | SHEET # 1 |
|----------|--------------------------------------------------|-----------|
| COMPANY  | ESSO AUSTRALIA LTD.                              | 311CE   # |
| WELL     | WIRRAH NO. 3 PWT# 3A                             |           |
|          | 2686 - 2695 +<br>IONS 2711 - 2702 METRESFM, RKB) | DATE      |

| TIME    | SAMPLING<br>POINT | CI                                    | C2     | C 3         | C4               | 05             |                |                                                  |            |   |
|---------|-------------------|---------------------------------------|--------|-------------|------------------|----------------|----------------|--------------------------------------------------|------------|---|
| нн : мм |                   | PPM                                   | PPM    | PPM         | PPM              | C5<br>PPM      | C 6<br>PPM     | C02                                              | H2S<br>PPM |   |
| 10:00   | SEPARA TOR        | 785,100                               | 32,010 | 12,917      | 4,704            | 2,268          | 1,841          | -                                                |            |   |
| 11:00   | 11                | 808,192                               | 34,224 | 18,532      | 15,680           |                | 3,683          | 10.                                              |            | İ |
| 12:00   | 11                | 816,172                               | 36,396 | 18,762      | 15,706           | 6,878          | 3,796          | 11.                                              |            |   |
| 13:00   | 11                | 808,192                               | 36,126 | <del></del> | 15,609           | 6,768          |                | 1                                                |            |   |
| 14:00   | 11                | 814,387                               | 32,096 | 13,096      | 14,625           |                | 3,626          | 13.                                              |            |   |
| 15:00   | 11                | 802.036                               | 30,176 |             |                  | 6,269          | 3,076          | 13.                                              |            |   |
| 16:00   | 11                | 820,460                               | 34,162 | 16,786      | 12,265<br>15,690 | 4.065<br>5,789 | 1.096          | 10                                               |            |   |
| 17:00   | FF                | 789.371                               | 35,328 | 16.896      | 15,896           |                | 2,275          | 10.                                              |            |   |
| 18:00   | 11                | 512,010                               | 30,912 | 14,128      | 13,336           | 5,069          | 2.069<br>1,696 | 12.<br>13.                                       |            |   |
| 19:00   | 11                | 616,916                               | 33,096 | 14,696      | 13,786           | 5,506          | 1,795          | 10.                                              |            |   |
| 20:00   | 11                | 702,196                               | 31,961 | 12,626      | 8,709            | 3,666          | 1,696          | 11.                                              |            | · |
| 21:00   | 11                | 678,326                               | 30,696 | 11,787      | 8,569            | 3,601          | 1,469          | 10.                                              | 0 9        |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        | •           |                  |                |                | <del>                                     </del> |            |   |
|         |                   |                                       |        |             |                  |                |                | $\vdash$                                         |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   | · · · · · · · · · · · · · · · · · · · |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                | <del></del>                                      |            |   |
|         |                   |                                       |        |             |                  |                |                | $\dashv$                                         |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  | <u>-</u>       |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                | _                                                |            |   |
|         |                   |                                       |        |             |                  |                |                | $\dashv$                                         |            |   |
|         |                   | <del></del>                           |        |             |                  |                |                |                                                  |            |   |
|         |                   |                                       |        |             |                  |                |                |                                                  |            | • |
|         |                   |                                       |        |             |                  |                |                |                                                  |            |   |

| CORE LA | ESSO AUSTRALIA LTD. |                    |              |                                               |              |                                                  |          |                                                  |              |                                                  | T            |                |              |              | HEET#    |
|---------|---------------------|--------------------|--------------|-----------------------------------------------|--------------|--------------------------------------------------|----------|--------------------------------------------------|--------------|--------------------------------------------------|--------------|----------------|--------------|--------------|----------|
| COMPANY | ESSO                | AU                 | STRA         | LIA                                           | LTD          | •                                                | _        |                                                  |              |                                                  |              | DATE           | 21           | /02          | /84      |
|         | WIRR                |                    |              |                                               |              |                                                  |          | 4                                                |              |                                                  |              |                |              |              |          |
| PERFORA | TIONS 263           | <u>5 -</u>         | 264          | 6 MI                                          | ETRE         | BM, F                                            | KB)      |                                                  |              |                                                  |              |                |              |              |          |
|         |                     |                    |              |                                               |              |                                                  |          |                                                  |              |                                                  |              |                |              |              |          |
| RATHOLE | FLUID               | TYP                | £            |                                               |              |                                                  |          | RES                                              | n            |                                                  | F            | γн             | CI (1        | TTR/         | IT) PPI  |
|         |                     |                    |              |                                               | PPM          | DE                                               | TIEN     | YRE\$.                                           |              |                                                  |              | D LI           |              |              |          |
| CUSHION | FLUID:              | TYP                | E            | r)                                            |              |                                                  | PPI      | MES.                                             | m _<br>። የተ  |                                                  |              | гп.            |              |              |          |
| TIME    | SAMPLING            | 1                  | SHAI         | KE O                                          | UT           | API 8                                            | TEM      | COLOUR<br>OIL                                    | POUR         | WATER                                            | RES          | Ci             | EON          | PH           |          |
|         | POINT               | ld                 |              | 1                                             |              |                                                  |          |                                                  |              |                                                  | ·            |                |              |              |          |
| нн: мм  |                     | Z                  | OIL          | H20                                           | SLO          |                                                  | 60°      | F                                                | ₽C           | ∡L-m                                             | •            | PPM            | PPM          |              | COMMENTS |
| 12:30   | DOWN<br>STREAM      | OE                 | Ξ            | Ξ                                             | Ξ            | 348                                              |          | DRK GE<br>-TSH B                                 | N 28         | .6 -                                             | <u> -</u>    | _              |              |              |          |
| 13:00   | HEATER              |                    | _            | <u>  -                                   </u> | _            | )                                                |          |                                                  |              |                                                  | <u> </u>     |                | <del> </del> |              |          |
| 13:30   | 11                  |                    | _            |                                               | _            | )                                                |          |                                                  | 1            |                                                  | <u> </u>     |                |              |              |          |
| 14:00   | 11                  |                    |              | -                                             | <u>  -</u>   | ــزا                                             | NO       | FLUID S                                          | AMPLI        | S                                                | <del> </del> |                | -            |              |          |
| 14:30   | 11                  |                    |              | <u> </u>                                      | <u> </u>     | )                                                | <u> </u> | <u> </u>                                         | <b> </b>     |                                                  | -            | <u> </u>       | -            | <del> </del> |          |
| 15:00   | "                   |                    | <u> </u>     |                                               | <u> </u>     | )_                                               |          |                                                  |              |                                                  | -            | ļ              |              | -            |          |
|         |                     | 4                  | <del> </del> | <u> </u>                                      | <del> </del> | <u> </u>                                         |          |                                                  | <del> </del> | <b> </b>                                         | -            | <del> </del>   |              | -            |          |
|         |                     |                    |              |                                               | ļ            |                                                  |          | ļ                                                | ļ            |                                                  | <del> </del> |                |              | -            |          |
|         |                     | $\perp$            |              |                                               |              |                                                  |          |                                                  | <u> </u>     | ļ                                                |              | 1              | <del> </del> | <del> </del> | į        |
|         |                     |                    | <u> </u>     |                                               |              |                                                  |          |                                                  | <b></b>      |                                                  |              | <u> </u>       |              | <u> </u>     | · .      |
|         |                     |                    |              |                                               |              |                                                  |          |                                                  |              |                                                  |              |                |              |              |          |
|         |                     |                    |              |                                               |              |                                                  |          |                                                  |              |                                                  |              |                |              |              |          |
|         |                     | 1                  |              | 1                                             |              |                                                  |          |                                                  | T            |                                                  |              |                |              | T            | 1        |
|         |                     | +-                 | $I^{-}$      | T                                             |              | <b>T</b>                                         |          |                                                  | 1            |                                                  |              |                |              | 1            | 1        |
| -       | <del> </del>        | ╫                  | -            | 1                                             | $\vdash$     | +-                                               | $\vdash$ | <del>                                     </del> | +            | <del>                                     </del> | +            | 1              | +            | †            | 1        |
| <b></b> | <u> </u>            | +                  | -            | <del> </del>                                  | -            | -                                                | ┼        | <b> </b>                                         | +            |                                                  | +-           | <del> </del>   | -            | ┼            | 1        |
|         | ļ                   |                    |              |                                               | <u> </u>     |                                                  | <u> </u> | <u> </u>                                         |              | ļ                                                |              | <del> </del>   | -            |              | 4        |
|         |                     |                    | 1            | <u> </u>                                      | _            |                                                  | <u> </u> | ļ                                                | 1            |                                                  |              |                |              | <del> </del> | 4        |
|         |                     |                    |              |                                               |              |                                                  |          | 1                                                |              | <u></u>                                          |              |                |              |              |          |
|         |                     |                    |              |                                               |              |                                                  |          |                                                  |              |                                                  |              |                |              |              |          |
|         | 1                   | +                  | _            | †                                             | T            | <del>                                     </del> |          | <del>                                     </del> | 1            | 1                                                | 1            |                | 1            |              | 1        |
|         | <del> </del>        | +-                 | ┼            | +                                             | +-           | $\vdash$                                         | ┼─       | <del> </del>                                     | +            |                                                  | +-           | +              |              | +-           |          |
|         |                     |                    | <u> </u>     |                                               |              | _                                                |          | <b></b>                                          | <del> </del> | ļ                                                |              | <del> </del>   | -            | 1-           | 4        |
|         |                     | $oldsymbol{\perp}$ |              |                                               |              |                                                  |          |                                                  |              |                                                  |              |                | _            | <u> </u>     | 4        |
|         |                     |                    |              |                                               |              |                                                  |          |                                                  |              |                                                  |              |                |              |              | ]        |
|         |                     | 1                  |              |                                               |              |                                                  |          |                                                  |              |                                                  |              |                |              | T            |          |
| -       | 1                   | $\dashv$           | +            | +-                                            | +            | 1                                                | 1        |                                                  | 1            |                                                  | 1            |                |              | T            |          |
|         | <del> </del>        | +                  | †            | $\top$                                        | 1            | +                                                | 1        | <del>                                     </del> | 1            | 1                                                | 1            |                |              | T            | 1        |
| }       | -                   | +                  | -            | +-                                            | +-           | +                                                | ┨        | <del> </del>                                     | +            | +                                                |              | <del> </del> - | +-           | +            | 1        |
|         | <del> </del>        | +                  | -            | +                                             | +-           | -                                                | +        | -                                                | +            | +                                                | +-           | +              | +            | +-           | 1        |
|         |                     | _                  |              | -                                             | -            | -                                                |          | <b></b>                                          |              | <b></b>                                          | -            | -              | +-           | +            | 4        |
|         |                     |                    |              | 1_                                            |              |                                                  |          |                                                  |              | <u> </u>                                         |              |                |              | ╀-           | -        |
|         |                     |                    |              |                                               | 1            |                                                  |          |                                                  |              |                                                  |              |                |              |              | ·        |
|         |                     | 1                  |              | T                                             | T            | T                                                |          |                                                  |              |                                                  |              |                |              |              |          |
|         |                     | 十                  | T            | T                                             | +-           | +                                                | T        | 1                                                | 1            |                                                  | 1            | 1              | 1            | 1            | 7        |
| L       | 1                   | 1_                 |              | 1                                             |              |                                                  |          |                                                  |              |                                                  |              |                |              |              |          |

MARKET STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF TH

\*\*\*

| CORE LA<br>COMPAN<br>WELL | WIRRAH            | STRALIA LT<br>NO. 3 | PW          | T# <u></u> 4 | ST DATA SH | EET          |         |                                                  | SHEET # _ 1 |
|---------------------------|-------------------|---------------------|-------------|--------------|------------|--------------|---------|--------------------------------------------------|-------------|
| PERFOR                    | ATIONS_2635       | - 2646 ME           | TRES FM. RM | (B)          |            |              | DATE    | 21/0                                             | 2/84        |
| TIME                      | SAMPLING<br>POINT | CI                  | C2          | C3           | C4         | C5           | C 6     | cos                                              | H2S         |
| HH: MM                    |                   | PPM                 | PPM         | PPM          | PPM        | PPM          | PPM     | %                                                | PPM         |
| 23:15                     | CHOKE<br>MANIFOLD | 216                 | 3,036       | 619          | _          |              |         | 8                                                |             |
| 23:45                     | 11                | 316                 | 3,629       | 719          | _          | <del> </del> | _       | 13.                                              | /           |
| 24:00                     | ?1                | 727,372             | 34,636      | 17,971       | 12,544     | 3,630        | 1,360   | 14.                                              |             |
| 00:15                     | 11                | 531,097             | 32,678      | 18,420       | 10,035     | 3,630        | 1,296   | 13.                                              |             |
| 00:30                     | 11                | 727,372             | 27,379      | 19,319       | 15,680     | 5,445        | 1,112   | 13.                                              |             |
| 01:00                     | 11                | 715,827             | 26,496      | 14,376       | 13,798     | 6,010        | C5+     | 12.                                              | 4 -         |
| 01:30                     | 11                | 738,918             | 26,054      | 14,376       | 13,171     | 6,018        | C5+     | 14.                                              |             |
| 02:00                     | 11                | 738,926             | 27,379      | 15,275       | 14,425     | 6,031        | C5+     | 15.                                              |             |
| 02:30                     | 11                | 738,918             | 26,054      | 14,376       | 11,916     | 6,009        | C5+     | 14.                                              |             |
| 03:00                     | 11                | 692,736             | 25,612      | 12,579       | 10,662     | 4,163        | C5+     | 15.                                              | 4 -         |
| 03:30                     | SHUT IN           | @ 03:15 I           | OURS        |              |            |              |         | 1                                                | · · ·       |
| 13:30                     | 11                | 738,918             | 6,182       | 2,695        | 6,036      | 5,218        | 1,269   | 15.                                              | 9 –         |
| 14:00                     | 11                | 762,009             | 26,496      | 3,796        | 4,312      | 5,696        | 1,389   | 16.                                              |             |
| 14:30                     | 11                | 762,009             | 24,730      | 7,548        | 3,136      | 4,644        | 2,117   | 16.                                              | 4 -         |
| 15:00                     | 11                | 770,971             | 25,693      | 7,696        | 4,362      | 5,176        | 2,869   | 15.                                              | 3 -         |
| 15:30                     | 11                | 773,555             | 47,693      | 23,362       | 6,766      |              | 3,629   | 16.                                              |             |
| 16:00                     | 11 .              | 763,296             | 36,789      | 20,692       | 5,734      | 5,266        | 2,960   | 15.                                              |             |
| 16:30                     | 11                | 756,921             | 40,961      | 30,721       | 6,386      | 5,362        | 3,016   | 14.                                              |             |
| 17:00                     | 11                | 762,019             | 26,496      | 3,896        | 4,619      | 5,718        | 1,469   | 19.0                                             |             |
|                           |                   | SHUT IN A           |             |              | -          |              |         | + 1                                              |             |
|                           |                   |                     |             |              |            |              |         | ╁╾╁                                              |             |
|                           |                   |                     |             |              |            |              |         | <del>                                     </del> |             |
|                           |                   |                     |             |              |            |              | <b></b> |                                                  |             |

.

APPENDICES

#### COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the DRILL program and is stored on a tape at 10, 5, 1, or 0.2m intervals. This data is then available at a later date for use in other programs (for example KICK, SURGE, COST, OPTBIT, and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

the following data lists have been made for this well:

- (a). Bit record and bit initialization data
- (b). Hydraulic analyses
- (c). Data list A
- (d). Data list B
- (e). Data list C
- (f). Data list D

# COMPUTER PLOTS

Using the REPORT program, hte following plots have been drawn for this well :

GEOPLOT - 1:5000 SCALE - 2m averages

Since all the data is stored on tape, further data lists or plots are available at any time on request.

## (a). BIT RECORD AND BIT INITIALIZATION DATA

BIT SIZE . . . . . . Inches

BIT COST . . . . . . Australian dollars

JET SIZE . . . . . . Thirty-seconds of an inch

DEPTHS . . . . . Metres

HOLE MADE. . . . . . Metres

DRILLING TIME. . . . . Hours

AVERAGE ROP. . . . . Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

|                                |                 |                             |                    |          |         |        |          |        |              |                 |         | BIT RECORD      |
|--------------------------------|-----------------|-----------------------------|--------------------|----------|---------|--------|----------|--------|--------------|-----------------|---------|-----------------|
| BIT IADC                       |                 |                             |                    | DEPTH    | H DEPTH | BIT    | TOTAL    |        | TDID         |                 | T       |                 |
| No. CODE MAKE & TYPE           | SIZE            | COST                        | NOZZLES            |          |         | RUN    |          |        | TRIP<br>TIME | 00007           |         | CONDITION       |
|                                |                 |                             |                    |          | . 001   | NUN    | ה אטטייו | HRUF   | LIME         | CCOST           | TURNS   | IBC             |
| 1 111 HTC OSC3AJ&26            | "HD 26.000      | 0.00                        | 20 20 20           | 70.0     | 208.5   | 138.5  | 7 17     | ** 0   |              |                 |         |                 |
| 1 111 HTC OSC 3AJ              | 17.500          | 4857.00                     | 18 18 18           |          |         |        | 3,13     | 44.2   | 2.5          | 148.45          |         | 2 2 0 . 004     |
| 2 116 HTC J1                   | 12.250          | 2694.00                     | 18 18 18           |          |         | 661.5  |          | 41.6   | 3.7          | 115.61          | 140631  | 2 1 0.000       |
| 3 116 HTC J1                   | 12.250          |                             | 18 18 18           |          |         | 81.0   |          | 29.2   |              | 338,49          | 16633   | 2 2 0.000       |
| 4 517 HTC J22                  | 12,250          | 8514.00                     | 16 16 18           | 1598.0   |         | 647.0  |          | 20.5   |              |                 | 216592  | 6 6 0.250       |
| 5 517 HTC J22                  | 12.250          | 8514.00                     | 16 16 18           | 2016.0   |         | 418.0  |          |        |              | 464.12          | 156262  | 4 4 0.250       |
| 5 4 CHRIS RC4                  | 8.500           | 0 00                        | 14 15 15           | 2470.U   |         | 154.0  |          | 7.5    | 6.6          | 697.48          | 78127   | 2 2 0.000       |
| 5 4 CHRIS RC4                  | 8.500           | 0 00                        | 14 15 15           | 21/0/0   | 2187.4  | 17.4   | 4.64     |        |              | 2359.11         | 20046   | 0 0 0.300       |
| 6 517 HTC J22                  |                 | 8516.00                     | 14 14 10           | 2100.0   | 2205.5  | 17.5   |          |        |              | 1790.52         | 8918    | 0 0 0.350       |
|                                | 12,200          | 2010:00                     | 16 16 18           | 6,6033   | 2445.0  | 239.5  | 53.12    | 4.5    | 7.2          | 955.34          | 163054  | 3 3 0.000       |
|                                |                 |                             |                    |          |         |        |          |        |              |                 |         |                 |
|                                |                 |                             |                    |          |         |        |          |        |              |                 |         |                 |
| WELL: WIRRAH NO.3              |                 |                             |                    |          |         |        |          |        |              |                 |         |                 |
| arre: Minumi Mo'9              |                 |                             |                    |          |         |        |          |        |              |                 | 1       | BIT RECORD      |
| BIT IADC                       |                 |                             |                    |          |         |        |          |        |              |                 | •       | D21 REGURD      |
| No. CODE MAKE & TYPE           | 2775            |                             |                    | DEPTH    | DEPTH   | BIT    | TOTAL    |        | TRIP         |                 | ΤΠΤΔΙ   | CONDITION       |
| un' conc wave & like           | SIZE            | COST                        | NOZZLES            | IN       | OUT     | RUN    | HOURS    | AROP ' |              | CCOST           | TURNS   |                 |
| 7 5:7 1170 700                 |                 |                             |                    |          |         |        |          |        |              | ougg:           | IUNHU   | 1 12 15         |
| 7 517 HTC J22<br>7 4 CHRIS RC4 | 12.250          |                             | 16 16 18           |          | 2597.0  | 152.0  | 37.28    | 4.1    | 7.5 1        | 131.92          | 119866  | 4 4 0.000       |
|                                | 8.500           |                             | 14 15 15           |          | 2602.1  | 5.1    | 3.50     | 1.5    | 7.5.7        | 876.86          |         | 0 0 0.500       |
| 8 537 HTC J33                  |                 |                             | 16 16 18           | 2602.1   | 2616.7  | 14.6   | 3.52     |        |              | 288.40          |         | 1 5 0,000       |
| 8 4 CHRIS RC3                  | 8.500           | 0.00                        | 15 15 14           | 2616.7   | 2635,2  | 18.5   | 2.89     |        |              | 070.78          |         |                 |
| 8 4 CHRIS, RC3                 | 8.500           | 0,00                        | 15 15 14           | 2635.2   | 2653.0  | 17.8   | 6.72     |        |              | 979.05          |         | 0 0 0.400       |
| 8 4 CHRIS, RC4                 | 8.500           | 0.00                        | 15 15 14           | 2653.0   | 2671.2  | 18.2   | 4,45     |        |              | 417.95          |         | 0 0 0 .800      |
| 9 517 HTC J22                  |                 | 8516.00                     | 16 16 18           | 2671.2   | 2672.0  | 0.8    | 0.09     |        |              | 293. <b>3</b> 5 |         | 0 0 0.600       |
| 9 4 RC4                        | 8.500           | 0.00                        | 15 15 14           | 2672.0   |         | 18.5   | 4.67     |        |              | 422.16          |         | 2 2 0.125       |
| 9 4 CHRIS C-20                 | 8.470           | 0.00                        | 14 14 14           | 2690.5   |         | 17.8   | 8.86     |        |              |                 |         | 0 0 0.900       |
| 10 537 HTC J33                 | 12.250 7        |                             | 16 16 18           | 2708.3   | 2776.3  |        | 15.72    |        |              | 397.59          |         | 0 0 0.300       |
|                                |                 |                             |                    |          |         | 00.0   | 10.72    | 4.3    | D.V 1,       | 388,23          | 48386   | 3 4 0.125       |
| 11 537 HTC J33                 | 12.250 7        | 7774.00                     | 15 16 16           | 2774 3   | 2806.8  | 70 E   | 2 12     |        |              |                 |         |                 |
| 11 4 CHRIS RC6                 | 8.500 18        | 300.00                      | 14 15 15           |          | 2814.0  | 30.5   | 7.68     |        |              | 32,37           |         | 1 <b>0.</b> 000 |
| 12 617 HTC J44                 | 12.250 6        | 844.00                      |                    |          | 2960.2  | 7.2    | 3.54     | 2.0    |              |                 | 18565 ( | 0 0.900         |
| 13 316 HTC J7                  | 8,500 1         | 494.00                      |                    |          |         |        | 33.08    | 4.4    |              |                 | 93198 5 | 5 0.000         |
| 14 537 HTC J33                 | 8,500 4         |                             |                    |          | 2972.3  | 12.1   | 2.63     | 4.6    |              |                 |         | 6 0.375         |
| 15 537 HTC J33                 |                 |                             |                    |          | 3045.8  | 73.5   |          | 6.8    |              |                 | 31858 8 | 6 0.625         |
| 16 617 HTC J44                 | 8.500 4         | 747 nn 1                    | 4 14 14            | 3045.8   | 3071.6  | 45.8   |          | 4.4 {  |              |                 | 30946 8 | 6 0.125         |
| 16 4 CHRIS C-20                | 8.500           | נ טטייבע<br>1 ממייבע        | 7 17 14<br>A 1A 1A | 3071.b   | 3116.1  | 24.5   |          | 2.2 8  |              |                 | 35427 2 | 2 0,000         |
| 17 617 HTC J44                 |                 | ν.υυ 1<br>+ nn 7 <b>Δ</b> Σ | 4 14 14            | 3110.1   | 3117.4  |        |          | 0.4 8  |              | 60.25           |         | 0 0.600         |
| 17 4 CHRIS C-23                | 9 500 10:       |                             | 4 14 14            | 3117.4   | 5143,4  |        | 7.75     | 3.4 8  | 1.7 24       | 77.78           |         | 2 0.000         |
| . D.M.AG G LD                  | n'n66 13        | uvu, 00 1                   | 4 14 14            | 5143.4   | 3145.4  | 2.0    | 4.10     | 0.5 8  | .7328        |                 |         | 0 0.100         |
| 18 637 HTC J55                 | <b>0</b> €00 4- | 756 AA -                    |                    |          |         |        |          |        |              |                 | v       | - wiavu         |
| 19 617 HTC J44                 | 0.300 43        | 1 VV.VGC                    | 4 14 14            | 3145.4   | 3203.5  | 58.1 2 |          | 2.5 8  | .7 20        | 71.84           | 70096 8 | 4 0.000         |
| 20 637 HTC J55                 | 8.500 43        | 547.00 1                    | 4 14 15            | 3203.5   | 3225.9  | 22.4 1 |          | 2.2 8  |              |                 | 31715 2 |                 |
| 21 517 HTC J22                 | 8.500 43        | 1. 90.06                    | 4 14 15            | 3225.9   | 3237.6  | 11.7 1 |          | 1.2 8  |              |                 | 31327 1 |                 |
| es of the see                  | 8.500 41        | 37,00 1                     | 4 14 15 ;          | 3237.6 3 | 3257.0  | 19.4 1 |          | 1.2 8  |              |                 | 49328 1 | 1 0 000         |
|                                |                 |                             |                    |          |         |        |          | . •    |              |                 | COLU 1  | 1 0:000         |

| BIT NUMBER: 1 IADC CODE 111                               | нтс овсз               | AJ&26"HO       |         |
|-----------------------------------------------------------|------------------------|----------------|---------|
| STARTING DEPTHBIT COST, RIG COST/HOUR                     | 70.0<br>0.00           | 3652.00        |         |
| TRIP TIME                                                 | 2.5<br>26.0 <u>0</u> 0 |                |         |
| NOZZLESHW DRILL COLLAR LENGTH, OD, ID                     | 20<br>22.74            |                |         |
| DRILL COLLAR LENGTH, OD, ID                               | 39.41                  |                |         |
| HW DRILL PIPE LENGTH, OD, ID                              | 83.56                  |                |         |
| DRILL PIPE OD, ID                                         | 0.00                   | 5.000<br>0.000 | 3.125   |
| PUMP VOLUMES 1 AND 2                                      | 0.119                  | 0.119          |         |
| PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE          | 1,20<br>8,4            |                |         |
| OVERBURDEN GRADIENT MODIFIER                              |                        |                |         |
| STRESS RATIO MODIFIER                                     | 0.04                   |                |         |
| "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY |                        | 2.00           |         |
|                                                           |                        | E. 7 W W       |         |
| FINISHING DEPTH                                           | 208.5                  | 14945          |         |
| BIT CONDITION OUT                                         | S T                    | 14740<br>B 2   | G 0.000 |
|                                                           |                        |                |         |

| BIT NUMBER: 1 IADC CODE 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HTC OSC 3                               | AJ        |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------|-----------|
| STARTING DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 208.5                                   |           |           |
| BIT COST, RIG COST/HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | 3652.00   |           |
| TRIP TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.7                                     |           |           |
| NOZZLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000 v v v v v v v v v v v v v v v v v | 10        | 18        |
| HW DRILL COLLAR LENGTH, OD, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.91                                   | 9.750     | 3.062     |
| DRILL COLLAR LENGTH, OD, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 121.55                                  |           |           |
| HW DRILL PIPE LENGTH, OD, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | 5.000     | 3.125     |
| DRILL PIPE OD, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 5.000     | 4.276     |
| CASING DEPTH, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 193.00                                  | 19.124    |           |
| RISER LENGTH, ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68.UU<br>0 110                          | 21.000    |           |
| PORE PRESSURE CALC EXPONENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.20                                    | W i A A Y |           |
| NORMAL PORE PRESSURE,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.4                                     |           |           |
| OVERBURDEN GRADIENT MODIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                    |           |           |
| STRESS RATIO MODIFIER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.04                                    |           |           |
| "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0                                    | 0.00      |           |
| was in the a manufacture of the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the many and the | 0.0                                     | at . U U  |           |
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 870.0                                   |           |           |
| CUMULATIVE HOURS, TURNS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.91                                   | 140631    |           |
| BIT CONDITION OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | т 2                                     | B 1       | G = 0.000 |

| BIT NUMBER: 2 IADC CODE 116                                                                                                                                                                                                                                                                                                                                                           | нтс јі                                                                                                                        |                                                              |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 870.0<br>2694.00<br>4.0<br>12.250<br>18<br>166.40<br>83.56<br>855.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0 | 3652.00<br>18<br>8.000<br>5.000<br>12.615<br>21.000<br>0.119 | 18<br>2.813<br>3.125<br>4.276 |
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                                       | 951.0                                                                                                                         | 2.00                                                         |                               |
| CUMULATIVE HOURS, TURNS                                                                                                                                                                                                                                                                                                                                                               | 2.77<br>T 2                                                                                                                   | 16633<br>B 2                                                 | G 0.000                       |
| BIT NUMBER: 3 IADC CODE 116                                                                                                                                                                                                                                                                                                                                                           | НТС Ј1                                                                                                                        |                                                              |                               |
| STARTING DEPTH                                                                                                                                                                                                                                                                                                                                                                        | 951.0<br>2694.00<br>5.4                                                                                                       | 3652.00                                                      |                               |
| BIT DIAMETER                                                                                                                                                                                                                                                                                                                                                                          | 12.250                                                                                                                        |                                                              | 4.00                          |
| NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID                                                                                                                                                                                                                                                                               | 18<br>166.40<br>83.56                                                                                                         | 18<br>8.000<br>5.000<br>5.000<br>12.615                      | 18<br>2.813<br>3.125<br>4.274 |
| RISER LENGTH, ID                                                                                                                                                                                                                                                                                                                                                                      | 70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04                                                                                 | 21.000<br>0.119                                              |                               |
| "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY                                                                                                                                                                                                                                                                                                                             | 10.0<br>3.0                                                                                                                   | 2.00                                                         |                               |
| FINISHING DEPTHCUMULATIVE HOURS, TURNS                                                                                                                                                                                                                                                                                                                                                | 1598.0<br>31.52<br>T 6                                                                                                        | 216592<br>B 6                                                | G 0.250                       |

| BIT NUMBER: 4 IADC CODE 517                                                                                                                                                                                                                                                                                                                                                           | HTC J22                                                                                                                        |                                                                       |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 1598.0<br>8516.00<br>6.3<br>12.250<br>16<br>172.80<br>83.56<br>855.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0 | 3652.00<br>16<br>8.000<br>5.000<br>5.000<br>12.615<br>21.000<br>0.119 | 18<br>2.813<br>3.125<br>4.276 |
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                                       | 2016.0<br>44.49<br>T 4                                                                                                         | 2,20<br>156262<br>B 4                                                 | G 0.250                       |
| •                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |                                                                       |                               |
| BIT NUMBER: 5 IADC CODE 517                                                                                                                                                                                                                                                                                                                                                           | HTC J22                                                                                                                        |                                                                       |                               |
| STARTING DEPTH                                                                                                                                                                                                                                                                                                                                                                        | 2016.0<br>8516.00<br>6.6<br>12.25(                                                                                             | 3652.00                                                               |                               |
| NOZZLES. DRILL COLLAR LENGTH, OD, ID. HW DRILL PIPE LENGTH, OD, ID. DRILL PIPE OD, ID. CASING DEPTH, ID. RISER LENGTH, ID. PUMP VOLUMES 1 AND 2. PORE PRESSURE CALC EXPONENT. NORMAL PORE PRESSURE. OVERBURDEN GRADIENT MODIFIER. STRESS RATIO MODIFIER. "d" EXPONENT CORRECTION FACTOR. CUTTINGS DIAMETER, DENSITY                                                                   | 16<br>173.50<br>83.56<br>855.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0                                       | 16<br>8.000<br>5.000<br>5.000<br>12.615<br>21.000<br>0.119            | 18<br>2.813<br>3.125<br>4.276 |
| FINISHING DEPTHCUMULATIVE HOURS, TURNSBIT CONDITION OUT                                                                                                                                                                                                                                                                                                                               | 2170.0<br>20.48<br>T 2                                                                                                         | 78127<br>B 2                                                          | G 0.000                       |

| BIT NUMBER: 5 IADC CODE                                   | 4 | CHRIS RC      | 4              |                |
|-----------------------------------------------------------|---|---------------|----------------|----------------|
| STARTING DEPTH                                            |   | 0.00<br>გ.გ   | 3652.00        |                |
| BIT DIAMETER                                              |   | 14<br>169.44  | 15<br>8.000    | 9 917          |
| DRILL PIPE OD, ID                                         |   | 83.56         | 5.000<br>5.000 | 3.125<br>4 276 |
| LINER DEPTH, TOP, ID                                      |   | 12.615        | 21 000         | 12.250         |
| PUMP VOLUMES 1 AND 2                                      |   | 0.119<br>1.20 | 0.119          |                |
| OVERBURDEN GRADIENT MODIFIER<br>STRESS RATIO MODIFIER     |   | 0.00<br>0.04  |                |                |
| "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY |   | 10.0<br>2.0   | 2.40           |                |
| FINISHING DEPTHCUMULATIVE HOURS, TURNS                    |   | 4.64          | 20046          |                |
| BIT CONDITION OUT                                         |   | T O           |                | G 0.300        |

| BIT NUMBER: 5 IADC CODE                                                           | 4  | CHRIS RC          | 4                |                |
|-----------------------------------------------------------------------------------|----|-------------------|------------------|----------------|
| STARTING DEPTH                                                                    |    | 0.00<br>6.7       | 3652.00          |                |
| BIT DIAMETER                                                                      | ID | 14<br>169,44      | 8,000            | 2.813          |
| DRILL COLLAR LENGTH, OD, ID. HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID       |    | 83.56             | 5.000<br>5.000   | 3.125<br>4.276 |
| LINER DEPTH, TOP, ID<br>CASING ID<br>RISER LENGTH, ID                             |    | 2170.00<br>12.615 | 855.00<br>21.000 | 12.250         |
| PUMP VOLUMES 1 AND 2<br>PORE PRESSURE CALC EXPONENT.<br>NORMAL PORE PRESSURE      |    | 0.119<br>1.20     | 0.119            |                |
| OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR |    | 0.00<br>0.04      |                  |                |
| CUTTINGS DIAMETER, DENSITY                                                        |    | 2.0               | 2.40             |                |
| FINISHING DEPTHCUMULATIVE HOURS, TURNS BIT CONDITION OUT                          |    | 1.88              | 8918<br>B 0      | G 0.350        |

| BIT NUMBER:                  | 6 IADC                  | CODE        | 517 | HTC J22        |         |         |
|------------------------------|-------------------------|-------------|-----|----------------|---------|---------|
| STARTING DEP<br>BIT COST, RI | TH                      |             |     | 2205.5         | 7/50 00 |         |
| TRIP TIME                    |                         |             |     | 7.2            | 3652.00 |         |
| BIT DIAMETER                 |                         |             |     |                |         |         |
| NOZZLES                      |                         | 1 1 1 1 1 1 |     | 16             | 16      | 18      |
| DRILL COLLAR                 | LENGTH, O               | D, ID.      |     | 169.44         | 8,000   | 2.813   |
| HW DRILL PIP                 | E LENGTH,               | on, in      |     | 83.56          | 5.000   | 3.125   |
| DRILL PIPE O                 | D, <u>I</u> D           |             |     |                | 5.000   | 4,276   |
| CASING DEPTH                 | , LD                    |             |     |                |         |         |
| RISER LENGTH                 | , ID.,,,,,              |             |     | 70,00          | 21.000  |         |
| PUMP VOLUMES<br>PORE PRESSUR | I AND Z.,               | CONTENER    |     |                | 0.115   |         |
| NORMAL PORE                  | L DMLC EAR!<br>PDESSHDE | CHAUTHALL   |     | 1.20           |         |         |
| OVERBURDEN G                 | RADIENT MO              | OTETER      |     | ርጋ. ግን<br>በ በበ |         |         |
| STRESS RATIO                 | MODIFIER.               |             |     | 0.00           |         |         |
| "d" EXPONENT                 | CORRECTION              | N FACT      | OR  | 10.0           |         |         |
| CUTTINGS DIA                 |                         |             |     |                | 2.40    |         |
| FINISHING DE                 | РТН                     |             |     | 2445.0         |         |         |
| CUMULATIVE H                 | OURS, TURNS             | 5           |     | 53.12          | 163054  |         |
| BIT CONDITION                | N OUT                   |             |     | 7 3            | R 3     | G 0.000 |
|                              |                         |             |     |                |         |         |

and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

| BIT NUMBER: 7 IADC CODE 517                                                                                                                                                                                                                                                                                                                                                           | HTC J22                                                                                                                                                                                             |                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 2445.0<br>8516.00 3652.00<br>7.5<br>12.250 16 16<br>172.80 8.000<br>83.56 5.000<br>5.000<br>855.00 12.615<br>70.00 21.000<br>0.119 0.119<br>1.20<br>8.4<br>0.00<br>0.00<br>0.04<br>10.0<br>2.3 2.50 | 18<br>2.813<br>3.125<br>4.276 |
| FINISHING DEPTHCUMULATIVE HOURS, TURNSBIT CONDITION OUT                                                                                                                                                                                                                                                                                                                               | 2597.0<br>37.28 119866<br>7 4 B 4                                                                                                                                                                   | G 0.000                       |
| BIT NUMBER: 7 IADC CODE 4                                                                                                                                                                                                                                                                                                                                                             | CHRIS RC4                                                                                                                                                                                           |                               |
| STARTING DEPTH                                                                                                                                                                                                                                                                                                                                                                        | 2597.0<br>0.00 3652.00<br>7.5<br>8.500<br>14 15<br>20.49 6.750                                                                                                                                      | 15<br>2.813                   |
| DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY                                                                            | 168.25 8.000<br>84.75 5.000<br>5.000<br>855.00 12.615<br>70.00 21.000<br>0.119 0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0<br>2.3 2.50                                                             | 2.813<br>3.125<br>4.276       |
| FINISHING DEPTHCUMULATIVE HOURS, TURNSBIT CONDITION OUT                                                                                                                                                                                                                                                                                                                               | 2602.1<br>3.50 18614<br>T 0 B 0                                                                                                                                                                     | G 0.500                       |

| BIT NUMBER: 8 IADC CODE 537                                      | HTC J33                  |                |                |
|------------------------------------------------------------------|--------------------------|----------------|----------------|
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER | 2602.1<br>7774.00<br>7.5 | 3652.00        |                |
| NOZZLES DRILL COLLAR LENGTH, OD, ID                              | 16                       | 16<br>8.000    | 18<br>2.813    |
| HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID                   |                          | 5.000<br>5.000 | 3.125<br>4.276 |
| CASING DEPTH, ID                                                 | 855.00<br>70.00          | 21.000         |                |
| PUMP VOLUMES 1 AND 2                                             | 0.119<br>1.20<br>8.4     | 0.119          |                |
| OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER               | 0.00                     |                |                |
| "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY        | 10.0<br>2.0              | 2.50           |                |
| FINISHING DEPTH                                                  | 2616.7                   |                |                |
| BIT CONDITION OUT                                                | 3.52<br>T 1              | 10553<br>B 5   | G 0.000        |

| BIT NUMBER: 8 IADC CODE 4      | CHRIS RC                       | 3                |         |
|--------------------------------|--------------------------------|------------------|---------|
| STARTING DEPTH                 | 2616.7<br>0.00<br>7.6<br>8.500 | 3652.00          |         |
| BIT DIAMETER                   | 15                             | 1 E;             | 1.4     |
| HW DRILL COLLAR LENGTH, OD, ID |                                | 6.750            |         |
| DRILL COLLAR LENGTH, OD, ID    | 147.76                         |                  |         |
| HW DRILL PIPE LENGTH, OD, ID   |                                | 5.000            |         |
| DRILL PIPE OD, ID              |                                |                  | 4,276   |
| LINER DEPTH, TOP, ID           | 2616.70                        | 855.00           | 12.250  |
| CASING ID                      | 12.615                         |                  |         |
| RISER LENGTH, ID               | 70.00                          | 21.000           |         |
| PUMP VOLUMES 1 AND 2           | 0.119                          | 0.119            |         |
| PORE PRESSURE CALC EXPONENT    | 1.20                           |                  |         |
| NORMAL PORE PRESSURE           | 8.4                            |                  |         |
| OVERBURDEN GRADIENT MODIFIER   | 0.00                           |                  |         |
| STRESS RATIO MODIFIER          | 0.04                           |                  |         |
| "d" EXPONENT CORRECTION FACTOR | 10.0                           |                  |         |
| CUTTINGS DIAMETER, DENSITY     | 2.0                            | 2.50             |         |
| FINISHING DEPTH                | 2635.2                         |                  |         |
| CUMULATIVE HOURS, TURNS        | 2.89                           | 14572            |         |
| BIT CONDITION OUT              | T 0                            | $\mathbf{B} = 0$ | G 0.400 |

| BIT NUMBER: 8                                           | IADC CODE    | 4         | CHRIS. R                       | СЗ               |         |
|---------------------------------------------------------|--------------|-----------|--------------------------------|------------------|---------|
| STARTING DEPTH BIT COST, RIG COS TRIP TIME BIT DIAMETER | T/HOUR.,     | 1 1 1 1 1 | 2635.2<br>0.00<br>7.8<br>8.500 | 3652.00          |         |
| NOZZLES                                                 |              |           | 15                             | 15               | 14      |
| HW DRILL COLLAR L                                       |              |           | 39.05                          | 6,750            | 2.813   |
| DRILL COLLAR LENG                                       | TH, 00, ID   |           | 149.52                         | 8.000            | 2.813   |
| HW DRILL PIPE LEN                                       | GTH, OD, ID. |           | 83.56                          | 5.000            | 3,125   |
| DRILL PIPE OD, ID                                       |              |           |                                | 5.000            | 4.276   |
| LINER DEPTH, TOP,                                       |              |           | 2616.70                        | 855.00           | 12,250  |
| CASING ID                                               |              |           | 12.615                         |                  |         |
| RISER LENGTH, ID.                                       |              | 1 1 1 1 1 | 70.00                          | 21.000           |         |
| PUMP VOLUMES 1 AN                                       | D 2          |           | 0.119                          | 0.115            |         |
| PORE PRESSURE CAL                                       |              |           | 1.20                           |                  |         |
| NORMAL PORE PRESS                                       | URE          | 1 1 1 1   | 8,4                            |                  |         |
| OVERBURDEN GRADIE                                       |              |           | 0.00                           |                  |         |
| STRESS RATIO MODI                                       |              |           | 0.04                           |                  |         |
| "d" EXPONENT CORR                                       |              |           | 10.0                           | en 111 6         |         |
| CUTTINGS DIAMETER                                       | , DENOLII    |           | 2.0                            | 2.50             |         |
| FINISHING DEPTH                                         |              | 1 1 1 1 1 | 2653.0                         |                  |         |
| CUMULATIVE HOURS,                                       |              |           | 6.72                           | 36242            |         |
| BIT CONDITION OUT                                       |              |           | Τ 0                            | $\mathbf{B} = 0$ | G 0.800 |
|                                                         |              |           |                                |                  |         |
|                                                         |              |           |                                |                  |         |
|                                                         |              |           |                                |                  |         |
|                                                         |              |           |                                |                  |         |

| BIT NUMBER: 8 IADC CODE 4                      | CHRIS, R       | C4            |           |
|------------------------------------------------|----------------|---------------|-----------|
| STARTING DEPTH                                 |                |               |           |
| BIT COST, RIG COST/HOUR                        | 0.00           | 3652.00       |           |
| TRIP TIME                                      | 7.6            |               |           |
| BIT DIAMETER                                   | 8.500          |               |           |
| NOZZLES                                        |                | 15            |           |
| HW DRILL COLLAR LENGTH, OD, ID                 |                | 6.750         |           |
| DRILL COLLAR LENGTH, OD, ID                    |                | 8.000         |           |
| HW DRILL PIPE LENGTH, OD, ID                   | 83.56          | 5.000         | 3.125     |
| DRILL PIPE OD, ID                              |                | 5.000         | 4.276     |
| LINER DEPTH, TOP, ID                           | 2616.70        | 855.00        | 12.250    |
| CASING ID                                      | 12.615         |               |           |
| RISER LENGTH, ID                               | 20.00          | 21.000        |           |
| PUMP VOLUMES 1 AND 2                           | 0.119          | 0.119         |           |
| PORE PRESSURE CALC EXPONENT                    | 1.20           |               |           |
| NORMAL PORE PRESSURE                           | 8.4            |               |           |
| OVERBURDEN GRADIENT MODIFIER                   | 0.00           |               |           |
| STRESS RATIO MODIFIER                          | 0.04           |               |           |
| "d" EXPONENT CORRECTION FACTOR                 | 10.0           |               |           |
| CUTTINGS DIAMETER, DENSITY                     |                | 2.50          |           |
| F" T X I T F" I I T X I F" T X F" F" T" T" I I | es ( es a - es |               |           |
| FINISHING DEPTH                                |                | <b>0.4000</b> |           |
| CUMULATIVE HOURS, TURNS                        |                |               | m n / n n |
| BIT CONDITION OUT                              | 1 0            | E 0           | G 0.600   |

| BIT NUMBER: 9 IADC CODE 517                                                                                                                                                                                                                                                                                                                                        | HTC J22                                                                                                                               |                                                                                |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|
| STARTING DEPTH  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 2671,2<br>8516.00<br>7.5<br>12.250<br>16<br>172.80<br>83.56<br>855.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0<br>2.0 | 3652.00<br>16<br>8.000<br>5.000<br>5.000<br>12.615<br>21.000<br>0.119          | 18<br>2.813<br>3.125<br>4.276                    |
| FINISHING DEPTHCUMULATIVE HOURS, TURNSBIT CONDITION OUT                                                                                                                                                                                                                                                                                                            | 2672.0<br>0.09<br>T 2                                                                                                                 | 314<br>B 2                                                                     | G 0.125                                          |
|                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |                                                                                |                                                  |
| BIT NUMBER: 9 IADC CODE 4                                                                                                                                                                                                                                                                                                                                          | RC4                                                                                                                                   |                                                                                |                                                  |
| BIT NUMBER: 9 IADC CODE 4  STARTING DEPTH                                                                                                                                                                                                                                                                                                                          | RC4  2672.0 0.00 7.6 8.500 15 30.03 148.95 83.56  2672.00 12.615 70.00 0.119 1.20 8.4 0.00 0.04 10.0 2.0                              | 3652.00<br>15<br>6.750<br>8.000<br>5.000<br>5.000<br>855.00<br>21.000<br>0.119 | 14<br>2.813<br>2.813<br>3.125<br>4.276<br>12.250 |

| BIT NUMBER: 9 IADC CODE                                                              | 4                                     | CHRIS C-                                                           | 20                               |                                  |
|--------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------|----------------------------------|----------------------------------|
| STARTING DEPTH                                                                       | * * * * * * * * * * * * * * * * * * * | 2690.5<br>0.00<br>7.7<br>8.470<br>14                               | 3652.00<br>14                    | 1.4                              |
| HW DRILL COLLAR LENGTH, OD, DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID |                                       | 39,48<br>148,95<br>83,56                                           | 6.750<br>8.000<br>5.000<br>5.000 | 2.813<br>2.813<br>3.125<br>4.276 |
| LINER DEPTH, TOP, ID  CASING ID                                                      |                                       | 2672.00<br>12.615<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04 | 855.00<br>21.000<br>0.119        | 12.250                           |
| CUTTINGS DIAMETER, DENSITY.                                                          |                                       | ž.o                                                                | 2.50                             |                                  |
| FINISHING DEPTH                                                                      |                                       | 2708.3<br>8.86<br>T 0                                              | 40488<br>B 0                     | G 0.300                          |
| BIT NUMBER; 10 IADC CODE                                                             | 537                                   | НТС ЈЗЗ                                                            |                                  |                                  |
| STARTING DEPTH                                                                       |                                       | 2708.3<br>7774.00<br>8.0<br>12.250                                 | 3652,00                          | 4.0                              |
| NOZZLES                                                                              | , , , , , , , , , , , , , , , , , , , | 16<br>172.80<br>83.56                                              | 16<br>8.000<br>5.000<br>5.000    | 18<br>2.813<br>3.125<br>4.276    |
| CASING DEPTH, ID                                                                     | · · · · · · · · · · · · · · · · · · · | 855.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04            | 12.615<br>21.000<br>0.119        | 7 F km. 7 X.5                    |
| CUTTINGS DIAMETER, DENSITY.                                                          |                                       | 2.0                                                                | 2.50                             |                                  |
| FINISHING DEPTH                                                                      |                                       | 2776.3<br>15.72<br>T 3                                             | 48386<br>B 4                     | G 0.125                          |

| BIT NUMBER: 11 IADC CODE 537                                                  | нтс јзз               |                                    | 5.      |
|-------------------------------------------------------------------------------|-----------------------|------------------------------------|---------|
| STARTING DEPTHBIT COST, RIG COST/HOURTRIP TIMEBIT DIAMETER                    | 8.0                   | 3652.00                            |         |
| NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID            | 15                    | 8.000                              | 2.813   |
| DRILL PIPE OD, ID                                                             |                       | 5.000<br>12.615<br>21.000<br>0.119 | 4.276   |
| PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER | 1,20<br>8,4<br>0,00   | 7,2,7                              |         |
| STRESS RATIO MODIFIER                                                         |                       | 2.50                               |         |
| FINISHING DEPTH                                                               | 2806.8<br>7.68<br>T 1 | 22806<br>B 1                       | G 0.000 |
|                                                                               |                       |                                    |         |

| BIT NUMBER: 11         | IADC CODE      | 4         | CHRIS R | C6     |        |     |
|------------------------|----------------|-----------|---------|--------|--------|-----|
| STARTING DEPTH.        |                |           |         |        |        |     |
| BIT COST, RIG CO       |                |           |         |        |        |     |
| TRIP TIME BIT DIAMETER |                |           |         |        |        |     |
| NOZZLES                |                |           |         |        | 15     |     |
| DRILL COLLAR LEI       |                |           |         |        |        |     |
| HW DRILL PIPE LI       | ENGTH, OD, ID. |           |         | 5.000  |        |     |
| DRILL PIPE OD,         | ID             | 1 1 1 1 1 |         | 5.000  | 4.276  |     |
| LINER DEPTH, TO        | P, ID          |           | 2806.80 | 855.00 | 12.250 |     |
| CASING ID              |                |           | 12.615  |        |        |     |
| RISER LENGTH, II       | D              |           | 70.00   | 21.000 |        |     |
| PUMP VOLUMES 1         |                |           |         | 0.119  |        |     |
| PORE PRESSURE CA       | ALC EXPONENT   |           | 1,20    |        |        |     |
| NORMAL PORE PRES       | SSURE          |           | 8.4     |        |        |     |
| OVERBURDEN GRAD        | IENT MODIFIER. |           | 0.00    |        |        |     |
| STRESS RATIO MOI       | DIFIER         |           | 0.04    |        |        |     |
| "d" EXPONENT COI       | RRECTION FACTO | R         | 10.0    |        |        |     |
| CUTTINGS DIAMET        | ER, DENSITY    |           | 2.2     | 2.50   |        |     |
| FINISHING DEPTH        |                |           | 2814.0  |        |        |     |
| CUMULATIVE HOURS       |                |           |         |        |        |     |
| BIT CONDITION OF       |                |           |         |        | G 0.90 | 0.0 |

| BIT NUMBER: 12 IADC CODE 617                                                                                                                                                                                                                        | нтс ј44                                                                                                      |                                                                                 |                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------|
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT | 2814.0<br>6844.00<br>8.3<br>12.250<br>15<br>173.54<br>83.56<br>855.00<br>70.00<br>0.119<br>1.20              | 2813.2<br>3652.00<br>16<br>8.000<br>5.000<br>5.000<br>12.615<br>21.008<br>0.119 | 16<br>2.813<br>3.125<br>4.276 |
| NORMAL PORE PRESSURE                                                                                                                                                                                                                                | 8.5<br>0.00<br>0.04<br>10.0<br>2.0                                                                           | 2.50                                                                            |                               |
| FINISHING DEPTH                                                                                                                                                                                                                                     | 2960.2<br>33.1<br>T 5                                                                                        | 93198<br>8 5                                                                    | G 0,000                       |
| BIT NUMBER: 13 IADC CODE 316                                                                                                                                                                                                                        | HTC J7                                                                                                       |                                                                                 |                               |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 2960.2                                                                                                       | 2958.8                                                                          |                               |
| BIT COST, RIG COST/HOUR                                                                                                                                                                                                                             | 1494.00<br>8.3                                                                                               | 3652.00                                                                         |                               |
| TRIP TIME                                                                                                                                                                                                                                           | 1494.00<br>8.3<br>8.500<br>14<br>232.74<br>83.56                                                             | 3652.00<br>14<br>6.250<br>5.000<br>5.000                                        | 14<br>2.813<br>3.125<br>4.276 |
| TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER      | 1494.00<br>8.3<br>8.500<br>14<br>232.74<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04 | 3652.00<br>14<br>6.250<br>5.000                                                 | 2.813<br>3.125                |
| TRIP TIME                                                                                                                                                                                                                                           | 1494.00<br>8.3<br>8.500<br>14<br>232.74<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00         | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000                     | 2.813<br>3.125                |

| BIT NUMBER: 14 IADC CODE 537 | нтс јзз                                                                              |                                                                                |                               |
|------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|
| STARTING DEPTH, TVD          | 2972.3 4503.00 8.5 8.500 14 238.88 83.56 2943.00 70.00 0.119 1.20 8.4 0.00 0.04 10.0 | 2970.8<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 14<br>2.813<br>3.125<br>4.276 |
| CUTTINGS DIAMETER, DENSITY   | 2.2                                                                                  | 2.55                                                                           |                               |
| FINISHING DEPTH              | 3045.8<br>10.8<br>T 8                                                                | 31858<br>B 6                                                                   | G 0.625                       |
| BIT NUMBER: 15 IADC CODE 537 | HTC J33                                                                              |                                                                                |                               |
| STARTING DEPTH, TVD          | 3045.8<br>4503.00<br>8.6<br>8.500                                                    | 3043.8<br>3652.00                                                              |                               |
| NOZZLES                      | 14<br>258.90<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00            | 14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119                      | 14<br>2.813<br>3.125<br>4.276 |
| STRESS RATIO MODIFIER        | 0.04<br>10.0<br>2.2                                                                  | 2,50                                                                           |                               |
| FINISHING DEPTH              | 3091.6<br>10.3<br>T8                                                                 | 30946<br>B 6                                                                   | G 0.125                       |

| BIT NUMBER: 16 IADC CODE 617                                                                                                                                                                                                                                                                                                                                                        | нтс ј44                                                                                                                            |                                                                       |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------|
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3091.6<br>4347.00<br>8.6<br>8.500                                                                                                  | 3089.2<br>3652.00                                                     |                      |
| NOZZLES                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                 | 14                                                                    | 14<br>2.813          |
| DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID                                                                                                                                                                                                                                                                                                                           | 258.90<br>83.56                                                                                                                    | 6,250<br>5,000                                                        | 3.125                |
| DRILL PIPE OD, ID                                                                                                                                                                                                                                                                                                                                                                   | 2943.00                                                                                                                            | 5.000<br>8.681                                                        | 4.276                |
| CASING DEPTH, ID                                                                                                                                                                                                                                                                                                                                                                    | 70.00                                                                                                                              | 21.000                                                                |                      |
| PUMP VOLUMES 1 AND 2                                                                                                                                                                                                                                                                                                                                                                | 0.119<br>1.20                                                                                                                      | 0.119                                                                 |                      |
| PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE                                                                                                                                                                                                                                                                                                                                    | 8.4                                                                                                                                |                                                                       |                      |
| OVERBURDEN GRADIENT MODIFIER                                                                                                                                                                                                                                                                                                                                                        | 0.00<br>0.04                                                                                                                       |                                                                       |                      |
| STRESS RATIO MODIFIER                                                                                                                                                                                                                                                                                                                                                               | 10.0                                                                                                                               |                                                                       |                      |
| CUTTINGS DIAMETER, DENSITY                                                                                                                                                                                                                                                                                                                                                          | 2.2                                                                                                                                | 2.55                                                                  |                      |
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                                     | 3116.1                                                                                                                             |                                                                       |                      |
| CUMULATIVE HOURS, TURNS                                                                                                                                                                                                                                                                                                                                                             | 11.0<br>T 2                                                                                                                        | 35427<br>B 2                                                          | G 0.000              |
| ·                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |                                                                       |                      |
| BIT NUMBER: 16 IADC CODE 4                                                                                                                                                                                                                                                                                                                                                          | CHRIS C-                                                                                                                           | 20                                                                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    |                                                                       |                      |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00                                                                                                                     | 20<br>3113.5<br>3652.00                                               |                      |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6                                                                                                              | 3113.5                                                                |                      |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500<br>14                                                                                               | 3113.5<br>3652.00                                                     | 14                   |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500                                                                                                     | 3113.5<br>3652.00                                                     | 14<br>2.813<br>3.125 |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70<br>83.56                                                                            | 3113.5<br>3652.00<br>14<br>6.250<br>5.000<br>5.000                    | 2.813                |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70                                                                                     | 3113.5<br>3652.00<br>14<br>6.250<br>5.000                             | 2.813<br>3.125       |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119                                               | 3113.5<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681           | 2.813<br>3.125       |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00                                                        | 3113.5<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000 | 2.813<br>3.125       |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00                        | 3113.5<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000 | 2.813<br>3.125       |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE                                                                                                                              | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4                                | 3113.5<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000 | 2.813<br>3.125       |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04                | 3113.5<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000 | 2.813<br>3.125       |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY  FINISHING DEPTH | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0<br>2.2 | 3113.5<br>3652.00<br>14<br>6.250<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.125       |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                 | 3116.1<br>0.00<br>8.6<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0        | 3113.5<br>3652.00<br>14<br>6.250<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.125       |

| BIT NUMBER: 17 IADC CODE 617                                                                                                                                                                                                                                                                                                                                            | НТС Ј44                                                                                                                                |                                                                                |                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                     | 3117.4<br>4347.00<br>8.7<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0         | 3114.8<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 14<br>2,813<br>3,250<br>4,276 |
| CUTTINGS DIAMETER, DENSITY                                                                                                                                                                                                                                                                                                                                              | 2.2                                                                                                                                    | 2.55                                                                           |                               |
| FINISHING DEPTH                                                                                                                                                                                                                                                                                                                                                         | 3143.4<br>7.8<br>T.2                                                                                                                   | 23244<br>B 2                                                                   | G 0.000                       |
|                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                |                               |
| BIT NUMBER: 17 IADC CODE 4                                                                                                                                                                                                                                                                                                                                              | CHRIS C-                                                                                                                               | 23                                                                             |                               |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                     | 3143.4<br>19000.00<br>8.7                                                                                                              | 23<br>3141.0<br>3652.00                                                        |                               |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                     | 3143.4<br>19000.00                                                                                                                     | 3141.0<br>3652.00<br>14<br>6.250<br>5.000                                      | 14<br>2.813<br>3.250<br>4.276 |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                     | 3143.4<br>19000.00<br>8.7<br>8.500<br>14<br>252.07<br>83.56<br>2943.00<br>70.00<br>0.119                                               | 3141.0<br>3652.00<br>14<br>6.250                                               | 2.813                         |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                     | 3143.4<br>19000.00<br>8.7<br>8.500<br>14<br>252.07<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>0.0<br>0.00                        | 3141.0<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250                |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                     | 3143.4<br>19000.00<br>8.7<br>8.500<br>14<br>252.07<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>0.0                                | 3141.0<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250                |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 3143.4<br>19000.00<br>8.7<br>8.500<br>14<br>252.07<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>0.0<br>0.00<br>0.04<br>10.0<br>2.2 | 3141.0<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.250                |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                     | 3143.4<br>19000.00<br>8.7<br>8.500<br>14<br>252.07<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>0.0<br>0.00<br>0.04<br>10.0        | 3141.0<br>3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.250                |

| BIT NUMBER: 18 IADC CODE 637                                                                                                                                                                                                                        | HTC J55                                                                                                                        |                                                                      |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------|
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3145.4<br>4350.00<br>8.7<br>8.500                                                                                              | 31 <b>4</b> 2.8<br>3652.00                                           |                |
| NOZZLES                                                                                                                                                                                                                                             | 14                                                                                                                             | 14                                                                   | 1.4            |
| DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID                                                                                                                                                                                           | 258.70<br>83.56                                                                                                                | 6.250<br>5.000                                                       | 2.813<br>3.250 |
| DRILL PIPE OD, ID                                                                                                                                                                                                                                   |                                                                                                                                | 5.000                                                                | 4.276          |
| CASING DEPTH, ID                                                                                                                                                                                                                                    | 2943.00                                                                                                                        | 8.681                                                                |                |
| RISER LENGTH, ID                                                                                                                                                                                                                                    | 70.00<br>0.119                                                                                                                 | 21.000<br>0.119                                                      |                |
| PORE PRESSURE CALC EXPONENT                                                                                                                                                                                                                         | 1,20                                                                                                                           | 0.117                                                                |                |
| NORMAL PORE PRESSURE                                                                                                                                                                                                                                | 8.4                                                                                                                            |                                                                      |                |
| OVERBURDEN GRADIENT MODIFIER                                                                                                                                                                                                                        | 0,00                                                                                                                           |                                                                      |                |
| STRESS RATIO MODIFIER                                                                                                                                                                                                                               | 0.04<br>10.0                                                                                                                   |                                                                      |                |
| CUTTINGS DIAMETER, DENSITY                                                                                                                                                                                                                          | 2.0                                                                                                                            | 2.55                                                                 |                |
|                                                                                                                                                                                                                                                     | ,                                                                                                                              |                                                                      |                |
| FINISHING DEPTH                                                                                                                                                                                                                                     | 3203.5                                                                                                                         |                                                                      |                |
| CUMULATIVE HOURS, TURNS                                                                                                                                                                                                                             | 23.1                                                                                                                           | 70096                                                                |                |
| BIT CONDITION OUT                                                                                                                                                                                                                                   | T 8                                                                                                                            | B 4                                                                  | G 0.000        |
| BIT NUMBER: 19 IADC CODE 617                                                                                                                                                                                                                        | HTC TAA                                                                                                                        |                                                                      |                |
| PO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                            | 1"1 1 1 1 ** **                                                                                                                |                                                                      |                |
|                                                                                                                                                                                                                                                     | HTC J44                                                                                                                        |                                                                      |                |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5                                                                                                                         | 3200.4                                                               |                |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00                                                                                                              | 3200.4<br>3652.00                                                    |                |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00<br>8.8                                                                                                       |                                                                      |                |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00<br>8.8<br>8.500                                                                                              | 3652.00<br>14                                                        | 15             |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70                                                                              | 3652.00<br>14<br>6.250                                               | 2.813          |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID                                                                                                           | 3203.5<br>4347.00<br>8.8<br>8.500                                                                                              | 3652.00<br>14<br>6.250<br>5.000                                      | 2.813<br>3.250 |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70                                                                              | 3652.00<br>14<br>6.250                                               | 2.813          |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID                                                    | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00                                                 | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250 |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2                              | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119                                        | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681                    | 2.813<br>3.250 |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20                                | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250 |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2                              | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119                                        | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250 |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04         | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250 |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0 | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.250 |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04         | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250 |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5<br>4347.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04<br>10.0 | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.250 |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                 | 3203.5 4347.00 8.8 8.500 14 258.70 83.56 2943.00 70.00 0.119 1.20 8.4 0.00 0.04 10.0 2.0                                       | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.250 |

| BIT NUMBER: 20 IADC CODE 637                                                                                                                                                                                                                                                                                                                                                               | HTC J55                                                                                                                |                                                                      |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3225.9<br>4350.00<br>8.8<br>8.500                                                                                      | 3223.2<br>3652.00                                                    |                        |
| NOZZLESDRILL COLLAR LENGTH, OD, ID                                                                                                                                                                                                                                                                                                                                                         | 14<br>258,70                                                                                                           | 1 <b>4</b><br>6.250                                                  | 15<br>2.813            |
| HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID                                                                                                                                                                                                                                                                                                                                             | 83.56                                                                                                                  | 5.000<br>5.000                                                       | 3.25 <b>0</b><br>4.276 |
| CASING DEPTH, ID                                                                                                                                                                                                                                                                                                                                                                           | 2943.00<br>70.00                                                                                                       | 8.681<br>21.000                                                      |                        |
| PUMP VOLUMES 1 AND 2                                                                                                                                                                                                                                                                                                                                                                       | 0.119                                                                                                                  | 0.119                                                                |                        |
| NORMAL PORE PRESSURE                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                    |                                                                      |                        |
| STRESS RATIO MODIFIER                                                                                                                                                                                                                                                                                                                                                                      | 0.04<br>10.0                                                                                                           |                                                                      |                        |
| CUTTINGS DIAMETER, DENSITY                                                                                                                                                                                                                                                                                                                                                                 | 2.0                                                                                                                    | 2.60                                                                 |                        |
| FINISHING DEPTH,                                                                                                                                                                                                                                                                                                                                                                           | 3237.6                                                                                                                 |                                                                      |                        |
| CUMULATIVE HOURS, TURNS                                                                                                                                                                                                                                                                                                                                                                    | 10.0<br>T 1                                                                                                            | 31327<br>B 1                                                         | G 0.000                |
|                                                                                                                                                                                                                                                                                                                                                                                            | , .                                                                                                                    | <u>.</u>                                                             | W W : U U U            |
|                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        |                                                                      |                        |
| BIT NUMBER: 21 IADC CODE 517                                                                                                                                                                                                                                                                                                                                                               | HTC J22                                                                                                                |                                                                      |                        |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6                                                                                                                 | 3234.8<br>3652.00                                                    |                        |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6<br>4139.00<br>8.8                                                                                               | 3234.8<br>3652.00                                                    |                        |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6<br>4139.00<br>8.8<br>8.500                                                                                      | 3652.00<br>14                                                        | 15<br>> 017            |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6<br>4139.00<br>8.8<br>8.500                                                                                      | 3652.00<br>14<br>6.250<br>5.000                                      | 2.813<br>3.250         |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6<br>4139.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56                                                             | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681                    | 2.813                  |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6<br>4139.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119                                | 3652.00<br>14<br>6.250<br>5.000<br>5.000                             | 2.813<br>3.250         |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE                                                                                                                  | 3237.6<br>4139.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4                 | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250         |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6<br>4139.00<br>8.8<br>8.500<br>14<br>258.70<br>83.56<br>2943.00<br>70.00<br>0.119<br>1.20<br>8.4<br>0.00<br>0.04 | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250         |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6 4139.00 8.8 8.500 14 258.70 83.56 2943.00 70.00 0.119 1.20 8.4 0.00                                             | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000          | 2.813<br>3.250         |
| STARTING DEPTH, TVD                                                                                                                                                                                                                                                                                                                                                                        | 3237.6 4139.00 8.8 8.500 14 258.70 83.56 2943.00 70.00 0.119 1.20 8.4 0.00 0.04 10.0                                   | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.250         |
| STARTING DEPTH, TVD  BIT COST, RIG COST/HOUR  TRIP TIME  BIT DIAMETER  NOZZLES  DRILL COLLAR LENGTH, OD, ID  HW DRILL PIPE LENGTH, OD, ID  DRILL PIPE OD, ID  CASING DEPTH, ID  RISER LENGTH, ID  PUMP VOLUMES 1 AND 2  PORE PRESSURE CALC EXPONENT  NORMAL PORE PRESSURE  OVERBURDEN GRADIENT MODIFIER  STRESS RATIO MODIFIER  "d" EXPONENT CORRECTION FACTOR  CUTTINGS DIAMETER, DENSITY | 3237.6 4139.00 8.8 8.500 14 258.70 83.56 2943.00 70.00 0.119 1.20 8.4 0.00 0.04 10.0 2.0                               | 3652.00<br>14<br>6.250<br>5.000<br>5.000<br>8.681<br>21.000<br>0.119 | 2.813<br>3.250         |

A Committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the committee of the comm

### (b). HYDRAULIC ANALYSIS

Data listed from the tape every 100m for each bit run.

DEPTH. . . . . . . Metres

FLOW RATE. . . . . . Rate of mud flow into the well, in gallons per minute.

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which

the flow becomes turbulent

SLIP VELOCITY. . . . The rate of slip of cuttings in the

annulus under laminar flow

ASCENT VELOCITY. . . The rate of ascent of cuttings in

the annulus under laminar flow

PRESSURE UNITS . . . Pounds per square inch

IMPACT FORCE . . . . The impact force at the bit, in foot-pounds per second squared.

H.H.P. . . . . . . . Hydraulic horsepower at the bit

JET VELOCITY . . . . The velocity of mud through the

bit nozzles, in metres per second.

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 100.0 AND TVD 100.0

SPM 1 72 SPM 2 74 FLOW RATE 726

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE             | VOL.Z<br>UNIT           | VOL.           | ANN<br>VEL  | CRIT<br>VEL | TYPE OF FLOW                        | SLIP A   | SCEND<br>VEL | PRESSURE<br>DROP  |
|-----------------------------|-------------------------|----------------|-------------|-------------|-------------------------------------|----------|--------------|-------------------|
| HWDC/OH<br>DC/OH<br>HWDP/OH | 1.851<br>1.950<br>2.074 | 42<br>77<br>78 | 9<br>9<br>8 | Ö           | TURBULENT<br>TURBULENT<br>TURBULENT |          |              | 0.0<br>0.0<br>0.0 |
| TOTAL                       | VOLUME                  | 197            |             |             | TOTAL                               | PRESSURE | DROP         | 0.0               |

LAG: 11.4 MINUTES 818 STROKES #1 AND 841 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 492.8 HHP 209 IMPACT FORCE 818 % SURFACE PRESSURE 112.0 HHP/sqin 0.39 JET VELOCITY 77

### PRESSURE BREAKDOWN:

SURFACE 32.4 STRING 107.8 BIT 492.8 ANNULUS 0.0

TOTAL 632.9 PUMP PRESSURE 440.1 % DIFFERENCE 43.8

#### BOTTOM HOLE PRESSURES:

|                                                | DENSITY     |                      | UNITS |
|------------------------------------------------|-------------|----------------------|-------|
| 1 page 1 pag and a pag and 1 and 1 and 1 and 1 | WEIGHT 8.60 |                      |       |
| CIRCULATING:                                   | ECD 8.60    | CIRCULATING PRESSURE | 146.7 |
| PULLING OUT: TRIP                              | MARGIN 0.00 | ESTIMATED SWAB       | 0.0   |
| EFFECTIVE MUD                                  | WEIGHT 8.60 | BOTTOM HOLE PRESSURE | 146.7 |

man manager to the miles

HYDRAULICS ANALYSIS PROGRAM

#### HYDRAULICS CALCULATIONS AT DEPTH 200.0 AND TVD 200.0

SPM 1 87 SPM 2 105 FLOW RATE 959

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| HWDC/OH         | 1.851        | 42   | 12         | 0           | TURBULENT       |             |               | 0.0              |
| DCZOH           | 1.950        | 77   | 12         | 0           | TURBULENT       |             |               | 0.0              |
| HWDP/OH         | 2.074        | 173  | 11         | 0           | TURBULENT       |             |               | 0.0              |
| DPZOH           | 2.074        | 113  | 11         | 0           | TURBULENT       |             |               | 0.0              |
| TOTAL           | VOLUME       | 405  |            |             | TOTAL           | PRESSUR     | E DROP        | 0.0              |

LAG: 17.7 MINUTES 1538 STROKES #1 AND 1864 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 860.1 HHP 481 IMPACT FORCE 1428 % SURFACE PRESSURE 71.1 HHP/sqin 0.91 JET VELOCITY 102

#### PRESSURE BREAKDOWN:

SURFACE 53.4 STRING 316.6 BIT 860.1 ANNULUS 0.0

TOTAL 1230.2 PUMP PRESSURE 1210.1 % DIFFERENCE 1.7

### BOTTOM HOLE PRESSURES:

|                  |         | DE    | NSITY |              | þ        | PRESSURE |  |
|------------------|---------|-------|-------|--------------|----------|----------|--|
|                  |         |       | UNITS |              |          | UNITS    |  |
| NOT CIRCULATING: | MUD WE  | EIGHT | 8,60  | HYDROSTATIC  | PRESSURE | 293.4    |  |
| CIRCULATING:     |         | ECD   | 8.60  | CIRCULATING  | PRESSURE | 293.5    |  |
| PULLING OUT: TF  | RIP MA  | ARGIN | 0.00  | ESTIMATED SU | JAB      | 0.0      |  |
| FFFECTIVE A      | ALID ME | EIGHT | 8.60  | BOTTOM HOLE  | PRESSURE | 293.4    |  |

HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 300.0 AND TVD 300.0

SPM 1 50 SPM 2 50 FLOW RATE 499

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| HWDC/OH         | 0.673        | 15   | 18         | 1           | TURBULENT       |             |               | 0.0              |
| DC/OH           | 0.772        | 66   | 15         | 1           | TURBULENT       |             |               | 0.0              |
| DC/CSG          | 0.961        | 35   | 12         | 1           | TURBULENT       |             |               | 0.0              |
| HWDP/CSG        | 1.085        | 91   | 11         | 1           | TURBULENT       |             |               | 0.0              |
| DP/CSG          | 1.085        | 5    | 11         | 1           | TURBULENT       |             |               | 0.0              |
| DP/RIS          | 1.325        | 90   | 9          | 0           | TURBULENT       |             |               | 0.0              |
| TOTAL           | VOLUME       | 302  |            |             | TOTAL           | PRESSU      | E DROP        | 0.1              |

LAG: 25.4 MINUTES 1278 STROKES #1 AND 1257 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 354.9 HHP 103 IMPACT FORCE 477 % SURFACE PRESSURE 50.0 HHP/sqin 0.43 JET VELOCITY 65

### PRESSURE BREAKDOWN:

SURFACE 16.5 STRING 139.2 BIT 354.9 ANNULUS 0.1

TOTAL 510.7 PUMP PRESSURE 710.0 % DIFFERENCE 28.1

#### **BOTTOM HOLE PRESSURES:**

|                      | D      | ENSITY<br>UNITS | भ दा                 | RESSURE<br>UNITS |
|----------------------|--------|-----------------|----------------------|------------------|
| NOT CIRCULATING: MUD | WEIGHT | 8.60            | HYDROSTATIC PRESSURE | 440.2            |
| CIRCULATING:         | ECD    | 8.60            | CIRCULATING PRESSURE | 440.2            |
| PULLING OUT: TRIP    | MARGIN | 0.00            | ESTIMATED SWAB       | 0.1              |
| EFFECTIVE MUD        | WEIGHT | 8.60            | BOTTOM HOLE PRESSURE | 440.0            |

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

SPM 1 95 SPM 2 94 FLOW RATE 945

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| HWDC/OH         | 0.673         | 15   | 33         | 85          | LAMINAR         | 1           | 33            | 0.2              |
| DC/OH           | 0.772         | 94   | 29         | 83          | LAMINAR         | Ö           | 29            | 0.7              |
| HWDP/OH         | 0.896         | 57   | 25         | 81          | LAMINAR         | 0           | 25            | 0.3              |
| HWDP/CSG        | 1.085         | 22   | 21         | 81          | LAMINAR         | 0           | 21            | 0.1              |
| DP/CSG          | 1.085         | 114  | 21         | 81          | LAMINAR         | 0           | 21            | 0.3              |
| DP/RIS          | 1.325         | 90   | 17         | 8.0         | L.AMINAR        | 0           | 17            | 0.2              |
| TOTAL           | VOLUME        | 391  |            |             | TOTAL.          | PRESSUR     | E DROP        | 1,8              |

LAG: 17.4 MINUTES 1645 STROKES #1 AND 1643 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1301.7 HHP 718 IMPACT FORCE 1750 % SURFACE PRESSURE 55.1 HHP/sqin 2.98 JET VELOCITY 124

PRESSURE BREAKDOWN:

SURFACE 66.0 STRING 595.3 BIT 1301.7

ANNULUS

TOTAL 1964.8 PUMP PRESSURE 2362.4 % DIFFERENCE 16.8

BOTTOM HOLE PRESSURES:

1.8

UNITS UNITS NOT CIRCULATING: HYDROSTATIC PRESSURE MUD WEIGHT 8.80 600.5 CIRCULATING: ECD 8.83 CIRCULATING PRESSURE 602.3 TRIP MARGIN PULLING OUT: 0.05 ESTIMATED SWAB 3.5 EFFECTIVE MUD WEIGHT 8.75 BOTTOM HOLE PRESSURE 597.1

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

SPM 1 94 SPM 2 95 FLOW RATE 942

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP 6<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|---------------|------------------|
| HWDC/OH         | 0.673        | 15   | 33         | 84          | LAMINAR         | 1             | 33            | 0.2              |
| DC/OH           | 0.772        | 94   | 29         | 82          | LAMINAR         | ö             | 29            | 0.7              |
| HWDP/OH         | 0.896        | 75   | 25         | 8.0         | LAMINAR         | Ü             | 25            | 0.3              |
| DP/OH           | 0.896        | 72   | 25         | 80          | LAMINAR         | Ö             | 25            | 0.3              |
| DP/CSG          | 1.085        | 136  | 21         | 80          | LAMINAR         | ő             | 20            | 0.4              |
| DP/RIS          | 1.325        | 90   | 17         | 79          | LAMINAR         | Ö             | 17            | 0 . z:           |
| TOTAL           | _ VOLUME     | 481  |            |             | TOTAL           | PRESSURE      | DROP          | 2.2              |

LAG: 21.4 MINUTES 2013 STROKES #1 AND 2028 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1324.2 HHP 728 IMPACT FORCE 1781 % SURFACE PRESSURE 54.6 HHP/sqin 3.03 JET VELOCITY 123

PRESSURE BREAKDOWN:

SURFACE 66.9 STRING 641.8 BIT 1324.2 ANNULUS 2.2

TOTAL 2035.1 PUMP PRESSURE 2423.6 % DIFFERENCE 16.0

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: HYDROSTATIC PRESSURE MUD WEIGHT 9.00 767.7 CIRCULATING: ECD 9.03 CIRCULATING PRESSURE 769.9 PULLING OUT: TRIP MARGIN ESTIMATED SWAB 0.05 4.4 EFFECTIVE MUD WEIGHT 8.95 BOTTOM HOLE PRESSURE 763.4

The state of the second of the second second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second

CORE LAB \*\*\*\*\*\*\*\*\*

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

SPM 1 94 SPM 2 95 FLOW RATE 943

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE                                          | VOL/<br>UNIT                              | VOL.                               | ANN<br>VEL                       | CRIT<br>VEL                      | TYPE OF<br>FLOW                                     | 500 Inc. 35 3    | ASCEND                            | PRESSURE                                |
|----------------------------------------------------------|-------------------------------------------|------------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------|------------------|-----------------------------------|-----------------------------------------|
| HWDC/OH<br>DC/OH<br>HWDP/OH<br>DP/OH<br>DP/CSG<br>DP/RIS | 0.673<br>0.772<br>0.896<br>0.896<br>1.085 | 15<br>94<br>75<br>161<br>136<br>90 | 33<br>29<br>25<br>25<br>21<br>17 | 80<br>77<br>74<br>74<br>73<br>71 | LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR | 0<br>0<br>0<br>0 | VEL<br>33<br>29<br>25<br>25<br>21 | DROP<br>0.2<br>0.7<br>0.3<br>0.7<br>0.4 |
| TOTAL<br>LAG: 25.4                                       | VOLUME<br>MINUTES                         | 570                                |                                  |                                  | TOTAL                                               |                  | 17<br>DROP                        | 0.1<br>2.3                              |
|                                                          |                                           | 2384                               | STROKEC                          | 41-1 A 1 195                     |                                                     |                  |                                   |                                         |

LAG: 25.4 MINUTES 2384 STROKES #1 AND 2410 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1342.3 % SURFACE PRESSURE 53.8 HHP 739 IMPACT FORCE HHP/sqin 3.07 1805 JET VELOCITY 123

PRESSURE BREAKDOWN:

SURFACE 74.9 STRING 761,9 BIT 1342.3 ANNULUS

2.3 TOTAL 2181,5 PUMP PRESSURE 2494.8 % DIFFERENCE 12.6

|                   | I                                 | ENSITY<br>UNITS |                                                                                        | PRESSURE |
|-------------------|-----------------------------------|-----------------|----------------------------------------------------------------------------------------|----------|
| PULLING OUT: TRIP | WEIGHT<br>ECD<br>MARGIN<br>WEIGHT | 9.12            | HYDROSTATIC PRESSURE<br>CIRCULATING PRESSURE<br>ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE | 933.8    |

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0

SPM 1 94 SPM 2 94 FLOW RATE 937

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| HWDC/OH         | 0.673        | 15   | 33         | 120         | LAMINAR         | 0           | 33            | 0.4              |
| DCZOH           | 0.772        | 94   | 29         | 119         | LAMINAR         | 0           | 29            | 1.5              |
| HWDP/OH         | 0.896        | 75   | 25         | 118         | LAMINAR         | 0           | 25            | 0.7              |
| DP/OH           | 0.896        | 251  | 25         | 118         | LAMINAR         | 0           | 25            | 2.3              |
| DP/CSG          | 1.085        | 136  | 21         | 118         | LAMINAR         | 0           | 20            | 0.8              |
| DP/RIS          | 1.325        | 90   | 17         | 117         | LAMINAR         | 0           | 17            | 0.4              |
| TOTAL           | _ VOLUME     | 660  |            |             | TOTAL. I        | PRESSUE     | RE DROP       | 6.1              |

LAG: 29.6 MINUTES 2773 STROKES #1 AND 2774 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1308.2 HHP 715 IMPACT FORCE 1759 % SURFACE PRESSURE 52.6 HHP/sqin 2.97 JET VELOCITY 123

### PRESSURE BREAKDOWN:

SURFACE 70.0 STRING 753.1 BIT 1308.2 ANNULUS 6.1

TOTAL 2137.5 PUMP PRESSURE 2488.7 % DIFFERENCE 14.1

### BOTTOM HOLE PRESSURES:

|                         | Di                   | ENSITY<br>UNITS | Ь                                         | RESSURE<br>UNITS |
|-------------------------|----------------------|-----------------|-------------------------------------------|------------------|
| CIRCULATING:            | <br>WEIGHT<br>ECD    | 9.00<br>9.05    | HYDROSTATIC PRESSURE CIRCULATING PRESSURE | 1074.8<br>1080.9 |
| PULLING OUT: TEFFECTIVE | <br>MARGIN<br>WEIGHT | 0.10<br>8.90    | ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE    | 12.2<br>1062.6   |

A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TVD 800.0

SPM 1 94 SPM 2 93 FLOW RATE 936

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP 4<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|---------------|------------------|
| HWDC/OH         | 0.673        | 15   | 33         | 120         | LAMINAR         | 0             | 33            | 0.4              |
| DC/OH           | 0.772        | 94   | 29         | 119         | LAMINAR         | 0             | 29            | 1.5              |
| HWDP/OH         | 0.896        | 75   | 25         | 118         | LAMINAR         | 0             | 25            | 0.7              |
| DP/OH           | 0.896        | 340  | 25         | 118         | LAMINAR         | Ö             | 25            | 3.2:             |
| DP/CSG          | 1.085        | 136  | 21         | 118         | LAMINAR         | ő             | 20            | 0.8              |
| DP/RIS          | 1.325        | 90   | 17         | 117         | LAMINAR         | ő             | 17            | 0,4              |
| TOTAL           | . VOLUME     | 750  |            |             | TOTAL.          | PRESSURE      | nona :        | 6.9              |

LAG: 33.6 MINUTES 3169 STROKES #1 AND 3130 STROKES #2

# BIT HYDRAULICS:

PRESSURE DROP 1306.2 HHP 713 IMPACT FORCE 1756 % SURFACE PRESSURE 51.1 HHP/sqin 2.97 JET VELOCITY 122

# PRESSURE BREAKDOWN:

SURFACE 69.9 STRING 792.4 BIT 1306.2 ANNULUS 6.9

TOTAL 2175.5 PUMP PRESSURE 2554.3 % DIFFERENCE 14.8

|                                      | DENSITY<br>UNITS                        | PRESSUR<br>UNIT                                       | •••• |
|--------------------------------------|-----------------------------------------|-------------------------------------------------------|------|
| NOT CIRCULATING: MUD<br>CIRCULATING: | WEIGHT 9.00<br>ECD 9.05                 | HYDROSTATIC PRESSURE 1228, CIRCULATING PRESSURE 1235. | •••  |
| PULLING OUT: TRIP<br>EFFECTIVE MUD   | 111111111111111111111111111111111111111 | ESTIMATED SWAB 13.9<br>BOTTOM HOLE PRESSURE 1214.     | 9    |

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

SPM 1 100 SPM 2 98 FLOW RATE 990

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | ORIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| DC/OH           | 0.274        | 12   | 86         | 132         | LAMINAR         | 1           | 85            | 2.3              |
| DC/CSG          | 0.303        | 37   | 78         | 132         | L.AMINAR        | 1           | 77            | 5.4              |
| HWDP/CSG        | 0.427        | 36   | 55         | 128         | LAMINAR         | 0           | 55            | 1.8              |
| DP/CSG          | 0.427        | 248  | 55         | 128         | LAMINAR         | 0           | 55            | 12.2             |
| DP/RIS          | 1.325        | 93   | 18         | 123         | LAMINAR         | 0           | 18            | 0,4              |
| TOTAL           | . VOLUME     | 425  |            |             | TOTAL           | PRESSUR     | E DROP        | 22.1             |

LAG: 18.1 MINUTES 1806 STROKES #1 AND 1770 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 1411.8 HHP 815 IMPACT FORCE 1898 % SURFACE PRESSURE 47.1 HHP/sqin 6.92 JET VELOCITY 129

### PRESSURE BREAKDOWN:

SURFACE 78.7 STRING 1029.1 BIT 1411.8 ANNULUS 22.0

TOTAL 2541.7 PUMP PRESSURE 2995.0 % DIFFERENCE 15.1

|                      | Ø        | ENSITY | p                    | RESSURE |
|----------------------|----------|--------|----------------------|---------|
|                      |          | ORTE   |                      | CINTIE  |
| NOT CIRCULATING: MUI | D WEIGHT | 8.70   | HYDROSTATIC PRESSURE | 1335.8  |
| CIRCULATING:         | ECD      | 8.84   | CIRCULATING PRESSURE | 1357.5  |
| PULLING OUT: TRIF    | P MARGIN | 0.29   | ESTIMATED SWAB       | 44.1    |
| EFFECTIVE MUI        | D WEIGHT | 8.41   | BOTTOM HOLE PRESSURE | 1291.7  |

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1000.0 AND TVD 1000.0

SPM 1 84 SPM 2 98 FLOW RATE 910

### ANNULAR HYDRAULICS:

| ANNULUS  | VOLZ     |      | ANN  | CRIT | TYPE OF | SLIP A   | SCEND | PRESSURE |
|----------|----------|------|------|------|---------|----------|-------|----------|
| TYPE     | UNIT     | VOL. | VEL. | VEL  | FLOW    | VEL      | VEL   | DROF     |
| DC/OH    | 0.274    | 40   | 79   | 137  | LAMINAR | 1        | 78    | 7.9      |
| DC/CSG   | 0.303    | 6    | 71   | 137  | LAMINAR | 1        | 71    | 1.0      |
| HWDP/CSG | 0.427    | 36   | 51   | 132  | LAMINAR | 0        | 50    | 1.9      |
| DP/CSG   | 0.427    | 291  | 51   | 132  | LAMINAR | 0        | 50    | 15.3     |
| DP/RIS   | 1.325    | 93   | 16   | 126  | LAMINAR | 0        | 16    | 0.4      |
| TOTAL    | . VOLUME | 465  |      |      | TOTAL   | PRESSURE | DROP  | 26.5     |

LAG: 21.5 MINUTES 1805 STROKES #1 AND 2105 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1220.3 HHP 648 IMPACT FORCE 1641 % SURFACE PRESSURE 45.0 HHP/sqin 5.49 JET VELOCITY 119

### PRESSURE BREAKDOWN:

SURFACE 71.4 STRING 975.1 BIT 1220.3 ANNULUS 26.5

TOTAL 2293.4 PUMP PRESSURE 2710.0 % DIFFERENCE 15.4

|                                   | DE               | NSITY<br>UNITS | न                                            | RESSURE<br>UNITS |
|-----------------------------------|------------------|----------------|----------------------------------------------|------------------|
| NOT CIRCULATING: MUD CIRCULATING: | WEIGHT<br>ECD    | 8.90<br>9.06   | HYDROSTATIC PRESSURE<br>CIRCULATING PRESSURE | 1518.4<br>1544.9 |
| PULLING OUT: TRIP EFFECTIVE MUD   | MARGIN<br>WEIGHT | 0.31<br>8.59   | ESTIMATED SWAB BOTTOM HOLE PRESSURE          | 53.0<br>1465.3   |

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 83 SPM 2 99 FLOW RATE 908

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROF |
|-----------------|---------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| рсион           | 0.274         | 46   | 79         | 136         | LAMINAR         | 1             | 78           | 9.1              |
| HWDP/OH         | 0.398         | 31   | 54         | 132         | LAMINAR         | 0             | 54           | 1.5'             |
| HWDP/CSG        | 0.427         | 2    | 51         | 131         | LAMINAR         | 0             | 50           | 0.1              |
| DP/CSG          | 0.427         | 333  | 51         | 131         | LAMINAR         | 0             | 50           | 17.5             |
| DP/RIS          | 1,325         | 93   | 16         | 125         | L.AMINAR        | 0             | 16           | 0,4              |
| TOTAL           | VOLUME        | 505  |            |             | TOTAL           | PRESSURE      | DROP         | 29.1             |

LAG: 23.4 MINUTES: 1934 STROKES #1 AND 2311 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1230.1 HHP 652 IMPACT FORCE 1654 % SURFACE PRESSURE 44.3 HHP/sqin 5.53 JET VELOCITY 119

### PRESSURE BREAKDOWN:

SURFACE 71.9 STRING 1022.5 BIT 1230.1 ANNULUS 29.0

TOTAL 2353.5 PUMP PRESSURE 2775.6 % DIFFERENCE 15.2

|                                   | DENSITY<br>UNITS           | PRESSURE<br>UNITS                                          |
|-----------------------------------|----------------------------|------------------------------------------------------------|
| NOT CIRCULATING: MUD CIRCULATING: | WEIGHT 9.00<br>ECD 9.15    | HYDROSTATIC PRESSURE 1689.0<br>CIRCULATING PRESSURE 1718.0 |
| PULLING OUT: TRIP EFFECTIVE MUD   | MARGIN 0.31<br>WEIGHT 8.69 | ESTIMATED SWAB 58.1<br>BOTTOM HOLE PRESSURE 1630.9         |

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 1200.0 AND TVD 1200.0

SPM 1 83 SPM 2 99 FLOW RATE 910

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0,274         | 46   | 79         | 123         | LAMINAR         | 1             | 78           | 7.3              |
| HWDP/OH         | 0.398         | 33   | 54         | 121         | LAMINAR         | 0             | 54           | 1.7              |
| DP/OH           | 0.398         | 38   | 54         | 121         | LAMINAR         | 0             | 54           | 1.9              |
| DP/CSG          | 0.427         | 335  | 51         | 121         | LAMINAR         | 0             | 50           | 14.7             |
| DP/RIS          | 1.325         | 93   | 16         | 117         | LAMINAR         | 0             | 16           | 0.4              |
| TOTAL           | L VOLUME      | 545  |            |             | TOTAL           | PRESSURE      | DROP         | 26.1             |

LAG: 25.2 MINUTES 2089 STROKES #1 AND 2491 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1234.0 HHP 655 IMPACT FORCE 1659 % SURFACE PRESSURE 43.7 HHP/sqin 5.56 JET VELOCITY 119

# PRESSURE BREAKDOWN:

SURFACE 66.5 STRING 983.9 BIT 1234.0 ANNULUS 26.1

TOTAL 2310.4 PUMP PRESSURE 2823.0 % DIFFERENCE 18.2

|                                   | DENSITY<br>UNITS        | ·              | RESSURE<br>UNITS |
|-----------------------------------|-------------------------|----------------|------------------|
| NOT CIRCULATING: MUD CIRCULATING: | WEIGHT 9.00<br>ECD 9.13 |                | 1842.5<br>1868.6 |
|                                   | MARGIN 0.25             | ESTIMATED SWAB | 52.2             |

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0

SPM 1 79 SPM 2 99 FLOW RATE 890

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| DCZOH           | 0.274        | 46   | 77         | 127         | LAMINAR         | 1             | 76           | 7.0              |
| HWDP/OH         | 0.398        | 33   | 53         | 129         | LAMINAR         | 0             | 53           | 1,8              |
| DPZOH           | 0.398        | 78   | 53         | 129         | LAMINAR         | 0             | 53           | 4.1              |
| DP/CSG          | 0.427        | 335  | 50         | 129         | LAMINAR         | 0             | 49           | 15.6             |
| DP/RIS          | 1.325        | 93   | 16         | 131         | LAMINAR         | 0             | 16           | 0.5              |
| TOTAL           | _ VOLUME     | 585  |            |             | TOTAL.          | PRESSURE      | DROP         | 29.0             |

LAG: 27.6 MINUTES 2181 STROKES #1 AND 2733 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1180.4 HHP 613 IMPACT FORCE 1587 % SURFACE PRESSURE 41.1 HHP/sqin 5.20 JET VELOCITY 116

### PRESSURE BREAKDOWN:

SURFACE 55.6 STRING 855.0 BIT 1180.4 ANNULUS 29.0

TOTAL 2119.9 PUMP PRESSURE 2870.0 % DIFFERENCE 26.1

### BOTTOM HOLE PRESSURES:

|              | UNITS       |                      | UNITS  |
|--------------|-------------|----------------------|--------|
| CIRCULATING: | WEIGHT 9.00 | HYDROSTATIC PRESSURE | 1996.1 |
|              | ECD 9.13    | CIRCULATING PRESSURE | 2025.0 |
|              | MARGIN 0.26 | ESTIMATED SWAB       | 57.9   |
|              | WEIGHT 8.74 | BOTTOM HOLE PRESSURE | 1938.1 |

DENSITY

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1400.0 AND TVD 1400.0

SPM 1 79 SPM 2 93 FLOW RATE 860

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP (<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|-----|------------|-------------|-----------------|---------------|---------------|------------------|
| DC/OH           | 0.274        | 46  | 75         | 127         | LAMINAR         | 1             | 74            | 6.9              |
| HWDP/OH         | 0.398        | 33  | 51         | 129         | LAMINAR         | 0             | 51            | 1 . 8:           |
| DP/OH           | 0.398        | 118 | 51         | 129         | LAMINAR         | 0             | 51            | 6.2              |
| DP/CSG          | 0.427        | 335 | 48         | 129         | LAMINAR         | 0             | 48            | 15.5             |
| DP/RIS          | 1.325        | 93  | 15         | 131         | LAMINAR         | 0             | 15            | 0.5              |
| TOTAL           | VOLUME       | 625 |            |             | TOTAL           | PRESSUR       | E DROP        | 30.9             |

LAG: 30.5 MINUTES 2419 STROKES #1 AND 2830 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1102.9 HHP 553 IMPACT FORCE 1483 % SURFACE PRESSURE 38.4 HHP/sqin 4.70 JET VELOCITY 113

### PRESSURE BREAKDOWN:

SURFACE 52.3 STRING 834.5 BIT 1102.9 ANNULUS 30.9

TOTAL 2020.6 PUMP PRESSURE 2871.5 % DIFFERENCE 29.6

#### BOTTOM HOLE PRESSURES:

|                  |            | UNITS |                                           | UNITS  |
|------------------|------------|-------|-------------------------------------------|--------|
| NOT CIRCULATING: | MUD WEIGHT | 9.00  | HYDROSTATIC PRESSURE CIRCULATING PRESSURE | 2149.6 |
| CIRCULATING:     | ECD        | 9.13  |                                           | 2180.5 |
| PULLING OUT: T   | RIP MARGIN | 0.26  | ESTIMATED SWAB                            | 61.9   |
|                  | MUD WETCHT | 8.74  | BOTTOM HOLE PRESSURE                      | 2087.7 |

DENSITY

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1500.0

SPM 1 80 SPM 2 92 FLOW RATE 859

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP ¢<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0.274        | 46   | 75         | 125         | LAMINAR         | 1             | 74           | 6.9              |
| HWDP/OH         | 0.398        | 33   | 51         | 127         | LAMINAR         | Ö             | 51           | 1.8              |
| DF/OH           | 0.398        | 157  | 51         | 127         | LAMINAR         | 0             | 51           | 8.3              |
| DP/CSG          | 0.427        | 335  | 48         | 127         | LAMINAR         | 0             | 48           | 15.5             |
| DP/RIS          | 1.325        | 93   | 15         | 129         | LAMINAR         | 0             | 15           | 0.5              |
| TOTAL           | . VOLUME     | 665  |            |             | TOTAL           | PRESSURE      | DROP         | 33.1             |

LAG: 32.5 MINUTES 2588 STROKES #1 AND 2996 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1137.5 HHP 570 IMPACT FORCE 1530 % SURFACE PRESSURE 38.6 HHP/sqin 4.84 JET VELOCITY 112

PRESSURE BREAKDOWN:

SURFACE 53.6 STRING 886.0 BIT 1137.5

ANNULUS 33.0
TOTAL 2110.2 PUMP PRESSURE 2947.6 % DIFFERENCE 28.4

BOTTOM HOLE PRESSURES:

UNITS UNITS 9.30 HYDROSTATIC PRESSURE 2379.9 NOT CIRCULATING: MUD WEIGHT 9.43 CIRCULATING PRESSURE 2413.0 CIRCULATING: ECD PULLING OUT: TRIP MARGIN 0.26 ESTIMATED SWAB 66.1 BOTTOM HOLE PRESSURE 2313.8 EFFECTIVE MUD WEIGHT 9.04

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1600.0

SPM 1 77 SPM 2 81 FLOW RATE 793

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>·UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP 6<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|---------------|---------------|------------------|
| DC/OH           | 0.274         | 47   | 69         | 126         | LAMINAR         | 1             | 68            | 7.1              |
| HWDP/OH         | 0.398         | 33   | 47         | 127         | LAMINAR         | 0             | 47            | 1.7              |
| DP/OH           | 0,398         | 195  | 47         | 127         | LAMINAR         | 0             | 47            | 10.2             |
| DP/CSG          | 0.427         | 335  | 44         | 127         | LAMINAR         | 0             | 44            | 15.3             |
| DP/RIS          | 1.325         | 93   | 14         | 130         | LAMINAR         | 0             | 14            | 0.5              |
| TOTAL           | . VOLUME      | 704  |            |             | TOTAL           | PRESSURE      | DROP          | 34.8             |

LAG: 37.3 MINUTES 2884 STROKES #1 AND 3028 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1297.8 HHP 601 IMPACT FORCE 1501 % SURFACE PRESSURE 44.0 HHP/sqin 5.10 JET VELOCITY 121

PRESSURE BREAKDOWN:

SURFACE 46.0 STRING 798.9 BIT 1297.8

ANNULUS 34.8

TOTAL 2177.6 PUMP PRESSURE 2951.3 % DIFFERENCE 26.2

**BOTTOM HOLE PRESSURES:** 

PRESSURE DENSITY UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.21 HYDROSTATIC PRESSURE 2514.0 CIRCULATING: ECD 9.34 CIRCULATING PRESSURE 2548.8 **PULLING OUT:** TRIP MARGIN 0.26 ESTIMATED SWAB 69.7 EFFECTIVE MUD WEIGHT 8.95 BOTTOM HOLE PRESSURE 2444.3

the species of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1700.0

SPM 1 80 SPM 2 82 FLOW RATE 811

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|--------------|---------------|--------------|------------------|
| DC/OH           | 0.274         | 47   | 70         | 114         | LAMINAR      | 1             | 69           | 6.8              |
| HWDP/OH         | 0.398         | 33   | 48         | 110         | LAMINAR      | 0             | 48           | 1.4              |
| DP/OH           | 0,398         | 235  | 48         | 110         | LAMINAR      | 0             | 48           | 10.1             |
| DP/CSG          | 0.427         | 335  | 45         | 109         | LAMINAR      | 0             | 45           | 12.4             |
| DP/RIS          | 1.325         | 93   | 15         | 103         | LAMINAR      | 0             | 15           | 8.0              |
| TOTAL           | L VOLUME      | 743  |            |             | TOTAL.       | PRESSURE      | DROP         | 31.1             |

LAG: 38.5 MINUTES: 3091 STROKES #1 AND 3156 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1355.9 HHP 642 IMPACT FORCE 1568 % SURFACE PRESSURE 45.8 HHP/sqin 5.44 JET VELOCITY 123

PRESSURE BREAKDOWN:

SURFACE 57.5 STRING 1031.4 BIT 1355.9

ANNULUS 31.1 TOTAL 2475.8 PUMP PRESSURE 2962.2 % DIFFERENCE 16.4

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS NOT CIRCULATING: 9.20 HYDROSTATIC PRESSURE 2668.2 MUD WEIGHT 9.31 CIRCULATING PRESSURE 2699.3 CIRCULATING: ECD TRIP MARGIN 0.21 ESTIMATED SWAB 62.1 PULLING OUT: EFFECTIVE MUD WEIGHT 8.99 BOTTOM HOLE PRESSURE 2606.1

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 1800.0 AND TVD 1800.0

SPM 1 79 SPM 2 82 FLOW RATE 807

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A   | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|----------|---------------|------------------|
| DCZOH           | 0.274         | 47   | 70         | 114         | LAMINAR         | 1        | 69            | 6.8              |
| HWDP/OH         | 0.398         | 33   | 48         | 110         | LAMINAR         | 0        | 48            | 1.4              |
| DP/OH           | 0.398         | 274  | 48         | 110         | LAMINAR         | 0        | 48            | 11.8             |
| DP/CSG          | 0.427         | 335  | 45         | 109         | LAMINAR         | 0        | 45            | 12.4             |
| DP/RIS          | 1.325         | 93   | 14         | 103         | LAMINAR         | 0        | 14            | 0.3              |
| TOTAL           | VOLUME        | 783  |            |             | TOTAL           | PRESSURE | DROP          | 32.7             |

LAG: 40.8 MINUTES 3231 STROKES #1 AND 3351 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1341.9 HHP 632 IMPACT FORCE 1552 % SURFACE PRESSURE 45.5 HHP/sqin 5.36 JET VELOCITY 123

PRESSURE BREAKDOWN:

SURFACE 57.0 STRING 1054.6 BIT 1341.9

BIT 1341.9 ANNULUS 32.7

TOTAL 2486.2 PUMP PRESSURE 2950.1 % DIFFERENCE 15.7

BOTTOM HOLE PRESSURES:

UNITS UNITS MUD WEIGHT 2825.2 NOT CIRCULATING: 9.20 HYDROSTATIC PRESSURE CIRCULATING: ECD 9.31 CIRCULATING PRESSURE 2857.9 0.21 PULLING OUT: TRIP MARGIN ESTIMATED SWAB 65.5 EFFECTIVE MUD WEIGHT 8.99 BOTTOM HOLE PRESSURE 2759.7

DENSITY

PRESSURE

AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPER

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1900.0

SPM 1 80 SPM 2 79 FLOW RATE 797

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP 6<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|--------------|---------------|---------------|------------------|
| DCZOH           | 0.274         | 47   | 69         | 94          | LAMINAR      | 1             | 68            | 5.3              |
| HWDPZOH         | 0.398         | 33   | 48         | 84          | LAMINAR      | 1             | 47            | 1.0              |
| DP/OH           | 0.398         | 314  | 48         | 84          | LAMINAR      | 1             | 47            | 9.1              |
| DP/CSG          | 0.427         | 335  | 44         | 83          | LAMINAR      | 0             | 44            | 8.1              |
| DP/RIS          | 1.325         | 93   | 14         | 70          | LAMINAR      | 0             | 14            | 0.1              |
| TOTAL           | VOLUME        | 823  |            |             | TOTAL.       | PRESSURE      | E DROP        | 23.6             |

LAG: 43.4 MINUTES 3477 STROKES #1 AND 3439 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1307.8 HHP 608 IMPACT FORCE 1513 % SURFACE PRESSURE 45.6 HHP/sqin 5.16 JET VELOCITY 121

PRESSURE BREAKDOWN:

SURFACE 61.2 STRING 1167.4 BIT 1307.8 ANNULUS 23.6

TOTAL 2560.0 PUMP PRESSURE 2869.0 % DIFFERENCE 10.8

**BOTTOM HOLE PRESSURES:** 

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.19 HYDROSTATIC PRESSURE 2978.9 CIRCULATING: ECD 9,26 CIRCULATING PRESSURE 3002.5 PULLING OUT: TRIP MARGIN 0.15 ESTIMATED SWAB 47.1 EFFECTIVE MUD WEIGHT 9.04 BOTTOM HOLE PRESSURE 2931.8

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 2000.0 AND TVD 2000.0

SPM 1 79 SPM 2 80 FLOW RATE 797

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0.274         | 47   | 6.9        | 94          | LAMINAR         | 1             | 68           | 5.3              |
| HWDP/OH         | 0.398         | 33   | 48         | 84          | LAMINAR         | 1             | 47           | 1.0              |
| DP/OH           | 0.398         | 354  | 48         | 84          | LAMINAR         | 1             | 47           | 10.2             |
| DP/CSG          | 0.427         | 335  | 44         | 83          | LAMINAR         | 0             | 44           | 8.1              |
| DP/RIS          | 1.325         | 93   | 14         | 70          | LAMINAR         | 0             | 14           | 0.1              |
| TOTAL           | VOLUME        | 863  |            |             | TOTAL           | PRESSURE      | DROP         | 24.7             |

LAG: 45.5 MINUTES 3612 STROKES #1 AND 3639 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1309.1 HHP 609 IMPACT FORCE 1514 % SURFACE PRESSURE 45.6 HHP/sqin 5.17 JET VELOCITY 121

# PRESSURE BREAKDOWN:

SURFACE 61.2 STRING 1203.7 BIT 1309.1 ANNULUS 24.7

TOTAL 2598.8 PUMP PRESSURE 2869.5 % DIFFERENCE 9.4

### BOTTOM HOLE PRESSURES:

|                                   |               | UNITS        |                                           | UNITS            |
|-----------------------------------|---------------|--------------|-------------------------------------------|------------------|
| NOT CIRCULATING: MUD CIRCULATING: | WEIGHT<br>ECD | 9,20<br>9,27 | HYDROSTATIC PRESSURE CIRCULATING PRESSURE | 3139.1<br>3163.8 |
| PULLING OUT: TRIP                 | MARGIN        | 0.14         | ESTIMATED SWAB                            | 49.4             |
| EFFECTIVE MUD                     | WEIGHT        | 9.06         | BOTTOM HOLE PRESSURE                      | 3089.7           |

DENSITY

CORE LAB \*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\*

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 2100.0 AND TVD 2100.0

SPM 1 80 SPM 2 78 FLOW RATE 788

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A   | YEL VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|----------|---------|------------------|
| DC/OH           | 0.274        | 48   | 68         | 104         | LAMINAR         | 1        | 68      | 6.1              |
| HWDP/OH         | 0.398        | 33   | 47         | 94          | LAMINAR         | 0        | 47      | 1.2              |
| DP/OH           | 0.398        | 394  | 47         | 94          | LAMINAR         | 0        | 47      | 13.7             |
| DP/CSG          | 0.427        | 335  | 44         | 93          | LAMINAR         | 0        | 44      | 9.8              |
| DP/RIS          | 1.325        | 93   | 14         | 81          | LAMINAR         | 0        | 14      | 0.2              |
| TOTAL           | . VOLUME     | 903  |            |             | TOTAL.          | PRESSURE | DROP    | 31.0             |

LAG: 48.1 MINUTES: 3832 STROKES #1 AND 3753 STROKES #2

BIT HYDRAULICS:

HHP 595 IMPACT FORCE 1496 PRESSURE DROP 1293.8 HHP/sqin 5.05 JET VELOCITY % SURFACE PRESSURE 44.0

PRESSURE BREAKDOWN:

SURFACE 60.5 1226.2 STRING 1293.8 BIT ANNULUS 31.0

PUMP PRESSURE 2940.3 % DIFFERENCE 11.2 TOTAL 2611.6

BOTTOM HOLE PRESSURES:

DENSITY UNITS UNITS HYDROSTATIC PRESSURE NOT CIRCULATING: MUD WEIGHT 9.30 3331.9 CIRCULATING PRESSURE 9.39 3362.8 CIRCULATING: ECD ESTIMATED SWAB TRIP MARGIN 0.17 61.9 PULLING OUT: BOTTOM HOLE PRESSURE EFFECTIVE MUD WEIGHT 9.13 3270.1

HYDRAULICS ANALYSIS PROGRAM

| HYDRAIL TOS               | CALCULATIONS                                            | ΑT  | DEPTH        | 2180. | . 0 | AND       | TVD   | 2180. | Ũ |
|---------------------------|---------------------------------------------------------|-----|--------------|-------|-----|-----------|-------|-------|---|
| - F1 1 1/18 PH.DL. 1 G.O. | - 6,370 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 177 | AF 2 1 2 1 1 |       |     | 1 11 / 27 | 1 7 4 |       |   |

SPM 1 0 SPM 2 53 FLOW RATE 267

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| DCZOH           | 0.026        | 0    | 242        | 175         | TURBULENT       |             |               | 28.0             |
| DC/LIN          | 0.274        | 44   | 23         | 109         | LAMINAR         | 0           | 23            | 3.8              |
| HWDP/LIN        | 0.398        | 33   | 16         | 96          | LAMINAR         | 0           | 16            | 0.7              |
| DP/LIN          | 0.398        | 427  | 16         | 96          | LAMINAR         | 0           | 16            | 9.5              |
| DP/CSG          | 0.427        | 335  | 15         | 95          | LAMINAR         | 0           | 15            | 6.3              |
| DP/RIS          | 1.325        | 93   | 5          | 81          | LAMINAR         | 0           | 5             | 0.1              |
| TOTAL           | _ VOLUME     | 933  |            |             | TOTAL           | PRESSUR     | E DROP        | 48.4             |

LAG: 146.7 MINUTES 0 STROKES #1 AND 7837 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 256.6 HHP 40 IMPACT FORCE 229 % SURFACE PRESSURE 32.4 HHP/sqin 0.70 JET VELOCITY 53

# PRESSURE BREAKDOWN:

SURFACE 9.4 STRING 193.9 BIT 256.6 ANNULUS 48.4

TOTAL 508.3 PUMP PRESSURE 792.8 % DIFFERENCE 35.9

### BOTTOM HOLE PRESSURES:

UNITS UNITS 3570.4 HYDROSTATIC PRESSURE 9.60 MUD WEIGHT NOT CIRCULATING: CIRCULATING PRESSURE 3618.8 9.73 ECD CIRCULATING: 96.7 ESTIMATED SWAB 0.26 TRIP MARGIN PULLING OUT: 3473.6 BOTTOM HOLE PRESSURE 9.34 EFFECTIVE MUD WEIGHT

DENSITY

PRESSURE

and the state of the state of the state of the state of the state of the state of the state of the state of the

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2200.0 AND TVD 2200.0

SPM 1 45 SPM 2 0 FLOW RATE 223

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VÖL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A   | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|----------|--------------|------------------|
| HWDC/OH         | 0.026         | 1    | 202        | 164         | TURBULENT       |          |              | 59.4             |
| HWDC/LIN        | 0.274         | 38   | 19         | 100         | L.AMINAR        | 0        | 19           | 2.6              |
| DC/LIN          | 0.354         | フ    | 15         | 92          | LAMINAR         | 0        | 15           | 0.2              |
| HWDP/LIN        | 0.398         | 33   | 13         | 88          | LAMINAR         | 0        | 13           | 0.6              |
| DP/LIN          | 0.398         | 427  | 1.3        | 88          | LAMINAR         | 0        | 13           | 7.5              |
| DP/CSG          | 0.427         | 335  | 12         | 87          | LAMINAR         | 0        | 12           | 4,9              |
| DP/RIS          | 1.325         | 93   | 4          | 73          | LAMINAR         | 0        | d            | 0.1              |
| TOTAL           | . VOLUME      | 935  |            |             | TOTAL           | PRESSURE | DROP         | 75.2             |

LAG: 176.3 MINUTES 7855 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 178.6 HHP 23 IMPACT FORCE 160 % SURFACE PRESSURE 31.0 HHP/sqin 0.41 JET VELOCITY 44

PRESSURE BREAKDOWN:

SURFACE 6.7 STRING 142.8 BIT 178.6 ANNULUS 75.2

TOTAL 403.3 PUMP PRESSURE 576.9 % DIFFERENCE 30.1

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: HYDROSTATIC PRESSURE MUD WEIGHT 9.60 3603.1 9.80 CIRCULATING: ECD CIRCULATING PRESSURE 3678.4 TRIP MARGIN PULLING OUT: 0.40 ESTIMATED SWAB 150.5 EFFECTIVE MUD WEIGHT 9.20 BOTTOM HOLE PRESSURE 3452.7

DENSITY

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2300.0

SPM 1 73 SPM 2 77 FLOW RATE 750

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP 6<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|---------------|------------------|
| DC/OH           | 0.274        | 46   | 65         | 109         | LAMINAR         | 1             | 64            | 6.7              |
| HWDP/OH         | 0.398        | 33   | 45         | 96          | LAMINAR         | 0             | 45            | 1.2              |
| DP/OH           | 0.398        | 475  | 45         | 96          | LAMINAR         | 0             | 45            | 17.6             |
| DP/CSG          | 0.427        | 335  | 42         | 95          | LAMINAR         | ŋ             | 42            | 10.4             |
| DP/RIS          | 1,325        | 93   | 1.3        | 81          | LAMINAR         | 0             | 13            | 0.2              |
| TOTAL           | L VOLUME     | 983  |            |             | TOTAL           | PRESSURE      | E DROP        | 36.1             |

LAG: 55.0 MINUTES 4037 STROKES #1 AND 4222 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1210.3 HHP 530 IMPACT FORCE 1400 % SURFACE PRESSURE 42.8 HHP/sqin 4.49 JET VELOCITY 114

### PRESSURE BREAKDOWN:

SURFACE 60.6 STRING 1287.4 BIT 1210.3 ANNULUS 36.1

TOTAL 2594.4 PUMP PRESSURE 2830.3 % DIFFERENCE 8.3

### BOTTOM HOLE PRESSURES:

|                                 |           | UNITS        |                                        | UNITS            |
|---------------------------------|-----------|--------------|----------------------------------------|------------------|
| NOT CIRCULATING: MUCIRCULATING: | D WEIGHT  | 9.60<br>9.69 | HYDROSTATIC PRESSURE                   | 3766.9<br>3803.1 |
| PULLING OUT: TRI                | IP MARGIN | 0.18<br>2.42 | ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE | 72.3<br>3694.6   |

DENSITY

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2400.0 AND TVD 2400.0

SPM 1 0 SPM 2 105 FLOW RATE 524

ANNULAR HYDRAULICS:

| ANNULUS | VOLZ     |      | ANN | CRIT | TYPE OF | SLIP    | ASCEND | PRESSURE |
|---------|----------|------|-----|------|---------|---------|--------|----------|
| TYPE    | UNIT     | VOL. | VEL | VEL  | FLOW    | VEL     | VEL    | DROP     |
| DC/OH   | 0.274    | 46   | 46  | 99   | LAMINAR | 1       | 45     | 4,8      |
| HWDP/OH | 0.398    | 33   | 31  | 85   | LAMINAR | 0       | 31     | 0 , 5'   |
| DPZOH   | 0.398    | 515  | 31  | 85   | LAMINAR | 0       | 31     | 13.1     |
| DP/CSG  | 0.427    | 335  | 29  | 84   | LAMINAR | 0       | 29     | 7.1      |
| DP/RIS  | 1.325    | 93   | 9   | 68   | LAMINAR | 0       | 9      | 0.1      |
| TOTAL   | L VOLUME | 1023 |     |      | TOTAL   | PRESSUR | E DROP | 26.1     |

LAG: 81.9 MINUTES 0 STROKES #1 AND 8594 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 591.1 HHP 181 IMPACT FORCE 684 % SURFACE PRESSURE 39.8 HHP/sqin 1.53 JET VELOCITY 80

PRESSURE BREAKDOWN:

SURFACE 32.3 STRING 706.0

BIT 591.1 ANNULUS 26.1

TOTAL 1355.4 PUMP PRESSURE 1486.0 % DIFFERENCE 8.8

BOTTOM HOLE PRESSURES:

DENSITY UNITS

PRESSURE UNITS

UNITS

NOT CIRCULATING: MUD WEIGHT 9.60 HYDROSTATIC PRESSURE 3930.7
CIRCULATING: ECD 9.66 CIRCULATING PRESSURE 3956.8

PULLING OUT: TRIP MARGIN 0.13 ESTIMATED SWAB 52.1

EFFECTIVE MUD WEIGHT 9.47 BOTTOM HOLE PRESSURE 3878.6

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 2500.0 AND TVD 2500.0

SPM 1 72 SPM 2 74 FLOW RATE 732

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL  | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0.274         | 47   | 64         | 109         | LAMINAR         | 1             | 63           | 6.7              |
| HWDPZOH         | 0.398         | 33   | 44         | 98          | LAMINAR         | 0             | 44           | 1.2              |
| DP/OH           | 0.398         | 553  | 44         | 98          | LAMINAR         | 0             | 44           | 20.8             |
| DP/CSG          | 0.427         | 335  | 41         | 97          | LAMINAR         | 0             | 41           | 10.6             |
| DPZRIS          | 1.325         | 93   | 13         | 84          | LAMINAR         | 0             | 13           | 0.2              |
| TOTA            | L VOLUME      | 1062 |            |             | TOTAL.          | PRESSURE      | DROP         | 39.5             |

LAG: 60.9 MINUTES 4407 STROKES #1 AND 4519 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1153.6 HHP 493 IMPACT FORCE 1334 % SURFACE PRESSURE 39.7 HHP/sqin 4.18 JET VELOCITY 111

### PRESSURE BREAKDOWN:

SURFACE 56.9 STRING 1282.5 BIT 1153.4 ANNULUS 39.5

TOTAL 2532.5 PUMP PRESSURE 2908.6 % DIFFERENCE 12.9

|                  |        | D.     | ENSITY<br>UNITS | Ь                    | RESSURE<br>UNITS |
|------------------|--------|--------|-----------------|----------------------|------------------|
| NOT CIRCULATING: | TRIP 1 | JEIGHT | 9.60            | HYDROSTATIC PRESSURE | 4094.5           |
| CIRCULATING:     |        | ECD    | 9.69            | CIRCULATING PRESSURE | 4134.0           |
| PULLING OUT:     |        | MARGIN | 0.19            | ESTIMATED SWAB       | 79.0             |
| EFFECTIV         |        | JEIGHT | 9.41            | BOTTOM HOLE PRESSURE | 4015.4           |

CORE LAB \*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\*

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2600.0 AND TVD 2600.0

279 SPM 1 SPM 2 56 FLOW RATE

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP (   | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|----------|---------------|------------------|
| HWDC/OH         | 0.085        | 2    | 78         | 158         | LAMINAR         | 1        | 77            | 4.5              |
| DCZOH           | 0.026        | 4    | 252        | 194         | TURBULENT       |          |               | 516.6            |
| HWDP/OH         | 0.151        | 13   | 44         | 141         | LAMINAR         | 0        | 44            | 5.4              |
| DP/OH           | 0.151        | 221  | 44         | 141         | LAMINAR         | 0        | 44            | 93.5             |
| DP/CSG          | 0.427        | 335  | 1.6        | 124         | LAMINAR         | 0        | 15            | 10.6             |
| DP/RIS          | 1.325        | 93   | 5          | 110         | LAMINAR         | 0        | 5             | 0 . 2!           |
| TOTAL           | VOLUME       | 669  |            |             | TOTAL           | PRESSURI | E DROP        | 631.2            |

LAG: 100.8 MINUTES 0 STROKES #1 AND 5619 STROKES #2

BIT HYDRAULICS:

45 IMPACT FORCE 250 HHP PRESSURE DROP 279.4 JET VELOCITY 55 % SURFACE PRESSURE 37.3 HHP/sqin 0.80

PRESSURE BREAKDOWN:

SURFACE 10.4 245.7 STRING 279.4 BIT ANNULUS 631.2

PUMP PRESSURE 749.1 % DIFFERENCE 55.7 TOTAL 1166.6

BOTTOM HOLE PRESSURES:

UNITS 4258.3 HYDROSTATIC PRESSURE 9.60 MUD WEIGHT NOT CIRCULATING: 4889.4 11.02 CIRCULATING PRESSURE ECD CIRCULATING: 2,85 1262.3 TRIP MARGIN ESTIMATED SWAB PULLING OUT: 2995.9 BOTTOM HOLE PRESSURE EFFECTIVE MUD WEIGHT 6.75

DENSITY

PRESSURE

UNITS

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 2610.0 AND TVD 2610.0

SPM 1 73 SPM 2 73 FLOW RATE 730

ANNULAR HYDRAULICS:

| ANNULUS | VOL.Z  |      | ANN | CRIT | TYPE OF | SLIP 6   | ASCEND | PRESSURE |
|---------|--------|------|-----|------|---------|----------|--------|----------|
| TYPE    | UNIT   | VOL  | VEL | VEL  | FLOW    | VEL      | VEL.   | DROP     |
| DC/OH   | 0.274  | 47   | 63  | 141  | LAMINAR | 0        | 63     | 10.2     |
| HWDP/OH | 0.398  | 33   | 44  | 129  | LAMINAR | 0        | 43     | 2.0      |
| DP/OH   | 0,398  | 597  | 44  | 129  | LAMINAR | 0        | 43     | 35.6     |
| DP/CSG  | 0.427  | 335  | 41  | 128  | LAMINAR | 0        | 41     | 16.5     |
| DP/RIS  | 1.325  | 93   | 1.3 | 114  | LAMINAR | 0        | 1.3    | 0.3      |
| TOTAL   | VOLUME | 1106 |     |      | TOTAL   | PRESSURE | DROP   | 65.¶     |

LAG: 63.7 MINUTES 4647 STROKES #1 AND 4647 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1145.1 HHP 487 IMPACT FORCE 1324 % SURFACE PRESSURE 40.1 HHP/sqin 4.14 JET VELOCITY 111

PRESSURE BREAKDOWN:

SURFACE 58.6 STRING 1358.4 BIT 1145.1 ANNULUS 65.0

TOTAL 2627.1 PUMP PRESSURE 2855.0 % DIFFERENCE 8.0

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: 9,60 HYDROSTATIC PRESSURE 4274.6 MUD WEIGHT 9.75 CIRCULATING PRESSURE CIRCULATING: ECD 4339.7 PULLING OUT: TRIP MARGIN 0.29 ESTIMATED SWAB 130.0 EFFECTIVE MUD WEIGHT 9.31 BOTTOM HOLE PRESSURE 4144.6

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2620.0 AND TVD 2620.0

SPM 1 45 SPM 2 0 FLOW RATE 226

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| нырсион         | 0.085         | 0    | 63         | 142         | LAMINAR         | 1           | 62            | 0.5              |
| HWDC/LIN        | 0,333         | 6    | 16         | 111         | LAMINAR         | 0           | 16            | 0.3              |
| DC/LIN          | 0.274         | 41   | 2.0        | 117         | LAMINAR         | 0           | 19            | 3.7              |
| HWDP/LIN        | 0.398         | 34   | 1.3        | 104         | LAMINAR         | 0           | 13            | 0 . 8:           |
| DP/LIN          | 0.398         | 602  | 13         | 104         | LAMINAR         | 0           | 13            | 14.1             |
| DP/CSG          | 0.427         | 335  | 13         | 103         | LAMINAR         | 0           | 13            | 6.6              |
| DP/RIS          | 1.325         | 93   | 4          | 88          | LAMINAR         | 0           | .4            | 0.1              |
|                 |               |      |            |             |                 |             |               |                  |

TOTAL VOLUME 1111 TOTAL PRESSURE DROP 26.1

LAG: 206.9 MINUTES 9335 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 183.2 HHP 24 IMPACT FORCE 164
% SURFACE PRESSURE 29.5 HHP/sqin 0.42 JET VELOCITY 44

PRESSURE BREAKDOWN:

SURFACE 7.1 STRING 163.5 BIT 183.2 ANNULUS 26.1

TOTAL 379.8 PUMP PRESSURE 621.4 % DIFFERENCE 38.9

BOTTOM HOLE PRESSURES:

UNITS UNITS 9.60 HYDROSTATIC PRESSURE 4291.0 NOT CIRCULATING: MUD WEIGHT 9.66 CIRCULATING PRESSURE 4317.1 CIRCULATING: ECD TRIP MARGIN 0.12 ESTIMATED SWAB 52.2 PULLING OUT: EFFECTIVE MUD WEIGHT 9.48 BOTTOM HOLE PRESSURE 4238.8

DENSITY

### HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS CALCULATIONS AT DEPTH 2650.0 AND TVD 2650.0 |
|--------------------------------------------------------|
|--------------------------------------------------------|

SPM 1 0 SPM 2 50 FLOW RATE 251

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL. | PRESSURE<br>DROP |
|-----------------|---------------|-----|------------|-------------|-----------------|-------------|----------------|------------------|
| HWDC/OH         | 0.085         | 3   | 70         | 166         | LAMINAR         | 1           | 70             | 7.6              |
| HWDC/LIN        | 0.333         | 2   | 18         | 144         | LAMINAR         | 0           | 18             | 0.2              |
| DCZLIN          | 0.274         | 41  | 22         | 148         | LAMINAR         | 0           | 22             | 6.5              |
| HWDP/LIN        | 0.398         | 33  | 15         | 139         | LAMINAR         | 0           | 15             | 1.5              |
| DP/LIN          | 0.398         | 607 | 15         | 139         | LAMINAR         | 0           | 15             | 27.5             |
| DP/CSG          | 0.427         | 335 | 14         | 138         | LAMINAR         | 0           | 14             | 12.5             |
| DP/RIS          | 1.325         | 93  | 5          | 126         | LAMINAR         | 0           | 5              | 0.3              |

TOTAL PRESSURE DROP

56.5

PRESSURE

BOTTOM HOLE PRESSURE 4227.2

TOTAL VOLUME 1114

LAG: 186.4 MINUTES 0 STROKES #1 AND 9361 STROKES #2

### BIT HYDRAULICS:

.

IMPACT FORCE HHP 33 HHP/sqin 0.59 203 PRESSURE DROP 226.9 % SURFACE PRESSURE 32.7 49 JET VELOCITY

### PRESSURE BREAKDOWN:

SURFACE 8.4 202.4 STRING 226.9 BIT ANNULUS 56.5

494.2 PUMP PRESSURE 693.2 % DIFFERENCE 28.7 TOTAL

### BOTTOM HOLE PRESSURES:

DENSITY UNITS UNITS HYDROSTATIC PRESSURE 4340.1 NOT CIRCULATING: MUD WEIGHT 9.60 CIRCULATING PRESSURE 4396.6 CIRCULATING: ECD 9.72 112.9 ESTIMATED SWAB TRIP MARGIN 0.25PULLING OUT:

9.35

EFFECTIVE MUD WEIGHT

HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS CALCULATIONS AT DEPTH 2660.0 AND TVD 2660.0 |
|--------------------------------------------------------|
|--------------------------------------------------------|

SPM 1 48 SPM 2 0 FLOW RATE 242

#### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP 4<br>VEL | VEL. | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|---------------|------|------------------|
| HWDC/OH         | 0.085         | 4    | 68         | 142         | LAMINAR         | 1             | 67   | 7.3              |
| HWDC/LIN        | 0.333         | 5    | 17         | 111         | LAMINAR         | 0             | 17   | 0.2              |
| DC/LIN          | 0.274         | 41   | 21         | 117         | LAMINAR         | 0             | 21   | 3.8              |
| HWDP/LIN        | 0.398         | 33   | 14         | 104         | LAMINAR         | 0             | 14   | 0.8              |
| DPZLIN          | 0,398         | 604  | 14         | 104         | LAMINAR         | 0             | 14   | 14.6             |
| DP/CSG          | 0.427         | 335  | 1.3        | 103         | LAMINAR         | 0             | 13   | 6.8              |
| DP/RIS          | 1,325         | 93   | Ц          | 88          | LAMINAR         | 0             | 4    | 0.1              |
| TOTAL           | . VOLUME      | 1114 |            |             | TOTAL.          | PRESSURE      | DROP | 33.8             |

LAG: 193.7 MINUTES 9364 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 210.2 HHP 30 IMPACT FORCE 188 % SURFACE PRESSURE 31.0 HHP/sqin 0.52 JET VELOCITY 48

PRESSURE BREAKDOWN:

SURFACE 8.0 STRING 198.1 BIT 210.2 ANNULUS 33.8

TOTAL 450.0 PUMP PRESSURE 677.2 % DIFFERENCE 33.6

BOTTOM HOLE PRESSURES:

UNITS UNITS MUD WEIGHT 4356.5 NOT CIRCULATING: 9.60 HYDROSTATIC PRESSURE CIRCULATING: 9.67 CIRCULATING PRESSURE 4390.3 ECD PULLING OUT: TRIP MARGIN 0.15 ESTIMATED SWAB 67.5 EFFECTIVE MUD WEIGHT 9.45 BOTTOM HOLE PRESSURE 4289.0

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2672.0 AND TVD 2671.9

SPM 1 70 SPM 2 72 FLOW RATE 706

ANNULAR HYDRAULICS:

| ANNULUS | VOLZ     |      | ANN | CRIT | TYPE OF | SLIP     | ASCEND | PRESSURE |
|---------|----------|------|-----|------|---------|----------|--------|----------|
| TYPE    | UNIT     | VOL. | VEL | VEL  | FLOW    | VEL      | VEL    | DROP     |
| DC/OH   | 0.274    | 47   | 61  | 116  | LAMINAR | 0        | 61     | 7.4      |
| HWDP/OH | 0.398    | 33   | 42  | 104  | LAMINAR | 0        | 42     | 1.4      |
| DP/OH   | 0.398    | 622  | 42  | 104  | LAMINAR | 0        | 42     | 25.4     |
| DP/CSG  | 0.427    | 335  | 39  | 103  | LAMINAR | 0        | 39     | 11.5     |
| DP/RIS  | 1.325    | 93   | 13  | 87   | LAMINAR | 0        | 1.3    | 0.2      |
| TOTAL   | . VOLUME | 1131 |     |      | TOTAL   | PRESSURI | E DROP | 45.9     |

LAG: 67.3 MINUTES 4683 STROKES #1 AND 4819 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1079.8 HHP 445 IMPACT FORCE 1249 % SURFACE PRESSURE 37.5 HHP/sqin 3.77 JET VELOCITY 107

PRESSURE BREAKDOWN:

SURFACE 55.6 STRING 1307.3 BIT 1079.8 ANNULUS 45.9

TOTAL 2488.5 PUMP PRESSURE 2882.7 % DIFFERENCE 13.7

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS 4412.5 NOT CIRCULATING: MUD WEIGHT 9.68 HYDROSTATIC PRESSURE CIRCULATING: ECD 9.78 CIRCULATING PRESSURE 4458.3 ESTIMATED SWAB PULLING OUT: TRIP MARGIN 0.20 91.7 EFFECTIVE MUD WEIGHT 9.48 BOTTOM HOLE PRESSURE 4320.8

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 2680.0 AND TVD 2680.0

SPM 1 49 SPM 2 0 FLOW RATE 247

### ANNULAR HYDRAULICS:

| ANNULUS  | VOLZ     |      | ANN | CRIT | TYPE OF | SLIP A   | SCEND | PRESSURE |
|----------|----------|------|-----|------|---------|----------|-------|----------|
| TYPE     | UNIT     | AOF  | VEL | VEL  | FLOW    | VEL.     | VEL   | DROP     |
| HWDCZOH  | 0.085    | 1    | 69  | 141  | LAMINAR | 1        | 68    | 1,4      |
| HWDCZLIN | 0.333    | 7    | 18  | 110  | LAMINAR | 0        | 18    | 0.4      |
| DCZLIN   | 0.274    | 41   | 21  | 116  | LAMINAR | 0        | 21    | 3,9      |
| HWDPZLIN | 0.398    | 33   | 15  | 104  | LAMINAR | 0        | 15    | 0.8      |
| DP/LIN   | 0.398    | 622  | 15  | 104  | LAMINAR | 0        | 15    | 15.3     |
| DP/CSG   | 0.427    | 335  | 14  | 103  | LAMINAR | 0        | 14    | 6.9      |
| DP/RIS   | 1,325    | 93   | 4   | 87   | LAMINAR | 0        | 4     | 0.1      |
| TOTA     | L VOLUME | 1133 |     |      | TOTAL   | PRESSURE | DROP  | 28.7     |

LAG: 193.0 MINUTES 9520 STROKES #1 AND 0 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 220.7 HHP 32 IMPACT FORCE 197 % SURFACE PRESSURE 32.2 HHP/sqin 0.56 JET VELOCITY 49

### PRESSURE BREAKDOWN:

SURFACE 8.4 STRING 199.2 BIT 220.7 ANNULUS 28.7

TOTAL 457.0 PUMP PRESSURE 686.6 % DIFFERENCE 33.4

|                      | DENSITY     | PRESSURE                    |  |  |
|----------------------|-------------|-----------------------------|--|--|
|                      | UNITS       | UNITS                       |  |  |
|                      |             |                             |  |  |
| NOT CIRCULATING: MUD | WEIGHT 9.68 | HYDROSTATIC PRESSURE 4425.8 |  |  |
| CIRCULATING:         | ECD 9.74    | CIRCULATING PRESSURE 4454.4 |  |  |
| PULLING OUT: TRIP    | MARGIN 0.13 | ESTIMATED SWAB 57.3         |  |  |
| EFFECTIVE MUD        | WEIGHT 9.55 | BOTTOM HOLE PRESSURE 4368.5 |  |  |

HYDRAULICS ANALYSIS PROGRAM

TOTAL VOLUME 1135

### HYDRAULICS CALCULATIONS AT DEPTH 2700.0 AND TVD 2699.9

SPM 1 48 SPM 2 0 FLOW RATE 240

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| HWDC/OH         | 0.083        | 2    | 69         | 155         | LAMINAR         | 1           | 68            | 5.7              |
| HWDC/LIN        | 0.333        | 4    | 17         | 127         | LAMINAR         | 0           | 17            | 0 . 2:           |
| DCZLIN          | 0.274        | 41   | 21         | 132         | LAMINAR         | 0           | 21            | 4.9              |
| HWDP/LIN        | 0.398        | 33   | 14         | 121         | LAMINAR         | 0           | 14            | 1.1              |
| DP/LIN          | 0.398        | 627  | 14         | 121         | LAMINAR         | 0           | 1.4           | 20.6             |
| DP/CSG          | 0.427        | 335  | 1.3        | 120         | L.AMINAR        | 0           | 13            | 9.3              |
| DP/RIS          | 1.325        | 93   | 4          | 105         | LAMINAR         | 0           | 4             | 0.2              |
|                 |              |      |            |             |                 |             |               |                  |

TOTAL PRESSURE DROP

42.1

LAG: 198.5 MINUTES 9540 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 253.2 HHP 35 IMPACT FORCE 206 % SURFACE PRESSURE 23.9 HHP/sqin 0.63 JET VELOCITY 52

PRESSURE BREAKDOWN:

SURFACE 8.0 STRING 194.1 BIT 253.2

ANNULUS 42.1

TOTAL 497.4 PUMP PRESSURE 1061.5 % DIFFERENCE 53.1

the first of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS MUD WEIGHT HYDROSTATIC PRESSURE NOT CIRCULATING: 9.69 4463.2 9.78 4505.3 CIRCULATING: ECD CIRCULATING PRESSURE TRIP MARGIN 0.18 ESTIMATED SWAB 84,2 PULLING OUT: EFFECTIVE MUD WEIGHT 9.51 BOTTOM HOLE PRESSURE 4379.1

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 2750.0 AND TVD 2749.6

SPM 1 69 SPM 2 73 FLOW RATE 711

ANNULAR HYDRAULICS:

| ANNULUS.<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP 4<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|------------------|---------------|------|------------|-------------|-----------------|---------------|---------------|------------------|
| DC/OH            | 0,274         | 47   | 62         | 118         | I. AMINAR       | 0             | 61            | 7.5              |
| HWDP/OH          | 0.398         | 33   | 42         | 108         | LAMINAR         | f)            | 42            | 1.4              |
| DPZOH            | 0.398         | 653  | 42         | 108         | LAMINAR         | 0             | 42            | 28.0             |
| DP/CSG           | 0.427         | 335  | 40         | 107         | LAMINAR         | 0             | 39            | 12.1             |
| DP/RIS           | 1,325         | 93   | 1.3        | 93          | LAMINAR         | 0             | 1.3           | 0.2              |
| TOTAL            | VOLUME        | 1162 |            |             | TOTAL           | PRESSURE      | ะ ทอกค        | AQ A             |

LAG: 68.6 MINUTES 4733 STROKES #1 AND 5030 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1087.3 HHP 451 IMPACT FORCE 1257 % SURFACE PRESSURE 37.4 HHP/sqin 3.83 JET VELOCITY 108

PRESSURE BREAKDOWN:

SURFACE 54.0 STRING 1293.6 BIT 1087.3

ANNULUS 49.4

TOTAL 2484.2 PUMP PRESSURE 2904.8 % DIFFERENCE 14.5

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS 4503.3 NOT CIRCULATING: MUD WEIGHT 9.60 HYDROSTATIC PRESSURE 4552.6 CIRCULATING: ECD 9.71 CIRCULATING PRESSURE PULLING OUT: TRIP MARGIN 0.21ESTIMATED SWAB 98.7 EFFECTIVE MUD WEIGHT 9.39 BOTTOM HOLE PRESSURE 4404.5

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2800.0 AND TVD 2799.3

SPM 1 75 SPM 2 84 FLOW RATE 798

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP 6<br>Vel | ASCEND<br>VEL | PRESSURE DROP |
|-----------------|---------------|------|------------|-------------|-----------------|---------------|---------------|---------------|
| DC/OH           | 0.274         | 48   | 69         | 125         | LAMINAR         | 1             | 69            | 8.8           |
| HWDP/OH         | 0.398         | 33   | 48         | 112         | LAMINAR         | 0             | 47            | 1.6           |
| DP/OH           | 0.398         | 672  | 48         | 112         | LAMINAR         | 0             | 47            | 33.2          |
| DP/CSG          | 0.427         | 335  | 44         | 111         | LAMINAR         | 0             | 44            | 13.9          |
| DP/RIS          | 1.325         | 93   | 14         | 96          | LAMINAR         | 0             | 14            | 0.2           |
| TOTAL           | . VOLUME      | 1182 |            |             | TOTAL.          | PRESSURE      | EDROP         | 57.8          |

LAG: 62.2 MINUTES 4680 STROKES #1 AND 5249 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 1776.1 HHP 827 IMPACT FORCE 1811 % SURFACE PRESSURE 62.8 HHP/sqin 7.02 JET VELOCITY 138

# PRESSURE BREAKDOWN:

SURFACE 69.3 STRING 1683.8 BIT 1776.1 ANNULUS 57.8

TOTAL 3586.9 PUMP PRESSURE 2826.5 % DIFFERENCE 26.9

### BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.68 HYDROSTATIC PRESSURE 4621.6 CIRCULATING: 9.80 ECD CIRCULATING PRESSURE 4679.3 PULLING OUT: TRIP MARGIN 0.24 ESTIMATED SWAB 115.5 EFFECTIVE MUD WEIGHT 9,44 BOTTOM HOLE PRESSURE 4506.0

DENSITY

and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 2810.0 AND TVD 2809.3

SPM 1 0 SPM 2 58 FLOW RATE 290

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|--------------|-------------|---------------|------------------|
| DC/OH           | 0.026        | 0    | 263        | 190         | TURBULENT    |             |               | 10.5             |
| DCZLIN          | 0.274        | 46   | 25         | 126         | LAMINAR      | 0           | 25            | 5.3              |
| HWDP/LIN        | 0.398        | 33   | 17         | 113         | LAMINAR      | 0           | 17            | 1.0              |
| DP/LIN          | 0.398        | 678  | 17         | 113         | LAMINAR      | 0           | 17            | 21.0             |
| DP/CSG          | 0,427        | 335  | 1.6        | 112         | LAMINAR      | 0           | 16            | 8.7              |
| DP/RIS          | 1.325        | 93   | 5          | 97          | LAMINAR      | 0           | 5             | 0 . 2:           |
| TOTAL           | VOLUME       | 1185 |            |             | TOTAL        | PRESSUR     | RE DROP       | 46.7             |

LAG: 171.7 MINUTES 0 STROKES #1 AND 9960 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 300.9 HHP 51 IMPACT FORCE 269 % SURFACE PRESSURE 63.7 HHP/sqin 0.90 JET VELOCITY 57

PRESSURE BREAKDOWN:

SURFACE 11.1 STRING 268.0 BIT 300.9 ANNULUS 46.7

TOTAL 626.7 PUMP PRESSURE 472.4 % DIFFERENCE 32.7

BOTTOM HOLE PRESSURES:

|                  |         |        | ONTIR |                      | OMT 12 |
|------------------|---------|--------|-------|----------------------|--------|
| NOT CIRCULATING: | аим     | WEIGHT | 9.54  | HYDROSTATIC PRESSURE | 4574.0 |
| CIRCULATING:     |         | ECD    | 9,64  | CIRCULATING PRESSURE | 4620.7 |
| PULLING OUT:     | TRIP    | MARGIN | 0.20  | ESTIMATED SWAB       | 93.5   |
| EFFECT           | IVE MUD | WEIGHT | 9.35  | BOTTOM HOLE PRESSURE | 4480.5 |

DENSITY

HYDRAULICS ANALYSIS PROGRAM

TOTAL VOLUME 1221

HYDRAULICS CALCULATIONS AT DEPTH 2900.0 AND TVD 2898.9

SPM 1 96 SPM 2 0 FLOW RATE 480

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | UOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP<br>VEL | ASCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|-------------|---------------|------------------|
| DC/OH           | 0.274        | 48   | 42         | 118         | LAMINAR         | n           | 41            | 6.2              |
| HWDP/OH         | 0.398        | 33   | 29         | 105         | LAMINAR         | ő           | 29            | 1.1              |
| DP/OH           | 0.398        | 712  | 29         | 105         | LAMINAR         | 0           | 29            | 24.1             |
| DP/CSG          | 0.427        | 335  | 27         | 104         | LAMINAR         | Ö           | 22            | 9.5              |
| DP/RIS          | 1,325        | 93   | 9          | 88          | LAMINAR         | 0           | 9             | 0.2              |
|                 |              |      |            |             |                 |             |               |                  |

TOTAL PRESSURE DROP

41.1

LAG: 107.0 MINUTES 10264 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 630.7 HHP 176 IMPACT FORCE 643 % SURFACE PRESSURE 42.5 HHP/sqin 1.50 JET VELOCITY 83

PRESSURE BREAKDOWN:

SURFACE 27.3 STRING 680.0 BIT 630.7 ANNULUS 41.1

TOTAL 1379.2 PUMP PRESSURE 1485.7 % DIFFERENCE 7.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 9.52 HYDROSTATIC PRESSURE 4705.7

CIRCULATING: ECD 9.60 CIRCULATING PRESSURE 4746.8
PULLING OUT: TRIP MARGIN 0.17 ESTIMATED SWAB 82.2
EFFECTIVE MUD WEIGHT 9.35 BOTTOM HOLE PRESSURE 4623.5

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 2970.0 AND TVD 2968.5

SPM 1 58 SPM 2 56 FLOW RATE 568

### ANNULAR HYDRAULICS:

| ANNULUS  | VOL./  | VOL | ANN | CRIT | TYPE OF | SLIP A   | SCEND | PRESSURE |
|----------|--------|-----|-----|------|---------|----------|-------|----------|
| TYPE     | UNIT   |     | VEL | VEL  | FLOW    | VEL      | VEL   | DROP     |
| DC/OH    | 0.106  | 3   | 128 | 168  | LAMINAR | 1        | 127   | 5.8      |
| DC/CSG   | 0.116  | 24  | 117 | 166  | LAMINAR | 1        | 116   | 38.3     |
| HWDP/CSG | 0.160  | 13  | 84  | 159  | LAMINAR | 1        | 84    | 7.9      |
| DP/CSG   | 0.160  | 415 | 84  | 159  | LAMINAR | 1        | 84    | 243.7    |
| DP/RIS   | 1.325  | 93  | 10  | 135  | LAMINAR | 0        | 10    | 0.4      |
| TOTAL    | VOLUME | 547 |     |      | TOTAL   | PRESSURE | DROP  | 296.2    |

LAG: 40.5 MINUTES 2348 STROKES #1 AND 2251 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1386.8 HHP 459 IMPACT FORCE 1128 % SURFACE PRESSURE 48.6 HHP/sqin 8.10 JET VELOCITY 123

### PRESSURE BREAKDOWN:

SURFACE 36.4 STRING 999.4 BIT 1386.8 ANNULUS 296.2

TOTAL 2718.7 PUMP PRESSURE 2854.8 % DIFFERENCE 4.8

### BOTTOM HOLE PRESSURES:

|              |        | UNITS |                      | UNITS  |
|--------------|--------|-------|----------------------|--------|
| CIRCULATING: | WEIGHT | 9.50  | HYDROSTATIC PRESSURE | 4811.2 |
|              | ECD    | 10.08 | CIRCULATING PRESSURE | 5107.4 |
|              | MARGIN | 1.17  | ESTIMATED SWAB       | 592.3  |
|              | WEIGHT | 8.33  | BOTTOM HOLE PRESSURE | 4218.9 |

DENSITY

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 3000.0 AND TVD 2998.3

SPM 1 57 SPM 2 56 FLOW RATE 561

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|--------------|---------------|--------------|------------------|
| DC/OH           | 0.106         | 6    | 126        | 123         | TURBULENT    |               |              | 7.6              |
| DC/CSG          | 0.116         | 21   | 116        | 121         | LAMINAR      | 2             | 114          | 20.2             |
| HWDP/CSG        | 0.160         | 13   | 83         | 114         | LAMINAR      | 1             | 82           | 4.5              |
| DP/CSG          | 0.160         | 418  | 83         | 114         | LAMINAR      | 1             | 82           | 140.9            |
| DP/RIS          | 1,325         | 93   | 1.0        | 91          | LAMINAR      | 0             | 10           | 0.2              |
| TOTAL           | VOLUME        | 552  |            |             | TOTAL        | PRESSURE      | DROP         | 173.5            |

LAG: 41.3 MINUTES 2336 STROKES #1 AND 2299 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 1366.4 HHP 447 IMPACT FORCE 1112 % SURFACE PRESSURE 49.7 HHP/sqin 7.88 JET VELOCITY 121

# PRESSURE BREAKDOWN:

SURFACE 33.6 STRING 938.0 BIT 1366.4 ANNULUS 173.5

TOTAL 2511.6 PUMP PRESSURE 2751.5 % DIFFERENCE 8.7

|              | DENSITY<br>UNITS                                      | PRESSURE<br>UNITS                                                                                                 |
|--------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| CIRCULATING: | WEIGHT 9.59<br>ECD 9.93<br>MARGIN 0.68<br>WEIGHT 8.91 | HYDROSTATIC PRESSURE 4903.6<br>CIRCULATING PRESSURE 5077.1<br>ESTIMATED SWAB 347.0<br>BOTTOM HOLE PRESSURE 4556.6 |

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 3050.0 AND TVD 3048.0

SPM 1 54 SPM 2 58 FLOW RATE 560

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|-----------------|---------------|--------------|------------------|
| DC/OH           | 0.106        | 11   | 126        | 120         | TURBULENT       |               |              | 14.9             |
| DC/CSG          | 0.116        | 18   | 115        | 118         | LAMINAR         | 2             | 114          | 12.0             |
| HWDP/CSG        | 0.160        | 13   | 83         | 108         | LAMINAR         | 1             | 82           | 4.3              |
| DP/CSG          | 0.160        | 423  | 83         | 108         | LAMINAR         | 1             | 82           | 135.9            |
| DP/RIS          | 1.325        | 93   | 10         | 78          | LAMINAR         | 0             | 10           | 0.1              |
| TOTAL           | . VOLUME     | 558  |            |             | TOTAL           | PRESSURE      | DROP         | 172.3            |

LAG: 41.9 MINUTES 2262 STROKES #1 AND 2429 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1362.1 HHP 445 IMPACT FORCE 1108 % SURFACE PRESSURE 47.3 HHP/sqin 7.84 JET VELOCITY 121

PRESSURE BREAKDOWN:

SURFACE 35.1 STRING 1014.2 BIT 1362.1 ANNULUS 172.3

TOTAL 2583.7 PUMP PRESSURE 2880.0 % DIFFERENCE 10.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.60 HYDROSTATIC PRESSURE 4991.9 CIRCULATING: 9,93 ECD CIRCULATING PRESSURE 5164.2 TRIP MARGIN PULLING OUT: 0.66 ESTIMATED SWAB 344.6 EFFECTIVE MUD WEIGHT 8.94 BOTTOM HOLE PRESSURE 4647.3

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 3100.0 AND TUD 3097.5

SPM 1 55 SPM 2 55 FLOW RATE 554

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE                                 | VOL/<br>UNIT                              | VOL.                        | ANN<br>VEL                   | CRIT<br>VEL                    | TYPE OF<br>FLOW                                       | SLIP A<br>Vel    | SCEND<br>VEL          | PRESSURE<br>DROP                    |
|-------------------------------------------------|-------------------------------------------|-----------------------------|------------------------------|--------------------------------|-------------------------------------------------------|------------------|-----------------------|-------------------------------------|
| DC/OH<br>DC/CSG<br>HWDP/CSG<br>DP/CSG<br>DP/RIS | 0.106<br>0.116<br>0.160<br>0.160<br>1.325 | 17<br>12<br>13<br>431<br>93 | 125<br>114<br>82<br>82<br>10 | 122<br>119<br>105<br>105<br>66 | TURBULENT<br>LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR | 2<br>1<br>1<br>0 | 113<br>81<br>81<br>10 | 24.3<br>12.9<br>4.5<br>145.4<br>0.1 |
| TOTAL                                           | VOLUME                                    | 566                         |                              |                                | TOTAL                                                 | PRESSURE         | DROP                  | 187.1                               |

LAG: 42.9 MINUTES 2377 STROKES #1 AND 2377 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1399.9 HHP 452 IMPACT FORCE 1139 Z SURFACE PRESSURE 48.7 HHP/sqin 7.97 JET VELOCITY 120

### PRESSURE BREAKDOWN:

SURFACE 38.8 STRING 1133.0 BIT 1399.9 ANNULUS 187.1

TOTAL 2758.8 PUMP PRESSURE 2873.9 % DIFFERENCE 4.0

## BOTTOM HOLE PRESSURES:

|              |                                   | UNITS |                                                                                        | UNITS                               |
|--------------|-----------------------------------|-------|----------------------------------------------------------------------------------------|-------------------------------------|
| CIRCULATING: | WEIGHT<br>ECD<br>MARGIN<br>WEIGHT | 10.43 | HYDROSTATIC PRESSURE<br>CIRCULATING PRESSURE<br>ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE | 5324.2<br>5511.4<br>374.3<br>4950.0 |

DENSITY

PRESSURE

### CORE LAB \*\*\* \*\*\*\* \*\*\*\* \*\*\* \*\*\* \*\*\*\* \*\*\*\*

# HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS | <u>CALCULATIONS</u> | AT | DEPTH | 3117. | CAA ( | TUD | 3114 A |
|------------|---------------------|----|-------|-------|-------|-----|--------|
|            |                     |    |       |       |       |     |        |

SPM 1 SPM 2 59 FLOW RATE 293

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE                                 | VOL./<br>UNIT                             | VOL.                        | ANN<br>VEL                | CRIT<br>VEL                    | TYPE OF<br>FLOW                                     |   | ASCEND<br>VEL             | PRESSURE<br>DROP                   |
|-------------------------------------------------|-------------------------------------------|-----------------------------|---------------------------|--------------------------------|-----------------------------------------------------|---|---------------------------|------------------------------------|
| DC/OH<br>DC/CSG<br>HWDP/CSG<br>DP/CSG<br>DP/RIS | 0.106<br>0.116<br>0.160<br>0.160<br>1.325 | 18<br>10<br>13<br>434<br>93 | 66<br>60<br>44<br>44<br>5 | 132<br>130<br>119<br>119<br>86 | LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR | ï | 65<br>60<br>43<br>43<br>5 | 20.0<br>8.3<br>3.8<br>122.2<br>0.1 |
| IAC. O4 A                                       | 3.CT 3.13.190 pm 203                      |                             |                           |                                |                                                     |   |                           |                                    |

LAG: 81.4 MINUTES 0 STROKES #1 AND 4776 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP HHP 66 HHP/sqin 1.15 383.0 IMPACT FORCE 312 % SURFACE PRESSURE 24.0 JET VELOCITY 63

# PRESSURE BREAKDOWN:

SURFACE 11.6 STRING 339,3 BIT 383.0 ANNULUS 154.4

888.4 PUMP PRESSURE 1594.5 % DIFFERENCE 44.3 TOTAL

# BOTTOM HOLE PRESSURES:

|              | DENSITY<br>UNITS                                       | PRESSURE<br>UNITS                                                                                                 |
|--------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| CIRCULATING: | WEIGHT 9.84<br>ECD 10.13<br>MARGIN 0.58<br>WEIGHT 9.26 | HYDROSTATIC PRESSURE 5228.4<br>CIRCULATING PRESSURE 5382.9<br>ESTIMATED SWAB 308.9<br>BOTTOM HOLE PRESSURE 4919.6 |

DENSITY

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 3120.0 AND TVD 3117.8

SPM 1 111 SPM 2 0 FLOW RATE 555

ANNULAR HYDRAULICS:

| ANNULUS  | VOL./  | VOL | ANN | CRIT | TYPE OF | SLIP A   | SCEND | PRESSURE |
|----------|--------|-----|-----|------|---------|----------|-------|----------|
| TYPE     | UNIT   |     | VEL | VEL  | FLOW    | VEL      | VEL   | DROP     |
| DC/OH    | 0.106  | 19  | 125 | 148  | LAMINAR |          | 124   | 33.0     |
| DC/CSG   | 0.116  | 9   | 114 | 146  | LAMINAR |          | 113   | 13.1     |
| HWDP/CSG | 0.160  | 13  | 82  | 137  | LAMINAR |          | 82    | 6.5      |
| DP/CSG   | 0.160  | 434 | 82  | 137  | LAMINAR |          | 82    | 209.8    |
| DP/RIS   | 1.325  | 93  | 10  | 107  | LAMINAR |          | 10    | 0.3      |
| TOTAL    | VOLUME | 569 |     |      | TOTAL   | PRESSURE | DROP  | 262.7    |

LAG: 43.0 MINUTES 4779 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1399.0 HHP 453 IMPACT FORCE 1138 % SURFACE PRESSURE 48.9 HHP/sqin 7.99 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE 37.1 STRING 1073.8 BIT 1399.0 ANNULUS 262.7

TOTAL 2772.6 PUMP PRESSURE 2860.4 % DIFFERENCE 3.1

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.02 HYDROSTATIC PRESSURE 5329.6 CIRCULATING: ECD 10.51 CIRCULATING PRESSURE 5592.3 PULLING OUT: TRIP MARGIN 0.99 ESTIMATED SWAR 525,4 EFFECTIVE MUD WEIGHT 9.03 BOTTOM HOLE PRESSURE 4804.1

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

### HYDRAULICS CALCULATIONS AT DEPTH 3145.0 AND TVD 3142.4

SPM 1 51 SPM 2 0 FLOW RATE 257

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP A<br>Vel | SCEND<br>VEL            | PRESSURE<br>DROP |
|-----------------|---------------|-----|------------|-------------|-----------------|---------------|-------------------------|------------------|
| DC/OH           | 0.106         | 21  | 58         | 144         | LAMINAR         | 1             | 57                      | 27.2             |
| DC/CSG          | 0.116         | 6   | 53         | 143         | LAMINAR         | 1             | 52                      | 5.8              |
| HWDP/CSG        | 0.160         | 1.3 | 38         | 1.3.3       | LAMINAR         | 0             | $\mathbb{Z} \mathbb{Z}$ | 4,7              |
| DP/CSG          | 0.160         | 439 | 38         | 133         | LAMINAR         | 0             | 38                      | 152.9            |
| DP/RIS          | 1,325         | 93  | 5          | 105         | LAMINAR         | 0             | 5                       | 0.2              |
| TOTAL           | L VOLUME      | 573 |            |             | TOTAL           | PRESSURE      | DROP                    | 190.8            |

LAG: 93.7 MINUTES 4813 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 313.1 HHP 47 IMPACT FORCE 255 % SURFACE PRESSURE 23.1 HHP/sqin 0.83 JET VELOCITY 56

PRESSURE BREAKDOWN:

SURFACE 9.6 STRING 276.9 BIT 313.1

ANNULUS 190.8

TOTAL 790.4 PUMP PRESSURE 1354.9 % DIFFERENCE 41.7

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 10.48 HYDROSTATIC PRESSURE 5618.6

CIRCULATING: ECD 10.84 CIRCULATING PRESSURE 5809.4
PULLING OUT: TRIP MARGIN 0.71 ESTIMATED SWAB 381.5
EFFECTIVE MUD WEIGHT 9.77 BOTTOM HOLE PRESSURE 5237.1

HYDRAULICS ANALYSIS PROGRAM

## HYDRAULICS CALCULATIONS AT DEPTH 3150.0 AND TVD 3147.4

SPM 1 0 SPM 2 108 FLOW RATE 538

### ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP ¢   | VSCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|------|------------|-------------|-----------------|----------|---------------|------------------|
| DC/OH           | 0.106         | 22   | 121        | 153         | LAMINAR         | i        | 120           | 43.0             |
| DCZCSG          | 0.116         | 6    | 111        | 151         | LAMINAR         | 1        | 110           | 9.2              |
| HWDP/CSG        | 0.160         | 1.3  | 8.0        | 139         | LAMINAR         | 0        | 79            | 7.0              |
| DP/CSG          | 0.160         | 439  | 8.0        | 139         | LAMINAR         | Ö        | 79            | 229.0            |
| DP/RIS          | 1.325         | 93   | 1.0        | 105         | LAMINAR         | 0        | 1.0           | 0.3              |
| TOTAL           | VOLUME        | 573  |            |             | TOTAL           | PRESSURE | DROP          | 288.5            |

LAG: 44.7 MINUTES 0 STROKES #1 AND 4817 STROKES #2

### BIT HYDRAULICS:

PRESSURE DROP 1382.8 HHP 434 IMPACT FORCE 1125 Z SURFACE PRESSURE 47.4 HHP/sqin 7.65 JET VELOCITY 116

### PRESSURE BREAKDOWN:

SURFACE 38.2 STRING 1112.0 BIT 1382.8 ANNULUS 288.5

TOTAL 2821.5 PUMP PRESSURE 2916.3 % DIFFERENCE 3.3

#### BOTTOM HOLE PRESSURES:

|                                   |                  | UNITS          |                                        | UNITS            |
|-----------------------------------|------------------|----------------|----------------------------------------|------------------|
| NOT CIRCULATING: MUD CIRCULATING: | WEIGHT<br>ECD    | 10.55<br>11.09 | HYDROSTATIC PRESSURE                   | 5664.0<br>5952.5 |
| PULLING OUT: TRIP EFFECTIVE MUD   | MARGIN<br>WEIGHT | 1.07<br>9.47   | ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE | 577.0<br>5087.1  |

DENSITY

PRESSURE

#### HYDRAULICS ANALYSIS PROGRAM

| HYDRAULICS CALCULAT | TONS AT | DEPTH | 3200.0 | ANT) | TVD | 3196. | Ç |
|---------------------|---------|-------|--------|------|-----|-------|---|
|                     |         |       |        |      |     |       |   |

SPM 1 59 SPM 2 40 FLOW RATE 496

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL./<br>UNIT | VOL | ANN<br>VEL | CRIT<br>VEL | TYPE OF<br>FLOW | SLIP AS  | BCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|---------------|-----|------------|-------------|-----------------|----------|--------------|------------------|
| DCZOH           | 0.106         | 27  | 112        | 148         | LAMINAR         | 1        | 111          | 55.9             |
| DC/CSG          | 0.116         | 0   | 102        | 145         | LAMINAR         | 1        | 102          | 0.3              |
| HWDP/CSG        | 0.160         | 1.3 | 74         | 130         | LAMINAR         | 0        | 23           | 6.9              |
| DP/CSG          | 0.160         | 447 | 74         | 130         | LAMINAR         | ()       | 73           | 229.0            |
| DP/RIS          | 1.325         | 93  | 9          | 89          | LAMINAR         | Ü        | 9            | 0.2              |
| TOTAL           | . VOLUME      | 581 |            |             | TOTAL           | PRESSURE | DROP         | 292.3            |

LAG: 49.2 MINUTES 2889 STROKES #1 AND 1992 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1319.3 HHP 382 IMPACT FORCE 1073 Z SURFACE PRESSURE 45.4 HHP/sqin 6.73 JET VELOCITY 107

PRESSURE BREAKDOWN:

SURFACE 38.3 STRING 1127.0

BIT 1319.3 ANNULUS 292.3

TOTAL 2776.9 PUMP PRESSURE 2904.3 % DIFFERENCE 4.4

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 11.84 HYDROSTATIC PRESSURE 6459.8 CIRCULATING: ECD 12.38 CIRCULATING PRESSURE 6752.1 PULLING OUT: TRIP MARGIN 1.07 ESTIMATED SWAB 584.7

EFFECTIVE MUD WEIGHT 10.77 BOTTOM HOLE PRESSURE 5875.1

### CORE LAB \*\*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\* \*\*\*

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 3220.0 AND TVD 3217.3

SPM 1 SPM 2 101 0 FLOW RATE 504

## ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE                                  | VOL/<br>UNIT                              | VOL.                       | ANN<br>VEL                 | CRIT<br>VEL                    | TYPE OF<br>FLOW                                     | SLIP 6<br>VEL         | ASCEND<br>VEL         | PRESSURE<br>DROP                   |
|--------------------------------------------------|-------------------------------------------|----------------------------|----------------------------|--------------------------------|-----------------------------------------------------|-----------------------|-----------------------|------------------------------------|
| DC/OH<br>HWDP/OH<br>HWDP/CSG<br>DP/CSG<br>DP/RIS | 0.106<br>0.151<br>0.160<br>0.160<br>1.325 | 27<br>3<br>10<br>450<br>93 | 114<br>80<br>75<br>75<br>9 | 146<br>132<br>130<br>130<br>92 | LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR | 1<br>0<br>0<br>0<br>0 | 113<br>79<br>75<br>75 | 57.4<br>1.7<br>5.6<br>240.0<br>0.2 |
| TOTAL.                                           | VOLUME                                    | 584                        |                            |                                | TOTAL                                               | PRESSURE              | DROP                  | 305.0                              |

LAG: 48.6 MINUTES 0 STROKES #1 AND 4906 STROKES #2

# BIT HYDRAULICS:

PRESSURE DROP 1282.3 HHP 377 IMPACT FORCE 1095 % SURFACE PRESSURE 43.5 HHP/sqin 6.65 JET VELOCITY 104

# PRESSURE BREAKDOWN:

SURFACE 40.2 STRING 1186,4 BIT 1282.3 ANNULUS

TOTAL PUMP PRESSURE 2948.9 % DIFFERENCE 4.6 2814.0

# BOTTOM HOLE PRESSURES:

305.0

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 12,25 HYDROSTATIC PRESSURE 6726.0 CIRCULATING: ECD 12.81 CIRCULATING PRESSURE 7031.0 PULLING OUT: TRIP MARGIN 1,11 ESTIMATED SWAR 610.0 EFFECTIVE MUD WEIGHT 11.14 BOTTOM HOLE PRESSURE 6116.0

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 3230.0 AND TVD 3227.3

SPM 1 0 SPM 2 99 FLOW RATE 496

ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE | VOL/<br>UNIT | VOL. | ANN<br>VEL | CRIT<br>VEL | TYPE OF FLOW | SLIP A<br>VEL | SCEND<br>VEL | PRESSURE<br>DROP |
|-----------------|--------------|------|------------|-------------|--------------|---------------|--------------|------------------|
| DC/OH           | 0.106        | 27   | 112        | 149         | LAMINAR      | 1             | 111          | 58.2             |
| HWDP/OH         | 0.151        | 4    | 78         | 137         | LAMINAR      | Ö             | 78           | 2.8              |
| HWDP/CSG        | 0.160        | 9    | 74         | 136         | LAMINAR      | ñ             | 73           | 5.0              |
| DP/CSG          | 0.160        | 452  | 74         | 136         | LAMINAR      | 'n            | 73           | 254.5            |
| DP/RIS          | 1,325        | 93   | 9          | 102         | LAMINAR      | Ô             | 9            | 0,3              |
| TOTAL           | . VOLUME     | 585  |            |             | TOTAL        | PRESSURE      | DROP         | 320.7            |

LAG: 49.6 MINUTES 0 STROKES #1 AND 4918 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1245.0 HHP 360 IMPACT FORCE 1063 % SURFACE PRESSURE 43.0 HHP/sqin 6.35 JET VELOCITY 102

PRESSURE BREAKDOWN:

SURFACE 38.3 STRING 1131.6 BIT 1245.0 ANNULUS 320.7

TOTAL 2735.6 PUMP PRESSURE 2897.6 % DIFFERENCE 5.6

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 12.30 6772.6 HYDROSTATIC PRESSURE CIRCULATING: 7093.4 ECD 12.88 CIRCULATING PRESSURE PULLING OUT: TRIP MARGIN 1,17 ESTIMATED SWAR 641.5 EFFECTIVE MUD WEIGHT 11.14 BOTTOM HOLE PRESSURE 6131.2

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

# HYDRAULICS CALCULATIONS AT DEPTH 3250.0 AND TVD 3247.1

SPM 1 101 SPM 2 0 FLOW RATE 502

# ANNULAR HYDRAULICS:

| ANNULUS<br>TYPE                                  | VOL/<br>UNIT                              | VOL                       | ANN<br>VEL                 | CRIT<br>VEL                    | TYPE OF<br>FLOW                                     | SLIP A<br>VEL | SCEND<br>VEL               | PRESSURE<br>DROP                   |
|--------------------------------------------------|-------------------------------------------|---------------------------|----------------------------|--------------------------------|-----------------------------------------------------|---------------|----------------------------|------------------------------------|
| DC/OH<br>HWDP/OH<br>HWDP/CSG<br>DP/CSG<br>DP/RIS | 0.106<br>0.151<br>0.160<br>0.160<br>1.325 | 27<br>7<br>6<br>455<br>93 | 113<br>79<br>75<br>75<br>9 | 144<br>127<br>127<br>127<br>88 | LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR<br>LAMINAR | 0<br>0<br>0   | 112<br>79<br>74<br>74<br>9 | 55.8<br>4.4<br>2.9<br>233.6<br>0.2 |
| TOTAL                                            | . VOLUME                                  | 588                       |                            |                                | TOTAL                                               | PRESSURE      | DROP                       | 296.9                              |

LAG: 49.2 MINUTES 4944 STROKES #1 AND 0 STROKES #2

#### BIT HYDRAULICS:

PRESSURE DROP 1270.3 HHP 372 IMPACT FORCE 1084 Z SURFACE PRESSURE 43.6 HHP/sqin 6.56 JET VELOCITY 104

### PRESSURE BREAKDOWN:

SURFACE 39,9 STRING 1183,4 BIT 1270,3 ANNULUS 296,9

TOTAL 2790.5 PUMP PRESSURE 2916.5 % DIFFERENCE 4.3

# BOTTOM HOLE PRESSURES:

|              | UNITS     |                                                                                        | UNITS                               |
|--------------|-----------|----------------------------------------------------------------------------------------|-------------------------------------|
| CIRCULATING: | <br>12.77 | HYDROSTATIC PRESSURE<br>CIRCULATING PRESSURE<br>ESTIMATED SWAB<br>BOTTOM HOLE PRESSURE | 6779.9<br>7076.8<br>593.8<br>6186.1 |

DENSITY

PRESSURE

# (c). COMPUTER DATA LISTING : LIST A

| INTERVAL   |     |   |   |   | • | All depth records (data not averaged)                                                                                                                       |
|------------|-----|---|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH      |     | , | r | , | , | Well depth, in metres                                                                                                                                       |
| ROP        | ; t | • |   | ı | · | Rate of penetration, in metres/hour                                                                                                                         |
| WOB, , ,   |     | , |   |   |   | Weight-on-bit, in thousands of pounds                                                                                                                       |
| RPM        |     |   |   |   |   | Rotary speed, in revolutions per minute                                                                                                                     |
| MW         |     |   |   | · |   | Mud weight in, in pounds per gallon                                                                                                                         |
| ′dc′       | , , | ٠ | • | , | t | Calculated 'd' exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg.                                                    |
| HOURS      |     |   | , | • | ı | Cumulative bit hours. The number of hours that the bit has actually been on bottom, recorded in decimal hours.                                              |
| TURNS      |     | • | • | ŧ | • | Cumulative bit turns. The number of turns made by the bit, while actually on bottom                                                                         |
| ICOST      | •   |   | • |   |   | Incremental cost per metre, calculated from the rate of penetration, in Australian dollars.                                                                 |
| CCOST. , . | •   | • | * | • |   | Cumulative cost per metre, calculated from the drilling time, in A dollars.                                                                                 |
| PP         | •   | • |   | • |   | Pore pressure gradient, in equivalent pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation.                             |
| FG , , , , | •   | • | , |   | ı | Fracture gradient, in equivalent pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL programusing Eaton's equation. |
|            |     |   |   |   |   | It is dependent on the pore pressure, the overburden gradient and the matrix stress. this value may be modified by leak-off information.                    |

| HTC OSC3AJ&26"H                                                                                                                          | O SIZE<br>0.00 TRIP T                                                                                                                                                                                                                                                                                           | ODE 111<br>26.000<br>IME 2.5<br>TURNS 14945                                                          | NOZZLES<br>BIT RUN                                                                                                | 20 20                                                                                                                                                                  | 20<br>3.5                       |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| DEPTH ROP                                                                                                                                | WOB RPM MW                                                                                                                                                                                                                                                                                                      | "d"c HOURS                                                                                           | TURNS ICOST                                                                                                       |                                                                                                                                                                        | FG                              |
| 75.0 111.5<br>80.0 140.6<br>85.0 73.8                                                                                                    | 2.0 80 8.6<br>1.5 80 8.6<br>2.0 80 8.6                                                                                                                                                                                                                                                                          | 0.38 0.08                                                                                            |                                                                                                                   | 1859 8.4 11<br>942.37 8.4 11<br>644.73 8.4 11                                                                                                                          | . 1                             |
| 90.0 69.5<br>95.0 72.0<br>100.0 60.2<br>105.0 81.8<br>110.0 87.8<br>115.0 104.1<br>120.0 116.1<br>125.0 50.1<br>130.0 46.9<br>135.0 48.6 | 2.0 80 8.6<br>2.6 80 8.6<br>2.8 80 8.6<br>2.5 80 8.6<br>2.3 80 8.6<br>1.6 80 8.6<br>1.1 80 8.6<br>4.8 80 8.6<br>5.7 80 8.6<br>4.5 80 8.6                                                                                                                                                                        | 0.52 0.29<br>0.56 0.37<br>0.50 0.43<br>0.48 0.49<br>0.43 0.54<br>0.39 0.58<br>0.64 0.68<br>0.67 0.79 | 1390 50.72<br>1788 60.66<br>2082 44.64<br>2355 41.59<br>2586 35.08<br>2792 31.45<br>3271 72.84<br>3783 77.91      | 496.68 8.4 11<br>407.49 8.4 11<br>349.69 8.4 11<br>306.11 8.4 11<br>273.04 8.4 11<br>246.60 8.4 11<br>225.09 8.4 11<br>211.25 8.4 11<br>200.14 8.4 11<br>190.51 8.4 11 | .2.2.2.3.3                      |
| 140.0 54.2<br>145.0 32.0<br>150.0 18.0<br>155.0 61.6<br>160.0 82.9<br>165.0 34.2<br>170.0 21.9<br>175.0 55.9<br>180.0 58.8<br>185.0 41.0 | 5.3     80     8.6     6       5.6     80     8.6     6       5.7     80     8.6     6       5.0     80     8.6     6       5.8     80     8.6     6       5.6     80     8.6     6       5.2     80     8.6     6       6.0     80     8.6     6       5.3     80     8.6     6       5.1     80     8.6     6 | 0.75 1.14<br>0.85 1.42<br>0.61 1.50<br>0.56 1.56<br>0.73 1.71<br>0.81 1.93<br>0.64 2.02<br>0.62 2.11 | 5470 114.23<br>6806 203.29<br>7195 59.24<br>7484 44.03<br>8187 106.92<br>9284 166.98<br>9714 65.33<br>10122 62.08 | 178.85 8.4 11<br>171.81 8.4 11<br>164.71 8.4 11<br>161.67 8.4 11                                                                                                       | , 4<br>, 4<br>, 4<br>, 4<br>, 5 |
| 200.0 21.4<br>205.0 25.0                                                                                                                 | 5.0 80 8.6 0<br>5.4 80 8.6 0<br>6.3 80 8.6 0<br>5.2 80 8.6 0<br>5.7 80 8.6 0                                                                                                                                                                                                                                    | 0.68 2.48<br>0.84 2.71<br>0.79 2.91                                                                  | 13028 170,83<br>13990 146,28                                                                                      | 145.50 8.4 11<br>146.48 8.4 11                                                                                                                                         | . 5<br>. 6<br>. 6               |
| BIT NUMBER<br>HTC OSC 3AJ<br>COST 4857<br>TOTAL HOURS 15                                                                                 | SIZE                                                                                                                                                                                                                                                                                                            | DDE 111<br>17.500<br>IME 3.7<br>IURNS 140631                                                         | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                                                       |                                                                                                                                                                        | 18<br>.5                        |
| 210.0 337.5<br>215.0 146.7<br>220.0 167.4<br>225.0 137.8                                                                                 | WOB RPM MW *  3.6 105 8.6 0 6.6 105 8.6 0 6.0 105 8.6 0 5.9 105 8.6 0 8.6 105 8.6 0                                                                                                                                                                                                                             | 0.34 0.00<br>0.55 0.04<br>0.52 0.07                                                                  | 28 11<br>243 25<br>431 22<br>659 27                                                                               | CCOST PP   12257 8.4 11 2848 8.4 11 1619 8.4 11 1136 8.4 11 1876.65 8.4 11                                                                                             | . 6<br>. <b>6</b><br>. 6        |

| DEPTH                                                                         | ROP                                                                                | WOE                                                          | RPM                                                         | MW                                                 | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                                  | CCOST                                                                                            | pр                                            | FG                                                           |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 235.0<br>240.0<br>245.0<br>250.0<br>255.0<br>265.0<br>275.0<br>280.0          | 197.4<br>186.5<br>112.5<br>109.9<br>179.1<br>81.1<br>65.7<br>77.3<br>58.6          | 7,2<br>9,2<br>7,0<br>9,2<br>4,5<br>5,6<br>5,6                | 105<br>105<br>105<br>105<br>105<br>105<br>105<br>105<br>105 | 8.6<br>8.6<br>8.6<br>8.6<br>8.6<br>8.6             | 0.49<br>0.51<br>0.65<br>0.62<br>0.54<br>0.64<br>0.71<br>0.67<br>0.73 | 0.16<br>0.18<br>0.23<br>0.27<br>0.30<br>0.36<br>0.44<br>0.50<br>0.59         | 985<br>1154<br>1434<br>1721<br>1897<br>2285<br>2765<br>3172<br>3709<br>4076            | 18.50<br>19.58<br>32.46<br>33.22<br>20.39<br>45.04<br>55.59<br>47.24<br>62.29<br>42.53 | <b>4</b> 66,67<br><b>4</b> 18,68                                                                 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 11.7<br>11.7<br>11.8<br>11.8<br>11.8<br>11.8<br>11.8         |
| 285.0<br>290.0<br>295.0<br>300.0<br>305.0<br>315.0<br>320.0<br>325.0<br>330.0 | 118.4<br>112.5<br>96.8<br>113.9<br>33.8<br>42.8<br>55.9<br>61.9                    | 7.1<br>7.7<br>8.7<br>9.1<br>5.2<br>5.4<br>2.9                | 105<br>105<br>111<br>130<br>130<br>130<br>136<br>150<br>150 | 8.6<br>8.6<br>8.6<br>8.6<br>8.6                    | 0.61<br>0.62<br>0.71<br>0.73<br>0.70<br>0.86<br>0.89<br>0.78<br>0.75 | 0.69<br>0.73<br>0.79<br>0.85<br>0.89<br>1.03<br>1.17<br>1.29<br>1.38         | 4342<br>4622<br>5028<br>5431<br>5274<br>6833<br>8041<br>9094<br>9899                   | 32,46<br>44,43<br>37,74<br>32,06<br>99,21<br>107,94<br>85,42<br>65,36                  | 273.03<br>258.27<br>245.91<br>234.53<br>224.04<br>217.89<br>212.73<br>207.02<br>200.94<br>195.10 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 11.9<br>11.9<br>11.9<br>11.9<br>12.0<br>12.0<br>12.0<br>12.0 |
| 335.0<br>340.0<br>345.0<br>350.0<br>355.0<br>360.0<br>375.0<br>380.0          | 106.5<br>53.1<br>69.5<br>51.9<br>62.5<br>43.8<br>33.7<br>60.4<br>44.3<br>87.4      | 5.3<br>6.0<br>5.6<br>5.3<br>6.3<br>6.4<br>10.6<br>8.3        | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150        | 8.8<br>8.8<br>8.8                                  | 0.82<br>0.78<br>0.82                                                 | 1.51<br>1.60<br>1.67<br>1.27<br>1.85<br>1.96<br>2.11<br>2.20<br>2.31<br>2.37 | 11049<br>11896<br>12544<br>13411<br>14132<br>15159<br>16494<br>17239<br>18254<br>18269 | 68.78<br>52.55<br>70.40<br>58.46<br>83.39<br>108.34<br>60.46<br>82.36                  | 188.74<br>184.18<br>179.36<br>175.51<br>171.52<br>168.61<br>166.68<br>163.39<br>160.96<br>157.49 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 12.1<br>12.1<br>12.1<br>12.1<br>12.1<br>12.2<br>12.2<br>12.2 |
| 385.0<br>390.0<br>395.0<br>400.0<br>405.0<br>410.0<br>420.0<br>420.0<br>430.0 | 49.6<br>133.3<br>158.9<br>152.5<br>50.0<br>63.8<br>101.1<br>101.7<br>126.8<br>87.0 | 23.0<br>26.2<br>28.8<br>18.3<br>18.2<br>26.5<br>28.8<br>28.7 | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150        | 8,8<br>8,8<br>8,8<br>8,8                           | 0.83<br>0.81<br>0.84<br>1.04<br>0.97<br>0.95<br>0.89                 | 2.47<br>2.50<br>2.54<br>2.57<br>2.67<br>2.80<br>2.85<br>2.88                 | 19677<br>20014<br>20297<br>20592<br>21492<br>22197<br>22642<br>23085<br>23440<br>23957 | 27.39<br>22.98<br>23.94<br>73.04<br>57.21<br>36.11                                     |                                                                                                  | 8,4<br>8,4<br>8,4<br>8,4                      | 12.3<br>12.3<br>12.3<br>12.3<br>12.3<br>12.4                 |
| 435.0<br>440.0<br>445.0<br>450.0<br>455.0<br>460.0<br>465.0<br>470.0<br>480.0 | 81,8<br>56.4<br>109.8                                                              | 23.2<br>29.1<br>14.5<br>28.7<br>23.9<br>30.4<br>25.0         | 150<br>150<br>150                                           | 8.8 1<br>8.8 1<br>8.8 1<br>8.8 1<br>8.8 1<br>8.8 1 | 1.02<br>1.01<br>1.79<br>1.73<br>1.09<br>1.09                         | 3.00<br>3.08<br>3.13<br>3.24<br>3.28<br>3.38<br>3.44<br>3.53<br>3.57<br>3.64 | 24472<br>25158<br>25690<br>26609<br>27019<br>27867<br>28417<br>29214<br>29624<br>30229 | 41.80<br>55.62<br>43.22<br>74.58<br>33.27<br>68.78<br>44.64<br>64.72<br>33.27<br>49.08 | 127.87<br>126.08<br>125.01<br>123.15<br>122.07<br>120.56<br>119.49<br>117.87                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 12.4<br>12.5<br>12.5<br>12.5<br>12.5<br>12.5                 |

 $\frac{1}{2} \left( \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} \right) = \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} \right) = \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} + \mathbf{y}^{(0)} \cdot \mathbf{y}^{(0)} + \mathbf{y}^{(0)} +$ 

| тертн                                                                                  | ROP                                                                          | MOB                                                          | RPM                                           | MW                                            | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                                          | ccost                                                                                            | рþ                                            | FG                                                                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|
| 485.0<br>490.0<br>495.0<br>500.0<br>505.0<br>510.0<br>520.0<br>520.0<br>530.0          | 51.4<br>80.4<br>63.4<br>106.2<br>67.9<br>68.3<br>44.0                        | 37.4<br>36.0                                                 | 150<br>150<br>150<br>150<br>150<br>150        | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.1<br>9.1 | 1.05<br>1.10<br>0.99<br>1.05<br>0.96<br>1.12<br>1.11<br>1.19         | 3.21<br>3.81<br>3.87<br>3.95<br>4.00<br>4.07<br>4.15<br>4.26<br>4.36<br>4.43 | 30900<br>31775<br>32335<br>33045<br>33469<br>34132<br>34790<br>35813<br>36690<br>37360 | 71.01<br>45.45<br>57.62<br>34.40<br>53.77<br>53.46<br>82.98<br>71.21                           | 115.48<br>114.69<br>113.49<br>112.53<br>111.21<br>110.26<br>109.33<br>108.91<br>108.31<br>107.47 | 8,4<br>8,4<br>8,4<br>8,4<br>8,4<br>8,4        | 12.6<br>12.6<br>12.6<br>12.6<br>12.6<br>12.7<br>12.7<br>12.7         |
| 535.0<br>540.0<br>545.0<br>550.0<br>555.0<br>560.0<br>565.0<br>570.0<br>575.0          | 45.5<br>30.6                                                                 | 39.0<br>32.1<br>37.5<br>38.0                                 | 150<br>150                                    | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 1.20<br>1.19<br>1.16<br>1.33<br>1.31<br>1.28<br>1.30<br>1.24<br>1.34 | 4.54<br>4.64<br>4.74<br>4.89<br>5.15<br>5.31<br>5.42<br>5.58<br>5.69         | 46243                                                                                  | 66.95<br>23.72<br>111.99<br>102.02<br>90.69<br>112.37<br>80.34<br>119.30                       | 106.03<br>105.81<br>105.91<br>105.55                                                             | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 12.7<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8<br>12.8         |
| 585.0<br>590.0<br>595.0<br>600.0<br>605.0<br>610.0<br>620.0<br>625.0<br>630.0          | 32.9<br>39.4<br>39.7<br>36.4<br>31.1<br>30.5<br>33.6<br>31.4                 |                                                              | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 1.28<br>1.32<br>1.27<br>1.28<br>1.30<br>1.33<br>1.27<br>1.34         | 5.83<br>5.98<br>6.11<br>6.24<br>6.37<br>6.53<br>6.70<br>6.85<br>7.01<br>7.15 | 51327<br>52468<br>53601<br>54836<br>56283<br>57761<br>59101<br>60533                   | 104.87<br>111.14<br>92.60<br>91.91<br>100.23<br>117.47<br>119.91<br>108.75<br>116.26<br>107.13 | 105.43<br>105.26<br>105.09<br>105.03<br>105.18<br>105.36<br>105.41<br>105.54                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>12.9<br>13.0<br>13.0         |
| 635.0<br>640.0<br>645.0<br>650.0<br>655.0<br>660.0<br>670.0<br>670.0<br>680.0          |                                                                              | 36.3<br>36.5<br>35.2<br>36.9<br>36.4<br>36.9<br>37.3<br>37.5 | 150<br>150<br>150<br>150<br>150<br>150<br>150 | 9.1<br>9.1<br>9.0<br>9.0<br>9.0<br>9.0        |                                                                      | 7.29<br>7.43<br>7.57<br>7.70<br>7.85<br>8.01<br>8.15<br>8.31<br>8.47<br>8.62 | 65608<br>66786<br>68116<br>69586<br>70851<br>72230<br>73668                            | 101.24<br>105.30                                                                               | 105.42<br>105.31<br>105.34<br>105.49<br>105.46<br>105.53<br>105.65                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 13.1<br>13.1<br>13.1                                                 |
| 685.0<br>690.0<br>695.0<br>700.0<br>705.0<br>710.0<br>720.0<br>720.0<br>720.0<br>730.0 | 33.3<br>31.4<br>37.5<br>27.0<br>38.5<br>31.4<br>22.4<br>27.2<br>30.5<br>35.9 | 36.4<br>35.9<br>36.8<br>35.3<br>35.0<br>35.6<br>35.2<br>37.3 |                                               | 9.0<br>9.0<br>9.0                             | 1.35<br>1.79<br>1.40<br>1.27<br>1.33<br>1.44<br>1.38                 | 8.77<br>8.93<br>9.06<br>9.25<br>9.38<br>9.53<br>9.76<br>9.94<br>10.11        | 77825<br>79025<br>80690<br>81858<br>83293<br>85303<br>86955<br>88430                   | 116,46<br>163,12                                                                               | 105.86<br>105.77<br>106.07<br>105.96<br>106.06<br>106.63<br>106.90<br>107.02                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.2<br>13.3<br>13.3 |

|                     |               |             |          | -     |        |               |                 |               |                |           |           |
|---------------------|---------------|-------------|----------|-------|--------|---------------|-----------------|---------------|----------------|-----------|-----------|
| 75 (*** 15 **** 1 1 | nan           | 1 170 70    | ry ry sa | 2411  | "d"c   | ) 1751 175 75 | 77 1 117 3 1 67 | TO COCO TO TO | es es m es ve  | m m       | pm /m,    |
| DEPTH               | ROP           | WUE         | RPM      | MW    | Ct C.  | HOURS         | TURNS           | ICOST         | CCOST          | ΡP        | FG        |
| 735.0               |               | 36.9        | 150      | 9.0   | 1.42   | 10.44         | 91463           | 144,25        | 107.32         | 8.4       | 13.3      |
| 740.0               |               | 37.8        | 150      | 9.0   | 1.28   | 10.56         | 92555           |               | 107,15         | 8.4       | 13.3      |
| 745.0               |               | 35.8        | 150      | 9,0   | 1.32   | 10.71         | 93905           |               | 107.17         |           | 13.3      |
| 250.0               |               | 38,4        | 150      | 9.0   | 1.37   | 10.87         | 95345           |               | 107.26         |           | 13.3      |
| 755.0               |               |             | 150      | 9.0   | 1.51   | 11.14         | 97735           |               | 108.05         |           | 13,4      |
| 760.0               |               | 35.5        | 150      | 9,0   | 1,45   | 11.37         | 99798           |               | 108.59         |           | 13.4      |
| 765.0               |               | 35.4        | 150      | 9.0   | 1,45   | 11.60         | 101918          |               | 109.16         |           | 13.4      |
| 270.0               |               | 34,4        | 1 5 0    | 9.0   | 1.30   | 11.75         | 103243          | 107.53        |                |           | 13.4      |
| 775.0               |               | 34,4        | 150      | 9.0   | 1.26   | 11.88         | 194379          |               | 109.00         |           | 13.4      |
| 780.0               | 34.2          | 35.4        | 150      | 9.0   | 1.31   | 12.02         | 105694          | 106.72        | 108.98         | 8.4       | 13,4      |
| 785.0               | 32.7          | 35.9        | 150      | 9.0   | 1.33   | 12.18         | 107071          | 111.79        | 109.00         | 8 4       | 13,4      |
| 790.0               | 37.2          |             | 150      | 9.0   | 1.29   | 12.31         | 108281          |               | 108.91         |           | 13.4      |
| 795.0               | 28.0          |             | 150      | 9.0   | 1.38   | 12.49         | 109886          |               | 109.09         |           | 13.5      |
| 800.0               |               | 36.2        | 150      | 9.0   | 1.31   | 12.63         | 111151          |               | 109.04         |           | 13.5      |
| 805.0               | 36.0          | 37.4        | 150      | 9.0   | 1.31   | 12,77         | 112401          |               | 108.97         |           | 13,5      |
| 810.0               |               | 36.5        | 150      | 9.0   | 1.24   | 12.88         | 113392          |               | 108.74         |           | 13.5      |
| 815.0               |               |             | 150      | 9.0   | 1.41   | 13.06         | 114999          | 130 46        |                |           | 13.5      |
| 820.0               |               |             | 150      | 9,0   | 1.30   | 13.19         | 116229          |               | 108.84         |           | 13.5      |
| 925.0               | 69.6          |             | 150      | 9,0   | 1.06   | 13,27         | 116875          |               | 108.38         |           | 13.5      |
| 830.0               | 52.9          | 33.2        | 150      | 9.0   | 1.16   | 13.36         | 117726          |               | 108.07         |           | 13.5      |
| 835.0               | 32.2          | יי די די די | 150      | 9.0   | 7.35   | 13.52         | 119124          | 113,50        | 100 11         | C) A      | 13.6      |
| 840,0               | 23.6          |             | 150      |       | 1.40   | 13.73         | 121034          | 155.01        | 108.48         |           | 13.6      |
| 845.0               | 21.2          |             | 150      | 9.0   | 1.47   | 13.96         | 123159          |               | 108.98         |           | 13.6      |
| 850.0               | 11,2          |             | 150      |       | 1.66   | 14,41         | 127180          |               | 110.68         |           | 13.6      |
| 855.0               | 12.8          |             | 150      |       | 1.65   | 14.80         | 130693          | 285.06        | 112.03         |           | 13.6      |
| 860.0               |               |             | 150      | 9.0   | 1.67   | 15.25         | 134695          |               | 113.66         |           | 13.6      |
| 865.0               | 14.9          |             | 150      | 9.0   | 1.59   | 15.58         |                 |               | 114.66         |           | 13.6      |
| 870.0               | 13.2          |             | 150      |       | 1.64   | 15.96         | 141113          |               | 115,88         |           | 13.6      |
| 070.0               | A sat of All. | 07:0        | 7 C U    | 7 : 0 | 7 10 4 | 101.50        | C- 2            | E. Z O : OO   | Y X (1) C) (2) | (C) 1 *** | 1 00 + CO |

on the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straight of the straigh

| BIT NUMBER 2 HTC J1 COST 2A94.00 TOTAL HOURS 2.77                                                                                                                                                                                                                                                                                                               | SIZE<br>TRIP TIME                                                                                                                                          | 116<br>12.250<br>4.0<br>16633                                        | NOZZLES<br>BIT RUN                                                                                           | 81.0                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH ROP WOB                                                                                                                                                                                                                                                                                                                                                   | RPM MW "d"c                                                                                                                                                | HOURS                                                                | TURNS ICOST                                                                                                  | CCOST PP FG                                                                                                                                                                                                                               |
| 875.0 18.5 37.9<br>880.0 28.4 35.8<br>883.0 34.0 40.3                                                                                                                                                                                                                                                                                                           | 100 9.0 1.38                                                                                                                                               | 0.27<br>0.45<br>0.53                                                 | 1620 197<br>2676 128<br>3206 108                                                                             | 1893 8.4 13.7                                                                                                                                                                                                                             |
| 884.0 33.0 40.0<br>885.0 31.6 40.0<br>886.0 42.9 39.9<br>887.0 34.3 40.7<br>888.0 29.3 40.4<br>889.0 37.9 40.3<br>890.0 32.2 40.0<br>895.0 28.5 40.0<br>900.0 28.5 40.0<br>905.0 41.3 41.3                                                                                                                                                                      | 100 8.9 1.41<br>100 8.9 1.30<br>100 8.8 1.40<br>100 8.8 1.46<br>100 8.8 1.36<br>100 8.8 1.42<br>100 8.8 1.46<br>100 8.7 1.48                               | 0.56<br>0.60<br>0.62<br>0.65<br>0.68<br>0.71<br>0.74<br>0.92<br>1.09 |                                                                                                              | 1223 8.4 13.7<br>1157 8.4 13.7<br>1100 8.4 13.7<br>1047 8.4 13.7<br>1000 8.4 13.7                                                                                                                                                         |
| 910.0       38.1       41.3         915.0       34.2       41.0         920.0       39.8       45.0         925.0       59.8       42.0         930.0       35.6       42.0         935.0       28.0       41.0         940.0       19.8       38.5         945.0       15.8       43.0         950.0       37.3       41.0         951.0       20.1       40.0 | 100 8.7 1.42<br>100 8.7 1.41<br>100 8.7 1.23<br>100 8.8 1.40<br>100 8.8 1.48<br>100 8.8 1.57<br>100 8.8 1.71<br>100 8.8 1.38                               | 1.34<br>1.49<br>1.62<br>1.70<br>1.84<br>2.02<br>2.27<br>2.59<br>2.72 | 10196 61.07<br>11039 102.58<br>12110 130.43<br>13629 184.82<br>15530 231.43                                  | 505.41     8.4     13.8       464.05     8.4     13.8       427.42     8.4     13.8       400.35     8.4     13.8       379.59     8.4     13.8       365.67     8.4     13.8       356.73     8.4     13.8       340.56     8.4     13.8 |
| BIT NUMBER 3 HTC J1 COST 2694.00 TOTAL HOURS 31.52                                                                                                                                                                                                                                                                                                              | SIZE<br>TRIP TIME                                                                                                                                          | 116<br>12.250<br>5.4<br>216592                                       | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                                                  | 951.0- 1598.0<br>18 18 18<br>647.0<br>T6 86 G0.250                                                                                                                                                                                        |
| DEPTH ROP WOB                                                                                                                                                                                                                                                                                                                                                   | RPM MW "d"c                                                                                                                                                | HOURS                                                                | TURNS ICOST                                                                                                  | CCOST PP FG                                                                                                                                                                                                                               |
| 956.0       18.0       30.0         960.0       15.8       35.0         965.0       21.4       39.0         970.0       21.2       38.0         975.0       19.5       39.5         980.0       21.4       40.0         985.0       10.0       40.0         990.0       18.8       42.0         995.0       25.7       40.0         996.0       30.5       40.0 | 100 8.8 1.49<br>100 8.8 1.60<br>100 8.8 1.55<br>100 8.8 1.54<br>100 8.8 1.59<br>100 8.8 1.56<br>100 8.8 1.56<br>100 8.8 1.50<br>70 8.8 1.50<br>70 8.9 1.36 | 0.28<br>0.53<br>0.76<br>1.00<br>1.26<br>1.49<br>1.99<br>2.26<br>2.45 | 1667 203 3186 231 4588 171 6003 172 7541 187 8943 170.65 11943 365.20 13060 194.26 13877 142.10 14015 119.74 | 1125 8.4 13.9<br>960.62 8.4 13.9<br>873.06 8.4 13.9<br>786.03 8.4 13.9<br>712.86 8.4 13.9                                                                                                                                                 |

| DEPTH                                                                                            | ROP                                                                  | MOB                                                          | RPM                                                         | мш                                     | "d"c                                                                 | HOURS                                                                        | TURNS                                                                         | ICOST                                                                                            | CCOST                                                                        | թթ                                                   | FG                                                           |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 997.0<br>998.0<br>999.0<br>1000.0<br>1001.0<br>1002.0<br>1003.0<br>1004.0<br>1005.0              | 20,9<br>23,5<br>27,9<br>26,5<br>23,7                                 | 40.0<br>40.0<br>40.0<br>40.0<br>40.2<br>40.2                 | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70          | 8.9<br>8.9<br>8.9<br>8.9<br>8.9<br>8.9 | 1.36<br>1.43<br>1.39<br>1.33<br>1.34<br>1.36<br>1.46<br>1.46<br>1.33 | 2.52<br>2.57<br>2.61<br>2.65<br>2.69<br>2.77<br>2.82<br>2.86<br>2.89         | 14180<br>14381<br>14560<br>14710<br>14869<br>15046<br>15213<br>15435<br>15581 | 174.74<br>155.40                                                                                 | 625.52<br>617.37<br>608.28                                                   | 8.4<br>8.4<br>8.4<br>8.4<br>8.4                      | 13.9<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0 |
| 1007.0<br>1008.0<br>1009.0<br>1010.0<br>1011.0<br>1012.0<br>1013.0<br>1014.0<br>1015.0           |                                                                      | 39.9<br>41.0<br>39.9<br>40.5<br>41.0<br>41.7<br>41.3         | 70<br>70<br>70<br>70<br>70<br>89<br>100<br>100              | 8.8<br>8.8<br>8.8<br>8.8<br>8.8        | 1.46<br>1.55<br>1.71<br>1.58<br>1.56<br>1.65<br>1.75<br>1.72<br>1.80 | 2.94<br>3.00<br>3.17<br>3.24<br>3.30<br>3.38<br>3.45<br>3.53                 | 18914                                                                         | 186.66<br>237.38<br>358.10<br>261.73<br>238.39<br>235.35<br>277.96<br>256.65<br>309.41<br>211.00 | 585.63<br>581.71<br>576.28<br>570.65<br>565.15<br>560.52<br>555.70<br>551.85 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0 |
| 1017.0<br>1018.0<br>1019.0<br>1020.0<br>1021.0<br>1022.0<br>1023.0<br>1024.0<br>1025.0           | 15.3<br>18.3<br>12.8<br>15.3                                         | 41.6<br>40.7<br>41.9<br>42.0<br>43.1                         | 100                                                         | 8.8<br>8.8<br>8.8<br>8.8<br>8.8<br>8.8 | 1.70<br>1.70<br>1.64<br>1.77<br>1.70<br>1.89<br>1.69<br>1.71<br>1.60 | 3.66<br>3.72<br>3.78<br>3.86<br>3.92<br>4.04<br>4.10<br>4.17<br>4.22<br>4.28 | 20380<br>20850<br>21243<br>21937<br>22313<br>22713<br>23013                   | 243.47<br>238.39<br>199.51<br>286.07<br>239.41<br>422.01<br>229.26<br>243.47<br>182.60<br>238.39 | 537.48<br>532.51<br>528.94<br>524.80<br>523.36<br>519.27<br>515.49<br>511.00 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0 |
| 1027.0<br>1028.0<br>1029.0<br>1030.0<br>1031.0<br>1032.0<br>1033.0<br>1034.0<br>1035.0           | 17.1                                                                 | 40.7<br>40.2<br>40.0<br>40.1<br>39.8<br>39.8<br>40.9<br>40.4 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 8.9<br>8.9                             | 1.69<br>1.72<br>1.66<br>1.69<br>1.42<br>1.82                         | 4.40<br>4.46<br>4.52<br>4.58<br>4.64<br>4.66<br>4.75<br>4.84<br>4.89         | 24737<br>25207<br>25598<br>26024<br>26224<br>26858<br>27480<br>27848          | 238.39<br>198.48<br>216.09                                                                       | 502.48<br>499.10<br>495.29<br>491.80<br>486.98<br>484.97<br>482.92<br>479.40 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 14.0                                                         |
| 1037.0<br>1038.0<br>1039.0<br>1040.0<br>1041.0<br>1042.0<br>1043.0<br>1044.0<br>1045.0<br>1046.0 | 14.5<br>15.2<br>13.7<br>14.4<br>18.3<br>11.1<br>13.4<br>17.8<br>11.8 | 40.6<br>40.3<br>40.1<br>40.5<br>38.5<br>40.1<br>40.7<br>41.3 |                                                             | 9.0<br>9.0                             | 1.73<br>1.77<br>1.74<br>1.67<br>1.79<br>1.75<br>1.66                 | 5.04<br>5.11<br>5.18<br>5.25<br>5.30<br>5.39<br>5.47<br>5.52<br>5.61         | 29414<br>29940<br>30440<br>30834<br>31480<br>32016<br>32420<br>33028          | 251.58<br>240.42<br>266.80<br>253.61<br>199.85<br>327.67<br>271.87<br>204.92<br>308.39<br>333.75 | 472.00<br>469.66<br>467.24<br>464.27<br>462.76<br>460.69<br>457.94<br>456.35 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.0<br>14.0<br>14.0<br>14.0<br>14.1<br>14.1                 |

| DEPTH                                                                                  | ROP                                                          | МОВ                                                                          | RPM                                                  | MW                                            | "d"c                                                                 | HOURS                                                                        | TURNS                                                                | ICOST                                                                                            | CCOST                                                                                            | рp                                                   | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 1047.0<br>1048.0<br>1049.0<br>1050.0<br>1051.0<br>1052.0<br>1053.0<br>1054.0<br>1055.0 | 9.4<br>16.7<br>18.1<br>16.5<br>18.2<br>17.0<br>17.1          | 40.9<br>41.9<br>40.8<br>40.7<br>41.3<br>40.8<br>40.9<br>41.8                 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.61<br>1.90<br>1.68<br>1.66<br>1.65<br>1.65<br>1.68<br>1.69         | 5.75<br>5.85<br>5.91<br>5.97<br>6.03<br>6.09<br>6.14<br>6.20<br>6.26         | 34800<br>35232<br>35630<br>36066<br>36462<br>36886<br>37308<br>37688 | 390.56<br>219.12<br>201.87<br>221.15<br>200.86<br>215.06<br>214.05<br>192.74                     | 452.13<br>451.50<br>449.13<br>446.63<br>444.38<br>441.97<br>439.74<br>437.55<br>435.20<br>433.17 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1         |
| 1057.0<br>1058.0<br>1059.0<br>1060.0<br>1061.0<br>1062.0<br>1063.0<br>1064.0<br>1065.0 | 18.2<br>24.2<br>15.2<br>17.6<br>40.0<br>12.2<br>19.4<br>20.6 | 42.0<br>41.7<br>41.8<br>42.2<br>42.3<br>46.7<br>43.0<br>43.2<br>42.4<br>41.6 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.61<br>1.67<br>1.57<br>1.73<br>1.68<br>1.44<br>1.82<br>1.66<br>1.63 | 6.36<br>6.42<br>6.46<br>6.52<br>6.58<br>6.61<br>6.69<br>6.74<br>6.79<br>6.84 | 38852<br>39150<br>39624<br>40032<br>40212<br>40804<br>41176<br>41526 | 200.86<br>151.15<br>240.42<br>206.95<br>91.30<br>300.28<br>188.69<br>177.53                      | 425.94<br>424.24<br>422.27<br>419.28<br>418.22<br>416.19                                         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1 |
| 1067.0<br>1068.0<br>1069.0<br>1070.0<br>1071.0<br>1072.0<br>1073.0<br>1074.0<br>1075.0 | 21.3<br>22.2<br>19.1<br>15.1<br>22.2<br>21.8<br>14.3         | 41.4<br>42.4<br>43.1<br>43.3                                                 |                                                      | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0 | 1.66<br>1.62<br>1.60<br>1.65<br>1.73<br>1.59<br>1.61<br>1.77         | 6.89<br>6.94<br>6.98<br>7.03<br>7.10<br>7.14<br>7.19<br>7.26<br>7.33<br>7.40 | 42580<br>42904<br>43280<br>43756<br>44080<br>44410<br>44914<br>45390 | 193.76<br>171.44<br>164.34<br>190.72<br>241.44<br>164.34<br>167.38<br>255.64<br>241.44<br>255.64 | 408.05<br>405.98<br>404.17<br>402.82<br>400.85<br>398.93<br>397.77<br>396.51                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1<br>14.1 |
| 1077.0<br>1078.0<br>1079.0<br>1080.0<br>1081.0<br>1082.0<br>1083.0<br>1084.0<br>1085.0 | 13.0<br>10.1<br>12.3<br>17.5<br>17.5<br>19.5<br>8.6<br>18.0  | 40.3                                                                         | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0        | 1.78<br>1.82<br>1.90<br>1.84<br>1.68<br>1.69<br>1.62<br>1.92<br>1.68 | 7.47<br>7.54<br>7.64<br>7.72<br>7.78<br>7.84<br>7.89<br>8.00<br>8.14         | 46950<br>47664<br>48248<br>48660<br>49072<br>49442<br>50282<br>50682 | 362.16<br>296.22                                                                                 | 393.37<br>393.13<br>392.38<br>390.97<br>389.58<br>388.05<br>388.33<br>386.95                     | 8.4                                                  | 14.1<br>14.1<br>14.1<br>14.1                                 |
| 1087.0<br>1088.0<br>1089.0<br>1090.0<br>1091.0<br>1092.0<br>1093.0<br>1094.0<br>1095.0 |                                                              | 41.5<br>43.0<br>44.0<br>45.1<br>45.2<br>45.6                                 |                                                      | 9.0<br>9.0<br>9.0                             | 1.81<br>1.80<br>1.83<br>1.70<br>1.81<br>1.91<br>1.80                 | 8.25<br>8.33<br>8.41<br>8.49<br>8.55<br>8.62<br>8.71<br>8.78<br>8.78         | 52642<br>53204<br>53784<br>54174<br>54706<br>55388<br>55898<br>56218 | 197,82<br>269,84<br>345,93                                                                       | 385.73<br>385.00<br>384.35<br>383.02<br>382.21<br>381.96<br>381.10<br>379.58                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.1<br>14.2<br>14.2<br>14.2<br>14.2<br>14.2<br>14.2         |

| DEPTH                                                                                  | ROP WOB R                                                                                                                                                    | PM MW "c                                                                                                                                                                                                                                         | l"c HOURS                                                                                                                                         | TURNS                                                                 | ICOST                                                                                            | CCOST                                                                        | pр                                                                   | FG                                                   |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|
| 1097.0<br>1098.0<br>1099.0<br>1100.0<br>1101.0<br>1102.0<br>1103.0<br>1104.0<br>1105.0 | 23.1 45.8 1                                                                                                                                                  | 20 9.0 1.<br>20 9.0 1.<br>20 9.0 1.<br>20 9.0 1.<br>20 9.0 1.<br>20 9.0 1.<br>20 9.0 1.                                                                                                                                                          | 70 9.01<br>94 9.12<br>63 9.17<br>68 9.22<br>78 9.28<br>85 9.35<br>70 9.40<br>80 9.48                                                              | 57532<br>58330<br>58642<br>58998<br>59436<br>59998<br>60356<br>60898  | 224.19<br>194.77<br>404.76<br>158.25<br>180.57<br>222.16<br>285.06<br>181.59<br>274.91<br>317.52 | 376.37<br>376.56<br>375.09<br>373.80<br>372.79<br>372.21<br>370.97<br>370.34 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4                               | 14.2<br>14.2<br>14.2                                 |
| 1107.0<br>1108.0<br>1109.0<br>1110.0<br>1111.0<br>1112.0<br>1113.0<br>1114.0<br>1115.0 | 11.1 46.4 1 13.2 46.2 1 16.6 42.7 1 21.8 42.6 1 20.6 42.3 1 21.2 41.9 1 23.2 41.8 1 22.5 41.8 1 30.0 41.5 1                                                  | 20                                                                                                                                                                                                                                               | 84 9.73<br>71 9.79<br>61 9.84<br>63 9.89<br>61 9.93<br>58 9.98<br>59 10.02<br>49 10.05                                                            | 62716<br>63149<br>63479<br>63829<br>64169<br>64479<br>64799           | 327.67<br>276.94<br>219.80<br>167.38<br>177.53<br>172.46<br>157.24<br>162.31<br>121.73<br>243.47 | 369.14<br>368.20<br>366.93<br>365.75<br>364.55<br>363.27<br>362.04<br>360.57 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4                        | 14.2<br>14.2<br>14.2<br>14.2<br>14.2<br>14.2         |
| 1117.0<br>1118.0<br>1119.0<br>1120.0<br>1121.0<br>1122.0<br>1123.0<br>1124.0<br>1124.6 | 13.6 42.4 1 17.6 42.6 1 16.7 42.5 1 17.1 42.5 1 15.7 42.7 1 14.4 42.7 1 1.8 44.1 1 23.2 43.7 1 25.7 43.7 1 18.5 43.5 1                                       | 20 9.0 1.<br>20 9.0 1.<br>20 9.0 1.<br>20 9.0 1.<br>20 9.0 1.<br>20 9.0 2.<br>20 9.0 1.                                                                                                                                                          | 69     10.25       70     10.31       70     10.37       73     10.43       76     10.50       51     11.05       60     11.10       57     11.12 | 66459<br>66889<br>67309<br>67769<br>68269<br>72239<br>72549<br>72717  | 213.03<br>233.32                                                                                 | 358.41<br>357.57<br>356.72<br>355.99<br>355.39<br>365<br>363.83<br>363.06    | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4                 | 14.2<br>14.2<br>14.2<br>14.2<br>14.2<br>14.2<br>14.2 |
| 1125.0<br>1126.0<br>1127.0<br>1128.0<br>1129.0<br>1130.0<br>1131.0<br>1132.0<br>1133.0 | 23.2 43.6 1;<br>25.7 43.7 1;<br>19.5 44.4 1;<br>21.2 44.5 1;<br>21.2 44.4 1;<br>23.4 43.9 1;<br>20.2 44.6 1;<br>20.8 44.8 1;<br>18.8 44.9 1;<br>15.2 45.3 1; | 20                                                                                                                                                                                                                                               | 57 11.18<br>67 11.23<br>65 11.28<br>65 11.32<br>60 11.37<br>66 11.42<br>66 11.47<br>69 11.52                                                      | 73137<br>73507<br>73847<br>74187<br>74495<br>74851<br>75197<br>75581  |                                                                                                  | 361.38<br>360.39<br>359.33<br>358.28<br>357.15<br>356.17<br>355.17<br>354.29 | 8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1          | 14.2<br>14.2<br>14.2<br>14.2<br>14.2<br>14.2         |
| 1135.0<br>1136.0<br>1137.0<br>1138.0<br>1139.0<br>1140.0<br>1141.0<br>1142.0<br>1144.0 | 18.8 45.2 17 13.4 46.4 12 18.2 29.1 17 18.0 45.1 17 18.2 45.3 17 16.3 45.9 17 18.2 45.5 17 14.5 45.9 17 21.4 45.4 17 20.8 45.4 17                            | 20     9.0     1.8       20     9.0     1.8       20     9.0     1.5       20     9.0     1.5       20     9.0     1.5       20     9.0     1.5       20     9.0     1.8       0     9.0     1.8       0     9.0     1.8       0     9.0     1.8 | 33 11.71<br>50 11.77<br>71 11.82<br>71 11.88<br>76 11.94<br>71 11.99<br>30 12.06<br>55 12.11                                                      | 76975 ; 77371 ; 77771 ; 78167 ; 78609 ; 79005 ; 79501 ; 79837 ; 79837 | 200.66<br>202.89<br>200.86<br>224.19<br>200.86                                                   | 352.37<br>351.55<br>350.76<br>349.96<br>349.29<br>348.51<br>348.00           | 8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1 | 4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3<br>4.3        |

| DEPTH                                                                                            | ROP                                                                  | WOB                                                  | RPM                                                         | MW                                                              | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                         | ICOST                                                                                           | CCOST                                                                        | рþ                                                   | FG                                                           |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 1145.0<br>1146.0<br>1147.0<br>1148.0<br>1149.0<br>1150.0<br>1151.0<br>1152.0<br>1153.0           | 23.8<br>17.4<br>17.9<br>21.8<br>16.9<br>14.5<br>15.1                 | 46.5<br>45.8<br>45.8<br>46.7                         | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0                   | 1.61<br>1.61<br>1.73<br>1.73<br>1.65<br>1.85<br>1.81<br>1.80<br>1.80 | 12.20<br>12.30<br>12.35<br>12.40<br>12.46<br>12.53<br>12.59<br>12.66<br>12.72          | 80481<br>80783<br>81197<br>81599<br>81929<br>82355<br>82851<br>83327<br>83805 | 153.18<br>209.99<br>203.90<br>167.38<br>216.08<br>251.58<br>241.44                              | 341.92<br>341.29<br>340.84<br>340.35<br>339.86                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 14.3<br>14.3<br>14.3<br>14.3<br>14.3<br>14.3<br>14.3<br>14.3 |
| 1155.0<br>1156.0<br>1160.0<br>1165.0<br>1170.0<br>1175.0<br>1180.0<br>1185.0<br>1190.0           | 15.3<br>12.2<br>25.0<br>23.5<br>11.2<br>17.3<br>20.1<br>14.8         | 46.7<br>49.0<br>49.0<br>43.0<br>42.2<br>43.2         |                                                             | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0                   | 1.76<br>1.79<br>1.90<br>1.64<br>1.59<br>1.84<br>1.70<br>1.66<br>1.78 | 12.78<br>12.85<br>13.18<br>13.38<br>13.59<br>14.04<br>14.32<br>14.57<br>14.57          | 88962<br>90496<br>93701<br>95783<br>97572<br>100004                           |                                                                                                 | 333.03<br>328.98<br>328.89<br>326.32<br>323.23<br>321.63                     | 8,4<br>8,4<br>8,4<br>8,4                             | 14.3<br>14.3<br>14.3<br>14.3<br>14.3<br>14.3                 |
| 1200.0<br>1205.0<br>1210.0<br>1215.0<br>1220.0<br>1225.0<br>1230.0<br>1235.0<br>1240.0<br>1245.0 | 14.1<br>18.5<br>25.3<br>25.9<br>29.2<br>14.0<br>40.4<br>29.7         | 44.7<br>46.2                                         | 120<br>120<br>120<br>120<br>120<br>120<br>120               | 9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0<br>9.0                   | 1.60<br>1.82<br>1.69<br>1.59<br>1.55<br>1.55<br>1.81<br>1.42<br>1.53 | 15.37<br>15.73<br>16.00<br>16.20<br>16.39<br>16.56<br>16.92<br>17.04<br>17.21          | 105907<br>107857<br>109280<br>110670<br>111902<br>114474<br>115364<br>116576  | 155.87<br>259.93<br>197.83<br>144.35<br>141.00<br>125.03<br>260.86<br>90.31<br>122.96<br>171.05 | 314.42<br>312.17<br>308.99<br>305.87<br>302.57<br>301.82<br>298.10<br>295.07 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.4<br>14.4<br>14.4<br>14.4<br>14.4<br>14.4                 |
| 1250.0<br>1255.0<br>1260.0<br>1265.0<br>1270.0<br>1275.0<br>1280.0<br>1285.0<br>1290.0           | 34.6<br>24.4<br>56.7<br>20.3<br>33.1<br>22.9<br>32.7<br>32.7<br>30.0 | 44.7<br>44.2<br>44.2<br>44.7<br>44.7<br>44.7         | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.0         9.0         9.0         9.0         9.0         9.0 | 1.49<br>1.67                                                         | 17.59<br>17.80<br>17.88<br>18.13<br>18.28<br>18.50<br>18.65<br>18.65<br>18.81<br>19.06 | 120779<br>121414<br>123185<br>124272<br>125846<br>126946<br>128047<br>129847  | 179.64<br>110.30<br>159.62<br>111.68<br>111.68                                                  | 287.52<br>283.91<br>282.25<br>279.55<br>277.70<br>275.18<br>272.73<br>271.40 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5<br>14.5         |
| 1300.0<br>1305.0<br>1310.0<br>1315.0<br>1320.0<br>1325.0<br>1330.0<br>1335.0<br>1340.0           | 23.4<br>36.7<br>18.7<br>39.4<br>26.5<br>22.8<br>21.0<br>32.8<br>31.9 | 46.1<br>45.0<br>45.3<br>45.3<br>45.0<br>45.0<br>45.0 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9,0<br>9,0<br>9,0<br>9,0                                        | 1.47<br>1.70<br>1.43<br>1.58<br>1.53<br>1.65<br>1.50                 | 19.44<br>19.57<br>19.84<br>19.97<br>20.16<br>20.32<br>20.56<br>20.71<br>20.87<br>21.02 | 133567<br>135492<br>136406<br>137764                                          | 195.29<br>92.69<br>137.81<br>122.55<br>173.90<br>111.34<br>114.48                               | 265.23<br>264.26<br>261.90<br>260.22<br>258.38<br>257.27<br>255.37<br>253.55 | 8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1<br>8.4 1   | 14.6<br>14.6<br>14.6<br>14.6<br>14.6<br>14.6                 |

ROP WOB RPM DEPTH MW "d"c HOURS TURNS ICOST CCOST pp FG 21,4 46.0 120 9.0 1.66 145676 170,65 250,71 1350.0 21.25 8.4 14.7 9.0 1.63 23.1 46.0 120 1355.0 21,47 147234 158,10 249,57 8.4 14.7 35.4 46.0 120 9.0 1.48 148251 103.16 247.78 1360.0 21.61 8.4 14.7 36.1 46.0 120 9.0 1.47 148451 101,16 247,42 1361.0 21.64 8.4 14.7 39.9 46.0 120 9.0 1.44 91,53 247,04 1362.0 21,66 148631 8.4 14.7 32.9 46.0 120 1363.0 9.0 1.51 21,69 148850 111.00 246.71 8.4 14.7 33.2 46.0 120 1364.0 21.72 149067 110.00 246.38 8,4 14,7 9.0 1.50 9.0 1.54 1365.027.3 43.3 120 21.76 149331 133.91 246.11 8.4 14.7 1366.0 34,6 45,1 120 9.0 1.48 21.79 149539 105,50 245,77 8.4 14.7 29.3 39.3 120 1367.0 9.0 1.47 21.82 149785 124.78 245.48 8,4 14,7 1368.0 31.6 45.2 120 9.0 1.51 21.86 150013 115.65 245.17 8.4 14.7 1369.0 19,7 47,4 120 9.0 1.71 21.91 150379 185.64 245.02 8.4 14.7 8.4 14.7 1370.0 40.0 45.4 120 9.0 1.43 21.93 150559 91.30 244.66 1371.0 36.4 45.3 120 9.0 1.46 21,96 150757 100,43 244,31 8.4 14.7 1372.0 29.0 45.8 120 9.0 1.55 21.99 151005 125.79 244.03 8.4 14.7 1373.0 31.0 45.2 120 9.0 1.52 22,03 151237 117.68 243.73 8.4 14.7 1374.0 35.3 46.5 120 9.0 1.49 22.05 151441 103,47 243,40 8.4 14.7 1375.0 35.9 46.8 120 9.0 1.49 22.08 151647 104,49 243.07 8.4 14.7 151883 119.70 242.78 1376.0 30.5 46.9 120 9.0 1.54 22.12 8.4 14.7 35.6 46.5 120 1377.0 9.0 1.48 22,14 152085 102,46 242,45 8.4 14.7 1378.0 34.0 46.0 120 9.0 1.49 22,17 152297 107.53 242,14 8.4 14.7 1379.0 33.6 46.5 120 9.0 1.50 22.20 152511 108.55 241.82 8.4 14.7 40.4 45.8 120 9.0 1.43 1380.0 22,23 152689 90,29 241,47 8,4 14,7 34.0 46.3 120 9.0 1.50 1381.0 22.26 152901 107.53 241.16 8.4 14.7 1382.0 45.0 45.6 120 9.0 1.39 22.28 81.16 240.79 8.4 14.7 153061 36.7 45.7 120 9.0 1.46 22.31 99.42 240.46 8.4 14.7 1383.0 153257 30.0 45.2 120 9.0 1.53 22.34 153497 121.73 240.19 1384.0 8.4 14.7 36.7 46.8 120 99,42 239,86 9.0 1.47 22.37 8.4 14.7 1385.0 153693 35.6 46.6 120 22,40 9.0 1.48 153895 102,46 239,55 8.4 14.7 1386.0 35.3 46.5 120 22,42 1387.0 9.0 1.49 154099 103.47 239.24 8.4 14.7 1388.0 33,6 46,7 120 9.0 1.50 22,45 154313 108.55 238.94 8.4 14.7 1389.0 32.1 47.1 120 9.0 1.53 22,48 154537 113.62 238.65 8.4 14.7 37.1 46.5 120 22,51 1390.0 9.0 1.47 154731 8.4 14.7 -98.40 238.33 32.1 46.3 120 1391.0 9.0 1.52 22.54 8.4 14.7 154955 113.62 238.05 33.3 46.6 120 9.0 1.51 22.57 1392.0 155171 109.56 237.76 8,4 14,7 20.0 47.2 120 22.62 9.0 1.70 155531 182.60 237.63 8.4 14.7 1393.025.7 46.0 120 22.66 142,10 237,42 8.4 14.7 1394.0 9.0 1.59 155811 1395.032.1 47.1 120 9.0 1.53 22.69 156035 113.62 237.14 8.4 14.7 1396.0 37,5 42,0 120 9.0 1.47 22.72 156227 97.39 236,82 8,4 14,7 1397.0 37.1 46.3 120 9.0 1.47 22.25 156421 98,40 236,51 8,4 14,7 1398.0 33.6 47.1 120 9.0 1.51 22,78 156635 108.55 236.23 8.4 14.7 1399.0 37.9 47.0 120 9.0 1.46 22.80 156825 96.37 235.91 8,4 14,8 1400.0 34.0 47.1 120 9.0 1.51 22,83 157037 107.53 235.63 8,4 14.8 34.6 47.0 120 9.0 1.50 22.86 157245 105.50 235.34 1401.0 8.4 14.8 22,90 1402.0 28.8 46.3 120 9.0 1.56 157495 126.81 235.10 8.4 14.8 22,92 1403.0 9.0 1.46 157695 101.44 234.80 36.0 44.8 120 8.4 14.8 22,95 1404.0 35.0 46.4 120 9.0 1.49 157901 104.49 234.51 8.4 14.8 28.3 43.9 120 1405.0 9.0 1.54 22.99 158155 128.83 234.28 8.4 14.8 8.4 14.8 1406.0 31,1 42,0 120 9.1 1.47 23.02 158387 117.43 234.02 8.4 14.8 1407.0 16.7 40.7 120 9.1 1.66 23.08 158817 218.11 233.99

| DEPTH                                                                                            | ROP                                                                          | MOB                                                                  | RPM                                                  | MW                                                   | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                                           | CCOST                                                                                            | p p                                    | FG                                                           |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1408.0<br>1409.0<br>1410.0<br>1411.0<br>1412.0<br>1413.0<br>1414.0<br>1415.0<br>1415.0           | 34.3<br>42.4<br>45.0<br>31.3<br>36.0<br>40.0<br>31.3<br>36.0                 | 41.4<br>41.1<br>40.7<br>40.7<br>40.5<br>40.7<br>41.0<br>40.8<br>41.1 | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1<br>9.1 | 1.39<br>1.42<br>1.35<br>1.33<br>1.45<br>1.40<br>1.37<br>1.45<br>1.45 | 23.11<br>23.16<br>23.16<br>23.21<br>23.21<br>23.27<br>23.30<br>23.32<br>23.35          | 159007<br>159217<br>159387<br>159547<br>159777<br>159777<br>160157<br>160387<br>160587           | 86.23<br>81.16<br>116.66<br>101.44<br>91.30<br>116.66<br>101.44                                 | 233.69<br>233.41<br>233.09<br>232.76<br>232.51<br>232.22<br>231.92<br>231.67<br>231.39<br>231.10 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8 |
| 1418.0<br>1419.0<br>1420.0<br>1421.0<br>1422.0<br>1423.0<br>1424.0<br>1425.0<br>1426.0           | 32.7<br>48.0<br>36.0<br>37.9<br>34.3<br>34.3<br>40.0                         | 40.4<br>40.6<br>40.7<br>40.3<br>40.4<br>40.1<br>40.4<br>40.8         | 120<br>120<br>120<br>120<br>120<br>120               | 9.1<br>9.1<br>9.1                                    | 1.40<br>1.43<br>1.30<br>1.40<br>1.38<br>1.41<br>1.41<br>1.45         | 23.38<br>23.41<br>23.46<br>23.46<br>23.51<br>23.54<br>23.57<br>23.60<br>23.63          | 161197<br>161347<br>161547<br>161737<br>161947<br>162157<br>162337                               | 101.44<br>96.37<br>106.52<br>106.52                                                             | 230.57<br>230.24<br>229.97<br>229.68<br>229.42<br>229.16<br>228.87<br>228.61                     | 8,4<br>8,4<br>8,4<br>8,4<br>8,4<br>8,4 | 14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8         |
| 1428.0<br>1429.0<br>1430.0<br>1431.0<br>1432.0<br>1433.0<br>1434.0<br>1435.0<br>1436.0           | 22.4<br>18.4<br>20.3<br>24.2                                                 | 41.0<br>41.5<br>41.6<br>42.7<br>43.1                                 | 120<br>120<br>120<br>120                             | 9.1<br>9.1<br>9.2<br>9.2<br>9.2<br>9.2               | 1,46<br>1,45<br>1,46<br>1,56<br>1,33<br>1,57<br>1,64<br>1,61<br>1,54 | 23.66<br>23.69<br>23.77<br>23.79<br>23.84<br>23.89<br>23.94<br>23.98<br>24.02          | 163011<br>163239<br>163475<br>163787<br>163953<br>164275<br>164667<br>165021<br>165319<br>165597 | 119.70<br>115.65<br>119.70<br>158.25<br>84.20<br>163.33<br>198.83<br>179.56<br>151.15<br>141.01 | 227.91<br>227.69<br>227.54<br>227.24<br>227.11<br>227.05<br>226.96<br>226.80                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8         |
| 1438.0<br>1439.0<br>1440.0<br>1441.0<br>1442.0<br>1443.0<br>1444.0<br>1445.0<br>1446.0<br>1447.0 | 17.1<br>18.6<br>23.7<br>26.5<br>25.9<br>22.0<br>25.4                         | 42.6<br>43.1<br>41.6<br>43.4<br>42.7                                 | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2               | 1.56<br>1.50<br>1.62<br>1.62<br>1.56<br>1.51<br>1.52<br>1.58<br>1.53 | 24.06<br>24.10<br>24.16<br>24.21<br>24.25<br>24.29<br>24.33<br>24.38<br>24.42<br>24.46 | 166167<br>166589<br>166977<br>167281<br>167553<br>167831<br>168159<br>168443                     | 154.20<br>137.96<br>141.01                                                                      | 226.29<br>226.20<br>226.05<br>225.88<br>225.70<br>225.58<br>225.42                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8 |
| 1448.0<br>1449.0<br>1450.0<br>1451.0<br>1452.0<br>1453.0<br>1454.0<br>1455.0<br>1456.0           | 26.7<br>22.8<br>26.5<br>20.7<br>22.0<br>27.3<br>28.1<br>25.9<br>25.0<br>22.1 | 42.9<br>42.9<br>43.3<br>43.9<br>44.2<br>45.9<br>46.8<br>46.2         | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2               | 1.57<br>1.57<br>1.50<br>1.59<br>1.52<br>1.52<br>1.57<br>1.57         | 24.50<br>24.58<br>24.63<br>24.67<br>24.71<br>24.74<br>24.78<br>24.82<br>24.87          | 169333<br>169605<br>169953<br>170281<br>170545<br>170801<br>171079<br>171367                     | 166.37<br>133.91<br>129.85<br>141.01                                                            | 224.97<br>224.79<br>224.70<br>224.58<br>224.40<br>224.21<br>224.05<br>223.89                     |                                        | 14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8<br>14.8         |

| DEPTH                                                                                  | ROP                                                          | WOB                                                                  | PPM                                                  | MW                                            | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                                            | ccost                                                                        | pр                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1458.0<br>1459.0<br>1460.0<br>1461.0<br>1462.0<br>1463.0<br>1464.0<br>1465.0<br>1466.0 | 25.9<br>26.9<br>23.1<br>22.5<br>26.1<br>27.5<br>28.1<br>33.3 | 42.1                                                                 | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.58<br>1.50<br>1.46<br>1.55<br>1.56<br>1.52<br>1.50<br>1.49<br>1.43 | 24.92<br>24.95<br>24.99<br>25.03<br>25.08<br>25.12<br>25.15<br>25.25<br>25.25          | 172039<br>172317<br>172585<br>172897<br>173217<br>173493<br>173755<br>174011<br>174227<br>174451 | 162.31<br>139.99<br>132.89<br>129.85<br>109.56                                                   | 223.35<br>223.22<br>223.10<br>222.94<br>222.76                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9         |
| 1468.0<br>1469.0<br>1470.0<br>1471.0<br>1472.0<br>1473.0<br>1474.0<br>1475.0<br>1476.0 | 22.6<br>43.4<br>29.3<br>27.5<br>27.3<br>28.3<br>30.8<br>28.6 | 42.7<br>44.2<br>43.4<br>43.3<br>43.2<br>43.4<br>43.3<br>43.3         | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.43<br>1.58<br>1.35<br>1.48<br>1.51<br>1.51<br>1.50<br>1.47<br>1.49 | 25.28<br>25.32<br>25.35<br>25.42<br>25.45<br>25.49<br>25.52<br>25.59                   | 174983<br>125149<br>125395<br>125652<br>125921<br>126125<br>126409<br>126661                     | 108.55<br>161.30<br>84.20<br>124.78<br>132.89<br>133.91<br>128.83<br>119.69<br>127.82            | 221.81<br>221.55<br>221.36<br>221.19<br>221.02<br>220.85<br>220.65<br>220.48 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9         |
| 1478.0<br>1479.0<br>1480.0<br>1481.0<br>1482.0<br>1483.0<br>1484.0<br>1485.0<br>1486.0 | 29.5<br>18.9<br>28.8<br>28.1<br>29.0<br>24.2<br>25.9<br>21.7 | 43.2<br>42.9<br>44.4<br>44.1<br>43.5<br>43.4<br>44.1<br>44.1<br>44.5 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3 | 1.46<br>1.46<br>1.63<br>1.48<br>1.47<br>1.54<br>1.52<br>1.52         | 25.63<br>25.66<br>25.71<br>25.75<br>25.78<br>25.86<br>25.90<br>25.94<br>26.00          | 177403<br>177783<br>178033<br>178289<br>178537<br>178835<br>179113                               | 123.76<br>123.76<br>192.74<br>126.81<br>129.85<br>125.79<br>151.15<br>141.01<br>168.40<br>201.87 | 219.94<br>219.89<br>219.71<br>219.54<br>219.36<br>219.24<br>219.09<br>219.00 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9         |
| 1488.0<br>1489.0<br>1490.0<br>1491.0<br>1492.0<br>1493.0<br>1494.0<br>1495.0<br>1496.0 | 20.2<br>20.8<br>15.1<br>10.0<br>10.4<br>18.3<br>21.7<br>18.1 | 42.7<br>43.8<br>45.9<br>46.4<br>46.7<br>46.9                         | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3 | 1.64<br>1.59<br>1.59<br>1.72<br>1.88<br>1.87<br>1.67<br>1.60<br>1.67 | 26.05<br>26.10<br>26.15<br>26.22<br>26.32<br>26.42<br>26.47<br>26.52<br>26.57<br>26.65 | 180599<br>180945<br>181421<br>182143<br>182837<br>183231<br>183563<br>183961                     | 202.89<br>180.57<br>175.50<br>241.44<br>366.21<br>352.01<br>199.85<br>168.40<br>201.87<br>287.09 | 218.86<br>218.78<br>218.82<br>219.10<br>219.34<br>219.31<br>219.21<br>219.18 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9 |
| 1498.8<br>1499.0<br>1500.0<br>1501.0<br>1502.0<br>1503.0<br>1504.0<br>1505.0<br>1506.0 | 24.2<br>22.9<br>23.2<br>24.2<br>22.8<br>19.7<br>21.4<br>14.2 | 46.0<br>46.3<br>46.6<br>46.6<br>47.1<br>47.2                         | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3 | 1.53<br>1.56<br>1.58<br>1.58<br>1.57<br>1.59<br>1.64<br>1.62<br>1.76 | 26.69<br>26.73<br>26.77<br>26.82<br>26.86<br>26.90<br>26.95<br>27.00<br>27.07<br>27.13 | 185095<br>185409<br>185719<br>186017<br>186333<br>186699<br>187035<br>187543                     | 136.95<br>151.15<br>159.27<br>157.24<br>151.15<br>160.28<br>185.64<br>170.43<br>257.67<br>208.69 | 219.03<br>218.92<br>218.81<br>218.69<br>218.58<br>218.52<br>218.43<br>218.50 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9 |

| DEPTH                                                                                  | ROP                                                          | WOR                                                                  | B P M                                                | MW                                            | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                    | CCOST                                                                                            | թթ                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1508.0<br>1509.0<br>1510.0<br>1511.0<br>1512.0<br>1513.0<br>1514.0<br>1515.0<br>1516.0 | 18.8<br>21.3<br>16.8<br>14.1<br>36.4<br>45.0<br>37.5<br>28.3 | 46.1<br>45.5<br>45.4<br>45.8<br>45.6<br>43.0<br>42.9<br>45.1         | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3        | 1.70<br>1.65<br>1.60<br>1.68<br>1.75<br>1.42<br>1.32<br>1.38<br>1.50 | 27,19<br>27,24<br>27,29<br>27,35<br>27,42<br>27,44<br>27,47<br>27,49<br>27,53<br>27,57 | 188776<br>189114<br>189542                                                                       | 217.09<br>258.68<br>100.43<br>81.16<br>97.39<br>128.83                   | 218,45<br>218,37<br>218,36                                                                       | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9<br>14.9 |
| 1518.0<br>1519.0<br>1520.0<br>1521.0<br>1522.0<br>1523.0<br>1524.0<br>1525.0<br>1526.0 | 40.4<br>44.4<br>42.4<br>40.4<br>38.7<br>45.6<br>49.3<br>36.4 | 45.1<br>41.7<br>41.3<br>42.7<br>43.3<br>43.4<br>46.3<br>45.9<br>43.0 | 120<br>120<br>120<br>120<br>120<br>120<br>120        | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3 | 1.44<br>1.34<br>1.31<br>1.36<br>1.36<br>1.35<br>1.35<br>1.32         | 27.60<br>27.62<br>27.64<br>27.67<br>27.72<br>27.72<br>27.74<br>27.76<br>27.79<br>27.86 | 191338<br>191516<br>191678<br>191848<br>192026<br>192212<br>192370<br>192516<br>192714<br>193248 | 90.29<br>82.17<br>86.23<br>90.29<br>94.34<br>80.14<br>74.05              | 217.28<br>217.05<br>216.81<br>216.59<br>216.36<br>216.15<br>215.91<br>215.67<br>215.56           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 |
| 1528.0<br>1529.0<br>1530.0<br>1531.0<br>1532.0<br>1533.0<br>1534.0<br>1535.0<br>1536.0 | 52.2<br>75.0<br>120.0<br>43.9<br>46.8<br>42.9<br>53.7        | 46.3<br>47.1<br>46.8<br>42.0<br>47.2                                 | 120<br>120<br>120<br>120<br>120<br>120<br>120<br>120 | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3        | 1.49<br>1.28<br>1.14<br>0.99<br>1.36<br>1.35<br>1.37<br>1.25<br>1.91 | 27.89<br>27.91<br>27.93<br>27.94<br>27.96<br>27.98<br>28.00<br>28.02<br>28.13<br>28.14 | 193488<br>193626<br>193722<br>193782<br>193946<br>194100<br>194268<br>194402<br>195168<br>195222 | 70.00<br>48.69<br>30.43<br>83.18<br>78.11<br>85.21<br>67.97<br>388.53    | 215.40<br>215.15<br>214.86<br>214.54<br>214.32<br>214.08<br>213.86<br>213.61<br>213.91<br>213.60 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 |
| 1538.0<br>1539.0<br>1540.0<br>1541.0<br>1542.0<br>1543.0<br>1544.0<br>1546.0<br>1546.0 | 53.9<br>8.8<br>138.3<br>105.5<br>7.0<br>3.5                  | 43.3<br>41.9<br>42.2<br>42.0<br>42.1<br>42.4<br>43.0<br>44.2         | 125<br>125<br>125<br>125<br>125<br>125<br>125<br>125 | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3 | 1.03<br>1.09<br>1.26<br>1.88<br>0.95<br>1.04<br>1.96<br>2.20<br>1.73 | 28.15<br>28.16<br>28.18<br>28.29<br>28.30<br>28.31<br>28.45<br>28.73<br>28.80<br>28.81 | 195288<br>195369<br>195508<br>196361<br>196415<br>196486<br>197557<br>199700<br>200214<br>200283 | 39.61<br>67.76<br>415.00<br>26.41<br>34.62<br>521.71<br>1043<br>250.14   | 212.78<br>212.48<br>213.00<br>214                                                                | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 |
| 1548.0<br>1549.0<br>1550.0<br>1551.0<br>1552.0<br>1553.0<br>1554.0<br>1555.0<br>1556.0 |                                                              | 43.1<br>43.0<br>36.8<br>29.0<br>31.9                                 |                                                      | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3 | 1.07<br>1.25<br>1.28<br>1.68<br>1.34<br>1.17<br>1.22<br>1.36<br>1.38 | 28.82<br>28.84<br>28.86<br>28.94<br>28.99<br>28.99<br>29.02<br>29.05<br>29.05<br>29.12 | 201505<br>201646<br>201844<br>202071                                                             | 63.91<br>70.00<br>288.10<br>134.92<br>68.98<br>96.37<br>110.57<br>146.08 | 213.37<br>213.50<br>213.37<br>213.13<br>212.93<br>212.76                                         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 |

| DEPTH                                                                                  | ROP                                                               | WOB                                                                          | RPM                                                  | MW                                            | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                                          | CCOST                                                                                            | рþ                                     | FG                                                           |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1558.0<br>1559.0<br>1560.0<br>1561.0<br>1562.0<br>1563.0<br>1564.0<br>1565.0<br>1566.0 | 42.9<br>45.0<br>35.6<br>41.9<br>20.3<br>33.6<br>22.4<br>36.4      | 42.3<br>44.3<br>43.9<br>42.6<br>23.6                                         | 125<br>125<br>125<br>125<br>125<br>125               | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.34<br>1.36<br>1.36<br>1.44<br>1.37<br>1.36<br>1.43<br>1.53                 | 29.15<br>29.17<br>29.19<br>29.22<br>29.24<br>29.39<br>29.37<br>29.37<br>29.43          | 202784<br>202959<br>203125<br>203336<br>203515<br>203884<br>204107<br>204442<br>204648<br>204911 | 85.21<br>81.16<br>102.46<br>87.24<br>179.56<br>108.55<br>163.33<br>100.43                      | 212.28<br>212.07<br>211.86<br>211.68<br>211.48<br>211.42<br>211.26<br>211.18<br>211.00<br>210.86 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 |
| 1568.0<br>1569.0<br>1570.0<br>1571.0<br>1572.0<br>1573.0<br>1574.0<br>1575.0<br>1576.0 | 25.9<br>7.9<br>35.0<br>34.6<br>32.1<br>27.3<br>31.9<br>31.6       | 36.5<br>21.4<br>32.2<br>36.0<br>33.1<br>32.4                                 | 125<br>125<br>125<br>125<br>125<br>125               | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.48<br>1.46<br>1.59<br>1.31<br>1.36<br>1.35<br>1.39<br>1.41<br>1.39         | 29.47<br>29.50<br>29.63<br>29.66<br>29.69<br>29.72<br>29.76<br>29.76<br>29.84          | 205182<br>205471<br>206425<br>206640<br>206857<br>207090<br>207365<br>207600<br>207838<br>208000 | 141.01<br>464.62<br>104.49<br>105.50<br>113.62<br>133.91<br>114.63<br>115.65                   | 210.86<br>210.69<br>210.53<br>210.41<br>210.26                                                   | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0<br>15.0 |
| 1578.0<br>1579.0<br>1580.0<br>1581.0<br>1582.0<br>1583.0<br>1584.0<br>1585.0<br>1586.0 | 20.6<br>25.2<br>31.6<br>35.0<br>18.5<br>16.2<br>19.7<br>25.5      | 30.3<br>31.7<br>32.3<br>32.4<br>32.4<br>39.4<br>38.7<br>38.4<br>40.0<br>39.1 | 125<br>125<br>125<br>125<br>125<br>125<br>125<br>125 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.32<br>1.47<br>1.42<br>1.35<br>1.32<br>1.61<br>1.64<br>1.57<br>1.51         | 29.87<br>29.92<br>29.96<br>29.99<br>30.02<br>30.08<br>30.14<br>30.19<br>30.23          | 208598<br>208896<br>209134<br>209348<br>209755<br>210217<br>210598                               | 113.62<br>177.53<br>145.07<br>115.65<br>104.49<br>197.82<br>225.21<br>185.64<br>143.04         | 209.69<br>209.59<br>209.44<br>209.27<br>209.26<br>209.28<br>209.24<br>209.14                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.0<br>15.1<br>15.1<br>15.1<br>15.1<br>15.1<br>15.1<br>15.1 |
| 1588.0<br>1589.0<br>1590.0<br>1591.0<br>1592.0<br>1593.0<br>1593.0<br>1594.0<br>1595.0 | 31.6<br>35.0<br>31.9<br>25.9<br>28.8<br>26.5<br>5.0<br>2.9<br>3.9 | 38.1<br>38.3<br>37.4<br>39.8<br>38.5<br>37.6<br>40.1<br>42.1<br>51.4<br>49.8 | 100<br>100<br>100<br>100                             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.32<br>1.34<br>1.30<br>1.36<br>1.41<br>1.37<br>1.42<br>2.01<br>2.21<br>1.96 | 30.30<br>30.33<br>30.36<br>30.39<br>30.43<br>30.46<br>30.50<br>30.70<br>31.04<br>31.30 | 211516<br>211687<br>211876<br>212107<br>212316<br>212542<br>213736<br>215167<br>215938           | 108.55<br>115.65<br>104.49<br>114.63<br>141.01<br>126.81<br>137.96<br>726.34<br>1248<br>939.38 | 208.74<br>208.57<br>208.43<br>208.32<br>208.20<br>208.09<br>208.89<br>211<br>211.63              | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.1<br>15.1<br>15.1<br>15.1<br>15.1<br>15.1<br>15.1         |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOUR                                  | 8516<br>S 44                                                                           | 4<br>. 00<br>. 49                                           | SI<br>TR                               | ZE<br>IP                                      | CODE<br>TIME<br>TURNS                                                        | 517<br>12.250<br>6.3<br>156262                                       | NOZ<br>BIT                                                                   | ERVAL<br>ZLES<br>RUN<br>DITION                                   |                                                                                          | 0- 2016.0<br>16 16 18<br>418.0<br>B4 G0.250                                                              |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| DEPTH                                                                        | ROP                                                                                    | WOB                                                         | RPM                                    | МЫ                                            | "d "c                                                                        | HOURS                                                                | TURNS                                                                        | ICOST                                                            | CCOST                                                                                    | PP FG                                                                                                    |
|                                                                              | 7.0 2<br>13.5 2<br>13.1 2                                                              | 23.1                                                        | 52                                     | 9.2                                           | 1.35<br>1.22<br>1.24                                                         | 0.14<br>0.22<br>0.29                                                 | 429<br>661<br>890                                                            | 522<br>271<br>279                                                | 32045<br>16158<br>10865                                                                  | 8.4 15.1<br>8.4 15.1<br>8.4 15.1                                                                         |
| 1603.0<br>1604.0<br>1605.0<br>1605.0<br>1607.0<br>1607.0<br>1609.0<br>1610.0 | 35.6 2<br>14.3 2<br>16.1 3<br>17.4 2<br>18.3 3<br>21.4 4<br>28.3 4<br>55.5 4<br>33.6 4 | 9.1<br>(1.3<br>(8.4<br>(4.3<br>(2.3<br>(2.2<br>(1.4<br>(1.5 | 50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 0.94<br>1.27<br>0.64<br>1.20<br>1.25<br>1.28<br>1.18<br>0.89<br>1.13         | 0.32<br>0.39<br>0.40<br>0.46<br>0.51<br>0.56<br>0.57<br>0.61<br>0.64 | 974<br>1184<br>1210<br>1382<br>1547<br>1687<br>1792<br>1838<br>1931<br>2249  | 102<br>256<br>31<br>210<br>200<br>170<br>129<br>56<br>109<br>323 | 8174<br>6591<br>5497<br>4742<br>4174<br>3729<br>3369<br>3068<br>2822<br>2629             | 8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1             |
| 1613.0<br>1614.0<br>1615.0<br>1616.0<br>1617.0<br>1618.0<br>1619.0<br>1620.0 | 10.8 4 18.8 4 20.0 4 30.0 4 32.7 4 13.4 4 22.4 4 18.2 1 57.1 2                         | 4.0<br>2.5<br>1.2<br>0.7<br>3.0<br>3.3<br>7.1               | 60<br>60<br>60<br>60<br>60<br>60<br>60 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.60<br>1.40<br>1.37<br>1.22<br>1.18<br>1.51<br>1.34<br>1.09<br>0.82<br>0.94 | 0.82<br>0.87<br>0.92<br>0.96<br>0.99<br>1.06<br>1.11<br>1.16<br>1.18 | 2581<br>2772<br>2952<br>3072<br>3182<br>3450<br>3611<br>3809<br>3872<br>3924 | 337<br>194<br>183<br>122<br>112<br>272<br>163<br>201<br>64<br>53 | 2466<br>2314<br>2181<br>2060<br>1952<br>1863<br>1778<br>1703<br>1629<br>1560             | 8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1 |
| 1623.0 5 1624.0 6 1625.0 5 1626.0 4 1627.0 6 1628.0 6 1629.0 6               | 24.7 3<br>53.7 3<br>50.0 2<br>58.1 4<br>49.3 3<br>50.0 4<br>50.0 4<br>57.9 4<br>58.1 3 | 0.4<br>1.7<br>0.6<br>9.6<br>2.5<br>2.8<br>1.4<br>7.6        | 60<br>60<br>60<br>60<br>60<br>60<br>60 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 0.80<br>0.93<br>0.82<br>0.99<br>1.04<br>0.99<br>0.99<br>0.94<br>0.97         | 1.20<br>1.22<br>1.24<br>1.26<br>1.28<br>1.29<br>1.31<br>1.32<br>1.34 | 3962<br>4029<br>4089<br>4151<br>4224<br>4284<br>4344<br>4397<br>4459<br>4773 | 39<br>61<br>63<br>74<br>61<br>61<br>54<br>63                     | 1497<br>1439<br>1386<br>1337<br>1292<br>1250<br>1210<br>1173<br>1138                     | 8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1 |
| 1633.0 7 1634.0 1635.0 10 1635.0 10 1637.0 6 1637.0 6 1639.0 6 1640.0 8      | 11.9 4<br>36.0 3<br>9.2 4<br>10.0 4<br>12.9 3<br>56.7 4<br>54.3 4<br>53.2 4<br>59.2 4  | 5.9<br>4.7<br>2.8<br>9.7<br>3.1<br>2.9<br>2.6               | 60<br>60<br>60<br>60<br>60<br>60<br>60 | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2        | 1.55<br>1.11<br>1.66<br>0.82<br>0.79<br>0.96<br>0.97<br>0.98<br>0.89         | 1.51<br>1.54<br>1.65<br>1.66<br>1.67<br>1.68<br>1.70<br>1.72<br>1.72 | 5076<br>5176<br>5567<br>5603<br>5638<br>5692<br>5748<br>5805<br>5850<br>5902 | 56.81<br>57.82<br>45.65                                          | 1090<br>1061<br>1043<br>1016<br>989.97<br>965.99<br>943.26<br>921.67<br>900.81<br>881.09 | 8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1<br>8.4 15.1 |

| DEPTH                                                                                  | ROP                                                                            | WOB                                                          | RPM                                                | MW                                            | "d"c                                                                         | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                                           | CCOST                                                                                            | PP                                     | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1642.0<br>1643.0<br>1644.0<br>1645.0<br>1646.0<br>1647.0<br>1648.0<br>1649.0<br>1650.0 | 61.0<br>27.7<br>50.0<br>58.1<br>75.0<br>128.6<br>72.0<br>27.3                  | 39.4<br>40.0<br>41.5<br>42.7                                 | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 0.88<br>0.93<br>1.25<br>1.02<br>0.98<br>0.90<br>0.73<br>0.93<br>1.28<br>1.34 | 1.75<br>1.77<br>1.81<br>1.83<br>1.84<br>1.86<br>1.87<br>1.88                 | 5946<br>6005<br>6135<br>6207<br>6269<br>6317<br>6345<br>6395<br>6527<br>6696           | 59.85<br>131.88<br>73.04<br>62.90<br>48.69<br>28.40<br>50.72<br>133.91                          | 862.08<br>844.25<br>828.76<br>812.68<br>797.06<br>781.79<br>766.72<br>752.68<br>740.78<br>730.04 | 8.4<br>8.4                             | 15.1<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2 |
| 1652.0<br>1653.0<br>1654.0<br>1655.0<br>1656.0<br>1657.0<br>1659.0<br>1669.0<br>1661.0 | 62.1<br>27.3<br>28.8<br>24.3<br>24.5<br>22.9<br>24.7                           | 37.2<br>43.5<br>17.9<br>14.8<br>6.1<br>32.4<br>44.3          | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>66<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.46<br>1.32<br>0.99<br>0.99<br>0.93<br>0.81<br>1.20<br>1.37<br>1.36         | 2.03<br>2.08<br>2.10<br>2.13<br>2.17<br>2.21<br>2.25<br>2.29<br>2.33<br>2.44 | 7122<br>7180<br>7312<br>7437<br>7585<br>7732<br>7905<br>8076                           | 244.48<br>187.67<br>58.84<br>133.91<br>126.81<br>150.14<br>149.12<br>159.27<br>148.11<br>381.43 | 711.35<br>699.70<br>689.77<br>680.07<br>671.09<br>662.39<br>654.14<br>645.98                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2         |
| 1662.0<br>1663.0<br>1664.0<br>-1665.0<br>1666.0<br>1667.0<br>1669.0<br>1670.0          | 25.5<br>41.9<br>41.9<br>43.9<br>112.5<br>6.8<br>34.0<br>70.6<br>19.8<br>10.3   | 40.4<br>40.7<br>39.8<br>33.8<br>43.2<br>42.8<br>46.1<br>42.9 | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.34<br>1.15<br>1.15<br>1.13<br>0.27<br>1.80<br>1.24<br>1.02<br>1.43         | 2.48<br>2.50<br>2.53<br>2.55<br>2.56<br>2.70<br>2.73<br>2.75<br>2.90         | 8679<br>8779<br>8879<br>8975<br>9012<br>9627<br>9751<br>9810<br>10023                  | 87.24<br>83.18<br>32.46<br>534.61<br>107.53                                                     | 625.57<br>617.42<br>609.44<br>600.96<br>600.00<br>592.96<br>585.34<br>579.77                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2 |
| 1672.0<br>1673.0<br>1674.0<br>1675.0<br>1676.0<br>1677.0<br>1679.0<br>1679.0<br>1680.0 | 116.1<br>112.5<br>80.0<br>72.0<br>20.7<br>76.6<br>46.2<br>46.2<br>24.8<br>29.8 | 39.1<br>38.3<br>39.1<br>36.9<br>38.2<br>41.7<br>40.8<br>36.1 | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 0.78<br>0.81<br>0.92<br>0.96<br>1.35<br>0.93<br>1.13<br>1.12<br>1.28         | 2.90<br>2.91<br>2.93<br>2.94<br>2.99<br>3.00<br>3.02<br>3.04<br>3.08<br>3.12 | 10873<br>10964<br>11055<br>11224                                                       | 32.46<br>45.65<br>50.72<br>176.51<br>47.68<br>79.13                                             |                                                                                                  | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2 |
| 1682.0<br>1683.0<br>1684.0<br>1685.0<br>1687.0<br>1687.0<br>1689.0<br>1699.0           | 38.3<br>53.7<br>63.2<br>43.4<br>47.4<br>42.4<br>37.9<br>50.0<br>40.4<br>25.0   | 41.6<br>43.0<br>41.6<br>41.1<br>41.7<br>41.5<br>37.9         | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2               | 1.08<br>1.02<br>1.16<br>1.12<br>1.15<br>1.20<br>1.10                         | 3.14<br>3.16<br>3.20<br>3.22<br>3.25<br>3.27<br>3.29<br>3.32<br>3.36         | 11475<br>11553<br>11620<br>11717<br>11805<br>11905<br>12015<br>12099<br>12203<br>12371 | 67.97<br>57.82<br>84.20<br>77.10<br>86.23<br>96.37<br>73.04                                     | 511.98<br>506.76<br>501.54<br>496.74<br>491.97<br>487.41<br>483.07<br>478.56<br>474.34<br>470.81 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2 |

Later Asset Control of the Control

segment of the second segments of the second

....

| DEPTH                                                                                  | ROP                                                  | MOB                                                                         | RPM                                                | MW                                            | "d "c:                                                                       | HOURS                                                                        | TURNS                                                       | ICOST                                                                                           | ccost                                                                        | pр                                            | F (G                                                         |
|----------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1692.0<br>1693.0<br>1694.0<br>1695.0<br>1696.0<br>1697.0<br>1698.0<br>1699.0<br>1700.0 | 16.4<br>37.5<br>33.6<br>9.1<br>5.7<br>14.8<br>4.0    | 25.1<br>11.6<br>8.5<br>12.5<br>13.5<br>20.5<br>30.4<br>10.6<br>43.5<br>48.3 | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.18<br>1.02<br>0.99<br>0.87<br>0.91<br>1.37<br>1.68<br>1.06                 | 3.40<br>3.45<br>3.51<br>3.54<br>3.57<br>3.68<br>3.86<br>3.92<br>4.17<br>4.27 | 13140<br>13265<br>13725<br>14465<br>14749<br>15801          | 160.28<br>187.67<br>223.18<br>97.39<br>108.55<br>399.69<br>644.17<br>246.51<br>915.03<br>356.07 | 464.56<br>462.05<br>458.29<br>454.72<br>454.17<br>456.07<br>453.99           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2 |
| 1702.0<br>1703.0<br>1704.0<br>1705.0<br>1706.0<br>1707.0<br>1708.0<br>1710.0<br>1711.0 | 12.8<br>20.7<br>54.5<br>20.5<br>39.6<br>36.0<br>64.3 | 47.3<br>47.8<br>46.4<br>48.1<br>49.0                                        | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.59<br>1.41<br>1.63<br>1.45<br>1.12<br>1.18<br>1.18<br>1.19                 | 4.34<br>4.38<br>4.46<br>4.51<br>4.52<br>4.57<br>4.60<br>4.63<br>4.64         | 16666<br>16994<br>17197<br>17274<br>17479<br>17585          | 240.42<br>155.21<br>285.06<br>176.51<br>66.95<br>178.54<br>92.31<br>101.44<br>56.81<br>195.79   | 452.57<br>450.99<br>448.42<br>444.89<br>442.45<br>439.27<br>436.22<br>432.83 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.2<br>15.3 |
| 1712.0<br>1713.0<br>1714.0<br>1715.0<br>1716.0<br>1717.0<br>1718.0<br>1719.0<br>1720.0 | 14.8<br>55.4<br>7.3<br>15.3<br>9.2<br>8.4<br>7.6     | 45.0<br>45.7<br>48.5<br>46.2<br>47.1<br>45.9<br>47.6                        | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.59<br>1.59<br>1.09<br>1.81<br>1.58<br>1.73<br>1.78<br>1.80<br>1.75         | 4.77<br>4.83<br>4.85<br>4.99<br>5.05<br>5.16<br>5.28<br>5.41<br>5.55         | 18574<br>18650<br>19222<br>19496<br>19951<br>20453<br>21007 | 238.39<br>395.63<br>436.21<br>481.86<br>400.71                                                  | 425.15<br>423.57<br>423.33<br>423.44                                         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 |
| 1722.0<br>1723.0<br>1724.0<br>1725.0<br>1726.0<br>1727.0<br>1728.0<br>1729.0<br>1730.0 | 124.1<br>20.8<br>12.6<br>13.7<br>10.9<br>25.7        | 48.3<br>49.0<br>46.9<br>48.1<br>40.3<br>46.3<br>49.0                        | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 0.89<br>0.83<br>1.47<br>1.65<br>1.60<br>1.70<br>1.31<br>1.19<br>1.13         | 5.56<br>5.57<br>5.61<br>5.77<br>5.86<br>5.90<br>5.92<br>5.94<br>5.96         | 22490<br>22876                                              | 29.42<br>175.50<br>290.13<br>265.78<br>335.78<br>142.02<br>84.20<br>66.95                       | 410.81<br>410.23                                                             | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 |
| 1732.0<br>1733.0<br>1734.0<br>1735.0<br>1736.0<br>1737.0<br>1738.0<br>1739.0<br>1740.0 | 75.0<br>72.0<br>26.1<br>80.0<br>83.7<br>12.7         | 43.0<br>49.4<br>47.2<br>47.6<br>25.6<br>36.3                                | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>63<br>60 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.05<br>0.93<br>0.94<br>1.00<br>1.02<br>1.15<br>0.90<br>0.87<br>1.54<br>1.78 | 5.97<br>5.98<br>6.00<br>6.01<br>6.02<br>6.06<br>6.07<br>6.09<br>6.16<br>6.29 | 23778<br>23828<br>24124                                     | 42.61<br>38.55<br>48.69<br>50.72<br>139.99<br>45.65                                             | 383.60<br>381.19<br>380.53                                                   | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 |

| DEPTH                                                                                  | ROP                                                      | мов                                                                          | RPM                                          | MW                                            | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                                           | CCOST                                                              | pр                                     | FG                                                           |
|----------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1742.0<br>1743.0<br>1744.0<br>1745.0<br>1746.0<br>1747.0<br>1749.0<br>1750.0           | 4.5<br>5.9<br>4.7<br>6.7<br>8.7<br>37.1<br>64.3<br>85.7  | 48.5<br>49.9<br>51.3<br>50.6<br>49.3<br>46.9<br>41.5<br>36.7<br>44.3         | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.98<br>1.98<br>1.90<br>1.98<br>1.83<br>1.71<br>1.15<br>0.93<br>0.88         | 6.52<br>6.75<br>6.92<br>7.13<br>7.28<br>7.39<br>7.42<br>7.44<br>7.45                   | 26218<br>26830<br>27598                                                                | 98.40<br>56.81<br>42.61                                                                         | 387.30<br>388.90<br>391.56<br>392.62<br>392.80<br>390.84<br>388.63 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 |
| 1752.0<br>1753.0<br>1754.0<br>1755.0<br>1756.0<br>1757.0<br>1758.0<br>1759.0<br>1760.0 | 102.9<br>36.4<br>2.6<br>6.2<br>3.3<br>2.2<br>2.8         | 43.0                                                                         | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 0.80<br>0.93<br>0.84<br>1.22<br>2.13<br>1.83<br>2.11<br>2.22<br>2.13         | 7.47<br>7.48<br>7.49<br>7.52<br>7.91<br>8.07<br>8.37<br>8.37<br>9.42                   | 28824<br>28874<br>28909<br>29008<br>30401<br>30979<br>32060<br>33664<br>34940<br>35836 | 50.72<br>35.51<br>100.43<br>1413                                                                | 388<br>396<br>401                                                  | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 |
| 1762.0<br>1763.0<br>1764.0<br>1765.0<br>1766.0<br>1767.0<br>1768.0<br>1769.0<br>1770.0 | 2.6<br>2.8<br>2.4<br>24.8<br>5.8<br>4.0<br>24.2<br>7.1   | 47.9<br>48.0<br>50.9<br>49.9<br>37.3<br>30.9<br>37.4<br>46.3<br>49.3         | 60<br>60<br>60<br>60<br>60<br>60<br>60       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 2.13<br>2.15<br>2.16<br>2.21<br>1.24<br>1.63<br>1.85<br>1.34<br>1.81<br>2.00 | 9.78<br>10.17<br>10.52<br>10.94<br>10.98<br>11.15<br>11.41<br>11.45<br>11.59           | 42091<br>42997<br>43146<br>43656                                                       | 1341<br>1395<br>1305<br>1526<br>147.09<br>632.00<br>919.09<br>151.15<br>517.37<br>928.22        | 427.58<br>430.47<br>428.84<br>429.36                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3 |
| 1772.0<br>1773.0<br>1774.0<br>1775.0<br>1776.0<br>1777.0<br>1778.0<br>1779.0<br>1780.0 | 3.8<br>11.9<br>13.9<br>8.3<br>5.1<br>4.7<br>10.1<br>24.0 | 48.8<br>49.9<br>48.9<br>51.8<br>51.7<br>51.1<br>46.8<br>4.0                  | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 9.2<br>9.2<br>9.2<br>9.3<br>9.3<br>9.3        | 1.99<br>2.04<br>1.63<br>1.56<br>1.77<br>1.95<br>1.97<br>1.64<br>0.75         | 12.08<br>12.35<br>12.43<br>12.50<br>12.62<br>12.62<br>13.03<br>13.13<br>13.17          | 46383<br>46685<br>46944<br>47378<br>48089<br>48850<br>49207                            | 879.52<br>958.65<br>306.36<br>262.74<br>440.27<br>721.27<br>721.99<br>362.16<br>152.17<br>59.85 | 437.80<br>437.06<br>436.07<br>436.09<br>437.69<br>439.55<br>439.12 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.3<br>15.4 |
| 1782.0<br>1783.0<br>1784.0<br>1785.0<br>1786.0<br>1787.0<br>1788.0<br>1789.0<br>1790.0 | 66.7<br>60.0<br>18.4<br>97.3<br>46.2<br>10.1<br>6.4      | 23.7<br>26.3<br>26.8<br>10.3<br>17.4<br>29.0<br>31.2<br>46.3<br>50.0<br>49.7 | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60 | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.2<br>9.3 | 0.80<br>0.83<br>0.86<br>0.96<br>0.64<br>0.96<br>1.46<br>1.80                 | 13.20<br>13.22<br>13.24<br>13.29<br>13.30<br>13.32<br>13.42<br>13.58<br>13.67<br>13.72 | 49816<br>49894<br>50252<br>50818<br>51155                                              | 54.78<br>60.87<br>198.83<br>37.53<br>79.13<br>363.17                                            | 426.05<br>424.22<br>423.90<br>424.68<br>424.25                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4         |

the second of the second of the second of the second of the second of the second of the second of the second of

| DEPTH                                                                                  | ROP                                                     | WOR                                                                  | RPM                                                      | MW                                            | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                                | CCOST                                                                                | pр                                            | FG                                                           |
|----------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1792.0<br>1793.0<br>1794.0<br>1795.0<br>1796.0<br>1797.0<br>1798.0<br>1799.0<br>1800.0 | 62.6<br>102.9<br>8.3<br>54.5                            | 52.5<br>50.6<br>34.7<br>33.1<br>36.0<br>36.9                         | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.08<br>0.99<br>0.86<br>1.79<br>1.09<br>1.20<br>0.70<br>0.72<br>0.72         | 13.74<br>13.75<br>13.76<br>13.88<br>13.90<br>13.94<br>13.95<br>13.96<br>13.97          | 51385<br>51443<br>51478<br>51910<br>51976<br>52113<br>52143<br>52173<br>52210<br>52239 | 67.97<br>58.33<br>35.51<br>438.24<br>66.95<br>138.98<br>30.43<br>30.43               | 421.08<br>419.22<br>417.26<br>417.37<br>415.60                                       | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4         |
| 1802.0<br>1803.0<br>1804.0<br>1805.0<br>1805.0<br>1807.0<br>1807.0<br>1809.0<br>1810.0 | 69.9<br>41.9<br>6.5<br>12.4<br>2.7<br>3.7<br>2.9<br>3.3 | 42.0<br>43.4<br>49.8<br>49.7<br>36.0<br>45.5<br>47.4<br>51.5<br>49.9 | 60<br>60<br>76<br>80<br>80<br>80<br>80<br>70             | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 0.93<br>0.95<br>1.18<br>1.93<br>1.55<br>2.20<br>2.11<br>2.27<br>2.18<br>2.13 | 13.99 14.00 14.03 14.18 14.26 14.63 14.90 15.24 15.55                                  | 52289<br>52340<br>52426<br>53126<br>53513<br>55300<br>56581<br>58240<br>59705<br>60927 | 52.24<br>87.24<br>559.97<br>294.19<br>1359<br>974.88<br>1262<br>1115                 | 404.93<br>403.21<br>401.68<br>402.44<br>401.92<br>407<br>409.21<br>413<br>417<br>420 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4         |
| 1812.0<br>1813.0<br>1814.0<br>1815.0<br>1816.0<br>1817.0<br>1818.0<br>1819.0<br>1820.0 | 2.1<br>3.2<br>3.2<br>2.0<br>2.8<br>3.3                  |                                                                      | 70<br>70<br>56<br>50<br>50<br>50<br>50                   | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 0.74<br>0.79<br>2.09<br>2.20<br>1.99<br>2.04<br>2.21<br>2.10<br>2.02<br>2.04 | 15.85<br>15.86<br>16.28<br>16.74<br>17.01<br>17.33<br>17.83<br>18.18<br>18.49<br>18.81 | 60970<br>61011<br>62401<br>63802<br>64612<br>65550<br>67050<br>68121<br>69030<br>69998 | 37.53<br>35.51<br>1515<br>1705<br>987.03<br>1141<br>1826<br>1304<br>1107<br>1178     | 417.81<br>416.03<br>421<br>427<br>429.61<br>433<br>439<br>443<br>446<br>449          | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4         |
| 1822.0<br>1823.0<br>1824.0<br>1825.0<br>1826.0<br>1827.0<br>1827.5<br>1828.0<br>1829.0 | 2.6<br>3.0<br>3.1<br>3.3<br>3.0<br>5.1<br>3.9<br>4.8    | 50.1<br>49.4<br>49.5<br>50.0<br>49.3<br>50.0<br>49.9<br>50.4<br>48.7 | 50<br>50<br>50<br>50<br>50<br>50<br>50                   | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2        | 2.07<br>2.10<br>2.05<br>2.05<br>2.02<br>2.06<br>1.87<br>1.97<br>1.88<br>1.85 | 19.15<br>19.54<br>19.87<br>20.19<br>20.50<br>20.83<br>20.93<br>21.06<br>21.27<br>21.48 | 76746<br>77373                                                                         | 1259<br>1405<br>1217<br>1178<br>1107<br>1217<br>720.26<br>942.42<br>762.86<br>771.99 | 471.41<br>472.67                                                                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4 |
| 1831.0<br>1832.0<br>1833.0<br>1834.0<br>1835.0<br>1836.0<br>1837.0<br>1838.0<br>1839.0 | 11.5<br>12.3<br>78.3<br>59.0<br>56.2<br>16.1<br>6.1     | 19.7<br>13.9<br>17.5<br>36.8<br>46.4<br>39.3                         | 50<br>50<br>50<br>50<br>50<br>50<br>65<br>70<br>70<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.82<br>1.32<br>1.08<br>0.68<br>0.69<br>0.82<br>1.43<br>1.88<br>1.69         | 21.68<br>21.77<br>21.85<br>21.86<br>21.88<br>21.90<br>21.96<br>22.13<br>22.25<br>22.34 | 78883<br>79127<br>79165<br>79216<br>79286<br>79547<br>80241<br>80756                   |                                                                                      | 474.47<br>473.72<br>471.91<br>470.18<br>468.47<br>467.46<br>468.03<br>467.95         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4         |

| DEPTH                                                                                  | ROP                                                                          | мов                                                                  | RPM                                                | MW                                            | "d "c                                                                        | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                                            | CCOST                                                               | pр                                     | FG                                                           |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 1841.0<br>1842.0<br>1843.0<br>1844.0<br>1845.0<br>1847.0<br>1847.0<br>1848.0<br>1849.0 | 31.6<br>28.6<br>31.3<br>5.1<br>8.6<br>46.8<br>46.2<br>6.5                    | 37.2<br>36.7<br>33.5<br>38.5<br>32.8<br>28.7<br>33.8<br>41.6<br>47.3 | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>67<br>60 | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2 | 1.19<br>1.21<br>1.23<br>1.84<br>1.58<br>1.01<br>1.06<br>1.78                 | 22.37<br>22.40<br>22.44<br>22.47<br>22.67<br>22.81<br>22.81<br>22.83<br>22.98<br>23.14 | 81554<br>81688<br>82518<br>83007<br>83097<br>83188<br>83812                            |                                                                                                  | 464.51<br>463.14<br>461.73<br>462.78<br>462.63<br>461.09<br>459.56  | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4<br>15.4 |
| 1851.0<br>1852.0<br>1853.0<br>1854.0<br>1855.0<br>1856.0<br>1857.0<br>1858.0<br>1859.0 | 6.4<br>3.4<br>2.3<br>4.3<br>8.3<br>9.5<br>2.9<br>4.5                         | 43.7<br>46.0<br>46.1<br>45.2<br>45.2<br>46.3<br>49.1<br>47.5<br>46.3 | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.89<br>1.80<br>2.02<br>2.16<br>1.93<br>1.72<br>1.70<br>2.10<br>1.93<br>1.81 | 23.36<br>23.52<br>23.81<br>24.25<br>24.48<br>24.71<br>25.05<br>25.27<br>25.43          | 85732<br>86798<br>88375<br>89209                                                       | 807.50<br>572.15<br>1081<br>1600<br>846.05<br>439.25<br>384.47<br>1246<br>813.58<br>579.25       | 462.21<br>465<br>469<br>470.54<br>470.42<br>470.08<br>473<br>474.37 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.4<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5         |
| 1861.0<br>1862.0<br>1863.0<br>1864.0<br>1865.0<br>1866.0<br>1867.0<br>1868.0<br>1869.0 | 7.7<br>26.1<br>39.1<br>85.7<br>66.7<br>53.7<br>36.0<br>44.4<br>28.6<br>60.0  | 38.5<br>34.7<br>43.2<br>42.7<br>39.4<br>33.3<br>33.3                 | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.74<br>1.31<br>1.11<br>0.82<br>0.96<br>1.03<br>1.14<br>1.02<br>1.16<br>0.98 | 25.56<br>25.60<br>25.62<br>25.65<br>25.65<br>25.70<br>25.72<br>25.77                   | 93092<br>93230<br>93322<br>93364<br>93418<br>93485<br>93585<br>93666<br>93792<br>93852 | 42.61<br>54.78<br>67.97<br>101.44<br>82.17                                                       | 473.51<br>472.08<br>470.46<br>468.91<br>467.41<br>466.05<br>464.63  | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5 |
| 1871.0<br>1872.0<br>1873.0<br>1874.0<br>1875.0<br>1876.0<br>1877.0<br>1878.0<br>1879.0 | 37.9<br>20.5<br>50.7<br>16.0<br>34.6<br>48.6<br>25.4<br>13.8<br>12.7<br>21.2 | 45.0<br>44.2<br>30.9<br>23.7<br>30.8<br>32.3<br>30.8<br>42.8         | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60       | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2        | 1.17<br>1.39<br>1.07<br>1.31<br>1.00<br>0.97<br>1.19<br>1.36<br>1.53         | 25.80<br>25.85<br>25.87<br>25.96<br>25.98<br>26.02<br>26.09<br>26.17<br>26.22          | 94523<br>94597<br>94739<br>94999<br>95282                                              | 178.54<br>72.03<br>228.25<br>105.50<br>75.07                                                     | 458.13<br>457.29<br>456.02<br>454.65<br>453.54<br>452.86<br>452.27  | 8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5 |
| 1881.0<br>1882.0<br>1883.0<br>1884.0<br>1885.0<br>1886.0<br>1887.0<br>1888.0<br>1889.0 | 4.6<br>6.1<br>4.4<br>7.0<br>3.8<br>4.7                                       |                                                                      | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60       | 9.2<br>9.2<br>9.2<br>9.2                      | 1.60<br>1.73<br>1.89<br>1.84<br>1.95<br>1.79<br>1.95                         | 26.31<br>26.40<br>26.52<br>26.74<br>26.91<br>27.14<br>27.28<br>27.54<br>27.75<br>27.98 | 96126<br>96567<br>97358<br>97948<br>98766<br>99281<br>100228                           | 337.81<br>345.93<br>447.37<br>802.43<br>598.52<br>830.00<br>521.71<br>961.05<br>777.02<br>830.00 | 450.50<br>451.73<br>452.24<br>453.55<br>453.79<br>455.54<br>456.64  | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5 |

| DEPTH                                                                                  | ROP                                                                  | MOB                                                          | RPM                                                | MU                                            | " cl " c:                                                            | HOURS                                                                                  | TURNS                                                                        | ICOST                                                                                            | CCOST                                                                        | þþ                                                   | FG                                                           |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 1891.0<br>1892.0<br>1893.0<br>1894.0<br>1895.0<br>1897.0<br>1898.0<br>1899.0           | 5.8<br>15.1<br>26.3<br>40.0                                          | 40.3<br>41.6<br>44.3<br>43.0<br>47.2                         | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>60       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.86<br>1.81<br>1.43<br>1.28<br>1.11<br>1.13<br>1.21<br>1.80<br>1.09 | 28.19<br>28.37<br>28.47<br>28.50<br>28.50<br>28.75<br>28.89<br>28.89<br>28.91          | 103437<br>103574<br>103664<br>103754                                         | 629.66<br>241.85<br>138.86<br>91.30<br>91.30<br>830.00<br>521.71<br>71.33                        | 459.59<br>458.05<br>457.77<br>456.54<br>455.31                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5         |
| 1901.0<br>1902.0<br>1903.0<br>1904.0<br>1905.0<br>1906.0<br>1907.0<br>1908.0<br>1909.0 | 77.5<br>38.7<br>40.4<br>35.4<br>21.1<br>24.4<br>44.2<br>26.4<br>17.6 | 44.3<br>44.8<br>44.7<br>47.1<br>48.6<br>50.1<br>49.8         | 60<br>60<br>60<br>60<br>50<br>50<br>50<br>50       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.17<br>1.69<br>1.15<br>1.15<br>1.29<br>1.29<br>1.29                 | 28.96<br>29.08<br>29.10<br>29.13<br>29.15<br>29.20<br>29.24<br>29.27<br>29.30<br>29.36 | 105843<br>105932<br>106034<br>106202<br>106325<br>106393                     | 94.37<br>90.40<br>103.16<br>173.08<br>149.67<br>62.62                                            | 450.63<br>449.50<br>448.60<br>447.63<br>446.46<br>445.46                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5 |
| 1711.0<br>1912.0<br>1912.5<br>1913.0<br>1914.0<br>1915.0<br>1916.0<br>1917.0<br>1918.0 | 19.8<br>30.9<br>40.0<br>25.0<br>44.4<br>52.2<br>30.8<br>46.2<br>20.2 | 50,4<br>49.6<br>50,4<br>49,4<br>49,8<br>35,2<br>29,8<br>38,3 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>68<br>70 | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2        | 1.38<br>1.22<br>1.13<br>1.30<br>1.09<br>1.03<br>1.10<br>0.92<br>1.36 | 29.41<br>29.44<br>29.46<br>29.50<br>29.50<br>29.55<br>29.55<br>29.67                   | 106926<br>196963<br>107023<br>107091<br>107148<br>107246<br>107311<br>107512 | 146,08<br>82,17<br>70,00<br>118,69                                                               | 442.87<br>442.87<br>441.80<br>440.67<br>439.50<br>438.49<br>437.36<br>436.56 | 8,4<br>8,4<br>8,4<br>8,4<br>8,4<br>8,4               | 15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.5         |
| 1920.0<br>1921.0<br>1922.0<br>1923.0<br>1924.0<br>1925.0<br>1926.0<br>1927.0<br>1928.0 | 4.3                                                                  | 40.4<br>40.6<br>40.4<br>40.5<br>41.2<br>47.2<br>48.1<br>48.8 | 70<br>70<br>60<br>60<br>60<br>50<br>50<br>50       | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.29<br>1.36<br>1.35<br>1.66<br>1.90<br>1.95                         | 29.70<br>29.75<br>29.79<br>29.84<br>29.89<br>30.01<br>30.24<br>30.50<br>30.66<br>30.70 | 108041<br>108191<br>108377<br>108556<br>109002<br>109700<br>110482<br>110954 | 128.83<br>166.37<br>152.17<br>188.69<br>181.59<br>452.44<br>841.99<br>951.55<br>575.19<br>134.92 | 433,97<br>433,06<br>432,31<br>431,54<br>431,60<br>432,85<br>434,43<br>434,86 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 15.5<br>15.5<br>15.5<br>15.5<br>15.5<br>15.6<br>15.6         |
| 1930.0<br>1931.0<br>1932.0<br>1933.0<br>1934.0<br>1935.0<br>1935.0<br>1938.0           | 23.8<br>5.5<br>4.2<br>4.9<br>3.0<br>7.3<br>6.1<br>7.2<br>3.0         | 49.7<br>50.4<br>50.5<br>50.5<br>47.3<br>48.3<br>48.3         | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50       | 9,2<br>9,2<br>9,2<br>9,2                      | 1.71                                                                 | 30.74<br>30.92<br>31.16<br>31.36<br>31.49<br>31.56<br>31.69<br>31.86<br>31.99<br>32.32 | 111732<br>112446<br>113058<br>113433<br>113633<br>114042<br>114534           | 869.38<br>744.60<br>456.50<br>243.47<br>498.09                                                   | 433.78<br>435.09<br>436.01<br>436.02<br>435.50<br>435.60<br>436.17           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6                 |

\*\*\*

and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

| DEPTH                                                                                  | ROP                                                        | ыпв                                                                  | RPM                                           | MW "d"c                                                                                                  | HOURS                                                                         | TURNS                                                                        | TCOST                                                                                          | CCOST                                                                     | рp                                            | FG                                                           |
|----------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 1940.0<br>1941.0<br>1942.0<br>1943.0<br>1944.0<br>1945.0<br>1945.0<br>1947.0<br>1948.0 | 3.8<br>6.4<br>11.2<br>30.2<br>36.0<br>43.9<br>48.6<br>38.7 | 48.9<br>47.9<br>49.7<br>50.3<br>49.6<br>49.9<br>48.6<br>46.9<br>48.2 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50  | 9.2 1.96<br>9.2 1.95<br>9.2 1.59<br>9.2 1.59<br>9.2 1.23<br>9.2 1.17<br>9.2 1.08<br>9.2 1.04<br>9.2 1.07 | 32.85<br>33.09<br>33.13<br>33.15<br>33.18<br>33.20<br>33.22                   |                                                                              | 101.44<br>83.18<br>75.07<br>94.34                                                              | 441.63<br>442.01                                                          | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6 |
| 1950.0<br>1951.0<br>1952.0<br>1953.0<br>1954.0<br>1955.0<br>1956.0<br>1957.0<br>1958.0 | 12.6<br>5.7<br>4.9<br>6.6<br>4.6<br>3.6<br>4.7<br>4.0      | 49.1<br>48.6<br>49.6<br>50.4<br>46.7<br>47.0<br>48.4<br>48.5<br>48.6 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50  | 9,2 1,25<br>9,2 1,53<br>9,2 1,83<br>9,2 1,69<br>9,2 1,74<br>9,2 1,97<br>9,2 1,97<br>9,2 1,94<br>9,2 1,95 | 33.36<br>33.54<br>33.74<br>33.89<br>34.11<br>34.38<br>34.59<br>34.84          | 119046<br>119574<br>120183<br>120640<br>121290<br>122116<br>122748<br>123492 | 129.85<br>289.12<br>642.14<br>741.56<br>556.93<br>790.25<br>1006<br>768.95<br>905.90<br>921.12 | 434.43<br>435.00<br>435.00<br>436.22<br>437.21<br>439<br>439.72<br>441.02 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6 |
| 1960.0<br>1961.0<br>1962.0<br>1963.0<br>1964.0<br>1965.0<br>1967.0<br>1967.0<br>1969.0 | 3.3<br>4.8<br>6.5<br>19.4<br>24.3<br>10.3<br>10.9          | 50.2<br>49.6<br>50.5<br>49.0<br>47.9<br>46.9<br>47.0<br>49.3         | 500<br>500<br>500<br>500<br>550<br>550<br>550 | 9.2 1.20<br>9.2 2.02<br>9.2 1.89<br>9.2 1.79<br>9.2 1.36<br>9.2 1.56<br>9.2 1.56<br>9.2 2.03             | 35,62<br>35,83<br>35,99<br>36,04<br>36,08<br>36,18<br>36,27<br>36,57          | 125838<br>126469                                                             | 335.78<br>1108                                                                                 | 445<br>446.12<br>446.43<br>445.73<br>444.92<br>444.68                     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        | 15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6 |
| 1970.0<br>1971.0<br>1972.0<br>1973.0<br>1974.0<br>1975.0<br>1976.0<br>1977.0<br>1978.0 | 17.6<br>5.8<br>4.2<br>3.6<br>4.0<br>8.7<br>28.6            | 51.6<br>47.9<br>50.2<br>52.6<br>54.7<br>54.3<br>50.6<br>44.9<br>49.8 | 50<br>50<br>70<br>70<br>70<br>70<br>70<br>70  | 9.2 1.55<br>9.2 1.40<br>9.2 1.95<br>9.2 2.05<br>9.2 2.12<br>9.2 2.12<br>9.2 1.32<br>9.2 1.32<br>9.2 1.42 | 37.00<br>37.17<br>37.38<br>37.62<br>37.62<br>37.90<br>38.15<br>38.27<br>38.30 | 129971<br>130695<br>131578<br>132588<br>133740<br>134798<br>135280           | 282.02<br>207.96<br>628.96<br>767.93<br>878.51<br>1001<br>920.10<br>418.97<br>127.82           | 446.79<br>447.28<br>448.13<br>449.28<br>451<br>451.98<br>451.90<br>451.04 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.6<br>15.6                                                 |
| 1981.0<br>1981.0<br>1982.0<br>1983.0<br>1983.0<br>1985.0<br>1987.0<br>1988.0           | 23.5<br>15.7<br>30.3<br>22.2<br>30.8<br>9.1<br>6.3<br>5.2  | 44,2                                                                 |                                               | 9.2 1.38<br>9.2 1.38<br>9.2 1.34<br>9.2 1.34<br>9.2 1.38<br>9.2 1.29<br>9.2 1.29<br>9.2 1.94<br>9.2 1.94 | 38.43<br>38.49<br>38.52<br>38.57<br>38.60<br>38.71<br>38.87<br>38.87          | 135956<br>136225<br>136363<br>136552<br>136689<br>137150<br>137819           | 164.34<br>118.69<br>400.71<br>582.29<br>620.84                                                 | 448.71<br>448.15<br>447.30<br>446.57<br>445.72<br>445.60<br>445.96        | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4        |                                                              |

| DEPTH                                                                                            | ROP                                           | WOB                                                                  | RPM                                                                              | MW                                     | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                        | ICOST                                                                                           | CCOST                                                                        | PP                                     | FG                                                   |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| 1990.0<br>1991.0<br>1992.0<br>1993.0<br>1994.0<br>1995.0<br>1996.0<br>1997.0                     | 3.1<br>5.4<br>5.3<br>4.5<br>5.4<br>5.0<br>4.7 | 51.3<br>51.8<br>52.8<br>54.1<br>52.7<br>55.0<br>55.1<br>53.9<br>54.1 | 70<br>45<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 9,2<br>9,2<br>9,2<br>9,2<br>9,2<br>9,2 | 2.09<br>2.06<br>1.84<br>1.87<br>1.91<br>1.88<br>1.88<br>1.89<br>1.72         | 39.48<br>39.80<br>39.98<br>40.17<br>40.39<br>40.58<br>40.77<br>40.97<br>41.18<br>41.31 | 141298<br>141795<br>142302<br>142905<br>143418<br>143922<br>144467<br>145038 | 897.78<br>1179<br>671.56<br>685.76<br>815.61<br>693.88<br>681.71<br>737.50<br>771.99<br>467.66  | 450.60<br>451.20<br>452.12<br>452.73<br>453.30<br>454.01<br>454.81           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6<br>15.6 |
| 2000.0<br>2001.0<br>2002.0<br>2003.0<br>2004.0<br>2005.0<br>2006.0<br>2007.0<br>2008.0           | 10.6<br>17.1<br>5.6                           | 51.4<br>52.4<br>54.8<br>53.9<br>51.0<br>49.7                         | 45<br>45<br>45<br>45<br>45<br>60<br>60                                           | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.27<br>1.14<br>1.06<br>1.54<br>1.89<br>1.92<br>1.65<br>1.49<br>1.95<br>2.04 | 41.38<br>41.40<br>41.48<br>41.68<br>41.92<br>42.01<br>42.07<br>42.25                   | 145563<br>145623<br>145827<br>146373<br>147020<br>147345<br>147556<br>148195 | 141.01<br>101.44<br>81.16<br>275.93<br>739.53<br>874.45<br>344.91<br>214.05<br>648.23<br>884.60 | 453.18<br>452.26<br>451.83<br>452.54<br>453.57<br>453.31<br>452.72<br>453.20 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.6<br>15.6<br>15.6<br>15.7<br>15.7<br>15.7<br>15.7 |
| 2010.0<br>2011.0<br>2012.0<br>2013.0<br>2014.0<br>2015.0<br>2016.0                               | 4.0<br>3.3<br>3.0<br>4.2<br>3.2               | 51.5<br>49.6<br>51.9<br>50.8<br>49.1<br>50.5<br>50.1                 | 60<br>60<br>60<br>60<br>60<br>60                                                 | 9,2<br>9,2<br>9,2<br>9,2<br>9,2        | 2.10<br>2.02<br>2.12<br>2.14<br>1.99<br>2.11<br>2.03                         | 43.04<br>43.34<br>43.68<br>43.92<br>44.23                                              | 152137<br>153357<br>154208<br>155345                                         | 1080<br>921.12<br>1113<br>1238<br>863.29<br>1153<br>930.25                                      | 458<br>460<br>461.33<br>463                                                  | 8,4<br>8,4<br>8,4<br>8,4               | 15.7<br>15.7<br>15.7<br>15.7<br>15.7<br>15.7         |
| BIT NUMBE<br>HTC J22<br>COST<br>TOTAL HOU                                                        | 851                                           | 5<br>16.00<br>20.48                                                  | S                                                                                | ADC 0<br>IZE<br>RIP 1<br>OTAL          |                                                                              | 517<br>12.250<br>6.6<br>78127                                                          | NOZ<br>BIT                                                                   | ERVAL<br>ZLES<br>RUN<br>DITION                                                                  |                                                                              |                                        | 6 18<br>54.0                                         |
| DEPTH                                                                                            | ROP                                           | MOB                                                                  | RPM                                                                              | ММ                                     | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                        | ICOST                                                                                           | ccost                                                                        | PР                                     | FG                                                   |
| 2017.0<br>2018.0<br>2019.0                                                                       | 4.1                                           | 27.2<br>33.5<br>38.6                                                 | 47<br>49<br>53                                                                   | 9.2                                    | 1.69<br>1.71<br>1.76                                                         | 0,32<br>0,57<br>0,77                                                                   | 908<br>1626<br>2284                                                          | 1168<br>897<br>750                                                                              | 33787<br>17342<br>11811                                                      | 8.4                                    | 15.7<br>15.7<br>15.7                                 |
| 2020.0<br>2021.0<br>2022.0<br>2023.0<br>2024.0<br>2025.0<br>2026.0<br>2027.0<br>2028.0<br>2029.0 | 5.9<br>6.4<br>6.1                             | 46.7<br>46.3<br>46.7                                                 | 60<br>64<br>65<br>65<br>65<br>65<br>65<br>65                                     | 9.2<br>9.2<br>9.2<br>9.2<br>9.2<br>9.2 | 1.74<br>1.77<br>1.84<br>1.86<br>1.62<br>1.56<br>1.49<br>1.45<br>1.54         | 0.93<br>1.10<br>1.26<br>1.42<br>1.50<br>1.57<br>1.63<br>1.68<br>1.25                   | 2860<br>3468<br>4070<br>4715<br>5038<br>5310<br>5536<br>5738<br>5993<br>6176 | 584<br>617<br>573<br>604<br>302<br>255<br>212<br>189<br>239<br>171                              | 9004<br>7327<br>6201<br>5402<br>4764<br>4263<br>3858<br>3524<br>3251<br>3014 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.7<br>15.7<br>15.7                                 |

| DEPTH                                                                                            | ROP WOI                                                                                                                       | RPM                                                      | MW "d"c                                                                                                              | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                       | CCOST                                                                        | PP FG                                                                                                    |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 2030.0<br>2031.0<br>2032.0<br>2033.0<br>2034.0<br>2035.0<br>2036.0<br>2037.0<br>2038.0<br>2039.0 | 21.6 45.0<br>21.8 43.5<br>21.6 45.6<br>27.7 43.4<br>14.3 44.2<br>4.3 45.3<br>4.4 45.3<br>4.7 45.3<br>4.5 45.3                 | 65<br>65<br>65<br>65<br>65<br>65<br>65                   | 9.2 1.40<br>9.2 1.38<br>9.2 1.40<br>9.2 1.29<br>9.2 1.53<br>9.2 1.96<br>9.2 1.95<br>9.2 1.93<br>9.2 1.94<br>9.2 1.93 | 1.84<br>1.89<br>1.94<br>1.97<br>2.04<br>2.28<br>2.50<br>2.72<br>2.94<br>3.16 | 6357<br>6536<br>6717<br>6858<br>7131<br>8044<br>8928<br>9765<br>10625                  | 168<br>169<br>132<br>256<br>855                                             | 2811<br>2634<br>2480<br>2342<br>2226<br>2154<br>2088<br>2026<br>1970<br>1921 | 8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7             |
| 2040.0<br>2041.0<br>2042.0<br>2043.0<br>2044.0<br>2045.0<br>2047.0<br>2047.0<br>2049.0           | 6.8 43.3<br>4.1 43.3<br>6.5 43.3<br>4.4 43.4<br>6.7 43.2<br>7.2 43.1<br>6.1 43.1<br>6.0 43.4<br>12.3 45.7                     | 65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65       | 9.2 1.78<br>9.2 1.95<br>9.2 1.79<br>9.2 1.93<br>9.2 1.95<br>9.2 1.75<br>9.2 1.81<br>9.3 1.80<br>9.3 1.58             | 3.31<br>3.56<br>3.71<br>3.94<br>4.18<br>4.33<br>4.47<br>4.63<br>4.80<br>4.88 | 12085<br>13036<br>13636<br>14522<br>15473<br>16054<br>16594<br>17234<br>17882<br>18199 | 537<br>891<br>562<br>830<br>891<br>544<br>505<br>600<br>297                 | 1863<br>1824<br>1276<br>1741<br>1710<br>1670<br>1631<br>1598<br>1567         | 8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7             |
| 2050.0<br>2051.0<br>2052.0<br>2053.0<br>2054.0<br>2055.0<br>2056.0<br>2057.0<br>2058.0<br>2059.0 | 7.3 45.8<br>12.4 45.6<br>21.6 44.4<br>27.1 38.5<br>31.0 43.2<br>34.0 43.4<br>24.7 45.7<br>29.8 45.0<br>25.5 43.0<br>27.1 42.5 | 65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65 | 9.3 1.76<br>9.3 1.58<br>9.3 1.24<br>9.3 1.24<br>9.3 1.21<br>9.3 1.34<br>9.3 1.30<br>9.3 1.28                         | 5.02<br>5.10<br>5.14<br>5.18<br>5.21<br>5.24<br>5.32<br>5.35<br>5.35         | 18733<br>19047<br>19228<br>19372<br>19498<br>19613<br>19771<br>19902<br>20055<br>20199 | 500<br>294<br>169<br>135<br>118<br>108<br>148<br>123<br>143                 | 1498<br>1464<br>1428<br>1393<br>1359<br>1327<br>1229<br>1242<br>1242         | 8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7 |
| 2060.0<br>2061.0<br>2062.0<br>2063.0<br>2064.0<br>2065.0<br>2066.0<br>2067.0<br>2068.0<br>2069.0 | 30.8 43.1<br>28.8 43.6<br>30.0 43.3<br>10.0 44.1<br>13.0 44.0<br>21.3 43.7<br>20.9 43.7<br>20.6 43.2<br>18.3 39.9<br>6.5 47.8 | 65<br>65<br>65<br>65<br>65<br>65<br>65<br>65             | 9.3 1.24<br>9.3 1.27<br>9.3 1.25<br>9.3 1.63<br>9.3 1.54<br>9.3 1.37<br>9.3 1.38<br>9.3 1.38<br>9.3 1.38             | 5.42<br>5.46<br>5.49<br>5.59<br>5.67<br>5.76<br>5.81<br>5.87<br>6.02         | 20325<br>20461<br>20591<br>20981<br>21280<br>21463<br>21649<br>21839<br>22052<br>22649 | 119<br>127<br>122<br>365<br>280<br>171<br>174<br>178<br>200<br>559          | 1192<br>1168<br>1145<br>1129<br>1111<br>1092<br>1073<br>1056<br>1039         | 8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7             |
| 2070.0<br>2071.0<br>2072.0<br>2073.0<br>2074.0<br>2075.0<br>2076.0<br>2077.0<br>2078.0<br>2079.0 | 3.4 49.4<br>3.8 46.6<br>3.6 47.6<br>3.1 46.7<br>3.4 47.4<br>4.2 46.5<br>5.3 46.3<br>4.9 46.3<br>29.8 44.1<br>41.9 48.7        | 65<br>65<br>65<br>65<br>65<br>65<br>65                   | 9.3 2.07<br>9.3 2.00<br>9.3 2.03<br>9.3 2.07<br>9.3 2.05<br>9.3 1.97<br>9.3 1.91<br>9.3 1.26<br>9.3 1.18             | 6.31<br>6.57<br>6.85<br>7.17<br>7.46<br>7.70<br>7.89<br>8.09<br>8.13         | 23783<br>24797<br>25875<br>27121<br>28276<br>29207<br>29938<br>30730<br>30861<br>30954 | 1062<br>950<br>1009<br>1167<br>1081<br>871<br>685<br>742<br>123<br>87.24 99 | 1029<br>1029<br>1031<br>1032<br>1030<br>1024<br>1019<br>1005                 | 8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7<br>8.4 15.7             |

```
DEPTH
                          ROp
                               WOR RPM
               2130.0
                                          MW "d"c
              2131.0
                         3.6 50.3
              2132.0
                         4,4 50,3
                                                    Hou_{RS}
                                    65
                                         9.7 1.99
                                                             TURNS
             2133.0
                         4.2 50.2
                                    65
                                        9,7
                                                                    ICOST
             2134.0
                        6,2 50,9
                                                    13,77
                                            1,92
                                    65
                                                                            ccost
                                                            52880
             2135.0
                       11.2 46.0
                                        2,7
                                                   14.00
                                            1,93
                                   65
                                                            53766 830.00 728.20
                                                                                     Pp
                                        9,7
             2136.0
                       16.9 49.6
                                                   14.24
                                            1,81
                                   65
                                       9,7
                                                           54695 869.52 729.42
            2137,0
                       6.0 48.4
                                                  14,40
                                           1.55
                                                                                   8,4 15,8
                                   65
                                       9,7
                                                           55324 589,03 728,22
            2138.0
                      12.8 49.1
                                                  14,49
                                                                                  8,4 15,8
                                           1,45
                                  65
                                                           55672
            2139.0
                       3.6 49.3
                                       9.7
                                                  14.55
                                          1.79
                                                                                  8,4 15,8
                                  65
                                                                 326,07
                                                          55903 216.09
                                      9,7
                                                 14.71
                      3.1 49.0
                                                                         724.81
                                                                                  8.4 15.8
                                          1.54
                                  65
                                                          56553 608.67 719.60
                                      9,7
           2140.0
                                                 14.79
                                                                        220.54
                                                                                 8.4 15.8
                                          1,97
                                 65
                                                          56857 285,31 716,02
                                      9,7
          2141.0
                                                 15,00
                      2.8 48.9
                                          2.02
                                                                                 8,4 15,8
          2142.0
                                                         57941
                     2.5 48.6
                                                15,39
                                                                                 8.4 15.8
                                 65
                                     9.7
          2143.0
                     3,9 48,9
                                                         59199
                                         2.05
                                                                                8.4 15.8
                                65
                                    9.7 2.09
                                                                           218
                    10.9 48.5
          2144.0
                                                15,25
                                                                  1178
                                                                                8.4 15.8
                                65
                                    9.7
         2145.0
                                                                          222
                   13.2 48.5
                                               16,15
                                                        60592
                                        1.94
                                                                                8.4 15.8
                                65
                                    9,7 1,59
         2146.0
                   13.4 48.7
                                                        62152
                                               16,41
                                                                 1304
                               65
                                                       63152 936,41 734,38
        2147.0
                  15,2 48,3
                                                                          722
                                    9,7
                                               16,50
                                       1,52
                                                                               8.4 15.8
                               65
                                   9,7 1,52
                                                                         233
        2148.0
                  18,1 49,0
                                                       63549
                                              16,52
                                                                               8.4 15.8
                                                              335.05 731.24
                              65
                                                       63805 276.67 727.68
                                   9.7
        2149.0
                  21.8 49.4
                                              16,65
                                       1.47
                                                                              8,4 15,8
                              65
                                                      64096 272.54 724.16
                                  9,7
                 22.7 50.0
                                              16,71
                                       1.42
                                                                              8,4 15,8
                              \delta_{iJ}^{p_i}
       2150.0
                                  9.7
                                                      64352
                                      1,36
                                             16,77
                                                                              8.4 15.8
                                                            240.26 720.43
                              65
                                                      64568 201.77 716.47
       2151.0
                                  9,7
                 14,4 50.0
                                             16.81
                                      1.35
                                                                             8.4 15.8
                                                     64747 167.52 212.32
      2152.0
                19.6 49.0
                                             16,86
                                                                             8.4 15.8
                             65
                                                     64919 160,88 708,17
      2153.0
                17.3 49.2
                                 9.7
                                                                             8.4 15.8
                                     1.51
                            65
                                 9.7
      2154.0
                 4,9 50.0
                                            16,93
                                     1.39
                                                                            8.4 15.8
                            65
                                                    65189 253.61 704.78
     2155.0
                                 9,5
                 4,5
                                            16,98
                                                                            8.4 15.8
                                    1.44
                    48,6
                            65
                                                    65389 186.66 700.94
                                9,7
                4,4 49,3
     2156.0
                                           17,04
                                    1,88
                           65
                                          17.24
17.47
17.69
17.81
                                                    65614 211.00 697.34
     2157.0
                                2.5
                8.4 49.3
                                                                           8.4 15.8
                                    1,89
                           65
                               9.7
                                                   66415 749.67 697.72
    2158.0
              10.6 48.9
                                   1,91
                                                                           8.4 15.8
                           65
                                                   67288 817.64 698.59
                               9,7
    2159.0
              12,5 44,2
                                   1.69
                                                                           8,4 15,8
                          65
                                                   68180 835,90 699,58
              11,4 43,2
                               9,7
                                  1.60
                                                                          8,4 15,8
                          65
                                                  68645 435,20 697.69
                                         17,91
   2160.0
                              9.6
                                  1.51
                                                                          8,4 15,8
                          65
                              9.6 1.53
                                                  69014 344.91 695.19
                                         17,99
   2161.0
             10.2 43.5
                                                                          8,4 15,8
                                                  69326 292.16 692.35
                                         18,08
  2162.0
              3,5 44,0
                                                                         8.4 15.8
                         65
                                                 69667 319.55 689.74
                             9.6 1.57
  2163.0
             3,7 43.0
                                                                         8,4 15,8
                         65
                             9.6 1.93
  2164.0
                                        18,17
             3,9
                                                                        8.4 15.8
                44,2
                        65
                             9.6 1.90
                                                 70050 359.11 687.44
 2165.0
                                        18,46
             3.5
                                                                        8.4 15.8
                47.6
                        65
                            9.6 1.90
                                                71151
 2166.0
            3,7 48,3
                                        18,73
                        55
                                                72210 992.13 691.88
                            9.6
 2167.0
                                       18,99
            3,9 48,6
                                1.92
                                                                       8,4 15,8
                       55
                                                73216 947,49 693,62
                           9.6 1.92
                                       19,27
                                                                  690
 2168.0
            4.0 48.5
                                                                       8.4 15.8
                       55
                           2.6
                                               74156
                                      19.54
2169.0
                               1.90
           4,9
                                                                       8.4 15.8
                       55
               48,4
                                               25053 993.14 692.95
                           9.6 1.89
                                      19.80
           7.2
                                                                      8.4 15.8
                      55
               48,7
                                               25890 926.19 699.48
                          9.6 1.82
2170.0
                                                                 696
                                      20.05
                                                                      8.4 15.8
                      55
                          9,6
                                              76711
         11.3 48.4
                                     20,25
                                                                      8.4 15.8
                              1,69
                                                     908.94 700.86
                                              77379 739.53 701.12
                                     20.39
                                                                     8.4 15.8
                     55
                         9.6 1.53
                                              77836 505,19 699.84
                                                                     8,4 15,9
                                    20.48
                                                                     8,4 15,9
                                             78127 322.59 697.39
                                                                    8,4
                                                                        15,9
                                                                    8.4 15.9
```

FG

| DEPTH                                                                                            | ROP                                                     | WOB                                                                  | RPM                                          | МЫ                                            | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                         | ICOST                                                                                            | ccost                                                                            | рþ                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2130.0<br>2131.0<br>2132.0<br>2133.0<br>2134.0<br>2135.0<br>2136.0<br>2137.0<br>2139.0           | 4.4<br>4.2<br>6.2<br>11.2<br>16.9<br>6.0<br>12.8<br>3.6 | 50.3<br>50.2<br>50.9<br>46.0<br>49.6<br>48.4<br>49.1<br>49.3<br>49.0 | 65<br>65<br>65<br>65<br>65<br>65<br>65       | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7        | 1.99<br>1.92<br>1.93<br>1.81<br>1.55<br>1.45<br>1.79<br>1.54<br>1.97<br>2.02 | 13.77 14.00 14.24 14.40 14.49 14.55 14.71 14.79 15.07                                  | 54695<br>55324<br>55672<br>55903                                              | 1014<br>830.00<br>869.52<br>589.03<br>326.07<br>216.09<br>608.67<br>285.31<br>1014<br>1178       | 729.42<br>728.22<br>724.81<br>720.54<br>719.60                                   | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.8<br>15.8<br>15.8<br>15.8<br>15.8<br>15.8<br>15.8         |
| 2140.0<br>2141.0<br>2142.0<br>2143.0<br>2144.0<br>2145.0<br>2146.0<br>2147.0<br>2149.0           | 2.5<br>3.9<br>10.9<br>13.2<br>13.4<br>15.2              | 49.4                                                                 | 65<br>65<br>65<br>65<br>65<br>65<br>65<br>65 | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7 | 2.05<br>2.09<br>1.94<br>1.59<br>1.52<br>1.42<br>1.42<br>1.36                 | 15.75<br>16.15<br>16.41<br>16.50<br>16.57<br>16.65<br>16.77<br>16.81<br>16.86          | 63509<br>63805<br>64096<br>64352<br>64568<br>64747                            | 1304<br>1461<br>936.41<br>335.05<br>276.67<br>272.54<br>240.26<br>201.77<br>167.52<br>160.88     | 727.68<br>724.16<br>720.43<br>716.47<br>712.32                                   | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.8<br>15.8<br>15.8<br>15.8<br>15.8<br>15.8<br>15.8<br>15.8 |
| 2150.0<br>2151.0<br>2152.0<br>2153.0<br>2154.0<br>2155.0<br>2156.0<br>2157.0<br>2159.0           | 4.9<br>4.5<br>4.4<br>8.4<br>10.6<br>12.5                |                                                                      | 65<br>65<br>65<br>65<br>65<br>65<br>65<br>65 | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.6 | 1.51<br>1.39<br>1.44<br>1.88<br>1.89<br>1.91<br>1.69<br>1.60<br>1.51         | 16.93<br>16.98<br>17.04<br>17.24<br>17.47<br>17.69<br>17.81<br>17.91<br>17.99<br>18.08 | 65389<br>65614<br>66415<br>67288<br>68180<br>68645<br>69014<br>69326          | 253.61<br>186.66<br>211.00<br>749.67<br>817.64<br>835.90<br>435.20<br>344.91<br>292.16<br>319.55 | 700.94<br>697.34<br>697.72<br>698.59<br>699.58<br>697.69<br>695.19<br>692.35     | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.8<br>15.8<br>15.8<br>15.8<br>15.8<br>15.8<br>15.8         |
| 2160.0<br>2161.0<br>2162.0<br>2163.0<br>2164.0<br>2165.0<br>2165.0<br>2167.0<br>2168.0<br>2169.0 | 3.5<br>3.9<br>3.5<br>3.7<br>3.9<br>4.0<br>4.9           | 43.0<br>44.2<br>47.6<br>48.3<br>48.6<br>48.5<br>48.7                 | 65<br>65<br>65<br>55<br>55<br>55<br>55<br>55 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.57<br>1.93<br>1.90<br>1.92<br>1.92<br>1.92<br>1.89<br>1.89<br>1.69         | 18.17<br>18.46<br>18.73<br>18.99<br>19.27<br>19.54<br>19.54<br>20.05<br>20.25<br>20.39 | 71151<br>72210<br>73216<br>74156<br>75053<br>75890<br>76711<br>77379<br>77836 | 359.11<br>1031<br>992.13<br>947.49<br>1040<br>993.14<br>926.19<br>908.94<br>739.53<br>505.19     | 690<br>691.88<br>693.62<br>696<br>697.95<br>699.48<br>700.86<br>701.12<br>699.84 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.8<br>15.8<br>15.8<br>15.8<br>15.8<br>15.9<br>15.9         |

| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                                  | 5<br>0.00<br>4.64                                                                                        | SIZE                                                               |                                                                                        | 8.500<br>6.6<br>20046                                                        | NOZ:<br>BIT                                                                  | ERVAL<br>ZLES<br>RUN<br>DITION                                           |                                                                                       | 0- 2187.4<br>14 15 15<br>17.4<br>BO GO.300                                                               |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| DEPTH R                                                                                         | op wob                                                                                                   | RPM MW                                                             | nd nc                                                                                  | HOURS                                                                        | TURNS                                                                        | ICOST                                                                    | CCOST                                                                                 | pp FG                                                                                                    |
| 2170.4 8                                                                                        | .0 13.3<br>.4 13.7<br>.0 13.1                                                                            | 60 9.6                                                             | 1.26<br>1.29<br>1.32                                                                   | 0.02<br>0.05<br>0.07                                                         | 80<br>166<br>269                                                             | 406<br><b>43</b> 6<br>522                                                | 120922<br>60679<br>40627                                                              | 8.4 15.9<br>8.4 15.9<br>8.4 15.9                                                                         |
| 2171.0 14<br>2171.2 9<br>2171.4 7<br>2171.6 3<br>2171.8 10<br>2172.0 5<br>2172.2 5<br>2172.4 4  | .8 13.7<br>.7 14.6<br>.9 14.3<br>.7 14.9<br>.1 11.3<br>.7 11.8<br>.8 14.8<br>.0 13.3<br>.8 14.3          | 60 9.6 60 9.6 60 9.6 60 9.6 60 9.6 60 9.6 60 9.6                   | 1.15<br>1.16<br>1.26<br>1.34<br>1.48<br>1.48<br>1.41<br>1.41                           | 0.09<br>0.10<br>0.12<br>0.15<br>0.21<br>0.23<br>0.27<br>0.31<br>0.35<br>0.43 | 321<br>370<br>443<br>537<br>773<br>840<br>965<br>1109<br>1260<br>1540        | 264<br>249<br>370<br>477<br>1197<br>340<br>634<br>730<br>766<br>1420     | 30536<br>24479<br>20460<br>17606<br>15555<br>13864<br>12541<br>11467<br>10576<br>9871 | 8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9 |
| 2173.0 1<br>2173.2 1<br>2173.4 1<br>2173.6 1<br>2173.8 6<br>2174.0 6<br>2174.2 6<br>2174.4 6    | .2 15.2<br>.2 14.3<br>.3 14.7<br>.6 14.8<br>.8 14.0<br>.5 14.2<br>.9 14.2<br>.6 14.3<br>.3 14.4          | 60 9.6<br>65 9.6<br>70 9.6<br>73 9.6<br>75 9.6<br>75 9.6<br>75 9.6 | 1.85<br>1.82<br>1.84<br>1.80<br>1.75<br>1.43<br>1.41<br>1.42                           | 0.59<br>0.76<br>0.92<br>1.04<br>1.15<br>1.18<br>1.21<br>1.24<br>1.24         | 2140<br>2739<br>3352<br>3879<br>4361<br>4500<br>4630<br>4766<br>4908<br>5528 | 3043<br>3038<br>2881<br>2293<br>2004<br>563<br>528<br>553<br>578<br>2516 | 9384<br>8961<br>8581<br>8211<br>7866<br>7482<br>7134<br>6820<br>6537<br>6362          | 8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9             |
| 2175.0 3<br>2175.2 2<br>2175.4 3<br>2175.6 2<br>2175.8 2<br>2176.0 4<br>2176.2 10<br>2176.4 14  | 1.3 14.7<br>1.2 14.6<br>1.6 14.7<br>1.5 14.8<br>1.3 14.9<br>1.3 14.5<br>1.9 14.3<br>1.6 14.1<br>1.4 13.8 | 75 9.6<br>75 9.6<br>75 9.6<br>75 9.6<br>75 9.6<br>75 9.6<br>75 9.6 | 1.72<br>1.63<br>1.68<br>1.61<br>1.72<br>1.72<br>1.71<br>1.50<br>1.29<br>1.29           | 1.50<br>1.56<br>1.64<br>1.70<br>1.78<br>1.87<br>1.91<br>1.93                 | 5917<br>6201<br>6541<br>6801<br>7195<br>7582<br>7766<br>7851<br>7913<br>8017 | 1577<br>1151<br>1380<br>1055<br>1598<br>1572<br>746<br>345<br>254<br>421 | 6163<br>5962<br>5786<br>5611<br>5467<br>5333<br>5180<br>5024<br>4875<br>4740          | 8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9 |
| 2177.0 6<br>2177.2 14<br>2177.4 17<br>2177.6 8<br>2177.8 7<br>2178.0 5<br>2178.2 5<br>2178.4 10 | 3,4 14,3<br>3,1 14,1<br>3,4 13,7<br>1,1 14,1<br>3,2 14,1<br>1,1 14,3<br>1,6 14,4<br>1,3 14,6             | 75 9.6<br>75 9.6<br>75 9.6<br>75 9.6<br>75 9.6<br>75 9.6<br>75 9.6 | 5 1.22<br>5 1.44<br>5 1.20<br>5 1.16<br>5 1.36<br>5 1.40<br>5 1.47<br>5 1.49<br>5 1.31 | 1.98<br>2.01<br>2.03<br>2.04<br>2.06<br>2.09<br>2.13<br>2.16<br>2.18<br>2.22 | 8080<br>8227<br>8290<br>8342<br>8452<br>8578<br>8738<br>8908<br>8996<br>9137 | 254<br>599<br>254<br>213<br>446<br>512<br>649<br>690<br>355<br>573       | 4608<br>4494<br>4376<br>4263<br>4163<br>4069<br>3984<br>3903<br>3819<br>3743          | 8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9 |

်င်းသည်။ မောင်းသည် သည်။ မောင်းမျှင် မောင်းသည်။ မောင်းသည် သည်သည် သည် သည် သည် သည် သည် မောင်းသည် သည်။ မောင်းသည်

| DEPTH                                                                                            | ROP                                                  | WOB                                                                  | ррм                                                | MW                                            | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                   | CCOST                                                                        | рþ                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2178.8<br>2179.0<br>2179.2<br>2179.4<br>2179.6<br>2179.8<br>2180.0<br>2180.2<br>2180.4<br>2180.6 | 8.3<br>6.7<br>3.7<br>2.2<br>6.1<br>4.0<br>5.2<br>4.5 | 14.5<br>14.9<br>15.1<br>15.2                                         | 75557755755555555555555555555555555555             | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.39<br>1.37<br>1.43<br>1.60<br>1.72<br>1.45<br>1.57<br>1.51<br>1.55 | 2.24<br>2.27<br>2.30<br>2.35<br>2.44<br>2.48<br>2.56<br>2.56                 | 9256<br>9365<br>9498<br>9741<br>10158<br>10307<br>10530<br>10702<br>10903              | 482<br>441<br>543<br>984<br>1694<br>604<br>903<br>700<br>817<br>994     | 3669<br>3598<br>3531<br>3477<br>3440<br>3382<br>3332<br>3281<br>3233<br>3191 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9         |
| 2180.8<br>2181.0<br>2181.2<br>2181.4<br>2181.6<br>2181.8<br>2182.0<br>2182.2<br>2182.2           | 2.7<br>2.5<br>2.3<br>2.2<br>2.4<br>2.3<br>2.8<br>3.7 | 15.2<br>15.4<br>15.3<br>15.2<br>15.7<br>15.6<br>15.3<br>15.1         | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.63<br>1.70<br>1.71<br>1.73<br>1.76<br>1.73<br>1.74<br>1.67         | 2.72<br>2.80<br>2.88<br>2.96<br>3.05<br>3.14<br>3.22<br>3.29<br>3.35<br>3.39 | 11413<br>11750<br>12106<br>12493<br>12907<br>13277<br>13671<br>13991<br>14237          | 1075<br>1364<br>1446<br>1572<br>1679<br>1501<br>1598<br>1298<br>999     | 3152<br>3119<br>3090<br>3063<br>3039<br>3013<br>2989<br>2962<br>2930<br>2896 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9         |
| 2182.8<br>2183.0<br>2183.4<br>2183.6<br>2183.6<br>2183.8<br>2184.0<br>2184.2<br>2184.4<br>2184.6 | 3.7<br>3.2<br>3.5<br>4.6<br>4.1<br>2.8<br>2.7<br>2.7 | 15.0<br>15.3<br>15.2<br>15.2<br>15.3<br>15.2<br>15.6<br>15.6         | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.62<br>1.61<br>1.64<br>1.62<br>1.55<br>1.58<br>1.70<br>1.70<br>1.69 | 3.45<br>3.57<br>3.62<br>3.62<br>3.72<br>3.79<br>3.86<br>3.94<br>3.98         | 14697<br>14943<br>15222<br>15478<br>15675<br>15896<br>16222<br>16556<br>16885<br>17085 | 1055<br>999<br>1131<br>1040<br>796<br>898<br>1324<br>1354<br>1334       | 2868<br>2839<br>2813<br>2787<br>2757<br>2730<br>2710<br>2691<br>2672<br>2647 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9 |
| 2184.8<br>2185.0<br>2185.2<br>2185.4<br>2185.6<br>2185.8<br>2186.0<br>2186.2<br>2186.4<br>2186.4 | 2.8<br>3.6<br>4.4<br>6.9<br>3.1<br>2.7<br>8.3<br>6.2 | 15.6<br>16.1<br>16.1<br>15.1<br>15.2<br>15.3<br>15.5<br>15.4<br>15.4 | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.65<br>1.70<br>1.64<br>1.55<br>1.43<br>1.66<br>1.70<br>1.39<br>1.47 | 4.04<br>4.11<br>4.17<br>4.22<br>4.24<br>4.31<br>4.39<br>4.41<br>4.44         | 17365<br>17685<br>17935<br>18138<br>18268<br>18563<br>18902<br>19011<br>19157          | 1136<br>1298<br>1014<br>827<br>528<br>1197<br>1375<br>441<br>593<br>431 | 2626<br>2609<br>2588<br>2565<br>2539<br>2522<br>2507<br>2482<br>2459<br>2434 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9         |
| 2186.8<br>2187.0<br>2187.2<br>2187.4                                                             | 5.0<br>4.9                                           | 15.6<br>16.0<br>15.3<br>14.3                                         | 75<br>75<br>75<br>75                               | 9.6<br>9.6                                    | 1.52<br>1.55<br>1.53<br>1.58                                         | 4.50<br>4.54<br>4.59<br>4.64                                                 | 19438<br>19620<br>19802<br>20046                                                       | 710<br>735<br>741<br>989                                                | 2414<br>2394<br>2375<br>2359                                                 | 8.4<br>8.4                             | 15.9<br>15.9<br>15.9<br>15.9                                 |

| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                                                                                                                                                                                             | 5<br>0.00<br>1.88                                                                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                                                        | 8.500<br>6.7<br>8918                                                 | INTERVA<br>NOZZLES<br>BIT RUM<br>CONDITI                                     | <b>V</b>                                                                                                                                                                    | .0- 2205.5<br>14 15 15<br>17.5<br>B0 G0.350                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| DEPTH ROP                                                                                                                                                                                                                                                  | WOB RP                                                                               | 'M MW "d"c                                                                                                           | HOURS                                                                | TURNS ICC                                                                    | OST COOST                                                                                                                                                                   | PP FG                                                                                                    |
| 2188.6 5.8                                                                                                                                                                                                                                                 | 12.4 7                                                                               | 75 9.6 1.43<br>75 9.6 1.41<br>75 9.6 1.50                                                                            | 0.08<br>0.11<br>0.14                                                 | 515 6                                                                        | 730 61901<br>529 41477<br>553 31246                                                                                                                                         |                                                                                                          |
| 2189.2 7.1<br>2189.4 5.9<br>2189.6 13.3<br>2189.8 12.0<br>2190.0 7.3<br>2190.2 12.9<br>2190.4 12.4                                                                                                                                                         | 15.8 7:<br>15.5 7:<br>15.2 7:<br>16.4 7:<br>16.3 7:<br>15.9 7:<br>16.2 8:<br>15.4 9: | 2 9.6 1.44                                                                                                           | 0.20<br>0.23<br>0.27<br>0.28<br>0.30<br>0.32<br>0.34<br>0.36<br>0.38 | 1043 5<br>1195 6<br>1263 2<br>1338 3<br>1461 5<br>1531 2<br>1612 2<br>1741 4 | 070 25211<br>617 21095<br>619 18170<br>974 15933<br>604 14197<br>602 12827<br>984 11687<br>994 10737<br>626 9944<br>62 9246                                                 | 8.4 15.9<br>8.4 15.9                                                                                     |
|                                                                                                                                                                                                                                                            | 15.9 9;<br>15.7 9;<br>16.1 9;<br>15.3 9;<br>15.5 9;<br>15.9 9;<br>16.1 9;            | 9.6 1.35<br>9.6 1.50<br>9.6 1.40<br>9.6 1.26<br>9.6 1.31<br>9.6 1.40<br>9.6 1.49                                     | 0.41<br>0.43<br>0.44<br>0.47<br>0.49<br>0.50<br>0.52<br>0.54<br>0.56 | 1991 3<br>2083 3<br>2236 5<br>2351 3<br>2419 2<br>2497 2<br>2604 3<br>2752 4 | (60     8653       (104     8131       (107     7273       (180     6910       (123     6576       (159     6275       (155     6006       (187     5766       (28     5535 | 8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9             |
| 2193.0       13.8         2193.2       15.3         2193.4       14.1         2193.6       18.0         2193.8       13.3         2194.0       28.8         2194.2       14.7         2194.4       10.9         2194.6       14.1         2194.8       9.0 | 14.6 97<br>15.6 97<br>15.8 97<br>15.8 97<br>15.0 97<br>15.3 97<br>16.1 97            | 72 9.6 1.26<br>72 9.6 1.31<br>72 9.6 1.24<br>72 9.6 1.33<br>72 9.6 1.10<br>72 9.6 1.29<br>72 9.6 1.39<br>72 9.6 1.32 | 0.59<br>0.60<br>0.62<br>0.63<br>0.64<br>0.65<br>0.66<br>0.68<br>0.70 | 2972 2<br>3051 2<br>3112 2<br>3195 2<br>3233 1<br>3308 2<br>3409 3<br>3488 2 | 64 5324<br>38 5129<br>59 4948<br>03 4779<br>74 4624<br>27 4474<br>49 4337<br>35 4212<br>59 4093<br>06 3984                                                                  | 8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9             |
| 2195.0     15.7       2195.2     15.7       2195.4     11.8       2195.6     21.8       2195.8     11.3       2196.0     22.5       2196.2     18.0       2196.4     21.2       2196.6     13.8       2196.8     18.5                                      | 16.1 91<br>16.2 90<br>15.7 90<br>15.8 90<br>15.4 90<br>15.2 90<br>15.5 76<br>15.4 75 | 1 9.6 1.29<br>0 9.6 1.36<br>0 9.6 1.18<br>0 9.6 1.37<br>0 9.6 1.17<br>0 9.6 1.22<br>6 9.6 1.14<br>5 9.6 1.25         | 0.73<br>0.74<br>0.76<br>0.77<br>0.79<br>0.80<br>0.81<br>0.82<br>0.83 | 3751 2<br>3842 3<br>3892 1<br>3988 3<br>4036 1<br>4096 2<br>4139 1<br>4204 2 | 33 3877<br>33 3776<br>09 3682<br>67 3590<br>25 3506<br>62 3422<br>03 3344<br>72 3268<br>64 3198<br>98 3130                                                                  | 8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9<br>8.4 15.9 |

A Company of the property of the property of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the company of the co

| DEPTH                                | ROP          | MOB                          | RPM                  | MW             | "d "c | HOURS                | TURNS                | ICOST             | ccost                | PР                | FG           |
|--------------------------------------|--------------|------------------------------|----------------------|----------------|-------|----------------------|----------------------|-------------------|----------------------|-------------------|--------------|
| 2197.0<br>2197.2<br>2197.4<br>2197.6 | 20.6         | 15.6<br>15.5<br>15.4<br>15.9 | 75<br>75<br>75<br>75 | 9.6<br>9.6     | 1.27  | 0.86<br>0.87<br>0.88 | 4321<br>4384<br>4428 | 279<br>254<br>178 | 3067<br>3006<br>2945 | 8,4<br>8,4<br>8,4 | 15.9<br>15.9 |
| 2197.8<br>2198.0                     | 20.0         | 15.9                         | 75                   | 9.6<br>9.6     | 1.20  | 0.89<br>0.90         | 4480<br>4525         | 213<br>183        | 2889<br>2833         | 8.4<br>8.4        | 15.9         |
| 2198.2                               | 8.8          | $15.7 \\ 11.6$               | 75<br>75             | 9.6<br>9.6     | 1.30  | 0.92<br>0.94         | 4601<br>4704         | 309               | 2783                 | 8.4               |              |
| 2178.4                               |              | 14.7                         | 75                   |                | 1.57  | 0.99                 | 4931                 | 416<br>923        | 2736<br>2702         | 8.4               |              |
| 2198.6                               |              | 15,0                         | 75                   |                | 1.32  | 1.01                 | 5019                 | 355               | 2657                 | 8.4               |              |
| 2198.8                               | 7.3          | 14.0                         | 75                   | 9.6            | 1.39  | 1.04                 | 5141                 | 497               | 2617                 | 8.4               |              |
| 2199.0<br>2199.2                     | 8.9          | 12.1<br>15.9                 | 75<br>75             | 9.6            |       | 1.06                 | 5243                 | 411               | 2577                 | 8.4               |              |
| 2199.4                               |              | 14.2                         | 7.5<br>75            | 9,6<br>9,6     | 1.39  | 1.08<br>1.11         | 5336<br>5456         | 380               | 2538                 |                   | 15.9         |
| 2199.6                               | 11.6         |                              |                      |                | 1.24  | 1.13                 | 5534                 | 487<br>314        | 2502<br>2464         | 8,41              |              |
| 2199.8                               | 12.4         |                              | 75                   |                | 1.22  | 1.14                 | 5606                 | 294               | 2427                 | 8.4 :<br>8.4 :    |              |
| 2200.0                               | 23,2         | 15.3                         | 75                   | 9.6            |       | 1.15                 | 5645                 | 157               | 2390                 |                   | 15.9         |
| 2200.2                               | 10.1         | 16.2                         | 75                   | 9.6            | 1.35  | 1,17                 | 5734                 | 360               | 2356                 |                   | 5.9          |
| 2200.4                               | 17.1         | 16.2                         | 75                   | 9.6            |       | 1.18                 | 5786                 | 213               | 2322                 |                   | 5.9          |
| 2200.6                               |              | 16.6                         | 25                   | 9.6            |       | 1.21                 | 5896                 | 446               | 2292                 |                   | 5.9          |
| 2200.8                               | 13.3         | 16.0                         | 75                   | 9.6            | 1.27  | 1.22                 | 5964                 | 274               | 2260                 | 8.4 1             | 5.9          |
| 2201.0<br>2201.2                     | 25.7<br>12.4 |                              | 25<br>5              | 9.6            |       | 1.23                 | 5999                 | 142               | 2228                 |                   | 5.9          |
| 2201.4                               | 10.4         |                              | 75<br>75             | 9.6<br>9.6     |       | 1.25                 | 6071                 | 294               | 2199                 | 8.4 1             |              |
| 2201.6                               | 11.8         |                              | 75<br>75             |                | 1.32  | 1.27                 | 6158                 | 350               | 2171                 | 8.4 1             |              |
| 2201.8                               |              | 15.7                         | 75                   | 9.6            |       | 1.28<br>1.30         | 6234                 | 309               | 2144                 | 8.4 1             |              |
| 2202.0                               | 11.3         |                              | 25                   | 9.6            |       | 1.32                 | 6328<br>6408         | 380<br>325        | 2118                 | 8,41              |              |
| 2202.2                               |              | 14.8                         | 25                   | 9.6            |       | 1.35                 | 6531                 | 502               | 2092<br>2070         | 8.4 1             |              |
| 2202,4                               |              | 15.2                         | 75                   | 9.6            |       | 1.38                 | 6654                 | 497               | 2048                 | 8.4 1<br>8.4 1    |              |
| 2202.6                               |              | 14.2                         | 75                   | 9.6            |       | 1.43                 | 6911                 | 1045              | 2034                 | 8.4 1             |              |
| 2202.8                               | 3.8          | 8.2                          | 75                   | 9.6            |       | 1.49                 | 7149                 | 964               | 2020                 | 8.4 1             |              |
| 2203.0                               | 6.2          | 8.2                          | 75                   | 9.6            |       | 1.52                 | 7294                 | 588               | 2001                 | 8.4 1             | 5.9          |
| 2203.2                               | 4.4          | 7.9                          | 75                   | 9.6            |       | 1.56                 | 7496                 | 822               | 1985                 | 8.4 1             |              |
| 2203.4<br>2203.6                     | 4.1          | 8.4                          | <b>75</b>            | 9.6            |       | 1.61                 | 7714                 | 883               | 1971                 | 8.4 1             |              |
| 2203.8                               | 5.0<br>5.4   | 8.3                          | 75<br>75             | 9.6 1          |       | 1.65                 | 7895                 | 735               | 1955                 | 8.4 1             |              |
| 2204.0                               | 11.1         | 8.1<br>8.3                   | 75<br>75             | 9.6 1          |       | 1.69                 | 8061                 | 625               | 1939                 | 8.4 1             |              |
| 2204.2                               | 7.6          | 7.8                          | 7.5<br>75            | 9.6 1<br>9.6 1 |       | 1,71                 | 8143                 | 330               | 1919                 | 8.4 1             |              |
| 2204.4                               | 12.2         | 8.5                          | 75                   | 9.6 1          |       | 1.73<br>1.75         | 8261                 | 482               | 1901                 | 8.4 1             |              |
| 2204.6                               | 10.9         | 7.5                          | 25                   |                | . 11  | 1.77                 | 8335<br>8418         | 299<br>335        | 1882                 | 8,41              |              |
| 2204.8                               | 7.6          | 6.4                          | 75                   | 9.6 1          |       | 1.79                 | 8536                 | 482               | 1863<br>1847         | 8.4 1             | 5.9<br>5.9   |
| 2205.0                               | 20.6         | 5.6                          | 75                   | 9.6 0          |       | 1.80                 | 8580                 | 178               | 1827                 | 8,4 1             | 5.9          |
| 2205.2                               | 8.8          | 7.1                          | 75                   | 9.6 1          |       | 1.83                 | 8883                 | 416               | 1810                 | 8.4 1             |              |
| 2205.4                               | 10.6         | 6.2                          | 75                   | 9.6 1          |       | 1.85                 | 8768                 | 345               | 1794                 | 8.4 1             | 5.9          |
| 2205.5                               | 3.0          | 4.7                          | 75                   | 9.6 1          | . 27  | 1.88                 | 8918                 | 1217              | 1790                 | 8.4 1             | 5.9          |

517 BIT NUMBER 6 TADC CODE INTERVAL 2205.5- 2445.0 HTC J22 SIZE 12,250 NOZZLES 16 16 18 COST 8516.00 TRIP TIME 7.2 BIT RUN 239.5 TOTAL HOURS TOTAL TURNS 53.12 163054 CONDITION T3 B3 G0,000 pр DEPTH ROP WOB RPM MW "d"c HOURS TURNS CCOST ICOST FG 10.9 21.6 75 2206.0 9.6 1.31 69956 0.05 206 335 8.4 15.9 9.6 1.67 2207.0 56 23772 5.4 38.3 0.23 833 680 8.4 15.5 3.2 48.1 53 9.6 1.95 0.55 14722 2208.0 1825 1146 8,4 15,9 10752 2209.0 4,4 45.6 56 9.6 1.83 0.77 2589 830 8,4 15,9 2210.0 3.2 43.3 56 9.6 1.90 1.08 3634 11368616 8.4 15.9 2211.0 3.6 43.3 56 9.6 1.86 1.36 4563 1009 7233 8.4 15.9 8.4 15.9 2212.0 3.6 41.7 56 9.6 1.84 5496 1014 6276 1.64 2213.0 9.6 1.84 1.92 5574 3.6 41.3 56 6429 1014 8.4 15.9 936 2214.0 3,9 41.8 56 9.6 1.82 2,17 7291 5029 8.4 15.9 2215.0 3.5 41.9 56 9.6 1.85 2.46 8251 1043 4609 8,4 15,9 5,7 41.5 56 9.6 1.69 2.63 4231 2216.0 8840 641 8,4 15,9 2.77 2217.0 7.2 41.2 9.6 1.61 507 56 9307 3907 8.4 15.9 3,07 10295 2218.0 3,4 41,0 56 9.6 1.85 1074 3681 8.4 15.9 2219.0 4.1 40.8 56 9.6 1.79 3.31 11115 891 3474 8,4 15.9 2220.0 4,7 41.0 56 9.6 1.74 3,52 11830 777 3288 8.4 15.9 9,4 41,4 9.6 1.52 3,63 389 8.4 15.9 2221.0 56 12187 3101 2221.4 3.6 42.5 56 9.6 1.85 3.74 12560 1014 3049 8.4 15.9 3.2 42.5 9.6 1.89 8.4 15.9 2221.6 56 3.80 12768 1126 3025 4.6 42.3 9.6 1.77 2221.8 56 3,85 12915 801 2997 8.4 15.9 9.6 1.63 2222.0 6.9 41.9 56 3.88 13013 533 2968 8.4 15.5 9.6 1.64 2223.0 7.0 42.9 56 4.02 13492 520 2828 8.4 15.9 2224.0 16.6 43.7 56 9.6 1.36 4.08 13694 220 2687 8.4 15.9 2225.0 10.7 43.2 56 9.6 1.50 4.17 14008 341 2566 8.4 15.9 9.6 1.81 14771 829 8.4 15.9 2226.0 4.4 44.3 56 4.40 2482 2.4 44.8 9.6 1.99 4,82 1541 8.4 15.9 2227.0 51 16072 2438 8.4 15.9 4.9 43.6 9.6 1.73 2228.0 50 5.03 16690 253 2363 8.4 15.9 2229.0 7.8 44.3 50 9.6 1.58 5.16 17075 469 2282 2230.0 18.7 43.1 50 9.6 1.28 5.21 17236 196 2197 8.4 15.9 17417 16.6 43.3 50 9.6 1.32 5,27 220 2120 8.4 15.9 2231.0 2232.0 5.9 43.7 9.6 1.67 5.44 17927 621 8.4 15.9 50 2063 6.9 44.3 9.6 1.62 2233.0 50 5,58 18360 526 2007 8.4 15.9 2234.0 2.7 44.6 50 9.6 1.94 5,96 19477 1360 1985 8.4 15.9 2235.0 3.3 44.7 50 9.6 1.88 6.26 20397 1120 1955 8.4 15.9 2236.0 6.9 44.7 50 9.6 1.63 6.41 20835 533 1909 8,4 15.9 8.4 15.9 2237.0 4.7 44.9 50 9.6 1.76 6,62 21480 785 1873 2238.0 2.1 42.0 50 9.6 1.99 7.11 22942 1780 1870 8.4 15.9 2239.0 1,9 43,2 50 9.6 2.04 7.64 24530 1933 1872 8,4 15,9 9.7 44.5 7.74 377 1829 8.4 15.9 2240.0 50 9.6 1.51 24840 11.2 44.2 50 9.6 1.46 7,83 25107 326 1786 8,4 15,9 2241.0 50 1747 2242.0 10.8 45.5 9.6 1.49 7,93 25385 339 8,4 15,9 11.4 45.4 50 25648 320 1709 8.4 15.9 2243.0 9.6 1.47 8,01 25879 326 1673 8.4 15.9 11.2 45.4 43 9.6 1.42 8.10 2244.0 9.6 1.28 26029 228 8.4 15.9 16.0 45.0 40 1636 2245.0 8,16

化二基化化 医抗毒素 肾红素

| DEPTH                                                                                            | ROP                                                   | MOR                                                                          | RPM                                                | MW                                            | "d"c                                                                         | HOURS                                                                         | TURNS                                                                                  | ICOST                                                                  | ccost                                                                        | PР                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2246.0<br>2247.0<br>2248.0<br>2249.0<br>2250.0<br>2251.0<br>2252.0<br>2253.0<br>2253.0           | 11.3<br>4.2<br>2.6<br>4.1<br>4.2<br>3.6<br>5.1<br>3.8 |                                                                              | 35<br>35<br>37<br>40<br>40<br>40<br>40<br>40       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.51<br>1.35<br>1.69<br>1.87<br>1.75<br>1.79<br>1.93<br>1.80<br>1.93<br>2.02 | 8.31<br>8.40<br>8.64<br>9.02<br>9.27<br>9.51<br>9.78<br>9.98<br>10.24         | 26332<br>26517<br>27019<br>27869<br>28461<br>29039<br>29702<br>30175<br>30805<br>31853 | 528<br>323<br>871<br>1402<br>901<br>879<br>1009<br>719<br>959          | 1609<br>1578<br>1561<br>1557<br>1543<br>1528<br>1517<br>1500<br>1489<br>1489 | 8,4<br>8,4<br>8,4<br>8,4<br>8,4<br>8,4 | 15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.9<br>15.0<br>16.0 |
| 2256.0<br>2257.0<br>2258.0<br>2259.0<br>2260.0<br>2261.0<br>2262.0<br>2263.0<br>2264.0<br>2265.0 | 2.8<br>3.0<br>2.5<br>3.1<br>3.5<br>3.8<br>3.8<br>2.4  | 47.8<br>46.8<br>50.4<br>49.7<br>49.4<br>49.6<br>50.9<br>51.4                 | 45<br>45<br>45<br>45<br>59<br>60<br>60             | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.78<br>1.92<br>1.90<br>2.01<br>1.92<br>1.97<br>1.95<br>2.03<br>2.14         | 10.88<br>11.24<br>11.58<br>11.97<br>12.30<br>12.58<br>12.85<br>13.16<br>13.58 | 32464<br>33434<br>34338<br>35417<br>36287<br>37293<br>38247<br>39363<br>40874<br>41813 | 826<br>1313<br>1222<br>1459<br>1178<br>1042<br>968<br>1132<br>1533     | 1476<br>1473<br>1468<br>1468<br>1463<br>1455<br>1447<br>1441<br>1443         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0 |
| 2246.0<br>2267.0<br>2269.0<br>2270.0<br>2271.0<br>2272.0<br>2273.0<br>2274.0<br>2275.0           | 3,7<br>3,0<br>3,2<br>3,5<br>3,5<br>6,0<br>7,5         | 51.5<br>50.3<br>50.6<br>48.1<br>47.0<br>48.6<br>46.8<br>46.1<br>44.4         | 60<br>44<br>48<br>45<br>45<br>45<br>45<br>45       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 2.05<br>1.86<br>1.96<br>1.91<br>1.82<br>1.86<br>1.81<br>1.65<br>1.56         | 14.17<br>14.44<br>14.77<br>15.08<br>15.34<br>15.62<br>15.88<br>16.05<br>16.18 | 42998<br>43712<br>44651<br>45546<br>46254<br>47020<br>47709<br>48157<br>48516<br>48983 | 1202<br>999<br>1200<br>1127<br>958<br>1036<br>932<br>606<br>485<br>497 | 1431<br>1424<br>1420<br>1415<br>1408<br>1403<br>1396<br>1384<br>1371         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0 |
| 2276.0<br>2277.0<br>2278.0<br>2279.0<br>2280.0<br>2281.0<br>2282.0<br>2283.0<br>2284.0<br>2284.4 | 7.3<br>8.2<br>9.4<br>10.7<br>10.1<br>8.0<br>9.1       | 46.8<br>47.4<br>48.4<br>48.6<br>48.6<br>48.1<br>47.9<br>46.4<br>46.3         | 45<br>41<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.52<br>1.57<br>1.53<br>1.49<br>1.45<br>1.46<br>1.54<br>1.49                 | 16.42<br>16.56<br>16.68<br>16.79<br>16.88<br>16.98<br>17.11<br>17.22<br>17.31 | 49178<br>49513<br>49805<br>50061<br>50285<br>50522<br>50823<br>51085<br>51312<br>51367 | 399<br>501<br>444<br>389<br>342<br>360<br>458<br>400<br>345<br>208     | 1345<br>1333<br>1320<br>1308<br>1295<br>1282<br>1272<br>1260<br>1249<br>1243 | 8,4<br>8,4<br>8,4<br>8,4<br>8,4<br>8,4 | 16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0 |
| 2285.0<br>2286.0<br>2287.0<br>2288.0<br>2289.0<br>2291.0<br>2291.0<br>2292.0<br>2293.0<br>2294.0 | 9.0<br>8.8<br>3.4<br>3.5<br>3.2<br>3.2<br>3.8<br>10.2 | 46.1<br>45.2<br>45.0<br>45.9<br>45.7<br>46.6<br>47.4<br>47.0<br>47.6<br>45.7 | 40<br>40<br>40<br>40<br>40<br>56<br>56<br>56       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.54<br>1.47<br>1.48<br>1.81<br>1.79<br>1.79<br>1.96<br>1.87                 | 17.41<br>17.52<br>17.64<br>17.93<br>18.22<br>18.49<br>18.81<br>19.07<br>19.17 | 51561<br>51827<br>52100<br>52812<br>53502<br>54158<br>55209<br>56094<br>56425<br>56664 | 494<br>404<br>416<br>1084<br>1049<br>996<br>1142<br>963<br>359<br>260  | 1238<br>1227<br>1217<br>1216<br>1214<br>1211<br>1210<br>1208<br>1198         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0 |

| DEPTH                                                                                            | ROP                                               | мов                                          | RPM                                                | MW                                                   | "d"c                                                                 | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                                          | CCOST                                                                              | рþ                                                   | FG                                                           |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 2295.0<br>2296.0<br>2297.0<br>2298.0<br>2299.0<br>2300.0<br>2301.0<br>2302.0<br>2303.0<br>2304.0 | 11.8<br>7.9<br>5.0<br>8.4<br>9.8                  | 51.4                                         | 56666666555555555555555555555555555555             | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6               | 1.46<br>1.55<br>1.85<br>1.56<br>1.55<br>1.68<br>1.85<br>1.66<br>1.66 | 19.31<br>19.39<br>19.59<br>19.67<br>19.76<br>19.89<br>20.09<br>20.21<br>20.31<br>20.43 | 56889<br>57169<br>57830<br>58121<br>58406<br>58832<br>59504<br>59904<br>60248<br>60668 | 245<br>304<br>718<br>317<br>309<br>464<br>730<br>434<br>457                                    | 1167<br>1162<br>1153<br>1144<br>1137<br>1133                                       | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0         |
| 2305.0<br>2306.0<br>2307.0<br>2308.0<br>2309.0<br>2310.0<br>2311.0<br>2312.0<br>2313.0<br>2314.0 | 9.3<br>10.6<br>10.5<br>9.6<br>2.0<br>5.1<br>8.0   | 49.7<br>49.9<br>50.1<br>50.4<br>50.4<br>49.5 | 56<br>56<br>56<br>55<br>55<br>55<br>55             | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6               | 1.82<br>1.63<br>1.57<br>1.58<br>1.61<br>1.72<br>1.83<br>1.67<br>1.65 | 20.62<br>20.73<br>20.83<br>20.92<br>21.03<br>21.17<br>21.36<br>21.49<br>21.61<br>21.69 | 61311<br>61674<br>61991<br>62312<br>62662<br>63138<br>63784<br>64196<br>64594<br>64845 | 699<br>395<br>345<br>381<br>518<br>715<br>455<br>441<br>277                                    | 1107<br>1100<br>1092<br>1085<br>1078<br>1073<br>1069<br>1064<br>1058               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0 |
| 2315.0<br>2316.0<br>2317.0<br>2318.0<br>2319.0<br>2320.0<br>2321.0<br>2322.0<br>2323.0<br>2324.0 | 11.1<br>9.1<br>8.0                                | 50.4<br>51.0<br>50.9<br>51.0<br>51.2         | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6               | 1.51<br>1.50<br>1.42<br>1.53<br>1.51<br>1.55<br>1.57<br>1.64<br>1.69 | 21.76<br>21.84<br>21.90<br>21.98<br>22.06<br>22.14<br>22.23<br>22.34<br>22.47<br>22.52 | 65106<br>65353<br>65550<br>65822<br>66073<br>66353<br>66650<br>67012<br>67426<br>67604 | 289<br>274<br>218<br>300<br>278<br>310<br>329<br>400.71<br>457.51<br>196.80                    | 1044<br>1037<br>1029<br>1023<br>1016<br>1010<br>1004<br>999.18<br>994.57<br>987.84 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0 |
| 2325.0<br>2326.0<br>2327.0<br>2328.0<br>2329.0<br>2330.0<br>2331.0<br>2332.0<br>2333.0<br>2334.0 | 7.6<br>12.5<br>11.7<br>8.6<br>12.4<br>13.2<br>4.6 | 52.2<br>52.0<br>51.8<br>51.8<br>52.2<br>52.1 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1,77<br>1,71<br>1,53<br>1,56<br>1,67<br>1,54<br>1,50                 | 22.58<br>22.73<br>22.86<br>22.94<br>23.03<br>23.15<br>23.23<br>23.30<br>23.52<br>23.83 | 68299<br>68736<br>68999<br>69280<br>69665<br>69932<br>70181                            | 203,90<br>566,06<br>482,88<br>291,15<br>311,43<br>426,07<br>295,20<br>275,93<br>801,41<br>1109 | 977.83<br>973.76<br>968.18<br>962.87<br>958.55<br>953.27<br>947.91                 | 8.4<br>8.4<br>8.4<br>8.4                             | 16.0<br>16.0<br>16.0<br>16.0                                 |
| 2335.0<br>2336.0<br>2337.0<br>2338.0<br>2339.0<br>2340.0<br>2341.0<br>2342.0<br>2343.0<br>2344.0 | 10.4<br>11.0<br>10.9<br>13.2<br>13.8<br>17.1      | 50.5<br>50.8<br>49.9<br>50.9<br>50.8         | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.59<br>1.57<br>1.57<br>1.50<br>1.49<br>1.41                         | 24.02<br>24.12<br>24.21<br>24.30<br>24.37<br>24.45<br>24.51<br>24.58<br>24.66<br>24.73 | 72868<br>73167<br>73469<br>73720<br>73959<br>74151<br>74407<br>74659                   | 712.14<br>351.00<br>330.71<br>334.77<br>276.94<br>264.77<br>213.03<br>283.03<br>278.97         | 941.64<br>937.00<br>932.45<br>927.54<br>922.61<br>917.38<br>912.73<br>908.12       | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.0<br>16.0<br>16.0<br>16.0<br>16.0<br>16.0                 |

| DEPTH                                                                                            | ROP WOR                                                                                                               | ррм                                                | MW "d"c                                                                                                              | HOURS                                                                                  | TURNS                                                                                                  | ICOST                                                                                  | CCOST                                                                                         | bb EC                                                                                                    |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 2345.0<br>2346.0<br>2347.0<br>2349.0<br>2350.0<br>2351.0<br>2352.0<br>2354.0                     | 6.1 51.4<br>3.4 52.2<br>5.5 51.7<br>5.5 51.9<br>8.5 51.5<br>10.6 49.6<br>6.7 51.2<br>6.6 50.8<br>4.6 51.1<br>5.0 51.0 | 55<br>55<br>55<br>55<br>55<br>55<br>55             | 9.6 1.78<br>9.6 2.00<br>9.6 1.82<br>9.6 1.67<br>9.6 1.57<br>9.6 1.75<br>9.6 1.75<br>9.6 1.88<br>9.6 1.84             | 24.89<br>25.19<br>25.37<br>25.55<br>25.67<br>25.92<br>26.07<br>26.29<br>26.49          | 76407<br>77012<br>77611<br>78001<br>78312<br>78807<br>79309<br>80033                                   | 1082<br>669,53<br>662,43<br>431,14<br>344,53<br>547,80<br>555,92<br>801,41             | 901.21<br>903<br>900.85<br>899.18<br>895.92<br>892.10<br>889.74<br>887.46<br>886.87<br>886.87 | 8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1 |
| 2355.0<br>2356.0<br>2357.0<br>2358.0<br>2359.0<br>2361.0<br>2362.0<br>2363.0<br>2364.0           | 3.5 51.6<br>6.7 51.6<br>3.5 51.8<br>5.5 51.7<br>2.3 50.0<br>1.6 48.4<br>2.8 49.5<br>2.6 51.0<br>2.3 49.6<br>4.5 45.8  | 55<br>55<br>55<br>54<br>56<br>46<br>46<br>55       | 9.6 1.97<br>9.6 1.75<br>9.6 1.97<br>9.6 1.82<br>9.6 2.09<br>9.6 2.20<br>9.6 1.96<br>9.6 2.01<br>9.6 2.06<br>9.6 1.82 | 26.77<br>26.92<br>27.20<br>27.38<br>27.82<br>28.44<br>28.79<br>29.18<br>29.61<br>29.84 | 83043<br>83640<br>85049<br>87112<br>88082<br>89131<br>90445                                            | 1033<br>661.42<br>1588<br>2283<br>1282<br>1404<br>1602                                 | 887<br>884,46<br>885<br>883,97<br>889<br>898<br>900<br>903<br>908                             | 8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1             |
| 2365.0<br>2366.0<br>2367.0<br>2368.0<br>2369.0<br>2370.0<br>2371.0<br>2372.0<br>2373.0<br>2374.0 | 2.8 46.2<br>3.0 46.2<br>3.2 46.5<br>4.3 46.2<br>4.1 50.0<br>7.1 50.1<br>4.2 51.7<br>2.3 51.5<br>3.2 51.4<br>5.3 51.1  | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 9.6 1.98<br>9.6 1.96<br>9.6 1.94<br>9.6 1.84<br>9.6 1.90<br>9.6 1.71<br>9.6 1.91<br>9.6 2.12<br>9.6 2.00<br>9.6 1.83 | 30.19<br>30.53<br>30.84<br>31.08<br>31.32<br>31.46<br>31.70<br>32.14<br>32.45<br>32.63 | 96072<br>96537                                                                                         | 1298<br>1227<br>1139<br>856.19<br>890.73<br>514.37<br>870.39<br>1596<br>1128<br>689.82 | 912.49<br>910.07<br>909.83<br>914<br>915                                                      | 8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1 |
| 2375.0<br>2376.0<br>2377.0<br>2378.0<br>2379.0<br>2380.0<br>2381.0<br>2382.0<br>2383.0<br>2384.0 | 4.8 51.3<br>4.8 51.3<br>8.0 51.2<br>2.9 51.8<br>1.5 51.7<br>2.7 52.3<br>3.0 53.9<br>2.9 55.0<br>3.3 56.7<br>2.6 55.0  | 55<br>55<br>55<br>54<br>49<br>50<br>50             | 9.6 1.87<br>9.6 1.86<br>9.6 1.68<br>9.6 2.04<br>9.6 2.25<br>9.6 2.03<br>9.6 2.03<br>9.6 2.05<br>9.6 2.03<br>9.6 2.03 | 32.84<br>33.05<br>33.18<br>33.52<br>34.17<br>34.54<br>34.88<br>35.22<br>35.52          | 101102<br>101789<br>102200<br>103322<br>105418<br>106501<br>107510<br>108532<br>109439                 | 759,82                                                                                 | 912.13                                                                                        | 8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1 |
| 2385.0<br>2386.0<br>2387.0<br>2389.0<br>2399.0<br>2391.0<br>2392.0<br>2393.0<br>2394.0           | 2.9 54.6<br>3.3 56.3<br>3.1 56.6<br>4.1 46.6<br>2.8 48.1<br>2.9 49.2<br>3.4 49.2<br>2.5 51.1<br>5.6 49.7<br>10.4 50.0 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50       | 9.6 2.04<br>9.6 2.05<br>9.6 1.83<br>9.6 1.99<br>9.6 1.98<br>9.6 1.93<br>9.6 2.05<br>9.6 1.76<br>9.6 1.55             | 36.24<br>36.54<br>36.87<br>37.11<br>37.48<br>37.82<br>38.12<br>38.52<br>38.70<br>38.79 | 111605<br>112503<br>113486<br>114224 (<br>115332<br>116366<br>117260<br>118452<br>118987 (<br>119276 3 | 1328<br>1259<br>1087<br>1452<br>551,27                                                 | 936<br>937<br>938<br>941<br>939.33                                                            | 8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1<br>8.4 16.1 |

| DEPTH                                                                                            | ROP                                                    | МОВ                                                                          | RPM                                                | MW                                            | "d"c                                                                         | HOURS                                                                                  | TURNS                                                                                            | ICOST                                                                                        | CCOST                                                                             | рþ                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2395.0<br>2396.0<br>2397.0<br>2398.0<br>2399.0<br>2400.0<br>2401.0<br>2402.0<br>2403.0<br>2404.0 | 10.6<br>10.0<br>5.2<br>4.4<br>3.5<br>3.9<br>3.3<br>6.4 | 49.9<br>49.2<br>48.5<br>49.4<br>49.2<br>49.3<br>50.1<br>50.5                 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.57<br>1.53<br>1.55<br>1.78<br>1.84<br>1.91<br>1.89<br>1.94<br>1.71         | 38.90<br>38.99<br>39.09<br>39.28<br>39.51<br>39.80<br>40.06<br>40.36<br>40.51<br>40.74 | 119875<br>120175<br>120753<br>121441<br>122300<br>123076<br>123975<br>124441                     | 382.45<br>345.93<br>366.21<br>703.01<br>837.93<br>1045<br>945.46<br>1095<br>567.07<br>831.84 | 930.21<br>927.27<br>926.10<br>925.65<br>926<br>926.36<br>927<br>925.39            | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1 |
| 2405.0<br>2406.0<br>2407.0<br>2408.0<br>2409.0<br>2410.0<br>2411.0<br>2412.0<br>2413.0<br>2414.0 | 5.2<br>9.3<br>4.3<br>4.8<br>4.8<br>5.6<br>3.9<br>3.1   | 50.7<br>50.9<br>49.4<br>49.2<br>49.1<br>49.1<br>49.8<br>50.8<br>50.8         | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.86<br>1.80<br>1.58<br>1.84<br>1.80<br>1.80<br>1.76<br>1.89<br>1.98<br>2.02 | 40.98<br>41.17<br>41.28<br>41.51<br>41.72<br>41.93<br>42.11<br>42.36<br>42.69<br>43.07 | 126406<br>126730<br>127433<br>128064<br>128688<br>129226                                         | 858.22<br>702.00<br>393.60<br>856.19<br>767.93<br>759.82<br>655.33<br>935.32<br>1192<br>1367 | 923,47<br>920,84<br>920,52<br>919,78<br>918,99<br>917,71                          | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1 |
| 2415.0<br>2416.0<br>2417.0<br>2418.0<br>2419.0<br>2420.0<br>2421.0<br>2422.0<br>2423.0<br>2424.0 | 3,5<br>3,0<br>2,7<br>2,8<br>2,8<br>3,2<br>3,4          | 49.3<br>48.8<br>48.7<br>48.6<br>48.5<br>48.7<br>49.0<br>48.4<br>49.2         | 55555555555555555555555555555555555555             | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.95<br>1.94<br>2.00<br>2.02<br>2.02<br>2.00<br>1.97<br>1.96<br>1.91<br>2.07 | 43.35<br>43.64<br>43.97<br>44.34<br>44.71<br>45.06<br>45.68<br>45.68<br>45.94<br>46.35 | 133087<br>134025<br>135136<br>136357<br>137552<br>138724<br>139768<br>140750<br>141619<br>142963 | 1054<br>1038<br>1231<br>1350<br>1323<br>1297<br>1155<br>1086<br>961.69<br>1487               | 922<br>924<br>926<br>928<br>929<br>931<br>931<br>931,41                           | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1 |
| 2425.0<br>2426.0<br>2427.0<br>2428.0<br>2429.0<br>2430.0<br>2431.0<br>2432.0<br>2433.0<br>2434.0 | 2.8<br>3.6<br>3.9<br>9.1<br>4.0<br>3.5<br>4.2<br>3.1   | 49.2<br>49.6<br>49.7<br>50.5<br>50.1<br>49.0<br>50.0<br>49.5<br>50.1         | 55555555555555555555555555555555555555             | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.93<br>2.02<br>1.94<br>1.93<br>1.63<br>1.88<br>1.92<br>1.86<br>1.95         | 46.62<br>46.97<br>47.25<br>47.51<br>47.62<br>47.87<br>48.15<br>48.40<br>48.72<br>49.03 | 145032<br>145950                                                                                 | 400.71                                                                                       | 934.23<br>936<br>936<br>936.28<br>933.88<br>933.80<br>934<br>934.00<br>935<br>936 | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1<br>16.1 |
| 2435.0<br>2436.0<br>2437.0<br>2438.0<br>2439.0<br>2440.0<br>2441.0<br>2442.0<br>2443.0<br>2444.0 | 4.7<br>3.1<br>4.9<br>3.1<br>2.8<br>3.4<br>1.8          | 50.3<br>48.0<br>48.9<br>52.3<br>52.9<br>53.0<br>53.3<br>54.2<br>53.8<br>53.7 | 50<br>50<br>50<br>50<br>50<br>50<br>48<br>45<br>45 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.98<br>2.05<br>1.80<br>1.99<br>1.84<br>2.00<br>2.02<br>1.93<br>2.17<br>2.23 | 49.36<br>49.81<br>50.02<br>50.34<br>50.55<br>50.86<br>51.22<br>51.51<br>52.06<br>52.74 | 152435<br>153779<br>154410<br>155375<br>155989<br>156944<br>157955<br>158705<br>160199<br>162021 | 1214<br>1636<br>768.95<br>1175<br>746.63<br>1163<br>1283<br>1075<br>2020<br>2465             | 940                                                                               | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4 | 16.2<br>16.2<br>16.2<br>16.2<br>16.2<br>16.2<br>16.2<br>16.2 |

 $(-1, 4, 1, \dots, 4 + 1, 1, 2 + 1, \dots, 4 + 1, \dots, 4 + 1) = \frac{1}{2} (1 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4 + 1, \dots, 4$ 

DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST PP FG 2445.0 2.6 49.8 45 9.6 1.98 53.12 163054 1405 955 8.4 16.2

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                                 |                                                      | 7<br>6.00<br>7.28                                                    | S                                      | ADC (<br>IZE<br>RIP '<br>OTAL                 |                                                                      | 517<br>12,250<br>7,5<br>119866                                                       | NOZ:<br>BIT                                                                                              | ERVAL<br>ZLES<br>RUN<br>DITION                                                     |                                                                                      | 0- 2597.0<br>16 16 18<br>152.0<br>B4 G0.000                                                                          |
|------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| DEPTH                                                                        | ROP                                                  | MOB                                                                  | RPM                                    | MW                                            | "d "c                                                                | HOURS                                                                                | TURNS                                                                                                    | ICOST                                                                              | ccost                                                                                | PP FG                                                                                                                |
| 2446.0<br>2447.0<br>2448.0                                                   | 2.2                                                  | 35.0<br>35.0<br>40.0                                                 | 44<br>45<br>45                         | 9.5                                           | 1,85<br>1,85<br>1,93                                                 | 0.46<br>0.92<br>1.35                                                                 | 1217<br>2457<br>3621                                                                                     | 1683<br>1678<br>1574                                                               | 37589<br>19633<br>13614                                                              | 8.4 16.2<br>8.4 16.2<br>8.4 16.2                                                                                     |
| 2453.0<br>2454.0<br>2455.0<br>2456.0<br>2457.0                               | 3.0<br>2.9<br>1.9<br>3.9<br>3.2<br>3.4<br>3.0<br>3.2 | 45.0<br>44.9<br>44.9<br>45.3<br>45.3<br>45.2<br>47.2<br>48.0<br>48.0 | 47<br>58<br>58<br>58<br>58<br>58<br>58 | 9.3<br>9.4<br>9.4<br>9.5<br>9.6<br>9.6        | 1.95<br>2.02<br>2.01<br>2.16<br>1.92<br>1.96<br>1.96<br>2.02<br>1.99 | 1.71<br>2.05<br>2.40<br>2.92<br>3.18<br>3.49<br>3.78<br>4.12                         | 4635<br>5812<br>7016<br>8849<br>9747<br>10821<br>11843<br>13022<br>14116                                 | 1322<br>1236<br>1263<br>1924<br>942<br>1127<br>1072<br>1238<br>1147                | 10541<br>8680<br>7444<br>6655<br>5941<br>5406<br>4973<br>4633<br>4343                | 8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2             |
| 2459.0<br>2460.0<br>2461.0<br>2462.0<br>2463.0<br>2464.0<br>2465.0<br>2466.0 | 3.0<br>2.8<br>3.1<br>3.2<br>5.3<br>3.7<br>3.1<br>2.5 | 48.2<br>48.2<br>48.4<br>48.5<br>48.6<br>39.6<br>40.0<br>39.9         | 58 88888888855555555555555555555555555 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 2.00<br>2.03<br>1.99<br>1.98<br>1.81<br>1.94<br>1.87<br>1.85<br>1.89 | 4.76<br>5.09<br>5.44<br>5.77<br>6.08<br>6.27<br>6.54<br>6.86<br>7.26<br>7.61<br>7.99 | 15229<br>16373<br>17616<br>18738<br>19826<br>20482<br>21428<br>22538<br>22538<br>23935<br>25120<br>26384 | 1169<br>1200<br>1304<br>1178<br>1141<br>689<br>992<br>1166<br>1466<br>1277<br>1399 | 4099<br>3892<br>3719<br>3560<br>3418<br>3266<br>3147<br>3048<br>2972<br>2895<br>2830 | 8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2 |
| 2470.0<br>2471.0<br>2472.0<br>2473.0<br>2474.0<br>2475.0<br>2476.0<br>2477.0 | 3.1<br>7.0<br>4.6<br>6.9<br>3.3<br>4.2<br>3.8<br>3.5 | 40.0<br>40.1<br>39.9<br>39.8<br>39.9<br>42.0<br>43.0<br>43.8<br>45.4 | 5555555588<br>555555555                | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.90<br>1.86<br>1.59<br>1.73<br>1.60<br>1.87<br>1.80<br>1.85<br>1.85 | 8.36<br>8.68<br>8.82<br>9.04<br>9.19<br>9.49<br>9.73<br>9.99<br>10.28<br>10.50       | 27595<br>28656<br>29125<br>29848<br>30328<br>31334<br>32111<br>32990<br>33990<br>34759                   | 1341<br>1174<br>519<br>799<br>532<br>1113<br>860<br>973<br>1050<br>807             | 2768<br>2704<br>2620<br>2553<br>2481<br>2434<br>2381<br>2336<br>2295<br>2250         | 8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2             |
| 2480.0<br>2481.0<br>2482.0<br>2483.0<br>2484.0<br>2485.0<br>2486.0<br>2487.0 | 9.3<br>9.2<br>3.1<br>2.6<br>2.5<br>2.8<br>3.1        | 46.8<br>47.3<br>47.5<br>45.9<br>45.2                                 | 52<br>52<br>52<br>53<br>55<br>55<br>55 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.57<br>1.57<br>1.94<br>2.01<br>2.00<br>2.03<br>1.97<br>1.93         | 11.06<br>11.38<br>11.77<br>12.17<br>12.62<br>12.97<br>13.29                          | 35913<br>36248<br>36588<br>37593<br>38805<br>40058<br>41467<br>42653<br>43701<br>44896                   | 1231<br>398<br>1177<br>1418<br>1467<br>1631<br>1307<br>1160<br>1323                | 2220<br>2168<br>2119<br>2094<br>2076<br>2049<br>2031<br>2011<br>1995                 | 8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2 |

| DEPTH                                                                                            | ROP WOI                                                                                                               | RPM                                                  | MW "d"c                                                                                                              | HOURS                                                                                           | TURNS                                                                                  | TCOST                                                                   | CCOST                                                                        | PP FG                                                                                                    |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 2489.0<br>2490.0<br>2491.0<br>2492.0<br>2494.0<br>2495.0<br>2496.0<br>2497.0<br>2498.0           | 2.7 47.5<br>3.7 47.5<br>4.6 47.4<br>5.0 47.5<br>9.4 46.0<br>6.5 45.1<br>4.3 50.2<br>5.9 50.4<br>7.3 50.4              | 7 55<br>5 55<br>5 55<br>5 55<br>5 55<br>5 55<br>5 55 | 9.6 2.01<br>9.6 1.90<br>9.6 1.83<br>9.6 1.57<br>9.6 1.68<br>9.6 1.89<br>9.6 1.78<br>9.6 1.78<br>9.6 1.71             | 14.29<br>14.51<br>14.71<br>14.82<br>14.97<br>15.20<br>15.37                                     | 46120<br>47015<br>47729<br>48388<br>48739<br>49244<br>50017<br>50580<br>51032<br>51410 | 1354<br>991<br>790<br>728<br>389<br>559<br>855<br>623<br>501<br>418     | 1980<br>1933<br>1907<br>1875<br>1849<br>1829<br>1805<br>1780                 | 8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2 |
| 2499.0<br>2500.0<br>2501.0<br>2502.0<br>2503.0<br>2504.0<br>2505.0<br>2506.0<br>2507.0<br>2508.0 | 4.1 50.8<br>2.8 50.9<br>2.8 50.4<br>3.3 50.6<br>4.9 50.7<br>3.2 51.6<br>5.9 51.6<br>8.5 51.2<br>4.5 51.8              | 55<br>55<br>55                                       | 9.6 1.91<br>9.6 2.04<br>9.6 1.99<br>9.6 1.85<br>9.6 2.01<br>9.6 1.99<br>9.6 1.60<br>9.6 1.66<br>9.6 1.89             | 15.87<br>16.22<br>16.58<br>16.88<br>17.09<br>17.40<br>17.70<br>17.87<br>17.99<br>18.21          | 52207<br>53368<br>54546<br>55560<br>56239<br>57272<br>58246<br>58809<br>59200<br>59934 | 982<br>1285<br>1304<br>1122<br>752<br>1143<br>1077<br>624<br>432<br>813 | 1738<br>1730<br>1722<br>1712<br>1695<br>1686<br>1676<br>1658<br>1639<br>1626 | 8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2 |
| 2509.0<br>2510.0<br>2511.0<br>2512.0<br>2513.0<br>2514.0<br>2515.0<br>2516.0<br>2517.0<br>2518.0 | 9.7 51.5<br>3.1 51.9<br>5.3 51.6<br>13.7 51.3<br>7.0 50.6<br>5.5 51.0<br>3.5 51.1<br>3.0 51.4<br>3.3 51.7<br>4.3 51.4 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55   | 9.6 1.62<br>9.6 2.03<br>9.6 1.83<br>9.6 1.50<br>9.6 1.72<br>9.6 1.81<br>9.6 1.97<br>9.6 2.03<br>9.6 2.00<br>9.6 1.90 | 18.31<br>18.64<br>18.83<br>18.90<br>19.05<br>19.23<br>19.23<br>19.85<br>20.15                   | 60275<br>61357<br>61982<br>62223<br>62697<br>63297<br>64243<br>65345<br>66341<br>67115 | 377<br>1197<br>692<br>267<br>524<br>664<br>1046<br>1220<br>1102<br>857  | 1606<br>1600<br>1586<br>1566<br>1551<br>1538<br>1531<br>1527<br>1521         | 8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2 |
| 2519.0<br>2520.0<br>2521.0<br>2522.0<br>2523.0<br>2524.0<br>2525.0<br>2526.0<br>2527.0<br>2528.0 | 3.3 51.7<br>2.9 51.5<br>4.8 51.6<br>5.6 49.1<br>8.1 47.0<br>9.3 46.9<br>10.9 46.9<br>8.3 47.1<br>7.6 47.2             | 55<br>55<br>55<br>55<br>55<br>55                     | 9.6 2.00<br>9.6 2.04<br>9.6 1.87<br>9.6 1.78<br>9.6 1.63<br>9.6 1.53<br>9.6 1.62<br>9.6 1.67<br>9.6 1.66             | 20.69<br>21.03<br>21.24<br>21.42<br>21.55<br>21.65<br>21.65<br>21.75<br>21.87<br>22.00<br>22.13 | 68115<br>69253<br>69945<br>70539<br>70946<br>71302<br>71605<br>72002<br>72451<br>72886 | 1106<br>1260<br>766<br>657<br>450<br>394<br>336<br>439<br>497<br>481    | 1506<br>1503<br>1493<br>1482<br>1469<br>1456<br>1442<br>1442<br>1418<br>1407 | 8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.2<br>8.4 16.3<br>8.4 16.3 |
| 2529.0<br>2530.0<br>2531.0<br>2532.0<br>2533.0<br>2534.0<br>2536.0<br>2536.0<br>2538.0           | 7.6 47.2<br>8.3 47.3<br>4.6 46.9<br>9.9 46.1<br>9.1 46.2<br>8.5 46.3<br>10.2 46.4<br>9.5 46.9<br>8.1 46.7<br>7.0 46.7 | 55 9<br>55 9<br>55 9<br>55 9<br>55 9<br>55 9         | 9.6 1.66<br>9.6 1.63<br>9.6 1.82<br>9.6 1.56<br>9.6 1.58<br>9.6 1.55<br>9.6 1.58<br>9.6 1.63<br>9.6 1.68             | 22.27<br>22.39<br>22.60<br>22.71<br>22.82<br>23.93<br>23.14<br>23.26<br>23.40                   | 73321<br>73717<br>74437<br>74771<br>75133<br>75521<br>75844<br>76190<br>76597<br>77068 | 482<br>438<br>796<br>370<br>400<br>430<br>358<br>383<br>450<br>520      | 1396<br>1384<br>1377<br>1366<br>1355<br>1344<br>1333<br>1323                 | 8.4 16.3<br>8.4 16.3<br>8.4 16.3<br>8.4 16.3<br>8.4 16.3<br>8.4 16.3<br>8.4 16.3<br>8.4 16.3             |

| DEPTH                                                                                  | ROP                                                  | WOB                                                                  | RPM                                                | MW                                            | "d "c                                                                        | HOURS                                                                                  | TURNS                                                                                            | TCOST                                                                     | ccost                                                                        | pр                                                   | FG                                                           |
|----------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 2539.0<br>2540.0<br>2541.0<br>2542.0<br>2543.0<br>2544.0<br>2545.0<br>2546.0<br>2547.0 | 2.9<br>2.6<br>3.6<br>4.3<br>5.5<br>6.7<br>6.3<br>9.1 | 47.3<br>43.6<br>47.8<br>47.5<br>47.5<br>47.5<br>47.5<br>47.7<br>47.4 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.80<br>1.94<br>2.02<br>1.91<br>1.85<br>1.77<br>1.70<br>1.72<br>1.60         | 23.60<br>23.95<br>24.33<br>24.61<br>24.84<br>25.02<br>25.17<br>25.33<br>25.44<br>25.57 | 77726<br>78875<br>80128<br>81049<br>81818<br>82417<br>82912<br>83435<br>83797<br>84220           | 728<br>1272<br>1387<br>1019<br>851<br>663<br>548<br>578<br>401<br>468     | 1299<br>1299<br>1300<br>1297<br>1292<br>1286<br>1278<br>1271<br>1263         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3 |
| 2549.0<br>2550.0<br>2551.0<br>2552.0<br>2553.0<br>2554.0<br>2555.0<br>2555.0<br>2556.0 | 2.1<br>5.7<br>2.7<br>2.1<br>2.5<br>2.9<br>3.2        | 47.8<br>48.5                                                         | 555555555555555555555555555555555555555            | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.67<br>2.11<br>1.76<br>2.02<br>2.10<br>2.06<br>2.05<br>2.01<br>2.00<br>1.70 | 25.70<br>26.19<br>26.36<br>26.73<br>27.21<br>27.60<br>27.95<br>28.26<br>28.55<br>28.68 | 84660<br>86259<br>86840<br>88051<br>89621<br>90923<br>92062<br>93086<br>94064<br>94483           | 487<br>1770<br>642<br>1340<br>1738<br>1442<br>1260<br>1133<br>1082<br>464 | 1248<br>1253<br>1247<br>1248<br>1252<br>1254<br>1254<br>1253<br>1252         | 8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4               | 16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3 |
| 2559.0<br>2560.0<br>2562.0<br>2562.0<br>2563.0<br>2564.0<br>2565.0<br>2566.0<br>2566.0 | 3.4<br>2.6<br>2.6<br>4.6<br>6.9<br>5.6<br>7.5        | 52.3<br>47.8<br>47.0<br>46.9<br>46.5<br>46.4<br>46.6<br>46.6         | 55<br>55<br>55<br>50<br>50<br>50<br>50             | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 2.03<br>1.94<br>2.02<br>2.02<br>1.81<br>1.65<br>1.72<br>1.62<br>1.72         | 29.00<br>29.29<br>29.68<br>30.07<br>30.29<br>30.43<br>30.61<br>30.75<br>30.92          | 95542<br>96508<br>97800<br>99070<br>99764<br>100200<br>100739<br>101138<br>101668                | 1172<br>1069<br>1430<br>1405<br>799<br>532<br>656<br>485<br>645<br>1214   | 1244<br>1242<br>1244<br>1245<br>1242<br>1236<br>1231<br>1225<br>1220         |                                                      | 16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3 |
| 2569.0<br>2570.0<br>2571.0<br>2572.0<br>2573.0<br>2574.0<br>2575.0<br>2576.0<br>2576.0 | 7,9<br>5,8<br>6,8<br>6,3<br>4,9<br>4,2<br>3,9<br>3,8 | 48.2<br>50.7<br>52.2<br>51.7<br>52.3<br>52.5<br>52.5<br>52.6<br>52.7 | 50<br>50<br>50<br>50<br>50<br>50<br>50             | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.69<br>1.65<br>1.77<br>1.71<br>1.75<br>1.84<br>1.89<br>1.97                 | 31.41<br>31.54<br>31.71<br>31.86<br>32.02<br>32.22<br>32.46<br>32.72<br>32.98<br>33.22 | 103129<br>103509<br>104030<br>104474<br>104950<br>105562<br>106273<br>107049<br>107847           | 564<br>463<br>634<br>541<br>579<br>746<br>865<br>944<br>972<br>877        | 1215<br>1209<br>1204<br>1199<br>1194<br>1191<br>1188<br>1186<br>1185<br>1182 |                                                      | 16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3         |
| 2579.0<br>2580.0<br>2581.0<br>2582.0<br>2583.0<br>2584.0<br>2585.0<br>2586.0<br>2588.0 | 4.0<br>5.9<br>3.4<br>4.1<br>6.9<br>3.2<br>3.1<br>3.2 | 52.7<br>53.4<br>54.4<br>55.2<br>54.8<br>50.5<br>50.7<br>50.7         | 50<br>50<br>50<br>50<br>45<br>45<br>45<br>45<br>45 | 9,6<br>9,6<br>9,6<br>9,6<br>9,6<br>9,6<br>9,6 | 1.82<br>1.92<br>1.29<br>2.00<br>1.92<br>1.66<br>1.93<br>1.93                 | 33.42<br>33.67<br>33.84<br>34.13<br>34.38<br>34.52<br>34.84<br>35.16<br>35.47          | 109147<br>109902<br>110410<br>111297<br>112028<br>112422<br>113269<br>114145<br>114981<br>115456 | 704<br>920<br>618<br>1080<br>900<br>533<br>1145<br>1185<br>1131<br>642    | 1179<br>1177<br>1173<br>1172<br>1170<br>1165<br>1165<br>1165<br>1165         | 8,55<br>8,55<br>8,55<br>8,55<br>8,55<br>8,55<br>8,55 | 16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3<br>16.3         |

en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co

| DEPTH ROI                                                                                                                                                                                                                 | , MOB                                                                                        | RPM MW                                                                                                 | "d "c                                                                                | HOURS                                                                         | TURNS                                                                                                                   | ICOST                                                                                                             | CCOST                                                                                  | PP FG                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2590.0 6.5<br>2591.0 7.6<br>2592.0 5.3<br>2593.0 6.3<br>2594.0 4.1<br>2595.0 4.4<br>2596.0 5.9                                                                                                                            | 50.5<br>50.4<br>349.8<br>49.4<br>49.5<br>49.6<br>49.5<br>49.5<br>49.3                        | 45 9.6<br>45 9.6<br>45 9.6<br>45 9.6<br>45 9.6<br>45 9.6<br>45 9.6                                     | 1.78<br>1.68<br>1.61<br>1.74<br>1.68<br>1.83<br>1.80<br>1.70                         | 35.85<br>36.01<br>36.14<br>36.33<br>36.48<br>36.73<br>36.95<br>37.12<br>37.28 | 116007<br>116425<br>116771<br>117284<br>117712<br>118369<br>118983<br>119437                                            | 746<br>565<br>469<br>694<br>578<br>890<br>830<br>615                                                              | 1155<br>1150<br>1147<br>1143<br>1141<br>1139                                           | 8.5 16.3<br>8.5 16.3<br>8.5 16.3<br>8.5 16.3<br>8.5 16.3<br>8.5 16.3<br>8.5 16.3<br>8.5 16.3                                                                                     |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                                                                                                                                                            | 7<br>0.00<br>3.50                                                                            | IADC (<br>SIZE<br>TRIP T<br>TOTAL                                                                      | IME                                                                                  | 4<br>8,500<br>7,5<br>18614                                                    | NOZ<br>BIT                                                                                                              | TERVAL<br>ZLES<br>RUN<br>DITION                                                                                   |                                                                                        | 0- 2602.1<br>14 15 15<br>5.1<br>B0 G0.500                                                                                                                                        |
| DEPTH ROP                                                                                                                                                                                                                 | WOB 5                                                                                        | RPM MW                                                                                                 | "d"c                                                                                 | HOURS                                                                         | TURNS                                                                                                                   | ICOST                                                                                                             | CCOST                                                                                  | PP FG                                                                                                                                                                            |
| 2597.2 8.8                                                                                                                                                                                                                | 7.8                                                                                          | 90 9.6                                                                                                 | 1.21                                                                                 | 0.02                                                                          | 123                                                                                                                     | 416                                                                                                               | 137366                                                                                 | 8.5 16.4                                                                                                                                                                         |
| 2597.6       8.1         2597.8       8.1         2598.0       6.4         2598.2       10.1         2598.4       9.1         2598.6       6.0         2598.8       4.0         2599.0       4.4         2599.2       5.6 | 12.4<br>12.5<br>12.4                                                                         | 90 9.6<br>90 9.6<br>90 9.6<br>90 9.6<br>90 9.6<br>90 9.6<br>90 9.6<br>90 9.6<br>90 9.6                 | 1.37<br>1.42<br>1.30<br>1.33<br>1.45<br>1.55                                         | 0.05<br>0.07<br>0.10<br>0.13<br>0.15<br>0.17<br>0.20<br>0.25<br>0.30<br>0.33  | 256<br>390<br>524<br>692<br>798<br>917<br>1098<br>1365<br>1611<br>1805                                                  | 451<br>453<br>568<br>360<br>401<br>614<br>903<br>832<br>654                                                       | 68908<br>46089<br>34680<br>27858<br>23275<br>20007<br>17583<br>15730<br>14240<br>13005 | 8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4                                                                         |
| 2599.8 3.2<br>2600.0 2.4<br>2600.2 3.7<br>2600.4 9.1<br>2600.6 2.5                                                                                                                                                        | 12.4<br>12.2<br>13.0<br>14.5<br>15.5<br>14.6<br>14.2<br>14.2<br>14.5<br>14.5<br>14.5<br>15.5 | 90 9.6 90 9.6 90 9.6 90 9.6 90 9.6 90 9.6 90 9.6 90 9.6 1 90 9.6 1 90 9.6 2 90 9.6 2 90 9.6 2 90 9.6 2 | 1.36<br>1.60<br>1.70<br>1.63<br>1.42<br>1.74<br>1.52<br>1.52<br>1.87<br>1.38<br>1.38 | 3,05                                                                          | 1895<br>2022<br>2361<br>2810<br>3099<br>3218<br>3654<br>3851<br>4136<br>4868<br>5829<br>6549<br>10898<br>16196<br>18614 | 304<br>431<br>1146<br>1517<br>979<br>401<br>1476<br>664<br>964<br>2475<br>3251<br>2435<br>14704<br>18808<br>16353 | 9763<br>9214<br>8696<br>8295<br>7893<br>7547<br>7305<br>7121<br>6917<br>7242<br>7704   | 8.5 16.4<br>8.5 16.4 |

| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                                                          | 77                                                            | 8<br>74.00<br>3.52                                           | Ş                                            | TADC<br>BIZE<br>FRIP<br>FOTAL                               | TIME                                                         | 537<br>12.250<br>7.5<br>10553                                                | NOZ<br>BIT                                                                   | ERVAL<br>ZLES<br>RUN<br>DITTON                                          |                                                      | .1- 2616.7<br>16 16 18<br>14.6<br>85 G0.000                                                              |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| DEPTH                                                                                                | ROP                                                           | MOB                                                          | RPM                                          | MW                                                          | "d"c                                                         | HOURS                                                                        | TURNS                                                                        | ICOST                                                                   | ccost                                                | PP FG                                                                                                    |
| 2603.0<br>2604.0<br>2605.0                                                                           | 3,5                                                           | 17.0<br>36.0<br>47.0                                         | 50<br>50<br>50                               | 9.6                                                         | 1,31<br>1,73<br>1,92                                         | 0.17<br>0.46<br>0.78                                                         | 509<br>1367<br>2334                                                          | 689<br>1043<br>1178                                                     | 19383                                                | 8.5 16.4<br>8.5 16.4<br>8.5 16.4                                                                         |
| 2606.0<br>2607.0<br>2608.0<br>2609.0<br>2610.0<br>2611.0<br>2612.0<br>2613.0<br>2614.0               | 2.9<br>3.4<br>3.2<br>3.1<br>3.7<br>4.8<br>6.2<br>7.4          | 46.0<br>47.0<br>47.0<br>47.0<br>47.0<br>47.0<br>47.0<br>47.0 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6               | 1.93<br>1.95<br>1.89<br>1.91<br>1.92<br>1.86<br>1.78<br>1.69 | 1.12<br>1.47<br>1.76<br>2.07<br>2.40<br>2.67<br>2.88<br>3.04<br>3.17<br>3.31 | 3369<br>4403<br>5286<br>6223<br>7191<br>8002<br>8627<br>9111<br>9516<br>9945 | 1259<br>1259<br>1074<br>1141<br>1178<br>987<br>761<br>589<br>494<br>522 | 8270<br>7051<br>6194<br>5559<br>5045<br>4613<br>4244 | 8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4 |
| 2616.0<br>2616.7                                                                                     |                                                               | 47.0<br>47.0                                                 | 50<br>50                                     |                                                             | 1.59<br>1.58                                                 | 3,44<br>3,52                                                                 | 10306<br>10553                                                               | 440<br>430                                                              | 3432<br>3288                                         | 8.5 16.4<br>8.5 16.4                                                                                     |
|                                                                                                      |                                                               |                                                              |                                              |                                                             |                                                              |                                                                              |                                                                              |                                                                         |                                                      |                                                                                                          |
| BIT NUMBER<br>CHRIS RC3<br>COST<br>TOTAL HOUR                                                        |                                                               | 8<br>0.00<br>2.89                                            | S                                            | IZE<br>RIP                                                  |                                                              | 8.500<br>7.6<br>14572                                                        | NOZ:<br>BIT                                                                  | ERVAL<br>ZLES<br>RUN<br>DITION                                          |                                                      | 7- 2635.2<br>15 15 14<br>18.5<br>B0 G0.400                                                               |
| CHRIS RC3<br>COST                                                                                    |                                                               | 0.00                                                         | S<br>T<br>T                                  | IZE<br>RIP<br>OTAL                                          | TIME                                                         | 8.500<br>7.6                                                                 | NOZ:<br>BIT                                                                  | ZLES<br>RUN                                                             |                                                      | 15 15 14<br>18.5<br>B0 G0.400                                                                            |
| CHRIS RC3<br>COST<br>TOTAL HOUR<br>DEPTH<br>2616.8<br>2617.0<br>2617.2<br>2617.4<br>2617.6<br>2617.8 | S<br>ROP<br>9.2<br>9.7<br>10.9<br>11.8<br>9.9<br>10.1<br>20.0 | 0.00<br>2.89<br>WOB<br>9.8<br>9.8<br>10.0<br>10.6<br>10.7    | S<br>T<br>T                                  | TZE<br>RIP<br>OTAL<br>MW<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | TIME<br>TURNS                                                | 8.500<br>7.6<br>1 <b>45</b> 72                                               | NOZ:<br>BIT<br>CON)<br>TURNS                                                 | ZLES<br>RUN<br>DITION<br>ICOST                                          | Τ0                                                   | 15 15 14<br>18.5<br>B0 G0.400                                                                            |

 $(\mathbf{x}_{i}, \mathbf{x}_{i}, \mathbf{x$ 

| DEPTH                                                                                            | ROP                                                                   | WOB                                                                  | RPM                                          | ΜW                                                   | "d"c                                                                 | HOURS                                                                        | TURNS                                                                           | TCOST                                                                   | CCOST                                                                        | b b                                           | FG                                                           |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 2620.4<br>2620.6<br>2620.8<br>2621.0<br>2621.2<br>2621.4<br>2621.6<br>2621.8<br>2622.0<br>2622.2 | 13.6<br>7.5<br>15.0<br>10.4<br>10.7<br>18.0<br>7.8<br>12.4            | 18.4<br>18.6<br>18.6<br>18.9<br>19.0<br>19.1<br>19.2<br>19.2         | 85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.37<br>1.53<br>1.53<br>1.33<br>1.44<br>1.43<br>1.29<br>1.53<br>1.39 | 0.35<br>0.37<br>0.39<br>0.41<br>0.43<br>0.45<br>0.46<br>0.50                 | 1799<br>1874<br>2010<br>2078<br>2176<br>2271<br>2328<br>2458<br>2540<br>2601    | 289<br>269<br>487<br>243<br>350<br>340<br>203<br>467<br>294<br>218      | 7850<br>7461<br>7121<br>6801<br>6514<br>6251<br>6004<br>5787<br>5580<br>5385 | 8.5                                           | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4         |
| 2622.4<br>2622.6<br>2623.0<br>2623.2<br>2623.4<br>2623.6<br>2623.6<br>2624.0<br>2624.2           | 8.5<br>10.0<br>10.1<br>4.3<br>6.0<br>6.4<br>7.9                       | 19.9<br>19.5                                                         | 85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.44<br>1.35<br>1.51<br>1.45<br>1.44<br>1.65<br>1.55<br>1.55<br>1.42 | 0.53<br>0.54<br>0.57<br>0.59<br>0.61<br>0.65<br>0.69<br>0.72<br>0.74<br>0.79 | 2699<br>2767<br>2887<br>2989<br>3090<br>3326<br>3498<br>3656<br>3760<br>4046    | 350<br>243<br>431<br>365<br>360<br>847<br>614<br>568<br>370             | 5208<br>5040<br>4889<br>4745<br>4610<br>4498<br>4385<br>4278<br>4171<br>4087 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5               | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4 |
| 2624.4<br>2624.8<br>2625.0<br>2625.2<br>2625.4<br>2625.6<br>2625.8<br>2626.0<br>2626.2           | 4.7<br>2.3<br>3.9<br>2.3<br>4.6<br>2.7<br>3.3                         | 18.3<br>18.5<br>18.0<br>19.1<br>16.5<br>19.0<br>18.6<br>18.6<br>18.7 | 85<br>85<br>85<br>85<br>85<br>85<br>85       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.53<br>1.66<br>1.80<br>1.87<br>1.66<br>1.88<br>1.67<br>1.82<br>1.54 | 0.82<br>0.86<br>0.94<br>1.02<br>1.07<br>1.16<br>1.21<br>1.28<br>1.34         | 4189<br>4406<br>4781<br>5216<br>5477<br>5930<br>6154<br>6531<br>6840<br>6984    | 512<br>776<br>1344<br>1557<br>933<br>1623<br>801<br>1349<br>1106<br>517 | 3994<br>3913<br>3849<br>3794<br>3727<br>3678<br>3614<br>3564<br>3511<br>3448 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5 | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4 |
| 2626.4<br>2626.6<br>2627.0<br>2627.2<br>2627.6<br>2627.6<br>2627.8<br>2628.0<br>2628.2           | 4.1<br>3.2<br>9.0<br>8.8<br>11.4<br>3.1<br>3.6<br>5.2                 | 18.7<br>18.7<br>18.7<br>18.8<br>18.7<br>18.7<br>18.5<br>19.6<br>19.6 | 85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.70<br>1.77<br>1.48<br>1.48<br>1.41<br>1.78<br>1.76                 | 1.39<br>1.44<br>1.50<br>1.53<br>1.55<br>1.58<br>1.65<br>1.74<br>1.74         | 7103<br>7353<br>7667<br>7780<br>7896<br>8075<br>8409<br>8694<br>8891<br>9047    | 426<br>893<br>1126<br>406<br>415<br>320<br>1197<br>1020<br>705<br>558   | 3386<br>3335<br>3292<br>3236<br>3182<br>3077<br>3043<br>3007<br>2967<br>2926 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5        | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4 |
| 2628.6<br>2628.8<br>2629.0<br>2629.2<br>2629.4<br>2629.6<br>2629.8<br>2630.0<br>2630.2           | 9.0<br>10.4<br>9.9<br>15.3<br>5.0<br>7.9<br>9.4<br>7.8<br>12.0<br>4.9 | 19.3<br>19.4<br>19.6<br>19.5<br>19.4<br>19.4                         | 85<br>85<br>85<br>85<br>85<br>85<br>85       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.44<br>1.46<br>1.34<br>1.67<br>1.53<br>1.48<br>1.48                 | 1.80<br>1.82<br>1.84<br>1.85<br>1.89<br>1.91<br>1.94<br>1.98                 | 9160<br>9258<br>9361<br>9428<br>9633<br>9762<br>9871<br>10001<br>10086<br>10296 | 406<br>350<br>370<br>238<br>735<br>462<br>391<br>467<br>304<br>751      | 2844<br>2842<br>2802<br>2760<br>2729<br>2693<br>2658<br>2625<br>2591<br>2564 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5        | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4         |

| DEPTH                                                                                  | ROP                                                   | WOB                                                          | RPM                                          | MW                                            | "d"c                                                                         | HOURS                                                                        | TURNS                                                                                  | ICOST                                                               | CCOST                                                                        | рp                                     | FG                                                           |
|----------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2630.6<br>2630.8<br>2631.0<br>2631.2<br>2631.4<br>2631.6<br>2632.0<br>2632.0<br>2632.2 | 11.0<br>6.2<br>7.4<br>20.3<br>4.7<br>8.2<br>8.8       | 19.5<br>19.5<br>19.5<br>19.6                                 | 85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.46<br>1.54<br>1.44<br>1.60<br>1.55<br>1.26<br>1.68<br>1.52<br>1.50         | 2.04<br>2.06<br>2.08<br>2.12<br>2.14<br>2.15<br>2.19<br>2.22<br>2.24<br>2.26 | 10397<br>10531<br>10624<br>10788<br>10926<br>10927<br>11194<br>11318<br>11434<br>11514 | 360<br>482<br>332<br>589<br>494<br>180<br>777<br>445<br>415<br>285  | 2532<br>2503<br>2473<br>2447<br>2420<br>2390<br>2369<br>2344<br>2319<br>2293 | 88888555555555555555555555555555555555 | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4 |
| 2632.6<br>2632.8<br>2633.2<br>2633.4<br>2633.6<br>2633.8<br>2634.0<br>2634.2<br>2634.4 | 14.4<br>5.5<br>4.1<br>5.1<br>7.3<br>6.1<br>4.4<br>5.6 | 19.7<br>20.0<br>19.8<br>19.7<br>19.6<br>19.8<br>19.8<br>19.9 | 85<br>85<br>85<br>85<br>85<br>85<br>85       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.67<br>1.37<br>1.65<br>1.72<br>1.66<br>1.56<br>1.61<br>1.71<br>1.64<br>1.88 | 2.30<br>2.31<br>2.35<br>2.40<br>2.44<br>2.50<br>2.54<br>2.58<br>2.66         | 11722<br>11793<br>11980<br>12226<br>12424<br>12563<br>12730<br>12963<br>13145<br>13561 | 745<br>254<br>670<br>883<br>710<br>497<br>599<br>832<br>654<br>1486 | 2274<br>2248<br>2229<br>2213<br>2195<br>2175<br>2156<br>2141<br>2124<br>2117 | 555555555<br>888888888                 | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4 |
| 2634.6<br>2634.8<br>2635.0<br>2635.2                                                   | 2.7<br>3.8                                            | 19.8<br>20.4<br>20.7<br>20.7                                 | 85<br>85<br>85<br>85                         | 9.6<br>9.6                                    | 1,62<br>1,87<br>1,77<br>1,68                                                 | 2,69<br>2,77<br>2,82<br>2,86                                                 | 13729<br>14109<br>14378<br>14572                                                       | 604<br>1359<br>964<br>6 <b>9</b> 5                                  | 2100<br>2092<br>2079<br>2064                                                 | 8.5<br>8.5                             | 16.4<br>16.4<br>16.4                                         |
|                                                                                        |                                                       |                                                              |                                              |                                               |                                                                              |                                                                              |                                                                                        |                                                                     |                                                                              |                                        |                                                              |
| BIT NUMI<br>CHRIS. F<br>COST<br>TOTAL HO                                               | RC3                                                   | 8<br>0.00<br>6.72                                            | S                                            | ADC (<br>IZE<br>RIP<br>OTAL                   |                                                                              | 4<br>8.500<br>7.8<br>36242                                                   | NOZ<br>BIT                                                                             | ERVAL<br>ZLES<br>RUN<br>DITION                                      |                                                                              | .2- 26<br>15 1<br>BO GO                | 5 14<br>17.8                                                 |
| CHRIS. F<br>COST                                                                       | RC3                                                   | 0.00<br>6.72                                                 | S                                            | IZE<br>RIP                                    | TIME<br>TURNS                                                                | 8.500<br>7.8                                                                 | NOZ<br>BIT                                                                             | ZLES<br>RUN                                                         |                                                                              | 15 1                                   | 5 14<br>17.8                                                 |
| CHRIS. F<br>COST<br>TOTAL HO                                                           | RC3<br>DURS<br>ROP<br>3.5<br>3.5<br>3.9<br>3.2<br>5.6 | 0.00<br>6.72<br>WOB                                          | S<br>T<br>T                                  | MW<br>9.7<br>9.7<br>9.7<br>9.7                | TIME<br>TURNS                                                                | 8.500<br>7.8<br>36242                                                        | NOZ<br>BIT<br>CON                                                                      | ZLES<br>RUN<br>DITION                                               | Τ0                                                                           | 15 1<br>B0 G0<br>PP                    | 5 14<br>17.8<br>1.800                                        |

A second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the s

| DEPTH                                                                                            | ROP                                                                            | WOB                                                                  | RPM                                                | MW "d"c                                                                                                              | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                       | CCOST                                                                        | PP FG                                                                                                    |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 2638.6<br>2639.0<br>2639.2<br>2639.4<br>2639.6<br>2639.8<br>2640.0<br>2640.2<br>2640.4           | 7.3<br>7.5<br>8.5<br>9.6<br>13.0<br>8.5<br>3.9                                 | 14.0<br>13.8<br>13.6                                                 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.7 1.42<br>9.7 1.43<br>9.7 1.38<br>9.7 1.35<br>9.7 1.27<br>9.7 1.38<br>9.7 1.59<br>9.7 1.62<br>9.7 1.62             | 0.55<br>0.58<br>0.61<br>0.63<br>0.65<br>0.67<br>0.69<br>0.74<br>0.80         | 2928<br>3077<br>3221<br>3348<br>3461<br>3544<br>3671<br>3948<br>4269<br>4364           | 507<br>502<br>487<br>431<br>380<br>281<br>430<br>938<br>1085<br>320         | 8973<br>8503<br>8081<br>7698<br>7350<br>7028<br>6742<br>6500<br>6283<br>6054 | 8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4             |
| 2640.6<br>2640.8<br>2641.0<br>2641.2<br>2641.4<br>2641.6<br>2641.8<br>2642.0<br>2642.2           | 3.3<br>2.6<br>2.9<br>5.7<br>5.3<br>5.3<br>3.8                                  | 13.8<br>14.1<br>14.8<br>14.9<br>14.1<br>14.0<br>14.1<br>14.2<br>14.3 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.7 1.56<br>9.7 1.64<br>9.7 1.72<br>9.7 1.70<br>9.7 1.49<br>9.7 1.50<br>9.7 1.62<br>9.7 1.60<br>9.7 1.56             | 0.87<br>0.93<br>1.00<br>1.07<br>1.11<br>1.14<br>1.20<br>1.24<br>1.29         | 4622<br>4950<br>5358<br>5735<br>5925<br>6119<br>6428<br>6633<br>6917<br>7152           | 872<br>1111<br>1380<br>1273<br>644<br>654<br>1045<br>695<br>959<br>796      | 5862<br>5692<br>5544<br>5401<br>5248<br>5104<br>4981<br>4855<br>4744<br>4634 | 8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4             |
| 2642.6<br>2642.8<br>2643.0<br>2643.2<br>2643.4<br>2643.6<br>2643.8<br>2644.0<br>2644.2<br>2644.4 | 3.6<br>1.4<br>1.5<br>3.0<br>7.3<br>2.3<br>2.4<br>2.2<br>1.8<br>2.1             | 15.2<br>16.0<br>14.4<br>13.8<br>14.2<br>14.1<br>14.1                 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.7 1.63<br>9.7 1.90<br>9.7 1.91<br>9.6 1.68<br>9.6 1.43<br>9.6 1.75<br>9.6 1.73<br>9.6 1.77<br>9.6 1.82<br>9.6 1.78 | 1.39<br>1.53<br>1.67<br>1.73<br>1.76<br>1.85<br>1.93<br>2.02<br>2.13<br>2.22 | 7449<br>8216<br>8939<br>9294<br>9443<br>9917<br>10361<br>10845<br>11432                | 1004<br>2592<br>2445<br>1202<br>502<br>1603<br>1501<br>1638<br>1983<br>1745 | 4536<br>4485<br>44352<br>4358<br>4195<br>4132<br>4029<br>3979                | 8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4 |
| 2644.6<br>2644.8<br>2645.0<br>2645.2<br>2645.4<br>2645.6<br>2646.0<br>2646.2<br>2646.4           | 10.9<br>2.3<br>3.0<br>5.2<br>2.3<br>6.4<br>5.9<br>6.1<br>14.1                  | 14.1<br>14.1<br>13.5<br>14.2<br>14.2<br>14.2                         | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.6 1.30<br>9.6 1.74<br>9.6 1.68<br>9.6 1.53<br>9.6 1.73<br>9.6 1.48<br>9.6 1.50<br>9.6 1.49<br>9.6 1.47<br>9.6 1.26 | 2.24<br>2.33<br>2.40<br>2.43<br>2.52<br>2.55<br>2.55<br>2.62<br>2.66         | 12047<br>12512<br>12875<br>13083<br>13547<br>13715<br>13898<br>14076<br>14244<br>14321 | 335<br>1572<br>1227<br>705<br>1567<br>568<br>619<br>604<br>568<br>259       | 3902<br>3853<br>3800<br>3738<br>3695<br>3635<br>3578<br>3523<br>3469<br>3412 | 8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4             |
| 2646.6<br>2647.0<br>2647.2<br>2647.4<br>2647.6<br>2647.8<br>2648.0<br>2648.2<br>2648.4           | 8.2 1<br>6.1 1<br>9.0 1<br>6.2 1<br>10.1 1<br>3.5 1<br>5.0 1<br>2.0 1<br>3.0 1 | 4.1<br>3.9<br>3.7<br>4.2<br>4.3<br>3.0<br>2.1                        | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 9.6 1.41<br>9.6 1.49<br>9.6 1.38<br>9.6 1.48<br>9.6 1.34<br>9.6 1.54<br>9.6 1.54<br>9.6 1.75<br>9.6 1.54             | 2.69<br>2.72<br>2.74<br>2.78<br>2.80<br>2.85<br>2.89<br>2.99<br>3.06<br>3.11 | 14453<br>14630<br>14750<br>14925<br>15032<br>15339<br>15554<br>16089<br>16448<br>16712 | 446<br>599<br>406<br>593<br>360<br>1040<br>725<br>1811<br>1212<br>893       | 3360<br>3312<br>3263<br>3219<br>3172<br>3137<br>3099<br>3079<br>3050<br>3017 | 8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4<br>8.5 16.4 |

| DEPTH                                                                                        | ROP                                                  | MOB                                                                  | RPM                                          | ММ                                                            | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                  | rcost                                                                        | CCOST                                                        | pр                                       | FG                                                         |
|----------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|
| 2648.6<br>2649.0<br>2649.2<br>2649.4<br>2649.6<br>2649.8<br>2650.0<br>2650.2                 | 2.6<br>3.9<br>2.1<br>1.8<br>1.4<br>2.0<br>2.6<br>1.8 | 12.2<br>12.3<br>12.6<br>12.6<br>12.5<br>12.5<br>12.1<br>12.3<br>14.4 | 90<br>90<br>90                               | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6                 | 1.62<br>1.66<br>1.55<br>1.72<br>1.78<br>1.83<br>1.72<br>1.66<br>1.75 | 3.17<br>3.25<br>3.30<br>3.40<br>3.51<br>3.66<br>3.76<br>3.84<br>3.95<br>3.98 | 17078<br>17499<br>17774<br>18287<br>18900<br>19698<br>20235<br>20657<br>21254<br>21402 | 1238<br>1425<br>928<br>1735<br>2075<br>2698<br>1816<br>1425<br>2019          | 2968<br>2938<br>2921<br>2909<br>2906<br>2891<br>2872<br>2860 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5   | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4       |
| 2650.6<br>2651.0<br>2651.2<br>2651.4<br>2651.6<br>2651.8<br>2652.0<br>2652.2<br>2652.4       | 2.8<br>2.6<br>1.9<br>2.5<br>2.0<br>2.4<br>2.1<br>2.3 | 15.5<br>15.9<br>15.9<br>16.2<br>16.0<br>15.9<br>16.0                 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6                 | 1.72<br>1.74<br>1.77<br>1.85<br>1.78<br>1.84<br>1.79<br>1.83<br>1.81 | 4.04<br>4.11<br>4.19<br>4.29<br>4.37<br>4.47<br>4.56<br>4.65<br>4.74         | 21759<br>22145<br>22560<br>23129<br>23553<br>24095<br>24543<br>25056<br>25535<br>25926 | 1207<br>1304<br>1405<br>1922<br>1435<br>1831<br>1517<br>1735<br>1618<br>1324 | 2789<br>2771<br>2761<br>2744<br>2733<br>2719<br>2707         | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8    | 16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4<br>16.4       |
| 2652.6<br>2652.8<br>2653.0                                                                   | 1.5                                                  | 15.8<br>16.1<br>21.2                                                 | ዎ0<br>ዎ0<br>ዎ0                               | 9.6                                                           | 1.87<br>1.92<br>2.83                                                 | 4,92<br>5,05<br>6,72                                                         | 26522<br>27233<br>36242                                                                | 2014<br>2404<br>30464                                                        | 2670<br>2667<br>2980                                         | 8.5                                      | 16.4<br>16.4<br>16.4                                       |
|                                                                                              |                                                      |                                                                      |                                              |                                                               |                                                                      |                                                                              |                                                                                        |                                                                              |                                                              |                                          |                                                            |
| BIT NUMBER<br>CHRIS. RC4<br>COST<br>TOTAL HOURS                                              |                                                      | 8<br>0.00<br>4.45                                                    | S:<br>Ti                                     | IZE<br>RIP 7                                                  |                                                                      | 4<br>8.500<br>7.6<br>24028                                                   | NOZ:<br>BIT                                                                            | ERVAL<br>ZLES<br>RUN<br>DITION                                               |                                                              | 0- 26<br>15 1                            | 5 14<br>18.2                                               |
| CHRIS. RC4<br>COST<br>TOTAL HOURS                                                            |                                                      | 0.00                                                                 | S:<br>TI<br>T(                               | IZE<br>RIP T<br>OTAL                                          | IME                                                                  | 8.500<br>7.6                                                                 | NOZ:<br>BIT                                                                            | ZLES<br>RUN                                                                  |                                                              | 15 1°                                    | 5 14<br>18.2                                               |
| CHRIS. RC4<br>COST<br>TOTAL HOURS<br>DEPTH<br>2653.4<br>2653.6<br>2653.8<br>2654.0<br>2654.2 | ROP<br>2.4<br>1.7<br>2.6<br>2.0<br>1.7               | 0.00<br>4.45<br>WOB                                                  | S:<br>TI<br>T(                               | FZE<br>RIP T<br>DTAL<br>MW<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | IME<br>TURNS<br>"d"c                                                 | 8.500<br>7.6<br>24028                                                        | NOZ:<br>BIT<br>CON:<br>TURNS                                                           | ZLES<br>RUN<br>DITION<br>ICOST                                               | то                                                           | 15 1<br>B0 G0<br>PP<br>8.5<br>8.5<br>8.5 | 5 14<br>18.2<br>.600<br>FG<br>16.4<br>16.4<br>16.4<br>16.4 |

| DEPTH                      | ROP         | MOB                  | RPM            | MW                | "d"c                 | HOURS                | TURNS                | ICOST                     | ccost                | PP         | FG           |
|----------------------------|-------------|----------------------|----------------|-------------------|----------------------|----------------------|----------------------|---------------------------|----------------------|------------|--------------|
| 2656.6<br>2656.8<br>2657.0 | 7.5         | 14.9<br>14.3<br>14.8 | 90<br>90<br>90 | 9.6<br>9.6<br>9.6 | 1.44<br>1.44<br>1.50 | 1.04<br>1.07<br>1.10 | 5627<br>5771<br>5944 | 467<br><b>48</b> 7<br>583 | 8767<br>8331         | 8.5<br>8.5 | 16.4         |
| 2657.2                     |             | 15.0                 | 90             | 9.6               | 1,64                 | 1.15                 | 6226                 | 954                       | 7944<br>7611         | 8.5<br>8.5 | 16.4<br>16.4 |
| 2657.4                     |             | 15.3                 | 90             | 9.6               | 1.82                 | 1.25                 | 6755                 | 1790                      | 7346                 | 8.5        | 16.4         |
| 2657.6                     |             | 15.1                 | 90             | 9.6               | 1.79                 | 1.34                 | 7243                 | 1648                      | 7099                 | 8.5        | 16,4         |
| 2657.8                     |             | 15,1                 | 90             | 9.6               | 1.84                 | 1,45                 | 2823                 | 1963                      | 6885                 | 8.5        | 16.4         |
| 2658.0<br>2658.2           |             | 15.3<br>15.2         | ዎ0<br>ዎ0       | 9.6               | 1.87<br>1.75         | 1.57                 | 8459                 | 2151                      | 6695                 | 8.5        | 16.4         |
| 2658.4                     |             | 15.3                 | 90             |                   | 1.83                 | 1.64<br>1.75         | 8878<br>9427         | 1415<br>1856              | 6492<br>6320         |            | 16.4         |
| 2658.6                     | 1.9         | 15.4                 | 20             | 9.6               | 1.85                 | 1.85                 | 10009                | 1968                      | 6165                 | 8.5        | 16.4         |
| 2658.8                     |             | 15.2                 | 90             |                   | 1.59                 | 1,90                 | 10240                | 781                       | 5979                 |            | 16.4         |
| 2659.0                     | 7,3         | 15.4                 | 90             |                   | 1.47                 | 1.92                 | 10387                | 497                       | 5797                 |            | 16.4         |
| 2659.2                     |             | 14.9                 | 9.0            |                   | 1.41                 | 1.95                 | 10508                | 411                       | 5623                 |            | 16.4         |
| 2659,4                     |             | 14.5                 | 90             |                   | 1.41                 | 1.97                 | 10634                | 426                       | 5460                 |            | 16.4         |
| 2659.6                     | 10.6        |                      | 90             |                   | 1.36                 | 1,99                 | 10736                | 345                       | 5305                 |            | 16.4         |
| 2659.8<br>2660.0           |             | 15.2<br>16.9         | 90<br>90       |                   | 1.57                 | 2.03                 | 10954                | 735                       | 5171                 |            | 16,4         |
| 2660.2                     |             | 15.8                 | 90             |                   | 1.79                 | 2.14<br>2.22         | 11555<br>12011       | 2034<br>1542              | 5081<br><b>498</b> 3 |            | 16.4<br>16.4 |
| 2660.4                     |             | 15.6                 | 90             |                   | 1.82                 | 2.32                 | 12533                | 1765                      | 4896                 |            | 16.4         |
| 2660.6                     | 2.5         | 15.7                 | 90             | 9.6               | 1.78                 | 2.40                 | 12970                | 1476                      | 4806                 | 8.5        | 16.4         |
| 2660.8                     |             | 15.8                 | 90             |                   | 1.74                 | 2.47                 | 13339                | 1248                      | 4715                 |            | 16.4         |
| 2661.0                     |             | 15.6                 | 90             |                   | 1.84                 | 2.57                 | 13891                | 1867                      | 4644                 |            | 16.4         |
| 2661.2                     |             | 16.1                 | 90             | 9.6               |                      | 2.63                 | 14216                | 1101                      | 4557                 | 8.5        | 16.4         |
| 2661.4                     |             | 15.8                 | 90             |                   | 1.70                 | 2.69                 | 14544                | 1107                      | 4475                 |            | 16.4         |
| 2661.6<br>2661.8           | 7.5<br>10.6 | 15.7                 | 90<br>90       | 9.6               |                      | 2.71                 | 14657                | 384                       | 4380                 |            | 16.4         |
| 2662.0                     |             | 15.6                 | 90             |                   | 1.38                 | 2.73<br>2.76         | 14759<br>14899       | 345<br>474                | 4288                 |            | 16.4         |
| 2662.2                     | 17.2        |                      | 90             |                   | 1.26                 | 2.77                 | 14962                | 212                       | 4204<br>4117         |            | 16.4<br>16.4 |
| 2662.4                     |             | 16.5                 | 90             |                   | 1.51                 | 2.80                 | 15112                | 507                       | 4040                 | 8.5        |              |
| 2662.6                     |             | 17.6                 | 90             | 9.6               | 1.56                 | 2.83                 | 15276                | 553                       | 3967                 | 8.5        | 16.4         |
| 2662.8                     | 12.1        |                      | 90             |                   | 1.38                 | 2.85                 | 15365                | 302                       | 3893                 |            | 16.4         |
| 2663.0                     |             | 14.6                 | 90             | 9.6               |                      | 2.87                 | 15485                | 406                       | 3823                 |            | 16.4         |
| 2663.2<br>2663.4           |             | 14.3                 | 90<br>on       | 9.6               |                      | 2.89                 | 15625                | 474                       | 3757                 | 8.5        |              |
| 2663.6                     |             | 15.9                 | 90<br>90       | 9.6<br>9.6        |                      | 2.94<br>3.00         | 15880<br>16194       | 862<br>1060               | 3701<br>3652         | 8.5<br>8.5 | 16.4         |
| 2663.8                     | 4.0         |                      | 90             | 9.6               |                      | 3.05                 | 16465                | 918                       | 3601                 | 8.5        |              |
| 2664.0                     |             | 16.0                 | 90             | 9.6               |                      | 3.11                 | 16783                | 1025                      | 3555                 |            | 16.4         |
| 2664.2                     | 1.7         | 16.3                 | 90             | 9.6               |                      | 3.23                 | 17437                | 2211                      | 3531                 |            | 16.4         |
| 2664.4                     | 3.3         | 17.8                 | 90             | 9.6               | 1.75                 | 3.29                 | 17760                | 1091                      | 3488                 | 8.5        |              |
| 2664.6                     |             | 17.8                 | 90             | 9.6               |                      | 3.34                 | 18019                | 877                       | 3443                 | 8.5        | 16.4         |
| 2664.8                     | 6.2         |                      | 90             | 9.6               |                      | 3.37                 | 18193                | 588                       | 3395                 | 8.5        | 16.4         |
| 2665.0<br>2665.2           | 4,7<br>5,6  |                      | 90<br>00       | 9.6               |                      | 3.41                 | 18423                | 776                       | 3351                 |            | 16.4         |
| 2665.4                     | 5.6         |                      | 90<br>90       | 9.6<br>9.6        |                      | 3.45<br>3.48         | 18616<br>18810       | 654<br>654                | 3307                 |            | 16.4         |
| 2665.6                     | 4,4         |                      | 90             | 9.6               |                      | 3,53                 | 19054                | 827                       | 3264<br>3226         |            | 16.4<br>16.5 |
| 2665.8                     | 5.6         |                      | 90             | 9.6               |                      | 3.56                 | 19248                | 654                       | 3185                 |            | 16.5         |
| 2666.0                     | 9.2         | 17.6                 | 90             | 9.6               |                      | 3.59                 | 19365                | 396                       | 3142                 |            | 16.5         |
| 2666.2                     | 9.1         |                      | 90             | 9.6               |                      | 3.61                 | 19483                | 401                       | 3101                 | 8.5        | 16.5         |
| 2666.4                     | 5.3         | 17.7                 | 90             | 9.6               | 1.62                 | 3.65                 | 19687                | 690                       | 3065                 | 8.5        | 16.5         |

| DEPTH                                                                                  | ROP                                                     | WOB                                                          | RPM                                          | MW                                            | "d "c                                                                | HOURS                                                                | TURNS                                                                                  | ICOST                                                              | CCOST                                                                        | PP                                            | FG                                                           |
|----------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 2666.6<br>2667.0<br>2667.2<br>2667.4<br>2667.6<br>2667.8<br>2668.0<br>2668.2           | 8.1<br>4.4<br>12.0<br>5.6<br>10.6<br>15.7<br>5.1<br>6.8 | 17.9<br>17.9<br>18.4<br>17.9<br>17.9<br>17.3<br>17.8         | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.66<br>1.50<br>1.69<br>1.39<br>1.61<br>1.42<br>1.31<br>1.64<br>1.56 | 3.69<br>3.71<br>3.76<br>3.78<br>3.81<br>3.83<br>3.84<br>3.88<br>3.91 | 19915<br>20049<br>20296<br>20386<br>20580<br>20682<br>20751<br>20962<br>21121<br>21340 | 771<br>451<br>837<br>304<br>654<br>345<br>233<br>715<br>538<br>741 | 3031<br>2994<br>2963<br>2926<br>2894<br>2859<br>2824<br>2795<br>2766<br>2739 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5 | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5         |
| 2668.6<br>2668.8<br>2669.0<br>2669.2<br>2669.4<br>2669.6<br>2669.8<br>2670.0<br>2670.2 | 6.4<br>3.7<br>3.1<br>12.2<br>5.8<br>5.8<br>6.4<br>7.8   | 18.2<br>18.0<br>18.2<br>18.0<br>17.9<br>18.2<br>18.0<br>18.3 | 90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.69<br>1.57<br>1.74<br>1.78<br>1.39<br>1.61<br>1.60<br>1.58         | 4.00<br>4.03<br>4.08<br>4.15<br>4.16<br>4.20<br>4.23<br>4.26<br>4.29 | 21589<br>21757<br>22051<br>22396<br>22485<br>22671<br>22858<br>23026<br>23164<br>23311 | 842<br>568<br>994<br>1167<br>299<br>629<br>634<br>568<br>467       | 2715<br>2688<br>2667<br>2648<br>2596<br>2572<br>2549<br>2524<br>2501         | 8.55<br>8.55<br>8.55<br>8.55<br>8.55<br>8.55  | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 |
| 2670.6<br>2670.8<br>2671.0<br>2671.2                                                   | 8.2<br>4.6                                              | 18.0<br>18.3<br>18.1<br>18.3                                 | 90<br>90<br>90<br>90                         | 9.6<br>9.6                                    | 1.51<br>1.51<br>1.67<br>1.65                                         | 4.34<br>4.37<br>4.41<br>4.45                                         | 23445<br>23577<br>23809<br>24028                                                       | 451<br>446<br>786<br>741                                           | 2478<br>2455<br>2437<br>2418                                                 | 8.5<br>8.5                                    | 16.5<br>16.5<br>16.5<br>16.5                                 |
| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOUR                                            | 85:                                                     | 9<br>16.00<br>0.09                                           | (:<br>T                                      | ADC (<br>SIZE<br>RIP '                        |                                                                      | 517<br>12.250<br>7.5<br>314                                          | BIT                                                                                    | ERVAL<br>ZLES<br>RUN<br>DITION                                     |                                                                              | .2- 26<br>16 1<br>B2 G0                       | 6 18                                                         |
| DEPTH                                                                                  | ROP                                                     | MOB                                                          | RPM                                          | MW                                            | "d "c                                                                | HOURS                                                                | TURNS                                                                                  | ICOST                                                              | CCOST                                                                        | PР                                            | FG                                                           |
|                                                                                        |                                                         |                                                              | 60<br>60<br>60<br>60                         | 9.7<br>9.7                                    | 1.36<br>1.45<br>1.56<br>1.48                                         | 0.02<br>0.04<br>0.07<br>0.09                                         | 62<br>133<br>238<br>314                                                                | 314<br>360<br>533<br>385                                           | 179844<br>90102<br>60246<br>45281                                            | 8.5<br>8.5                                    | 16.5<br>16.5<br>16.5<br>16.5                                 |
| BIT NUMBER<br>RC4<br>COST<br>TOTAL HOUR                                                |                                                         | 9<br>0.00<br>4.67                                            | S<br>T                                       | ADC OSIZE<br>RIP<br>OTAL                      |                                                                      | 8.500<br>7.6<br>25234                                                | NOZ<br>BIT                                                                             | ERVAL<br>ZLES<br>RUN<br>DITION                                     |                                                                              |                                               | 5 14<br>18.5                                                 |
| DEPTH                                                                                  | ROP                                                     | MOB                                                          | RPM                                          | мы                                            | "d "c                                                                | HOURS                                                                | TURNS                                                                                  | TCOST                                                              | ccost                                                                        | ЬÞ                                            | FG                                                           |
| 2672.2<br>2672.4                                                                       | 16.9<br>16.5                                            |                                                              | 90<br>90                                     |                                               | 1.19                                                                 | 0.01<br>0.02                                                         | 64<br>129                                                                              | 216<br>221                                                         | 138992<br>69607                                                              |                                               | 16.5<br>16.5                                                 |

| DEPTH                                                                                            | ROP                                                         | MOB                                                          | RPM                                                | М₩                                                          | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                 | ICOST                                                                        | CCOST                                                                                  | pр                                                 | FG                                                          |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|
| 2672.6<br>2672.8<br>2673.0<br>2673.2<br>2673.4<br>2673.6<br>2674.0<br>2674.0<br>2674.2           | 14.1<br>15.1<br>12.4<br>15.7<br>27.7<br>20.6<br>21.8<br>7.5 | 13.7<br>14.4<br>14.2<br>14.5                                 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7               | 0.73<br>1.25<br>1.23<br>1.30<br>1.23<br>1.09<br>1.20<br>1.19<br>1.49 | 0.03<br>0.04<br>0.05<br>0.07<br>0.08<br>0.09<br>0.10<br>0.11<br>0.14         | 141<br>218<br>289<br>376<br>445<br>484<br>537<br>586<br>730<br>841                    | 40<br>259<br>242<br>294<br>233<br>132<br>178<br>167<br>487<br>375            | 46418<br>34878<br>27951<br>23341<br>20040<br>17552<br>15621<br>14076<br>12841<br>11802 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5             | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5        |
| 2674.8<br>2675.0<br>2675.2<br>2675.4<br>2675.6<br>2675.8<br>2676.0<br>2676.2                     | 2.8<br>8.8<br>5.7<br>5.2<br>4.6<br>8.6<br>4.0               | 17.8<br>17.5<br>17.5<br>17.5<br>17.5<br>17.4<br>17.7<br>17.4 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7                      | 1.78<br>1.79<br>1.46<br>1.59<br>1.58<br>1.60<br>1.64<br>1.47<br>1.67 | 0.23<br>0.30<br>0.32<br>0.36<br>0.39<br>0.43<br>0.47<br>0.50                 | 1219<br>1605<br>1728<br>1928<br>2117<br>2324<br>2561<br>2687<br>2954<br>3095          | 1278<br>1304<br>416<br>676<br>639<br>700<br>801<br>426<br>903<br>477         | 10992<br>10300<br>9641<br>9081<br>8584<br>8146<br>7760<br>7393<br>7084<br>6784         | 8,5 1<br>8,5 1<br>8,5 1<br>8,5 1<br>8,5 1          | (6.5<br>.6.5                                                |
| 2676.6<br>2677.0<br>2677.2<br>2677.4<br>2677.6<br>2677.8<br>2678.0<br>2678.2<br>2678.4           | 5.4<br>7.5<br>6.1<br>9.9<br>5.6<br>8.9<br>8.4<br>14.4       |                                                              | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7        | 1.60<br>1.49<br>1.55<br>1.42<br>1.59<br>1.44<br>1.46                 | 0.62<br>0.66<br>0.68<br>0.72<br>0.74<br>0.77<br>0.80<br>0.82<br>0.83         | 3351<br>3551<br>3695<br>3873<br>3983<br>4176<br>4298<br>4427<br>4502<br>4655          | 867<br>675<br>487<br>604<br>370<br>654<br>411<br>436<br>254                  | 6526<br>6283<br>6051<br>5841<br>5639<br>5461<br>5287<br>5125<br>4968<br>4829           | 8.5 1<br>8.5 1<br>8.5 1<br>8.5 1<br>8.5 1<br>8.5 1 | 6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5 |
| 2678.6<br>2679.0<br>2679.2<br>2679.4<br>2679.6<br>2679.8<br>2680.0<br>2680.2<br>2680.4           | 2.6<br>3.4<br>2.7<br>2.3<br>2.1<br>2.4<br>2.5<br>2.4<br>2.8 | 17.8<br>17.9<br>17.9<br>18.2<br>18.2<br>18.3<br>17.8         | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7               | 1.73<br>1.79<br>1.85<br>1.88<br>1.84<br>1.84<br>1.83                 | 0.94<br>1.00<br>1.07<br>1.16<br>1.25<br>1.34<br>1.42<br>1.50<br>1.58         | 5064<br>5381<br>5775<br>6245<br>6765<br>7209<br>7646<br>8090<br>8556<br>9152          | 1385<br>1070<br>1334<br>1588<br>1760<br>1501<br>1476<br>1501<br>1577<br>2014 | 4724<br>4617<br>4523<br>4441<br>4369<br>4294<br>4221<br>4153<br>4090<br>4041           | 8.5 1                                              | 6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5               |
| 2680.6<br>2680.8<br>2681.0<br>2681.2<br>2681.4<br>2681.6<br>2681.8<br>2682.0<br>2682.2<br>2682.4 | 2.7<br>1.7<br>2.5<br>1.8<br>1.7<br>1.7<br>1.7<br>2.8        | 18.1<br>18.1<br>18.2<br>18.3<br>18.1<br>18.1                 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 9.7 1<br>9.7 1<br>9.7 1<br>9.7 1<br>9.7 1<br>9.7 1<br>9.7 1 | 1.94<br>1.83<br>1.93<br>1.94<br>1.95<br>1.91                         | 1.77<br>1.89<br>1.97<br>2.08<br>2.20<br>2.32<br>2.43<br>2.54<br>2.63<br>2.70 | 9554<br>10185<br>10620<br>11235<br>11879<br>12525<br>13098<br>13725<br>14216<br>14602 | 1359<br>2135<br>1471<br>2080<br>2176<br>2186<br>1938<br>2120<br>1660<br>1304 | 3979<br>3937<br>3882<br>3843<br>3807<br>3774<br>3736<br>3704<br>3664<br>3618           | 8.5 1<br>8.5 1<br>8.5 1<br>8.5 1                   | 6.5<br>5.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5               |

| DEPTH                                                                                            | ROP                                                          | MOB                                                                  | RPM                                          | MW                                            | "d "c                                                                        | HOURS                                                                | TURNS                                                                                  | ICOST                                                                     | CCOST                                                                        | рþ                                      | FG                                                           |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|
| 2682.6<br>2683.0<br>2683.2<br>2683.4<br>2683.6<br>2683.8<br>2684.0<br>2684.2<br>2684.4           | 4.0<br>2.8<br>3.2<br>2.6<br>3.2<br>3.0<br>5.2<br>4.5         | 17.9<br>17.8<br>18.0<br>17.8<br>18.0<br>18.1<br>18.1                 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7        | 1.73<br>1.69<br>1.78<br>1.75<br>1.81<br>1.75<br>1.78<br>1.61                 | 2.76<br>2.81<br>2.88<br>2.94<br>3.02<br>3.15<br>3.15<br>3.19<br>3.23 | 14920<br>15190<br>15569<br>15902<br>16318<br>16654<br>17017<br>17224<br>17462<br>17761 | 1074<br>913<br>1283<br>1126<br>1405<br>1136<br>1227<br>700<br>806<br>1009 | 3570<br>3521<br>3480<br>3438<br>3403<br>3364<br>3327<br>3284<br>3243<br>3207 | 8.555555<br>8.555555<br>8.65555         | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 |
| 2684.6<br>2684.8<br>2685.0<br>2685.2<br>2685.4<br>2685.6<br>2685.8<br>2686.0<br>2686.2<br>2686.4 | 2.4<br>3.6<br>4.0<br>3.9<br>4.5<br>7.3<br>6.8<br>4.5         | 18.0<br>18.3<br>17.9<br>18.1<br>17.7<br>17.5<br>18.0<br>18.2         | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7 | 1.64<br>1.85<br>1.73<br>1.69<br>1.70<br>1.66<br>1.51<br>1.55<br>1.67         | 3.33<br>3.42<br>3.52<br>3.52<br>3.62<br>3.62<br>3.67<br>3.72         | 17987<br>18446<br>18748<br>19018<br>19295<br>19537<br>19685<br>19844<br>20086<br>20317 | 766<br>1552<br>1020<br>913<br>938<br>817<br>502<br>538<br>817<br>781      | 3168<br>3143<br>3110<br>3077<br>3045<br>3012<br>2976<br>2941<br>2911<br>2882 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5  | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 |
| 2686.6<br>2687.0<br>2687.2<br>2687.4<br>2687.6<br>2687.8<br>2688.0<br>2688.2<br>2688.4           | 1.4<br>3.7<br>6.4<br>6.6<br>4.6<br>5.5<br>4.4                | 18.4<br>18.5<br>18.3<br>18.0<br>18.2<br>18.2<br>18.1<br>18.2<br>18.3 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7        | 1.77<br>1.99<br>1.72<br>1.56<br>1.56<br>1.66<br>1.61<br>1.67                 | 3.82<br>3.96<br>4.02<br>4.05<br>4.08<br>4.12<br>4.16<br>4.20<br>4.24 | 20653<br>21398<br>21689<br>21857<br>22021<br>22253<br>22451<br>22694<br>22882<br>23119 | 1136<br>2521<br>984<br>568<br>553<br>786<br>670<br>822<br>634<br>801      | 2858<br>2853<br>2828<br>2798<br>2769<br>2744<br>2718<br>2694<br>2669<br>2646 | 88888888888888888888888888888888888888  | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 |
| 2688.6<br>2689.0<br>2689.2<br>2689.4<br>2689.6<br>2689.8<br>2690.0<br>2690.2<br>2690.4           | 3.6<br>6.2<br>4.9<br>7.5<br>5.0<br>5.3<br>5.8<br>3.0<br>14.8 | 18.3<br>18.0<br>18.3<br>18.0<br>18.3<br>18.2<br>18.5<br>17.2         | 90<br>90<br>90<br>90<br>90<br>90<br>90       | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7 | 1.56<br>1.73<br>1.57<br>1.64<br>1.52<br>1.64<br>1.62<br>1.60<br>1.75<br>1.31 | 4.31<br>4.37<br>4.40<br>4.44<br>4.47<br>4.51<br>4.55<br>4.66         | 23285<br>23582<br>23758<br>23980<br>24124<br>24341<br>24545<br>24731<br>25091<br>25164 | 563<br>1004<br>593<br>751<br>487<br>735<br>689<br>630<br>1217<br>247      | 2621<br>2601<br>2578<br>2557<br>2533<br>2512<br>2492<br>2471<br>2457<br>2433 | 8.8.8.8.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5 | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5         |
| 2690.5                                                                                           | フ・ブ                                                          | 18.3                                                                 | 90                                           | 9.7                                           | 1.51                                                                         | 4.67                                                                 | 25234                                                                                  | 474                                                                       | 2423                                                                         | 8.5                                     | 16.5                                                         |

| BIT NUMBER<br>CHRIS C-2:<br>COST<br>TOTAL HOUR                                         | 0.00                                                                                                                        | SIZE<br>TRIP                                                       | CODE<br>TIME<br>TURNS                                                        | 8,47(<br>7,7                                                                 | 0 NOZ<br>7 BIT                                                                         | ERVAL<br>ZLES<br>RUN<br>DITION                                               |                                                                                        | .5- 2708.3<br>14 14 14<br>17.8<br>B0 G0.300                                                  |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| DEPTH                                                                                  | ROP WOB                                                                                                                     | RPM MI                                                             | √ "d"c                                                                       | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                        | CCOST                                                                                  | PP FG                                                                                        |
| 2690.6<br>2690.8<br>2691.0                                                             | 3.9 16.3<br>12.0 15.0<br>12.0 15.0                                                                                          | 80 9.7                                                             | 7 1.62<br>7 1.29<br>7 1.29                                                   | 0.03<br>0.04<br>0.06                                                         | 123<br>203<br>283                                                                      | 933<br>304<br>304                                                            | 282137<br>94249<br>56671                                                               | 8.5 16.5<br>8.5 16.5<br>8.5 16.5                                                             |
| 2692.0<br>2692.2                                                                       | 12.0 15.0<br>12.0 15.0<br>12.0 15.0<br>12.0 15.0<br>12.0 15.0<br>12.0 15.0<br>12.0 15.0<br>9.7 12.8<br>4.8 14.5<br>4.3 14.5 | 80 9.7<br>80 9.7<br>80 9.7<br>80 9.7<br>80 9.7<br>80 9.7<br>80 9.7 | 1.29<br>1.29<br>1.29<br>1.29<br>1.29<br>1.29<br>1.29<br>1.55                 | 0.08<br>0.09<br>0.11<br>0.13<br>0.14<br>0.16<br>0.18<br>0.20<br>0.24         | 363<br>443<br>523<br>603<br>683<br>763<br>843<br>941<br>1141                           | 304<br>304<br>304<br>304<br>304<br>304<br>375<br>261<br>852                  | 40566<br>31619<br>25926<br>21984<br>19093<br>16883<br>15138<br>13732<br>12604<br>11664 | 8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5 |
| 2693.2<br>2693.6<br>2693.8<br>2694.0<br>2694.2<br>2694.4<br>2694.6<br>2694.8<br>2695.0 | 4.3 14.3<br>3.0 15.1<br>3.3 14.9<br>3.3 16.2<br>8.3 17.6<br>2.8 18.2<br>1.9 18.0<br>3.1 19.0<br>2.0 17.2<br>1.6 17.2        | 80 9.7<br>80 9.7<br>80 9.7<br>80 9.7<br>80 9.7<br>80 9.7<br>80 9.7 | 1.54<br>1.67<br>1.63<br>1.67<br>1.45<br>1.76<br>1.87<br>1.87                 | 0.33<br>0.40<br>0.46<br>0.52<br>0.54<br>0.62<br>0.72<br>0.79<br>0.89         | 1588<br>1913<br>2201<br>2493<br>2609<br>2953<br>3464<br>3779<br>4263<br>4873           | 847<br>1238<br>1096<br>1111<br>441<br>1309<br>1943<br>1197<br>1841<br>2323   | 10862<br>10199<br>9611<br>9096<br>8602<br>8207<br>7886<br>7560<br>7294<br>7073         | 8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5 |
| 2695.2<br>2695.4<br>2695.8<br>2696.0<br>2696.2<br>2696.4<br>2696.6<br>2697.0           | 2.8 18.3<br>1.5 22.3<br>0.9 22.3<br>1.5 21.3<br>0.5 18.6<br>1.1 16.7<br>1.1 14.4<br>1.4 23.5<br>0.7 14.2<br>0.7 14.6        | 80 9.7<br>80 9.7<br>80 9.7<br>78 9.7<br>75 9.7<br>75 9.7<br>75 9.7 | 1.77<br>2.05<br>2.22<br>2.02<br>2.25<br>1.99<br>1.88<br>2.08<br>1.99<br>2.01 | 1.09<br>1.22<br>1.45<br>1.58<br>1.97<br>2.16<br>2.33<br>2.47<br>2.75<br>3.03 | 5213<br>5852<br>6964<br>7596<br>9452<br>10340<br>11130<br>11756<br>12983               | 1293<br>2430<br>4230<br>2404<br>7061<br>3444<br>3206<br>2541<br>4976<br>5217 | 6827<br>6648<br>6553<br>6396<br>6420<br>6316<br>6210<br>6090<br>6055<br>6029           | 8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5 |
| 2697.4<br>2697.6<br>2697.8<br>2698.0<br>2698.2<br>2698.4<br>2698.6<br>2698.8           | 0.8 15.1<br>0.6 15.3                                                                                                        | 75 9.7<br>75 9.7                                                   | 1.70<br>2.07<br>1.90<br>1.81<br>2.00<br>1.60<br>2.00<br>2.08                 | 3.60<br>3.78<br>3.91<br>4.16<br>4.22<br>4.47<br>4.80                         | 14961<br>15336<br>16836<br>17661<br>18221<br>19364<br>19622<br>20747<br>22244<br>22849 | 2809<br>1522<br>6087<br>3348<br>2272<br>4641<br>1043<br>4565<br>6077<br>2455 | 5653<br>5627<br>5511<br>5 <b>4</b> 87<br>5501                                          | 8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5 |

| DEPTH                                                                                            | ROP                                                       | WOB                                                                  | RPM                                                | ЫM                                     | nd nc                                                                        | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                        | ccost                                                                        | рp                                     | FG                                                           |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|
| 2699.2<br>2699.4<br>2699.6<br>2699.8<br>2700.0<br>2700.2<br>2700.4<br>2700.6<br>2700.8<br>2701.0 | 1.5<br>0.6<br>0.5<br>0.9<br>1.2<br>2.1<br>2.1             | 16.1<br>16.2<br>15.6<br>16.3<br>17.7<br>11.6<br>15.7<br>15.6         | 77777777777777777777777777777777777777             | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7 | 2.10<br>1.86<br>2.08<br>2.16<br>2.06<br>1.78<br>1.76<br>2.10<br>1.94         | 5.26<br>5.39<br>5.71<br>6.10<br>6.33<br>6.50<br>6.60<br>6.69<br>7.02         | 24289<br>24890<br>26337<br>28087<br>29122<br>29892<br>30322<br>30754<br>32228<br>33107 | 5843<br>2440<br>5869<br>7101<br>4200<br>3124<br>1745<br>1755<br>5980<br>3566 | 5439<br>5372<br>5383<br>5420<br>5394<br>5347<br>5274<br>5205<br>5188         | 86888888555555555555555555555555555555 | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5         |
| 2701.2<br>2701.4<br>2701.6<br>2701.8<br>2702.0<br>2702.2<br>2702.4<br>2702.6<br>2702.6<br>2703.0 | 0.7<br>5.9<br>8.7<br>12.0<br>46.9<br>4.9<br>2.7<br>4.4    | 18.4<br>19.2<br>19.1<br>19.7<br>20.0<br>19.7<br>19.6<br>19.7<br>19.7 | 75555777777755555555555555555555555555             | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7 | 2.02<br>2.17<br>1.56<br>1.46<br>1.37<br>0.97<br>1.62<br>1.79<br>1.65         | 7.40<br>7.68<br>7.72<br>7.74<br>7.76<br>7.80<br>7.88<br>7.92<br>7.96         | 33925<br>35210<br>35363<br>35466<br>35541<br>35561<br>35744<br>36078<br>36282<br>36432 | 3320<br>5217<br>619<br>420<br>304<br>78<br>745<br>1353<br>830<br>609         | 5153<br>5155<br>5073<br>4990<br>4909<br>4826<br>4758<br>4701<br>4639<br>4574 | 8.555555<br>8.55555<br>8.555           | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 |
| 2703.2<br>2703.4<br>2703.6<br>2703.8<br>2704.0<br>2704.2<br>2704.4<br>2704.6<br>2704.8<br>2705.0 | 36.4<br>4.8<br>12.2<br>14.4<br>42.3<br>11.5<br>6.1<br>8.7 | 19.9<br>19.7<br>19.6<br>19.4<br>19.3<br>19.3<br>19.3<br>19.7<br>20.1 | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7 | 1.66<br>1.05<br>1.63<br>1.36<br>1.31<br>1.00<br>1.37<br>1.56<br>1.47         | 8.00<br>8.01<br>8.05<br>8.07<br>8.08<br>8.08<br>8.10<br>8.13<br>8.16<br>8.20 | 36637<br>36661<br>36950<br>36924<br>36986<br>37008<br>37086<br>37235<br>37338<br>37541 | 830<br>100<br>766<br>299<br>254<br>86<br>317<br>604<br>421<br>822            | 4515<br>4447<br>4390<br>4329<br>4269<br>4208<br>4152<br>4101<br>4050<br>4005 | 8.5555555<br>8.88555<br>8.888          | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 |
| 2705.2<br>2705.4<br>2705.6<br>2705.8<br>2706.0<br>2706.2<br>2706.4<br>2706.6<br>2706.8<br>2707.0 | 1.5<br>2.3<br>10.0<br>12.6<br>27.7<br>6.7<br>16.0<br>24.0 | 20.2<br>20.2<br>20.1<br>19.4<br>19.5<br>19.1<br>18.4<br>19.0         | 75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 | 9.7<br>9.7<br>9.7<br>9.7<br>9.7<br>9.7 | 1.99<br>1.98<br>1.86<br>1.41<br>1.35<br>1.12<br>1.52<br>1.52<br>1.26<br>1.16 | 8.34<br>8.48<br>8.56<br>8.58<br>8.60<br>8.61<br>8.64<br>8.65<br>8.66         | 38170<br>38771<br>39170<br>39260<br>39331<br>39363<br>39497<br>39553<br>39591<br>39625 | 2551<br>2440<br>1618<br>365<br>289<br>132<br>543<br>228<br>152<br>137        | 3985<br>3965<br>3934<br>3887<br>3841<br>3793<br>3752<br>3709<br>3665<br>3622 | 8.555555<br>8.5555<br>8.688<br>8.888   | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 |
| 2707.2<br>2707.4<br>2707.6<br>2707.8<br>2708.0<br>2708.2<br>2708.3                               | 7.4<br>5.2<br>7.5<br>6.9                                  | 19.8<br>19.7<br>19.8<br>20.1<br>20.0<br>20.0                         | 75<br>75<br>75<br>75<br>75<br>75<br>75             | 9.7<br>9.7<br>9.7<br>9.7<br>9.7        | 1.40<br>1.49<br>1.51<br>1.62<br>1.51<br>1.53<br>1.70                         | 8.68<br>8.71<br>8.74<br>8.78<br>8.80<br>8.83<br>8.84                         | 39708<br>39825<br>39946<br>40120<br>40240<br>40370<br>40488                            | 340<br>472<br>492<br>705<br>487<br>529<br>961                                | 3583<br>3546<br>3510<br>3478<br>3444<br>3411<br>3397                         | 8.5<br>8.5<br>8.5<br>8.5               | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5                 |

g.

tions to see the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the

| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                                            | 7774.0                                                                                                         | SIZ<br>TRI                                                                                                                                      | C CODE<br>E<br>P TIME<br>AL TURNS                                                                | 537<br>12.250<br>8.0<br>48386                                                | NOZ<br>BIT                                                                             | ERVAL<br>ZLES<br>RUN<br>DITION                                             |                                                                               | 3- 2776.<br>16 16 1<br>68.<br>B4 G0.18                                               | . O                                   |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|
| DEPTH                                                                                  | ROP WO                                                                                                         | B RPM                                                                                                                                           | MW "d"c                                                                                          | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                      | CCOST                                                                         | ta ta                                                                                | r(;                                   |
|                                                                                        | 4.8 12.<br>13.0 41.<br>10.4 43.                                                                                | 5 50 9                                                                                                                                          | .7 1.23<br>.7 1.37<br>.7 1.46                                                                    | 0.15<br>0.22<br>0.32                                                         | 437<br>668<br>955                                                                      | 760<br>281<br>350                                                          | 53603<br>22237<br>14131                                                       | 8.5 16.<br>8.5 16.<br>8.5 16.                                                        | Ę.                                    |
| 2712.0<br>2713.0<br>2714.0<br>2715.0<br>2716.0<br>2717.0<br>2718.0<br>2719.0<br>2720.0 | 4.8 44.<br>2.7 43.<br>2.8 45.<br>2.7 46.<br>2.8 47.<br>2.1 47.<br>5.6 46.<br>3.2 47.<br>2.1 47.<br>2.3 47.     | 3 50 9<br>4 50 9<br>7 50 9<br>1 50 9<br>8 50 9<br>1 50 9<br>4 50 9                                                                              | .7 1.72<br>.6 1.93<br>.6 1.97<br>.6 1.96<br>.6 2.07<br>.6 1.72<br>.6 1.71<br>.6 2.06<br>.6 2.03  | 0.53<br>0.90<br>1.25<br>1.62<br>1.98<br>2.47<br>2.65<br>2.96<br>3.43<br>3.87 | 1583<br>2700<br>3754<br>4866<br>5944<br>7404<br>7939<br>8865<br>10303                  | 764<br>1360<br>1283<br>1353<br>1313<br>1777<br>651<br>1127<br>1750<br>1579 | 10518<br>8570<br>7291<br>6405<br>5744<br>5288<br>4810<br>4466<br>4233<br>4025 | 8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16. | 0000005                               |
| 2730.0                                                                                 | 4.2 46.2<br>2.9 47.3<br>2.2 47.3<br>3.2 47.3<br>4.0 47.4<br>6.7 47.3<br>10.8 47.4<br>8.6 44.6                  | 50     9       50     9       50     9       50     9       50     9       50     9       50     9       50     9       50     9       50     9 | .6 1.81<br>.6 1.95<br>.6 2.04<br>.6 1.92<br>.6 1.95<br>.6 1.84<br>.6 1.67<br>.6 1.50<br>.6 1.55  | 4.11<br>4.45<br>4.90<br>5.21<br>5.56<br>5.81<br>5.96<br>6.05<br>6.17         | 12319<br>13353<br>14697<br>15636<br>16672<br>17427<br>17876<br>18154<br>18504<br>18618 | 875<br>1258<br>1636<br>1143<br>1261<br>919<br>547<br>339<br>425<br>139     | 3795<br>3622<br>3496<br>3355<br>3236<br>3113<br>2982<br>2855<br>2743<br>2628  | 8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16. | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 |
| 2733.0<br>2734.0<br>2735.0<br>2736.0<br>2737.0                                         | 10.8 46.0<br>12.6 47.2<br>10.7 47.2<br>10.3 47.2<br>12.5 47.0<br>8.6 47.3<br>11.9 47.4<br>7.5 47.4<br>7.5 47.2 | 2 50 9.<br>2 50 9.<br>2 50 9.<br>3 50 9.<br>50 9.<br>50 9.<br>50 9.                                                                             | 6 1.49<br>6 1.45<br>6 1.51<br>6 1.52<br>6 1.45<br>6 1.59<br>6 1.47<br>6 1.59<br>6 1.63<br>6 1.75 | 6.30<br>6.38<br>6.47<br>6.57<br>6.65<br>6.77<br>6.85<br>6.97<br>7.10         | 18896<br>19134<br>19413<br>19705<br>19946<br>20295<br>20548<br>20901<br>21299<br>21870 | 339<br>289<br>340<br>356<br>293<br>425<br>307<br>430<br>485<br>695         | 2531<br>2441<br>2359<br>2284<br>2212<br>2150<br>2088<br>2034<br>1985<br>1945  | 8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16.<br>8.5 16. | 00000000                              |
| 2742.0<br>2743.0<br>2744.0<br>2745.0<br>2745.0<br>2747.0<br>2748.0<br>2749.0<br>2750.0 | 3.4 47.5<br>2.4 47.6<br>3.8 47.5<br>3.8 47.5<br>2.5 47.3<br>3.0 47.7<br>5.7 48.2<br>8.9 48.1<br>8.5 48.3       | 50 9.<br>50 9.<br>50 9.<br>50 9.<br>50 9.<br>50 9.                                                                                              | 6 1.90<br>6 2.02<br>6 1.86<br>6 1.87<br>6 2.00<br>6 1.94<br>6 1.73<br>6 1.58<br>6 1.60<br>6 2.03 | 7.58<br>8.00<br>8.26<br>8.53<br>8.93<br>9.26<br>9.44<br>9.55<br>9.67         | 22749<br>24007<br>24788<br>25586<br>26788<br>27788<br>28318<br>28656<br>29008<br>30254 | 1069<br>1532<br>951<br>972<br>1463<br>1217<br>645<br>412<br>428<br>1518    | 1919<br>1908<br>1881<br>1857<br>1846<br>1830<br>1800<br>1766<br>1734<br>1729  | 8.5 16.8<br>8.5 16.8<br>8.5 16.8<br>8.5 16.8<br>8.5 16.8<br>8.5 16.8<br>8.5 16.8     | 555555555                             |

| DEPTH                                                                                  | ROP                                                    | MOB                                                                  | RPM                                                      | MW                                            | "d "c                                                                | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                | CCOST                                                                        | pp                                    | FG                                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------|
| 2752.0<br>2753.0<br>2754.0<br>2755.0<br>2756.0<br>2757.0<br>2758.0<br>2759.0<br>2760.0 | 2.9<br>4.1<br>9.5<br>6.1<br>7.4<br>6.6<br>7.2          | 47.7<br>47.6<br>47.6<br>47.9<br>48.9<br>47.0<br>48.8<br>48.7<br>47.5 | 50<br>50<br>50<br>50<br>50<br>55<br>55                   | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 2.00<br>1.95<br>1.84<br>1.55<br>1.72<br>1.65<br>1.66<br>1.72<br>1.69 | 10.47<br>10.82<br>11.06<br>11.16<br>11.33<br>11.46<br>11.61<br>11.76<br>11.76          | 31424<br>32450<br>33180<br>33494<br>33984<br>34389<br>34834<br>35334<br>35793<br>36264 | 1423<br>1250<br>889<br>382<br>595<br>493<br>543<br>553<br>507        | 1722<br>1711<br>1693<br>1665<br>1643<br>1619<br>1597<br>1576<br>1537         | 8.5<br>8.5<br>8.5                     | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5         |
| 2762.0<br>2763.0<br>2764.0<br>2765.0<br>2766.0<br>2767.0<br>2768.0<br>2769.0<br>2770.0 | 10.0<br>3.8<br>2.1<br>5.4<br>8.5<br>11.7<br>8.5<br>4.3 | 46.3<br>44.6<br>48.3<br>47.8<br>48.7<br>47.8<br>49.8<br>49.8<br>49.3 | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.64<br>1.53<br>1.90<br>2.10<br>1.79<br>1.62<br>1.54<br>1.65<br>1.88 | 12.18<br>12.28<br>12.54<br>13.02<br>13.20<br>13.32<br>13.40<br>13.52<br>13.75<br>14.05 | 36698<br>37028<br>37897<br>39468<br>40079<br>40468<br>40749<br>41137<br>41907<br>42887 | 481<br>365<br>961<br>1739<br>676<br>430<br>312<br>429<br>852<br>1084 | 1517<br>1496<br>1486<br>1491<br>1477<br>1459<br>1440<br>1423<br>1414         | 8.5<br>8.5<br>8.5                     | 16.5<br>16.5<br>16.5<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6 |
| 2772.0<br>2773.0<br>2774.0<br>2775.0<br>2776.0<br>2776.3                               | 3.6<br>3.4<br>3.4<br>2.2                               | 47.8<br>48.8<br>49.4<br>49.6<br>49.8<br>50.1                         | 55<br>55<br>55<br>55<br>55<br>55                         | 9.6<br>9.6<br>9.6<br>9.6                      | 1.55<br>1.93<br>1.96<br>1.96<br>2.12<br>2.31                         | 14.15<br>14.43<br>14.72<br>15.02<br>15.48<br>15.72                                     | 43203<br>44127<br>45094<br>46079<br>47602<br>48386                                     | 350<br>1023<br>1070<br>1090<br>1686<br>2891                          | 1392<br>1386<br>1381<br>1377<br>1381<br>1388                                 | 8.5<br>8.5<br>8.5<br>8.5              | 16.6<br>16.6<br>16.6<br>16.6<br>16.6                         |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                                            |                                                        | 11<br>74.00<br>7.68                                                  | 9<br>T                                                   | ADC 0<br>SIZE<br>RIP 1<br>OTAL                |                                                                      | 537<br>12.250<br>8.0<br>22806                                                          | NOZ:<br>BIT                                                                            | ERVAL<br>ZLES<br>RUN<br>DITION                                       |                                                                              | .3- 28<br>15 1<br>B1 G0               | 6 16<br>30.5                                                 |
| DEPTH                                                                                  | ROP                                                    | MOB                                                                  | RPM                                                      | MW                                            | "d "c                                                                | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                | CCOST                                                                        | рΡ                                    | FG                                                           |
| 2777.0<br>2778.0<br>2779.0<br>2780.0                                                   | 2.1<br>2.7                                             | 28.5<br>45.5<br>45.9<br>44.6                                         | 37<br>50<br>50<br>50                                     | 9.4<br>9.6                                    | 1.62<br>2.07<br>1.95<br>1.96                                         | 0.27<br>0.74<br>1.11<br>1.48                                                           | 596<br>2012<br>3110<br>4221                                                            | 1418<br>1724<br>1336<br>1353                                         | 54261<br>23357<br>15201<br>11458                                             | 8.5<br>8.5<br>8.5<br>8.5              | 16.5<br>16.5<br>16.5<br>16.5                                 |
| 2781.0<br>2782.0<br>2783.0<br>2784.0<br>2785.0<br>2785.0<br>2787.0<br>2788.0<br>2789.0 | 6.7<br>7.4<br>7.3<br>8.4<br>8.7<br>10.5<br>3.4         | 48.1<br>48.2<br>48.4<br>50.0<br>49.5<br>51.3<br>51.1<br>50.5         | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50             | 9.3<br>9.5<br>9.5<br>9.5<br>9.5<br>9.6        | 1.69<br>1.73<br>1.67<br>1.66<br>1.64<br>1.62<br>1.55<br>1.97<br>1.77 | 1.62<br>1.76<br>1.90<br>2.04<br>2.15<br>2.27<br>2.36<br>2.66<br>2.83<br>3.09           | 4630<br>5075<br>5480<br>5888<br>6245<br>6590<br>6875<br>7760<br>8285<br>9054           | 497<br>543<br>492<br>497<br>435<br>419<br>347<br>1078<br>639<br>935  | 9126<br>7620<br>6556<br>5769<br>5156<br>4668<br>4264<br>3992<br>3728<br>3524 | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 |

.

| DEPTH                                                                                  | ROP                                                   | MOB                                                                  | RPM                                          | MW "d"c                                                                                                              | HOURS                                                                | TURNS                                                                                  | ICOST                                                                    | CCOST                                                                        | PP FG                                                                                        |
|----------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 2791.0<br>2792.0<br>2793.0<br>2794.0<br>2795.0<br>2796.0<br>2797.0<br>2798.0<br>2799.0 | 8.0<br>9.4<br>16.8<br>3.6<br>2.2<br>2.5<br>3.1<br>2.7 | 50.8<br>49.4<br>50.1<br>49.4<br>50.4<br>49.8<br>49.7<br>50.8<br>50.1 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.6 2.04<br>9.5 1.64<br>9.5 1.60<br>9.5 1.39<br>9.5 1.94<br>9.4 2.12<br>9.4 2.08<br>9.3 2.04<br>9.3 2.08<br>9.7 1.79 | 3.47<br>3.59<br>3.70<br>3.76<br>4.03<br>4.50<br>4.90<br>5.22<br>5.59 | 10179<br>10553<br>10874<br>11052<br>11884<br>13279<br>14489<br>15455<br>16554<br>17175 | 1370<br>455<br>391<br>217<br>1012<br>1698<br>1473<br>1177<br>1337<br>756 | 3377<br>3191<br>3024<br>2865<br>2766<br>2712<br>2652<br>2584<br>2529<br>2454 | 8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5 |
| 2801.0<br>2802.0<br>2803.0<br>2804.0<br>2805.0<br>2806.0<br>2806.8                     | 3.3<br>3.9<br>3.0<br>2.0                              | 49.1<br>51.7<br>49.9<br>50.4<br>47.5<br>47.5<br>46.6                 | 50<br>50<br>50<br>50<br>50<br>50             | 9.7 1.93<br>9.7 1.94<br>9.6 1.88<br>9.5 2.00<br>9.5 2.10<br>9.5 1.64<br>9.5 1.33                                     | 6.11<br>6.41<br>6.67<br>7.00<br>7.50<br>7.63<br>7.68                 | 18116<br>19016<br>19785<br>20785<br>22285<br>22675<br>22806                            | 1146<br>1096<br>936<br>1217<br>1826<br>474<br>200                        | 2401<br>2350<br>2297<br>2258<br>2243<br>2184<br>2132                         | 8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.5<br>8.5 16.6<br>8.5 16.6                         |
| BIT NUMBE<br>CHRIS RC6<br>COST<br>TOTAL HOL                                            | ,<br>1830                                             | 11<br>0.00<br>3.54                                                   | S<br>T                                       | SIZE                                                                                                                 | 8.500<br>8.0<br>18565                                                | NOZ:<br>BIT                                                                            | ERVAL<br>ZLES<br>RUN<br>DITION                                           |                                                                              | .8- 2814.0<br>14 15 15<br>7.2<br>R0 G0.900                                                   |
| DEPTH                                                                                  | ROP                                                   | MOB                                                                  | RPM                                          | MW "d"c                                                                                                              | HOURS                                                                | TURNS                                                                                  | ICOST                                                                    | ccost                                                                        | bb k@                                                                                        |
| 2807.0<br>2807.2<br>2807.4                                                             | 13.8<br>8.8<br>67.5                                   | 5.0<br>5.0<br>5.0                                                    | 70<br>70<br>70                               | 9.5 0.96<br>9.5 1.06<br>9.5 0.63                                                                                     | 0.01<br>0.04<br>0.04                                                 | 61<br>156<br>169                                                                       |                                                                          | 237844<br>119130<br>79438                                                    | 8.5 16.6<br>8.5 16.6<br>8.5 16.6                                                             |
| 2807.6<br>2807.8<br>2808.0<br>2808.2<br>2808.4<br>2808.6<br>2808.8                     | 18.7<br>36.0<br>22.5<br>25.3<br>26.7<br>51.4<br>31.3  | 5.0<br>5.0<br>5.0<br>5.0<br>5.0                                      | 70<br>70<br>70<br>70<br>70<br>70<br>70       | 9.5 0.90<br>9.5 0.76<br>9.5 0.86<br>9.5 0.83<br>9.5 0.82<br>9.5 0.68<br>9.5 0.79                                     | 0.05<br>0.06<br>0.07<br>0.07<br>0.08                                 | 214<br>237<br>274<br>308<br>339<br>355                                                 | 162<br>144<br>137<br>71                                                  | 59627<br>47722<br>39795<br>34131<br>29882<br>26569                           | 8.5 16.6<br>8.5 16.6<br>8.5 16.6<br>8.5 16.6<br>8.5 16.6                                     |
| 2809.0<br>2809.2<br>2809.4                                                             | 25.7<br>29.0<br>18.7                                  | 5.0<br>5.0<br>5.0                                                    | 70<br>70<br>70<br>70                         | 9.5 0.83<br>9.5 0.80<br>9.5 0.89                                                                                     | 0.09<br>0.10<br>0.11<br>0.12                                         | 382<br>415<br>444<br>489                                                               | 117<br>142<br>126<br>195                                                 | 23924<br>21762<br>19959<br>18439                                             | 8.5 16.6<br>8.5 16.6<br>8.5 16.6<br>8.5 16.6                                                 |

| DEPTH                                                                                  | ROP                                                                                                | WOB                                            | RPM                                                          | MW                                     | "d "c                                                                | HOURS                                                                        | TURNS                                                                            | ICOST                                                                        | ccost                                                                          | РP                                                 | FG                                                   |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|
| 2811.8<br>2812.0<br>2812.2<br>2812.4<br>2812.4<br>2812.8<br>2813.0<br>2813.2<br>2813.4 | 3.3 1<br>1.6 1<br>1.2 1<br>0.9 1<br>2.5 1<br>1.5 1<br>2.0 1<br>1.4 1<br>2.1 1                      | 15.8<br>5.7<br>6.0<br>6.0<br>6.8<br>7.0<br>7.4 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90           | 9.5<br>9.5<br>9.4<br>9.5<br>9.6<br>9.6 | 1.69<br>1.92<br>2.02<br>2.09<br>1.82<br>1.94<br>1.87<br>1.89         | 0.82<br>0.94<br>1.11<br>1.33<br>1.41<br>1.54<br>1.64<br>1.78<br>1.88         | 3850<br>4513<br>5446<br>6601<br>7037<br>7751<br>8281<br>9073<br>9580<br>10192    | 1101<br>2242<br>3155<br>3906<br>1476<br>2414<br>1790<br>2678<br>1714<br>2069 | 10520<br>10189<br>9919<br>9696<br>9402<br>9161<br>8716<br>8714<br>8496<br>8301 | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5             | 16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6 |
| 2813.6<br>2813.8<br>2814.0                                                             | 5.0 1<br>0.4 1<br>0.2 1                                                                            | 7.3                                            | 90 9                                                         | 9,5                                    | 1.63<br>2.37<br>2.54                                                 | 2.03<br>2.56<br>3.54                                                         | 10406<br>13283<br>18565                                                          | 725<br>9729<br>17859                                                         | 8078<br>8125<br>8396                                                           | 8,5                                                | 16.6<br>16.6<br>16.6                                 |
| BIT NUMBE<br>HTC J44<br>COST<br>TOTAL HOU                                              | 6844                                                                                               | . 0 0                                          | SIZ<br>TRI                                                   | E<br>P T                               | ODE<br>IME<br>TURNS                                                  | 617<br>12.250<br>8.3<br>93198                                                | NOZ:<br>BIT                                                                      | ERVAL<br>ZLES<br>RUN<br>DITION                                               |                                                                                | 0- 29<br>15 1<br>15 1<br>85 G0                     | 6 16<br>46.2                                         |
| DEPTH                                                                                  | ROP                                                                                                | MOB K                                          | PM                                                           | MW                                     | "d "c                                                                | HOURS                                                                        | TURNS                                                                            | ICOST                                                                        | CCOST                                                                          | ÞÞ                                                 | F(;                                                  |
| 2814.5<br>2815.0<br>2816.0<br>2817.0<br>2818.0<br>2819.0<br>2820.0                     | 2.5 2:<br>4.4 4!<br>10.2 48<br>28.8 48<br>6.7 48<br>12.9 5:<br>12.8 5:                             | 0.4<br>3.6<br>3.2<br>3.9                       | 50 9<br>50 9<br>50 9<br>50 9<br>50 9                         | . 6<br>. 6<br>. 6<br>. 6               | 1.63<br>1.72<br>1.54<br>1.18<br>1.69<br>1.49                         | 0.20<br>0.32<br>0.41<br>0.45<br>0.60<br>0.68<br>0.75                         | 608<br>949<br>1244<br>1348<br>1796<br>2028<br>2263                               | 1479<br>832<br>359<br>127<br>545<br>283<br>285                               | 75790<br>38311<br>19335<br>12932<br>9835<br>7925<br>6652                       | 8.5<br>8.5<br>8.5<br>8.5<br>8.5                    | 16.6<br>16.6<br>16.6<br>16.6                         |
| 2821.0<br>2822.0<br>2823.0<br>2824.0<br>2825.0<br>2826.0<br>2827.0<br>2828.0<br>2829.0 | 14.9 51<br>2.2 50<br>2.1 50<br>1.8 51<br>2.7 51<br>2.1 50<br>2.1 54<br>2.3 52<br>3.8 49<br>10.6 48 | 0.0<br>0.0<br>.6<br>.2<br>1.6<br>1.6           | 50 9<br>50 9<br>50 9<br>50 9<br>50 9<br>50 9<br>50 9<br>50 9 | . 6                                    | 1.44<br>2.09<br>2.10<br>2.18<br>2.02<br>2.10<br>2.16<br>2.10<br>1.88 | 0.82<br>1.28<br>1.76<br>2.33<br>2.70<br>3.17<br>3.65<br>4.08<br>4.35<br>4.44 | 2463<br>3845<br>5292<br>6995<br>8093<br>9513<br>10954<br>12254<br>13038<br>13322 | 244<br>1682<br>1761<br>2074<br>1336<br>1730<br>1754<br>1583<br>955<br>345    | 5736<br>5230<br>4844<br>4567<br>4273<br>4061<br>3884<br>3720<br>3535<br>3336   | 8.5 1<br>8.5 1<br>8.5 1<br>8.5 1<br>8.5 1<br>8.5 1 | (6.6<br>(6.6<br>(6.6<br>(6.6<br>(6.6<br>(6.6<br>(6.6 |
| 2831.0<br>2832.0<br>2833.0<br>2834.0<br>2835.0<br>2836.0<br>2838.0<br>2839.0<br>2840.0 | 7.7 46<br>5.2 49<br>74.3 49<br>2.7 50<br>6.3 49<br>4.8 48<br>2.7 51<br>2.2 50<br>1.9 48<br>6.8 50  | .4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5       | 50 9. 50 9. 50 9. 50 9. 50 9. 50 9. 50 9.                    | 6 1 6 2 6 2 6 2                        | .61<br>.78<br>.85<br>.02<br>.71<br>.79<br>.03<br>.08<br>.12          | 4.99<br>5.37<br>5.53<br>5.74<br>6.11<br>6.55<br>7.09                         | 13712<br>14288<br>14984<br>16109<br>16588<br>17218<br>18323<br>19663<br>21257    | 475<br>702<br>847<br>1370<br>582<br>768<br>1345<br>1631<br>1940<br>541       | 3167<br>3031<br>2916<br>2838<br>2731<br>2642<br>2585<br>2546<br>2521<br>2445   | 8.5 1<br>8.5 1<br>8.5 1<br>8.5 1<br>8.5 1<br>8.5 1 | 6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6<br>6.6        |

48.

| DEPTH                                                                                  | ROP                                                         | MOB                                                                  | RPM                                                | MW                                            | "d "c:                                                                       | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                   | ccost                                                                        | pр                                           | FG                                                           |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|
| 2841.0<br>2842.0<br>2843.0<br>2844.0<br>2845.0<br>2846.0<br>2847.0<br>2848.0<br>2849.0 | 8.7<br>6.3<br>3.9<br>5.5<br>3.8<br>5.4<br>2.1<br>2.0<br>1.1 | 50.5<br>50.4<br>50.7<br>51.5<br>50.6<br>53.4<br>53.8                 | 50<br>50<br>50<br>50<br>50<br>50<br>50             | 9.6                                           | 1.59<br>1.73<br>1.89<br>1.77<br>1.92<br>1.78<br>2.15<br>2.16<br>2.29<br>2.10 | 7.35<br>7.51<br>7.77<br>7.95<br>8.22<br>8.40<br>8.88<br>9.37<br>10.26                  | 22047<br>22526<br>23304<br>23850<br>24648<br>25203<br>26639<br>28108<br>30792<br>32361 | 421<br>583<br>947<br>664<br>972<br>676<br>1748<br>1788<br>3268<br>1909  | 2370<br>2306<br>2259<br>2206<br>2166<br>2120<br>2109<br>2099<br>2133<br>2126 | 8.55<br>8.55<br>8.55<br>8.55<br>8.55<br>8.55 | 16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6 |
| 2851.0<br>2852.0<br>2853.0<br>2854.0<br>2855.0<br>2856.0<br>2857.0<br>2859.0<br>2860.0 | 3.6<br>2.8<br>13.1<br>8.2<br>5.6<br>8.9                     | 47.7<br>47.9<br>49.8<br>49.7<br>50.0<br>49.6<br>49.5<br>49.4         | 45<br>40<br>40<br>40<br>40<br>40<br>40<br>40       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.50<br>1.60<br>1.81<br>1.92<br>1.38<br>1.55<br>1.67<br>1.51<br>1.49         | 10.89<br>11.04<br>11.32<br>11.68<br>11.76<br>11.88<br>12.06<br>12.17<br>12.28<br>12.41 | 32633<br>33005<br>33672<br>34545<br>34728<br>35022<br>35450<br>35721<br>35972<br>36288 | 367<br>566<br>1014<br>1328<br>279<br>447<br>651<br>412<br>382<br>481    | 2079<br>2039<br>2013<br>1996<br>1954<br>1918<br>1888<br>1855<br>1822<br>1793 | 8.555555555555555555555555555555555555       | 16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6 |
| 2861.0<br>2862.0<br>2863.0<br>2864.0<br>2865.0<br>2866.0<br>2867.0<br>2868.0<br>2869.0 | 5,4<br>13.6<br>21.4<br>16.1<br>13.8<br>10.6                 | 49.6<br>50.0<br>49.6<br>48.6                                         | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.90<br>1.94<br>1.40<br>1.70<br>1.37<br>1.21<br>1.31<br>1.36<br>1.47         | 12.74<br>13.11<br>13.19<br>13.37<br>13.45<br>13.49<br>13.56<br>13.63<br>13.72          | 37082<br>37963<br>38155<br>38600<br>38777<br>38889<br>39038<br>39211<br>39437<br>39623 | 1208<br>1340<br>292<br>678<br>269<br>170<br>227<br>264<br>344<br>283    | 1781<br>1771<br>1741<br>1720<br>1691<br>1662<br>1635<br>1610<br>1587         | 88888885555555555555555555555555555555       | 16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6 |
| 2871.0<br>2872.0<br>2873.0<br>2874.0<br>2875.0<br>2876.0<br>2877.0<br>2878.0<br>2879.0 | 4.1<br>1.3<br>2.0<br>2.9<br>2.3<br>2.8<br>3.9<br>4.0        | 51.2<br>51.5<br>51.9<br>51.1<br>51.7<br>52.7<br>53.6<br>53.4         | 40<br>46<br>50<br>50<br>50<br>49<br>40<br>40<br>40 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.59<br>1.85<br>2.30<br>2.13<br>2.00<br>2.08<br>1.96<br>1.86<br>1.85<br>1.84 | 13.93<br>14.18<br>14.95<br>15.46<br>15.80<br>16.23<br>16.58<br>16.84<br>17.09          | 39939<br>40612<br>42941<br>44451<br>45475<br>46729<br>47587<br>48207<br>48809<br>49398 | 480<br>898<br>2834<br>1839<br>1246<br>1561<br>1306<br>943<br>916<br>896 | 1544<br>1533<br>1555<br>1560<br>1555<br>1551<br>1551<br>1542<br>1532<br>1522 | 88888855555555555555555555555555555555       | 16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6 |
| 2881.0<br>2882.0<br>2883.0<br>2884.0<br>2885.0<br>2886.0<br>2888.0<br>2889.0<br>2890.0 | 3.9<br>4.2<br>9.9<br>10.4<br>8.7<br>6.1<br>6.3<br>6.7       | 53.5<br>52.6<br>52.3<br>51.1<br>51.6<br>51.8<br>52.2<br>51.8<br>52.9 | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.83<br>1.85<br>1.81<br>1.50<br>1.49<br>1.55<br>1.68<br>1.67                 | 17.58<br>17.84<br>18.08<br>18.18<br>18.27<br>18.39<br>18.55<br>18.71<br>18.86<br>19.03 | 49978<br>50593<br>51169<br>51411<br>51642<br>51918<br>52313<br>52693<br>53051<br>53468 | 883<br>935<br>876<br>368<br>352<br>420<br>601<br>578<br>545<br>635      | 1513<br>1504<br>1495<br>1479<br>1463<br>1449<br>1437<br>1425<br>1414         | 88888888888888888888888888888888888888       | 16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6         |

| DEPTH                                                                                  | ROP WOB                                                                                                              | RPM                                                | MW "d"c                                                                                                              | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                 | ccost                                                                        | PP                                        | FG                                                           |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| 2891.0<br>2892.0<br>2893.0<br>2894.0<br>2895.0<br>2897.0<br>2898.0<br>2899.0<br>2899.0 | 4.6 54.1<br>5.0 54.8<br>4.0 54.0<br>7.6 48.9<br>5.0 50.3<br>4.6 51.3<br>5.1 50.7<br>4.1 50.3<br>5.8 51.1<br>4.8 49.6 | 40<br>40<br>40<br>47<br>50<br>50<br>50             | 9.5 1.81<br>9.5 1.79<br>9.5 1.87<br>9.5 1.58<br>9.5 1.80<br>9.5 1.86<br>9.5 1.81<br>9.5 1.89<br>9.5 1.78<br>9.5 1.82 | 19,25<br>19,45<br>19,70<br>19,83<br>20,03<br>20,25<br>20,44<br>20,68<br>20,86<br>21,06 | 53985<br>54467<br>55071<br>55385<br>55951<br>56599<br>57182<br>57908<br>58425<br>59044 | 787<br>732<br>920<br>478<br>730<br>789<br>710<br>884<br>629<br>754    | 1395<br>1387<br>1381<br>1370<br>1362<br>1355<br>1347<br>1342<br>1333         | 00000000000000000000000000000000000000    | 16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6         |
| 2901.0<br>2902.0<br>2903.0<br>2904.0<br>2905.0<br>2906.0<br>2907.0<br>2908.0<br>2909.0 | 3.9 52.2<br>3.7 51.9<br>4.7 53.4<br>3.1 53.5<br>4.9 52.7<br>7.5 52.4<br>7.5 53.8<br>6.9 53.1<br>4.8 52.0<br>4.8 51.7 | 50<br>50<br>50<br>45<br>45<br>45<br>45<br>45<br>45 | 9.5 1.93<br>9.5 1.94<br>9.5 1.87<br>9.5 2.01<br>9.5 1.82<br>9.5 1.66<br>9.5 1.68<br>9.5 1.70<br>9.6 1.80<br>9.6 1.80 | 21.32<br>21.59<br>21.80<br>22.13<br>22.33<br>22.47<br>22.60<br>22.74<br>22.95<br>23.16 | 59813<br>60629<br>61262<br>62183<br>62735<br>63096<br>63458<br>63848<br>64410<br>64973 | 936<br>993<br>770<br>1190<br>747<br>489<br>489<br>528<br>761          | 1322<br>1318<br>1312<br>1311<br>1305<br>1296<br>1287<br>1279<br>1273<br>1268 | 88888888<br>88888888888888888888888888888 | 16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.7<br>16.7 |
| 2911.0<br>2912.0<br>2913.0<br>2914.0<br>2915.0<br>2916.0<br>2917.0<br>2918.0<br>2919.0 | 4.3 51.8<br>4.4 53.0<br>5.4 53.4<br>4.3 53.0<br>5.0 53.2<br>3.9 53.9<br>3.9 52.3<br>3.6 51.3<br>4.7 51.3<br>4.8 51.7 | 43<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 9.5 1.83<br>9.6 1.81<br>9.5 1.74<br>9.5 1.82<br>9.5 1.77<br>9.5 1.87<br>9.5 1.87<br>9.5 1.77<br>9.5 1.78             | 23.39<br>23.62<br>23.80<br>24.04<br>24.24<br>24.49<br>24.75<br>25.03<br>25.24<br>25.45 | 65572<br>66114<br>66556<br>67117<br>67595<br>68207<br>68828<br>69500<br>70006<br>70508 | 846<br>825<br>623<br>854<br>727<br>931<br>945<br>1023<br>770          | 1264<br>1259<br>1253<br>1249<br>1244<br>1241<br>1238<br>1236<br>1232         | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5    | 16.7<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7 |
| 2921.0<br>2922.0<br>2923.0<br>2924.0<br>2925.0<br>2926.0<br>2927.0<br>2928.0<br>2929.0 | 5.0 51.6<br>7.3 51.6<br>5.3 50.1<br>4.8 50.2<br>5.3 49.4<br>5.0 50.4<br>6.3 50.3<br>4.7 50.6<br>7.2 50.3<br>6.1 50.6 | 40<br>42<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.5 1.76<br>9.5 1.64<br>9.5 1.80<br>9.5 1.83<br>9.5 1.78<br>9.5 1.73<br>9.5 1.84<br>9.6 1.67<br>9.6 1.74             | 25.65<br>25.79<br>25.98<br>26.18<br>26.37<br>26.57<br>26.73<br>26.94<br>27.08<br>27.24 | 70986<br>71331<br>71895<br>72517<br>73082<br>73677<br>74151<br>74787<br>75203<br>75692 | 726<br>503<br>687<br>757<br>688<br>727<br>574<br>506                  | 1223<br>1216<br>1211<br>1207<br>1202<br>1198<br>1193<br>1189<br>1183         | 8.55<br>8.55<br>8.55<br>8.55<br>8.55      |                                                              |
| 2931.0<br>2932.0<br>2933.0<br>2934.0<br>2935.0<br>2936.0<br>2937.0<br>2938.0<br>2939.0 | 5.3 50.7<br>9.0 49.1<br>3.8 49.8<br>2.9 50.5<br>3.1 50.9<br>2.6 50.8<br>5.3 50.9<br>7.6 50.9<br>5.4 51.4<br>5.0 51.4 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50       | 9.6 1.79<br>9.6 1.59<br>9.6 1.99<br>9.6 1.98<br>9.6 2.03<br>9.6 1.79<br>9.6 1.67<br>9.6 1.79<br>9.6 1.81             | 27.43<br>27,54<br>27.81<br>28.15<br>28.48<br>28.86<br>29.05<br>29.18<br>29.36<br>29.56 | 76261<br>76594<br>77388<br>78424<br>79399<br>80543<br>81109<br>81506<br>82057<br>82656 | 693<br>405<br>967<br>1261<br>1188<br>1392<br>690<br>483<br>671<br>729 | 1174<br>1167<br>1166<br>1166<br>1167<br>1168<br>1164<br>1159<br>1155<br>1152 | 8,5 1<br>8,5 1<br>8,5 1<br>8,5 1<br>8,5 1 | 16.7<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7         |

 $(x_1, \dots, x_n) = (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n) + (x_1, \dots, x_n$ 

| DEPTH                                                                                                                                        | ROP                                                               | MOB                                                                                                | RPM                                                                           | MW                                                 | "d"c                                                                                          | HOURS                                                                                                         | TURNS                                                                                                                   | ICOST                                                                                                          | CCOST                                                                    | pр                                                                            | FG                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 2941.0                                                                                                                                       | 2.6                                                               | 52.0                                                                                               | 50                                                                            | 9.6                                                | 2.05                                                                                          | 29,95                                                                                                         | 83805                                                                                                                   | 1399                                                                                                           | 1154                                                                     | 8.5                                                                           | 16.7                                                                       |
| 2942.0                                                                                                                                       |                                                                   | 51.0                                                                                               | 50                                                                            |                                                    | 1.79                                                                                          | 30.13                                                                                                         | 84367                                                                                                                   | 684                                                                                                            | 1150                                                                     |                                                                               | 16.7                                                                       |
| 2943.0                                                                                                                                       |                                                                   | 51.6                                                                                               | 50                                                                            |                                                    | 1.39                                                                                          | 30.19                                                                                                         | 84542                                                                                                                   | 213                                                                                                            | 1143                                                                     |                                                                               | 16.7                                                                       |
| 2944.0                                                                                                                                       |                                                                   | 49.6                                                                                               | 50                                                                            |                                                    | 1.51                                                                                          | 30.28                                                                                                         | 84807                                                                                                                   | 323                                                                                                            | 1136                                                                     |                                                                               | 16.7                                                                       |
| 2945.0                                                                                                                                       |                                                                   | 49.0                                                                                               | 50                                                                            |                                                    | 1.36                                                                                          | 30.34                                                                                                         | 84978                                                                                                                   | 208                                                                                                            | 1129                                                                     |                                                                               | 16.7                                                                       |
| 2946.0                                                                                                                                       |                                                                   | 49.3                                                                                               | 50                                                                            |                                                    | 1.58                                                                                          | 30.45                                                                                                         | 85307                                                                                                                   | 401                                                                                                            | 1124                                                                     |                                                                               | 16.7                                                                       |
| 2947.0                                                                                                                                       |                                                                   | 49.5                                                                                               | 50                                                                            |                                                    | 1.59                                                                                          | 30.56                                                                                                         | 85644                                                                                                                   | 410                                                                                                            | 1118                                                                     |                                                                               | 16.7                                                                       |
| 2948.0                                                                                                                                       |                                                                   | 49.8                                                                                               | 50                                                                            |                                                    | 1.51                                                                                          | 30.65                                                                                                         | 85909                                                                                                                   | 323                                                                                                            | 1113                                                                     |                                                                               | 16.7                                                                       |
| 2949.0                                                                                                                                       |                                                                   | 49.9                                                                                               | 50                                                                            |                                                    | 1.73                                                                                          | 30.81                                                                                                         | 86404                                                                                                                   | 604                                                                                                            | 1109                                                                     |                                                                               | 16.7                                                                       |
| 2950.0                                                                                                                                       |                                                                   | 50.1                                                                                               | 50                                                                            |                                                    | 1.77                                                                                          | 31,00                                                                                                         | 86963                                                                                                                   | 680                                                                                                            | 1106                                                                     |                                                                               | 16.7                                                                       |
|                                                                                                                                              | Also F. F                                                         | 0.014                                                                                              |                                                                               | <i>y</i> 1 (,)                                     | X : 7 7                                                                                       | 71100                                                                                                         | ooyoo                                                                                                                   | 000                                                                                                            | 1100                                                                     | 0.0                                                                           | 10,/                                                                       |
| 2951.0                                                                                                                                       |                                                                   | 49.2                                                                                               | 50                                                                            |                                                    | 1.69                                                                                          | 31.15                                                                                                         | 87416                                                                                                                   | 551                                                                                                            | 1102                                                                     | 8.5                                                                           | 16.7                                                                       |
| 2952.0                                                                                                                                       |                                                                   | 50.5                                                                                               | 50                                                                            | 9.6                                                | 1.81                                                                                          | 31.35                                                                                                         | 88021                                                                                                                   | 736                                                                                                            | 1099                                                                     | 8.5                                                                           | 16.7                                                                       |
| 2953.0                                                                                                                                       |                                                                   | 50.3                                                                                               | 50                                                                            | 9.6                                                | 1.78                                                                                          | 31.54                                                                                                         | 88576                                                                                                                   | 676                                                                                                            | 1096                                                                     | 8.5                                                                           | 16.7                                                                       |
| 2954.0                                                                                                                                       |                                                                   | 50.3                                                                                               | 50                                                                            | 9.6                                                | 1.77                                                                                          | 31.71                                                                                                         | 89115                                                                                                                   | 656                                                                                                            | 1093                                                                     | 8.5                                                                           | 16.7                                                                       |
| 2955.0                                                                                                                                       |                                                                   | 51,1                                                                                               | 50                                                                            | 9.6                                                | 1.78                                                                                          | 31.90                                                                                                         | 89659                                                                                                                   | 662                                                                                                            | 1090                                                                     |                                                                               | 16.7                                                                       |
| 2956.0                                                                                                                                       | 3,9                                                               | 52.1                                                                                               | 50                                                                            | 9.6                                                | 1.91                                                                                          | 32.16                                                                                                         | 90438                                                                                                                   | 949                                                                                                            | 1089                                                                     |                                                                               | 16.7                                                                       |
| 2957.0                                                                                                                                       | 4.7                                                               | 52.8                                                                                               | 50                                                                            | 9.6                                                | 1.85                                                                                          | 32.37                                                                                                         | 91071                                                                                                                   | 770                                                                                                            | 1086                                                                     |                                                                               | 16.7                                                                       |
| 2958.0                                                                                                                                       | 3.6                                                               | 53.7                                                                                               | 50                                                                            | 9.6                                                | 1.96                                                                                          | 32.65                                                                                                         | 91912                                                                                                                   | 1025                                                                                                           | 1086                                                                     |                                                                               | 16.7                                                                       |
| 2959.0                                                                                                                                       | 7.4                                                               | 52.8                                                                                               | 50                                                                            | 9.6                                                | 1.69                                                                                          | 32.78                                                                                                         | 92316                                                                                                                   | 491                                                                                                            | 1082                                                                     |                                                                               | 16.7                                                                       |
| 2960.0                                                                                                                                       | 5.2                                                               | 50.5                                                                                               | 50                                                                            | 9.6                                                | 1.79                                                                                          | 32.97                                                                                                         | 92895                                                                                                                   | 705                                                                                                            | 1079                                                                     |                                                                               | 16.7                                                                       |
| 2960.2                                                                                                                                       | 2.0                                                               | 51.9                                                                                               | 50                                                                            | 9.6                                                | 2.14                                                                                          | 33.08                                                                                                         | 93198                                                                                                                   | 1846                                                                                                           | 1080                                                                     | 8.5                                                                           | 16.7                                                                       |
|                                                                                                                                              |                                                                   |                                                                                                    |                                                                               |                                                    |                                                                                               |                                                                                                               |                                                                                                                         | 2 10 1 11                                                                                                      | 2000                                                                     |                                                                               |                                                                            |
| BIT NUMBE                                                                                                                                    |                                                                   | 13                                                                                                 | Ţ                                                                             | ADC (                                              |                                                                                               | 316                                                                                                           | INT                                                                                                                     | ERVAL                                                                                                          |                                                                          | 2- 29                                                                         | 72.3                                                                       |
| BIT NUMBE<br>HTC J7                                                                                                                          | R                                                                 | 13                                                                                                 | .T<br>53                                                                      | ADC (                                              | CODE                                                                                          | 316<br>8.500                                                                                                  | INT<br>NOZ.                                                                                                             | ERVAL<br>ZLES                                                                                                  | 2960,                                                                    | 2- 29<br>14 1                                                                 | 72.3<br>4 14                                                               |
| BIT NUMBE<br>HTC J7<br>COST                                                                                                                  | R<br>149                                                          | 13                                                                                                 | .r.<br>53<br>T                                                                | ADC (SIZE                                          | CODE                                                                                          | 316<br>8.500<br>8.3                                                                                           | INT<br>NOZ<br>BIT                                                                                                       | ERVAL<br>ZLES<br>RUN                                                                                           | 2960.                                                                    | 2- 29<br>14 1                                                                 | 72.3<br>4 14<br>12.1                                                       |
| BIT NUMBE<br>HTC J7                                                                                                                          | R<br>149                                                          | 13                                                                                                 | .r.<br>53<br>T                                                                | ADC (SIZE                                          | CODE                                                                                          | 316<br>8,500<br>8,3                                                                                           | INT<br>NOZ<br>BIT                                                                                                       | ERVAL<br>ZLES                                                                                                  | 2960.                                                                    | 2- 29<br>14 1                                                                 | 72.3<br>4 14<br>12.1                                                       |
| BIT NUMBE<br>HTC J7<br>COST                                                                                                                  | R<br>149                                                          | 13                                                                                                 | .r.<br>53<br>T<br>T                                                           | ADC (<br>IZE<br>RIP 1<br>OTAL                      | CODE                                                                                          | 316<br>8.500<br>8.3                                                                                           | INT<br>NOZ<br>BIT                                                                                                       | ERVAL<br>ZLES<br>RUN                                                                                           | 2960.                                                                    | 2- 29<br>14 1                                                                 | 72.3<br>4 14<br>12.1                                                       |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU                                                                                                     | R<br>149<br>RS<br>ROP                                             | 13<br>74.00<br>2.63<br>WOB                                                                         | I<br>S<br>T<br>T                                                              | ADC (<br>IZE<br>RIP T<br>OTAL<br>MW                | CODE<br>TIME<br>TURNS<br>"d"c                                                                 | 316<br>8.500<br>8.3<br>10615<br>HOURS                                                                         | INT<br>NOZ<br>BIT<br>CON                                                                                                | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST                                                                        | 2960.<br>T8<br>CCOST                                                     | 2- 29<br>14 1<br>B6 G0<br>PP                                                  | 72.3<br>4 14<br>12.1<br>.375                                               |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH                                                                                           | R<br>149<br>RS<br>ROP<br>12.9                                     | 13<br>74.00<br>2.63<br>WOB                                                                         | .r.<br>53<br>T<br>T                                                           | ADC (<br>IZE<br>RIP T<br>OTAL<br>MW<br>9.5         | CODE<br>TIME<br>TURNS                                                                         | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06                                                                 | INT<br>NOZ<br>BIT<br>CON<br>TURNS                                                                                       | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283                                                                 | 2960.<br>T8<br>CCOST<br>40040                                            | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5                                           | 72.3<br>4 14<br>12.1<br>.375<br>FG                                         |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU<br>DEPTH<br>2961.0                                                                                  | R<br>RS<br>ROP<br>12.9<br>7.4                                     | 13<br>74.00<br>2.63<br>WOB<br>26.6                                                                 | I<br>3<br>T<br>T<br>RPM<br>70                                                 | ADC (<br>IZE<br>RIP 1<br>OTAL<br>MW<br>9.5<br>9.5  | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.84                                                 | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20                                                         | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827                                                                         | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493                                                          | 2960.<br>T8<br>CCOST<br>40040<br>18069                                   | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5                                    | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7                         |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0                                                                       | R<br>RS<br>ROP<br>12.9<br>7.4<br>7.6                              | 13<br>74.00<br>2.63<br>WOB<br>26.6<br>37.3                                                         | 70<br>70                                                                      | ADC (IZE RIP TOTAL MW 9.5 9.5 9.5                  | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.84                                                 | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33                                                 | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383                                                                 | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483                                                   | 2960.<br>T8<br>CCOST<br>40040<br>18069<br>11789                          | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5                             | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7                         |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0<br>2963.0                                                             | R<br>RS<br>ROP<br>12.9<br>7.4<br>7.6<br>5.7                       | 13<br>24.00<br>2.63<br>WOB<br>26.6<br>37.3<br>41.2                                                 | 70<br>70<br>70                                                                | ADC (IZE RIP TOTAL MW 9.5 9.5 9.5 9.5              | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.84<br>1.90                                         | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33<br>0.50                                         | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383<br>2115                                                         | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483<br>483<br>637                                     | 2960.<br>T8<br>CCOST<br>40040<br>18069<br>11789<br>8854                  | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5                             | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7<br>16.7                 |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0<br>2963.0<br>2964.0                                                   | R<br>RS<br>ROP<br>12.9<br>7.4<br>7.6<br>5.7<br>8.0                | 13<br>24.00<br>2.63<br>WOB<br>26.6<br>37.3<br>41.2<br>42.2                                         | 70<br>70<br>70<br>70<br>70                                                    | ADC (IZE RIP TOTAL MW 9.55 9.5 9.5 9.5             | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.84<br>1.90<br>2.02                                 | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33                                                 | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383                                                                 | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483                                                   | 2960.<br>T8<br>CCOST<br>40040<br>18069<br>11789<br>8854<br>7105          | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5<br>8.5                      | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7<br>16.7                 |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU<br>DEPTH<br>2961.0<br>2962.0<br>2963.0<br>2964.0<br>2965.0                                          | R<br>RS<br>ROP<br>12.9<br>7.4<br>7.6<br>5.7<br>8.0<br>5.2         | 13<br>24.00<br>2.63<br>WOB<br>26.6<br>37.3<br>41.2<br>42.2<br>42.4                                 | 70<br>70<br>70<br>70<br>70<br>70                                              | ADC (TZE) TOTAL MW 9.559.559.559.55                | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.84<br>1.90<br>2.02<br>1.90                         | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33<br>0.50<br>0.63                                 | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383<br>2115<br>2643                                                 | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483<br>483<br>437<br>459                              | 2960. T8 CCOST 40040 18069 11789 8854 7105 6002                          | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5<br>8.5                      | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7<br>16.7                 |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0<br>2963.0<br>2964.0<br>2966.0                                         | R 149<br>RS ROP<br>12.9<br>7.4<br>7.6<br>5.7<br>8.0<br>5.2<br>5.3 | 13<br>24.00<br>2.63<br>WOB<br>26,6<br>37.3<br>41.2<br>42.4<br>42.4                                 | 70<br>70<br>70<br>70<br>70<br>70<br>70                                        | ADC (IZE TOTAL MW 9.559.559.559.55                 | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.90<br>2.02<br>1.90<br>2.05                         | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33<br>0.50<br>0.63<br>0.82                         | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383<br>2115<br>2643<br>3455                                         | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>493<br>483<br>437<br>459<br>706                       | 2960.<br>T8<br>CCOST<br>40040<br>18069<br>11789<br>8854<br>7105          | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5               | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7<br>16.7                 |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0<br>2963.0<br>2964.0<br>2966.0<br>2966.0                               | R 149<br>RS ROP<br>12.9<br>7.4<br>7.6<br>5.7<br>8.0<br>5.2<br>6.7 | 13<br>74.00<br>2.63<br>WOB<br>26.6<br>37.3<br>41.2<br>42.4<br>41.7<br>32.4                         | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70                            | ADC (IZE RIP TOTAL MW 9.559.559.559.559.55         | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.90<br>2.02<br>1.90<br>2.05<br>1.87                 | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33<br>0.50<br>0.63<br>0.82<br>1.01                 | INT<br>NOZ<br>BIT<br>CON:<br>TURNS<br>260<br>827<br>1383<br>2115<br>2643<br>3455<br>4253                                | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483<br>483<br>483<br>459<br>706<br>694                | 2960. T8 CCOST 40040 18069 11789 8854 7105 6002 5221                     | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5<br>8.5                      | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7<br>16.7<br>16.7         |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0<br>2963.0<br>2964.0<br>2966.0<br>2966.0<br>2967.0<br>2968.0<br>2969.0 | R 149<br>RS ROP<br>12.9<br>7.6<br>5.2<br>5.3<br>6.2               | 13<br>24.00<br>2.63<br>WOB<br>26.6<br>37.3<br>41.2<br>42.4<br>41.7<br>32.4<br>41.4<br>38.5         | T<br>S<br>T<br>T<br>RPM<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>65 | ADC (IZE TAL W 55555555555555555555555555555555555 | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.84<br>1.90<br>2.02<br>1.90<br>2.05<br>1.95<br>2.09 | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33<br>0.50<br>0.63<br>0.82<br>1.01<br>1.16<br>1.44 | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383<br>2115<br>2643<br>3455<br>4253<br>4882<br>5957                 | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483<br>439<br>706<br>694<br>547<br>1005               | 2960. T8 CCOST 40040 18069 11789 8854 7105 6002 5221 4622 4211           | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5               | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7 |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0<br>2963.0<br>2964.0<br>2966.0<br>2966.0<br>2967.0<br>2968.0<br>2969.0 | R 149<br>RS ROP<br>12.9<br>77.67<br>5.37<br>6.23<br>6.7           | 13<br>24.00<br>2.63<br>WOB<br>26.3<br>41.2<br>42.4<br>41.7<br>32.4<br>41.4<br>38.5<br>40.2         | T ST T T RPM 70 70 70 70 70 75 65 65                                          | ADC (RIP TO MW 555555 9.55 5 9.55                  | CODE<br>TIME<br>TURNS<br>"d"c<br>1.48<br>1.90<br>2.02<br>1.90<br>2.05<br>1.95<br>2.09         | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33<br>0.50<br>0.63<br>0.82<br>1.01<br>1.16<br>1.44 | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383<br>2115<br>2643<br>3455<br>4253<br>4882<br>5957<br>6743         | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483<br>483<br>637<br>459<br>706<br>694<br>547<br>1005 | 2960. T8 CCOST 40040 18069 11789 8854 7105 6002 5221 4622 4211 3856      | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5        | 72.3<br>4 14<br>12.1<br>.375<br>FG<br>16.7<br>16.7<br>16.7<br>16.7<br>16.7 |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0<br>2963.0<br>2964.0<br>2966.0<br>2966.0<br>2967.0<br>2968.0<br>2969.0 | R 149<br>RS ROP<br>12.9<br>77.6<br>5.2<br>5.3<br>6.7<br>3.6       | 13<br>24.00<br>2.63<br>WOB<br>26.3<br>41.2<br>42.4<br>41.7<br>32.4<br>41.4<br>38.5<br>40.2<br>38.9 | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>65<br>65                | ADC (RIP TO MW .555555 55 9.55 9.55 9.55           | CODE TURNS "d"c 1.48 1.90 2.02 1.90 2.05 1.95 2.09 2.09                                       | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33<br>0.50<br>0.63<br>0.63<br>1.01<br>1.16<br>1.44 | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383<br>2115<br>2643<br>3455<br>4253<br>4882<br>5957<br>6743<br>7434 | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483<br>483<br>459<br>706<br>694<br>547<br>1005        | 2960. T8 CCOST 40040 18069 11789 8854 7105 6002 5221 4622 4211 3856 3559 | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5 | 72.3<br>4 14.1<br>.375<br>FG 77.7<br>16.77<br>16.77<br>16.77<br>16.77      |
| BIT NUMBE<br>HTC J7<br>COST<br>TOTAL HOU!<br>DEPTH<br>2961.0<br>2962.0<br>2963.0<br>2964.0<br>2966.0<br>2966.0<br>2967.0<br>2968.0<br>2969.0 | R 149<br>RS ROP<br>12.46<br>77.65.3<br>63.6<br>5.6                | 13<br>24.00<br>2.63<br>WOB<br>26.3<br>41.2<br>42.4<br>41.7<br>32.4<br>41.4<br>38.5<br>40.2         | T ST T T RPM 70 70 70 70 70 75 65 65                                          | ADC (RIP TO MW 555555 9.55 5 9.55                  | CODE TURNS TURNS "d"c 1.48 1.90 2.02 1.90 2.05 1.87 1.95 2.09                                 | 316<br>8.500<br>8.3<br>10615<br>HOURS<br>0.06<br>0.20<br>0.33<br>0.50<br>0.63<br>0.82<br>1.01<br>1.16<br>1.44 | INT<br>NOZ<br>BIT<br>CON<br>TURNS<br>260<br>827<br>1383<br>2115<br>2643<br>3455<br>4253<br>4882<br>5957<br>6743         | ERVAL<br>ZLES<br>RUN<br>DITION<br>ICOST<br>283<br>493<br>483<br>483<br>637<br>459<br>706<br>694<br>547<br>1005 | 2960. T8 CCOST 40040 18069 11789 8854 7105 6002 5221 4622 4211 3856      | 2- 29<br>14 1<br>B6 G0<br>PP<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5        | 72.3<br>42.1<br>.375<br>FG 7777<br>16.6.777777777777777777777777777777     |

| BIT NUMBER<br>HTC J33<br>COST 45<br>TOTAL HOURS                                            | 14<br>503.00<br>10.79                                                                            | SIZE<br>TRIP                                                         | CODE<br>TIME<br>L TURNS                                                                          | 537<br>8.500<br>8.5<br>31858                                                 | NOZ:<br>BIT                                                                            | ERVAL<br>ZLES<br>RUN<br>DITION                                       |                                                                               | 3- 3045.8<br>14 14 14<br>73.5<br>B6 G0.625                                                               |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| DEPTH RO                                                                                   | o wor                                                                                            | RPM M                                                                | W "d"c                                                                                           | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                | ccost                                                                         | pp FG                                                                                                    |
| 2974.0 7.                                                                                  | 3 45.3<br>1 34.8<br>3 33.4                                                                       | 40 9.                                                                | 6 1.72<br>6 1.61<br>6 1.60                                                                       | 0.07<br>0.21<br>0.36                                                         | 215<br>553<br>906                                                                      | 374<br>514<br>537                                                    | 51152<br>21365<br>13651                                                       | 8.5 16.7<br>8.5 16.7<br>8.5 16.7                                                                         |
| 2977.0 5.2978.0 5.2979.0 5.22980.0 6.2981.0 6.2981.8 15.2982.0 25.2983.0 5.                | 4 33.5<br>0 33.7<br>9 33.7<br>3 34.5<br>2 35.7<br>1 36.2<br>7 35.8<br>0 35.7<br>7 37.0           | 40 9.<br>40 9.<br>40 9.<br>40 9.<br>40 9.<br>40 9.<br>40 9.<br>40 9. | 6 1.68<br>6 1.71<br>6 1.66<br>6 1.71<br>6 1.67<br>6 1.68<br>6 1.35<br>6 1.18<br>6 1.76<br>6 1.72 | 0.54<br>0.74<br>0.91<br>1.10<br>1.26<br>1.43<br>1.48<br>1.49<br>1.66         | 1350<br>1830<br>2237<br>2690<br>3077<br>3470<br>3593<br>3612<br>4086<br>4512           | 676<br>730<br>619<br>689<br>589<br>599<br>233<br>146<br>640<br>519   | 10144<br>8141<br>6822<br>5906<br>5216<br>4685<br>4310<br>4224<br>3889<br>3601 | 8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7 |
| 2985.0 7. 2986.0 5. 2987.0 13. 2988.0 7. 2989.0 9. 2990.0 8. 2991.0 6. 2992.0 7. 2993.0 4. | 2 36.9<br>6 37.4<br>7 37.2<br>5 37.2<br>6 37.9<br>8 36.3<br>9 38.0<br>6 38.5<br>1 40.5           | 50 9.<br>50 9.<br>50 9.<br>50 9.<br>50 9.<br>50 9.<br>50 9.          | 5 1.72<br>6 1.82<br>6 1.49<br>6 1.70<br>6 1.62<br>6 1.63<br>6 1.74<br>6 1.72<br>6 1.72<br>7 1.78 | 1.94<br>2.12<br>2.20<br>2.33<br>2.43<br>2.55<br>2.69<br>2.82<br>3.07<br>3.22 | 4930<br>5469<br>5688<br>6090<br>6402<br>6742<br>7176<br>7569<br>8298                   | 508<br>656<br>267<br>489<br>380<br>414<br>528<br>479<br>888<br>568   | 3358<br>3161<br>2964<br>2806<br>2661<br>2534<br>2427<br>2328<br>2258<br>2180  | 8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7 |
| 2996.0 2. 2997.0 10. 2998.0 6. 2999.0 8. 3000.0 8. 3001.0 11. 3002.0 10. 3003.0 7.         | 6 41.2<br>5 42.5<br>2 38.2<br>4 41.2<br>6 40.8<br>1 42.5<br>7 42.5<br>7 42.6<br>2 43.1<br>5 42.9 | 50 9. 50 9. 50 9. 50 9. 50 9. 50 9. 50 9.                            | 7 2.01<br>7 2.17<br>7 1.59<br>7 1.80<br>6 1.70<br>6 1.75<br>6 1.64<br>6 1.65<br>6 1.81<br>6 1.74 | 3.50<br>3.90<br>4.00<br>4.16<br>4.27<br>4.40<br>4.49<br>4.58<br>4.72<br>4.84 | 9591<br>10806<br>11099<br>11566<br>11913<br>12286<br>12557<br>12837<br>13255<br>13609  | 1005<br>1479<br>357<br>568<br>423<br>453<br>331<br>341<br>508<br>431 | 2129<br>2101<br>2031<br>1974<br>1916<br>1863<br>1809<br>1760<br>1719          | 8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7 |
| 3006.0 7. 3007.0 8. 3008.0 7. 3009.0 6. 3010.0 11. 3011.0 15. 3012.0 9. 3013.0 10.         | 6 44.7<br>7 44.7<br>0 42.1<br>1 39.5<br>3 40.7<br>0 38.7<br>5 30.7<br>6 33.3<br>5 36.8<br>7 40.2 | 50 9.50 9.50 9.50 9.50 9.50 9.50 9.50 9.                             | 6 1.76<br>6 1.80<br>6 1.75<br>6 1.75<br>6 1.81<br>6 1.35<br>6 1.55<br>6 1.57<br>6 1.58           | 4.95<br>5.08<br>5.21<br>5.35<br>5.51<br>5.60<br>5.66<br>5.76<br>5.95         | 13957<br>14348<br>14721<br>15141<br>15615<br>15887<br>16081<br>16392<br>16677<br>16935 | 424<br>476<br>454<br>511<br>576<br>332<br>235<br>379<br>347<br>313   | 1640<br>1606<br>1572<br>1543<br>1516<br>1485<br>1453<br>1426<br>1399<br>1373  | 8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.7<br>8.5 16.8<br>8.5 16.8             |

.

| рертн                                                                                            | ROP                                                   | MOB                                                                          | RPM                                          | MW                                            | "d"c                                                                 | HOURS                                                                        | TURNS                                                                                  | ICOST                                                               | CCOST                                                                        | PP                                                   | FG                                                           |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 3015.0<br>3016.0<br>3017.0<br>3018.0<br>3019.0<br>3020.0<br>3021.0<br>3022.0<br>3023.0<br>3024.0 | 4.7<br>8.2<br>12.3<br>6.1<br>6.9<br>7.2<br>6.8<br>7.1 | 41.7<br>41.5<br>40.0<br>40.2<br>40.3<br>41.8<br>37.9<br>38.2<br>38.5<br>33.8 | 50<br>50<br>50<br>50<br>44<br>45<br>45<br>46 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.71<br>1.94<br>1.71<br>1.57<br>1.62<br>1.77<br>1.69<br>1.71         | 6.06<br>6.28<br>6.40<br>6.48<br>6.64<br>6.79<br>6.93<br>7.07<br>7.22<br>7.31 | 17282<br>17924<br>18290<br>18534<br>19026<br>19427<br>19804<br>20200<br>20581<br>20840 | 423<br>781<br>445<br>298<br>599<br>532<br>510<br>536<br>340         | 1351<br>1338<br>1318<br>1296<br>1281<br>1265<br>1235<br>1235<br>1221         | 8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5<br>8.5 | 16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16.8         |
| 3025.0<br>3026.0<br>3027.0<br>3028.0<br>3029.0<br>3030.0<br>3031.0<br>3032.0<br>3033.0           | 8.2<br>6.1<br>2.9<br>5.7<br>4.6<br>5.2<br>5.7<br>7.9  | 39.0<br>39.1<br>41.2<br>48.2<br>48.3<br>43.2<br>42.2<br>42.0<br>41.6<br>42.3 | 60<br>60<br>60<br>60<br>51<br>50<br>50       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6        | 1.70<br>1.76<br>1.90<br>2.30<br>2.04<br>1.98<br>1.91<br>1.87<br>1.74 | 7.41<br>7.53<br>7.70<br>8.04<br>8.21<br>8.43<br>8.62<br>8.62<br>9.05         | 21208<br>21645<br>22236<br>23464<br>24099<br>24766<br>25343<br>25871<br>26249<br>26619 | 373<br>443<br>600<br>1246<br>644<br>793<br>702<br>643<br>460<br>450 | 1188<br>1174<br>1164<br>1165<br>1156<br>1150<br>1142<br>1134<br>1123         | 8.5<br>8.5<br>8.5<br>8.5<br>8.5                      | 16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16.8 |
| 3035.0<br>3036.0<br>3037.0<br>3038.0<br>3039.0<br>3040.0<br>3041.0<br>3042.0<br>3043.0<br>3044.0 | 7.0<br>7.5<br>7.3<br>6.2<br>9.4<br>8.1<br>7.5         | 42.6<br>42.1<br>41.7<br>42.0<br>43.4<br>43.5<br>43.7                         | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.78<br>1.78<br>1.81<br>1.83<br>1.69                                 | 9.18<br>9.33<br>9.46<br>9.60<br>9.74<br>9.91<br>10.01<br>10.14<br>10.27      | 27028<br>27459<br>27857<br>28269<br>28708<br>29189<br>29510<br>29879<br>30298<br>30758 | 498<br>524<br>484<br>502<br>535<br>585<br>391<br>449<br>510<br>560  | 1102<br>1093<br>1083<br>1075<br>1066<br>1059<br>1050<br>1041<br>1034<br>1027 | 8.5<br>8.5<br>8.5<br>9.0<br>9.0                      | 16.8<br>16.8<br>16.8<br>16.8<br>16.8<br>16.9<br>16.9         |
| 3045.0<br>3045.8                                                                                 |                                                       | 41.8<br>31.1                                                                 | 50<br>50                                     | 9.6<br>9.6                                    |                                                                      | 10.56<br>10.79                                                               | 31142<br>31858                                                                         | <b>4</b> 67<br>1089                                                 | 1019<br>1020                                                                 | ዎ. 0<br>ዎ. 0                                         | 16.9<br>16.9                                                 |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                                                      | 450                                                   | 15<br>3.00<br>0.32                                                           | S                                            | ADC C<br>IZE<br>RIP T<br>OTAL                 | IME                                                                  | 537<br>8.500<br>8.6<br>30946                                                 | NOZZ<br>BIT                                                                            | ERVAL<br>ZLES<br>RUN<br>DITION                                      |                                                                              | 8- 30<br>14 1<br>B6 G0                               | 4 14<br>45.8                                                 |
| DEPTH                                                                                            | ROP                                                   | ยเดพ                                                                         | RPM                                          | MW                                            | "d "c:                                                               | HOURS                                                                        | TURNS                                                                                  | ICOST                                                               | CCOST                                                                        | рр                                                   | FG                                                           |
| 3046.0<br>3047.0<br>3048.0<br>3049.0<br>3050.0<br>3051.0<br>3052.0<br>3053.0                     | 8.6<br>7.8<br>9.7<br>9.0<br>7.7<br>5.3                |                                                                              | 50<br>50<br>50<br>50<br>50<br>50<br>50       | 9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6<br>9.6 | 1.54<br>1.57<br>1.50<br>1.52<br>1.57                                 | 0.03<br>0.14<br>0.27<br>0.38<br>0.49<br>0.62<br>0.81<br>0.96                 | 86<br>435<br>819<br>1128<br>1462<br>1851<br>2417<br>2886                               | 522<br>425<br>468<br>376<br>406<br>474<br>689<br>571                | 180073<br>30366<br>16776<br>11651<br>8974<br>7339<br>6267<br>5476            |                                                      | 16.9<br>16.9<br>16.9<br>16.9<br>16.9                         |

| DEPTH                                                                                  | ROP                                                         | WOB                                                                  | RPM                                          | MW                                                   | "d"c                                                                 | HOURS                                                                                | TURNS                                                                                  | ICOST                                                               | CCOST                                                                        | pр                                            | FG                                                           |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 3054.0<br>3055.0<br>3056.0<br>3057.0<br>3058.0<br>3059.0<br>3060.0<br>3061.0<br>3063.0 | 6.5<br>6.9<br>5.9<br>4.8<br>6.5<br>4.4                      | 30.0<br>30.0<br>30.0                                                 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.55<br>9.55<br>9.55<br>9.55<br>9.55<br>9.55<br>9.55 | 1.66<br>1.65<br>1.66<br>1.63<br>1.68<br>1.75<br>1.55<br>1.55         | 1.12<br>1.28<br>1.44<br>1.58<br>1.75<br>1.96<br>2.07<br>2.23<br>2.46<br>2.67         | 3370<br>3832<br>4308<br>4743<br>5251<br>5876<br>6225<br>6686<br>7368<br>8007           | 589<br>562<br>580<br>529<br>619<br>761<br>425<br>562<br>830<br>777  | 4880<br>4410<br>4035<br>3722<br>3467<br>3262<br>3063<br>2898<br>2770<br>2654 | 9.0<br>9.0<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3 | 16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9 |
| 3064.0<br>3065.0<br>3066.0<br>3067.0<br>3068.0<br>3070.0<br>3071.0<br>3072.0<br>3073.0 | 4.5<br>6.7<br>5.5<br>4.6<br>6.5<br>4.7<br>5.6<br>3.6        | 30.1<br>30.4<br>29.6                                                 | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.5<br>9.6<br>9.5<br>9.5<br>9.6<br>9.6<br>9.6<br>9.6 | 1.59<br>1.77<br>1.63<br>1.70<br>1.75<br>1.64<br>1.74<br>1.685        | 2.80<br>3.02<br>3.17<br>3.35<br>3.57<br>3.72<br>3.72<br>3.93<br>4.11<br>4.39<br>4.60 | 8401<br>9068<br>9516<br>10061<br>10708<br>11167<br>11799<br>12336<br>13181<br>13802    | 481<br>812<br>545<br>663<br>788<br>558<br>770<br>653<br>1029<br>757 | 2535<br>2445<br>2351<br>2272<br>2205<br>2134<br>2077<br>2021<br>1983<br>1938 | 9,3<br>9,3<br>9,3<br>9,3<br>9,3<br>9,3        | 16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9         |
| 3074.0<br>3075.0<br>3077.0<br>3077.0<br>3078.0<br>3079.0<br>3080.0<br>3081.0<br>3083.0 | 4.8<br>4.1<br>4.9<br>5.1<br>4.8<br>4.7<br>4.8<br>4.9<br>3.7 | 32.9<br>32.6<br>33.2<br>33.1<br>33.2<br>33.5<br>33.0<br>32.7         | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 9.5<br>9.5<br>9.5<br>9.5<br>9.5<br>9.6<br>9.6        | 1.79<br>1.84<br>1.79<br>1.78<br>1.80<br>1.81<br>1.81<br>1.78<br>1.86 | 4.81<br>5.05<br>5.26<br>5.45<br>5.66<br>5.87<br>6.08<br>6.28<br>6.55<br>6.75         | 14432<br>15160<br>15776<br>16359<br>16981<br>17618<br>18239<br>18848<br>19652<br>20265 | 767<br>886<br>750<br>710<br>757<br>776<br>756<br>742<br>978<br>747  | 1896<br>1862<br>1825<br>1789<br>1757<br>1728<br>1699<br>1672<br>1653<br>1628 | 9.3<br>9.3<br>9.3<br>9.3<br>9.3<br>9.3        | 16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9<br>16.9         |
| 3084.0<br>3085.0<br>3086.0<br>3087.0<br>3088.0<br>3089.0<br>3090.0<br>3091.0           | 6.1<br>6.9<br>5.8<br>5.2<br>1.5<br>1.7                      | 34.1<br>35.5<br>38.3<br>34.7<br>34.1<br>35.5<br>35.6<br>36.7<br>38.4 | 50<br>50<br>50                               | 9.6<br>9.6<br>9.8                                    | 1.70<br>2.13<br>2.09<br>2.16                                         | 6.90<br>7.06<br>7.21<br>7.38<br>7.58<br>8.26<br>8.86<br>9.56                         | 20702<br>21193<br>21631<br>22151<br>22727<br>24777<br>26569<br>28690<br>30946          | 533<br>598<br>533<br>633<br>702<br>2496<br>2181<br>2582<br>4577     | 1600<br>1574<br>1548<br>1526<br>1507<br>1529<br>1544<br>1567<br>1607         | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4        | 17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0         |

| BIT NUMBER<br>HTC J44 | 1 6      | IADC CODE<br>SIZE | 617<br>8.500 | INTERVAL<br>NOZZLES | 3091.6- 3116.1<br>14 14 14 |
|-----------------------|----------|-------------------|--------------|---------------------|----------------------------|
| COST                  | 4347,00  |                   | 8.6          | BIT RUN             | 24.5                       |
| TOTAL HOUR            | S 10.96  | TOTAL TURNS       | 35427        | CONDITION           | T2 B2 G0.000               |
|                       |          |                   |              |                     |                            |
| DEPTH                 | ROP WOE  | RPM MW "d"c       | HOURS        | TURNS ICOST         | CCOST PP FG                |
| 3092.0                | 6.7 15.2 | 50 10.3 1.24      | 0.06         | 179 544             | 89930 9.4 17.0             |

\* .

| DEPTH                                                                                            | ROP                                           | MOB                                                                          | RPM                                          | MW                                                           | "d"c                                                         | HOURS                                                                        | TURNS                                                                                  | TCOST                                                                        | CCOST                                                                            | рþ                                            | F G                                                          |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|
| 3093.0<br>3094.0<br>3095.0<br>3096.0<br>3097.0<br>3098.0<br>3100.0<br>3101.0                     | 1.7<br>1.5<br>1.6<br>1.6<br>1.5<br>2.3<br>2.1 | 34.8<br>39.7<br>42.2<br>40.8<br>39.8<br>40.7<br>40.2<br>36.8<br>35.8         | 50<br>50<br>50<br>50<br>50<br>53<br>60       | 10.3<br>10.0<br>10.1<br>10.4<br>10.0<br>10.0<br>10.0<br>10.1 | 2.19<br>2.20<br>2.18<br>2.19<br>2.22<br>2.23<br>2.04<br>2.09 | 0.50<br>1.09<br>1.67<br>2.36<br>2.97<br>3.59<br>4.25<br>4.69<br>5.17         | 1506<br>3257<br>5020<br>7086<br>8913<br>10765<br>12744<br>14166<br>15890<br>17866      | 1616<br>2131<br>2146<br>2516<br>2224<br>2254<br>2409<br>1618<br>1749<br>2005 | 26849<br>16550<br>12313<br>10087<br>8630<br>7634<br>6928<br>6296<br>5812<br>5446 | 9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4<br>9.4 | 17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0 |
| 3103.0<br>3104.0<br>3105.0<br>3106.0<br>3107.0<br>3108.0<br>3109.0<br>3110.0<br>3111.0<br>3112.0 | 1.5<br>2.0<br>2.3<br>2.5<br>2.5<br>2.6<br>4.7 | 35.8<br>33.5<br>39.2<br>40.1<br>41.0<br>40.8<br>40.6<br>39.8<br>38.8<br>37.4 | 60<br>60<br>60<br>60<br>53<br>50<br>50<br>50 |                                                              | 2.13<br>2.16<br>2.20                                         | 6.23<br>6.91<br>7.39<br>7.88<br>8.32<br>8.71<br>9.12<br>9.50<br>9.69<br>9.69 | 19704<br>22138<br>23867<br>25658<br>27220<br>28467<br>29684<br>30838<br>31398<br>32041 | 1865<br>2469<br>1754<br>1817<br>1585<br>1433<br>1481<br>1405<br>682<br>782   | 5132<br>4917<br>4681<br>4482<br>4294<br>4120<br>3968<br>3829<br>3666<br>3525     | 9.4<br>9.4<br>9.4<br>9.4<br>9.5<br>9.5<br>9.6 | 17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0<br>17.0 |
| 3113.0<br>3114.0<br>3115.0<br>3116.0<br>3116.1                                                   | 4.4<br>2.9<br>4.4                             | 30.8<br>37.7<br>40.8<br>40.9<br>40.9                                         | 50<br>50<br>52<br>60<br>60                   | 9,9<br>9,9<br>9,9                                            |                                                              | 10.31<br>10.66<br>10.89<br>10.96                                             | 33271<br>34353<br>35179<br>35427                                                       | 830<br>1274<br>838<br>2516                                                   | 3277<br>3192<br>3095<br>3093                                                     | 9.8<br>9.8<br>9.8                             | 17.0<br>17.0<br>17.0<br>17.0                                 |
| BIT NUMBER<br>CHRIS C-20<br>COST<br>TOTAL HOURS                                                  | 3                                             | 16<br>0.00<br>3.56                                                           | <u>{</u>                                     | TADC (<br>SIZE<br>TRIP :<br>TOTAL                            |                                                              | 4<br>8.500<br>8.6<br>15784                                                   | NOZ:<br>BIT                                                                            | ERVAL<br>ZLES<br>RUN<br>DITION                                               |                                                                                  | . 1 31<br>14 1<br>BO GO                       | 1.3                                                          |
| DEPTH                                                                                            | ROP                                           | MOB                                                                          | RPM                                          | MW                                                           | "d "c                                                        | HOURS                                                                        | TURNS                                                                                  | ICOST                                                                        | CCOST                                                                            | PP                                            | FG                                                           |
| 3116.4<br>3116.6<br>3116.8<br>3117.0<br>3117.2                                                   | 0.9<br>0.3<br>0.4                             | 10.1<br>14.8<br>15.6<br>18.3<br>15.6                                         | 60<br>66<br>75<br>75<br>75                   | 9.9<br>9.9                                                   | 1.49<br>1.88<br>2.20<br>2.27<br>2.34                         | 0.14<br>0.37<br>0.94<br>1.46<br>2.45                                         | 516<br>1388<br>3976<br>6316<br>10750                                                   | 1745<br>4048<br>10505<br>9495<br>17991                                       | 106436<br>65480<br>49773<br>40822<br>36671                                       | 9.6<br>9.6<br>9.6                             | 17.0<br>17.0<br>17.0<br>17.0<br>17.0                         |

3117.4 0.2 15.5 75 9.9 2.35 3.56 15784 20426 34172 9.6 17.1

| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOURS                                           | 4347.00                                                                                                              | SIZE<br>TRIP TIME                                                                                                            | 8.500                                                                        | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                                                                                                                       | 3117.4- 3143.4<br>14 14 14<br>26.0<br>T2 B2 G0.000                                                                                                                      |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH                                                                                  | ROP WOB                                                                                                              | RPM MW "d"c                                                                                                                  | HOURS                                                                        | TURNS ICOST                                                                                                                                                                       | CCOST PP FG                                                                                                                                                             |
| 3118.0<br>3119.0<br>3120.0                                                             | 5.5 31.5<br>4.7 35.6<br>4.2 35.8                                                                                     | 50 10.2 1.72                                                                                                                 |                                                                              | 328 664<br>963 773<br>1669 860                                                                                                                                                    | 60863 9.5 17.0<br>23307 9.5 17.0<br>14674 9.5 17.0                                                                                                                      |
| 3121.0<br>3122.0<br>3123.0<br>3124.0<br>3125.0<br>3126.0<br>3127.0<br>3128.0<br>3129.0 | 4.2 36.3<br>3.2 37.5<br>2.0 37.5<br>2.4 40.2<br>9.1 38.4<br>3.6 39.0<br>2.3 39.4<br>1.2 38.9<br>1.2 39.0<br>2.6 39.2 | 50 9.8 1.96<br>50 9.8 2.13<br>50 9.8 2.12<br>50 9.8 1.62<br>50 10.1 1.89<br>50 10.1 2.05<br>50 10.1 2.27<br>50 10.0 2.15     | 0.79<br>1.11<br>1.61<br>2.03<br>2.14<br>2.41<br>2.84<br>3.70<br>4.29<br>4.67 | 2378 862<br>3318 1145<br>4830 1840<br>6087 1530<br>6417 402<br>7240 1002<br>8526 1565<br>11114 3151<br>12856 2120<br>14014 1410                                                   | 10837 9.5 17.0<br>8730 9.5 17.0<br>7500 9.5 17.0<br>6595 9.5 17.0<br>5280 9.5 17.0<br>5225 9.5 17.0<br>4844 9.5 17.0<br>4684 9.5 17.0<br>4463 9.6 17.0<br>4221 9.7 17.0 |
| 3131.0<br>3132.0<br>3133.0<br>3134.0<br>3135.0<br>3136.0<br>3137.0<br>3139.0<br>3140.0 | 3.6 39.4<br>3.2 39.5<br>1.8 40.1<br>3.2 40.1<br>4.8 39.8<br>8.2 39.4<br>7.1 39.7<br>6.4 39.9<br>3.6 40.3<br>4.7 40.2 | 50 10.1 1.94<br>50 10.1 2.15<br>50 10.1 1.95<br>50 10.1 1.81<br>50 10.1 1.62<br>50 10.1 1.67<br>50 10.1 1.71<br>50 10.1 1.91 | 4.95<br>5.26<br>5.81<br>6.12<br>6.33<br>6.45<br>6.59<br>6.75<br>7.03         | 14839     1004       15778     1142       17430     2012       18358     1129       18985     764       19352     446       19775     515       20246     573       21714     776 | 3984 9.7 17.0<br>3789 9.7 17.0<br>3675 9.7 17.0<br>3522 9.7 17.0<br>3365 9.7 17.0<br>3208 9.7 17.0<br>3071 9.9 17.1<br>2950 10.0 17.1<br>2860 10.0 17.1                 |
| 3142.0<br>3143.0                                                                       | 6.0 40.1<br>5.0 39.8<br>12.1 39.3<br>6.7 39.1                                                                        | 50 10.1 1.79                                                                                                                 | 7,40<br>7,61<br>7,69<br>7,75                                                 | 22215 610<br>22817 733<br>23066 302<br>23244 543                                                                                                                                  | 2676 10.0 17.1<br>2597 10.0 17.1<br>2508 10.0 17.1<br>2478 10.0 17.1                                                                                                    |
| BIT NUMBER<br>CHRIS C-23<br>COST<br>TOTAL HOUR                                         | 19000.00                                                                                                             | SIZE<br>TRIP TIME                                                                                                            | 4<br>8.500<br>8.7<br>18459                                                   | NOZZLES<br>BIT RUN                                                                                                                                                                | 14 14 14<br>2.0                                                                                                                                                         |
| DEPTH                                                                                  | ROP WOR                                                                                                              | RPM MW "d"c                                                                                                                  | HOURS                                                                        | TURNS ICOST                                                                                                                                                                       | CCOST PP FG                                                                                                                                                             |
| 3143.6<br>3143.8<br>3144.0<br>3144.2<br>3144.4<br>3144.6                               | 9.5 14.8<br>0.5 20.1<br>0.7 20.5<br>0.4 20.6<br>1.2 21.0<br>0.8 21.2                                                 | 75 10.5 2.10<br>75 10.5 2.05<br>75 10.5 2.19<br>75 10.5 1.92                                                                 | 0.02<br>0.41<br>0.70<br>1.19<br>1.36<br>1.62                                 | 95 385<br>1823 7010<br>3164 5442<br>5363 8922<br>6130 3114<br>7285 4687                                                                                                           | 130629 10.0 17.1<br>88900 10.0 17.1<br>68905 10.0 17.1<br>55747 10.0 17.1                                                                                               |

| DEPTH                                                                                  | ROP                                                  | WOB                                                                  | RPM                                    | MW                                                           | "d"c                                                         | HOURS                                                                              | TURNS                                                                                  | ICOST                                                                        | ccost                                                        | рþ                                                   | FG                                                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 3144.8<br>3145.0<br>3145.2<br>3145.4                                                   | 0.60.3                                               | 21.2<br>21.3<br>22.2<br>22.8                                         | 75<br>75                               | 10.5<br>10.5<br>10.5<br>10.5                                 | 2.12                                                         | 1.98<br>2.33<br>3.04<br>4.10                                                       | 8905<br>10503<br>13660<br>18459                                                        | 6574<br>6482<br>12812<br>19472                                               | 41428<br>37060<br>34366<br>32876                             | 10.0                                                 | $17.1 \\ 17.1$                                       |
| BIT NUMBER<br>HTC J55<br>COST<br>TOTAL HOURS                                           |                                                      |                                                                      | ę                                      | IADC (<br>BIZE<br>TRIP T                                     |                                                              | 637<br>8.500<br>8.7<br>70096                                                       | NOZ<br>BIT                                                                             | ERVAL<br>ZLES<br>RUN<br>DITION                                               |                                                              |                                                      | 14 14<br>58.1                                        |
| DEPTH                                                                                  | ROP                                                  | WOB                                                                  | RPM                                    | MW                                                           | "d "c:                                                       | HOURS                                                                              | TURNS                                                                                  | ICOST                                                                        | ccost                                                        | рр                                                   | FG                                                   |
| 3146.0<br>3147.0<br>3148.0<br>3149.0<br>3150.0<br>3151.0                               | 3.3<br>2.9<br>3.0<br>3.1                             | 21.6<br>32.6<br>35.1<br>36.6<br>37.0<br>39.0                         | 50<br>50<br>50<br>50                   | 10.6<br>10.6<br>10.6<br>10.6<br>10.5                         | 1.71<br>1.80<br>1.83<br>1.83                                 | 0.23<br>0.53<br>0.87<br>1.21<br>1.54<br>2.02                                       | 679<br>1580<br>2625<br>3636<br>4607<br>6062                                            | 1378<br>1097<br>1272<br>1231<br>1183<br>1770                                 | 61582<br>23778<br>15122<br>11263<br>9072<br>7768             | 10.2<br>10.3<br>10.4                                 | 17.1<br>17.1<br>17.2<br>17.2                         |
| 3152.0<br>3153.0<br>3154.0<br>3155.0<br>3156.0<br>3157.0<br>3158.0<br>3159.0<br>3160.0 | 3.4<br>3.4<br>4.6<br>7.6<br>4.1<br>3.2<br>3.6<br>1.8 | 39.0<br>38.7<br>39.3<br>40.5<br>38.9<br>37.5<br>37.7<br>37.7<br>40.1 | 50<br>50<br>50<br>50<br>50<br>50<br>50 | 10.6<br>10.6<br>10.6<br>10.6<br>10.6<br>10.6<br>10.5<br>10.7 | 1.82<br>1.83<br>1.75<br>1.56<br>1.74<br>1.83<br>1.78<br>2.02 | 2.39<br>2.69<br>2.98<br>3.20<br>3.33<br>3.57<br>3.88<br>4.16<br>4.71<br>4.96       | 7180<br>8059<br>8941<br>9591<br>9985<br>10716<br>11651<br>12489<br>14128<br>14883      | 1362<br>1070<br>1073<br>791<br>480<br>890<br>1138<br>1021<br>1994<br>919     | 6044<br>5466<br>4979<br>4555<br>4239<br>3993<br>3774<br>3652 | 10.7<br>10.7<br>10.7<br>10.7<br>10.7<br>10.7<br>10.7 | 17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2<br>17.2 |
| 3162.0<br>3163.0<br>3164.0<br>3165.0<br>3166.0<br>3167.0<br>3169.0<br>3170.0           | 3.5<br>3.2<br>2.4<br>2.7<br>2.3<br>2.8<br>3.4<br>3.1 | 37.9<br>38.0<br>37.9<br>38.7<br>39.3<br>39.0<br>39.0<br>38.6<br>38.0 | 50<br>50<br>50<br>50<br>50<br>50<br>50 | 11.11.11.11.11.11.11.11.11.11.11.11.11.                      | 1.71<br>1.74<br>1.84<br>1.82<br>1.87<br>1.80<br>1.74         | 5.27<br>5.56<br>5.87<br>6.29<br>6.66<br>7.09<br>7.45<br>7.74<br>8.07               | 15820<br>16677<br>17615<br>18865<br>19976<br>21280<br>22352<br>23234<br>24202<br>25202 | 1141<br>1043<br>1141<br>1522<br>1353<br>1588<br>1304<br>1074<br>1178<br>1217 | 3206<br>3095<br>3015<br>2934<br>2872<br>2802<br>2729<br>2666 | 11.1                                                 | 17.2<br>17.2<br>17.3<br>17.3<br>17.3<br>17.3         |
| 3172.0<br>3173.0<br>3174.0<br>3175.0<br>3176.0<br>3177.0<br>3178.0<br>3179.0<br>3180.0 | 3.0<br>3.2<br>2.1<br>2.2<br>2.9<br>2.5<br>2.8<br>2.9 | 39.0<br>39.4<br>38.6<br>38.9<br>38.7<br>38.7<br>39.2<br>39.4<br>39.4 | 50<br>50<br>50<br>50<br>50<br>50<br>50 | 11.2<br>11.2<br>11.3<br>11.3                                 | 1.78<br>1.73<br>1.87<br>1.86<br>1.76<br>1.80<br>1.76         | 8.68<br>9.01<br>9.32<br>9.81<br>10.26<br>10.60<br>11.00<br>11.36<br>11.70<br>12.09 | 26035<br>27031<br>27965<br>29415<br>30784<br>31814<br>33012<br>34086<br>35113<br>36266 | 1014<br>1212<br>1137<br>1765<br>1666<br>1254<br>1459<br>1308<br>1250<br>1404 | 2501<br>2453<br>2430<br>2405<br>2369<br>2341<br>2310<br>2279 | 11.2<br>11.2<br>11.2<br>11.2<br>11.3<br>11.3<br>11.3 | 17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3 |

-

| DEPTH                                                                                  | ROP W                                                                                            | OB RPM                                                               | MW                                                   | "d"c                                                 | HOURS                                                                                  | TURNS                                                                                  | ICOST                                                                        | ccost                                                           | рp                                                   | FG                                           |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| 3182.0<br>3183.0<br>3184.0<br>3185.0<br>3186.0<br>3187.0<br>3188.0<br>3189.0<br>3190.0 | 2.0 39<br>3.2 39<br>2.3 39<br>2.2 40<br>2.7 40<br>2.4 40<br>2.4 40<br>2.7 39<br>5.9 36<br>2.5 40 | .4 50<br>.7 50<br>.5 50<br>.4 50<br>.3 50<br>.5 50<br>.2 50<br>.5 50 | 11.5<br>11.6<br>11.6<br>11.7<br>11.7<br>11.7<br>11.7 | 1.69<br>1.78<br>1.80<br>1.74<br>1.77<br>1.77         | 12.60<br>12.91<br>13.34<br>13.78<br>14.15<br>14.57<br>14.57<br>15.35<br>15.35          | 37794<br>38734<br>40014<br>41351<br>42456<br>43718<br>44954<br>46064<br>46569<br>47761 | 1860<br>1144<br>1557<br>1628<br>1345<br>1536<br>1505<br>1351<br>615<br>1451  | 2215<br>2198<br>2183<br>2163<br>2148<br>2133<br>2115<br>2081    | 11.3<br>11.3<br>11.4<br>11.4<br>11.4<br>11.5<br>11.6 | 17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.4 |
| 3192.0<br>3193.0<br>3194.0<br>3195.0<br>3196.0<br>3197.0<br>3198.0<br>3199.0<br>3200.0 | 2.6 39<br>2.1 40<br>1.8 40<br>2.2 40<br>1.8 40<br>2.0 40<br>1.8 39<br>1.6 40<br>1.8 40           | .1 50<br>.2 50<br>.2 50<br>.2 52<br>.2 54<br>.1 54<br>.1 54          | 11.8<br>11.9<br>11.9<br>11.9<br>11.9<br>11.9<br>11.9 | 1.78<br>1.83<br>1.77<br>1.83<br>1.82<br>1.84<br>1.84 | 16.31<br>16.79<br>17.35<br>17.81<br>18.35<br>18.87<br>19.41<br>19.97<br>20.58<br>21.15 | 48926<br>50362<br>52059<br>53417<br>55114<br>56771<br>58546<br>60343<br>62338<br>64180 | 1418<br>1748<br>2065<br>1654<br>2005<br>1868<br>2000<br>2026<br>2248<br>2077 | 2047<br>2047<br>2039<br>2039<br>2035<br>2035<br>2034<br>2038    | 11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6<br>11.6 | 17.4<br>17.4<br>17.4<br>17.4<br>17.4<br>17.4 |
| 3202.0<br>3203.0<br>3203.5                                                             | 1.6 39<br>1.1 37<br>1.3 37                                                                       | .3 50                                                                | 11.9<br>12.1<br>12.1                                 | 1.89                                                 | 21.79<br>22.68<br>23.07                                                                | 66245<br>68915<br>70096                                                                | 2327<br>3251<br>2875                                                         | 2065                                                            | 11.6<br>11.7<br>11.7                                 | 17.4                                         |
| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOURS                                           | 4347.1<br>3 10:                                                                                  | 0.0                                                                  | SIZE<br>TRIP T                                       | IME                                                  | 617<br>8.500<br>8.8                                                                    | NOZZ                                                                                   | ERVAL<br>ZLES                                                                |                                                                 | .5- 32<br>14 1                                       | 25.9<br>4 15                                 |
|                                                                                        |                                                                                                  | 12                                                                   | IUTAL                                                | TURNS                                                |                                                                                        |                                                                                        | DITION                                                                       | Т2                                                              | BS 60                                                | 22.4                                         |
| DEPTH                                                                                  |                                                                                                  | DB RPM                                                               |                                                      | TURNS "d"c                                           |                                                                                        |                                                                                        |                                                                              |                                                                 | B2 G0                                                | 22.4<br>.000<br>FG                           |
|                                                                                        | ROP WO                                                                                           | DB RPM 4 50 9 50 0 50 8 50 4 52 7 52                                 | MW<br>12.2<br>12.2<br>12.2                           | "d"c 1.05 1.48 1.64 1.70 1.78 1.80                   | 31715                                                                                  | CONI                                                                                   | ICOST                                                                        | T2<br>CCOST<br>73398<br>25317<br>15841<br>11843<br>9633<br>8246 | PP<br>11.7<br>11.8<br>11.8                           | FG 17.4 17.4 17.4 17.4 17.4 17.4             |

(x,y) = (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y) + (x,y

| DEPTH                                                                        | ROP                                           | WOB                                                                          | RPM                                    | MW                           | "cl "c:                                              | HOURS                                                                  | TURNS                                                                                | ICOST                                                                        | CCOST                                                             | PP                                                   | FG                                           |
|------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|------------------------------|------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| 3221.0<br>3222.0<br>3223.0<br>3224.0<br>3225.0<br>3225.9                     | 2.0<br>1.2<br>1.4<br>1.4                      | 43.3<br>43.6<br>43.3<br>41.9<br>43.2<br>43.3                                 | 52<br>52<br>52<br>52                   | 12.2<br>12.2<br>12.2         | 1.82<br>1.96<br>1.90                                 | 6.66<br>7.17<br>8.00<br>8.73<br>9.43<br>10.22                          | 20626<br>22212<br>24787<br>27093<br>29261<br>31715                                   |                                                                              | 3388<br>3368<br>3336<br>3299                                      | 11.8<br>11.8<br>11.7<br>11.7<br>11.7                 | 17.4<br>17.4<br>17.4<br>17.4                 |
| BIT NUMBER<br>HTC J55<br>COST<br>TOTAL HOURS                                 | 435                                           | 50.00                                                                        | ę                                      | BIZE                         |                                                      | 637<br>8.500<br>8.8<br>31327                                           | INT<br>NOZ<br>BIT<br>CON                                                             | ERVAL<br>ZLES<br>RUN<br>DITION                                               | 3225<br>T1                                                        | .9- 32<br>14 1<br>B1 G0                              | 237.6<br>4 15<br>11.7                        |
| DEPTH                                                                        | ROP                                           | MOR                                                                          | RPM                                    | MW                           | "d "c                                                | HOURS                                                                  | TURNS                                                                                | ICOST                                                                        | ccost                                                             | b b                                                  | FG                                           |
| 3226.0<br>3227.0<br>3228.0<br>3229.0                                         | 2.1                                           | 18.8<br>37.1<br>40.7<br>41.5                                                 | 52                                     | 12.2<br>12.2<br>12.2<br>12.2 | 1.73                                                 | 0.08<br>0.56<br>1.00<br>1.52                                           | 257<br>1758<br>3110<br>4755                                                          | 3008<br>1758<br>1582<br>1925                                                 | 367884<br>35042<br>19108<br>13565                                 | 11.7<br>11.7                                         | 17.4<br>17.4                                 |
| 3230.0<br>3231.0<br>3232.0<br>3233.0<br>3234.0<br>3235.0<br>3236.0<br>3237.0 | 1.8<br>1.4<br>1.1<br>1.3<br>0.6<br>0.7        | 42.2<br>41.9<br>42.0<br>42.5<br>42.6<br>41.7<br>43.5<br>41.7                 | 52222225555555                         |                              | 1.82<br>1.82<br>1.90<br>1.97<br>1.90<br>2.17<br>2.09 | 2.24<br>2.81<br>3.37<br>4.09<br>4.99<br>5.74<br>7.44<br>8.89<br>10.04  | 7001<br>8778<br>10511<br>12756<br>15575<br>17917<br>23199<br>27741<br>31327          |                                                                              | 7998<br>7242<br>6755<br>6314<br>6301<br>6213                      | 11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7 | 17.4<br>17.4<br>17.4<br>17.4<br>17.4<br>17.4 |
| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                                 | 413                                           |                                                                              | 5                                      | SIZE<br>RIP 7                |                                                      | 517<br>8.500<br>8.8<br>49328                                           | NOZ:<br>BIT                                                                          | ERVAL<br>ZLES<br>RUN<br>DITION                                               |                                                                   | 14 1                                                 | 4 15<br>19.4                                 |
| DEPTH                                                                        | ROP                                           | MOB                                                                          | RPM                                    | MW                           | "d "c:                                               | HOURS                                                                  | TURNS                                                                                | ICOST                                                                        | ccost                                                             | þþ                                                   | FG                                           |
| 3238.0                                                                       | 0.4                                           | 28.5                                                                         | 50                                     | 12.3                         | 1.94                                                 | 0.97                                                                   | 2904                                                                                 | 8853                                                                         | 99544                                                             | 11.7                                                 | 17.4                                         |
| 3247.0                                                                       | 1.0<br>0.9<br>0.8<br>0.6<br>0.7<br>0.8<br>1.0 | 37.3<br>38.3<br>39.0<br>39.6<br>39.2<br>39.2<br>38.7<br>38.7<br>39.0<br>40.9 | 50<br>50<br>50<br>50<br>50<br>50<br>50 | 12.2<br>12.3<br>12.3         | 1.92<br>1.97<br>1.99<br>2.05<br>2.03<br>1.99<br>1.92 | 1.89<br>2.91<br>4.08<br>5.30<br>6.84<br>8.30<br>9.60<br>10.64<br>11.23 | 5662<br>8712<br>12237<br>15886<br>20510<br>24894<br>28799<br>31924<br>33689<br>34811 | 3358<br>3713<br>4291<br>4442<br>5629<br>5336<br>4754<br>3805<br>2148<br>1366 | 19537<br>15053<br>12641<br>11343<br>10404<br>9641<br>8946<br>8223 | 11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7 | 17.4<br>17.4<br>17.4<br>17.4<br>17.4<br>17.4 |

| DEPTH                                                                                  | ROP                                    | MOB  | RPM      | MW   | "d "c:                                       | HOURS                                                                         | TURNS                                                                         | ICOST                                                        | CCOST                | PР                                                   | FG                                           |
|----------------------------------------------------------------------------------------|----------------------------------------|------|----------|------|----------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|------------------------------------------------------|----------------------------------------------|
| 3249.0<br>3250.0<br>3251.0<br>3252.0<br>3253.0<br>3254.0<br>3255.0<br>3256.0<br>3257.0 | 1.9<br>1.9<br>2.1<br>2.2<br>2.0<br>1.7 | 42.9 | 50<br>50 | 12.3 | 1.78<br>1.78<br>1.76<br>1.74<br>1.79<br>1.84 | 12.20<br>12.73<br>13.25<br>13.72<br>14.17<br>14.67<br>15.27<br>15.87<br>16.44 | 36598<br>38172<br>39739<br>41154<br>42502<br>44004<br>45799<br>47594<br>49328 | 2176<br>1915<br>1908<br>1723<br>1640<br>1829<br>2185<br>2185 | 6318<br>5999<br>5716 | 11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7<br>11.7 | 17.4<br>17.4<br>17.4<br>17.4<br>17.4<br>17.4 |

## (d). COMPUTER DATA LISTING : LIST B

| INTERVAL . | ı |   | , | • | , | · | 10m averages.                                                                                                                                                     |
|------------|---|---|---|---|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH      | , | ı | ı | ı | , |   | Well depth, in metres.                                                                                                                                            |
| ROP        |   | , | ı |   | ı | , | Rate of penetration, in metres per hour.                                                                                                                          |
| BIT RUN    | , | , | , | · |   | ; | Depth interval drilled by the bit, in metres.                                                                                                                     |
| HOURS      | • | i | • |   | • |   | Cumulative bit hours. The number of hours that the bit has actually been 'on bottom', recorded in decimal hours.                                                  |
| TURNS      |   | ı | , | • |   |   | Cumulative bit turns. The number of turns made by the bit, while actually 'on bottom'.                                                                            |
| TOTAL COST | • | ı | , | , | , |   | Cumulative bit cost, in A dollars.                                                                                                                                |
| ICOST      | , | • |   | • | į |   | Incremental cost per metre, calculated from the drilling time, in A dollars.                                                                                      |
| ccost      | • | • | • | • | • | , | Cumulative cost per metre, calculated from the drilling time, in A dollars.                                                                                       |
| IC         | • | • | • | , | • | • | ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, (and therefore uneconomic), this should change from negative to positive. |

| BIT NUMBER<br>HTC OSC3AJ8<br>COST<br>TOTAL HOURS                              | 04"35%<br>0,00                                                       | IADO<br>SIZO<br>TRIV<br>TOTA                                                 | CODE<br>E<br>TIME<br>AL TURNS                                                | 111<br>26.000<br>2.5<br>14945                                                       | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                                                          |                                                                                        | .0- 200<br>20 20<br>130<br>8 B2 G0.1                                                             | 20<br>8.5 |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------|
| DEPTH                                                                         | ROP BI                                                               | T RUN                                                                        | HOURS                                                                        | TURNS                                                                               | TOTAL COST                                                                                                           | ICOST                                                                                  | CCOST                                                                                            | I - C     |
|                                                                               | 124.4<br>71.6<br>65.6                                                |                                                                              | 0.08<br>0.22<br>0.37                                                         | 386<br>1056<br>1788                                                                 | 9933.69                                                                                                              | 29,37<br>51.00<br>55.69                                                                | 942.37<br>496.68<br>349.69                                                                       | <br>      |
| 110.0<br>120.0<br>130.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0<br>190.0 | 26.7<br>57.3<br>39.2                                                 | 40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>110.0<br>120.0               | 1.56                                                                         | 2355<br>2792<br>3783<br>4719<br>6806<br>7484<br>9284<br>10122<br>11347              | 11254.39<br>12008.12<br>12720.26<br>14307.87 1<br>14824.22<br>16193.72 1<br>16830.79<br>17763.06                     | 43.11<br>33.26<br>75.37<br>71.21<br>58.76<br>51.64<br>36.95<br>63.71<br>93.23<br>27.92 | 273.04<br>225.09<br>200,14<br>181.72<br>178.85<br>164.71<br>161.94<br>153.01<br>148.03           |           |
| 208.5                                                                         | 31.0                                                                 | 138.5                                                                        | 2.99                                                                         | 14344                                                                               | 20043.60 1                                                                                                           | 17.80                                                                                  | 144.72                                                                                           |           |
| BIT NUMBER<br>HTC OSC 3A<br>COST<br>TOTAL HOUR                                | J<br>4857.00                                                         | SIZ<br>TRI                                                                   | C CODE<br>E<br>P TIME<br>AL TURNS                                            | 17.500<br>3.7                                                                       | NOZZLES<br>BIT RUN                                                                                                   |                                                                                        | 66                                                                                               | 18        |
| DEPTH                                                                         | ROP BI                                                               | T RUN                                                                        | HOURS                                                                        | TURNS                                                                               | TOTAL COST                                                                                                           | ICOST                                                                                  | CCOST                                                                                            | I-C       |
| 250.0<br>260.0<br>270.0<br>280.0<br>290.0                                     | 156.4<br>159.5<br>191.8<br>111.2<br>111.6<br>71.0<br>69.7<br>115.4   | 21.5<br>31.5<br>41.5<br>51.5<br>61.5<br>71.5<br>81.5                         | 0.13<br>0.18<br>0.27<br>0.36<br>0.50<br>0.65<br>0.73                         | 1721<br>2285<br>3172<br>4076<br>4622                                                | 19038.42<br>19366.83<br>19693.99<br>20208.14<br>20732.22<br>21048.73                                                 | 22.89<br>19.04<br>32.84<br>32.72<br>51.42<br>52.41<br>31.65                            | 1619<br>876.65<br>604.39<br>466.67<br>382.41<br>328.59<br>289.96<br>258.27                       |           |
| 300.0<br>310.0<br>320.0<br>330.0<br>340.0<br>350.0<br>360.0<br>370.0<br>380.0 | 88.9<br>55.6<br>37.8<br>58.7<br>70.9<br>59.4<br>51.5<br>43.8<br>72.3 | 91.5<br>101.5<br>111.5<br>121.5<br>131.5<br>141.5<br>151.5<br>161.5<br>171.5 | 0.85<br>1.03<br>1.29<br>1.46<br>1.60<br>1.77<br>1.96<br>2.20<br>2.37<br>2.50 | 5431<br>6833<br>9094<br>10626<br>11896<br>13411<br>15159<br>17239<br>18769<br>20014 | 21459.58<br>22115.93<br>23082.69<br>23704.70<br>24220.04<br>24834.79<br>25544.02<br>26388.04<br>27008.80<br>27513.99 | 41.09<br>65.63<br>96.68<br>62.20<br>51.53<br>61.48<br>70.92<br>84.40<br>62.08<br>50.52 | 234.53<br>217.89<br>207.02<br>195.10<br>184.18<br>175.51<br>168.61<br>163.39<br>157.49<br>151.59 |           |

| DEPTH | ROP    | BIT RUN  | HOURS          | TURNS          | TOTAL COST           | ICOST          | CCOST       | I - C           |
|-------|--------|----------|----------------|----------------|----------------------|----------------|-------------|-----------------|
|       |        |          | 175. 4417 1111 |                |                      |                |             |                 |
| 400.0 | 155.7  | 191.5    | 2.57           | 20592          | 27748.60             | 23,46          | 144.90      |                 |
| 410.0 | 56.1   | 201.5    | 2.75           | 22197          | 28399.88             | 65.13          | 140.94      | ****            |
| 420.0 | 101.4  | 211.5    | 2.85           | 23085          | 28760.00             | 36.01          | 135.98      | ****            |
| 430.0 | 103.2  | 221.5    | 2.94           | 23957          | 29114.03             | 35.40          | 131,44      |                 |
| 440,0 | 75.0   | 231.5    | 3.08           | 25158          | 29601.11             | 48.71          | 127.87      | ****            |
| 450.0 | 62.0   | 241.5    | 3.24           | 26609          | 30190.11             | 58.90          | 125.01      | ****            |
| 460.0 | 71.6   | 251.5    | 3.38           | 27867          | 30700.38             | 51.03          | 122.07      | ****            |
| 470.0 | 66.8   | 261.5    | 3.53           | 29214          | 31247.16             | 54.68          | 119.49      | ****            |
| 480,0 | 88.7   | 271.5    | 3.64           | 30229          | 31658.93             | 41.18          | 116.61      | ****            |
| 490.0 | 58.2   | 281.5    | 3.81           | 31775          | 32286.37             | 62.74          | 114,69      | ****            |
|       |        |          | W 1 W A        | W A 2 2 12     | Communication (CS)   | C3 Z , 3 -4    | 7 7 77 10 2 |                 |
| 500.0 | 70,9   | 291.5    | 3.95           | 33045          | 32801.70             | 51.53          | 112.53      | ••••            |
| 510.0 | 82.8   | 301.5    | 4.07           | 34132          | 33242,54             | 44.08          | 110.26      |                 |
| 520.0 | 53.5   | 311.5    | 4.26           | 35813          | 33924,75             | 68,22          | 108.91      |                 |
| 530.0 | 58.2   | 321.5    | 4,43           | 37360          | 34552,70             | 62.79          | 107.47      |                 |
| 540.0 | 48.8   | 331.5    | 4,64           | 39205          | 35301.36             | 74.87          | 106.49      |                 |
| 550.0 | 39.3   | 341.5    | 4.89           | 41494          | 36229.91             | 92.86          | 106.09      |                 |
| 560.0 | 37.9   | 351.5    | 5.15           | 43868          | 37193.49             | 96.36          | 105.81      | ••••            |
| 570.0 | 37.9   | 361.5    | 5.42           |                |                      |                |             |                 |
| 580.0 | 37.2   | 371.5    | 5.69           | 46243<br>48665 | 38157.08<br>39140.07 | 96.36<br>98.30 | 105.55      |                 |
| 590.0 | 33.8   | 381.5    |                |                |                      |                | 105.36      |                 |
| 270.0 | - ೧೧.೮ | 0110     | 5,98           | 51327          | 40220.10             | 108.00         | 105.43      | <del>-</del> †- |
| 600.0 | 39.6   | 391,5    | 6.24           | 53601          | 41142.65             | 92.25          | 105.09      | ••••            |
| 610.0 | 33.6   | 401.5    | 6.53           | 56283          | 42231.15             | 108.85         | 105.18      | · <b>{·</b> ·   |
| 620.0 | 31.9   | 411.5    | 6.85           | 59101          | 43374.43             |                |             | -ķ.             |
| 630.0 | 32.7   | 421.5    | 7,15           |                |                      | 114.33         | 105,41      |                 |
|       |        |          |                | 61853          | 44491.33             | 111.69         | 105.55      | -∳-             |
| 640.0 | 36.6   | 431.5    | 7,43           | 64311          | 45488.53             | 99.72          | 105.42      |                 |
| 650.0 | 36.4   | 441.5    | 7,70           | 66786          | 46492.83             | 100.43         | 105.31      | •               |
| 660.0 | 32.1   | 451.5    | 8.01           | 69586          | 47629.01             | 113.62         | 105.49      | ٠\$٠            |
| 670.0 | 34.0   | 461.5    | 8.31           | 72230          | 48702.17             | 107.32         | 105,53      | .4.             |
| 680.0 | 32.0   | 471.5    | 8.62           | 75043          | 49843,42             | 114.13         | 105.71      | .4.             |
| 690.0 | 32.3   | 481.5    | 8.93           | 77825          | 50972.49             | 112.91         | 105.86      | .\$-            |
| 700.0 | 31.4   | 491.5    | 9.25           | 00/00          | ECOATE OF            | 442 652        | 467 65      |                 |
| 710.0 |        | 501.5    |                | 80690          | 52135.05             | 116.26         | 106.07      | -∳∙             |
|       | 34.6   |          | 9.53           | 83293          | 53191.07             | 105.60         | 106,06      | ••••            |
| 720.0 | 24.6   | 511.5    | 9,94           | 86955          | 54677.23             | 148.62         | 106,90      | ٠\$٠            |
| 730.0 | 33.0   |          | 10.25          | 89685          | 55785.00             |                |             | -4-             |
| 740.0 | 31.4   | 531.5    | 10.56          | 92555          | 56949.59             | 116.46         | 107.15      | .4.             |
| 750.0 | 32.3   | 541.5    | 10.87          | 95345          | 58081.71             | 113.21         | 107,26      | .4-             |
| 760.0 | 20.2   | 551.5    | 11.37          | 99798          | 59888.43             | 180.67         | 108,59      | 4.              |
| 770.0 | 26.1   | 561.5    | 11.75          | 103243         | 61286.34             | 139.79         | 109.15      | •∳•             |
| 780.0 | 36.7   | 571.5    | 12.02          | 105694         | 62280.88             | 99.45          | 108.98      | ••••            |
| 790.0 | 34.8   | 581.5    | 12.31          | 108281         | 63330.83             | 105.00         | 108.91      | ****            |
| 0000  | "Z 1 A | ECO 4 ES | <u>ቁማ</u> ራማ   | 4 4 4 4 15 4   | CAADE ED             | ተቀረ ልማ         | 100 04      |                 |
| 800.0 | 31.4   | 591.5    | 12.63          | 111151         | 64495,52             | 116.47         | 109.04      | +               |
| 810.0 | 40.2   | 601.5    | 12.88          | 113392         |                      | 90.91          | 108.74      |                 |
| 820.0 | 31.7   | 611.5    | 13.19          | 116229         | 66555.82             | 115.12         | 108.84      | .4.             |
| 830.0 | 60.1   | 621.5    | 13.36          | 117726         | 67163.26             | 60.74          | 108.07      | ****            |
| 840.0 | 27.2   | 631.5    | 13.73          | 121034         | 68505.78             | 134.25         | 108.48      | -4-             |
| 850.0 | 14.6   | 641.5    | 14.41          | 127180         | 70999,69             | 249.39         | 110.68      | .4.             |
| 860.0 | 12.0   | 651.5    | 15.25          | 134695         | 74049.11             | 304.94         | 113.66      | ٠4٠             |
| 870.0 | 14.0   | 661.5    | 15.96          | 141113         | 76653.19             | 260.41         | 115.88      | 4.              |
|       |        |          |                |                |                      |                |             |                 |

| BIT NUMBER<br>HTC J1<br>COST<br>TOTAL HOURS                                            | 2694                                                                 |                                         | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                       | 12.250                                                                                  | NOZZLES                                                                                                              |                                                                              | .0- 951.0<br>18 18 18<br>81.0<br>B2 G0.000                                                                                                                                                             |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH                                                                                  | ROP                                                                  | BIT RU                                  | N HOURS                                                                             | TURNS                                                                                   | TOTAL COST                                                                                                           | ICOST                                                                        | ccost I-c                                                                                                                                                                                              |
| 880.0<br>890.0<br>900.0                                                                | 22.4<br>34.0<br>28.5                                                 | 20.                                     | 0.74                                                                                |                                                                                         | 20005.86                                                                                                             |                                                                              |                                                                                                                                                                                                        |
| 910.0<br>920.0<br>930.0<br>940.0<br>950.0<br>951.0                                     | 39.6<br>36.7<br>44.6<br>23.2<br>22.2<br>20.1                         | 40.<br>50.<br>60.<br>70.<br>80.         | 0 1.62<br>0 1.84<br>0 2.27<br>0 2.72                                                | 8061<br>9695<br>11039<br>13629<br>16335<br>16633                                        | 23202.73<br>24021.00<br>25597.23<br>27244.46                                                                         | 99.41<br>81.83<br>157.62<br>164.72                                           | 555.22 -<br>464.05 -<br>400.35 -<br>365.67 -<br>340.56 -<br>338.59 -                                                                                                                                   |
| BIT NUMBER<br>HTC J1<br>COST<br>TOTAL HOURS                                            | 2694                                                                 | . 0 0                                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                       | 12.250<br>5.4                                                                           | NOZZLES                                                                                                              |                                                                              | .0- 1598.0<br>18 18 18<br>647.0<br>B6 G0.250                                                                                                                                                           |
| DEPTH                                                                                  | ROP                                                                  | BIT RL                                  | IN HOURS                                                                            | TURNS                                                                                   | TOTAL COST                                                                                                           | ICOST                                                                        | ccost I-c                                                                                                                                                                                              |
| 960.0<br>970.0<br>980.0<br>990.0                                                       | 17.0<br>21.3<br>20.4<br>13.1                                         | 19.<br>29.                              | 0 1.00<br>0 1.49                                                                    | 3186<br>6003<br>8943<br>13060                                                           | 26068.39<br>27858.07                                                                                                 | 171<br>178.97                                                                | 2706<br>1372<br>960.62<br>786.03                                                                                                                                                                       |
| 1000.0<br>1010.0<br>1020.0<br>1030.0<br>1040.0<br>1050.0<br>1060.0<br>1070.0<br>1080.0 | 25.4<br>19.1<br>14.6<br>13.9<br>14.9<br>18.0<br>19.7<br>14.5<br>13.0 | 59.<br>69.<br>79.<br>89.<br>99.<br>109. | 0 3.17<br>0 3.86<br>0 4.58<br>0 5.25<br>0 5.97<br>0 6.52<br>0 7.03<br>0 7.72        | 14710<br>16907<br>20850<br>25598<br>30440<br>35630<br>39624<br>43280<br>48248<br>53784  | 34000.69<br>36496.90<br>39128.02<br>41584.01<br>44216.49<br>46242.34<br>48096.74                                     | 191.03<br>249.62<br>263.11<br>245.60<br>263.25<br>202.58<br>185.44<br>251.99 | 654.91 - 576.28 - 528.94 - 495.29 - 467.24 - 446.63 424.24 - 404.17 - 392.38 - 384.35 -                                                                                                                |
| 1100.0<br>1110.0<br>1120.0<br>1130.0<br>1140.0<br>1150.0<br>1150.0<br>1170.0<br>1180.0 | 14.8<br>14.9<br>18.8<br>10.0<br>17.5<br>19.2<br>13.9<br>24.2<br>13.6 | 169.<br>179.<br>189.<br>199.<br>209.    | 0 9.84<br>0 10.37<br>0 11.37<br>0 11.94<br>0 12.46<br>0 13.18<br>0 13.59<br>0 14.32 | 58642<br>63479<br>67309<br>74495<br>78609<br>82355<br>87522<br>90496<br>95783<br>100004 | 55888.69<br>58342.29<br>60284.95<br>63929.85<br>66016.36<br>67916.42<br>70537.50<br>72045.59<br>74727.69<br>76868.58 | 245.36<br>194.27<br>364.49<br>208.65<br>190.01<br>262.11<br>150.81<br>268.21 | 375.09       -         366.93       -         356.72       -         357.15       +         349.29       -         341.29       -         327.50       -         328.98       -         321.63       - |

The Arthur Committee

| DEPTH          | ROP   | BIT RUN               | HOURS        | TURNS  | TOTAL COST           | ICOST  | ccost  | I-C  |
|----------------|-------|-----------------------|--------------|--------|----------------------|--------|--------|------|
| 1200.0         | 21.6  | 249.0                 | 15.37        | 103344 | ramentos entre       | 415 45 |        |      |
| 1210.0         | 16.0  | 259.0                 | 16.00        | 107857 | 78562.75<br>80851.56 | 169.42 | 315.51 | •••  |
| 1220.0         | 25.6  | 269.0                 | 16.39        | 110670 | 82278.32             | 228.88 | 312.17 | •••• |
| 1230.0         | 18.9  | 279.0                 | 16.92        | 114474 |                      | 142.68 | 305.87 |      |
| 1240.0         |       |                       |              |        | 84207.73             | 192.94 | 301.82 | •••• |
|                | 34.2  | 289.0                 | 17.21        | 116576 | 85274.08             | 106.63 | 295.07 |      |
| 1250.0         | 26.4  | 299.0                 | 17,59        | 119303 | 86657,40             | 138.33 | 289.82 |      |
| 1260.0         | 34.1  | 309.0                 | 17.88        | 121414 | 87728.11             | 107.07 | 283.91 | **** |
| 1270.0         | 25.2  | 319.0                 | 18,28        | 124272 | 89177,79             | 144.97 | 279,55 | **** |
| 1280.0         | 26.9  | 329.0                 | 18.65        | 126946 | 90534,27             | 135.65 | 275.18 |      |
| 1290.0         | 24.8  | 339.0                 | 19.06        | 129847 | 92005.68             | 147.14 | 271.40 | **** |
| 1300.0         | 26.3  | 349.0                 | 19.44        | 132586 | 93394,69             | 138.90 | 267.61 |      |
| 1310.0         | 24.8  | 359.0                 | 19.84        | 135492 | 94868.71             | 147.40 | 264.26 | •••• |
| 1320.0         | 31,7  | 369.0                 | 20.16        | 137764 | 96021.22             | 115.25 | 260.22 | **** |
| 1330.0         | 24.6  | 379.0                 | 20.56        | 140686 | 97503.49             | 148.23 | 257.27 |      |
| 1340.0         | 32.3  | 389.0                 | 20.87        | 142913 | 98632.62             | 112.91 | 253.55 | ••   |
| 1350.0         | 26.1  | 399.0                 | 21.25        | 145676 | 100034,24            | 140.16 | 250.71 |      |
| 1360.0         | 28.0  | 409.0                 | 21.61        | 148251 | 101340.53            | 130.63 | 247.78 |      |
| 1370.0         | 31.2  | 419.0                 | 21.93        | 150559 | 102511.00            |        |        |      |
| 1380.0         | 33,8  | 429.0                 | 22.23        | 152689 |                      | 117.05 | 244.66 | •••• |
| 1390.0         | 35.3  | 439.0                 | 22,51        |        | 103591,38            | 108.04 | 241.47 |      |
| 1.570.0        |       | <b>~</b> 4 ⊕ 5 . 1 () | E. E. 1 (3 ) | 154731 | 104627.13            | 103.57 | 238.33 | **** |
| 1400.0         | 31,2  | 449.0                 | 22.83        | 157037 | 105796,87            | 116.97 | 235.63 |      |
| 1410.0         | 30.6  | 459.0                 | 23.16        | 159387 | 106988,59            | 119,17 | 233.09 | •••• |
| 1420.0         | 36,7  | 469.0                 | 23,43        | 161347 | 107982,75            | 99,42  | 230,24 |      |
| 1430.0         | 33.8  | 479.0                 | 23.73        | 163475 | 109062.11            | 107.94 | 227.69 | **** |
| 1440.0         | 23.1  | 489.0                 | 24.16        | 166589 | 110641,60            | 157.95 | 226.26 | **** |
| 1450.0         | 23.9  | 499.0                 | 24.58        | 169605 | 112171.39            | 152.98 | 224.79 |      |
| 1460.0         | 24.2  | 509.0                 | 24.99        | 172585 | 113682.91            |        |        |      |
| 1470.0         | 28.1  | 519.0                 | 25.35        | 175149 |                      | 151.15 | 223.35 | •••• |
| 1480.0         | 27.3  | 529.0                 |              |        | 114983.43            | 130.05 | 221.55 | **** |
| 1490.0         |       |                       | 25.71        | 177783 | 116319,45            | 133.60 | 219.89 | **** |
| 7 e3 7 (1 , (1 | 22.8  | 539.0                 | 26.15        | 180945 | 117923.29            | 160.38 | 218.78 | •••• |
| 1500.0         | 16.1  | 549.0                 | 26.77        | 185409 | 120187.53            | 226,42 | 218,92 | ٠4٠  |
| 1510.0         | 19.4  | 559.0                 | 27.29        | 189114 | 122067.00            | 187,95 | 218.37 | **** |
| 1520.0         | 28.1  | 569.0                 | 27.64        | 191678 | 123367.52            | 130.05 | 216.81 | •••• |
| 1530.0         | 35.2  | 579.0                 | 27.93        | 193722 | 124404.28            |        | 214.86 | **** |
| 1540.0         | 40.2  | 589.0                 | 28.18        | 195508 | 125312.75            | 90.85  | 212.76 |      |
| 1550.0         | 14.6  | 599.0                 | 28.86        | 200636 | 127809.50            | 249.68 | 213.37 |      |
| 1560.0         | 30.1  | 609.0                 | 29.19        | 203125 | 129021.76            |        |        | .4-  |
| 1570.0         | 22.7  | 619.0                 | 29.63        | 206425 |                      | 121.23 | 211.86 | **** |
| 1580.0         | 30.4  | 629.0                 |              |        | 130628.64            | 160.69 | 211.03 | **** |
| 1590.0         | 25.2  | 639.0                 | 29,96        | 208896 | 131831.77            | 120.31 | 209.59 | •••• |
| 1.370.0        | ಜನ, ಪ | oor, u                | 30.36        | 211687 | 133279,39            | 144.76 | 208.57 |      |
| 1598.0         | 6.9   | 647.0                 | 31.52        | 216592 | 137509.62            | 528.78 | 212.53 | +    |
|                |       |                       |              |        |                      |        |        |      |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS | 8516.00<br>44.49 | SIZI         |                | 517<br>12.250<br>6.3<br>156262 | NOZZLES<br>BIT RUN     |                  | 8.0- 201<br>16 16<br>41<br>4 B4 G0. | 8.0<br>0.8    |
|----------------------------------------------|------------------|--------------|----------------|--------------------------------|------------------------|------------------|-------------------------------------|---------------|
| DEPTH                                        | ROP BIT          | RUN          | HOURS          | TURNS                          | TOTAL COST             | ICOST            | CCOST                               | I-C           |
|                                              | 9.2              | 2.0          | 0.22           | 661                            | 32316.40               | 396              | 16158                               | ***           |
| 1610.0<br>1620.0                             |                  | 12.0<br>22.0 | 0.64<br>1.18   | 1931<br>3872                   | 33858.35<br>35827.39   | 154<br>197       | 2822<br>1629                        |               |
| 1630.0                                       |                  | 32.0         | 1.34           | 4459                           | 36422.87               | 60               | 1138                                | ••••          |
| 1640.0<br>1650.0                             |                  | 42.0<br>52.0 | 1.73<br>1.92   | 5850<br>6527                   | 37833,96<br>38520,74   | 141.11<br>68.68  | 900.81<br>740.78                    | ****          |
| 1660.0                                       |                  | 62.0         | 2.33           | 8076                           | 40050.52               | 152.98           | 645,98                              |               |
| 1670.0                                       |                  | 72.0         | 2.80           | 10023                          | 41743.63               | 169.31           | 579.77                              |               |
| 1680.0                                       |                  | 82.0         | 3.08           | 11224                          | 42788.51               | 104.49           | 521.81                              | •             |
| 1690.0                                       |                  | 92.0         | 3.32           | 12203                          | 43639,63               | 85.11            | 474.34                              |               |
| 1700.0                                       |                  | 02.0         | 4.17           | 15801                          | 46768.17               | 312.85           | 458.51                              | ••••          |
| 1710.0                                       |                  | 12.0         | 4.64           | 17767                          | 48477.51               | 170.93           | 432.83                              |               |
| 1720.0                                       | 11.3 1           | 22.0         | 5.52           | 21468                          | 51695.33               | 321,78           | 423.73                              | ****          |
| 1730.0                                       | 24.1 1           | 32.0         | 5.94           | 23213                          | 53212.94               | 151.76           | 403.13                              |               |
| 1740.0                                       |                  | 42.0         | 6.16           | 24124                          | 54034.64               | 82.17            | 380,53                              |               |
| 1750.0                                       | 7.8 1            | 52.0         | 7.45           | 28748                          | 58725.43               | 469.08           | 386.35                              | -4-           |
| 1760.0                                       |                  | 62.0         | 9.17           | 34940                          | 65007.21               | 628.18           | 401.28                              | .‡.           |
| 1770.0                                       |                  | 72.0         | 11.59          | 43656                          | 73849.10               | 884.19           | 429.36                              | .∳.           |
| 1780.0                                       |                  | 82.0         | 13.17          | 49357                          | 79632.45               | 578.33           | 437.54                              | · <b>{·</b> · |
| 1790.0                                       |                  | 92.0         | 13.67<br>13.97 | 51155<br>52210                 | 81456.42               | 182.40           | 424,25<br>408.55                    | ****          |
| 1800.0<br>1810.0                             |                  | 02.0<br>12.0 | 15.55          | 59705                          | 82526.16<br>88311.02   | 106.97<br>578.49 | 416.56                              |               |
| 1820.0                                       |                  | 22.0         | 18.49          | 69030                          | 99032,28               | 1072             | 446                                 | 4.            |
|                                              |                  |              |                |                                |                        |                  |                                     |               |
| 1830.0                                       |                  | 32.0         | 21.48          | 78007                          | 109959.86              | 1093             | 474                                 | -+-           |
| 1840.0                                       |                  | 42.0         | 22.34          | 81149                          | 113116.81              | 315.70           | 467.42                              | ****          |
| 1850.0<br>1860.0                             |                  | 52.0<br>62.0 | 23.14<br>25.43 | 84372<br>92622                 | 116021.16<br>124390.33 | 290.44<br>836.92 | 460. <b>40</b><br>474.77            | -4·           |
| 1870.0                                       |                  | 72.0         | 25.77          | 93852                          | 125638,10              |                  |                                     | ····          |
| 1880.0                                       |                  | 82.0         | 26.22          | 95452                          | 127261.21              | 162.31           | 451,28                              |               |
| 1890.0                                       |                  | 92.0         |                | 101812                         | 133713.05              | 645.18           | 457,92                              | +             |
| 1900.0                                       |                  | 02.0         | 28.93          | 105220                         | 137170.38              | 345.73           | 454.21                              | ••••          |
| 1910.0                                       |                  | 12.0         |                | 106677                         | 138746.90              | 157.65           | 444.70                              | ****          |
| 1920.0                                       | 29.3 3           | 22.0         | 29.70          | 107850                         | 139992.97              | 124.61           | 434.76                              | ••••          |
| 1930.0                                       | 9.6 3            | 32.0         | 30.74          | 111191                         | 143791.05              | 379.81           | 433.11                              | ****          |
| 1940.0                                       |                  | 42.0         |                | 116719                         | 150519.86              | 672.88           | 440.12                              | 4.            |
| 1950.0                                       |                  | 52.0         |                | 118809                         | 153064.29              | 254,44           | 434.84                              | ••••          |
| 1960.0                                       | 4.9 3            | 62.0         | 35.32          | 124933                         | 160519.44              | 745.52           | 443,42                              | - <b>ķ</b> -  |
| 1970.0                                       |                  | 72.0         |                | 129800                         | 166444.81              | 592.54           | 447.43                              | -∳-           |
| 1980.0                                       |                  | 82.0         |                | 135778                         | 171701.67              | 525.69           | 449.48                              | <b>.</b> ‡.   |
| 1990.0                                       |                  | 92.0         |                | 140360                         | 175686.40              | 398.47           | 448.18                              |               |
| 2000.0<br>2010.0                             |                  | 02.0<br>12.0 |                | 145488<br>150132               | 182531.87<br>187776.55 | 684.55<br>524.47 | 454.06<br>455.77                    | -\$-<br>-\$-  |
| 2016.0                                       |                  | 18.0         |                | 156262                         | 193995.10              | 1036             | 464                                 | 4.            |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                                                     | 5<br>8516.00<br>20.48                            | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 517<br>12,250<br>6,6<br>78127                                                          | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                          | 2016.0- 2170.0<br>16 16 18<br>154.0<br>T2 B2 G0.000                                                                                       |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| DEPTH                                                                                            | ROP BIT F                                        | UN HOURS                                      | TURNS 1                                                                                | TOTAL COST                                                                           | icost coost i-c                                                                                                                           |
| 2020.0<br>2030.0<br>2040.0                                                                       | 11.0 14                                          | 0.0<br>0.93<br>0.0<br>1.84<br>0.0<br>3.31     | 2860<br>6357<br>12085                                                                  | 36017.70<br>39348.80<br>44712.26                                                     | 850 9004 -<br>333 2811 -<br>536 1863 -                                                                                                    |
| 2050.0<br>2060.0<br>2070.0<br>2080.0<br>2090.0<br>2100.0<br>2110.0<br>2120.0<br>2130.0<br>2140.0 | 24.5 44<br>11.3 54<br>5.4 64<br>6.1 74<br>9.5 84 | ).0 13.77<br>).0 15.75                        | 18733<br>20325<br>23783<br>31059<br>37491<br>41577<br>44616<br>48595<br>52880<br>60592 | 68502.97 6<br>72329.46 30<br>75174.97 20<br>78901.03 30<br>82913.14 4<br>90134.63 70 | 623 1498 - 149 1192 - 324 1031 - 81.30 976.25 - 02.28 925.72 - 82.65 861.06 - 84.55 799.73 - 72.61 758.66 - 01.21 727.31 - 22.15 726.89 - |
| 2160.0<br>2170.0                                                                                 | 8.0 144<br>4.3 154                               | 18.17                                         | 70050<br>78127                                                                         | 98991,95 4                                                                           | 55.18 687.44 -<br>40.57 697.39 +                                                                                                          |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                                   | 5<br>0.00<br>4.64                                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>6.6<br>20046                                                                  | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                          | 2170.0- 2187.4<br>14 15 15<br>17.4<br>TO BO GO.300                                                                                        |
| DEPTH                                                                                            | ROP BIT F                                        | UN HOURS                                      | TURNS 1                                                                                | TOTAL COST                                                                           | icost coost i-c                                                                                                                           |
| 2180.0<br>2187.4                                                                                 |                                                  | 1.0 2.52<br>7.4 4.64                          | 10530<br>20046                                                                         | 33323.49<br>41046.45                                                                 | 922 3332 -<br>1044 2359 -                                                                                                                 |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                                   | 5<br>0.00<br>1.88                                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>6.7<br>8918                                                                   | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                          | 2188.0- 2205.5<br>14 15 15<br>17.5<br>TO BO GO.350                                                                                        |
| DEPTH                                                                                            | ROP BIT F                                        | UN HOURS                                      | TURNS 1                                                                                | TOTAL COST                                                                           | icost coost i-c                                                                                                                           |
| 2190.0<br>2200.0<br>2205.5                                                                       | 12.1 12                                          | 2.0 0.32<br>2.0 1.15<br>7.5 1.88              | 1461<br>5645<br>8918                                                                   | 25654.29<br>28675.30<br>31331.12                                                     | 593 12827<br>302 2390 -<br>483 1790 -                                                                                                     |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS |      | .00 TR  | DC CODE<br>ZE<br>IP TIME<br>TAL TURNS | 12,25<br>7, | 0 NOZZLES<br>2 BIT RUN |        | 5.5- 244<br>16 16<br>23<br>3 B3 G0 | 5 18         |
|----------------------------------------------|------|---------|---------------------------------------|-------------|------------------------|--------|------------------------------------|--------------|
| DEPTH                                        | ROP  | BIT RUN | HOURS                                 | TURNS       | TOTAL COST             | ICOST  | ccost                              | I-C          |
| 2210.0                                       | 4,2  | 4.5     | 1.08                                  | 3634        | 38769,78               | 880    | 8616                               | ****         |
| 2220.0                                       | 4.1  | 14.5    | 3.52                                  | 11830       | 47677.67               | 891    | 3288                               | ***          |
| 2230.0                                       | 5.9  | 24.5    | 5.21                                  | 17236       | 53832.28               | 615    | 2197                               | ***          |
| 2240.0                                       | 3,9  | 34.5    | 7.74                                  | 24840       | 63088.08               | 926    | 1829                               | ****         |
| 2250.0                                       | 6.6  | 44.5    | 9.27                                  | 28461       | 68650.27               | 556    | 1543                               | ****         |
| 2260.0                                       | 3,3  | 54.5    | 12.30                                 | 36287       | 79719.89               | 1107   | 1463                               | ••••         |
| 2270.0                                       | 3.3  | 64.5    | 15.34                                 | 46254       | 90833.13               | 1111   | 1408                               | ****         |
| 2280.0                                       | 6.5  | 74.5    | 16.88                                 | 50285       | 96463.30               | 563    | 1295                               | ••••         |
| 2290.0                                       | 6.2  | 84.5    | 18,49                                 | 54158       | 102353.92              | 589    | 1211                               | ****         |
| 2300.0                                       | 7.2  | 94.5    | 19.89                                 | 58832       | 107434.51              | 508    | 1137                               | ****         |
| 2310.0                                       | 7.8  | 104.5   | 21,17                                 | 63138       | 112116.18              | 468    | 1073                               | ****         |
| 2320.0                                       | 10.3 | 114.5   | 22.14                                 | 66353       | 115674,85              | 356    | 1010                               | ****         |
| 2330.0                                       | 10.0 | 124.5   | 23.15                                 | 69665       | 119340.03              | 366.52 | 958,55                             | ****         |
| 2340.0                                       | 7.7  | 134.5   | 24,45                                 | 73959       | 124091.69              | 475.17 | 922,61                             |              |
| 2350.0                                       | 7.6  | 144.5   | 25.77                                 | 78312       | 128908.91              | 481.72 | 892,10                             | ****         |
| 2360.0                                       | 3.7  | 154.5   | 28,44                                 | 87112       | 138676,20              | 976.73 | 897.58                             | .4.          |
| 2370.0                                       | 3.3  | 164.5   | 31.46                                 | 96537       | 149706.34              | 1103   | 910                                |              |
| 2380.0                                       | 3.2  | 174.5   | 34.54                                 | 106501      | 160946,39              | 1124   | 922                                | 4-           |
| 2390.0                                       | 3.0  | 184.5   | 37.82                                 | 116366      | 172934,46              | 1199   | 937                                | ٠4-          |
| 2400.0                                       | 5.1  | 194.5   | 39.80                                 | 122300      | 180157.31              | 722.28 | 926.26                             | ***          |
| 2410.0                                       | 4.7  | 204.5   | 41.93                                 | 128688      | 187934.04              | 777.67 | 918,99                             | ****         |
| 2420.0                                       | 3.2  | 214.5   | 45.06                                 | 138724      | 199376.97              | 1144   | 929                                |              |
| 2430.0                                       | 3.6  | 224.5   | 47.87                                 | 147964      | 209637.06              | 1026   | 934                                |              |
| 2440.0                                       | 3.3  | 234.5   | 50.86                                 | 156944      | 220568,21              | 1093   | 941                                | · <b>}</b> - |
| 2445.0                                       | 2.2  | 239.5   |                                       | 163054      | 228816.27              | 1650   | 955                                | +            |

| HTC J22                                                                                | 7<br>8516.00<br>37.28                                                  | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURN                                                                                                                                  | 517<br>12.250<br>7.5<br>S 119866                                                        | NOZZLES<br>BIT RUN                                                                                             | •                                                                    | .0- 2597.0<br>16 16 18<br>152.0<br>B4 G0.000                                                     |
|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| DEPTH                                                                                  | ROP BIT                                                                | RUN HOURS                                                                                                                                                                     | TURNS                                                                                   | TOTAL COST                                                                                                     | ICOST                                                                | ccost i-c                                                                                        |
| 2450.0<br>2460.0<br>2470.0                                                             | 2.9 1                                                                  | 5.0 2.05<br>5.0 5.44<br>5.0 8.68                                                                                                                                              | 5812<br>17616<br>28656                                                                  | 43398.57<br>55785.67<br>67608.54                                                                               | 1499<br>1239<br>1182                                                 | 8680 -<br>3719 -<br>2704 -                                                                       |
| 2480.0<br>2490.0<br>2500.0<br>2510.0<br>2520.0<br>2530.0<br>2540.0<br>2560.0<br>2570.0 | 3.0 4<br>5.2 5<br>4.1 6<br>4.2 7<br>7.4 8<br>6.4 9<br>4.5 10<br>3.2 11 | 5.0     10.95       5.0     14.29       5.0     16.22       5.0     18.64       5.0     21.03       5.0     22.39       5.0     23.95       5.0     26.19       5.0     31.54 | 36248<br>47015<br>53368<br>61357<br>69253<br>73717<br>78875<br>86259<br>96508<br>103509 | 75885.40<br>88110.47<br>95140.90<br>103981.79<br>112720.21<br>117660.56<br>123368.87<br>131540.22<br>142882.04 | 828<br>1223<br>703<br>884<br>874<br>494<br>571<br>817<br>1134<br>819 | 2168 -<br>1958 -<br>1730 -<br>1600 -<br>1503 -<br>1384 -<br>1299 -<br>1253 -<br>1242 -<br>1209 - |
| 2580.0<br>2590.0<br>2597.0                                                             | 4.3 14                                                                 | 5.0 33.67<br>5.0 36.01<br>2.0 37.28                                                                                                                                           | 109902<br>116425<br>119866                                                              | 158859.20<br>167403.87<br>172058.58                                                                            | 778<br>854<br>665                                                    | 1177 -<br>1155 -<br>1132 -                                                                       |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                         | 7<br>0.00<br>3.50                                                      | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURN                                                                                                                                  | 4<br>8.500<br>7.5<br>S 18614                                                            | NOZZLES<br>BIT RUN                                                                                             |                                                                      | .0- 2602.1<br>14 15 15<br>5.1<br>B0 G0.500                                                       |
| DEPTH                                                                                  | ROP BIT                                                                | RUN HOURS                                                                                                                                                                     | TURNS                                                                                   | TOTAL COST                                                                                                     | ICOST                                                                | ccost I-c                                                                                        |
| 2600.0<br>2602.1                                                                       |                                                                        | 3.0 0.52<br>5.1 3.50                                                                                                                                                          | 2810<br>18614                                                                           | 29290.17<br>40156.90                                                                                           | *** *** ***                                                          | 9763<br>7874                                                                                     |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                           | 8<br>7774.00<br>3.52                                                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURN                                                                                                                                  | 537<br>12.250<br>7.5<br>S 10553                                                         | NOZZLES<br>BIT RUN                                                                                             |                                                                      | .1- 2616.7<br>16 16 18<br>14.6<br>B5 G0.000                                                      |
| DEPTH                                                                                  | ROP BIT                                                                | RUN HOURS                                                                                                                                                                     | TURNS                                                                                   | TOTAL COST                                                                                                     | ICOST                                                                | ccost I-c                                                                                        |
| 2610.0<br>2616.7                                                                       |                                                                        | 7.9 2.40<br>4.6 3.52                                                                                                                                                          | 7191<br>10553                                                                           | 43917.70<br>48010.57                                                                                           | 1108<br>611                                                          | 5559 -<br>3288 -                                                                                 |

| BIT NUMBER<br>CHRIS RC3<br>COST<br>TOTAL HOURS  | 0.00 T                           | ADC CODE<br>IZE<br>RIP TIME<br>OTAL TURNS     |                            | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION |                    | 7- 2635.2<br>15 15 14<br>18.5<br>B0 G0.400  |
|-------------------------------------------------|----------------------------------|-----------------------------------------------|----------------------------|---------------------------------------------|--------------------|---------------------------------------------|
| DEPTH                                           | ROP BIT RUN                      | HOURS                                         | TURNS 1                    | TOTAL COST                                  | ICOST              | ccost I-C                                   |
| 2620.0<br>2630.0<br>2635.2                      | 10.5 3.3<br>6.1 13.3<br>5.8 18.5 | 1.96                                          | 1602<br>10001<br>14572     | 28902.54<br>34916.99<br>38189.95            | 348<br>601<br>629  | 8758 -<br>2625 -<br>2064 -                  |
| BIT NUMBER<br>CHRIS. RC3<br>COST<br>TOTAL HOURS | 0.00 S                           | ADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS  | 8.500<br>7.8               | NOZZLES<br>BIT RUN                          |                    | 2- 2653.0<br>15 15 14<br>17.8<br>BO GO.800  |
| DEPTH                                           | ROP BIT RUP                      | HOURS                                         | TURNS                      | TOTAL COST                                  | ICOST              | CCOST I-C                                   |
| 2640.0<br>2650.0<br>2653.0                      | 6.5 4.8<br>3.2 14.8<br>1.0 17.8  | 3,84                                          | 3948<br>20657<br>36242     | 31198.99<br>42498.89<br>53038.98            |                    |                                             |
| BIT NUMBER<br>CHRIS. RC4<br>COST<br>TOTAL HOURS | Ş                                | TADE CODE<br>SIZE<br>FRIP TIME<br>FOTAL TURNS | 4<br>8.500<br>7.6<br>24028 | NOZZLES<br>BIT RUN                          |                    | .0- 2671.2<br>15 15 14<br>18.2<br>B0 G0.600 |
| DEPTH                                           | ROP BIT RUI                      | N HOURS                                       | TURNS                      | TOTAL COST                                  | ICOST              | ccost I-c                                   |
| 2660.0<br>2670.0<br>2671.2                      | 3.3 7.1<br>4.7 17.6<br>6.5 18.3  | 0 2.14<br>0 4.26<br>2 4.45                    | 11555<br>23026<br>24028    | 35570.06<br>43327.88<br>44005.53            | 1116<br>776<br>565 | 5081<br>2549<br>2418                        |
| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS    | 8516.00                          | IADC CODE<br>BIZE<br>TRIP TIME<br>TOTAL TURNS | 12.250<br>7.5              | NOZZLES<br>BIT RUN                          |                    | .2- 2672.0<br>16 16 18<br>0.8<br>B2 G0.125  |
| DEPTH                                           | ROP BIT RU                       | N HOURS                                       | TURNS                      | TOTAL COST                                  | ICOST              | ccost I-C                                   |
| 2672.0                                          | 9.2 0.                           | 8 0.09                                        | 314                        | 36224.54                                    | 398                | 45281 -                                     |

| BIT NUMBER<br>RC4<br>COST<br>TOTAL HOURS                                     | 9<br>0.00<br>4.67                                                            | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                    | 4<br>8.500<br>7.6<br>25234                                         | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                                  |                                                | .0- 2690.5<br>15 15 14<br>18.5<br>B0 G0.900 |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|
| DEPTH                                                                        | ROP BIT R                                                                    | UN HOURS                                                         | TURNS                                                              | TOTAL COST                                                                                   | ICOST                                          | ccost i-c                                   |
| 2680.0<br>2690.0<br>2690.5                                                   | 5.3 8<br>3.2 18<br>5.4 18                                                    |                                                                  | 8090<br>24731<br>25234                                             | 33226.40<br>44480.82<br>44821.07                                                             | 684<br>1125<br>680                             | 4153 -<br>2471 -<br>2423 -                  |
| BIT NUMBER<br>CHRIS C-20<br>COST<br>TOTAL HOURS                              | 9<br>0.00<br>8.86                                                            | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                    | 4<br>8,470<br>7,7<br>40488                                         | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                                  |                                                | 5- 2708.3<br>14 14 14<br>17.8<br>B0 G0.300  |
| DEPTH                                                                        | R TIE GOR                                                                    | UN HOURS                                                         | TURNS 7                                                            | TOTAL COST                                                                                   | ICOST                                          | ccost I-c                                   |
| 2700.0<br>2708.3                                                             | 1.5 9<br>3.3 17                                                              | .5 6.33<br>.8 8.86                                               | 29122<br>40488                                                     | 51242.77<br>60467.64                                                                         | 2434<br>1111                                   | 5394<br>3397                                |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                 | 10<br>7774.00<br>15.72                                                       | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                    | 537<br>12.250<br>8.0<br>48386                                      | NOZZLES<br>BIT RUN                                                                           |                                                | 3- 2776.3<br>16 16 18<br>68.0<br>B4 G0.125  |
| DEPTH                                                                        | ROP BIT R                                                                    | UN HOURS                                                         | TURNS 1                                                            | TOTAL COST                                                                                   | ICOST                                          | ccost I-c                                   |
| 2710.0<br>2720.0<br>2730.0<br>2740.0<br>2750.0<br>2760.0<br>2770.0<br>2776.3 | 7.6 1<br>3.1 11<br>3.7 21<br>10.7 31<br>3.9 41<br>4.5 51<br>5.4 61<br>3.2 68 | .7 3.43<br>.7 6.17<br>.7 7.10<br>.7 9.67<br>.7 11.90<br>.7 13.75 | 668<br>10303<br>18504<br>21299<br>29008<br>35793<br>41907<br>48386 | 37802.87<br>49531.88<br>59515.03<br>62918.49<br>72302.10<br>80455.65<br>87222.32<br>94392.41 | 478<br>1173<br>998<br>340<br>938<br>815<br>677 | 22237 4233 2743 1985 1734 1556 1414 1388    |

| BIT NUMBER<br>HTC J33<br>COST | 7774       | 81           | ADC CODE<br>IZE<br>RIP TIME | 537<br>12.250<br>8.0 | NOZZLĖS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | ·3- 2806.8<br>15 16 16 |
|-------------------------------|------------|--------------|-----------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------|
| TOTAL HOURS                   |            |              | DTAL TURNS                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N Ti       | 30.5<br>B1 G0.000      |
|                               |            |              |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |
| DEPTH                         | ROP        | BIT RUN      | HOURS                       | TURNS                | TOTAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICOST      | ccost I-c              |
| 2780.0                        | 2.5        |              | 1.48                        | 4221                 | 42395.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1461       | 11458                  |
| 2790.0<br>2800.0              | 6.2<br>3.7 | 13.7<br>23.7 | 3.09<br>5.80                | 9054                 | 48278,33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 588        | 3524                   |
|                               |            |              | J.00                        | 17175                | 58164,09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 989        | 2454 -                 |
| 2806.8                        | 3.6        | 30.5         | 7.68                        | 22806                | 65019.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1008       | 2132 -                 |
|                               |            |              |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ÷          |                        |
| BIT NUMBER                    |            | 11 16        | DC CODE                     | 4                    | INTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2806       | .8- 2814.0             |
| CHRIS RC6<br>COST             | 18300      |              | ZE<br>IP TIME               | 8.500<br>8.0         | NOZZLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 14 15 15               |
| TOTAL HOURS                   |            |              | TAL TURNS                   | 18565                | BIT RUN<br>CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 7.2<br>B0 G0.900       |
|                               |            |              |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |
| DEPTH                         | ROP        | BIT RUN      | HOURS                       | TURNS                | TOTAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICOST      | ccost I-c              |
| 2810.0                        | 20.4       | 3.2          | 0.16                        | 658                  | 48088.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 179        | 15028 -                |
| 2814.0                        | 1.2        | 7.2          | 3.54                        | 18565                | 60449.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3090       | 8396 -                 |
|                               |            |              |                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                        |
|                               |            | 12 IA        | DC CODE                     | 617                  | INTERVAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 221A       | 0- 2960.2              |
| HTC J44<br>COST               | 6 /D A A   | SI           | ZE                          | 12,250               | NOZZLES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 15 16 16               |
| TOTAL HOURS                   |            |              | IP TIME<br>TAL TURNS        | 8,3<br>93198         | BIT RUN<br>CONDITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 146.2<br>R5 G0.000     |
|                               |            |              |                             |                      | With the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first the first t | 1.5        | 20.00.000              |
| DEPTH                         | ROP        | BIT RUN      | HOURS                       | TURNS 1              | TOTAL COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ICOST      | ccost I-c              |
| 2820.0                        | 8.0        | 6.0          | 0.75                        | 2263                 | 39909.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 459        | 7.7 mm                 |
| 2830.0                        | 2.7        | 16.0         | 4.44                        | 13322                | 53372.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1346       | 6652 -<br>3336 -       |
| 2840.0                        | 3.6        | 26.0         | 7.23                        | 21701                | 63572.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1020       | 2445 -                 |
| 2850.0<br>2860.0              | 2.8        | 36.0         | 10.79                       | 32361                | 76549,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1298       | 2126 -                 |
| 2870.0                        | 6.2<br>7.2 | 46.0<br>56.0 | 12.41<br>13.80              | 36288                | 82477.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 593        | 1793 -                 |
| 2880.0                        | 2.8        | 66.0         |                             | 39623<br>49398       | 87553.20<br>100472.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 508        | 1563 -                 |
|                               |            |              |                             |                      | 100472,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1292       | 1522 -                 |
| 2890.0<br>2900.0              | 5.9<br>4.9 | 76.0         | 19.03                       | 53468                | 106665.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 619        | 1403                   |
| 2910.0                        | 4.8        | 86.0<br>96.0 |                             | 59044<br>64973       | 114078,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 741        | 1326                   |
| 2920.0                        | 4,4        | 106.0        |                             |                      | 121742.01<br>130100.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 766        | 1268 -                 |
| 2930.0                        | 5.6        | 116.0        |                             | 75692                | 136638.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 836<br>654 | 1227 -<br>1178         |
| 2940.0                        | 4.3        | 126.0        |                             |                      | 145116.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 848        | 1152 -                 |
| 2950.0                        | 7.0        | 136.0        | 31.00                       | 86963                | 150358.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 524        | 1106 -                 |
| 2960.0                        | 5.1        | 146.0        |                             | 92895                | 157580.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 722        | 1079 -                 |
| 2960.2                        | 2.0        | 146.2        | 33.08                       | 93198                | 157949.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1846       | 1080 +                 |

| HTC J7                                                             | 1494.00                                                                                                                        | IADC CODE<br>BIZE<br>TRIP TIME<br>TOTAL TURNS | 316<br>8.500<br>8.3<br>10615                               | NOZZLES<br>BIT RUN                                                           | 2960.2-2972.3<br>14 14 14<br>12.1<br>T8 B6 G0.375                         |
|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| DEPTH                                                              | ROP BIT RUN                                                                                                                    | N HOURS                                       | TURNS :                                                    | TOTAL COST IC                                                                | cost cost i-c                                                             |
| 2970.0<br>2972.3                                                   | 6.0 9.6<br>2.3 12.1                                                                                                            |                                               | 6743<br>10615                                              | 37792.04 610<br>41397.38 1567                                                | .86 3856.33 -<br>1.54 3421.27 -                                           |
| HTC J33                                                            | 4503.00 T                                                                                                                      | TADC CODE<br>BIZE<br>TRIP TIME<br>TOTAL TURNS | 537<br>8.500<br>8.5<br>31858                               | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                  | 14 14 14                                                                  |
| DEPTH                                                              | ROP BIT RUN                                                                                                                    | l Hours                                       | TURNS T                                                    | OTAL COST IC                                                                 | ost coost i-c                                                             |
| 2980.0                                                             | 6.1 7.7                                                                                                                        | 1.26                                          | 3077                                                       | 40161.75 599                                                                 | .58 5215.81 -                                                             |
| 2990.0<br>3000.0<br>3010.0<br>3020.0<br>3030.0<br>3040.0<br>3045.8 | 7.8     17.7       5.4     27.7       8.3     37.7       8.4     47.7       6.1     57.7       6.8     67.7       6.5     73.5 | 4.40<br>5.60<br>6.79<br>8.43<br>9.91          | 6742<br>12286<br>15887<br>19427<br>24766<br>29189<br>31858 | 51597.99 674<br>55982.42 438<br>60334.75 435<br>66334.18 599<br>71718.34 538 | .82 2533.8981 1862.7444 1484.9423 1264.8894 1149.6442 1059.3604 1019.95 - |
|                                                                    | S<br>4503.00 T                                                                                                                 | ADC CODE<br>IZE<br>RIP TIME<br>OTAL TURNS     | 537<br>8.500<br>8.6<br>30946                               | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION                                  | 3045.8-3091.6<br>14 14 14<br>45.8<br>T8 B6 G0.125                         |
| DEPTH                                                              | ROP BIT RUN                                                                                                                    | HOURS                                         | TURNS T                                                    | OTAL COST ICO                                                                | ost ccost i-c                                                             |
| 3050.0                                                             | 8.6 4.2                                                                                                                        | 0,49                                          | 1462                                                       | 37689.67 423.                                                                | .68 <b>897</b> 3.73 -                                                     |
| 3060.0<br>3070.0                                                   | 6.3 14.2<br>5.4 24.2                                                                                                           | 2.07                                          | 6225<br>11799                                              | 43487,94 579.                                                                | 83 3062.53 -<br>56 2077.42 -                                              |
| 3080.0<br>3090.0<br>3091.6                                         | 4.7     34.2       3.6     44.2       1.1     45.8                                                                             | 8.86 7                                        | 18239<br>26569<br>30946                                    | 58113.17 783.<br>68253.56 1014.<br>73581.42 3329.                            | 96 1699,22 -<br>04 1544,20<br>91 1606,58 +                                |

| HTC J44                                         | 16<br>4347.00<br>10.96    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500                   | NOZZLES                                        | 3091.6-3116.1<br>14 14 14<br>24.5<br>T2 B2 G0.000 |
|-------------------------------------------------|---------------------------|-----------------------------------------------|-------------------------|------------------------------------------------|---------------------------------------------------|
| DEPTH                                           | ROP BIT R                 | UN HOÜRS                                      | TURNS TO                | OTAL COST IC                                   | ost coost I-c                                     |
| 3100.0<br>3110.0<br>3116.1                      | 1.8 8<br>2.1 18<br>4.2 24 | .4 9.50                                       | 14166<br>30838<br>35427 | 52885.80 2039<br>70447.86 1756<br>75773.70 873 | .21 3828.69 -                                     |
| CHRIS C-20                                      |                           | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>8.6            | NOZZLES<br>BIT RUN                             | 3116.1-3117.4<br>14 14 14<br>1.3<br>TO BO GO.600  |
| DEPTH                                           | ROP BIT R                 | UN HOURS                                      | TURNS TO                | OTAL COST IC                                   | ost coost i-c                                     |
| 3117.4                                          | 0.4 1                     | .3 3.56                                       | 15784                   | 44423.54 10                                    | 013 34172 -                                       |
| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOURS    | 4347.00                   | SIZE                                          | 8.500<br>8.7            | NOZZLES<br>BIT RUN                             | 3117.4-3143.4<br>14 14 14<br>26.0<br>T2 B2 G0.000 |
| DEPTH                                           | ROP BIT R                 | JN HOURS                                      | TURNS TO                | OTAL COST IC                                   | ost cost i-c                                      |
| 3120.0<br>3130.0<br>3140.0<br>3143.4            | 2.4 12<br>3.9 22          |                                               | 14014<br>21714          |                                                | .80 4220.58 -<br>.35 2767.82 -                    |
| BIT NUMBER<br>CHRIS C-23<br>COST<br>TOTAL HOURS | 19000.00                  | TRIP TIME                                     | 8.500<br>8.7            | NOZZLES<br>BIT RUN                             |                                                   |
| DEPTH                                           | ROP BIT R                 | JN HOURS                                      | TURNS TO                | OTAL COST IC                                   | ost coost i-c                                     |
| 3145.4                                          | 0.5 2                     | .0 4.10                                       | 18459                   | 65752.70 7490                                  | .15 32876 -                                       |

|                       | 4350.00    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500        | NOZZLES            | 3145.4-3203.5<br>14 14 14<br>58.1<br>T8 B4 G0.000 |
|-----------------------|------------|-----------------------------------------------|--------------|--------------------|---------------------------------------------------|
| DEPTH                 | ROP BIT R  | UN HOURS                                      | TURNS T      | OTAL COST IC       | ost cost i-c                                      |
| 3150.0                | 3.0 4      | .6 1.54                                       | 4607         | 41731.06 1219      | .27 9071.97 -                                     |
| 3160.0                | 3.2 14     | .6 1.54<br>.6 4.71<br>.6 8.07                 | 14128        | 53320.58 1158      |                                                   |
| 3170.0                | 3.0 24     | .6 8.07                                       | 24202        | 65584.15 1226      | .36 2666.02 -                                     |
| 3180.0                | 2.7 34     | .6 11.70                                      | 35113        | 78866.27 1328      | ,21 2279,37 -                                     |
| 3190.0                | 2.6 44     |                                               | 46569        | 92812.85 1394      | .66 2081.01 -                                     |
|                       | 2.0 54     |                                               |              | 111295.02 1848     |                                                   |
| 3203.5                | 1.4 58     | .1 23.07                                      | 70096        | 120387,48 2597     | .85 2072.07 +                                     |
| BIT NUMBER<br>HTC J44 |            | TADC CODE<br>SIZE                             |              | INTERVAL           | 3203.5-3225.9                                     |
| COST                  | 4347.00    | TRIP TIME                                     | 8.8          | RTT RIN            | 14 14 15<br>22.4                                  |
| TOTAL HOURS           | 10.22      | TRIP TIME<br>TOTAL TURNS                      | 31715        | CONDITION          | T2 B2 G0.000                                      |
| DEPTH                 | ROP BIT R  | UN HOURS                                      | TURNS TO     | OTAL COST IC       | ost coost i-c                                     |
| 3210.0                | 2.3 6      | .5 2.80                                       | 8591         | 46727.70 1575      | .86 7188.88                                       |
| 3220.0                | 3.0 16     | .5 6.13                                       | 18958        | 58862.48 1213      |                                                   |
| 3225.9                | 1.4 22     | .4 10.22                                      | 31715        | 73794.09 2530      | .78 3294.38 -                                     |
|                       | 4350.00    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>8.8 | NOZZLES<br>BIT RUN | 3225.9-3237.6<br>14 14 15<br>11.7<br>T1 B1 G0.000 |
| DEPTH                 | ROP BIT RU | JN HOURS                                      | TURNS TO     | OTAL COST IC       | ost ccost i-c                                     |
| 3230.0                | 1.8 4      | .1 2.24                                       | 2001         | 44682.28 1998      | 70 10898                                          |
| 3237.6                | 1.0 11     | .1 2.24<br>.7 10.04                           | 31327        | 73156.72 3746      |                                                   |
|                       | 4139.00    |                                               |              | NOZZLES<br>BIT RUN | 14 14 15                                          |
| DEPTH                 | ROP BIT RU | JN HOURS                                      | TURNS TO     | OTAL COST IC       | ost coost i-c                                     |
| 3240.0                | 0.8 2.     | .4 2.91                                       | 8712         | 46888.37 4421      | .57 19537 -                                       |

| DEPTH            | ROP BI     | T RUN        | HOURS          | TURNS          | TOTAL COST           | ICOST | CCOST | I-C  |
|------------------|------------|--------------|----------------|----------------|----------------------|-------|-------|------|
| 3250.0<br>3257.0 | 1.0<br>1.9 | 12.4<br>19.4 | 12.73<br>16.44 | 38172<br>49328 | 82750.90<br>96331.27 |       |       | **** |

## (e). COMPUTER DATA LISTING : LIST C

| INTERVAL     |   |   |   |   | , | 10m averages.                                                |
|--------------|---|---|---|---|---|--------------------------------------------------------------|
| DEPTH        | • | t | • |   |   | Well depth, in metres.                                       |
| FLOW RATE    |   |   | ı | , | • | Mud flow into the well, in gallons per minute.               |
| PSP          | ı |   | • | r | , | Pump pressure, in pounds per square inch.                    |
| PBIT         | • | t | • | • |   | Bit pressure drop, in pounds per square inch.                |
| ZPSP         |   |   | • | • | • | Percentage of surface pressure dropped at the bit.           |
| H.H.P        | , |   | ı |   | • | Bit hydraulic horsepower.                                    |
| HHP/SQ IN    |   | , |   | • |   | Bit hydraulic horsepower per square inch<br>of bit diameter. |
| IMPACT FORCE |   |   |   |   |   | Bit impact force, in foot-pounds per second squared.         |
| JET VELOCITY |   |   |   |   | , | Mud velocity through the bit nozzles, in metres per second.  |

| BIT NUMBER<br>HTC OSC3A:<br>COST<br>TOTAL HOUR                                | 0H" 6S&T<br>0                                                      | .00 T                                                                                           | ADC CODE<br>IZE<br>RIP TIME<br>OTAL TURNS                                                       | 26.000<br>2.5                                                                | N077                                                               | ERVAL<br>ZLES<br>RUN<br>DITION                                       |                                                                             | 0- 208.5<br>20 20 20<br>138.5<br>32 G0.000           |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|
| DEPTH                                                                         | FLOW<br>RATE                                                       | P 8 P                                                                                           | PBIT                                                                                            | %PSP                                                                         | ННР                                                                | HHP/<br>sqin                                                         |                                                                             | JET<br>VELOCITY                                      |
| 80.0<br>90.0<br>100.0                                                         | 690<br>695<br>726                                                  | 389.0<br>539.7<br>440.1                                                                         | 451.6                                                                                           | 114.3<br>83.7<br>112.0                                                       | 179<br>183<br>209                                                  | 0.34<br>0.34<br>0.39                                                 | 750                                                                         | 74                                                   |
| 110.0<br>120.0<br>130.0<br>140.0<br>150.0<br>160.0<br>170.0<br>180.0<br>190.0 | 793<br>866<br>847<br>837<br>754<br>757<br>802<br>808<br>801<br>959 | 725.3<br>871.0<br>879.3<br>897.4<br>774.8<br>787.3<br>877.1<br>900.7<br>874.8<br>1210.1         | 587.3<br>701.3<br>670.4<br>655.6<br>531.1<br>535.8<br>602.1<br>610.3<br>599.6<br>860.1          | 81.0<br>80.5<br>76.2<br>73.1<br>68.6<br>68.0<br>68.7<br>67.8<br>68.5<br>71.1 | 272<br>354<br>331<br>320<br>234<br>237<br>282<br>288<br>280<br>481 | 0.67<br>0.62<br>0.60<br>0.44                                         | 975<br>1164<br>1113<br>1088<br>882<br>889<br>1000<br>1013<br>995            | 92<br>90                                             |
| 208.5                                                                         | 955                                                                | 1220.0                                                                                          | 852.1                                                                                           | 69.8                                                                         | 475                                                                | 0.89                                                                 | 1415                                                                        | 101                                                  |
| HTC OSC 36                                                                    | 43<br>4857                                                         | .00 T                                                                                           | ADC CODE<br>IZE<br>RIP TIME<br>OTAL TURNS                                                       | 17.500<br>3.7                                                                | NOZZ<br>BIT                                                        | LES<br>RUN                                                           |                                                                             | 5- 870.0<br>18 18 18<br>661.5<br>(1 G0.000           |
| DEPTH                                                                         | FLOW<br>RATE                                                       | PSP                                                                                             | PRIT                                                                                            | XPSP                                                                         | ННР                                                                | HHP/<br>sqin                                                         |                                                                             | JET<br>VELOCITY                                      |
|                                                                               | 919<br>920<br>942<br>940<br>935<br>939<br>942<br>936<br>935        | 1976.9<br>2107.4<br>2147.7<br>2156.0<br>2186.4<br>2218.4                                        | 1202.4<br>1205.3<br>1264.9<br>1260.5<br>1244.8<br>1256.5<br>1264.8<br>1249.8<br>1246.1          | 62.1<br>61.0<br>60.0<br>58.7<br>57.7<br>57.5<br>57.0<br>56.9<br>56.5         |                                                                    |                                                                      |                                                                             | 120<br>123<br>123<br>122<br>123<br>123<br>123<br>123 |
| 300.0<br>310.0<br>320.0<br>330.0<br>340.0<br>350.0<br>360.0<br>380.0<br>390.0 | 499<br>940<br>930<br>941<br>939<br>922<br>930<br>932<br>939<br>937 | 710.0<br>2240.9<br>2230.0<br>2268.9<br>2266.3<br>2201.9<br>2249.9<br>2269.1<br>2310.8<br>2312.5 | 354.9<br>1259.3<br>1233.9<br>1262.2<br>1256.8<br>1240.1<br>1261.3<br>1267.3<br>1285.0<br>1280.4 | 50.0<br>56.2<br>55.6<br>55.5<br>56.3<br>56.3<br>55.9<br>55.4                 | 103<br>691<br>670<br>693<br>689<br>667<br>684<br>689<br>704        | 0.43<br>2.87<br>2.78<br>2.88<br>2.86<br>2.77<br>2.85<br>2.87<br>2.93 | 477<br>1693<br>1659<br>1697<br>1690<br>1668<br>1696<br>1704<br>1728<br>1722 | 65<br>123<br>122<br>123<br>121<br>122<br>122<br>123  |

| DEPTH          | FLOW<br>RATE | PSP              | PRIT             | %PSP         | ннр        | HHP/<br>sqin | IMPACT<br>FORCE | JET<br>VELOCITY |
|----------------|--------------|------------------|------------------|--------------|------------|--------------|-----------------|-----------------|
| 400.0          | 945          | 2362.4           | 1301.7           | 55.1         | 718        | 2.98         | 1750            | 124             |
| 410.0          | 940          | 2358.0           | 1288.4           | 54.6         | 707        | 2.94         | 1733            | 123             |
| 420.0          | 936          | 2403.0           | 1277.4           | 53.2<br>54.9 | 698<br>706 | 2.90<br>2.93 | 1718<br>1731    | 122<br>123      |
| 430.0          | 940<br>937   | 2344.8<br>2350.7 | 1287.4<br>1278.9 | 54.4         | 699        | 2.91         | 1720            | 123             |
| 440.0<br>450.0 | 933          | 2344.3           | 1268.2           | 54.1         | 690        | 2.87         | 1705            | 122             |
| 460.0          | 930          | 2349.1           | 1261.4           | 53.7         | 685        | 2.85         | 1696            | 122             |
| 470.0          | 943          | 2412.2           | 1296.8           | 53.8         | 714        | 2.97         | 1744            | 123             |
| 480.0          | 950          | 2452.2           | 1316.2           | 53.7         | 730        | 3.03         | 1770            | 124             |
| 490.0          | 928          | 2356.2           | 1283.6           | 54.5         | 695        | 2.89         | 1726            | 121             |
| 500.0          | 942          | 2423.6           | 1324.2           | 54.6         | 728        | 3.03         | 1781            | 123             |
| 510.0          | 937          | 2463.6           | 1308.3           | 53.1         | 715        | 2.97         | 1759<br>1777    | 123<br>122      |
| 520.0          | 936          | 2398.6           | 1321.2           | 55.1<br>54.7 | 722<br>715 | 3.00<br>2.97 | 1766            | 122             |
| 530.0          | 933<br>946   | 2403.3<br>2468.3 | 1313.4<br>1349.8 | 54.7         | 745        | 3.10         | 1815            | 124             |
| 540.0<br>550.0 | 932          | 2409.7           | 1310.9           | 54.4         | 713        | 2.96         | 1763            | 122             |
| 560.0          | 925          | 2399.8           | 1289.6           | 53.7         | 696        | 2.89         | 1734            | 121             |
| 570.0          | 933          | 2561.9           | 1311.4           | 51.2         | 713        | 2.97         | 1763            | 122             |
| 580.0          | 935          | 2423.7           | 1318.9           | 54.4         | 720        | 2.99         | 1774            | 122             |
| 590.0          | 945          | 2495.0           | 1345.5           | 53.9         | 742        | 3.08         | 1809            | 124             |
| 600.0          | 943          | 2494.8           | 1342.3           | 53.8         | 739        | 3.07         | 1805            | 123             |
| 610.0          | 939          | 2474.4           | 1329.1           | 53.7         | 728        | 3.03         | 1787            | 123             |
| 620.0          | 934          | 2462.3           | 1314.5           | 53.4         | 716        | 2,98         | 1768            | 122             |
| 630.0          | 749          | 2537.0           | 1358.5           | 53.5         | 752<br>715 | 3.13<br>2.97 | 1827<br>1766    | 124<br>122      |
| 640.0          | 933          | 2465.7<br>2561.6 | 1313.1<br>1297.8 | 53.3<br>50.7 | 715        | 2.94         | 1745            | 122             |
| 650.0<br>660.0 | 933<br>932   | 2459.9           | 1296.6           | 52.7         | 705<br>705 | 2.93         | 1744            | 122             |
| 670.0          | 934          | 2483.6           | 1300.5           | 52.4         | 709        | 2,95         | 1749            |                 |
| 680.0          | 936          | 2490.2           | 1307.4           | 52.5         | 714        | 2.97         | 1758            |                 |
| 690.0          | 934          | 2483.5           | 1302.0           | 52.4         | 710        | 2.95         | 1751            | 122             |
| 700.0          | 937          | 2488.7           | 1308.2           | 52.6         | 715        | 2.97         | 1759            | 123             |
| 710.0          | 933          | 2476.4           | 1298.9           | 52.5         | 707        | 2.94         | 1747            | 122<br>123      |
| 720.0          | 940          | 2532.4           | 1318.8           | 52.1         | 724<br>709 | 3.01<br>2.95 | 1773<br>1750    | 122             |
| 730.0          | 934          | 2497.6<br>2553.0 | 1301.3<br>1310.2 | 52.1<br>51.3 | 716        | 2.98         | 1762            |                 |
| 740.0<br>750.0 | 937<br>935   | 2529.7           | 1304.0           | 51.5         | 711        | 2.96         | 1754            |                 |
| 750.0          | 941          | 2557.6           | 1322.0           | 51.7         | 726        | 3.02         | 1778            |                 |
| 770.0          | 929          | 2500.7           | 1287.9           | 51.5         | 698        | 2.90         | 1732            |                 |
| 780.0          | 934          | 2526.0           | 1300.7           | 51.5         | 709        | 2.95         | 1749            |                 |
| 790.0          | 935          | 2541.4           | 1303.5           | 51.3         | 711        | 2.96         | 1753            | 122             |
| 800.0          | 936          | 2554.3           | 1306.2           | 51.1         | 713        | 2.97         | 1756            | 122<br>122      |
| 810.0          | 934          | 2561.7           | 1302.2           | 50.8         | 710        | 2.95<br>3.00 | 1751<br>1771    | 123             |
| 820.0          | 940          | 2578.0           | 1316.7           | 51.1         | 722<br>707 | 2.94         | 1747            |                 |
| 0.088          | 933<br>943   | 2579.7<br>2626.3 | 1299.0<br>1326.2 | 50.4<br>50.5 | 730        | 3.03         | 1783            |                 |
| 840.0<br>850.0 | 941          | 2587.5           | 1321.6           | 51.1         | 726        | 3.02         | 1777            |                 |
| 860.0          | 930          | 2524.3           | 1290.5           | 51.1         | 700        | 2.91         | 1735            |                 |
| 870.0          | 936          | 2580.6           | 1306.0           | 50.6         | 713        | 2.96         | 1756            |                 |

| BIT NUMBE<br>HTC J1<br>COST                                                  |                                                      | 2 3                                                                                    | IADC CODE<br>BIZE<br>FRIP TIME                                                         | 116<br>12.250                                                | INT<br>NOZ<br>BIT                                    | ERVAL<br>ZLES<br>RIIN                                        | 870.0-<br>1                                                  | 951.0<br>8 18 18                                     |
|------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|
| TOTAL HOU                                                                    | JRS 2                                                | .77                                                                                    | TOTAL TURNS                                                                            | 16633                                                        | CON                                                  | NOITION                                                      | T2 B2                                                        | G0.000                                               |
|                                                                              |                                                      |                                                                                        |                                                                                        |                                                              |                                                      |                                                              |                                                              |                                                      |
| DEPTH                                                                        | FLOW<br>RATE                                         | PSP                                                                                    | PRIT                                                                                   | %PSP                                                         | ннр                                                  | HHP/<br>sqin                                                 | IMPACT<br>FORCE V                                            |                                                      |
|                                                                              |                                                      |                                                                                        | 1445.4                                                                                 |                                                              |                                                      |                                                              | 1944                                                         |                                                      |
| 890.0<br>900.0                                                               | 990<br>990                                           | 2989.0<br>2995.0                                                                       | 1428.1<br>1411.8                                                                       | 47.8                                                         | 825<br>815                                           | 7.00<br>6.92                                                 | 1920<br>1898                                                 |                                                      |
| 910.0                                                                        | 990                                                  | 2983.0                                                                                 | 1411.8                                                                                 | 47.3                                                         | 815                                                  | 6.92                                                         | 1898                                                         | 129                                                  |
| 920.0                                                                        | 990                                                  | 2983.0                                                                                 | 1411.8                                                                                 | 47.3                                                         | 815                                                  | 6.92<br>7.00                                                 | 1898                                                         | 125                                                  |
| 930.0<br>940.0                                                               | 990<br>990                                           | 2983.0<br>2983.0                                                                       | 1428.1<br>1428.1                                                                       | 47.9<br>47.9                                                 | 825<br>825                                           | 7.00                                                         | 1920<br>1920                                                 | 129<br>129                                           |
| 950.0                                                                        | 990                                                  | 2983.0                                                                                 | 1428,1                                                                                 | 47.9                                                         | 825                                                  | 7.00                                                         | 1920                                                         | 129                                                  |
| 951.0                                                                        | 990                                                  | 3002.0                                                                                 | 1428.1                                                                                 | 47.6                                                         | 825                                                  | 7.00                                                         | 1920                                                         | 129                                                  |
|                                                                              |                                                      |                                                                                        |                                                                                        |                                                              |                                                      |                                                              |                                                              |                                                      |
| BIT NUMBE                                                                    |                                                      |                                                                                        | CADC CODE                                                                              | 116                                                          |                                                      |                                                              | 951.0-                                                       |                                                      |
| HTC J1<br>COST                                                               |                                                      |                                                                                        | SIZE<br>TRIP TIME                                                                      | 12.250<br>5.4                                                | NUZ<br>BIT                                           | ZLES<br>RUN                                                  | 1                                                            | 8 18 18<br>647.0                                     |
| TOTAL HOU                                                                    | JRS 31                                               | .52                                                                                    | TOTAL TURNS                                                                            | 216592                                                       |                                                      |                                                              | T6 B6                                                        |                                                      |
|                                                                              |                                                      |                                                                                        |                                                                                        |                                                              |                                                      |                                                              |                                                              |                                                      |
| DEPTH                                                                        | FLOW<br>RATE                                         | pep                                                                                    | PRIT                                                                                   | "V D C D                                                     | LILID                                                | HHP/                                                         |                                                              |                                                      |
|                                                                              |                                                      |                                                                                        |                                                                                        |                                                              |                                                      | •                                                            |                                                              |                                                      |
| 960.0<br>970.0                                                               | 910<br>910                                           |                                                                                        | 1206.6<br>1206.6                                                                       | 45.4<br>43.1                                                 |                                                      | 5.43<br>5.43                                                 |                                                              |                                                      |
| 980.0                                                                        | 910                                                  |                                                                                        |                                                                                        | 43.1                                                         |                                                      | 5.43                                                         |                                                              |                                                      |
| 990.0                                                                        | 910                                                  | 2800.0                                                                                 | 1206.6                                                                                 | 43.1                                                         | 640                                                  | 5.43                                                         | 1622                                                         | 119                                                  |
| 1000.0                                                                       |                                                      | 2710.0                                                                                 | 1220.3                                                                                 | 45.0                                                         | 648                                                  | 5.49                                                         | 1641                                                         | 119                                                  |
| 1010.0                                                                       | 919                                                  | 2712.5                                                                                 | 1232.4                                                                                 | 45.4<br>45.1                                                 | 661<br>642                                           | 5.61<br>5.45                                                 | 1657<br>1626                                                 | 120<br>119                                           |
| 1020.0<br>1030.0                                                             | 911<br>770                                           | 2683.6<br>3000.0                                                                       | 1209.1<br>873.7                                                                        | 29.1                                                         | 392                                                  | 3.33                                                         | 1175                                                         | 101                                                  |
| 1040.0                                                                       | 918                                                  | 2786.2                                                                                 | 1243,2                                                                                 | 44.6                                                         | 666                                                  | 5.65                                                         | 1672                                                         | 120                                                  |
| 1050.0                                                                       | 908<br>917                                           | 2714.0<br>2782.5                                                                       | 1228,4<br>1254,9                                                                       | 45.3<br>45.1                                                 | 650<br>672                                           | 5.52<br>5.70                                                 | 1652<br>1687                                                 | 119<br>120                                           |
| 1060.0<br>1070.0                                                             | 911                                                  | 2757.7                                                                                 | 1237.5                                                                                 | 44.9                                                         | 658                                                  | 5.58                                                         | 1664                                                         | 119                                                  |
| 1080.0                                                                       |                                                      |                                                                                        | 1247.1                                                                                 | 44.9                                                         | 665                                                  | 5.65                                                         | 1677                                                         | 120                                                  |
|                                                                              | 914                                                  | 2778.1                                                                                 |                                                                                        |                                                              |                                                      |                                                              |                                                              |                                                      |
| 1090.0                                                                       | 914<br>912                                           | 2778.1                                                                                 | 1241.5                                                                                 | 44.7                                                         | 661                                                  | 5.61                                                         | 1669                                                         | 119                                                  |
| 1090.0                                                                       | 912<br>908                                           | 2779.5<br>2775.6                                                                       | 1241.5<br>1230.1                                                                       | 44.7                                                         | 661<br>652                                           | 5.61<br>5.53                                                 | 1669<br>1654                                                 | 119<br>119                                           |
| 1090.0<br>1100.0<br>1110.0                                                   | 912<br>908<br>918                                    | 2779.5<br>2775.6<br>2838.2                                                             | 1241.5<br>1230.1<br>1257.6                                                             | 44.3<br>44.3                                                 | 661<br>652<br>674                                    | 5.61<br>5.53<br>5.72                                         | 1669                                                         | 119                                                  |
| 1090.0<br>1100.0<br>1110.0<br>1120.0<br>1130.0                               | 912<br>908<br>918<br>918<br>914                      | 2779.5<br>2775.6<br>2838.2<br>2839.1<br>2812.9                                         | 1241.5<br>1230.1<br>1257.6<br>1256.4<br>1245.0                                         | 44.3<br>44.3<br>44.3<br>44.3                                 | 652<br>674<br>673<br>664                             | 5.61<br>5.53<br>5.72<br>5.71<br>5.63                         | 1669<br>1654<br>1691<br>1690<br>1674                         | 119<br>119<br>120<br>120<br>120                      |
| 1090.0<br>1100.0<br>1110.0<br>1120.0<br>1130.0<br>1140.0                     | 912<br>908<br>918<br>918<br>914<br>913               | 2779.5<br>2775.6<br>2838.2<br>2839.1<br>2812.9<br>2814.0                               | 1241.5<br>1230.1<br>1257.6<br>1256.4<br>1245.0<br>1242.5                               | 44.3<br>44.3<br>44.3<br>44.3<br>44.3                         | 661<br>652<br>674<br>673<br>664<br>662               | 5.61<br>5.53<br>5.72<br>5.71<br>5.63<br>5.61                 | 1669<br>1654<br>1691<br>1690<br>1674<br>1671                 | 119<br>119<br>120<br>120<br>120<br>119               |
| 1090.0<br>1100.0<br>1110.0<br>1120.0<br>1130.0<br>1140.0<br>1150.0           | 912<br>908<br>918<br>918<br>914<br>913<br>916<br>910 | 2779.5<br>2775.6<br>2838.2<br>2839.1<br>2812.9<br>2814.0<br>2842.6<br>2823.0           | 1241.5<br>1230.1<br>1257.6<br>1256.4<br>1245.0<br>1242.5<br>1251.6<br>1234.0           | 44.3<br>44.3<br>44.3<br>44.3<br>44.2<br>44.0<br>43.7         | 661<br>652<br>674<br>673<br>664<br>662<br>669<br>655 | 5.61<br>5.53<br>5.72<br>5.71<br>5.63<br>5.61<br>5.68<br>5.56 | 1669<br>1654<br>1691<br>1690<br>1674<br>1671<br>1683<br>1659 | 119<br>120<br>120<br>120<br>120<br>119<br>120        |
| 1090.0<br>1100.0<br>1110.0<br>1120.0<br>1130.0<br>1140.0<br>1150.0<br>1160.0 | 912<br>908<br>918<br>918<br>914<br>913<br>916<br>910 | 2779.5<br>2775.6<br>2838.2<br>2839.1<br>2812.9<br>2814.0<br>2842.6<br>2823.0<br>2823.0 | 1241.5<br>1230.1<br>1257.6<br>1256.4<br>1245.0<br>1242.5<br>1251.6<br>1234.0<br>1234.0 | 44.3<br>44.3<br>44.3<br>44.3<br>44.2<br>44.0<br>43.7<br>43.7 | 661<br>652<br>674<br>673<br>664<br>662<br>669<br>655 | 5.61<br>5.53<br>5.72<br>5.71<br>5.63<br>5.61<br>5.68<br>5.56 | 1669<br>1654<br>1691<br>1690<br>1674<br>1671<br>1683<br>1659 | 119<br>120<br>120<br>120<br>120<br>119<br>120<br>119 |
| 1090.0<br>1100.0<br>1110.0<br>1120.0<br>1130.0<br>1140.0<br>1150.0           | 912<br>908<br>918<br>918<br>914<br>913<br>916<br>910 | 2779.5<br>2775.6<br>2838.2<br>2839.1<br>2812.9<br>2814.0<br>2842.6<br>2823.0           | 1241.5<br>1230.1<br>1257.6<br>1256.4<br>1245.0<br>1242.5<br>1251.6<br>1234.0           | 44.3<br>44.3<br>44.3<br>44.3<br>44.2<br>44.0<br>43.7         | 661<br>652<br>674<br>673<br>664<br>662<br>669<br>655 | 5.61<br>5.53<br>5.72<br>5.71<br>5.63<br>5.61<br>5.68<br>5.56 | 1669<br>1654<br>1691<br>1690<br>1674<br>1671<br>1683<br>1659 | 119<br>120<br>120<br>120<br>120<br>119<br>120        |

| •      |              |           |                |                |             |              |                 |                 |
|--------|--------------|-----------|----------------|----------------|-------------|--------------|-----------------|-----------------|
| DEPTH  | FLOW<br>RATE | PSP       | PRIT           | %P SP          | ннр         | HHP/<br>sqin | IMPACT<br>FORCE | JET<br>VELOCITY |
| 1200.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            | 4 4 75          |
| 1210.0 | 910          |           |                |                |             |              |                 | 119             |
|        |              | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            |                 |
| 1220.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            |                 |
| 1230.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            | 1 1 5'          |
| 1240.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            | 119             |
| 1250.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            | 115             |
| 1260.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            | 119             |
| 1270.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            | 115'            |
| 1280.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5,56         | 1659            |                 |
| 1290.0 | 910          | 2823.0    | 1234.0         | 43.7           | 655         | 5.56         | 1659            |                 |
| 1300.0 | 890          | 2870.0    | 1180.4         | 41,1           | 613         | 5.20         | 1587            | 116             |
| 1310.0 | 885          | 2870.0    | 1167.1         | 40.7           | 602         | 5.11         | 1569            | 116             |
| 1320.0 | 885          | 2870.0    | 1167.1         | 40.7           | 602         | 5.11         | 1569            | 116             |
| 1330.0 | 885          | 2870.0    | 1167.1         | 40.7           | 602         | 5.11         | 1569            | 116             |
| 1340.0 | 880          | 2900.0    | 1154.0         | 39.8           | 592         | 5.02         | 1552            | 115             |
| 1350.0 | 880          | 2900.0    | 1154.0         | 39.8           | 592         | 5.02         | 1552            | 115             |
| 1360.0 | 880          | 2900.0    | 1154.0         | 39.8           | 592         | 5.02         | 1552            | 115             |
| 1370.0 | 889          | 2998.2    | 1177.7         | 39.3           | 611         | 5.18         | 1584            | 116             |
| 1380.0 | 871          | 2917.5    | 1131.5         | 38.8           | 575         | 4.88         | 1521            | 114             |
| 1390.0 | 859          | 2873.9    | 1100.5         | 38.3           | 552         | 4.68         | 1480            |                 |
| 107070 | 1.51.5 7     | 6         | 110010         | 27, (7, 1, 27) | 33 33 Ki    | ** , O O     | Y *4 C) (1      | 112             |
| 1400.0 | 860          | 2871.5    | 1102.9         | 38.4           | 553         | 4.70         | 1483            | 113             |
| 1410.0 | 860          | 2860.0    | 1114.0         | 39.0           | 559         | 4,74         | 1498            | 112             |
| 1420.0 | 859          | 2864.8    | 1111.5         | 38.8           | 557         | 4.72         | 1495            | 112             |
| 1430.0 | 859          | 2870.3    | 1111.9         | 38.7           | 557         | 4.73         | 1495            | 112             |
| 1440.0 | 869          | 2947.0    | 1151.4         | 39.1           | 584         | 4.95         | 1548            | 114             |
| 1450.0 | 867          | 2933.1    | 1145.7         | 39.1           | 579         | 4.92         | 1541            | 113             |
| 1460.0 | 862          | 2948.6    | 1132.2         | 38.4           | 569         | 4.83         | 1522            | 113             |
| 1470.0 | 860          | 2898.7    | 1128.1         | 38.9           |             | 4.80         | 1517            |                 |
| 1480.0 | 863          | 2942.7    |                |                | 578         |              | 1543            | 113             |
| 1490.0 | 858          | 2928.1    | 1134.5         | 38.7           |             | 4.82         | 1526            | 112             |
|        |              | f / f ( ) | 1 4 45 77 1 45 | QQ 1 7         | auu         | ~7 1 \S I    | 7 79 ta C       | 1 1 E           |
| 1500.0 | 859          | 2947.6    | 1137.5         | 38.6           | 570         | 4.84         | 1530            | 112             |
| 1510.0 | 860          | 2978.4    | 1138.9         | 38.2           | 571         | 4.85         | 1531            | 112             |
| 1520.0 | 857          | 2931.1    | 1132.1         | 38.6           | 566         | 4.80         | 1522            | 112             |
| 1530.0 | 857          | 2951,0    | 1132.7         | 38.4           | 567         | 4.81         | 1523            | 112             |
| 1540.0 | 855          | 2900.4    | 1125.3         | 38.8           | 561         | 4.76         | 1513            | 112             |
| 1550.0 | 853          | 2893.4    | 1120.3         | 38.7           | 557         | 4.73         | 1506            | 112             |
| 1560.0 | 859          | 2926.3    | 1126.8         | 38.5           | 565         | 4.79         | 1515            | 112             |
| 1570.0 | 861          | 2923.5    | 1130.6         | 38.7           | 568         | 4.82         | 1520            | 113             |
| 1580.0 | 855          | 2890.2    | 1116.6         | 38.6           | 557         | 4.73         | 1501            | 112             |
| 1590.0 | 861          | 2934.4    | 1130.5         | 38.5           | 568         | 4.82         | 1520            | 113             |
|        |              |           |                |                | 1.7 1.7 1.7 |              | a sittii W      | 1 1 1.7         |
| 1598.0 | 781          | 2462.9    | 930.9          | 37.8           | 424         | 3.60         | 1252            | 102             |
|        |              |           |                |                |             |              |                 |                 |

|                                      | 8516.<br>44.                     | 00 T                                   | ADC CODE<br>IZE<br>RIP TIME<br>OTAL TURNS      | 517<br>12,250<br>6,3<br>156262 | NOZZI<br>BIT             | RVAL<br>LES<br>RUN<br>ITION  | A                            | 16 18<br>418.0           |
|--------------------------------------|----------------------------------|----------------------------------------|------------------------------------------------|--------------------------------|--------------------------|------------------------------|------------------------------|--------------------------|
|                                      | LOW                              | PSP                                    | рвіт                                           | %PSP                           | ННЬ                      | HHP/<br>sqin                 | IMPACT<br>FORCE VELO         | JET<br>OCITY             |
|                                      | 804                              | 2951.3<br>2966.6<br>2966.8             | 1297.8<br>1334.8<br>1344.7                     | 44.0<br>45.0<br>45.3           | 601<br>626<br>633        | 5.10<br>5.31<br>5.37         | 1501<br>1544<br>1555         | 121<br>122<br>123        |
| 1640.0<br>1650.0                     | 806<br>809                       | 2975.0<br>2980.1<br>3008.0<br>2973.5   | 1342.8<br>1340.9<br>1350.3<br>1351.7           | 45.1<br>45.0<br>44.9<br>45.5   | 632<br>631<br>637<br>638 | 5.36<br>5.35<br>5.41<br>5.42 | 1553<br>1551<br>1562<br>1563 | 123<br>123<br>123<br>123 |
| 1670.0<br>1680.0<br>1690.0           | 808<br>562<br>667                | 2982.9<br>1534.2<br>2103.3<br>2962.2   | 1348;3<br>652.0<br>917.8<br>1355.9             | 45.2<br>42.5<br>43.6<br>45.8   | 636<br>214<br>357<br>642 | 5.40<br>1.81<br>3.03<br>5.44 | 1559<br>754<br>1061<br>1568  | 123<br>86<br>102<br>123  |
| 1710.0<br>1720.0                     | 816<br>813                       | 2990.9<br>2968.2                       | 1371.8<br>1361.9                               | 45.9<br>45.9                   | 653<br>646               | 5.54<br>5.48                 | 1587<br>1575                 | 124<br>124               |
| 1740.0<br>1750.0<br>1760.0           | 817<br>811<br>811                | 3036.9<br>3031.3<br>2963.2<br>2933.3   | 1364.0<br>1375.5<br>1356.4<br>1354.7<br>1380.5 | 44.9<br>45.4<br>45.8<br>46.2   | 648<br>656<br>642<br>641 | 5.50<br>5.57<br>5.45<br>5.44 | 1578<br>1591<br>1569<br>1567 | 124<br>124<br>123<br>123 |
| 1780.0<br>1790.0<br>1800.0           | 819<br>812<br>807                | 3002.0<br>2991.5<br>2982.2<br>2950.1   | 1388.7<br>1366.9<br>1341.9                     | 46.0<br>46.4<br>45.8<br>45.5   | 659<br>663<br>648<br>632 | 5.59<br>5.63<br>5.50<br>5.36 | 1597<br>1606<br>1581<br>1552 | 124<br>125<br>124<br>123 |
| 1820.0<br>1830.0                     | 795 ;<br>788 ;                   | 2872.9<br>2848.0<br>2730.8<br>1457.2   | 1311.7<br>1301.5<br>1279.7<br>646.7            | 45.7<br>45.7<br>46.9<br>44.4   | 611<br>603<br>588<br>211 | 5.18<br>5.12<br>4.99<br>1.79 | 1517<br>1505<br>1480<br>748  | 121<br>121<br>120<br>85  |
| 1850.0<br>1860.0<br>1870.0           | 784 7<br>798 7<br>795 7          | 2746.3<br>2825.2<br>2804.0<br>2873.0   | 1265.7<br>1309.8<br>1301.4<br>1328.6           | 46.1<br>46.4<br>46.4<br>46.2   | 579<br>610<br>604<br>623 | 4.91<br>5.17<br>5.12<br>5.28 | 1464<br>1515<br>1505<br>1537 | 119<br>121<br>121<br>122 |
| 1900.0<br>1910.0                     | 796 7<br>797 7<br>794 7          | 2812.4<br>2869.0<br>2856.3<br>2844.4   | 1303.2<br>1307.8<br>1297.7<br>1298.4           | 46.3<br>45.6<br>45.4<br>45.6   | 605<br>608<br>601<br>602 | 5.13<br>5.16<br>5.10<br>5.10 | 1507<br>1513<br>1501<br>1502 | 121<br>121<br>121<br>121 |
| 1940.0<br>1950.0                     | 516 :<br>793 :                   | 2849.2<br>1289.5<br>2866.6<br>2275.9   | 1294.4<br>549.2<br>1297.3<br>999.8             | 45.4<br>42.6<br>45.3<br>43.9   | 598<br>165<br>601<br>406 | 5.08<br>1.40<br>5.10<br>3.45 | 1497<br>635<br>1500<br>1156  | 121<br>79<br>121<br>106  |
| 1970.0<br>1980.0<br>1990.0<br>2000.0 | 784 2<br>800 2<br>790 2<br>797 2 | 2781.8<br>2884.7<br>2810.2<br>2869.5 * | 1265.6<br>1318.3<br>1287.6<br>1309.1           | 45.5<br>45.7<br>45.8<br>45.6   | 579<br>615<br>594<br>609 | 4.91<br>5.22<br>5.04<br>5.17 | 1464<br>1525<br>1489<br>1514 | 119<br>122<br>120<br>121 |
|                                      |                                  | 2886.1<br>2855.2                       | 1300.6<br>1297.7                               | 45.1<br>45.5                   | 603<br>601               | 5.11<br>5.10                 | 1504<br>1501                 | 121<br>121               |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                                           | 8516.                                                | 0.0                                                                                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                | 517<br>12.250<br>6.6<br>78127                                | NOZ:                                                               | ERVAL<br>ZLES<br>RUN<br>DITION                               |                                                                              | - 2170.0<br>16 16 18<br>154.0<br>2 G0.000                   |
|----------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                        | FLOW<br>RATE                                         | PSP                                                                                    | рвіт                                                                         | XPSP                                                         | ННР                                                                | HHP/<br>sqin                                                 |                                                                              | JET<br>VELOCITY                                             |
| 2020.0<br>2030.0<br>2040.0                                                             | 790                                                  | 2928.8<br>2915.0<br>2894.0                                                             | 1285.1                                                                       | 43.9<br>44.1<br>44.2                                         | 593<br>592<br>589                                                  | 5.03<br>5.02<br>5.00                                         | 1487<br>1486<br>1481                                                         | 120<br>120<br>120                                           |
| 2050.0<br>2060.0<br>2070.0<br>2080.0<br>2090.0<br>2100.0<br>2110.0<br>2120.0<br>2130.0 | 777<br>790<br>799<br>791<br>788<br>791<br>778<br>764 | 2892.9<br>2840.4<br>2929.4<br>2991.9<br>2956.3<br>2940.3<br>2979.3<br>2976.0<br>2877.0 | 1259.0<br>1298.6<br>1330.2<br>1302.2<br>1293.8<br>1304.8<br>1312.8<br>1267.4 | 44.6<br>44.3<br>44.5<br>44.0<br>44.0<br>43.8<br>43.8<br>44.1 | 593<br>571<br>598<br>620<br>601<br>595<br>602<br>596<br>565<br>573 | 5.03<br>4.84<br>5.08<br>5.26<br>5.10<br>5.05<br>4.79<br>4.86 | 1493<br>1456<br>1502<br>1538<br>1506<br>1496<br>1509<br>1518<br>1466<br>1480 | 120<br>118<br>120<br>122<br>120<br>120<br>120<br>118<br>116 |
| 2150.0<br>2160.0<br>2170.0                                                             | 767                                                  | 2892.0<br>2869.0<br>2883.5                                                             | 1264.7                                                                       | 43.9<br>44.1<br>44.2                                         | 567<br>566<br>573                                                  | 4.81<br>4.80<br>4.86                                         | 1470<br>1463<br>1474                                                         | 116<br>117<br>117                                           |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                         | 0 .<br>4 .                                           | 0 0                                                                                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                | 8.500<br>6.6                                                 | NOZZ<br>BIT                                                        | ERVAL<br>ZLES<br>RUN<br>DITION                               | 2170.0-<br>1<br>TO BO                                                        | 2187.4<br>4 15 15<br>17.4<br>G0.300                         |
|                                                                                        | FLOW<br>RATE                                         | PSP                                                                                    | PRIT                                                                         | %PSP                                                         | ННР                                                                | HHP/<br>sqin                                                 | IMPACT<br>FORCE V                                                            |                                                             |
| 2180.0<br>2187.4                                                                       | 267<br>232                                           | 792.8<br>564.9                                                                         |                                                                              | 32.4<br>34.3                                                 | 40<br>26                                                           | 0.70<br>0.46                                                 | 229<br>173                                                                   | 53<br>46                                                    |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                         | O.<br>1.                                             | 0.0                                                                                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                | 8.500<br>6.7<br>8918                                         | NOZZ<br>BIT                                                        | RVAL<br>LES<br>RUN<br>OITION                                 | 1                                                                            | 2205.5<br>4 15 15<br>17.5<br>G0.350                         |
|                                                                                        | FLOW<br>RATE                                         | PSP                                                                                    | PRIT                                                                         | %PSP                                                         | ннр                                                                | HHP/<br>sqin                                                 | IMPACT<br>FORCE V                                                            | JET<br>ELOCITY                                              |
| 2190.0<br>2200.0<br>2205.5                                                             | 221<br>223<br>194                                    | 528.4<br>576.9<br>447.6                                                                |                                                                              | 33.4<br>31.0<br>30.3                                         | 23<br>23<br>15                                                     | 0.40<br>0.41<br>0.27                                         | 158<br>160<br>121                                                            | 44<br>44<br>38                                              |

| BIT NUM<br>HTC J22<br>COST<br>TOTAL H |      | .00 T  | ADC CODE<br>TIZE<br>RIP TIME<br>OTAL TURNS | 517<br>12.250<br>7.2<br>163054 | NOZ<br>BIT | ERVAL<br>ZLES<br>RUN<br>DITION |        | - 2445.0<br>16 16 18<br>239.5<br>3 G0.000 |
|---------------------------------------|------|--------|--------------------------------------------|--------------------------------|------------|--------------------------------|--------|-------------------------------------------|
|                                       | FLOW |        |                                            |                                |            | HHP/                           | IMPACT | JET                                       |
| DEPTH                                 | RATE | PSP    | PRIT                                       | %PSP                           | ннр        | sqin                           | FORCE  | VELOCITY                                  |
| 2210.0                                |      | 2851.3 | 1216.1                                     | 42.7                           | 534        | 4.53                           | 1406   | 114                                       |
| 2220.0                                | 520  | 1440.7 | 581.6                                      | 40.4                           | 176        | 1.50                           | 673    | 79                                        |
| 2230.0                                | 747  | 2831.2 | 1198.4                                     | 42.3                           | 522        | 4.43                           | 1386   | 114                                       |
| 2240.0                                | 748  | 2815.5 | 1202.4                                     | 42.7                           | 525        | 4.45                           | 1391   | 114                                       |
| 2250.0                                | 747  | 2819.1 | 1201.1                                     | 42.6                           | 524        | 4,44                           | 1389   | 114                                       |
| 2260.0                                | 740  | 2776.4 | 1178.6                                     | 42.5                           | 509        | 4.32                           | 1363   | 113                                       |
| 2270.0                                | 746  | 2809.2 | 1195.3                                     | 42.5                           | 520        | 4.41                           | 1382   | 113                                       |
| 2280.0                                | 757  | 2896.0 | 1233.4                                     | 42.6                           | 545        | 4.62                           | 1426   | 115                                       |
| 2290.0                                | 749  | 2819.7 | 1207.3                                     | 42.8                           | 528        | 4.48                           | 1396   | 114                                       |
| 2300.0                                | 750  | 2830.3 | 1210.3                                     | 42.8                           | 530        | 4,49                           | 1400   | 114                                       |
| 2310.0                                |      | 2887.2 | 1222.3                                     | 42.3                           | 538        | 4.56                           | 1414   | 115                                       |
| 2320.0                                |      | 2841.3 | 1210.4                                     | 42.6                           | 530        | 4,50                           | 1400   | 114                                       |
| 2330.0                                | 749  | 2850.3 | 1204.9                                     | 42.3                           | 526        | 4.46                           | 1394   | 114                                       |
| 2340.0                                | 747  | 2870.3 | 1199.4                                     | 41.8                           | 523        | 4.43                           | 1387   | 114                                       |
| 2350.0                                | 748  | 2882.3 | 1203.0                                     | 41.7                           | 525        | 4.45                           | 1391   | 114                                       |
| 2360.0                                | 720  | 2688.5 | 1116.0                                     | 41.5                           | 469        | 3.98                           | 1291   | 110                                       |
| 2370.0                                | 760  | 2958.0 | 1241.1                                     | 42.0                           | 550        | 4.67                           | 1435   | 116                                       |
| 2380.0                                | 756  | 2905.0 | 1228.5                                     | 42.3                           | 542        | 4.60                           | 1421   | 115                                       |
| 2390.0                                | 757  | 2961.3 | 1232.8                                     | 41.6                           | 545        | 4.62                           | 1426   | 115                                       |
| 2400.0                                | 524  | 1486.0 | 591.1                                      | 39.8                           | 181        | 1.53                           | 684    | 80                                        |
| 2410.0                                |      | 2913.6 | 1203.9                                     | 41.3                           | 526        | 4.46                           | 1392   | 114                                       |
| 2420.0                                |      | 2921.7 | 1209.8                                     | 41.4                           | 529        | 4.49                           | 1399   | 114                                       |
| 2430.0                                | 747  | 2911.8 | 1200.8                                     | 41.2                           | 524        | 4,44                           | 1389   | 114                                       |
| 2440.0                                | 619  | 2000.4 | 823.0                                      | 41.1                           | 297        | 2.52                           | 952    | 94                                        |
| 2445.0                                | 612  | 2390.5 | 804.8                                      | 33.7                           | 287        | 2.44                           | 931    | 93                                        |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS   | 8516.        | 0 0              | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 517<br>12.250<br>7.5<br>119866 | NOZ:<br>BIT | ERVAL<br>ZLES<br>RUN | 16                 | 16 18<br>152.0          |
|------------------------------------------------|--------------|------------------|-----------------------------------------------|--------------------------------|-------------|----------------------|--------------------|-------------------------|
|                                                |              |                  |                                               |                                | 20.40.11    | W 16 1 16 6.01 C     | 1 1 35 3           | W0 1000                 |
|                                                | FLOW<br>RATE | PSP              | твач                                          | %PSP                           | ННЬ         | HHP/<br>sqin         | IMPACT<br>FORCE VE |                         |
| CAR O O                                        | 173 673 P73  |                  | r a a rom m                                   | ***                            | 0 / P1      |                      |                    |                         |
| 2450.0<br>2460.0                               | 727<br>730   | 2838.3           |                                               | 38.9<br>39.3                   | 467<br>488  | 3.97<br>4.14         | 1275<br>1325       | 111<br>111              |
| 2470.0                                         | 731          | 2936.2           |                                               | 39.1                           | 489         | 4.15                 | 1328               | 111                     |
| 2480.0                                         | 727          | 2913.9           | 1137.3                                        | 39.0                           | 483         | 4.09                 | 1315               | 111                     |
| 2490.0                                         | 729          | 2926.6           |                                               | 39.1                           | 486         | 4.12                 | 1322               | 111                     |
| 2500.0                                         | 732          | 2908.6           |                                               | 39.7                           | 493         | 4.18                 | 1334               | 111                     |
| 2510.0                                         | 730          | 2898.8           |                                               | 39.5                           | 488         | 4,14                 | 1325               | 111                     |
| 2520.0                                         | 730          | 2892.9           |                                               | 39.6                           | 488         | 4,14                 | 1325               | 111                     |
| 2530.0<br>2540.0                               | 725<br>671   | 2889.5           |                                               | 39.1                           | 478         | 4.06                 | 1308               | 110                     |
| 2550.0                                         | 728          | 2683.8<br>2923.5 |                                               | 36.1<br>38.9                   | 379         | 3.22                 | 1120               | 102                     |
| 2560.0                                         | 732          | 2912.9           |                                               | 39.5                           | 483<br>492  | 4.10<br>4.17         | 1317<br>1332       | 111                     |
| 2570.0                                         | 731          | 2872.5           |                                               | 40.0                           | 472<br>491  | 4.17                 | 1331               | 111<br>111              |
| 2580.0                                         | 734          | 2872.6           | 1159.5                                        | 40.4                           | 497         | 4,21                 | 1341               | 112                     |
| 2590.0                                         | 733          |                  | 1155.8                                        | 40.5                           | 494         | 4.19                 |                    | 112                     |
| 2597.0                                         | 731          | 2883.2           |                                               | 39.8                           | 489         | 4.15                 | 1328               | 111                     |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS | 0.           |                  | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500                          | NOZI<br>BIT | RUN                  | 14                 | 15 15<br>5.1            |
|                                                | FLOW         |                  |                                               |                                |             | HHP/                 | IMPACT             | JET                     |
|                                                |              | PSP              | PRIT                                          | %PSP                           | HHP         |                      | FORCE VE           |                         |
| 2600.0<br>2602.1                               | 279<br>276   | 749.1<br>635.5   |                                               | 37.3<br>43.2                   | 45<br>44    | 0.80<br>0.78         | 250<br>246         | 55<br>54                |
| BIT NUMBER<br>HTC J33<br>COST                  | 7774,        |                  | IADC CODE<br>SIZE<br>TRIP TIME                | 537<br>12.250<br>7.5           | NOZZ        | ERVAL<br>ZLES<br>RUN | 2602.1-<br>16      | 2616.7<br>16 18<br>14.6 |
| TOTAL HOURS                                    |              |                  | TOTAL TURNS                                   | 10553                          |             | NOITION              | T1 B5              | G0.000                  |
|                                                | FLOW         |                  |                                               |                                |             | HHP/                 | IMPACT             | JET                     |
|                                                | RATE         | PSP              | PRIT                                          | %PSP                           | ННР         | sqin                 | FORCE VE           |                         |
| 2610.0<br>2616.7                               | 730<br>730   | 2855.0<br>2855.0 |                                               | 40.1<br>40.1                   | 487<br>487  | 4.14<br>4.14         | 1324<br>1324       | 111<br>111              |

| BIT NUMBER<br>CHRIS RC3<br>COST<br>TOTAL HOURS  | 0 2               | . 00                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>7.6<br>14572       | INTER<br>NOZZL<br>BIT R<br>CONDI    | ES<br>UN             | 2616.7- 2635.2<br>15 15 14<br>18.5<br>TO BO GO.400 |
|-------------------------------------------------|-------------------|-------------------------|-----------------------------------------------|-----------------------------|-------------------------------------|----------------------|----------------------------------------------------|
|                                                 | FLOW<br>RATE      | PSP                     | PRIT                                          | %PSP                        |                                     | HHP/<br>sqin         | IMPACT JET<br>FORCE VELOCITY                       |
| 2620.0<br>2630.0<br>2635.2                      | 226<br>242<br>243 | 621.4<br>560.6<br>514.2 | 211.5                                         | 29.5<br>37.7<br>41.5        | 30                                  | 0.42<br>0.53<br>0.53 | 164 44<br>189 48<br>191 48                         |
| BIT NUMBER<br>CHRIS. RC3<br>COST<br>TOTAL HOURS | 0                 | . 00                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 4<br>8.500<br>7.8<br>36242  |                                     | ES<br>UN             | 2635.2- 2653.0<br>15 15 14<br>17.8<br>TO BO GO.800 |
|                                                 | FLOW<br>RATE      | PSP                     | PETT                                          | %P SP                       |                                     | HHP/<br>sqin         | IMPACT JET FORCE VELOCITY                          |
| 2640.0<br>2650.0<br>2653.0                      | 218<br>251<br>251 | 786.7<br>693.2<br>542.9 | 226.9                                         | 22.1<br>32.7<br>42.0        | 33                                  | 0.39<br>0.59<br>0.59 |                                                    |
| BIT NUMBER<br>CHRIS, RC4<br>COST<br>TOTAL HOURS |                   | . 00                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>7.6<br>24028       | INTER<br>NOZZL<br>BIT R<br>CONDI    | ES<br>UN             | 2653.0- 2671.2<br>15 15 14<br>18.2<br>TO BO GO.600 |
|                                                 | FLOW<br>RATE      | PSP                     | PBIT                                          | XP SP                       |                                     | HHP/<br>sqin         | IMPACT JET FORCE VELOCITY                          |
| 2660.0<br>2670.0<br>2671.2                      | 242<br>248<br>248 | 677.2<br>735.9<br>734.2 | 220.8                                         | 31.0<br>30.0<br>30.1        | 32                                  | 0.52<br>0.56<br>0.56 | 188 48<br>197 49<br>197 49                         |
| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS    | 8516.             | . 0 0                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 517<br>12.250<br>7.5<br>314 | INTER'<br>NOZZLI<br>BIT RI<br>CONDI | ES<br>UN             | 16 16 18<br>0.8                                    |
|                                                 | FLOW<br>RATE      | PSP                     | PBIT                                          | ЖРSР                        |                                     | HMP/<br>sqin         | IMPACT JET FORCE VELOCITY                          |
| 2672.0                                          | 706               | 2882.7                  | 1079.8                                        | 37.5                        | 445                                 | 3.77                 | 1249 107                                           |

| BIT NUMBER<br>RC4<br>COST<br>TOTAL HOURS                                     | 0                                                    | . 0 0                                                                        | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                     | 4<br>8.500<br>7.6<br>25234                                   | NOZ<br>BIT                                           | ERVAL<br>ZLES<br>RUN<br>DITION                               |                                                              | 0- 2690.5<br>15 15 14<br>18.5<br>0 G0.900    |
|------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|
| DEPTH                                                                        | FLOW<br>RATE                                         | PSP                                                                          | PBIT                                                              | %PSP                                                         | ННР                                                  | HHP/<br>sqin                                                 |                                                              | JET<br>VELOCITY                              |
|                                                                              | 247<br>245<br>245                                    | 686.6<br>626.0<br>642.0                                                      | 218.3                                                             | 32.2<br>34.9<br>34.0                                         | 32<br>31<br>31                                       | 0.56<br>0.55<br>0.55                                         | 197<br>195<br>195                                            | 49<br>48<br>48                               |
| BIT NUMBER<br>CHRIS C-20<br>COST<br>TOTAL HOURS                              | 0                                                    | .00                                                                          | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                     | 4<br>8.470<br>7.7<br>40488                                   | NOZ<br>BIT                                           | ERVAL<br>ZLES<br>RUN<br>DITION                               |                                                              | - 2708.3<br>14 14 14<br>17.8<br>0 G0.300     |
|                                                                              | FLOW<br>RATE                                         | PSP                                                                          | рват                                                              | XP SP                                                        | ННР                                                  | HHP/<br>sqin                                                 |                                                              | JET<br>VELOCITY                              |
| 2700.0<br>2708.3                                                             | 240<br>235                                           | 1061.5<br>986.0                                                              |                                                                   | 23.9<br>24.6                                                 | 35<br>33                                             | 0.63<br>0.59                                                 | 206<br>197                                                   | 52<br>51                                     |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                 | 7774                                                 | (                                                                            | IADC CODE<br>BIZE<br>TRIP TIME<br>TOTAL TURNS                     | 537<br>12.250<br>8.0<br>48386                                | NOZ:<br>BIT                                          | ERVAL<br>ZLES<br>RUN<br>DITION                               |                                                              | - 2776.3<br>16 16 18<br>68.0<br>4 G0.125     |
|                                                                              | FLOW<br>RATE                                         | PSP                                                                          | PBIT                                                              | %PSP                                                         | ннр                                                  | HHP/<br>sqin                                                 |                                                              | JET<br>VELOCITY                              |
| 2710.0<br>2720.0<br>2730.0<br>2740.0<br>2750.0<br>2760.0<br>2770.0<br>2776.3 | 711<br>709<br>648<br>708<br>711<br>710<br>705<br>704 | 2830.8<br>2880.6<br>2462.5<br>2894.1<br>2904.8<br>2953.2<br>2930.9<br>2883.0 | 1098.1<br>1082.3<br>902.8<br>1078.8<br>1087.3<br>1084.9<br>1069.1 | 38.8<br>37.6<br>36.7<br>37.3<br>37.4<br>36.7<br>36.5<br>37.0 | 456<br>448<br>341<br>446<br>451<br>450<br>440<br>438 | 3.87<br>3.80<br>2.90<br>3.78<br>3.83<br>3.81<br>3.73<br>3.71 | 1270<br>1252<br>1044<br>1248<br>1257<br>1255<br>1236<br>1232 | 108<br>108<br>99<br>108<br>108<br>108<br>107 |

| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                 | <i>77</i> 74<br>5 7                                         | . 00                                                                                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                               | 537<br>12,250<br>8.0<br>22806                                | NOZ<br>BIT                                                  | ERVAL<br>ZLES<br>RUN<br>IDITION                                      |                                                                     | 2806.8<br>5 16 16<br>30.5<br>60.000          |
|------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|
| DEPTH                                                                        | FLOW<br>RATE                                                | PSP                                                                                    | PBIT                                                                        | %PSP                                                         | ННР                                                         | HHP/<br>sqin                                                         |                                                                     |                                              |
| 2780.0<br>2790.0<br>2800.0                                                   | 669<br>681<br>798                                           | 2852.2<br>2905.0<br>2826.5                                                             | 1279.5                                                                      | 42.9<br>44.0<br>62.8                                         | 478<br>508<br>827                                           | 4.06<br>4.31<br>7.02                                                 | 1249<br>1305<br>1811                                                | 115<br>118<br>138                            |
| 2806.8                                                                       | 685                                                         | 2920.0                                                                                 | 1283.8                                                                      | 44.0                                                         | 513                                                         | 4.35                                                                 | 1309                                                                | 118                                          |
| BIT NUMBER<br>CHRIS RC6<br>COST<br>TOTAL HOURS                               | 18300<br>3 3                                                | .00                                                                                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                               | 8.500<br>8.0<br>18565                                        | NOZ<br>BIT                                                  | ERVAL<br>ZLES<br>RUN<br>DITION                                       | 1.4                                                                 | 2814.0<br>3 15 15<br>7.2<br>G0.900           |
| DEPTH                                                                        | FLOW<br>RATE                                                | PSP                                                                                    | PBIT                                                                        | XP SP                                                        | ННР                                                         | HHP/<br>sqin                                                         | IMPACT<br>FORCE VE                                                  | JET<br>LOCITY                                |
| 2810.0<br>2814.0                                                             | 290<br>287                                                  | 472.4<br>589.1                                                                         | 300.9<br>297.3                                                              | 63.7<br>50.5                                                 | 51<br>50                                                    | 0.90<br>0.88                                                         | 269<br>266                                                          | 57<br>57                                     |
| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOURS                                 | 6844                                                        | .00                                                                                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                               | 617<br>12.250<br>8.3<br>93198                                | NOZ<br>BIT                                                  | ERVAL<br>ZLES<br>RUN<br>DITION                                       |                                                                     | 2960.2<br>16 16<br>146.2<br>G0.000           |
| DEPTH                                                                        | FLOW<br>RATE                                                | P S P                                                                                  | PRIT                                                                        | %P S P                                                       | ННР                                                         | HHP/<br>sqin                                                         | IMPACT<br>FORCE VE                                                  | JET<br>LOCITY                                |
| 2820.0<br>2830.0<br>2840.0<br>2850.0<br>2860.0<br>2870.0<br>2880.0           | 688<br>688<br>683<br>681<br>681<br>675                      | 2875.9<br>2882.6<br>2859.7<br>2896.2<br>2891.0<br>2903.2<br>2857.8                     | 1308.2<br>1308.5<br>1290.0<br>1293.7<br>1286.4<br>1286.2<br>1258.4          | 45.5<br>45.4<br>45.1<br>44.7<br>44.5<br>44.3<br>44.0         | 525<br>525<br>514<br>516<br>511<br>511<br>496               | 4.45<br>4.45<br>4.36<br>4.38<br>4.34<br>4.34                         | 1334<br>1334<br>1315<br>1319<br>1312<br>1311<br>1283                | 119<br>118<br>118<br>118<br>118<br>118       |
| 2890.0<br>2900.0<br>2910.0<br>2920.0<br>2930.0<br>2940.0<br>2950.0<br>2960.0 | 677<br>480<br>680<br>686<br>685<br>683<br>684<br>682<br>682 | 2867.4<br>1485.7<br>2890.0<br>2924.0<br>2912.3<br>2890.9<br>2906.5<br>2895.4<br>2899.2 | 1262.1<br>630.7<br>1278.4<br>1286.1<br>1295.7<br>1291.5<br>1296.0<br>1290.1 | 44.0<br>42.5<br>44.2<br>44.0<br>44.5<br>44.6<br>44.6<br>44.6 | 499<br>176<br>507<br>515<br>518<br>515<br>517<br>514<br>515 | 4.23<br>1.50<br>4.30<br>4.37<br>4.39<br>4.37<br>4.38<br>4.36<br>4.37 | 1287<br>643<br>1303<br>1311<br>1321<br>1317<br>1321<br>1315<br>1319 | 117<br>83<br>117<br>118<br>118<br>118<br>118 |

| BIT NUMBER<br>HTC J7<br>COST<br>TOTAL HOUR   | 1494         | . 0 0                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>8.3                          | NOZ<br>BIT |                                |              | 2-2972.3<br>14 14 14<br>12.1<br>6 G0.375 |
|----------------------------------------------|--------------|-------------------------|-----------------------------------------------|---------------------------------------|------------|--------------------------------|--------------|------------------------------------------|
| 95.1111.115.1191.1.1                         | FLOW         | 91% 20% 5 <sup>66</sup> | 2°-, 20°-, 10° -10°-                          | 11 c 11 c 11 c 11 c 11 c 11 c 11 c 11 |            | HHP/                           |              |                                          |
| DEPTH                                        | RATE         | PSF                     | PRIT                                          | %PSP                                  | HHP        | sqin                           | FORCE        | VELOCITY                                 |
| 2970.0<br>2972.3                             | 568<br>567   | 2854.8<br>2862.4        |                                               | 48.6<br>48.3                          | 459<br>458 | 8.10<br>8.07                   | 1128<br>1125 | 123<br>123                               |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR: | 4503         | . 0 0                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>8.5                          | NOZ<br>BIT | ZLES<br>RUN                    |              | 3-3045.8<br>14 14 14<br>73.5<br>6 G0.625 |
|                                              |              |                         |                                               |                                       |            |                                |              |                                          |
| DEPTH                                        | FLOW<br>RATE | PSP                     | PRIT                                          | %PSP                                  | ННР        | HHP/<br>sqin                   |              | JET<br>VELOCITY                          |
| 2980.0                                       | 559          | 2716.6                  | 1349.7                                        | 49.7                                  | 440        | 7.75                           | 1098         | 121                                      |
| 2990.0                                       | 565          | 2769.5                  |                                               | 50.0                                  | 456        | 8.04                           | 1126         | 122                                      |
| 3000.0                                       | 561          | 2751,8                  |                                               | 49.7                                  | 447        | 7.88                           | 1112         | 121                                      |
| 3010.0                                       | 564          | 2770.0                  |                                               | 49,9                                  | 454        | 8.00                           | 1124         | 122                                      |
| 3020.0                                       | 459          | 1872.3                  |                                               | 48.8                                  | 244        | 4.31                           | 743          | 99                                       |
| 3030.0<br>3040.0                             | 567<br>564   | 2784.2<br>2748.5        |                                               | 50.2                                  | 463        | 8.16                           | 1138         | 123                                      |
| 3040.0                                       | 563          | 2760.1                  |                                               | 50.3<br>49.7                          | 454<br>450 | 8.00<br>7.94                   | 1124<br>1116 | 122<br>122                               |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS | 4503         |                         | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 537<br>8.500<br>8.6<br>30946          | BIT<br>BIT | ERVAL<br>ZLES<br>RUN<br>DITION |              | 8-3091.6<br>14 14 14<br>45.8<br>6 G0.125 |
|                                              | FLOW         |                         |                                               |                                       |            | HHP/                           | IMPACT       | JET                                      |
| DEPTH                                        | RATE         | PSP                     | PBIT                                          | %PSP                                  | HHP        | sqin                           | FORCE        | VELOCITY                                 |
| 3050.0                                       | 560          | 2880.0                  | 1362.1                                        | 47.3                                  | 445        | 7.84                           | 1108         | 121                                      |
| 3060.0                                       | 565          | 2900.0                  |                                               | 47.3                                  | 452        | 7.97                           | 1116         | 122                                      |
| 3070.0                                       | 564          | 2862.2                  |                                               | 48.1                                  | 453        | 7.98                           | 1120         | 122                                      |
| 3080.0                                       | 568          | 2870.9                  | 1386.8                                        | 48.3                                  | 460        | 8.10                           | 1128         | 123                                      |
| 3090.0                                       | 554          | 2916.6                  |                                               | 48.2                                  | 454        | 8.00                           | 1143         | 120                                      |
| 3091.6                                       | 558          | 2898.4                  |                                               | 49.0                                  | 462        | 8.14                           | 1155         | 121                                      |

| HTC J<br>COST                     |     | 4347<br>10        |                                      | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 617<br>8.500<br>8.6<br>35427 | NOZ<br>BIT               | TERVAL<br>ZZLES<br>FRUN<br>MITION |                      | 1.6-3116.1<br>14 14 14<br>24.5<br>B2 G0.000 |
|-----------------------------------|-----|-------------------|--------------------------------------|-----------------------------------------------|------------------------------|--------------------------|-----------------------------------|----------------------|---------------------------------------------|
| DEP                               |     | LOW<br>PATE       | PSP                                  | PEIT                                          | ZPSP                         | ННЬ                      | HHP/<br>sqin                      | IMPACT<br>FORCE      | JET<br>VELOCITY                             |
| 3100<br>3110<br>3116              | .0. | 554<br>557<br>565 | 2873.9<br>2787.7<br>2907.2           | 1394.5                                        | 48.7<br>50.0<br>49.4         | 452<br>453<br>474        | 7,97<br>7,99<br>8,35              | 1139<br>1134<br>1169 | 120                                         |
| BIT NO CHRIS COST TOTAL           |     | 0.                | 0 0                                  | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8.500<br>8.6<br>15784        | NOZ<br>BIT               | ERVAL<br>ZLES<br>RUN<br>DITION    |                      | .1-3117.4<br>14 14 14<br>1.3<br>B0 G0.600   |
| DEP                               |     | LOW<br>ATE        | PSP                                  | PRIT                                          | %PSP                         | ННР                      | HHP/<br>sqin                      | IMPACT<br>FORCE      | JET<br>VELOCITY                             |
| 3117                              | . 4 | 295               | 1425.3                               | 392.3                                         | 27.5                         | 68                       | 1.19                              | 319                  |                                             |
| BIT NU<br>HTC J4<br>COST<br>TOTAL | 14  | 4347.<br>7.:      | 00                                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 617<br>8.500<br>8.7<br>23244 | NOZ:<br>BIT              | ERVAL<br>ZLES<br>RUN<br>DITION    |                      | .4-3143.4<br>14 14 14<br>26.0<br>32 G0.000  |
| DEPT                              |     | LOW<br>ATE        | PSP                                  | PBIT                                          | %PSP                         | ННР                      | HHP/<br>sqin                      | IMPACT<br>FORCE      | JET<br>VELOCITY                             |
| 3120.<br>3130.<br>3140.<br>3143.  | 0 5 | 574 2<br>560 2    | 2860.4<br>2967.6<br>2908.8<br>2961.6 | 1399.0<br>1505.7<br>1433.1<br>1457.5          | 48.9<br>50.7<br>49.3<br>49.2 | 453<br>504<br>468<br>480 | 7.99<br>8.88<br>8.25<br>8.46      | 1138<br>1225         | 120<br>124                                  |
|                                   |     |                   | :<br>T 0(                            | ADC CODE<br>SIZE<br>RIP TIME<br>OTAL TURNS    | 4<br>8.500<br>8.7<br>18459   | NOZZ<br>BIT              | RVAL<br>LES<br>RUN<br>ITION       |                      | 4-3145.4<br>14 14 14<br>2.0<br>0 G0.100     |
| DEPT                              |     | OW<br>TE          | PSP                                  | PRIT                                          | %PSP                         | ННР                      | HHP/<br>sqin                      | IMPACT<br>FORCE      | JET<br>VELOCITY                             |
| 3145.                             | 4 2 | :58 1             | 236.3                                | 316.3                                         | 25.6                         | 48                       | 0.84                              | 257                  | 56                                          |

| BIT NUMBER<br>HTC J55<br>COST<br>TOTAL HOURS | 4350<br>23               | . 0 0                                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 637<br>8.500<br>8.7<br>70096 | INTE<br>NOZZ<br>BIT<br>CONI | ERVAL<br>ZLES<br>RUN<br>DITION | 3145.<br>T8 E                | 4-3203.5<br>14 14 14<br>58.1<br>44 G0.000  |
|----------------------------------------------|--------------------------|--------------------------------------|-----------------------------------------------|------------------------------|-----------------------------|--------------------------------|------------------------------|--------------------------------------------|
|                                              | FLOW<br>RATE             | PSP                                  | PRIT                                          | <b>XP</b> SP                 | ННР                         | HHP/<br>sqin                   | IMPACT<br>FORCE              | JET<br>VELOCITY                            |
| 3150.0<br>3160.0<br>3170.0                   | 538<br>541<br>530        | 2916.3<br>2942.0<br>2994.5           | 1422.2                                        | 47.4<br>48.3<br>47.1         | 434<br>449<br>436           |                                | 1125<br>1157<br>1147         | 116<br>117<br>115                          |
| 3180.0<br>3190.0<br>3200.0<br>3203.5         | 531<br>505<br>496<br>497 | 3052.8<br>2944.3<br>2904.3<br>2844.0 | 1357.5<br>1319.3                              | 47.4<br>46.1<br>45.4<br>47.6 | 448<br>400<br>382<br>392    |                                | 1178<br>1104<br>1073<br>1101 | 115<br>109<br>107<br>107                   |
| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOURS |                          |                                      | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 8,500<br>8,8                 | NOZ:<br>BIT                 | ERVAL<br>ZLES<br>RUN<br>DITION |                              | 5-3225.9<br>14 14 15<br>22.4<br>(2 G0.000  |
|                                              | FLOW<br>RATE             | PSP                                  | PEIT                                          | %PSP                         | ннр                         | HHP/<br>sqin                   |                              | JET<br>VELOCITY                            |
|                                              | 505<br>504<br>504        | 2932.7<br>2948.9<br>2924.9           | 1282.3                                        | 43.8<br>43.5<br>43.5         | 378<br>377<br>374           | 6.67<br>6.65<br>6.59           | 1096<br>1095<br>1086         | 104<br>104<br>104                          |
| BIT NUMBER<br>HTC J55<br>COST<br>TOTAL HOURS | 4350                     | . 0 0                                | SIZE                                          | 637<br>8.500<br>8.8<br>31327 | NOZ:<br>BIT                 | ERVAL<br>ZLES<br>RUN<br>DITION |                              | 9-3237.6<br>14 14 15<br>11.7<br>31 G0.000  |
|                                              | FLOW<br>RATE             | PSP                                  | PRIT                                          | %PSP                         | ннр                         | HHP/<br>sqin                   | IMPACT<br>FORCE              | JET<br>VELOCITY                            |
| 3230.0<br>3237.6                             | 496<br>505               | 2897.6<br>2971.0                     |                                               | 43.0<br>42.7                 | 360<br>374                  | 6.35<br>6.58                   | 1063<br>1083                 | 102<br>104                                 |
| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS | 4139<br>16               | . 0 0                                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS | 517<br>8.500<br>8.8<br>49328 | NOZ:<br>BIT                 | ERVAL<br>ZLES<br>RUN<br>DITION |                              | .6-3257.0<br>14 14 15<br>19.4<br>31 G0.000 |
|                                              | FLOW<br>RATE             | PSP                                  | PRIT                                          | %PSP                         | ННЬ                         | HHP/<br>sqin                   | IMPACT<br>FORCE              | JET<br>VELOCITY                            |
| 3240.0                                       | 507                      | 2911.8                               | 1292.1                                        | 44.4                         | 382                         | 6.74                           | 1103                         | 105                                        |

| DEPTH  | FLOW<br>RATE | PSP    | PRIT   | %P SP | ннр | HHP/<br>sqin | IMPACT<br>FORCE | JET<br>VELOCITY |
|--------|--------------|--------|--------|-------|-----|--------------|-----------------|-----------------|
| 3250.0 | 502          | 2916.5 | 1270.3 | 43.6  | 372 | 6.56         | 1084            | 104             |
| 3257.0 | 505          | 2967.6 | 1280.6 | 43.2  | 377 | 6.64         | 1093            | 104             |

## (f). COMPUTER DATA LISTING : LIST D

## ANNULAR VELOCITIES : (in metres per minute)

DC/OH - Between drill collars and the open hole.

per minute.

DC/CSG - Between drill collars and casing.

HW/OH - Between heavyweight drill pipe and the open hole.

HW/CSG - Between heavyweight drill pipe and casing.

DP/OH - Between drill pipe and open hole.

DP/CSG - Between drill pipe and casing.

DP/RIS - Between drill pipe and riser.

| COST<br>TOTAL H                                                      | BER<br>3AJ&26'<br>OURS                       | "HO<br>0.00<br>3.13 | IADC<br>SIZE<br>TRIP<br>TOTAL                |                                                    | 111<br>26.000<br>2.5<br>14945 | NOZ<br>BIT                              | ERVAL<br>ZLES<br>RUN<br>DITION                                         |                  | 70.0       | 0- 208<br>20 20<br>138<br>32 G0.0 |
|----------------------------------------------------------------------|----------------------------------------------|---------------------|----------------------------------------------|----------------------------------------------------|-------------------------------|-----------------------------------------|------------------------------------------------------------------------|------------------|------------|-----------------------------------|
| DEPTI                                                                | 1,                                           | 1 SPM               | E RAT                                        | OW DC/<br>CE OF                                    |                               | HW/<br>OH                               | HW/<br>CSG                                                             | DP/              | *** 1      | P/ DI                             |
| 80.0<br>90.0<br>100.0                                                | 72                                           | 8 🥱                 | l 69                                         | '5 8                                               |                               | 8<br>8<br>8                             | 606                                                                    | 014              | C:         | SG RI                             |
| 110.0<br>120.0<br>130.0<br>140.0<br>150.0<br>170.0<br>180.0<br>190.0 | 85<br>85<br>81<br>80<br>80<br>81<br>78<br>79 | 88<br>85<br>87      | 866<br>841<br>831<br>754                     | 6 11<br>7 10<br>7 10<br>4 9<br>7 9<br>1 10<br>1 10 |                               | 9<br>10<br>10<br>10<br>9<br>9<br>9<br>9 |                                                                        | 9<br>9<br>9<br>9 |            |                                   |
| 208.5                                                                | 87                                           | 104                 | 955                                          | 12                                                 |                               | 11                                      |                                                                        | 11               |            |                                   |
| BIT NUMBEA<br>HTC OSC 34<br>COST                                     | A.T                                          | 1                   | IADC CON                                     | ) E"                                               |                               |                                         |                                                                        |                  |            |                                   |
| TOTAL HOUR                                                           | 4857<br>?S 15                                | .00<br>.91          | SIZE<br>TRIP TIM<br>TOTAL TU<br>FLOW         | 17<br>1E<br>IRNS 14                                | 111<br>1.500<br>3.7<br>0631   | INTERG<br>NOZZLE<br>BIT RU<br>CONDIT    | ES<br>JN<br>TION                                                       | 208<br>T2        | 18         | 870.0<br>18 18<br>661.5<br>G0.000 |
| TOTAL HOUR<br>DEPTH<br>210.0                                         | 4857<br>S 15                                 | .00<br>.91          | SIZE<br>TRIP TIM<br>TOTAL TU<br>FLOW<br>RATE | 17<br>1E                                           | .500<br>3.7<br>0631           | NOZZLE<br>BIT RU<br>CONDIT              | IM MI                                                                  | T2               | 18         | 18 18<br>661.5<br>G0.000          |
| TOTAL HOUR<br>DEPTH                                                  | 4857<br>?S 15                                | .00<br>.91          | SIZE<br>TRIP TIM<br>TOTAL TU<br>FLOW         | 17<br>IE<br>IRNS 14<br>DC/                         | .500<br>3.7<br>0631<br>DC/    | NOZZLE BIT RU CONDIT                    | ES<br>JN<br>(ION<br>IW/ DI<br>SG (<br>20<br>21<br>21<br>21<br>21<br>21 | T2               | 18<br>B1 0 | 18 18<br>661.5<br>G0.000          |

| DEPTH  | SPM1 | SPM2 | FLOW<br>RATE | DC/   | DC/<br>CSG | HW/<br>OH   | HW/<br>CSG | DP/<br>OH | DP/<br>CSG  | DP/<br>RIS |
|--------|------|------|--------------|-------|------------|-------------|------------|-----------|-------------|------------|
| 400.0  | 95   | 94   | 945          | 29    |            | 25          | 21         |           | 21          | 17         |
| 410.0  | 94   | 94   | 940          | 29    |            | 25          | 21         |           | 21          | 17         |
| 420.0  | 94   | 93   | 936          | 29    |            | 25          | 1 A        | 25        | 21          | 17         |
| 430.0  | 95   | 93   | 940          | 29    |            | 25          |            | 25        | 21          | 17         |
| 440.0  | 95   | 93   | 937          | 29    |            | 25          |            | 25        | 21          | 17         |
| 450.0  | 94   | 92   | 933          | 29    |            | 25          |            | 25        | 20          | 17         |
| 460.0  | 94   | 92   | 930          | 29    |            | 25          |            | 25        | 20          | 17         |
| 470.0  | 95   | 94   | 943          | 29    |            | 25          |            | 25        | 21          | 17         |
| 480.0  | 95   | 95   | 950          | 29    |            | 25          |            | 25        | 21          | 17         |
| 490.0  | 94   | 92   | 928          | 29    |            | 25          |            | 25        | 20          | 17         |
| *970.0 | 3.49 | 7 £  | 7 6.0        | £2. 7 |            | <i>i</i> 33 |            | Eli vil   | <i>a.</i> 0 | 1.7        |
| 500.0  | 94   | 95   | 942          | 29    |            | 25          |            | 25        | 21          | 17         |
| 510.0  | 95   | 92   | 937          | 29    |            | 25          |            | 25        | 21          | 17         |
| 520.0  | 95   | 93   | 936          | 29    |            | 25          |            | 25        | 21          | 17         |
| 530.0  | 93   | 94   | 933          | 29    |            | 25          |            | 25        | 20          | 17         |
| 540.0  | 94   | 95   | 946          | 29    |            | 25          |            | 25        | 21          | 17         |
| 550.0  | 94   | 92   | 932          | 29    |            | 25          |            | 25        | 20          | 17         |
| 560.0  | 94   | 91   | 925          | 29    |            | 25          |            | 25        | 20          | 17         |
| 570.0  | 95   | 92   | 933          | 29    |            | 25          |            | 25        | 20          | 17         |
| 580.0  | 94   | 93   | 935          | 29    |            | 25          |            | 25        | 21          | 17         |
| 590.0  | 94   | 95   | 945          | 29    |            | 25          |            | 25        | 21          | 17         |
|        |      |      |              |       |            |             |            |           |             |            |
| 600.0  | 94   | 95   | 943          | 29    |            | 25          |            | 25        | 21          | 17         |
| 610.0  | 95   | 93   | 939          | 29    |            | 25          |            | 25        | 21          | 17         |
| 620.0  | 94   | 93   | 934          | 29    |            | 25          |            | 25        | 20          | 17         |
| 630.0  | 94   | 96   | 949          | 29    |            | 25          |            | 25        | 21          | 17         |
| 640.0  | 93   | 94   | 933          | 29    |            | 25          |            | 25        | 20          | 17         |
| 650.0  | 94   | 93   | 933          | 29    |            | 25          |            | 25        | 20          | 17         |
| 660.0  | 93   | 93   | 932          | 29    |            | 25          |            | 25        | 20          | 17         |
| 670.0  | 94   | 93   | 934          | 29    |            | 25          |            | 25        | 20          | 17         |
| 680.0  | 93   | 94   | 936          | 29    |            | 25          |            | 25        | 21          | 17         |
| 690.0  | 94   | 93   | 934          | 29    |            | 25          |            | 25        | 20          | 17         |
| 700.0  | 94   | 94   | 937          | 29    |            | 25          |            | 25        | 21          | 17         |
| 710.0  | 94   | 93   | 933          | 29    |            | 25          |            | 25        | 20          | 17         |
| 720.0  | 95   | 93   | 940          | 29    |            | 25          |            | 25        | 21          | 17         |
| 730.0  | 95   | 92   | 934          | 29    |            | 25          |            | 25        | 20          | 17         |
| 740.0  | 95   | 93   | 937          | 29    |            | 25          |            | 25        | 21          | 17         |
| 750.0  | 94   | 93   | 935          | 29    |            | 25          |            | 25        | 21          | 17         |
| 760.0  | 96   | 93   | 941          | 29    |            | 25          |            | 25        | 21          | 17         |
| 770.0  | 93   | 93   | <u> </u>     | 29    |            | 25          |            | 25        | 20          | î 7        |
| 780.0  | 94   | 93   | 934          | 29    |            | 25          |            | 25        | 20          | î 7        |
| 790.0  | 94   | 93   | 935          | 29    |            | 25          |            | 25        | 21          | 17         |
|        |      |      |              |       |            |             |            |           |             |            |
| 800.0  | 94   | 93   | 936          | 29    |            | 25          |            | 25        | 21          | 17         |
| 810.0  | 93   | 94   | 934          | 29    |            | 25          |            | 25        | 20          | 17         |
| 820.0  | 94   | 94   | 940          | 29    |            | 25          |            | 25        | 21          | 17         |
| 830.0  | 93   | 93   | 933          | 29    |            | 25          |            | 25        | 20          | 17         |
| 840.0  | 95   | 94   | 943          | 29    |            | 25          |            | 25        | 21          | 17         |
| 850.0  | 94   | 94   | 941          | 29    |            | 25          |            | 25        | 21          | 17         |
| 860.0  | 95   | 92   | 930          | 29    |            | 25          |            | 25        | 20          | 17         |
| 870.0  | 94   | 93   | 936          | 29    |            | 25          |            | 25        | 21          | 17         |

`

| BIT NUMBER<br>HTC J1<br>COST<br>TOTAL HOURS                                            |                                        |                                                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                 | 1 2                                                |                                  | NOZZ<br>BIT                                  | RVAL<br>(LES<br>RUN<br>DITION                |                                           | .0- 9<br>18 1<br>82 G(                 | 18 18<br>81.0                                |
|----------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------|----------------------------------------------|
| DEPTH                                                                                  | SPM1                                   | SPM2                                           | FLOW<br>RATE                                                | DC/<br>OH                                          | DC/<br>CSG                       | HW/<br>OH                                    | HW/<br>CSG                                   | DP/<br>OH                                 | DP/<br>CSG                             | DP/<br>RIS                                   |
| 880.0<br>890.0<br>900.0                                                                | 99<br>100<br>100                       | 98<br>98<br>98                                 | 984<br>990<br>990                                           | 85<br>86<br>86                                     | 77<br>78<br>78                   |                                              | 55<br>55<br>55                               |                                           | 55<br>55<br>55                         | 18<br>18<br>18                               |
| 910.0<br>920.0<br>930.0<br>940.0<br>950.0<br>951.0                                     | 100<br>100<br>100<br>100<br>100<br>100 | 98<br>98<br>98<br>98<br>98<br>98               | 990<br>990<br>990<br>990<br>990<br>990                      | 86<br>86<br>86<br>86<br>86<br>86                   | 78<br>78<br>78<br>78<br>78<br>78 |                                              | 55<br>55<br>55<br>55<br>55                   |                                           | 55<br>55<br>55<br>55<br>55             | 18<br>18<br>18<br>18<br>18                   |
| BIT NUMBER<br>HTC J1<br>COST<br>TOTAL HOURS                                            |                                        | 0 0                                            | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                 | 1 7                                                | 116<br>2.250<br>5.4<br>16592     | NOZZ<br>BIT                                  | ERVAL<br>YLES<br>RUN<br>DITION               |                                           | 18 1                                   | 18 18<br>547.0                               |
| DEPTH                                                                                  | SPM1                                   | SPM2                                           | FLOW<br>RATE                                                | DC/<br>OH                                          | DC/<br>CSG                       | HW/<br>OH                                    | HW/<br>CSG                                   | DP /<br>OH                                | DP/<br>CSG                             | DP/<br>RIS                                   |
| 960.0<br>970.0<br>980.0<br>990.0                                                       | 84<br>84<br>84<br>84                   | 98<br>98<br>98<br>98                           | 910<br>910<br>910<br>910                                    | 79<br>79<br>79<br>79                               | 71<br>71<br>71<br>71             |                                              | 51<br>51<br>51<br>51                         |                                           | 51<br>51<br>51<br>51                   | 16<br>16<br>16<br>16                         |
| 1000.0<br>1010.0<br>1020.0<br>1030.0<br>1040.0<br>1050.0<br>1060.0<br>1070.0           | 84<br>84<br>74<br>83<br>84<br>84<br>84 | 98<br>100<br>99<br>80<br>99<br>99<br>99<br>99  | 910<br>919<br>911<br>770<br>918<br>908<br>917<br>911<br>914 | 79<br>80<br>79<br>67<br>80<br>79<br>80<br>79<br>79 | 71<br>72<br>72                   | 46<br>55<br>54<br>55<br>55<br>55             | 51<br>51<br>51<br>51<br>51<br>51<br>51<br>51 |                                           | 51<br>51<br>53<br>51<br>51<br>51<br>51 | 16<br>17<br>16<br>14<br>16<br>16<br>16<br>16 |
| 1100.0<br>1110.0<br>1120.0<br>1130.0<br>1140.0<br>1150.0<br>1160.0<br>1170.0<br>1180.0 | 83<br>84<br>84<br>83<br>83<br>83<br>83 | 99<br>100<br>100<br>99<br>99<br>99<br>99<br>99 | 908<br>918<br>918<br>914<br>913<br>916<br>910<br>910<br>910 | 79<br>80<br>79<br>79<br>80<br>79<br>79<br>79       |                                  | 54<br>55<br>55<br>55<br>54<br>54<br>54<br>54 | 51                                           | 5555554444<br>555555555555555555555555555 | 51<br>51<br>51<br>51<br>51<br>51<br>51 | 16<br>16<br>16<br>16<br>16<br>16<br>16<br>16 |

·

| DEPTH            | SPM1     | SPM2     | FLOW<br>RATE | DC/<br>OH  | DC/<br>CSG | НW/<br>ОН | HW/<br>CSG | NP/<br>HO | DP/<br>CSG | DP/<br>RIS |
|------------------|----------|----------|--------------|------------|------------|-----------|------------|-----------|------------|------------|
| 1200.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1210.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 5 i        | 16         |
| 1220.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1230.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1240.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1250.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1260.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1270.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1280.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1290.0           | 83       | 99       | 910          | 79         |            | 54        |            | 54        | 51         | 16         |
| 1300.0           | 79       | 99       | 890          | 77         |            | 53        |            | 53        | 50         | 16         |
| 1310.0           | 78       | 99       | 885          | 77         |            | 53        |            | 53        | 49         | 16         |
| 1320.0           | 78       | 99       | 885          | 77         |            | 53        |            | 53        | 49         | 16         |
| 1330.0           | 78<br>70 | 99       | 885          | 77         |            | 53        |            | 53        | 49         | 16         |
| 1340.0           | 78<br>70 | 98       | 880          | 76         |            | 53        |            | 53        | 49         | 16         |
| 1350.0<br>1360.0 | 78<br>78 | 98       | 880          | 76         |            | 53        |            | 53        | 49         | 16         |
| 1370.0           | 76<br>79 | 98       | 880          | 76<br>55   |            | 53        |            | 53        | 49         | 16         |
| 1380.0           | 80       | 99       | 889          | 77         |            | 53        |            | 53        | 50         | 16         |
| 1390.0           | 79       | 94<br>93 | 871<br>050   | 76         |            | 52        |            | 52        | 49         | 16         |
| 1070.0           | / 7      | 7.3      | 859          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1400.0           | 79       | 93       | 860          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1410.0           | 79       | 93       | 860          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1420.0           | 79       | 93       | 859          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1430.0           | 79       | 93       | 859          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1440.0           | 79       | 95       | 869          | 75         |            | 52        |            | 52        | 48         | 16         |
| 1450.0           | 81       | 93       | 867          | 75         |            | 52        |            | 52        | 48         | 16         |
| 1460.0           | 79       | 93       | 862          | 75         |            | 52        |            | 52        | 48         | 15         |
| 1470.0           | 79       | 93       | 860          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1480.0           | 79       | 93       | 863          | 75         |            | 52        |            | 52        | 48         | 16         |
| 1490.0           | 80       | 92       | 858          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1500.0           | 80       | 92       | 859          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1510.0           | 79       | 93       | 860          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1520.0           | 78       | 23       | 857          | 74         |            | 51        |            | 51        | 48         | 15         |
| 1530.0           | 79       | 92       | 857          | 74         |            | 51        |            | 51        | 48         | 15         |
| 1540.0           | 79       | 92       | 855          | 74         |            | 51        |            | 51        | 48         | 15         |
| 1550.0           | 79<br>70 | 92       | 853          | 74         |            | 51        |            | 51        | 48         | 15         |
| 1560.0<br>1570.0 | 79<br>70 | 93       | 859          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1580.0           | 79<br>20 | 93       | 861          | <b>7</b> 5 |            | 51        |            | 51        | 48         | 15         |
| 1590.0           | 79<br>79 | 92       | 855          | 74         |            | 51        |            | 51        | 48         | 15         |
| 1.370.0          | / 7      | 93       | 861          | 75         |            | 51        |            | 51        | 48         | 15         |
| 1598.0           | 86       | 70       | 781          | 88         |            | 47        |            | 47        | 44         | 14         |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                       | 4<br>8516.00<br>44.49                                       | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURN  | 517<br>12.250<br>6.3<br>S 156262       | NOZZLES<br>BIT RUN                     |                                                    | 2016.0<br>5 16 18<br>418.0<br>60.250 |
|--------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------------------|--------------------------------------|
| рертн 9                                                            | SPM1 SPM2                                                   |                                               | DC/ DC/<br>OH CSG                      |                                        | DP/ DP/<br>OH CS0                                  |                                      |
| 1600.0<br>1610.0<br>1620.0                                         | 77 81<br>79 82<br>79 82                                     | 804                                           | 69<br>70<br>70                         | 47<br>48<br>48                         | 47 44<br>48 45<br>48 45                            | 5 14                                 |
| 1630.0<br>1640.0<br>1650.0<br>1660.0<br>1670.0                     | 79 82<br>79 82<br>80 82<br>80 81<br>79 82                   | 806<br>809<br>809                             | 70<br>70<br>70<br>70<br>70             | 48<br>48<br>48<br>48<br>48             | 48 45<br>48 45<br>48 45<br>48 45<br>48 45          | 5 14<br>5 15<br>5 15                 |
| 1680.0<br>1690.0<br>1700.0<br>1710.0<br>1720.0                     | 107 62<br>72 62<br>80 82<br>81 83<br>80 82                  | 667<br>811<br>816                             | 49<br>58<br>70<br>71<br>71             | 34<br>40<br>48<br>49<br>49             | 34 31<br>40 37<br>48 45<br>49 45<br>49 45          | 10<br>7 12<br>5 15<br>5 15           |
| 1730.0<br>1740.0<br>1750.0<br>1760.0                               | 81 82<br>81 82<br>80 82<br>80 83                            | 817<br>811<br>811                             | 71<br>71<br>70<br>70                   | 49<br>49<br>48<br>48                   | 49 45<br>49 46<br>48 45<br>48 45                   | ) 15<br>15<br>15                     |
| 1770.0<br>1780.0<br>1790.0<br>1800.0<br>1810.0<br>1820.0           | 80 84<br>80 84<br>80 83<br>79 82<br>80 80                   | 819<br>812<br>807<br>798                      | 71<br>71<br>71<br>70<br>69             | 49<br>49<br>49<br>48<br>48             | 49 46<br>49 46<br>49 45<br>48 45                   | 15<br>15<br>14<br>14                 |
| 1830.0<br>1840.0<br>1850.0<br>1860.0                               | 79 79<br>112 0<br>80 77<br>81 79                            | 788<br>560<br>784                             | 69<br>68<br>49<br>68<br>69             | 47<br>47<br>33<br>47<br>48             | 47 44<br>47 44<br>33 31<br>47 44<br>48 44          | 14<br>10<br>14                       |
| 1870.0<br>1880.0<br>1890.0<br>1900.0<br>1910.0                     | 80 80<br>80 80<br>80 79<br>80 79<br>80 79                   | 795<br>803<br>796<br>797                      | 69<br>70<br>69<br>69<br>69             | 48<br>48<br>48<br>48<br>48             | 48 44<br>48 45<br>48 44<br>48 44<br>47 44          | 14<br>i 14<br>i 14                   |
| 1920.0<br>1930.0<br>1940.0<br>1950.0                               | 80     79       79     79       0     103       80     79   | 793<br>516<br>793                             | 69<br>45<br>69                         | 47<br>31<br>47                         | 47 44<br>47 44<br>31 29<br>47 44                   | 14                                   |
| 1960.0<br>1970.0<br>1980.0<br>1990.0<br>2000.0<br>2010.0<br>2016.0 | 88 51<br>81 76<br>81 79<br>80 79<br>79 80<br>80 79<br>80 79 | 697<br>784<br>800<br>790<br>797<br>794<br>794 | 60<br>68<br>69<br>69<br>69<br>69<br>69 | 42<br>47<br>48<br>47<br>48<br>47<br>47 | 42 39<br>47 44<br>48 45<br>47 44<br>48 44<br>47 44 | 14<br>14<br>14<br>14                 |

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS                                           | 8516.<br>3 20.                                     |                                              | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        | :                                            | 517<br>12.250<br>6.6<br>78127 | NOZ:                                               | ERVAL<br>ZLES<br>RUN<br>DITION |                                                          |                                                    | 16 18<br>154.0                   |
|----------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|-------------------------------|----------------------------------------------------|--------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------|
| DEPTH                                                                                  | SPM1                                               | SPM2                                         | FLOW<br>RATE                                                       | DC/<br>OH                                    | DC/<br>CSG                    | HW/<br>OH                                          | HW/<br>CSG                     | DP/<br>OH                                                | DP/<br>CSG                                         | DP/<br>RIS                       |
| 2020.0<br>2030.0<br>2040.0                                                             | 80<br>79<br>79                                     | 78<br>79<br>79                               | 790<br>790<br>788                                                  | 69<br>69<br>68                               |                               | 47<br>47<br>47                                     |                                | 47<br>47<br>47                                           | 44<br>44<br>44                                     | 14<br>14<br>14                   |
| 2050.0<br>2060.0<br>2070.0<br>2080.0<br>2090.0<br>2100.0<br>2110.0<br>2120.0<br>2130.0 | 80<br>78<br>80<br>82<br>79<br>80<br>80<br>79<br>76 | 78<br>78<br>78<br>78<br>79<br>78<br>76<br>77 | 787<br>777<br>790<br>799<br>791<br>788<br>791<br>778<br>764<br>767 | 68<br>69<br>69<br>69<br>68<br>69<br>68<br>66 |                               | 47<br>46<br>47<br>48<br>47<br>47<br>47<br>46<br>46 |                                | 47<br>46<br>47<br>48<br>47<br>47<br>47<br>46<br>46<br>46 | 44<br>43<br>44<br>45<br>44<br>44<br>43<br>43<br>43 | 14<br>14<br>14<br>14<br>14<br>14 |
| 2150.0<br>2160.0<br>2170.0                                                             | 76<br>76<br>76                                     | 77<br>78<br>78                               | 765<br>767<br>770                                                  | 66<br>67<br>67                               |                               | 46<br>46<br>46                                     |                                | 46<br>46<br>46                                           | 43<br>43<br>43                                     | 14<br>14<br>14                   |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                         |                                                    | 5<br>00<br>64                                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        |                                              | 8.500<br>6.6<br>20046         | NOZ:                                               | ERVAL<br>ZLES<br>RUN<br>XITION |                                                          | ,0- 2:<br>14 :<br>B0 G0                            | 15 15<br>17.4                    |
| DEPTH                                                                                  | SPM1                                               | SPM2                                         | FLOW<br>RATE                                                       | DC/<br>OH                                    | DC/<br>CSG                    | HW/<br>OH                                          | HW/<br>CSG                     | DP/<br>OH                                                | DP/<br>CSG                                         | DP/<br>RIS                       |
| 2180.0<br>2187.4                                                                       | 0<br>46                                            | 53<br>0                                      | 267<br>232                                                         | 242<br>210                                   |                               |                                                    |                                |                                                          | 15<br>13                                           | 5<br>4                           |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                         |                                                    | 5<br>00<br>88                                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        | •<br>•                                       | 4<br>8.500<br>6.7<br>8918     | NOZZ<br>BIT                                        | ERVAL<br>ZLES<br>RUN<br>DITION |                                                          | .0- 22<br>14 1<br>BO GO                            | 15 15<br>17.5                    |
| DEPTH                                                                                  | SPM1                                               | SPM2                                         | FLOW<br>RATE                                                       | DC/<br>OH                                    | DC/<br>CSG                    | НW/<br>ОН                                          | HW/<br>CSG                     | DP/<br>OH                                                | DP/<br>CSG                                         | DP/<br>RIS                       |
| 2190.0<br>2200.0<br>2205.5                                                             | 44<br>45<br>39                                     | 0<br>0<br>0                                  | 221<br>223<br>194                                                  |                                              |                               |                                                    |                                |                                                          | 12<br>12<br>11                                     | 4<br>4<br>3                      |

\

| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOUR              | 8516<br>S 53                    |                                   | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR | 17                         | 517<br>2.250<br>7.2<br>53054 | NOZ:<br>BIT                      | ERVAL<br>ZLES<br>RUN<br>DITION |                                  |                            | 16 18<br>239.5       |
|----------------------------------------------------------|---------------------------------|-----------------------------------|---------------------------------------------|----------------------------|------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------|----------------------|
| DEPTH                                                    | SPM1                            | SPM2                              | FLOW<br>RATE                                | DC/<br>OH                  | DC/<br>CSG                   | HW/<br>0H                        | HW∕<br>CSG                     | DP/<br>OH                        | DP/<br>CSG                 | DP/<br>RIS           |
| 2210,0<br>2220.0<br>2230.0                               | 73<br>0<br>73                   | 77<br>104<br>76                   | 752<br>520<br>747                           | 65<br>45<br>65             |                              | 45<br>31<br>45                   |                                | 45<br>31<br>45                   | 42<br>29<br>42             | 14<br>9<br>13        |
| 2240.0<br>2250.0<br>2260.0<br>2270.0<br>2280.0           | 75<br>74<br>72<br>73<br>74      | 75<br>76<br>76<br>76<br>77        | 748<br>747<br>740<br>746<br>757             | 65<br>65<br>64<br>65<br>66 |                              | 45<br>45<br>44<br>45<br>45       |                                | 45<br>45<br>44<br>45             | 42<br>42<br>41<br>42       | 13<br>13<br>13       |
| 2290.0<br>2300.0<br>2310.0<br>2320.0<br>2330.0           | 73<br>73<br>74<br>73<br>74      | 77<br>77<br>77<br>77<br>77<br>76  | 749<br>750<br>754<br>750<br>749             | 65<br>65<br>65<br>65<br>65 |                              | 45<br>45<br>45<br>45<br>45       |                                | 45<br>45<br>45<br>45<br>45       | 42<br>42<br>42<br>42<br>42 | 14<br>13<br>13<br>14 |
| 2340.0<br>2350.0<br>2360.0<br>2370.0                     | 73<br>72<br>63<br>75            | 77<br>77<br>81<br>77              | 747<br>748<br>720<br>760                    | 65<br>65<br>63<br>66       |                              | 45<br>45<br>43<br>45             |                                | 45<br>45<br>43<br>45             | 42<br>42<br>42<br>40<br>42 | 13<br>13<br>13<br>13 |
| 2380.0<br>2390.0<br>2400.0<br>2410.0<br>2420.0<br>2430.0 | 76<br>76<br>0<br>75<br>75<br>74 | 75<br>75<br>105<br>75<br>75<br>75 | 756<br>757<br>524<br>748<br>750<br>747      | 66<br>66<br>46<br>65<br>65 |                              | 45<br>45<br>31<br>45<br>45<br>45 |                                | 45<br>45<br>31<br>45<br>45<br>45 | 42<br>42<br>29<br>42<br>42 | 14<br>14<br>9<br>13  |
| 2440.0<br>2445.0                                         | 86<br>62                        | 38<br>61                          | 619<br>612                                  | 54<br>53                   |                              | 37<br>37                         |                                | 37<br>37                         | 42<br>34<br>34             | 13<br>11<br>11       |

 $(\mathbf{w}, \mathbf{w}, 
| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOUR                                            | 8516.<br>S 37.                                           |                                              | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        | :                                                  | 517<br>12.250<br>7.5<br>119866 | NOZ:<br>BIT                                  | ERVAL<br>ZLES<br>RUN<br>DITION |                                              |                                              | 16 18<br>152.0                               |
|----------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|--------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|
| DEPTH                                                                                  | SPM1                                                     | SPM2                                         | FLOW<br>RATE                                                       | DC/<br>OH                                          | DC/<br>CSG                     | HW/<br>OH                                    | HW/<br>CSG                     | DP/<br>OH                                    | DP/<br>CSG                                   | DP/<br>RIS                                   |
| 2450.0<br>2460.0<br>2470.0                                                             | 72<br>73<br>73                                           | 73<br>73<br>73                               | 727<br>730<br>731                                                  | 63<br>63<br>63                                     |                                | 43<br>44<br>44                               |                                | 43<br>44<br>44                               | 40<br>41<br>41                               | 13<br>13<br>13                               |
| 2480.0<br>2490.0<br>2500.0<br>2510.0<br>2520.0<br>2530.0<br>2540.0<br>2550.0<br>2560.0 | 72<br>72<br>72<br>72<br>72<br>71<br>66<br>72<br>73<br>73 | 74<br>73<br>74<br>74<br>74<br>68<br>74<br>74 | 727<br>729<br>732<br>730<br>730<br>725<br>671<br>728<br>732<br>731 | 63<br>64<br>63<br>63<br>63<br>63<br>63<br>64<br>64 |                                | 43<br>44<br>44<br>44<br>43<br>40<br>43<br>44 |                                | 43<br>44<br>44<br>44<br>43<br>40<br>43<br>44 | 41<br>41<br>41<br>41<br>40<br>37<br>41<br>41 | 13<br>13<br>13<br>13<br>13<br>12<br>13<br>13 |
| 2580.0<br>2590.0<br>2597.0                                                             | 73<br>73<br>73                                           | 74<br>74<br>73                               | 734<br>733<br>731                                                  | 64<br>64<br>63                                     |                                | 44<br>44<br>44                               |                                | 44<br>44<br>44                               | 41<br>41<br>41                               | 13<br>13<br>13                               |
| BIT NUMBER<br>CHRIS RC4<br>COST<br>TOTAL HOURS                                         |                                                          | 7<br>00<br>50                                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        |                                                    | 8.500<br>7.5<br>18614          | NOZZ<br>BIT                                  | ERVAL<br>YLES<br>RUN<br>DITION |                                              | .0- 26<br>14 1<br>B0 G0                      | 5 15                                         |
| DEPTH                                                                                  | SPM1                                                     | SPM2                                         | FLOW<br>RATE                                                       | DC/<br>OH                                          | DCX                            | HW/<br>OH                                    | HW/<br>CSG                     | DP/<br>OH                                    | DP/<br>CSG                                   | DP/<br>RIS                                   |
| 2600.0<br>2602.1                                                                       | 0<br>0                                                   | 56<br>55                                     | 279<br>276                                                         | 252<br>250                                         |                                | 44<br>44                                     |                                | 44<br>44                                     | 16<br>15                                     | 5<br>5                                       |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                           | 7774.<br>3 3.                                            |                                              | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR                        | 1                                                  | 537<br>2.250<br>7.5<br>10553   | NOZZ<br>BIT                                  |                                |                                              | .1- 26<br>16 1<br>B5 G0                      | 6 18<br>14.6                                 |
| рертн                                                                                  | SPM1                                                     | SPM2                                         | FLOW<br>RATE                                                       | DC/<br>OH                                          | DC/<br>CSG                     | HW/<br>OH                                    | HW/<br>CSG                     | DP/<br>OH                                    | DP/<br>CSG                                   | DP/<br>RIS                                   |
| 2610.0<br>2616.7                                                                       | 73<br>73                                                 | 73<br>73                                     | 730<br>730                                                         | 63<br>63                                           |                                | 44<br>44                                     |                                | 44<br>44                                     | 41<br>41                                     | 13<br>13                                     |

| BIT NUMBER<br>CHRIS RC3<br>COST<br>TOTAL HOURS  | 0.00<br>3 2.89       | SIZE<br>TRIP TI                          | ME        | 8.500<br>7.6<br>14572      | NOZZ<br>BIT                      | RVAL<br>LES<br>RUN<br>ITION |           | 15                       | 635.2<br>15 14<br>18.5<br>0.400 |
|-------------------------------------------------|----------------------|------------------------------------------|-----------|----------------------------|----------------------------------|-----------------------------|-----------|--------------------------|---------------------------------|
| DEPTH                                           | SPM1 SI              | FLOW<br>PM2 RATE                         | DC/<br>OH | DC/<br>CSG                 | HW/<br>0H                        | HW/<br>CSG                  | DP/<br>OH | DP/<br>CSG               | DP/<br>RIS                      |
| 2620.0<br>2630.0<br>2635.2                      | 45<br>48<br>49       | 0 226<br>0 242<br>0 243                  |           |                            |                                  |                             |           | 13<br>14<br>14           | 4<br>4<br>4                     |
| BIT NUMBER<br>CHRIS. RC3<br>COST<br>TOTAL HOURS | 0.00<br>6.72         | IADC COI<br>SIZE<br>TRIP TII<br>TOTAL T  | ME        | 8.500<br>7.8<br>36242      | BIT                              | RVAL<br>LES<br>RUN<br>ITION |           | .2- 2.<br>15             | 15 14<br>17.8                   |
| рертн                                           | SPM1 SF              | FLOW<br>M2 RATE                          | DC/<br>OH | DC/<br>CSG                 | HW/<br>OH                        | HW/<br>CSG                  | NP/<br>HO | DP/<br>CSG               | DP/<br>RIS                      |
| 2640.0<br>2650.0<br>2653.0                      | 0<br>0<br>0          | 44 218<br>50 251<br>50 251               |           |                            |                                  |                             |           | 12<br>14<br>14           | 4<br>5<br>5                     |
| BIT NUMBER<br>CHRIS. RC4<br>COST<br>TOTAL HOURS | 8<br>0.00<br>4.45    | IADC COI<br>SIZE<br>TRIP TIM<br>TOTAL TU | 1E        | 8.500<br>7.6<br>24028      | INTER<br>NOZZI<br>BIT F<br>COND: | LES<br>RUN                  |           | . 0- 26<br>15 1<br>BO GO | 5 14<br>18.2                    |
| рертн                                           | SPM1 SP              | FLOW<br>M2 RATE                          | DC/<br>OH | DC/<br>CSG                 | \WH<br>НО                        | HW/<br>CSG                  | DP/<br>OH | DP/<br>CSG               | DP/<br>RIS                      |
| 2660.0<br>2670.0<br>2671.2                      | 48<br>50<br>50       | 0 242<br>0 248<br>0 248                  |           |                            |                                  |                             |           | 13<br>14<br>14           | 4                               |
| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOURS    | 9<br>8516.00<br>0.09 | IADC COD<br>SIZE<br>TRIP TIM<br>TOTAL TU | 1:<br>IE  | 517<br>2.250<br>7.5<br>314 | INTER<br>NOZZL<br>BIT R<br>CONDI | .ES<br>RUN                  |           | 2- 26<br>16 1<br>B2 G0   | 6 18 0.8                        |
| ЮЕРТН                                           | SPM1 SP              | FLOW<br>M2 RATE                          | DC/<br>OH | DC/<br>CSG                 | HW/<br>0H                        | HW/<br>CSG                  | DP/<br>HO | DP/<br>CSG               | DP/<br>RIS                      |
| 2672.0                                          | 70                   | 72 706                                   | 61        |                            | 42                               |                             | 42        | 39                       | 13                              |

| BIT NUMBER<br>RC4<br>COST<br>TOTAL HOURS                                     | 9<br>0.00<br>4.67                                                                                                                         | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                | 8.500<br>7.6<br>25234 | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION  | 2672.0- 2690.5<br>15 15 14<br>18.5<br>TO BO GO.900                                                                                                                                                       |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| рертн 9                                                                      | SPM1 SPM2                                                                                                                                 | FLOW DC<br>RATE O                                                            |                       | lW∕ HW∕<br>OH CSG                            | DP/ DP/ DP/<br>OH CSG RIS                                                                                                                                                                                |
| 2680.0<br>2690.0<br>2690.5                                                   | 49 0<br>49 0<br>49 0                                                                                                                      | 245                                                                          |                       | ,                                            | 14 4<br>14 4<br>14 4                                                                                                                                                                                     |
| BIT NUMBER<br>CHRIS C-20<br>COST<br>TOTAL HOURS                              | 9<br>0.00<br>8.86                                                                                                                         | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                | 8,470<br>7,7          | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION  | 2690.5- 2708.3<br>14 14 14<br>17.8<br>T0 B0 G0.300                                                                                                                                                       |
| DEPTH S                                                                      | IPM1 SPM2                                                                                                                                 | FLOW DC/<br>RATE OF                                                          |                       | W/ HW/<br>OH CSG                             | DP/ DP/ DP/<br>OH CSG RIS                                                                                                                                                                                |
| 2700.0<br>2708.3                                                             | 48 0<br>47 0                                                                                                                              | 240<br>235                                                                   |                       |                                              | 13 4<br>13 4                                                                                                                                                                                             |
| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOURS                                 | 10<br>7774.00<br>15.72                                                                                                                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TURNS                                | 12.250 i              | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION  | 2708.3- 2776.3<br>16 16 18<br>68.0<br>T3 B4 G0.125                                                                                                                                                       |
| ЮЕРТН S                                                                      | PM1 SPM2                                                                                                                                  | FLOW DC/<br>RATE OF                                                          |                       | W/ HW/<br>OH CSG                             | DP/ DP/ DP/<br>OH CSG RIS                                                                                                                                                                                |
| 2710.0<br>2720.0<br>2730.0<br>2740.0<br>2750.0<br>2760.0<br>2770.0<br>2776.3 | 71     72       69     73       82     47       68     73       69     73       69     73       68     73       68     73       68     73 | 711 62<br>709 63<br>648 56<br>708 62<br>711 62<br>710 62<br>705 61<br>704 61 |                       | 43<br>42<br>39<br>42<br>42<br>42<br>42<br>42 | 43     40     13       42     40     13       39     36     12       42     39     13       42     40     13       42     40     13       42     39     13       42     39     13       42     39     13 |

| BIT NUMBER<br>HTC J33<br>COST<br>TOTAL HOUR                        | 7774                             |                                  | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR |                                  | 537<br>2.250<br>8.0<br>22806 | NOZ:<br>BIT                      | ERVAL<br>ZLES<br>RUN<br>DITION |                                  | 3-28<br>15                       | 16 16<br>30.5                    |
|--------------------------------------------------------------------|----------------------------------|----------------------------------|---------------------------------------------|----------------------------------|------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|
| ΣΕΡΤΗ                                                              | SPM1                             | SPM2                             | FLOW<br>RATE                                | DC/<br>DH                        | DC/<br>CSG                   | HW/<br>OH                        | HW/<br>CSG                     | DP/<br>OH                        | DP/<br>CSG                       | DP/<br>RIS                       |
| 2780.0<br>2790.0<br>2800.0                                         | 65<br>66<br>75                   | 69<br>70<br>84                   | 669<br>681<br>798                           | 58<br>59<br>69                   |                              | 40<br>41<br>48                   |                                | 40<br>41<br>48                   | 37<br>38<br>44                   | 12<br>12<br>14                   |
| 2806.8                                                             | 69                               | 68                               | 685                                         | 59                               |                              | 41                               |                                | 41                               | 38                               | 12                               |
| BIT NUMBER<br>CHRIS RC6<br>COST<br>TOTAL HOUR                      | 1830 <b>0</b>                    | . 0 0                            | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR | :                                | 4<br>8.500<br>8.0<br>18565   | NOZ:<br>BIT                      | ERVAL<br>ZLES<br>RUN<br>DITION |                                  | 14 :<br>10 G                     | 15 15<br>7.2                     |
| DEPTH                                                              | SPM1                             | SPM2                             | FLOW<br>RATE                                | NC/<br>HO                        | DC/<br>CSG                   | НW/<br>ОН                        | HW/<br>CSG                     | DP/<br>OH                        | DP/<br>CSG                       | DP/<br>RIS                       |
| 2810.0<br>2814.0                                                   | 0                                | 58<br>58                         | 290<br>287                                  | 263<br>260                       |                              |                                  |                                |                                  | 16<br>16                         | 5                                |
| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOUR                        | 6844                             | . 0 0                            | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR | 1                                | 2.250<br>8.3                 | NOZZ<br>BIT                      | ERVAL<br>ZLES<br>RUN<br>DITION |                                  | 15<br>15<br>85 G                 | 16 16<br>146.2                   |
| DEPTH                                                              | SPM1                             | SPM2                             | FLOW<br>RATE                                | DC/<br>OH                        |                              |                                  | HW/<br>CSG                     |                                  |                                  |                                  |
| 2820.0<br>2830.0<br>2840.0<br>2850.0<br>2860.0<br>2870.0<br>2880.0 | 71<br>70<br>69<br>68<br>68<br>68 | 67<br>68<br>68<br>69<br>69<br>69 | 688<br>688<br>683<br>681<br>681<br>675      | 60<br>60<br>59<br>59<br>59<br>59 |                              | 41<br>41<br>41<br>41<br>41<br>41 |                                | 41<br>41<br>41<br>41<br>41<br>41 | 38<br>38<br>38<br>38<br>38<br>38 | 12<br>12<br>12<br>12<br>12<br>12 |
| 2890.0<br>2900.0<br>2910.0<br>2920.0<br>2930.0<br>2940.0           | 69<br>96<br>68<br>69<br>69       | 67<br>0<br>68<br>68<br>68        | 677<br>480<br>680<br>686<br>685             | 59<br>42<br>59<br>60<br>59       |                              | 40<br>29<br>41<br>41<br>41       |                                | 40<br>29<br>41<br>41<br>41       | 38<br>27<br>38<br>38<br>38       | 12<br>9<br>12<br>12<br>12        |

|   | BIT NUMBER 13<br>HTC J7<br>COST 1494.00<br>TOTAL HOURS 2.63        |                                        | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR |                                               | 316<br>8.500<br>8.3<br>10615                                    | 8.500 NOZZLES<br>8.3 BIT RUN |                                                   | 2960.2-2972.3<br>14 14 14<br>12.1<br>T8 B6 G0.375 |                            |                                  |                                 |
|---|--------------------------------------------------------------------|----------------------------------------|---------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|------------------------------|---------------------------------------------------|---------------------------------------------------|----------------------------|----------------------------------|---------------------------------|
|   | DEPTH                                                              | SPM1                                   | SPM2                                        | FLOW<br>RATE                                  | DC/<br>OH                                                       |                              | HW/<br>OH                                         | HW/<br>CSG                                        | DP/<br>OH                  | DP/<br>CSG                       | DP/<br>RIS                      |
|   | 2970.0<br>2972.3                                                   | 58<br>57                               | 56<br>56                                    |                                               | 128<br>128                                                      |                              | 0<br>0                                            | 84<br>84                                          | 0                          | 84<br>84                         | 1 0<br>1 0                      |
|   | BIT NUMBER 14<br>HTC J33<br>COST 4503.00<br>TOTAL HOURS 10.79      |                                        | SIZE<br>TRIP TIME                           |                                               | 537 INTERVAL<br>8.500 NOZZLES<br>8.5 BIT RUN<br>31858 CONDITION |                              | 14 14 14                                          |                                                   |                            |                                  |                                 |
|   | DEPTH                                                              | SPM1                                   | SPM2                                        | FLOW<br>RATE                                  | DC/<br>OH                                                       |                              | HW/<br>0H                                         | HW/<br>CSG                                        | DP/<br>OH                  | DP/<br>CSG                       | DP/<br>RIS                      |
|   | 2980.0                                                             | 55                                     | 57                                          | 559                                           | 126                                                             | 115                          | 0 -                                               | 83                                                | 0                          | 83                               | 10                              |
|   | 2990.0<br>3000.0<br>3010.0<br>3020.0<br>3030.0<br>3040.0<br>3045.8 | 57<br>57<br>56<br>92<br>57<br>56<br>56 | 56<br>56<br>57<br>0<br>57<br>57<br>56       | 565<br>561<br>564<br>459<br>567<br>564<br>563 | 127<br>126<br>127<br>103<br>128<br>127<br>127                   | 116<br>116<br>94<br>117      | 0<br>0<br>0<br>0<br>0                             | 84<br>83<br>84<br>68<br>84<br>84<br>83            | 0<br>0<br>0<br>0<br>0<br>0 | 84<br>83<br>84<br>68<br>84<br>83 | 10<br>10<br>10<br>8<br>10<br>10 |
|   | HTC J33<br>COST 4503.00                                            |                                        | SIZE                                        |                                               | 8.500 NOZZLES<br>8.6 BIT RUN                                    |                              | 3045.8-3091.6<br>14 14 14<br>45.8<br>T8 B6 G0.125 |                                                   |                            |                                  |                                 |
| • | DEPTH                                                              | SPM1                                   | SPM2                                        | FLOW<br>RATE                                  | DC/<br>OH                                                       | DC/<br>CSG                   | HW/<br>OH                                         | HW/<br>CSG                                        | DP/<br>OH                  | DP/<br>CSG                       | DP/<br>RIS                      |
|   | 3050.0<br>3060.0<br>3070.0                                         | 54<br>57<br>57                         | 58<br>56<br>56                              | 560<br>565<br>564                             | 126<br>127<br>127                                               | 115<br>116<br>116            | 0<br>0<br>0                                       | 83<br>84<br>84                                    | . 0<br>0<br>0              | 83<br>84<br>84                   | 10<br>10<br>10                  |
|   | 3080.0<br>3090.0<br>3091.6                                         | 57<br>55<br>56                         | 57<br>55<br>56                              | 568<br>554<br>558                             | 128<br>125<br>126                                               | 117<br>114<br>115            | 0<br>0<br>0                                       | 84<br>82<br>83                                    | 0<br>0<br>0                | 84<br>82<br>83                   | 10<br>10<br>10                  |

| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOUR     | 434                      | 16<br>7.00<br>3.96 | IADC COD<br>SIZE<br>TRIP TIM<br>TOTAL TU    | E.                       | 617<br>8.500<br>8.6<br>35427 | NOZ<br>BIJ  | TERVAL<br>ZZLES<br>RUN<br>IDITION |             | 91.6-7<br>14            | 14 14<br>24,5            |
|-------------------------------------------------|--------------------------|--------------------|---------------------------------------------|--------------------------|------------------------------|-------------|-----------------------------------|-------------|-------------------------|--------------------------|
| DEPTH                                           | SPM1                     | SPM2               | FLOW<br>RATE                                | DCZ<br>OF                |                              | 0H          | HW/<br>CSG                        | DP/<br>OH   | DP/<br>CSG              | DP/<br>RIS               |
| 3100.0<br>3110.0<br>3116.1                      | 55<br>0<br>0             | 55<br>111<br>113   | 552                                         | 125<br>125<br>127        | 115                          | 0<br>0      | 82<br>83<br>84                    | 0<br>0<br>0 | 82<br>83<br>84          | 10<br>10<br>10           |
| BIT NUMBER<br>CHRIS C-20<br>COST<br>TOTAL HOUR  | 0                        | 16<br>1.00<br>1.56 | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR | •••                      | 8.500<br>8.6<br>15784        | NOZ<br>BIT  | FRVAL<br>ZLES<br>RUN<br>DITION    |             | 16.1-3<br>14<br>0 B0 G  | 14 14                    |
| DEPTH                                           | SPM1                     | SPM2               | FLOW<br>RATE                                | DCZ<br>OH                |                              | HWZ<br>OH   | HW/<br>CSG                        | DP/<br>OH   | DP/<br>CSG              | DP/<br>RIS               |
| 3117.4                                          | 0                        | 59                 | 295                                         | 66                       | 61                           | 0           | 44                                | Û           | 44                      | Đ                        |
| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOUR!    | 4347<br>3 7              | 17<br>.00<br>.75   | IADC CODF<br>SIZE<br>TRIP TIME<br>TOTAL TUR | •                        | 617<br>8.500<br>8.7<br>23244 | NOZZ<br>BIT | ERVAL<br>ZLES<br>RUN<br>DITION    |             | .7,4-3<br>14<br>2,82,Gi | 14 14<br>26.0            |
| DEPTH                                           | SPM1                     | SPM2               | FLOW<br>RATE                                | DC/<br>OH                | DC/<br>DBC                   | HW/<br>OH   | HWZ<br>CSG                        | DP/<br>OH   | DP/<br>CSG              | DP/<br>RIS               |
| 3120.0<br>3130.0<br>3140.0<br>3143.4            | 111<br>115<br>112<br>113 | 0<br>0<br>0<br>0   | 555<br>574<br>560<br>564                    | 125<br>129<br>126<br>127 | 114<br>118<br>115<br>116     | 0<br>0<br>0 | 82<br>85<br>83<br>84              | 0<br>0<br>0 | 82<br>95<br>83<br>84    | 1 0<br>1 0<br>1 0<br>1 0 |
| BIT NUMBER<br>CHRIS C-23<br>COST<br>TOTAL HOURS | 19000.<br>3 4.           | 0.0                | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR |                          | 4<br>8.500<br>8.7<br>18459   | NOZZ<br>BIT | RVAL<br>LES<br>RUN<br>ITION       |             | 3,4-31<br>14 1<br>BO GO | 4 14 2.0                 |
| DEPTH                                           | SPM1                     | SPM2               | FLOW<br>RATE                                | DCZ<br>OH                | DCZ<br>CSG                   | HWZ<br>OH   | HWZ<br>CSG                        | NPZ<br>HO   | DP/<br>CSG              | DP/<br>RIS               |
| 3145.4                                          | 52                       | 0                  | 258                                         | 58                       | 53                           | 0           | 38                                | 0           | 38                      | 5                        |

| BIT NUMBER 18<br>HTC J55<br>COST 4350.00<br>TOTAL HOURS 23.07 |                       | SIZE<br>TRIP TIME  |                                             | 637<br>8.500<br>8.7<br>70096 | INTERVAL<br>NOZZLES<br>BIT RUN<br>CONDITION |                   | 14 14 14                       |             |                         |                       |
|---------------------------------------------------------------|-----------------------|--------------------|---------------------------------------------|------------------------------|---------------------------------------------|-------------------|--------------------------------|-------------|-------------------------|-----------------------|
| DEPTH                                                         | SPM1                  | SPM2               | FLOW<br>RATE                                | DC/<br>OH                    |                                             | NW/<br>HO         | HW/<br>CSG                     | DP/<br>OH   | DP/<br>CSG              | DP/<br>RIS            |
| 3150.0<br>3160.0<br>3170.0                                    | 0<br>0<br>106         | 108<br>108<br>0    | 541                                         | 121<br>122<br>119            | 111                                         | 0<br>0<br>0       | 80<br>80<br>79                 | 0<br>()     | 80<br>80<br>79          | 1 0<br>1 0<br>1 0     |
| 3180.0<br>3190.0<br>3200.0<br>3203.5                          | 106<br>101<br>59<br>0 | 0<br>0<br>40<br>99 |                                             | 120<br>114<br>112<br>112     | 104<br>102                                  | 0<br>0<br>0<br>79 | 79<br>75<br>74<br>74           | 0<br>0<br>0 | 79<br>75<br>74<br>74    | 10<br>9<br>9<br>9     |
| BIT NUMBER<br>HTC J44<br>COST<br>TOTAL HOUR                   | 4347                  | . 0 0              | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR |                              | 617<br>8.500<br>8.8<br>31715                | NOZZ<br>BIT       | ERVAL<br>ZLES<br>RUN<br>DITION | 320<br>Ta   |                         | 14 <b>1</b> 5<br>22.4 |
| DEPTH                                                         | SPM1                  | SPM2               | FLOW<br>RATE                                | DC/<br>OH                    |                                             | HWZ<br>()H        | HWZ<br>CSG                     | DP/<br>OH   | DP/<br>CSG              | DP/<br>RIS            |
| 3210.0<br>3220.0<br>3225.9                                    | 0<br>0<br>0           | 101<br>101<br>101  | 505<br>504<br>504                           | 114<br>114<br>113            |                                             | 80<br>80<br>80    | 75<br>75<br>75                 | 0<br>0<br>0 | 75<br>75<br>75          | 9<br>9<br>9           |
| BIT NUMBER<br>HTC J55<br>COST<br>TOTAL HOUR                   | 4350                  | . 0 0              | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR |                              | 637<br>8.500<br>8.8<br>31327                | NOZZ<br>BIT       | RVAL<br>LES<br>RUN<br>DITION   |             | 5.9-32<br>14 1<br>B1 G( | 14 15<br>11.7         |
| DEPTH                                                         | SPM1                  | SPM2               | FLOW<br>RATE                                | DC/<br>OH                    | DC/<br>CSG                                  | HW/               | HW/<br>CSG                     | DP/<br>HO   | DP/<br>CSG              | DP/<br>RIS            |
| 3230.0<br>3237.6                                              | 0<br>0                | 99<br>101          | 496<br>505                                  | 112<br>114                   | 0                                           | 78<br>80          | 74<br>75                       | 0           | 74<br>75                | 9<br>9                |
| BIT NUMBER<br>HTC J22<br>COST<br>TOTAL HOUR                   | 4139.                 |                    | IADC CODE<br>SIZE<br>TRIP TIME<br>TOTAL TUR |                              | 517<br>8.500<br>8.8<br>49328                | BIT<br>BIT        |                                |             | 7.6-32<br>14 1<br>B1 G0 | 4 15<br>19.4          |
| DEPTH                                                         | SPM1                  | SPM2               | FLOW<br>RATE                                | DCZ<br>OH                    | DC/<br>CSG                                  | HW/<br>OH         | HW/<br>CSG                     | DP/<br>OH   | DP/<br>CSG              | DP/<br>RIS            |
| 3240.0                                                        | 101                   | 0                  | 507                                         | 114                          | 0                                           | 80                | 75                             | 0           | 75                      | 9                     |

| DEPTH            | SPMi                                                           | SPM2   | ELOW<br>RATE | DC7<br>0H  | DC/<br>CSG | HWZ<br>OH | HW/<br>CSG | DP /<br>OH | DP/<br>CSG | DP/<br>RIS |
|------------------|----------------------------------------------------------------|--------|--------------|------------|------------|-----------|------------|------------|------------|------------|
| 3250.0<br>3257.0 | $\begin{smallmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{smallmatrix}$ | 0<br>0 | 502<br>505   | 113<br>114 | 0<br>0     | 79<br>80  | 75<br>75   | 0          | 75<br>75   | 8          |

This is an enclosure indicator page. The enclosure PE604585 is enclosed within the container PE907062 at this location in this document.

The enclosure PE604585 has the following characteristics:

ITEM\_BARCODE = PE604585 CONTAINER\_BARCODE = PE907062

NAME = Drill Data Plot

BASIN = GIPPSLAND PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = WELL\_LOG

DESCRIPTION = Drill Data Plot (from ES Well

Report/Final Well Report--attachment to

WCR) for Wirrah-3

REMARKS =

DATE\_CREATED = 17/01/84

 $DATE\_RECEIVED = 18/04/84$ 

 $W_NO = W840$ 

WELL\_NAME = Wirrah-3

CONTRACTOR = CORE LABORATORIES
CLIENT\_OP\_CO = ESSO AUSTRALIA LTD

# PE604585 Drill Data Plot

This is an enclosure indicator page. The enclosure PE604586 is enclosed within the container PE907062 at this location in this document.

The enclosure PE604586 has the following characteristics:

ITEM\_BARCODE = PE604586
CONTAINER\_BARCODE = PE907062

NAME = Temperature Plot

BASIN = GIPPSLAND PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = WELL\_LOG

DESCRIPTION = Temperature Plot (from ES Well

Report/Final Well Report--attachment to

WCR) for Wirrah-3

REMARKS =

DATE\_CREATED = 17/01/84 DATE\_RECEIVED = 18/04/84

 $W_NO = W840$ 

WELL\_NAME = Wirrah-3

CONTRACTOR = CORE LABORATORIES
CLIENT\_OP\_CO = ESSO AUSTRALIA LTD

## PE604586 Temperature Plot

This is an enclosure indicator page. The enclosure PE604587 is enclosed within the container PE907062 at this location in this document.

The enclosure PE604587 has the following characteristics:

ITEM\_BARCODE = PE604587
CONTAINER\_BARCODE = PE907062

NAME = Pressure Plot

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = WELL\_LOG

DESCRIPTION = Pressure Plot (from ES Well

Report/Final Well Report--attachment to

WCR) for Wirrah-3

REMARKS =

DATE\_CREATED = 17/01/84

 $DATE\_RECEIVED = 18/04/84$ 

 $W_NO = W840$ 

WELL\_NAME = Wirrah-3

CONTRACTOR = CORE LABORATORIES
CLIENT\_OP\_CO = ESSO AUSTRALIA LTD

## PE604587 Pressure Plot

This is an enclosure indicator page. The enclosure PE604588 is enclosed within the container PE907062 at this location in this document.

The enclosure PE604588 has the following characteristics:

ITEM\_BARCODE = PE604588
CONTAINER\_BARCODE = PE907062

CONTAINDIC\_DARCODE = 1D007002

NAME = Geo-Plot

BASIN = GIPPSLAND

PERMIT = VIC/L2

 $\mathtt{TYPE} = \mathtt{WELL}$ 

SUBTYPE = WELL\_LOG

DESCRIPTION = Geo-Plot (from ES Well Report/Final

Well Report -- attachment to WCR) for

Wirrah-3

REMARKS =

 $DATE\_CREATED = 17/01/84$ 

DATE\_RECEIVED = 18/04/84

 $W_NO = W840$ 

WELL\_NAME = Wirrah-3

CONTRACTOR = CORE LABORATORIES
CLIENT\_OP\_CO = ESSO AUSTRALIA LTD

Geoplot

This is an enclosure indicator page. The enclosure PE604589 is enclosed within the container PE907062 at this location in this document.

The enclosure PE604589 has the following characteristics:

ITEM\_BARCODE = PE604589
CONTAINER\_BARCODE = PE907062

NAME = Grapholog/Mud Log

BASIN = GIPPSLAND

PERMIT = VIC/L2

TYPE = WELL

SUBTYPE = MUD\_LOG

DESCRIPTION = Grapholog/Mud Log (from ES Well

Report/Final Well Report--attachment to

WCR) for Wirrah-3

REMARKS =

 $DATE\_CREATED = 17/01/84$ 

DATE\_RECEIVED = 18/04/84

 $W_NO = W840$ 

WELL\_NAME = Wirrah-3

CONTRACTOR = CORE LABORATORIES
CLIENT\_OP\_CO = ESSO AUSTRALIA LTD

PEb04589 Grapholog