

DEPT. NAT. RES & ENV

# WCR VOL 2 TURRUM-4 W1069

## Esso Australia Ltd.

PETROLEUM DIVISION WELL COMPLETION REPORT TURRUM-4 16 MAR 1993 VOLUME 2 INTERPRETED DATA

> GIPPSLAND BASIN VICTORIA

## ESSO AUSTRALIA RESOURCES LIMITED

Compiled by - Rod Feldtmann March 1993

### **CONTENTS**

## Page

| 1. | Summary of Well Results | 1 |
|----|-------------------------|---|
| 2. | Introduction            | 2 |
| 3. | Structure               | 3 |
| 4. | Stratigraphy            | 4 |
| 5. | Hydrocarbons            | 4 |
| 6. | Geophysical Summary     | 5 |
| 7. | Geological Summary      | 6 |

## **FIGURES**

1. Locality Map - Turrum-4

2. Turrum-4 sonic velocity (check shot corrected) versus depth plot

## **APPENDICES**

1. Palynological Analysis

2. Quantitative Log Analysis

3. Wireline Test Report

## **ENCLOSURES**

- 1. Top of Latrobe Group Depth Structure Map
- 2. L100 Reservoir Depth Structure Map
- 3. Intra Lower L. balmei Depth Structure Map
- 4. L500 Reservoir Depth Structure Map
- 5. Mud Log
- 6. Well Completion Log
- 7. Synthetic Seismic Trace
- 8. Time Depth Curve

RF:lt:0393rep4

## 1. Summary of Well Results

| Formation/Horizon                  | Forecast<br>Depth<br>m TVDSS | Actual<br>Depth<br>m TVDSS | Frest-Act<br>Depth<br>m |
|------------------------------------|------------------------------|----------------------------|-------------------------|
| КВ                                 | -23                          | -23                        | -                       |
| Gippsland Limestone (water bottom) | 62                           | 62                         | on prognosis            |
| Lakes Entrance Formation           | 1365                         | 1505.0                     | -140                    |
| Top of Latrobe Group               | 1900                         | 1896.0                     | 4                       |
| Base Flounder Formation            | -                            | 1955.5                     | -                       |
| Top L100 Reservoir                 | 2271                         | 2275.5                     | -5                      |
| 54.5Ma Sequence Boundary           | 2295                         | 2304.0                     | -9                      |
| Top L200 Reservoir                 | 2393                         | 2457.7                     | -65                     |
| Top L300 Reservoir                 | 2475                         | 2529.5                     | -55                     |
| Top L350 Reservoir                 | 2503                         | 2567.3                     | -64                     |
| Top L360 Reservoir                 | 2538                         | 2587.5                     | -50                     |
| Top L400 Reservoir                 | 2578                         | 2636.5                     | -59                     |
| Top L500 Reservoir                 | 2650                         | 2699.8                     | -50                     |
| 67.0 Ma Sequence Boundary          | 2768                         | (not intersected)          | -                       |
| TOTAL DEPTH                        | 3050                         | 2755                       | -                       |

-

## 2. Introduction

The Turrum discovery lies beneath the southeastern flank of the Marlin gas field. The Turrum field trapping geometry consists of a series of north-west trending normal faults intersecting a NNE trending anticlinal axis.

The Turrum field consists of a series of multiple stacked hydrocarbon systems within the <u>L</u>. <u>balmei</u> section of the intra-Latrobe Group. Most hydrocarbon systems intersected to date consist of gas reservoirs, with no contacts established. Oil has been penetrated in three zones, (L100, L450, L500).

The objective of Turrum-4 was to test the southeastern flank of the Turrum discovery for possible down dip oil legs in the L200-L400 reservoirs. Predrill pressure data interpretation from Turrum-3 suggested substantial hydrocarbon columns are present with excellent potential to discover down dip oil legs on gas zones penetrated in a crestal position.

The well intersected the Top of the Latrobe Group (TOL), the Top L100 reservoir and the 54.5Ma unconformity 4m high, 5m low and 9m low to prognosis respectively. The deeper horizons, L200 to L500 reservoir markers inclusive, were intersected 50-65m lower than prognosed. This resulted in deepening of the mapped structure on the SE flank of Turrum, thereby decreasing the potential for the field to extend laterally. No hydrocarbons were encountered in Turrum-4, and the well was plugged and abandoned as a dry hole.

## 3. Structure

At the level of the Turrum "L" reservoirs, the Latrobe Group is extensively faulted by a series of NW-SE trending, normal faults. These faults form a series of titled faulted blocks with the strata generally dipping to the NE in each fault block. Superimposed over this is a gentle mid-Eocene flexuring with a fold axis trending in a NNE direction. The closure is provided to the NE and SW by sealing faults and by dip closure to the SE and NW (Enclosures 3, 4, & 5).

Turrum-4 was drilled on the SE flank of the field. The target reservoirs (L200-L400) were intersected approximately 60m low to prediction. This indicates the southeastern flanks of the Turrum feature to be steeper than anticipated predrill.

## 4. Stratigraphy

The Top of the Latrobe Group is interpreted at 1896 mSS, with the interval 1896-1955.5mSS assigned to the Flounder Formation. The interval 1900.0-1947.0mSS is of Early Eocene age (<u>P. asperopolus</u>) and consists predominantly of a silty claystone, overlying a 15m massive sandstone. Partridge (1993; Appendix 1) suggests that the Flounder Formation, was deposited in a short time interval essentially representing one depositional event. The environment of deposition is interpreted to be coastal plain/tidal complex, however the rarity of dinoflagellates and a high proportion of terrestrial kerrogen indicate the section has been subject to a significant terrestrial input.

The Late Paleocene interval (Upper <u>L. balmei</u>) 1959.5-2164.0mSS consists predominantly of siltstone and shales with thin coals (<1.7m thick) and minor thin sands (<4.0m thick). The depositional environment was probably a coastal plain/tidal complex.

The Lower <u>L. balmei</u> section, 2267.0-2690mSS consist of siltstones, shales, sandstones and coal. The sandstones and coals are thicker and more abundant than in the Upper <u>L. balmei</u> section and the greater abundance of dinoflagellates suggests there is a greater marine influence in the Lower <u>L. balmei</u> zone (Partridge 1993; Appendix 1).

## 5. Hydrocarbons

No hydrocarbons were encountered in Turrum-4.

٤.,

## 6. Geophysical Discussion

Turrum-4 drilled the Top of the Latrobe Group (TOL) and the 54.5Ma unconformity 4 m high (0.2%) and 9 m low (0.3%), respectively, from prognosis but underestimated the depths of all deeper horizons by 50-65 m (2.6%) (Summary of Well Results; page 1).

The depth difference is due to actual velocities being faster than those forecast. For example, the TOL-Intra-Lower <u>L. Balmei</u> (ILLB) interval velocity that was assumed predrill was 3253 m/s; the Vint for this interval from the well is 10% faster at 3527 m/s.

The Turrum-4 well tie to seismic data was achieved by a synthetic seismogram and Seismic Calibration Log (check-shot corrected sonic log; Enclosure 7 & 8). The synthetic was derived using a  $90^{\circ}$  phase rotated, reverse polarity wavelet with a 25 Hz centre frequency.

## Post Drill Re-map

Post drill interpretation was conducted on a Charisma S workstation loaded with the G82C 3D seismic survey. Inline data spacing was 75 m, fold was 48 and group interval 25 m. Depth maps were generated using the sequential isopach method, with isopachs hung from TOL. Five key time horizons were remapped following the completion of Turrum-4. These included TOL, Base Coal (near base <u>P. Tuberculatus</u>), 54.5Ma, ILLB and L500. Isopachs were made by first contouring well interval velocity data for each interval (Turrum 1 to 4, Marlin 1 to 4 and Morwong-1; Marlin A6 and A24 had no sonics, and were not employed) and then taking the product of each interval's Vint and isochore. Phantom depth maps were made from these horizons to the top of key reservoir zones. Post-drill Depth Structure Maps for TOL, top of L100 reservoir, ILLB and top of L500 reservoir are included as Enclosures 1, 2, 3 and 4 respectively.

Post Turrum-4 re-mapping was undertaken in order to gain an understanding of how the well results would impact on the 'hydrocarbon trap geometry' for the field. The results of this work steepened the flanks of the field, focusing hydrocarbons into a smaller area. This focusing is partly due to structure and partly due to velocity. Higher velocity resulting from the stacked-interval velocity approach has pulled in the structure's north-western and southeastern flanks, with the Turrum-4 well providing maximum limits to the lateral extent of hydrocarbons on the south-eastern flank of the structure.

RF:lt:0393rep4

## 7. Geological Summary

Turrum-4 is located 2km south-east of the Turrum-3 well and some 6km south-east of the Marlin A platform (Figure 1). The Turrum field comprises Lower <u>L. balmei</u> aged reservoirs situated 500m below the Top of Latrobe Group Marlin Gas Field. Prior to Turrum-4, well intersections through the Turrum reservoirs had identified multiple hydrocarbon (predominantly gas) zones. Few of these zones displayed hydrocarbon-water contacts. The objective of the Turrum-4 well was to establish the existence, or otherwise of oil legs to the Lower <u>L. balmei</u> gas reservoirs. Consequently, Turrum-4 was located on the southeastern flank of the Turrum field, within the predrill postulated (from RFT data) oil legs for these reservoirs.

The Top of Latrobe Group and 54.5 million year sequence boundary were intersected close to prognosis (4m high and 9m low respectively). However, the L200 to L500 markers, inclusive, were intersected considerably low to prognosis (50 to 65m low). This indicates the southeastern flanks of the Turrum feature to be steeper than anticipated predrill (at these levels). Whilst the L100 and L500 reservoirs were expected to be intersected below established oil/water contacts (the only two reservoirs with known contacts), the significantly deeper intersection of the remaining objective reservoirs (L200 to L400) lead to a lack of hydrocarbons being encountered. Consequently, all objectives of the well were water saturated. This result, however, does not preclude the existence of flank oil rims to the Turrum gas sands, but it does restrict the aerial occurrence if present updip of Turrum-4. The structural impact of the Turrum-4 result degrades the volumes of potential flank oil associated with Turrum gas.

The structural variance to prognosis seen at Turrum-4 is a result of the intersection of stratigraphy with faster velocities than were predicted predrill. This resulted in predicted depth to targets in excess of actual target intersections below the 54.5 million year sequence boundary.

The Lower <u>L. balmei</u> section penetrated at the Turrum-4 location also highlights the stratigraphic variability of the Turrum reservoirs. Reservoir packages, bounded above and below by coals, and recognised across the Turrum field and whilst these gross packages are recognised in Turrum-4, reservoir development within these intervals is variable compared with other well penetrations. This variability is commonly anticipated when considering fluvial depositional systems and makes confident correlation of reservoirs difficult. Notable variance from anticipated stratigraphy was observed within the L200

package where no reservoir was encountered, and the L300 package, where significantly thinner sand was developed.

The RFT pressure survey conducted in Turrum-4 revealed important information concerning pressure support for the Turrum reservoirs. Whilst pressure points obtained in the L100 (wet) and L500 (wet) sands at Turrum-4 indicate pressure draw down in line with regional gradient data and the Turrum-3 RFT results, the L200 to L400 sands at Turrum-4 (all wet) show little draw down from the original basin aquifer gradient. This suggests that these reservoirs may be in poor communication with the regional aquifer system.

As a result of all potential reservoir sections within Turrum-4 being water saturated, the well was plugged and abandoned as a dry hole.

## FIGURES

.

## TURRUM-4 Locality Map



TURRUM 4 SONIC VELOCITY VS DEPTH



Turrum-4 sonic velocity (check-shot-corrected) versus depth plot. Note key slow zones at 2400-2700m in Turrum-4 and at 1500-1800m and 2100-2600m in Turrum-3 which correlate with coaly intervals (check-shot-corrected).

Figure 2

!

## APPENDIX 1

ſ

## PALYNOLOGICAL ANALYSIS OF TURRUM-4 GIPPSLAND BASIN

by

ALAN D. PARTRIDGE BIOSTRATA PTY LTD A.C.N. 053 800 945

(Submitted 22 January 1993)

BIOSTRATA REPORT 1993/2

.

## INTERPRETED DATA

INTRODUCTION

PALYNOLOGICAL SUMMARY

GEOLOGICAL COMMENTS

BIOSTRATIGRAPHY

REFERENCES

TABLE-1: INTERPRETED DATA

CONFIDENCE RATINGS

BIOSTRATA REPORT 1993/2

JANUARY 1993

-

:

;

ł

:

## INTRODUCTION

Thirty-six samples comprising 32 sidewall cores and 4 cuttings samples were analysed in Turrum-4. Although 60 sidewall cores were shot and 52 recovered, at 18 locations duplicate samples were taken reducing the sample coverage in the well. The author examined all the sidewall cores, and after choosing the most suitable of the duplicate samples and rejecting unsuitable lithologies 32 samples (including 5 coal samples) were selected, cleaned, split and forwarded to Laola Pty Ltd in Perth for processing to prepare the palynological slides. The four cuttings were selected and sent directly to Laola Pty Ltd by personnel at Esso's core store.

An average of 16 grams of cuttings, 9 grams of the clastic sidewall cores and 3 grams of the coals were processed for palynological analysis. Residue yields overall were high in the Latrobe Group and low in the Seaspray Group. Palynomorph concentration on the slides was mostly moderate to high above 2400m but mostly low below this depth. Preservation of palynomorphs was generally poor to fair but deteriorated below about 2500m. Spore-pollen diversity is moderate, averaging 25+ species per sample in the clastic lithologies but low, averaging 10+ species in the coals samples. Microplankton diversity is very low (1-5 species) in the Latrobe Group but moderate (average 12 species) in the overlying Seaspray Group.

Lithological units and palynological zones from the base of the Seaspray Group to Total Depth are given in the following summary. The interpretative data with zone identification and Old and New Confidence Ratings are recorded in Table-1 and basic data on residue yields, preservation and diversity are recorded on Tables-2 and 3. Twenty-three of the samples were counted, and percentage data for these counts are recorded in Tables-4 and 5. All species which have been identified with binomial names are tabulated on palynomorph range charts which present the species on separate charts in order of highest and lowest appearances. Relinquishment list for palynological slides and residues from samples analysed in Turrum-4 are provided at the end of the report.

## PALYNOLOGICAL SUMMARY OF TURRUM-4

| AGE                             |                                 | UNIT/FACIES                                                               | SPORE-POLLEN ZONES<br>(DINOFLAGELLATE ZONES)                                  | DEPTHS<br>(mKB)                                               |  |  |
|---------------------------------|---------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| MIOCENE<br>TO LATE<br>OLIGOCENE | SEASPRAY<br>GROUP               |                                                                           | P. tuberculatus                                                               | 1902.0-1913.0                                                 |  |  |
| EARLY<br>EOCENE                 | L<br>A<br>T<br>R<br>O<br>B<br>E | Flounder<br>Formation                                                     | P. asperopolus                                                                | 1923.0-1970.0                                                 |  |  |
| PALEOCENE                       | G<br>R<br>O<br>U<br>P           | Undifferentiated<br>coastal plain<br>facies of shale,<br>coals and sands. | Upper L. balmei<br>(A. homomorphum)<br>Lower L. balmei<br>(E. crassitabulata) | 1982.5-2187.0<br>(1982.5-2109.5)<br>2290.0-2716.0<br>(2390.0) |  |  |

### GEOLOGICAL COMMENTS

- 1. The presence of *Foveotriletes lacunosus* diagnostic of the Middle subdivision of the *P. tuberculatus* Zone from both samples near the base of the Seaspray Group suggest the basal Oligocene part of the Lakes Entrance Formation is missing in Turrum-4.
- 2. The unconformity at 1919m separating the Seaspray Group from the underlying Flounder Formation represents a time break of approximately 20 million years. The interval not represented by sediment is considered to extend from the 30 Ma sequence boundary to the 49.5 Ma sequence boundary as represented on the cycle charts of Haq et al. (1987, 1988).
- 3. There is no evidence in Turrum-4 to indicate that either the Turrum Formation or Gurnard Formation were ever present at this location in the Gippsland Basin. They may never have been deposited at this location due to sediment starvation on the eastern flank of the Marlin Channel.
- 4. The Flounder Formation consists of a shale/claystone unit between 1919-1963m, which is well defined by the gamma log, underlain by a 15.5 metre thick sand between 1963-1978.5m. Cuttings at 1970m near

BIOSTRATA REPORT 1993/2

the top of this sand gave a *P. asperopolus* Zone age which confirms it is depositionally related to the overlying shale/claystone. The sand can also be distinguished from all sands in the underlying Upper *L. balmei* Zone by being thicker and cleaner according to the gamma log. No equivalent sand was penetrated until below 2300m, and these lie in the Lower *L. balmei* Zone.

5. The palynomorph assemblages from the three sidewall cores and four cuttings analysed from the Flounder Formation are all fairly homogeneous containing assemblages dominated by spore-pollen with dinoflagellates rare to very rare. The deepest sidewall core (at 1962m) and two deepest cuttings (1965m & 1970m) differ slightly in containing a high proportion (est. 20%-50% by volume) of large pieces of structured terrestrial kerogen.

The three cuttings samples were analysed in an attempt to find the index dinoflagellates *Kisselovia edwardsii* and *K. thompsonae* ms which are used to subdivide the *P. asperopolus* Zone. It was anticipated that the broader sampling interval, with the possibility of some cavings, in the cuttings sample would give a more diverse sampling of the Flounder Formation than obtained from the sidewall cores. The index species were not found, and in fact no clear differences were observed in any of the assemblages. Further, negligible caved palynomorphs were observed from the overlying *P. tuberculatus* Zone and no reworked palynomorphs were recorded from the underlying eroded Upper *L. balmei* Zone.

The extreme rarity of dinoflagellate in all the samples is unusual for the Flounder Formation. Because of this, and the overall homogeneity of the assemblages, it is suggested the Flounder Formation in Turrum-4 was deposited over only a short time interval, essentially representing one depositional event. Dinoflagellates are rare because they have been diluted by an influx of terrestrial kerogen. This feature has been observed in other sections in the Latrobe Group where depositional rates are high.

- 6. The unconformity at 1978.5m separating the Flounder Formation from the eroded undifferentiated Latrobe Group represents a time break of at least 3 million years. The erosive event within the Tuna-Flounder Channel system which effected the Turrum-4 site was either the 50.5 Ma or slightly younger 50 Ma sequence boundary, whilst the underlying Upper L. balmei Zone is no younger than the 53.5 Ma downlap surface on the cycle charts of Hag et al. (1987, 1988).
- 7. The undifferentiated portion of the Latrobe Group can be subdivided into two on the abundance and thickness of the coals and sands. A third unit of predominantly sand may be present below 2728.5m but as

no suitable samples were available for palynological analysis from this unit it will not be discussed further. The boundary between the two upper units is placed at 2298.5m which is close to the boundary between the Upper and Lower *L. balmei* Zones.

The upper unit from 1978.5-2298.5m is 320 metres thick and is comprised of 83% shale to siltstone, 15% sand and 3% coal. The sands are on average 2 metres thick, but range between 0.6-4.0 metres. The coals are on average 0.5 metres thick but range between 0.3-1.7 metres.

The lower unit from 2298.5-2728.5m is 430 metres thick and is composed of 63% shale to siltstone, 25% sands and 12% coal. The sands are on average 4.2 metres thick but range between 0.4-15.0 metres thick. The coals are on average 1.7 metres thick and range between 0.3 to 8.0 metres thick.

8. The observed dinoflagellate occurrences and their abundance suggest there is more marine influence through the lower unit or in the Lower *L. balmei* Zone than in the upper unit and Upper *L. balmei* Zone.

Examining the sidewall core lithologies there is no obvious characteristic to distinguish those samples containing significant occurrences of dinoflagellates. An equivalent inspection of the gamma, bulk density and neutron porosity electric logs reveal no characteristic that can distinguish between those samples containing dinoflagellates in abundance or of high diversity from samples lacking dinoflagellates.

The lack of any apparent correlation of dinoflagellate bearing palynological assemblage to the lithologies determined from the electric logs highlights an ongoing problem. To apply dinoflagellates successfully to the recognition of further subdivision of the *L. balmei* Zone requires increased sampling density.

9. The five coal samples analysed overall gave poor results principally because it was difficult to concentrate the spore-pollen sufficiently for routine microscope searching. Three samples were indeterminate, one was assigned to the *L. balmei* Zone whist the best sample at 2528m gave a moderate diversity assemblage which was confidently assigned to the Lower *L. balmei* Zone. Because of the uncertainty of obtaining good assemblages from the coals they are not recommended as targets for sidewall cores for palynological analysis.

BIOSTRATA REPORT 1993/2

## BIOSTRATIGRAPHY

Zone and age determinations are based on the spore-pollen zonation scheme proposed by Stover & Partridge (1973), partially modified by Stover & Partridge (1982) and Helby, Morgan & Partridge (1987), and a dinoflagellate zonation scheme which has only been published in outline by Partridge (1975, 1976). Other modifications and embellishments to both zonation schemes can be found in the many palynological reports on the Gippsland Basin wells drilled by Esso Australia Ltd. Unfortunately this work is not collated or summarised in a single report.

Author citations for most spore-pollen species can be sourced from Stover & Partridge (1973, 1982), Helby, Morgan & Partridge (1987) or other references cited herein. Author citations for dinoflagellates can be found in the indexes of Lentin & Williams (1985, 1989) in the paper by Wilson (1988), or other references cited herein. Species names followed by "ms" are unpublished manuscript names.

Proteacidites tuberculatus Zone: 1902.0-1913.0 metres Late Oligocene-Early Miocene.

The two sidewall cores analysed from the Seaspray Group gave meagre yields from which were recorded moderate diversity spore-pollen and microplankton assemblages which were well preserved. The samples can be confidently assigned to the Middle subdivision of the *P. tuberculatus* Zone on the frequent presence of the spores *Cyatheacidites annulatus* and *Foveotriletes lacunosus*. The remainder of the spore-pollen assemblage consists of long ranging species except for the rare occurrence of *Foraminisporis ozotus* ms and *Monoporites media* Cookson 1947 which are not known to range below the *P. tuberculatus* Zone.

The microplankton assemblage can be assigned to the informal *Operculodinium* spp. Association of Partridge 1976 on the frequent occurrence of the long ranging *Operculodinium centrocarpum* associated with the Oligocene or young index species *Protoellipsodinium simplex* ms, *Pyxidinopsis pontus* ms and *Tectactodinium scabroellipticus* ms.

Rare reworked Permian spores were recorded from both samples.

Proteacidites asperopolus Zone: 1923.0-1970.0 metres Early Eocene.

Three sidewall cores and four cuttings were analysed from the Flounder Formation. The lithology of the sidewall cores consisted of black-brown claystone with silty laminations. All samples gave high yields of

BIOSTRATA REPORT 1993/2

moderately concentrated spore-pollen assemblages of high diversity. Average diversity was 32+ species but composite diversity for the zone was a very high 75+ species.

The samples were confidently assigned to the *P. asperopolus* Zone on consistent presence of *Conbaculites apiculatus* ms, *Proteacidites pachypolus* and *Myrtaceidites tenuis* and the inconsistent presence of *Intratriporopollenites notabilis*, *Proteacidites ornatus*, *Santalumidites cainozoicus* and *Sapotaceoidaepollenites rotundus*. The eponymous species *Proteacidites asperopolus* was only recorded from the cuttings sample at 1965m. This species together with *C. apiculatus* ms and *S. rotundus* indicate an age no older while *M. tenuis*, *P. ornatus* and *I. notabilis* are key species confirming an age no younger than the *P. asperopolus* Zone. *Proteacidites alveolatus* which is essentially restricted to this zone was also recorded as rare specimens in two of the sidewall cores. This species has only been infrequently reported in the basin since originally described by Stover & Partridge (1973) and may be locally restricted.

The three sidewall cores, which were counted, and the four cuttings all contain very similar assemblages dominated by spore-pollen (71%-86% of total count) and fungal spores and hyphae (14%-29%) with dinoflagellates rare to very rare (<1%). The two deepest cuttings and the sidewall core at 1962m are further characterised by a high proportion (est. 20%-50% by volume) of very large pieces of structured terrestrial kerogen. The cuttings contain negligible caved fossils from the overlying *P. tuberculatus* Zone and no reworked fossils from the underlying *L. balmei* Zone were recorded.

Angiosperm pollen, particularly *Proteacidites* spp. 22-24% and *Haloragacidites harrisii* (= *Casuarina* pollen) at 19-23% dominate the sporepollen assemblages. Spores at 11-16% and gymnosperm pollen at 6-9% are minor components. Of age significance are the abundances of *Conbaculites apiculatus* ms (6.4% at 1954m); *Malvacipollis* spp. (2%-6%); *Myrtaceidites tenuis* (3.6% at 1962m) and *Proteacidites pachypolus* (0.8%-2.7%). *Casuarina* pollen is always more abundant than *Nothofagidites* spp. (6%-16%) and the *Nothofagidites* spp. to *H. harrisii* ratio, which is 0.3 at 1962m and 0.7 at 1954m and 1923m, is clear evidence that the abundance data favours a *P. asperopolus* Zone age.

The commonest *insitu* dinoflagellates were mostly fragmented specimens of *Deflandrea* spp. a few of which could be identified as *D. flounderensis* and one specimen was identified as *D. dartmooria*. Following the discovery of these species in the sidewall cores, the four cuttings samples were processed in the hope that with their broader sampling interval the *Kisselovia* index species could be found. Unfortunately in the cuttings like the sidewall cores the assemblages were overwhelmed by terrestrially derived palynomorphs and detritus.

BIOSTRATA REPORT 1993/2

## Upper Lygistepollenites balmei Zone: 1982.5-2187.0 metres and

Apectodinium homomorphum Zone: 1982.5-2109.5 metres

Late Paleocene.

All six samples over this zone interval clearly belong to the broader L. balmei Zone base on the consistent and frequent to abundant occurrence of Lygistepollenites balmei. Associated indicator species which range no young than this zone are Australopollis obscurus, Gambierina rudata, Polycolpites langstonii and Integricorpus antipodus ms all of which are less consistent. An age no older than the Upper L. balmei Zone is based principally on the occurrence of Proteacidites annularis in four of the samples together with Verrucosisporites kopukuensis (at 2111.5m and 2187m) and Anacolosidites acutullus (at 2187m). Each of these species normally do not range older than the Upper L. balmei Zone although poorly preserved specimens compared to P. annularis were recorded from the coal samples at 2373.5m and 2524m. Other species in the assemblages which support the zone assignment are the consistent and frequent occurrence of Haloragacidites harrisii and Nothofagidites emarcidus/heterus and the rare but fairly consistent occurrences of Malvacipollis subtilis and Proteacidites adenanthoides. These latter species first appear in the Lower L. balmei Zone but are generally not consistent until within the Upper L. balmei Zone. Overall the assemblages have an average spore-pollen diversity of 34+ species while the composite diversity for the zone is 64+ species.

All 6 samples in this zone were counted with a detailed analysis presented on Tables-4 and 5. In the following discussion average percentages for species discussed are used unless otherwise stated. The spore-pollen assemblages are dominated by spores 38%, with fairly equal amounts of angiosperm pollen 33% and gymnosperm pollen 30%. Spores which exceed 10% in some samples are *Gleicheniidites circinidites* (>15%), *Laevigatosporites* spp. (7.4%), and *Cyathidites* spp. (5.9%). *Proteacidites* spp. (15.4%) is the commonest angiosperm category and *Dilwynites* spp. (9.5%) the commonest gymnosperm. Other species show a high abundance in an occasional sample, such as *L. balmei* (19.5% at 2187m) and *Podocarpidites* spp. (18.6%) and *Australopollis obscurus* (17.3%) both at 2109.5m. *Phyllocladidites mawsonii* (5.3%) is noticeably less abundant than in underlying Lower *L. balmei* Zone, whilst *Nothofagidites* spp. (3.7%) and *H. harrisii* (1.9%) are consistent minor components in counts of the Upper *L. balmei* Zone but are irregular in occurrence in the Lower *L. balmei* Zone.

The only dinoflagellate recorded over the interval was the short spined variety of *Apectodinium homomorphum* whose occurrence confirms presence of the *A. homomorphum* Dinoflagellate Zone. A single specimen was recorded at 2109.5m, a few specimens at 2002m, but the species was abundant at 1982.5m where it comprised nearly 60% of total count.

BIOSTRATA REPORT 1993/2

## Lower Lygistepollenites balmei Zone: 2290.0-2216.0 metres and

Eisenackia crassitabulata Dinoflagellate Zone: 2390.0 metres Early Paleocene.

Twelve of the 21 samples from 2290m to T.D. can be confidently assigned to the Lower L. balmei Zone. Most of the remainder contain only the broader L. balmei Zone assemblage or are indeterminate. The most important indicator is Proteacidites angulatus in eleven samples whilst the occurrence of Juxtacolpus pieratus ms at 2327.5m confirms an age no younger than the Lower L. balmei Zone for this sample. The total range of P. angulatus s.s. is now considered to lie within this zone and it is no longer believed to range into the T. longus Zone as stated in Stover & Partridge (1973, p.264). Other features of the assemblages in Turrum-4 considered characteristic of the zone are the consistent occurrence of L. balmei, and less consistent but still regular occurrences of the species Australopollis obscurus, Gambierina rudata and Peninsulapollis gillii. The sporadic occurrence of Tetracolporites verrucosus also confirm an age no younger than this zone. Average spore-pollen diversity was 21+ species in samples assigned to Lower subdivision but only 11+ species in samples assigned to broader L. balmei Zone or given as indeterminate. Composite recorded diversity of all samples in zone is 60+ species.

Counts of 14 of the 21 samples in the zone are given on Tables-4 and 5. in the following discussion of the spore-pollen abundances the two coal samples (at 2373.5m & 2528m) and the very low count of spore-pollen from 2585m are excluded when calculating average percentages quoted. In the remaining 11 samples which are mostly claystones, gymnosperms dominate . (49%) followed by angiosperm pollen (28%) and spores (23%). The dominant gymnosperm is Phyllocladidites mawsonii 19% (range 9%-27%) with Podocarpidites spp. 11% (3%-30%) and Dilwynites spp. 8% (0%-22%) the next most common. The eponymous species L. balmei is consistently frequent at 5% with a range of abundances from 1% to 10%. Amongst the angiosperms Proteacidites spp. 18% is the only consistently abundant type. The three commonest spore types are Gleicheniidites spp. 7%; Laevigatosporites spp. 6%, and Stereisporites spp. 5%. The counts of the coals are similar to the average abundances in the clastic sediments except that Dilwynites spp. is rare <1% and the coals often contain unique abundances of spore species such as Latrobosporites crassus 21% at 2373.5m and Stereisporites n.sp. at 2726m.

The occurrence of microplankton within the Lower L. balmei Zone is best described as sporadic even though a moderate 18+ species diversity is recorded for the whole zone. Of most significance is the total range and abundance of *Glaphyrocysta retiintexta* which occurs in 4 of the 6 sidewall cores of clastic lithology between 2327.5m-2503.5m. Samples in this latter interval contain the highest diversity and the occurrence of *Eisenackia* 

BIOSTRATA REPORT 1993/2

JANUARY 1993

*crassitabulata* at 2390m confirms the presence of the *E. crassitabulata* Zone. There is little doubt that all the dinoflagellates recorded are displaying only partial ranges reflecting intermittent incursions of marine influence into a predominantly coastal plain environment. Characteristic of these incursions is that most samples containing microplankton are dominated by a single species.

#### REFERENCES

- COOKSON, I.C., 1947. Plant microfossils from the lignites of the Kerguelen Archipelago. B.A.N.Z. Antarct. Res. Expl. 1929-31, Rept. Serv. A. (2), 129-142.
- HAQ, B.U., HARDENBOL, J. & VAIL, P., 1987. Chronology of fluctuating sea levels since Triassic. *Science 235*, 1156-1167.
- HAQ, B.U., HARDENBOL, J. & VAIL, P., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Special Publication No. 42, 71-108.
- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., 1987. A palynological zonation of the Australian Mesozoic. *Mem. Ass. Australas. Palaeontols* 4, 1-94.
- LENTIN, J.K. & WILLIAMS, G.L., 1985. Fossil Dinoflagellates: Index to genera and species, 1985 Edition. Canadian Tech. Rep. Hydrog. Ocean Sci. 60, 1-451.
- LENTIN, J.K. & WILLIAMS, G.L., 1989. Fossil Dinoflagellates: Index to genera and species, 1989 Edition. AASP Contribution Series No. 20, 1-473.
- PARTRIDGE, A.D., 1975. Palynological zonal scheme for the Tertiary of the Bass Strait Basin (Introducing Paleogene Dinoflagellate Zones and Late Neogene Spore-Pollen Zones). Geol. Soc. Aust. Symposium on the Geology of Bass Strait and Environs, Melbourne, November, 1975. Esso Aust. Ltd. Palaeo. Rept. 1975/17 (unpubl.).
- PARTRIDGE, A.D., 1976. The geological expression of eustacy in the early Tertiary of the Gippsland Basin. APEA J. 16 (1), 73-79.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc. Vict. 85, 237-286.
- STOVER, L.E. & PARTRIDGE, A.D., 1982. Eocene spore-pollen from the Werillup Formation, Western Australia. *Palynology 6*, 69-95.
- WILSON, G.J., 1988. Palaeocene and Eocene dinoflagellate cysts from Waipawa, Hawkes Bay, New Zealand. N.Z. Geol. Surv. Palaeo. Bull. 57, 1-96.

BIOSTRATA REPORT 1993/2

\_\_\_\_ -

.

TABLE-1: INTERPRETATIVE PALYNOLOGICAL DATA FOR TURRUM-4, GIPPSLAND BASIN.

SHEET 1 OF 2

| SAMPLE<br>TYPE | DEPTH<br>(m) | SPORE-POLLEN ZONES     | *CR<br>OLD | *CR<br>NEW | MICROPLANKTON ZONES<br>(OR ASSOCIATIONS) | *CR<br>OLD | *CR<br>NEW | COMMENTS                                                    |
|----------------|--------------|------------------------|------------|------------|------------------------------------------|------------|------------|-------------------------------------------------------------|
| SWC 60         | 1902.0       | Middle P. tuberculatus | 0          | в2         | (Operculodinium spp.)                    | 0          | в3         | Monoporites media present.                                  |
| SWC 59         | 1913.0       | Middle P. tuberculatus | 0          | в2         | (Operculodinium spp.)                    | 0          | в3         | FAD Foveotriletes lacunosus.                                |
| SWC 58         | 1923.0       | P. asperopolus         | 1          | в1         |                                          |            |            | LAD Myrtaceidites tenuis.                                   |
| CUTTINGS       | 1930         | P. asperopolus         | 3          | D2         |                                          |            |            |                                                             |
| CUTTINGS       | 1940         | P. asperopolus         | 3          | D2         |                                          |            |            |                                                             |
| SWC 56         | 1954.0       | P. asperopolus         | 1          | в1         |                                          |            |            | Conbaculites apiculatus 6%.                                 |
| SWC 55         | 1962.0       | P. asperopolus         | 1          | в1         |                                          |            |            | FAD Sapotaceoidaepollenites rotundus.                       |
| CUTTINGS       | 1965         | P. asperopolus         | 3          | D1         |                                          |            |            | Proteacidites asperopolus present.                          |
| CUTTINGS       | 1970         | P. asperopolus         | 3          | D1         |                                          |            |            | FAD Conbaculites apiculatus ms.                             |
| SWC 54         | 1982.5       | Upper L. balmei        | 2          | в4         | A. homomorphum                           | 2          | в3         | LAD <i>Lygistepollenites balmei</i> .<br>Microplankton 59%. |
| SWC 53         | 2002.0       | Upper L. balmei        | 0          | в1         | A. homomorphum                           | 2          | в3         | Proteacidites annularis present.                            |
| SWC 52         | 2076.0       | Upper L. balmei        | 1          | в4         |                                          |            |            | Poor P. annularis only.                                     |
| SWC 51         | 2109.5       | L. balmei              | 1          | в1         | A. homomorphum                           | 2          | в3         | Australopollis obscurus 17%.                                |
| SWC 50         | 2111.5       | Upper L. balmei        | 4          | в4         |                                          |            |            | Verrucosisporites kopukuensis present.                      |
| SWC 49         | 2187.0       | Upper L. balmei        | 1          | в1         |                                          |            |            | FAD Proteacidites annularis.                                |
| SWC 46         | 2290.0       | Lower L. balmei        | 1          | в2         |                                          |            |            | LAD Proteacidites angulatus.                                |
| SWC 45         | 2302.5       | Lower L. balmei        | 1          | В1         |                                          |            |            | LAD Tetracolporites verrucosus.                             |
| SWC 43         | 2308.0       | Lower L. balmei        | 1          | B2         |                                          |            |            |                                                             |
| SWC 40         | 2323.0       | L. balmei              | 2          | B3         |                                          |            |            | Sandstone=very low yield.                                   |
| SWC 38         | 2327.5       | Lower L. balmei        | 2          | в3         | (G. retiintexta)                         | 1          | в3         | <i>Juxtacolpus pieratus</i> present.<br>Microplankton 34%.  |

| SAMPLE<br>TYPE | DEPTH<br>(m) | SPORE-POLLEN ZONES | *CR<br>OLD | *CR<br>NEW | MICROPLANKTON ZONES<br>(OR ASSOCIATIONS) | *CR<br>OLD | *CR<br>NEW | COMMENTS                                                        |
|----------------|--------------|--------------------|------------|------------|------------------------------------------|------------|------------|-----------------------------------------------------------------|
| SWC 35         | 2365.0       | L. balmei          | 1          | в1         |                                          |            |            | Few diagnostic species                                          |
| SWC 34         | 2373.5       | L. balmei          | 1          | в2         |                                          |            |            | Coal with <i>Latrobosporites crassus</i><br>dominant = 21%.     |
| SWC 33         | 2390.0       | Lower L. balmei    | 0          | В2         | E. crassitabulata                        | 0          | в3         | Microplankton 15%, with <i>G. retiintexta</i> dominant species. |
| SWC 29         | 2441.5       | Lower L. balmei    | 1          | в2         | (G. retiintexta)                         | 1          | в3         | Microplankton <3%.                                              |
| SWC 28         | 2488.0       | L. balmei          | 2          | в3         |                                          |            |            | Sandstone = low yield.                                          |
| SWC 26         | 2503.5       | Lower L. balmei    | 1          | в2         | (G. retiintexta)                         | 1          | в3         | Microplankton 8%.                                               |
| SWC 24         | 2528.0       | Lower L. balmei    | 1          | в2         |                                          |            |            | Coal with Juxtacolpus pieratus.                                 |
| SWC 23         | 2541.0       | Lower L. balmei    | 1          | в2         |                                          |            |            | <i>Apectodinium</i> sp. = 30%.                                  |
| SWC 21         | 2585.0       | L. balmei          | 2          | в3         |                                          |            |            | <i>Vozzhennikovia angulatus</i> Wilson 74%.                     |
| SWC 19         | 2591.5       | Indeterminate      |            |            |                                          |            |            | Coal with low diversity.<br>Non-diagnostic assemblage.          |
| SWC 17         | 2623.0       | L. balmei          | 1          | в2         |                                          |            |            | Low diversity due to poor preservation.                         |
| SWC 13         | 2657.0       | Lower L. balmei    | 1          | в2         |                                          |            |            | Proteacidites angulatus 5%.                                     |
| SWC 8          | 2696.0       | Lower L. balmei    | 2          | в3         |                                          |            |            |                                                                 |
| SWC 7          | 2703.0       | Indeterminate      |            |            |                                          |            |            | Coal with low diversity.<br>Non-diagnostic assemblage.          |
| SWC 6          | 2716.0       | Lower L. balmei    | 1          | в2         |                                          |            |            | FAD Proteacidites angulatus.                                    |
| SWC 4          | 2726.0       | Indeterminate      |            | ì          |                                          |            |            | Coal with monospecific spore assemblage.                        |

## TABLE-1: INTERPRETATIVE PALYNOLOGICAL DATA FOR TURRUM-4, GIPPSLAND BASIN.

SHEET 2 OF 2

\*CR = Confidence Ratings OLD & NEW FAD = First Appearance Datum LAD = Last Appearance Datum

### CONFIDENCE RATINGS

The concept of Confidence Ratings applied to palaeontological zone picks was originally proposed by Dr. L.E. Stover in 1971 to aid the compilation of micropalaeontological and palynological data and to expedite the revision of the then rapidly evolving zonation concepts in the Gippsland Basin. The original or OLD scheme which mixes confidence in fossil species assemblage with confidence due to sample type has gradually proved to be rather limiting as additional refinements to existing zonations have been made. With the development of the STRATDAT computer database as a replacement for the increasingly unwieldy paper based Palaeontological Data Sheet files a NEW set of Confidence Ratings have been proposed. Both OLD and NEW Confidence Ratings for zone picks are given on Table 1, and their meanings are summarised below:

#### OLD CONFIDENCE RATINGS

- 0 SWC or CORE, <u>Excellent Confidence</u>, assemblage with zone species of spore, pollen <u>and</u> microplankton.
- 1 SWC or CORE, <u>Good Confidence</u>, assemblage with zone species of spores and pollen <u>or</u> microplankton.
- 2 SWC or CORE, <u>Poor Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton.
- 3 CUTTINGS, <u>Fair Confidence</u>, assemblage with zone species of either spore and pollen or microplankton, or both.
- 4 CUTTINGS, <u>No Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton.

#### NEW CONFIDENCE RATINGS

Alpha codes: Linked to sample type

- A Core
- B Sidewall core
- C Coal cuttings
- **D** Ditch cuttings
- E Junk basket
- **F** Miscellaneous/unknown
- G Outcrop

Numeric codes: Linked to fossil assemblage

- 1 Excellent confidence: High diversity assemblage recorded with key zone species.
- 2 Good confidence: Moderately diverse assemblage recorded with key zone species.
- **3** Fair confidence: Low diversity assemblage recorded with key zone species.
- 4 **Poor confidence:** Moderate to high diversity assemblage recorded without key zone species.
- 5 Very low confidence: Low diversity assemblage recorded without key zone species.

## BASIC DATA

| TABLE 2: | BASIC SAMPLE DATA        |
|----------|--------------------------|
| TABLE 3: | BASIC PALYNOMORPH DATA   |
| TABLE 4: | PALYNOMORPH PERCENTAGES  |
| TABLE 5: | SPORE-POLLEN PERCENTAGES |

#### RELINQUISHMENT LISTS OF PALYNOLOGICAL SLIDES & RESIDUES

#### PALYNOMORPH RANGE CHARTS

- CHART-1: Palynomorph Range Chart for interval 1902-1970m. Relative Abundance by Highest Appearance
- CHART-2: Palynomorph Range Chart for interval 1902-1970m Relative Abundance by Lowest Appearance
- CHART-3: Palynomorph Range Chart for interval 1982.5-2726m Relative Abundance by Highest Appearance
- CHART-4: Palynomorph Range Chart for interval 1982.5-2726m Relative Abundance by Lowest Appearance

BIOSTRATA REPORT 1993/2

| TABLE-2: | BASIC | SAMPLE | DATA  | FOR | TURRUM-4.  | GIPPSLAND | BASIN. |
|----------|-------|--------|-------|-----|------------|-----------|--------|
|          | DROIC |        | DETER | TOR | TOTACON T/ | OTTTDTUTD | DUDTI  |

| SAMPLE DEPTH<br>TYPE (m) |        | LITHOLOGY                              | SAMPLE<br>WT (g.) | RESIDUE<br>YIELD |  |
|--------------------------|--------|----------------------------------------|-------------------|------------------|--|
| SWC 60                   | 1902.0 | Calcisiltite, tr. glauc. in burrows    | 10.7              | Low              |  |
| SWC 59                   | 1913.0 | Cal. claystone 5-10% glauconite        | 9.4               | Very low         |  |
| SWC 58                   | 1923.0 | Calc. claystone minor sst. laminations | 9.1               | High             |  |
| CUTTINGS                 | 1930   |                                        | 16.8              | High             |  |
| CUTTINGS                 | 1940   |                                        | 15.6              | High             |  |
| SWC 56                   | 1954.0 | Claystone with silty laminations       | 9.4               | High             |  |
| SWC 55                   | 1962.0 | Laminated claystone/siltstone          | 9.8               | High             |  |
| CUTTINGS                 | 1965   |                                        | 15.5              | High             |  |
| CUTTINGS                 | 1970   |                                        | 15.9              | High             |  |
| SWC 54                   | 1982.5 | Claystone/conchoidal fracture          | 8.9               | High             |  |
| SWC 53                   | 2002.0 | Claystone with silty laminae           | 9.3               | High             |  |
| SWC 52                   | 2076.0 | Claystone/subconchoidal fracture       | 9.7               | High             |  |
| SWC 51                   | 2109.5 | Claystone with carbonaceous laminae    | 6.9               | High             |  |
| SWC 50                   | 2111.5 | Claystone/massive/subconchoidal fract. | 8.4               | High             |  |
| SWC 49                   | 2187.0 | Laminated claystone/siltstone          | 6.5               | High             |  |
| SWC 46                   | 2290.0 | Massive claystone/siltstone            | 10.6              | High             |  |
| SWC 45                   | 2302.5 | Massive claystone                      | 8.1               | High             |  |
| SWC 43                   | 2308.0 | Claystone with faint laminations       | 9.5               | High             |  |
| SWC 40                   | 2323.0 | Lt. grey sandstone/clayey matrix       | 6.6               | Very low         |  |
| SWC 38                   | 2327.5 | Mottled clayey sandstone               | 11.1              | High             |  |
| SWC 35                   | 2365.0 | Mottled sandstone/minor clay laminae   | 10.0              | Moderate         |  |
| SWC 34                   | 2373.5 | Coal/brittle                           | 2.2               | High             |  |
| SWC 33                   | 2390.0 | Dk gry claystone                       | 9.5               | High             |  |
| SWC 29                   | 2441.5 | Dk gry claystone/faint laminae         | 10.3              | High             |  |
| SWC 28                   | 2488.0 | Med. gry v.f. sandstone                | 8.0               | Low              |  |
| SWC 26                   | 2503.5 | Laminated claystone/siltstone          | 9.4               | High             |  |
| SWC 24                   | 2528.0 | Coal/brittle                           | 4.7               | Moderate         |  |
| SWC 23                   | 2541.0 | Massive dk gry claystone               | 10.3              | High             |  |
| SWC 21                   | 2585.0 | Dk gry firm claystone                  | 10.3              | High             |  |
| SWC 19                   | 2591.5 | Coal/brittle                           | 3.9               | High             |  |
| SWC 17                   | 2623.0 | Brn gry silty claystone                | 10.4              | Moderate         |  |
| SWC 13                   | 2657.0 | Claystone with siltstone laminae       | 10.2              | High             |  |
| SWC 8                    | 2696.0 | Lt gry sandstone/clay matrix           | 8.1               | High             |  |
| SWC 7                    | 2703.0 | Coal/brittle                           | 2.7               | High             |  |
| SWC 6                    | 2716.0 | Claystone/rare sandy laminations       | 7.4               | High             |  |
| SWC 4                    | 2726.0 | Coal/brittle                           | 2.2               | High             |  |

| SAMPLE<br>TYPE | DEPTH<br>(m) | PALYNOMORPH<br>CONCENTRATION | PRESERVATION | No. S-P<br>Species* | MICROPLANKTON<br>ABUNDANCE | No. of<br>Species* |
|----------------|--------------|------------------------------|--------------|---------------------|----------------------------|--------------------|
| SWC 60         | 1902.0       | High                         | Good         | 22                  | Abundant                   | 12                 |
| SWC 59         | 1913.0       | Moderate                     | Good         | 21                  | Abundant                   | 12                 |
| SWC 58         | 1923.0       | High                         | Good         | 49                  | Very Rare                  | 3                  |
| CUTTINGS       | 1930         | Moderate                     | Fair         | 19                  | Very Rare                  | 2                  |
| CUTTINGS       | 1940         | Moderate                     | Fair         | 19                  | Very Rare                  | 2                  |
| SWC 56         | 1954.0       | High                         | Good         | 51                  | Very Rare                  | 1                  |
| SWC 55         | 1962.0       | Moderate                     | Fair         | 33                  | Very Rare                  | 1                  |
| CUTTINGS       | 1965         | Moderate                     | Fair-good    | 29                  |                            |                    |
| CUTTINGS       | 1970         | High                         | Fair-good    | 29                  | Very Rare                  | 2                  |
| SWC 54         | 1982.5       | Low                          | Poor-fair    | 24                  | Abundant                   | 1                  |
| SWC 53         | 2002.0       | Moderate                     | Poor         | 36                  | Rare                       | 1                  |
| SWC 52         | 2076.0       | High                         | Good         | 41                  |                            |                    |
| SWC 51         | 2109.5       | Moderate                     | Poor-fair    | 30                  | Very rare                  | 1                  |
| SWC 50         | 2111.5       | High                         | Fair-good    | 38                  |                            |                    |
| SWC 49         | 2187.0       | High                         | Fair         | 39                  |                            |                    |
| SWC 46         | 2290.0       | Moderate                     | Poor         | 18                  | Rare                       | 1                  |
| SWC 45         | 2302.5       | High                         | Fair         | 26                  | Frequent                   | 2                  |
| SWC 43         | 2308.0       | High                         | Fair         | 22                  |                            |                    |
| SWC 40         | 2323.0       | Low                          | Poor-fair    | 7                   |                            |                    |
| SWC 38         | 2327.5       | Low                          | Poor         | 22                  | Abundant                   | 4                  |
| SWC 35         | 2365.0       | Moderate                     | Fair-good    | 33                  | Rare                       | 1                  |
| SWC 34         | 2373.5       | Moderate                     | Poor-fair    | 16                  |                            | ·                  |
| SWC 33         | 2390.0       | High                         | Poor-fair    | 25                  | Common                     | 5                  |
| SWC 29         | 2441.5       | Low                          | Poor         | 27                  | Rare                       | 3                  |
| SWC 28         | 2488.0       | Low                          | Fair         | 8                   |                            |                    |
| SWC 26         | 2503.5       | Moderate                     | Poor         | 25                  | Frequent                   | 4                  |
| SWC 24         | 2528.0       | Moderate                     | Poor         | 24                  |                            |                    |
| SWC 23         | 2541.0       | Moderate                     | Fair         | 20                  | Abundant                   | 1                  |
| SWC 21         | 2585.0       | Low                          | Very poor    | 11                  | Abundant                   | 3                  |
| SWC 19         | 2591.5       | Very low                     | Poor         | 6                   |                            |                    |
| SWC 17         | 2623.0       | Low                          | Poor         | 14                  |                            |                    |
| SWC 13         | 2657.0       | Low                          | Poor         | 16                  | Rare                       | 1                  |
| SWC 8          | 2696.0       | Low                          | Poor         | 15                  |                            |                    |

TABLE-3: BASIC PALYNOMORPH DATA FOR TURRUM-4, GIPPSLAND BASIN.

.

SHEET 1 OF 2

.

.

|     |             |              |                              |              |                     | SHE                        | ETZOFZ             |
|-----|-------------|--------------|------------------------------|--------------|---------------------|----------------------------|--------------------|
|     | (PLE<br>(PE | DEPTH<br>(m) | PALYNOMORPH<br>CONCENTRATION | PRESERVATION | No. S-P<br>Species* | MICROPLANKTON<br>ABUNDANCE | No. of<br>Species* |
| SWC | 7           | 2703.0       | Low                          | Poor-fair    | 5                   |                            |                    |
| SWC | 6           | 2716.0       | Moderate                     | Poor         | 20                  |                            |                    |
| SWC | 4           | 2726.0       | Very low                     | Fair         | 2                   |                            |                    |

TABLE-3: BASIC PALYNOMORPH DATA FOR TURRUM-4, GIPPSLAND BASIN.

.

SHEET 2 OF 2

| *DIVERSITY | ζ: |     |         |
|------------|----|-----|---------|
| Very low   | Ξ  |     | species |
| Low        | =  |     | species |
| Moderate   |    |     | species |
| High       |    |     | species |
| Very high  | =  | 75+ | species |

BIOSTRATA REPORT 1993/2

.

| TABLE-4: PALYNOMORPHS PER  | CENTAGES I | FOR TUR | RUM-4  | PAGE 1 | OF4           |       |
|----------------------------|------------|---------|--------|--------|---------------|-------|
|                            |            |         |        |        |               |       |
|                            | 1923.0     | 1954.0  | 1962.0 | 1982.5 | 2002.0        | 2076. |
|                            | SWC-58     | SWC-56  | SWC-55 | SWC-54 | <b>SWC 53</b> | SWC 5 |
|                            |            |         |        |        |               |       |
| MAJOR CATEGORIES %         |            |         |        |        |               |       |
| Spores %                   | 10.3%      | 11.4%   | 9.2%   | 16.8%  | 23.1%         | 43.9% |
| Gymnosperm Pollen %        | 6.5%       | 4.6%    | 7.6%   | 7.2%   | 11.2%         | 21.29 |
| Angiosperm Pollen %        | 67.7%      | 55.4%   | 70.2%  | 13.2%  | 34.9%         | 31.29 |
| TOTAL SPORE-POLLEN %       | 84.5%      | 71.4%   | 87.0%  | 37.1%  | 69.2%         | 96.3% |
| Fungal Spores and Hyphae % | 14.8%      | 28.6%   | 22.9%  | 3.0%   | 30.8%         | 3.79  |
| Dinoflagellate %           | 0.6%       |         | 0.8%   | 59.9%  |               |       |
| DINOFLAGELLATES            |            | •       |        |        |               |       |
| Dinoflagellates Undiff.    | 100.0%     |         | 100.0% |        |               |       |
| Apectodinium homomorphum   |            |         |        | 100.0% |               |       |
| Apectodinium spp.          |            |         |        |        |               |       |
| Cyclopsiella sp.           |            |         |        |        |               |       |
| Deflandrea spp.            |            |         |        |        |               |       |
| Eisenackia crassitabulata  |            |         |        |        |               |       |
| Glaphrocysta retiintexta   |            |         |        |        |               |       |
| Glaphrocysta spp.          |            |         |        |        |               |       |
| Paralecaniella indentata   |            |         |        |        |               |       |
| Spinidinium spp.           |            |         |        |        |               |       |
| Vozzhennikovia angulata    |            |         |        |        |               |       |
| DINOFLAGELLATE COUNT       | 1          |         | 1      | 100    |               |       |
|                            |            |         | 4 4 10 | 107    | 100           |       |
| TOTAL COUNT                | 155        | 175     | 145    | 167    | 169           | 18    |
|                            |            |         |        |        |               |       |

| TABLE-4: PALYNOMORPHS PERC | ENTAGES | NTAGES FOR TURRUM-4 PAGE 2 O |        |        |                                       |        |
|----------------------------|---------|------------------------------|--------|--------|---------------------------------------|--------|
|                            |         |                              |        |        |                                       |        |
|                            |         | 2111.5                       |        |        | 2308.0                                | 2327.5 |
|                            | SWC 51  | SWC 50                       | SWC 49 | SWC 45 | SWC 43                                | SWC 3  |
|                            |         |                              |        |        |                                       |        |
| MAJOR CATEGORIES %         | 00.000  | <b>FO 00</b>                 | 10.00/ | 00 50  | 15.00/                                | 0.00   |
| Spores %                   | 23.6%   |                              |        |        |                                       | 8.09   |
| Gymnosperm Pollen %        | 31.3%   |                              |        |        |                                       | 26.39  |
| Angiosperm Pollen %        | 30.8%   |                              |        |        |                                       | 25.7%  |
| TOTAL SPORE-POLLEN %       | 85.7%   | 91.6%                        | 97.0%  | 94.7%  | 91.0%                                 | 60.0%  |
| Fungal Spores and Hyphae % | 13.7%   | 7.9%                         | 3.8%   | 5.3%   | 9.0%                                  | 6.3%   |
| Dinoflagellate %           | 0.5%    | 0.5%                         |        |        |                                       | 33.7%  |
| DINOFLAGELLATES            |         |                              |        |        | · · · · · · · · · · · · · · · · · · · |        |
| Dinoflagellates Undiff.    |         | 100.0%                       |        |        |                                       | 5.1%   |
| Apectodinium homomorphum   | 100.0%  |                              |        |        |                                       |        |
| Apectodinium spp.          |         |                              |        |        |                                       |        |
| Cyclopsiella sp.           |         |                              |        |        |                                       |        |
| Deflandrea spp.            |         |                              |        |        |                                       |        |
| Eisenackia crassitabulata  |         |                              |        |        |                                       |        |
| Glaphrocysta retiintexta   |         |                              |        |        |                                       | 52.5%  |
| Glaphrocysta spp.          |         |                              |        |        |                                       |        |
| Paralecaniella indentata   |         |                              |        |        |                                       | 42.49  |
| Spinidinium spp.           |         |                              |        |        |                                       |        |
| Vozzhennikovia angulata    |         |                              |        |        |                                       |        |
| DINOFLAGELLATE COUNT       | 1       | 1                            |        |        |                                       | 5      |
|                            |         |                              |        |        |                                       |        |
| TOTAL COUNT                | 182     | 214                          | 237    | 206    | 177                                   | 17     |
|                            |         |                              |        |        |                                       |        |

| TABLE-4: PALYNOMORPHS PERC            | ENTAGES | TAGES FOR TURRUM-4 PAGE 3 OF 4 |               |               | 30F4          |         |
|---------------------------------------|---------|--------------------------------|---------------|---------------|---------------|---------|
|                                       |         |                                |               |               |               |         |
|                                       |         | 2373.5                         |               | 2441.5        |               | 2528.0  |
| · · · · · · · · · · · · · · · · · · · | SWC 35  | <b>SWC 34</b>                  | <b>SWC 33</b> | <b>SWC 29</b> | <b>SWC 26</b> | SWC 24  |
|                                       |         | COAL                           |               |               |               | COAL    |
| MAJOR CATEGORIES %                    |         |                                |               |               |               |         |
| Spores %                              | 13.3%   | 33.9%                          | 19.7%         | 22.6%         | 12.1%         | 25.0%   |
| Gymnosperm Pollen %                   | 57.0%   | 36.5%                          | 42.9%         | 45.2%         | 47.1%         | 42.2%   |
| Angiosperm Pollen %                   | 16.4%   | 19.1%                          | 14.3%         | 19.1%         | 17.1%         | 31.0%   |
| TOTAL SPORE-POLLEN %                  | 86.7%   | 89.6%                          | 76.9%         | 87.0%         | 76.4%         | 98.3%   |
| Fungal Spores and Hyphae %            | 9.4%    | 10.4%                          | 9.5%          | 10.4%         | 15.7%         | 1.7%    |
| Dinoflagellate %                      | 3.9%    |                                | 13.6%         | 2.6%          | 7.9%          |         |
| DINOFLAGELLATES                       |         |                                |               | · · · · · ·   |               |         |
| Dinoflagellates Undiff.               | 20.0%   |                                | 10.0%         | 33.3%         | 54.5%         |         |
| Apectodinium homomorphum              |         |                                |               |               |               |         |
| Apectodinium spp.                     |         |                                |               |               |               |         |
| Cyclopsiella sp.                      | 80.0%   |                                |               |               |               |         |
| Deflandrea spp.                       |         |                                |               |               |               |         |
| Eisenackia crassitabulata             |         |                                | 5.0%          |               |               |         |
| Glaphrocysta retiintexta              |         |                                | 85.0%         | 66.7%         | 45.5%         |         |
| Glaphrocysta spp.                     |         |                                |               |               |               |         |
| Paralecaniella indentata              |         |                                |               |               |               |         |
| Spinidinium spp.                      |         |                                |               |               |               |         |
| Vozzhennikovia angulata               |         |                                |               |               |               |         |
| DINOFLAGELLATE COUNT                  | 5       |                                | 20            | 3             | 11            |         |
|                                       |         |                                |               |               |               | ، د. پر |
| TOTAL COUNT                           | 128     | 115                            | 147           | 115           | 140           | 110     |
|                                       |         |                                |               |               |               |         |

.
.

| TABLE-4: PALYNOMORPHS PER  | CENTAGES | FOR TUP | RUM-4    | PAGE 4 | IOF4   |        |
|----------------------------|----------|---------|----------|--------|--------|--------|
|                            | 0544.0   | 0505.0  | 0000 0   | 0057.0 | 0701.0 |        |
| · ·····                    |          |         |          |        | 2761.0 |        |
|                            | SWC 23   | SWC 21  | SWC 17   | SWC 13 | SWC 6  |        |
| MAJOR CATEGORIES %         |          |         |          |        |        |        |
| Spores %                   | 21.2%    | 5.9%    | 10.2%    | 13.9%  | 30.6%  |        |
| Gymnosperm Pollen %        | 16.2%    | 4.4%    | 49.1%    | 29.9%  | 29.4%  |        |
| Angiosperm Pollen %        | 17.2%    | 1.5%    | 35.2%    | 27.8%  | 29.4%  |        |
| TOTAL SPORE-POLLEN %       | 54.5%    | 11.8%   | 94.4%    | 71.5%  | 89.4%  | ······ |
| Fungal Spores and Hyphae % | 15.7%    | 2.9%    | 5.6%     | 27.8%  | 10.6%  |        |
| Dinoflagellate %           | 29.8%    | 85.3%   |          | 0.7%   |        |        |
| DINOFLAGELLATES            |          |         |          |        |        |        |
| Dinoflagellates Undiff.    |          | 1.7%    |          |        |        |        |
| Apectodinium homomorphum   |          |         |          |        |        |        |
| Apectodinium spp.          | 100.0%   |         |          |        |        |        |
| Cyclopsiella sp.           |          |         |          |        |        |        |
| Deflandrea spp.            |          | 1.7%    |          |        |        |        |
| Eisenackia crassitabulata  |          |         |          |        |        |        |
| Glaphrocysta retiintexta   |          |         |          |        |        |        |
| Glaphrocysta spp.          |          |         |          |        |        |        |
| Paralecaniella indentata   |          |         |          |        |        |        |
| Spinidinium spp.           |          | 10.3%   |          | 100.0% |        |        |
| Vozzhennikovia angulata    |          | 86.2%   |          |        |        |        |
| DINOFLAGELLATE COUNT       | 59       | 58      | <u> </u> | 1      |        |        |
|                            |          |         | 100      |        |        |        |
| TOTAL COUNT                | 198      | 68      | 108      | 144    | 85     |        |
|                            |          |         |          |        |        |        |

سر.

|                                   |        |        |        |        | -                                     |         |
|-----------------------------------|--------|--------|--------|--------|---------------------------------------|---------|
|                                   | 1923.0 |        |        |        |                                       | 2076.   |
|                                   | SWC-58 | SWC-56 | SWC-55 | SWC-54 | SWC 53                                | SWC 5   |
| TRILETE SPORES undiff.            | 3.1%   | 1.6%   | 4.5%   |        | 1.7%                                  | 1.69    |
| Baculatisporites spp.             |        |        |        | 1.6%   | 1.7%                                  | 1.19    |
| Conbaculites apiculatus ms        | -      | 6.4%   |        |        |                                       |         |
| Cyathidites spp.                  | 3.8%   |        | 2.7%   |        | 5.1%                                  | 3.39    |
| Gleicheniidites/Clavifera spp.    | 0.8%   |        |        | 33.9%  | 16.2%                                 | 16.59   |
| Herkosporites elliottii           |        |        |        |        |                                       |         |
| Latrobosporites crassus           |        |        |        |        |                                       |         |
| Stereisporites spp.               | 2.3%   |        |        | 6.5%   | 4.3%                                  | 5.59    |
| Trilites tuberculiformis          | 2.070  |        |        | 0.070  | 4.070                                 | 0.07    |
| MONOLETE SPORES undiff.           |        |        |        |        | 0.9%                                  |         |
| Laevigatosporites spp.            | 2.3%   | 0.8%   | 1.8%   | 3.2%   |                                       | 16 50   |
|                                   | 2.3%   | 0.8%   | 1.8%   | 3.2%   |                                       | 16.59   |
| Peromonolites spp.                | 10.00/ | 10.00  | 10 70  | 15.00  | 0.9%                                  | 1.19    |
| TOTAL SPORES                      | 12.2%  | 16.0%  | 10.7%  | 45.2%  | 33.3%                                 | 45.69   |
| GYMNOSPERM POLLEN                 |        |        |        |        |                                       |         |
| Araucariacites australis          |        |        | 0.9%   |        |                                       | 0.59    |
| Dilwynites spp.                   |        | 2.4%   | 1.8%   | 11.3%  | 2.6%                                  | 4.49    |
| Lygistepollenites balmei          |        |        |        | 1.6%   |                                       | 3.89    |
| Lygistepollenites florinii        | 3.1%   | 1.6%   | 4.5%   | 1.6%   |                                       | 2.29    |
| Microcachryidites antarticus      |        |        |        |        | 0.9%                                  |         |
| Phyllocladidites mawsonii         | 3.1%   | 2.4%   |        |        | 4.3%                                  | 6.09    |
| Phyllocladidites ovalis           | 0.8%   |        |        |        |                                       |         |
| Podocarpidites spp.               | 0.8%   |        | 1.8%   | 3.2%   | 3.4%                                  | 2.79    |
| Podosporites microsaccatus        |        |        |        | 1.6%   |                                       | 2.29    |
| TOTAL GYMNOSPERM POLLEN           | 7.6%   | 6.4%   | 8.9%   | 19.4%  |                                       | 22.09   |
|                                   |        |        |        |        |                                       |         |
| ANGIOSPERM POLLEN undiff.         | 1.5%   | 1.6%   | 0.9%   |        | 0.9%                                  | 1.19    |
| Australopollis obscurus           |        |        |        |        | 2.6%                                  |         |
| Casuarina (H. harrisii)           | 22.1%  | 19.2%  | 23.2%  | 1.6%   |                                       | 2.29    |
| Cupanieidites orthoteichus        | 0.8%   |        | 0.9%   |        |                                       |         |
| Dicotetradites clavatus           | 3.8%   |        | 1.8%   |        |                                       |         |
| Gambierina rudata                 |        |        |        |        |                                       |         |
| llexpollenites sp.                | 1.5%   | 0.8%   |        |        |                                       |         |
| Malvacipollis spp.                | 2.3%   |        |        | 1.6%   | 0.9%                                  |         |
| Myrtaceidites spp.                | 2.070  | 1.6%   |        | 1.070  | 0.376                                 |         |
|                                   |        |        |        |        |                                       |         |
| Myrtaceidites tenuis              | 44 50/ | 0.8%   |        | 0.00/  | 4 00/                                 |         |
| Nothofagidites "brassi" types A/B | 11.5%  |        |        | 3.2%   | 4.3%                                  | 1.19    |
| Nothofagidites "brassi" type C    | 0.001  | 4.8%   |        |        | 0.00                                  | ~ ~ ~ ~ |
| Nothofagidites "fusca" type A/B   | 3.8%   | 2.4%   | 2.7%   |        | 0.9%                                  | 0.59    |
| Peninsulapollis gillii            |        |        |        |        |                                       |         |
| Periporopollenites spp.           |        | 0.8%   |        |        |                                       | 1.19    |
| Proteacidites angulatus           |        |        |        |        | ļ ļ                                   |         |
| Proteacidites annularis           |        |        | 0.9%   |        | ļļ                                    | 0.59    |
| Proteacidites pachypolus          | 0.8%   |        |        |        |                                       |         |
| Proteacidites spp.                | 21.4%  | 20.0%  | 20.5%  | 17.7%  | 29.1%                                 | 19.29   |
| Tetracolporites spp.              |        |        |        |        | -                                     | 2.79    |
| Tricolp(or)ates undiff.           | 10.7%  | 12.8%  | 15.2%  | 8.1%   | · · · · · · · · · · · · · · · · · · · | 3.39    |
| Triporopollenites spp. (small)    |        |        |        | 3.2%   |                                       | 0.59    |
| TOTAL ANGIOSPERM POLLEN           | 80.2%  | 77.6%  | 82.1%  | 35.5%  | 50.4%                                 | 32.49   |
| TOTAL SPORES-POLLEN COUNT         | 131    | 125    | 112    | 62     | 117                                   | 18      |
|                                   |        | ·      |        |        | ├ <u></u>                             |         |

.

| TABLE-5: SPORE-POLLEN PERCEN      | 1      |        |                                     |         | i       |       |
|-----------------------------------|--------|--------|-------------------------------------|---------|---------|-------|
|                                   | 2109.5 | 2111.5 | 2187.0                              | 2302.5  | 2308.0  | 2327. |
|                                   |        |        | and the second second second second | -       | SWC 43  | SWC 3 |
|                                   | 300 31 | 300 50 | 500 49                              | 3000 45 | 3000 43 | 300 3 |
| TRILETE SPORES undiff.            |        | 1.5%   | 3.1%                                |         |         |       |
| Baculatisporites spp.             | 0.6%   | 2.6%   | 0.9%                                |         | 1.2%    |       |
| Conbaculites apiculatus ms        |        |        |                                     |         |         |       |
| Cyathidites spp.                  | 5.1%   | 19.9%  | 1.8%                                | 0.5%    | 1.2%    | 1.09  |
| Gleicheniidites/Clavifera spp.    | 7.7%   |        |                                     |         | /,      | 3.89  |
| Herkosporites elliottii           | 1      | 0.5%   |                                     | 0.5%    |         | 1.09  |
| Latrobosporites crassus           |        |        |                                     |         |         |       |
| Stereisporites spp.               | 3.2%   | 1.5%   | 0.9%                                | 6.2%    | 2.5%    | 2.99  |
| Trilites tuberculiformis          | 1.9%   |        | 1.3%                                |         |         |       |
| MONOLETE SPORES undiff.           |        |        | 0.4%                                |         |         |       |
| Laevigatosporites spp.            | 7.7%   | 10.2%  | 4.9%                                |         | 7.5%    | 4.89  |
| Peromonolites spp.                | 1.3%   |        |                                     | 1.0%    |         |       |
| TOTAL SPORES                      | 27.6%  |        |                                     |         |         | 13.39 |
|                                   | 27.070 | 04.070 | 20.470                              | 04.470  | 10.0 %  | 10.0  |
| GYMNOSPERM POLLEN                 |        |        |                                     |         |         |       |
| Araucariacites australis          | +      | 1.0%   | 0.9%                                | 1.0%    | 1.2%    | 1.09  |
| Dilwynites spp.                   | 5.8%   |        |                                     |         |         | 7.6   |
| Lygistepollenites balmei          | 0.6%   |        | 19.5%                               |         |         | 9.59  |
| Lygistepollenites florinii        | 3.2%   |        | 2.2%                                |         | 1.2%    |       |
| Microcachryidites antarticus      | 0.2.70 | 0.070  | 0.4%                                |         | 1.270   |       |
| Phyllocladidites mawsonii         | 6.4%   | 5.1%   | 10.2%                               |         | 17.4%   | 15.29 |
| Phyllocladidites ovalis           | 0.470  | 0.170  | 10.270                              | 20.070  | 17.470  | 1.0   |
| Podocarpidites spp.               | 18.6%  | 3.6%   | 2.7%                                | 6.2%    | 6.8%    | 3.89  |
| Podosporites microsaccatus        | 18.0%  |        | 0.9%                                |         |         | 5.79  |
| TOTAL GYMNOSPERM POLLEN           |        |        |                                     |         | [       |       |
| TOTAL GYMINOSPERM POLLEN          | 36.5%  | 26.0%  | 58.8%                               | 43.6%   | 58.4%   | 43.89 |
| ANGIOSPERM POLLEN undiff.         | 0.6%   |        | 0.4%                                |         |         |       |
| Australopollis obscurus           | 17.3%  |        | 0.4 /0                              |         |         | 4.89  |
| Casuarina (H. harrisii)           | 3.8%   |        | 1.3%                                | 0.5%    |         | 4.0   |
|                                   | 5.070  | 1.0 /8 | 1.570                               | 0.5%    |         |       |
| Cupanieidites orthoteichus        | 0.6%   |        |                                     |         |         |       |
| Dicotetradites clavatus           | 0.6%   |        |                                     |         | 0.00    |       |
| Gambierina rudata                 |        |        |                                     |         | 0.6%    |       |
| llexpollenites sp.                |        | 0.50   | 0.494                               |         |         |       |
| Malvacipollis spp.                |        | 0.5%   | 0.4%                                |         |         |       |
| Myrtaceidites spp.                |        |        |                                     |         |         |       |
| Myrtaceidites tenuis              |        |        |                                     |         |         |       |
| Nothofagidites "brassi" types A/B | 1.9%   | 2.6%   | 2.2%                                | 4.6%    | 6.8%    | 7.6   |
| Nothofagidites "brassi" type C    |        |        |                                     |         |         |       |
| Nothofagidites "fusca" type A/B   | 1.9%   | 0.5%   | 3.1%                                |         |         | 1.9   |
| Peninsulapollis gillii            |        |        |                                     |         |         |       |
| Periporopollenites spp.           |        |        |                                     |         |         |       |
| Proteacidites angulatus           |        |        |                                     | 0.5%    | 0.6%    |       |
| Proteacidites annularis           |        |        | 0.4%                                |         |         |       |
| Proteacidites pachypolus          |        |        |                                     |         |         |       |
| Proteacidites spp.                | 7.7%   | 7.7%   | 10.2%                               | 14.4%   |         | 21.0  |
| Tetracolporites spp.              | 0.6%   |        | 0.4%                                | 1.5%    | 3.1%    | 1.0   |
| Tricolp(or)ates undiff.           |        | 1.0%   | 2.7%                                |         | 0.6%    | 6.7   |
| Triporopollenites spp. (small)    | 1.3%   |        |                                     |         |         |       |
| TOTAL ANGIOSPERM POLLEN           | 35.9%  |        |                                     |         |         | 42.9  |
|                                   |        |        |                                     |         |         |       |
|                                   |        | +      |                                     |         | +       |       |
| TOTAL SPORES-POLLEN COUNT         | 156    | 196    | 228                                 | 195     | 161     | 10    |

|                                          | -                                                                                                               | 00000    |            |          |          |             |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|------------|----------|----------|-------------|
|                                          | - Internet and the second s | 2373.5   |            |          |          | 2528.       |
|                                          | SWC 35                                                                                                          | SWC 34   | SWC 33     | SWC 29   |          | SWC 2       |
| TRILETE SPORES undiff.                   |                                                                                                                 | COAL     |            | 2.0%     |          | COAL<br>3.5 |
| Baculatisporites spp.                    | 0.9%                                                                                                            |          |            | 1.0%     |          | 3.5         |
| Conbaculites apiculatus ms               | 0.970                                                                                                           |          |            | 1.070    | 0.9%     |             |
| Cyathidites spp.                         | 0.9%                                                                                                            | 1.0%     |            |          | 0.9%     | 7.9         |
| Gleicheniidites/Clavifera spp.           | 5.4%                                                                                                            |          | 9.7%       | 6.0%     | 7.5%     | <u> </u>    |
| Herkosporites elliottii                  | 0.9%                                                                                                            |          | 5.170      | 0.0 %    | 7.5 %    | 0.0         |
| Latrobosporites crassus                  | 0.970                                                                                                           | 21.4%    |            |          |          |             |
| Stereisporites spp.                      | 1.8%                                                                                                            | 1.9%     | 8.0%       | 6.0%     | 0.9%     | 3.5         |
| Trilites tuberculiformis                 | 1.0 /0                                                                                                          | 1.370    | 0.076      | 0.0 /0   | 1.9%     | 5.5         |
| MONOLETE SPORES undiff.                  |                                                                                                                 |          |            | 1.0%     |          |             |
|                                          | 3.6%                                                                                                            | 2.0%     | 7 10/      |          |          | 26          |
| Laevigatosporites spp.                   | _                                                                                                               |          | 7.1%       |          |          | 2.6         |
| Peromonolites spp.                       | 1.8%                                                                                                            |          | 0.9%       |          |          | 2.6         |
| TOTAL SPORES                             | 15.3%                                                                                                           | 37.9%    | 25.7%      | 26.0%    | 15.9%    | 25.4        |
| GYMNOSPERM POLLEN                        | 0.9%                                                                                                            |          |            |          |          |             |
| Araucariacites australis                 |                                                                                                                 |          | 0.9%       | 1.0%     | 1.9%     |             |
| Dilwynites spp.                          | 14.4%                                                                                                           | 1.0%     | 11.5%      |          |          | 0.9         |
| Lygistepollenites balmei                 | 9.0%                                                                                                            |          |            | 8.0%     |          | 6.1         |
| Lygistepollenites florinii               | 1.8%                                                                                                            |          |            |          | 1.9%     | 3.5         |
| Microcachryidites antarticus             | 1.8%                                                                                                            |          | 1.8%       |          |          | 0.0         |
| Phyllocladidites mawsonii                | 23.4%                                                                                                           |          | 18.6%      |          |          | 20.2        |
| Phyllocladidites ovalis                  | 20.7/0                                                                                                          | 10.4/0   | 0.9%       |          |          |             |
| Podocarpidites spp.                      | 12.6%                                                                                                           | 8.7%     | 17.7%      |          | 12.1%    | 7.9         |
| Podosporites microsaccatus               | 1.8%                                                                                                            |          | 1.8%       | 9.0%     |          | 4.4         |
| TOTAL GYMNOSPERM POLLEN                  | 65.8%                                                                                                           |          | 55.8%      |          |          | 43.0        |
| TOTAL GIMINOSPENII FOLLEN                | 05.076                                                                                                          | 40.070   | 00.0%      | 52.070   | 01.770   | 43.0        |
| ANGIOSPERM POLLEN undiff.                | 0.9%                                                                                                            | 1.0%     | . <u> </u> |          |          | 1.8         |
| Australopollis obscurus                  | 1.8%                                                                                                            |          | 2.7%       |          | 3.7%     | 8.8         |
| Casuarina (H. harrisii)                  | 1.0 %                                                                                                           | 1.9%     |            |          | 0.9%     |             |
| Cupanieidites orthoteichus               |                                                                                                                 | 1.0 /0   |            |          | 0.070    | · · ·       |
| Dicotetradites clavatus                  |                                                                                                                 |          |            |          |          |             |
| Gambierina rudata                        | +                                                                                                               | 1.0%     |            |          | 0.9%     |             |
| llexpollenites sp.                       |                                                                                                                 | 1.0 /0   |            |          | 0.370    | 4=7.55      |
| Malvacipollis spp.                       |                                                                                                                 |          |            |          | <u> </u> |             |
| Maivacipollis spp.<br>Myrtaceidites spp. |                                                                                                                 |          |            |          |          |             |
|                                          |                                                                                                                 |          |            |          |          |             |
| Myrtaceidites tenuis                     | 2 60/                                                                                                           | <b> </b> | 0.00/      | 8.0%     | 0.9%     |             |
| Nothofagidites "brassi" types A/B        | 3.6%                                                                                                            |          | 0.9%       | 0.0%     | 0.9%     |             |
| Nothofagidites "brassi" type C           | 0.00                                                                                                            |          |            |          |          |             |
| Nothofagidites "fusca" type A/B          | 0.9%                                                                                                            |          |            | <b> </b> |          | 0.9         |
| Peninsulapollis gillii                   | 0.00                                                                                                            |          |            | ļ        | <u> </u> | 0.9         |
| Periporopollenites spp.                  | 0.9%                                                                                                            |          | 4.40       |          |          |             |
| Proteacidites angulatus                  |                                                                                                                 | 4.00     | 4.4%       | 2.0%     |          | 0.9         |
| Proteacidites annularis                  |                                                                                                                 | 4.9%     |            |          |          |             |
| Proteacidites pachypolus                 |                                                                                                                 | 40 70    | 0.001      | 10.00    | 45.00    |             |
| Proteacidites spp.                       | 5.4%                                                                                                            |          | 8.8%       | 12.0%    | 15.0%    | 14.0        |
| Tetracolporites spp.                     | 0.9%                                                                                                            |          | 1 001      | ļ        | 0.001    | 1.8         |
| Tricolp(or)ates undiff.                  | 3.6%                                                                                                            |          |            |          | 0.9%     | 1.8         |
| Triporopollenites spp. (small)           | 0.9%                                                                                                            |          | +          |          |          | 0.9         |
| TOTAL ANGIOSPERM POLLEN                  | 18.9%                                                                                                           | 21.4%    | 18.6%      | 22.0%    | 22.4%    | 31.6        |
|                                          |                                                                                                                 |          |            |          | 107      |             |
| TOTAL SPORES-POLLEN COUNT                | 111                                                                                                             | 103      | 113        | 100      | 107      | 1           |

٠

l

Į

|                                                       | 2541.0 | 2585.0   | 2623.0 | 2657.0  | 2761.0 |             |
|-------------------------------------------------------|--------|----------|--------|---------|--------|-------------|
|                                                       |        |          |        | SWC 13  |        |             |
| ······                                                | 00020  | 00021    | 000 17 | 0000 10 | 0000 0 |             |
| TRILETE SPORES undiff.                                | 2.8%   |          |        | 1.0%    | 3.9%   |             |
| Baculatisporites spp.                                 | 1.9%   |          |        |         |        |             |
| Conbaculites apiculatus ms                            |        |          |        |         |        |             |
| Cyathidites spp.                                      | 1.9%   |          | 1.0%   |         | 2.6%   |             |
| Gleicheniidites/Clavifera spp.                        | 8.3%   |          | 3.9%   |         | 10.5%  |             |
| Herkosporites elliottii                               | 0.9%   |          |        |         | 2.6%   |             |
| Latrobosporites crassus                               |        |          |        |         |        |             |
| Stereisporites spp.                                   | 12.0%  |          | 5.9%   | 6.8%    | 10.5%  |             |
| Trilites tuberculiformis                              |        |          |        |         |        |             |
| MONOLETE SPORES undiff.                               |        |          |        |         |        |             |
| Laevigatosporites spp.                                | 11.1%  |          |        | 7.8%    | 3.9%   |             |
| Peromonolites spp.                                    |        |          |        | 1.0%    |        |             |
| TOTAL SPORES                                          | 38.9%  |          | 10.8%  |         | 34.2%  |             |
|                                                       | 00.070 |          | 10.070 |         |        |             |
| GYMNOSPERM POLLEN                                     | -      |          |        |         |        |             |
| Araucariacites australis                              |        |          |        | . 2.9%  |        |             |
| Dilwynites spp.                                       | 3.7%   |          | 2.9%   |         |        |             |
| Lygistepollenites balmei                              | 2.8%   |          | 1.0%   |         | 1.3%   |             |
| Lygistepollenites florinii                            | 2.0 %  |          | 1.0%   |         | 1.0 /0 |             |
| Microcachryidites antarticus                          | 0.9%   | <u> </u> | 1.0%   |         |        |             |
| Phyllocladidites mawsonii                             | 9.3%   |          | 15.7%  |         | 26.3%  |             |
| Phyllocladidites ovalis                               | 9.3%   |          | 13.7%  | 3.170   | 20.370 |             |
| Podocarpidites spp.                                   | 9.3%   |          | 30.4%  | 20 49/  | 2.6%   |             |
|                                                       | 1.9%   |          | 30.4%  | 20.4%   |        |             |
| Podosporites microsaccatus TOTAL GYMNOSPERM POLLEN    |        |          | E0.00/ |         |        |             |
| TOTAL GYMINOSPERIM POLLEN                             | 29.6%  |          | 52.0%  | 41.7%   | 32.9%  |             |
| ANCIOSDEDM DOLLEN undiff                              |        |          |        |         | 1.3%   |             |
| ANGIOSPERM POLLEN undiff.                             | 5.6%   |          | 4.0%   | 1.9%    |        |             |
| Australopollis obscurus                               | 5.0%   |          | 4.9%   | 1.9%    |        |             |
| Casuarina (H. harrisii)<br>Cupanieidites orthoteichus |        |          |        |         |        |             |
|                                                       |        |          |        |         |        |             |
| Dicotetradites clavatus                               | 0.007  |          | 1.00/  |         |        |             |
| Gambierina rudata                                     | 0.9%   | <u>_</u> | 1.0%   |         |        |             |
| llexpollenites sp.                                    |        |          |        |         |        |             |
| Malvacipollis spp.                                    |        |          |        |         |        |             |
| Myrtaceidites spp.                                    |        |          |        |         |        |             |
| Myrtaceidites tenuis                                  |        |          | 1.001  | 1.001   |        |             |
| Nothofagidites "brassi" types A/B                     |        |          | 1.0%   | 1.0%    |        |             |
| Nothofagidites "brassi" type C                        |        | · ·      |        |         |        | <del></del> |
| Nothofagidites "fusca" type A/B                       |        |          | 0.00   | 1.001   |        |             |
| Peninsulapollis gillii                                | 0.9%   |          | 2.0%   | 1.9%    |        |             |
| Periporopollenites spp.                               |        | ļ        |        |         |        |             |
| Proteacidites angulatus                               | 3.7%   |          |        | 4.9%    |        | =           |
| Proteacidites annularis                               |        |          | ļ      |         |        |             |
| Proteacidites pachypolus                              |        |          |        |         |        |             |
| Proteacidites spp.                                    | 18.5%  |          | 26.5%  | 24.3%   | 25.0%  |             |
| Tetracolporites spp.                                  |        |          |        |         | 1.3%   |             |
| Tricolp(or)ates undiff.                               | 1.9%   |          | 2.0%   |         | 1.3%   |             |
| Triporopollenites spp. (small)                        |        |          |        | 1.9%    |        |             |
| TOTAL ANGIOSPERM POLLEN                               | 31.5%  |          | 37.3%  | 38.8%   | 32.9%  |             |
|                                                       |        |          |        |         |        |             |
| TOTAL SPORES-POLLEN COUNT                             | 108    | 8        | 102    | 103     | 76     |             |
| ······································                |        |          |        |         |        |             |

1

.

.

.

## RELINQUISHMENT LIST - PALYNOLOGY SLIDES

| WELL NAME & NO: TURRUM-4 | WELL | NAME | & | NO: | TURRUM-4 |
|--------------------------|------|------|---|-----|----------|
|--------------------------|------|------|---|-----|----------|

PREPARED BY:

DATE:

14 JANUARY 1993

A.D. PARTRIDGE

SHEET 1 OF 3

| SAMPLE                                                   | DEPTH                                                    | CATALOGUE                                           | DESCRIPTION                                                                                                                                       |
|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| TYPE                                                     | (M)                                                      | NUMBER                                              |                                                                                                                                                   |
| SWC 60                                                   | 1902.0                                                   | P196342                                             | Kerogen slide sieved/unsieved fractions                                                                                                           |
| SWC 60                                                   | 1902.0                                                   | P196343                                             | Oxidized slide 2                                                                                                                                  |
| SWC 59                                                   | 1913.0                                                   | P196344                                             | Kerogen slide sieved/unsieved fractions                                                                                                           |
| SWC 59                                                   | 1913.0                                                   | P196345                                             | Oxidized slide 2 (1/2 cover slip)                                                                                                                 |
| SWC 58<br>SWC 58<br>SWC 58<br>SWC 58<br>SWC 58           | 1923.0<br>1923.0<br>1923.0<br>1923.0                     | P196346<br>P196347<br>P196348<br>P196349            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                               |
| CUTTINGS                                                 | 1930                                                     | P196350                                             | Kerogen slide sieved/unsieved fractions                                                                                                           |
| CUTTINGS                                                 | 1930                                                     | P196351                                             | Oxidized slide 2                                                                                                                                  |
| CUTTINGS                                                 | 1930                                                     | P196352                                             | Oxidized slide 3                                                                                                                                  |
| CUTTINGS                                                 | 1930                                                     | P196353                                             | Oxidized slide 4                                                                                                                                  |
| SWC 56<br>SWC 56<br>SWC 56<br>SWC 56<br>SWC 56           | 1954.0<br>1954.0<br>1954.0<br>1954.0                     | P196354<br>P196355<br>P196356<br>P196357            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                               |
| CUTTINGS                                                 | 1940                                                     | P196358                                             | Kerogen slide sieved/unsieved fractions                                                                                                           |
| CUTTINGS                                                 | 1940                                                     | P196359                                             | Oxidized slide 2                                                                                                                                  |
| CUTTINGS                                                 | 1940                                                     | P196360                                             | Oxidized slide 3                                                                                                                                  |
| CUTTINGS                                                 | 1940                                                     | P196361                                             | Oxidized slide 4                                                                                                                                  |
| SWC 55<br>SWC 55<br>SWC 55<br>SWC 55<br>SWC 55           | 1962.0<br>1962.0<br>1962.0<br>1962.0                     | P196362<br>P196363<br>P196364<br>P196365            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                               |
| CUTTINGS                                                 | 1965                                                     | P196366                                             | Kerogen slide sieved/unsieved fractions                                                                                                           |
| CUTTINGS                                                 | 1965                                                     | P196367                                             | Oxidized slide 2                                                                                                                                  |
| CUTTINGS                                                 | 1965                                                     | P196368                                             | Oxidized slide 3                                                                                                                                  |
| CUTTINGS                                                 | 1965                                                     | P196369                                             | Oxidized slide 4                                                                                                                                  |
| CUTTINGS                                                 | 1970                                                     | P196370                                             | Kerogen slide sieved/unsieved fractions                                                                                                           |
| CUTTINGS                                                 | 1970                                                     | P196371                                             | Oxidized slide 2                                                                                                                                  |
| CUTTINGS                                                 | 1970                                                     | P196372                                             | Oxidized slide 3                                                                                                                                  |
| CUTTINGS                                                 | 1970                                                     | P196373                                             | Oxidized slide 4                                                                                                                                  |
| SWC 54<br>SWC 54<br>SWC 54<br>SWC 54<br>SWC 54           | 1982.5<br>1982.5<br>1982.5<br>1982.5                     | P196374<br>P196375<br>P196376<br>P196377            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4 (2nd filter)                                  |
| SWC 53<br>SWC 53<br>SWC 53<br>SWC 53<br>SWC 53<br>SWC 53 | 2002.0<br>2002.0<br>2002.0<br>2002.0<br>2002.0<br>2002.0 | P196378<br>P196379<br>P196380<br>P196381<br>P196382 | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4 (2nd filter)<br>Oxidized slide 5 (2nd filter) |
| SWC 52<br>SWC 52<br>SWC 52<br>SWC 52<br>SWC 52           | 2076.0<br>2076.0<br>2076.0<br>2076.0                     | P196383<br>P196384<br>P196385<br>P196386            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                               |

.

-

## RELINQUISHMENT LIST - PALYNOLOGY SLIDES

WELL NAME & NO: TURRUM-4

PREPARED BY: A.D. PARTRIDGE

DATE:

14 JANUARY 1993

SHEET 2 OF 3

|                                                          |                                                          |                                                     | SHEET 2 OF 3                                                                                                                                |
|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| SAMPLE<br>TYPE                                           | DEPTH<br>(M)                                             | CATALOGUE<br>NUMBER                                 | DESCRIPTION                                                                                                                                 |
| SWC 51<br>SWC 51<br>SWC 51<br>SWC 51<br>SWC 51           | 2109.5<br>2109.5<br>2109.5<br>2109.5                     | P196387<br>P196388<br>P196389<br>P196390            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 50<br>SWC 50<br>SWC 50<br>SWC 50<br>SWC 50           | 2111.5<br>2111.5<br>2111.5<br>2111.5<br>2111.5           | P196391<br>P196392<br>P196393<br>P196394            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 49<br>SWC 49<br>SWC 49<br>SWC 49<br>SWC 49           | 2187.0<br>2187.0<br>2187.0<br>2187.0<br>2187.0           | P196395<br>P196396<br>P196397<br>P196398            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 46<br>SWC 46<br>SWC 46<br>SWC 46<br>SWC 46<br>SWC 46 | 2290.0<br>2290.0<br>2290.0<br>2290.0<br>2290.0<br>2290.0 | P196399<br>P196400<br>P196401<br>P196402<br>P196403 | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4 (2nd ox.)<br>Oxidized slide 5 (2nd ox.) |
| SWC 45<br>SWC 45<br>SWC 45<br>SWC 45<br>SWC 45           | 2302.5<br>2302.5<br>2302.5<br>2302.5                     | P196404<br>P196405<br>P196406<br>P196407            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 43<br>SWC 43<br>SWC 43<br>SWC 43                     | 2308.0<br>2308.0<br>2308.0<br>2308.0                     | P196408<br>P196409<br>P196410<br>P196411            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 40                                                   | 2323.0                                                   | P196412                                             | Kerogen slide sieved/unsieved fractions                                                                                                     |
| SWC 38<br>SWC 38<br>SWC 38<br>SWC 38<br>SWC 38<br>SWC 38 | 2327.5<br>2327.5<br>2327.5<br>2327.5<br>2327.5<br>2327.5 | P196413<br>P196414<br>P196415<br>P196416<br>P196417 | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4 (2nd ox.)<br>Oxidized slide 5 (2nd ox.) |
| SWC 35<br>SWC 35<br>SWC 35<br>SWC 35<br>SWC 35           | 2365.0<br>2365.0<br>2365.0<br>2365.0                     | P196418<br>P196419<br>P196420<br>P196421            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 34<br>SWC 34<br>SWC 34                               | 2373.5<br>2373.5<br>2373.5                               | P196422<br>P196423<br>P196424                       | Oxidized slide 2 Coal 30 min ox.<br>Oxidized slide 3 Coal 30 min ox.<br>Oxidized slide 4 Coal 5 min ox.                                     |
| SWC 33<br>SWC 33<br>SWC 33<br>SWC 33                     | 2390.0<br>2390.0<br>2390.0<br>2390.0<br>2390.0           | P196425<br>P196426<br>P196427<br>P196428            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 29<br>SWC 29<br>SWC 29<br>SWC 29<br>SWC 29<br>SWC 29 | 2441.5                                                   | P196429<br>P196430<br>P196431<br>P196432<br>P196433 | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4 (2nd ox.)<br>Oxidized slide 5 (2nd ox.) |

BIOSTRATA REPORT 1993/2

JANUARY 1993

## RELINQUISHMENT LIST - PALYNOLOGY SLIDES

WELL NAME & NO: TURRUM-4

**PREPARED BY:** A.D. PARTRIDGE

DATE:

14 JANUARY 1993

.

SHEET 3 OF 3

| SAMPLE<br>TYPE                                           | DEPTH<br>(M)                                             | CATALOGUE<br>NUMBER                                 | DESCRIPTION                                                                                                                                 |
|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| SWC 28<br>SWC 28                                         | 2488.0<br>2488.0                                         | P196434<br>P196435                                  | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2 (1/2 slip cover)                                                                |
| SWC 26<br>SWC 26<br>SWC 26<br>SWC 26                     | 2503.5<br>2503.5<br>2503.5<br>2503.5<br>2503.5           | P196436<br>P196437<br>P196438<br>P196439            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 24<br>SWC 24<br>SWC 24                               | 2528.0<br>2528.0<br>2528.0                               | P196440<br>P196441<br>P196442                       | Oxidized slide 2 Coal 30 min ox.<br>Oxidized slide 3 Coal 30 min ox.<br>Oxidized slide 4 Coal 5 min ox.                                     |
| SWC 23<br>SWC 23<br>SWC 23<br>SWC 23                     | 2541.0<br>2541.0<br>2541.0<br>2541.0<br>2541.0           |                                                     | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 21<br>SWC 21<br>SWC 21<br>SWC 21<br>SWC 21<br>SWC 21 | 2585.0<br>2585.0<br>2585.0<br>2585.0<br>2585.0<br>2585.0 | P196447<br>P196448<br>P196449<br>P196450<br>P196451 | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4 (2nd ox.)<br>Oxidized slide 5 (2nd ox.) |
| SWC 19<br>SWC 19<br>SWC 19                               | 2591.5<br>2591.5<br>2591.5                               | P196452<br>P196453<br>P196454                       | Oxidized slide 2 Coal 30 min ox.<br>Oxidized slide 3 Coal 30 min ox.<br>Oxidized slide 4 Coal 5 min ox.                                     |
| SWC 17<br>SWC 17<br>SWC 17<br>SWC 17<br>SWC 17           | 2623.0<br>2623.0<br>2623.0<br>2623.0                     | P196455<br>P196456<br>P196457<br>P196458            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 13<br>SWC 13<br>SWC 13<br>SWC 13<br>SWC 13           | 2657.0<br>2657.0<br>2657.0<br>2657.0                     | P196459<br>P196460<br>P196461<br>P196462            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 8<br>SWC 8<br>SWC 8<br>SWC 8<br>SWC 8<br>SWC 8       | 2696.0<br>2696.0<br>2696.0<br>2696.0<br>2696.0<br>2696.0 | P196463<br>P196464<br>P196465<br>P196466<br>P196467 | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4<br>Oxidized slide 5                     |
| SWC 7<br>SWC 7<br>SWC 7                                  | 2703.0<br>2703.0<br>2703.0                               | P196468<br>P196469<br>P196470                       | Oxidized slide 2 Coal 30 min ox.<br>Oxidized slide 3 Coal 30 min ox.<br>Oxidized slide 4 Coal 5 min ox.                                     |
| SWC 6<br>SWC 6<br>SWC 6<br>SWC 6<br>SWC 6                | 2716.0<br>2716.0<br>2716.0<br>2716.0<br>2716.0           | P196471<br>P196472<br>P196473<br>P196474            | Kerogen slide sieved/unsieved fractions<br>Oxidized slide 2<br>Oxidized slide 3<br>Oxidized slide 4                                         |
| SWC 4<br>SWC 4<br>SWC 4                                  | 2726.0<br>2726.0<br>2726.0                               | P196475<br>P196476<br>P196477                       | Oxidized slide 2 Coal 30 min ox.<br>Oxidized slide 3 Coal 30 min ox.<br>Oxidized slide 4 Coal 5 min ox.                                     |

BIOSTRATA REPORT 1993/2

JANUARY 1993

.

# RELINQUISHMENT LIST - PALYNOLOGY RESIDUES

| WELL | NAME | & | NO: | TURRUM-4 |
|------|------|---|-----|----------|
|      |      |   |     |          |

PREPARED BY: A.D. PARTRIDGE

DATE:

ļ

14 JANUARY 1993

.

SHEET 1 OF 2

| SAMPLE<br>TYPE | DEPTH<br>(M) | DESCRIPTION      |
|----------------|--------------|------------------|
| SWC 58         | 1923.0       | Kerogen residue  |
| SWC 58         | 1923.0       | Oxidized residue |
| CUTTINGS       | 1940.0       | Oxidized residue |
| CUTTINGS       | 1930.0       | Oxidized residue |
| SWC 56         | 1954.0       | Kerogen residue  |
| SWC 56         | 1954.0       | Oxidized residue |
| SWC 55         | 1962.0       | Kerogen residue  |
| SWC 55         | 1962.0       | Oxidized residue |
| CUTTINGS       | 1940.0       | Oxidized residue |
| CUTTINGS       | 1970.0       | Oxidized residue |
| SWC 54         | 1982.5       | Kerogen residue  |
| SWC 54         | 1982.5       | Oxidized residue |
| SWC 53         | 2002.0       | Kerogen residue  |
| SWC 53         | 2002.0       | Oxidized residue |
| SWC 52         | 2076.0       | Kerogen residue  |
| SWC 52         | 2076.0       | Oxidized residue |
| SWC 51         | 2109.5       | Kerogen residue  |
| SWC 51         | 2109.5       | Oxidized residue |
| SWC 50         | 2111.5       | Kerogen residue  |
| SWC 50         | 2111.5       | Oxidized residue |
| SWC 49         | 2187.0       | Oxidized residue |
| SWC 46         | 2290.0       | Kerogen residue  |
| SWC 46         | 2290.0       | Oxidized residue |
| SWC 45         | 2302.5       | Kerogen residue  |
| SWC 45         | 2302.5       | Oxidized residue |
| SWC 43         | 2308.0       | Kerogen residue  |
| SWC 43         | 2308.0       | Oxidized residue |
| SWC 38         | 2327.5       | Oxidized residue |
| SWC 35         | 2365.0       | Kerogen residue  |
| SWC 35         | 2365.0       | Oxidized residue |
| SWC 33         | 2390.0       | Kerogen residue  |
| SWC 33         | 2390.0       | Oxidized residue |
| SWC 29         | 2441.5       | Kerogen residue  |
| SWC 29         | 2441.5       | Oxidized residue |
| SWC 26         | 2503.5       | Kerogen residue  |
| SWC 26         | 2503.5       | Oxidized residue |
| SWC 24         | 2528.0       | Oxidized residue |

BIOSTRATA REPORT 1993/2

JANUARY 1993

٠

, **\*** 

# RELINQUISHMENT LIST - PALYNOLOGY RESIDUES

| WELL NAME & NO: | TURRUM-4        |
|-----------------|-----------------|
| PREPARED BY:    | A.D. PARTRIDGE  |
| DATE:           | 14 JANUARY 1993 |

DATE:

Ì •

SHEET 2 OF 2

| SAMPLE<br>TYPE | DEPTH<br>(M) | DESCRIPTION      |
|----------------|--------------|------------------|
| SWC 23         | 2541.0       | Kerogen residue  |
| SWC 23         | 2541.0       | Oxidized residue |
| SWC 21         | 2585.0       | Kerogen residue  |
| SWC 21         | 2585.0       | Oxidized residue |
| SWC 19         | 2591.5       | Oxidized residue |
| SWC 17         | 2623.0       | Kerogen residue  |
| SWC 17         | 2623.0       | Oxidized residue |
| SWC 13         | 2657.0       | Kerogen residue  |
| SWC 13         | 2657.0       | Oxidized residue |
| SWC 8          | 2696.0       | Kerogen residue  |
| SWC 8          | 2696.0       | Oxidized residue |
| SWC 7          | 2703.0       | Oxidized residue |
| SWC 6          | 2716.0       | Kerogen residue  |
| SWC 6          | 2716.0       | Oxidized residue |
| SWC 4          | 2726.0       | Oxidized residue |

BIOSTRATA REPORT 1993/2

JANUARY 1993

This is an enclosure indicator page. The enclosure PE900976 is enclosed within the container PE900975 at this location in this document.

| The enclosure PES<br>ITEM BARCODE |   | 0976 has the following characteristics: |
|-----------------------------------|---|-----------------------------------------|
| CONTAINER_BARCODE                 |   |                                         |
| NAME                              | = | Palymorph range chart                   |
| BASIN                             | = | GIPPSLAND                               |
| PERMIT                            | = |                                         |
| TYPE                              | = | WELL                                    |
| SUBTYPE                           | = | DIAGRAM                                 |
| DESCRIPTION                       | = | Turrum-4 Palynomorph Range Chart for    |
|                                   |   | Interval 1902-1970 m. Microplankton     |
|                                   |   | species 1-24, Spore-pollen species      |
|                                   |   | 25-113. Chart 1 of 4. (Analysis by Alan |
|                                   |   | D. Partridge) From WCR Volume 2         |
|                                   |   | Appendix 1.                             |
| REMARKS                           |   |                                         |
| DATE_CREATED                      | = | 1/12/92                                 |
| DATE_RECEIVED                     | = | 16/03/93                                |
| W_NO                              | = | W1069                                   |
| WELL_NAME                         | = | Turrum-4                                |
| CONTRACTOR                        | = | ESSO                                    |
| CLIENT_OP_CO                      | = | ESSO                                    |

1

This is an enclosure indicator page. The enclosure PE905994 is enclosed within the container PE900975 at this location in this document.

|                     | the following characteristics:                                                                                                                                                                                 |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ITEM_BARCODE =      |                                                                                                                                                                                                                |
| CONTAINER_BARCODE = |                                                                                                                                                                                                                |
| NAME =              | = Palynomorph Range Chart                                                                                                                                                                                      |
| BASIN =             | = GIPPSLAND                                                                                                                                                                                                    |
| PERMIT =            | =                                                                                                                                                                                                              |
| TYPE =              | = WELL                                                                                                                                                                                                         |
| SUBTYPE =           | = DIAGRAM                                                                                                                                                                                                      |
| DESCRIPTION =       | Turrum-4 Palynomorph Range Chart for<br>Interval 1902-1970 m. Microplankton<br>species 1-24, Spore-pollen species<br>25-113. Chart 2 of 4. (Analysis by Alan<br>D. Partridge) From WCR Volume 2<br>Appendix 1. |
| REMARKS =           | = Need to look at Kate's S/S for Chart 1<br>of 4.                                                                                                                                                              |
| DATE_CREATED =      | = 31/12/1992                                                                                                                                                                                                   |
| DATE RECEIVED =     |                                                                                                                                                                                                                |
| W NO =              |                                                                                                                                                                                                                |
| WELL NAME =         |                                                                                                                                                                                                                |
| CONTRACTOR =        |                                                                                                                                                                                                                |
| CLIENT_OP_CO =      |                                                                                                                                                                                                                |
| Chimilor_Cor_co -   | - 2000                                                                                                                                                                                                         |

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE905995 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE90  | 5995 has the following characteristics:                                                                                                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ITEM\_BARCODE =$   | PE905995                                                                                                                                                                                                                                |
| CONTAINER_BARCODE = | PE900975                                                                                                                                                                                                                                |
| NAME =              | Palynomorph Range Chart                                                                                                                                                                                                                 |
| BASIN =             | GIPPSLAND                                                                                                                                                                                                                               |
| PERMIT =            |                                                                                                                                                                                                                                         |
| TYPE =              | WELL                                                                                                                                                                                                                                    |
| SUBTYPE =           | DIAGRAM                                                                                                                                                                                                                                 |
| DESCRIPTION =       | Turrum-4 Palynomorph Range Chart for<br>Interval 1982.5-2726 m. Microplankton<br>species 1-18, Spore-pollen species<br>19-93, Reworked species 94-97. Chart 3<br>of 4. (Analysis by Alan D. Partridge)<br>From WCR Volume 2 Appendix 1. |
| REMARKS =           |                                                                                                                                                                                                                                         |
| $DATE\_CREATED =$   | 31/12/1992                                                                                                                                                                                                                              |
| DATE_RECEIVED =     |                                                                                                                                                                                                                                         |
| W_NO =              |                                                                                                                                                                                                                                         |
| WELL_NAME =         | Turrum-4                                                                                                                                                                                                                                |
| CONTRACTOR =        |                                                                                                                                                                                                                                         |
| CLIENT_OP_CO =      |                                                                                                                                                                                                                                         |

This is an enclosure indicator page. The enclosure PE905996 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE90<br>ITEM_BARCODE = | 5996 has the following characteristics:<br>PE905996                                                                                                                                                                                     |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CONTAINER_BARCODE =                  |                                                                                                                                                                                                                                         |
|                                      | Palynomorph Range Chart                                                                                                                                                                                                                 |
|                                      | GIPPSLAND                                                                                                                                                                                                                               |
| PERMIT =                             |                                                                                                                                                                                                                                         |
| TYPE =                               | WELL                                                                                                                                                                                                                                    |
| SUBTYPE =                            | DIAGRAM                                                                                                                                                                                                                                 |
| DESCRIPTION =                        | Turrum-4 Palynomorph Range Chart for<br>Interval 1982.5-2726 m. Microplankton<br>species 1-18, Spore-pollen species<br>19-93, Reworked species 94-97. Chart 4<br>of 4. (Analysis by Alan D. Partridge)<br>From WCR Volume 2 Appendix 1. |
| REMARKS =                            |                                                                                                                                                                                                                                         |
| $DATE\_CREATED =$                    | 31/12/1992                                                                                                                                                                                                                              |
| $DATE\_RECEIVED =$                   |                                                                                                                                                                                                                                         |
| W_NO =                               |                                                                                                                                                                                                                                         |
| WELL_NAME =                          | Turrum-4                                                                                                                                                                                                                                |
| CONTRACTOR =                         |                                                                                                                                                                                                                                         |
| CLIENT_OP_CO =                       |                                                                                                                                                                                                                                         |

# APPENDIX 2

b

/

.

## TURRUM 4

# QUANTITATIVE LOG ANALYSIS

Interval: Analyst: Date:

•

1919 - 2775 mMDKB M. C. Schapper November, 1992

## CONTENTS

Turrum 4 Quantitative Log Analysis:

Data Acquisition and Quality

Logs Used

Analysis Methodology

Analysis Parameters

Summary of Results

## Tables:

 Table 1: Turrum 4 Analysis Parameters

Table 2: Turrum 4 Analysis Summary

## Appendices:

Appendix 1: Algorithms and Logic Used in the Quantitative Analysis

Appendix 2: Turrum 4 well data listing

Appendix 3: Turrum 4 FMS analysis

Depth Plot Log of Results

## **TURRUM 4 QUANTITATIVE LOG ANALYSIS**

Wireline log data from the Turrum 4 outpost well have been quantitatively analysed for effective porosity and effective water saturation over the interval 1919 - 2775 mMDKB. The results of this analysis are presented as a depth plot, a tabular listing (Appendix 2) and an interval summary table (Table 2). Also included are the results of the analysis of the FMS data. All depths used in this analysis are in mMDKB as the well was not deviated.

### Data Acquisition and Quality:

Logs were recorded by Schlumberger using the Maxis 500 unit. The data used in this analysis were acquired in two runs: one recording the resistivity and gamma ray data and the other recording the neutron and density data.

The caliper log (CALS) shows the borehole to be in generally good condition throughout the Latrobe Group section. Some minor washouts are present, predominantly in coals. The quality of the MSFL log has been adversely affected in these washouts but this has not affected the analysis as the MSFL data was not used and the coals have been zoned out for analysis purposes. The quality of other logs is good throughout the analysis interval. Environmental corrections were not used but minor depth alignment of individual logs was required to correct slight depth misalignments in the data before subjecting them to analysis.

#### Logs Used:

| GR   | (gamma ray)                        |
|------|------------------------------------|
| LLD  | (deep laterolog)                   |
| HNRH | (high resolution bulk density)     |
| HNPO | (high resolution neutron porosity) |
| CALS | (caliper)                          |

#### Analysis Methodolgy:

Porosities and water saturations were calculated using an interative technique which converges into a preselected grain density window by appropriately incrementing or decrementing shale volume (Vsh). The initial shale volume, used as the starting point for the iterative process, was calculated from the gamma ray response. The model incorporates porosity calculation from density - neutron crossplot algorithms, water saturation from the dual water relationship, hydrocarbon corrections to porosity logs where applicable and convergence upon the preselected grain density window by shale volume adjustment. The preselected grain density window is calculated from hydrocarbon and shale corrected density and neutron logs. The algorithms used are shown in appendix 1.

#### Analysis Parameters:

Parameters used in the analysis are shown in Table 1 of this report. Formation water salinity was estimated using the Rwa method.

## Summary of Results:

Quantitative log analysis indicates that the entire section in Turrum 4 is water wet.

# TABLE 1: TURRUM 4 ANALYSIS PARAMETERS.

| Tortuosity (a):                                   | 1.000             |
|---------------------------------------------------|-------------------|
| Cementation factor (m):                           | 2.000             |
| Saturation exponent (n):                          | 2.000             |
| Fluid density:                                    | 1.000             |
| Gamma ray value in clean formation (grmin):       | 45 gapi           |
| Gamma ray value in shale (grmax): (curve)         | 120 - 135 gapi    |
| Apparent shale resistivity (rsh): (curve)         | 6 - 22 ohmm       |
| Apparent shale bulk density (rhobsh): (curve)     | 2.41 - 2.57 g/cm3 |
| Apparent shale neutron porosity (phinsh): (curve) | 0.24 - 0.30 frac  |
| Input hydrocarbon density:                        | 0.70 g/cm3        |
| Lower limit of grain density:                     | 2.645 g/cm3       |
| Upper limit of grain density:                     | 2.675 g/cm3       |
| Formation water entered in terms of salinity      |                   |
| Formation water salinity: (curve)                 | 30000-50000 ppm   |
| Measured Rmf:                                     | 0.060 ohmm        |
| Temperature at which Rmf was measured:            | 94 deg C          |
| Sxo derived from Sw (Sxo = Sw**Z) Z:              | 0.30              |
| Logged TD                                         | 2778 mMDKB        |
| Logged bottom hole temperature:                   | 104 deg C         |
| Estimated sea bed temperature:                    | 10 deg C          |
| Water depth:                                      | 62 m              |
| KB height:                                        | 23 m              |
| Irreducible water saturation: (lower limit)       | 0.025 frac        |
| Vsh upper limit for effective porosity:           | 0.65 frac         |
| Minimum effective porosity for hydrocarbons:      | 0.03 frac         |
|                                                   |                   |

~

#### TABLE 2:

#### TURRUM 4 ANALYSIS SUMMARY

## Net porosity cutoff = 0.120 volume per volume

|      | GROSS INTERVA | AL.    | NET B  | POROUS IN | TERVAL |         |          |         |          |      | INTEGRATED  |
|------|---------------|--------|--------|-----------|--------|---------|----------|---------|----------|------|-------------|
|      | (metres)      | Gross  | Net    | Net to    | Mean   | (Std.)  | Mean     | (Std.)  | Mode     | Mean | HYDROCARBON |
|      | (top) -(base) | Metres | Metres | s Gross   | Vsh    | (Dev.). | Porosity | (Dev.)  | Porosity | Sw   | PORE VOLUME |
|      |               |        | 1      |           |        |         |          |         |          |      | 1           |
| MDKB | 1962.8-1978.6 | 15.8   | 14.2   | 90 %      | 0.11   | (0.117) | 0.21     | (0.026) | 0.21     | 1.00 | 0.000       |
| MDKB | 1988.4-1994.6 | 6.2    | 2.8    | 45 %      | 0.24   | (0.093) | 0.20     | (0.041) | 0.25     | 1.00 | 0.000       |
| MDKB | 2035.0-2041.4 | 6.4    | 2.8    | 44 %      | 0.29   | (0.082) | 0.17     | (0.028) | 0.18     | 1.00 | 0.000       |
| MDKB | 2063.0-2066.0 | 3.0    | 1.0    | 33 %      | 0.29   | (0.067) | 0.17     | (0.024) | 0.19     | 1.00 | 0.000       |
| MDKB | 2067.4-2072.4 | 5.0    | 1.0    | 20 %      | 0.35   | (0.037) | 0.14     | (0.005) | 0.14     | 1.00 | 0.000       |
| MDKB | 2129.2-2134.0 | 4.8    | 2.8    | 58 %      | 0.23   | (0.110) | 0.18     | (0.027) | 0.21     | 1.00 | 0.000       |
| MDKB | 2140.8-2146.2 | 5.4    | 1.0    | 19 %      | 0.37   | (0.044) | 0.14     | (0.012) | 0.14     | 1.00 | 0.000       |
| MDKB | 2158.0-2162.2 | 4.2    | 0.4    | 10 %      | 0.25   | (0.089) | 0.13     | (0.007) | 0.12     | 1.00 | 0.000       |
| MDKB | 2190.4-2194.2 | 3.8    | 1.2    | 32 %      | 0.26   | (0.038) | 0.17     | (0.031) | 0.12     | 1.00 | 0.000       |
| MDKB | 2197.8-2203.0 | 5.2    | 0.4    | 8 %       | 0.27   | (0.008) | 0.14     | (0.007) | 0.14     | 1.00 | 0.000       |
| MDKB | 2272.6-2275.0 | 2.4    | 0.8    | 33 %      | 0.28   | (0.051) | 0.14     | (0.013) | 0.12     | 1.00 | 0.000       |
| MDKB | 2280.0-2282.4 | 2.4    | 0.8    | 33 %      | 0.21   | (0.054) | 0.16     | (0.004) | 0.16     | 1.00 | 0.000       |
| MDKB | 2299.6-2304.8 | 5.2    | 0.4    | 8 %       | 0.22   | (0.099) | 0.14     | (0.007) | 0.13     | 1.00 | 0.000       |
| MDKB | 2309.2-2327.0 | 17.8   | 15.0   | 84 %      | 0.09   | (0.115) | 0.21     | (0.030) | 0.23     | 1.00 | 0.000       |
| MDKB | 2327.8-2335.6 | 7.8    | 3.2    | 41 %      | 0.14   | (0.109) | 0.18     | (0.028) | 0.20     | 1.00 | 0.000       |
| MDKB | 2338.6-2341.4 | 2.8    | 2.0    | 71 %      | 0.14   | (0.075) | 0.19     | (0.027) | 0.21     | 1.00 | 0.000       |
| MDKB | 2357.2-2360.0 | 2.8    | 2.0    | 71 %      | 0.18   | (0.048) | 0.16     | (0.020) | 0.16     | 1.00 | 0.000       |
| MDKB | 2365.8-2371.0 | 5.2    | 4.8    | 92 %      | 0.09   | (0.104) | 0.23     | (0.022) | 0.24     | 1.00 | 0.000       |
| MDKB | 2374.2-2376.4 | 2.2    | 1.6    | 73 %      | 0.18   | (0.110) | 0.17     | (0.032) | 0.14     | 1.00 | 0.000       |
| MDKB | 2394.0-2397.6 | 3.6    | 0.8    | 22 %      | 0.19   | (0.081) | 0.17     | (0.017) | 0.17     | 1.00 | 0.000       |
| MDKB | 2401.4-2413.0 | 11.6   | 7.6    | 66 %      | 0.12   | (0.089) | 0.20     | (0.028) | 0.20     | 1.00 | 0.000       |
| MDKB | 2424.2-2427.0 | 2.8    | 1.4    | 50 %      | 0.10   | (0.029) | 0.18     | (0.011) | 0.18     | 1.00 | 0.000       |
| MDKB | 2430.8-2437.6 | 6.8    | 3.6    | 53 %      | 0.09   | (0.090) | 0.20     | (0.024) | 0.22     | 1.00 | 0.000       |
| MDKB | 2468.4-2473.0 | 4.6    | 0.2    | 4 %       | 0.29   | (0.000) | 0.14     | (0.000) | 0.14     | 1.00 | 0.000       |
| MDKB | 2535.0-2538.4 | 3.4    | 1.2    | 35 %      | 0.22   | (0.083) | 0.16     | (0.020) | 0.15     | 1.00 | 0.000       |
| MDKB | 2544.2-2551.6 | 7.4    | 1.4    | 19 %      | 0.24   | (0.204) | 0.17     | (0.020) | 0.18     | 1.00 | 0.000       |
| MDKB | 2573.4-2579.8 | 6.4    | 0.6    | 98        | 0.18   | (0.055) | 0.13     | (0.007) | 0.12     | 1.00 | 0.000       |
| MDKB | 2604.8-2610.2 | 5.4    | 3.2    | 59 %      | 0.23   | (0.126) | 0.15     | (0.022) | 0.17     | 1.00 | 0.000       |
| MDKB | 2614.4-2621.8 | 7.4    | 1.0    | 14 %      | `0.17  | (0.062) | 0.15     | (0.016) | 0.15     | 1.00 | 0.000       |
| MDKB | 2623.8-2643.8 | 20.0   | 12.0   | 60 %      | 0.18   | (0.172) | 0.16     | (0.027) | 0.14     | 1.00 | 0.000       |
| MDKB | 2673.6-2693.0 | 19.4   | 4.8    | 25 %      | 0.14   | (0.138) | 0.15     | (0.029) | 0.13     | 1.00 | 0.000       |
| MDKB | 2729.0-2767.2 | 38.2   | 27.2   | 71 %      | 0.04   | (0.062) | 0.17     | (0.022) | 0.17     | 1.00 | 0.000       |

#### APPENDIX 1

ALGORITHMS AND LOGIC USED IN THE QUANTITATIVE ANALYSIS.

Initial shale volume calculated from GR response.

vsh = (gr-grmin) / (grmax-grmin)

Apparent total porosity and shale porosity calculated from one of two sources, at the analyst's discretion:

1) Density-Neutron Crossplot Porosity.

Initial estimate of total porosity from density-neutron crossplot algorithms, using bulk density and neutron porosity (limestone matrix, decimal p.u.) log values.

h = 2.71 - rhob + nphi\*(rhof-2.71)
if (h < 0) rho[matrix] = 2.71 - 0.64\*h
else rho[matrix] = 2.71 - 0.5\*h
phit = (rho[matrix]-rhob)/(rho[matrix]-rhof)</pre>

Similarly, apparent shale porosity is calculated using apparent shale bulk density and shale neutron porosity values as input to the same algorithms

2) Sonic Porosity.

Calculated using the following relationship derived in zones of good hole conditions by cross-plotting density-neutron crossplot porosity against DT: phis = 0.0055 \* dt - 0.2925

Similarly, apparent shale porosity is calculated from shale transit time, using the same relationship.

Effective porosity is derived by shale correcting the apparent total porosity.

phie = phit-(vsh\*phish)
or, phie = phis - (vsh\*phish)

```
Water saturation (total) calculated using dual water relationship:
```

```
1/rt=(swt**n)*(phit**m)/(a*rw)+swt**(n-1)*(swb*(phit**m)/a)*((1/rwb)-(1/rw))
      This is solved for Sw by Newtons solution
       exsw=0
       SW =0.9
       aa =((phiti**m)/(a*rwi))
       bb = ((swb*(phiti**m)/a)*((1/rwb)-(1/rwi)))
           repeat
             fx1=(aa*(sw**n))+(bb*(sw**(n-1)))-(1/res)
             fx2=(n*aa*(sw**(n-1)))+((n-1)*bb*(sw**(n-2)))
                 if((abs(fx2)) < 0.0001)
                  fx2=0.0001
             swp=sw
             sw = swp - (fx1/fx2)
             exsw=exsw+1
           until (exsw > 4 \text{ or } (abs(sw-swp)) \le 0.01)
       swt=sw
               [ where:swb = bound water saturation
                       swb = max(0, (min(1, (vsh*phish/phit)))) ]
               ſ
```

If appropriate, invaded zone saturation (Sxo) is then calculated using the same algorithms, replacing Rt with Rxo, and Rw with Rmfi (resistivity of mud filtrate at formation temperature), where:

```
rmfi= rmf*((trmf+6.77)/(ti+6.77))
where: [ ti = temperature at zone of interest (degrees F) ]
    [ ti = ((bht-sbt)/(td-wd-kb))*(depth-wd-kb) + sbt ]
    [ rmf= measured rmf value
    [trmf= temperature(F) at which rmf was measured ]
```

Alternatively, if no Rxo log is available, Sxo is estimated by the relationship  $Sxo = Sw^{*}Z$ , where Z is an analyst input.

The bulk density and neutron porosity log responses are then corrected for hydrocarbon effects, using the following algorithms, which incorporate calculated Sxo and analyst input hydrocarbon density (rhoh).

Total porosity is then recalculated from the density-neutron crossplot algorithm, using the hydrocarbon corrected porosity logs, Sw and Sxo recalculated, and replacement hydrocarbon corrections calculated using the latest Sxo. This process is repeated until the latest total porosity calculated is within 0.008pu (0.8% porosity) of the previously calculated value. At this stage, clay corrections are made to the hydrocarbon corrected bulk density and neutron porosity logs, and apparent matrix density calculated from the density-neutron crossplot algorithm.

```
rhobc = (rhobh - vsh*rhobsh)/(1 - vsh)

phinc = (phinh - vsh*phinsh)/(1 - vsh)

h = 2.71 - rhobc + phinc*(rhof-2.71)

if (h < 0) rhogc = 2.71 - 0.64*h

else rhogc = 2.71 - 0.5*h
```

The apparent matrix density is compared to the analyst input grain density window. If it falls within this window, effective porosity and water saturation are calculated, and the processing sequence finished. If it falls outside the specified grain density window, shale volume is incremented or decremented, and the whole processing sequence repeated, until the calculated grain density falls within the grain density window.

Effective porosity and water saturation are derived from calculated total porosity and water saturation as follows:

```
phie= max(0.001, (phit-(vsh*phish)))
swe = max(swirr, ( 1 - ((phit/phie)*(1-swt))))
sxo = 1 - ((phit/phie)*(1-sxot))
sxo = min(sxo, swe, 1)
if (vsh > vshco) {
    swt = 1
    swe = 1
    swe = 1
    phie = 0
    }
if (vsh > (vshco-0.2)) {
    phie= phie*((vshco-vsh)/0.2)
    swe = 1-((1-swe)*((vshco-vsh)/0.2))
    sxo = 1-((1-sxo)*((vshco-vsh)/0.2))
}
```

At high shale volumes, the final calculated effective porosity and water saturation are modified as follows:

```
if (vsh > vshco) phie = 0, swe = 1
else if (vsh > (vshco-0.2))
    phie = phie*((vshco-vsh)/0.2)
    swe = 1-((1-swe)*((vshco-vsh)/0.2))
```

where: vshco = analyst defined vsh cut-off value

## TURRUM\_4 Well Data Listing (page 1)

.

-

|                  |            |                         | •              |                |                |                |                |
|------------------|------------|-------------------------|----------------|----------------|----------------|----------------|----------------|
|                  | TURRUM 4 ( | nage 2                  | of data        | listing        | <b>T</b> )     |                |                |
| DEPTH            | GR         | RT                      | RHOB           | NPHI           | VSH            | PHIE           | SWE            |
| (mRKB)           | api        | ohmm                    | g/cc           | frac           | frac           | frac           | frac           |
| 1977.0           | 41         | 1.0                     | 2.260          | 0.210          | 0.000          | 0.239          | 1.000          |
| 1978.0           | 51         | 1.4                     | 2.312          | 0.206          | 0.085          | 0.198          | 1.000          |
| 1979.0<br>1980.0 |            | 5.3<br>6.4              | 2.515          | 0.267          | 0.882          | 0.000          | 1.000          |
| 1980.0           |            | 0.4<br>1.6              | 2.483<br>2.463 | 0.332<br>0.265 | 1.000<br>0.731 | 0.000<br>0.019 | 1.000<br>1.000 |
| 1982.0           | 77         | 2.5                     | 2.501          | 0.223          | 0.652          | 0.013          | 1.000          |
| 1983.0           |            | 5.0                     | 2.573          | 0.337          | 1.000          | 0.000          | 1.000          |
| 1984.0<br>1985.0 |            | 3.2<br>3.6              | 2.197<br>2.472 | 0.371<br>0.231 | Co<br>0.617    | ai<br>0.008    | 1.000          |
| 1986.0           |            | 4.2                     | 2.418          | 0.318          | Co             |                | 1.000          |
| 1987.0           | 108        | 6.2                     | 1.799          | 0.440          | Co             | al             |                |
| 1988.0           |            | 10.2                    | 2.034          | 0.478          |                | al             | 1 000          |
| 1989.0<br>1990.0 |            | 2.4<br>4.0              | 2.330<br>2.547 | 0.238<br>0.242 | 0.362<br>0.856 | 0.155<br>0.000 | 1.000<br>1.000 |
| 1991.0           |            | 7.6                     | 2.473          | 0.309          | 0.946          | 0.000          | 1.000          |
| 1992.0           |            | 2.9                     | 2.455          | 0.276          | 0.774          | 0.018          | 1.000          |
| 1993.0<br>1994.0 |            | 1.4<br>2.2              | 2.256          | 0.261          | 0.182          | 0.226          | 1.000          |
| 1994.0           |            | 8.1                     | 2.311<br>2.506 | 0.209<br>0.310 | 0.192<br>1.000 | 0.181<br>0.000 | 1.000<br>1.000 |
| 1996.0           | 112        | 10.0                    | 2.430          | 0.274          | Co             |                | 21000          |
| 1997.0           |            | 8.4                     | 2.080          | 0.508          |                | al             |                |
| 1998.0<br>1999.0 |            | 2.5<br>26.5             | 2.361<br>1.315 | 0.240<br>0.639 | Co<br>Co       | al             |                |
| 2000.0           |            | 2.9                     | 2.381          | 0.219          |                | al             |                |
| 2001.0           | 95         | 5.8                     | 2.468          | 0.255          | 0.723          | 0.001          | 1.000          |
| 2002.0           |            | 7.5                     | 2.512          | 0.295          | 0.983          | 0.000          | 1.000          |
| 2003.0           |            | 7.6<br>2.4              | 2.539<br>2.429 | 0.318<br>0.236 | 1.000<br>0.516 | 0.000<br>0.076 | 1.000<br>1.000 |
| 2005.0           |            | 2.6                     | 2.356          | 0.244          | 0.414          | 0.115          | 1.000          |
| 2006.0           |            | 4.1                     | 2.498          | 0.224          | 0.674          | 0.000          | 1.000          |
| 2007.0           |            | 6.4                     | 2.532          | 0.345          | 1.000          | 0.000          | 1.000          |
| 2008.0           |            | 9.3<br>2.5              | 1.814<br>2.323 | 0.502<br>0.223 | Co<br>Co       |                |                |
| 2010.0           |            | 5.8                     | 2.508          | 0.267          | 0.954          | 0.000          | 1.000          |
| 2011.0           |            | 6.7                     | 2.561          | 0.286          | 1.000          | 0.003          | 1.000          |
| 2012.0<br>2013.0 |            | 3.8<br>7.5              | 2.411<br>2.574 | 0.258<br>0.341 | 0.578<br>1.000 | 0.035<br>0.000 | 1.000<br>1.000 |
| 2013.0           |            | 6.7                     | 2.514          | 0.300          | 1.000          | 0.000          | 1.000          |
| 2015.0           | 113        | 6.0                     | 2.518          | 0.290          | 0.981          | 0.000          | 1.000          |
| 2016.0           |            | 6.8                     | 2.474          | 0.327          | 1.000          | 0.000          | 1.000          |
| 2017.0<br>2018.0 |            | 6.2<br>10.7             | 2.509<br>1.708 | 0.294<br>0.540 | 0.975<br>Co    | 0.000          | 1.000          |
| 2019.0           |            | 3.8                     | 2.381          | 0.239          | Co             |                |                |
| 2020.0           | 110        | 5.4                     | 2.450          | 0.282          | 0.786          | 0.000          | 1.000          |
| 2021.0           |            | 2.9                     | 2.369          | 0.252          | 0.476          | 0.097          | 1.000          |
| 2022.0           |            | 3.0<br>5.8              | 2.377<br>2.383 | 0.273<br>0.303 | 0.556<br>0.730 | 0.055<br>0.000 | 1.000<br>1.000 |
| 2024.0           |            | 8.7                     | 2.352          | 0.353          | 0.836          | 0.000          | 1.000          |
| 2025.0           |            | 8.9                     | 2.337          | 0.380          | 0.907          | 0.000          | 1.000          |
| 2026.0           |            | 10.1<br>4.6             | 2.206<br>2.443 | 0.428<br>0.263 | Co<br>Co       |                |                |
| 2027.0           |            | 7.6                     | 2.445          | 0.319          | 1.000          | 0.000          | 1.000          |
| 2029.0           | 143        | 7.7                     | 2.545          | 0.336          | Co             | al             |                |
| 2030.0           |            | 10.6                    | 2.061          | 0.478          | Co             |                |                |
| 2031.0           |            | 3.8 <sup>°</sup><br>7.8 | 2.385<br>2.498 | 0.264<br>0.332 | Co<br>1.000    | al<br>0.000    | 1.000          |
| 2032.0           |            | 8.1                     | 2.498          | 0.344          | 2.000<br>Co    |                | <b>T</b> .000  |
| 2034.0           | 120        | 9.7                     | 2.234          | 0.399          | Co             | al             |                |
| 2035.0           |            | 10.0                    | 2.456          | 0.250          | 0.667          | 0.000          | 1.000          |
| 2036.0<br>2037.0 |            | 4.5<br>2.6              | 2.404<br>2.307 | 0.250<br>0.244 | 0.552<br>0.294 | 0.044<br>0.161 | 1.000<br>1.000 |
| 2038.0           |            | 1.6                     | 2.341          | 0.244          | 0.326          | 0.175          | 1.000          |
|                  |            |                         |                |                |                |                | -              |

.

| DEPTH            | RRUM_4<br>GR | RT          | RHOB           | listing)<br>NPHI | VSH            | PHIE           | SWE            |
|------------------|--------------|-------------|----------------|------------------|----------------|----------------|----------------|
| (mRKB)           | api          | ohmm        | g/cc           | frac             | frac           | frac           | frac           |
| 2039.0           | 77           | 2.5         | 2.394          | 0.229            | 0.405          | 0.125          | 1.000          |
| 2040.0           | 69           | 2.4         | 2.451          | 0.224            | 0.524          | 0.088          | 1.000          |
| 2041.0           | 102          | 3.7         | 2.442          | 0.259            | 0.680          | 0.030          | 1.000          |
| 2042.0<br>2043.0 | 119<br>126   | 7.3<br>8.3  | 2.546<br>2.855 | 0.268<br>0.294   | 0.965          | 0.000          | 1.000          |
| 2043.0           | 111          | 8.3         | 2.855          | 0.324            | 1.000<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2045.0           | 106          | 7.1         | 2.323          | 0.389            |                | oal            | 1.000          |
| 2046.0           | 98           | 3.4         | 2.346          | 0.275            |                | oal            |                |
| 2047.0           | 115          | 3.5         | 2.443          | 0.251            | 0.648          | 0.016          | 1.000          |
| 2048.0           | 122          | 6.9         | 2.512          | 0.287            | 0.961          | 0.000          | 1.000          |
| 2049.0           | 140          | 7.4         | 2.525          | 0.333            | 1.000          | 0.000          | 1.000          |
| 2050.0<br>2051.0 | 109<br>108   | 6.4<br>8.0  | 2.602<br>2.559 | 0.292<br>0.315   | 1.000<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2052.0           | 113          | 6.5         | 2.539          | 0.315            | 1.000          | 0.000          | 1.000          |
| 2053.0           | 120          | 6.8         | 2.503          | 0.297            | 0.980          | 0.000          | 1.000          |
| 2054.0           | 128          | 6.3         | 2.564          | 0.310            | 1.000          | 0.000          | 1.000          |
| 2055.0           | 127          | 6.7         | 2.553          | 0.323            | 1.000          | 0.000          | 1.000          |
| 2056.0           | 114          | 7.8         | 2.572          | 0.245            | 0.940          | 0.000          | 1.000          |
| 2057.0           | 120          | 7.1         | 2.524          | 0.255            | 0.861          | 0.000          | 1.000          |
| 2058.0<br>2059.0 | 118<br>117   | 6.7<br>6.3  | 2.449<br>2.528 | 0.339<br>0.244   | 1.000<br>0.828 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2060.0           | 116          | 6.5         | 2.515          | 0.299            | 1.000          | 0.000          | 1.000          |
| 2061.0           | 141          | 6.9         | 2.560          | 0.344            | 1.000          | 0.000          | 1.000          |
| 2062.0           | 133          | 5.6         | 2.467          | 0.253            | 0.719          | 0.000          | 1.000          |
| 2063.0           | 116          | 5.6         | 2.571          | 0.274            | 1.000          | 0.000          | 1.000          |
| 2064.0<br>2065.0 | 54<br>97     | 1.4<br>57.3 | 2.306<br>2.821 | 0.234            | 0.199          | 0.189          | 1.000          |
| 2065.0           | 130          | 4.7         | 2.821          | 0.102<br>0.256   | 0.967<br>0.713 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2067.0           | 117          | 8.1         | 2.457          | 0.324            |                | oal            | 1.000          |
| 2068.0           | 94           | 3.4         | 2.411          | 0.224            | 0.468          | 0.093          | 1.000          |
| 2069.0           | 83           | 3.1         | 2.406          | 0.234            | 0.470          | 0.106          | 1.000          |
| 2070.0           | 104          | 3.0         | 2.459          | 0.250            | 0.668          | 0.009          | 1.000          |
| 2071.0<br>2072.0 | · 104<br>106 | 3.5<br>3.4  | 2.479<br>2.439 | 0.233<br>0.233   | 0.637<br>0.571 | 0.011<br>0.025 | 1.000<br>1.000 |
| 2072.0           | 124          | 6.9         | 2.439          | 0.291            | 0.932          | 0.000          | 1.000          |
| 2074.0           | 119          | 7.2         | 2.461          | 0.332            | 1.000          | 0.000          | 1.000          |
| 2075.0           | 123          | 7.2         | 2.476          | 0.328            | 1.000          | 0.000          | 1.000          |
| 2076.0           | 140          | 7.3         | 2.479          | 0.374            |                | oal            |                |
| 2077.0<br>2078.0 | 101<br>87    | 5.3<br>2.2  | 2.190<br>2.346 | 0.383<br>0.231   |                | oal            | 1 000          |
| 2078.0           | 98           | 3.4         | 2.455          | 0.251            | 0.342<br>0.681 | 0.136<br>0.013 | 1.000<br>1.000 |
| 2080.0           | 104          | 4.2         | 2.513          | 0.248            | 0.811          | 0.000          | 1.000          |
| 2081.0           | 128          | 8.7         | 2.529          | 0.327            | 1.000          | 0.000          | 1.000          |
| 2082.0           | 110          | 8.1         | 2.496          | 0.250            | 0.777          | 0.000          | 1.000          |
| 2083.0           | 124          | 8.6         | 2.566          | 0.305            | 1.000          | 0.000          | 1.000          |
| 2084.0<br>2085.0 | 110<br>117   | 6.1<br>6.4  | 2.517<br>2.515 | 0.203<br>0.313   | 0.640<br>1.000 | 0.020<br>0.000 | 1.000<br>1.000 |
| 2085.0           | 119          | 6.8         | 2.515          | 0.285            | 0.986          | 0.000          | 1.000          |
| 2087.0           | 114          | 6.7         | 2.505          | 0.324            | 1.000          | 0.000          | 1.000          |
| 2088.0           | 124          | 7.2         | 2.486          | 0.332            | 1.000          | 0.000          | 1.000          |
| 2089.0           | 101          | 10.7        | 2.035          | 0.453            |                | oal            |                |
| 2090.0<br>2091.0 | 125          | 7.2         | 2.492          | 0.339            | 1.000          | 0.000          | 1.000          |
| 2092.0           | 115<br>116   | 5.6<br>3.5  | 2.478<br>2.368 | 0.255<br>0.245   | 0.755<br>0.448 | 0.000<br>0.109 | 1.000<br>1.000 |
| 2093.0           | 127          | 6.5         | 2.448          | 0.299            | 0.873          | 0.000          | 1.000          |
| 2094.0           | 117          | 8.4         | 2.513          | 0.323            | 1.000          | 0.000          | 1.000          |
| 2095.0           | 132          | 8.3         | 2.544          | 0.301            | 1.000          | 0.000          | 1.000          |
| 2096.0           | 120          | 7.4         | 2.548          | 0.258            | 0.934          | 0.000          | 1.000          |
| 2097.0<br>2098.0 | 129<br>116   | 7.8<br>7.2  | 2.591<br>2.553 | 0.261<br>0.299   | 1.000<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2099.0           | 119          | 7.2         | 2.545          | 0.292            | 1.000          | 0.000          | 1.000          |
| 2100.0           | 128          | 7.9         | 2.545          | 0.309            | 1.000          | 0.000          | 1.000          |
|                  |              |             |                |                  |                |                | -              |

.

•

.

.

|                  |            | TURRUM     | 4 ( page       | 4 of da        | ata listi      | ng)            |                |
|------------------|------------|------------|----------------|----------------|----------------|----------------|----------------|
| DEPTH            | GR         | RT -       | RHOB           | NPHI           | VSH            | PHIE           | SWE            |
| (mRKB)           | api        | ohmm       | g/cc           | frac           | frac           | frac           | frac           |
|                  |            |            |                |                |                |                |                |
| 2101.0           | 118        | 7.3        | 2.518          | 0.276          | 0.939          | 0.000          | 1.000          |
| 2102.0           | 122        | 7.8        | 2.568          | 0.266          | 1.000          | 0.000          | 1.000          |
| 2103.0           | 126        | 7.9        | 2.528          | 0.303          | 1.000          | 0.000          | 1.000          |
| 2104.0           | 125        | 6.8        | 2.533          | 0.294          | 1.000          | 0.000          | 1.000          |
| 2105.0           | 120        | 7.7        | 2.872          | 0.306          | 1.000          | 0.000          | 1.000          |
| 2106.0           | 132        | 7.1        | 2.486          | 0.329          |                | al             |                |
| 2107.0           | 98         | 10.5       | 2.333          | 0.431          |                | al             | • • • • •      |
| 2108.0           | 109        | 6.7        | 2.493          | 0.221          | 0.657          | 0.000          | 1.000          |
| 2109.0<br>2110.0 | 74<br>100  | 8.0<br>6.2 | 1.351<br>2.491 | 0.594<br>0.219 |                | bal<br>Dal     |                |
| 2111.0           | 102        | 5.4        | 2.456          | 0.285          | 0.825          | 0.000          | 1.000          |
| 2112.0           | 133        | 8.9        | 2.513          | 0.303          | 1.000          | 0.000          | 1.000          |
| 2113.0           | 121        | 8.5        | 2.507          | 0.339          | 1.000          | 0.000          | 1.000          |
| 2114.0           | 132        | 9.5        | 2.598          | 0.293          | 1.000          | 0.000          | 1.000          |
| 2115.0           | 120        | 8.1        | 2.541          | 0.321          | 1.000          | 0.000          | 1.000          |
| 2116.0           | 133        | 8.2        | 2.518          | 0.338          | 1.000          | 0.000          | 1.000          |
| 2117.0           | 112        | 7.3        | 2.501          | 0.339          |                | al             |                |
| 2118.0           | 87         | 2.9        | 2.383          | 0.228          |                | al             | 1 000          |
| 2119.0<br>2120.0 | 110<br>114 | 4.1<br>5.6 | 2.451<br>2.495 | 0.236<br>0.252 | 0.616<br>0.786 | 0.011          | 1.000          |
| 2121.0           | 108        | 5.0        | 2.495          | 0.252          | 0.951          | 0.010<br>0.000 | 1.000<br>1.000 |
| 2122.0           | 123        | 7.3        | 2.532          | 0.298          | 1.000          | 0.000          | 1.000          |
| 2123.0           | 122        | 7.1        | 2.513          | 0.292          | 0.991          | 0.000          | 1.000          |
| 2124.0           | 123        | 7.5        | 2.501          | 0.300          | 0.994          | 0.000          | 1.000          |
| 2125.0           | 116        | 6.9        | 2.574          | 0.277          | 1.000          | 0.000          | 1.000          |
| 2126.0           | 128        | 7.1        | 2.535          | 0.234          | 0.913          | 0.000          | 1.000          |
| 2127.0           | 110        | 6.7        | 2.563          | 0.238          | 0.897          | 0.000          | 1.000          |
| 2128.0           | 127        | 7.4        | 2.559          | 0.264          | 0.994          | 0.000          | 1.000          |
| 2129.0<br>2130.0 | 132<br>80  | 6.7<br>1.5 | 2.511<br>2.284 | 0.271<br>0.190 | 0.963<br>0.061 | 0.000<br>0.203 | 1.000          |
| 2131.0           | 93         | 2.1        | 2.330          | 0.190          | 0.167          | 0.203          | 1.000<br>1.000 |
| 2132.0           | 100        | 2.0        | 2.336          | 0.234          | 0.328          | 0.163          | 1.000          |
| 2133.0           | 135        | 3.2        | 2.411          | 0.231          | 0.499          | 0.085          | 1.000          |
| 2134.0           | 110        | 6.2        | 2.521          | 0.231          | 0.742          | 0.000          | 1.000          |
| 2135.0           | 116        | 6.7        | 2.521          | 0.268          | 0.914          | 0.000          | 1.000          |
| 2136.0           | 124        | 7.7        | 2.867          | 0.356          | 1.000          |                | <b>1.000</b>   |
| 2137.0           | 111        | 7.0        | 2.471          | 0.316          | 0.986          | 0.000          | 1.000          |
| 2138.0           | 118        | 7.4        | 2.585          | 0.243          | 0.972          | 0.000          | 1.000          |
| 2139.0<br>2140.0 | 114<br>124 | 5.3<br>5.3 | 2.401<br>2.436 | 0.293<br>0.278 | 0.724<br>0.750 | 0.000<br>0.016 | 1.000          |
| 2141.0           | 134        | 7.4        | 2.450          | 0.323          | 1.000          | 0.013          | 1.000<br>1.000 |
| 2142.0           | 137        | 2.2        | 2.332          | 0.231          | 0.306          | 0.157          | 1.000          |
| 2143.0           | 97         | 4.0        | 2.493          | 0.240          | 0.717          | 0.004          | 1.000          |
| 2144.0           | 87         | 2.3        | 2.393          | 0.225          | 0.432          | 0.121          | 1.000          |
| 2145.0           | 81         | 6.3        | 2.562          | 0.164          | 0.571          | 0.022          | 1.000          |
| 2146.0           | 112        | 5.5        | 2.530          | 0.208          | 0.696          | 0.005          | 1.000          |
| 2147.0           | 118        | 8.1        | 2.522          | 0.289          | 1.000          | 0.000          | 1.000          |
| 2148.0           | 124        | 6.7        | 2.519          | 0.261          | 0.884          | 0.000          | 1.000          |
| 2149.0<br>2150.0 | 108<br>131 | 4.7<br>8.0 | 2.440<br>2.499 | 0.235<br>0.312 | 0.585<br>1.000 | 0.032<br>0.000 | 1.000<br>1.000 |
| 2151.0           | 121        | 6.4        | 2.499          | 0.312          | 0.935          | 0.000          | 1.000          |
| 2152.0           | 120        | 7.5        | 2.539          | 0.301          | 1.000          | 0.000          | 1.000          |
| 2153.0           | 134        | 7.7        | 2.548          | 0.285          | 1.000          | 0.000          | 1.000          |
| 2154.0           | 107        | 6.6        | 2.488          | 0.282          | 0.893          | 0.000          | 1.000          |
| 2155.0           | 123        | 7.7        | 2.542          | 0.304          | 1.000          | 0.000          | 1.000          |
| 2156.0           | 124        | 8.1        | 2.545          | 0.306          | 1.000          | 0.000          | 1.000          |
| 2157.0           | 124        | 7.6        | 2.562          | 0.286          | 1.000          | 0.000          | 1.000          |
| 2158.0           | 122        | 6.9        | 2.513          | 0.333          | 1.000          | 0.000          | 1.000          |
| 2159.0<br>2160.0 | 88<br>70   | 3.2<br>6.3 | 2.456<br>2.379 | 0.199<br>0.156 | 0.484<br>0.158 | 0.081<br>0.108 | 1.000<br>1.000 |
| 2160.0           | 70<br>79   | 3.7        | 2.379          | 0.202          | 0.158          | 0.009          | 1.000          |
| 2162.0           | 113        | 3.9        | 2.513          | 0.245          | 0.830          | 0.020          | 1.000          |
|                  |            |            | =              |                |                |                |                |

-

.

•

Í

ł

| DEPTH<br>(mRKB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GR<br>api                                                                                                           | TURRUM_4<br>RT<br>ohmm                                                                                                                                                                                                              | ( page 5<br>RHOB<br>g/cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 of data<br>NPHI<br>frac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a listing<br>VSH<br>frac                                                                                                                                       | g)<br>PHIE<br>frac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SWE<br>frac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2163.0<br>2164.0<br>2165.0<br>2165.0<br>2167.0<br>2168.0<br>2169.0<br>2170.0<br>2171.0<br>2172.0<br>2173.0<br>2174.0<br>2175.0<br>2176.0<br>2177.0<br>2178.0<br>2179.0<br>2180.0<br>2181.0<br>2182.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105<br>120<br>117<br>133<br>133<br>115<br>112<br>105<br>112<br>123<br>126<br>102<br>100<br>127<br>129<br>127<br>119 | 6.8<br>8.0<br>7.1<br>8.2<br>7.3<br>6.2<br>7.3<br>3.7<br>5.5<br>8.1<br>5.9<br>7.4<br>6.7<br>8.1<br>3.8<br>4.3<br>8.9<br>7.9<br>8.2<br>7.1                                                                                            | 2.497<br>2.552<br>2.508<br>2.586<br>2.547<br>2.501<br>2.449<br>2.494<br>2.494<br>2.514<br>2.544<br>2.525<br>2.497<br>2.438<br>2.544<br>2.525<br>2.497<br>2.484<br>2.533<br>2.511<br>2.517<br>2.485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.289<br>0.292<br>0.298<br>0.267<br>0.296<br>0.310<br>0.257<br>0.210<br>0.259<br>0.311<br>0.296<br>0.293<br>0.299<br>0.340<br>0.224<br>0.224<br>0.224<br>0.224<br>0.224<br>0.225<br>0.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.945<br>1.000<br>1.000<br>1.000<br>1.000<br>0.849<br>0.511<br>0.815<br>1.000<br>0.966<br>1.000<br>1.000<br>0.540<br>0.726<br>1.000<br>0.945<br>1.000<br>0.900 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.051<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.028<br>0.012<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000 | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2182.0<br>2183.0<br>2183.0<br>2184.0<br>2185.0<br>2185.0<br>2187.0<br>2197.0<br>2191.0<br>2192.0<br>2193.0<br>2194.0<br>2195.0<br>2197.0<br>2197.0<br>2197.0<br>2200.0<br>2201.0<br>2202.0<br>2203.0<br>2204.0<br>2205.0<br>2205.0<br>2205.0<br>2207.0<br>2208.0<br>2209.0<br>2211.0<br>2212.0<br>2213.0<br>2214.0<br>2215.0<br>2215.0<br>2217.0<br>2217.0<br>2218.0<br>2217.0<br>2218.0<br>2217.0<br>2218.0<br>2219.0<br>2210.0<br>2210.0<br>2211.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2212.0<br>2222.0 | $\begin{array}{c} 119\\ 106\\ 94\\ 95\\ 110\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120\\ 120$                              | $\begin{array}{c} 7.1\\ 7.2\\ 3.3\\ 4.9\\ 8.0\\ 8.6\\ 8.3\\ 5.0\\ 1.7\\ 4.9\\ 19.7\\ 2.8\\ 7.9\\ 7.0\\ 7.6\\ 4.4\\ 4.0\\ 5.6\\ 4.4\\ 7.5\\ 8.6\\ 7.3\\ 7.4\\ 8.5\\ 8.0\\ 8.4\\ 7.5\\ 8.9\\ 8.4\\ 8.4\\ 11.2\\ 3.0\\ 6.5\end{array}$ | 2.485<br>2.464<br>2.358<br>2.457<br>2.514<br>2.510<br>2.512<br>2.443<br>2.297<br>2.5557<br>2.557<br>2.5529<br>2.427<br>2.5506<br>2.427<br>2.427<br>2.4297<br>2.5506<br>2.427<br>2.529<br>2.5551<br>2.427<br>2.5529<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5521<br>2.5522<br>2.5521<br>2.5522<br>2.5521<br>2.5522<br>2.5521<br>2.5522<br>2.5521<br>2.5522<br>2.5521<br>2.5522<br>2.5521<br>2.5522<br>2.5521<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522<br>2.5522 | 0.285<br>0.269<br>0.210<br>0.243<br>0.261<br>0.295<br>0.295<br>0.295<br>0.230<br>0.223<br>0.202<br>0.108<br>0.215<br>0.202<br>0.202<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.237<br>0.215<br>0.234<br>0.271<br>0.250<br>0.272<br>0.252<br>0.285<br>0.292<br>0.252<br>0.308<br>0.349<br>0.349<br>0.196<br>0.220 | Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>C                                                                                | Dal<br>0.003<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.184<br>0.000<br>0.044<br>0.059<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 |

.

•

2

|                  |            | TURRUM 4   | (page          | 6 of da        | ta listi       | na)            |                |
|------------------|------------|------------|----------------|----------------|----------------|----------------|----------------|
| DEPTH            | GR         | RT         | RHOB           | NPHI           | VSH            | PHIE           | SWE            |
| (mRKB)           | api        | ohmm       | g/cc           | frac           | frac           | frac           | frac           |
|                  |            |            |                |                |                |                |                |
| 2225.0           | 112        | 7.9        | 2.537          | 0.242          | 0.859          | 0.000          | 1.000          |
| 2226.0           | 121        | 7.2        | 2.474          | 0.274          | 0.875          | 0.000          | 1.000          |
| 2227.0           | 121        | 6.1        | 2.495          | 0.260          | 0.829          | 0.000          | 1.000          |
| 2228.0<br>2229.0 | 127<br>92  | 6.6<br>2.5 | 2.529<br>2.412 | 0.243<br>0.218 | 0.906<br>0.453 | 0.000          | 1.000          |
| 2229.0           | 92<br>88   | 2.5<br>8.6 | 2.412          | 0.218<br>0.140 | 0.453          | 0.110<br>0.020 | 1.000<br>1.000 |
| 2231.0           | 95         | 3.3        | 2.417          | 0.240          | 0.556          | 0.035          | 1.000          |
| 2232.0           | 125        | 6.6        | 2.558          | 0.265          | 1.000          | 0.000          | 1.000          |
| 2233.0           | 117        | 7.6        | 2.529          | 0.250          | 0.872          | 0.000          | 1.000          |
| 2234.0           | 118        | 7.3        | 2.517          | 0.251          | 0.854          | 0.000          | 1.000          |
| 2235.0<br>2236.0 | 117<br>117 | 8.3<br>8.2 | 2.617<br>2.538 | 0.258<br>0.296 | 1.000<br>1.000 | 0.000<br>0.000 | 1.000          |
| 2230.0           | 128        | 8.5        | 2.538          | 0.298          | 0.894          | 0.000          | 1.000<br>1.000 |
| 2238.0           | 106        | 6.4        | 2.532          | 0.222          | 0.780          | 0.000          | 1.000          |
| 2239.0           | 129        | 9.1        | 2.534          | 0.244          | 0.861          | 0.000          | 1.000          |
| 2240.0           | 113        | 8.3        | 2.554          | 0.306          | 1.000          | 0.000          | 1.000          |
| 2241.0           | 115        | 7.7        | 2.537          | 0.255          | 0.914          | 0.000          | 1.000          |
| 2242.0<br>2243.0 | 118<br>118 | 6.7<br>7.4 | 2.500<br>2.543 | 0.291<br>0.229 | 0.972<br>0.822 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2243.0           | 84         | 5.8        | 2.615          | 0.186          | 0.825          | 0.000          | 1.000          |
| 2245.0           | 117        | 8.2        | 2.576          | 0.264          | 1.000          | 0.000          | 1.000          |
| 2246.0           | 102        | 5.1        | 2.503          | 0.222          | 0.670          | 0.000          | 1.000          |
| 2247.0           | 119        | 7.0        | 2.531          | 0.286          | 1.000          | 0.000          | 1.000          |
| 2248.0           | 111        | 2.0        | 2.426          | 0.263          | 0.663          | 0.061          | 1.000          |
| 2249.0<br>2250.0 | 94<br>128  | 4.1<br>9.0 | 2.463<br>2.583 | 0.213<br>0.261 | 0.546<br>1.000 | 0.030<br>0.000 | 1.000<br>1.000 |
| 2251.0           | 126        | 9.0        | 2.518          | 0.284          | 0.987          | 0.000          | 1.000          |
| 2252.0           | 116        | 7.8        | 2.504          | 0.229          | 0.727          | 0.000          | 1.000          |
| 2253.0           | 119        | 7.4        | 2.573          | 0.271          | 1.000          | 0.000          | 1.000          |
| 2254.0           | 94         | 4.0        | 2.471          | 0.187          | 0.469          | 0.062          | 1.000          |
| 2255.0<br>2256.0 | 85<br>73   | 2.9<br>3.5 | 2.447          | 0.198<br>0.207 | 0.407<br>0.466 | 0.080          | 1.000          |
| 2257.0           | 118        | 7.2        | 2.457<br>2.588 | 0.207          | 1.000          | 0.059<br>0.000 | 1.000<br>1.000 |
| 2258.0           | 122        | 7.8        | 2.544          | 0.265          | 0.973          | 0.000          | 1.000          |
| 2259.0           | 126        | 9.1        | 2.532          | 0.260          | 0.923          | 0.000          | 1.000          |
| 2260.0           | 128        | 8.5        | 2.479          | 0.293          | 0.946          |                | ~ 1.000        |
| 2261.0           | 120        | 7.7        | 2.569          | 0.282          | 1.000          | 0.000          | 1.000          |
| 2262.0<br>2263.0 | 99<br>105  | 5.1<br>6.1 | 2.529<br>2.454 | 0.203<br>0.224 | 0.663<br>0.585 | 0.004<br>0.020 | 1.000<br>1.000 |
| 2264.0           | 124        | 9.1        | 2.454          | 0.224          | 0.864          | 0.020          | 1.000          |
| 2265.0           | 107        | 5.9        | 2.556          | 0.196          | 0.691          | 0.001          | 1.000          |
| 2266.0           | 115        | 6.6        | 2.556          | 0.267          | 1.000          | 0.000          | 1.000          |
| 2267.0           | 75         | 2.6        | 2.403          | 0.201          | 0.359          | 0.096          | 1.000          |
| 2268.0           | 97<br>75   | 3.9        | 2.483          | 0.229          | 0.648          | 0.004          | 1.000          |
| 2269.0<br>2270.0 | 75<br>130  | 4.4<br>6.8 | 2.503<br>2.524 | 0.182<br>0.361 | 0.480<br>1.000 | 0.033<br>0.000 | 1.000<br>1.000 |
| 2271.0           | 124        | 8.7        | 2.594          | 0.256          | 1.000          | 0.000          | 1.000          |
| 2272.0           | 120        | 5.9        | 2.538          | 0.252          | 0.904          | 0.000          | 1.000          |
| 2273.0           | 96         | 2.5        | 2.436          | 0.217          | 0.490          | 0.069          | 1.000          |
| 2274.0           | 76         | 1.9        | 2.349          | 0.197          | 0.221          | 0.154          | 1.000          |
| 2275.0<br>2276.0 | 102<br>111 | 4.5<br>4.7 | 2.480<br>2.527 | 0.227<br>0.234 | 0.663<br>0.807 | 0.014<br>0.000 | 1.000<br>1.000 |
| 2277.0           | 115        | 8.2        | 2.533          | 0.314          | 1.000          | 0.000          | 1.000          |
| 2278.0           | 120        | 8.2        | 2.554          | 0.248          | 0.931          | 0.000          | 1.000          |
| 2279.0           | 132        | 8.4        | 2.570          | 0.297          | 1.000          | 0.000          | 1.000          |
| 2280.0           | 125        | 7.7        | 2.501          | 0.280          | 0.934          | 0.000          | 1.000          |
| 2281.0           | 97<br>95   | 2.2        | 2.446<br>2.370 | 0.189          | 0.422          | 0.104          | 1.000          |
| 2282.0<br>2283.0 | 85<br>115  | 2.9<br>7.8 | 2.370          | 0.187<br>0.245 | 0.225<br>0.999 | 0.137<br>0.000 | 1.000<br>1.000 |
| 2284.0           | 122        | 9.2        | 2.548          | 0.245          | 0.990          | 0.000          | 1.000          |
| 2285.0           | 133        | 9.0        | 2.553          | 0.296          | 1.000          | 0.000          | 1.000          |
| 2286.0           | 124        | 5.4        | 2.535          | 0.198          | 0.679          | 0.020          | 1.000          |
|                  |            |            |                |                |                |                |                |

٠

ľ

ľ

|                  |            | TURRUM       | _4 ( pag       | ge 7 of        | data list      | ing)           |                |
|------------------|------------|--------------|----------------|----------------|----------------|----------------|----------------|
| DEPTH            | GR         | RT           | RHOB           | NPHI           | VSH            | PHIE           | SWE            |
| (mRKB)           | api        | ohmm         | g/cc           | frac           | frac           | frac           | frac           |
|                  |            |              |                |                |                |                |                |
| 2287.0           | 112        | 4.6          | 2.538          | 0.219          | 0.819          | 0.000          | 1.000          |
| 2288.0           | 112        | 5.6          | 2.497          | 0.236          | 0.723          | 0.000          | 1.000          |
| 2289.0           | 128        | 9.6          | 2.538          | 0.272          | 0.991          | 0.000          | 1.000          |
| 2290.0           | 131        | 8.6          | 2.523          | 0.292          | 1.000          | 0.000          | 1.000          |
| 2291.0           | 107        | 4.8          | 2.458          | 0.259          | 0.747          | 0.000          | 1.000          |
| 2292.0           | 118        | 9.1          | 2.571          | 0.287          | 1.000          | 0.000          | 1.000          |
| 2293.0           | 128        | 9.8          | 2.521          | 0.247          | 0.870          | 0.000          | 1.000          |
| 2294.0           | 120        | 9.5          | 2.540          | 0.255          | 0.925          | 0.000          | 1.000          |
| 2295.0           | 132        | 9.2          | 2.526          | 0.323          | 1.000          | 0.000          | 1.000          |
| 2296.0<br>2297.0 | 126<br>122 | 9.7<br>8.2   | 2.529<br>2.528 | 0.316<br>0.266 | 1.000<br>0.942 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2297.0           | 130        | 8.5          | 2.528          | 0.278          | 1.000          | 0.000          | 1.000          |
| 2299.0           | 62         | 28.9         | 1.323          | 0.701          |                | bal            | 1.000          |
| 2300.0           | 86         | 3.0          | 2.399          | 0.193          |                | bal            |                |
| 2301.0           | 117        | 4.7          | 2.451          | 0.193          | 0.454          | 0.072          | 1.000          |
| 2302.0           | 119        | 4.7          | 2.455          | 0.217          | 0.562          | 0.032          | 1.000          |
| 2303.0           | 117        | 3.2          | 2.427          | 0.205          | 0.442          | 0.078          | 1.000          |
| 2304.0           | 74         | 3.7          | 2.422          | 0.200          | 0.370          | 0.107          | 1.000          |
| 2305.0           | 102        | 5.3          | 2.295          | 0.316          |                | bal            |                |
| 2306.0           | 84         | 2.7          | 2.417          | 0.226          | 0.476          | 0.095          | 1.000          |
| 2307.0           | 115        | 4.8          | 2.459          | 0.215          | 0.563          | 0.025          | 1.000          |
| 2308.0           | 129<br>110 | 10.6         | 2.512          | 0.306<br>0.235 | 1.000<br>0.646 | 0.000<br>0.011 | 1.000          |
| 2309.0<br>2310.0 | 77         | 7.2<br>1.9   | 2.460<br>2.330 | 0.235          | 0.040          | 0.177          | 1.000<br>1.000 |
| 2311.0           | 135        | 5.8          | 2.574          | 0.273          | 1.000          | 0.008          | 1.000          |
| 2312.0           | 61         | 1.1          | 2.257          | 0.177          | 0.000          | 0.227          | 1.000          |
| 2313.0           | 53         | 1.2          | 2.318          | 0.170          | 0.046          | 0.201          | 1.000          |
| 2314.0           | 59         | 1.3          | 2.294          | 0.200          | 0.118          | 0.207          | 1.000          |
| 2315.0           | 52         | 1.2          | 2.222          | 0.177          | 0.000          | 0.240          | 1.000          |
| 2316.0           | 42         | 1.4          | 2.338          | 0.155          | 0.000          | 0.192          | 1.000          |
| 2317.0           | 48         | 1.4          | 2.321          | 0.152          | 0.000          | 0.201          | 1.000          |
| 2318.0           | 49         | 1.2          | 2.305          | 0.183          | 0.053          | 0.207          | 1.000          |
| 2319.0<br>2320.0 | 55<br>52   | 1.1<br>1.0   | 2.251<br>2.255 | 0.199<br>0.198 | 0.010<br>0.032 | 0.236<br>0.237 | 1.000          |
| 2320.0           | 52<br>68   | 1.8          | 2.255          | 0.198          | 0.032          |                | 1.000          |
| 2322.0           | 78         | 1.5          | 2.411          | 0.207          | 0.362          | 0.151          | 1.000          |
| 2323.0           | 84         | 1.4          | 2.328          | 0.223          | 0.272          | 0.174          | 1.000          |
| 2324.0           | 59         | 4.0          | 2.844          | 0.085          | 0.987          | 0.003          | 1.000          |
| 2325.0           | 53         | 1.1          | 2.279          | 0.169          | 0.000          | 0.218          | 1.000          |
| 2326.0           | 62         | 1.0          | 2.211          | 0.225          | 0.036          | 0.249          | 1.000          |
| 2327.0           | 113        | 7.0          | 2.664          | 0.219          | 1.000          | 0.000          | 1.000          |
| 2328.0           | 106        | 6.3          | 2.578          | 0.212          | 0.847          | 0.016          | 1.000          |
| 2329.0           | - 54       | 3.9          | 2.497          | 0.147          | 0.307          | 0.077          | 1.000          |
| 2330.0           | 36         | 97.3         | 2.728          | 0.063          | 0.540          | 0.001          | 1.000          |
| 2331.0<br>2332.0 | 38         | 36.8<br>1.3  | 2.686<br>2.340 | 0.030<br>0.202 | 0.270<br>0.175 | 0.020<br>0.189 | 1.000<br>1.000 |
| 2332.0           | 55<br>53   | 1.7          | 2.540          | 0.180          | 0.654          | 0.035          | 1.000          |
| 2334.0           | 73         | 5.7          | 2.464          | 0.111          | 0.149          | 0.103          | 1.000          |
| 2335.0           | 65         | 1.7          | 2.332          | 0.218          | 0.286          | 0.166          | 1.000          |
| 2336.0           | 88         | 7.3          | 2.287          | 0.441          |                | bal            |                |
| 2337.0           | 100        | 4.2          | 2.427          | 0.184          | 0.358          | 0.102          | 1.000          |
| 2338.0           | 118        | 8.5          | 2.497          | 0.215          | 0.660          | 0.000          | 1.000          |
| 2339.0           | 92         | 2.2          | 2.499          | 0.175          | 0.448          | 0.068          | 1.000          |
| 2340.0           | 72         | 1.7          | 2.342          | 0.187          | 0.184          | 0.188          | 1.000          |
| 2341.0           | 84         | 3.8          | 2.344          | 0.186          | 0.160          | 0.148          | 1.000          |
| 2342.0<br>2343.0 | 127<br>123 | 11.3<br>12.2 | 2.562<br>2.523 | 0.278<br>0.278 | 1.000<br>0.988 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2343.0           | 123        | 11.2         | 2.525          | 0.278          | 1.000          | 0.000          | 1.000          |
| 2345.0           | 97         | 7.0          | 2.555          | 0.233          | 0.736          | 0.016          | 1.000          |
| 2346.0           | 118        | 7.3          | 2.510          | 0.239          | 0.833          | 0.000          | 1.000          |
| 2347.0           | 102        | 6.3          | 2.496          | 0.245          | 0.783          | 0.000          | 1.000          |
| • •              |            |              |                |                |                | -              |                |

Į

ľ

ľ

|              |                  | TURRUM_4   | ( page       | 8 of dat       |                |                |                |                |
|--------------|------------------|------------|--------------|----------------|----------------|----------------|----------------|----------------|
|              | DEPTH<br>(mRKB)  | GR<br>api  | RT<br>ohmm   | RHOB<br>g/cc   | NPHI<br>frac   | VSH<br>frac    | PHIE<br>frac   | SWE<br>frac    |
| <b>—</b>     |                  | -          |              | •              |                |                |                |                |
|              | 2348.0<br>2349.0 | 117<br>112 | 7.1<br>5.4   | 2.542<br>2.715 | 0.230<br>0.235 | 0.835<br>1.000 | 0.000<br>0.000 | 1.000          |
| <b></b>      | 2350.0           | 111        | 8.9          | 2.512          | 0.270          | 0.924          | 0.000          | 1.000<br>1.000 |
|              | 2351.0<br>2352.0 | 104<br>116 | 4.2<br>6.6   | 2.431<br>2.475 | 0.208<br>0.228 | 0.468          | 0.055<br>oal   | 1.000          |
|              | 2353.0           | 23         | 171.8        | 1.201          | 0.576          |                | oal            |                |
|              | 2354.0<br>2355.0 | 62<br>109  | 20.5<br>12.3 | 2.209<br>2.484 | 0.402<br>0.242 |                | oal<br>oal     |                |
| <b></b> ,    | 2356.0           | 117        | 12.6         | 2.553          | 0.233          | 0.877          | 0.000          | 1.000          |
|              | 2357.0<br>2358.0 | 125<br>74  | 12.4<br>1.9  | 2.540<br>2.342 | 0.228<br>0.184 | 0.845<br>0.154 | 0.000<br>0.170 | 1.000          |
|              | 2359.0           | 74         | 2.6          | 2.342          | 0.184<br>0.178 | 0.154          | 0.170<br>0.141 | 1.000<br>1.000 |
|              | 2360.0           | 76         | 4.7          | 2.541          | 0.203          | 0.697          | 0.026          | 1.000          |
|              | 2361.0<br>2362.0 | 93<br>106  | 12.3<br>13.1 | 2.588<br>2.545 | 0.207<br>0.264 | 0.856<br>0.986 | 0.000<br>0.000 | 1.000<br>1.000 |
| -            | 2363.0           | 116        | 13.3         | 2.587          | 0.263          | 1.000          | 0.000          | 1.000          |
|              | 2364.0<br>2365.0 | 114<br>132 | 9.1<br>10.2  | 2.603<br>2.488 | 0.303          | 1.000<br>0.878 | 0.000<br>0.000 | 1.000<br>1.000 |
|              | 2366.0           | 107        | 4.6          | 2.422          | 0.271          | 0.687          | 0.022          | 1.000          |
| _            | 2367.0<br>2368.0 | 53<br>74   | 1.5<br>1.8   | 2.247<br>2.244 | 0.219<br>0.200 | 0.073<br>0.011 | 0.239<br>0.239 | 1.000<br>1.000 |
|              | 2369.0           | 81         | 1.5          | 2.233          | 0.211          | 0.018          | 0.238          | 1.000          |
| -            | 2370.0<br>2371.0 | 65<br>83   | 1.7<br>2.5   | 2.234<br>2.280 | 0.220<br>0.187 | 0.072<br>C     | 0.236<br>cal   | 1.000          |
| <pre>C</pre> | 2372.0           | 112        | 6.7          | 2.459          | 0.196          | C              | oal            |                |
| <b>4</b>     | 2373.0<br>2374.0 | 82<br>27   | 48.1<br>35.6 | 1.252<br>1.268 | 0.484<br>0.599 |                | oal<br>oal     |                |
|              | 2375.0           | 85         | 2.0          | 2.338          | 0.198          | 0.193          | 0.171          | 1.000          |
|              | 2376.0<br>2377.0 | 86<br>103  | 2.6<br>144.5 | 2.400<br>2.693 | 0.180<br>0.089 | 0.274<br>0.605 | 0.128<br>0.000 | 1.000<br>1.000 |
|              | 2378.0           | 86         | 13.2         | 2.596          | 0.133          | 0.547          | 0.005          | 1.000          |
|              | 2379.0<br>2380.0 | 101<br>120 | 10.0<br>12.9 | 2.524<br>2.571 | 0.225<br>0.252 | 0.773<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
|              | 2381.0           | 86         | 8.0          | 2.496          | 0.249          | 0.799          | 0.011          | 1.000          |
|              | 2382.0<br>2383.0 | 110<br>124 | 12.1<br>11.3 | 2.605<br>2.569 | 0.259<br>0.294 | 1.000<br>1.000 | 0.000<br>0.000 | 1.000          |
|              | 2384.0           | 130        | 12.0         | 2.586          | 0.299          | 1.000          | 0.000          | 1.000          |
| . <b></b>    | 2385.0<br>2386.0 | 128<br>134 | 12.6<br>13.8 | 2.642<br>2.625 | 0.295<br>0.264 | 1.000<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
|              | 2387.0           | 121        | 17.8         | 2.541          | 0.298          | 1.000          | 0.000          | 1.000          |
|              | 2388.0<br>2389.0 | 112<br>106 | 5.9<br>6.8   | 2.515<br>2.533 | 0.200<br>0.191 | 0.644<br>0.653 | 0.022<br>0.006 | 1.000<br>1.000 |
|              | 2390.0           | 127        | 14.5         | 2.577          | 0.283          | 1.000          | 0.000          | 1.000          |
|              | 2391.0<br>2392.0 | 126<br>119 | 14.1<br>16.3 | 2.590<br>2.578 | 0.246          | 1.000<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
| -            | 2393.0           | 102        | 9.1          | 2.510          | 0.166          | 0.494          | 0.035          | 1.000          |
|              | 2394.0<br>2395.0 | 104<br>90  | 10.8<br>4.8  | 2.565<br>2.491 | 0.210<br>0.163 | 0.812<br>0.434 | 0.002<br>0.081 | 1.000<br>1.000 |
|              | 2396.0           | 80         | 23.3         | 2.684          | 0.075          | 0.479          | 0.001          | 1.000          |
|              | 2397.0<br>2398.0 | 64<br>56   | 2.2<br>43.9  | 2.322<br>1.295 | 0.204<br>0.683 | 0.196          | 0.180          | 1.000          |
|              | 2399.0           | 95         | 6.0          | 2.348          | 0.234          |                | oal<br>oal     |                |
|              | 2400.0<br>2401.0 | 104<br>123 | 8.6<br>10.0  | 2.498<br>2.516 | 0.219<br>0.270 | 0.683<br>0.942 | 0.017<br>0.000 | 1.000<br>1.000 |
|              | 2402.0           | 90         | 5.3          | 2.435          | 0.176          | 0.346          | 0.095          | 1.000          |
| _            | 2403.0<br>2404.0 | 69<br>54   | 1.8<br>1.5   | 2.377<br>2.278 | 0.218<br>0.202 | 0.332<br>0.078 | 0.124<br>0.228 | 1.000          |
|              | 2404.0           | 55         | 1.5          | 2.278          | 0.191          | 0.078          | 0.228          | 1.000<br>1.000 |
|              | 2406.0           | 57<br>61   | 1.9          | 2.287          | 0.193          | 0.083          | 0.209          | 1.000          |
|              | 2407.0<br>2408.0 | 67         | 1.9<br>2.1   | 2.319<br>2.376 | 0.172<br>0.180 | 0.053<br>0.215 | 0.199<br>0.163 | 1.000<br>1.000 |
|              | 2409.0           | 60         | 2.2          | 2.374          | 0.189          | 0.185          | 0.163          | 1.000          |
|              |                  |            |              |                |                |                |                |                |

|                  | TURRUM 4   | ( nage                   | 9 of dat       | a lieti        | na)            |                  |                |
|------------------|------------|--------------------------|----------------|----------------|----------------|------------------|----------------|
| DEPTH            | GR         | RT                       | RHOB           | NPHI           | VSH            | PHIE             | SWE            |
| (mRKB)           | api        | ohmm                     | g/cc           | frac           | frac           | frac             | frac           |
|                  |            |                          |                |                |                |                  |                |
| 2410.0           | 69         | 2.2                      | 2.299          | 0.205          | 0.150          | 0.194            | 1.000          |
| 2411.0           | 83         | 3.9                      | 2.430          | 0.185          | 0.374          | 0.102            | 1.000          |
| 2412.0           | 83         | 4.6                      | 2.463          | 0.167          | 0.359          | 0.073            | 1.000          |
| 2413.0           | 87         | 6.8                      | 2.621          | 0.194          | 0.890          | 0.001            | 1.000          |
| 2414.0<br>2415.0 | 122<br>109 | 11.8<br>9.0              | 2.575<br>2.582 | 0.210<br>0.198 | 0.842<br>0.809 | 0.000<br>0.000   | 1.000<br>1.000 |
| 2416.0           | 97         | 5.2                      | 2.473          | 0.179          | 0.457          | 0.082            | 1.000          |
| 2417.0           | 100        | 9.5                      | 2.553          | 0.190          | 0.703          | 0.007            | 1.000          |
| 2418.0           | 100        | 5.1                      | 2.522          | 0.182          | 0.549          | 0.051            | 1.000          |
| 2419.0           | 124<br>121 | 11.2<br>10.6             | 2.610<br>2.560 | 0.248<br>0.281 | 1.000<br>1.000 | 0.000<br>0.000   | 1.000<br>1.000 |
| 2420.0<br>2421.0 | 121        | 10.8                     | 2.585          | 0.316          | 1.000          |                  | 1.000          |
| 2422.0           | 141        | 10.9                     | 2.603          | 0.307          |                | bal              |                |
| 2423.0           | 97         | 51.9                     | 1.277          | 0.720          |                | bal              |                |
| 2424.0           | 52         | 29.8                     | 1.706          | 0.599          |                | bal              | 1 000          |
| 2425.0<br>2426.0 | 94<br>56   | 2.8<br>2.2               | 2.464<br>2.349 | 0.154<br>0.164 | 0.297<br>0.103 | 0.102<br>0.178   | 1.000<br>1.000 |
| 2428.0           |            | 8.1                      | 2.492          | 0.236          | 0.742          | 0.008            | 1.000          |
| 2428.0           | 111        | 11.9                     | 2.605          | 0.226          | 0.987          | 0.000            | 1.000          |
| 2429.0           | 121        | 18.2                     | 2.550          | 0.259          | 0.984          | 0.000            | 1.000          |
| 2430.0           |            | 14.4                     | 2.645          | 0.265          | 1.000          | 0.000            | 1.000          |
| 2431.0<br>2432.0 |            | 15.2<br>1.7              | 2.575<br>2.279 | 0.199<br>0.196 | 0.800<br>0.055 | $0.004 \\ 0.204$ | 1.000<br>1.000 |
| 2432.0           |            | 1.6                      | 2.279          | 0.190          | 0.034          | 0.224            | 1.000          |
| 2434.0           |            | 1.7                      | 2.297          | 0.179          | 0.050          | 0.199            | 1.000          |
| 2435.0           |            | 2.6                      | 2.329          | 0.199          | 0.202          | 0.186            | 1.000          |
| 2436.0           |            | 83.6                     | 2.713          | 0.036          | 0.393          | 0.001            | 1.000          |
| 2437.0           |            | 4.1<br>9.6               | 2.432<br>2.459 | 0.152<br>0.327 | 0.256          | 0.102<br>cal     | 1.000          |
| 2439.0           |            | 14.6                     | 2.602          | 0.212          |                | oal              |                |
| 2440.0           |            | 16.0                     | 2.614          | 0.233          | 1.000          | 0.000            | 1.000          |
| 2441.0           |            | 14.8                     | 2.595          | 0.258          | 1.000          | 0.000            | 1.000          |
| 2442.0           |            | 14.7                     | 2.619<br>2.584 | 0.242<br>0.279 | 1.000<br>1.000 | 0.000<br>0.000   | 1.000<br>1.000 |
| 2443.0<br>2444.0 |            | 13.3<br>12.8             |                | 0.279          | 0.876          |                  | 1.000          |
| 2445.0           |            | 15.2                     | 2.588          | 0.217          | 0.908          |                  | 1.000          |
| 2446.0           |            | 14.8                     | 2.585          | 0.262          | 1.000          | 0.000            | 1.000          |
| 2447.0           |            | 13.2                     | 2.600          | 0.288          | 1.000          | 0.000            | 1.000          |
| 2448.0<br>2449.0 |            | 12.6<br>15.7             | 2.641<br>2.886 | 0.286<br>0.241 | 1.000<br>1.000 | 0.000<br>0.000   | 1.000          |
| 2449.0           |            | 13.9                     | 2.591          | 0.241          | 1.000          | 0.000            | 1.000          |
| 2451.0           |            | 13.4                     | 2.586          | 0.266          | 1.000          | 0.000            | 1.000          |
| 2452.0           |            | 13.4                     | 2.568          | 0.245          | 0.973          | 0.000            | 1.000          |
| 2453.0           |            | 11.5                     | 2.574          | 0.205          | 0.822          | 0.000            | 1.000          |
| 2454.0<br>2455.0 |            | 7.9<br>17.7              | 2.079<br>2.390 | 0.387          |                | oal<br>oal       |                |
| 2456.0           |            | 104.8                    | 1.368          | 0.520          |                | oal              |                |
| 2457.0           |            | 19.3                     | 2.314          | 0.336          |                | oal              |                |
| 2458.0           |            | 21.0                     | 2.473          | 0.300          |                | oal              |                |
| 2459.0<br>2460.0 |            | 304.1<br>159.0           | 1.304          | 0.570<br>0.554 |                | oal<br>oal       |                |
| 2460.0           |            | 9.4                      | 2.482          | 0.223          |                | oal              |                |
| 2462.0           |            | 5.5                      | 2.463          | 0.181          | 0.440          | 0.081            | 1.000          |
| 2463.0           | 98         | 5.0                      | 2.455          | 0.169          | 0.372          | 0.087            | 1.000          |
| 2464.0<br>2465.0 |            | 8.5 <sup>°</sup><br>13.6 | 2.630<br>2.584 | 0.175<br>0.210 | 0.840<br>0.996 | 0.001<br>0.000   | 1.000<br>1.000 |
| 2465.0           |            | 9.6                      | 2.584          | 0.196          | 0.811          | 0.004            | 1.000          |
| 2467.0           |            | 13.2                     | 2.604          | 0.197          | 0.864          | 0.000            | 1.000          |
| 2468.0           | 108        | 11.2                     | 2.522          | 0.176          | 0.571          | 0.012            | 1.000          |
| 2469.0           |            | 46.4                     | 2.686          | 0.135          | 0.812<br>0.497 | 0.004            | 1.000          |
| 2470.0<br>2471.0 |            | 8.6<br>6.4               | 2.513<br>2.489 | 0.164<br>0.163 | 0.497          | 0.056<br>0.062   | 1.000<br>1.000 |
|                  | -          |                          |                |                |                |                  |                |
|                  |            |                          |                |                |                |                  |                |

Ì

•

|                  | TURRUM 4    | (page          | 10 of da        | ta list        | ing)           |                |                |
|------------------|-------------|----------------|-----------------|----------------|----------------|----------------|----------------|
| DEPTH            | GR –        | RT             | RHOB            | NPHI           | VSH            | PHIE           | SWE            |
| (mRKB)           | api         | ohmm           | g/cc            | frac           | frac           | frac           | frac           |
|                  |             |                |                 |                |                |                |                |
| 2472.0           | 80          | 3.6            | 2.381           | 0.189          | 0.293          | 0.111          | 1.000          |
| 2473.0<br>2474.0 | 94<br>118   | 9.5<br>14.8    | 2.583<br>2.514  | 0.168<br>0.190 | 0.661<br>0.610 | 0.010<br>0.005 | 1.000<br>1.000 |
| 2475.0           | 125         | 19.9           | 2.551           | 0.224          | 0.923          | 0.000          | 1.000          |
| 2476.0           | 122         | 19.5           | 2.567           | 0.265          | 1.000          | 0.000          | 1.000          |
| 2477.0           | 118         | 16.8           | 2.741           | 0.201          | 1.000          | 0.000          | 1.000          |
| 2478.0           | 90          | 9.7            | 2.515           | 0.189          | 0.606          | 0.021          | 1.000          |
| 2479.0<br>2480.0 | 122<br>119  | 17.6<br>18.2   | 2.566<br>2.547  | 0.245<br>0.215 | 0.975<br>0.799 | 0.000<br>0.000 | 1.000          |
| 2480.0           | 85          | 9.5            | 2.609           | 0.215          | 0.890          | 0.000          | 1.000<br>1.000 |
| 2482.0           | 120         | 20.6           | 1.979           | 0.439          |                | al             | 1.000          |
| 2483.0           | 118         | 25.0           | 2.504           | 0.298          | Co             | al             |                |
| 2484.0           | 50          | 76.3           | 2.029           | 0.484          |                | al             |                |
| 2485.0<br>2486.0 | 144 ·<br>99 | 26.3<br>61.9   | 2.566<br>1.412  | 0.335<br>0.571 | 1,000          | 0.000<br>Dal   | 1.000          |
| 2480.0           | 70          | 8.5            | 2.507           | 0.217          |                | al             |                |
| 2488.0           | 114         | 6.4            | 2.460           | 0.190          | 0.473          | 0.074          | 1.000          |
| 2489.0           | 79          | 5.1            | 2.431           | 0.176          | 0.358          | 0.110          | 1.000          |
| 2490.0           | 86          | 9.7            | 2.555           | 0.186          | 0.668          | 0.019          | 1.000          |
| 2491.0<br>2492.0 | 100<br>101  | 7.4            | 2.475<br>2.514  | 0.185<br>0.199 | 0.493          | 0.056          | 1.000          |
| 2492.0           | 93          | 18.5           | 2.514           | 0.199          | 0.619<br>0.803 | 0.012<br>0.000 | 1.000<br>1.000 |
| 2494.0           | 99          | 10.7           | 2.526           | 0.214          | 0.729          | 0.000          | 1.000          |
| 2495.0           | 107         | 10.7           | 2.529           | 0.206          | 0.719          | 0.000          | 1.000          |
| 2496.0           | 100         | 14.3           | 2.622           | 0.194          | 0.905          | 0.000          | 1.000          |
| 2497.0<br>2498.0 | 101<br>107  | 9.1<br>7.3     | 2.565<br>2.493  | 0.200<br>0.199 | 0.784<br>0.594 | 0.007<br>0.013 | 1.000<br>1.000 |
| 2498.0           | 118         | 13.6           | 1.434           | 0.345          |                | al             | 1.000          |
| 2500.0           | 48          | 41.7           | 1.452           | 0.602          |                | al             |                |
| 2501.0           | 24          | 294.9          | 1.112           | 0.606          |                | al             |                |
| 2502.0           | 123         | 18.8           | 2.533           | 0.239          |                | al             | 1 000          |
| 2503.0<br>2504.0 | 123<br>128  | 14.4<br>10.8   | 2.616<br>2.543  | 0.227<br>0.238 | 1.000          | 0.000<br>Dal   | 1.000          |
| 2505.0           | 132         | 12.8           | 2.540           | 0.258          |                | al             |                |
| 2506.0           | 113         | 14.6           | 2.558           | 0.201          |                | 0.001          | 1.000          |
| 2507.0           | 117         |                | 2.543           | 0.216          | 0.795          |                | 1.000          |
| 2508.0           | 119         | 12.7           | 2.519           | 0.214          | 0.727          | 0.000          | 1.000          |
| 2509.0<br>2510.0 | 121<br>111  | 14.6<br>11.8   | 2.551<br>2.550  | 0.229<br>0.220 | 0.870<br>0.831 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2511.0           | 107         | 12.0           | 2.537           | 0.220          | 0.799          | 0.000          | 1.000          |
| 2512.0           | 108         | 12.1           | 2.533           | 0.213          | 0.741          | 0.000          | 1.000          |
| 2513.0           | 98          | 14.4           | 2.600           | 0.218          | 0.951          | 0.000          | 1.000          |
| 2514.0<br>2515.0 | 104<br>107  | 17.4<br>14.8   | 2.549           | 0.251          | 0.957          | 0.000          | 1.000          |
| 2515.0           | 105         | 14.8           | 2.554<br>2.572  | 0.231          | 0.889<br>0.967 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2517.0           | 105         | 16.0           | 2.544           | 0.223          | 0.831          | 0.000          | 1.000          |
| 2518.0           | 106         | 16.0           | 2.562           | 0.238          | 0.938          | 0.000          | 1.000          |
| 2519.0           | 109         | 16.1           | 2.544           | 0.248          | 0.933          | 0.000          | 1.000          |
| 2520.0<br>2521.0 | 116<br>100  | 16.7<br>15.1   | 2.542<br>2.537  | 0.241<br>0.250 | 0.902<br>0.925 | 0.000<br>0.000 | 1.000          |
| 2522.0           | 106         | 15.0           | 2.585           | 0.250          | 1.000          | 0.000          | 1.000          |
| 2523.0           | 106         | 19.0           | 2.520           | 0.259          | 0.917          | 0.000          | 1.000          |
| 2524.0           | 109         | 20.3           | 2.537           | 0.223          | 0.812          | 0.000          | 1.000          |
| 2525.0<br>2526.0 | 121<br>108  | 19.7<br>14.1   | 2.489<br>2.486  | 0.266<br>0.461 |                | oal<br>Dal     |                |
| 2527.0           | 34          | 409.3          | 1.166           | 0.481          |                | al             |                |
| 2528.0           | 30          | 421.5          | 1.273           | 0.707          |                | al             |                |
| 2529.0           | 28          | 134.6          | 1.336           | 0.513          |                | al             |                |
| 2530.0           | 42          | 601.5<br>754 5 | 1.187           | 0.596          |                | al             |                |
| 2531.0<br>2532.0 | 23<br>101   | 754.5<br>37.7  | 1.258<br>.1.550 | 0.633<br>0.514 |                | al<br>al       |                |
| 2533.0           | 40          | 311.8          | 1.343           | 0.471          |                | al             |                |
|                  |             | -              |                 |                |                |                |                |

.

I

1

•

ĺ

I

**]** .

|                  |            |               |                |                | data lis       |                |                |
|------------------|------------|---------------|----------------|----------------|----------------|----------------|----------------|
| DEPTH            | GR         | RT            | RHOB           | NPHI           | VSH            | PHIE           | SWE            |
| (mRKB)           | api        | ohmm          | g/cc           | frac           | frac           | frac           | frac           |
|                  |            |               |                |                |                |                |                |
| 2534.0           | 70         | 35.1          | 2.267          | 0.353          | Co             | bal            |                |
| 2535.0           | 122        | 6.2           | 2.639          | 0.247          | 1.000          | 0.001          | 1.000          |
| 2536.0           | 76         | 2.5           | 2.342          | 0.187          | 0.193          | 0.147          | 1.000          |
| 2537.0           | 83         | 5.4           | 2.534          | 0.194          | 0.668          | 0.042          | 1.000          |
| 2538.0           | 65         | 6.0           | 2.478          | 0.207          | 0.567          | 0.041          | 1.000          |
| 2539.0<br>2540.0 | 123        | 12.7          | 2.797          | 0.197          | 1.000          | 0.000          | 1.000          |
| 2540.0           | 128<br>127 | 24.8<br>21.4  | 2.537<br>2.625 | 0.259<br>0.308 | 1.000<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2542.0           | 140        | 28.3          | 2.976          | 0.290          | 1.000          | 0.000          | 1.000          |
| 2543.0           | 138        | 14.0          | 2.523          | 0.271          | 0.991          | 0.000          | 1.000          |
| 2544.0           | 109        | 4.3           | 2.274          | 0.387          | Co             | bal            |                |
| 2545.0           | 93         | 9.0           | 2.416          | 0.197          | 0.392          | 0.085          | 1.000          |
| 2546.0           | 91         | 3.2           | 2.467          | 0.174          | 0.372          | 0.115          | 1.000          |
| 2547.0<br>2548.0 | 57<br>74   | 2.9<br>13.8   | 2.406<br>2.559 | 0.172<br>0.094 | 0.193<br>0.284 | 0.154<br>0.045 | 1.000<br>1.000 |
| 2549.0           | 67         | 84.5          | 2.559          | 0.094<br>0.101 | 0.284          | 0.045          | 1.000          |
| 2550.0           | 77         | 7.2           | 2.524          | 0.179          | 0.555          | 0.026          | 1.000          |
| 2551.0           | 89         | 9.1           | 2.498          | 0.183          | 0.502          | 0.048          | 1.000          |
| 2552.0           | 112        | 23.4          | 2.621          | 0.263          |                | bal            |                |
| 2553.0           | 78         | 98.2          | 1.510          | 0.521          |                | bal            |                |
| 2554.0           | 109        | 27.6          | 2.595          | 0.269          |                | bal            |                |
| 2555.0<br>2556.0 | 123<br>119 | 18.6<br>28.0  | 2.577<br>2.728 | 0.174<br>0.210 | 0.709          | 0.000          | 1.000          |
| 2557.0           | 106        | 22.2          | 2.550          | 0.210          | 1.000<br>0.801 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2558.0           | 117        | 19.0          | 2.551          | 0.212          | 0.802          | 0.000          | 1.000          |
| 2559.0           | 111        | 20.0          | 2.534          | 0.224          | 0.811          | 0.000          | 1.000          |
| 2560.0           | 126        | 23.7          | 2.634          | 0.229          | 1.000          | 0.000          | 1.000          |
| 2561.0           | 144        | 19.9          | 2.626          | 0.249          | 1.000          | 0.000          | 1.000          |
| 2562.0           | 132<br>65  | 33.8          | 2.225          | 0.390          |                | bal            |                |
| 2563.0<br>2564.0 | 48         | 51.0<br>196.0 | 1.371<br>1.376 | 0.473<br>0.507 |                | bal<br>Dal     |                |
| 2565.0           | 128        | 14.3          | 2.531          | 0.178          |                | bal            |                |
| 2566.0           | 106        | 16.2          | 2.589          | 0.201          | 0.958          | 0.016          | 1.000          |
| 2567.0           | 93         | 46.6          | 2.583          | 0.141          | 0.584          | 0.002          | 1.000          |
| 2568.0           | 101        | 25.2          | 2.608          | 0.144          | 0.661          | 0.000          | 1.000          |
| 2569.0           | 124        | 7.3           | 2.508          | 0.168          | 0.508          | 0.046          | 1.000          |
| 2570.0<br>2571.0 | 99<br>113  | 14.4<br>30.9  | 2.598<br>2.602 | 0.186<br>0.207 | 0.815<br>0.914 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2572.0           | 132        | 26.6          | 2.601          | 0.255          | 1.000          | 0.000          | 1.000          |
| 2573.0           | 131        | 26.8          | 2.594          | 0.245          | 1.000          | 0.000          | 1.000          |
| 2574.0           | 72         | 5.3           | 2.398          | ·0.135         | 0.120          | 0.135          | 1.000          |
| 2575.0           | 88         | 6.6           | 2.467          | 0.191          | 0.496          | 0.063          | 1.000          |
| 2576.0           | 108        | 17.5          | 2.551          | 0.190          | 0.688          | 0.000          | 1.000          |
| 2577.0<br>2578.0 | 104<br>78  | 17.5<br>8.7   | 2.510<br>2.477 | 0.196<br>0.206 | 0.633          | .0.015         | 1.000          |
| 2579.0           | 94         | 9.8           | 2.4/7          | 0.208          | 0.553<br>0.562 | 0.040<br>0.034 | 1.000<br>1.000 |
| 2580.0           | 100        | 19.4          | 2.578          | 0.198          | 0.819          | 0.000          | 1.000          |
| 2581.0           | 128        | 26.1          | 2.666          | 0.254          | 1.000          | 0.000          | 1.000          |
| 2582.0           | 134        | 23.6          | 2.582          | 0.253          | 1.000          | 0.000          | 1.000          |
| 2583.0           | 138        | 23.5          | 2.639          | 0.296          | 1.000          | 0.000          | 1.000          |
| 2584.0           | 109        | 25.7          | 2.570          | 0.276          | 1.000          | 0.000          | 1.000          |
| 2585.0<br>2586.0 | 129<br>120 | 23.0<br>23.1  | 2.600<br>2.582 | 0.266<br>0.278 | 1.000<br>1.000 | 0.000          | 1.000          |
| 2587.0           | 126        | 25.2          | 2.582          | 0.247          | 1.000          | 0.000<br>0.000 | 1.000<br>1.000 |
| 2588.0           | 132        | 23.1          | 2.579          | 0.244          | 1.000          | 0.000          | 1.000          |
| 2589.0           | 127        | 20.9          | 2.618          | 0.270          | 1.000          | 0.000          | 1.000          |
| 2590.0           | 125        | 21.4          | 2.584          | 0.257          |                | bal            |                |
| 2591.0           | 78         | 68.9          | 1.305          | 0.661          |                | bal            |                |
| 2592.0           | 46         | 162.6         | 1.446          | 0.476          |                | bal            |                |
| 2593.0<br>2594.0 | 84<br>145  | 40.6<br>24.9  | 1.691<br>2.653 | 0.538<br>0.272 | 1.000          | 0.000          | 1.000          |
| 2595.0           | 123        | 24.9          | 2.655          | 0.272          | 1.000          | 0.000          | 1.000          |
|                  |            |               | -              |                |                |                |                |
|                  |            |               |                |                |                |                |                |

1

•

·

٠

ľ

Î

ľ

ĺ

| DEPTH<br>(mRKB)            | GR<br>api        | TURRUM_4<br>RT<br>ohmm | ( page<br>RHOB<br>g/cc  | 12 of d<br>NPHI<br>frac | ata list:<br>VSH<br>frac | ing)<br>PHIE<br>frac    | SWE<br>frac             |
|----------------------------|------------------|------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|
| 2596.0<br>2597.0<br>2598.0 | 94<br>50<br>115  | 164.5<br>36.4<br>57.1  | 1.694<br>1.228<br>2.006 | 0.443<br>0.555<br>0.406 | Co                       | oal<br>oal<br>oal       |                         |
| 2599.0                     | 54               | 40.5                   | 1.874                   | 0.507                   | Co                       | oal                     | 1.000                   |
| 2600.0                     | 142              | 21.0                   | 2.543                   | 0.200                   | 0.736                    | 0.000                   |                         |
| 2601.0                     | 104              | 7.3                    | 2.567                   | 0.162                   | 0.587                    | 0.021                   |                         |
| 2602.0                     | 128              | 19.5                   | 2.666                   | 0.172                   | 0.936                    | 0.003                   | 1.000                   |
| 2603.0                     | 107              | 14.8                   | 2.569                   | 0.177                   | 0.707                    | 0.000                   | 1.000                   |
| 2604.0                     | 107              | 28.3                   | 2.615                   | 0.191                   | 0.886                    | 0.000                   | 1.000                   |
| 2605.0                     | 119              | 6.9                    | 2.484                   | 0.214                   | 0.611                    | 0.028                   | 1.000                   |
| 2606.0                     | 69               | 3.8                    | 2.329                   | 0.182                   | 0.158                    | 0.162                   | 1.000                   |
| 2607.0                     | 56               | 5.0                    | 2.487                   | 0.187                   | 0.500                    | 0.059                   | 1.000                   |
| 2608.0                     | 55               | 3.7                    | 2.395                   | 0.176                   | 0.189                    | 0.148                   | 1.000                   |
| 2609.0                     | 66               | 3.4                    | 2.451                   | 0.183                   | 0.370                    | 0.125                   | 1.000                   |
| 2610.0<br>2611.0<br>2612.0 | 55<br>55<br>137  | 2.6<br>31.5<br>37.6    | 2.345<br>1.753<br>2.174 | 0.184<br>0.435<br>0.420 | Co                       | oal<br>oal<br>oal       |                         |
| 2613.0                     | 79               | 31.1                   | 2.062                   | 0.438                   | Co                       | oal                     | 1.000                   |
| 2614.0                     | 130              | 24.6                   | 2.543                   | 0.200                   | 0.737                    | 0.000                   |                         |
| 2615.0                     | 104              | 10.5                   | 2.474                   | 0.164                   | 0.405                    | 0.076                   | 1.000                   |
| 2616.0                     | 86               | 8.8                    | 2.516                   | 0.149                   | 0.451                    | 0.070                   | 1.000                   |
| 2617.0                     | 98               | 27.5                   | 2.548                   | 0.191                   | 0.712                    | 0.015                   | 1.000                   |
| 2618.0                     | 118              | 13.7                   | 2.455                   | 0.194                   | 0.485                    | 0.064                   | 1.000                   |
| 2619.0                     | 70               | 3.2                    | 2.465                   | 0.151                   | 0.259                    | 0.112                   | 1.000                   |
| 2620.0                     | 47               | 4.6                    | 2.543                   | 0.164                   | 0.526                    | 0.041                   | 1.000                   |
| 2621.0                     | 68               | 6.9                    | 2.443                   | 0.144                   | 0.265                    | 0.101                   | 1.000                   |
| 2622.0                     | 113              | 20.8                   | 2.553                   | 0.175                   | 0.658                    | 0.003                   | 1.000                   |
| 2623.0                     | 118              | 21.8                   | 2.558                   | 0.183                   | 0.706                    | 0.000                   | 1.000                   |
| 2624.0<br>2625.0<br>2626.0 | 105<br>49<br>61  | 4.0<br>3.6<br>3.2      | 2.569<br>2.349<br>2.311 | 0.184<br>0.203<br>0.213 | 0.722<br>0.186<br>0.135  | 0.025<br>0.176<br>0.191 | 1.000<br>1.000          |
| 2627.0<br>2628.0           | 48<br>43         | 3.5<br>3.9             | 2.442<br>2.408          | 0.205<br>0.191          | 0.454<br>0.291           | 0.116<br>0.134          | 1.000<br>1.000<br>1.000 |
| 2629.0                     | 48               | 4.7                    | 2.475                   | 0.214                   | 0.606                    |                         | 1.000                   |
| 2630.0                     | 49               | 3.6                    | 2.291                   | 0.181                   | 0.066                    |                         | 1.000                   |
| 2631.0                     | 47               | 3.3                    | 2.315                   | 0.174                   | 0.034                    |                         | 1.000                   |
| 2632.0                     | 51               | 2.3                    | 2.310                   | 0.166                   | 0.000                    | 0.205                   | 1.000                   |
| 2633.0                     | 42               | 3.0                    | 2.349                   | 0.164                   | 0.000                    | 0.189                   | 1.000                   |
| 2634.0                     | 61               | 5.5                    | 2.469                   | 0.129                   | 0.156                    | 0.112                   | 1.000                   |
| 2635.0                     | 50               | 19.8                   | 2.583                   | 0.081                   | 0.233                    | 0.044                   | 1.000                   |
| 2636.0                     | 43               | 34.6                   | 2.777                   | 0.053                   | 0.671                    | 0.000                   | 1.000                   |
| 2637.0                     | 49               | 4.3                    | 2.376                   | 0.154                   | 0.058                    | 0.160                   | 1.000                   |
| 2638.0                     | 53               | 3.5                    | 2.373                   | 0.156                   | 0.019                    | 0.177                   | 1.000                   |
| 2639.0                     | 46               | 3.4                    | 2.371                   | 0.162                   | 0.087                    | 0.171                   | 1.000                   |
| 2640.0                     | 59               | 5.4                    | 2.424                   | 0.164                   | 0.240                    | 0.125                   | 1.000                   |
| 2641.0                     | 74               | 8.6                    | 2.426                   | 0.168                   | 0.262                    | 0.118                   | 1.000                   |
| 2642.0                     | 61               | 16.0                   | 2.566                   | 0.166                   | 0.617                    | 0.004                   | 1.000                   |
| 2643.0                     | 68               | 4.3                    | 2.382                   | 0.185                   | 0.199                    | 0.136                   | 1.000                   |
| 2644.0<br>2645.0<br>2646.0 | 75<br>77<br>30   | 9.9<br>8.4<br>102.4    | 2.562<br>2.452          | 0.206<br>0.328          | 0.814<br>Co              | 0.000<br>Dal            | 1.000                   |
| 2647.0<br>2648.0           | 121<br>80        | 10.9<br>11.4           | 1.615<br>2.470<br>2.479 | 0.428<br>0.199<br>0.195 | Ca<br>0.520              | bal<br>0.040            | 1.000                   |
| 2649.0<br>2650.0<br>2651.0 | 86<br>124<br>107 | 24.3<br>47.8<br>34.6   | 2.555<br>2.321<br>2.620 | 0.177<br>0.269<br>0.130 | Co                       | 0.001<br>Dal<br>Dal     | 1.000                   |
| 2652.0                     | 58               | 171.4                  | 2.709                   | 0.031                   | 0.375                    | 0.003                   | 1.000                   |
| 2653.0                     | 56               | 4.7                    | 2.400                   | 0.174                   | 0.218                    | 0.130                   | 1.000                   |
| 2654.0                     | 114              | 14.2                   | 2.557                   | 0.186                   | 0.690                    | 0.001                   | 1.000                   |
| 2655.0                     | 132              | 22.6                   | 2.623                   | 0.178                   | 0.854                    | 0.000                   | 1.000                   |
| 2656.0                     | 138              | 25.5                   | 2.607                   | 0.227                   | 1.000                    | 0.000                   | 1.000                   |
| 2657.0                     | 138              | 24.6                   | 2.569                   | 0.222                   | 1.000                    | 0.000                   | 1.000                   |
|                            |                  |                        |                         | -                       |                          |                         |                         |

٠

-.

|                  |            | TURRUM_4         |                |                | ta listi       | ng)            |                |
|------------------|------------|------------------|----------------|----------------|----------------|----------------|----------------|
| DEPTH<br>(mRKB)  | GR<br>api  | RT<br>ohmm       | RHOB<br>g/cc   | NPHI<br>frac   | VSH<br>frac    | PHIE<br>frac   | SWE<br>frac    |
| (112(2))         | apr        |                  | 9/00           |                | IIUC           | IIUC           | IIac           |
| 2658.0           | 141        | 19.1             | 2.588          | 0.237          | 1.000          | 0.000          | 1.000          |
| 2659.0           | 149        | 15.3             | 2.623          | 0.232          | 1.000          | 0.000          | 1.000          |
| 2660.0<br>2661.0 | 137<br>28  | 31.3<br>264.7    | 1.956          | 0.464          |                | oal<br>oal     |                |
| 2662.0           | 110        | 100.3            | 1.214<br>2.357 | 0.541<br>0.359 |                | bal            |                |
| 2663.0           | 52         | 1228.2           | 1.165          | 0.540          |                | bal            |                |
| 2664.0           | 22         | 766.0            | 1.103          | 0.621          |                | bal            |                |
| 2665.0<br>2666.0 | 22<br>17   | 1410.6<br>1071.0 | 1.190<br>1.243 | 0.511<br>0.515 |                | oal<br>oal     |                |
| 2667.0           | 42         | 693.6            | 1.265          | 0.529          |                | bal            |                |
| 2668.0           | 87         | 51.7             | 1.539          | 0.491          | Co             | bal            |                |
| 2669.0<br>2670.0 | 110<br>83  | 10.1<br>6.1      | 2.538<br>2.440 | 0.177<br>0.170 | Co<br>0.349    | oal<br>0.090   | 1 000          |
| 2671.0           | 122        | 31.8             | 2.568          | 0.184          |                | b.090          | 1.000          |
| 2672.0           | 131        | 30.2             | 2.604          | 0.267          | Co             | bal            |                |
| 2673.0<br>2674.0 | 147<br>144 | 23.8<br>15.0     | 2.576<br>2.504 | 0.182<br>0.179 |                | bal            | 1.000          |
| 2675.0           | 72         | 4.7              | 2.304          | 0.179          | 0.551<br>0.174 | 0.038<br>0.126 | 1.000          |
| 2676.0           | 64         | 3.7              | 2.386          | 0.154          | 0.065          | 0.163          | 1.000          |
| 2677.0           | 43         | 2.5<br>3.1       | 2.339          | 0.152          | 0.000          | 0.192          | 1.000          |
| 2678.0<br>2679.0 | 52<br>45   | 5.1              | 2.488<br>2.477 | 0.150<br>0.113 | 0.317<br>0.103 | 0.089<br>0.110 | 1.000<br>1.000 |
| 2680.0           | 60         | 6.3              | 2.492          | 0.138          | 0.284          | 0.086          | 1.000          |
| 2681.0<br>2682.0 | 64<br>66   | 4.9<br>6.3       | 2.401<br>2.539 | 0.140          | 0.117          | 0.144          | 1.000          |
| 2682.0           | 67         | 5.2              | 2.539          | 0.157<br>0.171 | 0.485<br>0.296 | 0.043<br>0.114 | 1.000<br>1.000 |
| 2684.0           | 69         | 3.9              | 2.429          | 0.186          | 0.339          | 0.117          | 1.000          |
| 2685.0<br>2686.0 | 74<br>69   | 7.3              | 2.517          | 0.196          | 0.640          | 0.006          | 1.000          |
| 2687.0           | 78         | 7.9<br>8.1       | 2.519<br>2.482 | 0.190<br>0.181 | 0.615<br>0.453 | 0.011<br>0.073 | 1.000<br>1.000 |
| 2688.0           | 69         | 13.2             | 2.612          | 0.128          | 0.576          | 0.001          | 1.000          |
| 2689.0           | 69         | 16.7             | 2.717          | 0.055          | 0.502          | 0.001          | 1.000          |
| 2690.0<br>2691.0 | 49<br>81   | 117.1<br>9.3     | 2.624<br>2.563 | 0.111<br>0.159 | 0.522<br>0.584 | 0.003<br>0.013 | 1.000<br>1.000 |
| 2692.0           | 99         | 10.2             | 2.442          | 0.158          | 0.342          | 0.099          | 1.000          |
| 2693.0           | 91         | 9.8              | 2.591          | 0.172          | 0.741          | 0.002          | 1.000          |
| 2694.0<br>2695.0 | 102<br>123 | 12.0<br>22.6     | 2.597<br>2.592 | 0.133<br>0.198 | 0.560<br>0.863 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2696.0           | 130        | 27.3             | 2.569          | 0.223          | 0.928          | 0.000          | 1.000          |
| 2697.0           | 122        | 22.7             | 2.589          | 0.223          | 0.964          | 0.000          | 1.000          |
| 2698.0<br>2699.0 | 117<br>115 | 15.4<br>8.0      | 2.546<br>2.389 | 0.219<br>0.303 | 0.838<br>C     | 0.000<br>Dal   | 1.000          |
| 2700.0           | 68         | 180.3            | 1.916          | 0.492          |                | bal            |                |
| 2701.0<br>2702.0 | 122        | 39.5             | 2.315          | 0.376          |                | bal            |                |
| 2702.0           | 39<br>29   | 973.5<br>296.6   | 1.286<br>1.426 | 0.555<br>0.523 |                | bal<br>Dal     |                |
| 2704.0           | 74         | 88.1             | 1.491          | 0.520          | Co             | bal            |                |
| 2705.0<br>2706.0 | 59<br>147  | 69.2<br>25.9     | 1.617<br>2.606 | 0.525<br>0.228 | Co<br>1.000    | bal            | 1 000          |
| 2707.0           | 111        | 23.8             | 2.624          | 0.177          | 0.859          | 0.000<br>0.000 | 1.000<br>1.000 |
| 2708.0           | 60         | 5.0              | 2.459          | 0.092          | 0.048          | 0.118          | 1.000          |
| 2709.0<br>2710.0 | 71<br>127  | 20.9<br>35.7     | 2.680<br>2.554 | 0.129<br>0.214 | 0.798<br>0.857 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2711.0           | 115        | 32.0             | 2.619          | 0.151          | 0.705          | 0.000          | 1.000          |
| 2712.0           | 62         | 162.5            | 2.652          | 0.035          | 0.209          | 0.000          | 1.000          |
| 2713.0<br>2714.0 | 108<br>134 | 27.3<br>28.4     | 2.593<br>2.597 | 0.218<br>0.235 | 0.955<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2715.0           | 118        | 27.3             | 2.553          | 0.217          | 0.896          | 0.000          | 1,000          |
| 2716.0           | 138        | 27.9             | 2.514          | 0.290          | 1.000          | 0.000          | 1.000          |
| 2717.0<br>2718.0 | 127<br>129 | 32.5<br>23.0     | 2.531<br>2.619 | 0.259<br>0.256 | 0.971<br>1.000 | 0.000<br>0.000 | 1.000<br>1.000 |
| 2719.0           | 120        | 21.0             | 2.556          | 0.248          | 0.991          | 0.000          | 1.000          |
|                  |            |                  |                | -              |                |                |                |

٠

•
| DEPTH<br>(mRKB)                                                                                                                                                                                                                                                                      | GR<br>api                                                                                                | TURRUM_4<br>RT<br>ohmm                                                                                                                                                      | ( | page 14<br>RHOB<br>g/cc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of dat<br>NPHI<br>frac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a listi:<br>VSH<br>frac                                                                                                                                        | ng)                             | PHIE<br>frac                                                                                                                                                                                                         | SWE<br>frac                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2720.0<br>2721.0<br>2722.0<br>2723.0<br>2724.0<br>2725.0<br>2726.0<br>2727.0<br>2728.0<br>2729.0                                                                                                                                                                                     | 122<br>93<br>117<br>113<br>23<br>21<br>20<br>22<br>22<br>22<br>23                                        | 20.2 69.0 20.0 138.2 34877.4 43208.5 42136.6 6703.5 674.0 2.4                                                                                                               |   | 2.999<br>2.941<br>3.033<br>1.247<br>1.098<br>1.105<br>1.189<br>1.202<br>1.210<br>2.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.262<br>0.161<br>0.212<br>0.486<br>0.568<br>0.559<br>0.550<br>0.553<br>0.553<br>0.574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                | Coa<br>Coa<br>Coa<br>Coa<br>Coa | al<br>al<br>al<br>al<br>al                                                                                                                                                                                           | 1.000<br>1.000<br>1.000                                                                                                                                                                                                                |
| 2729.0<br>2730.0<br>2731.0<br>2732.0<br>2733.0<br>2734.0<br>2735.0<br>2736.0<br>2737.0<br>2738.0<br>2739.0<br>2740.0<br>2740.0<br>2742.0<br>2742.0<br>2743.0<br>2745.0<br>2745.0<br>2746.0<br>2747.0<br>2746.0<br>2747.0<br>2747.0<br>2748.0<br>2750.0<br>2750.0<br>2753.0<br>2755.0 | 234264092962637144943875526694387532460                                                                  | 2.4<br>1.5<br>1.6<br>1.5<br>1.6<br>1.7<br>1.9<br>1.8<br>1.6<br>1.7<br>1.9<br>1.8<br>1.6<br>1.7<br>1.9<br>1.9<br>1.9<br>1.9<br>1.9<br>2.1<br>3.5<br>2.3<br>1.9<br>2.1<br>3.0 |   | 2.223<br>2.319<br>2.317<br>2.301<br>2.375<br>2.375<br>2.395<br>2.395<br>2.395<br>2.340<br>2.359<br>2.368<br>2.346<br>2.342<br>2.368<br>2.346<br>2.342<br>2.368<br>2.346<br>2.342<br>2.369<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3375<br>2.394<br>2.375<br>2.394<br>2.375<br>2.394<br>2.375<br>2.394<br>2.375<br>2.394<br>2.375<br>2.395<br>2.395<br>2.395<br>2.336<br>2.337<br>2.375<br>2.375<br>2.375<br>2.375<br>2.375<br>2.368<br>2.375<br>2.375<br>2.375<br>2.375<br>2.368<br>2.375<br>2.375<br>2.375<br>2.368<br>2.375<br>2.375<br>2.375<br>2.368<br>2.375<br>2.375<br>2.375<br>2.375<br>2.375<br>2.375<br>2.375<br>2.375<br>2.368<br>2.375<br>2.375<br>2.375<br>2.369<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3375<br>2.395<br>2.395<br>2.395<br>2.395<br>2.395<br>2.395<br>2.395<br>2.395<br>2.395<br>2.395<br>2.395<br>2.368<br>2.346<br>2.375<br>2.395<br>2.395<br>2.395<br>2.395<br>2.368<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3375<br>2.3369<br>2.3375<br>2.3369<br>2.3369<br>2.3369<br>2.3369<br>2.3375<br>2.3369<br>2.3375<br>2.3369<br>2.3375<br>2.3369<br>2.3375<br>2.3369<br>2.3375<br>2.3395<br>2.3375<br>2.3391<br>2.3375<br>2.3391<br>2.3375<br>2.3391<br>2.3375<br>2.3391<br>2.3375<br>2.3391<br>2.3360<br>2.3375<br>2.3391<br>2.360<br>2.3375<br>2.3391<br>2.3360<br>2.3375<br>2.3360<br>2.3375<br>2.3391 | 0.343<br>0.146<br>0.137<br>0.139<br>0.150<br>0.146<br>0.128<br>0.121<br>0.125<br>0.126<br>0.128<br>0.127<br>0.126<br>0.128<br>0.127<br>0.147<br>0.119<br>0.118<br>0.136<br>0.138<br>0.131<br>0.125<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.123<br>0.133<br>0.125<br>0.138<br>0.125<br>0.125<br>0.126<br>0.128<br>0.127<br>0.126<br>0.128<br>0.127<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0.128<br>0. |                                                                                                                                                                | Coa                             |                                                                                                                                                                                                                      | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000 |
| 2756.0<br>2757.0<br>2759.0<br>2760.0<br>2761.0<br>2762.0<br>2763.0<br>2764.0<br>2765.0<br>2765.0<br>2767.0<br>2768.0<br>2770.0<br>2771.0<br>2772.0<br>2773.0<br>2775.0                                                                                                               | 63<br>62<br>59<br>67<br>59<br>65<br>59<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 | $\begin{array}{c} 3.9\\ 4.0\\ 5.1\\ 2.8\\ 2.6\\ 2.6\\ 6.9\\ 8.1\\ 6.6\\ 10.4\\ 4.1\\ 8.4\\ 9.4\\ 4.9\\ 2.6\\ 3.2\\ 5.5\\ 5.8\\ 6.2\\ 6.4 \end{array}$                       |   | 2.499<br>2.485<br>2.474<br>2.457<br>2.415<br>2.521<br>2.526<br>2.522<br>2.526<br>2.522<br>2.5442<br>2.555<br>2.543<br>2.556<br>2.556<br>2.556<br>2.556<br>2.556<br>2.556<br>2.556<br>2.696<br>2.699<br>2.699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.128<br>0.129<br>0.142<br>0.158<br>0.154<br>0.159<br>0.135<br>0.135<br>0.135<br>0.123<br>0.131<br>0.124<br>0.141<br>0.176<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.244<br>0.211<br>0.261<br>0.258<br>0.172<br>0.194<br>0.353<br>0.357<br>0.276<br>0.516<br>0.516<br>0.606<br>0.606<br>0.606<br>0.606<br>0.606<br>1.000<br>1.000 |                                 | 0.086<br>0.094<br>0.097<br>0.111<br>0.136<br>0.135<br>0.065<br>0.063<br>0.070<br>0.013<br>0.111<br>0.032<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.009<br>0.000<br>0.000<br>0.000 | 1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000<br>1.000                                                                |

.

-

•

•

#### **TURRUM-4 FMS INTERPRETATION REPORT**

#### **Introduction**

Following Dynamic Processing of the Turrum-4 FMS data, interactive interpretation of the lower <u>L.</u> <u>balmei</u> stratigraphic interval (2300m-2740mKB) was performed using Schlumberger's Fracview interpretation package. Results of this interpretation are listed in the attached Table 1.

Data quality was generally good over the interval of acquisition with few zones of poor pad contact. Although most sands yielded very good detailed resistivity patterns, some sands exhibited an amorphous response precluding meaningful interpretation. Of the eight major hydrocarbon reservoir systems recognised to date in the Turrum field, only five were intersected in the Turrum-4 well. The L100, 350, 360, 400 and 500 sands are investigated in this report. Some 489 surfaces were interactively correlated within the <u>L</u>. <u>balmei</u> zone (Figure 1) yielding both structural and stratigraphic information.

The aim of analysing the FMS data in Turrum-4 was firstly to derive an average structural dip for the interval and establish if the predrill seismic interpretation was accurate and to identify any variations in structural orientation which may have occurred within the <u>L</u>. <u>balmei</u> section. In addition, sedimentological detail extracted from the major sand bodies would be used to aid in the estimation of current flow directions which may enhance the understanding of depositional trends and controls within the major reservoir systems. It should be noted that no cores were cut in Turrum-4 and therefore inferences drawn from FMS interpretation will remain uncorroborated. However, the use of the interactive interpretation package greatly enhanced confidence in identifying small scale features and differentiating these into structural and stratigraphic components.

#### **Structural Analysis**

Structural dip was estimated by identifying planar resistivity markers across the borehole (using each of the resistivity pads) from within zones of reasonable shale thickness. Features identified within the thicker shales would more accurately reflect the underlying structural grain in comparison to dips associated with clay drape features more likely in the thinner shale sections. Accordingly, some 155 structural surfaces were correlated (Figure ) over discrete shale zones over the entire section between the L100 to L500 reservoirs. The accompanying rose diagram of these surfaces (Figure 1) highlights the general uniformity of dip azimuth and magnitude throughout the lower L. balmei section. This indicates there to have been little significant change in structural orientation during this period. The general southeasterly orientation of these features is consistent with the shale sections of the lower L. balmei interval at Turrum-4 location. The dip azimuth within the shale sections of the lower L. balmei interval at Turrum-4 ranges from 120° to 175° whilst dip magnitude varies from 1° to 8°. Accordingly, an average structural dip for the lower L. balmei at Turrum-4 is interpreted to be 4° at 139°. This value for structural dip has been rotated out of all subsequent stratigraphic dips presented herein.

#### **Stratigraphic Analysis**

The main focus of the stratigraphic analysis of the Turrum-4 FMS data was to establish current flow directions from the recognition of cross bed features within the major sand units intersected in Turrum-4. The Lower <u>L. balmei</u> sequence in the Turrum field is interpreted to have been deposited in a coastal plain setting with fluvial systems feeding into a lacustrine environment situated behind a barrier bar system separating the nearshore marine environment. Minor marine influences are recorded in the Turrum-4 <u>L. balmei</u> section. It is recognised that the FMS data is not calibrated to core from the well and hence some uncertainty to the significance of observed resistivity responses is assumed.

#### L100 Reservoir (2310-2345mKB)

Dips computed within the L100 sand at Turrum-4, above the 54 million year sequence boundary indicate a bimodel depositional character (Figure 2). The two predominant dip azimuths are approximately mutually orthogonal and may reflect stacked channel sands deposited within different parts of a meander loop with the resistivity surfaces correlated representing lateral accretion surfaces deposited perpendicular to current flow. Dip azimuths of 65° and 320° and dip magnitudes ranging from 4° to 23° are recorded in this interval. The variation in dip azimuth of this unit compared to the more consistent azimuth seen in underlying intervals may reflect the lack of influence of faulting on depositional trends higher in the section. It is interesting to note that below the 54my sequence boundary (2327mKB) dip azimuth is apparently rotated by 180° to 250° and 150° reflecting the different depositional setting in existence below the sequence boundary.

#### L350 Reservoir (2604-2611mKB)

The L350 reservoir represents a thin channel sand which is variously developed across the Turrum field and generally is found to rest directly upon the L360 coal horizon. It exhibits a blocky to fining upward log signature fieldwide and porosities of 17-18%. A number of resistivity surfaces were correlated over the L350 sand in Turrum-4. The resultant bimodal representation of dip azimuth (Attachment 1 CB2605) indicate a dominant current direction of 280° (northwest) with a minor southwesterly (215°) flow direction also evident.

#### L360 Reservoir (2628-2654mKB)

The L360 reservoir in the Turrum field represents a thick channel sand or sequence of stacked fining upward sand bodies which are variously developed across the field. In the Turrum-4 well, the L360 sand exhibits a more massive character and lacks the cyclic fining upward log signature exhibited in other wells (Turrum-3, Marlin-4 and Turrum-2) in the field.

A large number of surfaces, mainly consisting of cross bed foresets were correlated within this unit. These surfaces displayed large true dip magnitudes (up to  $30^{\circ}$ ) and a very focused and consistent dip azimuth (ranging from  $115^{\circ}$  to  $175^{\circ}$  with an average dip direction of  $150^{\circ}$ - Figure 3). The apparent consistency of dip azimuth in the southeasterly direction may reflect low sinuosity fluvial deposition with longitudinal bar development in the Turrum-4 location. In addition, the dip azimuth of these bedding features parallels the orientation of the predominant fault system throughout the Turrum field at this stratigraphic level. This indicates that faulting may have influenced depositional trends for the L360 reservoir, possibly concentrating reservoir quality sand on the lowside of faults by focusing channel geometry.

JP:lt:0193rep3

#### L400 Reservoir (2674-2682mKB)

The L400 sandstone is deposited stratigraphically between the L400 and L450 coal markers. Its thickness varies significantly over the Turrum field and at the Turrum-4 location is above average thickness at some 15m thick.

Dip azimuth plots (Figure 4) indicate two predominant current flow directions. The dominant direction is at 160° and again displays the depositional influence of the syndepositional faulting in Turrum. The subordinate flow direction is between 70° and 95° which is orthogonal to the major current flow direction and may represent depositional differences within the lower and higher flow regimes. The easterly dips are seemingly restricted to the finer grained bases of depositional cycles or the tops of fining upward cycles. Dip magnitudes are observed to vary from 8° to 28°.

#### L500 Reservoir (2730m-2750mKB)

The L500 sand represents a major reservoir in the Turrum field and consists of a massive blocky sand consistently developed across the Turrum field, immediately below the L500 coal marker. In Turrum-4, some 26 surfaces were correlated on FMS data. These surfaces exhibited little variation in dip azimuth, yielding a constant  $130^{\circ}-140^{\circ}$  which is again consistent with the dominant fault strike at Turrum. Dip magnitudes varied from  $10^{\circ}$  up to  $36^{\circ}$  and depict very high angle foreset deposition (Figure 5).

#### **Conclusion**

The FMS data from the <u>L</u>. <u>balmei</u> section at Turrum-4 yielded good quality dip data and provided images of quite high angle depositional features. Structural dips from the shales indicated little variance in structural attitude throughout the L100 to L500 interval. The dominance of the southeasterly dip azimuth in many of the sand bodies indicated the probable influence of the major faults across the Turrum field on reservoir distribution. Variance to the southeasterly flow direction may be interpreted as deposition within higher sinuosity fluvial channels where lateral accretion surfaces are more prominent

## **TURRUM-4 FMS INTERPRETATION SUMMARY**

## Structural Analysis

| Interval                                 | Av Dip Magnitude | Dominant Dip<br>Azimuths |  |  |
|------------------------------------------|------------------|--------------------------|--|--|
| Lower <u>L. balmei</u><br>(2300-2750mKB) | 4°               | 139°                     |  |  |

## Stratigraphic Analysis

| Interval                        | Av Dip Magnitude | Dominant Dip<br>Azimuths |  |
|---------------------------------|------------------|--------------------------|--|
| L100 CB2310<br>(2310-2345mKB)   | Av 10°           | 065°<br>320°             |  |
| L350 CB2605<br>(2604-2611mKB)   | Av 7°            | 280°<br>215°             |  |
| L360 CB 2625<br>(2628-2654mKB)  | Av 16°           | 150°                     |  |
| L400 CB2675<br>(2674-2682mKB)   | Av 14°           | 160°<br>080°             |  |
| L500 CB 2730<br>(2730m-2750mKB) | Av 20°           | 135°                     |  |

TABLE 1

JP:lt:0193rep3

This is an enclosure indicator page. The enclosure PE906487 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE90<br>ITEM BARCODE = | 06487 has the following characteristics:<br>PE906487 |
|--------------------------------------|------------------------------------------------------|
| CONTAINER BARCODE =                  |                                                      |
|                                      | Structural Dips Data, Figure 1                       |
|                                      | GIPPSLAND                                            |
| PERMIT =                             |                                                      |
| <br>TYPE =                           | •                                                    |
| SUBTYPE =                            |                                                      |
|                                      | Structural Dips Data, Figure 1,                      |
|                                      | Turrum-4                                             |
| REMARKS =                            |                                                      |
| DATE CREATED =                       |                                                      |
| DATE_RECEIVED =                      |                                                      |
|                                      | : W1069                                              |
| WELL NAME =                          |                                                      |
|                                      | SCHLUMBERGER                                         |
|                                      | ESSO AUSTRALIA LIMITED                               |
| 0222011_01_00                        |                                                      |
| (Inserted by DNRE -                  | Vic Govt Mines Dept)                                 |



ENV



This is an enclosure indicator page. The enclosure PE906488 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE90  | 6488 has the following characteristics: |
|---------------------|-----------------------------------------|
| ITEM_BARCODE =      | PE906488                                |
| CONTAINER_BARCODE = | PE900975                                |
| NAME =              | Structural Dips Data, Figure 2          |
| BASIN =             | GIPPSLAND                               |
| PERMIT =            | VIC/L4                                  |
| TYPE =              | WELL                                    |
| SUBTYPE =           | DIAGRAM                                 |
| DESCRIPTION =       | Structural Dips Data, Figure 2,         |
|                     | Turrum-4                                |
| REMARKS =           |                                         |
| $DATE\_CREATED =$   | 30/11/92                                |
| DATE_RECEIVED =     | 16/03/93                                |
| W_NO =              | W1069                                   |
| WELL_NAME =         | TURRUM-4                                |
| CONTRACTOR =        | SCHLUMBERGER                            |
| CLIENT_OP_CO =      | ESSO AUSTRALIA LIMITED                  |
|                     |                                         |
| (Inserted by DNRE - | Vic Govt Mines Dept)                    |



This is an enclosure indicator page. The enclosure PE906489 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE9<br>ITEM BARCODE |   | 5489 has the following characteristics:<br>PE906489 |
|-----------------------------------|---|-----------------------------------------------------|
| CONTAINER BARCODE                 | = | PE900975                                            |
|                                   | Ξ | Structural Dips Data, Figure 3                      |
|                                   |   | GIPPSLAND                                           |
| PERMIT                            | = | VIC/L4                                              |
| TYPE                              | = | WELL                                                |
| SUBTYPE                           | = | DIAGRAM                                             |
| DESCRIPTION                       | = | Structural Dips Data, Figure 3,                     |
|                                   |   | Turrum-4                                            |
| REMARKS                           | = |                                                     |
| DATE_CREATED                      | = | 30/11/92                                            |
| DATE_RECEIVED                     | = | 16/03/93                                            |
| W_NO                              | = | W1069                                               |
| WELL_NAME                         | = | TURRUM-4                                            |
| CONTRACTOR                        | = | SCHLUMBERGER                                        |
| CLIENT_OP_CO                      | = | ESSO AUSTRALIA LIMITED                              |
| (Inserted by DNRE                 | _ | Vic Govt Mines Dept)                                |



FIGURE 3

This is an enclosure indicator page. The enclosure PE906490 is enclosed within the container PE900975 at this location in this document.

| ITEM_BARCODE      |                                       | characteristics: |
|-------------------|---------------------------------------|------------------|
| CONTAINER_BARCODE | = PE900975<br>= Structural Dips Data, | Figuro 1         |
|                   | = GIPPSLAND                           | rigure 4         |
| PERMIT            | = VIC/L4                              |                  |
| TYPE              | = WELL                                |                  |
| SUBTYPE           | = DIAGRAM                             |                  |
| DESCRIPTION       | = Structural Dips Data,               | Figure 4,        |
|                   | Turrum-4                              |                  |
| REMARKS           | =                                     |                  |
| DATE_CREATED      | = 30/11/92                            |                  |
| DATE_RECEIVED     | = 16/03/93                            |                  |
| W_NO =            | = W1069                               |                  |
| WELL_NAME         | = TURRUM-4                            |                  |
| CONTRACTOR        | = SCHLUMBERGER                        |                  |
| CLIENT_OP_CO      | = ESSO AUSTRALIA LIMITEI              | )                |
|                   |                                       |                  |
| (Inserted by DNRE | - Vic Govt Mines Dept)                |                  |





FIGURE 4

Zn.

This is an enclosure indicator page. The enclosure PE906491 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE90  | 6491 has the following characteristics: |
|---------------------|-----------------------------------------|
| ITEM_BARCODE =      | PE906491                                |
| CONTAINER_BARCODE = | PE900975                                |
| NAME =              | Structural Dips Data, Figure 5          |
| BASIN =             | GIPPSLAND                               |
| PERMIT =            | VIC/L4                                  |
| TYPE =              | WELL                                    |
| SUBTYPE =           | DIAGRAM                                 |
| DESCRIPTION =       | Structural Dips Data, Figure 5,         |
|                     | Turrum-4                                |
| REMARKS =           |                                         |
| $DATE\_CREATED =$   | 30/11/92                                |
| $DATE\_RECEIVED =$  | 16/03/93                                |
| W_NO =              | W1069                                   |
| WELL_NAME =         | TURRUM-4                                |
| CONTRACTOR =        | SCHLUMBERGER                            |
| CLIENT_OP_CO =      | ESSO AUSTRALIA LIMITED                  |
|                     |                                         |
| (Inserted by DNRE - | Vic Govt Mines Dept)                    |



·· •

FIGURE 5

This is an enclosure indicator page. The enclosure PE600801 is enclosed within the container PE900975 at this location in this document.

¢

| The enclosure PE60  | 0801 has the following characteristics: |
|---------------------|-----------------------------------------|
| ITEM_BARCODE =      | PE600801                                |
| CONTAINER_BARCODE = | PE900975                                |
| NAME =              | Quantitative Log                        |
| BASIN =             | GIPPSLAND                               |
| PERMIT =            | VIC/L4                                  |
| TYPE =              | WELL                                    |
| SUBTYPE =           | WELL_LOG                                |
| DESCRIPTION =       | Quantitative Log (enclosure from WCR)   |
|                     | for Turrum-4                            |
| REMARKS =           |                                         |
| DATE_CREATED =      | 26/11/92                                |
| DATE_RECEIVED =     | 16/03/93                                |
| WNO =               | W1069                                   |
| WELL_NAME =         | Turrum-4                                |
| CONTRACTOR =        | SOLAR                                   |
| CLIENT_OP_CO =      | ESSO                                    |
|                     |                                         |
|                     | III a Garat Minar Daut                  |

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE600802 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE60  | 0802 has the following characteristics: |
|---------------------|-----------------------------------------|
| ITEM_BARCODE =      | PE600802                                |
| CONTAINER_BARCODE = | PE900975                                |
| NAME =              | FMS Image Interpretation                |
| BASIN =             | GIPPSLAND                               |
| PERMIT =            | VIC/L4                                  |
| TYPE =              | WELL                                    |
| SUBTYPE =           | WELL_LOG                                |
| DESCRIPTION =       | FMS Image Interpretation for Turrum-4   |
| REMARKS =           |                                         |
| $DATE\_CREATED =$   | 12/10/92                                |
| $DATE\_RECEIVED =$  | 16/03/93                                |
| W_NO =              | W1069                                   |
| WELL_NAME =         | Turrum-4                                |
| CONTRACTOR =        | SCHLUMBERGER                            |
| CLIENT_OP_CO =      | ESSO                                    |
|                     |                                         |

(Inserted by DNRE - Vic Govt Mines Dept)

# APPENDIX 3

**APPENDIX 3** 

## **TURRUM ORIGINAL CONTACT STUDY**

.

## AND TURRUM 4 MDT REPORT

R.A. Youie February 1993

### **TURRUM ORIGINAL CONTACT STUDY**

#### AND TURRUM 4 MDT REPORT

#### **CONTENTS**

#### **OBJECTIVE**

**SUMMARY** Turrum 4 MDT Summary **Contact Locations** 

**RESULTS AND DISCUSSION** Water Lines Assumptions L-100 To L-500 **Downdip Potential** 

**RECOMMENDATIONS** 

#### **TABLES**

- 1. Contacts Estimated from Turrum Wells
- Proposed Basis for Turrum Reserves Calculations
   Potential Downdip Oil Contacts
- 4. Turrum 4 MDT data

#### **FIGURES**

- Overall RFT plot of Turrum 3 and Turrum 4 RFT data 1.
- 2a. L-100 RFT plot
- 2b. L-100 RFT plot expanded scale
- 3. L-200 RFT plot 4. L-250 RFT plot
- L-300 RFT plot
- 5. 6. L-350 RFT plot
- L-360 RFT plot 7.
- L-400 RFT plot 8.
- 9a. L-500 RFT plot
  9b. L-500 RFT plot expanded scale
  10. L-200 Downdip Oil Potential

- L-200 Downdip Oil Potential
   L-250 Downdip Oil Potential
   L-300 Downdip Oil Potential
   L-350 Downdip Oil Potential
- 14. L-400 Downdip Oil Potential

#### **APPENDICES**

1. Report on Interpretation of Turrum Gas Sample Analyses and Pressures; P.C. Hall, October 15, 1974

Į .

2. Turrum 3 RFT Report. P.R. Ettema, June 1986

#### **TURRUM ORIGINAL CONTACT STUDY and TURRUM 4 MDT REPORT**

#### **OBJECTIVE**

A study of the FIT/RFT/MDT data available from the Turrum Field was conducted to assess gas/oil, oil/water and gas/water contact location. This work was undertaken post Turrum 4, drilled in August-September 1992.

The report also serves to document the results of Schlumberger's Modular Formation Dynamics Tester (MDT) run on September 11, 1992 in the Turrum 4 appraisal well.

#### **SUMMARY**

#### TURRUM 4 MDT SUMMARY

The Turrum 4 well intersected the L-100, L-250, L-300, L-350, L-360, L-400 and L-500 sands. Based on log and pressure data, these sands were all water bearing at the well location. The L-200 sand seen in Turrum 3 was absent in Turrum 4.

The L-100 and L-500 pressures had been drawndown approximately 41 psi from the original aquifer gradient. The other sands from L-300 to L-400 were only drawndown about 6-10 psi. This suggests that the L-100 and L-500 are in better communication with the basin aquifer than the L-300 to L-400 sands.

#### **CONTACT LOCATIONS**

The following contacts have been assessed as a result of this study:

| <u>SAND</u>                                                          | <u>GWC</u>                                                  | <u>GOC</u>     | <u>OWC</u>     |
|----------------------------------------------------------------------|-------------------------------------------------------------|----------------|----------------|
| L-100<br>L-110<br>L-200<br>L-250<br>L-300<br>L-350<br>L-360<br>L-400 | -2190<br>-2392<br>-2417<br>-2437<br>-2483<br>-2581<br>-2590 | -2133          | -2138          |
| L-450<br>L-500                                                       |                                                             | -2543<br>-2583 | -2557<br>-2592 |
|                                                                      |                                                             |                |                |

Table 1 details contacts assessed post Turrum 3 (March 1985), and the current interpretation. In general, the GWC are around 20m shallower than used in the 1990 assessment. This is due to the current assumption that the L-200 to L-400 sands do not have the same water gradient as the L-100 and L-500.

Table 2 summarises the recommended contact depths to use for the reserves assessment. Table 3 summarises the maximum flank oil potential.

#### **RESULTS AND DISCUSSION**

Pressures for the Turrum field were obtained in Turrum 1, 2, 3 and 4, Marlin 4, A-6 and A-24. Data from Turrum 1, 2 Marlin 4, A-6 and A-24 were analysed and reported in 1974 (Appendix 1)

Most of the data in these older wells were assessed as being unreliable due to guage quality.

The results of the Turrum 3 RFT data had also been analysed previously, and formed the basis of the YE 1991 reserves assessment. (Appendix 2, Turrum 3 RFT Report by P.R. Ettema, June 1986).

This 1993 study analysed the more reliable quartz crystal data obtained in Turrum 3 and Turrum 4.

#### WATER LINES

The Turrum 3 interpretation (Appendix 2) assumed that all sands had a common water gradient. This assumption was reasonable given that water pressures were only obtained in the L-100 and L-500 sands.<sup>1</sup>

The Turrum 3 L-100 and L-500 water pressures points were on a common water line, some 20 psi below the original basin aquifer gradient.

The results of the Turrum 4 MDT survey, however, suggests that the sands between the L-100 and L-500 may not have the same degree of communication with the aquifer. The Turrum 4 L-100 and L-500 pressure points lie on a 1.42 psi/m gradient and are about 41 psi below the original aquifer gradient. The intermediate sands are only 6-10 psi below original in Turrum 4.

<sup>1</sup> In the Turrum 3 RFT report, the L-100 and L-500 were designated L-1.1.1 and L-1.4.2 respectively

#### **ASSUMPTIONS**

The Turrum 3 and Turrum 4 pressure data was re-examined making the following assumptions:

- 1. The L-100 and L-500 are in good communication with the basin aquifer, and are equally drawndown from the original basin gradient.
- 2. The L-100 and L-500 are laterally continuous sands, in good communication between Turrum 3 and Turrum 4.
- 3. The L-200 to L-400 are not as well connected to the aquifer as are the L-100 and L-500.
- 4. The L-300, L-350, L-360 and L-400 have some continuity between Turrum 3 and Turrum 4. The drawdown in these sands at the time of drilling Turrum 3 is 50% of that seen in Turrum 4. This is based on the L-100 and L-500 drawdown and is key to this study's conclusions.
- 5. The L-200 sand has a similar water gradient as the L-300 sand.
- 6. A gas gradient of 0.3 psi/m was used. The Turrum 3 RFT Report used a gas gradient based on the then reservoir data book average gas density of 0.1921 g/cc. This was corrected for P, T, and Z using the 'PYLD' program. This resulted in gas gradients ranging from 0.27 psi/m at the L-100 level, to 0.31 psi/m at the L-500 level.

The 0.3 psi/m assumption would lead to difference in GWC estimation of up to  $\sim$ 1 metre. This is well within the level of accuracy expected for contact estimation given that the actual water line is unknown, and that different pressure gauges were used in Turrum 3 and Turrum 4.

7. An oil gradient of 0.9 psi/m was used for the L-100 sand. For the L-450 and L-500 sands, gradients of 0.89 and 0.96 psi/m were used respectivly. These gradients are based on the compositional analysis of the Marlin A-24 RFT samples and the PYIELDO program. It is worth noting however, that since the oil columns are short (< 20m) the error in OWC caused by using a common oil gradient of 0.9 psi/m is less than 0.8m.</p>

<u>L-100</u> (Formerly L-1.1.1)

The three Turrum 4 L-100 pre-tests 1/11, 1/12 and 1/13 lie on a 1.42 psi/m water line which can be extended to the Turrum 4 L-500 pre-tests 1/28, 1/29, and 1/30. This implies that the L-100 and L-500 sands at Turrum 4 are in good hydraulic communication. These sands are drawndown about 41 psi from the original aquifer gradient.

The Turrum 3 L-100 RFT data was interpreted to have an OWC at -2142.5 mSS, however, since only one pre-test was obtained in the gas, oil and water, this interpretation was acknowledged to be dubious. It also stated that based on log data, the OWC would be shallower and lie between -2136.3 mSS and -2139.0 mSS.

Since the L-100 and L-500 appear to be in hydraulic communication at Turrum 4, it may be reasonable to assume that the same applies to Turrum 3. The L-100 OWC could then be estimated by extrapolating the Turrum 3 L-500 water line. Three Turrum 3 L-500 data

points, 1/1, 1/2, and 1/3, were obtained over a 15 m interval. A least squares regression on these points produces P (psia)=1.4203\*TVDSS+59.675 (r=1.00000).

zUsing this water line and a 0.9 psi/m oil gradient through Turrum 3 1/29 and 7/52, an OWC contact would be interpreted at -2135.4 mSS, slightly above the OWC estimated from log data.

It is recommended that a L-100 OWC at -2137.9 mSS be used, being halfway between LPO at -2136.3 mSS and HKW at -2139.5 mSS.

#### <u>L-110</u>

This sand was only seen in Marlin A-24. This sand is modelled as a channel sand with the base of the channel being at low proved gas, -2190 mSS. (Unadjusted depth)

#### <u>L-200</u> (Formerly L-1.2.1)

The L-200 was not present in Turrum 4. It has been assumed that the L-200 water line is the similar to the L-300 or L-400 water. Making this assumption, the L-200 would have been drawndown about 4 psi at the time of Turrum 3. The estimated GWC would be at -2392 mSS.

The compares with a GWC of -2410 mSS based on a Turrum 3 L-500 water line.

#### <u>L-250</u>

One Turrum 3 gas (1/18) and one Turrum 4 water (1/18) pre-test pressure were obtained. Assuming a 5 psi drawdown at the time of Turrum 3, the estimated GWC is at -2417 m SS.

<u>L-300</u> (Formerly L-1.2.3)

Turrum 4 pre-tests 1/19, 1/20 and 1/21 are interpreted to be in the L-300 package. Pretest 1/20 appears to be slightly supercharged, since it falls to the right of the original aquifer gradient.

Using pre-tests 1/19 and 1/21 to define the L-300 water line in Turrum 4, and assuming a drawdown of about 2 psi at the time of Turrum 3, an estimated L-300 GWC of -2437 mSS is obtained. This compares with the previous assessment of -2453 mSS using the Turrum 3 L-500 water line.

The Post Turrum 4 correlation establishes a LKG in the L-300 at 3051 mMD (-2442 mSS adjusted). This is below the estimated GWC and is could be due to the L-300 at Marlin A-24 being in a separate sand to the L-300 at Turrum 3.

#### <u>L-350</u>

Turrum 4 pre-test 1/21 is in the L-350 sand. Assuming that the L-350 water line had been drawndown approximately 4 psi at the time of Turrum 3, the estimated GWC is at -2483m SS. This compares with a GWC of -2497 mSS estimated using the Turrum 3 L-500 water line. The 1990Turrum assessment<sup>2</sup> assumed the RFT GWC to be at -2506 mSS.

#### <u>L-360</u> (Formerly L-1.3)

Pre-tests 1/22, 1/23 and 1/24 were taken in the Turrum 4 L-360 sand. These points lie on a water gradient which is drawndown about 11 psi from the original basin gradient.

Assuming that the L-360 was drawndown half this amount (6 psi) at the time of Turrum 3, the estimated GWC would be at -2581 mSS. This compares with -2594 mSS which was estimated using the Turrum 3 L-500 water line.

#### <u>L-400</u>

Pre-tests 1/25, 1/26 and 1/27 were taken in the Turrum 4 L-400 sand. 1/27 appears to be supercharged, and lies to the right of the original basin gradient. 1/25 and 1/26 lie on a water gradient, 7 psi below the original basin gradient.

Assuming a 4 psi drawdown at the time of Turrum 3, the L-400 GWC would be at -2590 mSS. This compares with -2605 mSS which was estimated using the Turrum 3 L-500 water line.

#### <u>L-450</u>

This sand was only penetrated in the Marlin A-24. The GOC of -2543 mSS (3175 m MD) and OWC of -2557 mSS (3192 m MD) is based on adjusted A-24 log data (see L-500 for discussion on adjustment required).

<u>L-500</u> (Formerly L-1.4.2)

Turrum 3 intersected oil, gas and water. A GOC at -2583 mSS was established in Turrum 2 and is supported by Turrum 3 RFT data. An OWC estimated at -2592 mSS was based this RFT data. Assuming a common OWC, the Marlin A-6 and Marlin A-24 surveys would need to be adjusted to match the OWCs seen in these wells (-2596.57 and -2602.85 mSS respectively) with the OWC established from Turrum 3 RFT data (-2592 mSS). The adjustments are: Marlin A-6 -4.6m, and Marlin A-24, -10.9m.

The problem with above interpretation is that the L-500 oil column would only be 9m. This is inconsistent with the 18m column seen in Marlin A-6, and the 12m column seen in Marlin A-24. However, it honours the pressure data seen in Turrum 3, and the GOC seen in Turrum 2. The reason for this difference could be due to the existance of several isolated L-500 accumulations with different contacts.

<sup>2</sup> Enclosure 5, Turrum Assessment, Volume 1 by D.L.E. Moreton Sept. 1990

An alternative interpretation assumes that the Turrum 2 logs must be adjusted by at least 7 m upwards to match the Top of Latrobe gas water contact. There has been debate as to whether the contact seen in Turrum 2 at the Top of Latrobe is in the same, or separate system as Marlin. Assuming that it is in the same system as Marlin, an adjustment would be required. The Turrum L-500 GOC would be established at -2576 mSS based on Turrum 2 adjusted log data, and an OWC at -2600 mSS based on Turrum 3 RFT data (24 m oil column)

This is consistent with the column lengths seen in A-6 and A-24, but does not honour the pressure data seen in Turrum 3. It requires a +3.5m and -3.85m adjustment for Marlin A-6 and A-24 respectively.

The base case assessment for the L-500 assumes that Turrum 2 does not need adjustment and that the GOC is at -2583 mSS.

The current reserves book assessment assumes an OWC at -2600 mSS and GOC at -2583 mSS. This is inconsistent with the Turrum 3 pressure data since it would require an oil gradient of 1.24 psi/m.

A segregated sample, 8/55 was obtained at -2598.6 mSS from Turrum 3 and recovered filtrate and 100cc of oil in one sample. A repeat run, 9/56 recovered filtrate and a scum of oil from -2598.8 mSS. The Turrum 3 RFT report referred to this sample as 'Accumulation C'. If this sample is a valid oil test, and comes from the L-500 sand, this would suggest LPO at -2598.8 mSS. The pressures obtained from these samples however, are inconsistent with the Turrum 3, L-500 pressures obtained from 1/5, 3/43, and 3/44.

The L-500 at Turrum 4 was wet (pre-tests 1/28, 1/29, and 1/30). This pressure data indicated a drawdown of about 41 psi from the original aquifer gradient at the time of drilling Turrum 4. This compares with a drawdown of 20 psi in the L-500 at Turrum 3.

It is recommended that the P+P case assumes a 9m oil column, and the GPF case assumes a column halfway between 9m, and the maximum column of 24m, ie 17m column. The GPF GOC would be at -2479 mSS and OWC at -2596 mSS.

#### DOWNDIP OIL POTENTIAL

Based on the pressure data, downdip oil potential exists in some of the Turrum sands. The maximum potential is obtained by attempting to fit an oil gradient (0.9 psi/m) from low known gas (LKG) to the water line, or from spill to the gas line. In some sands, LKG is based on Marlin A-24 and depends on what depth adjustment is considered necessary for this well (see discussion on L-500)

Table 3 lists maximum downdip potential oil columns and contacts assuming that Marlin A-24 requires a -10.9 m adjustment. Figures 10-14 illustrate the downdip potential on the pressure plots.

#### **RECOMMENDATIONS**

It is recommended that Marlin A-6 and Marlin A-24 be re-surveyed with a gyro tool. These wells have been surveyed with conventional multishot tools, and have an estimated vertical error of +/-13m at the L-500 level. A re-survey with a gyro tool will reduce this uncertainty to +/-4m at TD. This will assist in determining where the L-500 contacts are and will impact the downdip potential.

Table 2 details the recommended contacts to use for reserves determination. The assessment is based on the assumptions listed in the section on Results and Discussion.

TABLE 1

## TURRUM CONTACTS

| SAND  | WELL                                | LKG                      | GOC                 | GWC                                 | НКО              | LKO        | owc                          | нкw             | COMMENTS                                                         |
|-------|-------------------------------------|--------------------------|---------------------|-------------------------------------|------------------|------------|------------------------------|-----------------|------------------------------------------------------------------|
| L-100 | TRA-3<br>TRA-4                      | -                        | 2132.5 (PP/LOG)<br> | -                                   | -                | 2136.3<br> | 2142.5 (PP)<br>2137.9        | 2139.5          |                                                                  |
| L-110 | MLA A24                             | 2190                     | -                   |                                     | -                | -          | -                            |                 | Modelled as channel sand<br>Only seen in MLA A-24                |
| L-200 | MLA A6<br>MLA A24<br>TRA3           | 2357<br>2354             | -                   | 2410 (PP)                           | -                | -          | -                            |                 | Uses TRA-3 L-500 water line                                      |
|       | TRA-3<br>TRA-4<br>MLA 2             | -                        | -                   | 2392 (PP)                           | _                | _          | -                            | –<br>2410       | Not penetrated, uses L-300 water line                            |
| L-250 | MLA A-24<br>TRA-4                   | 2419                     |                     | 2417 (PP)                           |                  |            |                              | 2523            |                                                                  |
| L-300 | MLA A-24<br>TRA-3<br>TRA-4          | 2453<br>2422<br>-        |                     | 2453 (PP)<br>2437 (PP)              |                  |            |                              | _<br>2550.5     | Uses TRA-3 L-500 water line<br>GWC busts at MLA 4                |
| L-350 | MLA A-24<br>TRA-3<br>TRA-3<br>TRA-4 | 2485<br>2455<br>-        | -                   | 2497 (PP)<br>2506 (PP)<br>2483 (PP) | -                | -          | -                            | -               | Uses TRA-3 L-500 water line.<br>From Turrum Assessment. DLM 1990 |
| L-360 | MLA A-24<br>TRA-3<br>TRA-4          | 2508<br>2502<br>-        |                     | 2594 (PP)<br>2581 (PP/spill)        |                  |            |                              | 2596            | Uses TRA-3 L-500 water line                                      |
| L-400 | MLA A-24<br>TRA-3<br>TRA-4          | 2549.71<br>2532<br>-     | _<br>_              | 2605 (PP)<br>2590 (PP)              |                  |            |                              | _<br>2652 (log) | Uses TRA-3 L~500 water line                                      |
| L-450 | MLA A-24                            | ·······                  | 2554.5 (log)        |                                     | 2553.25          | 2568       | 2566 (res bk)<br>(2m adjust) | 2684            | Sample @ 2560.75 (HPO)<br>Based on crossover.                    |
| L-500 | MLA A-6<br>MLA A-24<br>TRA-2        | 2571.1                   | 2582.3 (log)        | -                                   | 2578.7<br>2590.6 | 2600.6     | 2596.6<br>2602.85            | 2603.5          | Sample @ 2600.6 (LPO)                                            |
|       | TRA3<br>TRA4                        | 2576<br>(crossover)<br>– | 2583 (PP)           | -                                   | -                | _          | 2594 (PP)<br>2600 (log)<br>- |                 | 100cc oil sampled at 2600mSS                                     |

PP= based on RFT pressure plot

1/2 way = halfway between high and low proved. Log data based on R.G. Neumann 1988 interpretation

11-Feb-93

<u>NOTE: MARLIN A-6, A-24 AND TURRUM 2 ARE UNADJUSTED DEPTHS</u> Honor Turrum 2 GOC in L-500 @ 2583; This implies L-500 OWC at 2592m (from Turrum 3 RFT)

Honor Turrum 2 GOC in L-500 @ 2583; This implies L-500 OWC at 2592m (from Turrum 3 RFT Adjust Marlin A-6 -4.6 m Adjust Marlin A-24 -10.9m

RAY CONTACTS.WK1



## TABLE 2

## TURRUM PROVED + PROBABLE CASE CONTACTS (mSS)

## OIL SANDS

|       | LKG          | GOC                        | НКО | LKO                                   | OWC                        | HKW            |
|-------|--------------|----------------------------|-----|---------------------------------------|----------------------------|----------------|
| 1 100 |              |                            |     | · · · · · · · · · · · · · · · · · · · |                            |                |
| L-100 | -            | 2133 Turrum 3 crossover    | -   | 2136.3 Turrum 3 sample                | 2137.9 1/2 way LKO to HKW  | 2139.5 T–3 log |
| L-450 |              | 2543 Adjusted MLA A-24 log |     |                                       | 2557 MLA A-24 adjusted log |                |
| L-500 | 2576 T-3 log | 2583 Turrum 2 logs         |     |                                       | 2592 Turrum 3 RFT          |                |

## GAS SANDS

|       |             | LKG                          | GWC (RFT) |
|-------|-------------|------------------------------|-----------|
| L-110 | GAS ON ROCK | -2190 (MLA A-24) *unadjusted | -2190     |
| L-200 | GAS ON ROCK | -2352 (MLA A-6)              | -2392     |
| L-250 | GAS ON ROCK | -2408 (MLA A-24)             | -2417     |
| L-300 | GAS ON ROCK | -2422 (TRA-3)                | -2437     |
|       |             | -2442 (MLA A-24)             |           |
| L350  | GAS ON ROCK | -2455 (TRA-3)                | -2483     |
|       |             | -2474 (MLA A-24)             |           |
| L-360 | GAS ON ROCK | -2502 (TRA-3)                | -2581     |
|       |             | -2497 (MLA A-24)             |           |
| L-400 | GAS ON ROCK | -2502 (TRA-3)                | -2590     |
| L     |             | -2539 (MLA A-24)             |           |

Note: Marlin A-6 and A-24 depths are adjusted -4.6m and -10.85m respectively to match L-500 GOC at 2853 and OWC at 2492mSS

RAY CONTACTS.WK1 [P+P Contacts]

11-Feb-93

# TABLE 3

## MAXIMUM DOWNDIP OIL POTENTIAL

|       | GOC                  | OWC              | Max Column m             |
|-------|----------------------|------------------|--------------------------|
| L-200 | -2379                | –2410 (at spill) | 31                       |
| L250  | -2408 (LKG MLA A-24) | -2426            | 18                       |
| L300  | -2422 (LKG TRA-3)    | -2455            | 33                       |
| L350  | -2474 (LKG MLA A-24) | 2494             | 20                       |
| L360  | -                    | -                | 0 GWC at spill, -2581mSS |
| L-400 | -2582                | -2600 (at spill) | 18                       |

Note: Oil has not been encountered in the above gas sands. The above contacts are potential contacts if the maximum oil column is present in these sands.

RAY CONTACTS.WK1 [table 3]

#### MDT PRESSURE DATA

| WEL  | WELL: TURRUM#4 GEOLOGIST-ENGINEER: TONY REEVE |         |                                                           |             |                                       |      |                     |                   |                                       |         |         |              |                                              |                                        |
|------|-----------------------------------------------|---------|-----------------------------------------------------------|-------------|---------------------------------------|------|---------------------|-------------------|---------------------------------------|---------|---------|--------------|----------------------------------------------|----------------------------------------|
| DATE | 11/9/92                                       | DEPTH   | DEPTH INITIAL HYDROSTATIC TIME MINIMUM FORMATION PRESSURE |             | FMS                                   | TIME | E FINAL HYDROSTATIC |                   | COMMENTS                              |         |         |              |                                              |                                        |
|      |                                               |         |                                                           | HP/RFT GAUG | E                                     | SET  | FLOWING             | WING HP/RFT GUAGE |                                       | TEMP    | RETRACT | HP/RFT GUAGE |                                              |                                        |
| RFTN | 0.                                            |         |                                                           | psia        |                                       |      | PRESSURE            | psia              |                                       | DEGREES |         | psia         |                                              | STANDARD MDT PROBE                     |
| RUN- | RFT                                           | m MDKB  | m TVD ss                                                  |             |                                       |      | psia                |                   |                                       | С       |         |              |                                              |                                        |
|      | TYPE                                          |         | KB= 23                                                    |             | PPg                                   |      | (PRETEST)           | L]                | PPg                                   |         |         |              | PPg                                          |                                        |
| 1-1  |                                               | ]       |                                                           |             |                                       |      |                     |                   |                                       |         |         | _            |                                              | EX PERM FINAL HYDROSTATIC DOES NOT     |
|      | PT                                            | 1965.50 | 1942.50                                                   | 3252.00     | 9.70                                  | 4.23 | 2722.00             | 2729.00           | 8.26                                  | 77.50   | 4.28    | 3366.40      | 9.76                                         | REPEAT                                 |
| 1-2  |                                               |         |                                                           |             |                                       | 4.52 |                     | 2729.20           |                                       |         | 4.58    | _            |                                              | RESET AFTER PT ONLY                    |
|      | РТ                                            | 1965.50 | 1942.50                                                   | 3256.70     | 9.73                                  | 4.59 | 2729.00             | 2729.10           | 8.26                                  | 77.80   | 5.05    | 3261.10      | 9.74                                         | OPENED 5cc                             |
| 1-3  |                                               |         |                                                           |             |                                       | 5.17 | 2713.90             | 2737.00           |                                       |         | 5.21    |              |                                              | GOOD TEST, POOR HYDROSTATIC            |
|      | РТ                                            | 1971.00 | 1948.00                                                   | 3269.00     | 9.74                                  | 5.24 | 2700.00             | 2737.90           | 8.25                                  |         | 5.34    | 3265.00      | 9.73                                         | REPEATABILITY                          |
| 1-4  | ,                                             |         |                                                           |             |                                       |      |                     | ĺ .               |                                       |         |         | _            |                                              | PREPARE TO POOH DUE TO POOR REPEAT-    |
|      | рт                                            | 1993.00 | 1970.00                                                   | 3305.00     | 9.74                                  | 5.58 | 49.00               |                   |                                       |         | 6.08    |              |                                              | ABILITY TIGHT BUT HYDROSTATIC REPEATED |
| 1-5  |                                               |         |                                                           |             |                                       |      |                     |                   |                                       |         |         | _            |                                              | GOOD TEST HYDROSTATIC REPEATED         |
|      | РТ                                            | 1977.50 | 1954.50                                                   | 3273.40     | 9.72                                  | 6.12 | 2714.00             | 2748.40           | 8.25                                  |         | 6.15    | 3272.90      | 9.72                                         | QUICKLY                                |
| 1-6  |                                               |         |                                                           |             |                                       |      |                     |                   |                                       |         |         | _            |                                              | GOOD TEST                              |
|      | РТ                                            | 1993.00 | 1970.00                                                   | 3298.60     | 9.72                                  | 6.20 | 2518.00             | 2798.30           | 8.34                                  | 79.40   |         | 3298.40      | 9.72                                         |                                        |
| 17   |                                               | ]       |                                                           |             |                                       |      |                     | ĺ                 |                                       |         |         |              |                                              | GOOD TEST                              |
|      | РТ                                            | 2038.00 | 2015.00                                                   | 3372.20     | 9.72                                  |      | 2867.70             | 2875.80           | 8.38                                  |         |         | 3372.70      | 9.72                                         |                                        |
| 1-8  | ,                                             |         |                                                           |             |                                       |      |                     | 1                 |                                       |         |         |              | <u>.                                    </u> | GOOD TEST EX PERM                      |
|      | PT                                            | 2064.00 | 2041.00                                                   | 3415.20     | 9.72                                  | 6.46 | 2840.70             | 2931.80           | 8.44                                  | 81.50   | 6.48    | 3415.20      | 9.72                                         |                                        |
| 1-9  |                                               | ] ]     |                                                           |             |                                       |      |                     |                   |                                       |         |         |              |                                              | RETRACT & RESET AFTER SL SEAL FAILURE  |
|      | РТ                                            | 2130.50 | 2107.50                                                   | 3524.00     | 9.71                                  | 6.56 | 3008.00             | 3044.10           | 8.48                                  | 82.90   | 7.20    | 3525.30      | 9.72                                         | GOOD TEST                              |
| 1-10 |                                               |         |                                                           |             |                                       |      |                     |                   |                                       |         |         |              |                                              | GOOD TEST GOOD PERM                    |
|      | РТ                                            | 2248.30 | 2225.30                                                   | 3717.60     | 9.71                                  | 7.34 | 3203.10             | 3225.80           | 8.51                                  | 86.50   | 7.44    | 3717.60      | 9.71                                         |                                        |
| 1-11 |                                               |         |                                                           |             |                                       |      |                     |                   |                                       |         |         |              |                                              |                                        |
|      | РТ                                            | 2312.50 | 2289.50                                                   | 3822.20     | 9.71                                  | 7.49 | 3287.50             | 3288.80           | 8.44                                  | 88.20   | 7.52    | 3822.80      | 9.71                                         | GOOD TEST EX PERM                      |
| 1-12 |                                               |         |                                                           |             |                                       |      |                     |                   |                                       |         |         |              |                                              |                                        |
|      | РТ                                            | 2320.00 | 2297.00                                                   | 3836.00     | 9.71                                  | 8.00 | 3291.70             | 3299.40           | 8.44                                  | 88.50   | 8.05    | 3835.30      | 9.71                                         | GOOD TEST EX PERM                      |
| 1-13 |                                               |         |                                                           |             |                                       |      |                     |                   |                                       |         |         |              |                                              |                                        |
|      | РТ                                            | 2326.00 | 2303.00                                                   | 3845.60     | 9.71                                  | 8.13 | 3299.00             | 3308.70           | 8.44                                  | 88.60   | 8.22    | 3845.20      | 9.71                                         | GOOD TEST EX PERM                      |
| 1-14 |                                               |         |                                                           |             |                                       |      |                     |                   |                                       |         |         |              |                                              |                                        |
|      | РТ                                            | 2367.00 | 2344.00                                                   | 3912.60     | 9.71                                  | 8.38 | 3374.00             | 3385.30           | 8.48                                  | 90.10   | 8.43    | 3911.60      | 9.71                                         | GOOD TEST EX PERM                      |
| 1-15 |                                               |         |                                                           |             |                                       |      |                     |                   |                                       |         |         |              |                                              |                                        |
|      | РТ                                            | 2403.50 | 2380.50                                                   | 3971.70     | 9.70                                  | 8.54 | 3443.60             | 3449.50           | 8.51                                  | 91.50   | 8.59    | 3970.70      | 9.70                                         | GOOD TEST EX PERM                      |
| 1-16 |                                               |         |                                                           |             |                                       |      |                     |                   | ······                                |         |         |              |                                              |                                        |
|      | PT                                            | 2408.50 | 2385.50                                                   | 3979.20     | 9.70                                  | 9.08 | 3339.40             | 3456.10           | 8.51                                  | 91.50   | 9.14    | 3978.30      | 9.70                                         | GOOD TEST EX PERM                      |
| 1-17 |                                               |         |                                                           | '           | · · · · · · · · · · · · · · · · · · · |      |                     |                   | · · · · · · · · · · · · · · · · · · · |         |         |              |                                              |                                        |
|      | PT                                            | 2432.50 | 2409.50                                                   | 4018.30     | 9.70                                  | 9.23 | 3481.20             | 3485.80           | 8.50                                  | 93.00   | 9.28    | 4018.70      | 9.70                                         | GOOD TEST EX PERM                      |

1

#### MDT PRESSURE DATA

| WELL | .: TURI   | RUM#4   |          |              |             |         |                     |              |          |             |                                        |                  | G        | EOLOGIST-ENGINEER: TONY REEVE |
|------|-----------|---------|----------|--------------|-------------|---------|---------------------|--------------|----------|-------------|----------------------------------------|------------------|----------|-------------------------------|
| DATE | : 11/9/92 | DEPTH   |          | INITIAL HYDE | ROSTATIC    | TIME    | MINIMUM             | FORMATION    | PRESSURE | ŀMS         | TIME                                   | TIME FINAL HYDRO |          | COMMENTS                      |
|      |           | į       |          | HP/RFT GAUG  | E           | SET     | FLOWING             | HP/RFT GUAGE |          | <b>TEMP</b> | RETRACT                                | HP/RFT GUAC      | Ъ        |                               |
| RFTN |           | <br>    |          | psia         |             |         | PRESSURE            | psia (       |          | DEGREES     |                                        | psia             |          | STANDARD MDT PROBE            |
| RUN- |           | m MDKB  | m TVD ss |              | <b>D</b> D. |         | psia<br>(DDFTFFFFF) |              | DD-      | с           |                                        |                  | DD-      |                               |
| 1-18 | TYPE      |         | KB= 23   | l            | PPg         |         | (PRETEST)           | l            | PPg      |             |                                        | l                | PPg      |                               |
| 1-10 | PT        | 2536.00 | 2513.00  | 4186.80      | 9.70        |         | 1826.10             | 3636.60      | 8 50     | 97.00       |                                        | 4186.40          | 9.70     | GOOD TEST EX PERM             |
| 1-19 | <u> </u>  |         |          | 1100.00      |             |         |                     |              |          |             | ······································ |                  |          |                               |
|      | PT        | 2546.50 | 2523.50  | 4203.50      | 9.70        | 10.00   | 3617.00             | 3657.30      | 8.51     | 97.60       | 10.06                                  | 4202.90          | 9.70     | GOOD TEST EX PERM             |
| 1-20 |           |         |          |              |             |         |                     |              |          |             |                                        |                  |          |                               |
|      | PT        | 2574.00 | 2551.00  | 4248.00      | 9.69        | 10.13   | 3637.70             | 3708.10      | 8.54     | 99.00       | 10.19                                  | 4247.40          | 9.69     | GOOD TEST EX PERM             |
| 1-21 |           |         |          | )            |             |         |                     | <br>  (      |          |             |                                        | )                |          |                               |
|      | рт        | 2608.00 | 2585.00  | 4302.80      | 9.69        | 10.27   | 3453.80             | 3745.80      | 8.51     | 101.00      | 10.33                                  | 4302.30          | 9.69     | GOOD TEST EX PERM             |
| 1-22 | PT        | 0/0/ 50 | 0(02.50  |              | 9.69        | 10.40   | 2757 20             | 3764.90      | 8.49     | 102.00      | 10.46                                  | 4332.30          | 0.40     | GOOD TEST EX PERM             |
| 1-23 | PI        | 2626.50 | 2603.50  | 4332.40      | 9.09        | 10.40   | 3757.30             | 3704.90      | 0.49     | 102.00      | 10.46                                  | 4332.30          | 9.09     | GOOD TEST EX PERM             |
|      | PT        | 2631.00 | 2608.00  | 4340.00      | 9.69        | 10.52   | 3585.00             | 3771.00      | 8.4%     | 103.00      | 10.58                                  | 4339.60          | 9.69     | GOOD TEST EX PERM             |
| 1-24 | 17.5      |         |          |              |             |         |                     | 1            |          |             |                                        |                  |          |                               |
|      | PT        | 2639.00 | 2616.00  | 4353.40      | 9.69        | 11.04   | 3103.00             | 3783.20      | 8.49     | 103.00      | 11.13                                  | 4352.60          | 9.69     | GOOD TEST EX PERM             |
| 1-25 |           |         |          |              |             |         |                     | ,<br>,       |          | -           |                                        |                  |          |                               |
|      | PT        | 2676.50 | 2653.50  | 4413.60      | 9.68        | 11.23   | 3807.20             | 3840.30      | 8.50     | 105.00      | 11.29                                  | 4413.40          | 9.68     | GOOD TEST EX PERM             |
| 1-26 |           | -       |          | ]            |             |         |                     |              |          | -           |                                        |                  |          |                               |
|      | PT        | 2684.00 | 2660.00  | 4426.00      | 9.68        |         | 3173.90             | 3850.80      | 8.50     | 106.00      | 11.44                                  | 4425.60          | 9.68     | GOOD TEST EX PERM             |
| 1-27 | PT        | 2602.60 | 2660 50  | 4439.70      | 9.68        | 11.51   | 2927.00             | 3873.70      | 8.52     | 107.00      | 12.22                                  | 4440.10          | 0.69     | TIGHT POSSIBLY SUPERCHARGED   |
| 1-28 | 111       | 2692.50 | 2669.50  | 44.39.70     | 9.00        | 11.51   | 2927.00             | 3073.70      | 0.32     | 107.00      | 16.22                                  | 4440.10          | 9.00     | IIGHTFOSSELT SUFERCHARGED     |
| 1-20 | PT        | 2730.00 | 2707.00  | 4500.70      | 9.68        | 12.27   | 3844.60             | 3882.80      | 8.42     | 108.00      | 12.32                                  | 4500.80          | 9.68     | GOOD TEST EX PERM             |
| 1-29 | 1         |         |          | 1            |             |         |                     | /            |          |             |                                        |                  | <u> </u> |                               |
|      | PT        | 2735.50 | 2712.50  | 4509.50      | 9.68        | 12.39   | 3885.30             | 3890.40      | 8.42     | 109.00      | 12.45                                  | 4510.00          | 9.68     | GOOD TEST EX PERM             |
| 1-30 |           | 1       |          |              |             |         |                     |              |          |             |                                        |                  |          |                               |
|      | PT        | 2746.00 | 2723.00  | 4527.00      | 9.68        | 12.52   | 3812.80             | 3904.90      | 8.42     | 109.00      | 12.56                                  | 4527.10          | 9.68     | GOOD TEST EX PERM             |
| 1-31 |           | -       |          |              |             |         |                     |              |          |             |                                        |                  |          |                               |
|      | РТ        | 2370.00 | 2347.00  | 3917.50      | 9.71        | 13.13   | 3382.90             | 3388.50      | 8.48     | 95.00       | 13.21                                  | 3916.20          | 9.71     | GOOD TEST GOOD PERM           |
| 1-32 | PT        | 0005 50 | 0050 50  | 2005.00      |             | 12.00   | 1.00.10             | 2400 50      | 0.40     | -           | 12.22                                  | 2024.00          | 0.70     | COODTECTCOODERDA              |
| 1-33 | PT        | 2375.50 | 2352.50  | 3925.00      | 9.70        | 13.29   | 1600.10             | 3400.50      | 8.49     | 93.00       | 13.33                                  | 3924.80          | 9.70     | GOOD TEST GOOD PERM           |
| 1-33 | PT        | 2472.00 | 2449.00  | 4081.70      | 9.69        | . 13.44 | 2419.60             | 3558.40      | 8.53     | 95.00       | 13.51                                  | 4081.70          | 9 69     | POSSIBLY SL SUPERCHARGED      |
| 1-34 | 1         |         |          | 1            |             |         |                     |              | 0.00     |             |                                        | 1                |          |                               |
|      | PT        | 1963.70 | 1940.70  | 3252.50      | 9.73        | 14.10   | 2726.00             | 2729.20      | 8.26     | 82.00       | 14.15                                  | 3252.00          | 9.73     | GOOD TEST                     |

2



#### MDT PRESSURE DATA

| WELL: TURRUM#4 GEOLOGIST-ENGINEER: TONY REEVE |           |                           |          |             |          |       |           |                    |      |         |         |                  |      |                    |
|-----------------------------------------------|-----------|---------------------------|----------|-------------|----------|-------|-----------|--------------------|------|---------|---------|------------------|------|--------------------|
| DATE                                          | : 11/9/92 | DEPTH INITIAL HYDROSTATIC |          |             | ROSTATIC | TIME  | MINIMUM   | FORMATION PRESSURE |      | FMS     | TIME    | FINALHYDROSTATIC |      | COMMENTS           |
|                                               |           |                           |          | HP/RFT GAUC | Æ        | SET   | FLOWING   | HP/RFT GUAGE       |      | TEMP    | RETRACT | HP/RFT GUAGE     |      |                    |
| RFTN                                          | 10.       |                           |          | psia        |          |       | PRESSURE  | psia               |      | DEGREES | 1       | psia             |      | STANDARD MDT PROBE |
| RUN-                                          | RFT       | m MDKB                    | m TVD ss |             |          |       | psia      |                    |      | с       |         |                  |      |                    |
|                                               | TYPE      |                           | KB= 23   |             | PPg      | 1     | (PRETEST) |                    | PPg  |         |         |                  | PPg  |                    |
| 1-35                                          |           |                           |          | ] .         |          |       |           |                    |      |         |         |                  |      |                    |
|                                               | РТ        | 1971.00                   | 1948.00  | 3263.70     | 9.72     | 14.21 | 2687.90   | 2739.10            | 8.26 | 81.00   | 14.27   | 3263.50          | 9.72 | GOOD TEST          |
| 1-36                                          |           |                           |          |             |          |       |           |                    |      |         |         |                  |      |                    |
|                                               | РТ        | 1974.00                   | 1951.00  | 3268.10     | 9.72     | 14.34 | 2740.30   | 2742.90            | 8.26 | 80.00   | 14.39   | 3268.00          | 9.72 | GOOD TEST EX PERM  |

З

#### This is an enclosure indicator page. The enclosure PE900977 is enclosed within the container PE900975 at this location in this document.

The enclosure PE900977 has the following characteristics: ITEM\_BARCODE = PE900977 CONTAINER\_BARCODE = PE900975 NAME = RFT Survey BASIN = GIPPSLAND PERMIT = VIC/L4 TYPE = WELL SUBTYPE = RFT DESCRIPTION = RFT Survey Turrum-3 & Turrum-4 (enclosure from WCR vol.2 for Turrum-4) REMARKS =  $DATE\_CREATED = 11/03/93$  $DATE\_RECEIVED = 16/03/93$ W\_NO = W1069 WELL\_NAME = Turrum-4 CONTRACTOR = ESSOCLIENT\_OP\_CO = ESSO

(Inserted by DNRE - Vic Govt Mines Dept)



TURRUM 3 AND 4 RFT DATA – L-100 TURRUM 4 PRESSURE (PSIA) + ++ TURRUM 3 PRESSURE (PSIA) Δ Δ Δ SSD 2100 DRIGINAL BASIN GRADIENT 1-100v = 100 OWC RESERVES BOOK 2139.5 / WAHA No TURRUM 3 1-100 WATER TURRUM 4 1-100/L-500 WATER
















TURRUM MAXIMUM DOWNDIP OIL POTENTIAL – L–200 TURRUM 3 PRESSURE (PSIA) Δ Δ SSD 3440 3450 3460 3470 3480 3490 3500 3510 3520 3530 3540 3550 3560 2300 1-200 1 A\*\* 1 À(20 2325 <u>A</u> . `` 2350 ←----+- L-200 LKG MLA A-6 2352 (ADJUSTED) 2375 -200 POTENTIAL GOC 2379 \_\_\_\_\_ 1-200 GWC 2392 -.. 2400 200 POTENTIAL OWC AT SPILL 24101 ORIGINAL BASIN GRADIENT 2425 ١ ١ -TURRUM 34-500 WATER-TORRUN TL-300 WATER 1 ١. 2450

3

1.4





TURRUM MAXIMUM DOWNDIP OIL POTENTIAL - L-350 TURRUM 3 PRESSURE (PSIA) Δ Δ SSD 2435 3570 3580 3590 3600 3610 3620 3630 3650 3670 3640 3660 -350 2450 ۰. . Var -L-350-LKG-IURRUM-3-2455-TURRUM 4 1-300 WATER ---- L-350 LKG MARLIN A-24 2474 (ADJUSTED) 2475 - 1-350 GWC 2483 · -350 POTENTIAL OWC 2494 (BASED ON HIA A-24 DRG) -> DRIGINAL BASIN GRADIENT <u>ه</u>، 2500

25.25

TURBUN BUTENTIAL WIER 2519 (BASED ON TRA 3 LKG) -





# MEMORANDUM

SYDNEY October 15, 1974

YOUR REF.

W.W. Fraser

cc: E.B. Stanford (Attn: S. Benedek)

OUR REF: 6650-2/6650-3 DAC:sd

SUBJECT Report on Interpretation of Turrum Gas Sample Analyses and Pressures.

Attached please find a copy of the subject report. You will note that the analysis of FIT pressures is predicated on the basis of each sand being in contact with an underlying water-leg. However the possibility that some, or all of these sands (except in the Marlin-4 fault block) are non-water drive reservoirs cannot be discounted.

Analysis of Amerada pressures in the report shows no evidence of a significant system of gas sands with a common gas/water contact. However in Marlin A-24, the Schlumberger pressures, which are more numerous than the Amerada pressures, indicate the possibility of two such systems, as discussed. Recognizing the inherent inaccuracy of Schlumberger pressures, such an interpretation could only be considered a low probability 'maximum' case.

P. C. Hall

Attch.

## INTERPRETATION OF TURRUM GAS SAMPLE ANALYSES AND PRESSURES

the second second

This report documents Turrum gas analyses and formation pressures, and evaluates these data for:

- 1) evidence of sand continuity and/or communication between fault blocks, and
- 2) the indicated height of the various gas columns above their respective gas/water contacts.

Based on this evaluation only, the following conclusions can be drawn:

- 1) On a hydrocarbon basis, the compositions of the Turrum gas samples are similar, and a common source for most of these gases is probable.
- 2) The  $CO_2$  content of the Turrum gas samples is unusually high compared with the overlying Marlin N-1 gas and the Barracouta N-1 gas, although high  $CO_2$  contents are also seen in the Sunfish and Tuna T-Longus gases at somewhat shallower depths than the Turrum gas sands. This high and variable  $CO_2$  content suggests that its source may be the coals interbedded with the Turrum sands.
- 3) There is a rough correlation between  $CO_2$  content and depth, with percent  $CO_2$  increasing with depth to a peak value of about 22 percent at a subsea depth of about 7500 feet, and then decreasing below that point.
- 4) The possibility of communication between the two sands tested by FIT's 1 and 4 in the Marlin-4 well, suggested by very similar CO<sub>2</sub> content and hydrocarbon composition, is not supported by the pressure data. However communication may have existed at the time of CO<sub>2</sub> generation and hydrocarbon migration.
- 5) The similarity in CO<sub>2</sub> content of the Turrum-1 and Marlin A-24 FIT #10 samples and of the Marlin A-24 FIT #7 and FIT #16 samples is probably coincidental.
- 6) The variation in CO<sub>2</sub> content of the other samples does not indicate communication within and between the other fault blocks, but does not rule it out.
- 7) A common gas/water contact for all sands cannot be supported by the pressure data.

8) Gas columns ranging up to 200 feet in height above their respective gas/water contacts can be inferred from the pressure data.

9) The pressure data give no evidence of communication between the different fault blocks.

#### DISCUSSION

### 1. Compositional Analyses

Table 1 compares the analyses of the various gas samples from the Turrum field. The most significant feature of these analyses is the unusually high (and variable)  $CO_2$  content seen in all samples, ranging from 6.27 Mol percent in FIT #10 from Marlin A-24 to 21.84 Mol percent in the Marlin-1 Turrum horizon DST. By comparison the Marlin and Barracouta N-1 gases have  $CO_2$  contents ranging up to about 2 percent  $CO_2$ , although gas samples from the Sunfish and Tuna T-Longus reservoirs, at somewhat shallower depths than the Turrum gas sands, show  $CO_2$  contents in the 12 percent range. The  $CO_2$  contents of the Turrum samples have been plotted against subsea depth in Figure 1. Although rough, there appears to be a correlation indicating that the  $CO_2$  content generally increases with depth, reaching a peak at a subsea depth of about 7500 feet, and then generally declines as depth increases below that point.

The variations in  $CO_2$  content occur both within and between the various fault blocks. There were only three instances in which similar  $CO_2$  content was observed:

- 1) Both the  $CO_2$  content and the hydrocarbon composition of the two FIT samples from the Marlin-4 well are almost identical. This suggests either communication between the two sands in the Marlin-4 fault block from which the samples were taken, or common sources or source conditions for both the  $CO_2$  and hydrocarbon components of the gases in these two sands. (As discussed subsequently, the pressures measured with these samples do not indicate communication between these sands at present.)
- 2) The  $CO_2$  contents of the Turrum-1 FIT #2 and Marlin A-24 FIT #10 samples are almost identical. However, these two wells are widely separated and in non-contiguous fault blocks, and the respective sands are neither stratigraphically equivalent nor at similar depths, suggesting that the similarity in  $CO_2$  content may be coincidental.

3) The CO<sub>2</sub> contents of the Marlin A-24 FIT #7 and FIT #16 samples are very similar. However these samples are from sands over 1000 feet apart, with many intervening sands, shales and coal beds, and this suggests that this similarity is also coincidental.

The variation in  $CO_2$  content of the other samples does not necessarily indicate a difference in hydrocarbon source. In fact the wide variation suggests the possibility that the  $CO_2$  was generated in the coal deposits which are interbedded with the gas bearing sands, with the variation possibly due to differing burial temperature/pressure histories and differing relative volumes of coal and gas in the respective sands and fault blocks. The variation in  $CO_2$  content, while not proving the absence of communication within and between the different fault blocks, does not support it. Even if the  $CO_2$  content was generated below the Turrum horizon, the observed variation would appear to rule out widespread communication at the time of migration.

Table 2 shows the analyses from Table 1 converted to a  $CO_2/N_2$ -free basis. It can be seen that the variation in hydrocarbon composition between the samples shown in Table 1 is greatly reduced when the compositions are normalized in this fashion. The most significant variation remaining is in the  $C_1$  and  $C_6$ + contents, and this could well be due to sampling or analysis problems. Variation in  $C_6$ + content due to these problems would be accompanied by offsetting changes in the proportions of the other components, with the great bulk of this change showing up in the  $C_1$  content. It can be concluded that the hydrocarbon portions of these Turrum gas samples are largely similar, and therefore that a common source is probable. (It should also be noted that on a hydrocarbon basis the Turrum gas analyses are similar to the currently accepted analysis of Marlin N-1 gas.) From this review of the Turrum gas analyses it can be concluded that:

- 1) On a hydrocarbon basis, the compositions of the Turrum gas samples are similar, and a common source for these hydrocarbons is probable.
- 2) The  $CO_2$  content of the Turrum gas sample is unusually high, and variable, suggesting that the  $CO_2$  source may be the coals interbedded with the Turrum sands.
- 3) There is a rough correlation between  $CO_2$  content and depth, with percent  $CO_2$  increasing with depth to a peak value of about 22 percent at a subsea depth of about 7500 feet, and then decreasing below that point.
- 4) The possibility of communication between the two sands tested by FIT's 1 and 4 in the Marlin-4 well, suggested by very similar CO<sub>2</sub> contents and hydrocarbon compositions, is not supported by the pressure data. However communication may have existed at the time of CO<sub>2</sub> generation and hydrocarbon migration.

- 3.-

Ë.

- 5) The similarity in  $CO_2$  content between the Turrum-1 and Marlin A-24 FIT #10 samples and of the Marlin A-24 FIT #7 and FIT #16 samples is probably coincidental.
- 6) The variation in  $CO_2$  content of the other samples does not support communication within and between the other fault blocks, but does not rule it out.

### 2. Formation Pressures

was an menana analar tara ara di bara ara a di bara di

FIT pressure measurements have been made in all wells in the Turrum field, except Marlin-1. In a gas sand, the amount by which the measured formation pressure exceeds the hydrostatic gradient is a function of the difference between the depths of the point of measurement and the downdip gas/water contact. This is because the pressure gradient in gas is much lower than in water; a typical gas gradient in the Turrum field is 0.09 psi/foot compared with the water gradient of 0.433 psi/foot.

In analysing the Amerada pressure data from these wells the question of accuracy of the measured pressures arises. The quoted accuracy of an Amerada gauge is  $\pm 0.25$  percent of the maximum range of the instrument. On FIT tests, it is necessary to use an Amerada gauge with a maximum range of about twice the expected formation pressure, in order to withstand the pressures generated by the firing of the various charges during the FIT test. Amerada gauges with a range of 11,800 psig have been commonly used recently, giving an expected accuracy of  $\pm 30$  psig. Presumably this variation would be distributed such that most measurements would be much closer to the true pressure than  $\pm 30$  psi.

This is confirmed by a comparison of Amerada and Hewlett-Packard pressures measured concurrently in pulse and build-up tests in Kingfish and Halibut wells this year. The quoted accuracy of the Hewlett-Packard gauge is  $\pm 0.025$  percent of measured pressure, i.e. less than  $\pm 1$  psi, making the Hewlett-Packard pressure measurement an acceptable standard for this purpose. The average absolute deviation of the Amerada pressure from that measured by the Hewlett-Packard in 17 tests was 4 psi. In these same tests the maximum deviation of the Amerada pressure from the Hewlett-Packard pressure ranged from -8.8 to +8.4 psi. Amerada gauges with a 5000 psi range were used in these tests giving an expected accuracy of +12 psi. Thus it can be seen that in a small sample of 17 tests, the deviation from the "correct" value did not exceed 75 percent of the quoted accuracy, and most measurements were within 4 psi of the "correct value". On this basis, most measurements with an 11,800 psig range Amerada gauge could be expected to fall within  $\pm 10$  psi of the correct value. With a Turrum gas gradient of 0.09 psi/foot, this means that most of the indicated gas column heights would be within 110 feet of the correct height, although in the worst case the error could be as much as 300 feet.

The FIT pressures and hydrostatic gradient line are plotted for each well in Figures 2 through 6. Except where noted, the pressures were measured with Amerada gauges. Each well is discussed individually below:

(1) Turrum-1 (Figure 2)

Only two FIT pressure measurements in this well were successful. Neither indicate a significant gas column.

(2) Marlin A-6 (Figure 3)

The FIT pressures from this well must be viewed with caution because no Amerada gauges were run, and the pressures shown are from the Schlumberger gauge which has been found to be inaccurate in the past. The only significant deviation above the hydrostatic gradient is for FIT Nos. 1 and 11, and these pressures are dubious. This is because, in each case, the hydrostatic mud column pressures measured by the Schlumberger gauge, after the FIT tool is collapsed, are several hundred psi above the hydrostatic pressure calculated from the mud weight. Correcting the measured formation pressures by the difference between measured and calculated hydrostatic mud pressure gives values which fall below the gradient line. In any event, these two FIT pressures are from the "A-6 oil sand" rather than from gas sands.

(3) Marlin A-24 (Figure 4)

Points lying below 8540 feet subsea in Figure 4 represent samples from log interpreted water sands. FIT Nos. 1 and 2 in this interval both recovered filtrate. Therefore the above-hydrostatic pressure shown for FIT #2 is probably misleading and not indicative of a hydrocarbon accumulation.

Points plotted in the interval 8380-8540 feet subsea in Figure 4 represent samples in the "A-6 oil sand". FIT #6 is not an Amerada pressure and is considered definitely in error since the Amerada pressure in FIT #14 in the same sand shows a much lower value.

- 5 -

Points plotted above 8380 feet subsea represent samples from the Turrum gas sands. FIT's 8, 12 and 15 are Amerada measured pressures. The FIT #8 pressure lies slightly below the hydrostatic gradient. This would suggest that although no gas was recovered on test, the gas column in this sand, if present, is of negligible extent below this point. The pressure measured in FIT #12 is dubious because the pressure build-up shows an increase in the rate of change in pressure at the end of the build-up, instead of the expected decrease. This suggests some degree of communication with the mud column, a conclusion supported by the recovery of muddy filtrate in this test. Hence this pressure should be ignored. The Amerada pressure obtained from FIT #15, which recovered gas and filtrate, indicates a gas column extending approximately 160 feet below the FIT sample depth to an estimated gas/water contact at a depth of about 7590 feet subsea.

All the other gas sand pressures shown were measured with the Schlumberger gauge and are considered too unreliable to use in predicting gas column height.

## (4) Marlin-4 (Figure 5)

All the pressures plotted in Figure 5 were measured with an Amerada gauge. FIT's 3, 5 and 6 fall right on the gradient line, and this, plus the FIT recoveries of more than 20,000 cc of water in each case suggest that these samples were taken in water sands. FIT's 1 and 2 both recovered gas and show pressures which lie on a common gas gradient line, which extrapolates to a common gas/water contact at a depth of about 7890 feet subsea. The height of the indicated gas column is about 140 feet at FIT #2. The pressure from FIT #4 (which recovered gas) also indicates a gas column, in this case extending 200 feet down to a gas/water contact at about 7630 feet subsea. It can be seen that the pressures measured with FIT's 1 and 4 do not lie on a common gradient line and thus do not support communication between the sands in which these two tests were made, as discussed previously.

# (5) Turrum-2 (Figure 6)

The pressures plotted in Figure 6 were all measured by Amerada gauge except for FIT #12. Only FIT's 8 and 9 support a significant gas column. FIT #8 which recovered gas indicates a gas column extending 90 feet down to a gas/water contact at a depth of about 7680 feet subsea. FIT #9 which recovered filtrate, indicates a gas column extending 130 feet down to a gas/water contact at a depth of about 7850 feet subsea. The pressures in these wells have also been reviewed in the light of the latest cross-sectional map of the Turrum field, comparing pressures in sands mapped as being, or likely to be, in communication. In no instance did the pressures indicate communication between fault blocks.

1

<.,;

- 7 -

From this review of the FIT pressure data it can be concluded that:

- 1) Where gas columns are indicated, the heights of the columns above their respective gas/water contacts range up to 200 feet.
- 2) A common gas/water contact for all sands cannot be supported.

3) There is no evidence of communication between fault blocks.

DAC: 14/10/74

਼ੇ

|                                                                                                              |                                                                                                                                  |                                                                                                                                      |                                                                                                              |                                                                                                                       | TABLE 1                                                                                                     |                                                                                                              | ······································                                                                              |                                                                                                                     |                                                                                                              |                                                                                                                        |                                                                                                      |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                                                                                                              |                                                                                                                                  |                                                                                                                                      | ·                                                                                                            | TURRUM                                                                                                                | GAS ANALY                                                                                                   | SES                                                                                                          |                                                                                                                     |                                                                                                                     |                                                                                                              |                                                                                                                        |                                                                                                      |
| <u>Well</u> :                                                                                                | MARLIN-1                                                                                                                         | TURRUM-1                                                                                                                             |                                                                                                              | М                                                                                                                     | ARLIN A-24                                                                                                  | ·····                                                                                                        |                                                                                                                     | MARL                                                                                                                | IN-4                                                                                                         | TURRU                                                                                                                  | M-2*                                                                                                 |
| Sample:                                                                                                      | Recombined<br>Surface                                                                                                            | FIT #2                                                                                                                               | FIT #7                                                                                                       | FIT #9                                                                                                                | FIT #10                                                                                                     | FIT #11                                                                                                      | FIT #16                                                                                                             | FIT #1                                                                                                              | FIT #4                                                                                                       | FIT #12                                                                                                                | FIT #8                                                                                               |
| Depth Ft.SS:                                                                                                 | 7375 - 7435<br>7473 - 7574                                                                                                       | 7059                                                                                                                                 | 8217                                                                                                         | 8096                                                                                                                  | 8002                                                                                                        | 7894                                                                                                         | 7175                                                                                                                | 7804                                                                                                                | 7428                                                                                                         | 8622                                                                                                                   | 7624                                                                                                 |
| Laboratory:                                                                                                  | APC                                                                                                                              | EPR                                                                                                                                  | Longford                                                                                                     | Longford                                                                                                              | EPR                                                                                                         | EPR                                                                                                          | EPR                                                                                                                 | EPR                                                                                                                 | EPR                                                                                                          | Longford                                                                                                               | Longford                                                                                             |
| <u>Mol %</u> :                                                                                               |                                                                                                                                  |                                                                                                                                      | •                                                                                                            |                                                                                                                       |                                                                                                             |                                                                                                              |                                                                                                                     |                                                                                                                     |                                                                                                              |                                                                                                                        | •                                                                                                    |
| $N_{2}$ $CO_{2}$ $C_{1}$ $C_{2}$ $C_{3}$ $iC_{4}$ $nC_{4}$ $iC_{5}$ $nC_{5}$ $C_{6}$ $C_{7}$ $C_{8}$ $C_{9}$ | $\begin{array}{c} 0.09\\ 21.84\\ 67.24\\ 4.49\\ 2.56\\ 0.35\\ 0.97\\ 0.36\\ 0.63\\ 0.63\\ 0.64\\ 0.16\\ 0.51\\ 0.16 \end{array}$ | $\begin{array}{c} 0.16 \\ 8.20 \\ 75.05 \\ 5.99 \\ 4.02 \\ 0.59 \\ 1.34 \\ 0.41 \\ 0.50 \\ 0.76 \\ 0.87 \\ 0.62 \\ 1.49 \end{array}$ | $\begin{array}{c} 0.50\\ 10.79\\ 78.63\\ 5.58\\ 2.59\\ 0.36\\ 0.67\\ 0.16\\ 0.16\\ 0.56\\ (C_6+)\end{array}$ | $ \begin{array}{r} 1.62\\ 6.27\\ 79.76\\ 6.41\\ 3.32\\ 0.46\\ 0.85\\ 0.22\\ 0.22\\ 0.22\\ 0.87\\ (C_6+) \end{array} $ | 0.39<br>7.78<br>78.02<br>7.10<br>4.39<br>0.56<br>0.89<br>0.21<br>0.20<br>0.21<br>0.25<br>(C <sub>7</sub> +) | 0.49<br>12.57<br>74.66<br>6.20<br>3.78<br>0.58<br>0.84<br>0.23<br>0.21<br>0.20<br>0.24<br>(C <sub>7</sub> +) | $\begin{array}{c} 0.55\\ 11.15\\ 73.92\\ 6.25\\ 4.06\\ 0.69\\ 1.18\\ 0.36\\ 0.40\\ 1.00\\ 0.44\\ (C_7+)\end{array}$ | $\begin{array}{c} 0.28\\ 15.66\\ 70.87\\ 5.45\\ 3.65\\ 0.56\\ 1.09\\ 0.37\\ 0.44\\ 0.51\\ 1.12\\ (C_7+)\end{array}$ | 0.32<br>15.28<br>70.90<br>5.35<br>3.60<br>0.67<br>1.14<br>0.43<br>0.46<br>0.94<br>0.91<br>(C <sub>7</sub> +) | $\begin{array}{c} 0.63 \\ 7.06 \\ 78.68 \\ 6.17 \\ 4.13 \\ 0.60 \\ 1.00 \\ 0.26 \\ 0.24 \\ 1.23 \\ (C_6+) \end{array}$ | 0.29<br>17.42<br>71.34<br>5.61<br>3.28<br>0.48<br>0.80<br>0.21<br>0.20<br>0.37<br>(C <sub>6</sub> +) |
| Total                                                                                                        | 100.00                                                                                                                           | 100.00                                                                                                                               | 100.00                                                                                                       | 100.00                                                                                                                | 100.00                                                                                                      | 100.00                                                                                                       | 109.00                                                                                                              | 100.00                                                                                                              | 100.00                                                                                                       | 100.00                                                                                                                 | 100.00                                                                                               |
| C <sub>6</sub> +                                                                                             | 1.47                                                                                                                             | 3.74                                                                                                                                 | 0.56                                                                                                         | 0.87                                                                                                                  | 0.46                                                                                                        | 0.44                                                                                                         | 1.84                                                                                                                | 1.63                                                                                                                | ·1.85                                                                                                        | 1.23                                                                                                                   | 0.37                                                                                                 |
| Fault Block                                                                                                  | v                                                                                                                                | I                                                                                                                                    | VI                                                                                                           | VI                                                                                                                    | VI                                                                                                          | VI                                                                                                           | VI                                                                                                                  | · III                                                                                                               | III                                                                                                          | IV                                                                                                                     | IV                                                                                                   |

ないのない。 本語のないで、 ないため、 ないため

Constant of

\*. The Turrum-2 analyses are approximate only. More definitive analyses are to be made.

DAC: 9/10/74

TABLE 2

# TURRUM GAS ANALYSES ON N2/CO2-FREE BASIS

Ì

| Well:                                                               | MARLIN-1                                                                   | TURRUM-1                                                                   |                                                                                    | М                                                                           | ARLIN A-24                                                                                |                                                                                           |                                                                                    | MARL                                                                               | IN-4                                                                               | TURRU                                                                       | M-2*                                                                        |
|---------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Sample:                                                             | Recombined<br>Surface                                                      | FIT #2                                                                     | FIT #7                                                                             | FIT #9                                                                      | FIT #10                                                                                   | FIT #11                                                                                   | FIT #16                                                                            | FIT #1                                                                             | FIT #4                                                                             | FIT #12                                                                     | FIT #8                                                                      |
| Depth Ft.SS:                                                        | 7375 - 7435<br>7473 - 7574                                                 | 7059                                                                       | 8217                                                                               | 8096                                                                        | 8002                                                                                      | 7894                                                                                      | 7175                                                                               | 7804                                                                               | 7428                                                                               | 8622                                                                        | 7624                                                                        |
| Laboratory:                                                         | APC                                                                        | EPR                                                                        | Longford                                                                           | Longford                                                                    | EPR                                                                                       | EPR                                                                                       | EPR                                                                                | EPR                                                                                | EPR                                                                                | Longford                                                                    | Longford                                                                    |
| <u>Mol %</u> :                                                      |                                                                            |                                                                            |                                                                                    |                                                                             |                                                                                           |                                                                                           |                                                                                    |                                                                                    |                                                                                    |                                                                             |                                                                             |
| C1<br>C2<br>C3<br>iC4<br>nC4<br>iC5<br>nC5<br>C6<br>C7<br>C8<br>C9+ | 86.2<br>5.7<br>3.3<br>0.4<br>1.2<br>0.5<br>0.8<br>0.8<br>0.2<br>0.7<br>0.2 | 82.1<br>6.5<br>4.4<br>0.6<br>1.5<br>0.4<br>0.5<br>0.8<br>0.9<br>0.7<br>1.6 | 88.6<br>6.3<br>2.9<br>0.4<br>0.8<br>0.2<br>0.2<br>0.2<br>0.6<br>(C <sub>6</sub> +) | 86.6<br>7.0<br>3.6<br>0.5<br>0.9<br>0.2<br>0.2<br>1.0<br>(C <sub>6</sub> +) | 85.0<br>7.7<br>4.8<br>0.6<br>1.0<br>0.2<br>0.2<br>0.2<br>0.2<br>0.3<br>(C <sub>7</sub> +) | 85.9<br>7.1<br>4.3<br>0.7<br>1.0<br>0.3<br>0.2<br>0.2<br>0.2<br>0.3<br>(C <sub>7</sub> +) | 83.7<br>7.1<br>4.6<br>0.8<br>1.3<br>0.4<br>0.5<br>1.1<br>0.5<br>(C <sub>7</sub> +) | 84.4<br>6.5<br>4.3<br>0.7<br>1.3<br>0.4<br>0.5<br>0.6<br>1.3<br>(C <sub>7</sub> +) | 84.1<br>6.3<br>4.3<br>0.8<br>1.3<br>0.5<br>0.5<br>1.1<br>1.1<br>(C <sub>7</sub> +) | 85.2<br>6.7<br>4.5<br>0.6<br>1.1<br>0.3<br>0.3<br>1.3<br>(C <sub>6</sub> +) | 86.7<br>6.8<br>4.0<br>0.6<br>1.0<br>0.3<br>0.2<br>0.4<br>(C <sub>6</sub> +) |
| Tota1                                                               | 100.0                                                                      | 100.0                                                                      | 100.0                                                                              | 100.0                                                                       | 100.0                                                                                     | 100.0                                                                                     | 100.0                                                                              | 100.0                                                                              | 100.0                                                                              | 100.0                                                                       | . 100.0                                                                     |
| C <sub>6</sub> +                                                    | 1.9                                                                        | 4.0                                                                        | 0.6                                                                                | 1.0                                                                         | 0.5                                                                                       | 0.5                                                                                       | <sup>?</sup> 1.6                                                                   | 1.9 .                                                                              | 2.2                                                                                | 1.3                                                                         | 0.4                                                                         |
| Fault Block                                                         | V                                                                          | I                                                                          | VI                                                                                 | VI                                                                          | VI                                                                                        | vī                                                                                        | VI .                                                                               | III                                                                                | III                                                                                | IV                                                                          | IV                                                                          |

\* The Turrum-2 analyses are approximate only. More definitive analyses are to be made.

DAC: 9/10/74

しいないことになっていろうというないになったたいないない

and the second



|            |                                        |                                       |              |           |                                       | . 1       | l i                | Pale     |            |                                       | EI    | -    | D,                                    | ~ ~ ~                                  |                |                    |          |                                                | £        | Figi                                  | ire               | _2       |
|------------|----------------------------------------|---------------------------------------|--------------|-----------|---------------------------------------|-----------|--------------------|----------|------------|---------------------------------------|-------|------|---------------------------------------|----------------------------------------|----------------|--------------------|----------|------------------------------------------------|----------|---------------------------------------|-------------------|----------|
| 6600       |                                        |                                       |              | Ur<br>The | run                                   | 1-1       | <br> `-,           |          | <u>うこで</u> |                                       | 1 1   | <br> |                                       | <->>                                   | JVE            | <u> </u>           | 1        |                                                |          |                                       |                   | . ;      |
|            |                                        | · · · · · · · · · · · · · · · · · · · |              |           |                                       |           |                    |          |            | 1                                     |       |      |                                       |                                        |                |                    |          |                                                | • • •    |                                       |                   |          |
|            |                                        |                                       |              |           |                                       |           |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
|            |                                        | \                                     |              |           |                                       |           |                    |          |            |                                       |       |      |                                       | ·                                      |                | 1                  | 1:1-     |                                                |          |                                       | <u></u>           |          |
| 6700       |                                        | $\lambda_0$                           |              |           |                                       |           |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
|            |                                        |                                       |              |           |                                       |           | 1                  |          |            | 1.11                                  |       |      |                                       |                                        |                |                    | <u>.</u> |                                                |          |                                       |                   |          |
|            |                                        |                                       |              |           |                                       |           |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
|            |                                        | \                                     | 0            |           |                                       |           |                    |          |            |                                       |       |      |                                       |                                        |                |                    | <u> </u> |                                                |          |                                       | ==                |          |
| 6800       |                                        |                                       | المع         | -:1:3     |                                       |           | <u> </u>           |          |            |                                       |       |      |                                       | _                                      |                |                    |          | <u>  ;                                    </u> |          | ••••                                  |                   |          |
| -          |                                        |                                       | for          |           |                                       |           |                    |          |            | · · · · · · · · · · · · · · · · · · · |       |      |                                       |                                        |                |                    |          | <u> </u>                                       |          |                                       |                   |          |
| ≈<br>44    |                                        |                                       | 13           | -         |                                       |           |                    | 1        |            |                                       |       |      | -                                     |                                        |                | 1                  |          |                                                |          |                                       |                   |          |
| à.         |                                        |                                       | <u> </u>     | 17        |                                       |           | ]                  |          |            |                                       |       |      |                                       |                                        | _              |                    |          |                                                |          |                                       |                   |          |
| 5400       |                                        |                                       |              | 17        |                                       |           |                    |          |            |                                       | 1     | =    |                                       |                                        |                |                    |          |                                                |          |                                       |                   | 111      |
|            |                                        |                                       |              | · · ·     | 1                                     |           | [ <u></u>          |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
|            |                                        |                                       |              |           | io.                                   |           |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
| 3 .<br>S   |                                        |                                       |              |           | -10-<br>,                             |           | IE.                |          |            | ;                                     |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
| 0          |                                        |                                       |              |           | 4 <u>-</u><br>1                       | -         |                    |          |            |                                       |       |      |                                       |                                        | -              |                    |          |                                                |          |                                       |                   |          |
| 2000       |                                        |                                       |              |           | ·                                     | A         |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          | 1                                              |          |                                       | <br>- · · · · · } |          |
| 7. N.      |                                        | · · · · · · · · · ·                   |              | -         |                                       | ۲۳        |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          | ,                                              |          |                                       | ·<br>             |          |
| n.         |                                        |                                       |              |           | 20                                    |           | <u>~</u>           |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
|            |                                        |                                       |              |           | <u> </u>                              | -         | ۇر<br>- <i>ك</i> ر |          |            |                                       |       |      | · · · · · ·                           |                                        |                |                    |          | 1                                              |          | :i<br>                                |                   |          |
| 7100       |                                        |                                       |              |           |                                       |           |                    |          | - {        |                                       |       |      |                                       |                                        |                |                    |          |                                                |          | <u> </u>                              |                   |          |
|            |                                        |                                       |              |           |                                       |           |                    | <u>}</u> | 1          |                                       |       |      |                                       |                                        | -4. <u>-</u> - | -                  |          |                                                | <u> </u> |                                       |                   |          |
|            |                                        |                                       |              |           |                                       | · · · · · |                    |          |            |                                       | ·<br> |      |                                       |                                        |                | - [ <sup>1</sup> ] |          | · · · · · ·                                    |          |                                       |                   |          |
| -          |                                        |                                       |              |           |                                       |           |                    | ×        |            |                                       |       |      |                                       |                                        |                |                    |          | <u> </u>                                       | · · · ·  | ,                                     |                   |          |
| 7200       |                                        |                                       |              | -         |                                       |           | · · · ·            |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          | ·                                     | -<br>             | ,        |
|            |                                        |                                       |              |           |                                       |           |                    | -        |            |                                       |       |      |                                       |                                        |                | 1                  |          | <u> </u>                                       | •<br>•   | 1 1                                   |                   |          |
| · .        |                                        |                                       |              |           |                                       | -         |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
| م<br>مى    |                                        |                                       |              |           |                                       |           |                    |          |            |                                       |       |      | ···· · · · ·                          |                                        |                |                    |          |                                                |          |                                       |                   |          |
| 7300       | -                                      |                                       |              |           |                                       |           |                    |          |            |                                       |       | -    |                                       | · · · · · · · · · · · · · · · · · · ·  | · [            |                    |          | <u> </u>                                       |          |                                       |                   |          |
|            | ······································ | ·····                                 |              |           |                                       |           |                    | 17.57    |            | · • • • •                             |       |      |                                       |                                        |                |                    |          |                                                |          |                                       | ·                 |          |
| ***        |                                        |                                       |              |           |                                       |           |                    |          | -          | 1                                     |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
| -          |                                        |                                       |              | 1         |                                       |           |                    |          | -          |                                       | 1     |      |                                       |                                        |                |                    | :        |                                                |          |                                       | · · · · · · ·     |          |
| 2400       |                                        |                                       |              | - 1       |                                       |           |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
| 7400       |                                        |                                       |              |           |                                       |           |                    |          |            |                                       |       |      |                                       |                                        |                | • }                | 1        |                                                |          |                                       |                   |          |
|            |                                        |                                       |              |           |                                       |           | <del>1.</del>      |          |            |                                       |       |      |                                       |                                        |                |                    |          | -                                              |          |                                       |                   |          |
|            |                                        |                                       |              |           | · · · · · · · · · · · · · · · · · · · | 1         |                    |          |            |                                       |       |      |                                       |                                        |                | -                  |          | 1                                              |          |                                       |                   |          |
|            |                                        |                                       | ••••<br>•••• | <u> </u>  |                                       |           |                    |          |            |                                       |       |      | · · · · ·                             |                                        |                |                    |          |                                                |          |                                       |                   |          |
|            |                                        |                                       |              |           |                                       | <u></u>   | <u></u>            | <u> </u> |            | 1                                     | 1     |      |                                       |                                        | -1-            |                    |          |                                                | <u> </u> |                                       |                   | <u>-</u> |
|            | ······                                 |                                       |              |           |                                       |           | ·····              |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                | <u></u>  | · · · · · · · · · · · · · · · · · · · |                   |          |
|            |                                        |                                       |              |           |                                       |           |                    |          | 1::.       | 1                                     |       |      | · · · · · · · · · · · · · · · · · · · | ······································ | 1              |                    | <u>.</u> |                                                |          |                                       | •<br>•            | ••••-    |
|            | · · · · · · · · · · · · ·              | <u></u>                               |              |           |                                       |           |                    |          |            |                                       |       |      |                                       |                                        |                |                    |          |                                                |          |                                       |                   |          |
| - A        |                                        |                                       |              |           |                                       |           |                    |          | -          |                                       |       | 27   | _                                     |                                        |                | _                  |          |                                                |          | 1 • •                                 |                   |          |
| ⊂ 20<br>74 | 200                                    | 30                                    | 00           |           | 3                                     | 100       |                    |          | 320        | U I                                   |       | 330  | 0                                     |                                        |                |                    | Pro      | SCU                                            | 120      | (bs                                   | .: ~              | }        |

| 0077                                   |                            |          |              |             | N            | <u>lar</u> | lin_                                  | A-          | 6       | Pale      | 000                                          | ene i      | Fr          | <u>_</u> _/  | Pre      | <u>ج</u> ک                            | ures                                  | -        |             | Ŀ                                      | Eigu                                  | re.          |
|----------------------------------------|----------------------------|----------|--------------|-------------|--------------|------------|---------------------------------------|-------------|---------|-----------|----------------------------------------------|------------|-------------|--------------|----------|---------------------------------------|---------------------------------------|----------|-------------|----------------------------------------|---------------------------------------|--------------|
|                                        |                            |          | Å            |             | . • <u>1</u> |            |                                       |             |         |           |                                              | 1::=[=-    |             |              | <u>.</u> |                                       |                                       | 11       | um          | berge                                  | - Pr                                  | -1-          |
|                                        |                            |          |              |             |              |            |                                       |             |         |           |                                              |            |             |              |          | <u> </u>                              |                                       |          |             | N.                                     | 1                                     |              |
| •                                      | in it                      | <u> </u> |              |             |              | 0          | · · · · · · · · · · · · · · · · · · · |             |         |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
|                                        |                            |          |              |             |              | 1          | <br>- : : .                           |             |         |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
| 7800                                   |                            | =        |              |             | <u>  :</u>   | }<br> 7    | 0                                     |             |         |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
|                                        |                            |          |              |             |              |            | 1                                     |             |         |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
|                                        |                            |          |              |             |              |            | _ <u>}</u> _                          |             |         |           |                                              |            |             |              |          |                                       | <u></u>                               |          |             |                                        |                                       |              |
|                                        |                            |          |              |             |              |            |                                       | 3           |         |           |                                              | <u>+</u> ] |             |              |          |                                       |                                       |          |             |                                        | =                                     | <u>.</u>     |
| 900                                    |                            |          |              | <u>.</u>    |              |            | - 1                                   | 3           |         |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
| · · ·                                  |                            |          |              |             |              |            |                                       | 10          |         |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
| and<br>S                               |                            |          |              |             |              |            | · · · · · ·                           | <u> </u>    | π       |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       | t.           |
| M                                      |                            |          |              |             |              |            |                                       | 1           | 13      |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
| 22 28000<br>22 28000                   |                            |          |              |             |              |            |                                       | -           | 12      |           |                                              |            |             |              |          |                                       |                                       |          |             | =                                      |                                       | -            |
| . IONAL                                |                            |          |              |             |              |            |                                       |             |         | 5         | *****                                        |            |             |              |          |                                       | ·····                                 |          | -           |                                        |                                       |              |
| No.                                    |                            |          |              | _           | ·            |            |                                       |             |         | <u>ir</u> |                                              |            |             |              |          |                                       |                                       |          |             |                                        | <u></u>                               |              |
| E F                                    |                            |          |              |             |              |            |                                       |             | -       | · · · · · |                                              |            |             | <br>         |          |                                       |                                       | 1        |             |                                        |                                       |              |
|                                        |                            |          |              |             |              |            |                                       |             |         |           |                                              |            |             |              |          |                                       |                                       | <u> </u> |             | ···· • • • • • • • • • • • • • • • • • | 1                                     |              |
| 018100                                 |                            |          |              |             |              |            |                                       |             |         | /         | \                                            |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
| ()                                     |                            |          |              |             |              |            |                                       |             |         |           | ₩                                            |            |             |              |          |                                       | · · · · · · · · · · · · · · · · · · · |          |             |                                        |                                       | · • •        |
|                                        |                            |          | YK           |             | 1            |            |                                       |             |         |           | <u>;;                                   </u> |            |             |              |          |                                       | ·                                     |          |             |                                        |                                       |              |
|                                        |                            | • • •    | Ca.          |             |              |            | !                                     |             |         |           | <u> </u>                                     | \_m3       |             |              | <u>.</u> |                                       |                                       |          | -           |                                        |                                       |              |
| 82.00                                  |                            | 5        | ain          | dS          |              |            |                                       |             |         | -         |                                              |            |             |              |          |                                       | ·                                     |          | -           |                                        | -                                     | -            |
| -                                      |                            |          |              | _           |              |            |                                       |             |         |           |                                              |            |             |              |          | · · · · · · · · · · · · · · · · · · · |                                       | 1        |             |                                        |                                       |              |
|                                        |                            |          |              |             | -            |            |                                       |             |         |           | +                                            |            |             |              |          | Ì                                     | <br>                                  |          |             |                                        |                                       |              |
| ·                                      |                            | : 1      |              |             |              |            |                                       |             |         |           |                                              | <u> </u>   | 1           |              |          |                                       | ·                                     |          |             |                                        |                                       |              |
|                                        |                            |          | ·····        |             |              |            |                                       |             |         |           |                                              |            | \           |              |          |                                       | <b>-</b>                              |          |             |                                        |                                       | •            |
|                                        |                            | = -      |              |             |              |            |                                       |             |         |           | 1                                            |            | <u> </u>    |              |          |                                       |                                       | <u>.</u> | 1.1.1       |                                        | · · · · · · · · · · · · · · · · · · · | • • • • • •  |
| F-7,                                   |                            |          |              |             |              |            |                                       |             |         |           |                                              |            | ₩           | ·            |          | · •                                   |                                       |          |             |                                        |                                       | :<br>        |
|                                        | 1                          |          |              |             |              |            |                                       | · · · · · · |         |           |                                              |            |             | <u>ا ا ا</u> |          |                                       | · · · · · · · · · · · · · · · · · · · |          |             |                                        |                                       |              |
|                                        |                            |          |              | +           |              |            |                                       |             |         | -         |                                              |            | · · · · · · | $\sum$       |          |                                       | ·····                                 |          |             |                                        |                                       | 1            |
| De/H, (FH)                             |                            |          |              |             |              |            |                                       |             |         |           |                                              |            |             | <u> </u>     |          |                                       |                                       |          |             |                                        |                                       |              |
|                                        | 2                          |          |              |             |              |            |                                       |             |         |           | 1                                            |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
| Seq.                                   | 1                          |          |              | ·  <br>     |              |            |                                       |             |         |           |                                              |            | 1           |              |          |                                       |                                       |          | in the last |                                        |                                       |              |
| sqn                                    |                            |          |              |             |              |            |                                       |             |         |           |                                              |            |             | <br>i        |          |                                       |                                       | ·        |             |                                        | l                                     |              |
| S u                                    |                            | .A-      | 60           | <i>5</i> 77 |              |            |                                       |             |         |           |                                              |            |             |              |          | <b>}</b>                              |                                       |          |             | 11                                     |                                       |              |
| 8 500                                  | <del>, 1</del> 1: <u>1</u> |          | <u>99</u> 10 | 1           |              |            |                                       |             |         |           |                                              |            | 1 -         |              |          | <b>)</b> .                            |                                       | Ror      | OVC         | - [] <sup>11</sup><br>red C            |                                       |              |
|                                        |                            |          | <u> </u>     |             | <u> </u>     |            |                                       |             |         |           |                                              |            |             |              |          | _                                     | <u>.</u>                              | 1        |             |                                        |                                       | <sup>1</sup> |
|                                        |                            |          |              |             | ·····        |            |                                       |             |         |           |                                              |            |             |              |          |                                       |                                       |          |             | ·····                                  |                                       |              |
|                                        | · <del>•</del> •••• • ÷••• |          | - i -        |             | 1            |            |                                       | =           |         |           |                                              |            |             |              |          |                                       |                                       |          |             |                                        |                                       |              |
| 8600                                   |                            |          |              |             | <u> </u>     |            |                                       |             |         |           |                                              |            |             |              |          | /                                     | <u> </u>                              |          |             |                                        |                                       |              |
| •                                      | <u> </u>                   |          | ·· _         |             |              | : . [      |                                       |             |         | . (*****  |                                              |            |             |              |          |                                       | · · · · · · · · · · · · · · · · · · · |          |             |                                        |                                       | ł            |
|                                        |                            |          |              | 11          | .==          |            |                                       |             |         |           |                                              |            |             |              |          |                                       |                                       | N.       |             |                                        |                                       | ."           |
|                                        |                            |          |              |             |              |            |                                       |             |         |           |                                              |            | · · · · · · |              |          |                                       |                                       |          |             |                                        |                                       |              |
|                                        |                            |          |              | -           |              |            |                                       |             |         |           |                                              |            | <br>        |              |          |                                       |                                       |          |             |                                        |                                       |              |
| PAC 3                                  | 300                        |          |              | 34          | 00           |            |                                       | 350         |         |           | _                                            | 500        | <u></u>     | 37           | _        |                                       |                                       | 00       |             |                                        |                                       |              |
| 10,74                                  |                            |          |              |             |              |            |                                       |             |         |           |                                              | -          |             |              |          |                                       |                                       |          |             | -                                      | Pre                                   | 22 L         |
| ا ما چې ديو ما وليو دي دهن د مه د<br>م | · · • • •                  | · · .    | •••••        | -           |              |            |                                       | ~ • • • •   | <b></b> | •         | . <b>.</b> .                                 |            |             |              |          |                                       |                                       |          |             | ۰.                                     |                                       | •            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | Λ                                     |                  | -                  | •              | <u>e</u>                              |                  |            |           | ç                 | 2                    |                                        | • -                                   |                                         |            |            |                                       |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|------------------|--------------------|----------------|---------------------------------------|------------------|------------|-----------|-------------------|----------------------|----------------------------------------|---------------------------------------|-----------------------------------------|------------|------------|---------------------------------------|--------------|
| 70007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>]//(</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ar lin_                                | <u>//-</u>                            | <u>)_4</u>       |                    |                |                                       |                  |            |           |                   |                      |                                        | ires                                  |                                         | 1          |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\left( \frac{1}{1} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·  | <u> </u>                              |                  |                    | <u>.</u>       |                                       | _                |            | eger      | 1                 |                      |                                        | O Ar                                  |                                         |            |            |                                       | , <b>-</b> • |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲۱<br>[اد]                             | · · · · · · ·                         |                  |                    |                |                                       |                  |            |           |                   |                      | 1                                      | <u> s</u> 'Sc                         | hlun                                    | лbе        | rger_      | Pressi                                | ) Y (        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | <u>''T</u> !!<br>! |                |                                       |                  |            |           |                   |                      |                                        |                                       | 11                                      | :          |            |                                       |              |
| 7200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16 (Not Full                           | Lhame                                 | ecr ( )          |                    |                |                                       |                  |            |           |                   |                      |                                        |                                       |                                         | - <u> </u> |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \ىن                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                       |                  |                    |                | <u> </u>                              |                  |            |           |                   |                      |                                        |                                       |                                         |            |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                                       |                  |                    |                |                                       |                  |            |           |                   |                      |                                        |                                       |                                         |            |            |                                       |              |
| Ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | The second secon |                                        | -                                     |                  | <u> </u>           |                |                                       |                  |            |           |                   |                      |                                        |                                       |                                         |            |            |                                       |              |
| 7400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | <u> </u>           |                |                                       |                  | ·          |           |                   |                      |                                        |                                       |                                         |            |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CE                                     |                                       | Grad             | lien               | (              | ).04                                  | PS1              | FT_        |           |                   |                      |                                        |                                       |                                         |            |            |                                       |              |
| <b>U U</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                       |                  |                    |                |                                       |                  | - [        |           |                   |                      |                                        |                                       |                                         |            | ;          |                                       |              |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/                                     |                                       |                  |                    |                |                                       |                  |            |           |                   |                      |                                        |                                       |                                         |            |            |                                       | • •          |
| ×<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | ļ=                 |                |                                       |                  |            |           |                   |                      |                                        |                                       |                                         | : <u></u>  |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |                                       | 1                |                    |                | 13.51                                 | 12               | <br>≤⊧∕.,  |           |                   | . 4                  | المد                                   | ime                                   | . du                                    | hick       | .2 .       | 1                                     |              |
| in the second se |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - R                                    |                                       |                  |                    |                | Y                                     |                  |            | incr      | с <i>д</i> ус<br> | - 1-                 | W 1.1 F                                | ·                                     |                                         |            |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>2</u> 1<br>F1                       | مرحمہ اللہ ا                          |                  |                    |                |                                       |                  | · · · ·    |           |                   |                      | •                                      |                                       |                                         |            |            |                                       |              |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | <br>               |                |                                       |                  | $\tilde{}$ |           |                   |                      |                                        |                                       | · • • • • • • • • • • • • • • • • • • • |            | Turr       |                                       |              |
| 7800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.</u>                               |                                       |                  |                    |                |                                       |                  |            |           | 1                 |                      |                                        |                                       |                                         |            | Ga         |                                       |              |
| 2 C. Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·  |                                       |                  |                    |                |                                       | 11               |            | -         |                   |                      |                                        |                                       |                                         |            | Sau        |                                       |              |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <u> </u>                              |                  |                    |                |                                       |                  |            |           | ·                 |                      |                                        |                                       |                                         |            |            | 1                                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | -                  |                |                                       |                  |            |           |                   |                      |                                        |                                       |                                         |            |            |                                       |              |
| 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | 10                 |                |                                       |                  |            |           |                   |                      | -<br>                                  | ·                                     |                                         |            |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·  |                                       |                  |                    |                |                                       |                  |            |           |                   |                      |                                        | <u> </u>                              |                                         | 1 :<br>    |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | (                  | 1              |                                       |                  |            |           |                   | <b>:</b>             |                                        |                                       |                                         | <u>.</u>   |            |                                       |              |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  |                    |                |                                       |                  |            |           |                   |                      |                                        | · · · · · · · · · · · · · · · · · · · |                                         |            |            |                                       |              |
| E200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | 1.                 |                |                                       | - 1<br>- r=1     | 7          |           |                   |                      |                                        |                                       |                                         |            |            | 1                                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  |                    |                |                                       | لمينيا           | •:         | 1         |                   |                      |                                        |                                       |                                         | · · · ·    |            |                                       |              |
| - ' · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | <br> <br>        |                    | N. 1<br>1 N. 1 |                                       |                  |            |           | ·<br>· · · · · ·  | L                    | •••••••••••••••••••••••••••••••••••••• |                                       |                                         | :          |            | , , , , , , , , , , , , , , , , , , , | -<br>-       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | · · · · · · · · · · · · · · · · · · · |                  | િર્દ્              | Ð,             | · · · · · · · · · · · · · · · · · · · |                  |            |           |                   |                      | · · · ·                                |                                       |                                         | ·          | ···· ··· · |                                       |              |
| 84-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <u> </u>                              | f F267<br>155227 | -<br>14            |                |                                       | T4-              |            |           |                   |                      |                                        |                                       |                                         |            | <u>.</u>   | À                                     |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  |                    |                | ! <u>\</u>                            |                  |            |           |                   |                      |                                        |                                       | +                                       |            | A-6        | 0;]                                   |              |
| <b>`</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  |                    | - <b>?</b> -   |                                       |                  |            |           |                   |                      |                                        |                                       |                                         |            | Sa         | nd                                    | <u> </u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  |                    |                | <u>1</u> 13                           | <u>.</u>         |            |           | · · ·             | ; .<br>              | 1                                      |                                       |                                         |            |            | ¥                                     | · · ·        |
| 0100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | -                  | -              | · · · · · · · · · · · · · · · · · · · | $\sum_{i=1}^{n}$ |            | $\odot$   |                   |                      |                                        |                                       | <br>                                    | 1          | <u>.</u>   |                                       | :            |
| 8600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | . 0                                   | !                | İ.                 |                | 1                                     | · · )            | Ū          |           |                   |                      | -                                      | 1                                     |                                         |            | 1          |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | 1                |                    |                |                                       |                  |            |           | ••••••            |                      | •                                      |                                       | -                                       |            |            |                                       | :            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | · · · ·                               |                  |                    |                |                                       |                  | , j        |           |                   | -                    |                                        |                                       | 1                                       |            |            |                                       | •            |
| 6 <b>5</b> • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       | 1                |                    |                |                                       |                  | \          |           |                   | 1                    | , <del></del>                          |                                       |                                         |            |            |                                       |              |
| \$E00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  |                    |                | -                                     |                  |            | 1         | •                 | <br>}                |                                        |                                       |                                         |            |            |                                       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  |                    |                |                                       |                  |            | <u>, </u> |                   |                      | · ·                                    | · · · · · · · · · · · · · · · · · · · |                                         | +          |            |                                       | <b>.</b>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | <u> </u>                              |                  |                    |                | <br>  :                               |                  |            |           |                   |                      |                                        |                                       | -                                       |            |            |                                       | : .          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································ |                                       |                  |                    |                |                                       |                  |            |           | ι<br>,            |                      |                                        |                                       |                                         |            |            |                                       | : - ·        |
| Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3100 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3,40                                   |                                       | <u>.</u>         | 360-0              | - 1            | 1                                     | 35               | 00         | <u></u>   | <u></u><br>4      | -0- <del>1</del> 070 | •                                      | 4 4                                   | +200                                    |            |            | 4.400                                 | ·            |
| 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |                  | -                  |                |                                       |                  |            |           |                   |                      |                                        | P                                     | ress                                    | 078        | e (p       | sig)                                  |              |
| n an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | · · · ·                               |                  |                    |                | · · ·                                 |                  |            |           |                   |                      |                                        |                                       |                                         | •          |            |                                       | •            |

|   | SUE      | IE            | <u> </u> |          |            |            |          |            |                                              |          |                |             | FR                 |              | <u>q v</u>             | YC                                    |             | >        | _                 |          | DA            | TE             |                     |              | DE        | 2A6           | TM                                           | EN         | T            |            |                    | -          | PAC           | <u>SE</u>  |
|---|----------|---------------|----------|----------|------------|------------|----------|------------|----------------------------------------------|----------|----------------|-------------|--------------------|--------------|------------------------|---------------------------------------|-------------|----------|-------------------|----------|---------------|----------------|---------------------|--------------|-----------|---------------|----------------------------------------------|------------|--------------|------------|--------------------|------------|---------------|------------|
|   | 306      |               |          |          |            |            |          |            |                                              |          | N              | 12          | -12                | <br>         | _ 4                    | -                                     | P           | 10       | ~~                |          |               | F              | 17                  | -            | D.        |               |                                              |            | e            |            |                    |            |               | -          |
|   |          |               | 60       | 0-0-     | ᠈᠆         |            |          |            | <b>1</b>                                     | 1        | - <u>/'</u>    | 10          | <u>r. 1</u>        | <u></u>      | {<br>{                 | <u>ن حمد ا</u><br>ا                   | <u> </u>    | <u></u>  |                   | i        | <u></u>       | ÷              | ÷                   |              | <u></u> i | <u>ر</u><br>ا | 201                                          | <u></u>    | 2-           |            |                    |            | 1             |            |
|   | $\vdash$ | -+            |          |          |            |            |          |            | $\neg$                                       |          | $-\dagger$     |             |                    |              |                        | -+                                    |             |          |                   | {·       |               |                |                     |              |           |               |                                              |            |              |            | $\square$          |            |               |            |
|   |          |               |          |          |            |            |          |            | $\rightarrow$                                |          |                |             |                    |              |                        |                                       |             | .ر<br>ا  |                   |          | · ¦           | l              |                     |              |           |               | •                                            |            |              |            | $\vdash$           |            |               |            |
|   | $\vdash$ |               |          |          |            |            |          |            |                                              | -\-{     |                |             |                    |              |                        |                                       |             |          |                   |          |               | +              |                     |              |           |               |                                              |            |              |            | $\vdash$           |            |               |            |
|   |          | $\rightarrow$ |          |          |            |            |          |            |                                              | - 2      | $\lambda^{-1}$ | 51          | <b>-</b> -+        | <u>+</u> -6  | <u></u>                |                                       |             |          |                   |          | -+            |                |                     |              |           | ÷             |                                              |            |              |            | ┝─┥                |            |               |            |
|   |          |               |          |          |            |            |          | <u> </u>   |                                              |          | <u></u>        |             |                    |              |                        | -+                                    |             |          |                   |          | $\rightarrow$ |                |                     |              |           | į             |                                              |            |              |            |                    |            |               |            |
|   |          |               |          |          |            |            | <br>     |            |                                              |          |                |             |                    |              |                        |                                       | +           |          |                   |          |               |                |                     |              |           |               |                                              |            |              |            |                    | <br>       |               |            |
|   |          |               |          |          |            |            | ļ        | ļ          |                                              |          |                | <u>\</u>    |                    |              |                        |                                       |             |          |                   |          |               |                |                     |              |           |               |                                              |            |              | <u> </u>   | $\left  - \right $ | <u> </u>   |               |            |
|   |          |               |          |          |            |            | l        |            |                                              |          |                |             |                    |              |                        |                                       |             |          |                   |          | +             |                |                     |              |           |               |                                              |            | ļ            | ļ          |                    |            |               |            |
|   |          |               |          |          |            |            |          | ļ          |                                              |          |                | \           | 4                  |              |                        |                                       |             |          |                   |          | $\cdot$       |                |                     |              |           |               |                                              | ļ          |              | <u> </u>   | ļ                  | Ļ          |               |            |
|   |          |               | لم ا     | 50       | 0-         |            |          |            |                                              |          |                |             | Δ.                 |              |                        |                                       | j           |          |                   |          |               |                |                     |              |           |               |                                              | ļ          |              | L          |                    |            |               |            |
|   |          |               | 0.       |          | <b>~</b> - |            |          | i          |                                              |          |                |             | $  \rangle$        | 1            |                        |                                       |             |          |                   |          |               |                |                     |              |           |               |                                              |            |              |            |                    |            |               |            |
|   |          |               |          |          |            | ]          |          |            |                                              |          |                |             |                    | $\backslash$ |                        |                                       | Ì           |          |                   |          |               |                |                     |              |           |               |                                              |            |              |            |                    |            |               |            |
|   |          |               |          |          |            |            | Ī        |            | 1                                            |          |                |             | l                  |              |                        |                                       |             |          |                   |          |               |                |                     |              |           |               |                                              |            |              |            |                    |            |               |            |
|   |          |               |          |          |            | <b> </b>   | 1        | 1          |                                              |          |                |             |                    | <b></b>      |                        |                                       |             |          |                   |          |               |                |                     |              |           |               |                                              |            |              |            |                    |            |               |            |
|   |          |               |          | (        | İ          | 1          |          | ·<br>!     | İ                                            |          |                |             |                    |              | $\left  \right\rangle$ |                                       | 1           |          | j                 |          |               |                |                     |              |           |               |                                              |            |              | 1          | T                  |            |               |            |
|   |          |               |          | <br>     | -          | 1-         |          | <br>       |                                              | ;<br>i   |                | <br>        |                    | <br>         | /                      |                                       | <br>        |          |                   |          |               |                | i                   | 1            | <u> </u>  | <u> </u>      | 1                                            | <u> </u>   |              | 1          | 1                  | 1          | !             |            |
| 1 |          |               |          | 1        |            |            | <u> </u> |            | !                                            | <br>     | ¦              |             |                    |              | <br>!                  |                                       | ;           | <br>!    |                   |          |               |                | <u>↓</u><br>1       | <u> </u>     |           |               |                                              | 1          | İ            | !          | 1                  |            |               |            |
|   |          |               |          |          |            |            |          | - <b>i</b> | <u></u>                                      | ,<br>,   | <u> </u>       | 1           | <u>.</u><br>1      | ÷            |                        | Q                                     |             | -1       |                   | ₩"       | 5             | [              | <u> </u>            | +            | +         |               |                                              | -          | 1            |            | ÷;                 |            |               |            |
|   |          |               |          |          |            |            | -        | . <u> </u> |                                              |          | ;<br>          |             |                    | · ·          | <u> </u>               | <u>}</u>                              | $\setminus$ |          |                   |          |               |                |                     | +            |           |               |                                              | 1          |              |            | ·                  | <br>       | <br>          |            |
|   |          |               |          |          |            |            |          | ÷          |                                              | <u> </u> |                |             |                    | ;            | <u> </u>               | 1                                     | \           |          |                   |          |               |                |                     | +            |           |               | ÷                                            |            | <u> </u>     |            |                    |            |               |            |
|   |          |               | 70       | 00       | 0-         | .]         |          |            |                                              |          |                |             |                    | ;            | <u> </u>               | · · · · · · · · · · · · · · · · · · · |             | ;        |                   |          |               |                | <u>.</u>            |              |           |               |                                              |            |              |            |                    |            |               | <u>.</u>   |
|   |          | <b>Z</b>      |          |          |            |            | !<br>    |            |                                              | ļ        |                | !<br>       | !                  | ;<br>        | <u>.</u>               |                                       |             | 7-       |                   | <u> </u> |               | <u> </u>       |                     |              | ļ         |               | <u>;                                    </u> |            |              | +          | . <b> </b> -'      |            |               |            |
|   |          | 5_<br>W       |          | <u>í</u> |            |            |          |            | <u> </u>                                     |          | ļ              | <u> </u>    | ;<br>              |              | <br>                   |                                       |             |          |                   | <u> </u> |               | Ì              | <u>i</u>            |              | <u> </u>  | <u> </u>      | <u>.</u>                                     |            |              |            |                    | <u></u>    | :             | <u>i</u>   |
|   |          | 8-<br>2-      |          | <u> </u> | 1          |            | <u>.</u> |            | !                                            |          | L              |             |                    | !<br>        | ļ                      | ļ!                                    |             | )        | 1                 | ļ        | <br>          |                |                     | <br>         |           | ļ<br>,        | <br>                                         | .          | Ļ            |            |                    |            |               | !          |
|   |          | 5             |          |          |            |            | i.       |            |                                              | ا<br>ا   | Į              |             | :                  |              | i<br>                  |                                       |             | 0        | $\sum$            |          |               | <u> </u>       | :<br>               | <br>         |           |               | !                                            |            |              |            | <br>               |            |               | !          |
|   |          | 1-            |          |          |            |            | 1        |            | i                                            |          | !              |             |                    | !            |                        |                                       |             |          | 1 2               | \        |               |                | ļ                   |              |           |               | L                                            |            | 1            |            |                    | :<br>      | !             | :          |
|   |          | ų-            |          |          |            |            |          |            |                                              |          | ]              |             |                    | ;            |                        |                                       |             |          | ્ડ                |          | 1             |                |                     | ĺ            | :<br>     | [             | İ                                            |            |              | 1          |                    | :          | :             | :          |
|   |          | 7             |          | -        |            | -          | 1        |            |                                              |          |                |             |                    | 1            | ]                      |                                       |             |          |                   | 5/       |               |                | !                   | 1            |           | i             | Ì                                            | :          | 1            |            |                    | !          | i             | :          |
| - |          | F_            |          |          | 1          |            |          | 1          | 1                                            |          |                |             | 1                  |              |                        |                                       |             |          | 1                 | 7        | · · ·         |                | :                   |              |           |               | i                                            | 1          | 1            | ;          |                    |            | ;             | -          |
|   | -        | Щ             |          | <br>i    |            | -          |          |            | ÷                                            | 1        | 1              |             |                    | 1            | †                      |                                       |             |          |                   | 1.       | <u>}</u>      | Ξ,             | 3                   | 314-         |           | d             | i                                            | 1          | Î            | 1          | 1                  |            |               |            |
|   | <u> </u> | 2             |          | ;        | ļ          |            |          |            | İ                                            | 1        | 1              | <u> </u>    |                    |              | i                      |                                       |             |          | ·                 | İ        | 1-1           | (** * <b>*</b> | 1-                  | سلد ام.<br>ا |           | 1-1-          | 1                                            | 1          | ļ            |            | 1                  |            |               |            |
|   |          |               | 7.       | 50       | 0-         |            |          |            | <u> </u>                                     |          | ÷              |             |                    |              |                        |                                       |             |          |                   | <br>     | 10            | 5 V.           | 1 -                 |              |           | ;             | :                                            | 1          | 20           | nd:        | ent                |            |               | 31         |
|   |          |               |          |          |            | · ·        |          |            | <u>.</u>                                     |          |                |             |                    |              |                        | ·                                     |             |          |                   |          |               |                | 4-                  | ::===        | ب<br>:    |               |                                              |            | i<br>i       |            | 1                  |            |               | . <b>.</b> |
|   |          | <br>          | ;<br>;   |          |            | ·          | ÷—       |            | <u>.</u>                                     |          |                |             |                    |              | ;                      | <u>+</u>                              |             |          | <br>              |          |               | 0              |                     |              |           | ÷             |                                              |            |              |            | ÷                  |            | •             | :          |
|   | -        | !<br>         |          |          | <u>.</u>   | -          | <br>:    |            | +                                            | 1        | +              | <u> </u>    |                    |              | ÷                      | 1-                                    |             |          |                   |          | <u> </u>      | 1              | سر از .<br>مسر از . |              | <u></u>   |               |                                              |            | <u> </u>     | . <u>.</u> | - <u>-</u>         | <u>.</u>   | :             | <br>:      |
|   |          |               |          | <u> </u> |            | .          |          |            |                                              |          |                |             |                    |              |                        |                                       | <u> </u>    |          |                   |          | <u> </u>      |                | <u> </u>            | Y.           |           |               |                                              |            | _ <u></u>    | $\uparrow$ |                    | - <u>-</u> | <b>te e e</b> |            |
|   |          |               | <u></u>  | +        |            | 4          | į_       |            |                                              | <u> </u> |                |             | ÷                  | <u> </u>     |                        |                                       |             |          | ·                 |          | <u> </u>      |                |                     | 20           | Q         | -i=-1         |                                              | <u>⊦</u> ‡ | £            |            | $\dot{\sim}$       |            |               |            |
|   | ·        |               |          | <u> </u> |            |            |          |            |                                              | <u> </u> |                | !           | <u>.</u>           |              |                        |                                       |             | <u>.</u> |                   |          |               |                |                     | است          | ₩ (€)     | =             | 1)7=                                         | #-         | - <u>}</u> - |            | +                  | ÷          |               | <u>.</u>   |
|   |          |               |          | <u> </u> | <u> </u>   | -          |          |            |                                              | <u> </u> |                | ,<br>,      |                    |              | ÷                      | ;                                     | :<br>       | 1<br>    | <u> </u>          |          |               |                |                     | .7           |           | -6-           |                                              | <u></u>    |              |            | 干                  |            | ;             | <u>.</u>   |
|   |          | <br>          |          |          |            | _          | ;<br>;   |            | !<br>                                        | 1        |                |             |                    |              |                        |                                       | :           |          | <u>.</u>          |          |               | <u> </u>       |                     |              | -02       | ;             |                                              |            |              |            | +                  |            |               |            |
|   | ·        | <u> </u>      | <u> </u> | <u>i</u> | <br>       |            |          |            | <br>                                         |          | <u> </u>       | <br>        | <u> </u>           |              | <u> </u>               | ļ                                     |             | ¦        |                   |          |               |                | <u> </u>            | ÷            |           | 1-            | :<br>- <del></del>                           |            |              |            |                    |            | ;<br>         |            |
| · |          |               | م        | 800      | :<br>      |            |          |            | 1                                            |          |                | 1           |                    | !            | i                      | <u></u>                               | :<br>       | 1        |                   | <u> </u> |               | .              | <u>.</u>            |              |           | 11            |                                              |            |              |            | +                  | <u> </u>   | ;             |            |
|   |          |               |          | -        |            |            |          |            | 1                                            | l        |                | 1           | ;<br>              |              | 1                      | <u> </u>                              |             | i<br>    | !<br>             |          |               | ļ<br>          | <u> </u>            | -            |           | 2             | <u>\</u>                                     |            |              |            |                    | <u>+</u>   | . <b> </b>    | <u>.</u>   |
|   |          |               |          |          |            |            |          |            | -                                            |          | 1              |             |                    |              | I                      |                                       |             |          | !                 |          |               |                | ¦                   |              |           | 15            | 7                                            | 1          |              |            | Ĺ                  | :<br>      | !             | ;<br>_;    |
|   | i        | Ĩ             |          | Ī        | +          |            |          | 1          | ;                                            |          | 1              |             |                    | ;            | i                      |                                       | 1           |          |                   | i        |               |                | 1                   |              |           |               | Ì                                            | <u>\!</u>  | 1            | :          |                    |            |               |            |
|   |          | Ι             | i        | i        |            | -1         | 1        |            |                                              | ;<br>;   | 1              | :           |                    |              | 1                      |                                       |             |          | i                 | ļ        | 1             | Ī              |                     | 1            |           |               |                                              | 7          |              |            |                    |            |               |            |
|   |          | l             | 1        |          | <br>       | - -        |          |            |                                              | 1        | 1              |             |                    |              | ;<br>;                 | 1                                     | :           |          |                   | i        |               | i              |                     | 1            | ļ         | Γ             | 1                                            | 16         | 2            | e'ı T      | #                  | 3          |               |            |
|   |          |               |          | 1        | 2          | 50         | 20       | <br>:      | :                                            |          | 1              |             |                    |              | .3.                    |                                       | 0           | -        |                   |          | ł             | 1              | 1                   |              | 3.        | 50            | 5                                            | (          |              | 1          | 1                  |            |               |            |
|   | -        | <u>.</u><br>1 |          |          |            | - <u>;</u> |          |            |                                              |          |                |             | <br>77             | <br>(        |                        |                                       |             |          | D T               | - / /    | <br>          | <br>           |                     | 1-           | 1         | 1             |                                              |            | i            |            | -                  |            |               |            |
|   | -        |               |          | +        | +          |            | <u>-</u> | T          |                                              | ╧        |                |             | <u>يې مېر</u><br>د | <u> </u>     | <u>ل يب</u> ن<br>ا     | ir                                    | - <b></b>   | -        | <u>ر - م</u><br>ا | 1        | 1             |                | -                   | 1            | +         | 1-            | T                                            | 1          | Ì            |            | T                  |            | ;             | Ī          |
|   |          | $\vdash$      | -        |          | +          | 1          |          |            |                                              | <u> </u> |                |             |                    |              | <u>+</u>               | - <u> </u>                            |             | <u>+</u> | <u></u>           |          | +             | -              | 1-                  |              | <br>      | $\uparrow$    | +-                                           |            | ļ            | 1          | 1                  |            | !             |            |
|   | $\vdash$ | i<br>1        |          |          | 7 2        | 22         | ~        | <u> </u>   | <u>}                                    </u> | 101      | <u>/-</u>      | <u>19</u> _ | 73                 |              |                        | +                                     |             | <u>;</u> | ;                 | +        |               | +              | - <u> </u>          |              |           | +             | +-                                           |            | Ť            | +          | 1                  |            | <br>!         |            |
|   | Į        | !             | 1        | <u>.</u> |            |            | - ' -    |            | <u>ا</u>                                     |          | _!             |             |                    |              |                        | 4                                     |             |          |                   | .!       | ·             | <u> </u>       | -i                  |              | J         | .1            |                                              |            |              |            |                    |            |               |            |
|   |          |               |          |          |            |            |          | • .        | ••                                           | ~        |                |             |                    |              |                        |                                       |             |          |                   |          |               |                |                     |              |           |               |                                              |            |              |            |                    |            |               |            |



## SUMMARY

This report details the results of two suites of RFT's run in March/April 1985. Suite 1, run on March 29-31, 1985, investigated the interval 1575-2695 m KB; while Suite 2, run on April 15, 1985, re-tested the L-1.4.2 oil accumulation around 2620 m KB.

The objective of these tests was to investigate hydrocarbon shows seen in the logs and hence to delineate the Turrum L-1.4.2 oil reservoir and the overlying gas and oil reservoirs.

In general, comparison of the results of these tests with existing Turrum data confirms our current understanding of the Turrum field. Ten independent gas and gas/oil systems have been identified, seven of which have been intersected by previous wells. Figure 1 attached, shows the gas and oil systems identified using the RFT pressure data. The following is a brief summary of the hydrocarbon systems seen in the well logs and confirmed by RFT:-

## 1. L-1.1.1 (Gas/0i1)

A 2.50m net oil sand in the interval 2153.5m-2157.0m KB with an estimated oil column of 10m and an overlying gas cap of 10.75m net sand and 14m column.

## 2. L-1.1.2, L-1.1.3, L-1.2.1, L-1.2.3, L-1.3 (Gas)

Five independant gas systems in the interval 2180m-2520m KB with net sands varying between 0.75m and 17.00m and estimated gas columns varying between 51.5m and 125.5m.

#### 3. L-1.4.2 (Gas/0il)

A 5.50m net oil sand in the interval 2604.0m-2611.0m KB with an estimated oil column of 11m and an overlying gas cap of 12.00m net sand and 19m column.

## 4. Accumulations A, B (Gas)

Two independent gas systems in the interval 2008.Om-2115.Om KB with net sands of 7.5Om and 2.25m and estimated gas columns of 33m and 47m.

#### 5. Accumulation C (0il)

A 1.50m net oil sand in the interval 2619.0m-2621.0m KB with an oil column of 2m.

Note that accumulations A, B and C have not be intersected by previous wells drilled into Turrum.

#### RESULTS AND DISCUSSION

The results of these tests are documented in the following attachments:

| Table 1     | Hydrocarbon Accumulations Confirmed by RFT |
|-------------|--------------------------------------------|
| Table 2     | RFT Pretests                               |
| Table 3     | RFT Samples                                |
| Figure 1    | Turrum-3 RFT Plot (Overview)               |
| Figures 2-8 | Turrum-3 RFT Plots (By Accumulation)       |

Notes

Martin Strates

1. A water line of gradient 1.43 psi/m has been drawn throughout pretests 1/1, 1/2, 1/3 and 1/28. This water line applies from 2000m KB to the bottom of the log interval. Above 2000m KB the pretest points stagger progressively further to the left. No hydrocarbons were found in this upper section of the well. The original Gippsland aquifer gradient of 1.42 psi/m plots between 20 and 25 psi to the right of the 1.43 gradient in the lower section of the well. Above 2000m KB the drawdown relative to the original gradient increases from 40 psi at 1950m KB to 110 psi at 1550m KB.

First Survey

- 2. Unless otherwise stated, all contacts quoted in this report are based on RFT pressure data and the water line in (1) above.
- 3. The gas gradients used in this report are based on an average gas density of 0.1921 gm/cc reported in the reservoir data book, corrected for P, T and Z using the 'PYLD' program.
- 4. This report assumes that there are no oil legs at the base of the gas-only columns intersected by this well.

5. KB to SS is -21m.

Suite 1

Suite 1 investigated the interval 1575.0-2695.0 m KB. In the 9 RFT runs made, 54 pretests were successful and 7 sampling runs were completed. Run 2 was aborted because of poor hole conditions and a wiper trip carried out prior to starting run 3.

The main results are illustrated in Figure 1. A discussion of these results follows:

1. <u>L-1.1.1 (Gas/0i1)</u> - Figure 2

This accumulation has a GOC at 2153.5 m KB and an OWC at 2163.5 m KB. The GOC is interpreted from logs. This, in turn, implies a gas column of 14 m and an oil column of 10m. RFT 7/52 taken at 2156.5m KB, sampled one litre of oil from the 10.4 litre container.

The above quoted GOC and OWC are in some doubt as only one pretest was taken in each of the gas, oil and water zones at this depth. Using an oil gradient of 0.90 psi/m through pretest 1/29 gives the quoted OWC at 2163.5m KB. Log interpretation indicates water as high as 2160.3m KB. Given that pretest 1/29 is valid, it is concluded that the OWC for this oil leg is down-structure from the well location and that pretests 1/28 and 1/29 are not in direct communication. Should pretest 1/29 be invalid the OWC would then be inferred from the logs at between 2157.3 and 2160.0m KB and the oil column reduced to between 3.8m and 6.5m. The GOC is arbitrarily picked at 2153.5m KB (in the middle of a dolomite) from the logs given that gas is interpreted as low as 2153.0m KB and oil as high as 2154.2m KB. This interpretation is in conflict with pretest 1/30 in the gas. Assuming the log interpretation is correct, this puts pretest 1/30 I.5psi to the right of the gas line.

2. L-1.1.2 (Gas) - Figure 3

Pretests 1/25, 1/26 and 1/27 lie roughly on the same 0.28 psi/m gas gradient and are therefore reported as being in the same system with a single GWC at 2272 m KB. The well intersected 7.25m of net sand and the column is estimated at 91.0m.

The dolomitic sections seen in the logs appear to be contributing to the spread of pressure data and hence also to the difficulties in interpreting that data. The sands in which the above three pretests were taken could be independent resulting in three gas columns with separate GWC's.

3. L-1.1.3 (Gas) - Figure 4

Children in which the state of the

ł

Again, assuming pretests points 1/21 and 1/23 are part of the same system, a GWC is interpreted at 2408 m KB. The well intersected only 0.75m of net sand although the gas column is estimated at 110m.

Both tests 1/21 and 1/22 were taken in a siltstone and 1/22 has been neglected as tight. A gas gradient of 0.29 psi/m can be drawn through 1/21 and 1/23 hence the assumption of a single system. Four attempts were made to obtain a sample in the siltstone between 2319m and 2332m KB, but each of these attempts was unsuccessful because of the tight formation.

They are a share that a far the stand

.../3

4. L-1.2.1 (Gas) - Figure 4

Using a gas gradient of 0.29 psi/m through pretests 1/19 and 1/20 gives a GWC at 2431.0m KB. The well intersected 2.25m of L-1.2.1 net sand and the gas column is estimated at 90m.

- 1 -

5. L-1.2.3 (Gas) - Figure 5

Pretests 1/15, 1/16 and 1/17 define a gas system with a GWC at 2474.0m KB; assuming a gradient of 0.30 psi/m. 15.25m of L-1.2.3 net sand was intersected with an estimated 51.5m gas column. Sample 5/46 at 2442.0m KB recovered 43.4cf of gas in the 10.4 litre chamber after the contents of the 22.7 litre chamber were lost while opening.

6. L-1.3 (Gas) - Figure 6

This gas system, identified by a 0.31 psi/m gas gradient through pretests 1/11, 1/12 and 1/13 has a GWC at 2615 m KB and a 125 m gas column. 17m of L-1.3 net sand was intersected.

Pretests 1/8, 1/9 and 1/10 may be in gas sands which are in communication with this system but this conclusion cannot be confidently drawn because the pressure data from these pretests has been affected by the dolomitic sands with possible supercharging. These sands are protected above and below a series of coals further decreasing the possibility of communication. Sample 4/45, taken from the same sand as pretest 1/8, recovered 138.5 cf of gas and one litre of condensate. The 10.4 litre chamber was preserved for analysis of the gas.

L-1.4.2 (Gas/0il) - Figure 7

The L-1.4.2 is the major Turrum oil reservoir. The RFT pressure data for this system indicates a GOC at 2604.0m KB and an OWC at 2615.0m KB. The well logs indicate a dolomitised section from 2597 to 2611m KB and a shale section from 2611 to 2619m KB and consequently provide no useful contact information. The GOC is in agreement with interpretation of previous Turrum wells. The L-1.4.2 OWC has not been positively logged in any of the wells drilled into Turrum. The predrill prediction of between 2617 and 2625m TVDKB was based on low proved oil and high proved water in the previous wells. The RFT interpreted OWC at 2615m TVDKB is 2m shallow of this range and may indicate an areal variation in OWC. Note that pretest 1/4 at 2621.5m TVDKB was taken in the small independent oil sand discussed in 10. below.

The well intersected 5.5m of net oil sand and 12m of net gas sand. The oil and gas columns are estimated at 11 and 19m respectively. Sample 3/44, taken at 2609.5m KB, recovered 5.25 litres of 38° API oil and 25.2cf of gas. The 3.7 litre chamber was preserved for analysis.

8. Accumulation A (Gas) - Figure 8

Pretests 34 and 35 are in net gas sands of 1.0 and 6.5m respectively. Assuming the two sands are in communication and conservatively drawing a gas gradient through the shallow pretest point (35) yields a GWC at 2041m KB.

9. Accumulation B (Gas) - Figure 2

こう うちちょう ちょうえきょう うちょう

Pretests 32 and 33 are in small net gas sands of 0.5 and 1.75m respectively. As for Accumulation A above the sands are assumed in communication and a gas gradient of 0.27 psi/m through 33 results in a GWC at 2150m KB.

12,00

10. Accumulation C (0il)

A 1.50m net oil sand is interpreted from log and sample information. The OWC is interpreted from logs at 2621m KB with a 2m oil column. RFT pressure data infers the presence of hydrocarbons but provides conflicting contact information. Pretest 1/4 is therefore ignored in the OWC interpretation.

Sample 8/55 at 2619.5m KB recovered a scum of oil in the 22.7 litre containers and 0.1 litres of oil in the 10.4 litre container. Sample 9/56 at 2619.8m KB recovered 21.4 and 9.4 litres of filtrate and scums of oil in the 22.7 and 10.4 litre containers respectively. Sample 9/56 was the only run of Suite 2, and was used to check the results of sample 8/55.

.

2

. .

....

APT AN ANALYSIA

÷

÷.

## Suite 2

(2477f:2-5)

こうちょう 大きないたいのかいしょう しきっちょう

Suite 2 was used to re-sample the possible oil column at 2619-2621 m KB following the confusing data obtained from sample 8/55 at 2619.6 m KB. The results of this re-sample are discussed in Suite 1 above under heading 10 - Accumulation C (0i1).

|   | • |  |
|---|---|--|
| • |   |  |
|   |   |  |
|   |   |  |

# and an an an an an an an an an

a san ike talipini

•

and the last star strategy

.

TABLE

TURRUM-3

...

#### HYDROCARBON ACCUMULATIONS CONFIRMED BY RET

| Accumulation    | Top of<br>Accumulation<br>(m KB) | Base of<br>Accumulation<br>(m KB) | GOC<br>(m KB) | GWC<br>(mKB) | OWC<br>(m.KB) | Column<br>(m) | Not Sand<br>(m) | Comments                                      |
|-----------------|----------------------------------|-----------------------------------|---------------|--------------|---------------|---------------|-----------------|-----------------------------------------------|
|                 |                                  |                                   |               |              |               |               |                 | <u>, , , , , , , , , , , , , , , , , , , </u> |
| L-1.1.1 (a) Gas | 2139.5                           | -                                 | 2153.5        | -            | -             | 14.0          | 10.75           | GOC by logs.                                  |
| (P) 0[1         | -                                | 2157.0                            | 2153.5        | -            | 2163.5        | 10.0          | 2.50            | GOC by RFT and logs                           |
| L-1.1.2         | 2181.0                           | 2203.0                            | -             | 2272.0       | -             | 91.0          | 7.25            | )                                             |
| L-1.1.3         | 2300.0                           | 2332.0                            | -             | 2408.0       | -             | 110.0         | 0.75            | )                                             |
| L-1.2.1         | 2341.0                           | 2353.0                            | -             | 2431.0       | -             | 90.0          | 2.25            | ) GWC by RFT                                  |
| L-1.2.3         | 2422.0                           | 2442.3                            | -             | 2474.0       | - ,           | 51.5          | 15.25           | )                                             |
| L-1.3           | 2490.0                           | 2522.0                            | -             | 2615.0       |               | ~ 125.5       | 17.00           | )                                             |
| L-1.4.2 (a) Gas | 2585.0                           | -                                 | 2604.0        | -            |               | 19.0          | 12.00           | GWC by RFT                                    |
| (b) O[]         | -                                | 2611.0                            | 2604.0        | -            | 2615.0        | 11.0          | 5,50            | OWC by RFT                                    |
| A. Gas          | 2008.0                           | 2023.0                            | -             | 2041.0       | -             | 33.0          | 7,50            | GWC by RFT                                    |
| B. Gas          | 2105.0                           | 2115.0                            | -             | 2150.0       | -             | 47.0          | 2.25            | GWC by RFT                                    |
| C. 011          | 2619.9                           | 2621.0                            | -             | -            | 2621.0        | 2.0           | 1.50            | OWC by logs                                   |

**1** 

.

•

:

...

\*Accumulations A, B and C have not been correlated with units seen by previous wells.

•

(2477f)

,

# TURRUM-3 RFT PRETEST RESULTS (KB 21 m Above Sea Level)

|                                                                                                                                                                                                                                                                                     | <u>(m KB)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pressure<br><u>HP (psig)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Comments                                                                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| 1/1<br>1/2<br>1/3<br>1/4<br>1/5<br>1/6<br>1/7<br>1/8<br>1/9<br>1/10<br>1/11<br>1/12<br>1/13<br>1/14<br>1/15<br>1/16<br>1/17<br>1/18<br>1/19<br>1/20<br>1/21<br>1/22<br>1/23<br>1/24<br>1/25<br>1/26<br>1/27<br>1/28<br>1/29<br>1/30<br>1/31<br>1/32<br>1/33<br>1/34<br>1/35<br>1/36 | 2695.2         2644.3         2635.0         2621.5         2595.2         2587.7         2551.5         2562.2         2518.0         2502.8         2491.5         2475.5         2475.5         2475.5         2475.7         2350.4         2331.1         2320.0         2301.3         2266.8         2201.0         2189.9         2181.2         2162.5         2152.5         2144.0         2105.0         2008.4         1971.4         1810.0 | $\begin{array}{r} 3843.2 \\ 3770.9 \\ 3757.7 \\ 3740.4 \\ 3723.1 \\ 3714.4 \\ 3712.9 \\ 3719.4 \\ 3719.7 \\ 3716.3 \\ 3699.1 \\ 3692.6 \\ 3690.2 \\ 3579.7 \\ 3519.5 \\ 3517.0 \\ 3517.0 \\ 3511.5 \\ 3472.1 \\ 3441.8 \\ 3439.3 \\ 3410.5 \\ 3472.1 \\ 3441.8 \\ 3439.3 \\ 3410.5 \\ 3415.1 \\ 3442.1 \\ 3441.8 \\ 3439.3 \\ 3410.5 \\ 3415.1 \\ 3441.8 \\ 3439.3 \\ 3213.2 \\ 3213.2 \\ 3216.0 \\ 3082.6 \\ 3077.8 \\ 3076.6 \\ 3064.5 \\ 3052.9 \\ 2907.4 \\ 2899.7 \\ 2828.4 \\ 2559.7 \\ \end{array}$ | Supercharged<br>Supercharged<br>Supercharged                                                     |  |
| 1/37<br>1/38<br>1/39<br>←≁)1/40<br>1/41<br>1/42                                                                                                                                                                                                                                     | 1694.5<br>1631.0<br>1585.0<br>1582.5<br>1579.0<br>1575.5                                                                                                                                                                                                                                                                                                                                                                                                  | 2362.5<br>2254.4<br>2176.0<br>2172.5<br>2167.9<br>2162.4                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |  |
| 2/                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aborted for Wiper Trip                                                                           |  |
| -≫ 3/43<br>3/44                                                                                                                                                                                                                                                                     | 2606.5<br>2609.5                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3721.5<br>3722.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample                                                                                           |  |
| 4/45                                                                                                                                                                                                                                                                                | 2551.5                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3721.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample                                                                                           |  |
| 5/46                                                                                                                                                                                                                                                                                | 2442.0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3518.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample                                                                                           |  |
| → 6/47<br>→ 6/48<br>→6/49<br>→6/50<br>6/51                                                                                                                                                                                                                                          | 2331.0<br>2330.7<br>2331.2<br>2319.5<br>1579.0                                                                                                                                                                                                                                                                                                                                                                                                            | 3406.1<br>3401.8<br>3435.3<br>3401.1<br>2164.9                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tight, Sample Attempted<br>Tight, Sample Attempted<br>Tight<br>Tight, Sample Attempted<br>Sample |  |
| 7/52                                                                                                                                                                                                                                                                                | 2156.5                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3078.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample                                                                                           |  |
| ≫ 8/53<br>8/54<br>8/55                                                                                                                                                                                                                                                              | 2618.4<br>2604.3<br>2619.6                                                                                                                                                                                                                                                                                                                                                                                                                                | 3729.9<br>3742.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tight<br>Tight, Sample Attempted<br>Sample, Supercharged?                                        |  |
| lite 2                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |  |
| 9/56                                                                                                                                                                                                                                                                                | 2619.8                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3738.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample                                                                                           |  |
|                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                  |  |

t \_;

#### TABLE 3

## TURRUM-3 RFT SAMPLES

# فكوجب يؤمنه المرادرة والمراجر والمراجر المراجع والمراجع

and the second states and

|                                       |                      |                 |                        |                       |                       |                                 | Sample                        | Sa                                    | mple Con          | tents        |              |                                                                      |
|---------------------------------------|----------------------|-----------------|------------------------|-----------------------|-----------------------|---------------------------------|-------------------------------|---------------------------------------|-------------------|--------------|--------------|----------------------------------------------------------------------|
| · · · · · · · · · · · · · · · · · · · | RFT Dept<br>No. (m K |                 | Chamber<br>Size<br>(L) | Choke<br>Size<br>(mm) | Fill<br>Timo<br>(mln) | Sample<br>SI Pressure<br>(psla) | Surface<br>Pressure<br>(pslg) | Gas<br>(ft <sup>3</sup> )             | 011<br>(L)        | Water<br>(L) | Cond.<br>(L) | Comments                                                             |
|                                       | Sulte I,             | 29/3/85-31/3/85 | , 1575-269             | 95 m KB               |                       |                                 |                               |                                       |                   |              |              |                                                                      |
|                                       | 3/44 2609            | .5 85.0         | 22.7<br>3.8            | 0.76<br>0.76          | 8<br>2                | 3737.2<br>3734.4                | 1500                          | 25.2<br>Sample                        | 5.25<br>Ə Preserv | 3,50<br>ed - | 0            | 38° API & 15°C, GOR 760 scf/STB<br>RFS - AD III6                     |
|                                       | 4/45. 2551           | .5 86.1         | 22.7<br>10.4           | 0.76<br>0.76          | 7<br>3                | 3736.1<br>3734.4                | 2150                          | 38.5<br>Sample                        | 0<br>Ə Preserv    |              | 1.0          | Filtrate. Cond. 58.3° API @ 15°C<br>RFS - AE 1222                    |
|                                       | 5/46 2442            | .0 88.9         | 22.7<br>10.4           | 0.76<br>0.76          | 451<br>241            | 3533.0<br>3529.6                | 1250<br>1500                  | Lost <sup>2</sup><br>43.4             | 0                 | 6.0<br>1.0   | 0.2<br>0.2   | Filtrate. Cond. 51.0° API @ 15°C<br>Filtrate. Cond. 54.6° API @ 15°C |
|                                       | 6/51 1579            | 0.0 75.0        | 22.7<br>10.4           | 0.76<br>0.76          | 2<br>3                | 2179.6<br>2181.8                | 1450<br>100 <sup>4</sup>      | 22.4 <sup>3</sup><br>1.4 <sup>4</sup> | 0                 | 18.0<br>9.25 | 0            | Filtrate<br>Formation water                                          |
|                                       | 7/52 2156            | 5.5 87.2        | 22.7<br>10.4           | 0.76<br>0.76          | 10<br>4               | 3092.9<br>3091.9                | 1 400<br>1 600                | 14.5<br>18.4                          | 0<br>1.0          | 19.4<br>6.0  | Film<br>O    | Filtrate<br>45.3° API @ 15°C, GOR 2920 scf/STB                       |
|                                       | 8/55 2619            | 9.6 105.6       | 22.7<br>10.4           | 0.76<br>0.76          | 6<br>5                | 3757.3<br>3753.3                | 500<br>400                    | 3.2 <sup>5</sup><br>1.3               | Skum<br>0.1       | 21.25<br>9.4 | 0<br>0       | Filtrate<br>38° API Ø 15°C <sup>6</sup>                              |
|                                       | Sulte 2,             | 15/4/85, 2619.8 | m KB                   |                       |                       |                                 |                               |                                       | •                 | ~            |              |                                                                      |
|                                       | 9/56 2619            | 9.8 91.0        | 22.7<br>10.4           |                       | 6<br>3                | 3753.5<br>3751.9                | 300<br>250                    | 0.55<br>Tr                            | Skum<br>Skum      | 21.4<br>9.4  | 0<br>0       | Flltratø<br>Flltratø                                                 |

Notes:

.

I. Chamber not filled.

2. Gas lost to atmosphere during surface opening of chamber.

3. 22.7 L chamber was also opened at 2331.0, 2330.7 and 2319.5 m KB. The gas seen in this chamber probably came from the sampling attempt at 2319.5 m KB.

4. Surface sample pressure estimated to be 100 psi. incorrect opening of valve resulted in gas volume being measured, but no sample taken.

÷.

5. 22.7 L chamber was also opened for five minutes at 2604.3 m KB. The pretest indicated a tight zone.

6. The measured gravity of 38° API is probably low. The gravity was measured two days after the sample was taken and the light ends would be largely lost from the sample in that time.

٢.

(2477f)

..
FIGURE 1: TURRUM-3 R.FT SURVEY

#### ist a standard and the standard

#### 

### Contraction second

.





FORMATION PRESSURE (PSIG)

٤.

•••

#### البياهيم بيني مسترم بالمرجو ومعاد المسترجي والمعاد

## FIGURE 2: TURRUM-3 F.FT SURVEY RESERVOIR: L-1.1.1 & ACCUMALATION B



## FORMATION PRESSURE (PSIG)

DEPTH (M TVDKB)

3110

OWC 2163.5 (RFT)

STATE WATERAND

and the second second second second second second second second second second second second second second second

enter any and the

the sea occupying to the

## FIGURE 3: TURRUM-3 F.FT SURVEY RESERVOIR: L-1.1.2

## From surger and the property in the state

and the second second

· .

Service and the service states

14

: 1

and a second a

DEPTH (M TVDKB)



FORMATION PRESSURE (PSIG)

•

٢.

## FIGURE 4: TURRUM-3 F.FT SURVEY RESERVOR: L-1.1.3 & L-1.2.1



us-terretetas di freçastas d

فالمتح والمجر المحاد المراد ومل المدوم

Dos

·

FORMATION PRESSURE (PSIG)

5

## FIGURE 5: TURRUM-3 F.FT SURVEY RESERVOIR: L-1.2.3



## FORMATION PRESSURE (PSIG)

# A so at a state of the state of the state

### المعادية والمحجم والمراجع

SHARN TST HARMAN

#### The Congregation of the

<u>.</u>

DEPTH (M TVDKB)



and the second And a state of the state

.

•

and the second second second second

DEPTH (M TVDKB)



•••

FORMATION PRESSURE (PSIG)

## FIGURE 7: TURRUM-3 FFT SURVEY RESERVOR: L-14.2



and the state of the state of the state of the state of the state of the state of the state of the state of the

a margina in the second

FORMATION PRESSURE (PSIG

#### المتعاجر ويتعاد ومعارية والمالية والمعار

FIGURE 8: TURRUM-3 F.FT SURVEY RESERVOIR: ACCUMULATION A



FORMATION PRESSURE (PSIG)

2

and and the particular sector

ANTA MARTA

54 - N

· Surge Surger and a real

AL TOR THE SALASSAL

DEPTH (M TVDKB)

# ENCLOSURES

have been and have a second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of

to the at the destant of the

4.2. Constraints and the second second second second second second second second second second second second Second second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second Second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se

الم المعالمة والموالية الموجد 

100

This is an enclosure indicator page. The enclosure PE900978 is enclosed within the container PE900975 at this location in this document.

The enclosure PE900978 has the following characteristics: ITEM\_BARCODE = PE900978 CONTAINER\_BARCODE = PE900975 NAME = Structure Map - Latrobe group BASIN = GIPPSLAND PERMIT = VIC/L4 TYPE = WELLSUBTYPE = HRZN\_CNTR\_MAP DESCRIPTION = Structure Map - Latrobe group for Turrum-4 REMARKS = $DATE\_CREATED = 31/01/90$ DATE\_RECEIVED = 16/03/93  $W_NO = W1069$ WELL\_NAME = Turrum-4 CONTRACTOR = ESSOCLIENT\_OP\_CO = ESSO

This is an enclosure indicator page. The enclosure PE900979 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE900979 has the following characteristics: |
|-----------------------------------------------------------|
| ITEM_BARCODE = PE900979                                   |
| CONTAINER_BARCODE = PE900975                              |
| NAME = Depth Structure Map                                |
| BASIN = GIPPSLAND                                         |
| PERMIT = VIC/L4                                           |
| TYPE = WELL                                               |
| SUBTYPE = HRZN_CNTR_MAP                                   |
| DESCRIPTION = Depth Structure Map L100 Resevoir for       |
| Turrum-4                                                  |
| REMARKS =                                                 |
| $DATE\_CREATED = 31/03/93$                                |
| DATE_RECEIVED = 16/03/93                                  |
| $W_NO = W1069$                                            |
| WELL_NAME = Turrum-4                                      |
| CONTRACTOR = ESSO                                         |
| CLIENT_OP_CO = ESSO                                       |
|                                                           |
|                                                           |

This is an enclosure indicator page. The enclosure PE900980 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE90<br>ITEM_BARCODE = | 0980 has the following characteristics:     |
|--------------------------------------|---------------------------------------------|
| CONTAINER BARCODE =                  |                                             |
|                                      | Intra Lower L.Balmei Depth Structure<br>Map |
| BASIN =                              | GIPPSLAND                                   |
| PERMIT =                             |                                             |
| TYPE =                               | WELL                                        |
| SUBTYPE =                            | HRZN_CNTR_MAP                               |
| DESCRIPTION =                        | Intra Lower L.Balmei Depth Structure        |
|                                      | Map for Turrum-4                            |
| REMARKS =                            |                                             |
| DATE CREATED =                       | 31/03/93                                    |
| DATE_RECEIVED =                      | 16/03/93                                    |
| W_NO =                               | W1069                                       |
| WELL_NAME =                          | Turrum-4                                    |
| CONTRACTOR =                         | ESSO                                        |
| CLIENT_OP_CO =                       | ESSO                                        |
| (Inserted by DNRE -                  |                                             |

This is an enclosure indicator page. The enclosure PE900981 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE90  | 00 | 981 has the following characteristics: |
|---------------------|----|----------------------------------------|
| ITEM_BARCODE =      | =  | PE900981                               |
| CONTAINER_BARCODE = | =  | PE900975                               |
| NAME =              | =  | L500 Reservoir Depth Structure Map     |
| BASIN =             | =  | GIPPSLAND                              |
| PERMIT =            | =  |                                        |
| TYPE =              | =  | WELL                                   |
| SUBTYPE =           | =  | HRZN_CNTR_MAP                          |
| DESCRIPTION =       | =  | L500 Reservoir Depth Structure Map for |
|                     |    | Turrum-4                               |
| REMARKS =           | =  |                                        |
| DATE_CREATED =      | =  | 31/03/93                               |
| DATE_RECEIVED =     | =  | 16/03/93                               |
| W_NO =              | =  | W1069                                  |
| WELL_NAME =         | =  | Turrum-4                               |
| CONTRACTOR =        | =  | ESSO                                   |
| CLIENT_OP_CO =      | =  | ESSO                                   |
|                     |    |                                        |

This is an enclosure indicator page. The enclosure PE600803 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE60  | 0803 has the following characteristics: |
|---------------------|-----------------------------------------|
| $ITEM\_BARCODE =$   | PE600803                                |
| CONTAINER_BARCODE = | PE900975                                |
| NAME =              | Formation Evaluation Log/Mud Log        |
| BASIN =             | GIPPSLAND                               |
| PERMIT =            |                                         |
| TYPE =              | WELL                                    |
| SUBTYPE =           | MUD_LOG                                 |
| DESCRIPTION =       | Formation Evaluation Log/ Mud Log for   |
|                     | Turrum-4                                |
| REMARKS =           |                                         |
| $DATE\_CREATED =$   | 9/09/92                                 |
| DATE_RECEIVED =     | 16/03/93                                |
| W_NO =              | W1069                                   |
| WELL_NAME =         | Turrum-4                                |
| CONTRACTOR =        | HALLIBURTON GEODATA SDL                 |
| $CLIENT_OP_CO =$    | ESSO                                    |
|                     |                                         |

(Inserted by DNRE - Vic Govt Mines Dept)

,

I

This is an enclosure indicator page. The enclosure PE600804 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE60  | 0804 has the following characteristics: |
|---------------------|-----------------------------------------|
| ITEM_BARCODE =      | PE600804                                |
| CONTAINER_BARCODE = | PE900975                                |
| NAME =              | Well Completion Log                     |
| BASIN =             | GIPPSLAND                               |
| PERMIT =            |                                         |
| TYPE =              | WELL                                    |
| SUBTYPE =           | COMPLETION_LOG                          |
| DESCRIPTION =       | Well Completion Log for Turrum-4        |
| REMARKS =           |                                         |
| $DATE\_CREATED =$   | 15/09/92                                |
| DATE_RECEIVED =     | 16/03/93                                |
| W_NO =              | W1069                                   |
| WELL_NAME =         | Turrum-4                                |
| CONTRACTOR =        | ESSO                                    |
| CLIENT_OP_CO =      | ESSO                                    |
|                     |                                         |

This is an enclosure indicator page. The enclosure PE900982 is enclosed within the container PE900975 at this location in this document.

| The enclosure PE90  | 0982 has the following characteristics: |
|---------------------|-----------------------------------------|
| ITEM_BARCODE =      | PE900982                                |
| CONTAINER_BARCODE = | PE900975                                |
| NAME =              | Synthetic Seismogram                    |
| BASIN =             | GIPPSLAND                               |
| PERMIT =            |                                         |
| TYPE =              | WELL                                    |
| SUBTYPE =           | SYNTH_SEISMOGRAM                        |
| DESCRIPTION =       | Synthetic Seismogram for Turrum-4       |
| REMARKS =           |                                         |
| DATE_CREATED =      | 31/03/93                                |
| DATE_RECEIVED =     | 16/03/93                                |
| W_NO =              | W1069                                   |
| WELL_NAME =         | Turrum-4                                |
| CONTRACTOR =        | ESSO                                    |
| CLIENT_OP_CO =      | ESSO                                    |
|                     |                                         |

This is an enclosure indicator page. The enclosure PE600805 is enclosed within the container PE900975 at this location in this document.

The enclosure PE600805 has the following characteristics: ITEM\_BARCODE = PE600805 CONTAINER\_BARCODE = PE900975 NAME = Seismic Calibration Log BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = VELOCITY\_CHART DESCRIPTION = Seismic Calibration Log for Turrum-4 REMARKS =  $DATE\_CREATED = 14/09/92$  $DATE\_RECEIVED = 16/03/93$  $W_NO = W1069$ WELL\_NAME = Turrum-4 CONTRACTOR = SCHLUMBERGER  $CLIENT_OP_CO = ESSO$