
Tuna - 4

3 0 JAN 1985

Attachment to WCR Final Well Report (W868)

ESSO AUSTRALIA LIMITED

TUNA #4

FINAL WELL REPORT

INDEX

- 1. INTRODUCTION
- 2. RIG SPECIFICATIONS
- 3. WELL INFORMATION, PROGRESS AND HISTORY
- 4. LITHOLOGY AND CORE-O-GRAPHS
- 5. EXTENDED SERVICE PACKAGE :
 - A. INTRODUCTION
 - B. EQUIPMENT
 - C. MONITORING EQUIPMENT
- 6. ESP PLOT DESCRIPTIONS AND CONCLUSIONS
- 7, B.H.T. ESTIMATION
- 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT
- 9. GAS ANALYSES :
 - A. COMPOSITION GRAPHICS
 - B, SIDEWALL CORES
- 10. CORELAB DATA SHEETS :
 - A. BIT RECORDS
 - B. MUD DATA
 - C. R.F.T. DATA
 - D. PRODUCTION TEST DATA

COMPUTER DATA LISTINGS :

BIT RECORD AND INITIALIZATION DATA HYDRAULIC ANALYSES DATA LIST A DATA LIST B DATA LIST C DATA LIST D

APPENDED PLOTS :

DRILL DATA PLOT TEMPERATURE PLOT PRESSURE PLOT GEOPLOT GRAPHOLOG

INTRODUCTION

11

TUNA NO. 4 was drilled by ESSO AUSTRALIA LTD. in the Bass Strait, Australia.

Well co-ordinates were:

Latitude : 38° 11' 20.93" S Longitude : 148° 22' 08.39" E

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Extended Service Field Laboratory 2007.

TUNA NO. 4 was spudded on 18th May 1984 and reached a total depth of 3321 metres on 7th July 1984, a total drilling time of 52 days. The main objectives of the well were:

- 1. To confirm a commercial accumulation of M-1 oil in the western part of the TUNA field;
- 2. To assess the hydrocarbon potential of the intra Latrobe section in a fault bounded trap located southwest of the TUNA field intra Latrobe accumulations.

A number of promising reservoirs were encountered, hence the well was production-tested.

Elevations were:

Kelly bushings to mean sea level	21 metres
Water depth	61 metres
Kelly bushings to mean sea bed	82 metres

All depths used in this report and accompanying logs refer to depth nelow rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging of TUNA NO. 4 were as follows:

T.	CHARLES	-	Unit Supervisor
В.	PAULET	-	Pressure Engineer
В.	GIFTSON	-	Logging Crew Chief
D.	MACKAY	-	Well Logger
Α.	HIGGS	-	Well Logger
R.	WALSH	-	Well Logger
P.	LANDRY	-	Well Logger

2. RIG SPECIFICATIONS

	RIG INFORMATION SHEET
KIAR COMP	ANYESSO AUSTRALIA LTD.
WELL WELL	TUNA NO. 4
OWNER	SOUTH SEAS DRILLING COMPANY
NAME AND NUMBER	SOUTHERN CROSS (NO. 107)
TYPE	SEMI-SUBMERSIBLE, TWIN HULLED
DERRICK, DRILL FLOOR & SUBSTRUCTURE	DERRICK: LEE C MOORE, 152' HIGH X 40' AT BASE LOAD CAPACITY OF 1 000 000 LBS.
DRAWWORKS	OILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS
CROWN BLOCK	LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS
TRAVELING BLOCK	OILWELL A 500 .
SWIVEL	OTLWELL PC 425
ELEVATORS	BYRON JACKSON MODEL GG CAPACITY 350 TON
KELLY & KELLY SPINNER	DRILLCO 54" X 50' HEX KELLY
ROTARY TABLE	OILWELL A 37½ SINGLE ELECTRIC MOTOR
ROTARY SLIPS	VARCO DCS-L
MUD PUMPS	TWO OILWELL A 1700PT. RATED AT 1600HP
MUD SYSTEM	DEGASSER: 1 SWACO MODEL NO. 36
	SHALE SHAKERS: 2 BRANDT DUAL UNIT TANDEM - CHI DUAL UNIT FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL TANK HAVING A CAPACITY OF 105 BBL. TWO MUD HOPPERS POWERED BY 2 MISSION 6 X 8" CENTRIFUGAL BY TWO 100
	HP ELECTRIC MOTORS.
	DESANDER: 1 DEMCO 4 CONE 12" MODEL NO. 124 DESILTER: 1 DEMCO 4"-16H 16 CONE
BLOW OUT PREVENTORS	THREE SHAFFER L.W.S. 18-3/4" - 10 000 PSI
	TWO HYDRIL G.L 18-3/4" - 5000 PSI
WELL CONTROL EQIP.	FOUR VALVOON ACCUMULATORS. 2" - 10 000 PSI CHOKES: 2 C.I.W. ABJ H2 2-1/16" - 10 000 PSI, 1 SWACO SUPER CHOKE
TUBULAR DRILLING EQUIPMENT	DC: 6%" X 2-13/16" (4" IF TJ) 8" X 2-13/16" (6-5/8" H90 TJ) 9-3/4" X 3" (7-5/8" H90 YJ)
	HWDP: 5" 50LB/FT GRADE G (6½" OD 4½" IF TJ) DP: 5" 19½LB/FT GRADE G & E (6-3/8" OD 4½" IF TJ)
	· · · · · · · · · · · · · · · · · · ·
CEMENTING UNIT	HALLIBURTON HT-400 UNIT
MONITORING EQUIPMENT	MARTIN DECKER: MUD VOLUME TOTALIZER 6 CHANNEL DRILLING RECORDER 4 PRESSURE GAUGES FLOWSHOW INDICATOR
POWER SUPPLY	2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH 1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP

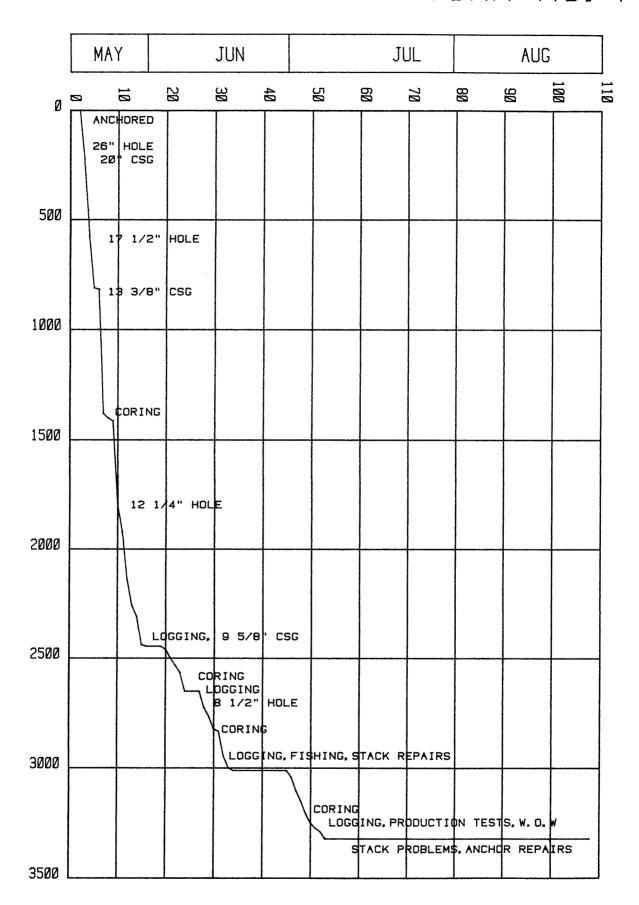
MISCELLANEOUS (E.G. RISER, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT)

MISCELLANEOUS (E.G. RISER, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT)
RISER: REGAN FC-7 TELESCOPIC 21" ID PLUS FLOW DIVERTOR.
CASING POWER TONGS: ECKEL 13-3/8" (20 000 FT LBS), 20" (35 000 FT LBS)
CMT BULK TANKS: 3X1570CU FT. RISER TENSIONER: 6 WESTERN GEAR, 50' STROKE, 80 000 LBS
MUD BULK TANKS: 3X1570CU FT. GUIDE LINE TENSIONERS: 4 WESTERN GEAR 16 000 LBS,
40' STROKE.

DIRECTIONAL EQUIP.

3. WELL INFORMATION, PROGRESS AND HISTORY

														
									WEL	L INFORM	JITAN	ON SI	4EET	
			7.7	ado Atta	י איד דאיכוווו	r mn								
	<i>LAB</i> co	MPANY_		SSO AUS	TRALIA .	תתח	•				۵.		-	
MATTAN	WE	LL		UNA NO.	<u> 4</u>						She	et No	<u>). </u>	
WELL NAME	TUNA NO. 4													
OPERATOR	ESSO EX	SSO EXPLORATION AND PRODUCTION AUSTRALIA INC.												
PARTNERS	B.H.P.													
ANTIVETIO	2.11.1													
RIG	OWNER		S	ANTA FE	(SOUTH	SE	AS I	ORILLI	NG CO.)					
	NAME OR	NUMBER	S	SOUTHERN CROSS										
	TYPE			EMI-SUB		E								
LOCATION	LATITUDE	(X)	3	8° 11'				LONGIT	UDE (Y)	1480 22			Z	
	FIELD		T	UNA				AREA		GIPPSLA	ND BA	SIN		
	COUNTY		В	ASS STR	AIT			STATE		VICTORI	A			
	COUNTRY			USTRALI.										
	DESCRIPTI			XPLORAT	TON MELL	L		T						
DATUM	Ground Ele		-		~				Ground Leve					
DATES	Mean Water	Depth		1 METRE: 8 MAY 1				TOTAL	Water Level	21 METR 7 JULY				
HOLE	SPUD Depth Fron	Donath To			No. of Bits	- 1	No. o		Date From	Date To		sed L	ogged	
SIZES	Depth From		19		1		140.0	O	1	4 18/05/			N	
	1 1		11	1	1	$\neg +$		0		4 20/05/			Y	
	811		2445		5	$\neg \uparrow$		0	21/05/8				Y	
	2445		21	4	10			1	04/06/8				Y	
				1					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	==1.557				
					<u> </u>									
DRILLING FLUID	Depth Fron		Weights T		PPG Ty			7 A CEIT-1873				<u> </u>		
PLOID	81M 219M	219			ro 8.7		SEAWATER - DRILLED SOLIDS							
		1300 3321					SEAWATER - GEL/POLYMER							
	1300M	3321	1vI		0 11.0	-	SEA V	VATER •	- GEL/PO	LIMER	-		 	
				+	<u>-0</u>									
				 	0	 								
				 	0			· · · · · · · · · · · · · · · · · · ·						
				т	o									
WIRELINE	Depth Fron	Depth To	,	Hole Size	Date Run		Logs							
LOGGING	809M	205M		1	20/05/81			C - GR-CA						
	2445M	793.			31/05/81				-LDL-CNL	-GR-CAL				
1	2445M	794M			31/05/81				CAL-GRA					
	2444M 2444M	794M			1/05/81			C-GR						
		794M			1/06/81		HD'		7 0 0	1.				
1	2400M 2426M	1377M 1360M			1/06/81 12/06/81			NOS:	1, 2, 3	• 4				
	2650M	2434M			09/06/81				A-GR-CAL					
RISER,	Depth Fron			OD 2	ID	Weig		Grade	Threads	Date Run	Cement	Stages	Excess	
CASING &	MO	82M		22"	21"				- RISER	~		ļ	-	
LINER	82M	205M		20"	19.12	_g)	4_4	X52	JV BOX	18/05/84	11-211			
	82M	794M		13-3/8	12.615	51	4.5	K55	BUTT	21/05/84	"Ğ"		Į.	
	82M	2434M		9-5/8					BUTT	03/06/84	"G"		<u> </u>	
1	2227M	3219M		7"	6.276	26	5.0	N80	BUTT	11/07/84	"G"	2		
						<u> </u>						 	-	
1		-		1				-	 		!	 	1	
1	1	1		i .	1	1					1	1	1	


COMPANY ESSO AUSTRALIA LTD WELL TUNA #4

WELL INFORMATION SHEET (SUPPLEMENTARY)

Sheet No. 1

WIRELINE LOGGING (continued)

Depth from M	Depth to M	Hole, size	Date run	Logs run
2650	2434	81/2	9/6/84	DCTB-SRSA-GR-CAL
2649	2434	8½ 8½	9/6/84	LDTC-CNTH-GR-CAL
2049		8 ¹ 2	0 11/6/80	RFT Nos 5-14
2649	- 2434	81/2	11/6/84	HDT-GR-CAL
3011	2434	8½	18/6/84	DLTE-SRTC-GR-CAL
3011	2434	8½	19/6/84	LTDC-CNTH-GR-CAL
3011	2434	8½	19/6/84	SLTN-GR
	_	8 ¹ ₂	19/6/84	RFT No 15 (PRETESTS)
	_			RFT Nos 16-29
3321	2925	8½	8/7/84	DLL-MSFL-GR-CAL
3321	2925	8½	8/7/84	LDT-CNTH-GR-CAL
3321	2950	8½	8/7/84	BHC-GR
3321	2950	8 ¹ / ₂ ·	8/7/84	HDT
		81 ₂	8/7/84	VELOCITY SURVEY
-	_	8½	9/7/84	RFT Nos 31, 32
_	_	8½	10/7/84	RFT Nos 33, 34
-	-	81/2	10/7/84	CSTs Nos 3, 4
_	-		19-20/7/84	
_	_		21/7/84	CH RFT Nos 1, 2
2820	2829		22-28/7/84	
		6.276		CH RFT Nos 3-5
2562	2569		8-10/8/84	
2543	2552		16 - 18/8/84	
2469.5	2477			
2469.5	2411	0.276	20-24/0/04	PWT No 5 (in two sections)
_				
				
1				
<u> </u>				

TUNA #4 WELL HISTORY

16 MAY 1984	Towed to the location of Tuna #4, from West Fortescue #1.
17 MAY 1984	Arrived at Tuna #4. Ran the anchors. Ballasted the rig down. Ran the base-plate.
18 MAY 1984	Spudded in, and drilled 26" hole to 219 metres. Pulled out, then ran back in to circulate the hole clean. P.O.O.H., then ran the 20" casing followed by the guide-base. Cemented the shoe at 205 metres.
19 MAY 1984	Ran the stack and riser. Nippled up. R.I.H. with a new bit $(17\frac{1}{2}"$, HTC,OSC 3AJ) and drilled out the cement and shoe. Drilled new formation from 219 to 571 metres. This surface section of hole yielded high levels of background gas (around 15-20 units), with the peak of 56 units coming from the limestone at 410 metres.
20 MAY 1984	Drilled 17½ hole down to the 13.3/8" casing point, 811 metres. Background gas levels remained high, around 15-20 units (Limestone). Made a wiper trip from 811 metres to the 20" shoe; excessive overpull was experienced, so the hole was reamed to bottom. Schlumberger ran a sonic log. Commenced running 13.3/8" casing.
21 MAY 1984	Ran the 13.3/8" casing. Cemented the shoe at 794 metres. Tested the stack. R.I.H. with a Jl bit (Hughes) and drilled out the cement and shoe. Conducted a P.I.T. after 6 metres of new formation.
22 MAY 1984	Drilled $12\frac{1}{2}$ " hole to 1,381 metres; circulated bottoms-up for the geologist after a drill-break. The sample yielded sandstone and 1,510 units of gas, so it was decided to commence the coring program at this point.
23 MAY 1984	Cut core No's 1 and 2, using the plastic sleeve technique.
24 MAY 1984	Cut core No's 3 and 4. Nothing was recovered from the third core; and only 11.4% was recovered from core No. 4. R.I.H. with an insert drill-bit (J22) and reamed the core rathole.
25 MAY 1984	Completed reaming to bottom, then drilled new hole to 1,802 metres. Gas was predominantly around 20 units background, with the peaks (reaching 150 units) associated with coals.

26 MAY 1984	Continued drilling $12\frac{1}{4}$ " hole to 1,885 metres, where the bit was pulled as a precautionary measure (with 30 hours on bottom). Drilling resumed with a new J22, down to 1,922 metres.
27 MAY 1984	Drilled ahead to 2,138 metres. Background gas varied between 10 and 25 units, with peaks rising to 200 units (associated with coals).
28 MAY 1984	Drilled ahead to 2,258 metres, where the bit was pulled due to an increase in torque and decreased R.O.P.'s.
29 MAY 1984	R.I.H. with a new bit (Hughes J22), reaming and washing the tight spots. Drilled new hole down to 2,309m. Maximum drilled gas was 17 units over a background of 10-12 units. No abnormalities were detected.
30 MAY 1984	Drilled to 2,438 metres.
31 MAY 1984	Drilled $12\frac{1}{4}$ hole to 2,445 metres where a 20 stand wiper trip was made (W.T.G. 1-6-2u). After pulling our of the hole Schlumberger logs were run.
1 JUNE 1984	Continued to run logs and R.F.T.'s 1-4.
2 JUNE 1984	Ran C.S.T.'s 1 and 2 then rigged down Schlumberger and made a wiper trip (Max Gas 36u) prior to running casing. Ran 64 joints of casing.
3 JUNE 1984	Continued to run casing (201 total) and then cemented same with a two-stage cementing program.
4 JUNE 1984	A B.O.P. test was performed and the new $8^{1}2^{"}$ bottom hole assembly was made up and run into the hole. The cement was drilled to 2,429 metres where a casing pressure test was performed. New hole was drilled from 2,445 to 2,451 metres and a phase II pressure integrity test was carried out giving an equivalent mud weight of 16.81 ppg. Drilling recommenced and $8^{1}2^{"}$ hole was drilled to 2,458 metres.
5 JUNE 1984	New $8\frac{1}{2}$ " hole was drilled to 2,464 metres where the bit was pulled due to low rates of penetration. A J22 was run into the hole and drilled to 2,481 metres where a flow check was performed and the cuttings circulated out. Good sands with fluoresence prompted the cutting of core No. 5; 2,481-2,499 metres.
6 JUNE 1984	Pulled out of hole and recovered core No. 5 (89%). Ran back into the hole to cut core No. 6 (2,499 - 2,517) recovered same (70%) and then proceeded to cut and recover core No. 7 (2,517 - 2,531 metres 70% recovered).

7 JUNE 1984 Ran into hole and cut core No. 8 (2,531 - 2,549 metres) and recovered 87%. Core No. 9 was then cut from 2,549 - 2,564 metres with a recovery of 83%. The bottom hole assembly was then made up and run into the hole.

8 JUNE 1984 Reamed the core rathole. New $8\frac{1}{2}$ " hole was drilled down to 2,650m where a short wiper trip was carried out due to overpull in making connections. After the completion of the wiper trip a decision was made to pull out of the hole to run intermediate logs.

9 JUNE 1984 Schlumberger ran the following logs:

DCTB-SRSA-GR-CAL 2,650 - 2,434 metres LDTC-CNTH-GR-CAL 2,649 - 2,434 metres R.F.T.'s No. 5 (pretests) and No. 6

10 JUNE 1984 Continued to run R.F.T.'s No. 6 - 10.

11 JUNE 1984 Continued to run R.F.T.'s No. 11 - 14 and then ran HDT-GR-CAL 2,649-2,434 metres followed by a B.O.P. test.

12 JUNE 1984 Ran in hole and drilled 8½" hole to 2,725 metres.

Drilled ahead to 2,731 metres where the bit was pulled due to low rates of penetration. R.I.H. and drilled ahead to 2,766 metres. Possible connection gas and flow-check gas were detected in the interval 2,736 to 2,756 metres, indicating the pore pressure had increased from 8.6 ppg to 9.0 ppg. (The mud weight was 9.5 ppg).

Drilled 8½" hole to 2,822 metres. Circulated bottoms-up at this point, for the geologist. A reasonable show was found, so it was decided to core. Earlier, a 10-10-10 test was carried out at 2,798 metres (5-12-6 units). This result, using a mud weight of 9.5 ppg verified a pore pressure of 9.0-9.2 ppg equivalent at this depth. Considerable drag was experienced while pulling the J33, so after 10 singles the string was run back to bottom, reaming where necessary. R.I.H. with the core barrel and a diamond bit.

Cut core No. 10 from 2,822.5 metres, but had to terminate the run prematurely at 2,828 metres, due to the core bit becoming ringed out (probably as a result of down-hole junk). Recovered 54.4% of the core. Shows therein instigated a further core run ... No. 11, from 2,828 metres to 2,833 metres. Slow R.O.P.'s also halted this run early. Recovered 58% of the core (comprising predominantly of carbonaceous siltstone). The lack of core shows prompted a return to drilling.

16 JUNE 1984	Reamed the core rathole and drilled new hole down to 2,946 metres. Overpressure was indicated by connection gas. Pore pressure was estimated to have increased to 9.4 ppg EMW by 2,910 metres. Background gas varied between 4-140 units, and the maximum drilled gas was 360 units (from 2,912 metres).
17 JUNE 1984	Drilled to 2,975 metres. Tripped for a precautionary bit change, then continued drilling down to 2,998 metres. Connection gas was detected throughout the drilled interval, indicating the pore pressure was still 9.4 ppg EMW.
18 JUNE 1984	Drilled to 3,011 metres - premature T.D. The pore pressure had risen to 10.1 ppg by 3,004 metres, creating underbalanced drilling conditions. The gas rose to 3,190 units, before the mud was weighted up to 10.5 ppg. Made a 20-stand wiper stand, then P.O.O.H. to run logs at T.D.
19 JUNE 1984	Electric logs were run. The R.F.T. tool became stuck in the hole. Attempts to free the tool by "working the wireline" were unsuccessful, so the wireline was cut, and the drill-string was run into the hole with the wireline inside, and a fishing tool on the end of the string. (This operation is known as "stripping over").
20 JUNE 1984	Retrieved the R.F.T. tool. Conducted a wiper trip.
21 JUNE 1984	Trip gas from 3,011 metres was 8-1805-24 units. Schlumberger recommenced R.F.T.'s using a new drum of wireline.
22 JUNE 1984	Schlumberger continued running R.F.T.'s After R.F.T. No. 20, R.I.H. with the drill string to make a wiper trip.
23 JUNE 1984	Trip gas from 3,011 metres was 960-3625-75 units. Had to circulate for about 2 hours to reduce the very high gas concentration in the mud. Resumed R.F.T.'s.
24 JUNE 1984	Schlumberger continued running R.F.T.'s.

Continued running R.F.T.'s. Made a wiper trip after

run No. 29. Wiper trip gas from 3,011 metres was 35-3650-95 units. Resumed R.F.T.'ing. During R.F.T. No. 30, the tool became stuck and could not be worked loose, so the Schlumberger wireline had to be cut,

and the tool fished for.

25 JUNE 1984

- 26 JUNE 1984 Stripped over the fish, and pulled same to surface. Recovered the R.F.T. sample then R.I.H. with open-ended drill-pipe. Circulated bottoms-up (T.G. 26-2368-35 units) and weighted the mud up to 11.0 ppg. Pulled 20 stands and set a cement plug around the 9 5/8" casing shoe.
- 27 JUNE 1984 A 9 5/8" EZSV bridge plug was set at 2,343 metres and tested to 3,000 psi. The B.O.P. stack was then pulled for repairs.
- 28 JUNE 1984 Continued to repair B.O.P. before running same back onto wellhead. A B.O.P. function test was then carried out. Ran in hole with new bit 12 to drill out bridge plug and cement.
- On commencement of drilling, a drop in pump pressure was observed and the drill string was pulled to find a nozzle lost from the bit. Ran back into hole and drilled through the bridge plug and cement. While reaming out the hole below the cement plug, a gas bubble came to the surface displacing mud through the rotary table (max gas2,770 units). The well was shut in and observed. Drill pipe and annular pressures were zero. The well was diverted to the trip tank for 15 minutes and was found to be static. The bit was then run to bottom.
- 30 JUNE 1984 Circulated bottoms up (gas 2,700 units) and then drilled to 3,013 metres and pulled the drill string for a bit change. A 10-10-10 test was performed before pulling out, giving 60-110-48 units. Ran in hole with bit number 13 (J33 3x13) and drilled ahead to 3,041 metres (T.G. 16-300-12).
- 1 JULY 1984 Drilled $8\frac{1}{2}$ " hole to 3,105m.
- 2 JULY 1984 Drilled to 3,140 metres where the bit was pulled due to an increase in torque. A new J33 was run into the hole and new hole was drilled to 3,150 metres.
- 3 JULY 1984 Drilled ahead to 3,205 metres.
- 4 JULY 1984 Drilled ahead to 3,237 metres where the gas level rose to 2,200 units (44%). Gas was circulated out but did not drop below 1,200 units. The mud weight was raised to 10.9 units to suppress the gas. A 10-10-10 was conducted after the 10.9 mud was conditioned resulting in 4-7-4 units. Drilled ahead to 3,250 metres.

- New hole was drilled to 3,273 metres where the hole was circulated out (4-1860-5 units). A 10-10-10 was conducted giving (4-1750-25); so the mud weight was then raised from 10.9 to 11.4 ppg to suppress gas readings. The bit was then pulled out of the hole in order to cut a core.
- 6 JULY 1984 Cut core No. 12 from 3,273.2 to 3,282.5 meters, recovering 100%. With no shows at the bottom of the core, normal drilling operations were resumed, including a stack test. R.I.H. with bit No. 15 (J44); reamed the core rathole; then circulated bottoms-up (T.G. was 15-96-7 units), prior to drilling new hole down to 3,288 metres. Pore pressure was estimated to be 10.8 ppg at this depth since no connection gas was detected in the drilled interval, whilst using a mud weight of 11.5 ppg.
- 7 JULY 1984 Continued drilling 8½" hole, at the slow penetration rate of 1-2 metres per hour, down to the T.D. of 3,321 metres. Circulated bottoms-up, then P.O.O.H. to log.
- 8 JULY 1984 Schlumberger logged at T.D. R.I.H. for a wiper trip, following the velocity survey.
- 9 JULY 1984 Completed the wiper trip and proceeded to run R.F.T.'s 31, 32, 33.
- 10 JULY 1984 Continued to run R.F.T.'s, followed by three C.S.T. runs. Open-ended drill pipe was then run into the hole to condition the mud prior to cementing.
- Continued to condition the hole. Bottoms-up gas was 80-2500-25 units. Set a cement plug between 3,237 and 3,321 metres. Circulated bottoms-up from the top of the cement plug (60-1500-20 units). Pulled the open-ended drill string out of the hole, then R.I.H. with a drill bit. Circulated bottoms-up again (maximum gas was 120 units).
- 12 JULY 1984 Tested the cement; performed a P.I.T. Ran the 7" liner. Circulated bottoms-up from the liner seat (3,219 metres); maximum gas was 12 units. Cemented the liner.
- Pulled the liner running tool, after circulating bottoms-up from the top of the cement (maximum gas was 8 units). Tested the stack. R.I.H. with a 8½" bit and a 9 5/8" casing scraper. Circulated bottoms-up from 2,227 metres; 2-73-3 units. Performed a P.I.T. which indicated a poor cement job. P.O.O.H., then R.I.H. with O.E.D.P. to re-cement the liner.

- Circulated bottoms-up from 2,060 metres; 1-2.5-1 units. Squeezed cement. Pulled the open-ended drill 14 JULY 1984 string. R.I.H. with an $8\frac{1}{2}$ " bit and reamed the cement from 2,083-2,227 metres. (Maximum gas while reaming the cement was 21 units). P.O.O.H. 15 JULY 1984 Made up a modified B.H.A. for a 6" hole. R.I.H. with same plus a 6" bit and 7" casing scraper. Reamed and drilled cement from 3,005-3,147 metres. 16 JULY 1984 Continued drilling cement (down to 3,182 metres). Circulated and conditioned the mud. P.O.O.H. 17 JULY 1984 Schlumberger ran in the hole 3 times. Firstly to run a cement bond log (CBL); secondly to run the gauge ring and junk basket; and finally to set a Model "D" packer at 3,080 metres. The drilling crew then R.I.H. with drill-pipe and tubing to pump diesel below the packer. P.O.O.H. 18 JULY 1984 Ran the production tubing and rigged up the surface equipment. 19 JULY 1984 Completed the preliminary pressure tests on equipment and lines, then commenced PWT No. 1 by perforating the interval 3,147-3,138 metres. Waited for pressure build-up. 20 JULY 1984 Flowed the well. Gas was recovered at the surface. Otis took a bottom-hole sample, then the well was opened again, with the flow routed via the separator. Conducted a stepwise pressure profile; circulated; and then killed the well. 21 JULY 1984 Pulled the production tubing, then ran cased-hole R.F.T.'s. 22 JULY 1984 Ran tubing and rigged up the production equipment. 23 July 1984 Flowed the well via the tanks and flare booms.
- 24-26 JULY 1984 Continued to flow the well.
- 27 JULY 1984 Shut the well in.
- 28 JULY 1984 Rigged down the production equipment, and killed the well. At 06.25 hrs anchor line No. 3 parted and all non-essential personnel were evacuated from the rig due to deteriorating weather conditions.
- 29-31 JULY 1984 Waited on weather
- 1-4 AUGUST 1984 Repaired the broken anchor lines. Repositioned the rig on location. Ran the riser.

- 5 AUGUST 1984 Service personnel returned to the rig. Pipe was run into the hole to bottom, and the hole was conditioned. Tested the stack.
- 6 AUGUST 1984 Ran cased-hole R.F.T. No.'s 3-5 then raised the L.M.R.P. to repair a leak.
- 7 AUGUST 1984 Repaired the L.M.R.P., re-ran same, then tested the entire stack. Ran the $3\frac{1}{2}$ " tubing and rigged up the production equipment.
- 8 AUGUST 1984 Commenced P.W.T. No. 3 by perforating the interval 2,562-2,569 metres. The gun became stuck in the packer. Flowed the well. Shut in the well and attempted to recover the gun, but it had dropped through the packer.
- 9 AUGUST 1984 Took two bottom-hole samples, then opened the well for the major flow period. The well was shut in just before midnight.
- 10 AUGUST 1984 Rigged down the test equipment and pulled the tubing. Set the bridge plug and production packer for test No. 4. Ran the tubing.
- 11 AUGUST 1984 Rigged up for the test, then paused due to inclement weather.
- 12-14 AUG 1984 Waited on weather. The mud in the hole was circulated to condition it, during a short period of calm in the weather.
- 15 AUGUST 1984 Waited on weather. Conditioned the mud. Pulled the L.M.R.P. to fix a leak. Made repairs and re-ran same.
- 16 AUGUST 1984 Rigged up the surface production equipment. Began PWT No. 4 by perforating the interval 2,543-2,552 metres. The well flowed immediately. Shut the well in after the flow had cleaned-up satisfactorily.
- 17 AUGUST 1984 Schlumberger performed temperature and pressure surveys down-hole. Opened the well for the major flow period, firstly via the choke manifold, then via the separator. The well produced at 1,900 bbls of oil per day. Shut the well in prematurely due to a weather alert. Let the pressure build-up. Reverse-circulated. Conditioned the mud in the hole. (Gas was 1-830-100 units).
- 18 AUGUST 1984 Hung off the tubing and waited on weather. Decided to terminate production test No. 4, so the well was killed (maximum gas was 89 units). Rigged down the surface testing equipment and squeezed cement into the perforations.

4. LITHOLOGY AND CORE-O-GRAPHS

LITHOLOGY SUMMARY

TUNA NO. 4 was drilled to (1) confirm a commercial accumulation of M-1 oil in the Western part of the Tuna field; (2) to assess the hydrocarbon potential of the intra-Latrobe section in a fault bounded trap located South West of the Tuna field intra Latrobe accumulations. Proposed T.D. was 3021 metres, but after promising shows this was extended to 3321 metres to further evaluate the lower Latrobe Group sediments.

All formation tops are open to speculation and are based entirely on the examination of cuttings. (All depths from R.K.B.)

Gippsland Limestone (220 - 1085 metres)

This was a limestone sequence of calcarenite with increasing quantities of calcisiltite with depth.

Calcarenite: light grey to medium grey, soft-firm, sub rounded grains, moderately well sorted; becoming argillaceous with depth. Occasionally fossilliferous with bryzoans, corals and rare forams. Minor glauconite and pyrite in parts.

The gas averaged 15-30 units with only $\rm C_1$ from 220 - 870 metres, steadily increasing to 30-50 units from 870 metres on with $\rm C_1$ and minor $\rm C_2$ and $\rm C_3$ being recorded.

Lakes Entrance Formation (1085 - 1373 metres)

This section consisted entirely of calcisiltite and calcilutite. Medium - light grey, soft to occasionally firm, argillaceous. Becoming increasingly soft - sticky and gummy with depth. Minor very fine sand grains, pyrite and glauconite in part.

The gas averaged 30 units with C_1 and minor C_2 and C_3 .

Latrobe Group (1373 - 3321 metres T.D.)

A stratigraphic sequence of channel deposits which consisted of interbedded Sandstone, Siltstone, Coal, Claystone/Shale, and altered volcanics.

This formation can be divided into several intervals.

1373 - 1530 metres M 1 Reservoir

Sandstone: loose quartz grains, clear to milky white, coarse to very coarse, sub angular - sub rounded, moderately sorted; no shows. Grading to sandstone: clear to opaque, grey in part, coarse to very coarse, unconsolidated, sub-rounded - sub angular. At 1415 - 1455 metres 5 - 20% bright yellow/green fluorescence with a very slow weak yellow cut was noted.

Four plastic sleeve cores were cut back to back at the top of the M-1 Reservoir - from 1380 - 1414 metres. Due to the unconsolidated nature of the sands, recovery was very poor. The amount recovered consisted of Sandstone and minor Siltstone. The Sandstone was clear, grey-white, occ buff; medium - coarse, occasionally very coarse grained. Sub angular - sub rounded - occ well rounded. Predominantly unconsolidated and clear,

with occasional argillaceous and minor kaolinite matrix. Fluorescence in the cores was noted from 1395 - 1414 metres - 70-90% bright greenish yell with a moderately fast streaming white cut.

Gas increased immediately upon entering the coarse clastics at the top of the Latrobe, from 30 to a peak of 1500 units, decreasing to 5 - 20 units. $\rm C_1$ to $\rm C_6$ was recorded.

1530 - 2050 metres

Interbedded Siltstone, Claystone, Coal and Sandstone.

The Sandstone was clear, white, occasionally grey. Predominantly unconsolidated, coarse grained, sub angular to sub rounded, moderately sorted, with good visible porosity. Occasionally fine grained with slightly calcareous cement and an argillaceous matrix. No shows.

Siltstone: Interbedded throughout, with several distinct beds of 80-100% Siltstone. Light grey - medium grey brown, firm, argillaceous, micromicaceous and carbonaceous in part. Occasionally sandy. Slighty calcareous in part. part.

Claystone: Increasing with depth, often seen as sticky gumbo. Light grey - dark grey, microcarbonaceous, very soft.

Coal: Small beds increasing in size and frequency with depth - to a large coal deposit from 2000 - 2050 metres. Black, hard to firm, blocky, occasionally vitreous.

Gas averaged 10 - 30 units, with peaks up to 250 units associated with coal beds. C_7 - C_4 was recorded with trace C_5 in parts.

2050 - 2695 metres

Interbedded Sandstone, Siltstone, with occasional shale/claystone, and minor coal.

Sandstone: Clear, medium to coarse grained, unconsolidated quartz grains, sub angular to rounded, modeately sorted. Grading with depth to finer grained with occasional quartzose aggregates with dolomitic and siliceous cement.

Siltstone: Light to dark grey brown, firm, carbonaceous, micromicaceous in part, argillaceous, becoming slightly calcareous with depth.

Shale: Dark brown, micromicaceous, sub fissile, occasional carbonaceous laminations and flecks.

Cores 5 - 9 were cut back to back from 2481 - 2564 metres. The associated lithology was interbedded sandstone, silty sandstone and Siltstone. The environment was deduced as pluvial, - and this was a sequence of stacked channel sandstones ranging from beds of very fine to fine grained, dolomitic cemented sandstones with poor visible porosity and no shows; to medium to coarse grained sandstone, moderate to well sorted, weak siliceous cement and good visible porosity - with associated oil staining and bright yellow fluorescence with slow to moderately fast streaming cut.

Gas averaged 10 units, increasing up to 200 units in the hydrocarbon bearing zones, with $\rm C_1$ - $\rm C_6$ present from 2460 - 2695 metres.

2695 - 2745 metres

This section consisted entirely of volcanic material - notably Dolerite; with minor sandstone at the base.

Dolerite: Medium-dark grey-grey green, hard to very hard, sub angular cuttings, occasional coarse crystalline quartz; and feldspars and ferromagnesiums.

Gas was 3 units throughout with a peak of 50 units immediately upon coming out of the volcanics into sandstone at the base of the zone.

2745 - 3060 metres

Interbedded sandstone, siltstone, with minor claystone and coal.

Sandstone: 2 types (1) loose quartz grains and fragments, clear-milky white, medium to very coarse grained, sub angular to angular - occasionally sub rounded. Poor to moderately sorted. (2) Sandstone aggregates; very light grey, fine to very fine grained - occasionally fine to medium grained aggregates. Moderately well sorted, friable to moderately hard. Moderately cemented - siliceous, minor dolomitic cement, occasional carbonaceous inclusions, predominantly poor visible porosity. In some parts where porosity was not "cemented out" there was 5-20% bright white to dull yellow fluorescence with slow to moderately fast streaming cut.

Siltstone: Light grey - dark grey, brown grey; firm - hard, occasionally soft. Blocky, micromicaceous in part, dolomitic in part. Common carbonaceous and coaly inclusions. Occasional very fine quartz grain inclusions.

Coal: Black, firm - brittle, vitreous in part, conchoidal fracture in part.

Cores 10 - 11 were cut in this zone from 2822.5 - 2833 metres. Core recovered (56%) indicated an interbedded/interlaminated sandstone/siltstone lithology. The Sandstone ranged from very fine to coarse grained, poor to moderately well sorted, with predominately siliceous cement with an argillaceous matrix in part. Up to 80% bright white - yellow fluorescence occurred in small zones (2 cm - 50 cm thick) with a slow streaming and instant white crush cut.

Gas averaged 10 - 30 units, climbing to 400 units in hydrocarbon zones - and peaking at 3500 units upon entering overpressure at 3006 metres. $^{\rm C}$ - $^{\rm C}$ 6 were recorded.

3060 - 3321 metres T.D.

The bottom section of the Latrobe Group consisted of Interbedded Sandstone, Siltstone, Sandstone conglomerate, and occasional chert and dolomitic shale; with minor coal.

Sandstone, Sandstone/conglomerate: At the top of this interval the Sandstone was white, buff, light grey; medium to coarse grained, sub angular to angular, predominantly unconsolidated; - becoming finer grained with dominant siliceous and occasionally dolomitic cement; occasional kaolinite matrix. The Sandstone graded to a Sandstone/conglomerate: fine-

medium grained with common chert clasts, angular quartz pebbles, lithic fragments and carbonaceous inclusions. Siliceous and trace dolomitic cement.

At T.D. the Sandstone was 20% dark grey, fine grained, argillaceous and bituminous - with trace to moderate bright yellow fluorescence and a moderately fast streaming white to light yellow cut.

Siltstone: Grey to dark grey, carbonaceous, micromicaceous, firm to hard; kaolinitic and siliceous in part.

Core 12 was cut from 3273.9 - 3282.5 metres - Lithology was interbedded and interlaminated Sandstone/Siltstone/ and Shale, with Sandstone conglomerate at the base of the core.

Gas averaged 20 units with peaks up to 100 units associated with coals and hydrocarbon shows; and up to 2000 units where overpressure was encountered.

 $^{\rm C}_{\rm l}$ to $^{\rm C}_{\rm l}$ were encountered throughout, with occasional $^{\rm C}_{\rm 5}$ and $^{\rm C}_{\rm 6}$.

CLIENT:

WELL

CORE NO. .

INTERVAL CORED FROM

CUT: 9.6 m.,

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

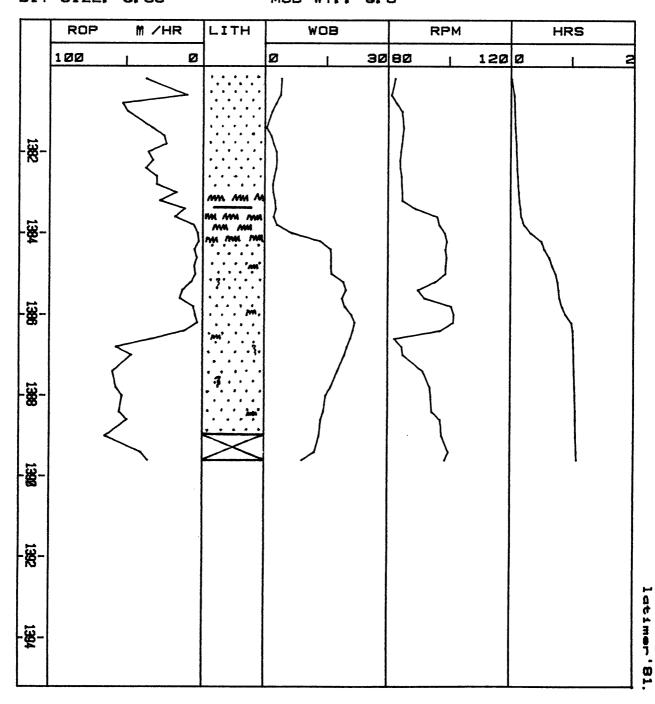
BIT SIZE: 9.88

ESSO AUSTRALIA LTD.

TUNA No. 4

1

1380.0m. TO 1389.6m.


RECOVERED: 8.8m. (89.8%)

LATROBE GROUP

CHRISTENSEN RC4

7.00in. x 5.00in. x 10.77m.

MUD WT. . 9.8

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 9.4 m .

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

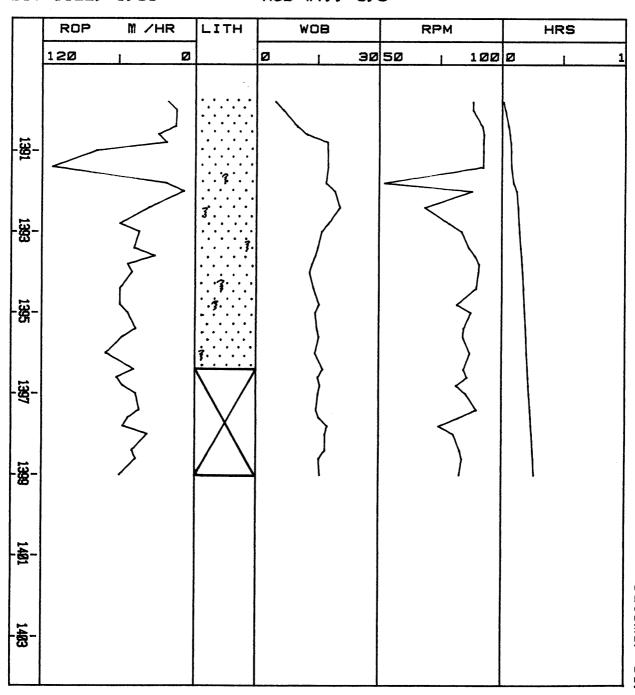
BIT SIZE: 9.88

ESSO AUSTRALIA LTD.

TUNA No. 4

2

1389.6m. TO 1399.0m.


RECOVERED: 7.0m. (74.5%)

LATROBE GROUP

CHRISTENSEN RC4

7.00in. x 5.00in. x 10.77m.

MUD WT. . 9.8

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 9.2 m .

FORMATION:

BIT MAKE & TYPE

CORE BARREL SIZE:

BIT SIZE: 9.88

ESSO AUSTRALIA LTD.

TUNA No. 4

3

1399. Øm. TO 1408. 2m.

RECOVERED: Ø. Øm. (Ø. Ø%)

LATROBE GROUP

CHRISTENSEN RC4

7. 00in. x 5. 00in. x 10. 77m.

MUD WT. : 9.8

B1:	SIZE	a. ee		MUD WI.	. 9.		T	
	ROP	M/HR	LITH	WOB		RPM	HR	!S
	100			Ø	30	8Ø 1ØØ	Ø	1
1491				(
1483	<							
1487			$\left \bigwedge \right $					
1497			$/ \setminus$	(
1489								
1411								
1413								

CLIENT.

WELL

CORE NO. :

INTERVAL CORED FROM

CUT: 5.8 m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

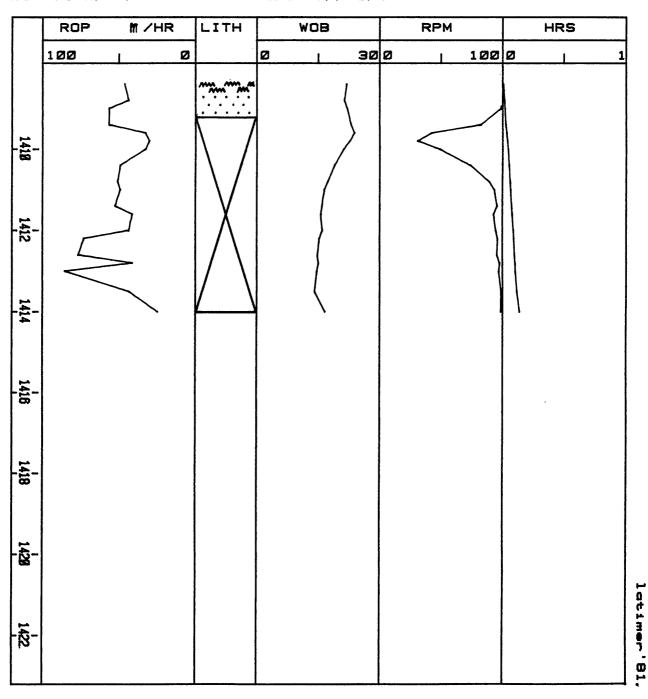
BIT SIZE: 9.88

ESSO AUSTRALIA LTD.

TUNA No. 4

4

1408.2m. TO 1414.0m.


RECOVERED: 1.1m. (19.0%)

LATROBE GROUP

CHRISTENSEN RC4

7.00in. x 5.00in. x 10.77m.

MUD WT. : 9.8

CLIENT:

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 17.8 m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE.

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

TUNA No. 4

5

2481.2m. TO 2499.0m.

RECOVERED: 16.0m. (89.9%)

LATROBE GROUP

CHRISTENSEN RC6

6.25in. × 4.00in. × 18.40m.

MUD WT.: 8.4

	ROP	M /HR	LITH	Wo	3	RP	М	HF	RS
	5Ø			Ø . j	3Ø	8Ø	120		
2483		hun			}				
2486		<u> </u>	ANTA AND C						
2489	<				{				
2492						\			
2495		MAA			}		,		
2498			\times		3)		
2591									

CLIENT:

WELL:

CORE NO. .

INTERVAL CORED FROM

CUT: 18.1 m .

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

TUNA No. 4

6

2499. Øm. TO 2517. 1m.

RECOVERED: 12.7m. (69.9%)

LATROBE GROUP

CHRISTENSEN RC6

6. 25in. × 4. 00in. × 18. 40m.

MUD WT. : 9.4

	ROP	M /HF	₹ L	ITH		WOB		RPM	1		HRS
	5Ø		Ø		Ø	1	30	8Ø	120	Ø	L
2502								~/M	7		
2585	\ \ \ \ \		M	M MM M AM MM AM MM							
25 8 8	-	\mathcal{M}	M / M / M	MIMA N M J JM MM N MN M MN MM N MN M							
251_		2	/	MM MM M MM M I T MM I MM MM		}					
2514		•		X		\					
2517			3 /			Į					
2528											

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 13.9 m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE.

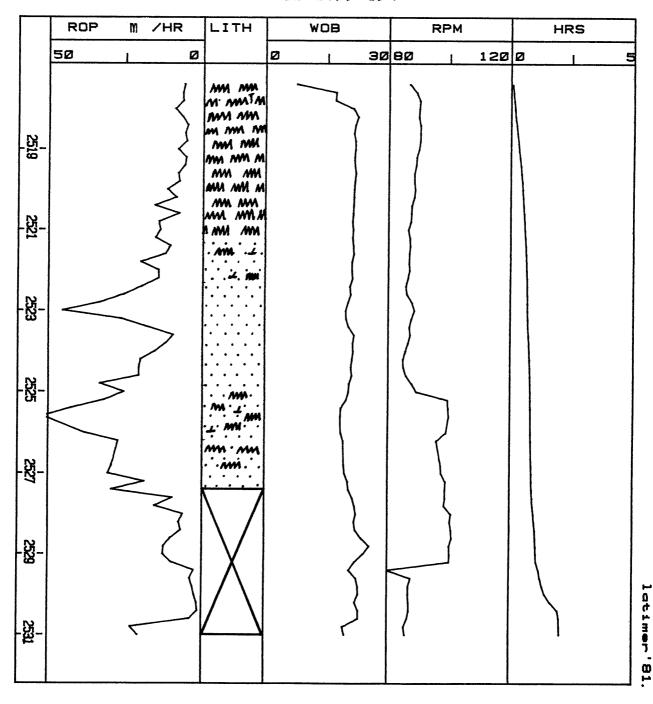
BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

TUNA No. 4

7

2517.1m. TO 2531.0m.


RECOVERED: 9.8m. (70.5%)

LATROBE GROUP

CHRISTENSEN RC6

6. 25in. × 4. 00in. × 18. 40m.

MUD WT.: 9.4

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 18.0 m .

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE.

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

TUNA No. 4

8

2531.0m. TO 2549.0m.

RECOVERED: 15.6m. (86.7%)

LATROBE GROUP

CHRISTENSEN RC4

6. 25in. × 4. 00in. × 18. 40m.

MUD WT.: 9.4

	ROP M /HR	LITH		WOB		RPM	HRS
	50		Ø		3Ø	6Ø 12Ø	Ø 1 2
2534		> /m /m /m		{			
2537		MAM AMA MA AMA					
2548						\ \ \\	
25/43		roin in inc		}		}	
25,46		بسد ف نجد					
2549				}			
2 5 52							

+00+30

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 15.4 m .

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD.

TUNA No. 4

Q

2549. Øm. TO 2564. 4m.

RECOVERED: 12.5m. (81.2%)

LATROBE GROUP

CHRISTENSEN RC4

6. 25in. × 4. 00in. × 18. 40m.

MUD WT. : 9.4

	808	M /UD	1 774	<u> </u>	WOR		BBW	UDC	
					#UD				
2552 2555 2568 2561 2564 2567 2578	ROP 5Ø	M / HR 2	MM MM AM MM AM MM AM MM AM MM AM AMM AM MM AMM MM AMM MM MM AMM MM AMM MM AMM MM AMM MM AMM MM AMM MM AMM MM AMM MM AMM M	Ø	WOB	30	RPM 60 120	HRS 0	5

1001307

CLIENT.

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 5.5m.

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

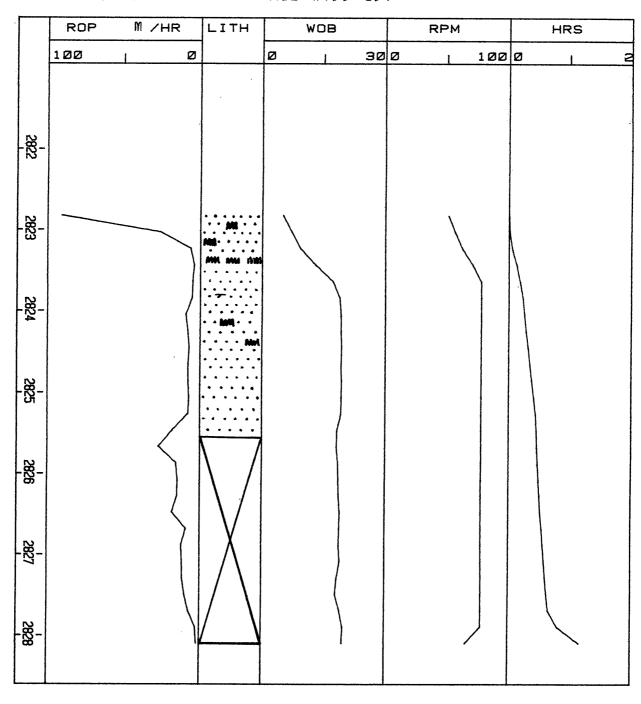
BIT SIZE: 8.47

ESSO AUSTRALIA LTD

TUNA No. 4

10

2822.5m. TO 2828.0m.


RECOVERED: 3. Øm. (54.5%)

LATROBE GROUP

CHRISTENSEN MC-23

6. 25in. x 4. 00in. x 18. 40m.

MUD WT.: 9.7

CLIENT:

WELL:

CORE NO. :

INTERVAL CORED FROM

CUT: 5.0m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.50

ESSO AUSTRALIA LTD

TUNA No. 4

11

2828. Øm. TO 2833. Øm.

RECOVERED: 2.9m. (58.0%)

LATROBE GROUP

CHRISTENSEN C-23

6.25in. × 4.00in. × 18.40m.

MUD WT. . 9.7

	ROP M/HR		LITH WOB			RP	М	HRS	
	10	1 Ø		Ø	30	5Ø	100	Ø	
2828		<u> </u>	.		/		-		
2829			MAR ANNA MAR MAR MAR			,			
28 30									
2891			NA PARK MARY MARY MARY MARY						\
2832									
283-									\
2834									

CLIENT:

WELL

CORE NO. .

INTERVAL CORED FROM

CUT: 8.6m

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 8.47"

ESSO AUSTRALIA LTD

TUNA NO. 4

12

3273.9 m. TO 3282.5m.

RECOVERED: 8.6m (100.0%)

LATROBE GROUP

CHRISTENSEN C-23

6. 25in. × 4. 00in. × 18. 40m.

MUD WT.: 11.4ppg.

	ROP	M /HR	LITH	WOB			RP	М	HRS	
	30] Ø		Ø		40	5Ø j	150	0	
3 <u>2</u> 72								:		
3274			00		\		>	•		
3278			SAN MAIN MON							
3Z/8										
3288 -			- MA AM							\
38 -		\$	0		4		}			
38- 184										

5. EXTENDED SERVICE PACKAGE

EXTENDED SERVICE INTRODUCTION

The Core Laboratories Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling.

Presented graphically on Core Laboratories E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer.

Core Laboratories E.S. logs include the following :

E.S. PRESSURE LOG

Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is the conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, R.F.T.'s, and formation breakdown tests.

CORE LAB DRILL DATA PLOT

This plot, which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected "d"exponent, which is presented on a logarithmic scale. The "d" exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of bit diameter.

The modified "dc" exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard "d" exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the "dc" to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for "dc" is therefore:

Deviations from the normal "dc"s trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the "dc"s plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the "dc"s plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air-dried shale samples in an accurately calibrated liquid density column.

An interpreted lithology column is also included on the log, as is a plot of mud density in , to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included.

E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure.

A Geo-plot is included in this report, at a scale of 1:5000.

E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS

Flowline temperature and end-to-end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), may be made using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling, both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration, weight-on-bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This reportincludes a sample hydraulics for each 100 metres.

GAS COMPOSITION ANALYSIS

For each significant gas show the chromatograph results are analysed using two techniques :-

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

GRAPHOLOG

This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data.

MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak-off test data, R.F.T. and well test data where appropriate.

CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 2007 monitoring equipment includes the following:

A. MUD LOGGING

- 1. T.H.M. total gas detector and recorder.
- 2. F.I.D. (Flame Ionization Detector) chromatograph and recorder.
- Cuttings gas detector.
- 4. Gas trap and support equipment for the above.
- 5. Pit volume totalizer and recorder.
- 6. Digital depth counter.
- Two integrated pump stroke counters.
 Ultra-violet fluoroscope.
- 9. Binocular microscope.
- 10. Calcimeter.
- 11. Steam-still gas analyzer.

B. EXTENDED SERVICE PACKAGE

- 1. HEWLETT PACKARD 9825B desktop computer.
- 2. HEWLETT PACKARD 9872B plotter
- 3. HEWLETT PACKARD 2631A printer.
- 4. Two HEWLETT PACKARD 2621P visual display units, (one located in the client's office).
- 5. Hookload/weight-on-bit transducer and recorder.
- 6. Rotary speed sensor and recorder.
- 7. Stand-pipe pump pressure transducer and recorder.
- 8. Mud flow out sensor and recorder.
- 9. Mud temperature sensors and recorders (in and out).
- 10. Mud conductivity sensors and recorders (in and out).
- 11. Mud density sensors (in and out) and recorders.
- 12. Rotary torque sensor and recorder.
- 13. Shale density apparatus.
- 14. Hydrogen sulphide gas detector.
- 15. Carbon dioxide gas detector.
- 16. DATALOGGER computer, monitor and impact printer.
- 17. DIGITAL remote paging display (located in the client's office).
- 18. Casing pressure transducer and recorder.
- All the above sensors and gas detectors have displays on the DATALOGGER monitors except the Cuttings gas detector and steam-still.

CORE LABORATORIES MONITORING EQUIPMENT

DEPTH

Depth registered every 0.1 metres and rate of penetration calculated each metre (or every 0.2m while coring); ROP displayed on the computer monitor and chart.

WEIGHT-ON-BIT

A DeLaval 0-5000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Datalogger, and displayed (with hookload) on the computer monitor and recorder chart.

ROTARY SPEED

This is a proximity limit switch which pulses once for every revolution of the rotary drive shaft. The value is displayed on the computer monitor and a recorder chart.

PUMP PRESSURE

This is a DeLaval 0-5000 psi transducer mounted on the stand-pipe manifold. The pressure is displayed on the computer monitor and recorder chart.

CASING PRESSURE

This is a DeLaval 0-5000 psi transducer mounted on the choke manifold. The signal is displayed on the computer monitor and on a recorder chart.

PIT VOLUME

Four individual pits are displayed on the monitor. The pit volume total is calculated by the Datalogger and displayed on the monitor. The sensors are vertical floats triggering magnetic switches accurate to $\pm/\pm1$ barrel.

In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

PUMP STROKES

These are the limit switch type, counting individual strokes. The pump rates per minute are displayed on the monitor.

ROTARY TORQUE

An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on the computer monitor and recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer, and an electronics module calibrated 0-100 deg.C. Temperature in and out is displayed on the monitor and recorder.

MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor contains two toroidally-wound coils and a thermistor enclosed in a donut-shaped housing. Current is induced into the mud by the primary coil and is sampled by the secondar coil, the amplitude of the current being directly proportional to the conductivity of the mud.

MUD DENSITY

Two density sensors (in and out) located in the possum belly and in the pit room, operate on a system of differential pressure. This function is displayed on both chart and monitor.

All the sensors are 12 to 36V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab performed other duties...

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Samples were washed, dried, sacked and boxed where necessary. Geochemical samples were canned and boxed.

GAS

- 1.Flame Ionization Total Hydrocarbon gas detector. The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph.
 The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3.Cuttings gas detector (Wheatstone Bridge type).
 An auxiliary system for total gas detection.
- 4. Hydrogen Sulphide detector.

 Two sensors are located at the shale-shakers and in the pit room, linked to a TAC 404B H2S monitor, to detect H2S emanating from the drilling fluid.
- 5.Carbon Dioxide detector.

 An Infra-red gas analyzer determines the percentage of CO2 present in gas samples broken out of the mud by the gas trap.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density liquid column.

6. ESP PLOT DISCUSSIONS AND CONCLUSIONS

ESP PLOT DISCUSSION AND CONCLUSIONS

As predicted from the offset data, this section of the Gippsland Basin was indeed overpressured.

The ESP plots appended in this report manifest the overpressure quite clearly. For instance, in the "Drill Data Plot", the high pressure gas sands at the top of the Latrobe (1376 metres) can be seen as a drill-off trend, as an increase in background gas, and as a reversal in the 'd' exponent trend.

Similar trends exist for the major overpressured zone in the well, which commenced at 2734 metres, and continued on down to T.D. (3321 metres). This section, sealed off by the "Volcanics" above it, was characterized by interbedded sandstones and siltstones, and by a steadily increasing pore pressure, with depth. In the overpressured areas, drill-breaks were flow-checked; connection gas appeared; and 10-10-10 tests were performed. As this information came to hand, the pore pressure was estimated, and the mud was weighted up appropriately. TUNA NO. 4 was drilled overbalanced throughout, with the exception of the zone between 3006 and 3011 metres. Here, the mud weight was only 9.7 ppg, while the pore pressure was up around 10.1 ppg. This underbalanced condition yielded extremely high background gas levels (up to 3100 units).

Quantitative values for the abnormal pressure areas were assigned primarily on the basis of degrees of gas obtained from connections, flow-checks, trips, and 10-10-10 tests. Table 1 summarizes these data. Table 2 shows the resulting formation pressure profile for the entire well. The profile is illustrated on 2 plots: firstly, on the "Pressure Plot", associated with mud density and fracture gradient; and secondly on the "Geoplot". As can be seen, the mud weight overbalancing the pore pressures was never, at any time during the well, high enough to fracture the formation.

The pressure of abnormal formation pressure in TUNA NO. 4 is further highlighted on the "Temperature" plot. In the interval 2870 - 3010 metres we see a classic manifestation of overpressure, where the geothermal gradient has decreased from the normal 2.16 F/100 feet to almost zero. Theoretically, it should remain thus subdued (acting as a good insulator) until normal pressure is once again penetrated. However, in this case, even though the latter conditions are not met we see a return to apparently normal thermal (and hence geo-pressure) circumstances below 3010 metres. Overpressure exists to T.D., as we know, so there is a disparity, which is explained by the interbedded native of the lithology.

Overburden gradient calculations and a plot of the gradient are included in the report. The fracture gradient is as true as can be derived from the scant leak-off data available for the Gippsland Basin.

TABLE 1: ABNORMAL PRESSURE QUANTIFICATION

DEPTH	(M)	CONNECTION GAS (UNITS)	FLOW-CHECK GAS (UNITS)	10-10-10 TEST GAS (UNITS)	TRIP GAS (UNITS)	MUD WEIGHT	ESTIMATED PORE PRESSURE
2650 2731 2736 2737 2740 2744 2747 2756 2768		18-65-13 50-110-100 100-150-31	4-12-4 40-140-50 40-130-120 8-115-65		1-105-4 6-69-5	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	8.6 8.6 9.0 9.1 9.1 9.1
2776 2785 2795 2798 2806 2828 2833 2888		24-38-6 6-93-15 12-95-13	6-109-6	5–12–6	10-33-1 6-22-5	9.5 9.5 9.5 9.7 9.7 9.7	9.1 9.1 9.1 9.1 9.2 9.2 9.3
2907 2917 2927 2927.5 2936 2946 2956 2960		4-18-8 2-228-50 12-25-9 29-110-30 4-23-6 22-60-30	9–26–20 ¹ 4–11–3	4-11-3		9.7+ 9.7 9.7+ 9.7+ 9.7+ 9.7 9.7	9.4 9.4 9.4 9.4 9.4 9.4
2966 2975 2986 2995 3006 3010		9-12-7 2-11-3 123-226-80 125-3000-240	240-3170-810		4-30-19	9.7 9.7 9.7 9.7+ 9.7	9.4 9.4 9.4 9.6 10.1
3011 3011 3011 3011 3013			2.0 3210 020	80-110-50		10.5 10.5 10.5 10.5 10.9	10.1 10.1 10.1 10.1
3013 3112 3131 3237 3273 3273 3282 3321 3321		10-84-16 3-103-54		4-5-4 6-1750-6 2-7-4	2-14-2 15-96-7 2-1440-32 80-2550-25	10.7 10.5 10.5 10.9 10.9 11.4 11.4	10.1 10.1 10.5 10.5 10.5 10.8 10.8

TABLE 2: GEOPRESSURE PROFILE

DEPTH I	NTERVAL	PORE PRESSURE
FROM	TO	FORE PRESSURE
82	1375	8.4
1376	1389	8.7
1390	1414	8.6
1415	2206	8.5
2207	2394	8.4
2395	2445	8.5
2446	2733	8.6
2734		8.8
2735		8.9
2736		9.0
2737	2811	9.1
2812	2886	9.2
2887	2909	9.3
2910	2993	9,4
2994		9.5
2995	3003	9,6
3004	3140	10.1
3141	3234	10,2
3135	3273	10.5
3274	3321	10.8

7. B.H.T. ESTIMATION

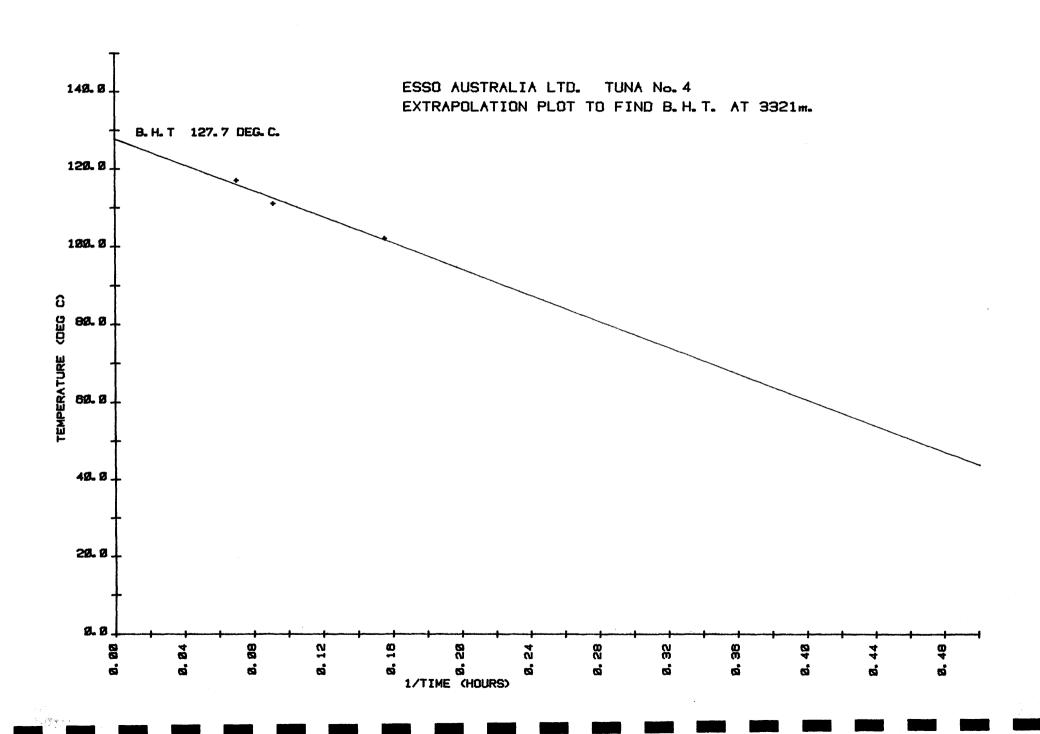
CORE LAB

STRAIGHT LINE LEAST SQUARES BEST FIT

1/TIME ON A LINEAR SCALE AGAINST TEMP ON A LINEAR SCALE

ENTERED DATA:

DATA SET #	1/TIME	TEMP
. 1	0.155	102.0
æ	0.053	111.0
.3	0.070	117.0


COEFFICIENT & CONSTANT:

Y = m.X + c where M = -1.6808366E 02 and C = -1.2770481E 02

INTERPOLATED DATA:

1/TIME TEMP

0.000 127.7

8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT

OVERBURDEN GRADIENT CALCULATIONS

DEPTH metres

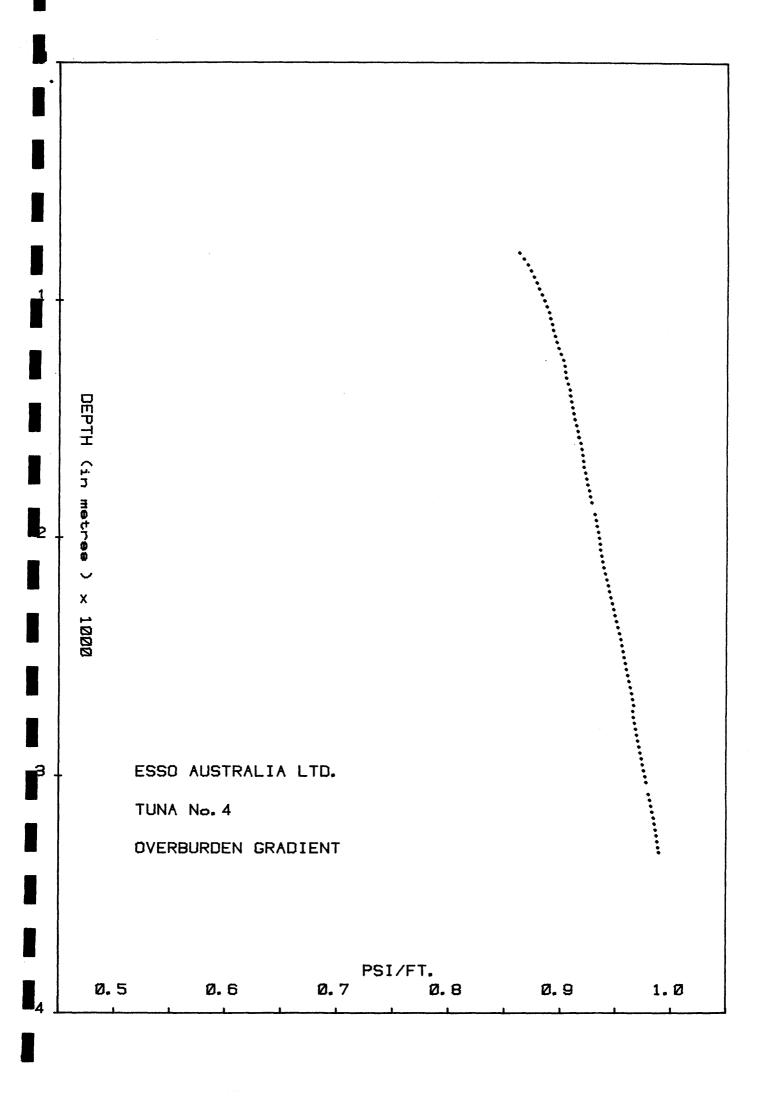
OVERBURDEN PRESSURE INCREMENT. .psi

CUMULATIVE OVERBURDEN PRESSURE .psi

OVERBURDEN PRESSURE GRADIENT . .psi/ft

OVERBURDEN EQUIVALENT DENSITY. . Pounds per gallon

BULK DENSITY TAKEN FROM AVERAGED F.D.C. LOG, OR FROM SONIC LOG FOR SECTIONS WHERE THE F.D.C. LOG IS NOT AVAILABLE.


OVERBUPDEN GRADIENT CALCULATIONS

DEPTH from	DEPTH to	AVR.BULK DENSITY	O/BURDEN INC.	O/BURDEN CUMM.	O/BURDEN GRAD.	O/BURDEN GRAD.
metres	metres	gm/cc	psi	psi	psi/ft	b b à
a	82	1.02	118.82	118.82	0.442	8,49
32	800	2.10	2141,98	2260,80	0.861	16.56
300	825	2.29	81.33	2342.13	0.865	16.64
825	850	2.28	80.97	2423.10	0.869	16.71
350	875	2.24	79.55	2502.66	0.872	16.77
875	900	2.23	79.20	2581,85	0.874	16.82
900	925	2.24	79.55	2661.41	0.877	16.86
925	950	2.22	78,84	2740.25	0,879	16.91
950	975	2.26	80.26	2820.51	0.882	16.96
975	1000	2.24	79.55	2900.07	0.884	17.00
1000	1025	2.24	79.55	2979.62	0.886	17.04
1025	1050	2.25	79.91	3059.53	0.888	17.08
1050	1075	2.18	77.42	3136.95	0.889	17.10
1075	1100	2.21	78.49	3215.44	0.891	17,13
1100	1125	2.16	76.71	3292.15	0.892	17.15
1125	1150	2.23	79.20	3371.35	0,894	17.18
1150	1175	2.24	79.55	3450,91	0,895	17,22
1175	1200	2.26	80.26	3531,17	0,897	17.25
1200	1225	2.31	82.04	3613.21	0.899	17.29
1225	1250	2.32	82.39	3695.60	0.901	17.33
1250	1275	2.24	79.55	3775.16	0.902	17.36
1275	1300	2.15	76.36	3851.51	0.903	17.37
1300	1325	2.18	77.42	3928.94	0.904	17.38
1325	1350	2.27	80.62	4009.56	0.905	17.41
1350	1375	2.30	81,68	4091.24	0.907	17.44
1375	1400	2.18	77,42	4168.66	0.908	17.45
1400	1425	2.20	78.13	4246.80	0.908	17.47
1425	1450	2,24	79.55	4326.35	0.909	17,49
1450	1475	2.24	79.55	4405,90	0.910	17.51
1475	1500	2,26	80.26	4486.17	0.912	17.53
1500	1525	2.31	82.04	4568.21	0.913	17.56
1525	1550	2.29	81.33	4649.54	0.914	17.58
1550	1575	2,25 2,34	79.91 83.11	4729.45 4812.55	0.915	17.60
1575	1600				0.917	17.63
1600	1625	2.31	82.04	4894.59 4974.14	0.918 0.919	17.66 17.67
1625 1650	1650 1675	2.24 2.21	79.55 78.49	5052.63	0,717	17.68
1675	1700	2.21	78.49	5131.12	0.920	17.69
1700	1725	2.35	83.46	5214,58	0.921	17.72
1725	1750	2.30	81.68	5296.26	0.922	17.74
1750	1775	2.28	80.97	5377.24	0.923	17.76
1775	1800	2.37	84.17	5461,41	0.925	17.78
1800	1825	2.33	82.75	5544.16	0.926	17.81
1825	1850	2.33	82.75	5626.91	0,927	17,83
1850	1875	2.34	83.11	5710.01	0.928	17.85

DEPTH from		AVR.BULK DENSITY	OZBURDEN INC.	O/BURDEN CUMM.	O/BURDEN GRAD,	O/BURDEN GRAD,
metres	metres	gm/cc	psi	psi	psi/ft	b b ċ
1875	1900	2.46	87.37	5797.38	0.930	17.89
1900	1925	2.35	83.46	5880.84	0.931	17.91
1925	1950	2.31	82.04	5962.88	0.932	17.92
1950	1975	2.37	84.17	6047.05	0.933	17.95
1975	2000	2.30	81,68	6128.74	0.934	17.96
2000	2025	2.32	82,39	6211.13	0.935	17,98
2025	2050	2.20	78.13	6289,26	0.935	17,98
2050	2075	2.35	83,46	6372.72	0.936	18.00
2075	2100	2.37	84.17	6456.89	0.937	
2100	2125	2.40	85.24	6542.13	0.938	18.05
2125	2150	2.42	85.95	6628.08	0.940	18.07
2150	2175	2.46	87.37	6715,44	0.941	18.10
2175	2200	2.44	86.66	6802.10	0.942	18,12
2200	2225	2.38	84.53	6886.63	0.943	18,14
2225	2250	2.49	88.43	6975,06	0.945	18.17
2250	2275	2.47	87,72	2062. 78	0,946	18.20
2275	2300	2.43	86.30	7149,08	0.947	18,22
2300	2325	2.47	87.72	7236,80	0,949	18.24
2325	2350	2.48	88.08	7324.88	0.950	18,27
2350	2375	2.48	88.08	7412.96	0.951	18.30
2375	2400	2.50	88.79	7501.75	0.953	18.32
2400	2425	2,46	87.37	7589.11	0.954	18.34
2425	2450	2.45	87.01	7676,12	0.955	18.36
2450	2475	2,44	86.66	7762.78	0.956	18.38
2475	2500	2,42	85.95	7848,73	0.957	18.40.
2500	2525	2.48	88.08	7936.80	0.958	18.42
2525	2550	2.46	87.37	8024.17	0.959	18.44
2550	2575	2.47	87.72	8111.89	0.960	18.47
2575	2600	2.50	88.79	8200.68	0.961	18.49
2600	2625	2.50	88.79	8289,47	0.963	18.51
2625	2650	2.52	89.50	8378.97	0.964	18.53
2650	2675	2.49	88.43	8467,40	0.965	18.55
2675	2700	2.47	87.72	8555.12	0.966	18.57
2700	2725	2.00	71.03	8626.15	0,965	18.56
2725	2750	2.44	86.66	8712.81	0.966	18.57
2750	2775	2,46	87.37	8800.17	0.967	18.59
2775	2800	2.50	88.79	8888,96	0.968	18.61
2800	2825	2.45	87.01	8975.97	0.968	18.62
2825	2850	2.50	88.79	9064.76	0.969	18.64
2850	2875	2.51	89.14	9153.90	0.970	18.66
2875	2900	2.57	91.27	9245.18	0.972	18.69
2900	2925	2.54	90.21	9335.38	0.973	18.71
2925	2950	2.52	89.50	9424,88	0.974	18.73
2950	2975	2.57	91.27	9516.15	0.925	18.75
2975	3000	2.60	92.34	9608.49	0,976	18.77
3000	3025	2.48	88.08	9696,57	0.977	18.79
3025	3050	2.58	91.63	9788.20	0.978	18.81

•

DEPTH from	DEPTH to	AVR.BULK DENSITY	O/BURDEN INC.	O/BURDEN CUMM.	O/BURDEN GRAD.	O/BURDEN GRAD.
metres	metres	gm/cc	psi	j s i	psi/ft	bbå
3050 3075 3100 3125 3175 3200 3225 3250 3275	3075 3100 3125 3150 3175 3200 3225 3250 3275 3300 3321	2.57 2.60 2.56 2.56 2.59 2.59 2.51 2.51 2.59	91.27 92.34 89.50 90.92 93.40 89.85 91.98 89.14 90.92 89.14	9879,47 9971,81 10061,31 10152,23 10245,63 10335,49 10427,47 10516,61 10607,53 10696,67	0.979 0.980 0.981 0.982 0.984 0.986 0.986 0.987	18.83 18.85 18.87 18.89 18.92 18.93 18.95 18.97 18.99

9. GAS ANALYSES

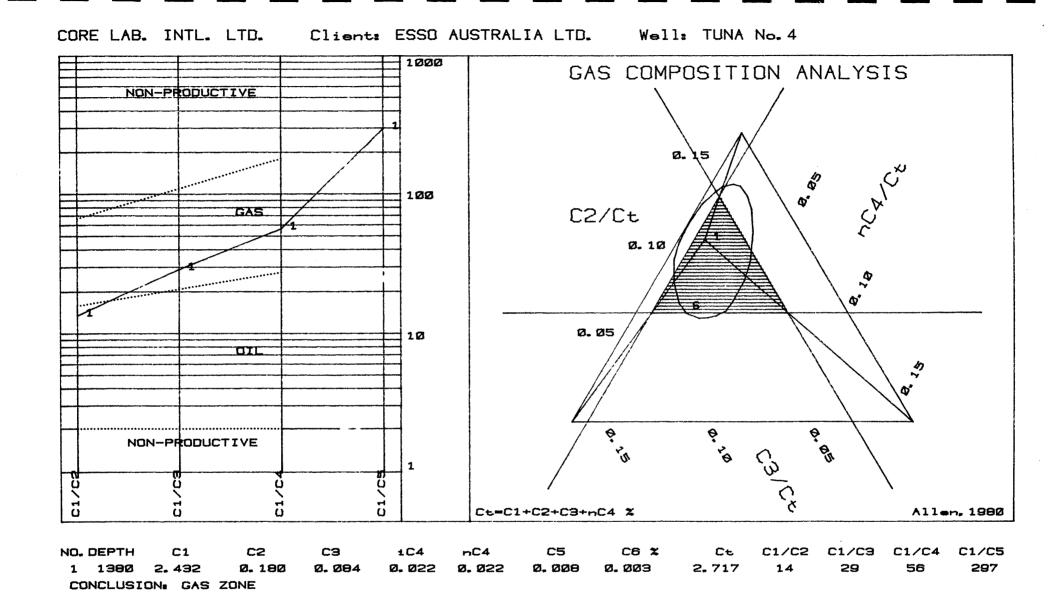
GAS COMPOSITION ANALYSIS

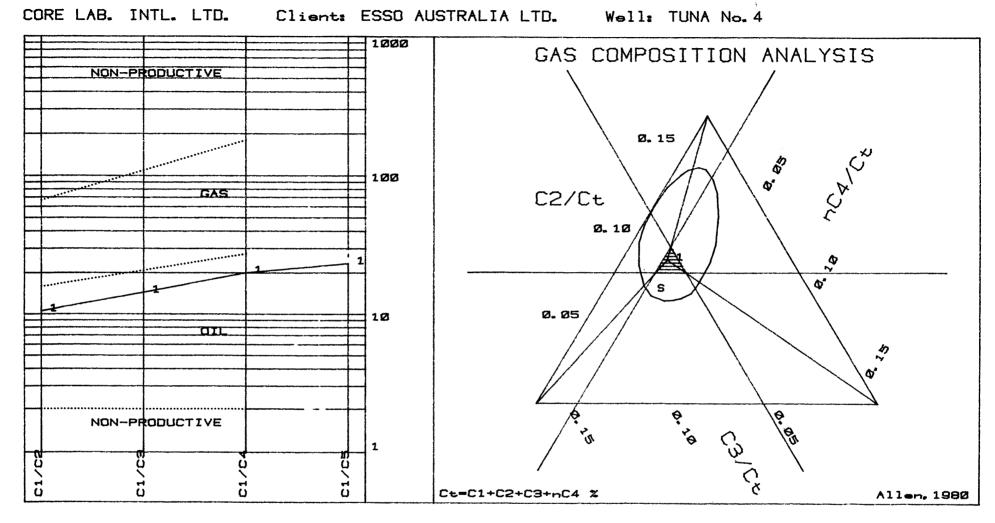
The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques however are empirical and by no means definitive.

LOG PLOT

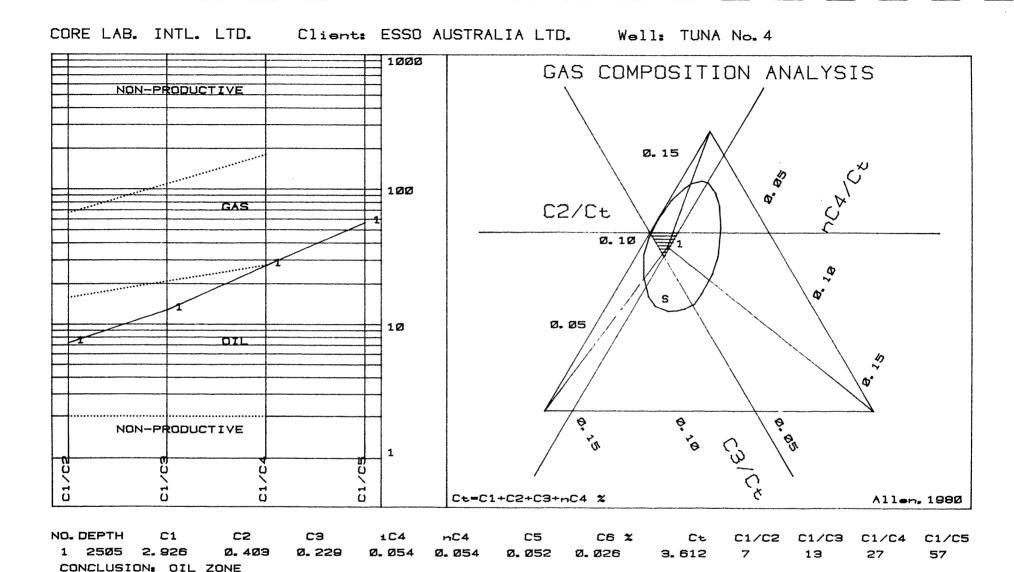
The ratios of C1/C2, C1/C3, C1/C4, C1/C5, and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show. The plots can be evaluated by the following criteria:

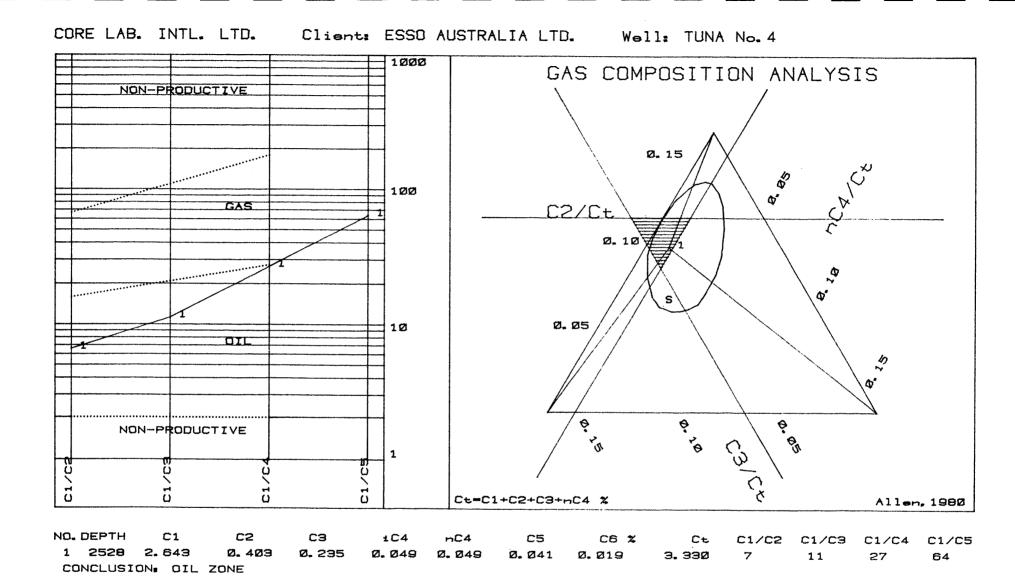
- 1. Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- 2. A ratio of C1/C2 between approximately 2 and 15 indicates oil and between 15 and 65, gas. If the C1/C2 ratio is below about 2, or above about 65, the zone is probably non-productive.

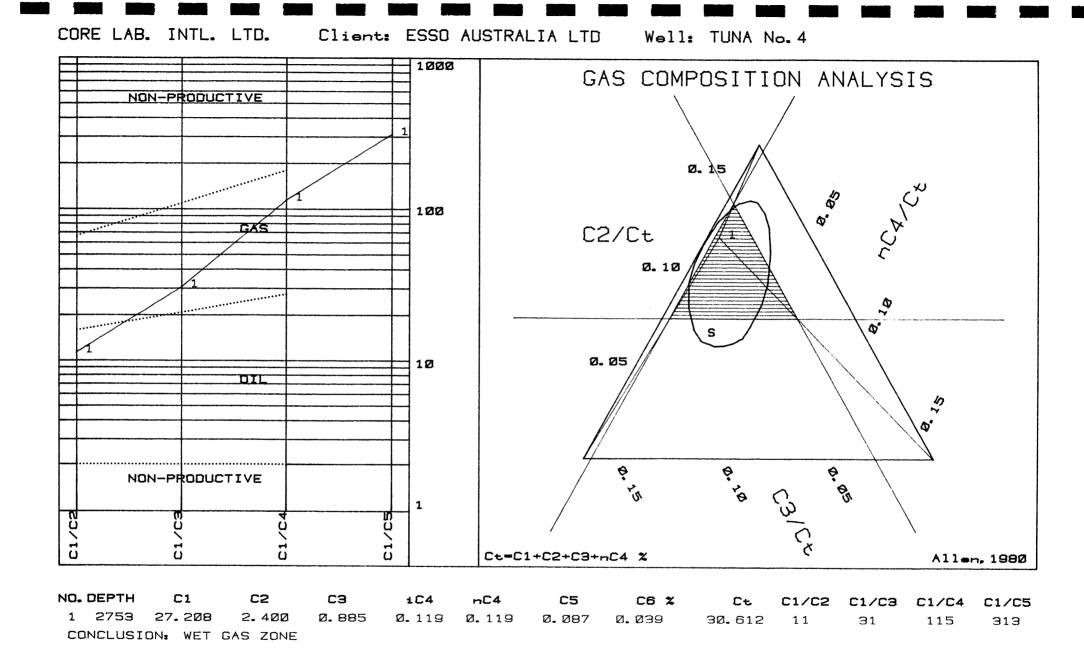

The actual values of the gas/oil/water limits will vary from area to area.

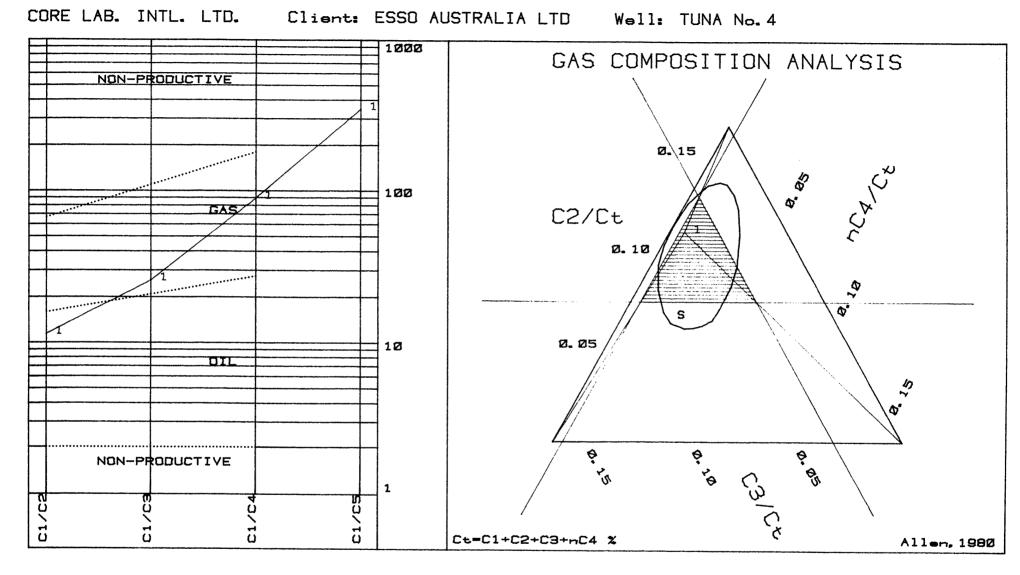

- 3. If the C1/C2 ratio is low in the oil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5, if oil is used in the mud) is lower than the preceding ratio, the zone is probably non-productive.
- The ratios may not be definitive for low permeability zones; however, steep ratio plots may indicate a tight zone.

TRIANGULATION PLOT


The triangulation diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to C4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.


A large triangle plot represents dry gas or low GOR oil, while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).


NO. DEPTH C1 СЭ 1C4 nC4 C5 C6 % Ct C1/C2 C1/C3 C1/C4 C1/C5 1 1435 Ø. 124 0.012 Ø. ØØ9 0.003 Ø. ØØ3 0.005 0.005 Ø. 148 11 14 20 23 CONCLUSION: WET GAS ZONE. HIGH GOR.



Client: ESSO AUSTRALIA LTD CORE LAB. INTL. LTD. Well: TUNA No. 4 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE Ø. 15 100 GAS C2/Ct 0.10 Ø. Ø5 10 DIL NON-PRODUCTIVE Ct=C1+C2+C3+nC4 % Allen, 1980 NO. DEPTH C1 C5 СЭ 1C4 C5 C6 % C1/C2 C1/C3 C1/C4 C1/C5 nC4 2.016 Ø. 929 21.513 1 2554 18. 405 Ø. 163 Ø. 163 Ø. 112 0.050 20 56 164

CONCLUSION: WET GAS ZONE, WITH MODERATE PERMEABILITY

NO. DEPTH C1 C2 С3 ±C4 nC4 C5 C6 % C1/C2 C1/C3 C1/C4 C1/C5 1 2949 15.637 1.375 0.607 Ø. Ø88 Ø. Ø88 0. 045 Ø. Ø23 17.707 11 26 89 347 CONCLUSION: WET GAS ZONE

COMPANY	ESSO AUS	TRALIA LTD.	 LOGGING	SUITE	NO	5	
WELL	TUNA NO.	14					

NΩ	DEPTH	СІ	C 2	C3	C4	C 5	C 6	COMMENTS
		PPM	PPM	PPM	РРМ	РРМ	PPM	
1	3309.5	157	27	20	19	16	21	
2	3302.5	1299	202	63	18	8	_	_
3	3294	1554	135	54	26	25	42	_
4	3286	413	67	45	35	31	62	-
5	3281	1358	359	88	26	10	TR	_
6	3277	315	34	22	28	67	117	-
දී	3261	1161	112	58	35	28	41	_
9	3256	846	152	38	36	15	18	_
11	3239	315	101	99	121	100	138	_
12	3234.5	271	54	34	45	44	90	_
14	3218.5	866	31.5	125	39	8	TR	
15	3212.5	2440	472	81	29	14	20	
17	3201	2361	405	.88	39	33	42	
18	3195.5	81	17	11	11	15	45	
20	3184	433	15	22	11	5	7	
21	3179.5	1731	900	216	44	10	6	
23	3169	4093	721	220	79	10	TR	
24	3175.5	236	88	76	122	210	290	
26	3146.5	244	70	32	18	11	17	
27	3139	216	112	38	24	8	8	1
29	3125	1062	494	175	70	16	6	
3 0 0	3119.5	118	114	103	127	164	257	
34	3089	37	8	5	4	3	TR	VERY SMALL SAMPLE
35	3070	767	270	130	44	13	7	
36	3060	79	18	18	48	77	110	SMALL SAMPLE
38	3043	1653	787	236	109	28	10	
39	3034.3	8187	1259	432	112	23	7	7
40	3031.5	315	101	99	88	64	55	
41	3026	433	46	54	33	15	10	SMALL MUDDY SAMPL
42	3024	1968	494	211	70	20	12	
45	3002	571	51	43	16	7	6	1
46	2995.5	335	17	47	66	182	172	
48	2976	2480	540	162	46	15	10	7
49	2970	374	146	45	13	4	TR	- SMALL SAMPLE
51	2959	63	34	25	20	8	11	
<u> </u>	-222	<u>`</u>	 		 -~			1

CORE LAB		SIDEWALL	CORE	GAS	ANALYSIS	DATA	SHEET	SHEET#	2	
COMPANY _	ESSO AUSTRALIA	LTD.		LOG	GING SUIT	E NO.	5			
WELL _	TUNA NO. 4									

NΩ	DEPTH	CI	C 2	C3	C4	C 5	C 6
		PPM	РРМ	РРМ	PPM	PPM	PPM
53	2946	1180	539	193	54	10	TR
54	2943.5	315	174	130	140	421	717
55	2940	472	292	45	24	14	33
56	2935.5	138	67	45	39	67	141
57	2926	6061	1169	41.4	136	51	28
58	2924	157	45	27	26	8	21
59	2909.5	7557	1888	756	201	62	26
60	2900	882	276	148	88	36	28
51	2892.5	177	39	22	20	8	11
62	2885	5117	2158	648	149	28	6
63	2875	354	202	140	83	31	28
64	2871	128	73	47	48	72	269
56	2852.5	122	95	53	31	15	24
67	2844	82	25	20	18	8	TR
58	2840	300	110	34	13	18	27
5 9	2822	246	107	67	61	75	155
70	2815	5589	2742	1152	350	72	29
71	2808	236	172	1188	ш56	802	717
 2	2799	108	51	31	22	11	11
73	2790.5	49	39	47	203	617	712
74	2780	364	261	121	59	18	12
75	2775	128	62	63	271	668	787
<u>'</u> 76	2764	177	110	184	447	730	800
77	2768.5	826	359	157	88	51	79
<u>' '</u> 78	2763	266	73	49	49	44	124
79	2757	5	14	17	48	87	203
30	2752	49	59	295	657	689	1187
31	2743	205	68	54	44	57	138
32	2738.5	563	84	41	20	62	-
32 33	2730	450	90	54	30	5	TR
) <u>5</u> }4	2683		68	44	27	6	TR
		353	1	†		8	
<u>85</u>	2681.5	431	79	50	74		TR
87	2663	60	24	22	18	11	28
88	2661	568	129	72	27	11	TR
89	2659.5	618	202	108	44	20	TR

CORE LAB		SIDEWALL	CORE	GAS	ANALYSIS	DATA	SHEET	SHEET#_3	}
COMPANY	ESSO AUSTRALIA	A LTD.		LOG	GING SUITE	. NO.		5	
WELL	TUNA NO. 4								

NΩ	DEPTH	CI	C 2	C3	C4	C 5	C 6	COMMENTS
		РРМ	PPM	PPM	PPM	PPM	PPM	
90	2652	882	509	396	184	78	42	
91	2642	686	313	184	88	31	11	
92	2643	177	78	45	18	TR		
93	2652	TR	TR	TR	TR	25	69	
94	2608.5	58	35	3,0	18	TR		
95	2605	60	44	27	18	TR		
96	2587	490	67	36	18	TR	 	
97	2571	TR	TR	18	25	51	103	
98	2649	14799	4121	1656	420	123	52	
100	2464.5	2117	90	93	119	TR		
101	2456	2195	1168	590	210	TR	-	
102	3266	705	73	27	10	TR	. =	
103	3248	5645	806	171	71.71	12	TR	
104	3225	6272	1164	576	225	57	20	
105	3207	470	135	49	21	TR	_	•
106	3190	70	32	18	21	25	55	
107	3176.5	170	44	22	25	20	27	
108	3135	206	61	22	13	TR	- .	
109	3131.5	98	24	22	18	TR	-	
110	3105.5	60	17	14	18	22	24	
111	3100	705	117	45	21	15	11	
112	3096.5	215	34	18	13	11	TR	
113	3089	127	35	34 .	33	45	70	
114	3056	61	28	22	18	11	14	
115	3026	980	470	194	57	20	TR	
116	3019	1078	392	225	78	35	28	
117	3010.5	196	84	76	44	21	20	
118	2992	147	112	72	26	TR	-	
120	2948.5	88	45	36	26	16	34	
121	2673	157	18	22	17	TR	_	
122	2468	5174	2598	1080	328	82	34	
					••• •••			
								
								
					<u> </u>			

10. CORELAB DATA SHEETS

Barrier St.

BIT RECORD

BIT SIZE Inches

BIT ${f COST}$, , , , , Australian dollars

JET SIZE Thirty-seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME. Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

BIT RECORD

LAB

COMPANY ESSO AUSTRALIA LTD.
WELL TUNA NO. 4

Sheet No. 1

s/no	Bit No.	Make	Туре	IADC Code	Size 11	Jets	Depth In m	Hole Made ^m	Drilling Time	On Bottom Hours	Turns $^{ m K}$	Condition T B G	Remarks
LJ 321	RR 1	HTC	OSC 3AJ +26"H/O	111	26	20/20/20	82	137	7	3.96	13.5	2 - 3-I	OUT AT 20" CASING POINT.
VE 321	1		OSC 3AJ	111	17½	20/20/20	219	592	19-3/4	11.56	104.0	2-4-I	OUT AT 13-3/8" CASING POINT
CD 416	2	HTC	J1	116	124	18/18/18	811	570	20½	12.11	100.2	4-2-1/8	PULLED TO CUT CORE NO. 1.
82 B 0801	CB 1	CHRIS	RC4	4	9 - 7/8	EQUIVALENT	1380	9.6	1½	1.08	6.3	5%	OUT TO RECOVER CORE NO. 1.
82 B 0801	CB 1 RR	CHRIS	RC4	4	9 -7/ 8	EQUIVALENT	1389.6	9.4	14	1.35	7.6	10%	OUT TO RECOVER CORE NO. 2.
82 B 0801	CB 1 RF	CHRIS	RC4	14	9-7/8	EQUIVALÉNT	1399	9.2	1/2	1.73	9.7	15%	OUT TO RECOVER CORE NO. 3.
82 B 0801	CB 1 RF	CHRIS	RC4)4	9 -7/ 8	EQUÍVALENT 15/15/15	1408.2	5.8	14	1.87	10.4	20%	PULLED TO CATCH CORE NO. 4
ZF 234	3	HTC	J22	517	12¼	18/18/18	1414	471.3	31	24.71	107.0	2-3-1/8	PRECAUTIONARY PULL, WITH
													30 HOURS ON THE BIT.
zc 600	4	HTC	J22	517	12¼	16/16/18	1885.3	372.9	50	43.84	205.4	5-6-1/4	INCREASED TORQUE, AND
													DECREASED ROP'S.
ZF 237	5	HTC	J22	517	124	16/16/18	2258.2	186,8	341/4	30.22	125.2	6-5-4	9-5/8" CASING POINT.
CF 377	6	HTC	JD8	734	8½	14/14/14	2445.0	19.0	5 ¹ 2	4.92	18.7	6-3-I	PULLED DUE TO LOW RATES
													OF PENETRATION.
795 SS	7	HTC	J22	517	8½	14/14/14	2464.0	17.2	2	1.43	4.4	1-1-I	PULLED TO CUT CORE NO. 5.
85 B 0616	CB 2	CHRIS	RC6	4	8½	EQUIVALENT	2481.2	17.8	1½	1.45	8.2	5%	OUT TO RECOVER CORE NO. 5.
85 B 0616	RR CB 2	CHRIS	RC6	4	8½	EQUIVALENT	2499.0	18.1	3 ¹ 4	2.82	15.6	20%	OUT TO RECOVER CORE NO. 6.
85 B 0616	RR CB 2	CHRIS	RC6	4	8½	EQUIVALENT 14/15/15 EQUIVALENT	2517.1	13.9	3 ¹ 4	2.07	11,0	50%	OUT TO RECOVER CORE NO. 7.
2 W 7361	CB 3	CHRIS	RC4	4	8½	EQUIVALENT	2531.0	18.0	11/5	1.18	6.8	15%	OUT TO RECOVER CORE NO. 8.
2 W 7361	RR CB 3	CHRIS	RC4	4	8½	Į PRYTYAĻENT	2549.0	15.4	2 ¹ ₂	1,87	10.7	30%	OUT TO RECOVER CORE NO. 9.
795 SS	RR 7	HTC	J22	517	81/2	13/13/13	2564.4	85.6	111/4	10.92	42.9	2-3-1/3	1
													LOGS.
769 SS	8	HTC	J22	517	8½	13/13/13	2650	81.0	21½	18.26	62.0	8-6-1/8	" PULLED DUE TO LOW ROP'S.
515 TL	9	HTC	J33	537	8½	13/13/13	2731	91,5	14-3/4	12,33	42.0	1-2-1/	6" PULLED TO CUT CORE NO. 10.

7520-487 (CL 1153)

BIT RECORD

LAB

COMPANY ESSO AUSTRALIA LTD.

L TUNA NO. 4

Sheet No. 2

i	NO, 4 Sneet No	Sneet No.					4	NA NO.	1.0	WELL.		TA A5	
s/no	I Mage Time Hours Turns I B G	m Condit	On Bottom Hours			Depth in	1	Size	IADC Code	Туре	Make	Bit No.	s/no
82 B 0704	3.47 EQUIVALENT 14/14/14 2822.5 5.5 14 1.17 5.1 RINGED PULLED EARLY DUE TO	7 5.1 RIN	1.17	14	5.5	2822.5	EQUIVALENT 14/14/14	8.47	4	MC23	CHRIS	CB 4	82 B 0704
	DECREASED ROP.						, , , ,						
81 E 0333	3.47 EQUIVALENT 2828.0 5.0 3 3.58 16.0 15% PULLED EARLY DUE TO VERY	8 16.0 15%	3.58	3	5.0	2828.0	EQUIVALENT	8.47	14	C23	CHRIS	CB 5	81 E 0333
	LOW ROP'S.						11/11/11						
110 WK	3½ 13/13/13 2833.0 142.0 31-3/4 29.05 102.9 4-4-I PULLED AS A PRECAUTION.	5 102.9 4-4	29.05	31-3/4	142.0	2833.0	13/13/13	8½	537	J33	HTC	10	110 WK
TL 215	3½ 13/13/13 2975.5 35.5 11½ 10.65 36.5 1-1-I PREMATURE T.D. DUE TO	5 36,5 1-1	10,65	11½	35.5	2975.5	13/13/13	81/2	617	J44	HTC	11	TL 215
e.	OVERPRESSURE FORMATIONS.				_			<u></u>			<u> </u>		· .
CJ 084	3 13/13/13 3011.0 2.1 1 0.5 2.2 7-3-I REAMER + 2 METRES NEW	2.2 7-3	0.5	1	2.1	3011.0	13/13/13	81/2	734	JD8	HTC	12	CJ 084
	FORMATION.												
416 RS		6 127.8 4-5	39.96	434	127.3	3013,1	13/13/13	8½	537	J33	HTC	13	416 RS
	3120.							-				ļ	
417 RS			1	†		 			537	J33	HTC		•
	3.47 14/14/14 3273.2 8.6 4 7.57 36.5 100% PULLED TU RECOVER CORE NO	7 36.5 100	7.57	4	8.6	3273.2	14/14/14	8.47	4	-			
TL 406	3 ³ / ₂ 13/13/13 3282.5 38.5 21 18.84 55.5 1-1-I OUT AT T.D.	4 55.5 1-1	18,84	21	38.5	3282.5	13/13/13	81/2	617	J44	HTC	15	TL 406
			ļ										
								-					
417 RS 81 E 0333 TL 406	3.47 14/14/14 3273.2 8.6 4 7.57 36.5 100% PULLED TU RECOVER CO	7 36.5 100	7.57	4	8.6	3273.2	14/14/14	8.47	4	J33 C23 J44	HTC CHRIS HTC	14	81 E 0333

7520-487 (CL 1153)

BIT RECORD

LAB

COMPANY ESSO AUSTRALIA LTD.
WELL TUNA NO. 4

Sheet No.1

		ر	WELL		111 110.										Jilee	
s/no.	Bit No.	Make	туре	IADC Code	Size ''	Cost A\$	Jets	Depth InM	Depth Out	Hole M Made	Drilling Time	On Bottom Hours	Turns K	Average ROP	Average Cost/ M	Condition T B G
LJ 321	RR 1	HTC	OSC 3AJ +26"H/O	111	26	0	20/20/20	82	219	137	7	3.96	13.5	34.6	172.33	2-3-I
VE 321	1	HTC	OSC 3AJ	111	17½	4857	20/20/20	219	811	592	19-3/4	11.56	104.0	51.2	102.34	2-4-I
CD 416	2	HTC	J1	116	124	2694		811	1381	570	20½	12.11	100.2	47.1	113.71	4-2-1/8
82 B 0801	CB 1	CHRIS	RC4	4	97/8	18000	FSYTYALENT	1380	1389.6	9.6	1号,	1.08	6.3	8.9	3823.35	5%
82 B 0801	CB 1 RR	CHRIS	RC4	4	97/8	0	EQUIVALENT	1389.6	1399	9.4	1	1,35	7.6	43.8	1220.54	10%
82 B 0801	CB 1 RF	CHRIS	RC4	4	97/8	0	EQUIVALENT	1399	1408.2	9.2	14	1.73	9.7	24.2	871.56	15%
82 B 0801	CB 1 RF	CHRIS	RC4	4	97/8	0	EQUIVALENT	1408.2	1414.0	5.8	1/1	1.87	10.4	41.4	737.92	20%
ZF 234	3	HTC	J22	517	124	8516	18/18/18	1414	1885.3	471.3	31	24.71	107.0	19.1	256.03	2-3-1/8
zc 600	14	HTC	J22	517	124	8516	16/16/18	1885,3	2258.2	372.9	50	43.84	205.4	8.5	518.78	5-6-4
ZF 237	5	HTC	J22	517	121/4	8516	16/16/18	2258,2	2445.0	186.8	344	30.22	125.2	6.2	783.03	6-5-4
CF 377	6	HTC	JD8	734	8½	1700	14/14/14	2445.0	2464	19	5 ¹ 2	4.92	18.7	3.9	2457.51	6-3-I
795 SS	7	HTC	J22	517	8½	4139	14/14/14	2464	2481.2	17.2	2	1.43	4.4	12.0	2136.71	1-1-I
85 B 0616	CB 2	CHRIS	RC6	4	81/2	11019	EQUIVALENT 14/15/15	2481.2	2499.0	17.8	1 ¹ / ₂	1.45	8.2	12.3	2455.30	5%
85 B 0616	RR CB 2	CHRIS	RC6	4	81/2	0	EQUIVALENT	2499.0	2517.1	18.1	31/4	2.82	15.6	6.3	1190.69	20%
85 B 0616	RR CB 2	CHRIS	RC6	4	81/2	0	EGULVALENT 14/15/15	2517.1	2531,0	13.9	3 ¹ 4	2.07	11.0	6.7	1012.90	50%
2 w 7361	CB 3	CHRIS	RC4	4	81/2	21210	EQUIVALENT	2531.0	2549.0	18.0	1 ¹ 2	1.18	6.8	15.3	2959.70	15%
2 W 7361	RR CB 3	CHRIS	RC4	4	8½	0	ΕΩ <u></u> ŪΙΥΑΙΈΝΤ 14/15/15	2549.0	2564.4	15.4	2 ¹ / ₂	1,87	10.7	8.3	2501.86	30%
795 SS	RR 7	HTC	J22	517	8½	0	13/13/13	2564.4	2650.0	85.6	1114	10.92	42.9	9.0	654.58	2-3-1/1
769 SS	8	нтс	J22	517	81/2	4139	13/13/13	2650.0	2731.0	81.0	21½	18.26	62.0	4.4	1226.05	8-6-1/8
515 TL	9	HTC	J33	537	8½	4503	13/13/13	2731.0	2822.5	91.5	14-3/1	12.33	42.0	7.4	860.64	1-2-1/1
82 B 0704	CB 4	CHRIS	MC23	4	8.47	18067	EQUIVALENT	2822.5	2828.0	5.5	14	1.17	5.1	4.7	9373.79	RINGED
81 E 0333	CB 5	CHRIS	C23	14	8.47	18067	EQUIVALENT	2828.0	2833.0	5,0	3	3.58	16.0	1.4	12071.43	15%
110 WK	10	HTC	J33	537	8½		13/13/13	2833.0	2975,5	142.5	31-3/4	29.05	102.9	4.9	988.81	4-4-I
TL 215	11	HTC	J44	617	8½	4357	13/13/13	2975.5	3011.0	35.5	11½	10.65	36.5	3.3	2082.47	1-1-I

7520-486 (CL 1152)

BIT RECORD

LAB

COMPANY ESSO AUSTRALIA LTD.

WELL TUNA NO. 4

Sheet No. 2

S/NO
LJ 084
416 RS
417 RS
81 E 0333
TL 406

MATIC		WELL_	TON	A NO.	4			-							t 1VO2_
Bit No.	Make	Туре	IADC Code	1	Cost	Jets		Depth Out			On Bottom Hours	Turns K	Average ROP	Average Cost/	Condition T B G
12	HTC	JD8	734	81/2	1700	13/13/13	3011.0	3013.0	2.1	1	0.5	2.2		13748.5	
13	HTC	J33	537	81/2		13/13/13		3140.4				127.8		1382.57	
14	HTC	J33	537	81/2	4503	13/13/13	3140.4	3273.2	133.5	53 ¹ /2	49.34	140.6	2.7	1626.93	4-4-1/1
15	CHRIS	C23	14	8.47	0	14/14/14	3273.2	3282.5	8.6	14	7.57	36.5	2.2	4449.53	100%
15	HTC	J44	617	81/2	4347	13/13/13	3282.5	3321.0	38.5	21	18.84	55.5	2.0	2760.37	1-1-I
										<u> </u>					
										·					
	-		<u> </u>							-					
			<u> </u>												
· · · · · · · · · · · · · · · · · · ·			 												
			-												
										 	-				
			1				-			-					
	<u> </u>		<u> </u>	 											
			-												
			 		-					-					
										-					
			<u> </u>												
L	J			<u> </u>	<u> </u>			1							

MUD INFORMATION SHEETS

DEPTH Metres

MUD WEIGHT Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I. seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. Pounds/100 square feet

GEL : INITIAL/10 min . Pounds/100 square feet

FILTRATE A.P.I. c.c.

CAKE THICKNESS . . . Thirty-seconds of an inch

SALINITY : Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . Percentage

					MUD IN	NFORMATIO	ON SHEET
	OWII / IV !	ESSO AUSTR TUNA NO. 4		·		C h	aat Na
	T	TOTA NO. 4	Ψ	T => :		,	eet No. 1
DEPTH	1 - 1 - 1 - 1		520	746	811	1370	1389
DATE	17/05/84	18/05/84		20/05/84		22/05/84	23/05/84
TIME			22:00	07:00	20:00	20:30	17:00
WEIGHT	<u> </u>		9.1	9.1	9.2	9.7	9.7
FUNNEL VISCOSITY			35	34	35	63	50
PV/YP			4/11	4/9	5/15	10/28	17/24
N/K			.34/1.79	.39/1.17	.32/2.69	.34/4.65	.39/3.0
GEL: INITIAL/10 MIN			10/13	11/17	12/18	25/30	26/39
pH	SEAWATER	SEAWATER	9.5	9.3	9.6	11.3	11
FILTRATE: API/API HTHP		PLUS	NO TEST	NO TEST	NO CHECK		9.0/18
CAKE		DRILLED	3	3	3	3	3
SALINITY (PPM)		SOLIDS	19,500	16,500	18,000	21,000	21,000
SAND			TR	0	TR	TR	T'R
SOLIDS			3	14	5		
OIL			0	0	0	0	9
NITRATES (PPM)			0				
(1111)			0	0	0	140	0
REMARKS:	CDITODITO	0011	77777			L	
	SPUDDED IN	20" CASING	DRILLED	17½" HOLE	13-3/8" CASING	DRILLED 12¼"	CUT CORE
		RAN	WIPER TR	IP		HOLE	Nos:
		STACK &			STACK		1 & 2
		RISER	LOGGED		TEST		1 % L
DEPTH	1404	1731	1900	21 38	2258	2298	2433
DATE	24/05/84		26/05/84	27/05/84	28/05/84	29/05/84	30/05/84
TIME	11:00	20:25	20:30	24:00	20/05/04		
WEIGHT	9.8	9.7	9.7	9.7	9.8	21:30 9.7	23:00
FUNNEL VISCOSITY	53	51	48				9.8
PV/YP	10/20	10/15	12/23	49 13/23	70	<u>49</u> 14/32	60
N/K	,4 ₁ /2,26				12/28		15/33
GEL: INITIAL/10 MIN	20/43	.49/1.21	43/2.47	.44/2.25	<u>- 38/3.78</u>	.30/4.22	41
		10/29	15/27	7/27	15/38	13/35	7.7/41
pH	11.2	11.0	11.3	11.3	10.6	10.6	10.6
FILTRATE: API/API HTHP	8.4/18	7.8/18	6.7/16.8	7.2/17.5	6.8/-	6.3/17.9	6.7/18.6
CAKE	3	2	2	2 .	2	2	2
SALINITY (PPM)	21,000	20,000	22,500	21,000	22,000	22,000	22,000
SAND	TR	TR	TR	TR	0.25	TR	0.5
SOLIDS	10	9	9	9	9	9	10
OIL	0	0	0	0		0	_
NITRATES (PPM)	0	180	160	180	160	160	180
DEMARKO							
REMARKS:	CUT CORES	~~~~	DR	ILLED 12-1	/4" HOLE -		
	3 & 4						1
	J & 4						

					MUD II	NFORMATI	ON SHEET
1	UMPANY	SSO AUSTR	ALIA LTD.		····	~ ·	
	'ELL			101.1.5	Loles		eet No. 2
DEPTH	2445	2445	2445	2445	2451	2490	2530
DATE	31/05/84		02/06/84	03/06/84		05/06/84	06/06/84
TIME	16:00	18:00	14:00	10:15	22:00	21:30	18:30
WEIGHT	9.7	9.7	9.7	9.8	9.3	9.4	9.4
FUNNEL VISCOSITY PV/YP	45		52	65	36	37	41
	12/26	13/26	15/31	16/35	9/19	7/20	9/29
N/K GEL: INITIAL/10 MIN	.4/3.22 13/3 ⁴	.41/2.94		39/4.39	.4/2.28	.33/3.40	31/5.62
·		12/35	16/39	18/43	5/24	8/26	8/35
pH	10.6	10.3	10.4	10.0	10.6	10.6	10.7
FILTRATE: API/API HTHP		6.7/19.2		8.2/22.4	8.4/23.8		6.8/16.9
CAKE	2	2	2	3	2	2	2
SALINITY (PPM)	22,000	22,000	22,000	22,000	23,000	22,000	23,000
SAND	TR	TR	TR	TR	TR	TR	TR
SOLIDS	9	9	9	9	5	6	6
OIL	-	_	-	_	_		_
NITRATES (PPM)	180	180	140	100	80	160	160
					DRILLED 8-1/2" P.I.T.	CORE NO. 5	CORE NO. 7
DEPTH	2549	2650	2650	2650	2710	2731	2822
DATE	07/06/84	08/06/84		10/06/84	12/06/84		14/06/84
TIME	13:15	17:30	18:00	16:00	18:00	17:30	
WEIGHT	9.4	9.4	9.4	9.4	9.4	9.4	13:30 9.7
FUNNEL VISCOSITY	40	70	55	53	59	58	68
PV/YP	10/20	12/33	12/28	12/25	10/32	13/19	15/40
N/K	.41/2.26	.34/5.37	.38/3.78	.41/2.96	.31/6.15		.35/6.29
GEL: INITIAL/10 MIN	9/21	17/42	11/34	11/29		19/28	
pH	10.7	10.7	10.5	10.5	10.9		22/38
FILTRATE: API/API HTHP	7.2/20.4	6.8/17.2				10.9	11.1
CAKE	2	2	2	6.6/17	7.6/19 2	5.6/ -	5/16
SALINITY (PPM)	22,000	21,000	21,000				2
SAND	TR	TR	TR	21,000	17,000	17,000	17,000
SOLIDS	6	6	6	TR 6	TR	TR	TR
OIL			O		6	6	9
	160	7.00	7.00	7 (0		-	_
NITRATES (PPM)	160	180	180	160	260	280	300
	<u> </u>			<u> </u>			
REMARKS:	CORE NO. 8	DRILLED 8-1/2" HOLE		GGED	DRILI	ED 8-1/2"	HOLE
	CORE NO. 9	WIPER TRIP	TEST	B.O.P.			

	OMPANY	ESSO AUST	RALIA LTD	•		NFORMATI	
	/ELL	TUNA NO.	4			Sh	eet No. 3
DEPTH	2824	2854	2967	3011	3011	3011	3011
DATE	15/06/84	16/06/84	17/06/84	18/06/84	19/06/84	20/06/84	21/06/81
TIME	01:30	05:30	05:30	11:00	15:00	22:00	07:30
WEIGHT	9.7	9.7	9.7	10.4	10.5	10.4	10.5
FUNNEL VISCOSITY	62	57	65	52	53	85	62
PV/YP	15/16	15/20	17/23	20/27	21/26	18/41	20/38
N/K	.57/.89	.51/1.42	.51/1.66			.38/5.38	.43/4.0
GEL: INITIAL/10 MIN	17/28	16/19	18/32	19/36	18/40	25/48	29/52
рН	10.8	10.6	10.8	10.9	10.9	10.3	10.9
FILTRATE: API/API HTHE	12/	5.8/17	4.6/16	4.7/16	4.3/16	3.8/16.6	4.2/16.1
CAKE	2 .,	2 .	2	2	2	3	2
SALINITY (PPM)	17,000	16,000	17,000	17,000	17,000	17,000	18,000
SAND	TR	TR	TR	0.25	0.25	0.50	0.25
SOLIDS	9	9	9	11	11	11	11
OIL	0	0	0	0	0	0	0
NITRATES (PPM)	280	220	200	200	200	200	180
REMARKS:	CORE NOS: 10-11	DRILLED (8-1/2" ноі	E LOGGE	STUCK RFT TOOL	WIPER TRIP	
M			*		· · · · · · · · · · · · · · · · · · ·	к. г	. T.'S
DEPTH	3011	3011	3011	3011	3011	3011	3011
DATE	22/06/84		24/06/84	25/06/84	26/06/84		28/06/84
TIME	14:00	05:00	18:00	10:45	22:30	17:00	19:00
WEIGHT	10.5	10.5	10,5	10.5	11.0	10.9	10.9
FUNNEL VISCOSITY	65	46	50	45	52	49	44
PV/YP	21/40	23/30	22/27	18/21		26/24	22/20
N/K	.43/4.27	.52/2.07	.53/1.75	.55/1.29	.57/1.52	.60/1.16	
GEL: INITIAL/10 MIN	31/52	16/41	15/35	17/31	19/35	18/34	14/29
pH	10.5	10.6	10.4	10.1	10.4	10.2	10.0
FILTRATE: API/API HTHP	4.1/15.8	4.3/16.6	4.8/17.6	7.1/21.8	5.9/22.2	6.5/22.8	7.3/23.6
CAKE	2	2	2	2	3	2	2
SALINITY (PPM)	18,000	18,000	18,000	17,000	18,000	18,000	18,000
SAND	0.25	0.25	TR	0.25	0.5	0.25	0.25
SOLIDS	11	11	11	11	15	14	14
OIL	0	0	0	0	0	0	0
NITRATES (PPM)	180	180	180	160	150	120	120
REMARKS:		PER		PER STUC			
	TR:	IP R, F		IP RFT		REPA: STA:	

					MUD IN	IFORMATIO	ON SHEET
LAB co	OMPANY_ES	SSO AUSTRA	LIA LTD.		- the section of		
W LULL W	ELLT	JNA NO. 4				Sh	eet No. 🚣
DEPTH	3011	3032	3096	3146	3201	3250	3274
DATE	29/06/84		01/07/84	02/07/84		04/07/84	
TIME	22:30	21:00	21:30	21:00	22:00	22:00	23:45
WEIGHT	10.7	10.7	10.5	10.5	10.5	10.9	11.4
FUNNEL VISCOSITY	49	52	60	5.0	59	63	64
PV/YP	20/33	18/28	21/34	19/30	20/34	22/39	20/35
N/K	.46/2.98			.47/2.57	45/3.18	.44/3.83	45/3.38
GEL: INITIAL/10 MIN	28/43	20/35	28/43	28/43	19/43	19/43	16/38
рН	11.1	10.8	11.0	10.5	10.5	10.5	10.5
FILTRATE: API/API HTHP		5.1/17.6		5.8/21	6/20	6/20	6/20
CAKE	2	2	2	2	2	2	2
SALINITY (PPM)	16,000	16,000	17,000			1	1
SAND	25	25	TR	17,000	17,000	17,000	16,000
SOLIDS	13	12	11	TR 11	TR 12.5	TR 12.5	12.5
OIL	 			4.4	16.)	14.7	12.5
NITRATES (PPM)	160	180	7.00	-			-
NITRATES (PPM)	100	100	180	200	190	190	500
REMARKS:							
	_		<u> </u>			r	
DEPTH	3286	3321	3321	3321			
DATE	06/07/84	07/07/84		09/07/84	10/07/84	11/07/84	12/07/84
TIME	22:00	24:00	24:00	21:00			
WEIGHT	11.5	11.5	11.5	77.4			
FUNNEL VISCOSITY	62	70	72	64			
PV/YP	21/36	30/31	31/29	31/29			
N/K	.45/3.40	.58/1.67	.60/1.42	.60/1.42			
GEL: INITIAL/10 MIN	18/34	19/33	20/47	20/41			!
pH	10.7	71.0	10.8	10.8			
FILTRATE: API/API HTHP	6/20	5.5/19	5.5/19	5/19 2			
CAKE	2	2	2	2,			
SALINITY (PPM)	17,200	17.500	17.500	17,500			
SAND	TR	TR	TR	TR			
SOLIDS	12.5	12.5	0.5	12.5			
OIL	0	0	0	0			
NITRATES (PPM)	200	190	190	190			
REMARKS:	CUT CORE	DRILLED 8-1/2"	LOGGE AT T.			DUCTION ESTED	
	NO: 12	HOLE					

R.F.T. DATA SHEETS

				R.F.T. SA	MPLING DAT	A SHEET
COMPANY ESS WELL TUR		IA LTD.				et No.1
RUN No.	1	1	2	2	3	
SEAT No.	16	17	18	18	19	3 19
CHAMBER CAPACITY (GAL)	6	1	6	1	6	1
DEPTH (metres)	1398.5		1440.5	1400.5	1398.5	1398.5
RECOVERY VOLUMES			<u> </u>			
GAS (Cu Ft)	23.9		56		92	
OIL (cc)	-	-	13,000		-	
WATER/FILTRATE (cc)	500		2250		800	
OTHER (cc)	_		_		340	
SURFACE PRESSURE (PSI)	450		1200		1400	
GAS COMPOSITION	<u>, , , , , , , , , , , , , , , , , , , </u>		11 1200		1 ++00	
C1 (PPM)	436659.2	P	453181	D	434299	P
C2 (PPM)	66355.2	L	60825	R	63590	R
C3 (PPM)	35717.1	G ·	12288	E	33484	E
C4 (PPM)	15411.2	G E	9769	E	14310	E
C5 (PPM)	3856.6		3185	R V	5198	R V
C6 (PPM)	6600.0	S	1110	E	1680	E
CO2 (%)	1%	E	2%	D	3%	ע
H2S (PPM)	NIL	A T	0		TR	
OIL PROPERTIES						
DENSITY			48.9@60 ⁰ I		64.8@60°	
COLOUR			RED/BROWN		LT BRN	
FLUORESCENCE			BT CREAM		BRIGHT W	ITE
POUR POINT (OC)						
WATER PROPERTIES						
RESISTIVITY (Qm)	0.47@56°1	,	•		o.39@61 F	
Cl (frm resis) (PPM)	17,000				20,000	
Cl (frm titrat) (PPM)	10,000		15,000		15,000	
NITRATES (PPM)	80.0		100		100	
pH	8.3		8.0		8.5	
COMMENTS	500ML FII RECOVEREI MINOR CON	, WITH				
SAMPLES SHIPPED (Include quantity and , volume of containers).	l x 4L PLASTIC		l x 5GAL JERRY CAN l x 4L PLASTIC	,	1 x 1L TIN	

MARIGARIA	ESSO AUSTR	מיד.ז מיד.זמ	R.F.T. SA	AMPLING DATA SHEET
	TUNA NO. 4			Sheet No2
RUN No.	4	4		
SEAT No.	22	22		
CHAMBER CAPACITY (GAL)	6	2-3/4		
DEPTH (metres)	2369.6	2369.6		
RECOVERY VOLUMES				
GAS (Cu Ft)	_	-		
OIL (cc)	_	_		
WATER/FILTRATE (cc)	21,900	21,900		
OTHER (cc)				
SURFACE PRESSURE (PSI)				
GAS COMPOSITION				<u> </u>
C1 (PPM)				
C2 (PPM)				
C3 (PPM)				
C4 (PPM)				
C5 (PPM)				
C6 (PPM)				
CO2 (%)				
H2S (PPM)				
DIL PROPERTIES		<u> </u>		
DENSITY				
COLOUR			,	
FLUORESCENCE				
POUR POINT (OC)				
ATER PROPERTIES		. 		V
RESISTIVITY (Rm)			•	
Cl (frm resis) (PPM)				
Cl (frm titrat) (PPM)	16,000	18,000		
NITRATES (PPM)	7.0	7.5		
рН	40	80		
OMMENTS	NO GAS R	ECOVERED.		
AMPLES SHIPPED (Include quantity and ,				

ı

	SO VIIGHDA:	ፒፒለ ፣ሙ ኮ		R.F.T. SA	MPLING DA	TA SHEET
LAB COMPANY ES WELL TU	NA NO. 4	LIA L'I'D.			Sh	eet No.3_
RUN No.	6	6	7	7	8	8
SEAT No.	45	46	48	48	50	50
CHAMBER CAPACITY (GAL)	12	2-3/4	12	2-3/4	12	2-3/4
DEPTH (metres)	2451.5	2451.5	2470.4	2470.4	2475.0	2475.0
RECOVERY VOLUMES						
GAS (Cu Ft)	.78	_	1.35	0.65	1.61	1_
OIL (cc)	_				TR SCUM	8
WATER/FILTRATE (cc)	41,550		41,750	9250	41,750	8550
OTHER (cc)	-					
SURFACE PRESSURE (PSI)	300		400	150	375	200
GAS COMPOSITION	- 	.		1-20	317	1200
	T	γ	· II · · · · · · · · · · · · · · · · ·	T	1	
C1 (PPM)	51,020	N				N
C2 (PPM)	4,914	0			CIENT	<u> </u>
C3 (PPM)	2,865 1,539	G			GIJ	S
C4 (PPM)	1,709	A			FF1 LE	A M
C5 (PPM)	773	S			NSU AME	P
C6 (PPM)	28				Huj	E E
CO2 (%)	1.50		11.0	_	3	1:1
H25 (PPM)	15.20		25.0	_	195	
OIL PROPERTIES						
DENSITY						
COLOUR			,		TAN	TAN
FLUORESCENCE					BRIGHT	BRIGHT W
POUR POINT (OC)						
WATER PROPERTIES			*			•
RESISTIVITY (Qm)	,284@18C	.290@17	.268@17°C	.265@16°C	.279@15.	o SC .285@1
Cl (frm resis) (PPM)	26K	26K	15K		12.75K	12.25K
Cl (frm titrat) (PPM)	15,000	15,000	17,000	16,000	19,000	16,000
NITRATES (PPM)	20	20	10	TR	40	40
pH	8	9	7.5	7.0	7.5	7.5
COMMENTS						1 .
GAMPLES SHIPPED (Include quantity and , volume of containers).	1 x 5GAL PLASTIC	1 x 4L PLASTIC	l x 5GAL PLASTIC	1 x 4L PLASTIC	l x 4GAL PLASTIC	1 x 4L PLASTIC

COMPANY	SSO AUSTRA	LIA LTD.		R.F.T. SA	MPLING DAT	
WELL T	UNA NO. 4		····		Sh	et No. 14
RUN No.	9	9	10	10	12	12
SEAT No.	51	51	52	52	56	56
CHAMBER CAPACITY (GAL)	45.4	10.4	45.4	10.4	45.4	3.8
DEPTH (metres)	2550.0	2550.0	2566.0	2566.0	2582.8	2582.8
RECOVERY VOLUMES						
GAS (Cu Ft)	64.36				5 . 8	•55
DIL (cc)	15,550				_	_
WATER/FILTRATE (cc)	1830				40,500	3,500
OTHER (cc)					_	_
SURFACE PRESSURE (PSI)	1400				500	290
GAS COMPOSITION	-		4		<u>u</u>	•
C1 (PPM)	360621		297961	326533	129592	N
C2 (PPM)	52660		97696	52541	7446	0
C3 (PPM)	37481		68017	19644	5232	G
C4 (PPM)	5287		28200	5581	1557	Ā
C5 (PPM)	1102		8039	1037	145	S
C6 (PPM)	400		1800	150	27	
CO2 (%)	19%		20%	23%	11%	
H2S (PPM)	12		16	22	NII	
OIL PROPERTIES						
DENSITY API @ 15°C	39.5		40.1	39.6		
COLOUR	RED BRN		RED'BRN	RED BRN		
FLUORESCENCE	BRT CREA	М	BRIGHT W	IITE		
POUR POINT (OC)	87 ⁰ F					
WATER PROPERTIES						
RESISTIVITY (Qm)	.288@18 ⁰	2	.300@19 ⁰	.298@23	c .30@17 ⁰	.322@1
Cl (frm resis) (PPM)	14K		18K	20K	25K	25K
Cl (frm titrat) (PPM)	16		15	16	16	16
NITRATES (PPM)	20		10	10	20	30
рН	8		7	7	6.9	7.2
COMMENTS						
SAMPLES SHIPPED	1 x 5GAL PLASTIC (
(Include quantity and volume of containers).	H2O 1 x 5GAL					

LAB COMPANY ES	SO AUSTRAL	IA LTD.		R.F.T. SAM	PLING DATA SHEE
COMPANY ES WELL TU	NA NO. 4				Sheet No.
RUN No.	13	13	14	14	
SEAT No.	57	57	58	58	
CHAMBER CAPACITY (GAL)	12	2-1/4	12	1	
DEPTH (metres)	2507.2	2507.2	2470.0	2470.0	
RECOVERY VOLUMES					
GAS (Cu Ft)	26		3.65	0	
OIL (cc)					
WATER/FILTRATE (cc)	525 3295		TR 4155	SCUM 350	
OTHER (cc)	3297		<u> </u>	3,0	
SURFACE PRESSURE (PSI)	975		500	0	
GAS COMPOSITION		L		Maria de la composición dela composición de la composición de la composición de la composición dela composición dela composición dela composición de la composición de la composición de la composición dela composición de la composición dela composición de	
C1 (PPM)	351023		104082		
C2 (PPM)	69102		8637		
C3 (PPM)	+		4043		
C4 (PPM)	30679 9987		1527		
C5 (PPM)	2463		4168		
C6 (PPM)	512		180		
CO2 (%)	15		3.5		
H2S (PPM)	16		2		
OIL PROPERTIES	1	<u> </u>		·	
DENSITY	40				
COLOUR	RED BRN		1 ,		
FLUORESCENCE	BRT CREA	M A			
POUR POINT (°C)					
WATER PROPERTIES				<u> </u>	
RESISTIVITY (Qm)	.286@17°	<u>, </u>	.262@20°	.263@20 ^d	
C1 (frm resis) (PPM)	27K	<u> </u>	26K	26K	
C1 (frm titrat) (PPM)	14.5K		15K	20K	
NITRATES (PPM)	NIL		0	0	
рН	7.0		1		
COMMENTS	1				
wateria is is a					
SAMPLES SHIPPED	2 x 1GAL	1	1 x 5GAL PLASTIC	1 x 1GAI WATER	
(Include quantity and .	TIMO OTT		WATER	PLASTIC	
volume of containers).	1 x5GAL WATTER			,	

LAB COMPANY ES	SO AUSTRA	LIA LTD.		R.F.T. SA	AMPLING DA	TA SHEET
	NA NO. 4				Sh	eet No. 6
RUN No.	18	18	19	19	20	20
SEAT No.	18/88	18/88	94	95	96	96
CHAMBER CAPACITY (LIT.)	45.4	10.4	45.4	10.4	45.4	10.4
DEPTH (metres)	2948.5	2948.5	2896.5		2896.5	2896.5
RECOVERY VOLUMES					***************************************	
GAS (Cu Ft)	16.61	10.65	1.26		9.25	0
OIL (cc)	1750	1500	TR SCUM		0	0
WATER/FILTRATE (cc)	37450	6750	6250		0	0.
OTHER (cc) MUD			GE JO		28000	0
SURFACE PRESSURE (PSI)	850	1100	25		300	
GAS COMPOSITION	1 0 20	1 1100	<u> </u>	l	300	0
C1 (PPM)	328,770	309,923	268,042		293,171	
C2 (PPM)	61,079	51,825	34,549		46,889	
C3 (PPM)	25 , 692		14,822		18,775	
C4 (PPM)	7,905	5,434	5,928		7,411	
C5 (PPM)	1,536	940	2,624		2,892	
C6 (PPM)	199.6	174.7	699		1,198	
CO2 (%)	15	20	3		2	
H25 (PPM)	5	2	4		TR	
OIL PROPERTIES						
DENSITY API @ 60°F	37.8	38.3				
COLOUR	RED BRN	RED BRN	,			
FLUORESCENCE	BRIGHT	CREAM				
POUR POINT (OC)	37					
WATER PROPERTIES			v			
RESISTIVITY (Qm) @ 21°C	0.260	0.277	0.253		0.258	!
Cl (frm resis) (PPM)	26,000	25,000	27,000		31,000	
Cl (frm titrat) (PPM)	16,000	17,000	15.000		18-000	
NITRATES (PPM)	40	30	TR		120	* * * * * * * * * * * * * * * * * * * *
ρΗ	8.0	7.5	გ.2		9.7	
COMMENTS				CHAMBER NOT OPENED	SEAL FAILURE AFTER 1 HOUR OF	ONLY ONE CHAMBER WAS FILL
SAMPLES SHIPPED (Include quantity and volume of containers).	1 SAMPLE 4 LITRE OIL 1 SAMPLE	WATER 4 LITRE			SAMPLING	

OIL 4 LITRE 1 SAMPLE 1 SAMPLE 20 LITRE 4 LITRE OIL

	1990 17			R.F.T. SA	MPLING DA	TA SHEET
	UNA NO. 1	HALIA L'I'D	•		Sh	eet No.7_
RUN No.	21	21	22	22	23	23
SEAT No.	100	100	101	101	102	102
CHAMBER CAPACITY (LIT)	45.4	10.4	45.4	10.4	45.4	10.4
DEPTH (metres)	2866.2	2866.2	2827	2827	2775	2775
RECOVERY VOLUMES	.	<u> </u>	-4	ere to a community of the	4	
GAS (Cu Ft)	13.1	7.63	1.55	0	0.23	0.01
OIL (cc)				TR SCUM		
WATER/FILTRATE (CC)	28500	4600	14250	5250	1100	9750
OTHER (cc)						
SURFACE PRESSURE (PSI)	420	500	370	80	150	100
GAS COMPOSITION			ш		1	1
C1 (PPM)	400384	301465	178995		94208	
C2 (PPM)	57016	11878	19251		8314	
C3 (PPM)	16865	11243	5621		3279	
C4 (PPM)	5690	4377	1751		1422	
C5 (PPM)	1405	527	702		643	
C6 (PPM)	284	284	355		264	
CO2 (%)	9	9	6		3	
H2S (PPM)	4	11	0		3	
OIL PROPERTIES	<u> </u>	L	<u> </u>			<u> </u>
DENSITY						
COLOUR		1	,			
FLUORESCENCE						
POUR POINT (°C)						
WATER PROPERTIES						
RESISTIVITY (Qm)@ 21°C	0.242	0.243	0.250	0.253	0,289	0.253
Cl (frm resis) (PPM)	27,000	27,000	27,000	27,000	26,000	32,000
Cl (frm titrat) (PPM)	17,000	17,000	18,000	18,000	18,000	18,000
NITRATES (PPM)	TR	TR	10	TR	30	40
рН	8.3	8.3	8.3	8.0	9.7	10.2
COMMENTS				NO GAS RECOVERE		INSUFFICE SAMPLE FO ANALYSIS
SAMPLES SHIPPED						
(Include quantity and volume of containers).						

CART.				R.F.T. SA	MPLING DA	TA SHEET
COMPANY ES		LIA LTD.			Sh	neet No.8
RUN No.	24	24	25	25	26	26
SEAT No.	103	103	106	105	107	107
CHAMBER CAPACITY (LIT)	45.4	10.4	45.4	10.4	45.4	10.4
DEPTH (metres)	2775	2775	2686	2775	2919.5	2919.
RECOVERY VOLUMES		4	<u> </u>			1 - 2 - 2 - 2
GAS (Cu Ft)	0.28	0	81.2	0.11	131.3	48.8
OIL (cc)	0	0				10,0
WATER/FILTRATE (cc)	1000	9000	30,700	6,750	17,500	1,830
OTHER (cc) CONDENSATE	·		0.25		TR	220
SURFACE PRESSURE (PSI)	200	100	1600	100	1500	1600
GAS COMPOSITION	·····	 		<u> </u>	u /	1 = 000
C1 (PPM)	40,627		320,307	_	70,656	56,96
C2 (PPM)	1,744		38,010	_	9,502	8,69
C3 (PPM)	732		14,996	-	3,982	2,979
C4 (PPM)	315		3,279	_	1,313	1,46
C5 (PPM)	66		547	_	468	369
C6 (PPM)	9		38	_	142	248
CO2 (%)	0		8.3	_	17	20
H2S (PPM)	0		TR	_	2	15
OIL PROPERTIES						
DENSITY						
COLOUR			,			
FLUORESCENCE						
POUR POINT (OC)						
WATER PROPERTIES						
RESISTIVITY (Qm) @ 16°C	0,298	0.249			0,249	0.244
Cl (frm resis) (PPM)	26,000	32,000			16,000	16,500
Cl (frm titrat) (PPM)	16,000	18,000	17.000	17.000	16,000	16.000
NITRATES (PPM)	30	50	TR	TR	20	TR
рН	9.1	9.5	8.5	8,4	8.4	8.3
COMMENTS		NO GAS RECOVERE	CONDENSA HAD AN A OF 41.6	PI GAS	RED	
GAMPLES SHIPPED (Include quantity and , volume of containers).	1/4 LITR PLASTIC WATER	ES SAMPLE	1/1 LIT CONDENS. SAMPLE 1/5 GAL WATER	1/4 LIT WATER SAMPLE		

SAMPLE

LAB COMPANY ESS	O AUSTRAL	IA LTD.	,	R.F.T. S	AMPLING DA	TA SHEET
WELL TIM					Sh	eet No. 9
RUN No.	27	27	28	28	29	29
SEAT No.	108	108	109	109	114	114
CHAMBER CAPACITY (LIT)	45.4	10.4	45.4	3.8	45.4	3.8
DEPTH (metres)	2812.5	2812.5	2768	2768	2752	2752
RECOVERY VOLUMES					••••	
GAS (Cu Ft)	12.4	14.67	2.07	0.24	5.7	_
OIL (cc)	2350	3360			-	_
WATER/FILTRATE (cc)	32300	3750	41.5	3.75	-	_
OTHER (cc) MUD					16,750	
SURFACE PRESSURE (PSI)	700	1200	400	100	100	_
GAS COMPOSITION			·		u	
C1 (PPM)	12953	14692	21196	17664	25024	
C2 (PPM)	1781	1878	3563	3469	3267	_
C3 (PPM)	1037	1269	1873	1690	1757	_
C4 (PPM)	984	1096	273	246	1231	_
C5 (PPM)	204	674	117	120	878	-
C6 (PPM)	107	296	71	58	248	_
CO2 (%)	10	13) ₄	2	6.1	_
H2S (PPM)	5	25	TR	ΨR	U.T.	
OIL PROPERTIES	I	<u>-</u>	L	I	ш	L.
DENSITY API	36.6	36				
COLOUR	RED BRN	RED BRN	,			
FLUORESCENCE	YEL-CRM	YEL-CRM				
POUR POINT (°C)		34				
WATER PROPERTIES			•			
RESISTIVITY (Qm) @ 21°C	0.261	0.247				
Cl (frm resis) (PPM)	18,500	20,500				
Cl (frm titrat) (PPM)	17,000	17,000	18,000	18,000		
NITRATES (PPM)	10	30	40	20		
рН	8.1	7.9	8.5	8.3		
COMMENTS					PACKER FAILURE	PACKER FAILUR
SAMPLES SHIPPED (Include quantity and , volume of containers).						

				D F ¥ 5	MOI 2445	
LAB COMPANYE	SSO AUSTR	σπ.I AIJA		m.r.T. S/	AMPLING DAT	A SHEET
WELL T					She	et No1
RUN No.	30	30				
SEAT No.	118	118	 			
CHAMBER CAPACITY (LIT)	45.4	10.4				· · · · · · · · · · · · · · · · · · ·
DEPTH (metres)	2929.5	2929.5				
RECOVERY VOLUMES					<u> </u>	
GAS (Cu Ft)	1.07	19.28				
DIL (cc)	0	0				
WATER/FILTRATE (cc)	43,500	7250				
OTHER (cc) CONDENSATE	0	TR				
SURFACE PRESSURE (PSI)	100	1400				
GAS COMPOSITION	<u> </u>				<u> </u>	
C1 (PPM)	42393	38860				
C2 (PPM)	3563	4751				
C3 (PPM)	2496	2342				
C4 (PPM)	1987	1469				
C5 (PPM)	1349	1171				
C6 (PPM)	460					
CO2 (%)	18	355 8				
H2S (PPM)	TR	TR				
OIL PROPERTIES	+1/	TK			1	
DENSITY						
COLOUR			,			
FLUORESCENCE						
POUR POINT (°C)						
WATER PROPERTIES	<u> </u>		<u> </u>		11	
RESISTIVITY (Rm)			I			
Cl (frm resis) (PPM)						
Cl (frm titrat) (PPM)	18,000	18,000				
NITRATES (PPM)	50	30				
pH	8.2	9.8				
COMMENTS						
SAMPLES SHIPPED						
(Include quantity and volume of containers).						

NUMBER Sheet N Run No.			·	· · · · · · · · · · · · · · · · · · ·	R.F.T. S	AMPLING DAT	TA SHEET
SEAT No. 121 121 122 122 123 123 125			LIA LTD.			Sh	eet No. 11
Chamber Capacity (Gal) 12 2-3/4 12 2-3/4 12 2-3 2-3	RUN No.	31	31	32	32	33	33
DEPTH (metres) 3157.8 3157.8 3062 3062 3031.5 3033 3033.5	SEAT No.	121	121	122	122	123	123
Second Color Seco	CHAMBER CAPACITY (GAL)	12	2-3/4	12	2-3/4	12	2-3/4
GAS (Cu Ft)	DEPTH (metres)	3157.8	3157.8	3062	3062	3031.5	3031.5
DIL (cc)	RECOVERY VOLUMES						
WATER/FILTRATE (cc) 2030 890 11500 11750 175 1	GAS (Cu Ft)	4	5.8	249	78	ರ	39
DTHER (cc) CONDENSATE 2250	OIL (cc)	0				OIL SCUM	200
OTHER (cc) CONDENSATE 2250	WATER/FILTRATE (cc)	2030	890	11500		1	4750
SURFACE PRESSURE (PS1) 2100 2000 2280 2250 80 200	OTHER (cc) CONDENSATE			11		-	
C1 (PPm) 372817 322437 332513 324956 342589 317 C2 (PPm) 41722 40284 54671 51793 53232 43 43 25 25 26 26 26 26 26 26	SURFACE PRESSURE (PSI)	2100	2000	2280	2250	80	2000
C2 (PPM)	GAS COMPOSITION				·	<u></u>	
C2 (PPM)	C1 (PPM)	372817	322437	332513	324956	342589	317399
C3 (PPM) 11520 9360 23616 21888 25344 19	C2 (PPM)	41722	40284	5և671	51702	H	43161
C4 (PPM) 3083 3083 7428 8479 6727 44 C5 (PPM) 822 925 2150 2656 801 C6 (PPM) 189 258 504 654 NTI 1 C02 (%) 2 9 23 19 10 H2S (PPM) 0 0 7 7 NIL 1 OIL PROPERTIES DENSITY 43 COLOUR 70 OIL SCUM WAY FLUORESCENCE 8 87 POUR POINT (°C) 887 C1 (frm resis) (PPM) 16,000 18,000 23,000 17,500 195 21 NITRATES (PPM) 198 176 213 195 198 19 PH 8.5 7.2 8.4 6.5 7.15 6.	C3 (PPM)						19584
C5 (PPM) 822 925 2150 2656 801	C4 (PPM)	7				11	4415
C6 (PPM)	C5 (PPM)	822	925	2150			514
CO2 (%) 2 9 23 19 10	C6 (PPM)	180					NTT.
H2S (PPM) 0 0 7 7 NIL 1	CO2 (%)						8
DENSITY	H25 (PPM)	0		1	1	11	NIL
COLOUR FLUORESCENCE POUR POINT (°C) WATER PROPERTIES RESISTIVITY (Qm) C1 (frm resis) (PPm) C1 (frm titrat) (PPm) 16,000 18,000 23,000 17,500 195 21 NITRATES (PPm) 198 176 213 195 198 19 PH 8.5 7.2 8.4 6.5 7.15 6.	IL PROPERTIES	 				41	
COLOUR	DENSITY				49.1		hЗ
FLUORESCENCE POUR POINT (°C) WATER PROPERTIES RESISTIVITY (Qm) C1 (frm resis) (PPM) C1 (frm titrat) (PPM) 16,000 18,000 23,000 17,500 195 21 NITRATES (PPM) PH 8.5 7.2 8.4 6.5 7.15 6.	COLOUR					OIL SCUM	WAXY YE
NATER PROPERTIES	FLUORESCENCE						BRI WH
### ### ##############################	POUR POINT (°C)						WH CUT.
C1 (frm resis) (PPM) C1 (frm titrat) (PPM) 16,000 18,000 23,000 17,500 195 21 NITRATES (PPM) 198 176 213 195 198 19 pH 8.5 7.2 8.4 6.5 7.15 6. COMMENTS			<u> </u>				
C1 (frm titrat) (PPM) 16,000 18,000 23,000 17,500 195 21 NITRATES (PPM) 198 176 213 195 198 19 pH 8.5 7.2 8.4 6.5 7.15 6. COMMENTS	RESISTIVITY (Qm)			-			
NITRATES (PPM) 198 176 213 195 198 19 pH 8.5 7.2 8.4 6.5 7.15 6. COMMENTS	C1 (frm resis) (PPM)						
NITRATES (PPM) 198 176 213 195 198 19 pH 8.5 7.2 8.4 6.5 7.15 6. COMMENTS	Cl (frm titrat) (PPM)	16,000	18,000	23,000	17,500	195	21
pH 8.5 7.2 8.4 6.5 7.15 6. COMMENTS	NITRATES (PPM)	198					195
COMMENTS	pH	8.5	7.2				6.5
SAMPLES SUYDOSD 1 1 FOAT 2 204	OMMENTS		·			1 • + /	<u> </u>
(Include quantity and CAN CAN	AMPLES SHIPPED (Include quantity and , volume of containers).	1 x 5GAL PLASTIC	1 x 1GAT PLASTIC		,	11 1	1 x 4LT PLASTIC CAN 1 x 1LT

COMPART	SO AUSTRA	LIA LTD.		R.F.T. SA	MPLING DATA SHEET
WELL TO	1		I		Sheet No. 12
RUN No.	33	33	34	34	
SEAT No.	123	123	125	125	
CHAMBER CAPACITY (GAL)	12	2714	12	2-3/4	
DEPTH (metres)	3031.5	3031.5	3119.4	3119.4	
RECOVERY VOLUMES					
GAS (Cu Ft)	39.5	8	1.2	0.5	
OIL (cc)	0.2	SCUM	_	_	
WATER/FILTRATE (CC)	4750	11750	15000	9750	
OTHER (cc)			_	_	
SURFACE PRESSURE (PSI)	2000	80	0	600	
GAS COMPOSITION	.	I I			<u> </u>
C1 (PPM)	352665	347,627	165,918	283,516	
C2 (PPM)	47477	48,916	51,793		
C3 (PPM)	20735	17,668	50 , 688		
C4 (PPM)	4905	5263	2943	1296	
C5 (PPM)	596	165	62	246	
C6 (PPM)	NIL	NIL	NIL	NIL	
CO2 (%)	10	10	15	2	
H25 (PPM)	NIL	NIL	NIL	NIL	
OIL PROPERTIES					<u> </u>
DENSITY					
COLOUR			,		
FLUORESCENCE					
POUR POINT (OC)					
WATER PROPERTIES			*		
RESISTIVITY (Rm)				·	
Cl (frm resis) (PPM)					
Cl (frm titrat) (PPM)	19,500	21,000	20,000	17,500	
NITRATES (PPM)	198	195	209	198	
pH	7.5	6.5	7.8	7.5	
COMMENTS	GAS RCVI FROM MII POINT OF EMPTYING CHAMBER.	GAS RCV FROM EN POINT C EMPTYIN	D F G	VERY POO GAS SAMPLE	
SAMPLES SHIPPED (Include quantity and volume of containers).	OLIMINIDEN,	CIAMPL		,	

I

	-				
CAS COMPANY ESSO WELL TUNA	SED-HOLE O AUSTRALI A #4	A LTD		R.F.T. SAI	MPLING DATA SHEET
		T T			Sheet No.1
RUN No.	35	35	36	36	
SEAT NO.	128	128	129	129	
CHAMBER CAPACITY (GAL)	12	2 3/4	12	2 3/4	
DEPTH (metres)	2938.8	2938.8	2940.0	2940.0	
RECOVERY VOLUMES					
GAS (Cu Ft)	3.04	1.02	3.95	1.28	
OIL (cc)	0	0	0	100	
WATER/FILTRATE (cc)	41,700	9,500	28,250	9,000	
OTHER (cc)	0	0	0	0	
SURFACE PRESSURE (PSI)	300	350	420	380	
GAS COMPOSITION	<u> </u>		ч	1 <u>.</u>	
C1 (PPM)	46,664	44,442	200 (90	026 020	
C2 (PPM)	6,071	6,267	292,680 40,960	236,032	
C3 (PPM)	2,630	2,981	20,685	34,560	
C4 (PPM)	747	1,121	6,872	16,031 4,229	
C5 (PPM)	229	367	1,883	1,198	
C6 (PPM)	46	114	455	420	
CO2 (%)	0.5	27.3	11.0	6.5	
H2S (PPM)	0	0	0	0.7	
OIL PROPERTIES			ı	I	
DENSITY OAPI				34°	
COLOUR			,	Dk brn	
FLUORESCENCE				Crm-yel	
POUR POINT (OC)				35°	
WATER PROPERTIES					
RESISTIVITY (Rm)					
Cl (frm resis) (PPM)					
Cl (frm titrat) (PPM)	14,000	13,500			
NITRATES (PPM)	140	100			
рН	7.3	7.0			
COMMENTS		Trace	Trace	Trace	
		^C 7	^C 7	c ₇	
SAMPLES SHIPPED					
(Include quantity and , volume of containers).					

PRODUCTION TEST DATA

COMPANY	ESSO TUNA	AUS #4	TRAL:	IA L	TD P	wT#	2	2				DATE	23-2	25TH	JULY.
	TIONS 282		282	9 m	(FM, R	KB)								
2.7.101	- F. 100 .	TVE	PE3				,	959 0 0			P	H	CI (1	(TR	NT)
RATHOLE	FLUID:		S		PPM	DE	NSIT		'`						
CUSHION	FLUID		Ε						~ w _			PH.			
			TITRAT				PPN			WATER 6	-	CI	NO3	94	
TIME	SAMPLING POINT	1	SHAK	E 01	JΤ	API B	TEM	COLOUR	POINT	WATER R	23	G	103		
нн: мм	F0.111	Ö	OIL	H20	SLDS		•F		• C	-∩-m	•	PPM	PPM		COMMEN
	CH/MAN	#	1			355	60	Dk brn	33						
05:30 06:30	CH/MAN	+				37.8		Dk brn	35						
07:30	CH/MAN	十				-									
07:30	CH/MAN	1	98	2	0	34,28	60	Dk brn	32						
08:00	CH/MAN		987	1.3	TR	34 , 88	60	Dk brn	34				-	_	1
08:30	CH/MAN		990	1.0	TR	32,40	60	Dk brn	323				-	-	1
09:00	CH/MAN		99.3			328		Dk brn	T			 	-	+-	1
09:30	CH/MAN		992		-	34,60		Dk brn	1				╂—	┼	-
10:00	CH/MAN		99,6	0.3	0.1	32,21		Dk brn	+			 	-	┼	4
10:30	CH/MAN	\perp	99,6	0.3	0.1	362	60	Dk brn			<u> </u>			╄-	4
11:00	CH/MAN	4	99,5	0.1	0.1	32,68	60	Dk brn	+		 	<u> </u>		╄	4
11:30	CH/MAN		96,6	0.3	0.1	369	60	Dk brn	36					1_	4
12:00	CH/MAN		992	0.6	0.2	363	60	Dk brn	35		_			<u> </u>	4
12:30	CH/MAN		994	0.1	0.2	36,4	60	Dk brn	35					<u> </u>	
01:00	COLLEC'	TED	FERF	Y C	N S	AMP)	E N	0.1							
01:00	CH/MAN	1	962	3.1	10.2	365	60	Dk brr	35					T	1
	CH/MAN					362		Dk brr				 		十	1
01:30				7	T	363		Dk brr		+	 			十	1
02:00	CH/MAN	\dashv		-	+	1	┼──	Dk bri	+	+	\vdash	1	1	+	1
02:30	CH/MAN			1	1	2862	1	 			╁	+	+-	╁	4
03:00	CH/MAN				-	3359	 	Dk bri			-			┿	-
03:30	CH/MAN		99,2	20.	70.	1860	60	Dk bri	355		_				4
04:30	CH/MAN		98,8	3 1.	10.:	1861	60	Dk bri	1 354						_
05:30	CH/MAN		99.	0.	10.	1855	60	Dk bri	1 350)	<u> </u>				_
		十	+	+-	10	1861	60	Dk br	ı 360						
06:30	CH/MAN			7	T	857	1	Dk br			T]
07:30			7	1	\mathbf{T}	2354	T	Dk br		1	1			T	7
08:30				7	7	T	7	Dk br			1	1		T	7
09:30				7		2864 1861					+	1	1	十	7
10:30				-	_	1364	+	Dk br			+-	+	-	+	1
11:30			_	_	_	354	_	Dk br	_		╁╌	+	十	十	1
11:55	CH/MAI	V	99.	7 0,3	0.	2349	6 60	Dk br	n 36(J	4	,		+	-

CORE LA	9.				PRO	DUCT	ON I	WELL T	EST D	AT	A SHEE	T			3	HEET#_2_
COMPANY	ESSO	AUS	TRAL	TA.	LTD		- ^						DATE	26T	II. H	п.ү. 1984
WELL	ESSO TUNA	#4			. F	*TW	<u>2</u>									
PERFORA	TIONS_282	0 –	282	9 m	(FM, I	RKB)									
		•														
RATHOLE	FLUID:	TYF	E3					RES.	~w				PH	CI (1	TITR	AT) PP
	·	NO:	.		PPM	DI	TIENS	Υ					·			
CUSHION	FLUID	TYP	E	r)			PD:	RE	S.L.R NSITY	A			, РН.	 		
TIME	SAMPLING			(E O				COLOU	R POI	JR	WATER	RES	CI	NO3	PH	
	POINT	o	1	*	,			OIL	POI	끠	8 TEMP		-		-	
ни: мм		Įž	OIL	H20	SLO		F		<u> •</u>	С	-M-M	•	PPM	PPM	_	COMMENTS
12:45	CH/MAN		99.7	0.5	0.2	346	60	Dk bi	cn 35	5					_	Ì
01:45	CH/MAN	4_		_	_	35,6	_	Dk b	rn 36	,		<u> </u>	<u> </u>		<u> </u>	
02:45	CH/MAN	$oldsymbol{\perp}$	99,5		+	35,4	1	Dk b		-		<u> </u>				Shut in at
03:45	CH/MAN	1	99,7			350		Dk b				 			 	02:50 to
05:00	CH/MAN	+-	99,0			361	+	Dk b:		_		┼	 		+	pressure
06:00	CH/MAN	+-				348	_	Dk b	_	_		+-	 		\vdash	test
07:00	CH/MAN	4-			+	35,4	+	Dk b:		_		┼─	-	+-	┼-	1
08:00	CH/MAN	┼		1	1	360	1	Dk b				+-	-	-	╀━	.
09:00	CH/MAN	╀	1		7	35,4		Dk b				┼—	 	┽—	┼	Shut from
10:30	CH/MAN	╂-	1		1	351	1	Dk b				╀			┼	09:18-10:00
11:00	CH/MAN	4	99•7	03	TR	354	60	Dk b	rn 36	NO.		┼			╁	to repair
12:00	CH/MAN	\bot	_	_		356		Dk b					ļ		_	chiksan lea
01:00	CH/MAN		99.7	0,3	TR	30 . 8	60	Dk b	rn 36	<u>,0</u>					<u> </u>	
01:30	CH/MAN		99.8	0,2	TR	31,6	60	Dk b	rn 35	54						
02:00	CH/MAN	T	998	02	TR	330	60	Dk b:	rn 36	<u>.</u> 2						
	 	\top			1	广						1			十	
	 	╁	╁──	-	\vdash	╁╌	╁┈	 				+-		╅	十	1
		+-	+-	╁	╫┈	╁─╴	-					┿┈	+	-	+	-
		- -	-	├	-	-	-	ļ			 	-	┼	-	╀	-{
		\bot	<u> </u>		ļ	<u> </u>		ļ					 		↓_	4
					<u>.</u>	<u> </u>									_	
	 	\top	1	1	 	T	1	1				1	1		1	1
 -		+	┼	\vdash	+-	╁╌	+				†	+	+	+	十	1
		+	╂	-	-	╁	-	┼				╫	 		+-	1
	<u> </u>	4	-	-		 	┼	ļ					 	- 	┿	4
		4	┼	 	-	-	╂	 			 	+-			+-	4
		_	1_	1	1_	1			_		 	-	 -		4	4
							<u> </u>					_		4		4
																_
	1	十		1	1	T									T]
 	 	十	1	T	†	1	1	1	\dashv			1	1	十一	T	1
	+	+	+-	+-	+	+-	+	+		-	1	+	+	1	+	1
		4	+-	╀-	+-	+-	+-					+-			+	-
I	1	1	1	1	1	1	ı	1	ĺ		1	1	1	1	1	1

CORE LA	<u>B.</u>				PROL	XVCTI	ON I	WELL TES	T DAT	A SHEE	Ţ			\$1	HEET#_3
WELL	ESSO A	44			. р			3	•			DATE			GUST, 1984 GUST, 1984
			2 - 2569 m (FM, RKB) INITIAL FLOW												
RATHOLE	FLUID:	TYP	E					_ RES n	n	-	P	`Н	_CI (1	TITRA	AT) PR
		EON	J		PPM	DE	ENSIT	ΥΥ							
JyaniUN 			E					M DENS	SITY_		•				
TIME	SAMPLING		SHAP					COLOUR	POUR	WATER & TEMP	RES	Cı	EON	PH	
HH: NN	POINT	N.	OIL		g1 ~		•	1		1		PPM	PPM		COMMENTS
HH: MM	CUCICE	F			-	393		Dk brn	29		F	 	***		
12:30 13:17	CHOKE CHOKE	1	97. 45	_		393 379		Dk brn Dk brn	30	 		16000	187	7.0	
15:45			31	68	+	37.7	-	Dk brn	ات	0.82	18	15000			8
16:15	CHOKE	T		65	-	37.6	-	Dk brn	31	0.76	18	16000			
22:50	CHOKE	I	-	25	1.75	_									
23:00	CHOKE	厂		1	T	37.2		Dk brn	29		L	15000	187	817	
13:35	CHOKE	_	1	4.5	_	T			<u> </u>	ļ	 		 	_	
13:50	CHOKE	+		0.9	1	1			-		 	 	 	_	
14:05	CHOKE	+	+	0.4	 	+	<u> </u>	ļ	<u> </u>	 	 	 	 		
14:20	CHOKE	+		0. 7	1	1		ļ	 	ļ	 		-	<u> </u>	
14:35	CHOKE	+-	1	1.5		-	-	Dk brn	30		 	 	 	<u> </u>	
14:50	CHOKE	4	+	0.8	+	 	<u></u>		<u> </u>		 			<u> </u>	
15:05	CHOKE	<u> </u>	999	0.1	TR	390	<u></u>	Dk brn	30		_			Ĺ	1
15:30	CHOKE	L	99	0.2	TR	39	L		L				L	Ĺ	
15:45	CHOKE		†	0.3	1	1				L]
16:00	CHOKE	T	+	65	0.5	 					Π			Γ	
16:15	CHOKE	1		99.8	-				1		1	15000	TR	6.75	
16:30	CHOKE	1	10	1	0.5	1					T				
17:00	CHOKE	1	10		1	39	T	Dk brn	27		1	16500	55	7,34	
	<u> </u>	+	 				 	UL ULU	<u>τ</u> υ <u>υ</u>	 	 	+0,000	127	1,34	1
17:15	CHOKE	+	10	1	0.5	+-	+	 	+	 	+	+	+-	+-	1
17:30	CHOKE	4-	10	† 	1	 	 	 	-	 	+-	18000	66	7.86	1
17:45	CHOKE	1	10	1	0.2	T	<u> </u>			 	-		-	 	4
18:00	CHOKE	1	20	, 80	0.1	4	<u></u>				1	18500	33	800	1
18:15	CHOKE	L	35	65	0.2	2	L		_		_		<u></u>	_	1
18:30	CHOKE	L	30	70	0.1				<u> </u>	-	<u> </u>	<u></u>	<u> </u>	Ĺ	1
18:45	CHOKE	\int	40	60	0.1	<u></u>			<u></u>		L	<u></u>	<u></u>	Ĺ	1
19:00	CHOKE	\int	60	40							$oldsymbol{ol}}}}}}}}}}}}}}$			Ĺ	1
19:15	CHOKE	Γ	55	45	_	-		1		1]
19:30	CHOKE	1	55		0.1	-	T		1		T	T	T	T]
<u> </u>		1	1	忙		T	T		1	1	1	1	T	1	1
	 	+	+-	 	+	+	+-	 	+	 	+	E-	†	†	1
	 	+	+-	+	+	+	+-	+	+	+	+	4	+-	+	1
		ı	3	1	1		•	1	1	1	1				

9/8/84

CORE LA		A T-			-			WELL TES			•		-		HEET# 14
COMPAN)	ESSO .	AUS #1:	TRAI	JIA :	LTD	ha		}	•			DATE	8TH	AU	GUST. 1984
mell Perfora	ESSO TUNA TIONS 256	#4 2 -	256	59 m	- F (FM.	# RKB))				INIT	IAL I	FLO	N
. 	-					∉ '									
RATHOLE	FWID:	TYP	PE					_ RESr.	n	-	F	`н	_CI (1	ritr.	AT)
	FLUID:	NO3	3		PPM	DI	ENSIT	Ύ					- · · ·		
CUSHION	FLUID:	TYP	E	- '				RES.	-C-M-			PH_			
TIME	SAMPLING	CI (1	SHA	KE O	UT	APIF	PP	EDLOUP	T 11c	WATER .	?ES	Ci	NO3	PH	
	POINT	0	<u> </u>	· <u>*</u>	··	[COLOUR	POINT	& TEMP		<u> </u>			
HH: MM		15	OIL	H20	SLOS	_	·		•	-n-	•	PPM	PPM		COMMENTS
	CHOKE	Γ	_	50	_	-									
20:00	1	I	1	50	TR										
20:15	<u> </u>	Π	_	55	TR				Γ						
	CHOKE	T	 	60	-);							18500	TR	5.8	
20:45	1	Γ	1	55	TR										
21:00		I	1	50	TR										
	CHOKE	\prod	1	45											
21:30	1	Π		45											
21:45	CHOKE	T	 	45	TR								T		
22:00	CHOKE	T	 	45	TR	Π	Π		$\overline{\Gamma}$				Π		
22:15	CHOKE	T			T		Π		T						1
22:30	CHOKE	T	55	45	TR	1	1	1	1				1		1
22:45	CHOKE	+	1	 	 	 	1	1	+	 		 	+		1
23:00	CHOKE	+	EE	45	+-	 	1	1	+	 	 	 	+-	-	1
	 	+-	-			-	-	 	+	 	 		-	 	ł
23:30	CHOKE	1	>0	50	_	<u> </u>	 				<u> </u>	<u> </u>	 	<u> </u>	
	<u></u>														
			1		\prod				I]
		T]
	<u> </u>	+		1	 	T	 	1	1	 	 	 	 	1	,
	 	+	-	 	+-	 	+-	 	+	 	 	 	+-	-	1
	 	+	-	 	-	<u> </u>	1-		+	 	 		 	_	4
								<u></u>							
		Γ													
		1					1		T				T		1
	 	+	 	\vdash	 	 	+-	1	1	 	 	 	†	1	1
	 	+	+-	-	+-	+-	+	 	+	-	 		+	-	1
	-	+	 	-	+	 	+-		+		 	 	+	-	1
**************************************		1	<u> </u>	-	1-	<u> </u>	 		1-	ļ	 	 	 	 	4
		1		_										_	Į
] _]						
		T					T		1				T]
	 	+		1	†	T	+	 	+				1	T	1
	 	+	-	+-	+	+	+-	 	+-		-		+-	-	1
		1			1_				1	ļ		<u> </u>	1		Į
	1	1	1	1	1	1	1	1	1	1	l	1	1	1	I

.

ORE LA								WELL TES	T DA	TA SHEET	Ţ			\$	HEET#_5
OMPAN	ESSO A	AUS #).	TRAI	TA 1	LTD		_	3	,			DATE	9TH	AUC	GUST, 1984
ICLL PERFORA	TUNA TATIONS 2562	#4 2 -	256	59 m	· F	ETW	}KB;	<u> </u>				FINAL	, FLO	W	
					(upra t	441					<u>ئى</u>	ے ر		
A	* P 1.100	T.) (E.					D#4	·			JH.		-حجارة	AT)
CATHOLE	: FLUID:	TYF NO?	'E		PPM	DE	NSIT'	_ RE\$ Y	n	⁻	۱	rH	_cı (1	i ITR.	AC)
USHION	FLUID	TYP	E					RE\$	₩.			PH_			**************************************
	·	CI (T	TITRA	(T)			PPN	M DENS	SITY						T
TIME	SAMPLING POINT	1	1	KE OI	UT	APIE	TEM	COLOUR	POUR	WATER F	KES	CI	EQN	PH	
H H: MM		N O	OIL	H20	SLO		•		•	-n-m	•	PPM	PPM		COMMENTS
	SEPARATO	+	-	-			H					 	Ħ	M	
17:45 18:30	SEPARATO SEPARATO		1	1 30	المنخ							16500	TR	7.7	1
9:00	SEPARATO	1				39		Dk brn	29			19500	7	6.9	T .
9:30	SEPARATO	R_				38		Dk brn				11500	TR		1
20:00	SEPARATO	_	TR	100	TR	38		Dk brn				19000	TR	6.8	
20:30	SEPARATO	_	L	L					_			18500	TR	6.8	
21:00	SEPARATO	_	TR	100	TR	39		Dk brn	30			17000	TR	6.9	1
21:30	SEPARATO	R	TR		L	39		Dk brn	30			18000	TR	6.9	1
22:00	SEPARAT($\frac{1}{2}$		L	L	39		Dk brn				19000	TR	6.9	1
22:30	SEPARATO			L	L							16000	TR		
23:00	SEPARATO	1	TR	100	1	39		Dk brn	30					L	
23:30	SEPARAT(39		Dk brn	-			1			1
	1	T	Π												1
		T	Т	1					1		-				1
·····	 	+	 	1-	 	1-	 		1	 	 	 	†	 	1
	 	+	 	 	 	 	+	 	+	 	 	+	-	 	ł
	 	-	<u> </u>	-	-	 	-		 		<u></u>		-		-
		 	<u> </u>	<u> </u>	-	<u></u>	-		<u></u>				-		
					_									L	
	L				L		L								
		Γ	Γ									·		Γ	1
	1	T	1	1		1	1	<u> </u>	1	 	 	1	1	 	1
	 	+	-	 	 	-	 		+-	+	 	 	 	+	1
	 	+	ļ	1-	 	-	-		 		-			 	1
	<u></u>	1	_	<u></u>	<u></u>	_	_							_	
		Ī	L	L	L	L	L		L		L			L	
		Γ									L				
		\int		Γ											
		T	T	T	Π	Γ			T		Г	T	Τ	Γ	1
		+	1	 	1	1	1	 	1	1	T			T	1
	 	+	+-	 	+	 	+-	 	+-	+	 	+	+	+	1
	 	+	+-	├-	+-	 	┼		+	+	 	+	+	 	1
		1		1	1	_	-				-	-	-	-	1
		L	L	L	L	L	L	_	L		L	1	L	Ĺ	
		T	T	T					T	T		T			ł

CORE LA						CTI	ON V	VELL TES	T DAT	A SHEE	<u>r</u>			\$1	HEET#
OMPANY	ESSO A	UST	RALI	A L	ΓD		_	١.				DATE	16TI	JA I	GUST, 1984
/ELL	TUNA #	4			. Р	t TW	·	4				INIT	IAL F	FLOV	Į.
erfora	TIONS 254	<u>3 –</u>	255	2 m	(FM, f	RKB)								
ATHOLE	FLUID:	TYP	E					RES	m	_ •	f	`HH	_CI (T	TR/	VT)
,		NOE	·		PPM	DE	ENSIT	Υ							
USHION	FLUID	TYP	Ε					RES.	~~ m_			PH.			
		CI (1	TITRA	<u> </u>	=		PPI	M DEN	Teorie	WATER	D#8	Ci	EQN	Du	
TIME	SAMPLING POINT		SHAI	% %	U I	AFIE) I E IVE	COLOUR OIL	POINT	& TEMP	uEa	<u> </u>			
нн: мм	1	0	011.	H20	SLDS	1	•F		• C	√r,−m	•	PPM	PPM		COMMENTS
		╪			+				32				1		
	CHOKE	+-	69 78	0	27.7 22		60 60	brown brown	28		T	 	1		
	C/MAN C/MAN	+-	92	1	8		60	brown	30		\vdash			1	
		+	1-	1	8	 	60_	1	29		T		+-	T	1
	C/MAN C/MAN	+	91 97	0	3		60	brown brown	31		T	 	 		1
	C/MAN	+	995	+	-	39	 	brown	31		1			T	1
	C/MAN	+	99.5	T	7	39	1	brown	32		T		1		
		十	1	1	0.4	1	7		31			1	1		1
	C/MAN_	十	7	T		1	1	brown			1		1		1
	C/MAN	+		0	_	1	<u>-</u>	brown	21	 	+	1	+	1	
	C/MAN	+		T	50.4	7	1	brown	31	 	\vdash	 	+	+	1
23:22	C/MAN	+	99•7	0	0.3	1-	┼╌	brown	-	 	┼─	 	+-	+-	
		\bot						<u> </u>	 		-			↓_	4
											1			<u> </u>	
		T												_	
		1		1	1	1	1				T		T	Γ	
	 	+	+	+	+-	+-	-	 	+	 	+	1	1	†	
	 	+	╂		+	+-	┼		+	 	+-	+	+	╁	1
	 	+	┼	┼	╀	-	+-	 	—	 	+-	+		+-	4
		\perp												1_	4
															_
		T		T		T									
	 	十	+	+-	+-	1	†	1	1	1	1		_	†	7
			ــــ	+-	-	+	4-	 		+	+			+-	4
						$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	1			 	4_			4	4
															1
			T												
	 	十	T	1	1	1	1		1		T			T	
		十	+	+-	+	+	+	 	\top	1	十	1		T	
ļ	 	+	+-	+-	+-	+	+-	+		+	十	+	1	+	
		+	-	-	+-	+	+-	 	-		+-	+	+	+	-
L														4	4
		T		1	T									$oldsymbol{ol}}}}}}}}}}}}}}}}}$	
	1	十	1	1	1	T					T				
	+	+	╁	+	+	+-	+-	 	\dashv	+	十	1	_	+	1
		_	4	+	4	+	+-		-		+	-		+-	-
1	i i	1	1	1	1	ı	i	ł	•		ı	•	1	1	1

	ESSO A	USI	'RAL]	CA L	TD		_ ,				-	DATE	17TH	ΑU	GUST, 1984
nell Perfora	TUNA #		- 25	52 m								FINA	L FL	WO	
RATHOLE									n		F	ч	_CI (1	TTR	AT)
			<u> </u>				NSIT					- D.W			
CUSHION		CL C	E	7)			PPI	4 DENS	HTY			Fn			
TIME	SAMPLING POINT	0	SHAI	⟨E 0	UT	API E	TEM	COLOUR	POINT	WATER F	RES	CI	EON	PH	
HH: MM		ž	OIL	H20	SLOS	=	• F		•c	-r. − m	•	PPM	PPM		COMMENTS
06:00	CH/MAN		97	0	3	39	60	Brown	27						Solids ar
06:30	CH/MAN		75	0	25	39	60	Brown	26						soft sedi
07:00	CH/MAN	丄	98	0	2	39	60	Brown	28				<u> </u>		ment/filtr
	CH/MAN	lacksquare	98		2	_		Brown	28				 	 	4
	CH/MAN	+	98	 		37		Brown	28			 		├-	4
	CH/MAN	+	98	 	1	38		Brown	27					-	
	CH/MAN	+	98.7	1	T	37	60	Rd-brn	29			 		-	1
	CH/MAN	+	998		.0,2		(-	Rd-brn	T		_	 	 	\vdash	1
	CH/MAN	+	9985		•15		60	Rd-brn	1			 	-	┼─	1
	CH/MAN	╫	9995		•05	40	60	Rd-brn Rd-brn			_	-	-	-	•
	CH/MAN	╁	100	 	╁─╴	 	00	<u> </u>	121		 		-	┼╌	1
	CH/MAN	+	100	1	TR	-	 _	Rd-brn	-			 		├	4
12:00	CH/MAN	╀-	100	0	TR	38	60	Brown	26					<u> </u>	
12:30	CH/MAN	<u> </u>	99,7	TR	0,3			Brown		<u> </u>				<u> </u>	
13:00	CH/MAN		100	0	0	38	60	Brown	31			13000	110	7	
13:30	CH/MAN	T	100	0	0										
	CH/MAN	T	100			39	60	Brown	31						1
	CH/MAN	1	100	1	0			D. OWIL							1
	1	+	1	1	1	20	60	D	27	 	_	 	-	╁	4
15:00	CH/MAN	╁	100	0	0	39	60	Brown	31	╁		 	-	╀	4
		1	—	<u> </u>	-	<u> </u>				-			├	╀—	4
	SHUT TE	1 1	WELL.	ΙN	PR	ГАМЯ	JREI	Y DUE	D A	WEATHE	AI	ERT	<u> </u>]
	AT 15:1	ļ 5]	RS.												
		T													
		T	T	T	1		1								1
		十	\dagger	1	1	T	1		1					1	1
	 	T	1	1	1	1	1	 	1	1	T		1	1	1
	 	十	+	+	+	T	\vdash		1-	1	-	 	T	1	1
	 	+	+-	+-	+-	╂	+	 	1	 	 	-	+-	+	1
	 	+	+-	-	-		┼	 	┼		┼—	 	+-	╁╌	4
	ļ	_	<u> </u>	<u> </u>	_	ـــــ	↓_	<u> </u>	4—	<u> </u>	 	ļ	╀	ـ	4
		\perp						<u> </u>					<u> </u>	1_	4
								<u> </u>	1_			ì			1
	1	1	1	T	1	Т	T	T	1	1	Г			Т	1

CORE LA	ESSO	AUS	STRA	Τ.ΤΔ	תיים.			WELL TES	T DA	TA SHEE	T	DATE	2017		HEET# <u>8</u>
WELL	TUNA	#4	AUSTRALIA LTD #4 PWT# 5 9.5 - 2477 m (FM, RKB) INITIAL FLOW (CLEAN-U												
RATHOLE		MAZ	TYPE RESm * PHCI (TITRAT) NO3 PPM												AT) PR
CUSHION	FLUID:	TYP	E_		,		E17311	RES.	~ m_			PH_			
		CI (TITRA	T)			PP	M DENS	ITY_			 			
TIME	SAMPLING POINT	1	1	KE 0	UT	AP) E	TEM	COLOUR OIL	POUR	WATER & TEMP	RES	CI	EON	PH	
HH: MM		Z 0	OIL	H20	310		• F		•C	-A-m	•	PPM	PPM		COMMENTS
6:05	CH/MAN	T	OMI	Y G	S-0	ו יוינו	TID	WAS REC							
	CH/MAN	T	99.5					Brown	30				1		
17:05	CH/MAN					40		Brown	30			13000	150	8,5	·
17:20	CH/MAN		8	908	1		_	LSION/W	+	RECOV.		13000			
17:47	CH/MAN		83		TR										
18:00	CH/MAN		95	_	TR	40	.60	Brown	31						Pale
L8:30	CH/MAN		12	87,6	0,4							13000	176	7.4	crm-blue
19:00	CH/MAN	Γ	95	5	TR	39	60	Brown	30						flourescence
19:15	CH/MAN		55	45	_							13000	200	73	
20:00	CH/MAN		52			38	60	Brown	30			13000	1	7	
20:15	SEPARAT		1			1		DI OWII	100			12000	1	1	
	DULAMAL	1		 								12000	200	0.0	
		╁	-	 	-		-		 -		-		├	-	
		╁	-	-	-	-	-				-		 		
		 											<u> </u>		
												ł			
		1				 	 						1-		
		-	-	 			-				-	 		-	
		╂		 		<u> </u>			<u> </u>		<u> </u>		 		
		1	 	 	 								-		
		-	_	<u> </u>							-	 			
				<u> </u>			<u> </u>								
			<u> </u>	<u> </u>											
		1	-	 			 				-	 			
		-		-	-		 							-	<i>'</i>
												`			
		П													

CORE LA	B.				PRO	DUCTI	ON V	WELL TES	T DAT	A SHEE	r			\$	HEET#_9
COMPANY	ESSO	AUS	TRAI	IA I	LTD					. —		DATE	215	T A	UGUST, 1984
WELL	TUNA	#4				WT#	· 	5				_			
PERFORA	TIONS 246	9.5) - 2	2477	<u>m</u> (FM, F	(BXB					н.ТИУ	L FL	∪W	
RATHOLE	FWID:	TYF	<u>-</u> _3					RESn	n	•	F	Ή	_CI (1	ITR	AT) PE
		NAT			1400	n.e	NOT	J							-
CUSHION	FLUID	TYP	E					RES.	V.W.			PH.			
TIME	SAMPLING	CI (T	RITRA	(# ^	UT	ABIO	_PPI	M DENS	P() 10	WATER	RF®	Ci	NOS	Bu	
IIME	POINT	١.	-	%	- ·		,	COLOUR OIL	POINT	& TEMP		<u> </u>	1		
HH: MM		δ.	OIL	H20	SL08	_	• F		∙C	-ru-m	•	PPM	PPM		COMMENTS
02:00	CH/MAN	T	95	4.5	•5	39	60	Brown	30						
02:30			99.4	1	TR		60		30						The water
03:00	CH/MAN		94		TR	38	60	Brown	31						is a dirty
03:30	CH/MAN		95	5	TR	38	60	Brown	31						filtrate
04:00	CH/MAN		94		TR			Brown	31						
04:30	CH/MAN	1	+	16	TR		60		31						
05:00	CH/MAN	1	-	1.5		 	-	 	31				-	_	
06:00	CH/MAN	_	95		TR	 	 	Brown	31			<u> </u>	1	<u> </u>	
06:30	CH/MAN	$oldsymbol{\perp}$	955	4.5	TR	}	 	Brown	30		<u> </u>		1		
07:00	CH/MAN	\perp	95	5	TR	39	60.	Brown	31	<u> </u>				<u> </u>	
07:30	CH/MAN		97.5	3.5	TR	37	60	Brown	31						
07:50	CH/MAN		955	4.5	TR	38	60	Brown	32						
		T	T												
		T		1		Ţ	7777 -	Ditto ma	DAT	T.77:2 A 1717 T			1		1
	WELL WA	1	HOT	1 IN	2K F.	na'l'U	, 보다.	DUE TO	RAD	WEATH.			+		1
	 	+	\vdash	-	 	-		ļ			-	 	+	-	1
<u></u>	<u> </u>	\bot	 			<u> </u>			 		 		-	<u> </u>	1
	<u> </u>	4		 		1			<u> </u>	<u> </u>	ļ	<u> </u>	4_	<u> </u>	1
<u></u>	<u></u>														1
				1											
		T													
	 	+	1-	\vdash	\vdash	\vdash				 	-	 	-	十	1
<u></u>		+	-	-		-	-		 	 	-	 	+	┼-	4
<u></u>		4		<u> </u>	<u> </u>	<u> </u>			-		 		-	 	
											<u> </u>				
													<u> </u>	L	_
		T							T]
		T													
	†	T	1	1			1		1			 	1		1
	 	+	+	+	\vdash	+	+		+		 	 	+-	1	1
	 	+-	-	-	┼	 	-		┼—	ļ	-		+-	+-	1
<u> </u>		_	<u> </u>	<u> </u>	ـ	_	<u> </u>		 	ļ	 		4—	-	4
					<u> </u>										
		T										'A.			
	1	十	†	1	T	T	1		1		T		T	Т	1

CORE LA	9.				PRO	DUCT	ION V	WELL TE	ST DA	TA SHEE	T			\$	HEET# 10
	ESSO							,				DATE	23RI	JA C	JGUST, 1984
WELL	TUNA TIONS 246							(contd	1)			FINAT	े. गम	T.J. (RESUMED)
PERFORA	11 IUNS <u>240</u>	9.)		411	111	· FM, I	(KA)						3 1 100	/w (
`															
RATHOLE															AT) <u>P</u>
CUSHION	FLUID:	TYP	E_					YRES.	~ m_	•		PH_			
		CI (1	TITRA	T)			PPI	M DEN	SITY_						
TIME	SAMPLING POINT	1	1	KE 0	UT	APIE	TEM	COLOUR	POINT	WATER 3 TEMP	RES	CI	EON	PH	
нн: мм		Z 0	OIL	H20	SLO	-	•		•	-r.−m	•	PPM	PPM		COMMENTS
07:45	CH/MAN	T	81	159	. 1	39	60	Brown	32						Water is a
08:00	CH/MAN			.8	_	-		Brown	32						brown
08:30	CH/MAN		99,6	.4	TR	38	60	Brown	31						filtrate/
09:00	CH/MAN	_	95	5	TR	38	1	Brown	30		ļ				emulsion
09:30	CH/MAN	╀-	96		TR	39 - 0		Brown	30		-		 	 	
10:00	CH/MAN	╁		3.5	1	38		Brown	30		-		┼	-	
10:30 11:00	CH/MAN CH/MAN	╁┈	+	3.0 3.5	+	38 38		Brown Brown	31		╫	 	+-	-	
11:30	CH/MAN	+	96		TR	38	 	Brown	30		+	5000	40	65	
12:00	SEPARAT		98	 	0	39	+	Brown	30	ļ	╁	5000	90	_	1
12:30	CH/MAN	711	 	b.5	 	40	 	Brown	31		十	7000	100		,
	SEPARAT		98	 	0	39	 	Brown	31		\vdash	5000	90	67	
13:00 13:30	CH/MAN	+	100	 	0	39		Brown	31		\vdash	5000	100		
14:00	SEPARAT		100	 	0	39	 	Brown	31		\vdash	7000	-	F	
14:00	CH/MAN		99	╂	0	38	 	Brown	31		-	6000	120	66	
	ļ	-	+	 	-	 	 		+		-	 		-	
15:00	SEPARATO	JR T	98		0	38	i	Brown	31	ļ	┼	7000	130	1	
15:30	CH/MAN	+	100	 	0	38		Brown	30	ļ	-	7000	1	1-	
16:00	SEPARAT	OR	100	0	0	39	60	Brown	31		-	11000	0	79	MUD
16:30	CH/MAN	1	100	0	0	38	60	Brown	31		<u> </u>	ļ	ļ	_	
17:00	SEPARAT	OR	99	1	0	38	60	Brown	32						
17:30	CH/MAN		99.5	0.5	0	37	60	Brown	31						
18:00	SEPARAT	OR	100	0	0	38	60	Brown	31					Г	
		T	1												
		十	<u> </u>	╅	T	T	1		1			 	1	厂	1
	 	十	一	 	十一	T	 		1-		T	1	1		1
		\dagger	\vdash	 	T	T	 		1		T	†	1	T	1
	1	+	-	+-	+	1	1		+	1	十一	 -	1	 	1
	 	+	+	+-	\vdash	+	+-	 	+	 	+-	 	+-	\vdash	1
	 	+	╂	-	┼	┼	-		+	<u> </u>	┼	-	+	╁	1
		+	╀	 	┼	┼	-		 	 	 	 	┼	-	-
	 	\downarrow	_	_	<u> </u>	1_	<u> </u>	<u> </u>	 	<u> </u>	1	ļ	<u> </u>		4
		上		<u> </u>										L	1
					1	1	1		1	I	1	I			

CORE LA	.B			WELL TE	ST DATA SHE	ET		S	HEET#	1
	ESSO AUS TUNA #4			·						
1	40NA #4 - 4TIONS 3147						DATE _	20TH	JULY,	1984
PERFOR	4110NS_ <u>)_4 -</u>			5)			INITIA	L FLO	WC	
TIME	SAMPLING			i						
	POINT	CI	C2	C 3	C4	C5	C6	COS	H2S	
HH: MM		PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	
07:40	MANIFOLD	88,883	10.575		1.308	565	274	23	0	
16:36	SEPARATOR	101,104	10,967	1	1,420	594	277	184		
17:00	SEPARATOR	100,074	10,379	3,760	1,312	594	282	16.0		
17:20	SEPARATOR	99,994	11,750	4,033	1,569	780	312	16.2		
								-		
	<u> </u>						ļ			
		-		ļ		 	 			
					-	 	 	-		
			 	 			 	+		
		 	 				 			
			 				 	+		
								+		-
		-	 	 			 			
		-	ļ	1			 			
		-	 	 		 	-			
		 	 	 					<u> </u>	-
ļ			<u> </u>							
		ļ				 				-
										-
										4
		<u> </u>		<u> </u>						
	†							<u> </u>		1
-	1		1	1		 			 	1
		 	-	 		 	 		 	1
			+	-	 	+				1
				-	-	 	-	+	 	1
				-		-	-			-
	 	 	-				-	+	-	-
 	 	 	 	-		-	-	+	 	4
	 	 	-	-		-	+	+	 	1
	<u> </u>			<u></u>					<u></u>	<u></u>

WELL TUNA
POINT C1 C2 C3 C4 C5 C6 C02 H2S
HH:MM PPM PPM PPM PPM PPM PPM PPM PPM PPM
6:30 CHOKE MANI 528.711 35.840 12.410 4.229 1.370 560 18 NIL 7:30 24/7/84 10:30 CHOKE MANI 396.533 51.200 16.547 4.229 1.960 960 17 TR 11:00 CHOKE MANI 387,869 51,169 16,274 4,169 1,860 796 20 TR 11:30 CHOKE MANI WAXY SAMPLE 26/7/84 05:00 SEPARATOR 401.254 72.240 37.232 11.357 1.626 280 N/A NIL 06:00 SEPARATOR 339,886 61,440 31,027 8,458 2,739 336 N/A NIL 07:00 SEPARATOR 424.857 66.560 26.890 7.295 2.396 210 31 - 08:00 SEPARATOR 434.298 69,120 28.958 7.400 1.284 175 36 - 09:00 SEPARATOR 429,578 69,120 31,027 10,572 3,210 630 34 - *Shu 12:00 SEPARATOR 436,186 69,786 33,621 11,261 3,460 730 40 - down 12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
7:30
11:00 CHOKE MANI 387,869 51,169 16,274 4,169 1,860 796 20 TR 11:30 CHOKE MANI WAXY SAMPLE
11:30 CHOKE MANI WAXY SAMPLE 26/7/84 05:00 SEPARATOR 401,254 72,240 37,232 11,357 1,626 280 N/A NIL 06:00 SEPARATOR 339,886 61,440 31,027 8,458 2,739 336 N/A NIL 07:00 SEPARATOR 424.857 66.560 26.890 7.295 2.396 210 31 - 08:00 SEPARATOR 434.298 69,120 28.958 7.400 1.284 175 36 - 09:00 SEPARATOR 429,578 69,120 31,027 10,572 3,210 630 34 - *Shu 12:00 SEPARATOR 436,186 69,786 33,621 11,261 3,460 730 40 - down 12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
26/7/84 05:00 SEPARATOR 401,254 72,240 37,232 11,357 1,626 280 N/A NIL 06:00 SEPARATOR 339,886 61,440 31,027 8,458 2,739 336 N/A NIL 07:00 SEPARATOR 424.857 66.560 26.890 7.295 2.396 210 31 - 08:00 SEPARATOR 434.298 69,120 28.958 7.400 1.284 175 36 - 09:00 SEPARATOR 429,578 69,120 31,027 10,572 3,210 630 34 - *Shu 12:00 SEPARATOR 436,186 69,786 33,621 11,261 3,460 730 40 - down 12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
06:00 SEPARATOR 339,886 61,440 31,027 8,458 2,739 336 N/A NIL 07:00 SEPARATOR 424.857 66.560 26.890 7.295 2.396 210 31 - 08:00 SEPARATOR 434.298 69.120 28.958 7.400 1.284 175 36 - 09:00 SEPARATOR 429,578 69,120 31,027 10,572 3,210 630 34 - *Shu 12:00 SEPARATOR 436,186 69,786 33,621 11,261 3,460 730 40 - down 12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
07:00 SEPARATOR 424.857 66.560 26.890 7.295 2.396 210 31 - 08:00 SEPARATOR 434.298 69.120 28.958 7.400 1.284 175 36 - 09:00 SEPARATOR 429,578 69,120 31,027 10,572 3,210 630 34 - *Shu 12:00 SEPARATOR 436,186 69,786 33,621 11,261 3,460 730 40 - down 12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
08:00 SEPARATOR 434,298 69.120 28.958 7.400 1.284 175 36 - 09:00 SEPARATOR 429,578 69,120 31,027 10,572 3,210 630 34 - *Shu 12:00 SEPARATOR 436,186 69,786 33,621 11,261 3,460 730 40 - down 12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
09:00 SEPARATOR 429,578 69,120 31,027 10,572 3,210 630 34 - *Shu down 12:00 SEPARATOR 436,186 69,786 33,621 11,261 3,460 730 40 - down 12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
12:00 SEPARATOR 436,186 69,786 33,621 11,261 3,460 730 40 - down 12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
12:30 SEPARATOR 453,181 69,896 33,095 13,744 5,136 2,742 43 - for 13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
13:45 SEPARATOR 469,260 69,989 33,696 14,276 4,696 7,134 45 - chik
_
_

,

CORE LAB PRODUCTION WELL TEST DATA SHEET SHEET# 3 COMPANY _ESSO AUSTRALIA LTD TUNA #4 _____ PWT#__3 DATE 8TH AUGUST, 1984 PERFORATIONS 2562 - 2569 m (FM, RKB) INITIAL FLOW TIME SAMPLING POINT CI C2 C 3 C4 **C5** C6 COS H2S HH: MM PPM PPM PPM PPM PPM PPM % PPM 12:45 CHOKE 571,432 86.384 19,617 7.614 3,099 1,028 0 13:17 CHOKE 302,043 82,065 58,245 24,038 6,220 684 36 CLOSED TO PULL OUR SCHLUMBER'S TOO 16:15 CHOKE 64,665 310,128 38,830 19,236 7,128 2,138 33 CLOSED DUE TO POOR BURNING 0 23:00 CHOKE 232,596 73.426 51,298 22,443 5,447 642 28 0 11:30 DOWN HOLE 365.308 6.067 30,138 1,152 295 45 0 0 224,491 35,617 10,920 2,404 453 0 15:00 SEPARATOR 261,160 14,266 77,746 58,245 33,664 2,742 35 0 16:00 SEPARATOR 261,226 45,351 38,830 28,855 15,563 4,200 35 0 17:00 SEPARATOR 301,967 43,192 19,415 7,013 2,593 942 33 18:00 SEPARATOR 302,043 51,830 24,268 1,455 11,221 4,669 19:00 SEPARATOR 293,879 58,309 32,358 16,030 8,300 2,185 28 19:30 SEPARATOR 302,043 60,469 35,594 6,744 17,633 1,628 30 20:00 SEPARATOR 310,206 53,990 29,122 12,824 4,669 1,157 29 20:30 SEPARATOR 310,206 56,150 29,122 12,824 5,293 1,542 30 21:00 SEPARATOR 310,206 53,990 32,321 16,030 4,982 1,285 30 _ 21:30 SEPARATOR 293,879 60,469 33,976 19,236 8,559 3,214 31 22:00 SEPARATOR 289,798 56,150 32,358 17,633 8,819 3,942 31 _ 22:30 SEPARATOR 290,671 53,990 32,321 18,136 8,469 3,526 31 23:00 SEPARATOR 293,879 60,469 35,594 19,236 9,078 3,700 31 23.30 SEPARATOR 297,961 60.469 32,358 17,633 7,781 2,914 31

CORE LA				WELL TES	T DATA SHE	ET		S	HEET#	4
company Well	TUNA #14	KALLA LID		# <u>\\</u>						
	TIONS 2543 -	2552 m	(FM, RK	3)						1. 1984
							FINAL	FLOW		
TIME	SAMPLING									
	POINT	CI	C2	C3	C4	C5	C6	COS	H2S	
H: MM	orr /seas	PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	
	CH/MAN	326,533	41,432	12,538	3,005	745	150	20+ 44	TR 6	
	CH/MAN	206 704	E8 300	OF 886	8 015	1 880	300	24	6	
	SEPARATOR	306,124 318,369	58,309 60,469		T	1,880 1,621	380	25	8	
	SEPARATOR SEPARATOR	291,962	60,901			3,955	1,071	27	6	
	SEPARATOR	314,288	62,629		·	4,021	1,071	26	8	-
	SEPARATOR	273,471	64,788			5,836	1,886	28	2	C ₇ al
	SEPARATOR SEPARATOR	273,471	60,469	28,314	12,624	3,988	857	26	8	7
	222111111111111111111111111111111111111		30,102			732				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					 		 			1
J		 					 	+-		l
				·	 			+		1
							 	+		
					 		 	+		1
		 			-	 	 			
				<u> </u>			 			-
										1
										1
										1
		 			 		-			1
		<u> </u>			 		 	-	 	1
		ļ	 	<u> </u>	 	 	 	+	 	ł
			 	 	 	 	 			1
						 				-
			ļ							-
		<u> </u>					 	4-		4
			<u> </u>						<u> </u>	1
				1		1		1]	1

WELL PERFORA	TUNA #4 ATIONS 2469.5	- 2477 m		# <u>5</u> 3)			DATE 2		<u>AUGUST</u> OW	<u>. 198</u>
TIME	SAMPLING POINT	СI	C 2	C 3	C4	C5	C 6	CO2	H2S	
HH: MM		PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	
16:05	CH/MAN	41,189	3 , 956	3,544	3,213	2,897	875	8	0	+ C.
16:20	CH/MAN	52 , 345	4,216	3,096	2,419	713	146	18	0	
17:05		53,203	4,320	3,137	2,340	624	117	19	0	1
17:47	CH/MAN	53,203	4,372	3,096	2,221	579	131	21	0	TR C
18:30	CH/MAN	53,203	4,060	2 , 892	2,142	540	124	21	0	TR C
19:30	CH/MAN	48,912	3,487	2,526	2,062	847	219	25	0]
20:00	SEPARATOR	44,622	3,747	2,851	2,261	2,229	642	26	4	Trac C ₇ &
, , , , , , , , , , , , , , , , , , ,			:							<u> </u>
										1
								1		1
]
										4
										4
					-					-
······································								-		4
						 		+		1
					-	-		+		1
					-	<u> </u>		+		1
		·		-	 	-		+	 	4
								+		-
					 	 		+		4
					 	-				4
					_	-		+		1
				-	 	-		+		1
					 	 		+-		1
		•			+	+		+-		1
						+	 	+		1
<i></i>		<u></u>	1	1	1					4

PRODUCTION WELL TEST DATA SHEET

CORE LAB

SHEET#_

WELL PERFORA	TUNA #4 NTIONS 2469.5	- 2477	PWT				DATE _			
TIME	SAMPLING POINT	CI	C2	¢3	C 4	C5	C6	CO2	H25	
HH: MM		PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	
03:00	CH/MAN	53,095	3,435	3,525	1,824	758	175	24	TR	
ð3 : 30	CH/MAN	50,709	3,747	2,688	2,213	891	233	25	4	
04:00	SEPARATOR	52,344	3 , 955	2,933	2 , 379	1,504	325	26	2	TR C
04:30	SEPARATOR	52,400	3,372	2,625	2,062	1,281	570	26	2	
05:00	SEPARATOR	49,770	3,990	3,340	2,776	2,139	623	26	2	
06:00	SEPARATOR	50,709	3 , 955	2,770	2,221	1,961	710	26	7	
06:30	SEPARATOR		4,829	3,747	3,093	2,187	554	26	6	
07:00	SEPARATOR	53,031	4,830	3,747	3,054	2,362	612	27	7	C ₇ -
07:30		52,376	3,800	2,647	2,142	2,180	597	26	6	
	WELL, WAS S	HUT-IN PR	MATUREL,	DUF TO	ROUGH WF	ATHER				
<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>]

PRODUCTION WELL TEST DATA SHEET

CORE LAB

6

SHEET#_

WELL	TUNA #4		PWT	#5 (co	ontd)		DATE 9	ע עצצ	UGUST	10
PERFORA	TIONS 2469.	5-2477m	(FM, RK	3)			_		RESUM	
TIME	SAMPLING POINT	CI	C 2	C3	C4	C5	C6	cos	H2S	
HH: MM		PPM	PPM	PPM	PPM	PPM	PPM	%	PPM	
08:00	CH/MAN	51,486	3,851	3,592	2,260	802	218	25	_	
08:30	CH/MAN	51,500	3,747	2,867	2,253	891	294	26	_	С ₇
09:00	CH/MAN	51,480	3,414	2,525	2,062	847	236	26	_	'
09:30	CH/MAN	50,642	3,120	2,362	1,938	824	227	26	_	
10:00	SEPARATOR	50,731	3,226	2,514	2,125	1,780	562	26	_	
10:30	SEPARATOR	49,770	3,018	2,362	1,983	1,827	592	26	1	
11:00	SEPARATOR	51,659	2,956	2,444	2,062	2,050	440	26	2]
11:30	SEPARATOR	48,912	2,706	2,199	1,824	1,783	525	26	2	
12:00	SEPARATOR	46,338	3,747	2,851	2,340	1,649	262	24	2	
12:30	SEPARATOR	42,906	3,643	2,892	2,340	981	109	24	1	
13:00	SEPARATOR	41,189	3,331	2,648	2,221	1,516	335	26	7	
13:30	SEPARATOR	43,764	3,643	2,933	2,499	1,649	416	24	7	
14:00	SEPARATOR	43,764	3,383	2,607	2,142	1,917	467	26	7	
14:30	SEPARATOR	44,622	3,643	2,770	2,340	2,050	744	25	6	ABU
15:00	SEPARATOR	47,196	3,539	2,689	2,181	2,229	715	25	7	ABUNDANT
15:30	SEPARATOR	42,047	3,643	2,770	2,261	2,273	860	25	6	TWI
16:00	SEPARATOR	48,054	3,851	2,953	2,419	2,496	890	25	2	C ₇
16:30	SEPARATOR	44,622	3,435	2,648	2,142	2,318	977	26	6	
17:00	SEPARATOR	47,196	3 , 539	2,689	2,142	2,273	802	26	6	
17:30	SEPARATOR	43,764	3,123	2,566	2,102	2,140	744	26	7	
18:00	SEPARATOR	47,196	3,747	2,770	2,261	1,783	452	24	4	1
										}.
<u> </u>										1
										1
										1
								1		1
					 	 		+		1
							 	1-1		1
					 	 		† †		1
					 	+	 	+		ł

PRODUCTION WELL TEST DATA SHEET

SHEET #

CORE LAB

APPENDICES

COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the DRILL program and is stored on a tape at 10, 5, 1, or 0.2m intervals. This data is then available at a later date for use in other programs (for example KICK, SURGE, COST, OPTBIT, and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

the following data lists have been made for this well:

- (a). Bit record and bit initialization data
- (b). Hydraulic analyses
- (c). Data list A
- (d). Data list B
- (e). Data list C
- (f). Data list D

COMPUTER PLOTS

Using the REPORT program, hte following plots have been drawn for this well :

GEOPLOT - 1:5000 SCALE - 2m averages

Since all the data is stored on tape, further data lists or plots are available at any time on request.

(a). BIT RECORD AND BIT INITIALIZATION DATA

BIT SIZE Inches

BIT COST Australian dollars

JET SIZE Thirty-seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME. Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

ſ	IADC CODE	MAKE & TYPE	SIZE	COST	NOZZLES	DEPTH IN	DEPTH OUT	BIT RUN	TOTAL HOURS	TI AROP T	RIP IME CCOST		CONDITION T B G
1	111	HTC OSC3AJ+26"HO	26.000	0.00	20 20 20	82.0	219.0	137.0	3.96	34.6	2.5 172.33	13521	2 3 0.001
1		HTC OSC 3AJ	17.500	4857.00	20 20 20	219.0	811.0	592.0	11.56	51.2	3.7 102.34	104012	2 4 0.000
2		HTC J1	12.250	2694.00	18 18 18	811.0	1381.0	570.0	12.11	47.1	4.9 113.71	100225	4 2 0.125
2		CHRIS RC4		14500.00	15 15 15	1380.0	1389.6	9.6	1.08		5.0 3823.35	6261	0 0 0.050
5		CHRIS RC4	9,875	0.00	15 15 15	1389.6	1399.0	9.4	1.35		5.0 1220.54	7608	0 0 0.100
2		CHRIS RC4	9,875	0.00		1399.0	1408.2	9.2	1.73		5.0 871.56	9742	0 0 0.150
_ 2		CHRIS RC4	9.875	0.00	15 15 15	1408.2	1414.0	5.8	1.87		5.0 737.92	10452	0 0 0.200
3		HTC J22	12.250		18 18 18	1414.0	1885.3	471.3	24.71		6.0 256.03	107006	2 3 0.125
4		HTC J22	12,250	8516.00	16 16 18	1885.3		372.9	43,84		6.8 518.78	205424	5 6 0.250
5 •	517	HTC J22	12.250	8516.00	16 16 18	2258.2	2445.0	186.8	30.22	6.2	7.5 783.03	125	6 5 0.250
WELL	.; TI	JNA No.4											BIT RECORD
DIT	IADC					DEPTH	DEPTH	BIT	TOTAL	TI	RIP	TOTAL	CONDITION
		MAKE & TYPE	SIZE	COST	NOZZLES	IN	DUT	RUN	HOURS	AROP T			T B G
י שיו ב	CONT	inne u fire	0111	PDQ!	MULLLLU	714	001	нин	ноопо	ווישחום ונ	THE PODD!	LOVINO	1 10 10
6	347	HTC JD8	8.500	1700.00	14 14 14	2445.0	2464.0	19.0	4.92	3.9	7.4 2457.51	18701	6 3 0.000
7	517	HTC J22	8.500	4139.00	14 14 14	2464.0	2481.2	17.2	1,43		7.5 2136.71		1 1 0.000
. 7	4	CHRIST RC6	8.500	11019.00	14 15 15	2481.2	2499.0	17.8	1.45		7.5 2455.30	8248	0 0 0.050
7	4	CHRIST RC6	8.500	0.00	15 14 15	2499.0	2517.1	18.1	4.27		7.5 1198.69	23867	0 0 0.200
7	4	CHRIST RC6	8.500	0.00	14 15 15	2517.1	2531.0	13.9	6.34	6.7	7.5 1012.90	34899	0 0 0.500
7	4	CHRIST RC4	8,500	21210,00	14 15 15	2531.0	2549.0	18.0	1.18	15.3	7.6 2959.70	6796	0 0 0.150
7		CHRIST RC4	8.500	0.00	14 15 15	2549.0	2564.4	15.4	3.05	8.3	7.5 2501.86	17528	0 0 0.300
7	517	HTC J22	8.500	0.00	14 14 14	2564.4	2650.0	85.6	10.79	9.1 7	7.6 654.58	42370	2 3 0.062
8	517	HTC J22	8.500	4139,00	13 13 13	2650.0	2731.0	81.0	18.26	4.4 7	7.8 1226.05	61996	8 6 0.125
9	537	HTC J33	8.500	4503.00	13 13 13	2731.0	2822.5	91.5	12.33	7.4 8	8.0 860.64	42031	1 2 0.062
9	4	CHRIS MC23	8.469	18067.00	14 14 14	2822.5	2828.0	5.5	1.17	4.7 8	3.0 9373.79	5131	0 0 1.000
9	4	CHRIS C-23		18067.00	14 14 14	2828.0	2833.0	5.0	3.58		3.012071.43	16019	0 0 0,150
10	537	HTC J33		4503.00	13 13 13	2833.0	2975.5	142.5	29.05		3.3 988.81	102918	4 4 0.000
11	617	HTC J44	8.500	4357.00	13 13 13	2975.5	3011.0	35.5	10.65		3.4 2082.47		1 1 0.000
12	347	HTC JD8	8.500	1500.00	13 13 13	3011.0	3013.1	2.1	0.50		7.013748.45		7 3 0.000
13		HTC J33	8.500	4503.00	13 13 13	3013.1	3140.4	127.3	39.96		7.0 1382.57		4 5 0.063
14	537	HTC J33	8.500	4503.00	13 13 13	3140.4	3273.9	133.5	49.34		3.9 1626.93		4 4 0.062
14		CHRIS C23	8,470	0.00	14 14 14	3273.9	3282.5	8.6	7.57		7.0 4449.53		0 0 1.000
15	617	HTC J44	8.500	4347.00	13 13 13	3282.5	3321.0	38.5	18.84		7.1 2763.22		1 1 0.000

BIT NUMBER: 1 JADC CODE 111	HTC OSC	%AJ+26"H0	
STARTING DEPTH	92.0 0.00 2.5 26.000 23.20 55.12 36.85 0.00 0.119 1.20 8.4 0.00 0.10	3652.00 20 9.750 8.000 5.000 5.000 0.119	20 3.062 2.813 3.125 4.276
CUTTINGS DIAMETER, DENSITY	5.0	1.80	
FINISHING DEPTH	219.0 3.96 7.2	13521 B 3	G 0.000
BIT NUMBER: 1 IADC CODE 111		3AJ	
STARTING DEPTH	219.0 4857.00 3.7 17.500	3652,00	
STARTING DEPTH BIT COST. RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID DRILL COLLAR LENGTH, OD, ID DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR	219.0 4857.00 3.7 17.500 20 21.26 92.54 83.46 205.00 82.00 0.119 1.20 8.4 0.00 0.10 10.0	3652.00 20 9.750 8.000 5.000 19.124 21.000 0.119	20 3.062 2.813 3.125 4.276
STARTING DEPTH BIT COST. RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES HW DRILL COLLAR LENGTH, OD, ID DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER	219.0 4857.00 3.7 17.500 20 21.26 92.54 83.46 205.00 82.00 0.119 1.20 8.4 0.00 0.10	3652.00 20 9.750 8.000 5.000 19.124 21.000	3.062 2.813 3.125

BIT NUMBER:	2	IADC	CODE	116	HTC J1		
STARTING DEP	TH				811.0		
BIT COST, RI	G COST	CHOUR	₹	t 1 1 1 1 2	2694.00	3652.00	
TRIP TIME							
BIT DIAMETER					12.250		
NOZZLES					18	18	18
DRILL COLLAR					168.55	8.000	2.813
HW DRILL PIPE	E LENG	FTH, C	od, id		83.46	5.000	3.125
DRILL PIPE OF	D, ID.	1 1 2 1 1				5.000	4.276
CASING DEPTH	, ID			1 1 1 1 1 1	794.00	12.615	
RISER LENGTH	, ID.,				82.00		
PUMP VOLUMES						0.119	
PORE PRESSURI							
NORMAL PORE I							
OVERBURDEN GI							
STRESS RATIO							
"d" EXPONENT	CORRE	CTION	√ FACT	OR	10.0		
CUTTINGS DIA	METER.	DENS	SITY	1 1 1 1 2	2.5	2.20	
FINISHING DEF	ЭΤΗ	1111;			1381.0		
CUMULATIVE HO						100225	
BIT COMDITION	ν ουή.	. ,		T F 2 T F F	T 4	B 2	G 0.125

	BIT	NUMBER	: 2	IAD	c c	DDE	4	CHRIS	RC4			
								1380		7 / 1		
	TRIF	P TIME.	1 1 1 1					14500.0	. 0	3652.00		
								9.87				
	NOZ2	ZLES						1	15	15		15
	DRIL	L. COL.L.	AR L.E	ENGTH,	ob,	ID		160.4	49	8.000	2.8	13
	HW I	DRILL P	IPE L	ENGTH,	OD.	, ID				5.000		
	DRIL	L PIPE	OD,	ID						5.000	4.2	76
	LINE	ER DEPT	H, T(OP, ID.				1380.0		794.00	12.23	50
								12.61				
	RISE	ER LENG	TH,]	(D			, , , ,	82.0	0 (21,000		
	PUMF	, AOLUM	ES 1	AND S.				0.11	19	0.115		
	PORE	E PRESS	URE (CALC EX	PONE	ENT.,,		1.2	2.0			
	MORM	IAL PORI	E PRE	SSURE,				8.	. 4			
	OVER	RBURDEN	GRAI	IENT M	ODIF	FIER.,	, , , ,	0.0	0 (
	STRE	SS RAT	IO MO	DIFIER				0.1	0			
	"d"	EXPONE	NT CC	RRECTI	ON F	ACTOR		10,	0			
1	CUTT	INGS D	TAMET	ER, DE	NSII	ΓΥ		2.	. 0	2.30		
ı	ET T NIT	CHITAIC	neor.					4 *** (** .**	,			
!	መተውመር መመለያ	. OFF.CPW :	96.6 FF 1101-11	וניניניני. ארו יישו	i i i i No			1389.	6	1011		
	www.	M.HILVE.	MUUM Nakan	CD, IUK	i dyi			1.0	រន	6261		
	E) J. 3	COMDIT.	TCIN (7U 1				Υ	U	$\mathbf{B} = 0$	G	0.050

BIT NUMBER: 2 IADC CODE 4	CHRIS RC	4	
STARTING DEPTHBIT COST, RIG COST/HOUR	1389.6 0.00	3652.00	
TRIP TIME	5.0		
PREVIOUS HOLE MADE	80.1	6261	
NOZZLES		15	
DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID		8.000 5.000	3.125
DRILL PIPE OD, ID	1380.00	5,000 794.00	
RISER LENGTH, ID	12.615 82.00	21,000	
PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT	1.20	0.119	
OVERBURDEN GRADIENT MODIFIER	8.4 0.00		
"d" EXPONENT CORRECTION FACTOR			
CUTTINGS DIAMETER, DENSITY		2.30	
FINISHING DEPTHCUMULATIVE HOURS, TURNS	1.35		
BIT CONDITION OUT	T. O	k u	G 0.100

BIT NUMBER: 2 IADC CODE	CHRIS RO	:4	
STARTING DEPTH	1399.0		
BIT COST, RIG COST/HOUR		3652.00	
TRIP TIME			
PREVIOUS HOLE MADE	. 19.0		
PREVIOUS HOURS, TURNS	1.35	7608	
BIT DIAMETER			
NOZZLES		15	15
DRILL COLLAR LENGTH, OD, ID	160.49	8.000	2.813
HW DRILL PIPE LENGTH, OD, ID		5.000	3,125
DRILL PIPE OD, ID	1.1	5.000	4.276
LINER DEPTH, TOP, ID	1380.00	794.00	12,250
CASING ID			
RISER LENGTH, ID	82.00	21.000	
PUMP VOLUMES 1 AND 2		0.119	
PORE PRESSURE CALC EXPONENT			
NORMAL PORE PRESSURE			
OVERBURDEN GRADIENT MODIFIER			
STRESS RATIO MODIFIER			
"d" EXPONENT CORRECTION FACTOR	10.0		
CUTTINGS DIAMETER, DENSITY	2.0	2.30	
FINISHING DEPTH	1408.2		
CUMULATIVE HOURS, TURNS		9742	
BIT CONDITION OUT	T 0	$\mathbf{B} = 0$	G 0.150

BIT NUMBER: 2 IADC CODE 4	CHRIS RC4	
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME PREVIOUS HOLE MADE PREVIOUS HOURS, TURNS BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID LINER DEPTH, TOP, ID CASING ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER. DENSITY	1408.2 0.00 3652.00 5.0 28.2 1.73 9742 9.875 15 15 160.49 8.000 83.46 5.000 5.000 1380.00 794.00 12.615 82.00 21.000 0.119 0.119 1.20 8.4 0.00 0.10 10.0 2.30	15 2.813 3.125 4.276 12.250
FINISHING DEPTH	1414.0 1.87 10452 T 0 B 0	G 0.200
BIT NUMBER: 3 IADC CODE 517 STARTING DEPTH	1414.0 8516.00 3652.00 6.0 12.250 18 18 168.55 8.000 83.46 5.000 5.000 794.00 12.615 82.00 21.000 0.119 0.119 1.20 8.4 0.00 0.10 10.0 2.5 2.40	18 2.813 3.125 4.276
CUMULATIVE HOURS, TURNS BIT CONDITION OUT	24.71 107006 T 2 B 3	G 0.125

· Managan and Angle of the Control of the Control

BIT NUMBER: 4	TADO CODE	517	HTC J22		
STARTING DEPTH BIT COST, RIG COST TRIP TIME BIT DIAMETER	'/HOUR,	1 1 1 1 1 1	1885.3 8516.00 6.8 12.250	3652.00	
NOZZLES			16	16	18
DRILL COLLAR LENGT			172.76	8.000	2.813
-W DRILL PIPE LENG			83,46	5.000	3.125
DRILL PIPE OD, ID.			Section 1 1 the	5.000	4.276
CASING DEPTH, ID			794.00	12.615	
RISER LENGTH, ID			82.00	21,000	
PUMP VOLUMES 1 AND	2		0.119	0.119	
ORE PRESSURE CALC			1.20		
IORMAL PORE PRESSU			8 . 4		
DVERBURDEN GRADIEN			0,00		
STRESS RATIO MODIF			0.10		
'd" EXPONENT CORRE CUTTINGS DIAMETER,			10.0 2.5	2.50	
GITINGS DIFFICITION,			40 x 50	all a subtil	
FINISHING DEPTH			2258.2		
CUMULATIVE HOURS,			43,84	205424	
CIT CONDITION OUT.			T 5	B 6	G 0.250
3IT NUMBER: 5	IADC CODE	517	HTC J22		
		517	HTC J22 2250.2		
STARTING DEPTH BIT COST. RIG COST	·,,		2258.2 8516.00	3652.00	
STARTING DEPTH BIT COST. RIG COST TRIP TIME	.,		2258.2 8516.00 7.5	3652.00	
STARTING DEPTH BIT COST. RIG COST TRIP TIME BIT DIAMETER	·/····································	11111	2258.2 8516.00	3652.00 16	18
STARTING DEPTH BIT COST. RIG COST TRIP TIME BIT DIAMETER NOZZLES	THOUR		2258.2 8516.00 7.5 12.250		18 2.813
STARTING DEPTH BIT COST. RIG COST TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGT HW DRILL PIPE LENG	TH, OD, ID.		2258.2 8516.00 7.5 12.250 16	16	2.813 3.125
STARTING DEPTH BIT COST. RIG COST TRIP TIME BIT DIAMETER NOZZLES PRILL COLLAR LENGT HW DRILL PIPE LENG	THOUR TH, OD, ID.		2258.2 8516.00 7.5 12.250 16 172.76 83.46	16 8.000 5.000 5.000	2.813
STARTING DEPTH SIT COST. RIG COST TRIP TIME BIT DIAMETER POZZLES PRILL COLLAR LENGT W DRILL PIPE LENG PRILL PIPE OD, ID. CASING DEPTH, ID.	TH, OD, ID.		2258.2 8516.00 7.5 12.250 16 172.76 83.46	16 8.000 5.000 5.000 12.615	2.813 3.125
STARTING DEPTH SIT COST. RIG COST TRIP TIME SIT DIAMETER OZZLES ORILL COLLAR LENGT HW DRILL PIPE LENG ORILL PIPE OD, ID. CASING DEPTH, ID RISER LENGTH, ID	TH, OD, ID.		2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00	16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH SIT COST. RIG COST TRIP TIME SIT DIAMETER OZZLES ORILL COLLAR LENGT HW DRILL PIPE LENG ORILL PIPE OD, ID. CASING DEPTH, ID VUMP VOLUMES 1 AND	TH, OD, ID.		2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00 0.119	16 8.000 5.000 5.000 12.615	2.813 3.125
STARTING DEPTH SIT COST. RIG COST TRIP TIME SIT DIAMETER POZZLES PRILL COLLAR LENGT W DRILL PIPE LENG PORILL PIPE OD, ID RISER LENGTH, ID PORE PRESSURE CALC	TH, OD, ID. TH, OD, ID.		2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00 0.119 1.20	16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH SIT COST, RIG COST TRIP TIME SIT DIAMETER POZZLES PRILL COLLAR LENGT W DRILL PIPE LENG PORILL PIPE OD, ID PORSING DEPTH, ID PORE LENGTH, ID PORE PRESSURE CALC NORMAL PORE PRESSU	TH, OD, ID. TH, OD, ID. TH, OD, ID. CHOOSE CONTROL CON		2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00 0.119 1.20 8.4	16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH SIT COST, RIG COST RIP TIME SIT DIAMETER POZZLES RILL COLLAR LENGT W DRILL PIPE LENG PORILL PIPE OD, ID RISER LENGTH, ID PORE PRESSURE CALC NORMAL PORE PRESSL OVERBURDEN GRADIEN	THOUR TH, OD, ID. STH, OD, ID CONTROL SEXPONENT. URE		2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00 0.119 1.20 8.4 0.00	16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH BIT COST. RIG COST TRIP TIME BIT DIAMETER POZZLES PRILL COLLAR LENGT W DRILL PIPE DD, ID. CASING DEPTH, ID PORE LENGTH, ID PORE PRESSURE CALC NORMAL PORE PRESSL OVERBURDEN GRADIEN STRESS RATIO MODIF	THOUR TH, OD, ID. STH, OD, ID CONTROL SEXPONENT. URE THOUR		2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00 0.119 1.20 8.4	16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH BIT COST. RIG COST TRIP TIME BIT DIAMETER POZZLES PRILL COLLAR LENGTH W DRILL PIPE LENG PORILL PIPE OD, ID PORILL PIPE OD, ID PORE PRESSURE CALC PORE PRESSURE	THOUR TH, OD, ID. TH, OD,	OR.,,,	2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00 0.119 1.20 8.4 0.00 0.10	16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH BIT COST. RIG COST TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGT HW DRILL PIPE LENG DRILL PIPE OD, ID CASING DEPTH, ID PUMP VOLUMES 1 AND PORE PRESSURE CALC NORMAL PORE PRESSL NORMAL PORE PRESSL OVERBURDEN GRADIEN STRESS RATIO MODIF "d" EXPONENT CORRE CUTTINGS DIAMETER,	TH, OD, ID. TH, OD, ID. TH, OD, ID. EXPONENT. JRE TIER ECTION FACT DENSITY	OR	2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00 0.119 1.20 8.4 0.00 0.10 10.0 2.5	16 8.000 5.000 5.000 12.615 21.000 0.119	2.813 3.125
BTARTING DEPTH BIT COST. RIG COST TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGT HW DRILL PIPE LENG ORILL PIPE OD, ID CASING DEPTH, ID PUMP VOLUMES 1 AND PORE PRESSURE CALC NORMAL PORE PRESSL OVERBURDEN GRADIEN BTRESS RATIO MODIF "d" EXPONENT CORRE	TH, OD, ID. TH, OD, ID. TH, OD, ID. EXPONENT. JRE TIER ECTION FACT DENSITY	OR	2258.2 8516.00 7.5 12.250 16 172.76 83.46 794.00 82.00 0.119 1.20 8.4 0.00 0.10	16 8.000 5.000 5.000 12.615 21.000 0.119	2.813 3.125

to the control of the

BIT NUMBER: 6 IADC CODE 347	нтс дрв		
STARTING DEPTH	2445.0 1700.00 7.4 8.500	3 652.00	
NOZZLES	14	14	1.4
DRILL COLLAR LENGTH, OD, ID	207.10 83.46	6.250 E 000	2.813 3.125
HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID	00.40	5.000 5.000	4.276
CASING DEPTH, ID	2434,00	8.681	
RISER LENGTH, ID	82.00 0.119	21.000 0.119	
PORE PRESSURE CALC EXPONENT	1.20		
NORMAL PORE PRESSURE	8.5 0.0 0		
STRESS RATIO MODIFIER	0.10		
"d" EXPONENT CORRECTION FACTOR	10.0	~ ~ ~ ^	
CUTTINGS DIAMETER, DENSITY	2.0	2.20	
FINISHING DEPTH	2464.0		
CUMULATIVE HOURS, TURNS	4,92 T 6	18701 B 3	G 0.000
BIT NUMBER: 7 IADC CODE 517	HTC J22		
STARTING DEPTH	2464.0 4139.00	3652.00	
STARTING DEPTH	2464.0 4139.00 7.5	3652.00	
STARTING DEPTH	2464.0 4139.00	3652.00 14	1.4
STARTING DEPTH	2464.0 4139.00 7.5 8.500 14 264.75	14 6.250	2.813
STARTING DEPTH	2464.0 4139.00 7.5 8.500	14	
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID	2464.0 4139.00 7.5 8.500 14 264.75 83.46	14 6.250 5.000 5.000 8.681	2.813 3.125
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID	2464.0 4139.00 7.5 8.500 14 264.75 83.46 2434.00 82.00	14 6.250 5.000 5.000 8.681 21.000	2.813 3.125
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT	2464.0 4139.00 7.5 8.500 14 264.75 83.46 2434.00 82.00 0.119 1.20	14 6.250 5.000 5.000 8.681	2.813 3.125
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE	2464.0 4139.00 7.5 8.500 14 264.75 83.46 2434.00 82.00 0.119 1.20 8.5	14 6.250 5.000 5.000 8.681 21.000	2.813 3.125
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT	2464.0 4139.00 7.5 8.500 14 264.75 83.46 2434.00 82.00 0.119 1.20	14 6.250 5.000 5.000 8.681 21.000	2.813 3.125
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR	2464.0 4139.00 7.5 8.500 14 264.75 83.46 2434.00 82.00 0.119 1.20 8.5 0.00 0.10	14 6.250 5.000 5.000 8.681 21.000 0.119	2.813 3.125
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER	2464.0 4139.00 7.5 8.500 14 264.75 83.46 2434.00 82.00 0.119 1.20 8.5 0.00	14 6.250 5.000 5.000 8.681 21.000	2.813 3.125
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	2464.0 4139.00 7.5 8.500 14 264.75 83.46 2434.00 82.00 0.119 1.20 8.5 0.00 0.10 10.0 2.0	14 6.250 5.000 5.000 8.681 21.000 0.119	2.813 3.125
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	2464.0 4139.00 7.5 8.500 14 264.75 83.46 2434.00 82.00 0.119 1.20 8.5 0.00 0.10	14 6.250 5.000 5.000 8.681 21.000 0.119	2.813 3.125

BIT NUMBER: 7 IADC CODE 4	CHRIST R	C4	
STARTING DEPTH	2481.2 11019.00 7.5 8.500	3652.00	
NOZZLES	14 249.00	15 6.250	15 2.813
W DRILL PIPE LENGTH, OD, ID	83.50	5.000 5.000	3.125 4.276
CASING DEPTH, ID	2434.00 82.00	8.681 21.000	1 1 100 2 30
ONE PRESSURE CALC EXPONENT	0.119	0.119	
VORMAL PORE PRESSURE	8.5 0.00		
STRESS RATIO MODIFIER	0.10		
'd" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	2.0	2.20	
FINISHING DEPTH	2499.0 1.45	824 8	
BIT CONDITION OUT	T 0	B 0	G 0.050
BIT NUMBER: 7 IADC CODE 4	CHRIST R	C6	
STARTING DEPTH	2499.0 0.00	3652.00	
TRIP TIME	7.5 18.0		
PREVIOUS HOURS, TURNS	1.40 8.500	8249	
NOZZLES DRILL COLLAR LENGTH, OD, ID	15 249,00	14 6.250	15 2.813
HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID	82.00	5.000 5.000	3.125 4.276
CASING DEPTH, ID	2434.00	8.681	7 1 1 7 4.7
RISER LENGTH, ID	82.00 0.119	21.000	
RISER LENGTH, ID	82.00 0.119 1.20 8.5	21,000	
RISER LENGTH, ID	82.00 0.119 1.20 8.5 0.00	21,000	
RISER LENGTH, ID	82.00 0.119 1.20 8.5 0.00	21,000	
RISER LENGTH, ID	82.00 0.119 1.20 8.5 0.00 0.10	21.000 0.119	

en en grand de la companya de la co

1. :

BIT	NUMBER:	7	IADC	CODE	.4	CHRIST R	C6	
STAI	RTING DEF	ΥН				2517.1		
BIT	COST, RI	G CO	STZHOUR			0.00	3652,00	
	P TIME					7.5		
	VIOUS HOL					36.0		
	VIOUS HOU					4.27	23867	
	DIAMETER					8,500		
	ZLES					14	15	15
	LL COLLAR					249.00	6,250	2.813
	DRILL PIF					82.00	5.000	3.125
	LL PIPE C						5.000	4.276
CAS:	ING DEPTH	I, ID				2434.00	8.681	
RIS	ER LENGTI-	I, ID		1 1 1 1 1 1	1 1 1 1 1	82.00	21.000	
	P VOLUMES					0.119	0.119	
	E PRESSUR					1.20		
	MAL PORE					8,5		
	RBURDEN G					0,00		
	ESS RATIO					0.10		
	EXPONENT					10.0		
CUT	TINGS DIA	METE	R, DENS	ITY		2.0	2.20	
FIN:	ISHING DE	ртн.				2531.0		
CUMI	JLATIVE H	OURS	, TURNS			6.34	34899	
BIT	CONDITIO	in on.	T.,,,,,		, , , , ,	Τ 0	B 0	G 0.50
BIT	NUMBER:	7	IADC	adoo	4	CHRIST R	C4	
STAR	RTING DEP	TH.,				2531.0		
BIT	COST, RI	G COS	ST/HOUR			21210.00	3652.00	
	TIME					7.6		
	DIAMETER					8.500		
	ZLES.,.,,					14	15	15
DRIL	L COLLAR	LEN	STH. OD	ID.		249.00	6,250	2.813

And the state of t

ANALEM COMMINIC MENSORITY (JAZ) IN	42.47.00	0.200	ಷ ಕಡಕನ	
HW DRILL PIPE LENGTH, OD, ID	82,00	5.000	3.125	
DRILL PIPE OD, ID		5.000		
CASING DEPTH, ID	2434.00	8.681		
RISER LENGTH, ID		21,000		
PUMP VOLUMES 1 AND 2		0.119		
PORE PRESSURE CALC EXPONENT	1.20			
NORMAL PORE PRESSURE	8.5			
OVERBURDEN GRADIENT MODIFIER	0.00			
STRESS RATIO MODIFIER	0.10			
"d" EXPONENT CORRECTION FACTOR	10.0			
CUTTINGS DIAMETER, DENSITY	2.0	2.20		
FINISHING DEPTH	2549.0			
CUMULATIVE HOURS, TURNS	1.18	6796		
BIT CONDITION OUT		B 0	G 0.150	

BIT NUMBER: 7 IADC CODE 4	CHRIST R	0.4	
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME PREVIOUS HOLE MADE	2549.0 0.00 7.5 0.0	3652.00	
PREVIOUS HOURS, TURNS	1,20 8,500	6796	
BIT DIAMETER	14 249.00 82.00	15 6.250 5.000 5.000	15 2.813 3.125 4.276
CASING DEPTH, ID	2434.00 82.00 0.119 1.20	8.681 21.000 0.119	
NORMAL PORE PRESSURE	8.5 0.00 0.10		
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10.0 2.0	2.20	
FINISHING DEPTH	2564.4 3.05 T 0	17528 B 0	G 0.300
BIT NUMBER: 7 IADC CODE 517	HTC J22		
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME	2564.4 0.00 7.6	3652,00	
PREVIOUS HOLE MADE	17.0 1.36 8.500	4208	
DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID	14 264.75 83.46	14 6.250 5.000 5.000	14 2.813 3.125 4.276
CASING DEPTH, ID	2434.00 82.00 0.119 1.20	8.681 21.000 0.119	
NORMAL PORE PRESSURE	8.5 0.00 0.10 10.0 2.0	2.20	
FINISHING DEPTH	2650.0 10.79 T 2	423 70 B 3	G 0.062

The state of the s

BIT NUMBER: 8 IADC CODE 517	нтс лаа		
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER "d" EXPONENT CORRECTION FACTOR	. 4139.00 . 7.8 . 8.500 . 13 . 257.50 . 83.50 . 2434.00 . 82.00 . 0.119 . 1.20 . 8.6 . 0.00	3652,00 13 6,250 5,000 5,000 8,681 21,000 0,119	13 2.813 3.125 4.276
CUTTINGS DIAMETER, DENSITY		2.20	
FINISHING DEPTH	. 18.26	61996 B 6	G 0.125
BIT NUMBER: 9 IADC CODE 537	HTC J33		
STARTING DEPTH	. 4503.00 . 8.0 . 8.500	3652.00	
NOZZLES	. 265.67 . 83.46 . 2434.00	13 6.250 5.000 5.000 8.681	13 2.813 3.125 4.276
RISER LENGTH, ID	. 82.00 . 0.119 . 1.20 . 8.6 . 0.00 . 0.10	21.000 0.119	
FINISHING DEPTH	. 2822.5	2.50	
CUMULATIVE HOURS, TURNS	12.33 T 1	42031 B 2	G 0.062

.

AND THE PROPERTY OF THE PROPER

STARTING DEPTH. 2822.5 BIT COST, RIG COST/HOUR. 18067.00 3652.00 BIT DIAMETER 8.0 BIT DIAMETER 8.469 NOZZLES 14 14 14 14 MILL COLLAR LENGTH, OD, ID 250.61 6.250 2.813 HW DRILL PIPE LENGTH, OD, ID 83.46 5.000 3.125 BIT LINER DEPTH, TOP, ID 2822.50 2434.00 8.500 CASING ID 8.681 RISER LENGTH, ID 82.00 21.000 PUMP VOLUMES 1 AND 2 0.119 0.119 PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE 0.00 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 2.0 2.50 BIT NUMBER: 9 IADC CODE 4 CHRIS C-23 STARTING DEPTH 2828.0 CUMULATIVE HOURS, TURNS 1.77 5131 BIT CONDITION OUT TO B 0 G 1 BIT DIAMETER 8.0 BIT PIPE LENGTH, OD, ID 83.46 5.000 3.125 BURLL PIPE DD, ID 83.46 5.000 3.125 DRILL PIPE LENGTH, OD, ID 83.46 5.000 3.125 DRILL PIPE DD, ID 9.000 8.000 8.500 CASING ID 8.681 RISER LENGTH, ID 8282.50 2434.00 8.500 CASING ID 8.681 RISER LENGTH, ID 820.00 21.000 PUMP VOLUMES I AND 2 0.119 0.119 PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE 8.4 OVERBURDEN GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.00 """ EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 2.0 2.50		IADC CODE	.čş	CHRIS MC	:23	
NOZZLES	BIT COST, RIG COS TRIP TIME	T/HOUR		18067.00 8.0	3652.00	
DRILL COLLAR LENGTH, OD, ID. 250.61 6.250 2.813 HW DRILL PIPE LENGTH, OD, ID. 83.46 5.000 3.125 DRILL PIPE OD, ID. 2822.50 2434.00 8.500 CASING ID. 82.00 21.000 8.500 RISER LENGTH, ID. 82.00 21.000 PUMP VOLUMES 1 AND 2 0.119 0.119 PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE 8.4 OVERBURDEN GRADIENT MODIFIER 0.10 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 2.0 2.50 BIT NUMBER; 9 IADC CODE 4 CHRIS C-23 STARTING DEPTH 8.0 BIT CONDITION OUT 1.17 5131 BIT CONDITION OUT 1.17 5131 BIT DIAMETER 8.0 BIT DIAMETER 9.0 BIT DI					14	1.4
DRILL PIPE OD, ID	DRILL COLLAR LENG	TH, OD, ID		250.61	6.250	
LINER DEPTH, TOP, ID. 2822.50 2434.00 8.500 CASING ID. 8.681 RISER LENGTH, ID 82.00 21.000 PUMP VOLUMES 1 AND 2 0.119 0.119 PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE				83.46		
CASING ID	DRILL PIPE OD, ID		: : : : :			
RISER LENGTH, ID	LINER DEPTH, TOP,	ID	1 7 2 1 1		2434.00	8.500
PUMP VOLUMES 1 AND 2	SASING ID OTOED LENCTH IN	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1		94 000	
PORE PRESSURE CALC EXPONENT. 1.20 NORMAL PORP PRESSURE. 8.4 OVERBURDEN GRADIENT MODIFIER. 0.00 STRESS RATIO MODIFIER. 0.10 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY. 2.0 2.50 FINISHING DEPTH. 2828.0 CUMULATIVE HOURS, TURNS. 1.17 5131 BIT CONDITION OUT. 70 B 0 G 1 BIT NUMBER: 9 IADC CODE 4 CHRIS C-23 STARTING DEPTH. 2828.0 BIT COST, RIG COST/HOUR 18067.00 3652.00 RIT COST, RIG COST/HOUR 18067.00 3652.00 RIP TIME. 8.0 BIT DIAMETER 8.469 NOZZLES. 14 14 14 DRILL COLLAR LENGTH, OD, ID 250.61 6.250 2.813 HW DRILL PIPE DO, ID 83.46 5.000 3.125 DRILL PIPE OD, ID 83.46 5.000 3.125 DRIL	PILME UNLIMES 1 AN					
NORMAL PORE PRESSURE					0,337	
OVERBURDEN GRADIENT MODIFIER. 0.00 STRESS RATIO MODIFIER. 0.10 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY. 2.0 2.50 FINISHING DEPTH. 2828.0 CUMULATIVE HOURS, TURNS. 1.17 5131 BIT CONDITION OUT. TO B 0 G 1 BIT CONDITION OUT. 8 0 G 1 BIT COST, RIG COST/HOUR. 18067.00 3652.00 BIT COST, RIG COST/HOUR. 8.0 BIT DIAMETER. 8.0 BIT DIAMETER. 8.469 NOZZLES 14 14 14 14 DRILL COLLAR LENGTH, OD, ID. 250.61 6.250 2.813 HW DRILL PIPE LENGTH, OD, ID. 83.46 5.000 3.125 DRILL PIPE OD, ID. 5.000 4.276 LINER DEPTH, TOP, ID. 2822.50 2434.00 8.500 CASING ID. 8.681 RISER LENGTH, ID. 82.00 21.000 CHIP OULLMES 1 AND 2 0.119 0.119 PORE PRESSURE CALC EXPONENT. 1.20 NORMAL PORE PRESSURE 8.4 OVERBURDER GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.00 "d" EXPONENT CORRECTION FACTOR 10.0 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY. 2.0 2.50						
STRESS RATIO MODIFIER						
"d" EXPONENT CORRECTION FACTOR. 10.0 CUTTINGS DIAMETER, DENSITY. 2.0 2.50 FINISHING DEPTH. 2828.0 CUMULATIVE HOURS, TURNS. 1.17 5131 BIT CONDITION OUT. T 0 B 0 G 1 BIT NUMBER: 9 IADC CODE 4 CHRIS C-23 STARTING DEPTH. 2828.0 BIT COST/HOUR. 18067.00 3652.00 BIT COST, RIG COST/HOUR. 18067.00 3652.00 BIT DIAMETER. 8.0 BIT DIAMETER. 8.469 NOZZLES. 14 14 14 DRILL COLLAR LENGTH, OD, ID. 250.61 6.250 2.813 HW DRILL PIPE LENGTH, OD, ID. 83.46 5.000 3.125 DRILL PIPE OD, ID. 5.000 4.276 LINER DEPTH, TOP, ID. 2822.50 2434.00 8.500 CASING ID. 8.681 RISER LENGTH, ID. 82.00 21.000 PUMP VOLUMES 1 AND 2. 0.119 0.119 PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE . 8.4 OVERBURDEN GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.00 STRESS RATIO MODIFIER 0.00 CUTTINGS DIAMETER, DENSITY. 2.0 2.50						
FINISHING DEPTH. 2828.0 CUMULATIVE HOURS, TURNS. 1.17 5131 BIT CONDITION OUT. T 0 B 0 G 1 BIT NUMBER: 9 IADC CODE 4 CHRIS C-23 STARTING DEPTH. 2828.0 BIT COST, RIG COST/HOUR. 18067.00 3652.00 TRIP TIME. 8.0 BIT DIAMETER. 8.469 NOZZLES. 14 14 14 DRILL COLLAR LENGTH, OD, ID 250.61 6.250 2.813 HW DRILL PIPE LENGTH, OD, ID 83.46 5.000 3.125 DRILL PIPE OD, ID 5.000 4.276 LINER DEPTH, TOP, ID 2822.50 2434.00 8.500 CASING ID 8.681 RISER LENGTH, ID 8.681 RISER LENGTH, ID 1.20 NORMAL PORE PRESSURE AND 2. 0.119 PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE . 8.4 OVERBURDEN GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.00 STRESS RATIO MODIFIER 0.00 CUTTINGS DIAMETER, DENSITY. 2.0 2.50				10.0		
CUMULATIVE HOURS, TURNS	CUTTINGS DIAMETER	, DENSITY	1 1 1 1 1	2.0	2.50	
BIT CONDITION OUT						
BIT NUMBER: 9 IADC CODE 4 CHRIS C-23 STARTING DEPTH. 2828.0 BIT COST, RIG COST/HOUR. 18067.00 3652.00 TRIP TIME. 8.0 BIT DIAMETER. 8.469 NOZZLES. 14 14 14 DRILL COLLAR LENGTH, OD, ID. 250.61 6.250 2.813 HW DRILL PIPE LENGTH, OD, ID. 83.46 5.000 3.125 DRILL PIPE OD, ID. 5.000 4.276 LINER DEPTH, TOP, ID. 2822.50 2434.00 8.500 CASING ID. 8.681 RISER LENGTH, ID. 82.00 21.000 PUMP VOLUMES 1 AND 2. 0.119 0.119 PORE PRESSURE CALC EXPONENT. 1.20 NORMAL PORE PRESSURE. 8.4 OVERBURDEN GRADIENT MODIFIER. 0.00 STRESS RATIO MODIFIER. 0.10 "d" EXPONENT CORRECTION FACTOR. 10.0 CUTTINGS DIAMETER, DENSITY. 2.0 2.50						
STARTING DEPTH	BIT NUMBER: 9	IADC CODE	<i>A</i> ,	CHRIS C-	23	
BIT COST, RIG COST/HOUR	STARTING NERTH					
TRIP TIME				2020 n		
BIT DIAMETER	oras restricted to a section and a section a	1 / 1911 11 117			3652 00	
DRILL COLLAR LENGTH, OD, ID 250.61 6.250 2.813 HW DRILL PIPE LENGTH, OD, ID 83.46 5.000 3.125 DRILL PIPE OD, ID 5.000 4.276 LINER DEPTH, TOP, ID 2822.50 2434.00 8.500 CASING ID 8.681 RISER LENGTH, ID 82.00 21.000 PUMP VOLUMES 1 AND 2 0.119 0.119 PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE 8.4 OVERBURDEN GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.10 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 2.0 2.50				18067.00	3652.00	
HW DRILL PIPE LENGTH, OD, ID 83.46 5.000 3.125 DRILL PIPE OD, ID 5.000 4.276 LINER DEPTH, TOP, ID 2822.50 2434.00 8.500 CASING ID 8.681 RISER LENGTH, ID 82.00 21.000 PUMP VOLUMES 1 AND 2 0.119 0.119 PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE 8.4 OVERBURDEN GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.10 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 2.0 2.50	TRIP TIME			18067.00 8.0	3652.00	
DRILL PIPE OD, ID	TRIP TIME BIT DIAMETER NOZZLES			18067.00 8.0 8.469		1.4
LINER DEPTH, TOP, ID	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENG	TH, OD, ID		18067.00 8.0 8.469 14	14 6.250	
CASING ID	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENG HW DRILL PIPE LENG	TH, OD, ID		18067.00 8.0 8.469 14 250.61	14 6.250 5.000	2.813 3.125
RISER LENGTH, ID	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGT HW DRILL PIPE LENG DRILL PIPE OD, ID	TH, OD, ID		18067.00 8.0 8.469 14 250.61 83.46	14 6.250 5.000 5.000	2.813 3.125 4.276
PUMP VOLUMES 1 AND 2	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH DRILL PIPE LENGON TO THE PIPE OD, ID LINER DEPTH, TOP,	TH, OD, ID GTH, OD, ID.		18067.00 8.0 8.469 14 250.61 83.46	14 6.250 5.000 5.000	2.813 3.125 4.276
PORE PRESSURE CALC EXPONENT 1.20 NORMAL PORE PRESSURE 8.4 OVERBURDEN GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.10 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 2.0 2.50	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH DRILL PIPE LENGON ID., ID., ID., ID., ID., ID., ID., ID.,	TH, OD, ID GTH, OD, ID.		18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681	14 6.250 5.000 5.000 2434.00	2.813 3.125 4.276
NORMAL PORE PRESSURE	TRIP TIME SIT DIAMETER NOZZLES DRILL COLLAR LENGTH DRILL PIPE LENG INER DEPTH, TOP, CASING ID RISER LENGTH, ID.	TH, OD, ID GTH, OD, ID.		18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00	14 6.250 5.000 5.000 2434.00	2.813 3.125 4.276
OVERBURDEN GRADIENT MODIFIER 0.00 STRESS RATIO MODIFIER 0.10 "d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 2.0 2.50	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH TW DRILL PIPE LENG DRILL PIPE OD, ID LINER DEPTH, TOP, CASING ID PUMP VOLUMES 1 ANI	TH, OD, ID GTH, OD, ID.		18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00 0.119	14 6.250 5.000 5.000 2434.00	2.813 3.125 4.276
"d" EXPONENT CORRECTION FACTOR 10.0 CUTTINGS DIAMETER, DENSITY 2.0 2.50	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTHW DRILL PIPE LENG DRILL PIPE OD, ID INER DEPTH, TOP, CASING ID PUMP VOLUMES 1 AND PORE PRESSURE CALO	TH, OD, ID. GTH, OD, ID. ID		18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00 0.119 1.20	14 6.250 5.000 5.000 2434.00	2.813 3.125 4.276
CUTTINGS DIAMETER, DENSITY 2.0 2.50	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTHWORILL PIPE OD, ID INER DEPTH, TOP, CASING ID RISER LENGTH, ID. PORE PRESSURE CALO NORMAL PORE PRESSURE DVERBURDEN GRADIEN	TH, OD, ID GTH, OD, ID ID O 2 C EXPONENT JRE		18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00 8.119 1.20 8.4	14 6.250 5.000 5.000 2434.00	2.813 3.125 4.276
	TRIP TIME BIT DIAMETER NOZZLES PRILL COLLAR LENGTH WE DRILL PIPE LENG LINER DEPTH, TOP, CASING ID RISER LENGTH, ID. PUMP VOLUMES 1 AND PORE PRESSURE CALC VORMAL PORE PRESSI STRESS RATIO MODIF	TH, OD, ID GTH, OD, ID ID D 2 C EXPONENT JRE NT MODIFIER		18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00 0.119 1.20 8.4 0.00 0.10	14 6.250 5.000 5.000 2434.00	2.813 3.125 4.276
PP TP 5 1 TP 5 1 275	TRIP TIME BIT DIAMETER NOZZLES PRILL COLLAR LENGTH WE DRILL PIPE LENG LINER DEPTH, TOP, CASING ID RISER LENGTH, ID. PUMP VOLUMES 1 AND PORE PRESSURE CALC VORMAL PORE PRESSUR BTRESS RATIO MODIF "d" EXPONENT CORRE	TH, OD, ID GTH, OD, ID ID D 2 C EXPONENT JRE NT MODIFIER FIER	· · · · · · · · · · · · · · · · · · ·	18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00 0.119 1.20 8.4 0.00 0.10 10.0	14 6.250 5.000 5.000 2434.00 21.000 0.119	2.813 3.125 4.276
FINISHING DEPTH	TRIP TIME BIT DIAMETER NOZZLES PRILL COLLAR LENGTH WE DRILL PIPE LENG LINER DEPTH, TOP, CASING ID RISER LENGTH, ID. PUMP VOLUMES 1 AND PORE PRESSURE CALC VORMAL PORE PRESSUR BTRESS RATIO MODIF "d" EXPONENT CORRE	TH, OD, ID GTH, OD, ID ID D 2 C EXPONENT JRE NT MODIFIER FIER	· · · · · · · · · · · · · · · · · · ·	18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00 0.119 1.20 8.4 0.00 0.10 10.0	14 6.250 5.000 5.000 2434.00 21.000 0.119	2.813 3.125 4.276
CUMULATIVE HOURS, TURNS 3.58 16019	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTHWORILL PIPE OD, ID INER DEPTH, TOP, CASING ID RISER LENGTH, ID. PORE PRESSURE CALC NORMAL PORE PRESSUR OVERBURDEN GRADIEN BTRESS RATIO MODIF "d" EXPONENT CORRE CUTTINGS DIAMETER.	TH, OD, ID GTH, OD, ID ID D 2 C EXPONENT JRE NT MODIFIER FIER ECTION FACTOR		18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00 0.119 1.20 8.4 0.00 0.10 10.0	14 6.250 5.000 5.000 2434.00 21.000 0.119	2.813 3.125 4.276
BIT CONDITION OUT T 0 B 0 G 0	TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH W DRILL PIPE LENG TIMER DEPTH, TOP, CASING ID RISER LENGTH, ID. PORE PRESSURE CALC VORMAL PORE PRESSI STRESS RATIO MODIF "d" EXPONENT CORRE CUTTINGS DIAMETER CUMULATIVE HOURS,	TH, OD, ID GTH, OD, ID ID O 2 C EXPONENT JRE NT MODIFIER ECTION FACTOR , DENSITY		18067.00 8.0 8.469 14 250.61 83.46 2822.50 8.681 82.00 0.119 1.20 8.4 0.00 0.10 10.0 2.0 2833.0 3.58	14 6.250 5.000 5.000 2434.00 21.000 0.117	2,813 3,125 4,276 8,500

BIT NUMBER: 10 IADC CODE 537	нтс дзз		
STARTING DEPTH	2833.0 4503.00 8.3 8.500 13 263.29 83.46 2434.00 82.00 0.119 1.20 8.4 0.00 0.10 10.0 2.0	3652.00 13 6.250 5.000 5.000 8.681 21.000 0.119	13 2.813 3.125 4.276
FINISHING DEPTH	2975.5 29.05	102918	
BIT CONDITION OUT	Ϋ 4	B 4	G 0.000
BIT NUMBER: 11 IADC CODE 617	HTC J44		
STARTING DEPTH	2975.5 4357.00 8.4 8.500 13 264.21 83.46	3652.00 13 6.250 5.000 5.000	13 2.813 3.125 4.276
CASING DEPTH, ID	2434.00 82.00 0.119 1.20 8.4 0.00 0.10 10.0 2.0	8.681 21.000 0.119 2.50	
FINISHING DEPTHCUMULATIVE HOURS, TURNSBIT CONDITION OUT	3011.0 10.65 T 1	36514 B 1	G 0.000

The second of th

BIT NUMBER: 12	TADO CODE	347	HTC JD8		
STARTING DEPTH BIT COST, RIG COST TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENG	「/HOUR 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3011.0 1500.00 7.0 8.500 13 264.21	3652.00 13 6.250	13 2.813
HW DRILL PIPE LENG DRILL PIPE OD, ID CASING DEPTH, ID. RISER LENGTH, ID. PUMP VOLUMES 1 AND PORE PRESSURE CALC NORMAL PORE PRESSU	STH, OD, ID		83.50 2434.00 82.00 0.119 1.20 10.1	5.000 5.000 8.681 21.000 0.119	3.125 4.276
OVERBURDEN GRADIE STRESS RATIO MODII "d" EXPONENT CORRI CUTTINGS DIAMETER	FIER ECTION FACT	OR	0.00 0.10 10.0 2.0	2.00	
FINISHING DEPTH CUMULATIVE HOURS, BIT CONDITION OUT	TURNS	1 1 1 1 1	3013.1 0.50 T 7	2175 B 3	G 0.000
BIT NUMBER: 13	IADC CODE	537	HTC J33		
STARTING DEPTH BIT COST, RIG COSTRIP TIME BIT DIAMETER	T/HOUR	1 1 1 1 1 1	3013.1 4503.00 7.0 8.500	3652,00	a ***
NOZZLES DRILL COLLAR LENG HW DRILL PIPE LENG DRILL PIPE OD, ID	TH. OD, ID. GTH, OD, ID		13 264,20 83,50	13 6,250 5,000 5,000	13 2.813 3.125 4.276
CASING DEPTH, ID. RISER LENGTH, ID. PUMP VOLUMES 1 AND PORE PRESSURE CALE NORMAL PORE PRESSURE OVERBURDEN GRADIES	D 2 C EXPONENT. JRE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2434.00 82.00 0.119 1.20 10.1 0.00	8.681 21.000 0.119	
STRESS RATIO MODIF "d" EXPONENT CORRI CUTTINGS DIAMETER	FIER ECTION FACT	OR	0.10 10.0 2.0	2.20	
FINISHING DEPTH CUMULATIVE HOURS, BIT CONDITION OUT	TURNS		3140.4 39.96 T 4	127844 B 5	G 0.063

Commence of the second

BIT NUMBER: 14 IADC CODE 537	нтс дзз		
STARTING DEPTH	3140.4		
BIT COST, RIG COST/HOUR	4503.00	3652.00	
TRIP TIME,	8.9		
BIT DIAMETER	8.500		
NOZZLES.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13	1.3	13
DRILL COLLAR LENGTH, OD, ID	263.20	6.250	2.813
HW DRILL PIPE LENGTH, OD, ID	83.50	5,000	3.125
DRILL PIPE OD, ID		5.000	4.276
CASING DEPTH, ID	2434.00	8.681	
RISER LENGTH, ID	82.00	21.000	
PUMP VOLUMES 1 AND 2	0.119	0.119	
PORE PRESSURE CALC EXPONENT	1,20		
NORMAL PORE PRESSURE	10.2		
OVERBURDEN GRADIENT MODIFIER	0.011		•
STRESS RATIO MODIFIER.,.,.,.,.,	0.10		
"d" EXPONENT CORRECTION FACTOR	10.0		
CUTTINGS DIAMETER, DENSITY	2.0	2.50	
FINISHING DEPTH	3273.9		
CUMULATIVE HOURS, TURNS		140579	
BIT CONDITION OUT	T 4	B 4	G 0.062
BIT NUMBER: 14 IADC CODE 4	CHRIS C2	3	
STARTING DEPTH	3273.9		
	0,00	3652.00	
TRIP TIMÉ	9.0		
PREVIOUS HOLE MADE	5.0		
PREVIOUS HOURS, TURNS		16019	
" T "Y" - YS T A \$27" "Y 1"" 1"	C A226		

Andrew Commence of the commenc

	PREVIOUS MOURS, TURNS	3.58	16019	
	BIT DIAMETER	8.470		
•	NOZZLES		14	1.4
	DRILL COLLAR LENGTH, OD, ID	250.61	6.250	2.813
	HW DRILL PIPE LENGTH, OD, ID	83.46	5.000	3,125
_	DRILL PIPE OD, ID		5,000	4.276
		2434.00	8.681	
	RISER LENGTH, ID	82.00	21.000	
	PUMP VOLUMES 1 AND 2		0.119	
	PORE PRESSURE CALC EXPONENT	1.20		
	NORMAL PORE PRESSURE	8.4		
	OVERBURDEN GRADIENT MODIFIER	0,00		
_	STRESS RATIO MODIFIER	0.10		
	"d" EXPONENT CORRECTION FACTOR	10.0		
	CUTTINGS DIAMETER, DENSITY	1.0	2.60	
	FINISHING DEPTH	3282.5		
	CUMULATIVE HOURS, TURNS		36538	
	BIT CONDITION OUT		$\mathbf{B} = 0$	G 1.000

BIT NUMBER: 15 IADC CODE 617	HTC J44		
STARTING DEPTH	3282.5		
BIT COST, RIG COST/HOUR	4347.00	3652.00	
TRIP TIME	9.1		
M1 40 111 M 41 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8.500		
NOZZLES	13	1.3	13
*** ber man a	263,29		2.813
HW DRILL PIPE LENGTH, OD, ID	83,46	5.000	
DRILL PIPE OD, ID		5.000	
	2434.00	8.681	
		21.000	
		0.119	
PORE PRESSURE CALC EXPONENT	1.20		
NORMAL PORE PRESSURE	8.4		
OVERBURDEN GRADIENT MODIFIER	0.00		
STRESS RATIO MODIFIER	0.10		
"d" EXPONENT CORRECTION FACTOR	10.0		
CUTTINGS DIAMETER, DENSITY	2.0	2.60	
FINISHING DEPTH	3321.0		•
CUMULATIVE HOURS, TURNS	18.84	55509	
BIT CONDITION OUT	Ϋ́i	B 1	G 0.000

The first of the second of the

:

(b), HYDRAULIC ANALYSIS

Data listed from the tape every 100m for each bit run.

DEPTH. Metres

A CONTRACTOR OF THE CONTRACTOR

FLOW RATE. Rate of mud flow into the well, in gallons per minute.

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which the flow becomes turbulent

SLIP VELOCITY. . . . The rate of slip of cuttings in the annulus under laminar flow

ASCENT VELOCITY. . . The rate of ascent of cuttings in the annulus under laminar flow

PRESSURE UNITS . . . Pounds per square inch

IMPACT FORCE The impact force at the bit, in foot-pounds per second squared.

H.H.P. , . , Hydraulic horsepower at the bit

JET VELOCITY The velocity of mud through the bit nozzles, in metres per second.

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 100.0 AND TVD 100.0

SPM 1 80 SPM 2 79 FLOW RATE 795

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL.	VEL	FLOW	VEL	VEL	DROP
HWDC/OH	1.851	43	10	12	LAMINAR	1	9	0,0
DCZOH	1.950	107	10	12	LAMINAR	1	9	0.0
HWDP/OH	2.074	45	9	11	LAMINAR	1	8	0.0
TOTAL	VOLUME	195			TOTAL	PRESSURE	DROP	0.0

LAG: 10.3 MINUTES 826 STROKES #1 AND 816 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 594.6 HHP 276 IMPACT FORCE 987 % SURFACE PRESSURE 214.7 HHP/sqin 0.52 JET VELOCITY 84

PRESSURE BREAKDOWN:

SURFACE 38.3 STRING 137.8 BIT 594.6 ANNULUS 0.0

TOTAL 770.7 PUMP PRESSURE 277.0 % DIFFERENCE178.2

BOTTOM HOLE PRESSURES:

•	D	ENSITY UNITS	14	RESSURE UNITS
	WEIGHT	8.66	HYDROSTATIC PRESSURE	147.7
CIRCULATING:	ECD	8.66	CIRCULATING PRESSURE	147.8
	MARGIN	0.00	ESTIMATED SWAR	0.0
EFFECTIVE MUD	WEIGHT	8.66	BOTTOM HOLE PRESSURE	147.7

1.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 200.0 AND TVD 200.0

SPM 1 100 SPM 2 101 FLOW RATE 1005

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOLZ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP AS VEL	SCEND VEL	PRESSURE DROP
HWDC/OH	1.851	43	1.3	12	TURBULENT			0.0
DC/OH	1.950	107	12	12	TURBULENT			0.0
HWDP/OH	2,074	76	12	11	TURBULENT			0.0
DP/OH	2.074	176	12	11	TURBULENT			0.0
TOTAL	VOLUME	403			TOTAL	PRESSURE	DROP	0.0

LAG: 16.8 MINUTES 1684 STROKES #1 AND 1701 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 954.6 HMP 559 IMPACT FORCE 1585 % SURFACE PRESSURE 78.7 HMP/sqin 1.05 JET VELOCITY 106

PRESSURE BREAKDOWN:

SURFACE 58.6 STRING 262.7 BIT 954.6 ANNULUS 0.0

TOTAL 1275.9 PUMP PRESSURE 1213.0 % DIFFERENCE 5.2

BOTTOM HOLE PRESSURES:

		NSITY UNITS	di	RESSURE UNITS
NOT CIRCULATING: MUS	D WEIGHT	8.70	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	296.8
CIRCULATING:	ECD	8.70		296.9
PULLING OUT: TRIE EFFECTIVE MUE	P MARGIN	0 .00	ESTIMATED SWAB	0,0
	D WEIGHT	8.70	BOTTOM HOLE PRESSURE	296.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 300.0 AND TVD 300.0

SPM 1 100 SPM 2 100 FLOW RATE 1000

ANNULAR HYDRAULICS:

ANNULUS TYPE	UNIT VOL./	VOL	ANN VEL	CRIT	TYPE OF FLOW	SLIP 6 VEL	SCEND VEL	PRESSURE DROP
HWDC/OH	0,673	14	35	92	LAMINAR	1	35	0.2
DC/OH	0.772	57	31	90	LAMINAR	.0	30	0.5
DC/CSG	0,961	18	25	89	LAMINAR	n	24	(1, 1)
HWDP/CSG	1.085	91	22	87	LAMINAR	0	22	0.3
DP/CSG	1,085	23	22	87	LAMINAR	0	22	0.1
DP/RIS	1.325	109	18	88	LAMINAR	0	18	0.2
TOTA	L VOLUME	311			TOTAL	PRESSURE	DROP	1.5

LAG: 13.1 MINUTES 1307 STROKES #1 AND 1307 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 966.8 HMP 564 IMPACT FORCE 1605 % SURFACE PRESSURE 43.9 HMP/sqin 2.34 JET VELOCITY 106

PRESSURE BREAKDOWN:

SURFACE 78.1 STRING 573.6 BIT 966.8 ANNULUS 1.5

TOTAL 1620.0 PUMP PRESSURE 2200.0 % DIFFERENCE 26.4

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: 8,90 HYDROSTATIC PRESSURE 455.5 MUD WEIGHT CIRCULATING: ECD 8.93 CIRCULATING PRESSURE 457.0 PULLING OUT: TRIP MARGIN 0.06 ESTIMATED SWAB 3.0 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 8.84 452.5

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

SPM 1 99 SPM 2 0 FLOW RATE 495

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	TINU	VOL	VEL.	VEL	FLOW	VEL	VEL	DROP
HWDC/OH	0.673	14	18	91	LAMINAR	0	17	0.2
DC/OH	0.772	71 -	15	90	LAMINAR	0	15	0.45
HWDPZOH	0.896	73	13	87	LAMINAR	0	1.3	77, . 0
HWDP/CSG	1,085	2	11	86	LAMINAR	0	11	0.0
DP/CSG	1.085	131	11	86	LAMINAR	0	11	0,4
DP/RIS	1.325	109	9	85	LAMINAR	0	9	0.2
TOTA	L VOLUME	401			TOTAL I	PRESSUI	RE DROP	1.6

LAG: 34.0 MINUTES 3367 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 239.8 HHP 69 IMPACT FORCE 398 % SURFACE PRESSURE 35.3 HHP/sqin 0.29 JET VELOCITY 52

PRESSURE BREAKDOWN:

SURFACE 22.2 STRING 176.2 BIT 239.8 ANNULUS 1.6

TOTAL 439.9 PUMP PRESSURE 680.0 % DIFFERENCE 35.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.00 HYDROSTATIC PRESSURE 614.2 615.8 CIRCULATING: CIRCULATING PRESSURE ECD 9.02 3.2 0.05 TRIP MARGIN ESTIMATED SWAB PULLING OUT: BOTTOM HOLE PRESSURE EFFECTIVE MUD WEIGHT 8.95 611.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

SPM 1 99 SPM 2 100 FLOW RATE 996

ANNULAR HYDRAULICS:

ANNULUS	V0L/		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL.	VEL	DROP
HWDC/OH	0.673	14	7.5	90	LAMINAR	1	35	0.2
DCZOH	0.772	71	31	89	LAMINAR	0	3.0	0.7
HOPZOH	0.896	75	26	86	L.AMINAR	0	26	(1.4
DP/OH	0.896	88	26	84	LAMINAR	0	26	0 . 35
DP/CSG	1,085	134	22	85	LAMINAR	0	22	0.5
DP/RIS	1.325	109	18	84	LAMINAR	0	18	0.2
TOTA	L VOLUME	490			TOTAL	PRESSUR	E DROP	2.5

LAG: 20.7 MINUTES 2046 STROKES #1 AND 2073 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 993.1 HHP 577 IMPACT FORCE 1649 % SURFACE PRESSURE 40.9 HHP/sqin 2.40 JET VELOCITY 106

PRESSURE BREAKDOWN:

SURFACE 79.7 STRING 677.6 BIT 993.1 ANNULUS 2.5

TOTAL 1752.9 PUMP PRESSURE 2426.6 % DIFFERENCE 27.8

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS 784.8 NOT CIRCULATING: 9.20 HYDROSTATIC PRESSURE MUD WEIGHT CIRCULATING PRESSURE 787.3 9.23 CIRCULATING: ECD 5.0 TRIP MARGIN ESTIMATED SWAR 0.06 PULLING OUT: EFFECTIVE MUD WEIGHT 9.14 BOTTOM HOLE PRESSURE 779.8

CORE LAB ::: ::: ::: ::: ::: ::: ::: :::

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

99 SPM 2 100 SPM 1 FLOW RATE 992

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
нирс/он	0.673	14	35	90	LAMINAR	1	35	0.72
DC/OH	0.772	71	31	89	LAMINAR	Ö	30	0.7
HWDP/OH	0.896	75	26	86	LAMINAR	Ö	26	0.4
DP/OH	0.896	177	26	86	LAMINAR	ñ	26	1.0
DP/CSG	1.085	134	22	85	LAMINAR	ő	22	0.5
DP/RIS	1.325	109	18	84	LAMINAR	ő	18	0.2
TOTAL	L VOLUME	580			TOTAL	PRESSUR	E DROP	3.0

LAG: 24.5 MINUTES 2427 STROKES #1 AND 2445 STROKES #2

BIT HYDRAULICS:

984.5 PRESSURE DROP HHP 570 IMPACT FORCE 1634 % SURFACE PRESSURE 40.4 HHP/sqin 2.37 JET VELOCITY 105

PRESSURE BREAKDOWN:

SURFACE 79.1 STRING 717.9 BIT 984.5 ANNULUS 3.0

PUMP PRESSURE 2434.4 % DIFFERENCE 26.7 TOTAL 1784.5

BOTTOM HOLE PRESSURES:

PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.20 HYDROSTATIC PRESSURE 941.7 CIRCULATING: ECD 9.23 CIRCULATING PRESSURE 944.7 PULLING OUT: TRIP MARGIN 0.06 ESTIMATED SWAR 6.0 EFFECTIVE MUD WEIGHT 9.14 BOTTOM HOLE PRESSURE 935.8

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0

SPM 1 115 SPM 2 0 FLOW RATE 576

ANNULAR HYDRAULICS:

ANNULUS	V0L./		ANN	CRIT	TYPE OF	SLIP 6	ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL	VEI.	DROP
HWDC/OH	0.673	14	20	91	LAMINAR	0	20	0.2
DCZOH	0.772	71	18	89	LAMINAR	0	18	0.6
HWDP/OH	0.896	75	3 5	87	LAMINAR	0	15	0.3
DP/OH	0.896	267	15	87	LAMINAR	0	15	1.2
DP/CSG	1.085	134	1.3	84	LAMINAR	0	13	0,4
DP/RIS	1.325	109	10	85	LAMINAR	0	1 ()	0.2
TOTAL	L VOLUME	669			TOTAL	PRESSURE	E DROP	2.9

LAG: 48.8 MINUTES 5626 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 328.0 HHP 110 IMPACT FORCE 545 % SURFACE PRESSURE 37.5 HHP/sqin 0.46 JET VELOCITY 61

PRESSURE BREAKDOWN:

SURFACE 29.4 STRING 284.2 BIT 328.0 ANNULUS 2.9

TOTAL 644.5 PUMP PRESSURE 874.7 % DIFFERENCE 26.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT HYDROSTATIC PRESSURE 9.10 1086.7 CIRCULATING: 9.12 CIRCULATING PRESSURE 1089.6 ECD PULLING OUT: TRIP MARGIN 0.05 ESTIMATED SWAR 5.8 EFFECTIVE MUD WEIGHT 9.05 BOTTOM HOLE PRESSURE 1081.0

CORE LAB

HYDRAULICS ANALYSIS PROGRAM

Brown Brown of the factor of the second of

HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TVD

SPM 1 28 SPM 2 98 FLOW RATE 982

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	F.T.OA	VEL.	VEL.	DROP
HWDC/OH	0.673	14	35	91	LAMINAR	1	34	0.2
DC/OH	0.772	71	- 30	89	LAMINAR	0	30	0.7
HWDP/OH	0.896	75	26	87	LAMINAR	0	26	0.4
DP/OH	0.896	356	26	87	LAMINAR	0	26	1.9
DP/CSG	1.085	134	22	86	LAMINAR	0	21	0.5
DP/RIS	1.325	109	18	85	LAMINAR	0	18	0.2
TOTA	L VOLUME	759			TOTAL	PRESSU	RE DROP	3.9

LAG: 32.5 MINUTES 3189 STROKES #1 AND 3189 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 954.2 HHP 547 IMPACT FORCE 1584 % SURFACE PRESSURE 39.0 HHP/sqin 2.27 JET VELOCITY 104

PRESSURE BREAKDOWN:

SURFACE 77.0 STRING 787.4 954.2 ANNULUS

TOTAL 1822.5 PUMP PRESSURE 2447.7 % DIFFERENCE 25.5

BOTTOM HOLE PRESSURES:

3.9

DENSITY PRESSURE UNITS UNITS 9.10 NOT CIRCULATING: MUD WEIGHT HYDROSTATIC PRESSURE 1242.0 CIRCULATING: ECD 9.13 CIRCULATING PRESSURE 1245.9 TRIP MARGIN PULLING OUT: 0.06 ESTIMATED SWAR 7.9 EFFECTIVE MUD WEIGHT 9.04 BOTTOM HOLE PRESSURE 1234.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

SPM 1 98 SPM 2 98 FLOW RATE 976

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	29	85	99	LAMINAR	1	84	3.5
DC/CSG	0.303	19	77	98	LAMINAR	1	76	1.8
HWDP/CSG	0.427	36	iii. A	92	LAMINAR	0	54	1.1
DP/CSG	0,427	242	54	92	LAMINAR	0	54	7.2
DP/RIS	1,325	109	18	84	LAMINAR	0	17	0.2
TOTAL	. VOLUME	434			TOTAL	PRESSURE	DROP	13.8

LAG: 18.7 MINUTES 1824 STROKES #1 AND 1825 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1451.2 HHP 826 IMPACT FORCE 1951 % SURFACE PRESSURE 51.8 HHP/sqin 7.01 JET VELOCITY 128

PRESSURE BREAKDOWN:

SURFACE 80.2 STRING 1055.3 BIT 1451.2 ANNULUS 13.8

TOTAL 2600.5 PUMP PRESSURE 2803.4 % DIFFERENCE 7.2

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: 9.20 HYDROSTATIC PRESSURE 1412.6 MUD WEIGHT 9.29 CIRCULATING PRESSURE CIRCULATING: ECD 1426.4 22.6 PULLING OUT: TRIP MARGIN 0.18 ESTIMATED SWAB EFFECTIVE MUD WEIGHT 9.02 BOTTOM HOLE PRESSURE 1385.0

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1000.0 AND TVD 1000.0

SPM 1 100 SPM 2 97 FLOW RATE 984

ANNULAR HYDRAULICS:

ANNULUS	VOL.Z		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEI.	FLOW	VEI	VEL	DROP
DC/OH	0.274	46	85	99	LAMINAR	1	84	5.6
HWDP/OH	0.398	15	59	93	LAMINAR	0	58	0.5
HWDP/CSG	0.427	20	55	92	LAMINAR	0	54	0.6
DP/CSG	0.427	285	55	92	LAMINAR	0	54	8.5
DP/RIS	1.325	109	18	84	LAMINAR	0	18	0.2
TOTAL	. VOLUME	474			TOTAL	PRESSURE	DROP	15.5

LAG: 20.2 MINUTES 2023 STROKES #1 AND 1961 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1475.2 HHP 847 IMPACT FORCE 1984 % SURFACE PRESSURE 49.3 HHP/sqin 7.18 JET VELOCITY 129

PRESSURE BREAKDOWN:

SURFACE 81.4 STRING 1118.0 BIT 1475.2 ANNULUS 15.5

TOTAL 2690.1 PUMP PRESSURE 2990.9 % DIFFERENCE 10.1

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.20 HYDROSTATIC PRESSURE 1569.5 CIRCULATING: ECD 9,29 CIRCULATING PRESSURE 1585.0 TRIP MARGIN PULLING OUT: 0.18 ESTIMATED SWAR 30.9 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 1538.6 9.02

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 94 SPM 2 93 FLOW RATE 931

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DCZOH	0,274	46	81	98	LAMINAR	1	80	5.5
HWDP/OH	0.398	33	56	92	LAMINAR	n	55	1.1
DP/OH	0,398	22	56	92	LAMINAR	0	55	0.7
DP/CSG	0.427	304	52	91	LAMINAR	0	51	8.7
DP/RIS	1.325	109	17	84	LAMINAR	0	17	0.2
TOTAL	_ VOLUME	514			TOTAL	PRESSURE	DROP	16.5

LAG: 23.2 MINUTES 2169 STROKES #1 AND 2150 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1335.5 HHP 725 IMPACT FORCE 1796 % SURFACE PRESSURE 47.0 HHP/sqin 6.15 JET VELOCITY 122

PRESSURE BREAKDOWN:

SURFACE 74.4 STRING 1063.9 BIT 1335.5

ANNULUS 16.5

TOTAL 2490.3 PUMP PRESSURE 2840.1 % DIFFERENCE 12.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: 1745,3 MUD WEIGHT 9.30 HYDROSTATIC PRESSURE CIRCULATING: ECD 9.39 CIRCULATING PRESSURE 1761.8 TRIP MARGIN PULLING OUT: 0.18 ESTIMATED SWAB 33.0 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 9,12 1712.2

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1200.0 AND TVD 1200.0

SPM 1 88 SPM 2 85 FLOW RATE 865

ANNULAR HYDRAULICS:

ANNUL US	V0L./		ANN	CRIT	TYPE OF	SLIP #	ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FL.OW	VEL	VEL	DROP
DCZOH	0.274	46	75	98	LAMINAR	1	74	5,4
HWDP/OH	0.398	33	52	92	LAMINAR	0	51	1,1
DP/OH	0.398	61	52	92	LAMINAR	0	51	2.1
DP/CSG	0.427	304	48	91	LAMINAR	0	48	8.6
DF/RIS	1.325	109	16	84	LAMINAR	0	15	0.2
TOTAL VOLUME		554			TOTAL.	PRESSURE	EDROP	17.4

LAG: 26.9 MINUTES 2373 STROKES #1 AND 2280 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1152.9 HHP 582 IMPACT FORCE 1550 % SURFACE PRESSURE 45.1 HHP/sqin 4.94 JET VELOCITY 113

PRESSURE BREAKDOWN:

SURFACE 65.2 STRING 969.6 BIT 1152.9 ANNULUS 17.4

TOTAL 2205.1 PUMP PRESSURE 2554.1 % DIFFERENCE 13.7

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.30 HYDROSTATIC PRESSURE 1903.9 CIRCULATING: ECD 9.39 CIRCULATING PRESSURE 1921.3 PULLING OUT: TRIP MARGIN 0.17 ESTIMATED SWAR 34.8 EFFECTIVE MUD WEIGHT 9.13 BOTTOM HOLE PRESSURE 1869.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0

SPM 1 91 SPM 2 84 FLOW RATE 876

ANNULAR HYDRAULICS:

ANNULUS TYPE	UNIT UNIT	V0L.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP 6 VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.274	46	76	124	LAMINAR	1	75	8.2
HWDPZOH	0.398	33	52	119	LAMINAR	0	52	1.8
DP/OH	0.398	101	52	119	LAMINAR	0	52	5.4
DP/CSG	0.427	304	49	118	LAMINAR	0	49	13.8
DP/RIS	1.325	109	3.6	111	LAMINAR	0	16	0.4
TOTAL VOLUME		594			TOTAL	PRESSURI	EDROP	29.6

LAG: 28.4 MINUTES 2589 STROKES #1 AND 2399 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1209.3 HHP 618 IMPACT FORCE 1626 X SURFACE PRESSURE 41.5 HHP/sqin 5.25 JET VELOCITY 115

PRESSURE BREAKDOWN:

SURFACE 70.4 STRING 1088.2 BIT 1209.3 ANNULUS 29.6

TOTAL 2397.4 PUMP PRESSURE 2916.2 % DIFFERENCE 17.8

EFFECTIVE MUD WEIGHT

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.50 HYDROSTATIC PRESSURE 2106.9 CIRCULATING: ECD 9.63 CIRCULATING PRESSURE 2136.5 TRIP MARGIN 0.27 ESTIMATED SWAB 59.1 PULLING OUT:

9.23

DENSITY

PRESSURE

2047.8

BOTTOM HOLE PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1385.0 AND TVD 1385.0

SPM 1 55 SPM 2 0 FLOW RATE 276

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEI.	FLOW	VEL.	VEL	DROP
DC/OH	0.107	1	62	168	LAMINAR	1	61	1.0
DC/LIN	0.274	43	24	155	LAMINAR	0	24	7.9
HWDP/LIN	0,398	33	16	148	LAMINAR	0	16	1.8
DP/LIN	0.398	138	16	148	LAMINAR	0	16	7.6
DP/CSG	0.427	304	15	147	LAMINAR	0	15	14,3
DP/RIS	1.325	109	5	137	LAMINAR	0	5	0.4
TOTAL	VOLUME	628			TOTAL	PRESSURE	DROP	33.1

LAG: 95.5 MINUTES 5274 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 253.7 HHP 41 IMPACT FORCE 237 % SURFACE PRESSURE 46.5 HHP/sqin 0.53 JET VELOCITY 52

PRESSURE BREAKDOWN:

SURFACE 9.9 STRING 154.9 BIT 253.7

BIT 253.7 ANNULUS 33.1

TOTAL 451.6 PUMP PRESSURE 545.3 % DIFFERENCE 17.2

BOTTOM HOLE PRESSURES:

BTINU UNITS NOT CIRCULATING: 9.70 MUD WEIGHT HYDROSTATIC PRESSURE 2292.0 CIRCULATING: ECD 9.84 CIRCULATING PRESSURE 2325.1 TRIP MARGIN PULLING OUT; 0.28 ESTIMATED SWAB 66.3 EFFECTIVE MUD WEIGHT 9.42 BOTTOM HOLE PRESSURE 2225.7

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1395.0 AND TVD 1395.0

SPM 1 0 SPM 2 50 FLOW RATE 249

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.107	2	55	168	LAMINAR	0	55	3.0
DC/LIN	0.274	40	22	155	LAMINAR	0	22	7.1
HWDP/LIN	0,398	33	15	148	LAMINAR	0	15	1.8
DP/LIN	0.398	142	15	148	LAMINAR	0	15	7.6
DP/CSG	0.427	304	1.4	147	LAMINAR	n	14	13.8
DP/RIS	1.325	109	4	137	LAMINAR	0	4	0.4
TOTA	L VOLUME	630			TOTAL	PRESSURE	DROP	33.7

LAG: 106.4 MINUTES 0 STROKES #1 AND 5293 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 206.0 HHP 30 IMPACT FORCE 192 % SURFACE PRESSURE 72.2 HHP/sqin 0.39 JET VELOCITY 47

PRESSURE BREAKDOWN:

SURFACE 8.2 STRING 128.9 BIT 206.0 ANNULUS 33.7

TOTAL 376.8 PUMP PRESSURE 285.4 % DIFFERENCE 32.1

BOTTOM HOLE PRESSURES:

UNITS UNITS 9,70 NOT CIRCULATING: MUD WEIGHT HYDROSTATIC PRESSURE 2308.5 CIRCULATING: ECD 9.84 CIRCULATING PRESSURE 2342.3 TRIP MARGIN PULLING OUT: 0.28 ESTIMATED SWAR 67.5 EFFECTIVE MUD WEIGHT 9,42 BOTTOM HOLE PRESSURE 2241.0

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1405.0 AND TVD 1405.0

SPM 1 34 SPM 2 0 FLOW RATE 170

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP (ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL	VEL.	DROP
DC/OH	0.107	3	38	163	LAMINAR	0	37	4,1
DC/LIN	0.274	37	1.5	148	LAMINAR	0	15	5.1
HWDP/LIN	0.398	33	10	138	LAMINAR	0	1 (1	1.3
DF/LIN	0.398	146	10	138	LAMINAR	0	10	5.7
DP/CSG	0.427	304	9	137	LAMINAR	0	9	10.1
DP/RIS	1.325	109	3	125	LAMINAR	0	3	0.3
TOTAL	VOLUME	632			TOTAL.	PRESSURI	E DROP	26.6

LAG: 156.6 MINUTES 5313 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 95.8 HHP 9 IMPACT FORCE 89 % SURFACE PRESSURE 21.5 HHP/sqin 0.12 JET VELOCITY 32

PRESSURE BREAKDOWN:

SURFACE 4.2 STRING 66.2 BIT 95.8 ANNULUS 26.6

TOTAL 192.8 PUMP PRESSURE 445.3 % DIFFERENCE 56.7

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.70 HYDROSTATIC PRESSURE 2325.1 CIRCULATING: 9.81 CIRCULATING PRESSURE 2351.7 ECD 0.22 TRIP MARGIN ESTIMATED SWAR 53.2 PULLING OUT: EFFECTIVE MUD WEIGHT 9.48 BOTTOM HOLE PRESSURE 2271.9

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1410.0 AND TVD 1410.0

SPM 1 48 SPM 2 0 FLOW RATE 239

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VO)	VEL	VEL.	FL.OW	VEL.	VEL	DROP
DC/OH	0.107	3	5.7	142	LAMINAR	1	53	4,4
DCZLIN	0.274	36	21	125	LAMINAR	0	21	4.0
HWDP/LIN	0.398	33	14	115	LAMINAR	0	14	1,0
DP/LIN	0.398	148	14	115	LAMINAR	0	14	4.6
DP/CSG	0.427	304	13	114	LAMINAR	0	13	8.0
DP/RIS	1.325	109	4	102	LAMINAR	0	4	0.2
TOTAL	_ VOLUME	633			TOTAL	PRESSURE	DROP	22.3

LAG: 111.2 MINUTES 5323 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 192.6 HHP 27 IMPACT FORCE 180 % SURFACE PRESSURE 53.1 HHP/sqin 0.35 JET VELOCITY 45

PRESSURE BREAKDOWN:

SURFACE 7.7 STRING 121.9 BIT 192.6 ANNULUS 22.3

TOTAL 344.5 PUMP PRESSURE 363.0 % DIFFERENCE 5.1

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.80 HYDROSTATIC PRESSURE 2357.4 CIRCULATING: 2379.7 9.89 CIRCULATING PRESSURE ECD PULLING OUT: TRIP MARGIN ESTIMATED SWAR 0.19 44.7 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 2312.7 9.61

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1500,0 AND TVD 1500,0

SPM 1 87 SPM 2 86 FLOW RATE 866

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	AET.	VEL	FL.OW	VEL.	VEL.	DROP
DC/OH	0.274	46	75	125	LAMINAR	1	75	8.9
HWDP/OH	0.398	33	52	115	LAMINAR	0	51	1.8
DP/OH	0.398	181	52	115	LAMINAR	0	5 7	9.6
DP/CSG	0.427	304	48	114	LAMINAR	0	48	13.7
DP/RIS	1.325	109	16	102	LAMINAR	0	16	0.3
TOTAL	. VOLUME	673			TOTAL	PRESSURE	DROP	34,4

LAG: 32.7 MINUTES 2841 STROKES #1 AND 2817 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1217.6 HHP 615 IMPACT FORCE 1637 % SURFACE PRESSURE 41.9 HHP/sqin 5.22 JET VELOCITY 113

PRESSURE BREAKDOWN:

SURFACE 78.2 STRING 1299.0 BIT 1217.6 ANNULUS 34.4

TOTAL 2629.2 PUMP PRESSURE 2907.5 % DIFFERENCE 9.6

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: 9.80 MUD WEIGHT HYDROSTATIC PRESSURE 2507.9 2542.3 CIRCULATING: ECD 9,93 CIRCULATING PRESSURE PULLING OUT: TRIP MARGIN 0.27ESTIMATED SWAR 68.8 EFFECTIVE MUD WEIGHT 9.53 BOTTOM HOLE PRESSURE 2439.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTR 1600,0 AND TVD 1600,0

SPM 1 93 SPM 2 78 FLOW RATE 851

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	46	74	127	LAMINAR	1	73	8.8
HOVEGWH	0.398	33	51	117	LAMINAR	0	51	1.8
DP/OH	0.398	221	51	117	LAMINAR	Ü	51	11.7
DP/CSG	0.427	304	47	116	LAMINAR	0	47	13.6
DP/RIS	1,325	109	15	103	L.AMINAR	0	15	0.3
TOTAL	. VOLUME	713			TOTAL	PRESSURE	DROP	36.2

LAG: 35.2 MINUTES 3262 STROKES #1 AND 2730 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1151.3 HHP 571 IMPACT FORCE 1548 % SURFACE PRESSURE 41.1 HHP/sqin 4.85 JET VELOCITY 111

PRESSURE BREAKDOWN:

SURFACE 74.5 STRING 1280.7 BIT 1151.3 ANNULUS 36.2

TOTAL 2542.8 PUMP PRESSURE 2800.5 % DIFFERENCE 9.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.60 HYDROSTATIC PRESSURE 2620.5 CIRCULATING: 9.73 ECD CIRCULATING PRESSURE 2656.7 PULLING OUT: TRIP MARGIN 0.27 ESTIMATED SWAB 72.5 EFFECTIVE MUD WEIGHT 9.33 BOTTOM HOLE PRESSURE 2548.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1700.0

SPM 1 87 . SPM 2 86 FLOW RATE 865

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP (ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL.	FLOW	VEL.	VEL	DROP
DC/OH	0.274	46	75	126	LAMINAR	1	74	8.9
HWDP/OH	0.398	33	- 52	116	LAMINAR	0	51	1 . 8:
DP/OH	0.398	261	52	116	LAMINAR	0	51	13.9
DP/CSG	0.427	304	48	115	LAMINAR	0	48	13.7
DP/RIS	1.325	109	1.6	102	LAMINAR	0	16	0.3
TOTAL	L VOLUME	753			TOTAL	PRESSURI	E DROP	38.6

LAG: 36.5 MINUTES 3197 STROKES #1 AND 3130 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1203.3 HHP 607 IMPACT FORCE 1618 % SURFACE PRESSURE 40.9 HHP/sqin 5.15 JET VELOCITY 113

PRESSURE BREAKDOWN:

SURFACE 77.5 STRING 1375.9 BIT 1203.3 ANNULUS 38.6

TOTAL 2695.3 PUMP PRESSURE 2939.9 % DIFFERENCE 8.3

EFFECTIVE MUD WEIGHT

BOTTOM HOLE PRESSURES:

UNITS UNITS 9.70 HYDROSTATIC PRESSURE 2813.2 NOT CIRCULATING: MUD WEIGHT CIRCULATING: ECD 9.83 CIRCULATING PRESSURE 2851.9 77.2 PULLING OUT: TRIP MARGIN 0.27 ESTIMATED SWAR

9.43

DENSITY

PRESSURE

2736.0

BOTTOM HOLE PRESSURE

1 1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1800.0 AND TVD 1800.0

SPM 1 85 SPM 2 85 FLOW RATE 852

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOI	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	48.	74	126	LAMINAR	1	73	8.8
HWDPZOH	0.398	33	51	116	LAMINAR	0	51	1.8
DP/OH	0.398	300	51	116	LAMINAR	0	51	15.9
DP/CSG	0.427	304	47	115	LAMINAR	0	47	13.6
DP/RIS	1.325	109	15	102	LAMINAR	0	15	0.3
TOTAL	L VOLUME	793			TOTAL	PRESSURE	DROP	40.5

LAG: 39.1 MINUTES 3322 STROKES #1 AND 3340 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1167.5 HHP 580 IMPACT FORCE 1570 % SURFACE PRESSURE 40.2 HHP/sqin 4.93 JET VELOCITY 112

PRESSURE BREAKDOWN:

SURFACE 75.4 STRING 1382.4 BIT 1167.5 ANNULUS 40.5

TOTAL 2665.7 PUMP PRESSURE 2900.7 % DIFFERENCE 8.1

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.70 HYDROSTATIC PRESSURE 2978,7 3019.2 CIRCULATING: 9.83 CIRCULATING PRESSURE ECD PULLING OUT: TRIP MARGIN 0.26 ESTIMATED SWAR 81,0 EFFECTIVE MUD WEIGHT 9.44 BOTTOM HOLE PRESSURE 2897.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1900.0

SPM 1 79 SPM 2 78 FLOW RATE 785

ANNULAR HYDRAULICS:

ANNUL.US	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL.	VEI.	DROP
DC/OH	0.274	47	68	104	LAMINAR	1	67	6.5
HWDP/OH	0.398	33	47	93	LAMINAR	0	47	1.2
MO/40	0.398	339	47	93	LAMINAR	0	47	12.1
DP/CSG	0.427	304	44	92	LAMINAR	0	43	9.1
DP/RIS	1.325	109	14	78	LAMINAR	0	14	0.2
TOTAL	. VOLUME	832			TOTAL	PRESSURE	DROP	29.2

LAG: 44.5 MINUTES 3499 STROKES #1 AND 3493 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1339.5 HHP 614 IMPACT FORCE 1549 X SURFACE PRESSURE 46.5 HHP/sqin 5.21 JET VELOCITY 119

PRESSURE BREAKDOWN:

SURFACE 65.0 STRING 1240.4 BIT 1339.5 ANNULUS 29.2

TOTAL 2674.0 PUMP PRESSURE 2879.7 % DIFFERENCE 7.1

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS 9.70 HYDROSTATIC PRESSURE 3144.2 NOT CIRCULATING: MUD WEIGHT 3173.4 9.79 CIRCULATING PRESSURE CIRCULATING: ECD ESTIMATED SWAB 58.4 TRIP MARGIN 0.18 PULLING OUT: 9.52 BOTTOM HOLE PRESSURE 3085.8 EFFECTIVE MUD WEIGHT

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2000.0 AND TVD 2000.0

SPM 1 0 SPM 2 101 FLOW RATE 505

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP ¢ VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	47	44	136	LAMINAR	0	44	8.3
HWDP/OH	0.398	33	30	125	LAMINAR	0	3.0	1.6
DP/OH	0.398	378	.3.0	125	LAMINAR	0	30	18.3
DP/CSG	0.427	304	28	124	LAMINAR	0	28	12.4
DP/RIS	1.325	109	9	η t t	LAMINAR	0	9	\mathbb{E} , 0
TOTAL	VOLUME	872			TOTAL	PRESSURE	DROP	40.9

LAG: 72.5 MINUTES 0 STROKES #1 AND 7327 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 554.7 HHP 164 IMPACT FORCE 642 % SURFACE PRESSURE 43.1 HHP/sqin 1.39 JET VELOCITY 77

PRESSURE BREAKDOWN:

SURFACE 30.5
STRING 599.4
BIT 554.7
ANNULUS 40.9

TOTAL 1225.6 PUMP PRESSURE 1287.5 % DIFFERENCE 4.8

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.70 HYDROSTATIC PRESSURE 3309.7 CIRCULATING: ECD 9.82 CIRCULATING PRESSURE 3350.6 PULLING OUT: TRIP MARGIN 0.24 ESTIMATED SWAB 81.9 EFFECTIVE MUD WEIGHT 9.46 BOTTOM HOLE PRESSURE 3227.8

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2100.0 AND TVD 2100.0

SPM 1 0 SPM 2 104 FLOW RATE 521

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL.	VEL	FLOW	VEL.	VEI.	DROP
DC/OH	0.274	47	45	136	LAMINAR	0	45	8.5
HON9/OH	0.398	33	31	125	L.AMINAR	0	31	1.6
MO/4Œ	0.398	418	33.1	125	LAMINAR	0	.31	20.5
DP/CSG	0.427	304	29	124	LAMINAR	0	29	12.6
DP/RIS	1.325	109	9	110	LAMINAR	0	9	0.3
TOTAL	. VOLUME	912			TOTAL.	PRESSURE	DROP	43.4

LAG: 73.5 MINUTES 0 STROKES #1 AND 7662 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 589.5 HHP 179 IMPACT FORCE 682 % SURFACE PRESSURE 41.8 HHP/sqin 1.52 JET VELOCITY 79

PRESSURE BREAKDOWN:

SURFACE 32.2 STRING 651.7 BIT 589.5 ANNULUS 43.4

TOTAL 1316.9 PUMP PRESSURE 1411.1 % DIFFERENCE 6.7

BOTTOM HOLE PRESSURES:

UNITS UNITS 9.70 3475.2 NOT CIRCULATING: MUD WEIGHT HYDROSTATIC PRESSURE CIRCULATING: ECD 9.82 CIRCULATING PRESSURE 3518.5 TRIP MARGIN 0.24 ESTIMATED SWAB 86.8 PULLING OUT:

DENSITY

PRESSURE

EFFECTIVE MUD WEIGHT 9.46 BOTTOM HOLE PRESSURE 3388.3

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2200.0 AND TVD 2200.0

SPM 1 0 SPM 2 110 FLOW RATE 550

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0,274	47	48	136	LAMINAR	0	47	8.6
HWDP/OH	0.398	33	33	123	LAMINAR	0	33	1.6
DP/OH	0.398	458	Z.E.	123	LAMINAR	0	33	22.3
DP/CSG	0.427	304	31	122	LAMINAR	0	31	12.5
DP/RIS	1.325	109	<i>3.0</i>	107	LAMINAR	0	2.0	0.3
TOTA	L VOLUME	952			TOTAL	PRESSURE	DROP	45.3

LAG: 72.6 MINUTES 0 STROKES #1 AND 7997 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 657.9 HHP 211 IMPACT FORCE 761 % SURFACE PRESSURE 41.1 HHP/sqin 1.79 JET VELOCITY 84

PRESSURE BREAKDOWN:

SURFACE 36.1 STRING 751.8 BIT 657.9 ANNULUS 45.3

TOTAL 1491.1 PUMP PRESSURE 1600.1 % DIFFERENCE 6.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 9.70 HYDROSTATIC PRESSURE 3640.7 CIRCULATING: 9.82 ECD CIRCULATING PRESSURE 3686.1 PULLING OUT: TRIP MARGIN 0.24 ESTIMATED SWAR 90.6 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 9.46 3550.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2300.0

SPM 1 73 SPM 2 75 FLOW RATE 739

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.274	47	64	154	LAMINAR	0	64	12.1
HWDP/OH	0.398	33	44	144	LAMINAR	0	44	2.4
DP/OH	0.398	498	44	144	LAMINAR	0	44	36.4
DP/CSG	0.427	304	41	143	LAMINAR	0	41	18.8
DP/RIS	1.325	109	13	131	LAMINAR	0	1.3	0.5
TOTAL	. VOLUME	991			TOTAL	PRESSURE	EDROP	70.2

LAG: 56.3 MINUTES 4128 STROKES #1 AND 4204 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1181.0 HHP 509 IMPACT FORCE 1366 % SURFACE PRESSURE 41.4 HHP/sqin 4.32 JET VELOCITY 112

PRESSURE BREAKDOWN:

SURFACE 60.3 STRING 1288.2 BIT 1181.0 ANNULUS 70.2

TOTAL 2599.6 PUMP PRESSURE 2851.6 % DIFFERENCE 8.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE
UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 9.64 HYDROSTATIC PRESSURE 3784.5

CIRCULATING: ECD 9.82 CIRCULATING PRESSURE 3854.7
PULLING OUT: TRIP MARGIN 0.36 ESTIMATED SWAB 140.5
EFFECTIVE MUD WEIGHT 9.29 BOTTOM HOLE PRESSURE 3644.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2400,0 AND TVD 2400.0

SPM 1 74 SPM 2 75 FLOW RATE 744

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP ¢ VEL	SCEND VEL	PRESSURE DROP
DCZOH	0,274	47	65	168	LAMINAR	0	6.4	14.2
HWDP/OH	0.398	33	44	156	LAMINAR	0	44	2.8
DP/OH	0.398	538	44	156	LAMINAR	0	44	45.6
DP/CSG	0.427	304	41	155	LAMINAR	0	41	21.9
DP/RIS	1.325	109	13	140	LAMINAR	0	13	0.6
TOTA	L VOLUME	1031			TOTAL	PRESSURE	DROP	85.1

LAG: 58.2 MINUTES 4315 STROKES #1 AND 4351 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1213.7 HHP 527 IMPACT FORCE 1404 % SURFACE PRESSURE 41.7 HHP/sqin 4.47 JET VELOCITY 113

PRESSURE BREAKDOWN:

SURFACE 64.5 STRING 1415.7 BIT 1213.7 ANNULUS 85.1

TOTAL 2778.9 PUMP PRESSURE 2910.1 % DIFFERENCE 4.5

BOTTOM HOLE PRESSURES:

UNITS UNITS 4006.1 NOT CIRCULATING: MUD WEIGHT 9.78 HYDROSTATIC PRESSURE 4091.3 CIRCULATING: ECD 9,99 CIRCULATING PRESSURE PULLING OUT: TRIP MARGIN 0.42 ESTIMATED SWAB 170.2 EFFECTIVE MUD WEIGHT 9.37 BOTTOM HOLE PRESSURE 3835.9

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2450.0 AND TVD 2450.0

SPM 1 110 SPM 2 1 FLOW RATE 554

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP (ASCEND VEL	PRESSURE DROP
DCZOH	0.106	2	125	120	TURBULENT			1.9
DC/CSG	0.116	22	114	119	LAMINAR	1	113	18. 4
HWDP/CSG	0.160	13	82	115	LAMINAR	i	82	4.2
DP/CSG	0.160	333	88	115	LAMINAR	î	82	103.9
DP/RIS	1.325	109	1.0	102	LAMINAR	0	10	0.3
TOTAL	. VOLUME	479			TOTAL	PRESSURE	E DROP	128.6

LAG: 36.4 MINUTES 3988 STROKES #1 AND 38 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1290.6 HHP 417 IMPACT FORCE 1050 % SURFACE PRESSURE 59.0 HHP/sqin 7.35 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE 29.2 STRING 686.5 BIT 1290.6 ANNULUS 128.6

TOTAL 2134.8 PUMP PRESSURE 2186.2 % DIFFERENCE 2.3

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.30 HYDROSTATIC PRESSURE 3887.2 CIRCULATING: ECD 9.61 CIRCULATING PRESSURE 4015.8 PULLING OUT: TRIP MARGIN ESTIMATED SWAB 0.62 257.3 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3629.9 8.68

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2470.0 AND TVD 2470.0

SPM 1 63 SPM 2 62 FLOW RATE 624

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	YOL.	ANN VEL	ORIT Vel	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
iirs.	UNAL	VUL.	VE.L.	V 1 1	r. r. (10)	VE.L.	V E. I	DRAF
DC/OH	0.106	4	140	142	LAMINAR	1	139	6.1
DC/CSG	0.116	26	128	141	LAMINAR	1	127	33.3
HWDP/CSG	0.160	13	93	132	LAMINAR	1	92	5.9
DP/CSG	0.160	327	93	132	LAMINAR	1	92	143.9
DP/RIS	1.325	109	11	105	LAMINAR	Ü	1.1	\mathbb{Z} , 0
TOTAL	VOLUME	480			TOTAL.	PRESSUI	RE DROP	189.5

LAG: 32.3 MINUTES 2021 STROKES #1 AND 2009 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1637.5 HHP 596 IMPACT FORCE 1332 % SURFACE PRESSURE 55.8 HHP/sqin 10.50 JET VELOCITY 135

PRESSURE BREAKDOWN:

SURFACE 41.5 STRING 1070.9 BIT 1637.5 ANNULUS 189.5

TOTAL 2939.4 PUMP PRESSURE 2935.7 % DIFFERENCE 0.1

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.30 HYDROSTATIC PRESSURE 3918.9 9.75 CIRCULATING PRESSURE CIRCULATING: ECD 4108.4 TRIP MARGIN PULLING OUT: 0.90 ESTIMATED SWAB 378.9 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3540.0 8.40

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2490.0 AND TVD 2490.0

SPM 1 49 SPM 2 0 FLOW RATE 246

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	V01	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	GRADRA JEW	PRESSURE DROF
DC/OH	0.106	6	55	148	LAMINAR	0	en en	7.0
DC/CSG	0.116	22	51	147	LAMINAR	f)	50	21.0
HWDP/CSG	0.160	1.3	37	139	LAMINAR	0	36	A S
DP/CSG	0.160	333	37	139	LAMINAR	0	36	111.3
DP/RIS	1.325	109	4	114	LAMINAR	0	4	0.2
TOTAL	VOLUME	483			TOTAL	PRESSURE	DROP	144.0

LAG: 82.5 MINUTES 4061 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 213.7 HHP 31 IMPACT FORCE 191 % SURFACE PRESSURE 57.8 HHP/sqin 0.54 JET VELOCITY 48

PRESSURE BREAKDOWN:

SURFACE 7.9 STRING 199.0 BIT 213.7 ANNULUS 144.0

TOTAL 564.5 PUMP PRESSURE 370.0 % DIFFERENCE 52.6

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9,40 HYDROSTATIC PRESSURE 3993.1 CIRCULATING PRESSURE 4137.1 CIRCULATING: 9.74 ECD TRIP MARGIN PULLING OUT: 0.68 ESTIMATED SWAB 287.9 8.72 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3705.2

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2500.0 AND TVD 2500.0

SPM 1 44 SPM 2 0 FLOW RATE 222

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.106	7	₩.ŋ	152	LAMINAR	Ü	50	8.3
DC/CSG	0.116	21	46	150	LAMINAR	0	45	20.0
HWDP/CSG	0.160	13	33	143	LAMINAR	0	33	A, A
DP/CSG	0.160	335	33	1.43	LAMINAR	0	33	113.2
DP/RIS	1,325	1.09	А	118	LAMINAR	0	4	\mathbb{Z} , 0
TOTAL	. VOLUME	485			TOTAL.	PRESSURE	E DROP	146.2

LAG: 91.8 MINUTES 4074 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 173.4 HHP 22 IMPACT FORCE 155 % SURFACE PRESSURE 71.8 HHP/sqin 0.40 JET VELOCITY 44

PRESSURE BREAKDOWN:

SURFACE 6.5 STRING 165.1 BIT 173.4 ANNULUS 146.2

TOTAL 491.2 PUMP PRESSURE 241.4 % DIFFERENCE103.4

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9,40 HYDROSTATIC PRESSURE 4009.2 CIRCULATING: CIRCULATING PRESSURE 4155.4 ECD 9.74 292.4 TRIP MARGIN PULLING OUT: 0.69 ESTIMATED SWAR EFFECTIVE MUD WEIGHT 3716.9 8.71 BOTTOM HOLE PRESSURE

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2525.0 AND TVD 2525.0

SPM 1 35 SPM 2 0 FLOW RATE 175

ANNULAR HYDRAULICS:

ANNULUS VOL.Z ANN CRIT TYPE OF SLIP ASCEND PRESSURE TYPE UNIT VOL. VEL VEL. FLOW VEL. VEL. DROP 39 152 DCZOH 0.106 10 LAMINAR Ü 39 10.4 DC/CSG 36 150 36 15.7 18 LAMINAR 0.116 0 4.1 HWDP/CSG 26 143 () 26 0.160 13 LAMINAR 104.6 143 0 26 DP/CSG 0.160 339 26 LAMINAR 3 DP/RIS 109 3 118 LAMINAR 0 0.21,325 TOTAL PRESSURE DROP TOTAL VOLUME 489 135.0

LAG: 117.6 MINUTES 4105 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 107.4 HHP 11 IMPACT FORCE 96 % SURFACE PRESSURE 50.5 HHP/sqin 0.19 JET VELOCITY 34

PRESSURE BREAKDOWN:

SURFACE 4.2 STRING 107.9 BIT 107.4

ANNULUS 135.0

TOTAL 354.5 PUMP PRESSURE 212.6 % DIFFERENCE 66.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS 9.40 MUD WEIGHT HYDROSTATIC PRESSURE 4049,3 NOT CIRCULATING: 9.71 CIRCULATING PRESSURE 4184.3 CIRCULATING: ECD 270.1 TRIP MARGIN ESTIMATED SWAR PULLING OUT: 0.63 BOTTOM HOLE PRESSURE 3779.2 EFFECTIVE MUD WEIGHT 8.77

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2540.0 AND TVD 2540.0

SPM 1 0 SPM 2 39 FLOW RATE 197

ANNULAR HYDRAULICS:

ANNULUS	VOL.Z		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL	VEL	VEL	FL.OW	VEL	VEL	DROP
DC/0H	0.106	11	άÝ	152	LAMINAR	0	44	12.7
DC/CSG	0.116	17	41	150	LAMINAR	0	40	14.9
HWDP/CSG	0.160	13	29	14%	LAMINAR	0	29	4.3
DP/CSG	0.160	341	27	143	LAMINAR	0	29	110.3
DP/RIS	1.325	109	4	118	LAMINAR	0	4	0.2
TOTAL	. VOLUME	491			TOTAL	PRESSURE	DROP	142.4

LAG: 104.6 MINUTES 0 STROKES #1 AND 4124 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 136.8 HHP 16 IMPACT FORCE 122 % SURFACE PRESSURE 34.2 HHP/sqin 0.28 JET VELOCITY 39

PRESSURE BREAKDOWN:

SURFACE 5.3 STRING 134.6 BIT 136.8

ANNULUS

TOTAL 419.1 PUMP PRESSURE 400.0 % DIFFERENCE 4.8

BOTTOM HOLE PRESSURES:

142.4

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.40 HYDROSTATIC PRESSURE 4073.3 CIRCULATING: 9.73 CIRCULATING PRESSURE ECD 4215.7 TRIP MARGIN PULLING OUT: 0.66 ESTIMATED SWAB 284.9 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3788.4 8.74

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2550.0 AND TVD 2550.0

SPM 1 40 SPM 2 0 FLOW RATE 201

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP é VEL	YEL	PRESSURE DROP
DC/OH	0.106	1/2	45	168	LAMINAR	0	A E	17.1
DC/CSG	0.116	15	41	166	LAMINAR	0	41	17.2
HWDP/CSG	0.160	1.3	3.0	160	LAMINAR	0	0.83	5,4
DP/CSG	0.160	343	3.0	160	LAMINAR	0	30	141.8
DP/RIS	1.325	109	Д	140	LAMINAR	0	4	(1,4
TOTAL	VOLUME	492			TOTAL	PRESSURE	E DROP	181.9

LAG: 103.0 MINUTES 4137 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 142.2 HHP 17 IMPACT FORCE 127 % SURFACE PRESSURE 26.8 HHP/sqin 0.29 JET VELOCITY 48

PRESSURE BREAKDOWN:

SURFACE 5.4 STRING 139.7 BIT 142.2 ANNULUS 181.9

TOTAL 469.3 PUMP PRESSURE 531.5 % DIFFERENCE 11.7

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9,40 HYDROSTATIC PRESSURE 4089.4 CIRCULATING PRESSURE 9.82 4271.3 CIRCULATING: ECD TRIP MARGIN 0.84 ESTIMATED SWAB 363.9 PULLING OUT: EFFECTIVE MUD WEIGHT 8.56 BOTTOM HOLE PRESSURE 3725.5

and the second s

PRESSURE

CORE LAB

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2600.0 AND TVD 2600.0

SPM 1 57 SPM 2 54 FLOW RATE 557

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOIL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.106	18	125	157	LAMINAR	1	125	32.0
DC/CSG	0.116	11	115	155	LAMINAR	1	114	16.4
HWDP/CSG	0.160	13	83	146	LAMINAR	0	82	6.7
DP/CSG	0.160	348	83	146	L.AMINAR	0	82	175.3
DP/RIS	1.325	109	1.0	116	LAMINAR	0	1 ()	0.3
TOTAL	L VOLUME	499			TOTAL	PRESSUR	E DROP	230.8

LAG: 37.7 MINUTES 2149 STROKES #1 AND 2045 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1319.1 HHP 428 IMPACT FORCE 1073 % SURFACE PRESSURE 44.4 HHP/sqin 7.55 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE 35.4 STRING 939.8 BIT 1319.1

ANNULUS 230.8

TOTAL 2525.1 PUMP PRESSURE 2973.0 % DIFFERENCE 15.1

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9,40 HYDROSTATIC PRESSURE 4169,5 CIRCULATING: CIRCULATING PRESSURE ECD 9.92 4400.3 ESTIMATED SWAB PULLING OUT: TRIP MARGIN 1.04 461.6 EFFECTIVE MUD WEIGHT 8.36 BOTTOM HOLE PRESSURE 3707.8

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTR 2700.0 AND TVD 2699.8

SPM 1 58 SPM 2 54 FLOW RATE 560

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP 6 VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.106	27	126	169	LAMINAR	1	125	55.9
HWDP/OH	0.151	1	89	160	LAMINAR	0	88	0.9
HWDP/CSG	0.160	12	83	159	LAMINAR	0	83	7.1
DP/CSG	0.160	365	83	159	LAMINAR	0	83	214.1
DP/RIS	1.325	109	1.0	133	LAMINAR	0	1.0	0.5
TOTAL	. VOLUME	515			TOTAL	PRESSURE	e prop	278.4

LAG: 38.6 MINUTES 2236 STROKES #1 AND 2088 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1795.0 HHP 586 IMPACT FORCE 1259 X SURFACE PRESSURE 60.2 HHP/sqin 10.33 JET VELOCITY 140

PRESSURE BREAKDOWN:

SURFACE 35.8 STRING 960.8 BIT 1795.0

ANNULUS 278.4

TOTAL 3069.9 PUMP PRESSURE 2983.9 % DIFFERENCE 2.9

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS HYDROSTATIC PRESSURE 4329.6 NOT CIRCULATING: MUD WEIGHT 9.40 CIRCULATING: ECD 10.00 CIRCULATING PRESSURE 4608.0 TRIP MARGIN **PULLING OUT:** 1,21 ESTIMATED SWAB 556.7 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3772.9 8,19

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2800.0 AND TVD 2799.7

SPM 1 54 SPM 2 55 FLOW RATE 545

ANNULAR HYDRAULICS:

ANNULUS TYPE	UNIT UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A	ASCEND VEL	PRESSURE DROP
DC/OH	0.106	28	127	178	LAMINAR	1	122	61.1
HWDP/OH	0.151	13	86	172	LAMINAR	0	88	9.7
DP/OH	0.151	77,	86	172	LAMINAR	0	86	$z_{\perp 0}$
DP/CSG	0.160	377	81	172	LAMINAR	0	81	249.8
DP/RIS	1,325	109	1.0	154	LAMINAR	0	1.0	0.7
TOTA	L VOLUME	529			TOTAL.	PRESSURE	E DROP	323.2

LAG: 40.8 MINUTES 2217 STROKES #1 AND 2230 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1720.7 HHP 547 IMPACT FORCE 1207 % SURFACE PRESSURE 57.7 HHP/sqin 9.65 JET VELOCITY 137

PRESSURE BREAKDOWN:

SURFACE 33.2 STRING 920.0 BIT 1720.7

ANNULUS 323.2 TOTAL 2997.0 PUMP PRESSURE 2980.3 % DIFFERENCE 0.6

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.50 HYDROSTATIC PRESSURE 4537.6 CIRCULATING: ECD 10.18 CIRCULATING PRESSURE 4860.7 PULLING OUT: TRIP MARGIN 646.3 1.35 ESTIMATED SWAR EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 3891,2 8.15

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2825.0 AND TVD 2824.7

SPM 1 51 SPM 2 0 FLOW RATE 256

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL	UE)_	DR OP
DC/OH	0.104	0	59	176	LAMINAR	0	58	0.5
DCZLIN	0.106	26	58	176	LAMINAR	0	57	45.2
HWDP/LIN	0.151	13	40	171	LAMINAR	0	40	7.6
DP/LIN	0.151	9	40	171	LAMINAR	. 0	4 ()	5.2
DF/CSG	0.160	377	38	170	LAMINAR	0	38	197.9
DP/RIS	1.325	109	5	153	LAMINAR	0	5	0.5
TOTAL	VOLUME	534			TOTAL	PRESSURE	DROP	256.9

LAG: 87.6 MINUTES 4484 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 287.4 HHP 43 IMPACT FORCE 234 % SURFACE PRESSURE 28.6 HHP/sqin 0.76 JET VELOCITY 55

PRESSURE BREAKDOWN:

SURFACE 8.6 STRING 235.9 BIT 287.4 ANNULUS 256.9

TOTAL 788.8 PUMP PRESSURE 1005.2 % DIFFERENCE 21.5

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 9.70 HYDROSTATIC PRESSURE 4674.5

CIRCULATING: ECD 10.23 CIRCULATING PRESSURE 4931.4
PULLING OUT: TRIP MARGIN 1.07 ESTIMATED SWAB 513.8
EFFECTIVE MUD WEIGHT 8.63 BOTTOM HOLE PRESSURE 4160.6

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2830.0 AND TVD 2829.7

SPM 1 59 SPM 2 0 FLOW RATE 295

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.104	.1	68	200	LAMINAR	0	67	1,8
DCZLIN	0.106	26	66	200	LAMINAR	0	66	58.5
HWDP/LIN	0.151	1.3	47	191	LAMINAR	0	47	9.8
DPZLIN	0.151	9	47	191	LAMINAR	0	47	7.3
DP/CSG	0.160	377	44	190	LAMINAR	0	44	252.3
DP/RIS	1.325	109	5	164	LAMINAR	0	5	0.6
TOTAL	VOLUME	534			TOTAL	PRESSURE	DROP	330.3

LAG: 76.1 MINUTES 4491 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 386.5 MHP 67 IMPACT FORCE 314 % SURFACE PRESSURE 27.5 MHP/sqin 1.18 JET VELOCITY 64

PRESSURE BREAKDOWN:

SURFACE 12.2 STRING 333.9 BIT 386.5 ANNULUS 330.3

TOTAL 1062.9 PUMP PRESSURE 1405.4 % DIFFERENCE 24.4

BOTTOM HOLE PRESSURES:

UNITS UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 9.80 HYDROSTATIC PRESSURE 4731.0 CIRCULATING: ECD 10.48 CIRCULATING PRESSURE 5061.3

DENSITY

PRESSURE

CIRCULATING: ECD 10.48 CIRCULATING PRESSURE 5061.3
PULLING OUT: TRIP MARGIN 1.37 ESTIMATED SWAB 660.6
EFFECTIVE MUD WEIGHT 8.43 BOTTOM HOLE PRESSURE 4070.4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2900.0 AND TVD 2899.6

SPM 1 53 SPM 2 54 FLOW RATE 534

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP 6	ASCEND	PRESSURE
TYPE	TINU	VOL.	VEL	VEL	FLOW	VEL.	VEL.	DROP
DC/OH	0.106	28	120	147	LAMINAR	1	119	48.3
HWDP/OH	0.151	13	85	133	LAMINAR	.j	84	6.6
DP/OH	0.151	18	85	133	LAMINAR	1	(3.4)	9,4
DP/CSG	0.160	377	79	131	LAMINAR	1	79	166.9
DP/RIS	1.325	109	1.0	93	LAMINAR	0	10	0.2
TOTAL	L VOLUME	544			TOTAL	PRESSURE	e prop	231.4

LAG: 42.8 MINUTES 2269 STROKES #1 AND 2306 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1697.2 HHP 529 IMPACT FORCE 1190 % SURFACE PRESSURE 58.4 HHP/sqin 9.33 JET VELOCITY 134

PRESSURE BREAKDOWN:

SURFACE 35.5 STRING 1000.1 BIT 1697.2 ANNULUS 231.4

TOTAL 2964.1 PUMP PRESSURE 2905.5 % DIFFERENCE 2.0

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: HYDROSTATIC PRESSURE 4825.9 MUD WEIGHT 9.76 CIRCULATING PRESSURE 5057.3 CIRCULATING: ECD 10.22 PULLING OUT: TRIP MARGIN 0.94 462.8 ESTIMATED SWAR EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 4363.1 8.82

DENSITY

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 3000.0 AND TVD 2999.5

SPM 1 53 SPM 2 52 FLOW RATE 521

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW		SCEND VEL	PRESSURE DROP
DC/OH	0.106	28	117	144	LAMINAR	1	116	46.2
HWDPZOH	0.151	13	82	129	LAMINAR	1	82	6.8
DP/OH	0.151	33	88	129	LAMINAR	1	87	16.3
DP/CSG	0.160	377	77	128	LAMINAR	1	77	157.7
DP/RIS	1.325	109	φ	89	LAMINAR	Ü	9	0.2
TOTA	L VOLUME	559			TOTAL	PRESSURE	DROP	226.7

LAG: 45.1 MINUTES 2374 STROKES #1 AND 2326 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1610.7 HMP 490 IMPACT FORCE 1130 % SURFACE PRESSURE 54.0 HMP/sqin 8.63 JET VELOCITY 131

PRESSURE BREAKDOWN:

SURFACE 33.8 STRING 975.0 BIT 1610.7 ANNULUS 226.7

TOTAL 2846.2 PUMP PRESSURE 2981.1 % DIFFERENCE 4.5

BOTTOM HOLE PRESSURES:

UNITS UNITS MUD WEIGHT NOT CIRCULATING: 9.73 HYDROSTATIC PRESSURE 4980.7 CIRCULATING: ECD 10.18 CIRCULATING PRESSURE 5207.4 TRIP MARGIN PULLING OUT: 0.89ESTIMATED SWAR 453.3 EFFECTIVE MUD WEIGHT 8.85 BOTTOM HOLE PRESSURE 4527.4

DENSITY

A SALE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 3012.0 AND TVD 3011.4

SPM 1 63 SPM 2 38 FLOW RATE 507

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL.	VEL	DROP
DC/OH	0.106	28	114	143	LAMINAR	1	114	52.3
HWDP/OH	0.151	13	- 80	123	LAMINAR	0	80	6.6
DP/OH	0.151	35	8.0	123	LAMINAR	0	8.0	18.1
DP/CSG	0.160	377	7.5	121	LAMINAR	0	75	163.9
DP/RIS	1.325	109	9	7 3	LAMINAR	0	9	(' , ')
TOTAL	_ VOLUME	561			TOTAL	PRESSURE	DROP	241.0

LAG: 46.4 MINUTES 2933 STROKES #1 AND 1783 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1709.4 HHP 506 IMPACT FORCE 1199 % SURFACE PRESSURE 56.3 HHP/sqin 8.92 JET VELOCITY 127

PRESSURE BREAKDOWN:

SURFACE 38.1 STRING 1100.7 BIT 1709.4 ANNULUS 241.0

TOTAL 3089.2 PUMP PRESSURE 3034.1 % DIFFERENCE 1.8

BOTTOM HOLE PRESSURES:

UNITS UNITS 5599.9 NOT CIRCULATING: 10.90 HYDROSTATIC PRESSURE MUD WEIGHT 5840.9 CIRCULATING: ECD 11.37 CIRCULATING PRESSURE 482.0 TRIP MARGIN PULLING OUT: 0.94 ESTIMATED SWAB EFFECTIVE MUD WEIGHT 9.96 BOTTOM HOLE PRESSURE 5117.8

DENSITY

PRESSURF

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 3100.0 AND TVD 3099.2

SPM 1 101 SPM 2 0 FLOW RATE 506

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP ¢ VEL	SCFND VEL	PRESSURE DROP
DCZOH	0.106	28	114	184	LAMINAR	0	114	73.2
HWDP/OH	0.151	13	8.0	169	LAMINAR	0	80	10.3
DP/OH	0.151	48	8.0	169	LAMINAR	0	8.0	39.1
DP/CSG	0.160	377	75	167	LAMINAR	0	25	260.6
DP/RIS	1.325	109	ç	124	LAMINAR	0	9	0 . 4
TOTAL	. VOLUME	574			TOTAL	PRESSURE	DROP	383.5

LAG: 47.6 MINUTES 4827 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1651.9 HHP 488 IMPACT FORCE 1159 % SURFACE PRESSURE 55.2 HHP/sqin 8.60 JET VELOCITY 127

PRESSURE BREAKDOWN:

SURFACE 36.7 STRING 1079.2 BIT 1651.9

ANNULUS

TOTAL 3151.3 PUMP PRESSURE 2990.8 % DIFFERENCE 5.4

BOTTOM HOLE PRESSURES:

383,5

DENSITY PRESSURE UNITS UNITS

NOT CIRCULATING: 10.58 MUD WEIGHT HYDROSTATIC PRESSURE 5593.7 CIRCULATING: ECD 11.30 CIRCULATING PRESSURE 5977.2 767.0 PULLING OUT: TRIP MARGIN 1.45 ESTIMATED SWAR EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 9.13 4826.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 3200.0 AND TVD 3199.0

SPM 1 97 SPM 2 0 FLOW RATE 486

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP (VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.106	28	109	187	LAMINAR	1	109	72.8
HWDP/OH	0.151	13	. 77	174	LAMINAR	Ö	77	10.6
DP/OH	0.151	63	77	174	LAMINAR	n	77	53.1
DP/CSG	0.160	377	72	173	LAMINAR	Ö	72	269.5
DP/RIS	1.325	109	9	135	LAMINAR	Ö	9	0.5
TOTAL	. VOLUME	590			TATAL	PRESCHO	T none	7" A0A

LAG: 51.0 MINUTES 4954 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1507.8 HHP 427 IMPACT FORCE 1058 % SURFACE PRESSURE 51.5 HHP/sqin 7.53 JET VELOCITY 122

PRESSURE BREAKDOWN:

SURFACE 33.2 STRING 993.0 BIT 1507.8 ANNULUS 406.3

TOTAL 2940.4 PUMP PRESSURE 2928.4 % DIFFERENCE 0.4

EFFECTIVE MUD WEIGHT

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.50 HYDROSTATIC PRESSURE 5730.5 CIRCULATING: ECD 11.24 CIRCULATING PRESSURE 6136.8 PULLING OUT: TRIP MARGIN 1,49 ESTIMATED SWAR 812.7

9.01

DENSITY

PRESSURF

4917.8

BOTTOM HOLE PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 3280.0 AND TVD 3278.9

SPM 1 54 SPM 2 0 FLOW RATE 270

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.104	26	62	193	LAMINAR	n	62	62.0
HWDPZOH	0.149	12	43	177	LAMINAR	0	43	9.2
DP/OH	0.149	76	4.3	177	LAMINAR	0	43	56.5
DP/CSG	0.160	377	40	175	LAMINAR	0	40	230.4
DP/RIS	1.325	109	in.	134	LAMINAR	0	<u></u>	0,4
TOTAL	L VOLUME	601			TOTAL	PRESSURE	DROP	358.5

LAG: 93.5 MINUTES 5048 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 376.0 HHP 59 IMPACT FORCE 306 % SURFACE PRESSURE 25.1 HHP/sqin 1.05 JET VELOCITY 58

PRESSURE BREAKDOWN:

SURFACE 12.8 STRING 382.7 BIT 376.0 ANNULUS 358.5

TOTAL 1130.1 PUMP PRESSURE 1500.0 % DIFFERENCE 24.7

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE
UNITS UNITS

NOT CIRCULATING: MUD WEIGHT 11.40 HYDROSTATIC PRESSURE 6377.0

NOT CIRCULATING: MUD WEIGHT 11.40 HYDROSTATIC PRESSURE 6377.0 CIRCULATING: ECD 12.04 CIRCULATING PRESSURE 6735.6 PULLING OUT: TRIP MARGIN 1.28 ESTIMATED SWAB 717.1 EFFECTIVE MUD WEIGHT 10.12 BOTTOM HOLE PRESSURE 5660.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 3300.0 AND TVD 3298.9

SPM 1 18 SPM 2 72 FLOW RATE 450

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOI	VEL	VEL	FLOW	VEL.	OFF.	DROF
DCZOH	0.106	28	101	176	LAMINAR	į	101	69,8
HWDP/OH	0.151	13	.71	163	LAMINAR	0	71	10.0
DP/OH	0.151	78	71	163	LAMINAR	0	71	62.0
DP/CSG	0.160	37 <i>7</i>	67	161	LAMINAR	0	67	253.7
DP/RIS	1.325	109	8	123	LAMINAR	0	8	(1 , 4)
TOTAL	L VOLUME	605			TOTAL	PRESSURE	DROP	395.9

LAG: 56.4 MINUTES 1019 STROKES #1 AND 4062 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1420.9 HHP 373 IMPACT FORCE 997 % SURFACE PRESSURE 48.9 HHP/sqin 6.58 JET VELOCITY 113

PRESSURE BREAKDOWN:

SURFACE 31.5 STRING 960.6 BIT 1420.9 ANNULUS 395.9

TOTAL 2808.9 PUMP PRESSURE 2905.8 % DIFFERENCE 3.3

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS 11.50 HYDROSTATIC PRESSURE 6472.2 NOT CIRCULATING: MUD WEIGHT CIRCULATING PRESSURE 12.20 6868.1 CIRCULATING: ECD 1.41 ESTIMATED SWAB TRIP MARGIN 791.7 PULLING OUT: BOTTOM HOLE PRESSURE 5680.4 EFFECTIVE MUD WEIGHT 10.09

(c). COMPUTER DATA LISTING : LIST A

Ι	NTERV	AL.	•	,			,	•		All depth records (data not averaged)
n	PEPTH.	•		•	,	•			,	Well depth, in metres
R	OP	:	•	•	•			,	,	Rate of penetration, in metres/hour
W	ю.,		,	•	,			,	,	Weight-on-bit, in thousands of pounds
R	PM	ŧ		,		•	ı	٠	,	Rotary speed, in revolutions per minute
M	W	,	,	,	,	ı	•	ı	r	Mud weight in, in pounds per gallon
,	dc'.		•	•	•	*	•	•	•	Calculated 'd' exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg.
Н	OURS.	•	•		,	٠	•		•	Cumulative bit hours. The number of hours that the bit has actually been on bottom, recorded in decimal hours.
Т	URNS.	•	٠		i	•	,	,	•	Cumulative bit turns. The number of turns made by the bit, while actually on bottom
I	COST.	•	•		•	,	ı	,		Incremental cost per metre, calculated from the rate of penetration, in Australian dollars.
C	COST.	•	•	•	•	1	•	,		Cumulative cost per metre, calculated from the drilling time, in A dollars.
P	Р.,	•	٠	•	•		•	•	•	Pore pressure gradient, in equivalent pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation.
F(, , , , , , , , , , , , , , , , , , ,	*	•	•			•	•	•	Fracture gradient, in equivalent pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL program using Eaton's equation.
										It is dependent on the pore pressure, the

information.

overburden gradient and the matrix stress. this value may be modified by leak-off

BIT NUMB HTC OSC3 COST TOTAL HO	4" 6S+TA	40 0.00	S	IZE RIP	TIME	111 26.000 2.5 13521	IN7 NO2 BI7 COM	TERVAL TZLES TRUN IDITION	88 T2	.0- 2 20 2 B3 G0	219.0 20 20 137.0 0.000
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	pρ	FG
85.0 90.0 100.0	28.5 32.5 43.0	1,0 1,0 1,0	51 51 52	8.7	0.52 0.50 0.47		321 791 1517	128 112 84.93	3171 1260 606.96	8.4	11.6 11.6 11.6
110.0 120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 200.0	18.6 12.4 26.0 29.0 49.0 58.0 44.0 70.0 53.0	1.0 1.0 1.4 1.6 2.5 1.3 2.7 2.1 2.0	52 52 53 66 52 65 65 69	8.7 8.7 8.7 8.7 8.7 8.7	0.59 0.65 0.54 0.58 0.47 0.52 0.51 0.46 0.52	1.03 1.84 2.22 2.57 2.77 2.77 3.17 3.31 3.50 3.68		125.93 74.53 62.97 83.00 52.17 68.91		8.4 8.4 8.4 8.4 8.4 8.4 8.4	11.7 11.8 11.8 11.9 11.9 11.9 12.0 12.0
210.0 219.0	61.0 72.0	3.0 2.7	71 43			3.84 3.96	13198 13521		180.88 172.33		12.1 12.1
BIT NUMB HTC OSC COST TOTAL HO	ER 3AJ 485 URS 1	1 57.00 11.56	I S T T	ADC IZE RIP OTAL	CODE TIME TURNS	111 17,500 3,7 104012	107 107 100 100	ZLES RUN	219 T2	20 2	20 20 592. 0
	ER 3AJ 485 URS 1					111 17.500 3.7 104012 HOURS		ZLES RUN IDITION	TZ	20 2 84 G(20 20 592. 0).000
		WOB 5.0 10.0 11.0 12.0 10.0	RPM 145 150 150 150 150 150	MW 8.9 8.9 8.9 8.9 8.9 8.9	"d"c		TURNS 85	ZLES RUN DITION ICOST 36 19 28.09 25.72 25.01 28.76 20.99	T2 CCOST 18405	20 2 B4 G0 PP 8.4 8.4 8.4 8.4 8.4	20 20 592. 0).000

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	рp	FG
346.0 348.0 350.0 352.0 354.0 356.0 360.0 362.0 364.0	184.6 171.4 126.3 276.9 194.6 257.1 124.1 200.0 218.2 205.7	18.2 19.1 25.8 25.3 32.0 23.0 27.8 33.6		8.9 8.9 8.9 8.9 8.9 8.9	0.69 0.71 0.80 0.64 0.73 0.70 0.84 0.74 0.75	0.71 0.72 0.73 0.74 0.75 0.76 0.78 0.79 0.80	6317 6422 6565 6630 6722 6792 6937 7027 7110 7197	21.30 28.91 13.19 18.77 14.20 29.42 18.26 16.74	164.96 162.73 160.69 158.47 156.40 154.33 152.53 150.63 148.75	8.4 8.4 8.4 8.4 8.4 8.4	12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.8
366.0 368.0 370.0 372.0 374.0 380.0 380.0 382.0 384.0 386.0	54.5 150.0 205.7 205.7 218.2 138.5 171.4 153.2 175.6 150.0	26.8 26.8 29.0 21.2 21.2 21.8 23.4	150 150 150 150 150 150	8,9 8,9 8,9 8,9 8,9 8,9	1.00 0.79 0.73 0.73 0.73 0.79 0.74 0.77	0.84 0.85 0.86 0.87 0.88 0.90 0.93 0.93	7527 7647 7735 7822 7905 8035 8245 8362 8465 8585	24.35 17.75 17.75 16.74 26.38 21.30 23.84 20.80	145.86 144.23 142.55 140.92 139.32 137.88 134.98 133.62 132.25	8,4 8,4 8,4 8,4 8,4 8,4	12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7
388.0 390.0 392.0 394.0 396.0 398.0 400.0 402.0 404.0	167.4 156.5 90.0 150.0 150.0 225.0 200.0 200.0 211.8 189.5	23.9 31.2 27.9 23.5 23.0 21.0 22.0 21.5	150 150 150 150 150 150	8.9 8.9 9.0 9.0 9.0 9.0	0.76 0.78 1.00 0.83 0.78 0.67 0.69 0.69	0.97 0.98 1.01 1.02 1.03 1.04 1.05 1.06 1.07	8692 8807 9007 9127 9247 9327 9417 9507 9592 9687	23.33 40.58 24.35 24.35 16.23 18.26 18.26	129.67 128.42 127.41 126.23 125.08 123.86 122.70 121.55 120.43 119.35	8.4 8.4 8.4 8.4 8.4 8.4	12.7 12.8 12.8 12.8 12.8 12.8 12.8 12.8
408.0 410.0 412.0 414.0 416.0 418.0 420.0 422.0 428.0 430.0	97.3 200.0 153.2 112.5 50.0	22.0 21.1 16.6 16.5 17.0 21.9	150 150 150 150 150 150	9.0 9.1 9.1 9.1 9.1 9.1 9.2	0.69 0.80 0.75 0.92 0.65 0.65 0.85 1.08	1.09 1.11 1.12 1.15 1.17 1.18 1.19 1.21 1.33	9775 9911 10031 10311 10496 10586 10704 10864 11944 12174	27,67 24,35 56,81 37,53 18,26 23,84 32,46 73,04	118,27 117,32 116,36 115,75 114,95 113,98 113,08 112,29 111,16 110,55	8.4 8.4 8.4 8.4 8.4 8.4	12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.9 12.9
432.0 434.0 436.0 440.0 442.0 444.0 446.0 450.0 450.0	83,1 122,0 65,0	11.0 24.2 17.2 24.0 16.1 25.5 29.7 23.9	150 150 150 150 150 150	9.2 9.2 9.2 9.1 9.1 9.1	0.93 0.28 0.83 0.92 0.95 0.98 0.95 0.93 0.93	1.38 1.41 1.42 1.48 1.51 1.55 1.58 1.60 1.63	12386 12603 12750 13304 13544 13914 14134 14314 14584 14734	43.96 29.93 56.18 48.69 25.02 44.64 36.52 54.78	109.92 109.31 108.52 107.63 107.10 106.81 106.26 105.66 105.21	8.4 8.4 8.4 8.4 8.4 8.4	12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9

1 1

WED TH	nan	HOT	m max	3417		1 12% (11% 2%					
DEPTH	ROP	MOB			"d"c	HOURS	TURNS	ICOST	CCOST	p p	FG
454.0 456.0		25.8 26.2			1.05 1.05	1.68 1.71	15044 15352		104,22 103,87		13.0 13.0
458.0		28.0	150		0.95	1.23	15552		103.34		13.0
460.0 462.0		28.0 26.4	150 150	9.1	$0.96 \\ 0.93$	1.76 1.78	15757 15954		102.82		13.0 13.0
464.0		25.0	150		0.91	1.80	16154		101.80		13.0
466.0 468.0	128.6 67.3	27.0	150 150		0.83 1.01	1.82 1.84	16294 16562		101.21		13.0 13.0
470.0 472.0		25.9 25.1	150 150		0.98 1.11	1.87 1.92	16809 17219		100.43		13.0
											13,0
474.0 476.0		27.9 27.6	150 150		0.99	1.94 1.97	17462 17727	49.20 53.77	99.89 99.5 3		13.0 13.0
478.0	48.3	27.6	150	9.2	1.11	2.02	18099	75,58	99,35	8.4	13.0
480.0 484.0		27.5 31.7	150 150		1.08	2.05 2.15	18444 19294	70.00 86.23	99.12 98.93		13.0 13.1
486.0	61.0	30.1	150	9.2	1.07	2.18	19589	59.85	98.63	8,4	13,1
488.0 490.0		29.2 29.3	150 150		1.09	2.22 2.25	19924 20222	67.97 60.36	98,41 98,13		13.1 13.1
492.0 494.0	54.5	28.1	150 150		1,08	2.29 2.32	20552 20 852	66.95 60.87	97.90		13.1
									97.63		13.1
496.0 498.0	92.3 116.1		150 150		0.95	2.34 2.36	21047 21202	39.56 31.45	97.21 96.74		13.1 13.1
500.0	60.0	26.4	150	9.2	1.04	2.39	21502	60.87	96.48	8,4	13.1
502.0 504.0		26.8 25.6	150 150		1.23	2.46 2.48	22092 22314	119.70 45.14	96.65 96.29		13.1 13.1
506.0	59.0	29.3	150	9.2	1.07	2.52	22619	61.88	96.05	8.4	13.1
508.0 510.0		27.0 26.0	150 150		1.07	2.56 2.60	22957 23329	68.48 25.58	95.85 95.72		13.1 13.1
512.0		27.2	150		1.10	2.64 2.66	23704	76.08 38.04	95.58		$13.1 \\ 13.2$
514.0		28.2					23892		95.19		
516.0 518.0		26.3			1.19	2.72 2.76	24434 2 47 97	110.07 73.55	95.29 95.15		$13.2 \\ 13.2$
520.0	33.3	25.7	150	9.2	1.19	2.82	25337	109.56	95,24	8.4	13.2
522.0 524.0	219.1	25.7	150 150		0.68 0.99	2.83 2.86	25419 25664	16.67 49.71	94.72 94.43	8.4 8.4	13.2 13.2
526.0	128.6	26.0	150	9.2	0.83	2.87	25804	28.40	94.00	8.4	13.8
528.0 530.0	39.3 52.2	27.9	150 150		1.17	2.92 2.96	26261 26606	92.82 70.00	93.99 93.84		13.2 13.2
532.0	42.6	29.4	150	9.2	1,16	3.01	27029	85.72	93.78	8,4	13.2
534.0	41.9	28.0	150	Y . A.	1.15	3.06	27459	87.24	93.74	₩,44	13.2
536.0 538.0	47.0 35.8	25.3	150 150		1.09	3.10 3.15	27842 28345	77.77 101.95	93.64 93.69		13.2 13.2
540.0	35.6	25.7	150	9.2	1.17	3.21	28850	102.46	93.75	8.4	13.2
542.0 544.0		27.8 27.0	150 150	9.2 9.2	1.16	3.26 3.32	29297 29847	90.79 111.59	93.73 93.84	8.4 8.4	13.2
546.0	44.2	25.0	150	9.2	1.10	3.37	30255	82.68	93,77	8.4	13.3
548.0 550.0		25.4	150 150		1,10	3.41 3.45	30650 31050	80.14 81.16	93.69 93.61		13.3 13.3
552.0	37.9	25.9	150	9.2	1.15	3.51	31525	96.37	93,63	8.4	13.3
554.0	44./	26.6	1.00	7.6	1.12	3.55	31927	81.66	93.56	φ. *f	13.3

e de la companya de l

le and section for the section of th

DEPTH	ROP WOB	RPM 1	4W "d"c	HOURS	THESIC	T Commence	200 200 200 200 may		
					TURNS		CCOST	ÞÞ	FG
556.0 558.0	39.3 27.8 58.5 26.2		.2 1.16	3.60	32385		93,55		13,3
560.0	38.5 19.3		.2 1.07	3.64 3.69	32692 33160		93.37 93.38		13.3
562.0	55.8 30.5	150 9	2 1.09	3.72	33482		93,22		13.3 13.3
564.0	53.3 29.1		2 1.09	3.76	33820		93.07		13.3
566.0 5 6 8.0	52.6 28.3 45.3 29.7		.2 1.09 .2 1.15	3.80	34162		92.94		13.3
570.0	56,2 27.0		2 1,06	3.84 3.88	345 60 34880	80.65 64.92	92.87		13.3
572.0	34.0 32.6	150 9.	2 1.26	3.94	35410		92.71 92.79		13,3 13,3
574.0	52.2 30.0	150 9.	2 1,11	3.98	35755		92.66		13.3
576.0	43.9 31.1		2 1.17	4.02	36165	83.18	92,61	8.4	13.3
578.0			2 1.13	4.06	36525	73.04	92.50		13.4
580.0 582.0	40.9 30.9 57.1 30.6		2 1.19	4.11	36965	89.27	92.48		13.4
584.0	59.5 31.3			4.15 4.18	37280 3 7582	63,91 61,37	92.32 92.16		13,4 13,4
586.0	58.1 31.3	150 9.	2 1.09	4.21	37892	62.90	92.00		13.4
588.0	55.4 30.4			4.25	38217	65.94	91.85		13.4
590.0 592.0	55,4 31,4 54,5 32,1		2 1.10	4.29	38542	65.94	91.71		13.4
594.0	51.1 29.3		2 1,11	4.32 4.36	38872 39225	66.95 71.52	91.58 91.48		13.4
596.0	50.0 30.0	150 9.	2 1.12	4.40	39585	73.04	91.38		13.4
598.0	39.1 33.4	150 9.	2 1.22	4,45	40045	93.33	91.39		13.4
600.0 602.0			2 1.16	4.49	40407	73,55	91.29	8.4	13.4
604.0		150 9. 150 9.	2 1.14 2 1.14	4.54 4.58	40797 41179	78.98	91.23		13.4
606.0		150 9.		4.61	41489	77.61 62.90	91.16 91.01		13.4
608.0	57.6 29.2			4.65	41802	63.40	90.87		13.4
610.0 612.0	55.4 30.4			4.69	42127	65.94	90.74		13.4
614.0	55.0 29.8 54.5 30.8		2 1.09 2 1.10	4.72 4.76	42454 42784	66.45 66.95	90.62		13.5
						00.70	90.50	O . 4	13.5
616.0 618.0	39.1 29.8 45.6 31.0		2 1.19 2 1.16	4.81	43244	93.33	90.51	8.4	
620.0	58.5 31.3		2 1,10	4.85 4.89	43639 43947	80.14 62.39	90.46 90.32	8.4 8.4	
622.0	50.4 31.6	150 9.	2 1.13	4.93	44304	72.46	90.23	8.4	
624.0	42.6 31.6		2 1.18	4.97	44726	85.72	90.21	8.4	
626.0 628.0	40.9 32.2 31.9 29.9		2 1.20	5,02	45166	89.27	90.21	8.4	
630.0	34.8 29.5		2 1.25 2 1.22	5.09 5.14		114.63 105.00	90.33 90.40	8,4	
632.0	25.3 28.7		2 1.30	5.22		144.56	90,66	8.4 8.4	
634.0	35.6 31.1	150 9.	2 1.23	5.28		102.46	90.72	8.4	
636.0	23.8 31.6		2 1.35	5.36	48224	153.69	91.02	8,4	13.5
638.0 640.0	27.7 28.9 29.3 28.2		2 1.27	5.44		131.88	91.21	8.4	13.5
642.0	32.6 27.8		2 1.25 1 1.23	5.50 5.56		124.78 112.10	91.37 91.47	8.4	
644.0	25.4 29.8	150 9,		5.64		143.54	91.47	8.4 8.4	
646.0	36.2 27.8	150 9.	1 1.20	5.70	51246	100.94	91.76	8.4	
648.0 650.0	42.4 27.4 46.8 28.0		1 1.15 1 1.13	5.75	51671	86.23	91.73	8.4	
652.0	35,3 28,8		1 1.22	5.79 5.85	52056 52566	78.11 103.47	91.67 91.78	8.4 8.4	
654.0	31.9 29.4		1 1.25	5.91		114.63	91.83	8.4	
									e e

DEPTH	ROP WOI	M R P M	MW "d"c	HOURS	TURNS	T (***, (***, ***, ****	2 ⁰⁰ 4, 2 ¹⁰ 4, 2 ¹⁰ 4, 2 ¹⁰ 4, 2 ¹⁰ 1, 11 ⁰ 11	
656.0 658.0 660.0 662.0 664.0 666.0 668.0 670.0 672.0 674.0	33.8 28.4 53.3 28.3 30.0 29.8 43.9 29.0 43.4 28.4 40.9 28.0 28.3 30.3 33.2 30.3 46.2 30.0 41.1 29.3	150 150 150 150 150 150 150 150	9.1 1.23 9.1 1.10 9.1 1.27 9.1 1.16 9.1 1.16 9.1 1.17 9.1 1.30 9.1 1.25 9.1 1.16 9.1 1.19	5.97 6.00 6.07 6.12 6.16 6.21 6.28 6.34 6.39 6.43	53664 54001 54601 55011 55426 55866 56501	108.04 68.48 121.73 83.18 84.20 89.27 128.83 110.07 79.13 88.76	91.90 91.80 91.89 91.89 91.86 91.85 92.01 92.09 92.04 92.02	PP FG 8.4 13.6 8.4 13.6 8.4 13.6 8.4 13.6 8.4 13.6 8.4 13.6 8.4 13.6 8.4 13.6 8.4 13.6
676.0 678.0 680.0 682.0 684.0 686.0 690.0 692.0 694.0	24.4 26.5 29.5 27.0 28.6 26.9 33.8 27.1 32.7 27.0 30.4 27.9 32.3 27.9 25.4 28.2 28.8 28.4 34.4 28.3	150 150 150 150 150 150 150 150 150	9.1 1.30 9.1 1.25 9.1 1.26 9.1 1.21 9.1 1.22 9.1 1.23 9.1 1.30 9.1 1.22 9.1 1.22	6.52 6.58 6.77 6.77 6.90 6.90 7.11	59219 59849 60381 60931 61524 62081 62789 63414	149,63 123,76 127,82 108,04 111,59 120,21 113,11 143,54 126,81 106,01	92.27 92.41 92.56 92.63 92.71 92.83 92.92 93.13 93.27 93.33	8.4 13.6 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7
696.0 698.0 700.0 702.0 704.0 706.0 710.0 712.0 714.0	31.6 27.9 24.5 28.7 21.9 28.6 26.6 28.6 29.0 29.4 19.4 26.2 27.1 28.6 28.2 25.7 30.3 27.5 28.6 27.5	150 150 150 150 150 150 150	9.1 1.24 9.1 1.32 9.1 1.35 9.1 1.30 9.1 1.28 9.1 1.29 9.1 1.29 9.1 1.24 9.1 1.25 9.1 1.26	7.17 7.25 7.35 7.42 7.57 7.67 7.87 7.87	65241 66064 66741 67361 68289 68954 69591 70186	115.65 149.12 166.88 137.46 125.79 188.18 134.92 129.34 120.72	93.42 93.65 93.96 94.14 94.27 94.65 94.82 94.96 95.06	8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7 8.4 13.7
716.0 718.0 720.0 722.0 724.0 726.0 728.0 730.0 732.0 734.0	24.1 30.1 23.5 31.0 18.2 31.1 28.1 30.0 20.7 29.6 23.0 32.1 33.6 30.8 35.8 29.9 31.2 28.9 31.3 28.2	150 150 150 150 150 150 150	9.1 1.34 9.1 1.36 9.1 1.43 9.1 1.30 9.1 1.38 9.1 1.25 9.1 1.25 9.1 1.25 9.1 1.25	7.96 8.04 8.15 8.22 8.32 8.41 8.52 8.59 8.65	72331 73321 73961 74831 75614 76149	129.85 176.51 158.76 108.55 101.95	95.42 95.67 96.09 96.22 96.54 96.78 96.83 96.85 96.93	8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8
736.0 738.0 740.0 742.0 744.0 746.0 750.0 750.0 754.0	27.0 28.3 29.5 28.8 28.2 29.0 30.9 29.5 22.8 27.1 23.2 28.2 27.9 27.6 38.5 29.0 35.1 28.3 26.3 28.0	150 150 150 150 150 150 150	9.1 1.29 9.1 1.27 9.1 1.28 9.1 1.26 9.1 1.32 9.1 1.33 9.1 1.27 9.1 1.20 9.1 1.22 9.1 1.22	8.72 8.79 8.86 8.93 9.01 9.10 9.17 9.22 9.28 9.36	79081 79719 80301 81091 81869 82514 82981	135.43 123.76 129.34 118.18 160.28 157.75 130.86 94.85 103.98	97.15 97.26 97.38 97.46 97.70 97.93 98.05 98.04 98.06 98.21	8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.8 8.4 13.9 8.4 13.9

August and the company of the compan

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
756.0 758.0 760.0 762.0 764.0 766.0 770.0 772.0 774.0	35.6 30.9 24.6 25.5 24.2 25.8 34.4 29.1	27.5 28.4 30.4 29.2 26.7 24.9 21.9 27.2 27.6 28.2	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.33 1.21 1.27 1.32 1.28 1.28 1.22 1.21 1.26 1.26	9.45 9.50 9.57 9.65 9.73 9.81 9.89 9.95 10.01	85479 86061 86794 87499 88244 88941 89464 90081	161.30 102.46 118.18 148.62 143.04 151.15 141.52 106.01 125.28 124.27	98.45 98.46 98.54 98.72 98.88 99.07 99.23 99.25 99.35	8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 13.9 13.9
776.0 778.0 780.0 782.0 784.0 786.0 790.0 792.0 794.0	29.0 28.6 27.6 27.1 16.4 20.3 29.1 31.7	28.3 28.6 28.6 28.1 28.8 30.0 27.4 24.8 29.5 29.0	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.31 1.27 1.28 1.28 1.29 1.45 1.36 1.23	10.16 10.23 10.30 10.37 10.45 10.57 10.67 10.67 10.74 10.80	92036 92666 93319 93984 95084 95969 96586		99.61 99.70 99.80 99.92 100.04 100.48 100.75 100.84 100.89	8.4 8.4 8.4 8.4 8.4 8.4	13.9 13.9 13.9 13.9 13.9 14.0 14.0
796.0 798.0 800.0 802.0 804.0 806.0 810.0	21.6 32.0 27.6 24.3 21.4	25.7 28.2	150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.32 1.29 1.26 1.34 1.21 1.25 1.29 1.33	11.34 11.42 11.52	99366 99961 100796 101359 102011 102751 103594	120.72 169.41 114.13	101.39 101.46 101.69 101.74 101.84 102.00 102.24	8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0
BIT NUMBE HTC J1 COST TOTAL HOU	269	2 24.00 2.11	9	ADC (SIZE RIP 1 OTAL		116 12.250 4.9 100225	NOZ BIT	TERVAL ZZLES RUN MOITION			8 18 570.0
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	pр	FG
812.0	29.4	22.9	80	9.2	1.12	0.03	163	124	20713	8.4	14.0
813.0 814.0 815.0 816.0 817.0 818.0 819.0 820.0 821.0 822.0	40.4	22.9 23.3 22.5 24.6 31.7	119	9,22 9,22 9,22 9,22 9,22 9,22	1.16 1.16 1.18 1.25 1.20 1.10 1.26 1.37 1.33	0.07 0.11 0.15 0.21 0.25 0.27 0.30 0.35 0.35	351 540 735 999 1197 1306 1479 1671 1847 2027	142 143 148 199 167 71 106 96 90	10428 6999 5287 4269 3585 3083 2711 2421 2188 1997	8.4 8.4 8.4 8.4 8.4 8.4	14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0

95 to 150 to 150 to 1	P1. 3% III.										
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
823.0		38.4			1.27	0.40	2177	77	1837	8.4	14.0
824.0		35.2	119		1.35	0.43	2391	110	1704		14.1
825.0 826.0		47.2			1.48	0,46	2609	111	1590		14.0
827.0		39.8 38.7	117 117		1.22	0.48	2733	64	1489		14.1
828.0		39.4	117	9.2 9.2	1.37	0.51 0.53	2938	107	1402		14.1
829.0		39.6			1.23	0.55	3104 3235	86	1325		14.1
830.0		39.0	118		1.20	0.56	3355	68 62	1255 1192		14.1 14.1
831.0		37.0			1.18	0.58	3474	62	1136		14,1
832.0	61.0	39.0	118		1.19	0.60	3590	60	1084		14.1
833.0	63.2	39.3	110	တု က	1,18	0.61	3702	127 <i>(</i> 75	4 0 77 0	<i>.</i>	
834.0		39.6			1.19	0.63	3816	58 57 0 0	1038 995.15		14.1 14.1
835.0		31.8			1.21	0.65	3970		956.94		14.1
836.0		42.8			1.23	0,67	4087		921.01		14.1
837.0		40.6			1.23	0.68	4212		888.01		14.1
838.0		40.5		9.2	1.26	0.70	4349		957.67		14.1
839.0		39.5			1.23	0.72	4479	64.92	829,36		14.1
840.0		40.0			1.24	0.74	4612		803.07	8.4	14.1
841.0 842.0		40.3			1.30	0.76	4768		778.91		14.1
042.0	*1.y	40.7	lati	7.4	1.34	0.78	4942	87.24	756.59	8.4	14,1
843.0		40.5			1.29	0.81	5094	76.08	735.33	8.4	14.1
844.0		41.0			1.30	0.83	5245		715.38		14.1
845.0		40.1			1,49	0.86			698.46		14.1
846.0 847.0		41.5			1.23	0.88	5646		680.24		14.1
848.0		40.8			1.22	0.90 0.92	5766 5007		662.98		14,1
849.0		40.8		9.2		0.94	5903 6059		646.87 631.85		14.1
850.0		40.7			1.25	0.75	6193		617.34		14.1
851.0		40.8			1.25	0.97	6328		603.56		14.1
852.0		39.9		9.2		0.99	6449		590.27	8.4	
853.0	57.1	41.1	124	9.2	1 25	1.01	6579	4.77 O1	577.74	O 4	4 4 4
854.0		37.3		9.2		1.03	6729		566.05	8.4 8.4	
855.0		38.8		9.2		1.05	6884		555.17		14.1
856.0		40.8		9.2		1.07	7012		544.27	8.4	
857.0		39.3	120	9.2	1.22	1.09	7140		533.85	8.4	
858.0	61.0		120		1.20	1.10	7258	59,85	523.77	8.4	
859.0	63.2		120		1.19	1.12	7371	57.82	514.06	8.4	14.1
860.0		39.7		9,2		1.14	7493		504.83	8,4	
861.0 862.0	58.1		120	9.2		1.15	7617		495.99	8.4	
OOMIU	Mar y	40.4	X et U	9.2	1.25	1.17	7753	68.98	487.62	8.4	14.1
863.0		40.4		9.2		1.19	7880		479,49	8.4	
864.0	55.4		122	9.2		1.21	8012		471.69	8.4	
865.0 866.0	73.5	37,2 36.1	122	9.2 9.2		1.23	8156		464.32	8.4	
867.0	53.7			9.2	1.11	1.24 1.26	8255 8392		456.79 449.84	8.4	
868.0	51.4		122	9,2		1.28	8534	71.01		8.4 8.4	
869.0	43.9			9.2		1.30	8701		436.99		14.2
870.0	55.4			9.2	1.22	1.32	8833	65.94		8.4	
871.0	52.2			9.2		1.34	8973		424.69	8.4	
872.0	58.1	38.7	122	9,2	1.21	1.36	9099	62.90	418.76	8.4	14.2

and the second of the second o

DEPTH	ROP	MOB	RPM	мы	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
873.0 874.0 875.0 876.0 877.0 878.0 879.0 880.0 881.0	54.5 3 45.6 3 50.0 3 55.4 3 78.3 3 45.0 3 48.6 3 56.2 3 57.1 3 49.3 3	66.9 (4.2 (7.0 (7.2 (7.4 (9.1 (8.7		9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.20 1.25 1.21 1.21 1.10 1.28 1.27 1.22 1.22	1.38 1.40 1.42 1.44 1.45 1.47 1.51 1.55	9234 9383 9528 9659 9752 9913 10062 10191 10318 10465	80.14 73.04 65.94 46.66 81.16 75.07 64.92 63.91	378.23	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
883.0 884.0 885.0 886.0 887.0 889.0 890.0 891.0	53.7 3	8.5 7.2 3.5 9.5 9.7 9.4 0.1 5.3	113 120 120 120 120 120 120	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.28 1.28 1.26 1.18 1.22 1.19 1.27 1.27	1.57 1.59 1.61 1.63 1.65 1.67 1.69 1.70	10631 10785 10739 11073 11199 11315 11461 11583 11749 11883	83.18 78.11 67.97 63.91 58.84 74.05 61.88 84.20	365.54 361.68 357.84 353.98 350.16 346.38 342.89 339.33 336.14 332.83	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
893.0 894.0 895.0 896.0 897.0 898.0 899.0 900.0 901.0	53.7 3 34.3 3 44.4 3 45.6 3 50.7 3 52.9 3 52.9 3 61.0 3 53.7 3 44.4 3	7.5 8.5 8.8 7.7 9.0 8.1 7.6 7.1	120 120 120 120 120	9.2 9.2 9.2 9.2 9.2	1.34 1.29 1.29 1.24 1.24 1.23 1.18	1.76 1.79 1.81 1.84 1.86 1.89 1.89	12017 12208 12369 12527 12669 12805 12941 13059 13193 13345	106.52 82.17 80.14 72.03 68.98 68.98 59.65 67.97	329.60 326.91 324.00 321.13 318.23 315.37 312.57 309.73 307.04 304.57	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
903.0 904.0 905.0 906.0 907.0 908.0 909.0 910.0 911.0	53.3 3 45.6 3 45.0 3 53.7 4 50.7 4 42.9 3 51.4 4 45.6 3 46.2 3 29.8 3	3.2 6.1 1.0 0.1 5.4 0.2 8.7 9.0	122 121 122 122 121 122 122	9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.23 1.27 1.26 1.27 1.28 1.27 1.27	1.97 1.99 2.01 2.03 2.05 2.08 2.10 2.12 2.14 2.17	13482 13642 13804 13939 14083 14253 14253 14395 14555 14713 14955	80.14 81.16 67.97 72.03 85.21 71.01 80.14	288.18 286.08 284.01	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.3 14.3 14.3 14.3 14.3 14.3
913.0 914.0 915.0 916.0 917.0 918.0 919.0 920.0 921.0 922.0	48.0 43 50.0 4 58.1 43 50.7 44 54.5 4 50.0 43 45.0 4 46.2 4 69.2 4 42.4 4	1,8 2,1 0,6 1,1 2,9 0,7 0,1	121 121 121 121 121 121	9.0	1,29 1,27 1,30 1,28 1,33 1,34 1,33	2.19 2.21 2.23 2.25 2.27 2.29 2.31 2.33 2.35 2.37	15106 15251 15376 15519 15652 15798 15959 16116 16221 16378	73.04 62.90 72.03 66.95 73.04 81.16 79.13 52.75	280.39 278.38 276.31 274.36 272.41 270.54 268.79 267.05 265.10 263.49	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
923.0 924.0 925.0 926.0 927.0 928.0 929.0 930.0 931.0 932.0	59.0 55.4 58.1 40.9 46.8 52.1 57.1 52.2	43.5 41.4 36.6 33.8 43.9 43.5 43.6 42.1	121 121 120 120 120 120 120 120 120 120	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.27 1.30 1.26 1.33 1.25 1.31 1.28 1.28 1.30 1.29	2.39 2.41 2.45 2.45 2.49 2.51 2.52 2.54	16501 16632 16758 16934 17088 17223 17349 17474 17610 17737	65.94 62.90 89.27 78.11 68.98 63.91 63.91 68.98	261.69 259.96 258.23 256.76 255.22 253.63 252.02 250.44 248.93 247.41	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
933.0 934.0 935.0 936.0 937.0 938.0 939.0 940.0 941.0 942.0	60.0 64.3 59.0 60.0 58.1 61.0 59.0 58.1 36.4	45,2 43,5 43,6 42,4 44,8 43,5 40,2	119 119 119 119 119 119 119	9,0 9,0 9,0 9,0 9,0 9,0 9,0	1.25 1.27 1.26 1.26 1.28 1.28 1.27 1.41 1.29	2.58 2.59 2.61 2.64 2.64 2.66 2.69 2.72 2.74	17855 17966 18087 18205 18328 18445 18565 18688 18886 19007	56.81 61.88 60.87 62.90 59.85 61.88 62.90	245.88 244.34 242.87 241.41 240.00 238.58 237.20 235.85 234.80 233.48	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
943.0 944.0 945.0 946.0 947.0 949.0 950.0 951.0 952.0	60.0 54.5 53.7 54.5 58.1 56.2 50.7 63.2 53.7	46.1 46.1 45.0 44.5 45.0 45.0 50.5	119 119 119 119 119 119 120 120	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.29 1.32 1.33 1.32 1.29 1.28 1.30 1.34 1.31	2.75 2.77 2.79 2.81 2.83 2.84 2.86 2.88	19125 19256 19388 19519 19641 19764 19891 20033 20147 20281	66.95 67.97 66.95 62.90 62.90 64.92 72.03 57.82	232.18 230.93 229.72 228.51 227.30 224.93 223.83 223.83 222.64 221.54	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.4 14.4 14.4 14.4
953.0 954.0 955.0 956.0 957.0 958.0 959.0 960.0 961.0 962.0	67.9 46.8 46.2 45.6 53.7 50.0 57.1 52.9	41.9 44.5 45.0 44.6 43.6 41.8 40.0	120 120 120 120 120 120 120 120	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.22 1.34 1.37 1.38 1.38 1.31 1.29 1.30 1.30	2.93 2.95 2.97 3.00 3.02 3.04 3.05 3.07 3.07	20386 20541 20697 20853 21011 21146 21280 21424 21549 21684	78.11 79.13 79.13 80.14 67.97 67.97 73.04 63.91	220,36 219,37 218,39 217,43 216,49 215,48 214,49 213,54 212,54 211,59	8,4 8,4 8,4 8,4 8,4 8,4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
963.0 964.0 965.0 966.0 967.0 968.0 969.0 970.0 971.0	57,1 52,9 53,7 58,1 59,0 52,1 62,1 41,9 45,6 37,9	44.0 40.9 45.3 46.1 46.0 44.7 42.2 42.0	117 117 117 117 148 150	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.29 1.31 1.25 1.29 1.29 1.30 1.26 1.45 1.43	3.13 3.15 3.17 3.18 3.20 3.22 3.23 3.26 3.28 3.31	21809 21944 22065 22186 22305 22427 22541 22753 22950 23188	68,98 67,97 62,90 61,88 63,91 58,84 87,24 80,14	210.62 209.69 208.77 207.83 206.89 205.98 205.05 204.31 203.54 202.87	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4 14.4

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
973.0 974.0 975.0 976.0 977.0 978.0 979.0 980.0 981.0 982.0	42.4 40.0 40.9 44.4 42.9 65.5 48.6	42.3 42.9 42.1 41.1 42.9 41.9 42.3 42.3	150 150 150 150 150 150 150	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.45 1.46 1.47 1.47 1.43 1.46 1.30 1.41 1.43	3.33 3.35 3.40 3.42 3.45 3.46 3.51 3.53	23398 23610 23835 24055 24258 24468 24605 24790 24983 25183	86.23 91.30 89.27 82.17 85.21 55.79 75.07 78.11	202,14 201,43 200,76 200,09 199,37 198,69 197,84 197,11 196,41 195,74	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
983.0 984.0 985.0 986.0 987.0 989.0 990.0 991.0 992.0	41.9 47.4 58.1 64.3 41.4 69.2 60.0 63.2	42.6 40.8 37.0 41.3 41.0 37.8 43.4 43.4 43.6	150 150 150 150 150 150 150	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.44 1.44 1.36 1.34 1.30 1.41 1.29 1.34 1.33	3.55 3.57 3.60 3.61 3.63 3.65 3.65 3.70 3.71	25385 25600 25790 25945 26085 26303 26433 26433 26725 26863	87.24 77.10 62.90 56.81 88.26 52.75 60.87 57.82	195.08 194.46 193.78 193.03 192.26 191.67 190.89 190.17 189.43	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.5 14.5 14.5
993.0 994.0 995.0 996.0 997.0 998.0 999.0 1000.0 1001.0	63.2 53.7 63.2 58.1 72.0 58.1 65.5 59.0	43.2 44.0 39.4 41.1 41.0 42.7 40.4 40.9 41.2 43.4	150 150 150 150 150 150 150	9,0 9,0 9,0 9,2 9,2 9,2 9,2	1.29 1.33 1.34 1.30 1.33 1.25 1.30 1.26 1.30	3.73 3.74 3.76 3.78 3.80 3.81 3.83 3.84 3.86	26993 27135 27303 27445 27600 27725 27880 28018 28170 28310	57.82 67.97 57.82 62.90 50.72 62.90 55.79 61.88		8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1003.0 1004.0 1005.0 1006.0 1007.0 1008.0 1009.0 1010.0 1011.0	52.2 51.4 52.2 53.7 59.0 54.5 61.0 62.1	43.5 41.0 44.2 43.4 41.2 41.0 36.6 36.4 38.4 39.9	150 150 150 150 150 150 150	9,2 9,2 9,2 9,2 9,2 9,2	1.30 1.34 1.38 1.36 1.33 1.30 1.28 1.24 1.25	3.89 3.91 3.93 3.95 3.97 3.98 4.00 4.02 4.04	28455 28628 28803 28975 29143 29295 29460 29608 29753 29945	70,00 71.01 70.00 67,97 -61.88 66.95 59.85 58.84	181.25 180.67 180.11 179.54 178.97 178.38 177.81 177.22 176.63	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1013.0 1014.0 1015.0 1016.0 1017.0 1018.0 1019.0 1020.0 1021.0	47.4 52.2 53.7 52.9 46.8 58.1 61.0	41.1 41.0 41.2 40.4 38.7 39.4 39.4 39.0 39.3	150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.36 1.37 1.34 1.32 1.31 1.36 1.28 1.27	4.08 4.10 4.12 4.14 4.15 4.18 4.19 4.21 4.23 4.24	30126 30316 30489 30656 30826 31019 31174 31321 31469 31604	77.10 70.00 67.97 68.98 78.11 62.90 59.85	175.63 175.15 174.63 174.11 173.60 173.14 172.61 172.07 171.54 170.98	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5

 \mathcal{F}_{i} , \mathcal{F}_{i}

DEPTH	R O P	MOB	RPM	мω	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1023.0 1024.0 1025.0 1026.0 1027.0 1028.0 1029.0 1030.0 1031.0	61.0 57.1 51.4 32.1 57.1 62.1 62.2 67.9	39.2 39.0 39.4 39.7 39.9 40.3 40.6 40.5	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.23 1.27 1.29 1.33 1.49 1.30 1.28 1.27	4.26 4.27 4.29 4.31 4.34 4.36 4.37 4.39 4.40	31736 31884 32041 32216 32496 32654 32799 32941 33074 33216	59.85 63.91 71.01 113.62 63.91 58.84 57.82 53.77	170.43 169.91 169.41 168.96 168.70 168.22 167.72 167.21 166.70	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
1033.0 1034.0 1035.0 1036.0 1037.0 1038.0 1039.0 1040.0 1041.0	63,5 61,0 62,1 55,4 50,7 73,5 73,5	40.5 40.6 40.5 40.2 39.5 41.1 45.1 44.6 44.8	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.29 1.27 1.28 1.27 1.30 1.35 1.26 1.25 1.26	4.44 4.45 4.47 4.49 4.50 4.52 4.55 4.55	33369 33511 33658 33803 33966 34143 34266 34388 34511 34661	57.49 59.85 58.84 65.94 72.03 49.71 49.71	165,24 165,25 164,78 164,31 163,87 163,47 162,48 161,99 161,55	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
1043.0 1044.0 1045.0 1046.0 1047.0 1049.0 1050.0 1051.0	48.6 56.2 41.9 51.4 56.2 48.6 51.4 59.0	44.6 44.7 44.5 40.3 44.1 43.2 38.2 33.1 44.0 43.0	150	9.2 9.2 9.2 9.2 9.2 9.2	1.31 1.40 1.35 1.41 1.38 1.34 1.33 1.26 1.33	4.60 4.62 4.63 4.66 4.70 4.72 4.74 4.75	34803 34988 35148 35363 35538 35698 35883 36058 36211 36373	75.07 64.92 87.24 71.01 64.92 75.07 71.01 61.88	161.10 160.23 160.32 160.01 159.63 159.23 158.88 158.51 158.11	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
1053.0 1054.0 1055.0 1056.0 1057.0 1058.0 1059.0 1060.0 1061.0	62.1 36.7 60.0 65.5 63.2 55.4 55.4	44.2 45.3 40.9 39.3 39.6 40.3 39.0 39.7 40.2	150 150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.32 1.32 1.46 1.28 1.25 1.27 1.30 1.31 1.31	4.79 4.80 4.85 4.86 4.88 4.90 4.91 4.93	36523 36668 36913 37063 37201 37343 37506 37668 37828 37983	58,84 99,42 60,87 55,79 57,82 65,94 65,94 64,92	157.33 156.92 156.69 156.30 155.89 155.49 155.13 154.77 154.41	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.6 14.6 14.6 14.6 14.6 14.6 14.6
1064.0 1066.0 1068.0 1070.0 1072.0 1074.0 1076.0 1078.0 1080.0	61.0 49.3 59.0 55.4 69.2 52.2 59.0	40.0 40.0 40.0	150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3	1.26 1.26 1.33 1.27 1.30 1.22 1.32 1.27 1.27	4.98 5.01 5.06 5.09 5.13 5.15 5.19 5.23 5.26 5.30	38273 38568 38933 39238 39563 39823 40168 40473 40778 41118	59.85 74.05 61.88 65.94 52.75 70.00 61.88 61.88	153.29 152.56 151.95 151.25 150.60 149.86 149.25 148.60 147.95 147.37	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.7 14.7

and the second of the second o

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
1084.0 1086.0 1088.0 1090.0 1092.0 1094.0 1096.0 1100.0	60.0 72.0 49.3 58.1 81.8 65.5 56.2		150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3	1,27 1,27 1,16 1,28 1,23 1,12 1,18 1,20 1,20 1,24	5.33 5.36 5.39 5.43 5.47 5.52 5.56 5.56	41418 41718 41968 42333 42643 42863 43138 43458 43458 44128	50.72 74.05 62.90 44.64 55.79 64.92	146.74 146.11 145.42 144.91 144.33 143.63 143.63 143.01 142.46 141.93	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
1104.0 1106.0 1108.0 1110.0 1112.0 1114.0 1116.0 1118.0 1120.0	57.1 43.9 45.0 56.2 52.2 53.7	33.4 33.4 33.3 33.2 32.9 33.0	150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3	1.21 1.28 1.29 1.22 1.22 1.24 1.23 1.21 1.23	5.67 5.70 5.75 5.87 5.87 5.94 5.94 5.98	44448 44763 45173 45573 45893 46238 46573 46883 47213 47548	63.91 83.18 81.16 64.92 70.00 67.97 62.90 66.95	140,92 140,40 140,01 139,62 139,12 138,66 138,20 137,71 137,25 136,81	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
1124.0 1126.0 1128.0 1130.0 1132.0 1134.0 1136.0 1138.0 1140.0	54.0 37.9 63.2 62.1 60.0 54.5 52.2 60.0	34.9 : 34.7 : 32.1 : 33.4 : 2 : 34.2 : 34.6 : 29.2 : 37.0 : 35.4 : 1	150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3	1.25 1.33 1.19 1.20 1.22 1.24 1.24	6.05 6.08 6.14 6.17 6.20 6.23 6.27 6.31 6.34	47843 48176 48651 48936 49226 49526 49856 50201 50501	67.63 96.37 57.82 58.84 60.87 66.95 70.00 60.87	136.32 135.88 135.63 135.14 134.67 134.21 133.80 133.41 132.96 132.60	8,4 8,4 8,4 8,4 8,4 8,4	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
1144.0 1146.0 1148.0 1150.0 1152.0 1154.0 1156.0 1158.0 1159.0	25,9 40,9 52,9 56,2 52,9 49,3 49,3	23.0 : 15.2 : 1	150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3 9.3 9.3	1,19 1,22 1,22 1,23 1,23 1,22 1,22	6.43 6.51 6.56 6.59 6.63 6.67 6.71 6.75 6.79	51311 52006 52446 52786 53106 53446 53811 54176 54354 54514	141.01 89.27 68.98 64.92 68.98 74.05 74.05	132.35 132.41 132.15 131.78 131.39 131.02 130.69 130.36 130.20	8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8
1161.0 1162.0 1163.0 1164.0 1165.0 1166.0 1167.0 1168.0 1169.0	50,7 41,9 51,4 56,2 53,7 55,4 53,7 47,4	35.7 1 36.8 1 36.3 1 37.9 1 36.3 1	50 50 50 50 50 50 50	9.3	1.26 1.34 1.29 1.25 1.28 1.26 1.27	6.80 6.82 6.85 6.87 6.89 6.90 6.92 6.94 6.98	54674 54851 55066 55241 55401 55569 55731 55899 56089 56266	72.03 87.24 71.01 64.92 67.97 65.94 67.97 77.10	129.82 129.66 129.54 129.37 129.19 129.02 128.84 128.67 128.53	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8

and the control of t

Secretarios securios de constituições de constituições de constituições de constituições de constituições de c

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	pр	FG
1171.0 1172.0 1173.0 1174.0 1175.0 1176.0 1177.0 1178.0 1180.0	57.1 46.7 54.5 52.9 56.0 52.9 51.9	37.5 37.6 36.0 39.8 37.3 37.4 36.0 36.3	150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3	1.21 1.33 1.28 1.26 1.31 1.26 1.30 1.27	7.00 7.02 7.04 7.06 7.08 7.09 7.11 7.13 7.17	56424 56616 56784 56949 57119 57279 57459 57629 57979 58319	71.01	128.19 128.05 127.89 127.72 127.56 127.38 127.24 127.08 126.77	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.9 14.9 14.9 14.9 14.9 14.9
1184.0 1186.0 1188.0 1190.0 1192.0 1194.0 1196.0 1200.0	54.5 64.3 51.4 56.2 56.2 61.4 54.5 43.9 52.2	39.0 39.8 38.4 40.7 41.4 39.4 38.0 37.0	150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3	1.28 1.24 1.32 1.27 1.30 1.28 1.31 1.28 1.34	7.25 7.28 7.35 7.35 7.46 7.50 7.54 7.56	58649 58929 59279 59599 59919 60219 60569 60899 61309 61481	56.81 71.01 64.92 64.92 60.87 71.01 66.95	126.14 125.77 125.48 125.16 124.85 124.51 124.24 123.94 123.73 123.59	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9
1202.0 1203.0 1204.0 1205.0 1206.0 1207.0 1208.0 1209.0 1210.0	49.3 53.7 62.1	41.9 37.7 32.2 46.2 43.1 40.1 28.7 40.0	150 150 150 150 150 150	9.3 9.4 9.4 9.4 9.4 9.4	1.26 1.30 1.31 1.21 1.30 1.30 1.30 1.21 1.21	7.58 7.60 7.62 7.64 7.65 7.69 7.72 7.72	61646 61804 61986 62154 62299 62454 62626 62814 62941 63096	63,91 74,05 67,97 58,84 62,90 70,00 76,08 51,74	123.45 123.30 123.17 123.03 122.87 122.78 122.58 122.47 122.29 122.14	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9
1212.0 1213.0 1214.0 1215.0 1216.0 1217.0 1218.0 1219.0 1220.0	58.1 57.1 63.2 52.2 78.3 81.8 54.5 38.7 62.1 59.0	43.9 43.2 43.7 43.0 43.6 41.3 35.7 42.0	150 150 150 150 150 150	9.4 9.4 9.4 9.4 9.4 9.4	1.31 1.31 1.27 1.34 1.19 1.30 1.35 1.26	7.76 7.77 7.79 7.81 7.82 7.83 7.85 7.88 7.90 7.91	63251 63409 63551 63724 63839 63949 64114 64346 64491 64644	70.00 46.66 44.64 66.95 94.34 58.84	121.99 121.85 121.69 121.56 121.38 121.19 121.05 120.99 120.84 120.69	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9
1222.0 1223.0 1224.0 1225.0 1226.0 1227.0 1228.0 1229.0 1230.0 1231.0	61.0 57.1 61.0 58.1 54.5 53.7 57.1 50.0 58.1	38.8 38.8 42.1 40.1 38.6 37.9 31.9	150 150 150 150 150 150 150	9.5 9.5 9.5 9.5 9.5 9.5		7.93 7.95 7.96 7.98 8.00 8.02 8.03 8.05 8.05	64791 64949 65096 65251 65416 65584 65741 65921 66076 66256	59.85 62.90 66.95 67.97 63.91 73.04 62.90	120.54 120.41 120.26 120.12 119.99 119.87 119.73 119.62 119.49 119.38	8.4 8.4 8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0 15.0 15.0

DEPTH	ROP	MOB	RPM	MW "d"	: HOURS	TURNS	ICOST	CCOST	वस	FG
1232.0 1233.0 1234.0 1235.0 1236.0 1237.0 1238.0 1239.0 1240.0	49.3 45.0 50.7 49.3 40.4 28.1 48.0 56.2	27.4	150 150 150 150 150 150 150	9.5 1.2 9.5 1.2 9.5 1.2 9.5 1.2 9.5 1.2 9.5 1.3 9.5 1.3 9.5 1.3	7 8.13 7 8.15 1 8.17 1 8.19 5 8.22 3 8.25 4 8.27 8 8.29	66416 66599 66799 66976 67159 67381 67701 67889 68049 68226	74.05 81.16 72.03 74.05 90.29 129.85 76.08 64.92		8.4 8.4 8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
1242.0 1243.0 1244.0 1245.0 1246.0 1247.0 1248.0 1249.0 1250.0	50.7 50.0 51.4 51.4 48.6 56.2 49.3 51.4	33.0 34.0 33.0 30.4	150 150 150 150 150 150 150	9.5 1.20 9.5 1.22 9.5 1.22 9.5 1.22 9.5 1.24 9.5 1.23 9.5 1.22 9.5 1.22	8.35 8.37 8.39 8.41 8.43 8.43 6.8,45 6.8,47 6.8,49	68399 68576 68756 68931 69106 69291 69451 69634 69809	72.03 73.04 71.01 71.01 75.07 64.92	118.35 118.24 118.14 118.03 117.92 117.82 117.70 117.40 117.49 117.39	8.4 8.4	15.0 15.0 15.0 15.0
1252.0 1253.0 1254.0 1255.0 1256.0 1257.0 1258.0 1259.0 1260.0	52.2 45.6 46.2 46.8 36.0 46.8 50.0	35.4 34.3 33.5 30.1	150 150 150 150 150 150 150	9.5 1.24 9.5 1.25 9.5 1.25 9.5 1.25 9.5 1.25 9.5 1.23 9.5 1.23 9.5 1.23	8.54 8.56 8.59 8.61 8.64 8.66 8.68 8.70	70149 70321 70519 70714 70906 71156 71349 71529 71714 71899	70.00 80.14 79.13 78.11 101.44 78.11 73.04 75.07	117.27 117.17 117.08 117.00 116.91 116.88 116.79 116.69 116.60 116.51	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	15.0 15.0 15.0 15.0 15.0 15.0
1262.0 1263.0 1264.0 1265.0 1266.0 1267.0 1268.0 1269.0 1270.0	44.4 51.4 46.2	26.4 25.7 26.9	150 150 150	9.5 1.23 9.5 1.26 9.5 1.25 9.5 1.23 9.5 1.20 9.5 1.26 9.5 1.25 9.5 1.22	8.76 8.78 8.80 8.83 8.86 8.91 8.96 9.00		82.17 21.01 29.13 81.16 109.56 185.64 179.56 158.25	116.22 116.36	8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4	15.0 15.0 15.0 15.0 15.0 15.0 15.0
1272.0 1273.0 1274.0 1275.0 1276.0 1277.0 1278.0 1279.0 1280.0 1281.0	22.9 27.3 25.7 29.0 27.1 21.1 28.8 30.5 25.4 35.0	26.4 25.6 27.2 27.0 24.2 30.2 31.4 27.2	105 105 105 105 110 108	9.5 1.26 9.5 1.23 9.5 1.23 9.5 1.23 9.5 1.27 9.5 1.27 9.5 1.27 9.5 1.22 9.5 1.23	9.12 9.16 9.20 9.23 9.28 9.32 9.35	74585 74830 75047 75280 75579 75808 76020 76276	142.02 125.79 134.92 173.47 126.81	116.69 116.75 116.76 116.80 116.93 116.95 116.95	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.1 15.1 15.1 15.1 15.1

sterili i de la companya de la comp

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1282.0 1283.0 1284.0 1285.0 1286.0 1287.0 1288.0 1289.0 1291.0	30.8 29.3 32.5 25.4 27.1 35.3 40.9 36.0	24.8 25.4 26.9 25.4 25.4 27.1 30.2 29.8	110 109 110 110 119 150 150	9.5 9.5 9.5 9.5 9.5 9.5	1.20 1.19 1.22 1.15 1.25 1.26 1.26 1.26 1.29	9,45 9,48 9,52 9,54 9,58 9,62 9,65 9,67 9,70	76691 76905 77128 77304 77565 77829 78084 78304 78554 78757	118.69 124.78 97.39 144.05 134.92 103.47 89.27	117.02	8.4 8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1292.0 1293.0 1294.0 1295.0 1296.0 1297.0 1298.0 1299.0 1300.0	40.4 50.0 50.0 15.0 44.4 51.4 39.1 36.4	30.1 29.6 31.2 30.5 28.6 32.7 29.7 29.6 27.4 28.2	150 150 150 150 150 150 150	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.30 1.25 1.21 1.20 1.53 1.26 1.18 1.26 1.26	9.75 9.78 9.80 9.82 9.88 9.91 9.93 9.95 9.95	80397 80572 80802	90.29 73.04 73.04 243.47 82.17 71.01 93.33 100.43	116.81 116.71 116.66	8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1302.0 1303.0 1304.0 1305.0 1306.0 1307.0 1308.0 1309.0 1310.0	42.4 38.3 30.8 31.3 35.3 42.4 38.3 35.0	26.2 26.7 28.1 26.8 23.4 28.4 26.5 30.8 28.0	150 150 150 150 150 150 150		1.24 1.20 1.25 1.30 1.25 1.28 1.20 1.28 1.28	10.03 10.05 10.08 10.11 10.14 10.17 10.20 10.22 10.25 10.27	81502 81714 81949 82242 82529 82529 82784 82997 83232 83489 83664	95.36 118.69 116.66 103.47 86.23 95.36 104.49	116.47 116.43 116.43 116.43 116.40 116.34 116.30	8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.1 15.1 15.1 15.1 15.1 15.1
1312.0 1313.0 1314.0 1315.0 1316.0 1317.0 1318.0 1319.0 1320.0	40.4 40.3 30.3 40.4 46.2 40.4 38.7 46.2	31.0 29.2 30.0 27.3 30.8 30.8 30.9 30.9 31.3 37.7	150 150 150 150 150 150 150	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.30 1.25 1.26 1.31 1.27 1.23 1.28 1.28	10.30 10.32 10.35 10.38 10.40 10.43 10.45 10.48 10.50	84134 84357 84654 84827 85022 85294 85527 85722	90.29 120.72 90.29 79.13 90.29 94.34	116.10 116.05 116.06 116.01 115.94 115.89 115.85 115.77	8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
1322.0 1323.0 1324.0 1325.0 1326.0 1327.0 1328.0 1329.0 1330.0 1331.0	36.7 42.9 61.0 40.9 39.1 39.6 41.9 40.0	40.6 40.8 34.2 41.0 41.3 41.9 42.8 42.7	150 150 150 150 150 150 150	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.36 1.41 1.36 1.18 1.38 1.39 1.40 1.39 1.40	10.55 10.58 10.60 10.62 10.64 10.67 10.69 10.72 10.74 10.76	86184 86429 86639 86787 87007 87237 87464 87679 87904 88122	99.42 85.21 59.85 89.27 93.33 92.31 87.24 91.30	115.69 115.60 115.49 115.44 115.39 115.35 115.30 115.25	8.4 8.4 8.4 8.4 8.4 8.4	15.1 15.2 15.2 15.2 15.2 15.2 15.2 15.2

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG	
1332.0 1333.0 1334.0 1335.0 1336.0 1337.0 1338.0 1339.0 1341.0	33.6 36.0 31.6 40.0 32.4 37.1 25.4 44.4 35.0 38.7	43.2 42.3 44.0 43.8 43.0 43.1 43.8 42.2	150 150 150 150 150 150 150	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.44 1.48 1.42 1.48 1.43 1.56	10.79 10.82 10.85 10.88 10.91 10.94 10.98 11.00 11.03	88639 88924 89149 89427 89669 90024 90227	108.55 101.44 115.65 91.30 112.60 98.40 144.05 82.17 104.49 94.34	115.16 115.11 115.11 115.08 115.13 115.07	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	
1342.0 1343.0 1344.0 1345.0 1347.0 1347.0 1349.0 1350.0	44.4 46.8 31.9 35.0 40.0 37.9 43.9 43.4 40.9 36.4	43.0 39.5 43.0 43.0 42.6 43.8 43.1 43.4	150 150 150 150 150 150 150	9.5 : 9.5 : 9.6 :	1.35 1.43 1.44 1.39 1.40 1.37 1.36	11.08 11.10 11.13 11.16 11.18 11.21 11.23 11.25 11.25	90919 91112 91394 91652 91877 92114 92319 92527 92747 92994	78.11 114.63 104.49 91.30 96.37 83.18 84.20	114.82 114.78 114.72 114.67 114.62	8,4 8,4 8,4 8,4 8,4 8,4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	
1352.0 1353.0 1354.0 1355.0 1356.0 1357.0 1358.0 1359.0 1360.0	47.4 45.6 38.3 41.4 37.5 38.7 40.4 44.4 38.3 31.3	43.3 39.1 44.5 44.4 44.4 44.8 44.8	150 150 150 150 150 150 150 150	9.6 1 9.6 1 9.6 1 9.6 1 9.6 1 9.6 1 9.6 1	1.35 1.36 1.39 1.43 1.42 1.40 1.37	11.33 11.35 11.38 11.40 11.43 11.45 11.48 11.50 11.53	93184 93382 93617 93834 94074 94307 94529 94732 94967 95254	80.14 95.36 88.26 97.39 94.34 90.29 82.17 95.36	114.52 114.46 114.42 114.38 114.34 114.31 114.26 114.21 114.17	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	
1362.0 1363.0 1364.0 1365.0 1366.0 1367.0 1369.0 1371.0	37.5 41.4 24.8 37.9 35.3 20.6 29.3 29.8 21.8	45.2 22.5 44.8 45.1 42.1 44.6 44.9	150 150 150 150 150 150 150	9.6 1 9.6 1 9.7 1 9.7 1 9.7 1 9.7 1 9.7 1 9.7 1	1.40 1.27 1.41 1.44 1.58 1.49 1.49	11.58 11.61 11.65 11.67 11.70 11.75 11.79 11.82 11.87	96312 96567 97004 97312 97614 98027	88.26	114.16 114.13 114.11 114.22 114.24 114.25 114.35	8.4 8.4 8.4 8.4 8.4 8.4	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2	
1372.0 1373.0 1374.0 1375.0 1376.0 1377.0 1378.0 1379.0 1380.0 1381.0	30.8 49.3 25.4 31.6 67.9 180.0 189.5 116.1 189.5	46.7 43.7 41.7 43.1 36.9 38.5 38.5	150 150 150 150 150 150 150 150	9.7 1 9.7 1 9.7 1 9.7 1 9.7 0 9.7 0 9.7 0 9.7 0	.34 .53 .44 .20 .85 1.84 1.99	11.96 11.98 12.02 12.05 12.07 12.07 12.08 12.09 12.09	99057 99 4 12	144.05 115.65 53.77 20.29 19.27 31.45 19.27	114.48 114.54	8.4 8.4 8.7 8.7 8.7 8.7	15.2 15.2 15.2 15.3 15.3 15.3 15.3 15.3	

,

TADC CODE BIT NUMBER INTERVAL 1380,0- 1389,6 9,875 SIZE NOZZLES CHRIS RC4 15 15 15 14500.00 TRIP TIME 5.0 BIT RUN COST 9.6 TOTAL HOURS 1.08 TOTAL TURNS 6261 CONDITION TO BO GO.050 DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST pр CCOST FG 9.7 0.73 1380.2 36.0 82 0.01 27 4.1 101 163901 8.7 15.3 9.2 3.8 9.7 0.98 0.05 238 398 54899 8.7 15.3 1380.6 81 2.7 9.7 0.61 258 71 1380.8 51,4 82 0.05 41192 8.7 15.3 9.7 0.58 76 8.7 15.3 1381.0 48.0 1.8 84 0.06 279 32969 9.7 1381,4 32.0 0,4 85 0.53 0,07 342 23582 8.7 15.3 114 9.7 0.69 24.0 0.08 385 8.7 15.3 1381.6 1.6 84 152 20653 9.7 0.74 0.09 1381.8 22.5 2.2 84 429 162 18376 8.7 15.3 9.7 0.70 0.098.7 15.3 1382.0 34.3 3.0 84 459 107 16549 1382.2 31.3 3.0 84 9.7 0.71 0.10 491 117 15056 8,7 15.3 9.7 0.68 8.7 15.3 2.9 0.10 519 1382.4 36.0 84 101 13809 9.7 0.70 554 12757 8.7 15.3 28.8 2.4 84 0.11 127 1382.6 9.7 0.68 8.7 15.3 2.0 589 127 11855 1382.8 28.8 84 0.12 2.2 9.7 0.80 0.13 15,7 (3.4) 653 11080 0.7 15.3 1383.0 233 9.7 0.73 8.7 15.3 1383.2 26.7 2.6 84 0.14 691 137 10396 9.7 0.92 8.7 15.3 1383.4 10.1 2.8 89 0.16 797 360 9886 9.7 0.81 8.7 15.3 1383.6 16.7 2.3 96 0.17 865 218 9273 8.7 15.3 1383.8 4,4 3.1 97 9,7 1,11 0.22 1131 837 8829 1.8 99 9.7 1.48 8.7 15.3 1384.0 6.7 0.33 1800 2064 8491 1.2 99 9.7 1.84 0.50 8.7 15.3 1384.2 13.6 2809 3094 8234 99 9.7 1.60 7900 8.7 15.3 1384.4 4.1 16.2 0.55 3099 893 8.7 15.3 1384.6 2.5 16.3 99 9.7 1.73 0.63 3578 1471 7621 0.68 1384.8 4.2 16.3 99 9.7 1.59 3860 867 7339 8.7 15.3 1070 99 9.7 1.65 0.73 7088 8.7 15.3 1385.0 3.4 16.5 4207 0.77 8.7 15.3 6.1 19.4 95 9.7 1.56 1385.2 4396 604 6839 9.7 1.37 8.7 15.3 0.78 1385.4 11.8 20.0 90 4487 309 6597 9.7 1.32 8.7 15.3 1385.6 13.6 19.0 92 0,80 4568 269 6371 9.7 1.65 8.7 15.3 4.6 19.7 6179 1385.8 101 0,84 4829 786 9.7 1.77 8.7 15.3 6007 1386.0 3.6 21.3 102 0.90 5171 1025 9.7 1.95 1386.2 2.0 22.2 101 1,00 5776 1816 5872 8.7 15.3 1.02 10.4 21.7 97 9.7 1.46 5888 350 5699 8.7 15.3 1386,4 31.3 21.1 1.02 9.7 1.09 1386.6 82 5919 117 5530 8.7 15.3 9.7 0.93 1.03 8.7 15.3 55.4 20.3 5937 5369 1386.8 84 66 9.7 0.98 8.7 15.3 1387.0 45,0 19.6 85 1.03 5960 81 5218 9.7 0.91 5998 4939 8.7 15.3 1387.4 57.6 17.9 91 1.04 63 9.7 0.90 8,7 15.3 1387.8 55.4 16.2 94 1,05 6039 66 4690 9.7 0.90 8.7 15.3 1388.0 51,4 15.0 94 1,05 6061 714574 9.7 0.89 8.7 15.3 1388.4 53,3 14,5 94 1.06 6103 68 4360 9.7 0.91 8.7 15.3 48.0 13.8 97 1.06 6127 76 4260 1388.6 9.7 0.84 8.7 15.3 1389.0 62.6 13.4 98 1.07 6165 58 4073 1.08 8.7 15.3 9.7 0.94 3904 1389,4 38.9 12.3 100 6226 94 107 1389.6 34.3 9,3 99 9.7 0.91 1.08 6261 3825 8.7 15.3

BIT NUMBE CHRIS RC4 COST		S	ADC CODE TZE RIP TIME	9.875 5.0	NOZ	ERVAL ZLES RUN	1389,	6- 1399.0 15 15 15
TOTAL HOU			OTAL TURNS	7608		DITION	Τ0	9.4 B0 G0.100
DEPTH	ROP WOT	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	bb kë
1389.8	20.0 4.8		9.7 0.88	1.09	6314	183	2269	8.6 15.3
1390.0	13.4 6.6		9.7 1.02	1,10	6393	273	2230	8.6 15.3
1390.4	14.1 10.1	92	9.7 1.12	1.13	6550	259	2154	8.6 15.3
1390.6	27.7 12.4		9.7 1.01	1.14	6591	132	2116	8.6 15.3
1390.8	21.2 17.6		9.7 1.17	1.15	6643	172	5080	8.6 15.3
1391.0	75.8 17.6		9.7 0.83	1.15	6658	48	2043	8.6 15.3
	110.8 17.7		9.7 0.73	1.16	6678	33	1972	8.6 15.3
1391.8	21.8 17.2		9.7 1.00	1.17	6735	167	1911	8.6 15.3
1392.0	7.3 19.4		9.7 1.48	1.20	6879	497	1887	8.6 15.3
1392.4	34.3 20.7		9.7 1.01	1.21	6927	107	1830	8.6 15.3
1392.8	57.6 17.8		9,7 0,87	1.22	6960	63	1775	8.6 15.3
1393.0	42.4 16.2		9.7 0.94	1.23	6984	86	1749	8.6 15.3
1393.4	46.5 15.2	87	9.7 0.91	1.23	7029	79	1699	8.6 15.3
1393.6	30.0 14.6	90	9.7 1.02	1.24	7064	122	1676	8.6 15.3
1393.8	51.4 13.7		9.7 0.88	1.24	7086	71	1652	8.6 15.3
1394.0	48.0 13.2		9.7 0.88	1.25	7108	76	1630	8.6 15.3
1394.4	57.6 14.2		9.7 0.85	1.26	7146	63	1586	8.6 15.3
1394.8	57.6 15.6		9.7 0.85	1.26	7180	63	1545	8.6 15.3
1395.0	51.4 14.6		9.7 0.88	1.27	7200	71	1526	8.6 15.3
1395.4	45.0 15.1		9.7 0.91	1.28	7246	81	1488	8.6 15.3
1395.6	55,4 15,6		9.7 0.86	1.28	7264	66	1470	8.6 15.3
1396.0	68.6 14.6		9.7 0.81	1.28	7294	53	1434	8.6 15.3
1396.4	46.5 16.6	85	9.7 0.93	1.29	7338	79	1401	8.6 15.3
1396.6	60.0 15.3	86	9.7 0.85	1.30	7355	61	1385	8.6 15.3
1396.8	55.4 15.8	82	9.7 0.86	1.30	7373	66	1370	8.6 15.3
1397.0	45.0 15.4		9.7 0.92	1.30	7396	81	1354	8.6 15.3
1397.4	42.4 14.5		9.7 0.94	1.31	7447	86	1325	8.6 15.3
1397.6	51.4 15.6		9.7 0.88	1.32	7466	71	1311	8.6 15.3
1397.8	55.4 17.7		9.7 0.86	1.32	7482	66	1297	8.6 15.3
1398.0	36.0 17.1		9.7 0.99	1.33	7509	101	1284	8.6 15.3
1398.4	48.0 17.1		9.7 0.92	1.34	7551	76	1257	8.6 15.3
1398.6	45.0 15.6		9.7 0.92	1.34	7573	81	1245	8.6 15.3
1399.0	57.6 15.8	83	9.7 0.85	1.35	7608	63	1220	8.6 15.3

BIT NUMBER CHRIS RC4 COST TOTAL HOURS	2 0.00 1.73	SIZ TRI	C CODE E P TIME AL TURNS	4 9,875 5,0 9742	NO:	TERVAL ZZLES T RUN NDITION		.0- 1408.2 15 15 15 9.2 B0 G0.150
DEPTH RO	e Mos	RPM	MW "d"c	HOURS	TURNS	ICOST	ccost	PP FG
1399.5 27.	7 21.4	93 9	.7 1.16	1.37	7709	132	1193	8.6 15.3
	0 21.9		.7 1.03	1.38	7771	81	1165	8.6 15.3
1400.5 51.	4 22.4	94 9	.7 1.00	1.39	7826	71	1138	8.6 15.3
1401.0 32.	7 20.1	94 9	.7 1.10	1.40	7912	112	1114	8.6 15.3
	0 17.9		.7 0.97	1.41	7971	76	1090	8.6 15.3
	4 16.9		.7 0.91	1.42	8022	66	1066	8.6 15.3
	4 20.3		7 0.96	1,43	8073	66	1 (144	8.6 15.3
	7 21.1 0 19.6		.7 1.16 .7 0.92	1,45 1,46	8176	132 61	1024	8.6 15.3 8.6 15.3
	0 18.3		.7 0.97 .7 0.99	1.47	8223 8285		1004 984.54	8.6 15.3
	6 22.8		.7 1.32	1.50		207.96	968.69	8.6 15.3
	0 24.4		.7 1.34	1.53		202.89		8.6 15.3
1405.2 14.	7 23.1	94 9	.7 1.38	1.54	8680	248.54	947.78	8.6 15.3
1405.4 9.	9 21.7	95 9	.7 1.47	1.56	8795	370.27	943.23	8.6 15.3
	7 21.9		7 1.54	1.59		476.79		8.6 15.3
	1 21.3		.7 1.55	1.61	9103	512.29		8.6 15.3
	9 27.5		.7 1.37	1.63	9163	192.74		8.6 15.3
	0 25.7		.7 1.33	1.65	9276		919.23	8.6 15.3
	0 21.3		.7 0.83	1.65	9301		906.11	8.6 15.3
	4 21.4		.7 0.97 .7 1.42	1.65 1.67	9321 9424	329,69	899.89	8.6 15.3 8.6 15.3
	6 22.4		.7 1.59	1.70	9596			8.6 15.3
	8 19.8		7 1.17	1.71		147.09		8.6 15.3
1407.8 34,	3 19.5	94 9	.7 1.08	1.72	9674	106.52	882 17	8.6 15.4
	2 18.5		.7 1.13	1.72		134,41		8.6 15.4
	4 19.1		.7 1.01	1.73	9742		871.22	8.6 15.4
BIT NUMBER	2	IAD	C CODE	4	IN	TERVAL	1408	.2- 1414.0
CHRIS RC4		SIZ		9,875	NOX	ZZLES		15 15 15
COST	0.00		P TIME	5.0		r RUN		5.8
TOTAL HOURS	1.87	тот	AL TURNS	10452	CO	MOTTICH	T ()	B0 G0.200
DEPTH RC	B MOB	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP FG
1408.4 45.	0 22.2	101 9	.8 1.05	1.73	9769	81.16	865.99	8.6 15.4
	4 21.6		.8 1.06	1.74	9826		855.16	8.6 15.4
	4 22.3		.8 0.99	1.75	9848		849.72	8.6 15.4
	4 23.3		.8 0.95	1.75	9884		839.06	8.6 15.4
	3 24.0		.8 0.93	1.76	9900	116.66		8.6 15.4
	8 22.9 3 21.4		.8 0.84 .8 0.94	1.77 1.77	9912	126.81		8.6 15.4 8.6 15.4
1 T 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	<i>a E</i> Li⁴f	~9 y	, () () , y *)	1.//	77.01	110.00	007100	O.O.JJ.M

and the second

DEP	TH ROP	MOB	RPM	мы	"d "c:	HOURS	TURNS	ICOST	CCOST	PP	FG
1410 1411 1411 1411 1412 1412 1412 1412	.8 49,7 .0 48.0 .4 51.4 .6 40.0 .0 42.4 .2 72.0 .6 75.8 .8 40.0	19,2 17,6 16,7 16,1 15,8 16,2 15,4 15,0 15,2	90 94 97 94 95 97 96 99	9.8 9.8 9.8 9.8 9.8 9.8 9.8	0.91 0.93 0.94 0.92 0.97 0.97 0.82 0.80 0.97	1.78 1.79 1.79 1.80 1.81 1.82 1.83 1.83	9968 10012 10036 10081 10109 10163 10179 10209 10239 10239	73.55 76.08 71.01 91.30 86.23 50.72 48.19 91.30	814.83 805.20 800.49 791.20 786.77 728.02 773.50 764.60 760.49 756.15	8.66 8.66 8.66 8.66 8.66 8.66	15,4 15,4 15,4 15,4 15,4 15,4
1413 1414		14.3 16.9			0.95 1.15	1.84 1.87	10324 10452		746,15 737,49	8.6 8.6	
BIT N HTC J; COST TOTAL			9	SIZE TRIP 1	CODE TIME TURNS	12.250 6.0	NO2 B11	TERVAL ZLES RUN IDITION	1414. TP	861 -0. 18 18 41 42 60 83	8 18 21.3
DEP.	TH ROP	MOB	RPM	MU	"d"c	HOURS	TURNS	ICOST	ccost	рP	FG
1415 1416 1417 1418 1419 1420 1421 1422	.0 83.7 .0 63.2 .0 85.7 .0 128.6 .0 97.3		84 84 85 84 84 84 85	9.8 9.8 9.8 9.8 9.8	0.73 0.76 0.86 0.74 0.67 0.75 0.82 0.80	0.01 0.02 0.04 0.05 0.06 0.07 0.08 0.10	55 115 195 254 293 345 414 484	40 44 58 43 28 38 50	30468 15256 10190 7653 6128 5113 4390 3847	8.5 1 8.5 1 8.5 1 8.5 1 8.5 1	15.3 15.3 15.3 15.3 15.3
1423 1424 1425 1426 1427 1428 1429 1430 1431	.0 72.0 .0 133.3 .0 138.5 .0 45.0 .0 144.0 .0 90.0 .0 62.1	23.3 27.1 20.8 23.0 24.3 23.0	84 90 93 93 95 94 94 94	9.8 9.8 9.8 9.8 9.8 9.8	0.77 0.79 0.70 0.68 1.02 0.65 0.79 0.91 0.91	0.11 0.12 0.13 0.14 0.16 0.16 0.18 0.19 0.21	540 615 657 698 822 862 925 1016 1110	41 51 27 26 81 25 41 59 61 31	3424 3087 2809 2577 2385 2216 2071 1946 1835	8.5 1 8.5 1 8.5 1 8.5 1 8.5 1 8.5 1	15.4 4.4 15.5 15.4 15.4 15.4 15.4
1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441,	0 116.1 0 109.1 0 128.6 0 105.9 0 100.0 0 116.1 0 105.9 0 102.9	24.1 20.0 28.8 23.9 21.9 22.7 15.2 18.9	95 95 95 95 95 96 97 98 95	9.8 9.8 9.8 9.8 9.8 9.8	0.73 0.68	0.23 0.24 0.25 0.25 0.26 0.27 0.28 0.29 0.30 0.31	1224 1273 1326 1370 1424 1482 1531 1586 1638 1684	42 31 33 28 34 37 31 34 36 29	1645 1565 1492 1425 1365 1309 1258 1211 1168 1127	8.5 1 8.5 1 8.5 1 8.5 1 8.5 1 8.5 1 8.5 1	5.4 5.4 5.4 5.4 5.4 5.4 5.4

•

DEPTH	ROP (MOB 1	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	pр	FG	
1443.0 1444.0 1445.0 1446.0 1447.0 1448.0 1449.0 1450.0 1451.0 1452.0	85.7 11 100.0 19 112.5 19 171.4 29 138.5 20 133.3 29 128.6 21 128.6 21 80.0 29 46.8 10	9,3 9,1 4,4 3,8 2,5 5,5 4,0	97 96 96 95 95 95 95 95 95	9.8 9.8 9.8 9.8 9.8 9.8 9.8	0.74 0.74 0.70 0.63 0.69 0.69 0.72 0.72 0.72	0.32 0.33 0.34 0.35 0.35 0.36 0.37 0.38 0.39	1751 1809 1860 1893 1934 1977 2022 2066 2137 2259	32 21.30 26.38 27.39 28.40 28.40 45.65	1055	8.55 8.55 8.55 8.55 8.55	15.4 15.4 15.4 15.4 15.4 15.4 15.4	
1453.0 1454.0 1455.0 1457.0 1457.0 1459.0 1459.0 1460.0 1461.0	150.0 27 124.1 25 144.0 25 15.3 29 18.5 29 171.4 20 105.9 20 133.3 27 133.3 27 133.3 27	5.5 5.6 9.9 7.0 3.4 3.4 2.3	92	9,8 9,8 9,8 9,8 9,8 9,8 9,8	0.65 0.72 0.68 1.34 1.29 0.62 0.75 0.68 0.71	0.42 0.42 0.43 0.55 0.55 0.55 0.57 0.57		29.42 25.36 238.39 197.82 21.30 34.49 27.39		86.555555 86.66555 86.666	15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4	
1463.0 1464.0 1465.0 1467.0 1467.0 1469.0 1470.0 1471.0 1472.0	124.1 26 94.7 25 97.3 25 133.3 22 112.5 19 54.5 9 120.0 12 163.6 25 112.5 16 50.7 14	1.6 5.0 2.8 2.6 2.2 1.5 1.6	99 98 99 90 90 98 98	9.8 9.8 9.8 9.8 9.8 9.8 9.8	0.75 0.78 0.80 0.70 0.72 0.76 0.68 0.63 0.69 0.80	0.60 0.61 0.62 0.63 0.63 0.65 0.66 0.67	3272 3335 3395 3439 3492 3602 3651 3687 3740 3833	38.55 37.53 27.39 32.46 66.95 30.43 22.32	665,45 652,91 640,85 629,05 617,79 607,59 597,10 586,83 577,11 568,40	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	15,4 15,4 15,4 15,4 15,4 15,4 15,4	
1473.0 1474.0 1475.0 1476.0 1477.0 1478.0 1479.0 1480.0 1481.0 1482.0	94.7 22 97.3 23 94.7 23 109.1 21 81.8 19 87.8 18 100.0 18 92.3 23 97.3 22 92.3 21	3.0 3.0 1.7 7.8 3.9 3.0 8.7	96 96 96 96 96 96 84 88	9.8 9.8 9.8 9.8 9.8 9.8 9.8	0.78 0.78 0.78 0.73 0.79 0.77 0.72 0.76 0.74	0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79	3893 3952 4013 4065 4136 4201 4259 4313 4367 4428	37,53 38,55 33,48 44,64 41,59 36,52 39,56 37,53	559.42 550.72 542.32 534.12 526.35 518.77 511.35 504.21 497.24 490.51	8.5 8.5 8.5	15.4 15.4 15.4 15.5 15.5	
1483.0 1484.0 1485.0 1486.0 1487.0 1488.0 1489.0 1490.0 1491.0	72.0 15 72.0 20 102.9 20 64.3 21 72.0 21 67.9 21 64.3 21 78.3 20 72.0 20 70.6 22).2).5 .4 .2 .8 .6	94 94 94 94 94 94 94 95	9.8 9.8 9.8 9.8 9.8 9.8 9.8	0,81 0,83 0,74 0,87 0,84 0,85 0,87 0,81 0,83	0.82 0.83 0.84 0.85 0.87 0.88 0.90 0.91 0.93	4507 4586 4641 4728 4807 4890 4978 5050 5129 5211	50.72 35.51 56.81 50.72 53.77 56.81 46.66 50.72	484.14 477.94 471.71 465.95 460.26 454.77 449.46 444.16 439.05 434.09	8.5	15.5 15.5 15.5 15.5 15.5 15.5 15.5	

en el la companya de la co

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	rcost	CCOST	PР	FG
1493.0 1494.0 1495.0 1496.0 1497.0 1498.0 1499.0 1500.0 1501.0	81.8 78.3 92.3 75.0 83.7 75.0 45.5 43.9	24.8 25.7 26.2 26.1 26.3 26.3 26.4 26.5 26.0 30.1	95 95 95 95 95 95 95 96 96	9.8 9.8 9.8 9.8 9.8 9.8 9.8	0.87 0.85 0.86 0.82 0.88 0.85 0.88 0.92 1.01	0.95 0.97 0.98 0.99 1.00 1.01 1.03 1.04 1.07	5288 5358 5431 5493 5569 5538 5714 5801 5926 6135	46.66 39.56 48.69 43.62 48.69 55.79 83.18	429.22 424.41 419.75 415.11 410.70 406.33 402.12 398.10 394.48 391.49	88.555555 88.88.55555	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1503.0 1504.0 1505.0 1506.0 1507.0 1508.0 1509.0 1510.0 1511.0	24.5 24.0 59.0 55.4 87.8 53.7 54.5 34.3	28.4 28.4 28.3 26.8 25.4 25.1 24.8 25.0 24.6	96 97 97 97 97 97 97 92	9,8 9,8 9,8 9,8 9,8 9,8	1.17 1.22 1.22 0.95 0.96 0.83 0.96 1.07	1.14 1.18 1.22 1.24 1.25 1.26 1.28 1.30 1.33	6570	65,94 41,59 62,92 66,95	385.85 383.28 379.79 376.41 372.85 369.64 366.49 363.81	8.555555555555555555555555555555555555	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1513.0 1514.0 1515.0 1516.0 1517.0 1518.0 1519.0 1520.0 1521.0	50.7 58.1 52.9 48.6 53.7 51.4 15.7	26.0 26.4 26.5 26.3 26.8 26.5 26.4 27.6 25.1 29.5	87 94 94 94 94 94 91 91	9.7 9.7 9.7 9.7 9.7 9.7 9.7	0.97 0.99 0.96 0.98 1.01 0.98 0.99 1.33 1.33	1.37 1.39 1.41 1.43 1.45 1.47 1.55 1.57	7691 7802 7900 8006 8123 8228 8338 8686 9070 9876	72.03 62.90 68.98 75.07 67.97 71.01		8,55 8,55 8,55 8,55 8,55 8,55	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1523.0 1524.0 1525.0 1526.0 1527.0 1528.0 1529.0 1530.0 1531.0	11.0 12.5 9.7 12.5 9.6 7.4 7.4 9.9	34.1 35.3 35.6 31.6 33.8 29.5 28.0 38.5 39.2 40.6	97 97 97 86 95 67 46 53	9.7 9.7 9.7 9.7 9.7 9.7 9.8	1.58 1.55 1.52 1.50 1.49 1.40 1.46 1.49 1.50	1.87 1.96 2.04 2.15 2.23 2.33 2.46 2.60 2.70	11006 11470 11982 12440 12846 13389 13763	375.34 291.15 379.40 492.01 490.99 370.27	341.81 341.36 341.67 341.22 341.55	8.5 8.5 8.5 8.5 8.5 8.5 8.5	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
1533.0 1534.0 1535.0 1536.0 1537.0 1538.0 1539.0 1540.0 1541.0	23.1 14.2 19.1 35.3 48.0 45.6 39.1 45.0	40.6 40.2 40.3 39.3 36.7 33.1 34.7 36.1	55 55 55 55 55 56 66 71	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.41 1.21 1.37 1.27 1.06 0.94 1.00 1.05 1.00	2.85 2.89 2.96 3.01 3.04 3.06 3.11 3.13 3.15	14721 14947 15115	256.65 190.72 103.47 76.08 80.14 93.33 81.16	341.49 340.79 339.56	8.5 8.5 8.5 8.5 8.5 8.5 8.5	15.5 15.5 15.5 15.5 15.5 15.6 15.6

DEPTH	ROP	WOB	RPM	мы	"d"c	HOURS	THDMC	T (ግ (ግ (ግ (ግ			
1543.0		35.2	71		0.98	3.17	TURNS 15720			рþ	FG
1544.0	40,4	33.6	71		1.06	3.20	15826				15.6 15.6
1545.0		34.1	57		0.92	3.22	15892	20.00	321.93		15.6
1546.0 1547.0		35.7 35.6	54 54		1,04	3.24	15986			8.5	15.6
1548.0		35.2	54		0.97	3.27 3.29	16061 16138	84.20			15.8
1549.0		35.4	45		1,05	3,33	16236		316,78 315,41	8.5 8.5	15.6 15.6
1550.0		36.5	55	9,6	1,09	3.36	16344	119.70			15.6
1551.0 1552.0		36.5 36.6	55		1.07	3.39	16443		312.48	8.5	15,6
2 (2 (2 E) V	Cr. sh. * 43	## O + O	55	y , to	1.06	3.42	16539	105.50	310.98	8.5	15.6
1553.0	27.5		55		1.13	3,46		132.89		8.5	15.6
1554.0 1555.0	27.7 28.3		55 55		1.13	3.49	16779				15.6
1556.0	24.2		55		1.18	3,53 3,57	16896 17033	128,83 151,15			15.6 15.6
1557.0	26.5	37.3	55	9.6	1,14	3.61	17157		304.88		15.6
1558.0	22.6		55		1,19	3.65	17304	161.30	303.88		15.6
1559.0 1560.0	20.0 27.7		56 66		1.24	3.70	17472	182.60			15.8
1561.0	29.0		66		1.18	3,74 3,77	17615	131.88	301,87 300.67		15.6
1562.0	30.8		67		1.16	3.80		118.69			15.6 15.6
1563.0	22,4	37.8	67	9.6	1.26	3.85	18060	163.33	998 SW	o =	15.6
1564.0	8.8	39.4	62	9.6	1.55	3.96	18478		299,29		15.6
1565.0	10.2		48		1,42	4.06	18760		299,68	8.5	15.6
1566.0 1567.0	12.6	39.5	48 53		1.59	4.22 4.30	19235 19488	596.49			15.6
1568.0	28.6		48		1.07	4.34	19590	290,13 127,82	301.55		15.6 15.6
1569.0	55,4		56	9.6	0.91	4.35	19651	65.94			15.6
1570.0 1571.0	42.9		57		1.02	4.38	19730		297,54	8.5	15.6
1572.0	36.7 46.2		57 57		1.04 0.97	4.41 4.43	19823 19896		296.28		15.6
				710	0.77	C-42 + A2	17070	77.13	294.91	8.0	15.4
1573.0	48.0		57		0.95	4.45	19967		293.53		15.6
1574.0 1575.0	67.9 59.0		57 57		0.85 0.88	4,46	20017		292.03		15.6
1576.0	22.2		61	9.6		4.48 4.52	20076	164.34	290.60		15.6 15.6
1577.0	16.5		58	9.6		4.58		221.15			15.6
1578.0	19.3		69	9.6		4,64	20663	189.70	288.79		15.6
1579.0 1580.0	8.5 8.2		61 51	9.6 9.6		4.75		430.12		8.5	
1581.0	14.6		55	9.6		4.88 4.94		444.33		8.5 8.5	
1582.0	12.7		55	9.6		5.02		287.09		8.5	
1583.0	10.7	39.8	55	9.6	1.46	5.12	22257	339.84	290.42	8.5	15.4
1584.0	28.3		47	9.6	1.09	5.15		128.83		8.5	
1585.0 1586.0	9,9		47	9.6		5,25		368,24		8.5	15.6
1587.0	29.5 48.0		46 46	9.6 9.6		5.29 5.31	22737 22795	123.76	287.16		15.6
1588.0	45.0		57	9.6		5.33	22871		286.74		15.6 15.6
1589.0	22.9		59	9.6	1,22	5.37	23024	159.27	286.01	8.5	15.6
1590.0 1591.0	25.2		58	9.6		5.41		145.07		8.5	15.6
1592.0	51.4 : 15.3 :		59 57	9.6 9.6		5.43 5.50	23231	71.01 238.39	284.00	8.5	15.6
	• 114					30 1 30 V	E. 1.7 "T 1.7 "T	5 WW 1 W 7		W FOR	. w . ()

entre production of the state o

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	JCOST	CCOST	pр	FG
1593.0 1594.0 1595.0 1597.0 1598.0 1598.5 1599.0 1600.0	4.7 6.4 15.0 11.3 6.1 10.9 8.9	38.0 38.2 38.8	58 53 46 65 65 68 73 78 49	9,6 9,6 9,6 9,6 9,6 9,6	1.59 1.71 1.56 1.35 1.48 1.50 1.67 1.67	5.63 5.84 6.00 6.06 6.15 6.32 6.36 6.42 6.54 6.67	24582 25010 25273 25620 26274 26508 26754 27335	243,47 322,59 598,52	287.55 289.11 288.86 289.04 290.73 290.84 291.17 292.03	88.5555555 88.888.555555	15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.7
1602.0 1603.0 1604.0 1605.0 1606.0 1607.0 1608.0 1609.0 1610.0	15.4 10.2 7.5 11.4 13.8 9.7 24.3	42.6 42.9 47.7 49.5 49.2 51.6 59.3 59.5	36 47 46 45 50 40 44 47 45	9.6 9.6 9.6 9.6 9.6 9.6	1.52 1.32 1.50 1.62 1.51 1.40 1.51 1.28 1.46	6.83 6.89 6.99 7.12 7.21 7.28 7.39 7.43 7.50 7.57	28237 28507 28870 29133 29328 29575 29684 29863	574.18 237.38 358.10 486.93 319.55 264.77 376.36 150.14 257.67 275.93	294.15 294.49 295.49 295.62 295.46 295.88 295.13 294.94	8.555555 8.65555 8.655 8.655	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
1612.0 1613.0 1614.0 1615.0 1616.0 1617.0 1618.0 1619.0 1620.0	6.0 18.8 18.3 12.0 22.1 13.6 13.1 23.7 11.1	47.0 47.0 47.0 47.0 47.0 47.0 47.0	43 36 37 48 49 52 49 51 53 62	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.65 1.20 1.23 1.45 1.26 1.43 1.43 1.51	7.74 7.79 7.85 7.98 8.05 8.13 8.17 8.26	30610 30733 30971 31105 31332 31558 31688	611.71 194.77 199.85 304.33 165.35 267.81 278.97 154.20 328.68 354.04	295,93 295,45 295,49 294,85 294,72 294,64 293,96 294,12	888888555 8888888888888888888888888888	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
1622.0 1623.0 1624.0 1625.0 1626.0 1627.0 1628.0 1629.0 1630.0 1631.0	15.0 24.3 35.3 9.6 20.7 24.8 10.4 10.1 15.3 14.8	47.0 47.0 47.0 47.0 47.0 47.0 47.0 47.0	56 56 56 76 77 76 84 88	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.45 1.26 1.14 1.58 1.42 1.37 1.66 1.70 1.58	8.42 8.46 8.49 8.60 8.64 8.68 8.78 8.88 9.95	32710 32806 33156 33377 33563 34004 34507 34853	243,47 150,14 103,47 379,40 176,51 147,09 351,00 363,17 239,41 247,52	293.48 292.57 292.99 292.44 291.75 292.03 292.36 292.12	8.5555555 8.6555555 8.6555	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
1632.0 1633.0 1634.0 1635.0 1636.0 1637.0 1638.0 1639.0 1640.0	7.3 7.6 7.7 7.9	42.8 39.0 39.0 39.0 39.0 39.0 39.0	88 88 89 92 89 92 87 87 89	9.6 9.6 9.6 9.6 9.6 9.6	1.70 1.64 1.59 1.78 1.73 1.71 1.72 1.71	9.11 9.20 9.29 9.45 9.59 9.72 9.85 9.98 10.09	36200 36684 37552 38304 39001 39713 40407 40994	345.93 336.80 333.75 591.42 497.08 478.82 471.72 462.59 409.84 75.07	292.36 292.55 293.90 294.82 295.64 296.43 297.17 297.67	8.5555555 8.8888 8.5555	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7

•

DEPTH	ROP WOB	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
1642.0 1643.0 1644.0 1645.0 1646.0 1647.0 1648.0 1649.0 1650.0	26.5 39.0 13.2 39.0 27.3 39.0 17.9 39.0 11.7 39.0 25.4 39.0 12.0 39.0 21.2 39.0 22.1 39.0 25.0 39.0	91 91 99 95 95 95 95 96 96 9	2.6 1.31 2.6 1.54 2.6 1.31 2.6 1.45 2.6 1.60 2.6 1.35 2.6 1.59 2.6 1.41 2.6 1.39 2.6 1.36	10.15 10.22 10.26 10.32 10.40 10.44 10.52 10.57 10.66	41721 41922 42229 42715 42940 43417 43686 43945	137.96 276.94 133.91 203.90 311.10 144.05 304.33 172.46 165.35	295.99 295.91 295.20 294.81 294.88 294.23 294.27 293.75 293.21	8.5 15 8.5 15 8.5 15 8.5 15 8.5 15	
1652.0 1653.0 1654.0 1655.0 1656.0 1657.0 1658.0 1659.0 1660.0	37.9 39.0 39.1 39.0 32.4 39.0 25.2 39.0 24.5 39.0 19.9 39.0 15.4 39.0 38.3 39.0 9.2 39.0	95 95 95 95 95 95 93 93 93 93 94 9	2.6 1.22 2.6 1.21 2.6 1.27 2.6 1.35 2.6 1.29 2.6 1.42 2.6 1.50 2.6 1.61 2.6 1.61	10.68 10.71 10.74 10.78 10.82 10.87 10.93 10.96 11.07	44470 44646 44872 45058 45339 45704 45850 46458	96.37 93.33 112.60 145.07 149.12 183.61 237.38 95.36 395.63	290.94 290.19 289.59 289.01 288.58 288.37 287.58 288.02	8.5 15	
1662.0 1663.0 1664.0 1665.0 1666.0 1667.0 1668.0 1669.0 1670.0	28.1 40.0 44.4 40.0 46.8 40.0 58.1 40.0 78.3 40.0 28.3 40.0 35.3 40.0 11.3 40.0 20.3 40.0	96 97 97 99 99 99 99 99 99 99 99 99 99 99	2.6 1.33 2.6 1.18 2.6 1.17 2.6 1.03 2.6 0.99 2.6 0.99 2.6 1.25 2.6 1.60 2.6 1.43 2.6 1.32	11.20 11.22 11.24 11.26 11.27 11.29 11.31 11.40 11.45	47293 47417 47498 47570 47642 47803 48278 48556	78.11 62.90 46.66 46.66 103.47 322.59	286.78 285.95 285.06 284.11 283.18 282.47 282.63 282.22	8.5 15 8.5 15 8.5 15 8.5 15 8.5 15	5.7 5.8 5.8 5.8 5.8
1672.0 1673.0 1674.0 1675.0 1676.0 1677.0 1678.0 1679.0 1680.0	50.0 40.0 14.8 40.0 20.2 40.0 12.5 40.0 15.5 40.0 12.0 40.0 19.8 40.0 60.0 40.0 32.1 40.0	95 94 9 1 94 9 1 94 9 1 94 9 1 94 9 1 94 9	P.6 1.14 P.6 1.53 P.6 1.43 P.6 1.56 P.6 1.51 P.6 1.60 P.6 1.44 P.6 1.08 P.6 1.28 P.6 1.43	11.51 11.57 11.62 11.70 11.77 11.85 11.90 11.92 11.95	49531 49955 50320 50789 51073 51167 51342	247.52 180.57 292.16 235.35 303.32 184.63 60.87 113.62	280.30 280.35 280.17 280.26 279.90 279.07	8.5 15	5.8 5.8 5.8 5.8 5.8 5.8
1682.0 1683.0 1684.0 1685.0 1686.0 1687.0 1688.0 1689.0 1690.0	25,5 40.0 14.1 40.0 19.4 40.0 16.8 40.0 55.4 40.0 69.2 40.0 61.0 40.0 60.0 40.0	94 97 99 99 99 99 99 99 99 99 99 99 99 99	7.6 1.35 7.6 1.54 7.6 1.45 7.6 1.48 7.6 1.12 7.6 1.05 7.6 1.01 7.6 1.09 7.6 1.09	12.04 12.11 12.16 12.22 12.24 12.25 12.27 12.28 12.30 12.31	52244 52546	52.75 47.68 59.85 60.87	277.51 277.19	8.5 15 8.5 15	5.8 5.8 5.8 5.8 5.8 5.8

Section 1

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	PР	FG
1692.0 1693.0 1694.0 1695.0 1696.0 1697.0 1698.0 1699.0 1700.0	31.6 52.2 64.3 51.4 39.6 17.6 19.8 13.3	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	9988555555 9999999999999	9.6 9.6 9.7 9.7 9.7 9.7	1.04 1.30 1.14 1.02 1.12 1.20 1.46 1.42 1.55	12.33 12.36 12.38 12.40 12.41 12.44 12.50 12.55 12.64	53515 53703 53816 53907 54018 54162 54487 54775 55204 55297	115.65 69.96 56.81 71.01 92.31 207.96 184.63 274.91	269.38	8.5 8.5 8.5 8.5 8.5 8.5	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1702.0 1703.0 1704.0 1705.0 1706.0 1707.0 1708.0 1709.0 1710.0	49.3 34.0 11.8 11.0 11.1 12.8 25.4 15.4		94 93 93 99 94 98 98 98	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.20 1.13 1.25 1.57 1.60 1.57 1.57 1.57	12.66 12.68 12.71 12.80 12.89 12.98 13.06 13.10 13.16	57184 57645 57877 58260	92.31 74.05 107.53 309.41 331.72 328.68 285.06 144.05 237.38 297.23	265.19 265.42 265.63 265.70 265.29 265.19	8.555555555555555555555555555555555555	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1712.0 1713.0 1714.0 1715.0 1716.0 1717.0 1718.0 1719.0 1720.0	13.4 12.9 12.3 12.2	40.0 40.0 40.0 40.0 40.0 40.0 40.0	98 98 99 99 99 99 99 98	9.7 9.7 9.7 9.7 9.7 9.7	1.50 1.33 1.52 1.56 1.57 1.59 1.59 1.59 1.49	13.31 13.34 13.41 13.48 13.56 13.64 13.73 13.80 13.86 13.88	59322 59717 60161 60622 61106 61596 62015	229.26 132.89 244.48 272.89 284.04 297.23 300.28 256.65 215.06 85.21	264.74 264.67 264.70 264.76 264.87 264.98 264.96	8.55555 8.5555 8.555 8.555	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
1722.0 1723.0 1724.0 1725.0 1726.0 1727.0 1728.0 1729.0 1730.0 1731.0	43.4 50.7 19.6 14.8 12.8 30.3 52.2 20.8 18.2 27.5	40.0 40.0 40.0 40.0 40.0 40.0 40.0	99 98 98 97 97 96 97 97	9.7 9.7 9.7 9.7 9.7 9.7	1.19 1.14 1.44 1.52 1.57 1.29 1.12 1.42 1.46 1.33	13.90 13.92 13.97 14.04 14.12 14.15 14.17 14.22 14.27 14.31	63452 63907 64099 64210 64490 64810	72.03 186.66 246.51 285.06 120.72	262.71 262.78 262.32 261.71 261.44 261.25	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.8 15.8 15.8 15.8 15.8 15.8 15.8
1732.0 1733.0 1734.0 1735.0 1736.0 1737.0 1738.0 1739.0 1740.0	9.6 10.8 13.0 48.0 19.7 39.6 22.4 18.8 17.7 35.3	40.0 40.0 40.0 40.0 40.0 40.0	97 97 90 94 99 99 100 99	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.66 1.62 1.54 1.14 1.44 1.22 1.40 1.45 1.47	14.41 14.51 14.58 14.60 14.65 14.65 14.72 14.78 14.83	66167 66579 66696 66998 67149 67416 67732 68069	185.64	261.46 261.52 260.94 260.70 260.18 259.88 259.68 259.52	8.5555555 8.88888 8.555555	15.9 15.9 15.9 15.9 15.9 15.9 15.9

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	pр	FG
1742.0 1743.0 1744.0 1745.0 1746.0 1747.0 1748.0 1749.0 1750.0	18.1 58.1 53.7 40.4 26.1 11.8 26.3 40.0	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	99 93 93 92 93 93 94 93 93	9,7 9,7 9,7 9,7 9,7 9,7	1.21 1.45 1.07 1.10 1.19 1.33 1.59 1.33 1.19	14.89 14.94 14.96 14.98 15.00 15.04 15.13 15.16 15.19	68791 68894 69032 69246 69724	67.97 90.29 139.99 310.42 138.98 91.30	257.76 257.19 256.69 256.34 256.50	8.555555 8.688888 8.68888888888888888888	15.9 15.9 15.9 15.9 15.9 15.9 15.9
1752.0 1753.0 1754.0 1755.0 1756.0 1757.0 1758.0 1759.0 1760.0	31.6 19.6 40.9 52.2 39.6 52.2 40.9 39.1	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	93 92 92 91 91 91 91 92	9.7 9.7 9.7 9.7 9.7 9.7	1.47 1.27 1.42 1.18 1.10 1.19 1.10 1.18 1.20	15.27 15.30 15.36 15.40 15.42 15.44 15.47 15.47	70540 70715 70997 71131 71236 71374 71479 71613 71753 71984	186.66 89.27 70.00 92.31 70.00 89.27 93.33	255.04 254.63 254.43 253.95 253.41 252.41 252.41 251.93 251.47 251.19	8.55 8.55 8.55 8.55 8.55 5.55	15.9 15.9 15.9 15.9 15.9 15.9 15.9
1762.0 1763.0 1764.0 1765.0 1765.0 1767.0 1768.0 1769.0 1770.0	17.2 20.2 17.0 50.0 32.1 20.1 28.3 40.9	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	99 98 98 98 98 98 98 98	9.7 9.7 9.7 9.7 9.7 9.7	1.45 1.48 1.43 1.48 1.14 1.28 1.43 1.32 1.32	15.59 15.65 15.70 15.77 15.77 15.81 15.85 15.89 15.97	72635 72926 73272 73390 73573 73866 74073 74217	190.72 212.02 180.57 215.06 73.04 113.62 181.59 128.83 89.27 209.99	250.91 250.71 250.60 250.10 249.71 249.52 249.18 248.73	8.5 8.5 8.5 8.5 8.5 8.5 8.5	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1772.0 1773.0 1774.0 1775.0 1776.0 1777.0 1778.0 1779.0 1780.0	76.6 51.4 54.5 18.8 65.5 70.6 11.7	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	98 98 98 98	9.7 9.7 9.7 9.7 9.7 9.7	1.47 1.00 1.13 1.11 1.45 1.05 1.03 1.60 1.48	16.04 16.05 16.07 16.09 16.14 16.15 16.17 16.25 16.31	74967 75081 75189 75502 75591 75674 76182	71.01 66.95 193.76 55.79 51.74 313.46 215.06	248.01 247.52 247.02 246.87 246.35 245.81 246.00	8.5 8.5 8.5 8.5 8.5 8.5	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
1782.0 1783.0 1784.0 1785.0 1786.0 1787.0 1788.0 1789.0 1790.0	72.0 13.3 11.5 9.5 13.4 19.3 21.6	40.0 40.0 40.0 40.0 40.0 40.0 40.0 40.0	98 99 90 88 98 103 103	9.7 9.7 9.7 9.7 9.7 9.7	1.19 1.02 1.56 1.58 1.63 1.56 1.46 1.42 1.59	16.35 16.44 16.53 16.63 16.71 16.76 16.81 16.89	77760 78311 78747 79068 79354 79841	50,72 274,91 318,54 382,45 271,87 189,70 169,41 288,10	244,73 245,10 245,17	8.55 8.55 8.55 8.55 8.55	15.9 15.9 15.9

DEPTH	ROP	MOB	RPM	МЫ	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
1792.0 1793.0 1794.0 1795.0 1796.0 1797.0 1798.0 1799.0 1800.0	29.3 10.1 25.2 21.7 25.7 17.3 7.0 14.8	40.0 40.0 40.0 40.0 40.0 40.0 40.0	91 92 53 60 57 41 22 50 92	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.54 1.29 1.45 1.20 1.23 1.07 1.38 1.59 1.31	17.03 17.06 17.16 17.20 17.24 17.28 17.34 17.48 17.55 17.58	80826	142.02 211.00 518.38 246.37	244.67 244.97 244.71 244.51 244.24 244.16 244.87	8.555555555555555555555555555555555555	15.9 15.9 15.9 15.9 15.9 15.9 15.9
1802.0 1803.0 1804.0 1805.0 1806.0 1807.0 1808.0 1809.0 1810.0	17.6 15.4 35.0 11.3	40.0 40.0 40.0 40.0 40.0 40.0 40.0	92 102 69 62 56 57 111 112 101 112	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.19 1.10 1.36 1.37 1.07 1.45 1.48 1.38 1.43	17.60 17.62 17.68 17.74 17.77 17.86 17.91 17.95 18.00	82758 82863 83097 83339 83434 83745 84087 84242 84639 84953	92.31 62.90 206.95 237.38 104.49 322.59 186.66 137.96 179.56 170.43	243.52 243.16 243.37 243.22 242.96 242.80	8.555555555555555555555555555555555555	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1812.0 1813.0 1814.0 1815.0 1816.0 1817.0 1818.0 1819.0 1820.0	16.4 28.3 22.6 8.7 9.0 9.0 16.1 16.9	40.0 40.0 40.0 40.0	112	9.7 9.7 9.7 9.7 9.7 9.7	1.63 1.53 1.36 1.43 1.74 1.73 1.73 1.52 1.52	18.12 18.18 18.22 18.26 18.38 18.49 18.60 18.64 18.64	85911 86147 86443 87212 87955 88707 89098 89427	299.26 222.16 128.83 161.30 417.95 403.75 407.81 226.83 216.58 418.97	242.70 242.42 242.22 242.65 243.05 243.46 243.42 243.36	8.5555555 8.555555 8.555 8.55	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1822.0 1823.0 1824.0 1825.0 1826.0 1827.0 1828.0 1829.0 1830.0 1831.0	11.4 25.7 24.0 21.4 25.4 12.9 9.8 15.8 17.1	50.0 50.0 50.0 50.0 50.0 50.0 48.6 51.1	49 47 47 47 48 44 42 38 41	9.7 9.7 9.7 9.7 9.7 9.7	1.32	18.92 18.96 19.01 19.05 19.09 19.17 19.27 19.33 19.39	90232 90349 90480 90590 90810 91081 91239 91373	319.55 142.02 152.17 170.43 144.05 282.02 372.30 231.29 213.03 207.96	243.72 243.50 243.32 243.08 243.18 243.49 243.46 243.38	8.55555555 8.888888 8.88888	16.0 16.0 16.0 16.0 16.0 16.0 16.0
1832.0 1833.0 1834.0 1835.0 1836.0 1837.0 1838.0 1839.0 1840.0 1841.0		50.2 50.5 50.8 45.1 43.1 49.0 50.5 50.4	39 46 48 46 41 45 48 49	9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.53 1.59 1.55 1.57 1.47 1.41	19.55 19.64 19.76 19.86 19.99 20.11 20.18 20.25 20.29 20.32	92013 92333 92620 92985 93274 93476 93667 93790	353.03 358.10 406.79 381.43 464.62 433.17 270.86 240.42 156.22 131.88	243.84 244.22 244.55 245.07 245.52 245.58 245.56 245.35	8.5 8.5 8.5 8.5 8.5	

descourse resultable description

DEPTH	R O P	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	p p	FG
1842.0 1843.0 1844.0 1845.0 1846.0 1847.0 1849.0 1849.0 1850.0	6.8 6.3 15.9 23.5 9.5 13.7 15.9	50.7 50.8 49.0 49.7 48.6 50.4 51.6 52.7 50.4	49 49 49 48 49 56 52 65	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.59 1.69 1.70 1.38 1.24 1.57 1.50 1.44 1.46	20.43 20.58 20.74 20.80 20.84 20.95 21.02 21.08 21.14 21.24	96170 9 6394	537,66 577,22 230,28 155,55 382,45 266,80	246.96 246.88	8.5 8.5 8.5 8.5 8.5 8.5 8.5	16.0 16.0 16.0 16.0 16.0 16.0 16.0
1852.0 1853.0 1854.0 1855.0 1856.0 1857.0 1858.0 1859.0 1860.0	30.8 29.8 7.4 7.0 7.1 7.0 8.4	48.6	49 50 50 50 50 41 41 45 46	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.28 1.17 1.16 1.17 1.68 1.70 1.57 1.58	21.28 21.32 21.35 21.38 21.52 21.66 21.80 21.95 22.06 22.20	96940 97037 97137 97546 97971 98315 98663 98985	493.02 521.42 516.35 519.40	246.65 246.08 246.64 247.26 247.87 248.46 248.89	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1862.0 1863.0 1864.0 1865.0 1866.0 1867.0 1869.0 1870.0	7.0	46.5 50.6 51.3 50.0 52.1	71 54 61 61 47 60 53 53 46	9.6 9.6 9.6 9.6 9.6 9.6	1.18 1.33 1.17 1.15 1.17 1.42 1.54 1.71 1.71	22.24 22.30 22.35 22.35 22.37 22.44 22.52 22.66 22.80 22.93	99548 99719 99815 99904 100003 100191 100465 100921 101376 101721	96.37 90.29 98.40 243.47 277.96	249.12 248.78 248.43 248.09 248.08 248.15 248.75 249.36	88888555 8888888888	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
1872.0 1873.0 1874.0 1875.0 1876.0 1877.0 1878.0 1879.0 1880.0	8.8 10.9 18.7 9.6 12.5 8.5 7.9	49.6 50.5	532 555 556 556 49 42 39	9.6 9.6 9.6 9.6 9.6 9.6 9.6	1.67 1.62 1.57 1.37 1.61 1.52 1.65 1.63 1.64	23.04 23.16 23.25 23.41 23.49 23.60 23.72 23.84 24.00	102438 102743 102920 103266 103532 103919 104265 104581	418.97 412.88 335.78 195.79 379.40 291.15 416.94 431.14 460.56 559.97	250.53 250.72 250.60 250.88 250.96 251.32 251.71 252.16	888888555 8888888888888888888888888888	16.1 16.1 16.1 16.1
1882.0 1883.0 1884.0 1885.0 1885.3	8.1 4.5 5.2	51.1 51.4 50.4 49.5 50.0	43 51 43 54 50	9.6 9.6 9.6	1.55 1.66 1.79 1.81 1.84	24.11 24.23 24.45 24.64 24.71	105603 106181 106806	396.65 451.43 811.56 702.00 811.56	253.55 254.73 255.68		16.1 16.1 16.1

1886.0 6.0 15.0 70 9.6 1.33 0.12 493 609 48251 8.5 16 1887.0 9.1 20.0 70 9.6 1.31 0.23 955 401 20104 8.5 16 1888.0 6.8 26.4 78 9.6 1.52 0.37 1635 534 12856 8.5 16 1889.0 10.5 28.4 77 9.6 1.43 0.47 2077 348 9425 8.5 16 1891.0 26.3 28.0 77 9.7 1.14 0.61 2718 139 6239 8.5 16 1892.0 9.0 39.2 80 9.7 1.61 0.22 3256 408 5369 8.5 16 1894.0 9.3 40.3 81 9.7 1.62 1.94 4324 393 4227 8.5 16 1894.0 9.3 340.3 81	BIT NUM HTC J22 COST TOTAL H	851	4 16.00 33.84	{	IADC CODE BIZE IRIP TIME FOTAL TURNS	517 12,250 6,8 205424	NOZ BIT	ERVAL ZLES RUN DITION		3- 2258.2 16 16 16 372.5 86 G0.25(
1887.0 9.1 20.0 70 9.6 1.31 0.23 955 401 20104 8.5 16 1888.0 6.8 26.4 78 9.6 1.52 6.37 1635 534 12856 8.5 16 1889.0 110.5 28.4 77 9.6 1.44 0.57 2543 366 7537 8.5 16 1891.0 26.3 28.0 77 9.7 1.44 0.61 2718 139 6239 8.5 16 1892.0 9.0 39.2 80 9.7 1.61 0.72 3256 408 5369 8.5 16 1893.0 8.9 39.8 81 9.7 1.63 0.83 3803 4127 8.5 16 1895.0 8.2 36.3 86 9.7 1.62 1.06 4954 447 3837 8.5 16 1897.0 7.9 36.0 90 9.7 1.62 1.06 4954 447 3837 8.5 16 1897.0 7.8 36.1 87 9.7 1.64 1.57 7734 376 285 8.5 16 1897.0<	DEPTH	ROP	MOB	RPM	МЫ "п"с	HOURS	TURNS	ICOST	CCOST	PP F
1887.0 9.1 20.0 70 9.6 1.31 0.23 955 401 20104 8.5 16 1889.0 10.5 28.4 77 9.6 1.42 0.47 2077 364 9475 8.5 16 1890.0 10.0 29.0 77 9.6 1.44 0.57 2843 368 9475 8.5 16 1891.0 26.3 28.0 77 9.7 1.14 0.61 2718 139 6239 8.5 16 1892.0 9.0 39.2 80 9.7 1.61 0.72 3256 408 5369 8.5 16 1894.0 9.3 40.3 81 9.7 1.62 0.94 4324 393 4227 8.5 16 1895.0 8.2 36.3 86 9.7 1.62 1.06 4954 447 383 28.5 16 1895.0 7.2 36.0 90	1886.0	6.0	15.0	70	9.6 1.33	0.12	493	609	48251	8.5 16 1
1888.0 6.8 26.4 78 78 9.6 1.52 0.37 1635 534 12856 8.5 16 1889.0 10.5 28.4 77 9.6 1.43 0.47 2077 348 9475 8.5 16 1891.0 26.3 28.0 77 77 9.6 1.44 0.57 2543 366 7537 8.5 16 1891.0 26.3 28.0 77 9.7 1.61 0.61 2718 139 6239 8.5 16 1892.0 9.0 39.2 80 9.7 1.63 0.83 3603 412 4725 8.5 16 1893.0 8.9 39.8 81 9.7 1.62 0.94 4324 393 4227 8.5 16 1894.0 9.3 40.3 81 9.7 1.62 0.94 4324 393 4227 8.5 16 1895.0 8.2 36.3 86 9.7 1.62 1.06 4954 447 3837 8.5 16 1897.0 7.9 36.0 90 9.7 1.65 1.33 6458 463 3267 8.5 16 1898.0 7.8 36.1 87 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.66 8304 353 2686 8.5 16 <	1887.0	9.1	20.0	70	9.6 1.31					8.5 16.1
1899.0 10.0 29.0 77 9.6 1.44 0.57 2543 366 7537 8.5 16 1891.0 26.3 28.0 77 9.7 1.41 0.61 2716 139 6239 8.5 16 1892.0 9.0 39.2 80 9.7 1.61 0.72 3256 408 5369 8.5 16 1894.0 9.3 39.8 81 9.7 1.62 0.94 4324 393 4227 8.5 16 1895.0 8.2 36.3 86 9.7 1.62 0.94 4324 393 4227 8.5 16 1897.0 9.3 36.0 90 9.7 1.65 1.33 6456 463 3267 8.5 16 1897.0 7.7 36.2 98 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.66 8304 353 2682 8.5 16	1888.0	6.8	26.4	7 8	9.6 1.52	0.37				8.5 16.1
1890.0 10.0 29.0 77 9.6 1.44 0.57 2543 366 7527 8.5 16 1891.0 26.3 28.0 77 9.7 1.14 0.61 2718 139 6239 8.5 16 1893.0 8.9 39.8 81 9.7 1.63 0.83 3803 412 4725 8.5 16 1894.0 9.3 40.3 81 9.7 1.62 0.94 4324 393 4227 8.5 16 1895.0 8.2 36.3 86 9.7 1.62 1.06 4954 447 3837 8.5 16 1897.0 7.9 36.0 90 9.7 1.65 1.33 6458 463 3267 8.5 16 1898.0 7.8 36.1 87 9.7 1.64 1.46 1.72 469 3046 8.5 16 1899.0 9.7 3.64 1.64 1.66 8304 353 2682 8.5 16 1900.0 10.5				77	9.6 1.43	0.47	2077	348	9425	8.5 16.1
1891.0 26.3 28.0 77 9.7 1.14 0.61 2718 139 6239 8.5 16 1892.0 9.0 39.2 80 9.7 1.61 0.72 3256 418 5369 8.5 16 1893.0 8.9 39.8 81 9.7 1.62 0.94 4324 393 4227 8.5 16 1895.0 8.2 36.3 86 9.7 1.62 1.06 4954 447 3837 8.5 16 1896.0 6.8 34.0 93 9.7 1.62 1.06 4954 447 3837 8.5 16 1897.0 7.9 36.0 90 9.7 1.65 1.33 6458 463 3267 8.5 16 1898.0 7.8 36.1 87 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.66 8304 353 2682 8.5 16	1890.0			77	9.6 1.44	0.57				8.5 16.1
1892.0 9.0 39.8 80 9.7 1.61 0.72 3256 408 5369 8.5 16 16 1894.0 9.3 40.3 81 9.7 1.63 0.83 3803 412 4725 8.5 16 16 1895.0 8.2 36.3 86 9.7 1.62 1.06 4954 497 3837 8.5 16 1896.0 6.8 34.0 93 9.7 1.62 1.06 4954 447 3837 8.5 16 1897.0 2.9 36.0 90 9.7 1.62 1.06 4954 447 3837 8.5 16 1898.0 2.9 36.0 90 9.7 1.65 1.33 6458 463 3267 8.5 16 1899.0 7.7 36.0 90 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 7.7 36.0 90 9.7 1.64 1.46 1.34 373 2852 8.5 16 1809.0 1.01 1.01 40.3 38 9.7 1.64 1.66 8304 353 2682 8.5 16 1901.0 10.3 40.3 98 9.7 1.64 1.66 8304 353	1891.0	26.3	28.0	77	9.7 1.14	0.61				8.5 16.1
1893.0 8.9 39.8 81 9.7 1.63 0.83 3803 412 4725 8.5 16 1894.0 9.3 40.3 81 9.7 1.62 0.94 4324 393 4227 8.5 16 1895.0 8.2 36.3 86 9.7 1.67 1.21 5773 535 3529 8.5 16 1897.0 7.9 36.0 90 9.7 1.65 1.33 6458 463 3267 8.5 16 1899.0 7.8 36.1 87 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 7.7 36.2 98 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1901.0 10.5 40.2 98 9.7 1.64 1.74 8866 348 2533 8.5 16	1892.0	9,0	39,2	8.0	9.7 1.61	0.72				8.5 16.1
1894.0 9.3 40.3 81 9.7 1.62 0.94 4324 393 4227 8.5 16 1895.0 8.2 36.3 86 9.7 1.62 1.06 49754 447 3837 8.5 16 1897.0 7.9 36.0 90 9.7 1.65 1.33 6458 463 3267 8.5 16 1898.0 7.8 36.1 87 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.46 7125 469 3046 8.5 16 1901.0 10.3 40.3 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1901.0 10.5 40.2 98 9.7 1.64 1.76 8866 348 2533 8.5 16 1903.0 13.4 38.2 98 9.7 1.54 1.94 9914 272 2284 8.5 16 <t< td=""><td></td><td>8.9</td><td>39.8</td><td>81</td><td>9.7 1.63</td><td>0.83</td><td></td><td></td><td></td><td></td></t<>		8.9	39.8	81	9.7 1.63	0.83				
1895.0 8.2 36.3 86 9.7 1.62 1.06 4954 447 3837 8.5 16 1897.0 7.9 36.0 90 9.7 1.65 1.33 575 535 3529 8.5 16 1898.0 7.8 36.1 87 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.46 7125 469 3046 8.5 16 1900.0 10.3 40.3 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1901.0 10.5 40.2 98 9.7 1.64 1.76 8866 348 2533 8.5 16 1902.0 9.3 38.9 95 9.7 1.65 1.86 9477 393 2405 8.5 16 1903.0 13.4 38.2 98 9.7 1.54 1.94 991 22 2284 8.5 16				81	9.7 1.62	0.94	4324			
1896.0 6.8 34.0 93 9.7 1.67 1.21 5273 535 3529 8.5 16 1897.0 7.9 36.0 90 9.7 1.65 1.33 6458 463 3267 8.5 16 1898.0 7.8 36.1 87 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1900.0 10.3 40.2 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1901.0 10.5 40.2 98 9.7 1.64 1.76 8866 348 2533 8.5 16 1902.0 9.3 38.9 95 9.7 1.65 1.86 9477 393 2405 8.5 16 1902.0 13.4 38.2 98 9.7 1.54 1.94 9914 292 2284 8.5 16 <tr< td=""><td>1895.0</td><td>8.2</td><td>36.3</td><td>86</td><td>9.7 1.62</td><td>1.06</td><td>4954</td><td></td><td></td><td>8.5 16.1</td></tr<>	1895.0	8.2	36.3	86	9.7 1.62	1.06	4954			8.5 16.1
1897.0 7.9 36.0 90 9.7 1.65 1.33 6458 463 3267 8.5 16 1898.0 7.8 36.1 87 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1900.0 10.3 40.3 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1901.0 10.5 40.2 98 9.7 1.64 1.76 8866 348 2533 8.5 16 1902.0 9.3 38.9 95 9.7 1.64 1.76 8866 348 2533 8.5 16 1903.0 13.4 38.2 98 9.7 1.54 1.94 9914 272 2284 8.5 16 1904.0 23.2 38.0 97 9.7 1.59 2.07 10684 328 2077 8.5 16 <	1896.0	6.8	34.0	93	9.7 1.67	1.21				
1898.0 7.8 36.1 87 9.7 1.64 1.46 7125 469 3046 8.5 16 1899.0 9.7 36.2 98 9.7 1.61 1.57 7734 376 2852 8.5 16 1900.0 10.3 40.3 98 9.7 1.64 1.66 8304 353 2682 8.5 16 1901.0 10.5 40.2 98 9.7 1.64 1.76 8866 348 2533 8.5 16 1902.0 9.3 38.9 95 9.7 1.65 1.86 9477 393 2405 8.5 16 1903.0 13.4 38.2 98 9.7 1.54 1.94 9914 272 2284 8.5 16 1904.0 23.2 38.0 97 9.7 1.54 1.94 9914 272 2284 8.5 16 1905.0 11.1 38.6 97 9.7 1.59 2.07 10684 328 2077 8.5 16 1906.0 14.3 40.5 96 9.7 1.39 2.19 11340 160 1905 8.5 16 1907.0 22.8 40.4 96 9.7 1.39 2.19 11340 160 1905 8.5 16 1909.0 10.7 40.8 97 9.7 1.64 2.44 12835 343 1784 8.5 16 1912.0 10.4 41.0 97 9.7 1.65 2.54 13394 352 1726<	1897.0	7.9	36.0	90	9.7 1.65					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1898.0	7.8	36.1	87						8.5 16.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1899.0	9.7	36.2	98	9.7 1.61	1.57	7734	376	2852	8 5 14 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1900.0									
1902.0 9.3 38.9 95 9.7 1.65 1.86 9477 393 2405 8.5 16 1903.0 13.4 38.2 98 9.7 1.54 1.94 9914 272 2284 8.5 16 1904.0 23.2 38.0 97 9.7 1.59 2.07 10684 328 2077 8.5 16 1905.0 11.1 38.6 97 9.7 1.54 2.14 11087 255 1989 8.5 16 1906.0 14.3 40.5 96 9.7 1.54 2.14 11087 255 1989 8.5 16 1907.0 22.8 40.4 96 9.7 1.82 2.35 12291 596 1847 8.5 16 1908.0 6.1 40.9 97 9.7 1.64 2.44 12835 343 1784 8.5 16 1908.0 10.7 40.8 97 9.7 1.65 2.54 13394 352 1726 8.5 16 <td>1901.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1901.0									
1903.0 13.4 38.2 98 9.7 1.54 1.94 9914 272 2284 8.5 16 1904.0 23.2 38.0 97 9.7 1.36 1.98 10164 157 2170 8.5 16 1905.0 11.1 38.6 97 9.7 1.59 2.07 10684 328 2077 8.5 16 1906.0 14.3 40.5 96 9.7 1.54 2.14 11087 255 1989 8.5 16 1907.0 22.8 40.4 96 9.7 1.39 2.19 11340 160 1905 8.5 16 1908.0 6.1 40.9 97 9.7 1.82 2.35 12291 596 1847 8.5 16 1909.0 10.7 40.8 97 9.7 1.64 2.44 12835 343 1784 8.5 16 1910.0 10.7 40.8 97 9.7 1.65 2.54 13394 352 1726 8.5 16 </td <td>1902.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1902.0									
1904.0 23.2 38.0 97 9.7 1.36 1.98 10164 157 2170 8.5 16 1905.0 11.1 38.6 97 9.7 1.59 2.07 10684 328 2077 8.5 16 1906.0 14.3 40.5 96 9.7 1.54 2.14 11087 255 1989 8.5 16 1907.0 22.8 40.4 96 9.7 1.39 2.19 11340 160 1905 8.5 16 1908.0 6.1 40.9 97 9.7 1.82 2.35 12291 596 1847 8.5 16 1909.0 10.7 40.8 97 9.7 1.64 2.44 12835 343 1784 8.5 16 1910.0 10.7 40.8 97 9.7 1.65 2.54 13394 352 1726 8.5 16 1911.0 9.2 41.4 92 9.7 1.68 2.54 13394 352 1726 8.5 16 </td <td>1903.0</td> <td>13.4</td> <td>38.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1903.0	13.4	38.2							
1905.0 11.1 38.6 97 9.7 1.59 2.07 10684 328 2077 8.5 16 1906.0 14.3 40.5 96 9.7 1.54 2.14 11087 255 1989 8.5 16 1907.0 22.8 40.4 96 9.7 1.39 2.19 11340 160 1905 8.5 16 1908.0 6.1 40.9 97 9.7 1.82 2.35 12291 596 1847 8.5 16 1909.0 10.7 40.8 97 9.7 1.64 2.44 12835 343 1784 8.5 16 1910.0 10.7 40.8 97 9.7 1.65 2.54 13394 352 1726 8.5 16 1911.0 9.2 41.4 92 9.7 1.68 2.65 13998 399 1674 8.5 16 1912.0 9.0 40.7 76 9.7 1.61 2.76 14500 404 1626 8.5 16 <td>1904.0</td> <td>23,2</td> <td>38.0</td> <td>97</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1904.0	23,2	38.0	97						
1906.0 14.3 40.5 96 9.7 1.54 2.14 11087 255 1989 8.5 16 1907.0 22.8 40.4 96 9.7 1.39 2.19 11340 160 1905 8.5 16 1908.0 6.1 40.9 97 9.7 1.82 2.35 12291 596 1847 8.5 16 1909.0 10.7 40.8 97 9.7 1.64 2.44 12835 343 1784 8.5 16 1910.0 10.4 41.0 97 9.7 1.65 2.54 13394 352 1726 8.5 16 1911.0 9.2 41.4 92 9.7 1.68 2.65 13998 399 1674 8.5 16 1912.0 9.0 40.7 76 9.7 1.61 2.76 14500 404 1626 8.5 16 1913.0 21.7 40.7 81 9.7 1.35 2.80 14725 168 1574 8.5 16 1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16 1915.0 6.2 41.7 94 9.7 1.81 3.09 16238	1905.0	11.1	38.6	97						
1907.0 22.8 40.4 96 9.7 1.39 2.19 11340 160 1905 8.5 16 1908.0 6.1 40.9 97 9.7 1.82 2.35 12291 596 1847 8.5 16 1909.0 10.7 40.8 97 9.7 1.64 2.44 12835 343 1784 8.5 16 1910.0 10.4 41.0 97 9.7 1.65 2.54 13394 352 1726 8.5 16 1911.0 9.2 41.4 92 9.7 1.68 2.65 13998 399 1674 8.5 16 1912.0 9.0 40.7 76 9.7 1.61 2.76 14500 404 1626 8.5 16 1913.0 21.7 40.7 81 9.7 1.35 2.80 14725 168 1574 8.5 16 1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16 1915.0 6.2 41.7 94 9.7 1.81 3.09 16238 590 1502 8.5 16 1915.0 6.2 41.7 94 9.7 1.81 3.09 16238 590 1502 8.5 16 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16	1906.0	14.3	40.5	96	9.7 1.54					
1908.0 6.1 40.9 97 9.7 1.82 2.35 12291 596 1847 8.5 16. 1909.0 10.7 40.8 97 9.7 1.64 2.44 12835 343 1784 8.5 16. 1910.0 10.4 41.0 97 9.7 1.65 2.54 13394 352 1726 8.5 16. 1911.0 9.2 41.4 92 9.7 1.68 2.65 13998 399 1674 8.5 16. 1912.0 9.0 40.7 76 9.7 1.61 2.76 14500 404 1626 8.5 16. 1913.0 21.7 40.7 81 9.7 1.35 2.80 14725 168 1574 8.5 16. 1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16. 1915.0 6.2 41.7 94 9.7 1.81 3.09 16238 590 1502 8.5 16. 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16. 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16. 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.	1907.0	22.8	40.4	96						
1910.0 10.4 41.0 97 9.7 1.65 2.54 13394 352 1726 8.5 16.1 1911.0 9.2 41.4 92 9.7 1.68 2.65 13998 399 1674 8.5 16.1 1912.0 9.0 40.7 76 9.7 1.61 2.76 14500 404 1626 8.5 16.1 1913.0 21.7 40.7 81 9.7 1.35 2.80 14725 168 1574 8.5 16.1 1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16.1 1915.0 6.2 41.7 94 9.7 1.81 3.09 16238 590 1502 8.5 16.1 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16.1 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16.1	1908.0	6.1	40.9	97						8.5 16.1
1910.0 10.4 41.0 97 9.7 1.65 2.54 13394 352 1726 8.5 16. 1911.0 9.2 41.4 92 9.7 1.68 2.65 13998 399 1674 8.5 16. 1912.0 9.0 40.7 76 9.7 1.61 2.76 14500 404 1626 8.5 16. 1913.0 21.7 40.7 81 9.7 1.35 2.80 14725 168 1574 8.5 16. 1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16. 1915.0 6.2 41.7 94 9.7 1.78 3.23 17064 535 1471 8.5 16. 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16. 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16. 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894	1909.0	10.7	40.8	97	9.7 1.64	2.44	12835	"Z A "Z	1700	O E 14 1
1911.0 9.2 41.4 92 9.7 1.68 2.65 13998 399 1674 8.5 16.1912.0 1912.0 9.0 40.7 76 9.7 1.61 2.76 14500 404 1626 8.5 16.1913.0 1913.0 21.7 40.7 81 9.7 1.35 2.80 14725 168 1574 8.5 16.1914.0 1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16.1915.0 1915.0 6.2 41.7 94 9.7 1.78 3.23 17064 535 1471 8.5 16.1916.0 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16.1917.0 1918.0 3.8 47.2 57 9.7 1.86 3.38 17880 531 1441 8.5 16.1918.0 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16.1919.0 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16.192.0 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16.192.0 1922.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1912.0 9.0 40.7 76 9.7 1.61 2.76 14500 404 1626 8.5 16. 1913.0 21.7 40.7 81 9.7 1.35 2.80 14725 168 1574 8.5 16. 1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16. 1915.0 6.2 41.7 94 9.7 1.81 3.09 16238 590 1502 8.5 16. 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16. 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16. 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16.	1911.0									
1913.0 21.7 40.7 81 9.7 1.35 2.80 14725 168 1574 8.5 16. 1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16. 1915.0 6.2 41.7 94 9.7 1.81 3.09 16238 590 1502 8.5 16. 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16. 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16. 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16. 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.	1912.0	9.0	40.7							
1914.0 8.4 42.1 84 9.7 1.68 2.92 15325 435 1534 8.5 16. 1915.0 6.2 41.7 94 9.7 1.81 3.09 16238 590 1502 8.5 16. 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16. 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16. 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16. 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16.										
1915.0 6.2 41.7 94 9.7 1.81 3.09 16238 590 1502 8.5 16. 1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16. 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16. 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16. 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.										
1916.0 6.8 41.6 94 9.7 1.78 3.23 17064 535 1471 8.5 16. 1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16. 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16. 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.										
1917.0 6.9 47.8 94 9.7 1.86 3.38 17880 531 1441 8.5 16. 1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16. 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.										
1918.0 3.8 47.2 57 9.7 1.88 3.64 18782 957 1426 8.5 16. 1919.0 5.4 42.2 70 9.7 1.77 3.82 19559 677 1404 8.5 16. 1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.										
1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.										8.5 16.1
1920.0 12.7 38.3 71 9.7 1.45 3.90 19894 288 1372 8.5 16. 1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.	1919.0	5.4	42.2	70	9,71.77	3.82	10550	ሬማማ	1404	O E: 47. •
1921.0 6.1 44.7 57 9.7 1.69 4.07 20456 602 1350 8.5 16. 1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.										
1922.0 5.0 49.9 52 9.7 1.79 4.27 21080 735 1334 8.5 16.										
2 PC 20 100 PC 1										
	1923.0			66	9.7 1.84	4,44	21753	622	1315	8.5 16.1
described to the period of the										8.5 16.1
described to the second of the										8.5 16.1
ABOVE O COMPANY OF THE PROPERTY OF THE PROPERT										
despetition of the second of t										8.5 16.1
AND DECEMBER OF THE PROPERTY O										8.5 16.1
** CO TO TEST TO THE TEST TO THE TOTAL TOTAL TEST B.5 16.	I. W 1 W	0,0	W. 1 V	.,,	717 7170	SEE ELSE	E4710	₩ 3 /	1200	8.5 16.1

DEPTH	ROP	мов	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	PP FG
1929.0 1930.0 1931.0 1932.0 1932.5 1933.0 1934.0 1935.0 1936.0	22.6 20.8 7.8 7.1 9.7 5.1 4.0 21.6	51.6 50.0 51.2 53.4 53.5 53.0 55.1 52.8 38.7 40.9	59 60 53 55 55 57 74 9	9.7 9.7 9.7 9.7 9.7 9.7	1.50 1.33 1.33 1.68 1.70 1.62 1.88 1.93 1.30	5.32 5.36 5.41 5.54 5.61 5.66 5.86 6.11 6.15	24971 25130 25287 25694 25907 26078 26744 27596 27801 28034	261 161 176 469 513 377 720 910 169 150	1208 1184 1162 1147 1141 1133 1124 1120 1101	8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1
1938.0 1939.0 1940.0 1941.0 1942.0 1943.0 1944.0 1945.0 1946.0	27.3 13.8 12.9 10.4 10.1 7.9 17.7 33.0	40.3 40.7 41.5 40.2 38.8 38.7 38.5 38.3 36.2	94 95 95 88 96 96 96 96 96	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.28 1.33 1.55 1.54 1.62 1.62 1.70 1.44 1.23	6.23 6.26 6.33 6.41 6.51 6.61 6.73 6.79 6.82 6.85	31092 31418 31593	116 134 264 282 351 360.13 460.56 205.93 110.57 105.50	987.03 973.95 959.72	8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1 8.5 16.1
1948.0 1949.0 1950.0 1951.0 1952.0 1953.0 1954.0 1955.0 1956.0	15.9 15.5 17.0 8.1 12.4 10.5 15.3	36.3 37.8 51.0 48.1 51.9 51.4 51.6 51.6	96 97 96 86 92 92 92 80 80	9.7 9.7 9.7 9.7 9.7 9.7	1.23 1.47 1.63 1.53 1.85 1.69 1.75 1.60	6.88 6.94 7.01 7.06 7.19 7.27 7.36 7.43 7.49 7.58	32297 32667 32971 33651 34094	294.19 346.94 238.39 209.99	921.50 910.89 900.30 893.56 884.70 876.88 867.72 858.41	8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2
1958.0 1959.0 1960.0 1961.0 1962.0 1963.0 1964.0 1965.0 1966.0	12.1 22.6 45.0 34.3 40.4 32.1	51.9 51.8 50.6 49.2 49.3 49.3 50.5	80 25 28 28 28 28 28 28 28 28	9,7 9,7 9,7 9,7 9,7 9,7	1.76 1.71 1.64 1.42 1.17 1.26 1.21 1.29 1.37	7.69 7.78 7.86 7.91 7.93 7.96 7.99 8.02 8.05	36664 37037 37243 37347 37481 37596 37742	106.52 90.29 113.62 138.98	838.13 830.96 822.11 812.45 803.37 794.30 785.76	8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2
1968.0 1969.0 1970.0 1971.0 1972.0 1973.0 1974.0 1975.0 1976.0	4.4 4.6 6.1 6.3 6.5 8.9	49.0 52.6 52.3 49.4 49.4 49.1 49.2 49.2 49.2	78 74 83 85 84 75 78 81 83	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.21 1.72 2.03 1.98 1.88 1.84 1.85 1.84 1.74	8.10 8.20 8.43 8.65 8.81 8.98 9.14 9.29 9.55	39737 40845 41674 42407 43157 43901 44446	90.29 378.39 837.93 795.32 599.54 594.46 584.32 558.96 409.84 528.53	757.34 757.79 755.96 754.12 752.21 750.05 746.30	8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2 8.5 16.2

DEPTH	ROP	MOB	RPM	MW "d"	c HOURS	TURNS	icost	CCOST	pр	FG
1978.0 1979.0 1980.0 1981.0 1982.0 1983.0 1984.0 1985.0 1986.0	10,9 6,3 17,2 40,0 37,5 7,1 4,5 6,1	54.0 57.7 58.4 55.4 55.3 59.4 59.3	59 644 644 64 651 51	9.7 1.6 9.7 1.6 9.7 1.5 9.7 1.5 9.7 1.6 9.7 1.6 9.7 1.6 9.7 1.6	9.76 9.92 9.97 0.10.00 1.10.03 0.5 10.17 0.39 10.39	46832 46934 47481 48163 48663	333.75 580.26 212.02 91.30 97.39	734.55 729.09 722.50 716.10 714.08 715.04 713.89	8.5 8.5 8.5 8.5 8.5	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
1988.0 1989.0 1990.0 1991.0 1992.0 1993.0 1994.0 1995.0 1996.0	5.4 10.8 24.5 21.8 9.2 23.5 7.8 10.3	60.3 46.8 37.1 38.0 33.0 32.3 33.2 36.9 35.9 34.0	62 93 92 93 93 92 90 93	9.7 1.7 9.7 1.8 9.7 1.3 9.7 1.3 9.7 1.5 9.7 1.6 9.7 1.5	39 11.01 57 11.10 33 11.14 31 11.19 56 11.29 28 11.34 56 11.46	51021 51247 51502 52110 52343 53031 53576	674.61 337.81 149.12 167.38 395.63 155.21 467.66 355.06	709.20	8.5555555 8.65555555 8.68555	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
1998.0 1999.0 2000.0 2001.0 2002.0 2003.0 2004.0 2005.0 2006.0	5.4 5.3 7.3 15.0 5.6 8.5 27.5	33.8 34.7 33.7 37.9 35.0 36.1 34.4 31.7 34.2	91 97 97 96 97 97 97 97	9.7 1.7 9.7 1.7 9.7 1.7 9.7 1.7 9.7 1.7 9.7 1.7 9.7 1.7	76 12.05 75 12.24 72 12.37 46 12.44 77 12.62 52 12.73 67 12.91	56321 57410 58201 58588 59616 60298 60509 61319	684.75 499.11 243.47 647.22 428.10 132.89 508.24	680.41 680.33 680.36 678.80 675.02 674.83 672.75 668.24 666.92 664.38	8.555555555555555555555555555555555555	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
2008.0 2007.0 2010.0 2011.0 2012.0 2013.0 2014.0 2015.0 2016.0 2017.0	10.1 6.1 7.2 5.1 6.1 11.5 8.6 22.2	35.9 37.8 38.9 38.6 36.4 37.0 36.8 35.7 35.7	91 91 94 93 94 93	9.7 1.3 9.7 1.3 9.7 1.3 9.7 1.3 9.7 1.3 9.7 1.3 9.7 1.3	60 13.26 77 13.43 72 13.57 79 13.76 75 13.93 55 14.01 63 14.13 32 14.18	63281 64181 64944 66018 66939 67424 68075 68326	361,14 599,54 509,25 714,17 599,54 316,51 423,02 164,34	663.66 661.22 660.72 659.52 659.95 659.47 656.81 655.01 651.25 648.45	8,5 8,5 8,5 8,5 8,5	16.2 16.2 16.2 16.2
2018.0 2019.0 2020.0 2021.0 2022.0 2023.0 2024.0 2025.0 2026.0 2027.0	6.9 6.4 6.4 11.0 6.1 8.5 7.4	35.4 36.3 36.8 36.3 36.7 37.3 37.4 36.5 37.4	98 96 96 96 96 96 96	9.7 1. 9.7 1. 9.7 1. 9.7 1. 9.7 1. 9.7 1. 9.7 1. 9.7 1.	71 14.53 76 14.69 73 14.85 56 14.94 76 15.10 66 15.22 70 15.35 42 15.41	70346 71286 72184 72706 73653 74329 75107 75430	526.50 596.49 570.12 331.72 600.55 430.12 494.03 205.93	647.15 646.24 645.88 645.32 643.02 642.71 641.18 640.13 637.04 634.87	88888555 8888888	16.2 16.2 16.2 16.3 16.3

DEPTH ROP WOB RPM MW "d"c HOURS TURNS PP FG ICOST CCOST 76390 301,29 632,53 2028.0 12.1 37.5 93 9.7 1.54 15.58 8.5 16.3 96 15.62 147.09 629.15 24.8 37.7 9.7 1.33 76621 2029.0 8.5 16.3 96 9.7 1.66 9.0 38.8 15.74 77259 405.78 627.61 2030.0 8.5 16.3 9.7 1.75 96 15.88 78115 543.74 627.03 2031.0 6.7 38.5 8.5 16.3 9.7 1.55 78570 290.13 624.74 38.5 96 15,96 2032.0 12.6 8.5 16.3 9.7 1.60 2033.0 11.5 39.0 100 16.05 79091 318.54 622.66 8.5 16.3 9.7 2034.0 18.4 38.8 100 1,45 16.11 79418 198.83 619.81 8.5 16.3 9.7 1.22 2035.0 37.1 37.7 100 16.13 79580 98.40 616.33 8.5 16.3 9.7 2036.0 9.0 39.1 100 1,68 16.24 80253 407.81 614.95 8.5 16.3 2037.0 17.8 38.3 94 9.7 1.43 16.30 80568 204.92 612.24 8.5 16.3 2038.0 36.0 38.2 91 9.7 1.20 16.33 80721 101,44 608,90 8.5 16.3 9.7 26.7 37.2 92 1,29 80927 136,95 605,83 8.5 16.3 2039.0 16.37 9.7 2040.0 34.0 38.9 91 1.23 16.39 81088 107,53 602,61 8.5 16.3 9.7 1.25 81260 114.63 599.47 8.5 16.3 2041.0 31.9 38.9 91 16.43 9.7 1.25 16,46 8.5 16.3 2042.0 33.0 40.0 91 81426 110.57 596.35 9.7 1.30 2043.0 27,7 39,9 91 16,49 81624 131,88 593,41 8.5 16.3 2044.0 22.8 37.7 92 9.7 1.34 16.54 81865 160.28 590.68 8.5 16.3 9.7 1.25 2045.0 33.0 40.3 91 16.57 82031 110.57 587.67 8,5 16,3 9.7 1.34 8.5 16.3 2046.0 22.0 39.7 83 16.61 82257 166.37 585.05 9.7 1.24 82421 106.52 582.09 8.5 16.3 2047.0 34.3 39.3 94 16.64 9.7 1.24 82596 113.62 579.21 8.5 16.3 32.1 37.5 94 16.67 2048.0 9.7 1.22 8.5 16.3 16.70 82748 -98,40 576,27 37.1 39.9 94 2049.0 8.5 16.3 9.7 1.22 97 16.73 82913 103,47 573,40 35.3 37.6 2050.0 97 9.7 1.25 16.76 83074 101.44 570.55 8.5 16.3 36.0 41.1 2051.0 8.5 16.3 97 9.7 1.35 83303 143.04 567.99 25.5 40.0 16.79 2052.0 16.83 83510 129.85 565.38 9.7 1.33 8.5 16.3 97 2053.0 28.1 41.0 8.5 16.3 97 9.7 1.34 16.87 83739 143.04 562.87 2054.0 25.5 39.4 8.5 16.3 31.7 40.0 95 9.7 1.27 16.90 83919 115.21 560.24 2055.0 8.5 16.3 9.7 1.19 16.93 84060 100.43 557.54 2056.0 36.4 39.1 86 8.5 16.3 28.8 39.8 95 9.7 1.30 16.96 84258 126.81 555.03 2057.0 8,5 16,3 9.7 1.34 17,00 84487 147,09 552,67 2058.0 24.8 39.1 95 95 9.7 1.36 17.04 84718 148,11 550,34 8.5 16.3 2059.0 24.7 41.0 9.7 1.45 17.10 85031 199.85 548.34 8.5 16.3 2060.0 18.3 39.7 95 17.14 9.7 1.32 85241 133,91 545,98 2061.0 27.3 39.4 95 8.5 16.3 2062.0 22.8 40.4 96 9.7 1.39 17.18 85495 160.28 543.79 8.5 16.3 9.7 1.45 17.23 85799 191.73 541.81 8.5 16.3 2063.0 19.0 40.7 96 97 9.7 1.61 17.32 86308 319.55 540.57 8.5 16.3 11.4 40.8 2064.0 9.7 41.4 86902 375.34 539.65 9.7 1.67 17.42 2065.0 96 8.5 16.3 8.5 16.3 9.7 1.72 17.55 87635 475.77 7.7 40.0 94 539.30 2066.0 8.1 39.1 9.7 1.70 17.68 88341 449,40 538,80 8.5 16.3 2067.0 96 8.5 16.3 7.9 39.2 9.7 1.71 17.80 89062 459.54 538.37 2068.0 96 8.5 16.3 2069.0 7.7 39.6 96 9.7 1.72 17.93 89808 474.76 538.02 8.5 16.3 13.7 47.8 9.7 1.55 18.00 90136 266.80 536.55 2070.0 75 9.7 1.57 8.5 16.3 18.08 90442 290.13 535.23 2071.0 12.6 52.0 64 90782 385,49 534,42 8.5 16.3 2072.0 9.5 52.7 54 9.7 1.61 18.19 91025 282.02 2073.0 12.9 52.7 52 9.7 1.50 18.27 533.08 8.5 16.3 91122 111,59 8.5 16.3 2074.0 32.7 52.3 9.7 1.18 18.30 530.85 53 65.5 41.0 9.7 0.79 18.31 91161 55.79 528.34 8.5 16.3 2075.0 42 69 9.7 1.53 18.40 91536 329.69 527.30 8.5 16.3 2076.0 11.1 41.5 9.7 1.65 92208 442,30 526,86 8.5 16.3 2077.0 8.3 36.5 92 18.52

DEPTH	ROP	MOB	RPM	ММ	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2078.0 2079.0 2080.0 2081.0 2082.0 2083.0 2084.0 2085.0 2087.0	10.1 10.3 17.4 14.6 19.4 22.0 9.3 9.5	36.9 36.3 36.2 36.3 35.4 35.5 38.3 38.5	92 92 92 92 92 92 51 47 63	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.59 1.58 1.57 1.41 1.47 1.33 1.45 1.49	18.62 18.72 18.82 18.88 18.94 19.00 19.04 19.15 19.35	92759 93307 93842 94159 94536 94821 95072 95400 95695	361.14 353.03 209.99 249.55 188.69 166.37 394.62	524.27 522.67 521.28 519.59 517.82 517.20 516.53	8.5 8.5 8.5 8.5 8.5 8.5 8.5	16.3 16.3 16.3 16.3 16.3 16.3 16.3
2088.0 2089.0 2090.0 2091.0 2092.0 2093.0 2094.0 2095.0 2096.0	9,5 11,0 6,7 8,1 5,8 7,8 13,9		94 95 95 95 95 95 95 95 95	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.57 1.62 1.57 1.73 1.68 1.767 1.57 1.57	19.45 19.55 19.64 19.79 19.91 20.09 20.21 20.29 20.38 20.50	96589 97186 97703 98551 99249 100226 100940 101350 101855	331.72 384.47 332.74 544.76 449.40 629.97 469.69 262.74 322.59 451.43	514.87 514.23 513.34 513.49 513.18 513.74 513.53 512.34 511.44 511.15	8.5 8.5 8.5 8.5 8.5 8.5	16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3
2098.0 2099.0 2100.0 2101.0 2102.0 2103.0 2104.0 2105.0 2106.0 2107.0	6.6 6.4 8.0 9.5 17.0 10.9 14.6 7.0	37.4	95 95 95 95 95 95 98 98 98	9.7 9.7 9.7 9.7 9.7 9.7	1.70 1.74 1.75 1.68 1.63 1.44 1.58 1.50 1.74	20.63 20.78 20.94 21.06 21.17 21.23 21.32 21.39 21.53 21.66	103317 104183 105074 105786 106383 106720 107232 107634 108477	553.89 569.10 455.49 382.45	511.22 511.49 511.23 510.64 509.28 509.30 507.30	8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	16.3 16.3 16.3 16.3 16.4 16.4 16.4
2108.0 2109.0 2110.0 2111.0 2112.0 2113.0 2114.0 2115.0 2116.0 2117.0	9.4 8.6 15.3 16.2 6.7 10.7 6.3 6.2	37.7 39.1	98 98 98 98 98 98 94 94 94	9.7 9.7 9.7 9.7 9.7 9.7	1.65 1.65 1.68 1.49 1.47 1.55 1.77	21.77 21.88 21.99 22.06 22.12 22.27 22.36 22.52 22.68 22.84	110520 111205 111589 111951 112827 113285 114172 115075	398.68 390.56 425.05 239.41 225.21 542.73 340.85 577.22 586.35 593.45	506.23 505.87 504.69 503.46 503.63 502.92 503.24 503.60	88.555555 88.88888888888888888888888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
2118.0 2119.0 2120.0 2121.0 2122.0 2123.0 2124.0 2125.0 2126.0 2127.0	5.2 11.4 7.5 12.2 9.4 6.8 6.8 4.6	48.2	53 71 86 85 85 81 60 59 62	9.7 9.7 9.7 9.7 9.7 9.7	1.74 1.74	23.01 23.20 23.29 23.42 23.50 23.61 23.75 23.90 24.12 24.27	116983 117434 118119 118539 119052 119581 120101 120911	319.55 489,98	505.22 504.43 504.37 503.50 503.01 503.15 503.30 504.53	8.555555555555555555555555555555555555	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4

• Section 1

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2128.0 2129.0 2130.0 2131.0 2132.0 2133.0 2134.0 2135.0 2136.0 2137.0	5.7 5.5 5.0 12.9 24.7 5.5 37.5	50.8 50.9 50.9 50.1 46.6 49.5 48.9 48.2	62 61 61 58 61 55 60 52 61	9.7 9.7 9.7 9.7 9.7 9.7	1.84 1.81 1.82 1.84 1.52 1.24 1.82 1.75 1.16	24.46 24.64 24.82 25.10 25.14 25.33 25.51 25.65	122816 123472 124171 124452 124586 125266 125830 125938	688.81 641.13 658.37 736.49 282.02 148.11 694.89 660.40 97.39 420.99	505.50 506.05 506.68 507.61 506.70 505.25 506.01 506.63 505.00	8.55 8.55 8.55 8.55 8.55 8.55	16,4 16,4 16,4 16,4 16,4 16,4 16,4
2138.0 2139.0 2140.0 2141.0 2142.0 2143.0 2144.0 2144.0 2145.0 2147.0	5.3 7.7 7.0 5.0 47.1 5.7	52.1 49.6 48.1 49.0 49.6 49.6 49.6 49.9	62 62 62 68 75 62 62 62	9.7 9.7 9.7 9.7 9.7 9.7	1.83 1.83 1.68 1.69 1.87 1.94 1.71 1.75 1.81	25.82 26.01 26.14 26.27 26.47 26.69 26.83 26.98 27.16 27.33	127705 128185 128665 129484 130464 130990 131566 132224	632.00 687.79 472.73 474.76 734.46 795.32 513.31 562.00 642.14 623.88	505.89 505.76 505.64 506.53 507.65 507.67 507.88 508.39	8.555 8.55 8.55 8.55 8.55 8.55	16.4 16.4 16.4 16.4 16.4 16.4 16.4
2148.0 2149.0 2150.0 2151.0 2152.0 2153.0 2154.0 2155.0 2156.0 2157.0	7.0 5.4 4.3 9.5 17.3 27.9 8.1 4.2	50.4 50.5 50.6 45.3 42.7 44.1 41.3 43.8 46.5	63 55 55 85 66 67 57	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.88 1.75 1.80 1.94 1.69 1.40 1.21 1.64 1.85	27.54 27.68 27.87 28.10 28.21 28.27 28.30 28.43 28.67 28.83	134186 134803 135955 136553 136790 136932 137426	759.82 523.45 677.65 857.21 384.47 211.00 130.86 451.43 879.52 597.51	509.84 510.48 511.78 511.30 510.18 508.77 508.56 509.93	8.55 8.55 8.55 8.55 8.55	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
2158.0 2159.0 2160.0 2161.0 2162.0 2163.0 2164.0 2165.0 2166.0 2167.0	6,6 5,2 5,6 5,3 4,6 4,8	47.0 47.7 48.0 47.0 46.3 47.1 48.6 48.8 49.9 50.2	77 77 78 83 70 55 57	9.7 9.7 9.7 9.7 9.7 9.7	1.67 1.80 1.89 1.91 1.87 1.84 1.92 1.83	28.93 29.09 29.28 29.47 29.65 29.84 30.07 30.29 30.50 30.60	140209 141108 142084 142982 143781 144748 145474 146201		509,94 510,66 511,37 511,88 512,53 513,70 514,71 515,61	88888855 88888888	16.4 16.4 16.4 16.4 16.4 16.4 16.4
2168.0 2169.0 2170.0 2171.0 2172.0 2173.0 2174.0 2175.0 2176.0 2177.0	4.5 3.3 4.9 5.5 4.5 4.5 4.5	50.9 51.4 49.7 49.4 49.5 48.8 48.0	56 54 49 53 53 54 61 83	9.7 9.7 9.7 9.7 9.7 9.7	1.72 1.86 1.92 1.77 1.75 1.76 1.83 1.79 1.86	30.75 30.97 31.28 31.48 31.66 31.85 32.07 32.27 32.49 32.64	147756 148662 149266 149839 150413 151115 151765 152580	528.53 818.66 1119 750.69 664.46 664.45 730.40 818.66 527.51	516,21 518 519,14 519,65 520,15 521,15 521,87 522,90	8,55 8,55 8,55 8,55 8,55 8,55	16.4 16.4 16.4 16.4 16.4 16.4 16.4

The state of the s

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2228.0 2229.0 2230.0 2231.0 2232.0 2233.0 2234.0 2235.0 2236.0 2237.0	5.3 6.1 4.1 4.0 4.1 4.2 4.1 4.8	39.7 40.2 40.1 40.1 39.5 39.4 39.4 39.4 39.8	85 84 85 85 85 85 85 85	9.7 9.7 9.7 9.7 9.7 9.7 9.7	1.84 1.80 1.76 1.89 1.89 1.88 1.88 1.88	38.39 38.58 38.75 38.99 39.24 39.49 39.73 39.78 40.18 40.40	185937 187193 188422 189678 190737	690.84 599.54 895.75 918.07 899.81 879.52 898.80	507.25 508.32 509.56 510.68 511.74 512.84 513.54	8.4 8.4 8.4 8.4 8.4 8.4 8.4	16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2238.0 2239.0 2240.0 2241.0 2242.0 2243.0 2244.0 2245.0 2246.0 2247.0	8.0 5.3 14.8 6.8 7.2 6.6 17.6 8.1	39.6 37.5 35.9 35.3 36.1 36.9 44.8 49.5 49.5	85 61 57 84 84 80 54 56 56	9.7 9.7 9.8 9.8 9.8 9.8	1.71 1.54 1.62 1.41 1.66 1.64 1.64 1.37 1.62	40.54 40.66 40.85 40.92 41.07 41.21 41.36 41.42 41.54 41.74	195414 195907 196098 196492	455.49	513,95 514,07 513,22 513,05	8.4 8.4 8.4 8.4 8.4 8.4	16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2248.0 2249.0 2250.0 2251.0 2252.0 2253.0 2254.0 2255.0 2256.0 2257.0	6.0 4.8 3.8 6.6 4.9 5.1 7.3 6.3	51.7 51.3 51.7 48.3 47.9 48.5 47.6 45.3 45.3 45.3	51 53 55 65 60 62 75 79 82 81 61	9.8 9.8 9.8 9.8 9.8 9.7 9.7	1.60 1.74 1.85 1.87 1.72 1.84 1.87 1.75 1.84	41.85 42.02 42.23 42.49 42.64 42.85 43.06 43.25 43.39 43.55	198761 199633 200226 200982 201742 202619 203267 204051	610.70 766.92 960.68	514.32 515.54 515.64 516.31 516.93 517.46 517.42 517.59	8.4 8.4 8.4 8.4 8.4 8.4 8.4	16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
BIT NUMBE HTC J22 COST TOTAL HOU	85:	5 16.00 30.22	£ 7	ADC (SIZE RIP TOTAL		51: 12.25; 7.; 12521;	0 NO2 5 BIT	TERVAL ZZLES F RUN NDITION			6 18 86.8
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	F G
2259.0 2260.0 2261.0 2262.0 2263.0 2264.0 2265.0 2266.0	9.0 14.9 12.4 6.7 5.5	23.0 29.8 33.5 35.0 35.3 43.8 44.8	63 69 69 58 74 83 88	9.7 9.7 9.7 9.7 9.7	1.57 1.44 1.34 1.36 1.63 1.77 1.85	0.23 0.34 0.40 0.48 0.63 0.78 0.97 1.14	860 1321 1599 1881 2545 3284 4176 5081	1032 405 245 294 548 544 665 628	45914 20631 13351 9915 7963 6684 5799 5136	8.4 8.4 8.4 8.4 8.4	16.5 16.5 16.5 16.5 16.5 16.5 16.5

and the second s

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
2267.0 2268.0 2269.0 2270.0 2271.0 2272.0 2273.0 2274.0 2275.0 2276.0	5.0 8.9 10.5 6.4 7.6 13.5 10.3	46.3 46.1 45.8 36.6 46.8 47.1 39.6 39.0 36.2 34.9	81 78 80 79 81 84 85 81	9.7 9.7 9.7 9.7 9.7 9.7	1.74 1.63 1.88 1.58 1.65 1.63 1.68 1.50 1.53	1.26 1.35 1.55 1.66 1.76 1.92 2.05 2.12 2.22	5682 6120 7051 7588 8040 8807 9467 9846 10315	453 330 231 411 349 574 478 271 353 424	4604 4168 3850 3558 3307 3109 2932 2763 2620 2496	8.4 8.4 8.4 8.4 8.4 8.4	16.5 16.5 16.5 16.5 16.5 16.5 16.5 16.5
2277.5 2278.0 2279.0 2280.0 2281.0 2282.0 2283.0 2284.0 2285.0 2286.0	12.0	34.5 34.8 34.8 34.9 40.0 47.0 50.9	83 68 57 57 68 59 66 82 72	9.7 9.7 9.7 9.7 9.7 9.7	1.46 1.35 1.36 1.34 1.34 1.32 1.34 1.70	2.44 2.48 2.56 2.71 2.76 2.81 2.93 3.01	11392 11531 11811 12077 12344 12554 12731 13191 13598 14363	262 250 291 284 285 187 185 427 303 651	2323 2270 2175 2088 2009 1933 1862 1807 1751	8.4 8.4 8.4 8.4 8.4	16.5 16.6 16.6 16.6 16.6
2287.0 2288.0 2289.0 2290.0 2291.0 2292.0 2293.0 2294.0 2295.0	4.1 5.0 4.1 6.0 6.0 10.4 8.6 12.5	47.9 51.1 51.0 51.5 54.1 54.2	55 49 55 57 50 50 52 53	9.7 9.7 9.7 9.7 9.7	1.57 1.64 1.52	3.35 3.59 3.79 4.04 4.20 4.37 4.46 4.58 4.66 4.80	14869 15592 16242 17061 17623 18156 18442 18793 19042	560 897 723 898 608 350 423 291 506	1671 1645 1615 1593 1562 1534 1500 1420 1438 1413	8.4 8.4 8.4 8.4 8.4 8.4 8.4	16.6 16.6 16.6 16.6 16.6 16.6
2297.0 2298.0 2299.0 2300.0 2301.0 2302.0 2303.0 2304.0 2305.0 2306.0	5.1	53.1 53.3 53.4 54.4 54.6 54.5 54.2	53 52 53 53 54 54 55 53 53	9.7 9.7 9.6 9.8 9.8 9.8 9.8	1.85 1.78 1.83 1.82 1.82 1.82	4.89 5.10 5.27 5.46 5.66 5.84 6.04 6.27 6.42	19774 20429 20969 21578 22203 22809 23425 24156 24655 25265	338 768 622 701 716 677 726 825 569 702	1386 1370 1352 1336 1322 1307 1294 1284 1269 1257	8.4 : 8.4 :	16.6 16.6 16.6 16.6 16.6 16.6
2307.0 2308.0 2309.0 2310.0 2311.0 2312.0 2313.0 2314.0 2315.0 2316.0	7.4 4.5 3.6 5.7 5.5 7.4 11.5 10.0 7.0	54.6 54.7 53.4 54.3 54.2 54.1 54.1	537 577 597 598 598 594	9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	1.90 1.97 1.76 1.84 1.73 1.57 1.62	6.75 6.97 7.25 7.43 7.61 7.74 7.83 7.93 8.07 8.23	25691 26456 27401 27936 28583 29059 29362 29711 30216 30745	493 811 1005 644 666 492 318 364 522 591	1241 1232 1228 1217 1206 1193 1177 1162 1151	8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 8.4 1 8.4 1	16.6 16.6 6.6 6.6 6.6 6.6

DEPTH	ROP WOR	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	рp	FG
2317.0 2318.0 2319.0 2320.0 2321.0 2322.0 2323.0 2324.0 2325.0 2326.0	4.7 55.2 6.9 54.6 6.2 55.0 7.5 54.6 6.1 55.0 5.7 54.9 14.2 54.3 14.2 56.4 4.8 53.9	58 58 58 57 57 57 58	9.8 1.76	8.45 8.59 8.76 8.89 9.05 9.23 9.30 9.37 9.60	31496 31997 32560 33025 33596 34200 34432 34674 35497 36115	784 526 592 489 602 641 257 863 765	1125 1116 1106 1098 1091 1078	8.4 8.4 8.4 8.4 8.4 8.4 8.4	16.6 16.6 16.6 16.6 16.6 16.6 16.6
2327.0 2328.0 2329.0 2331.0 2332.0 2333.0 2334.0 2335.0 2336.0	4.5 49.4 4.7 53.7 5.8 53.4 5.2 53.6 8.2 53.2 5.7 55.9 5.5 55.6 4.4 48.7 5.3 35.0		9.7 1.81 9.7 1.90 9.7 1.82 9.7 1.86 9.7 1.70 9.7 1.84 9.7 1.86 9.7 1.87 9.7 1.88	10.03 10.25 10.42 10.61 10.73 10.91 11.11 11.29 11.52	36784 37522 38122 38792 39218 39829 40530 41158 41985 42783	804 772 628 699 445 642 739 663 832 686	1054 1050 1044 1040 1032 1026 1028 1018 1015	8.4 8.4 8.4 8.4 8.4 8.4	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6
2337.0 2338.0 2339.0 2340.0 2341.0 2342.0 2344.0 2344.0 2345.0	3.7 36.5 4.4 36.2 9.2 37.0 15.9 38.2 12.9 35.7 6.7 37.4 4.9 37.4 10.3 36.5 7.4 35.7 6.1 36.5	65 70 70 70 66 70 51 54 61	9.7 1.79 9.7 1.75 9.7 1.53 9.7 1.38 9.7 1.39 9.7 1.64 9.7 1.64 9.7 1.54 9.7 1.65	11.98 12.20 12.31 12.37 12.45 12.60 12.81 12.90 13.04 13.20	45824 46451 47084 47398 47896	984 833 397 230.28 284.04 545.77 749.67 354.04 493.02 595.48	982.89 977.67 974.98 967.75 962.28	8.4 8.4 8.4 8.4 8.4 8.4	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6
2347.0 2348.0 2349.0 2350.0 2351.0 2352.0 2353.0 2354.0 2356.0	10.3 36.7 7.8 36.9 6.6 36.9 4.9 37.1 5.5 37.2 3.7 37.7 4.6 38.3 5.2 38.0 11.4 38.0 8.5 37.9	67 66 60 60 74 70 70 74 74	9.7 1.48 9.7 1.56 9.7 1.58 9.7 1.68 9.7 1.65 9.7 1.84 9.7 1.77 9.7 1.50 9.7 1.59	13,30 13,43 13,58 13,78 13,96 14,23 14,45 14,64 14,73 14,85	49457 49997 50723 51376 52578 53493 54301 54690	356.07 465.63 551.86 741.56 660.40 992.13 794.31 702.00 320.35 428.10	945.91 941.57 939.39 936.39 936.98 935.48 933.04 926.71	8.4	16.6 16.6 16.6 16.6 16.6 16.6
2357.0 2358.0 2359.0 2360.0 2361.0 2362.0 2363.0 2364.0 2366.0	5.0 37.8 5.3 38.8 5.1 37.8 5.0 37.6 6.5 37.7 5.3 37.9 6.9 38.1 3.9 39.0 5.4 37.0 5.4 38.0	74 74 75 78 78 73 64 73 74	9.7 1.75 9.7 1.75 9.7 1.75 9.7 1.77 9.7 1.69 9.7 1.62 9.8 1.80 9.8 1.70 9.8 1.71	15.05 15.24 15.43 15.63 15.79 15.98 16.12 16.38 16.56 16.75	56939 a 57818 7 58761 7	526.50 231.26 529.68	917.35 915.30 915.49 910.07 908.00 904.36 904.61	8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	16.6 16.6 16.6 16.6 16.6

DEPTH	R0b	WOB	RPM	MW	"d"C	HOURS	TURNS	ICOST	CCOST	PР	FG
2367.0 2368.0 2369.0 2370.0 2371.0 2372.0 2373.0 2374.0 2375.0	4.7 7.7 15.2 6.6 5.2 6.1 4.6 5.2	38.8 40.8 39.9 40.2 40.7 40.8 41.1 38.9 37.7	74 76 73 69 74 78 78 78 77 78	9,8 9,8 9,8 9,8 9,8 9,8	1.66 1.81 1.62 1.40 1.69 1.78 1.75	16.90 17.11 17.24 17.31 17.46 17.65 17.82 18.03 18.22 18.43	65804 66078 66753 67657 68420 69433 70326	550.84 782.14 472.73 240.42 554.90 708.08 594.46 788.22 707.07	896.15 892.33 886.50 883.56 882.02 879.51 878.72 877.25	8.4 8.4 8.4 8.4 8.4 8.4	16.6 16.7 16.7 16.7 16.7 16.7 16.7 16.7
2377.0 2378.0 2379.0 2380.0 2381.0 2382.0 2383.0 2384.0 2386.0	4,2 5,6 9,1 5,5 4,1 6,7 4,0 5,2	37.6 38.6 38.4 38.9 39.9 42.4 43.4 45.8 46.3	78 78 77 77 77 74 78 78 78 75	9,8 9,8 9,8 9,8 9,8 9,8	1.78 1.82 1.72 1.57 1.73 1.73 1.72 1.90 1.85	18.66 18.90 19.07 19.18 19.36 19.61 19.76 20.01 20.20	73453 74279 74790 75630 76727 77432 78600 79502	812.57 872.42 649.24 402.73 663.45 899.81 546.79 911.99 707.07 809.53	875.72 873.84 869.98 868.29 868.55 865.97 866.34 865.08	8.4 8.4 8.4 8.4 8.4 8.4	16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7
2387.0 2388.0 2389.0 2390.0 2391.0 2392.0 2393.0 2394.0 2396.0	5.0 9.4 7.3 13.1 6.6 12.1 10.7 6.4	46.3 46.0 46.1 45.5 45.7 45.7 45.7 40.5	77 77 76 77 76 73 73 78 79 79	9.8 9.8 9.8 9.8 9.8 9.8	1.86 1.85 1.65 1.73 1.55 1.55 1.54 1.53 1.66	20.63 20.83 20.93 21.07 21.15 21.30 21.38 21.47 21.63 21.76	82339 82828 83460 83809 84476	568.09	862.56 858.94 856.23 851.88 849.68 845.61 841.89 839.88	8.4 8.4 8.4 8.4 8.4 8.4 8.5	16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7
2397.0 2398.0 2399.0 2400.0 2401.0 2402.0 2403.0 2404.0 2405.0 2406.0	12.0 15.5 14.9 14.9 13.4 10.2 6.7	42.1 42.9 42.9 42.7 42.7 42.7 44.1 44.1	79 78 78 78 79 78 73 77 76	9.8 9.8 9.7 9.7 9.7 9.7	1.60 1.54 1.46 1.47 1.48 1.52 1.60 1.75 1.55	21.86 21.95 22.01 22.08 22.15 22.22 22.32 22.32 22.32 22.47 22.55	87516 87819 88133 88450 88802 89233 89916 90285	244.48 245.50 272.89 358.10 541.71 293.17	830.18 825.96 821.86 817.82 814.03 810.88	8.5 8.5 8.5 8.5 8.5 8.5	16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7
2407.0 2408.0 2409.0 2410.0 2411.0 2412.0 2413.0 2414.0 2415.0 2416.0	15.4 10.5 5.5 4.6 3.8 10.2 11.3 5.1	44.2 44.5 45.1 45.1 45.8 43.9 45.5	77 76 76 77 77 74 76 76 77	9.7 9.7 9.7 9.7 9.7 9.7	1.48 1.48 1.61 1.83 1.89 1.58 1.58 1.58	22.71 22.87 22.87 23.05 23.27 23.53 23.63 23.72 23.92 24.15	91321 91757 92601 93597 94814 95253 95659		794.90 791.93 791.12 791.10 792.21 789.41	8.5 8.5 8.5	16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
2417.0	6.9	44.8	76	9.7	1.75	24.30	98317	528.53	784.89	8.5	16.7
2418.0		45.7	77		1.85	24,49		695.91	784.33	8.5	16.7
2419.0	4.1	46.4	78	9.7	1.95	24.73		893.73			16.7
2420.0	4,8	46.5	78		1.90	24,94		764.89	784.89	8.5	16.7
2421.0	4.8	46.6	78	9.7	1.90	25,15		759.82			16.7
2422.0	5.4	46.5	77	9.7	1.86	25.34		675.62			16.7
2423.0	5.9	46.3	77	9.7	1.82	25.51		621.85			16.7
2424.0	4.5	46.5	77		1,92	25.73		819,67	783,30		16.7
2425.0	5.0	47.0	77	9.7	1.89	25.93	105892				16.7
2426.0	4.3	47.0	77	9.7	1,94	26.16	106967				16.7
2427.0		44,9	75	9.7	1.71	26.29	107543	464.62	781,53	8.5	16.7
2428.0	7.3	47,4	77	9.7	1.77	26.43		500.12	779.87		16.7
2429.0	4.9	47.1	75	9.7	1.89	26.63	109088		779,63		16.7
2430.0	5,3	43.9	79	9.7	1,84	26.82	109979	687,79			16.7
2431.0	8.1	47.4	79	9.7	1.74	26.94		453.46			16.7
2432.0	9,8	46.5	78	9.7	1.66	27.05	111043	373.32	774,88		16.7
2433.0	9.0	45.7	76	9.7	1.67	27.16		404.76			16.7
2434.0	4,2	46.3	78	9.7	1,94	27.39	112648	862,28	773,28		16.7
2435.0	5.0	46.1	78	9.7	1.88	27.59	113576	726.34	773.01		16.7
2436.0	8.8	45.8	77	9.7	1.69	27.70	114104	414.91	771.00	8.5	16.7
2437.0		46.1	77	9.7	1.84	27.89	114940	660.40	77 0.38	8.5	16.7
2438.0		46.4	77	9.7	1.96	28.14	116104	915.03	771.18	8.5	16.7
2439.0		46.4	78		1.84	28.31	116918	637.07	770.44	8.5	16.7
2440.0		46.4	77		1.83	28.48	117718	628,96	769.66	8.5	16.7
2441.0		46.6	78		1,90	28.69	118701	770.98	769.67	8.5	16.7
2442.0		46.8	78		1.95	28.93	119815	869.38	770.21	8.5	16.7
2443.0		47,9	74		1.99	29,20	121012				16.7
2444.0		48.4	69		2.20	29.73	123184	1923	778	8.5	16.7
2445.0	2.1	46.8	69	9.7	2.15	30.22	125215	1780	783	8.5	16.7

tiste texas verticas

DIT NUMBER HTC JD8 COST TOTAL HOURS	1700.00 3 4.97	SIZE TRIP TIME	8,500 2,4	INTERVAL NOZZLES BIT RUN CONDITION	14 14 14 19.0
DEPTH	ROP WOE	RPM MW "d"	c HOURS	TURNS ICOST	CCOST PP FG
2446.0 2447.0 2448.0	3.8 40.9 4.7 37.4 4.2 38.9	62 9.4 1.9	9 0.47	974 954 1769 778 2731 873	29678 8.6 16.8 15228 8.6 16.8 18443 8.6 16.8
2449.0 2450.0 2451.0 2452.0 2453.0 2454.0 2456.0 2456.0 2458.0	7.1 36.8 8.7 39.1 8.8 36.5 4.8 39.7 4.5 38.9 7.1 38.7 3.0 39.6 3.0 39.6 3.9 40.0	68 9.3 1.8 62 9.3 1.2 61 9.3 2.0 64 9.3 2.0 63 9.3 1.8 65 9.3 2.2 66 9.3 2.2	4 0.97 9 1.08 4 1.29 6 1.52 8 1.66 3 1.99 3 2.32 1 2.57	3303 515 3771 422 4229 415 5000 765 5855 815 6388 514 7674 1206 8973 1198 9907 940 10818 919	7961 8.6 16.8 6453 8.6 16.8 5447 8.6 16.8 4278 8.6 16.8 4283 8.6 16.8 3864 8.6 16.8 3598 8.6 16.8 3380 8.6 16.8 3177 8.6 16.8
2459.0 2460.0 2461.0 2462.0 2463.0 2464.0	3.2 39.3 3.4 39.6 4.3 39.5 2.5 40.0 2.4 39.5 2.2 39.9	66 9.3 2.1 66 9.3 2.1 65 9.3 2.3 61 9.3 2.2	9 3,44 0 3,67 1 4,07 8 4,48	11915 1154 13095 1082 14013 842 15571 1455 17059 1495 18701 1637	2871 8.6 16.8 2752 8.6 16.8 2632 8.6 16.8 2563 8.6 16.8 2504 8.6 16.8 2458 8.6 16.8
BIT NUMBER HTC J22 COST TOTAL HOURS	7 4139.00 1.47	SIZE TRIP TIME	8.500 7.5	INTERVAL NOZZLES BIT RUN CONDITION	2464.0~ 2481.2 14 14 14 17.2 T1 B1 G0.000
DEPTH	ROP WOE	RPM MW "d"	c HOURS	TURNS ICOST	CCOST PP FG
2466.0 2 2467.0 2468.0 1	.1.4 30.7 20.2 48.0 9.9 43.4 5.0 44.1	66 9.3 1.6 49 9.3 1.7	4 0.14 4 0.24	297 320 494 181 791 368 982 243	31849 8.6 16.8 16015 8.6 16.8 10799 8.6 16.8 8160 8.6 16.8
2470.0 2 2471.0 2 2472.0 3 2473.0 2 2474.0 2	.9.4 43.5 23.1 43.1 20.5 40.3 32.7 41.5 21.7 38.3 25.7 35.6 7.6 28.1 8.9 38.6 5.4 42.5 7.5 44.5	46 9.3 1.3 48 9.3 1.4 57 9.3 1.3 51 9.3 1.3 57 9.3 1.3 50 9.3 1.3 52 9.3 1.7 52 9.3 1.9	9 0.40 1 0.45 1 0.48 9 0.53 3 0.56 1 0.62 3 0.85 8 1.03	1129 189 1250 158 1390 179 1494 112 1635 168 1768 142 1937 207 2639 411 3221 681 3638 488	6566 8.6 16.8 5498 8.6 16.8 4738 8.6 16.8 4160 8.6 16.8 3716 8.6 16.8 3359 8.6 16.8 3072 8.6 16.8 2663 8.6 16.8 2521 8.6 16.8 2386 8.6 16.8

DEPTH	ROP	WOR	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	рþ	FG
2480.0 2481.0		42.0	52 52	9.3	1.95 1.73	1.32 1.42	4117 4425	561 359	22 72 2159		16.8 16.8
2481.2	16.4	43.5	29	9.3	1.34	1.43	4447	223			16.8
BIT NUMBE CHRIST RO		7		(ADC (CODE	Ą.		ERVAL	2481	. 2-, 24	
COST		19.00		rrip 1	r T M III	8.500 7.5		ZLES RUN		14)	15 15
TOTAL HOU		1,45			TURNS			DITION	TO	B0 G(17.8 1.050
DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	l::(;
2481.3	5.5	21.6	93	9.4	1.75	0.02	102	ል ሚ በ	384 760	C) 6.	16.8
2481,4		20.9	93		1.49	0.03	147	294			16.8
2481.5		21.8	93		1.28	80.0	169		128399		16.8
2481.6		22.5	92		1.52	0.04	223	355	96388		16.8
2481.7	12.0		93		1,54	0.05	269	304	77171		16.8
2481.8	9.2		93		1.61	0.06	330	396	64375		16.8
2481.9		22.4	93		1.44	0.07	365	233	55210		16.8
2482.0	11.6		93	9.4	1.52	0.07	413	314	48350	8.6	16.8
2482.1	12.9		93	9.4	1.50	0.08	457	284	43009		16.8
2482.2		22.3	93		1.55	0.09	508	335	38742		16.8
2482.3	14.4		92		1.48	0.10	546	254	35243		16.8
2482.4	15.7		93		1.45	0.10	582	233	32325		16.8
2482.5	10.3		93		1.56	0.11	636	355	29866		16.8
2482.6	12.9		93		1.50	0.18	680	284	27753		16.8
2482.7		22.3	23		1.66	0.13	751	467	25934	8.6	16.8
2482.9	28.8		93		1.25	0.14	789	127	22898	8.6	16.8
2483.0	8.6	22.6	93	9.4	1.63	0.15	855	426	21649	8.6	16.8
2483.1	14.4		93		1.46	0.16	893	254	20523	8.6	16.8
2483,2 2483,3		22.9	93	9.4		0.17	952	385	19516		16.8
2483.4	12.0		93		1.52	0.18	999	304		8.6	
2483.5	21.2			.9.4		0.18	1025	172	17764		16.8
2483.6	10.6 18.9		92		1.59	0.19	1078	345	17007		16.8
2483.7	15.0		92	9,4		0.20	1107	193	16306		16.8
2484,0	67.5		92 92	9.4		0.21	1144	243	15663	8.6	
2484.1	10.6		94	9,4		0.21	1168	54	13991	8.6	
2484.2	20.0		93	9.4 9.4		0.22 0.22	1221 1249	345 183	13520 1 30 26	8.6 8.6	16.8 16.8
2484.3	14 2	mm m	C) A	-							
2484.4	11.6 11.6		94	9,4		0.23	1298	314	12664	8.6	
2484.5	15.0		94 94	9.4 9.4		0.24	1346	314	12278	8.6	
2484.6	12.0		93	7,4 9,4		0.25	1384	243	11914	8.6	
2484.7	9.5		23 94	9.4		0.26	1431	304	11572	8.6	
2484.8	14.4		94	9.4		0.27	1490	385	11253	8.6	
2484.9	10.6		74 94	9.4		0.27 0.28	1529	254	10947	8.6	
2485.0	10.6		94	9.4		0.28	1582 1636	345	10660	8.6	
2485.2	14,4		94	9,4		0,31	1714	34 5 254	10389 9882	8,6	
2485.3	14.4		94	9.4		0.31	1753	254	9647	8.6 8.6	
			. 1		• 1 TuJ	W 1 12 A	1700	A.CJ *4	7 O M 7	ψισ	. W. (C)

DEPTH	ROP	MOB	RPM	MW	"d"C	HOURS	TURNS	ICOST	ccost	рр	FG
2485.4	14.4	19.3	94	9.4	1.37	0.32	1787	223	9423	9 A	16.8
2485.6		21.3	93		1.10	0.32	1812	81	8998		
											16.8
2485.8		22.3	92		1.43	0.34	1881	228	8617		16.8
2486.1		24.2	88		1 . (14	0,34	1907	61	8093		16.8
2486.2		23.0	89		1.60	0.35	1964	385	7939		16.8
2486.4	37,9	20.9	88	9,4	1.13	0.36	1991	96	7637	8.6	16.8
2486.6	21.2	21.7	87	9.4	1.32	0.37	2041	172	7361	8.6	16.8
2487.0	45.0	19,1	87	9,4	1,05	0.38	2087	81	6859	8.6	16.8
2487.4		20.6	87		1.10	0.39	2138	89	6422		16.8
2487.5		20.0	87		1.31	0.39	2164	183	6323		16.8
	w		• • •				15. 4. 17. 1		5.0 510 \$10 510	V.5 1 V.7	2 12 1 12
2487.6	18.9	20.4	87	9.4	1.33	0.40	2191	193	6227	8.8	16.8
2487.7		20.3	87		1.63	0.41	2268	538	6140		16.8
2488.0		21.3	87		1.32	0.43	2345	179	5877		16.8
		19.3									
2488.2			87		1.27	0.43	2392	167	5714		16.8
2488.4		17.1	88		1.12	0.44	2426	117	5558		16.8
2488.6		20.3	87		1.26	0.45	2469	152	5412		16.8
2488.8	19.5	20.1	87	9.4	1.32	0.46	2523	188	5275	8.6	16.8
2489.0	15.3	20.7	87	9,4	1,40	0.47	2591	238	5145	8.6	16.8
2489,4	29,4	20.6	86	9.4	1.20	0.49	2661	124	4903	8.6	16.8
2489.6	24.8	18.7	87	9.4	1.22	0.49	2703	147	4787		16.8
				•					• • • • •		
_ 2489.8	20.6	19.1	87	9.4	1.28	0.50	2754	178	4680	8.6	16.8
2490.0		19.6	81		1.42	0.52	2834	299	4581		16.8
2490.2		19.2	90		2.02	0.64	3461	2120	4526		16.8
2490.4		21.1	94		1.58	0.66	3583	396	4436		16.8
2490.6	10.7										
			94		1.54	83.0	3688	340	4349		16.8
2490.8	14.1		93		1.45	0.69	3767	259	4264		16.8
2491.0		22.0	93		1.22	0.70	3803	117	4179		16.8
2491.2	12.4		94	9.4	1.49	0.71	3893	294	4101	8.6	16.8
2491,4	18.9	20.9	94	9.4	1.36	0.72	3953	193	4025	8.6	16.8
2491.6	8.7	21.4	94	9.4	1.61	0.75	4083	421	3955	8.6	16.8
_							•				
2491.8	11.4	21.2	94	9,4	1.52	0.76	4182	320	3887	8.6	16.8
2492.0	13.1	20.7	94	9.4	1.47	0.78	4268	279	3820	8.6	16.8
2492.2		20.8	94		1,40	0.79	4338	223	3755		16.8
2492.4		20.6	94		1.39	0.80	4405	218	3692		16.8
2492.6		20.2	92		1.31	0.81	4457	172	3630		16.8
2492.8		21.4	91		1.29	0.82	4502	152	3570		16.8
2493.0		17.1	92		1.64	0.86	4711	690	3521		16.8
2493.2 2493 A		23.0	95		1.31	0.82	4755	142	3465		16.8
8a "Y / W 1 "Y		22.7	93		1.57	0.89	4859	340	3413		16.8
2493.6	9.1	22.0	95	9.4	1.61	0.91	4985	401	3365	8.6	16.8
2493.8		411 251		*** 3					!		
		22.9			1.76	0.94	5179	588	3321		16.8
2494.0		22.4	93		1.70	0.97	5344	543	3277		16.8
2494,2		21.4	93		1.44	0.98	5419	243	3231		16.8
2494.4		21.4			1.74	1.02	5617	604	3191		16.8
2494.6	7.6	22.6	102	9,4	1.70	1.04	5778	482	3150		16.8
2494.8	6.4	22.9	101	9.4	1,76	1.07	5968	573	3113	8.6	16.8
		22.0			1.42	1.09	6035	203	3070	8.6	16.8
2495.0 2 49 5.2		22.0			1.53	01.1	6133	294	3031		16.8
2495.4		22.7			1,56	1.12	6234	304	2992		16.8
2495.6		21.8			1.54	1.13	6335	304	29 55		16.8
KINT VOLUM	x 65. + U	f 4 + 1.3	7 (J.)	7 1 7	A 1 (J*Y	X 1 X 1.3	CJ CJ CJ CJ		ELL P. N.P.N.P.	W 1 N/2	6 W / W
—											

_	DEPTH	H ROP	WOB	RPM	MU	"d"c	HOURS	TURNS	ICOST	ссоят	рр	FG
	2495.8		22.6			1.59	1.15	6447	340	2919		16.8
	2496.0		23.5			1.53	1.17	6535	264	2883		16.8
_	2496.2		22.2			1.64	1.19	6672	416	2850		16.8
	2496.4		20.7		9.4	1,23	1.20	6710	117	2814		16.8
	2496. <i>6</i>	5 15.7	21.7	101	9.4	1.46	1.21	6787	233	2781		16.8
	2496.8	3 21.2	22.9	101		1.38	1.22	6845	172	2747		
	2497.0		23.1			1.71	1.25	7008	487	2719		16.8
	2497.2		23.4			1.81	1.28	7227				16.8
-	2497.4		22.0			1.57	1.30		649	2693		16.8
	2497.6		20.8			1.17	1.30	7339	335	2664		16.8
		* *****	2 W 1 V.	> (, 7	<i>y</i> , ""	1 . 1 /	11 6 1	7371	96	2633	8.6	16.8
	2497.8		23.9		9,4	1.20	1.31	7401	91	2602	8.6	16.8
	2497.9		20.4	101	9,4	1.66	1.32	7485	507	2589		16.8
	2498.0	8.5	20.0	101	9.4	1.60	1.34	7556	430	2577		16.8
	2498.2	12.2	21.2	101		1.52	1.35	7656	299	2550		16.8
	2498.4			101		1.76	1.38	7834	537	2526		
_	2498.6		23.2			1.71	1.41	7996				16.8
	2498.8		21.1			1.55			487	2503		16.8
	2499.0						1.43	8106	332	2478		16.8
	a. *** > > + O	Ord	en i i	101	y , 44	1.63	1,45	8248	4 30	2455	8.6	16.8
	BIT NUM	BER	7	Ţ	ADC C	ODE	Ą	INT	ERVAL	2499	0- 25	117.1
	CHRIST	RC6		S	IZE		8,500		ZLES	14		4 15
	COST		0.00	T	RIP 1	IME	7.5		RUN		3 v.3 A	18.1
_	TOTAL H	OURS	4.27			TURNS			DITION	T 0	7 0 00	1011
								All Act 1	87 D. T. M. (2017)	1 /1	250 (50	
	DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	TCOST	ccost	Þр	FG
_		/*** 21·05 10·19									• •	, ,,,
	2499.2		15.1	88		1.12	1.41	8286	132	1787	8.6	16.8
	2499.4	35.5	15.2	95	9,4	1.08	1.41	8318	103	1769	8.6	16.8
	2499.6	32.0	14.8	91	9,4	1.09	1.42	8353	114	1751	ΩΑ	14.8
	2499.8	18.5	14.9	94		1.25	1.43	8414	1 98	1735		16.8
_	2500.0	17.6	15.1	94		1.27	1,44	8478	208	1719		
	2500.2			103		1.34	1.46	8564				16.8
	2500,4			103		1,46			254	1703		16.8
	2500.6	21.2		97		1.22	1.48	8691	375	1690	8.6	
	2500.8	13.1					1.49	8746	172	1674	8.6	
_	2501.0			95		1.34	1.50	8833	279	1660	8.6	
		14.7		104		1.34	1.51	8918	249	1646	8.6	16.8
	2501.2	18.0		96		1.27	1.53	8982	203	1632	8.6	16.8
_	2501.4	30.0	15.4	93	9.4	1.12	1.53	9019	122	1617	8.6	16.8
	2501.6	42.4	14.9	95	9.4	1.02	1,54	9046	07	1/00	m 2	4 / C)
	2501.8	40.0		95		1.04	1.54	9074	86	1602	8.6	
	2502.0	22.5		94	9.4				91	1587	8.6	
	2502.2	13.1		94			1.55	9125	162	1574	8.6	
	2502.4		15.0			1.34	1.57	9211	279	1562	8.6	
	2502.6			94	9.4		1.59	9332	391	1551	8.6	
_			15.1	95	9.4		1.62	9491	512	1541		16.8
	2502.8		15.4	94	9.4		1.64	9612	391	1531	8.6	16.8
	2503.0		15.0	95	9.4		1.67	9779	538	1522	8.6	
	2503.2		15.2	95	9.4	1.44	1.69	9899	385	1511	8.6	
	2503.4	8.8	14.8	95	9.4	1.45	1.71	10029	416	1502	8.6	
										··· ·· ···		·· -

and the second section of the second second

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	pр	FG
2503.6 2503.8 2504.0 2504.2 2504.4 2504.6 2505.0 2505.0	14.7 7.6 8.8 18.0 17.6 15.0 17.1	14.9 15.2 16.2 15.1 15.3 15.1 15.3 14.9	95 95 92 91 91 90 91 91	9.4 9.4 9.4 9.4 9.4 9.4 9.4	1.38 1.33 1.52 1.45 1.25 1.26 1.30 1.27 1.32	1.73 1.74 1.77 1.79 1.80 1.81 1.83 1.84	10127 10204 10350 10474 10535 10597 10620 10733 10812 10881	314 249 482 416 203 208 243 213 264 233	1491 1480 1471 1462 1452 1441 1431 1421 1411	8.6 8.6 8.6 8.6 8.6 8.6	16.8 16.8 16.8 16.8 16.8 16.8 16.8
2505.6 2505.8 2506.0 2506.2 2506.4 2506.6 2506.8 2507.0 2507.2	31.3 28.8 26.7 28.8 36.9 28.8 28.8 21.8 19.5 30.0	14.2 13.1 12.8 12.7 12.5 14.1 13.3 13.8	91 91 91 92 92 92 91 91	9.4 9.4 9.4 9.4 9.4 9.4 9.4	1.09 1.10 1.10 1.08 1.01 1.07 1.10 1.16 1.70	1.87 1.88 1.89 1.89 1.90 1.90 1.91 1.92	10916 10954 10995 11033 11063 11101 11139 11190 11246 11282	117 127 137 127 99 127 167 188 122	1391 1381 1371 1361 1351 1342 1332 1323 1315	8.6 8.6 8.6 8.6 8.6 8.6	16.8 16.8 16.8 16.8 16.8 16.8 16.8
2507.6 2507.8 2508.0 2508.2 2508.4 2508.6 2508.6 2509.0 2509.2	6.7 3.7	14.6 14.3 14.5 14.2	91 92 91 91 91 92 91 91	9,4 9,4 9,4 9,4 9,4 9,4	1.31 1.13 1.18 1.13 1.22 1.35 1.50 1.56 1.71	1.95 1.96 1.97 1.98 1.99 2.00 2.03 2.06 2.11	11360 11401 11451 11492 11550 11633 11768 11932 12229	259 137 167 137 193 279 446 548 989 781	1298 1289 1281 1272 1264 1257 1251 1246 1245 1241	8.6 8.6 8.6 8.6 8.6 8.6	16.8 16.8 16.8 16.8 16.8 16.8 16.8
2509.6 2509.8 2510.0 2510.2 2510.4 2510.6 2510.8 2511.0 2511.2 2511.4	5.5 6.7 7.2	16.3 16.0 15.8	91 98 90 90 89 90 90 89	9.4 9.4 9.4 9.4 9.4 9.4	1.67 1.63 1.56 1.54 1.48 1.36 1.43 1.49 1.31	2.20 2.23 2.26 2.29 2.31 2.33 2.35 2.35 2.38 2.40	12696 12909 13070 13220 13339 13422 13527 13660 13732	776 659 543 507 406 284 355 451 243 249	1238 1234 1229 1224 1219 1212 1207 1202 1195 1189	8.6 8.6 8.6 8.6 8.6 8.6	16.8 16.8 16.8 16.8 16.8 16.8 16.8
2511.6 2511.8 2512.0 2512.2 2512.4 2512.6 2512.8 2513.0 2513.2 2513.4	7.4 8.9 8.2 6.3	15.1 15.4 15.8 16.8 16.2 16.5 16.5	89 89 90 89 88 88 89 73 92	9.4 9.4 9.4 9.4 9.4 9.4	1.52 1.47 1.50	2.41 2.43 2.44 2.45 2.49 2.51 2.54 2.56 2.56	13886 13950 14002 14084 14275 14418 14537 14667 14807 14961	279 218 178 279 649 492 411 446 583 512	1183 1177 1170 1165 1167 1157 1153 1148 1145	8.6 8.6 8.6 8.6 8.6 8.6	16.8

•

The second of th

DEPTH	ROP	WOR	RPM	MW	$_{n}q_{-n}c$	HOURS	TURNS	ICOST	CCOST	pр	FG
/\E= 4 **y /	y		ATT. 1819								
2513.6 2513.9		11.5			1.57	2.67	15248	938	1139	8.6	16.8
60 70 X 40 1 40		12.3	92		1.62	2.73	15564	1045	1139	8.6	16.8
2514.0		12.6	93	9.4	1.41	2.75	15702	451	1135		16.8
2514.2 2514.4	5.3	12.0	92	9.4	1.50	2.79	15908	685	1132		16.8
2514.4		13.2	92		1.64	2.85	16207	989	1131		
2514.6		13.9	91		1.81	2.94	16741				16.8
mma a m		13.5	91		1.74			1780	1135		16.8
2515.0		13.8				3.02	17169	1430	1137		16.8
			91		1.81	3.12	17708	1806	1141	8.6	16.8
2010.2		15.6	91		1.89	3.23	18288	1943	1145	8.6	16.8
2515.4	1.3	15.5	91	9.4	2.00	3.38	19152	2876	1155	8.6	16.8
2515.6	2.0	13.1	89	O A	1,79	3.48	19682	4 (5) (5-4)	st a time	en e	4 / 61
2515.8		13.9	90		2.04			1801	1159		16.8
2516.0 2516.2						3.71	20913	4164	1176		16.8
		13.8	90		1.78	3.80	21385	1598	1179	8.6	16.8
2516.2		13.8	90		1.85	3,91	22008	2110	1184	8.6	16.8
2516.4		13.7	90	9.4	1.85	4.03	22641	2146	1170	8.6	
2516.6	2.2	13.8	90	9.4	1.79	4.12	23137	1679	1192		16.8
2516.8	6.2	13.0	90		1,49	4.16	23311	588	1189	8.6	
2517.0		13.6	90		1.65	4.21	23612	1014	1188		
2517.1		15.3	72		1.85					8.6	
to see a contract	217	ASSESS	7 E.,	/ , ~?	x + O/3	4.27	23867	2140	1193	8.6	16.8
BIT NUMBER CHRIST RC COST	6	7 0.00	9	ADC C SIZE RIP T		4 8.500 7.5	NOZ	ERVAL ZLES RUN	2517.	1- 25 14 1	
TOTAL HOU	RS	6.34	Ţ	OTAL	TURNS	34899		DITION	Tn	B0 G0	
									* **	200 00	1 (2 (- (-
DEPTH	ROP	MOB	RPM	MW	"d "c:	HOURS	TURNS	ICOST	CCOST	ÞÞ	FG
2517.4	5.5	7.6	87	9.4	1.33	4.32	24151	664	1190	8.6	16.8
2517.6	6.2	17.2	89	9.4	1.59	4.36	24324	593	1186	8.6	14 2
2517.8		17.0	90	9.4		4.39	24504	609			
2518.0		21.4	90	9.4					1183	8.6	
2518.2						4.41	24629	426	1179	8.6	
		22.6	89	9,4		4.45	24804	593	1176	8.6	
2518.4		21.9	90	9.4		4.49	25045	817	1174	8.6	16.8
2518.6		21.6	90	9,4		4.53	25248	685	1171	8.6	
2518.8		22.0	90	9.4	1.79	4.57	25477	776	1169	8.6	
2519.0	7.6	21.9	9.0	9.4		4.60	25619	482	1166	8.6	
2519.2		21.7	89	9.4		4.64	25837	746			
2519.4		21.8	89	9.4		4.68			1163	8.6	
	50 E SA	a 1 (.)	V.2. 2	/ 1 ^{my} .	X + Z + 3	** : O O	26038	690	1161	8.6 1	(6.8
2519.6		22.1	88	9.4		4.70	26180	492	1158	8.6	16.8
2519.8	7.0	21.8	88	9.4	1,66	4.73	26331	522	1154	8.6	
2520.0	10.9	21.7	88	9.4		4.75	26429	335	1150	8.6	
2520.2		21.7	88	9.4		4.78	26562	462			
2520.4	15.0		87	9.4					1147	8.6 1	
2520.6						4.79	26632	243	1142	8.6	
		21.5	87	9,4		4.82	26783	528	1139	8.6 1	
2520.8	13.6		87	9.4		4.83	26860	269	1134	8.6 1	6.8
2521.0	13.1		86	9.4		4.85	26939	279	1130	8.6 1	6.8
2521.2	14.7	21.4	87	9.4	1.42	4.86	27010	249	1126	8.6 1	
2521.4	9.9	21.6	87	9.4 1			27116	370	1122	8.6 1	
							and the second	60 c 30	e e todo	500 F 500 A	100 E No.

 $(\mathbf{w}^{k})^{\mathrm{trans}} = (\mathbf{w}^{k})^{\mathrm{trans}} + (\mathbf{w$

3 I F

	DEPTH	ROP	wor	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	F*G
	2521.6	11,4	21.7	87	9.4	1.51	4.90	27207	320	1118	O 4	16.8
	2521.8		21.2	86		1.33	4.91	27260				16.8
	2522.0		21.2	87		1.44	4,92	27337				16.8
	2522.2		21.5	86		1.45	4.94	27413				16.8
	2522.4		20.8	85		1.33	4,95	27467				16.8
_	2522.6		21.0	86		1,25	4.96	27508				16.8
-	2522.8		20.3	88		1.17	4.96	27541	112			16.8
	2523.0		19.8	88		1.06	4.97	27564	81	1087		16.8
	2523.2		19.9	87		1.23	4.98	27605				16.8
	2523.4		20.5	87		1.36	4,99	27666				16.8
	2523.6	8.8	21.9	87	9.4	1,59	5.01	27784	416	1075	8 A	16.8
	2523.8	11.3	21.5	86	9,4	1.50	5.03	27876	325	1071		16.8
	2524.0	14.7	21.6	85		1,42	5.04	27946	249			16.8
	2524.2	19.5	21.3	85	9.4	1.33	5.05	27998	188			16.8
	2524.4	20.0	21.1	85		1.32	5.06	28049	183	1059		16.8
	2524,6	20.0	21.3	86	9,4	1.32	5.07	28100	183	1055		16.8
	2524.8	32.7	20.6	88	9.4	1.17	5.08	28133	112	1051		16.8
	2525.0	24.8	20.5	a_{δ}	9,4	1.26	5,09	28176	147	1047		16.8
_	2525.2	31.3	19.9	100	9,4	1.21	5.09	28214	117	1043		16.8
	2525.4	42.4	18.6	100	9,4	0 r. r	5.10	28242	86	1038		16.8
-	2525.6	51.4		100	9.4	1.04	5.10	28265	71	1034	8.6	16.8
	2526.0	37,9	18.6	99	9,4	7,1%	5,11	28328	96	1026		16.8
	2526.2	26.7	19.3	96	9,4	1.24	5.12	28371	137	1022		16.8
_	2526.8	28.8		97	9,4	1.22	5.14	28493	127	1010		16.9
_	2527.0	30.0	19.6	98	9,4	1.21	5.15	28532	122	1006		16.9
	2527.2	18.0	20.5	99	9,4	1.38	5.16	28598	203	1003		16.9
	2527.4	28.8	20.6	99	9.4	1,25	5.16	28639	126.81	998,92		16.9
	2527.6		21.6	99	9.4	1.62	5.19	28772	410.85			16.9
	2527.8	14.7		99	9.4	1.48	5.20	28853	248.54			16.9
	2528.0	5.6	22.5	101	9,4	1.79	5.24	29070	654,32	991.74		16.9
	2528.2			100	9.4		5.27	29244	527.51	989,77	8.6	16.9
	2528.4		22.3	t n t	9,4		5.30	29437	583,31	988.05		16.9
_	2528.6			101	9.4		5.32	29564	380,42			16.9
_	2528.8		25.8		9.4		5.33		309,41			16.9
	2529.0	12.0		100		1.59	5.35		304,33		8.6	16.9
	2529.2			100	9.4		5.37	29896	395.63	977.40	8.6	16.9
	2529.4		20.8	80	9.4		5.48	30384	1867	981		16.9
	2529.6		22.6	87	9.4		5.54	30710	1131	982	8.6	16.9
	2529.8	2.4		87	9.4		5.62	31150	1547	984	8.6	16.9
_	2530.0	1.8	23.1	87	9.4	2.12	5.74	31741	2075	988	8.6	16.9
	2530.2		22.3	87	9.4		5.96	32893	4032	1001	8.6	16.9
	2530.4	0,7		87	9,4		6.26	34484	5569	1019	8.6	
_	2530.6	3.3		86	9.4		6.32	34802	1121	1020	8.6	16.9
	2530.8	22.5		85	9.4		6.33	34848	162	1016	8.6	
	2531.0	20.0	18.8	86	9.4	1.30	6.34	34899	183	1013	8.6	16,9

.

BIT NUMBER TADC CODE .0 INTERVAL 2531.0- 2549.n CHRIST RC4 SIZE 8,500 NOZZLES 14 15 15 COST 21210.00 TRIP TIME 7.6 BIT RUN 18.0 TOTAL HOURS 1,18 TOTAL TURNS TO BO G0.150 6296 CONDITION DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST pр FG 2531.2 85 10.6 17.1 9.4 1.43 0.02 96 345 245171 8.6 16.9 2531.4 4.1 16.5 90 9.4 1.70 0.07 8.6 16.9 361 893 123032 2531.6 7.7 16.1 91 9.4 1.51 0.09 503 472 82178 8.6 16.9 2531.8 4.5 15.0 84 9.4 1.61 0.14 728 817 61838 8.6 16.9 2532.0 7.6 15.4 81 9.4 1.47 0.16 856 49567 482 8.6 16.9 2532.2 8.4 17.2 80 9.4 1.48 0.19 971 436 41378 8.6 16.9 2532,4 10,1 17.6 9.4 1.44 83 0.21 1069 360 35519 8.6 16.9 2532.6 15.7 16.2 9.4-1.29 84 0.22 1134 233 31108 8.6 16.9 2532.8 17.1 15.9 0.23 85 9.4 1.26 1193 213 27675 8.6 16.9 2533.0 20.0 15.9 9.4 1.22 34 0.24 1244 183 24926 8.6 16.9 2533,2 14.1 16.0 9.4 1.32 17.4 0.26 1315 259 22683 8.6 16.9 26.7 16.4 2533.4 86 9.4 1.15 0.261354 137 20305 8.6 16.9 17,1 16.0 2533.6 86 9.4 1.27 0.28 1414 213 19221 8,6 16,9 2533.8 26.7 15.7 86 9.4 1.14 0.28 1453 137 17857 8.6 16.9 18.9 16.2 2534.0 86 9.4 1.25 0.29 1507 193 16680 8.6 16.9 22.5 16.1 2534.2 9.4 1.19 86 0.30 1553 162 15647 8.6 16.9 2534,4 21.8 15.6 9.4 1.19 86 0.31 1600 16714737 8.6 16.9 2534.6 22.5 16.2 86 9.4 1.19 0.321646 162 13927 8.6 16.9 18.5 16.5 2534.8 86 9,4 1,26 0.331702 198 13205 8.6 16.9 2535.0 9.4 1.37 13.3 17.0 88 0.351781 274 12558 8.6 16.9 2535.2 16,4 16.5 $\Omega\Omega$ 9.4 1.30 0.36 1846 223 8.6 16.9 11971 2535.4 18.5 16.7 89 9.4 1.27 0.37 1904 198 11436 8.6 16.9 2535,6 10.1 17.2 89 9.4 1.45 0.392009 10954 360 8.6 16.9 2535.8 9,4 17,5 90 9.4 1.48 0.41 2124 391 10514 8.6 16.9 2536.0 15.7 17.0 89 9,4 1.33 0.42 2193 233 10103 8.6 16.9 2536.2 9.9 16.9 89 9.4 1.46 0.44 2301 370 9728 8.6 16.9 2536.4 7.8 17.5 89 9,4 1,53 0.47 2438 467 9385 8.6 16.9 2536.6 11.8 17.2 89 9.4 1.41 0.49 2529 309 9061 8.6 16.9 2536.8 6.8 17.2 89 9.4 1.57 0.52 2686 538 8767 8.6 16.9 2537.0 11.8 17.1 89 9.4 1.41 0.53 2777 309 8485 8.6 16.9 2537,2 12.0 17.0 94 9,41,42 0.55 2871 304 8221 8.6 16.9 2537.4 14.7 16.9 102 9.4 1.38 0.56 2954 249 7972 8.6 16.9 2537.6 11.6 16.9 104 9.4 1.45 0.583061 7740 314 8.6 16.9 2537.8 30.0 16.1 105 9.4 1.17 0.593103 122 7516 8.6 16.9 2538,0 14.7 16.6 104 9.4 1.38 0.60 3188 249 7308 8.6 16.9 2538.2 18.0 16.3 102 9.4 1.31 3256 0.61203 7111 8.6 16.9 2538,4 14.4 16.7 103 9.4 1.38 0.63 3342 254 6926 8.6 16.9 16.7 16.8 104 2538.6 9.4 1.35 0.64 3416 6749 218 8.6 16.9 2538.8 14.7 16.1 104 9,4 1,37 0.65 3501 249 6583 8.6 16.9 2539.0 23.2 16.2 103 9.4 1.24 3554 0.66157 6422 8.6 16.9 2539,2 15.7 16.2 102 9,41,35 0.67 3633 6271 233 8.6 16.9 20.6 16.2 103 2539.4 9.4 1.27 0.683693 178 6126 8.6 16.9 2539.6 12.4 16.5 102 9.4 1.42 0.70 3791 5990 294 8.6 16.9

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2539.8 2540.0 2540.2	14.4	16.6 17.1 16.9	102	9.4	1.40	0.71 0.73	3883 3968	274 254	5860 5736	8.6	16.9 16.9
2540.4		16.4			1.43	0.74 0.76	4069 41 51	304	5618		16.9
2540.6			105		1.23	0.77	4202	238 147	5503 5392	8.6	
2540.8			104		1.35	0.78	4281	233	5286		16.9 16.9
2541.0			106		1.28	0.79	4343	178	5184		16.9
2541.2	22.5		107		1.25	0.80	4400	162	5086		16.9
2541,4	31.3	15,9	110		1.17	0.80	4442	117	4990		16.9
2541.6	19.5	15.9	109	9.4	1.30	0.81	4510	188	4900		16.9
2541.8	21.8		3 n t		1.75	58.0	4569	167	4812	8.6	16.9
2542.0	36.0	15.0	107		1.10	0.83	4605	101	4726		16.9
2542.2		15.1	108		1.27	0,84	4670	183	4645		16.9
2542.4			108		1.16	0.84	4713	122	4566		16.9
2542.6 2542.8	20.6 18.0	15.6 15.5	108 109		1.27	0.85	477 6	178	4490		16.5
2543.0	23.2		108		1,23	0.87 0.87	4848	203	4417		16.9
2543.2	27.7		108		1.18	0.67	49 04 4 951	157 132	4346		16.9
2543.4		14.3			1.10	0.89	4988	107	4277 4210		16.9
2543.6		14.6			1,19	0,07	5039	142	4146		16.9
							V2 (5 (3)	1. "Y f	(, 14)	Oro	1017
2543.8	18.0	15.5	107	9.4	1.31	0.91	5110	203	4084	8.6	16.9
2544.0		16.5	106		1.38	0.92	5197	249	4025		16.9
2544.2	30.0		106		1.17	0.93	5240	122	3966	8.6	16.9
2544.4	24.8		107	9,4		0.93	5291	147	3909		16.9
2544.6	18.9		108	9.4		0.95	5360	193	3854		16.9
2544,8 2545.0	20.0		109	9,4		0.96	5425	183	3801		16.9
2545.2	28.8 20.6		110	9.4		0.96	5471	127	3748	8.6	
2545.4		15.5	110	9.4 9.4		0.97 0.98	5536	178	3698		16.9
2545.6	20.0		97	9,4		0.78	5585 5643	137	3649		16.9
	I O I O	7 72 1 72		7 , "7	2 17:53	0 , 7 7	JO 490	183	3601	8.6	18.9
2545.8	10.9		6.0		1.31	1.01	5707	335	3557	8.6	16.9
2546.0	15.7		104	9.4		1.02	5789	233	3513	8.6	
2546.2		20.3		9.4		1.03	5842	152	3469	8.6	
2546.4 2546.6		20.6		9,4		1.04	5914	208	3426	8.6	
2546.6 2546.8		21.2		9,4		1.05	5985	203	3385	8.6	
2547.0	18.0		106	9,4 9,4		1.06 1.07	6047 6117	178	3344 3305	8.6	
2547.2	12.2		105	9.4		1.09	6220	203 299	3268	8.6 8.6	
2547.4		21.4		9.4		1.10	6270	142	3230	8.6	
2547.6		21.4		9.4		1.11	6341	208	3193	8.6	
2547.8	17.6	21.3	104	9.4	1.42	1.12	6411	208	3158	8.6	1 A. O
2548.0	12.4		104	9.4		1.14	6512	294	3124	8.6	
_ 2548.2	24.8		104	9.4		1.14	6562	147	3090	8.6	
2548.4	31.3		104	9.4		1,15	6602	117	3055	8.6	
2548.6	17.1		104	9,4		1.16	6675	213	3023	8.6	
2548.8	21.8			9.4		1.17	6732	167	2991	8.6	
2549.0	19.5	21.1	104	9.4	1.39	1.18	679 6	188	2960	8.6	

BIT NUMBER CHRIST RC4 COST TOTAL HOURS	7 0.00 3.05	IADC CODF SIZE TRIP TIME TOTAL TURNS	4 8,500 2,5 17528	INTERVAL NOZZLES BIT RUN CONDITION	2549.0- 2564.4 14 15 15 15.4 TO BO GO.300
DEPTH ROP	WOB RP	M MW "d"c	HOURS	TURNS ICOST	CCOST PP FG
2549.2 4.1 2549.4 13.3 2549.6 5.3	6.2 9	9.4 1.32 9.4 1.09 9.4 1.30	1.25 1.26 1.30	7070 883 7154 274 7365 685	
2550.8 14.7 2551.0 11.3 2551.2 14.4 2551.4 21.2 2551.6 11.6 2551.8 19.5 2552.0 18.0 2552.2 22.5 2552.4 18.5 2552.6 11.6	8.0 9 11.8 9 15.7 9 13.2 9 10.8 9 11.0 9 14.6 9 13.1 9 14.4 9 15.3 9 15.3 9 16.3 9 14.1 9	4 9.4 1.23 3 9.4 1.22 3 9.4 1.16 3 9.4 1.38 1 9.4 1.32 2 9.4 1.21 3 9.4 1.12 2 9.4 1.36 3 9.4 1.24 3 9.4 1.24 3 9.4 1.26 3 9.4 1.41 3 9.4 1.45	1.32 1.34 1.36 1.36 1.40 1.42 1.45 1.45 1.46 1.46 1.50 1.50	7500 436 7611 360 7720 355 7805 279 7939 441 8014 249 8112 325 8190 254 8242 172 8338 314 8395 188 8457 203 8506 162 8566 198 8662 314 8798 446	40285 8.6 16.9 32300 8.6 16.9 26976 8.6 16.9 23162 8.6 16.9 18091 8.6 16.9 16315 8.6 16.9 14855 8.6 16.9 12607 8.6 16.9 11720 8.6 16.9 10278 8.6 16.9 9685 8.6 16.9 8705 8.6 16.9 8705 8.6 16.9
2553.2 17.6 2553.4 14.7 2553.6 26.7	12.7 93 12.9 93	3 9,41,21 3 9,41,26	1.56 1.58 1.59 1.60	8831 107 8894 208 8970 249 9012 137	8275 8.6 16.9 7891 8.6 16.9 7544 8.6 16.9 7222 8.6 16.9
2555.4 10.7	13.1 91 13.3 100 13.5 100 13.7 99 13.3 99	1 9.4 1.25 0 9.4 1.30 0 9.4 1.27 9 9.4 1.37 9 9.4 1.28 3 9.4 1.29 5 9.4 1.35 6 9.4 1.40	1.61 1.62 1.64 1.65 1.67 1.68 1.69 1.71	9092 264 9163 238 9249 264 9323 223 9427 320 9506 243 9587 238 9688 294 9806 340 9953 411	6932 8.6 16.9 6664 8.6 16.9 6418 8.6 16.9 6188 8.6 16.9 5979 8.6 16.9 5781 8.6 16.9 5596 8.6 16.9 5425 8.6 16.9 5266 8.6 16.9
2556.2 8.5 2556.4 8.7 2556.6 8.9 2556.8 8.3 2557.0 6.4 2557.2 12.6 2557.4 19.5	15.2 102 14.5 105 14.8 105	9.4 1.72 5 9.4 1.49 5 9.4 1.48 8 9.4 1.51 9.4 1.54 5 9.4 1.56 6 9.4 1.37 9.4 1.26	1.85 1.87 1.89 1.92 1.94 1.97 1.99	10220 781 10551 984 10700 431 10845 421 10984 411 11136 441 11333 523 11433 289 11498 188	4992 8.6 16.9 4877 8.6 16.9 4254 8.6 16.9 4637 8.6 16.9 4525 8.6 16.9 4421 8.6 16.9 4324 8.6 16.9 4130 8.6 16.9 4040 8.6 16.9

.

DEPTH	ROP	MOB	RPM	Mb	√ "d"c	HOURS	TURNS	ICOST	ccost	PP	FG	
2557.8	73 P7 P7	14.4	4 // 127			J***					1 1.3	
2558.0					1.16	2.02	11635	132	3951	8.6	16.9	
		14.7			1.40	2.04	11745	320	3871	8.6	16.9	
2558.2		14.7			1.39	2.06	11849	304	3793		16.9	
2558.4		13.7			1.20	2.06	11904	162	3716		16.8	
2558.6		11.4		9,4	1.39	2.09	12047	411	3647		16.9	
2558.8	10.0	9.2	106	9.4	1.29	2.11	12174	365	3580		16.9	
25 59 .0	14,4	8.7	106	9.4	1,19	2.12	12262	254	3513		16.9	
2559.2	20.0	8.8	106	9.4	1.11	2.13	12326	183	3448		16.9	
2559.4	20.6	8.8	105		1.10	2.14	12387	178	3385			
2559.6	12.2		104		1.22	2.16	12490	299	3327		16.9	
						400 1 & 10°	12.77	277	Ø-081Z	8.0	16.9	
2559.8	24.0	8.7		9.4	1.06	2.16	12541	152	3268	Ω 4.	16.9	
2560.0	12.5	8.2	105	9.4	1.09	2.18	12606	188	3212		16.9	
2560.2	24.0	7.9	105		1.04	2.18	12659	152	3158			
2560.4	20.0	8.3	105		1.09	2.19	12721	183			16.9	
2560.6	17.6	8.3	105		1.12	2.20	12793		3105		16.9	
2560.8	16.7		106		1,15	2.22		208	3055		16.9	
2561.0	16.0		106		1.16		12870	218	3007		16.9	
2561.2	30.0		107			2.23	12949	228	2961		16.9	
2561.4					0.99	2.24	12992	122	2914	8.6	16.9	
2561.6	14.7	8.1	107		1.16	2.25	13079	249	2871	8.6	16,9	
6301.0	16.7	7.8	7 (t/X	9,4	1.12	2.26	13156	218	2829	8.6	16.9	
2561.8	10.0	9.4	86	9.4	1.24	2.28	13259	365	mm m a		a 2 25.	
2562.0	3.7		74		1.52	2.34			2791		16.9	
2562.2	13.6	8.8	100		1.19	2.35	13497	984	2763		16.9	
2562.4	10.4	9.6	99		1.28		13586	269	2725		16.9	
2562.6	14.4		100			2.37	13700	350	2620		16.9	
2562.8	9.1		100		1.19	2.38	13783	254	2654		16.9	
2563.0	31.3				1.31	2.41	13914	401	2621		16.9	
2563.2			100		1.00	2.41	13952	117	25 86	8.6	16.9	
2563.4	11.4	9.5	99		1.25	2.43	14057	320	2554	8.6	16.9	
2563.6	24.0		100		1.05	2.44	14106	152	2520	8.6	16.9	
6303.0	17.1	8.9	99	9,4	1,13	2.45	14175	213	2489	8.6	16.9	
2563.8	4.1	10.5	100	O A	1.54	2.50	9 44/ 17	n m m	macm	ر بسو		
2564.0	0.9		95		2,11		14467	888	2467		16.9	
2564.2	1.0		88		2.21	2.72	15729	4027	2488		16.9	
			00	7.4	Cara Cara	2.92	16804	3728	2504		16.9	
2564.4	Jid	10.0	7.5	y, 4)	E . W.5	কেন্ধ্র	17528	2374	2502	8.6	16.9	
ı												
BIT NUMBE	R	7	τ.	ADC C	ጉርህን ፡፡፡	517	*P* X 1 -9* 1**	· F5) . A 1	,			
HTC J22	73	,		IZE	athter.			RVAL.	2564,			
COST	1	0.00		ize RIP 1	r	8,500		LES			4 14	
TOTAL HOU		0,79				7.6		RUN			85.6	
1 (2 (11) 11(2(.)	17.00 7.4	0177	1 (.	J I I+II	TURNS	42370	COND	NOITION	12	B3 G0	.062	
DEPTH	ROP	י ממון.	o o za	አፈተነ	11 m) 11	11771 tes 20	موسو و ومد د د مس	190 Ata Min Air	···			
1/1F T F1	KUI"	MOB 1	re i i i i	MM	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG	
2565.0	56.8 1		8.8	9,4	0.84	1.37	4248	6.4	1861	8.6	16.0	
2566.0	63.51		67	9.4	0.83	1.39	4311	57	1764	8.6		
2567.0	22.5 1	2.4			1,05	1.43	4490	162	1683	8.6		
2568.0	10.3 2	28.1			1.56	1.53	4859	355	1618	8.6		
	6.2 4				1.94	1.69	5461	588	1571			
2570.0	4.3 4				2.10	1.92	6347	855	1539	8.6		
				- •		a 1 c l.,	SAME TO A	uuu	1 (JA) 7	8.6	10.3	

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
2571.0	4.1	39.8	64	9.4	2.09	2.17	7281	895	1512	0 /	4 / 6
2572.0		39.8	63		2.01	2.37	8037	730			16.9
_ 2573.0		39.9	64		1,94	2.53	8657	589			16.9
2574.0		39.8	63		1,95	2.70	9299				16.9
2575.0		39.9	64		1.88	2.84		618			16.9
2576.0		38.7					9824	502			16.9
■ 2577.0			64		1.96	3.02	10516	659			16.9
		37.3	64		1.64	3.10	10820	291	1320		16.9
2578.0		37.2	63		1.60	3.17	11099	268			16.9
2579.0		37.2	64		1.60	3.24	11374	264			16.9
2580.0 2581.0	13.8	36.9	64	9,4	1.60	3.31	11651	265	1223	8.6	16.9
2581.0	18.5	36.3	63	9.4	1.48	3.37	11857	198	1192	8.6	16.9
2582.0	19.4	36.3	6.3	9.4	1.47	3.42	12053	189	1163		16.9
2583.0	7.1	39.6	62	9.4	1.87	3,56	12574	511	1145		16.9
2584.0		40.3	65		1,85	3.68	13059	453	1126		16.9
2585.0		40.2	65		1,95	3.85	13686	591	1112		16.9
2586.0		40.1	65		1.88	3,98	14206	490	1096		16.9
2587.0		40.0	65		2.04	4.19	15008	756	1087		16.9
2588.0		40.1	A5		1.98	4.37					
2589.0		40.0	65		1.88		15700	653	1076		16.9
2590.0		38.5				4.50	16235	504	1063		16.9
25,370,0	1 49 , Y	50.3	62	y, A	1.58	4.57	16486	245	1043	8.6	16.9
2591.0		38.7	66		1.50	4.62	16682	181	1024	8.6	16.9
2592.0	17.1	38.8	63	9.4	1.54	4.68	16903	214	1006	8.6	16.9
2593.0	19.7	38.4	- 62	9,4	1,48	4.73	17093	185.64	987.53		16.9
2594.0	18.8	39.2	62	9.4	1.51	4.78	17291		970.50		16.9
2595.0	21.1	39.2	62		1.47	4.83		173,47			16.9
2596.0	14.4	40.6	63		1.63	4.90	17729	253.61	939.35		16.9
2597.0	16.9		62		1.57	4.96	17951		924.76		16.9
2598.0	12.9		66	9.4		5.04	18259				
2599.0	12.2		72		1.56	5.12			912.08		16.9
2600.0	12.6		72					300.28			16.9
mo(44, 0	3 E + O	22.74	16	" , "1	1.55	5.20	18708	290.13	888.63	8.6	16.9
2601.0	15.2		72	9.4		5.26	19242	240,42	876.53	8,6	16.9
2602.0	10.6		20	9.4		5.36	19641	344.91	866.80	8.6	16.9
2603.0	8.1	31.6	71	9,4	1.74	5.48	20170	453.46	859.36	8.6	16.9
2604.0	8.0	43.9	62	9.4	1.89	5.61		455.49			16.9
2605.0	4.2	37.0	69	9.4	2.06	5.85		872.42			16.9
2606.0	4.0	31.2	20		1.97	6.10	22681	916.04			16.9
2607.0		31.2	70	9.4		6.26		579.25			16.9
2608.0		31.4	20	9.4		6.40	23951	522.44			16.9
2609.0	16.6		70	9,4		6.46		220.13			
2610.0	22.9		71	9.4		6.50		159.27		8.6	16.9 16.9
73 / 4 4 / 6	mm n	*** / **	1994								
2611.0	22.0		71	9.4		6.55		166.37		8.6	
- 2612.0		35.4	69	9.4		6.63			804.55	8.6	16.8
2613.0	10.8		71	9.4		6.72		337.81	797.44	8.6	16.9
2614.0 2615.0	10.5		71	9.4		6.82	25728	348,97	790.71	8.6	16.9
1 to a to 1 to		35.6	71	9.4		6.91	26117	333,75	783.95	8.6	16.9
2616.0		35.4	21	9.4	1,47	6.96	26325	178.54		8.6	
2617.0	13.3	36.2	71	9.4	1.64	7,04			767.92	8.6	
2618.0	11.3	36.3	70	9.4		7.12		323.61	761.63	8.6	
2619.0		37.5	70	9,4		7.31		682.72		8.6	
_ 2620.0	10.0		20	9.4		7.41		365.20		8.6	
			-				**** **** *** ** **	and the state of t	- we sat 1 17 52	1 4 M	

DEPTH	ROP	WOR	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	pр	FG
2621.0 2623.0 2623.0 2624.0 2625.0 2626.0 2627.0 2628.0 2629.0 2630.0	18.7 20.2 7.5 7.4 6.3 5.0 5.4 8.5	39.2 36.3 37.4 37.2 37.2 37.4 36.8 34.2 33.6	70 70 70 70 70 70 70 70	9,4 9,4 9,4 9,4 9,4 9,4	1.59 1.51 1.49 1.86 1.87 1.92 2.01 1.97 1.26 1.53	7.47 7.52 7.57 7.71 7.84 8.00 8.38 8.50	28688 28897 29457 30036 30701 31541	496.06 576.20 725.33 671.56 428.10		8.6 8.6 8.6 8.6 8.6 8.6 8.6	16.9 17.0 17.0 17.0 17.0 17.0 17.0
2631.0 2632.0 2633.0 2634.0 2635.0 2636.0 2637.0 2639.0 2639.0	5.5 8.3 10.1 12.2 22.4 22.2		68 70 70 70 68 69 69 69 67	9.4 9.4 9.4 9.4 9.4 9.4	1.60 1.62 1.90 1.93 1.76 1.70 1.63 1.41 1.40	8.64 8.72 8.89 9.07 9.19 9.29 9.37 9.41 9.46	33720 34441 35204 35695 36105 36446 36632 36818	274.91 291.15 624.90 659.39 439.25 360.13 300.28 163.33 164.34 228.25	696.08 691.66 685.83 680.13	8.6 8.6 8.6 8.6 8.6 8.6	17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0
2641.0 2642.0 2643.0 2644.0 2645.0 2646.0 2647.0 2648.0 2649.0 2650.0	10.1 9.7 20.1 9.8 7.8 4.5 6.1 6.6	35,1 35,6 35,6 35,6 35,6 34,8 35,9 35,5 35,5	70 70 70 70 70 70 70 69 69	9.4 9.4 9.4 9.4 9.4 9.4	1.76 1.72 1.74 1.47 1.73 1.80 2.01 1.89 1.87	9.63 9.73 9.84 9.89 9.99 10.12 10.34 10.50 10.65	37960 38393 38602 39030	469.69 804.45 596.49 553.89	669.15 666.09 661.07 658.10 656.19 657.68	8.6 8.6 8.6 8.6 8.6 8.6 8.6	17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0
BIT NUMBE HTC J22 COST TOTAL HOU	41	8 39.00 18.26	9 T	ADC (IZE RIP (OTAL		517 8,500 7,8 61996	NO:	TERVAL ZZLES T RUN NDITION		0- 25 13 1 B6 G0	81.0
DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
2651.0 2652.0 2653.0 2654.0 2655.0 2656.0 2657.0 2658.0 2659.0	4.8 5.3 8.1 9.5 9.4 13.5 14.8	36.5 37.7 40.6 40.6 40.7 40.7 40.7	57877777777777777777777777777777777777	9.4 9.4 9.4 9.4 9.4 9.4	1.92 1.96 1.96 1.81 1.75 1.62 1.62 1.58	0.20 0.41 0.60 0.72 0.83 0.93 1.01 1.08 1.13	696 1418 2061 2485 2845 3212 3467 3698 3892 4168	742 758 687 450 383 390 271 247 206 293	33367 17062 11604 8815 7129 6006 5186 4569 4084 3705	8.6 8.6 8.6 8.6 8.6 8.6	17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	pр	FG
2661.0		39.3	55		1.43	1.26	4329	179	3385	8.6	17.0
2662.0		41.5	56		1.63	1.34	4584	278	3126	8.6	17,0
2663.0		43.6	57	9.4	1.98	1.51	5176	638	2234		17.0
2664.0	6.5	43.5	57	9,4	1.94	1.67	5208	565	2765		17.0
2665.0	6.4	43.8	52	9,4	1.95	1,82	6246	571	2619		17.0
2666.0		42.9	57		1,74	1.92	6564	338	2476		17.0
2667.0		43.0	57		1.61	1.98	6794	243			
2668.0			58						2345		17.0
		43.4			1.74	2.07	7111	335	2233		17.0
2669.0		44.7	58		1.61	2.14	7327	228	2128	8.6	17.0
2670.0	15.9	45.3	57	9,4	1.62	2.20	7543	230	2033	8.6	17.0
2671.0		44,4	56		1.66	2.27	7793	273	1949	8.6	17.0
2672.0	16.4	45.3	58	9,4	1.61	2.34	8005	223	1871	8.6	17.0
2673.0	5.1	47.8	58	9.4	2.11	2.53	8689	717	1820	8.6	17.0
2674.0	5,2	46.5	58	9.4	2.08	2.72	9354	698	1774		17.0
2675.0		46.4	58		1.84	2.83	9720	385	1718		12.0
2 676.0	11.1		58		1,78	2.92	10033				
								330	1865		17.0
2677.0	16.8		58		1.60	2.98	10239	217	1611		17.0
2678.0	10,9		58		1.77	3.67	10558	336	1566	8,6	17.0
2679.0	10.1	44.8	58	9.4	1.79	3.17	10902	361	1524	8.4	17.0
2680.0	11.5	45.2	58	9,4	1.75	3.26	11205	318	1484	8.6	17.0
- 2681.0	16.3	46.1	57	9.4	1,62	3.32	11414	224	1443	8.6	12.0
2682.0	17.1	44.1	58	9.4	1.58	3.38	11619	214	1405		17.0
2683.0		44.7	57		2.04	3.57	12283	708	1384		17.0
2684.0		45.7	58		1,81	3.67	12633	367	1354		
2685.0	16.9		58		1.59						17.0
						3.73	12839	216	1321		17.0
2686.0	21.6		58		1.47	3.78	13001	169	1289	8.6	17.0
2687.0	15.5		58		1.61	3.84	13226	236	1261	8.6	17.0
2688.0	13.7		58	9,4	1.68	3.91	13481	267	1235	8.6	17.0
2689.0	12.1	45.1	58	9.4	1.73	4.00	13769	301	1211	8.6	17.0
2690.0	7,8	45.8	57	9.4	1.90	4.12	14205	469	1192		17.0
2691.0	11.0	45.1	58	9.4	1.77	4.21	14521	331	1171	8.6	17.0
2692.0	16.2	45.6	58		1.62	4.28	14736	225	1149		17.0
2693.0	17.5		58		1.59	4.33	14935	209	1127		17.0
2694.0		47.8	58	9.4		4,46	15323				
2695.0		47.2	58					459	1112	8.6	
					1.97	4.60	15870	519	1098	8.6	
2696.0		45.2	58	9.4		4.85	16745	915	1094	8.6	
2697.0		41.6	58	9,4		5.12	17699	994	1092	8.6	17,0
2698.0	2.9	41.9	58	9.4	2.22	5.47	18898	1248	1096	8.6	17.0
2699.0	3.3	41.5	58	9,4	2.17	5.77	19969	1115	1096	8.6	17.0
2700.0	3.2	39.7	58	9.4	2.14	6.09	21065	1157	1097	8.6	
2701.0	5.2	39.8	58	9.4	1,96	6.28	21729	697	1089	8.6	17 0
2702.0		40.9	58	9.4		6.52	22571	884	1085	8.6	
_ 2703.0		40.4	58	9.4		6.74	23318	784			
2704.0		45.8							1080	8.6	
			58	9.4		6.98	24183	906	1076	8.6	
2705.0		45.3	58	9,4		7.23	25055	913	1073	8.6	
		47.3	58	9,4		7.47	25884	868	1070	8.6	
2707.0		46.3	58	9.4		7.65	26494	638	1062	8.6	17.0
2708.0	3.8	47.6	58	9,4	2.22	7.91	27420	970	1061	8.6	17.0
2709.0	3.5	46.9	58	9,4	2,24	8.20	28418	1055	1061	8,6	
2710.0	3.8	46.7	58	9.4		8.47	29337	969	1059	8.6	
		- -	•	- •		• • •	Ser Ser F	e sov e	n 10 14 f	num E Not	ar eye

en la company de la company de

DEPTH	ROP	MOB	RPM	MW	$_{\rm n}$ q $_{\rm n}$ c	HOURS	TURNS	rener	CCOST	рp	FG
2711.0	9 Q	46.5	58	O A	2.31	8.81	30540	40/0	40.00		
2712.0		46.4	51		2.30			1268	1062		17.0
2713.0		46.6	58			9.20	31733	1422	1068		17.0
2714.0					2.30	9.54	32910	1233	1071	8.6	17.0
		46.0	58		2.27	9.86	34037	1180	1073	8.6	17.0
2715.0	3.1		58		2.27	10.19	35163	1178	1074	8.6	17.0
2716.0		45.7	58		2.33	10.56	36473	1371	1079		17.0
2717.0		46.0	58		2.27	10.88	37592	1169	1080		17.0
2718.0	3.2	46.3	58	9,4	2.26	11,19	38669	1125	1081		17.1
2719.0	2.9	45.4	57	9.4	2.28	11.53	39838	1249	1083		17.1
2720.0	3.3	43,9	53		2.18	11.83	40808	1109	1083		17.1
						A A 1 1713	7 ((3 (3 (3	, , , , ,	7 111173	o , o	27.1
2721.0	4.2	44.2	58	9.4	2.12	12.07	41639	869	1080	A A	17.1
2722,0	4.1	43.8	58		2.12	12.32	42489	891	1078	8.6	
2723.0	4,4	43.7	58		2.10	12.55	43287	835	1025	8.6	
2724.0		45,3	58		2.34	12.94	44679				
2725.0	1.1		57		2.66			1453	1080	8.6	
2726.0		45,7				13.89	47945	3473	1112	8.6	
2727.0			58		2.60	14.67	50628	2820	1134	8.6	
		45.1	58		2.42	15.16	52351	1805	1143	8.6	17.1
2728.0		40.9	51		2,24	15.59	53666	1565	1148	8.6	17.1
2729.0		40,4	42	9.4	7.88	15.79	54178	7 36	1147	8.6	17.1
2730.0	0.8	40.6	54	9,4	2.67	17.11	58482	4817	1189	8.6	
2731.0	0.9	39.5	51	9.4	2.57	18.26	61996	4199	1226	8.6	17.1
BIT NUME	KER	9	Ι	ADC (CODE	537	TAIT	FRUAL	(2°77'7' t	0 20	തത അ
HTC J33 COST TOTAL HO	450	9 03.00 12.33	S	ADC (IZE RIP 1 OTAL		537 8.500 8.0 42031	NOZ: BIT	ERVAL ZLES RUN DITION			3 13 91.5
HTC J33 COST TOTAL HO	45) URS :	03.00	S T T	IZE RIP 1 OTA!	TURNS	8.500 8.0 42031	NOZ: BIT CON)	ZLES RUN DITION	T 1	13 1; B2 G0	3 13 91.5 .062
HTC J33 COST TOTAL HO DEPTH	450	03.00	S T T	IZE RIP 1 OTA!	TME	8.500 8.0	NOZ: BIT	ZLES RUN		13 1	3 13 91.5
HTC J33 COST TOTAL HO DEPTH 2732.0	45) OURS : ROP 1,5	03.00 12.33 WOB	S T T	IZE RIP 1 OTA! MW	TURNS	8.500 8.0 42031	NOZ: BIT CON)	ZLES RUN PITION ICOST	CCOST	13 1; B2 G0	3 13 91.5 .062 FG
DEPTH 2733.0	45) OURS : ROP 1,5	03.00 12.33 WOB	S T T	IZE RIP 1 OTAL MW 9.5	TIME TURNS "d"c 1.52	8.500 8.0 42031 HOURS 0.65	NOZ: BIT CONI TURNS	ZLES RUN PITION ICOST 2370	T1 CCOST 36089	13 1; B2 G0 PP 8.6 ;	3 13 91.5 .062 FG
HTC J33 COST TOTAL HO DEPTH 2732.0	45) OURS : ROP 1.5 3.6	03.00 12.33 WOB	8 T T RPM 36	IZE RIP 1 OTAL MW 9.5 9.5	TURNS	8.500 8.0 42031 HOURS 0.65 0.93	NOZ: BIT CON! TURNS 1404 2163	ZLES RUN PITION ICOST 2370 1015	T1 CCOST 36069 18552	13 1; B2 G0 PP 8.6 ;	3 13 91.5 .062 FG 17.1
DEPTH 2733.0	45) OURS : ROP 1.5 3.6 6.0	03.00 12.33 WOB 10.7 19.9	8 T T RPM 36 46	IZE RIP 1 OTAL MW 9.5 9.5	TURNS "d"c 1.52 1.61 1.72	8.500 8.0 42031 HOURS 0.65 0.93 1.09	NOZ: BIT CON) TURNS 1404 2163 2756	ZLES RUN DITION ICOST 2370 1015 610	T1 CCOST 36089 18552 12572	13 1; B2 G0 PP 8.6 ; 8.6 ;	3 13 91.5 .062 FG 17.1 17.1
DEPTH 2732.0 2734.0 2735.0	45) ROP 1.5 3.6 6.0 13.0	03.00 12.33 WOB 10.7 19.9 29.6	8 T T RPM 36 46 59 59	IZE RIP 1 OTAL MW 9.5 9.5 9.5	TURNS "d"c 1.52 1.61 1.72 1.54	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17	NOZ: BIT CON) TURNS 1404 2163 2756 3029	ZLES RUN DITION ICOST 2370 1015 610 280	T1 CCOST 36089 18552 12572 9499	13 1; B2 G0 PP 8.6 ; 8.6 ; 8.8 ;	3 13 91.5 .062 FG 17.1 17.1 17.1
DEPTH 2732.0 2734.0 2736.0 2736.0	45) ROP 1,5 3.6 6.0 13.0 11.9	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.9	8 T T RPM 36 46 59 59	IZE RIP 1 OTAL MW 9.5 9.5 9.5	TIME TURNS "d"c 1.52 1.61 1.72 1.54 1.65	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329	ZLES RUN DITION ICOST 2370 1015 610 280 307	T1 CCOST 36069 18552 12572 9499 7660	13 1; B2 G0 PP 8.6 ; 8.8 ; 8.9 ;	3 13 91.5 .062 FG 17.1 17.1 17.1
DEPTH 2732.0 2733.0 2735.0 2736.0 2737.0	45) ROP 1.5 3.6 6.0 13.0 11.9 9.0	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.9 39.0	8 TT TT RPM 36 466 59 59 59	IZE RIP 1 OTAL MW 9.55 9.55 9.55	TIME TURNS "d"c 1.52 1.61 1.72 1.54 1.65 1.72	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701	ZLES RUN DITION ICOST 2370 1015 610 280 307 406	T1 CCOST 36009 18552 12572 9499 7660 6451	13 1; B2 G0 PP 8.6 ; 8.6 ; 8.9 ; 9.0 ; 9.1 ;	3 13 91.5 .062 FG 17.1 17.1 17.1
DEPTH 2732.0 2733.0 2734.0 2735.0 2737.0 2738.0	45) ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.9 39.0 37.9	8 TT RPM 36 46 59 59 56 56	IZE RIP 1 OTAL MW 55555 9.55 9.55	TIME TURNS "d"c 1.52 1.61 1.72 1.54 1.65 1.72	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161	T1 CCOST 36089 18552 12572 9499 7660 6451 5553	13 1; B2 G0 PP 8.6 ; 8.6 ; 8.9 ; 9.0 ; 9.1 ;	3 13 91.5 .062 FG 17.1 17.1 17.1 17.1
DEPTH 2732.0 2734.0 2735.0 2736.0 2737.0 2738.0 2739.0	45) ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6 40.9	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.9 39.0 37.9 21.8	RPM 36 46 59 59 56 60	IZE RIP 1 OTAH 9.5555599.555	"d"c 1.52 1.61 1.72 1.54 1.65 1.72	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937	ZLES RUN PITION ICOST 2370 1015 610 280 307 406 161 89	T1 CCOST 36009 18552 12572 9499 7660 6451 5553 4870	13 1; B2 G0 PP 8.6 ; 8.6 ; 8.8 ; 9.0 ; 9.1 ; 9.1 ;	3 13 91.5 .062 FG 17.1 17.1 17.1 17.1
DEPTH 2732.0 2733.0 2734.0 2735.0 2737.0 2738.0	45) ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.9 39.0 37.9 21.8	8 TT RPM 36 46 59 59 56 56	IZE RIP 1 OTAH 9.5555599.555	TIME TURNS "d"c 1.52 1.61 1.72 1.54 1.65 1.72	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161	T1 CCOST 36089 18552 12572 9499 7660 6451 5553	13 1; B2 G0 PP 8.6 ; 8.6 ; 8.9 ; 9.0 ; 9.1 ;	3 13 91.5 .062 FG 17.1 17.1 17.1 17.1
DEPTH 2732.0 2734.0 2735.0 2736.0 2737.0 2738.0 2739.0	45) ROP 1,5 3.6 6.0 13.0 11.9 9.0 22.6 40.9 18.2	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.9 39.0 21.8 39.4	RPM 36459 5956 6059	IZEP 1 OT M 55555555 9999999999999999999999999999	TURNS "d"c 1.52 1.61 1.72 1.54 1.65 1.72 1.37 0.99 1.49	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43 1.49	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201	T1 CCOST 36089 18552 12572 9499 7660 6451 5553 4870 4351	13 1; B2 G0 PP 8.6 ; 8.6 ; 8.8 ; 9.0 ; 9.1 ; 9.1 ; 9.1 ;	3 13 91 5 1 5 1 5 1 5 1 7 1 1 1 7 1 1 1 1 7 1 1 1 1
DEPTH 2732.0 2734.0 2735.0 2736.0 2737.0 2739.0 2739.0 2740.0	450 BURS : ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6 40.9 18.2	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.9 39.0 37.9 21.8 39.4	RPM 3469 555660 55555660 55555660	IZEP 1 OT M 5555555 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	TIME TURNS "d"c 1.52 1.61 1.72 1.54 1.65 1.72 1.37 0.99 1.49	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43 1.49	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201	T1 CCOST 36.089 18552 12572 9499 7660 6451 5553 4870 4351	13 1; B2 G0 PP 8.6 ; 8.6 ; 9.0 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	3 13 91.5 . 062 FG 17.1 17.1 17.1 17.1 17.1
DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2737.0 2738.0 2739.0 2739.0 2740.0	45) ROP 1,5 3,6 6,0 13,0 11,9 9,0 22,6 40,9 18,2 23,8 12,9	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.9 37.9 21.8 39.4 36.8 41.5	RP 3459966609 59	IZEPAN W 5555555 55 55	TIME TURNS "d"c 1.52 1.61 1.72 1.65 1.72 1.37 0.99 1.49	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43 1.49	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133 4272 4548	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201	T1 CCOST 36089 18552 12572 9499 7660 6451 5553 4870 4351 3931 3600	13 1; B2 G0 PP 8.6 ; 8.6 ; 9.0 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	3 13 91.5 . 062 FG 17.1 17.1 17.1 17.1 17.1
HTC J33 COST TOTAL HC DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2737.0 2739.0 2740.0 2740.0	45) ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6 40.9 18.2 23.8 12.9 4.2	03.00 12.33 WOB 10.7 19.6 34.5 39.0 37.9 21.8 39.4 36.8 41.5 39.2	RP 345996669 599	IRTA W 5555555 555 555	TIME TURNS "d"c 1.52 1.61 1.754 1.65 1.72 1.49 1.49 1.65 2.02	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.12 1.25 1.37 1.41 1.43 1.49	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133 4272 4548 5389	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201 153 284 861	T1 CCOST 36069 18552 12572 9499 7660 6451 5553 4870 4351 3931 3600 3371	13 1; B2 G0 PP 8.6 ; 8.6 ; 9.0 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	3 13 13 91 15 15 10 10 10 10 11 11 11 11 11 11 11 11 11
HTC J33 COST TOTAL HC DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2737.0 2739.0 2740.0 2740.0 2741.0 2742.0 2743.0 2744.0	45) PURS 7 ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6 40.9 18.2 23.8 12.9 4.2 14.9	03.00 12.33 WOB 10.7 19.6 34.5 39.0 37.9 21.8 39.4 36.8 41.5 39.2 39.7	RP 345996669 5999	IRTA W 55555555 55555555555555555555555555	TIME TURNS "d"c 1.52 1.672 1.672 1.652 1.754 1.754 1.754 1.754 1.757	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.12 1.25 1.37 1.41 1.43 1.49 1.53 1.61 1.85 1.91	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133 4272 4548 5389 5627	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201 153 284 861 244	T1 CCOST 36089 18552 12572 9499 7660 6451 5553 4870 4351 3931 3600 3371 3131	13 1; B2 G0 PP 8.6 ; 8.8 ; 9.0 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	3 1 3 3 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2737.0 2738.0 2739.0 2740.0 2741.0 2742.0 2742.0 2743.0 2744.0 2745.0	45) URS : ROP	03.00 12.33 WOB 10.7 19.6 34.5 39.0 37.9 21.8 39.4 36.8 39.4 39.2 39.6	RP 34555565 555555555555555555555555555555	IRTA M	TIME TURNS "d"c 1.52 1.61 1.72 1.54 1.72 1.37 1.37 1.49 1.49 1.49	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43 1.49 1.53 1.61 1.85 1.91	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133 4272 4548 5389 5627 5816	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201 153 284 861 244 217	T1 CCOST 36009 18552 12572 9499 7660 6451 5553 4870 4351 3931 3600 3371 3131 2923	13 1; B2 G0 PP 8.6 ; 8.8 ; 9.0 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	3 1 3 1 3 9 1 0 6 2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2737.0 2738.0 2739.0 2740.0 2740.0 2742.0 2742.0 2744.0 2744.0 2744.0 2744.0	45) OURS : ROP	03.00 12.33 WOB 10.7 19.9 29.6 34.5 39.0 37.9 37.9 37.9 37.8 39.4 36.8 39.2 39.6 39.6	R 345555565 599938	IRTA W 5555555 555555555555555555555555555	TURNS "d"c 1.52 1.672 1.672 1.672 1.7545 1.7545 1.7545 1.7545 1.7548 1.558	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43 1.49 1.53 1.61 1.85 1.91 2.03	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133 4272 4548 5389 5627 5816 6023	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201 153 284 861 244 217	T1 CCOST 36009 18552 12572 9499 2660 6451 5553 4870 4351 3931 3600 3371 3131 2923 2742	13 1; B2 G0 PP 8.6 ; 8.8 ; 9.0 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	3 1 3 1 3 9 1 0 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2736.0 2738.0 2738.0 2738.0 2740.0 2740.0 2742.0 2742.0 2742.0 2743.0 2744.0 2745.0 2747.0	45) URS ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6 40.9 18.2 23.8 12.9 14.9 16.8 6.8	03.00 12.33 WOB 10.7 29.6 34.5 39.0 37.9 21.8 39.4 39.4 39.4 39.5 39.6 39.6 39.6	STT M 6699966609 5999388 P 34555555555555555555555555555555555555	IRT 99999999 999999999999999999999999999	TME TURNS "d"c 1.672451.75452794 335227801.583	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43 1.49 1.53 1.61 1.85 1.91 2.03 2.18	NOZ: BIT CON: TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133 4272 4548 5389 5627 5627 5816 6023 6537	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201 153 284 861 244 217 217	T1 CCOST 36009 18552 12572 9499 7660 6451 5553 4870 4351 3931 3600 3371 3131 2923	13 1; B2 G0 PP 8.6 ; 8.9 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	39.06 F 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2736.0 2738.0 2739.0 2740.0 2742.0 2742.0 2742.0 2743.0 2744.0 2744.0 2744.0	45) OURS ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6 40.9 18.2 23.8 12.9 4.2 14.9 16.8 16.8 11.8	03.00 12.33 WOB 10.7 19.6 34.5 39.0 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9	STT M 6699966609 59993886 P 345555565 555555555555	IRO 999999999999999999999999999999999999	THE TURNS "d" 1.672452799 3522780351.6235	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43 1.49 1.53 1.61 1.85 1.91 1.97 2.03 2.18 2.26	NOZ: BIT CON) TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133 4272 4548 5389 5627 5816 6023	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201 153 284 861 244 217	T1 CCOST 36009 18552 12572 9499 2660 6451 5553 4870 4351 3931 3600 3371 3131 2923 2742	13 1; B2 G0 PP 8.6 ; 8.8 ; 9.0 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	39.06 F 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
HTC J33 COST TOTAL HC DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2737.0 2740.0 2740.0 2741.0 2742.0 2742.0 2743.0 2744.0 2745.0 2744.0 2745.0 2747.0 2749.0	45) OURS ROP 1,5 6.0 13.0 11.9 9.0 40.9 18.2 23.8 12.9 4.2 14.9 16.8 11.8 13.7	03.00 12.33 WOB 10.7 19.6 34.5 39.0 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9	STT M 669996609 599938860 P 345555565 5555556	IRT 99999999 999999999999999999999999999	TIME TURNS "d"c 1.6724452794 3.622780 1.65351.65351.65351.65	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.125 1.37 1.41 1.43 1.49 1.53 1.61 1.85 1.91 1.97 2.03 2.18 2.26 2.34	NOZ: BIT CON: TURNS 1404 2156 3029 3329 3701 3849 3937 4133 4278 55827 56816 6537 6823 7088	ZLES RUN DITION ICOST 2370 1015 610 280 307 406 161 89 201 153 284 861 244 217 217	T1 CCOST 36089 18552 12572 9499 76451 5553 4870 4351 3931 3600 33371 3931 2923 2742 2605	13 1; B2 G0 PP 8.6 ; 8.9 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	39.0 F 7.111111 1111111111111111111111111111
DEPTH 2732.0 2733.0 2734.0 2735.0 2736.0 2736.0 2738.0 2739.0 2740.0 2742.0 2742.0 2742.0 2743.0 2744.0 2744.0 2744.0	45) OURS ROP 1.5 3.6 6.0 13.0 11.9 9.0 22.6 40.9 18.2 23.8 12.9 4.2 14.9 16.8 16.8 11.8	03.00 12.33 WOB 10.7 19.6 34.5 39.0 37.9 37.9 37.9 37.9 37.9 37.9 37.9 37.9	STT M 6699966609 59993886 P 345555565 555555555555	IRT 99999999 999999999999999999999999999	THE TURNS "d" 1.672452799 3522780351.6235	8.500 8.0 42031 HOURS 0.65 0.93 1.09 1.17 1.25 1.37 1.41 1.43 1.49 1.53 1.61 1.85 1.91 1.97 2.03 2.18 2.26	NOZ: BIT CON: TURNS 1404 2163 2756 3029 3329 3701 3849 3937 4133 4278 55827 56827 56823 6537 6823	ZLES RUN DITION ICOST 2370 1015 610 280 307 4061 89 201 153 284 861 244 217 237 308	T1 CCOST 36089 18552 12572 9499 76451 5553 4870 4351 3931 3931 3600 3371 3171 2923 2742 2605 2469	13 1; B2 G0 PP 8.6 ; 8.8 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ; 9.1 ;	39.0 11111111 111111111111111111111111111

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	rcost	CCOST	рþ	FG
2751.0 2752.0 2753.0 2754.0 2755.0 2756.0 2757.0 2758.0 2759.0 2760.0		39.8 36.6 40.5 43.5 40.2 38.3	60 60 59 59 54 55 48 53	9,5 9,5 9,5 9,5 9,5 9,5 9,5	1.46 1.39 1.28 1.44 1.75 1.59 1.59 1.37	2.44 2.48 2.51 2.56 2.66 2.71 2.79 2.84 2.99 3.09	7465 7611 7733 7896 8236 8432 8699 8868 9289 9628	169 147 124 167 349 203 299 186 535 380	2131 2037 1950 1872 1809 1745 1689 1633 1594 1552	9.1 9.1 9.1 9.1 9.1 9.1	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1
2761.0 2762.0 2763.0 2764.0 2765.0 2766.0 2767.0 2768.0 2769.0 2770.0	4.4 6.5	20.1 34.5 40.1 40.6 38.7 39.2 37.9 31.9	61 53 62 58 58 54 48 51	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.30 1.33 1.58 1.95 2.04 1.83 1.98 1.40 1.33	3.18 3.26 3.36 3.53 3.76 3.91 4.13 4.18 4.24	9937 10232 10535 11201 12049 12560 13318 13478 13440 13846	317 292 347 650 827 561 793 182 205 247	1511 1472 1437 1413 1396 1356 1324 1295 1260	9,1 9,1 9,1 9,1 9,1 9,1	17.1 17.1 17.1 17.2 17.2 17.2 17.2
2771.0 2772.0 2773.0 2774.0 2775.0 2776.0 2777.0 2778.0 2779.0 2780.0	11.3 14.6 10.6 5.4 10.3 8.4	38.9 41.5 40.2 41.4 39.3 41.0	59 60 60 60 58 60 58 58	9.5 9.4 9.4 9.4 9.4 9.4	1.41 1.66 1.84 1.70 1.60 1.71 1.98 1.72 1.80 2.09	4.36 4.45 4.58 4.67 4.74 4.83 5.02 5.12 5.24	14045 14368 14834 15153 15390 15728 16382 16724 17141 18035	207 330 475 324 251 344 682 356 434 927	1241 1219 1201 1181 1160 1142 1132 1115 1101	9.1 9.1 9.1 9.1 9.1 9.1 9.1	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2
2781.0 2782.0 2783.0 2784.0 2785.0 2786.0 2787.0 2788.0 2789.0 2790.0	3.4 3.3 8.7 8.9 15.7 5.2 3.4 7.6 9.4	40.4 40.5 39.8 41.1 41.5 41.7	59 59 59 59 59 58 58 58	9.555555 9.555555 9.555 9.55	2.15 2.11 1.77 1.77 1.55 1.96 2.14 1.83 1.75	5.78 6.09 6.20 6.31 6.38 6.57 6.86 6.99 7.10 7.18	19061 20047 20455 20856 21081 21742 22778 23236 23610 23873	1063 1113 419 412 233 697 1074 479 390 277	1097 1097 1084 1071 1056 1049 1050 1040 1028	9.1 9.1 9.1 9.1 9.1 9.1 9.1	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2
2791.0 2792.0 2793.0 2794.0 2795.0 2796.0 2797.0 2798.0 2799.0 2800.0	3.2 2.3 3.9 4.9 4.4 6.1 2.5 6.3	41.5 41.5 41.5 41.7 41.0 41.7	5965555555556	9,555555 9,55555 9,5555 9,555	2.15 2.26 2.09 2.00 2.04 1.91 2.07 2.11 2.26 1.91	7.48 7.91 8.17 8.37 8.60 8.77 9.01 9.29 9.69 9.85	24962 26413 27317 28037 28826 29414 30303 31267 32713 33276	1128 1566 932 746 831 603 911 991 1488 575	1018 1027 1025 1021 1018 1011 1010 1009 1016	9.1 9.1 9.1 9.1 9.1 9.1 9.1	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2

34.2%

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG	
2801.0 2802.0 2803.0 2804.0 2805.0 2806.0 2807.0 2808.0 2809.0	10.5 12.6	41.1 41.6 41.7 41.0 41.4 41.5	59 59 59 57 59 59 60 60	9.5 9.5 9.6 9.6 9.6 9.6	1.61 1.64 1.63 1.64 1.73 1.58 1.62 1.70 1.64 1.94	9.92 10.00 10.08 10.15 10.25 10.32 10.40 10.50 10.58 10.75			989.29 979.43 969.93 961.73 952.33 943.52 935.77 927.50	9.1 9.1 9.1 9.1 9.1 9.1	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2	
2811.0 2812.0 2813.0 2814.0 2815.0 2815.0 2817.0 2818.0 2819.0 2820.0	11.9 11.5 7.5 5.1 6.4 6.8 5.5 9.3	42.2 41.7 41.7 42.5 43.8 42.4 42.4 41.9 42.2	609955999555555555555555555555555555555	9.6 9.6 9.6 9.6 9.6 9.6 9.7	1.90 1.66 1.67 1.82 2.01 1.90 1.95 1.74	10.91 10.99 11.08 11.21 11.41 11.56 11.71 11.89 12.00		318.54 487.95 721.27 569.10 538.67 663.45 392.59 378.39	911.74 904.51 899.49 897.37 893.51 889.38 886.78 881.17	9,2 9,2 9,2 9,2 9,2 9,2 9,2	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2	
2821.0 2822.0 2822.5	13.2	43.6 41.8 42.1	59 59 58	9.7	1.75 1.60 1.67	12.21 12.28 12.33		382.45 276.94 333.75	863.52	9.2	17.2 17.2 17.2	
BIT NUMBE CHRIS MC7 COST TOTAL HOU	23 180a	9 67.00 1.17	5	ADC (IZE RIP 1		4 8,469 8,0 5131	NO: BI	TERVAL ZZLES T RUN NDITION	2822 T0		14 14 5,5	
CHRIS MC7	23 180a	67.00 1.17	5	IZE RIP 1	TIME TURNS	8.469 8.0	NO: BI	ZZLES T RUN		14:	14 14 5,5	
CHRIS MC7 COST TOTAL HOU	23 180 JRS ROP 90.0 24.8 4.8 2.6 3.7 4.1	67.00 1.17 WOB 5.2	5 7	TZE TRIP 1 OTAL MW 9.7 9.7 9.7 9.7 9.7	TIME TURNS	8.469 8.0 5131	CO! BT. MU:	ZZLES T RUN NDITION	Т 0	9.2 9.2 9.2 9.2 9.2 9.2	5,5 5,000	

DEPTH	ROP	MOB	MPS	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
2826.2 2826.4 2826.6	16.7	19.0 19.3 19.2	78 78 78	9.7	1.33 1.27 1.50	0.51 0.52 0.55	2315 2371 2494	274 218 477	12614	9.2	17.2
2826.8	10.6	19.0	78		1.40	0.57	2582	345			17.2 17.2
		19.3	78		1.42	0.59	2675	360			17.2
2827.2 2827.4		18.5	78 78		1.40	0.61 0.63	2767	360	10533		17.2
2827.4 2827.6		19.3	78		1.57	0.63	2877 3034	426 614			17.2 17.2
2827.8		20.1	78	9.7	2.02	0.82	3744	2759			17.2
2828.0	0,6	19.9	66	9.7	2.21	1.17	5131	6427	9372		17.2
974 - 17 - 1984 - 1, 13 - 1, 2 - 12 - 12 - 12 - 12 - 12 - 12 -	Jec.										
BIT NUMBE CHRIS C-2		9		ADC C	ngn:	4 8,469		ERVAL. ZLES		.0-28	
COST		67.00		RIP 7	IME	8.0		RUN		1 44 J	4 14 5.0
TOTAL HOU	RS	3,58	Ţ	OTAL	TURNS	16019			T (1	B0 G0	
DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
2828.2		21.0	81		1.67	0.04	196	741	237156	9.2	17.2
2828.4		19.0	80		1.70	0.09	453		119065		17.2
2828.6 2828.8		16.4	80 80	9.7	1,60	0.14 0.22	678 1053	852	79661		17.2
2829.0		20.1	80	9.7		0.22	1783	1420 2769	60 100 48 634		17.2 17.2
2829.2		20.2	80		2.02	0.52	2485	2658	40972		17.2
2829.4		23.6	25	9.7		0.70	3309	3353	35597	9.2	17.2
2829.6 2829.8		23.7 23.8	73	9.7		0.83	3887	2409	31449		17.2
2830.0		23.5	73 73	9,7 9,8		1,00 1.09	4646 5035	3160	28306		17.2
	*** * ***	111 347 (112		2 1 (.2	A + / A	X 1 O Z	W 0 W W	1613	25636	7 . C	17.2
2830.2		24.3	73	9.8		1.20	5515	1993	23487	9,2	17.2
2830.4		23.3	23	9.8		1.44	6554	4316	21889		17.2
2830.6		22.5	73	9.8		1.56	7092	2232	20377	9.2	
2830.8 2831.0		23.6 25.0	76	9.8		1.73	7879	3170	19148	9.2	
2831.2		26.5	76 77	9.8 9.7		1.94	8824	3769	18123	2.2	
2831.4		24.7	82	9.7		2.05 2.27	9331 10414	1993	17115	9.2	
2831.6		23.9	71	9.7		2.44	11123	4022 3023	16345 15605	9.2 9.2	
2831.8		23.2	71	9.7	2.10	2.60	11822	2982	14940	9.2	
2832.0	0.9	24.8	71	9.7	2.21	2.81	12724	3845	14386	9.2	
2833.0	1.3	23.1	71	9.7	2.08	3.58	16019	2810	12070	9.2	

BIT NUMBER 10 JADC CODE 537 INTERVAL 2833.0- 2975.5 HTC J33 SIZE 8,500 NOZZLES 13 13 13 COST 4503.00 TRIP TIME 8.3 BIT RUN 142.5 TOTAL HOURS 29.05 TOTAL TURNS 102918 CONDITION T4 B4 G0,000 DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST FG pp 2834.0 2.2 27.1 59 9.7 1.95 0.45 1619 1659 36474 9,2 17,2 2835.0 4.3 37.8 59 9.8 1.94 0.69 2450 859 18667 9.2 17.2 2836,0 3,2 37,4 9.7 2.02 58 1.00 3535 1131 12821 9.2 17.2 2837.0 3.4 37.7 59 9.7 2.02 1.29 4586 1076 9.2 17.2 9885 2838.0 6.1 37.5 59 9.8 1.81 1.46 5166 594 8027 9.2 17.2 2839.0 6.4 36.4 59 9.7 1.78 1.61 5726 574 6785 9.2 17.2 59 9.7 1.65 2840.0 8.6 35.1 1.73 6142 426 5876 9.2 17.2 2841.0 11.1 36.0 59 9.8 1.58 1.82 6462 329 5183 9.2 17.2 2842.0 3,6 36,0 58 9,7 1,96 2.10 7441 1020 4720 9.2 17.2 2843.0 3.8 37.9 58 9.8 1.98 2.36 8367 9.2 17.2 964 4345 2844.0 2.9 36.0 59 9.8 2.03 2.70 9561 1242 4063 9,2 17,2 2845.0 3.1 36.9 59 9.7 2.03 3.03 10690 1175 3822 9.2 17.2 2846.0 2.3 37.2 59 9.7 2.14 3.45 12191 1559 3648 9.2 17.2 2847.0 2.9 36.4 9.7 2.05 58 3.79 . 1245 13383 3476 9.2 17.2 2848.0 9.7 2.04 2.6 36.1 51 4.18 14557 1400 3338 9.2 17.2 2849.0 9.7 1.83 4.8 34.5 57 4,38 15265 761 3177 9.2 17.2 9.7 1.63 2850.0 9.3 34.5 59 4,49 15650 395 3013 9.2 17.2 2851.0 8.7 34.7 9.7 1.64 58 4.61 16051 419 2869 9.2 17.2 2852.0 8.2 34.6 59 9.7 1.66 4,73 16478 444 2741 9.2 17.2 2853.0 5.2 36.3 9.7 1.85 59 4.92 17157 205 2640 9.2 17.2 2854.0 5.1 36.9 9.7 1.86 59 5.12 17842 710 2548 9.2 17.2 2855.0 3.0 38.1 9.7 2.07 59 5,45 19002 1201 2486 9.2 17.2 2856.0 2.7 37.8 9.7 2.10 59 5.81 20303 1348 2437 9.2 17.2 2857.0 2.5 36.2 59 9.7 2.11 6.22 21736 1478 9.2 17.3 2397 2858.0 4.2 38.6 59 9.7 1.97 6.46 22585 872 2336 9.2 17.3 2859.0 3.9 45.1 59 9.7 2.11 6.22 23502 939 2282 9.2 17.3 2860.0 4.8 43.9 59 9.7 2.01 6.93 24245 768 2226 9.2 17.3 8.4 42.0 2861.0 59 9.7 1.78 7.05 24671 436 2162 9.2 17.3 2862,0 7.2 42.5 59 9.7 1.84 7.18 506 25164 2105 9.2 17.3 2863.0 6.5 42.6 59 9.7 1.88 7.34 25712 562 2054 9.2 17.3 2864.0 7.1 42.6 59 9.7 1.84 7.48 26211 511 2004 9.2 17.3 2865.0 12.5 42.2 9.7 1.63 59 2.56 26495 291 1950 9.2 17.3 2866.0 9,1 42,9 59 9.7 1.76 7.67 26888 403 1904 9,2 17,3 2867.0 5.5 43.7 59 9.7 1.96 7.85 27539 668 1867 9.2 12.3 2868.0 6.3 44.4 59 9.7 1.91 8.01 28096 577 1830 9.2 17.3 2869.0 9.7 1.89 6.9 44.6 59 8.15 28613 533 1794 9.2 17.3 2870.0 9,7 43,8 57 9.7 1.73 8.26 28967 378 1756 9.2 17.3 2871.0 9.7 2.03 4.5 44.1 58 8,48 29738 816 1231 9.2 17.3 2872.0 3.9 43.5 58 9.7 2.07 8.74 30630 941 1711 9.2 17.3 2873,0 3.8 44.5 9.7 2.10 58 9.01 31562 971 1693 9.2 17.3 2874.0 4,2 43.8 59 9.7 2.05 9.24 32395 863 1672 9.2 17.3 2875.0 3.1 43.3 59 9.7 2.15 9.56 33524 1171 9.2 17.3 1660 2876.0 3.2 41.0 59 9.7 2.11 9.88 34640 1156 1649 9.2 17.3

DEPTH	ROP	MOB	RPM	MW "c	d "c	HOURS	TURNS	ICOST	ccost	þр	FG
2877.0	3 7	43,2	58	9.7 2.	nσ	175 183	I fer- Irel Ind	F*C 1991 ·			
2878.0		43,8	58			10.15	35577	976	1633		17.3
2879,0				9.7 2.		10.47	36700	1170	1623	9,2	17.3
		43.5	58	9.7 2.		10.68	37432	770	1605	9.2	17.3
2880.0	4.1		59	9.72.		10.92	38312	901	1590	9.2	17.3
2881.0		43.8	59	9.7 2.		11.13	39061	768	1572		17.3
2882.0		44.0	59	9.72,		11.44	40136	1101	1563		17.3
2883.0		44.1	6.0	9.7 2.		11.70	41091	977	1551		17.3
2884.0	4,4	44.1	59	9.7 2.	. 05	11.93	41907	836	1537		12.3
2885.0	4.7	44.3	59	9.72.	02	12.14	42667	778	1522		17.3
2886.0	4.7	44.2	59	9.72.	.02	12.36	43422	774	1508		17.3
2887.0	4.2	44.5	59	9.7 2.	מי ח	12.59	4 4 C / C	<i></i>	میسرمان		
2888.0		44.8	60	9.7 2.			44269	866	1496		17.3
2889.0		44.4				12.81	45045	793	1484		17.3
2890.0	12.2		57	9.71.		12.94	45501	483	1466		17.3
			59	9,71,		13.03	45793	300	1445	9.3	17.3
2891.0	12.7		59	9.71.		13.10	46074	288	1425		17.3
2892.0	14.2		59	9,71,		13.18	46325	258	1406		17.3
2893.0	10.9		59	9.71.	71	13.27	46651	334	1388		17.3
2894.0		45.2	59	9.7 2.	0.5	13.48	47424	792	1378		17.3
2895.0	10.0	44.5	59	9.7 1.	25	13.58	47781	365	1362		12.3
2896.0	9,9	44.7	59	9.71.		13.68	48142	370	1346		17.3
2897.0	4.4	45.3	59	9.7 2.	0.7	13.91	48959	837	4 "7 "7 1".		
2898.0		45.3	59	9.7 2.		14.19			1338		17.3
2899.0		45.5	60	9.7 2.			49942	1006	1333		17.3
2900.0		45.6				14.44	50830	906	1326		12.3
2901.0		45.8	60 60	9.8 2.		14.67	51670	846	1319		17.3
2902.0			60	9.8 1.		14.85	52338	675	1310		17.3
	3.6		60	9.8 2.		15.13	53354	1026	1306		17.3
2903.0		45.5	60	9.82,		15.39	54283	945	1300	9.3	
2904.0		45.5	60	9.82,		15.61	55042	777	1293	9.3	
2905.0		45.8	60	9.72.		15,83	55835	810	1286	9.3	
2906.0	3.0	45.2	60	9.7 2.	21	16.16	57026	1206	1285	9.3	
2907.0	3.4	43.7	60	9.7 2.	14	16.45	58077	1059	1282	מ" ם	4 52 - 55
2908.0	3.5		59	9.7 2.		16.74	59108			9.3	
2909.0	4.4		59	9.7 2.		16.97		1058	1279	9.3	
2910.0	3,4		59	9.7 2.			59918	833	1273	9.3	
2911.0	4.7					17.26	60955	1062	1271	9.4	
2912.0			59 En	9.7 2.0		17.47	61718	782	1264	9,4	
	7,0		59	9.7 1.8		17.61	62229	523	1255	9,4	17.3
2913.0	14.0		59	9.7 1.6		17.69	62483	261	1243	9.4	
2914.0	6.0		59	9.7 1.9		17.85	63081	613	1235	9,4	
2915.0	7.2		59	9.7 1.8		17.99	63578	509	1226	9.4	
2916.0	12.2	44.7	59	9.7 1.6		18.08	63870	300	1215	9.4	
2917.0	10.6	44.6	57	9.7 1.7	71	18.17	64195	345	1204	O A ·	4 vy - y
2918.0	12.2		59	9.7 1.6		18,25	64486			9.4	
2919.0	6.2		59	9.7 1.9		18.41		299	1194	9,4	
2920.0	10.4		59	9.7 1.7			65060	589	1187	9,4	
2921.0	9.0		59	9.7 1.7		18.51	65400	350	1177	9.4	
2922.0	7.6					18.62	65794	406	1168	9.4	
2923.0			59	9.7 1.8		18.75	66260	478	1161	9.4	
		44.6	59	9.7 1.6		18.83	66529	278	1151	9.4	
2924.0	5.2		59	9.7 2.0		19.02	67215	706	1146	9.4 1	
2925.0	4.6		59	9.7 2.0		19.24	67979	787	1142	9.4	
2926.0	5.1	15.5	59	9.8 2.0	10 1	19.43	68672	715	1137	9.4 1	
									•		

DEPTH	ROP WOR	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
2927.0 2928.0 2929.0 2930.0 2931.0 2933.0 2934.0 2935.0 2936.0	5.2 45.3 7.8 45.3 12.3 46.2 11.5 45.5 6.1 48.3 11.9 42.5 6.3 43.6 3.5 45.8 10.8 45.4 6.9 45.7	58 58 62 62 62 62 62 62 62	9.8 1.98 9.8 1.83 9.8 1.70 9.8 1.72 9.7 2.00 9.8 1.66 9.8 1.91 9.8 2.17 9.8 1.74 9.7 1.91	19.62 19.75 19.83 19.92 20.09 20.17 20.33 20.61 20.85	69343 69788 70093 70418 71035 71349 71939 73010 73357 73897	701 471 297 317 602 306 575 1044 339 526	1126 1117 1109 1104 1096 1090	9.4 9.4 9.4 9.4 9.4 9.4 9.4	17.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3
2937.0 2938.0 2939.0 2940.0 2941.0 2942.0 2943.0 2944.0 2945.0	11.5.45.3 12.3 45.8 13.4 45.7 8.1 46.0 7.0 44.4 6.0 45.8 6.1 45.8 12.1 45.7 3.7 46.6 3.6 46.5	60 61 60 60 60 60 60 60	9.8 1.70 9.8 1.69 9.8 1.65 9.7 1.85 9.8 1.87 9.8 1.95 9.7 1.95 9.8 1.69 9.7 2.14 9.8 2.16	20.94 21.02 21.09 21.22 21.36 21.52 21.69 21.77 22.04 22.32	74211 74507 74777 75228 75745 76347 76945 77245 78215 79234	317 297 272 453 520 606 602 302 976	1063 1055 1049 1045 1041 1037 1030	9,4 9,4 9,4 9,4 9,4 9,4	17.3 17.3 17.3 17.3 17.3 17.4 17.4 17.4
2947.0 2948.0 2949.0 2950.0 2951.0 2952.0 2953.0 2955.0 2956.0	7.6 45.8 17.9 45.8 20.5 44.9 8.5 46.5 3.8 46.9 5.3 46.6 4.0 46.5 4.3 47.2 4.4 47.0 5.5 47.0	56 59 58 59 59 58 58 58 58	9.7 1.83 9.8 1.53 9.8 1.47 9.8 1.82 9.7 2.13 9.8 2.00 9.7 2.10 9.8 2.09 9.7 2.08 9.8 1.99	22.45 22.51 22.56 22.67 22.94 23.13 23.38 23.61 23.84 24.02			1025 1018 1010 1005 1005 1002 1002 1000 998.90 996.20	9,4 9,4 9,4	17.4 17.4 17.4 17.4 17.4 17.4
2957.0 2958.0 2959.0 2960.0 2961.0 2962.0 2963.0 2964.0 2966.0	5.9 45.6 7.7 44.7 5.8 44.8 3.2 45.4 3.3 45.2 5.9 45.0 4.0 45.2 3.1 45.2 3.1 45.3 3.6 45.6	55 55 55 55 55 55 55 55 55 55 55 55 55	9.8 1.94 9.7 1.83 9.7 1.93 9.7 2.18 9.7 2.17 9.7 1.95 9.7 2.10 9.7 2.19 9.7 2.20 9.7 2.13	24.19 24.32 24.49 24.80 25.10 25.28 25.53 25.85 26.17 26.45	86222 86818 87921 88998 89604	473,75 624,90 1140 1106 623,88	993.15 989.00 986.11 987 988 985.42 984.92 984.92 986 988	9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	17.4 17.4 17.4 17.4 17.4 17.4 17.4
2967.0 2968.0 2969.0 2970.0 2971.0 2972.0 2973.0 2974.0 2975.5	2.6 45.8 3.2 45.8 6.3 45.0 3.5 45.7 4.1 45.3 3.9 46.2 7.8 44.2 4.1 45.3 3.8 45.8 1.6 46.0	58855555555555555555555555555555555555	9.7 2.27 9.7 2.19 9.7 1.92 9.7 2.15 9.7 2.08 9.7 2.12 9.7 1.83 9.7 2.08 9.7 2.13	26.84 27.15 27.31 27.60 27.84 28.10 28.22 28.47 28.73 29.05	97768 98628 { 99526 {	1044 387.64 726.19 469.69 387.64	988.65 984.94 984.25	9,4 9,4 9,4 9,4 9,4 1 9,4 1 9,4 1	17,4 17,4 17,4 17,4 17,4 17,4

BIT NUMBE HTC J44 COST	R 1		IADC CODE SIZE TRIP TIME	617 8.500 8.4	NOZ	ERVAL ZLES RUN	2975	.5- 301 13 13	3 13
TOTAL HOU			TOTAL TURNS			NORTICH	Т 1	B1 G0	35.5 .000
DEPTH	кор ис	B RPM	MW "d"c	HOURS	TURNS	ICOST	ccost	рp	FG
2976.0	1.9 26.	4 51	9.7 1.93	0.26	785	1879	71947	9.4 1	17.4
2977.0	3.7 38.	9 58	9.7 2.01	0.53	1737	1000	24649	9.4	
2978.0	3.0 44.	4 56	9.7 2.17	0.86	2858	1216	15276	9.4	
2979.0	2.2 44.	4 57	9.7 2.29	1.32	4403	1654	11384	9.4 1	17.4
2980.0	2.7 42.	2 55	9.7 2.16	1.68	5616	1341	9152	9.4	
2981.0	2.9 43.	5 51	9.7 2.13	2.03	6667	1265	7718	9,4 1	
2982.0	3.7 44.	3 53	9,7 2,08	2.30	7542	998	6684	9.4	
2983.0	2.4 44.	7 59	9.7 2.28	2.72	9005	1507	5994	9.4	
2984.0	3.1 46.	4 59	9.7 2.22	3.04	10154	1178	5427	9,41	
2985.0	2.6 47.	6 59	9.7 2.30	3.42	11502	1390	5002	9,41	
2986.0	2.7 48.	4 59	9.7 2.29	3,79	12789	1335	4653	9.41	
2987.0	2.8 46.	8 59	9.7 2.26	4.14	14064	1312	4363	9.4 1	
2988.0	2.4 47.	5 60	9.7 2.34	4.57	15580	1551	4138	9.4 1	
2989.0	3.4 46.	1 60	9.6 2.19	4.87	16642	1085	3912	9.4 1	7.4
2990.0	3.3 47.	0 60	9.6 2.22	5,17	17739	1122	3719	9.4 1	
2991.0	2.2 46.	5 55	9.6 2.33	5.63	19254	1683	3588	9.4 1	
2992.0	2.4 46.	6 52	9.7 2.27	6.04	20544	1498	3461	9.4 1	
2993.0	2.5 46.	3 52	9.6 2.27	6.45	21825	1486	3348	9.4 1	
2994.0	4.8 45.	3 52	9.7 1.99	6.66	22475	755	3208	9.5 1	
2995.0	7.0 44.	1 52	9.6 1.84	6.80	22926	524	3071	9.6 1	
2996.0	4.1 47.	3 58	9.7 2.12	7.04	23765	883	2964	9.6 1	
2997.0	3.6 48.		9.7 2.18	7.32	24733	1006	2873	9.6 1	
2998.0	3.1 48.	59	9.7 2.24	7.64	25859	1171	2797	9.6 1	
2999.0	4.0 43.		9.7 2.06	7.89	26737	914	2717	9.6 1	7.4
3000.0	4.4 38.		9.7 1.93	8.11	27526	821	2640	9.6 1	
3001.0	2.9 48.	3 58	9.8 2.25	8.46	28738	1262	2586	9.6 1	
3002.0	3.7 48,	5 58	9.8 2.16	8.73	29692	993	2525	9.61	
3003.0	3.5 47.	l 58	9.8 2.15	9.02	30690	1039	2471	9.6 1	
3004.0	6.2 47.7	2 58	9,8 1,94	9.18	31258	591		10,11	
3005.0	3.3 47.	5 58	9.8 2.19	9.49	32335	1121	2362		2.5
3006.0	5.5 47.	58	9.8 1.99	9.67	32976	668	2306		7.5
3007.0	8.0 47.	59	9.8 1.84	9.79	33419	457		10.1 1	
3008.0	5.1 47.3	8 60	9.8 2.03	9.99	34125	712		10.1 1	
3009.0	3.6 47.3	60	9.8 2.15	10.26	35122	1004	2165	10.11	7.5
3010.0	11.3 46.0	6.0	9.8 1.71		35444	325	2111		7.5
3011.0	3.3 44.3		9.8 2.13	10.65	36514	1105		10.1 1	

BIT NUMBER 1 HTC JD8 COST 1500.0 TOTAL HOURS 0.5	SIZE O TRIP TIME	8.500 NO77) FS	
DEPTH ROP WO	B RPM MW "d"c	HOURS TURNS ICOST	CCOST PP FG
3012.0 5.0 20. 3013.0 2.9 26. 3013.1 1.0 39.	1 56 10.9 1.63	0.20 696 730 0.54 1836 1240 0.64 2175 3733	14517 10.1 17.5
BIT NUMBER 1 HTC J33 COST 4503.0 TOTAL HOURS 39.9	SIZE O TRIP TIME	8.500 NOZZLES 7.0 BIT RUN	3013.1- 3140.4 13 13 13 127.3 74 B5 G0.063
DEPTH ROP WO	B RPM MW "d"c	HOURS TURNS ICOST	CCOST PP FG
3015.0 1.4 20. 3016.0 1.5 36. 3017.0 5.6 39. 3018.0 4.4 38. 3019.0 1.4 37. 3020.0 2.6 37. 3021.0 1.8 43. 3022.0 2.3 43. 3023.0 2.5 43. 3024.0 2.1 44.	6 55 10.9 2.00 2 50 10.9 1.62 9 54 10.9 1.71 2 56 10.9 2.06 3 55 10.9 1.86 8 48 10.9 2.04 8 48 10.9 1.96	1.40 4802 2686 2.04 6919 2357 2.22 7462 657 2.45 8194 830 3.18 10644 2684 3.57 11914 1394 4.12 13528 2035 4.55 14773 1567 4.95 15991 1456 5.43 17477 1739	18510 10.1 17.5 12940 10.1 17.5 9791 10.1 17.5 7962 10.1 17.5 7067 10.1 17.5 6245 10.1 17.5 5712 10.1 17.5 5247 10.1 17.5 4864 10.1 17.5 4577 10.1 17.5
3025.0 2.0 44. 3026.0 2.5 43. 3027.0 3.7 44. 3028.0 4.3 44. 3029.0 11.9 42. 3030.0 7.9 42. 3031.0 6.7 41. 3032.0 3.7 44. 3033.0 2.8 44. 3034.0 5.1 43.	5 56 10.9 1.98 2 56 10.9 1.86 1 56 10.9 1.81 9 55 10.9 1.45 9 55 10.8 1.60 3 55 10.7 1.89 4 56 10.7 1.99	5.93 19157 1826 6.33 20504 1469 6.60 21399 979 6.83 22183 858 6.92 22461 306 7.04 22881 462 7.19 23379 546 7.46 24270 985 7.82 25467 1310 8.02 26124 720	
3035.0 15.7 44. 3036.0 2.8 44. 3037.0 5.6 44. 3038.0 3.1 44. 3039.0 2.7 44. 3040.0 2.2 44. 3041.0 3.5 45. 3042.0 2.8 44. 3044.0 2.8 44. 3044.0 2.8 44.	7 52 10.7 1.96 2 52 10.7 1.73 1 52 10.7 1.93 2 53 10.7 1.99 3 56 10.7 1.93 6 56 10.7 1.99 7 56 10.7 2.08	8.08 26338 233 8.43 27426 1282 8.61 27981 655 8.94 28984 1183 9.30 30145 1334 9.75 31653 1633 10.04 32623 1052 10.39 33814 1291 10.83 35313 1623 11.19 36526 1315	2721 10.1 17.5 2658 10.1 17.5 2574 10.1 17.5 2518 10.1 17.5 2472 10.1 17.5 2441 10.1 17.5 2391 10.1 17.5 2353 10.1 17.5 2329 10.1 17.5 2296 10.1 17.5

The state of the s

DEPTH	ROP WO	B RPM MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
3045.0	3.0 46.0		1,99	11.53	37628	1209	2262	10.1	12.5
3046.0	2.5 45.4		2.0.3	11.93	38955	1488	2239		17.5
3047.0	3.8 44.9		1.89	12.20	39823	974	2201	10.1	17.5
3048.0	3,2 44,8	3 54 10.7	1.94	12.51	40828	1128	2170		17.5
3049.0	2,4 45,4	4 54 10.7	2.05	12.93	42189	1527	2153		17.5
3050.0	1.9 45.1	54 10.6	2.14	13.47	43949	1972	2148		17.5
3051.0	3.7 44.5	7 54 10.5	1.93	13.74	44836	996	2117		17.5
3052.0	5,2 44.5	7 54 10.5	1.81	13.93	45461	701		10.1	17.5
3053.0	5,2 44,4	\$ 54 10.5	1.81	14.13	46091	707	2046		17.5
3054.0	7.6 44.5	53 10.5	1.67	14.26	46505	478	2008		17.5
72 (5 82 82 6	40 0 477 .	. بر بر برود دو							
3055.0	10.8 43.0			14.35	46808	339	1948		
3056.0	4.4 44.8		1,86	14.58	47563	835	1942		17.5
3057.0	7.0 44.2		1.67	14.72	48030	520	1909		17.5
3058.0	11.7 43.4			14.81	48311	313	1874		17,5
3059.0	5.0 42.8			15.00	48887	724	1849		17.5
3060.0	10.3 43.9		1.55	15.10	49190	353	1817		17.5
3061.0	2.6 45.1			15.49	50404	1404	1808		17.5
3062.0	2.4 45.1			15.91	51737	1543	1803	10.1	17.5
3063.0	2.6 45.1			16.30	52972	1427	1795		17.5
3064.0	3,7 42,3	54 10.5	1.89	16.57	53854	987	1780	10.1	17.5
3065.0	2,8 42,1	50 10.5	1.95	16.93	54926	1304	1770	10 1	17.5
	1,4 41,4			17.64	57175	2609	1786		17.5
3066.0 3067.0	1.6 42.5			18.27	59212	2283	1795		17.5
3068.0	1.3 41.4			19.03	61721	2809	1814		17.5
3069.0	1.6 42.2			19.66	63760	2283	1822		17.5
3070.0	1.2 41.5			20,49	66477	3043		10.1	17.5
3071.0	1,4 42,4			21.21	68807	2609	1857		17.5
3072.0	1.8 42.6			21.76	70618	2029		10.1	17.5
3073.0	2,2 42,2			22.22	72101	1660	1857		17.5
3074.0	1.7 42.3			22.81	24020	2148		10.1	17.5
						100 0 1 102	* * * * * * * *	2018	A 7 1 Q1
3075.0	2.5 43.6			23.21	75325	1461	1855		17.5
3076.0	1.3 41.6			23.97	77835	2809	1970	10.1	17.5
3077.0	2.5 41.6			24.37	79139	1461	1864		
3078.0	1.8 42.2			24.93	80858	2029	1866		17.5
3079.0	2.5 42.6			25.33	82145	1461	1860		17.5
3080.0	1.8 44.0			25.89	83933	2029	1863		17.5
3081.0	2,4,44,4			26.30	85268	1517	1857	10.1	17.5
3082.0	2.3 44.4			26.74	86663	1586		10.1	17.5
	38.6 45.0			26.76	86751	95	1828	10.1	17.5
3084.0	1.7 44.7	56 10.6	2.19	27.35	88728	2139	1833	10.1	17.5
3085.0	7.9 44.3	56 10.6	1.66	27.47	89153	462	1814	10 1	17.5
3086.0	7.6 43.4			27.61	89595	481	1795		17.5
3087 O	11.8 43.4			27.69	89820	310	1775		17.5
3088.0	8.2 43.4			27.81	90208	447		10.1	17.5
3089,0	7.5 44.2			27.95	90605	489	1741		17.5
3090.0	5.8 44.2			28.12	91138	630			17.5
	5.2 44.0	51 10.6		28.31	91729	699	1713		17.5
3091.0 3092.0	8.2 43.7			28.43	92105	445	1697		17.5
3093.0	7,2 44,3			28,57	92547	510	1682		17.6
3094.0	7.1 44.1	53 10.6		28.71	92999	515	1668		17.6
		10 100 10 10 10 10	- + ne e	and the state of the	e has e e e	me it had	a sur cortor	4 10 1 1	

gertana <u>di</u> makana majirita mini

DEPTH	ROP WO	R RPM	MW	"d"C	HOURS	TURNS	TCOST	CCOST	p p	FG
3095.0 3096.0 3097.0 3098.0 3099.0 3100.0 3101.0 3102.0 3103.0 3104.0	8.9 43. 2.8 44. 3.0 44. 2.2 44. 2.7 44. 3.7 44. 5.0 44. 8.6 40.	6 53 7 53 9 53 7 53 9 53 7 53 5 52 8 50	10.6 10.6 10.6 10.6 10.6 10.5 10.5	2.00 1.98 2.09 2.01 2.07 1.92 1.80 1.56	28.83 29.18 29.52 29.98 30.35 30.78 31.05 31.25 31.37	93359 94502 95572 97043 98233 99600 100457 101074 101422 101683	411 1303 1219 1678 1355 1584 992 726 425 324	1652 1648 1643 1644 1640 1632 1622 1622 1609	10.1 10.1 10.1 10.1 10.1 10.1	17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6
3105.0 3106.0 3107.0 3108.0 3109.0 3110.0 3111.0 3112.0 3114.0	11.2 42. 2.3 39.6 3.4 37. 2.0 38.3 2.9 38. 10.0 36.3 4.6 34.6 6.1 34.6 4.1 35.6	5 49 2 50 3 51 1 51 48 49 3 49 1 52	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1,97 1,82 2,01 1,89 1,44 1,67 1,58 1,72	31.55 31.98 32.28 32.77 33.12 33.22 33.44 33.60 33.84 34.15	101945 103238 104121 105644 106708 106996 107645 108128 108884	327 1593 1077 1812 1266 364 799 595 985 1119	1581 1501 1576 1578 1575 1562 1554 1538	10.1 10.1 10.1 10.1 10.1 10.1	17.6 17.6 17.6 17.6 17.6 17.6
3115.0 3116.0 3117.0 3118.0 3119.0 3120.0 3121.0 3122.0 3124.0	2.8 35.4 6.1 34.5 6.9 34.4 9.3 34.4 8.1 34.6 7.2 34.5 2.9 35.2 2.3 35.4 2.4 35.4	5 52 5 52 5 52 5 52 5 52 5 52 7 52	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1.59 1.55 1.46 1.51 1.55 1.84 1.92	34.51 34.67 34.91 35.05 35.19 35.53 35.96 36.31 36.74	110965 111480 111932 112270 112660 113099 114175 115525 116639 117974	1302 599 526 393 453 510 1256 1569 1292 1552		10.1 10.1 10.1 10.1 10.1 10.1 10.1	17.6 17.6 17.6
3125.0 3126.0 3127.0 3128.0 3129.0 3130.0 3131.0 3132.0 3133.0 3134.0	4.3 35.7 4.9 35.1 8.2 35.2 1.7 35.6 6.0 34.6 9.3 33.7 7.7 35.0 6.0 34.7 4.1 35.6 2.8 35.6	52 52 52 52 52 51 51 51 50 49	10.5	1.67 1.51 2.02 1.60 1.44 1.52 1.59	36.97 37.17 37.30 37.90 38.06 38.17 38.30 38.47 38.71 39.06	118705 119345 119729 121620 122141 122472 122872 123377 124102 125143	849 744 446 2198 606 392 474 612 895 1283	1441 1434 1430	10.1 10.1 10.1 10.1 10.1	17.6 17.6
3135.0 3136.0 3137.0 3138.0 3139.0 3140.0	6.8 35.0 9.4 34.6 7.7 34.6 6.3 35.6 5.8 35.0 11.1 35.0 4.4 34.6	51 51 51 51 50	10.5 1 10.5 1 10.5 1 10.5 1 10.5 1 10.5 1 10.5 1	l.45 l.51 l.59 l.61 l.39	39.21 39.32 39.45 39.61 39.78 39.87 39.87	125580 125906 126303 126790 127321 127589 127844	537 390 474 579 632 328 839	1421 1413 1405 1399 1393 1384 1383	10.1 10.1 10.1 10.1	17.6 17.6 17.6 17.6 17.6 17.6

•

BIT NUMBE HTC J33 COST TOTAL HOU	4503.0	ŋ	IADC CODF SIZE TRIP TIME TOTAL TURNS	537 8.500 8.9 140579	NOZ BIT	ERVAL ZLES RUN DITION	3140,4- 327; 13 13 13; T4 B4 G0,0	7,1 3.5
DEPTH	ROP WO	B RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST PP	FG
3141.0 3142.0	4.2 22. 2.9 41.		10.5 1.48 10.5 1.96	0.14 0.48	403	862	62539 10.2 17	2.6
3143.0	2.6 42.		10.5 2.01	0.40	1523 2811	1249 1397	24232 10.2 13 15450 10.2 13	
3144.0	12.4 41.		10.5 1.48	0.95	3083	294	11240 10.2 17	7.6
3145.0	3.6 42.		10.5 1.90	1.22	4009	1001	9014 10.2 17	2.6
3146.0	2.4 43.		10.5 2.06	1.64	5410	1514		7.6
3147.0	1.3 44.		10.5 2.28	2.39	7970	2772		7.6
3148.0	1.8 43.		10.5 2.17	2.95	9833	2024		7.6
3149.0	4,5 44,	0 52	10.5 1.83	3.17	10527	812		7.6
3150.0	2.8 38.		10.5 1.91	3.53	11629	1304	5197 10.2 17	
3151.0	1.8 40.		10.5 2.06	4.08	13243	2012	4896 10.2 17	
3152.0	2.4 41.		10.5 1.96	4.49	14389	1500		
3153.0	1.8 42.		10.5 2.10	5.04	15974	1998	4604 10.2 12 4392 10.2 12	
3154.0	10.3 41.	3 47	10.5 1.49	5.13	16252	355	4100 10.2 17	2.4
3155.0	6.9 41.	4 47	10.5 1.62	5.28	16665	530	3855 10,2 17	
156.0	11.3 41.		10.5 1.46	5.37	16917	324	3629 10.2 17	
157.0	5.1 41.		10.5 1.72	5.56	17458	715	3453 10.2 17	
158.0	5.1 41.		10.5 1.71	5.26	18001	715	3298 10.2 17	
159.0	14.5 43.		10.5 1.39	5.83	18199	252		
160.0	2.7 42.		10.5 1.96	6.20	19256		3134 10.2 17	
161.0	1.7 42.		10.5 2.11			1368	3044 10.2 17	
162.0	1.9 42.			6.80	20942	2181	3002 10.2 17	
163.0			10.5 2.06	7.32	22385	1897	2951 10.2 17	
100.0	1.3 42.5	47	10.5 2.20	8.09	24542	2804	2944 10,2 17	7.6
3164.0	1.8 43.		10.5 2.09	8.63	26094	1990	290 4 10.2 17	. 6
3165.0	1.2 43.		10.5 2.23		28395	2949	2906 10.2 17	, 6
3166.0	2.2 43.3		10.5 2.04	9.90	29702	1676	2858 10.2 17	1.6
167.0	1.6 43.7		10.5 2.14	10.51	31449	2240	2834 10,2 17	
3168.0	1.8 43.	47	10.5 2.10	11.06	33014	2007	2804 10.2 17	
3169.0	1.8 43.5	47	10.5 2.11	11.62	34607	2045	2778 10.2 17	
3170.0	2.7 44.2	47	10.5 1.97	11.99	35643	1329		, 6
3171.0	1.7 41.3		10.5 2.08		37293	2116	2709 10.2 17	
3172.0	2.7 42.6		10.5 1.96		38359	1368	2667 10.2 17	
3173.0	1.8 42.6		10.5 2.10		39977	2074	2648 10.2 17	
174.0	3.5 42.4	47	10.5 1.86	13.79	40782	1032	2600 10.2 17	'. 6
3175,0	5.6 42.1	47			41286	647	2544 10.2 17	
176.0	4.9 42.8				41862	740	2493 10.2 17	
3177.0	1.1 43.4				44525	3414	2518 10.2 17	
3178.0	1.6 43.6				46300	2274		
3179.0	2.3 40.5						2512 10.2 17	
3180.0	3.4 41.8				47500	1555	2487 10.2 17	
CA 50 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					48356	1090	2452 10.2 17	
tion o					acron a a	7 7 7 7	0 6 4 0 4 0 0 4 0	€
	3.3 41.7				49240	1116	2419 10.2 17	
3181.0 3182.0 3183.0	6.2 41.6 4.3 41.7	48	10.5 1.66	16.92	49702 50377	585 856	2375 10.2 17 2375 10.2 17 2339 10.2 17	. 6

values and the second of the s

DEPTH	ROP	MOB	RPM	МЫ	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
3184.0 3185.0 3186.0 3187.0 3188.0 3189.0 3190.0 3191.0 3192.0 3193.0	2.1 2.8 3.8 4.3 6.9 7.0 2.5 2.2	41.7 42.1 41.9 42.2 41.9 42.3 42.3 42.3	48 48 48 47 46 42 46		2.03 1.94 1.84 1.80 1.63 1.62 1.94 2.02	17.40 17.87 18.23 18.49 18.72 18.87 19.01 19.41 19.87 20.11	51092 52452 53491 54258 54928 55342 55738 56767 58048 58701	900 1713 1311 968 845 532 518 1479 1678 856	2293 2271 2243 2214 2179 2146	10.2 10.2 10.2	17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6
3194.0 3195.0 3196.0 3197.0 3198.0 3200.0 3201.0 3202.0 3203.0	1.9 3.2 1.7 3.1 4.7 4.1 4.7 2.5	42.1 42.9 42.8 43.4 41.2 40.5 40.6 41.1 41.8	46 47 46 47 47 47	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	2.07 1.89 2.12 1.88 1.73 1.79 1.74	20.27 20.79 21.10 21.69 22.02 22.23 22.47 22.68 23.08 23.51	59154 60598 61469 63115 64017 64615 65307 65907 67045 68251	593 1891 1140 2153 1187 769 890 771 1464 1556	2068 2052 2053 2038 2017 1998 1978 1969	10.2 10.2 10.2 10.2	17.6 17.6 17.6 17.7 17.7 17.7 17.7
3204.0 3205.0 3206.0 3207.0 3208.0 3210.0 3211.0 3212.0 3213.0	3.1 1.5 2.0 2.3 2.0 3.0 5.5 7.1	41.2 42.5 40.8 40.9 41.9 41.7 41.5 42.0 42.0	47 47 46 46 46 46 46	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1.91 2.12 2.03 1.99 2.04 1.89 1.70	23.99 24.32 24.99 25.48 25.92 26.43 26.76 26.94 27.41	69617 70532 72427 73847 75049 76466 77377 77879 78268 79188	1778 1178 2441 1820 1581 1862 1202 664 514 1217	1948 1955 1953 1948 1946 1936 1918 1898	10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	17.7 17.7 17.7 17.7 17.7 17.7 17.7
3214.0 3215.0 3216.0 3217.0 3218.0 3229.0 3220.0 3221.0 3222.0 3223.0	2.6 1.7 2.3 1.7 1.8 2.7 1.8	42.6 42.3 42.9 43.2 43.0 43.5 43.5	47 47 47 47 47 47 47	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	1.96 2.12 2.02 2.12 2.10 1.97 2.10 2.05	27.87 28.26 28.85 29.29 29.88 30.44 30.82 31.37 31.83 32.28	80472 81558 83260 84492 86166 87742 88795 90339 91644 92886	1684 1403 2182 1583 2170 2053 1371 2008 1695 1618	1879 1883 1879 1883 1885 1879 1880 1878	10,2	17.7 17.7 17.7 17.7 17.7 17.7 17.7
3224.0 3225.0 3226.0 3227.0 3228.0 3229.0 3230.0 3231.0 3232.0 3233.0	2.3 2.7 1.4 2.0 2.8 2.7 3.6 5.6	43.5 43.5 43.5 43.5 43.2 43.2 43.3 43.4 43.3	47 47 46 46 46 46 46 46	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	2.02 1.96 2.19 2.06 1.94 1.95 1.86	32.64 33.08 33.45 34.15 34.63 34.99 35.35 35.63 35.81 35.98	93903 95150 96183 98122 99482 100462 101483 102249 102744 103225	1324 1621 1341 2539 1783 1285 1339 1006 649 631	1866 1859 1867 1866 1860 1854 1845 1832	10.2 10.2 10.2	17.7 17.7 17.7 17.7 17.7 17.7 17.7

DEPTH	ROP	wor	RPM	мы	"d "c	HOURS	TURNS	TCOST	ccost	pр	FG	
3234.0	9.8	42.8	46	10.5	1.51	36.08	103508	371	1803	10.2	17.7	
3235.0		45.0		10.5		36.44	104472	1300	1798	10.5	17.7	
3236.0		40.6		10.5		36.51	104669	254		10.5		
3237.0		43.5		10.5		36.71	105255	752		10.5		
3238.0		44.0		10.6		36.85	105646	503		10.5		
3239,0		40.4		10.9		37,09	106384	877		10.5		
3240.0		39.8		10.9		37.44	107472	1292		10.5		
3241.0		40.2		10.9		37.76	108370	1148		10.5		
				10.9		38,32	109932	2047		10.5		
3242.0		40.1		10.9		38.74	111107	1542		10.5		
3243.0	£, *\$	₩U.J	40	10.7	Y + CO 7	20.74	111107	1046	1/~40	10.0	* / • /	
3244.0		40.8		10.9		39.11	112144	1363		10.5		
3245.0		40.6		10.9		39.44	113043	1177		10.5		
3246.0	3.6	40.7	46	30.9	1.76	39.72	113820	1024			17.7	
3247.0	2.0	40.9	47	10,9	1.96	40.23	115266	1870		10.5		
3248.0	3.0	40.5	47	10.9	1.81	40.56	116198	1210			17.7	
3249.0	2.3	40.7	47	10,9	1,91	41,00	117444	1617	1720	10.5	17.7	
3250.0		40.8		10.9	1.83	41.35	118417	1262	1715	10.5	17.7'	
3251.0		40.9		10.9	2.04	42,00	120270	2379	1721	10,5	17,7	
3252.0		41.3		10.9	1,99	42.53	121819	1948	1723	10.5	17.7	
3253.0		40.8		10,9		42.86	122762	1187	1719	10.5	17.7	
											.1 147 150	
3254.0		18.7		10.9		43.00	123181	537			17.7	
3255.0		39,4		10,9		43.11	123484	393		10.5		
3256.0		39.5		10.9		43.43	124367	1168			17.7	
3257.0		38.5		10.9		43.59	124798	580		10.5		
3258.0		39.6		10.9	1.78	43.92	125688	1193		10.5		
3259.0	2.8	38.7	45	10.9	1,80	44.28	126674	1327		10.5		
3260.0	3.1	39.2	45	10.9	1.77	44.60	127539	1162			17.7	
3261.0	3.1	39,9	45	10.9	1,78	44,92	128416	1180	1667	10.5	17.7	
3262.0		40.3		10.9	1.86	45.32	129508	1470	1666	10.5	17.7	
3263.0		40.8		10.9		45.64	130366	1152	1661	10.5	17.7	
3264.0		40.3		10.9		45.98	131288	1238		10.5		
3265.0	1.5	40.3	45		2,02	46.64	133095	2429		10.5		
3266.0	3.6	40.4				46.93	133880			10.5		
3267.0		40.8			1,94	47,40	135242	1738		10.5		
3268.0	4.8	39.3	48	10.9	1.65	47.61	135832	756		10.5		
3269.0		40.4		10.9	1.94	48.11	137253	1845		10.5		
3270.0		41.1		10.9		48.58	138564	1714	1655	10.5	17.7	
3271.0		38.4		10.9		48.91	139483	1201	1651	10.5	17.7	
3272.0		36.2		10.9		49.07	139913	562		10.5		
3273.0		37.0		10.9		49.18	140245	434		10.5		
Section 1 Sect Sec	1 1		• •									
3273.9	5.8	34.2	36	10.9	1.43	49.34	140579	629	1627	10.5	17.7	

BIT NUMBER CHRIS C23 COST TOTAL HOURS	0.00	IADC CODF SIZE TRIP TIME TOTAL TURNS	4 8,470 9,0 36538	INTE NOZZ BIT COND	LES		9- 3282.5 14 14 14 8.6 80 G1.000
DEPTH ROP	WOB RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP FG
	12.7 86	11.4 0.78 11.4 1.06 11.4 1.36	3,58 3,60 3,64	16034 16120 16331	136 304 716	8688	10.8 17.8 10.8 17.8 10.8 17.8
3274.8 14.5 3275.0 14.2 3275.2 2.9 3275.4 1.4 3275.6 2.3 3275.8 2.5 3276.0 2.6 3276.2 2.9	20.0 90 21.2 86 22.0 88 22.0 88 22.0 88 22.0 88 22.0 87 22.0 88	11.4 1.16 11.4 1.18 11.4 1.18 11.4 1.60 11.4 1.66 11.4 1.66 11.4 1.62	3.65 3.67 3.68 3.75 3.89 3.98 4.06 4.14 4.21	16417 16491 16564 16928 17682 18141 18564 18965 19329	252 252 257 1259 2609 1588 1461 1405 1259 1353	7841 7592 7391 7244 7075 6912 6757 6607	10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8
3276.6 2.0 3276.8 2.6 3277.0 3.4 3277.2 2.5 3277.4 2.9 3277.6 1.0 3277.8 3.2 3278.0 3.3 3278.2 2.1	22.1 88 22.0 88 22.0 88 22.0 88 21.0 85 21.0 85 22.0 85 22.0 85	11.4 1.69 11.4 1.63 11.4 1.56 11.4 1.64 11.4 1.57	4.38 4.46 4.52 4.60 4.66 4.86 4.93 4.99 5.08	20248 20655 20965 21388 21739 22759 23078 23387 23873 24601	1826 1405 1074 1461 1259 3652 1141 1107 1739 2609	6346 6221 6094 5982 5821 5820 5715 5614 5530	10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8
3278.8 3.8 3279.0 1.8 3279.2 1.9 3279.4 1.1 3279.6 3.3 3279.8 1.9 3280.0 1.5 3280.2 2.1	22.0 85 23.0 86 23.5 90 24.0 87 25.0 86 25.3 86 26.0 86 26.0 86	11.4 1.77 11.4 1.52 11.4 1.74 11.4 1.74 11.4 1.89 11.4 1.62 11.4 1.77 11.4 1.75	5.37 5.42 5.53 5.64 5.82 5.88 5.99 6.12 6.21	25330 25598 26172 26740 27689 28002 28545 29233 29725 30173	2609 961 2029 1922 3320 1107 1922 2435 1739 1588	5320 5255 5190 5154 5079 5021 4974 4917	10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8 10.8 17.8
3280.8 2.4 3281.0 2.4 3281.2 1.9 3281.4 0.6 3281.6 3.9 3281.8 4.6 3282.0 2.3 3282.2 1.0	27.0 85 27.0 89 27.0 89 27.0 81 27.6 85 22.0 76 25.0 84 28.0 85	11.4 1.60 11.4 1.74 11.4 1.74 11.4 1.82 11.4 2.10 11.4 1.61 11.4 1.71 11.4 1.71 11.4 2.00	6.35 6.43 6.52 6.62 6.96 7.01 7.05 7.14 7.34 7.57	30425 30850 31275 31837 33457 33719 33917 34355 35375 36538	891 1522 1522 1922 6087 936 794 1588 3652 2809	4736 4683 4638 4661 4603 4544 4499 4486	10.8 17.8

BIT NUMBER 15 HTC J44 COST 4347.00 TOTAL HOURS 18.84	IADC CODE SIZE TRIP TIME TOTAL TURNS	617 INTERVAL 8.500 NOZZLES 9.1 BIT RUN 55509 CONDITION	· -
DEPTH ROP WOB	RPM MW "d"c	HOURS TURNS ICOST	CCOST PP FG
3283.0 3.6 20.0 3284.0 5.5 29.9 3285.0 4.3 39.0	47 11.5 1.34 47 11.5 1.38 46 11.5 1.59	0.14 395 1014 0.32 903 664 0.56 1557 856	25834 10.8 17.8
3286.0 3.7 40.0 3287.0 3.7 40.1 3288.0 3.4 40.5 3289.0 1.5 39.8 3290.0 2.9 40.1 3291.0 2.0 39.7 3292.0 3.8 39.3 3293.0 3.8 41.2 3294.0 3.6 41.0 3295.0 1.0 40.9	47 11.5 1.64 47 11.5 1.65 47 11.5 1.68 47 11.5 1.91 47 11.6 1.72 52 11.6 1.65 51 11.6 1.68 51 11.6 1.68 51 11.6 1.69	0.82 2306 980 1.09 3070 991 1.39 3903 1069 2.05 5781 2414 2.40 6776 1273 2.89 8309 1804 3.16 9135 963 3.42 9946 963 3.70 10796 1014 4.65 13739 3498	9240 10.8 17.8 7754 10.8 17.8 6933 10.8 17.8 6179 10.8 17.8 5664 10.8 17.8 5169 10.8 17.8 4768 10.8 17.8
3296.0 3.5 39.9 3297.0 1.7 41.4 3298.0 2.1 40.4 3299.0 1.6 40.1 3300.0 1.0 40.7 3301.0 2.0 32.2 3302.0 1.3 38.4 3303.0 3.0 39.1 3304.0 2.8 39.1 3305.0 3.5 40.2	51 11.6 1.68 51 11.6 1.92 50 11.6 1.83 48 11.5 1.91 51 11.5 2.09 50 11.5 1.73 48 11.5 1.95 48 11.5 1.71 48 11.5 1.73 49 11.5 1.68	4.94 14620 1048 5.53 16409 2148 6.00 17827 1724 6.62 19632 2269 7.65 22789 3749 8.16 24309 1854 8.93 26553 282 9.27 27535 1234 9.63 28578 1313 9.92 29424 1058	3984 10.8 17.8 3838 10.8 17.8 3743 10.8 17.8 3744 10.8 17.8 3642 10.8 17.8 3599 10.8 17.8 3484 10.8 17.8 3383 10.8 17.8
3306.0 1.5 39.6 3307.0 1.2 39.7 3308.0 2.5 41.8 3309.0 2.2 42.0 3310.0 1.1 43.4 3311.0 1.0 43.6 3312.0 0.7 42.4 3313.0 5.0 41.7 3314.0 2.9 43.5 3315.0 2.7 43.2	48 11.5 1.92 48 11.5 1.99 48 11.5 1.80 48 11.5 1.84 48 11.5 2.08 49 11.5 2.12 49 11.5 2.21 48 11.5 1.59 49 11.5 1.79 49 11.5 1.80	10.58 31364 243 11.42 33782 3040 11.81 34941 145 12.27 36250 1666 13.18 38868 332 14.18 41808 3652 15.61 46008 521 15.81 46584 730 16.15 47598 1250 16.52 48686 1350	3235 10.8 17.8 3166 10.8 17.8 3109 10.8 17.8 3117 10.8 17.8 3135 10.8 17.8 3206 10.8 17.8 3125 10.8 17.8 3066 10.8 17.8
3316.0 6.7 43.7 3317.0 2.3 42.6 3318.0 5.5 41.7 3319.0 3.8 41.9 3320.0 1.6 42.3 3321.0 1.5 42.6	49 11.5 1.53 49 11.5 1.85 49 11.5 1.56 49 11.5 1.68 49 11.5 1.95 49 11.5 1.98	16.67 49125 545 17.11 50404 1586 17.29 50938 66- 17.55 51712 96- 18.18 53549 2285 18.84 55509 2435	3 2900 10.8 17.8 3 2837 10.8 17.8 2786 10.8 17.8 3 2772 10.8 17.8

(d). COMPUTER DATA LISTING : LIST ${\bf E}$

INTERVAL . , , , , .	10m averages.
DEPTH	Well depth, in metres.
ROP	Rate of penetration, in metres per hour.
BIT RUN,	Depth interval drilled by the bit, in metres.
HOURS	Complative bit hours. The number of hours that the bit has actually been 'on bottom', recorded in decimal hours.
TURNS	Cumulative bit turns. The number of turns made by the bit, while actually 'on bottom'.
TOTAL COST	Cumulative bit cost, in A dollars.
ICOST	Incremental cost per metre, calculated from the drilling time, in A dollars.
CCOST	Cumulative cost per metre, calculated from the drilling time, in A dollars.
IC	ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, (and therefore uneconomic), this should change from negative to positive.

HTC OSC3AJ COST TOTAL HOUR	0	S.	ADC CODE IZE RIP TIME DTAL TURNS	26.00 2.1 1352	INTERVAL NOZZLES BIT RUN CONDITIO		20 2 1	0 20 32.0
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-C
90.0	30.9	8.0	0.26	791	10076.07	118	1260	
100.0	43.0		0.49	1517		84.93	606,96	
110.0	18.6	28.0	1.03	3191		196.34	460.31	****
120.0	12.4	38.0	1.84	5707	15833.97	294,52	416.68	 .
130.0	26.0	48.0	2,22	6930		140,46	359.14	
140.0	29.0	58.0	2.57	8295	18497.90	125.93	318.93	•••
150.0	49.0	68.0	2.77	8932	19243.20	74.53	282,99	•
160.0	58.0	78.0		9646	19872.86	62.97	254.78	
170.0	44.0	88.0	3.17	10532	20702.86	83.00	235.26	••••
180.0	70.0	98.0	3.31	11004	21224.57	52.17	216.58	•••
190.0	53.0	108.0	3.50	11774	21913.63	68.91	202.90	•
200.0	57.0	118.0	3.68	12500	22554,33	64.07	191.14	
210.0	61.0	128.0	3.84	13198	23153.02	59.87	180.88	• • • •
219.0	72.0	137.0	3.96	13521	23609.52	50.72	172.33	
COST TOTAL HOUR	4857. S 11.		TAL TURNS	3.7 104012		N T	59 12 84 GO.	92.0 .000
							ar I veve	
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST		
220.0	102.0	1.0	0.01	o=	18405.20	36	CC0ST	
220.0 230.0	102.0 189.0	1.0 11.0	0.01 0.06	85 561	18405.20 18598.43	36 19	CCOST 18405 1691	
220.0 230.0 240.0	102.0 189.0 130.0	1.0 11.0 21.0	0,01 0,06 0,14	85 561 1254	18405.20 18598.43 18879.35	36 19 28.09	CCOST	
220.0 230.0 240.0 250.0	102.0 189.0 130.0 142.0	1.0 11.0 21.0 31.0	0.01 0.06 0.14 0.21	85 561 1254 1888	18405.20 18598.43 18879.35 19136.54	36 19 28.09 25.72	CCOST 18405 1691 899.02 617.31	
220.0 230.0 240.0 250.0 260.0	102.0 189.0 130.0 142.0	1.0 11.0 21.0 31.0 41.0	0.01 0.06 0.14 0.21 0.28	85 561 1254 1888 2504	18405.20 18598.43 18879.35 19136.54 19386.67	36 19 28.09 25.72 25.01	CCOST 18405 1691 899.02 612.31 472.85	I-C
220.0 230.0 240.0 250.0 260.0 270.0	102.0 189.0 130.0 142.0 146.0 127.0	1.0 11.0 21.0 31.0 41.0 51.0	0.01 0.06 0.14 0.21 0.28 0.36	85 561 1254 1888 2504 3213	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23	36 19 28.09 25.72 25.01 28.76	CCOST 18405 1691 899.02 612.31 472.85 385.77	I-0
220.0 230.0 240.0 250.0 260.0 270.0 280.0	102.0 189.0 130.0 142.0 146.0 127.0	1.0 11.0 21.0 31.0 41.0 51.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41	85 561 1254 1888 2504 3213 3730	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23	36 19 28.09 25.72 25.01 28.76 20.99	CCOST 18405 1691 899.02 612.31 472.85 385.77	
220.0 230.0 240.0 250.0 260.0 270.0 280.0	102.0 189.0 130.0 142.0 146.0 127.0 174.0 321.0	1.0 11.0 21.0 31.0 41.0 51.0 61.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41	85 561 1254 1888 2504 3213 3730 4010	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12	36 19 28.09 25.72 25.01 28.76 20.99 11.38	CCOST 18405 1691 899.02 612.31 472.85 385.77 325.97 281.66	
220.0 230.0 240.0 250.0 260.0 270.0 280.0	102.0 189.0 130.0 142.0 146.0 127.0	1.0 11.0 21.0 31.0 41.0 51.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41	85 561 1254 1888 2504 3213 3730	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23	36 19 28.09 25.72 25.01 28.76 20.99	CCOST 18405 1691 899.02 612.31 472.85 385.77	I-C
220.0 230.0 240.0 250.0 260.0 270.0 280.0 290.0 300.0	102.0 189.0 130.0 142.0 146.0 127.0 174.0 321.0	1.0 11.0 21.0 31.0 41.0 51.0 61.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41	85 561 1254 1888 2504 3213 3730 4010 4223	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63	CCOST 18405 1691 899.02 617.31 472.85 385.77 325.97 281.66 247.95	I-C
220.0 230.0 240.0 250.0 260.0 270.0 290.0 300.0	102.0 189.0 130.0 142.0 146.0 127.0 174.0 321.0 423.0	1.0 11.0 21.0 31.0 41.0 51.0 61.0 71.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41 0.45 0.47	85 561 1254 1888 2504 3213 3730 4010	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63	CCOST 18405 1691 899.02 617.31 472.85 385.77 325.97 281.66 247.95	I-C
220.0 230.0 240.0 250.0 260.0 270.0 290.0 300.0 310.0 320.0 330.0	102.0 189.0 130.0 142.0 146.0 127.0 174.0 321.0 423.0 382.0 458.0 98.2	1.0 11.0 21.0 31.0 41.0 51.0 61.0 71.0 81.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41 0.45 0.47	85 561 1254 1888 2504 3213 3730 4010 4223	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63	CCOST 18405 1691 899.02 612.31 472.85 385.77 325.97 281.66 247.95	I-C
220.0 230.0 240.0 250.0 260.0 270.0 280.0 300.0 310.0 320.0 330.0	102.0 189.0 130.0 142.0 146.0 127.0 174.0 321.0 423.0 382.0 458.0 98.2 177.3	1.0 11.0 21.0 31.0 41.0 51.0 61.0 71.0 81.0 91.0 101.0 111.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41 0.45 0.47	85 561 1254 1888 2504 3213 3213 4010 4023 4459 4655	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63 9.56 7.97 37.20	CCOST 18405 1691 899.02 612.31 472.85 385.77 325.97 281.66 247.95 221.76 200.59 185.87	I-C
220.0 230.0 240.0 250.0 260.0 270.0 280.0 390.0 310.0 320.0 340.0 350.0	102.0 189.0 130.0 142.0 146.0 127.0 174.0 321.0 423.0 382.0 458.0 98.2 177.3 171.4	1.0 11.0 21.0 31.0 41.0 51.0 61.0 71.0 81.0 101.0 111.0 121.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41 0.45 0.47 0.50 0.52 0.62	85 561 1254 1888 2504 3213 3730 4010 4223 4459 4655 5541	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22 20179.83 20259.56 20631.53	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63 9.56 7.97	CCOST 18405 1691 899.02 612.31 472.85 385.77 325.97 281.66 247.95 221.76 200.59 185.87 172.21	I-C
220.0 230.0 240.0 250.0 260.0 270.0 290.0 300.0 310.0 320.0 340.0 350.0	102.0 189.0 130.0 142.0 146.0 127.0 127.0 321.0 423.0 382.0 458.0 98.2 177.3 171.4 194.6	1.0 11.0 21.0 31.0 41.0 51.0 61.0 71.0 81.0 101.0 121.0 131.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41 0.45 0.47 0.50 0.52 0.68 0.73 0.79	85 561 1254 1888 2504 3213 3730 4010 4223 4459 4655 5541 6040	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22 20179.83 20259.56 20631.53 20837.50	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63 9.56 7.97 37.20 20.60	CCOST 18405 1691 899.02 612.31 472.85 385.77 325.97 281.66 247.95 221.76 200.59 185.87 172.21	I-C
220.0 230.0 240.0 250.0 260.0 270.0 280.0 370.0 310.0 320.0 340.0 350.0 340.0 350.0	102.0 189.0 130.0 142.0 146.0 127.0 124.0 321.0 423.0 382.0 458.0 98.2 177.3 171.4 194.6 127.2	1.0 11.0 21.0 31.0 41.0 51.0 61.0 71.0 81.0 111.0 121.0 131.0 141.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41 0.45 0.45 0.50 0.52 0.62 0.62 0.73 0.79 0.86	85 561 1254 1888 2504 3213 3730 4010 4223 4459 4655 5541 6040 6565	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22 20179.83 20259.56 20631.53 20837.50 21050.53	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63 9.56 7.97 37.20 20.60 21.30	CCOST 18405 1691 899.02 612.31 472.85 385.77 325.97 281.66 247.95 221.76 200.59 185.87 172.21	I-C
220.0 230.0 240.0 250.0 260.0 270.0 280.0 300.0 310.0 320.0 340.0 350.0 340.0 350.0	102.0 189.0 130.0 142.0 146.0 127.0 124.0 321.0 423.0 382.0 458.0 98.2 177.3 171.4 194.6 127.2 176.5	1.0 11.0 21.0 31.0 41.0 51.0 61.0 71.0 81.0 111.0 121.0 131.0 141.0 151.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41 0.45 0.45 0.50 0.52 0.62 0.62 0.62 0.77 0.79 0.86 0.92	85 561 1254 1888 2504 3213 3730 4010 4223 4459 4655 5541 60565 7027 7735 8245	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22 20179.83 20259.56 20631.53 20837.50 21050.53 21238.20 21525.29 21732.24	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63 9.56 7.97 37.20 20.60 21.30 18.77 28.71 20.69	CCOST 18405 1691 899.02 612.31 422.85 385.77 325.97 281.66 247.95 221.76 200.59 185.87 172.21 160.69 150.63	I-C
220.0 230.0 240.0 250.0 260.0 270.0 280.0 300.0 310.0 320.0 340.0 350.0 350.0	102.0 189.0 130.0 142.0 146.0 127.0 124.0 321.0 423.0 382.0 458.0 98.2 177.3 171.4 194.6 127.2	1.0 11.0 21.0 31.0 41.0 51.0 61.0 71.0 81.0 111.0 121.0 131.0 141.0	0.01 0.06 0.14 0.21 0.28 0.36 0.41 0.45 0.45 0.50 0.52 0.62 0.62 0.73 0.79 0.86	85 561 1254 1888 2504 3213 3730 4010 4223 4455 5541 6565 7027 7735	18405.20 18598.43 18879.35 19136.54 19386.67 19674.23 19884.12 19997.89 20084.22 20179.83 20259.56 20631.53 20837.50 21050.53 21238.20 21525.29	36 19 28.09 25.72 25.01 28.76 20.99 11.38 8.63 9.56 7.97 37.20 20.60 21.30 18.77 28.71	CCOST 18405 1691 899.02 612.31 422.85 385.77 325.97 281.66 247.95 221.76 200.59 185.87 172.21 160.69 150.63 142.55	I-C

Van vada — ea

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
410.0	182.2	191.0	1.11	9911	22408.41	20.04	117.32	••••
420.0	113.6	201.0	1.19	10704	22729.99	32.16	113.08	
430.0	61.2	211.0	1.36	12174	23326.48	59.65	110.55	***
440.0	79.6	221.0	1,48	13304	23785.22	45.87	107.63	
450.0	70.3	231.0	1.63	14584	24304.62	51.94		
460.0	76.8	241.0	1,76	15757			105.21	***
470.0	85.5	251.0	1.87		24780.39	47.58	102.82	****
				16809	25207.47	42.71	100.43	****
480.0	55.0	261.0	2.05	18444	25870.92	66.34	99.12	•••
490.0	50.6	271.0	2.25	20222	26592.19	72.13	98.13	
500.0	70.3	281.0	2.39	21502	27111.58	51.94	96.48	****
510.0	49.2	291.0	2,60	23329	27853.14	74.16	95.72	
520.0	44,8	301.0	2.82	25337	28667.74	81.46	95,24	***
530.0	70.9	311.0	2.96	26606	29182,93	51,52	93,84	
540.0	40.1	321.0	3,21	28850	30093,23	91.03	93.75	
550.0	40.9	331.0	3,45	31050	30985,94	89.27	93.61	
560.0	42.7	341.0	3,69	33160	31842.13	85,62	93.38	•••
570.0	52.3	351.0	3,88	34880	32540,07	69.79	92.71	***
580.0	43,2	361.0	4.11	36965	33386.12	84.60	92.48	****
590.0	57.1	371.0	4.29	38542	34026.23	64.01	91,71	••••
600.0	48.3	381.0	4,49	40407	34783.01	75.68	91.29	***
WONIO	717713	(313) 10		70707	(2.4 \ (2.00 () ())	7 (3 ((3 ()	7 1. 1 6 7	
610.0	52.3	391.0	4.69	42127	35480.65	69.76	90.74	••••
620.0	49.5	401.0	4,89	43947	36219.17	73.85	90.32	
630.0	39.1	411.0	5,14	46249	37153.33	93,42	90.40	.4.
640.0	27.8	421.0	5.50	49489	38468.05	131.47	91.37	-Ą.
650.0	35.1	431.0	5.79	52056	39509.88	104,18	91.67	- ķ -
660.0	35,4	441.0	6.07	54601	40542,59	103.27	91.93	.4.
670.0	36.8	451.0	6.34	57044	41533.70	99.11	92.09	÷.
680.0	32.1	461.0	6,65	59849	42671.91	113.82	92.56	4.
690.0	30.6	471.0	6.98	62789	43864,89	119.30	93.13	· - { ·
700.0	27.5	481.0	7.35	66064	45193.81	132.89	93,96	+
70070	fact soil		2 1 5 2 5 2	(3()()()")	***** * * * * * * * * * * * * * * * *	X OE: 1 O Y	70.70	T
710.0	25.5	491.0	7.74	69591	46625,20	143.14	94,96	4.
720.0	24.1	501.0	8.15	73321	48138.75	151.36	96.09	4.
230.0	27.0	511.0	8.52	76651	49489.99	135.12	96,85	-4-
740.0	29.3	521.0	8.86	79719	50734.71	124.47	97.38	•∳∙
750.0	27.6	531.0	9.22	82981	52058.56	132.39	98.04	4.
760.0	29,2	541.0	9.57	86061	53308.36	124.98	98,54	4
220.0	26.5	551.0	9,95	89464	54689.01	138.07	99.25	4.
780.0	28.1	561.0	10.30	92666	55988.52	129.95	99.80	4.
790.0	23.0	571.0	10.74	96586	57579.17	159.06	100.84	-
800.0	26.7	581.0	11.11	99961	58948.67	136,95	101,46	٠.
						a server for her	ascal ful	٠
B10.0	24.8	591.0	11.52	103594	60422.65	147.40	102,24	4.
811.0	21.5	592.0	11.56	104012	60592.57	169.92	102.35	- 1 -

811.0- 1381.0 HTC J1 12.250 SIZE NOZZLES 18 18 18 COST 2694.00 TRIP TIME 4.9 BIT RUN 570.0 TOTAL HOURS 12.11 TOTAL TURNS 100225 CONDITION T4 B2 G0,125 DEPTH ROP BIT RUN HOURS TURNS TOTAL COST ICOST CCOST I-C 820.0 27.5 9,0 1671 0.33 21785.34 133 2421 830.0 42.2 19.0 0.56 3355 22651.00 87 1192 ٠.. 840.0 57,2 29.0 4612 0.74 23289,08 63.81 803.07 850.0 46,4 39.0 0.95 6193 24076,29 78.72 617,34 860.0 55.3 49.0 1,14 7493 24736,69 66,04 504.83 870.0 54.1 59.0 8833 1.32 25411.30 67.46 430.70 380.0 53.2 69.0 1.51 10191 26098.08 378.23 68.68 890.0 51.5 79.0 -1.70 11583 26807,18 70.91 339,33 900.0 48.1 89.0 1,91 13059 27565.98 75.88 309,73 910.0 48.3 99.0 2.12 14555 28322.25 75.63 286,08 920.0 46,5 109.0 2,33 16116 29108,44 78.62 267,05 930.0 52.6 119.0 2.52 17474 29802.32 69.39 250.44 940.0 58.7 129.0 2.69 18688 30424,18 62,19 235.85 950.0 53,1 139.0 20033 2,88 31111,97 68.78 223,83 960.0 51.8 149,0 3,07 21424 31817.01 70,50 213,54 970.0 54.6 159.0 3,26 22753 32485.53 66.85 204,31 980.0 44,2 169.0 3.48 24790 82,68 33312,30 197.11 990.0 50.2 179.0 3.68 26583 34039,66 72,74 190,17 ... 189.0 1000.0 62.7 3,84 28018 34621,95 58.23 183,18 199.0 1010.0 56.6 4,02 29608 35267.13 64.52 177,22 1020.0 52.5 209.0 4.21 31321 35962,54 69.54 172.07 ----55.6 1030.0 219.0 4.39 32941 36619.90 65.74 167.21 1040.0 62.2 229.0 4.55 34388 37206,92 58,70 162.48 1050.0 53.9 239.0 4.74 36058 37884.57 67.76 158.51 1060.0 55.9 249.0 4,91 37668 38537.87 65.33 154.77 57.3 1070.0 259.0 5.09 39238 39174,94 63.71 151,25 1080.0 58.4 269.0 5,26 39799.84 40778 62.49 147,95 1090.0 279.0 57.9 5,43 42333 63.10 40430.83 144,91 1100,0 62.3 289.0 5.59 43778 41017.18 58.63 141,93 •••• 1110.0 50.1 299.0 5.79 45573 41745.55 72,84 139,62 1120.0 54.9 309.0 5,98 47213 42411.02 66.55 137,25 ... 1130.0 52.2 319.0 6,17 48936 43110.31 69,93 135,14 1140.0 57.5 329.0 6.34 50501 43745.35 63.50 132,96 1150.0 39.4 339.0 6.59 52786 44672.56 92,72 131,78 1160.0 52,1 349.0 6.79 54514 45373.54 20.10 130.01 1170.0 51,4 359,0 6.98 56266 46084,66 71.11 128,37 1180.0 52.6 369.0 7.17 46779,56 57979 126.77 69,49 1190.0 55.6 379.0 7.35 59599 47436,92 65.74 125,16 1200.0 52.6 389.0 7.54 61309 48130,80 69.39 123.73 1210.0 55.1 399.0 7.72 62941 48793,23 66.24 122.29 409.0 1220.0 58.1 7,90 62.90 64491 49422,19 120.84 1230.0 56.8 419.0 8.07 66076 50065,34 64.32 119,49 1240.0 45.6 429.0 8,29 68049 50865,74 80.04 118.57

BIT NUMBER

 \mathcal{P}

IADC CODE

116

INTERVAL

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost i-c
1250.0	51,1	439.0	8,49	69809	51579.91	71.42	117.49 -
1260.0	47.2	449.0	8,70	71714	52352.92	77.30	116.60 -
1270.0	33.2	459.0	9,00	73871	53451.56	109.86	116.45 -
1280.0	25.6	469.0	9.39	76276	54877.87	142.63	117.01 +
1290.0	32.0	479.0	9.70	78554	56020.13	114.23	116.95 -
1300.0	36.1	489.0	9.98	81049	57032.55	101,24	116.63 -
1310.0	36.9	499.0	10.25	83489	58022.65	99.01	116.28 -
1320.0	40.3	509.0	10.50	85722	58928,54	90.59	115.77 -
1330.0	41.2	519.0		87904	59814.15	88.56	115.25 -
1340.0	34,9	529.0	11.03	90484	60861.06	104.69	115.05 -
1350.0	39.8	539.0	11.28	92747	61779.13	91.81	114,62 -
1360.0	40.5	549.0		94967	62679.96	90.08	114.17 -
1370.0	29.4	559.0		98027	63921.64	124.17	114.35 +
1380.0	44,4	569.0		100052	64743.34	82.17	113.78
1381.0	52.0	570.0	12.11	100225	64813.57	70.23	113.71 -
			oc conc	4		138	0.0-1389,6
CHRIS RC4		SIZ	ZE .	9,875	NOZZLES		15 15 15 9.6
COST		.00 TRI	P TIME	5.0	BIT RUN		9.6
TOTAL HOURS	1.	.08 TOT	'AL TURNS	6261	CONDITIO	JN T	0 B0 G0.050
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost I-c
1389.6	8.9	9.6	1.08	6261	36717.35	412	3825
BIT NUMBER		2 IAI	C CODE	4	INTERVAL	. 1389	9.6- 1399. 0
CHRIS RC4		SIZ	Œ	9.875			15 15 15
COST		00 TRI	P TIME	5.0	BIT RUN		9,4
TOTAL HOURS	1.	35 TOT	AL TURNS	7608	CONDITIO	3N T (BO GO.100
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost i-c
1 "Z (") () ()	97.6	3 A A	4 4 4	3 0009 200, 0009			
1390.0 1399.0			1.10	6393	22295.19		2230 -
1377.0	37.2) y , U	1.35	7608	23178.26	98	1220 -
BIT NUMBER		77 TAN	en en en volum		*** C E **** (100 and a * * * * * * * * * * * * * * * * * *		
CHRIS RC4		2 IAD SIZ	C CODE	4 0 075			7.0-1408.2
COST	n		e P TIME	9,875 5,0			15 15 15 9.2
TOTAL HOURS			AL TURNS	9742			B0 G0.150
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST I-C
1400.0	34.3	ማስ ስ	4 "7" (")	1003 E003 E103	(15 119 (15 (15 (, A 179	a a 2 to
1408.2	23.6	20.0 28.2	1,38 1,73	7771	23296,72 24568,32		1165 -
7A () () ' V'''	0.03	E.C. + E.	まっての	9742	៩എ០៦៦ ស្គី	100.07	871.22 -

	BIT NUMBER CHRIS RC4 COST TOTAL HOURS	0	.00 TI	TZE	9,875 5,0 1045;	NOZZLES BIT RUN		18,2- 14 15 1: 10 BO GO	5 15
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I - C
	1410.0	40.5	30.0	1.77	9931	24740,27	90,17	824.68	••••
	1414.0	43.7	34.0	1.87	10452	25074.53	83.56	737,49	
	BIT NUMBER HTC J22 COST TOTAL HOURS		.00 TF	IZE	517 12.25(6.(107008	NOZZLES BIT RUN		4.0- 186 18 16 4) 7 83 60	9 18 - 71,3
								e processing	0 40 57
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	icost	ccost	I-C
	1420.0	87.8	6.0	0.07	345	30677.55	42	5113	•
	1430.0	80.9	16.0	0.19	1016	31128.98	45	1946	•••
		100.3	26.0	0.29	1586	31493.17	36	1211	
		18.4	36.0	0.38	2066	31801.56	30.84	883,38	
		50.6	46.0	0.57	3142	32523,84	72,23	707.04	
		107.8	56.0	0.67	3687	32862.67	33.88	586.83	
		88.0	66.0	0.78	4313	33277.57	41,49	504,21	****
		76.3	76.0	0.91	5050	33756,39	47.88		
	1500.0	76.1	86.0	1,04	5801	34236.22	47.98	444,16	
	1510.0	38,6	96.0	1.30	7299	35182.70	94.65	398.10	***
	1520.0	39,9	106.0	1.55	8686	36098.74	91.60	366. 4 9 3 4 0.55	****
							2 2 1 1.5 1.5	0.40.100	
•		9.6	116.0	2.60	13763	39920.16	382,14	344.14	+
	1540.0	19.6	126.0		15462	41779,63	185.95	331.58	***
	1550.0	39.7	136.0	3.36	16344	42699.73	92.01	313.97	
	1560.0	26.6	146.0		17615	44073.29	137.36		
	1570.0	15.6	156.0	4.38	19730	46416.66	234,34	297,54	****
	1580.0	20.1	166.0		21468	48236.57	181.99	290.58	
	1590.0	18.6	176.0		23162	50196.48	195.99	285.21	••••
	1600.0	8.9	186.0		27335	54317,15	412.07	292,03	.∳-
	1610.0	10.5	196.0		29863		349.07	294,94	٠\$٠
	1620.0	13.1	206.0	8.26	31973	60589.46	278.16	294.12	
	1630.0	14.6	216.0	8.95	34853	63097.17	250.77	292.12	
	1640.0	8.7	226.0		40994		417.55	297.67	- \$-
	1650.0	19.0	236.0	10.62	43945		192.51	293.21	***
	1660.0	22.1	246.0	11.07	46458		165.46	288.02	
	1670.0	26.1	256.0		4 8556		139.69	282,22	
	1680.0	20.1	266.0		51342		181.89	278.45	
	1690.0	28.6	276.0		53338	75344,22	127.62	272,99	****
	1700.0	30.9	286.0		55204	76527 .03	118.28	267.58	****
	1710.0	18.5	226.0		58260		197.01	265.19	
	1720.0	14.4	306.0	13.86	62365	81027.10	253.00	264.79	

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	T (°
1730.0	23.9	316.0	14.27	64810	82553.84	152,67		
1740.0	17.8			68069	84602.00		261,25	
1750.0	28.1	336.0		70077		204.82	259.52	
1760.0	32.9				85900,49	129.85	255.66	••••
				21253	87010.29	110.98	251,47	
1770.0	23.7	356.0	15.21	74217	88548.19	153.79	248:73	****
1780.0	25.1	366.0	16.31	76529	90003,92	145.57	245,91	****
1790.0	17.5	376.0	16.89	79841	92094.69	209.08	244.93	****
1800.0	15.1	386.0	17.55	82475	94521.10	242,64	244.87	****
1810.0	22.5	396.0	18,00	84639	96147,25	162,62	242.80	•
1820.0	13.8	406.0	18.72	89427	98802.16	265.49	243.36	· † ·
1830.0	14.9	416.0	19.39	91373	101247.98	244,58	~ ^ ^ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
1840.0	11.2	426.0	20,29	93790	104520.58		243,38	-{-
1850.0	11.7	436.0	21.14	96394		327,26	245.35	-4.
1860.0	10.8	446.0	22.06		107639.32	311.87	246.88	· † ·
1870.0				98985	111005.50	336.62	248.89	-∳-
	13.5	456.0	22.80	101376	113706.96	220.15	249.36	-\$•
1880.0	9.6	466.0	23.84	104581	117505.04	379,81	252,16	-∳∙
1885.3	6.1	471.3	24.71	107006	120670.11	597.18	256.04	-∳∙
BIT NUMBER HTC J22 COST	8516	S: .00 TI	ADC CODE IZE RIP TIME	517 12.250 6.8	NOZZLES		5.3- 225 16 16 37	
TOTAL HOURS	43.	.84 T(DTAL TURN	8 205424			5 B6 G0.	
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	IC:
1890.0	8.3	4.7	0.57	2543	35424.75	442	7537	***
1900.0	9.1	14.7	1.66	8304	39418.62	399	2682	
1910.0	11.4	24.7	2,54	13394	42622.24	320	1726	****
1920.0	7.3	34.7	3.90	19894	47605.19	498	1372	
1930.0	6.9	44.7	5.36	25130	52932.03	533	1184	****
1940.0	10.3	54.7	6.33	28831	56484.96	355	1033	
1950.0	14.9	64.7	7.01	32667				
1960.0	11.6	74.7			58934,84	244.99	910.89	
1970.0	17.6	84.7	7.86	37037	62072.52	313.77	830.96	****
			8.43	39737	64147.06	207.45	757,34	****
1980.0	6.7	94.7	9.92	46512	69562.16	541.51	734.55	****
1990.0	8.5	104.7	11,10	51021	73881.66	431,95	705.65	****
2000.0	8.8	114.7	12.24	57410	78037.84	415.62	680,36	***
2010.0	8.4	124.7	13.43	64181	82391.84	435.40	660.72	****
2020.0	7.9	134.7	14.69	71286	86999.45	460.76	645.88	
2030.0	9.6	144.7	15.74	77259	90814.77	381.53	627,61	***
2040.0	15.2	154.7	16.39	81088	93223.06	240.83	602.61	••••
2050.0	30.0	164.7	16.73	82913	94439,38	121.63	573.40	
2060.0	27.0	174.7	17.10	85031	95794.24			
2070.0	11,0	184.7	18,00	90136		135.49	548.34	
2080.0	12.3	194.7			99101.33	330.71	536.55	
			18.82	93842	102075.68	297.44	524.27	****
2090.0	12.2	204.7	19.64	97703	105080.46	300,48	513.34	***
2100.0								
0110 A	7.7	214.7	20.94	105074	109816.90	473.64	511.49	***
2110.0								

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
2120.0 2130.0 2140.0	7.7 6.5	244.7	23.29 24.82	117434 123472	118388,96 123983,62	471.92 559.47	504.43 506.68	-
2150.0	7.6 5.8		26.14	128185	128816.43	483.28	505.76	****
2160.0	7.1	274.7	27.87 29.28	134803 141108	135123.23	630.68	510.48	4.
2170.0	5.0		31,28	148662	140279.66	515.64	510.66	·\$•
2180.0	5.8		32,99	155053	147568,44 153826,55	728,88 625,81	518.33	٠4٠
2190.0	7.5		34.32	161869	158691.98	486.54	521.98 520.81	- 1 -
2200.0	8,1	314.7	35.55	167494	163174.12	448.21	518.51	****
2210.0	8.3		36.76	173482	167588.98	441.49	516.13	••••
							50 5 50 F A 50	
2220.0	14,4	334.7	37,45	176944	170132.19	254.32	508.31	
2230.0	7.7	344.7	38.25	183410	174849,36	471.72	507.25	****
2240.0	4.7	354.7	40.85	193654	182546.96	769.76	514.65	·4.
2250.0	7.3	364.7	42.23	198761	187571.50	502.45	514.32	****
2258.2	5.1	372.9	43.84	205424	193467.46	719.02	518.82	4.
BIT NUMBER HTC J22			DC CODE	517 12.25(in.2- 244	
COST	8516		IP TIME	7.5			16 16	
TOTAL HOURS	30.		TAL TURN				. 6 B5 G0	6.8 250
				200 - 20 (100 20.10 - 20 Z)	2 (200) XX (2) 1 (1)	(3) (4)	O DO COL	65.330
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I – (;
DEPTH 2260.0	ROP	BIT RUN	HOURS					
				1321	37136.23	683	20631	
2260.0 2270.0 2280.0	5.3	1.8	0.34		37136.23 41986.29	683 4 8 5	20631 3558	****
2260.0 2270.0 2280.0 2290.0	5.3 7.5 10.3 7.1	1.8 11.8	0.34 1.66	1321 7588	37136.23 41986.29 45527.72	683 485 354	20631 3558 2088	
2260.0 2270.0 2280.0	5.3 7.5 10.3	1.8 11.8 21.8	0.34 1.66 2.63	1321 7588 12077	37136.23 41986.29	683 4 8 5	20631 3558 2088 1593	
2260.0 2270.0 2280.0 2290.0 2300.0	5.3 7.5 10.3 7.1 7.0	1.8 11.8 21.8 31.8 41.8	0.34 1.66 2.63 4.04 5.46	1321 7588 12077 17061 21578	37136.23 41986.29 45527.72 50643.56 55854.76	683 485 354 512	20631 3558 2088	
2260.0 2270.0 2280.0 2290.0 2300.0	5.3 7.5 10.3 7.1 7.0	1.8 11.8 21.8 31.8 41.8	0.34 1.66 2.63 4.04 5.46	1321 7588 12077 17061 21578	37136.23 41986.29 45527.72 50643.56 55854.76	683 485 354 512 521 717	20631 3558 2088 1593	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0	5.3 7.5 10.3 7.1 7.0 5.1 6.8	1.8 11.8 21.8 31.8 41.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89	1321 7588 12077 17061 21578 27936 33025	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95	683 485 354 512 521 717 535	20631 3558 2088 1593 1336	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0	5.3 7.5 10.3 7.1 7.0 5.1 6.8 5.8	1.8 11.8 21.8 31.8 41.8 51.8 61.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89	1321 7588 12077 17061 21578 27936 33025 38792	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36	683 485 354 512 521 717 535 628	20631 3558 2088 1593 1336 1217 1106 1040	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2340.0	5.3 7.5 10.3 7.1 7.0 5.1 6.8 5.8	1.8 11.8 21.8 31.8 41.8 51.8 61.8 71.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37	1321 7588 12077 17061 21578 27936 33025 38792 45518	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21	683 485 354 512 521 717 535 628 645.09	20631 3558 2088 1593 1336 1217 1106 1040 991,43	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0	5.3 7.5 10.3 7.1 7.0 5.1 6.8 5.7	1.8 11.8 21.8 31.8 41.8 51.8 61.8 91.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36	683 485 354 512 521 717 535 628 645.09 513.71	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0	5.3 7.5 10.3 7.1 7.0 5.1 6.8 5.7 7.1	1.8 11.8 21.8 31.8 41.8 51.8 61.8 71.8 91.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36	683 485 354 512 521 717 535 628 645,09 513,71 675,70	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2360.0 2370.0	5.3 7.5 10.3 7.1 7.0 5.1 6.8 7.1 5.4 6.0	1.8 11.8 21.8 31.8 41.8 51.8 61.8 71.8 91.8 101.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761 66078	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36	683 485 354 512 521 717 535 628 645.09 513.71 675.70 611.71	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2360.0 2370.0 2380.0	5.3 7.5 10.3 7.0 5.1 5.8 5.7 5.4 6.0 5.3	1.8 11.8 21.8 31.8 41.8 51.8 61.8 71.8 91.8 101.8 111.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761 66078 74790	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36 92110.46	683 485 354 512 521 717 535 628 645.09 513.71 675.70 611.71 685.26	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50 869.98	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2350.0 2360.0 2370.0 2380.0 2390.0	5.3 7.5 10.3 7.1 7.0 5.8 5.7 5.1 6.3 5.3	1.8 11.8 21.8 31.8 41.8 51.8 61.8 91.8 101.8 121.8 121.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31 19.18 21.07	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761 66078 74790 83460	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36 92110.46 105963.03 112851.11	683 485 354 512 521 717 538 628 645.09 513.71 675.70 611.71 685.26 688.81	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50 869.98 856.23	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2360.0 2370.0 2380.0	5.3 7.5 10.3 7.0 5.1 5.8 5.7 5.4 6.0 5.3	1.8 11.8 21.8 31.8 41.8 51.8 61.8 71.8 91.8 101.8 111.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761 66078 74790	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36 92110.46	683 485 354 512 521 717 535 628 645.09 513.71 675.70 611.71 685.26	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50 869.98	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2350.0 2360.0 2370.0 2380.0 2390.0	5.3 7.3 10.1 5.8 5.1 5.3 5.9 5.9	1.8 11.8 21.8 31.8 41.8 51.8 61.8 91.8 111.8 121.8 131.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31 19.18 21.07 22.08	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761 66078 74790 83460 88133	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36 92110.46 105963.03 112851.11 116539.63	683 485 354 512 521 717 535 628 645.09 513.71 675.70 611.71 685.26 688.81 368.85	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50 869.98 856.23 821.86	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0 2370.0 2380.0 2390.0	5.3 7.3 10.3 7.0 5.8 5.7 5.3 7.1 6.3 7.3 9.9	1.8 11.8 21.8 31.8 41.8 51.8 61.8 91.8 111.8 121.8 121.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31 19.18 21.07 22.08	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761 66078 74790 83460 88133	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36 92110.46 105963.03 112851.11 116539.63	683 485 354 512 521 717 535 628 645.09 513.71 675.70 611.71 685.26 688.81 368.85	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50 869.98 856.23 821.86	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0 2370.0 2390.0 2400.0	5.3 7.3 10.1 5.8 5.1 5.3 5.9 5.9	1.8 11.8 21.8 31.8 41.8 51.8 61.8 91.8 111.8 121.8 131.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31 19.18 21.07 22.08	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761 66078 74790 83460 88133 92601 101315	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36 92110.46 105963.03 112851.11 116539.63	683 485 354 512 521 717 535 628 645.09 513.71 675.70 611.71 685.26 688.81 368.85	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50 869.98 856.23 821.86 791.12 784.89	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2360.0 2360.0 2370.0 2380.0 2400.0 2410.0 2420.0 2430.0	5.3 7.3 10.1 5.8 5.1 4.0 5.7 5.4 5.3 9.3 10.3	1.8 11.8 21.8 31.8 41.8 51.8 61.8 91.8 101.8 121.8 121.8 121.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31 19.18 21.07 22.08	1321 7588 12077 17061 21578 27936 33025 387518 50723 58761 66078 74790 83460 88133 92601 101315 109979	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36 92110.46 105963.03 112851.11 116539.63	683 485 354 512 521 717 535 628 645.09 513.71 675.70 611.71 685.26 688.81 368.85 355.26 690.23 685.36	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50 869.98 856.23 821.86 791.12 784.89 779.09	
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2350.0 2360.0 2370.0 2380.0 2400.0	5.3 7.3 10.1 5.8871403339 5.3 5.3 5.3	1.8 11.8 21.8 31.8 41.8 51.8 61.8 91.8 111.8 121.8 121.8 121.8	0.34 1.66 2.63 4.04 5.46 7.43 8.89 10.61 12.37 13.78 15.63 17.31 19.18 21.07 22.08 23.05 24.94 26.82	1321 7588 12077 17061 21578 27936 33025 38792 45518 50723 58761 66078 74790 83460 88133 92601 101315	37136.23 41986.29 45527.72 50643.56 55854.76 63022.82 68368.95 74648.36 81099.21 86236.36 92993.36 92110.46 105963.03 112851.11 116539.63	683 485 354 512 521 717 535 628 645.09 513.71 675.70 611.71 685.26 688.81 368.85	20631 3558 2088 1593 1336 1217 1106 1040 991.43 939.39 913.49 886.50 869.98 856.23 821.86 791.12 784.89	

UTC TNO		IADC CODE SIZE TRIP TIME TOTAL TUPNS	O ELON	NOZZLES BIT RUN		.0- 2464.0 14 14 14 19.0 B3 G0.000
DEPTH	ROP BI	T RUN HOURS	TURNS	TOTAL COST	ICOST	ccost I-c
2450.0 2460.0 2464.0	5.2 4.1 2.7	5.0 0.97 15.0 3.44 19.0 4.92	13095	41276,27	901	6453 2752 2458
HTC TOO		IADC CODE SIZE TRIP TIME TOTAL TURNS	O EGO	\$ 17") ""X ""X 1 1"" 7"-		.0- 2481.2 14 14 14 17.2 B1 G0.000
DEPTH	ROP BI	T RUN HOURS	TURNS :	TOTAL COST	ICOST	CCOST I-C
2470.0 2480.0 2481.2	10.9	6.0 0.40 16.0 1.32 17.2 1.43	4117	32988.33 36347.16 36750.91	336	2272 -
BIT NUMBER CHRIST RC6 COST TOTAL HOURS	11019.00		8.500 7.5	NOZZLES BIT RUN		2- 2499.0 14 15 15 17.8 B0 G0.050
DEPTH	ROP BIT	RUN HOURS	TURNS T	TOTAL COST	ICOST	CCOST I-C
2490.0 2499.0	16.9 9.7	8.8 0.52 17.8 1.45	2834 8248	40309.05 43702.79	216 377	4581 - 2455 -
BIT NUMBER CHRIST RC6 COST TOTAL HOURS	7 0.00 4.27	IADC CODE SIZE TRIP TIME TOTAL TURNS	4 8.500 7.5 23867	INTERVAL NOZZLES BIT RUN CONDITION		0- 2517.1 15 14 15 18.1 B0 G0.200
DEPTH	ROP BIT	RUN HOURS	TURNS T	OTAL COST :	COST	ccost I-c
2500.0 2510.0 2517.1	12.2	19.0 1.44 29.0 2.26 36.1 4.27	8478 13070 23867	32653.73 35649.89 42981.28	151 300 1033	1719 - 1229 - 1191 -

a state of the sta

GIT NUMBER CHRIST RC6 COST TOTAL HOURS	7 0.00 6.34	IADC CODE SIZE TRIP TIME TOTAL TURNS	4 8.500 7.5 34899	NOZZLES BIT RUN	
DEPTH	ROP BIT	RUN HOURS	TURNS	TOTAL COST	ICOST CCOST I-C
2530.0	10.1	38.9 4.75 48.9 5.74 49.9 6.34	26429 31741 34899	44736.49 48336.26 3 50550.27	660.03 988.48 -
BIT NUMBER CHRIST RC4 COST TOTAL HOURS	21210.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	8,500 7,6	NOZZLES BIT RUN	2531,0- 2549,0 14 15 15 18.0 TO BO GO,150
DEPTH	ROP BIT	RUN HOURS	TURNS	TOTAL COST	ICOST CCOST I-C
2540.0 2549.0		9.0 0.73 18.0 1.18	3968 6796	51622.03 53276.59	295 5736 - 184 2960
BIT NUMBER CHRIST RC4 COST TOTAL HOURS		SIZE	4 8.500 7.5 17528	INTERVAL NOZZLES BIT RUN CONDITION	14 15 15
DEPTH	ROP BIT	RUN HOURS	TURNS :	TOTAL COST	ICOST CCOST I-C
2550.0		1.0 1.34 1.0 2.18 5.4 3.05	7611 12606 17528	32299.91 35334.11 38537.73	528 32300 - 303 3212 - 728 2502 -
BIT NUMBER HTC J22 COST TOTAL HOURS	7 0.00 10.79	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 8,500 7,6 42370	INTERVAL NOZZLES BIT RUN CONDITION	2564.4- 2650.0 14 14 14 85.6 T2 B3 G0.062
DEPTH	ROP BIT	RUN HOURS	TURNS T	OTAL COST :	cost ccost i-c
2570.0 2580.0 2590.0 2600.0 2610.0	7.2 3 8.0 4 15.9 5	2.6 4.57 2.6 5.20	6347 11651 16486 18958 24390		367 1539 508 1223 459 1043 29,06 888,63 76,38 822,77

and the state of t

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2620.0 2630.0 2640.0 2650.0	11.0 8.7 10.4 7.9	72.6 82.6 92.6 102.6	7,41 8,56 9,52 10,79	28217 33077 37070 42370	54818.75 59022.61 62528.53 67158.45	331.32 420.39 350.59 462.99	755.08 714.56 675.25 654.57	
BIT NUMBER HTC J22 COST TOTAL HOURS	4139. 18.	00 TR1	OC CODE ZE IP TIME TAL TURNS	517 8.500 7.8 61996	NOZZLES BIT RUN		0.0- 273 13 13 6 8 B6 G0.	(13 (1.0
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
2660.0 2670.0 2680.0 2690.0 2700.0 2710.0	8.3 10.1 9.5 11.5 5.1 4.2	10.0 20.0 30.0 40.0 50.0	1,21 2,20 3,26 4,12 6,09 8,47	4168 7543 11205 14205 21065 29337	37051.06 40656.39 44514.32 47686.49 54858.61 63542.26	443 361 386 317 717 868	3705 2033 1484 1192 1097 1059	
2720.0 2730.0 2731.0	3,0 1,9 0.9	70,0 80,0 81.0	11,83 17,11 18,26	40808 58482 61996	75844.43 95108.73 99307.51	1230 1926 4199	1083 1189 1226	.* -*
BIT NUMBER HTC J33 COST TOTAL HOURS		SIZ 00 TRI	C CODE E P TIME AL TURNS	537 8.500 8.0 42031	NOZZLES		1.0- 282 13 13 9 1 B2 G0.	13 1.5
DEPTH	ROP	BIT RUN	HOURS	TURNS :	TOTAL COST	ICOST	CCOST	IC:
2740.0 2750.0 2760.0 2770.0 2780.0 2790.0 2800.0	6.0 11.1 14.3 8.3 8.4 5.9 3.7	9.0 19.0 29.0 39.0 49.0 59.0 69.0	1,49 2,39 3,09 4,30 5,49 7,18 9,85	4133 7297 9620 13846 18035 23873 33276		604 330 256 442 433 616 977	4351 2235 1552 1268 1097 1016 1010	
2820.0 2822.5	7.4	89,0 91.5	12.18 12.33	41235 42031		494.44 330.51	875.52 860.63	•••

1-1

BIT NUMBER				DC CODE	,			?2.5- 28	
CHRIS MC23 COST	18047			ZE IP TIME	8,46			14 1	4 74
TOTAL HOURS				TAL TURNS		0 BIT RU 1 CONDIT	N ION 1	ro Bo Gi	5.5 .000
DEPTH	ROP	BIT	RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I - C
2828.0	4.7		5.5	1.17	5131	51548.74	776	9372	••••
BIT NUMBER			IΑ	DC CODE		4 INTERU	AL 282	'8. 0- 28	33. n
CHRIS C-23 COST			SI	ZE			3	14 1	4 14
TOTAL HOURS			1 K	IP TIME TAL TURNS	1.8	0 BIT RUI	V FON T	o no ro	5.0
			7 5.2		X (())	Z CHANGE.	(TIA)	1) e) 1) ti	. 1700
DEPTH	ROP	BIT	RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-C
2830.0	1.8	,	0.5	1.09	5035	51272.81	1995	25636	
2833.0	1.2	į	5.0	3.58	16019	60352.09	3026		
BIT NUMBER HTC J33 COST TOTAL HOURS	4503.	0.0	SI: TR:	DC CODE ZE IP TIME TAL TURNS	8.50(8.3	NOZZLES BIT RUN		3.0- 291 13 13 14 4 B4 G0	3 13 42.5
DEPTH	ROP	BIT F	ИUЯ	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-C
2840.0			, 0	1.73	6142	41135.15	903	5876	****
2850.0		12		4,49		51222.79	1009	3013	-
2860.0 2870.0		27		6,93		60108.31			••••
2880.0	7.5 3.8		', 0 ', 0	8.26 10.92	28967	64973.58	487	1756	****
2890.0	4.8		'. 0	13.03	38312 45793	74708.19 82384.49	973 768	1590	****
2900.0	6.1		'. ŏ	14.67	51670	88386.96	600	1445 1319	
2910.0	3,9		' , 0	17.26	60955	97837.52	945	1271	
2920.0	8.0	87	' , ()	18.51	65400	102409.63	457	1177	••••
2930.0	7.1	97	' . 0	19.92	70418	107565.03	516	1109	
2940.0	7.7	107	. 0	21,22	75228	112296.40	473	1049	****
2950.0	6.9	117		22.67	80452	117621,22	532	1005	
2960.0	4.7	127		24.80	87921	125389,84	776.86	987.32	
2970.0 2975.5	3.6 3.8	137		27.60	97768	135608.33	1022	990	·\$-
40 7 7 to 1 to	O CO	142	1 A.F	29.05 1	102918	140923.01	966.30	988, 9 3	****

	4357.00 T	ADC CODE TZE RIP TIME PTAL TURNS	8.500 8.4	NOZZLES BIT RUN		5- 30: 13 1; B1 G0	3 13 35.5
DEPTH	ROP BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-C
2980.0 2990.0 3000.0	2.7 4.5 2.9 14.5 3.4 24.5	5.17	5616 17739 27526			9152 3719 2640	
3010.0 3011.0	4.5 34.5 3.3 35.5	10.35 10.65	35444 36514	72840.37 73945.10	817 1105	2111 2083	
BIT NUMBER HTC JD8 COST TOTAL HOURS	1500.00 TI		8,500 2,0	NOZZLES BIT RUN		13 13	8 13
DEPTH	ROP BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-c
3013.1	3.3 2.1	(1 , 6,4	2175	29407.37	1116	14004	
BIT NUMBER HTC J33 COST TOTAL HOURS	4503.00 TF	ADC CODE IZE RIP TIME DTAL TURNS	7.0	BIT RUN		.1- 312 13 13 12 85 60.	3 13 27.3
DEPTH	ROP BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
3020.0 3030.0 3040.0 3050.0 3060.0 3070.0 3080.0	1.9 6.9 2.9 16.9 3.7 26.9 2.7 36.9 6.1 46.9 1.9 56.9	7.04 9.75 13.47 15.10 20.49	11914 22881 31653 43949 49190 66477 83933	43091.71 55788.56 65669.55 79248.90 85215.87 104907.60 124602.70	1888 1270 988 1358 597 1969	6245 3301 2441 2148 1817 1844 1863	
3090.0 3100.0 3110.0 3120.0 3130.0 3140.0 3140.4	4.5 76.9 3.8 86.9 4.1 96.9 5.1 106.9 3.3 116.9 5.9 126.9 4.4 127.3	30.78 33.22 : 35.19 : 38.17 : 39.87 :	91138 99600 106996 113099 122472 127589	132758,16 142477,55 151383,36 158564,61 169468,87 175671,19	816 972 891 718 1090 620 839	1726 1640 1562 1483 1450 1384 1383	

en en la companya de la companya de

BIT NUMBER HTC J33 COST TOTAL HOURS		SIZ TRI	:. .	537 8.500 8.9 140579	NOZZLES BIT RUN		.4- 3273 13 13 : 133 B4 G0.0	13 ,5
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST I	C
3150.0	2.7	9.6	3,53	11629	49889.97	1342	5197	****
3160.0	3.7	19.6	6.20	19256		977	3044	
3170.0	1.7	29.6	11.99	35643	80777.04	2112	2729	
3180.0	2.2	39.6	16.45	48356	97086,26	1631	2452	-4
3190.0	3.9	49.6	19,01	55738	106430.31		2146	
3200.0	2.9	59.6	22.47	65307	119066.23		1998	
3210.0	2.3	69.6	26.76	77377	134718.09	1565	1936	
3220.0	2.5	79.6	30.82	88795	149559,00	1484	1879	
3230.0	2.2	89,6		101483			1854	
						764		
3240.0		99.6		107477			1744	, -
3250.0		109.6		118417	188008.47		1715	
3260.0		119.6		127539	199881.04	1187	1671	
3270.0	2.5	129.6	48.58	138564	214429.19	1455	1655	
3273.9	5.2	133,5	49.34	140579	217192.54	709	1627	
BIT NUMBER CHRIS C23 COST TOTAL HOURS	14 0.00 7.57	SIZ! TRI	C CODF E P TIME AL TURNS		NOZZLES BIT RUN		.9- 3282 14 14 : 8 B0 G1.00	14
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST I	C
3280.0	2.4	11.1	6.12	29233	55213.94	1520	4974	
3282.5	1.7	13.6	7.57	36538	60504.68	2116	4449	
BIT NUMBER HTC J44 COST TOTAL HOURS	4347.00	SIZI TRII		617 8.500 9.1 55509	NOZZLES BIT RUN		.5- 3321. 13 13 1 38 B1 G0.00	13
DEPTH	ROP BI	T RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost I-	-C
3290.0	3.1	7.5	2,40	6776	46339.47	1168	6179	
3300.0	1,9	17.5	7.65	22789		1918	3744	
3310.0	1.8	27.5	13.18	38868	85705.22	2019	3117	
3320.0	2.0	37.5	18.18	53549	103957.12			
3321.0	1.5	38,5	18.84	55509	106391.79	1825 2435	2772 2763	
00410	L i s.J	ao, J	10.04	JJJU7	100071177	മനാവ	a 700	

(e). COMPUTER DATA LISTING : LIST C

INTERVAL	,	,	ı	1	ı	10m averages.
DEPTH	ı	,		,	ı	Well depth, in metres.
FLOW RATE	2	ŧ	•	ŧ	,	Mud flow into the well, in gallons per minute.
PSP, . , , ,	,	i	ı	i	,	Pump pressure, in pounds per square inch.
PBIT		ı		1	,	Bit pressure drop, in pounds per square inch.
%PSP	,		,	,	•	Percentage of surface pressure dropped at the bit.
Н.Н.Р	•	,	,		,	Bit hydraulic horsepower.
HHP/SQ IN	•	;	•	,	ı	Rit bydraulic horsepower per square inch of bit diameter.
IMPACT FORCE	,	:	1	,	,	Bit impact force, in foot-pounds per second squared.
JET VELOCITY	,	,	,	,		Mud velocity through the bit nozzles, in metres per second.

BIT NUMBE HTC OSC3A COST TOTAL HOU	0H" 6S+T	.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	111 26.000 2.5 13521	NOZ BIT	ERVAL ZLES RUN DITION		0- 219.0 20 20 20 137.0 000,00
DEPTH	FLOW RATE	PSP	PRIT	%P & P	ннр	HHP/ soin	IMPACT FORCE	JET VELOCITY
90.0 100.0 110.0	439 795 775	186.3 277.0 467.0	594.6	97.4 214.7 121.0	46 276 255	0.09 0.52 0.48	301 987 938	
120.0 130.0 140.0 150.0 160.0 170.0 180.0 200.0	730 825 1035 1015 1005 1000 1005 1005 1015	353.0 884.0 1293.0 1234.0 1228.0 1230.0 1239.0 1213.0 1201.0	640.3 1012.4 923.7 954.6 945.1 945.1 954.6	142.0 72.4 78.3 78.9 77.7 76.8 76.3 77.0 78.7	213 308 611 576 559 551 559 559 576	0.40 0.58 1.15 1.09 1.05 1.04 1.05 1.05	832 1063 1681 1616 1585 1569 1585 1585	77 87 110 108 106 106 106 106
219.0	1010	1212.0	964.1	79.5	568	1.07	1601	107
BIT NUMBER HTC OSC 30 COST TOTAL HOUR	AJ 4857 .	. 0 0	SIZE	111 17.500 3.7 104012	NOZ: BIT	ERVAL ZLES RUN DITION		0- 811,0 20 20 20 592,0 34 G0,000
DEPTH	FLOW RATE	PSP	PRIT	%PSP	ннр	HHP/ sqin	IMPACT FORCE	JET VELOCITY
220.0 230.0 240.0 250.0 260.0 270.0 280.0 290.0	995 995 990 990 990 990 1000 1000	2150.0 2150.0 2100.0 2100.0 2100.0 2140.0 2170.0 2180.0 2200.0	957.2 957.2 947.6 947.6 947.6 947.6 966.8 966.8	44.5 44.5 45.1 45.1 45.1 44.3 44.6 44.4	555 555 547 547 547 564 564	2.31 2.31 2.27 2.27 2.27 2.37 2.34 2.34	1589 1589 1573 1573 1573 1605 1605	105 105 105 105 105 105 106 106
310.0 320.0 330.0 340.0 350.0 360.0 370.0 380.0 390.0	1000 1000 979 990 728 651 981 550 514 495	2240.0 2240.0 2197.2 2247.3 1394.6 1052.4 2250.4 775.4 695.7 680.0	966.8 966.8 927.3 949.1 512.1 410.4 930.6 292.7 256.0 239.8	43.2 43.2 42.2 42.2 36.7 39.0 41.4 37.7 36.8 35.3	564 564 530 548 217 156 532 94 77 69	2.34 2.34 2.20 2.28 0.90 0.65 2.21 0.39 0.32	1605 1605 1540 1576 850 681 1545 486 425 398	106 106 104 105 77 69 104 58 55

entre de la companya de la companya

DEPTH	FLOW RATE	P S P	рвіт	%PSP	ННЬ	HHP/ sain	IMPACT FORCE	JFT VELOCITY
410.0	982	2320.6	944.3	40.7	541	0 08		
420.0	998	2395.1	984.4	41.1	573	2.25 2.38	1568	104
430.0	988	2347.7	975.4	41.5	562	2.34	1634	106
440.0	990	2369.3	979.8	41,4	566	2.35	1619	105
450.0	1001	2421.7	991.2	40,9	579	2.41	1627	105
460.0	992	2383.7	974.4	40.9	564	2.35	1646	106
470.0	987	2377.7	975.3	41.0	562	2.34	1618 1619	105
480.0	992	2398.5	984.9	41.1	570	2.37	1635	105
490,0	988	2386.9	977.0	40,9		2.34	1622	105
500.0	996	2426.6	993.1	40.9	577		1649	105 106
510.0	988	2389.0	97 5.8	40.8	562	2.34	1620	105
520.0	987	2391.1	974.8	40,8	561	2.33	1618	105
530.0	999	2441,6	999.1	40.9	583	2.42	1659	106
540.0	991	2389.0	981.5	41.1	567	2.36	1629	i 0 5
550.0	989	2391.8	977.8	40.9	564	2.35	1623	105
560,0	991	2381.0	982.6	41.3	568	2.36	1631	105
570.0	991	2392.1	982.2	41.1	568	2.36	1631	105
580.70	988	2393.4	975,9	40.8	562	2.34	1620	105
590.0	991	2417.0	983.0	40.7	569	2.36	1632	105
600.0	992	2434.4	984,5	40.4	570	2.37	1634	105
610.0	988	2416.1	976.2	40.4	563	2.34	1621	105
620.0	544	794.9	296.4	37.3	94	0.39	492	58
630.0	568	868.4	322.8	37.2	107	(1,44	536	6.0
640.0	983	2403.9	965,7	40.2	554	2.30	1603	104
650.0	985	2427.2	959.5	39.5	551	2.29	1593	104
660.0	993	2457.9	974.8	39.7	564	2.35	1618	105
670.0	996	2449.2	982.3	40.1	571	2.37	1631	106
680.0 690.0	1001	2489.2	991.8	39.8	579	2.41	1646	106
700.0	992 576	2460.1	973.3	39.6	563	2.34	1616	105
/00.0	3/6	874.7	328.0	37.5	110	0.46	545	61
210.0	982	2417.8	954.1	39.5	547	2.27	1584	104
720.0	982	2421.8	954.0	39.4	547	2.27	1584	104
730.0	991	2463.5	970.7	39.4	561	2.33	1611	105
740.0	983	2439.3	956.1	39.2	548	2.28	1587	104
750.0	985	2416.5	960.5	39.7	552	2.30	1595	104
760.0	986	2424.2	962.0	39.7	553	2.30	1597	104
770.0	983	2430.1	956.5	39.4	549	2.28	1588	104
780.0	980	2418.9	950.1	39.3	543	2.26	1577	104
790.0	983	2437.2	955.1	39.2	547	2.28	1586	104
800.0	982	2447.7	954.2	39.0	547	2.27	1584	104
810.0	1034	2738.9	1057.4	38.6	638	2.65	1755	110
811.0	1015	2643.3	1020.0	38.6	604	2.51	1693	108
							** *** * ***	a 10 100

where we are the second

BIT NUMBE HTC J1 COST TOTAL HOU	2694		IADC CODE SIZE TRIP TIME TOTAL TURNS	116 12.250 4.9 100225	NO2 BIT	TERVAL ZZLES T RUN NDITION		0- 1381,0 18 18 18 570,0 82 G0,125
DEPTH	FLOW RATE	b 8b	PRIT	%PSP	HHb	HHP/ sqin	IMPACT FORCE	JET VELOCITY
820.0	957	2885.3	1395.9	48.4	779	6.61	1827	125
830.0	969	2836.3		50.5	810	6.87	1926	127
840.0	97 5	2889.1		50.2	824	6,99	1948	128
850.0	974	2858.2	1445.3	50.6	821	6.97	1943	127
860.0	970	2840.3		50.5	812	6,89	1930	
870.0	978	2858.8		51.0	832	7.06	1960	127
880.0	977	2822.4		51.5	829	7.03		128
890,0	968	2762.6		51.8	808	6.85	1955	128
900.0	976	2803.4		51,8	826		1923	127
910.0	976	2804.9		51.8		7.01	1957	128
920.0	982	2883.2		49.9	826	7.01	1952	128
930.0	992	2915.2		50.3	825	7.00	1936	129
940.0	992	2925.3		50.2	848 850	7.20	1972	130
	7 7 Fa.	5- 8 Fo 505 2 528	X 740 (5 1 45	A3 D + T.	0.30	7.21	1975	130
950.0	991	2901.1	1464.8	50.5	847	7.19	1970	130
960.0	9 89	2933.7		49.7	840	7.13	1960	129
970.0	801	1835.1	956.2	52.1	447	3.79	1286	105
980.0	661	1167.3		55.8	251	2.13	875	88
990.0	992	2973.4		49.4	849	7.21	1974	130
1000.0	984	2990,9	1475.2	49.3	847	7.18	1984	129
1010.0	961	2827.7	1407.4	49.8	789	6.69	1893	126
1020.0	971	2899.0	1437.3	49.6	814	6.91	1933	127
1030.0	977	2934,2		49.6	829	7.04	1957	128
1040.0	974	2940.2	1446.4	49.2	822	6.97	1945	127
1050.0	976	2914.6	1452.5	49.8	827	7.02	1953	9 7575
1060.0	972	2967.7		48.5	816			128
1070.0	938	2907.5		46.6	741	6.92	1936	127
1080.0	947	2966.3		46.6		6.29	1822	123
1090.0	930	2874,5	1333.1	46.4	763	6.47	1857	124
1100.0	931	2840.1	1335.5	47.0	723	6.14	1793	122
1110.0	933	2877.6			725	6.15	1796	122
1120.0	934	2846.2	1341.4	46.6	730	6.20	1804	122
1130.0	920		1345.7	47.3	734	6.23	1810	122
1140.0	939	2751,4	1305.1	47.4	701	5.95	1755	120
11.40.0	7.37	2797.5	1360.0	48.6	745	6.32	1829	123
1150.0	907	2729.2	1266.8	46.4	670	5.69	1703	119
1160.0	906	2754.5	1265.3	45.9	669	5.68	1701	119
1170.0	938	2887.4	1356.3	47.0	742	6.30	1824	123
1180.0	9 26	2858.6	1322.2	46.3	715	6.06	1778	121
1190.0	921	2912.2	1308.3	44.9	703	5.97	1759	121
1200.0	865	2554.t	1152.9	45.1	582	4.94	1550	113
	916	3030.2	1306.0	43.1	698	5.92	1756	120
1210.0			W 200, 200, 200, 1 77	1 4 4 4 4	12 2 12	37.4.7.1	N / N232	
1220.0	923	3092.6	1326.6	42,9				
					714 642	6.06 5. 4 5	1784 1667	121 116

and the state of the state of

DEPTH	FLOW RATE	p S p	ग्रस्य	%PSP	ННР	HHP/ sain	IMPACT FORCE	JET VELOCITY
1250.0 1260.0 1270.0 1280.0 1290.0 1300.0 1310.0 1320.0 1330.0	878 899 616 620 878 876 873 856 872 869	2830.8 2927.1 1490.1 1522.2 2930.9 2916.2 2918.2 2825.2 2945.0 2934.6	1270.9 597.0 605.5 1213.1 1209.3 1200.2 1153.2	42.8 43.4 40.1 39.8 41.4 41.5 41.1 40.8 40.6	621 666 215 219 621 618 611 576 609 602	5.27 5.65 1.82 1.86 5.27 5.19 4.89 5.11	1631 1709 803 814 1631 1626 1614 1551 1609	115 118 81 81 115 115 114 114
1350.0 1360.0 1370.0 1380.0 1381.0	863 867 868 871 870	2928.7 2928.3 2940.8 2958.4 2960.0	1183.9 1195.9 1211.7 1218.3 1215.6	40.4 40.8 40.9 41.2 41.1	596 605 614 619 617	5.06 5.13 5.21 5.25 5.25	1592 1608 1629 1638 1435	113 113 114 114 114
BIT NUMBER CHRIS RC4 COST TOTAL HOURS	14500 3 1	. 00	IADC CODE SIZE TRIP TIME TOTAL TURNS	9,875 5,0 6261	NOZ BIT	ERVAL ZLES RUN DITION	•	- 1389.6 15 15 15 9.6 1 G 0. 0 50
DEPTH	FLOW RATE	PSP	PRIT	%P SP	ннр	HHP/ sqin	IMPACT FORCE \	JET ÆLOCITY
1389.6	179	234.8	107.4	45.7	11	0.15	100	34
BIT NUMBER CHRIS RC4 COST TOTAL HOURS		.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	9.875 5.0 7608	NOZ:	ERVAL ZLES RUN DITION	t	1399.0 5 15 15 9.4 G0.100
DEPTH	FLOW RATE	P 8 P	PRIT	%PSP	ннр	HHP/ sqin	IMPACT FORCE V	JET PELOCITY
1390.0 1399.0	23 4 248	424.3 320.0	183.0 205.0	43.1 64.1	25 30	0.33 0.39	171 191	44 47
BIT NUMBER CHRIS RC4 COST TOTAL HOURS		9 00 7	TADC CODE SIZE TRIP TIME TOTAL TURNS	9.875 5.0 9742	NOZ:	ERVAL ZLES RUN DITION	1	1408.2 5 15 15 9.2 60.150
	FLOW RATE	PSP	PBIT	%PSP	ннр	HHP/ sqin	IMPACT FORCE V	
1400.0 1408.2	1 91 97	465.0 317.8	121.6 31.5	26.2	14	0.18 0.09	114	3& 1 ♀

Feb.

BIT NUMBER CHRIS RC4 COST TOTAL HOURS	0.	. 0 0	TADC CODE SIZE TRIP TIME TOTAL TURNS		NOZ: BIT	ERVAL ZLES RUN DITION	1	1414.0 5 15 15 5.8 G0.200
	FLOW RATE	PSP	PBIT	%PSP	ннр	HHP/ sqin	IMPACT FORCE V	
	239 170	363.0 263.4		53.1 37.1	27 10	0.35		45 32
BIT NUMBER HTC J22 COST TOTAL HOURS	8516	. 0 0		517 12.250 6.0 107006	NOZ: BIT	ERVAL ZLES RUN DITION	1	1885.3 8 18 18 471.3 G0.125
DEPTH	FLOW RATE	PSP	PBIT	%P SP	ннр	HHP/ sain	IMPACT FORCE (JET FLOCITY
1420.0	857	2895.7	1193.4	41.2	597	5.06	1605	112
1420.0 1430.0 1440.0 1450.0 1460.0 1470.0 1480.0 1500.0 1510.0 1520.0 1520.0 1520.0 1550.0 1550.0 1550.0 1560.0 1570.0 1590.0 1610.0 1620.0	858 862 854 860 857 866 866 866 866 866 867 866 871 866 871 866 873	2908.3 2944.0 2908.7 2906.4 2892.9 2907.5 2826.0 2824.0 2893.4 2902.3 2919.4 2919.4 2944.5 2805.8 2929.9	1195.5 1206.3 1190.5 1200.5 12192.5 1218.9 12179.6 1179.6 1177.4 11778.3 1170.3 1190.3	41.1 41.0 40.8 41.3 41.2 41.6 41.3 41.9 41.7 41.3 41.5 40.6 40.7 41.4 40.8 40.9 41.1 41.2 41.4	597 597 597 596 596 601 597 601 597 501 597 601 597 501 501	5.085 5.0116 5.02128 5.02128 5.02118 5.02118 5.02118 5.02118 5.02118 5.02118 5.02118 5.02118 5.02118 5.02118 5.02118	1608 1622 1594 1615 1604 1639 1635 1637 1586 1622	112 113 112 113 113 113 113 113 113 114 111 113
1630.0 1640.0 1650.0 1660.0 1670.0 1680.0 1690.0 1700.0	850 866 868 859 856 857 868 865 854	2776.2 2878.9 2898.7 2884.4 2846.7 2876.1 2947.5 2939.9 2871.0 2894.1	1194.1 1198.8 1174.4 1164.3 1169.5 1199.4 1203.3	41.4 41.5 41.4 40.7 40.9 40.7 40.7 40.9 40.9	569 604 607 589 581 585 608 607 585	4.83 5.12 5.15 5.00 4.93 4.96 5.16 5.15 4.96 5.03	1544 1606 1612 1579 1566 1573 1613 1618 1578	111 113 114 112 112 112 114 113 112

ting the state of the state of

DEPTH	FLOW RATE	PSP	PBIT	%PSP	ННР	HHP/ sain		JET VELOCITY
1730.0 1740.0 1750.0 1760.0 1770.0 1780.0 1800.0 1810.0	857 858 861 854 859 854 854 852 848 847	2901.6 2872.4 2910.6 2922.8 2928.9 2909.7 2908.0 2900.7 2871.9 2848.0	1181.8 1184.1 1191.5 1172.0 1186.6 1173.6 1173.3 1167.5 1154.3	40.7 40.9 40.9 40.1 40.5 40.3 40.2 40.3 40.5	591 593 598 584 595 585 580 572 571	5.02 5.03 5.08 4.95 5.05 4.96 4.93 4.85 4.84	1589 1592 1602 1576 1576 1578 1570 1555	112 113 112 112 112 112 111 111
1830.0 1840.0 1850.0 1860.0 1870.0 1880.0	844 857 832 848 839 853 850	2834.4 2794.8 2809.0 2909.1 2867.3 2950.7 2950.0	1133.2 1167.5 1101.4 1143.8 1120.7 1157.2	40.0 41.8 39.2 39.3 39.1 39.2 38.9	558 584 535 566 549 576 569	4.73 4.95 4.54 4.80 4.66 4.89	1524 1570 1481 1538 1507 1556 1544	112
BIT NUMBER HTC J22 COST TOTAL HOURS		.00	IADC CODF SIZE TRIP TIME TOTAL TURNS		NOZ. BIT	ERVAL ZLES RUN DITION		3- 2258.2 16 16 18 372.9 86 G0.250
DEPTH	FLOW RATE	PSP	PRIT	XPSP	ннр	HHP/ sain		JET VELOCITY
DEPTH 1890.0 1900.0 1910.0		PSP 2883.5 2879.7 2873.1	PRIT 1317.7 1339.5 1348.3	%PSP 45.7 46.5 46.9	601			VELOCITY 119 119
1890.0 1900.0 1910.0	781 785	2883.5 2879.7	1317.7 1339.5 1348.3	45.7 46.5	601 614	5.10 5.21 5.26	FORCE 1524 1549	119 119 120

.

DEPTH	FLOW RATE	PSF	PEIT	%PSP	ННР	HHP/ sqin	IMPACT FORCE	VELOCITY
2120.0	780	2926.8		45.2	601	5.10	1528	117
2130.0	784	2948.6		45.3	611	5.18	1544	119
2140.0 2150.0	781 771	- 2928.0 - 2901.7		45.2	603	5.12	1532	119
2160.0	77 X 77 0	2933.0		44,5	580	4,92	1492	117
	781	2938.8		43.9 45.1	578	4,90	1489	117
2170.0 2180.0	771	2886.7		44.7	603 581	5.12 4.93	1532	119
2190.0	476	1229.4		40.0	137	1.16	1494 569	117
2200.0	550	1600.1		41.1	211	1.79		72 84
2210.0	743	2848.6		42.1	521	4.42	1389	113
2220.0	756	2860,5	1242.9	43.5	548	4,65	1438	115
2230.0	542	1559.3		40.9	202	1.71	738	82
2240.0	541	1555.5	638.2	41.0	201	1.71	738	82
2250.0	540	1551.3	640.8	41.3	202	1.71	741	82
2258,2	770	2950.0	1289.4	43.7	580	4.92	1491	117
BIT NUMBER		5	IADC CODE	517	INT	ERVAL	2258.2	2445.0
HTC J22			SIZE	12.250	NOZ	ZLFS		16 16 18
	8516			7.5		RUN		186.8
TOTAL HOURS	8 30	.22	TOTAL TURNS	125215	CON	DITION	T A E	45 G0.250
	FLOW					1.11.195		
						HHP/	IMPACT	
DEPTH	RATE	PSP	PRIT	%P SP	ннр	HMP/ soin		VELOCITY
2260.0	731	2854.9	1160.9	%PSP	HHP 495			
2260.0 2270.0	731 740	2854.9 2929.5	1160.9 1188.9			sain	FORCE	VELOCITY
2260.0 2270.0 2280.0	731 740 741	2854.9 2929.5 2897.2	1160.9 1188.9 1194.3	40.7	495	sain 4.20	FORCE 1343	VELOCITY 111
2260.0 2270.0 2280.0 2290.0	731 740 741 747	2854.9 2929.5 2897.2 2914.8	1160.9 1188.9 1194.3 1211.6	40.7 40.6 41.2 41.6	495 513 517 528	soin 4.20 4.35	FORCE 1343 1375	VELOCITY 111 113
2260.0 2270.0 2280.0	731 740 741	2854.9 2929.5 2897.2	1160.9 1188.9 1194.3 1211.6	40.7 40.6 41.2	495 513 517	50in 4.20 4.35 4.38	FORCE 1343 1375 1381	VELOCITY 111 113 113
2260.0 2270.0 2280.0 2290.0 2300.0	731 740 741 747 739	2854.9 2929.5 2897.2 2914.8 2851.6	1160.9 1188.9 1194.3 1211.6 1181.0	40.7 40.6 41.2 41.6	495 513 517 528	50in 4.20 4.35 4.38 4.48	FORCE 1343 1375 1381 1401	111 113 113 114
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0	731 740 741 747 739 742 747	2854.9 2929.5 2897.2 2914.8 2851.6 2865.6 2884.0	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7	40.7 40.6 41.2 41.6 41.4 42.2 42.0	495 513 517 528 509	50in 4.20 4.35 4.38 4.48 4.32	FORCE 1343 1375 1381 1401 1366	VELOCITY 111 113 113 114 112
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0	731 740 741 747 739 742 747 727	2854.9 2929.5 2897.2 2914.8 2851.6 2865.6 2884.0 2753.6	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7	495 513 517 528 509 524	4.20 4.35 4.38 4.48 4.32	FORCE 1343 1375 1381 1401 1366	VELOCITY 111 113 113 114 112
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0	731 740 741 747 739 742 747 727 535	2854.9 2929.5 2897.2 2914.8 2851.6 2865.6 2865.6 1586.4	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7 39.1	495 513 517 528 509 524 528	4.20 4.35 4.38 4.48 4.32 4.44	FORCE 1343 1375 1381 1401 1366 1399 1401	VELOCITY 111 113 114 112 113 114
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2330.0 2340.0	731 740 741 747 739 742 747 727 535 534	2854.9 2929.5 2897.2 2914.8 2851.6 2865.6 2865.6 2865.6 1586.4 1596.5	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7	40.7 40.6 41.2 41.6 41.4 42.2 42.7 39.1 38.9	495 517 528 509 524 528 486 194	4.20 4.35 4.38 4.48 4.32 4.44 4.48 4.13 1.64	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718	VELOCITY 111 113 114 112 113 114 111
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0	731 740 741 747 739 742 747 727 535 534 528	2854.9 2929.5 2897.2 2914.8 2851.6 2865.6 2865.6 1586.4 1596.5 1571.2	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7 605.8	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7 39.1 38.9 38.6	495 517 529 509 528 494 194 187	4.20 4.35 4.38 4.48 4.32 4.44 4.48 4.13 1.64 1.64	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718 701	VELOCITY 111 113 114 112 113 114 111 81 81 81
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2320.0 2350.0 2360.0	731 740 741 747 739 742 747 7235 5334 528 526	2854.9 2929.5 2897.2 2914.8 2851.6 2853.6 253.6 1586.4 1596.5 1571.2	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7 605.8 607.1	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7 39.1 38.9 38.6 38.8	495 517 528 509 528 528 494 194 186	4.20 4.35 4.38 4.48 4.32 4.44 4.48 4.13 1.64 1.58	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718 701 702	VELOCITY 111 113 114 112 113 114 111 81 81 80 80
2260.0 2270.0 2280.0 2290.0 2310.0 2320.0 2320.0 2340.0 2350.0 2360.0 2370.0	731 740 741 747 739 742 747 7235 5338 5226 750	2854.9 2929.5 2897.2 2914.8 2851.6 2854.6 2753.6 1586.4 1596.5 1571.2 1563.7 2939.3	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7 605.8 607.1 1233.3	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7 39.1 38.9 38.6 38.8 42.0	495 517 5129 502 528 499 198 198 188 198 188 53	4.20 4.35 4.38 4.48 4.32 4.44 4.48 4.13 1.64 1.58 4.58	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718 701 702 1426	VELOCITY 111 113 114 112 113 114 111 81 81 81 80 80 114
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2360.0 2380.0 2390.0	731 740 741 747 739 742 747 7235 534 526 750 745	2854.9 2929.5 2897.2 2914.8 2851.6 2854.6 2753.6 1586.4 1596.5 1571.2 1563.7 2939.8	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7 605.8 607.1 1233.3 1217.1	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7 39.1 38.9 38.6 38.8 42.0 41.9	495 517 5128 509 528 494 198 198 198 539	4.20 4.35 4.38 4.48 4.32 4.44 4.48 4.13 1.64 1.58 4.58 4.58	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718 701 702 1426 1408	VELOCITY 111 113 114 112 113 114 111 81 81 80 80 114 113
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2360.0 2370.0 2390.0	731 740 741 747 739 742 747 7235 5338 5226 750	2854.9 2929.5 2897.2 2914.8 2851.6 2854.6 2753.6 1586.4 1596.5 1571.2 1563.7 2939.3	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7 605.8 607.1 1233.3	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7 39.1 38.9 38.6 38.8 42.0	495 517 5129 502 528 499 198 198 188 198 188 53	4.20 4.35 4.38 4.48 4.32 4.44 4.48 4.13 1.64 1.58 4.58	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718 701 702 1426	VELOCITY 111 113 114 112 113 114 111 81 81 81 80 80 114
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2360.0 2370.0 2390.0 2410.0	731 740 741 747 739 742 742 723 5338 5226 750 744 740	2854.9 2929.5 2897.2 2914.8 2851.6 2865.6 2865.6 1586.4 1596.5 1571.2 1563.7 2939.3 2910.1	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7 605.8 607.1 1233.3 1217.1 1213.7	40.7 40.6 41.6 41.4 42.2 42.0 41.7 39.1 38.9 38.6 38.8 42.0 41.9 41.7	495 5129 5229 5228 494 1983 522 515 515	4.20 4.35 4.38 4.48 4.48 4.48 4.48 1.64 1.58 4.49 4.47 4.37	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 701 702 1426 1408 1404	VELOCITY 111 113 114 112 113 114 111 81 81 80 80 114 113 113 113
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2350.0 2370.0 2390.0 2400.0	731 740 741 747 739 742 742 723 533 532 532 744 740 740	2854.9 2929.5 2897.2 2914.8 2851.6 2855.6 2855.6 1586.4 1596.5 1571.7 2939.8 2910.1 2910.1 2910.1	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7 605.8 607.1 1233.3 1213.7	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7 39.1 38.9 38.6 38.8 42.0 41.7 41.7	49537 51289 52289 522844 198322 513 513	4.20 4.35 4.38 4.48 4.43 4.48 4.13 1.64 1.58 4.49 4.47 4.35	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718 701 702 1426 1408 1404 1378 1375	VELOCITY 111 113 114 112 113 114 111 81 81 80 80 114 113 113 113 113
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2360.0 2370.0 2380.0 2400.0	731 741 747 739 742 742 742 75338 522 7545 744 740 739	2854.9 2929.2 297.8 2897.8 2851.6 2855.6 2853.6 1586.4 1596.5 1571.7 2939.8 2910.1 2910.1 2894.6 2898.6	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.4 620.8 620.7 605.8 607.1 1233.3 1213.7	40.7 40.6 41.2 41.6 41.4 42.2 42.7 39.1 38.9 38.6 38.8 42.9 41.7 40.9 41.7	451289 55289 5548948322 5511 5511	4.20 4.35 4.38 4.48 4.43 4.48 4.13 1.64 1.58 4.49 4.47 4.35 4.34	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718 701 702 1426 1408 1404 1378 1378 1372	VELOCITY 111 113 114 112 113 114 111 81 81 80 80 114 113 113 113 113 113
2260.0 2270.0 2280.0 2290.0 2300.0 2310.0 2320.0 2340.0 2350.0 2350.0 2370.0 2390.0 2400.0	731 740 741 747 739 742 742 723 533 532 532 744 740 740	2854.9 2929.5 2897.2 2914.8 2851.6 2855.6 2855.6 1586.4 1596.5 1571.7 2939.8 2910.1 2910.1 2910.1	1160.9 1188.9 1194.3 1211.6 1181.0 1209.4 1211.7 1147.8 620.8 620.8 607.1 1233.3 1217.3 1213.7	40.7 40.6 41.2 41.6 41.4 42.2 42.0 41.7 39.1 38.9 38.6 38.8 42.0 41.7 41.7	49537 51289 52289 522844 198322 513 513	4.20 4.35 4.38 4.48 4.43 4.48 4.13 1.64 1.58 4.49 4.47 4.35	FORCE 1343 1375 1381 1401 1366 1399 1401 1327 718 718 701 702 1426 1408 1404 1378 1375	VELOCITY 111 113 114 112 113 114 111 81 81 80 80 114 113 113 113 113

BIT NUMBER HTC JD8 COST TOTAL HOURS	1700	.00	IADC CODE BIZE TRIP TIME TOTAL TURNS	8,500 7,4	NOZ BIJ			4 14 14 19.0
DEPTH	FLOW RATE	b Sb	PBIT	%PSP	нне	HHP/ sain	IMPACT FORCE V	
2450.0 2460.0 2464.0	554 643 649		1740.5	59.0 58.8 59.8	417 653 670	7.35 11.51 11.81	1050 1416 1441	120 139 140
HTC J22	4139	.00	TADO CODE SIZE TRIP TIME TOTAL TURNS	8.500 2.5	NOZ BIT	ZLES RUN	2464.0- 1. T1 B1	4 14 14 17.2
	FLOW RATE	PSP	рвіт	%PSP	ннР	HHP/ sain	IMPACT FORCE VI	
2480.0	624 617 614	2935.7 2906.3 2984.4	1601.3	55.8 55.1 53.2	596 576 569	10,15	1332 1303 1291	133
BIT NUMBER CHRIST RC6 COST TOTAL HOURS	11019	9 7 00 ,	IADC CODE BIZE TRIP TIME TOTAL TURNS	8.500 2.5	NOZ BIT	RUN	2481.2- 14 TO BO	4 15 15 17.8
DEPTH	FLOW RATE	PSP	PBIT	%PSP	ннр	HHP/ sain	IMPACT FORCE VE	
2490.0 2499.0	246 125	370.0 124.0	213.7 55.1	57.8 44.4	31 4	0.54 0.07	191 49	48 25
BIT NUMBER CHRIST RC6 COST TOTAL HOURS		: 1 00 T	ADC CODE SIZE TRIP TIME TOTAL TURNS	8.500 7.5 23867	NOZ BIT	ERVAL ZLES RUN DITION	1.5	2517,1 5 14 15 18,1 G0,200
	FLOW RATE	PSP	рвіт	%PSP	ннр	HHP/ sain	IMPACT FORCE VE	
2500.0 2510.0 2517.1	222 238 156	241.4 477.0 165.5	173.4 199.3 85.6	71.8 41.8 51.8	22 28 8	0.40 0.49 0.14	155 178 77	44 47 31

BIT NUMBER CHRIST RC6 COST TOTAL HOURS	C	0.00	IADC CODE SIZE TRIP TIME TOTAL TURNS	8,500 7,5 34899	NOZ BIJ	TERVAL ZZLES F RUN IDITION		- 2531,0 14 15 15 13,9 0 G0,500
DEPTH	FLOW RATE	p Sp	PRIT	%PSP	ннр	HHP/	IMPACT FORCE	
. 2520 . 0 2530 . 0 2531 . 0	241 199 198	454.0 239.0 250.3	140.2	45.2 58.7 55.4	29 16 16	0.51 0.29 0.28	1 84 125 124	48 39 39
BIT NUMBER CHRIST RC4 COST TOTAL HOURS	21210	. 0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	3 8 : 500 2 : 6 6796	NOZ BIT	ERVAL ZLES RUN DITION	·	
	FLOW RATE	b 2b	PRIT	%PSP	HHb	MHP/ sain	IMPACT FORCE (
2540.0 2549.0	197 202	400.0 356.2		34.2 40.4	16 17	0.28 0.30	122 129	39 40
BIT NUMBER CHRIST RC4 COST TOTAL HOURS	0	. 0 0	IADC CODE BIZE TRIP TIME TOTAL TURNS	4 8.500 7.5 17528	NOZ: BIT	ERVAL ZLES RUN DITION		2564.4 4 15 15 15.4 60.300
	FLOW RATE	PSP	PRIT	%PSP	ннР	HHP/ sain		JET ELOCITY
2550.0 2560.0 2564.4	201 205 198	531.5 385.0 392.7	142.2 148.5 138.7	26.8 38.6 35.3	17 18 16	0.29 0.31 0.28	127 133 124	40 40 39
BIT NUMBER HTC J22 COST TOTAL HOURS		? r 00.	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 8.500 7.6 42370	NOZ: BIT	ERVAL ZLES RUN)ITION		2650.0 4 14 14 85.6 60.062
	FLOW RATE	P S P	рвтт	%P SP	ннр	HHP/ sain	IMPACT FORCE V	JET ELOCITY
2570.0 2580.0 2590.0 2600.0 2610.0	581 565 560 557 558	2918.4 2932.6 2981.7 2973.0 2968.3	1360.3 1334.0 1319.1	49.2 46.4 44.7 44.4 44.7	486 449 436 428 430	8.57 7.91 7.68 7.55 7.40	1168 1107 1085 1073	126 122 121 120

	FLOW RATE	PSP	PRIT	%PSP	ннь	HHP/ soin	IMPACT FORCE V	
2630.0	490 554 553	2811.0 2950.6 2953.0	1021.1 1304.4 1302.4	36.3 44.2 44.1	292 421 420	5.14 7.42 7.41		106 120 120
2650.0	548	2943.0	1280.1	43.5	410	7.22	1041	119
BIT NUMBER HTC J22		9	ADC CODE	8.500	NO2	ERVAL ZLES	2650.0- 17	
COST TOTAL HOURS	4139 18	.00 1 .26 1	RIP TIME OTAL TÜRNS	7.8 61 9 96	B1	KUN	18 B9	81.0
	FLOW RATE	PSP	PRIT	%PSP	HHP	HHP/ sain	IMPACT FORCE VE	
	547	2961.4		57.9		9.64	1202	137
2670.0 2680.0	560 554	2995.6 2999.1	1793,3 1757,8	59.9 58.6	586 568	10.32	1258	140
2690.0	553	2986.2	1750.2	58.6		10.01 9. 9 5	123 3 1228	139 139
2700.0	560	2983.9	1795.0	60.2	586	10.33	1259	140
2710.0	564	2984.5	1822.2	61.1	600	10.57	1278	142
2720.0	648	1964.7	2405.2	122.4	910	16.03	1687	163
2730.0	563		1817.8	68.2	598	10.53	1275	141
2731.0	597	2766.3	2043.5	73.9	712	12.55	1433	150
BIT NUMBER HTC J33			ADC CODE	537 8.500		ERVAL ZLES	2731.0- 13	
COST	4503			8.0		RUN		91.5
TOTAL HOURS	12	. 33 т	OTAL TURNS	42031	CON	MOITION		G0.062
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PBIT	%P SP	ннр	sain	FORCE VE	LOCITY
2740.0	559	2945.7	1806.9	61.3	589	10.38	1267	140
2750.0	554	2969.4	1774.9	59.8	574	10.11	1245	139
2760. 0 2770. 0	566 555	2828.1	1856.6 1781.1	65.6 60.7	614	10.81	1302	142
2780.0	557	2934.9	1775.7	60.5	577 577	10.16 10.17	1249 1245	139 140
2790.0	559	2866.1	1808.6	63.1	590	10.40	1269	140
2800.0	545	2980.3	1720.7	57.7	547	9.65	1207	137
2810. 0	548	2889.0	1759.0	60.9	563	9,92	1234	138
2820.0	545	2957.2	1755.9	59.4	558	9.84	1232	137
2822.5	545	2971.5	1757.1	59.1	559	9.85	1232	137

•

BIT NUMBER CHRIS MC23 COST TOTAL HOURS		. 0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	8,469 8,0	NOZ BIT	ERVAL ZLES RUN DITION		- 2828.0 14 14 14 5.5 0 G1.000
	FLOW RATE	P 8 P	PETT	%PSP	ннр	HHP/ sqin		JET VELOCITY
2828.0	248	1235.3	271.0	21.9	39	0.70	220	54
BIT NUMBER CHRIS C-23 COST TOTAL HOURS	18067	. 00	IADC CODE SIZE TRIP TIME TOTAL TURNS	8,469 8.0	NOZ BIT	ERVAL ZLES RUN DITION		- 2833.0 14 14 14 5.0 0 60.150
	FLOW RATE	p Sp	PRIT	%PSP	ннь	HHP/ sain	IMPACT FORCE	VELOCITY JE4
	295 296		386.5 386.7	27.5 28.9	67 67	1.18 1.19	314 315	
BIT NUMBER HTC J33 COST TOTAL HOURS	4503	. 0 0	SIZE	537 8.500 8.3 102918	NOZ BIT	ZLES		1- 2975.5 13 13 13 142.5 44 G0.000
	FLOW RATE	PSP	PEIT	%PSP	HHP	HHP/ sqin		JET VELOCITY
2840.0 2850.0 2860.0 2870.0 2880.0 2890.0 2910.0 2910.0 2930.0 2930.0	5535 5450 5450 5449 5334 5342 4844 534	2892.0 2901.7 2965.6 917.2 2997.7 2865.3 2905.5 2661.5 2959.3 2480.5 2974.2 2951.0	1806.1 1757.9 2653.3 1751.3 1656.4 1697.2 1656.8 1685.4 1744.9	63.1 62.2 59.3 289.3 58.4 58.4 62.2 59.0 57.1 59.5	591 583 559 1037 556 512 529 512 525 552 403 564 527	70.27 9.86 18.28 9.80 9.02 9.33 9.02 9.26 9.72 7.10 9.93 9.28	1267 1233 1861 1228 1162 1162 1162 1224 993 1241 1185	139 137 168 137 133 134 133 134 136
2970.0 2975.5	529 530	2954.3 2950.0	1654.2	56.0 56.3	510 514	8.99 9.05	1160 1165	133 133

BIT NUMBER HTC J44 COST TOTAL HOURS	4357 3 10	. 0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS		NOZ: BIT	ERVAL ZLES RUN DITION		5- 3011.0 13 13 13 35.5 31 G0.000
DEPTH	FLOW RATE	PSF	PEIT	%P SP	ннр	HHP/ sain	IMPACT FORCE	JET VELOCITY
2980.0 2990.0 3000.0	524 520 521	2939.6 2963.4 2981.1	1587.6	55.1 53.6 54.0	495 481 490	8.73 8.48 8.63	1137 1114 1130	131 130 131
3010.0 3011.0	520 521	3023,4 3036,4		53.3 53.3	489 492	8.61 8.67	1131 1136	
BIT NUMBER HTC JD8 COST TOTAL HOURS		. 0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	8.500 2.0	NOZ: BIT	ERVAL ZLES RUN DITION)- 3013.1 13 13 13 2.1 33 60.000
DEPTH	FLOW RATE	P S F	PBIT	%PSP	1-11-1P	HHP/ sain	IMPACT FORCE	JET VELOCITY
3013.1	511	2951.1	1735.1	58.8	518	9.12	1217	128
BIT NUMBER HTC J33 COST TOTAL HOURS		. 0 0	JADC CODF SIZE TRIP TIME TOTAL TURNS	537 8.500 7.0 127844	NOZI BIT	ERVAL ZLES RUN DITION		i- 3140.4 13 13 13 127.3 35 G0.063
DEPTH	FLOW RATE	PSP	у рвіт	%PSP	ННР	HHP/ sain		JET VELOCITY
3020.0 3030.0 3040.0 3050.0 3060.0 3070.0 3080.0	493 499 501 508 514	2973.5 2938.7 2905.5 2911.6 3005.9 2945.8 2819.2	1599.8 1620.2 1627.4 1653.1 1624.6	54.2 54.4 55.8 55.9 55.0 55.1	463 460 471 476 490 478 506	8.16 8.10 8.31 8.38 8.64 8.42 8.91	1130 1122 1136 1141 1159 1139	124 124 125 126 128 126
3090.0 3100.0 3110.0 3120.0 3130.0 3140.0	512 506 499 502 500 495 490	3066.0 2990.8 2895.1 2952.0 2916.3 2958.3	1651.9 1594.5 1609.2 1601.4 1567.7	55.2 55.2 55.1 54.5 54.9 53.0 52.1	505 488 465 471 468 453 438	8.91 8.60 8.19 8.30 8.24 7.98	1187 1159 1118 1129 1123 1100	128 127 125 126 126 124 123

in a consistent and the Windowski

BIT NUMBER HTC J33 COST 45 TOTAL HOURS	91: 03.00 TR	DC CODF ZE IP TIME TAL TURNS	537 8.500 8.9 140579	INTERVAL NOZZLES BIT RUN CONDITION	3140,4- 3273,9 13 13 13 133,5 T4 B4 G0,062
FLO DEPTH RAT		PBIT	%PSP	HHP/	IMPACT JET FORCE VELOCITY
3150.0 49 3160.0 49 3170.0 48	5 2971.4	1573.6 1565.1 1530.4	53.1 52.7 52.1	455 8.03 452 7.96 437 7.70	1104 124 1098 124 1073 123
3180.0 48 3190.0 48 3200.0 48 3210.0 48 3220.0 46 3220.0 46 3230.0 48 3240.0 47	4 2925.4 6 2928.4 2 2899.0 9 2734.2 2 2857.7 7 2926.7	1513.5 1495.6 1507.8 1485.4 1405.5 1483.2 1510.9	51.4 51.5 51.5 51.2 51.4 51.9 51.6 50.6	430 7.57 422 7.44 427 7.53 418 7.36 384 6.77 417 7.34 421 7.41 417 7.34	1062 122 1049 121 1058 122 1042 121 986 118 1040 121 1060 120 1053 119
3260.0 47 3270.0 47 ■ 3273.9 47	0 2950.4 4 2936.0	1468.0 1492.9 1494.4	49.8 50.8 51.5	403 7.10 413 7.28 414 7.29	1030 118 1047 119 1048 119
BIT NUMBER CHRIS C23 COST TOTAL HOURS	0.00 TR	DC CODE ZE IP TIME TAL TURNS	4 8.470 9.0 36538	INTERVAL NOZZLES BIT RUN CONDITION	14 14 14 8.6
DEPTH RAT		PBIT	%P SP	HHP/	
3280.0 27 3282.5 28		376.0 404.4	25.1 23.8	59 1.05 66 1.17	
BIT NUMBER HTC J44 COST 43 TOTAL HOURS	91: 47.00 TR	DC CODE ZE IP TIME TAL TURNS	617 8.500 9.1 55509	INTERVAL NOZZLES BIT RUN CONDITION	3282.5- 3321.0 13 13 13 38.5 T1 B1 G0.000
DEPTH RAT		PRIT	%PSP	HHP/	IMPACT JET FORCE VELOCITY
3290.0 44 3300.0 45 3310.0 44 3320.0 44 3321.0 44	0 2905.8 5 2973.0 5 2944.0	1404.6 1420.9 1385.9 1385.9 1385.9	48.0 48.9 46.6 47.1 47.4	366 6.45 373 6.58 360 6.34 360 6.34 360 6.34	985 112 997 113 972 112 972 112 972 112 972 112

•

(f), COMPUTER DATA LISTING : LIST \mathbf{D}

FLOW RATE Mud flow rate into the well, in gallons

per minute.

ANNULAR VELOCITIES : (in metres per minute)

DC/OH - Between drill collars and the open hole.

DC/CSG - Between drill collars and casing.

HW/OH - Between heavyweight drill pipe and the open hole.

HW/CSG - Between heavyweight drill pipe and casing.

DP/OH - Between drill pipe and open hole.

DP/CSG - Between drill pipe and casing.

DP/RIS - Between drill pipe and riser.

CIT NUMBER HTC OSC3AJ COST TOTAL HOUR	0H" 8S+1	0 0	IADC CODE SIZE TRIP TIME TOTAL TUR	2	6.000 2.5	NOZZ BIT	RVAL /LES RUN)ITION			20 20 137.0
DEPTH	SPMI	SPM2	FLOW RATE	DC/ OH	DC/ CSG	нw/ ОН	HW/ CSG	ΣP/ HO		DP/ RIS
90.0 100.0 110.0	0 80 77	88 79 78	43 9 795 775	5 10 9		5 9 9				
120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 200.0	73 83 104 101 100 99 100 100 100	73 201 201 101 101 101 101	730 825 1035 1015 1005 1000 1005 1005	9 10 13 12 12 12 12 12 12		8 9 12 12 11 11 12 12		8 9 12 12 12 11 11 12 12		
219.0	100	102	1010	12		12		12		
BIT NUMBER HTC OSC 34 COST TOTAL HOUR	4857.	0.0	IADC CODE SIZE TRIP TIME TOTAL TUR	1.		NOZZ BIT	RVAL LES RUN DITION		20 2 8	311,0 20 20 592.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH		нW/ ОН		DP/ OH		DP/ RIS
220.0 230.0 240.0 250.0 260.0 270.0 280.0 290.0	99 100 100 100 100 100 100	100 100 98 98 98 100 100	995 990 990 990 990 990 1000	31 31 31 31 31 31 31	2555555555		22 22 22 22 22 22 22 22 22 22		22 22 22	18 18 18 18 18 18 18
310.0 320.0 330.0 340.0 350.0 360.0 370.0 380.0 390.0	100 100 97 99 77 65 97 49 53	100 100 99 100 69 65 99 61 50	1000 1000 979 990 728 651 981 550 514 495	31 30 31 22 20 30 17 16	25	27 26 26 19 17 26 15 14	22 22 21 22 16 14 22 12 11		22 21 22 16 14 22 12 11	18 18 18 13 12 18 10 9

| |

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DSG DC/	NW/ HO	CSG CSG	₩Р./ НО	DP/ CSG	DP/ RIS
410.0	98	99	982	30		26		26	22	18
420.0	98	101	998	31		27		27	22	18
430.0	97	101	9 88	3.0		26		26	22	18
440.0	98	100	990	31		26		26	22	18
450.0	100	100	1001	31		27		27	22	18
460.0	98	101	992	31		26		26	22	18
470.0	98	100	987	30		26		26	22	18
480.0	99	100	992	31		26		26	22	18
490.0	99	99	988	0.8		26		26	22	18
500.0	99	100	996	31		26		26	22	18
510.0	98	100	988	30		26		26	22	18
520.0	98	100	987	30		26		26	22	18
530.0	99	101	999	31		27		27	22	18
540.0	98	100	991	31		26		26	22	18
550.0	98	99	989	31		26		26	22	18
560,0	99	1 () ()	991	31		26		26	22	18
570.0	99	100	991	31		26		26	22	18
580.0	99	99	988	30		26		26	22	18
590.0	99	99	991	31		26		26	22	18
600.0	99	100	992	31		26		26	22	18
610.0	99	99	988	3 0		26		26	22	18
620.0	109	0	544	17		14		1.4	12	10
630.0	114	0	568	18		15		15	12	10
640.0	99	98	983	30		26		26	22	18
650.0	98	99	985	3.0		26		26	22	18
660.0	99	100	993	31		26		26	22	18
670.0	100	100	996	31		26		26	22	18
680.0	99	101	1001	31		27		27	22	18
690.0	99	0.00	992	31		26		26	22	13
700.0	115	I)	576	18		15		15	13	10
210.0	99	98	982	30		26		26	22	18
720.0	98	98	982	3.0		26		26	22	18
230.0	100	98	991	31		26		26	22	18
740.0	99	98	983	30		26		26	22	18
750.0	99	99	985	3.0		26		26	22	18
760.0	99	98	986	30		26		26	22	18
770.0	99	98	983	30		26		26	22	18
780.0	99	97	980	30		26		26	21	18
790.0	99	98	983	30		26		26	22	18
300.0	98	98	982	30		26		26	22	18
810.0	101	106	1034	32		27		27	23	19
811.0	102	101	1015	31		27		27	22	íś

BIT NU HTC J: COST TOTAL	<u>t</u>			IADC CODI SIZE TRIP TIMI TOTAL TUI	1 E	116 2.250 4.9 00225	NOZ: BIT	ERVAL ZLES RUN DITION			18 18 570.0
DEF	771-1	SPM1	SPMZ	FLOW RATE	DC/ OH	DC/ DC/	HW/ OH	HWZ CSG	DP/ OH	DP/ CSG	DP/ RIS
820	0.0	96	96	957	83	75		53		53	17
830	0.0	97	97	969	84	76		54		54	17
840	0, 0	98	97	975	85	77		54		54	8 t
850	0.0	97	9.7	974	35	76		54		54	17
860	0.0	97	97	970	(3.4)	776		54		54	17
876),0	98	98	978	85	77		54		54	18
380	0, 0	98	9 8	977	85	77.77		54		54	18
890),()	96	98	968	84	76		₩, .4,		54	17
900),0	98	98	976	85	77		54		54	18
910	0 , 0	98	97	976	95	77		F.A		54	18
920), ()	99	98	982	85	77		55		55	18
930	0.0	100	90	992	86	78		5 5		55	18
940	0.0	99	99	992	86	28		55		2.67	18
950	0.0	99	99	991	86	78		55		55	18
960	0,0	100	98	989	86	28		55		55	18
970	0,0	53	107	801	70		48	45		45	14
980	0.0	17	115	661	57		39	37		37	12
990	ì, Ü	99	99	992	86		59	55		55	18
1000	1, ()	100	97	984	85		59	55		55	18
1010	0.0	98	94	961	83		57	54		54	17
1020		99	95	971	84		58	54		54	17
1030),0	100	95	977	85		58	54		54	18
1040	1,0	3 0 0	95	974	85		50	54		54	17
1050	1.0	100	95	976	85		58		58	54	18
1060	() , ()	100	95	972	84		50		58	54	17
1070	, ()	97	91	9 38	81		56		56	52	17
1080	0,1	97	93	947	82		57		57	53	17
1090	. 0	93	93	930	81		56		56	52	17
1100		94	93	931	81		56		56	52	17
1110		95	91	933	81		56		56	52	17
1120		96	91	934	81		56		56	52	17
1130		93	91	920	8.0		55		55	51	17
1140	. 0	96	92	939	82		56		56	52	17
1150	. 0	96	88	907	79		54		54	51	16
1160		96	86	906	79		54		54	5 ô	16
1170		95	92	938	81		56		56	52	17
1180	. , 0	93	92	926	80		55		55	52	17
1190	. 0	93	92	921	80		55		55	51	17
1200	, 0	88	85	865	75		52		52	48	16
1210		92	92	916	80		55		55	51	16
1220		95	90	92 3	80		55		55	51	17
1230		90	87	887	77		53		53	49	16
1240	. 0	90	88	890	77		53		53	50	16

DEPTH	SPM1	SPM2	FLOW RATE	DCZ OH		HW/ OH	HWZ CSG	NO HO	DP/ CSG	DP/ RIS
1250.0 1260.0 1270.0 1280.0 1290.0 1300.0 1310.0 1320.0 1330.0	98 91 123 124 91 91 88 88 87	87 89 0 0 84 84 86 83 87	899 616 620 878 876 873 856 872	76 78 54 76 76 76 74 75		52 54 37 52 52 52 52 52		52 54 37 52 52 51 52 52	49 50 34 35 49 49 48 49	16 16 11 16 16 16 15
1350.0 1360.0 1370.0 1380.0 1381.0	87 88 88 89 89	86 86 86 85	867 868 871	75 75 75 76 76		52 52 52 52		52 52 52 52 52	48 48 48 49 48	15 16 16 16 16
BIT NUMBER CHRIS RC4 COST TOTAL HOUR	14500	2 .00 .08	IADC CODE SIZE TRIP TIME TOTAL TUE		9,875 5,0 6261	NOZ BIT	ERVAL ZLES RUN DITION		0.0- 1 15 0 BO G	15 15 9.6
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH		HW/ OH	HWZ CSG	DP/ OH	DP/ CSG	DP/ RIS
1389.6	36	0	179	40					1 ()	3
BIT NUMBER CHRIS RC4 COST TOTAL HOUR	0	2 ,00 ,35	IADC CODE SIZE TRIP TIME TOTAL TUR	<u>.</u>	4 9.875 5.0 7608	NOZ. BIT	ERVAL ZLES RUN DITION		7.6- 13 15 3	15 15 9.4
рертн	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
1390.0 1399.0	47 0	0 50	23 4 248	52 55					13 14	4 4
BIT NUMBER CHRIS RC4 COST TOTAL HOUR:		2 .00 .73	IADC CODE SIZE TRIP TIME TOTAL TUR		4 9.875 5.0 9742	NOZ: BIT	ERVAL ZLES RUN DITION		15 1 15 1	5 15 9.2
DEPTH	SPMI	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ 0H	HWZ CSG	DP/ OH	DP/ CSG	DP/ RIS
1400.0 1408.2	38 19	0 0	191 97	4 3					11	3

AND THE RESERVE OF THE STATE OF

BIT NUMBER CHRIS RC4 COST TOTAL HOUR	0.		IADC CODE SIZE TRIP TIME TOTAL TUR	 :.	4 9.875 5.0 10452	NOZZ BIT	ERVAL ZLES RUN DITION			5.8
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	НW/ ОН		DP/ OH	DP/ CSG	DP/ RIS
	48 34	0	239 170	53 38					13 9	4 3
BIT NUMBER HTC J22 COST TOTAL HOUR	8516.	0.0	IADC CODE SIZE TRIP TIME TOTAL TUR	1:	517 2.250 6.0 02006	NOZZ BIT	ERVAL ZLES RUN DITION			18 18 471,3
DEPTH	SPM1	SPMS	FLOW RATE	ДС/ ОН	DC/ CSG	HW/ OH	HWZ CSG	DP/ OH	DP/ CSG	DP/ RIS
1420.0	86	85	857	74		51		51	48	15
1430.0 1440.0 1450.0 1460.0 1470.0 1480.0 1500.0 1510.0 1520.0 1550.0 1550.0 1550.0 1560.0 1580.0 1590.0 1610.0 1620.0	866 866 888 887 888 888 888 888 888 888	86 86 85 85 85 85 86 87 86 87 86 88 88	858 862 854 860 857 866 866 866 866 861 871 860 871 860 873	77777777777777777777777777777777777777		51 52 52 53 53 53 53 53 53 53 53 53 53 53 53 53) 555555555555555555555555555555555555	48 48 48 48 48 48 48 48 48 48 48 49 48 49 49 49 49	15 15 15 15 16 16 16 15 16 16 16 16 16
1630.0 1640.0 1650.0 1660.0 1670.0 1680.0 1700.0 1710.0	85 87 86 86 87 88 88 86	85 87 86 85 85 86 86 86	850 868 859 856 857 868 865 854	74 75 75 77 77 77 75 75 75		51 52 51 51 52 51 51		51 52 51 51 51 51 52 51 51	47 48 48 48 48 48 48 48 48	15 16 15 15 15 16 16

+ +

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DCZ CSG	HW7 OH	CSG HW/	∖¶Œ HO	DP/ CSG	DP/ RIS
1730.0	86	86	857	74		51		51	40	+ 1 <u>1</u> 1.
1740.0	87	85	858	25		51			48	15
1750.0	87	86	861	25		51		51	48	15
1760.0	86	85	854	74				51	48	15
1770.0	86	86	859	75		51		51	48	15
1780.0	86	85	854	73		51		51	48	15
1790.0	86	85				51		51	48	15
1800.0			854	74		51		51	48	15
1810.0	85	85	852	74		51		51	47	1.5
1820.0	85 85	85	848	74		51		51	47	15
		84	847	74		51		51	47	15
1830.0	85	84	844	73		50		50	47	15
1840.0	87	84	857	74		51		51	48	15
1850.0	83	84	832	72		50		S (t	46	15
1860.0	85	94	-848	74		51		51	47	15
1870.0	85	83	839	73		50		50	47	15
1880.0	85		853	74		51		51	48	15
1885.3	85	85	850	74		51		51	47	15
BIT NUMBER		Ą	IADO CODE		517	INT	ERVAL	1885	5.3- 27	258.2
HTC J22			SIZE	1:	2,250	NOZ:	ZLES			16 18
COST	8516		TRIP TIME		6.8	BIT	RUN			372.9
TOTAL HOURS	3 43.	. 84	TOTAL TURY	48 2	05424	CON	NOTTIC	T.	5 B6 G	0.250
**			FLOW	DCZ	DCZ	HW/	HW/	DP/	DP/	DP/
DEPTH	SPM1	SPM2	RATE	OH	CSG	OH	CSG	OH	CSG	RIS
1890.0	79	78	781	68		47		47	44	14
1900.0	79	78	785	68		47		47	44	14
1910.0	80	7 8	788	68		47		47	44	14
1920.0	79	79	788	68		47		47	44	1.4
1930.0	79	78	785	68		47		47	44	14
1940.0	0	99	495	43		30		30	28	9
1950.0	77	81	791	69		47		47	44	14
1960.0	79	79	791	69		47		47	44	14
1970.0	79	78	786	68		47		47	44	14
1980.0	80	78	787	68		47		47	44	14
1990.0	0	99	497	43		30		30	28	9
2000.0	Ö	101	505	44		30		30	28	y 9
2010.0	80	77	783	68		47				
								47	44	14
2020.0	0	103	513	45		31		31	29	9
2030.0	0	100	500	43		30		3.0	28	9
~ ~ ~ ~ ~		,		68		47		A 122	A A	14
2040.0	88	69	784					47	44	γλ
2050.0	88 89	68	7 82	68		47		47	44	14
2050.0 2060.0	88 89 87	68 70	782 7 83	68 68						
2050.0 2060.0 2070.0	88 89 87 81	68	782 783 7 7 5	68		47		47	44	14
2050.0 2060.0 2070.0 2080.0	88 89 87	68 70	782 7 83	68 68		47 47 46		47 47 4 6	44 44 43	14 14 14
2050.0 2060.0 2070.0	88 89 87 81	68 70 74	782 783 7 7 5	68 68 67		47 47 46 31		47 47 46 31	44 44 43 29	14 14 14 9
2050.0 2060.0 2070.0 2080.0	88 89 87 81 0	68 70 74 104	782 783 775 521	68 68 67 45 47		47 47 46 31 32		47 47 46 31 32	44 44 43 29 30	14 14 14 9 10
2050.0 2060.0 2070.0 2080.0 2090.0	88 89 87 81 0	68 70 74 104 107	782 783 775 521 536	68 68 67 45		47 47 46 31		47 47 46 31	44 44 43 29	14 14 14 9

| |

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DCZ CSG	HW/ HO	HWZ CSG	\qq HO	DP/ CSG	DP/ RIS
2120.0	79	77	780	68		47		47	43	14
2130,0	80	77	784	68		47		47	44	14
2140.0	80	76	781	68		47		47	43	14
2150.0	76	78	771	67		46		46	43	14
2160.0	78	76	770	67		40		46	43	14
2170.0	83	73	781	68		47		47	44	14
2180.0	80	74	771	67		46		46	43	14
2190.0	0	95	476	41		28		28	27	9
2200.0	0	110	550	48		3.3		3.7	31	1.0
2210,0	90	59	743	65		44		44	41	1.3
2220.0	75	76	256	66		45		45	42	14
2230.0	0	108	542	47		32		32	30	1.0
2240.0	0	108	541	47		32		32	30	10
2250.0	0.00	108 73	540 770	47		32		32	30	10
2258.2	82	73	27W	67		46		46	43	14
BIT NUMBER		E.	JADO CODE		517		ERVAL.	225(3,2- 2	
HTC J22		* *	SIZE		2.250		ZLES			16 18
COST			TRIP TIME		7.5		RUN			186.8
TOTAL HOURS	5 .50,		TOTAL TURI	VS 17	25215	CUNI	NOLTEG	1.6	5 B5 G	1,250
-			FLOW	DC/	DC/	HW/				
DEPTH	SPM1	SPM2	RATE	OH	CSG	ОH	CSG	OH	CSG	RIS
2260.0	72	74	731	63		44		44	41	13
2270.0	73	75	740	64						
2280.0						44		44	41	1.3
all all COO TO	73	75	741	64		44 44		44 44		13 13
2290.0	74	75	741 747						41	
				64		44		44	41 41	1.3
2290.0 2300.0 2310.0	74	75 75 75	747 739 742	64 65 64		44 45 44		44 45 44	41 41 42 41	13 13 13
2290.0 2300.0 2310.0 2320.0	74 73 74 74	75 75 75 75	747 739 742 747	64 65 64 64 65		44 45 44 45		44 45 44 44 45	41 42 41 41 41	13 13 13 13
2290.0 2300.0 2310.0 2320.0 2330.0	74 73 74 74 71	75 75 75 75 75	747 739 742 747 727	64 65 64 64 65 63		44 45 44 45 43		44 45 44 45 43	41 42 41 41 42 40	13 13 13 13 13
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0	74 73 74 74 71 0	75 75 75 75 75 107	747 739 742 747 727 535	64 65 64 64 65 63 46		44 45 44 44 45 43 32		44 45 44 44 45 43 32	41 42 41 41 42 40 30	13 13 13 13 13
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0	74 73 74 74 71 0	75 75 75 75 75 107 107	747 739 742 747 727 535 534	64 65 64 64 65 63 46 46		44 45 44 44 45 43 32 32		44 45 44 44 45 43 32 32	41 42 41 41 42 40 30 30	13 13 13 13 13 10
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0	74 73 74 74 71 0 0	75 75 75 75 75 107 107 106	747 739 742 747 727 535 534 528	64 65 64 64 65 63 46 46 46		44 45 44 45 43 32 32 32		44 45 44 45 47 32 32 32	41 42 41 41 42 40 30 30	13 13 13 13 13 10 10
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0	74 73 74 74 71 0 0	75 75 75 75 76 107 106 105	747 739 742 747 727 535 534 528 526	64 65 64 64 65 63 46 46 46		44 45 44 45 43 32 32 32 31		44 45 44 45 43 32 32 32 31	41 42 41 41 42 40 30 39 29	13 13 13 13 13 10 10
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0 2370.0	74 73 74 74 71 0 0 0 75	75 75 75 75 707 107 106 105 75	747 739 742 747 727 535 534 526 750	64 65 64 65 63 46 46 46 46 65		44 45 44 45 43 32 32 32 31 45		44 45 44 45 43 32 32 32 31 45	41 42 41 42 40 30 30 29 42	13 13 13 13 13 10 10 9
2290.0 2300.0 2310.0 2320.0 2330.0 2350.0 2360.0 2370.0	74 73 74 74 71 0 0	75 75 75 75 76 107 106 105	747 739 742 747 727 535 534 528 526	64 65 64 65 63 46 46 46 65 65		44 45 44 45 43 32 32 31		44 45 44 45 43 32 32 32 31	41 42 41 42 40 30 30 29 42 41	13 13 13 13 13 10 10
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0 2390.0 2400.0	74 74 74 71 0 0 0 75 74	75 75 75 75 107 106 105 75 75	747 739 742 747 725 534 526 750 745 744	64 64 65 64 65 66 65 65 65 65 65		44 44 44 45 32 32 33 45 44 44		44 45 44 45 47 32 32 31 45 44 44	41 42 41 42 40 30 39 29 42 41 41	13 13 13 13 13 10 10 9 13 13
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0 2370.0 2390.0 2400.0	74 74 74 71 0 0 0 75 74 74	75 75 75 75 707 107 106 105 75 75	747 739 742 747 725 534 526 756 744 740	64 65 64 65 65 46 46 65 65 65 65 64		44 44 44 45 32 32 31 44 44 44		44 45 44 45 43 32 32 31 45 44 44 44	41 42 41 42 42 40 30 30 29 42 41 41	13 13 13 13 13 10 10 9 13 13 13
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0 2370.0 2390.0 2400.0	74 73 74 74 70 0 0 75 74 74 74	75 75 75 75 707 106 105 75 75 75	747 739 742 747 725 534 526 756 744 740 740	64 65 64 65 66 66 66 65 65 64 64		44 45 44 45 43 33 33 31 44 44 44 44		44 45 44 45 43 32 32 31 45 44 44 44	41 42 41 42 42 43 43 43 41 41 41	13 13 13 13 13 10 9 13 13 13
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0 2370.0 2390.0 2400.0	74 74 74 71 0 0 0 75 74 74	75 75 75 75 707 107 106 105 75 75	747 739 742 747 725 534 526 756 744 740	64 65 64 65 65 46 46 65 65 65 65 64		44 44 44 45 32 32 31 44 44 44		44 45 44 45 43 32 32 31 45 44 44 44	41 42 41 42 42 40 30 30 29 42 41 41	13 13 13 13 13 10 10 9 13 13 13

and the second s

BIT NUMBER HTC JD8 COST TOTAL HOUR	1700.0	n	IADC CODE SIZE TRIP TIME TOTAL TUR		347 8.500 7.4 1870)	INTERV NOZZLE BIT RU CONDIT	B N	5.0- 2 14 6 83 G	14 14
DEPTH	SPM1 :	3PM2	FLOW RATE	DC/ OH			W/ DP/ SG OH	DP/ CSG	DP/ RIS
2450.0 2460.0 2464.0	110 65 65	1 64 64	643	125 145 146	132	4	32 75 76	82 95 96	10 12 12
BIT NUMBER HTC J22 COST TOTAL HOURS	4139.00)	IADC CODF SIZE TRIP TIME TOTAL TUR		8.500	NOZZLES BIT RU		14	14 14
DEPTH	SPM1 S	SPM2		DC/ OH		HWZ HI OH CS	V DP/ SG OH		DP/ RJS
2470.0 2480.0 2481.2		62 62 61	617	140 139 138	128 127 126	Ģ	23 22 21	93 92 91	11 11
BIT NUMBER CHRIST RC6 COST TOTAL HOURS)	IADC CODE SIZE TRIP TIME TOTAL TURN		4 8.500 7.5 8248	INTERVA NOZZLES BIT RUN CONDITI	3	1,2- 24 14 1 180 GC	15 15 17.8
DEPTH	SPM1 S	SMS		DC/ OH	DC/ CSG	OH CS		DP/ CSG	DP/ RIS
2490.0 2499.0	49 25	0	246 125	55 28	51 26		57 9	37 19	4 2
BIT NUMBER CHRIST RC6 COST TOTAL HOURS	0.00 4.27		IADC CODE SIZE TRIP TIME TOTAL TURN	15	4 8.500 7.5 23867	INTERVA NOZZLES BIT RUN CONDITI	; !	0.0- 25 15 1 BO GO	4 15 18.1
DEPTH	SPM1 S	PMR	FLOW RATE	DC/ OH	DC/ CSG	HW/ HW OH CS		DP/ CSG	DP/ RIS
2500.0 2510.0 2517.1	44 48 31	0 0 0	222 238 156	50 54 35	46 49 32	3	3 5 3	33 35 23	4 4 3

BIT NUMBER CHRIST RC6 COST TOTAL HOURS	0. 6.	9 00 T	ADC CODE IZE RIP-TIME OTAL TURNS	3 8,500 7,5 34099	NOZZ BIT	FRUAL ZLES RUN DITION	2517.1- 14 TO BO	15 15 13.9
	FLOW RATE	PSP	PBIT	%PSP	ннь	HHP/ sain	IMPACT FORCE VE	JET LOCITY
2520.0 2530.0 2531.0	241 199 198	454.0 239.0 250.3	205.4 140.2 138.6	45.2 58.7 55.4	29 16 16	0.51 n.29 n.28	184 125 124	48 39 39
BIT NUMBER CHRIST RC4 COST TOTAL HOURS	21210. 3 1.	00 7	ADC CODE SIZE TRIP TIME TOTAL TURNS	3 8 : 500 7 : 6 6794	NOZ: BIT	FRUAL ZUES - RUN DITION	i a	15 15 18.0
DEPTH	FLOW RATE	psp	PICTT	%PSP	HHP	HHP/ sain	IMPACT FORCE VE	
2540.0 2549.0	197 202	400.0 356.2	136.8 143.9	34.2 40.4	16 17	0.28 0.30	122 129	39 40
BIT NUMBER CHRIST RC4 COST TOTAL HOURS		0.0	IADC CODE SIZE TRIP TIME TOTAL TURNS	4 8.500 7.5 17528	NOZ BIT	ERVAL ZLES RUN DITION	1.4	2564.4 15.15 15.4 60.300
DEPTH	FLOW RATE	p gp	PRIT	%PSP	ннь	HHP/ sain	IMPACT FORCE VE	JET ELOCITY
2550.0 2560.0 2564.4	201 205 198	531.5 385.0 392.7	142.2 148.5 138.7	26.8 38.6 35.3	17 18 16	0.29 0.31 0.28	127 133 124	40 40 39
BIT NUMBER HTC J22 COST TOTAL HOUR		. 0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	517 8.500 7.6 42370	MOZ BIT	ERVAL IZLES RUN IDITION		2650.0 4 14 14 85.6 60.062
НТЧЭД	FLOW RATE	PSP	PBIT	%P SP	ннр	HHP/ sain	IMPACT FORCE V	JET ELOCITY
2570.0 2580.0 2590.0 2600.0	581 565 560 557 550	2918.4 2932.6 2981.7 2973.0	1360.3 1334.0 1319.1	49.2 46.4 44.7 44.4	486 449 436 428 432	8.57 7.91 7.68 7.55 7.60	1168 1107 1085 1073 1078	126 122 121 120 121

DEPTH	FLOW RATE	PSP	РВІТ	%P SP	ннь	HHP/ sain	IMPACT FORCE VE	
2620.0	490	2811.0	1021.1	36.3	292	5.14	831	106
2630.0	554	2950.6		44.2	421	7.42	1061	120
2640.0	553	2953.0		44,1	420	7.41	1059	120
2650.0	548	2943.0		43.5	410	7,22	1041	119
	(1,44(7)	E. 7 "YOU'L	x a 0.5 0 1 x	my contract	-y x O	7 Thata	X O -7 X	117
BIT NUMBER		8	IADC CODE	517	TNT	rerval.	2650.0-	2731.0
HTC J22			SIZE	8,500		ZZLES		13 13
COST	4139		TRIP TIME	7.8		r RUN		81.0
TOTAL HOURS			TOTAL TURNS				T8 B6	
	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	PSP	PRIT	%PSP	1-11-1p	sain	FORCE VE	
2660.0	547	2961.4	1713.9	57.9	547	9.64	1202	137
2670.0	560	2995.6	1793.3	59.9	586	10.32	1258	140
2680.0	554	2999.1		58.6	568	10.01	1233	139
2690.0	553	2986.2	1750.2	58.6	565	9.95	1228	139
2700.0	560	2983.9	1795.0	60.2	586	58.0t	1259	140
2710.0	564	2984.5	1822.2	61.1	600	10.57	1278	142
2720.0	648	1964.7		122.4	910	16.03	1687	163
2730.0	563	2666.2		68.2	598	10.53	1275	141
2731.0	597	2766.3	2043.5	73.9	712	12.55	1433	150
BIT NUMBER HTC J33			IADC CODE SIZE	537 8,500		FERVAL ZZLES		2822.5 3 13 13
COST	4503		TRIP TIME	8.0		r RUN	A vi	91.5
TOTAL HOURS			TOTAL TURNS			DITION	Ti BS	G0.062
DEPTH	FLOW RATE	p Sp	PBIT	%PSP	ннр	HHP/ sain	IMPACT FORCE VE	JET LOCITY
2740.0	559	2945.7	1806.9	61.3	589	10.38	1267	140
2750.0	554	2969.4		59.8	574	10.11	1245	139
2760.0	566	2828.1		65.6	614	10.81	1302	142
2770.0	555	2932.6		60.7	577	10.16	1249	139
2780.0	557	2934.9		60.5	577	10.17	1245	140
2790.0	559	2866.1		63.1	590	10,40	1269	140
2800.0	545	2980.3		57.7	547	9.65	1207	137
2810.0	548	2889.0		60.9	563	9.92	1234	138
							1232	137
2820.0	545 E A E	2957.2		59.4 50.1	558 559	9.84 9.85	1232	137
2822.5	545	2971.5	1757.1	59.1	JJY	7 i O J	rmom	1 437

.

BIT NUMBER CHRIS MC23 COST TOTAL HOURS		9 .00 .17	IADC CODE SIZE TRIP TIME TOTAL TURNS	4 8.467 8.0 5131	NOZ	ZLES		5- 2828.0 14 14 14 5.5 30 G1.000
	FLOW RATE	PSF	PEIT	%P 5P	ННР	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2828.0	248	1235.3	3 271.0	21.9	39	0.70	220	54
BIT NUMBER CHRIS C-23 COST TOTAL HOURS	18067.		IADC CODE SIZE TRIP TIME TOTAL TURNS	8.469	NOZ	ZLES)- 2833.0 14 14 14 5.0 30 60.150
	FLOW RATE	PSP	PRIT	%P SP	ннр	HHP/ sgin		JET VELOCITY
			386.5 386.7		67 67		314 315	
BIT NUMBER HTC J33 COST TOTAL HOURS	4503.	0.0	IADC CODE SIZE TRIP TIME TOTAL TURNS		NOZ	ZLES		0- 2975.5 13 13 13 142.5 44 G0.000
	FLOW RATE	PSP	PEIT	%PSP	ННР	HHP/ sqin		JET VELOCITY
2840.0 2850.0 2860.0 2870.0 2880.0 2970.0 2910.0 2920.0 2930.0 2940.0 2950.0 2950.0 2970.0	5545 5545 5745 5747 5747 5747 5747 5747	2892.0 2901.7 2965.6 917.2 2997.7 2865.3 2905.5 2661.5 2959.3 2480.5 2974.2 2951.0 2954.3	1806.1 1757.9 2653.3 1751.3 1656.4 1697.2 1656.8 1695.4 1744.9	63.1 62.2 59.3 289.3 57.4 57.2 59.5 59.5 57.2 57.2	591 5989 10362 55129 55122 4047 510	10.41 10.27 9.86 18.28 9.80 9.02 9.33 9.02 9.72 7.10 9.73 9.28 8.99	1280 1267 1233 1861 1228 1162 1162 1162 1224 993 1241 1185 1160	139 139 137 168 137 133 134 135 136 122 137 134 133
2975.5	530	2950.0		56.3	514	9.05	1165	133

and the second of the second o

Hegisteria i

BIT NUMBER HTC J44 COST TOTAL HOURS		SIZ TRI	OC CODE ZE IP TIME TAL TURNS	617 8.500 8.4 36514	INTER NOZZL BIT R CONDI	ES UN	;	- 3011.0 13 13 13 35.5 1 G0.000
	FLOW RATE	p Sp	PBIT	%PSP			IMPACT FORCE (JET VELOCITY
2980.0 2990.0	520 29	63.4 1	1587.6	55.1 53.6	481	8.73 8.48	1137	131 130
3000.0				54.0 53.3		8.63 8.61	1130 - 1131	131 130
3011.0				53.3		8.67	1136	131
BIT NUMBER HTC JD8 COST TOTAL HOURS	A 100 10 10 10 10	SIZ TRI	P TIME	347 8.500 7.0 2175	NOZZL. BII R	FS UN	1	- 3013,1 13 13 13 2.1 3 60,000
	FLOW RATE	PSP	PBIT	%PSP			IMPACT FORCE V	JET VELOCITY
3013.1	511 29	51.1 1	735.1	58.8	518	9.12	1217	128
BIT NUMBER HTC J33 COST TOTAL HOURS		SIZ TRI	C CODE E P TIME TAL TURNS	537 8.500 7.0 127844	INTER NOZZLI BIT R CONDI	ES UN	ţ	- 3140.4 3 13 13 127.3 5 G0.063
	FLOW RATE	PSP	PBIT	%PSP		HHP/ sqin	IMPACT FORCE V	JET PELOCITY
3020.0 3030.0 3040.0 3050.0 3060.0 3070.0 3080.0	493 293 499 299 501 29 508 309 504 299	38.7 1 05.5 1 11.6 1 05.9 1 45.8 1	599.8 620.2 627.4 653.1 624.6	54.2 54.4 55.8 55.9 55.0 55.1	460 5 471 5 476 6 490 5 478 5	8.16 8.10 8.31 8.38 8.42 8.42	1130 1122 1136 1141 1159 1139	124 124 125 126 128 126 129
3090.0 3100.0 3110.0 3120.0 3130.0 3140.0	506 299 499 289 502 299 500 299 495 298	90.8 1 95.1 1 52.0 1 16.3 1 58.3 1	651.9 594.5 609.2 601.4 567.7	54.5 54.9 53.0	488 (465 (471 (468 (453)	3.91 3.60 3.19 3.30 3.24 7.98 7.72	1187 1159 1118 1129 1123 1100	128 127 125 126 126 124 123

en de la composition La composition de la

BIT NUMBER HTC J33 COST TOTAL HOURS	4503	. 0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS		NOZZ BIT	ERVAL YLES RUN OITION		3 13 13 133.5
	FLOW	in <i>t</i> e in) F) T) T T'	wom	1.11.175	HHP/	IMPACT	
DEPTH F	RATE	r or	PBIT	%PSP	HHP	sain	FORCE VI	ELOCITY
3150.0	496	2964.0		53.1	455	8.03	1104	124
3160.0	495	2971.4		52.7	452	7.96	1098	124
3170.0	489	2936.5	5 1530.4	52.1	437	7.70	1023	123
3180.0	486	2941.9	1513.5	51.4	430	7.57	1062	122
3190.0	484	2925.4	1495.6	51,1	422	7.44	1049	121
3200.0	486	2928,4	1507.8	51.5	427	7.53	1058	122
3210.0	482	2899.0	1485.4	51.2	418	7.36	1042	121
3220.0	469	2734.2	1405.5	51.4	384	6.77	986	118
3230.0	482	2857.7	1483.2	51.9	417	7.34	1040	121
3240.0	477	2926.7	1510.9	51.6	421	7.41	1060	120
3250,0	476	2966,8		50,6	417	7.34	1053	119
3260.0		2950.4		49.8	403	7.10	1030	118
3270.0		2936.0		50.8	413	7,28	1047	119
3273.9	474	2900.7	1494.4	51.5	414	7.29	1048	119
CHRIS C23 COST TOTAL HOURS		0.0	IADC CODF SIZE TRIP TIME TOTAL TURNS	8,470 9.0	NOZZ BIT	RVAL LES RUN ITION	3273.9- 1* TO BO	4 14 14 8.6
DEPTH R	LOW PATE	PSP	PBIT	%PSP	1-11-11-	HHP/ sain	IMPACT FORCE VE	
3280.0	270	1500 O	376.0	25.1	59	1.05	306	58
		1700.0			66	1.17		61
TOTAL HOURS	4347. 18.	0 0	IADC CODE SIZE TRIP TIME TOTAL TURNS	617 8.500 9.1 55509	NOZZ BIT	RVAL LES RUN ITION	1.3	3321.0 3 13 13 38.5 60.000
	LOW ATE	b 8b	PRIT	%PSP	ннр	HHP/ sain	IMPACT FORCE VE	
3290.0	447	2928.3	1404.6	48.0	366	6.45	985	112
		2905.8		48.9	373	6.58	997	113
		2973.0		46.6				
		2944.0			360	6.34	972	112
		2921.0		47.1 47.4	360 360	6.34	972 972	112
sie we kie. A. A. M.	ा । या ५४	/ l · U	1 G G G F 7	T/ 1T	aau	6.34	7 / C	112

This is an enclosure indicator page. The enclosure PE604579 is enclosed within the container PE907050 at this location in this document.

The enclosure PE604579 has the following characteristics:

ITEM_BARCODE = PE604579
CONTAINER_BARCODE = PE907050

NAME = Drill Data Plot

BASIN = GIPPSLAND

PERMIT = VIC/L4

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drill Data Plot (enclosure from Final

Well Report) for Tuna-4

REMARKS =

DATE_CREATED = 7/07/84

DATE_RECEIVED = 30/01/85

 $W_NO = W868$

WELL_NAME = TUNA-4

CONTRACTOR = CORE LABORATORIES
CLIENT_OP_CO = ESSO AUSTRALIA LTD

PE604579 Drill Data Plot

This is an enclosure indicator page. The enclosure PE604580 is enclosed within the container PE907050 at this location in this document.

The enclosure PE604580 has the following characteristics:

ITEM_BARCODE = PE604580
CONTAINER_BARCODE = PE907050

NAME = Temperature Plot

BASIN = GIPPSLAND PERMIT = VIC/L4

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Temperature Plot (enclosure from Final

Well Report) for Tuna-4

REMARKS =

DATE_CREATED = 7/07/84 DATE_RECEIVED = 30/01/85

 $W_NO = W868$

WELL_NAME = TUNA-4

CONTRACTOR = CORE LABORATORIES
CLIENT_OP_CO = ESSO AUSTRALIA LTD

PE604580 Temperature Plot

This is an enclosure indicator page. The enclosure PE604581 is enclosed within the container PE907050 at this location in this document.

The enclosure PE604581 has the following characteristics:

ITEM_BARCODE = PE604581
CONTAINER_BARCODE = PE907050

NAME = Pressure Plot

BASIN = GIPPSLAND

PERMIT = VIC/L4

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Plot (enclosure from Final

Well Report) for Tuna-4

REMARKS =

DATE_CREATED = 7/07/84

DATE_RECEIVED = 30/01/85

 $W_NO = W868$

WELL_NAME = TUNA-4

CONTRACTOR = CORE LABORATORIES
CLIENT_OP_CO = ESSO AUSTRALIA LTD

PE604581
Pressure Plot

This is an enclosure indicator page. The enclosure PE604582 is enclosed within the container PE907050 at this location in this document.

The enclosure PE604582 has the following characteristics:

ITEM_BARCODE = PE604582

CONTAINER_BARCODE = PE907050

NAME = Geo-Plot

BASIN = GIPPSLAND

PERMIT = VIC/L4

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Geo-Plot (enclosure from Final Well

Report) for Tuna-4

REMARKS =

 $DATE_CREATED = 7/07/84$

DATE_RECEIVED = 30/01/85

 $W_NO = W868$

WELL_NAME = TUNA-4

CONTRACTOR = ESSO

CLIENT_OP_CO = ESSO AUSTRALIA LTD

PE604582 Geoplot

PE 601202 Grapholog / Mud Log * Located In WCR vol. 2