

AUSTRALIAN AQUITAINE PETROLEUM PTY LTD

WCR Edina - 1 (W784)

EDINA NO. 1

WELL COMPLETION REPORT

VIC/P17

OFFSHORE GIPPSLAND BASIN

PG/190/83

V. Djokic K. Ly

82/971

DISTRIBUTION

AAP - Sydney		SNEA(P) - France	
Gippsland Team Geophysical Library Library	1 1 1	DIFEX/Australia Centre Micouleau Archives	1 1 1
Partners		GOVERNMENT DEPARTMENTS	
Australian Occidental Pty. Ltd Alliance Resources Pty. Ltd Agex Pty. Ltd Consolidated Petroleum Aust. NL	1 1 1	Victorian Department Of Minerals and Energy	2
Approved By:			

EDINA NO. 1

WELL COMPLETION REPORT

VIC/P17

OFFSHORE GIPPSLAND BASIN

PG/190/83

V. Djokic K. Ly

82/971

DISTRIBUTION

AAP - Sydney		SNEA(P) - France	
Gippsland Team Geophysical Library Library	1 1 1	DIFEX/Australia Centre Micouleau Archives	1 1 1
Partners		GOVERNMENT DEPARTMENTS	
Australian Occidental Pty. Ltd Alliance Resources Pty. Ltd Agex Pty. Ltd Consolidated Petroleum Aust. NL	1 1 1	Victorian Department Of Minerals and Energy	2

Approved By:

CONTENTS

		PAGE NO.
I.	SUMMARY	1 0
II.	INTRODUCTION	2 🗸
III.	WELL HISTORY	3 ~
	A. GENERAL DATA B. DRILLING DATA C. FORMATION SAMPLING D. LOGGING AND SURVEYS E. TESTING	3 5 8 10 11
IV.	GEOLOGY	12 🗸
	A. PREVIOUS EXPLORATION AND SURVEYS B. REGIONAL GEOLOGY C. (1) REGIONAL STRATIGRAPHY (2) STATIGRAPHY OF SEDIMENTS PENETRATED D. STRUCTURE E. RESERVOIR PROPERTIES AND SOURCE ROCKS F. RELEVANCE TO THE OCCURRENCE OF HYDROCARBONS G. CONTRIBUTION TO GEOLOGICAL CONCEPTS RESULTING FROM DRILLING	12 19 21 24 27 28 29 30

FIGURES

		DRW. NO.
	STRATIGRAPHIC TABLE - OFFSHORE GIPPSLAND BASIN EDINA STRUCTURE - TOP OF LATROBE EDINA NO. 1 PREDICTED SECTION	19434 21794 21799 20375 20392 21108 21650 21798
	ENCLOSURES	
√ 3. √ 4.	SEISMIC LINE GA-81-21 SEISMIC LINE GA-81-18 AAP COMPOSITE LOG GEOSERVICES MASTER LOG Completion Log APPENDICES	20435 20436 21770 21715
 ✓ 1. ✓ 2. ✓ 3. ✓ 4. ✓ 5. ✓ 6. ✓ 7. ✓ 8. ✓ 9. 	CUTTING SAMPLE DESCRIPTIONS SIDEWALL CORE DESCRIPTIONS CORE DESCRIPTION AND ANALYSES PALYNOLOGICAL EXAMINATION, SPORE COLOURATION AND KEROGEN TYPING BY W.K. HARRIS FORAMINIFERAL SEQUENCE IN EDINA NO. 1 BY D. TAYLOR LOG ANALYSES - FORMATION EVALUATION BY J. BOWLER TEST RESULT SUMMARY WEEKLY WELL SUMMARY OPERATION REPORT OF SIDESCAN SONAR SEABED CLEARANCE SURVEY	
	ATTACHMENTS	
2. · 3.	FINAL TECHNICAL REPORT RIG POSITIONING REPORT SET OF WIRELINE LOGS (in well box) VELOCITY SURVEY	

I. SUMMARY

Edina - 1, the first well to be drilled in Permit VIC/P17 by Australian Aquitaine and its partners, was spudded on 26th September, 1982 and reached a total depth of 2,594m on 25th October, 1982.

The well was designed to test a structure mapped at the top of the Latrobe Group. The structure is considered to be due to compaction and drape over an Eocene coastal barrier/deltaic sand reservoir sequence. It is presumed to be syn-depositional and independent of major faulting of later tectonics (Section D). Areal closure of the time structure at the top of the Latrobe Group was measured at 9.0km². Depth conversion reduced this to 3.4km² at a spillpoint of 2,320m MSL.

The well was located 8.3km west-southwest of Gurnard No. 1 and 14.1km southeast of Bream No. 3. It was drilled by the semi-submersible "Ocean Digger".

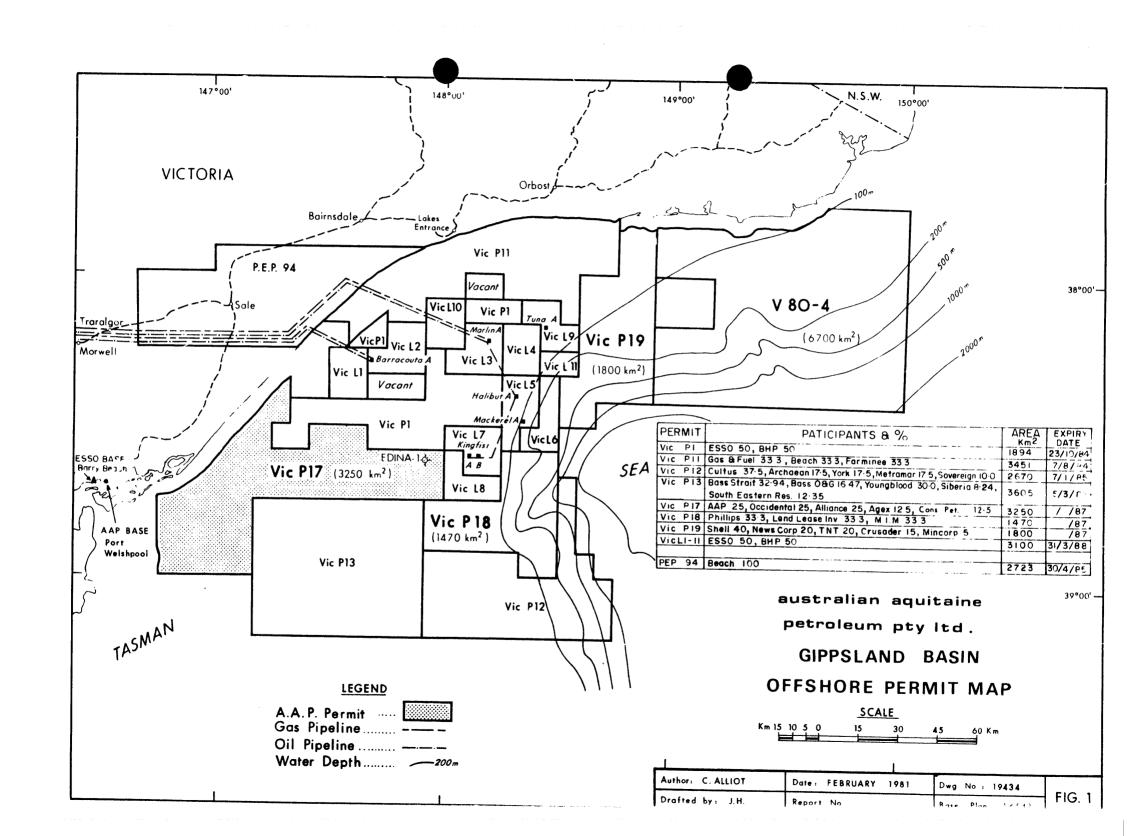
The top of the Latrobe Group was intersected at 2,242m KB, and 352m of Paleocene to Early Oligocene Latrobe sediments were penetrated before drilling stopped at 2,594m KB. Drilling ceased at this point as there was no structural closure interpreted below the Purple (Intra-Latrobe) Horizon; this horizon having been intersected at 2,520m. Significant shows were also absent down to this depth.

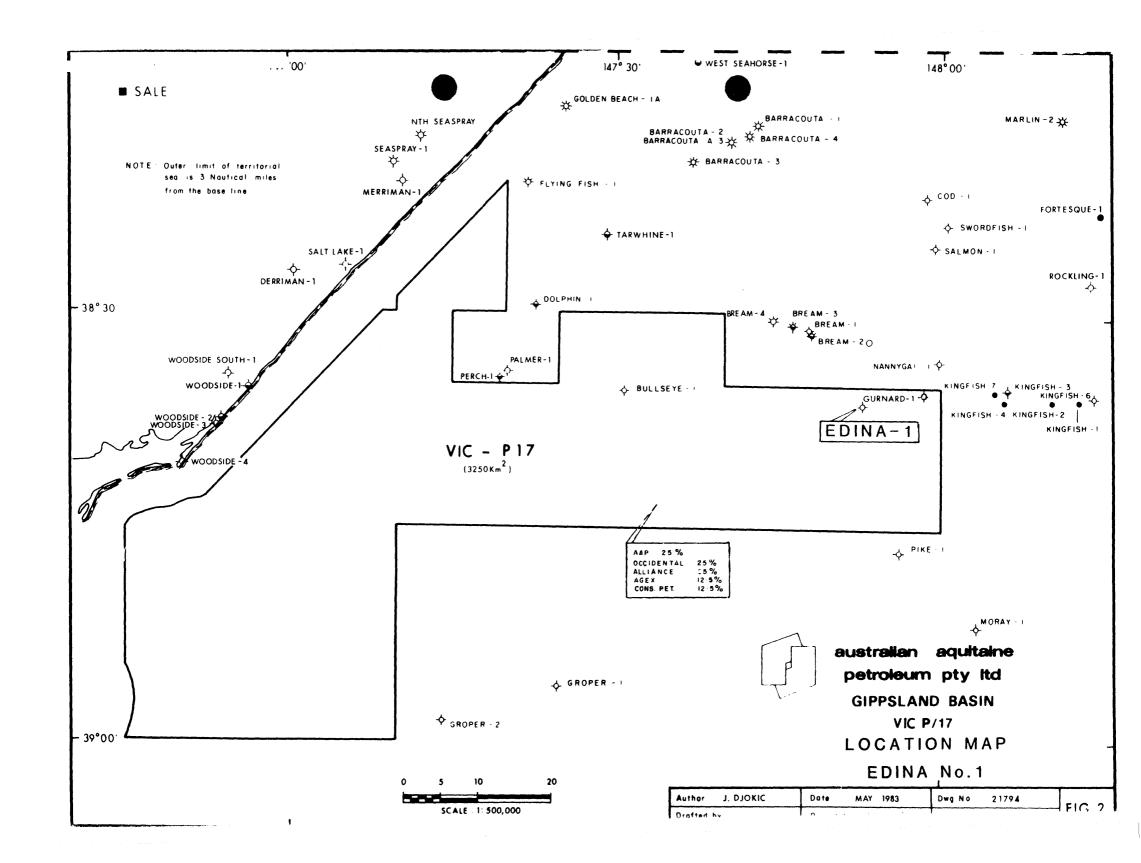
Log interpretation, sidewall cores and RFT analysis showed that the main reservoir objective, the Eocene coastal barrier/deltaic sand, as well as the Intra-Latrobe sands, have excellent reservoir properties. However, at the Edina-1 location these sands were water-saturated. The well was, therefore, plugged and abandoned on 1st November, 1982.

II INTRODUCTION

Edina No. 1 was drilled in permit area VIC/P17 by Australian Aquitaine Petroleum Pty. Ltd (25%), as operator for:-

Australian Occidental Pty. Ltd	25%
Alliance Resources Pty. Ltd	25%
Agex Pty. Ltd	12.5%
Consolidated Petroleum (Aust.) NL	12.5%


Prior to drilling, the GA-81 seismic survey was carried out and a total of 3,536 line-km of seismic was shot. This comprised a 1.5km x 1.5km grid over much of the permit area, with a wider spaced grid over the basement high in the southwestern part of the permit. Based on the interpretation of this survey and regional stratigraphic correlation with nearby wells, the Edina No. 1 well location was chosen at shotpoint 960 on line GA81-21.


The location was 126km east-northeast of Port Welshpool, where a supply and logistics base had been established by Aquitaine in association with Phillips & Shell.

The semisubmersible "Ocean Digger" was contracted to carry out drilling operations and spudded Edina No. 1 on 29th September, 1982. The well was plugged and abandoned as a dry hole and the rig released on 1st November, 1982 at a total cost of A\$7,900,000 (provisional).

The structure tested had been mapped as a low northwest-plunging nose prior to the GA81 seismic survey. Interpretation of this survey resulted in the mapping of a closed structure at the level of the Brown and Yellow horizons. Closure decreased with depth and no structure was mapped below the Purple Horizon. The proposed T.D of 2,600m was, therefore, designed to penetrate the entire Latrobe sequence within structural closure.

The Edina structure was interpreted as being a predominantly, depositional feature and corresponding to an isopach 'thick' between the Brown and Yellow horizon. Shale drape and compaction of the Lakes Entrance Formation over this feature created the vertical seal for the trap.

III. WELL HISTORY

A. GENERAL DATA

Well Name & Number:

Edina No. 1

Name & Address of

Operator:

Australian Aquitaine Petroleum

P/L.

99 Mount Street,

NORTH SYDNEY NSW 2060

Name & Address of Titleholder:

Australian Aquitaine Petroleum P/L.

99 Mount Street,

NORTH SYDNEY NSW 2060.

Australian Occidental P/L.

66 Berry Street,

NORTH SYDNEY NSW 2060

Alliance Resources P/L 5 Floor, Collins Tower, 35 Collins Street, MELBOURNE VIC 3000.

Consolidated Petroleum Aust. N.L.

Hartogen House, 15 Young Street, SYDNEY NSW 2000

Agex Pty. Ltd.

16 Floor, AGL Building, 111 Pacific Highway, NORTH SYDNEY NSW 2060.

Petroleum Title:

Permit VIC-P17

District:

Gippsland Basin

Location:

SP No. 960 Line GA81.21 Latitude: 38°36'22.539"E Longtitude 147°52'41.949E

Easting 576476 Northing 5726535 Zone 55 CM 147°

Elevation:

Zone 55 CM 147° RKB Sealevel : 30.5m Water Depth 68.5m

Total Depth:

2594m

Date Drilling Commenced:

26th September, 1982.

Date Total Depth

Reached:

26th October, 1982.

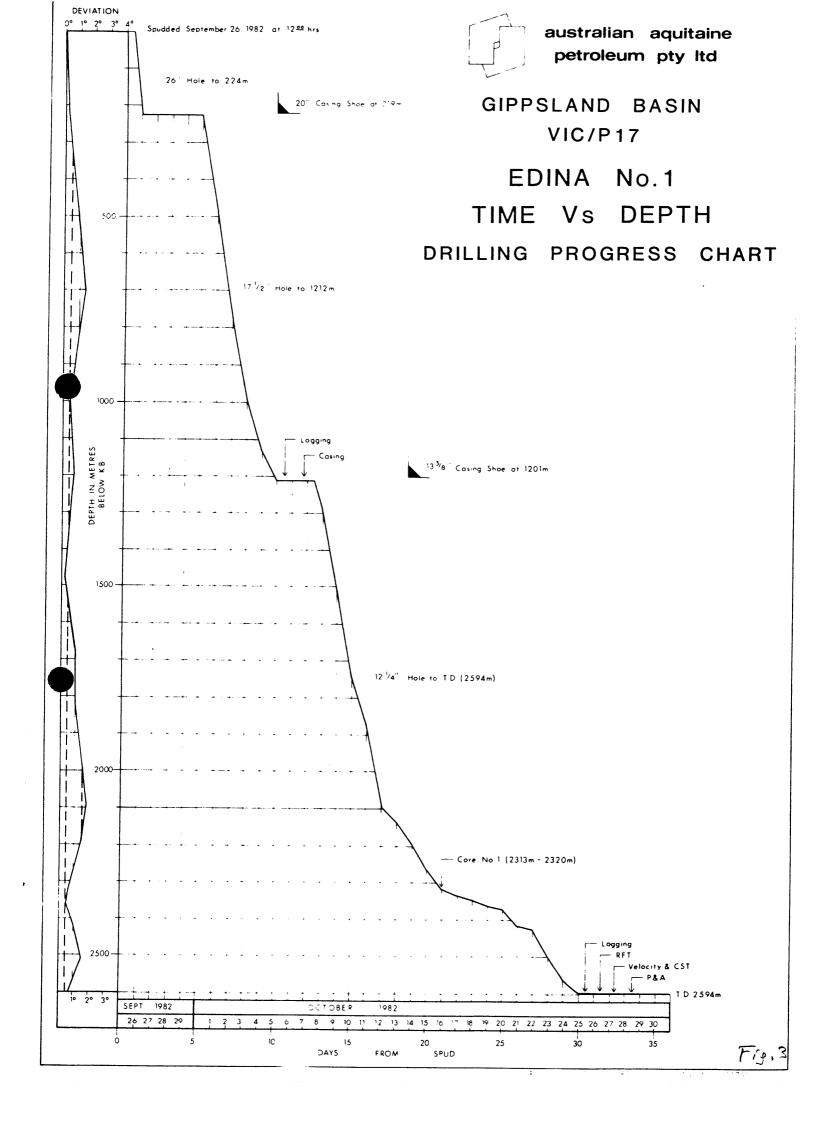
-1343-1744

Date Well Abandoned: 1st November, 1982.

Date Rig Released:

1st November, 1982.

Drilling Time in Days to T.D:


31

Status:

Plugged and abandoned

Total Cost (by Technical Cost \$7,900,000 (approx)

Control)

B DRILLING DATA

(i) Drilling Contractor:
Australian Odeco P/L.
14th Floor, CAGA Centre,
256 Adelaide Terrace,
PERTH WA 6000.

(ii) Drilling Plant:

Semi Submersible rig "Ocean Digger" designed to drill to a depth of 5500 metres in water depths from 36 to 183 metres.

<u>Power</u> - Three Fairbanks - Morse. Model 38-D-8-1/8" diesel engines rated at 1800HP each.

Mooring System - Ten Baldt LWT 30,000lb anchors with 3,000 feet of 2 1/2" chain.

 $\underline{\text{Mast}}$ - Lee C. Moore 40' x 40' x 142' 1,000,000lb static capacity.

<u>Drawworks</u> - Emsco A 1500 E. Mud Pumps - 2 of Emsco D-1350. Mud Tanks - 1020 barrels capacity

<u>Drill String</u> - 5" 19.5 lb/ft drill pipe. 9 1/2", 7 3/4" + 6 1/2" drill collars.

(iii) Blowout Preventer Equipment

18 3/4" 10,000 psi WP BOP stack consisting of:-

- -1 x CIW type "U" triple ram type preventer 10,000 psi WP' with 6 side outlets. Blind Shear Rams on top, 5" Pipe Rams in bottom and middle unit.
- 2 x CIW Collet Connectors 18 3/4" 10,000 psi.
- 1 x Hydril Type GL, 5,000 psi bag preventer.
- 1 x 18 3/4" Vetco pressure balanced ball joint.
- 4 x 3 1/8" Shaffer 10,000 psi Fail Safe Valves.
- 2×3 " 10,000 psi safety pressure lines to surface. One as Choke Line, one as Kill Line.
- -Payne 320 gallon BOP Control System.
- -600 feet of 22" OD x 0.50" Regan integral marine riser with 45 foot stroke Slip Joint.
- -Regan KFDS Diverter.
- -10,000 psi WP surface choke manifold. Two hand adjustable, two fixed and one remote controlled chokes all CIW.

(iv) Hole Sizes & Depths

Size	Interval
26 "	224m
17 1/2"	1212m
12 1/4"	2594m

(v) Casing & Cementing Details

Size	Weight	<u>Grade</u>	Shoe Depth	<u>Cement</u>	Cement To
20"	1331b.ft	X56	219m	75T	Seabed
13 3/8"	681b.ft	K55	1201m	73T	600m

(vi) Drilling Fluid

26" Hole: High viscosity spud mud, with returns to seafloor. Viscosity Marsh, 100 plus.

17 1/2" Hole: Type, Sea water/Q.Mix.

Average properties:-

SG: 1.09

VIS (March): 40

PV: 9 YP: 17

WL: 20

PH: 9

Clna: 30,000ppm

12 1/4" Hole: Type, Seawater Polymer

Average properties:

SG: 1.23

VIS.: 50

PV: 15

YP: 25

WL:

10 PH:

Clna: 16,500ppm

(vii) Water Supply

Potable water distilled on drilling vessel Fresh water from Welshpool.

(viii) Perforation & Shooting Record

Perforate 13 3;8" casing at 170m RKB to squeeze cement to 13 3/8" x 20" annulus on plug and abandon.

(ix) Plugging back & Squeeze jobs

On abandonment:-

Plug No. 1: 12 1/4" hole. 2300m to 2410m.

11 tonnes Class "G" cement. SG 1.89

Plug No. 2: 12 1/4"/13 3/8" casing. 1150m to 1250m

12 tonnes Class "G" cement. SG 1.89

Plug No. 3: Surface plug. 140m to 200m

6 tonnes Class "G" cement. SG 1.89

NOTE: 13 3;8" casing cut at 121m RKB 20" casing cut at 115m RKB sub sea wellhead recovered from seabed.

(x) Fishing Operations

Casing connector on 20" parted while running casing. All casing recovered.

(xi) Side-tracked Hole

Nil

(xii) Communications

VHF + UHF Radio link. Ship to shore telex. Telephone line with Facsimile.

(xiii) Base of Operations

Welshpool, Victoria.

LOCATION

(i) <u>Site Investigations</u>

After plugging the well, and prior to moving the rig from the location of Edina No. 1, divers inspected the sea floor within 30m of wellhead for any debris. No debris were found.

After rig move, a side scan sonar survey was conducted on 5th November 1982, by Racal-Decca Survey personnel, to investigate the sea floor for any foreign objects that could be present in the area. (For operation details see Appendix 9).

An area of approximately $5.5~\rm km^2$ (2km x $2.8\rm km$) of sea floor around the wellhead was surveyed. This can be compared to the anchor pattern which was established on a 600m radius from the wellhead.

No debris could be detected on examination of the records.

All relevant data from the survey are filed with Australian Aquitaine Petroleum, North Sydney office.

(ii) Anchoring Methods

Rig anchors, (10) positioned approximately 600 metres from rig. Marked by special buoys.

(iii) Transportation

From Welshpool Base to rig location.

 $1 \times 5,600 \text{ HP} + 1 \times 5,400 \text{ HP}$ Supply, anchor handling towing vessels.

Landing, towing vessel.

1 x standby vessel.

1 x Puma SA 330J helicopter.

1 x Bell 412 helicopter.

C. FORMATION SAMPLING

(i) Ditch Cuttings

Lagged samples were collected from rig shale shakers by the mud logging personnel (Geoservices). These samples were collected at 10 metres interval from 20" casing depth (225m) to 1210 metres, 5 metres interval to 2000 metres and 3 metres interval thereafter to total depth (2594m).

Four sets of washed and dried cutting were collected. One complete set was deposited with B.M.R's core and cuttings laboratory in Fyshwick, A.C.T and another with the Mines Department Store, Oil & Gas Division, Port Melbourne. One complete set of cuttings was kept by Aquitaine in their Artarmon store in Sydney for further analysis and one set was sent to SNEA(P) in Pau - France for analysis. In addition, two sets of unwashed and air dried cuttings were collected and kept by Aquitaine in Artarmon store.

(ii) Coring

One core was taken as shown below.

A Christensen core barrel with 6 3/4" Stratapax core head was used.

Core No.	Interval	Metres Cut	Recovered	Recovery
1	2312.6m - 2320.2m	7.6	7.0	92%

The core was photographed and one inch plugs were taken for analysis by Auscore. A complete description and core analysis are presented in Appendix No. 3.

The core was slabbed longitudinally and a quarter was each dispatched to B.M.R's core and cuttings laboratory in Fyshwick - A.C.T and the Mines Department Store - Oil and Gas Division, in Port Melbourne, Victoria. A half portion was kept by Aquitaine in the Artarmon warehouse in Sydney.

(iii) Side Wall Cores

Sidewall cores were taken with Schlumberger CST equipment. One 51 shot gun was run during Run 1 and one 30 shot gun during Run 2.

Run No.	No of Shots	Recovery	Misfired	Lost	Empty	% Recovery
1	51	29	18	-	4	57%
2	30	19	2	9	-	63%
Total	81	48	20	9	4	59%

Recovered sidewall cores were sent to David Taylor (Paltech) and Wayne Harris (W.M.C) for Paleontological and Palynological analysis respectively.

Complete descriptions of sidewall cores are presented in Appendix No. 2.

(iv) Canned Cuttings

Canned cuttings were collected for Bureau of Mineral Resources for analysis of Cl-C5.

One litre paint tins were used and samples were collected from 1900 metres to total depth at an interval of 30 metres.

D. LOGGING AND SURVEY

(i) Electric and Wireline Logging

Schlumberger ran the following:

255	Depth (m)	Date	Logs	Additional Services
	Suite No. 1212.0	16.10.82	ISF-SLS-G LDL-G	
iv V	Suite No.22 2594.0	6.10.82	DLL-MSFL-GR LDL-CNL	RFT-Run 1 CST(Shot 81, Rec 48)
* <u>*</u> * *		27.10.82	BHC-NGS HDT	

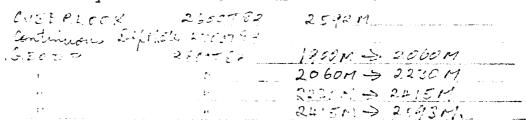
Details of log interpretation are shown in Appendix No. 5.

(ii) Mud Log and Composite Log

The ditch gas was continuously monitored by Geoservices and the Master Log prepared by the Geoservices personnel is included in Enclosure 4.

A Field Wellsite Log was prepared by Aquitaine Geologists and has been incorporated into the composite log, Enclosure 3.

(iii) Velocity Survey


A velocity survey was conducted by Seismograph Services Limited, shooting at 19 levels from 225 metres to 2580 metres (KB). The results are included in Attachment 5.

(iv) Deviation Survey

The deviation of hole from vertical was measured by Totco Survey equipment. Maximum deviation recorded was 1 3/4° and details are listed in Appendix 6 and plotted on the composite log - Enclosure 3.

(v) Navigation Survey

The rig was positioned using an "OASIS" and "JMR-4A" positioning system. The survey was conducted by Deca Survey Australia. Results are summarised in Attachment 2.

E. Testing

The testing programme was designed to measure the pressure gradient of the reservoir fluids and to obtain an uncontaminated sample as far as possible.

Repeat Formation Tester:

A total of 14 formation pressures, from 2298 to 2562.5m, were obtained in addition to a full 2 3/4 US gallons and a full 1 US gallon sample chamber of water both from 2335 metres. Results are included in Appendix 7.

IV. GEOLOGY

A. PREVIOUS EXPLORATION AND SURVEYS

The Gippsland Basin has been a target for oil exploration since the nineteen-thirties, with early drilling activities concentrated in the onshore section of the basin where oil seeps are known. The first offshore drilling did not take place until 1965 when Esso drilled "Gippsland Shelf No. 1" which was renamed Barracouta No. 1. In this year both Barracouta and Marlin fields were discovered; the discovery wells were Gippsland Shelf No. 1 and No. 4 respectively. The history of exploration in offshore Gippsland is summarised in Table 1.

Production from the Gippsland Basin is now entering its twelfth year. The major oil and gas prospects have been defined and five oil and two gas fields have been developed. Further development of known fields is continuing and platforms are being designed or fabricated for Cobia, Fortescue, Flounder and Bream.

Exploration by Australian Aquitaine Petroleum and its partners commenced in November, 1981 after the granting of permit VIC/Pl7. During November the GA-81 seismic survey was carried out and a total of 3536 line km of seismic was shot. This survey was interpreted and the location for the first exploration well "Edina No. 1" chosen.

TABLE 1

GIPPSLAND BASIN EXPLORATION HISTORY

SIGNIFICANT DATES	
1951 - 1956	BMR runs regional gravity and aeromag.
1960	BHP granted PEP 38 and 39 over the whole basin.
1961 - 1962	BHP runs aeromag surveys.
1962 - 1963	BHP reconnaissance seismic survey.
May 1964	Esso-BHP Farmout Agreement.
1965	Barracouta, Marlin discoveries.
1966	Marlin delineation.
1967	Kingfish, Halibut discoveries.
1968	Tuna, Snapper discoveries.
1969	Mackerel discovery, Barracouta on production.
1970	Halibut, Marlin on production.
1971	Kingfish on production.
1972	Mackerel delineation wells.
1974	First major relinquishment.
1975	Shell relinquishment.
1976	Second round of relinquishments.
1978	Mackerel on production, Fortescue discovery.
1979	Tuna on production.
1980	Major relinquishments Esso/Hematite acreage

TABLE II

SURVEYS IN GIPPSLAND BASIN

YEAR	NAME OF SURVEY	<u>BY</u>	TYPE
1944	Morwell Brown Coal Field	B.M.R	Onshore Gravity
1948	Morwell Brown Coal Field	B.M.R	Onshore Gravity
1948-59	Traralgon South	B.M.R	Onshore Gravity
1951	Yallourn - Morwell - Traralgon	B.M.R	Onshore Gravity
1951	East Gippsland	B.M.R	Onshore Gravity
1951-52	Gippsland	B.M.R	Onshore Magnetic
1952	Avon Area	B.M.R	Onshore Seismic
1952	Darriman	B.M.R	Onshore Gravity
1952-53	Gippsland	B.M.R	Onshore Gravity
1954	Darriman	B.M.R	Onshore Seismic
1955	"Seven Mile" Nowa Nowa	B.M.R	Onshore Magnetic
1956	Gippsland Off- Shore	B.M.R	Onshore Magnetic
1958	Baragwarrath Anticline	B.M.R	Onshore Gravity
1959	Latrobe Valley	B.M.R.	Onshore Seismic
1960	Bairnsdale - Sale (E. Gi Woodside	ppsland)	Onshore Seismic
1960	Bass Strait	B.H.P.	Offshore Magnetic
1960	Longford	B.M.R.	Onshore Gravity
1961	Anderson's inlet	Oil Dev.	Onshore Magnetic
1961	Bass Strait & Encounter Bay	Hematite	Onshore Magnetic
1961	Gippsland Basin	B.M.R.	Onshore Gravity

Page No.15

1961	Rosedale	B.M.R.	Onshore Seismic	
1961	Sale - Lake Wellington	Woodside	Onshore Seismic	
1962	Sale (Extended)	ARCO	Onshore Seismic (Woodside)	
1962-63	Flinders Island	Hematite	Offshore Seismic	
1962-63	Ninety Mile Beach	ARCO Woodside	Offshore Seismic	
1963	Gormandale	A.P.M.	Onshore Seismic	
1964	Gippsland Shelf (EG)	Esso	Offshore Seismic	
1964	Seaspray	ARCO	Offshore Seismic	
1965	Offshore Gippsland Basin	Shell	Offshore Seismic	
1965	Paynesville	Woodside	Onshore Seismic	
1965	Woodside - Paynesville	Woodside	Onshore Seismic	
1966	ET 66 G.B.	Esso	Offshore Seismic	
1966	Rosedale	A.P.M.	Onshore Gravity	
1966	Stockyard Hill	Woodside	Onshore Gravity	
1966-67	Hydrosonds Survey	B.O.C.	Onshore Seismic	
1967	Eastern & Western Bass Strait	Magellan	Aeromagnetic	
1967	Ex-67 G.B.	Esso	Offshore Seismic	
1967	EC-67 G.B.	Esso	Offshore Seismic	
1967	Golden Beach	B.O.C.	Offshore Seismic	
1967	Sole Sparker	Shell	Sparker Offshore Seismic	
1967				
	Venus Bay	Alliance	Sparker Offshore Seismic	

1968	Tarwin	AOD	Onshore Seismic
1968	Toongabbie	APM	Onshore Seismic
1968-69	East Gippsland	Magellan	Seis & Magnetic
1968-69	G69A	Esso	Offshore Seis & Mag
1969	Bemm River	WYP Dev.	Onshore Gravity & Magnetic
1969	Cape Patterson	Alliance Oil	Onshore Gravity & Seismic
1969	G69B	(Esso/ Shell)	Offshore Seis &
1969	Gippsland Basin Onshore	Woodside	Onshore Seismic
1969	Lakes Entrance Offshore	BOC & Woodside	Offshore Seismic
1969	Tasman - Bass Strait	Magellan	Offshore Seismic Sparker & Mag
1970	Bemm River	YPO Dev.	Onshore Seismic
1970	G69B (Sole Structure)	Hematite	Offshore Seismic
1970	G70A (Tuna Structure)	Hematite	Offshore Seismic
1970	Seaspray	Woodside Planet Etc.	Offshore Seismic
1970	Central High Survey	Shell	Offshore Seismic
1970	Tarwin	A.O.D.	Onshore Seismic
1970-73	Continental Margin	B.M.R.	Offshore Seismic
1971	G71A	Esso	Offshore Seismic
1971	G71B	Esso	Offshore Seismic
1972	G72A	Esso	Offshore Seismic
1972-73	Continental Margin	Shell Geophysical	Offshore
1973	North East Furneaux	Magellan	Offshore Seismic

1973	G73A	Esso	Offshore Seismic
1973	G73B	Esso	Offshore Seismic
1973	Offshore Gippsland Basin Survey	Shell	Offshore Seismic
1974	G74A	Esso	Offshore Seismic
1976	G76A	Esso	Offshore Seismic
1977-78	G77A	Esso	Offshore Seismic
1980	G80A	Esso	Offshore Seismic
1980	GB-79	Beach	Offshore Seismic
1980	GBS-80	Bass Strait O & G	Offshore Seismic
1980	GC-80	Cultus Pacific	Offshore Seismic
1980	MGS-80	Mincorp	Airborne Geochemical
1980	MSI-80	Mincorp	Airborne Geochemical
1981	GB-81	Beach	Offshore Seismic
1981	GBS-81	Bass Strait O & G	Offshore Seismic
1981	G81A	Esso	Offshore Seismic
1981	GM81A	Mincorp	Onshore Seismic
1981	GB81A	Beach	Onshore Seismic
1981	GA81A	Aust. Aquitaine	Offshore Seismic
1981	GA81A Ext	Bass Strait	Offshore Seismic
1981	GP81A	O & G Phillips	Offshore Seismic
1981	GC82A	Cultus Pacific	Offshore Seismic
1981-82	GS81A	Shell	Offshore Seismic
1981-82	G82A	Esso	Offshore Seismic
1981-82	G82B	Esso	Offshore Seismic
1982	GSR-82A	Sion Resources	Onshore Seismic

1982	GB-82A	Beach	Onshore Seismic
1982	GH-82A	Hudbay	Offshore Seismic
1982	G82C	Esso	Offshore Seismic
1982	GA82B	Aust. Aguitaine	Offshore Seismic

B. REGIONAL GEOLOGY

The Gippsland Basin formed as the result of two separate phases of continental separation along new plate boundaries. Initial formation has been related to a phase of intra- cratonic rifting between the Tasmanian block and the Australian mainland which occurred between 140 and 100 MY BP (Elliott; 1972). This rift extended from the Otway Basin to the Bellona Gap on the Lord Howe Rise to the East.

The boundary of the Gippsland Basin is marked to the south by the marginal fault system which brings basement rocks of the Bassian Rise in contact with basinal sediments. The northern boundary is an unconformable contact between basin sediments and rocks of the Tasman Fold Belt, while the western boundary with the Otway Basin is marked by the Selwyn Fault on Mornington Peninsula.

Initial sedimentation occurred in the latest Jurassic or Farly Cretaceous with a sequence of entirely non-marine greywackes, chloritic mudstones and occasional coals being deposited. Much of the coarse clastic component of these sediments was derived from contemporaneous acid to intermediate volcanics which are inferred to have a southerly provenance. These sediments are collectively termed the Strzelecki Group and appear to have limited hydrocarbon source and reservoir potential.

The separation of the Lord Howe Rise and New Zealand from eastern Australia abound 80 MY to 60 MY BP marked a general increase in the rate of subsidence within the Gippsland Basin. Fluviatile sedimentation continued in the Late Cretaceous but gave way to prograding deltaic complexes during the Palaeocene and Eocene. Individual complexes have yet to be delineated by well and seismic data although Loutit and Kennett (1981) have related sedimentary cycles within the Gippsland Basin to global eustatic and sea level changes. These depositional cycles are recognisable from the Late Cretaceous to Late Eocene Latrobe Group through to the Oligocene to Early Miocene Lakes Entrance Formation (figure 3). At the top of the Latrobe Group a regional transgression inundated the basin and caused the formation of a series of barrier systems during periods of stillstand. Associated with these barrier systems are glauconitic, nearshore marine facies together with lagoonal and marsh facies in which coal-forming carbonaceous sediments were laid down. This transgressive sequence, which marks the final phase of Latrobe sedimentation, is termed the Gurnard Formation; although this classification is still informal.

The Latrobe sequence, containing many channel, point bar and barrier sand bodies, is the primary reservoir sequence within the Gippsland Basin. Intra-Latrobe seals are formed by siltstone and coal sequences of the marsh facies while the top of the Latrobe Group is sealed by the glauconitic siltstone of the Gurnard Formation and the calcareous siltstones and claystones of the Lakes Entrance Formation.

The transgressive phase which resulted in the formation of the Gurnard and Lakes Entrance sediments has been related to the separation of Antarctica from southern Australia, which began about 45 MY BP. During this period and the late Miocene en echelon anticlines and shear faults were generated. This pattern of faults and northeast-southwest trending anticlines is compatible with the existence of a dextral wrench couple operating in the region at the time. It is this phase of structuration which acted upon the latrobe sediments and formed the major structural targets for hydrocarbon exploration within the basin.

During the Oligocene and into the Early Miocene, deposition of shale and marl occurred throughout the basin and onlapped the basin margins and structural "highs". Miocene sedimentation gradually changed in style from the shales and marls of the Lakes Entrance Formation to the bryozoan limestone and marl of the Gippsland Limestone. This limestone sequence is characterised offshore by two major depositional features. On the southern platform a massive linear slump zone occurs which can be traced seismically for more than 130km. Over the remainder of the basin complex channeling is in evidence caused by structural movements and eustatic sea level changes.

The final period of basin development was marked by a return to continental clastic sedimentation in southern Gippsland with marine sedimentation continuing on the continental shelf. The highland region north of the basin and the South Gippsland Hills along the western margin were uplifted during the Kosciusco uplift in the Late Pliocene.

C. REGIONAL STRATIGRAPHY

(1)

The Stratigraphy of the offshore Gippsland Basin is summarised in Figure 4.

Basement

The basement is composed of slighlty metamorphosed Paleozoic sediments of the Tasman Geosyncline. These rocks are exposed in the Victorian Ranges to the north and form islands along the Bassian Rise to the south. The geosyncline sediments are composed of deformed siltstones, shales, sandstones and igneous rocks of Ordovician and Silurian age which are overlain by Devonian - Carboniferous red beds made up of conglomerates, sandstones and pebbly sandstones with interbedded rhyolite, rhyodacite and trachytes (Threlfall et al., 1976). These Devonian - Carboniferous rocks are believed to have been the major source of coarse clastic sediments in the Gippsland Basin.

Four wells (Groper 1, Groper 2, Bluebone 1 and Mullet 1), located along the southern margin of the basin, reached basement rocks in granite and in red siltstones and sandstones. Although the basin centre has never been reached by drilling, aeromagnetic surveys suggest that basement rock will be similar to those found onshore.

Early Cretaceous (Strzelecki Group)

The Strzelecki Group represents the first sediments to have deposited in the Basin. The group consists of non-marine, immature greywackes, shales and coals. The greywackes are medium-grained and composed of quartz, rock fragments and feldspar grains held together by abundant chloritic and kaolinite clay matrix and minor calcareous cement. The shales are micaceous and slightly carbonaceous. The rocks are interpreted to have been deposited in alluvial fan and alluvial plain environments in a rapidly subsiding basin. The sandstones contain much volcanic material and have poor reservoir characteristics. Therefore, the group has been generally regarded as economic basement in the offshore area. The maximum thickness of the Group is estimated to be more than 3,500m (James and Evans, 1971).

The Strzelecki Group is exposed onshore at Narracan and Balook Highs. Offshore, in the areas where the group is reached by drilling or recognised seismically, it is separated from the overlying Latrobe by an angular unconformity.

Late Cretaceous - Eocene (Latrobe Group)

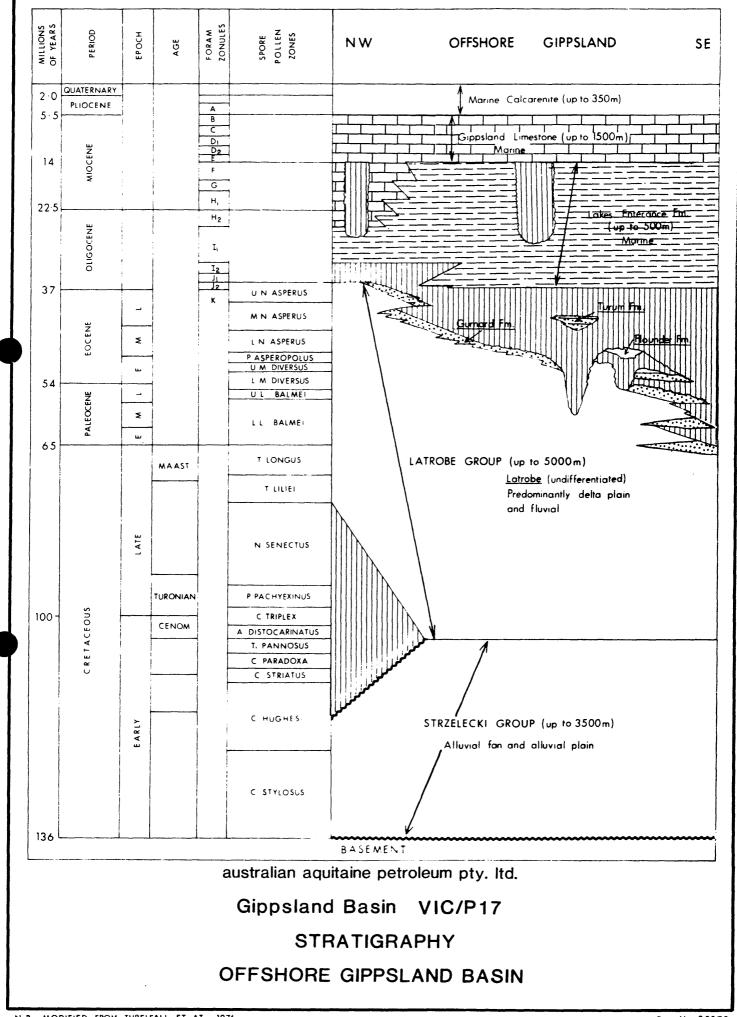
Latrobe undifferentiated: This sequence refers to the Late Cretaceous-Eocene sediments offlapping the Strzelecki Group and which contain major hydrocarbon accumulations. maximum thickness of the sequence is estimated to be approximately 5,000m. In the western and central basin, non-marine deposition was predominant from Late Cretaceous to Early Eocene with the formation of alluvial and delta plain deposits comprising quartzose sandstone, coal, mudstone, siltstone and shale. Sand grains range from very fine to very coarse. Volcanic rock fragments and feldspars are less abundant than in the Strzelecki Group. The sandstones are poorly sorted but more mature than the underlying Strzelecki sandstones. At the end of the Late Cretaceous the southeastern side of the basin was encroached by a marine shoreline, but the centre of the basin was still largely a site of non-marine deposition. The upper section of Paleocene-Eocene age shows numerous point bar sandstones embedded in swamp deposits. paleocurrent direction, as determined from the variation of these sandstones, is from the northwest (Threfall et al., 1976).

Gurnard Formation: This formation refers to the reworked sediments which were formed during the major transgression of the Eocene. These sediments vary from nearshore muds containing glauconite, to shoreline deposits including beach sand and backswamp coal. The unit, which has an erosional contact with the underlying deltaic sediments, is in turn overlain by marine sediments of the Lakes Entrance Formation.

Flounder Formation: This occurs only in the eastern side of the basin (outside of VIC/P17) and is composed of marginal marine to marine sediments which filled the channels cut during the Early Eocene time. The fill of up to 500m thick (as encountered at Flounder No. 1) consists of clayey siltstone containing varying amounts of coarse clastics. The siltstone is grey-brown in colour, micaceous, pyritic, and contains both benthonic and planktonic foraminifera.

Turrum Formation: This also occurs only in the eastern side of the basin where, during the Late Eocene, the area was eroded by the Marlin channel and later filled with marine shales of latest Eocene age. The shales are up to 350m thick, dark grey-brown in colour, slightly calcareous, slightly pyritic and micaceous.

Oligocene - Miocene


The Oligocene-Miocene sequence consists of two formations: the Lakes Entrance Formation and the Gippsland Limestone (figure 4). Although these two formations represent two separate units onshore, their offshore contact is gradational. The Lakes Entrance Formation refers to the

maximum 500m thick unit of marine mudstone overlying the Latrobe Group. The mudstone is light olive-green in colour, sometimes grey with a variable argillaceous and calcareous content. It contains pyrite, glauconite and marine fauna.

The Gippsland Limestone was first used to describe the onshore Miocene limestones and marls which overlie the Lakes Entrance Formation. Offshore, the Lakes Entrance Formation grades upward to a unit of 1500m of Miocene limestone, calcarenite and marl with occasional coarse clastics of mudstone. Slumping and sub-marine channelling are common in the Miocene and are probably related to the tectonic and structural movements in the basin and sea level changes.

Pliocene - Recent

Up to 350m of marine calcarenites lie between the Miocene Gippsland Limestone and the sea floor. Stratigraphic data on this uppermost sequence are generally lacking, although foraminiferal assemblages suggest that the lower part of the sequence may belong to Late Miocene.

C. STRATIGRAPHY OF SEDIMENTS PENETRATED

(2)

The regional stratigraphy of offshore Gippsland Basin is summarised in Fig. 4. The stratigraphy and thickness of sediments penetrated in Edina No. 1 are summarised in Fig. 7 and Table 3.

TABLE NO. 3

	AGE PLIOCENE TO RECENT		FORAM ZONULES	FORMATION	MEMBER OR GROUP	FORMATION TOP (KB)	THICKN	ESS
				UNDIFFERENTIATED		99m	207m	
	Щ	LATE		GIPPSLAND	UPPER	306m	1178m	1542m
	MIOCENE	EARLY	G to H	LIMESTONE	LOWER	1484m	364m	
-	Σ		"	LAKES ENTRANCE		1848m?	394m	
-	OLIGOCENE		J ₂	GURNARD		2242m	35m	
	.NE	LATE	κ	FORMATION	GROUP	2278m	56m	91m
	EOCENE	EARLY		LATROBE CLASTICS (UNDIFFERENTIATED)	LATROBE	2333m	189m	
	PALEOC	PALEOCENE?			ב	2522m	72m	26m

* El and younger

NFF - No Fossil found

Pliocene - Recent (Undifferentiated) Sea Floor - 306m KB

Most of this section was drilled with no sample returns (sea floor to 224m KB). On a regional basis, up to 350m of marine calcarenites lie between the Miocene - Gippsland Limestone and sea floor. Stratigraphic data on this sequence are lacking and it has been suggested that the lower part of this sequence may belong to the Late Miocene. The base of this sequence has been picked at 306m from the log character and lithological changes of the cuttings after drilling out 20" casing shoe. The sequence (224m - 306m) is composed of Limestone Coquina (40 - 80%), abundant bryozoa, corals, sponges, coral debris, forams, bivalves with Limestone Biomicrite, light grey, grey-white, tan, cream, friable, chalky in part, with minor sparry calcite.

Miocene (306m - 2242m KB)

The Miocene sequence consists of two formations, the Gippsland Limestone and Lakes Entrance Formation. Although these two formations represent two separate units onshore, their offshore contact is gradational.

Early to Late Miocene (306 - 1848m KB) D-Z to E-1 Zones

The Gippsland Limestone has been subdivided into Upper and Lower members.

The Upper Member - Middle to Late Miocene (306 - 1484m) is composed of a gradational sequence consisting of Limestone, Calcarenite, Marl, and Calcilutite and calcareous Claystone. Calcarenite is light grey, grey, occasionally tan, firm to friable, generally well cemented, fine to very fine grained, with common sparry calcite, well sorted, with common micritic fragments, minor sand grains and fossil fragments. Marl is grey, soft, sticky with fine calcareous grains in calcareous clay matrix, silty and sandy in part, minor fossil fragments, grading to calcilutite, grey - cream, firm - hard, silty, well cemented, glauconitic. Calcareous Claystone is grey to medium light grey, soft sticky with minor subangular clay chips.

The Lower Member - Early Miocene (1484 - 1848m KB) is composed mainly of calcareous <u>Claystone</u>, light grey - grey, buff grey, soft sticky, soluble, fossiliferous, trace of glauconite and pyrite, minor chalky carbonates and micritic limestone becoming arenaceous and silty in part.

Early Miocene (1848 - 2242m KB) G to H-I Zones

This sequence is interpreted as being Lakes Entrance Formation because of its rock type. However, its Miocene age could suggest a more argillaceous facies of the Gippsland Limestone. The top of the sequence has been picked at 1848m based on lithological change.

The sequence is composed of calcareous <u>Claystone</u> grey, brown grey, occasionally green grey, grading to <u>Siltstone</u>, soft-firm, sometimes moderately hard, calcareous, with occasional thin beds of fine to very fine grained, light brown grey <u>Sandstone</u>. The sandstone is poorly sorted, with quite high <u>clay matrix</u>, slightly fossiliferous and slightly pyritic.

The Miocene sequence is characterised by a basal unconformity picked from electric logs at 2242m KB.

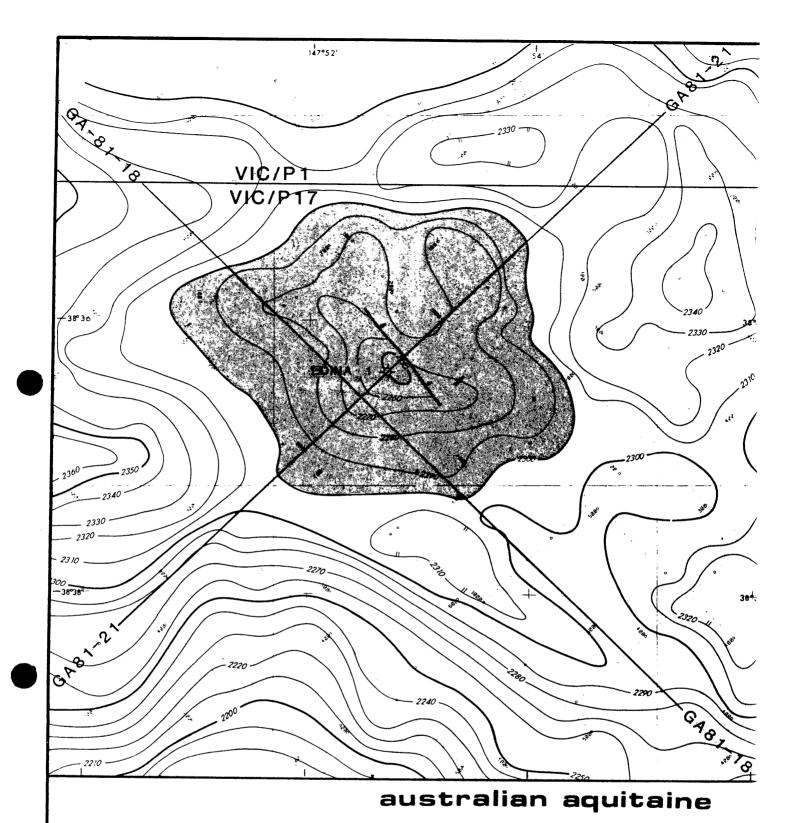
Early Oligocene (2242 - 2278m KB)

The sequence unconformably underlies the Miocene sediments and has been interpreted as being a marine transgressive inner shelf sequence (See appendix 5).

The sequence is composed of <u>Claystone</u>, light grey - medium grey, light brown, occasionally cream, oxidised, irregularly iron-stain, silty and sandy, highly calcareous, firm - hard, subfissile to blocky grading to marl with minor <u>Sandstone</u> light grey - medium grey, cream, fine - grained, hard, tight, subangular, calcareous, argillaceous in part good trace glauconite and minor sandstone, clear, quartzose non argillaceous.

Eocene (2278 - 2522m KB) Asperus/Asperopolus

1. L.N. Asperus/P. Asperopolus Zone (2278-2333m KB)


The sequence conformably underlies the Oligocene sediments. It is composed of <u>Sandstone</u>, brick red, red brown, medium grey, dark grey green, very fine to fine occasionally medium coarse, hard, argillaceous, calcareous at top becoming non calcareous at base, glaconitic, slightly micaceous in part, minor <u>Siltstone</u>, dark grey-green, glaconitic, hard, blocky, calcareous and <u>claystone</u>, brick red, soft amorphous at top and medium grey, calcareous, hard, subfissile, silty at bottom.

2. P. Asperopolus to U.M. Diversus Zone (2333 - 2522m KB)

This sequence consists of interbedded sandstones, mudstones and coal. The sandstone is generally fine to medium-grained, quartzose, non calcareous, slightly carbonaceous, non glauconitic. The mudstones are dark grey in colour, hard, carbonaceous, non calcareous and slightly micaceous. The coal is black and brittle. Due to the presence of coal the sequence has been interpreted as being a marginal marine deposit, probably a swampy detaic plain or back barrier.

Paleocene (2522 - TD)

The Paleocene sequence encountered in this well belongs to U.L Balmei palynological zone. As in the overlying Eocene unit, this sequence is also comprised of marginal marine deposits of sandstone, mudstone and coal. The contact between these two sequences is probably conformable and it has been placed at 2522m KB based on palynological data alone.

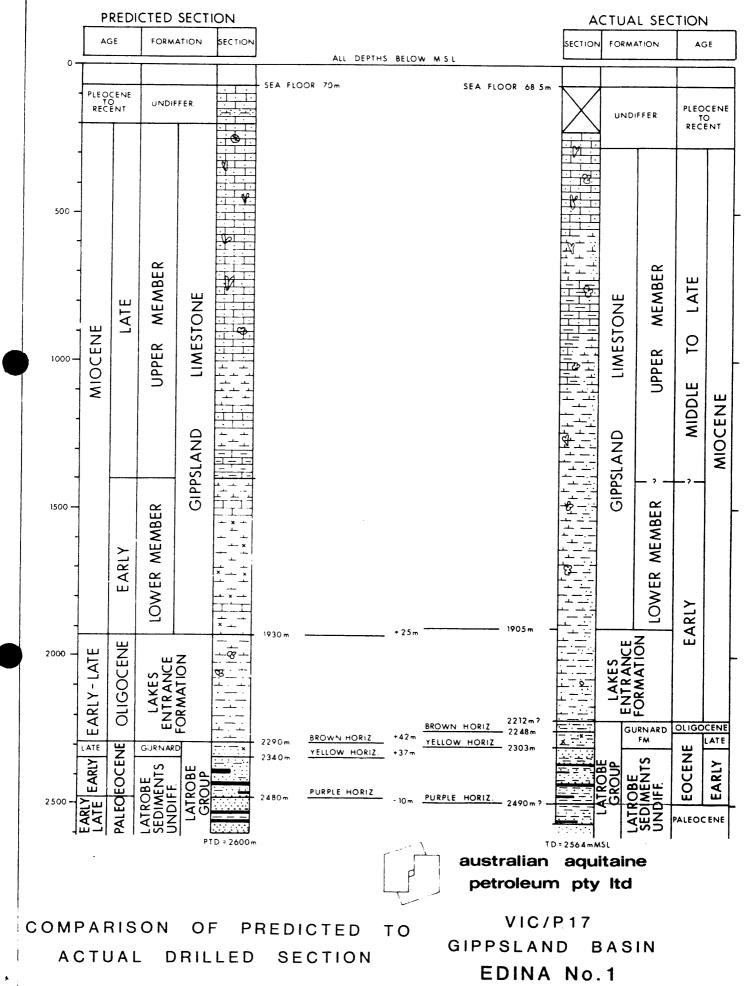
CLOSURE :

AREA — 10.4 km² at 2290 m — 14.9 km² at 2300 m

VERTICAL - 53 m (max.)

Petroleum pty Itd.
EDINA STRUCTURE
BROWN HORIZON DEPTH MAP
(Near Top of Latrobe Group)

Contour interval 10M.


	SCA	LE 1:50,000	
o	0.5	!	2 Kms
	—نصد		

Author - J.BURBURY	Date APRIL 1982	Dwg No: 20392	516
Drafted by L BAILEY	Report No PG/164/82	Base Plan :	FIG-

AUSTRALIAN AQUITAINE PETROLEUM PTY LIMITED

Casing and Cores	Depth m ft	Section	Reservoir Sal q li	Seismic Horizon Tests & Shows	; athology		Strati	graph,			DINA No.1.
30"			G P	3.10443	SEA FLOOR 100m RKB					L	
110m 20"					100m-230m (130m) Marine Calcarenites	UNDIFF			PLIO 10 RECENT	Permit	Vic/P17
200m	1000 - 1000 - 400				230m-1430m (1200m) <u>Calcarenite</u> , Lt gy, gen laose, occ cmtd w/ gy micrite. Common skeletal remains, bryozoa, forams and minor shell material Bcm argill w/depth and occ grdg to <u>Mrl</u>					Location catificae congitude	Line GA81-21 SP 960 38° 36' 22 4" S 147° 52' 42 1"E
13 ³ / ₈ " @ 1240m	3000 - 2000 - 3000 - 2000 - 2000 -					UPPER MEMBER	P S L A N D LIME S TONE	LATE	MIOCENE	Rig Kill Bill Bill Bill Bill Bill Bill Bill	Ocean Digger" 30 m 70 m 2600 m New Field Wildcat September 1982
	5000 - 5000 - 7600 - 7600 -			— 0 75 5	1430 m-1960m ⁷ 530m) <u>Claystone</u> ; Gy-grn, sity, glauc foss, py, highly calc, grdg to <u>Marl</u> ; Gy, sft- frm, fass, glauc Occ <u>Limestone</u> bands	LOWER MEMBER	9	EARIY		Objectives	Uppermost sand sequence within Latra Group Intra-Latrobe charsands
	7900 - 797 - 2200			.Brown) — 0 865	1960m - 23 20m (360m) Siltstone, Lt brown-gy, calc ocally grn and glauc, sti-mod frm, massive occ fiss, forams common Minar Mudstone	LAKES ENTRANCE FORMATION		EARLY - LATE	OLIGOCENE	Structure	Un-named structural closure at top of Lat group Area of closur 9·0 km² at 2340m M
95/8 2 500 m	- 240x - 8000 260	PTD 2600		- 0 880 Yellow) 0 919 - Purple1	2320m-2370m(50m) Glauconitic Sand and Siltstone 2370m-2510m/140m) Sandstone; w/coal and minor Shale 2510m T D Sandstone wh-lt gy, fn-med grn carb, fri-frm W/Coal, Blk, vit brit, slty in part, tr asphaltites Minor Shale, carb, brn, slty	LATROBE SEDIMENTS TAND DELTAIC SEQUENCE TO	I ATROBE GROUP	E A R I Y . L ATE	PALAEOCENE EOCENE	T makents	1 Velocity analysis o structure used to calci- depths to seismic hori- 2 Stratigraphy based regional well correla with Gurnard No. 1 Kingfish No. 7 Nannygai No. 1 Bullseye No. 1
	32 3400 2000 2000										

au 	St.	ralia	an a	quita	aine p	petroleum pty ltd					EDINA No. 1
Casi	ď	Depth m. ft.	Section		Seismic Horizon Tests &	Lithology		Stratigraphy			COMPLETED SECTION
l 00	3.			Cores	Shows	ALL DEPTHS BELOW K.B.]
	1		4	G F	O. W.T.	SEA LEVEL - 30 5 m.	1				
-	1			1	<u> </u>	99 - 224 m.	1	T	T	PLIO. TO	Permit VIC/P17
20"_	4	200		4		No Sample Returns	Undiff	¥		RECEN	ĬΤ
219 m		1000 -		#		224 - 540 m. (316 m.) Calcarenite: Light grey, firm to					Location SP960 Line GA81-
		400	<u> </u>	=		triable, sparry calcite, minor					Latitude 38° 36' 22:32" S.
		- 400	.i4_i:	1		fossil and shell debris.					Longitude 147°52'42 18"E.
- SP	f			‡		540 1100 1640	- m				
CAL	_ }	600 _		-		540 - 1100 m. (560 m.) Marl: Grey, soft, sticky, fine	BE				Rig "OCEAN DIGGER"
÷ 0	- GR	2000	<u>+</u> ++	-		calcareous grains in cal clay matrix. Silty grading to	MEMBER		Ш		K.B. + 30 5m. MSL.
$\frac{1}{2}$	<u> </u>	800	i:×III]		Calcilutite between 710m and 900m; grey to cream, hard, silty,	Σ]	ATE	Ì	W.D 68:5m. MSL.
SIS	- [000	- 	1		cemented, glauconitic.	1	Z	-		
SF-		3000 -		1			PPER	LIMESTONE		}	· '
-	+	1000	<u> </u>				l d	les l	ļ		Status P. and A. DRY HOL
\checkmark	-	-	==	4		1100 1484 (204)	4			Щ	Spudded 29. 9. 82. T.D. Reached 25. 10. 82.
3/8		1200				1100 - 1484m (384m.) Claystone: Calcareous, grey to		ļ		MIOCENE	Rig Released 1. 11. 82.
201n	n.	4000				medium grey, soft, sticky with minor sub - angular clay chips.		9		ŏ	Operator A. A.P.
\uparrow	t					The state of the s		LAND		Σ	
}	+	1400						S			Cost \$A. 7, 881, 992 prel
	-	5000	×	1	-0 <i>-</i> 755	1484 - 1848m (364m)	 	GIPP		1	Cost /ft. \$ A 3,038 · 55
		5000 -	<u>*</u>			Claystone : Calcareous , grey to	-	5			C031711. \$74.0,000 00
ا يم	Survey	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	×			buff, soft, sticky, fossiliferous, trace glauconite and pyrite.	LOWER MEMBER				
						Occasional chalky carbonates.	≥ ≧		<u></u>		Objectives 1. Uppermost sand sequen
BHC -	٦	1800 6000 -	T_X_T]			<u> </u>		EABLY		within the Latrobe Group
a -	Velocity		:			1848-2242m (394m)		ıų.	"		2. Intra - Latrobe channel so
ᅴ	5 L	2000	===					KES TRANCE			
غا د	ا د			 _		<u>Claystone</u> : as above, with: <u>Siltstone</u> : Grey to grey brown,		AKES ITRA			Structure
	¥	700C -	===	_		hard, laminated, sandy, cal.		Z Z			Structural closure at top o
ن او	ž [2 <i>2</i> 00	====		_Brown 0-865	2242 - 2278 m. (36 m.) Siltstone: with minor Sandstone	Z E		EARLY	OLIG.	Latrobe Group; area 9km². No closure below Purple
		1	x_x_x	L	Yellow 70-880	2278 - 2333m. (55m.) Siltstane: Glauc. and Sandstone	GURN	<u>م</u>	LATE	y y	Marker (Intra - Latrobe)
	· r	2400		.92	RFT	2333 - 2520m. (187m.)		GROUP		EOCENE	Comments
מון	3	8000 -		F	Purple	Sandstone: Fine to coarse, quartzose, porous. With <u>Shale</u> and <u>Coal</u> .	etec	S. S.	EARLY	EO	1. Both objective sand sequ
\downarrow		2400	===	L	0.919	2520-TD (74m.)	Undifferentiated	35		w Z	were encountered in Edin The upper sand from 23:
		2600	T. D. 2594m.] -		Siltstone: Dark brown, carbonaceous, sandy,	iffer	Ď		CE	to 2371 m. in particular,
	ł	9000 -	23 74 m.			argillaceous, with: <u>Shale</u> and <u>Sandstone</u> ; very fine grain, buff,	Dud	ATROBE		PALEOCENE	having excellent reservoi characteristics. All sands
	ŀ	2800				hard, quartzose, cemented.	L1		L	<u> </u>	were water saturated.
	-	1									2. Minor traces of hydrocar
	ļ	3000		1		-6 - 2320-2m (Gurnard Formati	on)				gas (predominantly C ₁) v recorded throughout the
	- 1	10 000 -		Recov	ered 7m	(92%)					Latrobe Group while drilling Maximum C ₃ at
	t					m Rec. 3785 cc OF MUD/WATER					2444m, KB (0·25%). No
	t	3200		L		Y OF 0.086 ohm/m AT 200°F, 29	9000 pp	m No.	cc equiv	.	higher hydrocarbons wei encountered.
	ŀ	1		4		m NITRATES. Pcc OF MUD/WATER IN LOWER	R CHAM	ΛBER.			encountered.
	-	3400 -				OF 0.091 ohm/m AT 200°F, 26					
				_	ND 25pp	m NITRATES AT 3286 psi.					
		3600									Fig.
		12000 -									Author: S. FORDER
	1										Date: APRIL 1983
	ł	3800									Base Map No 9112
	-	1									Reference No 21650
			1	1						1	

Author J DJOKIC Date MAY 1983 Dwg No 21798

Drafted by R E Report No PG/190/83 Base Plan: FIG. 8

D. STRUCTURE

The Edina structure as mapped has maximum areal and vertical closure at the level of the Brown Horizon (top Latrobe Group) which was intersected in the well at 2278m KB. On time-structural maps the area of closure is 9 sq. kms at 1.760 millisec (T.W.T.); which relates to a depth to spillpoint of 2340 MSL. A depth map produced from normal move-out analyses of the velocity data produces a structure of 10.4 sq. kms x 40m with a spillpoint at 2290m subsea (see figure 5). Areal closure decreases with depth and does not exist below the Purple (intra-Latrobe) horizon. The Purple Horizon was penetrated at 2520m (KB). Therefore, the well was outside closure at the TD of 2,594m.

Edina is not an anticlinal feature similar to many producing Gippsland fields such as Barracouta, Halibut, Snapper, Kingfish and others, but has a significant stratigraphic component in its origin. Isopach maps of the upper Latrobe Group (Brown to Purple Horizons) and Gurnard Formation (Brown to Yellow Horizons) show a thick tongue of sediment trending northwestwards from Pike towards Edina. These maps place Edina at the northern extremity of this sediment body and it would appear that structuration has been caused by compaction of Lakes Entrance silts and claystones over a Latrobe barrier bar sand body. Closure to the south of Edina may have been aided by channeling through the sand body as the Brown to Purple isopach shows a thin in this region.

A northwest-southeast trending normal fault with downthrow to the northeast transects the crest of the structure as shown in figure 4. Movement on this fault appears to have been restricted in time to a period contemporaneous with, or immediately post-dating, Latrobe Group deposition. The fault penetrates the base of the overlying Lakes Entrance Formation but does not intersect the top of this formation.

E. RESERVOIR PROPERTIES AND SOURCE ROCKS

The first major sands encountered in Edina No. 1 were from 2278 - 2333m, belonging to the Gurnard Formation of the Latrobe Group. Both logs and core (Core No. 1 2312.6 - 2303.2m) analyses indicate moderate to good porosity (11 - 19%, average 15%) but very low permeability (0.2 - 3.7md). The kerogen and spore colouration studies of sidewall cores in this sequence indicate very low total organic matter and immaturity for hydrocarbon generation. The sediments are a poor source for generating hydrocarbons.

The sequence below 2333m belongs to undifferentiated Latrobe Group. A number of potential reservoirs were encountered from 2333m - T.D., major zones being 2333 - 2371m, 2380 - 2389m, 2409 - 2418m, 2430 - 2443m, 2496 - 2505m, 2528 - 2532m, 2543 - 2553m, 2555 - 2559m and 2561 - 2571m. Log analyses indicate good to excellent porosity (16 - 25%). The permeabilities range from 10 - 100 md (based on pretest sampling curve and quick look determination from RFT). From log interpretation, Sw = 100% which is reflected in the pressure gradient of lq/cc using formation pressures from RFT. Sampling during the RFT at 2335m recovered formation water of 29000 ppm Na C1 equivalent with a resistivity of 0.086 ohm-m at 93°C (see appendix 6) compared to an Rmf of 0.075 at the same temperature.

The kerogen and spore colouration study of sidewall cores in this sequence indicates that although there is adequate organic matter of a favourable nature in the Latrobe (see appendix 4) it is immature for the generation of hydrocarbons.

F. RELEVANCE TO THE OCCURRENCE OF HYDROCARBONS

No indications of oil or fluoresence were detected in the cuttings, cores or dilling fluid. Ditch gas readings were very small. The maximum reading obtained over Gurnard Fm. was 1% Total Gas (Cl = 0.8%, C2 = 0.035%, C3 = 0.02%) and a maximum of 0.9% Total Gas (Cl = 0.8%, C2 = 0.08%, C3 = 0.02%) over undifferentiated Latrobe Group. Log analysis and RFT verified the absence of hydrocarbon in the prospective reservoir zones.

G. CONTRIBUTION TO GEOLOGICAL CONCEPTS RESULTING FROM DRILLING

- 1. The top of Latrobe Group (comprising the Gurnard Formation plus Latrobe Formation) is proposed at 2,242m KB. This is confirmed by a major break in foraminiferal sequence at this level, between the Miocene (H assemblage zone) and the Early Oligocene (J2 assemblage zone) sediments of Upper N. Asperus palynological zone. The base of the Gurnard Formation is at 2,333m KB where it sharply overlies the Latrobe clastic sediments.
- 2. A distinct intra-Gurnard surface, shown by weathering evidence and sonic change, occurs at 2,278m KB. As there is no evidence of a faunal break, it may indicate only a surface corresponding to a stable sea level which was later buried by the Oligocene transgression.
- 3. The Gurnard Formation at Edina No. 1 consists of slightly calcareous, glauconitic sandstones, siltstones and mudstones, probably deposited in a shallow marine to shelf environment. Although there is a sharp change in lithology between the base of this formation and the underlying Latrobe clastics, their age seems to be identical and belongs to the P. Asperopolus palynological zone. Core analyses carried out in this unit between 2,312.6 and 2,320.2m indicate that the unit is almost impermeable, although porosities can reach up to 19%.
- 4. The top of Latrobe clastics occurs at 2,333m KB where it is overlain sharply by glauconitic sediments of the Gurnard Formation. The Latrobe clastics are composed of sandstones with good porosities and permeabilities, interbedded with mudstones, siltstones and claystones. The sandstone encountered between 2,333m and 2,37lm has been interpreted as a coastal barrier or delta front (wave dominated) sand, whereas the interbedded sandstones, mudstones and coal are believed to have been deposited in a delta plain environment.
- 5. The lower M. Diversus zone is missing from the Latrobe Eccene sequence, thus indicating a discordance with the underlying Paleocene unit.
- 6. The top of the Paleocene is proposed at 2,526m. It is composed mainly of interbedded sandstones and mudstones with minor coal seams.
- 7. The increase of coal (content and thickness) toward the upper part of the Latrobe sequence probably indicates a general transgression from Paleocene to Eocene, resulting in deltaic sediments overlying fluvial deposits.

- 8. No hydrocarbons were detected in Edina which is mapped as a top Latrobe closure. This is unusual in the Gippsland Basin. A number of reasons have been forwarded which could explain the absence of hydrocarbons.
 - a) The closure of Edina was mapped at the level of the Brown Horizon. This horizon occurred in the well at 2278m KB. Edina was located on the northern extension of the Late Eocene Pike barrier system. In Pike No. 1, the Brown Horizon occurs at the top of the porous Latrobe sand. It is therefore possible that a map prepared on top of Latrobe porosity would reduce or perhaps eliminate closure at Edina.
 - b) The closure at Edina on the Brown Horizon is approximately $9 \, \mathrm{km^2} \times 0.030$ secs TWT. A depth map was prepared based on Western Geophysicals Horizon Velocity Analysis package which was applied to all lines. The resultant closure in depth derived was in the range $10.4 \, \mathrm{km} \times 40 \, \mathrm{m}$ to $14.9 \, \mathrm{km^2} \times 50 \, \mathrm{m}$. However the variation in velocity gradient across the structure necessary to eliminate the closure is approximately 2%. This is of the order of the accuracy of the depth map. Therefore there may be no structural closure on the Brown Horizon.
 - c) The uppermost part of the Latrobe sand (2333-237lm KB) in Edina is interpreted to be of shoreface facies and the Edina structure due to compaction and drape over this body. The sand may be isolated from underlying sands (which are not closed at the location) as well as hydrocarbons migrating from mature Latrobe downdip. (No mature Latrobe was penetrated within closure at Edina). This barrier seems to be confirmed by a difference in salinity between the top Latrobe sand from 2333-237lm (33,000 ppm) and the sands below the shale unit at 2371-2380m (23,000 ppm).
 - d) The existence of a channel cutting accross the structure and filled by a coarse clastic material, would eliminate a seal and hence any accumulation.

Appendix

Appendix 1 Cutting Sample Descriptions

APPENDIX I

CUTTING SAMPLE DESCRIPTIONS

APPENDIX I

(CUTTING SAMPLE DESCRIPTIONS)

UNDIFFE	RENTIATED PLIO	CENE - RECENT (SEA FLOOR TO 306m)
99 -	224m	No returns - Samples to seafloor
224 -	260m	Limestone, Coquina (50 - 80%) Abundant bryozoa, corals, sponges, coral debris, forams, shell, with light grey Biomicrite, friable, chalky, minor sparry calcite, occasionally with angular large shell fragments, and bryozoa, tube and fenestellid forms.
260 -	306m	Limestone, Biomicrite, grey-white, tan, cream, friable, minor calcarenite, loose, cemented in part, with sparry calcite grains, and fossil debris (40 - 50%) bryozoa, forams (bethonic) sponges, corals, spicules.
GIPPSLA	ND LIMESTONE -	EARLY TO LATE MICCENE (406 - 1848m KB)
		Late Miocene (306 - 1484m KB)
306 -	350m	Limestone, Biomicrite, grey, medium grey, occasionally tan, cream with minor angular chips of sparry calcite, dense, hard, cryptocrystalline, dominant bryozoa, forams, fossill debris decreasing with increasing grain fraction.
350 -	420m	Limestone, Calcarenite, grey, off white, occasionally tan, firm - friable, cemented, with fine to very fine calcareous grains, sparry calcite, subangular-angular, well sorted, 10 - 20% micritic fragments, minor fossil, shell debris, slightly argillaceous in part, fair to good vugular porosity.
420 -	478m	Limestone Calcarenite, light grey, grey, firm - friable, well cemented with fine to very fine calcareous grains, sparry calcite, minor fine to very fine sand grains subangular -angular, well sorted, fair vugular porosity 10 - 20% micritic fragments, minor trace fossil fragments dominantly bryozoa, coral, forams.
478 -	494m	Limestone, Calcarenite, white, light grey, firm - friable, well cemented with calcareous grains, fine - very fine, subangular - angular, minor sand grains (50%) common sparry calcitic grains, minor biomicrite, and fossil fragments.
494 -	540m	Limestone Calcarenite, light grey, grey, firm - friable, becoming more silty and argillaceous in part, white calcareous cement, silty grains are more loosely bounded, gradational to silty calcareous claystone.

calcareous claystone.

540 - 565m	<u>Calcareous Claystone</u> (Marl) grey, soft, sticky clay fraction washed out with 20 - 30% calcarenite grey, well cemented, with fine angular calcareous fragments, with silt and minor very fine sand grains, fine trace fossil fragments, minor lignitic fragments.
565 – 600m	Claystone, Calareous (Marl) grey, soft, sticky clay fraction generally washed out, very silty, minor calcareous angular fragments, fine calcite grains, silt and fine sand grains, embedded with fossil, bryozoa debris, glauconite, minor lignitic particles, slightly bioturbated in part.
600 - 660m	Claystone, Calcareous (Marl) grey - light grey calcareous clay matrix with assorted calcareous grains, clay chips, fossil, bryozoa debris, lignitic particles, good trace glauconite, silt and sand grains, bioturbated in part, occasionally sandy in part.
660 - 710m	Claystone (Marl)silty, soft, sticky, decreasing carbonate content, good trace lignitic particles, clay and calcareous grains well formed, good trace glauconite, bioturbated with worm faecal pellets, rounded grains, calcispheres.
710 - 730m	Claystone A/A becoming more compact, silty, grading to Calcilutite, grains more bounded (20%) with calcite grains, micritic fragments, bryozoa, spines, benthonic forams, calcispheres, trace worm pellets.
730 - 770m	Calcilutite grey to cream grey, hard, well cemented, with silt, calcite grains, glauconite, fossil fragments of bryozoa, benthonic forams, minor planktonic forms, also micritic in part, poor visible porosity.
770 - 805m	Calcilutite, gradational to Calcarenite, grey- cream grey, hard - firm, silty, well cemented, minor very fine sand grains, subangular, trace glauconite, occasionally micritic and crypto- crystalline angular fragments.
805 - 865m	Calcarenite gradational to Calcilutite, grey, cream grey, hard, brittle, occasionally friable, generally well bounded with calcareous grains, glauconite, lignitic particles, forams (benthonic) bryozoa, minor calcispheres, occasionally 5 - 10% micritic fragments, hard, dense, angular, poor visible porosity.

865 - 900m	Calcilutite/Calcarenite, light grey, firm, higher clay matrix, silty, becoming more argillaceous, clay fraction slightly washed out, sticky in part, less fossil fragments, lignite and glauconite than above sediments, occasionally white calcareous matrix, minor micritic and cryptocrystalline fragments.
900 - 960m	Calcilutite, Gradational to Calcareous Claystone (Marl), grey to light grey, tan, soft, becoming sticky and hydrophillic in part, clay fraction generally washed out, lower carbonate content than above sediments, minor trace fossils of bryozoa, sponges, both pelagic (?) and benthonic forms, minor angular micritic fractions (50%).
960 - 1020m	Intercalation of <u>Calcareous Claystone</u> (40 - 70%), light grey, generally soft, sticky, hydrophillic, occasionally blocky and firm in part, massive <u>Calcilutite</u> (30 - 60%) grey to medium grey, firm silty, partially grain supported, angular, minor trace fossil fragments, micritic in part minor glauconite. Calcilutite fraction becoming more indurated in part towards the base.
1020 - 1045m	Calcareous Claystone (50 - 70%), generally cream grey, soft, sticky, blocky, minor silt grains decreasing carbonate content Calcilutite (30 - 40%) grey - cream grey, generally A/A increasing argillaceous matrix, fine trace fossil fragments, 10 - 20% micritic fragments.
1045 - 1100m	Intercalation of <u>Calcilutite</u> and <u>Calcareous</u> <u>Claystone</u> generally gradational with argillaceous fraction being soft and sticky and slightly washed out, more calcareous fractions are firm and well cemented in part.
1100 - 1135m	Calcareous Claystone grey to medium grey, firm - soft, sediments more indurated in part, blocky, argillaceous and more massive in part.
1135- 1160m	Calcareous Claystone, grey to medium grey dominated clay supported matrix, soft, firm, blocky, becoming more silty in part, indurated fraction grading to Calcilutite with minor micritic fractions.
1160 - 1212m	Calcareous Claystone, grey to medium grey, minor brown grey, firm, silty and slightly arenaceous in part with good trace fossils, dominant benthonic forams, minor trace glauconite Calcilutite (40%) grey, brown grey, firm, indurated, silty, grading

to <u>Calcarenite</u> (20%) cream grey firm to hard well cemented with calcareous grains, subangular, good trace glauconite, medium grained, fossil fragments dominant benthonic forams, calcispheres, 5 - 10% micritic fragments, 40% argillaceous fractions, generally soft to firm, slightly soluble and sticky, minor sparry calcity.

1212 - 1250m

<u>Claystone</u>, grey to medium grey soft-firm, blocky angular, highly contaminated by cement.

1250 - 1279m

Claystone calcareous, grey to medium grey, more argillaceous fraction dark grey, soft to firm, sticky, clay generally washed out, occasionally angular, firm, light grey, chalky micritic Limestone minor trace fossil fragments, bryozoa, forams, lower carbonate content. Ca Co3 N 45%.

1279 - 1327m

Claystone, calcareous, grey to medium grey, generally as above with minor angular subfissile clay chips (5 - 10%) generally firmer and more indurated in part, very fine trace rounded quartz grains, fine trace fossil forams.

1327 - 1348m

Claystone, calcareous, grey to dark grey soft to firm, blocky, clay fraction generally washed out, increasing subfissile angular clay fragments (10 - 15%) slightly silty in part, fine trace fossil/forams.

1348 - 1380m

Claystone, clacareous, grey to dark grey, as above becoming more indurated and subfissile in part (20 - 25%) with minor very fine sand grains.

1380 - 1425

Claystone, calcareous, grey to dark grey, minor buff grey soft to firm, 15% subfissile angular clay fragments, splintery in part, remaining fraction generally soft, silty, associated with very fine microfossils (less than 1/16mm) dominantly pelagic, and planktonic (?) (globorotalia) very fine sand and calcite grains, trace very fine pyrite grains.

1425 - 1462m

<u>Claystone</u>, as above, argillaceous fraction generally soft sticky and soluble becoming more silty in part.

1462 - 1484m

<u>Claystone</u> generally as above, slightly silty and arenaceous in part with minor calcite grains, possibly slightly calcarenitic (less than 5%) in part, firm to friable, grey, minor glauconite.

Early Miocene (1484 - 2242m)

1484 - 1525m	Claystone, calcareous, grey to medium grey 50% buff grey fraction, generally soft, soluble, sticky, associated with good trace microfossils. Forams, good trace glauconite and pyrite 10 - 20% indurated subfissile clay fragments, splintery in part, minor trace white chalky carbonate.
1525 - 1580m	Claystone, calcareous, grey, buff grey as above high clay content washed out, 20% subfissile more indurated clay fragments (cavings in part) occasionally minor micritic limestone, encrusting microfossil, dominantly forams, good trace calcispheres at 1540m minor trace chalky, friable, grey-white carbonate.
1580 - 1625m	Claystone, calcareous, as above, samples flushed through riser, high percentage of sloughing clay.
1625 - 1645m	Claystone, calcareous grey to medium grey, minor buff grey firm indurated fraction generally subfissile, lighter grey fractions generally soft sticky, highly soluble, associated with microfossil, forams, globorotalia, trace pyrite, slightly silty in part.
1645 - 1683m	<u>Claystone</u> as above becoming silty and arenaceous in part with minor micritic <u>Limestone</u> , very fine calcareous sand grains, minor calcarenite.
1683 - 1755m	<u>Claystone</u> calcareous, grey to medium grey occasionally green grey, silty increasing subfissile clay fraction (high % of cavings dia. 2cm) firm indurated, also blocky in part, trace hard, dense, tan micritic limestone grains, trace forams and fine pyrite.
1755 - 1778m	Claystone calcareous, grey to dark grey, green grey, subfissile, splintery and shaly in part, high percentage cavings sloughing in, softer clay fractions (50%) lighter grey in colour, soft dispersive with occasionally silty and arenaceous layers, light grey, friable, assorted with forams and minor calcareous grains.
1778 - 1822m	Claystone calcareous generally as above with silty layers, friable, locally arenaceous in part good trace forams, calcispheres.
1822 - 1848m	<u>Claystone</u> as above with local arenaceous laminations, generally light grey, friable, poorly sorted, high clay matrix, decreasing subfissile firm fragments (less than 50%).

LAKES ENTRANCE FM - EARLY MIOCENE (1848 - 2242m KB)

1848 - 1870m	Claystone calcareous in part gradational to Siltstone, light grey, minor brown grey, soft, high clay matrix washing out, common very fine sand grains, subrounded, also assorted silty, calcareous lithic grains, forams, decreasing subfissile fractions, more soft and blocky.
1870 - 1907m	Claystone as above becoming more silty in part with fine trace pyrite and very fine trace glauconite (uncommon in these sediments).
1907 - 1935m	Claystone, calcareous gradational to Siltstone (30%) grey, brown grey minor green grey, green grey, generally blocky, soft to friable, locally arenaceous, minor fine to medium sand grains, also friable, white chalky carbonate, common forams, trace pyrite, pyritised gastropod at 1930m (1/4mm).
1935 - 2000m	Claystone, calcareous gradational to siltstone (15 - 25%) as above, clay fraction becoming more soluble and dispersive (80% washed out), decrease of subfissile indurated clay.
2000 - 2030m	Claystone, calcareous, gradational to siltstone (20 - 30%), increasing brown grey fractions, soft, 70% dispersive clay, leaving firmer silty and indurated fragments, thin <u>Sandstone</u> interbeds, light brown grey, friable, very fine to fine, poorly sorted, high clay matrix with assorted calcareous lithic grains, and forams, minor fine pyrite.
2030 - 2090m	Claystone calcareous, 20 - 30% grading to siltstone, grey to brown grey, green grey fragments, soft to firm, 70% dispersive clay, leaving firm, blocky silty fragments as above with minor trace pyrite locally.
2090 - 2170m	Claystone calcareous, as above (up to 70% of rock) with Siltstone grey to medium grey, grey brown, moderately hard, calcareous cement, occasionally fine sand grains, laminated with Claystone (10%) medium grey, hard calcareous, cemented, micro-laminar, non fossiliferous, occasionally pyritic.
2170 - 2242m	Claystone, light grey to cream, soft to firm, amorphous, highly calcareous, rarely fossiliferous, occasionally forams, interbedded with Claystone medium grey, calcareous, hard, cemented, blocky to subfissile and laminated with Siltstone medium grey to grey brown, hard,

moderately calcareous, blocky with occasional sand; disseminated fine grain quartz, clear to frosty, rounded, rarely iron-stained, fine trace glauconite towards the base.

GURNARD FORMATION - LATE ECCENE TO OLIGOCENE (2242 - 2333m KB)

2242 - 2253m

Claystone, light grey to medium grey, light brown, occasionally cream, oxidised, irregular iron-stain, silty and sandy, highly calcareous firm - moderately hard, grading to Marl with occasional Sandstone bands, cream light grey, becoming clear towards the base, very fine grained, hard, tight, subangular, calcareous cement, trace glauconite.

2253 - 2278m

<u>Claystone</u>, medium grey, firm to hard, subfissile to blocky, grading in part to marl, light to medium grey, firm-soft, amorphous, minor

Sandstone, medium grey, very fine grained, highly calcareous and argillaceous, hard, decreasing with depth, trace glauconite and sandstone, clear, quartzose non argillaceous.

Late Eocene (2278 - 2333m)

2278 - 2294m

Sandstone, brick red, very fine grain, medium grey, highly calcareous, highly argillaceous, glauconitic, hard, cemented. Claystone, brick red soft, amorphous with Siltstone, dark grey - green, glauconitic, hard blocky, calcareous, grading to very fine grain sandstone.

2294 - 2333m

Sandstone, dark grey-green, very fine to fine grained, non calcareous, slightly micaceous and glauconitic, well sorted, hard, argillaceous wackestone, highly lithic. Sandstone, red-brown, amber, frosty, fine occaionally coarse grained, with granules, well rounded, subspherical, loose with red-brown clay matrix, minor Claystone, medium grey calcareous, hard, subfissile, splintery, silty, homogeneous (Core No. 1 2312.6 - 2320.2).

UNDIFFERENTIATED LATROBE GROUP - EARLY EOCENE TO PALEOCENE (2333m - T.D.)

Early Eocene (2333 - 2520m KB)

2333 - 2352m

Sandstone, medium grey, brown to dark brown, fine grain, friable, highly argillaceous, occasionally rounded coarse grain, but generally subangular and clear, moderate to well sorted, trace pyrite and mica, slightly lithic.

2352 - 2371m

Sandstone, light grey, clear, frosted, fine to medium grain, subangular, with occasional coarse grain, rounded, quartzose, loose to friable, well sorted, mature texture, minor silica cement, excellent visual porosity, trace disseminated pyrite on grains and in granular fractions, tr mica and lithic fragments, very minor trace carbonaceous cement.

2371 - 2380m

Sandstone/Wackestone, medium brown, fine - medium grain, with occasional coarse grain, poorly sorted, more than 15% brown clay matrix, quartzose, grains generally subangular and clear with subrounded, frosted coarse grains, hard, sucrosic, slightly recryst., and silica cement, highly carbonaceous in part. Claystone, light grey - medium grey, masive, moderately hard, blocky - subfissile, grading to shale in part, slightly, calcareous, silty, and carbonaceous in part, traces of pyrite minor Coal (at 2372 & 2374M) black, hard, sub- bituminous, occasional conchoidal fracture, resinous lustre, micropyritic.

2380 - 2389m

<u>Sandstone</u>, light grey, clear, medium to coarse, quartzose, angular to subangular, well sorted non calcareous, moderately silica cemented, firm, excellent visual porosity, trace lithic fragments. Minor <u>Shale</u> dark brown to grey brown, subfissile - fissile, carbonaceous, hard, non calcareous.

2389 - 2409m

Interbedded <u>Siltstone</u>, <u>Shale</u>, <u>Coal</u> and minor <u>Sandstone</u>.

<u>Siltstone</u> medium brown, hard, blocky, highly argillaceous, carbonaceous, tr. pyrite <u>Shale</u> dark brown to grey brown, block, hard, carbonaceous, moderately calcareous.

<u>Coal</u>, black, hard, sub-bituminous, resinous <u>lustre</u>, occasional conchoidal fracture.

Sandstone, medium dark grey, fine to very fine grain, moderately hard-hard, argillaceous, subangular to subrounded occasional medium grain, quartzose, frosted, moderate - poor sorted, tr carbonaceous material and laminations of dark grey shale, slightly lithic and micromicaceous in part, poor visual porosity.

2409 - 2418m

Sandstone, medium - coarse grain, loose quartzose, clear occasional frosted, argillaceous and silty in part, tr of pyrite, slightly lithic and micaceous.

2418 - 2403m

Claystone, light to medium grey green, moderately hard, slightly calcareous, splintery to blocky, homogeneous, fracture along bedding planes with Coal, black, hard, sub-bituminous, resinous lustre, occasional conchoidal fracture, with minor Sandstone interbeds, very light grey to light brown, fine to very fine grain, subangular, occasional frosted, quartzose, friable, argillaceous and silty, slightly lithic and micaceous.

2430 - 2443m

<u>Sandstone</u>, clear, quartzose, medium to coarse, loose, subangular, with minor clay and fossil plant fragments.

2443 - 2496m

Interbedded <u>Claystone/Shale</u>, <u>Coal</u> and <u>sandstone</u>. <u>Claystone</u>, medium light grey, hard, blocky, calcareous.

<u>Coal</u>, black, sub-bituminous, resinous lustre, micropyritic, hard, occasional conchoidal fractures.

Sandstone, medium grey brown, fine to very fine, hard, silty, poor visible porosity, argillaceous, carbonaceous, quartz grains angular and clear, trace lithic fragments, non calcareous.

2496 - 2505m

Quartzwacke, very light grey, fine to medium grain, quartz grains in more than 50% white non carbonaceous, clay matrix, grains are generally quartz and occasional medium grey lithic, subrounded and frosted, poorly sorted, poor visible porosity, immature, soft, trace carbonaceous streaks.

2505 - 2520m

Interbedded <u>Siltstone</u>, <u>Shale</u>, <u>Claystone</u> and minor <u>Sandstone</u> and <u>Coal</u>. <u>Siltstone</u>, dark grey, brown, highly argillaceous carbonaceous, sandy in part, firm, occasional chloritic and lithic, micaceous, non calcareous.

Shale, dark grey, silty, moderately hard, subfissile, splintery, grading to Claystone homogeneous, with thin laminae of coal.

Sandstone, coarse grain, subangular, frosted loose, quartzose, clean, poorly cemented, minor silicae cement, trace pyrite and Coal as above.

Early - Late Paleocene (2520 - T.D.)

2520 - 2543m

Sandstone, medium to light grey, cream to buff, fine to very fine grain, sucrosic, moderately hard-friable, non calcareous, argillaceous, occasionally very fine quartz grains, subangular - angular, clear, highly argillaceous with cream and light brown matrix, minor intergranular cement, slightly calcareous, pyritic, interbedded with Claystone, cream firm to soft, microlaminated, non calcareous with abundant black carbonaceous specks and partings, Shale and Siltstone as above, minor Coal at 2536 black, sub-bituminous, resinous lustre, hard occasionally conchoidal fractures.

2543 - 256lm

Interbedded <u>Sandstone</u>, light grey, fine to very fine grain, sucrosic, firm - friable, slightly argillaceous, with cream clay matrix, occasional rounded dark grey lithic claystone, poorly to

slightly silica cemented, quartz grain subangular to angular, clear, well sorted, very good visible porosity, slightly micaceous with <u>Claystone</u>, medium grey, brown, blocky firm, and occasionally silty and highly carbonaceous <u>Siltstone</u> dark brown argillaceous, sandy, carbonaceous, firm, blocky.

2561 - 2571m

<u>Sandstone</u>, medium grain, quartzose, subangular frosted, non calcareous, with argillaceous matrix, silty and slightly lithic, with occasional bends of darker lithics, well sorted, good visible porosity.

2571 - 2594m (TD)

Interbedded Sandstone, Shale and Coal.

Sandstone, medium grey, buff, very fine to fine grain, quartzose, firm - hard, friable, non calcareous, subangular, well sorted, occasional argillaceous, comm. carbonaceous material on grain boundaries, trace mica and chloritised lithics.

<u>Shale</u>, very dark brown, carbonaceous hard fissile, microlaminated, platy, occasionally slightly silty and microcrystalline pyrite.

Coal, black, sub-bituminous, resinous to waxy lustre, splintery, very hard, occasional conchoidal fracture, micropyritic in laminae, minor Claystone, medium brown, firm-moderately hard, silty, blocky to platy, trace very fine carbonaceous debris.

Appendix 2 Sidewall Core Description

APPENDIX 2

SIDEWALL CORE DESCRIPTION

APPENDIX II

SIDEWALL CORE DESCRIPTION

Run No. 1

(SHOT 51: RECOVERED 29, MISFIRED 18, EMPTY 4)

SAMPLE NO.	DEPIH (KB)	RECOVERY	DESCRIPTION
1	2590m	25mm	<u>COAL</u> ; Black, sub-bituminous, waxy, hard, massive.
2	2574m	12mm	SANDSTONE; Medium grey, fine to very fine grain, firm friable, non - calcareous, argillaceous with clay matrix, very minor lamination and specks of dark mineral, poor visible porosity. Dark material is carbonaceous, slightly darker and more argillaceous bands are interlaminated (2mm).
3	2562m	12mm	SANDSTONE; Quartzose, frosted, medium grain, subangular, non-calcareous, with argillaceous matrix, uncemented, soft, slightly lithic, with bands of darker and argillaceous sandstone with minor chloritic lithic fragments, well sorted, good visible porosity.
4	2560m	NIL	EMPTY
5	2548m	NIL	EMPTY

6	2536	5m 7mm	SANDSTONE; Light to medium grey, fine grain, subangular quartz grains, patchy, silty specks of lithic fragments, non-calcareous, minor clay matrix, good visible porosity, trace carbonaceous material and mica.
7	2528	Sm 7mm	SHALE; Dark grey, silty, subfissile, splintery, moderately hard, grading to claystone in part, homogeneous, with very thin laminated coal streaks (greater than lmm).
8	2514	lm 12mm	SILTSTONE; Dark grey, highly argillaceous, sandy, firm, micaceous. Sub-parallel laminations and chloritized lithic grains with disseminated carbonaceous fragments.
9	2498	in 9mm	QUARTZWACKE; Very light grey, fine to medium grain with quartz grains in greater than 50% white clay matrix; grains predominantly quartzose with occasional medium grey lithic grains. Quartz grains subrounded and frosted. Rock is poorly sorted, poor visible porosity, texture immature, soft with minor sulphide development and trace carbonaceous streaks.
10	2487	.5m 25mm	COAL; Black, resinous to vitreous lustre, sub-bituminous, microlaminated, blocky, hard, trace conchoidal fracture.
11	. 2470	m 31.mm	COAL; Black, waxy lustre, moderately hard, sub-bituminous massive.

12	2454m	9mm	SHALE; Very dark grey and grey/brown, carbonaceous, massive, subfissile, hard, silty, blocky to splintery.
13	2446.5m	25mm	<u>COAL</u> ; Black, resinous lustre, sub- bituminous, microlaminated, blocky, hard, trace conchoidal fracture.
14	2419m	19mm	COAL; Black, hard, sub-bituminous tsilty to sandy with fine grain sand, faintly laminated, resinous lustre.
15	2406.5m	12mm	SANDSTONE; (Greywacke); Medium to dark grey, highly argillaceous, very fine grain, moderately hard, poor visible porosity, occasional medium grain. Grains subangular to subround, frosted, moderately to poorly sorted, common lithics, trace carbonaceous material and laminations of dark grey shale.
16	2390.5m	9mm	SILTSTONE; Very dark grey-brown, highly carbonaceous, sandy, with fine to medium quartz grains. Hard, friable, non-calcareous, argillaceous and slightly indurated with quartz cement and sub-parallel laminations in a carbonaceous shale matrix. Wackestone texture.
17	2378m	6mm	CLAYSTONE; Light grey, massive, moderately hard, very slightly calcareous, blocky, minor carbonaceous debris. Trace laminae and very slightly silty.

	18	2372m	19mm	SANDSTONE; Wackestone, medium brown, medium to fine grain with very occasional coarse grain, poorly sorted, greater than 15% brown carbonaceous clay matrix, hard, quartzose. Grains generally subangular and clear with subround, frosted coarse grains. Sucrosic, with slight recrystalisation and silica cement. Contorted carbonaceous laminae are probable root casts.
ř	19	2369m	9mm	SANDSTONE; Light grey, fine to medium grain, slightly banded, clean, quartzose, soft modeately consolidated, friable, sucrosic. Grains subangular and frosted with very minor siliceous cement. Slight pyrite deelopment and trace mica. Occasional carbonaceous laminae. Excellent visible porosity.
	20	2359m	6mm	SANDSTONE; Light grey, fine to medium grain, slight banding, clean, quartzose, soft, moderately consolidated, friable and sucrosic. Grains are subangular and frosted with very minor siliceous cement. Trace pyrite and mica development. Excellent visible porosity.
	21	2354m	12mm	SANDSTONE; Light grey, fine grain and subangular with occasional coarse, rounded grains. Quartzose with trace lithics, friable, clear and texturally mature with minor calcite cement and trace silica overgrowths. Excellent visible porosity.

22	2339m	NIL	EMPTY
23	2336m	NIL	EMPTY
24	2334.5m	12mm	SANDSTONE; Dark grey with submetallic lustre, coarse grain, indurated, very highly carbonaceous, argillaceous. Grains are quartzose, subrounded to round, frosted, with carbonaceous coatings and iron - stained surface. Micro-crystalline sulphide development in matrix. Very poor visible porosity. (Possible soil profile ?).
25	2328.5m	1.2mm	SANDSTONE; Dark grey/green, fine to very fine grain, glauconitic, argillaceous and trace carbonaceous. Wackestone texture with greater than 15% dark grey argillaceous matrix. Moderately hard and friable with poor visible porosity.
26	2304.5m	1.2mm	SANDSTONE; Dark grey/green, fine and occasionally coarse grain, highly argillaceous, glauconitic with dark clay matrix (greater that 15%). Wackestone texture as for 2328.5m but more poorly sorted, moderately hard, friable, very slightly micaceous, calcareous. Quartz grains are subangular to angular and clear with amber, coarse grains in a clay matrix.
27	2293m	25mm	SILTSTONE; Brick red, very heavily oxidised, lateritic, sandy with very fine to medium grain sand, grains generally subrounded and frosted. Hard, massive, highly calcareous. Very poorly sorted, very poor visible porosity. (Probably weathering profile).

28	2282m	22mm	SILTSTONE; Brick red, very heavily oxidised, very highly argillaceous and moderately sandy. Fien grain sediment (clay to very fine sand), poorly sorted, massive and hard. Grains are subrounded and frosted. Very poor visible porosity.
29	2279.5m	9mm	SILTSTONE; Dark grey/green, hard, tight, highly argillaceous and sandy. Very poorly sorted with trace glauconite. Calcareous with numerous angular lithic claystone and siltstone clasts.
30	2278m	28mm	SILTSTONE; Dark grey/green as for 2279.5m.
31	2276.5m	25mm	SILTSTONE; Grading to Sandstone; Dark grey/greeen, glauconitic, calcareous, highly sandy with subrounded, frosted to iron stained quartz grains. Highly argillaceous and blocky.
32	2275m	31mm	CLAYSTONE; Grey/green, hard, tight with abundant silt and fine to very fine grain sand in clay matrix. Poorly sorted sediment with dominant clay content. Grains are subrounded and quartzose.
33	2270.5m	28mm	CLAYSTONE; Dark grey, massive, hard, very slightly micaceous, slightly sandy and highly calcareous. Very poorly sorted and silty, homogeneous and tight with trace glauconite.

34	2260m	NIL	MISFIRE
35	2252m	NIL	MISFIRE
36	2241m	NIL	MISFIRE
37	2220m	NIL	MISFIRE
38	2211m	NIL	MISFIRE
39	2204m	NIL	MISFIRE
40	2197.5m	NIL	MISFIRE
41	2189m	NIL	MISFIRE
42	1918.5	NIL	MISFIRE
43	1910m	NIL	MISFIRE
44	1898.5m	NIL	MISFIRE
45	1890m	NIL	MISFIRE
46	1881.5	NIL	MISFIRE
47	1410m	NIL	MISFIRE
48	1390m	NIL	MISFIRE
49	1370m	NIL	MISFIRE
50	1354.5m	NIL	MISFIRE
51	1343.5m	NIL	MISFIRE

Run No. 2

(SHOT 30: RECOVERED 19, MISFIRED 2, LOST 9)

52	2562m	NIL	LOST
53	2556m	16mm	SANDSTONE; Light grey, fine to very fine grain, finely laminated, friable and sucrosic with very good visible porosity. Quartzose with slight silica cementation and quartz overgrowths. Well sorted, clean, non-calcareous, very slightly micaceous and texturally mature. Grains are subangular to angular and clear with occasional round, dark grey lithic clasts.
54	2548m	16mm	SANDSTONE; Very light grey, slightly argillaceous with cream clay matrix. Fine grain, sucrosic, firm, poorly cemented and slightly micaceous. Grains are subangular and clean with occasional lithics.
55	2529m	19mm	SANDSTONE; Light to medium grey, fine grain, sucrosic, moderately hard, ocasionally very fine grain. Highly argillaceous with cream and light brown matrix and minor intergrainular cement. Slightly calcareous, and moderately pyritic. Quartz grains are subangular to angular and clear.
56	2459m	NIL	LOST

57	2431m	NIL	LOST
58	2411m	NIL	LOST
59	2382m	12mm	SANDSTONE; Light grey, coarse to medium grain, quartzose, clean, very well sorted, non-calcareous, moderate silica cement, massive, friable. Grains subangular and clear with occasional coarse grain with quartz overgrowth. Good visible porosity.
60	2339m	19mm	SANDSTONE; Medium grey/brown to dark brown with moderately sharp contact between colour bands. Fine grain, friable, highly argillaceous with trace pyrite and mica. Moderately well sorted, texturally immature and slightly lithic. Grains are generally subangular and clear but occasionally coarse, round and iron-stained.
61	2336m	NIL	LOST
62	2296m	NIL	LOST
63	2287m	19mm	SILTSTONE; Red/brown, slightly glauconitic, highly argillaceous, weathered and oxidised, hard, moderately cemented, highly calcareous, micaceous. Sandy with fine grain, angular, clear to amber quartz grains.
64	2260m	NIL	LOST

65	2253m	22mm	SANDSTONE; Medium to dark grey, fine grain, banded with moderately sharp contact between colours. Argillaceous, highly glauconitic and moderately calcareous. hard and slightly cemented with poor to fair visible porosity and trace laminar banding. Grains are subangular to subrounded and frosted.
66	224lm	NIL	LOST
67	2220m	31mm	CLAYSTONE; Medium grey, laminated, homogeneous, blocky, with slight development of fissility. Calcareous, non-sandy and non-silty. Moderately hard and tight.
68	2211m	19mm	SILTSTONE; Medium grey, blocky, moderately hard, cemented, homogeneous, argillaceous and highly calcareous.
69	2204m	25mm	CLAYSTONE; Medium grey, hard, calcareous cement, blocky, slightly laminated, highly silty.
70	2197.5m	6mm	CLAYSTONE; Medium grey as for 2204m.
71	2189m	31mm	CLAYSTONE; Medium grey, hard, cemented, slightly calcareous, laminar with slight fissility. non-silty and non-sandy.
72	1918.5m	19mm	CLAYSTONE; Medium to dark grey, massive, blocky, silty and sandy, highly calcareous with sulphide development. Grading to Marl.

73	1910m	NIL	LOST
74	1898 . 5m	31mm	CLAYSTONE/MARL; Medium grey, massive blocky, silty, non-sandy, highly calcareous, moderately hard and cemented.
75	1890m	31.mm	MARL; Medium grey with abundant white calcite flecks. Highly calcareous, moderately hard, cemented, massive and very slightly silty.
76	1881.5m	31mm	MARL; Medium grey as for 1890m but lacking calcite flecks.
77	1410m	NIL	MISFIRE
78	1390m	44mm	CLAYSTONE; Medium grey, massive, hard, blocky, homogeneous, moderately calcareous, non-silty and non-sandy.
79	1370m	38mm	CLAYSTONE; Medium grey, as for 1390m but exhibiting laminar parting.
80	1354.5m	NIL	MISFIRE
81	1343.5m	25mm	MARL; Medium grey, massive, hard, homogeneous, highly calcareous, very slightly silty.

Appendix 3

Core Description & Analyses

APPENDIX 3

CORE DESCRIPTION AND ANALYSES

CORE DESCRIPTION				TION		1	CORING INTERVAL 7.6 M	WELL EDINA #1
ААР					P		RECOVERY LENGTH 7:0 M % RECOVERY 92%	CORE NO. ONE
BASIN GIPPSLAND						1	OPERATION DATE 17-10-82 ORE BARREL CHRIS. MUD SALTWATER TYPE STRATAPANDIA 6 4 24 GEL POLYMER	
DEPTH	A.S RECOV	GRAINS	Ø CO3	SEC T.	Fluo. Dir L ST	RS	LITHOLOGICAL	DESCRIPTION
2312-6			Doc. 6%		7 (_	2312.73 m <u>SANDSTONE</u> ; Dark gree medium groin, wackestone, hard are quartzose, subangular, clee Medium grains are rounded, fr (>15% of rock) is dark grey/gree careous with interstitial glaucon 2313.05 m <u>SANDSTONE</u> ; Medium	thight, cemented. Grains or to frosted, well sorted. osted, iron-stained. Matrix, on, argillaceous, non-calite and trace biotite.
-2314.0			DOL 21%	1 1 1 1 1 1 1 1 1		, , ,	fine to medium grain, hard, ce careous, poor visible porosisubangular, clear, well sorted dark brown, rounded, altered siliceous and slightly calcare mineral development. Occasio laminae. Trace mica.	mented, slightly cal- ty. Grains quartzose, 1. Medium grains are lithics. Matrix is cous with little clay
			DOL.	(1 X Z			2314.3m <u>SANDSTONE</u> ; Dark grey with occasional medium, grain. Me and slightly pyritic, well sorte matrix and abundant mica and development in matrix. Grain	d, dark grey clay dinterstitial glauconite sare quartzose, sub-
- 23 15·0			DOL 3%	3 X X X X X X X X X			angular, clear, very slightly cemented, friable, microsco	·
- -2316·0			DOL 4%	X X X X X X X X X X		-	2315.57m SANDSTONE; Media at 2313.05 m. Extensively mottle argillaceous with numerous a lithic grairs.	ed, cemented, hard,

								CORING INTERVAL 7.6 m WELL EDINA #1
	CORE DESCRIPTION					P		RECOVERY LENGTH 7.0 M
								% RECOVERY 92 % TOP 23/2.6 m
1	PERMIT VIC/PIT						-	OPERATION DATE 17-10-82 BASE 2320 · 2 M
BA	BASIN GIPPSLAND							CORE BARREL CHRIS MUD SALTWATER TYPESTRATAMXDIA 6444 GEL POLYMER GEOLOGIST S. FORDER
DEPTH	AS RECOV	GRAINS	Ø	CO3	SEC T.	Fluo. Dir 도 크라오 등	STR	S LITHOLOGICAL DESCRIPTION
23/6·6					# - X - X - X - X - X - X - X - X - X -	3	~	2316-72m SANDSTONE; Dark grey and dark grey/ green, hard, cemented, slight interstitial carbonate, very fine to medium grain, moderately sorted, highly argillaceous, wackestone, quartz and dark brown altered lithic grains in clay matrix with mica.
				DOL 6%	*			
- 23/8-0					- × - × - × - × - × - × - × - × - × - ×			2318.43 M SANDSTONE; Dark grey/green, mottled, as above, but increase in very fine grain to fine grain sand content at expense of matrix malerial.
-2319.0				Dol 2%	* n *			Rock is non-calcareous packstone.
				Dol 3%	X TAX			Trace only of pin-point blue-white fluorescence was noted in core and poor diffuse blue-white cut. Boundaries of individual sand units were
-2320-0								too indistinct to be noticed in whole core. When core is slabbed the boundaries and any faint structures will be noted.

AUSTRALIA Date 20th. October, 1982 Company Australian Aquitaine Pet. Country VICTORIA Elevation /ell EDINA No. I State Field ______ Location VIC / PI7 ____ File No C.A. 3 - C.A. I. United Tool Service Pty. ctd. AusLog Pty. Ltd. AusCore Pty. Ltd. The AusOil Group of Companies Total Water Saturation-X Permeability Gamma Log Porosity (Increasing) (Percent) (Millidarcys) Oil Saturation-O 10.0 -2310 BASE LINE CORE NO. 1 2312 6 to -2315 2319 6 m. -2320 -

CONVENTIONAL CORE ANALYSIS FINAL DATA REPORT

Company:	AUSTRALIAN AQUITAINE	Country:	AUSTRALIA	Date: 23.10.82
Well:	EDINA #1	State: _	VICTORIA	Elevation:

Fleid:		Location:		File: _	C.A.3-C.A.1	
Sample	INTERVAL from - to	POROSITY (%)	Grain DENSITY	PERM (md) to air	SATU	sidual RATION ore vol)
No.	110111 - 10	(76)	DENOTE:	to an	OIL	WATER
1	2312.70	17.7	2.69	1.22		
2	2313.00	15.0	2.76	0.49		75.7
3	2313.30	16.3	2.73	2.83		
4	2313.60	16.8	2.75	3.70		
5	2313.90	14.9	2.79	0.58		į
6	2314.20	16.4	2.75	1.44		90.7
7	2314.50	19.0	2.74	1.12	Unnatural F	racture
8 - ,	2314.80	17.6	2.70	2.49		
9	2315.10	18.0	2.66	3.13		
10	2315.40	19.0	2.71	2.24		83.4
11	2315.70	16.5	2.71	0.22		
12	2316.00	14.3	2.71	0.11		
13	2316.30	11.9	2.83	0.071		78.1
4	2316.60	11.3	2.85	0.036		
15	2316.90	15.6	2.76	- 0.050		
16	2317.20	11.3	2.79	0.054		90.9
17	2317.50	11.5	2.82	0.077		
18	2317.75	11.5	- 2.86	0.072		87.1
19	2318.00	12.6	2.88	0.060		88.0
20	2318.30	12.0	2.89	0.095		
21	2318.60	13.3	2.86	0.076		89.8
22	2318.90	13.4	2.83	0.098		
23	2319.15	15.2	2.79	0.22		
24	2319.40	16.4	2.78	0.20		

Appendix 4

Palynological Examination

APPENDIX 4

PALYNOLOGICAL EXAMINATION, SPORE COLOURATION AND KEROGEN TYPING

<u>BY</u>

W. K. HARRIS

EDINA NO. 1 WELL, GIPPSLAND BASIN

PALYNOLOGICAL EXAMINATION, SPORE COLOURATION AND KEROGEN TYPING.

by

W.K. Harris

PALYNOLOGICAL REPORT

Client : Australian Aquitaine Petroleum

Study : Edina No. 1 Well, Gippsland Basin.

Aims : Determination of age and distribution of remagen types and

spore colour.

INTRODUCTION

Twenty eight sidewall cores and two core samples from Edita No. 1 Well drilled in the Gippsland Basin at Lat. 38°36'22.4"S, Long. 147°52'41.1" in Vic. P17 were processed by normal palynological procedures.

The basis for the biostratigraphy and consequent age determinations are based on Stover and Partridge (1973) and Partridge (1976).

OBSERVATIONS AND INTERPRETATION

A. Biostratigraphy

Table I summarises the biostratigraphy and age setterminations of the samples studied. Tables II and III indicate the distribution of spore/pollen and dinoflagellate species respectively.

Most samples yielded reasonably well preserved and moderately diverse assemblages. These data are also documented on Table 1. Two samples from a core at 2317.46 and 2318.78m were virtually barren of colant microfossils.

1. <u>Lygistepollenites balmei</u> zone: - 2528-2590m.

This zone is represented by only two samples with low diversity. In particular the presence of <u>L. balmei</u> with <u>H. Farmisii</u> and <u>S. punctatus</u> supports their correlation. The absence of <u>Gammerina edwardsii</u>, <u>G. rudata</u> and the presence of <u>M. diversus</u> would suggest that the Upper <u>L. balmei</u> subdivision is represented.

An alternative interpretaion is that <u>L. Balmel</u> is reworked and the samples are of <u>M. diversus</u> age. However the absence of any thin characteristic <u>L.balmei</u> or older species is evidence against this. No marine indicators were recorded and the sediments are of terrestrial origin. The age of this assemblage is Middle to <u>Latte</u> Paleocene.

2. Malvacipollis diversus zone: - 2419-2514m

The onset of this zone is marked by the appearance of <u>C. orthoteichus</u>, <u>S. prominatus</u> and <u>P. demarcatus</u>. This assemblage at <u>2514.5m</u> although not very diverse is consistent with an Upper <u>M. diversus</u> correlation. This is supported further by the inclusion in subsequent samples of H. astrus.

Two incursions of dinoflagellates are recorded of 2514.5 and 2454m. The younger samples contains very few species but is consistent with assemblages of Upper M. diversus age. In particular D. pachyceros is commonly recorded from the M. diversus zone. The older sample contains two species of significance - A. temponorphum and K. leptocerata. These two support a correlation with the Upper M.

TABLE 1 EDINA NO. 1 WELL SUMMARY OF PALYNOLOGICAL DATA

DEPTH	SWC	PRESERVATION	DIVERSITY	SPORE/POLLEN ZONE	CONFIDENCE LEVELS	ENVIRONMENT
2590	1	poor	very low	L. balmei (upper)	4	Non marine
2528	7	poor	low	L. balmei (upper)	4	Non marine
2574.5	8	fair	low	M. diversus (upper)	4	Marginal marine
2487.5	10	fair	very low	M. diversus (upper)	4	Non marine
2470	11	fair	very low	M. diversus (upper)	4	Non marine
2454	12	pood	high	M. diversus (upper)	5	Marginal marine
2446.5	13	fair	verylow	M. diversus (upper)	4	Non marine
2419	14	fair	very low	M. diversus (upper)	4	Non marine
2390.5	16	poor	moderate	P. asperopolus	5	Marginal marine
2372	18	fair	moderate	P. asperopolus	5	Marginal marine
2328.5	25	good	moderate	P. asperopolus	5	Near Shore marine
2318.78	Core	barren	-	-	-	-
2317.46	Core	barren	-	-	-	-
2304.5	26	poor	very low	un-named dino. unit	-	Open Marine Shelf?
2278	30	poor	very low	"	-	Open Marine Shelf
2276.5	31	poor	very low	11	-	Open Marine Shelf
2275	32	fair	very low	"	-	Open Marine Shelf
2270.5	33	good	very low	11	-	Open Marine Shelf
2220	67	good	very low	11	-	Open Marine Shelf
2211	68	good	very low	11	-	Open Marine Shelf
2204	69	good	very low	"	-	Open Marine Shelf
2197.4	70	fair	very low	11	-	Open Marine Shelf
2189	71	good	very low	II .	-	Open Marine Shelf
1918.5	72	good	very low	11	-	Open Marine Shelf
1898.5	74	good	very low	11	-	Open Marine Shelf
1890	75	good	very low	11	-	Open Marine Shelf
1881 . 5	76	good	very low	11	-	Open Marine Shelf
1390	78	fair	very low	11	•	Open Marine Shelf
1370	79	good	very low		•	Open Marine Shelf
1343.5	81	good	very low	11	•	Open Marine Shelf

Confidence Levels.

¹ cuttings sample, low diversity ± contaminants
2 cuttings sample, good assemblage
3 core or sidewall core, low diversity, ± contaminants

EDINA NO. 1 WELL

DISTRIBUTION OF SPORES AND POLLEN

Spores/Pollen	2590	2528	2514.5	2487.5	2470	2454	2446.5	2419	2390	2372	2328.5	2318.5	2317	2304.5	2278	2276.5	2275	2270.5	2220	2211	2204	2197.4	2189	1918.5	1898.5	1890	1881.5	1390	1370	1343.5
Baculatisporites comaumensis Cyathidites splendens	X X	X							X													X								
Dictyophyllidites sp.	X	X					X																							
Gleicheniidites circinidites	X X	X X	Χ	X X	X X	X X	Χ	X		X	X				X X		٧,	X	X X	X	v	v	.,	χ	.,	X	χ	X		X
Haloragacidites harrisii Lygistepollenites balmei	χ	X		٨	Λ	٨				λ					λ		X	χ	Χ	Χ	X	Χ	Χ	Х	X	Χ	Χ	χ	Х	Х
Laevigatosporites major	Χ	^																						Χ						
Nothofagidites senectus cf.	Χ																													
Podocarpidites sp.	X	X	v	Χ	Χ	X			Χ	Χ	.,				X	X	X X	X			X	X	X	χ	Χ	Χ	χ	X	Χ	Χ
Phyllocladidites mawsonii Proteacidites parvus	X X	X X	X X			X X			χ		X X			Χ	X X		Х	Χ					Χ					X		
Simplicepollis meridianus	x	X	^			χ̈́			^		۸			۸	۸											χ				
Stereisporites antiquisporites	X	Χ	Χ			X													Χ	χ						X				
S. (Tripunctisporis) punctatus	X	X																												
Tetracolporites verrucosus	X	X				v									.,			.,			.,									
Araucariacites australis Cyathidites australis		X X				X X									X X	χ		Χ	v	Χ	Χ	χ		v	Χ	χ	χ	v		v
Lygopodiumsporites sp.		X				^									٨	^			^	^		^		^	۸	۸	^	۸		Χ
Malvacipollis diversus		Χ	Χ			χ			X	X					χ		Χ		Χ	Χ										
Myrtaceidites parvus/mesonesus		X		X	X						X						χ		Χ	Χ		Χ	Χ	Χ				Χ	Χ	
Nothofagidites brachyspinulosus N. endurus		X X	X			Χ			X	χ	Χ			X	X	Χ	Χ	Χ												
N. flemingii		X				Χ		1		X	χ				Χ	Y	Χ	Y												
Microcachryities antarcticus		Χ			Χ	X				^	^				^	^	^	^	Χ	χ										
Podosporites sp.		Χ		X	Χ	X									Χ		X													
Proteacidites spp.		X	v		v	v	X	X	v.							X	Χ													
Proteacidites reticuloscabratus Cupanieidites orthoteichus		X	X X		X	X X		•	X Y		Χ																			
Laevigatosporites sp.			X			X	χ	X	X		٨							Х												

	2590	2528 ?	2514.5	3487.5	2470	2454	2446.5	2419	2390	2372	2328.5	2318	2317	2304.5	2278	276.5	2275	2270.5	2220	2211	2204	2197.4	2189	1918.5	1898.5	1890	1881.5	1390	1370	1343.5
Matonisporites gigantis Nothofagidites emgradys heterus Periporopollenites demarcatus	i		X X X			χ	X	Χ		X	X		·	X	X	X	X X	X X	X X	X X		χ	χ	X	X	X	X	X	X	Χ
Spinizonocolpites prominatus Lygistepollenites florinii Proteacidites pseudomoides Proteacidites incurvatus			Х	X X X	X	X			Χ	X X	X						X	X												
Clavifera triplex Proteacidites annularis Tricolporites sp.					X X X	Χ			X	X X																				
Cyathidites aff c. splendens Dilwynites granulatus Ilexpollenites anguloclavatus						X X X									X		X		Y	X										
Nothofagidites vansteenisii P. polyoratus Proteacidites kopiensis P. leightonii						X X X			X X						^		^		^	^										
P. incurvatus P. pachypolus Polypodiidites cf. speciosus						X X X X			X		X												,							
Rugulatisporites mallatus Sapotaceoidaepollenites rotundus Verrucosisporites kopukuensis Camerozonosporites sp.	3					X X	X		X		Χ																			
Ephedripites notensis Polycolpites esobalteus Cyathidities subtilis						,	X		X	X X	X						X X													
Helciporites astrus Myrtaceidites tenuis Parvisaccites catastus Proteacidites latrobensis							۸			X X X																				
Schizocolpus marlinensis Tricolporites mataurensis Bysmapollis emaciatus aff.										X	X																			
Nothofagidites asperus cf. Polypodiidites speciosus Proteacidites asperopolus Santalumidites cainozoicus						<u>,</u>					X X X																			
Nothofagidites asperus Tricolporites sphaerica cf.															X X	X					×χ	X								

en de la composition La composition de la 2487.5 2514.5 2446.5 2211 2220 2270.5 2275 2276.5 2390 2419 2372 2328.5 2317 2318 2304.5 2278 1898.5 1918.5 2204 1881.5 1890

Ischyosporites gremius Nothofagidites deminutus Graminidites sp. Nothofagidites falcatus

χ X

TABLE III

EDINA NO. 1 WELL

DINOFLAGELLATE DISTRIBUTION

Dinoflagellates	2590	2528	2514.5	2487.5	2470	2454	2446.5	2419	2390.5	2372	2328.5	2318	2317	2304.5	2278	2276.5	2275	2270.5	2220	2211	2204	2197.4	2189	1918.5	•	1890	1881.5	1390	1370	1343.4
Muratodinium fimbriatus Thalosisphara pelagica Apectodinium homomorpha			X X X								X																			
Operculodinium sp. Kenloyia leptocerata			X			X										•														
Spiniferites ramosus Cordosphaeridium inodes			X X						Χ						X	Χ	Χ	Χ			Χ	Χ	Χ	Χ	Х	X	Χ	Χ	Χ	Χ
Deflandrea pachyceros Phthanoperidinium sp.						X X					X																			
Glaphyrocysta retiintexta cf. Apectodinium hyperacontha									X X																					
Vozzhennikovia sp. Wetzeliella longispinosa									X	X									1											
Apteodinium australiense cf. Spinidinium essoi cf.									X	χ	Х																			
Wetzeliella longispinosa Operculódinium centrocarpum										X	χ			Х	Х	χ	Χ	χ	Х	Χ	χ	χ	χ	χ	Х	Х	Х	Χ	X	χ
Areosphaeridium sp. Deflandrea darmooria											X						Х		Χ	X					•••		••	•	•	~
Cordosphaeridium fibrospinosum C. gracile cf.	n										X X																			
Tectatodinium sp. Cleistosphaeridium severinii											X X								Χ	Χ	χ		X X	Χ	X	X	Χ			
Hystrichokolpoma rigaudae Deflandrea sp.															X X	X			Χ	Χ	X	X	••							
Apteodinium australiense Impagidinium sp.															X	X X			χ	Χ	Χ		Χ			X X			v	
Lingulodinium machaerophorum	1														X	X			X	X	Χ		X		χ		χ	X	X	

2197.4 2328.5 2304.5 2276.5 2270.5 2487.5 2446.5 2419 2390 2318 2317 2278 2211 2204 2514.5 2454 2372 1881.

Systmeatophora placecantha
Hystrichokolpoma poculum
Hystrichosphaeridium sp.
Baltisphaeridium sp.
Baltisphaeridium nanum
Adnatospaeridium sp.
Impagidinium cf. victorianum

?Pentadinium sp. Corrudinium sp. Achomosphaera ramulifera Nematosphaeropsis balcombiana Opercul odinium acutulum(MS) Hystrichostrogylon membranisphorum Spiniferites adelaidensis(MS) Tectatodinium sp. Lophocysta sp. Systematophora placecantha Hystrichokolpoma rigaudae aff. Spiniferites cingulatus Polysphaeridium pseudocolligerum Cyclopsiella sp. Spiniferites pseudofurcatus Operculodinium sp. nov.

cf. Tuberculodinium sp.
Impagidinium dispertitum cf.
Impagidinium dispertitum aff.
Melitaesphaeridium choanophorum
Batiacasphaera hirsuta

X X X	X		х												
	X X		X X	X	X	X	Χ.	X	X	X	X	X X	X X	X	χ
			X	X X X	X X X	X X X X	X X X X	X X	X X	X X X	X X X	X X X	X X	X	X
						X	X	X X X X		X	X	X			
		•							X	X	Х	Χ	Х	Х	χ
		•									X	X	X	X X	

х х

diversus zone but the dinoflagellate assemblage is not sufficiently diverse to permit a correlation with Partridge's (1976) zones. The presence of dinoflagellates in these two samples indicates deposition in near shore marginal marine environments. The age of this zone is Early Eocene.

Proteacidites asperopolus zone: 2328.5 - 2390.5m
The identification of this zone is based on an abundance of the pollen P. pachypolus and an associated dinoflagellate assemblage. Significant dinoflagellates include: Apectodinium hyperacantha, Wetzeliella longispina and Deflandrea dartmooria which are not inconsistent with this correlation.

Marine dinoflagellates were the dominant palynomorphs in the lowest sample in the zone and indicate deposition in a near shore marine environment. In the other samples dinoflagellates are less abundant but nevertheless indicate marginal marine conditions.

The age of the P. asperopolus zone is Early Eccene.

Mid Tertiary Assemblages 1343.5 - 2278m

Spores and pollen in this interval are very sparse and no correlation can be made on this basis with the onshore Gippsland Basin zones of this age. The assemblages although very sparse, are dominated by marine dinoflagellates. No formal or informal zones have been proposed for these assemblages in Australia. There is some indication in the assemblages that subdivision of the sequence is possible that would need to be tested against other sections. The first appearance of aff. Tuberculodinium sp. and of M. choanosphorum with B. rirsuta may be of some significance. The other species recorded have long ranges from the Late Eocene through most of the remaining Tertiary and into the Holocene.

The palynomorphs in this section indicate an age no older than latest Eocene for the sample at 2278m but no further refinement is possible using palynomorphs.

Furthermore the dominance of dinoflagellates over terrestrial palynomorphs indicates deposition in an open marine environment.

B. Kerogen Types and Spore Colouration

During routine palynological processing of sidewall cores an unoxidised kerogen sample was taken and the nature of the kerogens and spore colouration are documented in Table V. Only those samples which yielded spore/pollen assemblages have been examined. Spore colour is expressed as the "Thermal Alteration Index" (TAI) of Staplin (1969) according to the scale in Table IV.

TABLE IV

Thermal - Alteration Index

Organic matter/spore colour

1 - none

2 - slight

3 - moderate

4 - strong

5 - severe

fresh, yellow brownish yellow

brown black

black and evidence of rock

metamorphism.

Total organic matter (TOM) is expressed semi-quantitatively in the scale-abundant, moderate, low, very low, barren. Samples classed as having abundant or moderate amounts of TOM would be expected to have TOC's (total organic content) greater than 1%.

In this report four classes of organic matter are recognised - amorphogen, phyrogen, hylogen and melanogen and these terms are more or less synonymous with amorphous, herbaceous, woody and coaly. For reasons as outlined by Bujak et al. (1977) the former terms are preferred because they do not have a botanical connotation. The thermal alteration index scale follows that of Staplin (1969) and as outlined by Bujak et al. (1977): at a TAI of 2+ all four types of organic material contribute to hydrocarbon generation whereas at a TAI of 2, only amorphogen forms liquid hydrocarbons. The upper boundary defining the oil window is at a TAI of approximately 3 but varies according to the organic type. Above TAI 3+ all organic types only have a potential for thermal derived methane.

1. Early Tertiary Section

Moderate to abundant TOM is present in most samples from T.D. up to the <u>T. asperopolus</u> zone. The two samples from the <u>L. balmei</u> zone are dominated by phyrogen and melanogen and these form the <u>M. diversus</u> zone show high melanogen with one sample showing high amorphogen. The latter sample at 2454m resulted from a marine incursion.

The three samples from the \underline{P} asperopolus zone are characterised by high amorphogen and this also corresponds with another marine incursion. However these samples have low TOM values.

TAI values from the Early Tertiary indicate immaturity with values barely reaching 2.

Thus the Early Tertiary sequence at this location whilst it probably has adequate organic matter of a favourable nature, is immature for the generation of hydrocarbons.

2. Mid-Tertiary Sequence

All samples from this sequence have low to very low TOM which is dominated by amorphogen. All TAI values are very low and these sediments therefore have low source potential for generating hydrocarbons.

TABLE V EDINA WELL SUMMARY OF MATURATION AND KEROGEN DATA

Depth	ТОМ	SWC No.	Phyr.	Amorpho	Hylogen	Melano	TAI
2590	mod	1	35	_	5	60	2
2528	mod	7	70	15	-	15	2
2514.5	low	8	50	10	Tr.	40	2-
2487.5	abund.	10	Tr.	-	10	90	2-
2470	abund.	11	10	80	Tr.	10	2-
2454	abund.	12	20	70	Tr.	10	2-
2446.5	abund.	13	Tr.	Tr.	15	85	2-
2419	abund.	14	Tr.	-	10	90	2-
2390.5	low	16	Tr.	80	-	10	2-
2372	low	18	50	40	$T_{\mathbf{\Gamma}}$	10	2-
2328.5	v. low	25	20	60	Tr.	70	2-
2318.78	v. low	core	5	90	Tr.	5	ND
2317.46	v. low	core	5	90	Tr.	5	ND
2304.5	v. low	26	5	90	Tr.	5	1
2278	v. low	30	5	90	-	5	1
2276.5	v. low	31	Tr	95	-	5	1
2275	v. low	32	30	20	10	40	1
2270.5	v. low	33	30	30	10	30	1
2220	v. low	67	30	10	20	40	1
2211	low	68	40	20	10	30	1
2204	v. low	69	20	70	-	10	1
2197.4	v. low	70	10	80	5	5	1
2189	v. low	71	5	. 95	_	Tr	1
1918.5	v. low	72	5	90	Tr	5	1
1898.5	v. low	74	10	85	-	5	1
1890	v. low	75	10	90	-	Tr	1
1891.5	v. low	76	10	90	-	Tr	1.
1390	v. low	78	10	85	-	5	1
1370	v. low	79	Ţr	95 95	-	5 5	1
1343.5	v. low	81	$T_{\mathbf{\Gamma}}$	95		>	1

REFERENCES

- Bujak, J.P., Barss, M.S., and Williams, G.L., 1977: Offshore East Canada's Organic Type and Colour and Hydrocarbon Potential. Oil Gas J., 45 (14): 198-202.
- Partridge, A.D., 1976: The Geological Expression of Eustacy in the Early Tertiary of the Gippsland Basin. J. Aust. Petrol. Expl. Assoc., 16: 73-79.
- Staplin, F.L., 1969: Sedimentary Organic Matter, Organic Metamorphism and Oi. and Gas Occurrence. Bull. Can. Pet. Geol., 17: 47-66.
- Stover, L.E. & Partridge, A.D., 1973: Tertiary and Late Cretaceous spores and Pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc. Vict., 85: 237-286.

W.K. Harris

Consulting Geologist

10 January 1983

Appendix 5 Foraminiferal Sequence

APPENDIX 5

FORAMINIFERAL SEQUENCE

IN

EDINA NO. 1

<u>BY</u>

DAVID TAYLOR

FORAMINIFERAL SEQUENCE in EDINA # 1.

for: AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.

December 20, 1982.

DAVID TAYLOR,
23 Ballast Point Road, BIRCHGROVE,2
AUSTRALIA (02)82.5

SUMMARY

THE FORAMINIFERAL SEQUENCE

in

EDINA # 1.

Depth	E-Log		ASSEMBLAGE*	П	П
(m)	Pick	AGE*	ZONE	PALEOENVIRONMENT	LITHO-UNIT
1343.5 to 1390.0		MID MIOCENE	D-2 to E-1	Prograding shelf/ slope edge (~200m)	Deep water facies of GIPPSLAND LIMESTONE
		Sample gap, but	probably conti	nuous	
1881.0 to 2220.0		EARLY MIOCENE	G to H-l	Upper continental slope (<400m) with shelf edge slumping	Deep water facies of GIPPSLAND LIMESTONE
~~~~~	م 2242 م	VV Time gap ≡	10-12 m.y. ✓		mmmmm
2253.0 to 2278.0 2279.5	— 2278 <i>-</i>	EARLY OLIGOCENE  LATE EOCENE	J-2 	Marine transgressive inner shelf at top (<40m) with water depth increase from Lagoonal/Estuarine at base (<10m)	
2328.5				,	
2334.5 to 2369.0	— 2333 <i>-</i> — 2372 <i>-</i>	?	no foraminifera found	Barrier/dune system with lateritic Paleo- soils	?
2378.0 to 2556.0	23/2 -	?	no foraminifera found	Non-marine deltaic complex	LATROBE GROUP

^{*}Biostratigraphy based on Taylor (in prep.). Planktonic foraminiferal distribution for EDINA # 1 is presented on Table 1 of this report with reliability of zonal determinations on the Data Sheet - Table 4.

(Paleo-depth estimates are in parentheses).

Three samples of ditch cuttings were examined between 2075 & 2090m; but for convenience, the results have been combined as one interval of the tabulations.

Interpretations based on distribution of benthonic foraminifera and other sediment grains (>.075mm) as shown on Tables 2 & 3 of this report.

Individual depth of the thirty seven sidewall cores are listed on Tables 1, 2 & 3.

As shown from the summary, the sequence is divisible into four broad units.

- Unit 4 MIOCENE deep water MARINE CARBONATE (interval from 2220.0 to 1343.5m)
- Unit 3 LATE EOCENE/EARLY OLIGOCENE MARINE TRANSGRESSIVE argillaceous and arenaceous; depths progressively deepening up section, accompanied by increase in carbonate components. (Interval from 2253.0 to 2328.5m).
- Unit 2 BARRIER/DUNE SANDS with lateritic paleo-soil horizons (interval from 2334.5 to 2369.0m).
- Unit 1 NON-MARINE DELTAIC SANDS and SHALES (interval from 2378.0 to 2556.0m).

Because no foraminifera were found, no further comment can be made on Units 1 and 2; apart from reference to sediment grain data tabulated on Table 3.

UNIT 3 - As represented in sidewall cores, between 2253.0 and 2328.5m, this interval contains features very similar to those of the transgressive bio and litho facies of the Lakes Entrance Formation in the type area onshore, beneath Lakes Entrance (refer Crespin, 1943, and Hocking & Taylor, 1964). The uppermost Eocene to earliest Oligocene age range for this unit was slightly older in Edina # 1 than in the Lakes Entrance area.

The base of the unit, in Edina # 1 sidewall core at 2328.5m, is regarded here as being the equivalent of the Colquboun Sandstone Member at the base of the Lakes Entrance Formation but it could be argued that it represents an abbreviation of the Gurnard Formation of James & Evans (1971).

HIATUS between UNIT 3 and UNIT 4 at 2242 (= E-log pick) - This widespread event in deep water sections of the Gippsland Basin was apparent in Edina # 1 and corresponds with the worldwide sea-level fall, designated as Eustatic Cycle TO²⁻¹ by Vail & Hardenbol (1979). The signature of this event was both erosive and non-depositional. Some deposited early Oligocene sediment (= Zone J-1) was apparently removed, whilst late Oligocene sediment (Zones I-2, I-1 and H-2) was not permitted to accumulate; probably due to high velocity bottom currents. The time span not represented by sediment in Edina # 1 was some 10 to 12 million years. In shallower water,

marginal sequences (e.g. at Lakes Entrance) this time interval was represented by the Lakes Entrance Formation.

A dramatic shift in paleo-bathymetry is interpreted on either side of this time break. In Edina # 1, the top of the early Oligocene (Zone J-2) sediment was deposited on a shallow shelf platform in approximately 40m of water; whilst the basal early Miocene (Zone H-1) benthonic faunas indicate a paleo-water depth of some 400m. These paleo-bathymetric water depths are based on comparative data, much of which is summarised by Hayward & Buzas (1979) for the early Miocene Tasman Sea.

UNIT 4 - These continental slope and shelf edge carbonate sediments between 2220.0 and 1343.5m represent a typical deep water, Miocene Gippsland sequence, although definite evidence of submarine carbonate fill deposition was not observed. However, periodic downslope slumping was apparent with recycled Eo-Oligocene planktonic foraminifera, as well as shallow water benthonics and sediment grains present in several samples (e.g. in sidewall cores at 2220, 2211 and 2204m, as well as in ditch cutting between 2075 to 2090m; refer Tables 1, 2 & 3).

#### REFERENCES.

- CRESPIN, I., 1943 The Stratigraphy of the Tertiary Marine Rocks in Gippsland, Victoria. Dept. Supply & Shipping Min. Res. Surv. Pal. Bull. 4.
- HAYWARD, B.W. & BUZAS, M.A., 1979 Taxonomy and Paleoecology of Early Miocene Benthic Foraminifera of Northern New Zealand and the North Tasman Sea. Smithsonian Conts. to Paleobiology, 36; 1-154.
- HOCKING, J.B. & TAYLOR, D.J., 1964 The Initial Marine Transgression in the Gippsland Basin, Victoria. APEA Journ. 125-144.
- JAMES, E.D. & EVANS, P.R., 1971 The Stratigraphy of the Offshore Gippsland Basin. APEA Journ. 13; 71-74.
- VAIL, P.R. & HARDENBOL, J., 1979 Sea-Level Changes during the Tertiary.

  Oceanus, 22; 71-79.

	SELECTED BENTHONIC FORAMINIFERA	
	SHALLOW WATER SPECIES  LAGOONAL → INNER SHELF (0-40m)  DEEP WATER  UPPER SLOPE → SHELF EDGE  (400-200m)	ZONE
DEPTH in METRES  of Sidewall Cores = +  & ditch cuttings = ~	Miliolids Cibicides perforatus/opacus Cibicides perforatus/opacus Siphouvigerina canariensis Nodosarids Ammonia beccarii Vulvulina granulosa Gaudryina spp. Ammosphaeroidina sp. Pseudoclavulina rudis Cibicides brevoralis Anomalina vitrinoda Ammodiscus sp. Vaginulopsis gippslandica Anomalina macroglabro Notorotalia crassimorra Lingulina mectungensis Notorotalia crassimorra Lingulina mectungensis Notorotalia bengalensis Pleurostomella tenuis Textularia miozea Karreriella bradyi Siphouvigerina proboscidae Melonis barleeanum Discorbinella berthelotti Cibicides subhaidingera Gassidulina laevigata Anomalina procolligera Globobulimina pacifica Allomorphina qubensis Signoilopsis schlumbergeri Cibicides mediocris Euuvigerina miozea	PLANKTONIC ASSEMBLAGE Z Depth at Base
1343.5 1370.0 1390.0	$\mathbf{x}$	D-2 $E-1 = \frac{137}{139}$
1881.0, 1890.0, 1895.5, 1918.0,	x   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	G 191
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R	H-1
2220.0	~ · · · · · · · · · · · · · · · · · · ·	~~~222
2253.0 _→ 2270.5 _→ 2275.0 _→	^ ~ ~   ~	J-2
2276.5 _→ 2278.0 _→ 2279.5 _→ 2282.0 _→		227
$ \begin{array}{c} 2287.0 \\ 2287.0 \\ 2293.0 \\ 2304.5 \\ 2328.5 \\ \end{array} $	x ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	K
2334.5→ 2339.0→ 2354.0→	? — ? — ? — ? — ? — ? — ? — ? — ? — ? —	232
$2359.0 \rightarrow 2369.0 \rightarrow$		?
$2378.0 \rightarrow 2382.0 \rightarrow 2390.5 \rightarrow 2406.5 \rightarrow 2454.0 \rightarrow$	NO FORAMINIFERA FOUND	?
2514.5 2529.0 2548.0 2556.0		
	EY: • = <20 specimens R = recycled Eo/Oligocene fossils x = >20 specimens N.F.F. = no foraminifera found	

D = Dominant >60% specimens

TABLE 2: DISTRIBUTION of SELECTED BENTHONIC FORAMINIFERA - EDINA # 1. David Taylor, 14/12/82.

#### PE905950

This is an enclosure indicator page. The enclosure PE905950 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905950 has the following characteristics:

ITEM_BARCODE = PE905950
CONTAINER_BARCODE = PE905967

NAME = Residual Grain Analysis &

Paleonenvironmental Assessment Table

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Residual Grain Analysis &

Paleonenvironmental Assessment Table (from appendix 5 of WCR--Foraminiferal

Sequence) for Edina-1

REMARKS =

DATE_CREATED = 16/12/82 DATE_RECEIVED = 6/06/83

W_NO = W784 WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

(Inserted by DNRE - Vic Govt Mines Dept)

#### TABLE 4

WELL NAME: EDINA # 1 TOTAL DEPTH:

HIGHEST DATA

B A S I N: GIPPSLAND

# MICROPALEONTOLOGICAL DATA SHEET

ELEVATION: KB: ____ GL: ___

LOWEST DATA

1		EOD211				T				47.	1	T ***
I A	GE	FORAM. ZONULES	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time
		Al	Deptil	148	Бериг	8		- Doptii	8	F		223.2
PLEIS- TOCENE		A ₂				<del>                                     </del>		-	1			<u> </u>
EE		A ₃										
0 1		A ₄				-			-			
PLIO- CENE		**4							-			
	_	B ₁							+		-	
	LATE	B ₂							_			
		С				<u> </u>						
m	LE	D									ļ	
Z	Ω	D ₂	1343.5	1				1370.0	0			
S E	Ω	El	1390.0	0				1390.0	0			· · · · · · · · · · · · · · · · · · ·
0	I M	E ₂	*					*				
H		F	*					*				
	EARLY	G	1881.0	2	1890	1		1918.0	0			
'	EA	H ₁	12090-75	3	2189	0		T2220.0	1			
		H ₂	12090-73	3	2105	-						
ы	T E	I ₁										
OLIGOCENE	Æ	1 1 ₂	<u> </u>						+			
000	1	J 1							+		1	
GE1	EARLY	J ₂							-	0076 5		
-		2	2253.0	1				2278.0	1	2276.5	0	
EOC-	3	K	2279.5	1				2328.5	2	2304.5	1	
I	<u>-</u>	Pre-K	<u> </u>	L				l			l	
CO	MMEN	TS: *Sam	ole gap be	twee	n 1390 & 1	881;	but s	equence p	robal	oly contin	uous	· · · · · · · · · · · · · · · · · · ·
				to i								
		thro	ough early		mid Miocer	ie.						
		thro	ough early		mid Miocer							
			ycled Eo/O				within	n early Mi	.ocene	e assembla	ges.	
							within	n early Mi	.ocene	e assembla	ges.	
							s within	a early Mi	.ocene	assembla	ges.	
							s within	early Mi	.ocene	e assembla	ges.	
							s within	early Mi	.ocene	e assembla	ges.	
	<b>NFIDE</b>	¶Recy	ycled Eo/O	ligo		mens				e assembla	ges.	
CON	VFIDE ATIN	TRECY	ycled Eo/O	ligo	cene speci	mens ssemb	lage (very assemblag	high confide e (high confi	nce). dence).			
CON		¶Recy	ycled Eo/O	ligo	cene speci	mens ssemb plete	lage (very assemblag hange but	high confide e (high confi able to interp	nce). dence).			
CON		NCE O: 0: 2:	ycled Eo/O	Core -	Cene speci	ssemb plete ule ci	lage (very assemblag hange but lage (low blage, ne	high confide e (high confi able to interp confidence). xt to uninterp	nce). dence). wet (lov	v confidence).		
CON R	ATIN	NCE O: 0: 2: 3: 4:	SWC or C SWC or C SWC or C Cuttings Cuttings	ligo	Complete a Almost com Close to zon Complete a Incomplete a	ssemb plete sule classemb assemb	lage (very assemblag hange but lage (low blage, ne	high confide e (high comfi able to interp confidence). xt to uninterp onfidence).	nce). dence). ret (lov	v confidence). or SWC with		
CON	ATIN	NCE O: G: 1: 2: 3: 4: If an entry	SWC or C SWC or C SWC or C Cuttings Cuttings	ligo	Complete a Close to zon Complete a Incomplete a depth suspic	ssemb plete sule classemb assemb ion (v	lage (very assemblag hange but lage (low of blage, ner ery low co	high confide e (high comfi able to interp confidence). xt to uninterp onfidence). e depth with	nce). dence). ret (lov retable	v confidence). or SWC with r confidence		
CON R	ATIN	NCE O: G: 1: 2: 3: 4.  If an entry rating shou then no en	SWC or C SWC or C SWC or C Cuttings Cuttings is given a 3 o	ligo	Complete a Almost com Close to zon Complete a Incomplete depth suspic nfidence ratin ssible. If a sa unless a rang	ssemb plete sule classemb ion (v g, an ample e of ze	lage (very assemblag hange but lage (low of blage, ner ery low co alternativ cannot be ones is give	high confide e (high comfi able to interp confidence). xt to uninterp onfidence). e depth with assigned to cen where the	nce). dence). stet (low stetable a bette	or SWC with r confidence cicular zone .		
CON R	ATIN	NCE O: G: 1: 2: 3: 4.  If an entry rating shou then no en	SWC or C SWC or C SWC or C Cuttings Cuttings	ligo	Complete a Almost com Close to zon Complete a Incomplete depth suspic nfidence ratin ssible. If a sa unless a rang	ssemb plete sule classemb ion (v g, an ample e of ze	lage (very assemblag hange but lage (low of blage, ner ery low co alternativ cannot be ones is give	high confide e (high comfi able to interp confidence). xt to uninterp onfidence). e depth with assigned to cen where the	nce). dence). stet (low stetable a bette	or SWC with r confidence cicular zone .		
CON R	ATIN TE:	If an entry rating shou then no en limit will	SWC or C SWC or C SWC or C Cuttings Cuttings is given a 3 o	fore - core - co	Complete a Almost com Close to zon Complete a Incomplete depth suspic nfidence ratin ssible. If a si unless a rang	ssemb plete sule classemb ion (v g, an ample e of ze	lage (very assemblag hange but lage (low of blage, ner ery low co alternativ cannot be ones is give	high confide e (high comfi able to interp confidence). xt to uninterp onfidence). e depth with assigned to c en where the n another.	nce). dence). wet (lov wetable a bette one part	or SWC with r confidence cicular zone .		
CON R NOT	ATIN	NCE O: G: 1: 2: 3: 4.  If an entry rating shou then no en	SWC or C SWC or C SWC or C Cuttings Cuttings is given a 3 o ld be entered, try should be reappear in one	fore - core - co	Complete a Almost com Close to zon Complete a Incomplete depth suspic nfidence ratin ssible. If a si unless a rang	ssemb plete sule classemb ion (v g, an ample e of ze	lage (very assemblag hange but lage (low of blage, ner ery low co alternativ cannot be ones is give	high confidence (high comfidence).  And to uninterponfidence).  The depth with assigned to den where the manother.	nce). dence). wet (lov wetable a bette one part	or SWC with r confidence cicular zone , possible		

#### PE905951

This is an enclosure indicator page.

The enclosure PE905951 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905951 has the following characteristics:

ITEM_BARCODE = PE905951
CONTAINER_BARCODE = PE905967

NAME = Plantonic Foraminiferal Distribution

Table

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL SUBTYPE = DIAGRAM

DESCRIPTION = Planktonic Foraminiferal Distribution

Table (from appendix 5 of

WCR--Foraminiferal Sequence) for

Edina-1

REMARKS =

DATE_CREATED = 14/12/82

DATE_RECEIVED = 6/06/83

 $W_NO = W784$ 

WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

(Inserted by DNRE - Vic Govt Mines Dept)

4

Appendix 6 Log Analysis

# APPENDIX 6

LOG ANALYSES - FORMATION EVALUATION

<u>BY</u>

J. BOWLER.

# AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.

EDINA NO. 1 FORMATION EVALUATION BOWLER LOG CONSULTING SERVICES PTY. LTD.

JACK BOWLER Telephone: (051) 56 6170 P.O. BOX 2, PAYNESVILLE. 3880 VICTORIA, AUSTRALIA

29th October, 1982

Australian Aquitaine Petroleum Pty. Ltd., P.O. Box 725, NORTH SYDNEY. N.S.W. 2060.

Attention: Mr. F. Brophy

Dear Frank,

Please find enclosed comments on Log Quality, Formation Evaluation and Repeat Formation Tester results for the final logging run on Edina No. 1 from 26 to 28 October, 1982.

No hydrocarbon bearing zones were identified by the logs or the RFT. The sands evaluated were clearly water wet, porous and permeable.

Yours very truly,

J. Bowler.

Enc.

#### LOGS RUN

DATE	RUN	LOGS	INVERVAL	CIRC. TIME	TIME CIRC. STOPPED	TIME LOGGER BOTTOM	MAX. RECORD	RM @	S	CALE	
DATE	KUN	L003	INVERVAL	(HRS)	(HRS)	(HRS)	TEMP. (BHT)	BHT (chm-m)	1:200	1:500	OTHE
6/10/82	1	ISF-SLS-G	110m - 1216m	2 <del>1</del>	2300/5th	0315/6th	110°F	0.318	Х	Χ	
	1	LDL-G	219m - 1216m		2300/5th	0830/6th	115°F	0.305	Х	Х	<u>.</u>
26/10/82	1	DLL-MSFL-G	1201m - 2592m	2½	1900/25th	0215/26th	179°F	0.136	Х	Х	
	2	LDL-CNL-G	1201m - 2592m		1900/25th	8000/26th	195°F	0.125	Х	Х	
•	1	BHC-NGS*	1201m - 2593		1900/25th ′	2000/26th	212°F	0.115	Х	Х	
27/10/82	1	HDT	1201m - 2592	2 <u>1</u>	1900/25th	0230/27th	222°F	0.110	Х	Х	
	1	RFT									
28/10/82	1	CST	1354m - 2590m								
;	2	CST	1343m - 2562m								
		}									
PROCESSED	1	GEODIP	1900m - 2593m						Х		1:40
	1	CLUSTERPLOT	1203m - 2593m							Х	
LOGS	1	CYBERLOOK	2200m - 2592m						Х		,

 $[\]star$  NGS Log is up to 1900m only

Sea Bed Temperature @ 99m (KB) =  $67^{\circ}F$  (19.3°c) Extrapolated BHT @ 2594m (KB) 224°F (117.7°c) Temperature Gradiant 3.9°c/100m or 2.16°F/100

#### Log Quality

The following logs were run with a Schlumberger CSU and log quality was generally good except where specifically mentioned below.

DLLMSFL, LDLCNL, BHCNGS, HDT, RFT, CST and a SSL velocity survey.

The hole was in gauge over the zones of interest which was important for the pad contact tools.

DLLMSFL - an unexplainable SP anomaly repeats at 2435.

LDLCNL - the Pe curve cannot be used due to the effect of barite in the mud. The bulk density measurement reads too low in rugose and washed out shales such as 2278 - 2208, 2100 - 1890 etc. If the density is to be used for a synthetic seismogram it will need editing in the washed out sections.

BHC - was run after 3 unsuccessful attempts to obtain a good long spacing sonic log. The BHC sonic is cycle skipping from 1680 - 1685 but otherwise is good.

HDT - in order to obtain good data in both sands and shales two extra passes were made over the lower part of the hole to attempt an improvement. Appropriate data files have been selected for CLUSTER and GEODIP processing. If structural dip is greater than 5 degrees it should be subtracted during GEODIP processing.

RFT - because a 5000 psi gauge was used to obtain 0.5 psi resolution the RFT pressures in the depth track must be divided by 2 as they are only appropriate for 10,000 psi gauge.

#### Formation Evaluation

Several interpretation techniques were used to evaluate the most promising zones. The first method was the RWA approach using the density-neutron porosity and LLD resistivity. These quick-look values are listed in Table No. 1. RWA ranges from 0.6 to 0.22 with an average around 0.7 to 0.12. This compares to a RW of 0.7 computed from the SP and RXO - RO methods and also compares well with a RW for water with 35,000 PPM Nacl used in the area. At this point it was obvious that no hydrocarbons were likely to be found in the section logged. The DLLMSFL and LDTCNL logs were run first in order to evaluate the formations as early in the logging run as possible. The DLL was chosen because of its superior ability to handle the many thin beds reported by the geologist. As the evaluation from the DLL proved adequate it was decided there was no need to run the ISF so it was dropped from the program. Both the CNL and MSFL were cut off after logging all potential reservoirs. The Pe curve of the LDT cannot be used due to the effect of the barite in the mud thus rendering it useless. The barite content is not accurately known at this point and is reported to range from 2 to 4 per cent. If the next well could be drilled without barite it would certainly help in lithology identification from the Pe. The lithology of the zones with mudcake, low gamma ray and density-neutron separation is basically quartz sandstone as can be seen on Those points falling between the the attached density-neutron cross-plot. sandstone line and the shale point do so due to increasing clay or shale content.

Table 2 lists the best looking sands and their porosity ranges and water saturations.

Table 3 lists the levels and log values used for the density-neutron cross-plot and the density-resistivity cross-plot. As the density of shale seems to be around 2.65, equal to that of quartz, the density reading will be little affected by shale so needs no shale correction in order to compute porosity. There are two groups of points present suggesting two RW values thus two 100 per cent water lines are drawn on the resistivity vs porosity cross-plot. One water line of RW=.075 (33,000 PPM Nacl) fits the data from 2315 to 2369 while the other water line of RW = .105 (23,000 PPM Nacl) fits the data from 2382.5 to 2569.5. This change in RW was suggested by the quicklook RWA data in Table No.1.

Schlumberger offered to run the NGT free of charge with the sonic so it was recorded from TD to 1900 over the zones of interest. The interpretation of the NGT is a lengthy process and is not attempted here. One of the useful techniques is to cross-plot NGT data such as Thorium/Potassium ratio or Potassium against Pe to identify sedimentary minerals such as clays. In addition the Thorium, Uranium and Potassium curves are 3 new curves available for correlation as well as their various ratios.

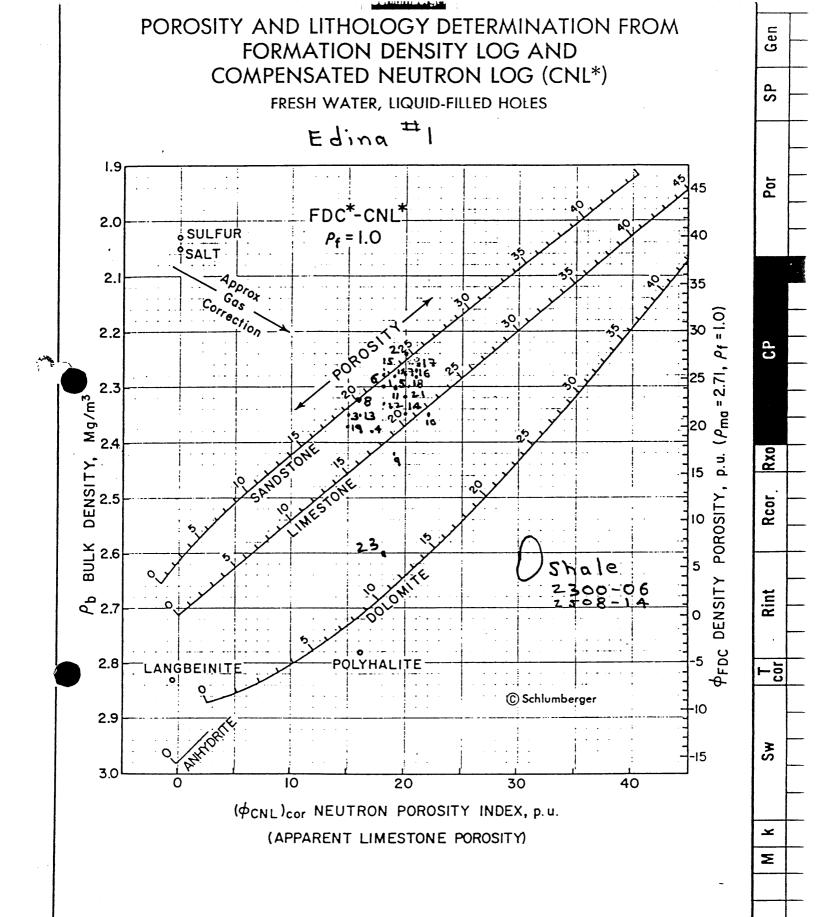
A CYBERLOOK was run also on a demonstration basis and may be considered as an adequate evaluation for the well. The Pass I includes a RWF which basically is an RWA curve using RT from DLLMSFL and cross-plot porosity or PHIA from the density-neutron. Porosity is sealed in sandstone porosity units.

Pass II includes a shale corrected effective porosity presented in quartz sandstone porosity units (PHIE) and a water saturation calculation recorded continuously (SW). The CYBERLOOK confirms the formations are water wet with rather uniform porosities of 20 to 24. There are some shoulder bed effects which result in sharp spikes in the SW curve which should be ignored. Otherwise the CYBERLOOK is quite realistic.

#### TABLE NO. 1

<u>Depth</u>	Porosity	RWA
2246	3	.03
2297	13	.12
2337	21	.07
2343	21	.07
2348	22	•07
2353	21	.06
2357	23	.08
2362	22 .	.09
2369	22	.08
2382	23	.10
2388	. 22	.10
2411	19	.14
2415	24	.21
2426	9	.22
2431	23	.10
2440	21	.11
2460	21	.16
2475	16	.13
2498	20	.10
2525	20	.15
2530	22	.11
2546	22	.11
2551	21	.11
2557	18	.12
2562	23	.10
2567	20	.13
2570	21	.11
2576	18	.12

It appears that an increase in RW or a decrease in formation water salinity may take place below the shale from 2370 to 2380.


TABLE NO. 2

Level	Depth	Porosity	Water Saturation	
1	2561 - 2571	20 to 23	100	
2	2555 - 2559	21	100	
3	2548 - 2553	20 to 25	100	
4	2545 <b>-</b> 2546	21	100	
5	2529 - 2531.5	20 to 22	100	
6	2524 - 2527	21	100	
7	2497 <b>-</b> 2502	20	100	
8 ,	2474 - 2475	16	100	
9	2459 - 2461	21	100	
10	2430 - 2443	20 to 22	100	
11	2410 - 2413	20	100	
12	2387 - 2388	22	100	
13	2380 <b>-</b> 2385	23	100	
14	2337 - 2376	-18 to 24	100	
15	2335	18	100	

All of the above sands have mudcake buildup indicating permeability. Formation water resistivity calculated from SP, porosity-resistivity, RXO - RT ratio equals .07 at 200 degrees F which is 35,000 PPM Nacl equivalent.

## TABLE NO. 3

Level	Depth	RHOB	<u>NPHI</u>	DT	LLD
1	2569.5	2.30	18	82	2.0
2	2562.5	2.24	20	85	1.5
3	2576.5	2.35	15	80	3.0
4	2556.5	2.38	17	80	3.0
5	2551	2.30	18	83	2.0
6	2546	2.28	18	85	1.8
7	2529.5	2.28	20	85	1.8
8	2497.5	2.32	16	78	2.0
9	2474.5	2.42	19	81	4.1
: 10	2460	2.35	22	83	3.0
11	2440	2.30	19	83	2.0
12	2431	2.28	19	85	1.7
13	2411	2.35	16	80	3.1
14	2416.5	2.35	20	82	3.0
15	2387.5	2.27	18	81	1.6
16	2382.5	2.28	21	80	1.6
17	2369	2.26	21	81	1.1
18	2356	2.30	18	83	1.3
19	2349	2.37	. 15	78	1.3
20	2342	2.27	21	80	1.1
21	2337.5	2.32	20	80	1.5
22	2315	2.33	22	85	2.0
23	2245.5	2.60	18	66	28



*Mark of Schlumberger

CP-1c

#### Repeat Formation Tester Evaluation

A total of 14 formation pressures from 2298 to 2562.5 were obtained in addition to a full 2 3/4 US gallon and a full 1 US gallon sample chamber of water both from 2335 meters. With the exception of one point at 2298 which may be supercharged, all the other formation pressures fell on or very close to a 1.0 g/cc water gradient. The 5,000 psi gauge has an accuracy of  $^{\pm}$  0.13 per cent full scale or  $^{\pm}$  6.5 psi, a resolution of 0.5 psi and the repeatability of the system should be  $^{\pm}$  3 psi. All pressures were taken on the way down to minimize gauge hysterisis except for tests Nos. 15, 16 and 17 which were repeats taken on the way up. The decreasing ability to repeat previous test pressures may be due to gauge hysterisis. In any case the almost perfect 1.0 g/cc water gradient obtained on the way down seems to indicate the pressure gauge is performing correctly within specifications.

Fluid characteristics and recoveries for the test at 2335 meters are:

Fluid Type	Resistivity at 200° F	PPM Nacl	PPM Nitrates	Color	Recovery <u>CC</u>
Formation Water	0.07	35,000	Nil		
Mud Filtrate	0.075	33,000	130	Dark Brown	
Lower Chamber	0.091	26,500	25	Light Brown	10,409
Upper Chamber	0.086	29,000	25	Yellow	3 <b>,</b> 785

The interpretation of the above results would suggest that if the formation water were more saline than the mud filtrate then the upper chamber, which was opened after the lower chamber, contains more formation water than the lower chamber. The nitrate determination would suggest that a great deal of formation water was obtained compared to filtrate. The Baroid engineer who ran the test said the uncertainty on the accuracy of the test is high because the nitrates apparently dissipate rapidly and sometimes completely disappear from the mud. In addition the test consists of adding a chemical to the sample which causes it to turn brown and then comparing its color with a non-treated sample of the same fluid. As the mud filtrate is already a dark brown this method seems to be rather inaccurate. Apparently another means of testing for nitrates has been requested by the Baroid engineer.

Because the mud filtrate and formation water resistivities are both less than that of the recovered fluid the amount of recovered formation water cannot be determined in the usual way. In any case, as mud filtrate and formation water have about the same salinities this method would be inaccurate. A recovered fluid with less salinity than either the formation water or mud filtrate is difficult to explain because it must be a mixture of both. It has been observed before and may be due to some sort of 'ion stripping' of the fluid as it passes through the formation into the sample chamber. Measured resistivities at 66 degrees F for the lower chamber fluid were 0.264 ohmm and 0.254 ohmm for the upper chamber fluid.

Several means of plotting and computation exist to compute permeability from RFT pretest pressure buildups and drawdown but as this is fairly time consuming only subjective comments regarding permeability from the appearance of the pretest sampling curve and a quicklook determination have been made. The results are presented in Table No. 5.

### TABLE NO. 4

# RFT PRESSURES EDINA NO. 1

		EDI	NA INO. I		
		Fo	Pressure ormation	(PSIG)	Mud
Test	<u>Depth</u>	Read	Corrected	Read	Corrected
0	2298.5	Seal Fail	ure		
1	2298	3266	3249	4257	4240
2	2335	3290	3273	4324	4307
3	2351.5	3312.5	3295.5	4352	4335
4	2368.5	3337	3320	4383	4366
5	2383	3359	3342	4411	4394
6	2387.5	3366.5	3349.5	4418	4401
7	2410.5	3402	3385	4460	4443
8	2431	3429	3412	4496	4479
9	2437.5	3439	3422 ⁻	4509.5	4492.5
10	2498.5	3520	3503	4626	4609
11 -	2530	3567	3550	4676.5	4659.5
12	2545.5	3587.5	3570.5	4704.5	4687.5
13	2550.5	3595.5	3578.5	4715	4698
14	2562.5	3612.5	3595.5	4738	4721
Repeated	Tests				
15	2545.5	3591	3574	4705.5	4688.5
16	2410.5	3411	3394	4468	⁻ 4451
17	2335	3303	3286	4333.5	4316.5
18	2298	Seal Failu	ire		
19	2297.5	Seal Failu	ıre		
20	2298.5	Tight			

Seal Failure

Seal Failure

21

22

2243

2242.5

#### TABLE NO. 5

#### PRETEST QUICKLOOK PERMEABILITY

Observation

Depth	of Buildup	20/T (Fillup)
2298	less than .1 md	.2 md
2335	about 10 md	

Drawdown permeability for this zone from the 2 3/4 gallon sample chamber is 3 darcy and 5.5 darcy for the 1 gallon sample chamber using the long nose probe. The improvement in permeability over that of the pretest may have been due to an improvement due to cleanup as the formation fluid flowed into the RFT.

2351	about 10 md
2368.5	about 10 md
2383	above 100 md
2387.5	above 100 md
2410.5	about 100 md
2431	above 100 md
2437.5	above 100 md
2498.5	above 100 md
2530	above 100 md
2545.5	about 1 md
2550.5	above 100 md
2562.5	about 10 md
2545.5	about 1 md
2410.5	about 10 md
2335	well above 100 md
2298.5	Tight

The above permeabilities are very rough but they do give the picture of permeable sands and with detailed drawdown and buildup computations a better estimate could be obtained.

Formation Fessure (PSIG Corrected)
3200 3400 3500

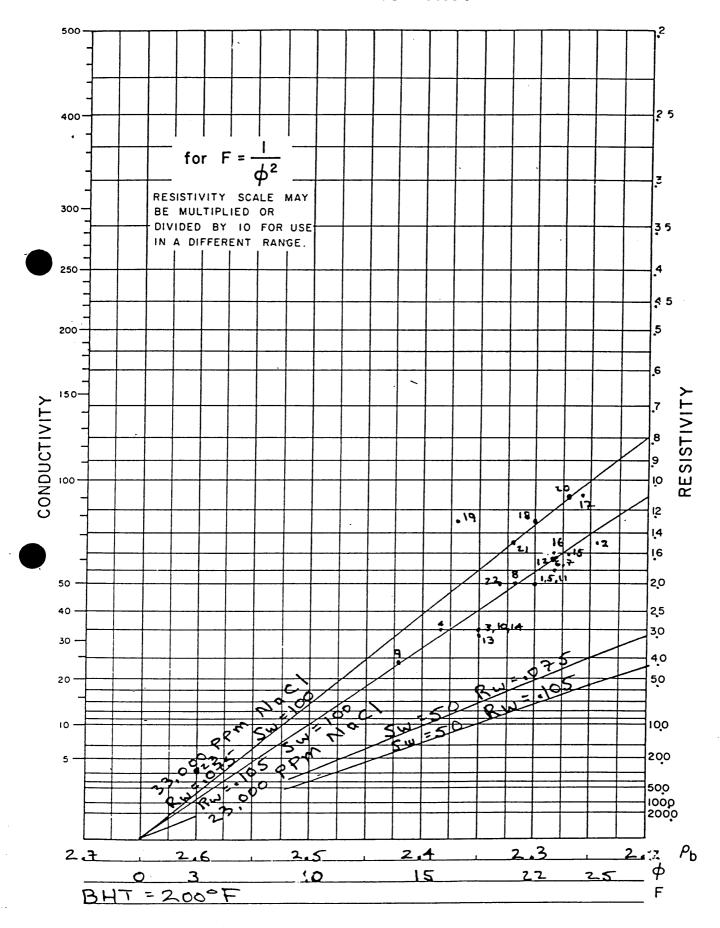
3600

2300

3595,5-3273 = 1.0 g/cc Formation (2562,5-2335)3.28x.433 Pressure gradient

4721 = 1.3 g/cc mud 2562.5 × 3.28 × .433 pressure gradient

Depth (meters)


2500

· pressure taten going down

2600

# Edina # 1

### RESISTIVITY VS POROSITY



Hppendix 7

Appendix 7
Test Result Summary

APPENDIX 7

TEST RESULT SUMMARY

#### TEST RESULT SUMMARY

Both formation pressures and fluid sample obtained during repeat formation test indicat that all prospective reservoirs were water saturated. A total of 14 formation pressures from 2298 - 2562.5m were obtained, and all pressures with the exception of 2298m point (which may be supercharged) fell on or very close to a 1.0g/cc water gradiant (see appendix 6).

In addition, a full 2 3/4 US gallon and a full 1 US gallon sample chamber of water from 2335m were obtained.

Fluid characteristics and recovery for the test at 2335m are:-

FLUID TYPE	RESISTIUITY AT 200 F	NaCL ppm	NITRATE ppm	COLOUR	RECOVERY CC
Formation Water (from S.P)	0.07	35000	NIL		
Mud Filtrate	0.075	33000	130	Dark Brown	
Lower Chamber	0.001	26000	25	Light Brown	10409
Upper Chamber	0.086	29000	25	Yellow	3785

Measured resistiuity at 66 F for the Lower Chamber fluid were 0.264 ohmm and 0.254 ohmm for the Upper Chamber.

Appendix 8 Weekly Well Summary APPENDIX 8

WEEKLY WELL SUMMARY

#### MELKET WELL DO BULL

VELL NAM	1E:	ÉDÍNA NO	 REPORT	NO.:		• • • • • • • • • • • • • • • • • • • •
PERIOD:	FROM:	23.9.1982	 TO:	30	).9.1982	

All depths relate to Rotary Kelly Bushings at zero tide datum (Low Water Indian Springs) which is ...99... metres above seabed.

NOTE: Position Fix by Sat. Nav. -  $38^{\circ}$  36' 22.321" South 147° 52' 42.183" East 1.6m from intended location.

<u> </u>	<del></del>		T	γ	r	Γ			
ווטו ר	SIZE	36"	26"	175"	121/4"	8½"			
HOLE.	DEPTH (m)	NA	224						
CASING	SIZE	NA	20"						
	DEPTH (m)	NA	219						
DATE	DEPTH AT 2400 HRS.	PROGRESS		RE	MARKS				
23.9.82				ger arrive 9 anchor.					
24.9.82				ors 7, 2, rig. Raiso fix.					
25.9.82			Base. As	n No. 9 ai semble Per x spud mud	rmanent Gu				
26.9.82	223M	124M	Spud Edin	spud. Ri a No. 1 at IS spud mu	t 1200 hrs	. Drill 2	embly. 6" hole.		
27.9.82	224M	- IM	with 500 20" casin wellhead	hole to 2 bbls HI VI g. Casing housing du g by jumpi	IS mud. Su parted at ue to lock	rvey ¼ DE connecto ring. Re	G. Run r of trieve		
28.9.82	224M		Retrieve casing. RIH 26" bit. Ream and clean hole. Fill hole with 500 bbls HI VIS mud. Wiper Trip. Fill hole with 600 bbls HI VIS mud POOH.						
29.9.82	224M	·	POOH. Run 20" 1331b/ft casing. Instal 18 3/4" housing and PGB. Land on TGB. Slope ½ DEG. Cement casing with 75 tonnes Class G with fresh water. Slurry Weight 1.85 SG. Displace with mud. Jump divers. Cement to seabed. Slope 1 DEG. POOH Running Tool. Test BOP Shear Rams 5000 PSI. Prepare to run BOP WOW.						
30.9.82	224M			l to 5 DEG and Riser Tag cemen	. Run Wear	r Bushing			

# AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.

#### TIME SUMMARY

WELL NAME:EDINA NO 1 PERIOD: FROM:23.9	.1982	TO:30.9.
TIME ANALYSIS (HOURS)	FOR WEEK	TOTAL
<ul><li>D: MOVING</li><li>D) Moving of rig, rigging up/down, anchoring</li><li>D2 Waiting on weather during moving</li></ul>	54.5	54.5
D3 Other waiting time	2	2
F: DRILLING - CASING  F1 Drilling on bottom, incl. connection time  F2 Trips for new bit  F3 Ancillary Drilling Operations, incl. Totco, reaming, hole cleaning, testing BOP or casing.	13 8	13 8
F4 Casing and Cementing  G: FORMATION SURVEYS	67.5	67.5
G1 Coring G2 Related Coring Operations, incl. tripping etc.		
G3 Tests and associated operations G4 Electric Logging Operations		
A: INTERRUPTION OF OPERATIONS UNDER F OR G Al Stuck Pipe and Fishing Operations A2 Mud-Losses, Flows, Treatment A3 Waiting on Weather A4 Other waiting time - Repairs	14 · 8 7.5	14 8 7.5
C: <u>COMPLETION - PLUGGING</u> Cl Completion, Stimulation, Production Tests C2 Abandonment of Well C3 WOW during completion, plugging, testing C4 Other Waiting time		
TOTAL TIME:	174.5	174.5

DOWN TIME: HOURS

PERCENTAGE

3 I T	AND	CORE	RECORD
-------	-----	------	--------

WF CKLY	SUMMARY	_	BITS	AND	MUD	
---------	---------	---	------	-----	-----	--

BIT NO.	SERIAL NO.	MAKE	TYPE	NOZZLES	FROM	то	METRES	HOURS	m/h	CONDITION
1	SAS5656	SMI	DGJ	3 x 24	99	224	125	13	9.62	2 - 2 - I
2	XA7398	SMI	DSJ	3 x 18						RIH
				1						
		· · · · · · · · · · · · · · · · · · ·				,				
							,			
										,

AUD PRODUCT

CHEMICAL	UNIT KG	CONSUM	1PTION	ST0011	STOCK SUFFICE		CONSUMPTION			
CHEMICAL	UNITAG	WEEK	CUMULATIVE	STOCK	CHEMICAL	UNIT KG	WEEK	CUMULATIVE	STOCK	
CEMENT "G"	KG	75.000				,				
BARYTES	KG	44,000								
BENTONITE	KG	10,807			i i					
CAUSTIC	KG	770.								
SODA ASH	KG	440								
CACL	KG	1,650								
				-				`		

# WEEKLY WELL SUMMARY

WELL NAME: EDINA NO. 1	REPORT NO.:2
PERIOD: FROM:	TO:7th.October1982
All depths relate to Rotary Kelly Bushings at zer	ro tide datum (Low Water Indian
Springs) which is99 metres above seabed.	

				<del>,</del>	<del></del>	<del>,</del>	·		
	SIZE	36"	26"	17½"	12!,"	8½"			
HOLE	DEPTH (m)	NA NA	224	1212					
CASING	SIZE	NA	20	13 3/8"	9 5/8"	7"			
:	DEPTH (m)	NA	219	1201					
DATE .	DEPTH AT 2400 HRS.	PROGRESS		RE	MARKS				
1.10.82	488M	264M 14HRS.	224-231M.   BHA. DRIL		IV. DENSI' LE.	TY 1.11 S.	17날" HOLE .G. CHANGE		
2.10.82	768M	280M 15½HRS.	RS. DEVIATION: 1 DEG/488M, 1.5 DEG/708M. MUD: S.G. 1.10 VIS: 40 YP: 19 WL: 19						
3.10.82	994M	226M 22HRS.	DRILL 17½" HOLE. SURVEY & WIPER TRIP TO 20" SHOE. MUD S.G.: 1.07 VIS: 39 YP: 22 WL: 17 HELD SAFETY DRILL (FIRE & BOAT).						
4.10.82	1136M	142M 20¹ _≦ HRS.	DEVIATION	P. DRILL I: 0.5 DEG 1.08 VIS	/994M.				
5.10.82	1212M	76M 9¹ ₂ HRS.	TO 1212M. POH FOR S DEVIATION		E. WIPER T ER LOGS. /1158M.	RIP. CIRC	IT. DRILL ULATE.		
6.10.82	1212M	NIL	LDL/GR/CA BUSHING.	SCHLUMBERG L. CONDIT RUN 13 3/8 : 3/4 DEG/	ION HOLE. B" CASING.	ISF/SLS/G RETRIEVE	R/CAL. WEAR		
						<u>.</u>			

7.10.82	1212M	NIL	RUN 92 JTS., 13 3/8", 681b/ft CASING. SHOE AT 1201M. FLOAT COLLAR AT 1177M. CIRCULATE. CEMENT WITH 73 TONNES CLASS 'G' WITH D80/D81. SG: 1.89. DISPLACE CEMENT & BUMP PLUG TO 2000 PSI. RUN, SET & TEST SEAL ASSEMBLY TO 5000 PSI. TEST BOP STACK. RAMS, CHOKE & KILL TO 5000 PSI, ANNULAR 2500 PSI. RUN WEAR BUSHING. RIH 12½" BHA.
---------	-------	-----	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

::

1

#### AUSTRALIAN AQUITAINE PEIROLEUM PTY. LTD.

#### TIME SUMMARY

TIM	E ANALYSIS (HOURS)	FOR WEEK	TOTAL
D:	MONING		
Dl	Moving of rig, rigging up/down, anchoring		54.5
D2	Waiting on weather during moving		
D3	Other waiting time		2
F:_	DRILLING - CASING		
FI	Drilling on bottom, incl. connection time	81.5	94.5
F2	Trips for new bit	16	24
F3	Ancillary Drilling Operations, incl. Totco, reaming, hole cleaning, testing BOP or casing.	10.5	10.5
F4	Casing and Cementing	42	110
G:	FORMATION SURVEYS		
G1	Coring		
G2	Related Coring Operations, incl. tripping etc.		-
<b>G</b> 3	Tests and associated operations		
G4	Electric Logging Operations	18	18
Α:	INTERRUPTION OF OPERATIONS UNDER F OR G		
ΑŢ	Stuck Pipe and Fishing Operations		14
A2 ·	Mud-Losses, Flows, Treatment		
<b>A</b> 3	Waiting on Weather		8
A 4	Other waiting time - Repairs		7
C:	COMPLETION - PLUGGING		
21	-Completion, Stimulation, Production Tests		
22	Abandonment of Well		
С3	WOW during completion, plugging, testing		
C4	Other Waiting time		
	TOTAL TIME:	168	342.5

DOWN TIME: HOURS

PERCENTAGE

NOTE: TIME DISTRIBUTION FOR REPORT NO. 5 (REFER WEEKLY WELL SUMMARY NO. 1) INCORRECTLY REPORTED. CORRECT TIMES ARE: F4: 21½, A3: 1, A4: 1½hrs.. A CORRECTED TIME SUMMARY SHEET IS ATTACHED FOR YOUR INFORMATION.



SEE AND CORE RECORD

WELLAY SUMMARY - BITS AND MUD.

IT NO.	SERIAL NO.	MAKE	TYPE	NOZZLES	FROM	то	METRES	HOURS	m/h	CONDITION
_ 2	XA7398	DSJ	SMI	3x18	224	708	484	2415	19.76	2-6-I 17 ¹ 5"
3	XA7067	DSJ	SMI	3x18	708	1158	450	51	8.82	6-8-I 17½"
4	XA7194	DSJ	SMI	3x18	1158	1212	54	6	9.00	1-1-I 17½"
5	CB7277_	SDS	SMI	3x14	RIH TO	DRILL OUT 1:	3 3/8"			12¼"
				,						1
		•								
										,

MUD PRODUCT

CHEMICAL	UNIT KG	CONSUMPTION		STOCK	CHENICAL		CONSI	STOCK	
CHEMICAE	ONTI KO	WEEK	CUMULATIVE	STUCK	CHEMICAL	UNIT KG	WEEK	CUMULATIVE	STOCK
CEMENT "G"	KG	73000	148000						
BARYTES	KG	20972	64972						
BENTONITE	KG	23678	34485						
CAUSTIC	KG	1680	2450						
SODA ASH	KG	600	1040						
CACL ₂	KG		1650						
LIME	KG	300	300						
O. BROXIN	KG	400	400						
		1	1						

# WEEKLY WELL SUMMARY

WELL	NAME:	:	EDINA.	NO. ]				REPORT	NO.:		3		• •
PERI	OD: F	FROM:	8ĭH Ö	TOBER,	1982			TO: .	]	4TḤ.QÇ	ŢŌŖĘŖ,	. 1982	• • •
A11 (	depths	s relat	e to F	Rotary K	elly B	ushings	at zer	o tide	datum	(Low	Water	India	n
Snri	nas) v	which i	5 99	) me	tres a	bove sea	ibed.						

				<del></del>			<del>,</del>
	SIZE	36"	26"	17½"	12½"	8½"	
HOLE	DEPTH (m)	N/A	224	1212	1292		
CASING	SIZE	N/A	20"	13 3/8"			
	DEPTH (m)	N/A	219	1201			
DATE	DEPTH AT 2400 HRS.	PROGRESS		RE	MARKS		
8.10.82	1288M	76M 11HRS.	DRILL 121 DENSITY E UP STABIL HELD BOP	BHA. TOC 12-1224M. EQUIVALENT ISERS). D SAFETY DR 1.11 VIC:	FORMATION 1.50 SG. RILL 12¼" ILL.	PRESSURE CHANGE BH HOLE.	TEST.
9.10.82	1527M	239M 21HRS.	DEVIATION	1473M. SU N: ⅓ DEG/1 I.13 VIS:	473M.		ORILL.
10.10.82	1743M	216M 19HRS	DEVIATION	1590M. WO N: 1 DEG/1 I.13 VIS:	674M		TO 1674M.
11.10.82	1874M	131M 14HRS.	WEIGHT. OFF. OFF. CIRCULATE DEVIATION		. DRILL TO	) 1857M. F	E MUD HOLE PACKED
12.10.82	2092M	218M 23½HRS		HOLE. 1.22 VIS: DRILL FOR			
13.10.82	2132M	40M 6 ¹ ₂ HRS	HOLE - SC DEVIATION	VIPER TRIP OME OVERPUI N: 1 3/4 DI .24 VIS:	LL. EG AT 2092	2M.	T. TIGHT
14.10.82	2192M	60M 14½HRS	DEVIATION	L. TRIP FO	AT 2192M.		UP.

# AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.

# TIME SUMMARY

WEL	L NAME: EDIŅĀ ŅŌ] PERIOD: FROM:8.]	0,82	TO: .14.10.	.82
TIM	E ANALYSIS (HOURS)	FOR WEEK	TOTAL	
D:	MOVING			]
DI	Moving of rig, rigging up/down, anchoring		54.5	
D2	Waiting on weather during moving			İ
D3	Other waiting time		2	
<u>F:</u>	DRILLING - CASING			
F٦	Drilling on bottom, incl. connection time	109.5	204	
F2	Trips for new bit	23.5	47.5	
F3	Ancillary Drilling Operations, incl. Totco, reaming, hole cleaning, testing BOP or casing.	27	37.5	
F4	Casing and Cementing	7	117	
G:	FORMATION SURVEYS			
Gl	Coring			
G2	Related Coring Operations, incl. tripping etc.			
43	Tests and associated operations			
G4	Electric Logging Operations		18	
A:	INTERRUPTION OF OPERATIONS UNDER F OR G			
Al	Stuck Pipe and Fishing Operations			
A2	Mud-Losses, Flows, Treatment		14	
А3	Waiting on Weather		8	
A 4	Other waiting time - Repairs	1	8	
C:	COMPLETION - PLUGGING			
C1	Completion, Stimulation, Production Tests			
C2	Abandonment of Well			
C3	WOW during completion, plugging, testing			
C4	Other Waiting time			
	TOTAL TIME:	168	510.5	

DOWN TIME: HOURS

PERCENTAGE

### AUSTRALIAN AGUITAING PETROLEUM . IT. LID.

## KLY SUMMARY - BITS AND MUD

#### BIT AND CORE RECORD

4	
<b>1</b>	3

BIT NO.	SERIAL NO.	MAKE	TYPE	NOZZLES	FROM	ТО	METRES	HOURS	m/h	CONDITION	
5	CB7277	SMI	SDS	3x14	1212	1224	12	1	12.00		124"
6	AX9432	SMI	A1	2x16x8	1224	1810	586	58½	10.02	1-4-I	12½"
7	AX6658	SMI	FDGH	3x14	1810	2132	322	35½	9.07	2-8-I	1214"
8	XA6657	SMI	FDGH	3x14	2132	2192	60	14½	4.14	7-2-I	
		,									
			<u> </u>								
				,			<u> </u>			~	
		1		1					<u> </u>		

#### MUD PRODUCT

CHEMICAL	KG	CONSUMPTION		57004		KG	CONS		
	NO .	WEEK	CUMULATIVE	STOCK	CHEMICAL	NG	WEEK	CUMULATIVE	STOCK
CEMENT "G"			148,000		DEXTRID		5:877	5,877	
BARYTES		74,979	139,951		PAC-R		409	409	
BENTONITE		3,700	38,185		NŲT PLUG		1,005	1,005	
CAUSTIC		2,530	4,980		SOLTEX		3,000	3,000	
SODA ASH		1,000	2,040		AL STEARATE		25	25	
CACL			1,650						
LIME			300						,
Q.BROXIN		4,280	4,680	·					
CMC LV		2,550	2,550						
CMC HV		675	675						
SAAP		409	409						

## WEEKLY WELL SUMMARY

WELL NAME:	EDINA NO. 1	REPORT NO.	:4
PERIOD: FROM:	15TH OCTOBER, 1982	TO:?	1\$T.QÇTQBER, 1982
•	ite to Rotary Kelly Bush		um Low Water Indian
Springs) which	is 99 metres above	e seabed.	

r	1	Υ	1	Υ		I ⁻			
	SIZE	36"	26"	175"	12½՝	8½"			
HOLE.	DEPTH (m)	N/A	224	1212	2418				
CASING	SIZE	N/A	20"	13 3/8"	9 5/3"	7"			
CASINI	DEPTH (m)	N/A	219	1201					
DATE	DEPTH AT 2400 HRS.	PROGRESS		RE	MARKS				
15.10.82	2267M	75M 13½HRS.	POOH. TEST BOPS - RAMS C & K 5000 PSI. HYDRIL 2500 PSI. RIH BIT NO. 9. REAM 2050-2192V DRILL. MUD SG: 1.24 VIS: 48 YP: 25 WL: 5.4						
16.10.82	2313M	46M 7HRS.	DRILL. DRILLING BREAK 2339-2313M. CIRCULATE SAMPLE. WIPER TRIP. CLEAN HOLE. POOH. RIH CORE BARREL. DEVIATION: 3/40/2313M. MUD SG: 1.24 VIS: 45 YP: 23 WL: 5.5						
17.10.82	2335M DRILL 15m/3HRS CORE 7m/3HRS.	22M . 6HRS.	RIH. CUT CORE NO. 1, 2313-2320M. POOH. RECOVER CORE - 92%. RIH BIT NO. 10. REAM RAT HOLE. DRILL. MUD SG: 1.24 VIS: 46 YP: 21 WL: 5.2						
18.10.82	2345M	10M 7HRS.	DRILL TO 2330-2341 REAMING.	2341M. TO DRILL T	RQUE 3 STE O 2345M. E	WIPER TREXCESSIVE	BIT. RIH. RIP. REAM TORQUE ON		
19.10.82	2363M	18M 15½HRS.	INTERMITT	TT. RIH. R TENT TORQU 1.24 VIS:	Ε.		RQUE. DRILL		
20.10.82	2371M	8M 5½HRS.	DRILL TO 2365M. SURVEY. WIPER TRIP TO SHOE. DRILL TO 2367M. SLOW ROF & TORQUE. CHANGE BIT. DRILL. DEVIATION & DEG./2363M. MUD SG: 1.24 VIS: 52 YP: 36 WL: 4.4						
21.10.82	2418M	47M 21닐HRS.	1850M. RE DEVIATION	JRVEY. PERI COVER SURV I: 1 DEG/24 .24 VIS: 1	VEY. 418M.		OOH TO		

### AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.

### TIME SUMMARY

WEL	L NAME:EDINA NO. ] PERIOD: FROM:]5.	10.82	TO:2].]0	.82
TIM	ME ANALYSIS (HOURS)	FOR WEEK	TOTAL	
D: D1 D2 D3	MOVING  Moving of rig, rigging up/down, anchoring Waiting on weather during moving Other waiting time		54.5 2	
<u>F:</u>	DRILLING - CASING			
F1 F2	Drilling on bottom, incl. connection time Trips for new bit	73 34.5	277 82	
F3	Ancillary Drilling Operations, incl. Totco, reaming, hole cleaning, testing BOP or casing.	28	65.5	
F4	Casing and Cementing		117	
G:	FORMATION SURVEYS			
Gl	Coring	3	3	
G2	Related Coring Operations, incl. tripping etc.	26	26	
G3	Tests and associated operations		·	
G4	Electric Logging Operations		18	
A:	INTERRUPTION OF OPERATIONS UNDER F OR G			
Αl	Stuck Pipe and Fishing Operations			
A2	Mud-Losses, Flows, Treatment		14	
А3	Waiting on Weather		8	
A4	Other waiting time - Repairs	3.5	11.5	
<b>C:</b>	COMPLETION - PLUGGING			
C1	Completion, Stimulation, Production Tests			
C2	Abandonment of Well			
C3	WOW during completion, plugging, testing			
C4	Other Waiting time			
	TOTAL TIME:	168	678.5	

DOWN TIME: HOURS

PERCENTAGE

# AUSTRALIA QUITAIN

QUITAINE PETROLEUM PTY. LTD.

WEF Y SUMMARY - BITS AND MUD

3 I T	AND	CORE	RECORE
-------	-----	------	--------

∃IT NO.	SERIAL NO.	MAKE	TYPE	NOZZLES	FROM	то	METRES	HOURS	m/h	CONDITIÓN
9	313KK	нтс	X3A	3x14	2192	2313	121	20½	5.90	6-7-I 12½"
K1	82B09	CHRIS	RC3		2313	2320	7	3	2.33	8½"
10	XA6647	SMI	FDGH	3x14	2313	2320	7	2	REAM	CORE HOLE
10	XA6647	SMI	FDGH	3x14	2320	2337	17	41/5	3.78	2-2-0 1/8" 12½"
וו	CD0352	SMI	SVH	3x14	2337	2341	44	44	1.00	12½"
11	CD0352	SMI	SVH	3x14	(2330)	(2341)	(11)	(7½)	(1.47)	REAM 12날"
11	CD0352	SMI	SVH	3x14	2341	2345	4	11/2	2.67	4-2-0녈" 12녈"
12	XA5821	SMI	F2	3x14	2345	2367	22	19½	1.13	1-3-0¼" 12¼"
13	XB0997	SMI	FVH	3x13	2367	2418	51	23	2.22	DRILLING 12½"

### MUD PRODUCT

CHEMICAL	UNIT KG	CONSUMPTION		STOCK	CHEMICAL	UNIT VO	CONSUMPTION		STOCK
	UNII KA	WEEK	CUMULATIVE	31048	CHEMICAL	UNIT KG	WEEK	CUMULATIVE	STOCK
CEMENT "G"			148000		DEXTRID	,	1677	7554	
BARYTES		33637	173588		PAC-R		175	584	
BENTONITE			38185		NUT PLUG			1005	
CAUSTIC		1600	6580		SOLTEX		938	3938	
SODA ASH		360	2400		AL STEARATE		25	50	
CACL ₂			1650		SOD. NITRATE		350	350	
LIME			300						4
Q.BROXIN		2150	6830						
CMC LV		200	2750						
CMC HV			675						
SAAD			409						

## WEEKLY WELL SUMMARY

WELL	NAME:		ĖDIŅĄ ŅŌ.	.1		REPORT	NO.: .	5	· • • • • • • • •
PERI	OD: FF	ROM: .	22ND OCTO	BER, 1982.		TO: .	28	ŢḤ.QÇŢŌŖĘŖ	, 1982
All	depths	relate	to Rotary	Kelly Bus	hings at	zero tide	datum	(Low Water	Indian
Snri	nas) wt	nich is	99	metres abo	ve seabed	_			

	···		1.	<del>,</del>	<del></del>	r	·		
HOLE.	SIZE	36"	26"	17½"	12½"	8½"			
NOLE.	DEPTH (m)	NA	224	12]2	2594				
CASING	SIZE	NA	20"	13 3/8"	9 5/8"	7"			
:	DEPTH (m)	NA	219	1201					
DATE	DEPTH AT 2400 HRS.	PROGRESS	REMARKS						
22.10.82	2424M	6M 6HRS.	SURVEY, WIPER TRIP. DRILL. POOH. TEST BOPS. RAMS 5000 PSI, HYDRIL 2500 PSI. RIH BIT. MUD SG: 1.24 VIS: 50 YP: 26 WL: 4.2						
23.10.82	2500M	76M 19½HRS	RIH. DRILL 12½" HOLE. MUD SG: 1.24 VIS: 47 YP: 25 WL: 4.7 PERFORM KICK DRILL.						
24.10.82	2561M	61M 20HRS.	DRILL TO 2513M. SURVEY, WIPER TRIP. DRILL. DEVIATION: 1½DEG/2513M. MUD SG: 1.24 VIS: 48 YP: 27 WL: 4.8 FIRE & ABANDON SHIP DRILLS.						
25.10.82	2594M	33M 12HRS.	CIRCULATE DEVIATION	2594M. CII , SURVEY, I - 3/4DEG .24 VIS:	POOH FOR /2594M.	ELECTRIC			
26.10.82	2594M		RUN 1 - D RUN 2 - L	RGER LOGS. DLL/MSFL DT/CNL SONIC/NGT	- 2592.5/ - 2594/12	201M			
27.10.82	2594M		RUN SCHLU	IDT. RIH W IMBERGER RI FOR ELECTR	T. (REFER				
28.10.82	2594M	· <b></b>	RIH OPEN	RUN RFT, VELOCITY SURVEY & SIDE WALL CORES. RIH OPEN END DRILL PIPE TO 2410M. CEMENT PLUG NO. 1 2410M TO 2300M, 257 SAX CLASS G CEMENT.					

# AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.

# TIME SUMMARY

WE	L NAME: EDINA NO. 1 PERIOD: FROM:22	.10.82	TO: .28.10	0.82
TIM	ME ANALYSIS (HOURS)	FOR WEEK	TOTAL	
<u>D:</u>	MOVING			
Dl	Moving of rig, rigging up/down, anchoring		54.5	
D2	Waiting on weather during moving			
D3	Other waiting time		2	
<u>F:</u>	DRILLING - CASING			
F1	Drilling on bottom, incl. connection time	57.5	334.5	
F2	Trips for new bit	11	93	
F3	Ancillary Drilling Operations, incl. Totco, reaming, hole cleaning, testing BOP or casing.	15.5	81	
F4	Casing and Cementing		117	
G:	FORMATION SURVEYS			
$G1_{\mathfrak{t}}$	Coring		3	
G2	Related Coring Operations, incl. tripping etc.		26	
<b>G</b> 3	Tests and associated operations			
G4	Electric Logging Operations	74	92	
<b>A</b> :	INTERRUPTION OF OPERATIONS UNDER F OR G			
Αl	Stuck Pipe and Fishing Operations			
A2	Mud-Losses, Flows, Treatment		14	
А3	Waiting on Weather		8	
A4	Other waiting time - Repairs		11.5	
<b>C:</b>	COMPLETION - PLUGGING			
C1	Completion, Stimulation, Production Tests			
C2	Abandonment of Well	10	10	
C3	WOW during completion, plugging, testing			
C4	Other Waiting time			
	TOTAL TIME:	168	846.5	

DOWN TIME: HOURS

PERCENTAGE

SIT AND CORE RECORD

WEE SUMMARY - BITS AND MUD

IT NO.	SERIAL NO.	MAKE	TYPE	NOZZLES	FROM	TO	METRES	HOURS	m/h	CONDITION	
13.	XB0997	SMI	SVH	3x13	2367	2424	57	29	1.97	6-2-14"	12¼"
14	XA5822	SMI	F2	13-13-14	2424	2594	170	51½	3.30	3-8-0 1/8"	12¼"
		·									
											<del></del>
						<u> </u>					

UD PRODUCT

CUEMICAL	UNIT KC	CONSUMPTION					CONS	UMPTION	
CHEMICAL	UNIT KG	WEEK	CUMULATIVE	STOCK	CHEMICAL	UNIT KG	WEEK	CUMULATIVE	STOCK
CEMENT "G"	KG	11000	159000		DEXTRID	KG	2016	9570	
BARYTES	KG	66812	240400		PAC-R	KG		584	
BENTONITE	KG	3408	41593		NUT PLUG	KG		1005	
CAUSTIC	KG	1010	7590		SOLTEX	KG	500	4438	
SODA ASH	KG	80	2480		AL STEARATE	KG	50	100	
ACL ₂	KG		1650		SOD. NITRATE	KG	750	1100	
LIME	KG		300						
).BROXIN	KG	225	7055						
CMC LV	KG		2750						
CMC HV	KG		675						
SAPP	KG	<del></del>	409		The second secon				

# WEEKLY WELL SUMMARY

WELL NAME:	. REPORT	NO.: .	6	
PERIOD: FROM: 29TH OCTOBER, 1982	. TO: .	]ŞŢ	.ŅOVEMBER,	1982
All depths relate to Rotary Kelly Bushings at ze	ero tide	datum	(Low Water	Indian
Springs) which is99 metres above seabed.			~	

	SIZE	36"	26"	17½"	12½"	8½"			
HOLE	DEPTH (m)	N/A	224	1212	2594				
CASING	SIZE	N/A	20"	13 3/8"					
CASINI	DEPTH (m)	N/A	219	1201					
DATE	DEPTH AT 2400 HRS.	PROGRESS	REMARKS						
29.10.82	2594M	NIL -	CEMENT PLUG NO. 2, 1250-1150M. 288 SAX CLASS "G". LAY DOWN PIPE. TEST PLUG NO. 2, 1000 PSI, 15 MINS. PERFORATE 13 3/8" CASING AT 171M. CEMENT PLUG NO. 3, 168-105M. 153 SAX CLASS "G" POOH TO 103M. SQUEEZE CEMENT IN TO 13 3/8" x 20" ANNULUS. RIH TO 168M. CEMENT PLUG NO. 4 168-140M, 140 SAX CLASS "G" RIG TO PULL BOP. TEST PLUG NO. 4, 1000 PSI, 15 MINS.						
30.10.82	2594M	NIL	PULL BOP STACK. CUT 13 3/8" CASING AT 120M WITH TRI-STATE CUTTER. RIH SPEAR & RECOVER 13 3/8". CUT 20" CASING AT 114M WITH TRI-STATE CUTTER. RIH 18 3/4" RUNNING TOOL. RECOVER 20", PLUS GUIDE BASE/STRUCTURE. JUMP DIVERS TO CHECK WELLHEAD AREA - ALL CLEAR.						
31.10.82	2594M	NIL	BACKLOAD BOAT. LAY DOWN PIPE & DRILL COLLARS. DEBALLAST RIG. PULL ANCHORS 1,2,5,6,7,8,10. LADY JANE TO NO. 3 ANCHOR.						
1.11.82	2594M	NIL	RIG TO TO	4 ANCHOR. W WITH LA ON NO. 3	DY JANE O	N NO. 4 &	SEA		
			RIG RELEASED FROM EDINA NO. 1 LOCATION 2100 HRS, 1.11.82. MOVE TO OMEO NO. 1						
	-			OCKS ADVA .10.82 FO					

### AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.

## TIME SUMMARY

TIM	E ANALYSIS (HOURS)	FOR WEEK	TOTAL	%
D:	MOVING			
Dl	Moving of ria, rigging up/down, anchoring	36.5	91	9.6
D2	Waiting on weather during moving			
D3	Other waiting time	1.5	3.5	0.3
F:	DRILLING - CASING			
F٦	Drilling on bottom, incl. connection time		334.5	35.6
F2	Trips for new bit		93	9.6
F3	Ancillary Drilling Operations, incl. Totco, reaming, hole cleaning, testing BOP or casing.		81	8.6
F4	Casing and Cementing		117	12.4
G:	FORMATION SURVEYS			
Gl	Coring		3	0.3
G2	Related Coring Operations, incl. tripping etc.		26	2.7
<b>G</b> 3	Tests and associated operations	-		
G4	Electric Logging Operations		92	9.7
Α:	INTERRUPTION OF OPERATIONS UNDER F OR G			
Αl	Stuck Pipe and Fishing Operations			
A2	Mud-Losses, Flows, Treatment		14	1.4
A3	Waiting on Weather		8	0.8
<b>A</b> 4	Other waiting time - Repairs		11.5	1.2
С:	COMPLETION - PLUGGING		·	
C 1	Completion, Stimulation, Production Tests			
C2	Abandonment of Well	55	65	6.9
С3	WOW during completion, plugging, testing			
C4	Other Waiting time			
	TOTAL TIME:	93	939.5	100%

DOWN TIME: HOURS

WAITING 11.5 REPAIRS 11.5

PERCENTAGE

1.22% 1.22%

HUS I MAL I

#### AQUITAINE FEIRULEUM PIT. LID.

### WEEKLY SUMMARY - BITS AND MUD

BIT AND CORE RECORD

	JONE REGOR		<u> </u>	[						
BIT NO.	SERIAL NO.	MAKE	TYPE	NOZZLES	FROM	TO	METRES	HOURS	m/h	CONDITION
										288
										153
										140
					NIL	-				
		·								581 .
				,						
:										

### MUD PRODUCT

## - FINAL REPORT -

CHUMICAL	UNIT KG	CONSUMPTION					CONSUMPTION		
CHEMICAL		WEEK	CUMULATIVE	STOCK	CHEMICAL	UNIT KG	WEEK	CUMULATIVE	STOCK
CEMENT "G"		25036	184036		DEXTRID			9570	
BARYTES			240400	•	PAC-R		-+	584	
BENTONITE			41593		NUT PLUG			1005	
CAUSTIC			7590		SOLTEX			4438	
SODA ASH			2480		AL STEARATE			100	
CACL			1650		SOD NITRATE		~ =	1100	·
LIME			300						
Q.BROXIN			7055						
CMC LV			2750						
CMC HV			675						
SAPP			409						

Appendix 9
Operation Report

# APPENDIX 9

OPERATIONAL REPORT OF THE SIDESCAN
SONAR SEABED CLEARANCE SURVEYS.

#### GIPPSLAND BASIN SIDESCAN SONAR SEABED CLEARANCE SURVEYS

OF DRILLING SITES IN VIC P17

FOR AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.

# PREPARED BY RACAL-DECCA SURVEY AUSTRALIA

47 Talavera Road North Ryde, NSW 2113 PO Box 368, North Ryde

Ph: (02) 888 2233 Tlx: AA 20365

Cnr. Stock & Stockdale Roads PO Box 261

Hamilton Hill, WA 6163

Ph: (09) 331 1199 Tlx: AA 94341

R-DSA 1155 October 1982 - April 1983

## C O N T E N T S

		PAGE
ABS	STRACT	1
1-	REQUIREMENTS	2
2 -	SUMMARY OF EVENTS	3
3 -	WELLHEAD LOCATIONS	4
4 -	DRILLING SITE SEABED SURVEYS	5
5 -	SUMMARY OF RESULTS	6

## APPENDICES

- A- AREA OF OPERATIONS
- B- TRACK PLOTS OF POST DRILL SURVEYS (5)

#### **ABSTRACT**

The following report gives details of the Sidescan Sonar Seabed Clearance Surveys carried out at the EDINA, OMEO, KYARRA and TARRA drilling locations during the Australian Aquitaine Petroleum drilling program in the Gippsland Basin Vic P17 between September 1982 and April 1983.

# 1- REQUIREMENTS

To conduct pre and post drilling Sidescan Sonar Surveys covering an area 2.0 km by 2.0 km centred around the drilling locations with the purpose of establishing the presence or absence of any debris on the seabed.

2

# 2- SUMMARY OF EVENTS

25/9/82 -	Drilling Rig 'OCEAN DIGGER' positioned at EDINA location
18/10/82 -	Sidescan Sonar equipment mobilised and installed in survey vessel 'MV 'CHRISTMAS CREEK'
28/10/82 -	OMEO pre-drill seabed survey
2/11/82 -	'OCEAN DIGGER' positioned at OMEO location
5-6/11/82 -	EDINA post-drill seabed survey
21-22/1/83 -	KYARRA pre-drill seabed survey
11/2/83 -	'OCEAN DIGGER' positioned at KYARRA location
12-13/2/83 -	OMEO post-drill seabed survey
27/2/83 -	TARRA pre-drill seabed survey
2/3/83 -	'OCEAN DIGGER' positioned at TARRA location
7/3/83 -	OMEO site re-runs to check anomaly
8-10/3/83 -	KYARRA post-drill seabed survey
23-24/4/83 -	TARRA post-drill seabed survey

# 3- WELLHEAD LOCATIONS

Australian Geodetic Datum - A.M.G. Zone 55

## 3.1 EDINA-1

Latitude 38° 36' 22".539 south Longitude 147° 52' 41".949 east Easting 576476 Northing 5726535

## 3.2 OMEO-1

Latitude 38° 36' 45".006 south Longitude 147° 43' 02".245 east Easting 562449 Northing 5725964

## 3.3 KYARRA-1A

Latitude 38° 40' 52".532 south Longitude 147° 11' 12".288 east Easting 516243 Northing 5718562

## 3.4 TARRA-1

Latitude 38° 38' 37".150 south Longitude 147° 42' 08".207 east Easting 561116 Northing 5722518

## 4- DRILLING SITE SEABED SURVEYS

Prior to the arrival of the drilling rig at a location a sidescan sonar survey was carried out covering an area 2.0 km x 2.0 km centred on the proposed location with the purpose of establishing the presence or absence of any debris on the seabed.

A similar sidescan sonar survey of each drilling site was made following the departure of the rig from the location to locate any debris resulting from the drilling operation and/or document the absence of oil-field debris.

A Klein Hydroscan 420 Dual Channel Sidescan Sonar was fitted in the Aquitaine survey/standby vessel MV 'CHRISTMAS CREEK' to carry out the surveys. Positioning of the survey vessel was by the RACAL-DECCA OASIS system which was also used to position the drilling rig 'OCEAN DIGGER' at each location. The OASIS system, an integrated satellite/acoustic navigation and position fixing system is fully described in the Rig Move Reports, together with details of the Acoustic Net Calibration at each site.

Survey lines at 100 metre intervals were run with the dual channel sidescan sonar operating at 100m or 150m range scale to ensure 100% overlap of the entire area. Any anomalies detected were examined by running interlines on an expanded range scale.

## 5- SUMMARY OF RESULTS

Generally the seabed proved to be flat and featureless.

No significant debris was detected at any of the sites except what appears to be the remains of No.3 anchor marker buoy at the OMEO-1 location.

A.M.G. Co-ordinates of this anomaly are:

Easting 561785

Northing 5725595

It was detected on the original OMEO survey and confirmed during re-runs in the area on 7/3/83. If it is a sunken marker buoy the rope mooring will eventually part releasing the buoy.

Track plots of the survey lines run at each location are enclosed as appendices.

N.L. Sanderson O.B.E. Assoc. I.S. Aust.

Racal-Decca Survey Australia

This is an enclosure indicator page. The enclosure PE905952 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905952 has the following characteristics:

ITEM_BARCODE = PE905952
CONTAINER_BARCODE = PE905967

NAME = Location Map
BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL

SUBTYPE = MAP

DESCRIPTION = Location Map (from appendix 9 of WCR--Operation Report) for Edina-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 6/06/83

 $W_NO = W784$ 

 $WELL_NAME = EDINA-1$ 

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905953 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905953 has the following characteristics:

ITEM_BARCODE = PE905953
CONTAINER_BARCODE = PE905967

NAME = Post Drilling Side Scan Sonar Survey

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = GENERAL

SUBTYPE = SRVY_MAP

DESCRIPTION = Edina-1 Post Drilling Side Scan Sonar

Survey (from appendix 9 of

WCR--Operation Report) for Edina-1

REMARKS =

DATE_CREATED = DATE_RECEIVED = 6/06/83

 $W_NO = W784$ 

WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905954 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905954 has the following characteristics:

ITEM_BARCODE = PE905954
CONTAINER_BARCODE = PE905967

NAME = Post Drilling Side Scan Sonar Survey

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = GENERAL SUBTYPE = SRVY_MAP

DESCRIPTION = Omeo-1 Post Drilling Side Scan Sonar

Survey (from appendix 9 of

WCR--Operation Report) for Edina-1

REMARKS = for Omeo-1 not Edina-1

DATE_CREATED =

 $DATE_RECEIVED = 6/06/83$ 

 $W_NO = W784$ 

WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905955 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905955 has the following characteristics:

ITEM_BARCODE = PE905955
CONTAINER_BARCODE = PE905967

NAME = Omeo-1 Sonar Survey

BASIN = GIPPSLAND BASIN PERMIT = VIC/P17

TYPE = GENERAL SUBTYPE = SRVY_MAP

DESCRIPTION = Omeo-1 Sonar Survey (from appendix 9 of

WCR--Operation Report) for Edina-1

REMARKS = for Omeo-1 not Edina-1

DATE_CREATED = 4/03/83 DATE_RECEIVED = 6/06/83

 $W_NO = W784$ 

WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905956 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905956 has the following characteristics:

ITEM_BARCODE = PE905956
CONTAINER_BARCODE = PE905967

NAME = Kyarra-1 Post Drill Survey

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = GENERAL SUBTYPE = SRVY_MAP

DESCRIPTION = Kyarra-1 Post Drill Survey (from

appendix 9 of WCR--Operation Report)

for Edina-1

REMARKS = for Kyarra-1 not Edina-1

DATE_CREATED = 10/03/83 DATE_RECEIVED = 6/06/83

 $W_NO = W784$ 

WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905957 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905957 has the following characteristics:

ITEM_BARCODE = PE905957
CONTAINER_BARCODE = PE905967

NAME = Tarra-1 post drill Seabed Survey

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = GENERAL SUBTYPE = SRVY_MAP

DESCRIPTION = Tarra-1 Post drill Seabed Survey (from

appendix 9 of WCR--Operation Report)

for Edina-1

REMARKS = for Tarra-1 not Edina-1

DATE_CREATED =

 $DATE_RECEIVED = 6/06/83$ 

 $W_NO = W784$ 

WELL_NAME = EDINA-1

CONTRACTOR =

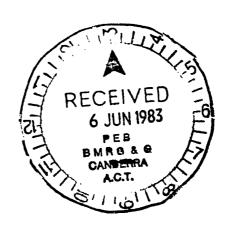
CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

Attachment 1

Final Technical Report

# ATTACHMENT 1

GIPPSLAND BASIN


BASS STRAIT - VIC P-17

EDINA NO. 1

FINAL TECHNICAL REPORT

OP 12/82

P. BUREAU.



# SUMMARY

1

PAGE	TITLE
F3a	Well Data
F3a'	Logistics
F3b	Environment
F3b'	Means Used (ctd)
F3c	Technical Section
F3c'	Footage
F3d	Core Data Summary
F3d'	Formation Test Summary
F3e	Time Distribution
F3e'	Interruptions of Operations
F3f	Mud Summary by Interval (17½")
F3f	Mud Summary by Interval (26")
F3f	Mud Summary by Interval (12½")
F3g	Drill String Composition and Deviation Surveys
F3h	Completion Status
F3h'	Well Technical Section (Completion Status)
F3i	Main Consumptions of the Well
F3i'	Main Consumptions of the Well
F3j	Costs Breakdown
F3j'	Breakdown of Consumables, Rental and Service Cost
F3k	Monthly Meteorological Sheet (pge 1)
f3K	Monthly Meteorological Sheet (pge 2)
F3-1	Penetration Chart
F6	Time Distribution (September)
F6	Time Distribution (October)
F6	Time Distribution (November)
F5	Casing and Cementing Report
F5	Detailed Composition of the Casing String
F5	Casing and Cementing Report
F5	Detailed Composition of the Casing String
F5	Detailed Composition of the Casing String
F7	Bit Record
F7	Bit Record

F3a Bis 2-	F3a Bis 2-78 WEL							WELL:	EDINA 1	
7) WELL NAME :	EDI	INA NO.	1	2	DENT.: _E	DN 1				
3) GEOGRAPHICAL	REA		AUSTRALIA S STRAIT	4	I) GEOLOGICA	L BASIN	GIP	PSLAND		
5) FIELD : VIC-	P17			6	BLOCK		:У	IC-P17		
7) PERMIT/HOLDER VIC-P17 AUSTRALIAN AQUITAINE PETROLEUM (AAI	_	AUST ALLI	Name RALIAN OCC ANCE RESOU PTY. LIMI	RCES PTY	PET. 25 '. LTD.25 12.5		Nome OLIDATED FF/HARTO(	PETROL	<b>%</b> EUM	
	TAINE	PETRO	TROLEUM PTY. LTD.  GURNARD KINGFISH				:			
10) INITIAL STATUS	-	_OCATIO s <u>ite</u> _			oordinates	reference	e meridian	LAMBE	RT coordinates	
Description of the control of the co	re 🖄	Latitude	<u>38°38"</u>	22.321'S 42.183'E	Paris Greenwich		X(m) - Y(m) - Z(m) -			
SITE	(	LAND	OFF	SHORE	SWA	MP		OTHER		
Distance RKB/REF.				99 <u>m</u>	30m					
Reference		G	ROUND	MUD LINE	ZERO HYDRO					
13) DRILLING OBJE	CTIV	ES	Formation tops					_		
Objective n°	<b>T</b> 00	Format			ertical depth		Departure	ture Direction		
	100	LATROBI	E GROUP	_+/-	2320m					
Vertical Device Normal	Sco	lurse	15) WAS THE OBJECTIVE REACHED?  Formation tops vertical depth Peparture Direct 2335  OBJECTIVE 2						Direction	
Gos	produc produc er prod	ction			but no reservoir on well []			orily plugg I and aban ted	•	
17) DATES (+)					18) WELL E	END (···	)			
#ell 23/09/82 Drilling: 26/09/82		Drilling Well 0	END 25/10/82 1/1 <u>1/82</u> (2	2 2100 HRS	Total depth Drilled footag  Total departur	.95m				
TOTAL DURATION	Orilling VeH	:	30 40	days days	19) COSTS Before drilling During drilling After drilling	1,838 6,043		CURI	A\$	
					Total well	7,881	,992		_A\$	

F3a' ві.	2-78 LOGISTICS	WELL: EDINA 1
Area management	AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD.	
Located :	99 MOUNT STREET, NORTH SYDNEY N.S.W. 2060., P.O. BOX 725	
Land Base	AQUITAINE WELSHPOOL SHORE BASE MIDLAND HIGHWAY,	

WELSHPOOL VICTORIA 3966

P.O. BOX 27

## • SERVICE COMPANIES

Located :

- Mud	BAROID	· Under water T.V.	ODECO
- Mud logging	GEOSERVICES	- Testing	HALLIBURTON
- Production tests	FLOPETROL	. Well head	CAMERON
. Fishing	TRISTATE	Depollution	A.A.P.
. Positioning	DECCA SURVEY	. Air transportation	COMMERCIAL AVIATION LLOYD HELICOPTERS
. Electrical logging	SCHLUMBERGER	. Sea transportation	LOMBARDO MARINE
- Meteo	OCEANROUTES		GROUP/AOS
Diving	OCEANEERING		LADY JANE A.O.S.
- H.P. Pumping	DOWELL SCHLUMBERGER		SEA SAPPHIRE A.O.S.
- Bulking	BAROID		STAND-BY
	:		CHRISTMAS CREEK L.M.G.

Beginning of well = first moving in date (if this date is known)

Beginning of drilling = spudding date

End of drilling = date of last bit pulling out or end of electrical logging operations, or pressure surge

at the end of production casing cementing operation

End of well = end of well plugging operations laying down included or end of completion

** - Depths of be calculated from the rotary table

- Drilled footage: distance RKB/ground (or mud line) not included, but side tracks resulting from fishing included

- Lost footage resulting from fishing or course modification without changing the geological objective. Should the geological objective vary, well name or number will change, and the previous well drilled footage is not considered as a lost fnotage

- Except change in geological objective requiring a side track, the formula is: Drilled footage - Lost footage = Total depth - Distance RKB/ground

	F3b Bis	2-78	ENVI	RONMENT		WELL: EDINA 1		
	•AREA •	LAND		SEA X	SWAMP	LAKE		
		ALTITUDE	SEA LEVEL		WATER DEPTH	99m		
	DISTANCE	FROM BASE	:	DIS:	TANCE FROM SHOP	RE :		
	• RELIEF	Flot X	Slightly undulate	Undulate	Very undulate			
	• SEA CONDITIONS	Calm	Medium	Strong X	Very strong			
	• POLLUTION RISK	Low [	Medium X	High	Very high			
	• WEATHER	Equatorial 🔲	Hot 🗌	Temperate	Cold X	Arctic		
	• POPULATION DENSITY	NII X	Low	Modium [	High [	Very Land		
			MEAN	S USED				
	• NAME OF THE	RIG (LAND):_						
	• SUPPORT •	Lend [	Artificial	Jack-up 🗌	Drillship [	Semi- submersible		
		Swamp barge	Non assisted Platform	Assisted platform	Tender	Other		
	• SEA SUPPO	ORT NAME :_	OCEAN DIGGER					
	• PROPULSIO	<u>n</u> :	Towed X	{	Power :			
Imp. 4996 SNEAIPI RGM 959 004 011	• POSITIONIN	_	(Classical X	1	Høod : <u>26</u> ;	2 DEGREES		
Imp 4996 SNEA		Mooring	Classical X  Dynamic					

F3b' Bis 2-78	MEANS	USED (cto	d)	WELL: EDINA 1			
• DRILLING EQUIPMENT •  DRAWORK MANUFACTURER -	EMSCO MODEL A	1500 E	CONTRACTOR :	ODECO			
• RANGE • Light	Medium	Heavy X	Super Heavy	Extra Heavy			
• TRANSMISSION •	Mechanical	Electric X	Hydraulic				
MAIN PUMPS	Number 2 E	MSCO D-1350 hp	Total hydraulic po	wer .			
• RIG DESIGN • N	ormal design 🗓	Compact	Portable	Helirig 🔲			
İ	Flexorig	Automatic racking	Winterised				
SURFACE OR SUBSEA EQUI	PMENT			·			
B.O.P. STACK	Diar	neter		API WP			
Number 1	18-3/4"	CAMERON "U"	10,000 PSI				
Number 2	<u>· 18-3/4"</u>	HYDRIL	5,	,000 PSI			
Number 3							
WELL HEAD	Manufacturer	Туре	Diameter	API WP			
Number 1	CAMERON	TORQUE SET	18-3/4"	10,000 PSI			
Number 2							
Number 3							
MUD LINE SUSPENSION:	yes no	Monufac	turer :				
RISER							
Number	1	T	Number 2				
Diameter : 50' x 22" 0	.D x 0.50" WALI	- Diameter	Diameter :				
Connector : <u>VETCO</u>	MR-4B	Connector	onnector :				
Buoyancy system :	no X	yes Buoyancy	system	no yes			

F3c Bis 2-78 WELL: EDN 1 TECHNICAL SECTION • OPEN HOLE SECTIONS • • CASINGS • COMPOSITE STRING TOP CEMENT SHOE DEPTH HANGER DEPTH DIAMETER DIAMETER TOTAL DEPTH DIAMETERS IN ANNULUS 219 m 98 m SEA BED 26" 224 m 20" - 133 lbs 100.38 600 m 13-3/8, 68 lbs, K55 1201.00 17날" 1212 m 121 2594 m

F3C' Bis 2-78 FEET) WELL: EDN 1 FOOTAGE (METERS 0 R Abandonned footage in the interval footage in the interval RE-DRILLING SIMULTANEOUS PILOT Drilling fluid AND/OR DRILLING CORING TURBODRILLING DRILLING HOLE OPENING Total REAMING AND HOLE OPENING Ø Ø h 0 h Ø h m or ft m or ft h m off m o<del>r ft</del> h m or ft m or fr SEA WATER 5m 115 26" 125m 26 125 13 LOW SOLID 11m 17 1 " 988m 17½ 998 823 SEA WATER FCL/ POLYMER 1 24 SC 48 mv 4.8 WL 438 19 1393 21/2 7 12¦" 1382m 81/2 7 121 1375 240 PV14YP27

F3d Bis 2-78 WELL : EDINA 1 CORE DATA SUMMARY DEPTH DEPTH Core ¥X or m. Ft or m. Core Formation Formation Number Number Recovered Recovered from from to **GURNARD** 2313 2320 92 1 SANDSTONE CLABS DEPTH **DEPTH** Number Number Run Run ft or m. ft or m. of of Formation Formation N° Nº samples samples from from to 51 SHOTS 29 REC 57% REC 30 SHOTS 19 REC 9 LOST 2 MISFIRED -2590 1343.5 1 2 2592 1343.5

# F3d' Bis 2-78

# FORMATION TEST SUMMARY

WELL : EDN 1

Test	Date	Type of	Tested	interval	Suc	ceful	Reason of failure	Observations		
N° ·		test *	from fr or m.	to ft or m,	Yes	No	()			
1	27/10/82	R.F.T	2335	2562	Х			13 PRESSURES		
	27/10/82		2335		х			2 SAMPLES: 3785 cc WATER = 29000 NaCl 10409 cc WATER = 26500 NaCl		
								10409 GE WATER - 20300 NACI		

* TOHP - Test open hole full diameter

TOHR

- Test open hale - rat hale

STOHP - Straddle test open hale full diameter

STOHR - Straddle test open hale ret hale TCSG

- Test casing

FIT

STCSG - Streddle test casing . Fermetion interval tester · FP - Packer leak

BO - Tool plugged

NO - Test not opened

IN - Test interrupted

XX - Other (to be specified)

# **ELECTRICAL LOGGING SUMMARY**

			<del></del>				
Interval	Date	Nature and Run No	DEPT	H ft or m.		Scales	
į mervai	2010	Maisie and Kan K	from	to	1 20	1 200	1 500
17½	7/10/82	IFS/SLS/CAL	110	1212		х	х
11	11	LDL - CAL	219	1212		х	x
12‡	26/10/82	1. DLL - MSFL - GR - SP - CAL 2. LDL - CNL - GR - CAL - PE	2592 2594	1201 1201		х	х
11	27/10/82	3. BHCSONIC - NGT - GR 4. HDT	2594 2594	1201 1201		х	х
	·						
"							

F5 @ Bis 2-78 DISTRIBUTION WELL: EDN 1 TIME **Duration** INTERVALS: Duration in hours • ITEMS • " by total 12분" 171" C D 26" _D_ duration Rigging up, transportation 91__ D١ and 36.5 9.68 54월 tearing down MOVING Waiting on weather _ 5م3 Waiting: other **D**3 1.5 0.37 2 334. New hole drilling 13 82.5 239 35.60 DRILLING . CASING 93__ Drilling trips 8 21.5 63.5 9.9 81__ Miscellaneous drilling F3 operations 10.5 70.5 8.62 116.5 Casing and cementing 12.40 71.5 45 _3__ G1 Coring FORMATION SURVEYS 3 0.32 26 Coring trips and G2 2.79 26 miscellaneous Testing and related G3 operations 92 G4 **Electrical logging** 74 18 9.80 14 Sticking - Fishing INTERRUPTIONS OF OPERATIONS UNDER F & 1.50 14 Losses and well flowing A2 mud treatment 8 Waiting on weather 0.85 8 12 Waiting : other **A**4 0.5 4 1.28 7.5 Completion - Formation C١ treatment and Production COMPLETION AND tests 65_ PLUGGING C2 Abandon 65 6.92 Waiting on weather C4 Waiting · other 939 5 480 65 38 100% 178 56½ 122 DURATION BY INTERVAL . 939.5 12.98 18.95 51.10 6.92 4.04 6.01 100 %

1995 SNEED TO THE PROPERTY OF THE

<b>56</b> Bis 2-78	INTERRUPTI	<del></del>		RATIO			WELL: EDN 1		V 1	
OPERATIONS IN PROGRESS	REASONS	STICKING FISHING		LOSSES, FLOWING MUD TREATMENT		WAITING ON WEATHER		WAITING: OTHER		
	DURATION	Number	Duration (h)	Number	Duration (h)	Number	Duration (h)	Number	Duration (h)	
	Less than 24 h							1	1.5	
Moving	From 1 to 5 days									
(D2-D3)	More than 5 days									
	TOTAL									
	Less than 24 h	2	14			1	8	5	11.5	
Drilling, casing formation surveys	From 1 to 5 days									
(A1-A2-A3-A4)	Mare than 5 days							-		
	TOTAL									
	Less than 24 h	•								
Completion	From 1 to 5 days	<b>54</b>								
(C3-C4)	More than 5 days				•					
	TOTAL		<b>T</b>	à	<u> </u>					
TOTAL		2	14		<u> </u>	1_1	8	6	13	
TOTAL DURATIO	TOTAL DURATION OF INTERRUPTIONS					During moving : : : : : : : : : : : : : : : :				
		During com	pletion and pl	ugging	TOTAL IN H	OURS	35 1 DAY	11 HRS		

F3	lf .	is 2-78		MUD SUM	MARY B	Y 11	NTERVAL		WELL	: _EDINA	<u>1</u>
INTER	/AL : 17	7-1/2" HO	LE-13-3	/8"_CSG	From		219_1	<b>4</b>	to	1212 M	
Mud ty	pe used	in this inte	rval	SEA WAT	ER/Q MIX						
• USEI	UL DA	TA •			1		·				
	CASING			NCE OF VOLUM			<i>t</i> .		DRILLING	20.40.4	0.0
- Diamete - Hanger			\$	volume :		rilled or fi	·) (10	12.12	duration (date)	1 from 30/9/	82 /82
. Shoe _:	_1	201 M	Jetted	d volume56	52_   F					in: 9_DA	
- Casing - Lenght	K5 <u>5</u> -	68 lbs/f 1103 M		s in formation Average dilg rate 14.16 drilling hours 74.05 H  volume: 220 Internal casing vol.: 90 losses :							
							Pumping ra	ie : <u>329</u>	0 Lit/Min		
• MU	D CHAI	RACTERIST	ICS •		Τ	01	CONSU  JANTITY	MPTIONS	•	COST	
	mini 1.05		1.09	CHEMICALS	M or T		Kg fr or m drilled	Kg m ³	Unit Price	Total Cost	·.
igin flow	1.08		1.10	BARITE	12.672		12.76	16.2	8.00	2232.0	
s w.v.	34 18	<u>46</u> 19	<u>40</u> _18_5	BENTONITE	26.400	)	26.59	33.76	14 .00	8120.0	
Viscosity N.V. W.V.	7 9	<u>11</u> 25	<u>9</u> 17	CAUSTIC	1.890		1.90	2.42	74.70	2016.9	
Gels.	3 6	<u>5</u> 18	<u>4</u> 12	SODA ASH	0.600		0.60	0.77	13.88	208.2	
API MP•HT	<u>16</u>		<u>20</u>	BICARB	0.080		0.080	0.10	16 . 98	33.96	
Pressure				LIME	0.300		0.302	0.38	6.75	81.0	
Ph Pf	9 ₋₀	- 1	<u>9.0</u> 0.4	Q BROXIN	0.4000		0.403	0.51	29.50	472 0	
P _m Ca ⁺⁺ (g/1)	<u>0.1</u> 9.0	<u>0.2</u> 200	_0.1 _100								
SO4Ca Clna	28.00	35.000	30_000								
CaCl2	<u>-</u> 96	98	<u>-</u> 97								
° oil	0	0	0								
oil water ratio o solids		4	3			_					
Solids density oo Sand	0.2	0.5	0.3								_
τ°C	-	1 -	_			_					
Depth (1	h)	Litholo	9 7								
219 - 10	ARGILACEOUS 19 - 1000 LIMESTONE			TOTAL	42.342	-				1 <u>3164_06</u>	
1000-1212 MARL					Inte	erv al	:131	64.06	\$A		-

Total cost of

Conversion rate used

Currency

Drilled meter 13.26 \$A/M

AUSTRALIAN DOLLARS

	tą	Bis	2-78		MUD 20M	MAKY	BY II	HIERVAL		WELL	: EDINA	1	
	INTERV	AL :	26" HOL	E		From	_	O m		to	224 m		
	Mud typ	e used i	a this inte	rvel	: SEA WATE	R/GEL	SPUD-	MUD					
									<del></del>	<u></u>			
		UL DAT		BALA	NÇE OF VOLUM	ICE OF VOLUMES bbl on m3							
	- Diamete			-Initia	volume : <u>15</u>	Drilled (m or fr	. } !ro	<u> </u>	duration	\\ \text{from: \frac{221}{221}}	<u>}</u>		
	- Hanger - Shee :	:9	98 m	Debba.	velume : <u>18</u> 2 volume <u>82</u>	4	Footag	ge (m or ft)	224		`in :		
	- Casing	_13	33_/ft_	Losse	SEA inchesciano	425 0					drilling hours		
	- Lenght	:	20 m	.Final	volume :	<del>-</del> -				00 lts/mir			
	• MUE	CHARA	CTERIST	ICS •		1		• CONSU	MPTIONS	•			
		mini	l maxi	average	CHEMICALS			JANTITY	_		COST		
	÷: 0		DISPLAC		CHEMICALS		ral or T	Kg ft orm drilled	Kg m ³	Unit Price	Total Cost	,	
	in flew	1.0	1.5	1.0	BARITE	54.9	)	247	131	8.0	9760		
	Viscosity A. A. W. W. M. A. W.	100+	100+	100+	GEL	17.0	)1	76.5	40.6	14.00	5292		
					CACL2	3.2	28	14.7	7.4	11.46	1512.72	_	
	5 10·				CAUSTIC	0.5	55	2.5	1.2	74.70	576.60		
	_ API E HP-HT				SODA ASH	0.3	32	1.4	0.8	13.88	111.04		
	T°											-	
	Ph Pf					:							
	P _m Ca ⁺⁺ (g l) SO4Ca												
	Cina CoCl2											_	
l	° water												
	oil water							_					
	Solids Solids density					· · · · · · · · · · · · · · · · · · ·							
H	² o Sand T °C												
F	Depth (f	1)	Litholo	gy									
	224 m		_		TOTAL	76_	76_06			A\$	17273.36		
					Total cost of								

MUD SUMMARY BY INTERVAL F3 Bis 2-78 WELL : EDINA 1 INTERVAL : 124" : 1201 m _____ to : <u>2594 m</u> From Mud type used in this interval : SOLTEX / FCL / POLYMER • USEFUL DATA • BALANCE OF VOLUMES CASINGS DRILLING Diameter : _____ -Initial volume : 220 Drilled (m <del>or ft)</del> Added volume : 430 - Hanger Footage (m er ft) : 1394 m in : 18 DAYS - Shoe : _ Jetted volume: 334 Average dllg rate 3.95 m/hr drilling hours: 352.5 - Casing -Losses information : 0 Internal casing vol.: _____ losses - Lenght : _ Final volume: 316 Pumping rate : 13.25 Bbl/min / 2105 L/m² • MUD CHARACTERISTICS • CONSUMPTIONS QUANTITY COST mini maxi average CHEMICALS Jotal m orKFG Kg m³ Unit Total Kg ft or m drilled Cost \$ Price in flow 1.11 1.24 1.23 1.25 out flow 1.12 1.24 BARITE 186,785.0 133.9 434.4 8.00 32880.00 36. 41 50 60 **≯ M.V.** BENTONITE 7,977.0 5.7 18.55 14.00 2464.00 2. 16.5 37 27 A.V. P.V. 8 19 15 CAUSTIC 4,540.0 3.3 10.6 65.12 6.5 5925.92 Y.P. 17 36 25 . 0' 10 Q BROXIN 7,525.0 5.4 17.5 29.50 8879.5 9.8 3 10° 17 28 22 API 4.2 25 5 ₹ HE-HT S.ASH 1,440.0 1.0 3.35 13.88 499.68 0.6 _ Pressure SOLTEX 4,438.0 3.2 10.32 78.50 15386.00 17. 8.5 10.5 10 0 Ph SAPP 409.0 540.00 | 0.6 0.3 0.95 30.0 0.2 0.1 0.4 Pí Pm++ 0.35 0.2 0.05 CMC HV 300.0 0.2 0.69 48.68 584.16 **0.**6 80 540 100 SO4C CMC LV 1,325.0 0.95 3.1 45.85 2430.05 Clna 16500 15500 17600 CaCl2 DEXTRID 6,579.0 4.7 15.3 51.60 15170.40 | 16. % water 86 96 87 o oil PAC-R 0.2 311.0 0.72 106.06 1378.78 1.5 oil/water % ratio 4 14 13 NUT PLUG 1,005.0 0.7 48.22 Solids 2.34 2652.10 2.9 density % Sand 0.25 0.1 0.5 0.8 85.22 **1193.08 1.**3 AL STEARATE 0.25 350.0 T °C 35.5 45 58.2 135.84 0.1 0.76 16.98 Depth (M) Lithology **BICARB** 320.0 0.2 TOTAL 90119.51 1527 m CLAYSTONE

Interval : 90110.51 \$

AUSTRALIAN DOLLARS

Drilled meter 64.65 \$

CLAYST/SILTST

SANDSTONE

COAL/SAND

Total cost of

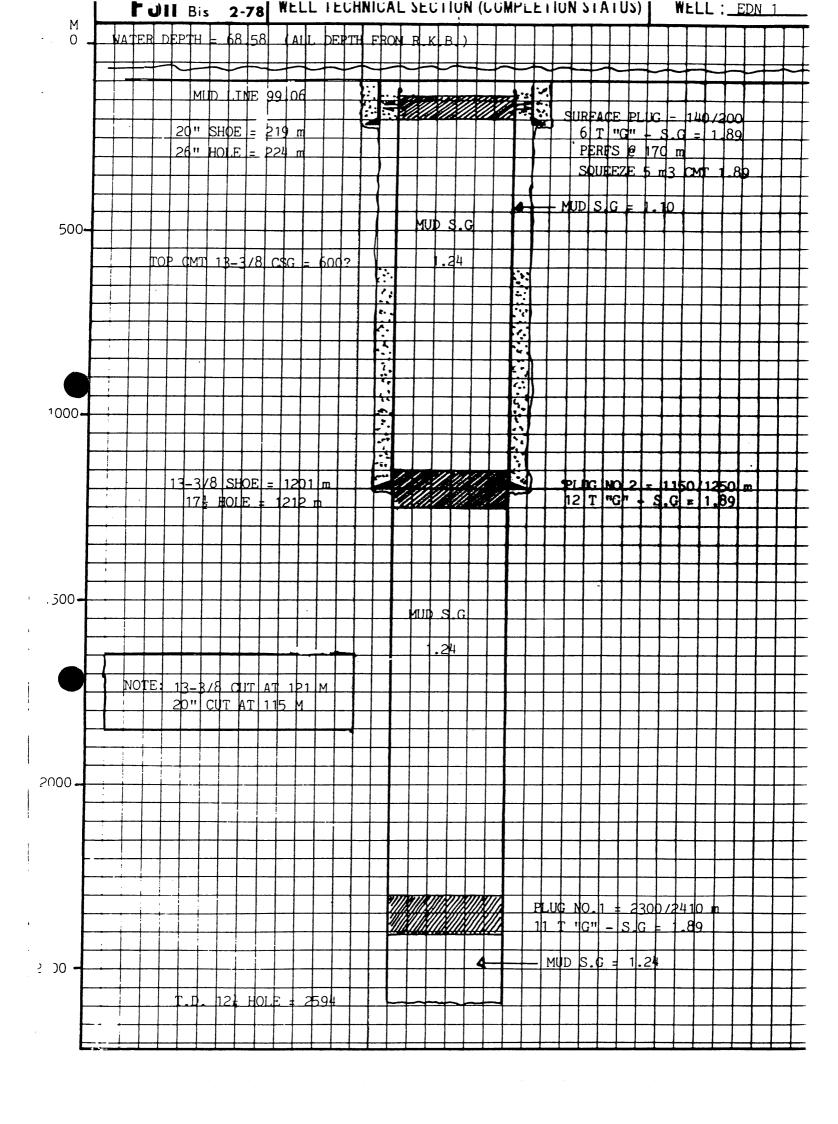
Conversion rate used

Currency

2191 m

2313 m

2424 m


F3g Bis 2-78

# DRILL STRING COMPOSITION AND DEVIATION SURVEYS

WELL : EDN 1

RUN				DRILLIN	G.	. SURVEYS .						
NUMBER	INTERVAL	DRILL STRING	Weight og bit	R.P.M.	Flow rate	Number	Date	Duilled depth (m or ft)	Inclinction (°)	Direction (°)		
1	26"	26" BIT+FLOAT SUB+2x9½ DC+26" STAB+1x9½ DC+X OVER+3x7¾DC + BUMPER SUB 7¾+ 3x7¾ DC + X OVER+ HWDP	^2/10	60780	3290	1	26/9/82	224 m	1/4	_		
2	(CONTROL) 26"	26" BIT+FLOATSUB+10'x9호 DC+26" STAB+3x9호 DC+XO+3x7값 DC+ 7을 BUMPER SUB+3x7값 DC+XO+9 HWDP	2/5	60780	3290							
3	17½"	17년" BIT+BITSUB+3x9년 DC+XO+3x7년 DC+B/SUB+3x7년 DC+XO+ 9 HWDP										
24	17½"	17½" BIT+FLOAT SUB+1x9½ DC+17½ STAB+2x9½ DC+XO+3x7% DC+BUMPER SUB+3x7% DC+XO+6 HWDP+XO+EQ JARS+XO+3 HWDP	2/12	85/100	3000	2	1/10/82	488 m	1	_		
5	17½"	17½" BIT+BIT SUB+2x9½ DC+17½ STAB+1x9½ DC+XO+6x7% DC+ BUMPER SUB+3x7% DC+XO+9 HWDP	8/18	80/140	3000	3	2/10/82	708 m	1 ½	_		
6	17½"	17½" BIT+BIT SUB+1x9½ DC+STAB+2x9½ DC+XO+6x7% DC+ BUMPER SUB+3x7% DC+9 HWDP	10	60/70	3000	i .	3/10/82 5/10/82	994 m 1158 m	1/2 3/4	_		
7	124"	12년" BIT+JUNK SUB+FLOAT SUB+6x7를 DC+7를 BUMPER SUB+6x7를DC +7를 EQ JARS+9 HWDP	12	60	2325	6	6/10/82	1212 m	3/4			
8	121 "	12급" BIT+NB STAB+10' DC 7급+12급 STAB+CUSHION SUB+1x7급 DC +STAB+3x7급DC+BUMPER SUB+6x7급DC+XO+EQ JARS+XO+9 HWDP	15	90/125	2325	4	9/10/82	1473 m	1/4	_		
9	121:"	12년" BIT+NB STAB+10'DC 7월+12년 STAB+CUSHION SUB+1x7월 DC+ STAB+7x7월 DC+BUMPER SUB+6x7월 DC+XO+EQ JARS+XO+9 HWDP	20	125	2300	8 9	10/10/82 11/10/82	1674 m 1810 m	1	-		
10	12급"	8½ COREHEAD+CORE Bbl+XO+XO+2x7元 DC+12元 STAB+2x7元 BUMPER SUBS+12년 STAB+6x7元 DC+XO+EQ JARS+XO+1 HWDP+HYDRIL SUB+	6	90	1050	10 11	13/10/82 14/10/82	2092 m 2192 m	13	_		
11	121:"	BIT+JUNK SUB+NB STAB+10'8"DC+STAB+CUSHION SUB+1x72 DC+ STAB+7x72 DC+BUMPER SUB+6x72 DC+X0+EQ JARS+1 HWDP+HYDRIL SUB+8 HWDP	10/20	80/100	2200	12 13	19/10/82 19/10/82	2363 m 2313 m	1/2 3/4	-		
12	121:"	BIT+NB STAB+10'8"DC+STAB+CUSHION SUB+1x72 DC+STAB+7x72DC +BUMPERSUB+6x72DC+XO+EQ JARS+XO+1 HWDP+HYDRILSUB+8 HWDP	5/15	100 120	2200							
13	1211"	BIT+BIT SUB+SHORT 10'x8" DC+STAB+2x72 DC+STAB+2x72 DC+BUMPER SUB+4x72 DC+BUMPER SUB+6x72 DC+XO+EQ JARS+XO+1 HWDP+HYDRIL SUB+8 HWDP		70/100	1950	14	21/10/82	2418 m	1	_		
14	121"	BIT+NB REAMER+10'x8"DC+STAB+2x72 DC+STAB+10x72 DC+BUMPEF SUB+8x72 DC+XO+EQ JARS+XO+1 HWDP+HYDRIL SUB+8 HWDP		90/120	2000	15	24/10/82	2513 m	1 1 2			
<u></u>	<u> </u>		<u>l</u>	<u> </u>		1			<u> </u>	<u> </u>		

F3 h Bis 2-78				COMPLETION STATUS						S WELL: EDN 1							
1) COMPLE	TION	(If carr	ied (	ed out by the drilling rig) yes													
															no	X	
2) - CASING	s, Tu	IBINGS	AN	D ANNUL	.US STAT	us											
CASING AND TUBING	SH	10E	HANGER		CASING CUT	3	CEMENT		NT TOPS		ANNULUS FLUID					ıs	
DIAMETER	DE	РТН	C	DEPTH	DEPTH (event)	<u> </u>	ac		ID			Н	ATU	RE		S	G
20"	219	9 m		98 m			SEA BED		171 m			CN	ſΤ			1.	85
13-3/8	120	O1 m	-	100 m			600 m		140 r	n	SEA WATER LOW SOLIDS DRILLING MUD					1.	10
												· · ·					
						•											
Depths of perfe Tubing anchori	ng de	vice an				ınd	BP)										
EMENT PLUG BRIDGE PLUG		_C.P	<u> </u>	C.P	SQUEEZ	ZE	_C.P										
FROM (m or	FR)	2410	)	1250	170		200										
TO (m or {t})		2300		1150	4 SHOT		140										
TESTED			No.	yes no	yes r		1	ye		yes	ne	yes	ne ne		no no	Yes	
BY PRESSU OR WEIGH				1 <u>000 PS</u> 15 mins	3		1 <u>000 PS</u> 1 <u>5 mins</u>	  -		_			<u>-</u>				
20"CU RECOVE	on of c CUT T 15 R 13	21 M m BE -3/8 PECT	BE LOW CAS W/H	LOW MUI MUD LI ING 183 EAD ARE	D LINE NE X 20" CA = ALL	PI C	NONE LE JOINT LEAR OF	DEB C	BRIS		PBG						
		REL	LOC.	ALIZATI	ON DEVIC	CE	no	X									



# MAIN CONSUMPTIONS OF THE WELL

WEL	L:	EDN_	L
-----	----	------	---

				NOCK 5.						
віт		СОН	E BITS		D	IAMOND B	ITS	В	Total	
DIAMETER	Tooth tricone bits	Insert tricone bits	Removable center	Bicone bits	Drilling bits	Core bits	Removable center	Drag bits	Special bits	by interval
26"	1									1
17½"	3					,				3
12¼"	9			1		1				11
									- 1	4

	CASINGS									
Diemeter Weight (lbs/Ft)		Thread	Grad <b>e</b>	Length (Ft or m)	Observations					
20"	133 •	CAMERON "CC"	<b>X</b> 56	110.3	PILE JT 12.7 m					
13-3/8	68	BUTTRESS	<b>K</b> 55	1099.12 m						

FS	Bis 2-78	M/	AIN	CONSUMPTIO		IE WELL		WELL:	EDN 1		
		1.1		• CEME	NTS•	·					
Class	Casing	QUANTITY (		Plugging losses	Class	Casing		NTITY (T)	Plugging losse		
"G"	20" 75 T								r rogging rosse		
"G"	13-3/8" 73 T										
"G"	73 1	36 Т									
				CHEM	CALS						
CI	HEMICAL NAME	Q		TITIES ADDED		IEMICAL NAME		QUAN	HTITIES ADDED		
BARITE			254	-35	DEXTRID			6.5	79		
BENTONIT	ΓE		51	-39	PAC - R			-3	11		
CAUSTIC	SODA		6.98 NUT PLUG					1.00	1.005		
SODA ASH	I		2	.36	AL. STEA	RATE	.35	.350			
SOLTEX			4	.438	LIME		.30	.300			
SAPP				.409	SODIUM N	ITRATE	.79	50			
CMC H.V				.300	CACL2		3.28	3			
CMC L.V			1	.325	BICARB	.400					
Q. BROXI	<u>N</u>		7	.925							
		W	ATE	R - DIESEL/OII	L (not added	in mud)					
FRE	ESH WATER (m ³ )	,	207	O m3							
DIE	SEL-OIL (X ^X )	T	27	6 т							
		WELL HE	ADS	, HANGERS (Ø	- API workin	g pressure - Typ	e)				
CAMERON	18≩ x 20" PI	LE JOINT		10,000 PSI							
CAMERON	18¾ x 13-3/8	HANGER W	/SE	AL ASSMY LOW	TORQUE	10,000 PSI					
C.I.W. 18	8월 HOUSING.	WEAR BUSH	ING				·				
C.I.W. D	RILLING TEMP	LATE & P.O	G.B			***************************************					
C.I.W. 18	8 <u>₹ x 13-3/8 l</u>	WEAR BUSH	I NG			***					
					Market and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	· · · · · · · · · · · · · · · · · · ·					
					· · · · · · · · · · · · · · · · · · ·			······································			

Conversion rate: .

Currency: AUST \$

F3j' Bis 2-78	BREAKDOWN OF CONSUI	MABLES, RENTAL AND SERVICE COST	WELL: EDN
CONSUMABLES (Item 5	5) X 1.000\$		
_ Fuel and lubricants _	257	_ Casing and miscellaneous	255
_ Drilling bits	76	_ Wellhead and miscellaneous	240
- Core - Bits	1.0	_ Bottom hole equipment	7
Mud-chemicals	134	_ Surface equipment	4
- Cements	60	— Offshore or anchoring equipment —	<u>-</u>
- Water	6	- Anti-pollution products	5
	1 060	000	
	TOTAL : 1,069	,000	
RENTAL AND SERVICES	S (Item 6) X 1,000\$	<u> </u>	
_ Electrical logging	394	- Mud logging	59
- Cementing and pumping	38 -	Mud services	13
_ Fishing	6	- Directional survey	_
- Turbodrill		- Tong service (RENTAL) SE	E BELOW
- Testing	48	_ Air drilling	
_ Subsea operations (divi	1.40	_ Other services	
_ Welding		Bottom hole equipment rental	33
- Oceano-meteorological	assistance13	— Surface equipment rental	7
_ Velocity survey	6	- Wellhead equipment rental	
— Subsea television	_	_ Anti-pollution equipment rental	
_ Positioning	60		•
_		-	
		1	
	TOTAL:826,	000	

IUR Bis 2-78 Ji. InLI ELECTORUCIONE SHEET LLL. LUN_1___ (Page 1) MONTH: SEPTEMBER WELL: EDINA NO.1 DAILY MORNING OBSERVATIONS - 6 am -UNIT MOTIONS YEAR 1922 Wind KNT Waves Current Roll Pitch Heave Ported Height DATE Speed Direction Direction Direction (sec.) (*) (Ft or m) (Ft or m) (*) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 3 NNE 1.5 6 Ε 0.5 16 1 24 1.5 15 NNE 3 SW 0.3 0.4 16.5 25 30 1.5 SW 3 SW 0.3 0.5 0.5 13 26 2.5 4 20 Ε S 0.3 0.6 0.3 12.5 **27** 4 4 30 WSW Ε 0.5 0.3 0.5 17.5 28 30 WSW 4 4 Ε 0.5 0.3 0.5 17.5 29 45 6 6 S S 5 1 1.5 14

30

31

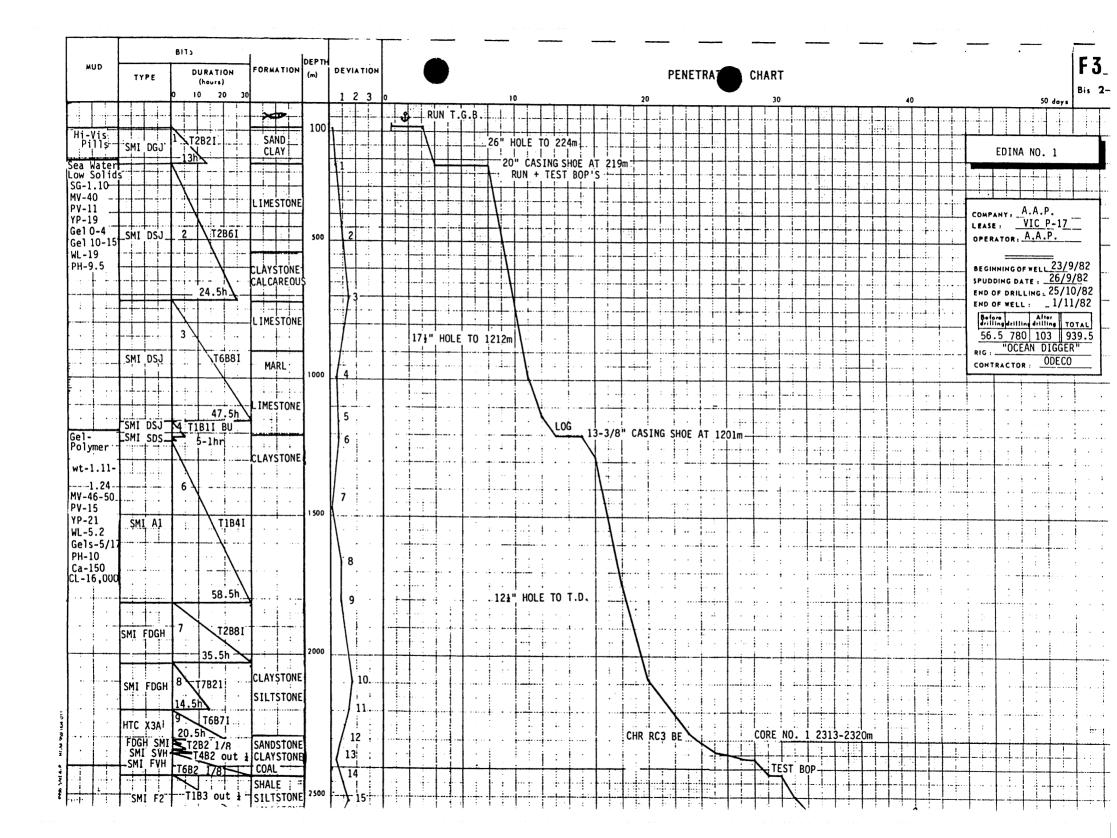
45

WSW

5

6

SW


2.5

1.2

15

1

F3 k Bis 2-78 WELL: EDN 1 MONTHLY METEOROLOGICAL SHEET (Page 2) MONTH: OCTOBER WELL: EDINA NO.1 emperature °C DAILY MORNING OBSERVATIONS UNIT MOTIONS Visibility (miles) YEAR 1982 Wind Current Roll Pitch Heove Period Height DATE Speed kts Direction Direction Direction (sec.) (°) (°) (F⊊+orm) (反t or m) 1 1 1.5 14 SW 35 SW .7 16 2 4 SW .6 NNE 2 20 .4 3 .3 .8 16 8 16 W 2 SW 1.2 1 14 5 7 1 40 SW SW 5 .8 .6 .5 2.5 7 SSW 17 10 SSW 6 4 3 15 16 **ENE** 2 6 SE 7 .4 .5 17 6 .3 2 SW 15 SW 8 .3 .6 14 . 4 6 35 SW 3.5 SW .8 .4 28 SW 7 SW .5 13 10 4 6 .5 -5 1 14 WSW SW 30 11 4 .4 .3 .8 16 2 14 SW WSW 12 18.5 .2 .5 6 .3 18 WNW 1.5 SW .8 14.5 13 1.8 4 .4 .4 30 SW SW 14 .8 .5 .5 13.5 4.5 7 SW 32 SW 15 .5 .5 .8 14 4.5 6 SW 25 SW 16 .8 15.5 7 .5 .5 4 SW 30 SW 17 4 6 SW .5 .5 .8 14 SW 30 18 .2 .2 1 16 18 2.5 WSW VARIABLE 19 W 7 WSW .4 .8 1.5 12 50 4.5 20 1.8 12.5 7 . 4 1 6 50 W WSW 21 2 12.5 7 .5 1 WSW 5 35 SW 22 1.5 12.5 40 WSW 6 7 WSW .7 1 23 .8 .9 14 35 WSW 5 8 S 1 24 3 8 SE .5 6 7 14.5 25 Ε 25 .5 .6 1.5 15.5 25 ENE 3.5 7 E 26 .6 .4 .6 17 2 7 Ε 22 **ENE** 27 . 4 19.5 WSW 1.8 5 WSW 35 28 1.5 6 .3 5 14.5 VAR 25 NNE 29 .4 .3 .8 20 3.5 6 Ε 30 W 30 4 6 .4 .3 N/A 16.5 25 W SW 31 .8 N/A 14 25 6 SW W 2



<b></b>	OPE	RATO	R			COLL	NTRY	,		18/5	ELL		T -		510									3-2
l	Δ. <u>Α</u>		••				RALI		EL			1		T7 4 3	RIG		I		ACTO	R	•	MON.		
DAY	start di	Number of		D 1001					F		_No.		G		<u>DIG</u>		TE RRU	PTION	1 05		СОМ	TEM	CION	ANI
	enilling	day from D		D ₂	T_c		F,	F _:	   F.	F.	+				Ι .		!		T	+	- F	PLUG	GING	3 ——
1		+		-		3	-1	<b></b> :	r.	r: —	G.		3:	G,	G.	Α.	A: !	Α,	' A.	C,	, ! (	c.	C ₃	
2	·	-†-	-		•				•	-			٠								. •			$\perp$
3						1			•	•			•	•					•			4		+-
4 .				-								٠,	•				•		•					+-
5 	•																•		• •					+
			+		1															1	+			$\dagger$
8		<del> </del>			-		. !		• •												-+-			
9		+	+		<del> </del>	+-				· · · -			···• -							<del> </del>	<del> </del> -	_		<del> </del>
10								·	• • • •			•	•	- •						-	+	<del>-</del>		<u> </u>
11		ļ	1									•						<del></del>			<del>i</del> -	<del>-</del>		-
13		-	+		-	$\bot$	-				<u> </u>	-•									1	+		<del>                                     </del>
14	·	+-	+			+												!						!
15		<del> </del>	$\dagger$			+	$\dashv$		<del></del>			•	· · · · · · · · · · · · · · · · · · ·							ļ	<del> </del>	$\bot$		
16			$\dagger$			1	1					<del></del>	· · · · ·		$\dashv$	· · ·	-	$\dashv$			+-	+		
17			I									<del>:</del>									-	+	$\dashv$	
18 19		ļ	1			1_	$\perp$															+	+	
19			+-			+-							<del></del>										+	
			+	_		+	+		<u>i</u> -					‡			·		_]					
22			$\dagger$			+											-				! <del></del>			
23		6.5						i	N_LOC	ATT	ON										-	<del></del> -	-+-	
24		24	-								Z.11							<del></del>				+-		
25		22		-	2	<u> </u>		_														İ	-	
7	1_	2	-	$\dashv$		12	2 8	- <del>-  </del> -		2	·•			+				-						
ρ	2		-	-		1	+		1				<del></del>	:			-		1					
a	4			+			+		1'	.5 7				+-		3	-	4.	.5			┼	+	
0 [	5_						1		_21		• ••			4	26		7	-	_			┼─	- -	<del></del>
	_			-			1	1		1				*		†-		1.	5				+	
ОТА	- 5	4.5			2	13	8	•	68	3					11	4	8	; 7					T	
E OF	SIDE-	TRACE	C DI	RILLI	ING			,		TIME BY A	OF LO	DGGIN NG JC	NG OB		1				unsol	ved		<u></u>	+	
B. : 1,	• ///	an aste me spei ple is red	าเ อเ	n F1, i	ich fo F2, F3	ollowing For te	g day chnica	times I side-t	racks, u					n/d	<b></b>   01	auses de track	Acci	dental	on Plu	ıg				

el	lf aqu	uitair	ne			TI	ME	E C	)IS	TR	IBU	JTI	ON				F6	bis/	12-	·80
(	OPERA	TOR	$\top$	CO	UNTRY	Y		WEL	ī.	T		RIG		CO	NTRA	ACTOR		MON	TH/Y	EAR
	A.A.P.	<u></u>		AUST	RALIA	<u> </u>	_ ED	INA _1	NO.1	<u>_</u> _c	)Ç <u>E</u> AN	l_DIG	GER	0	DECC	<u>)</u>	0	CTOBI	ER _8	<u> </u>
DAY	Number of day from start drilling	D	D MOVIN	NG D,	DR F:	F. F.		F _a	 G	esta teo G:	<b>G</b> oN SUR <b>G</b> .	G.		TERRU		N OF ER For C	C ₁		C TION A GGING	
1		<del>                                     </del>	<del>-</del>		-	-		и •	<u> </u>		•	•	-	-		-	+	, ~. 		<del></del>
2	6 _ 7 _ 8 _ 9				22 20.5	5.5.5 5.5.5	2 3 <b>.</b> 5		2	26		17	7½		•	<u>-</u>				
•	11		ļ		-		•	. 14 . 24				10		•	•			·	+	<del> </del>
8	13		+	ļ	10	5.5	· ·	. 24		•		•			•	0.5				
10	14			+	21 19	·	3 : 5	•	•	•	•									<del></del>
11	16			<u> </u>	14	7	3	·					t				<u> </u>	<del> </del>		
12	17				23.5	<u> </u>				-	-	1				0.5		1	•	
13	18				6.5	6	11.5					T	Ĺ							
14	19	L	<u> </u>	ļ	14.5	5	4.5				-	· .				<u> </u>				
15	20	ļ	<u> </u>		135	1 1	6.5				•					· -				<u> </u>
16 17	21		-		7	0.5	-		<u> </u>	16.5			-	:		<u> </u>		-		-
17	22				3	5			3	9.5	•	ا .	 	<del></del>	<del></del>	3.5		<del> </del>		ļ
19	23 24	<u> </u>			7 5.5	1 1	9.5			·		12	2 ¼-	•				<u> </u>		<u> </u>
-20			<u> </u>		1	0.5	7.5					.	-			!		!		j
	25 26				5.5 21.5		2.5		<del> </del>			•					<del> </del>		<del> </del>	
22	27				6	7	11		<del></del>		· · · · · · · · · · · · · · · · · · ·	•						+	:	
23	28				19.5	1	0.5												<del>-                                    </del>	
24	29				20		4					I								
25	30	<u> </u>	<u> </u>		12	<u> </u>	<u> </u>			·		12								
26	31	<u>                                     </u>	<u>                                     </u>			, <u> </u>	<del> </del>			• • • • • • • • • • • • • • • • • • • •	<b>_</b>	24								
27	32		<u> </u>				ı — — <del>i</del>			<del></del>		24		· · · · · ·	<del>-</del>					
28	33		jl		<b> </b>		<del></del>	$\longrightarrow$				14						10		
30	1C				<b> </b>					: 			<u>i</u>				······	24		
31	2C 1D	17			+				<del></del>	<del></del>	·····		<del></del>					24 7		
тот						~ ·									<del></del>					
		17			21.5	85	81		3	26		92				4.5		65		
	• T	d an aste	erisk to ent on F	each fu 1, F2, F3		day time		ВҮ	A FISH	LOGGIN HING JO	ОВ	vld .	Causes of side-tra	ack }	Accider	job unsontal on P	Plug	.h		
	• Ti 21 Side	ime spe e-track d	ent on G drilling f	G4 for lo further to	ro a chang	ecessitad ige in the first day .	e geologi	rical targ	iet is co	nsiderea	fas a ne	L ≥w hole	whose ti	ne name	e chang	es ladd	G to th	e old on	e)	

el	faqu	itair	ne			TI	M	EC	)IS	TR	IBI	JTI	NC				F6 t	ois/	12-	80
	PERA	ror	$\neg \Gamma$	COL	JNTRY	1		WEL	L		-,,	RIG		CO	NTRA	CTOR		MON	TH/YE	AR
L	_A.A.	P		_AUST_	RALI	A	_ED]	E <u>NA</u> 1		[	ÇEAN	I_DIGG	ER		ODEC	D	<u>N</u>	ŌĀĒWI	BER_8	32
DAY	Number of day from start drilling	,	D MOVIN	ان	ЯC	F		t feets	f , i-	rta te	<b>G</b> 38,50	Kut ≯u			A IPTION SUNDE	i OF R For C	co	OMPLE	C TION A GGING	.ND
	y from	D ₁	D:	D ₃	F,	<b>F</b> :	F.	F:	G.	G _:	G	G.	A	A :	, A:	Α.	c,	C:	C.,	C ₄
1 2	2D	195	2	1.5		•	•							=	•	•	<u></u>	: :	<u>i</u>	
3			DTC	DEPA	ארבים ביינים	∶FDT <b>N</b>	ΓΔ 1	ДТ 2	100	HRS		•		•	•	-•		•	+	†
4	<del>.</del>	ļ	nig	DEFA	יונונו	LDLIN	rtir ı	ב זת		٠,٠٠٠		•			•		1	• • •	:	i
5	•= ::=:	†· ·	•	- <del>-</del> - · -	İ .	†	•	•		•		•								1
6				•				•		•							ļ	<u> </u>	-	: <del> </del>
7														•	•	•	<b> </b>	<del> </del>	<u> </u>	<del> </del>
8		<u> </u>	-	<u> </u>		<del></del>	<del>-</del>	·•····· -					ļ				ļ	ļ	-	
10			-	<del> </del>		<u> </u>	<b>-</b>						ļ		<b>.</b>	•	<b> </b>	!	:	
11	1		-	<u> </u>		<del> </del>	<del> </del>		ļ ·				<del> </del>			<b></b>	<b> </b>			
12	+	-	-	+	<u> </u>	<u> </u>	-		<del> </del>	•			<del> </del>			<del> </del>	<b>†</b>			
13		<b> </b>	ļ	-				:	<del> </del>	<b></b>						1				
14																				
15													ļ			<u> </u>	ļ	ļ		
16				ļ		<u> </u>	<u> </u>		ļ	•		· 	ļ			-				
17	<u> </u>	<u> </u>		<del> </del>	<u> </u>				ļ	·			<del> </del>			:	ļ	1		
18	<del> </del>	ļ	-	<del> </del>	ļ		<del> </del>	<del></del>	<del> </del>				<del> </del>			:		<u> </u>		
20	-		-	-			-	<del></del>					<del> </del>				<b></b>			
21	-	<del> </del>	-	-		-			<del> </del> -			••			•	•				
22	-	<del> </del>		<del>                                     </del>			<del> </del>		<b></b>							•		! !		
23				1									<u> </u>					1		
24																<b></b> .		! !		
25						<u> </u>	<del> </del>						ļ			<del></del>	ļ			
26	<del>-</del>			<del> </del>	ļ	<u> </u>	ļ <del>!</del>		ļ	- <b>-</b>			<u> </u>	·		•				
27	<del> </del>		-		ļ		<del> </del>		ļ			-	<del> </del>			T				
28	<del> </del>	<b> </b>	-	-	<b> </b>	-	<u> </u>	·	<del> </del>	<del>.</del>	<del>-                                    </del>	- <del>-</del>	<del> !</del>	·	:		<del> </del>			
30		<del> </del>	-	-	<b></b> -	<del> </del>		• • •		•	• •		† ····· •		<b></b>	:	-			
31	<del> </del>	<b> </b>	+	<u> </u>	<b></b>	<del>                                     </del>	†					· • · · · ·	† · · · · · ·			!				<del></del>
то	TAL	19.4		1.5		!	! !								: !					
	OF SIDE	E-TRAC Id an as Time sp	CK DR	ILLING to each f F1, F2, F	allowing	g day tin	nes ide trac	B,	ME OF Y A FIS	SHING	JOB	e old	Cause of side to	΄,	Accid	g job ur ental on ction of		th		
	• 21 Si	hole is i Time sp de-track new foi	reached sent an driling rm is of	1 - C.1 for 1	ogging to a cha	necessiti nge in th	aded h ne geole	s a fishii iyical tai	ng jot rget is s			neg how	n hose	the nar	ne char	nges (adi	d G to th	he old oi	ne)	

•• • •

-			(	CASING	AND C	EMEN.	TIN	G REP	ORT					F5	a Bis 2-78
	(ELL untry)	(Ca	RIG entractor)	K Height	und 🔲 (	Cesi Line	ing [ or [	MI	SHOE EASURED DEPTH	VE	HÓÉ RTICA EPTH	L SU	SPENS DEPTH		OPERATION DATE
. —	A NO. 1 RALIA )	<u>D</u>	CEAN IGGER ODECO	991	1	20		_	219		219	_			29/9/82
	•	t cavi	ng (locati		ge diame	ter)	NU	CALIPI	RETURN TO			ini	•	to	m
אטורושאטט	Reamer r	uns (i	number) na : Diame		2			ReSh	amer at pe at yre)			3M			n from the bit
	MUD CHAR		ERISTICS ECTING	s.G.	W.L.	P.V		Y. <b>V.</b>	600	V15C0	SIMET	TER REA	DINGS '	Vs.R.P.	.м.
, - <b>(</b>	SI	LURR	Y												
	Observatio	ons	HOLE FI	LL UP W	IITH HI	VIS	MUD	(VIS 1	100+)						
  ,.	ELEMEI	NT		MFG AND 1	TYPE			CKNESS	GRADE	AE IO		INSIDE VOLUME I/ m		ENSTH . (m)	HUMBER OF JOHTS
12	SHOE		FLOAT	SH0E				20"	X56 X56	13311					×
A ITIO TRING	COLLA		FLUAT					20		1331b		177.8	11	0.3	×
COA ASING ST	W.H PIL									•				2.7	10
ENE	Tripping jo				110.2								21	8	<u>×</u> 10
	Maximum p	pe m i s	n the thicke sible tensi ght of the c	on	143 T	<u></u>			In air	3	5 T	TOTAL >	in mud		4 T
EQUIPMENT OF CASING STRING	NUMBER	:	_		MGF TYP	E : BER :_					18-3 24"		Location LLHEA ILE J	D HOU	USING WITH EXTENSION
3.	5 SNEA(P) RG	M GEO CO	W 017												

Well s	ite	E	DINA NO.1	1 6	ing	UF 1 H	RKB heig				┌─┴	asdepth -	Bis / 3 · 79
	<del></del>	uip.t	Weight per f	<u> </u>	· ' '			Equ		Weight per	<u> </u>	<del>,                                      </del>	
ja nt Number	central.	scratch	Other equi		Unit Length	Cumulated Length	Joint Number	<del></del>	scratch	and thread Other equ		Unit Length	Cumulate Length
KB TO	TOP	18-	3/4 WH			98.00					·	<del> </del>	
1	"PI	LE"	JT		12.70	110.70		-					
2					11.97	122.67							
3					11.96	134.63				···			
<del>4</del>					11.96	146.59							
<u> </u>					11.94	158.53							
					11.95	170.48	<u> </u>					<b></b>	
7					11.88	182.36							
9			FC AT 2	12 E	11.88 11.95	194.24 206.19	<b> </b>		$\dashv$				
³ 7			SHOE	12.5	12.81	219.00			$\dashv$	<del></del>			
			NOTE:	T.G.B.	DROPPE	0.60m DU	TO WAS	HING	FR	OM BELOW			
										<del> </del>			
								-+					
		+											
							l †		-				
• •									-				
,									-				
1	•	İ		1									
		↓		1									
	i +-												
į	. +												
	- · · · ·	-	-	1			<del> </del>	-	$\dashv$				
		· 🛉	-	į	• • •		<del> </del>	+	+				
				-	· · · · · · · · · · · · · · · · · · ·	···		$\dashv$	$\dashv$				
				+			<del> </del>		-+				
				.	•				$\dashv$				
					•		<del> </del>		-+				
- 1												<del></del>	
1	1					i	<u> </u>						

THE DETAILED COMPOSITION OF THE CASING STRING SHOULD BE GIVEN:

⁻ EITY - Som top to bottom. For the upper joint, the length under RKB will only be considered. So, each cumulated length to be the RKB Measured Depth at the bottom of each corresponding joint.

ļ			(	ASING	AND	CEMEN	ING	NEF	ואכ				Jai	Bis 2-/
	ELL ountry)	(Co	RIG entractor)	K Heisht	und [	ø Cesi Line	n	ME	SHOE EASURED DEPTH	SHÓ VERTI DEP	CAL   T	USPENSIO DEPTH	N 01	PERATIO
<b></b>	INA 1 RALIA)	DI	EAN GGER DECO	99.9	m	13-3	/8"		201m				0	7/10/8
			meter: ng (locati				axi	1 .	½to	708	. Mini —	1 0	to	994
	Losses	during	drilling (		ctent)	NO				10.11				
WELL CONDITION	Reamer Previous Bo. Ps o			3 eter ening In (	20" Type -	equipmen	t, test p	-1	omer at pe at yre) _C.I.	18 M a 229 W. 18-3		IAL 100	000 PS	rom the
- C	MUD CHA	PACT	EDISTICS	s.g.	W.L.	P.V	Y	·.v.		VISCOSH	AETER RE	ADINGS Y	·R.P.M.	
E	BEFOR		ECTING	3.0.					600	300				
-		LUKK	. 1	1.10	16	9		18			<u>,</u>			
	Observati	ons											<del></del>	
											· · · · · · · · · · · · · · · · · · ·			
<b>——</b>							THICK			UMIT	MSIDE		ISTH .	- munit
 	ELEM	ENT		MFG AND	TYPE		<b>~</b>		GRADE K55	ha/=	V=-		.70	OF JOU
N N	SHO	E	FLOA	T SHOE			13-			68 1bs ft				×
SIT!S	COLL	AR	FLOA	T SHOE			13-	3/8	K55	68 1bs		0	.60	×
FRAL COMPOSITION OF	CASIN HANGE		R II C.I.				13-3 13-3		K55	68 1bs			.12 .70	92
U U	HANGE		0.1.	n .						SET				
R A	Tripping	ieint :	HW				5"			501bs/	ft 4.6	1		×
25	1		n the thick	est joint _		. 4mm	1 - 1 OF	<u> </u>			TOTAL	<b>→</b> 1101	.12 m	92
7	1		ssible tens			LLAR) =	185	<u> </u>	In air -	111T		in mud :	95.4	Т
	CENTRA	LIZE	RS		<u>s</u>	CRATCHE	RS			-	THER EQU	·		
S Z	TYPE :		THERFOR			YPE :	NIL					-3/8" S		
STRI	DEPTH/	RKB:	<u>178</u> 202		<b></b>   □	EPTH/R	(B:					T SYSTEI 8" HANG		REW ON
CASING STRING			1110 1134	M						(1	OP SEAL	ASSY A	T 100.	15 M)
			1158	М										
IT OF			1182	M			· · · · · · · · · · · · · · · · · · ·							
MEX						······································								
EQUIPMENT														
3 - E						····								
L	S SNEA(P) R	GM 950 0	04.013											<u></u>

SING	Making-up of joint:W Grease type used for three Average torque to make- Filling frequency Intermediate circulation	eads: up the jo EACH (	<u>JET LU</u> ints <u>12.0</u> ASING -	BE SEAL	bs (	AD COMPOU TO TRIANG EVERY 5	LE)				
RUNNING CASING	Total running time (with Troubles during running	<u> FLOAT</u>	ING RIG.							·	
4 - RUN	Bottom hole circulation: Reciprocating: M.D. indications after st. Observations:	Duration	NONE	Ro	ate		/	Pressure4.			
	Service cy DOWELL Mixing pump DOWELL Slurry injection pump Displacement pump(s)	DOWE RIG				End of slurry End of displa	making at cement at	ing at		12:	18 h 08 h 20 h
)	NATURE OR CLASS OF CEMENTS	SACKS or BULK	CEMENT W		WATER	USED	ADD	ITIVES USED	T	TONNAGES	USED
y Z	1 G	В	CALIPER	FR	ESH WA	TER		30.5m³	工厂	73	
CEMENTING	2				D80		+ -	13.5 Lit	4		T
	3				D81_		19	9 <u>3 Lit</u>	+E		T
STAGE	CHARACTERISTIC	<u></u>	s.g.	P.V.	y.v.		VISCOS	METER READIN	IGS VS	R.P.M.	
	OF SLURRIES		<u> </u>		ļ	600	300	İ			
 FIRST	2		189		ļ						
0.8	3										
CE (	SPACER PLUGS			$\geq \leq$	$\geq$	4><	<b>&gt;</b>		$\leq$		<u>~</u>
STAGE	2		<del> </del>		<del>                                     </del>						
SLE SLE	Slurry injection rate -	1316	it/min			Displace	ment rate	_1316 lit	/min		
- SINGL											
2	Displacement fluid nature	LOW	SOLIDS M	IUD SG :	= 1.10	Pumped	volume _	531 bb	<u>1s</u>		
	Pressure at the beginning		scement 25	O psi a	t the en	1,000 p	si	at the surge_	2,0	000 psi	
	Estimated losses <u>NONE</u> Casing string pressuring  Residual pressure (event	up at									
C ON	M.D. indication at the end M.D. indication after ceme Casing string set on spoo	l of displ	acement			settin	g tension	on spool	<b>,</b> [		
SETTING SPOOL	Spool : MFG Suspension and seal type Additional seal (type - dir										
9	Distance between the upp Cut casing										
ROL	Temperature well logging Cementing log after Result of these logs (or e			h.	setting		-	ent annulus	١Ę	600	
7 - CONTROL	Test casing string + B,O. Packer depth :								2	.000 ps	<u>i</u>

Wells	ite		EDINA 1	Cas diam	-	13-3/8	RKB heig	ht/ N	XXXXX A. L.	99.66	Shoe med	s depth	1201 <b>m</b> .
Jaint Number	central. m	scratch 5	Weight perfo and thread Other equi	of joints	Unit Length	Cumulated Length	Joint Number	central. A	s cratch	Weight per and thread Other equ	of j'oints	Urit Length	Cumulated Length
			Y TABLE	TO_TOP.			39					12.08	568.82
18-3/4	<b></b>				99.06	99.06	40			<del></del>		12.00	580.82
DISTAN			8-3/4_HO	USING			41					12.05	592.87
TO TOP		-3/4	HANGER		$\frac{1.32}{0.70}$	100.38	42					12.08	604.95
HANGER 1	CIM	! • ·	681bs-K5!	S-RUTT		101.08	43				<del></del>	12.08	617.03
2	ļ <b>-</b>		00102-03	D-DU11	11.57	112.65	44 45					11.88	628.91
3					12.10 12.01	124.75 136.76	45	<b>-</b>				12.07	640.98
					11.96	148.72	47					12.04	653.02
4					12.07	160.79	48					11.81	664.83
<u>5</u>			· • •		11.82	172.61	49					12.07	676.30
				· · · · - · · · · · · · · · · · · · · ·	12.06	184.67	50					12.07 12.07	688.97 701.04
<b></b>				··· ·- ·	12.18	196.85	51						713.12
9					12.19	209.04	52					12.08 12.04	725.16
10					12.20	221.24	53					12.04	737.24
11					12.14	233.38	54					11.86	749.10
12	, "				12.06	245.44	55					11.90	761.00
13					11.78	257.22	56		$\neg \uparrow$			11.29	772.29
14					12.09	269.31	57	$\neg \uparrow$				11.45	783.74
15					12.01	281.32	58					11.35	795.09
16					12.00	293.32	59			•		11.95	807.04
17					12,07	305.39	60		. 1			12.00	819.04
18		····			12.08	317.47	61					11.98	831.02
19					11.06	328.53	62					11.89	842.91
20	· · · · · · · · · · · · · · · · · · ·	_			12.07	340.60	63					12.08	854.99
21		1			11.91	352.51	64						867.07
22		1		I	11.95	364.46	65					11.82	
3					12.08	376.54	66						890.83
24		]		📗	12.06	388.60	67			· · · · · · · · · · · · · · · · · · ·		12.02	902.85
25				• •	12.07	400.67	68					12.02	914.87
26	 	1			12.08	412.75	69					12.02	926.89
27					12.08	424.83	70					11.84	938.73
28					12.06	436.89	71					11.98	950.71
29					12.08	448.97	72	4				12.05	
30	- +		-		11.94	460.91	73					11.65	
31	🕯	- 4	•	•	11.99	472.90	74						986.44
32			·		12.08	484.98	75						998.49
33		}		+	12.08	487.06	76						1010.47
34				•	11.87	508.93	77						1022.48
35				• • •	11.70	520.63	78						1034.45
3 <u>6</u> 37					12.00	532.63	79	+					1045.66
					12.07	544.78	80						1056.92
38		i		1	11.96	556.74	81	1	1			11.85	1068.77

THE DETAILED COMPOSITION OF THE CASING STRING SHOULD BE GIVEN:

EITHER from top to bottom. For the upper joint, the length under RKB will only be considered. So, each cumulated length will be the RKB Measured Depth at the bottom of each corresponding joint.

[•] OR from bottom to top, beginning by the shoe. So the RKB Measured Depth at the bottom of each joint will be the difference between the shoe Measured Depth and the cumulated length at the corresponding joint. The composition of the extension string should be detailed.

1 1 A ! U 1	DEI	AIL	.EU	LUMP	<b>1</b> 21	IIUN	UF IH				21.KIL	lb	<b>5</b> c	Bis/3 - 7
Number	Well s	ite	_E	DINA 1			13-3/8"	RKB heid	h 1/XX	1. L.	99.66	Shoe me	as depth	1201 m.
83	1					Unit		11	L				Unit	Cumulat Lengt
84				681bs/K55/	BUTI.									
85		L	<u> </u>						<b> </b>				<u> </u>	
B6	·	<u> </u>	<b> </b>					L						
87 1 11.83 1140.42 88 11.87 1152.29 89 1 12.08 1164.37 90 90 131.93 1176.30 91 1 1 12.07 1188.97 92 1 11.33 1200.30 91 92 1 11.33 1200.30 91 92 1 92 1 92 1 92 1 92 1 92 1 92 1		_1_												
88	<u></u>							<u></u>						
Section   1		- 1					4							
90								L						
FLOAT   0,60   1176.90					+			!						
91 1 1 12.07 1188.97 92 1 11.33 1200.30							+							
92 1 1 11.33 1200.30		1			- 1									
SHOE 0.70 1201.00		1												
							1201.00							
										_				
									$\dashv$					
													<b>-</b>	
				<u> </u>					+					
				<u> </u>										
					∔				· <del>-  </del> ·	+				
		ŀ	ł		+									
	- · j	1	+						$\dashv$					·
					+		<b></b>							
	<b>/</b>		t		}	- 1								
			†		1				- +	†				
				· • · • · • · • · • · • · • · • · • · •	1				· · · † ·	1				
	1		†										1	
	• •	• •			- +									
	· · · · · †	•	†						$\Box I$					
			1					I	-I	$\Box$				
					. I				$\perp \perp$					
					Ţ									
		[			}									
						( 1			-+					

THE DETAILED COMPOSITION OF THE CASING STRING SHOULD BE GIVEN:

P.M. S. R. Salan

⁻ EITHER from top to bottom. For the upper joint, the length under RKB will only be considered. So, each cumulated length will be the RKB Measured Depth at the bottom of each corresponding joint.

OR from bottom to top, beginning by the shoe. So the RKB Measured Depth at the bottom of each joint will be the difference between the shoe Measured Depth and the cumulated length at the corresponding joint. The composition of the extension string should be detailed.

		1	Bis	8	f										В	li neC	Ohu	,			_												EDi.	
ENE	RAL	, DA	TA			1	PRILLING	BIT					ERFORM	ANCES				PARAN	AETER	s		MU	D		C	ONDI	BIT TION		-J z	guic	T	URBO	DRILLE	D
10 months	Operation	1	•	Bit type	Dismeter	Manefacturer	Code IADC	Serial	1	2 / 32	3	Operation starting depth	Footage in this operation M	Drilling time (hours)	Drilling rate	Déviation	-y Weight on bit	R.P.M.	Plan wite	PSI PSI	Density (mud weight)	Plastic Viscosity (cp)	Solid content (%)	Water loss (cc)	т	В	G	Ubservations on grading	GEOLOGICAL FORMATION	Reason for tripping	Type of turbodrill	Turbodrill diameter	Turbodrilled faotage	Total time
1	F	1	R	T	26	SMI	DGJ131	SA5656	24	24	24	99	125	13	9.60	1/4	2/10	80	3290	500	S.W	W/H:	VIS	PILI	2	2	1		A.S	Eχ				_
RR	RA	ىل	R	Ţ	26	SMI	DGJ131	SAS656	24	24	24	109	115	3_	38.3	1/4	2/10	60/80	3290	500	s.w	W/HI	VIS	PILLS	2	2	1		A.S	Ēχ				L
2	RA	ىل	R	Ţ	171	SMI	DSJ	XA7398	18	18	18	209	15	ц	3.75		1 1		Į.	1500			3	20	I	- 1	_		CMT	Ε				L
RR	F	ŀ	R	T	17 <del>1</del>	SMI	DSJ	XA7398	18	18	18	224	444	24.5	18.1	11				1800			4	19	2	6	I		СМ	В				
3	F	ا	R	T	17 <del>1</del>	SMI	SSJ	XA7067	18	18	18	708	428	47.5	9	1/2	15/20	90 (40	3000	2000	1.10	9	4	16	6	8	I	FC CL	СМ	ВА				
4	F		R	T	17 <del>1</del>	SMI	DSJ	XA7 194	18	18	18	1158	54	6	9	3/4	15 ₂₀	100 / /140	3000	2100	1.10	10	4	16	1	1	I	ET EC	СМ	Ex				
5	R/	A 1	R	T	121	SMI	SDS	CB7277	14	14	14	1176	25	3	8.3		15	60	1975	1800	1.11	8	4	15	-1	NC-			CMT					
5	F	ا	R	T	12}	SMI	SDS	CB7277	14	14	14	1212	12	1	12		15	70	1975	1800	1.11	8	4	15	1	1	I		CM	Ex				
6	F	l	R	В	121	SMI	A1	AX9432	16	16	8	1224	586	58.5	10	1	12/ /15	125	2325	2325	1.19	12	8	5.6	1	4	I		A	A				T
7	F	Į,	R	T	12 <u>ł</u>	SMI	FDGH	XA6658	14	14	14	[	NCOMPLET 282	E 29	] 9.7 ]	11	20	120	2300	2200	1.22	15	9	5.4	IN	C			A		CON	TROL	TRIP	
7	R/	A I	R	T	121	SMI	FDGH	XA6658	14	14	14	1463-149 1784-187	30 95	1 1.5	30 63.3	13	5/10	120	2300	2200	1.24	15	12	6	I	NC			A					
7	Ŀ		R.	T	12 <del>1</del>	SMI	FDGH	XA6658	14	14	14	1810	322	35.5	9	1,2	20	125	2300	2350	1.24	15	12	6	2	8	I	CL SF	В	В				
8	R/	A I	R	T	121	SMI	FDGH	XA6657	14	14	14	1954	35	1	35		0/5	120	2300	2300	1.24	16	10	5.2		INC			Α					
8	F		R	T	12 <u>ł</u>	SMI	FDGH	XA6657	14	14	14	2132	60	14.5	4.1	13	22	120	2300	2350	1.24	16	10	5.2	7	2	I	BU	´ A	A				
9	R/	A J	R	T	121	HTC	ХЗА	313KK	14	14	14	2050	142	1.5	94.7		5/10		2200	2450	1.25	15	11	5.4	I	NC			A					
9	F	_ :	R	T	124	нтс	хза	313KK	14	14	14	2192	121	20.5	5.9	3/4	20	150/ /17	220	2450	1.24	15	12	5.5		INC			AM		CONT	ROL	TRIP	
9	R/	A I	R	T	121	нтс	ХЗА	313KK	14	14	14	2180	10	0.5	20		0/5	150	2200	2450	1.24	15	12	5.5	6	7	I		AMG	Ex	FC	R CO	RE	T
<u>:1</u>	С		R	sc	83	CHR	RC3	8380932		ATER COUR		2313	7	3	2.3		6/7	90	1050	700	1.24	15	12	5.2			İ	BE	G	A				
10	R/	<u> </u>	R	T	124.	SMI	FDGH	AX6647	14	14	14	2313	7	2.5	2.8	<u></u>	5	75	2200	2450	1.24	15	12	5.2		INC			G		REAM CO			
10	F		R	Т	12 <u>}</u>	SMI	FDGH	AX6647	14	14	14	2320 .	17	4.5	3.8		15	75	2200	2450	1.24	15	12	5.2	2	2	1/8	RG	SM	В	DRILLE HIGH T	D WI ORQU	TH VER E	27
F K R P EP	I	Britte Carin Redri Ream milion Priot Hote Simul open	ng dhag (loc long sad ng wesh hole dral sponote Raneous ing	control lung svor lung polytung		H - 1	uchine   It   Iricanes frack 1   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes   Iricanes	i bes	The co	FACTUR de const oudocture - Hughe - Smith - Reed - Securi - SMF - Diame - Ordin	itute the r name s ty nd boart g savect		11 - Teeth 12 - Teeth 13 - Teeth 14 - Teeth 15 - Teeth 16 - Teeth 17 - Teeth 18 - Teeth	CORDITION hight 1/8 gene hight 1/4 gene hight 1/4 gene hight 3/8 gene hight 5/8 gene hight 5/8 gene hight 7/8 gene hight 9/8 gene	Tool CT ET ST BT RG	SERVATION h and cones Chipped text Ereden teeth Broken teeth Brit baffed up Raumind ga insert: Worn r lest insert: Flat c-reted Erede-' tane	h ar marts ar marts une teath gauge tooth	Borring CL BF SF LC m BP	- Concis) Bearing Sool fail Lost cor Braken journals	laiture ure sels! begring gin s Pinched norriels!		A Ma C Ch Sec C C Cu V Ch K Gr	· nestone of rl or shale alk	•		be defined and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed and dealed	ed by 11 milb a relation	Plastii Clay (		mations faced in	A 8 C D	Increas Hydrau Mazimi reached to allow run Reasan	stien slowing di ing torque dic problems in allemed r or bit dwled an piler ne is other than bit	rotsting d enow lormst it prabl

	r	7 _B	8											B	IT RE	ORD	)			_				,							MFLL	: EDN	<u></u>
ENE	RAL D	ATA	L.,		1	DRILLING	GBIT					PERFORM					PARAI	METER			MU			_	ONDI.			₹ ×	guid	T	,	DRILLE	D
	Operation	Drive	Bit type	Bit Diameter	Manufacturer	Code IADC	Serial		2	3	Operation starting depth	Footage In this operation	Drilling time (hours)	3. Drilling rate	Déviation	Weight on bit	R.P.M.	Flow rate	PSI Fress	Density (mud weight)	Plastic Viscosity (cp)	Solid conte:: (%)	Water loss (cc)	Т	В	G	on grading	GEOLOGICAL	Reason for tripping	Type of turbodrill	Turbodrill diameter	Turbodrilled footage	Total time
1	F	R	Т	121	SMI	SVH	CD0352	14	14	14	2337	Ħ	4	1		22	75	2000	2050					I	С			GM					
1	RA	R	T	124	SMI	SVH	CD0352	14	14	14	2330	45	7.5	6		0/10	80 150	2000	2050	1.24	17	13	4.5	I	С			GM					
1	F	R	T	124	SMI	SVH	CD0352	14	14	14	2337	8	5.5	1.4		22	80	2000	2050	1.24	17	13	4.5	4	2	J≟ 1 4		CM	В				
2	RA	R	Т	12 <del>1</del>	SMI	F2	KA5821	14	14	14	2310	35	2	17.5		0/5	110	2000	2000	1.24	17	14	4.2	Ιŀ	С			AG	Ш				
2	F	R	T	121	SMI	F2	KA5821	14	14	14	2345	22	19.5	0.8	1/2	5/14	100 150	2100	2400	1.24	17	14	4.2	1	3	)- 1 4	RG	A	В				
3	RA	R	Т	124	SMI	FVH	XB0997	13	13	13	2365	2	0.5	4		0/5	80	1950	2700	1.24	19	14	4.4		INC			ASG					
3	F	R	T	124	SMI	FVH	XB0997	13	13	13	2367	57	29	1.96	1	15 20	70 100	1950	2700	1.24	19	14	4.4	6	2	- 1 8		AS COAL	Ш				
4	RA	R	T	124	SMI	F2	XA5822	13	13	14	2405	19	0.5	38	1½	0/5	<del> </del>	2100	2550	1.24	15	13	4.7		INC			AS					
4	F	R	т	121	SMI	F2	XA5822	13	13	14	2424	170	51.5	3.3	112	17 25	70 120	2200	2800	1.24	15	13	4.7	3	8	D-1 8	СТ	AS	A+#				
							ļ				T.D 2594				3/4													<del></del>				<b></b>	
					<u> </u>			_																					Ш				L
					ļ		<b>_</b>	<u> </u>	<u> </u>				ļ		<u> </u>	<u> </u>		<u> </u>										·	igert igert	ļ			
					ļ									ļ	<b></b>														$\perp \parallel$		<u> </u>		$\downarrow$
		<u> </u>	<u></u>					_	<u> </u>					<u> </u>	ļ	<u> </u>		_											$oxed{oxed}$				
		<u> </u>			ļ			_		<u> </u>			ļ						ļ	ļ									$\bot \bot$				1
		<u> </u>	<u></u>		<u>.</u>	ļ	<u> </u>	_	_	<u> </u>			ļ			ļ		-	ļ		<u>,</u>			_					$\bot \downarrow$				$\downarrow$
		<u> </u>	_	. ,	<b> </b>	ļ	<b> </b>	_	_	<u> </u>		ļ	ļ		<b> </b>	-	_	-						-					$\coprod$				$\downarrow$
-		<u> </u>	_		<u> </u>	-	-	-	-	_				ļ		1	ļ	ļ		<b> </b>	ļ			-					$\perp \downarrow$		-		$\downarrow$
		-	-		<u> </u>	ļ	<del> </del>	-	-	_		<b> </b>	-		<b> </b>	-	<u> </u>	-			<u> </u>	<u> </u>		-					$\coprod$		-		1
T.	PERATIC					<u> </u>	1	MANU	FACTUR	IER .			T COMPITION	08	SERVATION	ON GRA	ADING	<u></u>	<u> </u>	<u>l</u>	ORMATIO	<u> </u>	<u> </u>		The later	Iner 4	tiled on the	he previous ?					
		irstung Jering Ledritting ( Ledritting wi Mat Rela ( Tala appen Jering Jering	od control shing over rating ig us papting		BIT DESI	turbine	yk bers	The co	nufactor - Hugh: - Smith - Reed - Secur - Stiff - Dam	titute the or name or ity and boor ng service	1	of T1 - Teet T2 - Teet T3 - Teet T4 - Teet T5 - Teet T7 - Teet	h hight 1/8 gon h hight 1/4 gon h hight 3/8 gon h hight 1/2 gon h hight 5/8 gon h hight 3/4 gon h hight all gone h hight all gone	67 67 80	Rounded g	h oc maerts h or inserts p punge teeth I gauge foot!	SF LC un BP	- Coneta - Boaring - Seal to - Lost co - Broken journal ndy Bont to	failure ture notel bearing pri		C: C: C: C: C: C: C: C: C: C: C: C: C: C	By	10		be defined rifled, order of En. 61	d by fi with a plative	ne codes maximus impertan Plasti Clay Mari	of the last to M all three :	estane	A B C D	Increase Hydra- Hasims resched to allow run Reason	RIPPING stron slowing d sing torque utic problems um allowed or bil dulled i an ether m n other than by	ralati 6 eni 10rmai

Attachment 2
Rig Positioning Report

# ATTACHMENT 2

# RIG POSITIONING REPORT



# RIG MOVE REPORT OASIS AND JMR-4A POSITIONING

AT

EDINA-1 LOCATION

FOR

AUSTRALIAN AQUITAINE PETROLEUM PTY. LTD

# Prepared by:

## RACAL-DECCA SURVEY AUSTRALIA

96 Reserve Road P.O. Box 355 ARTARMON NSW 2064

Telephone : (02) 439 7595 Telex : AA 25441 Cnr Stock and Stockdale Roads P.O. Box 261

HAMILTON HILL W.A. 6163

Telephone : (09) 331 1199 Telex : AA 94341

# CONTENTS

		PAGE
ABSTR	ACT	1
1.	REQUIREMENTS	1
2.	SUMMARY OF EVENTS	3
3.	THE RACAL-DECCA SURVEY OASIS SYSTEM	4
4.	OPERATING PROCEDURES	5
	4.1 NAVIGATION TO LOCATION 4.2 CALIBRATION OF ACOUSTIC NET 4.3 ACOUSTIC TRACKING OF VESSELS POSITION 4.4 "RELAY" MODE TRACKING 4.5 OPERATOR INPUTS TO THE OASIS SYSTEM	·
5.	CALIBRATION RESULTS	10
	5.1 NET RELATIVE GEOMETRY 5.2 ORIENTATION 5.3 REPOSITIONING BY SATELLITE 5.4 TRANSPONDERS	
6.	MARKER BUOYS  6.1 LOCATION BUOY  6.2 HEADING BUOY  6.3 ANCHOR BUOYS	12
7.	TRANSIT FIXES AND PROVISIONAL DERRICK CO-ORDINATES	13
8.	3D SATELLITE/DOPPLER FIX ON RIG	14
9.	SUMMARY OF RESULTS	15

# **APPENDICIES**

Α	AREA OF OPERATIONS
В	PERSONNEL LIST AND SUMMARY OF PROJECT DIARY (2)
С	TEMPERATURE AND SALINITY READINGS (2)
D	"CHRISTMAS CREEK" OFFSET DATA
E	<ul> <li>(i) COMPUTER PLOT OF RELATIVE GEOMETRY/ORIENTATION</li> <li>(ii) SATELLITE FIXES USED IN CALIBRATION OF NET.</li> <li>(iii) FINAL TRANSIT FIX (Clockwise)</li> <li>(iv) FINAL TRANSIT FIX (Anti Clockwise)</li> </ul>
F	JMR-4A SCATTER PLOT OF ACCEPTED PASSES.

#### **ABSTRACT**

The following report gives details of the survey operations involved in moving the drilling rig "OCEAN DIGGER" onto the EDINA-1 location in the GIPPSLAND BASIN VIC P17, carried out by Racal-Decca Survey Australia on behalf of Australian Aquitaine Petroleum Pty. Ltd.

The project commenced on the 10 September, 1982 when the survey vessel M.V. "Christmas Creek" arrived at Port Welshpool to be fitted out for the Rig Move. "OCEAN DIGGER" was finally positioned on 25 September 1982.

Laying of the location marker buoys and provisional positioning of the "OCEAN DIGGER" was by means of the Decca OASIS system. The final position was determined by independent 3D Satellite/Doppler observations by a JMR-4A Satellite Receiver.

#### 1. REQUIREMENTS

The Edina-1 location co-ordinates were supplied by Australian Aquitaine Petroleum Pty. Ltd. by telex No. 9265 on 22 April 1982.

The co-ordinates were as follows:

LATITUDE 38° 36' 22".4 South LONGITUDE 147° 52' 42".1 East

AUSTRALIAN GEODETIC DATUM

A.M.G., Zone 55, Central Meridian 147° East

Easting 576479 Northing 5726539

The requirements of the project were as follows:

a) To lay and calibrate a pattern of acoustic transponders to be used as the position fixing system.

- b) To lay location and anchor position marker buoys to guide the "OCEAN DIGGER" on to location.
- c) To provide provisional positioning co-ordinates for the "OCEAN DIGGER" prior to the commencement of drilling operations.
- d) To carry out a 3D satellite doppler fix on the "OCEAN DIGGER" for final positioning co-ordinates.

# 2. SUMMARY OF EVENTS

10 Sept 1982 - Survey Party mobilised Port Welshpool. - M.V. "Christmas Creek" arrived Port Welshpool. - Commence fitting out M.V. "Christmas Creek" as Survey vessel. 14 Sept - Deployed Sea-Bed Transponder Net - Commence calibration of OASIS System. 18 Sept - 0342 - 19 Satellite Passes Received - weather deteriorates - return to Port Welshpool. Weather Stand-by. 22 Sept - 0930 Return to Location. Complete OASIS calibration. 23 Sept - Lay Location and Anchor Marker Buoys. 1730 - "OCEAN DIGGER" arrives at location. 25 Sept - 0830 - Final OASIS TRANSIT FIX. 1630 - JMR-4A observations commence on "OCEAN DIGGER" 27 Sept - 2130 - JMR-4A observations completed - 30

acceptable passes processed.

_ う_

## 3. THE RACAL-DECCA SURVEY OASIS SYSTEM

OASIS is an integrated satellite/acoustic navigation and position fixing system, it is independent of shore based radio navigation aids and is capable of the following operations.

- a) Navigation of a vessel to a particular location using Satellite Navigation and Gyro data, with manual inputs of speed and drift.
- b) Precise calibration (Geographical Positioning) of an acoustic net of up to 5 sea-bed transponders.
- c) Accurate tracking of a vessel's position within coverage of the acoustic net.
- d) In the "relay" mode, accurate remote tracking of up to two further vehicles within coverage of the net.

#### 4. OPERATING PROCEDURES

#### 4.1 NAVIGATION TO LOCATION AND REFERENCE BUOY POSITION

This is undertaken using single-pass solutions from consecutive acceptable satellite passes using gyro data input for heading information and a manual input of ships speed based either on the ships log, or distance and time between satellite fixes. Given a reasonable frequency of acceptable satellite passes, by the time the vessel arrives at location its position should be known accurately enough to enable a reference buoy to be dropped within range of the proposed acoustic net. The vessel can then be either anchored or hove-to alongside this buoy and further satellite positions taken until a satisfactory fix is obtained. Once this has been accomplished the acoustic transponders may be approximately positioned relative to this buoy.

# 4.2 CALIBRATION OF ACOUSTIC NET

This takes place in 3 phases:

# 4.2.1 PHASE 1 NET RELATIVE GEOMETRY

This is achieved by navigating through the acoustic net collecting a series of 140 good range sets. The quality of these range sets is ensured by a rigid system of range checking whereby each accepted set is preceded by six correctly predicted sets, the accepted set then must also fall in the predicted "box". The range sets are alternately divided into two groups, the groups are processed and a direct solution for each is found. The operator compares the two results and if acceptable, a least squares solution for each group is generated with a third result being the mean of the two least squares solutions. If this result is accepted by the operator then this mean solution becomes the relative geometry solution - which remains throughout

the calibration.

The results are in the form of X-Y co-ordinates based on a line from transponder A to transponder B as the X-axis with A as origin. Values are in metres.

The time needed for this phase is dependent on the number of transponders involved, and the sea-state.

However, with a 5 transponder net and reasonable weather this phase may take up to six hours.

# 4.2.2 ORIENTATION PHASE 1A

This phase comprises navigating three legs on as constant headings as possible within coverage of all transponders. The legs should be at  $90^{\circ}-120^{\circ}$  to each other but need not be at any particular orientation with respect to the net.

Using three legs reduces errors due to ship's drift.

The result of this phase is the orientation of the perpendicular to the line drawn from transponder A to transponder B with respect to true north.

The orientation result is based on the gyro and is progressively modified during repositioning Phase 2.

This phase may be expected to take up to 1 hour,

#### 4.2.3 REPOSITIONING PHASE 2

Having completed the geometry and orientation phases, the system now automatically enters the satellite repositioning phase. At this stage the ship's track may be displayed on the plotter, however the ship's position will be based on the results of the relative geometry, and orientation, with the operator's original estimate of the position of transponder A. Repositioning of the net takes place after the second and subsequent successful satellite passes. Each result is in the form of a block shift of the net in metres and a change of orientation in degrees.

The new positions of all transponders with the new orientation are output after each successful pass.

At pass 15 the programme reconsiders the previous pass information and edits out any passes which appear to be contributing unreasonable errors.

The absolute accuracy of the geographical positions of the transponders depends on the number of passes processed. After twenty passes  $\pm$  25 metres is reasonable and after 30 passes  $\pm$  10 metres.

This phase of the calibration may take up to 72 hours depending on the frequency and quality of satellite passes.

#### 4.3 ACOUSTIC TRACKING OF VESSELS POSITION

Once the positions of the sea-bed transponders have been established to the degree of accuracy required, the programme may be run in the "Navigate" mode, once this has been done any further satellite data is ignored.

The tracking programme enables the vessels position to be continuously monitored on the plotter, and manual, distance, or time initiated fixes to be

generated, with a fix relay closure for automatic marking of echo sounder or sonar records which may be required for a site-survey.

## 4.4 "RELAY" MODE TRACKING"

Although outside the scope of this report and not used during this operation, the relay mode enables remote acoustic tracking on the survey vessel, of up to two further relay transponders which may be attached to other vehicles, working in the same area.

#### 4.5 OPERATOR INPUTS TO THE OASIS SYSTEM

# 4.5.1 SPHEROID AND DATUM TRANSFORMATION CONSTANTS

The following spheroid data, and datum transformation constants from WGS72 to A.G.D were input during the initialisation of the programme.

Note that the  $\Delta X$ ,  $\Delta Y$ ,  $\Delta Z$ , signs are reversed from normal convention for datum transformations from WGS72 to A.G.D, this is a programme requirement.

a = 6378160 1/f = 298.25  

$$\Delta X = -122$$
,  $\Delta Y = -41$ ,  $\Delta Z = 146$ 

#### 4.5.2. TIDAL INFORMATION

The programme requires an input of variation of height of tide from mean sea level, this is needed both for the satellite programme antenna height and for the acoustic programme slant range correction.

At the Edina-1 Location the tidal range is less than 2 metres and therefore not significant to the OASIS System.

# 4.5.3 VELOCITY PROFILE

An important input to the programme is velocity of sound in seawater, this was measured frequently using an MC5 Temperature/Salinity bridge, taking readings at 10 metre intervals from the sea surface to the seabed. The programme uses these results to compute a velocity profile. Measured values can be found at the end of this report.

## 4.5.4 SAT/DOP TROPOSPERIC CORRECTION

This is calculated by the programme based on operator inputs of temperature, pressure and relative humidity. These were measured at regular intervals using an Aspirated Hygrometer and a "Baromec M1915" barometer.

#### 4.5.5. OFFSET BETWEEN TOWFISH AND SAT-NAV ANTENNA

During the calibration of the net the offset between the towpoint and the satellite Navigation Antenna must be entered in the programme, thus the position plotted at this stage refers to the Antenna position.

Prior to the final transit fix on the "OCEAN DIGGER" the offsets were changed to plot the wheelhouse position, from where the transit fixes were observed.

Measured offsets can be found at the end of this report.

### 5. NET CALIBRATION RESULTS

# 5.1 RELATIVE GEOMETRY, PHASE 1

The results are in the form of X-Y co-ordinates based on a line between transponder A and transponder B with A as origin. Values are in metres.

	$\overline{\chi}$	<u>Y</u>
Α	0.0	0.0
В	1137.6	0.0
C	1626.4	1054.7
D	631.0	1789.6
E	-239.1	1174.9

Discrepancy = 1.46

The discrepancy is a measure of the agreement between the two least squares solutions used to produce the final mean solution.

A value less than 5 is considered satisfactory.

# 5.2 ORIENTATION PHASE 1A

The result is the orientation of the perpendicular to the line joining transponder A and transponder B, this is later modified during the satellite repositioning phase.

ORIENTATION =  $354^{\circ}2$ 

#### 5.3 REPOSITIONING PHASE 2

The end result of an oasis calibration is a set of geographical co-ordinates for each transponder and the net orientation.

# JRANSPONDER FINAL POSITION

Latitude South				Longit	Longitude East			(M)
Α	38 ⁰	36'	50"76	147 ⁰	52'	20.22"	69	
В	38 ⁰	36'	46:15	147 ⁰	53'	06.87"	69	
С	38 ⁰	36'	10:24	147 ⁰	53'	21.46"	69	
D	38 ⁰	35'	50"62	147 ⁰	52'	36.86"	69	
Ε	38 ⁰	36'	13"93	147 ⁰	52'	04.36"	69	

## ORIENTATION

Using 22 Passes R.M.S. = 25.22

An indication of the probable error in position of the acoustic net can be obtained from the R.M.S. value and the number of passes used:

PROBABLE ERROR = 
$$\sqrt{\frac{R.M.S.^2}{NO \text{ OF PASSES USED}}}$$
 =5.4 Metres

# 5.4 TRANSPONDERS

The five transponder used had the following channel numbers, codes and serial numbers:

Α	Channel	6	Code	AC 14	Ser No. 339
B	Channel	3	Code	A 14	Ser No. 329
C	Channel	4	Code	AC123	Ser No. 322
D	Channel	8	Code	AC 23	Ser No. 341
Ε	Channel	7	Code	AC 15	Ser No. 340

# 6. MARKER BUOYS

A fix was taken on the position of all buoys prior to the arrival on location of the "OCEAN DIGGER" and information regarding the "set" of the buoys passed to the drillship.

Marker buoys were supplied by Australian Aquitaine Petroleum and were laid as follows:

# 6.1 LOCATION BUOY

On location.

# 6.2 HEADING BUOY

914 Metres (3000 feet) from location on rig heading of  $260^{\circ}$ .

# 6.3 ANCHOR BUOYS

No's 3, 4, 8, and 9.

# 7. PROVISIONAL DERRICK CO-ORDINATES

Numerous transit fixes were made to enable the rig to manoeuvre on to location, the final transit fix was completed at 0830 on 25 September and gave the derrick position as 14 metres on a bearing of 222° from the intended location, with a heading of 263°. Co-ordinates for this position were calculated and passed to the "OCEAN DIGGER" as provisional derrick co-ordinates.

PROVISIONAL DERRICK CO-ORDINATES FOR "EDINA No. 1"

Latitude

Longitude

38⁰ 36' 22".74 South

147° 52' 41"72 East.

A.M.G. co-ordinates, Zone 55, Central Meridian 147° E

576470 - Easting

5726529 - Northing

Heading of drillship 2630

# 8. <u>JMR-4A - SATELLITE DOPPLER FIX AT EDINA No. 1 LOCATION</u>

JMR-4A Satellite Doppler observations were taken on board the "OCEAN DIGGER" to confirm the location of EDINA-No 1 well head which had been positioned by the "OASIS" System.

The JMR-4A contains its own microprocessor for processing of doppler count data obtained from the U.S Navy Transit Satellite System. Using frequencies transmitted from these satellites it extracts timing information, satellite ephemeris and doppler shift data to provide an accurate position fix anywhere on the earth's surface.

The raw data was recorded on JMR-1 certified cassette tapes and processed in real time using the JMR-4A programme. The following criteria were used for the computations:

a)	Tropospheric constant	: 0.00020
b)	Atmospheric Pressure	: 1020
c)	Doppler edit	: tight
d)	Pass elevation low angle cut off	: 20 ⁰
e)	Pass elevation high angle cut off	: 78 ⁰
f)	Drill rig heading	: 263 ⁰

g) Offset antenna to drill stem : brg. 069.06

: Dist. 41.09m

h) Co-ordinate transformation constants WGS-72 to A.G.D.

: Δ X 0.122 : Δ Y 0.41

: △ Z-0.146

: f = 1

i) Australian National Spheroid (A.N.S.)

a = 6378160

298.25

## 9. SUMMARY OF RESULTS

Final position of EDINA-No 1 observed and processed by JMR-4A. 30 Acceptable passes.

# Australian Geodetic Datum - (1966)( A.G.D.)

Latitude 38° 36' 22"539 South Longitude 147° 52' 41"949 East

Australian Map Grid Co-ordinates, Zone 55, Central Meridian 147⁰ East.

Eastings 576476 Northings 5726535

Proposed Location > JMR-4A Final Location 5 metres.

Proposed Location > OASIS Prov. Co-Ords. 14 metres

OASIS Prov. Co-Ords + JMR-4A Final Location 8 metres

Approved: N.L. Sanderson O.B.E. Assoc I.S. Aust.

Chief Surveyor

RACAL DECCA SURVEY AUSTRALIA

#### PE905958

This is an enclosure indicator page. The enclosure PE905958 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905958 has the following characteristics:

ITEM_BARCODE = PE905958
CONTAINER_BARCODE = PE905967

NAME = Location Map BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL

SUBTYPE = MAP

Edina-1

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 6/06/83$ 

 $W_NO = W784$ 

WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

(Inserted by DNRE - Vic Govt Mines Dept)

## PERSONNEL LIST AND SUMMARY OF PROJECT DIARY

## Personnel List

I.A. FREEMAN B Surv. M.I.S. AUST

Senior Surveyor

R-DSA SYDNEY

K. PERRY U.W./OASIS Engineer R-DSA GREAT YARMOUTH

# Summary of Project Diary

9 Sept - Equipment and personnel mobilised ex Sydney and Perth.

10 Sept - Commence fitting out M.V. "Christmas Creek" with OASIS equipment.

13 Sept - 1415 - Sail from Port Welshpool for location.

14 Sept - Lay Acoustic Transponder Net.

Complete relative geometry and orientation of net.

15 Sept - Lost starfish - return to Port Welshpool for replacement.

16 Sept - 1030 - Resume operations - commence repositioning. . Phase 2.

18 Sept - 0700 - 19 Passes accepted - weather deteriorating rapidly, return to shelter at Port Welshpool.

19,20,21- Weather Standby at Port Welshpool.

22 Sept - Return to Location.

23 Sept - 1044 - Complete Calibration - lay location and marker buoys.

1730 - Ocean Digger arrives on site.

- 24 Sept "OCEAN DIGGER" Running Anchors
- 25 Sept 0830 Final Acoustic Transit Fixes positions

  OCEAN DIGGER 14 metres off location.

  "Christmas Creek" released from survey duties.

  1630 JMR-4A Observations commenced on

  "OCEAN DIGGER".
- 27 Sept 2130 Pass 30 processed. JMR-4A observations completed.
- 28 Sept Operator & equipment helicopter to Welshpool Base.
- 29 Sept Demobilise to Sydney.

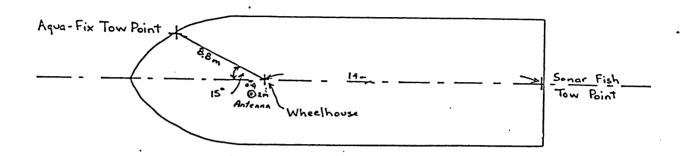
### APPENDIX C

## TEMPERATURE AND SALINITY READING

## <u>14 Sept 1982 - 1500</u>

Depth (m)	Temp (C ^O )	<u>Sa</u>	linity p.p.t.
0	20.0		29.7
10	19.1		19.7
20	18.8		30.0
30	18.8		30.0
40	18.6		30.0
50	18.6		30.0
60	18.8		29.8
69	19.1		29.8
		Mean	29.9

## <u>16 Sept 1982 - 1000</u>


Depth (m)	Temp (C ^O )	<u>Sal</u>	inity p.p.t.
0	19.4		29.7
7	18.9		29.8
14	18.9		29.8
21	18.8		29.7
28	19.0		29.5
35	19.0		29.5
42	19.2		29.4
50	19.3		29.3
57	19.3		29.3
÷		Mean	29.6

## TEMPERATURE AND SALINITY READINGS

22-Sept 1982 - 1015

Depth (m)	Temp (C ^O )	Salinity p.p.t.
0	19.2	29.7
10	19.2	29.9
20	19.2	29.7
30	19.1	29.8
40	19.2	29.6
50	19.5	29.6
60	19.5	29.6
69	19.5	29.6
		Mean 29.7

## "CHRISTMAS CREEK" OFFSETS



### TOWFISH TO SAT NAV ANTENNA

L = 17 metres

H = 3.5 metres

.  $B = 28^{\circ}$ 

D = 7.3 metres

## TOWFISH TO WHEELHOUSE

L = 17 metres

H = 3.5 metres  $B = 15^{\circ}$ 

D = 8.3 metres

Sonar fish towpoint to wheelhouse datum = 14 metres

L = Length of tow cable

H = Height of tow point above water line

B = bearing of tow point w.r.t. ships head

D = distance of tow point from ships datum

This is an enclosure indicator page. The enclosure PE905959 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905959 has the following characteristics:

ITEM_BARCODE = PE905959
CONTAINER_BARCODE = PE905967

NAME = Relative Geometry/ Orientation of

Acoustic Net

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL SUBTYPE = DIAGRAM

DESCRIPTION = Relative Geometry/Orientation of

Acoustic Net (from attachment 2 of WCR--rig Positioning Report) for

Edina-1

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 6/06/83$ 

W_NO = W784 WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page.

The enclosure PE905960 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905960 has the following characteristics:

ITEM_BARCODE = PE905960
CONTAINER_BARCODE = PE905967

NAME = Satellite Fixes Used in Calibration of

Acoustic Net

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL SUBTYPE = DIAGRAM

DESCRIPTION = Satellite Fixes Used in Calibration of

Acoustic Net (from attachment 2 of WCR--rig Positioning Report) for

Edina-1

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 6/06/83$ 

W_NO = W784 WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905961 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905961 has the following characteristics:

ITEM_BARCODE = PE905961
CONTAINER_BARCODE = PE905967

NAME = Final Transit Fix (clockwise)

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL

SUBTYPE = DIAGRAM
DESCRIPTION = Final Transit Fix, clockwise, (from

attachment 2 of WCR--rig Positioning

Report) for Edina-1

REMARKS =

DATE_CREATED = 25/09/83 DATE_RECEIVED = 6/06/83

> W_NO = W784 WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905962 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905962 has the following characteristics:

ITEM_BARCODE = PE905962
CONTAINER_BARCODE = PE905967

NAME = Final Transit Fix (anti-clockwise)

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL SUBTYPE = DIAGRAM

DESCRIPTION = Final Transit Fix, anti-clockwise,

(from attachment 2 of WCR--rig Positioning Report) for Edina-1

REMARKS =

DATE_CREATED = 25/09/83 DATE_RECEIVED = 6/06/83

W_NO = W784
WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

1 ST=194 NLAT=26 NLON=25 HGTM= 41.72 LATM=- 38 36 23.014 LONM= 147 52 40.364 E 47 == ERLT= ERLG= 0.5 3.8 2.7 Scatter Plot of Antenna Position •< -- 10 METERS NORTH ж ж O Prill Stem. * * 凇 * ж Ж 冰 * ** ***** * Antenna * 冰 * Ж Ж

*

*

*

* *

Attachment 4 Velocity Survey



#### Seismograph Service Limited -

182 - 184 FULLARTON ROAD. DULWICH, S.A. 5065

P.O. BOX 287, GLENSIDE, S.A. 5065 TELEPHONE: 332 5155 TELEX: AA82316

TEL FARNBOROUGH KENT 53355 TELEX 24450 CABLES
" SEISLIM LONDON" INLAND TELEGRAMS "SEISLIM BROMLEY TELEX" HOLWOOD, WESTERHAM ROAD, KESTON, KENT ENGLAND BR2 6HD REGISTERED IN ENGLAND No. 409888

Australian Aquitaine Petroleum Pty Ltd.

DIRECTORS

R.C.ANDERSON (U.S.A.)

B.G.BAUGH (U.S.A.)

J.K.SMITH

H.W.LAWRENCE (U.S.A.)

E. E. WOLF

**Directors** 

Well: Edina No. 1

Listing of level Nos. Depths & Stacks relating to unfiltered and filtered traces.

Level No.	Depth in m below RT.	Stack (Nos from original DM)
1	225	1,2,3
2	300 .	52,53,54,55
3	400	4,5,6,7,8
4	400	50,51
5	500	48,49
6	600	9,10
7	800	11,12
8	1000	13,14
9	1195	15,16
10	1216	17,18
11	1450	19,20
12	1600	46,47
13	1650	26,27
14	1675	23
15	1698	43,45
16	1850	29,30
17	2050	41,42
18	2250	31,32
19	2350	39,40
20	2450	33,34
21	2580	35,36,37,38



## SEISMOGRAPH SERVICE (ENGLAND) LTD WELL SURVEY DIVISION

COMPANY: AUSTALIAN AQUITAINE PETROLEUM PTY LTD

WELL: EDINA NO.1

LISTING OF: TWO-WAY TRAVEL TIME IN SECONDS BELOW DATUM OF MEAN SEA LEVEL

VERTICAL DEPTH IN METRES BELOW DATUM OF MEAN SEA LEVEL

VELOCITIES IN M/SEC .

REFLECTION COEFFICIENTS

TWO-WAY TRANSMISSION LOSS

ELEVATION OF RT AT 3Ø.2 METRES ABOVE DATUM OF MEAN SEA LEVEL

TIMES START AT TOP OF VELOCITY LOG AT Ø.218Ø SECONDS TWØ-WAY TIME

Ø.002

TIME INCREMENT IS Ø. ØØ SECONDS TWO-WAY TIME

										-		
TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS						
Ø.218Ø Ø.22ØØ Ø.222Ø	192.7 194.6 196.5	1767.9 1834.Ø 1963.8	1767.9 1768.5	1767.9 1768.5	Ø.Ø184	Ø.ØØØ3	••		·			
Ø.224Ø Ø.226Ø Ø.228Ø	198.6 200.5 202.6	2075.0 1922.3 2088.3	1770.3 1773.0 1774.3 1777.1	1770.4 1773.3 1774.7 1777.7	Ø.Ø342 Ø.Ø275 -Ø.Ø382 Ø.Ø414	Ø.ØØ15 Ø.ØØ23 Ø.ØØ37 Ø.ØØ54	. *					
Ø.23ØØ Ø.232Ø Ø.234Ø	204.7 206.8 209.0	2082.3 2118.3 2186.6	1779.7 1782.7 1786.1	1780.6 1783.8 1787.6	-Ø.ØØ14 Ø.ØØ86 Ø.Ø159	Ø.ØØ54 Ø.ØØ55 Ø.ØØ58	•					
Ø.236Ø Ø.238Ø Ø.24ØØ Ø.242Ø	211.0 213.2 215.3 217.5	2018.4 2124.3 2185.8 2165.8	1788.1 179Ø.9 1794.2 1797.3	1789.7 1792.7 1796.4 1799.7	-Ø.Ø4ØØ Ø.Ø256 Ø.Ø143	Ø.ØØ73 Ø.ØØ8Ø Ø.ØØ82		,				·
Ø.244Ø Ø.246Ø Ø.248Ø	219.7 221.8 223.9	2168.1 2147.2 2093.4	1800.3 1803.1 1805.5	1803.1 1806.1 1808.6	-Ø.ØØ46 Ø.ØØØ5 -Ø.ØØ48 -Ø.Ø127	Ø.ØØ82 Ø.ØØ82 Ø.ØØ84						
Ø.25ØØ Ø.252Ø Ø.254Ø Ø.256Ø	226.Ø 228.1 23Ø.1 232.1	2135.4 2042.5 2008.9 2050.6	1808.1 1810.0 1811.5 1813.4	1811.5 1813.4 1815.Ø 1817.Ø	Ø.ØØ99 -Ø.Ø222 -Ø.ØØ83	Ø.ØØ85 Ø.ØØ9Ø Ø.ØØ91						
Ø.258Ø Ø.26ØØ Ø.262Ø	234.2 236.4 238.6	2085.1 2167.5 2240.5	1815.5 1818.2 1821.4	1819.2 1822.2 1825.7	Ø.Ø1Ø3 Ø.ØØ83 Ø.Ø194 Ø.Ø165	Ø.ØØ92 Ø.ØØ92 Ø.ØØ96 Ø.ØØ99						
0.2640 0.2660 0.2680 0.2700	24Ø.9 243.1 245.1 247.1	2235.4 2186.5 2004.8 1999.8	1824.6 1827.3 1828.6 1829.9	1829.2 1832.1 1833.5 1834.8	-Ø.ØØ11 -Ø.Ø11Ø -Ø.Ø434 -Ø.ØØ12	Ø.ØØ99 Ø.Ø1ØØ Ø.Ø119 Ø.Ø119						
Ø.272Ø Ø.274Ø Ø.276Ø	249.2 251.4 253.6	217Ø.1 2159.2 224Ø.5	1832.4 1834.8 1837.7	1837.4 1840.0 1843.2	Ø.Ø4Ø8 -Ø.ØØ25 Ø.Ø185	Ø.Ø135 Ø.Ø135 Ø.Ø138	•					
Ø.278Ø Ø.28ØØ Ø.282Ø Ø.284Ø	255.7 257.7 259.9 262.2	2091.0 1984.4 2235.8 2290.5	1839.5 1840.6 1843.4 1846.5	1845.1 1846.1 1849.2 1852.7	-Ø.Ø345 -Ø.Ø262 Ø.Ø596 Ø.Ø121	Ø.Ø15Ø Ø.Ø157 Ø.Ø192 Ø.Ø193						
Ø.286Ø Ø.288Ø Ø.29ØØ Ø.292Ø	264.6 267.Ø 269.3 271.7	2378.1 2351.2 2352.2 2356.8	1850.2 1853.7 1857.1 1860.6	1856.9 1860.7 1864.6 1868.4	Ø.Ø188 -Ø.ØØ57 Ø.ØØØ2	Ø.Ø197 Ø.Ø197 Ø.Ø197						
Ø.294Ø Ø.296Ø Ø.298Ø	274.Ø 276.4 279.Ø	2326.4 2435.7 252Ø.1	1863.7 1867.6 1872.Ø	1871.9 1876.3 1881.3	Ø.ØØ1Ø -Ø.ØØ65 Ø.Ø229 Ø.Ø17Ø	Ø.Ø197 Ø.Ø198 Ø.Ø2Ø3 Ø.Ø2Ø6					•	
Ø.3ØØØ Ø.3Ø2Ø Ø.3Ø4Ø Ø.3Ø6Ø	281.4 283.9 286.3 288.8	2458.5 2466.8 2452.4 246Ø.Ø	1875.9 1879.8 1883.6 1887.3	1885.7 1890.2 1894.4 1898.7	-Ø.Ø124 Ø.ØØ17 -Ø.ØØ29 Ø.ØØ15	Ø.Ø2Ø7 Ø.Ø2Ø7 Ø.Ø2Ø7 Ø.Ø2Ø7						
0.3080 0.3100 0.3120 0.3140	291.2 293.6 296.ø 298.4	2427.4 2397.5 2369.6 2410.1	1890.8 1894.1 1897.2	1902.6 1906.2 1909.5	-0.0067 -0.0062 -0.0058	Ø.Ø2Ø8 Ø.Ø2Ø8 Ø.Ø2Ø8						
Ø.316Ø Ø.318Ø Ø.32ØØ	300.8 303.2 305.7	2410.7 2431.5 2429.0	1900.4 1903.7 1907.0 1910.2	1913.1 1916.7 1920.3 1923.9	Ø.ØØ85 Ø.ØØØ1 Ø.ØØ43 -Ø.ØØØ5	Ø.Ø2Ø9 Ø.Ø2Ø9 Ø.Ø2Ø9 Ø.Ø2Ø9						
Ø.322Ø Ø.324Ø Ø.326Ø Ø.328Ø	308.1 310.6 313.0 315.5	244Ø.9 2456.3 2437.8 2455.2	1913.5 1916.9 1920.1 1923.3	1927.6 1931.3 1934.8 1938.4	Ø.ØØ24 Ø.ØØ32 -Ø.ØØ38	Ø.Ø2Ø9 Ø.Ø2Ø9 Ø.Ø2Ø9				,		
Ø.3300 Ø.3320	317.9 32Ø.3	2413.4 2409.7	1926.3	1941.6	Ø.ØØ35 -Ø.ØØ86 -Ø.ØØØ8	Ø.0210 Ø.0210 Ø.0210						,
								1				

TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS		·		
Ø.334Ø	322.7	237Ø.Ø	1931.9	1947.6	-Ø.ØØ83	Ø.Ø211			•	•
Ø.336Ø	325.Ø	2345.1	1934.3				•			
Ø.338Ø	327.4	2372.2	1936.9	1950.2	-0.0053	Ø.Ø211				
Ø.34ØØ	329.8	2207 5	1000.5	1953.ø	Ø.ØØ58	Ø.Ø212	•			
Ø.342Ø	222.0	2397.5	1939.6	1955.9	Ø.ØØ53	Ø.Ø212	•.			
0.3420	332.2	2382.3	1942.2	1958.6	-Ø.ØØ32	Ø.Ø212				
Ø.344Ø	334.6	2411.3	1944.9	1961.6	ø.øø6ø	Ø.Ø212				
Ø.346Ø	337.Ø	2467.5	1948.Ø	1964.9	Ø.Ø115	Ø.Ø214				
Ø.348Ø	339.5	2434.2 2439.9	195Ø.8	1967.9	-0.0068	Ø.Ø214			•	
Ø.35ØØ	341.9	2439.9	1953.5	197Ø.9	0.0012	Ø.Ø214				
Ø.352Ø	344.3	2441.7	1956.3	1973.9	Ø.ØØØ4	Ø.Ø214				
Ø.354Ø	346.8	2478.3	1959.3	1977.1	Ø.ØØ74	Ø.Ø215				
Ø.356Ø	349.2	2418.7	1961.8	1979.9						
Ø.358Ø	351.7	2421.7	1964.4	1982.6	-0.0122	Ø:Ø216				
0.3600	354.1	2469.8	1967.2	1002.0	Ø.ØØØ6	Ø.Ø216				
Ø.362Ø	356.6	2440.6		1985.6	Ø.ØØ98	Ø.Ø217				
Ø.364Ø	359.Ø	2449.6 2448.6	1969.9	1988.5	-0.0041	Ø.Ø217				
	355.8	2448.6	1972.5	1991.3	-0.0002	Ø.Ø217				
Ø.366Ø	361.5	2454.8	1975.2	1994.1	Ø.ØØ13	Ø.Ø217				
Ø.368ø	364.Ø	2468.3	1977.8	1997.Ø	Ø.ØØ27	Ø.Ø217				
Ø.37ØØ	366.4	2489.6	1980.6	ZØØØ.Ø	Ø.ØØ43	Ø.Ø217			•	
Ø.372Ø	369.Ø	25Ø9.5	1983.4	2003.1	Ø.ØØ4Ø	Ø.Ø218				
Ø.374Ø ·	371.5	2527.2	1986.4	2006.3	Ø.ØØ35	Ø.Ø218				
Ø.376Ø	373.9	2449.6	1988.8	2008.9	-Ø.Ø156	Ø.Ø22Ø				
Ø.378Ø	376.4	2506.2	1991.6	2011.8	Ø.Ø114	Ø.Ø221				
Ø.38ØØ	378.9	2490.1	1994.2	2014.7	D. 20 1 1 4	0.0221				
Ø.382Ø	381.4	2463.6	1996.6	2017.3	-0.0032	Ø.Ø222				
Ø.384Ø	383.8	2439.3	1000 0	2017.3	-0.0054	Ø.Ø222				
Ø.386Ø	386.3	2433.3	1998.9	2019.7	-Ø.ØØ5Ø	Ø.Ø222				
Ø.388Ø		2478.6	2001.4	2022.3	Ø.ØØ8Ø	Ø.Ø223				
0.3000	388.8	2491.8	2004.0	2025.0	Ø.ØØ27	Ø.Ø223				
Ø.39ØØ	391.3	2491.6	2006.5	2Ø27.7	Ø.ØØØ	Ø.Ø223				
Ø.392Ø	393.8	2498.1	2009.Ø	2030.4	Ø.ØØ13	Ø.Ø223		•		
Ø.394Ø	396.3	2518.8	2011.5	2033.2	Ø.ØØ41	Ø.Ø223				
Ø.396Ø	398.8	2524.3	2014.1	2035.9	0.0011	Ø.Ø223				
Ø.398Ø	401.3	2484.Ø 254Ø.9 2555.9	2016.5	2038.4	-0.0081	Ø.Ø224				
0.4000	403.9	2540.9	2019.1	2041.2	Ø.Ø113	Ø.Ø225				
Ø.4Ø2Ø	406.4	2555.9	2021.8	2044.1	Ø.ØØ29	Ø.Ø225				
Ø.4Ø4Ø	408.9	2528.5	2024.3	2046.8	-0.0054	Ø.Ø225				
Ø.4Ø6Ø	411.5	2537.6	2026.8	2049.5	Ø.ØØ18	<i>α.</i> α22Γ				
Ø.4Ø8Ø	414.0	2546.9	2029.4	2052.2		Ø.Ø225				
0.4100	416.6	2606.1	2032.2	2055.3	Ø.ØØ18	Ø.Ø225				
Ø.412Ø	419.2	2584.Ø	2024.2	2055.3	Ø.Ø115	Ø.Ø227				
Ø.414Ø	421.7	2100 0	2034.9	2058.2	-0.0043	Ø.Ø227				
Ø.416Ø		2498.9	2037.1	2060.6	-Ø.Ø168	Ø.Ø229				
Ø 4100	424.2	2485.9	2039.3	2062.8	-Ø.ØØ26	Ø.Ø23Ø				
Ø.418Ø	426.7	2511.3	2041.5	2065.2	Ø.ØØ51	ø.ø23ø				
Ø.42ØØ	429.3	2557.2	2Ø44.Ø	2Ø67.8	Ø.ØØ91	Ø.Ø231				
Ø.422Ø	431.8	2568.3	2046.5	2070.5	Ø.ØØ21	Ø.Ø231			•	
Ø.424Ø	434.4	12597.1	2049.1	2073.3	Ø.ØØ56	Ø.Ø231				
Ø.426Ø	437.Ø	2556.Ø	2051.4	2075.8	-0.0080	Ø.Ø232				
Ø.428Ø	439.5	2545.6	2853.8	2078.2	-0.0020					
0.4300	442.1	2546.9	2Ø56.Ø			Ø.Ø232				
Ø.432Ø	444.7	2566.8	2050.0	2080.7	Ø.ØØØ2	Ø.Ø232				
Ø.4328	447.2	2500.0	2058.4	2083.2	Ø.ØØ39	Ø.Ø232				
	. 44/.4	2532.3	2060.6	2085.5	-Ø.ØØ68	Ø.Ø232				
Ø.436Ø	449.7	2500.2	2062.6	2087.6	-Ø.ØØ64	Ø.Ø233				
Ø.438Ø	452.2	2474.7	2064.5	2089.5	-Ø.ØØ51	Ø.Ø233				
0.4400	454.6	2483.2	2066.4	2091.4	Ø.ØØ17	Ø.Ø233				
Ø.442Ø	457.1	25Ø3.Ø	2068.4	2093.5	0.0040	Ø.Ø233				
Ø.444Ø	459.7	2544.1	2070.5	2095.7	Ø.ØØ81	Ø.Ø234				
Ø.446Ø	462.2	2526.4	2072.6	2097.9	-0.0035	Ø.Ø234				
Ø.448Ø	464.8	2575.3	2074.8	2 2	Ø.ØØ96	Ø.Ø235	_			
		_0.0.0	L~/ 7.0	-	ם כשש. ש	w.w233				

TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS					
Ø.45ØØ	467.3	2539.5	2076.9	2102.4	-0.0070	Ø.Ø235					
Ø.452Ø	469.9	2554.1	2Ø79.Ø	2104.6	Ø.ØØ29	Ø.Ø235					
Ø.454Ø	472.4	2528.9	2Ø81.Ø	2106.7	-Ø.ØØ5Ø	Ø.Ø235					
Ø.456Ø	474.9	2531.7	2082.9	2108.7	0.00.05	Ø.Ø235					•
Ø.458Ø	477.4	2420.5	2084.4	2110.2	-Ø.Ø225	Ø.Ø24Ø	<i>;</i> ,				
Ø.46ØØ	479.9	2490.3	2086.2	2112.0	Ø.Ø142	Ø.Ø242					
Ø.462Ø	482.4	2533.3	2088.1	2114.0	Ø.ØØ86	Ø.Ø243					
Ø.464Ø	484.9	2544.4	2090.1	2116.0	Ø.ØØ22	Ø.Ø243					•
Ø.466Ø.	487.5	2541.Ø	2092.0	2118.Ø	-0.0007	Ø.Ø243			•		
Ø.468Ø	49Ø.Ø	2526.2	2093.9	2119.9	-Ø.ØØ29	0.0243					
0.4700	492.5	2534.1	2095.7	2121.9	Ø.ØØ16	Ø.Ø243					
Ø.472Ø	495.1	2558.5	2097.7	2123.9	Ø.ØØ48	Ø.Ø243 Ø.Ø243					
Ø.474Ø	497.7	2594.7	2099.8	2126.1	Ø.ØØ7Ø	Ø.Ø243 Ø.Ø244					
Ø.476Ø	5ØØ.3	2605.0	2101.9	2128.4	Ø.ØØ2Ø	0.0244					
Ø.478Ø	502.9	2575.3	2103.9	2130.4	-Ø.ØØ57	Ø.Ø244					
0.4800	5Ø5.5	2579.8	2105.9	2132.5	Ø.ØØØ9	Ø.Ø244 Ø.Ø244					
Ø.482Ø	508.0	2584.5	2107.9	2134.6	Ø.ØØØ9	0.0244					
0.4840	510.6	2587.6	2109.9	2136.6	Ø.ØØØ6	Ø.Ø244 Ø.Ø244					
Ø.486Ø	513.2	2568.8	2111.7	2138.6	-0.0036	Ø.Ø244					
0.4880	515.8	2569.4	2113.6	2140.5	Ø.ØØØ1	Ø.Ø244			•		
Ø.49ØØ ·	518.3	2571.3	2115.5	2142.5	Ø.ØØØ4	Ø.Ø244			~		
Ø.492Ø	52Ø.9	2606.6	2117.5	2144.6	Ø. ØØ68	Ø. Ø2 45					
Ø.494Ø	523.5	2587.Ø	2119.4	2146.5	-0.0038	Ø.Ø245					
Ø.496Ø	526.2	2654.7	2121.5	2148.8	Ø.Ø129	Ø.Ø247					
Ø.498Ø	528.8	2582.3	2123.4	215Ø.7	-Ø.Ø138	Ø. Ø2 4 9					
Ø.5ØØØ	531.3	2566.6	2125.2	2152.6	-0.0030	Ø.Ø249					
Ø.5Ø2Ø	533.9	2553.1	2126.9	2154.3	-0.0026	Ø.Ø249					
, Ø.5Ø4Ø	536.5	2579.8	2128.7	2156.2	Ø.ØØ52	Ø.Ø249					
, Ø.5Ø4Ø Ø.5Ø6Ø	539.Ø	2490.6	2130.1	2157.6	-Ø.Ø176	Ø.Ø252					
Ø.5Ø8Ø	541.4	2490.6	2131.5	2159.Ø	0.0000	Ø.Ø252					
Ø.51ØØ	544.Ø	2541.5	2133.1	2160.6	0.0101	Ø.Ø253					
Ø.512Ø	546.6	2631.7	2135.1	2162.7	Ø.Ø174	Ø.Ø256					
Ø.514Ø	549.3	2682.6	2137.2	2164.9	Ø.ØØ96	Ø.Ø257					
Ø.516Ø	552.1	2759.5	2139.6	2167.5	Ø.Ø141	Ø.Ø259					
Ø.518Ø Ø.52ØØ Ø.522Ø Ø.524Ø	554.7	2603.1	2141.4	2169.4	-Ø.Ø292	Ø.Ø267					
Ø.52ØØ	557.3	2617.Ø	2143.2 2145.3	2171.3 2173.4	Ø.ØØ27	Ø.Ø267					
Ø.522Ø	56Ø.Ø	2673.5	2145.3	2173.4	0.0107	Ø.Ø268	•				•
Ø.524Ø	562.6	2599.Ø	2147.00	2175.2	-Ø.Ø141	Ø.Ø27Ø					
Ø.526Ø	565.1	2582.7	2148.6	2176.9 2179.2	-Ø.ØØ31	Ø.Ø27Ø					
Ø.528Ø	567.8	2715.1	215Ø.8	2179.2	Ø.Ø25Ø	Ø.Ø276					
0.5300	57Ø.4	2568.6	2152.4	2180.8	-Ø.Ø277	Ø.Ø284					
Ø.526Ø Ø.528Ø Ø.53ØØ Ø.532Ø Ø.534Ø	573.Ø	2554.5	2153.9	2182.3	-Ø.ØØ28	Ø.Ø284					
0.5340	575.5	256Ø.4	2155.4	2183.9	Ø.ØØ11	Ø.Ø284					
Ø.536Ø	578.Ø	2516.Ø	2156.8	2185.2	-Ø.ØØ88	Ø.Ø285					
Ø.538Ø	58Ø.7	2648.8	2158.6	2187.1	Ø.Ø257	Ø.Ø291					
Ø.54ØØ	583.3	2573.2	2160.1	2188.7	-Ø.Ø145	Ø.Ø293					
Ø.542Ø Ø.544Ø	585.9 588.6	2616.7	2161.8	2190.4	Ø.ØØ84	Ø.Ø294					
Ø.5440 Ø.5460	591.2	27Ø4.5 26Ø9.3	2163.8	2192.5	Ø.Ø165	Ø.Ø296					
Ø.548Ø	593.9	266Ø.6	2165.4	2194.2	-Ø.Ø179	Ø.Ø3ØØ					
Ø.55ØØ	596.4		2167.2	2196.1	Ø.ØØ97·	Ø.Ø3ØØ					
Ø.552Ø	599.1	2535.7 2657.1	2168.6	2197.4	-0.0240	Ø.Ø3Ø6					
Ø.554Ø	6Ø1.6		2170.3	2199.2	Ø.Ø234	Ø.Ø311					4
. Ø. 556Ø	604.2	2521.8 2604.8	2171.6	2200.5	-Ø.Ø261	Ø.Ø318					
Ø.558Ø	606.9		2173.2	2202.1	Ø.Ø162	Ø.Ø321					
Ø.5600	609.5	2692.5 2632.8	2175.Ø	2204.0	Ø.Ø166	Ø.Ø323					
Ø.562Ø	611.9	2394.6	2176.7	2205.7	-Ø.Ø112	Ø.Ø324		*			
Ø.564Ø	614.2	2394.6	2177.4 2177.8	2206.4	-Ø.Ø474	Ø.Ø346					
	01412	2207.3	41//.0	22.06.7	-Ø.Ø228	Ø.Ø351					
-											

TIME DEPTH INT.VEL. AVG.VEL. REF.CET. TRN.LDSS  D. 56687 616.5 2244.9 2178.4 2287.2 8.8123 8.8559 8.5728 621.7 2561.3 2178.4 2287.2 8.8123 8.8259 8.5728 621.7 2561.3 2178.4 2287.2 8.8123 8.8259 8.5728 621.7 2561.3 2178.4 2287.2 8.8123 8.8259 8.5728 624.3 2555.5 2182.8 2281.6 8.8247 8.8274 8.7528 624.3 2555.5 2182.8 2281.6 8.8274 8.7528 624.3 2555.5 2182.8 2281.6 8.8274 8.7528 624.3 2561.5 2182.8 2281.6 8.8274 8.7528 624.3 2561.5 2182.8 2281.6 8.8274 8.7528 624.3 2561.5 2182.8 2281.6 8.8274 8.7528 624.3 2182.8 2281.6 8.8284 8.8288 624.6 264.6 264.5 2182.8 2281.6 8.8284 8.8288 624.6 262.6 264.2 2182.8 2281.6 8.8284 8.8288 624.6 262.6 264.2 2182.8 2281.7 8.8284 8.8288 624.6 262.6 264.2 2182.8 2281.7 8.8284 8.8288 624.6 262.6 264.2 2182.8 2281.7 8.8284 8.8288 624.6 262.6 264.2 2182.8 2281.7 8.8284 8.8288 624.6 262.6 264.2 2182.8 2281.7 8.8284 8.8288 624.6 262.6 264.2 2182.8 2281.7 8.8284 8.8288 624.6 262.6 264.2 2182.8 2281.7 8.8284 8.8288 624.6 262.6 2828.2 2182.8 2281.7 8.8284 8.8288 624.6 262.8 2182.7 2182.8 2281.7 8.8284 8.8288 624.6 262.8 2182.7 2182.8 2281.7 8.8284 8.8288 624.8 2281.7 2281.7 2281.7 8.8284 8.8288 624.8 2281.7 2281.7 2281.8 8.8284 8.8288 624.8 2281.7 2281.7 2281.8 2281.8 2281.8 8.8284 8.8288 624.8 2281.7 2281.7 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8 2281.8
8. 55898 619.1   2553.3   2179.8   2209.5   6.4445   6.4477   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.4478   7.44
2.8000 - 760.5 = 2540.5 = 2296.6 = 23200 - 0.0420 = 0.0783

						•	÷.					
TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS		•				
Ø.682Ø	783.5	2622.2	2297.6	2336.9	a a150	~ ~706						
0.6840	786.1	2633.9	2298.6	2337.9	Ø.Ø158 Ø.ØØ22	Ø.Ø786 Ø.Ø786	, «					
Ø.686Ø	788.7	2541.Ø	2299.3	2338.5	-Ø.Ø18Ø	Ø.Ø789						
Ø.688Ø	791.3	2655.9	2300.3	2339.5	Ø.Ø221	Ø.Ø793						
Ø.69ØØ	794.3	2954.Ø	2302.2	2341.5	Ø.Ø531	Ø.Ø819						
Ø.692Ø	797.Ø	2747.Ø	23Ø3.5	2342.8	-Ø.Ø363	Ø.Ø831					•	
Ø.694Ø	799.5	2490.1	23Ø4.Ø	2343.2	-Ø.Ø491	Ø.Ø853						
Ø.696Ø Ø.698Ø	802.1	2557.7	2304.8	2343.8	Ø.Ø134	Ø.Ø855						
Ø.5560 Ø.7ØØØ	804.9 807.9	2790.9	2306.1	2345.2 2347.4	Ø.Ø436	Ø.Ø872						
Ø.7Ø2Ø	81Ø.7	3Ø2Ø.2 2832.5	23Ø8.2 23Ø9.7	2347.4	Ø.Ø395	Ø.Ø887						
0.7040	813.7	2953.3	2311.5	2349.Ø 235Ø.9	-Ø.Ø321 Ø.Ø2Ø9	Ø.Ø896						
Ø.7Ø6Ø	816.8	3124.3	2313.8	2353.5	Ø.Ø281	Ø.Ø9ØØ Ø.Ø9Ø7				•		
Ø.7Ø8Ø	819.8	2957.3	2315.6	2355.4	-Ø.Ø275	Ø.Ø914						
Ø.71ØØ	822.7	2931.5	2317.4	2357.2	-0.0044	Ø.Ø914						
Ø.712Ø	825.6	2931.6	2319.1	2359.Ø	Ø.ØØØØ	Ø.Ø914	*					
Ø.714Ø Ø.716Ø	828.3	2667.2	2320.1	2359.9	-0.0472	Ø.Ø935						
Ø.718Ø	831.1 833.8	277Ø.5	2321.3	2361.2	Ø.Ø19Ø	Ø.Ø938						
Ø.72ØØ	837.2	2711.5 3382.9	2322.4 2325.4	2362.2	-0.0108	Ø.Ø939				•		
Ø.722Ø	840.3	3111.6	2327.5	2365.7 2368.1	Ø.1102 -Ø.Ø418	Ø.1Ø49						
Ø.724Ø	843.4	3139.7	2329.8	237Ø.5	Ø.ØØ45	Ø.1Ø64 Ø.1Ø65						
Ø.726Ø	846.7	3319.7	2332.5	2373.7	Ø.Ø279	Ø.1Ø72						
Ø.728Ø	849.9	3130.9	2334.7	2376.1	-Ø.Ø293	Ø.1079						
Ø.73ØØ	853.1	3242.6	2337.2	2378.9	Ø.Ø175	Ø.1Ø82					•	
Ø.732Ø	856.2	3133.6	2339.4	2381.3	-Ø.Ø171	Ø.1Ø85			_			
Ø.734Ø	859.5	3223.1	2341.8	2384.0	Ø.Ø141	Ø.1Ø86						
Ø.736Ø Ø.738Ø	862.7 866.Ø	3222.8	2344.2	2386.6	Ø.ØØØØ	Ø.1Ø86			•			
Ø.74ØØ	869.2	327Ø.2 3231.4	2346.7	2389.5	Ø.ØØ73	Ø.1Ø87						
Ø.742Ø	872.2	3Ø19.Ø	2349.1 235Ø.9	2392.2 2394.1	-Ø.ØØ6Ø	Ø.1Ø87						
0.7440	875.4	3171.3	2353.1	2396.5	-Ø.Ø34Ø Ø.Ø246	Ø.1Ø97 Ø.11Ø3						
Ø.746Ø	878.6	3266.6	2355.5	2399.3	Ø.Ø143	Ø.11Ø5						
Ø.748Ø	882.Ø	3322.1	2358.1	2402.2	Ø.ØØ84	Ø.11Ø5						
Ø.75ØØ	885.3	3279.6	2360.6	24Ø5.Ø	-0.0064	Ø.11Ø6						
Ø.752Ø	888.3	3037.1	2362.4	2406.9	-Ø.Ø384	Ø.1119						
Ø.754Ø Ø.756Ø	891.6 894.8	3271.2	2364.8	2409.6	Ø.Ø371	Ø.1131						
Ø.758Ø	898.Ø	3238.4 3191.4	2367.1	2412.1	-0.0050	Ø.1131						
Ø.76ØØ	901.2	3201.3	2369.3 2371.4	2414.5 2416.9	-0.0073	Ø.1132						
Ø.762Ø	904.2	3001.2	2373.1	2418.6	Ø.ØØ16 -Ø.Ø323	Ø.1132 Ø.1141						
Ø.764Ø	907.1	2958.8	2374.6	2420.2	-0.0071	Ø.1141						
Ø.766Ø	91.0.4	3290.8	2377.Ø	2422.9	Ø.Ø531	Ø.1166						
Ø.768Ø	913.4	2956.9	2378.5	2424.4	-Ø.Ø534	Ø.1192						
Ø.77ØØ	916.5	3079.8	2380.4	2426.4	Ø.Ø2Ø4	Ø.1195						
Ø.772Ø Ø.774Ø	919.6 922.6	3135.7	2382.3	2428.5	Ø.ØØ9Ø	Ø.1196						
Ø.776Ø	925.5	3008.2 2830.5	2383.9 2385.1	2430.1	-Ø.Ø2Ø8	Ø.12ØØ						
Ø.778Ø	928.5	3043.1	2386.8	2431.3 2433.Ø	-Ø.Ø3Ø4 Ø.Ø362	Ø.12Ø8						
Ø.78ØØ	931.6	3Ø64.4	2388.5	2434.9	Ø.ØØ35	Ø.1219 Ø.122Ø						
Ø.782Ø	934.6	3004.6	239Ø.1	2436.5	-0.0033	Ø.122Ø						
Ø.784Ø	937.3	2761.Ø	2391.Ø	2437.4	-Ø.Ø422	Ø.1236						
Ø.786Ø	940.5	3127.1	2392.9	2439.4	Ø.Ø622	Ø.127Ø						
Ø.788Ø	943.6	3188.6	2394.9	2441.6	Ø.ØØ97	Ø.1271						
Ø.79ØØ	946.5	2813.9	2396.Ø	2442.6	-Ø.Ø624	Ø.13Ø5	•			•	•	
Ø.792Ø Ø.794Ø	949.5	3Ø37.Ø	2397.6	2444.3	0.0381	Ø.1317						
Ø.796Ø	952.4 955.5	2955.1 3021.2	2399.0	2445.7	-Ø.Ø137	Ø.1319						
~,	,,,,	3861.6	2400.6	2/17.3	Ø.Ø111	Ø.132Ø						

TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS									
Ø.798Ø	958.5	3Ø66.2	2402.2	2449.0	Ø.ØØ74	Ø.1321									
Ø.8ØØØ	961.4	2865.4	2403.4		-Ø.Ø339	Ø.1331									
Ø.8Ø2Ø	964.4	2978.2	2404.8	2451.6	Ø.Ø193	Ø.1334	••			•					
Ø.8Ø4Ø	967.5	3134.2	2406.6	2453.6	Ø.Ø255	Ø.1339									
Ø.8Ø6Ø	97Ø.6	3134.2	2408.4	2455.5	Ø.ØØØ. - Ø. Ø2.Ø2	Ø.1339									
Ø.8Ø8Ø Ø.81ØØ	973.6 976.8	2947.2 3222.6	24Ø9.8 2411.8	2456.8 2459.Ø	-Ø.Ø3Ø8 Ø.Ø446	Ø.1348 Ø.1365				•					
Ø.812Ø	979.8	3021.9	2411.8	2460.6	-Ø.Ø321	Ø.1363 Ø.1374									
Ø.814Ø	982.8	2959.8	2414.6	2461.9	-Ø.Ø1Ø4	Ø.1375									
Ø.816Ø	985.8	2996.3	2416.1	2463.4	Ø.ØØ61	Ø.1375				•					
Ø.818Ø	988.7	2902.9	2417.2	2464.5	-Ø.Ø158	Ø.1377									
Ø.82ØØ	991.7	2954.5	2418.6	2465.8	Ø.ØØ88	Ø.1378									
Ø.822Ø	994.8	3159.3	2420.4	2467.8	Ø.Ø335	Ø.1388									
Ø.824Ø Ø.826Ø	997.9 1000.9	3Ø85.4 2968.2	2422.Ø 2423.3	2469.5 247Ø.8	-Ø.Ø118 -Ø.Ø194	Ø.1389 Ø.1392						•			
Ø.828Ø	1000.9	3040.2	2423.3	2472.3	Ø.Ø12Ø	Ø.1393									
Ø.83ØØ	1006.9	2992.7	2426.2	2473.7	-0.0079	Ø.1394			·						
Ø.832Ø	1010.0	3122.4	2427.8	2475.5	Ø.Ø212	Ø.1398									
Ø.834Ø	1013.2	3138.8	2429.5	2477.3	Ø.ØØ26	Ø.1398									
Ø.836Ø	1016.2	3004.6	2430.9	2478.7	-Ø.Ø219	Ø.14Ø2									
Ø.838Ø	1019.0	2879.9	2432.0	2479.7	-Ø.Ø212	Ø.14Ø6									
Ø.84ØØ Ø.842Ø	1021.9 1024.9	289Ø.9 2948.1	2433.1 2434.3	248Ø.8 2482.Ø	Ø.ØØ19 Ø.ØØ98	Ø.14Ø6 Ø.14Ø7									
Ø.844Ø	1027.9	3048.4	24358	2482.5	Ø.Ø167	Ø.14Ø9									
Ø.846Ø	1030.9	3020.1	2437.1	2484.9	-0.0047	Ø.14Ø9									
Ø.848Ø	1033.9	2974.8	2438.4	2486.1	-0.0076	Ø.141Ø									
Ø.85ØØ	1036.9	2932.7	2439.6	2487.3	-0.0071	Ø.141Ø			,						
Ø.852Ø	1Ø39.9	3045.4	2441.0	2488.7	Ø.Ø189	Ø.1413									
Ø.854Ø	1042.9	3018.7	2442.3	2490.1	-0.0044	Ø.1413									
Ø.856Ø	1046.0	3051.4	2443.8	2491.6	0.0054	Ø.1414			•				•		
Ø.858Ø Ø.86ØØ	1049.0 1052.0	3Ø18.5 3ØØ3.5	2445.1 2446.4	2492.9 2494.2	-Ø.ØØ54 -Ø.ØØ25	Ø.1414 Ø.1414									
Ø.862Ø	1054.9	2939.9	2447.5	2495.4	-0.0107	Ø.1415									
Ø.864Ø	1058.0	3Ø5Ø.Ø	2448.9	2496.8	Ø.Ø184	Ø.1418									
Ø.866Ø	1061.1	3149.3	245Ø.6	2498.5	Ø.Ø16Ø	Ø.142Ø									
Ø.868Ø	1064.2	3092.2	2452.Ø	25ØØ.Ø	-Ø.ØØ82	Ø.1421									
Ø.87ØØ	1867.4	3138.8	2453.6	2501.7	Ø.ØØ75	Ø.1421									
Ø.872Ø Ø.874Ø	1070.G 1073.7	3232.5 3Ø93.9	2455.4 2456.9	25Ø3.6 25Ø5.1	Ø.Ø147 -Ø.Ø219	Ø.1423 Ø.1427									
Ø.876Ø	1076.7	3002.0	2458.1	2506.4	-Ø.Ø151	Ø.1429									
Ø.878Ø	1079.8	3068.4	2459.5	2507.8	Ø.Ø1Ø9	Ø.143Ø									
Ø.88ØØ	1082.9	3093.8	246Ø.9	25Ø9.3	0.0041	Ø.143Ø									
Ø.882Ø	1085.9	3068.5	2462.3	251Ø.7	-0.0041	Ø.143Ø					•				
Ø.884Ø	1089.1	3128.2	2463.8	2512.2	Ø.ØØ96	Ø.1431									
Ø.886Ø Ø.888Ø	1Ø92.1 1Ø95.Ø	3003.3 2931.4	2465.Ø 2466.1	2513.5 2514.5	-0.0204 -0.0121	Ø.1435 Ø.1436									
Ø.89ØØ	1898.1	3105.9	2467.5	2514.5 2516.Ø	Ø.Ø289	Ø.1438									
Ø.892Ø	1101.3	3182.2	2469.1	2517.7	Ø.Ø121	Ø.1444									
0.8940	1104.3	3068.3	2470.5	2519.0	-Ø.Ø182	Ø.1447								·	
Ø.896Ø	1107.5	3172.Ø	2472.Ø	252Ø.7	Ø.Ø166	Ø.145Ø									
Ø.898Ø	1110.7	3158.5	2473.6	2522.3	-Ø.ØØ21	Ø.145Ø									
Ø.9ØØØ	1113.8	3092.8	2474.9	2523.7	-0.0105	Ø.1451									
Ø.9Ø2Ø	1116.8	3041.1	2476.2	2524.9	-Ø.ØØ84 Ø.Ø113	Ø.1451 Ø.1452									
Ø.9Ø4Ø Ø.9Ø6Ø	1119.9 1123.1	311Ø.4 314Ø.9	2477.6 2479.1	2526.4 2527.9	Ø.Ø113 Ø.ØØ49	Ø.1452 Ø.1452									
Ø.9Ø8Ø	1126.1	3021.2	2480.3	2529.1	-Ø.Ø194	Ø.1452 Ø.1456									
Ø.91ØØ		3110.8	2481.6	2524.5	Ø.Ø146	Ø.1458									
Ø.912Ø		3162.0	2483.1	2 1	0.0082	Ø.1458		4							

TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS				
Ø.914Ø	1135.3	2979.Ø	2484.2	2533.1	-Ø.Ø298	Ø.1466				
Ø.916Ø Ø.918Ø	1138.4 1141.5	3050.6	2485.5	2534.4	Ø.Ø119	Ø.1467				1
Ø.92ØØ	1141.5	315Ø.9 3137.6	2486.9 2488.3	2535.9 2537.4	Ø.Ø162	Ø.1469	. •			
Ø.922Ø	1147.8	3084.5	2489.6	2538.7	-Ø.ØØ21 -Ø.ØØ85	Ø.1469 Ø.147Ø	•••			
0.9240	115Ø.9	3182.8	2491.1	2540.2	Ø.Ø157	Ø.1472				
Ø.926Ø	1154.0	3103.9	2492.4	2541.6	-Ø.Ø125	Ø.1473				
Ø.928Ø Ø.93ØØ	1157.1 1160.4	3104.3	2493.8	2542.9	Ø.ØØØ1	Ø.1473				
Ø.932Ø	1163.4	3215.4 3079.0	2495.3 2496.6	2544.6	Ø.Ø176 -Ø.Ø217	Ø.1476				
Ø.934Ø	1166.5	3104.3	2497.9	2545.8 2547.2	Ø.ØØ41	Ø.148Ø Ø.148Ø	-			
Ø.936Ø	1169.8	3284.2	2499.5	2549.Ø	Ø.Ø282	Ø.1487				
Ø.938Ø	1173.Ø 1176.1	3145.4	25ØØ.9	255Ø.4	-0.0216	Ø.1491				
Ø.942Ø	1179.1	31Ø1.6 3Ø45.4	25Ø2.2 25Ø3.4	2551.7 2552.8	-Ø.ØØ7Ø	Ø.1491				
0.9400 0.9420 0.9440	1182.1	3014.8	2504.4	2553.9	-0.0091 -0.0051	Ø.1492 Ø.1492				
Ø.946Ø Ø.948Ø	1185.2	3079.1	2505.7	2555.1	Ø.Ø1Ø6	Ø.1493				
Ø.95ØØ	1188.2 1191.2	3Ø32.3 2939.6	2506.8	2556.2	-Ø.ØØ77	Ø.1493				
Ø.952Ø	1194.0	2799.4	25Ø7.7 25Ø8.3	2557.1 2557.6	-Ø.Ø155 -Ø.Ø244	Ø.1496 Ø.15Ø1			•	
Ø.954Ø	1196.9	2932.8	2509.2	2558.5	Ø.Ø233	Ø.15Ø5				
Ø.956Ø Ø.958Ø	1199.9	2941.1	251Ø.1	2558.5 2559.3	Ø.ØØ14	Ø.15Ø5				
Ø.96ØØ	1202.5 1205.4	2678.7 2842.9	251Ø.4 2511.1	2559.6	-Ø.Ø467	Ø.1524				
Ø.962Ø	1208.2	2859.7	2511.1	256Ø.2 256Ø.9	Ø.Ø297 Ø.ØØ29	Ø.1531 Ø.1531				
Ø.964Ø	1211.0	2788.1	2512.4	2561.4	-Ø.Ø127	Ø.1533			•	
Ø.966Ø Ø.968Ø	1213.8	2755.2	2512.9	2561.8	-0.0059	Ø.1533				
Ø.97ØØ	1216.6 1219.2	285Ø.7 26Ø8.3	2513.6 2513.8	2562.4 2562.5	Ø.Ø171	Ø.1535				
Ø.972Ø	1222.1	2900.4	2514.6	2563.3	-Ø.Ø444 Ø.Ø53Ø	Ø.1552 Ø.1576				
Ø.974Ø	1224.9	2783.1	2515.2	2563.7	-0.0206	Ø.1579				
Ø.976Ø Ø.978Ø	1227.6	2665.6	2515.5	2563.9 2564.3	-Ø.Ø216	Ø.1583				
Ø.98ØØ	123Ø.3 1233.Ø	2724.2 2731.2	2515.9 2516.3	2564.3 2564.6	Ø.Ø1Ø9 Ø.ØØ13	Ø.1584				
Ø.982Ø	1235.8	2712.4	2516.7	2564.9	-Ø.ØØ35	Ø.1584 Ø.1585				
Ø.984Ø	1238.5	2692.8	2517.1	2564.9 2565.2 2565.5	-Ø.ØØ36	Ø.1585				
Ø.986Ø	1241.2 1244.Ø	2731.1 2793.4	2517.5 2518.1	2565.5	Ø.ØØ71	Ø.1585				
Ø.988Ø Ø.99ØØ	1246.8	2786.3	2518.6	2566.Ø 2566.5	Ø.Ø113 -Ø.ØØ13	Ø.1586 Ø.1586				
Ø.992Ø	1249.5	2752.6	2519.1	2566.9	-0.0061	Ø.1586				
Ø.994Ø Ø.996Ø	1252.3 1255.1	277.0.1	2519.6	2567.3	Ø.ØØ32	Ø.1587		•		
Ø.998Ø	1257.8	2843.8 2674.2	252Ø.3 252Ø.6	2567.9 2568.1	Ø.Ø131 - Ø. Ø207	Ø.1588		•		
1.0000	. 126Ø.7	2854.3	2521.2	2568.7	-Ø.Ø3Ø7 Ø.Ø326	Ø.1596 Ø.1605				
1.0020	1263.4	2749.9	2521.7	2569.1	-Ø.Ø186	Ø.16Ø8				
1.0040 1.0060	1266.1 1269.Ø	2729.4	2522.1	2569.4	-Ø.ØØ37	Ø.16Ø8				
1.0080	1271.7	2854.Ø 2749.2	2522.8 2523.2	257Ø.Ø 257Ø.4	Ø.Ø223 -Ø.Ø187	Ø.1612 Ø.1615				
1.0100	1274.4	2642.9	2523.4	257Ø.5	-Ø.Ø197	Ø.1618				
1.0120	1276.9	2514.3	2523.4	257Ø.4	-Ø.Ø249	Ø.1623				
1.Ø14Ø 1.Ø16Ø	1279.6 1282.3	2733.2	2523.8	257Ø.8	0.0417	Ø.1638				
1.0180	1285.1	27Ø9.6 2773.Ø	2524.2 2524.7	2571.Ø 2571.4	-0.0043	Ø.1638				
1.0200	1287.8	2732.3	2525.1	2571.4	Ø.Ø116 -Ø.ØØ74	Ø.1639 Ø.164Ø				
1.0220	129,0.4	2558.1	2525.2	2571.7	-Ø.Ø329	Ø.1649				
1.0240 1.0260	1293.2 1295.9	2755.3	2525.6	2572.1	Ø.Ø371	Ø.166Ø				
1.0280	1298.5	2712.7 2622.7	2526.Ø 2526.2	2572.4 25 <u>72</u> .5	-Ø.ØØ78	Ø.1661				
		/	200.2	2 3 . 3	-Ø.Ø169	Ø.1663				

1.8328 1381.9 2792.8 282.3 2872.6 -8.8813 8.1672 1.8328 1381.9 2792.8 2828.9 2873.8 -8.8928 8.1673 1.8328 1382.9 2792.8 2828.9 2873.8 8.8928 8.1673 1.8348 1386.6 2746.9 2827.3 2873.2 8.8928 1.8348 1386.6 2746.9 2827.3 2873.2 8.8928 1.8348 1314.5 2718.9 2827.7 2873.2 8.8914.8 8.1673 1.8488 1314.5 2718.9 2827.7 2873.2 8.8914.8 8.1679 1.8484 1311.1 2618.2 2718.9 2827.7 2873.6 -8.8989 1.8484 1311.1 2824.9 2835.7 2828.2 2873.6 -8.8989 1.8588 1322.4 2473.5 2828.3 2828.2 2873.7 -8.8917 8.1788 1.8588 1324.9 2835.7 2828.4 2873.7 -8.8917 8.1788 1.8588 1324.6 2828.6 2828.4 2873.7 -8.8917 8.1788 1.8588 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8588 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.7 -8.8917 8.1788 1.8688 1334.9 2411.7 2828.4 2873.8 8.8938 8.1786 1.8788 1348.2 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1 2828.1	TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS		•			
1.8328 1383.9 2792.8 2256.9 2573.8 8.8325 8.1672 1.8368 1386.6 274.9 2527.3 2573.2 8.8459 8.1673 1.8368 1389.2 2587.7 2527.3 2573.2 8.8459 8.1673 1.8368 1389.2 2587.7 2527.3 2573.2 8.8459 8.1673 1.8428 1317.1 2688.2 2527.4 2573.3 8.8459 8.1673 1.8428 1317.1 2688.2 2527.4 2573.6 8.8288 9.1781 1.8428 1317.1 2688.2 2527.4 2573.6 8.8288 9.1781 1.8428 1312.3 2534.1 2528.2 2573.8 8.8288 9.1781 1.8468 1322.3 2534.1 2528.2 2573.8 8.8289 9.1782 1.8588 1327.4 2473.6 5558.4 2573.6 8.8289 9.1782 1.8588 1332.5 2551.3 2528.4 2573.6 8.8289 9.1782 1.8588 1332.5 2551.3 2528.4 2573.6 8.8282 8.1744 1.8588 1332.5 2575.6 2528.4 2573.7 8.8282 8.1744 1.8588 1334.9 2413.7 2528.2 2573.4 8.8287 8.1744 1.8588 1334.9 2413.7 2528.2 2573.4 8.8287 8.1744 1.8588 1334.9 2413.7 2528.2 2573.4 8.8287 8.1744 1.8588 1334.9 2413.7 2528.2 2573.4 8.8287 8.1744 1.8588 1334.9 2413.7 2528.6 2573.4 8.8277 8.1728 1.8588 1358.3 2575.6 2528.4 2573.7 8.8287 8.1744 1.8588 1358.3 2575.6 2528.4 2573.7 8.8287 8.1744 1.8588 1358.3 2575.6 2528.4 2573.7 8.8287 8.1728 1.8588 1358.3 2575.6 2528.6 2573.4 8.8277 8.1728 1.8588 1358.3 2575.6 2581.1 2528.6 2573.4 8.8277 8.1728 1.8588 1358.3 2585.6 2573.4 9.8277 8.1728 1.8588 1358.3 2585.6 2587.4 9.8277 8.1728 1.8588 1358.3 2585.6 2587.4 9.8277 8.1728 1.8688 1358.3 2585.6 2587.4 9.8277 8.8141 8.1758 1.8688 1358.3 2586.6 2577.4 9.8277.2 8.8141 8.1758 1.8788 1358.3 2496.1 2528.6 2577.4 9.8141 8.1758 1.8788 1358.3 2496.1 2528.6 2577.4 9.8142 8.1779 1.8788 1358.3 2496.1 2528.6 2577.4 9.8397 8.11791 1.8788 1358.3 2496.1 2528.5 2577.4 9.8397 8.11791 1.8788 1358.3 2496.1 2528.5 2577.4 9.8397 8.11791 1.8788 1358.3 2496.1 2528.5 2577.4 9.8397 8.8183 8.1791 1.8788 1358.3 2496.1 2528.6 2577.4 9.8397 8.8183 8.11791 1.8788 1358.3 2496.1 2528.6 2577.4 9.8397 8.8183 8.11791 1.8788 1358.3 2496.1 2528.3 2528.6 2577.3 9.8182 8.11791 1.8788 1358.3 2496.1 2528.6 2577.9 2578.8 9.8398 8.11791 1.8788 1358.3 2496.1 2528.3 2557.6 2577.4 9.8397 8.8399 8.11791 1.8888 1387.4 2449.2 2458.8 2577.9 2588.8 2577.9 8.8399 8.11791 1.8888 1389.3 3448.9 2448.2	1.0300	1301.1	2616.1	2526 3	2572 6	-a aa12	α 1662	-				•
1.8348 1389.2 257.7 2527.3 2573.4 -8.8978 3.1573 1.8348 1389.2 257.7 2527.4 2573.5 -8.8458 3.1593 1.8348 1311.5 2579.7 2527.4 2573.5 -8.8458 3.1593 1.8348 1311.5 2579.7 2527.4 2573.5 -8.8458 3.1593 1.8348 1311.6 2579.7 2527.4 2573.5 -8.8458 3.1593 1.8448 1319.6 2562.6 2528.8 2577.9 2573.6 -8.8258 3.1593 1.8448 1319.6 2562.6 2528.8 2577.9 2573.6 -8.8258 3.1593 1.8488 1322.3 2541.1 2528.4 2573.6 -8.8258 3.1593 1.8488 1324.9 2635.7 2528.4 2573.6 -8.8269 3.1781 1.8458 1332.5 2551.3 2528.4 2573.6 -8.8269 3.1782 1.8558 1332.5 2551.3 2528.4 2573.6 -8.8269 3.1784 1.8568 1332.5 2551.3 2528.2 2573.6 -8.82617 3.1714 1.8568 1334.9 241.7 2528.2 2573.6 -8.82617 3.1714 1.8628 1345.2 2554.6 2528.6 2573.6 -8.82617 3.1714 1.8628 1345.2 2554.6 2528.6 2573.6 -8.82617 3.1714 1.8628 1345.2 2554.6 2528.6 2573.6 -8.82617 3.1714 1.8628 1345.2 2554.6 2528.6 2573.6 -8.82617 3.1714 1.8628 1345.7 2554.6 2528.6 2573.6 -8.82617 3.1714 1.8628 1345.7 2554.6 2528.6 2573.6 -8.82617 3.1714 1.8628 1355.3 2451.1 2528.6 2573.6 -8.82617 3.1714 1.8628 1355.3 2451.1 2528.6 2573.3 8.8265 3.1751 1.8628 1355.3 2451.1 2528.6 2573.3 8.8265 3.1751 1.8628 1355.3 2451.8 2528.6 2573.4 8.83186 3.1751 1.8628 1355.3 2451.8 2528.6 2573.8 8.8265 3.1751 1.8628 1355.3 2451.8 2528.6 2573.3 8.8265 3.1751 1.8628 1358.3 2538.1 2528.6 2573.3 8.8265 3.1751 1.8628 1358.3 2538.1 2528.6 2573.3 8.8265 3.1751 1.8628 1358.3 2538.1 2528.6 2573.3 8.8265 3.1751 1.8628 1358.3 2538.3 2538.3 2528.5 2573.3 8.8265 3.1751 1.8628 1358.3 2538.3 2538.3 2528.5 2573.3 8.8265 3.1751 1.8628 1358.3 2538.3 2538.3 2528.5 2573.3 8.8265 3.1751 1.8628 1358.3 2538.3 2538.3 2528.5 2573.3 8.8265 3.1751 1.8628 1358.3 2538.3 2538.3 2528.5 2573.3 8.8265 3.1751 1.8628 1358.3 2538.3 2538.3 2538.3 2573.3 8.8265 3.1751 1.8628 1358.3 2538.3 2538.3 2538.3 2573.3 8.8265 3.1751 1.8628 1358.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 2538.3 253												
1.8368 1389, 2 2587, 7 2527, 3 2573, 2 -8,8459 8,1598 1.8428 1311, 7 2579, 7 2527, 4 2573, 3 8,8145 8,1698 1.8428 1311, 7 2718, 2 2527, 7 2527, 4 2573, 5 8,8263 8,1691 1.8428 1311, 6 2526, 5 2528, 8 2573, 5 8,8263 8,1691 1.8428 1319, 6 2526, 5 2528, 8 2573, 5 8,8263 8,1691 1.8428 1312, 3 2534, 1 2528, 2 2573, 8 8,8263 8,1691 1.8428 1312, 3 2534, 1 2528, 2 2573, 8 8,8263 8,1791 1.8428 1312, 9 2527, 7 2528, 8 2573, 5 8,8299 8,1782 1.8528 1312, 9 2573, 7 2528, 4 2573, 7 -8,8317 8,1714 1.8528 1312, 5 251, 3 2528, 4 2573, 7 -8,8317 8,1714 1.8528 1312, 5 251, 3 2528, 4 2573, 6 -8,8653 8,1782 1.8528 1312, 5 251, 3 2528, 4 2573, 6 -8,8553 8,1744 1.8528 1312, 5 251, 3 2528, 4 2573, 6 -8,8553 8,1744 1.8528 1312, 5 251, 3 2528, 4 2573, 6 -8,8553 8,1744 1.8528 1312, 5 251, 3 2528, 4 2573, 6 -8,8553 8,1744 1.8528 1312, 5 251, 3 2528, 6 2573, 6 -8,8553 8,1744 1.8528 1312, 5 251, 3 2528, 6 2573, 6 -8,8553 8,1744 1.8528 1312, 7 2581, 1 2528, 6 2573, 6 -8,8553 8,1744 1.8528 1312, 7 2581, 1 2528, 6 2573, 6 -8,8553 8,1744 1.8528 1312, 7 2581, 1 2528, 6 2573, 2 -8,8266 8,1758 1.8628 13147, 2 2581, 4 2528, 6 2573, 2 -8,8266 8,1758 1.8728 1355, 3 296, 1 2528, 6 2573, 2 -8,8266 8,1758 1.8728 1355, 3 296, 1 2528, 6 2573, 6 -8,8353 8,1799 1.8728 1355, 3 296, 1 2528, 6 2573, 2 -8,8334 8,1799 1.8728 1355, 3 2496, 1 2528, 6 2573, 2 -8,8334 8,1799 1.8728 1357, 8 2585, 8 2583, 3 2572, 9 8,8132 8,1799 1.8728 1357, 8 2585, 8 2583, 3 2572, 9 8,8132 8,1799 1.8728 1357, 8 2585, 8 2583, 3 2572, 9 8,8334 8,1799 1.8728 1357, 8 2585, 8 2583, 3 2572, 9 8,8334 8,1799 1.8728 1357, 8 2585, 8 2583, 3 2572, 9 8,8334 8,1799 1.8728 1357, 8 2585, 8 2583, 3 2572, 9 8,8334 8,1799 1.8728 1357, 8 2585, 8 2583, 3 2572, 9 8,8334 8,1799 1.8728 1357, 8 2583, 8 2573, 8 2573, 9 8,8821 8,1833 1.8728 1357, 8 2583, 8 2573, 9 8,8821 8,1833 1.8738 1358 1358 1358 1358 1358 1358 1358 13			2748 9	2527 3								Tv.
1.8388 1311.7 2579.7 2527.4 2573.3 8.8142 3 1692 1.8488 1314.5 2718.9 2527.7 2527.3 5 8.8262 8 1697 1.8448 1317.1 2688.2 527.7 2573.6 8.8262 8 17881 1.8488 1324.9 2635.7 2573.6 8.8262 8 1.7881 1.8488 1324.9 2635.7 2523.8 2573.6 8.8262 8 1.7881 1.8488 1324.9 2635.7 2523.8 2573.6 8.8262 8 1.7881 1.8588 1324.9 2635.7 2528.2 2573.6 8.8262 8 1.7881 1.8588 1338.8 2575.6 5 2524.4 2573.9 8 8.8262 8 1.714 1.8588 1338.8 2575.6 2524.4 2573.9 8 8.8262 8 1.714 1.8588 1337.6 2686.8 2528.2 2573.6 8 8.8262 8 1.714 1.8588 1337.6 2686.8 2528.2 2573.6 8 8.8262 8 1.744 1.8588 1337.6 2686.8 2528.4 2573.6 8 8.8262 8 1.744 1.8588 1337.3 2638.1 2528.2 2573.6 8 8.8262 8 1.744 1.8688 1348.2 2572.8 2528.4 2573.6 8 8.8262 8 1.744 1.8688 1348.2 2573.8 2528.4 2573.6 8 8.8262 8 1.744 1.8688 1348.2 2578.8 2528.6 2573.6 8 8.8262 8 1.744 1.8688 1348.2 2578.8 2528.6 2573.6 8 8.8262 8 1.744 1.8688 1348.2 2586.1 2528.6 2573.6 8 8.8262 8 1.754 1.8688 1348.2 2586.1 2528.6 2573.6 8 8.8262 8 1.754 1.8688 1348.2 2586.1 2528.6 2573.8 8 8.8262 8 1.754 1.8688 1348.2 2586.1 2528.6 2573.8 8 8.8365 8 1.776 1.8688 1358.3 2638.1 2528.5 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.1 2528.5 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.1 2528.5 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.1 2528.5 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.2 2586.2 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.2 2586.2 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.2 2586.2 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.2 2586.2 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.2 2586.2 2573.8 8 8.8367 8 1.776 1.8788 1358.2 2586.2 2586.2 2577.2 8 8.8367 8 1.8368 1.8788 1368.2 2486.2 2586.2 2577.2 8 8.8367 8 1.8368 1.8888 1368.2 2486.2 2586.2 2577.2 8 8.8367 8 1.8368 1.8988 1368.2 2486.2 2586.2 2577.8 8 8.8367 8 1.8368 1.8988 1368.2 2486.2 2586.2 2578.8 8 8.8368 8 1.776 1.8988 1368.2 2486.2 2586.2 2578.8 8 8.8368 8 1.8368 1.8988 1388.8 2484.2 1.8268.2 2586.2 2578.8 8 8.8368 8 1.8368 1.8988 1388.8 2484.2 1.8268.2 2586.2 2578.8 8 8.8368 8 1.8368 1.8988 1388.8 2484.2 1.8268.2 2586.2 2578.8 8 8.8368 8 1.8368				2527.3				.*				
1.8488 1317.1	1.0380			2527.3	2573.2			• "				
1.8428 1317.1 2688.2 2227.9 2573.6 -8.8289 8.1781 1.8468 1319.6 2582.6 2582.6 2573.6 -8.8289 8.1781 1.8468 1322.3 2634.1 2520.2 2573.8 8.8899 8.1782 1.8468 1322.3 2634.1 2520.2 2573.9 8.8899 8.1782 1.8528 1322.3 2634.1 2520.2 2573.9 8.8899 8.1782 1.8528 1322.3 2634.1 2520.2 2573.9 8.8899 8.1782 1.8528 1338.8 2575.6 2528.4 2573.7 8.8899 8.1782 1.8528 1338.8 2575.6 2528.4 2573.6 -8.8874 8.1714 1.8568 1334.9 2413.7 2528.2 2573.4 -8.8277 8.1784 1.8568 1334.9 2413.7 2528.2 2573.4 -8.8277 8.1728 1.8568 1334.9 2413.7 2528.2 2573.6 -8.8874 8.1744 1.8568 134.7 2528.2 2573.6 -8.8874 8.1744 1.8568 134.7 2 2558.5 2528.4 2573.6 -8.8874 8.1744 1.8568 134.7 2 2558.5 2573.6 -8.8874 8.1744 1.8568 134.7 2 258.8 2 2573.4 -8.8277 8.1744 1.8568 134.7 2 258.8 2 258.8 2573.4 -8.8277 8.1744 1.8568 134.7 2 258.8 2 258.8 2573.4 -8.8277 8.1758 1.8668 134.7 2 258.8 2 258.8 2573.4 -8.8277 8.1758 1.8668 134.7 2 2451.4 2528.6 2573.4 -8.8277 8.1758 1.8668 134.7 2 2451.4 2528.6 2573.4 -8.8278 8.1758 1.8768 1358.3 2 258.1 2528.6 2573.4 -8.8278 8.1758 1.8768 1358.3 2 258.1 2528.6 2573.4 -8.8288 8.1758 1.8768 1358.3 2 2488.8 2528.2 2572.4 -8.8288 8.1758 1.8768 1358.3 2 2488.8 2528.2 2572.4 -8.8288 8.1758 1.8768 1358.3 2 2488.8 2528.2 2572.4 -8.8288 8.1758 1.8768 1368.2 2488.8 2528.2 2572.4 -8.8288 8.1798 1.8788 1358.3 2 2488.8 2528.2 2572.4 -8.8288 8.1798 1.8888 1378.2 2488.8 2528.2 2572.4 -8.8288 8.1798 1.8888 1378.2 2455.1 2528.8 2528.5 2572.9 8.8318 8.1898 1.8898 1378.2 2455.1 2528.8 2528.5 2572.9 8.8318 8.1898 1.8898 1378.2 2456.2 2456.2 2577.8 2577.4 8.8888 8.1898 1.8898 1378.2 2456.2 2456.2 2577.6 2577.4 8.8888 8.1898 1.8998 1389.4 2464.8 2528.6 2577.2 2577.6 8.8888 8.1898 1.8998 1389.4 2464.8 2528.6 2577.2 2577.6 8.8888 8.1898 1.8998 1389.4 2464.8 2528.6 2577.8 2577.8 8.8888 8.1898 1.8998 1389.4 2464.8 2528.6 2577.8 2577.8 8.8888 8.1898 1.8998 1389.4 2464.8 2528.6 2527.7 2577.6 8.8888 8.1898 1.8998 1389.4 2464.8 2528.6 2527.7 2577.6 8.8888 8.8888 8.1899 1.8998 1389.8 1847 1.8988 1389.8 2464.8 2528.6 2527.7 2577.6 8.8888 8.8888 8.8888 8.888			2710 0	2527.4		0.0142		•				
1.8448 1319.6 2582.6 2528.8 2573.6 -8.8849 8.1782 1.8468 1322.3 2534.1 2528.2 2573.8 8.8899 9.1782 1.8468 1324.9 2635.7 2528.4 2573.7 -8.8317 8.1782 1.8588 1324.9 2635.7 2528.4 2573.7 -8.8317 8.1718 1.8588 1324.5 255.6 258.4 2573.7 -8.8317 8.1718 1.8588 1334.9 2431.7 2528.2 2573.6 -8.8277 8.1782 1.8588 1334.9 2431.7 2528.2 2573.6 -8.8277 8.1782 1.8588 1334.9 2431.7 2528.2 2573.6 -8.8277 8.1788 1.8588 1334.9 2431.7 2528.6 2573.6 -8.8277 8.1788 1.8588 1334.9 2431.7 2528.6 2573.6 -8.8277 8.1788 1.8588 1334.9 2431.7 2528.6 2573.6 -8.8277 8.1788 1.8588 1334.9 2431.7 2528.6 2573.6 -8.8277 8.1788 1.8588 1334.9 2431.7 2528.6 2573.6 -8.8278 8.1784 1.8588 1334.9 2431.7 2528.6 2573.6 -8.8278 8.1784 1.8588 1334.9 2431.7 2528.6 2573.8 -8.8398 8.1784 1.8588 1342.7 2581.1 2528.6 2573.8 -8.8398 8.1784 1.8588 1352.8 2436.1 2528.6 2573.8 -8.8398 8.1784 1.8588 1352.8 2436.1 2528.6 2573.3 -8.8398 8.1784 1.8688 1352.8 2436.1 2528.6 2573.3 -8.8398 8.1784 1.8788 1352.8 2436.1 2528.6 2573.3 -8.8398 8.1788 1.8788 1352.8 2436.1 2528.5 2573.8 -8.8398 8.1788 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1788 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1788 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1788 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1788 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1788 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1788 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1838 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1838 1.8788 1352.8 2436.1 2528.5 2573.3 -8.8398 8.1838 1.8788 1352.8 2436.1 2528.6 2573.3 -8.8398 8.1838 1.8788 1362.8 2436.1 2528.6 2573.3 -8.8398 8.1838 1.8788 1362.8 2436.1 2528.6 2573.3 -8.8398 8.1838 1.8788 1362.8 2436.1 2528.6 2573.3 -8.8398 8.1838 1.8788 1362.8 2436.1 2528.6 2573.3 -8.8398 8.1838 1.8888 1375.1 2444.4 2552.1 2572.2 -8.8398 8.1838 1.8988 1375.1 2444.4 2552.1 2572.2 -8.8398 8.1838 1.8988 1375.1 2444.4 2552.1 2572.2 2578.7 2578.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 2589.8 258	1 0120			2527.7				•				
1.8468 1322.3 2634.1 2528.2 2773.8 8.8898 8.1782 1.8688 1327.4 2473.5 2528.4 2573.7 8.88983 8.1782 1.8688 1327.4 2473.5 2528.3 2573.7 8.89883 8.1782 1.8688 1327.4 2473.5 2528.3 2573.7 8.89883 8.1784 1.8588 1327.8 2413.7 2528.2 2573.6 8.8282 8.1714 1.8588 1337.6 2666.8 2528.5 2573.6 4.8277 8.1718 1.8588 1337.6 2666.8 2528.5 2573.4 4.8.8148 1.8588 1337.6 2566.8 2528.5 2573.4 4.8.8148 1.8588 1347.7 2528.2 2572.8 2528.5 2573.4 4.8.8148 1.8588 1347.7 2528.2 2573.8 2528.6 2573.4 4.8.8148 8.1758 1.8688 1347.7 2451.1 2528.5 2573.4 4.8.8148 8.1758 1.8688 1347.7 2451.1 2528.5 2573.4 4.8.8148 8.1758 1.8688 1347.7 2451.1 2528.6 2573.4 4.8.8148 8.1758 1.8688 1347.7 2451.1 2528.6 2573.4 4.8.8148 8.1758 1.8688 1347.7 2451.1 2528.6 2573.4 4.8.8148 8.1758 1.8688 1352.8 2436.1 2528.6 2573.4 4.8.8148 8.1758 1.8788 1352.8 2436.1 2528.6 2573.4 8.8357 8.1754 1.8788 1352.8 2436.1 2528.6 2573.4 8.8357 8.1754 1.8788 1352.8 2436.1 2528.6 2573.8 8.8122 8.1779 1.8788 1352.8 2436.1 2528.6 2573.8 8.8122 8.1779 1.8788 1352.8 2436.1 2528.6 2573.8 8.8122 8.1779 1.8788 1352.8 2436.1 2528.6 2573.8 8.8122 8.1779 1.8788 1352.8 2436.1 2528.6 2573.8 8.8122 8.1779 1.8788 1352.8 2436.1 2528.6 2573.8 8.8122 8.1779 1.8788 1352.8 2436.1 2528.6 2573.8 8.8122 8.1779 1.8788 1352.8 2436.1 2528.6 2528.2 2572.6 8.8354 8.1813 1.8788 1352.8 2436.1 2528.6 2528.1 2572.6 8.8354 8.1813 1.8788 1352.8 2436.1 2528.6 2528.1 2572.6 8.8354 8.1813 1.8788 1352.8 2436.1 2528.6 2528.1 2572.6 8.8354 8.1813 1.8788 1352.8 2436.1 2528.6 2528.1 2572.6 8.8354 8.1813 1.8888 1365.3 2624.8 2528.1 2572.6 8.8354 8.1813 1.8988 1377.6 2462.1 2527.6 2528.1 2572.6 8.8354 8.1813 1.8988 1377.6 2462.1 2527.6 2528.1 2572.6 8.8354 8.1813 1.8988 1377.6 2462.1 2527.6 2528.1 2572.6 8.8354 8.1813 1.8988 1377.6 2462.1 2527.6 2528.1 2572.6 8.8354 8.1813 1.8988 1377.6 2462.1 2527.6 2528.1 2572.6 8.8354 8.1814 1.8988 1377.6 2462.1 2527.6 2528.1 2572.6 8.8354 8.1814 1.8988 1377.6 2462.1 2527.6 2528.1 2572.6 8.8354 8.1814 1.8988 1377.6 2462.1 2527.6 2528.8 8.8354 8.1814 1.8988 1387.4 2258.3 2528.4 2528.3			2500.4	2527.9								
1.8688 1327.4 273.5 2528.4 2573.7 8.8.282 8.1718 1.8528 1337.8 2575.6 2528.4 2573.7 8.8.282 8.1714 1.8528 1338.8 2575.6 2528.4 2573.7 8.8.282 8.1714 1.8528 1338.8 2575.6 2528.4 2573.6 8.8.2874 8.1714 1.8528 1338.8 2575.8 2528.5 2573.6 8.8.2874 8.1714 1.8528 1337.8 2686.8 2528.5 2573.6 8.8.2874 8.1714 1.8528 1337.6 2686.8 2528.5 2573.6 8.8.2874 8.1714 1.8528 1347.2 2581.1 2528.6 2573.6 8.8.2874 8.1744 1.8528 1347.2 2581.1 2528.5 2573.6 8.8.2874 8.1744 1.8528 1342.7 2581.1 2528.5 2573.4 8.8.1818 1.8528 1342.7 2581.1 2528.6 2573.4 8.8.1818 1.8528 1342.7 2581.1 2528.6 2573.4 8.8.1818 1.8528 1342.7 2581.1 2528.6 2573.4 8.8.2818 1.8528 1353.3 2496.1 2528.6 2573.3 8.8.2829 8.1751 1.8528 1353.3 2496.1 2528.6 2573.3 8.8.2829 8.1751 1.8728 1355.3 2496.1 2528.5 2573.8 8.8.2829 8.1751 1.8728 1357.8 2565.8 2528.5 2573.8 8.8.2829 8.1751 1.8728 1357.8 2565.8 2528.5 2573.7 8.8.2839 8.1751 1.8728 1357.8 2565.8 2528.5 2573.7 8.8.2839 8.1751 1.8728 1357.8 2565.8 2528.5 2573.7 8.8.2839 8.1751 1.8728 1357.8 2565.8 2528.5 2573.7 8.8.2839 8.1751 1.8728 1357.8 2565.8 2528.5 2573.7 8.8.2839 8.1751 1.8728 1357.8 2565.8 2528.5 2573.7 8.8.2839 8.1751 1.8728 1357.8 2565.8 2528.5 2573.7 8.8.2839 8.1751 1.8728 1357.8 2565.8 2565.8 2572.9 8.8132 1.8728 1357.8 2565.8 2565.8 2572.9 8.8132 1.8728 1357.8 2565.8 2565.8 2572.9 8.8132 1.8728 1357.8 2565.8 2572.9 8.8132 1.8728 1357.8 2565.8 2572.9 8.8132 1.8728 1357.8 2565.8 2572.9 8.8132 1.8728 1357.8 2565.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.8 2572.9 8.8132 1.8728 1357.9 2572.9 8.8132 1.8728 1357.9 2572.9 8.8132 1.8728 1357.9 2572.9 2572.9 8.8132 1.8728 1357.9 2572.9 2572.9 8.8132 1.8728 1357.9		1313.0	2582.6	2528.8	25/3.6	-0.0049						
1.8588 1327.4 2473.5 2528.4 2573.7 8.8317 8.1718 1.8528 1333.8 2575.6 2528.4 2573.7 8.8222 8.1714 1.8548 1332.5 2555.6 2528.4 2573.6 8.8227 8.1714 1.8548 1334.5 2555.6 2528.4 2573.6 8.8227 8.1724 1.8548 1334.5 2551.3 2528.4 2573.6 8.8227 8.1724 1.8568 1348.2 2551.3 2528.6 2573.6 8.8277 8.1724 1.8568 1348.2 2551.3 2528.6 2573.6 8.8277 8.1724 1.8668 1348.2 2551.1 2528.6 2573.6 8.8217 8.1744 1.8668 1348.2 2551.1 2528.6 2573.4 9.8141 8.1758 1.8668 1347.3 2541.1 2528.6 2573.4 9.8142 8.1751 1.8668 1347.3 2545.1 2528.6 2573.4 9.8166 8.1751 1.8668 1347.3 2564.1 2528.6 2573.4 9.8166 8.1751 1.8728 1352.8 2564.6 2528.6 2573.4 9.8166 8.1751 1.8728 1352.8 2564.6 2528.6 2573.2 9.8266 8.1754 1.8728 1352.8 2564.8 2528.4 2577.9 9.8162 8.7779 1.8748 1352.8 2565.8 2528.4 2572.9 8.8156 8.1791 1.8748 1352.8 2565.8 2528.4 2572.9 8.8156 8.1791 1.8748 1366.2 2451.8 2528.4 2572.9 8.8156 8.1791 1.8748 1366.2 2451.8 2528.4 2572.9 8.8156 8.1791 1.8748 1376.2 2451.8 2528.4 2572.6 9.8331 8.1791 1.8768 1366.2 2451.8 2528.2 2572.6 9.8331 8.1791 1.8768 1366.2 2451.8 2528.2 2572.6 9.8831 8.1791 1.8868 1376.2 2451.8 2528.3 2572.4 8.8195 8.1791 1.8988 1376.2 2451.8 2528.3 2572.6 8.8927 8.1803 1.8988 1376.2 2451.8 2528.4 2577.8 9.8831 8.1998 1.8988 1377.6 2453.6 2527.8 2571.8 9.8821 8.1813 1.8988 1377.6 2462.1 2527.8 2571.8 9.8821 8.1813 1.8988 1377.6 2462.1 2527.8 2571.8 9.8821 8.1813 1.8988 1377.6 2462.1 2527.6 2577.9 7.9 8.8921 8.1813 1.8988 1397.6 2446.8 2527.8 2577.9 8.8921 8.1813 1.8988 1397.6 2446.8 2527.8 2577.9 8.8921 8.1813 1.8988 1397.6 2462.1 2527.8 2571.8 9.8985 8.1814 1.8988 1397.6 2452.1 2528.8 2527.8 2571.8 9.8986 8.1814 1.8988 1397.6 2452.1 2528.8 2527.8 2588.8 2589.8 8.1813 1.8988 1397.6 2452.1 2528.8 2527.8 2578.8 9.8986 8.1814 1.8988 1397.6 2452.1 2528.8 2527.8 2588.8 9.8986 8.1814 1.8988 1397.8 2462.1 2525.6 2527.8 2588.8 9.8986 8.1814 1.1888 1497.2 2454.4 2525.1 2526.6 2569.8 8.8989 8.1846 1.11688 1497.2 2454.4 2525.1 2526.6 2569.8 8.8989 8.1846 1.11688 1497.2 2454.4 2525.1 2526.8 2527.8 2569.8 8.8989 8.1846 1.11688 1497.2 24		1322.3	2634.1		25/3.8							
1.8528   1338.8   2575.6   2528.4   2573.6   8.8222   8.1714   1.8548   1332.5   2551.3   2528.4   2573.6   8.8227   8.1728   1.8568   1334.9   2413.7   2528.2   2573.6   8.8277   8.1728   1.8568   1337.2   2562.8   2528.5   2573.4   8.8277   8.1728   1.8628   1342.7   2581.3   2528.5   2573.4   8.8277   8.1748   1.8628   1342.7   2581.8   2528.6   2573.4   8.8217   8.1758   1.8648   1342.7   2581.4   2528.6   2573.4   8.8217   8.1758   1.8648   1347.7   2451.4   2528.4   2573.2   8.8267   8.1754   1.8648   1347.7   2451.4   2528.4   2573.2   8.8268   8.1754   1.8648   1352.3   2436.1   2528.5   2573.4   8.8268   8.1754   1.8648   1352.3   2436.1   2528.5   2573.2   8.8367   8.1754   1.8768   1352.3   2436.1   2528.5   2573.8   8.8368   8.1779   1.8768   1362.7   2485.8   2528.2   2577.6   8.8398   8.1779   1.8768   1362.7   2485.8   2528.2   2577.6   8.8391   8.1799   1.8768   1362.7   2485.8   2528.2   2577.6   8.8391   8.1799   1.8768   1362.7   2485.8   2528.2   2577.6   8.8372   8.1858   1.8768   1362.7   2481.8   2528.4   2577.2   8.8391   8.1799   1.8768   1362.7   2481.8   2528.1   2577.6   8.8391   8.1799   1.8768   1362.7   2441.8   2528.4   2577.2   8.83972   8.1813   1.8768   1362.7   2441.8   2528.1   2577.6   2577.6   8.8391   8.1813   1.8768   1377.5   2451.1   2527.6   2577.8   8.8372   8.1813   1.8768   1377.5   2461.1   2527.6   2577.8   8.8372   8.1813   1.8788   1377.5   2461.1   2527.6   2577.8   8.8372   8.1813   1.8988   1377.5   2461.1   2527.6   2577.8   8.8392   8.1813   1.8988   1378.5   2452.1   2527.6   2577.8   8.8392   8.1813   1.8988   1377.5   2461.8   2527.4   2577.8   2578.8   8.8392   8.1813   1.8988   1378.5   2472.6   2527.1   2578.6   8.8962   8.1813   1.8988   1378.7   2441.8   2527.4   2577.8   2578.7   8.8962   8.1813   1.8988   1378.7   2441.8   2527.4   2578.6   2578.7   8.8962   8.1813   1.8988   1399.8   2472.2   2526.6   2567.7   2578.6   8.8962   8.1813   1.8988   1399.8   2448.2   2526.6   2569.7   8.8962   8.1813   1.1898   1499.4   2448.2   2556.1   2526.5   25		1324.9	2635.7		25/3.9							
1.8548 1332.5 251.3 2528.4 2573.6 -8.8947 3.1714 1.8568 1334.9 2413.7 2528.5 2573.4 -8.8277 3.1714 1.8588 1334.9 2527.8 2528.5 2573.4 -8.8277 3.1748 1.8588 1348.7 2581.1 2528.5 2573.6 8.8535 8.1744 1.8688 1348.7 2581.1 2528.5 2573.6 -8.8918 8.1748 1.8688 1347.7 2581.1 2528.5 2573.6 -8.8918 8.1758 1.8688 1358.3 2436.1 2528.6 2573.4 -8.8141 8.1758 1.8688 1358.3 2436.1 2528.6 2573.4 -8.8141 8.1758 1.8748 1352.8 2436.1 2528.6 2573.4 -8.8918 8.1751 1.8748 1352.8 2436.1 2528.5 2573.6 -8.8938 8.1748 1.8748 1357.8 2565.8 2528.5 2573.8 -8.8338 8.1748 1.8748 1357.8 2565.8 2528.5 2572.9 8.8122 8.1779 1.8728 1357.8 2565.8 2528.5 2572.9 8.8122 8.1779 1.8728 1357.8 2565.8 2528.5 2572.9 8.8122 8.1779 1.8748 1367.8 2565.8 2528.5 2572.9 8.8122 8.1798 1.8848 1357.6 2485.8 2528.5 2527.9 8.8338 8.1881 1.8848 1357.6 2453.6 2527.8 2572.4 8.8338 8.1791 1.8866 1372.6 2453.6 2527.8 2572.8 8.8338 8.1893 1.8866 1372.6 2453.6 2527.8 2572.8 8.8372 8.1893 1.8868 1375.6 2463.1 2528.6 2577.3 8.8882 8.1893 1.8868 1375.6 2464.1 2527.6 2571.4 -8.8884 8.1813 1.8868 1375.6 2464.1 2527.6 2571.4 -8.8884 8.1813 1.8988 1375.6 2464.1 2527.7 2571.6 -8.8911 8.1813 1.8988 1375.6 2464.1 2527.7 2571.6 -8.8911 8.1813 1.8988 1375.6 2464.1 2527.7 2571.6 -8.8911 8.1813 1.8988 1375.1 2464.1 2527.7 2571.6 -8.8918 8.1813 1.8988 1375.1 2464.1 2527.6 2577.4 -8.8884 8.1813 1.8988 1375.1 2464.1 2527.6 2577.9 2578.9 8.8124 8.1813 1.8988 1389.8 2474.8 2527.1 2556.8 2579.1 -8.8864 8.1813 1.8988 1389.8 2589.8 2589.3 2566.9 8.8853 8.8853 8.1847 1.1888 1389.8 2589.8 2589.3 2566.9 8.8853 8.8868 8.1847 1.1888 1389.8 2589.8 2589.3 2566.9 2578.4 8.8893 8.1847 1.1888 1389.8 2589.8 2589.3 2566.9 8.8868 8.8869 8.1847 1.1888 1389.8 2589.8 2589.3 2566.9 8.8868 8.8869 8.1847 1.1888 1389.8 2589.8 2589.3 2566.9 8.8868 8.8869 8.1847 1.1888 1448.7 2584.1 2586.5 2566.9 2566.9 8.8868 8.1847 1.1888 1448.7 2584.1 2586.5 2567.9 2569.9 8.8868 8.1847 1.1888 1448.7 2584.6 2582.6 2567.9 2569.9 8.8868 8.1847 1.1888 1448.8 1448.8 2586.6 2567.2 2569.9 8.8868 8.1847 1.1888 1448.8 2586.6 2567.5 2566.9		1327.4	24/3.5	2528.3	2573.7	-0.0317						
1.8568 1334.9 2413.7 2528.2 2573.6 -8.8273 8 1728 1.8588 1334.9 2413.7 2528.5 2573.6 -8.8255 8 1744 1.8588 1348.2 2572.8 2528.5 2573.6 -8.8217 8 1748 1.8688 1348.2 2572.8 2528.5 2573.6 -8.8217 8 1748 1.8688 1348.2 2572.8 2528.5 2573.4 -8.8218 8 1758 1.8688 1347.7 2451.4 2528.5 2573.4 -8.8218 8 1758 1.8688 1347.7 2451.4 2528.5 2573.4 -8.8218 8 1758 1.8688 1347.7 2451.4 2528.5 2573.4 -8.8218 8 1758 1.8728 1358.8 2436.1 2528.5 2573.8 -8.8398 8 1778 1.8728 1355.8 2436.1 2528.5 2573.8 -8.8398 8 1778 1.8728 1355.8 2558.5 2528.5 2573.9 -8.8398 8 1778 1.8728 1355.8 2528.5 2528.5 2572.9 8.8122 8 1779 1.8728 1356.3 2528.6 2528.5 2572.9 8.8122 8 1779 1.8728 1356.3 2528.6 2528.5 2572.9 8.8122 8 1779 1.8728 1365.7 2451.4 2528.8 2528.7 2572.9 8.8398 8 1788 1.8888 1365.3 2623.8 2528.3 2572.5 8 8.8397 8 1.838 1.8888 1378.2 2463.8 2528.1 2572.5 8 8.8397 8 1.838 1.8888 1378.2 2445.6 2527.8 2572.9 8.8316 8 1.738 1.8888 1378.6 2455.6 2528.7 2572.9 8 8.8316 8 1.738 1.8988 1372.6 2445.6 2527.8 2572.9 8 8.837 8 1.833 1.8988 1372.6 2445.6 2527.8 2572.9 8 8.837 8 1.833 1.8988 1382.8 2463.8 2528.3 2572.5 8 8.837 8 1.833 1.8988 1382.8 2463.8 2528.3 2572.5 8 8.837 8 1.833 1.8988 1387.4 2493.6 2527.8 2577.8 -8.831 8 1.833 1.8988 1387.4 2493.6 2527.8 2577.8 -8.831 8 1.833 1.8988 1387.4 2493.6 2527.8 2577.8 -8.831 8 1.833 1.8988 1387.4 2493.6 2527.8 2577.8 -8.831 8 1.833 1.8988 1387.4 2493.6 2527.8 2577.8 -8.831 8 1.833 1.8988 1387.4 2493.6 2527.8 2577.8 -8.831 8 1.833 1.8988 1399.8 2448.2 2526.6 2557.9 2578.7 -8.831 8 1.833 1.8988 1399.8 2448.2 2526.6 2557.9 2578.3 -8.8388 8 1.846 1.1188 1399.8 2397.7 2556.9 2578.9 8.8388 8 1.846 1.1188 1399.8 2588.6 2578.5 2578.9 2578.9 8.8388 8 1.846 1.1188 1399.8 2588.6 2578.5 2578.9 8.8388 8 1.846 1.1188 1399.8 2588.6 2578.5 2568.9 8.8388 8 1.846 1.1188 1487.2 2454.8 2526.3 2566.9 8 8.8388 8 1.847 1.1288 1487.2 2454.8 2526.3 2566.9 8 8.8388 8 1.847 1.1288 1487.2 2467.8 2567.5 25578.9 8 8.8388 8 1.847 1.1288 1487.5 2582.6 2587.5 2567.9 2568.9 8 8.8388 8 1.847 1.1288 1488.5 2588.6 2587.5 2557.5 2558.9 8 8			25/5.6	2528.4								
1.8588 1337.6 2686.8 2572.6 2573.6 8.82573.6 3.87525 8.1744 1.8628 1348.7 2572.8 2572.8 2573.6 8.8217 8.1744 1.8628 1348.7 2581.1 2528.6 2573.4 -8.8141 8.1758 1.8628 1347.7 2581.1 2528.6 2573.4 -8.8141 8.1758 1.8628 1357.3 2581.6 2528.6 2573.4 -8.8146 8.1751 1.8628 1357.3 2581.6 2528.6 2573.4 -8.8186 8.1751 1.8628 1357.3 2581.6 2528.6 2573.4 -8.8186 8.1751 1.8628 1357.3 2581.6 2528.6 2573.4 -8.8186 8.1751 1.8628 1357.3 2581.6 2528.6 2573.4 -8.8186 8.1758 1.8728 1355.3 2496.1 2528.5 2572.9 -8.8128 8.1779 1.8728 1357.8 2566.8 2528.5 2572.9 -8.8128 8.1779 1.8728 1367.7 2523.8 2528.5 2572.9 -8.8128 8.1779 1.8728 1367.7 2523.8 2528.1 2572.4 8.8185 8.1791 1.8738 1367.7 2523.8 2528.1 2572.5 8.8337 8.1888 8.1791 1.8828 1367.7 2523.6 2528.8 2572.9 8.8128 8.1791 1.8838 1372.6 2462.1 2527.6 2571.8 -8.8318 8.1791 1.8838 1375.1 2464.1 2527.6 2571.8 -8.8318 8.1813 1.8938 1375.6 2462.1 2527.7 2571.6 -8.8321 8.1813 1.8938 1375.7 6 2462.1 2527.7 2571.6 -8.8321 8.1813 1.8938 1375.7 6 2462.1 2527.7 2571.6 -8.8321 8.1813 1.8938 1387.8 2397.7 2525.9 2571.8 -8.8321 8.1813 1.8938 1387.8 2397.7 2526.9 2571.8 -8.8321 8.1813 1.8938 1387.8 2397.7 2526.9 2571.8 -8.8321 8.1813 1.8938 1387.8 2397.7 2526.9 2577.9 8.8128 8.1813 1.8938 1387.8 2397.7 2526.9 2577.9 8.8128 8.1813 1.8938 1389.8 2397.7 2526.9 2577.8 8.8321 8.1813 1.8948 1389.8 2397.7 2526.9 2578.1 -8.8321 8.1813 1.8948 1389.8 2397.7 2526.9 2578.1 -8.8321 8.1813 1.8948 1389.8 2397.7 2526.9 2578.8 8.8321 8.1813 1.8948 1389.8 2397.7 2526.9 2578.8 8.8321 8.1813 1.1848 1394.8 2421.2 2526.6 2567.8 2578.8 8.8328 8.1847 1.1828 1389.8 2397.7 2526.9 2578.8 8.8328 8.1847 1.1828 1389.8 2397.7 2526.9 2566.8 2578.8 8.8388 8.1847 1.1828 1389.8 2397.7 2526.9 2566.9 8.8388 8.8388 8.1847 1.1828 1389.8 2397.7 2526.9 2566.9 8.8388 8.8388 8.1847 1.1838 1448.7 2526.6 2567.5 2566.9 8.8888 8.8888 8.1847 1.1838 1448.7 2524.1 2526.6 2567.9 8.8888 8.8888 8.1847 1.1248 1448.7 2524.1 2526.6 2567.9 2569.9 8.8888 8.1847 1.1248 1448.8 2526.6 2567.5 2566.9 8.8888 8.8888 8.1847 1.1248 1448.8 2566.5 2566.5 2567.9 25	1.0540	1332.5	2551.3	2528.4	2573.6	-Ø.ØØ47						
1.8688 1348.2 2572.8 2528.6 2573.4 -8.8267 8.1718 1.9628 1342.7 2581.1 2528.5 2573.4 -8.8141 8.1758 1.9628 1342.7 2581.1 2528.5 2573.4 -8.8141 8.1758 1.9688 1347.7 2451.4 2528.4 2573.2 -8.8266 8.1751 1.8668 1347.7 2451.4 2528.4 2573.2 -8.8266 8.1751 1.8698 1347.7 2424.8 2527.2 9.8.8268 8.1758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.9758 1.	1.0560	1334.9		2528.2	2573.4	-Ø.Ø277						
1.8628	1.0500	1337.6	2686.8	2528.5	2573.6	Ø.Ø535						
1.8668 1345.2 2554.6 2528.6 2573.4 8.8186 8.1751 1.8668 1347.7 2451.4 2528.4 2573.2 8.83867 8.1765 1.8688 1358.3 2638.1 2528.6 2573.8 8.8367 8.1765 1.8788 1352.3 2456.1 2528.5 2573.8 8.8367 8.1765 1.8788 1352.3 2456.1 2528.5 2573.8 8.8367 8.1778 1.8788 1366.3 2468.8 2522.2 277.9 8.8122 8.1779 1.8788 1362.7 2461.8 2528.1 2572.4 8.8365 8.1761 1.8888 1366.3 2623.8 2528.1 2572.4 8.8365 1.88888 1367.7 2424.8 2528.1 2572.2 4.8394 8.1813 1.88888 1378.2 2459.1 2528.8 2572.8 8.8872 8.1893 1.88888 1378.2 2459.1 2528.8 2572.8 8.8872 8.1893 1.88888 1378.2 2459.1 2528.8 2572.8 8.8872 8.1893 1.88889 1377.6 2464.1 2527.7 2571.6 8.8821 8.1813 1.89889 1384.9 2464.8 2527.2 2571.4 4.88884 8.1813 1.89988 1384.9 2464.8 2527.2 2578.7 4.8881 8.1814 1.89988 1384.9 2464.8 2527.2 2578.7 4.8881 8.1814 1.89988 1384.9 2493.6 2527.1 2578.7 4.8881 8.1816 1.8988 1387.4 2493.6 2527.2 2578.7 4.8881 8.1816 1.8988 1387.2 2493.6 2527.2 2578.7 4.8881 8.1816 1.8988 1384.9 2464.8 2527.7 2578.6 8.8821 8.1816 1.8988 1384.9 2464.8 2527.2 2578.7 4.8881 8.1816 1.8988 1384.9 2464.8 2527.2 2578.7 4.8881 8.1816 1.8988 1384.9 2493.6 2527.1 2578.6 8.8821 8.1816 1.8988 1384.9 2493.6 2527.1 2578.6 8.8821 8.1816 1.8988 1384.9 2493.6 2527.2 2578.7 4.8881 8.1816 1.8988 1384.9 2493.6 2527.2 2578.7 4.8881 8.1816 1.8988 1384.9 2493.6 2527.2 2578.7 4.8881 8.1816 1.8988 1384.9 2493.6 2527.2 2578.7 4.8881 8.1816 1.8988 1384.9 2493.6 2527.2 2578.7 4.8881 8.1816 1.1888 1384.9 2493.6 2527.2 2578.7 8.8881 8.1816 1.1888 1384.9 2493.6 2527.2 2578.8 8.8898 8.1816 1.1888 1384.9 2493.6 2527.2 2578.8 8.8898 8.1816 1.1888 1384.9 2493.6 2527.2 2568.9 8.8888 8.1816 1.1888 1384.9 2493.6 2527.2 2568.9 8.8888 8.1816 1.1888 1384.9 2493.6 2528.8 2568.9 8.8888 8.1816 1.1888 1384.9 2493.6 2528.8 2568.9 8.8888 8.1816 1.1888 1487.2 2493.6 2528.8 2568.9 8.8888 8.1816 1.1888 1487.2 2493.6 2528.8 2568.9 8.8888 8.1816 1.1888 1487.2 2493.6 2528.8 2568.9 8.8888 8.1816 1.1888 1487.2 2493.6 2528.8 2568.9 8.8888 8.1816 1.1888 1487.2 2588.8 2588.8 2588.8 2588.8 8.8889 8.1816 1.1888 1488.2 2588.8 2588.8	1 0000	1340.2	25/2.8	2528.6			Ø.1748		•			
1.8668 1347.7 2451.4 2528.4 2573.2 -6.8266 8.1754		1342.7	2501.1	2528.5	2573.4							
1.8688 1358.3 2638.1 2528.6 2573.3 8.83677 3.1765 1.8728 1355.8 2436.1 2528.6 2573.3 8.8367 3.1765 1.8728 1355.3 2436.1 2528.4 2572.9 8.8122 8.1779 1.8748 1355.8 2436.1 2528.4 2572.9 8.8122 8.1779 1.8748 1355.8 2436.1 2528.2 2572.9 8.8136 8.1791 1.8768 1368.2 2488.8 2528.2 2572.6 -8.8331 8.1798 1.8788 1365.7 2451.8 2528.3 2572.5 -8.8331 8.1798 1.8888 1365.3 2623.8 2528.3 2572.5 8.8337 8.1888 1.8928 1365.3 2623.8 2528.3 2572.5 8.8337 8.1888 1.8928 1377.6 2462.1 2527.6 2571.6 8.88872 8.1813 1.8988 1377.6 2462.1 2527.6 2571.6 8.8881 8.1813 1.8928 1377.6 2462.1 2527.7 2571.6 8.8881 8.1813 1.8928 1382.5 2472.6 2527.3 2578.9 8.8124 8.1813 1.8948 1382.5 2472.6 2527.3 2578.9 8.8124 8.1813 1.8948 1382.5 2472.6 2527.3 2578.9 8.8124 8.1813 1.8948 1382.4 2493.6 2527.2 2578.6 8.8868 8.1916 1.8988 1387.4 2493.6 2527.1 2578.6 8.8868 8.1916 1.8988 1387.4 2493.6 2527.7 2577.4 8.8868 8.1916 1.8988 1387.4 2493.6 2527.7 2578.9 8.8124 8.1813 1.8948 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2578.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2588.8 8.8868 8.1916 1.8988 1389.8 2397.7 2526.9 2586.8 8.8868 8.1916 1.8988 1389.8 2448.2 2441.3 2526.4 2526.5 2528.9 8.8868 8.1946 1.1124 1489.2 2441.3 2526.5 2526.9 2589.8 8.8868 8.1946 1.1126 1483.2 2441.3 2526.6 2526.9 2589.8 8.8868 8.1946 1.1128 1484.7 2524.1 2526.8 2526.9 2589.8 8.8868 8.1946 1.1128 1484.7 2524.1 2526.8 2526.9 2589.8 8.8868 8.1946 1.1128 1484.7 2524.1 2526.6 2526.9 2589.8 8.8868 8.1946 1.1128 1484.7 2524.1 2526.6 2526.9 2589.8 8.8868 8.1946 1.1128 1484.7 2524.1 2526.6 2526.9 2589.8 8.8868 8.1946 1.1128 1484.7 2524.1 2526.6 2526.9 2589.8 8.8868 8.1947 1.1288 1424.8 2535.1 2526.0 2527.2 2569.8 8.8868 8.1948 1.138		1345.2	2554.6	2528.6	2573.4							
1.8728		134/./		2528.4	2573.2	-Ø.Ø2Ø6	Ø.1754				•	
1.8728	1 0700	1350.3	2638.1		2573.3	Ø.Ø367						
1.8748		1354.8	2436.1		2573.0			•				
1.8768		1355.3	2496.1	2528.4	25/2.9							
1.8788				2528.5	2572.9							
1.8808				2528.2	25/2.6							
1.8828 1387.7 2424.8 2528.1 2572.2 -8.8394 2.1813 1.8848 1378.2 2459.1 2528.8 2572.8 8,8872 2 3.1813 1.8868 1377.6 2451.1 2528.8 2572.8 8,8872 3 1813 1.8868 1377.6 2451.1 2527.6 2571.8 -8.8811 8.1813 1.8988 1377.6 2462.1 2527.6 2571.4 -8.8884 8.1813 1.8998 1377.6 2462.1 2527.6 2571.4 -8.8884 8.1813 1.8998 1387.8 2411.8 2527.4 2571.1 -8.8183 1.8998 1382.5 2472.6 2527.3 2578.9 -8.8817 8.1815 1.8998 1387.4 2493.6 2527.1 2578.6 -8.8817 8.1815 1.8988 1387.4 2493.6 2527.1 2578.6 -8.8868 8.1815 1.8988 1387.4 2493.6 2527.7 2578.9 -8.8817 8.1815 1.8988 1387.8 2397.7 2526.9 2578.3 -8.8196 8.1819 1.8688 1392.4 2663.1 2527.8 2578.4 -8.8183 1.8688 1397.3 2498.6 2526.7 2578.4 -8.8184 8.1833 1.8688 1397.3 2448.2 2526.8 2578.1 -8.8362 8.1814 1.8988 1399.3 2448.2 2526.5 25278.3 -8.8168 1.1888 1399.3 2448.2 2526.6 2526.7 2569.9 -8.8186 1.1888 1399.3 2448.2 2526.6 2526.7 2569.9 -8.8186 1.1188 1482.2 2441.3 2526.4 2569.5 8.8868 8.1846 1.1128 1482.2 2441.3 2526.4 2569.5 8.8868 8.1846 1.1128 1482.2 2441.3 2526.2 2569.8 8.8888 8.1846 1.1128 1487.2 2491.2 2526.3 2569.9 8.8888 8.1846 1.1128 1487.2 2491.2 2526.3 2569.9 8.8888 8.1846 1.1128 1487.2 2491.2 2526.3 2569.9 8.8888 8.1846 1.1128 1482.2 2533.3 2566.2 2569.9 8.8888 8.1846 1.1128 1482.2 2539.3 2566.2 2569.9 8.8888 8.1846 1.128 1487.2 2526.3 2569.9 8.8888 8.1846 1.128 1487.2 2526.3 2566.3 2566.9 8.8888 8.1846 1.128 1447.3 2524.1 2526.2 2569.9 8.8888 8.1847 1.128 1442.2 2530.3 2566.6 2568.9 8.8888 8.1847 1.128 1442.4 2536.3 2566.8 2568.9 8.8888 8.1847 1.128 1442.4 2536.3 2566.8 2569.9 8.8868 8.1848 1.128 1443.3 2576.3 2566.6 2568.9 8.8868 8.1848 1.128 1443.4 2566.5 2567.7 2566.8 2569.9 8.8868 8.1848 1.128 1448.5 2576.5 2567.7 2566.8 2569.9 8.8868 8.1848 1.128 1448.5 2586.6 2567.7 2566.9 2569.9 8.8868 8.1848 1.128 1448.5 2566.5 2567.7 2566.9 2569.9 8.8868 8.1848 1.138 1448.5 2566.5 2567.7 2566.9 2669.8 8.8868 8.1848 1.1388 1448.5 2566.5 2567.7 2566.9 2569.9 8.8868 8.1848 1.1388 1448.5 2566.5 2567.7 2566.9 2569.9 8.8868 8.1848 1.1488 1448.5 2566.5 2567.7 2566.9 2569.9 8.8868 1.1888 14				2528.1	25/2.4		Ø.1791					
1.88648 1378.2 2459.1 2528.8 2572.8 2571.8 -9.8911 9.1813 1.88688 1375.1 2464.1 2527.7 2571.6 -9.8911 9.1813 1.88688 1375.1 2464.1 2527.7 2571.6 -9.8984 8.1813 1.89888 1375.6 2462.1 2527.6 2571.4 -9.8984 8.1813 1.8928 1388.8 2411.8 2527.4 2571.1 -9.8984 8.1813 1.8928 1388.8 2411.8 2527.4 2571.1 -9.8984 8.1813 1.8948 1382.5 2472.6 2527.3 2578.9 9.8182 1.8948 1382.5 2472.6 2527.3 2578.9 9.8182 1.8958 1384.9 2464.8 2527.2 2578.7 -9.8818 8.1815 1.8958 1387.4 2403.6 2527.2 2578.7 -9.8918 8.1816 1.8988 1387.4 2423.6 2527.7 2556.9 2578.3 -0.8196 9.1816 1.8988 1382.4 2683.1 2527.8 2578.4 8.8911 9.1816 1.8988 1382.4 2683.1 2527.8 2578.4 8.8911 9.1816 1.8988 1387.3 2448.2 2526.6 2559.7 -9.8182 1.8988 1399.8 2448.2 2526.6 2569.7 -9.8182 1.8988 1399.8 2448.2 2526.6 2569.7 -9.8182 1.8988 1399.8 2448.2 2526.6 2569.7 -9.8182 1.8988 1399.8 2448.2 2526.6 2569.7 -9.8182 1.8988 1399.8 2441.3 2526.4 2569.5 9.8882 9.1846 1.1128 1482.2 2441.3 2526.4 2569.5 9.8883 9.1846 1.1148 1487.2 2491.2 2526.3 2569.9 8.8883 9.1846 1.1148 1487.2 2491.2 2526.3 2569.9 8.8883 9.1846 1.1148 1487.2 2491.2 2526.3 2569.9 8.8883 9.1846 1.1148 1487.2 2491.2 2526.3 2569.9 8.8883 9.1846 1.1128 1412.2 2539.3 2526.2 2569.8 8.8885 9.1846 1.1128 1412.2 2539.3 2526.2 2569.8 8.8886 9.1846 1.1128 1412.2 2539.3 2526.2 2569.8 8.8886 9.1846 1.1128 1412.2 2539.3 2526.2 2569.8 9.8885 9.1846 1.1128 1412.2 2539.3 2526.2 2569.8 9.8885 9.1846 1.1128 1412.2 2539.3 2526.2 2569.8 9.8885 9.1846 1.1128 1412.2 2539.3 2526.6 2569.8 9.8886 9.1847 1.1268 1422.4 2555.1 2526.3 2569.9 9.8866 9.1849 1.1348 142.2 2539.1 2526.6 2569.9 9.8866 9.1849 1.1348 1432.7 2526.1 2526.8 2569.9 9.8866 9.1849 1.1348 1448.5 2582.6 2567.7 2568.9 9.8866 9.1849 1.1348 1448.5 2582.6 2567.7 2569.9 9.8866 9.1849 1.1348 1448.5 2585.6 2567.7 2569.9 9.8866 9.1849 1.1348 1448.5 2585.6 2567.7 2569.9 9.8866 9.1849 1.1348 1448.5 2585.6 2567.7 2569.9 9.8866 9.1849 1.1348 1448.5 2585.6 2567.7 2569.9 9.8866 9.1859					25/2.5	Ø.Ø337						•
1.88868 1372.6 2453.6 2527.8 2571.6 -8.8911 0.1813 1.89898 1375.1 2464.1 2527.7 2571.6 -8.8921 0.1813 1.89988 1375.6 2462.1 2527.4 2571.4 -8.8984 0.1813 1.89388 1388.8 2411.8 2527.4 2571.1 -8.8984 0.1813 1.89388 1388.5 2472.6 2527.3 2578.9 8.8124 0.1815 1.89388 1387.4 2493.6 2527.1 2578.6 8.89681 0.1816 1.8988 1387.4 2493.6 2527.1 2578.6 8.89681 0.1819 1.1828 1389.8 2397.7 2526.9 2578.3 -8.8196 0.1819 1.1828 1392.4 2603.1 2527.8 2578.4 8.8411 0.1833 1.18488 1397.3 2498.6 2527.2 2578.7 -8.8362 0.1843 1.18688 1399.8 2448.2 2526.6 2569.9 8.8144 1.118888 1399.8 2448.2 2526.6 2569.7 -8.8362 0.1843 1.11888 1399.8 2448.2 2526.4 2566.7 2569.9 0.8984 0.1845 1.11888 1484.7 2467.4 2526.3 2569.5 0.80853 0.1846 1.11188 1487.2 2494.4 2526.2 2566.8 0.8988 0.1846 1.1128 1484.7 2494.4 2526.2 2569.8 0.8988 0.1846 1.1128 1484.7 2524.1 2526.3 2569.9 0.8988 0.1846 1.1128 1412.2 2539.3 2526.2 2569.9 0.8984 0.1847 1.1228 1414.7 2524.1 2526.3 2569.9 0.8984 0.1847 1.1228 1414.7 2524.1 2526.3 2569.9 0.8984 0.1847 1.1228 1414.7 2524.1 2526.3 2569.9 0.8984 0.1847 1.1228 1417.3 2544.1 2526.3 2569.9 0.8986 0.1847 1.1228 1417.3 2544.1 2526.3 2569.9 0.8986 0.1847 1.1228 1417.3 2544.1 2526.3 2569.9 0.8986 0.1847 1.1228 1417.3 2544.1 2526.3 2569.9 0.8986 0.1847 1.1248 1419.8 2578.5 2586.8 2569.9 0.8986 0.1847 1.1248 1419.8 2578.5 2586.8 2569.9 0.8986 0.1847 1.1248 1419.8 2578.5 2586.8 2569.9 0.8986 0.1847 1.1248 1419.8 2578.5 2566.8 2569.9 0.8986 0.1847 1.1248 142.2 2539.3 2566.8 2569.9 0.8986 0.1847 1.1248 1438.6 2578.3 2566.8 2569.9 0.8986 0.1849 1.1348 1432.7 2561.7 2526.8 2569.9 0.8986 0.1849 1.1348 1438.6 2576.3 2567.9 2569.9 0.8986 0.1849 1.1348 1432.7 2561.7 2566.8 2569.9 0.8986 0.1849 1.1348 1438.6 2576.3 2567.1 2569.9 0.8986 0.1849 1.1348 1438.6 2576.3 2567.3 2567.1 2569.9 0.8986 0.1849 1.1348 1438.6 2576.3 2567.3 2567.9 2569.9 0.8986 0.1849 1.1348 1438.6 2576.3 2567.3 2567.1 2569.9 0.8986 0.1852 1.1348 1438.6 2576.3 2567.3 2567.1 2569.1 0.8986 0.1853 1.14488 1448.5 2585.6 2567.3 2567.1 2569.1 0.8986 0.1853			2424.0		25/2.2							
1.8888 1375.1 2464.1 2527.6 2571.4 -8.8821 8.1813 1.8928 1388.8 2411.8 2527.4 2571.1 -8.8821 8.1813 1.8928 1388.8 2411.8 2527.4 2571.1 -8.8828 8.1813 1.8948 1382.5 2472.6 2527.3 2578.7 -8.8812 8.1814 1.8948 1382.5 2472.6 2527.3 2578.7 -8.8812 8.1815 1.8958 1387.4 2493.6 2527.1 2578.6 8.8868 8.1816 1.8988 1387.4 2493.6 2527.2 2578.7 -8.8817 8.1816 1.8988 1387.4 2493.6 2527.8 2578.4 8.8411 8.1833 1.1802 1392.4 2683.1 2527.8 2578.4 8.8411 8.1833 1.1804 1394.8 2421.2 2526.8 2578.1 -8.8368 8.1819 1.1808 1397.3 2498.6 2526.7 2569.9 8.8141 8.1843 1.1868 1397.3 2498.6 2526.7 2569.9 8.8141 8.1845 1.1188 1492.2 2441.3 2526.4 2569.7 -8.8162 8.1846 1.1188 1492.2 2441.3 2526.4 2569.5 8.8862 8.1846 1.1148 1487.2 2491.2 2526.3 2569.3 8.8863 8.1846 1.1148 1487.2 2491.2 2526.3 2569.9 8.8888 8.1846 1.1168 1489.7 2494.4 2526.2 2569.8 8.8888 8.1846 1.1168 1497.2 2491.2 2526.3 2569.9 8.8888 8.1846 1.1168 1499.7 2494.4 2526.2 2569.8 8.8888 8.1846 1.1168 1497.2 2491.2 2526.3 2569.8 8.8888 8.1846 1.1168 1499.7 2494.4 2526.2 2569.8 8.8888 8.1846 1.1168 1417.3 2544.1 2526.2 2569.8 8.8888 8.1847 1.1228 1417.3 2544.1 2526.2 2568.9 9.8888 8.1847 1.1228 1417.3 2544.1 2526.2 2568.9 8.8888 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8888 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8888 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8888 8.1847 1.1228 1417.3 2544.1 2526.8 2569.8 8.8888 8.1847 1.1228 1417.3 2544.1 2526.8 2569.8 8.8888 8.1847 1.1248 1419.8 2578.5 2526.3 2568.9 8.8888 8.1847 1.1248 1419.8 2578.5 2526.8 2569.8 9.8888 8.1847 1.1248 1419.8 2578.5 2526.8 2569.8 9.8888 8.1849 1.1318 142.7 6 667.7 2526.8 2569.8 9.8888 8.1849 1.1318 1432.7 2561.7 2526.8 2569.8 9.8888 8.1849 1.1328 1438.8 2576.3 2526.8 2569.8 9.8888 8.1849 1.1328 1438.8 2576.3 2526.8 2569.8 9.8888 8.1858 1.1348 1438.8 2576.3 2526.8 2569.8 9.8888 8.1858 1.1348 1438.9 2576.3 2526.8 2569.8 9.8888 8.1852 1.1348 1438.9 2576.3 2526.8 2569.1 9.88812 8.1853 1.14488 1448.5 2525.5 2567.3 2568.9 8.88812 8.1853 1.14488 1448.5 2525.5 2567.3 2569.1 9.88812 8.1853	1 0860	1370.2	2453.1	2528.0								•
1.8998			2453.6	2527.8	25/1.8							
1.8928	1 9999		2464.1	2527.7								
1.8948			2402.1	2527.6	25/1.4							
1.8968 1384.9 2464.8 2527.2 2578.7 -8.8817 8.1816 1.8988 1387.4 2493.6 2527.1 2578.6 8.8868 8.1816 1.1888 1389.8 2397.7 2526.9 2578.3 -8.8196 8.1819 1.1828 1392.4 2683.1 2527.8 2578.4 8.8411 8.1833 1.1848 1394.8 2421.2 2526.8 2569.9 8.8141 8.1845 1.1888 1399.3 2448.2 2526.6 2569.7 -8.8182 8.1846 1.1188 1399.8 2448.2 2526.6 2569.7 -8.8182 8.1846 1.1128 14484.7 2467.4 2526.3 2569.2 8.8882 8.1846 1.1128 14484.7 2447.4 2526.3 2569.2 8.8882 8.1846 1.1168 1489.7 2494.4 2526.2 2569.8 8.8886 8.1846 1.1188 1412.2 2533.3 2526.2 2569.8 8.8886 8.1846 1.1128 1441.7 2524.1 2526.2 2568.9 8.8888 8.1847 1.1228 1417.3 2544.1 2526.2 2568.9 8.8888 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8882 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8882 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8882 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8885 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8885 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8885 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8885 8.1847 1.1248 1419.8 2578.5 2526.3 2568.9 8.8865 8.1847 1.1248 1419.8 2578.5 2526.5 2568.9 8.8878 8.1849 1.1328 1425.4 2535.1 2526.3 2568.9 8.8878 8.1849 1.1328 1425.4 2535.1 2526.5 2568.9 8.8878 8.1849 1.1348 1435.4 2645.5 2527.3 2566.9 8.8878 8.1849 1.1348 1435.4 2645.5 2527.3 2566.9 8.8878 8.1849 1.1348 1435.4 2645.5 2527.8 2566.9 8.8878 8.1858 1.1348 1438.8 2576.3 2526.5 2568.9 8.8878 8.1849 1.1348 1438.8 2576.3 2526.5 2568.9 8.8878 8.1849 1.1348 1435.4 2645.5 2527.8 2566.9 8.8878 8.1858 1.1348 1438.8 2576.3 2526.6 2567.9 8.8878 8.1858 1.1348 1438.8 2576.3 2527.1 2569.1 8.8816 8.1858 1.1448 1448.5 2582.6 2527.2 2569.1 8.8812 8.1853 1.1448 1448.5 2585.2 2527.3 2569.1 8.8853 8.1853 1.1448 1448.5 2585.2 2527.3 2569.1 8.88953 8.1854	1 8918			2527.4	2571.1							
1.8988 1387.4 2493.6 2527.1 2578.6 8.8868 8.1816 1.1828 1392.4 2683.1 2527.8 2578.4 8.8411 8.1833 1.1848 1394.8 2421.2 2526.8 2578.1 -8.8362 8.1843 1.1868 1397.3 2498.6 2526.7 2556.9 9.8141 8.1845 1.1868 1399.8 2448.2 2526.6 2559.7 -8.8182 8.1846 1.1128 1482.2 2441.3 2526.6 2569.7 -8.8182 8.1846 1.1128 1482.2 2441.3 2526.4 2569.5 8.8882 8.1846 1.1148 1487.2 2491.2 2526.3 2569.2 8.8882 8.1846 1.1148 1487.2 2491.2 2526.3 2569.2 8.8882 8.1846 1.1188 1412.2 2539.3 2526.2 2569.8 8.8882 8.1846 1.1128 1412.2 2539.3 2526.2 2569.8 8.8882 8.1847 1.1288 1412.2 2539.3 2526.2 2568.9 8.8889 8.1847 1.1288 1417.3 2544.1 2526.3 2568.9 8.8848 8.1847 1.1248 1419.8 2578.5 2526.3 2568.9 8.8848 8.1847 1.1248 1419.8 2578.5 2526.3 2568.9 8.8866 8.1848 1.1388 1425.8 2587.3 2526.5 2568.8 8.8866 8.1848 1.1388 1425.8 2587.3 2526.5 2568.8 8.8866 8.1849 1.1388 1425.8 2587.3 2526.5 2568.8 8.8866 8.1849 1.1388 1425.8 2587.3 2526.5 2568.8 8.8866 8.1849 1.1388 1438.2 2593.3 2526.8 2569.8 9.8866 8.1849 1.1388 1438.4 2565.5 2566.8 2569.8 9.8866 8.1849 1.1388 1438.4 2565.5 2526.8 2569.8 9.8866 8.1849 1.1388 1438.6 2587.3 2526.8 2569.8 -8.8867 8.1849 1.1388 1438.8 2576.3 2526.8 2569.8 -8.8867 8.1849 1.1388 1438.8 2576.3 2526.8 2569.8 -8.8867 8.1849 1.1388 1438.8 2576.3 2526.8 2569.8 -8.8867 8.1849 1.1388 1438.8 2576.3 2526.8 2569.8 -8.8867 8.1849 1.1388 1438.8 2576.3 2526.8 2569.8 -8.8867 8.1849 1.1348 1438.8 2576.3 2526.8 2569.8 -8.8867 8.1849 1.1348 1438.8 2576.3 2526.8 2569.8 -8.8867 8.1849 1.1348 1438.8 2576.3 2526.8 2569.8 -8.8861 8.1858 1.13488 1438.8 2576.3 2527.1 2569.1 -8.8861 8.1853 1.14488 1448.5 2582.6 2527.2 2569.1 -8.8853 8.1853 1.14488 1448.1 2555.2 2527.3 2569.1 -8.8853 8.1853 1.14488 1448.1 2555.2 2527.3 2569.1 -8.8853 8.1853				2527.3	25/0.5	0.0124						
1.1888 1389.8 2397.7 2526.9 2578.3 -8.8196 8.1819 1.1828 1392.4 2683.1 2527.8 2578.1 8.8411 8.1833 1.1848 1394.8 2421.2 2526.8 2578.1 -8.8362 8.1843 1.1868 1397.3 2498.6 2526.7 2569.9 8.8141 8.1845 1.1888 1399.8 2448.2 2526.6 2569.7 -8.8182 8.1846 1.1180 1482.2 2441.3 2526.4 2569.5 8.8882 8.1846 1.1128 1484.7 2467.4 2526.3 2569.3 8.8852 8.1846 1.1128 1484.7 2494.4 2526.3 2569.2 8.8888 8.1846 1.1188 1412.2 2539.3 2526.2 2569.8 8.8888 8.1846 1.1128 1447.7 2524.1 2526.2 2569.8 8.8888 8.1846 1.1128 1412.2 2539.3 2526.2 2569.8 8.8888 8.1846 1.1128 1412.2 2539.3 2526.2 2568.9 9.8888 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 -8.8838 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8888 8.1847 1.1248 1419.8 2578.5 2526.3 2568.9 8.8865 8.1847 1.1288 1422.4 2535.1 2526.3 2568.9 8.8865 8.1847 1.1288 1427.6 2627.8 2526.3 2568.9 8.8865 8.1849 1.1388 1427.6 2627.8 2526.8 2569.8 8.8878 8.1849 1.1328 1438.2 2593.3 2526.6 2568.9 8.8868 8.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8869 8.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8869 8.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8869 8.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8869 8.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8869 8.1849 1.1388 1438.2 2593.3 2526.8 2569.8 -8.8868 8.1858 1.1488 1435.4 2645.5 2527.2 2569.1 8.8978 8.1858 1.1488 1448.5 2582.6 2527.2 2569.1 8.8966 8.1853 1.1448 1448.5 2582.6 2527.2 2569.1 8.8961 8.1853 1.1448 1448.5 2582.6 2527.2 2569.1 8.8953 8.1853 1.1448 1448.5 2582.6 2527.2 2569.1 -8.8853 8.1853 1.1428 1443.1 2555.2 2582.3 2569.1 -8.8853 8.1853			2404.8	2527.2			Ø.1816					
1.1020 1392.4 2603.1 2527.8 2570.4 8.8411 8.1833 1.1848 1394.8 2441.2 2526.8 2570.1 -8.8362 8.1843 1.1848 1394.8 2441.2 2526.8 2570.1 -8.8362 8.1845 1.1868 1399.8 2448.2 2526.6 2569.7 -8.8362 8.1846 1.1888 1399.8 2448.2 2526.6 2569.7 -8.8362 8.1846 1.1180 1482.2 2441.3 2526.4 2569.5 8.8882 8.1846 1.1128 1484.7 2467.4 2526.3 2569.3 8.8853 8.1846 1.1148 1487.2 2491.2 2526.3 2569.8 8.8858 8.1846 1.1148 1487.2 2491.2 2526.3 2569.8 8.8886 8.1846 1.1188 1412.2 2539.3 2526.2 2569.8 8.8886 8.1846 1.1188 1412.2 2539.3 2526.2 2569.8 8.8888 8.1846 1.1188 1412.2 2539.3 2526.2 2569.8 8.8888 8.1847 1.1288 1414.7 2524.1 2526.2 2568.9 -8.8888 8.1847 1.1228 1414.7 2524.1 2526.3 2568.9 8.8848 8.1847 1.1228 1414.7 2524.1 2526.3 2568.9 8.8848 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8848 8.1847 1.1228 1417.3 2544.1 2526.3 2568.9 8.8848 8.1847 1.1228 1412.2 2539.3 2526.3 2568.9 8.8848 8.1847 1.1228 1422.4 2535.1 2526.3 2568.9 8.8852 8.1847 1.1268 1422.4 2535.1 2526.3 2568.9 8.8852 8.1847 1.1268 1422.4 2535.1 2526.3 2568.9 8.8868 8.1849 1.1849 1.1388 1427.6 2627.8 2526.6 2568.8 8.8182 8.8849 1.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8866 8.1849 1.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8866 8.1849 1.1858 1.1348 1432.7 2561.7 2526.8 2569.8 -8.8866 8.1858 1.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8866 8.1858 1.1849 1.1328 1438.2 2593.3 2526.8 2569.8 -8.8866 8.1858 1.1849 1.1328 1438.8 2576.3 2527.1 25269.1 -8.8866 8.1858 1.1858 1.1849 1.1388 1438.8 2576.3 2527.1 2569.1 -8.88133 8.1853 1.1858 1.1848 1.1848 1.1848 1.1848 1.1848 1.1848 1.1848 1.1848 1.1848 1.1848 1.1848 1.1848 1.1848 1.1858 1.1858 1.1858 1.1858 1.1848 1.1858 1.1848 1.1858 1.1848 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.1858 1.	1.1000	1387.4	2473.0	2527.1								
1.1848		1392 4	2507.7	2520.J	2570.3					_		
1.1060 1397.3 2498.6 2526.7 2569.9 8.8141 8.1845 1.1080 1399.8 2448.2 2526.6 2569.7 -0.8102 8.1846 1.1180 1482.2 2441.3 2526.4 2569.5 8.80802 8.1846 1.1120 1484.7 2467.4 2526.3 2569.2 8.80853 8.1846 1.1140 1487.2 2491.2 2526.3 2569.2 8.8088 8.1846 1.1140 1489.7 2494.4 2526.2 2569.0 8.8088 8.1846 1.1180 1412.2 2539.3 2526.2 2569.0 8.8088 8.1846 1.1180 1412.2 2539.3 2526.2 2569.0 8.8088 8.1847 1.1280 1412.7 2524.1 2526.2 2568.9 -0.8083 8.1847 1.1220 1417.3 2544.1 2526.3 2568.9 8.8086 8.1847 1.1240 1419.8 2578.5 2526.3 2568.9 8.8084 8.1847 1.1240 1419.8 2578.5 2526.3 2568.9 8.8085 8.1847 1.1260 1422.4 2535.1 2526.3 2568.9 8.8085 8.1847 1.1260 1425.6 2587.3 2526.5 2568.8 -0.8086 8.1849 1.1380 1427.6 2627.8 2526.6 2568.9 8.8078 8.1849 1.1380 1427.6 2627.8 2526.6 2568.9 8.8078 8.1849 1.1324 1435.4 2565.5 2527.8 2569.0 -0.8086 8.1858 1.1348 1435.7 2566.7 2526.8 2569.0 -0.8086 8.1858 1.1380 1435.4 2645.5 2527.8 2569.1 -0.8086 8.1858 1.1380 1435.4 2645.5 2527.8 2569.1 -0.8086 8.1853 1.1480 1448.5 2582.6 2527.2 2569.1 -0.8085 8.1853 1.1480 1448.5 2582.6 2527.2 2569.1 -0.8085 8.1853 1.1480 1448.5 2582.6 2527.2 2569.1 -0.8085 8.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.8085 8.1853		1394 8	2421 2	2527.0	2570.4					,		
1.1080 1399.8 2440.2 2526.6 2569.7 -0.0102 0.1846 1.1120 1404.7 2467.4 2526.3 2569.5 0.00053 0.1846 1.1120 1404.7 2491.2 2526.3 2569.2 0.004.8 0.1846 1.1140 1407.2 2491.2 2526.3 2569.0 0.0004.8 0.1846 1.1160 1409.7 2494.4 2526.2 2569.0 0.0006 0.1846 1.1180 1412.2 2539.3 2526.2 2569.0 0.0006 0.1847 1.1200 1414.7 2524.1 2526.2 2568.9 -0.0003 0.1847 1.1220 1417.3 2544.1 2526.3 2568.9 0.0004 0.1847 1.1220 1417.3 2544.1 2526.3 2568.9 0.0005 0.1847 1.1240 1419.8 2570.5 2526.3 2568.9 0.0005 0.1847 1.1260 1422.4 2535.1 2526.3 2568.9 0.0005 0.1848 1.1280 1425.0 2587.3 2526.5 2568.8 -0.0006 0.1848 1.1300 1427.6 2627.8 2526.6 2568.9 0.0006 0.1849 1.1320 1430.2 2593.3 2526.6 2568.9 0.0006 0.1849 1.1320 1435.4 2645.5 2527.0 2569.0 0.0006 0.1850 1.1340 1432.7 2561.7 2526.8 2569.0 -0.0006 0.1850 1.1340 1435.4 2645.5 2527.0 2569.1 0.0016 0.1850 1.1380 1435.4 2645.5 2527.0 2569.1 0.0016 0.1852 1.1380 1438.0 2576.3 2527.2 2569.1 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0013 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0013 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0013 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0013 0.1853				2526.0	25/0.1		0.1843					
1.1100 1402.2 2441.3 2526.4 2569.5	1.1080	1399.8		2526.7	2565.5							
1.1120				2526.6	2560.7					1		
1.1148		1484.7		2526.4								
1.1160 1409.7 2494.4 2526.2 2569.0 0.0000 0.1846 1.1180 1412.2 2539.3 2526.2 2569.0 0.0000 0.1847 1.1200 1414.7 2524.1 2526.2 2568.9 -0.0000 0.1847 1.1220 1417.3 2544.1 2526.3 2568.9 0.0000 0.1847 1.1240 1419.8 2570.5 2526.3 2568.9 0.00052 0.1847 1.1260 1422.4 2535.1 2526.3 2568.9 0.0052 0.1847 1.1280 1425.0 2587.3 2526.5 2568.8 0.00052 0.1848 1.1280 1425.0 2587.3 2526.5 2568.8 0.00000 0.1849 1.1300 1427.6 2627.8 2526.6 2568.9 0.00078 0.1849 1.1320 1430.2 2593.3 2526.8 2569.0 -0.00066 0.1850 1.1340 1435.4 2645.5 2527.0 2569.1 0.00061 0.1850 1.1360 1435.4 2645.5 2527.0 2569.1 0.00061 0.1850 1.1380 1440.5 2582.6 2577.2 2569.1 0.0000000000000000000000000000000000		1407.2	2491 2	2526.3	2569.3							
1.1180	1.1160	1489.7	2494.4	2526.3	2569.Z							
1.1200		1412.2	2539.3	2526.2	2569.B							
1.1220 1417.3 2544.1 2526.3 2568.9 0.0040 0.1847 1.1240 1419.8 2570.5 2526.3 2568.9 0.0052 0.1847 1.1260 1422.4 2535.1 2526.3 2568.8 -0.0069 0.1848 1.1280 1425.0 2587.3 2526.5 2568.8 0.0102 0.1849 1.1300 1427.6 2627.8 2526.6 2568.9 0.0078 0.1849 1.1320 1430.2 2593.3 2526.8 2569.0 -0.0066 0.1850 1.1340 1432.7 2561.7 2526.8 2569.0 -0.0066 0.1850 1.1360 1435.4 2645.5 2527.0 2569.1 0.0161 0.1852 1.1380 1438.0 2576.3 2527.1 2569.1 -0.0161 0.1852 1.1380 1438.0 2576.3 2527.1 2569.1 -0.0161 0.1853 1.1400 1440.5 2582.6 2527.2 2569.2 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1854		1414.7	2524 1	2526.2	2565.0		W.1847					
1.1240 1419.8 2570.5 2526.3 2568.9 0.0052 0.1847 1.1260 1422.4 2535.1 2526.3 2568.8 -0.0069 0.1848 1.1280 1425.0 2587.3 2526.5 2568.8 0.0102 0.1849 1.1300 1427.6 2627.8 2526.6 2568.9 0.0078 0.1849 1.1320 1430.2 2593.3 2526.8 2569.0 -0.0066 0.1850 1.1340 1432.7 2561.7 2526.8 2569.0 -0.0061 0.1850 1.1360 1435.4 2645.5 2527.0 2569.1 0.0161 0.1852 1.1380 1438.0 2576.3 2527.1 2569.1 -0.0133 0.1853 1.1400 1440.5 2582.6 2527.2 2569.2 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1854		1417.3	2544.1	2526.2	2560.5							•
1.1260 1422.4 2535.1 2526.3 2568.8 -0.0069 0.1848 1.1280 1425.0 2587.3 2526.5 2568.8 0.0102 0.1849 1.1300 1427.6 2627.8 2526.6 2568.9 0.0078 0.1849 1.1320 1430.2 2593.3 2526.8 2569.0 -0.0066 0.1850 1.1340 1432.7 2561.7 2526.8 2569.0 -0.0061 0.1850 1.1360 1435.4 2645.5 2527.0 2569.1 0.0161 0.1852 1.1380 1438.0 2576.3 2527.1 2569.1 -0.0133 0.1853 1.1400 1440.5 2582.6 2527.2 2569.2 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1854				2526.3	2560.5							
1.1280			2535.1									
1.1300 1427.6 2627.8 2526.6 2568.9 Ø.0078 Ø.1849 1.1320 1430.2 2593.3 2526.8 2569.0 -0.0066 Ø.1850 1.1340 1432.7 2561.7 2526.8 2569.0 -0.0061 Ø.1850 1.1360 1435.4 2645.5 2527.0 2569.1 Ø.0161 Ø.1852 1.1380 1438.0 2576.3 2527.1 2569.1 -0.0133 Ø.1853 1.1400 1440.5 2582.6 2527.2 2569.2 Ø.0012 Ø.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 Ø.1854	1.1280						Ø.1048					
1.1320 1430.2 2593.3 2526.8 2569.0 -0.0066 0.1850 1.1340 1432.7 2561.7 2526.8 2569.0 -0.0061 0.1850 1.1360 1435.4 2645.5 2527.0 2569.1 0.0161 0.1852 1.1380 1438.0 2576.3 2527.1 2569.1 -0.0133 0.1853 1.1400 1440.5 2582.6 2527.2 2569.2 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1854				2526 6	2568 0							
1.1340 1432.7 2561.7 2526.8 2569.0 -0.0061 0.1850 1.1360 1435.4 2645.5 2527.0 2569.1 0.0161 0.1852 1.1380 1438.0 2576.3 2527.1 2569.1 -0.0133 0.1853 1.1400 1440.5 2582.6 2527.2 2569.2 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1854												
1.1360 1435.4 2645.5 2527.0 2569.1 0.0161 0.1852 1.1380 1438.0 2576.3 2527.1 2569.1 -0.0133 0.1853 1.1400 1440.5 2582.6 2527.2 2569.2 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1854				2526 9	2560 M							
1.1380 1438.0 2576.3 2527.1 2569.1 -0.0133 0.1853 1.1400 1440.5 2582.6 2527.2 2569.2 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1854				2520.0 2527 A								
1.1400 1440.5 2582.6 2527.2 2569.2 0.0012 0.1853 1.1420 1443.1 2555.2 2527.3 2569.1 -0.0053 0.1854				2527 1	2569.1							
1.1420 $1443.1$ $2555.2$ $2527.3$ $2569.1$ $-0.0053$ $0.1854$				2527 2								
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				2527 2								
דר בפנט בפנט בפנט בפנט בפנט בפנט בפנט בפנט	1.1440				2569.l							
		. 7 7 3 . 0	C J 1 C . 4	2341.4	4565.8	כטממ.מ-	Ø.1854		_		•	

•

TIME DEPTH INT.VEL. AVG.VEL. RMS.VEL. REF.CFT. TRN.LOSS  1.1468 1448.2 2588.2 2527.3 2569.8 8.8133 8.1856 1.1488 1458.8 2552.4 2527.4 2569.8 -8.8935 8.1856 1.1588 1453.2 2475.4 2527.3 2569.8 -8.8935 8.1856 1.1528 1455.8 2685.7 2527.4 2568.9 -8.8935 8.1856 1.1528 1455.8 2685.7 2527.4 2568.9 -8.8957 8.1864 1.1528 1458.4 2599.4 2527.6 2569.9 -8.8957 8.1864 1.1588 1463.6 2599.4 2527.7 2569.1 8.8928 8.1864 1.1588 1463.6 2594.9 2527.8 2569.1 8.8928 8.1864 1.1688 1466.2 2549.2 2527.9 2569.1 -8.8928 8.1864 1.1688 1466.2 2549.2 2527.9 2569.1 -8.8989 8.1864 1.1688 1471.4 2624.5 2528.8 2569.1 -8.8989 8.1865 1.1648 1471.4 2624.5 2528.2 2569.2 8.8935 8.1865 1.1688 1476.5 2548.6 2528.3 2569.2 -8.8976 8.1866 1.1788 1479.1 2595.7 2528.4 2569.3 -8.8976 8.1866 1.1788 1479.1 2595.7 2528.4 2569.3 -8.8918 8.1867 1.1728 1481.7 2567.5 2528.4 2569.3 -8.8918 8.1869 1.1768 1486.9 2615.8 2528.7 2569.3 8.8918 8.1869 1.1788 1489.5 2656.4 2528.9 2529.5 8.8918 8.1869 1.1788 1489.5 2656.4 2528.9 2529.5 8.8918 8.1869 1.1888 1492.2 2624.9 2529.9 2569.1 -8.8987 8.1869 1.1888 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1869 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1878 1.1898 1492.2 2624.9 2529.8 2569.5 8.8918 8.1878 1.1898 151.1 2546.3 2529.2 2569.5 8.8918 8.1878 1.1898 151.1 2546.3 2529.3 2569.5 8.8918 8.1878 1.1898 151.1 2546.3 2529.3 2569.1 8.8918 8.1878 1.1898 151.1 2546.3 2529.3 2569.1 8.8918 8.1878 1.1898 151.1 2546.3 2529.3 2569.1 8.8918 8.1878 1.1898 151.1 2546.3 2529.4 2559.3 8.8668 8.1876 1.2808 1527.7 257.7 1 2529.5 2559.1 8.2669.1 8.8917 8.1877 1.2808 1527.7 257.7 1 2529.5 2559.1 2569.1 8.8911 8.1877	
1.1468 1448.2 2588.2 2527.3 2569.8 8.8133 8.1856 1.1468 1458.8 2562.4 2527.4 2569.8 -8.8835 8.1856 1.1588 1453.2 2475.4 2527.3 2568.9 -8.8835 8.1858 1.1528 1455.8 2685.7 2527.4 2568.9 -8.8035 8.1858 1.1528 1455.8 2685.7 2527.4 2568.9 -8.8057 8.1864 1.1548 1458.4 2599.4 2527.6 2569.8 -8.8012 8.1864 1.1568 1461.8 2689.8 2527.7 2569.1 8.8828 8.1864 1.1588 1463.6 2594.9 2527.8 2569.1 -8.8829 8.1864 1.1628 1466.2 2549.2 2527.9 2569.1 -8.8829 8.1864 1.1628 1468.8 2686.2 2528.8 2569.1 8.80112 8.1865 1.1628 1474.8 2579.3 2528.2 2569.2 8.80112 8.1865 1.1668 1474.8 2579.3 2528.2 2569.3 -8.8876 8.1866 1.1688 1476.5 2548.6 2528.3 2569.2 -8.8876 8.1866 1.1788 1479.1 2595.7 2528.4 2569.3 -8.8876 8.1866 1.1748 1484.3 2573.6 2528.4 2569.3 8.8817 8.1868 1.1748 1484.3 2573.6 2528.5 2569.3 8.8877 8.1868 1.1748 1484.3 2573.6 2528.5 2569.3 8.88187 8.1868 1.1748 1489.5 2656.4 2528.9 2569.5 8.8877 8.1868 1.1788 1499.2 2624.9 2529.2 2569.7 8.8877 8.1868 1.1888 1499.2 2525.9 2529.2 2569.5 8.8877 8.1868 1.1888 1499.2 2525.9 2529.3 2569.5 8.8877 8.1869 1.1888 1499.9 2584.8 2529.3 2569.5 8.8877 8.1869 1.1888 1499.9 2584.8 2529.3 2569.5 8.8877 8.1869 1.1888 1499.9 2584.8 2529.3 2569.7 8.8883 8.1873 1.1888 1499.9 2584.8 2529.3 2569.7 8.8883 8.1873 1.1928 1587.5 2588.2 2529.3 2569.7 8.8883 8.1873 1.1928 1587.5 2588.1 2529.3 2569.7 8.8893 8.1879 1.1888 1587.5 2588.2 2529.3 2569.7 8.8893 8.1873 1.1928 1587.5 2588.2 2529.3 2569.7 8.8893 8.1873 1.1928 1587.5 2588.2 2529.3 2569.7 8.8893 8.1873 1.1928 1587.5 2588.2 2529.3 2569.7 8.8893 8.1875 1.1988 1515.7 2527.4 2529.3 2569.4 8.8897 8.1875 1.1988 1515.7 2527.4 2529.9 2569.9 8.8897 8.1875 1.1988 1515.7 2527.4 2529.9 2569.1 8.8814 8.1873 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2848 1522.7 2525.9 2529.9 2569.1 8.88113 8.1875	
1.1468 1448.2 2588.2 2527.3 2569.8 8.8133 8.1856 1.1468 1458.8 2562.4 2527.4 2569.8 -8.8835 8.1856 1.1588 1453.2 2475.4 2527.3 2568.9 -8.8835 8.1858 1.1528 1455.8 2685.7 2527.4 2568.9 -8.8035 8.1858 1.1528 1455.8 2685.7 2527.4 2568.9 -8.8057 8.1864 1.1548 1458.4 2599.4 2527.6 2569.8 -8.8012 8.1864 1.1568 1461.8 2689.8 2527.7 2569.1 8.8828 8.1864 1.1588 1463.6 2594.9 2527.8 2569.1 -8.8829 8.1864 1.1628 1466.2 2549.2 2527.9 2569.1 -8.8829 8.1864 1.1628 1468.8 2686.2 2528.8 2569.1 8.80112 8.1865 1.1628 1474.8 2579.3 2528.2 2569.2 8.80112 8.1865 1.1668 1474.8 2579.3 2528.2 2569.3 -8.8876 8.1866 1.1688 1476.5 2548.6 2528.3 2569.2 -8.8876 8.1866 1.1788 1479.1 2595.7 2528.4 2569.3 -8.8876 8.1866 1.1748 1484.3 2573.6 2528.4 2569.3 8.8817 8.1868 1.1748 1484.3 2573.6 2528.5 2569.3 8.8877 8.1868 1.1748 1484.3 2573.6 2528.5 2569.3 8.88187 8.1868 1.1748 1489.5 2656.4 2528.9 2569.5 8.8877 8.1868 1.1788 1499.2 2624.9 2529.2 2569.7 8.8877 8.1868 1.1888 1499.2 2525.9 2529.2 2569.5 8.8877 8.1868 1.1888 1499.2 2525.9 2529.3 2569.5 8.8877 8.1869 1.1888 1499.9 2584.8 2529.3 2569.5 8.8877 8.1869 1.1888 1499.9 2584.8 2529.3 2569.5 8.8877 8.1869 1.1888 1499.9 2584.8 2529.3 2569.7 8.8883 8.1873 1.1888 1499.9 2584.8 2529.3 2569.7 8.8883 8.1873 1.1928 1587.5 2588.2 2529.3 2569.7 8.8883 8.1873 1.1928 1587.5 2588.1 2529.3 2569.7 8.8893 8.1879 1.1888 1587.5 2588.2 2529.3 2569.7 8.8893 8.1873 1.1928 1587.5 2588.2 2529.3 2569.7 8.8893 8.1873 1.1928 1587.5 2588.2 2529.3 2569.7 8.8893 8.1873 1.1928 1587.5 2588.2 2529.3 2569.7 8.8893 8.1875 1.1988 1515.7 2527.4 2529.3 2569.4 8.8897 8.1875 1.1988 1515.7 2527.4 2529.9 2569.9 8.8897 8.1875 1.1988 1515.7 2527.4 2529.9 2569.1 8.8814 8.1873 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2888 1517.7 2527.4 2529.9 2569.1 8.8814 8.1875 1.2848 1522.7 2525.9 2529.9 2569.1 8.88113 8.1875	
1.1488 1458.8 2562.4 2527.4 2569.8 -8.8835 8.1856 1.1508 1453.2 2475.4 2527.3 2568.9 -8.8173 8.1858 1.1528 1455.8 2685.7 2527.4 2568.9 8.8257 8.1864 1.1548 1458.4 2527.3 2568.9 8.8012 8.1864 1.1568 1461.8 2668.8 2527.7 2569.1 8.8020 8.1864 1.1568 1463.6 2593.4 2527.8 2569.1 8.8020 8.1864 1.1688 1466.2 2543.2 2527.9 2559.1 -8.8020 8.1864 1.1628 1468.8 2666.2 2528.8 2559.1 -8.8089 8.1864 1.1628 1464.8 2666.2 2528.8 2559.1 -8.8089 8.1864 1.1688 1471.4 2624.5 2528.2 2559.2 8.8035 8.1865 1.1668 1474.8 2579.3 2528.2 2559.2 -8.8087 8.1866 1.1688 1476.5 2548.6 2528.3 2559.2 -8.8087 8.1866 1.1788 1479.1 2595.7 2528.4 2569.3 8.8187 8.1868 1.1748 1481.7 2567.5 2528.4 2569.2 -8.8076 8.1868 1.1748 1484.3 2573.6 2528.5 2569.3 8.8012 8.1868 1.1768 1486.9 2615.8 2528.7 2569.3 8.8081 8.1868 1.1789 1499.5 2615.8 2529.2 2569.3 8.8081 8.1868 1.1780 1492.2 2624.9 2529.8 2569.5 8.8081 8.1869 1.1880 1492.2 2624.9 2529.8 2569.5 8.8081 8.1869 1.1880 1492.2 2624.9 2529.8 2569.6 -8.8089 8.1869 1.1880 1492.4 2579.8 2529.3 2569.6 -8.8080 8.1869 1.1880 1497.4 2579.8 2529.3 2569.6 -8.8068 8.1869 1.1880 1582.4 2512.1 2529.2 2569.7 8.8089 8.1869 1.1880 1582.4 2512.1 2529.2 2569.7 8.8089 8.1879 1.1898 1517.7 2527.4 2529.3 2569.5 8.8014 8.1871 1.1908 1516.8 2557.2 2529.4 2569.3 8.8014 8.1871 1.1908 1516.8 2557.2 2529.4 2569.7 8.8089 8.1869 1.1908 1516.8 2557.2 2529.4 2569.7 8.8089 8.1875 1.1908 1516.8 2557.2 2529.3 2569.6 -8.8014 8.1871 1.1908 1516.8 2557.2 2529.3 2569.4 8.8097 8.1875 1.1908 1516.8 2557.2 2529.3 2569.4 8.8097 8.1875 1.1908 1516.7 2527.4 2529.4 2569.3 8.8087 8.1875 1.1908 1516.7 2527.4 2529.4 2569.3 8.8087 8.1875 1.1908 1516.7 2527.4 2529.4 2569.3 8.8087 8.1875 1.1908 1517.7 2527.4 2529.4 2569.3 8.8087 8.1875 1.1908 1517.7 2527.4 2529.4 2569.1 8.8087 8.1875 1.2808 1517.7 2527.4 2529.4 2569.1 8.8087 8.1876 1.2808 1522.7 2525.9 2529.3 2569.1 8.8087 8.1876 1.2808 1517.7 2527.4 2529.4 2569.1 8.8087 8.1876 1.2808 1522.2 2497.2 2529.3 2569.1 8.8087 8.1876 1.2808 1522.2 2497.2 2529.3 2569.1 8.8087 8.1876	
1.1488 1453.2 2475.4 2527.3 2568.9 -8.8035 8.1856 1.1528 1453.2 2475.4 2527.3 2568.9 -8.80173 8.1858 1.1528 1458.8 2685.7 2527.4 2558.9 9.8257 8.1864 1.1548 1458.4 2599.4 2527.6 2569.0 -8.8012 8.1864 1.1568 1461.0 2699.8 2527.7 2569.1 8.8020 8.1864 1.1568 1461.0 2699.8 2527.7 2569.1 8.8020 8.1864 1.1588 1463.6 2594.9 2527.8 2569.1 -8.8020 8.1864 1.1680 1466.2 2549.2 2527.9 2569.1 -8.8089 8.1864 1.1628 1468.8 2666.2 2528.8 2569.1 -8.8089 8.1864 1.1628 1471.4 2624.5 2528.2 2569.1 8.8011 8.1865 1.1648 1471.4 2579.3 2528.2 2569.2 8.8035 8.1865 1.1688 1476.5 2548.6 2528.3 2569.2 -8.8087 8.1866 1.1708 1479.1 2595.7 2528.4 2559.2 -8.8076 8.1866 1.17180 1479.1 2595.7 2528.4 2559.2 -8.8076 8.1868 1.1748 1481.7 2567.5 2528.4 2569.2 -8.8085 8.1868 1.1748 1484.3 2573.6 2528.5 2569.3 8.8012 8.1868 1.1748 1484.3 2573.6 2528.5 2569.3 8.8012 8.1868 1.1780 1489.5 2665.4 2528.9 2569.3 8.8081 8.1868 1.1780 1492.2 2624.9 2529.8 2569.5 8.8077 8.1869 1.1800 1492.2 2624.9 2529.8 2569.6 -8.8080 8.1869 1.1800 1499.9 2584.8 2529.7 2528.6 -8.8087 8.1869 1.1800 1499.9 2584.8 2529.3 2569.6 -8.8068 8.1879 1.1800 1499.9 2584.8 2529.3 2569.6 -8.8068 8.1879 1.1800 1499.9 2584.8 2529.3 2569.6 -8.8068 8.1879 1.1800 1500.4 2557.2 2528.3 2569.5 8.8071 8.1879 1.1800 1500.4 2557.2 2528.3 2569.6 -8.8068 8.1871 1.1900 1500.5 2582.3 2529.2 2569.7 8.8080 8.1869 1.1800 1499.9 2584.8 2529.3 2569.6 -8.8014 8.1871 1.1900 1500.5 2588.2 2569.3 2569.6 -8.8014 8.1871 1.1900 1500.5 2500.5 2529.4 2569.9 8.8097 8.1875 1.1900 1500.5 2500.5 2529.4 2569.9 8.8097 8.1875 1.1900 1500.5 2500.5 2529.4 2569.9 8.8097 8.1875 1.1900 1500.5 2500.5 2529.4 2569.9 8.8007 8.1875 1.1900 1500.5 2500.5 2529.4 2569.9 8.8007 8.1875 1.1900 1500.5 2500.5 2529.4 2569.9 8.8007 8.1875 1.1900 1500.5 2500.5 2529.4 2569.9 8.8007 8.1875 1.1900 1500.5 2500.5 2529.4 2569.5 8.8001 8.1875 1.1900 1500.5 2500.5 2529.4 2569.9 8.8000 8.1875 1.1900 1500.5 2500.5 2529.4 2569.9 8.8000 8.1875 1.1900 1510.7 2527.4 2529.4 2569.1 8.80007 8.1875 1.2800 1517.7 2527.4 2529.3 2569.1 8.80007 8.1875 1.2800 1500.5 2	
1.1526 1455.8 2665.7 2527.4 2568.9 8 .0.257 8.1864 1.1540 1458.4 2599.4 2527.7 2569.8 -0.8012 0.1864 1.1560 1461.0 2609.8 2527.7 2569.1 -0.8020 0.1864 1.1500 1463.6 2594.9 2527.9 2569.1 -0.8020 0.1864 1.1600 1466.2 2549.2 2527.9 2569.1 -0.8020 0.1864 1.1620 1468.8 2606.2 2528.0 2569.1 0.8011 0.1865 1.1640 1471.4 2624.5 2528.2 2569.2 0.8011 0.1865 1.1660 1474.0 2579.3 2528.2 2569.2 0.8011 0.1865 1.1680 1474.0 2579.3 2528.2 2569.2 0.8016 0.1866 1.1700 1479.1 2595.7 2528.4 2569.2 -0.8010 0.1866 1.1700 1479.1 2595.7 2528.4 2569.2 -0.8010 0.1866 1.1700 1481.7 2567.5 2528.5 2569.2 -0.8010 0.1866 1.1700 1486.9 2615.8 2528.5 2569.3 0.8010 0.1868 1.1760 1486.9 2615.8 2528.7 2569.3 0.8010 0.1868 1.1760 1489.5 2666.4 2528.7 2569.3 0.8010 0.1869 1.1800 1492.2 2624.9 2529.0 2569.5 0.8007 0.1869 1.1800 1494.8 2626.3 2529.2 2569.7 0.8080 0.1869 1.1800 1494.8 2626.3 2529.2 2569.7 0.8080 0.1869 1.1800 1499.9 2564.8 2529.3 2569.6 -0.8060 0.1869 1.1800 1499.9 2564.8 2529.3 2569.7 0.8080 0.1869 1.1800 1499.9 2564.8 2529.3 2569.7 0.8080 0.1869 1.1800 1499.9 2564.8 2529.3 2569.7 0.8080 0.1871 1.1900 1502.4 2512.1 2529.2 2569.5 0.8015 0.1871 1.1900 1502.2 2529.0 2529.3 2569.5 0.8015 0.1871 1.1900 1502.4 2512.1 2529.2 2569.5 0.8015 0.1871 1.1900 1512.6 2553.6 2529.3 2569.4 0.8007 0.1875 1.1900 1512.6 2553.6 2529.4 2569.3 0.8081 0.1875 1.1900 1512.6 2553.6 2529.4 2569.3 0.8087 0.1875 1.1900 1512.6 2553.6 2529.4 2569.3 0.8087 0.1875 1.1900 1512.6 2553.6 2529.4 2569.3 0.8087 0.1875 1.1900 1512.6 2553.6 2529.4 2569.3 0.8087 0.1875 1.1900 1512.6 2553.6 2529.4 2569.3 0.8087 0.1875 1.2000 152.5 2525.9 2529.3 2569.1 0.8087 0.1875 1.2000 152.5 2525.9 2529.3 2569.1 0.8087 0.1875 1.2000 152.5 2525.9 2529.3 2569.1 0.8087 0.1875 1.2000 152.5 2525.9 2529.3 2569.1 0.8087 0.1875 1.2000 152.5 2525.9 2529.3 2569.1 0.8087 0.1875 1.2000 152.5 2525.9 2529.3 2569.1 0.8087 0.1875 1.2000 152.5 2525.9 2529.3 2569.1 0.8087 0.1875 1.2000 152.5 2525.9 2525.9 2529.3 2569.1 0.8087 0.1876 1.2000 1525.3 2583.5 2529.4 2569.1 0.8011 0.1876	
1.1548	
1.1560 1461.0 2609.8 2527.7 2569.1 0.80020 0.1864 1.1580 1466.2 2549.2 2527.9 2569.1 0.80099 0.1864 1.1600 1466.2 2549.2 2527.9 2569.1 0.80099 0.1864 1.1620 1468.8 2606.2 2528.0 2569.1 0.80111 0.1865 1.1640 1471.4 2624.5 2528.2 2569.2 0.80035 0.1865 1.1660 1474.0 2579.3 2528.2 2569.3 0.80035 0.1865 1.1660 1474.0 2579.3 2528.2 2569.3 0.80037 0.1866 1.1700 1479.1 2595.7 2528.4 2569.2 0.80037 0.1866 1.1700 1479.1 2595.7 2528.4 2569.2 0.80036 0.1866 1.1740 1481.7 2567.5 2528.4 2569.2 0.8005 0.1868 1.1740 1484.3 2573.6 2528.5 2569.3 0.8001 0.1868 1.1740 1486.9 2615.8 2528.7 2569.3 0.8001 0.1868 1.1760 1486.9 2615.8 2528.7 2569.3 0.8001 0.1868 1.1800 1492.2 2624.9 2529.0 2569.6 0.8007 0.1869 1.1820 1494.8 2626.3 2529.2 2569.6 0.8007 0.1869 1.1840 1497.4 2579.0 2529.3 2569.6 0.8001 0.1869 1.1840 1497.4 2579.0 2529.3 2569.6 0.8001 0.1869 1.1840 1499.9 2564.8 2529.3 2569.7 0.8001 0.1870 1.1800 1502.4 2512.1 2529.2 2569.7 0.8001 0.1870 1.1900 1502.2 2624.9 2529.3 2569.6 0.8001 0.1870 1.1800 1502.4 2512.1 2529.2 2569.7 0.8001 0.1870 1.1900 1502.5 2503.2 2529.3 2569.6 0.8001 0.1870 1.1900 1502.5 2503.2 2529.3 2569.6 0.8001 0.1870 1.1900 1502.5 2503.2 2529.3 2569.6 0.8001 0.1870 1.1900 1502.5 2503.2 2529.3 2569.7 0.8001 0.1870 1.1900 1502.5 2503.2 2529.3 2569.6 0.8001 0.1870 1.1900 1502.5 2503.2 2529.3 2569.6 0.8001 0.1870 1.1900 1502.5 2503.2 2529.3 2569.6 0.8001 0.1870 1.1900 1502.5 2503.2 2529.3 2569.6 0.8001 0.1875 1.1900 1502.5 2503.2 2529.3 2569.4 0.80097 0.1875 1.1900 1512.6 2553.6 2529.4 2569.3 0.8001 0.1875 1.2000 1512.7 2522.2 2529.3 2569.1 0.8007 0.1875 1.2000 1512.7 2522.2 2529.3 2569.1 0.8007 0.1875 1.2000 1522.7 2525.9 2529.3 2569.1 0.8007 0.1875 1.2000 1522.7 2525.9 2529.3 2569.1 0.8007 0.1875 1.2000 1522.7 2525.9 2529.3 2569.1 0.8007 0.1875 1.2000 1522.7 2525.9 2529.3 2569.1 0.8007 0.1875 1.2000 1522.7 2525.9 2529.3 2569.1 0.8007 0.1875 1.2000 1522.7 2525.9 2529.3 2569.1 0.8007 0.1875 1.2000 1522.7 2525.9 2529.3 2569.1 0.80057 0.1875	
1.1588	
1.1688 1466.2 2549.2 2527.9 2569.1 -0.88889	
1.1620 1468.8 2606.2 2528.0 2569.1 0.0111 0.1865 1.1640 1471.4 2624.5 2528.2 2569.2 0.00035 0.1865 1.1660 1474.0 2579.3 2528.2 2569.2 0.00035 0.1866 1.1680 1476.5 2540.6 2528.3 2569.2 0.00076 0.1866 1.1700 1479.1 2595.7 2528.4 2569.2 0.00076 0.1866 1.1740 1481.7 2567.5 2528.4 2569.2 0.00076 0.1866 1.1740 1481.7 2567.5 2528.4 2569.2 0.00076 0.1868 1.1740 1484.3 2573.6 2528.4 2569.3 0.00076 0.1868 1.1740 1486.9 2615.8 2528.7 2569.3 0.0001 0.1868 1.1780 1489.5 2656.4 2528.9 2569.3 0.0001 0.1868 1.1800 1492.2 2624.9 2529.0 2569.5 0.00070 0.1869 1.1820 1494.8 2626.3 2529.2 2569.7 0.0000 0.1869 1.1840 1497.4 2579.0 2529.2 2569.7 0.0000 0.1869 1.1860 1499.9 2504.8 2529.3 2569.7 0.0001 0.1870 1.1860 1502.4 2512.1 2529.2 2569.5 0.0014 0.1871 1.1800 1502.4 2512.1 2529.3 2569.5 0.0014 0.1871 1.1900 1505.0 2500.1 2529.3 2569.4 0.0014 0.1871 1.1900 1505.0 2500.1 2529.3 2569.4 0.0014 0.1871 1.1900 1505.0 2500.1 2529.3 2569.4 0.0014 0.1871 1.1900 1505.0 2500.1 2529.3 2569.4 0.0014 0.1875 1.1900 1515.1 2546.3 2529.3 2569.4 0.0014 0.1875 1.1900 1515.1 2546.3 2529.4 2569.3 0.0007 0.1875 1.2000 1517.7 2527.4 2529.3 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.3 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.3 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.3 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.3 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.3 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.4 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.4 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.4 2569.1 0.0007 0.1875 1.2000 1525.3 2580.5 2529.4 2569.1 0.0007 0.1875	
1.1640 1471.4 2624.5 2528.2 2569.2 0.80835 0.1865 1.1660 1474.0 2579.3 2528.2 2569.2 -0.8087 0.1866 1.1700 1479.1 2595.7 2528.4 2569.2 -0.8076 0.1866 1.1700 1479.1 2595.7 2528.4 2569.2 -0.8075 0.1868 1.1740 1481.7 2567.5 2528.4 2569.2 -0.8055 0.1868 1.1740 1484.3 2573.6 2528.5 2569.3 0.8012 0.1868 1.1740 1484.3 2573.6 2528.5 2569.3 0.8012 0.1868 1.1760 1486.9 2615.8 2528.7 2569.3 0.8012 0.1868 1.1780 1489.5 2656.4 2528.9 2569.5 0.8077 0.1869 1.1800 1492.2 2624.9 2529.0 2569.6 -0.8070 0.1869 1.1820 1494.8 2626.3 2529.2 2569.7 0.8083 0.1869 1.1840 1497.4 2579.0 2529.3 2569.6 -0.80891 0.1870 1.1860 1499.9 2504.8 2529.3 2569.6 -0.80891 0.1870 1.1800 1502.4 2512.1 2529.2 2569.5 0.80146 0.1871 1.1900 1505.8 2580.2 2529.3 2569.5 0.8015 0.1871 1.1900 1505.8 2580.2 2529.3 2569.5 0.8015 0.1871 1.1920 1507.5 2508.1 2529.3 2569.4 -0.8087 0.1875 1.1940 1510.8 2557.2 2529.3 2569.4 -0.8087 0.1875 1.1960 1512.6 2553.6 2529.4 2569.3 -0.8087 0.1875 1.1980 1515.1 2546.3 2529.4 2569.3 -0.8087 0.1875 1.1980 1515.1 2546.3 2529.4 2569.3 -0.8087 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.80807 0.1876 1.2020 1520.3 2569.5 2529.4 2569.1 0.80807 0.1875	
1.1660 1474.0 2579.3 2528.2 2569.3 -0.8087 0.1866 1.1680 1476.5 2540.6 2528.3 2569.2 -0.80876 0.1866 1.1700 1479.1 2595.7 2528.4 2569.3 0.80107 0.1867 1.1720 1481.7 2567.5 2528.4 2569.2 -0.8055 0.1868 1.1740 1484.3 2573.6 2528.5 2569.3 0.8012 0.1868 1.1740 1484.3 2573.6 2528.5 2569.3 0.8012 0.1868 1.1780 1486.9 2615.8 2528.7 2569.3 0.8012 0.1868 1.1780 1489.5 2656.4 2528.9 2569.3 0.8077 0.1869 1.1800 1492.2 2624.9 2529.0 2569.6 -0.8086 0.1869 1.1820 1494.8 2626.3 2529.2 2569.7 0.8080 0.1869 1.1840 1497.4 2579.0 2529.3 2569.7 -0.8089 0.1870 1.1880 1499.9 2504.8 2529.3 2569.7 -0.8089 0.1870 1.1880 1502.4 2512.1 2529.2 2569.5 0.8015 0.1871 1.1920 1505.8 2580.2 2629.3 2569.5 0.8015 0.1871 1.1920 1505.8 2580.2 2629.3 2569.4 0.8014 0.1871 1.1940 1510.0 2557.2 2529.3 2569.4 0.8014 0.1874 1.1940 1510.0 2557.2 2529.3 2569.4 0.8014 0.1875 1.1980 1512.6 2553.6 2529.4 2569.4 0.8097 0.1875 1.1980 1517.7 2527.4 2529.4 2569.3 -0.8080 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.8080 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.8087 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.8087 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.8087 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.8087 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.80857 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.80857 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.80857 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.80857 0.1875 1.2040 1522.7 2525.9 2529.3 2569.1 0.80857 0.1875	
1.1680 1476.5 2540.6 2528.3 2569.2 -0.8076	
1.1700 1479.1 2595.7 2528.4 2569.3 0.8107 0.1867 1.1720 1481.7 2567.5 2528.4 2569.2 -0.0055 0.1868 1.1740 1484.3 2573.6 2528.5 2569.3 0.0012 0.1868 1.1760 1486.9 2615.8 2528.7 2569.3 0.0011 0.1868 1.1780 1489.5 2656.4 2528.9 2569.5 0.0077 0.1869 1.1820 1494.8 2626.3 2529.0 2569.6 -0.0060 0.1869 1.1820 1494.8 2626.3 2529.2 2569.7 0.0003 0.1869 1.1840 1497.4 2579.0 2529.3 2569.7 -0.0091 0.1870 1.1880 1502.4 2512.1 2529.2 2569.6 -0.0146 0.1871 1.1900 1505.0 2580.2 2529.3 2569.5 0.0015 0.1871 1.1900 1505.0 2580.2 2529.3 2569.5 0.0015 0.1871 1.1940 1510.0 2557.2 2529.3 2569.4 -0.0146 0.1871 1.1940 1510.0 2557.2 2529.3 2569.4 -0.0146 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 -0.0146 0.1875 1.1960 1515.1 2546.3 2529.4 2569.4 -0.0007 0.1875 1.1960 1515.1 2546.3 2529.4 2569.4 -0.0007 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.00037 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.00037 0.1875 1.2000 1525.3 2580.5 2529.4 2569.3 -0.00037 0.1875 1.2000 1525.3 2580.5 2529.4 2569.3 -0.00037 0.1875 1.2000 1525.3 2580.5 2529.4 2569.3 -0.00037 0.1875 1.2000 1525.3 2580.5 2529.4 2569.3 -0.00037 0.1875 1.2000 1525.3 2580.5 2529.4 2569.3 -0.00037 0.1875 1.2000 1525.3 2580.5 2529.4 2569.1 0.00057 0.1876 1.2000 1525.3 2583.5 2529.4 2569.1 0.00057	
1.1720 1481.7 2567.5 2528.4 2569.2 -0.0055	
1.1746 1484.3 2573.6 2528.5 2569.3 Ø.ØØ12 Ø.1868 1.176Ø 1486.9 2615.8 2528.7 2569.3 Ø.ØØ81 Ø.1869 1.180Ø 1492.2 2624.9 2529.Ø 2569.6 -Ø.ØØ6Ø Ø.1869 1.182Ø 1494.8 2626.3 2529.2 2569.7 Ø.ØØ91 Ø.1869 1.184Ø 1497.4 2579.Ø 2529.3 2569.7 -Ø.ØØ91 Ø.1870 1.186Ø 1499.9 25Ø4.8 2529.3 2569.7 -Ø.ØØ91 Ø.1871 1.188Ø 15Ø2.4 2512.1 2529.2 2569.5 Ø.ØØ15 Ø.1871 1.190Ø 15Ø5.Ø 2580.2 2529.3 2569.5 Ø.ØØ15 Ø.1871 1.190Ø 15Ø5.Ø 2580.2 2529.3 2569.6 -Ø.Ø146 Ø.1871 1.190Ø 15Ø5.Ø 2580.2 2529.3 2569.6 W.ØØ15 Ø.1871 1.190Ø 15Ø5.Ø 2580.2 2529.3 2569.6 W.ØØ15 Ø.1871 1.190Ø 15Ø5.Ø 2580.2 2529.3 2569.6 W.ØØ15 Ø.1874 1.194Ø 151Ø.Ø 2557.2 2529.3 2569.4 W.ØØ97 Ø.1875 1.196Ø 1512.6 2553.6 2529.4 2569.4 -Ø.ØØ97 Ø.1875 1.198Ø 1515.1 2546.3 2529.4 2569.4 -Ø.ØØ97 Ø.1875 1.20ØØ 1517.7 2527.4 2529.4 2569.3 -Ø.ØØ17 Ø.1875 1.20ØØ 1517.7 2527.4 2529.4 2569.3 -Ø.ØØ37 Ø.1875 1.20ØØ 152.6 2553.5 2529.4 2569.1 W.ØØ57 Ø.1876 1.20ØØ 152.5 2529.3 2569.1 -Ø.ØØ6Ø Ø.1876 1.20ØØ 1525.3 2583.5 2529.4 2569.1 Ø.ØØ57 Ø.1876 1.20ØØ 1525.3 2583.5 2529.4 2569.1 Ø.ØØ57 Ø.1876 1.20ØØ 1525.3 2583.5 2529.4 2569.1 Ø.ØØ57 Ø.1876	
1.1780 1489.5 2656.4 2528.9 2569.5 0.8077 0.1869 1.1800 1492.2 2624.9 2529.0 2569.6 -0.8060 0.1869 1.1820 1494.8 2626.3 2529.2 2569.7 0.8093 0.1869 1.1840 1497.4 2579.0 2529.3 2569.7 -0.8091 0.1870 1.1860 1499.9 2504.8 2529.3 2569.6 -0.8014 0.1871 1.1880 1502.4 2512.1 2529.2 2569.5 0.8015 0.1871 1.1900 1505.0 2580.2 2529.3 2569.5 0.8015 0.1871 1.1920 1507.5 2508.1 2529.3 2569.4 -0.8014 0.1873 1.1920 1507.5 2508.1 2529.3 2569.4 -0.8014 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 0.8097 0.1875 1.1980 1515.1 2546.3 2529.4 2569.4 -0.8007 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.8014 0.1875 1.2000 1525.3 2529.4 2569.1 -0.8007 0.1875 1.2000 1525.3 2529.4 2569.1 -0.8007 0.1875 1.2000 1525.3 2529.4 2569.1 -0.8007 0.1875 1.2000 1525.3 2529.4 2569.1 -0.8007 0.1875 1.2000 1525.3 2529.4 2569.1 -0.8007 0.1875 1.2000 1525.3 2529.4 2529.4 2569.1 -0.8007 0.1875 1.2000 1525.3 2583.5 2529.4 2569.1 0.80057 0.1876 1.2000 1525.3 2583.5 2529.4 2569.1 0.80057 0.1876	
1.1800 1492.2 2624.9 2529.0 2569.6 -0.0000 0.1869 1.1820 1494.8 2626.3 2529.2 2569.7 0.0003 0.1869 1.1840 1497.4 2579.0 2529.3 2569.7 -0.00091 0.1870 1.1860 1499.9 2504.8 2529.3 2569.6 -0.0146 0.1871 1.1880 1502.4 2512.1 2529.2 2569.5 0.0015 0.1871 1.1900 1505.0 2580.2 2529.3 2569.5 0.0134 0.1873 1.1920 1507.5 2508.1 2529.3 2569.4 -0.0142 0.1874 1.1940 1510.0 2557.2 2529.3 2569.4 0.0097 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 -0.0007 0.1875 1.1980 1515.1 2546.3 2529.4 2569.4 -0.0007 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.0014 0.1875 1.2000 1520.2 2497.2 2529.3 2569.1 0.0037 0.1875 1.2000 1520.2 2497.2 2529.3 2569.1 0.0037 0.1875 1.2000 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876 1.2000 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876	
1.1820 1494.8 2626.3 2529.2 2569.7 0.0003 0.1869 1.1840 1497.4 2579.0 2529.3 2569.7 -0.0091 0.1870 1.1860 1499.9 2504.8 2529.3 2569.6 -0.0146 0.1871 1.1880 1502.4 2512.1 2529.2 2569.5 0.0015 0.1871 1.1900 1505.0 2580.2 2629.3 2569.5 0.0015 0.1871 1.1920 1507.5 2508.1 2529.3 2569.4 -0.0142 0.1874 1.1940 1510.0 2557.2 2529.3 2569.4 0.0097 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 0.0007 0.1875 1.1980 1515.1 2546.3 2529.4 2569.4 -0.0007 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.00014 0.1875 1.2000 1520.2 2497.2 2529.3 2569.1 -0.00037 0.1875 1.2000 1520.2 2497.2 2529.3 2569.1 -0.00060 0.1876 1.2000 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876 1.2000 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876	
1.1840 1497.4 2579.0 2529.3 2569.7 -0.0091 0.1870 1.1860 1499.9 2504.8 2529.3 2569.6 -0.0146 0.1871 1.1880 1502.4 2512.1 2529.2 2569.5 0.0015 0.1871 1.1900 1505.0 2580.2 2529.3 2569.5 0.0134 0.1873 1.1920 1507.5 2508.1 2529.3 2569.4 -0.0142 0.1874 1.1940 1510.0 2557.2 2529.3 2569.4 0.0097 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 -0.0007 0.1875 1.1980 1515.1 2546.3 2529.4 2569.4 -0.0007 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.0014 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.0037 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.0037 0.1876 1.2040 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876	
1.1860 1499.9 2504.8 2529.3 2569.6 -0.0146 0.1871 1.1880 1502.4 2512.1 2529.2 2569.5 0.00134 0.1871 1.1900 1505.0 2580.2 2529.3 2569.5 0.0134 0.1873 1.1920 1507.5 2508.1 2529.3 2569.4 -0.0142 0.1874 1.1940 1510.0 2557.2 2529.3 2569.4 0.0097 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 -0.00007 0.1875 1.1980 1515.1 2546.3 2529.4 2569.3 -0.00007 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.00007 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.00007 0.1875 1.2000 1520.2 2497.2 2529.3 2569.1 -0.00000 0.1876 1.2000 1525.3 2583.5 2529.4 2569.1 0.00000 0.1876 1.2000 1525.3 2583.5 2529.4 2569.1 0.00000 0.1876	
1.1880 1502.4 2512.1 2529.2 2569.5 0.0015 0.1871 1.1900 1505.0 2580.2 2529.3 2569.5 0.0134 0.1873 1.1920 1507.5 2508.1 2529.3 2569.4 -0.0142 0.1874 1.1940 1510.0 2557.2 2529.3 2569.4 0.0007 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 -0.0007 0.1875 1.1980 1515.1 2546.3 2529.4 2569.3 -0.0014 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.0014 0.1875 1.2000 1522.7 2525.9 2529.3 2569.1 -0.0060 0.1876 1.2040 1522.7 2525.9 2529.3 2569.1 0.0057 0.1876 1.2040 1522.7 2525.9 2529.3 2569.1 0.0057 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876	
1.1900 1505.0 2500.2 2529.3 2569.5 0.0134 0.1873 1.1920 1507.5 2508.1 2529.3 2569.4 -0.0142 0.1874 1.1940 1510.0 2557.2 2529.3 2569.4 0.0097 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 -0.00007 0.1875 1.1980 1515.1 2546.3 2529.4 2569.3 -0.0014 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.0037 0.1875 1.2000 1520.2 2497.2 2529.3 2569.1 -0.0037 0.1875 1.2040 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876	
1.1920 1507.5 2508.1 2529.3 2569.4 -0.00142 0.1874 1.1940 1510.0 2557.2 2529.3 2569.4 0.0097 0.1875 1.1960 1512.6 2553.6 2529.4 2569.4 -0.00007 0.1875 1.1980 1515.1 2546.3 2529.4 2569.3 -0.00014 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.00037 0.1875 1.2000 1520.2 2497.2 2529.3 2569.1 -0.00000 0.1876 1.2040 1522.7 2525.9 2529.3 2569.1 0.00057 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876	
1.1960 1512.6 2553.6 2529.4 2569.4 -0.00007 0.1875 1.1980 1515.1 2546.3 2529.4 2569.3 -0.0014 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.0037 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.00060 0.1876 1.2040 1522.7 2525.9 2529.3 2569.1 0.0067 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0057 0.1876	
1.1980 1515.1 2546.3 2529.4 2569.3 -0.0014 0.1875 1.2000 1517.7 2527.4 2529.4 2569.3 -0.0037 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.0060 0.1876 1.2040 1522.7 2525.9 2529.3 2569.1 0.0057 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0113 0.1877	
1.2000 1517.7 2527.4 2529.4 2569.3 -0.0037 0.1875 1.2020 1520.2 2497.2 2529.3 2569.1 -0.0060 0.1876 1.2040 1522.7 2525.9 2529.3 2569.1 0.0057 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0113 0.1877	
1.2020 1520.2 2497.2 2529.3 2569.1 -0.0060 0.1876 1.2040 1522.7 2525.9 2529.3 2569.1 0.0057 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0113 0.1877	
1.2040 1522.7 2525.9 2529.3 2569.1 0.0057 0.1876 1.2060 1525.3 2583.5 2529.4 2569.1 0.0113 0.1877	
1.2060 1525.3 2583.5 2529.4 2569.1 0.0113 0.1877	
1.2080 $1527.9$ $2577.1$ $2529.5$ $2569.1$ $-0.0013$ $0.1877$	
1.2100 1530.4 2545.6 2529.5 2569.1 -0.0061 0.1877	
1.2120 1532.9 2550.4 2529.6 2569.0 0.0010 0.1877	
1.214Ø 1535.5 2558.4 2529.6 2569.Ø Ø.ØØ16 Ø.1877	
1.216Ø 1538.Ø 2529.2 2529.6 2568.9 -Ø.ØØ57 Ø.1878	
1.2180 1540.5 2510.5 2529.6 2568.9 -0.0037 0.1878	
1.2200 1543.1 2599.0 2529.7 2568.9 0.0173 0.1880	
1.2220 1545.7 2566.4 2529.7 2568.9 -0.0063 0.1880 1.2240 1548.3 2579.6 2529.8 2568.9 0.0026 0.1880	
1.2240 1548.3 2579.6 2529.8 2568.9 0.0026 0.1880 1.2260 1550.9 2558.9 2529.9 2568.9 -0.0040 0.1881	
1.228Ø 1553.3 2498.4 2529.8 2568.8 -Ø.Ø119 Ø.1882	•
1.2300 1555.8 2478.7 2529.7 2568.6 -0.0040 0.1882	
1.232Ø 1558.3 2473.9 2529.7 2568.5 -Ø.ØØ1Ø Ø.1882	
1.2340 1560.8 2521.4 2529.6 2568.4 0.0095 0.1883	
1.236ø 1563.3 2519.8 2529.6 2568.3 -Ø.ØØØ3 Ø.1883	
1.2380 1565.9 2539.6 2529.6 2568.3 Ø.ØØ39 Ø.1883	
1.2400 1568.3 2444.2 2529.5 2568.1 -0.0191 0.1806 1.2420 1570.8 2471.1 2529.4 2567.9 0.0055 0.1806	
1.2440 1573.3 2464.1 2529.3 2567.8 -Ø.ØØ14 Ø.1886	
1.246Ø 1575.7 2478.8 2529.2 2567.6 Ø.ØØ3Ø Ø.1886	
1.248Ø 1578.2 2467.3 2529.1 2567.5 -Ø.ØØ23 Ø.1886	
1.2500 1580.6 2428.1 2529.0 2567.3 -0.0000 0.1887	
1.2520 1583.1 2501.6 2528.9 2567.2 0.0149 0.1888	
1.2540 1585.6 2512.4 2528.9 2567.1 0.0021 0.1888	,
	•
1.2560 1588.1 2481.8 2528.8 2566.9 -0.0061 0.1889	•
1.2560 1588.1 2481.8 2528.8 2566.9 ~0.0061 0.1889 1.2580 1590.6 2502.4 2528.8 2566.8 0.0041 0.1889 1.2600 1593.1 2511.6 2528.7 256 <u>6</u> .8 0.0019 0.1889	

,

•							-3		•		
TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS					
1.2620	1595.7	2563.Ø	2528.8	2566.7	Ø.Ø1Ø1	Ø.189Ø	•	•		•	
1.264Ø 1.266Ø	1598.2 1600.7	2519.3 2457.3	2528.8 2528.7	2566.7 2566.5	-Ø.ØØ86 -Ø.Ø125	Ø.189Ø Ø.1892					
1.2680	1603.1	2441.9	2528.5	2566.3	-Ø.ØØ31	Ø.1892					
1.2700	1605.6	2496.7	2528.5	2566.2	Ø.Ø111 - Ø. ØØ93	Ø.1893 Ø.1893	*	•			
1.272Ø 1.274Ø	1608.1 1610.5	2456.2 2443.9	2528.4 2528.2	2566.Ø 2565.8	-Ø.ØØ82 -Ø.ØØ25	Ø.1893					
1.2760	1613.1	253Ø.1	2528.2	2565.8	Ø.Ø173	Ø.1896			•		
1.278Ø 1.28ØØ	1615.6 1618.3	2525.3 27Ø7.8	2528.2 2528.5 '	2565.7 2566.Ø	-Ø.ØØØ9 Ø.Ø349	Ø.1896 Ø.19Ø6					
1.2820	1620.9	2616.9	2528.7	2566.Ø	-Ø.Ø171	Ø.19Ø8					
1.2840	1623.4	25Ø4.9	2528.6	2565.9	-Ø.Ø219	Ø.1912					
1.286Ø 1.288Ø	1625.9 1628.5	2445.6 2626.Ø	2528.5 2528.6	2565.8 2565.9	-Ø.Ø12Ø Ø.Ø356	Ø.1913 Ø.1923					
1.2900	1631.Ø	2542.1	2528.7	2565.8	-ø.ø162	Ø.1925					
1.292Ø 1.294Ø	1633.6 1636.Ø	2556.6 243Ø.1	2528.7 2528.6	2565.8 2565.6	Ø.ØØ28 -Ø.Ø254	Ø.1925 Ø.1931					
1.2960	1638.4	2438.Ø	2528.4	2565.4	Ø.ØØ16	Ø.1931					
1.2980	1640.9	2489.8	2528.4	2565.3	Ø.Ø1Ø5 Ø.ØØ67	Ø.1932 Ø.1932					
1.3000° 1.3020	1643.5 1646.Ø	2523.6 25Ø3.3	2528.3 2528.3	2565.2 2565.1	-0.0040	Ø.1932					
1.3040	1648.5	2542.9	2528.3	2565.1	Ø.ØØ78	Ø.1933					
1.3060 1.3080	1651.Ø 1653.5	2499.4 2487.Ø	2528.3 2528.2	2565.Ø 2564.9	-Ø.ØØ86 -Ø.ØØ25	Ø.1933 Ø.1933					
1.3100	1656.Ø	2537.Ø	2528.2	2564.8	Ø.Ø1ØØ	Ø.1934	•				
1.312Ø 1.314Ø	1658.6 1661.2	2562.7 2633.3	2528.3 2528.4	2564.8 2564.9	Ø.ØØ5Ø Ø.Ø136	Ø.1934 Ø.1936					
1.316Ø	1663.7	2504.5	2528.4	2564.9	-Ø.Ø251	Ø.1941					
1.3180	1666.2	2475.5	2528.3	2564.7	-Ø.ØØ58	Ø.1941 Ø.1947				•	
1.3200 1.3220	1668.8 1671.4	2619.2 2621.9	2528.5 2528.6	2564.8 2564.9	Ø.Ø282 Ø.ØØØ5	Ø.1947					
1.322Ø 1.324Ø	1674.Ø	2528.1	2528.6	2564.8	-ø.ø182	Ø.195Ø					
1.326Ø 1.328Ø	1676.4 1678.9	2458.4 2469.3	2528.5 2528.4	2564.7 2564.5	-Ø.Ø14Ø Ø.ØØ22	Ø.1952 Ø.1952					
1.3300	1681.5	2593.3	2528.5	2564.6	Ø.Ø245	Ø.1957					
1.3320	1684.Ø 1686.6	2524.4 2551.8	2528.5 2528.5	2564.5 2564.5	-Ø.Ø135 Ø.ØØ54	Ø.1958 Ø.1958					
1.334Ø 1.336Ø	1689.1	2523.3	2528.5	2564.4	-Ø.ØØ56	Ø.1958					
1.338Ø 1.34ØØ	1691.7	2556.3 2446.4	2528.6 2528.5	2564.4 2564.3	Ø.ØØ65 -Ø.Ø22Ø	Ø.1959 Ø.1963					
1.3420	1694.1 1696.6	2473.2	2528.4	2564.1	Ø.ØØ54	Ø.1963					
1.3440	1699.Ø	2472.3	2528.3	2564.Ø	-0.0002	Ø.1963 Ø.1963					
1.346Ø 1.348Ø	17Ø1.5 17Ø4.1	247Ø.6 2559.4	2528.2 2528.2	2563.9 2563.8	-Ø.ØØØ3 Ø.Ø176	Ø.1965					
1.3500	1706.6	2538.6	2528.3	2563.8	-0.0041	Ø.1966					
1.352Ø 1.354Ø	17Ø9.1 1711.7	2515.8 2547.Ø	2528.2 2528.3	2563.7 2563.7	-Ø.ØØ45 Ø.ØØ62	Ø.1966 Ø.1966					•
1.356Ø	1714.4	269Ø.1	2528.5	2563.9	Ø.Ø273	Ø.1972					
1.358Ø - 1.3600	1716.9 1719.4	2559.8 2516.3	2528.6 2528.5	2563.9 2563.8	-£.Ø248 -Ø.ØØ86	Ø.1977 Ø.1978					
1.3620	1722.1	2659.2	2528.7	2564.Ø	Ø.Ø276	Ø.1984					
1.3640	1724.7	26Ø9.Ø 2593.4	2528.8 2528.9	2564.Ø 2564.1	-Ø.ØØ95 -Ø.ØØ3Ø	Ø.1984 Ø.1984					
1.366Ø 1.368Ø	1727.3 1729.8	2593.4	2528.9	2564.1 2564.Ø	-ø.ø226	Ø.1989					
1.3700	1732.4	26Ø8.4	2529.Ø	2564.Ø	Ø.Ø255	Ø.1994					
1.372Ø 1.374Ø	1735.Ø 1737.6	2581.Ø 2618.6	2529.1 2529.2	2564.1 2564.1	-Ø.ØØ53 Ø.ØØ72	Ø.1994 Ø.1994					
1.3760	1740.3	2732.2	2529.5	2564.4	Ø.Ø212	Ø.1998		_			

Time DePth Intruct. ANG.VEL. ANG.VEL. C P. P. TRI. LOSS  1.30809 1745.7 2691.6 2530.4 2564.6 P. P. P. P. P. P. P. P. P. P. P. P. P.																
1. 3826   1740.2   2591.6   2538.8   2554.8   -8.8815   6.1998   1.13828   1740.2   25281.8   2538.8   2564.7   -8.8825   6.1998   1.13828   1755.4   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.		TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS							•	
1. 3826   1740.2   2591.6   2538.8   2554.8   -8.8815   6.1998   1.13828   1740.2   25281.8   2538.8   2564.7   -8.8825   6.1998   1.13828   1755.4   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.8   25281.		1.378Ø	1743. a	2710 1	2529 7	2564 6	0	<i>«</i> 1000				•				
1.3828   1758.8   2528.1   2538.8   2564.7   8.8229   8.2889   8.2889   1758.8   2573.4   2538.8   2564.7   8.8858   8.2889   1758.8   2775.2   2775.2   2538.8   2564.7   8.8858   8.2889   1.3889   1755.2   2775.2   2538.8   2564.6   8.8858   8.2889   1.3889   1755.2   2775.2   2538.8   2564.6   8.8858   8.2889   1.3899   1755.2   2775.2   2538.8   2565.4   8.8858   8.2889   1.3899   1755.2   2775.2   2538.8   2565.4   8.8858   1.3899   1.3899   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1.3958   1		1.3800														
1.3948   1758.8   2573.4   2538.7   2564.8   3.6954   8.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2008   3.2		1.3820	1748 2				~ ~ ~ ~ ~ ~ ~ ~	W.1998								
1.3868   1753.4   2681.2   2538.5   2564.8   8.1854   8.1854   8.1854   8.1854   8.1854   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8.1855   8		1 3840	1750.2		2530.0			W.2WW7	•					•		
1.3988 1756.2 2775.5 2538.8 2565.1 8.8924 8.216 1.3988 1758.9 1769.9 2765.8 2538.8 2565.4 8.8973 8.2216 1.3988 1764.7 2687.7 2581.8 2586.4 8.8973 8.2218 1.3988 1764.7 2687.7 2581.8 2586.5 4 8.8973 8.2218 1.3988 1778.4 2982.7 2582.1 2582.1 2582.1 2582.1 8.8973 8.2223 1.3988 1778.4 2982.7 2582.7 2582.8 8.8973 8.2223 1.44828 1778.4 2982.7 2582.7 2582.7 2587.2 8.8253 8.2223 1.44828 1778.4 2982.7 2582.8 2583.7 2582.1 8.8973 8.2222 1.44828 1779.8 2829.3 2583.1 2583.1 8.8973 8.2222 1.44828 1779.8 2829.3 2583.1 2583.6 8.8983 8.2233 1.44828 1789.8 2829.3 2583.1 2583.6 8.8983 8.2833 1.44828 1789.8 2282.3 2583.1 2583.6 8.8983 8.2833 1.44828 1789.8 2282.3 2583.4 8.2863.8 8.8983 8.2833 1.44828 1789.8 2282.3 2583.1 8.2863.8 8.8983 8.2833 1.4483 1789.8 2289.3 2583.6 2583.8 8.8983 8.2833 1.4483 1789.8 2289.8 2583.6 2583.8 8.8983 8.2833 1.4488 1789.8 2289.8 2583.8 2583.6 8.8983 8.2833 1.4488 1789.4 2283.8 2583.1 8.2833 1.4488 1789.4 2283.8 2583.1 8.2833 1.4488 1789.4 2283.8 2583.1 8.2873.8 8.8922 8.2855 1.4428 1884.9 2283.8 2583.1 8.2873.8 8.8923 8.2855 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2855 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2855 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2855 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.8 2838.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.8 2838.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2583.8 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.4 2838.8 2583.8 25872.1 8.8923 8.2892 1.4428 1884.9 2938.9 2838.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583.8 2583	•	1 3860	1750.0		2530.0	2564.7	Ø.Ø1Ø5	Ø.2ØØ8	•							
1.3988   1759.8   2766.9   2531.3   2531.8   2555.4   -8.8816   8.2016   1.3928   1761.6   2853.7   2551.3   2555.9   8.80173   8.2019   1.3928   1767.5   2755.3   2552.8   2556.9   8.8847   8.2029   1.3928   1767.5   2755.3   2552.8   2556.9   8.8847   8.2029   1.4828   1779.3   2592.7   2532.7   2552.8   2556.9   8.8847   8.2029   1.4828   1779.3   2592.7   2532.7   2557.7   8.8873   8.2029   1.4828   1779.3   2592.7   2532.7   2556.9   8.8847   8.2029   1.4828   1779.3   2592.8   2533.4   2556.9   8.8847   8.2029   1.4828   1779.8   2829.8   2534.1   2556.5   8.8847   8.2029   1.4828   1779.8   2599.8   2534.6   2559.8   8.8898   8.2033   1.4828   1779.8   2592.8   2535.2   2559.6   8.8888   8.2033   1.4828   1779.8   2592.8   2535.2   2557.2   8.8898   8.2033   1.4828   1779.8   2592.8   2536.6   2557.9   8.8898   8.2033   1.4828   1779.8   2592.8   2536.6   2557.9   8.8898   8.2033   1.4828   1793.8   2593.8   2536.6   2557.9   8.8898   8.2033   1.4828   1801.9   2593.8   2536.8   2557.2   8.8028   8.2033   1.4228   1801.9   2593.8   2537.8   2557.1   8.8238   8.2056   1.4228   1801.9   2593.8   2537.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2593.8   2557.7   8.8828   8.2056   1.4228   1801.9   2705.8   2557.7   8.8828   8.2056   1.4228   1801.9   2705.8   2557.7   8.8828   8.2056   1.4228   1801.9   2705.8   2557.7   8.8828   8.2056   1.4228   1801.9   2705.8   2557.7   8.8828   8.2056   1.4228   1801.9   2705.8   2557.7   8.8828   8.2056   8.2056   1.4228   1801.9   2705.8   2557.7   8.8828   8.2056   8.2056   1.4228   1801.9   2705.8   2557.7   8.8828   8.2056   8.2056   8		1 2000			2530.1	2564.8	Ø.ØØ54	Ø.2ØØ8	* •			_				
1.3928   1761.8   2863.9   2531.3   2565.9   8.81973   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.2819   8.		1 2000			2530.5		Ø.Ø324	Ø.2Ø16				·				
1.0548		1.3900	1759.0	2/66.8			-Ø.ØØ16	Ø.2Ø16								
1.3968 1775.4 2789.3 2532.1 2566.6 -8.8227 8.2023 1.4828 1775.1 2882.2 2533.7 2564.1 8.0253 8.2023 1.4828 1776.1 2882.3 2533.7 2564.1 8.0253 8.2023 1.4828 1776.1 2828.3 2533.7 2564.1 8.0263 8.2023 1.4828 1776.1 2828.3 2534.6 2564.6 2569.8 8.0263 1.4828 1776.1 2828.3 2534.6 2569.6 8.0263 8.0263 1.4828 1776.1 2828.3 2534.6 2569.6 8.0263 8.0263 1.4828 1776.1 2828.3 2534.6 2569.6 8.0263 8.0263 1.4828 1776.1 2828.3 2534.6 2569.6 8.0263 8.0263 1.4828 1776.1 2828.3 2534.6 2569.6 8.0263 8.0263 1.4828 1776.1 2828.3 2537.2 2536.1 25776.4 8.0283 8.2032 1.4828 1776.1 2782.4 2919.7 2536.6 2578.9 8.0263 8.2033 1.4828 1776.1 2782.4 2919.7 2536.6 2578.9 8.0263 8.2033 1.4828 1782.4 2919.7 2536.6 2578.9 8.0263 8.2033 1.4828 1881.9 2238.3 2537.8 2557.1 28.0253 8.2033 1.4228 1881.9 2238.3 2537.8 2557.1 28.0253 8.2033 1.4228 1881.9 2238.3 2537.8 2557.2 28.0253 8.2034 1.4228 1887.3 2777.4 2538.4 2532.4 2577.2 4.0253 8.2034 1.4228 1887.3 2777.4 2538.4 2532.4 2577.2 4.0253 8.2034 1.4238 1881.9 2238.3 2537.8 2557.3 8.0253 8.2034 1.4238 1881.9 2238.3 2537.8 2557.3 8.0253 8.2034 1.4238 1881.9 2238.3 2537.8 2537.4 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.0253 8.2034 1.4388 1881.9 2238.3 2537.8 2537.4 8.0253 8.0253 8.2034 1.4388 1881.9 2238 2538.8 2537.4 8.0253 8.0253 8.2034 1.4388 1881.9 2238.3 2538.8 2537.4 8.0253 8.0253 8.2034 1.4388 1881.9 2238.3 2538.8 2537.5 8.0253 8.0253 8.2034 1.4388 1881.9 2238.3 2538.8 2537.5 8.0253 8.0253 8.2034 1.4388 1881.9 2238.3 2538.3 2538.3 2537.3 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253 8.0253		1.3920		2863.9	2531.3	2565.9	Ø.Ø173	Ø.2Ø19								
1.4988   1775.3   2046.2   255.7   2567.2   8.8255   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.		1.3940	1764.7	2887.7	2531.8	2566.4	Ø.ØØ41	Ø.2Ø19								
1.4988   1775.3   2046.2   255.7   2567.2   8.8255   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.2258   8.		1.3960	1767.5		2532.1		-Ø.Ø227	Ø.2Ø23								
1.4828		1.3980	1770.4	2902.7	2532.7		Ø.Ø253	Ø.2Ø28								
1.4848   1776.1   2808.9   2853.7   2868.1   #8.928    8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2832   8.2332   8.2332   8.2332   8.2332   8.2332   8.2332   8.2332   8.2332   8.2332   8.2332		1.4000		2945.2	2533.3	2567.7	Ø.ØØ73	Ø.2Ø29								
1 - 1.488		1.4020	1776.1	2828.9	2533.7	2568.1	-Ø.Ø2Ø1	Ø.2Ø32								
1 - 1.488		1.4848		2829.3	2534.1		Ø.ØØØ1	Ø.2Ø32								
1.4128   1787.6   2797.9   2535.6   2578.8   -8,8284   8,2841     1.4128   1798.5   2244.9   2535.1   2578.8   -8,8284   8,2841     1.4128   1798.5   2244.9   2535.1   2578.8   -8,8212   8,2841     1.4128   1799.8   2818.8   2535.3   2537.2   -8,8121   8,2842     1.4128   1799.8   2818.8   2537.3   2537.3   2537.3   2537.3   2537.3     1.4228   1881.9   2383.3   2537.3   2537.3   2537.3   2537.3   2537.3     1.4228   1887.3   2777.4   2538.4   2572.5   8,8193   8,2877     1.4248   1887.3   2777.4   2538.4   2572.5   8,8193   8,2877     1.4258   1811.8   2786.8   2538.6   2572.7   -8,8193   8,2877     1.4258   1811.8   2786.8   2533.8   2573.1   8,8239   8,2877     1.4258   1811.8   2786.8   2538.6   2577.7   -8,8138   8,2877     1.4268   1812.7   2638.4   2533.8   2573.1   8,8239   8,2877     1.4268   1812.7   2638.4   2544.4   2544.8   2547.5   8,8858     1.4388   1824.3   2824.2   2844.4   2544.8   2547.5   8,8858     1.4388   1822.1   2818.3   2541.2   2575.1   -8,8856   8,2898     1.4489   1822.9   2818.9   2541.9   2575.8   8,8843   8,2898     1.4489   1822.9   2818.9   2541.9   2575.8   8,8843   8,2898     1.4489   1822.9   2818.9   2541.9   2575.8   8,8843   8,2898     1.4488   1843.8   2613.2   2544.2   2576.5   -8,8813   8,2898     1.4488   1843.8   2613.2   2544.8   2577.5   8,8813   8,2898     1.4488   1843.8   2613.2   2544.8   2577.5   8,8813   8,2898     1.4488   1843.8   2613.2   2544.8   2577.5   8,8813   8,2898     1.4488   1843.8   2613.2   2544.8   2577.5   8,8818   8,2898     1.4488   1843.8   2613.2   2544.8   2577.5   8,8818   8,2898     1.4488   1843.8   2613.2   2544.8   2577.5   8,8818   8,2898     1.4488   1843.8   2613.2   2544.8   2577.5   8,8818   8,2898     1.4588   1845.6   2624.9   2543.3   2577.5   8,8818   8,2898     1.4688   1857.6   2588.8   2584.9   2577.5   8,8818   8,2898     1.4688   1857.6   2588.8   2584.9   2577.5   8,8821   8,2898     1.4688   1857.6   2588.8   2588.8   2577.7   8,8821   8,2898     1.4888   1857.6   2588.8   2588.8   2577.7   8,8821   8,2888   8,288		1.4060	1781.9	29Ø9.8	2534.6	2569.Ø	Ø.Ø14Ø	Ø.2Ø33								
1.4188 1797.6 2691.7 2635.6 2579.8 -8.8294 8.2841 1.4188 1795.1 2691.7 2636.6 2579.8 -8.8294 8.2841 1.4188 1795.1 2691.7 2636.6 2579.8 -8.8294 8.2841 1.4168 1795.1 2795.8 2616.8 2570.9 2671.2 -9.8255 1.4168 1795.1 2795.8 2616.8 2570.3 2571.2 -9.8255 1.4288 1881.9 2796.8 2637.3 2571.2 -9.8255 1.4288 1881.9 2796.8 2538.8 2572.2 -8.8461 8.2873 1.4268 1881.8 2786.8 2538.8 2572.2 -8.8468 8.2875 1.4268 1881.8 2786.8 2538.8 2572.7 -8.89138 8.2875 1.4288 1881.9 2683.4 2593.8 2572.7 -8.89138 8.2875 1.4288 1881.7 2682.7 2538.4 2573.4 -8.88288 1.4388 1885.7 266.4 2539.7 2573.8 -8.88258 1.4388 1882.1 2786.4 2539.7 2573.8 -8.88758 1.4488 1821.2 2881.8 2544.8 2544.2 2574.7 -8.8928 8.2889 1.4488 1827.3 2644.4 2539.7 2573.8 -8.88758 8.2889 1.4488 1829.9 2818.9 2541.5 2574.3 8.8276 8.2889 1.4448 1823.6 2682.8 2542.3 2576.2 -8.8813 8.2898 1.4448 1835.6 2682.8 2542.3 2576.2 -8.8813 8.2998 1.4488 1828.2 2683.8 2542.3 2576.2 -8.8813 8.2998 1.4488 1828.2 2683.8 2544.9 2575.8 -8.8813 8.2998 1.4488 1835.6 2682.8 2544.3 2576.2 -8.8813 8.2998 1.4488 1835.6 2682.8 2544.3 2576.2 -8.8813 8.2998 1.4488 1835.6 2682.8 2544.3 2576.2 -8.8813 8.2998 1.4488 1835.6 2682.8 2544.3 2576.5 -8.8881 8.2998 1.4488 1835.6 2682.8 2544.3 2576.5 -8.8881 8.2998 1.4488 1835.6 2682.8 2544.3 2576.5 -8.8881 8.2998 1.4488 1843.8 2613.2 2544.4 2577.9 -8.8813 8.2998 1.4488 1849.2 2738.1 2544.4 2577.9 -8.8813 8.2998 1.4488 1843.8 2613.2 2544.3 2576.2 -8.8813 8.2998 1.4488 1849.2 2738.1 2544.6 2577.9 -8.8813 8.2998 1.4488 1849.2 2581.8 2544.3 2576.7 -8.8813 8.2998 1.4488 1849.2 2581.8 2544.3 2576.7 -8.8813 8.2998 1.4488 1849.2 2581.8 2544.3 2576.2 -8.8813 8.2998 1.4488 1849.2 2581.8 2544.3 2576.2 -8.8813 8.2998 1.4488 1849.2 2581.8 2544.3 2576.2 -8.8813 8.2998 1.4488 1849.2 2581.8 2544.8 2577.9 -8.8813 8.2998 1.4488 1849.2 2581.8 2544.8 2577.9 -8.8813 8.2998 1.4488 1849.2 2581.8 2544.6 2578.8 -8.8833 8.2998 1.4488 1849.2 2581.8 2544.6 2578.8 8.8833 8.2998 1.4488 1849.2 2581.8 2544.6 2578.8 8.8833 8.2998 1.4888 1855.8 2685.8 2544.4 2577.9 -8.8823 8.2938 8.2118 1.4988 1		1.4080	1784.8	2961.7	2535.2	2569.6	Ø.ØØ88	Ø.2Ø34								
1.4188 1/95.1 2751.8 2556.9 2571.2 - 8.8325 8.2851 1.4286 1795.1 2818.8 2537.3 2571.5 8.8134 8.2852 1.4286 1795.1 2818.8 2537.3 2571.5 8.8134 8.2852 1.4228 1818.8 2537.3 2577.4 2538.8 2572.5 - 8.88134 8.2853 1.4228 1818.8 2777.4 2538.8 2572.5 - 8.8861 8.2873 1.4268 1812.9 2838.4 2539.8 2572.5 - 8.8861 8.2873 1.4288 1812.9 2838.4 2539.8 2572.1 8.8239 8.2873 1.4388 1815.7 2822.7 2539.4 2573.1 8.8239 8.2873 1.4388 1815.5 2786.4 2539.7 2573.8 - 8.8865 8.2881 1.4388 1821.4 2944.4 2548.3 2574.3 8.8276 1.4388 1821.4 2944.4 2548.3 2574.7 - 8.8124 8.2899 1.4388 1823.3 2872.5 2548.8 2574.7 - 8.8124 8.2899 1.4448 1823.3 2872.5 2548.8 2574.7 - 8.8124 8.2899 1.4448 1823.8 2813.3 2541.2 2575.1 8.8895 8.2898 1.4448 1832.8 2813.3 2541.2 2575.1 8.8895 8.2898 1.4448 1832.8 2823.8 2542.3 2576.2 8.8891 8.2898 1.4458 1844.2 2885.5 2543.1 2576.9 - 8.8913 8.2898 1.4458 1844.2 2885.5 2543.1 2576.9 - 8.8913 8.2898 1.4588 1844.2 2885.5 2543.2 2576.2 8.8891 8.2898 1.4588 1844.2 2885.5 2543.2 2577.5 9.8821 8.2898 1.4588 1844.2 2885.5 2543.2 2577.6 9.8835 8.2898 1.4588 1844.2 2685.5 2543.2 2577.9 - 8.8913 8.2998 1.4588 1845.2 2872.8 2543.2 2577.9 - 8.8913 8.2998 1.4588 1845.2 2872.8 2543.9 2577.9 - 8.8921 8.2112 1.4688 1852.8 2873.8 2554.8 2577.7 - 8.8921 8.2112 1.4588 1854.8 2622.9 2543.9 2577.5 9.8821 8.2112 1.4588 1854.8 2623.9 2544.8 2577.9 - 8.8921 8.2112 1.4588 1854.8 2679.5 2544.8 2577.9 - 8.8921 8.2112 1.4588 1854.6 2622.9 2544.8 2577.9 - 8.8921 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1864.5 2624.9 2543.9 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.5 2624.9 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.7 2694.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2568.8 2578.8 8.88888888888888888888888888888888		1.4100	1787.6	2797.9	2535.6		-Ø.Ø284	Ø.2Ø41		•						
1.4188 1/95.1 2751.8 2556.9 2571.2 - 8.8325 8.2851 1.4286 1795.1 2818.8 2537.3 2571.5 8.8134 8.2852 1.4286 1795.1 2818.8 2537.3 2571.5 8.8134 8.2852 1.4228 1818.8 2537.3 2577.4 2538.8 2572.5 - 8.88134 8.2853 1.4228 1818.8 2777.4 2538.8 2572.5 - 8.8861 8.2873 1.4268 1812.9 2838.4 2539.8 2572.5 - 8.8861 8.2873 1.4288 1812.9 2838.4 2539.8 2572.1 8.8239 8.2873 1.4388 1815.7 2822.7 2539.4 2573.1 8.8239 8.2873 1.4388 1815.5 2786.4 2539.7 2573.8 - 8.8865 8.2881 1.4388 1821.4 2944.4 2548.3 2574.3 8.8276 1.4388 1821.4 2944.4 2548.3 2574.7 - 8.8124 8.2899 1.4388 1823.3 2872.5 2548.8 2574.7 - 8.8124 8.2899 1.4448 1823.3 2872.5 2548.8 2574.7 - 8.8124 8.2899 1.4448 1823.8 2813.3 2541.2 2575.1 8.8895 8.2898 1.4448 1832.8 2813.3 2541.2 2575.1 8.8895 8.2898 1.4448 1832.8 2823.8 2542.3 2576.2 8.8891 8.2898 1.4458 1844.2 2885.5 2543.1 2576.9 - 8.8913 8.2898 1.4458 1844.2 2885.5 2543.1 2576.9 - 8.8913 8.2898 1.4588 1844.2 2885.5 2543.2 2576.2 8.8891 8.2898 1.4588 1844.2 2885.5 2543.2 2577.5 9.8821 8.2898 1.4588 1844.2 2885.5 2543.2 2577.6 9.8835 8.2898 1.4588 1844.2 2685.5 2543.2 2577.9 - 8.8913 8.2998 1.4588 1845.2 2872.8 2543.2 2577.9 - 8.8913 8.2998 1.4588 1845.2 2872.8 2543.9 2577.9 - 8.8921 8.2112 1.4688 1852.8 2873.8 2554.8 2577.7 - 8.8921 8.2112 1.4588 1854.8 2622.9 2543.9 2577.5 9.8821 8.2112 1.4588 1854.8 2623.9 2544.8 2577.9 - 8.8921 8.2112 1.4588 1854.8 2679.5 2544.8 2577.9 - 8.8921 8.2112 1.4588 1854.6 2622.9 2544.8 2577.9 - 8.8921 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1864.5 2624.9 2543.9 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.5 2624.9 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.7 2694.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2568.8 2578.8 8.88888888888888888888888888888888		1.4120	1790.5	2849.8	2536.1		Ø.ØØ92	Ø.2Ø41								
1.4188 1/95.1 2751.8 2556.9 2571.2 - 8.8325 8.2851 1.4286 1795.1 2818.8 2537.3 2571.5 8.8134 8.2852 1.4286 1795.1 2818.8 2537.3 2571.5 8.8134 8.2852 1.4228 1818.8 2537.3 2577.4 2538.8 2572.5 - 8.88134 8.2853 1.4228 1818.8 2777.4 2538.8 2572.5 - 8.8861 8.2873 1.4268 1812.9 2838.4 2539.8 2572.5 - 8.8861 8.2873 1.4288 1812.9 2838.4 2539.8 2572.1 8.8239 8.2873 1.4388 1815.7 2822.7 2539.4 2573.1 8.8239 8.2873 1.4388 1815.5 2786.4 2539.7 2573.8 - 8.8865 8.2881 1.4388 1821.4 2944.4 2548.3 2574.3 8.8276 1.4388 1821.4 2944.4 2548.3 2574.7 - 8.8124 8.2899 1.4388 1823.3 2872.5 2548.8 2574.7 - 8.8124 8.2899 1.4448 1823.3 2872.5 2548.8 2574.7 - 8.8124 8.2899 1.4448 1823.8 2813.3 2541.2 2575.1 8.8895 8.2898 1.4448 1832.8 2813.3 2541.2 2575.1 8.8895 8.2898 1.4448 1832.8 2823.8 2542.3 2576.2 8.8891 8.2898 1.4458 1844.2 2885.5 2543.1 2576.9 - 8.8913 8.2898 1.4458 1844.2 2885.5 2543.1 2576.9 - 8.8913 8.2898 1.4588 1844.2 2885.5 2543.2 2576.2 8.8891 8.2898 1.4588 1844.2 2885.5 2543.2 2577.5 9.8821 8.2898 1.4588 1844.2 2885.5 2543.2 2577.6 9.8835 8.2898 1.4588 1844.2 2685.5 2543.2 2577.9 - 8.8913 8.2998 1.4588 1845.2 2872.8 2543.2 2577.9 - 8.8913 8.2998 1.4588 1845.2 2872.8 2543.9 2577.9 - 8.8921 8.2112 1.4688 1852.8 2873.8 2554.8 2577.7 - 8.8921 8.2112 1.4588 1854.8 2622.9 2543.9 2577.5 9.8821 8.2112 1.4588 1854.8 2623.9 2544.8 2577.9 - 8.8921 8.2112 1.4588 1854.8 2679.5 2544.8 2577.9 - 8.8921 8.2112 1.4588 1854.6 2622.9 2544.8 2577.9 - 8.8921 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1865.2 2594.8 2544.9 2577.5 9.8821 8.2112 1.4788 1864.5 2624.9 2543.9 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.5 2624.9 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.7 2694.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2577.9 - 8.8929 8.2114 1.4688 1864.8 2695.8 2544.8 2568.8 2578.8 8.88888888888888888888888888888888		1.4140	1/93.4	2919.7	2536.6		Ø.Ø121	Ø.2Ø42								
1.4288 1897.3 2777.4 2538.8 2577.1 8.8134 8.2856 1.4228 1884.6 2672.2 2538.8 2577.1 8.8134 8.2856 1.4228 1887.3 2777.4 2538.8 2577.2 8.8461 8.2877 1.4248 1887.3 2777.4 2538.6 2577.2 8.8461 8.2877 1.4268 1812.9 2838.4 2539.8 62577.1 8.8239 8.2877 1.4288 1812.9 2838.4 2539.8 62573.1 8.8239 8.2878 1.4328 1812.9 2838.4 2539.8 2573.1 8.8239 8.2891 1.4328 1815.7 2827.7 2539.4 2573.1 8.8239 8.2891 1.4328 1812.4 2844.4 2539.8 2573.1 8.8229 8.2891 1.4338 1812.4 2844.4 2539.8 2573.8 -8.8865 8.2881 1.4368 1827.1 2818.3 2872.5 2548.8 2577.7 8.8124 8.2889 1.4348 1829.9 2818.9 2541.2 2575.1 -8.8913 8.2898 1.4448 1829.9 2818.9 2541.2 2575.6 8.8895 8.2898 1.4448 1829.9 2818.9 2541.2 2575.6 8.8895 8.2898 1.4448 1832.8 2857.8 2541.9 2575.4 -8.8913 8.2998 1.4448 1831.8 281.2 2825.8 2541.9 2575.5 8.8883 8.2998 1.4448 1831.2 2885.8 2541.2 2575.5 8.8883 8.2998 1.4448 1831.2 2885.8 2541.2 2575.5 8.8883 8.2998 1.4468 1841.2 2886.8 2527.8 2543.7 2576.5 -8.8913 8.2998 1.4568 1843.8 2613.2 2532.8 2542.7 2576.5 -8.8913 8.2998 1.4568 1843.8 2613.2 2532.8 2542.7 2577.8 8.8923 8.2998 1.4568 1843.8 2613.2 2738.1 2543.6 2577.7 8.8922 8.2998 1.4568 1843.8 2613.2 2738.1 2543.9 2577.5 8.8923 8.2188 1.4568 1851.3 2679.5 6254.9 2544.8 2577.7 8.8922 8.2188 1.4568 1851.3 2679.5 6254.9 2544.8 2577.7 8.8923 8.2188 1.4568 1851.3 2679.5 6254.7 2578.8 8.8938 8.2114 1.4668 1857.3 2695.6 2544.4 2577.9 8.8923 8.2114 1.4688 1857.3 2695.6 2544.8 2577.6 8.8923 8.2114 1.4688 1857.3 2695.6 2544.8 2577.6 8.8923 8.2114 1.4688 1857.3 2695.6 2544.8 2577.8 8.8923 8.2114 1.4688 1857.3 2695.6 2544.8 2577.8 8.8923 8.2114 1.4688 1857.3 2695.6 2544.7 2578.8 8.8938 8.2114 1.4688 1857.3 2695.6 2544.8 2577.9 8.8938 8.2114 1.4688 1857.3 2695.6 2544.8 2577.8 8.8938 8.2114 1.4688 1857.3 2695.6 2544.8 2577.8 8.8938 8.2114 1.4688 1857.3 2695.6 2544.8 2577.8 8.8938 8.2114 1.4688 1857.3 2695.6 2544.8 2577.8 8.8938 8.2114 1.4688 1857.3 2695.6 2544.8 2577.8 8.8938 8.2114 1.4988 1899.5 2695.5 2544.8 2565.8 2580.6 2579.8 8.8938 8.2114 1.4988 1899.5 2695.5 2544.8 2560.6 2579.8 8.8938 8.2		1.4160		2735.8	2536.9		-Ø.Ø325	Ø.2Ø51								
1.4228		1.4180		2810.0	2537.3		Ø.Ø134	Ø.2Ø52								
1.4.248		1.4200	1801.9	2930.3	2537.8	2572.1	Ø.Ø21Ø	Ø.2Ø56								
1.4248 1880.3 2777.4 2538.4 2572.5 8.8193 8.2976 1.4268 1818.8 2786.8 2538.6 2572.7 -8.8138 8.2977 1.4268 1812.9 2838.4 2539.8 2573.1 8.8239 8.2977 1.4268 1812.9 2838.4 2539.8 2573.1 8.8239 8.2981 1.4308 1815.5 222.7 2539.4 2573.4 -8.8828 8.2881 1.4308 1815.5 2786.4 2539.7 2573.8 -8.8865 8.2882 1.4348 1824.3 224.5 2544.7 2576.5 -8.8828 8.2889 1.4368 1827.1 2818.3 2544.7 2576.5 -8.8828 8.2889 1.4488 1832.8 2835.8 2542.7 2576.5 -8.8828 8.2888 1.4488 1838.4 2613.2 2543.1 2576.9 -8.8813 8.2898 1.4588 1844.2 2685.5 2543.1 2576.9 -8.8813 8.2898 1.4588 1844.8 2613.2 2543.3 2577.8 8.8821 8.2898 1.4588 1845.6 2621.9 2543.3 2577.8 8.8821 8.2898 1.4588 1845.6 2621.9 2544.4 2577.9 8.8821 8.2188 1.4588 1845.6 2652.9 2544.4 2577.9 8.8821 8.2188 1.4588 1855.6 2652.9 2544.4 2577.9 8.8823 8.2188 1.4588 1855.8 2695.6 2544.2 2577.6 8.8823 8.2188 1.4588 1855.8 2695.6 2544.2 2577.6 8.8823 8.2188 1.4588 1856.6 2652.9 2544.4 2577.7 8.8823 8.2188 1.4588 1856.8 2652.9 2544.2 2577.6 8.8823 8.2188 1.4588 1856.8 2652.9 2544.4 2577.7 8.8823 8.2188 1.4588 1856.8 2652.9 2544.4 2577.7 8.8823 8.2184 1.4788 1849.2 2738.1 2543.3 2577.6 8.8823 8.2188 1.4588 1856.6 2652.9 2544.4 2577.7 8.8823 8.2184 1.4788 1867.8 2696.6 2544.2 2577.6 8.8823 8.2184 1.4788 1867.8 2696.6 2544.2 2577.7 8.8823 8.2184 1.4788 1867.8 2696.6 2544.2 2577.7 8.8823 8.2184 1.4788 1867.8 2696.6 2544.2 2577.7 8.8823 8.2184 1.4788 1867.8 2696.6 2544.2 2577.9 8.8833 8.2114 1.4688 1867.8 2696.6 2544.2 2577.9 8.8833 8.2114 1.4788 1867.8 2696.6 2544.2 2577.9 8.8833 8.2114 1.4788 1867.8 2696.6 2544.2 2577.9 8.8833 8.2114 1.4788 1867.8 2696.6 2545.5 2544.2 2577.9 8.8833 8.2114 1.4788 1867.8 3696.8 2544.2 2577.9 8.8833 8.2114 1.4788 1867.8 3696.8 2544.2 2577.9 8.8833 8.2114 1.4788 1867.8 3696.8 2544.5 2578.8 8.8831 8.2114 1.4788 1867.8 3696.8 2544.5 2578.8 8.8831 8.2114 1.4788 1868.4 5 3896.8 2545.8 2578.3 26882 1.4788 1868.4 5 3896.8 2545.8 2578.3 26882 1.4888 1898.6 3896.8 3896.8 2545.8 2578.3 26882 1.4888 1898.6 3896.8 3896.8 2545.8 2578.3 26882 1.4888 1898.6 3896.8 3896.8 2546.6 257		1.4220			2538.Ø	2572.2	-Ø.Ø461	Ø.2Ø73								
1.4208 1815.7 2832.7 2533.4 2533.8 2573.1 8.8239 8.2081 1.4328 1816.5 2786.4 2533.7 2573.8 -8.8065 8.2082 1.4348 1821.4 2944.4 2539.7 2573.8 -8.8065 8.2082 1.4348 1821.4 2944.4 2548.3 2574.3 8.9276 8.2088 1.4368 1824.3 2872.5 2548.8 2574.7 -8.8124 8.2089 1.4308 1827.1 2818.3 2541.2 2575.1 -8.8075 8.2088 1.4408 1829.9 2818.9 2541.5 2575.4 -8.8013 8.2098 1.4448 1832.8 2835.8 2541.9 2575.8 8.8043 8.2098 1.4448 1832.8 2835.8 2542.7 2576.5 -8.8013 8.2098 1.4448 1838.4 2813.8 2542.7 2576.5 -8.8013 8.2098 1.4488 1841.2 2845.5 2543.1 2576.9 -8.8013 8.2098 1.4588 1841.2 2845.5 2543.1 2576.9 -8.8013 8.2098 1.4588 1841.8 2613.2 2543.2 2576.9 -8.8013 8.2098 1.4588 1843.8 2613.2 2543.2 2576.9 -8.8013 8.2098 1.4588 1843.8 2613.2 2543.2 2576.9 -8.8013 8.2098 1.4588 1849.8 2738.1 2543.6 2577.2 8.80822 8.2188 1.4588 1849.2 2738.1 2543.6 2577.2 8.80822 8.2188 1.4588 1854.6 2624.9 2543.3 2577.5 8.80822 8.2188 1.4588 1854.6 2624.9 2543.3 2577.6 8.8014 8.2184 1.4588 1854.6 2624.9 2543.8 2577.6 8.8014 8.2184 1.4588 1857.3 2655.5 2544.8 2577.7 8.80823 8.2184 1.4588 1857.3 2655.5 2544.8 2577.7 8.80839 8.2114 1.4688 1857.8 2655.5 2544.8 2577.6 8.8013 8.2184 1.4588 1857.8 2795.8 2544.8 2577.6 8.8014 8.2184 1.4688 1857.8 2554.8 2544.8 2577.6 8.8014 8.2184 1.4688 1857.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4688 1867.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4688 1867.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4788 1867.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4788 1867.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1868.5 3056.8 2544.6 2578.8 8.8028 8.2138 1.4988 1869.5 2545.8 2554.8 2578.8 8.8028 8.2138 1.4988 1869.5 2545.8 2554.8 2578.8 8.8028 8.2138 1.4988 1869.6 3027.1 2548.8 2565.8 2578.9 8.8039 8.2115 1.4988 1869.5 2545.8 2554.8 2565.8 2578.8 8.8028 8.2188		1.4240			2538.4	2572.5	Ø.Ø193	Ø.2Ø76								
1.4208 1815.7 2832.7 2533.4 2533.8 2573.1 8.8239 8.2081 1.4328 1816.5 2786.4 2533.7 2573.8 -8.8065 8.2082 1.4348 1821.4 2944.4 2539.7 2573.8 -8.8065 8.2082 1.4348 1821.4 2944.4 2548.3 2574.3 8.9276 8.2088 1.4368 1824.3 2872.5 2548.8 2574.7 -8.8124 8.2089 1.4308 1827.1 2818.3 2541.2 2575.1 -8.8075 8.2088 1.4408 1829.9 2818.9 2541.5 2575.4 -8.8013 8.2098 1.4448 1832.8 2835.8 2541.9 2575.8 8.8043 8.2098 1.4448 1832.8 2835.8 2542.7 2576.5 -8.8013 8.2098 1.4448 1838.4 2813.8 2542.7 2576.5 -8.8013 8.2098 1.4488 1841.2 2845.5 2543.1 2576.9 -8.8013 8.2098 1.4588 1841.2 2845.5 2543.1 2576.9 -8.8013 8.2098 1.4588 1841.8 2613.2 2543.2 2576.9 -8.8013 8.2098 1.4588 1843.8 2613.2 2543.2 2576.9 -8.8013 8.2098 1.4588 1843.8 2613.2 2543.2 2576.9 -8.8013 8.2098 1.4588 1849.8 2738.1 2543.6 2577.2 8.80822 8.2188 1.4588 1849.2 2738.1 2543.6 2577.2 8.80822 8.2188 1.4588 1854.6 2624.9 2543.3 2577.5 8.80822 8.2188 1.4588 1854.6 2624.9 2543.3 2577.6 8.8014 8.2184 1.4588 1854.6 2624.9 2543.8 2577.6 8.8014 8.2184 1.4588 1857.3 2655.5 2544.8 2577.7 8.80823 8.2184 1.4588 1857.3 2655.5 2544.8 2577.7 8.80839 8.2114 1.4688 1857.8 2655.5 2544.8 2577.6 8.8013 8.2184 1.4588 1857.8 2795.8 2544.8 2577.6 8.8014 8.2184 1.4688 1857.8 2554.8 2544.8 2577.6 8.8014 8.2184 1.4688 1857.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4688 1867.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4688 1867.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4788 1867.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4788 1867.8 2554.8 2554.8 2578.8 8.8018 8.2114 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1867.8 2554.8 2554.8 2578.8 8.8023 8.2115 1.4788 1868.5 3056.8 2544.6 2578.8 8.8028 8.2138 1.4988 1869.5 2545.8 2554.8 2578.8 8.8028 8.2138 1.4988 1869.5 2545.8 2554.8 2578.8 8.8028 8.2138 1.4988 1869.6 3027.1 2548.8 2565.8 2578.9 8.8039 8.2115 1.4988 1869.5 2545.8 2554.8 2565.8 2578.8 8.8028 8.2188		1.4260	181Ø.Ø		2538.6	2572.7	-Ø.Ø13Ø	Ø.2Ø77								
1.4328 1818.5 2784.4 2539,7 2573.8 -9.8965 8.2982 1.4348 1821.4 2544.3 2574.3 8.8274.7 -9.8124 8.2989 1.4368 1821.4 2944.4 2539.7 2574.3 9.8276 8.2989 1.4388 1827.1 2818.3 2541.2 2575.1 -9.8989 8.2998 1.4388 1827.1 2818.3 2541.5 2575.4 -9.89813 8.2998 1.44480 1822.8 2835.8 2541.9 2575.8 9.89813 8.2998 1.44480 1835.6 2827.8 2542.7 2576.5 -9.89813 8.2998 1.44480 1835.6 2827.8 2542.3 2576.2 -9.89813 8.2998 1.44480 1831.4 2 2885.5 2543.1 2576.9 -9.89813 8.2998 1.4488 1841.2 2885.5 2543.1 2576.9 -9.89813 8.2998 1.4488 1841.2 2885.5 2543.1 2576.9 -9.89813 8.2998 1.4528 1.4528 1844.8 2513.2 2543.2 2576.9 -9.89813 8.2998 1.4528 1.4528 1844.8 2513.2 2543.2 2576.9 -9.89813 8.2998 1.4528 1844.8 2513.2 2543.2 2576.9 -9.89813 8.2998 1.4528 1844.8 2513.2 2543.2 2576.9 -9.89813 8.2998 1.4528 1844.8 2513.2 2543.2 2577.8 9.8982 9.2188 1.4528 1844.8 2523.2 2543.2 2577.8 9.8982 9.2188 1.4528 1844.8 2523.2 2543.2 2577.8 9.8982 9.2188 1.4528 1844.9 2 2738.1 2543.6 2577.2 9.8921 18.2183 1.4568 1852.8 2795.6 2543.9 2577.5 9.89184 9.2184 1.4568 1852.8 2795.6 2544.4 2577.7 9.89193 9.2114 1.4648 1856.8 2555.6 2544.4 2577.7 9.89193 9.2114 1.4648 1856.8 2595.6 2544.4 2577.7 9.89193 9.2114 1.4648 1856.8 2595.6 2544.4 2577.7 9.8983 9.2114 1.4648 1856.8 2595.8 2544.4 2577.7 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.7 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2554.3 2578.8 9.8982 9.2114 1.4728 1873.2 2543.8 2544.5 2578.8 9.8982 9.2114 1.4728 1873.2 2543.8 2544.5 2578.8 9.8982 9.2114 1.4728 1873.2 2534.8 2544.5 2578.8 9.8982 9.2114 1.4728 1873.2 2534.8 2544.5 2578.8 9.8982 9.2114 1.4728 1873.2 2534.8 2544.5 2578.8 9.8982 9.2143 1.4728 1873.2 2534.8 2544.5 2578.8 9.8982 9.2143 1.4728 1873.2 2534.8 2544.8 2578.8 9.8982 9.2158 1.4428 1884.5 3996.8 2545.8 2578.8 9.8982 9.2158 1.4428 1884.5 3996.8 2545.8 2578.8 9.898		1.428Ø	1812.9		2539.Ø	2573.1	Ø.Ø239	Ø.2Ø81								
1.4328 1818.5 2784.4 2539,7 2573.8 -9.8965 8.2982 1.4348 1821.4 2544.3 2574.3 8.8274.7 -9.8124 8.2989 1.4368 1821.4 2944.4 2539.7 2574.3 9.8276 8.2989 1.4388 1827.1 2818.3 2541.2 2575.1 -9.8989 8.2998 1.4388 1827.1 2818.3 2541.5 2575.4 -9.89813 8.2998 1.44480 1822.8 2835.8 2541.9 2575.8 9.89813 8.2998 1.44480 1835.6 2827.8 2542.7 2576.5 -9.89813 8.2998 1.44480 1835.6 2827.8 2542.3 2576.2 -9.89813 8.2998 1.44480 1831.4 2 2885.5 2543.1 2576.9 -9.89813 8.2998 1.4488 1841.2 2885.5 2543.1 2576.9 -9.89813 8.2998 1.4488 1841.2 2885.5 2543.1 2576.9 -9.89813 8.2998 1.4528 1.4528 1844.8 2513.2 2543.2 2576.9 -9.89813 8.2998 1.4528 1.4528 1844.8 2513.2 2543.2 2576.9 -9.89813 8.2998 1.4528 1844.8 2513.2 2543.2 2576.9 -9.89813 8.2998 1.4528 1844.8 2513.2 2543.2 2576.9 -9.89813 8.2998 1.4528 1844.8 2513.2 2543.2 2577.8 9.8982 9.2188 1.4528 1844.8 2523.2 2543.2 2577.8 9.8982 9.2188 1.4528 1844.8 2523.2 2543.2 2577.8 9.8982 9.2188 1.4528 1844.9 2 2738.1 2543.6 2577.2 9.8921 18.2183 1.4568 1852.8 2795.6 2543.9 2577.5 9.89184 9.2184 1.4568 1852.8 2795.6 2544.4 2577.7 9.89193 9.2114 1.4648 1856.8 2555.6 2544.4 2577.7 9.89193 9.2114 1.4648 1856.8 2595.6 2544.4 2577.7 9.89193 9.2114 1.4648 1856.8 2595.6 2544.4 2577.7 9.8983 9.2114 1.4648 1856.8 2595.8 2544.4 2577.7 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.7 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2594.8 2544.4 2577.9 9.8983 9.2114 1.4648 1856.8 2554.3 2578.8 9.8982 9.2114 1.4728 1873.2 2543.8 2544.5 2578.8 9.8982 9.2114 1.4728 1873.2 2543.8 2544.5 2578.8 9.8982 9.2114 1.4728 1873.2 2534.8 2544.5 2578.8 9.8982 9.2114 1.4728 1873.2 2534.8 2544.5 2578.8 9.8982 9.2114 1.4728 1873.2 2534.8 2544.5 2578.8 9.8982 9.2143 1.4728 1873.2 2534.8 2544.5 2578.8 9.8982 9.2143 1.4728 1873.2 2534.8 2544.8 2578.8 9.8982 9.2158 1.4428 1884.5 3996.8 2545.8 2578.8 9.8982 9.2158 1.4428 1884.5 3996.8 2545.8 2578.8 9.898		1.4300	1815.7	2822.7	2539.4	2573.4	-Ø.ØØ28	Ø.2Ø81								
1.4368 1624.3 2674.4 2548.3 2574.3 8.8276 8.2888 1.4368 1624.3 2672.5 2548.8 2574.7 -8.8124 8.2889 1.4368 1627.1 2616.3 2541.2 2575.1 -8.8895 8.2898 1.4488 1629.9 2618.9 2541.5 2575.4 -8.8813 8.2898 1.4488 1632.8 2635.8 2541.9 2575.8 8.8843 8.2898 1.4448 1635.6 2627.8 2542.7 2576.5 -8.8823 8.2898 1.4448 1635.6 2622.8 2542.7 2576.5 -8.8823 8.2898 1.4468 1633.4 2613.8 2542.7 2576.5 -8.8823 8.2898 1.4468 1634.2 2685.5 2543.1 2576.9 -8.8813 8.2898 1.4458 1645.2 2624.9 2543.3 2577.2 8.8211 8.2188 1.4568 1652.8 2795.6 2543.4 2577.6 -8.8211 8.2183 1.4568 1652.8 2695.6 2544.4 2577.6 -8.8211 8.2184 1.4668 1657.3 2695.6 2544.4 2577.6 -8.8321 8.2114 1.4668 1665.8 2621.9 2544.8 2577.6 -8.8321 8.2114 1.4668 1665.2 2695.5 2544.4 2577.9 -8.8888 8.2114 1.4668 1665.3 2695.6 2544.9 2578.8 -8.8888 8.2114 1.4668 1666.5 2621.9 2544.9 2578.8 -8.8888 8.2114 1.4668 1666.5 2621.9 2544.9 2578.8 -8.8888 8.2114 1.4668 1667.8 2695.5 2544.4 2577.9 -8.8888 8.2114 1.4668 1667.8 2695.6 2544.9 2578.8 -8.8888 8.2114 1.4668 1667.8 2695.6 2544.9 2578.8 -8.8888 8.2114 1.4788 1678.7 2643.8 2544.9 2578.8 -8.8888 8.2114 1.4788 1678.7 2643.8 2545.8 2578.8 -8.8823 8.2114 1.4788 1678.5 2778.8 2544.9 2578.8 -8.8823 8.2115 1.4788 1687.8 2978.8 2544.9 2578.8 -8.8823 8.2114 1.4788 1687.8 2978.8 2544.9 2578.8 -8.8823 8.2114 1.4788 1687.8 2978.8 2544.9 2578.8 -8.8823 8.2114 1.4788 1687.8 2978.8 2544.9 2578.8 -8.8823 8.2114 1.4788 1687.8 2978.8 2545.3 2578.8 -8.8823 8.2114 1.4788 1687.8 2978.8 2545.3 2578.8 -8.8823 8.2115 1.4788 1687.8 2978.8 2545.8 2578.8 -8.8823 8.2115 1.4788 1687.8 2978.8 2545.8 2579.8 8.8385 8.2158 1.4888 1688.6 3827.1 2545.8 2579.8 8.8385 8.2158 1.4888 1683.5 2683.4 2545.8 2569.8 2579.8 8.8385 8.2158 1.4888 1683.5 2683.4 2545.8 2569.8 2569.8 8.8385 8.2158 1.4888 1683.5 2683.4 2545.8 2569.8 2569.8 8.8385 8.2158 1.4888 1683.5 2683.4 2545.8 2569.8 2569.8 8.8385 8.2158 1.4888 1683.5 2683.4 2545.8 2569.8 2569.8 8.8385 8.2158 1.4888 1683.5 2683.4 2545.8 2569.8 2569.8 8.8385 8.2158 1.4888 1683.5 2683.4 2545.8 2569.8 2569.8 8.8385 8.2158		1.4320		2786.4	2539.7	2573.8	-0.0065	Ø.2ØB2								
1. 4388		1.4340		2944.4	254Ø.3		Ø.Ø276	Ø.2Ø88								
1. 4388		1.436Ø		2872.5	2540.8		-Ø-Ø124	Ø.2089					•			
1.4488 1829.9 2818.9 2541.5 2575.4 -8.8813 8.2898 1.4448 1831.6 2827.8 2534.2 2575.8 8.8813 8.2898 1.4448 1835.6 2827.8 2542.3 2576.2 -8.8813 8.2898 1.4468 1834.4 2813.8 2542.7 2576.5 -8.8826 8.2898 1.4488 1841.2 2885.5 2543.1 2576.9 -8.8813 8.2898 1.4588 1846.5 2624.9 2543.1 2576.9 -8.8813 8.2898 1.4528 1846.5 2624.9 2543.3 2577.8 8.8822 8.2188 1.4528 1846.5 2624.9 2543.3 2577.8 8.821 8.2188 1.4588 1854.6 2827.8 2738.1 2543.6 2577.5 8.8811 8.2183 1.4588 1854.6 2621.9 2544.8 2577.5 8.8814 8.2184 1.4588 1854.6 2652.9 2544.2 2577.7 8.8821 8.2112 1.4628 1863.8 2679.5 2544.2 2577.7 8.8851 8.2114 1.4628 1865.2 2594.8 2575.8 8.8851 8.2114 1.4628 1865.2 2594.8 2574.8 8.8851 8.2114 1.4668 1865.2 2594.8 2544.6 2578.8 -8.8851 8.2114 1.4668 1865.2 2594.8 2544.6 2578.8 -8.8811 8.2115 1.4788 1867.8 2562.9 2544.7 2578.8 -8.8828 8.2115 1.4788 1873.2 2634.8 2545.8 2578.2 -8.8118 8.2112 1.4788 1873.2 2634.8 2545.8 2578.2 -8.8177 8.2124 1.4788 1878.5 2778.1 2544.9 2578.2 -8.8128 8.2118 1.4788 1878.5 2778.1 2544.9 2578.2 -8.8128 8.2118 1.4788 1878.5 2778.1 2544.9 2578.2 -8.8128 8.2118 1.4888 1886.1 2649.4 2546.6 2579.8 8.8258 8.2143 1.4888 1886.1 2649.4 2548.5 2581.6 -8.8329 8.2168 1.4888 1885.1 2649.4 2548.5 2581.6 -8.8329 8.2168 1.4888 1885.1 2649.4 2548.5 2581.6 -8.8329 8.2168		1.438Ø	1827.1	2818.3	2541.2		-0.0095	Ø. 2Ø9Ø								
1.4428 1832.8 2835.8 2541.9 2575.8 8.809.3 8.2098 1.4448 1835.6 2827.8 2542.3 2576.2 -8.8013 8.2098 1.4468 1838.4 2813.8 2542.7 2576.5 -8.8026 8.2098 1.4480 1841.2 2895.5 2543.1 2576.9 -8.8016 8.2098 1.4500 1843.8 2613.2 2543.2 2576.9 -8.8018 8.2098 1.4520 1846.5 2624.9 2543.3 2577.0 8.8022 8.2180 1.4520 1846.5 2624.9 2543.3 2577.2 8.8022 8.2180 1.4540 1849.2 2738.1 2543.6 2577.2 8.8024 8.2184 1.4580 1852.0 2738.1 2543.6 2577.2 8.80184 8.2184 1.4580 1852.0 2795.6 2544.8 2577.6 -8.80184 8.2184 1.4580 1857.3 2695.6 2544.2 2577.7 8.80139 8.2114 1.4620 1866.0 2679.5 2544.4 2577.6 -8.80180 8.2114 1.4640 1865.2 2594.8 2544.6 2578.0 -8.8018 8.2114 1.4640 1867.8 2692.9 2544.6 2578.0 -8.8018 8.2115 1.4780 1878.5 2718.1 2544.9 2578.0 -8.8018 8.2115 1.4780 1873.2 2634.8 2545.8 2578.0 -8.8018 8.2115 1.4780 1873.2 2634.8 2545.8 2578.0 -8.8018 8.2115 1.4780 1873.2 2634.8 2545.8 2578.3 -8.80141 8.2121 1.4780 1878.5 2718.1 2544.9 2578.2 -8.80141 8.2121 1.4780 1878.5 2718.1 2544.9 2578.2 -8.80141 8.2121 1.4780 1878.5 2718.1 2544.9 2578.2 -8.80177 8.2124 1.4780 1878.5 2718.1 2545.8 2578.9 -8.80141 8.2121 1.4880 1887.6 3189.8 2545.3 2578.8 8.8028 8.2138 1.4820 1887.6 3189.8 2547.3 2588.5 8.8021 8.2150 1.4820 1887.6 3189.8 2547.3 2588.5 8.8021 8.2150 1.4820 1887.6 3189.8 2547.3 2588.5 8.8021 8.2150 1.4820 1887.6 3189.8 2547.3 2588.5 8.8021 8.2150 1.4820 1887.6 3189.8 2547.3 2588.5 8.8021 8.2150 1.4820 1887.6 3189.8 2547.3 2588.5 8.8021 8.2150 1.4820 1887.6 3189.8 2547.3 2588.5 8.8021 8.2150 1.4820 1887.6 3189.8 2547.3 2588.5 8.8021 8.2150 1.4820 1887.6 3189.8 2547.3 2588.5 2591.6 -8.80133 8.2152 1.4820 1887.6 3189.8 2547.3 2588.5 2581.6 -8.80133 8.2152 1.4820 1883.5 2835.4 2588.5 2581.6 -8.80133 8.2152 1.4820 1883.5 2835.4 2588.5 2581.6 -8.80133 8.2152 1.4820 1883.6 2649.4 2580.5 2581.6 -8.80327 8.2160 1.4820 1883.6 2649.4 2580.5 2581.6 -8.80327 8.2160 1.4820 1883.6 2649.4 2580.5 2581.6 -8.80327 8.2160		1.4400	1829.9	2810.9	2541.5	2575.4	-0.0013	g. 2090								
1.4440 1835.6 2827.8 2542.3 2576.2 -8.8813 8.2898 1.4460 1838.4 2813.8 2542.7 2576.5 -8.8813 8.2898 1.4480 1841.2 2885.5 2543.1 2576.9 -8.8813 8.2898 1.4580 1843.8 2613.2 2543.2 2576.9 -8.8813 8.2898 1.4520 1846.5 2624.9 2543.3 2577.8 8.8822 8.2188 1.4520 1848.9 2738.1 2543.6 2577.8 8.8822 8.2188 1.4560 1852.8 2795.6 2543.9 2577.5 8.8184 8.2184 1.4560 1852.8 2795.6 2544.8 2577.5 8.8184 8.2184 1.4580 1854.6 2621.9 2544.8 2577.6 -8.8321 8.2112 1.4680 1867.3 2695.6 2544.4 2577.9 8.8838 8.2114 1.4640 1862.6 2652.5 2544.4 2577.9 9.8838 8.2114 1.4640 1865.2 2594.8 2544.6 2578.8 -8.8818 8.2114 1.4660 1865.2 2594.8 2544.6 2578.8 -8.8818 8.2114 1.4660 1865.2 2594.8 2544.6 2578.8 -8.8818 8.2115 1.4780 1878.5 2718.1 2544.6 2578.8 -8.8818 8.2115 1.4780 1878.5 2718.1 2544.6 2578.8 -8.8818 8.2115 1.4780 1878.5 2718.1 2544.9 2578.2 8.8248 8.2128 1.4740 1873.2 2634.8 2545.8 2578.3 -8.8814 8.2121 1.4740 1873.2 2634.8 2545.8 2578.3 -8.8818 8.2115 1.4780 1878.5 2778.8 2545.3 2578.2 -8.8141 8.2121 1.4740 1873.2 2634.8 2545.8 2578.3 -8.8818 8.2121 1.4740 1878.5 2778.8 2545.3 2578.5 8.8428 8.2128 1.4780 1881.4 2913.8 2545.8 2579.8 8.8258 8.2138 1.4780 1881.4 2913.8 2545.8 2579.8 8.8258 8.2138 1.4880 1887.6 3188.8 2547.3 2588.5 8.8828 8.2138 1.4880 1887.6 3188.8 2547.3 2588.6 -8.8835 8.2151 1.4880 1884.5 2885.4 2548.4 2581.6 -8.8327 8.2151 1.4880 1889.5 2885.4 2548.4 2581.6 -8.8327 8.2150 1.4880 1893.5 2885.4 2548.4 2581.6 -8.8327 8.2150 1.4880 1893.5 2885.4 2548.4 2581.6 -8.8327 8.2166		1.4420	1832.8	2835.Ø	2541.9	2575.8	0.0043	Ø. 2090								
1.4488 1841.2 2885.5 2543.1 2576.9 -8.8013 8.2298 1.4528 1844.8 2613.2 2543.2 2576.9 -8.8055 8.2188 1.4528 1844.8 2613.2 2543.2 2577.8 8.8022 8.2188 1.4548 1849.2 2738.1 2543.6 2577.2 8.8211 8.2183 1.4568 1852.8 2795.6 2543.9 2577.5 8.8184 8.2183 1.4568 1854.6 2621.9 2544.8 2577.6 -8.8321 8.2112 1.4588 1854.6 2621.9 2544.8 2577.6 -8.8321 8.2114 1.4688 1857.3 2695.6 2544.2 2577.7 -8.80321 8.2114 1.4628 1868.8 2679.5 2544.4 2577.9 -8.8038 8.2114 1.4648 1862.6 2652.5 2544.4 2577.9 -8.8038 8.2114 1.4648 1865.2 2594.8 2544.6 2578.8 -8.8051 8.2114 1.4688 1865.2 2594.8 2544.6 2578.8 -8.8051 8.2115 1.4708 1878.5 2718.1 2544.9 2578.8 -8.8023 8.2115 1.4708 1873.2 2634.8 2545.8 2578.8 -8.8028 8.2128 1.4728 1873.2 2634.8 2545.8 2578.3 -8.8141 8.2121 1.4748 1873.7 2543.2 2545.8 2578.2 -8.8141 8.2121 1.4748 1878.5 2778.8 2545.8 2578.3 -8.8141 8.2121 1.4748 1878.5 2778.8 2545.8 2578.2 -8.8141 8.2121 1.4748 1878.5 2778.8 2545.8 2578.2 -8.8177 8.2124 1.4748 1878.5 2778.8 2545.8 2578.2 -8.8177 8.2124 1.4748 1878.5 2778.8 2545.8 2578.2 -8.8177 8.2124 1.4748 1878.5 2778.8 2545.8 2579.8 8.8248 8.2138 1.4828 1886.6 3827.1 2548.8 2579.8 8.80385 8.2143 1.4888 1886.6 3827.1 2548.8 2579.8 8.80385 8.2143 1.4888 1886.6 3827.1 2548.8 2579.8 8.80385 8.2143 1.4888 1886.6 3827.1 2548.8 2579.8 8.80387 8.2158 1.4868 1893.5 2635.4 2548.8 2549.8 2581.6 -8.80397 8.2168 1.4888 1896.1 2649.4 2548.5 2581.6 -8.80397 8.2168 1.4888 1896.1 2649.4 2549.5 2581.6 -8.80397 8.2169 1.4888 1896.1 2649.4 2549.5 2581.6 -8.80397 8.2169 1.4888 1896.1 2649.4 2549.5 2581.6 -8.80399 8.2169 1.4888 1896.1 2649.4 2549.5 2581.6 -8.80399 8.2169		1.4440	1835.6	2827.8	2542.3	2576.2	-0.0013	a 2090		•						
1.4488 1841.2 2885.5 2543.1 2576.9 -8.8013 8.2298 1.4528 1844.8 2613.2 2543.2 2576.9 -8.8055 8.2188 1.4528 1844.8 2613.2 2543.2 2577.8 8.8022 8.2188 1.4548 1849.2 2738.1 2543.6 2577.2 8.8211 8.2183 1.4568 1852.8 2795.6 2543.9 2577.5 8.8184 8.2183 1.4568 1854.6 2621.9 2544.8 2577.6 -8.8321 8.2112 1.4588 1854.6 2621.9 2544.8 2577.6 -8.8321 8.2114 1.4688 1857.3 2695.6 2544.2 2577.7 -8.80321 8.2114 1.4628 1868.8 2679.5 2544.4 2577.9 -8.8038 8.2114 1.4648 1862.6 2652.5 2544.4 2577.9 -8.8038 8.2114 1.4648 1865.2 2594.8 2544.6 2578.8 -8.8051 8.2114 1.4688 1865.2 2594.8 2544.6 2578.8 -8.8051 8.2115 1.4708 1878.5 2718.1 2544.9 2578.8 -8.8023 8.2115 1.4708 1873.2 2634.8 2545.8 2578.8 -8.8028 8.2128 1.4728 1873.2 2634.8 2545.8 2578.3 -8.8141 8.2121 1.4748 1873.7 2543.2 2545.8 2578.2 -8.8141 8.2121 1.4748 1878.5 2778.8 2545.8 2578.3 -8.8141 8.2121 1.4748 1878.5 2778.8 2545.8 2578.2 -8.8141 8.2121 1.4748 1878.5 2778.8 2545.8 2578.2 -8.8177 8.2124 1.4748 1878.5 2778.8 2545.8 2578.2 -8.8177 8.2124 1.4748 1878.5 2778.8 2545.8 2578.2 -8.8177 8.2124 1.4748 1878.5 2778.8 2545.8 2579.8 8.8248 8.2138 1.4828 1886.6 3827.1 2548.8 2579.8 8.80385 8.2143 1.4888 1886.6 3827.1 2548.8 2579.8 8.80385 8.2143 1.4888 1886.6 3827.1 2548.8 2579.8 8.80385 8.2143 1.4888 1886.6 3827.1 2548.8 2579.8 8.80387 8.2158 1.4868 1893.5 2635.4 2548.8 2549.8 2581.6 -8.80397 8.2168 1.4888 1896.1 2649.4 2548.5 2581.6 -8.80397 8.2168 1.4888 1896.1 2649.4 2549.5 2581.6 -8.80397 8.2169 1.4888 1896.1 2649.4 2549.5 2581.6 -8.80397 8.2169 1.4888 1896.1 2649.4 2549.5 2581.6 -8.80399 8.2169 1.4888 1896.1 2649.4 2549.5 2581.6 -8.80399 8.2169		1.446Ø	1838.4	2813.Ø	2542.7	2576.5	-0.0026	a 2090								
1.4588 1843.8 2613.2 2543.2 2576.9 -0.03355 0.2188   1.4528 1846.5 26624.9 2543.3 2577.8 0.0822 0.2188   1.4548 1849.2 2738.1 2543.6 2577.2 0.0211 0.2183   1.4568 1852.8 2795.6 2543.9 2577.5 0.0184 0.2184   1.4588 1854.6 2621.9 2544.8 2577.5 0.0831 0.2114   1.4588 1854.6 2621.9 2544.8 2577.7 0.0839 0.2114   1.4628 1857.3 2695.6 2544.2 2577.7 0.0839 0.2114   1.4628 1857.3 2695.6 2544.4 2577.9 -0.0832 0.2114   1.4648 1862.6 2652.5 2544.4 2577.9 -0.0838 0.2114   1.4648 1865.2 2594.8 2544.6 2578.8 -0.0851 0.2114   1.4668 1865.2 2594.8 2544.6 2578.8 -0.0851 0.2114   1.4688 1867.8 2582.9 2544.6 2578.8 -0.0851 0.2115   1.4700 1870.5 2710.1 2544.9 2578.2 0.0823 0.2115   1.4700 1870.5 2710.1 2544.9 2578.2 0.0823 0.2128   1.4740 1873.2 2634.8 2545.0 2578.3 -0.0141 0.2121   1.4740 1875.7 2543.2 2545.8 2578.3 -0.0141 0.2121   1.4740 1878.5 2778.8 2545.8 2579.0 0.08428 0.2128   1.4760 1878.5 2778.8 2545.8 2579.0 0.08428 0.2138   1.4800 1884.5 3096.0 2545.8 2579.0 0.08250 0.2143   1.4800 1884.5 3096.0 2545.8 2579.0 0.08250 0.2143   1.4820 1887.6 3108.8 2547.3 2580.5 0.08428 0.2150   1.4820 1887.6 3108.8 2547.3 2580.5 0.08428 0.2150   1.4820 1887.6 3108.8 2547.3 2580.5 0.08220 0.2150   1.4840 1893.5 2835.4 2548.4 2581.6 -0.03327 0.2160   1.4880 1893.5 2835.4 2548.4 2581.6 -0.03327 0.2160   1.4880 1893.5 2635.2 2548.4 2548.5 2581.6 -0.03327 0.2160   1.4880 1893.5 2635.2 2548.4 2548.5 2581.6 -0.03327 0.2160   1.4880 1893.5 2635.2 2548.4 2548.5 2581.6 -0.03327 0.2160   1.4880 1896.1 2649.4 2548.5 2581.6 -0.03327 0.2160   1.4880 1896.1 2649.4 2548.5 2581.6 -0.03327 0.2160   1.4880 1896.1 2649.4 2548.5 2581.6 -0.03327 0.2160   1.4880 1896.1 2649.4 2548.5 2581.6 -0.03327 0.2160   1.4880 1896.1 2649.4 2548.5 2581.6 -0.03327 0.2160   1.4880 1896.1 2649.4 2548.5 2581.6 -0.03327 0.2160   1.4980 1899.0 2995.2 2549.8 2582.1 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840 0.0840		1.4480	1841.2	28Ø5.5	2543.1	2576.9	-0.0013	a.2090								
1.4528 1846.5 2624.9 2543.3 2577.8 8.0822 8.2188 1.4568 1852.8 2795.6 2543.9 2577.5 8.8184 8.2184 1.4588 1854.6 2621.9 2544.8 2577.6 8.8321 8.2112 1.4688 1857.3 2695.6 2544.2 2577.7 8.8139 8.2114 1.4628 1866.8 2679.5 2544.4 2577.9 8.8838 8.2114 1.4648 1862.6 2652.5 2544.4 2577.9 8.8188 8.2114 1.4668 1865.2 2594.8 2544.6 2578.8 -8.8118 8.2115 1.4668 1865.2 2594.8 2544.6 2578.8 -8.8118 8.2115 1.4688 1867.8 2582.9 2544.7 2578.8 -8.8018 8.2115 1.4788 1873.2 2634.8 2545.8 2578.3 -8.8014 8.2128 1.4728 1873.2 2634.8 2545.8 2578.3 -8.8041 8.2121 1.4748 1875.7 2543.2 2545.8 2578.3 -8.8041 8.2121 1.4748 1875.7 2543.2 2545.8 2578.3 -8.8041 8.2121 1.4768 1878.5 2778.8 2545.8 2578.3 -8.8041 8.2121 1.4788 1881.4 2913.8 2545.8 2578.5 8.8428 8.2138 1.4888 1881.4 2913.8 2545.8 2579.8 8.8328 8.2138 1.4888 1881.4 2913.8 2545.8 2579.8 8.83428 8.2138 1.4888 1881.4 2913.8 2545.8 2579.8 8.8328 8.2158 1.4868 1887.6 3188.8 2547.3 2588.5 8.8328 8.2158 1.4868 1893.5 2835.4 2548.4 2581.6 -8.8327 8.2169 1.4888 1896.1 2649.4 2548.5 2581.6 -8.8327 8.2169 1.4988 1896.1 2649.4 2548.5 2581.6 -8.8327 8.2169 1.4988 1896.1 2649.4 2548.5 2581.6 -8.8339 8.2169 1.4988 1896.1 2649.4 2548.5 2581.6 -8.8339 8.2169 1.4988 1896.1 2649.4 2548.5 2581.6 -8.8339 8.2169		1.45ØØ		2613.2	2543.2	2576.9	-Ø.Ø355	9.2188								
1.454# 1849.2 2738.1 2543.6 2577.2 # .# .# .# .# .# .# .# .# .# .# .# .# .		1.4520	1846.5	2624.9	2543.3		Ø.ØØ22	Ø.2100								
1.4628 1862.6 2652.5 2544.4 2577.9 -0.0030 0.2114 1.4640 1862.6 2652.5 2544.5 2578.0 -0.0051 0.2114 1.4660 1865.2 2594.8 2544.6 2578.0 -0.0110 0.2115 1.4680 1867.8 2582.9 2544.7 2578.0 -0.0110 0.2115 1.4700 1873.2 2634.8 2545.0 2578.2 0.0040 0.2120 1.4720 1873.2 2634.8 2545.0 2578.3 -0.0141 0.2121 1.4740 1875.7 2543.2 2545.0 2578.3 -0.0141 0.2121 1.4740 1878.5 2770.8 2545.0 2578.2 -0.0177 0.2124 1.4760 1878.5 2770.8 2545.3 2579.5 0.0428 0.2138 1.4780 1884.5 2770.8 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.0 0.0250 0.2143 1.4820 1887.6 3108.8 2547.3 2580.5 0.0305 0.2150 1.4820 1893.5 2835.4 2548.0 2581.2 -0.0133 0.2152 1.4840 1893.5 2835.4 2548.4 2581.6 -0.0339 0.2169 1.4800 1895.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.4540		2738.1	2543.6	2577.2	Ø.Ø211	Ø.2103					<b>)</b>			
1.4628 1862.6 2652.5 2544.4 2577.9 -0.0030 0.2114 1.4640 1862.6 2652.5 2544.5 2578.0 -0.0051 0.2114 1.4660 1865.2 2594.8 2544.6 2578.0 -0.0110 0.2115 1.4680 1867.8 2582.9 2544.7 2578.0 -0.0110 0.2115 1.4700 1873.2 2634.8 2545.0 2578.2 0.0040 0.2120 1.4720 1873.2 2634.8 2545.0 2578.3 -0.0141 0.2121 1.4740 1875.7 2543.2 2545.0 2578.3 -0.0141 0.2121 1.4740 1878.5 2770.8 2545.0 2578.2 -0.0177 0.2124 1.4760 1878.5 2770.8 2545.3 2579.5 0.0428 0.2138 1.4780 1884.5 2770.8 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.0 0.0250 0.2143 1.4820 1887.6 3108.8 2547.3 2580.5 0.0305 0.2150 1.4820 1893.5 2835.4 2548.0 2581.2 -0.0133 0.2152 1.4840 1893.5 2835.4 2548.4 2581.6 -0.0339 0.2169 1.4800 1895.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.456Ø		2795.6	2543.9	2577.5	0.0104	0.2104								
1.4628 1862.6 2652.5 2544.4 2577.9 -0.0030 0.2114 1.4640 1862.6 2652.5 2544.5 2578.0 -0.0051 0.2114 1.4660 1865.2 2594.8 2544.6 2578.0 -0.0110 0.2115 1.4680 1867.8 2582.9 2544.7 2578.0 -0.0110 0.2115 1.4700 1873.2 2634.8 2545.0 2578.2 0.0040 0.2120 1.4720 1873.2 2634.8 2545.0 2578.3 -0.0141 0.2121 1.4740 1875.7 2543.2 2545.0 2578.3 -0.0141 0.2121 1.4740 1878.5 2770.8 2545.0 2578.2 -0.0177 0.2124 1.4760 1878.5 2770.8 2545.3 2579.5 0.0428 0.2138 1.4780 1884.5 2770.8 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.0 0.0250 0.2143 1.4820 1887.6 3108.8 2547.3 2580.5 0.0305 0.2150 1.4820 1893.5 2835.4 2548.0 2581.2 -0.0133 0.2152 1.4840 1893.5 2835.4 2548.4 2581.6 -0.0337 0.2160 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.00400 0.2186		1.4580		2621.9	2544.Ø	2577.6	-Ø.Ø321	Ø.2112								
1.4628 1862.6 2652.5 2544.4 2577.9 -0.0030 0.2114 1.4640 1862.6 2652.5 2544.5 2578.0 -0.0051 0.2114 1.4660 1865.2 2594.8 2544.6 2578.0 -0.0110 0.2115 1.4680 1867.8 2582.9 2544.7 2578.0 -0.0110 0.2115 1.4700 1873.2 2634.8 2545.0 2578.2 0.0040 0.2120 1.4720 1873.2 2634.8 2545.0 2578.3 -0.0141 0.2121 1.4740 1875.7 2543.2 2545.0 2578.3 -0.0141 0.2121 1.4740 1878.5 2770.8 2545.0 2578.2 -0.0177 0.2124 1.4760 1878.5 2770.8 2545.3 2579.5 0.0428 0.2138 1.4780 1884.5 2770.8 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.0 0.0250 0.2143 1.4820 1887.6 3108.8 2547.3 2580.5 0.0305 0.2150 1.4820 1893.5 2835.4 2548.0 2581.2 -0.0133 0.2152 1.4840 1893.5 2835.4 2548.4 2581.6 -0.0337 0.2160 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.00400 0.2186	•	1.4600	1857.3	2695.6	2544.2	2577.7	Ø.Ø139	Ø.2114		,						
1.4660 1867.2 2594.8 2544.6 2578.0 -0.0110 0.2115 1.4680 1867.8 2582.9 2544.7 2578.0 -0.0023 0.2115 1.4700 1870.5 2710.1 2544.9 2578.2 0.0240 0.2120 1.4720 1873.2 2634.8 2545.0 2578.3 -0.0141 0.2121 1.4740 1875.7 2543.2 2545.0 2578.2 -0.0177 0.2124 1.4760 1878.5 2770.8 2545.3 2578.5 0.0428 0.2138 1.4780 1881.4 2913.0 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.8 0.0305 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0327 0.2160 1.4800 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.4620		2679.5	2544.4	2577.9	-0.0030	Ø.2114								
1.4660 1867.2 2594.8 2544.6 2578.0 -0.0110 0.2115 1.4680 1867.8 2582.9 2544.7 2578.0 -0.0023 0.2115 1.4700 1870.5 2710.1 2544.9 2578.2 0.0240 0.2120 1.4720 1873.2 2634.8 2545.0 2578.3 -0.0141 0.2121 1.4740 1875.7 2543.2 2545.0 2578.2 -0.0177 0.2124 1.4760 1878.5 2770.8 2545.3 2578.5 0.0428 0.2138 1.4780 1881.4 2913.0 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.8 0.0305 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0327 0.2160 1.4800 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.4640		2652.5	2544.5	2578.Ø	-0.0051	Ø. 2114								
1.4680 1867.8 2582.9 2544.7 2578.0 -0.0023 0.2115 1.4700 1870.5 2710.1 2544.9 2578.2 0.0240 0.2120 1.4720 1873.2 2634.8 2545.0 2578.2 -0.0141 0.2121 1.4740 1875.7 2543.2 2545.0 2578.2 -0.0177 0.2124 1.4760 1878.5 2770.8 2545.3 2578.5 0.0428 0.2138 1.4780 1881.4 2913.0 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.0 0.0250 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.6 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2160 1.4800 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.466Ø	1865.2	2594.8	2544.6		-0.0110	Ø. 2115								
1.4700 1870.5 2710.1 2544.9 2578.2 0.0240 0.2120 1.4720 1873.2 2634.8 2545.0 2578.3 -0.0141 0.2121 1.4740 1875.7 2543.2 2545.0 2578.2 -0.0177 0.2124 1.4760 1878.5 2770.8 2545.3 2578.5 0.0428 0.2138 1.4780 1881.4 2913.0 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.8 0.0305 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0327 0.2160 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.468Ø	1867.8	2582.9	2544.7		-0.0023	α 2115								
1.4760 1878.5 2770.8 2545.8 2578.5 0.0428 0.2138 1.4780 1881.4 2913.0 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.8 0.0305 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.47ØØ	187Ø.5	271Ø.1	2544.9		0.0210	α 212α								
1.4760 1878.5 2770.8 2545.8 2578.5 0.0428 0.2138 1.4780 1881.4 2913.0 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.8 0.0305 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.4720	1873.2	2634.8	2545.Ø	2578.3	-0.0141	Ø 2121								
1.4760 1878.5 2770.8 2545.3 2578.5 0.0428 0.2138 1.4780 1881.4 2913.0 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.8 0.0305 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.4740		2543.2	2545.Ø			0 2121						•		
1.4780 1881.4 2913.0 2545.8 2579.0 0.0250 0.2143 1.4800 1884.5 3096.0 2546.6 2579.8 0.0305 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.476Ø			2545.3		α α129	α 2120								
1.4800 1884.5 3096.0 2546.6 2579.8 0.0305 0.2150 1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186	• •	1.478Ø		2913.Ø	2545.8	2579 a	a a25a									
1.4820 1887.6 3108.8 2547.3 2580.5 0.0021 0.2151 1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186		1.4800			2546.6		α α α α α c									
1.4840 1890.6 3027.1 2548.0 2581.2 -0.0133 0.2152 1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186								α 21E1								
1.4860 1893.5 2835.4 2548.4 2581.6 -0.0327 0.2160 1.4880 1896.1 2649.4 2548.5 2581.6 -0.0339 0.2169 1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186							-0 0122 -0 0122	W. 2152					•			
1.488Ø 1896.1 2649.4 2548.5 2581.6 -Ø.Ø339 Ø.2169 1.49ØØ 1899.Ø 29Ø5.2 2549.Ø 2582.1 Ø.Ø46Ø Ø.2186							- W . W L Z Z									
1.4900 1899.0 2905.2 2549.0 2582.1 0.0460 0.2186				2649.4												
1 1000 1000 0 0000 0 0000 0 0000 0 0000 0 0000 0		1.4900														
2545.5 2545.5 2545.5 0.218/														•		
					2047.0	- "	וכממימ	w.218/								

TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS						
1.4940	1904.9	2922.9	255Ø.Ø	2583.1	-0.0060	Ø.2187						
1.496Ø	1907.7	2757.4	255Ø.3	2583.4	-Ø.Ø231	Ø.2193						
1.4980	191Ø.4	27Ø5.2	255Ø.5	2583.5	-Ø.ØØ95	Ø.2194						
1.5000	1913.1	2793.Ø	255Ø.8	2583.8	Ø.Ø16Ø	Ø.2196						
1.5020	1916.Ø	287Ø.6	2551.2	2584.2	Ø.Ø137	Ø.2198					•	
1.5040	1918.8	2816.7	2551.6	2584.6	-Ø.ØØ95	Ø.2198						
1.5060	1921.7	2820.3	2552.Ø	2584.9	0.0006	Ø.2198						
1.5080	1924.5	2797.9	2552.3	2585.2	-Ø.ØØ4Ø	Ø.2198						
1.5100	1927.3	2815.7	2552.6	2585.5	Ø.ØØ32	Ø.2199						
1.512Ø 1.514Ø	1930.Ø 1932.8	2748.3	2552.9	2585.7	-Ø.Ø121	Ø.22ØØ						
1.5140	1935.6	2735.1 2798.7	2553.1 2553.5	2585.9 2586.2	-0.0024	Ø.22ØØ Ø.22Ø1						
1.5180	1936.4	2849.4	2553.8	2586.6	Ø.Ø115 Ø.ØØ9Ø	Ø.22Ø1						
1.5200	1941.3	2872.5	2554.3	2587.Ø	Ø.ØØ4Ø	Ø.22Ø2						
1.5220	1944.1	2798.3	2554.6	2587.3	-Ø.Ø131	Ø.22Ø3						
1.5240	1946.9	2782.6	2554.9	2587.5	-0.0028	Ø.22Ø3	•		,			
1.5260	1949.7	2858.2	2555.3	2587.9	Ø.Ø134	Ø.22Ø4						
1.528Ø	1952.5	2773.Ø	2555.6	2588.2	-Ø.Ø151	Ø.22Ø6						
1.5300	1955.3	2861.2	2556.Ø	2588.5	Ø.Ø157	Ø.22Ø8			•			
1.5320	1958.2	2902.0	2556.4	2589.Ø	Ø.ØØ71	Ø.22Ø8						
1.5340	1961.1	2827.9	2556.8	2589.3	-Ø.Ø129	Ø.221Ø						
1.536Ø	1963.9	2821.8	2557.1	2589.6	-Ø.ØØ11	Ø.221Ø						
1.5380	1966.8	2876.6	2557.5	259Ø.Ø	Ø.ØØ96	Ø.221Ø						
1.5400 1.5420	1969.6	2779.2	2557.8	259ø.3	-Ø.Ø172	Ø.2213						
1.5448	1972.5 1975.5	2994.9 2984.2	2558.4	2590.8	Ø.Ø374 - Ø. Ø319	Ø.2224						
1.5460	1978.4	2846.8	2558.9 2559.3	2591.4 2591.7	-Ø.ØØ18 -Ø.Ø236	Ø.2224 Ø.2228						
1.5480	1981.2	2868.8	2559.7	2592.1	Ø.ØØ38	Ø.2228		,				
1.5500	1984.1	2861.9	256Ø.1	2592.5	-0.0012	Ø.2228						
1.5520	1987.Ø	2867.3	256Ø.5	2592.5 2592.8	Ø.ØØ1Ø	Ø.2228						
1.5540	1989.9	2931.2	2561.Ø	2593.3	0.0119	Ø.2229						
1.5560	1992.8	2921.3	2561.4	2593.7	-Ø.ØØ17	Ø.2229						
1.558Ø	1995.7	2898.Ø	2561.9	2594.2 2594.5	-0.0040	Ø.2229				•		
1.5600	1998.6	2864.2	2562.3	2594.5	-Ø.ØØ59	Ø.2229						
1.5620	2001.7	3063.9	2562.9	2595.2	Ø.Ø337	Ø.2238						
1.5640	2004.8	3153.5	2563.7	2596.Ø	Ø.Ø144	Ø.224Ø						
1.566Ø 1.568Ø	2007.8 2010.8	3019.8	2564.2	2596.6 2597.1	-Ø.Ø217	Ø.2244 Ø.2244						
1.5700	2013.8	3007.2 2957.1	2564.8 2565.3	2597.1	-Ø.ØØ21 -Ø.ØØ84	Ø.2244 Ø.2244						
1.5720	2016.8	3041.2	2565.9	2598.2	Ø.Ø14Ø	Ø.2246						
1.5740	2019.9	3041.9	2566.5	2598.8	Ø. ØØØ i	Ø.2246						
1.5760	2022.9	3030.1	2567.1	2599.4	-0.0020	Ø.2246						
1.578Ø	2025.9	3001.3	2567.7	26ØØ.Ø	-0.0048	Ø.2246						
1.5800	2028.9	2996.9	2568.2	2600.5	-Ø.ØØØ7	Ø.2246						
1.5820	2032.0	3049.8	2568.8	2601.1	Ø.ØØ88	Ø.2246						
1.5840	2035.0	3002.5	2569.4	2601.7	-Ø.ØØ78	Ø.2247						
1.5860	2037.9	2953.7	2569.8	2602.2	-Ø.ØØ82	Ø.2247						
1.588Ø 1.59ØØ	2040.9 2044.0	3013.0	257Ø.4	2602.7 2603.3	Ø.ØØ99	Ø.2248						
1.5920	2047.Ø	3039.8 3038.6	2571.Ø 2571.6	26Ø3.3 26Ø3.9	Ø.ØØ44 -Ø.ØØØ2	Ø.2248 Ø.2248						
1.5940	2050.0	3040.3	2572.2	2604.5	Ø.ØØØ3	Ø.2248						
1.5960	2053.0	3002.5	2572.7	26Ø5.Ø	-0.0063	Ø.2249						
1.5980	2056.1	3019.8	2573.3	2605.6	Ø.ØØ29	Ø.2249						
1.6000	2059.0	2938.3	2573.7	2606.0	-Ø.Ø137	Ø.225Ø						
1.6020	2862.1	3128.Ø	2574.4	2606.8	Ø.Ø313	Ø.2258						
1.6040	2065.2	3077.7	2575.Ø	2607.4	-Ø.ØØ81	Ø.2258						
1.6060	2068.2	2999.3	2575.6	26 <u>07.</u> 9	-Ø.Ø129	Ø.226Ø		•				
1.6080	2071.4	3173.4	2576.3	26.7	Ø.Ø282	Ø.2266						

and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS				
1.6100 1.6120 1.6140 1.6160	2074.5 2077.8 2080.8 2084.1	3147.7 3287.4 2971.7 3302.5	2577.0 2577.9 2578.4 2579.3	2609.4 2610.4 2610.9 2611.8	-Ø.ØØ41 Ø.Ø217 -Ø.Ø5Ø4 Ø.Ø527	Ø.2266 Ø.2269 Ø.2289 Ø.2311				
1.618Ø 1.62ØØ 1.622Ø 1.624Ø 1.626Ø	2087.4 2090.6 2093.7 2097.0 2100.2	3284.7 3232.Ø 312Ø.9 3263.Ø 3186.3	2580.2 2581.0 2581.6 2582.5 2583.2	2612.8 2613.6 2614.3 2615.2 2616.8	-Ø.ØØ27 -Ø.ØØ81 -Ø.Ø175 Ø.Ø223 -Ø.Ø119	Ø.2311 Ø.2311 Ø.2313 Ø.2317 Ø.2318				
1.638Ø 1.632Ø 1.632Ø 1.634Ø 1.636Ø	2103.5 2106.6 2109.8 2113.0 2116.1	3302.3 3167.3 3173.9 3162.6 3091.8	2584.1 2584.8 2585.5 2586.2 2586.9	2616.9 2617.7 2618.4 2619.2 2619.8	Ø.Ø179 -Ø.Ø2Ø9 Ø.ØØ1Ø -Ø.ØØ18 -Ø.Ø113	Ø.2321 Ø.2324 Ø.2324 Ø.2324 Ø.2325				
1.638Ø 1.64ØØ 1.642Ø 1.644Ø 1.646Ø	2119.1 2122.4 2125.5 2128.8 2132.Ø	3014.4 3271.3 3189.5 3260.5 3147.7	2587.4 2588.2 2588.9 2589.8 2590.4	262Ø.3 2621.2 2622.Ø 2622.9 2623.6	-Ø.Ø127 Ø.Ø4Ø9 -Ø.Ø127 Ø.Ø11Ø -Ø.Ø176	Ø.2326 Ø.2339 Ø.234Ø Ø.2341 Ø.2344				
1.6480 1.6500 1.6520 1.6540	2135.2 2138.4 2141.7 2145.1	3229.8 3198.3 3286.9 3433.1	2591.2 2591.9 2592.8 2593.8	2624.4 2625.1 2626.1 2627.2	Ø.Ø129 -Ø.ØØ49 Ø.Ø137 Ø.Ø218	Ø.2345 Ø.2345 Ø.2347 Ø.235Ø				
1.656Ø 1.658Ø 1.660Ø 1.662Ø 1.664Ø	2148.5 2152.1 2155.6 2159.0 2162.3	3435.3 3512.Ø 3549.1 3383.3 336Ø.4	2594.8 2595.9 2597.1 2598.Ø 2598.9	2628.3 2629.5 2630.8 2631.9 2632.9	Ø.ØØØ3 Ø.Ø11Ø Ø.ØØ53 -Ø.Ø239 -Ø.ØØ34	Ø.235Ø Ø.2351 Ø.2351 Ø.2356 Ø.2356		٠.		
1.666Ø 1.668Ø 1.67ØØ 1.672Ø 1.674Ø	2166.Ø 2169.5 2172.7 2176.Ø 2179.5	3678.5 3466.1 3233.7 3302.5 3434.9	2600.2 2601.3 2602.0 2602.9 2603.9	2634.4 2635.5 2636.3 2637.2 2638.3	Ø.Ø452 -Ø.Ø297 -Ø.Ø347 Ø.Ø1Ø5 Ø.Ø196	Ø.2371 Ø.2378 Ø.2387 Ø.2388 Ø.2391				
1.676Ø 1.678Ø 1.68ØØ 1.682Ø 1.684Ø	2183.0 2186.8 2190.4 2193.6 2197.2	3508.1 3792.8 3592.3 3266.6 3540.8	2604.9 2606.4 2607.5 2608.3 2609.4	2639.5 2641.2 2642.5 2643.4 2644.6	Ø.Ø1Ø5 Ø.Ø39Ø -Ø.Ø271 -Ø.Ø475 Ø.Ø4Ø3	Ø.2392 Ø.24Ø4 Ø.24Ø9 Ø.2426 Ø.2439				
1.686Ø 1.688Ø 1.69ØØ 1.692Ø	2200.6 2204.2 2207.9 2211.7	3414.4 3673.9 3684.4 3798.1	2610.4 2611.6 2612.9 2614.3	2645.7 2647.1 2648.6 265Ø.2	-Ø.Ø182 Ø.Ø366 Ø.ØØ14 Ø.Ø152	Ø.2441 Ø.2451 Ø.2451 Ø.2453				
1.6940 1.6960 1.6980 1.7000 1.7020	2216.1 222Ø.7 2224.9 2228.7 2232.Ø	4402.9 4589.9 4140.9 3858.7 3293.3	2616.4 2618.7 2620.5 2622.0 2622.8	2653.8 2656.1 2658.4 2668.1 2668.9	Ø.Ø737 Ø.Ø2Ø8 -Ø.Ø514 -Ø.Ø353 -Ø.Ø791	Ø.2494 Ø.2497 Ø.2517 Ø.2526 Ø.2573				,
1.7040 1.7060 1.7080 1.7100 1.7120	2235.1 2238.1 2241.2 2244.3 2247.6	312Ø.4 3ØØ1.7 3Ø15.7 3148.7 3289.6	2623.4 2623.8 2624.3 2624.9 2625.7	2661.5 2661.9 2662.4 2663.8 2663.8	-Ø.Ø27Ø -Ø.Ø194 Ø.ØØ23 Ø.Ø216 Ø.Ø219	Ø.2579 Ø.2581 Ø.2581 Ø.2585 Ø.2588				
1.7140 1.7160 1.7180 1.7200	2251.2 2254.9 2258.6 2262.3	3629.Ø 3652.1 3737.6 3672.9	2626.8 2628.Ø 2629.3 263Ø.5	2665.1 2666.5 2668.Ø 2669.4	Ø.Ø491 Ø.ØØ32 Ø.Ø116 -Ø.ØØ87	Ø.26Ø6 Ø.26Ø6 Ø.26Ø7 Ø.26Ø8				
1.722Ø 1.724Ø	2266.1 227Ø.2	3862.8 4035.7	2632.Ø 2633.6	2671.1	Ø.Ø252 Ø.Ø219	Ø.2613 Ø.2616				

TIME	DEPTH	INT.VEL.	AVG.VEL.	RMS.VEL.	REF.CFT.	TRN.LOSS	118+					
1.7260	2274.0	38Ø8.4					387					
1.7280	2277.8	3772.Ø	2635.Ø 2636.3	2674.7 2676.2	-Ø.Ø29Ø -Ø.ØØ48	Ø.2622 Ø.2622						
1.7300	2281.6	3852.8	2637.7	2677.8	Ø.Ø1Ø6	Ø.2623	77 / 5 36			•		
1.732Ø	2285.3	3637.3	2638.8	2679.2	-Ø.Ø288	Ø.2629	3 € :					
1.7348	2288.7	3492.0	2639.8	268Ø.2	-Ø.Ø2Ø4	Ø.2632	:37 :37	•				
1.7360	2292.2	3410.0	2640.7	2681.2	-Ø.Ø119	Ø.2633	. 34 - 27					
1.7380	2295.5	3335.5	2641.5	2682.Ø	-Ø.Ø11Ø	Ø.2634	33 33 33					
1.7400 1.7420	2298.9 2302.2		2642.3	2682.9	Ø.ØØ38	Ø.2634	35					
1.7440	2305.9	334Ø.1 3678.8	2643.1	2683.8 2685.1	-Ø.ØØ31 Ø.Ø482	Ø.2635	3.6					
1.7460	2309.5	3609.2	2645.4	2686.4	-Ø.ØØ95	Ø.2652 Ø.2652	3€ :					
1.7480	2313.1	3655.3	2646.6	2687.7	Ø.ØØ64	Ø.2653	3€					•
1.7500	2316.8	3634.8	2647.7	2688.9	-Ø.ØØ28	Ø.2653	36					
1.7520	2320.4	3644.6	2648.8	269Ø.2	Ø.ØØ13	Ø.2653	36					
1.7540	2324.0	3576.5	2649.9	2691.4	-Ø.ØØ94	Ø.2653	3E 3E					
1.7560	2327.5	3513.7	265Ø.9	2692.5	-Ø.ØØ88	Ø.2654	355					
1.758Ø 1.76ØØ	2331.1 2334.6	3559.1 3555.7	2651.9 2652.9	2693.6	Ø.ØØ64	Ø.2654	35.					
1.7620	2338.3	3652.1	2654.1	2694.8 2696.Ø	-0.0005 0.0134	Ø.2654 Ø.2656	361				,	
1.764Ø	2341.8	3487.3	2655.Ø	2697.1	-Ø.Ø231	Ø.2659	34					
1.7660	2345.Ø	3253.2	2655.7	2697.8	-Ø.Ø347	Ø.2668	32: 372.					
1.7680	2348.7	3727.6	2656.9	2699.1	0.0680	Ø.27Ø2	378.					
1.77ØØ 1.772Ø	2352.4 2356.1	3702.9 3678.0	2658.1 2659.2	2700.5	-0.0033	Ø.27Ø2	1					
1.7748	2359.7	3571.8	266Ø.3	27Ø1.8 27Ø2.9	-Ø.ØØ34 -Ø.Ø146	Ø.27Ø2 Ø.27Ø4	2ť 26.					
1.776Ø	2362.6	2874.8	2660.5	2703.1	-Ø.1Ø81	Ø.2789	٤٤.					
1.778Ø	2366.0	3406.5	2661.4	2704.0	Ø.Ø847	Ø.2841	34:					
1.7800	2369.4	3414.8	2662.2	2704.9	Ø.ØØ12	Ø.2841	37 · · · · · · · · · · · · · · · · · · ·		•			
1.7820	2372.7	3318.2	2662.9	2705.7	-Ø.Ø144	Ø.2842	345					
1.7840	2376.2 2379.4	3492.5 (5) 3217.1	2663.9	2786.7	Ø.Ø256	Ø.2847	32					
1.7880	2383.Ø	3606.5	2664.5 2665.5	2707.3 2708.5	-Ø.Ø41Ø Ø.Ø571	Ø.2859 Ø.2882	3641					
1.7900	2386.5	3476.6	2666.4	2709.5	-Ø.Ø183	Ø.2885	3471					
17920	2389.3	2800.3	2666.6	2709.6	-0.1077	Ø.2967	2811		•			
1.7948	2392.7	3376.Ø	2667.4	271Ø.4	Ø.Ø932	Ø.3Ø28	337(					
1.7960	2396.1	3418.5	2668.2	2711.3	Ø.ØØ63	Ø.3Ø29	3418 3756					
1.798Ø 1.8ØØØ	2399.9 24Ø3.4	3756.9	2669.4	2712.7	Ø.Ø472	Ø.3Ø44	3E41	•				
1.8020	2403.4	3541.1 357Ø.6	267Ø.4 2671.4	2713.8 2714.9	-Ø.Ø296 Ø.ØØ42	Ø.3Ø5Ø Ø.3Ø5Ø	3576					
1.8040	2410.5	3532.3	2672.4	2715.9	-0.0054	Ø.3Ø51	351					
1.8060	2414.Ø	3462.Ø	2673.2	2716.8	-0.0101	Ø.3Ø51	34(7	•				
1.8080	2416.9	29Ø5.1	2673.5	2717.1	-Ø.Ø875	Ø.31Ø5	2985	1				
1.81ØØ 1.812Ø	2419.8	2931.7	2673.8	2717.3	0.0046	Ø.31Ø5	Z931. 2641.				•	
1.8140	2422.4 2425.2	2648.7 2769.8	2673.7 2673.9	2717.2	-0.0507	Ø.3122	2769	:				
1.8160	2428.8	3598.9	2674.9	2717.3 2718.4	Ø.Ø223 Ø.13Ø2	Ø.3126 Ø.3242	3555					
1.8180	2432.4	3581.8	2675.9	2719.5	-0.0024	Ø.3242	3500	1				
1.82ØØ	2435.8	3365.3	2676.6	2720.3	-Ø.Ø312	Ø.3249	336					•
1.8220	2438.6	2845.7	2676.8	2720.4	-Ø.Ø836	Ø.3296	28/! 30(),	•				
1.8240	2441.7	3067.7	2677.2	2720.9	Ø.Ø375	Ø.33Ø6	3651					
1.8260	2445.4		2678.4	2722.1	Ø.Ø93Ø	Ø.3363	3€,	•			•	
1.8300	2449.Ø 2452.7	3644.6 367Ø.5	2679.4 268Ø.5	2723.3 2724.5	-Ø.ØØ71	Ø.3364	: 6					
1.8320	2456.1	3411.9	2681.3	2724.5	Ø.ØØ35 -Ø.Ø365	Ø.3364 Ø.3373	; <b>.</b> .					
1.8340	2459.1	2956.3	2681.6	2725.6	-Ø.Ø715	Ø.3373 Ø.34Ø7	<u> </u>					
1.8360	2462.4	3337.9	2682.3	2726.4	Ø.Ø6Ø6	Ø.3431						
1.838Ø	2465.9	3515.4	2683.2	2727.3	Ø.Ø259	Ø.3435	*					
1.8400	2469.6	3689.7	2 <del>684.3</del>	2728.6	Ø.Ø242	Ø.3439						
		•										

The section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the se

TIME  1.8420 1.8440 1.8460 1.8520 1.8520 1.85540 1.85600 1.86600 1.86640 1.86680 1.867800 1.867800 1.8760 1.8760 1.887800 1.887800 1.887800 1.888800 1.88900	DEPTH 24778.3 244884.3 2448848.3 244884.4 2498.1 2498.1 2498.3 255889.3 255123.1 255227.8 255334.5 25545.3 25545.3 25545.3 25545.3 25545.3 25545.3 25545.3 25545.3 25545.3 25545.3 25545.3	INT.VEL.  3614.8 3740.8 3816.2 3583.3 3604.8 3494.4 3647.3 35571.1 3507.9 36453.7 3799.6 35541.1 34435.6 3773.0 3482.7 3587.4 3453.9 3561.8 3581.3 3581.3 3411.4 3426.6	2685.3 2686.5 26887.7 26889.5 26899.5 26991.6 26991.6 26991.6 26991.0 26996.3 26991.0 26996.3 27782.7 27782.7 27782.7 27787.9 27787.9 27787.9 27788.7	RMS.VEL.  2729.7 2731.8 2732.4 2733.5 2734.6 2735.5 2736.6 2737.7 2738.6 2748.6 2742.8 2743.9 2744.8 2744.8 2745.2 2748.1 2749.1 2750.8 2751.9 2753.7 2753.7 2753.7	REF.CFT.  -Ø.Ø1Ø3 Ø.Ø171 Ø.Ø180 -Ø.Ø315 Ø.Ø315 Ø.Ø155 Ø.Ø214 -Ø.Ø106 -Ø.Ø889 Ø.Ø184 -Ø.Ø189 -Ø.Ø339 -Ø.Ø151 Ø.Ø251 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151 Ø.Ø151	Ø.3440 Ø.3442 Ø.34449 Ø.34451 Ø.3454 Ø.3455 Ø.3455 Ø.34561 Ø.3484 Ø.3484 Ø.3484 Ø.3484 Ø.3485 Ø.3505 Ø.3505 Ø.3507	3614.8 3748.8 3816.2 3583.3 3684.8 3494.4 3647.3 3571.1 3587.1	2: \$5.3 7: : 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7 7: 6.7	- , -	•	i	TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL
					•							

# SEISMOGRAPH SERVICE LIMITED WELL GEOPHONE SURVEY FIELD REPORT AIR GUN

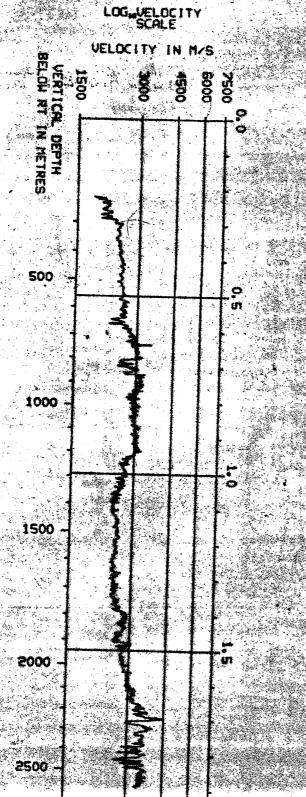
Sheet 1 ct 2

WELL NAME	Edina	No. ]		COUNTR	Y	AUSTRA	LIX	10	OB NO	<u>5 61</u>
		*								RVEY -28 - 10 - 82
Pet	roleum	Pty. Ltd.				470 52	L-41. 18	B' <del>LE</del> R	IG NAME &	HEADING Ocean Digger
WILL CEOR	CINIC DEC	1 5 7 5 1	D.M.	r i i v v i i i	ION OF R	L ILVII	30.2	n G	UN OFFSFT	T DISTANCE 46.6m
										4.0m
										PHONE DEPTH 6.7m
GUN CHAMBI	R SIZE	on on in		DEPTH C	ASING &	SIZE 121	lm @ 1:	3 3/8'b	UN DIRECT	710N 290°
FOUIPMENT	NO 0	4		SAMPLE	INTERVA	1	2ms	M	ULTIPLEX	TIME3s of data
		VNOT REWOUNI							i,	
			- 			<u> </u>				
						GAII	N dB	Filter	Gun	Hydro Gain 21 dB
Tarmonter	Record No.	Depth Well Genophone M or XX	No. of Shots	Time Recorded Hours	T ms	Record	DHA	Setting High Cut Hz.	Pressure p.s.i.	" Atten - 24 dB REMARKS
101 - 3	1	225	3	2.33		3/0	ON	55	1500	
4 - 8	2	400	4			6	"	11	หท์	
9 - 10	3	600	2			12	11		**	
11 - 12	4	800				18	11		11	
13 - 14	5	1000	2 2			24/21	11	.,	11	
<b>15 - 1</b> 6	6	1195	2			24	11	11		
17 - 18	7	1216	2			24	**	11	92	
<b>19 -</b> 20		1450	2	3.27		27/24	11	=	91.	
21 - 24	9	1675	3	3.50		30	11	11	11	
<b>26 –</b> 27	10	1650	2			30	.,		11	
20 2	11	1850	2			36/33	.,		11	
:3 - 4	12	2250	2			39		11	1200	
_56	13	2450	2			39		11	"	
7 - 10	14	2580	4	4.51		39	"	It.	•1	
11 - 12	15	2350	2			39			ır	
13 - 14	16	2050	2			33	,,	11	11	
15 - 16	_17	1698	2			30		11		
17 - 18	18-	1600	. 2			30	"	"	11	
WELL SEISMIC		MSI DEPT				VATION \		•		RING VELOCITY//
		VE BREAKS				.5	,			HEPPLE .
•					Olie	RATORS		5101		
AUDINESS DA	A SHOUL	D BE SENT		-						
REMARKS	<del></del>			<del></del>				`		
MEMARKS						· · · · · · · · · · · · · · · · · · ·				
							<del></del>			**

## SEISMOGRAPH SERVICE LIMITED WELL GEOPHONE SURVEY FIELD REPORT AIR GUN

WELL NAME				_ COUNTR	Y			J	OB NO			
CLIENT				_WELL LC	CATION			c	DATE OF SURVEY			
										R HEADING		
										•		
WELL GEORE	AUNAL BEE									T DISTANCE		
										1		
										OPHONE DEPTH		
										TION		
					•	•				TIME		
		/NOT REWOUN	-									
						-			<b>1</b>			
:	GAIN de					и чв	Filter	Gun				
Tape Ter	Frecond 145.	Depth Well Geophone M or IX.	No. of Shots	Time Recorded Hours	T	Record	DHA	Setting High Cut Hz.	Pressure p.s.i.	REMARKS		
220 - 21	19	500	2			9	ON	55	1200			
22 - 23	. 20	400	2			- 6	"	**	ŧı			
24 - 27	21	300	4	6.00		3	H	11	11			
	!											
	- 1											
	1		·									
	Ť						`					
	:											
						•				·		
	į				,							
										•		
	:											
	1											
LEVATION R	EF DATU	м	H WEATH	FRING	DIF	ERATORS _	וסציו אר	ROPHONE	BREAKS .	RING VELOCITY		
EMARKS												
<del></del>												
14146 Revised	-:	<del></del>										

## SE (SHOGRAPH SERVELE & ENGLAND) (LTD. WELL SUPPLEY DIVISION


TWO-WAY TRAVEL TIME LOG

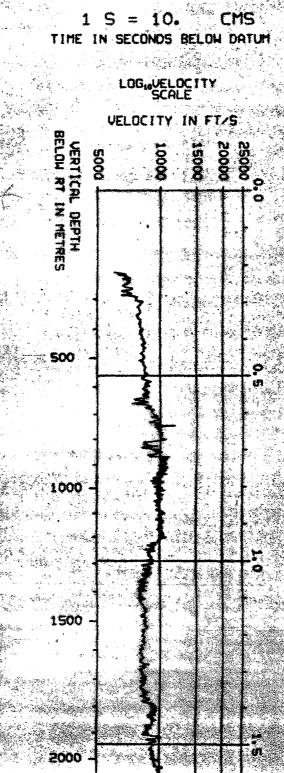
COMPANY: AUSTALIAN AQUITAINE PETROLEUM PTY LTD

WELL: EDINA NO. 1

1 S = 3.75 INS TITE IN SECONDS BELOW DATUM








SEISMOGRAPH SERVICE (ENGLAND) LTD. WELL SURVEY DIVISION

TWO-WAY TRAVEL TIME LOG

COMPANY: AUSTALIAN AQUITAINE PETROLEUM PTY LTD

1 S = 10. CMS TIME IN SECONDS BELOW DATUM



Enclosures

This is an enclosure indicator page. The enclosure PE905963 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905963 has the following characteristics:

ITEM_BARCODE = PE905963
CONTAINER_BARCODE = PE905967

NAME = Final Stack Air Gun, Line GA81-21

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = SEISMIC SUBTYPE = SECTION

DESCRIPTION = Final Stack Air Gun, Line GA81-21

(enclosure 1 of WCR) for Edina-1

REMARKS =

 $DATE_CREATED = 31/01/82$ 

DATE_RECEIVED =

W_NO = W784 WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905964 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905964 has the following characteristics:

ITEM_BARCODE = PE905964
CONTAINER_BARCODE = PE905967

NAME = Final Stack Air Gun, Line GA81-18

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = SEISMIC SUBTYPE = SECTION

DESCRIPTION = Final Stack Air Gun, Line GA81-18

(enclosure 2 of WCR) for Edina-1

REMARKS =

 $DATE_CREATED = 31/01/82$ 

DATE_RECEIVED =

W_NO = W784 WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page.
The enclosure PE604492 is enclosed within the container PE905967 at this location in this document.

The enclosure PE604492 has the following characteristics:

ITEM_BARCODE = PE604492
CONTAINER_BARCODE = PE905967

NAME = Composite Well Log BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL

SUBTYPE = COMPOSITE_LOG

REMARKS =

 $DATE_CREATED = 1/11/82$ 

DATE_RECEIVED =

 $W_NO = W784$ 

 $WELL_NAME = EDINA-1$ 

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page.

The enclosure PE905965 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905965 has the following characteristics:

ITEM_BARCODE = PE905965

CONTAINER_BARCODE = PE905967

NAME = Master Log

BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Mud Log (enclosure 4 of WCR) for

Edina-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W784$ 

WELL_NAME = EDINA-1

CONTRACTOR = GEOSERVICES

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM

This is an enclosure indicator page. The enclosure PE905966 is enclosed within the container PE905967 at this location in this document.

The enclosure PE905966 has the following characteristics:

ITEM_BARCODE = PE905966
CONTAINER_BARCODE = PE905967

NAME = Completion Log BASIN = GIPPSLAND BASIN

PERMIT = VIC/P17 TYPE = WELL

SUBTYPE = COMPLETION_LOG

DESCRIPTION = Completion log (enclosure 5 of WCR) for

Edina-1

REMARKS =

 $DATE_CREATED = 26/09/82$ 

DATE_RECEIVED =

W_NO = W784 WELL_NAME = EDINA-1

CONTRACTOR =

CLIENT_OP_CO = AUSTRALIAN AQUITAIN PETROLEUM