

(° S

and the second second

ال

Ì

ų

AMBERJACK-1 WELL COMPLETION REPORT

CONTENTS

1. WELL SUMMARY SHEET

2. DRILLING DATA

2.1 Drilling Completion Report

3. FORMATION SAMPLING

- 3.1 Ditch Cuttings
- 3.2 Sidewall Cores
- 3.3 Conventional Cores
- 3.4 RFT Recoveries
- 3.5 Palynology

4. LOGGING AND SURVEYS

- 4.1 Mudlogging
- 4.2 Wireline Logs
- 4.3 Velocity Survey

5. WELL POSITIONING REPORT

5.1 Satellite Positioning Survey

LIST OF FIGURES

Figure 1: Location Map

LIST OF TABLES

Table 1: Ditch Cuttings Sample Distribution

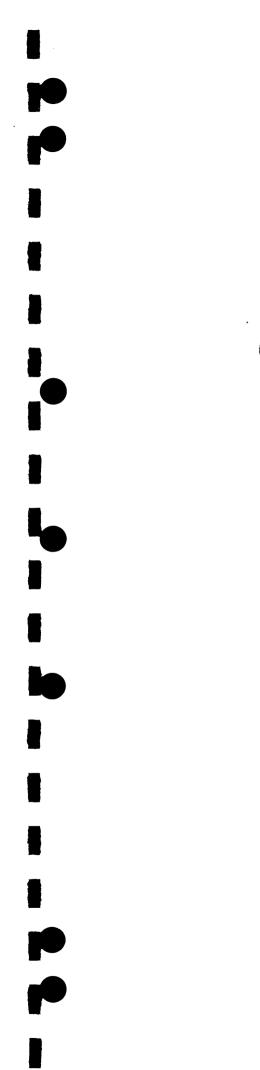

Table 2: Sidewall Core Summary

Table 3: List of Wireline Logs

LIST OF ENCLOSURES

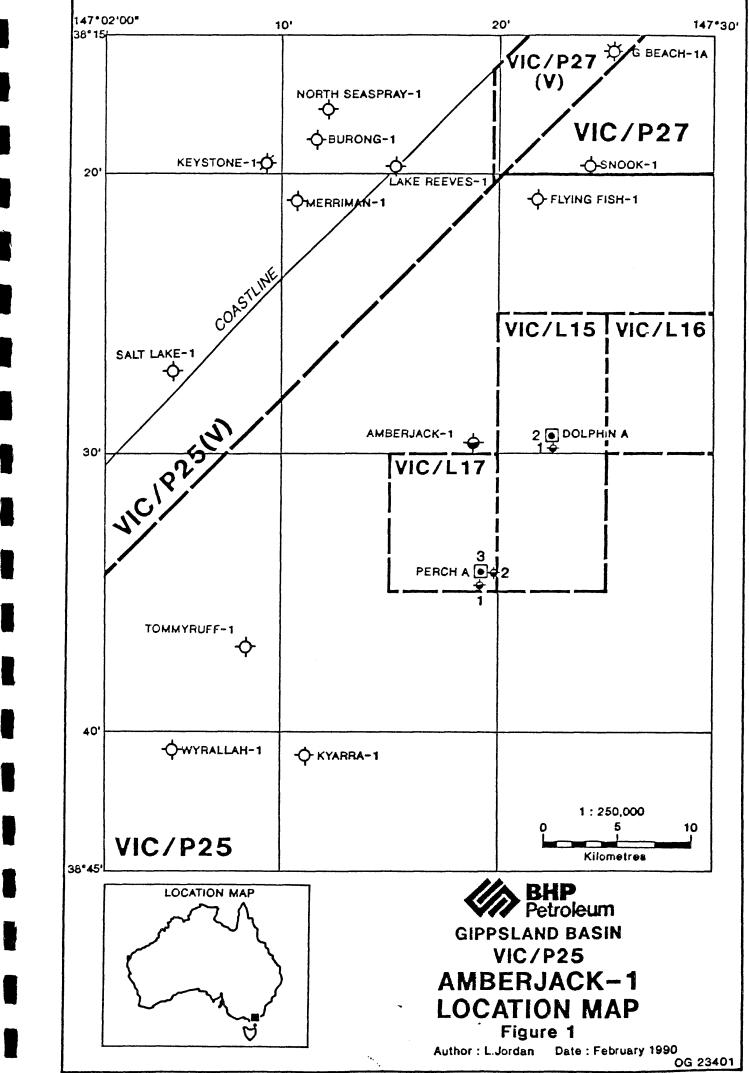
,

Enclosure 1: Exlog Mudlog Enclosure 2: Velocity Survey Log

Section 1

1. WELL SUMMARY SHEET

Well:	AMBERJACK-1
Permit:	VIC/P25
District:	Gippsland Basin
Planned Location:	Latitude : 38° 29' 33.5" South Longitude : 147° 18' 55.4" East A.M.G. : X = 527504m E Y = 5739460m N
Actual Location:	Latitude : 38° 29' 33.44" South Longitude : 147° 18' 55.05" East A.M.G. : X = 527495.7m E Y = 5739463.4m N
Seismic Reference:	Line GSE89A-58 SP 305
Elevation (KB to MSL)	21 m
Water Depth:	37 m
Total Depth:	1750 mRKB
Rig Released from Previous Location:	1st May 1990, 2100 hrs
Spud Date:	4th May 1990, 0215 hrs
Total Depth Date:	13th May 1990
Rig Released:	17th May 1990, 1700hrs
Days from Spud to Total Depth:	9
Total Days on Well:	17
Operator:	BHP Petroleum Pty. Ltd.
Drilling Contractor:	South Seas Drilling Co.
Rig:	Southern Cross
Well Status:	Plugged and Abandoned
Total Cost:	\$2,532,512 (wellsite estimate)


Permit Interests:	Austin Oil Exploration N.L. 19th Floor 60 Albert Road SOUTH MELBOURNE VIC 3205	9.25%
	BHP Petroleum (Victoria) Pty. Ltd. Collins Tower 35 Collins Street MELBOURNE VIC 3000	56.70%
	Peko Exploration Ltd. 476 St Kilda Road MELBOURNE VIC 3004	9.25%
	Pursuit Exploration Pty. Ltd. 27th Floor 12 Creek Street BRISBANE QLD 4000	15.55%
	TMOC Exploration Pty Ltd. AGL House 60 Edward Street BRISBANE QLD 4000	9.25%

ľ

ł

Roca DG 22523

BHP PETROLEUM PTY. LTD. WELL COMPLETION REPORT

PERMIT: VIC/P25

WELL: AMBERJACK-1

<u>MAY 199</u>0

AMBERJACK-1

WELL COMPLETION REPORT CONTENTS

SECTION

1	GENERAL WELL DATA
2	CONTRACTORS
3	LOCATION MAP
4	OPERATONS SUMMARY
5	DAILY OPERATIONS
6	DISCUSSION BY INTERVAL
7	WELL SCHEMATIC
8	TIME BREAKDOWN
9	TIME DEPTH CURVE
10	DRILLING COSTS
11	MOORING DIAGRAM
12	WEATHER AND SEASTATE DATA
13	BIT RECORD
14	BHA SUMMARY
15	CORE RECORD
16	MUD PROPERTIES 17 1/2"
17	MUD PROPERTIES 12 1/4" HOLE
18	HYDRAULICS SUMMARY
19	L.O.T. DIAGRAM
20	CASING AND CEMENTING REPORTS
21	ABANDONMENT PLUGS
22	ELECTRIC LOGS
23	APPROVALS

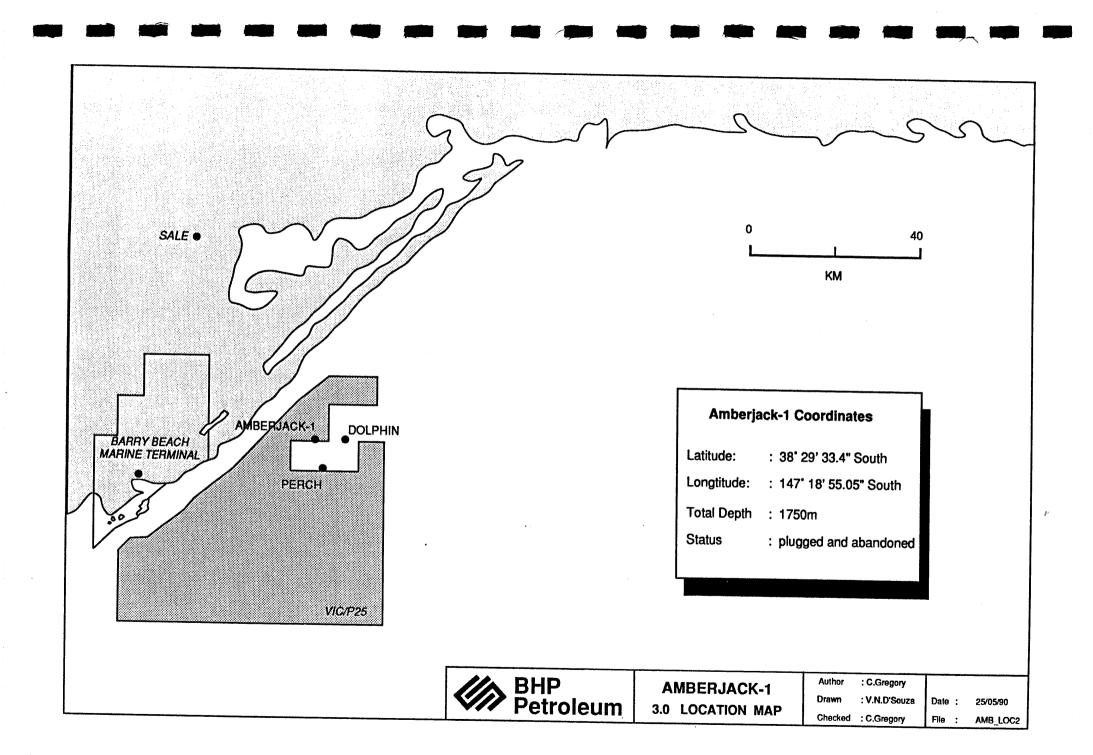
1.0 GENERAL WELL DATA

Well Name: Permit: Classification: Proposed Location:

Actual Location:

Amberjack-1 Vic/P25 Wildcat Latitude 38 29' 33.5" South Longitude 147 18' 55.4" East Easting 527504 m E Northing 5739460 m N

Latitude 38 29' 33.4" South Longitude 147 18' 55.05" East Easting 527495.7 Northing 5739463.4 Heading 233


"Southern Cross" South Seas Drilling Company 37 m 21 m 1750 m RKB 1 May 1990 - 21:00 hours 3 May 1990 - 06:45 hours 4 May 1990 - 02:15 hours 12 May 1990 - 14:40 hours 17 May 1990 - 17:00 hours 9 17 Plugged and abandoned

Rig:

Drilling Contractor: Water Depth: RKB to M.S.L. Total Depth: Rig on Contract: Arrived Location Spud Date: T.D. Date: Rig Release: Spud to T.D. Days: Total Days: Well Status

2.0 <u>CONTRACTORS</u>

Drilling: Supply Vessels: Helicopter: Mud: Cementing: Wireline Logging: Mud Logging: R.O.V: Casing Running: Coring: Drilling Tools: Abandonment: South Seas Drilling Company Tidewater Marine Lloyd Aviation Baroid Halliburton Schlumberger Exlog Sonsub Services/EAL Frank's Casing crew Eastman Christensen Austoil

4.0 OPERATIONS SUMMARY

4.1 Rig Move and Positioning

The semi-submersible Southern Cross was released from Esso's Terakihi No. 1 location at 21:00 hours, 1 May 1990. The rig went undertow to the Amberjack-1 location via the supply vessel, "Lady Penelope". Deteriorating weather conditions caused a delay of nine hours as the rig was towed south in a wide arc, approaching the Amberjack-1 location at 0600 hours on the 3rd May. The first anchor was dropped at 0645, 3rd May 1990, the final anchor was in place 7 3/4 hours later. The rig was ballasted to operating draft and positioned two metres on a bearing of 7 deg 46' 34" from the intended location.

4.2 Spud and 26" Hole

The TGB was run and landed on the seabed establishing the water depth at 37 m and confirming that the seabed was relatively firm. The 26" BHA was made up and the well spudded at 2:15 am on the 4th May. 26" hole was drilled from 58 m to 202 m using seawater and Hi-Vis lime flocculated gel sweeps. At T.D. a 100 bbl Hi-vis sweep was circulated and a totco survey dropped indicating a hole deviation of 0.5 degrees. After a wiper trip to the mudline the hole was displaced to Hi-vis mud before pulling out to run casing. Eleven joints of 20" casing, a wellhead/pile joint and permanent guidebase were run. The casing encountered an obstruction at 193 m and had to be worked and circulated down to 196 m to land the PGB out in the TGB. The casing string was cemented with a 1.5 sg lead slurry consisting of 200 sxs of cement in 48 bbls of seawater containing 2.2% gel and a 1.9 sg tail slurry consisting of 890 sxs of cement mixed with 106 bbls of seawater.

The Bop's were then landed and pressure tested.

4.3 <u>17 1/2" Hole - 13 3/8" Casing</u>

The twenty inch shoe track was drilled out and 17 1/2" hole drilled through the Gippsland Limestone to 1010 metres, using a seawater gel mud system. Major sandstone interbeds were encountered from 400 m resulting in severe mud losses over the surface equipment due to blinding of the shaker screens. At T.D. the hole was swept with 100 bbls of Hi-vis and a wiper trip made to the 20" shoe. On RIH it was necessary to wash and ream from 878 to 901 m. Seven metres of fill had accumulated on bottom. On POOH to log a 200 bbl KCL polymer pill was spotted on bottom to reduce possible swelling of the Lakes Entrance claystone/marl sediments. Eighty joints of 13 3/8" casing were run to a shoe depth of 1,000 m. The casing was landed and cemented with a lead slurry (1.5 sg) consisting of 891 sxs of cement mixed with 252 bbls of drill water containing 3.1% BWOW of prehydrated bentonite, and a tail slurry (1.9 sg) containing 508 sxs of cement mixed with 60.5 bbls of seawater. The pack off was set and surface equipment and BOP's tested as per schedule.

4.4 <u>12 1/4" Hole</u>

The shoe track and four metres of new hole were drilled prior to performing a leak off test to 1.67 sg. The hole was displaced to KCL/polymer mud and 12 1/4" hole drilled to 1271 m where the bit was pulled to core.

A Schlumberger GCT survey tool was run to survey the hole from 1000 m to surface. The survey was run at this time rather than earlier because the tool was in use on the Bream platform. A 5 1/4" core was cut from 1271 to 1290 m. The cored section was reamed and 12 1/4" hole continued to T.D. at 1750 m. A wiper trip was made to the shoe and final logs run.

4.5 Abandonment

Cement plugs numbers one and two were set in 12 1/4 " open hole from 1575-1420 m and from 1320-1220 m respectively. Cement plug number three was set across the 13 3/8" casing shoe from 1050 to 950 m. 13 3/8" casing was then cut using a Schlumberger Pengo cutter at 146 metres. Seven joints of 13 3/8" casing were retrieved using a casing spear assembly. Cement plug number four was set across the 13 3/8" casing stump from 200 to 80 metres. Bop's were pulled, the 20" casing cut mechanically at 66.8 m, and the wellhead and guidebases retrieved. A seabed survey found the area to be free of debris.

The rig was deballasted and anchor retrieval commenced. The rig was released and went undertow to the Tommyruff-1 location at 1700 hours on the 17th May 1990.

5.0 DAILY OPERATIONS

ł

Î

F

P

ľ

Î

ľ

Date	Depth	Operation	
1/5/90			:00 hours. On tow to Vic P25. Towboat Lady
		Position at Midnight:	
		Distance to go Speed Latitude Longitude Course	 11 miles 52 miles 3.67 kts 38 35.5' south 1480 21' east 2410 1300 hrs 2/5/90
2/5/90			conditions rig was towed into location, delaying seas decrease. Maximum
		Position at Midnight:	
		Latitude Longitude Course	- 38 ⁰ 36.3' south - 147 ⁰ 11.9' east - 023 ⁰
3/5/90		Turn into location an handling anchors at A	
		<pre># 5 " " # 6 " " # 7 " " # 3 anchor on bottom Ballast rig to operat. Pretension anchors to land on seabed. Bull:</pre>	08:55 hours 11:40 hours 12:40 hours 14:00 hours 14:30 hours

.

4/5/90	202 m	Continue to make up BHA. Repair compensator lock bar. Spud in and drill 26" hole from 58 m
		to 202 m - sweep 30 bbls Hi-vis on
		connections. Sweep 100 bbl's Hi-vis and
		circulate out of hole. Drop totco survey.
		Spot 50 bbl Hi-vis on bottom POOH to mud line
		(good hole). Retrieve survey (misrun). RIH
		(no fill). Displace hole with 200 BBI's
		Hi-vis. POOH with BHA, retrieve survey. Rig
		up and run 20" casing - obstruction at 193 m.
		Circulate and work casing down to 196 m and
		land out PGB in TGB. PGB bullseye 1/2 deg.
		RKB top of wellhead 55.3 m.

- 5/5/90 269 m Pump 10 barrels seawater ahead. Test lines to 2000 psi. Mix and pump 200 sks lead cement followed by 890 sks of tail. Displace with 32 barrels of seawater. Back out running tool with stinger and POOH. Rig up and run Bop's. Land Bop - overpull 50,000 on latch - land and nipple up diverter. Test connector against casing and shear rams to 500 psi (ok). Make up test plug and RIH. Test Bop's - rams and failsafe valves to 250/3500 psi annulars to 250/2500. POOH with test plug, RIH and set wear bushing. Make up 17 1/2" BHA. RIH - lay down excess drill pipe. Tag cement and float collar at 141 m. Drill out float, firm cement and shoe at 196 m. Clean out rathole to 202 m. Drill 17 1/2" hole from 202 m to 269 m. Sweep each connection with 30 BBI Hi-vis mud.
- 6/5/90 903 m Drill 17 1/2" hole from 269 metres to 393 metres. Repair mud pump. Drill 17 1/2" hole from 393 to 903 m. Good hole no drag on connections.

7/5/90 1010 m Drill 17 1/2" hole from 902 to 1010m. Sweep hole with 100 bbl's of hi-vis and circulate out. Drop totco survey. P00H to shoe maximum overpull 80,000 lbs. Retrieve survey at shoe. RIH obstruction at 878 m, ream to 901 m. Continue RIH to 1010 m, 7 m of fill. Circulate hole clean spot 200 bbls kcl/polymer on bottom. P00H to log. Rig up Schlumberger run log #1 sonic, DLL, MSFL, GR, AMS. Rig down Schlumberger, retrieve wear bushing. Rig up and run 13 3/8" casing. 8/5/90

1014 m Run 13 3/8" casing. Make up hanger and land same. Circulate casing. Test surface lines to 2500 psi. Cement casing with 891 sks of lead followed by 501 sks of tail. Displace with 468 bbl's mud. Back out running tool and energise seal assembly with 8 1/2 turns to 18,000 ft lbs. Test to 2500 psi/10 mins (ok). Test Bop's to 2000 psi (ok). Lay out Kelly - POOH with running string lay down running tool. Run and set wear bushing test standpipe manifold, Kelly and inside Bop's to 3000 psi. Service break cement Kelly. Make up 12 1/4 BHA - RIH, lay down excess drill pipe. Tag plugs at 975 metres. Drill out shoe track. Drill 12 1/4" hole from 1010 to 1014 m. Circulate and displace hole to KCL/polymer mud system.

- 9/5/90 1271 m Circulate prior to leak off test. Test surface lines to 2000 psi and perform LOT to 1.67 sg EMW. Drill 12 1/4" hole from 1014 to 1219 m, 1239 m, and 1271 m. Drop survey and POOH. Rig up Schlumberger and run GCT survey. Restriction at 864 m. POOH rig down Schlumberger, make up core barrel and RIH.
- 10/5/90 1354 m Continue RIH with core barrel. Obstruction at 969 m. Wash and ream to bottom at 1271 m. Circulate, drop ball and cut core from 1271 to 1290 m. Pull back three joints with Kelly. Continue to POOH with core barrel. Recover core, stand core barrel in derrick. Make up BHA and RIH. Wash and ream from 1255 to 1290 m. Drill 12 1/4 hole from 1290 to 1354 m. Circulate sample.
- 11/5/90 1610 m Drill 12 1/4 hole from 1354 to 1500 m. Circulate. Drop survey, POOH to shoe (good hole). Retrieve survey. RIH to 1478 m. Ream from 1478 m to bottom 1500 m. Drill 12 1/4" hole from 1500 to 1510 m. Circulate up samples at 1536 and 1544 metres.
- 12/5/90 1750 m Drill 12 1/4" hole from 1610 to 1750 m. Circulate bottoms up. Drop survey. RIH, ream tight spot from 1612 to 1635 metres. RIH to 1718 m and wash and ream to bottom at 1750 m. Circulate shakers clean. POOH to log.

13/5/90 1750 m Rig up Schlumberger run log #1 DLL-MSFL-LDL-CNL-NGT-SDT-CAL-AMS Supercombo. Rig down log one and run log two SHDT-GR-AMS. Make up BHA and run in hole to shoe. Slip and cut drill line. Continue to RIH to 1727 m. Wash and ream from 1727 to bottom 1750. Circulate bottoms up. POOH to log. Rig up Schlumberger RFT. Run log number three, RFT.

14/5/90 Continue number three log, first RFT. RIH with 1750 m number two RFT, recover same RIH with number three RFT, recover same. RIH with number four RFT recover same. Rig up Vsp. RIH with number four log-Vsp. Rig up number five log-Cst (60 shot). Rig down Schlumberger. RIH with O.E.D.P. to 1575 m. Circulate and condition hole.

1750 m Set number one cement plug from 1575-1420 metres. POOH seven stands. Circulate. Lay down excess drill pipe and wait on cement. RIH and tag plug at 1422 m with 15 klb. Pull back to 1320 m and circulate. Pump cement plug two from 1320 to 1220 m. Pull back five stands and circulate, lay down excess drill pipe and wait on cement. RIH and tag cement at 1220 m with 10,000 lbs. Pull back to 1050 m and circulate. Pump cement plug three from 1050 to 950 m. Pull back seven stands and circulate. Lay down excess drill pipe and BHA. RIH to 200 m. Displace hole to seawater - flush choke and kill lines. Continue to lay down BHA - test number three cement plug to 1500 psi. Rig up Schlumberger, RIH with pengo cutter to 164 m and cut casing. No losses or gains evident. Retrieve wear bushing. Make up 13 3/8" casing spear and retrieve 13 3/8" casing and lay down.

16/5/90 1750 m Lay down seven joints of 13 3/8" casing and casing spear assembly. RIH to 200 m. Circulate bottoms up record 0.0144% c1 gas. Set cement plug number four from 200 to 80 metres. Pull back to 70 m, circulate pipe clean. Lay down excess drill pipe. Test cement plug to 500 psi (ok). Unlatch and pull Bop's. Make up 20" casing cutter. RIH and cut 20" casing at 66.8 m. POOH and lay down 20" cutting assembly. Make up 18 3/4" running tool, RIH and make up into wellhead. POOH with wellhead pile joint and PGB, land on beams and lay down. Lay down excess drill collars. Retrieve TGB using running tool. De-ballast rig for move.

15/5/90

17/5/90

Continue to de-ballast rig. Pull anchors. Final anchor racked at 1700 hrs. Rig on tow to Tommyruff location. Tow boat Lady Caroline.

.

6.0 DISCUSSION BY INTERVAL

6.1 26" Hole: 58-202m

Drilling

The 26" section was drilled using a 26" Hughes R1 bit with 3 x 20" jets, followed by a 26" Grant hole opener with 3 x 16" jets. The practice of running the 26" hole opener behind the 26" bit was adapted from Esso practices in the area. Essentially, the hole opener has the same effect as a near bit stabiliser and may help to knock off any ledges or boulders that are reportedly encountered in the area. The 26" section was drilled in 7 1/4 hours through loose sands and carbonates. On POOH the bit was graded 1.1.1 and showed no signs of any serious work. It is doubtful whether the hole opener served any useful purpose. A wiper trip to the surface was carried out and hole condition was good with no fill or tight spots.

Mud

The section was drilled using seawater with 30 BB1 Hi-vis sweeps prior to connections. 200 BB1s of Hi-vis was spotted on bottom after the wiper trip. Three stands were pulled and another 200 bb1s of Hi-vis spotted before pulling out of hole.

Casing and Cementing

Eleven joints of 20", 94 lb/ft, X 56, RL-4S conn. casing and an 18 3/4" wellhead/pilejoint were run to a shoe depth of 196 metres. The casing hung up 5 1/2 metres above the landing point. The casing took weight with the pumps off and weight fell away once circulation had commenced suggesting that the fill was loose sands which had compacted and packed off. The excessive amount of fill (approximately 11 m) may have been caused when pulling up three stands to spot more Hi-vis possibly washing out a loose sand section. Slow progress was made by working the casing and circulating with seawater while more Hi-vis was prepared. By circulating Hi-vis sweeps the casing was able to be successfully landed. The casing was cemented with 379 ft⁹ of lead slurry @ 13.2 ppg consisting of 48.6 bbls of freshwater containing 2.2% prehydrated gel mixed with 200 sks of class G cement, and 1024 ft⁵ of 15.8 ppg tail slurry consisting of 890 sks of cement mixed with 105 bbls of freshwater containing 1.5% CaCl2 as an accelerator. Returns were observed at the surface throughout the job although no cement was sighted. The volumes used allowed for 100% excess on theoretical gauge hole.

6.2 <u>17 1/2" Hole 202 - 1010 m (Gippsland Limestone)</u>

Drilling

The 17 1/2" hole section was drilled in 21.25 hours at an average rop of 38 m/hr. The interval was drilled using a Reed S11 CJB with 2 x 18 and 1 x 16 jets. The bit comes with a port for a centre jet which was blocked by welding a ball bearing in the port, because no centre jet nozzles were avalable on the rig. Penetration rate was controlled to avoid hole cleaning problems. Significant clays were encountered at 740 m causing a reduction in rop from 40 m/hr to 10-20 m/hr. It is possible that the centre jet, had it been installed, would have alleviated the problem by cleaning the bit better. Up to 100 klbs overpull was experienced on the wiper trip but this was eliminated by a light wash and ream. 7 m of fill was encountered on return to bottom.

Mud

The 20" shoetrack and cement were drilled using seawater with returns dumped overboard. Once new formation was encountered the system was closed in and 30 bbl Hi-vis prehydrated gel sweeps were incorporated into the system, each single, to build viscosity. Additional gel was added directly to the system to give a viscosity of 32 and a yield point of 10 by 269 metres. Continuing additions of prehydrated gel had the yield point above 20 by 369 m. Major sands were encountered from 400-600 m resulting in high surface losses as a result of screen blinding (screens B40/B60). Shakers had to be partially bypassed to reduce losses and system volume was maintained with seawater causing the viscosity to fall to 30 seconds. Major additions of gel were used to maintain viscosity until about 740 metres when significant natural clays were encountered. The system was maintained using seawater, lime and caustic only from 740 m to T.D. at 1010m. A 200 bbl KCL polymer pill was spotted on bottom prior to POOH to log.

Static losses of 30 bbl/hour probably seepage losses in loose sands, were noted while tripping. Losses reduced to 15 bbl/hr after two hours. Logs through the sand sections showed the hole to be significantly overgauge (greater than 20.5" diameter) in some sections.

Casing and Cementing

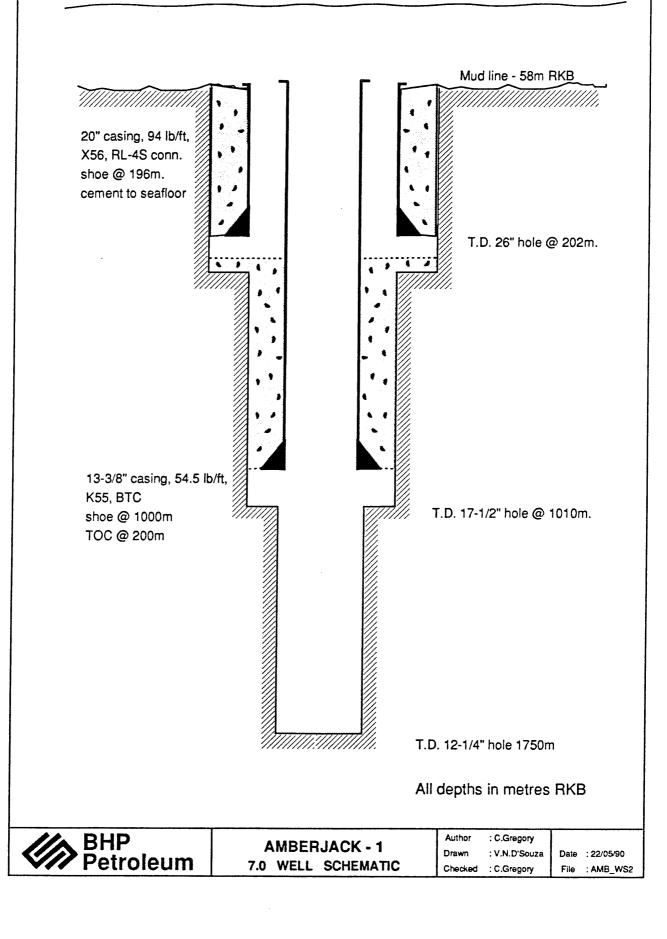
Eighty joints of 13 3/8", K55, BTC casing was run to a shoe depth of 1000 m. UP to 40 klb drag was experienced from 880 m to T.D.

Due to the flourescence encountered in the upper sands 480-400 m, the cement program had to be revised to obtain isolation of the zone. The cement job consisted of 1851 ft³ of 12.5 ppg tail slurry comprised of 252 bbls of drillwater containing 3.1% BWOW bentonite combined with 891 sks of cement followed by 584.5 ft³ of 15.8 ppg neat seawater tail slurry. 27 bbls of mud was lost while mixing the cement and 100 bbls lost while displacing. The absence of any fluid loss additives or thixotropic cements on the rig prevented the use of alternative cement slurry designs. A sonic log taken across the interval 525 to 300 m suggests ratty cement from 325 to 400 m, very little if any cement from 400 to 480 m, (where the casing transit time is evident) and further ratty cement to 525 m. Following the cement job the packoff was set with 8 1/2 turns to 18,000 ft. lbs torque and successfully tested. No lock ring was run.

6.3 12 1/4" hole - 1010m - 1750 m (Latrobe Sequence)

Drilling

A Hughes ATJ1 with 3 x 16" jets was used to drill the Lakes Entrance and Gurnard formations to the top of the Latrobe group. The bit was pulled to core after drilling 261 metres in 12.25 hours at an average rop of 21.3 m/hr. On surface, the bit was graded 2.4.1 with some evidence of self-sharpening on the inner row teeth. After POOH the GCT survey tool, which had previously been unavailable because it was in use on the Bream platform, was run. The tool encountered obstructions within the casing at 862 metres. After attempting to dislodge the obstruction with the logging tool, 1500 lbs overpull was required to get the tool moving. The stickiness of the obstruction suggests that it was a piece of clay dragged up into the casing by the bit on the trip out. The GCT survey was run from 860 m to surface and recorded an essentially straight hole with maximum deviation of 0.5 degrees at 800 m.

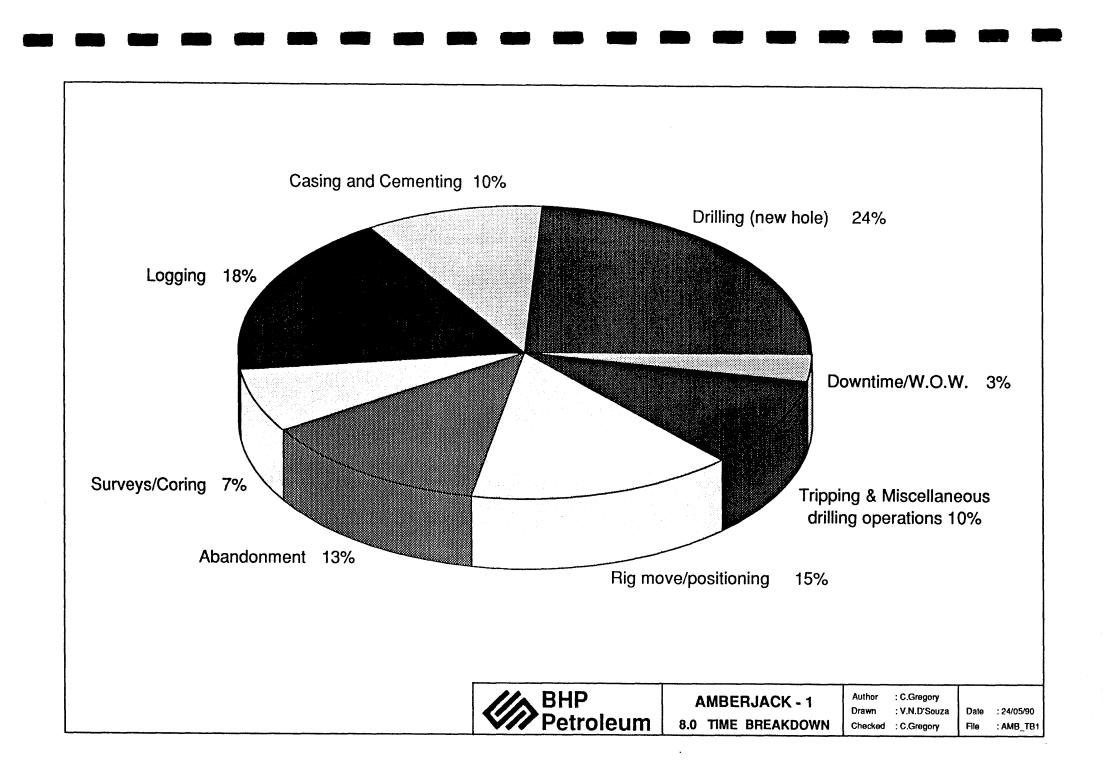

Coring

An Eastman Christensen 12.25" RC 476 bit was used with aluminium inner core barrels to core from 1271 m to 1290 m. The RC 476 bit is a PDC core bit which was 45% worn when run. The bit cored the section at between 5 and 20 m/hr and suffered little additional wear. Core recovery was 94% with the core exhibiting a strong hydrocarbon odour with 100% direct flourescence and instant stream and cut flourescence. On running in the hole with the core barrel it stood up at 969 m and the assembly had to be washed and reamed to bottom.

A Hughes ATJ-22 with 2 x 16 and 1 x 14 nozzles was run to drill from 1290 m to TD @ 1750 m through the interbedded claystone, sandstone, coals, sequence of the Latrobe group. The bit drilled 460 m in 38.5 hours at an average rop of 12 m/hr. From approximately 1450 m to T.D. the bit would drill at rop's of 20-30 m/hr for 1 1/2 to 2 metres and then torque up suggesting that the bit was undergauge. This was particularly evident while drilling through coal stringers and the lower claystone siltstone sections from 1620 m to T.D. On surface the bit was graded 3/4/1. A wiper trip to the shoe was made prior to POOH to log. Tight spots were encountered in the siltstone/claystone section from 1612 to 1635 m and it was necessary to wash and ream from 1718 m to bottom.

Mud

The hole was displaced to KCL/polymer mud at 1014 m prior to performing a leak off test. Barite was used to weight the mud up to 1.09 sg prior to drilling into the Latrobe group. KCL content was run at around 3.4 - 3.8% and polymer content approximately 1.5 ppb. Heavy losses were again incurred because of the inability of the shakers to handle the sands. The desander and desilter were run from below 1500 m to control the mud weight which had built up to 1.11 sg from the increased sand content in the mud. MSL - 21 RKB



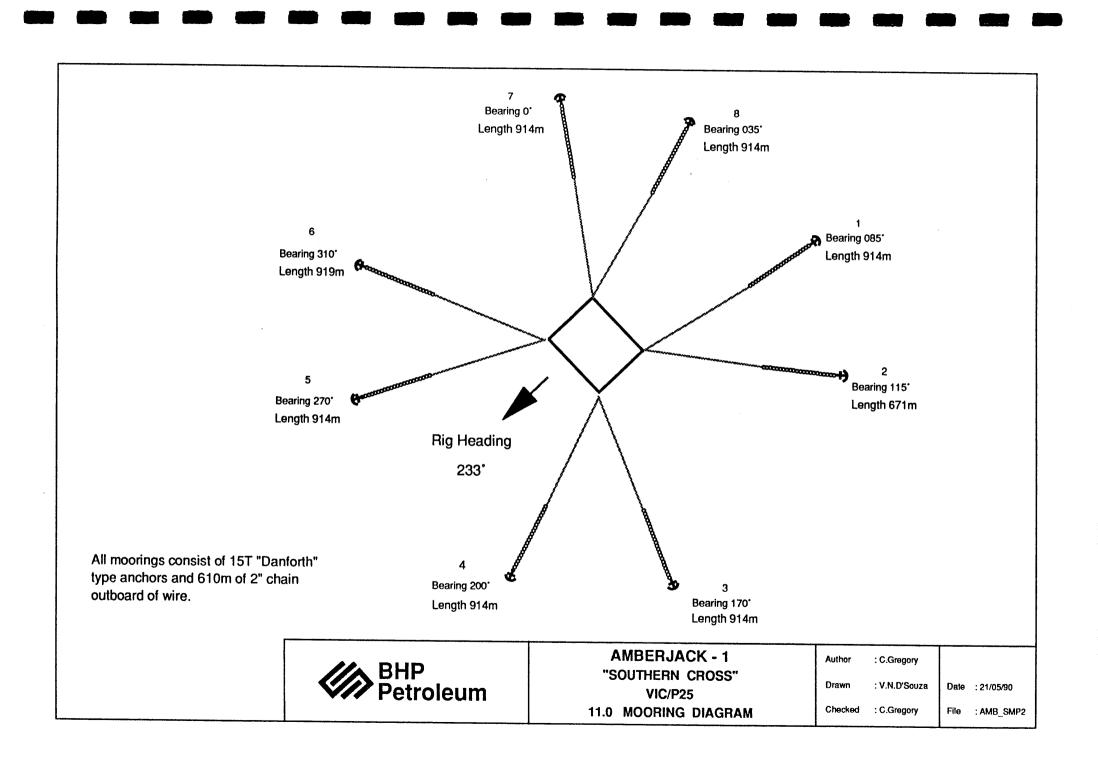

8.0 TIME BREAKDOWN

•

1

DAY:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Move Rig	3.00	15.00	6.75														
Run Anchors			14.75														
Drilling				7.00	2.25	23.25	7.25	0.25	12.00	4.75	19.25	14.50					
Bit Trip			0.50	1.50								-	0.75				
Wiper Trip				0.75							2.25						
Survey				0.75			0.50				0.50	0.50					
Circ/Cond				1.00					2.00	0.75	1.50						
Ream/Wash							0.50				0.50	1.00	0.50				
Coring										2.50							
Core Prep									5.75	16.00		~					
Logging CSG, Cmtg				12 25	6 25		12.00	45 50	3.50			8.00	22.75	20.75			
Wellhead			2.00	12.25	6.25		3.50	15.50									
BOP's			2.00		0.50 15.00		0.25	1.25									
L.O.T.					13.00			6.50 0.50	0 75								
Rep. Surf.				0.75		0.75		0.50	0.75								
Aban/Susp.				0.15		0.15								2 25	24.00	26 00	
W.O.W.		9.00												3.25	24.00	24.00	
Pull Anch.		-															17.00

10. DRILLING COSTS


Date	Day	Prespud Costs	Fixed Daily Costs	Variable Drilling Costs	Variable Logistics Costs	Total Daily	Cumulative Costs
29Apr 30 1May 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 14 \\ 15 \\ 17 \\ 17 \end{array}$	83,827 7,359 8,000 4,914 5,066	12,560 100,962	5,000 36,203 140,757 21,664 12,216 6,043 166,649 43,930 17,445 11,183 9,081 4,707 5,630 232,688 7,593 4,154	15,066 1,168 2,936 - - 6,894 808 596 3,682 1,080 - 808 808 12,406 1,194 2,425	83,827 7,359 20,560 125,942 143,399 244,682 122,626 113,178 163,899 268,419 145,488 122,089 113,225 110,043 106,477 107,400 346,056 109,749 78,094	83,827 91,186 111,746 237,688 381,087 625,769 748,395 861,573 1,025,472 1,293,891 1,439,379 1,561,468 1,674,693 1,784,736 1,891,213 1,998,613 2,344,669 2,454,418 2,532,512

Total well cost: \$A 2,532,512

Note:

(1) The above drilling costs are based on estimates and quotations provided for the AFE, and as such do not take into account factors such as discounts, escalations or estimation errors. They are therefore useful only as a guide or a means of cost control and may not reflect the actual cost of drilling the well.

(2) All costs in Australian dollars.

12.0 WEATHER AND SEASTATE DATA

 1

DATE	DAY	WIND VEL/DIR	TEMP (C)	VISI (NM)	WEATHER STATE	SWELL HT/PER/DIR (SECS)	WAVES HT/PER/DIR (SECS)	HEAVE M	PITCH (DEG)	ROLL (DEG)	BAR (MBARS)
1/5/90 2/5/90 3/5/90 4/5/90 6/5/90 7/5/90 8/5/90 10/5/90 11/5/90 12/5/90 13/5/90 15/5/90	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	30-300 20-280 18-90 24-320 30-320 35-280 22-300 15-300 23-300 20-300 18-290 45-280 32-270 26-270 25-90	17 15 17 16 17 15 13 14 20 18 18 14 15 16	10 10 10 10 10 10 12 12 12 12 12 12 12 10 10	Lt. Cloud Lt. Cloud/rain Partly cloudy Fine Showers Cloudy Fine Fine fine Cloudy Cloudy Windy Cloudy Cloudy Cloudy Fine	3/16/300 2.4/7/260 2/7/280 1.8/6/090 1.8/10/230 2.4/6/230 2.4/6/200 1.2/6/200 1.2/6/200 1.2/6/250 4.2/6/250 2.4/6/200 0.3/9/120	1/ 2/300 0.6/14/280 1.2/ 6/230 0.6/ 2/320 0.3/ 2/320 1.2/ 3/280 0.9/ 2/300 0.3/ 1/300 0.3/ 1/300 0.6/ 2/300 0.3/ 1/290 1.2/ 3/270 0.9/ 2/270 0.6/ 2/270 0.6/ 2/90	- - 0.4 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.3 0.3 0.3 1.5	$\begin{array}{c} 6.0\\ 2.6\\ 0.6\\ 0.6\\ 0.8\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 0.6\\ 2.0\\ 1.5\\ 1.0\\ 1.0\\ \end{array}$	1.52.20.80.60.90.90.70.60.62.01.81.22.1	1012 1011 1022 1012 1012 1015 1022 1014 1025 1026 1021 1023 1024 1024
16/5/90 17/5/90	16 17	20-45 35-240	17 17	12 10	Fine Cloudy	3/ 9/120 2.4/ 7/170	0.6/ 2/30 1.2/ 3/240	0.9 -	0.8 1.5	2.0 2.5	1020 1006

13.0 BIT RECORD

DATE:	4 may	7 MAY	9 MAY	12 MAY
Bit No.	1	2	3	4
Size	26"	17 1/2	12 1/4	12 1/4
Manufacturer	HTC	Reed	HTC	HTC
Туре	R1	SIIJ	ATJ-1	ATJ-22
Serial number	VJ161	N15847	P35EB	PW580
Jets	3 x 20	2x19,1x16	3 x 16	2x16,1x14
Depth out (m)	202	1010	1271	1750
Metres (rkb)	144	808	261	460
Hours	7.5	32.75	12.25	38.5
Weight (klb)	10	35	40	40
Rpm	95	14\30	130	90
Pumppress (psi)	900	2800	1750	2300
Strokes	200	180	70	70
Mud weight (s.g.)	seawater	1.08	1.08	1.10
Viscosity	-	34	42	41
Grading	1.1.I	2.2.I	2.4.I	3.4.1/16
			- ⁻	
Remarks	Pulled for casing point. Drilled limestones and loose sands.	Pulled for casing point. Drilled limestone and loose sands.	Pulled for core point Drilled predoment. Marls and claystones	Pulled at T.D. Drilled interbedded sands, coals, and claystones
Core bit:			. Drilled 19 r. Drilling (

1. 2 pumps with 6 1/2" liners

(

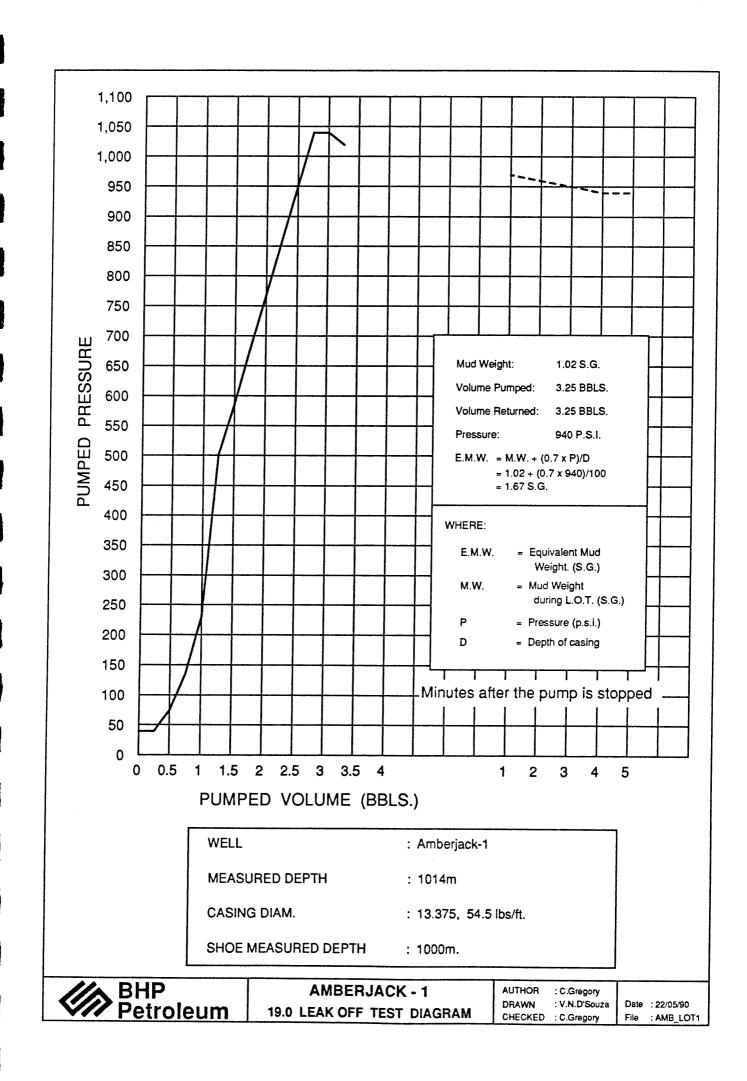
14.0 BHA SUMMARY

BHA NO.	INTERVAL	DESCRIPTION
1.	58- 202 m	26" bit, 26" hole opener, bitsub, 2 x 9 3/4" D.C., cross over, 4 x 8" D.C., crossover, 9 x HWDP
2.	202-1010 m	17 1/2" bit, bitsub, 2 x 9 3/4" DC, cross over, 17 1/2" stabiliser, 10 x 8" D.C., jars, 2 x 8" D.C., cross over, 9 x HWDP
3.	1010-1271 m	12 1/4" bit, floatsub, monel D.C., 1 x 8" DC, 12 1/4" Stabiliser, 13 x 8" D.C. Jars, 2 x 8" D.C., crossover, 9 x HWDP.
4.	1271-1290 m	12 1/4" corehead, 8" x 5 1/4" corebarrel, 13 x 8" D.C., Jars, 2 x 8", D.C., crossover, 9 x HWDP
5.	1290-1750 m	12 1/4" bit, floatsub, monel D.C., 1 x 8" DC, 12 1/4" Stabiliser, 13 x 8" D.C. Jars, 2 x 8" D.C., crossover, 9 x HWDP.

No		PEN	ETRATI	ON RAT	E MINUT	TES PE	ER MET	RE			OPER	ATING C	ONDITION	S	
netres		1	2 3	3 5		10		20	30	ROP m/hr	PSI	WEIGHT	ROTATING RPM	FLUID GPM	REMARKS
0	1271.4										400	-	20	200	
1	2									4.6	500	5.10	80	200	
2	3									15	550	15	110	204	
3	4									8.6	550	15	110	204	
4	5									30	550	15	110	204	
5	6									10	550	15	110	204	
6	7									6	550	15	110	204	
7	8									4.3	550	15	110	204	
8	9									7.5	550	15	110	204	
9	1280									7.5	550	15	110	204	
10	1									10	550	15	110	204	Connection
11	2									10	550	15	110	204	
12	3									15	550	15	110	204	
13	4									7.5	550	15	110	204	
14	5									20	550	15	110	204	
15	6									20	550	15	110	204	
16	7									20	550	15	110	204	
17	8									20	550	15	110	204	1
18	9									20	550	15	110	204	
19	1290.6									20	550	15	110	204	
20														1	
21												1	1	1	
22														1	
Se	t/Size er/No. terval Drilled	: 12-1/4" : 1490098 : 1290 M	Type : RC	476							•	•	•		
Inf To	terval Drilled Ital Footage t Cond.:	: 1271.4 M	Start etres	0/			BHI Peti			,		RJACK - 1 RE RECO	Drav	nor : C.Gregory vn : V.N.D'Sou	

16.0 MUD PROPERTIES - 17 1/2" HOLE (SEAWATER/GEL SYSTEM)

Date	5	6	6	7
Day	5	6	6	7
Temperature (deg C)	33	35	40	41
Depth (m)	269	623	902	1010
Weight (sg)	1.06	1.07	1.08	1.08
Viscosity (sec/qt)	32	35	36	37
PV (cp)	4	5	6	6
YP (1b/100 ft 2)	10	22	25	25
Gel strength	7/10	15/17	15/20	16/22
Solids content (%)	2	3	3	3
Liquid content (o/w)%	-/98	-/97	-/97	-/97
Sand content (%)	Trace	0.1	0.1	0.1
MBT (lb/BBl equiv.)	-	12	13	14
рH	9.0	8.7	8.7	8.9
Chlorides (1000's)	13	12.5	14.5	15
Calcium	1200	1200	1300	1240


l

17.0 MUD PROPERTIES 12 1/4" HOLE (KCL/PHPA SYSTEM)

Date	9	9	10	10	11	11	12	12
Day	9	9	10	10	11	11	12	12
Temperature (C ^O)	31	31	31	32	33	37	38	38
Depth (m)	1214	1271	1289	1351	1500	1594	1726	1750
Weight (sg)	1.08	1.09	1.10	1.10	1.11	1.10	1.10	1.10
Viscosity (sec/qt)	38	42	43	42	42	41	41	41
PV (cp)	10	11	14	13	15	14	15	15
Yp (lb/100 ft ²)	16	18	20	19	17	17	20	19
Gel Strength	315	315	315	315	315	315	316	316
Solids Content (%)	5	6	6	6	6	6	6	6
Liquid Content (O/W) %	0/95	0/94	0/94	0/94	0/94	0/94	0/94	0/94
Sand Content (%)	0.1	0.1	0.2	0.25	0.4	0.25	0.35	0.30
MBT (lb/BBl equiv.)	8	8	8	8	8	9	9	9
РН	9.4	9.2	9.2	9.0	9.2	9.4	9.3	9.2
Chlorides (1000's)	21	21	22	22	22	22	23	23
Calcium (mg/L)	200	220	320	260	140	80	200	200
KCL (% by wt.)	3.8	3.6	3.3	3.4	3.2	3.5	3.6	3.8

18.0 HYDRAULICS SUMMARY									
Date	Depth (mRkB)	Circ. Rate (GPM)	Press (psi)	SPM (1)	SPM (2)	Nozzle Veloc. ft/sec	Annular Veloc. ft/min	MMP Bit	Notes
4/5/90	202	1000	900	100	100	-	-	-	26" hole
5/5/90	269	1020	3170	100	100	472	67	1044	20" shoe at 196 m
6/5/90	903	970	3112	97	97	444	63	916	
7/5/90	1010	948	2800	90	90	438.5	61.9	854.1	13 3/8" shoe @ 1000 m
8/5/90	1014	700	1600	70	70	-	-	-	Not recorded
9/5/90	1271	700	1750	70	70	408	147	586	12 1/4" hole
10/5/90	1354	700	2300	70	70	441	146	698	
11/5/90	1610	700	2250	70	70	428	142	634	
12/5/90	1750	700	2300	70	70	425	120	622	T.D.

.

20.0 CASING RUNNING AND CEMENTING REPORT

Date: 4/5/90

GENERAL

RKB-MSL	meters 21	HOLE	- Size - Depth (m)	26" 202			
WATER DEPTH	meters 37	PREVIOUS CASING	- Size Depth (m)	-			

HOLE CONDITIONS

Mud :	Type P.V.					•••••		Visc :	
			:					0 Gels:	
	Cake		:				Sar	na :	•••••
11.1			:		•	•••••			12 DEC
Hole :	Open H	ole Time	:	Cali	per Su	rvey:	Ma	x Deviation:	L/2 DEG.
RUNNIN	1G								
	o. of Joi		:			:11		. of Joints Left	:8
Start Ru	unning C	asing at	<u>2.00 p.m</u> .	Finish Running	Casing	gat:530p.	m. To	tal Time Taken	:3.5hours
			6	Fill-up Points		:eachjoin	t. Ca	sing Length	:141m
Make U	p Torque	•	25,000	Thread Type		:RL . 4S	Loo	ck Ring	:
Pip Tag			:						
CIRCUL	ATING								
Start	:			Finish:	•••••			Time Circulatir	ng:
Pressure				SPM :					te:
% Retur	ns:	•••••						-	
CEMENT	TING								
Start Mi	-		5.7	Finish Mixi	ig :		5	Start Displacing	:00:34
⁻ inish D	isplacing	:0.0 : .	41	Total Time	laken:	44. mins	١	NOC Time	:
Bump Pr	ressure	: . .		Pressure He	ld for:				
Displace	d with	:S.eav	water	of:		32bbls			
Pump U	sed	:How	20	Pump Effici	ency :				
EAD						•			
. ,	•	Class	5 "G"			07 ft 3			
				Volume Require	אל: sp: ב	99/.IC		-	:.13.2ppg
Mixing V			bbls			reshwater): .200
			•••••			.bbls.s/w			e:.650psi
			•••••	Yield		.89 Cuft/sx		· •	: .
Returns Additive:		2.2%	qel			Seabed 00%		ual TOC	:
AIL							•••••		••••••
		Class			,	074			
	Cement:	106 b		Volume Require	u	074		ry Weight	: 15.3 ppg
/lixing V		·· <u>-</u> ·····	•••••	Type Of Water	:	reshwater		Sacks (1bs/sk	
	-	-	•••••	Spacer Before	: Ţ		Max	Pump Pressure	. 660 psi
Bottomho	le Temp :	Yee		Yield	• • • • • •	.15 Cu ft/sx	Con	np Strength	: . .
Returns	:	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	Theoretical TO				ual TOC	: .=
dditives	s :	.1.5%	CaCl ₂	Excess	.;10	0.0.%	•••••	••••••	•••••
						Total Pack Off 1			•
						••••••			
						m			

CASING RUNNING AND CEMENTING REPORT

Well: AMBERJACK-1

Date: 8TH MAY 1990

Casing Type: K5.5, BTC 0.D. 13.375 Hanger Depth: 56.3 m. I.D. 12.615

RKB-MSL	metore	HOLE	· Size	26"	17 1/2"		
Ą	meters 21	HULE		202	1010 m		
			- Depth (m)	202			
WATER DEPTH	meters	PREVIOUS	· Size	20"	13 3/8"		
	37	CASING	Depth (m)	196	1000 m		
L		1	I			l.	I
IOLE CONDITION	IS						
Mud: Type		awater/ge			1.08	M.F. Visc :	
P.V.		6				0/10 Gels:1	
Cake	: ter Loss :					Sand :	0.,1.8
Hole: Open H	ole Time:	12 hours			Survey:y.es	Max Deviation	· 1/2 deg.
		••••••	Ū	anper	ourvey		······
RUNNING							
otal No. of Joi		9.4			:80		Left : <u>1</u> 4
				-	ing at:5:00		ken :5.,5. hr
No. of Joints pe		1/ 200 f+ 1	Fill-up Point		: <u>3 lts</u> .	• •	:943.5.m
Aake Up Torque		200 ft 1bs	Thread Type	9	:Buttress.	Lock Ring	Net run
Pip Tag	:	• • • • • • • • • • • • • • • • • • • •					
C ULATING							
Start :0.5.,)6 : 30	Time Circu	lating:15hou
Pressure:800					96		Rate:500gpm.
% Returns:9	5.8						
CEMENTING							
Start Mixing	. 07:00		Finish M	ixina	. 08:25	Start Display	cing:08 : 25
inish Displacing	, 09:15				en: 2 1/4 hrs.	WOC Time	:
	1				or:5 minutes		
Bump Pressure	. 1500 <u>p</u>	•			mud		
	. 468 bb		01				
Bump Pressure				ficiency	y:97%		
Bump Pressure Displaced with	. 468 bb			ficienc	y :978		
Bump Pressure Displaced with Jump Used LEAD	468 bb rig		Pump Ef		_	Slurry Weight	:1.25nng.
Bump Pressure Pisplaced with ¹ ump Used LEAD Type of Cement	468 bb rig	······	Pump Ef Volume Req	uired: . iter : .	1851.ft ³ drill	Slurry Weight No. Sacks (1b:	: <u>12:5</u> ppg s/sk):891(94*)
Bump Pressure Pisplaced with Pump Used LEAD Type of Cement Mixing Water	468 bt rig Class.G 252 bbl	 S	Pump Ef Volume Req	uired: . ter : . re : .	1851.ft ³ drill 10.bb1	No. Sacks (1b)	s/sk):891(.94*.)
Bump Pressure Displaced with Tump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp	468 bb rig Class.G 252 bbl 		Pump Ef Volume Req Type Of Wa Spacer Befo Yield	uired: . ter : . re : . : .	1851.ft ³ drill 10.bb1 2.11.ft./sk	No. Sacks (1b) Max Pump Pres Comp Strength	s/sk):891(94*.) ssure:500
Bump Pressure Displaced with Tump Used EAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns	468 bt rig :Class.G 252 bbl :		Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical	uired: . ter : . re : . : . TOC : .	1851.ft ³ drill 10.bb1 2.11.ft./sk 20.m	No. Sacks (1b) Max Pump Pres	s/sk):891(.94*.) ssure:500 h :
Bump Pressure Displaced with Tump Used EAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns	468 bt rig :Class.G 252 bbl :		Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical	uired: . ter : . re : . : . TOC : .	1851.ft ³ drill 10.bb1 2.11.ft./sk	No. Sacks (1b) Max Pump Pres Comp Strength	s/sk):891(.94*.) ssure:500 h :
Bump Pressure Pisplaced with Tump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives	468 bt rig :Class.G 252 bbl :		Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical	uired: . ter : . re : . : . TOC : .	1851.ft ³ drill 10.bb1 2.11.ft./sk 20.m	No. Sacks (1b) Max Pump Pres Comp Strength	s/sk):891(.94*.) ssure:500 h :
Bump Pressure Pisplaced with Yump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives TAIL	468 bt rig Class.G 252 bbl 42°C Yes 3.1% BW	S OW Benton	Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite (10.8 Volume Req	uired: . ter : . re : . TOC : . 35. 1b	1851ft ³ drill 10bblg 2.11ft/sk 200.m /bblmixwater)	No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC Slurry Weight	s/sk):891(94*) soure:500
Bump Pressure Pisplaced with Pump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives TAIL Type of Cement Mixing Water	468 bt rig Class.G 252 bbl 	S	Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite. (10, 8 Volume Req Type Of Wa	uired: . ter : . re : . TOC : . 35. 1b uired: . ter : .	1851ft ³ drill 10bb1 2.11ft/sk 20m /bb1mixwater) 584.4ft ³ Seawater	No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC Slurry Weight No. Sacks (1b:	s/sk):891(94*.) soure:500
Bump Pressure Pisplaced with Pump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives TAIL Type of Cement Mixing Water kening Time	468 bb rig Class.G 252 bbl 42°C Yes 3.1% BW 	 s OW Benton s /min	Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite (10.8 Volume Req Type Of Wa Spacer Befo	uired: . ter : . re : . TOC : . 35. 1b uired: . ter : . re : .	1851ft ³ drill 10.bb1 2.11.ft ³ /bb1.mixwater) 	No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC Slurry Weight No. Sacks (1b: Max Pump Pres	s/sk):891(94*.) sure:500 : : : s/sk):508(94*.) sure:550
Bump Pressure Pisplaced with Pump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives TAIL Type of Cement Mixing Water kening Time Bottomhole Temp	468 bt rig 252 bbl 42°C Yes 3.1% BW Class G 60.5 bbl 3:18 hrs 42°C	 S OW Benton S /min	Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite (10.3 Volume Req Type Of Wa Spacer Befo Yield	uired: . ter : . TOC : . 35. 1b uired: . ter : . re : .	1851ft ³ drill 10bb1 2.11ft/sk 200.m /bb1mixwater) 	No. Sacks (1b) Max Pump Pres Comp Strength Actual TOC Slurry Weight No. Sacks (1b) Max Pump Pres Comp Strength	s/sk):891(94*) sure:500 : : : : : : : : : : : : : : : :
Bump Pressure Pisplaced with Yump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives TAIL Type of Cement Mixing Water kening Time Bottomhole Temp Returns	468 bt rig 252 bbl 42°C Yes 3.1% BW Class G 60.5 bbl 3:18 hrs 42°C		Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite (10.3 Volume Req Type Of Wa Spacer Befo Yield	uired: . ter : . TOC : . 35. 1b uired: . ter : . re : .	1851ft ³ drill 10.bb1 2.11.ft ³ /bb1.mixwater) 	No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC Slurry Weight No. Sacks (1b: Max Pump Pres	: <u>15:8.ppg</u> s/sk): <u>508</u> (94 * .) ssure: <u>55</u> 0
Bump Pressure Pisplaced with Pump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives TAIL Type of Cement Mixing Water kening Time Bottomhole Temp Returns	468 bt rig 252 bbl 42°C Yes 3.1% BW Class G 60.5 bbl 3:18 hrs 42°C		Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite (10.3 Volume Req Type Of Wa Spacer Befo Yield	uired: . ter : . TOC : . 35. 1b uired: . ter : . re : .	1851ft ³ drill 10bb1 2.11ft/sk 200.m /bb1mixwater) 	No. Sacks (1b) Max Pump Pres Comp Strength Actual TOC Slurry Weight No. Sacks (1b) Max Pump Pres Comp Strength	s/sk):891(94*) sure:500 : : : : : : : : : : : : : : : :
Bump Pressure Pisplaced with Pump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives FAIL Type of Cement Mixing Water kening Time Bottomhole Temp Returns Additives Release Dart:	468 bt rig 252 bbl 42°C Yes 3.1% BW Class G 60.5 bbl 3:18 hrs 42°C Yes Neat Neat	S OW Benton S /min a P prior to f	Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite (10.3 Volume Req Type Of Wa Spacer Befo Yield Theoretical	uired: . re : . TOC : . 35 1b uired: . ter : . re : . TOC : .	1851ft ³ drill 10bb1 2.11ft/sk 200.m /bb1mixwater) /bb1mixwater) 	No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC Slurry Weight No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC	s/sk):891(94*) sure:500 : : : : s/sk):508(94*) sure:550 : : : : : : : : : : : : : : : : :
Bump Pressure Pisplaced with Pump Used LEAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives TAIL Type of Cement Mixing Water kening Time Bottomhole Temp Returns Additives Release Dart: Comments:1	468 bb rig 252 bbl 42°C Yes 3.1% BW Class G 60.5 bbl 3:18 brs 42°C Yes Neat 3500 Delt	S OW Benton S /min a P prior to F leased bo	Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite (10.8 Volume Req Type Of Wa Spacer Befo Yield Theoretical Plug Bump:	uired: ter : TOC : 35.1b uired: ter : TOC : TOC :		No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC Slurry Weight No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC rns:81/2Ma 7bb1slostwh	s/sk):891(94*) sure:500 : : s/sk):508(94*) sure:550 : x Torque:18.,00 ile.mixing
Bump Pressure Pisplaced with Tump Used EAD Type of Cement Mixing Water Thickening Time Bottomhole Temp Returns Additives TAIL Type of Cement Mixing Water kening Time Bottomhole Temp Returns Additives Release Dart: Comments:	468 bb rig 252 bbl 42°C Yes 3.1% BW Class.G. 60.5.bbl 3:18 hrs 42°C Yes Neat Neat 3500 Delt Ball re t during	S OW Benton S /min a P prior to f leased bo displacem	Pump Ef Volume Req Type Of Wa Spacer Befo Yield Theoretical ite.(10.8 Volume Req Type Of Wa Spacer Befo Yield Theoretical Plug Bump: ttom.plug ent(3)	uired: . re : . TOC : . 35. 1b uired: . ter : . re : . TOC : . 900 . J. at . Ran.	1851ft ³ drill 10bb1 2.11ft/sk 200.m /bb1mixwater) /bb1mixwater) 	No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC Slurry Weight No. Sacks (1b: Max Pump Pres Comp Strength Actual TOC rns:81/2Ma 7bblslostwh	s/sk):891(.94*) sure:500 : : : s/sk):508(94*) sure:550 : x Torque:18,00 ile.mixing idd]e.of

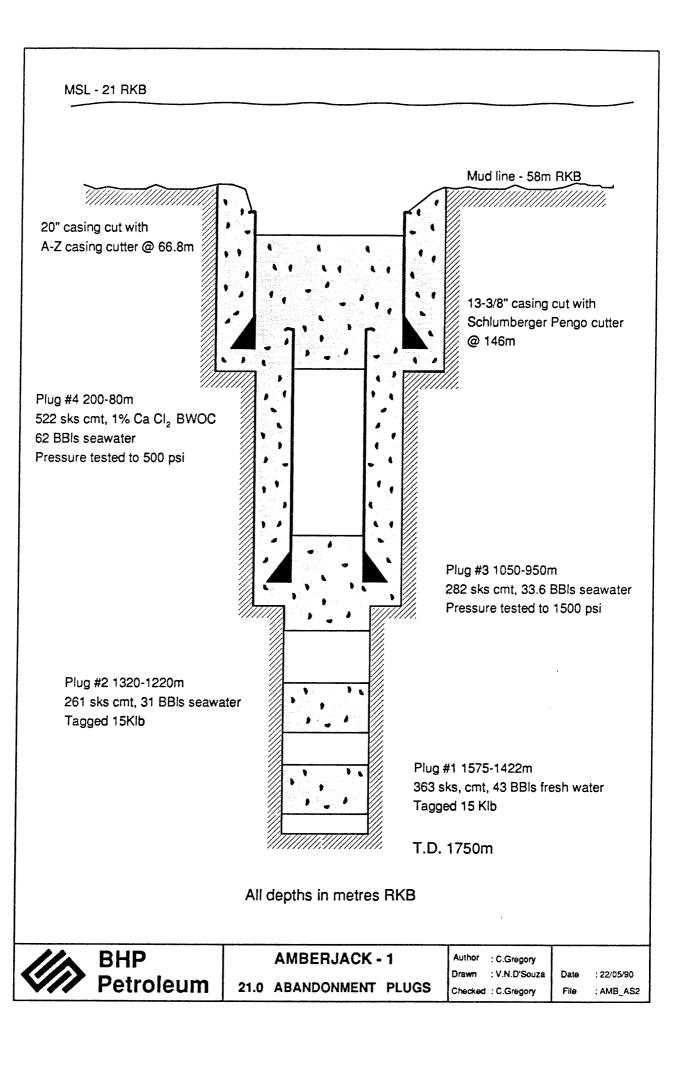
21.0 ABANDONMENT PLUGS

PLUG # 1 1575 M TO 1422 M

Mix Water	43 bbls fresh
10 bbls	ahead
1.5 bbls	behind
363 sx	CMT
Start	0036 hours - 15th May
Finish	0050 hours
Displace	0050 hours - 80.5 bbls mud
Finish	0103 hours
Press	500 psi
11.8 m ³	Capacity
Tag CMT @ 1422 m	

5

PLUG #2 1320 M TO 1220 M


Mix Water	31 bbls seawater
10 bbls	ahead
1.5 bbls	behind
261 sx	CMT
Start	0715 hours - 15th May
Finish	0725 hours
Displace	0726 hours - 70.5 bbls mud
Finish	0736 hours
Press	550 psi
8.4 m ³	Capacity
Tag CMT @ 1220 m	

Mix water	33.6 seawater
10 bbls	ahead
1.4 bbls	behind
282 sxs	CMT
Start	1220 hours - 15th May 1990
Finish	1227 hours
Displace	1228 hours - 53.5 bbls mud
Finish	1238 hours
5.15 m ³	Open hole
Press	450 psi
Tested Casing to	1500 psi

PLUG # 4 200 M TO 80 M

Mix Water	62 bbls seawater 1% CaCl2
10 bbls	ahead
1/2 bbl	behind
522 sks	CMT
Start	3:05 - 16th May 1990
Finish	3:25
Displace	3:26 - 2.5 bbls seawater
Press	500 psi
Tested Casing to	500 psi

. . .

22.0 ELECTRIC LOGS

The following logs were run:

•

Schlumberger

ß

Suite #1: Run #1	DLL/MSFL/SDT/GR/CAL/SP/AMS from 1010 m to 200 m Gamma ray to surface
Suite #2: Run #1	GCT Survey, from 860 m to KB
	DLT/LDT/CNT/GR/MSFL/AMS from 1732.5 to 999 m SHDT/GR/AMS from 1732 to 999 m RFT's SAT - Velocity check shots CST's - 60 sidewall cores shot
Mud Logs From 2 calcim	00 m to 1750 m. Details - lithology, rop, and etry.

PREPARED BY:

APPROVED BY:

.

...... $\overline{\ldots}$

DRILLING ENGINEER

. G. Weylan • • DRILLING SUPERINTENDENT

and G 6-6-90

MANAGER DRILLING NEW VENTURS

SECTION 3

P

ľ

6

b

ľ

P

ſ

Section 3

3.0 FORMATION SAMPLING

3.1 Ditch Cuttings

Two sets of unwashed cuttings and four sets of washed and air dried cuttings were collected from below the 20" casing to Total Depth. Samples were collected at 10 m intervals from 210-1010 m (13-3/8" casing point) and at 3 m intervals from 1010-1750 m (Total Depth).

Table 1 summarises the sampling program and cuttings distribution.

TABLE 1

Ì

Į

Ĩ

DITCH CUTTINGS SAMPLING SUMMARY

Depth Interval	Collection Interval	Treatment and Purpose	Distribu	ition
210 - 1010m	10m	Washed and split into 100 g samples	BHPP DIEP BMR	(1 set) (1 set) (1 set)
210 - 1010m	10m	Washed and split into sample vials/samplex trays	BHPP Pursuit	(1 set) (1 set)
210 - 1010m	10m	Unwashed for bulk storage, palaeontological/ palynological analysis and fission track analysis.	BHPP	(2 sets)
1010 - 1750m	3m	Washed and split into 100 g samples	BHPP DIEP BMR	(1 set) (1 set) (1 set)
1010 - 1750m	3m	Washed and split into sample vials/samplex trays	BHPP Pursuit	(1 set) (1 set)
1010 - 1750m	3m	Unwashed for bulk storage, palaeontological/ palynological analysis and fission track analysis.	BHPP	(2 sets)

DEPTH DESCRIPTION

58-210m No samples as cuttings circulated to seafloor.

210-400m CALCARENITE: Light to medium grey, moderately firm, friable, medium to very coarse, grading to CALCIRUDITE, poorly to very poorly sorted, common sucrosic texture, common microcrystalline calcite cement, occasional light yellow-brown ?phosphatic cement, abundant fossil fragments including bivalves, gastropods, bryozoa, foraminifera and echinoderms, occasional whole bivalve shells to 2cm diameter, occasional fine quartz grains, common black specks (?black chert or heavy minerals), trace fine white mica flakes, good inferred porosity, mineral fluorescence only.

400-480m SANDSTONE WITH MINOR INTERBEDDED CALCARENITE. SANDSTONE: Clear to light yellow-brown translucent quartz, unconsolidated, fine to medium, dominantly medium, occasionally coarse, moderately well to well sorted, well rounded to subrounded, common frosted grains, occasional green staining, trace glauconite, trace lithic grains, trace jasper, occasional black chert/heavy minerals, excellent porosity. CALCARENITE: Light grey, moderately firm, friable, medium to very coarse, poorly to very poorly sorted, common sucrosic texture, common microcrystalline calcite cement, abundant fossil fragments including bivalves, gastropods, bryozoa, foraminifera and echinoderms, trace fine white mica flakes, good inferred porosity. FLUORESCENCE: Trace very dull yellowish-white to greenish-white direct fluorescence associated with sandstone and occasional calcarenite cuttings, no cut, trace very weak, faint to moderate milky white crush cut, yellowish-white to cream residual ring.

DEPTH	DESCRIPTION
480-750m	PREDOMINANTLY CALCARENITE WITH OCCASIONAL INTERBEDDED SANDSTONE. CALCARENITE: Light grey to light cream to white, firm, friable, fine to medium, grading to CALCISILTITE in part, occasional coarse to very coarse fossil fragments, moderately sorted, angular, sucrosic texture, microcrystalline calcite cement and matrix, common to abundant fossil fragments, dominantly bryozoa, trace glauconite, occasional yellow-brown stained grains, good to excellent porosity. SANDSTONE: Clear to milky white to translucent light brown, unconsolidated, very fine to fine, well sorted, rounded to subangular, dominantly rounded, no cement, trace lithic grains, excellent porosity, no shows.
750-830m	PREDOMINANTLY CALCARENITE WITH OCCASIONAL INTERBEDDED SANDSTONE. CALCARENITE: Light to medium grey to light yellow-grey, firm, friable, fine to medium, predominantly medium, moderately sorted, angular, sucrosic texture, microcrystalline calcite cement and matrix, argillaceous matrix increasing with depth, common to abundant fossil fragments, mostly bryozoa, trace glauconite, trace microcrystalline pyrite, occasional yellow-brown stained grains, fair to poor porosity. SANDSTONE: Clear to milky white to translucent light brown, unconsolidated, fine to medium, moderatley well sorted, rounded to subangular, dominantly rounded, no cement, trace lithic grains, excellent porosity, no shows.
830-910m	CALCARENITE GRADING TO MARL: Light to medium grey, firm, becoming soft with depth, fine to medium, silty, abundant argillaceous matrix, dispersive in part, common to abundant fossil fragments, decreasing with depth, calcareous matrix, trace quartz grains, trace glauconite, trace microcrystalline pyrite, poor porosity.
910-1220m	MARL: Light to medium grey, dominantly light grey, soft to moderately firm, sticky in part, silty, occasionally grading to ARGILLACEOUS CALCISILTITE / CALCARENITE, blocky to sub-blocky cuttings, occasional fossil fragments, mostly foraminifera, occasional very fine quartz grains, trace glauconite, occasional black chert/heavy minerals, no shows.
1220-1259m	MARL: Very light grey, soft to moderately firm, silty, grading to ARGILLACEOUS CALCISILTITE in part, dispersive argillaceous matrix, trace glauconite grains increasing to 5% below 1240m, very slightly dolomitic in part, no shows.
1259-1268m	CLAYSTONE: Medium grey-green to medium green, soft to very soft, dispersive in part, calcareous to slightly calcareous, abundant disseminated glauconite, common to abundant fine dark green to black glauconite grains, trace to common disseminated microcrystalline pyrite.

Ì

Ĩ

1

Ĥ

I

DEPTH DESCRIPTION CLAYSTONE WITH MINOR SANDSTONE. 1268-1271m CLAYSTONE: Medium grey-green to medium green, soft to very soft, dispersive in part, calcareous to slightly calcareous, abundant disseminated glauconite, common to abundant fine dark green to black glauconite grains, trace to common disseminated microcrystalline pyrite. SANDSTONE: Clear, unconsolidated, fine to medium grained, well sorted, rounded to subangular, silty, dispersive argillaceous matrix, trace glauconite, trace microcrystalline mica, good to excellent porosity. FLUORESCENCE: Moderately bright bluish-white direct fluorescence associated with sandstone, moderately fast dull milky white cut, fast to instantaneous milky white crush cut, bright milky yellow-white residual ring. 1271-1290m Samples not circulated up while coring. 1290-1325m SANDSTONE: Clear to translucent light grey, unconsolidated, fine to medium, occasionally coarse, silty in part, moderately to poorly sorted, unconsolidated quartz, subrounded to subangular, trace to common black to dark green glauconite grains, trace lithic grains, slightly calcareous, trace microcrystalline pyrite, trace to common very fine white mica flakes, trace black chert/heavy minerals, good to excellent porosity, no shows. CLAYSTONE WITH MINOR COAL INTERBEDS. 1325-1340m CLAYSTONE: Dusky brown to dark grey-brown, soft, dispersive in part, sticky, silty, slightly calcareous. COAL: Black, firm to hard, brittle generally blocky, subfissile in part, vitreous lustre, occasionally dull. 1340-1349m COAL: Black, firm to hard, brittle, generally blocky, subfissile in part, vitreous lustre, occasionally dull. INTERBEDDED SILTSTONE AND SANDSTONE. 1349-1361m SILTSTONE: Light to medium grey-brown, mottled with light grey, moderately firm, blocky cuttings, calcareous, argillaceous, grades to very fine silty sandstone in part, occasional disseminated glauconite, occasional microcrystalline pyrite, very poor porosity. SANDSTONE: Clear to translucent grevish white, unconsolidated, fine to coarse, poorly sorted, subangular to rounded, no cement, excellent porosity. FLUORESCENCE: Trace to 15% dull to moderately bright yellow to yellowish-orange direct fluorescence associated with siltstone, no cut, fast to instantaneous weak to moderate milky white crush cut, white residual ring. 1361-1370m COAL: Black, firm to hard, brittle, generally blocky, subfissile in part, vitreous lustre, occasionally dull. CLAYSTONE GRADING TO SILTSTONE: Light grey, soft, dispersive 1370-1376m in part, silty, slightly calcareous, trace glauconite.

DEPTH DESCRIPTION SANDSTONE WITH MINOR INTERBEDDED COALS AND RARE 1376-1439m SILTSTONE. SANDSTONE: Translucent white to light grey, friable to unconsolidated, very fine to very coarse, grading to gravel in part, very poorly sorted, angular to subrounded, occasional silty matrix, no cement, ocasionally slightly calcareous, trace microcrystalline pyrite, excellent porosity, no shows. COAL: Black, firm to hard, brittle, generally blocky, subfissile in part, vitreous lustre, occasionally dull. SILTSTONE: light grey to light grey-brown, soft, grades to very fine SANDSTONE in part, slightly calcareous. 1439-1490m INTERBEDDED CLAYSTONE AND SANDSTONE WITH OCCASIONAL THIN COALS. CLAYSTONE: Light olive-grey to cream, occasionally white, soft to very soft, sticky, dispersive in part, silty, grading to ARGILLACEOUS SILTSTONE in part, calcareous to slightly calcareous. SANDSTONE: Translucent white to light grey, friable to unconsolidated, very fine to very coarse, grading to gravel in part, very poorly sorted, angular to subrounded, occasional silty matrix, no cement, ocasionally slightly calcareous, trace microcrystalline pyrite, excellent porosity. COAL: Black, firm to hard, brittle, generally blocky, subfissile in part, vitreous lustre, occasionally dull. FLUORESCENCE: 1472-1478 m, Trace to 5% moderately bright yellow direct fluorescence, slow very weak milky cut, weak milky crush cut, pale white residual ring. CLAYSTONE: Medium dusky brown to brown-grey, soft, sticky, silty, 1490-1499m grading to ARGILLACEOUS SILTSTONE in part, non- to very slightly calcareous, carbonaceous. 1499-1514m SANDSTONE: Clear to translucent white to light grey, unconsolidated, very fine to coarse, poorly sorted, angular to subrounded, occasional silty matrix, good to excellent porosity, no shows. 1514-1526m INTERBEDDED SANDSTONE AND CLAYSTONE. SANDSTONE: Clear to translucent white to light grey, unconsolidated, very fine to coarse, poorly sorted, angular to subrounded, occasional silty matrix, good to excellent porosity, no shows. CLAYSTONE: Light olive-grey to cream, occasionally white, soft to very soft, sticky, dispersive in part, silty, grading to ARGILLACEOUS SILTSTONE in part, calcareous to slightly calcareous. 1526-1532m COAL: Black, firm to hard, brittle, generally blocky, subfissile in part, vitreous lustre, occasionally dull.

DEPTH	DESCRIPTION
1532-1568m	SANDSTONE WITH MINOR INTERBEDDED CLAYSTONE AND COAL. SANDSTONE: Clear to translucent white to light grey, unconsolidated, fine to very coarse, very poorly sorted, rounded to subangular, slightly calcareous in part, trace microcrystalline pyrite, occasional silty matrix, good to excellent porosity, no shows. CLAYSTONE: White to light grey, soft to very soft, sticky, occasionally dispersive, ?kaolinite, non- to very slightly calcareous, very slightly dolomitic in part. COAL: Black, firm to hard, brittle, generally blocky, occasionally subfissile, vitreous lustre, occasionally dull.
1568-1592m	CLAYSTONE WITH MINOR INTERBEDDED SANDSTONE AND THIN COALS. CLAYSTONE: White to light grey, soft to very soft, sticky, occasionally dispersive, ?kaolinite, non- to very slightly calcareous, very slightly dolomitic in part. SANDSTONE: Clear to translucent white to light grey, unconsolidated, fine to very coarse, very poorly sorted, rounded to subangular, slightly calcareous in part, trace microcrystalline pyrite, occasional silty matrix, good to excellent porosity, no shows. COAL: Black, firm to hard, brittle, generally blocky, occasionally subfissile, vitreous lustre, occasionally dull.
1592-1679m	SANDSTONE WITH MINOR CLAYSTONE INTERBEDS UP TO 3m THICK. SANDSTONE: Clear to translucent white to light grey, friable to unconsolidated, medium to very coarse, occasionally grading to gravel, dominantly medium, very poorly sorted, rounded to subangular, very slightly calcareous in part, trace microcrystalline pyrite cement, trace mica, occasional silty matrix, excellent porosity, no shows. CLAYSTONE: White to light olive-grey, grading to medium olive-grey in part, soft to very soft, sticky, dispersive in part, slightly calcareous, kaolinitic.
1679-1724m	CLAYSTONE WITH SANDSTONE INTERBEDS UP TO 5m THICK. CLAYSTONE: Light olive-grey to light grey, soft to very soft, sticky, dispersive in part, slightly silty, slightly calcareous, kaolinitic, micromicaceous. SANDSTONE: Clear to translucent white, unconsolidated, medium to coarse, moderately to poorly sorted, angular to subrounded, non calcareous, trace pyrite cement, minor trace glauconite, occasional mica flakes, excellent porosity, no shows.
1724-1742m	SANDSTONE WITH MINOR CLAYSTONE. SANDSTONE: Clear to translucent white, friable to unconsolidated, generally medium to coarse, occasional fine grained aggregates, moderately to poorly sorted, silty in part, angular to subrounded, non calcareous, trace pyrite cement, minor trace glauconite, occasional mica flakes, excellent porosity, no shows. CLAYSTONE: Light olive-grey to light grey, occasionally white, soft, sticky, dispersive in part, silty, grading in part to ARGILLACEOUS SILTSTONE, slightly calcareous, common rounded cuttings.

I

DEPTH	DESCRIPTION
1742-1745m	COAL: Black, firm.to hard, brittle, blocky, vitreous lustre, occasionally dull.
1745-1750m	SANDSTONE WITH MINOR COAL. SANDSTONE: Clear to translucent white, friable to unconsolidated, medium to coarse, dominantly medium, moderately sorted, silty in part, angular to subrounded, non calcareous, trace pyrite cement, trace glauconite, occasional mica flakes, excellent porosity, no shows. COAL: Black, firm to hard, brittle, blocky, vitreous lustre, occasionally dull.

ç

3.2 Sidewall Cores

A 60 shot CST program was run in Amberjack-1 in the 12-1/4" hole section from 1725-1010 m. Of the 60 shots fired, 56 successfully recovered cores, two bullets were lost and two were empty (overall 93% recovery). No misfires were reported.

The remains of sidewall cores subsequent to palynological, geochemical and petrographic analysis are stored by BHP Petroleum Pty. Ltd. at Kestrel Management (Australia) Pty. Ltd., Unit 58, Slough Estate, 170 Forster Road, Mt. Waverley, Victoria, 3149.

ŧ

Table 2 summarises the sidewall core recoveries.

<u>Table 2</u>

Sidewall Core Summary

Sample No	Depth (mRKB)	Recovery (cm)	Lithology	Sample No.	Depth (mRKB)	Recover (cm)	y Lithology
1	1725.0	2.0	Argil Sst	31	1284.1	4.0	Argil Sst
2	1714.0	2.5	Argil Sst	32	1282.0	4.5	Sity Sst
3	1698.0	2.0	Argil Sltst	33	1279.9	4.5	Slty Sst
4	1684.0	Nil	-	34	1277.0	4.5	Sity Sst
5	1660.2	Nil	-	35	1275.0	3.0	Sst
6	1633.0	2.5	Clyst	36	1272.9	4.0	Slty Sst
7	1589.0	2.0	Clyst	37	1270.5	4.0	Slty Sst
8	1575.0	2.0	Clyst	38	1269.1	4.5	Sity Sst
9	1566.4	2.0	Clyst	39	1268.6	4.0	Slty Sst
10	1542.5	4.0	Slty Sst	40	1268.0	Nil	-
11	1519.0	2.5	Slty Sst	41	1267.5	5.0	Argil Sst
12	1495.5	3.5	Clyst	42	1264.0	3.5	Argil Sst
13	1489.0	2.0	Sltst/Sst	43	1263.0	6.0	Argil Sst
14	1485. 0	4.5	Sity Sst	44	1260.9	7.0	Argil Sst
15	1482.0	4.0	Sst	45	1259.1	5.2	Argil Sst
16	1478.0	3.0	Sst	46	1255.0	7.0	Clyst
17	1461.5	1.5	Argil Sst	47	1248.1	7.0	Marl
18	1452.0	Nil	-	48	1236.0	3.5	Marl
19	1441.0	2.0	Sltst	49	1226.6	3.0	Marl
20	1421.1	3.0	Slty Sst	50	1218.8	4.0	Marl
21	1409.0	4.0	Carb Sst	51	1215.2	4.5	Marl
22	1374.5	5.0	Argil Sst	52	1212.9	4.5	Calc Clyst
23	1360.1	3.0	Clyst	53	1210.4	4.2	Calc Clyst
24	1355.0	3.0	Argil Sst	54	1160.0	6.0	Marl
25	1353.1	4.0	Sst	55	1138.8	3.4	Marl
26	1351.0	2.0	Sitst	56	1111.5	3.0	Marl
27	1339.0	3.0	Lamin Sitst	57	1095.9	4.0	Marl
28	1333.0	3.5	Sity Sst	58	1050.0	3.8	Marl
29		2.5	Slty Clyst	59	1031.0	2.0	Marl
30	1294.1	4.0	Sst	60	1010.0	2.0	Marl

L.

	SAMPLE NO.	E (mRKB)		RECOVERY DESCRIPTION
	1	1725.0	2.0	ARGILLACEOUS SANDSTONE: White to light yellow-grey, friable, very fine to coarse grained, very poorly sorted, subangular, white to light grey argillaceous matrix, slightly calcareous, trace lithic grains, rare carbonaceous specks, no bedding, massive, poor to fair porosity, no shows.
	2	1714.0	2.5	ARGILLACEOUS SANDSTONE: White to light yellow-grey, friable, very fine to coarse, dominantly very fine to fine, poorly to moderately sorted, white to light grey argillaceous matrix, non-calcareous, trace lithic grains, rare carbonaceous specks, poor to fair porosity; with minor interbeds of ARGILLACEOUS SANDSTONE: Light to medium olive-grey, firm, silty to very fine, occasion coarse grains, angular to sub angular, abundant light to medium olive-grey argillaceous matrix, non-calcareous, poor porosity, trace pinpoint very dull yellow mineral fluorescence.
	3	1698.0	2.0	ARGILLACEOUS SILTSTONE: Light olive-grey, friable, grades to very fine ARGILLACEOUS SANDSTONE, abundant medium olive-grey argillaceous matrix, trace mica flakes, occasional thin subparallel carbonaceous stringers, poor to very poor porosity, no shows.
	4	1684.0	NIL	Bullet Empty
	5	1660.2	NIL	Bullet Lost
	6	1633.0	2.5	CLAYSTONE: Light to medium grey to olive-grey, soft to moderately firm, blocky fracture, soapy texture, non-calcareous, no visible bedding.
	7	1589.0	2.0	CLAYSTONE: White to light yellow-grey, soft silty, non-calcareous, trace microcrystalline mica, occasional subparallel dark grey-brown carbonaceous streaks.
	8	1575.0	2.0	CLAYSTONE: White to light yellow-grey, soft silty, conchoidal fracture, non-calcareous, trace microcrystalline mica, occasional subparallel dark grey-brown carbonaceous streaks.
	9	1566.4	2.0	CLAYSTONE: Light yellow grey, soft, silty, conchoidal to blocky fracture, soapy texture, slightly dispersive in fresh water, non-calcareous, trace microcrystalline mica, trace carbonaceous fragments.
1	0	1542.5		SILTY SANDSTONE: White to light grey, friable, very fine to medium, dominantly very fine, silty, moderately well sorted, angular to subangular, trace white argillaceous matrix, trace mica flakes, trace black chert/heavy mineral grains, no visible bedding, poor porosity. FLUORESCENCE: 5-10% pinpoint dull yellow direct fluorescence, slow weak milky yellow-white cut, moderate milky yellow-white crush cut, moderate yellow-white residual ring.
1	1 1	1519.0		SILTY SANDSTONE: White to light yellow-grey, friable, very fine to fine, dominantly very fine, silty, moderately well to well sorted, angular to subangular, trace white argillaceous matrix, non-calcareous, trace microcrystalline mica, trace black specks, no bedding, poor porosity. FLUORESCENCE: Trace very dull yellowish orange direct fluorescence, slow, very weak milky cut, slow milky yellowish white crush cut, patchy yellowish white residual ring.

3.5 CLAYSTONE: Light olive-grey, soft, slightly silty, conchoidal fracture, 12 1495.5 occasionally blocky, non-calcareous, trace microcrystalline mica, trace carbonaceous fragments, no visible bedding. 1489.0 2.0 ARGILLACEOUS SILTSTONE grading to and interbedded with 13 ARGILLACEOUS SANDSTONE: mottled light olive-grey and medium grey, occasionally white, soft, friable, siltstone grading to very fine sandstone, moderately sorted, variable argillaceous matrix, non-calcareous, trace microcrystalline mica, bioturbated, occasional relict burrows, poor porosity, no shows. 1485.0 4.5 14 SILTY SANDSTONE: White to light yellow-grey, friable, very fine to medium, poorly to moderately sorted, common to abundant silty matrix, angular, non-calcareous, trace fine mica flakes, occasional dark grey lithic grains, massive, no bedding, fair to poor porosity, no shows. 15 1482.0 4.0 SANDSTONE: White to light grey to yellowish grey, friable, very fine to medium, dominantly medium, poorly to moderately sorted, occasional white silty matrix, non-calcareous, trace fine mica flakes, trace pyrite cemented grains, trace carbonaceous specks, massive, no visible bedding, fair to good porosity, no shows. 16 1478.0 3.0 SILTY SANDSTONE: White, soft, friable, very fine, well sorted, abundant silty matrix, non-calcareous, trace to common very fine mica flakes/ microcrystalline mica, trace to common carbonaceous specks, no visible bedding, poor porosity. FLUORESCENCE: Trace pinpoint dull yellow direct fluorescence, no cut, very weak, dull milky yellow crush cut, very pale milky residual ring. 17 1461.5 1.5 ARGILLACEOUS SANDSTONE: Mottled white, light brown and light olive-grey, very fine, well sorted, abundant silty matrix, non-calcareous, common microcrystalline mica, common carbonaceous specks, common subparallel carbonaceous streaks, faint subparallel laminations, poor porosity. FLUORESCENCE: Trace to 5% pinpoint moderately bright yellow direct fluorescence, streaming instant light yellow cut, yellow residual ring. 18 1452.0 NIL **Bullet Lost** 19 1441.0 2.5 SILTSTONE: light to medium olive-grey, soft, grades to very fine sandstone in part, argillaceous matrix, non-calcareous, common microcrystalline mica. common carbonaceous specks, minor COAL laminae and wispy streaks, subparallel laminations, very poor porosity, no shows. 1421.1 3.0 20 SILTY SANDSTONE: White to light yellow-grey, friable, very fine, well sorted, silty, angular, occasional argillaceous matrix, common microcrystalline mica, common carbonaceous specks, trace wispy subparallel COAL stringers, no visible bedding, fair to poor porosity, no shows. 21 1409.0 4.0 CARBONACEOUS SANDSTONE: Light olive-grey, soft, friable, fine to very fine, well sorted, angular, non-calcareous, micromicaceous, common to abundant subparallel carbonaceous streaks, common carbonaceous specks, subparallel bedding, fair to poor porosity, no shows. 22 1374.5 5.0 ARGILLACEOUS SANDSTONE: White to light yellow-grey, friable, fine to very fine, well sorted, angular, silty, variable argillaceous matrix, non-calcareous, common microcrystalline mica, trace to common microcrystalline pyrite, subparallel bedding, fair to poor porosity, no shows. 23 1360.1 3.0 CLAYSTONE: Medium to dark olive-grey, soft to moderately firm, silty, non-calcareous, common microcrystalline mica, massive, no visible bedding.

1355.0 3.0 ARGILLACEOUS SANDSTONE: Medium olive-grey, soft, friable, fine to very 24 fine, well sorted, olive-grey argillaceous matrix, non-calcareous, micromicaceous, mottled, bioturbated, fair to poor porosity. 25 1353.1 4.0 SANDSTONE: Light to very light olive-grey, friable, very fine to medium, moderately poorly sorted, slightly silty. trace carbonaceous specks, massive, no visible bedding, good porosity, no shows. 2.0 26 1351.0 SILTSTONE: Dark olive-grey to dusky grey, soft, crumbly, argillaceous matrix, slightly arenaceous in part, non-calcareous, micromicaceous, massive, no visible bedding, poor porosity, no shows. 27 1339.0 3.0 LAMINATED SILTSTONE: Subparallel interbeds of medium to dark olive-grey to dusky grey and light olive-grey, soft to moderately firm, non-calcareous, micromicaceous, occasional fine quartz grains, occasional burrows cutting laminations, poor porosity, no shows. 28 1333.0 3.5 ARGILLACEOUS SANDSTONE interbedded with SILTSTONE. ARGILLACEOUS SANDSTONE: Medium olive-grey, firm, friable, very fine, well sorted, abundant argillaceous matrix, non-calcareous, micromicaceous, poor porosity; grading to and interbedded with SILTSTONE: Medium to dark grey, soft to moderately firm, non-calcareous, micromicaceous, micro cross-bedding, poor porosity, no shows. 1325.0 CLAYSTONE: Medium to dark grey-brown to olive-grey, soft to moderately 29 2.5 firm, silty, non-calcareous, micromicaceous, no visible bedding. 1284.1 4.0 SANDSTONE: Light to medium grey, soft to moderately firm, fin to medium, 30 dominantly fine, moderately well sorted, angular to subrounded, trace argillaceous matrix, slightly calcareous, trace black chert/ heavy minerals, massive, excellent porosity, no shows. 31 1284.1 4.0 ARGILLACEOUS SANDSTONE: Medium grev, friable, very fine to medium, subangular to subrounded, silty, abundant dispersive dark grey argillaceous matrix, disseminated microcrystalline pyrite, massive, poor porosity, no shows. 32 1282.0 4.5 SILTY SANDSTONE: Light to medium grey, friable, very fine grading to SILTSTONE in part, well sorted, angular to subrounded, argillaceous matrix, non-calcareous, trace to common mica flakes, trace black chert/ heavy mineral grains, massive, good to excellent porosity, no shows. 33 1279.9 4.5 SILTY SANDSTONE: Light to medium grey, friable, very fine, well sorted, angular to subangular, silty, slightly calcareous, micromicaceous, trace to common black grains, occasional carbonaceous fragments, very faint subparallel bedding, good to excellent porosity. FLUORESCENCE: 100% Bright yellowish-white to greenish-white direct fluorescence, instant streaming yellowish-white cut, thick yellowish-white residual ring. Light straw colour to solvent in white light. Strong petroliferous odour. Oily sheen on grains. 1277.0 4.5 34 SILTY SANDSTONE: Light to medium grey, friable, very fine, well sorted, angular to subangular, silty, slightly calcareous, micromicaceous, trace to common black grains, occasional carbonaceous fragments, very faint subparallel bedding, good to excellent porosity. FLUORESCENCE: 100% Bright yellowish-white to greenish-white direct fluorescence, instant streaming yellowish-white cut, thick yellowish-white residual ring. Light straw colour to solvent in white light. Strong petroliferous odour. Oily sheen on grains.

- 35 1275.0 3.0 SANDSTONE: Light to medium grey, friable to unconsolidated, medium to coarse, angular to subangular, moderately poorly sorted, trace silty matrix, trace argillaceous matrix, trace fine mica flakes, excellent porosity. FLUORESCENCE: 100% Moderately bright yellowish-white direct fluorescence, instant streaming yellowish-white cut, thick yellowish-white residual ring. Light straw colour to solvent in white light. Strong petroliferous odour. Oily sheen on grains. 1272.9 4.0 SILTY SANDSTONE: Light to medium olive-grey, friable to unconsolidated, 36 very fine, very well sorted, angular to subrounded, silty, argillaceous matrix, non-calcareous, micromicaceous, trace disseminated glauconite, good to excellent porosity. FLUORESCENCE: 100% Bright yellowish-white direct fluorescence, instant streaming yellowish-white cut, thick yellowish-white residual ring. Light straw colour to solvent in white light. Strong petroliferous odour. Oily sheen on grains. 1370.5 37 4.0 SILTY SANDSTONE: Light to medium olive-grey, friable to unconsolidated, very fine, very well sorted, angular to subrounded, silty, argillaceous matrix, non-calcareous, micromicaceous, trace disseminated glauconite, good to excellent porosity. FLUORESCENCE: 100% Bright yellowish-white direct fluorescence, instant streaming yellowish-white cut, thick yellowish-white residual ring. Light straw colour to solvent in white light. Strong petroliferous odour. Oily sheen on grains. SILTY SANDSTONE: Light to medium olive-grey, friable to unconsolidated, 4.5 38 1269.1 very fine, very well sorted, angular to subrounded, silty, argillaceous matrix, non-calcareous, micromicaceous, trace disseminated glauconite, good to excellent porosity; interbedded with SILTY ARGILLACEOUS SANDSTONE: Medium grey, friable, very fine, well sorted, abundant argillaceous matrix, silty, trace microcrystalline mica, trace glauconite, subparallel bedding, poor porosity. FLUORESCENCE: 70% Bright yellowish-white direct fluorescence associated with cleaner interbeds, instant streaming yellowish-white cut, thick yellowish-white residual ring. Moderate petroliferous odour. 39 1268.6 4.0 SILTY ARGILLACEOUS SANDSTONE: Slightly mottled medium grey to olive-grey, occasionally light olive-grey, soft, friable, very fine, well sorted, angular to subangular, silty, variable argillaceous matrix, slightly calcareous, micromicaceous, occasional coarse guartz grains, trace subparallel microlaminations, bioturbated, poor to fair porosity. FLUORESCENCE: 5% Bright yellow-white direct fluorescence, instant streaming cut, yellow-white residual ring. Faint petroliferous odour. 40 1268.0 NIL Bullet Empty ARGILLACEOUS GLAUCONITIC SANDSTONE: Medium to dark olive-grey, 41 1267.5 5.0
 - soft to moderately firm, fine to medium, occasionally coarse, poorly sorted, subrounded to subangular, abundant silty and argillaceous matrix, matrix supported, common disseminated glauconite, common glauconite grains, common disseminated microcrystalline pyrite, non-calcareous, micromicaceous, nil to very poor porosity, no shows.

1264.0 3.5 ARGILLACEOUS GLAUCONITIC SANDSTONE grading to ARGILLACEOUS SILTSTONE: Medium to dark olive-grey, soft to moderately firm, fine to medium, occasionally coarse, poorly sorted, subrounded to subangular, abundant silty and argillaceous matrix, matrix supported, common disseminated glauconite, common to abundant well rounded black glauconite grains, common disseminated microcrystalline pyrite, non-calcareous, micromicaceous, nil to very poor porosity, no shows.

42

51

- 43 1263.0 6.0 ARGILLACEOUS GLAUCONITIC SANDSTONE grading to ARGILLACEOUS SILTSTONE: Medium to dark olive-grey, soft to moderately firm, fine to medium, occasionally coarse, poorly sorted, subrounded to subangular, abundant silty and argillaceous matrix, matrix supported, common disseminated glauconite, common to abundant well rounded black glauconite grains, common disseminated microcrystalline pyrite, non-calcareous, micromicaceous, nil to very poor porosity, no shows.
- 44 1260.9 7.0 ARGILLACEOUS GLAUCONITIC SANDSTONE: Medium olive-grey to dark greenish grey, soft to moderately firm, very fine, occasionally medium, poorly sorted, well rounded to subrounded, abundant silty and argillaceous matrix, matrix supported, common disseminated glauconite, common to abundant well rounded black glauconite grains, common disseminated microcrystalline pyrite, non-calcareous, micromicaceous, nil to very poor porosity, no shows.
- 45 1259.1 5.2 ARGILLACEOUS GLAUCONITIC SANDSTONE: Medium olive-grey to dark greenish grey, soft to moderately firm, very fine, occasionally medium, poorly sorted, well rounded to subrounded, abundant silty and argillaceous matrix, matrix supported, common disseminated glauconite, common to abundant subrounded black glauconite grains, common disseminated microcrystalline pyrite, non-calcareous, micromicaceous, nil to very poor porosity, no shows.
- 46 1255.0 7.0 CLAYSTONE: Medium olive-grey to grey-brown, soft to firm, slightly silty, non-calcareous, with 1 mm thick band containing abundant very fine glauconite and pyrite grains.
- 47 1248.1 7.0 MARL: Light to medium olive-grey, soft, argillaceous, occasional fine subrounded glauconite grains, occasional very fine quartz grains, trace microcrystalline mica, trace microcrystalline pyrite, trace fossil fragments, no visible bedding, no visible porosity, no shows.
- 48 1236.0 3.5 MARL: Light grey, firm, argillaceous, common glauconite grains, trace microcrystalline mica, trace disseminated microcrystalline pyrite, trace fossil fragments, no visible bedding, very poor porosity, no shows, trace to 5% dull orange mineral fluorescence.
- 49 1226.6 3.0 MARL: Light grey, firm, argillaceous, rare glauconite grains, trace microcrystalline mica, trace disseminated microcrystalline pyrite, trace fossil fragments, no visible bedding, no shows.
- 50 1218.8 4.0 MARL: Light grey, firm, silty, argillaceous, rare glauconite grains, trace microcrystalline mica, trace disseminated microcrystalline pyrite, trace fossil fragments, no visible bedding, no shows.
 - 1215.2 4.5 MARL: Medium olive-grey, firm, argillaceous, slightly silty, rare fossil fragments, trace microcrystalline mica, no shows.
 - 1212.9 4.5 MARL grading to CALCAREOUS CLAYSTONE in part: Medium olive-grey, firm, argillaceous, slightly silty, rare fossil fragments, trace microcrystalline mica, no shows.

53	1210.4	4.2	CALCAREOUS CLAYSTONE: Medium olive-grey, soft to moderately firm, blocky fracture, trace white fossil fragments.
54	1160.0	6.0	MARL: Light to medium olive-grey to grey, firm, blocky fracture, common to abundant fossil fragments, mostly foraminifera, trace microcrystalline mica, no shows.
55	1138.8	3.5	MARL: Light olive-grey, firm friable, silty, patchy calcareous cement, common to abundant fossil fragments, trace glauconite grains, no shows, trace dull yellow mineral fluorescence.
56	1111.5	3.0	MARL: Light olive-grey, firm friable, silty, patchy calcareous cement, common to abundant fossil fragments, trace glauconite grains, no shows, trace dull yellow mineral fluorescence.
57	1095.9	4.0	MARL: Light olive-grey, firm friable, silty, patchy calcareous cement, occasional calcareous concretions to 3mm diameter, possibly burrow infilling, common to abundant fossil fragments, trace glauconite grains, bioturbated, poor porosity. FLUORESCENCE: 5-10% moderately bright yellowish-green direct fluorescence associated with calcareous concretions, no cut, instant streaming crush cut, faint yellow residual ring.
58	1050.0	3.8	MARL: Light olive-grey, firm, friable, slightly silty, common calcareous cement, common fossil fragments, trace glauconite, very faint, subparallel laminations, no shows.
59	1031.0	2.0	MARL grading to ARGILLACEOUS CALCISILTITE: Light olive-grey, firm, friable, silty, occasional calcareous cement, common fossil fragments, no shows, trace dull yellow mineral fluorescence.
60	1010.0	2.0	MARL: Light olive-grey, firm, friable, silty, common fossil fragments, common calcareous concretions to 1 mm diameter, common white calcareous streaks to 2 mm long, possibly burrow infilling or relict fossils, no visible bedding, poor porosity. FLUORESCENCE: 5% Moderately bright yellow-white direct fluorescence, no cut, moderate milky yellow crush cut, faint yellow residual ring.

3.3 <u>Conventional Cores</u>

One 18 m conventional core was cut in Amberjack-1 in the 12-2/4" hole section from 1271.4-1290 m, recovering 17.56 m (94%).

Remains of the core subsequent to sampling for routine and special core analysis are stored as follows:

- 1/2 core BHP Petroleum Core Store c/o Kestrel Management (Australia) Pty. Ltd. Unit 58, Slough Estate, 170 Forster Road, MT WAVERLEY, VIC., 3149.
- 1/4 core BMR Core and Cuttings Laboratory, 80 Collie Street, FYSHWICK, A.C.T., 2609.
- 1/4 core DIEP Corelab, 196 Turner Street, PORT MELBOURNE, VIC., 3207.

AMBERJACK-1 CONVENTIONAL CORE # 1 DESCRIPTION

1271 4-1271 7m SANDSTONE: light-medium olive grey, moderately cemented, friable, fine grained occasionally medium grained, angular-subangular, moderate-well sorted, very fine grained quartz matrix, occasional fine carbonate inclusions, moderately bioturbated, micromicaceous, trace glauconite. SHOW: strong hydrocarbon odour, visible oil in core, 100% bright white/yellow-white direct fluorescence instant streaming milky vellow-white cut, straw colouring to solvent thick vellow-white residual ring. 1271.7-1272.3m SANDSTONE: light-dark grey, moderately cemented, friable, very fine to fine grained occasionally medium grained, angular-subangular, moderate to well sorted, very fine grained quartz matrix, micromicaceous, abundant carbonaceous matter and laminae, highly bioturbated. SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow-white direct fluorescence instant streaming yellow-white cut thick yellow-white residual ring 1272.3-1273.5m SANDSTONE: light grey, fine grained, moderately cemented, friable, angular-subangular, well sorted, very fine grained quartz matrix, micromicaceous, occasional fine carbonaceous inclusions, moderately bioturbated. SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow-white direct fluorescence instant streaming yellow-white cut thick yellow-white residual ring 1273.5-1273.8m SANDSTONE: light grey, fine to very coarse grained occasionally granular, angular-subangular, very friable-loose, poorly sorted, very fine grained quartz matrix, occasional fine carbonaceous inclusions. SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow white direct fluorescence instant streaming yellow-white cut thick yellow-white residual ring.

1273.8-1274.1m	SANDSTONE: medium grey, fine grained occasionally medium, angular-subangular, moderately cemented, friable, moderately well sorted, carbonaceous laminae, micromicaceous. SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow-white direct fluorescence instant streaming yellow-white cut thick yellow-white residual ring.
1274.1-1274.8m	SANDSTONE: light grey, coarse to very coarse grained, subangular-subround, poor-moderate cement, well sorted, clay coating around very coarse grains, very fine grained quartz matrix, occasional fine carbonaceous inclusions SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow-white direct fluorescence instant streaming white cut thick yellow-white residual ring.
1274.8-1275.9m	SANDSTONE: light grey, very fine to fine grained,moderatley cemented, friable, angular-subangular, well sorted, argillaceous matrix, abundant carbonate inclusions and laminae, micromicaceous, bioturbated. SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow white direct fluorescence instant streaming yellow-white cut thick yellow-white residual ring.
1275.9-1276.5m	SANDSTONE: light to medium grey, fine grained,angular-subangular, moderately cemented, well sorted, very fine grained quartz matrix, abundant carbonaceous inclusions and laminae, micromicaceous, bioturbated. SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow direct fluorescence instant streaming yellow-white cut thick yellow-white residual ring.
1276.5-1278.6m	SANDSTONE: light to dark grey,very fine to fine grained,angular-subangular, well cemented, well sorted, abundant argillaceous matrix, occasional carbonate inclusions and common carbonate laminae, micromicaceous, bioturbated. SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow direct fluorescence instant streaming yellow-white cut thick yellow-white residual ring.

Ì

1278.6-1279.2m	SANDSTONE: medium to dark grey, very fine to fine grained, angular-subangular, moderately cemented, moderate to well sorted, argillaceous matrix, abundant carbonaceous laminae, micromicaceous, bioturbated.
	SHOW: strong hydrocarbon odour, visible oil in core 100% bright white/yellow direct fluorescence instant streaming yellow-white cut thick yellow-white residual ring.
1279.2-1281.3m	SANDSTONE: light grey, fine grained, angular-subangular, moderatley cemented, friable, well sorted, occasional carbonaceous material, micromicaceous.
	SHOW: trace pinpoint dull yellow direct fluorescence. No instant/crush cut, no residue.
1281.3-1282.2m	SANDSTONE: medium grey, fine grained occasionally mediumgrained, angular-subangular, moderately cemented, friable, moderate carbonaceous specks and disrupted carbonate laminae, micromicaceous.
	No shows.
1282.2-1283.0m	SANDSTONE: dark grey, fine grained occasionally mediumgrained, angular-subangular, moderately cemented, friable, abundant carbonaceous laminae, bioturbated, micromicaceous.
	No shows.
1283.2-1283.6m	SANDSTONE: medium to dark grey, medium to coarse grained, (coarse grains rare), firm to firable, angular-subangular, poorly sorted, moderately cemented, disseminated pyrite, micromicaceous, trace glauconite.
	No shows.
1283.6-1285.5m	SANDSTONE: grey brown to light grey brown, fine to mediumgrained, very friable, angular-subangular, moderately well sorted, poorly cemented, minor carbonaceous inclusions, trace micromicaceous, massive.
	No shows.

1285.5-1287.0m

SANDSTONE: light grey brown, predominately medium grained, angular-subangular, moderatley well sorted, poorly cemented, trace micromicaceous, rare carbonate inclusions, massive.

L

No shows.

1287.0-1288.8m SANDSTONE: light grey brown, occasionally coarse grained, angular-subangular, moderate sorting, poorly cemented, rare carbonate inclusions, micromicaceous, massive.

31 May 1990

BHP Petroleum 35 Collins Street MELBOURNE VIC 3000

Attention: Dr R V Halyburton

FINAL DATA REPORT - CONVENTIONAL CORE ANALYSIS

REPORT: 005/008 - AMBERJACK #1

Core No 1, 1271.40-1288.96 (17.56m) was collected from the Heliport at Port Welshpool Airport on 10 May 1990.

The following report includes tabular data of permeability to air, helium injection porosity, summation of fluids porosity, residual fluid saturations and density determinations. Data presented graphically includes a continuous core gamma log, a core log plot and a porosity versus permeability to air plot.

The data contained in this report has been derived by the following methods:

1. CONTINUOUS CORE GAMMA

The core is laid out according to the depths marked on it and a continuous core gamma trace produced by passing the core beneath a gamma radiation detector which is protected from extraneous radiation by a lead tunnel. The speed at which the core is passed beneath the detector is adjusted so as to reproduce the required vertical scale; electronic amplification and digitization are used to produce a gamma trace similar to that of the downhole log.

2. FLUID SATURATIONS

After completion of the core gamma work the core is laid out according to the depth and oriented so as to present the maximum dip of the bedding. Approximately 2 cm of core is dry-trimmed from the whole core pieces at intervals of approximately 30 cms. About 100 gms of this broken material is utilized to determine the residual oil and water saturations. This is done using a thermostatically controlled high temperature retort which is initially heated to 160°C and water produced from the core is recorded versus time. When the initial water production reaches a constant level the temperature is increased to 650°C and residual hydrocarbons and remaining bound water are recovered.

3. SUMMATION OF FLUIDS POROSITY

A small irregular sample is taken from the broken portion of core obtained as in Section 2, above, and this is used for the determination of bulk volume and gas volume. The latter is measured by recording the volume of mercury injected into the sample at 750 psig (5200 kpa). The summation of fluids porosity is then calculated by summing the 3 values: initial water produced, oil produced and gas volume. The porosity is calculated by expressing the sum of these as a percentage of the bulk volume (determined by mercury immersion).

4. PLUG CUTTING & DRYING

Two $1\frac{1}{2}$ " diameter plugs are taken at 30 cm intervals adjacent to the core section taken for residual fluids. Liquid nitrogen was used as bit lubricant on first 42 samples due to the soft and friable nature of core. For the remaining 17 samples, tapwater was used as the bit lubricant. One sample is cut parallel, and the second at 90° to the bedding plane, thus giving theoretical maximum and minimum permeability into the well bore. Samples are trimmed square and the offcuts retained. Residual hydrocarbon are extracted from the plugs using toluene in a Soxhlet extractor. The density of the recycled toluene is compared to clean toluene as a control to ensure that no extractable oil remains in the plugs.

After cleaning, the plugs are dried in a controlled humidity environment at temperatures not exceeding 105°C and are then stored in an airtight plastic container and allowed to cool to room temperature.

5. NATURAL DENSITY

The natural density is the bulk density of the rock containing, as near as possible, the in-situ fluids. This density value is determined by mercury immersion, which gives the sample bulk volume, and by weighing the sample in its natural state.

6. PERMEABILITY TO AIR

A plug sample is used for this measurement and is placed in a Hassler cell to which a confining pressure of 200 psig (1380 kpa) is applied; this pressure is used to prevent bypassing of air around the sides of the sample when the measurement is made. A known pressure is then applied to the upstream sample face and the differential pressure (between the upstream and downstream faces) is monitored at the downstream face. Permeability is then calculated using Darcy's Law.

7. HELIUM INJECTION POROSITY

The porosity of a clean dry core plug is determined as follows: it is first placed in a matrix cup where the grain volume is measured by helium injection: a known volume of helium at a known pressure is expanded into the matrix cup which contains the core plug; the resulting pressure is recorded and the unknown volume (that is, the volume of the grains) is determined using Boyle's Law. The bulk volume is determined by mercury immersion. The difference between the grain volume and the bulk volume is the pore volume and from this the porosity is calculated as the volume percentage of pores with respect to the bulk volume.

8. APPARENT GRAIN DENSITY

The apparent grain density is derived from the measurements described in Section 7, above, and is the ratio of the weight of the core plug divided by the grain volume determined as in paragraph 7.

9. POROSITY AND PERMEABILITY AT OVERBURDEN PRESSURE

To determine the porosity and permeability of the core plug at overburden pressure, the sample is first placed in a cylindrical neoprene sheath and this assembly is loaded into a triaxial hydrostatic cell. The pore volume is then determined at "ambient" pressure. The overburden pressure (the value as supplied by the client) is then applied to the sample in the cell and the pore volume reduction caused by this increase in pressure, is measured. By this means the actual overburden pore volume and the bulk volume can be determined and are used to derive a value for the porosity at the applied overburden pressure. The permeability at overburden pressure is then measured in the hydrostatic cell exactly as described in paragraph 7.

10. API GRAVITY

Composite samples from a particular reservoir are collected from the retort during fluid saturation determinations. Specific gravity is measured by the pycnometer method and converted mathematically to degrees API to comply with Industry standards.

11. ROLLING AND SPECIFIED AVERAGES

These averages of both Helium injection porosity and permeability are obtained by using a "rolling" three (3) point method. In the case of porosity a weighted arithmetic average is used:

$$\phi av_{(i+1)} = [\phi_i + 2\phi_{(i+1)} + \phi_{(i+2)}]/4$$

In the case of permeability a weighted geometric average is used:

$$K av_{(i+1)} = 10 \qquad [(\log_{10} K_i + 2 \log_{10} K_{(i+1)} + \log_{10} K_{(i+2)}) /4]$$

At any sample point, excluding the first and last, a rolling average is obtained by using the value at the specified sample point, the value before it and the value of the sample point after it. In the cases of the first and last sample points, only 2 sample points are used.

Using porosity as an example, the average of the first data point is obtained from the formula:

$$\phi av_{(i)} = [2\phi_i + \phi_{(i+1)}] /3$$

The average at the final data point is obtained by:

 ϕ av (f) = $[\phi_{(f-1)} + 2\phi_{(f)}] / 3$

The same method is used for permeability averages. At any break in the data the rolling averages are "re-started".

Data Key:

φ	=	porosity
Κ	=	permeability
i	=	initial
av	=	average
f	=	final

Specified averages are normal arithmetic averages which can be taken over any specified section of the core, as well as over the whole core.

On completion of the analysis the core was slabbed into one half, and two quarter slabs using water as the lubricating medium. One quarter was packed and shipped to the WA Department of Mines & Energy Core Library. The remaining quarter was packed and shipped to the BMR, Canberra. The one half slab was photographed under both white light and ultra-violet light. this half was then packed and shipped to the BHPP core store in Melbourne.

We have enjoyed working with BHPP and look forward to working with you again in the near future.

END OF REPORT

<u>NB</u>

Routine quality control checks identified relatively low porosity results for preliminary data of samples 12, 40, 41, 9A, 11A, 12A, 40A and 41A.

During bulk volume determinations, mercury was found to slightly penetrate the extremities of the sample and thus effectively lowering porosity data.

Appropriate corrections were made to all relevant samples and reported.

Amdel Core Services Pty Limited Incorporated in South Australia

	CORE 7	NAL	.YSI	<u>s f</u>	INAL F	EPOR	1		
Company	: BHP PETROL		ry. LTI	D.					
Well Field	: AMBERJACK : : WILDCAT (V			Da	te	: 11	/05/90		
Core Interval	: 1271.40 -							,	,
Core Interva: File No.	: : 5-008								
Country	: AUSTRALIA					St	ate : N	/ICTOR	ΓA
	Porosity HeInj:RollPo						on of H Oil		¦ Remarks
NO . •		i ivat	- Gran		no i i no			water	- Dec Derc
1 1271.50	32.2 31.8	2.04	2.66	784	821	27.5	5.9	77.1	C# SI
1A 1271.50 2 1271.70		2.05	2.66 2.67	672 902	653 714	30.0	1 1	75.4	SP
2 1271.70 2A 1271.70		2.00	2.66	902 616	510	50.0	°±•⊥	/0.4	
3 1272.00		2.10		407	691	28.1	5.2	78.6	
3A 1272.00 4 1272.30		2.03	2.64 2.65	266 1523	502 1135	33.2	2.4	80.8	
4A 1272.30	32.3 31.6		2.65	1455	1035				
5 1272.60 5A 1272.60		2.05	2.66 2.65	1760 2040	1741 1969	33.2	1.9	85.2	
6 1272.90		2.07		2040 1948	1909	33.7	3.7	85.9	
6A 1272.90			2.65	2482	2194				SP
7 1273.20 7A 1273.20		2.07	2.65 2.65	1552 1844	1556 1571	33.0	1.3	84.3	
8 1273.50	33.4 32.3	2.04	2.67	1250	1410	33.9	5.4	78.3	SP*
8A 1273.50 9 1273.80		2.15	2.66 2.65	721 1629	1169 1417	25.8	7 F	76.8	SP* SP*
9A 1273.80		4.10	2.65	1948	1417	20.0	2.0	70.0	SP*
10 1274.10	33.7 32.6	2.04		1216	2852	25.0	.8	82.4	SP*
10A 1274.10 11 1274.40		2.16	2.66	1551 27469	2877 12107	30.0	1.4	90.6	SP*
11A 1274.40	31.8 31.7		2.65	14630	8604				÷
12 1274.70 12A 1274.70	29.8 31.5 29.7 31.1	2.16		23419 16511	10821 8275	28.6	1.5	90.7	
13 1275.00	32.4 31.5	2.07	2.64	910	1979	33.0	3.1	84.6	SP*
13A 1275.00		0 10	2.66	1176	1658	01 E			SP*
14 1275.30 14A 1275.30	31.4 31.3 29.1 30.5	2.10	2.66 2.65	792 331	934 511	31.5	4.1	88.5	
15 1275.60	30.0 29.9	2.14	2.67	1335	767	31.8	3.4	84.6	
15A 1275.60 16 1275.90	30.5 29.7 28.3 29.1	2.09	2.65 2.65	530 245	442 418	30.9	47	78.6	
16A 1275.90	28.9 28.9		2.65	411	356				
17 1276.20		2.12	2.66	380	324	20.2	3.1	72.3	
17A 1276.20 18 1276.50	27.5 28.5 29.7 29.0	2.10	2.65 2.66	180 310	269 269	29.3	5.0	81.1	
18A 1276.50	30.1 29.0		2.65	395	293				
19 1276.80 19A 1276.80	27.0 28.4 28.3 29.4	2.15	2.66 2.66	143 261	218 348	30,4	2.1	84.2	SP*
20 1277.10	30.0 29.3	2.12	2.66	357	293	27.1	1.6	84.6	1
20A 1277.10			2.67	544	422				SP

. . .

BHP PETROLEUM PTY. LTD. : AMBERJACK #1 : Analysis by Amdel Core Services Pty. Limited

•

.

•

Sampl	e;Depth;	Porosit	ty	i De	ensity	: Perm	eability (md)	Summat	ion of	Fluids	: Remarks!
No.	1 1	HeInj¦H	RollPoi	r¦ Nat	Grain	n¦ KH	Roll KH	: Por	Oil		See Below
21	1277.40			2.10			319	28.5	2.2	82.1	·····
	1277.40				2.68		416				SP*
22	1277.70			2.17	2.67	175	285	27.2	4.8	82.2	
	1277.70				2.67		413				
23	1278.00			2.08	2.68	533	325	31.6	3.9	81.6	
	1278.00			~ 1.4	2.66	668	459	~~ ~			SP*
24 247	1278.30 1278.30			2.14	2.69	225	357	29.9	5.0	79.2	
24A 25	1278.60			2 00	2.67 2.67		486	01 0	~ ~	00 4	
	1278.60			2.09	2.67	603 902	554 649	31.9	3.9	83.1	
26	1278.90	32.5	30.9	2 00	2.67		625	<u> 2</u> 2 2 2	2 0	02 0	<u> </u>
	1278.90	29.4		2.05	2.67		516	32.2	5.9	83.0	SP SP*
27	1279.20	27.6	29.9	2 13	2.66	192	489	29.7	2 0	81.0	JF^
	1279.20	25.5	28.1	4.10	2.64		419	43.1	2.7	01.0	
28	1279.50	31.7	31.0	2.08	2.68	1360	920	33.4	1 A	84.9	
	1279.50	31.9	30.2		2.67	1823	970	00,1	-1I	04.9	
29	1279.80	32.9	32.1	2.03	2.68	2022	1671	32.0	3.2	81.9	
29A	1279.80	31.3			2.66	1734	1778			~~	SP
30	1280.10	31.0	31.7	2.10	2.67	1403	1479	30.1	1.4	89.3	the st
ЗОA	1280.10	32.1	32.1		2.66	1823	1827				
31	1280.40	32.0	31.9	2.07	2.67	1202	1300	29.7	1.4	88.0	OWC
	1280.40	32.7	32.2		2.66	1931	1934				
	1280.70		32.7	2.10	2.67	1409	1365	31.6	.0	93.7	
	1280.70		32.2		2.66	2058	2009				
	1281.00		33.2	2.04		1454	1435	33.8	.0	89.6	
	1281.00		32.9		2.67	1992	2050				
	1281.30		33.1	2.09	2.67	1425	1470	32.8	.0	93.5	
	1281.30		32.9	~ ~~	2.67	2161	2097				
	1281.60	32.5	32.7	2.09	2.68	1584	1523	32.0	.0	90.3	
	1281.60		32.1	~ ~~	2.68	2078	2082	·	-		
	1281.90 1281.90		32.5	2.07	2.68	1505	1429	29.4	.0	90.3	
	1281.90		32.2 31.2	2.11	2.67	2014	1932	~~ ~		04.0	
	1282.20		31.2	<u>ل</u> ـ ا.	2.68	1163 1652	983	32.2	.0	94.3	
	1282.50			2.18	2.67		1147 536	DC 4	0	00 0	
	1282.50	28.7	29.0	2.10	2.67	4 <i>3</i> 9 315	339	26.4	.0	89.3	
	1282.80	28.8	27.7	2.15	2.67	338	723	14.6	0	75.2	
	1282.80	25.5	26.4	64 • J. L.	2.65	81	299	14.0	.0	10.2	
	1283.10	25.6	26.1	2.29	2.79	5218	2703	29.8	Ο	86.9	
	1283.10	25.7	24.8	and a keel w	2.77		1500	22.0	.0	00.9	
	1283.40	24.4	25.7	2.30	2.72	5798	6016	16.7	Ω	79.9	
	1283.40	22.1	24.2			4168	3900	10.7	.0	12.2	
	1283.70	28.3	27.6	2.18	2.67	7469	5827	27.2	.0	95.5	
42A	1283.70	26.8	26.4		2.66		3539				
	1284.00	29.5	29.4	2.11	2.67	3564	4699	31.2	.0	92.2	
	1284.00	30.0	29.1			3191	3526			•**	
	1284.30	30.1	29.8	2.10	2.66	5138	4716	31.5	.0	91.4	
	1284.30	29.5	29.6		2.65	4420	4074				
	1284.60	29.5	29.8	2.13	2.66	5257	5172	28.1	.0	93.1	
	1284.60	29.2	29.6	_		4420	4156				
	1284.90	30.0		2.12		5038	4927	30.5	.0	92.3	
46A	1284.90	30.4	30.3		2.65	3455	3584				

BHP PETROLEUM PTY. LTD. : AMBERJACK #1 : Analysis by

Amdel Core Services Pty. Limited

Sample	:Depth:	Porosit	,y	: De	ensity	: Perme	eability (mo	d):Summati	on of	Fluids	: Remarks:
No.	3	HeInj¦R	lollPor	l Nat	¦Grain	KH	Roll KH	¦ Por	Oil	Water	See Below
47	1285.20	29.4	30.1	2.05	2.66	4416	3987	33.2	.0	84.6	***
	1285.20		30.7		2.65	3128	3574				
48	1285.50	31.6	31.1	2.10	2.66	2572	3284	28.0	.0	89.3	
48A	1285.50	30.3	30.6		2.65	4826	4356				
	1285.80		31.5	2.08	2.66	3983	3868	33.7	.0	83.4	
	1285.80		31.0		2.66	4943	4459				
	1286.10		31.4	2.12	2.67		4809	26.4	.0	93.9	
	1286.10		31.7		2.66	3351	3738				
	1286.40		31.5	2.09	2.66		5133	30.9	.0	92.6	
	1286.40		31.7		2.66	3517	3519				
	1286.70		31.0	2.08	2.66		5285	32.0	.0	90.5	
	1286.70		31.3		2.66	3699	3744				
	1287.00		30.5	2.11	2.66	4334	4845	32.2	.0	92.3	
	1287.00		31.3	~ ~~	2.66	4086	4064		_		
	1287.30		30.1	2.09		4621	4592	31.5	.0	90.5	
	1287.30		30.2	• • • •	2.65	4420	4300	~ ~ ~	-	-	
	1287.60		29.8	2.10		4803	4497	31.9	.0	87.0	
	1287.60		29.1	• 1•	2.66	4282	4109	~~ ~	~		
	1287.90		30.6	2.10		3836	4316	32.0	.0	92.0	
	1287.90		29.8	2 07	2.65	3517	3481	<u></u>	0	07 0	
	1288.20 1288.20	32.0 31.4	31.2 30.6	2.07	2.66	4911	4104	32.8	.0	87.3	
	1288.50	31.4 30.1	30.0	೧ 1 ၁	2.65	2772	2879 2495	76 E	0	00 0	
	1288.50		30.7	2.13	2.66 2.65	3065 2541	3485 2570	26.6	.0	88.0	
	1288.80		30.5	2.06	2.65 2.66	3196	2570 3152	33.1	0	82.9	B#
	1288.80		30.2	2.00	2.60 2.65	2437	2471	33.1	.0	04.9	.D TT
JJA	1200.00	0.0	00.2		<i>ω</i> .0J	4m.)/	2°-1/ 1				

VF = Vertical Fracture; HF = Horizontal Fracture; MP = Mounted Plug; SP= Short Plug C# = Top of Core; B# = Bottom of Core; OWC = Probable Oil/Water Contact Tr = Probable Transition Zone; GC = Probable Gas Cap

Amdel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Amdel Fore Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report

Amdel Core Services Pty. Limited Petroleum Reservoir Engineering Data

PO Box 523 Strathpine Q 4500 Aust. Tel : (07) 298-5272

CORE ANALYSIS FINAL REPORT

Company : BHP PETROLEUM PTY. LTD. Well : AMBERJACK #1 Field : WILDCAT (Vic-P-25) Core Interval : 1271.40 - 1288.96 Date : 11/05/90 Core Interval : File No. : 5-008 Country : AUSTRALIA State : VICTORIA

Joure.	- 7	. AUDIN	ه علي السياحة ال					Tue? So		V T O T OI 73	
Sampl	e!Denth!	Porosit	v	: De	ensity	Permea	ability (mo	1) (Summati	on of 1	Fluids	! Remarks
No.							Roll KH		Oil		See Belo
1021	,	1.0211.011				** ****			~~~		
1	1071 50		<u>1 0</u>	2 04	D 66	704	001	27.5	50	77.1	C# SI
1	1271.50	32.2	31.8 31.0	2.04 2.05	2.66 2.67	784 902	821 714	30.0	5.9 4.1	75.4	C# Dr
2	1271.70	31.0				902 407	691		$\frac{4.1}{5.2}$		
3	1272.00	29.8	30.9	2.10	2.66			28.1			
4	1272.30		32.3	2.03	2.65	1523	1135	33.2	2.4		
5	1272.60		33.2	2.05	2.66	1760	1741	33.2	1.9		
6	1272.90		33.3	2.07	2.66	1948	1794	33.7	3.7		
7	1273.20		33.4	2.07	2.65	1552	1556	33.0	1.3		_ my
8	1273.50		32.3	2.04	2.67	1250	1410	33.9	5.4		SP*
9	1273.80	29.0	31.3	2.15	2.65	1629	1417	25.8	2.5		SP*
10	1274.10		32.6	2.04	2.66	1216	2852	25.0	.8		SP*
11	1274.40	34.0	32.9	2.16		27469	12107	30.0	1.4		
12	1274.70		31.5	2.16		23419	10821	28.6	1.5		
13	1275.00	32.4	31.5	2.07	2.64	910	1979	33.0	3.1		SP*
14	1275.30		31.3	2.10	2.66	792	934	31.5	2.7		
15	1275.60	30.0	29.9	2.14	2.67	1335	767	31.8	3.4		
16	1275.90	28.3	29.1	2.09	2.65	245	418	30.9	4.7		
17	1276.20	29.8	29.4	2.12	2.66	380	324	20.2	3.1		
18	1276.50	29.7	29.0	2.10	2.66	310	269	29.3	5.0		
19	1276.80	27.0	28.4	2.15	2.66	143	218	30.4	2.1	84.2	
20	1277.10	30.0	29.3	2.12	2.66	357	293	27.1	1.6		
21	1277.40	30.1	29.3	2.10	2.68	408	319	28.5	2.2		
22	1277.70	26.9	28.8	2.17	2.67	175	285	27.2	4.8		
23	1278.00	31.4	29.5	2.08	2.68	533	325	31.6	3.9		
24	1278.30	28.3	29.8	2.14	2.69	225	357	29.9	5.0		
25	1278.60	31.1	30.7	2.09	2.67	603	554	31.9	3.9		
26	1278.90	32.5	30.9	2.09	2.67	1150	625	32.2	3.9		SP
27	1279.20	27.6	29.9	2.13	2.66	192	489	29.7	2.9		
28	1279.50	31.7	31.0	2.08	2.68	1360	920	33.4	4.4		
29	1279.80	32.9	32.1	2.03	2.68	2022	1671	32.0	3.2		
30	1280.10	31.0	31.7	2.10	2.67	1403	1479	30.1	1.4		
31	1280.40	32.0	31.9	2.07	2.67	1202	1300	29.7		88.0	OWC
32	1280.70	32.6	32.7	2.10	2.67	1409	1365	31.6		93.7	
33			33.2			1454	1435	33.8		89.6	
34	1281.30	33.3	33.1	2.09	2.67	1425	1470	32.8		93.5	
35	1281.60	32.5	32.7	2.09	2.68	1584	1523	32.0	.0		
36	1281.90	32.6	32.5	2.07	2.68	1505	1429	29.4	.0		
37	1282.20	32.3	31.2	2.11	2.68	1163	983	32.2	.0		
38	1282.50	27.4	29.0	2.18	2.68	459	536	26.4	.0		
39	1282.80	28.8	27.7	2.15	2.67	338	723	14.6	.0	75.2	

BHP PETROLEUM PTY. LTD. AMBERJACK #1 Analysis by : Amdel Core Services Pty. Limited Sample:Depth: Porosity Density ! Permeability (md) : Summation of Fluids ! Remarks! No. | HeInj|RollPor! Nat |Grain| KH Roll KH : Por Oil Water See Below 1283.10 2.29 2.79 5218 2703 29.8 86.9 40 25.6 26.1 .0 79.9 1283.40 25.7 2.30 2.72 5798 16.7 41 24.46016 .0 1283.70 27.6 2.18 7469 27.2 95.5 42 28.3 2.67 5827 .0 43 1284.00 29.5 29.42.11 2.673564 4699 31.2 .0 92.2 44 1284.30 30.1 29.8 2.10 2.66 5138 4716 31.5 .0 91.4 45 1284.60 29.5 29.8 2.13 2.66 5257 5172 28.1 .0 93.1 46 1284.90 30.0 29.8 2.12 2.66 5038 4927 30.5 .0 92.3 1285.20 2.05 47 29.430.1 2.66 4416 3987 33.2 .0 84.6 31.6 48 31.1 2.66 2572 3284 28.0 89.3 1285.50 2.10 .0 31.5 31.8 33.7 49 1285.80 2.08 2.66 3983 3868 .0 83.4 50 1286.10 30.6 31.4 2.122.67 5484 4809 26.4 .0 93.9 51 1286.40 32.6 31.5 2.09 2.66 4466 5133 30.9 .0 92.6 52 1286.70 30.3 31.0 2.08 2.66 6348 5285 32.0 90.5 .0 30.5 53 1287.00 30.8 2.11 2.66 4334 4845 32.2 92.3 .0 1287.30 31.5 54 30.2 2.09 90.5 30.1 2.66 4621 4592 .0 55 1287.60 29.0 29.8 2.66 4803 4497 31.9 87.0 2.10.0 56 1287.90 30.6 30.8 2.10 2.66 3836 4316 32.0 .0 92.0 57 1288.20 32.0 31.2 2.07 2.66 4911 4104 32.8 .0 87.3 58 1288.50 30.1 30.7 2.13 2.66 3065 3485 26.6 .0 88.0 1288.80 59 30.7 30.5 2.06 3152 33.1 82.9 2.66 3196 .0 B#

VF = Vertical Fracture; HF = Horizontal Fracture; MP = Mounted Plug; SP= Short Plug C# = Top of Core; B# = Bottom of Core; OWC = Probable Oil/Water Contact Tr = Probable Transition Zone; GC = Probable Gas Cap

Andel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Amdel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report

POROSITY vs PERMEABILITY Company: BHP Petroleum Pty. Ltd. Well : Amberjack No. 1 Ambient Y= EXP(0.1122X) * 49.86 100000 -1 PERMEABILITY TO AIR; md 10000 --** * * 1000 -* * 100 | 20 22 26 24 28 32 34 36 38 30 40 **POROSITY; Percent**

.

ľ

Porosity & Perm Arithmetic Average Specified Interval :5-008 Start Sample : 1 End Sample : 31 Depth : 1271.50 Depth : 1280.40

POROSITY Average :30.9 over31 Samples0 Samples with a ZERO Porosity Value Ignored

Sample Type :R

PERMEABILITY Average :2503 over31 Samples0 Samples with a ZERO Permeablity Value Ignored

Porosity & Perm Arithmetic Average Specified Interval :5-008

Start Sample : 32 Depth : 1280.70

End Sample : 70 Depth :

: 59 : 1288.80

POROSITY Average :30.3 over28 Samples0Samples with a ZERO Porosity Value Ignored

Sample Type :R

PERMEABILITY Average :3673 over28 Samples0 Samples with a ZERO Permeablity Value Ignored

Petroleum kes	ervoir Engineeri	ng Data	PO Bo Tel :		rathpi 298—52	.ne Q 450 72	00 Aust.
	CORE AN	ALYSIS F	INAL F	REPOR	<u> 21</u>		
Company Well Field Core Interval Core Interval File No. Country	: BHP PETROLEUM : AMBERJACK #1 : WILDCAT (Vic- : 1271.40 - 128 : : 5-008 : AUSTRALIA	P25)			ate tate :	: 11/ VICIORI	′05/90 'A
Sample:Depth: No. ;	Porosity : HeInj:RollPor:	Density ¦Permea Nat ¦Grain¦ KH	bility (md Roll KH				¦ Remarks See Below
1A 1271.50 2A 1271.70 3A 1272.00 4A 1272.30 5A 1272.60 6A 1272.90 7A 1273.20 8A 1273.20 8A 1273.50 9A 1273.80 10A 1274.10 11A 1274.40 12A 1274.70 13A 1275.00 14A 1275.00 14A 1275.00 15A 1275.60 16A 1275.90 17A 1276.20 18A 1276.50 19A 1276.80 20A 1277.10 21A 1277.10 21A 1277.40 22A 1277.70 23A 1278.00 24A 1278.00 26A 1278.90 27A 1279.20 28A 1279.50 29A 1279.80 30A 1280.10 31A 1280.40 32A 1281.00 34A 1281.30 35A 1281.00 36A 1281.90 37A 1282.20 38A 1282.50	31.030.428.330.032.331.633.433.033.033.333.732.830.931.129.030.633.431.931.831.729.731.133.431.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 653\\ 510\\ 502\\ 1035\\ 1969\\ 2194\\ 1571\\ 1169\\ 1435\\ 2877\\ 8604\\ 8275\\ 1658\\ 511\\ 442\\ 356\\ 269\\ 293\\ 348\\ 422\\ 416\\ 413\\ 459\\ 486\\ 649\\ 516\\ 419\\ 970\\ 1778\\ 1827\\ 1934\\ 2009\\ 2050\\ 2097\\ 2082\\ 1932\\ 1147\\ 339\\ 299\end{array}$				SP SP* SP* SP* SP* SP* SP* SP* SP* SP*

l

BHP PETROLEUM PTY. LTD. AMBERJACK #1 Analysis by : Amdel Core Services Pty. Limited Sample:Depth: Porosity Density ! Permeability (md) ! Summation of Fluids ! Remarks! ; HeInj:RollPor: Nat :Grain: KH Oil No. Roll KH : Por Water See Below 40A 1283.10 25.7 24.8 2.77 3877 1500 41A 1283.40 22.1 24.2 2.70 4168 3900 42A 1283.70 2.66 3435 3539 26.8 26.4 43A 1284.00 30.0 29.1 2.65 3191 3526 44A 1284.30 29.5 29.6 2.65 4420 4074 45A 1284.60 29.2 29.6 2.65 4420 4156 46A 1284.90 30.4 30.3 2.65 3455 3584 3574 47A 1285.20 31.0 30.7 2.65 3128 30.3 30.6 4356 48A 1285.50 2.65 4826 30.6 49A 1285.80 31.0 2.66 4943 4459 50A 1286.10 32.2 31.7 2.66 3351 3738 51A 1286.40 31.8 31.7 2.66 3517 3519 52A 1286.70 30.9 31.3 2.66 3699 3744 53A 1287.00 31.7 31.3 2.66 4086 4064 54A 1287.30 30.6 30.2 2.65 4420 4300 55A 1287.60 27.9 29.1 2.66 4282 4109 56A 1287.90 29.9 29.8 2.65 3517 3481 57A 1288.20 31.4 30.6 2.65 2772 2879 2541 2570 58A 1288.50 29.6 30.3 2.65 59A 1288.80 30.6 30.2 2.65 2437 2471

VF = Vertical Fracture; HF = Horizontal Fracture; MP = Mounted Plug; SP= Short Plug C# = Top of Core; B# = Bottom of Core; OWC = Probable Oil/Water Contact Tr = Probable Transition Zone; GC = Probable Gas Cap

Andel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, br any other person or company, resulting from any information or interpretation given in this report. In no case shall Andel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report Porosity & Perm Arithmetic Average Specified Interval :5-008 Start Sample : 1 End Sample : 59 Depth : 1271.50 Depth : 1288.80

POROSITY Average :30.3 over59 Samples0 Samples with a ZERO Porosity Value Ignored

Sample Type :A

PERMEABILITY Average :2477 over59 Samples0 Samples with a ZERO Permeablity Value Ignored

Porosity & Perm Arithmetic Average Specified Interval :5-008 Start Sample : 1 End Sample : 29

1279.80

:

Depth : 1271.50 Depth

POROSITY Average : 30.5 over 29 Samples 0 Samples with a ZERO Porosity Value Ignored

Sample Type :A

PERMEABILITY Average :1917 over29 Samples0 Samples with a ZERO Permeablity Value Ignored

 Porosity & Perm Arithmetic Average Specified Interval :5-008

 Start Sample :
 1
 End Sample :
 31

 Depth
 :
 1271.50
 Depth
 :
 1280.40

 POROSITY Average :
 30.6
 over
 31
 Samples

 0
 Samples with a ZERO Porosity Value Ignored

Sample Type :A

PERMEABILITY Average : 1914 over 31 Samples O Samples with a ZERO Permeablity Value Ignored

Porosity & Perm Arithmetic Average Specified Interval :5-008Start Sample :32End Sample : 59Depth:1280.70Depth:

FOROSITY Average :30.0over28Samples0Samples with a ZERO Porosity Value Ignored

Sample Type :A

PERMEABILITY Average :3101 over28 Samples0 Samples with a ZERO Permeablity Value Ignored

Amdel Core Services Pty. Petroleum Reservoir Engineering Data

Limited

PO Box 523 Strathpine Q 4500 Aust. Tel : (07) 298-5272

1

CORE ANALYSIS FINAL REPORT

	Company Well	: BHP PETROLEUM PTY. LTD. : AMBERJACK #1	
	Field	: WILDCAT (Vic-P-25)	Date : 11/05/90
	Core Interval Core Interval	: 1271.40 - 1288.96 :	
100.0	File No. Country		State : VICTORIA

Sample:Depth: Porosity : Density :Permeability (md):Summation of Fluids : Remarks No. : HeInj:RollPor: Nat :Grain: KH Roll KH : Por Oil Water :See Below

Samples

V

VF = Vertical Fracture; HF = Horizontal Fracture; MP = Mounted Plug; SP= Short Plug C# = Top of Core; B# = Bottom of Core; OWC = Probable Oil/Water Contact Tr = Probable Transition Zone; GC = Probable Gas Cap

midel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Amdel fore Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report Porosity & Perm Arithmetic Average Specified Interval :5-008 Start Sample : 1 End Sample : 10 Depth : 2171.90 Depth : 1288.50

POROSITY Average :.0 over0 Samples10 Samples with a ZERO Porosity Value Ignored

Sample Type :V

PERMEABILITY Average :1159 over10 Samples0Samples with a ZERO Permeablity Value Ignored

Amdel Core Services Pty. Petroleum Reservoir Engineering Data

Limited

PO Box 523 Strathpine Q 4500 Aust. Tel : (07) 298-5272

OVERBURDEN ANALYSIS FINAL REPORT

Company	: BHP PETROLEUM PTY. LTD.	
Well	: AMBERJACK #1	
Field	: WILDCAT (Vic-P-25)	Date : 11/05/90
Core Interva	1 : 1271.40 - 1288.96	
Core Interva	1:	
File No.	: 5-008	
Country	: AUSTRALTA	State · VICTORIA

PERM	ssures	URDEN Pre	at OVERB	ABILITY	PERME	orosity:	::[5	Pressure	ERBURDEN		POROSI	1	
psi!Roll	psi¦	psil	psi¦	psi¦	Ambient:	olling!!	psillF	psi¦	psil	psi¦	psi¦	1		AMPLE
0 ¦Aver	0 1	2900 1	2400 ¦	1900 ¦	200 psi:	verage¦¦	0 ::7	0 :	2900 :	2400 ¦	1900 :	Ambient¦	DEPTH ;	UMBER
2					14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 -	2400								
440		514	545	579	784	28.5 ::	11		28.8	29.1	29.5	32.2	1271.50	1
486		274	287	306	407	28.7 🗄	11		27.2	27.3	27.5	29.8	1272.00	3
800		1137	1248	1281	1760	28.4 !!	11		30.8	31.1	31.3	33.4	1272.60	5
930		884	918	960	1552	27.3 11	11		23.9	24.0	24.1	33.5	1273.20	7
1649		629	712	822	1216	28.0 ::	11		29.9	30.1	30.3	33.7	1274.10	10
3105		15213	15911	16107	23419	28.7			27.5	27.6	27.7	29.8	1274.70	12
896		499	516	539	792	27.9 11	11		29.2	29.4	29.6	31.4	1275.30	14
221		145	153	163	245	26.6 11	11		25.0	25.1	25.4	28.3	1275.90	16
204		188	202	222	310	26.5 !!			26.5	26.8	27.0	29.7	1276.50	
205		254	278	321	357	26.5	1 f 1 l		27.2	27.5	27.7	30.0	1277.10	20
149		112	114	120	175	25.6 !!	1 1		24.3	24.4	24.6	26.9	1277.70	22
179		124	137	154	225	26.1 ::	11		25.8	25.9	26.1	28.3	1278.30	24
259		459	482	517	603	26.6 !!	1 F 3 I		27.8	28.0	28.1	31.1	1278.60	25
332		137	143	151	192	26.7 ::	11		24.2	24.4	24.5	27.6	1279.20	27
615.		1139	1237	1331	2022	28.6 !!	11		30.1	30.3	30.4	32.9	1279.80	29
817		652	655	709	1202	30.0 11	3 1 1 1		29.4	29.5	29.7	32.0	1280.40	31
818.		762	841	920	1454	30.2	11		30.5	30.7	30.9	33.5	1281.00	33
908.		881	971	1114	1584	30.1 ::	11		29.7	29.9	30.0	32.5	1281.60	35
660.		821	860	919	1163	28.9 !!	1 I 1 I		29.7	29.8	29.9	32.3	1282.20	37
739		257	264	277	338	26.3 !!	**		25.9	26.1	26.3	28.8	1282.80	39
2088.		4776	4973	5163	5798	25.0 !!	1 I I I		23.0	23.1	23.2	24.4	1283.40	41
3668		2747	2911	3127	3564	26.6 11	11		27.7	27.8	27.9	29.5	1284.00	43
3685.		3780	4298	5183	5257	27.7 11			27.8	27.9	28.4	29.5	1284.60	45
3458		3092	3432	3874	4416	28.1	11		27.2	27.4	27.5	29.4	1285.20	47
3029.		2412	2826	3290	3983	29.4 !;	11		29.8	29.9	30.0	31.8	1285.80	49
2920.		2869	3074	3397	4466	29.9 !!	11		30.3	30.4	30.5	32.6	1286.40	
2906.		2415	2726	3130	4334	28.8 !!	11		28.7	28.8	29.0	30.8	1287.00	
2962.		2937	3123	3571	4803	28.2 11	11		27.1	27.2	27.3	29.0	1287.60	
2887.		2588	2895	3285	4911	28.7 11	11		29.5	29.7	29.8	32.0	1288.20	
2734.		2511	2657	2756	3196	28.8 11	11		28.2	28.4	28.5	30.7	1288.80	

mdel Core Services Pty Ltd shall not be liable or responsible for any loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from any information or interpretation given in this report. In no case shall Amdel Core Services Pty Ltd be responsible for consequential damages including, but not limited to, lost profits, damages for failure o meet deadlines and lost production arising from this report

1	Sst	med gry, f-occ med gr, ang-sbang, mod-wl srt, mod cmt, f carb incl, mic sft, fri
1A	Sst	med gry, f-occ med gr, ang-sbang, mod-wl srt, mod cmt, f carb incl, mic sft, fri
2	Sst	med gry, f-occ med gr, ang-sbang, mod-wl srt, mod cmt, f carb incl, mic sft, fri
2A	Sst	med gry, f-occ med gr, ang-sbang, mod-wl srt, mod cmt, f carb incl, mic sft, fri
3	Sst	lt-dk gry, vf-f gr, occ med gr, ang-sbang, mod wl srt, mod cmt, abd carb mat + lam, mic, sft, fri
3A	Sst	lt-dk gry, vf-f gr, occ med gr, ang-sbang, mod wl srt, mod cmt, abd carb mat + lam, mic, sft, fri
4	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
4A	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
5	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
5A	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
6	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
6A	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
7	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
7A	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
8	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
8A	Sst	lt gry, f gr, ang-sbang, wl srt, mod cmt, card incl, sft, fri
9	Sst	lt gry, f-vcrs gr, occ gran, ang-sbang, prly srt, occ carb incl, sft, fri
9A	Sst	lt gry, med v/crs gr, gran, ang-sbang, prly srt, occ carb incl, v-fri-lse
10	Sst	med gry, f-occ med gr, ang-sbang, mod-wl srt, carb incl + lam, mic, sft, fri

•

10A	Sst	<pre>med gry, f-occ med gr, ang-sbang, mod-wl srt, carb incl + lam, mic, sft, fri</pre>
11	Sst	lt gry, crs-v crs gr, ang, w srt, p-mod cmt, cly coating around gr, rr alt qtz gr
11A	Sst	lt gry, crs-v crs gr, ang, w srt, p-mod cmt, cly coating around gr, rr alt qtz gr
12	Sst	lt gry, crs-v crs gr, ang-rr sbang, w srt, mod w cmt, cly coating around gr, rr sil cmt, rr gtz o'gth, carb incl
12A	Sst	lt gry, m-vcrs gr, ang-rr sbang, w srt, mod w cmt, cly coating around gr, rr sil cmt, rr gtz o'glh, carb incl
13	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, sft, fri
13A	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, sft, fri
14	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, sft, fri
14A	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, sft, fri
15	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, sft, fri
15A	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, sft, fri, abb carb rvel
16	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, sft, fri
16A	Sst	lt-med gry, f gr, ang-sbang, mod-wl srt, mod cmt, carb incl + lam, mic, sft, fri
17	Sst	lt-med gry, f gr, ang-sbang, mod-wl srt, mod cmt, carb incl + lam, mic, sft, fri
17A	Sst	lt-med gry, f gr, ang-sbang, mod-wl srt, mod cmt, carb incl + lam, mic, sft, fri
18	Sst	lt-med gry, f gr, ang-sbang, mod-wl srt, mod cmt, carb incl + lam, mic, sft, fri
18A	Sst	lt-med gry, f gr, ang-sbang, mod-wl srt, mod cmt, carb incl + lam, mic, sft, fri
19	Sst	lt-dk gry, vf-f gr, ang-sbang, w srt, w cmt, abd arg mtrx + cmt, abd carb mat thru + lam, tr mic
19A	Sst	lt-dk gry, vf-f gr, ang-sbang, w srt, w cmt, abd arg mtrx + cmt, abd carb mat thru + lam, tr mic

	20	Sst	As in 19
	20A	Sst	As in 19
	21	Sst	As in 19
	21A	Sst	As in 19
	22	Sst	As in 19
	22A	Sst	As in 19
	23	Sst	As in 19
	23A	Sst	As in 19
	24	Sst	As in 19
	24A	Sst	As in 19
	25	Sst	med-dk gry, vf-f gr, ang-sbang, mod w srt, p-mod cmt, arg mtrx, abd carb mat + lam, mic, sft, fri
	25A	Sst	As in 28
,	26	Sst	As in 28
	26A	Sst	As in 28
	27	Sst	As in 28
	27A	Sst	As in 28
	28	Sst	lt gry, f gr, ang-sbang, mod cmt, occ carb mat, mic, sft- fri
	28A	Sst	As in 28
	29	Sst	As in 28
	29A	Sst	As in 28
l	30	Sst	As in 28
	30A	Sst	As in 28
	31	Sst	As in 28
	31A	Sst	As in 28
	32	Sst	As in 28
	32A	Sst	As in 28
	33	Sst	As in 28
ļ	33A	Sst	As in 28
ĺ			

í.

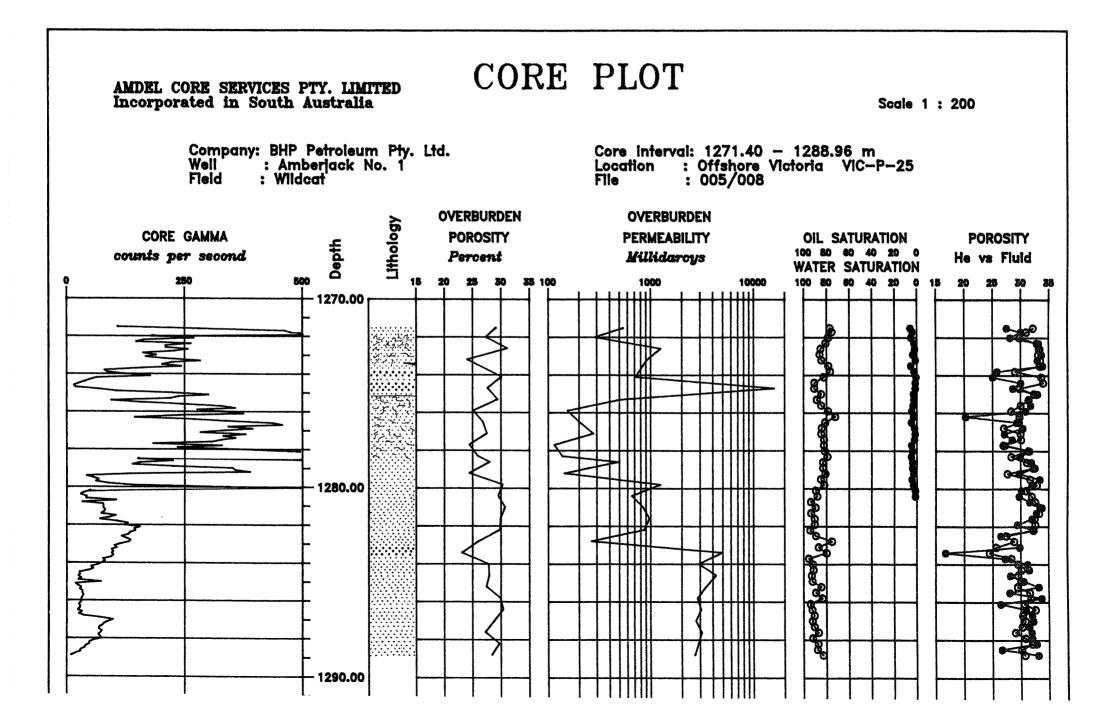
н н н

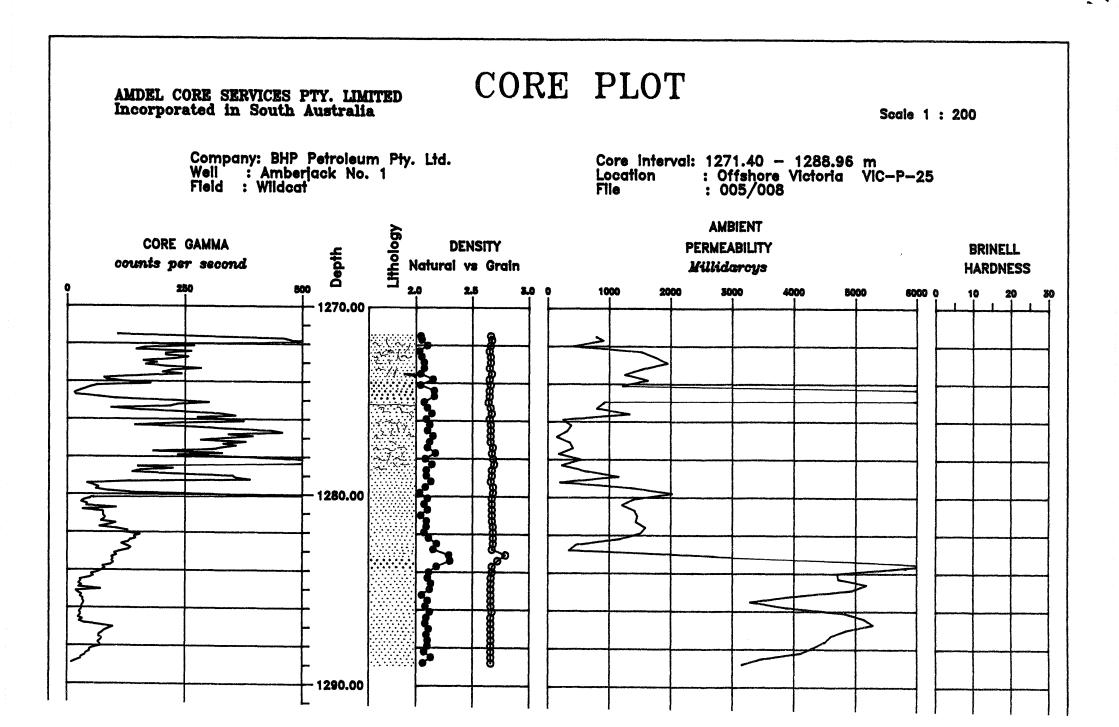
34	Sst	As in 28
34A	Sst	As in 28
35	Sst	med gry, f gr - occ med gr, ang-sbang, mod cmt, mic, carb, fri
35A	Sst	As in 35
36	Sst	As in 35
36A	Sst	As in 35
37	Sst	As in 35
37A	Sst	As in 35
38	Sst	dk gry, f-occ med gr, ang-sbang, mod cmt, mic, carb, lam
38A	Sst	As in 38
39	Sst	As in 38
39A	Sst	As in 38
40	Sst	med-dk gry, f-med-crs gr, rr v crs gr thru, sbang-ang, p/srt, mod w cmt, pyr, glauc? frm-fri
40A	Sst	med dk gry, f-med-crs gr, rr v crs gr thru, sbang-ang, p/srt, mod w cmt, pyr, glauc? frm-fri
41	Sst	med-gry, f-med-crs gr, rr v crs gr thru, sbang-ang, p srt, mod w cmt, pyr, glauc? frm-fri
4 1A	Sst	As in 41
42	Sst	gry-brn, f-med gr, ang-sbang, mod-w srtd, prly cmt, mnr carb incl, tr mic, v fri
42A	Sst	gry-brn, f-med gr, occ v crs gr, ang-sbang, mod-w srtd, prly cmt, mnr carb incl, tr mic, v fri
43	Sst	lt gry-brn, f-med gr, ang-sbang, mod-w srtd, prly cmt, mnr carb incl, tr mic, v fri
4 3A	Sst	As in 43
44	Sst	As in 43
44A	Sst	As in 43
45	Sst	As in 43
45A	Sst	As in 43
46	Sst	As in 43
46A	Sst	As in 43

005/008 AMBERJACK #1

. . . ,

47	Sst	As in 43
47A	Sst	As in 43
48	Sst	lt gry brn, pred med gr, ang-sbang, mod w srt, prly cmt, occ carb incl, tr mic, v fri
4 8A	Sst	As in 48
49	Sst	As in 48
49A	Sst	As in 48
50	Sst	As in 48
50A	Sst	As in 48
51	Sst	As in 48
51A	Sst	As in 48
52	Sst	lt gry-brn, f-occ med gr, ang-sbang, mod w srt, mod-prly cmt, rr tr mic, occ carb incl, v fri
52A	Sst	As in 52
53	Sst	As in 52
53A	Sst	As in 52
54	Sst	As in 52
54A	Sst	As in 52
55	Sst	lt gry-brn, f-med gr, occ crs gr, ang-sbang, occ sbrnd, mod w srt, mod-prly cmt, rr tr mic, occ carb incl, v fri
55A	Sst	As in 55
56	Sst	lt gry-brn, f-med gr, ang-sbang, mod w srt, prly cmt, mic, v fri
56A	Sst	As in 56
57	Sst	As in 56
57A	Sst	As in 56
58	Sst	As in 56
58A	Sst	As in 56
59	Sst	As in 56
59A	Sst	As in 56


• •


VERTICALS							
1V	Sst	lt-dk gry, vf-f gr, ang-sbang, mod w srt, mod w cmt, abd carb mat + lam, mic, sft, fri					
2V	Sst	lt-dk gry, vf-f gr, ang-sbang, mod w srt, mod w cmt, abd carb mat + lam, mic, sft, fri					
3V	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, v sft, fri					
4V	Sst	lt gry, vf-f gr, ang-sbang, mod cmt, arg mtrx, carb incl + lam, mic, v sft, fri					
5V	Sst	med-dk gry, vf-f gr, ang-sbang, arg mtrx, abd carb mat + lam, mic, sft, fri					
6V	Sst	lt med gry, fn gr, ang-sbang, mod cmt, occ carb mat, mic, sft, fri					
7V	Sst	med-dk gry, f-occ med gr, ang-sbang, mod cmt, abd carb mat + lam, mic, fri					
8V	Sst	gry-brn, f-med gr, ang-sbang, mod w srt, prly cmt, mnr carb incl, tr mic, v fri					
9V	Sst	lt gry-brn, f-med gr, ang-sbang, mod w srt, prly cmt, mnr carb incl, tr mic, v fri					
10V	Sst	lt gry brn, f-med gr, ang-sbang, mod w srt, prly cmt, mic, v fri					

.

-

•

Porosity & Perm Arithmetic Average Specified Interval :5-008 Start Sample : 1 End Sample : 59 Depth : 1271.50 Depth : 1288.80

POROSITY Average : 30.6 over 59 Samples 0 Samples with a ZERO Porosity Value Ignored

Sample Type :R

PERMEABILITY Average : 3058 over 59 Samples 0 Samples with a ZERO Permeablity Value Ignored

Porosity & Perm Arithmetic Average Specified Interval :5-008

Start Sa	mple :	1	End Sample	:	29
Depth	:	1271.50	Depth	:	1279.80

POROSITY Average : 30.9 over 29 Samples 0 Samples with a ZERO Porosity Value Ignored

Sample Type :R

 PERMEABILITY Average :
 2586
 over
 29
 Samples

 0
 Samples with a ZERO Permeablity Value Ignored

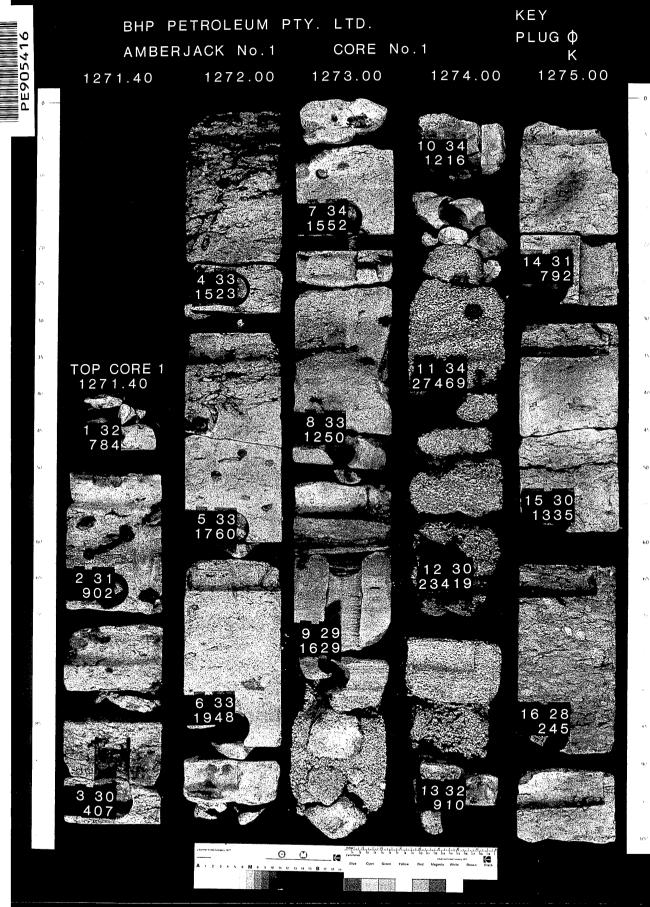
This is an enclosure indicator page. The enclosure PE905416 is enclosed within the container PE902075 at this location in this document.

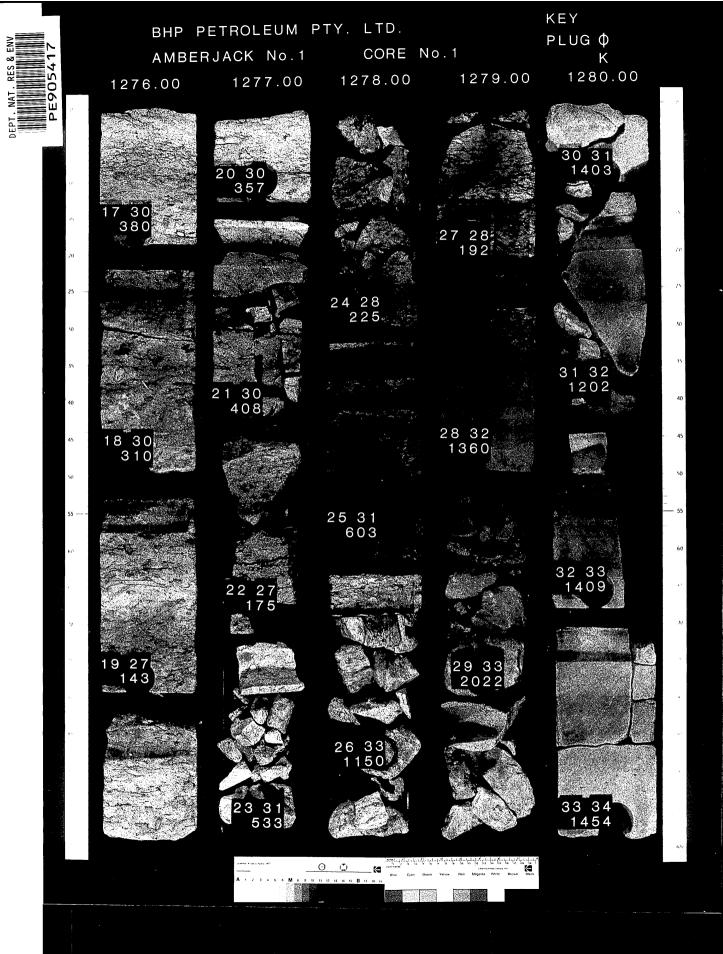
The enclosure PE905416 has the following characteristics: ITEM_BARCODE = PE905416 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 core photographs (1271.4m - 1275m)BASIN = GIPPSLAND PERMIT = VIC/P25 TYPE = WELL SUBTYPE = CORE_PHOTOS DESCRIPTION = Amberjack 1 core photos (1271.4m-1475m) REMARKS = DATE_CREATED = $DATE_RECEIVED = 24/10/90$ $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = BHP Petroleum Pty Ltd CLIENT_OP_CO = BHP Petroleum Pty Ltd (Inserted by DNRE - Vic Govt Mines Dept)

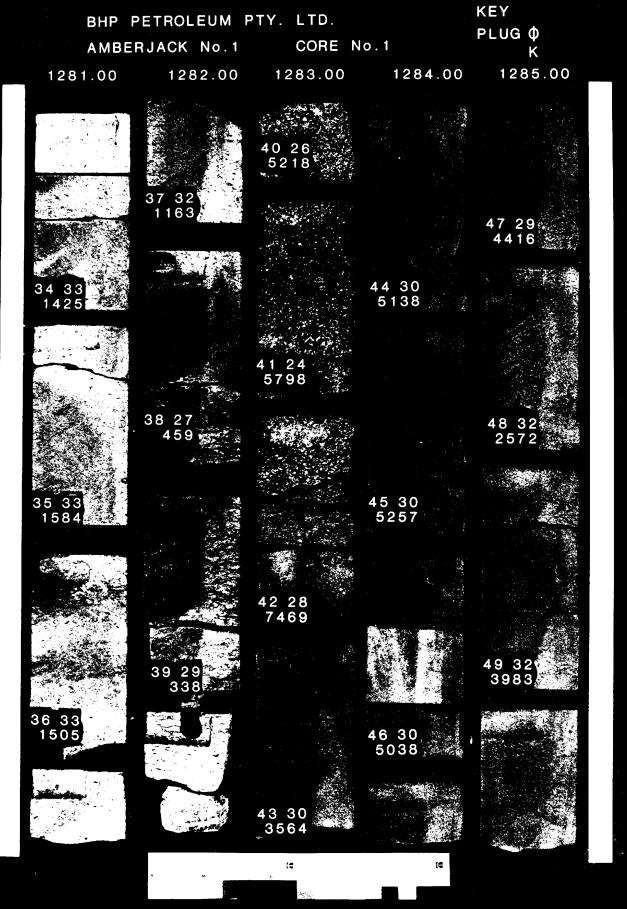
This is an enclosure indicator page. The enclosure PE905417 is enclosed within the container PE902075 at this location in this document.

The enclosure PE905417 has the following characteristics: ITEM_BARCODE = PE905417 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 core photographs (1276m - 1280m)BASIN = GIPPSLAND PERMIT = VIC/P25TYPE = WELL SUBTYPE = CORE_PHOTOS DESCRIPTION = Amberjack 1 core photos (1276m-1280m) REMARKS = DATE_CREATED = DATE_RECEIVED = 24/10/90 $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = BHP Petroleum Pty Ltd CLIENT_OP_CO = BHP Petroleum Pty Ltd

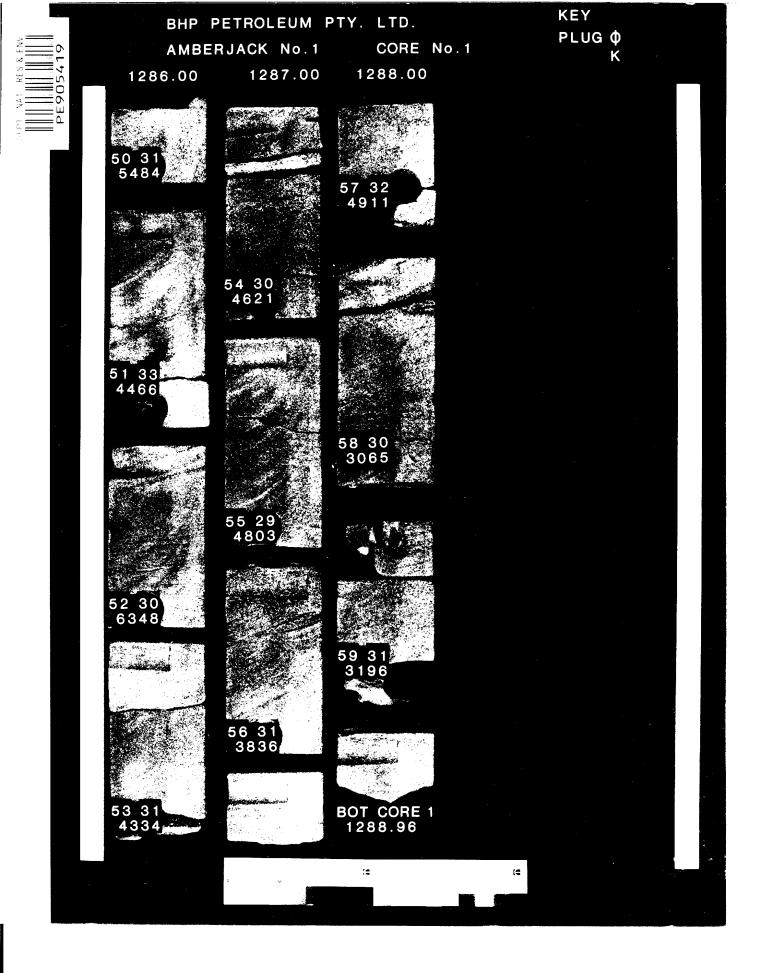
(Inserted by DNRE - Vic Govt Mines Dept)


This is an enclosure indicator page. The enclosure PE905418 is enclosed within the container PE902075 at this location in this document.


The enclosure PE905418 has the following characteristics: ITEM_BARCODE = PE905418 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 core photographs (1281m-1285m) BASIN = GIPPSLAND PERMIT = VIC/P25TYPE = WELLSUBTYPE = CORE_PHOTOS DESCRIPTION = Amberjack 1 core photos (1281m-1285m) REMARKS = DATE_CREATED = DATE_RECEIVED = 24/10/90 $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = BHP Petroleum Pty Ltd CLIENT_OP_CO = BHP Petroleum Pty Ltd


(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE905419 is enclosed within the container PE902075 at this location in this document.


The enclosure PE905419 has the following characteristics: ITEM_BARCODE = PE905419 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 core photographs (1286m - 1288.96m)BASIN = GIPPSLAND PERMIT = VIC/P25TYPE = WELLSUBTYPE = CORE_PHOTOS DESCRIPTION = Amberjack 1 core photos (1286m-12888.96m) REMARKS = DATE_CREATED = DATE_RECEIVED = 24/10/90 $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = BHP Petroleum Pty Ltd CLIENT_OP_CO = BHP Petroleum Pty Ltd (Inserted by DNRE - Vic Govt Mines Dept)

905 ЫШ

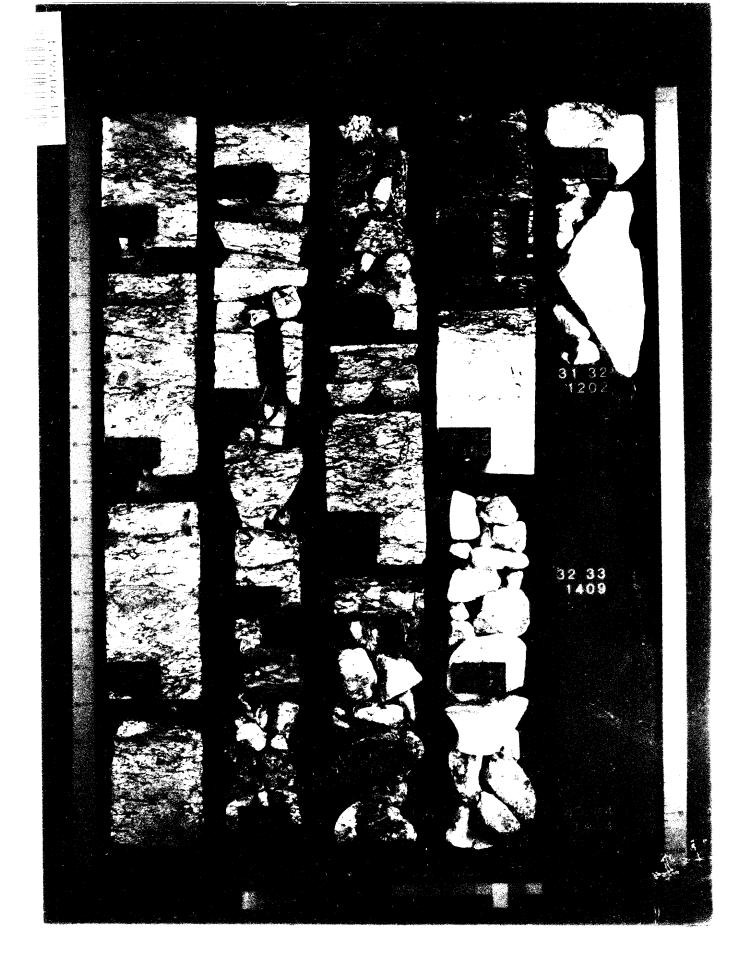
This is an enclosure indicator page. The enclosure PE905420 is enclosed within the container PE902075 at this location in this document.

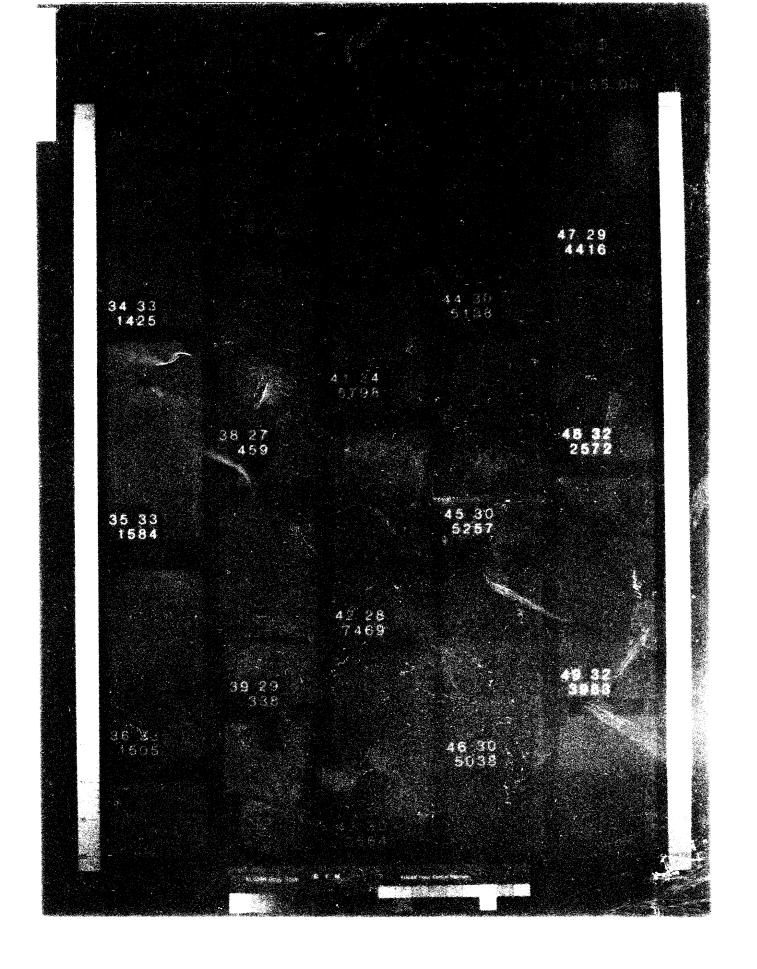
The enclosure PE905420 has the following characteristics: ITEM_BARCODE = PE905420 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 core photographs (1271.4m-1275m) BASIN = GIPPSLAND PERMIT = VIC/P25TYPE = WELLSUBTYPE = CORE_PHOTOS DESCRIPTION = Amberjack 1 core photos (1271.4m-1475m) UV lilght REMARKS = DATE_CREATED = $DATE_RECEIVED = 24/10/90$ $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = BHP Petroleum Pty Ltd CLIENT_OP_CO = BHP Petroleum Pty Ltd (Inserted by DNRE - Vic Govt Mines Dept)

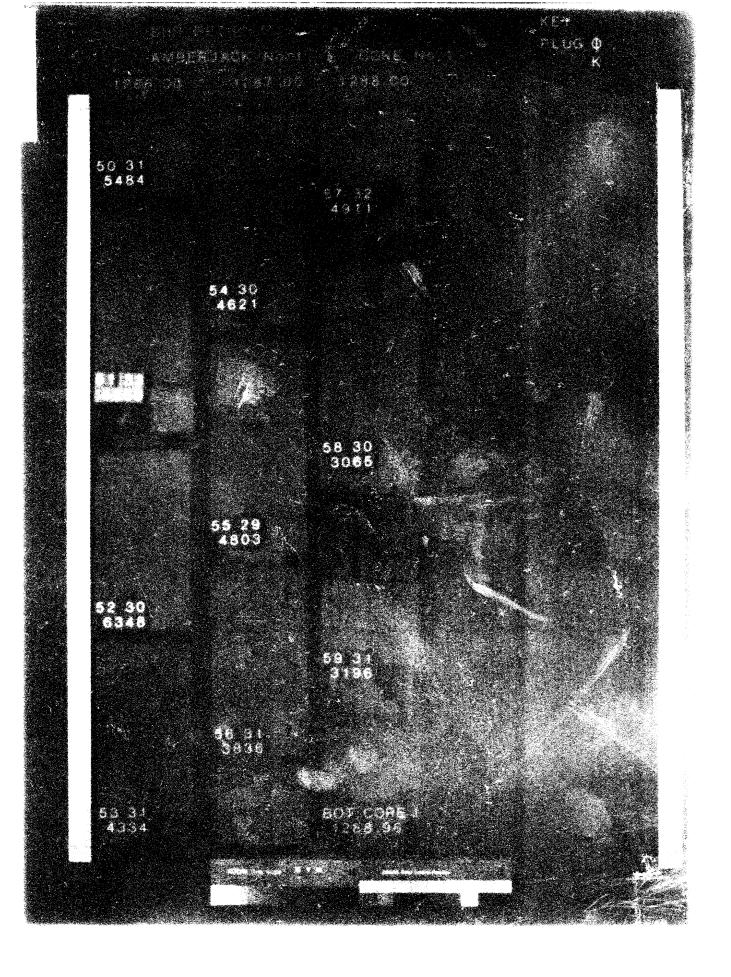
This is an enclosure indicator page. The enclosure PE905421 is enclosed within the container PE902075 at this location in this document.

The enclosure PE905421 has the following characteristics: ITEM_BARCODE = PE905421 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 core photographs (1276m-1280m) BASIN = GIPPSLAND PERMIT = VIC/P25 TYPE = WELLSUBTYPE = CORE_PHOTOS DESCRIPTION = Amberjack 1 core photos (1276m-1280m) UV light REMARKS = DATE_CREATED = DATE_RECEIVED = 24/10/90 $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = BHP Petroleum Pty Ltd CLIENT_OP_CO = BHP Petroleum Pty Ltd

(Inserted by DNRE - Vic Govt Mines Dept)


This is an enclosure indicator page. The enclosure PE905422 is enclosed within the container PE902075 at this location in this document.


The enclosure PE905422 has the following characteristics: ITEM_BARCODE = PE905422 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 core photographs (1281m-1285m) BASIN = GIPPSLAND PERMIT = VIC/P25TYPE = WELLSUBTYPE = CORE_PHOTOS DESCRIPTION = Amberjack 1 core photos (1281m-1285m) UV light REMARKS = DATE_CREATED = DATE_RECEIVED = 24/10/90 $W_{NO} = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = BHP Petroleum Pty Ltd CLIENT_OP_CO = BHP Petroleum Pty Ltd (Inserted by DNRE - Vic Govt Mines Dept)


This is an enclosure indicator page. The enclosure PE905423 is enclosed within the container PE902075 at this location in this document.

The enclosure PE905423 has the following characteristics: ITEM_BARCODE = PE905423 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 core photographs (1286m-1288.96m) BASIN = GIPPSLAND PERMIT = VIC/P25TYPE = WELLSUBTYPE = CORE_PHOTOS DESCRIPTION = Amberjack 1 core photos (1286m-12888.96m) UV light REMARKS = DATE_CREATED = DATE_RECEIVED = 24/10/90 $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = BHP Petroleum Pty Ltd CLIENT_OP_CO = BHP Petroleum Pty Ltd (Inserted by DNRE - Vic Govt Mines Dept)

SUMMARY OF BASIC PALYNOLOGICAL DATA

.

geore da

SWC	DEPTH	ΥI	EL	D	DIVERS	SITY	PRES.	LITH.*
	(m)	S-P	•	DINO	S-P .	DINO		
60	1010.0	low		hiqh	med.	med.	poor	marl
59	1031.0	med.	v.		med.	med.	mod.	marl
58	1050.0	med.		high	med.	hiqh	qood	marl
57	1095.9	low		low	low	med.	mod.	marl
56	1111.5	med.		high	med.	med.	poor	marl
55	1138.8	med.		high	med.	med.	moð.	marl
54	1160.0	low	v.	high	low	high	mod.	marl
53	1210.4	med.		high	med.	high	good	marl
51	1215.2	low		low	low	low	mod.	marl
50	1218.8	med.		high	med.	low	moð.	marl
49	1226.6	low		med.	low	low	mod.	marl
48	1236.0	low		med.	low	low	mod.	marl
47	1248.1	low		low	low	low	mod.	marl
46	1255.0	med.	v.	hiah	med.	hiah	mod.	clst.
33	1279.9	med.		low	hiah	low	aood	5lty sst
29	1325.0	high		low	med.	low	DOOT	clst.
28	1333.0	hiqh		low	međ.	low	aood	slst.
26	1351.0	med.		low	med.	low	moð.	slst.
23	1360.1	hiqh		low	hiqh	low	mod.	clst.
19	1441.0	high		-	med.	-	mođ.	slst.
12	1495.5	low		caved	low	low	mod.	clst.
11	1519.0	low		-	hiqh	-	qood	clst.
10	1542.5	low		caved	low	low	moð.	slst.
09	1566.4	low		caved	low	low	mod.	clst.
08	1575.0	low		-	low	-	mod.	clst.
07	1589.0	low		-	low	-	mod.	clst.
06	1633.0	hiqh		-	med.	-	aood	clst.
ctg	1697	med.		caved	med.	low	poor	clst.
03	1698.0	low		-	hiqh	-	poor	Slst.
ctạ	1700	med.		caved	med.	low	poor	clst.

* Lithological descriptions [main rock type only] taken from sidewall core sample description on transmittal sheets.

						<u> </u>														Γ		Τ.	Γ.,	<u> </u>	Γ.	T
SAMPLE TYPE OR NO.		S	S	2	S			S	S	~	S	~	~	~	+	~	~	~	s	~	~	∽	s N	S S	~	╞
FOSSIL NAMES	DEPTHS	1010.0	1031.0	1050.0	1095.9	1111.5	1138.8	1160.0	1210.4	1215.2	1218.8	1226.6	1236.0	1248.1	1255.0	1279.9	1325.0	1333.0	1351.0	1360.1	141.0	1495.5	1519.0	1542.5	1566.4	
Acaciapollenites myricsporites	\rightarrow	\neg		-		_	\vdash	\neg	-+	-		-	-+	\dashv	+	+	\dashv	-			-	+		\vdash	<u> </u>	┢
Aglaoreidia qualumis		-	-				\vdash		-+			-+			-+		-+	-		-	\vdash	+		\square	<u> </u>	t
Anacolosidites sectus		-					\vdash		-+	-+				-+	-+	+		.1				+	\vdash	\vdash	<u> </u>	+
Araucariacites australis		•	•	•	•	•		•			•	.1	•		•				•	•		┼──	\vdash		<u> </u>	ł
Australopollis obscurus		÷	-	-		\neg	\vdash	-+	-+	-	-1		-+	\neg	-+	+	-+	-		-		┼──		\vdash	<u> </u>	t
Baculatisporites disconformis		\neg			-	-	\neg	\neg	$\neg \uparrow$		\neg	-+	\dashv	+	-+	+	-+	-1	•	•	•	<u> </u>		•		t
Banksieaeidites arcuatus		\dashv	_			-		-	+	-	-	-	-	\neg	+	+	•	-		•		<u> </u>				t
B. elongatus		•	-	•		•		-+	-+	\neg	-	-†	-	\dashv	+	+	+	\neg	-	•						F
Basopollis otwayensis		\neg	-					+	-+	+	-	-1	+	+	+	•	+	-				t i			\square	F
Beaupreaidites elegansiformis		1	-1					+	-		\neg	-	+	-	.†	\uparrow	+	-1								F
B. trigonalis		1	1	1		-		-	1	1	•	•	+	-†	1	1	-+	•								F
B. verrucosus	1	+	-	-1	\neg	1	\neg	+	+	\uparrow	+	+	\uparrow	+	•	+	•	•	•	•	•			\neg	Π	F
Camarozonosporites bullatus	1	\uparrow	-	\neg	-	-1	\neg	+	+	1	\uparrow	+	\uparrow	\uparrow	╈	\uparrow	1	1	1			Π				Γ
C. heskermensis		+	-	1	-1	•	-	\uparrow	+	1	1	1	1	\uparrow	1	.†	+	1	1				\neg			Γ
Chenopodipollis chenopodiaceoides		1	•	1	•	1	•	1	1		1	+	1	\uparrow	1	1	+	1	1						Τ	Γ
Clavifera triplex		\uparrow	1	\uparrow	1	-1	+	1	\neg	1	-	1	1	\uparrow	T	1	\uparrow	1	1							Γ
Conbaculites apiculatus		T	1	\uparrow	1	1	\neg	\uparrow	1	\uparrow	\uparrow	\uparrow	\top	\uparrow	\uparrow	1	1	1		-			1		•	Γ
Concolpites leptos		1				1	T	1	T	1	1	1	1	\top	1		\top	1			•			1	1	-
Corollinia spp. R								T	•									1	1				-1	1	-1	
Crassiretitriletes vanraadshoovenii							T	Τ	Τ		Т			Τ	Т		Τ	T					-		Π	
Cupaneidites orthoteichus		•	Τ		Τ	T	T	•	T		T	Τ		T	1.		•	•	•	•	•		•			•
Cyatheacidites annulatus		•	•	•		•			•		•				•			Τ								
Cyathidites australis			•	•	•	•			•				•	•		•	•	Τ			•					
C. minor		•		•											•			·	•				•			
C. palaecspora			•	•		•	•		• •	•	•				•											
C. splendens	Ŀ				•		•	•	•				·		•			\bot								•
C. subtilis		_		\perp	\downarrow	\perp	\perp		<u> </u>	•	\perp				\bot	1	\perp						\square	\square		
Dacrycarpites australiensis		\perp	\downarrow		_	_	<u> </u>	•	\perp			_ <u> </u> '	·		·	1	\perp	\perp	\square	\downarrow	•	_	\downarrow	\downarrow	-	
Dicotetradites meridianus		-	_	+	4	_	\perp		\downarrow		_		\bot			\bot	_	1	•			$ \rightarrow $	•	$ \downarrow$	-	
Dictyophyllidites arcuatus			4	_				<u>'</u>			+		_	_		1	+	4	+			_	\downarrow	_		
Dilwynites granulatus			<u> </u>	_	-	•	•	<u> </u>	• •	4	•			ŀ		+	4-	+	-	4		_	\downarrow	\downarrow	•	
D. tuberculatus			· -	_	_	+	_	+-	+	_		+	_	-	<u> </u> •	4		+	_	4	•	-+	\rightarrow	-+	\downarrow	
Diporites delicatus		+-	_		_		+	-	+	+	+		_	+	+-	+-		-	_	+	\downarrow	_	•	+	\rightarrow	
Dodonaea triquetra-type					+	+-		+		+	+-			+-		+-	+-	+	+	+	-		+	_	+	
Elphedripites notensis Ericipites scabratus		+	+-	-	+		+	+			+	+-		+	+-	+		+-	÷	-	-	-+-	•	+	-	
Foveotriletes balteus		-		+	_		• •	<u>'</u>		+	'	<u>'</u>	+-	+-	+	-	•	-	-	-+-	•	+	+	<u>·</u>	+	
F. crater		+	+-	+	+	+	•	+-	+-	+		+-	+-	╋	+-	+	+	+	+	4	-	-+-	+		+	
F. Jacunosus		╀	+		+	-		+	+	+	+	+-	+-	╇	+-	╋	+-	+	+	+	+	-+-	+	-	+	
Gambierina edwardsii	+	+	╀	+	+		+	•	• •	+•	'-		+	+-	+	+-	+	+	+	+	+	-+-	╇	+	+	
G. rudata		╋	+-	+	+	+-	+-	+	+	╋	+-	+-	+-	+		+-	+	+	+	+	+	-	+	-	-+-	
Gleicheniidites spp.		+.	+-	+	+	+	+	+.	+-	+-	╉	┼	+.	+.	+.	+	+	+-	+	+	+	+	+	+	+	
Gothanipollis bassensis	+	╀	╋	+	+	+	+	+·	+-	╋	+	╀	┼╹	+	+	+	+-	+	+	_			+	+	4	•
Gramminidites media	+-	+	+-	╋	+	+	+	╋	+	+.	+-	+	+	+	+	+	╀	+	╀	+	-+	+	+	+	+	_
Gyropollis psilatus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	┼	+	+	+	+	+	+	+	
Haloragacidites cainozoica	+.	+-	+.	+	╈	+.	. .	+	+	+	+	+	+	+	+-	+	+	+	+	╉	+	+	+	+	+	
H. harrisii	1.	+.	+	+.	+.			_	+-	1.	+.	+.	•	•	4-	1.	+.	+.	+	+	+		+	-	+	•
Herkosporites elliotii	1-	1	•	+	+	+	+•	_	+-	+	1.	+	+	1.	1.	t	+	+	+	+	+	╋	+	+	+	
Ilexpollenites anguloclavatus	\uparrow	\uparrow	\uparrow	\uparrow	+	+	1.	+	+	1.	\uparrow	1	•	•	•	•	+.	•	+.	+	+	+	᠇	.†-	+	-
Integricorpus antipoda	1	1	\uparrow	\uparrow	\uparrow	\top	\top	\uparrow	\top	1	\uparrow	\uparrow	1	\uparrow	\uparrow	1	1	\uparrow	\uparrow	\uparrow	\uparrow	+	\dagger	\uparrow	+	
Intratriporopollenites notabilis	1-	T	T	T	1	T	T	T	\top	1	\top	T	1	T	\uparrow		1	T	\uparrow	\top	1	1.	•	\uparrow	\uparrow	
Ischyosporites gremius	1.	1	T	1	1.	1.	\top	1.	1.	•	•	\top	1	\top	\uparrow	•	Γ	\mathbf{T}	\uparrow	\top	\uparrow	1.	Ť	T	T	
I. irregularis	1	1	T	\top	1	T	T	1.	1	\uparrow	\uparrow	\uparrow	1	\mathbf{T}	1	1	\mathbf{T}	1-	\uparrow	\uparrow	\uparrow	\top	T	\uparrow	T	٦
Kuylisporites waterbolkii		•	•	Γ	•	•	T	\top	1	T	\top	T	\uparrow	\uparrow	\square	—	\uparrow	1	1	1	\top	1.	T	1	T	
Laevigatosporites spp.	•	•	•	•	•	•	•	•	1.	•	T	1.	•	•	•	•	•	•	•	1.	1	• •	• •	T	1.	-
	1-	1	1	1-	+	1-	1-	+	+	+	+	+	+	+	+	t	+	t-	+	+		+	+-	+	1	-

C=CORE S=SIDEWALL CORE T=CUTTINGS J=JUNK BASKET

ł

Well Nome _____

	THS	0			6	1				1~		5												5	1_	T
FOSSIL NAMES	DEPTHS	1010.0	1031.(1050.0	1095.9	1111.5	1138.8	1160.0	1210.4	1215.2	1218.6	1226.6	1236.0	1248.1	1255.0	1279.9	1325.0	1333.0	1351.0	1360.1	141.0	1495.5	1519.0	1542.5	1566.4	
Latrobcsporites amplus	\rightarrow				┽──	┿╼	┿╌	+	+-	+	┼─	+	+	+	+	-	+	┝	┼─	+	┼╌	┽╌	+	┿	+	+
L. crassus		_			┢─	1.	+	┼─	+	+	+		+	+-	-		+	-	+	•	┢	+		┼─		$^{+}$
L. marginis			_		┼─	\vdash	1.	╀─	+	+		+	╋	+	-	┢──					+	+-		╂	-	$^{+}$
Liliacidites lanceolatus		-				+	+-	┼──	+	┼──	+	┢	┼─	+-	+	-				╆┈	┢	+	┼──			t
L. spp.		-			\vdash	+	+	+-	+	+		┢	+			-				-	┢	+		-		+
Lygistepollenites balmei							R	+	R	+	+-	┼──	R	+		<u> </u>	-		┼──		┼─	R		<u> </u>		t
L. florinii		•		•	•	•		•	.	+-	┼──	+.	ĥ	+-	•	•	•	•	┢──	R •	┢──	F	┼──	•	R •	+
Malvacipollis diversus		-	_			-	+		+	+		-	1.							ŀ		+	•		-	╉
M. robustus	-+	-	-	•		-		\vdash	+			-				-	•	•	•	.		+- •			ŀ	╀
M. subtilis		\neg	-+	•			•	\vdash	•	1.			+-					•	•		1.	+-	•			+
Matonisporites ornamentalis		+	•	•		•		•		-		-	┢─	1.		_	-		-		-	+	•	-		┢
Microalatidites palaeogenicus	-1	-†			-	•	<u>├</u> ──		<u> </u>	•	-		-			•		•			•	+				t
Microcachrydites antarcticus	-	\cdot^{\dagger}		-	-				1.				┢──			•		•								ł
Monogemmites gemmatus	$\neg \uparrow$	+	$\neg \uparrow$	-					1									•		•		 				t
Monolites alveolatus	$-\dagger$	+	\dashv	\neg			•	-	 					$\left - \right $									\square			t
Myrtaceidites eucalyptoides	-+	+	•	•				•		•	\square			$\left - \right $		•		-					\square			ŀ
M. parvus-mesonesus	-1.	+	.	•			•	•					•	$\left - \right $		•	\neg	•	-	•	•			•	-	F
M. tenuis	+		R	\neg										┝╌┤			+		\neg			•	•	\neg		┢
M. verrucosus		-+-	$\overline{\cdot}$	+	\dashv		<u>.</u>			-				$\left - \right $	\neg	•	\dashv	\neg					-		-	1
Nothofagidites asperus	-1-	-+-	•	•	\neg	•	•	•	•		\neg			\vdash	\neg		•	•	-	-	•		-+		\neg	-
N. brachyspinulosus	+	+	+	-†	•	-	•		•	•		•	-	•	+	•		•		•	•	•	•	\neg	\neg	
N. deminutus-vansteenii			.†	•	•	$\overline{\cdot}$	-1	•	•		-1	•			•		•†	•	•	•	•		-+	{	\dashv	-
N. emarcidus-heterus	1.	, † ,		•	•	•	-	•	•	-	•	•		•	•	•			•		•	•	•	•	•	
N. endurus	+	+	+	+	+		-+	-			\neg	-	-		\neg	-+	+	+	$\neg \uparrow$	-			-+	-+	-+	
N. falcatus	-1-	+	\uparrow	+	1	•	•	•	•	-	•	•				•	•		•	•	-	-+	\neg	-+	\neg	
N. flemingii	+	\uparrow	\uparrow	+	1	•	•		•	•	•	1		-	-†	•	•	•	-	-	•		•	-†	•	
N. goniatus	1	╈	1	1	1	1	-		-		1	1	-	-+	\neg	•	•	•	1	-+	•	-	•	-	-	
Nupharipollis	T	\uparrow	\uparrow	1	\uparrow		•	-1		-	-†	+		$\neg \uparrow$	-	+	\uparrow	+	+	-+	-		-+	\neg	-+	
Peninsulapollis gillii	1	1	1	1	\uparrow	1	-1			-+	1	\neg		-†	-+	\neg	-+	+	+		\neg		\neg	-	1	
Periporopollenites demarcatus		\uparrow	\uparrow	Ŧ	-†	-	-†	-	-	-+	-	-+	•	-	•	•		•	•		\neg	-+	•	-+	-	
P. polyoratus	1	1	\uparrow	十	\uparrow	1		-+		\uparrow	-	1		-	-+	\uparrow	\neg	+	-+	+	-	-+	+	\uparrow	+	
P. vesicus		ϯ	1	+	+	+	-	-1		-	+	+	1		•	•	\neg	•	+	•	-†	-+	+		+	
Peromonolites vellosus	T	1.	1		1	+	-+	-†	-+	-	•		1	-	-+-	+	-	+	+	+	-		+	-+	-+	
Phyllocladidites mawsonii	1.			•	+	•	•	-	•	•	•	1	•	•	•	•	. 1	•	.†	•	•	•	.†	•	+	•
P. reticulosaccatus		\uparrow	1	\uparrow	+	\uparrow	-	-1	-	1	\uparrow		\neg	-+	-	+	-†-	-	-	+	+	\neg	+	+	+	
Pilosisporites parvisaccatus R	1	+	1	+	+	+	+	+	\neg	-	-	+	+	-+-	+	+	+	+	+	-+	-+	+	-+-	+	+	
Podocarpidites exiguus	1	\uparrow	\uparrow	\uparrow	+	+	-	-	•		+	\uparrow	+	-	+	+	+	+	+	+	+	+	+	+	+	
P. spp.	•	1.	•			•	•†	•	•	•	•	•	•	•	•		•		•	•	•	•	•	-		
Podosporites microsaccatus	1	+	+	╈	+	+	•	-+	$\overline{\cdot}$	-	+	+		•	-+-	+	-+-	+	+	+	+	-+		+		
Polycolpites langstonii	1	\uparrow	\uparrow	\uparrow	\top	+	+	\uparrow	+	+	+	+	+	+	+	+	+	+	+	╉	+	+	+	╉	+	
P. reticulatus	1	\uparrow	\uparrow	+	\uparrow	+	+	+	\uparrow	+	+	+	+	+	+,	.+	+	+	+	+	+	+	+	+	+	
Polycolporopollenites esobalteus	1	1-	\uparrow	Ŧ	-	+	+	+	+	+	+	+	+	.†	+	+	+.	+	+	-	\cdot	+	.+	+	+	
Polypodiaceoisporites varus	+	\uparrow	\dagger	\dagger	+	+	+	+	+	\uparrow	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Polypodiisporites histeopteroides	1	1	+-	+-	+	+	+	+	+	+	+	┽	+	+	+	+	+	+	+	+	+	+	+	+	╉	
P. spp.	1.	•	1-	1.	+	╉	╈	+		1	+	+	+	+.			+-	+	+	+	+	+	+	+	+	
Proteacidites adenanthoides	+	\vdash	\uparrow	+	+	+	+	+	+	+	+	+	+	+	+	+.		+	.†.	+	+	+	╉	+	+	
P. annularis	1.	1.	1.	. -	1.	.†.		+,		• •			+		. † .	-	+.	+	+	┿	╉	+-			╉	_
P. asperopolus	\mathbf{T}	\vdash	\uparrow	+	+	+	+	+	+	+	┽	+	+	+	╈	+	+	+	+	.†.	+	+	+	+	╋	
P. callosus	1.	1-	\uparrow	+	+	+	+	+	+	+	╈	+	+	+	+	+	+	+	+.		+	+	+-	+	+	
P. crassus	1	1-	1-	\uparrow	\uparrow	+.	,†	+	\uparrow	╧	+	+	+		+	+.	.†•			,†-	+	+	+	+	\uparrow	
P. differentipollis	1	1	\uparrow	\uparrow	\uparrow	+	+	+	+	+-	\uparrow	+	+	+	\uparrow	+	+	+	+	+-	+	+,		+	+	
P. kopiensis		-	\uparrow	\uparrow	t	\uparrow	+.	.+	+	+	\uparrow	+	+	+	+	+	+-	+	+•	+	+	+.		+	\uparrow	-
P. latrobensis			1	\uparrow	\uparrow	+	+	╉	+	+	+	+	╈	+	+	+	1-	+.			+	+-	+	+	\uparrow	-
P. obscurus			†	t	\uparrow	+	+	+	+	+	+	+	+	+	+	+.	1.	+	+		+	+-	+	+	+	٦
P. pachypolus		R	1	\uparrow	+	+	R			t	+	+	+	+	+.	1.			+		+	+	1.	+	+	4
P. rectus	\mathbf{T}		1	\uparrow	\uparrow	+-	+	+	+	1-	+	+	+		+	+	+-	+	+	+	+	+	+	+	+	1
	4	L	.					<u> </u>				1	1		1	1		1	1_		<u> </u>		1	1	KE	ר תי

.

ŧ

	-
	±
Nome	-

Í

	Τ.	Τ.	, [,	Π.		10	5	5	5	s	5	5	5	5	5	5	5	5	1-	5	5	5	5	5	T
SAMPLE TYPE OR NO. *		+	+	+	+		+	-	+	-												+	+		╀
FOSSIL NAMES				1005 0	5.111	1138.8	1160.0	1210.4	1215.2	1218.8	1226.6	1236.0	1248.1	1255.0	1279.9	1325.0	1333.0	1351.0	1360.1	1441.0	1495.5	1519.0	1542.5	1566.4	
Proteacidites recavus	1	+	+	+	\uparrow	1	\uparrow		1						•	•			•		1	T	T		Ť
P. rectomarginis		+	\uparrow	+	•	\square	•		1									1			1		1	Γ	T
P. reticuloscabratus	1	1		+	1	+		\square										•	•	Γ		\top	\square	•	T
P. rugulatus	1-	+	+-	+	+																1	\square	\square	-	t
P. tenuiexinus	1-	+	+	+	+	\uparrow	1	 												•	1	1	1		t
P. truncatus		+	+	\uparrow	1	1-	1							•						-	1	1	1	-	T
P. tuberculatus	1	+-	+.	1	•	1						-			_					\vdash	\vdash	1	\square	—	T
P. spp.	1.	•	1.	1.	1.	1.	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		•	•		T
Pseudowinterapollis calathus	1	1-	+	+	+-	1		•													\uparrow	1			t
P. cranwellae		+.	+	+	1	1									•		•			-	+	1			T
	+	1.	•	╈	+	+-								•							<u> </u>	\vdash			t
Psilodiporites sp. [Alyxia]	$\mathbf{+}$	+-	+	+	+						\neg			-1							1	\vdash			t
Quintiapollis psilatispora			+	+-	+				•					-	-	-	\neg				\vdash	1-	\vdash		t
Retitriletes australoclavatidites	1		+-	+	+	1		•		-	\neg	\neg		\neg	•		\dashv				\vdash				t
R. spp.	1-	·	•	+	+-	-		Ť		\neg	-			\neg	-		•	•	•	•	†	-		-	t
Rhoipites sphaerica	+	ŀ	ŀ	+	ŀ				-	\neg	\neg	\dashv		\dashv	-	\neg	÷	-	-		1-	c	\vdash	\vdash	F
Rugulatisporites cowrensis	1-	+-	+-	+-	+				-		\neg		•	-+	•	\dashv		_					┝─┤	\vdash	┢
R. mellatus	+	+	ŀ	+-		$\left - \right $			┝╼┥				-	\dashv	\dashv	\dashv	\neg	-	-			Ļ-	\vdash		┢
R. trophus							÷				-+		-+	-+	-	-+			-		├	-	\vdash		┝
Rubipollis oblatus		–	┝─							\dashv	-+	-	-	-+	+	\rightarrow	•	•	-			•	$\left - \right $		┝
Santaluminidites cainozoicus		ł												\neg	-	-+	-+	4				-	-		┢─
Sapotaceoidaepollenites rotundus	Į	! -				•		•					•		4	\dashv	-	-	-				$\left - \right $		┝
Simpsonipollis sp.	 	<u> </u>				·								-+		\rightarrow	-+						\vdash	-	\vdash
Stereisporites australis f. crassa			ŀ		•		_			•		•		-	-+			_					┝─┤		┝
S. (Tripunctisporis) sp.					 			-+					\rightarrow	-+	\dashv		-+	•	•	•		•			┝
\$. spp.	 	•	ŀ		•	·	•	•			•	-		•		\rightarrow	4	-	•	•				-+	•
Tetracolporites multistrixus	┨───			<u> </u>			_	-+			-+			-+	4		-+					•		-	-
T. verrucosus			├					_		-+	-+		-	+	+	+	-					_			
Tricolpites phillipsii				<u> </u>				-+		-+	-+				-+		•	•		_			-		
T. reticulatus		•	•			•									+	-+	-	\rightarrow		-		•			-
T. simatus							_		_	\dashv				-	-	-+	-+	-	-	•					
Tricolporites adelaidensis								•			-+		_	+-		•	-	•	•					-+	
T. angurium						\dashv	-+	-+	•	_	-+	-		-	-		-	-	_				_	-+	
T. halis						•	-+		_						-+-		_							-+	
T. leuros							-+			-+			-		_	•	-	•	-+	-				_	
T. sp. cf T. leuros	•		•	•	·		-+	•	_	-			-+	·	4		-	_	-+	_				-+	
T. paenestriatus						-+		-+	_		_	_	-+	_	•	_	\downarrow		•	_	•	·	_	\dashv	
T. scabratus	•	•				\dashv	4	_	_	_	_	4	_	-+	+	_	-	-+-	•			·	\dashv	-	
Indet. tricolpate/tricolporates	•	•	•	•	•	•	· ↓	•	-+	-+-	-+-	•							•	•	•	•	•	•	
Indet. trilete spores	•		•	•	·		•	•		•	-	•	-+	-+-		•	_		•	-	\neg	-	•	\dashv	•
Triletes tuberculiformis						•		_	_	+	_	\downarrow	•	-+-	+	•	_		•	_	_	•		\downarrow	
Triporopollenites ambiguus	\square							\downarrow	-+		\downarrow	4	4	_	•	_	\downarrow	_	•	\square	\square	\square		\dashv	
T. heleosus					-		-+			4		_	_	_	_		_		•	$ \downarrow$	_		\rightarrow	_	
T. spinosus			\square				_		$ \bot$		\perp	_	_	-	4		_	_	\rightarrow	_	-	-	$ \rightarrow $	_	
Tubulifloridites antipoda						•						\perp	\perp	_	_		_	_		_		_	-		
Verrucosisporites cristatus			•			•											_			\square					
V. kopukuensis	•		•		•										•	_		•	•	•	\square	•			
												\perp	\perp		_	\downarrow	1	_	_	\downarrow	\downarrow	$ \downarrow$	\perp	\bot	
Anacolosidites acutullus											\bot	\bot		1	_	_	_			\bot	_	•	\downarrow	_	
Cupanieidites reticularis	\square		_	_	_								\bot			_	_	\bot			_	•	\bot	\downarrow	
Milfordia homeopunctatus								\downarrow		\downarrow	Ŀ	•		_		_			\downarrow	\downarrow	_	_	\perp	\downarrow	
M. hypolaenoides									Ŀ	•													\bot	\bot	
Nothofagidites longispina		Ī]				1	•														\perp	
Proteacidites grandis	Ι	1					\int	Ι														•		\bot	
P. stipplatus					\Box	\Box	T	Ι	Γ											•					
Schizocolpus marlinensis	Τ					\Box	T	Τ	Τ	Τ	Ι	Ι		Ι	Γ	Γ			Τ	Ι	Ι	•			
Triorites magnificus	T	T	T	T	T	T	T	T	-	T	1	T	T	-	1		T	-	T	T	T		T	T	7

* T=CUTTINGS J=JUNK BASKET

C - CONTAMINANT

.

Well Norr	16HANDLAUAUK 1						-		Bo	sin		L	JPP:	LAN	U			-	Sh	eet	N	lo		1	. of	·	5	_
SAMPLE	TYPE OR NO.				, , ,		~ .	~ .	~ .	~ .	~ ~	, s	s	s	5	S	s	s	S	s	1.	, .	~ ~		~ .	~ ~		°
	(E	/ DEPTHS	0.	0.	-			2				8.	9	0.	=	0	6.	0	<u>.</u>	o.	-	e	2	2				?
FOSSIL N	NAMES	/ DE	1010	1031	1050		1111 6	1130	1160.0	1210.0	1215.2	1218.8	1226.6	1236.0	1246	1255	1279.9	1325	1333	1351.0	1360		1405 5	151	1543	1566 4	15/51	0.0101
DINOFLAGELLA																											T	٦
Alisocysta s	p.													•							•	Τ	Τ	Т		Τ	Τ	1
Areosphaerid	ium of capricornum																				•	Τ	C		Τ	Τ		T
Cleistosphaei	ridium epacrum						ŀ			•	•				•	•		•		•	Γ	Τ	Τ	T			T	1
Glaphyracysta	sp. [Neogene]		•			T			•	•	1	•				٠						Τ					1	T
Hystrichokolp	ooma rigaude				Τ	Т	•	Τ	•						•	•					1	T	1	1	1	-	1	1
Schematophora	speciosa					Τ		•	Τ						•							1	1		1			T
																						Τ	Τ	T	T			T
	. cf D. leptodermata			·												•						Τ	Τ	T				T
Gippslandica	extensa s.s.		_	·					R		Τ				T		•	•	•				1	T	1		T	T
G. extensa (b	ald)																	•	•			Τ	T	T	1			Ť
"G." macmurdo	ensts					ŀ											Τ	•				Γ	T	Τ			1	T
Lejeunacysta																							Τ					T
																		Τ					1	Τ	1	1	1	T
Achomosphaera	alcicornu					•	•	•	•		•						T	T		•				Γ	Τ	T	1	T
Impagidinium s			Τ	٠	•	•	•	Γ	•	•	•	•	•	•	Τ	•			T	1		1	c	1	Τ	1	1	t
Lingulodinium	machaerophorum		•	•	٠	•	•	Γ		•	•	•	•		•	•		T	\uparrow			1		1		c		t
Nematosphaerop	osis balcombiana-labrynt	this	•	•	•	•		•		•	•	•		•	•	•	1	1						1	1-	c		t
Operculodinium	centrocarpum		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•			c	1	C		t
Pentadinium la	ticinctum		Τ		• '	•	•		•							\top		\top	+					Ť	1	\vdash		t
Protoellipsodi	nium clatatum		1	•	•	•	•						+	1	\uparrow	+	1	+	-†	-+			<u> </u>	 	<u> </u>	1-		┢
P. mammilatus			1		·				•	•	•	•	•	1	1	•†	+	+	+	-				-				┢
P. simplex			T	•	•	٠	•	•	•			-+		+	+	+	+	+	+	+	-							┝
Pyxidinopsis p	ontus	-	,†	•	•	•	•	•	•			\neg		•			+	+	+	+								-
Rottnestia bor	ussica	+	+	1	•				•			-+	-+		+	+		+	+		-							-
Spiniferites s	pp.	1.		•	•		•	•	•	•	•	•	•	•	-	+	•	+	+	+					c			C
Tectatodinium	pellftum	1	\dagger	1	•				-			+	+	+	•	+	+	┽	+	+	+				-			
Thalassiphora	flammea/peligica	\top	\dagger	+	1						•	-	+	+	-	\uparrow	+	+-	+	+	+						-+	
			1	+				-				+	+	+	+	+	+-	+	+	+	+							
Polysphaeridium	n zoharyii	1.	Ť	1	•	•		-	•		•	-	+	+	+		+	+	+		+			-				
Dapsilodinium ;	seudocolligerum	1	+	+	1	\neg						+	-		+		+	+	+	+	+						-+	
			+	+	+				-+		-	+	+	+		+	+	+	+		-	-					\rightarrow	
Crassosphaera c	oncinna	+	\uparrow	╈	+	\dashv	-1	•	-+			+	+		+-	+-	+-	+-	+	+-	+	\neg			-+			
Cyclopsiella vi	eta s.l.	1	1.	+	+		•	-+						+	+-	+-	+-	+	╉	+-	+	-+						
Holoroginella s	pinata		+	+	+	+		-+		-+	-	+	+-	+	+-	÷	+-	+	+-	+-	+			-		-+		
Tritonites sp.	cf H. spinata	-	┿	+	+	\neg	-+	-+	-+	+	+	+-	+	+-	+.	+-	+	+-	+	+-	-	-+		-			-	
			+	+	+	+	+	-+	-+	\rightarrow			+	+-	+	+-	+	+-	+-	+	+	-	\rightarrow					_
MICROFAUNA		+	÷	╉	+	+	-+	+	+	-+	+		+	+-	+	╉─		+	╋	+-	+	+	-+		+			
fish teeth		1.	+-	+	•	-+	+	+	-	+	+	-+-	+	+	+-	╋	+-	+	+	+-	+	+	+	-+	+	-+	-+-	_
netatocysts [Cni	idaria]	1-	+	+		•	•	+	+	-	+		┥.	+	+-	+	+	+	+	+	+	+	+	+	-+	+		
	ners [Foraminifera]	1.	\vdash	+	+	+	-+-	+	+	+			+	+.	+-	+	+	+.	+	╋	+	-+	+	+	+			
		Ť	1-	+	+	-	+	+	+	+	+	+-	+-	+	+	+		ŀ	+	+-	+	+	+	+	+			_
			┣	+	+	+	┽	+	+	+	+	+	+	+	+	+	+	\vdash	+	+-	+-	+	-	+			+-	_
			1			-+-	-+	+	+	+	+	+	┽─	+	+	+	+	+	+	+	+	+		+	+			
		+		╈	T		1			1			+	+		+	┨───	1	1	1	1	1				1		
				+	-	+	+	+	+	1			1				1		1	1	+-		Т	- 1	Т			
								+				+	+	+	+					1-	1	4	-	+	-	1	+	
												+	-											+			+	

+ C=CORE S=SIDEWALL CORE T=CUTTINGS J=JUNK BASKET

•

SAMPLE TYPE OR NO. *	_	~	-	S	-			\downarrow	+-	+	╇	╇	+	╇	+-	+	╀╌	Ļ	+-	+	+	4	\neg			\neg	
FOSSIL NAMES	Ê	-		0.																							
FOSSIL NAMES	3	1633	1691	1698	1700																						
Araucariacites australis	┥	-	•		•		-	+	┼╴	+	┿	+	+	+	┿	+-	+	1-	┽	╋	+	+	\dashv	-	-	-+	
Australopollis otscurus	1	-	•	•	•			1		\top	\uparrow	1	\uparrow	1-	\uparrow	\uparrow	1	ſ	\top	\uparrow	+	+	+	-		-	
Clavifera triplex	1	•						1-	\square	1	T	+-	T		\uparrow	\uparrow		\square	T	\uparrow	+	+	\neg	-		1	
Crassiretitriletes vanraadshoovenii	1	•	1					\square	\uparrow		1	\uparrow	1	-	\uparrow	1	1	T	Τ	1	1	1	-	1		-	
Cupaneidites orthoteichus	1	•	•	•	•			\uparrow	1	1	\uparrow	1	Τ	1	1	1	T	T	T	1	╋	+	\neg	-+	\neg	-	_
Cyathidites splendens	1	•	•	•	٠					1	T	1			T	\top	1	T	1	T	+	1	\neg			1	
Dicctetradites meridianus		1	1		•					1	T	1	T			1	T		\top	T	\uparrow	1	-†	1		1	
Ericipites scabratus	Ĩ	1	•						1		\uparrow	1	T	1	T		1		1	\uparrow	T	T	-†	1		1	
Gambierina edwardsii	1		•							\top	1		T	T	1	1	1		T	T	T	T	- †	1			
G. rudata	1	T	•	•	•								1			1			Γ	T	T	T	T				
Gleichenlidites spp.	1	•	•	•	•						T	1	T	1			1		1	Τ	T	T	T	T			
Haloragacidites harrisii	1.	•	•		•					1		\top	T		T					Τ	T	T	T	T		T	
Integricorpus antipoda	T	T	•								T	1	Γ	T	T				T	T	T	1	T	T		T	
Laevigatosporites spp.	1.		•	•	•						Γ		Γ	1	Γ						T	T	1	T		\top	
Latrobosporites amplus	T		T	•	1							1	Γ	1		1				Τ	T	T	1	T		T	
Lygistepollenites balmei	1	1	•	•	•	1					Γ	Γ	Γ	Τ		1				Τ	T	T	T	1		\top	
L. florinii	T	1	•	•	•	1					1	1	T	1		1			1	\top	T	T	+	+	1	\uparrow	
Malvacipollis diversus	1.	1	•	\uparrow	1	1					1	1	1	1	1	1			1	\top	T	\uparrow	+	+	\uparrow	+	
M. subtilis	1.		-	+	•	\neg	-					1	1	1						1	t	+	+	+	+	+	
Microalatidites palaeogenicus	1	1.	•	+	1	\neg	-				-		<u> </u>	1						1	\dagger	+	+	+	-+	+	\neg
Microcachrydites antarcticus	1	1-	+	+	•†		1		_			1		\vdash					-	\uparrow	+	+	+	+	+	+	-
Nothofagidites asperus		1.			+		-1													<u> </u>	+	+	+	+	+	+	\neg
N. endurus	1	1.		•	•	-+	-						-					_		-	t	+	+	+	-	+	-
N. flemingii	1	+	•	•	•	-	-1						-							-	+	╈	+	+	+	+	+
Periporopollenites polyoratus	1	+		+	\uparrow	1	1													-	+	+	+	+	+	+	\dashv
Peromonolites densus	1	\uparrow	\uparrow		•	\uparrow	1		-								-				+	+	+	+	+	+	+
Phyllocladidites mawsonii	1	1.	.†.		•	-+	1										-	_			\uparrow	╈	+	+	+	+	+
P. reticulesaccatus	1	1.	,†,	1	•		1	-	-								-1	-			\vdash	+	+	+	+	+	+
Podocarpidites spp.	1	1.		,	1		1	1	-								-1				\vdash	+-	+	+		+	+
Podosporites microsaccatus	1	1.			\dagger		\uparrow	\neg			-					-1	-+	-1			\vdash	+	+	+	+	+	+
Polypodiacecisporites varus	•	\uparrow	+	1	╈	-+-	1	-+	-	-1						-	-		-		\vdash	+	+	+	+	+	+
Froteacidites annularis		1	1	1.			1		-		-	-				-1	\neg	-1			f	+	+	+		+	+
P. pachypolus	1	1	\top	c	+	+	1	+	-†	-	-				1	-1	-				┢	+	+	+	+	+	+
P. rectus	1		1.		-+-	+	1	\neg	+	-	-		-	-		-	-+	-†	\neg			+	+	+	+-	+	+
P. spp.	1.	•	1.	\uparrow	+	+	+	+	1	\neg	-			-+	\neg		+	-			\vdash	+	+	+	+	+	+
Rugulatisporites mallatus	•	•	+	+	+	+	+	+	+		-	-1		-+	-	-+	+	1				+	+	+	+	+	+
Stereisporites antiquisporites	1	\uparrow	1.	1	╈	+	+	+	-†	1	-	-		-		-+	-	-†			<u> </u>	+	+	+	+	+-	+
S. (Tripunctisporis) sp.	1.	1	•	+-	+	+	+	+		+	-		-	-	\neg	-	+	+			—	+	+	+-	+	+	╈
S. spp.	1	•	1-	+	+	+	╈	+	+	+	-	-+	\neg	-	\neg	+	+	+	+			+	+	+	+	+	+
Tetracolporites multistrixus	1	•	1.	+.	+	+-	+	+	+	-+	-†	\neg	-+	$\neg \uparrow$	\dashv	+	+	+	+	-		+	+	+	+	┽╴	+
T. verrucosus	Í	•	+	\uparrow	+	+-	+	+	+	+	+	+	-†	$\neg \uparrow$	+	+	+	+	-+			\vdash	+	+	+	+	+
Tricolpites phillipsii		1	┿.	1.		+	╈	+	+	+	+	+	+	+	+	+	+	+	+	-		+	+-	+	+	+	+
T. simatus	1	<u> </u>	\uparrow	c	+	+	+	+	+	+	+	+	+	\neg	+	+	+	+	+	-		f	+	+	+	+	+
Tricolporites marginatus		•	1-	†	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-		\vdash	+	+	+-	+-	+
undescribed tricolpate/tricolporates	•	•	1.	1.	1	+	+	+	+	+	+	+	+	+	+	┽	+	+	+	-1		\vdash	+	+	+	+	+
undescribed trilte spores	•	•	+.	•	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-1		\vdash	+	+	+	+	+
/errucosisporites kopukuensis		-	+	+-	+	+	+	+	+	+	+	+	+	-†	+	+	+	+	+	\neg			+-	+	+	+	+
Camarozonosporites bullatus			1-	1.	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		 	\vdash	+	+	+	+
ilaphyracysta retiintextum [in situ?]	Η	•	1-	+	T	+-	+	+	+	+	+	+	+	+	+	+	+	+	+	+		<u> </u>	+	\vdash	+-	+	+
aved Lakes Entrance Fm. dinoflagellates		•	1.	1.	\uparrow	+	+	+	+	+	+	╉	+	+	+	+	+	+	+	+		<u> </u>	t -	\vdash	1-	+	+
	\square		\square	\uparrow	†	+	+	+	+	╈	+	+	+	+	+	+	+	+	+	+	\neg		\vdash	\mathbf{t}	\uparrow	T	\uparrow
			1-	1	\uparrow	1-	+	\uparrow	\uparrow	\uparrow	+	+	+	+	\uparrow	\uparrow	╈	\uparrow	+	+	-		F	\vdash	\top	\uparrow	t
			<u> </u>	\uparrow	\uparrow	1	\uparrow	\uparrow	+	+	+	+	+	+	+	+	\uparrow	+	+	+	-		\vdash	\vdash	\uparrow	T	T
					\uparrow	1	\uparrow	\uparrow	\uparrow	+	\uparrow	+	+	\uparrow	+	\uparrow	\uparrow	+	+	+	\dashv		<u> </u>	\vdash	1	t	T
	T				T	\uparrow	\dagger	\uparrow	\uparrow	+	\uparrow	+	+	+	\uparrow	+	+	+	+	+	-			-	1	\vdash	T
			 	t	+		+			-+	+		-+-	-	-	-+-	-	4-	-+-	-		_				+	+

* T=CUTTINGS J=JUNK BASKET

SECTION 4

. .

Section 4

MUDLOGGING UNIT

4.1

Exploration Logging of Australia (EXLOG), provided a Geological Engineering Monitoring and Data Acquisition System (GEMDAS) service, with Formation Logging and Pressure Evaluation services on Amberjack-1 from the 20" casing shoe at 202m to total depth.

Surveillance of the potential abnormal pressure while drilling was assisted by the continuous computation of the D-exponent, formation fracture pressures were also calculated and recorded daily.

An FID total gas detector, FID chromatograph, CO2 detector and H2S sensors were used to analyse all formation gasses.

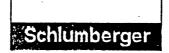
The EXLOG unit was operated throughout the well. Once returns were acheived, routine analyses for hydrocarbon fluorescence and cut in organic solvent, were carried out on all ditch samples and sidewall cores.

4.2 Wireline Logging

Three suites of wireline logs were run in Amberjack-1. Table 3. summarises the logs run.

TABLE 3.

Wireline Logging


Suite No.	Run No.	Log Type	Depth Interval (mRKB)	Date Run
1	1	DLL-MSFL-SDT-GR-SP-CAL-AMS	1010-200 (GR to seafloor)	7 May 1990
2	1	GCT-GR-AMS	1271.4 - 0.0	9 May 1990
3	1	DLL-MSFL-LDL-CNL-SDT-GR- SP-CAL-AMS (Supercombo) LDL-CNL-SDT-GR-AMS	1732.5 - 999.0 550.0 - 300.0	13 May 1990
3	1	SHDT-GR-AMS	1731.0 - 999.0	13 May 1990
3	1	RFT-HP-GR	1258.0 - 1570.0	13 May 1990
3	2	RFT-HP-GR (Sample)	1276.0	14 May 1990
3	3	RFT-HP-GR (Sample)	1480.0	14 May 1990
3	1	Velocity Survey	1727.0 - 120.0	14 May 1990
3	1	CST-GR (60 Shots)	1725.0 - 1010.0	14 May 1990

4.3 VELOCITY SURVEY

A check shot survey was carried out at Total Depth in Amberjack-1 for the purpose of calibrating the sonic log, with geophone levels spaced at a nominal 100m, plus extra levels at significant formation and sonic log boundaries - a total of 21 levels were recorded. Schlumberger used a single 200 c.i. airgun, offset 40m from the wellhead and submerged to a depth of 4.0m subsea. The source hydrophone, used to establish the timing of the shots, was submerged at 9.0m subsea.

Signals from the airgun gave good first breaks at all levels on the zcomponent well geophone, and generally three records were stacked together at each level (some required five or six). A good recording was even made inside the 20 inch casing at 62m below sea-bed, which aided the sonic calibration in the shallow section of this well.

The Schlumberger velocity survey processing report and time/depth listing follow. The drift corrected sonic and seismic calibration logs are included as Enclosure 2.

.

BHP PETROLEUM SONIC CALIBRATION PROCESSING REPORT

AMBERJACK #1⁻

FIELD	:	WILDCAT
STATE	:	VICTORIA
COUNTRY	•	AUSTRALIA
COORDINATES	:	038° 29' 33.44" S 147° 18' 55.05" E
LOCATION	:	BASS STRAIT VIC/P25 527495.7 ME 5739463.4 MN
DATE OF SURVEY	:	14 MAY 1990
REFERENCE NO.	:	SYJ-56592
INTERVAL	:	1727.0 - 203.0 M

1. Introduction

A checkshot survey of the Amberjack #1 well has been used to calibrate the sonic log and generate synthetic seismograms using 25,35 and 45 hertz zero phase Ricker wavelets. The final presentation includes synthetic seismograms at 10 and 20 cm/sec as well as a drift corrected sonic plot and a seismic calibration log.

2. Data Acquisition

The data was acquired with the SAT (Seismic Acquisition tool) tool. Recording was made on the Schlumberger Cyber Service Unit (CSU) using LIS format at a tape density of 1600 BPI.

Datum	MSL
Elevation KB	21.0 metres AMSL
Elevation DF	20.7 metres AMSL
Elevation GL	-37.0 metres below MSL
Total Depth	1727.0 metres below KB
Energy Source	Airgun
Source Offset	40 metres
Source Depth	4.0 metres below MSL
Hydrophone Offset	40 metres
Hydrophone Depth	9.0 metres below MSL

Table 1	: Survey	Parameters
---------	----------	------------

3. Sonic Calibration Processing

3.1 Sonic Calibration

A 'drift' curve is obtained using the sonic log and the vertical check level times. The term 'drift' is defined as the seismic time (from check shots) minus the sonic time (from integration of edited sonic). Commonly the word 'drift' is used to identify the above difference, or to identify the gradient of drift versus increasing depth, or to identify a difference of drift between two levels.

The gradient of drift, that is the slope of the drift curve, can be negative or positive.

For a negative drift $\frac{\Delta drift}{\Delta depth} < 0$, the sonic time is greater than the seismic time over a certain section of the log.

For a positive drift $\frac{\Delta drift}{\Delta depth} > 0$, the sonic time is less than the seismic time over a certain section of the log.

The drift curve, between two levels, is then an indication of the error on the integrated sonic or an indication of the amount of correction required on the sonic to have the TTI of the corrected sonic match the check shot times.

Two methods of correction to the sonic log are used.

- 1. Uniform or block shift This method applies a uniform correction to all the sonic values over the interval. This uniform correction is applied in the case of positive drift and is the average correction represented by the drift curve gradient expressed in $\mu \sec/ft$.
- 2. ΔT Minimum In the case of negative drift a second method is used, called Δt minimum. This applies a differential correction to the sonic log, where it is assumed that the greatest amount of transit time error is caused by the lower velocity sections of the log. Over a given interval the method will correct only Δt values which are higher than a threshold, the Δt_{min} . Values of Δt which are lower than the threshold are not corrected. The correction is a reduction of the excess of Δt over Δt_{min} , $\Delta t \Delta t_{min}$.

 $\Delta t - \Delta t_{min}$ is reduced through multiplication by a reduction coefficient which remains constant over the interval. This reduction coefficient, named G, can be be defined as:

$$G = 1 + \frac{drift}{\int (\Delta t - \Delta t_{min}) dZ}$$

Where drift is the drift over the interval to be corrected and the value $\int (\Delta t - \Delta t_{min}) dZ$ is the time difference between the integrals of the two curves Δt and Δt_{min} , only over the intervals where $\Delta t > \Delta t_{min}$.

Hence the corrected sonic: $\Delta t = G(\Delta t - \Delta t_{min}) + \Delta t_{min}$.

3.2 Correction to Datum

The corrected sonic log is indexed to true vertical depth and referenced to mean sea level (SRD).

3.3 Open Hole Logs

The sonic log has been recorded from 1727.0 to 203.0 metres below KB. The overall log quality is good with small zones of cycle skipping having been patched out. The density log was recorded over the interval 1727.0-1000.0 metres.

The gamma ray and caliper curves are included as correlation curves.

3.4 Sonic Calibration Results

The top of the sonic log (203.0 metres below KB) is chosen as the origin for the calibration drift curve. The drift curve indicates a number of corrections to be made to the sonic log. The adjusted sonic curve is considered to be the best result using the available data. A list of shifts used on the sonic data is given in the geophysical listings section.

A Summary of Geophysical Listings

Six geophysical data listings are appended to this report. Following is a brief description of the format of each listing.

A1 Geophysical Airgun Report

- 1. Level number : the level number starting from the top level (includes any imposed shots).
- 2. Measured depth from KB : dkb, the depth in meters' from kelly bushing .
- 3. Vertical depth from SRD : *dsrd*, the depth in meters from seismic reference datum.
- 4. Observed travel time HYD to GEO : tim0, the transit time picked from the stacked data by subtracting the surface sensor first break time from the downhole sensor first break time.
- 5. Vertical travel time SRC to GEO : timv, is corrected for source to hydrophone distance and for source offset.
- 6. Vertical travel time SRD to GEO : *shtm*, is *timv* corrected for the vertical distance between source and datum.
- Average velocity SRD to GEO : the average seismic velocity from datum to the corresponding checkshot level, dsrd/shim.
- 8. Delta depth between shots : $\triangle depth$, the vertical distance between each level.
- 9. Delta time between shots : $\Delta time$, the difference in vertical travel time (shtm) between each level.
- 10. Interval velocity between shots : the average seismic velocity between each level, $\frac{\Delta depth}{\Delta time}$.

A2 Drift Computation Report

- 1. Level number : the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB : the depth in meters from kelly bushing .
- 3. Vertical depth from SRD : the depth in meters from seismic reference datum.
- 4. Vertical travel time SRD to GEO : the calculated vertical travel time from datum to downhole geophone (see column 7, Geophysical Airgun Report).

- 5. Integrated raw sonic time : the raw sonic log is integrated from top to bottom and listed at each level. An initial value at the top of the sonic log is set equal to the checkshot time at that level. This may be an imposed shot if a shot was not taken at the top of the sonic.
- 6. Computed drift at level : the checkshot time minus the integrated raw sonic time.
- 7. Computed blk-shft correction : the drift gradient between any two checkshot levels $\left(\frac{\Delta drift}{\Delta depth}\right)$.

A3 Sonic Adjustment Parameter Report

- 1. Knee number : the knee number starting from the highest knee. (The first knees listed will generally be at SRD and the top of sonic. The drift imposed at these knees will normally be zero.)
- 2. Vertical depth from KB : the depth in meters from kelly bushing .
- 3. Vertical depth from SRD : the depth in meters from seismic reference datum.
- 4. Drift at knee : the value of drift imposed at each knee.
- 5. Blockshift used : the change in drift divided by the change in depth between any two levels.
- 6. Delta-T minimum used : see section 4 of report for an explanation of Δt_{min} .
- 7. Reduction factor : see section 4 of report.
- 8. Equivalent blockshift : the gradient of the imposed drift curve.

A4 Velocity Report

- 1. Level number : the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB : the depth in meters from kelly bushing .
- 3. Vertical depth from SRD : the depth in meters from seismic reference datum
- 4. Vertical travel time SRD to GEOPH : the vertical travel time from SRD to downhole geophone (see column 7, Geophysical Airgun Report)
- 5. Integrated adjusted sonic time : the adjusted sonic log is integrated from top to bottom. An initial value at the top of the sonic is set equal the checkshot time at that level. (The adjusted sonic log is the drift corrected sonic log.)
- 6. Drift=shot time-raw sonic : the check shot time minus the raw integrated sonic time.

- 7. Residual=shot time-adj sonic : the check shot time minus the adjusted integrated sonic time. This is the difference between calculated drift and the imposed drift.
- 8. Adjusted interval velocity : the interval velocity calculated from the integrated adjusted sonic time at each level.

A5 Time Converted Velocity Report

The data in this listing has been resampled in time.

- 1. Two way travel time from SRD : This is the index for the data in this listing. The first value is at SRD (0 millisecs) and the sampling rate is 2 millisecs.
- 2. Measured depth from KB : the depth from KB at each corresponding value of two way time.
- 3. Vertical depth from SRD : the vertical depth from SRD at each corresponding value of two way time.
- 4. Average velocity SRD to GEO : the vertical depth from SRD divided by half the two way time.
- 5. RMS velocity : the root mean square velocity from datum to the corresponding value of two way time.

$$v_{rms} = \sqrt{\Sigma_1^n v_i^2 t_i} / \Sigma_1^n t_i$$

where v_i is the velocity between each 2 millisecs interval.

6. First normal moveout : the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 3000 feet).

$$\Delta t = \sqrt{t^2 + \left(\frac{X}{v_{rms}}\right)^2} - t$$

where:

 Δt = normal moveout (secs) X = moveout distance (meters) t = two way time (secs) v_{rms} = rms velocity (meters /sec)

- 7. Second normal moveout : the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 4500 feet).
- 8. Third normal moveout : the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 6000 feet).
- 9. Interval velocity : the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.

		RAW DEPT	TH 120.0 120.0 120.0 120.0 120.0 120.0 121.0 1011.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1216.0 1217.0 1477.0 1542.0 1727.0
		TRANSIT TIME	
		LEVEL N	0 488840885648840 488410885648840
		0.000	
		0.100	
		0.200	0.200
	K 1	0.300	
LDCAT	AMBERJACK	0.400	
FIELD = WIL WELL = AMB		0.500	
	ELL	0.600	0.600
	W	0.700	
		0.800	
		0.900	
EIG 3	[1.000 S	

CLIENT = BHP PETROLEUM

P

ł

ł

PE905424

This is an enclosure indicator page. The enclosure PE905424 is enclosed within the container PE902075 at this location in this document.

The enclosure PE905424 has the following characteristics: ITEM_BARCODE = PE905424 CONTAINER_BARCODE = PE902075 NAME = Amberjack 1 Schlumerger tape listing airgun report BASIN = GIPPSLAND PERMIT = VIC/P25 TYPE = WELLSUBTYPE = REPORT DESCRIPTION = Amberjack 1 Schlumberger tape listing airgun report REMARKS = DATE_CREATED = 4/06/90DATE_RECEIVED = 24/10/90W_NO = W1029 WELL_NAME = Amberjack-1 CONTRACTOR = Schlumberger CLIENT_OP_CO = BHP Petroleum Pty Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

ANALYST: Z.KATELIS

4-JUN-90 10:20:01 PROGRAM: GDRIFT 007.E09

~

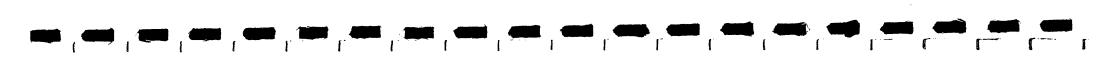
.

DRIFT COMPUTATION REPORT

COMPANY :	BHP PETROLEUM
WELL :	AMBERJACK #1
FIELD :	WILDCAT
CCUNTRY :	AUSTRALIA
REFERENCE:	SYJ-56592

0

0


COMPANY : BHP PETROLEUM WELL : AMBERJA	к #1
--	------

LONG DEFINITIONS

GLOBAL KВ - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL SRD - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL 2K9 - ELEVATION OF KELLY BUSHING - ELEVATION OF USERS REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD GL XSTART - TOP OF ZONE PROCESSED BY WST XSTOP - BOTTOM OF ZONE PROCESSED BY WST SADOO1 - RAW SONIC CHANNEL NAME USED FOR WST SONIC ADJUSTMENT JNFDEN - UNIFORM DENSITY VALUE ZONE LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; D=UNIFORM; 1=UNIFORM+LAYER LAYDEN - USER SUPPLIED DENSITY DATA SAMPLED SHOT - SHOT NUMBER DKB - MEASURED DEPTH FROM KELLY-BUSHING DSRD - DEPTH FROM SRD - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USERS REFERENCE) DGL - SHOT TIME (WST) - RAW SONIC (WST) SHTM RAWS - DRIFT AT SHOT OR KNEE SHDR **JLSH** - BLOCK SHIFT BETWEEN SHOTS OR KNEE

(GLOBAL PARAMETERS)	(VALUE)
ELEV OF KB AB. MSL (WST) KB	21.0000 M
ELEV OF SRD AB. MSL(WST) SRD	0 M
ELEVATION OF KELLY BUSHI EKB	-37.0000 M
ELEV OF GL AB. SRD(WST) GL	0 M
TOP CF ZONE PROCD (WST) XSTART	0 M
BOT OF ZONE PROCD (WST) XSTOP	0 M
RAW SONIC CH NAME (WST) GADOO1	0 T.ATT.002.FLP.*
UNIFORM DENSITY VALUE UNFDEN	2.30C00 G/C3
(ZONED PARAMETERS)	(VALUE) (LIMITS)
LAYER CPTION FLAG DENS LOFDEN	: 1.000C00 30479.7 -
USER SUFPLIED DENSITY DA LAYDEN	: 0 G/c3 0 -

OMPANY : BHP	PETROLEUM		WELL	: AMBERJAC	:K #1		PAGE
L SVEL Number	MEASURED DEPTH FROM KB M	VERTICAL DEPTH FROM SRD M	VERTICAL DEPTH FROM GL M	VERTICAL TRAVEL TIME SRD/GEO MS	INTEGRATED RAW SONIC TIME MS	COMPUTED DRIFT AT LEVEL MS	COMPU BLK-S Correc US/
1	58.00	37.00	0	25.00	25.00	0	
2	120.00	99.00	62.00	59.36	59.36	0	
3	203.00	182.00	145.00	103.08	103.03	0	
4	300.00	279.00	242.00	148.15	146.49	1.66	
5	398.00	377.00	340.00	187.72	185.18	2.54	
6	463.00	442.00	405.00	216.39	210.59	5.80	1
7	547.00	526.00	489.00	250.06	243.57	6.49	
8	627.00	606.00	569.00	282.07	274.79	7.27	
9	706.00	685.00	648.00	313.25	306.72	6.53	-
10	797.00	776.00	739.00	343.82	336.75	7.07	
11	904.00	883.00	846.00	378.19	369.81	8.33	
12	1011.00	990.00	953.00	416.34	407.14	9.20	
13	1076.00	1055.00	1018.00	440.06	430.88	9.19	
14	1160.00	1139.00	1102.00	472.39	462.43	9.96	
15	1216.00	1195.00	1158.00	496.20	485.13	11.08	
16	1269.50	1248.50	1211.50	515.52	504.38	11.14	
17	1340.00	1319.00	1232.00	540.13	528.91	11.22	
18	1407.00	1386.00	1349.00	563.45	552.03	11.37	
19	1474.00	1453.00	1416.00	586.26	573.25	13.01	
20	1542.00	1521.00	1484.00	608.07	595.89	12.18	-
21	1640.00	1619.00	1582.00	638.89	624.92	13.97	

ANALYST: Z.KATELIS

4-JUN-90 11:04:39 PROGRAM: GADJST 008.508

SONIC ADJUSTMENT PARAMETER REPORT

£

COMPANY : BHP PETROLEUM WELL : AMBERJACK #1 FIELD : WILDCAT COUNTRY : AUSTRALIA REFERENCE: SYJ-56592

COMPANY : BHP PETROLEU	м	WELL	: AMBERJACK #1	PAGE 1
LONG DEFINITIONS				
GLOBAL SRCDRF - ORIGIN OF ADJUS CONADJ - CONSTANT ADJUST JNERTH - UNIFORM EARTH V	MENT TO AUTOMA		NIMUM = 7.5 US/F	
ZONE ZDRIFT - USER DRIFT AT B ADJOPZ - TYPE OF ADJUSTM ADJUSZ - DELTA-T MINIMUM LOFVEL - LAYER OPTION FL LAYVEL - USER SUPPLIED V	NENT IN THE DE USED FOR ADJU AG FOR VELOCI	RIFT ZONE : O=D USTMENT IN THE	ELTA-T MIN, 1=BLOCKSHIFT DRIFT ZONE UNIFORM; 1=UNIFORM+LAYER	
SAMPLED SHOT - SHOT NUMBER VDKB - VERTICAL DEPTH DSRD - DEPTH FROM SRD DGL - VERTICAL DEPTH KNEE - KNEE BLSH - BLOCK SHIFT BET DTMI - VALUE OF DELTA- COEF - DELTA-T MIN COE DRGR - GRADIENT OF DRI	RELATIVE TO G WEEN SHOTS OR T MINIMUM USEN FFICIENT USED	RCUND LEVEL (US KNEE D		
(GLOBAL PARAMETERS)		(VALUE)		
ORIG OF ADJ DATA (WST) Cons sonic adjst (WST) JNIFCR™ EARTH VELOCITY	SRCDRF CONADJ UNERTH	2.00000 7.50000 US/ 1480.00 M/S		
(ZONED PARAMETERS)		(VALUE)	(LIMITS)	
USER DRIFT ZONE (WST)	ZDRIFT	: 13.00000 MS 12.00000 11.08000 8.400000 5.800000	1727.00 - 1506.00 1506.00 1215.20 1215.20 908.800 908.800 470.000 470.000 203.000 203.000 0	
ADJUSMNT MODE (WST) USER DELTA-T MIN (WST) LAYER OPTION FLAG VELOC JSER VELOC (WST)	ADJUSZ LOFVEL	-999.2500 -999.2500 US/ 1.000000 1899.000 M/S 1804.000 1480.000	304797 - 0 F 304797 - 0 304797 - 0	

OMPANY :	BHP PETROLE	: UM	WE	ELL :	AMBERJACK #1			PAGE 2	
KNEE NUMBER	VERTICAL DEPTH	VERTICAL DEPTH	VERTICAL DEPTH	DRIFT AT	BLOCKSHIFT	DELTA-T MINIMUM	REDUCTION FACTOR	EQUIVALENT	
	FROM Ka	FROM	FROM	KNEE	USED	USED	G	BLOCKSHIFT	
	M	М	GĹ M	MS	US/F	US/F		US/F	
2	203.00	182.00	145.00	0				0	
3	470.00	449.00	412.00	5.80	6.62			6.62	
4	908.80	887.80	850.80	8.40	1-81			1.81	
5	1215.20	1194.20	1157.20	11.08	2.67			2.67	
6	1506.00	1485.00	1448.00	12.00	. 96			.96	
7		1706.00	1669.00	13.00	1.33			1.38	

1 --r r

ANALYST: Z.KATELIS

4-JUN-90 11:04:49 PROGRAM: GADJST 008.E03

COMPANY :		BHP PETROLEUM
WELL :	}	AMBERJACK #1
FIELD :	2	WILDCAT
CCUNTRY :	1	AUSTRALIA
REFERENCE:		syj - 56592

LONG DEFINITIONS

EKE	- ELEVATION OF THE S - ELEVATION OF KELLY	BUSHING REFERENCE (GENE	VE MSL OR MWL Datum above msl Rally ground leve	
LO FVEL LAYVEL	ZONE - LAYER OPTION FLAG - JSER SUPPLIED VELO	FOR VELOCITY: -1 CITY DATA	=NONE; O=UNIFORM;	1 = UNIFORM+LAYER
DK8 DSRD DGL SHTJS SHDR SHDR REST	- DRIFT AT SHOT OR K	ATIVE TO GROUND VEL TIME NEE MF AT KNEE	LEVEL (USERS REFE	RENCE)
(GLOB	AL PARAMETERS)	۲V	ALUE)	
ELEV OF ELEVATI ELEV OF	SRD AB. MSL(WST) S ON CF KELLY BUSHI E GL AB. SRD(WST) G	RD : 21. KB : 21. L : -37.	0000 M 0000 M 0000 M 0000 M 0000 M/S	
(ZONE	D PARAMETERS)	CV	ALUE)	(LIMITS)
LAYER OF JSER VE		FVEL : 1.000 YVEL : 1899 1804 1480	.000 M/S 203.00	00 - 120.000 00 - 58.0000

1	Г	1				- Cone	way time.		r -	FFF
COMP	ANY	: вн	P PETROL	EUM 1 CS	le I	IELL TIME: A	MBERJACK #	1		PAGE / 4 / 4 / 1
	5.V.5.					V				V note Achuster
	EVEL MBER	កា	EASURED DEPTH	VERTICAL DEPTH	VERTICAL DEPTH	TRAVEL	INTEGRATED ADJUSTED	DRIFT =	RESIDUAL =	ADJUSTED GOUL COUNT
			FROM K3 M	FROM	FROM	TIME SRD/GEOPH	SONIC TIME	SHOT TIME - RAW SON	SHOT TIME - ADJ SON	VELOCITY
			in.	M	М	MS	MS	MS	MS	M/S
	22	1	58.00	37.00	0	25.00	25.00	0	0	1480
		2	120.00	99.00	62.00	59.36	59.36	0	С	1804
	č.	3	203.00	182.00	145.00	103.08	103.07	0	0	1899
	1	4	300.00	279.00	242.00	148.15	148.53	1.66	43	2132
		5	398.00	377.00	340.00	187.72	189.40	2.54	-1.68	2401
		6	463.00	442.00	405.00	216.39	216.22	5.80	.17	2423
		7	547.00	526.00	489.00	250.06	249.81	6.49	.25	2501
		8	627.00	606.00	569.00	282.07	281.50	7.27	. 56	2524
		9	706.00	685.00	648.00	313.25	313.90	6.53	65	2439
	1	D	797.00	776.00	739.00	343.82	344.47	7.07	65	2976
	1	1	904.00	883.00	846.00	378.19	378.16	8.38	.03	3176
	1	2	1011.00	990.00	953.00	416.34	416.41	9.20	07	2797
	1	3	1076.00	1055.00	1018.00	440.06	440.72	9.19	- .60	2674
	1	4	1160.00	1139.00	1102.00	472.39	473.01	9.96	62	2602
1	1	5	1216.00	1195.00	1158.00	496.20	496.19	11.03	.01	2416
	1	6	1269.50	1248.50	1211.50	515.52	515.61	11.14	09	2755
	1	7	1340.00	1319.00	1282.00	540.13	540.36	11.22	23	2848
	1	8	1407.00	1386.00	1349.00	563.45	563.74	11.37	30	2866
	1	9	1474.00	1453.00	1416.00	586.26	585.13	13.01	1.13	3133
	2	C	1542.00	1521.00	1484.00	608.07	608.03	12.18	. 04	2969
<u> </u>	/ 2	1	1640.00	1619.00	1582.00	638.89	637.50	13.97	1.38	3325
ţ	2	2	1727.00	1706.00	1669.00	662.28	664.09	11.16	-1.81	3272

_ ·

ANALYST: Z.KATELIS	4-JUN-90 11:06:29	PROGRAM: GTRFRM DD1.E12

TIME CONVERTED VELOCITY REPORT

COMPANY :	BHP PETROLEUM
WELL :	AMBERJACK #1
FIELD :	WILDCAT
CCUNTRY :	AUSTRALIA
REFERENCE:	SYJ-56592

COMPANY	(: BHP	PETROLEU	M	WELL	: AM	BERJACK #1		PAGE	1
	LONG DEF	INITIONS							
SRD - GL - UNERTH -	- ELEVATI	ON OF TH ON OF TH ON OF US EARTH V	E SEISMIC R ERS REFEREN ELOCITY (G	HING ABOVE MS EFERENCE DATU CE (GENERALLY TRFRM)	M ABOVE M	ISL OR MWL Evel) Above	SRD		
NVODIS -	MATRI MOVE-OU		CE FROM BOR	EHOLE					
LAYVEL -	- USER SU - LAYER O	PPLIED V PTION FL	ELOCITY DAT	CITY: -1=NONE A ITY : -1=NONE					
DK9 DSRD AVGV RMSV MVOT MVOT VVOT	- MEASURE - DEPTH F - AVERAGE - ROOT ME - NORMAL - NORMAL - NORMAL	TRAVEL D DEPTH ROM SRD SEISMIC AN SQUAR MOVE-OUT MOVE-OUT MOVE-OUT	FROM KELLY- Velocity E velocity		ISMIC REF	ERENCE)			
(GLOBA	AL PARAME	TERS)		(VALUE)					
ELEV OF ELEV OF JNIFCRM	KE AB. N SRD AB. GL AB. S EARTH VE DENSITY	MSL(WST) RD(WST) LOCITY		21.0000 0 -37.0000 1480.00 2.30000	M M M / S G / C 3				

MVOUT DIST M

1 1000.0 2 1500.0 3 2000.0

COMPANY : BHP PETROLEUM		WELL : AMBERJACK #1	PAGE 2
(ZONED PARAMETERS)		(VALUE) (LIMITS)	
	LOFVEL LAYVEL	: 1.000000 30479.7 - 0 : 1899.000 M/S 203.000 - 120.000 1804.000 120.000 58.000C	
LAYER OPTION FLAG DENS JSER SUPPLIED DENSITY DA	LOFDEN LAYDEN	1480-000 58-0000 0 : 1.000000 30479.7 - 0 : 0 G/C3 0 - 0	

		ſ								r 📖	r in the second s	[[•••	(***)	ſ	,	r
COMPA	NY :	внр	PETROL	EUM		1	WELL	: A	MBERJ	ACK #1			P	AGE	3		

ρ	A	6	F	3
		•	1	_

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERV VELOCI
MS	M	M	M/S	M/S	MS	MS	MS	M/S
٥	21.00	0						14
2.00	22.48	1.48	1480	1480	673.68	1011.52	1349.35	14
4.00	23.96	2.96	1480	1430	671.69	1009.52	1347.36	14
6.00	25.44	4.44	1480	1480	669.70	1007.53	1345.36	14
8.00	26.92	5.92	1480	1480	667.72	1005.55	1343.38	14
10.00	28.40	7.40	1480	1480	665.75	1003.56	1341.39	14
12.00	29.83	8.88	1480	1480	663.78	1001.58	1339.40	14
14.00	31.36	10.36	1480	1480	661.82	999.61	1337.42	14
16.00	32.84	11.84	1480	1480	659.87	997.64	1335.45	14
13.00	34.32	13.32	1480	1480	657.92	995.67	1333.47	14
20.00	35.80	14.80	1480	1480	655.97	993.71	1331.50	14
22.00	37.28	16.28	1480	1480	654.03	991.75	1329.53	14
24.00	38.76	17.76	1480	1480	652.10	989.80	1327.56	14
26 . CO	40.24	19_24	1480	1480	650.18	987.85	1325.60	14
28 . CO	41.72	20.72	1480	1480	648.26	985.90	1323.64	14
30.00	43.20	22.20	1480	1480	646.34	983.96	1321.68	14
32.00	44.63	23.68	1480	1480	644.43	982.02	1319.73	14
34.00	46.16	25.16	1480	1480	642.53	980.08	1317.78	14
36.00	47.64	26.54	1480	1480	640.63	978.15	1315.83	14
38.00	49.12	28.12	1480	1480	638.74	976.23	1313.89	14
40.00	50.60	29.60	1480	1480	636.86	974.30	1311.94	14
42.00	52.08	31.08	1480	1480	634.98	972.38	1310.00	14
44.00	53.56	32.56	1480	1480	633.11	970_47	1308.07	14
46.00	55.04	34.04	1480	1480	631.24	968.56	1306.13	14

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	4
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEDUT	INTERVAL VELOCITY	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
48.00	56.52	35.52	1480	1480	629.38	966.65	1304.20	1480	
50.00	58.03	37.03	1481	1481	627.04	964.03	1301.32	1506	
52.00	59.83	38.83	1493	1495	619.01	952.84	1287.00	1804	
54.00	61.63	40.63	1505	1507	611.60	942.57	1273.91	1304	
56.00	63.44	42.44	1516	1519	604.71	933.09	1261.87	1804	
58.00	65.24	44.24	1526	1530	598.29	924.30	1250.73	1804	
60.00	67.05	46.05	1535	1540	592.27	916.10	1240.39	1804	
62.00	68.85	47.85	1544	1549	586.60	908.42	1230.74	1804	
64.00	70.66	49.66	1552	1558	581.24	901.21	1221.70	1804	
66.00	72.46	51.46	1559	1566	576.15	894.40	1213.21	1804	
68.00	74.26	53.26	1567	1573	571.32	887.96	1205.20	1304	
70.00	76.07	55.07	1573	1580	566.71	881.85	1197.63	1804	
72.00	77.87	56.87	1580	1587	562.29	876.03	1190.44	1804	
74.00	79 .63	58.68	1586	1593	558.06	870.47	1183.61	1804	
76.00	81.43	60.48	1592	1599	553.99	865.16	1177.09	1804	
78.00	83.29	62.29	1597	1 60 5	550.07	860.07	1170.86	1804	
80.00	85.09	64.09	1602	1610	546.29	855.17	1164.90	1804	
82.00	86.89	65.89	1607	1615	542.64	850.46	1159.18	1804	
84.00	38.70	67.70	1612	1620	539.10	845.92	1153.67	1804	
86.00	90.50	69.50	1616	1624	535.66	841.53	1148.37	1804	
88.00	92.31	71.31	1621	1629	532.33	837.28	1143.26	1804	
90.00	94.11	73.11	1625	1633	529.09	833.16	1138.32	1804	
92.00	95.92	74.92	1629	1637	525.93	829.17	1133.54	1804	
94.00	97.72	76.72	1632	1640	522.85	825_29	1128.91	1804	

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	5
TWO-WAY TRAVEL TIME FRCM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
96.00	99.52	78.52	1636	1644	519.85	821.51	1124.42	1804	
98.CO	101.33	80.33	1639	1647	516.91	817.83	1120.05	1304	
100.00	103.13	82.13	1643	1651	514.04	814.25	1115.80	1804	
102.00	104.94	83.94	1646	1654	511.23	810.75	1111.67	1804	
104.00	106.74	85.74	1649	1657	508.43	807.33	1107.64	1804	
106.00	108.55	87.55	1652	1660	505.78	803.99	1103.71	1804	
103.00	110.35	89.35	1655	1662	503.13	800.71	1099.87	1804	
110.00	112.15	91.15	1657	1665	500.54	797.51	1096.12	1804	
112.00	113.96	92.96	1660	1668	497.98	794.37	1092.45	1304	
114.00	115.76	94.76	1663	1670	495.48	791.29	1088.35	1804	
116.00	117.57	96.57	1665	1673	493.01	788.26	1085.33	1804	
113.00	119.37	98.37	1667	1675	490.58	735.29	1081.88	1804	
120.00	121.24	100.24	1671	1678	487.77	781.73	1077.64	1871	
122.00	123.14	102.14	1674	1682	484.84	777.97	1073.13	1899	
124.00	125.04	104.04	1678	1686	481.96	774.30	1068.74	1899	
126.00	126.94	105.94	1682	1690	479.14	770.71	1064.44	1899	
128.00	128.84	107.84	1685	1693	476.38	767.20	1060.25	1899	
130.00	130.74	109.74	1688	1696	473.66	763.75	1056.14	1899	
132.00	132.63	111.63	1691	1700	471.00	760.38	1052.13	1899	
134.00	134.53	113.53	1695	1703	468.33	757.06	1048.19	1897	
136.00	136.43	115.43	1598	1706	465_81	753.81	1044.34	1899	
138.00	138.33	117.33	1700	1709	463.28	750.62	1040.56	1899	
140.00	140.23	119.23	1703	1712	460.79	747.48	1036.85	1899	
142.00	142.13	121.13	1706	1714	458.34	744.40	1033.21	1899	

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJA	AUK #1		PAGE
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL Velocity
MS	M	M	M/S	M/S	MS	MS	MS	M/S
144.00	144.03	123.03	1709	1717	455.92	741.37	1029.64	1899
146.00	145.92	124.92	1711	1720	453.55	738.38	1026.13	1899
148.00	147.82	126.82	1714	1722	451.21	735.45	1022.67	1899
150.00	149.72	128.72	1716	1725	448.90	732.55	1019.28	1899
152.00	151.62	130.62	1719	1727	446.62	729.70	1015.94	1899
154.00	153.52	132.52	1721	1729	444.38	726.89	1012.65	1899
156.00	155.42	134.42	1723	1732	442.16	724.13	1009.41	1899
158.00	157.32	136.32	1726	1734	439.97	721.39	1006.22	1897
160.00	159.22	138.22	1728	1736	437.82	718.70	1003.07	1899
162.00	161.11	140.11	1720	1738	435.68	716.04	999.97	1899
164.00	163.01	142.01	1732	1750	433.58	713.41	996.91	1899
166.00	164.91	142.01	1732	1740	431.50	710.82	993.89	1899
168.00	165.81	145.81	1734	1742	429.44	708.26	990.91	1899
170.00	168.71	147.71	1738	1744				1899
172.00	170.61	147.71			427.41	705.73	987.97	1899
174.00			1740	1748	425.40	703.23	985.07	1899
	172.51	151.51	1741	1750	423.42	700.75	982.20	1899
176.00	174.41	153.41	1743	1751	421.45	698.31	979.36	1899
178.00	176.30	155.30	1745	1753	419.51	695.89	976.56	1899
180.00	178.20	157.20	1747	1755	417.59	693.50	973.79	1899
182.00	180.10	159.10	1748	1757	415.68	691.13	971.05	1899
184.00	182.00	161.00	1750	1758	413.80	688.78	968.34	1899
186.00	183.90	162.90	1752	1760	411.94	636.46	965.66	1899
188.00	185.80	164.80	1753	1761	410.09	684.17	963.01	1899

CMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE 7	
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL Velocity	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
192.00	139.59	168.59	1756	1764	406.45	679.64	957.78	1899	
194.00	191.49	170.49	1758	1766	404.66	677.41	955.21	1899	
196.00	193.39	172.39	1759	1767	402.89	675.19	952.66	1899	
198.00	195.29	174.29	1761	1768	401.13	673.00	950.13	1899	
200.00	197.19	176.19	1762	1770	399.39	670.83	947.63	1899	
202.00	199.09	178.09	1763	1771	397.66	658.67	945.15	1899	
204.00	200.99	179.99	1765	1772	395.95	666.54	942.69	1899	
206.00	202.89	181.89	1766	1774	394.25	664.42	940.25	1899	
208.00	204.77	183.77	1767	1775	392.62	662.41	937.95	1881	
210.00	206.74	185.74	1769	1777	390.73	659.97	935.08	1972	
212.00	208.66	187.66	1770	1778	389.02	657.82	932.59	1919	
214.00	210.71	189.71	1773	1781	386.91	655.03	929.23	2054	
216.00	212.77	191.77	1776	1784	384.80	652.24	925.88	2062	
218.00	214.86	193.86	1778	1787	382.65	649.39	922.42	2083	
220.00	216.95	195.95	1781	1790	380.50	646.52	918.95	2093	
222.00	219.02	198.02	1784	1792	378.46	643.82	915.70	2066	
224.00	221.09	200.09	1787	1795	376.41	641.10	912.42	2077	
225.00	223.18	202.18	1789	1793	374.36	638.37	909.13	2086	
228.00	225.26	204.26	1792	1801	372.34	635.68	905.88	2087	
230.00	227.36	206.36	1794	1803	370.30	632.96	902.59	2099	
232.00	229.39	208.39	1796	1805	368.50	630.60	899.79	2023	
234.00	231.41	210.41	1798	1807	366.72	628.26	897.01	2024	
236.00	233.55	212.55	1301	1810	364.65	625.47	893.62	2135	

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	8
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL Velocity	
MS	M	M	M/S	M/S	MIS	MS	MS	M/S	
240.00	237.71	216.71	1806	1815	360.89	620.46	837.59	2063	
242.00	239.80	218.80	1808	1818	359.00	617.94	884.55	2095	
244.00	241.91	220.91	1811	1820	357.09	615.37	831.44	2112	
246.00	244.05	223.05	1813	1823	355.14	612.74	878.24	2135	
248.00	246.20	225.20	1816	1826	353.18	610.08	875.00	2149	
250.00	248.30	227.30	1818	1 82 8	351.35	607.62	872.04	2107	
252.00	250.45	229.45	1821	1831	349.43	605.02	868.88	2143	
254.00	252.55	231.55	1823	1833	347.68	602.67	866.05	2093	
256.00	254.66	233.66	1825	1836	345.89	600.27	863.15	2112	
258.00	256.80	235.80	1828	1838	344.06	597.79	860.13	2140	
260.00	258.89	237.89	1830	1840	342.36	595.51	857.39	2094	
262.00	260.99	239.99	1832	1843	340.67	593.23	854.65	2093	
264.00	263.12	242.12	1834	1845	338.93	590.88	851.80	2125	
266.00	265.30	244.30	1837	1843	337.07	588.32		2187	
268.00	267.52	246.52	1840	1851	335.15	585.67	848.68	2222	
270.00	269.75	248.75	1843	1854	333.24		845.41	2226	
272.00	271.93	250.93	1845	1856	331.46	583.03	842.17	2133	
274.00	274.20	253.20	1848	1860		580.57	839.17	2266	
276.00	276.41	255.41	1851	1863	329.50	577.85	835.79	2212	
278.00	278.61	257.61	1853		327.70	575.35	832.73	2200	
280.00	280.78	259.73		1865	325.94	572.92	829.75	2169	
282.00	283.03	262.03	1856	1863	324.26	570.62	826.95	2251	
284.00	285.27		1858	1871	322.43	568.06	823.80	2241	
286.00	237.54	264.27	1861	1873	320.65	565.57	820.72	2263	
200.00	ζυί _θ 34	266.54	1864	1876	318.83	563.04	817.59		

328.00

330.00

332.00

334.00

334.94

337.31

339.59

341.99

313.94

316.31

318.59

320.99

1914

1917

1919

1922

8-		8 8	6 ÷		•	• •				-
C	OMPANY :	SHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	9
	TWO-WAY TRAVEL TIME	MEA SURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL Velocity	
	FRÓM SRD MS	KB M	S R D M	M/S	M/S	MS	MS	MS	M/S	
		200 76	2 4 9 7 5	4977	4970	747 45		01/ 77	2213	
	288.00	289.75	268.75	1866	1879	317.15	560.69	814.72	2217	
	290.00	291.97	270.97	1869	1881	315.47	558.36	811.85	2276	
	292.00	294.24	273.24	1872	1884	313.69	555.86	808.76	2209	
	294.00	296.45	275.45	1874	1887	312.07	553.60	805.99	2243	
	296.00	298.70	277.70	1876	1889	310.40	551.26	803.11	2250	
	298.00	300.94	279.94	1879	1892	308.73	548.92	800.22	2332	
	300.00	303.28	282.28	1382	1895	306.93	546.35	797.02		
	302.00	305.57	284.57	1885	1898	305.21	543.92	794.00	2296	
	304.00	307.80	286.80	1887	1901	303.64	541.72	791.30	2228	
	306.00	310.00	289.00	1889	1903	302.14	539.62	738.73	2202	
	308.00	312.22	291.22	1891	1905	300.62	537.50	786.12	2216	
	310.00	314.50	293.50	1894	1 90 8	299.00	535.20	783.27	2284	
	312.00	316.75	295.75	1896	1910	297.46	533.02	780.58	2251	
	314.00	318.95	297.95	1898	1912	296.02	531.01	778.12	2196	
	315.00	321.11	300.11	1899	1914	294.66	529.11	775.80	2166	
	312.00	323.31	302.31	1901	1916	293.25	527.14	773.39	2195	
	320.00	325.58	304.58	1904	1918	291.74	524.98	770.73	2268	
									2339	
	322.00	327.92	306.92	1906	1921	290.11	522.65	767.81	2366	
	324.00	330.28	309.28	1909	1924	288.46	520.26	764.82	2308	
	326.00	332.59	311.59	1912	1927	286.93	518.07	762.03	22/2	

1929

1932

1935

1938

285.36

283.75

282.31

230.71

515.80

513.46

511.39

509.06

759.24

756.30

753.74

750.80

2343

2376

2283

COMPANY :	SHP PETRO	LEUM		WELL	: AMBERJ.	ACK #1		PAGE	10
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KƏ	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL Vēlocity	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
336.00	344.41	323.41	1925	1941	279.07	506.67	747.78	2421	
338.00	346.83	325.88	1928	1945	277.37	504.16	744.59	2476	
340.00	349.36	328.36	1932	1948	275.70	501.69	741.45	2471	
342.00	351.87	330.87	1935	1952	273.98	499.15	738.21	2510	
344.00	354.27	333.27	1938	1955	272.47	496.92	735.40	2400	
346.00	356.63	335.63	1940	1957	271.02	494.81	732.75	2365	
348.00	359.05	338.05	1943	1960	269.50	492.57	729.93	2420	
350.00	361.50	340.50	1946	1964	267.96	490.29	727.03	2449	
352.00	364.00	343.00	1949	1967	266.36	437.91	723.99	2500	
354.00	365.54	345.54	1952	1971	264.72	485.45	720.85	2536	
356.00	369.12	348.12	1956	1975	263.03	482.91	717.58	2585	
358.00	371.65	350.65	1959	1978	261.44	480.54	714.55	2527	
360.00	374.22	353.22	1962	1982	259.82	478.09	711.40	2571	
362.00	376.84	355.84	1966	1986	258.13	475.53	708.11	2623	
364.00	379.35	358.35	1969	1989	256.64	473.29	705.24	2503	
366.00	381.95	360.95	1972	1993	255.03	470.86	702.11	2597	
368.00	384.57	363.57	1976	1997	253.41	468.39	698.92	2625	
370.00	387.17	366.17	1979	2001	251.84	466.02	695.86	2596	
372.00	389.66	368.66	1982	2004	250.45	463.93	693.20	2485	
374.00	392.13	371.13	1985	2007	249.09	461.88	690.58	2475	
376.00	394.63	373.63	1987	2009	247.72	459.81	637.94	2495	
378.00	397.09	376.09	1990	2012	246.40	457.83	635.41	2462	
380.00	399.34	378.34	1991	2014	245.35	456.29	633.50	2256	
332.00	401.74	380.74	1993	2016	244.14	454.48	631.21	2395	

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PA
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL Velocity
MS	K B M	Ň	M/S	M/S	MS	MS	MS	M/S
384.00	404.21	383,21	1996	2018	242.85	452.53	678.72	2472
336.00	406.68	385.68	1998	2021	241.57	450.61	676.26	2468
388.00	409.14	388.14	2001	2023	240.32	448.71	673.83	2465
390.CO	411.60	390.60	2003	2026	239.08	446.83	671.44	2461
392.00	414.06	393.06	2005	2028	237.85	444.98	669.07	2458
394.00	416.52	395.52	2008	2031	236.65	443.15	666.74	2454
396.00	418.97	397.97	2010	2033	235.46	441.34	664.43	2451
398.00	421.41	400.41	2012	2035	234.28	439.56	662.15	2447
400.00	423.86	402.86	2014	2038	233.13	437.80	659.90	2444
402.00	426.30	405.30	2016	2040	231.98	436.06	657.68	2441
404.00	428.74	407.74	2018	2042	230.85	434.34	655.48	2437
406.00	431.17	410.17	2021	2044	229.74	432.64	653.31	2434
408.00	433.60	412.60	2023	2046	228.63	430.96	651.16	2430
410.00	436.03	415.03	2025	2043	227.55	429.30	649.04	2427
412.00	438.45	417_45	2026	2050	226.47	427.66	646.94	2424
414.00	440.87	419.87	2028	2052	225.41	426.04	644.87	2420
416.00	443.29	422.29	2030	2054	224.37	424.44	642.82	2417
418.00	445.70	424.70	2032	2056	223.33	422.85	640.79	2414
420.00	448.11	427.11	2034	2058	222.31	421.28	638.79	2411
422.00	450.52	429.52	2036	2060	221.30	419.73	636.81	2407
424.00	452.92	431.92	2037	2061	220.30	418.20	634.85	2404
425.00	455.33	434.33	2039	2063	219.31	416.68	632.91	2401
428.00	457.72	436.72	2041	2065	218.34	415.18	630.99	2398
430.00	460.12	439.12	2042	2065	217.37	413.70	629.09	2394

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1 ,		PAGE 12
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL Velocity
MS	Ň	M	M/S	M/S	MS	MS	MS	M/S
432.00	462.51	441.51	2044	2068	216.42	412.23	627.21	2391
434.00	464.90	443.90	2044	2000	215.48	410.78	625.35	2383
436.00	467.36	446.36	2048	2072	214.48	409.22	623.33	2461
438.00	469.79	448.79	2048	2072	213.51			2428
440.00	472.33	451.33	2047	2075	212.46	407.72	621.41	2539
442.00	474.76	453.76	2053	2077		406.06	619.24	2435
444.00	477.25	456.25	2055	2077	211.50 210.51	404.58	617.33	2487
445.00	479.77	458.77	2055			403.02	615.31	2522
448.00	482.39	451.39		2082	209.50	401.43	613.23	2624
450.00	484.88		2060	2084	208.40	399.68	610.93	2486
		463.88	2062	2086	207.44	398.17	608.97	2521
452.00	487.40	466.40	2064	2089	206.46	396.61	606.94	2521
454.00	489.92	468.92	2066	2091	205.48	395.07	604.92	2560
455.00	492.48	471.48	2068	2093	204.48	393.48	602.84	2730
458.00	495.21	474.21	2071	2096	203.34	391.63	600.38	2905
460.00	498.12	477.12	2074	2100	202.04	389.51	597.54	2701
462.00	500.82	479.82	2077	2103	200.95	387.75	595.20	2736
464.00	503.55	482.55	2080	2106	199.84	385.95	592.80	2566
466.00	506.12	485.12	2082	2109	198.88	384.42	590.80	2537
468.00	508.66	487.66	2084	2111	197.97	382.95	588.87	2265
470.00	510.92	489.92	2085	2111	197.26	381.86	587.48	2583
472.00	513.51	492.51	2087	2114	196.32	380.34	585.47	2672
474.00	516.18	495.18	2089	2116	195.31	378.70	533.30	2487

WELL : AMBERJACK #1

INTERVAL Velocity	THIRD NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MOVEDUT	RMS Velocity	AVERAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM SRD	MEA SURED DEPTH FROM KB	TWO-WAY TRAVEL TIME FROM SRD
M/S	MS	MS	MS	M/S	M/S	M	M	MS
2472	577.90	374.59	192.75	2121	2095	502.70	523.70	480.00
2293	576.51	373.51	192.06	2122	2095	504.99	525.99	482.00
2375	574.99	372.33	191.32	2123	2097	507.36	528.36	484.00
2396	573.44	371.14	190.57	2125	2093	509.76	530.76	486.00
2363	571.94	369.99	189.85	2126	2099	512.13	533.13	488.00
2639	569.94	368.49	138.93	2128	2101	514.77	535.77	490.00
2503	568.22	367.18	188.12	2130	2103	517.27	538.27	492.00
2203	567.03	366.24	187.52	2130	2103	519.47	540.47	494.00
2607	565.13	364.82	186.65	2132	2105	522.08	543.08	496.CO
2262	563.86	363.83	136.02	2133	2106	524.34	545.34	498.00
2212	562.67	362.90	185.43	2133	2106	526.56	547.56	500.00
2686	560.65	361.39	184.52	2135	2109	529.24	550.24	502.00
2667	558.68	359.92	183.63	2138	2111	531.91	552.91	504.00
2689	556.69	353.44	182.73	2140	2113	534.60	555.60	506.00
2451	555.14	357.26	182.01	2142	2114	537.05	558.05	508.00
2680	553.19	355.81	181.13	2144	2117	539.73	560.73	510.00
2772	551.08	354.25	180.20	2147	2119	542.50	563.50	512.00
2691	549.14	352.81	179.33	2149	2121	545.19	566.19	514.00
2844	546.92	351.18	178.36	2152	2124	548.04	569.04	516.00
2795	544.82	349.63	177.44	2155	2127	550.83	571.83	518.00
2912	542.51	347.94	176.44	2158	2130	553.74	574.74	520.00
2926	540.20	346.25	175.45	2162	2133	556.67	577.67	522.00
2890	537.98	344.63	174.49	2165	2136	559.56	580.56	524.00
2538	536.40	343.44	173.77	2167	2137	562.10	533.10	526.00

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	14
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL Velocity	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
528.00	585.57	564.57	2139	2168	173.10	342.35	534.94	2468	
530.00	587.91	566.91	2139	2169	172.52	341.39	533.68	2341	
532.00	590.26	569.26	2140	2169	171.93	340.42	532.41	2353	
534 <u>.</u> CO	592.41	571.41	2140	2169	171.45	339.66	531.44	2152	
536.00	594.65	573.65	2140	2170	170.93	338.82	530.35	2239	
538.00	597.07	576.07	2142	2171	170.31	337.80	528.99	2419	
540.00	599.48	578.48	2143	2171	169.70	336.79	527.66	2413	
542.00	601.89	580.89	2144	2172	169.09	335.79	526.33	2412	
544.00	604.32	583.32	2145	2173	168.49	334.79	524.99	2422	
546.00	606.62	585.62	2145	2174	167.95	333.90	523.83	2301	
548.00	609.00	588.00	2146	2175	167.37	332.95	522.57	2383	
550.00	611.42	590.42	2147	2176	166.78	331.96	521.25	2416	
552.00	613.82	592.82	2148	2176	166.19	330.99	519.96	2408	
554.00	616.12	595.12	2148	2177	165.67	330.14	518.84	2294	
556.00	618.52	597.52	2149	2178	165.10	329.19	517.57	2398	
558.00	620.93	599.93	2150	2179	164.53	328.22	516.28	2415	
560.00	623.26	602.26	2151	2179	164.00	327.35	515.12	2330	
562.00	625.79	604.79	2152	2181	163.36	326.28	513.68	2534	
564.00	628.30	607.30	2154	2182	162.75	325.24	512.28	2505	
566.00	630.82	609.82	2155	2183	162.13	324.20	510.86	2523	
568.00	633.53	612.53	2157	2185	161.41	322.97	509.18	2709	
570.00	636.17	615.17	2158	2187	160.74	321.82	507.61	2640	
572.00	638.82	617.82	2160	2189	160.07	320.66	506.03	2653	
574.00	641.20	620.20	2161	2189	159.55	319.79	504.86	2372	

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	15	
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVECUT	INTERVAL VELOCITY		
MS	M	M	M/S	M/S	MS	MS	MS	M/S		
576.00	643.60	622.60	2162	2190	159.01	318.89	503.65	2402		
578.00	645.81	624.81	2162	2190	158.57	318.16	502.69	2203		
580.00	648.37	627.37	2163	2192	157.96	317.12		2564		
582.00	650.79	629.79	2164	2192	157.43	316.22	501.27 500.06	2421		
584.00	653.57	632.57	2166	2195	156.71	314.97		2780		
586.00	656.10	635.10	2163	2196	156.14	313.99	498.33 496.99	2524		
588.00	658.83	637.83	2169	2198	155.46	312.81		2730		
590.00	661.36	640.36	2171	2199	154.89	311.83	495.37	2536		
592.00	663.96	642.96	2172	2201	154.29	310.80	494.03	2598		
594.00	665.64	645.64	2174	2203	153.65	309.69	492.61	2682		
596.00	668.81	647.81	2174	2202	153.25	309.03	491.08 490.22	2164		
598.00	671.17	650.17	2174	2203	152.78	308.23		2359		
600.00	673.51	652.51	2175	2203	152.31	307.43	489 .13 488.07	2346		
602.00	675.90	654.90	2176	2204	151.83	306.61		2383		
604.00	678.09	657.09	2176	2204	151.43	305.95	486.95 486.07	2192		
606 . CO	680.48	659.48	2177	2205	150.95	305.12	× 484.96	2394		
608.00	682.67	661.67	2177	2205	150.56	304.47	484.09	2184		
610.00	684.95	663.95	2177	2205	150.13	303.74	483.12	2283		
612.00	687.29	666.29	2177	2205	149.68	302.98	482.08	2341		
614.00	689.63	668.63	2178	2206	149.24	302.21	481.05	2337		
616.00	691.99	670.99	2179	2206	148.78	301.44	480.00	2359		
618.00	694.29	673.29	2179	2207	148.36	300.71	420.00	2299		
(20.00						500.11	917 O C	2222		

2411

620.00

622.00

696.57

698.98

675.57

677.98

2179

2180

2207

2207

147.94

147.48

300.01

299.20

478.07

OMPANY :	BHP PETRO			WELL	: AMBERJ.	ALK 71		P
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NOR MAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
624.00	701.35	680.35	2181	2208	147.03	298.42	475.91	2378
626.00	703.77	682.77	2181	2209	146.56	297.62	474.80	2420
628.00	706.35	685.35	2183	2210	146.03	296.69	473.52	2576
630.00	709.12	688.12	2185	2212	145.41	295.59	471.98	2771
632.00	712.08	691.08	2187	2215	144.71	294.34	470.20	2960
634.00	715.05	694.05	2189	2218	144.01	293.09	468.43	2966
636.00	717.64	696.64	2191	2219	143.49	292.17	467.16	2589
638.00	720.58	699.58	2193	2221	142.82	290.96	465.44	2944
640.00	723.47	702.47	2195	2224	142.17	289.81	463.80	2890
642.00	726.55	705.55	2198	2227	141.45	288.49	461.93	3075
644.00	729.39	708.39	2200	2229	140.84	287.40	460.38	2841
646.00	732.40	711.40	2202	2232	140.15	286.16	458.62	3016
648.00	735.29	714.29	2205	2234	139.53	285.05	457.04	2384
650.00	738.23	717.23	2207	2237	138.89	283.89	455.39	2945
652.00	741.24	720.24	2209	2240	138.23	282.69	453.67	3009
654.00	744.03	723.03	2211	2242	137.66	281_68	452.25	2790
656.00	747.12	726.12	2214	2245	136.97	280.43	450.45	3089
658.00	750.29	729.29	2217	2248	136.25	279.11	448.55	3172
660.00	753.50	732.50	2220	2252	135.52	277.77	446.62	3212
662.00	756.60	735.60	2222	2255	134.85	276.54	444.85	3097
664.00	759.56	738.56	2225	2257	134.24	275.45	443.23	2955
666.00	762.59	741.59	2227	2260	133.61	274.30	441.63	3033
668.00	765.79	744.79	2230	2263	132.91	273.01	439.77	3204
670.00	768.75	747.75	2232	2266	132.32	271.94	438.24	2952

COMPANY : BHP PETROLEUM	WELL	: AMBERJACK #1	PAGE 17

TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	MIS	MS	MS	MS	M/S
672.00	771.48	750.48	2234	2267	131.83	271.05	436.97	2739
674.00	774.74	753.74	2237	2 2 7 1	131.12	269.75	435.08	3252
676.00	777.86	756.86	2239	2274	130.48	268.57	433.38	3122
678.00	730.92	759.92	2242	2276	129.87	267.45	431.77	3063
680.00	784.08	763.08	2244	2280	129.23	266.26	430.04	3161
682.00	787.18	766.18	2247	2282	128.61	265.13	428.41	3099
634.00	790.00	769.00	2249	2284	128.11	264.22	427.11	2821
686.00	793.06	772.06	2251	2287	127.53	263.14	425.54	3058
688.00	795.74	774.74	2252	2288	127.09	262.34	424.40	268
690.00	798.77	777.77	2254	2290	126.52	261.30	422.90	302
692.00	801.92	780.92	2257	2293	125.91	260.17	421.26	315
694.00	805.08	784.08	2260	2296	125.31	259.05	419.62	315
696.00	808.29	787.29	2262	2300	124.68	257.89	417.93	321
698.00	811.48	790.48	2265	2 30 3	124.08	256.77	416.29	318
700.00	814.65	793.65	2268	2306	123.49	255.66	414.68	317
702.00	817.84	796.84	2270	2309	122.89	254.55	413.06	318
704.00	821.06	800.06	2273	2312	122.29	253.43	411.43	321
706.00	824.23	803.23	2275	2315	121.71	252.36	409.85	317
708.00	827.28	806.28	2278	2317	121.18	251.38	408.42	305
710.00	830.48	809.48	2230	2320	120.61	250.30	406.84	320
712.00	833.71	812.71	2283	2323	120.03	249.21	405.25	322
714.00	836.89	815.89	2285	2326	119.46	248.16	403.70	318
716.00	840.16	819.16	2288	2329	118.88	247.06	402.09	326
718.00	843.34	822.34	2291	2 3 3 2	118.33	246.03	400.58	317

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	18
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY	
MS	́М	M	M/S	M/S	MS	MS	MS	M/S	
720.00	846.57	825.57	2293	2335	117.77	244.97	399.02	3237	
722.00	849.61	828.61	2295	2337	117.28	244.05	397.63	3040	
724.00	852.69	831.69	2297	2339	116.78	243.12	396.31	3073	
726.00	855.80	834.80	2300	2342	116.27	242.17	394.92	3107	
728.00	858.96	837.95	2 3 0 2	2344	115.75	241.19	393.48	3162	
730.00	862.24	841.24	2305	2348	115.20	240.15	391.94	3276	
732.00	865.35	844.35	2307	2350	114.71	239.22	390.57	3111	
734.00	868.39	847.39	2309	2352	114.24	238.34	389.29	3041	
736.00	871.49	850.49	2311	2354	113.76	237.43	387.95	3102	
738.00	874.70	853.70	2314	2357	113.25	236.47	386.52	3205	
740.00	877.61	856.61	2315	2359	112.83	235.69	385.38	2913	
742.00	830.47	859.47	2317	2360	112.43	234.94	384.29	2861	
744.00	883.53	862.53	2319	2363	111.98	234.08	383.02	3062	
746.00	886.57	865.57	2321	2365	111.53	233.25	381.79	3039	
748.00	889.99	868.99	2323	2368	110.97	232.18	380.19	341ó	
750.00	893.48	872.48	2327	2372	110.39	231.07	378.53	3492	
752.00	896.70	875.70	2329	2374	109.90	230.14	377.16	3223	
754.00	900.14	879.14	2332	2378	109.35	229.08	375.58	3434	
756.00	903.56	882.56	2335	2381	108.81	228.05	374.04	3419	
758.00	906.53	885.52	2336	2383	108.41	227.29	372.92	2969	
760.00	909.60	838.60	2338	2385	107.99	226.48	371.72	3074	
762.00	911.95	890.95	2338	2385	107.75	226.04	371.09	2349	
764.00	915.35	894.35	2341	2388	107.23	225.04	369.60	3403	
766.00	918.21	897.21	2343	2390	106.87	224.36	368.60	2857	

ľ										
	COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	19
	TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY	
	MS	M	M	M/S	M/S	MS	MS	MS	M/S	
	768.00	921.09	900.09	2344	2391	106.50	223.68	367.59	2878	
	770.00	923.72	902.72	2345	2 3 9 2	106.21	223.12	366.77	2630	
	772.00	926.38	905.38	2346	2 3 9 2	105.90	222.55	365.94	2668	
	774.00	929.18	908.18	2347	2393	105.57	221.91	35.00	2796	
	776.00	932.33	911.33	2349	2396	105.14	221.10	363.79	3148	
	778.00	935.06	914.06	2350	2397	104.83	220.50	362.92	2731	
	780.00	937.57	916.57	2350	2397	104.57	220.01	362.20	2514	
	782.00	940.54	919.54	2352	2399	104.20	219.31	361.16	2961	
	784.00	943.51	922.51	2353	2400	103.83	218.61	360.11	2977	
	786.00	946.49	925.49	2355	2402	103.46	217.90	359.06	2982	
	788.00	949.65	928.65	2357	2404	103.05	217.11	357.88	3152	
	790.00	952.48	931.48	2358	2405	102.72	216.49	356.96	2835	
	792.00	955.16	934.16	2359	2406	102.44	215.95	356.16	2677	
	794.00	958.05	937.05	2360	2407	102.10	215.30	355.20	2894	
	796.00	960.99	939.99	2362	2409	101.75	214.64	354.21	2940	
	798.00	963.67	942.67	2363	2410	101.47	214.10	353.42	2679	
	800.00	966.90	945_90	2365	2412	101.06	213.30	352.22	3224	
	802.00	969.60	948.60	2366	2413	100.77	212.76	351.42	2707	
	804.00	972.54	951.54	2367	2414	100.43	212.11	350.45	2933	
	806.00	975.10	954.10	2367	2414	100.18	211.64	349.75	2556	
	808.00	978.12	957.12	2369	2416	99.83	210.95	348.73	3029	
	810.00	980.73	959.73	2370	2417	99.57	210.46	348.01	2606	
	812.00	983.25	962.25	2370	2417	99.33	210.01	347.34	2523	
	814.00	985.94	964.94	2371	2418	99.06	209.49	346.57	2689	

OMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL Velocity
MS	M	M	M/S	M/S	MS	MS	MS	M/S
816.00	938.50	967.50	2371	2418	98.82	209.03	345.89	2553
818.00	991.42	970.42	2373	2419	98.50	208.41	344.97	2922
820.00	993.95	972.95	2373	2420	98.26	207.96	344.31	2535
822.00	996.63	975.63	2374	2420	98.00	207.46	343.55	2678
824.00	999.27	978.27	2374	2421	97.74	206.97	342.83	2638
826.00	1001.65	980.65	2374	2421	97.54	206.53	342.27	2377
828.00	1004.34	983.34	2375	2421	97.27	206.08	341.52	2697
830.00	1006.97	985.97	2376	2422	97.02	205.60	340.31	2623
832.00	1009.85	988.85	2377	2 4 2 3	96.72	205.02	339.94	2876
834.00	1012.67	991.67	2378	2424	96.44	204.47	339.11	2826
836.00	1015.48	994.48	2379	2425	96.16	203.92	338.30	2803
838.00	1018.41	997.41	2380	2427	95.85	203.33	337.40	2935
840.00	1021_53	1000.53	2382	2428	95.51	202.66	336.39	3113
842.00	1024.14	1003.14	2383	2429	95.27	202.20	335.71	2613
844.00	1026.78	1005.78	2383	2429	95.03	201.74	335.02	2637
846.00	1029.78	1008.73	2385	2431	94.71	201.13	334.09	3001
848.00	1032.52	1011.52	2386	2432	94.45	200.63	333.34	2739
850.00	1035.10	1014.10	2386	2432	94.23	200.19	332.70	2578
852.00	1037.67	1016.67	2387	2432	94.00	199.76	332.05	2574
854.00	1040.31	1019.31	2387	2433	93.77	199.30	331.37	2642
856.00	1042.87	1021.87	2388	2433	93.55	193.88	330.75	2553
858.00	1045.44	1024.44	2388	2434	93.33	198.46	330.11	2578
860.00	1047.93	1026.93	2388	2434	93.12	198.06	329.53	2484
862.00	1050.57	1029.57	2389	2434	92.89	197.62	328.86	2644

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE
TWO-WAY TRAVEL TIME FRCM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL Velocity
MS	M	M	M/S	M/S	MS	MS	MS	M/S
864.00	1053.16	1032.16	2389	2435	92.67	197.19	328.22	2590
865.00	1055.87	1034.87	2390	2435	92.43	196.72	327.51	2703
863.00	1058 . 4ó	1037.46	2390	2436	92.21	196.30	326_88	2586
870.00	1061.03	1040.03	2391	2436	91.99	195.88	326.26	2576
872.00	1063.58	1042.58	2391	2436	91.79	195.48	325.65	2548
874.00	1066.07	1045.07	2391	2436	91.59	195.09	325.08	2490
876.00	1063.69	1047.69	2392	2437	91.36	194.66	324.44	2624
878.00	1071.56	1050.56	2393	2438	91.10	194.15	323.65	2365
880.00	1074.10	1053.10	2393	2438	90.90	193.75	323.06	2542
882.00	1076.73	1055.73	2394	2438	90.68	193.32	322.42	2631
884.00	1079.31	1058.31	2394	2439	90.47	192.92	321.81	2581
886.00	1081.87	1060.87	2395	2439	90.26	192.52	321.21	2553
00.888	1084.41	1063.41	2395	2439	90.06	192.13	320.63	2541
890.00	1087.06	1066.06	2396	2440	89.84	191.70	319.99	2650
892.00	1089.67	1068.67	2396	2440	89.63	191.29	319.37	2606
894.00	1092.21	1071.21	2396	2440	89.43	190.91	318.79	2540
896.00	1094.73	1073.73	2397	2441	89.24	190.53	313.22	2525
898.00	1097.40	1076.40	2397	2441	89.02	190.10	317.58	2674
900.00	1099.98	1078.98	2398	2441	88.82	189.71	316.99	2573
902.00	1102.43	1081.43	2398	2441	88.64	189.36	316.46	245ó
904.00	1104.98	1083.98	2398	2442	88.44	188.98	315.89	2542
906.00	1107.54	1085.54	2399	2442	83.25	138.60	315.31	2561
908.00	1110.15	1089.15	2399	2442	88.04	188.20	314.71	2ó14
910.00	1112.78	1091.78	2400	2443	87.84	187.80	314 . 71	2627

r

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	22
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM K9	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
912.00	1115.41	1094.41	2400	2443	87.63	187.39	313.49	2634	
914.00	1117.99	1096.99	2400	2444	37.44	187.01	312.91	2573	
916.00	1120.67	1099.67	2401	2444	87.23	186.60	312.29	2674	
913.00	1123.31	1102.31	2402	2445	87.02	136.20	311.67	2648	
920.00	1125.99	1104.99	2402	2445	86.81	185.79	311.05	2673	
922.00	1128.71	1107.71	2403	2446	86.60	185.36	310.41	2723	
924.00	1131.47	1110.47	2404	2446	86.38	184.93	309.74	2762	
926.00	1134.11	1113.11	2404	2447	86.13	184.53	309.14	2642	
928.00	1136.97	1115.97	2405	2443	85.94	134.07	308.43	2862	
930.00	1139.70	1118.70	2406	2448	85.73	183.65	307.80	2721	
932.00	1142.20	1121.20	2406	2449	85.55	183.31	307.27	2508	
934.00	1145.03	1124.03	2407	2449	85.33	182.85	306.59	2824	
936.00	1147.46	1126.46	2407	2449	85.16	182.54	306.10	2437	
938.00	1149.99	1128.99	2407	2450	84.99	182.19	305.57	2523	
940.00	1152.43	1131.43	2407	2450	84.82	181.86	305.08	2448	
942.00	1154.90	1133.90	2407	2450	84.65	181.53	304.58	2469	
944.00	1157.41	1136.41	2408	2450	84.43	181.19	304.07	2510	
946.00	1160.01	1139.01	2408	2450	84.29	180.83	303.51	2599	
943.00	1162.56	1141.56	2408	2450	84.12	180.48	302.98	2551	
950.00	1165.07	1144.07	2409	2450	83.95	180.14	302.47	2503	
952.00	1167.38	1146.38	24C8	2450	83.80	179.86	302.05	2313	
954.00	1169.75	1148.75	2408	2450	83.65	179.57	301.60	2372	
956.00	1172.14	1151.14	24C8	2450	83.50	179.27	301.15	2389	
958.00	1174.56	1153.56	2408	2450	83.34	178.96	300.68	2424	

COMPANY : BHP PETROLEUM

WELL

: AMBERJACK #1

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVA VELOCIT
MS	M	M	M/S	M/ S	MS	MS	MS	M/S
960.00	1177.01	1156.01	2408	2450	83.18	178.65	300.20	244
962.00	1179.56	1158.56	2409	2450	83.01	178.31	299.68	254
964.00	1181.97	1160.97	2409	2450	82.86	178.00	299.23	241
966.00	1134.42	1163.42	2409	2450	82.70	177.69	298.76	244
968.00	1186.76	1165.76	2409	2450	82.56	177.41	298.33	23
970.00	1189.10	1168.10	2408	2449	82.41	177.13	297.91	23
972.00	1191.50	1170.50	2408	2449	82.26	176.84	297.46	24
974 . CO	1193.84	1172.84	2408	2449	82.12	176.56	297.04	23
976 . CO	1196.20	1175.20	2408	2449	81.98	176.28	296.61	23
978.00	1198.65	1177.65	2408	2449	81.82	175.97	296.14	24
980.00	1201.07	1180.07	2408	2449	81.67	175.68	295.69	24
982 . CO	1203.47	1182.47	2408	2449	81_53	175.38	295.25	24
934.00	1205.91	1134.91	2408	2449	81.37	175.08	294.79	24
986 . CO	1208.34	1187.34	2408	2449	81.22	174.79	294.34	24
988 . 00	1210.69	1189.69	24C8	2449	81.08	174.51	293.92	23
990.00	1213.09	1192.09	2408	2448	80.94	174.23	293_49	23
992.00	1215.54	1194.54	2408	2448	80.79	173.93	293.03	24
994.00	1218.26	1197.26	2409	2449	80.60	173.55	292.45	27
996.00	1220.83	1199.83	2409	2449	80.43	173.22	291.94	25
998.00	1223.57	1202.57	2410	2450	80.25	172.85	291.36	27
1000.00	1226.30	1205.30	2411	2450	80.06	172.47	290.79	27
1002.00	1229.06	1208.06	2411	2451	79.87	172.10	290.20	27
1004.00	1231.72	1210.72	2412	2452	79.70	171.75	289.66	26
1006.00	1234.47	1213.47	2412	2452	79.51	171.37	289.08	27

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	24
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY	
MS	M	M	MIS	M/S	MS	MS	MS	M/S	
1008.00	1237.12	1216.12	2413	2 4 5 3	79.34	171.03	288.55	2648	
1010.00	1239.59	1218.59	2413	2 4 5 3	79.19	170.74	288.10	2475	
1012.00	1242.34	1221.34	2414	2 4 5 3	79.01	170.37	287.52	2747	
1014.00	1245.27	1224.27	2415	2454	78.80	169.95	286.87	2933	
1016.00	1248.08	1227.08	2416	2455	78.61	169.56	286.27	2812	
1013.CO	1250.81	1229.82	2416	2456	78.43	169.20	285.71	2731	
1020.00	1253.71	1232.71	2417	2457	78.23	168.80	285.08	2895	
1022.00	1256.69	1235.69	2418	2458	78.02	168.37	284.41	2984	
1024 <u>.</u> CO	1259.43	1238.43	2419	2458	77.84	168.01	283.85	2735	
1026.00	1262.13	1241.13	2419	2459	77.67	167.67	283.32	2703	
1028.00	1264.91	1243.91	2420	2459	77.49	167.31	282.75	2778	
1030.00	1267.55	1246.55	2420	2460	77.33	166.98	282.25	2637	
1032.00	1270.72	1249.72	2422	2461	77.09	166.50	281_49	3172	
1034.00	1273.50	1252.50	2423	2462	76.91	166.14	280.93	2786	
1036.00	1276.31	1255.31	2423	2463	76.73	165.77	280.36	0 281	
1038.00	1279.15	1258.15	2424	2464	76.55	165.40	279.77	2833	
1040.00	1281.97	1260.97	2425	2464	76.37	165.04	279.20	2825	
1042.00	1284.93	1263_93	2426	2465	76.17	164.63	278.57	2957	
1044.00	1287.89	1266.89	2427	2466	75.97	164.23	277.94	2958	
1046.00	1290.88	1269.88	2428	2467	75.77	163.82	277.29	2991	
1048.00	1293.92	1272.92	2429	2469	75.56	163.40	276.63	3040	
1050.00	1296.89	1275.89	2430	2470	75.36	163.00	276.00	2974	
1052.00	1299.99	1278.99	2432	2471	75.15	162.57	275.32	3095	
1054.00	1303.02	1282.02	2433	2472	74.95	162.16	274.67	3032	

OMPANY :	SHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	25
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
1056.00	1305.88	1284.88	2433	2473	74.77	161.79	274.09	2865	
1058.00	1308.80	1237.80	2434	2474	74.58	161.42	273.50	2915	
1060.00	1311.69	1290.69	2435	2475	74.40	161.05	272.92	2894	
1062.00	1314.76	1293.76	2436	2476	74.20	160.63	272.26	3066	
1064.00	1317.69	1296.69	2437	2477	74.01	160.26	271.67	2933	
1066.00	1320.72	1299.72	2439	2478	73.82	159.86	271.04	3029	
1068.00	1323.50	1302.50	2439	2479	73.65	159.52	270.52	2778	
1070.00	1326.16	1305.16	2440	2479	73.51	159.22	270.05	2659	
1072.00	1328.67	1307.67	2440	2479	73.37	158.96	269.63	2515	
1074.00	1331.14	1310.14	2440	2479	73.25	158.70	269.23	2464	
1076.00	1333.95	1312.95	2440	2480	73.08	158.37	268.71	2808	
1078.00	1336.54	1315.54	2441	2480	72.94	158.08	268.27	2592	
1080.00	1339.03	1318.08	2441	2480	72.81	157.82	267.85	2542	
1082.00	1341.59	1320.59	2441	2480	72.68	157.55	267.44	2515	
1084.00	1343.79	1322.79	2441	2480	72.58	157.36	267.14	2199	
1086.00	1345.91	1324.91	2440	2479	72.49	157.18	266.86	2119	
1088.00	1348.87	1327.87	2441	2480	72.31	156.81	266.28	2956	
1090.00	1352.56	1331.56	2443	2483	72.03	156.23	265.35	3693	
1092.00	1355.65	1334.65	2444	2484	71_84	155.83	264.72	3092	
1094.00	1358.85	1337.85	2446	2486	71.63	155.41	264.05	3193	
1096.00	1361.98	1340.98	2447	2487	71.44	155.01	263.40	3134	
1098.00	1364.26	1343.26	2447	2487	71.33	154.80	263.09	2276	
1100.00	1366.41	1345.41	2445	2486	71.24	154.62	262.81	2149	

	1. m) a								
COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	26
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
1104.00	1371.10	1350.10	2446	2486	71.03	154.18	262.13	2557	
1106.00	1374.05	1353.05	2447	2486	70.85	153.83	261.57	2957	
1108.00	1377.22	1356.22	2448	2488	70.66	153.42	260.92	3169	
1110.00	1380.49	1359.49	2450	2489	70.45	152.99	260.23	3272	
1112.00	1383.71	1362.71	2451	2491	70.25	152.58	259.57	3217	
1114.00	1386.75	1365.75	2452	2492	70.07	152.21	258.98	3035	
1116.00	1389.86	1368.86	2453	2493	69.88	151.83	258.37	3114	
1118.00	1392.86	1371.86	2454	2494	69.71	151.48	257.81	2996	
1120.00	1395.77	1374.77	2455	2495	69.55	151.15	257.28	2914	
1122.00	1398.69	1377.69	2456	2496	69.39	150.82	256.76	2917	
1124.00	1401.66	1380.66	2457	2497	69.22	150.47	256.21	2974	
1126.00	1404.73	1383.78	2458	2498	69.04	150.10	255.61	3114	
1128.00	1407.85	1386.85	2459	2499	68.86	149.73	255.03	3073	
1130.00	1410.74	1389.74	2460	2500	68.71	149.42	254.53	2886	
1132.00	1413.81	1392.81	2461	2501	68.53	149.06	253.95	3072	
1134.00	1416.98	1395.98	2462	2502	68.35	148.67	253.34	3173	
1136.00	1419.44	1398.44	2462	2502	68.24	148.45	252.99	2458	
1138.00	1422.68	1401_68	2463	2 50 4	68.05	148.06	252.35	3238	
1140.00	1425.92	1404.92	2465	2505	67.86	147.66	251.72	3242	
1142.00	1429.28	1408.28	2466	2507	67.65	147.24	251.04	3362	
1144.00	1432.70	1411.70	2468	2509	67.44	146.80	250.33	3420	
1146.00	1436.00	1415.00	2469	2511	67.25	146.40	249.69	3297	
1148.00	1439.25	1418.25	2471	2512	67.06	146.01	249.06	3245	
1150.00	1442.19	1421.19	2472	2513	66.91	145.70	248.56	2944	

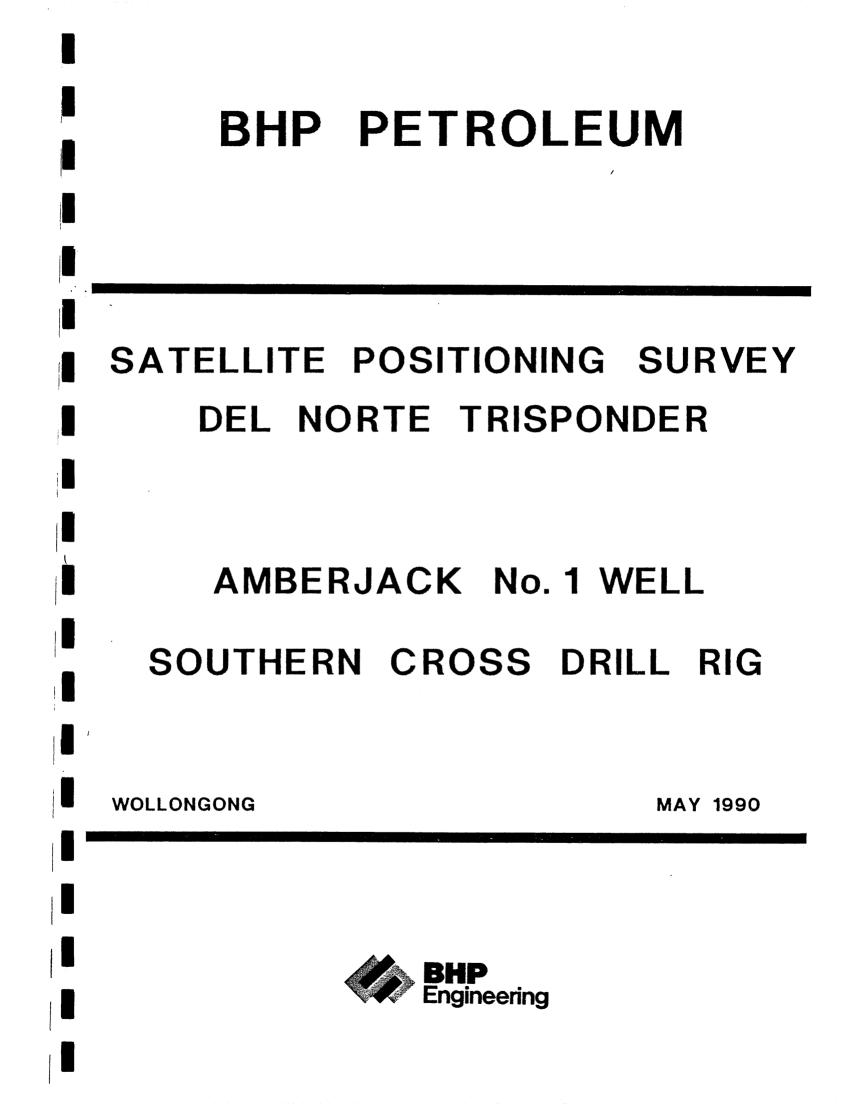
COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJA	СК #1		PAGE 27
TWO-WAY TRAVEL TIME	MEA SURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
1152 00	1445.74	1126 76	2474	2515	66.69	145.23	247.82	3549
1152.00		1424.74		2517	66.50	144.84	247.18	3311
1154.00	1449.05	1428.05	2475		66.33	144.49	246.62	3107
1156.00	1452.16	1431.16	2476	2518		144.47	246.11	2997
1158.00	1455.15	1434.15	2477	2519	66.17		245.57	3079
1160.00	1458.23	1437.23	2478	2520	66.01	143.83		2417
1162.00	1460.65	1439.65	2478	2520	65.91	143.63	245.25	3306
1164.00	1463.96	1442.96	2479	2521	65.73	143.24	244.62	3075
1166.00	1467.03	1446.03	2480	2522	65.57	142.91	244.09	3018
1168.00	1470.05	1449.05	2481	2523	65.41	142.60	243.58	3566
1170.00	1473.61	1452.61	2483	2525	65.20	142.15	242.86	2465
1172.00	1476.08	1455.08	2483	2525	65.10	141.94	242.53	3361
1174.00	1479.44	1458.44	2485	2527	64.91	141.55	241.90	3198
1176.00	1482.64	1461.64	2486	2528	64.74	141.20	241.33	3008
1178.00	1485.65	1464.65	2487	2529	64.59	140.89	240.83	3240
1180.00	1438.89	1467.89	2488	2530	64.42	140.53	240.25	2873
1182.00	1491.76	1470.76	2489	2531	64.29	140.26	239.81	2933
1184.00	1494.70	1473.70	2489	2532	64.15	139.97	239.34	
1136.00	1497.88	1476.88	2491	2533	63.98	139.63	238.80	3179
1188.00	1500.91	1479.91	2491	2534	63.84	139.32	238.30	3034
1190.00	1503.83	1482.83	2492	2535	63.70	139.04	237.85	2919
1192.00	1506.83	1485.83	2493	2535	63.56	138.74	237.37	2999
1194.00	1509.63	1488.63	2494	2536	63.43	138.48	236.96	2799
1196.00	1512.50	1491.50	2494	2537	63.30	138.21	236.53	2868
1198.00	1515.69		2495	2538	63.14	137.88	235.98	3191

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	28
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL Velocity	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
1200.00	1518.83	1497.83	2496	2539	62.99	137.56	235.47	3139	
1202.00	1522.01	1501.01	2498	2540	62.83	137.23	234.93	3179	
1204.00	1525.17	1504.17	2499	2541	62.68	136.91	234.41	3164	
1206.00	1527.75	1506.75	2499	2541	62.57	136.70	234.07	2575	
1208.00	1529.89	1508.89	2498	2541	62.51	136.56	233.85	2137	
1210.00	1532.74	1511.74	2499	2541	62.38	136.30	233.44	2854	
1212.00	1536.15	1515.15	2500	2543	62.20	135.93	232.83	3406	
1214.00	1538.95	1517.95	2501	2543	62.08	135.68	232.43	2804	
1216.00	1541.94	1520.94	2502	2544	61.95	135.40	231.98	2992	
1218.00	1545.08	1524.08	2503	2545	61.80	135.09	231.48	3134	
1220.00	1548.32	1527.32	2504	2547	61.64	134.76	230.94	3240	
1222.CD	1551.56	1530.56	2505	2548	61.49	134.43	230.41	3241	
1224.00	1554.92	1533.92	2506	2549	61.32	134.08	229.83	3366	
1226.00	1558.19	1537.19	2508	2551	61.16	133.75	229.30	3269	
1228.00	1561.50	1540.50	2509	2552	61.00	133.41	228.75	3305	
1230.00	1564.43	1543.43	2510	2553	60.87	133.15	228.33	2930	
1232.00	1567.73	1546.73	2511	2554	60.71	132.81	227.78	3304	
1234.00	1570.77	1549.77	2512	2555	60.58	132.53	227.33	3042	
1236.00	1574.02	1553.02	2513	2556	60.43	132.21	226.81	3251	
1238.00	1577.43	1556.43	2514	2558	60.26	131.87	226.24	3403	
1240.00	1580.73	1559.73	2516	2559	60.11	131.54	225.71	3299	
1242.00	1584.31	1563.31	2517	2561	59.92	131.15	225.08	3587	
1244.00	1587.97	1566.97	2519	2563	59.73	130.75	224.42	3659	
1246.00	1591.62	1570.62	2521	2566	59.55	130.36	223.78	3652	

		-							_	-	r
~	-	-	-	-	•	•	124	•	19.		

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	29
TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL Velocity	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
1248.00	1594.88	1573.88	2522	2567	59.40	130.05	223.27	3252	
1250.00	1598.13	1577.13	2523	2568	59.25	129.74	222.77	3249	
1252.00	1601.34	1580.34	2525	2569	59.11	129.44	222.28	3211	
1254.00	1604.85	1583.85	2526	2571	58.94	129.08	221.70	3516	
1256.00	1608.04	1587.04	2527	2572	58.80	128.79	221.22	3189	
1258.00	1611.32	1590.32	2528	2573	58.65	128.48	220.72	3279	
1260.00	1614.59	1593.59	2530	2575	58.51	128.18	220.22	3263	
1262.00	1617.91	1596.91	2531	2576	58.36	127.87	219.71	3330	
1264.00	1621.30	1600.30	2532	2577	58.21	127.54	219.18	3386	
1266.00	1624.65	1603.65	2533	2579	58.06	127.23	218.67	3345	
1268.00	1627.96	1606.96	2535	2580	57.91	126.92	218.17	3311	
1270.00	1631.45	1610.45	2536	2582	57.75	126.58	217.61	3489	
1272.00	1635.13	1614.13	2538	2584	57.57	126.21	216.99	3680	
1274.00	1638.43	1617.43	2539	2585	57.43	125.91	216.50	3301	
1276.00	1641.69	1620.69	2540	2536	57.29	125.62	216.03	3259	
1278.00	1645.08	1624.08	2542	2588	57.14	125.30	215.51	3397	
1280.00	1648.43	1627.43	2543	2589	57.00	125.00	215.01	3346	
1282.00	1651.92	1630.93	2544	2591	56.84	124.67	214.47	3497	
1284.00	1655.32	1634.32	2546	2592	56.69	124.36	213.96	3398	
1286.00	1658.78	1637.78	2547	2594	56.54	124.04	213.43	3459	
1288.00	1662.11	1641.11	2548	2595	56.40	123.74	212.95	3323	
1290.00	1665.46	1644.46	2550	2597	56.26	123.45	212.46	3354	
1292.00	1668.81	1647.81	2551	2598	56.12	123.15	211_98	3348	
1294.00	1672.14	1651.14	2552	2599	55.98	122.86	211.50	3337	

COMPANY :	BHP PETRO	LEUM		WELL	: AMBERJ	ACK #1		PAGE	30
TWO-WAY TRAVEL TIME FRCM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY	
MS	M	M	M/S	M/S	MS	MS	MS	M/S	
1296.00	1675.50	1654.50	2553	2601	55.85	122.56	211.02	3357	
1298.00	1678.87	1657.87	2555	2602	55.71	122.27	210.53	3370	
1300.00	1682.37	1661.37	2556	2603	55.56	121.95	210_01	3498	
1302.00	1685.91	1664.91	2557	2 60 5	55.40	121_63	209.48	3542	
1304.00	1639.23	1668.23	2559	2606	55.27	121.35	209.02	3317	
1306.00	1692.55	1671.55	2560	2608	55.14	121.07	208.56	3316	
1308.00	1696.18	1675.18	2561	2610	54.98	120.73	208.00	3637	
1310.00	1699.84	1678.84	2563	2611	54.82	120.39	207.44	3653	
1312.00	1703.16	1682.16	2564	2613	54.69	120.12	206.99	3326	
1314.00	1706.47	1685.47	2565	2614	54.55	119.84	206.54	3311	
1316.00	1709.88	1688.88	2567	2615	54.42	119.55	206.06	3404	
1318.00	1712.97	1691.97	2567	2616	54.31	119.32	205.68	3095	
1320.00	1715.89	1694.89	2568	2617	54.21	119.11	205.34	2913	
1322.00	1718.61	1697.61	2568	2617	54.13	118.93	205.04	2720	
1324.00	1721.32	1700.32	2568	2617	54.04	118.75	204.75	2720	
1326.00	1724.04	1703.04	2569	2617	53.96	118.58	204.46	2719	
1328.00	1726.76	1705.76	2569	2617	53.87	118.40	204.17	2720	


P

6

b

P P

Section 5

BHP PETROLEUM

SATELLITE POSITIONING SURVEY

.

SURFACE POSITIONING SOUTHERN CROSS DRILLING RIG AMBERJACK LOCATION - BASS STRAIT

.

Ref: SD:MB Doc No: 0207M July 1990

•

Prepared by: BHP Engineering Pty Ltd (Incorporated in ACT) Australia

Postal Address: PO Box 1794 Wollongong, NSW, 2500

Telephone: (042) 28 0411 Telex: 29176 Facsimile: (042) 28 0893

CONTENTS

.

.

- 1.0 COMMISSION
- 2.0 RECEIVER SITE
- 3.0 TRANSPONDER SITES
- 4.0 PROCESSING OF FIELD DATA

•

5.0 FINAL RESULTS

1. COMMISSION

- 1.1.1 To verify the position of the Southern Cross drill platform whilst on location at Amberjack No.1 Well in Bass Strait.
- 1.2 A Del Norte Trisponder system, (an X-band surface radio positioning system), consisting of three shore based remote stations and two mobile Central Processing Units (CPU's), was used to obtain simultaneous range data for positioning the drill rig.
- 1.3 Three Del Norte remote stations are permanently established at co-ordinated survey stations which form part of the permanent survey control network previously established by Esso Australia Ltd to service the Bass Strait oil fields. The two CPU's were installed in the Canning Tide and onboard the Drill Rig Southern Cross respectively.
- 1.4 The system simultaneously displays the ranges in metres from the shore based remotes to the CPU antennas on the CPU monitor, and these displayed ranges were used to derive the position of the drill rig using dedicated proven software in a laptop computer.
- 1.5 All times quoted in this report are referred to Eastern Australia Standard Time unless otherwise stated.

0207M

2. RECEIVER SITE

2.1 The Southern Cross Drill Rig was anchored at Amberjack No.1 Well. The Del Norte master antenna was established above the drilling rig derrick crown, at a relative bearing of 100 degrees x 3.0 metres from the centre of the drill stem.

SURVEY OPERATION

3. SURVEY OPERATION

- 3.1 Mr C Littoron had previously calibrated the Del Norte system and established the anchoring pattern from the my Canning Tide. BHPE Surveyor Mr Greg Halls established the Del Norte master in the Southern Cross on 3rd May 1990 at 0700 hrs as the rig was moving onto location.
- 3.2 Data was obtained to assist the rig onto location and the final fix was observed at 2300 hrs on the same day following ballasting down and the tensioning of anchors.
- 3.3 Check fixes were observed following spudding in the following day with no movement of position evident.

POST PROCESSING OF FIELD DATA

4.	POST PROCESSING OF FIELD DATA					
4.1	Intended Well Location:					
		K 1 38 deg 29 min 33.50 5 147 deg 18 min 55.40 F 0 °11' 46.69"				
	Zone 55 Scale	527 504.171 E 5 739 461.444 N .99960932				
4.2	Del Norte Ref	erence Data:				
	1. Fixed station for survey control:					
	STATION NAME	EASTING	NORTHING	R.L.		
	LONGFORD	513 544.200	5 769 507.000	147.000m		
	BARRACOUTA	558 993.500	5 760 872.600	55.000m		
	CURRAJONG	471 713.000	5 752 633.000	647.000m		
	A.M.G. Zone =	55				
	Ht of antenna	on Rig = 76.00m				
	Ins scale factor = 1.00					
	2. Instrument Calibration Corrections:					
	LONGFORD	.00				
	BARRACOUTA	.00				
	CURRAJONG	.00				

.

0207M

POST PROCESSING OF FIELD DATA

РРМ

11.

-11.

-10.

	3. PARAMETER SETT	INGS						
	Offset angle of t	rans/anten 0-3	60 deg 100°00'(0"				
	Offset distance		3.00)Om				
	Rig Heading		233°00'0	0"				
	4. AMBERJACK 1 LOC	CATION (as Way	Point 1)					
	527504.171E	5739461.444	N					
4.3	Fixation Data:							
	INITITAL LOCATION	RUNNING ANCHO	RS:					
	Fix No.1 03/05/90	10:28:41	527 557.8E	5 739 421	.2N			
	From Station	Raw Range	Red.Range	Residual	PPM			
	LONGFORD	33199.0	33198.9	.63	19.			
	BARRACOUTA	38072.0	38072.0	68	-18.			
	CARRAJONG	57411.0	57408.2	92	-16.			
	To Way Point 1 3	06° 53' 06"	67.1 metres					
	COMMENCE REPOSITIONING:							
	FIX No.14 03/05/90	0 14:31:30	527 504.1E	5 739 465	.9N			
	From Station	Raw Range	Red Range	Residual	PPM			
	LONGFORD	33136.0	33135.9	.38	11.			
	BARRACOUTA	38091.0	38091.0	41	-11.			
	CURRAJONG	57348.0	57345.2	55	-10.			
	To Way Point 1	178° 49' 33"	4.4 metres					

0207M

POST PROCESSING OF FIELD DATA

FIX No.15 03/05/90	14:35:56	527 502.5E	5 739 462.4N	
From Station	Raw Range	Red Range	Residual	PPM
LONGFORD	33136.0	33135.9	2.90	88.
BARRACOUTA	38097 .0	38097.0	-3.15	-83.
CURRAJONG	57351.0	57348.2	-4.25	-74.
To Way Point 1	119° 49' 26"	1.9 metres		
BALLAST DOWN & REPO	SITION:			
FIX No.20 03/05/90	19:12:26	527 503.5E	5 739 457.2N	
From Station	Raw Range	Red Range	Residual	PPM
LONGFORD	33144.0	33143.9	.05	2.
BARRACOUTA	38096.0	38096.0	06	-1.
CURRAJONG	57349.0	57346.2	07	-1.
To Way Point 1	119° 49' 26"	4.3 metres		
FIX No.22 03/05/90	20:35:06	527 496.8E	5 739 458.3N	
From Station	Raw Range	Red Range	Residual	PPM
LONGFORD	33141.0	33140.9	78 -	-24.
BARRACOUTA	38100.0	38100.0	.85	22.
CURRAJONG	57341.0	57338.2	1.15	20.
To Way Point 1	66° 45' 35"	8.0 metres		
FINAL FIX:				
FIX No.23 03/05/90	23:07:23	527 495.7E	5 739 463.4N	
From Station	Raw Range	Red Range	Residual	PPM
LONGFORD	33135.0	33134.9	09	3.
BARRACOUTA	38099.0	38099.0	.09	-2.
CURRAJONG	57340.0	57337.2	13	-0.
To Way Point 1	103° 09' 44"	8.7 metres		

0207M

,

5.	FINAL RESULTS						
5.1	The final A.G.D. 66 position of the drillstem was calculated as:						
	STN. AMBERJACK 1						
	Latitude 38 deg 29 min 33.4375 S Longitude 147 deg 18 min 55.0501 E						
	Zone 527 495.700 E 55 5 739 463.400 N						
	Rig Heading 240 degrees						
5.2	This places the well 8.7 metres on a bearing of 283 degree						

.2 This places the well 8.7 metres on a bearing of 283 degrees 10 minutes from the intended location.

0207M

ENCLOSURES

9

6

þ

P

PE600923

This is an enclosure indicator page. The enclosure PE600923 is enclosed within the container PE902075 at this location in this document.

The enclosure PE600923 has the following characteristics: ITEM_BARCODE = PE600923 CONTAINER_BARCODE = PE902075 NAME = Mud Log BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Mud Log for Amberjack-1 REMARKS = $DATE_CREATED = 16/05/1990$ DATE_RECEIVED = 24/10/1990 $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = EXLOG CLIENT_OP_CO = BHP Petroleum

(Inserted by DNRE - Vic Govt Mines Dept)

PE600926

This is an enclosure indicator page. The enclosure PE600926 is enclosed within the container PE902075 at this location in this document.

The enclosure PE600926 has the following characteristics: ITEM_BARCODE = PE600926 CONTAINER_BARCODE = PE902075 NAME = Seismic Claibration Log BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = WELL_LOG DESCRIPTION = Seismic Claibration Log REMARKS = $DATE_CREATED = 14/05/1990$ DATE_RECEIVED = 22/02/1991 $W_NO = W1029$ WELL_NAME = Amberjack-1 CONTRACTOR = Schlumberger CLIENT_OP_CO = BHP Petroleum

(Inserted by DNRE - Vic Govt Mines Dept)