

WCR VOL 2 SWEETLIPS-1 W1003

ESSO EXPLORATION AND PRODUCTION AUSTRALIA INC.

WELL COMPLETION REPORT

SWEETLIPS-1 AND SWEETLIPS-1 SIDETRACK-1 INTERPRETED DATA

VOLUME II 02 MAY 1990
PETROLEUM DIVISION

GIPPSLAND BASIN VICTORIA

ESSO AUSTRALIA LTD.

COMPILED BY P. V. HINTON APRIL 1990

CONTENTS

GEOLOGICAL AND GEOPHYSICAL ANALYSIS

- 1. SUMMARY OF WELL RESULTS
- 2. INTRODUCTION
- 3. STRUCTURE
- 4. STRATIGRAPHY
- 5. HYDROCARBONS
- 6. GEOPHYSICAL DISCUSSION

FIGURES

1. LOCATION MAP

APPENDICES

- 1. PALYNOLOGICAL ANALYSIS
- 2. QUANTITATIVE LOG ANALYSIS SWEETLIPS-1
- 3. QUANTITATIVE LOG ANALYSIS SWEETLIPS SIDETRACK-1
- 4. RFT REPORT
- 5. GEOCHEMICAL REPORT
- 6. CORE ANALYSIS

ENCLOSURES

- 1. STRUCTURAL CROSS SECTION EMPEROR TO SWEETLIPS
- 2. STRUCURE MAP, TOP "COARSE CLASTICS"
- 3. STRUCTURE MAP, 54.2 MY SEQUENCE BOUNDARY
- 4. MUDLOG SWEETLIPS-1
- 5. MUDLOG SWEETLIPS-1 SIDETRACK
- 6. WELL COMPLETION LOG SWEETLIPS-1
- 7. WELL COMPLETION LOG SWEETLIPS-1, SIDETRACK

GEOLOGICAL AND GEOPHYSICAL ANALYSIS

1. SUMMARY OF WELL RESULTS

a).	Formation/Horizon	Depth	th (Sweetlips)				
	Tops	<u>Predrill</u>	<u>Dri</u>]	Lled			
		(mKB)	(mKB)	(mSS)			
	Seaspray Group	73	73	-52			
	Latrobe Group	1493	1505	-1484			
	Top "Coarse Clastics"	1499	1510	-1489			
	54.2 MY Sequence Boundary	1577	1565	-1544			
	Top Zone IV (Base Volcanics)	1662	1654	-1633			
	Top <u>P. Mawsonii</u> Shale	-	1813	-1792			
	Total Depth	1900	1870	-1849			
b).	Formation/Horizon	Depth (S	weetlips Side	etrack)			
	Tops	<u>Predrill</u>	<u>Dri</u>]	lled			
	·	(mKB)	(TVDmKB)	(mSS)			
	Latrobe Group	-	1513	-1492			
	Top "Coarse Clastics"	-	1517	-1496			
	54.2 MY Sequence Boundary	1580	1580	-1559			
	Total Depth		1728	-1707			

2. <u>INTRODUCTION</u>

The Emperor-Sweetlips structure is a multi-crested highside rollover, truncated by the Marlin Channel, located on the northern margin of the Gippsland Basin, on the Strzelecki Terrace.

Sweetlips-1 is located 2.75km east of Emperor-1 and 11km north of the Snapper Platform in VIC/L10. The primary objective of the well was to test for hydrocarbons at the top of "Coarse Clastics". Stacked intra-Latrobe sandstones were the secondary target.

At the top of "Coarse Clastics" (1510mKB) a 55m gross hydrocarbon column was intersected. RFT data indicated a GOC at 1561mKB with a possible OWC at 1565mKB. Therefore a 51 gas column was interpreted with 4m of oil on rock. No other hydrocarbon zones were recognised.

As the RFT data was not conclusive as to the exact depth of the OWC, and 4m of oil was not economically producible it was decided to sidetrack the well 15m downdip to more accurately define the oil column.

The sidetrack confirmed the initial interpretation and with only a 4m oil column it was decided to plug and abandon Sweetlips-1.

GEOLOGICAL ANALYSIS

3. STRUCTURE

The Sweetlips Field is part of a larger structural feature incorporating Emperor-1. The Emperor-Sweetlips structure is a multi-crested highside rollover, north of the major Rosedale Fault system, bounding the northern margin of the Gippsland Basin, up on the Strzelecki Terrace. The structure is the product of two superimposed structural events and erosion.

The major E-W fault bounding the northern flank of the Field is probably associated with Otway Rift extensional tectonics early in the development of the basin.

Post Latrobe Oligocene to Mid Miocene compression resulted in reactivation and inversion of the east-west fault on the northern margin of the structure and also produced the roll into the fault. Fault independent closure is present at the top of "Coarse Clastics" with increased closure at this level and deeper closure, dependent on the E-W fault.

Furthermore, the Marlin Channel has downcut into \underline{P} . $\underline{mawsonii}$ Latrobe Group sediments over the eastern part of the Sweetlips structure. This channel extends NW-SE across the eastern flank of the field.

4. STRATIGRAPHY

Stratigraphy at Sweetlips-1 was similar to that intersected at the nearby Emperor-1.

A thick sequence of limestones and marls made up the Seaspray Group.

The uppermost unit of the Latrobe Group is the Gurnard Formation. It comprises glauconitic siltstones 5m, 4m and 5m thick at Sweetlips-1, Sweetlips Sidetrack-1 and Emperor-1, respectively. The Gurnard in this region is identifiable by its high density, apparent on both the RHOB and BHC electric logs.

The underlying "Coarse Clastics" consists of interbedded sandstones, siltstones and coals of a coastal plain environment, with coals decreasing with depth. There are indications in core, however, that some of the uppermost sands may be marginally marine.

Emperor-1 possibly intersected the Strzelecki Group directly below the \underline{P} . $\underline{mawsonii}$ shale. Sweetlips-1 terminated in the \underline{P} . $\underline{mawsonii}$ shale which, similar to Emperor-1, is an extremely dense shale with minor thin sandstone interbeds, which is believed to be lacustrine in origin.

A basalt in intersected at approximately the upper \underline{L} . \underline{balmei} , lower \underline{L} . \underline{balmei} boundary in both Emperor and Sweetlips. Similarly, basalt flows are intersected at the same stratigraphic level in Wirrah and Harlequin.

Overall, the stratigraphic sections are very similar in character but there are some discrepancies. Notably, a thick sand directly above the <u>P.</u> mawsonii shale at Sweetlips which has no stratigraphic equivalent at Emperor due to initial down to the basin thickening. Secondly, the basalt flow in Sweetlips is much thinner than that seen at Emperor. From this it can be inferred that Sweetlips is more distal to the origin of the flow than Emperor. Finally, due to erosion, the section from the top of "Coarse Clastics" to the 50.5MY sequence boundary thins from Emperor to the crestal Sweetlips.

5. HYDROCARBONS

Upon drilling into the top of "Coarse Clastics" at Sweetlips-1, total gas increased to 30 units (200ppm = 1 unit) over a background of 1 unit. A trace of dull yellow/green fluorescence with no cut was associated with this increase in total gas. In response to this show three cores were cut from 1512 to 1554m.

Gas levels dropped off markedly whilst coring, to less than 1 unit. However, fluorescence shows improved initially with 100% very dull, patchy yellow/green fluorescence with minor solid bright fluorescence in core 1 giving an instant streaming cut. In cores 2 and 3, fluorescence decreased to a very, very dull, pervasive fluorescence with a slow streaming cut to crush cut. All three cores are within the gas saturated interval.

Upon drilling ahead only a trace fluorescence with a crush cut was recorded. No further shows were seen in the well. From log interpretation and RFT data a 55m gross hydrocarbon column is recognised. The top of the "Coarse Clastics" is at 1510mKB with a GOC interpreted at 1561mKB and an OWC at 1565mKB. Within the 51m gross gas column 43.4m of net is interpreted (AvØ 0.21, AvSw 0.30) and in the oil column 3.7m of net (AvØ 0.24, AvSw 0.29).

The top "Coarse Clastics" reservoir within Sweetlips-1 sidetrack exhibited no fluorescence at all upon intersection but a gas peak of 100 units over a 3 unit background was observed. Log interpretation indicates 39.3m of net gas within a 42.6m TVD gross interval (AvØ 0.24, AvSw 0.23) and 3.8m TVD of net oil (AvØ 0.28, AvSw 0.28).

The Sweetlips structure at the top of "Coarse Clastics" has a double crest, however at the deeper levels only one crest exists and this is to the east of Sweetlips-1. Therefore, even though no hydrocarbons were found in the intra-Latrobe at Sweetlips, updip potential still exists to the east.

6. GEOPHYSICAL DISCUSSION

6.1 Introduction

The Emperor-Sweetlips area is controlled by a 200km grid of G77A, G81A, G84A and G88A seismic data. The G88A grid, which comprises 27km of seismic, was recorded to validate the intra Latrobe traps.

The Sweetlips closure is 2.75km east of Emperor which found hydrocarbons both at the top of "Coarse Clastics" and intra Latrobe. Sweetlips was targetted to test a top of "Coarse Clastics" closure and the downdip portion of several intra Latrobe fault dependent closures, that culminated 1.5km east of the location.

6.2 Modelling

Quiklog modelling was conducted over Sweetlips as a seismic anomaly was found which tracked the southern spill of the Sweetlips structure. From modelling it was predicted that this was probably a hydrocarbon anomaly, although it was not known if these hydrocarbons were oil or gas as the oil in Emperor is very light and would give a similar seismic response on seismic to that of gas. For these reasons predrill the closure was interpreted to be full to spillpoint, with a predicted hydrocarbon column of 52m.

6.3 Depth Conversion

A hand contoured VNMO map was used to depth convert to the top of "Coarse Clastics". The velocities across the Emperor-Sweetlips area only varied by 100m/sec so confidence in the depth conversion was high, although Emperor-1 was the only conversion factor control point available within the area.

Post drill, the top of "Coarse Clastics" was 11m deep to prediction while the deeper Zone II and Zone IV markers were 12m and 8m high respectively. These errors are within the accuracy expected of the velocity data. Depth maps were changed to take these errors into account. The velocity interpretation at the top of "Coarse Clastics" was not changed as the shape of the container was interpreted to be correct. The Sweetlips closure at this level was just bulk shifted down by 11m.

Doc.0290GN:1-7

FIGURES

SWEETLIPS-1 LOCATION MAP

Scale: - 1: 250,000

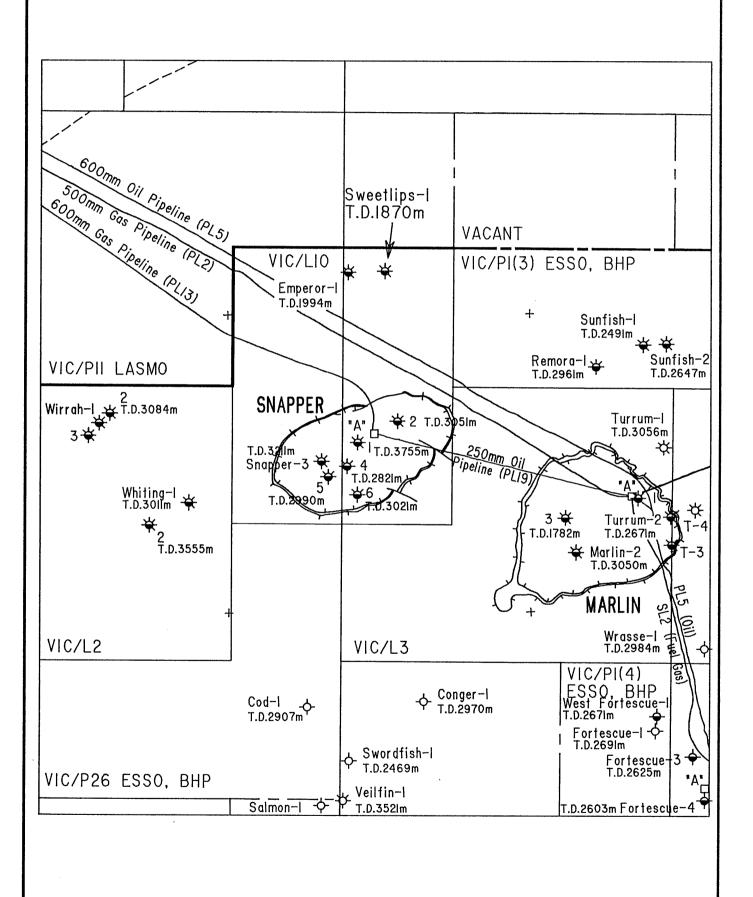


Figure 1

DFT.LOCALITY.SWEETLIPS.COMP - 11/89

Dwg. 2449/0P/3

APPENDIX 1

PALYNOLOGICAL ANALYSIS OF SWEETLIPS-1 GIPPSLAND BASIN.

bу

A.D. PARTRIDGE ESSO AUSTRALIA LTD.

INTERPRETED DATA

INTRODUCTION

SUMMARY OF RESULTS

GEOLOGICAL COMMENTS

BIOSTRATIGRAPHY

REFERENCES

TABLE-1: INTERPRETED DATA

PALYNOLOGY DATA SHEET

INTRODUCTION

Thirty-three sidewall cores and four conventional core samples from Sweetlips-1 were processed and examined for spores, pollen and microplankton. As part of the analysis twenty-four samples were also counted to determine the variation in percentages and ratios of the principal spore-pollen and microplankton species. Both oxidised organic residue yields and palynomorph concentrations were mostly moderate to high and this was reflected in the moderate spore-pollen diversity recorded from the majority of samples. Average diversity from productive samples was 19.6 spore-pollen species per sample. Microplankton were abundant and the assemblages were of moderate diversity in the Lakes Entrance Formation, but were generally of low abundance and diversity in the Latrobe Group. Preservation of palynomorphs overall was fair to good.

Lithological units and palynological zones, from base of Lakes Entrance Formation to T.D. are given in the following summary. Interpreted data with zone identifications and confidence ratings are recorded in Table-1 and basic data on residue yields, preservation and diversity are recorded in Table-2. Palynomorph percentages in samples counted are recorded in Tables-3 and 4, while all species that can be identified with bimomial names are tabulated on the two accompanying range chart.

PALYNOLOGICAL SUMMARY OF SWEETLIPS-1

AGE		UNIT/FACIES	SPORE-POLLEN ZONES	DEPTH RANGE	
			(Dinoflagellate Zones)	(mKB)	
		1			
Miocene- Oligocene	Lá	ikes Entrance Fm.	P. tuberculatus	1433.0-1504.0	
		1505.0m			
Mid-Late Eocene		Gurnard Fm.?	NOT SAMPLED		
UNCONFORMITY-	L	1510.0m			
Early Eocene	A T R		Lower M. diversus (A. hyperacanthum)	1518.6-1559.0 (1559.0)	
Paleocene	O B	Undifferentiated	Upper L. balmei	1567.0-1631.5	
Paleocene	E G	"coarse clastics" facies	Lower L. balmei	1643.2-1690.0	
Maastrichtian	R O U		Upper T. longus	1713.9-1787.0	
UNCONFORMITY	P	— 1813.0m———			
Coniacian- Turonian		Kipper Shale	P. mawsonii	1815.0-1849.0	
		T.D. 1870.0m			

GEOLOGICAL COMMENTS

- 1. Sweetlips-1 was abandoned at a total depth of 1870m while still within the Kipper Formation. This formation was first proposed as a discrete unit of the Latrobe Group in the Kipper-1 well completion report (Marshall & Partridge, 1986). In Sweetlips-1 the formation consists of 57 metres of predominately dark grey argillaceous siltstone with minor thin beds of predominately very fine grained sandstone.
- 2. The environment of deposition of the the Kipper Formation is envisioned to be a large, deep, fresh water lake.

A fresh water environment is strongly suggested by the occurrence in all samples of a low diversity suite of algal cysts and microplankton. In Kipper-1, Marshall & Partridge (1986), suggested a restricted marine influence on the Kipper Formation. However, a more detailed study of these algal cysts by Marshall (1989) shows that they are unlike any contemporary marine assemblages, and that they are more likely to be fresh water forms. Their current endemic occurrence in the Gippsland Basin is consistent with deposition within a lake or lakes formed during the rifting associated with the breakup of southeastern Australia.

The composition of the spore-pollen assemblages suggest the environment of deposition of the Kipper Formation is a large and deep lake. Relative to similar age assemblages outside of the Gippsland Basin counts of the spore-pollen assemblages in Sweetlips-1 (Table-4) show an unusual dominance of gymnosperm pollen (particularly the Araucariacites/Dilwynites species group). This is interpreted to be a manifestation of the "Neves effect", which is the tendency, for bisaccate pollen, certain buoyant spores, and other pollen with 'comparatively great transportability' to have greater relative abundance the further offshore you go in any depositional basin (Traverse, 1988; p.413). As the "Neves effect" is present in all samples in the P. mawsonii Zone in Sweetlips-1 it suggests stability of environment through a considerable period of geological time and this is a prerequisite only fulfilled by a large lake. Based on the known distribution of the algal cysts this Turonian lake may extend about 100 km east-west by 50 km north-south (i.e. from Sweetlips-1 to Kipper-1 to dredge sample in Bass Canyon examined by Marshall, 1989). Assuming, based on comparison to modern lakes, a conservative average water depth of 100 metres the lake would have a volume of 500 km³. A lake of this size would rank 18th on list of the largest modern lakes of the world by volume, and therefore could justifiably be called a large lake (see Herdendorf, 1982, table 8).

- 3. The top of the Kipper Formation at 1813m is marked by the Late Cretaceous erosive unconformity described by Lowry (1987, 1988) from the adjacent Emperor-1 and other wells. In Sweetlips-1 this unconformity is overlain by well dated latest Maastrichtian sediments. On the time scale of Haq et al. (1987, 1988) the unconformity at Sweetlips-1 represents a time gap of more than 20 million years.
- 4. The latest Maastrichtian section between 1725-1813m assigned to the Upper T. longus Zone is predominantly sandstone and siltstone with minor claystone. It notably lacks any coal seams and therefore is considered to represent fluviatile environments rather than coastal plain environments as is typical in more basinward position within this zone. The claystone to siltstone unit between 1700-1725m in contrast contains thin coal seams and is therefore considered to represent an upper coastal plain environment. The interval is assigned to the "upper" coastal plain because it lacks any dinoflagellates. In contrast the modifying prefix "lower" is assign to the coastal plain environment with dinoflagellates. It is suggested the interval between 1700-1725m correlates with all or part of the transgressive T.1 Shale which contains the M. druggii and T. evittii dinoflagellate Zones, and is a widely distributed unit in the basin (see Partridge, 1989).
- 5. The Paleocene *L. balmei* Zone section between 1565-1700m shows a similar environmental pattern to the Maastrichtian section. The basal interval from 1655-1700m is predominantly sandy and lacks coals and is therefore interpreted as fluviatile. The overlying section between 1565-1655m becomes increasingly shaly upwards and also contains thin coal seams and is therefore interpreted represent upper coastal plain environments. No *in situ* dinoflagellates were found in samples over this interval.
- 6. In the Early Eocene Lower M. diversus Zone section between 1510-1565m the environment of deposition is interpreted as lower coastal plain at the base because marine dinoflagellates are present in the samples, grading upwards into upper coastal plain based on the absence of dinoflagellates.
- 7. The described lithology of the recovered sidewall cores compared to their interpreted lithology from the electric logs is considered anomalous for at least three sidewall cores recovered from the Lower M. diversus Zone interval. The sequence of anomalous sidewall cores are:

SWC	Depth	Described	Interpreted	Comment
No.	(m)	Lithology	Lithology	
47	1547.0	White Sandstone	Claystone	Not processed/ probably 1537.2
46	1550.8	Not recovered	Siltstone/ claystone	
45	1555.0	Grey Sandstone/ with clay matrix	Claystone	Probably 1550.8
44	1559.0	Claystone	Sandstone	Probably 1555.0

Sidewall cores 44 and 47 are the two samples whose lithologies are most in conflict with the interpreted lithologies from the electric logs. As an explanation it is suggested that the four sidewall cores numbered 46, 48, 49 and 52 which were not recovered led to a mislabelling of the recovered samples. It is speculated that sidewall core 44 was not recovered and that the next three recovered samples (i.e. SWCs 45, 46, and 48) were all moved down one place. This interpretation is the simplest and best fit for the lithologies of the recovered samples. The interpretation does not materially affect the palynological zonation of Sweetlips-1 but may have bearing on the electric log correlation of the A. hyperacanthum Zone with adjacent wells.

- 8. In Sweetlips-1 there is less than 10 metres of undated section present at the top of the Latrobe "coarse clastics" section. Relative to the adjacent Emperor-1 well it is estimated that approximately 35 metres of Early Eocene sediments belonging to the Middle to Upper M. diversus and P. asperopolus Zones have been eroded from the Latrobe in Sweetlips-1.
- 9. No N. asperus Zone section was sampled in Sweetlips-1, but is present in a thin Gurnard Formation in Emperor-1 between 1518-1524m (4980-5000ft). It is suggested that the thin high density unit between 1505-1510m may be the equivalent unit in Sweetlips-1.

BIOSTRATIGRAPHY

Zone and age determinations have been made using criteria proposed by Stover & Partridge (1973), Helby *et al*. (1987) and unpublished observations made on Gippsland Basin wells drilled by Esso Australia Ltd.

Author citations for most spore-pollen species can be sourced from Stover & Partridge (1973, 1982), Helby et al. (1987) and Dettmann & Jarzen (1988) or other references cited herein. Species names followed by "ms" are unpublished manuscript names. Zone names have not been altered to conform with recent nomenclatural changes to nominate species such as Forcipites (al. Tricolpites) longus (Stover & Evans) Dettmann & Jarzen 1988. Author citations for dinoflagellates can be found in Lentin & Williams (1985, 1989), and for most algae and acritarchs in Marshall (1989).

Phyllocladidites mawsonii Zone: 1815.0-1849.0 metres Coniacian-Turonian.

Six samples are assigned to this zone based on the similarity of their gross assemblage compositions in Table-4. Key spore-pollen zone species are often only represented by single specimens. Strong supporting evidence for this zone and the Coniacian-Turonian age assignment comes form the algae and microplankton in the samples. Several of the distinctive algae species described by Marshall (1989) were recorded.

The counts of the spore-pollen fraction in all samples are dominated by gymnosperm pollen (60% to 82%), particularly the species groups Dilwynites spp. (21% to 52%), Podocarpidites spp. (5% to 25%) and Araucariacites australis (3% to 15%). The parent plants of these pollen are all wind pollinated and it is well documented in the palynological literature that the concentrations of these pollen types reach their highest values in 'offshore' environments, either in marine situations or towards the centre of large lakes. This pattern of distribution has been termed the "Neves effect" and is summarized by Traverse (1988, p.394-416, figs 17.15 & 17.16). Total spores in the samples are also a significant component (16% to 33%) but without any particularly dominant spore species. Angiosperm pollen in all samples are conspicuously low (<1% to 7%) in marked contrast to their abundance in the overlying T. longus and younger Zones where they have an average abundance of 50%.

Spore-pollen species indicating an age no older than the *P. mawsonii* Zone following the zone definition and range chart data in Helby *et al.* (1987) are *Phyllocladidites mawsonii* (a single poorly preserved specimen recorded at 1815m) and *Proteacidites* sp. (a single small specimen at 1825m). Species indicating an age no younger than the *P. mawsonii* Zone are *Interulobites intraverrucatus*, *Appendicisporites distocarinatus* both at 1815m, *Cyatheacidites tectifera* (a single corroded specimen at 1817m) and *Hoegisporis* sp. (this is an undescribed species characterised by three subdued nodes and was found at 1817m and 1825m). Other significant species recorded over this section are *Foraminisporis asymmetricus*, *Cicatricosisporites cuneiformis*, *C. hughesii* and *Ceratosporites equalis*.

Algae and microplankton were recorded in all samples varying from 1.5% to a high 41% of the total assemblage count (Table-4). Small smooth spheres identified broadly with Sigmopollis carbonis (Newman) are the commonest element and because of their small size are probably under-represented in the counts. Of most stratigraphical importance are the identification of algal cysts and microplankton described by Marshall (1989). Key species identified are Rimosicysta kipperii, R. aspera, Wuroia corrugata, Luxadinium? sp. A & B, and Micrhystridium sp. A. Another frequent to common form regarded as an algal cyst is Amosopollis cruciformis (see Helby et al. 1987, p.55).

The above algal assemblages are of considerable age and environmental significance within the Latrobe Group and are here informally named the Rimosicysta kipperii Microplankton Association.

Upper Tricolpites longus Zone: 1713.9-1787.0 metres Maastrichtian.

The seven productive samples assigned to the Upper T. longus Zone contain well preserved and moderately diverse assemblages which are confidently assigned to the zone on both species recorded and species abundance. The deepest two samples at 1770m and 1787m are given confidence ratings of 2, because they contain diverse assemblages with frequent to common occurrences of Gambierina rudata, but lack the presence of Stereisporites (Tripunctisporis) spp. which is first recorded in the overlying sample at 1762m. A confidence rating of 1 or better is usually reserved for the FAD (First Appearance Datum) of the latter species. The top of the zone is normally picked at the LADs (Last Appearance Datums) of a number of indicator species (Helby et al. 1987). The relevant species in the

shallowest sample assigned to this zone are *Pseudowinterapollis wahooensis*, Ornamentifera sentosa, Beaupreaidites orbiculatus (formerly *Proteacidites gemmatus* ms), and *Tricolporites lilliei*.

The choice of the top of the Upper T. longus Zone in Sweetlips-1 is unusual in two respects. Firstly, the occurrences of Proteacidites clinei ms and Tricolporites lilliei at 1690m, and Camarozonosporites horrendus at both 1680m and 1690m are all considered to reflect reworking of T. longus Zone sediments. This is an rare occurrence within the Gippsland Basin. The second unusual aspect is that the two shallowest samples assigned to the zone at 1713.9m and 1716.2m lack a significant abundance of Gambierina spp. This significant change in assemblage composition near the top of the Upper T. longus Zone may have significance for either age or facies correlation and needs to be looked for in other wells in the basin.

No dinoflagellates or other microplankton were recorded from this zone.

Lower Lygistepollenites balmei Zone: 1643.2-1690.0 metres Paleocene.

The increase in abundance of gymnosperm pollen particularly Phyllocladidites mawsonii and to a lesser extent Lygistepollenites balmei is the main criteria for placing the base of the zone at 1690.0m and treating the T. longus Zone indicator species in this sample and in the overlying sample at 1680m as reworked. The use of this abundance criteria to establish the base of the Lower L. balmei Zone was first demonstrated in Roundhead-1 were there was supporting data from the dinoflagellates (Partridge, 1989). The top of the zone is placed at 1643.2m at the last frequent occurrence of Proteacidites angulatus.

Upper Lygistepollenites balmei Zone: 1567.0-1631.5 metres Paleocene.

Only three samples can be confidently assigned to the Upper L. balmei Zone. A further three samples were examined and counted within the zone interval. These latter samples could be confidently assigned to the broader L. balmei Zone but lacked indicator species for either the Upper or Lower subdivisions.

The deepest sample at 1613.5m is assigned to the Upper subzone on the presence of a single specimen of *Proteacidites annularis*. The next sample at 1567.5m is assigned to the Upper subzone based on the common occurrence

of Cupanieidites orthoteichus and presence of Malvacipollis subtilis. The shallowest sample at 1567m contains the FAD for the indicator species Anacolosidites acutullus and is no younger than the Upper subzone on the frequent occurrence of Lygistepollenites balmei.

The rare dinoflagellate species recorded from the sidewall core at 1575.9m are all considered to be contaminants.

Lower Malvacipollis diversus Zone: 1518.6-1559.0 metres Early Eocene.

The base of the zone is picked on the FADs of Spinozonocolpites prominatus (frequent) and Polypodiaceoisporites varus (rare) as well as the first common occurrence of Malvacipollis diversus.

The two shallowest samples from core-2 at 1518.6m and 1519.8m are assigned to the zone with only a fair confidence rating. They rely on the absence of the key species Proteacidites ornatus, P. tuberculiformis and P. xestoformis ms, characteristic of the next younger zone, for their assignment to the Lower subzone. A possible assignment to the Middle M. diversus Zone may be considered for the sample at 1519.8m based on the what would be considered secondary or less reliable FADs of the species Polycolpites esobalteus and Proteacidites nasus Truswell & Owen 1988 (formerly Proteacidites plemmelus ms). The assemblages are good enough, however, to emphatically state that no section assignable to either the Upper M. diversus or P. asperopolus Zones is present in Sweetlips-1.

The top of the Lower M. diversus Zone with a good confidence rating is picked at the sidewall core at 1520m on the LAD of Cyathidites gigantis.

The deepest sample, at 2215.0m, also contains a microplankton assemblage referable to the *Apectodinium hyperacanthum* dinoflagellate Zone. The key indicators for the zone are the frequent occurrence of the eponymous species *Apectodinium hyperacanthum* associated with *A. homomorphum* (long spined variety), *Dyphes colligerum* and *Fibrocysta bipolare*.

Proteacidites tuberculatus Zone: 1433.0-1504.0 metres Miocene-Oligocene.

The four shallowest samples analysed were readily assigned the the Lakes Entrance Formation based on the lithology of the sidewall cores as well as the abundant and characteristic microplankton assemblage which were extracted. The spore-pollen recorded from the samples are mostly long ranging species associated with rare reworked indicator species of older zones. Cyatheacidites annulatus the key indicator species for the P. tuberculatus Zone was only recorded from one sample.

REFERENCES

- DETTMANN, M.E. & JARZEN, D.M., 1988. Angiosperm pollen from uppermost Cretaceous strata of southeastern Australia and the Antarctic Peninsula. *Mem. Ass. Australas. Palaeontols* 5, 217-237.
- HAQ, B.U., HARDENBOL, J. & VAIL, P., 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156-1167.
- HAQ, B.U., HARDENBOL, J. & VAIL, P., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. SEPM Special Publication No. 42, 71-108.
- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., 1987. A palynological zonation of the Australian Mesozoic. *Mem. Ass. Australas. Palaeontols* 4, 1-94.
- HERDENDORF, C.E., 1982. Large lakes of the world. J. Great Lakes Res. 8(3), 379-412.
- LENTIN, J.K. & WILLIAMS, G.L., 1985. Fossil dinoflagellates: Index to genera and species, 1985 Edition. Canadian Tech. Rep. Hydrog. Ocean Sci. 60, 1-451.
- LENTIN, J.K. & WILLIAMS, G.L., 1989. Fossil dinoflagellates: Index to genera and species, 1989 Edition. *AASP Contribution Series No. 20*, 1-473.
- LOWRY, D.C., 1987. A new play in the Gippsland Basin. APEA $J.\ 27(1)$, 164-172.
- LOWRY, D.C., 1988. Alternative Cretaceous history of the Gippsland Basin. Australian J. Earth Sciences 35, 181-194.
- MARSHALL, N.G., 1989. An unusual assemblage of algal cysts from the Late Cretaceous of the Gippsland Basin, Southeastern Australia. *Palynology* 13, 21-56.

- MARSHALL, N.G. & PARTRIDGE, A.D., 1986. Palynological analysis of Kipper-1, Gippsland Basin. Esso Australia Ltd. Palaeo. Rept. 1986/18, 1-20.
- PARTRIDGE, A.D., 1989. Palynological analysis of Roundhead-1, Gippsland Basin. Esso Australia Ltd. Palaeo. Rept. 1989/17, 1-26.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc. Vict. 85, 237-286.
- STOVER, L.E. & PARTRIDGE, A.D., 1982. Eocene spore-pollen from the Werillup Formation, Western Australia. *Palynology* 6, 69-95.
- TRAVERSE, A., 1988. Paleopalynology. Unwin Hyman Ltd, Boston, 1-600.
- TRUSWELL, E.M. & OWEN, J.A., 1988. Eocene pollen from Bungonia, New South Wales. Mem. Ass. Australas. Palaeontols 5, 259-284.

TABLE-1: INTERPRETATIVE PALYNOLOGICAL DATA SWEETLIPS-1, GIPPSLAND BASIN.

Sheet 1 of 2

SAMPLE TYPE	DEPTH (METRES)	SPORE-POLLEN ZONE	DINOFLAGELLATE ZONE (OR ASSOCIATION)	CONFIDENCE RATING	COMMENT
SWC 60	1433.0	P. tuberculatus		2	
SWC 55	1497.0	P. tuberculatus	•	1	Cyatheacidites annulatus present.
SWC 54	1500.0	P. tuberculatus		2	
SWC 53	1504.0	P. tuberculatus		2	
Core-1	1516.8	Indeterminate			
Core-2	1518.6	Lower M. diversus		2	
Core-2	1519.8	Lower M. diversus		2	
SWC 50	1520.0	Lower M. diversus		1	LAD Cyathidites gigantis
Core-3	1544.0	Lower M. diversus		2	
SWC 45	1555.0	Lower M. diversus		1	
SWC 44	1559.0	Lower M. diversus	A. hyperacanthum	0	Spinizonocolpites prominatus conspicuous.
SWC 39	1567.0	Upper L. balmei		1	
SWC 38	1567.5	Upper L. balmei		1	Common Cupanieidites orthoteichus - 8.3%
SWC 37	1570.2	L. balmei		2	Laevigatosporites spp. > 75%
SWC 36	1575.9	L. balmei		1	Dinoflagellates considered to be contaminants.
SWC 32	1614.5	L. balmei		1	
SWC 30	1631.5	Upper <i>L. balmei</i>		2	
SWC 29	1643.2	Lower L. balmei		1	Proteacidites angulatus - 3.9%
SWC 28	1655.3	Lower L. balmei		1	Common Proteacidites angulatus - 9.1%
SWC 27	1668.0	Lower L. balmei		1	Abundant Phyllocladidites mawsonii - 31%
SWC 25	1680.0	Lower L. balmei		2	Rare T. longus Zone indicators are reworked.
SWC 24	1690.0	Lower L . balmei		2	Dominated by P. mawsonii - 56.7%
SWC 23	1703.0	Indeterminate			Palynomorph concentration low.
SWC 22	1713.9	Upper T. longus		1	Gambierina < 1%
SWC 21	1716.2	Upper T. longus		1	Gambierina << 1%
SWC 20	1720.0	Upper T. longus		1	Gambierina abundance - 8.5%

TABLE-1: INTERPRETATIVE PALYNOLOGICAL DATA SWEETLIPS-1, GIPPSLAND BASIN.

Sheet 2 of 2

SAMPLE TYPE	DEPTH (METRES)	SPORE - POLLEN ZONE	DINOFLAGELLATE ZONE (OR ASSOCIATION)	CONFIDENCE RATING	COMMENT
SWC 17	1739.0	Upper T. longus		1	Gambierina abundance 16.7%
SWC 16	1744.0	Indeterminate	•		
SWC 14	1762.0	Upper T. longus		1	FAD Stereisporites (Tripunctisporis) spp.
SWC 13	1770.0	Upper T. longus		2	Gambierina abundance 12%
SWC 11	1787.0	Upper T. longus		2	Gambierina abundance 9%
SWC 8	1815.0	P. mawsonii	(Rimosicysta kipperii)	1	Abundant Sigmopollis carbonis.
SWC 7	1817.0	P. mawsonii	(Rimosicysta kipperii)	1	
SWC 5	1825.0	P. mawsonii		1	
SWC 4	1832.0	P. mawsonii	(Rimosicysta kipperii)	1	
SWC 2	1840.0	P. mawsonii	•	1	
SWC 1	1849.0	P. mawsonii		1	

LAD = Last Appearance Datum. FAD = First Appearance Datum.

PALYNOLOGY DATA SHEET

вля	S I N: GIPPSLAND					EVATION:			m GL:	-52	. <i>0m</i>
WELL	NAME: <u>SWEETLIPS</u>				TO	TAL DEPT		187			
ы	PALYNOLOGICAL	HIG	нЕ		T			WES		T 1	
A G	zones	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time
	T. pleistocenicus	!	-		<u> </u>			† Ť			
6.1	M. lipsis										
SENI	C. bifurcatus							1			
NEOGENE	T. bellus										
	P. tuberculatus	1433	2				1504	2	1497	1	
	Upper N. asperus										
	Mid N. asperus										
戸	Lower N. asperus										
EN GEN	P. asperopolus					<u>'</u> .					
PALEOGENE	Upper M. diversus										
Ed.	Mid M. diversus										
	Lower M. diversus	1518.6	2	1519.6			1559	0			
	Upper L. balmei	1567	1				1631.5	2	1567.5	1	
	Lower L. balmei	1643.2	1				1690	2	1668	1	
CRETACEOUS	Upper T. longus	1713.9	1				1787	2	1762	1	
	Lower T. longus		<u> </u>		<u> </u>						
l leg	T. lilliei		<u> </u>		<u> </u>	<u> </u>					
SRE	N. senectus		ļ			ļ			ļ_,	ļ	<u> </u>
1	T. apoxyexinus		<u> </u>		1	<u> </u>			ļ	<u> </u>	
LATE	P. mawsonii	1815	1		ļ	ļ	1849	1		_	
<u> </u>	A. distocarinatus		<u> </u>		<u> </u>	ļ	 		ļ	_	ļ
E E	P. pannosus	ļ	ــــ						ļ	 	ļ
CRET	C. paradoxa			 	 	 		-		+-	<u> </u>
25	C. striatus		-	ļ	-	ļ			ļ	-	
EARLY	C. hughesi		-		-		 	-		┼	
	F. wonthaggiensis C. australiensis		├	 	┼	 	 		 	+-	
L	c. australiensis	<u> </u>	<u></u>	<u> </u>	<u></u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	ــــــــــــــــــــــــــــــــــــــ	<u> </u>		<u></u>
COV	MMENTS: All depth	s in metre	28.								
	Apectodin	ium hyper	acan	thum Dinof	lage	ellate Z	Cone at 15	59m			
											
				onfidence, asse							
R				ence, assemb ence, assemb							
	3: Cuttings	s, Fair Confid		assemblage w							
	or both.		nce.	assemblage wi	th no	n-diagnost	ic spores, poli	en and	or microple	nkton	
NO.	3										
	entered, 11 po unless a range	ssible. If a si of zones is gi	ample	cannot be ass	igned	to one pa	rticular zone,	then n	o entry should	l be n	ade,
ימוז	limit in anoth	er. A.D. Partr	i daa				DATE: F	ahmi	ary 16, 19	90	
DIN.	IN INCOMED BI:	zeve rqu'ul'	ruye					eni.no	uy 10, 19	00	
DA	TA REVISED BY:						DATE: _				

BASIC DATA

TABLE-2: BASIC DATA

TABLE-3: PALYNOMORPH PERCENTAGES FOR

Upper T. longus to L. balmei Zones.

TABLE-4: PALYNOMORPH PERCENTAGES FOR P. mawsonii Zone.

RANGE CHARTS FOR SAMPLES BETWEEN

1433.0m - 1787.0m

AND

1815.0m - 1849.0m

TABLE-2: BASIC PALYNOLOGIC DATA SWEETLIPS-1, GIPPSLAND BASIN.

Sheet 1 of 2

SAMPLE TYPE	DEPTH (METRES)	LAB NO	LITHOLOGY	RESIDUE YIELD	PALYNOMORPH CONCENTRATION	PRESERVATION	NUMBER OF S-P SPECIES	MICROPI ABUNDANCE	ANKTON NO. SPECIES
	(11111111111111111111111111111111111111								
SWC 60	1433.0	78262H	Calc. claystone	Very low	Very low	Fair	18+	Low	4+
SWC 55	1497.0	78262C	Calc. claystone	Low	Low	Good	10+	High	5+
SWC 54	1500.0	78262B	Calc. claystone	Low	Low	Good	9+	Moderate	6+
SWC 53	1504.0	78262A	Calc. claystone	Moderate	Moderate	Poor-good	16+	High	8+
Core-1	1516.8	78305A	Carbonaceous claystone	Very low	Barren				
Core-2	1518.6	78305B	Carbonaceous siltstone	High	High	Poor	24+		
Core-2	1519.8	78305C	Siltstone	Moderate	Moderate	Poor-fair	23+		
SWC 50	1520.0	78261X	Sst. with clay matrix	Low	Low	Fair-good	22+		
Core-3	1 5 44.0	78305D	Coal	High	Moderate	Poor-fair	15+		
SWC 45	1555.0	78261S	Gry-brn sandstone	Moderate	Moderate	Good	13+	Low	1
SWC 44	1559.0	78261R	Claystone	High	Moderate	Fair	21+	Moderate	5+
SWC 39	1567.0	78261M	Claystone grad'g slst	Moderate	Moderate	Poor	13+		
SWC 38	1567.5	78261L	Siltstone	High	High	Poor-good	28+		
SWC 37	1570.2	78261K	Claystone	Low	Low	Poor	8+		
SWC 36	1575.9	78261J	Claystone	Low	Moderate	Fair	12+	(Very low)	(3)
SWC 32	1614.5	78261F	Claystone	High	High	Good	18+		
SWC 30	1631.5	78261D	Claystone	High	High	Good	31+		
SWC 29	1643.2	78261C	Claystone	High	High	Good	24+		
SWC 28	1655.3	78261B	Claystone	High	High	Poor-fair	18+		
SWC 27	1668.0	78261A	Interlaminated sst/slst	High	High	Fair-good	21+		
SWC 25	1680.0	78260Y	Carbonaceous sst.	Moderate	Moderate	Fair-good	30+	(Very low)	(1)
SWC 24	1690.0	78260X	Carbonaceous claystone	High	Low	Poor	9+		
SWC 23	1703.0	78260W	Claystone	High	Low	Poor	7+		
SWC 22	1713.9	78260V	Dk. grey siltstone	High	High	Good	45+		
SWC 21	1716.2	78260U	Dk. grey siltstone	High	High	Fair-good	31+		
SWC 20	1720.0	78260T	Siltstone	Moderate	Moderate	Fair-good	25+		
SWC 17	1739.0	78260Q	Claystone w/. coal clasts	Moderate	High	Fair-good	18+		
SWC 16	1744.0	78260P	Claystone	Very low	Barren	3			

TABLE-2: BASIC PALYNOLOGIC DATA SWEETLIPS-1, GIPPSLAND BASIN.

Sheet 2 of 2

SAMPLE TYPE	DEPTH (METRES)	LAB NO.	LITHOLOGY	RESIDUE YIELD	PALYNOMORPH CONCENTRATION	PRESERVATION	NUMBER OF S-P SPECIES	MICROP: ABUNDANCE	LANKTON NO. SPECIES
SWC 14	1762.0	78260N	Micaceous siltstone	High	Moderate	Fair-good	16+		
SWC 13	1770.0	78270M	Micaceous siltstone	Moderate	Moderate	Fair-good	20+		
SWC 11	1787.0	78260K	Sandstone	Moderate	Moderate	Good	31+		
SWC 8	1815.0	78260H	Claystone	High	High	Good	23+	Abundant	4+
SWC 7	1817.0	78260G	Siltstone	High	Moderate	Fair	18+	Low	2
SWC 5	1825.0	78260E	Carbonaceous siltstone	High	Moderate	Fair	17+	Low	3
SWC 4	1831.0	78260D	Siltstone	Moderate	Moderate	Fair	16+	Moderate	2
SWC 2	1840.0	78260B	Silstone	Moderate	Moderate	Fair	19+	Low	3
SWC 1	1849.0	78260A	Siltstone	Moderate	Moderate	Fair	17+	Very low	2

Microplankton in (brackets) = contamination.

* Diversity: Very Low = 1-5 species.

Low = 6-10 species.

Moderate = 11-25 species.

High = 26-74 species.

Very High = 75+ species.

TABLE-3: PALYNOMORPH PERCENTAGES FOR Upper T. longus - L. balmei Zones FROM SWEETLIPS-1

Page 1 of 2

	1567.0m SWC 39	1567.5m SWC 38	1570.2m swc 37	1575.9m SWC 36	1614.5m SWC 32	1631.5m swc 30	1643.2m SWC 29	1655.3m SWC 28	1668.0m SWC 27
TRLIETE SPORES undiff.		2.8%	2.5%	1.1%	3.2%	1.6%	0.9%		3.7%
Cyathidites spp.	5.4%	2.8%	4.2%	8.6%	9.6%	1.6%	1.9%	1.8%	2.5%
Gleicheniidites/Clavifera spp.	7.6%	11.6%	3.3%		8.5%	29.6%	0.5%	0.5%	
Stereisporites spp.		0.8%	0.8%		1.1%	1.6%		0.5%	
MONOLETE SPORES							0.5%		0.5%
Laevigatosporites spp.	14.1%	15.3%		8.1%	5.3%	0.8%	9.7%	4.5%	
Marratisporites scabratus	3.3%	2.8%		47 000	0.5%	75 00	47 50	7 70	0.5%
TOTAL SPORES	30.4%	36.4%	85.8%	17.8%	28.2%	35.2%	13.5%	7.3%	15.7%
GYMNOSPERM POLLEN									
Araucariacites australia							0.5%		0.5%
Dilwynites spp.	2 28	F 0°	2 50	E /9/		4 49	2.4%	0.9% 1.4%	
Lygistepollenites balmei	2.2%	5.0% 0.4%		5.4%		6.6% 0.4%	1.0%		
Lygistepollenites florinii Microcachryidites antarcticus		0.4%				0.8%		0.5%	
Phyllocladidites mawsonii (s.l.)	2.2%	1.2%		1.6%	5.3%	14.5%			
Phyllocladus palaeogenicus	2.27	7.270			2.0.0		0.5%		
Podocarpidites spp.	2.2%	5.4%			3.2%	8.9%	24.2%	17.7%	10.6%
Podosporites microsaccatus		0.8%			1.1%		1.4%		
TOTAL GYMNOSPERM POLLEN	6.5%	12.8%	2.5%	7.0%	9.6%	31.3%	35.7%	28.2%	47.5%
AUGIOCOFOM DOLLEN umdiff	1.0%	1.7%		0.8%		0.6%	2.8%		2.0%
ANGIOSPERM POLLEN undiff. Australopollis obscurus	1.0%	1 . 7 /6		0.5%		0.8%			
Casuarina (H. harrisii)		2.0%		0.570	1.1%	0.0.0			
Cupanieidites orthoteichus		8.3%							
Dicotetradites clavatus	3.3%	0.4%		0.5%		0.8%	1.0%		
Gambierina spp.									
Malvacipollis spp.		1.2%							
Nothofagidites spp.	3.3%	2.5%		2.7%		0.48	1.9%	0.4%	0.5%
Penninsulapollis gillii		4 50		0.5%		0.4%		5.0%	1.5%
Periporopollenites spp.	2.2%	1.2%		2.2%		1.2%	3.9%		
Proteacidites angulatus							3.7%	7.176	
Proteacidites clinei Proteacidites reticuloconcavus									
Proteacidites spp.	25.0%	18.2%	10.8%	55.1%	10.1%	20.3%	18.8%	15.9%	6.1%
Tetracolporites verrucosus	25.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						0.5%
Tricolpites confessus									
Tricolporites lilliei									
Tricolp(or)ates undiff.	7.6%	3.7%		7.0%	9.6%	4.7%	19.8%	3.6%	14.6%
Triporopollenites sectilis									4.4 (0)
Triporopollenites spp. (small)	20.7%								
TOTAL ANGIOSPERM POLLEN	63.1%	50.8%	11.7%	75.2%	62.2%	33.5%	50.7%	64.5%	36.8%
TOTAL SPORES AND POLLEN COUNT	92	242	120	185	188	256	207	220	198
PERCENTAGES FOR MAJOR CATEGORIES	1								
			6= F4		~ ~ ~~	75 00	47 70	7 70	17 50
Spores %	30.4%								
Gymnosperm Pollen %	6.5%								
Angiosperm Pollen %	63.1%								
TOTAL SPORE-POLLEN %	100.0%			100.0%					
Fungal Spores and Hyphae %		2.4%			5.1%		1.4%		13.9%
TOTAL COUNT	92	248	120	185	198	256	210	220	230

TABLE-3: PALYNOMORPH PERCENTAGES FOR Upper T. longus - L. balmei Zones FROM SWEETLIPS-1

Page 2 of 2

	1680.0m	1690.0m	1713.9m	1716.2m	1720.0m	1739.0m	1762.0m	1770.0m	1787.0m
	SWC 25	SWC 24	SWC 22	SWC 21	SWC 20	SWC 17	SWC 14	SWC 13	SWC 11
TRLIETE SPORES undiff.	3.5%	1.0%	4.2%	2.1%	2.2%	4.9%	3.4%	5.1%	3.4%
Cyathidites spp.	1.4%	1.0%		2.0%	1.6%	8.0%	4.0%	1.8%	1.0%
Gleicheniidites/Clavifera spp.	1.9%		6.1%	4.9%	0.8%		3.5%	0.9%	
Stereisporites spp.	1.4%		1.4%	4.1%	3.9%	1.9%	7.9%	5.3%	3.4%
MONOLETE SPORES			0.5%						
Laevigatosporites spp.	2.4%	6.0%	6.1%	5.3%	4.7%	5.6%	6.4%	13.2%	4.4%
Marratisporites scabratus	1.0%		1.4%	0.4%					
TOTAL SPORES	11.6%	8.0%	31.0%	18.8%	13.2%	21.0%	25.2%	26.3%	12.2%
GYMNOSPERM POLLEN									
Araucariacites australia	7.0%		4 09		7.00				
	3.9%		1.9%		3.9%		0.5%	1.8%	0.5%
Dilwynites spp. Lygistepollenites balmei	3.4%	4 09/	0.5%	0 / 0	0.8%		0.5%		
	3.7%	1.0%	0.5%	0.4%	1.6%	1.9%			1.4%
Lygistepollenites florinii	1.9%	1.0%		0.8%			5.9%		0.5%
Microcachryidites antarcticus	1.9%	E (70)	0.5%	0.1%	0.8%		2.0%		2.0%
Phyllocladidites mawsonii (s.l.)	15.5%	56.7%	2.8%	2.0%	9.3%	1.9%	4.5%	3.5%	12.7%
Phyllocladus palaeogenicus	44 184	3.0%							
Podocarpidites spp.	16.4%	8.0%	7.9%	15.5%	8.4%	3.1%	8.8%	14.0%	5.8%
Podosporites microsaccatus	1.0%		18.3%	6.1%	3.9%	2.4%	4.0%	1.8%	2.0%
TOTAL GYMNOSPERM POLLEN	47.8%	69.7%	32.4%	24.9%	28.7%	9.3%	26.2%	21.1%	24.9%
ANGIOSPERM POLLEN undiff.	2.4%		1.8%	1.7%	2.3%		2.0%	1.6%	0.8%
Australopollis obscurus			0.5%	20.4%	L.5/6		2.0%	1.0%	0.0%
Casuarina (H. harrisii)			0.5%	20.4%					
Cupanieidites orthoteichus									
Dicotetradites clavatus				0.4%			2.0%		
Gambierina spp.	0.5%		0.9%	0.4%	8.5%	16.7%	3.5%	12.3%	0.0%
Malvacipollis spp.	0.5%		0.7%		0.7%	10.7%	3.5%	12.3%	8.8%
Nothofagidites spp.							0.5%	4 004	0.5%
Penninsulapollis gillii	1.9%		0 5%	0.78	/ DW	F /9/	0.5%	1.8%	0.5%
Periporopollenites spp.	1.7%		0.5%	0.4%	6.2%	5.6%	2.0%	0.9%	10.7%
Proteacidites angulatus					2.3%	1.2%	1.0%		
——————————————————————————————————————									
Proteacidites clinei				0.8%	1.6%		3.5%	4.4%	1.0%
Proteacidites reticuloconcavus Proteacidites spp.	45 50		4= ===					0.9%	2.0%
	15.5%	4.0%	15.5%	6.5%	31.0%	35.8%	22.3%	26.3%	32.2%
Tetracolporites verrucosus				4.1%					
Tricolpites confessus	0.5%					1.2%	1.0%		
Tricolporites lilliei	0.5%						0.4%	0.9%	0.5%
Tricolp(or)ates undiff.	7.2%	16.3%	14.1%	20.8%	3.1%	6.2%	5.9%	3.5%	1.5%
Triporopollenites sectilis									2.9%
Triporopollenites spp. (small)	12.6%	2.0%	3.3%	1.2%	3.1%	3.1%	4.5%		2.0%
TOTAL ANGIOSPERM POLLEN	40.6%	. 22.3%	36.6%	56.3%	58.1%	69.8%	48.6%	52.6%	62.9%
TOTAL SPORES AND POLLEN COUNT	207	99	213	245	120	1/2	202	447	205
TOTAL STORES AND POLLEN COOM!	201	77	213	245	129	162	202	114	205
PERCENTAGES FOR MAJOR CATEGORIES									
Spores %	10.5%	7.2%	30.6%	18.4%	22.6%	20.9%	23.2%	26.3%	11.3%
Gymnosperm Pollen %	43.2%	62.2%	31.9%	24.4%	27.8%	9.2%	24.1%	21.1%	23.0%
Angiosperm Pollen %	36.7%	19.8%	36.1%	55.2%	56.4%	69.3%	44.5%	52.6%	58.0%
TOTAL SPORE-POLLEN %	90.4%	89.2%	98.6%	98.0%	97.0%	99.4%	91.8%	100.0%	92.3%
		-/ · -/-	, 3.0%	,5.0%	71.0%	,,h	71.0%	100.0%	76.3%
Fungal Spores and Hyphae %	9.6%	10.8%	1.4%	2.0%	3.0%	0.6%	8.2%		7.7%
TOTAL COUNT			<u>.</u>	_					
TOTAL COUNT	229	111	216	250	133	163	220	114	222

TABLE 4: PALYNOMORPH PERCENTAGES FOR P. mawsonii Zone FROM SWEETLIPS-1

Page 1 of 1

						•
	1815.0m SWC 8	1817.0m SWC 7	1825.0m SWC 5	1831.0m SWC 4	1840.0m SWC 2	1849.0m SWC 1
TRILETE SPORES undiff.	5.9%	8.1%	5.3%	2.8%	5.9%	4.2%
Baculatisporites spp.	1.8%	2.2%	2.9%	2.8%	1.4%	0.8%
Cyathidites spp.	5.8%	5.8%	16.6%	5.6%	12.9%	10.0%
Gleicheniidites spp.	2.3%	1.5%	0.5%	2.8%	1.4%	
Stereisporites spp.	0.6%	2.2%	2.0%	0.7%	5.0%	0.8%
MONOLETE SPORES	0.6%		0.5%		2.2%	1.7%
Laevigatosporites spp. HILATE SPORES	2.3%	3.6%	2.9%	1.4%	5.0%	0.8%
Triporoletes reticulatus		0.7%	1.0%			
TOTAL SPORES	19.3%	24.1%	31.7%	16.1%	33.8%	18.3%
GYMNOSPERM POLLEN						
Araucariacites australis	10.5%	14.6%	10.2%	13.3%	5.0%	3.3%
Dilwynites spp.	53.2%	51.7%	21.5%	43.4%	25.9%	45.0%
Corollina spp.			2.4%	0.7%	5.0%	0.8%
Cycadopites spp.	5.8%			1.3%		
Microcachryidites antarcticus	1.8%		5.4%	7.7%	6.5%	5.0%
Podocarpidites spp.	5.3%	6.7%	24.9%	11.2%	17.3%	25.0%
Podosporites microsaccatus	2.3%	2.2%	1.0%	4.2%		2.6%
TOTAL GYMNOSPERM POLLEN	78.9%	75.2%	65.4%	81.8%	59.7%	81.7%
ANGIOSPERM POLLEN undiff. Tricolpites spp. Tricolporites spp. Triporopollenites spp.	1.8%	0.7%	1.4% 0.5% 1.0%	2.1%	3.6% 2.9%	
TOTAL ANGIOSPERM POLLEN	1.8%	0.7%	2.9%	2.1%	6.5%	
TOTAL SPORES & POLLEN COUNT	171	137	205	143	139	120
PERCENTAGES FOR MAJOR CATEGORIES						
Spores %	10.7%	20.1%	30.1%	13.9%	29.7%	16.2%
Gymnosperm Pollen %	44.0%	62.8%	62.0%	70.5%	52.5%	72.0%
Angiosperm Pollen %	1.0%	0.6%	2.8%	1.8%	5.7%	
TOTAL Spore-Pollen %	55.7%	83.5%	94.9%	86.2%	87.9%	88.2%
Fugal Spores & Hyphae %	3.6%	4.3%	0.9%	2.4%	8.2%	10.3%
ALGAE & MICROPLANKTON undiff.		1.2%		6.0%	1.3%	
Amosopollis cruciformis	7.2%	6.1%		0.6%		
Micrhystridium spp.			1.8%		0.6%	1.5%
Rimosicysta spp.	0.7%	1.2%		4.8%		
Sigmopollis carbonis	32.6%	3.7%	2.3%		1.9%	
Wuroia spp.	0.3%					
TOTAL Algae & Microplankton	40.7%	12.2%	4.1%	11.4%	3.8%	1.5%
TOTAL COUNT	307	164	216	166	158	136

PE900496

This is an enclosure indicator page.

The enclosure PE900496 is enclosed within the container PE902128 at this location in this document.

The enclosure PE900496 has the following characteristics:

ITEM_BARCODE = PE900496
CONTAINER_BARCODE = PE902128

NAME = Palynology Range Chart, 1 of 2

BASIN = GIPPSLAND
PERMIT = VIC/L10
TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Palynology Range Chart, 1 of 2, for

Sweetlips-1

REMARKS = DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1003$

WELL_NAME = SWEETLIPS-1

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

PE900497

This is an enclosure indicator page. The enclosure PE900497 is enclosed within the container PE902128 at this location in this document.

The enclosure PE900497 has the following characteristics:

ITEM_BARCODE = PE900497
CONTAINER_BARCODE = PE902128

NAME = Palynology Range Chart, 2 of 2

BASIN = GIPPSLAND

PERMIT = VIC/L10 TYPE = WELL

SUBTYPE = DIAGRAM

DESCRIPTION = Palynology Range Chart, 2 of 2, for

Sweetlips-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED =

 $W_NO = W1003$

WELL_NAME = SWEETLIPS-1

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 2

SWEETLIPS 1

QUANTITATIVE LOG ANALYSIS

INTERVAL : 1500m - 1850m ANALYST : A. R. GILBY DATE : FEBRUARY, 1990.

SWEETLIPS 1

QUANTITATIVE LOG ANALYSIS

CONTENTS

Logs used

Analysis methodology

Analysis parameters

Discussion

Appendix 1. Algorithms and logic used in the quantitative analysis

Analysis Summary Table (net and gross sand)

Enclosures:

SOLAR Depth plot

SWEETLIPS 1 QUANTITATIVE LOG ANALYSIS

Wireline log data from the Sweetlips 1 exploration well has been quantitatively analysed over the interval 1500-1850m MDKB for effective porosity and effective water saturation. Results are presented in the form of accompanying depth plots and tabular listings, and are summarised and discussed below.

Sweetlips 1 intersected a $51.7~\mathrm{m}$ gross gas column underlain by a $3.8~\mathrm{m}$ gross oil column at the top Latrobe section.

LOGS USED

CALI	(Caliper)
GR	(gamma ray)
LLS	(shallow laterolog)
LLD	(deep laterolog)
MSFL	(micro-spherically focussed log)
RHOB	(bulk density)
NPHI	(neutron porosity)

ANALYSIS METHODOLOGY

Apparent total porosity and shale volume was calculated using density-neutron crossplot algorithms.

Water saturations were determined from the dual water relationship. Effective porosities and Sw values were derived from the apparent total porosity and Sw, calculated shale volume and apparent shale porosity.

ANALYSIS PARAMETERS

Tortuosity; 'a'	1.00
Cementation factor; 'm':	2.00
Saturation exponent; 'n':	2.00
Fluid density:	1.00
Gamma Ray value in clean formation (grmin).:	30
Gamma Ray value in shale (grmax):	130
Apparent bulk density of shale	2.55
Apparent neutron porosity of shale:	0.33
RSH:	10 ohmm
Rmf:	0.321 a 13.9°C
Z:	0.4
BHT:	68.3°C
RHOH:	0.25 (gas) 0.7 (oil)
Seabed Temperature:	10°C
Irreducible water saturation:	0.025
Vsh upper limit for effective porosity:	0.65
Logged total depth:	1865m
Water depth:	52m
KB height:	21m
Salinity Zones:	1500m-1565m: 20,000ppm
	1565m-1655m: apparent salinity (ie fresh-water zone)
	1655m-1850m: 20,000 ppm

DISCUSSION

Sweetlips 1 intersected a gross hydrocarbon column of 55.5 m comprising 51.7 m of gas underlain by 3.8 m of oil at the top Latrobe. The remainder of the well proved to be water wet.

It is noted that based on log character alone, the oil column might begin up to one metre higher than determined here-in. However, RFT pressure data suggest that the top of the oil column can be no higher than 1561m (MDKB). Generally good log/core porosity correlation exists except in some thin intervals in which tighter zones could not be readily detected by the open hole logs run. These do not have a significant effect on the final interpretation.

(10890131)

```
APPENDIX 1
      ALGORITHMS & LOGIC USED IN THE QUANTITATIVE ANALYSIS
nitial Total Porosity and Shale Volume was calculated from
he bulk density and neutron porosity log responses as follows:
    vsh = ((nphi+0.04) - ((2.65-rhob)/(2.65-rhof)))/
        ((phinsh+0.04) - ((2.65-rhobsh)/(2.65-rhof)))
    vsh = min(1, (max(0, vsh)))
   h = (2.71-rhob) + (nphi*(rhof-2.71))
      if (h>=0)
        rhoma=2.71-(0.5*h)
      else
        rhoma=2.71-(0.64*h)
    phit = \max(0.001, (\min(1, ((rhoma-rhob)/(rhoma-rhof)))))
 he Apparent Salinity profile was derived from aRw
ack-calculated in clean sands from Archie's equation,
assuming 100% Sw.
 wt (total Water Saturation) was calculated using the
dual water relationship
1/rt = (swt**n)*(phit**m)/(a*rw)+swt**(n-1)*(swb*(phit**m)/a)*((1/rwb)-(1/rw))
his is solved for Sw by Newtons solution:
     exsw=0
     sw = 0.9
     aa = ((phit**m) / (a*rw))
     bb = ((swb*(phit**m)/a)*((1/rwb)-(1/rw)))
           fxl = (aa*(sw**n)) + (bb*(sw**(n-1))) - (1/rt)
           fx2=(n*aa*(sw**(n-1)))+((n-1)*bb*(sw**(n-2)))
              if((abs(fx2)) < 0.0001)
               fx2=0.0001
           we=qwe
           sw = swp - (fx1/fx2)
           exsw=exsw+1
         until (exsw > 4 \text{ or } (abs(sw-swp)) \le 0.01)
     swt=sw
Fffective Porosity and Water Saturation were derived as follows:
  if (vsh > vshco) {
   swt = 1
   swe = 1
  phie = 0
  }
  else (
    phie= max(0.0, (phit-(vsh*phish)))
    swe = max(swirr, (.1 - ((phit/phie)*(1-swt))))
    if (vsh > (vshco-0.2)) {
       phie= phie*((vshco-vsh)/0.2)
       swe = 1 - ((1-swe) * ((vshco-vsh)/0.2))
  }
 where vshco = 0.65
```

SWEETLIPS_1

ANALYSIS SUMMARY.

Net porosity cut-off...... 0.100 volume per volume Net water saturation cut-off..: 0.500 volume per volume

Net Porous Interval based on Porosity cut-off only.

Both Porosity and Sw cut-offs invoked when generating Hydrocarbon-Metres.

	GROSS INTERVA	AL	NET	POROUS INT	TERVAL					_
	(metres)	Gross	Net	Net to	Mean	(Std.)	Mean	(Std.)	Mean	(Std.) HYDROCARBON
	(top) -(base)	Metres	Metre	s Gross	Vsh	(Dev.)	Porosity	(Dev.)	Sw	(Dev.) METRES
			1							1
MDKB	1509.2-1560.9	51.7	43.4	84 %	0.141	(0.140)	0.212	(0.044)	0.304	(0.132) 6.381
MDKB	1561.0-1564.8	3.8	3.7	99 %	0.159	(0.089)	0.236	(0.022)	0.285	(0.173) 0.613
MDKB	1587.4-1600.2	12.8	7.1	56 %	0.343	(0.089)	0.152	(0.034)	1.000	(0.000) 0.000
MDKB	1601.9-1608.3	6.4	5.4	86 %	0.107	(0.117)	0.280	(0.064)	1.000	(0.000) 0.000
MDKB	1620.1-1621.8	1.8	0.4	23 %	0.255	(0.106)	0.168	(0.034)	1.000	(0.000) 0.000
MDKB	1624.6-1628.4	3.8	1 2.3	61 %	0.067	(0.092)	0.264	(0.049)	1.000	(0.000) 0.000
MDKB	1629.3-1630.9	1.6	1.1	70 %	0.208	(0.135)	0.202	(0.045)	1.000	(0.000) 0.000
MDKB	1634.1-1641.7	7.6	3.9	52 %	0.239	(0.113)	0.167	(0.034)	1.000	(0.000) 0.000
MDKB	1644.2-1645.7	1.5	0.6	40 %	0.453	(0.040)	0.142	(0.023)	1.000	(0.000) 0.000
MDKB	1654.9-1684.1	29.2	25.8	89 %	0.203	(0.125)	0.172	(0.043)	1.000	(0.000) 0.000
MDKB	1685.3-1689.7	4.4	1 3.9	90 %	0.215	(0.078)	0.211	(0.024)	1.000	(0.000) 0.000
MDKB	1690.8-1701.9	11.2	10.3	92 %	0.211	(0.123)	0.202	(0.046)	1.000	(0.000) 0.000
MDKB	1704.8-1707.0	2.2	1.1	51 %	0.299	(0.066)	0.176	(0.027)	1.000	(0.000) 0.000
MDKB	1722.9-1735.3	12.4	11.5	93 %	0.179	(0.138)	0.213	(0.053)	1.000	(0.000) 0.000
MDKB	1739.4-1764.4	25.0	12.5	50 %	0.156	(0.141)	0.223	(0.062)	1.000	(0.000) 0.000
MDKB	1765.3-1769.5	4.3	1 3.6	86 %	0.259	(0.131)	0.184	(0.046)	1.000	(0.000) 0.000
MDKB	1770.6-1813.6	43.0	1 39.5	92 %	0.181	(0.096)	0.173	(0.046)	1.000	(0.000) 0.000
MDKB	1817.3-1820.9	3.6	2.8	78 %	0.215	(0.126)	0.215	(0.040)	1.000	(0.000) 0.000
MDKB	1831.2-1835.8	4.7	3.5	76 ¥	0.313	(0.094)	0.191	(0.037)	1.000	(0.000) 0.000
MDKB	1839.1-1849.9	10.8	6.4	59 %	0.297	(0.098)	0.201	(0.035)	1.000	(0.000) 0.000

PE600978

This is an enclosure indicator page. The enclosure PE600978 is enclosed within the container PE902128 at this location in this document.

The enclosure PE600978 has the following characteristics:

ITEM_BARCODE = PE600978
CONTAINER_BARCODE = PE902128

NAME = Quantitative log

BASIN = GIPPSLAND

PERMIT =

 $\mathtt{TYPE} = \mathtt{WELL}$

SUBTYPE = WELL_LOG

DESCRIPTION = Quantitative log

REMARKS =

DATE_CREATED = 13/02/90

DATE_RECEIVED = 2/05/90

 $W_NO = W1003$

WELL_NAME = Sweetlips-1

CONTRACTOR = SOLAR CLIENT_OP_CO = ESSO

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 3

SWEETLIPS SIDETRACK 1

QUANTITATIVE LOG ANALYSIS

INTERVAL : 1617m - 1700m ANALYST : A. R. GILBY DATE : NOVEMBER, 1989

SWEETLIPS SIDETRACK 1

QUANTITATIVE LOG ANALYSIS

CONTENTS

Logs used

Analysis methodology

Analysis parameters

Discussion

Appendix 1. Algorithms and logic used in the quantitative analysis

Analysis Summary Table (net and gross sand)

Well Data Listing

Enclosures:

- 1) SOLAR Depth plot (MDKB)
- 2) SOLAR Depth plot (TVDSS)

<u>SWEETLIPS SIDETRACK 1</u> <u>QUANTITATIVE LOG ANALYSIS</u>

Wireline log data from the Sweetlips Sidetrack 1 well has been quantitatively analysed over the interval 1617-1700m MDKB for effective porosity and effective water saturation. Results are presented in the form of accompanying depth plots and tabular listings, and are summarised and discussed below.

LOGS USED

. log)
i

ANALYSIS METHODOLOGY

Apparent total porosity and shale volume was calculated using density-neutron crossplot algorithms.

Water saturations were determined from the dual water relationship. Effective porosities and Sw values were derived from the apparent total porosity and Sw, calculated shale volume and apparent shale porosity.

ANALYSIS PARAMETERS

ALIDID I AMAILIENS	
Tortuosity; 'a':	1.00
Cementation factor; 'm':	2.00
Saturation exponent; 'n':	2.00
Fluid density:	1.00
Gamma Ray value in clean formation (grmin).:	30
Gamma Ray value in shale (grmax):	130
Apparent bulk density of shale:	2.55
Apparent neutron porosity of shale:	0.33
RSH:	10 ohmm
Rmf:	0.164 a 20°C
BHT:	63°C
RHOH:	0.25 (gas) 0.7 (oil)
Seabed Temperature:	10°C
Irreducible water saturation:	0.025
Vsh upper limit for effective porosity:	0.65
Logged total depth:	1722m
Water depth:	52m
KB height:	21m
Salinity Zones:	1617m-1673m: 20,000ppm
•	1673m-1700m: 4,000 ppm

DISCUSSION

Sweetlips Sidetrack 1 intersected a gross measured depth hydrocarbon column of approximately 54 m comprising 49.6 m of gas underlain by 4.5 m of oil at the top Latrobe. TVD analysis suggests a little over 46m of pay comprising 42.6m of gas and 3.8m of oil (see analysis summary table).

It must be noted that in conversion to TVD, one metre was added to the raw TVD shift table so as to more accurately match log and RFT interpretation.

(11890131)

APPENDIX 1

```
ALGORITHMS & LOGIC USED IN THE QUANTITATIVE ANALYSIS
```

```
Initial Total Porosity and Shale Volume was calculated from
the bulk density and neutron porosity log responses as follows:
    vsh = ((nphi+0.04) - ((2.65-rhob)/(2.65-rhof)))/
         ((phinsh+0.04) - ((2.65-rhobsh)/(2.65-rhof)))
    vsh = min(1, (max(0, vsh)))
    h = (2.71-rhob) + (nphi*(rhof-2.71))
      if (h>=0)
        rhoma=2.71-(0.5*h)
      else
        rhoma=2.71-(0.64*h)
    phit = \max(0.001, (\min(1, ((rhoma-rhob)/(rhoma-rhof)))))
The Apparent Salinity profile was derived from aRw
back-calculated in clean sands from Archie's equation,
assuming 100% Sw.
Swt (total Water Saturation) was calculated using the
dual water relationship
1/rt = (swt*n)*(phit*m)/(a*rw)+swt**(n-1)*(swb*(phit*m)/a)*((1/rwb)-(1/rw))
This is solved for Sw by Newtons solution:
    exsw=0
     sw = 0.9
     aa = ((phit**m)/(a*rw))
    bb = ((swb*(phit**m)/a)*((1/rwb)-(1/rw)))
         repeat
           fx1=(aa*(sw**n))+(bb*(sw**(n-1)))-(1/rt)
           fx2=(n*aa*(sw**(n-1)))+((n-1)*bb*(sw**(n-2)))
              if((abs(fx2)) < 0.0001)
               fx2=0.0001
           swp=sw
           sw = swp - (fx1/fx2)
           exsw=exsw+1
         until (exsw > 4 \text{ or } (abs(sw-swp)) \le 0.01)
     swt=sw
Effective Porosity and Water Saturation were derived as follows:
  if (vsh > vshco) {
   swt = 1
   swe = 1
  phie = 0
 }
  else {
   phie= max(0.0, (phit-(vsh*phish)))
    swe = max(swirr,( 1 - ((phit/phie)*(1-swt))))
    if (vsh > (vshco-0.2)) {
       phie= phie*((vshco-vsh)/0.2)
       swe = 1 - ((1-swe) * ((vshco-vsh)/0.2))
  }
 where vshco = 0.65
```

SWEETLIPS_ST_1

MDKB AND TVDSS ANALYSIS SUMMARY

Net porosity cut-off......: 0.100 volume per volume Net water saturation cut-off..: 0.500 volume per volume

Net Porous Interval based on Porosity cut-off only.

Both Porosity and Sw cut-offs invoked when generating Hydrocarbon-Metres.

GROSS INTERVAL (MDKB) Gross	NET POROUS INT		Mean (Std.)	HYDRO Mean (Std.) CARBO
(top) - (base) (mtrs)	(mtrs) Gross	Vsh (Dev.) E	Porosity (Dev.)	Sw (Dev.) METRE
	1		1	
1618.7-1668.3 49.6	45.7 92 %	0.021 (0.075)	0.236 (0.039)	0.211 (0.119) 8.54
1668.4-1672.9 4.5	4.5 100 %	0.036 (0.030)	0.280 (0.018)	0.249 (0.074) 0.94
1673.0-1676.6 3.6	3.2 90 %	0.097 (0.123)	0.238 (0.055)	0.998 (0.003) 0.00
1677.3-1694.3 17.0	12.9 76 %	0.139 (0.098)	0.155 (0.038)	1.000 (0.000) 0.00
1697.0-1700.0 3.0	1.0 33 %	0.369 (0.034)	0.143 (0.018)	1.000 (0.000) 0.00
GROSS INTERVAL	NET POROUS INT	ERVAL		HYDRC
(TVDSS) Gross	Net Net to	Mean (Std.)	Mean (Std.)	Mean (Std.) CARBC
(top) -(base) (mtrs)	(mtrs) Gross	Vsh (Dev.) E	Porosity (Dev.)	Sw (Dev.) METRE
			1	
1497.3-1539.9 42.6	39.3 92 %	0.021 (0.074)	0.236 (0.039)	0.227 (0.137) 7.17
1540.1-1543.9 3.8	3.8 100 %	0.034 (0.024)	0.281 (0.017)	0.284 (0.101) 0.76

SWEETLIPS_ST_1 Well Data Listing

DEPTH	GR	RT	RHOB	NPHI	DT	VSH	PHIE	SWE
(mRKB)	api	ohmm	g/cc	frac	us/m	frac	frac	frac
1617.0	85	4.3	2.662	0.199	245	0.793	0.000	1.000
1617.2	78	5.0	2.680	0.196	237	0.820	0.000	1.000
1617.4	68	5.6	2.686	0.173	232	0.722	0.000	1.000
1617.6	61	6.2	2.681	0.151	223	0.646	0.000	1.000
1617.8	59	6.7	2.683	0.143	217	0.632	0.000	1.000
1618.0	52	7.2	2.683	0.111	206	0.496	0.001	1.000
1618.2	43	9.8	2.685	0.054	194	0.298	0.001	1.000
1618.4	42	12.5	2.683	0.014	186	0.146	0.001	1.000
1618.6	43	38.7	2.679	0.002	154	0.118	0.001	1.000
1618.8	44	88.5	2.675	-0.000	150	0.092	0.001	1.000
1619.0	40	138.4	2.640	0.004	219	0.046	0.013	1.000
1619.2	41	101.4	2.557	0.015	282	0.019	0.051	0.717
1619.4	43	64.4	2.389	0.035	355	0.000	0.129	0.402
1619.6	40	39.9	2.281	0.057	382	0.000	0.170	0.362
1619.8	39	28.0	2.274	0.069	349	0.000	0.179	0.412
1620.0	41	16.0	2.294	0.061	348	0.000	0.167	0.582
1620.2	41	15.9	2.292	0.043	301	0.000	0.160	0.611
1620.4	36	15.8	2.280	0.032	303	0.000	0.159	0.614
1620.6	36	21.8	2.245	0.031	303	0.000	0.172	0.484
1620.8	40	33.9	2.217	0.026	316	0.000	0.181	0.369
1621.0	38	46.0	2.211	0.027	326	0.000	0.186	0.312
1621.2	37	49.2	2.209	0.040	350	0.000	0.195	0.291
1621.4	38	52.4	2.205	0.049	359	0.000	0.203	0.274
1621.6	37	52.5	2.182	0.037	360	0.000	0.207	0.268
1621.8	37	49.6	2.153	0.035	361	0.000	0.215	0.262
1622.0	37	46.6	2.102	0.036	365	0.000	0.233	0.245
1622.2	34	55.8	2.052	0.031	364	0.000	0.257	0.207
1622.4	34	64.9	2.034	0.021	367	0.000	0.263	0.189
1622.6	32	74.5	2.033	0.016	371	0.000	0.262	0.177
1622.8	29	84.5	2.041	0.014	369	0.000	0.258	0.169
1623.0	27	94.4	2.063	0.015	368	0.000	0.248	0.167
1623.2	29	94.6	2.074	0.015	362	0.000	0.241	0.170
1623.4	36	94.7	2.062	0.015	359	0.000	0.244	0.166
1623.6	39	94.4	2.044	0.018	358	0.000	0.253	0.160
1623.8	36	93.5	2.043	0.022	359	0.000	0.257	0.159
1624.0	33	92.7	2.040	0.022	363	0.000	0.260	0.159
1624.2	31	90.9	2.039	0.021	365	0.000	0.259	0.161
1624.4	29	89.1	2.040	0.030	370	0.000	0.262	0.160
1624.6	30	84.3	2.030	0.039	370	0.000	0.270	0.159
1624.8	34	76.5	2.014	0.038	369	0.000	0.276	0.163
1625.0	35	68.7	2.001	0.040	370	0.000	0.281	0.168
1625.2	33	84.1	1.993	0.038	373	0.000	0.287	0.150
1625.4	28	99.6	1.989	0.025	372	0.000	0.284	0.140
1625.6	31	110.3	2.014	0.023	372	0.000	0.272	0.139
1625.8	34	116.2	2.037	0.026	371	0.000	0.262	0.140
1626.0	33	122.0	2.024	0.032	367	0.000	0.270	0.132
1626.2	35	121.5	2.009	0.037	361	0.000	0.280	0.128
1626.4	36	120.9	2.037	0.039	354	0.000	0.269	0.134
1626.6	35	120.1	2.062	0.039	356	0.000	0.258	0.141
1626.8	35	119.1	2.042	0.037	369	0.000	0.267	0.137
1627.0	36	118.1	2.030	0.035	383	0.000	0.272	0.135
	-							

	SWE	ETLIPS_ST	_1 (pag	re 2 of	data l	isting)		
DEPTH	GR	RT	RHOB	NPHI	DT	VSH	PHIE	SWE
(mRKB)	api	ohmm	g/cc	frac	us/m	frac	frac	frac
1627.2	42	127.7	2.038	0.030	385	0.000	0.264	0.133
1627.4	42	137.3	2.026	0.024	383	0.000	0.265	0.127
1627.6	39	142.2	2.016	0.024	384	0.000	0.271	0.123
1627.8	36	142.4	2.026	0.028	383	0.000	0.270	0.124
1628.0	37	142.7	2.047	0.032	384	0.000	0.265	0.123
1628.2	38	144.4	2.063	0.026	386	0.000	0.253	0.132
1628.4	41	146.2	2.069	0.023	388	0.000	0.247	0.133
1628.6	44	146.9	2.052	0.024	388	0.000	0.253	0.128
1628.8	41	146.6	2.015	0.025	388	0.000	0.270	0.120
1629.0	36	146.3	1.997	0.033	387	0.000	0.281	0.115
1629.2	37	130.7	2.022	0.041	391	0.000	0.276	0.126
1629.4	39	115.2	2.037	0.039	388	0.000	0.270	0.138
1629.6	41	104.4	2.036	0.035	389	0.000	0.269	0.145
1629.8	42	98.5	2.029	0.030	389	0.000	0.268	0.149
1630.0	41	92.5	2.016	0.026	390	0.000	0.269	0.152
1630.2	41	97.7	1.991	0.031	387	0.000	0.285	0.140
1630.4	43	103.0	2.005	0.054	390	0.000	0.289	0.135
1630.6	43	94.6	2.102	0.067	372	0.000	0.252	0.162
1630.8	43	72.4	2.184	0.066	369	0.000 0.000	0.218 0.208	0.215 0.271
1631.0	42	50.2	2.193	0.052	367		0.203	0.271
1631.2	39	55.0	2.170	0.027	372	0.000	0.203	0.232
1631.4	39	59.9	2.126	0.021	369 366	0.000	0.210	0.232
1631.6	40	73.4	2.064		357	0.000	0.243	0.154
1631.8	40	95.3	2.025	0.015	355	0.000	0.262	0.134
1632.0	38	117.3	2.028 2.037	0.013	355	0.000	0.262	0.137
1632.2	37	118.7 120.1	2.057	0.014	362	0.000	0.255	0.139
1632.4	41		2.037	0.014	361	0.000	0.248	0.147
1632.6	44 40	114.6 102.2	2.075	0.015	356	0.000	0.245	0.157
1632.8	36	89.8	2.075	0.016	350	0.000	0.236	0.174
1633.0	3 0 3 7	107.0	2.076	0.019	342	0.000	0.237	0.159
1633.2 1633.4	42	124.1	2.121	0.023	336	0.000	0.231	0.152
1633.4	46	116.4	2.125	0.023	334	0.000	0.230	0.157
1633.8	48	83.9	2.156	0.023	323	0.000	0.215	0.198
1634.0	44	51.5	2.225	0.023		0.000	0.181	0.307
1634.2	43	41.1	2.204	0.019			0.186	0.331
1634.4	47	30.6	2.143	0.018		0.000		0.338
1634.6	50	36.0		0.020		0.000	0.224	0.298
1634.8	48	57.2		0.015		0.000	0.233	0.222
1635.0	46	78.4		0.008		0.000		
1635.2	43		2.052	0.006		0.000	0.253	
1635.4	42	100.0		0.008		0.000	0.268	
1635.4	43	112.3		0.014		0.000	0.280	0.134
1635.8	43	126.1		0.027		0.000	0.267	0.130
1636.0		139.9		0.047		0.000	0.250	0.132
1636.2	48	89.7		0.067		0.000	0.222	
1636.4	57	39.6		0.081		0.000	0.163	0.385
1636.6	73	12.9		0.096		0.037	0.120	0.855
	98	9.5	2.327	0.114		0.000	0.179	0.705
1636.8 1637.0		9.5 6.1		0.114		0.000	0.234	0.671
1637.0	118	8.3		0.202		0.000	0.245	0.548
1637.2	95	10.5		0.202		0.028	0.235	0.492
1637.4		13.6		0.127		0.000	0.224	0.472
1637.8		17.6		0.055		0.000	0.203	0.456
1637.0	39	21.5		0.025			0.189	0.443
1030.0	33	21.0	١٠ ٠ ٠٠ ٠٠	J.J25	J 22 1	3.350		

	SWE	ETLIPS_ST	[_1 (pag	ge 3 of	data 1	isting)		
DEPTH	GR	RT	RHOB	NPHI	DT	VSH	PHIE	SWE
(mRKB)	api	ohmm	g/cc	frac	us/m	frac	frac	frac
1638.2	42	29.3	2.169	0.023	330	0.000	0.200	0.360
1638.4	42	37.1	2.142	0.034	327	0.000	0.218	0.295
1638.6	40	40.3	2.156	0.053	323	0.000	0.222	0.280
1638.8	40	38.7	2.191	0.057	321	0.000	0.210	0.303
1639.0	41	37.2	2.195	0.049	323	0.000	0.206	0.317
1639.2	45	40.1	2.186	0.054	321	0.000	0.210	0.296
1639.4	51	43.1	2.184	0.067	321	0.000	0.215	0.277
1639.6	51	42.1	2.176	0.071	321	0.000	0.219	0.274
1639.8	47	37.0	2.168	0.069	322	0.000	0.225	0.289
1640.0	46	31.9	2.190	0.079	320	0.000	0.222	0.317
1640.2	50	35.2	2.218	0.088	319	0.000	0.213	0.313
1640.4	50	38.4	2.211	0.078	318	0.000	0.210	0.302
1640.6	50	41.0	2.194	0.058	315	0.000	0.205	0.295
1640.8	53	42.9	2.207	0.051	319	0.000	0.196	0.301
1641.0	51	44.8	2.165	0.041	333	0.000	0.209	0.277
1641.2	46	49.1	2.106	0.026	341	0.000	0.231	0.244
1641.4	42	53.5	2.131	0.036	337	0.000	0.226	0.240
1641.6	42	52.6	2.185	0.055	327	0.000	0.212	0.258
1641.8	44	46.5	2.214	0.064	324	0.000	0.202	
1642.0	44	40.4	2.217	0.048	326	0.000	0.191	0.319
1642.2	.40	39.9	2.192	0.027	333	0.000	0.191	0.320
1642.4	38	39.5	2.126	0.018	336	0.000	0.217	0.287
1642.6	37	48.7	2.065	0.029	341	0.000	0.251	0.226
1642.8	34	67.6	2.057	0.048	345	0.000	0.264	0.182
1643.0	33	86.5	2.057	0.038	352	0.000	0.260	0.164
1643.2	36	91.4	2.038	0.016	352	0.000	0.259	0.161
1643.4	37	96.4	2.036	0.011	354	0.000	0.257	0.157
1643.6	38	101.7	2.049	0.013	350	0.000	0.253	0.156
1643.8	35	107.4	2.050	0.017	347	0.000	0.253	0.151
1644.0	38	113.0	2.052	0.016	340	0.000	0.252	0.148
1644.2	39	149.2	2.089	0.017	338	0.000	0.239	0.133
1644.4	36	185.3	2.134	0.016	336	0.000	0.221	0.129
1644.6	36	196.9	2.152	0.012	335	0.000	0.211	0.131
1644.8	36	184.2	2.115	0.013	326	0.000	0.225	0.131
1645.0	35	171.4		0.028	330			0.120
1645.2	37		2.022				0.278	
1645.4 1645.6	41		2.015 2.034			0.000		
	42					0.000		
1645.8 1646.0	37 36	112.4				0.000		
1646.2	36 39		2.061		344 -340	0.000		
	38		2.014	0.008		0.000		
	33		2.006			0.000		
1646.8 1647.0			2.026	0.027		0.000		
	33					0.000		
1647.4	34	240.3				0.000 0.000		
1647.6	35	245.3	2.000					
1647.8	38	239.5	2.071	0.016	355 352	0.000 0.000	0.241 0.247	0.104 0.103
1648.0	38	233.9	2.003	0.022	352 349	0.000	0.247	0.103
1648.2	37	222.0	2.103	0.032	349	0.000	0.244	0.103
1648.4	36	210.2	2.103	0.041	347	0.000	0.239	0.110
1648.6	38	204.7	2.093	0.033	348	0.000	0.246	0.113
1648.8	39		2.055		351	0.000		0.112
1649.0	39		2.021	0.014	353	0.000		0.103
 						0.000	0.201	0.200

	SWE	ETLIPS_ST	_1 (pag	e 4 of	data li	.sting)		
DEPTH	GR	RT	RHOB	NPHI	DT	VSH	PHIE	SWE
(mRKB)	api	ohmm	g/cc	frac	us/m	frac	frac	frac
1649.2	41	201.9	2.006	0.030	354	0.000	0.278	0.100
1649.4	37	197.0	2.000	0.030	351	0.000	0.266	0.106
1649.4	36	173.4	2.078	0.047	345	0.000	0.254	0.118
1649.8	40	131.1	2.133	0.058	339	0.000		
1650.0	48	88.8	2.204	0.062		0.000		
1650.2	52		2.239		334			
1650.4	64		2.234		333			
1650.4	87		2.251		328		oal	• • • • • • • • • • • • • • • • • • • •
1650.8	105		2.123		309		oal	
1651.0	113	12.6	1.803	0.321	353		oal	
1651.2	113		1.659	0.453	404		oal	
1651.4	110	15.6	1.726		424		oal	
1651.4	102	18.0	1.712	0.508	434		oal	
	92		1.672	0.505	415		oal	
	84		1.795	0.376	409		oal	
1652.2	80	32.1	2.057	0.234	385		oal	
1652.4	81	39.9	2.246	0.172	359		oal	
1652.6	87	38.9	2.292	0.182	355		oal	
1652.8	96	29.2	2.302	0.204		0.343	0.162	0.172
1653.0	97	19.4	2.311	0.223				0.330
1653.2	96		2.324			0.312	0.172	0.270
1653.4	101		2.381			0.457	0.127	0.232
1653.6	107		2,455		294	0.621	0.012	1.000
1653.8	104	26.4				0.530	0.065	0.466
1654.0	91		2.347		313	0.439	0.134	0.121
1654.2	78	27.0	2.321		325	0.287	0.159	0.244
1654.4	71	23.9			330	0.147	0.184	0.323
1654.6	77	22.3	2.319		312	0.041	0.195	0.389
1654.8	86	22.1	2.358		300	0.181	0.162	0.355
1655.0	95	22.0			295	0.336	0.117	0.326
1655.2	101	23.2		0.214	287	0.436	0.090	0.269
1655.4	104	24.5	2.446	0.224	282	0.450	0.097	0.228
1655.6	102	24.9	2.422	0.226	287	0.471	0.091	0.284
1655.8	94	24.3	2.405	0.218	293	0.413	0.114	0.235
1656.0	94	23.8	2.393	0.213	297	0.321		0.283
1656.2	95	23.8	2.355	0.212	309	0.263	0.159	0.292
1656.4	91	23.8	2.313	0.198	328	0.231	0.173	0.287
1656.6	80	25.7	2.242	0.174		0.127	0.212	0.284
1656.8	70	29.5	2.183	0.152	358	0.000	0.253	
1657.0	65	33.3	2.179	0.150	352	0.000	0.251	0.267
1657.2	66	34.1	2.213	0.160	342	0.000	0.241	0.274
1657.4	74	34.9	2.191	0.164	343	0.000	0.252	0.260
1657.6	74	38.1	2.137	0.154	352	0.000	0.271	0.233
1657.8	66	43.7	2.132	0.143	363	0.000	0.270	
1658.0	62	49.3	2.185	0.136	362	0.000	0.247	
1658.2	58	52.3	2.244	0.132		0.000	0.219	
1658.4	55	55.3	2.230	0.119		0.000		
1658.6	49	70.8	2.124	0.083	351	0.000	0.245	
1658.8	42	98.8	2.049	0.057		0.000	0.267	0.146
1659.0	38	126.8	2.048	0.059		0.000	0.268	0.129
1659.2	40	250.4	2.082	0.063		0.000	0.255	0.096
1659.4	39	373.9		0.056		0.000	0.254	0.080
1659.6	37	427.5		0.043		0.000	0.254	0.075
1659.8	35	411.1		0.028			0.254	
1660.0	37	394.7	2.017	0.025	364	0.000	0.268	0.074

	SWE	ETLIPS_S:	r_1 (pag	ge 5 of	data 1	isting)		
DEPTH	GR	RT	RHOB	NPHI	DT	VSH	PHIE	SWE
(mRKB)	api	ohmm	g/cc	frac	us/m	frac	frac	frac
1660.2	38	352.8	1.970	0.033	359	0.000	0.294	0.071
1660.4	36	310.8	1.968	0.048	356	0.000	0.301	0.074
1660.6	32	315.8	2.007	0.053	359	0.000	0.284	0.078
1660.8	31	367.8	2.025	0.043	365	0.000	0.272	0.075
1661.0	33	419.8	2.031	0.032	366	0.000	0.265	0.073
1661.2	33	355.2	2.002	0.031	366	0.000	0.278	0.075
1661.4	31	290.6	1.972	0.046	361	0.000	0.299	0.077
1661.6	30	252.7	1.990	0.075	356	0.000	0.303	0.081
1661.8	32	241.4	2.026	0.101	357	0.000	0.298	0.085
1662.0	34	230.2	2.072	0.089	353	0.000	0.272	0.095
1662.2	35	165.7	2.119	0.063	343	0.000	0.239	0.126
1662.4	37	101.3	2.136	0.050	334	0.000	0.225	0.171
1662.6	39	61.4	2.128	0.054	331	0.000	0.231	0.214
1662.8	40	46.2	2.099	0.074	334	0.000	0.253	0.226
1663.0	42	31.0	2.084	0.094	343	0.000	0.269	0.260
1663.2	44	68.9	2.114	0.094	345	0.000	0.256	0.184
1663.4	46	106.8	2.134	0.076	344	0.000	0.239	0.158
1663.6	42	136.8	2.139	0.050	346	0.000	0.225	0.148
1663.8	38	159.0	2.083	0.030	342	0.000	0.242	0.128
1664.0	38	181.2	2.013	0.056	345	0.000	0.286	0.102
1664.2	39	187.0	1.990	0.100	345	0.000	0.314	0.091
1664.4	41	192.9	2.064	0.121	351		0.289	0.097
1664.6	43	175.0	2.120	0.129	350	0.000	0.267	0.110
1664.8	43	133.4	2.126	0.123	345	0.000	0.261	0.128
1665.0	43	91.8	2.143	0.102	340	0.000	0.245	0.165
1665.2	48	68.4	2.173	0.112	336	0.000	0.237	0.197
1665.4	56	44.9	2.255	0.152	329	0.000	0.222	0.260
1665.6	63	32.1	2.378	0.198	293	0.178	0.158	0.279
1665.8	70	30.1	2.374	0.234	291	0.287	0.154	0.212
1666.0	73	28.1	2.312	0.226	305	0.220	0.183	0.237
1666.2	66	31.6	2.279	0.178	336	0.000	0.223	0.307
1666.4	57	35.2	2.271	0.144	344	0.000	0.212	0.306
1666.6	52	37.5	2.244	0.150	345	0.000	0.225	0.280
1666.8	56	38.6	2.227	0.163	340	0.000	0.237	0.262
1667.0	58	39.7	2.217	0.157				0.257
1667.2	54	52.6	2.158	0.138	347	0.000	0.254	0.210
1667.4	49	65.5	2.096	0.107	361	0.000	0.268	0.179
1667.6	48	69.8	2.091	0.094	366	0.000	0.265	0.175
1667.8	44	65.6	2.105	0.111	361	0.000	0.266	0.180
1668.0	40	61.4	2.111	0.171	352	0.000	0.289	0.172
1668.2	40	57.1		0.240				0.122
1668.4	45	52.8	2.187	0.279	345	0.129		0.132
1668.6	46	49.1		0.268		0.075		0.161
1668.8	41	46.1		0.224				0.198
1669.0	38	43.2		0.196		0.000		0.209
1669.2	39	41.7		0.197		0.000		0.206
1669.4	39	40.3		0.221	339	0.000		0.201
1669.6	38	38.3		0.265	347	0.034	0.300	0.190
1669.8	37	35.8		0.298			0.297	0.175
1670.0	36	33.2	2.151	0.296	346	0.088	0.296	0.184
1670.2	35	31.3	2.148	0.257	344	0.023	0.298	0.220
1670.4	32	29.5	2.142	0.239	347	0.000	0.299	0.237
1670.6	32	26.7	2.156	0.260	344	0.009	0.298	0.245
1670.8	40	23.1	2.183	0.259	342	0.047	0.281	0.262
1671.0	41	19.5	2.201	0.257	336	0.050	0.272	0.295

			ETLIPS_ST	_					
	DEPTH	GR	RT	RHOB	NPHI	DT	VSH	PHIE	SWE
	(mRKB)	api	ohmm	g/cc	frac	us/m	frac	frac	frac
	1671.2	40	20.3	2.235	0.253	326	0.073	0.253	0.298
	1671.4	42	21.2	2.267	0.229	318	0.056	0.236	0.323
	1671.6	42	23.2	2.246	0.214	321	0.054	0.238	0.305
	1671.8	38	26.4	2.207	0.233	328	0.035	0.265	0.266
	1672.0	35	29.6	2.189	0.247	335	0.022	0.279	0.243
	1672.2	37	25.5	2.186	0.252	334	0.032	0.281	0.256
	1672.4	36	21.4	2.184	0.262	329	0.027	0.286	0.279
	1672.6	32	17.7	2.183	0.258	327	0.009	0.289	0.313
	1672.8	33	14.3	2.187	0.256	327	0.012	0.286	0.352
	1673.0	36	10.8	2.189	0.253	327	0.026	0.280	0.990
	1673.2	36	11.0	2.193	0.246	331	0.027	0.276	0.990
	1673.4	32	11.2	2.171	0.244	335	0.010	0.287	0.996
	1673.4	32	11.9	2.144	0.258	338	0.009	0.304	0.995
	1673.8	32	12.9	2.141	0.262	337	0.008	0.307	1.000
	1674.0	31	14.0	2.188	0.251	330	0.003	0.285	1.000
		33		2.233	0.231	324	0.014	0.261	1.000
	1674.2 1674.4	3 <i>3</i> 37	13.9 13.8	2.233	0.230	324	0.014	0.201	1.000
	1674.4	57	14.9	2.348	0.210	306	0.137	0.220	1.000
		84		2.340	0.236	299	0.371	0.130	1.000
	1674.8	105	17.2	2.411	0.236	295	0.574	0.127	1.000
	1675.0		19.5	2.362	0.273	305	0.480	0.037	1.000
	1675.2	105 84	22.6	2.296	0.257	314	0.480	0.119	1.000
	1675.4	64	25.6	2.296	0.234	322	0.152	0.100	1.000
•	1675.6		25.9				0.132	0.213	1.000
	1675.8	54	23.2	2.236	0.230	319			
	1676.0	45	20.6	2.198	0.235	336	0.011	0.274	1.000
	1676.2	46	25.6	2.208	0.238	180	0.046	0.263	0.941
	1676.4	50	30.7	2.309	0.220	73	0.098	0.208	0.879
	1676.6	48	30.7	2.351	0.285	266		oal	
	1676.8	54	25.9	2.139	0.458	383		oal	
	1677.0	67	21.1	2.071	0.576	409		oal	
	1677.2	70	23.5	2.274	0.412	375		oal	
	1677.4	71	25.9	2.397	0.231	322		oal	0.050
	1677.6	77	25.0	2.361	0.200	316	0.189	0.158	0.852
	1677.8	78	20.9	2.352	0.217		0.204		0.866
	1678.0	74	16.9		0.204		0.231		0.913
	1678.2	73	16.9				0.193		0.944
	1678.4	80	16.9		0.197	291	0.276	0.132	0.922
	1678.6	89	17.0	2.411	0.214	285	0.355	0.119	0.871 0.833
	1678.8	91 86	17.1	2.407	0.223	287	0.379 0.330	0.120 0.127	0.833
	1679.0	86		2.400	0.213	287 286	0.330	0.127	0.872
	1679.2	85		. 2.400	1				
	1679.4	81	16.9	2.373	0.199		0.225	0.150 0.164	0.929 0.908
	1679.6	75	16.1	2.345	0.214		0.234		0.900
	1679.8	64	14.7	2.317	0.228		0.183	0.190	
	1680.0	54	13.3	2.273	0.236		0.117	0.223	0.955
	1680.2	48	14.4	2.227	0.234		0.087	0.246	0.955
	1680.4	45	15.5	2.264	0.221		0.071	0.231	0.966
	1680.6	50	16.6	2.370	0.192		0.127	0.169	0.967
		58	17.8	2.461	0.152		0.202	0.106	1.000
		55	19.0	2.457	0.127		0.127	0.112	1.000
		48	22.6	2.437	0.118		0.087	0.124	0.999
		44		2.444	0.108		0.064		0.997
		42	28.9		0.104		0.053		0.998
	1681.8	45	30.7		0.108		0.072		0.997
	1682.0	46	32.5	2.491	0.106	225	0.074	0.102	1.000

	SWE	ETLIPS_ST	_1 (pag	ge 7 of	data 1:	isting)		
DEPTH	GR.	RT	RHOB	NPHI	DT	VSH	PHIE	SWE
(mRKB)	api	ohmm	g/cc	frac	us/m	frac	frac	frac
1682.2	44	32.3	2.503	0.099	227	0.095	0.091	1.000
1682.4	43	32.1	2.505	0.102	224	0.091	0.093	1.000
1682.6	40	30.2	2.479	0.106	227	0.044	0.113	1.000
1682.8	41	26.5	2.436	0.115	230	0.048	0.131	0.994
1683.0	42	22.9	2.380	0.128	236	0.027	0.160	0.993
1683.2	38	21.3	2.344	0.147	246	0.007	0.186	0.998
1683.4	37	19.6	2.339	0.159	259	0.030	0.187	0.990
1683.6	36	18.5	2.377	0.132	250	0.027	0.163	0.997
1683.8	32	18.1	2.448	0.100	234	0.010	0.128	1.000
1684.0	33	17.7	2.460	0.103	219	0.013	0.125	1.000
1684.2	38	22.1	2.446	0.118	213	0.037	0.131	1.000
1684.4	41	26.5	2.472	0.115	217	0.080	0.112	1.000
1684.6	40	27.7	2.482	0.115	225	0.106	0.103	1.000
1684.8	38	25.5	2.440	0.129	234	0.067	0.131	0.989
1685.0	40	23.3	2.409	0.148	248	0.076	0.148	0.979
1685.2	39	20.9	2.401	0.145	253	0.041	0.157	0.993
1685.4	36	18.5	2.410	0.126	249	0.024	0.149	1.000
1685.6	39	17.5	2.406	0.126	247	0.039	0.148	1.000
1685.8	44	17.8	2.408	0.141	248	0.063	0.148	0.999
1686.0	43	18.1	2.409	0.161	252	0.121	0.144	0.986
1686.2	43	17.7	2.406	0.152	255	0.059	0.155	0.996
1686.4	45	17.2	2.418	0.137	254	0.070	0.142	1.000
1686.6	52	18.7	2.468	0.132	235	0.141	0.107	1.000
1686.8	74	22.1	2.486	0.161	238	0.285	0.086	1.000
1687.0	88	25.6	2.478	0.184	247	0.384	0.079	1.000
1687.2	90	24.0	2.484	0.186	267	0.396	0.077	1.000
1687.4	77	22.5	2.494	0.178	264	0.345	0.081	1.000
1687.6	66	21.5	2.485	0.168	258	0.286	0.091	1.000
1687.8	64	21.1	2.460	0.171	254	0.241	0.108	0.956
1688.0	67	20.6	2.418	0.198	260	0.261	0.129	0.885
1688.2	66	19.0	2.377	0.217	278	0.256	0.151	0.866
1688.4	59	17.4	2.357	0.219	292	0.213	0.167	0.904
1688.6	53	16.2	2.342	0.198	293	0.116	0.184	0.963
1688.8	56	15.5	2.351	0.187	288	0.130	0.173	0.970
1689.0	55	14.8	2.349	0.200	289	0.127	0.180	0.970
1689.2	55	14.8	2.343	0.214	292	0.158	0.181	0.954
1689.4	65	14.9	2.349	0.213	292	0.193	0.171	0.944
1689.6	73	14.8	2.357	0.213	287	0.253	0.156	0.925
1689.8	79	14.6	2.361	0.214	281	0.268	0.152	0.925
1690.0	79	14.4	2.350	0.225	289	0.267	0.161	0.913
1690.2	69	14.9	2.347	0.230	292	0.222	0.174	0.920
1690.4	54	15.3	2.389	0.206	288	0.240	0.146	0.947
1690.6	44	15.0	2.428	0.164	272	0.155	0.131	1.000
1690.8	42	14.1	2.389	0.158	278	0.057	0.164	1.000
1691.0	39	13.2	2.299	0.202	291	0.038	0.217	0.991
1691.2	38	12.4	2.222	0.245	315	0.034	0.263	0.986
1691.4	40	11.7	2.213	0.252	318	0.045	0.267	0.982
1691.6	44	10.4	2.239	0.251	320	0.064	0.253	0.983
1691.8	57	8.5	2.343	0.244	307	0.261	0.174	1.000
1692.0	91	6.6	2.465	0.232	286	0.471	0.080	1.000
1692.2	126	9.5	2.528	0.221	265	0.603	0.009	1.000
1692.4	137	12.5	2.560	0.235	262	0.710	0.000	1.000
1692.6	132	15.3	2.549	0.244	265	0.718	0.000	1.000
1692.8	123	17.7	2.526	0.243	267	0.640	0.002	1.000
1693.0	116	20.2	2.520	0.239	266	0.585	0.016	1.000

		SWEET	LIPS_ST_	_1 (page	e 8 of d	lata li	sting)		
	DEPTH	GR	RT	RHOB	NPHI	DT	VSH	PHIE	SWE
	(mRKB)	api	ohmm	g/cc	frac	us/m	frac	frac	frac
	1693.2	114	20.8	2.526	0.249	267	0.630	0.004	1.000
	1693.4	107	21.3	2.523	0.255	269	0.629	0.005	1.000
	1693.6	90	19.9	2.504	0.240	253	0.550	0.030	1.000
	1693.8	85	16.5	2.459	0.218	279	0.413	0.094	0.896
	1694.0	96	13.0	2.453	0.211	293	0.422	0.092	1.000
	1694.2	116	12.2	2.475	0.240	293	0.561	0.032	1.000
	1694.4	128	11.3	2.452	0.297	302	Coa	al	
	1694.6	132	10.8	2.395	0.341	313	Coa	al	
	1694.8	134	10.5	2.340	0.347	329	Cos	al	
	1695.0	126	10.3	2.326	0.353	364	Coa	al	
	1695.2	123	9.7	2.368	0.357	343	Coa	al	
	1695.4	119	9.0	2.451	0.321	314	Coa	al	
	1695.6	122	9.9	2.498	0.268	272	Coa	al	
•	1695.8	123	12.3	2.517	0.245	266	0.659	0.000	1.000
	1696.0	123	14.8	2.511	0.265	267	0.681	0.000	1.000
	1696.2	127	16.0	2.498	0.286	275	0.940	0.000	1.000
	1696.4	136	17.2	2.518	0.269	271	0.708	0.000	1.000
	1696.6	133	18.3	2.524	0.265	268	0.645	0.001	1.000
	1696.8	128	19.2	2.477	0.276	268	0.661	0.000	1.000
	1697.0	118	20.1	2.331	0.280	284	0.653	0.000	1.000
	1697.2	118	19.4	2.260	0.263	295	0.575	0.027	1.000
	1697.4	117	18.7	2.325	0.253	294	0.523	0.053	1.000
	1697.6	115	17.7	2.418	0.245	287	0.505	0.064	1.000
	1697.8	114	16.3	2.443	0.245	284	0.483	0.080	1.000
	1698.0	110	14.9	2.433	0.240	283	0.477	0.085	1.000
	1698.2	111	15.3	2.424	0.240	281	0.460	0.101	1.000
	1698.4	113	15.7	2.437	0.246	279	0.502	0.072	1.000
	1698.6	116	16.2	2.456	0.238	280	0.514	0.058	1.000
	1698.8	121	16.9	2.467	0.244	280	0.555	0.036	1.000
	1699.0	120	17.6	2.445	0.247	281	0.492	0.075	1.000
	1699.2	123	16.6	2.400	0.254	281	0.397	0.127	1.000
	1699.4	119	15.7	2.353	0.259	289	0.350	0.153	1.000
	1699.6	105	15.0	2.349	0.260	295	0.348	0.155	1.000
	1699.8	102	14.6	2.361	0.245	296	0.350	0.149	1.000
	1700.0	102	14.2	2.348	0.253	293	0.351	0.158	1.000

PE600979

This is an enclosure indicator page. The enclosure PE600979 is enclosed within the container PE902128 at this location in this document.

The enclosure PE600979 has the following characteristics:

ITEM_BARCODE = PE600979
CONTAINER_BARCODE = PE902128

NAME = Quantitative log

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Quantitative log

REMARKS =

DATE_CREATED = 7/11/89

 $DATE_RECEIVED = 2/05/90$

 $W_NO = W1003$

WELL_NAME = Sweetlips-1

CONTRACTOR = SOLAR CLIENT_OP_CO = ESSO

(Inserted by DNRE - Vic Govt Mines Dept)

PE600980

This is an enclosure indicator page. The enclosure PE600980 is enclosed within the container PE902128 at this location in this document.

The enclosure PE600980 has the following characteristics:

ITEM_BARCODE = PE600980
CONTAINER_BARCODE = PE902128

NAME = Quantitative log

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Quantitative log

REMARKS =

DATE_CREATED = 7/11/89

DATE_RECEIVED = 2/05/90

 $W_NO = W1003$

WELL_NAME = Sweetlips-1

CONTRACTOR = SOLAR CLIENT_OP_CO = ESSO

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 4

SWEETLIPS-1 RFT REPORT A.B.Thomson, December 1989

SWEETLIPS-1 AND SWEETLIPS-1 ST1 RFT REPORT

SUMMARY

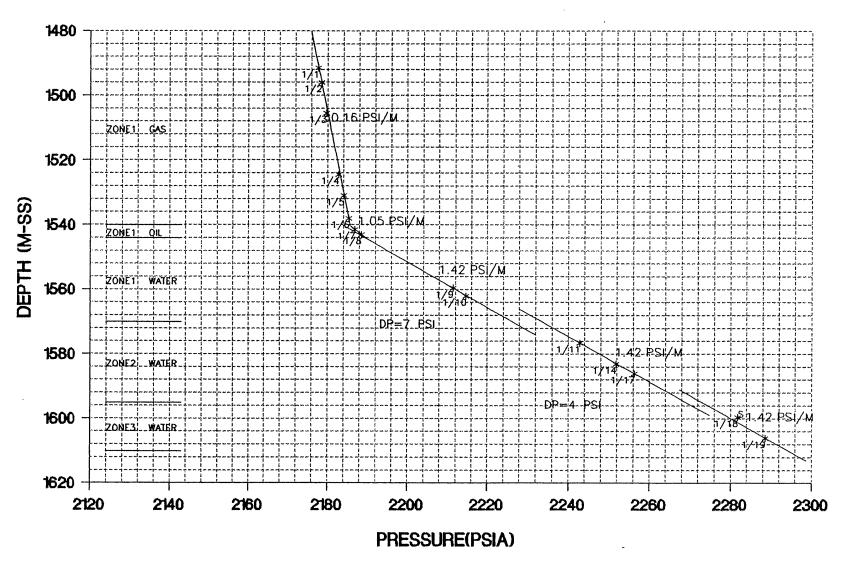
The results of RFT pretests and samples taken in the Sweetlips-1 well and the Sweetlips-1 sidetrack ST1 are summarised on Table 1. The RFT program in the original hole indicated a 4 metre oil column at the Top of Latrobe and the sidetrack RFT's indicated a 3.5 metre oil column. Because of the greater confidence associated with the TVD depths in the original hole, a 4 metre oil column is considered the most representative for the Sweetlips discovery. One oil, one gas and one water sample were successfully recovered from the Top of Latrobe interval in the original hole. One water sample was recovered from the sidetrack.

SWEETLIPS-1 (suite 2 logging)

A total of 19 RFT pretest seats were attempted in the Top of Latrobe interval in Sweetlips-1 on the 9th of August, 1989. Of the 19 pretests attempted, 14 pretests were successful. Of the 5 unsuccessful pretests, 3 were seal failures, 1 was supercharged and 1 was tight. The results of the pretest program are summarised on Table 2.

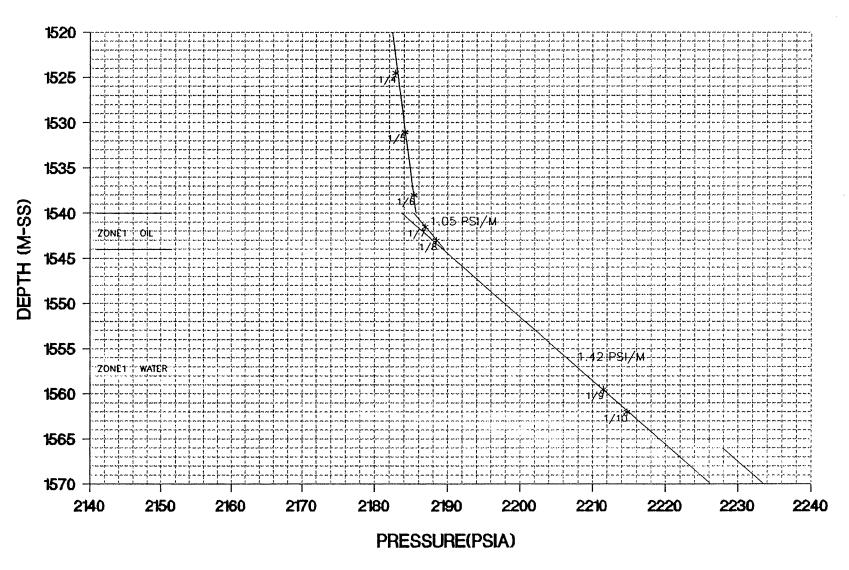
The RFT data indicates a GOC at -1540 m TVDSS and an OWC at -1544 m TVDSS, giving a 4 metre oil column. The RFT interpreted OWC is located right at the base of the sand. To determine the OWC depth the water line defined by pretests 1/9 and 1/10 was used. However these water points were some 15 metres below the last oil points. Given that a 7 psi delta was observed between the Zone 1 and Zone 2 water points over a 15 metre interval, it was possible that there was a base seal to the oil column and thus the column could have been thicker. To test this possibility the well was sidetracked downdip. Figures 1 and 2 show the RFT interpretation. A drawdown of 83 psi from the original Gippsland Basin aquifer gradient was seen in the water directly below the oil. This shows that the Sweetlips Top of Latrobe hydrocarbon accumulation is in very good communication with the basin wide aquifer system.

SWEETLIPS-1 ST1 (suite 3 logging)


The Sweetlips original hole was sidetracked in order to confirm the oil column thickness by intersecting the OWC within the middle of a clean sand. The Top of Latrobe section was relogged in the 18th of August, 1989. A total of 15 pretests were attempted, which were all successful. The results of the pretest program is summarised on Table 3. One water sample was taken at -1545.7 m TVDSS.

The RFT data indicates an GOC at -1539.5 m TVDSS and an OWC at -1543.0 m TVDSS, giving an oil column of 3.5 metres. This result is considered to be consistent with the interpretation of the original hole RFT's which showed a 4 metre oil leg. Figures 1 and 2 show the RFT interpretation. A drawdown of 81 psi from the original Gippsland Basin aquifer gradient was seen, which is very close to the 83 psi drawdown observed in the original hole.

FIGURE 1


SWEETLIPS-1 OPEN-HOLE RFT PRESSURE DATA

AUGUST 9TH 1989

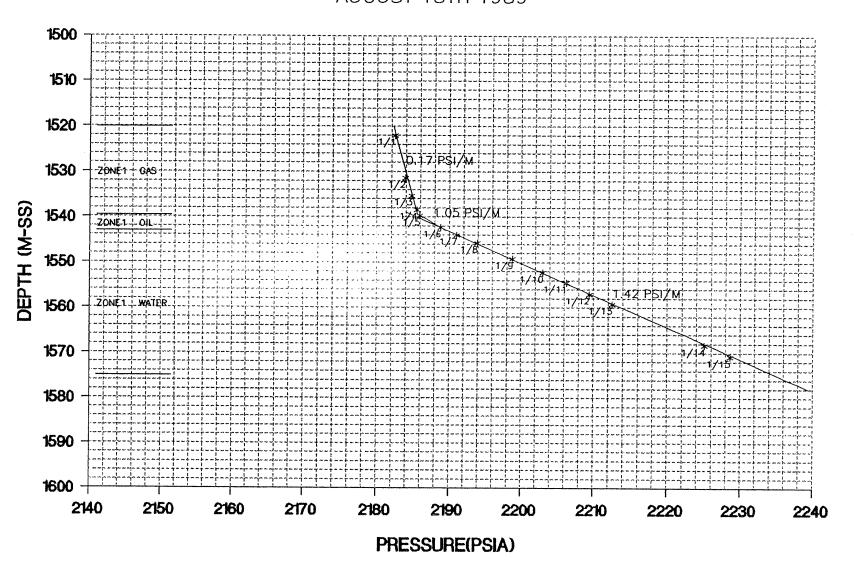
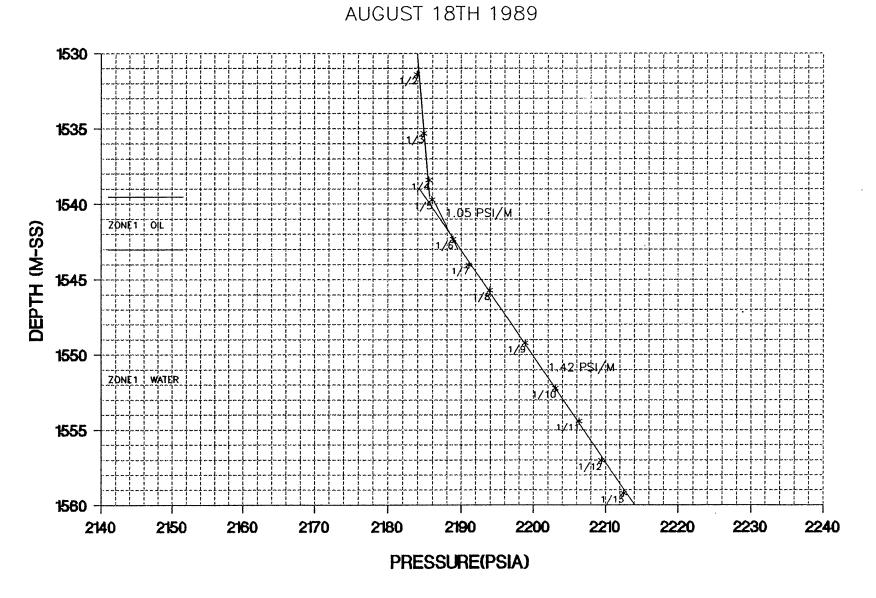


FIGURE 2 SWEETLIPS-1 OPEN-HOLE RFT PRESSURE DATA


AUGUST 9TH 1989

SWEETLIPS-1 ST1 OPEN-HOLE RFT PRESSURE DATA
AUGUST 18TH 1989

SWEETLIPS-1 ST1 OPEN-HOLE RFT PRESSURE DATA

SWEETLIPS-1 RFT INTERPRETATION SUMMARY

UNIT	DEPTH INTERVAL (m MDKB)	DEPTH INTERVAL (m TVDSS)	FLUID TYPE	RFT CONTACT (m TVDSS)	SAMPLE	GAS (cu.ft)	OIL (litres)	WATER (litres)	GOR (SCF/STB)	GLR (STB/kSCF)
Top Latrobe	1511.0-1561.0 1561.0-1564.5	1490.0-1540.0 1540.0-1543.5	Gas Oil	-1540.0 -1544.0		Yes Yes				
Sample 1 Sample 2 Sample 3	1561.0 1563.0 1580.5	1540.0 1542.0 1559.5	Gas Oil Water			100.8 39.1 0.9	0.001 16.75 0.0	0.6 * 2.5 * 21.25	371	0.00006

SWEETLIPS-1 ST1 RFT INTERPRETATION SUMMARY

UNIT	DEPTH INTERVAL (m MDKB)	<u>DEPTH INTERVAL</u> (m TVDSS)	FLUID TYPE	RFT CONTACT (m TVDSS)	SAMPLE	GAS (cu.ft)	OIL (litres)	WATER (litres)	GOR (SCF/STB)	GLR (STB/kSCF)
Top Latrobe	1649.0-1668.5 1668.5-1672.5	1520.0-1539.5 1539.5-1543.0	Gas Oil	-1539.5 -1543.0	No	No				
Sample 1	1676.0	1545.7	Water			0.02	0.0	22.2		

NOTES:

- 1. RFT recoveries shown are all from the 6 gallon chamber.
- 2. Samples marked with star (*) had 1 gallon chamber preserved for PVT analysis.

TABLE **2**SWEETLIPS-1 OPEN-HOLE RFT PRESSURE DATA AUGUST 9TH 1989

 			منية عينها بالخد جين يتال كالتي تبدئ المال ا	ZONE	OR SAND=Z	ONE1		سد خصر الحالة المراثة الجائد ويسان والآثار النائبة بنيش الجائدة الأسان ويراث الجائبة الحا	وين رحمه منظ المراج ويوم المنظ المراج والمنظ المراج والمنظ المراج والمنظ المنظ
RUN \SEAT	DEFTH MEASURED (M MDRT)	ZONE OR SAND	ASSUMED FORMATION FLUID	DEPTH TVD (M SS)	FORMATION PRESSURE (PSIA)	SEAT VALIDITY	CALC. PT. TO PT. GRADIENT	LEAST SORS FIT GRAD. FOR ZONE	ASSUMED HYDRAULIC GRADIENT
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9	1512.5 1517.0 1526.5 1545.5 1552.0 1559.0 1562.5 1564.0 1580.5 1583.0	ZONE 1 ZONE 1 ZONE 1 ZONE 1 ZONE 1 ZONE 1 ZONE 1 ZONE 1 ZONE 1 ZONE 1	GAS GAS GAS GAS GAS DIL WATER WATER	1491.5 1496.0 1505.5 1524.5 1531.0 1538.0 1541.5 1543.0 1559.5 1562.0	2177.8 2178.6 2179.8 2182.9 2184.2 2185.5 2187.0 2188.5 2211.6 2214.8	6000 6000 6000 6000 6000 6000 6000 600	0.171 0.126 0.164 0.195 0.181 0.426 1.053 1.395 1.288	0.162 0.162 0.162 0.162 0.162 1.053 1.053 1.288	0.162 0.162 0.162 0.162 0.162 0.162 1.053 1.053 1.420
 			ه ينها الله المناه	ZONE	OR SAND=Z	ONE2	. Note that says your take must share they gave your own state with a		وينه برادة جنون عليه جناه ينتوا مثال هنون بالد فاتح بعد الدين البات المال الدين المال الدين المال المال المال
RUN \SEAT	DEPTH MEASURED (M MDRT)	ZONE OR SAND	ASSUMED FORMATION FLUID	DEPTH TVD (M SS)	FORMATION PRESSURE (PSIA)	SEAT VALIDITY	CALC. PT. TO PT. GRADIENT	LEAST SQRS FIT GRAD. FOR ZONE	ASSUMED HYDRAULIC GRADIENT
1/11 1/14 1/17	1597.5 1604.0 1607.0	ZONE2 ZONE2 ZONE2	WATER WATER WATER	1576.5 1583.0 1586.0	2243.0 2251.9 2256.4	600D 600D 600D	1.944 1.377 1.497	1.409 1.409 1.409	1.420 1.420 1.420
 				ZONE	OR SAND=Z	ONE3	الدين وي وي وي الله الله الله الله الله الله الله الل	يند ومن وين منت مان منت الله عال المرا الله الله الله الله الله مناه	والمرك
RUN \SEAT	DEPTH MEASURED (M MDRT)	ZONE OR SAND	ASSUMED FORMATION FLUID	DEPTH TVD (M SS)	FORMATION PRESSURE (PSIA)	SEAT VALIDITY	CALC. PT. TO PT. GRADIENT	LEAST SORS FIT GRAD. FOR ZONE	ASSUMED HYDRAULIC GRADIENT
1/18 1/19	1620.5 1627.0	ZONE3 ZONE3	WATER WATER	1599.5 1606.0	2281.9 2288.7	SUPERCHARGED GOOD	1.887 1.051	:	1.420 1.420

SWEETLIPS-1 ST1 OPEN-HOLE RFT PRESSURE DATA AUGUST 18TH 1989

				ZONE	OR SAND=ZO	NE1	ور و دور دور و دور و دور دور دور و دور	ه و د و د و د و د و د و د و د و د و د و		
RUN \SEAT	DEPTH MEASURED (M MDRT)	ZONE OR SAND	ASSUMED FORMATION FLUID	DEPTH TVD (M SS)	FORMATION PRESSURE (PSIA)	SEAT VALIDITY	CALC. PT. TO PT. GRADIENT	LEAST SORS FIT GRAD. FOR ZONE	ASSUMED HYDRAULIC GRADIENT	
1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10 1/11 1/12	1649.0 1659.5 1664.0 1667.5 1669.0 1672.0 1674.0 1680.0 1683.5 1686.0	ZONE 1	GAS GAS GAS GAS OIL OIL WATER WATER WATER WATER WATER WATER	1522.0 1531.4 1535.3 1538.4 1538.7 1542.3 1544.0 1545.7 1549.2 1552.2 1554.4 1557.0	2182.6 2184.0 2184.9 2185.6 2186.0 2188.9 2191.1 2194.0 2198.9 2203.1 2206.4 2209.5	6000 6000 6000 6000 6000 6000 6000 600	0.149 0.231 0.226 0.308 1.115 1.294 1.706 1.400 1.400 1.500	0.181 0.181 0.181 0.181 1.115 1.115 1.389 1.389 1.389 1.389	0.170 0.170 0.170 0.170 1.050 1.050 1.420 1.420 1.420 1.420	
1/13 1/14 1/15	1691.0 1702.0 1705.0	ZONE1 ZONE1 ZONE1	WATER WATER WATER	1559.2 1568.3 1570.8	2212.6 2225.2 2228.7	600D 600D 600D	1.409 1.385 1.400	1.389 1.389 1.389	1.420 1.420 1.420	

RFT SAMPLE TEST REPORT

WELL

: SWEETLIPS-1

BULLDER

10 AUG 1990

OBSERVER : G.SMITH/A.CLARE P.REICHARDT

<u>DATE</u> : 9/8/89

RUN NO. : 2

	CHAMBER 1 (22.7 li	t.)	CHAMBER 2 (3.8	lit.)
SEAT NO.	2-20		2-20	
DEPTH	1561.0 m		1561.0	m
A. RECORDING TIMES				
Tool Set		hrs	-	hrs
Pretest Duration		ins		
Chamber Open		<u>hrs</u>	15:57	hrs
Chamber Full		<u>hrs</u>	16:01	<u>hrs</u>
Fill Time		ins	4	mins
Finish Build Up	15:57	hrs	16:06	hrs
Build Up Time	9 m	ins	5	mins
Tool Retract		hrs	16:08	hrs
Total Time	- m	ins	47	mins
B. SAMPLE PRESSURE				
Init. Hydrostatic	2604.6 p	sia	-	psia
Init. Form'n Press.(Pret	est) 2186.6 p	sia	-	psia
Init. Flowing PRess.	492 p	sia	1863	psia
Final Flowing Press.	1894 p	sia	1870	psia
Final Form'n Press.	2185.9 p	sia	2185.5	psia
Final Hydrostatic	- p	sia	2606.5	psia
C. TEMPERATURE				
Max. Rec. Temp.	65.9 d	eg C	65.9	deg C
D. SAMPLE RECOVERY				
Surface Pressure	1640 p	sia		psia
Amt Gas		ft	-	cu ft
Amt Oil		lit	-	lit
Amt Water (Total)	0.600	lit	-	lit
Amt Others	-	lit	_	lit
E. SAMPLE PROPERTIES				
Gas Composition				
C1	>1,387,500 (59.8%)	DDM		ppm
C2	> 915,000 (39.5%)			ppm
C3	12,200 (0.5%)			ppm
C4	3,630 (0.2%)			ppm
C5	Tr (0.1%)			ppm
C6+		ppm		ppm
CO2/H2S	% /	•	%	/ppm
Oil Properties		eg C	deg API@	deg C
Colour	Light Straw Yellow			<u> </u>
Fluorescence	Bright Blue-White			
GOR	>10,000			
Pour Point	-			
Water Properties				
Resistivity	0.45 ohm-m@21 d	eg C	ohm-m @	deg C
NaCl Equivalent		ppm	Orm-ii (a	ppm
Cl-titrated				
Tritium		ppm DPM		ppm DPM
	7.0	DITI		DFFI
pH Fat Mater Tana	7.0			
Est. Water Type F. MUD FILTRATE PROPERTIES				
	321 -1 0 12 0 1	~~ C	ah	dc ~ 0
Resistivity	.321 ohm-m @ 13.9 d		ohm-m @	deg C
NaCl Equivalent		ppm		ppm
Cl-titrated		ppm		ppm
pH (i.e. M. 1)	10.1	DDM		DDIC
Tritium (in Mud)	3578	DPM		DPM
G. GENERAL CALIBRATION	2 -			
Mud Weight	9.5	ppg	1107	ppg
Serial No. (Preserved)			1131 RFS AD	
Choke Size/Probe Type	1 x0.2/Martineau			
REMARKS	Refractive Index API		Sample Preserve	d for
	46-47.5°API @60°F (es	t.	PVT Analysis	
	from small sample)			
	<u> </u>			

RFT SAMPLE TEST REPORT

WELL

: SWEETLIPS-1

OBSERVER : G.SMITH/A.CLARE P.REICHARDT

<u>DATE</u> : 9/8/89

<u>RUN NO.</u> : 3

m KB hrs hrs hrs hrs mins hrs mins hrs mins hrs mins cuft
m KB hrs hrs hrs mins hrs mins hrs mins hrs gia psia psia psia psia psia cu ft
hrs hrs hrs mins hrs mins hrs mins hrs mins current hrs mins current deg C current cur
hrs hrs hrs mins hrs mins hrs mins hrs mins current hrs mins current deg C current cur
hrs hrs mins hrs mins hrs mins hrs mins psia psia psia psia psia psia cu ft
hrs mins hrs mins hrs mins psia psia psia psia psia psia cu ft
hrs mins hrs mins hrs mins psia psia psia psia psia psia cu ft
hrs mins hrs mins hrs mins psia psia psia psia psia psia cu ft
mins hrs mins hrs mins psia psia psia psia psia psia cu ft
hrs mins hrs mins psia psia psia psia psia psia cu ft
mins hrs mins psia psia psia psia psia deg C psia cu ft
hrs mins psia psia psia psia psia deg C psia cu ft
mins psia psia psia psia psia deg C psia cu ft
psia psia psia psia psia psia deg C psia cu ft
psia psia psia psia psia deg C psia cu ft
psia psia psia psia psia deg C psia cu ft
psia psia psia psia deg C psia cu ft
psia psia psia deg C psia cu ft
psia psia deg C psia cu ft
psia deg C psia cu ft
deg C psia cu ft
psia cu ft
psia cu ft
cu ft
cu ft
7
lit
lit_
lit_
ppm
%/ppm
deg C
deg C
ppm
ppm
DPM
DITT
<u> </u>
do- C
deg C
ppm
ppm
MULT
DPM
ppg
ppg AD
ppg

RFT SAMPLE TEST REPORT

<u>WELL</u> : SWEETLIPS-1

OBSERVER : G.SMITH/A.CLARE DATE : 10/8/89 RUN NO. : 5

P.REICHARDT

California - Marie - California		MBER 1 (22.	4 lit.)	CHAMBER 2 (10).4 lit.)
SEAT NO.		5-34		5-34	
DEPTH	<u> </u>	1580.5	m KB	1580.5	m KB
A. RECORDING TIMES					_
Tool Set	 	01:34	hrs	-	hrs
Pretest Duration	 	3	mins		
Chamber Open	ļ	01:37	hrs	02:17	hrs
Chamber Full		02:12	hrs	02:28	<u>hrs</u>
Fill Time		35	mins	11	mins
Finish Build Up	 	02:17	<u>hrs</u>	02:33	hrs
Build Up Time		5	mins	5	mins
Tool Retract		-	hrs	02:35	<u>hrs</u>
Total Time		-	mins	61	mins
B. SAMPLE PRESSURE					
Init. Hydrostatic	<u> </u>	2638.5		-	psia
Init. Form'n Press.(Pret	est)	2211.6	psia	•	psia
Init. Flowing Press.	ļ	48	<u>psia</u>	734	psia
Final Flowing Press.		1000	psia	1825	psia
Final Form'n Press.		2808.5	psia	2208.9	
Final Hydrostatic	 	-	psia	2635.5	psia
: TEMPERATURE		_			
Max. Rec. Temp.	<u> </u>	71.6	deg C	71.6	deg C
). SAMPLE RECOVERY			_		
Surface Pressure		380		350	
Amt Gas		0.9	cu ft	0.6	cu ft
Amt Oil	ļ	0	<u>lit</u>	0	lit
Amt Water (Total)	<u> </u>	21.25	lit	9.0	lit
Amt Others			<u>lit</u>	-	lit
. SAMPLE PROPERTIES					
Gas Composition					
C1		200,200	ppm	No Samp	ole ppm
C2		51,240	ррт		ppm
C3		25,872	ppm		ppm
C4		8,151	. ppm		ppm
C5		740	ppm		ppm
C6+			ppm		ppm
CO2/H2S		3/Nil	% /ppm	3/Nil	% /ppm
il Properties		deg API @	deg C	deg API@	deg (
Colour					
Fluorescence					
GOR					
Pour Point					
later Properties					
Resistivity	0.38	ohm-m @ 21	.5 deg C	0.70 ohm-m @ 21	.5 deg (
NaCl Equivalent		12,355	ppm	8,250	ppm
Cl-titrated		7500	ppm	5000	ppm
Tritium		1421	DPM	753	DPM
рН	†	7.5	DIII	7.5	DIII
Est. Water Type	Filt	rate & Form	Water	Form Wate	
T. MUD FILTRATE PROPERTIES	1	Tace a rolli	NACCI	TOTH WACE	<u> </u>
Resistivity	0.321	ohm-m @ 13	9 dan C	0.321ohm-m @ 13	9 Apr (
NaCl Equivalent	10.341	20,625		20,625	ppm
Cl-titrated	 	12,500	ppm	12,500	
	 	$\frac{12,300}{10.1}$	ppm	10.1	ppm
pH Tritium (in Mud)	1		אמע		DDM
Tritium (in Mud)	<u> </u>	3578	DPM	3578	DPM
G. GENERAL CALIBRATION		٥ .		0.5	
Mud Weight		9.5	ppg	9.5	ppg
Serial No. (Preserved)	 	0 00 1		1 0 000	. •
Choke Size/Probe Type		0.02"/Marti		1 x 0.02"/Ma	
REMARKS		Area Packe	r	Large Area Pac	
	1 Monti	neau Probe		Martineau Prob	

RFT SAMPLE TEST REPORT

WELL : SWEETLIPS-1 (ST1)

OBSERVER: E.GREWAR/J.YOUNG DATE: 18/8/90 89 RUN NO. : 2

	CHAMBER 1 (22.7	7 lit.)	CHAMBER 2 (10.	4 lit.)
SEAT NO.	2-17		2-17	
DEPTH	1676mMD (1545.3 r	n TVDSS)	1676mMD (1545.3m	TVDSS)
A. RECORDING TIMES				
Tool Set	16:09	<u>hrs</u>		hrs
Pretest Duration	4	mins	-	
Chamber Open	16:13	hrs	16:26	hrs
Chamber Full	16:25	hrs	16:33	hrs
Fill Time	12	mins	7	mins
Finish Build Up	16:26	hrs	16:34	hrs
Build Up Time	1	mins	11	mins
Tool Retract	**	hrs	16:36	hrs
Total Time		mins	27	mins
B. SAMPLE PRESSURE				
Init. Hydrostatic	2582.67	psia	2582.67	psia
Init. Form'n Press.(Prete		psia	2194.00	psia
Init. Flowing Press.	1733.00	psia	1733.60	psia
Final Flowing Press.	1187.70		1740.00	psia
Final Form'n Press.	2194.40		2194.40	
Final Hydrostatic	2583.00	psia	2583.00	psia
C. TEMPERATURE				
Max. Rec. Temp.	68.6	deg C	68.6	deg C
D. SAMPLE RECOVERY				
Surface Pressure	389.7	psia	384.7	psia
Amt Gas	0.8		0.7	
Amt Oil	Slight '		Slight T	
Amt Water (Total)	22.2		9.2	
Amt Others	-	lit	_	lit
E. SAMPLE PROPERTIES				
Gas Composition				
C1	129,500	ppm	155,400	ppm
C2	7,320	ppm	7,320	ppm
C3	2,797	ppm	2,797	ppm
C4	864	ppm	574	ppm
C5	197	ppm	62	ppm
C6+	197		02	ppm
CO2/H2S	5/Nil	ppm %/ppm	5/Nil	% /ppm
	deg API @		deg API@	deg C
Oil Properties	deg AFI (d	deg C	deg Ariu	ueg c
Colour				
Fluorescence				
GOR				
Pour Point				
Water Properties	_	_		
Resistivity	ohm-m_@	deg C	ohm-m @	<u>deg C</u>
NaCl Equivalent		ppm		ppm
Cl-titrated	15,000	ppm	15,000	ppm
Tritium	1697	DPM	1615	DPM
pH	7.5		7.5	
Est. Water Type	Form'n Water &	Filtrate	Form'n Water &	Filtrat
F. MUD FILTRATE PROPERTIES				
Resistivity	ohm-m @	deg C	ohm-m@	deg C
NaCl Equivalent	44,000	ppm	44,000	ppm
Cl-titrated	29,000	ppm	29,000	ppm
рН	10.3		10.3	
Tritium (in Mud)	2903	DPM	2903	DPM
G. GENERAL CALIBRATION				
Mud Weight	9.4	ppg	9.4	ррд
Serial No. (Preserved)	9.4		7.7	<u> </u>
Choke Size/Probe Type	0.03/Martineau	1	0.03/Martine	911
orioge przeltrone Tabe	U.UJ/Hai Cineat	<u> </u>	U.UJ/Haltine	au
REMARKS				

APPENDIX 5

GEOCHEMICAL REPORT

ON

SWEETLIPS 1 WELL

GIPPSLAND BASIN

ΒY

B.J.BURNS FEBRUARY 1990

LIST OF TABLES AND FIGURES

Table 1	Total Organic Carbon content
Table 2	Rockeval Pyrolysis data
Table 3	Kerogen P.O.M.T. Report
Table 4	Kerogen Fluorescence descriptions
Table 5	Kerogen Elemental Analysis, Sweetlips 1 sidewall cores
Table 6	Oil Composition - API gravity and C_{12+} liquid chromatography
Table 7	Oil Composition - Hydrocarbon Ratios

- Figure 1 Composite Geochemical Profile
- Figure 2 Source Potential, HI vs Tmax
- Figure 3 Kerogen Types, Sweetlips 1
- Figure 4 Kerogen Fluorescence
- Figure 5 Atomic H/C vs O/C Plot, Sweetlips 1 kerogens (Van Krevelen)
- Figure 6 HI vs H/C Atomic Ratios for Depositional Environments
- Figure 7 Atomic H/C vs O/C Ratios for Depositional Environments
- Figure 8 Source Potential, HI vs Tmax for Depositional Environments
- Figure 9 "Whole Oil" chromatogram, RFT 3/21, 1563m
- Figure 10 "C₁₂₊ Saturate Fraction" chromatogram, RFT 3/21, 1563m

INTRODUCTION

Sweetlips 1 was drilled near the basin margin and penetrated a relatively shallow section of Eocene, Paleocene and Upper Cretaceous Latrobe Group sediments. Although these were considered to be too immature to act as significant source rocks for oil in the basin, twelve SWCs from the section below a depth of 1600m were examined for routine TOC and Rockeval measurements. This part of the section consists of lower Paleocene and Upper Cretaceous sands, shales, siltstones and minor thin coals and includes the P. mawsonii Zone which is one of the oldest post-Strzelecki units encountered in the basin and is believed to represent deposition in a true lacustrine environment (Partridge 1990).

Fifteen sidewall core samples were selected over the interval from 1520 - 1840m for palynological separation and a fraction of the organic concentrate was then analysed to determine the Carbon/Hydrogen atomic ratio. Kerogen and fluorescence determinations were carried out by M.J. Hannah.

Oil was recovered from RFT 3/21 at 1563m and analysed using liquid and gas chromatography as well as determining its API gravity.

RESULTS

The TOC and Rockeval results are presented in Tables 1 and 2 and Figure 1. Most of the L. balmei and T. longus samples were light-medium grey claystone and siltstone and with variable TOC's ranging from a "very poor" 0.3% to a "good" 2.1% The deeper P. mawsonii samples from 1815m to TD are darker grey claystone and siltstones with typically more uniform TOC values (av. 1.42%) a feature that has been observed in other wells in the basin (eg Kipper 1, Admiral 1).

The corresponding Rockeval results (Table 2) are generally dissapointing with only two of the L. balmei and one T. longus sample having a "fair to good" source richness rating based on S2 yields of between 2 and 8mg/g (S2 levels above 6 mg/kg are rated as "good" source rocks). The richest sample is from the Upper Cretaceous T. longus Zone at 1716.2m. Oil would be the interpreted hydrocarbon product (at peak maturity) from the two samples with Hydrogen Indices greater than 300 (Table 2, Fig 2), while the remaining samples would be expected to yield mainly gas. In particular, the P. mawsonii shales appear to have very poor source potential.

The low Tmax values for all samples (<430) indicate that the majority of the section penetrated in the well is immature and this is supported by the Thermal Alteration Indices and Fluorescence data (see below) which indicate immature kerogens almost down to TD with only the deepest sample at 1849m approaching the early mature stage.

Kerogen organic matter descriptions and fluorescence characteristics are set out in Tables 3 & 4 and Figures 3 & 4. The kerogen types vary considerably and several of the *L. balmei* and *T. longus* kerogens contain over 60% "oil-prone" material (mainly the Amorphous and Biodegraded Terrestrial categories). These same samples contain over 60% fluorescing material in their kerogen fractions but there is no correlation between these oil-prone characteristics and the age of the section (cf Table 3). There is, however, a strong correlation between the depositional environments and the various geochemical parameters (see below). The 1817m *P. mawsonii* sample is somewhat unusual in that it contains 60% bright yellow fluorescant material (ie. oil-prone) and yet its other geochemical parameters consistantly indicate poor source potential.

The H/C atomic ratios of the kerogens, as shown in the Van Krevelen Plot (Fig. 5, Table 5), indicate a predominance of Type III terrestrial organic matter for most of the samples although several show enriched hydrogen compositions with H/C ratios greater than 1.0. This is equivalent to intermediate Type II-III kerogen, and hence greater oil source potential, but it is clear from Figure 2 that these samples are still very immature.

DEPOSITIONAL ENVIRONMENT

For the samples studied in this report there is a good correlation between the various geochemical results and the environments of deposition as determined by A.D.Partridge 1990 (see Tables 2 & 5; Figs 6, 7 & 8). The samples with the best oil-prone characteristics, namely HI greater than 300, atomic H/C ratio greater than 1.0, more than 60% "oil-prone" kerogen and strong fluorescence, all occur in the Upper Coastal Plain environment. This is at slight variance with the data from some of the previous wells such as Conger 1 and Roundhead 1 in which the Lower Coastal Plain facies have contained the better source rocks.

The lacustrine *P. mawsonii* sediments again show up as very poor source rocks. They are remarkably uniform in their chemical properties, a feature which is believed to be related to the development of a more stable environment in a large fresh-brackish lake. The low Rockeval HI values and H/C Atomic Ratios indicate that these lacustrine sediments have been well oxygenated, at least around the northern margins of the lake. The quantity and quality of equivalent sediments in the central areas of the ancient lake remain untested.

OIL SAMPLE

The oil from RFT 3/21 at 1563m has an API Gravity of 40.0 degrees and its "Whole Oil" chromatogram (Fig. 9) shows a waxy oil with a bi-modal distribution of n-alkanes maximising at C14 and C23. The distribution of the light gasoline range hydrocarbons is a little unusual in that the series of n-paraffins from C6 to C12 are less abundant than the corresponding branched and cyclic alkanes. While it is possible that this is a function of changes in the source facies it is more likely due to the onset of bacterial degradation, given that the measured RFT temperature of 68.90 C is within the accepted range (up to a maximum of approx. 800 C) and also given the reservoir's location within the zone of fresh water flushing in the basin.

The Sweetlips 1 oil appears to be waxier than the adjacent oils in Emperor $1 \ (1542.9m)$ or Sunfish 2 (1616.8m). In gross composition it has the closest match with the shallow oil from Wirrah 1 at 1575m.

SUMMARY

- 1. The Upper Coastal Plain facies of the L. balmei and T. longus Zones contain the most oil-prone source rocks. All are immature at the well location.
- 2. The lacustrine *P. mawsonii* sediments are uniform in their organic content but at this location are rated as poor source rocks.
- 3. The oil at 1653m is a 40.0 API waxy crude similar to the oil from Wirrah 1 (1575m). It has probably undergone a minor level of biodegradation.

REFERENCES

- PARTRIDGE, A.D., Palynological analysis of Roundhead 1, Gippsland Basin. Esso Australia Ltd. Palaeo. Rept. 1989/17, 1-26.
- PARTRIDGE, A.D., Palynological analysis of Conger 1, Gippsland Basin. Esso Australia Ltd. Palaeo. Rept. 1989/19, 1-19.
- PARTRIDGE, A.D., Palynological analysis of Sweetlips 1, Gippsland Basin. Esso Australia Ltd. Palaeo. Rept. 1990/3, 1-22.

(BJB127)

TABLE 1

TOTAL ORGANIC CARBON

WELL:

			O ~	_		•	
SAMPLE	DEPTH	TYPE	AGE	ZONE	TOC	CO3	DESCRIPTION
NO.	(m)				%	%	
78260 F	1614.5	CRSW	Paleocene	U L. balmei	1.17	3.87	CLYST LT-M GY TR.CARB
78261 C	1643.2	CRSW	"	L L. balmei	0.97	2.45	CLYST M BRN SOFT TR.CARB
78261 B	1655.3	CRSW	ıı ı	"	0.30	8.20	CLYST LT GY
78260 X	1690.0	CRSW	"	"	2.08	2.80	CLYST LT GY ABUND COALY FRAGS
78260 U	1716.2	CRSW	Maastrichtian	U T. longus	2.10	5.59	CLYST V DK GY TR CARB
78260 Q	1739.0	CRSW	"	"	0.65	4.52	CLYST M GY SOFT TR CARB
78260 N	1762.0	CRSW	"	"	0.81	22.53	SLTSTN M GY BRN TR CARB
78260 K	1787.0	CRSW	11	"	0.54	2.40	SST LT GY
78260 H	1815.0	CRSW	?Turonian	P. mawsonii	1.29	5.06	CLYST DK GY
78260 G	1817.0	CRSW	11	"	1.63	7.61	SLTSTN DK GY TR CARB
78260 D	1831.0	CRSW	II .	"	0.87	4.97	SLTSTN DK GY TR CARB
78260 A	1849.0	CRSW	п	n .	1.87	22.04	SLTSTN DK GY BRN

TABLE 2 ROCKEVAL REPORT

WELL: SWEETLIPS 1

				-						
SAMPLE	DEPTH	TOC	Tmax	S1	,S2	S3	HI	OI	HI/OI	ENVIRONMENT
NO.	(m) ·	%		mg/g	mg/g	mg/g				
78260 F	1614.5	1.17	415	0.24	2.69	0.05	230	4	58	U Coastal Plain
78261 C	1643.2	0.97	418	0.35	3.39	0.06	350	6	58	
78261 B	1655.3	0.30	409	0.10	0.25	0.01	83	3	28	Fluvial
78260 X	1690.0	2.08	407	0.37	3.19	0.09	153	4	38	<i>"</i>
78260 U	1716.2	2.10	420	0.40	7.40	0.26	352	13	27	U Coastal Plain
78260 Q	1739.0	0.65	410	0.10	0.26	0.01	40	1	40	Fluvial
78260 N	1762.0	0.81	418	0.08	0.45	0.03	55	4	14	"
78260 K	1787.0	0.54	418	0.16	0.35	0.01	65	2	33	rr .
78260 H	1815.0	1.29	422	0.08	1.15	0.10	89	8	11	Lacustrine
78260 G	1817.0	1.63	427	0.11	1.36	0.14	83	9	9	"
78260 D	1831.0	0.87	422	0.07	0.23	0.01	26	1	26	"
78260 A	1849.0	1.87	429	0.20	1.23	0.17	66	9	7	<i>!!</i>

TABLE 3 KEROGEN P.O.M.T REPORT

WELL

SWEETLIPS 1

V V 1 1 1		5 11 11														
SAMPLE	DEPTH		Particulate Organic Matter Types (%)										% OIL	%		
NO.	(M)	1.1	1.2	2.1	2.2	3.0	4.0	5.1	5.2	5.3	6.1	6.2	7.0	TAI	PRONE	FLUOR
78261 F	1614.5	20				30	15		20	15				2.1	65	80
78261 C	1643.2	35				- 20	15		20	10	}			2.1	70	100
78261 B	1655.3	15					20		60	5					35	90
78260 X	1690.0	30							40	30					30	5
78260 V	1713.9	40				15	5		15	25			i		60	60
78260 U	1716.2	50				20	5		10	15					75	100
78260 Q	1739.0	5				5	10		50	30					20	25
78260 N	1762.0	15					5		55	25					20	25
78260 K	1787.0	20				10	10		30	30					40	25
78260 H	1815.0	20				15	10		30	25					45	60
78260 G	1817.0	20					5		20	55				2.3	25	60
78260 D	1831.0	5				10	5		25	55					20	15
78260 A	1849.0	10				10	15		35	30				2.3	35	5

LEGEND

1 = AMORPHOUS

1.1 - UNDIFFERENTIATED 1.2 - GREY

2 = STRUCTURED AQUEOUS 2.1 - ALGAE

ALGAE 2.2 - DINOFLAGELLATES/ACRITARCHS

3 = BIODEGRADED TERRESTRIAL

4 = SPORES/POLLEN

5 = STRUCTURED TERRESTRIAL 5.1 - LAMINAR

5.2 - CELLULAR 5.3 - SEMI-OPAQUE

6 = INERT

6.1 - OPAQUE

6.2 - META-OPAQUE

7 = INDETERMINATE FINES

TAI = THERMAL ALTERATION INDEX

OIL PRONE = SUM OF 1.1 THRU 4.0

FLUOR = PERCENT FLUORECSCENT MATERIAL

TABLE 4 KEROGEN FLUORESCENCE REPORT

WELL:

SAMP NO.	DEPTH (M) TYPE	AN COLOUR	%	DESCRIPTOR	COMMENTS
78261 F	1614.50 CRSW	28 BRIGHT YELLO TOTAL	₩ 80 80	ALL TYPES EXCEPT SEMI-OPAQUE.	IMMATURE.
78261 C	1643.20 CRSW	28 BRIGHT YELLO TOTAL	W 100	ALL TYPES.	IMMATURE.
78261 B	1655.30 CRSW	28 BRIGHT YELLO TOTAL	90 90	CELLULAR, SPORE-POLLEN.	IMMATURE.
78260 X	1690.00 CRSW	28 BRIGHT YELLO TOTAL	# 5 5	CELLULAR.	IMMATURE. SAMPLE CONTAINS ABUNDANT MINERAL MATTER PROBABLY AN ARTIFACT OF PROCESSING. THIS MATERIAL FLUORESCES BRIGHTLY MAKING THE ASSESMENT OF THE TRUE FLUORESCENCE OF THE SAMPLE DIFFICULT.
78260 Y	1713.90 CRSW	28 BRIGHT YELLO TOTAL	# 60 60	CELLULAR, PIN-PRICK (SEE NOTE BELOW).	IMMATURE. AMORPHOUS MATERIAL CONTAINS PIN-PRICK FLUORESCENCE.
78260 U	1716.20 CRSW	28 BRIGHT YELLO TOTAL	# 100 100	ALL TYPES	IMMATURE.
78260 Q	1739.00 CRSW	28 BRIGHT YELLO GOLD TOTAL	5 20 25	BIODEG. TERRESTRIAL. CELLULAR, SEMI OPAQUE.	IMMATURE-MARGINALY MATURE. ALL ORGANIC MATTER SURROUNDED BY RAPIDLY FADEING BRIGHT FLUORESCENCE
78260 N	1762.00 CRSW	28 BRIGHT YELLO GOLD TOTAL	10 15 25	SPORE/POLLEN, CELLULAR. CELLULAR.	IMMATURE-MARGINALY MATURE.
78260 к	1787.00 CRSW	28 BRIGHT YELLO GOLD TOTAL	10 15 25	SPORE/POLLEN CELLULAR. CELLULAR, BIODEG. TERREST., SEMI-OPAQUE	IMMATURE-MARGINALY MATURE.
78260 н	1815.00 CRSW	28 GOLD TOTAL	6 0 6 0	CELLULAR, SPORE/POLLEN, BIODEG. TERREST.	EARLY MATURE
78260 G	1817.00 CRSW	28 BRIGHT YELLO TOTAL	# 60 60	CELLULAR (SOME FRAGS), SPORE/POLLEN.	IMMATURE.SOME SEMI-OPAQUE MATERIAL CONTAINS INCLUSIONS OF FLUORESCING MATERIAL.A RAPIDLY FADEING FLUORESCENT HALO SURROUNDS ALL ORGANIC FRAGMENTS
78260 D	1831.00 CRSW	28 BRIGHT YELLO BRIGHT ORANO TOTAL	# 10 E 5 15	CELLULAR, SPORE POLLEN. CELLULAR.	?IMMATURE-MARGINLY MATURE
78260 A	1849.00 CRSW	28 GOLD TOTAL	5 5	CELLULAR, SPORE/POLLEN.	EARLY MATURE.FLUORESCENT HALOS SURROUND ALL ORGANIC MATERIAL, THESE FADE RAPIDLY.

TABLE 5 KEROGEN ELEMENTAL ANALYSIS

WELL:

VVELL.		2 44 171	2171121					
SAMPLE	DEPTH	TYPE	AGE	ZONE	H/C	O/C	N/C	ENVIRONMENT
NO.	(m)							
78261 X	1520.0	CRSW	Early Eocene	L M. diversus	1.02	0.25	0.01	U. Coastal Plain
78261 S	1555.0	CRSW	"	. "	1.01	0.20	0.00	"
78261 R	1559.0	CRSW	rr .	ıı .	0.86	0.54	0.00	Condensed Marine
78261 D	1631.5	CRSW	Paleocene	U L. balmei	0.79	0.23	0.01	U. Coastal Plain
78261 C	1643.2	CRSW	n .	L L. balmei	1.12	0.16	0.00	"
78261 A	1668.0	CRSW	"	ır .	0.79	0.20	0.01	Fluvial
78260 Y	1680.0	CRSW	"	"	0.78	0.18	0.01	"
78260 V	1713.9	CRSW	Maastrichtian	U T. longus	0.75	0.21	0.01	U. Coastal Plain
78260 U	1716.2	CRSW	n	"	1.08	0.21	0.01	"
78260 T	1720.0	CRSW	"	"	0.64	0.17	0.01	"
78260 M	1770.0	CRSW	"	"	0.69	0.19	0.01	Fluvial
78260 K	1787.0	CRSW	"	"	0.73	0.18	0.01	
78260 H	1815.0	CRSW	?Turonian	P. mawsonii	0.78	0.16	0.02	Lacustrine
78260 E	1825.0	CRSW	"	ı,	0.69	0.20	0.02	"
78260 B	1840.0	CRSW	<i>II</i>	"	0.68	0.19	0.02	II .

TABLE 6 C12+ LIQUID CHROMATOGRAPHY

WELL:

SWEETLIPS 1

SAMPLE	DEPTH	API	C12+	Hydrocarbons			Non-HCs				Ratios	
	(m)	Gravity	% Total Oil	Sats	Arom	Total	Eluted NSO	Non-El NSO	Asph	Total	Sat	HC
				%	%	%	%	%	%	%	Arom	Non-HC
												
RFT 3/21	1563	40.0	77.1	84.5	10.2	94.7	2.9	1.8	0.6	5.3	8.28	27.1

TABLE 7

HYDROCARBON RATIOS

WELL:

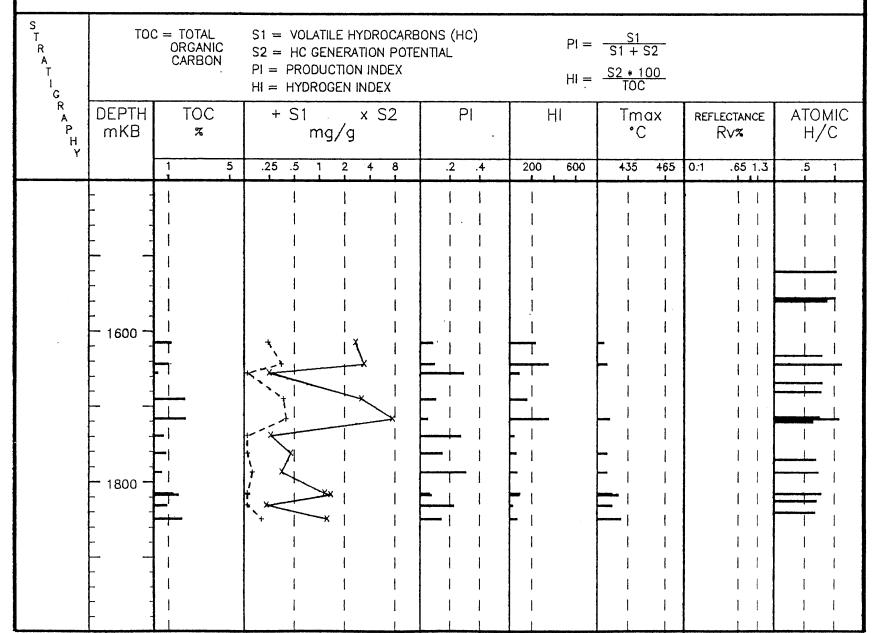
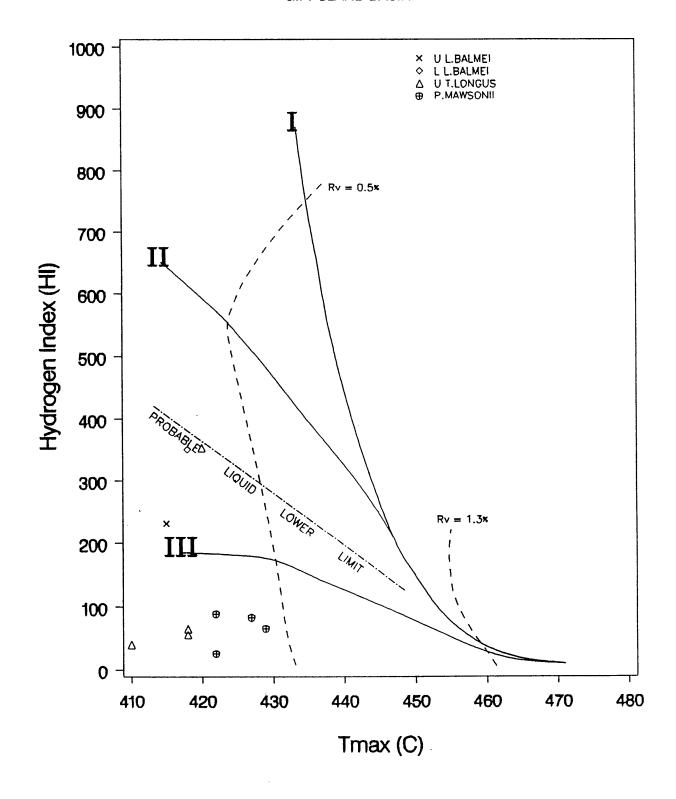
SAMPLE	DEPTH		Ratios		
	(m)	Pr/Ph	Pr/nC17	Ph/nC18	TMTD/Pr
RFT 3/21	1563	5.64	0.51	0.09	0.44

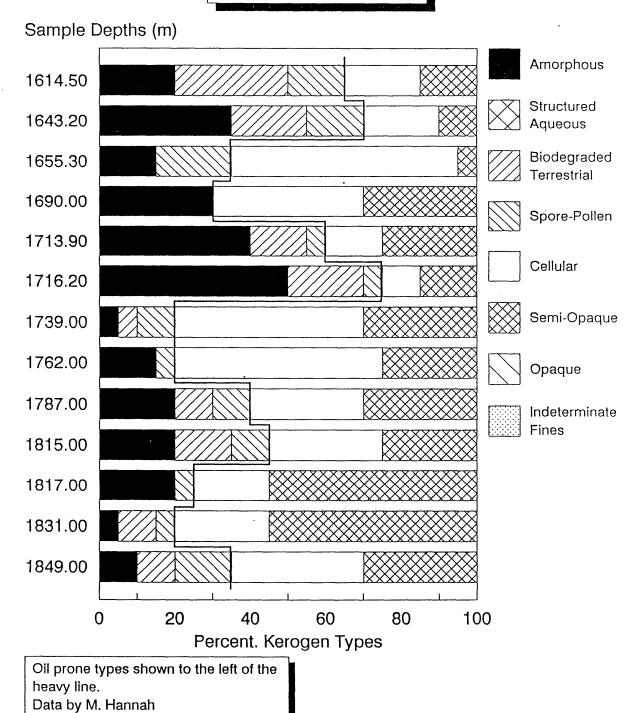
COMPOSITE GEOCHEMICAL PROFILE

BASIN: GIPPSLAND

SWEETLIPS 1

KB: 21 M TD: 1870 M

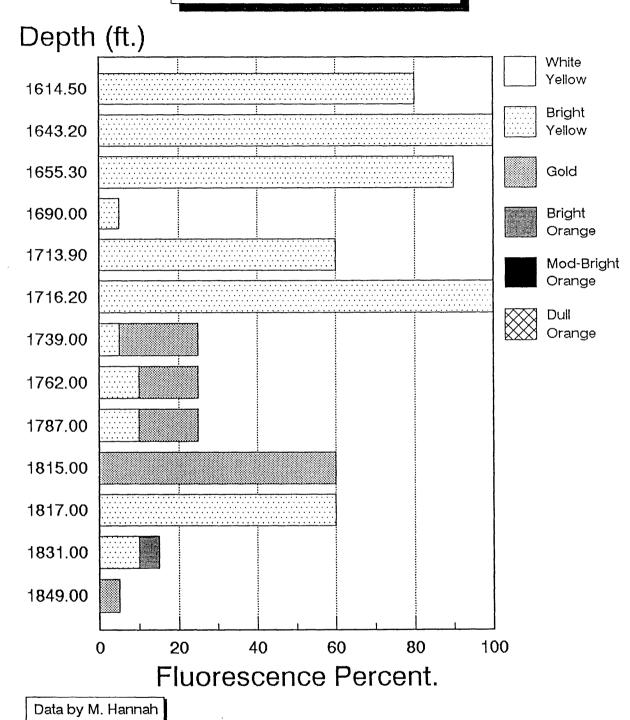
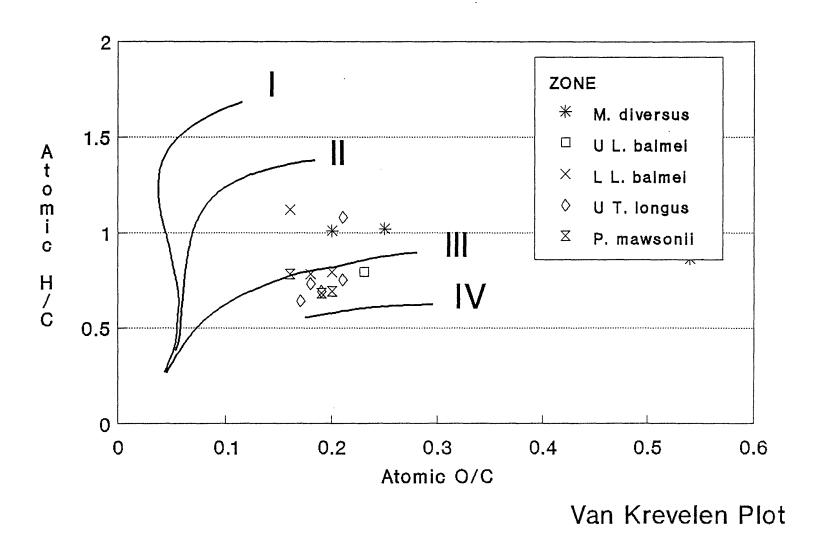
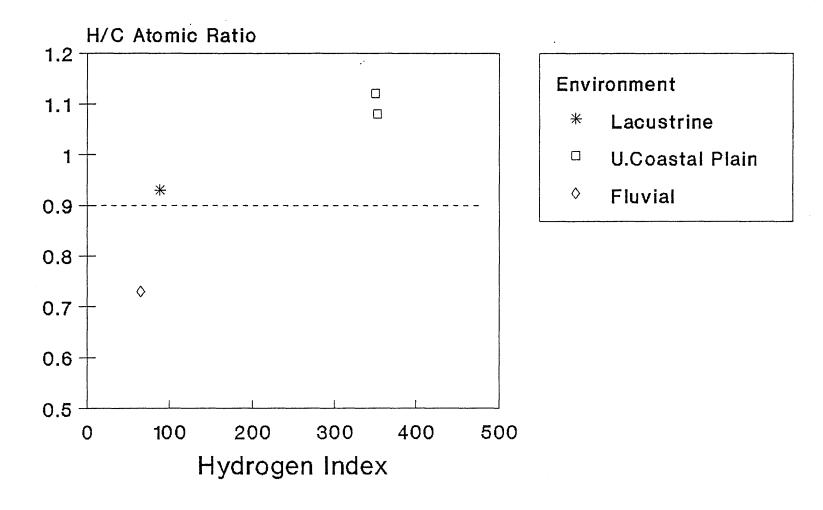

Figure 1

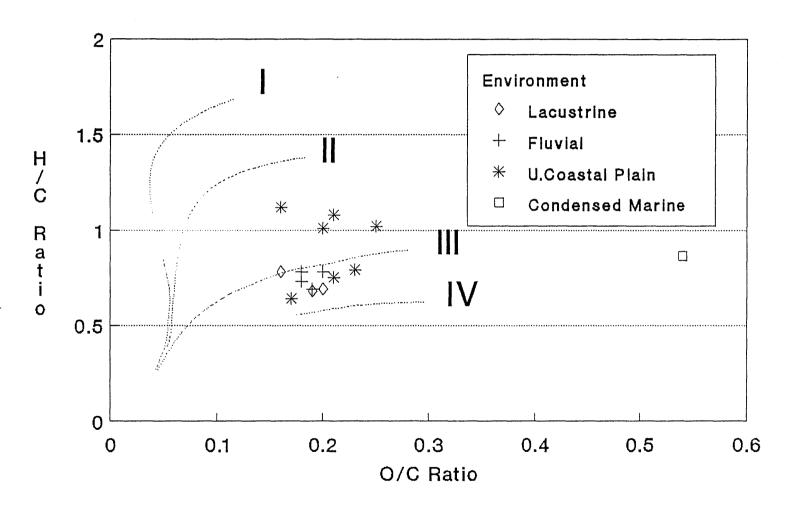
ROCKEVAL MATURATION PLOT SWEETLIPS 1

GIPPSLAND BASIN

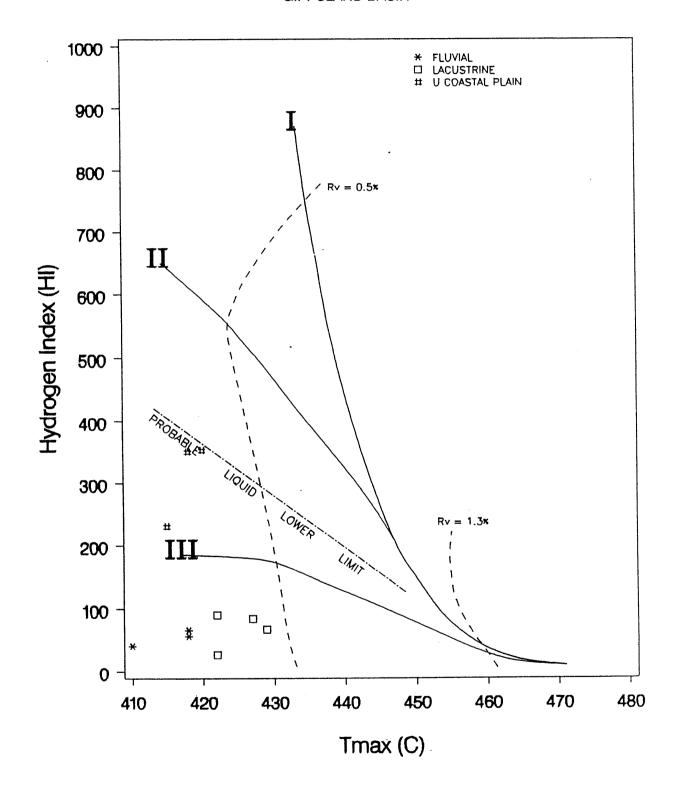
Sweetlips 1 Kerogen Types

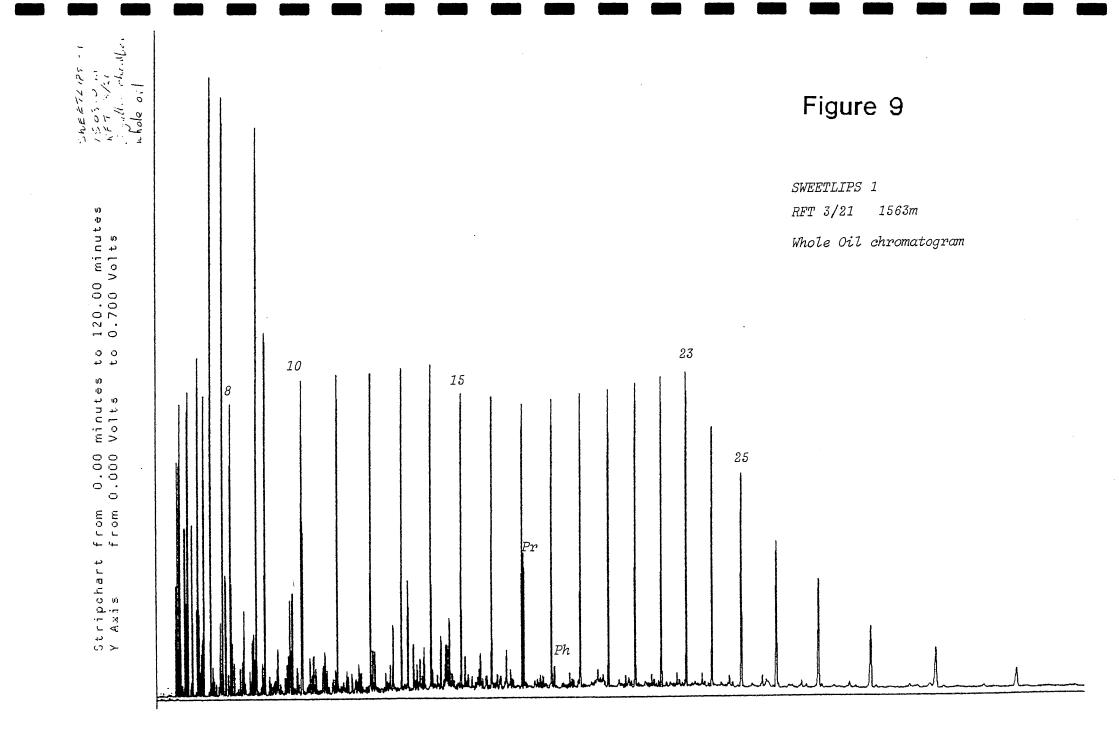
Sweetlips 1 Fluorescence details

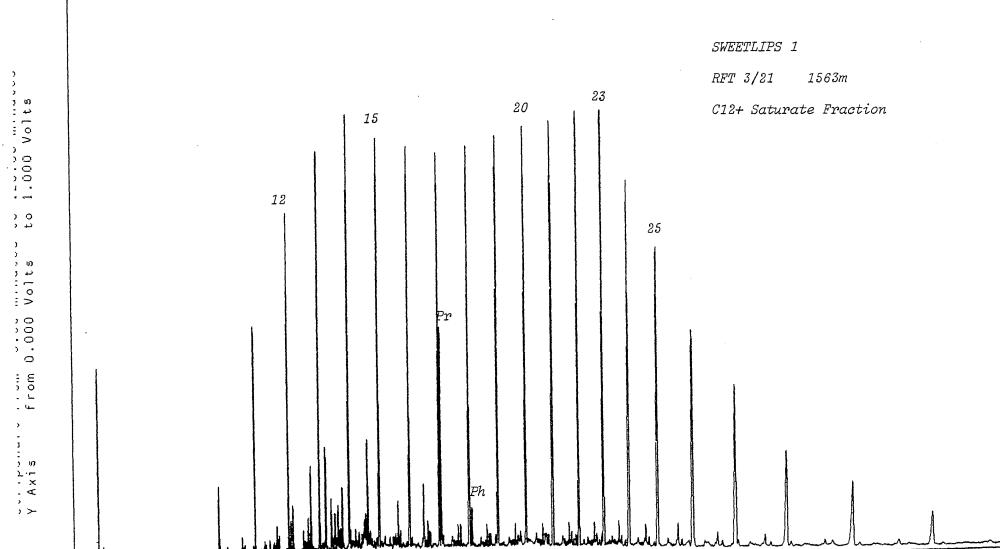

Figure 5

Hydrogen Index vs Kerogen H/C
Sweetlips 1


SWEETLIPS 1



ROCKEVAL MATURATION PLOT


SWEETLIPS 1

GIPPSLAND BASIN

120.00 minut

APPENDIX 6

CORE ANALYSIS

TO BE DISTRIBUTED SEPARATELY

0490RP1:7

ENCLOSURES

This is an enclosure indicator page. The enclosure PE902130 is enclosed within the container PE902128 at this location in this document.

The enclosure PE902130 has the following characteristics:

ITEM_BARCODE = PE902130
CONTAINER_BARCODE = PE902128

NAME = Structural Cross Section

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = CROSS_SECTION

DESCRIPTION = Structural Cross Section

REMARKS =

DATE_CREATED = 1/02/90 DATE_RECEIVED = 2/05/90

 $W_NO = W1003$

WELL_NAME = Sweetlips-1

CONTRACTOR = ESSO CLIENT_OP_CO = ESSO

This is an enclosure indicator page.

The enclosure PE902129 is enclosed within the container PE902128 at this location in this document.

The enclosure PE902129 has the following characteristics:

ITEM_BARCODE = PE902129
CONTAINER_BARCODE = PE902128

NAME = Structure Map - Top Coarse Clastics

BASIN = GIPPSLAND

PERMIT =

TYPE = SEISMIC

SUBTYPE = HRZN_CONTR_MAP

DESCRIPTION = Structure Map - Top Coarse Clastics

REMARKS =

DATE_CREATED = 1/09/89 DATE_RECEIVED = 2/05/90

 $W_NO = W1003$

WELL_NAME = Sweetlips-1

CONTRACTOR = ESSO CLIENT_OP_CO = ESSO

This is an enclosure indicator page.

The enclosure PE902131 is enclosed within the container PE902128 at this location in this document.

The enclosure PE902131 has the following characteristics:

ITEM_BARCODE = PE902131
CONTAINER_BARCODE = PE902128

NAME = Structure map - 54.2 MY Sequence

Boundary

BASIN = GIPPSLAND

PERMIT =

TYPE = SEISMIC

SUBTYPE = HRZN_CONTR_MAP

DESCRIPTION = Structure map - 54.2 MY Sequence

Boundary

REMARKS =

DATE_CREATED = 1/02/90 DATE_RECEIVED = 2/05/90

 $W_NO = W1003$

WELL_NAME = Sweetlips-1

CONTRACTOR = ESSO CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE604641 is enclosed within the container PE902128 at this location in this document.

The enclosure PE604641 has the following characteristics:

ITEM_BARCODE = PE604641

CONTAINER_BARCODE = PE902128

NAME = Mud Log

BASIN = GIPPSLAND

PERMIT = VIC/L10

TYPE = WELL

 $SUBTYPE = MUD_LOG$

DESCRIPTION = Mud Log for Sweetlips-1

REMARKS =

 $DATE_CREATED = 8/07/89$

DATE_RECEIVED = 2/02/90

 $W_NO = W1003$

WELL_NAME = SWEETLIPS-1

CONTRACTOR = EXPLORATION LOGGING
CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE604642 is enclosed within the container PE902128 at this location in this document.

The enclosure PE604642 has the following characteristics:

ITEM_BARCODE = PE604642
CONTAINER_BARCODE = PE902128

NAME = Mud Log

BASIN = GIPPSLAND

PERMIT = VIC/L10

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Mud Log for Sweetlips ST-1

REMARKS =

 $DATE_CREATED = 17/08/89$

 $DATE_RECEIVED = 2/02/90$

 $W_NO = W1003$

 $WELL_NAME = SWEETLIPS ST-1$

CONTRACTOR = EXPLORATION LOGGING CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE600981 is enclosed within the container PE902128 at this location in this document.

The enclosure PE600981 has the following characteristics:

ITEM_BARCODE = PE600981
CONTAINER_BARCODE = PE902128

NAME = Well Completion Log

BASIN = GIPPSLAND

PERMIT =

TYPE = WELL

SUBTYPE = COMPLETION_LOG

DESCRIPTION = Well Completion Log

REMARKS =

DATE_CREATED = 8/08/89 DATE_RECEIVED = 2/05/90

 $W_NO = W1003$

WELL_NAME = Sweetlips-1

CONTRACTOR = ESSO CLIENT_OP_CO = ESSO

This is an enclosure indicator page. The enclosure PE604652 is enclosed within the container PE902128 at this location in this document.

The enclosure PE604652 has the following characteristics:

ITEM_BARCODE = PE604652
CONTAINER_BARCODE = PE902128

NAME = Well Completion Log

BASIN = GIPPSLAND
PERMIT = VIC/L10
TYPE = WELL

SUBTYPE = COMPLETION_LOG

DESCRIPTION = Well Completion Log for Sweetlips-1

REMARKS =

 $DATE_CREATED = 22/08/89$

DATE_RECEIVED =

 $W_NO = W1003$

WELL_NAME = SWEETLIPS-1

CONTRACTOR =

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED