

W 928

ATTACHMENT TO WCR WL I LEATHER JACKET - 1

FINAL WELL REPORT 0 7 MAY 1986 ESSO AUSTRALIA LIMITED

LEATHERJACKET #1

PETROLEUM DIVISION

INDEX

- 1. INTRODUCTION
- 2. RIG SPECIFICATIONS
- 3. WELL INFORMATION, PROGRESS AND HISTORY
- 4. LITHOLOGY AND CORE-O-GRAPHS
- 5. EXTENDED SERVICE PACKAGE :
 - A. INTRODUCTION
 - B. EQUIPMENT
 - C. MONITORING EQUIPMENT
- 6. ESP PLOT DESCRIPTIONS AND CONCLUSIONS
- 7. B.H.T. ESTIMATION
- 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT
- 9. GAS ANALYSES :
 - A. COMPOSITION GRAPHICS
 - B. SIDEWALL CORES
- 10. SAMPLES COLLECTED
- 11. CORELAR DATA SHEETS :
 - A. BIT PECORDS
 - B, MUD DATA
 - C. R.F.T. DATA

COMPUTER DATA LISTINGS :

BIT RECORD AND INITIALIZATION DATA HYDRAULIC ANALYSES
DATA LIST A
DATA LIST B
DATA LIST C
DATA LIST D

APPENDED PLOTS :

DRILL DATA PLOT TEMPERATURE PLOT PRESSURE PLOT GEOPLOT GRAPHOLOG TRITIUM PLOT

INTRODUCTION

LEATHERJACKET #1 was drilled by ESSO AUSTRALIA LIMITED, in the Bass Strait, Australia.

Well co-ordinates were :

Latitude : 38°05' 16.875"S Longitude : 148°46' 41.825"E

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Extended Service Field Laboratory 2007.

LEATHERJACKET #1 was spudded on 23rd February 1986 and reached a total depth of 951 metres on 27th February 1986, a total drilling time of 5 days. The main objectives of the well were to

- 1. Test the hydrocarbon potential of a high side, fault dependent closure at the top of Latrobe group; and
- 2. To further evaluate the hydrocarbon potential of the Strzelecki group.

Elevations were:

Kelly bushings to mean sea level 21 metres Water depth 106 metres Kelly bushings to mean sea bed 127 metres

All depths used in this report and accompanying logs refer to depth below rotary kelly bushings (RKB).

Core Laboratories personnel involved in the logging of LEATHERJACKET #1 were as follows:

T. Wyeth - Unit Supervisor
B. Giftson - Logging Crew Chief
M. Smith - Well Logger

S. Williamson - Well Logger
R. Poltorak - Tritium Operator
J. Bagnall - Tritium Operator
K. Krozian - Tritium Operator

2. RIG SPECIFICATIONS

RIG INFORMATION SHEET

COMPANY ESSO AUSTRALIA LIMITED

LEATHERJACKET #1 WELL

NAME AND NUMBER

DERRICK, DRILL FLOOR

& SUBSTRUCTURE

DRAWWORKS

SWIVEL

ELEVATORS

KELLY & KELLY SPINNER

ROTARY SLIPS

MUD PUMPS

TWO OILWELL A 1700PT. RATED AT 1600HP

OILWELL A 37½ SINGLE ELECTRIC MOTOR

BYRON JACKSON MODEL GG CAPACITY 350 TON

FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE

PILL TANK HAVING A CAPAICTY OF 105 BBL.

DERRICK: LEE C MOORE, 152' HIGH X 40' AT BASE.

LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS

LOAD CAPICITY OF 1,000,000 1bs

OILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS

TWO MUD HOPPERS POWERED BY 2 MISSION 6 x 8" CENTRIFUGAL BY TWO

100HP ELECTRIC MOTORS.

SOUTH SEAS DRILLING COMPANY

DRILLCO 5½" x 50' HEX KELLY

SEMI-SUBMERSIBLE, TWIN HULLED

SOUTHERN CROSS (N° 107)

OILWELL A 500

VARCO DCS-L

OILWELL PC 425

DESANDER: 1 DEMCO 4 CONE 12" MODEL Nº 124

DESILTER: 1 DEMCO 4"-16H 16 CONE DEGASSER: 1 SWACO MODEL NO 36

SHALE SHAKERS: 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT

THREE SHAFFER L.W.S. 18 3/4" - 10,000 psi

TWO HYDRIL G.L. 18 3/4" - 5,000 psi

WELL CONTROL EQUIP.

FOUR VALV CON ACCUMULATORS

CHOKES: 2 C.I.W. ABJ H2 2 1/16" - 10,000 psi, 1 SWACO SUPER

CHOKE 2" - 10,000 psi

DC: 6½" x 2 13/16" (4" IF TJ)

8" x 2 13/16" (6 5/8" H90 TJ)

9 3/4" x 3" (7 5/8" H90 YJ)

HWDP: 5" 501b/ft GRADE G $(6\frac{1}{2}")$ 4\frac{1}{2}" IF TJ)

DP : 5" $19\frac{1}{2}$ 1b/ft GRADE G & E (6 3/8" 00 $4\frac{1}{2}$ " IF TJ)

HALLIBURTON HT-400 UNIT CEMENTING UNIT

MARTIN DECKER: MUD VOLUME TOTALIZER

6 CHANNEL DRILLING RECORDER

4 PRESSURE GAUGES

FLOWSHOW INDICATOR

2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH

1 EMD MD 13 DIESEL ENGINE RATED AT 1500 HP

DIRECTIONAL EQUIP.

MISCELLANEOUS (E.G. RISER, COMPENSATION SYSTEM, PIPE RACKER, DP EQUIPMENT)

RISER: REGAN FC-7 TELESCOPIC 21" ID. PLUS FLOW DIVERTOR.

CASING POWER TONGS: ECKEL 13 3/8" (20,000 ft 1bs), 20" (35,000 ft 1bs)

CMT BULK TANKS: 3 x 1570cu ft. RISER TENSIONER: 6 WESTERN GEAR, 50' STROKE, 80,000 lbs.

MUD BULK TANKS: 3 x 1570 cu ft. GUIDE LINE TENSIONERS: 4 WESTERN GEAR 16,000 lbs,

40' STROKE

OWNER

TYPE

CROWN BLOCK

TRAVELING BLOCK

ROTARY TABLE

MUD SYSTEM

BLOW OUT PREVENTORS

TUBULAR DRILLING

EQUIPMENT

MONITORING **EQUIPMENT**

POWER SUPPLY

3. WELL INFORMATION, PROGRESS AND HISTORY

Sheet No. 1

127 m

626 m

Shell, BHP, News Corp, TNT, Crusader, Mincorp

South Seas Drilling Company Southern Cross Semi-submersible

LONGITUDE (Y) 148°46'4 Gippsland Basin AREA Bass Strait STATE Victoria Australia

RKB to Water Level 21 metres 23rd February 1986 TOTAL DEPTH 27th February 1986

HOLE Depth Depth Bit Size No. of No. of Date Date Cased Logged SIZES From To (Inches) Bits Reamers From To 127 m 267 m 26 0 23/2/86 23/2/86 Y N 267 m 641 m 17½ 1 0 24/2/86 25/2/86 Y N 641 m 951 m 121/2 2 0 26/2/86 27/2/86 Y

DRILLING Depth From Depth To Weights Type **FLUIDS** 127 m 267 m 8.6 TO 8.8 Seawater 267 m 641 m 8.6 TO 9.0 Seawater-Gel-Drill Solids 641 m 951 m 10.5 TO 10.7 Seawater-Gel-Polymer

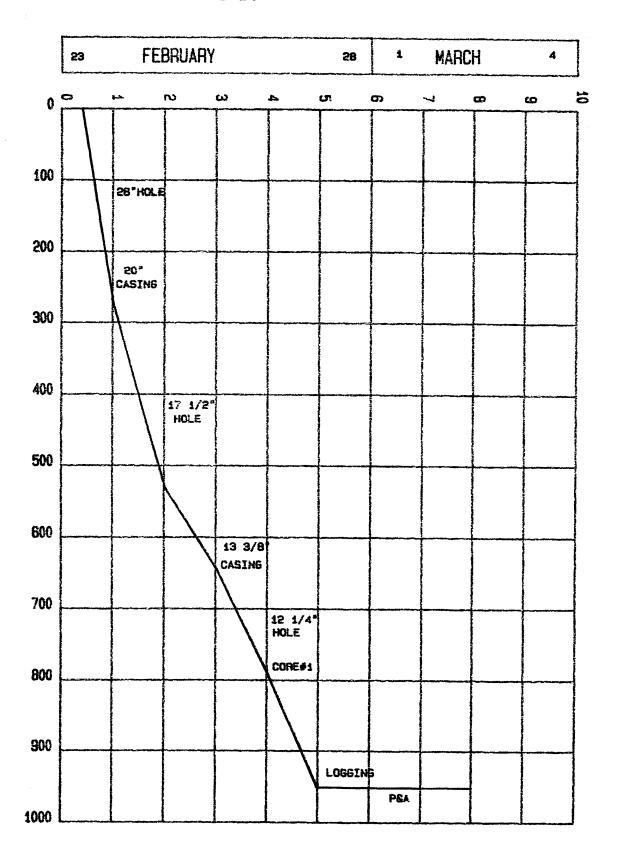
WIRELINE Depth From Depth To Hole Size Date Run Logs Run LOGGING

12岁" 952.5 m 625 m 28/2/86 12½" 953 m 626 m 28/2/86 DLT-LDT-CNTH-MSFL-GR-SP-CAL 12坛" 28/2/86 RFT's 1 to 33 12坛" 1/3/86 RFT's 34 to 46 124" 952 m 626 m 1/3/86 GR-CNTH-LDTD-DLTE-SP-CAL 12½" 952 m 626 m 1/3/86 WST 5 levels 12½" 1/3/86 CST 30 samples

RISER Depth Depth OD ID Weight Grade Thread Date Run Cement Stages Exces CASING & From To (Ins) (Ins) LINER 0 m 127 m 22 21 ---Riser---127 m 253.19 m 20 19.124 94 "G" X52 JV Box 23/2/86 1

K55

BUTT


25/2/86

1

13 3/8 12.615 54.5

PROGRESS LOG ESSO AUSTRALIA LTD.

LEATHERJACKET No.1

WELL HISTORY LEATHERJACKET #1

23RD F	ЕВ 1986	Spudded the well and drilled 26" hole from 127 m to 267 m. Ran and cemented 20" casing; ran riser and BOP's.
24TH F	ЕВ 1986	Ran riser and BOP's; tested casing, R.I.H. with NBl, tagged cement at 247.8 m. Drilled out cement and shoe; drilled $17\frac{1}{2}$ " hole to 528 m.
25TH F	EB 1986	Drilled ahead to 641 m; wiper trip to shoe; W.T.G. 5-18-2 units. P.O.O.H. Ran 13 3/8" casing and cemented shoe at 626 m. Ran seal assembly.
26TH F	ЕВ 1986	Tested BOP's, R.I.H., NB3 (HTC J22) and drilled out cement shoe and formation to 647 m. Conducted phase II P.I.T. (15.2 ppg E.M.W., leak off.) Drilled 12½" hole to 787 m. P.O.O.H. to cut core #1.
27TH F	ЕВ 1986	Cut core #1 from 787 m to 796.1 m, recovered 7.64 m (83.5%). Re-ran bit 3 and reamed core rat hole to 796 m. Drilled ahead to 951 m (Total depth). Ran wiper trip to shoe; wiper trip gas 2-3-2 units. P.O.O.H. to run electric logs.
28TH F	ев 1986	Logged the hole.
1ST M	AR 1986	Logged the hole.
2ND M	AR 1986	Plugged and abandoned.

4. LITHOLOGY AND CORE-O-GRAPHS

LITHOLOGY SUMMARY

The main objectives of Leatherjacket #1 were:

- To test the hydrocarbon potential of a top of fault-dependent closure, on the high side of a NE-SW trending reversed normal fault; and
- To further evaluate the hydrocarbon potential of the Strzelecki Group.

(Note: All formation tops are open to speculation and are based entirely upon examination of cuttings. All depths from RKB.)

Gippsland Limestone (280 metres - 745 metres)

280 metres - 360 metres Calcarenite, skeletal and very fossiliferous, but decreasing with depth.

360 metres - 645 metres

Interbedded Calcarenite and
Calcisiltite; fossiliferous,
associated traces of pyrite and
glauconite.

645 metres - 655 metres Predominantly Calcisiltite interbedded with Sandstone, which is fine-grained and glauconitic.

655 metres - 710 metres Predominantly Calcisiltite grading in part to a marl.

710 metres - 745 metres

Predominantly Calcisiltite with minor Sandstone interbedding (to 30%), which is very fine grained, calcareous, glauconitic and moderately fossififerous.

<u>Latrobe Group</u> (745 metres - 830 metres) TOP OF THE LATROBE

745 metres - 770 metres

Sandstone (fine grained)
interbedded with Calcisiltite and
minor Coal. The Sandstone was grey
to iron-stained, glauconitic with
silica cement. No shows.

770 metres - 836 metres COARSE CLASTICS

Loose, coarse (to very coarse) grained Sandstones with occasional interbeds of Siltstones and minor Coals. Common oil shows; fluorescence. Increasing Siltstone from 830-836 metres.

836 metres - 840 metres

Basal Conglomerate. Sandstone with minor Siltstone interbeds and basal, pebbly conglomerate which is pale green and chloritic.

Strzelecki Group (840 metres - 951 metres)

840 metres - 865 metres

Litharenite with major Siltstone interbedding and minor Coal. The Litharenite is pale green while the Siltstone is greyish-red.

865 metres - 910 metres

Litharenite - pale green or white coloured; occasionally variegated, buff, orange or grey-coloured, hard, abrasive, angular and coarse to very coarse grained. No shows.

910 metres - 951 metres T.D.

Litharenite continuing with minor Sandstone interbedding; the Sandstone is predominantly loose rounded quartz, white to translucent and poorly sorted; very fine to very coarse grained.

Indications of Hydrocarbons

Principally, two intervals are prominent.

770 metres - 792 metres

5-25% yellow-white fluorescence, no instant cut but with a slow streaming crush cut, a clear residue with faint yellow-white fluorescence, no oil staining (Sandstone); 80-100% (as above) between 790 metres and 792 metres. Note that core #1 was cut in the interval 787 metres - 796 metres (Sandstone).

Maximum Gas readings in interval occurred with 205 units being recorded at 773 metres and a second peak of 70 units observed at 787 metres. Both peaks contained low ratios and amounts of gases hydrocarbon determined a higher likelihood of biodegraded oil encountered here. The background gas level relatively high in the interval averaging about 35 units.

800 metres - 840 metres

Percentages of fluorescence observed from 800 metres -810 metres vary from between 5 and 10%. From 810 metres - 820 metres sample fluorescence lies at 40%.

From 820 - 840 metres the evident fluorescence tapers from 20% at 830 metres to about 5% at 840 metres. The oil show is characterised by a bright, pale-yellow fluorescence, brown oil-staining and on instant blue-white crush cut (Sandstone). Excellent visual porosity. The Background Gas in the interval is quite high with an average reading of 80 units. A large and broad peak reaches 105 units 820 metres. Again, heavier hydrocarbon gases are depleted with low C_2 - C_3 readings to 60 ppm.

CORE-O-GRAPH

CLIENT:

WELL:

CORE NO .:

INTERVAL CORED FROM

CUT: 8.1

FORMATION:

BIT MAKE & TYPE:

CORE BARREL SIZE:

BIT SIZE: 9.88

ESSO AUSTRALIA LTD.

LEATHERJACKET NO.1

1

787.0m. TO 798.1m.

RECOVERED: 7.8m. (83.8%)

LATROBE GROUP

CHRIS RC478

8.00in.x 4.75in.x 10.60m.

MUD WT.: 10.7

	ROP	FT/HR	LITH		WOB		AP	М	HA	s
	100	1 0		0		30	50	150	0	
7 <u>8</u> 9		>								
3 791	}									
793		>								
795 -			X		}					
797										
799								erformer die Aber-spiele des Belles est des Ausse		
-8-								навадейнуйнуйндөгү .a-чет-пайланда		

5. EXTENDED SERVICE PACKAGE

EXTENDED SERVICE INTRODUCTION

The Core Laboratories Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling.

Presented graphically on Core Laboratories F.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer.

Core Laboratories E.S. logs include the following :

E.S. PRESSURE LOG

Information plotted on this log includes formation none pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is the conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, R.F.T.'s, and formation breakdown tests.

CORE LAB DRILL DATA PLOT

This plot, which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plats are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected "d"exponent, which is presented on a logarithmic scale. The "d" exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of hit diameter.

The modified "dc" exponent was proposed by finem and McClendon to compensate for increases in mud weight. This involves multiplying the standard "d" exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the "dc to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for "dc" is therefore:

Deviations from the normal "dc"s trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the "dc"s plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the "dc"s plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air-dried shale samples in an accurately calibrated liquid density column.

An interpreted lithology column is also included on the log, as is a plot of mud density in , to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included.

E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are : rate of penetration, corrected "d" exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure.

A Geo-plot is included in this report, at a scale of 1:5000.

E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS

Flowline temperature and end—to—end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over—pressure takes secondary role to the E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and Chemicals to the active mud system. Since the goal of the end—to—end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), may be made using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling, both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration, weight-on-bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 metres.

GAS COMPOSITION ANALYSIS

For each significant gas show the chromatograph results are analysed using two techniques :-

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report,

GRAPHOLOG

This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data.

MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak-off test data, R.F.T. and well test data where appropriate.

CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 2007 monitoring equipment includes the following:

A. MUD LOGGING

- 1. T.H.M. total gas detector and recorder.
- 2. F.I.D. (Flame Ionization Detector) chromatograph and recorder.
- 3. Cuttings gas detector.
- 4. Gas trap and support equipment for the above.
- 5. Pit volume totalizer and recorder.
- 6. Digital depth counter.
- 7. Two integrated pump stroke counters.
- 3. Ultra-violet fluoroscope.
- 9. Binocular microscope.
- 10. Calcimeter.
- 11. Steam-still gas analyzer.

B. EXTENDED SERVICE PACKAGE

- 1. HEWLETT PACKARD 2825B desktop computer.
- 2. HEWLETT PACKARD 9872B plotter
- 3. MEWLETT PACKARD 2631A printer.
- 4. Two MEWLETT PACKARD 2621P visual display units, (one located in the client's office).
- 5. Hookload/weight-on-hit transducer and recorder.
- 6. Rotary speed sensor and recorder.
- 7. Stand-pipe pump pressure transducer and recorder.
- 8. Mud flow out sensor and recorder.
- 9. Mud temperature sensors and recorders (in and out).
- 10. Mud conductivity sensors and recorders (in and out).
- 11. Mud density sensors (in and out) and recorders.
- 12. Rotary torque sensor and recorder.
- 13. Shale density apparatus.
- 14. Hydrogen sulphide gas detector.
- 15. Carbon dioxide gas detector.
- 16. DATALOGGER computer, monitor and impact printer.
- 17. DIGITAL remote paging display (located in the client's office).
- 18. Casing pressure transducer and recorder.
- All the above sensors and gas detectors have displays on the DATALOGGER monitors except the Cuttings gas detector and steam-still.

CORE LABORATORIES MONITORING EQUIPMENT

DEPTH

Depth registered every 0.1 metres and rate of penetration calculated each metre (or every 0.2m while coring); ROP displayed on the computer monitor and chart.

WEIGHT-ON-BIT

A DeLaval 0-5000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Datalogger, and displayed (with hookload) on the computer monitor and recorder chart.

ROTARY SPEED

This is a proximity limit switch which pulses once for every revolution of the rotary drive shaft. The value is displayed on the computer monitor and a recorder chart.

PUMP PRESSURE

This is a Delaval 0-5000 psi transducer mounted on the stand-pipe manifold. The pressure is displayed on the computer monitor and recorder chart.

CASING PRESSURE

This is a DeLaval 0-5000 psi transducer mounted on the choke manifold. The signal is displayed on the computer monitor and on a recorder chart.

PIT VOLUME

Four individual pits are displayed on the monitor. The pit volume total is calculated by the Datalogger and displayed on the monitor. The sensors are vertical floats triggering magnetic switches accurate to +/-

In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

PUMP STROKES

These are the limit switch type, counting individual strokes. The pump rates per minute are displayed on the monitor.

ROTARY TORQUE

An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on the computer monitor and recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer, and an electronics module calibrated $0-100\,$ deg.C. Temperature in and out is displayed on the monitor and recorder.

MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor contains two toroidally-wound coils and a thermistor enclosed in a donut-shaped housing. Current is induced into the mud by the primary coil and is sampled by the secondary coil, the amplitude of the current being directly proportional to the conductivity of the mud.

MUD DENSITY

Two density sensors (in and out) located in the possum helly and in the pit room, operate on a system of differential pressure. This function is displayed on both chart and monitor.

All the sensors are 12 to 36V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab performed other duties...

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Samples were washed, dried, sacked and boxed where necessary. Geochemical samples were canned and boxed.

GAS

- 1.Flame Ionization Total Hydrocarbon gas detector.

 The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph,
 The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3.Cuttings gas detector (Wheatstone Bridge type).
 An auxiliary system for total gas detection.
- 4.Hydrogen Sulphide detector.

 Two sensors are located at the shale-shakers and in the pit room, linked to a TAC 404B H2S monitor, to detect H2S emanating from the drilling fluid.
- 5.Carbon Dioxide detector.

 An Infrarred gas analyzer determines the percentage of CO2 present in gas samples broken out of the mud by the gas trap.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density liquid column.

6. ESP PLOT DISCUSSIONS AND CONCLUSIONS

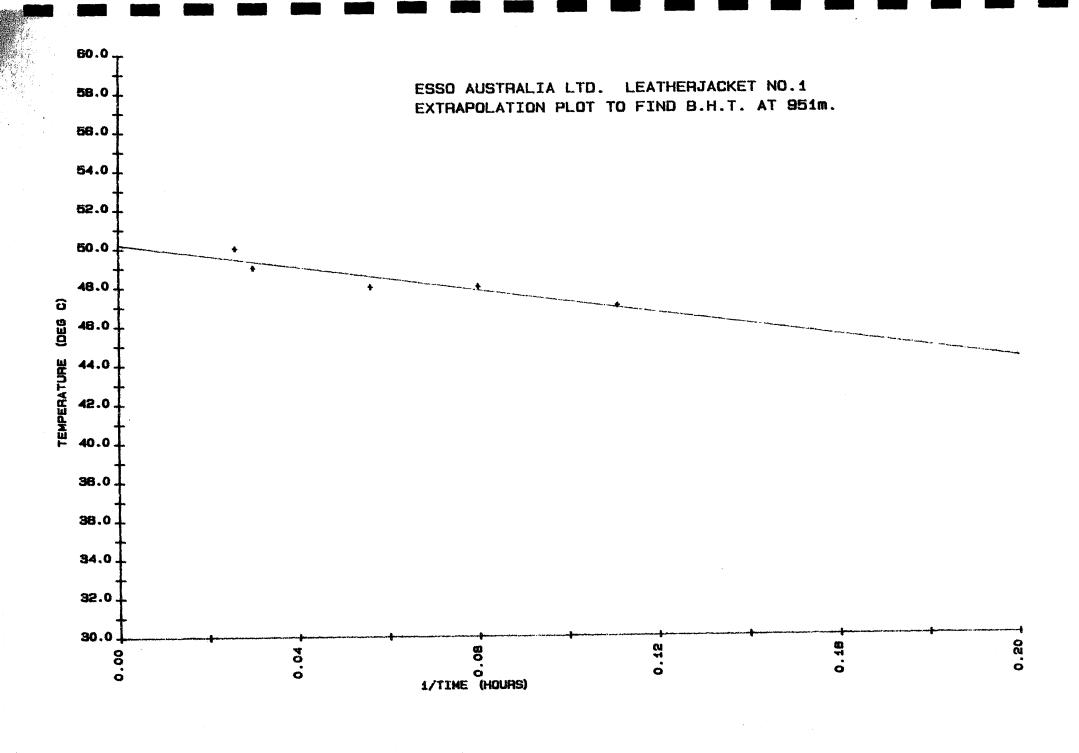
ESP PLOT DESCRIPTIONS AND CONCLUSIONS (with particular reference to Pore Pressure)

A prime aim during the drilling of Leatherjacket #1 was utilization of data collected by Core Laboratories DL2007 to provide an estimation of formation pressures. This is described below.

The main pressure indicators that were used while drilling the well were those of rates of penetration, gas levels, 'd' c exponent, mud weight, flowline temperature and lithology.

The "Drill Data Plot" (see attached plots inside back cover), shows the rate of penetration, corrected 'd' exponent and mud density plotted against lithology. This plot indicates a normal pressure down to 550 metres, increasing with depth to 8.7 ppg at 951 metres. Any irregularities in rate of penetration, corrected 'd' exponent and gas levels were due to lithology changes. No connection gas was detected. Shale densities were not performed during the drilling of the well as no large beds of shale were encountered.

The "Temperature Plot" displays the flowline temperature in and out and their differential plotted against depth. The temperature plot of Leatherjacket #1 shows a temperature gradient of $4.7\,^{\circ}\text{C}/100$ m. It shows a normal trend with depth, only differing from the expected gradient at points where the mud system was being treated to maintain specifications. The bottom hole temperature was extrapolated to give $50.2\,^{\circ}\text{C}$ at 951 metres from wireline logging data, using the Horner method.


The "Pressure Plot" is a summary of the pressures found in the drilling of Leatherjacket #1. On this plot, estimated pore pressure is plotted along with mud weight and the fracture gradient in pounds per gallon. The pore pressure of the well is drawn from pressure observations made while drilling and information from R.F.T. pretests. The pore pressure profile of the well is set out below:

Depth Interval	Pore Pressure			
RKB-TVD (M)	(PPG)			
127 - 550	8.4			
550 - 620	8.5			
620 - 700	8.6			
700 - 951	8.7			

As shown by the mud density curve the well was drilled with an overbalance of 0.5 to 2.0 ppg throughout.

It was not possible to derive a true fracture gradient as insufficient leak-off data is available for this basin. A P.I.T. was conducted on Leatherjacket #1, at the 13 3/8" casing shoe (626 metres), yielding 15.2 ppg EMW with leak off. The fracture gradient curve is based on the U.S. Gulf Coast curve and offset to match local data.

7. B.H.T. ESTIMATION

CORE LAB

STRAIGHT LINE LEAST SQUARES BEST FIT

1/TIME ON A LINEAR SCALE AGAINST TEMP ON A LINEAR SCALE

ENTERED DATA:

TEMP	1/TIME	T #	SET	DATA SET
47.00	0.111	1		
48.00	0.080	ine.		
48.110	0,056	3		
49,00	0.030	4		
50.00	0.026	E;		

COEFFICIENT & CONSTANT:

Y = M.X + c where M = -2.9618236E 01 and C = 5.0194865E 01

INTERPOLATED DATA:

1/TIME TEMP 0.000 50.10 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT

OVERBURDEN GRADIENT

Due to the lack of wireline data the overburden gradient and plot could not be determined for Leatherjacket #1.

9. GAS ANALYSES

SIDEWALL CORE GAS ANALYSIS DATA SHEET

SHEET NO. 1

COMPANY Esso Australia Limited WELL Leatherjacket #1

No.	DEPTH (M)	C1	C2	C3	C4	C5	C6 COMMENTS
		PPM	PPM	PPM	PPM	PPM	PPM
11	820.7	57	2	1.2	Tr	-	-
12	818.6	63	2	1.4	Tr	-	-
13	813.1	23	1.5	3.5	3.6	3.5	1.4
18	770.5	86	7.9	3.5	2.2	Tr	-
19	765.0	107	7.0	0.5	Tr	2.7	Tr
20	761.0	19	3.4	0.5	Tr	3.9	0.6
17	775.9	Tr	-	-	-		-

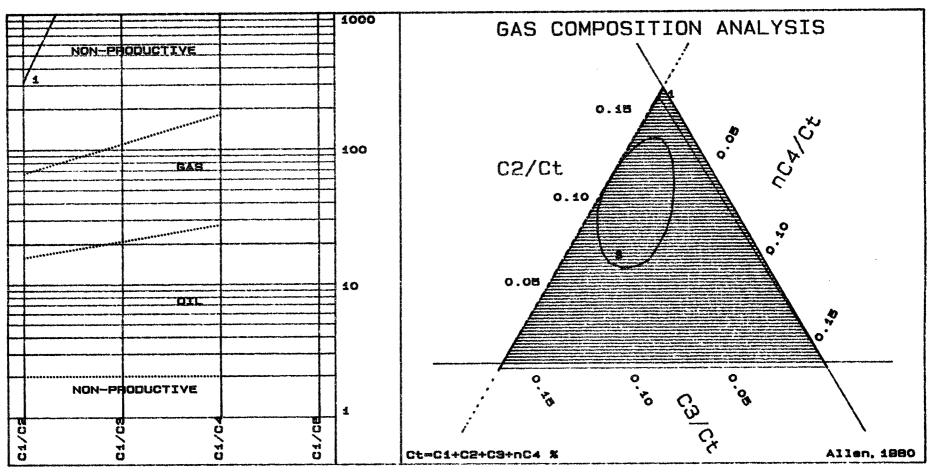
GAS COMPOSITION ANALYSIS

The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques bowever are empirical and by no means definitive.

LOG PLOT

- The ratios of C1/C2, C1/C3, C1/C4, C1/C5, and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show. The plots can be evaluated by the following criteria :
- 1. Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- 2. A ratio of C1/C2 between approximately 2 and 75 indicates oil and between 15 and 65, gas. If the C1/C2 ratio is below about 2, or above about 65, the zone is probably pon-productive.
 - The actual values of the gas/oil/water limits will vary from area to area.
- 3. If the C1/C2 ratio is low in the bil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5, if oil is used in the mud) is lower than the preceding ratio, the zone is probably non-productive.
- 5. The ratios may not be definitive for low permeability zenes; however, steep ratio plots may indicate a tight zone.

TRIANGULATION PLOT


- The triangulation diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to C4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.
- A large triangle plot represents dry gas or low GOR oil, while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: LEATHERJACKET No.1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 0.45 100 C2/Ct 0.05 10 UIL NON-PRODUCTIVE Ct=C1+C2+C9+nC4 X Allen, 1980

NO.DEPTH C1 CS C3 1C4 nC4 CB CO X C1/C2 C1/C9 C1/C4 C1/C5 10400 38000 1 773 4.880 0.018 0.000 0.000 0.000 0.000 0.000 4.898 **588** CONCLUSION: NON PRODUCTIVE GAS ZONE

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: LEATHERJACKET No.1 1000 GAS COMPOSITION ANALYSIS NON-PRODUCTIVE 100 C2/Ct 0.10 0.05 10 NON-PRODUCTIVE Ct-C1+C2+C3+nC4 % Allen, 1880 NO.DEPTH C5 104 nC4 CB X C1/C4 C1/C5 CB C1/C2 0.005 0.000 0.000 0.000 0.000 1.104 211 8884 38807 CONCLUSION: NON PRODUCTIVE GAS ZONE

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: LEATHERJACKET No.1

CB X C1/C2 C1/C3 C1/C4 C1/C5 1C4 nC4 CS NO . DEPTH C1 CS 10019 31727 0.000 0.000 0.000 0.000 0.000 1.810 317 0.008 CONCLUSION: NON PRODUCTIVE GAS ZONE

10. SAMPLES COLLECTED

SAMPLES COLLECTED ON LEATHERJACKET #1

Oven Dried Cuttings:

3 sets of 2 boxes each over the interval 280-951 m

1 set to Esso

1 set to B.M.R.

1 set to V.D.I.T.R.

Air Dried Cuttings:

1 set over the interval 270-951 m

3. Geochemical Cans:

1 set over the interval 270-951 m

4. Mud Samples:

1 set over the interval 787-940 m

5. R.F.T. Samples:

8 containers of fluid samples

6. Core #1:

8 sections of plastic sleeve core over the interval 787-794.64 m

11. CORELAB DATA SHEETS

(Actional Control of C

BIT RECORD

COMPANY Esso Australia Limited WELL Leatherjacket #1

Sheet No. 1

Ser No.	Bit No.	Make	Type	IADC Code	Size (Inches)		Depth In Metres	Hole Made (m)	Drill Time	On Bottom Hours Turns K	Condition T B G	Remarks
LW 720	RR1	нтс	OSC 3AJ	111	26	20/20/20	127	140	4 3/4	3.62 21678	1-1-1	Pulled at 20" casing point.
117 SR	NB1	HTC	R1	111	17½	20/20/20	267	374	14 3/4	10.45 72699	2-1-1	Pulled at 13 3/8" casing point.
788 HS	NB2	HTC	Jl	116	124	16/16/16	641	122	4	2.66 17674	3-4-I	Pulled at formation change.
549 PL	NB3	HTC	J22	517	124	16/16/16	763	24	1	0.90 3767	1-1-1	Pulled to cut Core #1.
1450678	CB1	CHRIS	RC476	4	9 7/8	Equivalen 14/14/14	t 787	9	1 ₂	0.20 819	20% worn	Pulled to retrieve core.
549PL	RR3	HTC	J22	517	124	16/16/16	796	155	8	6.65 28931	5-4-1/8	Pulled at Total Depth.

BIT RECORD

COMPANY Esso Australia Limited WELL Leatherjacket #1

Sheet No. 1

Ser No.	Bit No.	Make	Type	IADC Code	Size (Inches)	Cost A\$	Jets	Depth In (m)	Depth Out (m)	Hole Made m	Drill Time	On Bot Hours I	ttom TurnsK	Avg ROP	Avg Cost/m	Condition T B G
LW 720	RR1	HTC	OSC 3AJ	111	26	0	20/20/20	127	267	140	4 3/4	3.62 2	21678	38.7	154.43	1-1-I
117 SR	NB1	нтс	R1	111	17 ¹ 5	4978	20/20/20	267	641	374	14 3/4	10.45 7	72699	35.8	144.65	2-1-1
788 HS	NB2	нтс	J1	116	12½	2566	16/16/16	641	763	122	4	2.66 1	17674	45.9	204.43	3-4-I
549 PL	NB3	HTC	J22	517	124	8520	16/16/16	763	787	24	1	0.90	3767	26.7	1054.97	1-1-1
1450678	CB1	CHRIS	RC476	4	9 7/8	17600	Equivalent 14/14/14	787	796	9	l _ž	0.20	819	45.0	3538.09	20% wor
549 PL	RR3	HTC	J22	517	121/4	0	16/16/16	796	951	155	8	6.65 2	28931	25.3	213.20	5-4-1/8

MUD INFORMATION SHEETS

DEPTH Metres

MUD WEIGHT Pounds per pallon

FUNNEL VISCOSITY A.P. I. seconds

PLASTIC VISCOSITY. . . Centipoise

YTELD POINT. Pounds/100 square feet

GEL : INITIAL/10 min . Pounds/100 square Feet

FILTRATE A.P.I. c.c.

CAKE THICKNESS . . . Thirty-seconds of an inch

SALINITY : Ca/Cl . . . ppm

SOLIDS/SAND/OIL. . . Percentage

MUD INFORMATION SHEET

COMPANY Esso Australia Limited WELL Leatherjacket #1

Sheet No. 1

DEPTH DATE TIME WEIGHT FUNNEL VISCOSITY PV/YP N/K GEL: INITIAL/10 MIN PH FILTRATE:API/API HTHP CAKE SALINITY (PPM) SAND SOLIDS OIL TRITIUM (DPM)	180 23/2/86 03:00 8.8 100+ 3/47 - 43/58 10.0	480 24/2/86 22:00 9.0 31 3/15 0.22/4.50 10/12 9.5 - - - -	542 25/2/86 01:00 9.0+ 32 4/15 0.28/3.41 11/13 9.5 - - -	705 26/2/86 15:00 10.7 38 12/20 0.46/1.83 23/32 10.5 14/27 2 17,000 0.5 12 - 3413	951 27/2/86 20:00 10.5 44 11/20 0.44/2.02 18/34 10.5 10/20 1 17,000 Tr 13 - 3207	PIT 28/2/86 13:00 10.5 41 11/20 0.44/2.02 17/31 10.2 10/20 1 17,000 Tr 13 -
REMARKS:	Spud & Drill 26" hole	Drill 17 ³	½" hole	Drill 12½" hole	Cut Core #1 Drill 12½" to T.D.	Logging

DEPTH	PIT
DATE	29/2/86
TIME	13:00
WEIGHT	10.5
FUNNEL VISCOSITY	40
PV/YP	11/20
N/K	0.44/2.02
GEL: INITIAL/10 MIN	17/30
pН	9.8
FILTRATE: API/API HTHP	10/20
CAKE	1
SALINITY (PPM)	17,000
SAND	Tr
SOLIDS	13
OIL	-
TRITIUM (DPM)	•••
REMARKS:	Logging

R.F.T. DATA

R.F.T. SAMPLING DATA SHEET

WELL Leatherjacket #1				Sheet No.
RUN No.	1	2	3	
SEAT No.	16	25	46	
CHAMBER CAPACITY (L)	45.4	45.4	45.4	
DEPTH (metres)	788.5	812.8	765	
RECOVERY VOLUMES				
GAS (Cu Ft)	0.14	_	7.7	
OIL (cc)	500	-	26,000	
WATER/FILTRATE (cc)	8,000	12,000	17,000	
OTHER (cc) Scum	-	250	_	
SURFACE PRESSURE (PSI)	0.0	0.0	150	
GAS COMPOSITION				
C1 (PPM)	-	_	143,503	
C2 (PPM)		-	2,692	
C3 (PPM)	-	-	356	
C4 (PPM)	_	-	1,011	
C5 (PPM)	-	-	725	
C6 (PPM)	-	-	79	
CO2 (%)	Ni1	Ni1	Tr	
H2S (PPM)	Nil	Nil	Tr	
OIL PROPERTIES				
DENSITY	26.5	15.0	24.4	
($^{\circ}$ API at 15.6 $^{\circ}$ C)				
COLOUR	Brn	Dk Brn	Rust Brn	
FLUORESCENCE	Yel-white	Pale	Pale	
		yel white	yel white	
POUR POINT (°C)	10	<10	<10	
WATER PROPERTIES				
RESISTIVITY (Ω m) at 20°C	1.30	0.369	0.313	
Cl (frm resis) (PPM)	4,700	18,000	22,000	
Cl (frm titrat) (PPM)	4,100	14,500	17,000	
TRITIUM (DPM)	368	1,786	2,125	
pH	6.5	7.0	7.5	
TRITIUM (DPM)	2,987	2,995	3,183	
DRILLING	_,_,	,		

COMMENTS

PORE PRESSURE DATA SHEET

COMPANY : ESSO AUSTRALIA LTD.

DATA FROM RET'S

WELL

: LEATHERJACKET No.1

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESS	PORE PRESS GRADIENT E.M.W.(MSL)	PORE PRESS GRADIENT
METRES	TVD. METRES	PSIA	PPG	PSI/M
758.0	737.0	1091.26	8,679	1.481
764.5	743.5	1101.65	8.685	1.482
765.5	744.5	1102,70	8.682	1.481
789.8	768.8	1135.59	8,658	1.477
793.7	772.7	1141.15	8,657	1,477
804.0	783.0	1156.20	8.655	1.477
846.8	825.8	1219.16	8.654	1.476

APPENDICES

COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the RILL program and is stored on a tape at 10, 5, 1, or 0.2m intervals. This data is then available at a later date for use in other programs (for example KICK, SURGE, COST, OPTRIT, and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either letailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale he operator desires.

the following data lists have been made for this well:

- (a). Bit record and bit initialization data
- (b). Hydraulic analyses
- (c). Data list A
- (d). Data list B
- (e). Data list C
- (f). Data list D

COMPLITER PLOTS

sing the REPORT program, hte following plots have been drawn for this well:

GEOPLOT - 1:5000 SCALE - 2m averages

Since all the data is stored on tape, further data lists or plots are available at any time on request.

(a). BIT RECORD AND BIT INITIALIZATION DATA

BIT SIZE Inches

BIT COST Australian dollars

JET SIZE Thirty-seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME, , , , Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

BIT	IADC						DEPTH	DEPTH	BIT	TOTAL		TRIP		TOTAL	CONDITION
No.	CODE	MAKE	& TYPE	SIZE	COST	NOZZLES	IN	OUT	RUN	HOURS	AROP	TIME	CCOST	TURNS	TBG
1	111	HTC	OSC3AJ+26*HO	26.000	0.00	20 20 20	127.0	267.0	140.0	3.62	38.7	2.3	154.43	21678	1 1 0.801
1	111	HTC	R1	17.500	4978.00	20 20 20	267.0	641.0	374.0	10.45	35.8	3.0	144,65	726 99	2 1 0.000
2	116	HTC	J1	12.250	2566.00	16 16 16	641.0	763.0	122.0	2.66	45.9	3.5	205,43	17674	3 4 0.000
3	517	HTC	J22	12.250	8520.00	16 16 16	763.0	787.0	24.0	0.90	26.7	3.7	1054.97	3767	1 1 0.000
3	4	CHR]	S RC476	9.875	17600.00	14 14 14	787.0	796.0	9.0	0.20	45.0	3.7	3538.09	819	0 2 0.000
3	517	HTC	155	12.250	0.00	16 16 16	796.0	951.0	155.9	6.65	25.3	3.8	213.20	28931	5 4 0.125

BIT NUMBER: 1 IADC CODE 111	HTC OSC36	4J+26"H 0	
STARTING DEPTH, TVD	127.0 0.00 2.3 26.000	12 7.0 3652.0 0	
NOZZLES	20 19.03	2 0 9.25 0	2 0 3.062
DRILL COLLAR LENGTH, OD, ID DRILL PIPE OD, ID	93.03	8.00 0 5.00 0	2.81 3 4.276
CASING DEPTH, ID	0.00 127.00	0,00 0 21,0 00	
PUMP VOLUMES 1 AND 2	0.119	0,119	
NORMAL PORE PRESSURE	8.4 0.00		
STRESS RATIO MODIFIER	$ \begin{array}{c} 0 & 1.4 \\ 1.0 & 0 \end{array} $		
CUTTINGS DIAMETER, DENSITY	4 , ()	2.00	
FINISHING DEPTH	267.0		
CUMULATIVE HOURS, TURNS BIT CONDITION OUT	3.6 T.1	216 78 B 1	G 0.000
BIT NUMBER: 1 LADC CODE 111	HTC R1		
STARTING DEPTH, TVD	267. 0 4978.00	26 7.0 3652.0 0	
TRIP TIMÉ	3.0 12,500		
NOZZLES	20 21. 91	20 9 750	20 3.06 2
DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID	93.03 33.38	8.00 0 5.0 00	2.813 3.125
DRILL PIPE OD, ID	253.19	5.00 0 12.12 4	4.276
RISER LENGTH, ID	127.00 0.119	21.000 0.119	
PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE	1.20 8.4		
OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER	$0.00 \\ 0.14$		
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10.0 3.0	2.10	
FINISHING DEPTH	641.0 10.5	72699	
BIT CONDITION OUT	T 2	Ft 1	G 0.000

BIT NUMBER: 2 IADC CODE 116	HTC J1		
BIT NUMBER: 2 IADC CODE 116	nie si		
STARTING DEPTH, TVD	641.0	641.0	
BIT COST, RIG COST/HOUR	2566.00 3.5	3652.00	
BIT DIAMETER	12.250		
NOZZLES	16	16	4.6
DRILL COLLAR LENGTH, OD, ID	155.62	8.000	2.813
HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID	83.38	5.000 5.000	3,125 4,276
CASING DEPTH, ID	626.00	12.615	,
RISER LENGTH, ID	127.00	21.000	
PUMP VOLUMES 1 AND 2	0.139 1.20	0.119	
PORE PRESSURE CALC EXPONENT	8.4		
OVERBURDEN GRADIENT MODIFIER	0.00		
STRESS RATIO MODIFIER	0.14		
"d" EXPONENT CORRECTION FACTOR CUTTINGS DIAMETER, DENSITY	10.0 2.5	2.10	
Colletto Diminity Describility	E. 1 Val	2. 1 V	
	7 63.0		
FINISHING DEPTH	763.0 2.7	17674	
BIT CONDITION OUT	т 3	B 4	G 0.000
BIT NUMBER: 3 IADC CODE 517	HLC 185		
		263.0	
BIT NUMBER: 3 IADC CODE 517 STARTING DEPTH, TVD BIT COST, RIG COST/HOUR	HTC J22 763.0 8520.00	743.0 3652.00	
STARTING DEPTH, TVD	763.0 852 0 .00 3.7		
STARTING DEPTH, TVD	763.0 8520.00 3.7 12.250	3652.00	1.6
STARTING DEPTH, TVD	763.0 8520.00 3.7 12.250		16 0.813
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID	763.0 8520.00 3.7 12.250	3652.00 16 8.000 5.000	2.81 3 3.1 25
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID	763.0 8520.00 3.7 12.250 16 155.62 83.38	3652.00 16 8.000 5.000 5.000	2.813
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID	763,0 8520,00 3,7 12,250 16 155,62 83,38	3652.00 16 8.000 5.000 5.000	2.81 3 3.1 25
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID	763.0 8520.00 3.7 12.250 16 155.62 83.38	3652.00 16 8.000 5.000 5.000	2.81 3 3.1 25
STARTING DEPTH, TVD	763.0 8520.00 3.7 12.250 16 155.62 83.38 626.00 127.00 0.119 1.20	3652.00 16 8.000 5.000 5.000 12.615 21.000	2.81 3 3.1 25
STARTING DEPTH, TVD	763.0 8520.00 3.7 12.250 16 155.62 83.38 626.30 127.00 0.119 1.20 8.4	3652.00 16 8.000 5.000 5.000 12.615 21.000	2.81 3 3.1 25
STARTING DEPTH, TVD	763.0 8520.00 3.7 12.250 16 155.62 83.38 626.00 127.00 0.119 1.20	3652.00 16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR	763,0 8520,00 3,7 12,250 16 155,62 83,38 626,30 127,00 0,119 1,20 8,4 0,00 0,14 10.0	3652.00 16 8.000 5.000 12.615 21.000 0.119	2.813 3.125
STARTING DEPTH, TVD BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER	763,0 8520,00 3,7 12,250 16 155,62 83,38 626,30 127,00 0,119 1,20 8,4 0,00 0,14	3652.00 16 8.000 5.000 5.000 12.615 21.000	2.813 3.125
STARTING DEPTH, TVD. BIT COST, RIG COST/HOUR. TRIP TIME. BIT DIAMETER. NOZZLES. DRILL COLLAR LENGTH, OD, ID. HW DRILL PIPE LENGTH, OD, ID. CASING DEPTH, ID. RISER LENGTH, ID. RISER LENGTH, ID. PORE PRESSURE CALC EXPONENT. NORMAL PORE PRESSURE. OVERBURDEN GRADIENT MODIFIER. STRESS RATIO MODIFIER. "d" EXPONENT CORRECTION FACTOR. CUTTINGS DIAMETER, DENSITY.	763.0 8520.00 3.7 12.250 16 155.62 83.38 626.30 127.00 0.119 1.20 8.4 0.00 0.14 10.0	3652.00 16 8.000 5.000 12.615 21.000 0.119	2.813 3.125
STARTING DEPTH, TVD. BIT COST, RIG COST/HOUR. TRIP TIME. BIT DIAMETER. NOZZLES. DRILL COLLAR LENGTH, OD, ID. HW DRILL PIPE LENGTH, OD, ID. CASING DEPTH, ID. RISER LENGTH, ID. RISER LENGTH, ID. PORE PRESSURE CALC EXPONENT. NORMAL PORE PRESSURE. OVERBURDEN GRADIENT MODIFIER. "d" EXPONENT CORRECTION FACTOR. CUTTINGS DIAMETER, DENSITY.	763.0 8520.00 3.7 12.250 16 155.62 83.38 626.00 127.00 0.119 1.20 8.4 0.00 0.14 10.0 2.0	3652.00 16 8.000 5.000 12.615 21.000 9.119	2.813 3.125
STARTING DEPTH, TVD. BIT COST, RIG COST/HOUR. TRIP TIME. BIT DIAMETER. NOZZLES. DRILL COLLAR LENGTH, OD, ID. HW DRILL PIPE LENGTH, OD, ID. CASING DEPTH, ID. RISER LENGTH, ID. RISER LENGTH, ID. PORE PRESSURE CALC EXPONENT. NORMAL PORE PRESSURE. OVERBURDEN GRADIENT MODIFIER. STRESS RATIO MODIFIER. "d" EXPONENT CORRECTION FACTOR. CUTTINGS DIAMETER, DENSITY.	763.0 8520.00 3.7 12.250 16 155.62 83.38 626.30 127.00 0.119 1.20 8.4 0.00 0.14 10.0	3652.00 16 8.000 5.000 12.615 21.000 0.119	2.813 3.125

163,47006.4

A 17 18

BIT NUMBER: 3 IA	DC CODE 4	CHRIS RC	476	
STARTING DEPTH, TVD. BIT COST, RIG COST/H TRIP TIME BIT DIAMETER	IOUR	787.0 17600.00 3.7 9.875	787.0 3652.0 0	
NOZZLES,	OD, ID	14 133.29 33.38	14 8.000 5.000 5.000	14 2.813 3.125 4.276
CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC E		626.00 127.00 0.119 1.20	12.615 21.000 0.119	
NORMAL PORE PRESSURE OVERBURDEN GRADIENT STRESS RATIO MODIFIE "d" EXPONENT CORRECT	MODIFIER	8,4 0,00 0,14 10,0		
CUTTINGS DIAMETER, D		1.5	2.10	
FINISHING DEPTH, CUMULATIVE HOURS, TUBIT CONDITION OUT	JRNS	796.0 0.2 T 0	819 B 2	G 0.000
BIT NUMBER: 3 IA	ADC CODE 517	HTC J2 2		
STARTING DEPTH, TVD. BIT COST, RIG COST/H TRIP TIME	10UR	796.0 0.00 3.8	796.0 3652.00	
PREVIOUS HOURS, TURN PREVIOUS HOLE MADE BIT DIAMETER	VS	0.53 24.0 12 250	2380	
NOZZLES	, OD, ID H, OD, ID	16 155.62 83.38	16 8.00 0 5.000 5.00 0	16 2.813 3.125 4.276
CASING DEPTH, JD RISER LENGTH, ID PUMP VOLUMES 1 AND 2		026.00 127.00 0.119 1.20	12.615 21.000 0.119	V 7 Im 7 V2
PORE PRESSURE CALC E NORMAL PORE PRESSURE OVERBURDEN GRADIENT STRESS RATIO MODIFIE	E MODIFIER ER	8.4 0.00 0.14		
"d" EXPONENT CORRECT CUTTINGS DIAMETER, D		10.0 2.0	2.20	
FINISHING DEPTH CUMULATIVE HOURS, TU		951.0 6.7	29931	
BIT CONDITION OUT		T 5	8 4	G 0.125

11、 標品があるませて 1475

(b), HYDRAULIC ANALYSIS

Data listed from the tape every 100m for each bit run.

DEPTH. Metres

FLOW RATE. Rate of mud flow into the well, in gallons per minute.

The state of the s

.,,

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which the flow becomes turbulent

SLIP VELOCITY. . . . The rate of slip of cuttings in the annulus under laminar flow

ASCENT VELOCITY. . . The rate of ascent of cuttings in the annulus under laminar flow

PRESSURE UNITS . . . Pounds per square inch

IMPACT FORCE The impact force at the bit, in foot-pounds per second squared.

H.H.P. Hydraulic horsepower at the bit

JET VELOCITY The velocity of mud through the bit nozzles, in metres per second.

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

YDRAULICS CALCULATIONS AT DEPTH 200.0 AND TUD 200.0

PM 1 96 SPM 2 100 FLOW RATE 976

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP / VEL	MMSD84 JBV	PRESSURE DROP
HWDC/OH	1.851	35	13	54	LAMINAR	0	12	0.0
DC/OH	1.950	105	12	54	LAMINAR	0	12	0.1
DC/RIS	1.201	47	19	56	LAMINAR	0	19	0.1
DP/RIS	1.325	117	13	54	LAMINAR	0	17	0.1
TOTAL	VOLUME	304			TOTAL	PRESSURE	E DROP	0.3

AG: 13.1 MINUTES 1251 STROKES #1 AND 1303 STROKES #2

IT HYDRAULICS:

RESSURE DROP 891.1 HMP 508 IMPACT FORCE 1479
SURFACE PRESSURE 66.0 HMP/sqin 0.76 JET VELOCITY 103

RESSURE BREAKDOWN:

SURFACE 63.4 TRING 320.2 IT 891.1

ANNULUS 0.3

TOTAL 1274.9 PUMP PRESSURE 1350.7 % DIFFERENCE 5.6

BOTTOM HOLE PRESSURES:

		UNITS		UNITS
ERCULATING:	WEIGHT	8.60	HYDROSTATIC PRESSURE	293,4
	ECD	8.61	CIRCULATING PRESSURE	293,7
	MARGIN	0.01	ESTIMATED SWAB	0,5
	WEIGHT	8.59	BOTTOM HOLE PRESSURE	292,9

DENSITY

PRESSURE

CORE LAB

MYDRAULICS ANALYSIS PROGRAM

AYDRAULICS CALCULATIONS AT DEPTH 300.0 AND TVD 300.0

PM 1 97 SPM 2 87 FLOW RATE 919

∆NNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
HWDC/OH DC/OH	0.673 0.772	15	3 3	42	LAMINAR	1	32	0.1
DC/CSG WDP/CSG	0.772 0.961 1.085	19 65 63	28 23 20	40 38 36	LAMINAR LAMINAR LAMINAR	0 0	28 28 28	0.0 0.1 0.1
HWDP/RIS DP/RIS	1.325	34 135	17 17	35 35	LAMINAR LAMINAR	0 0	16 16	0.0
TOTAL		331	••	-	TOTAL	PRESSURE		0.3

AG: 15.1 MINUTES 1459 STROKES #1 AND 1321 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 808.1 HHP 433 TMPACT FORCE 1342 Z SURFACE PRESSURE 51.8 HHP/sqin 1 80 JET VELOCITY 97

PRESSURE BREAKDOWN:

URFACE 62.8
STRING 463.3
BIT 808.1
NNULUS 0.3

TOTAL 1334.6 PUMP PRESSURE 1558.7 % DIFFERENCE 14.4

OTTOM HOLE PRESSURES:

	DE	UNITS OT INU	PR	ESSURE UNITS
<u>C</u> IRCULATING:	WEIGHT ECD	8.80 8.81	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	450.4 450.7
ULLING OUT: TRIP EFFECTIVE MUD	MARGIN WEIGHT	0.01 8.7 9	ESTIMATED SWAB BOTTOM:HOLE PRESSURE	0.7 449.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

PM 1 97 SPM 2 98 FLOW RATE 976

ANNULAR HYDRAULICS:

ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
_ TYPE	TINU	VOL.	VEL.	VEL	FLOW	VEL.	VEL.	DROP
	*							
HWDC/OH	0,673	15	35	42	LAMINAR	1	33	0.1
DC/OH	0.772	72	30	40	LAMINAR	1	29	0.2
HWDP/OH	0.896	29	26	37	LAMINAR	1	25	0.0
WDP/CSG	1.085	56	21	36	LAMINAR	0	21	0.0
DP/CSG	1,085	81	21	36	LAMINAR	0	21	0.1
■ DP/RIS	1.325	158	18	35	LAMINAR	0	17	0.1
TOTAL	VOLUME	420			TOTAL	PRESSURE	DROP	0.5

AG: 18.1 MINUTES 1758 STROKES #1 AND 1774 STROKES #2

PIT HYDRAULICS:

RESSURE DROP 911.1 HHP 519 IMPACT FORCE 1513 % SURFACE PRESSURE 52.3 HHP/sqin 2.16 JET VELOCITY 103

PRESSURE BREAKDOWN:

URFACE 69.9 STRING 556.5 BIT 911.1 NNULUS 0.5

TOTAL 1538.1 PUMP PRESSURE 1743.3 % DIFFERENCE 11.8

OTTOM HOLE PRESSURES:

		D	ENSITY		P	RESSURE UNITS
NOT CIRCULAT:	TNG: MUD	WEIGHT ECD	8.80 8.81	HYDROSTATIC CIRCULATING		600.5 601.0
ULLING OUT:	TRIP EFFECTIVE MUD	MARGIN WEIGHT	0.01 3.79	ESTIMATED SUBOTTOM HOLE		1.0 599.6

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

PM 1 97 SPM 2 98 FLOW RATE 978

NNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	vor.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
HWDC/OH	0.673	15	35	121	LAMINAR	0	34	0.4
DC/OH	0.772	72	30	121	LAMINAR	0	30	1.2
HWDP/OH	0.896	75	26	120	LAMINAR	0	26	0.7
DP/OH	0.896	4.3	26	120	LAMINAR	0	25	0.4
DP/CSG	1.085	137	2.1	120	LAMINAR	0	21	0.9
DP/RIS	1.325	168	18	120	LAMINAR	0	17	0.7
TOTAL	VOLUME	510			TOTAL	PRESSURE	DROP	4.3

AG: 21.9 MINUTES 2135 STROKES #1 AND 2151 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 935.2 HHP 533 IMPACT FORCE 1553 Z SURFACE PRESSURE 51.9 HHP/sqin 2.22 TET VELOCITY 104

PRESSURE BREAKDOWN:

SURFACE 71.4 STRING 609.6 BIT 935.2

NNULUS 4.3

TOTAL 1620.6 PUMP PRESSURE 1801.4 % DIFFERENCE 10.0

OTTOM HOLE PRESSURES:

	UNITS	UNITS
CTRCULATING:	WEIGHT 9.00 ECD 9.05 MARGIN 0.10 WEIGHT 8.90	HYDROSTATIC PRESSURE 767.7 CTRCULATING PRESSURE 772.1 ESTIMATED SWAB 8.7 BOTTOM HOLE PRESSURE 759.0

DENSITY

PRESSURE

YDRAULICS ANALYSIS PROGRAM

IYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

PM 1 97 SPM 2 98 FLOW RATE 974

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	vor.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP	ASCEND VEL	PRESSURE DROP
HWDC/OH	0.673	15	34	121	LAMINAR	0	34	0.4
DC/OH HWDP/OH	0.772 0.896	72 75	30 26	121 120	LAMINAR LAMINAR	0 0	30 26	1.2 0.7
DP/OH	0.896	133	26	120	LAMINAR	ñ	26	1,3
DP/CSG DP/RIS	1.085 1.325	137 168	21 17	120 120	LAMINAR	0 0	21 17	0.9 0.7
TOTA	L VOLUME	60 0			TOTAL	PRESSUR	E DROP	5.2

25.9 MINUTES 2508 STROKES #1 AND 2530 STROKES #2

IT HYDRAULICS:

RESSURE DROP 927,5 HHP 527 IMPACT FORCE 1540 % SURFACE PRESSURE 49.9 HMP/sqin 2.19 JET VELOCITY

PRESSURE BREAKDOWN:

URFACE 70.9 STRING 645.9 BIT 927.5 5.2 NNULUS

TOTAL 1649.5 PUMP PRESSURE 1858.6 % DIFFERENCE 11.2

OTTOM HOLE PRESSURES:

	DE	NSITY UNITS	Þ	ESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT ECD	9.00 9.05	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	921.3 926.5
ULLING OUT: TRIP EFFECTIVE MUD	MARGIN WEIGHT	0.10 8.90	ESTIMATED SWAB BOTTOM HOLE PRESSURE	10.4 910.8

, CORE LAB

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0

FPM 1 84 SPM 2 81 FLOW RATE 821

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.274	20	71	114	LAMINAR	0	71	3,6
DC/CSG WDP/CSG	0.303 0.427	25 36	64 46	112	LAMINAR LAMINAR LAMINAR	0	6 4 46 46	3.4 1.4 5.6
DP/CSG DP/RIS	0.427 1.325	143 168	46 15	101 87	LAMINAR	0	15	0.4
TOTAI	L VOLUME	392			TOTAL	PRESSURE	E DROP	14.4

LAG: 20.0 MINUTES 1675 STROKES #1 AND 1617 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1904.8 HHP 912 IMPACT FORCE 2024
% SURFACE PRESSURE 65.8 HHP/sqin 7.74 JET VELOCITY 136

RESSURE BREAKDOWN:

BURFACE 78.7 BTRING 906.9 BIT 1904.8 ANNULUS 14.4

TOTAL 2904.9 PUMP PRESSURE 2895.6 % DIFFERENCE 0.3

BOTTOM HOLE PRESSURES:

	DENSITY UNITS	F	RESSURE UNITS
CTRCULATING: PULLING OUT: TRIP	WEIGHT 10.65 ECD 10.77 MARGIN 0.24 WEIGHT 10.41	CIRCULATING PRESSURE ESTIMATED SWAB	1286.3 28.9

YDRAULICS ANALYSIS PROGRAM

IYDRAULICS CALCULATIONS AT DEPTH 780.0 AND TVD 780.0

PPM 1 82 SPM 2 80 FLOW RATE 808

ANNULAR HYDRAULICS:

ANNULUS TYPE	NNIT	VOL	VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH DC/CSG	0.274 0.303	42 0	70 63	118 116	LAMINAR LAMINAR	0	70 63	7.9 0.1
DP/CSG	0.427 0.427	36 1 <i>7</i> 7	45 45	105 105	LAMINAR LAMINAR	0	45 45	1.5 7.4
DP/RIS	1.325	168	15	91	LAMINAR	0	15	0.5
TOTAL	. VOLUME	424			TOTAL	PRESSURE	DROP	17.3

LAG: 22.0 MINUTES 1797 STROKES #1 AND 1763 STROKES #2

BIT HYDRAULICS:

RESSURE DROP 1845.6 HHP IMPACT FORCE 1961 870 SURFACE PRESSURE 65.1 HHP/sqin 7.38 JET VELOCITY 134

RESSURE BREAKDOWN:

URFACE 76.5 TRING 916.8 BIT 1845.6 ANNULUS 17.3

TOTAL. 2856.2 PUMP PRESSURE 2833,9 % DIFFERENCE 0.8

OTTOM HOLE PRESSURES:

_	DENSIT UNIT	•	PRESSURE UNITS
CIRCULATING:	WEIGHT 10.6 ECD 10.7 MARGIN 0.2 WEIGHT 10.3	78 CIRCULATING PRESSURE 26 ESTIMATED SWAB	1434.5

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 790.0 AND TVD 790.1

SPM 1 90 SPM 2 0 FLOW RATE 452

ANNULAR HYDRAULICS:

- ANNULUS	VOL/		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	70 L	VEL	VEL	FLOW	VEL	VEL.	DROP
DC/OH	0.107	1.4	101	138	LAMINAR	0	100	26.6
HWDP/OH	0.231	7	47	115	LAMINAR	0	46	1.1
■ IWDP/CSG	0.427	23	25	105	LAMINAR	0	25	0.7
DP/CSG	0.427	191	25	105	LAMINAR	0	25	6.1
DP/RIS	1.325	168	8	91	LAMINAR	0	8	0.3
TOTAL	. VOLUME	403			TOTAL	PRESSURE	DROP	34.8

LAG: 37.4 MINUTES 3385 STROKES #1 AND 0 STROKES #2

BIT HYDRAULICS:

RESSURE DROP 985.0 HMP 260 IMPACT FORCE 801 % SURFACE PRESSURE 74.2 HDP/sqin 3.39 JET VELOCITY 98

PRESSURE BREAKDOWN:

BURFACE 26.9 STRING 301.3 BIT 985.0 ANNULUS 34.8

TOTAL 1348.8 PUMP PRESSURE 1327.6 % DIFFERENCE 1.5

BOTTOM HOLE PRESSURES:

		D ·	ENSITY UNITS		PRESSURE UNITS
OT CIRCULATING:	MUD	WEIGHT	10.65 10.91	MYDROSTATIC CIRCULATING	
	TRTP	MARGIN		ESTIMATED SU	 69.6
	VE MUD	WEIGHT	0.13	BOTTOM HOLE	 *** * * ***

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DERTH 300.0 AND TVD 300.0

SPM 1 82 SPM 2 80 FLOW RATE 810

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL.	りだし	VEL	FLOW	VEL.	VEL	9 d Ch
DCZOH	0.27a	43	70	118	LAMINAR	0	70	9.0
HWDP/OH	0.399	フ	48	106	LAMINAR	t)	48	. (1 , 本
HWDP/CSG	0.427	28	4.5	t (15	: AMINAR	(1	45	1.2
DP/CSG	0.437	: 35	.4.57	105	SAMINAR	n	4 (a)	7.7
DP/RIS	1.325	1,58	1 5	91	AMINAR	0	7 -7.	3 , 5
TOTAL	. VOLUME	432			TOTAL	PRESSUR	e proř	. 77

LAG: 22.4 MINUTES 1841 STROKES #1 AND 1786 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1956.9 THE BORNE FORCE FORCE

PRESSURE BREAKDOWN:

SURFACE 77.0 STRING 930.7 BIT 1856.9 ANNULUS 17.7

TOTAL 2882.2 PUMP PRESSURE 2862.9 % DIFFERFNOF 0.7

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 10.65 HYDROSTATIC PRESSURE 1453.5 CIRCULATING: ECD 10.78 CIRCULATING PRESSURE 1471.2 PULLING OUT: TRIP MARGIN 0.26 ESTIMATED SWAB 35,4 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 10.39 1418.2

DENSITY

PRESSURF

CORE LAB

HYDRAULICS ANALYSIS PROGRAM

IYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

PPM 1 0 SPM 2 88 FLOW RATE 440

ANNULAR HYDRAULICS:

- ANNUL	.US	VOLZ		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TY	PE.	UNIT	YOL.	VEL.	VEL.	FLOW	VEL	VEL.	DROP
DC/	OH.	0.274	43	38	118	LAMINAR	- ()	38	6.0
HWDP/	'OH	0.398	33	26	106	LAMINAR	0	26	1.2
DP/	'OH	0.398	14	26	106	LAMINAR	0	26	0.5
DP/C	SG	0.427	213	25	105	LAMINAR	0	2.4	6.7
DP/R	IS	1.325	168	8	91	LAMINAR	0	8	0.3
	TOTAL	VOLUME	471	,		TOTAL	PRESSURE	DROP	14.9

LAG: 45.0 MINUTES 0 STROKES #1 AND 3961 STROKES #2

BIT HYDRAULICS:

RESSURE DROP 546.8 BHP 140 TMPACT FORCE 581 2 SURFACE PRESSURE 35.7 HMP/sqin 1.19 JET VELOCITY 73

RESSURE BREAKDOWN:

SURFACE 25.6
TRING 324.5
BIT 546.8
ANNULUS 14.9
TOTAL 911.8 PUMP PRESSURE 1531.5 % DIFFERENCE 40.5

COTTOM HOLE PRESSURES:

		UNITS		UNITS
TRCULATING:	MARGIN	10.75 0.19	HYDROSTATIC PRESSURE CIRCULATING PRESSURE ESTIMATED SWAB BOTTOM HOLE PRESSURE	1635.2 1650.1 29.7 1605.5

DENSITY

PRESSURE

(c). COMPUTER DATA LISTING : LIST A

INTERVAL	All depth records (data not averaged)
DEPTH	Well depth, in metres
ROP	Rate of penetration, in metres/hour
WOR , ,	Weight-on-bit, in thousands of pounds
RPM	Rotary speed, in revolutions per minute
MW . , , , , , ,	Mud weight in, in pounds per gallon
'dc' . , ,	Calculated 'd' exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg.
	Cumulative bit hours. The number of hours that the bit has actually been on bottom, recorded in decimal hours.
TURNS	Complative bit turns. The number of turns made by the hit, while actually on bottom
ICOST	Incremental cost per metre, calculated from the rate of penetration, in Australian dollars.
CCOST	Cumulative cost per metre, calculated from the drilling time, in A dollars.
pp , , , , , , , , , , ,	Pore pressure gradient, in equivalent pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation.
FG	Fracture gradient, in equivalent pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL programusing Eaton's equation.
	It is dependent on the pore pressure, the overburden gradient and the matrix stress. this value may be modified by leak-off information.

HTC OSC3AJ+26"HC	0.00 TRIP TIME	26.000 NOZZLES 2.3 BIT RUN	20 20 20
DEPTH ROP	WOB RPM MW "d"c	HOURS TURNS ICOST	CCOST PP FG
150.0 55.0 151.0 60.0 152.0 57.1	8.0 100 8.6 0.73 8.0 100 8.6 0.71 8.0 100 8.6 0.72	0.43 2609 60.87	431.60 8.4 13.5 416.15 8.4 13.5 402.06 8.4 13.5
153.0 31.0 154.0 50.0 155.0 83.7 156.0 30.8 157.0 29.5 158.0 36.7 159.0 41.9 160.0 30.8 161.0 26.7 162.0 31.6	8.0 100 8.6 0.85 8.0 100 8.6 0.75 8.0 100 8.6 0.64 8.0 100 8.6 0.85 8.0 100 8.6 0.86 8.0 100 8.6 0.81 8.0 100 8.6 0.78 8.0 100 8.6 0.85 8.0 100 8.6 0.85 8.0 100 8.6 0.88	0.50 3027 73.04 0.52 3099 43.62 0.55 3294 118.69 0.58 3497 123.76 0.61 3661 99.42 0.63 3804 87.24 0.67 3999 118.69	379.34 8.4 13.5 367.35 8.4 13.5 358.78 8.4 13.5 350.95 8.4 13.5 342.83 8.4 13.5 334.84 8.4 13.5 328.29 8.4 13.5 322.67 8.4 13.5
164.0 34.3 165.0 50.0 1 166.0 56.2 1 167.0 120.0 1 168.0 73.5 1 169.0 43.4 1 170.0 76.6 1 171.0 70.6 1	8.0 100 8.6 0.82 8.0 100 8.6 0.83 12.6 100 8.6 0.81 15.3 100 8.6 0.82 14.1 100 8.6 0.63 11.5 100 8.6 0.71 10.3 100 8.6 0.81 11.6 100 8.6 0.71 12.7 100 8.6 0.74	0.79 4762 106.52 0.81 4882 73.04 0.83 4989 64.92 0.84 5039 30.43 0.85 5121 49.71 0.88 5259 84.20 0.89 5337 47.68 0.90 5422 51.74	
174.0 70.6 175.0 76.6 176.0 85.7 1 177.0 41.4 178.0 64.3 1 179.0 75.0 1	10.8 100 8.6 0.83 9.4 100 8.6 0.70 9.2 100 8.6 0.67 8.8 100 8.6 0.80 11.2 100 8.6 0.74 12.1 100 8.6 0.72 11.3 100 8.6 0.77 10.8 100 8.6 0.70 9.8 100 8.6 0.70	0.97 5822 51.74 0.98 5901 47.68 1.00 5971 42.61 1.02 6116 88.26 1.03 6209 56.81 1.05 6289 48.69 1.07 6397 65.94 1.09 6534 83.18	258.52 8.4 13.5 254.12 8.4 13.6 249.82 8.4 13.6 245.59 8.4 13.6 242.44 8.4 13.6 238.80 8.4 13.6 235.15 8.4 13.6 231.95 8.4 13.6 229.20 8.4 13.6 225.95 8.4 13.6
184.0 72.0 185.0 60.0 1 186.0 81.8 1 187.0 76.6 1 188.0 48.0 1 189.0 53.7 1 196.0 180.0 197.0 36.4 1	12.9 100 8.6 0.72 12.9 100 8.6 0.83	1.13 6777 50.72 1.15 6877 60.87 1.16 6951 44.64 1.17 7029 47.68 1.19 7154 76.08 1.21 7266 67.97 1.25 7499 20.29 1.28 7664 100.43	222.75 8.4 13.6 219.73 8.4 13.6 216.99 8.4 13.6 214.07 8.4 13.6 211.30 8.4 13.6 209.08 8.4 13.6 209.08 8.4 13.6 187.88 8.4 13.6 186.64 8.4 13.6 185.09 8.4 13.6

•

_	DEPTH	R 0 P	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	РP	FG
	199.0 200.0 201.0 202.0 203.0 204.0 205.0 206.0 207.0 208.0	52.2 53.7 85.7 85.7 102.9 85.7 48.0 62.1	12.4 12.5 11.7 11.6 11.2 11.4 10.7 10.2 14.6 15.2	100 100 100 100 100 100 100	8.6 8.6 8.6 8.6 8.6 8.6	0.86 0.80 0.79 0.68 0.68 0.64 0.67 0.79 0.79	1.32 1.34 1.36 1.37 1.38 1.39 1.41 1.43	7941 8056 8167 8237 8307 8366 8436 8561 8657		183.79 182.23 180.69 178.85 177.05 175.22 173.51 172.28 170.86 169.22	8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.7 13.7 13.7 13.7 13.7
	209.0 210.0 211.0 212.0 213.0 215.0 216.0 217.0 218.0 219.0	102.9 37.5 156.5 100.0 48.0 56.2 59.0 24.8	17.5 18.6 14.1	100 100 100 100 100 100 100	8.6 8.6 8.6 8.6 8.6 8.6 8.6	0.79 0.68 0.94 0.60 0.67 0.80 0.78 0.77 0.99	1.47 1.48 1.51 1.51 1.52 1.56 1.58 1.60 1.64	8812 8871 9031 9069 9129 9379 9486 9587 9829	35.51 97.39 23.33 36.52 76.08 64.92 61.88 147.09	167.85 166.25 165.43 163.76 162.28 160.32 159.25 158.17 158.05 156.84	8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.7 13.7 13.7 13.7 13.7 13.7
	220.0 221.0 222.0 223.0 225.0 226.0 227.0 228.0 229.0 230.0	48.6 56.2 26.9 62.6 64.3 32.7 43.4 92.3	13.0 14.8 14.8 15.5 13.6 14.1 17.0 16.0 16.2	100 100 100 100 100 100 100	8.6 8.6 8.6 8.6 8.6 8.6	0.78 0.85 0.81 0.99 0.77 0.77 0.97 0.89 0.71	1.67 1.69 1.71 1.74 1.78 1.79 1.82 1.84 1.86	10007 10131 10237 10461 10652 10746 10929 11067 11132 11264	75.07 64.92 135.94 58.33 56.81 111.59 84.20 39.56	155.81 154.96 154.01 153.82 151.87 150.91 150.52 149.86 148.78 148.11	8.4 8.4 8.4 8.4 8.4 8.4	13.7 13.7 13.8 13.8 13.8 13.8 13.8
	231.0 232.0 233.0 234.0 235.0 236.0 237.0 238.0 239.0 240.0	21.2 61.0 9.5 62.1 55.4 66.7 67.9 50.0		100 100 100 100 100 100 100	8.6 8.6 8.6 8.6 8.6 8.6	0.77 1.06 0.82 1.12 0.79 0.83 0.79 0.79 0.87 1.18	1.89 1.94 1.96 2.06 2.08 2.09 2.11 2.12 2.14 2.22	11731 12364 12461 12569 12659 12747 12867	172.46 59.85 385.49 58.84 65.94 54.78 53.77	146.60 148.83 148.00 147.25 146.41 145.57 144.92	8.4 8.4 8.4 8.4 8.4 8.4	13.8 13.8 13.8 13.8 13.8 13.8 13.8
	242.0 267.0	13.7 5.0	17.4			1.18	2.37 7.37		266.65 73 0.40			13.8 13.9

RIT NUMBER TC R1 COST TOTAL HOURS	1 4978.00 10.45			111 17.500 3.0 72699	NOZ BIT	ERVAL ZLES RUN DITION		0- 641.0 20 20 20 374.0 B1 G0.000
DEPTH R	OP WOB	RPM MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP FG
269.0 57	.3 10.5 .1 10.8 .2 10.8	100 8.7	0.74 0.81 0.86	0.01 0.03 0.05	80 185 315	48 6 4 79	15982 8023 5375	8.4 13.9 8.4 13.9 8.4 13.9
272.0 97 273.0 83 274.0 76 275.0 83 276.0 66 277.0 43 279.0 92 280.0 105	9 14.7 3 13.9 7 14.5 6 17.1 7 15.8 7 12.7 9 11.0 3 13.0 9 13.7	100 8.8 100 8.8 100 8.8 100 8.8 100 8.8 100 8.8 120 8.8	0.82 0.72 0.76 0.81 0.77 0.79 0.87 0.76 0.74	0.07 0.08 0.09 0.10 0.11 0.13 0.15 0.17 0.18 0.20	403 465 536 615 686 776 913 1069 1137	54 38 44 48 44 55 83 40 34 46	4045 3243 2710 2330 2044 1823 1649 1381 1277 1189	8.4 13.9 8.4 13.9 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0
283.0 69 284.0 58 285.0 102 286.0 49 288.0 90 289.0 36 290.0 124 291.0 124	0 12.1 2 11.6 1 12.8 9 11.5 3 11.1 0 13.6 4 11.4 1 12.1 1 13.3 3 12.6	120 8.8 120 8.8 120 8.8 120 8.8 120 8.8 120 8.8 120 8.8	0.76 0.81 0.87 0.72 0.88 0.78 0.96 0.68 0.69	0.21 0.22 0.24 0.25 0.27 0.29 0.32 0.33 0.33	1307 1411 1535 1605 1751 1911 2109 2167 2225 2337	35.51 74.05 40.58 100.43 29.42 29.42	890.25 809.33	8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0
294.0 72 295.0 52 296.0 40 298.0 48 299.0 57 300.0 75 301.0 80 302.0 85	0 12.0 0 12.8 2 13.5 9 9.7 0 12.5 1 14.3 0 14.8 0 15.6 7 15.9 7 13.5	120 8.8 120 8.8 120 8.8 120 8.8 120 8.8 120 8.8 120 8.8	0.85 0.92 0.91 0.90 0.91 0.90 0.84 0.83 0.82	0.37 0.38 0.40 0.42 0.47 0.48 0.50 0.51 0.52	2455 2555 2693 2869 3169 3295 3391 3481 3565 3651	50.72 70.00 89.27 76.08 63.91 48.69 45.65 42.61	664.30 641.58 621.16 602.82 568.84 553.06 537.78 523.30 509.57 496.62	8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.0 8.4 14.1 8.4 14.1 8.4 14.1
305.0 100. 306.0 60. 309.0 78. 310.0 53. 311.0 81. 312.0 54. 313.0 97. 314.0 64.	0 14.8 0 15.0 0 16.8 9 13.7 7 18.6 8 14.5 5 19.3 3 17.9 3 10.2 7 11.6	120 8.8 120 8.8 120 8.8 120 8.8 120 8.8 120 8.8 120 8.8 120 8.8	0.97	0.55 0.56 0.58 0.62 0.64 0.65 0.67 0.68 0.69	3795 3867 3987 4261 4395 4483 4615 4689 4801 4943	36.52 60.87 46.28 67.97 44.64 66.95 37.53 56.81	485.18 473.37 462.79 433.04 424.55 415.92 408.16 400.11 392.80 386.12	8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1 8.4 14.1

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	TCOST	CCOST	PP	FG
317.0 318.0 319.0 320.0 321.0 322.0 323.0 324.0 326.0 327.0	116.1 40.9 87.8 53.7 94.7 72.0 55.4 160.0	19.2 15.9 18.6 13.5 21.0 19.4 16.2 18.5 6.5 10.6	120 8 120 8 120 8 120 8 120 8 120 8 120 8 120 8		1.00 0.74 1.04 0.78 0.99 0.83 0.86 0.96 0.55	0.75 0.76 0.79 0.80 0.82 0.83 0.84 0.86 0.88	5236 5298 5474 5556 5690 5766 5866 5996 6086 6182	31.45 89.27 41.59 67.97 38.55 50.72 65.94 22.83	373.65 366.94 361.60 355.56 350.24 344.57 339.32 334.53 323.96 319.37	8.4 8.4 8.4 8.4 8.4 8.4	14.1
328.0 329.0 330.0 331.0 332.0 333.0 334.0 335.0 336.0 337.0	44.4 70.6 44.4 43.9 52.2 69.2 27.7 32.4	11.9 12.2 11.8 13.4 14.0 12.0 11.7 11.8 12.7	120 8 120 8 120 8 120 8 120 8 120 8 120 8 120 8	8.888.888888888888888888888888888888888	0.96 0.93 0.81 0.95 0.96 0.89 0.81 1.03 1.01 0.89	0.91 0.93 0.95 0.97 0.99 1.01 1.03 1.06 1.09		82.17 51.74 82.17 83.18 70.00 52.75 131.88 112.60	315.73 311.97 307.83 304.31 300.91 297.41 293.76 291.38 288.78 285.50	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
338.0 339.0 340.0 341.0 342.0 343.0 344.0 346.0 346.0 348.0	43.4 66.7 69.2 28.3 46.8 35.3 60.0 37,9	15.7 15.9 15.1 15.8 17.0 15.7 13.8 16.8 16.7	120 8 120 8 120 8 120 8 120 8 120 8 120 8 120 8		0.87 0.99 0.87 0.87 1.11 0.97 1.01 0.92 1.03	1.12 1.15 1.16 1.18 1.21 1.23 1.26 1.29 1.32	86 96 8900 9140 9330	54.78 52.75 128.83 78.11 103.47 60.87	279.49 276.41 273.39 271.46 268.91 266.77 261.55 259.49	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2
349.0 350.0 351.0 352.0 353.0 355.0 356.0 357.0 358.0 359.0	40.0 51.4 37.1 57.1 53.3 47.4 49.3 37.1	15.7 15.5 16.1 17.4 16.9 17.0 16.4 15.9 15.6	120 8 120 8 120 8 120 8 120 8 120 8 120 8		0.96 1.00 0.95 1.05 0.93 0.95 0.97 0.95 1.02	1.38 1.40 1.42 1.45 1.46 1.50 1.52 1.54 1.57	9718 9898 10038 10232 10358 10428 10780 10926 11120 11260	91.30 71.01 98.40 63.91 68.48 77.10 74.05 98.40	255.56 253.58 251.41 249.61 247.45 243.38 241.51 239.65 238.10 236.28	8.4 8.4 8.4 8.4 8.4 8.4	14.2 14.2 14.2 14.3 14.3 14.3 14.3
360.0 361.0 362.0 363.0 364.0 365.0 366.0 367.0 368.0 369.0	56.2 38.7 45.6 25.5 67.5 27.9 52.2 42.4	14.1 13.3 14.8 15.4 14.3 18.9 17.0 16.7 16.9 16.5	120 8, 120 8, 120 8, 120 8, 120 8, 120 8,	8888888	0.92 0.89 1.00 0.97 1.10 0.91 1.11 0.95 1.01	1.61 1.63 1.65 1.67 1.71 1.73 1.76 1.78 1.81	12259 12517 12655 12825	64,92 94.34 80.14 143.04 54.10 130.86 70.00 86.23	226.98	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	PР	FG
370.0 371.0 372.0 375.0 376.0 377.0 378.0 379.0 380.0	34.6 37.9 32.1 47.4 39.1 43.4 26.9 44.4	16.8 15.4 15.3 16.6 15.9 16.2 17.0 18.0	120 120 120 120 120 120 120 120	8.8 8.8 8.8 8.8 8.8 8.8	1.11 1.04 1.01 1.07 0.96 1.02 1.00 1.14 1.00	1.87 1.90 1.93 2.02 2.04 2.07 2.09 2.13 2.15 2.17	13687	105.50 96.37 113.62 77.10 93.33 84.20 135.94 82.17	218.75	8.4 8.4 8.4 8.4 8.4 8.4	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
382.0 383.0 384.0 385.0 386.0 387.0 388.0 389.0 390.0	36.4 43.9 40.0 48.0 38.3 45.0 43.4 30.0 38.7	15.4 16.4 16.2 15.1 16.1 15.8 15.8	120 120 120 120 120 120 120 120	8.8 8.8 8.8 8.8 8.8 8.8	1.02 0.99 1.01 0.97 1.01 0.98 0.98 1.08 1.02	2.20 2.25 2.27 2.27 2.32 2.34 2.37 2.40 2.45	15653 15817 15997 16147 16335 16495 16661 16901 17087 17427	100.43 83.18 91.30 76.08 95.36 81.16 84.20 121.73 94.34	208.40 207.32 206.33 205.23 204.30 203.28 202.29 201.63 200.76 200.53	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
392.0 394.0 395.0 396.0 397.0 398.0 399.0 400.0 401.0 401.0	67.5 53.7 40.4 38.3 40.9 25.4 57.1 29.3	16.1 18.1 17.2 16.0 16.9 17.1 17.3 16.5 16.6	120 120 120 120 120 120 120 120	8.8 8.8 8.8 8.8 8.8 8.8	1.00 0.90 0.95 1.01 1.03 1.02 1.14 0.92 1.09	2.47 2.52 2.52 2.57 2.59 2.65 2.65 2.72	18492	54.10 67.97 90.29 195.36 89.27 144.05 63.91 124.78	196.34 195.52 194.75 193.94 193.56	8.4 8.4 8.4 8.4 8.4 8.4	14.4 14.4 14.4 14.4 14.4 14.4 14.4
405.0 406.0 407.0 408.0 409.0 410.0 411.0 412.0 413.0 414.0	39.6 44.4 39.6 50.7 45.6 41.9 39.6 35.6	15.7 16.8 17.0 18.0 17.6 17.3 17.1 16.9 15.6	120 120 120 120 120 120 120 120	8.8 8.8 8.8 8.8 8.8	0.91 1.02 1.00 1.04 0.97 0.99 1.01 1.02 1.03	2.77 2.80 2.82 2.84 2.86 2.91 2.93 2.96 2.99		92.31 72.03 80.14 87.24 92.31	185.85 185.11 184.43 183.80 183.24	8,4 8,4 8,4 8,4 8,4 8,4	14.4 14.4 14.4 14.5 14.5 14.5 14.5
415.0 416.0 417.0 418.0 419.0 420.0 421.0 423.0 424.0 425.0	43,4 34,6 31,9 36,0 35,6 29,0 37,9 40,4	16.7 18.2 18.2 16.5 15.7 15.9 14.6 13.2 18.3	120 120 120 120 120 120 120 120	8.8 8.8 8.8 8.8 8.8 8.8	1.03 1.02 1.08 1.07 1.03 1.04 1.07 0.98 1.04	3.02 3.04 3.07 3.10 3.13 3.16 3.19 3.24 3.27 3.30	21714 21922 22148 22348 22550 22798 23178 23356	105.50 114.63 101.44 102.46 125.79 96.37 90.29	181.48 180.97 180.53 180.01 179.51 179.16	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5

DEPTH	ROP	WOB RP	w MW	"d"c	HOURS	TURNS	ICOST	CCOST	РÞ	1.43
426.0 427.0 428.0 429.0 430.0 433.0 434.0 435.0 436.0	39.1 37.5 43.9 36.0 48.5 41.9 40.9	16.3 12: 15.8 12: 15.8 12: 15.8 12: 16.4 12: 16.5 11: 16.6 11: 16.7 11: 16.6 11:	8.8 8.8 8.9 8.9 8.9 8.9 8.9 8.9	1,01 1,02 0,97 1,03 0,93 0,97 0,98 0,98	3,32 3,35 3,40 3,42 3,49 3,51 3,53 3,58	23732 23916 24108 24272 24472 24881 25038 25200 25363 25530	93.33 97.39 83.18 101.44 75.36 87.24 89.27 90.29	176.50 175.98 175.50 174.93 174.47 172.68 172.17 171.68 171.20 170.73	8.4 8.4 8.4 8.4 8.4 8.4	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5
438.0 439.0 440.0 441.0 443.0 444.0 445.0 446.0 447.0 448.0	46.8 45.6 35.3 29.3 36.7 36.0 29.8 45.0	16.7 11 18.3 11 17.6 11 17.8 11 17.0 11 17.5 11 17.2 11 16.2 11 16.0 11 15.2 11	0 8.9 0 8.9 0 8.9 0 8.9 0 8.9 0 8.9	1.00 0.97 0.96 1.03 1.07 1.02 1.02 1.05 0.95	3.61 3.63 3.65 3.75 3.75 3.81 3.84 3.86 3.89	25706 25847 25992 26179 26630 26809 26993 27214 27361 27532	78.11 80.14 103.47 124.78 99.42 101.44 122.75 81.16	167.98 167.61 167.36	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
449.0 450.0 452.0 453.0 454.0 455.0 456.0 457.0 458.0 459.0	30.3 36.0 41.9 37.5 45.0 33.0 12.1 29.0	15.3 11 16.5 11 15.1 11 15.9 11 16.7 11 15.8 11 16.8 11 18.1 11 17.3 11 18.2 11	0 8.9 0 8.9 0 8.9 0 8.9 0 8.9 0 8.9 0 8.9	1.00 0.94	3.92 3.95 4.01 4.03 4.06 4.08 4.11 4.20 4.23	27973	101.44 87.24 97.39 81.16 110.57 302.30	165.99 165.30 164.88 164.52	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6
460.0 462.0 463.0 464.0 465.0 466.0 467.0 468.0 469.0 470.0	35.5 29.8 42.9 39.6 36.7 31.6 45.0 45.6	17.0 11 17.1 11 15.9 11 17.4 11 17.6 11 16.8 11 16.7 11 17.0 11 17.3 11	0 8.9 0 8.9 0 8.9 0 8.9 0 8.9 0 8.9 0 8.9	1.10 1.02 1.05 0.98 1.00 1.01 1.04 0.96 0.96	4.30 4.35 4.39 4.41 4.43 4.46 4.49 4.51 4.56	30591	122.75 85.21 92.31 99.42 115.65 81.16 80.14	163.21 163.00 162.61 162.25 161.93	8.4 8.4 8.4 8.4 8.4 8.4	14.6 14.6 14.6 14.6 14.7 14.7 14.7
472.0 473.0 474.0 475.0 476.0 477.0 479.0 480.0 481.0	35.6 35.0 31.9 36.4 28.6 29.3 29.8 33.3	17.3 11 15.0 11 15.9 11 15.7 11 15.8 11 15.3 11 15.5 11 15.1 11	0 8.9 0 8.9 0 8.9 0 8.9 0 8.9 0 8.9 0 8.9	0.94 0.99 1.01 1.03 1.00 1.05 1.05 1.04 1.01	4.60 4.63 4.66 4.69 4.72 4.75 4.85 4.85	32617 32824 33006 33237 33462 33684 33882	102.46 104.49 114.63 100.43 127.82 124.78 122.75 109.56	159.70 159.43 159.16 158.95 158.67 158.52 158.36 158.19 157.96	8.4 8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7

.

DEPTH	ROP	MOB	RPM	мм	"d"c	HOURS	TURNS	TCOST	CCOST	P P	FG
482.0 483.0 484.0 485.0 486.0 487.0 488.0 489.0 491.0 492.0	37.1 31.3 41.9 32.1 31.3 27.9 36.5	16.0 15.5 17.4 16.5 16.8 16.4 16.2 16.0	110 110 110 110 110 110 110	8.9 9.0 9.0 9.0 9.0 9.0	1.01 1.03 1.01 1.03 0.96 1.03 1.03 1.06 0.99	4.92 4.95 4.98 5.01 5.03 5.10 5.13 5.19 5.22	34553 34731 34942 35099 35305 35516 35752 36113	116.66	157.49 157.22 157.03 156.71 156.52 156.34 156.22 155.72	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.7 14.7 14.7 14.7 14.7 14.7
493.0 494.0 495.0 496.0 497.0 498.0 499.0 500.0 501.0 502.0	27.7 30.8 32.4 33.6 30.5 31.6 34.3 43.4	16.5 15.9 16.9 16.3 15.9 16.6 16.6 17.1	110 110 110 110 110 110 110	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.03 1.05 1.04 1.02 1.01 1.04 1.03 1.01 0.96	5.25 5.29 5.32 5.35 5.42 5.48 5.50 5.54	36792 37006 37210 37406 37622 37831 38024 38176	114.63 131.88 118.69 112.60 108.55 119.70 115.65 106.52 84.20 135.94	155.31 155.15 154.97 154.27 154.61 154.45 154.24 153.94	8.4 8.4 8.4 8.4 8.4 8.4	14.7 14.8 14.8 14.8 14.8 14.8 14.8
503.0 504.0 505.0 506.0 507.0 508.0 510.0 511.0 512.0 513.0	37.9 30.0 30.5 28.3 34.0 37.9 19.6 43.9	17.9 18.2 18.6 18.0 18.6 18.4 18.1 18.1	110 110 110 110 110 110 110	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.03 1.01 1.07 1.06 1.08 1.04 1.01 1.17 0.97 1.02	5.57 5.59 5.63 5.70 5.72 5.83 5.85 5.88	38792 39012 39228 39461 39655 40004 40341 40491	121.73 119.70 128.83 107.53 96.37 186.66	153.43 153.30 153.16 153.06 152.87 152.40 152.54 152.26	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
514.0 515.0 516.0 517.0 518.0 520.0 521.0 522.0 523.0 524.0	34.6 41.4 36.0 42.4 28.0 30.3 30.5 34.0	15.7	110 110 110 110 110 110 110	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.05 1.03 0.99 1.02 0.98 1.02 1.03 1.02 0.99	5.91 5.94 5.96 5.99 6.01 6.12 6.15 6.18 6.22	41065 41225 41408 41564 42035 42254 42470 42664	105.50 88.26 101.44	151.44 151.24 150.98 150.82 150.70 150.58 150.41	8.4 8.4 8.4 8.4 8.4 8.4	14.8 14.8 14.8 14.8 14.8 14.8 14.8
525.0 526.0 527.0 528.0 529.0 530.0 531.0 532.0 533.0 534.0	29.8 27.3 30.5 27.9 41.4 37.1 40.9 41.9	16.5 16.4 16.4 17.4 16.7 16.0 18.3 18.4 18.6	110 110 110 110 110 110	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.05 1.04 1.06 1.05 1.06 0.96 1.01 0.99 0.99	6.25 6.28 6.32 6.35 6.41 6.44 6.46 6.49	43337 43579 43795 44032 44191 44369 44531 44688	119.70 130.86 88.26 98.40 89.27	150.11 150.05 149.93 149.86 149.62 149.43 149.20 148.97	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9 14.9

DEPTH	ROP	WOB R	PM MW	"d"c	HOURS	TURNS	ICOST	CCOST	pР	FG
535.0 536.0 537.0 538.0 539.0 540.0 541.0 542.0 543.0 544.0	40.9 36.4 33.6 24.5 39.6 37.9 35.6 37.1 23.2	18.3 1 18.9 1 19.3 1 16.8 1 20.4 1 19.9 1 19.6 1 20.0 1 19.6 1	110 9.0 110 9.0 110 9.0 110 9.0 110 9.0 110 9.0 110 9.0 110 9.0	0.99 1.03 1.05 1.10 1.02 1.03 1.04 1.03 1.15	6.54 6.57 6.60 6.64 6.66 6.72 6.72 6.74 6.79	45035 45216 45412 45682 45849 46023 46208 46386 46386	89.27 100.43 108.55 149.12 92.31 96.37 102.46	148.57 148.39 148.25 148.25 148.04 147.85 147.69 147.51	8.4 8.4 8.4 8.4 8.4 8.4	14.9 14.9 14.9 14.9 14.9 14.9 14.9
545.0 546.0 547.0 549.0 550.0 551.0 552.0 553.0 554.0	18.1 14.5 39.4 37.1 47.4 47.4 42.9 50.0	14.3 1 14.2 1 12.0 1 20.5 1 21.1 1 19.8 1 21.2 1 20.7 1 20.7 1 20.7 1	10 9.0 10 9.0 10 9.0 10 9.0 10 9.0 10 9.0 10 9.0	1.06 1.13 1.14 1.03 1.05 0.97 0.98 1.00 0.97	6.87 6.93 7.00 7.05 7.08 7.10 7.12 7.14 7.16 7.18	47237 47601 48056 48391 48569 48708 48848 49002 49134 49279	251.58 92.75 98.40 77.10 77.10 85.21 73.04	147.81	8.4 8.55 8.55 8.55 8.55 8.55	14.9 14.9 14.9 15.0 15.0 15.0 15.0
556.0 557.0 558.0 559.0 560.0 561.0 562.0 563.0 564.0 565.0	45.6 42.9 34.0 40.0 31.0 37.5 29.5 36.4	20.8 1 20.9 1 20.5 1 23.6 1 19.3 1 15.6 1 16.9 1 17.3 1 17.2 1	10 9.0 10 9.0 10 9.0 10 9.0 10 9.0 10 9.0 14 9.0 20 9.0	0.99 0.99 1.00 1.10 1.01 1.02 0.99 1.07 1.03	7.20 7.23 7.25 7.28 7.30 7.34 7.40 7.42 7.45	50082 50294 50470 50701	80.14 85.21 107.53 91.30 117.68 97.39 123.76 100.43	145.43 145.33 145.17 145.10	88888555555555555555555555555555555555	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
566.0 567.0 568.0 569.0 570.0 571.0 572.0 573.0 574.0 575.0	31.6 34.0 26.5 36.4 35.6 36.0 43.4 37.9	17.0 1 17.0 1 17.3 1 16.8 1 16.5 1 16.5 1 16.8 1 16.8 1 17.0 1 18.2 1	20 9.0 20 9.0 20 9.0 20 9.0 20 9.0 20 9.0 20 9.0 20 9.0	1.07 1.06 1.04 1.10 1.02 1.02 1.02 0.98 1.01	7.48 7.52 7.54 7.58 7.61 7.64 7.67 7.72 7.74	51551 51763 52035 52233 52435 52635 52801	96.37	144.60 144.48 144.46 144.31 144.17 144.03 143.84	88888888888888888888888888888888888888	15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0
576.0 578.0 579.0 580.0 581.0 582.0 583.0 584.0 585.0 586.0	34.3 22.8 23.2 20.7 21.3 25.9 23.2 22.2	17.8 1 21.4 1 17.9 1 16.3 1 16.9 1 17.0 1 16.8 1 17.7 1 18.2 1	20 9.0 20 9.0 20 9.0 20 9.0 20 9.0 20 9.0 20 9.0 20 9.0	0.99 1.10 1.15 1.13 1.16 1.16 1.10 1.14 1.16	7.76 7.82 7.87 7.91 7.96 8.00 8.04 8.09 8.13	53763 54079 54389 54737 55075 55353 55663 55987	85.21 106.52 160.28 157.24 176.51 171.44 141.01 157.24 164.34 200.86	143.09 143.15 143.19 143.30 143.39 143.38 143.42 143.49	88885555555555555555555555555555555555	15.0 15.0 15.1 15.1 15.1 15.1 15.1 15.1

-												
_	DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
	588.0 589.0 590.0 591.0 592.0 593.0 594.0 595.0 596.0 597.0	29.0 24.5 26.7 19.5 30.0 28.3 18.5 30.0	16.5 16.1 16.1 15.8 15.5 16.1 16.2 15.7	120 120 120 120 120 120 120 120	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.06 1.07 1.11 1.09 1.16 1.05 1.07 1.18 1.05	8.25 8.29 8.33 8.37 8.42 8.45 8.45 8.54 8.54	57111 57405 57675 58045 58285 58539 58929 59169	121.73 125.79 149.12 136.95 187.67 121.73 128.83 197.82 121.73 155.55	143.48 143.50 143.48 143.61 143.54 143.50 143.67 143.60	8.55555555	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
	598.0 599.0 600.0 601.0 602.0 603.0 604.0 605.0 606.0	14.3 27.1 16.1 32.1 21.3 25.5 24.8 21.1	14.1 14.8 14.3 15.4 15.2 15.9 16.1 16.7 15.3	120 120 120 120 120 120 120	9.0 9.0 9.0 9.0 9.0 9.0	1.09 1.22 1.06 1.20 1.03 1.14 1.10 1.11	8.66 8.73 8.77 8.83 8.86 8.91 8.95 8.99 9.03 9.07	60292 60558 61004 61228 61566 61848 62138 62480	158.25 255.64 134.92 226.22 113.62 171.44 143.04 147.09 173.47 134.92	144.02 143.99 144.24 144.14 144.23 144.23 144.23	8.55555555 8.555555 8.888	15.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1
	608.0 609.0 610.0 611.0 612.0 613.0 614.0 616.0 617.0 618.0	32,1 31,3 27,5 21,3 21,7 26,3 13,2 20,1	15.7 15.7 15.7 15.4 15.4 16.3 17.4 19.5 18.7	120 120 120 120 120 120 120 120	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.04 1.04 1.07 1.13 1.14 1.11 1.32 1.20	9.10 9.13 9.16 9.20 9.25 9.29 9.33 9.48 9.53	63198 63428 63690 64028 64360 64634 65727 66085	115.65 113.62 116.66 132.89 171.44 168.40 138.98 277.28 181.59	144.12 144.04 144.00 144.08 144.15 144.14 144.90 145.01	8.55.55 8.55.55 8.55.55 8.65	15.1 15.1 15.1 15.2 15.2 15.2 15.2 15.2
	619.0 620.0 621.0 622.0 623.0 624.0 625.0 626.0 627.0 628.0	34.6 23.7 23.5 26.3 29.8 30.5 23.4 30.0	19.9 19.4 20.1 19.8 19.8 19.8 19.8 18.7 20.1 20.1	120 120 120 120 120 120 120	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.01 1.07 1.17 1.17 1.14 1.11 1.09 1.18 1.11	9.59 9.62 9.66 9.78 9.77 9.81 9.85 9.88	66981 67287 67561 67803 68039 68347	105.50 154.20 155.21 138.98 122.75 119.70 156.22 121.73	144.65 144.68 144.66 144.60 144.53	8.5 8.6 8.6 8.6 8.6 8.6	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
	629.0 630.0 631.0 632.0 633.0 634.0 635.0 636.0 637.0 638.0	37.1 35.6 33.0 31.0 26.5 22.5 20.9 12.1	20.7 20.1 20.3 19.7 20.0 18.9 21.0 20.8 21.5	120 120 120 120 120 120 120 120	9.0 9.0 9.0 9.0 9.0 9.0 9.0	1.12 1.06 1.07 1.08 1.10 1.13 1.20 1.22 1.37	9.94 9.97 10.00 10.03 10.06 10.10 10.14 10.19 10.27 10.33	69203 69405 69623 69855 70127 70447 70791 71385	120.72 98.40 102.46 110.57 117.68 137.96 162.31 174.48 301.29 220.13	144.17 144.05 143.96 143.89 143.88 143.93 144.01 144.43	8.6 8.6 8.6 8.6 8.6 8.6 8.6	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2

DEPTH	ROP	MOB	RPM	мы	"d "c	HOURS	TURNS	ICOST	ccost	PP F	FG
639.0	31.0	22.1	120	9.0	1.13	10,36	72051	117.68	144.56	8,6 15	٠,
540.0		20.6				10.41		172.46		8.6 15	
641.0		17.2				10.45		156,22		8.6 15.	
		0 F T 1H,	# 1 L	,,,	* 1 V .4	X 0 7 7 10	72.077	100122	177107	0,0 10,	, w
IT NUMBE	R	2			CODE	116				0- 763	
TC J1	204 gain			BIZE	P 41* 1. June	12.250		ZZLES		16 16 1	
COST LOTAL HOU	25 <i>0</i>	2.66		TRIP T		3.5 17674		r RUN		122	
OTHE MOO	K (3)	æ.00		IUIAL	TORNS	1/6/4	CUr	ADTITON	1.3	B4 G0.00	00
DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP F	FG
642.0		12.8	60	10.7	0.87	0.05	197	200	15548	8.6 15.	. 3
645.0		21.2		10.7		0.15	52 7	112	3971	8.6 15	. 3
646.0		21.2		10.7		0.18	651	126	3202	8.6 15	
647.0		21.4		10.7		0.21	767	118	268 8	8.6 15	. З
648.0		16.7		10.7		0.26	948	184	2330	8.6 15.	. 3
649.0		24.9		10.7		0.30	1068	122	2054	8.6 15	. З
650,0	16.7	24.3	60	10.7	1.05	0.36	1284	219	1850	8.6 15.	. 3
651.0				10.7		0.40	1454	172	1682	8.6 15	
652.0				10.7		0.44	1669	116	1540	8.6 15.	. 3
653.0				10.7		0.47	1887	111	1421	8.6 15	. З
654.0				10.7		0.49	2071	93	1319	8.6 15.	. 3
655.0				10.7		0.52	2307	120	1233	8.6 15	Ε.
656.0				10.7		0.55	2483	89	1157	8.6 15.	. 3
657.0				10.7		0.57	2659	89	1090	8.6 15	
658.0				10.7		0.59	2813	78	1031	8.6 15.	
659.0				10.7		0.62	298 9		978.21	8.6 15.	
■ 660.0				10.7		0.65	3179	96.37	931.80	8.6 15.	3
661.0				10.7		0.67	3369	96.37	890.03	8.6 15.	. 3
662.0				10.7		0.70	359 7	115.65	853.15	8.6 15.	. 3
- 663.0				10.7		0.73	3819	112.60	819.49	8.6 15.	. 3
664.0				10.7		0.76	3979		787.39	8.6 15.	. 3
665.0				10.7		0.78	4133	78.11	757.84	8.6 15.	. 3
566.0		28.3		10.7		0.80	4273		730.36	8.6 15.	
667.0		26.0		10.7		0.82	4443		705.59	8.6 15.	
668.0		26.8		10.7	1.00	0.84	4601		682.43	8.6 15.	
669.0	37.1			10.7		0.87	4795		661. 57	8.6 15.	
670.0	45.0	26.3	120	10.7	1.00	0.89	4955	81.16	641.55	8.6 15.	. 3
671.0				10.7		0.91	5113		622.84	8.6 15.	
672.0				10.7		0.94	5271		605.33	8.6 15.	
673.0 ■ 674.0		24.9		10.7	1.00	0.96	5443		589.14	8.6 15.	
675.0	44.4 45.6				1.02	0.98	560 5		573.78	8.6 15.	
676.0				10.7		1.00	5763	80.14		8.6 15.	
677.0				10.7		1.03	5921		545.57	8.6 15.	
678.0				10.7		1.05 1.07	6065		532.45	8.6 15.	
679.0				10.7		1.08	62 03 632 9	70.00	519.95 507.95	8.6 15. 8.6 15.	
_ 680.0				10.7		1.10	6437		496.33	8.6 15.	
	on the F	newel A	A Jan 13	A U 1 /	V170	A 1 A 43	UTUI	W71/0	770:00	olo 13.	ייי י

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
681.0 682.0 684.0 685.0 686.0 687.0 688.0 689.0 690.0	52.2 55.9 45.0 54.5 43.9 52.9 53.7	30.7 32.5 32.6 34.1 34.0 33.8	120 120 120 120 120 120 120 120	10.7 10.7 10.7 10.7 10.7 10.7	1.00 1.04 1.01 1.07 1.03 1.02	1.12 1.14 1.17 1.19 1.21 1.23 1.25 1.25 1.27	6569 6707 6964 7124 7256 7420 7556 7690 7824 7970	70.00 65.38 81.16 66.95 83.18 68.98 67.97	485.59 475.46 456.38 447.85 439.39 431.65 423.93 416.51 409.40 402.69	8.6 8.6 8.6 8.6 8.6 8.6	15.4 15.4 15.4 15.4 15.4 15.4 15.4
692.0 693.0 694.0 695.0 696.0 697.0 698.0 699.0 700.0	35.3 53.7 42.4 52.2 51.4 51.4 49.3 55.4	31.2 31.6 32.2 34.3 36.4 36.3 35.0 35.4 35.2	120 120 120 120 120 120 120	10.7 10.7 10.7 10.7 10.7 10.7	1.12 1.01 1.09 1.05 1.06 1.04 1.06	1.34 1.37 1.38 1.41 1.43 1.45 1.47 1.50	8164 8368 8502 8672 8810 8950 9090 9236 9366 9538	103.47 67.97 86.23 70.00 71.01 71.01 74.05 65.94	396.73 391.09 384.99 379.46 373.83 368.42 363.21 358.22 353.27 348.83	8.6 8.6 8.6 8.6 8.6 8.6	15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4
703.0 704.0 705.0 706.0 707.0 708.0 709.0 710.0 711.0 712.0	50.0 47.4 52.2 55.4 49.3 48.6 49.3 76.6		120 120 120 120 120 120 120	10.7 10.7 10.7 10.7 10.7 10.7	1.06 1.07 1.04 1.03 1.07 1.06 1.06	1.57 1.59 1.61 1.63 1.65 1.67 1.69 1.71 1.72	9832 9976 10128 10266 10396 10542 10690 10836 10930	73.04 77.10 70.00 65.94 74.05 75.07 74.05 47.68	339.98 335.74 331.70 327.68 323.71 319.98 316.38 312.87 309.08 305.76	8.7 8.7 8.7 8.7 8.7 8.7	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
713.0 714.0 715.0 716.0 717.0 718.0 719.0 720.0 721.0 722.0	56.2 44.4 72.0 53.7 66.7 54.5 73.5	37.2 35.3 34.1 35.7 36.6 35.7 35.5 34.7 35.9	120 120 120 120 120 120 120	10.7 10.7 10.7 10.7 10.7 10.7	1.02 1.08 0.96 1.05 0.98 1.03 0.94 1.05	1.76 1.77 1.80 1.81 1.83 1.84 1.86 1.88	11182 11310 11472 11572 11706 11814 11946 12044 12182 12322	64.92 82.17 50.72 67.97 54.78 66.95 49.71 70.00	302.27 299.02 296.09 292.82 289.86 286.81 283.99 281.02 278.38 275.82	8.7 8.7 8.7 8.7 8.7 8.7	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
723.0 724.0 725.0 726.0 727.0 728.0 729.0 730.0 731.0 732.0	60.0 63.2 55.4 40.9 70.6 76.6 52.9	33.9 35.6 35.1 36.5 32.8 35.2 35.3 34.7 33.4 35.1	120 120 120 120 120 120 120 120	10.7 10.7 10.7 10.7 10.7 10.7	1.01 0.99 1.04 1.09 0.96 0.96 0.93 1.02	1.96 1.97 1.99 2.01 2.03 2.04 2.06 2.07 2.09	12610 12730 12844 12974 13150 13252 13354 13448 13584 13692	60.87 57.82 65.94 89.27 51.74 51.74 47.68 68.98	274.24 271.67 269.13 266.74 264.67 262.22 259.83 257.45 255.35 253.15	8.7 8.7 8.7 8.7 8.7 8.7 8.7	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5

.	DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	P P	FG
	733,0 734,0 735,0 736,0 737,0 738,0 739,0 740,0 742,0 743,0	61.0 43.4 42.9 31.6 46.8 39.6 37.9 51.4	35.0 35.3 34.8 33.0 33.4 35.5 36.9 38.0	120 120 120 120 120 120 120	10.7 10.7 10.7 10.7 10.7 10.7 10.7	1.00 1.10 1.09 1.16 1.06 1.12 1.15	2.12 2.14 2.16 2.18 2.22 2.24 2.26 2.29 2.33 2.34	13804 13922 14088 14256 14484 14638 14820 15010 15290 15400	56.81 59.85 84.20 85.21 115.65 78.11 92.31 96.37 71.01 55.79	248.96 247.21 245.50 244.15 242.44 240.91 239.45	8.7 8.7 8.7 8.7 8.7 8.7	15.5 15.6 15.6 15.6 15.6 15.6 15.6 15.6
	744.0 745.0 746.0 747.0 748.0 750.0 750.0 751.0 752.0 753.0	37.5 40.0 62.1 28.6 62.1 102.9	33.8 36.6 36.3 34.9 34.2 20.0 24.0 28.0	120 120 120 120 120 120 120 120	10.7 10.7 10.7 10.7 10.7	1.12 1.13 1.00 1.21 0.99 0.73 0.80 0.79	2.36 2.39 2.42 2.43 2.47 2.49 2.50 2.51 2.52	15552 15744 15924 16040 16292 16408 16478 16558 16626 16691	97.39 91.30 58.84 127.82 58.84 35.51 40.58 34.78	232.82 231.51 230.18 228.56 227.62 226.06 224.31 222.64 220.95 219.27	8.7 8.7 8.7 8.7 8.7 8.7	15.6 15.6 15.6 15.6 15.6 15.6 15.6
	754.0 755.0 756.0 757.0 758.0 759.0 760.0 761.0 762.0 763.0	44.4 257.1 90.0 120.0 180.0 249.2	33.0 31.5 35.1 33.6 30.3 31.0 32.5 34.8	120 120 120 120 120 120 120 120	10.7 10.7 10.7 10.7 10.7 10.7	0.66 1.05 1.09 0.59 0.85 0.78 0.68	2.53 2.54 2.56 2.58 2.59 2.60 2.61 2.66	16751 16787 16945 17107 17135 17215 17275 17315 17344 17674	18.26 80.14 82.17 14.20 40.58 30.43 20.29	205.69	8.7 8.7 8.7 8.7 8.7 8.7	15.6 15.6 15.6 15.6 15.6 15.6 15.6
	IT NUMB TC J22 OST OTAL HO	852	3 20.00 0.90	9	IADC (BIZE FRIP T		517 12.250 3.7 37 67	NO2	TERVAL ZZLES RUN IDITION			787.0 6 16 24.0
_	DEPTH	ROP	MOB	RPM	мы	"d "c	HOURS	TURNS	ICOST	CCOST	pР	FĢ
	764.0 766.0 768.0 770.0 771.0 772.0 773.0 774.0 775.0 776.0	20.0 47.4 24.1 8.4 62.1 225.0 26.5 17.8 10.3 28.3	34.0 19.2 1.9 8.9 13.1 23.7 32.6 32.4	70 70 70 70 70 70 70 70	10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	0.91 0.94 0.75 0.60 0.37 0.97 1.17	0.05 0.09 0.18 0.41 0.43 0.43 0.47 0.53 0.63	210 387 735 1739 1806 1825 1984 2219 2628 2776	183 77 151 436 59 16 138 205 355 129	22215 7456 4534 3363 2950 2624 2376 2178 2026 1880	8.7 8.7 8.7 8.7 8.7 8.7	15.7

DEPTH	ROP WOE	RPM MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP FG
780.0 781.0 785.0 3	67.9 31.1 23.1 34.2 14.1 32.8 360.0 24.2	? 70 10.7 8 70 10.7 ? 70 10.7	1.11	0.68 0.81 0.88 0.89 0.90	2838 3382 3679 3726 3767	54 158 2 59 10 18	1750 1469 1402 1149 1054	
BIT NUMBER CHRIS RC47 COST TOTAL HOUR	76 17600.00	SIZE TRIP	TIME	9.875 3.7 819	NOZ:	ZLES		0- 796.0 14 14 14 9.0 B2 G0.000
DEPTH	ROP WOI	RPM MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP FG
787.2 787.6 787.8 788.0 788.6	45.0 12.1 38.9 13.0 51.4 12.3 42.4 11.9 69.7 13.2	70 10.7 70 10.7 70 10.7	0.79	0.00 0.01 0.02 0.02 0.03	19 62 78 98 134	81 94 71 86 52	155643 51944 38975 31198 19518	8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7
789.0 789.4 789.8 790.0 790.2 790.4 790.6 790.8 791.0 791.2	60.0 20.3 57.6 18.8 60.0 19.1 45.0 18.5 21.2 17.2 45.0 17.0 34.3 16.7 51.4 16.0 60.0 16.3 40.0 16.0	70 10.7 70 10.7 70 10.7 70 10.7 70 10.7 70 10.7 70 10.7 70 10.7	0.77 0.76 0.83 1.00 0.81 0.87 0.77	0.04 0.05 0.05 0.06 0.07 0.07 0.08 0.08 0.08	162 191 219 238 278 296 321 337 351 372	61 63 61 81 172 81 107 71 61	15627 13033 11180 10440 9798 9226 8720 8265 7854 7485	8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7
791.8 792.2 792.6 792.8 793.0 793.4 793.6 793.8	55.4 16.1 68.6 17.1 65.5 16.8 75.8 17.2 60.0 16.8 51.4 16.9 57.6 16.4 60.0 16.8 55.4 16.9	70 10.7 70 10.7 70 10.7 70 10.7 70 10.7 70 10.7 70 10.7	0.71 0.72 0.69 0.74 0.78 0.74 0.74	0.09 0.10 0.10 0.11 0.11 0.12 0.12 0.13 0.13	412	66 53 56 48 61 71 63 61 66	6556	
794.4 794.6 794.8 795.0 795.4 795.6 795.8 796.0	55.4 16.8 48.0 17.0 36.0 16.3 60.0 16.7 55.4 17.5 8.9 16.8 42.4 16.7 48.0 16.4	78 10.7 70 10.7 70 10.7 70 10.7 70 10.7 70 10.7	0.79 0.85 0.74 0.77 1.20 0.82	0.14 0.15 0.15 0.16 0.16 0.19 0.19	602 620 643 657 687 782 802 819	66 76 101 61 66 411 86 76	4275 4165 4060 3960 3775 3697 3615 3536	8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7 8.7 15.7

: }

3 IADC CODE 951.0 RIT NUMBER 517 INTERVAL 796.0-HTC J22 SIZE 12,250 16 16 16 NOZZLES COST 0.00 TRIP TIME BIT RUN 3.8 155.0 JOTAL HOURS 6.65 TOTAL TURNS 28931 CONDITION T5 B4 G0.125 ICOST pp DEPTH ROP WOB RPM MW "d"c **HOURS** TURNS FG CCOST 87.8 797.0 6.2 70 10.7 0.49 0.54 2428 41.59 634,19 8.7 15.7 0.55 798.0 163.6 30.2 70 10.7 0.55 2454 8.7 15.7 22.32 610.66 799.0 196.4 20.6 70 10.7 0.45 0.55 2475 18.60 588.73 8.7 15.7 138.5 25.5 800.0 70 10.7 0.57 0.56 2505 8.7 15.7 26.38 568.64 70 10.7 0.54 802.0 189.5 36.4 0.57 2550 19.27 532.02 8.7 15.7 803.0 171.4 38.3 70 10.7 0.58 0.58 8.7 15.7 2574 21.30 515.55 804.0 133.3 35.5 70 10.7 0.63 0.58 2606 27.39 500.29 8.7 15.7 116.1 21.7 70 10.7 8.7 15.7 805.0 0.590.592642 31,45 486.08 180.0 10.6 70 10.7 0.40 806.0 0.60 2665 20.29 472.38 8.7 15.7 70 10.7 8.7 15.8 807.0 163.6 15.2 0.46 0.60 2691 22.32 459.52 8.7 15.8 808.0 97.3 14.2 70 10.7 0.57 0.61 2734 37,53 447,80 809.0 85.7 12.6 70 10.7 0.58 0.63 2783 42.61 436.85 8.7 15.8 810.0 58.1 22.1 70 10.7 0.76 0.64 2855 62.90 427.01 8.7 15.8 811.0 51.4 27.9 70 10.7 0.84 0.66 2937 71.01 417.88 8.7 15.8 78.3 27.1 812.0 70 10.7 0.72 0.68 2991 46.66 408.60 8.7 15.8 813.0 180.0 26.5 70 10.7 0.50 8.7 15.8 0.68 3014 20.29 399.13 257.1 22.5 10.7 0.39 814.0 70 0.68 3030 389.97 8.7 15.8 14.20 8.7 15.8 815.0 10.7 0.49 381.51 138.5 14.3 70 0.69 3061 26.38 70 10.7 0.38 816.0 189,5 9.1 0.70 8.7 15.8 19.27 3083 373,28 817.0 85.7 7.3 70 10.7 0.51 0.71 3132 42.61 365.93 8.7 15.8 818.0 128.6 12.7 70 10.7 0.49 0.72 3164 28,40 358,59 8.7 15.8 819.0 54.5 16.4 70 10.7 0.72 0.74 3241 66.95 352.39 8.7 15.8 70 10.7 0.59 820.0 85.7 14.1 0.75 3290 42.61 345.93 8.7 15.8 821.0 76.6 15.6 70 10.7 0.63 0.76 3345 47.68 339.85 8.7 15.8 822.0 73.5 14.6 70 10.7 0.63 0.77 3402 49.71 334.04 8.7 15.8 823.0 102.9 12.2 70 10.7 0.53 0.78 3443 35.51 8.7 15.8 328.19 824.0 124.1 13.7 70 10.7 0.51 0.79 3477 29.42 8.7 15.8 322,44 825.0 97.3 16.4 70 10.7 0.59 0.80 3520 37.53 317.07 8.7 15.8 828.0 58.8 21.1 70 10.7 0.75 0.85 3735 62.13 303.41 8.7 15.8 829.0 59.0 20.6 10.7 0.74 8.7 15.8 70 0.87 3806 61.88 299.17 830.0 52.2 20.6 70 10.7 0.77 0.89 8.7 15.8 3886 70.00 295.22 831.0 65.5 20.3 70 10.7 0.71 8.7 15.8 0.90 3950 55.79 291.16 832.0 69.2 20.4 70 10.7 0.70 0.92 52.75 287.19 8.7 15.8 4011 833.0 52.9 19.9 70 10.7 0.76 0.94 4090 68.98 283.61 8.7 15.8 834.0 39.6 20.4 70 10.7 0.83 0.96 4197 92.31 280.53 8.7 15.8 835.0 49.3 19.7 70 10.7 0.77 0.98 4282 74.05 277.25 8.7 15.8 837.0 1.04 35.3 21.7 70 10.7 0.88 103.47 271.90 4520 8.7 15.8 1.07 838.0 29.5 22.1 70 10.7 0.92 4662 123.76 269.66 8.7 15.8 839.0 17.7 20.1 70 10.7 1.02 1.13 4899 205.93 268.71 8.7 15.8 0.79 840.0 51.4 22.4 70 10.7 1.15 4981 71.01 265.80 8.7 15.8 55.4 21.3 841.0 70 10.7 0.76 1.17 5056 65,94 262,90 8.7 15.8 842.0 70.6 27.5 70 10.7 0.75 1.18 5116 51,74 259,89 8.7 15.8 843.0 34.0 26.3 70 10.7 0.93 1.21 5240 107.53 257.74 8.7 15.8

DEPTH	ROP	WOB	RPM	мы	"d "c	HOURS	TURNS	icost	ссоят	РP	FG
844.0 845.0 846.0 847.0 848.0 849.0 850.0 851.0 852.0	65.5 64.3 32.4 49.3 18.9 22.5 19.5 24.7	29.1 27.8 31.6 28.2 27.8 28.3 29.1 30.5 31.8	70 70 70 70 70 70 70	10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	0.77 0.81 0.96 0.85 1.10 1.07 1.12	1.23 1.24 1.26 1.29 1.31 1.36 1.40 1.46 1.50	5643 5865 6052	55.79 56.81 112.60 74.05 192.74 162.31 187.67 148.11	245.40 244.72 243.66	8.7 8.7 8.7 8.7 8.7 8.7	15.8 15.9 15.9 15.9 15.9 15.9 15.9
854.0 856.0 857.0 858.0 859.0 860.0 861.0 862.0 863.0 864.0	40.0 35.6 8.0 20.9 16.6 15.9 15.4 56.2	31.6 32.5 31.4 33.7 33.9 35.0 33.4 33.5 31.4	70 70 77 80 80 80 80	10.7 10.7 10.7 10.7 10.7 10.7 10.7	0.94 0.97 1.42 1.17 1.25 1.24 1.25 0.88	1.59 1.64 1.67 1.80 1.84 1.90 1.97 2.03 2.05	7054 7172 7748 7978 8267 8570	102.46 456.50 174.48 220.13 230.28 237.38 64.92	236.63 235.05 237.63 236.90 236.71 236.64	8.7 8.7 8.7 8.7 8.7 8.7	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
865.0 866.0 867.0 868.0 870.0 871.0 872.0 873.0 874.0 876.0	31.0 60.0 85.7 60.0 54.5 31.3 57.1 45.6	31.1	80 80 80 80 80 80 80	10.7 10.7 10.7 10.7 10.7 10.7 10.7	1.01 0.86 0.76 0.86 0.89 1.04 0.89 0.96	2.08 2.11 2.13 2.14 2.18 2.19 2.23 2.24 2.27 2.54	9899 10 0 04	117.68 60.87 42.61 60.87 66.95 116.66 63.91	222.70 221.13 220.08 218.54 217.18	8.7 8.7 8.7 8.7 8.7 8.7	15.9 15.9 15.9 15.9 15.9 15.9 15.9 15.9
877.0 878.0 879.0 880.0 881.0 882.0 883.0 884.0 885.0 886.0	18.4 17.1 16.6 13.0 18.0 25.2	35.6 33.1 32.9 32.3 30.2 25.2	80 80 80 80 80 80 80	10.7 10.7 10.7 10.7 10.7 10.7	1.20 1.22 1.22	2.62 2.69 2.74 2.80 2.86 2.94 2.99 3.03 3.13	12021 12282 12563 12853 13221 13487 13678 14128	238.39 198.83 214.05 220.13 279.99 202.89 145.07 351.00	223.32 223.46 223.23 223.14 223.12 223.63 223.45 223.75 223.88 223.41	8.7 8.7 8.7 8.7 8.7 8.7	15.9 15.9 15.9 15.9 15.9 16.0 16.0
887.0 888.0 889.0 890.0 891.0 892.0 893.0 894.0 895.0	23.1 24.2 19.9 29.0 26.7 26.1 14.0 18.3	21.7 22.4 21.7 20.3	70 70 70 70 70 70 70	10.7 10.7 10.7 10.7 10.7 10.7 10.7	0.96 0.97 1.02 0.92 0.93 0.90 1.04	3.27 3.31 3.35 3.40 3.44 3.47 3.51 3.58 3.64 3.69	14893 15067 15278 15423 15580 15741 16042 16272	158.25 151.15 183.61 125.79 136.95 139.99 261.73 199.85	224.39 223.82 223.20 222.87 222.05 221.34 220.67 221.01 220.83 220.69	8.7 8.7 8.7 8.7 8.7 8.7 8.7	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0

MW "d"c DEPTH ROP WOB RPM HOURS TURNS ICOST CCOST pр FG 899.0 70 10.7 1.07 3.95 11.6 16.2 17590 314,48 222,91 8.7 16.0 8.7 16.0 11.8 21.4 70 10.7 1.14 4.04 17947 310.42 223.59 900.0 8.7 16.0 17.5 20.5 70 10.7 1.03 4,09 18188 208.98 223.48 901.0 70 10.7 1.14 8.7 16.0 902.0 10.3 19.3 4.19 18594 353.03 224.47 70 10.7 1.23 4.29 9,9 25.4 8.7 16.0 903.0 19016 367,23 225,56 70 10.7 1.12 8.7 16.0 16.5 26.3 904.0 4.35 19270 221.15 225.53 70 10.7 1.20 4.44 905.0 10.8 24.2 19660 338.82 226.38 8.7 16.0 18.1 21.7 70 10.7 1.04 8.7 16.0 906.0 4.50 19892 201.87 226.20 8,4 23.9 70 10.7 1.26 907.0 4.62 20391 434.18 227.74 8.7 16.0 28.8 26.3 908.0 70 10.7 0.97 4.65 20537 126.81 227.00 8.7 16.0 909.0 24.3 23.9 70 10.7 0.99 4.69 20710 150,14 226,43 8.7 16.0 32.7 24.7 70 10.7 0.93 910.0 4.72 8.7 16.0 20838 111,59 225,60 24.5 24.3 4.77 8.7 16.0 70 10.7 0.99 911.0 21010 149.12 225.05 8.7 16.0 912.0 14.9 25.6 70 10.7 1.13 4.83 21292 245.50 225.20 8.7 16.0 26.3 24.6 70 10.7 0.98 913.0 4.87 21452 138.98 224.59 180.0 24.7 70 10.7 0.49 8.7 16.0 914.0 4.88 21475 20.29 223.15 36.7 26.2 70 10.7 0.91 8.7 16.0 915.0 4.90 21590 99.42 222.28 18.2 27.7 70 10.7 1.11 8.7 16.0 916.0 4.96 21821 200.86 222.13 17.1 26.8 70 10.7 1.11 8.7 16.0 917.0 5.02 22066 213.03 222.07 918.0 26.3 27.3 70 10.7 1.01 5.06 22225 138,98 221,50 8.7 16.0 919.0 10.3 27.9 70 10.7 1.26 5.15 22631 353.03 222.40 8.7 16.0 920.0 16.5 28.0 70 10.7 1.14 5.21 22886 221.15 222.39 8.7 16.0 921.0 70 10.7 1.24 11.4 28.5 8.7 16.0 5.30 23254 320.56 223.05 922.0 23.1 27.4 5.34 70 10.7 1.04 23436 158.25 222.62 8.7 16.1 70 10.7 1.09 23646 182.60 222.35 923.0 20.0 28.0 5.39 8.7 16.1 8.7 16.1 924.0 18.2 27.7 70 10.7 1.11 5.45 23877 200.35 222.21 17.8 27.3 925.0 70 10.7 1.11 8.7 16.1 5.50 24112 204.92 222.09 19.6 27.3 926.0 70 10.7 1.08 8.7 16.1 5,56 24327 186.66 221.86 927.0 27.9 26.7 70 10.7 0.99 5.59 24478 130.86 221.28 8.7 16.1 928.0 16.2 28.0 70 10.7 1.14 5.65 24737 225.21 221.30 8.7 16.1 929.0 16.4 27.6 70 10.7 1.13 24993 223.18 221.31 5.71 8.7 16.1 930.0 22.8 28.6 70 10.7 1.06 5,76 25178 160.28 220.93 8.7 16.1 931.0 35.0 26.5 70 10.7 0.93 5.79 25298 104,49 220,19 8.7 16.1 932.0 40.9 24.0 70 10.7 0.86 5.81 89.27 219.38 8.7 16.1 25400 45.0 28.3 934.0 70 10.7 0.88 5.86 25587 8.7 16.1 81.16 217.67 935.0 30.8 29.7 70 10.7 0.99 25724 118.69 217.06 5.89 8.7 16.1 936.0 43.4 29.4 70 10.7 0.90 8.7 16.1 5.91 25820 84.20 216.25 937.0 13.7 31.1 70 10.7 1.22 5.98 26126 265.78 216.55 8.7 16.1 938.0 22.8 31.9 70 10.7 1.09 26310 160.28 216.21 6.03 8.7 16.1 939.0 26.1 31.1 70 10.7 1.05 8.7 16.1 6.07 26471 139.99 215.76 940.0 18.8 31.1 70 10.7 1.13 6.12 26694 193.76 215.63 8.7 16.1 941.0 14.2 32.2 70 10.7 1.22 6.19 26989 256.65 215.87 8.7 16.1 8.7 16.1 27.1 32.1 27145 134.92 215.39 942.0 70 10.7 1.05 6.23 70 10.7 0.96 944.0 34.0 28.8 6.29 27392 107.53 214.14 8.7 16.1 945.0 18.9 29.4 70 10.7 1.11 8.7 16.1 6,34 27614 192.74 214.01 70 10.7 1.01 946.0 27.5 29.0 6.37 27766 132.89 213.55 8.7 16.1 70 10.7 0.99 947.0 29.3 28.1 8.7 16.1 6.41 27910 124.78 213.04 948.0 22.8 28.2 70 10.7 1.05 6.45 28094 160.28 212.74 8.7 16.1 14.9 29.5 949.0 70 10.7 1.18 6.52 28375 244.48 212.92 8.7 16.1 950.0 16.7 30.0 70 10.7 1.15 6.58 28626 218.11 212.95 8.7 16.1

DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST PP FG 951.0 13.8 31.1 70 10.7 1.22 6.65 28931 264.77 213.24 8.7 16.1

(d), COMPUTER DATA LISTING : LIST B

INTERVAL ,	1 1 1 2	10m averages.
DEPTH		Well depth, in metres.
ROP	. ,	Rate of penetration, in metres per hour.
BIT RUN		Depth interval drilled by the bit, in metres.
HOURS		Cumulative bit hours. The number of hours that the bit has actually been 'on bottom', recorded in decimal hours.
TURNS	: , : ,	Cumulative bit turns. The number of turns made by the bit, while actually 'on bottom'.
TOTAL COST		Cumulative bit cost, in A dollars.
ICOST	t (t t	Incremental cost per metre, calculated from the drilling time, in A dollars.
CCOST	s	Cumulative cost per metre, calculated from the drilling time, in A dollars.
IC	: 1 : 1	ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, (and therefore uneconomic), this should change

from negative to positive.

TT NUMBER TC OSC3AJ+; COST TOTAL HOURS	0H" 6S	SI .00 TR	DC CODE ZE IP TIME TAL TURNS	26.000 2.3	NOZZLES Bat pun		7.0- 267.0 20 20 20 140.0 1 81 60.000	0
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	COST	ccost I-0	
150.0 160.0 170.0	55.0 40.3 44.8	23.0 33.0 43.0	0.42 0.67 0.89	2509 3999 5337	10833.71	56.40 20.69 31.46	328.29 -	
	56.6 72.4 73.6 52.8 47.7 29.3	53.0 73.0 83.0 93.0 103.0 113.0 140.0	1.48 1.67 1.88	6397 8056 8871 10007 11264 13314 44190	13302.87	54.52 50.47 49.61 59.19 76.49 24.78 76.05	182.23 - 166.25 - 155.81 - 148.11 - 146.05 -	
DIT NUMBER HTC R1 OST OTAL HOURS	4978	.00 TR	DC CODE ZE IP TIME TAL TURNS	17.500 3.0	NOZZLES BIT RUN		7.0- 641.0 20 20 20 374.0 2 B1 G0.000	0
DEPTH	ROP	MUS TIG	HOURS	TURNS	TOTAL COST	TCOST	ccost i-c	С
270.0 280.0 290.0	57.2 76.4 69.9	13.0	0.05 0.18 0.33	315 1137 2167	16603.31	64 48 52.24	1277 -	
320.0	58.8 71.7 62.0 66.5 46.6 42.0 48.0 38.1 36.0		0.50 0.64 0.00 0.95 1.16 1.40 1.61 1.87 2.15	3391 4395 5556 6638 8184 9898 11328 13289 15291 17087	18255.71	52.08 50.91 58.91 54.88 78.42 36.94 76.08 95.90	424.55 - 355.56 - 307.83 - 276.41 - 253.58 - 234.49 - 221.04 - 210.46 -	***
400.0 410.0 420.0 430.0 440.0 450.0 460.0 470.0 480.0 500.0	39.7 42.6 36.8 37.5 43.4 33.3 29.4 37.7 34.5 31.9	133.0 143.0 153.0 163.0 173.0 193.0 203.0 213.0	2.65 2.89 3.16 3.65 3.65 4.30 4.56 4.85 5.48	18902 20592 22550 24472 25992 27973 30219 31972 33882 38024	26471.36 (27464.50 (28439.38 (29280.21 (30376.82 (31619.52 (32589.18 (33646.23 ()	92.08 35.72 99.31 97.49 34.08 09.66 24.27 76.97 05.71	185.11 179.51 - 174.47 - 169.25 - 165.99 - 163.83 -	and a second and a

鴨。

一、一、一、一种学学

DEPTH	ROP	RIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost :	r-c
510.0 520.0 530.0 540.0 550.0 550.0 570.0 580.0 590.0	33.3 32.5 30.6 36.0 25.9 43.4 32.7 33.4 22.8	243.0 253.0 263.0 273.0 283.0 293.0 303.0 313.0 323.0	5.78 6.09 6.41 6.69 7.08 7.30 7.61 7.91 8.33 8.77	40004 42035 44191 46023 48569 50082 52233 54389 57405 60558	37033.61 38157.76 39350.75 40364.18 41773.09 42610.01 43725.90 44819.47 46349.23 47948.36	109.56 112.41 119.30 101.34 140.89 83.69 111.59 109.36 152.98	152,40 150,82 149,62 147,85 147,61 145,43 144,31 143,19 143,50 143,99	
610.0 620.0 630.0 640.0 641.0	25.1 22.2 28.5 22.6 23.4	343.0 353.0 363.0 373.0 374.0	9.16 9.62 9.97 10.41 10.45	63428 66677 69203 72391 72699	49404.08 51052.22 52333.46 53950.48 54106.71	145.57 164.81 128.12 161.70 156.22		÷ ÷ ÷ ÷
BIT NUMBER TC J1 OST TOTAL HOURS	2566 2	.00 TR	DC CODE ZE IP TIME TAL TURNS	116 12.250 3.5 17674	NOZZLES BIT RUN		1.0- 76; 16 16 12; 3 84 G0;	16 2.0
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
650.0 660.0 670.0 680.0 690.0	25.2 34.6 40.5 48.6 51.9	9.0 19.0 29.0 39.0 49.0	0.36 0.65 0.09 1.10 1.29	1284 3179 4955 6437 7824	16650.21 17704.22 18605.34 19356.25 20060.66	145 105.40 90.08 25.17 70.39	1850 931.80 641.55 496.33 409.40	
710.8 720.0 730.0 740.0 750.0	46.7 49.0 59.6 51.3 46.1 49.0 90.4 54.2	59.0 49.0 79.0 89.0 99.0 109.0 119.0	1.50 1.71 1.88 2.07 2.29 2.49 2.60 2.66	9366 10836 12044 13448 15010 16478 17275 17674	20342.79 21588.67 22200.80 22912.94 23705.22 24449.82 24854.00 25056.33	78,21 74,53 61,27 71,21 79,23 74,46 40,42 67,44	281.02 257.45 239.45 224.31 208.86	
IT NUMBER HTC J22 COST OTAL HOURS	8 5 20	.00 TR	DC CODE ZE IP TIME TAL TURNS	517 12.250 3.7 3767	NOZZLES BIT RUN		3.0- 78' 16 16 2 1 B1 G0.	16 4.0
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	tcost	CCOST	I-C
770.0 780.0	16.9 25.6	7.0 17.0	0.41 0.81	1739 3382	23544.11 24973.12	216 143	336 3 1469	1229 1998

,	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
	787.0	76.4	24.0	0.90	3767	253 07 .89	48	1054	•••
	T NUMBER			DC CODE		INTERVA	_ 78'		
	RIS RC476 ST		oo TD	ZE IP TIME	9.875	NOZZLES		14 14	9.0
	TAL HOURS			TAL TURNS		OTI KOM	т ис	n ao ch	
- "		•		· remot	1.6	the section of the se	.514	ve Arta te te i	0.00
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	IC
	790.0	59 0	"7 n	0.06	סמפ	31 319 .35	69	10440	
				0.00					
	* / ** * **	142 1	, , ,	O I II. O	13.2.7	W. V. William J. Co. A.	43.4	(.) (.) (.)	
_									
T	T NUMBER		3 IA	DC CODE	517	Z INTERVAL	79	6.0- 95	11.0
] J22		SI	ZE	12.25	NOZZI ES		16 16	16
£09		0		IP TIME	3.8	BIT RUN		1.5	55.0
0.	TAL HOURS	6	.65 TO	TAL TURNS	28931	t compitio	T MC	5 B4 G0.	125
_									
	DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	TOOST	CCOST	I-0
	800,0	134.2	28.0	0.56	2505	15922.04	27,22	568.64	***
_		120.0	38.0	0.64	2855	16226.38	30.43	427.01	
	820.0	96.5	48.0	0.75	3290	16604.76	37,84	345,93	****
-	0.088	70.5	58.0	0,8 9	3886	17122,89	51.81	295.22	•~•
_	840.0	38.4	68.0	1.15	4981		95.15	265.80	
	850.0	39.2	79.0	1.40	6052	19005.70	93.13	243,66	+429
	860.0	20.0	88.0	7.70	8267	20830,49	182.50	236.71	
	870.0	36.7	28.0	2.13	9574	21824.84	99,42	222.70	***
		16.1	108.0	2.80	12563	24099.52	227.47	223.14	-4-
_	890.0	16.6		3.40	15278	262 98 .32	219.88	222.87	****
	900.0	15.7	128.0	4,04	17947	286 19 .37	232,10	223.59	4.
	910.0	14.5	138.0	4.72	20838	31133.17	251.38	225.60	.4.
	920.0	20.5	148.0	5.21	22986	32913.52	178.04	222,39	****
_	930.0	18.3	158.0	5.76	25178	34906.39	199.29	220.93	med
	940.0	27.7	168.0	6.12	26694	36225.17	131.68	215.63	***
	950.0	21.7	178.0	6.58	28626	37905,09	167.99	212.95	
_	951.0	13.8	179.0	6.65	28931	381 69 .86	264.77	213.24	·ţ•

(e), COMPUTER DATA LISTING : LIST C

INTERVAL		10m averages.
DEPTH	: •	Well depth, in metres.
FLOW RATE	ŧ 1	Mud flow into the well, in gallons per minute.
PSP		Pump pressure, in pounds per square inch.
PBIT	; i	Bit pressure drop, in pounds per square inch.
%PSP	t i	Percentage of surface pressure dropped at the bit.
Н.Н.Р	t 2	Bit hydraulic horsepower.
HHP/SQ IN. , , ,		Bit hydraulic horsepower per square inch of bit diameter.
IMPACT FORCE		Bit impact force, in foot-pounds per second squared.

JET VELOCITY Mud velocity through the hit nozzles, in metres per second.

RIT NUMBER ITC OSC3AJ- COST TOTAL HOURS	OH"∂S+ n	SI:	DC CODE ZE IP TIME TAL TURNS	26,000 2,3 21678	NOZZ BIT	LES RUN		20 20 140.0
DEPTH	FLOW RATE	PSP	TIRT	ХРSР	HHP	HHP/ sqin	IMPACT FORCE VE	
	634 956 978		376.1 854.3 893.8	94.0 81.9 67.3	139 476 510		62 4 1418 148 4	67 101 104
180.0 200.0 210.0 220.0 230.0 240.0 267.0	974 976 986 976 983 976 500			66.0 66.7 65.7 65.7 65.7 64.7 36.6	504 508 523 508 518 507 68		1472 1479 1509 1480 :500 1478 388	103 104 103 104 103 103
BIT NUMBER HTC R1 COST TOTAL HOURS	4978	SI: TR		17.500 3.0	NOZZ BIT	LES RUN	267.0- 20 T2 B1	20 20 374.0
DEPTH	FLOW RATE	PSP	PRIT	XPSP	with	HHP/ soin	IMPACT FORCE VE	
270.0 280.0 290.0	708 920 915		781.7 809.6 801.2	53.4 54.9 51.9	414 435 428		1298 1344 1330	96 97 9 7
300.0 310.0 320.0 330.0 340.0 350.0 360.0 370.0 380.0 390.0	913	1546.8 1560.3	808.1 798.0 790.5 802.2 820.8 809.7 828.8 819.5 914.3 908.5	51.8 51.4 51.4 51.4 51.6 51.6 51.7 52.7	433 425 419 429 444 435 450 443 521		1342 1325 1312 1332 1363 1344 1376 1361 1518 1508	97 97 96 97 98 99 104 103
400.0 410.0 420.0 430.0 440.0 450.0 450.0 470.0 480.0 500.0	976 975 980 976 978 970 975 966 978	1753.1	911.1 908.9 919.1 922.2 926.4 911.2 924.4 920.6 903.0 935.2	52.3 52.0 52.2 52.5 52.4 52.3 52.2 51.9 51.9	519 517 525 525 529 516 524 509 533	2.16 2.19 2.19 2.19 2.14 2.19 2.19 2.12 2.12	1513 1509 1526 1531 1538 1535 1538 1528 1499 1553	103 104 103 104 103 104 103 102 104

DEPTH	FLOW RATE	28 2	PBIT	%P 5P	НР	HHP/	EMPACT FORCE VEL	
510.0 520.0 530.0 540.0 550.0 560.0 570.0 580.0 590.0	976 972 973 968 970 975 980 976 967 974	1801.5 1794.5 1813.8 1809.6 1808.4 1835.9 1855.2 1854.4 1839.7	932.2 924.1 926.8 917.8 920.7 930.7 940.2 932.7 915.8 927.5	51.7 51.5 51.1 50.7 50.9 50.7 50.7 50.3 49.8 49.9	531 524 526 519 521 538 538 531 517	2.21 2.18 2.19 2.16 2.17 2.20 2.24 2.21 2.15	1548 1534 1539 1524 1528 1545 1541 1548 1520 1540	103 103 103 103 103 103 104 103 103
610.0 620.0 630.0 640.0 641.0	981 979 972 976 976	1883.1 1871.3 1858.9 1868.3 1869.0	941.8 937.5 925.3 932.3 932.7	50.0 50.1 49.8 49.9 49.9	539 535 525 531 531	2.24 2.23 2.18 2.21 2.21	1563 1556 1536 1548 1548	104 104 103 103 103
IT NUMBER TC J1 COST TOTAL HOURS		. 00 7	ADC CODE SIZE RIP TIME TOTAL TURNS	12.250 3.5	XOX T T &	ZLES RUN	641.0- 16 T3 B4 G	16 16 122.0
DEPTH	FLOW RATE	PSP	PBIT	%P5P	HHP	HHP∕ ⊝ain	IMPACT FORCE VEL	
650.0 660.0 670.0 680.0 690.0	808 813 820 813 819	2164.4 2846.6 2849.7 2858.4 2857.7	1856.3 1866.4 1900.4 1870.1 1893.9	85.8 65.6 66.7 65.4 66.3	87 6 885 70 9 887 904	7.43 7.51 7.71 7.53 7.67	19 72 198 3 201 9 198 7 2012	134 135 136 135 136
700.0 710.0 720.0 730.0 740.0 750.0 760.0 763.0	821 815 818 818 820 820 820	2895.6 2867.7 2875.9 2855.4 2860.7 2854.7 2901.0 2877.3	1904.8 1879.4 1893.8 1890.3 1901.8 1901.4 1908.2 1884.0	65.8 65.5 65.9 66.2 66.5 66.6 65.8	912 894 904 902 910 910 913	7.74 7.59 7.67 7.65 7.72 7.72 7.61	2024 1977 2012 2008 2021 2020 2027 2002	136 135 136 135 136 136 136
BIT NUMBER TC J22 OST TOTAL HOURS	852 0	.00 T	ADC CODE SIZE RIP TIME TOTAL TURNS	517 12.250 3.7 3767	NOZ BIT	ERVAL ZLES RUN DITION	763.0- 16 T1 B1 G	16 16 24.0
	FLOW RATE	PSP	PBIT	%PSP	ннр	HHP/ sqin	IMPACT FORCE VEL	JET OCITY
770.0 780.0	821 808	2707.6 2833.9		70.4 65.1	913 870	7.75 7.38	2025 1961	136 134

DEPTH	FLOW RATE	P SP	рвіт	%PSP	ннр	HHP/ sqin	IMPACT FORCE VE	JET ELOCITY
787.0	756	2603.7	1615.1	62.0	712	6.04	1716	125
BIT NUMBER HRIS RC47 OST TOTAL HOUR	17600	.00 S	ADC CODE IZE RIP TIME OTAL TURNS	4 9.875 3.7 819	NOZ BIT	ERVAL ZLES RUN DITION		796.0 4 14 14 9.0 G0.000
DEPTH	FLOW RATE	PSP	PBIT	%P SP	ннР.	HHP/ sqin	IMPACT FORCE VI	JET ELOCITY
790.0	452		985.0	74.2	260	3.39	801	98
796.0	500	1437.3	1204.0	83.8	351	4.58	979	108
TC J22 OST		5	ADC CODE IZE RIP TIME	517 12.250 3.8	NOZ	ERVAL ZLES RUN		951.0 5 16 16 155.0
TOTAL HOUR	S 6		OTAL TURNS	28931		DITION	T5 B4	G0.125
- DEPTH	FLOW RATE	PSP	PRIT	wnon	11115	HHP/	IMPACT	JET
DEFIN	KHIL	ror	F .C3 .1 1	%PSP	ННР	sqin	FORCE VI	E.L.OU.LIT
800.0	810	2862.9	1856.9	64.9	878	7.45	1973	134
810.0	806	2844.6	1837.8	64.6	865	7.34	1953	134
820.0 830.0	816 806	2879.6 2838. 4	1882.9 1837.1	64.7	89 7 86 4	7.61 7.33	2001 1752	135 133
840.0	815	2848.3	1878.2	65.9	893	7.53	1996	135
850.0	814	2839.7	1871.2	65.9	888	7.54	1988	135
860.0	820	2862.3	1899.0	66.3	908	7.70	2018	136
870.0	818	2853.2	1891.2	66.3	903	7.66	2002	135
880.0	350	1565,7	346.4	22.1	71	0.60	. 368	58
890.0	413	1548.7	481.8	31.1	116	0.98	512	68
900.0	440	1531.5	546.8	35.7	140	1.19	581	73
910.0 920.0	829 834	2862.0 2881.1	1944.2 1964.8	67,9 68,2	941	7.98	2066	137
930.0	814	2744.2	1873.1	68.3	95 6 890	8.11 7.55	2088 1990	138 135
940.0	823	2837.9	1913.0	67.4	918	7.79	2033	
950.0	രമാ	たいひひ ノ・アー	A / A W + O	3.2 / 2 "7"	710	7 , 7 2	/" (1 · Y · Y	1.57
951.0	833	2860.5	1962.2	68.6	954	8.09	2085	136 138

(f), COMPUTER DATA LISTING : LIST D

INTERVAL 10m averages.

DEPTH Well depth, in metres.

SPM1 Stroke rate per minute, for Pump no.1

SPM2 Stroke rate per minute, for Pump no.2.

FLOW RATE Mud flow rate into the well, in gallons per minute.

ANNULAR VELOCITIES : (in metres per minute)

DC/OH - Between drill collars and the open hole.

DC/CSG - Between drill collars and casing.

HW/OH - Between heavyweight drill pipe and the open hole.

HW/CSG - Between heavyweight drill pipe and casing.

DP/OH - Between drill pipe and open hole.

DP/CSG - Between drill pipe and casing.

DP/RIS - Between drill pipe and riser.

TIT NUMBER TC OSC3AJ COST TOTAL HOUR	0H" 6S+	. 0 0	IADC CODE SIZE TRIP TIME TOTAL TUR	2	000. 8 2.3	NOZZ BI T	RVAL LES RUN ETTON		.0- 20 B1 G	20 20 140.0
DEPTH	SPM1	SPM2	FLOW RATE	NOOH		NWH HO	HWZ CS G	DP/ OH	DP/ CSG	DP/ RIS
150.0 160.0 170.0	67 97 96	60 94 100	634 956 978	8 12 12						11 17 18
180.0 200.0 210.0 220.0 230.0 240.0 267.0	95 96 96 95 96 95	99 100 101 100 101 100	974 976 986 976 983 976 500	12 12 12 12 12 12				11 6		17 18 18 18 18 18
BIT NUMBER TC R1 DST TOTAL HOUR	4978	, 0 0	IADC CODE SIZE TRIP TIME TOTAL TUR	1	7.500 3.0	NOZZ BIT	RUAL RES RUN DITION		20	20 20 374.0
■ DEPTH	SPM1	SPM2	FLOW RATE	0H		NWH HO		DP/ OH		DP/ RIS
270.0 280.0 290.0	95 97 96	84 87 87	708 720 915	2 8 28	22 23 23		70 20 30			16 17 16
300.0 310.0 320.0 330.0 340.0 350.0 360.0 370.0 380.0	97 96 95 97 98 99 99 99	87 86 86 87 88 87 98	919 913 909 916 926 920 931 926 978	28 28 28 29 28 29 29 29 30	23 23 23 23 23 23 23	25 26 26	20 20 20 20 20 20 20 21 21		20 20 20 20 20 21 21	17 16 16 17 17 17 17 18 18
400.0 410.0 420.0 430.0 440.0 450.0 460.0 470.0 480.0 500.0	97 97 98 97 96 97 96 97	98 98 98 99 98 99 98 98	976 975 980 976 978 970 977 975 966 978	30 30 30 30 30 30 30 30 30		26 26 26 26 26 26 26 26 26	21 21 21 21 21 21	26 26 26 26	21 21 21 21 21 21 21 21	18 18 18 18 18 17 18 18

er er möglischer in der

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HWZ HO	03 6	DP/ OH	DP/ CSG	DP/ RIS
510.0 520.0 530.0 540.0 550.0 560.0 570.0 580.0 590.0	97 97 97 97 98 98 97 97	98 97 98 97 97 98 97 98	976 972 973 968 970 975 980 976 967 974	30 30 30 30 30 30 30 30 30		26 26 26 26 26 26 26 26 26		26 26 26 26 26 26 26 26 26 26	21 21 21 21 21 22 21 21	18 17 17 17 18 18 18
610.0 620.0 630.0 640.0 641.0	97 98 97 97 97	99 98 97 98 98	981 979 972 976 976	30 30 30 30 30		26 26 26 26 26		26 26 26 26 26		18 18 17 18 18
IT NUMBER MTC J1 COST OTAL HOURS	2566 3 2	, () ()	IADC CODE SIZE TRIP TIME TOTAL TUR	1	116 2.250 3.5 17674	NOZZ BIT	ERVAL MES RUN DITTON		16	16 16 122.0
DEPTH	SPM1	SPM2	FLOW RATE	0C/ 0H		:HWZ HO	HWZ CSG		DP/ CSG	DP/ RIS
650.0 660.0 670.0 680.0	81 82 83 82 83	31 81 80 80	808 813 820 813 819	70 71 71 71 71	54 54 54 54 54		45 45 46 45 46		45 45 46 45 46	55555
700.0 710.0 720.0 730.0 740.0 750.0 760.0 763.0	84 83 84 83 83 84 83	81 80 80 80 82 81 81	821 815 818 818 820 820 820 816	71 71 71 71 71 71 71	64 64 64 64 64 64 64		46 45 46 46 46 46 46 45		46 45 46 46 46 46 45	000000000
BIT NUMBER TC J22 COST TOTAL HOURS	8520	3 .00 .90	IADC CODE SIZE TRIP TIME TOTAL TUR	1	517 2.250 3.7 3767	NOZ: BIT	ERVAL ?LES RUN)ITION		3,0- 16 1 B1 G	16 16 24.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ HO	DC/ CSG	HW/ HO	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
770.0 780.0	83 82	81 80	821 808	71 70	65 · 63		46 45		46 45	15 15

The second of the second

\$

■ DEPTH	SPM1	CDMO	FLOW RATE	DC/ OH	DC/ CSG	HWZ OH	HWZ CS G	087 0H		DP/ RIS
DEFIN	DE 111	A3E 1162	15 1 ^m 1 5	Off	COG	Un	COG	V/FN	Cau	C) J, 91
787.0	72	79	756	5 6		45	42		42	14
BIT NUMBER HRIS RC47 OST TOTAL HOUR	6 17600		IADC CODE SIZE TRIP TIME TOTAL TUR	·	4 9,8 75 3, 7 81 9	NOZZ BIT	FRVAL ZLES RUN DITION		7.0- 14 14	14 14 9.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ HO	DC/ CSG	HOV	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
	90 100	() ()	452 500	101		47 51	25 28		25 28	8 9
FIT NUMBER TC J22 COST TOTAL HOUR	0	. 00	IADC CODE SIZE TRIP TIME TOTAL TUR	1	51 7 2.250 3.8 28931	NOZI BIT	TRVAL 7LES RUN DITION			16 16 155.0
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ (1H)	HW/ CSG	DP/ OH	DP/ CS G	DP/ RIS
800.0 810.0 820.0 830.0 840.0 850.0	82 81 83 81 82 83	80 81 81 81 80 81	810 806 816 806 815 814 820	70 70 71 70 71 71		48 49 49 49 49	45 45 45 45 45 45		45 45 45 45 45 45	15 14 15 14 15 15
870.0 880.0 890.0 900.0 910.0 920.0 930.0 940.0 950.0	83 0 0 82 83 83 83 83	80 70 83 88 94 84 80 82 84	818 350 413 440 829 834 814 823 833	71 36 36 72 72 71 71 72 72		49 25 26 50 50 49 50 50		49 21 25 50 50 49 50	46 20 23 25 46 46 46 46 46	15 7 8 15 15 15 15 15

This is an enclosure indicator page.

The enclosure PE603540 is enclosed within the container PE906169 at this location in this document.

The enclosure PE603540 has the following characteristics:

ITEM_BARCODE = PE603540
CONTAINER_BARCODE = PE906169

NAME = Drill Data Plot

BASIN = GIPPSLAND PERMIT = VIC/P19

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Drill Data Plot for Leatherjacket-1

REMARKS =

DATE_CREATED = 27/02/1986 DATE_RECEIVED = 07/05/1986

 $W_NO = W928$

WELL_NAME = LEATHERJACKET-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603541 is enclosed within the container PE906169 at this location in this document.

The enclosure PE603541 has the following characteristics:

ITEM_BARCODE = PE603541
CONTAINER_BARCODE = PE906169

NAME = Temperature Plot

BASIN = GIPPSLAND PERMIT = VIC/P19 TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Temperature Plot for Leatherjacket-1

REMARKS =

DATE_CREATED = 27/02/1986 DATE_RECEIVED = 07/05/1986

 $W_NO = W928$

 ${\tt WELL_NAME} \ = \ {\tt LEATHERJACKET-1}$

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603542 is enclosed within the container PE906169 at this location in this document.

The enclosure PE603542 has the following characteristics: ITEM_BARCODE = PE603542

CONTAINER_BARCODE = PE906169

NAME = Pressure Plot

BASIN = GIPPSLAND

PERMIT = VIC/P19

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Plot for Leatherjacket-1

REMARKS =

DATE_CREATED = 27/02/1986 DATE_RECEIVED = 07/05/1986

 $W_NO = W928$

WELL_NAME = LEATHERJACKET-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603543 is enclosed within the container PE906169 at this location in this document.

The enclosure PE603543 has the following characteristics:

ITEM_BARCODE = PE603543

CONTAINER_BARCODE = PE906169

NAME = Geoplot

BASIN = GIPPSLAND

PERMIT = VIC/P19

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Geoplot for Leatherjacket-1

REMARKS =

DATE_CREATED = 27/02/1986

 $DATE_RECEIVED = 07/05/1986$

 $W_NO = W928$

WELL_NAME = LEATHERJACKET-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page.

The enclosure PE603544 is enclosed within the container PE906169 at this location in this document.

The enclosure PE603544 has the following characteristics:

ITEM_BARCODE = PE603544
CONTAINER_BARCODE = PE906169

NAME = Tritium Plot

NAME - IIICIUM PIO

BASIN = GIPPSLAND

PERMIT = VIC/P19

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Tritium Plot for Leatherjacket-1

REMARKS =

DATE_CREATED = 27/02/1986

DATE_RECEIVED = 07/05/1986

 $W_NO = W928$

WELL_NAME = LEATHERJACKET-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603545 is enclosed within the container PE906169 at this location in this document.

The enclosure PE603545 has the following characteristics:

ITEM_BARCODE = PE603545
CONTAINER_BARCODE = PE906169

NAME = Grapholog (mud log)

BASIN = GIPPSLAND PERMIT = VIC/P19

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Grapholog (mud log) for Leatherjacket-1

REMARKS =

DATE_CREATED = 27/02/1986 DATE_RECEIVED = 07/05/1986

 $W_NO = W928$

WELL_NAME = LEATHERJACKET-1

CONTRACTOR = CORE LABORATORIES AUSTRALIA LTD

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

PE 603540 DRILL DATA PLOT

PEGO3541 TEMPERATURE PLOT

PE603542 PRESSURE PLOT

PE 603543 GEOPLOT

PE 603544 TRITIUM PLOT

TRITIUM PLO

PE603545 GRAPHOLDE (MUD LOE)