WEST SEAHORSE - 1 WELL COMPLETION REPORT

PERMIT Vic/P11 1982

18 JUN 1982

WEST SEAHORSE No. 1

WELL COMPLETION REPORT

Authors: B. Butcher, GEOLOGIST.
K. Putnam, DRILLING ENGINEER.

Page No.

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.1 .1
2.1.2
2.2
2.2 .1
2.2.2

$$
2.2 .3
$$

2.2.4 Time Breakdown Analyses
2.2.5 Time vs Depth Chart
2.3
2.3.1
2.3.2
2.4
2.4 .1
2.4.2
2.4 .3
2.4 .4
2.4 .5
2.5
2.5.1
2.5.2 Flow Data
2.5.3 Pressure Data
2.5.4 Interpretation and Analyses
Page No.
2.6
General Data13
2.6.1 Positioning Report
2.6.2 Downhole Surveys
2.6 .3 Plug Back and Squee2.6 .4
Fishing Operations
2.6 .5 Side Tracked Hole
2.7 Abandonment Report 14
2.8 Recommendations for Future Drilling Programmes 14
3.0
3.1 Summary of Previous Investigations 15
3.2 Geological Setting 17
3.2 .1 Regional Setting
3.2 .2 Tectonic Elements
3.2 .3 Geological Evolution and Regional Stratigraphy
3.3 Stratigraphy 21
3.4 Structure (including basic dipmeter data) 24
3.5 Predicted and Actual Depth to Seismic Marker 26
3.6 Porosity and Permeability 27
3.7 Hydrocarbon Indications 28
3.7 .1 Summary
3.7 .2 During Drilling
3.7 .3 Sidewall Cores and Conventional Cores
3.7 .4 Further Indications
3.8 Contributions to Geological Knowledge 31
4.0 WELL DATA
4.1 Formation Sampling 33
4.2 Coring Programme 34
4.2 .1 Conventional Cores
4.2 .2 Sidewall Cores4.3Wireline Logs and Wireline Sampling38
5.0REFERENCES40

0

DRILLING

APPENDICES A

A1 Well Testing Report No. 26108131181
A2
Dowell Schlumberger Technical Report No. 81014
A3

Positioning Report

GEOLOGY

APPENDICES B

B1
B2
B3
B4
B5
B6
B7

Palaeontology Report
Palynology Report
Wireline Log Interpretation
Petrology Report ?
Geochemical Analyses
Log of Cores
Log of Samples

FIGURES

FIGURE 1 Location Diagram
FIGURE 2 Gippsland Basin Stratigraphic Diagram
FIGURE 3 Stratigraphic Diagram for West Seahorse-1
FIGURE 4 Predicted vs Actual Section

ENCLOSURES
ENCLOSURE 1 Composite Log
ENCLOSURE 2 Tectonic Elements
ENCLOSURE 3 Air Gun Well Velocity Survey and Calibrated Log Data
ENCLOSURE 4 Velocity Log
ENCLOSURE 5 Lithological Log
ENCLOSURE 6 Mud Log
1.0
WELL HISTORY
(Pages 1-3)

1.8 Drilling Summary

The drillship "Petromar North Sea" was mobilized from the Northwest Shelf of Western Australia to Gippsland Basin and arrived at the West Seahorse location on September 15th 1981 at 0600 hours. The anchors were run and tensioned, and the Temporary Guide Base was landed on the sea floor.

The well was spudded on September 16th 1981 at 1800 hours. A $36^{\prime \prime}$ hole was drilled to 61 m and the Hole Opener was pulled and laid down. The $26^{\prime \prime}$ assembly was run in and $26^{\prime \prime}$ hole was drilled to 205 m . After spotting Hi-viscosity mud and checking for fill, the drilling assembly was pulled and a casing string, comprising one $30^{\prime \prime}$ pile joint plus $20^{\prime \prime}$ casing, was run to 189 m . The casing was cemented in place with 2000 sacks of Class ' G ' cement. The landing string was pulled and the $20-3 / 4^{\prime \prime}$ stack was stump tested and run. The stack was landed and finally pressure tested after a test plug failure.

A $17 \frac{1}{2}$ " assembly was run, the cement and shoe were drilled out, and the hole was deepened to 200 m . A pressure integrity test was performed to a 1.07 SG equivalent. The $17 \frac{13}{2}$ nole was drilled to 1320 m and a series of electric logs, were run. A conditioning trip was made prior to running $13-3 / 8^{\prime \prime}$ casing. The $13-3 / 8^{1 \prime}$ shoe was set at 1305 m and cemented back to seafloor. The $20-3 / 4^{\prime \prime}$ stack was pulled and replaced by the $13-5 / 8^{\prime \prime}$ stack.

The $13-3 / 8^{\prime \prime}$ shoe was drilled out with a $12 \frac{1}{4}$ " assembly and a pressure integrity test was performed after drilling to 1323m. Drilling continued until 1450 m where it was decided to cut a core. An 11m core was cut and retrieved. The hole was deepened to 1744 m and a series of logs were run. Drilling continued to 2210 m where four RFT's were run at $1505.5 \mathrm{~m}, 1421 \mathrm{~m}, 1417 \mathrm{~m}$ and 1502 m . The hole was deepened to 2365 m at which point the drill string parted at the rotary sub below the kelly. The fish was recovered and drilling continued to 2490 m . The remainder of the open hole was logged and the well was plugged back to 1565 m . A string of $9-5 / 8$ " casing was run to 1552 m and cemented in place. The $13-5 / 8^{\prime \prime}$ stack was pulled and the UPR's changed to "32". The stack was stump tested, rerun, and then pressure tested after
 casing scraper. After pulling the tubing, a CBL-VDL-GR-CCL was run, the casing was pressure tested to 2200 psi and the interval 1411 - 1415 m wàs perforated. A cased hole DST was performed over the interval 1411 - 1415 m with a 288 m fresh water cushion. During the DST, the well flowed gas and oil at rates of $\frac{1}{4}$ MMSCFD and 1800 BOPD respectively. Approximately 0.7 bbls of oil was recovered from the test string. A wireline bridge plug was then set at 1394 m . A cement plug was spotted on top of the bridge plug and a second cement plug was placed at 160 m . The $13-5 / 8^{\prime \prime}$ stack was retrieved, a corrosion cap was installed, a marker buoy was attached to the PGB, and the guide lines were cut. The anchors were pulled and the rig was moved to Baleen No 1.
1.9 Geological Summary (Enclosure 1)

West Seahorse-1 was drilled to test an asymmetric anticline formed by arching into a major reverse fault. Closure was mapped at three different horizons, designated "Top Latrobe", "Intra Latrobe" and "Top Strzelecki" (Figure 2). No samples were caught prior to the installation of the marine riser at 189 metres R.T. The interval 189-1344.5 metres consisted of skeletal calcarenites, calcisiltites, calcilutites and marl, with minor sandstones and calcareous claystones. This section ranged in age from pre-Miocene to latest $01 i g o c e n e$ and was underlain by 51 metres of glauconitic calcilutite and calcisiltite of uncertain age. Underlying these was a sequence of non-marine sandstones, siltstones and claystones with coal seams common at the top but decreasing towards the total depth at 2490 metres. The non-marine sequence ranged in age from Lower Eocene to Senonian and represents the Latrobe Group.

Movable hydrocarbons were encountered in two zones within the Latrobe Group, and the well flowed at 1800 BOPD during a DST over the interval 1411-1416 metres. Electric logs indicated a density and corresponding velocity below 2275 metres. The seismic reflections from this interface dip more steeply to the south-west than overlying reflections and, therefore, the well penetrated a marked unconformity before bottoming in sediments of Upper Cretaceous/Senonian age.

-

OIL and GAS DIVISION
18 JUN 1982
2.0 DRILLING
(Pages 4-14)
2.0 DRILLING
2.1.1 Drilling Data Summary
Petromarine Drilling Aust. Pty LtdOffice Suite 1-51st Floor, Stratham House49 Melville Parade
SOUTH PERTH WA
Drawworks: National 1625 powered by two 752 GETraction motors
Blow Out Preventor
Equipment: Two stack system

$20-3 / 4^{\prime \prime} \times 2000 \mathrm{psi}-$	Hydril MSP Cameron double gate Type U
$13-5 / 8^{\prime \prime} \times 5000 \mathrm{psi}-$Hydri1 GL Cameron triple gate Type U	

Elevation: \quad RT to MSL - 9.45 m Water Depth - 39.35m
Datum - rotary table.
Pumps:
Two National 12-P-160 Triplex driven by two GE 752 motors

2.1.2 General Well Data

Location:

Latitude	38°	12^{\prime}	$17.17^{\prime \prime}$	S
Longitude	147°	37^{\prime}	$21.70^{\prime \prime}$	E

Dates:
1600 hrs August 15th 1981 Rig released from Lawley No. 1
0600 hrs September 15th 1981 arrived at location
1800 hrs September 16th 1981 spudded
1300 hrs October 20th 1981 TD reached
1400 hrs November 3rd 1981 Rig released
Days to total depth - 34 days
2.2 Daily Operation Record
2.2.1 Daily Drilling Operation Summary
See attachment

DAILY DRILLING OPERATIONS SUMMARY

WELL
WEST SEAHORSE NO. 1

DATE	DEPTH	$\therefore \therefore$ OPERATION
16.09 .81	-	Ran and set anchors. Picked up TGB and landed same.
17.09 .81	61m	Made up 36" BHA. Drilled $36^{\prime \prime}$ hole to 61m.
18.09 .81	205m	Laid down 36" BHA and picked up 26" BHA. Drilled 26" hole to 205m.
19.09 .81	205m	Spotted hi-vis mud in $26^{\prime \prime}$ hole. POOH to run $20^{\prime \prime}$ casing. Ran $20^{\prime \prime}$ casing and cemented same. Stump tested $20-3 / 4^{\prime \prime}$ stack and began running same.
20.09 .81	205m	Finished running 20-3/4" stack. Choke line failed on pressure test. Pulled LMR package to install new choke line hose at the goose neck. Pressure tested PR's and annulars after changing seals on the test plug. Pressure tested the stand pipe and choke manifolds to 3000 and 5000 psi respectively. Made up $17 \frac{1}{2}{ }^{\prime \prime}$ BHA and RIH.
21.09 .81	477m	Tagged cement at 176 m . Drilled out shoe and cleaned out to 205 m . Drilled 173/2 hole to 208m. Performed integrity test to 1.07 SG. Drilled $17 \frac{1}{2}$ " hole to 353 m . Dropped survey. Overshot would not pass through jars. POOH to retrieve survey. RIH and drilled $17 \frac{1}{2}{ }^{\prime \prime}$ hole to 477 m .
22.09.81	856m	Drilled 17312 hole to 856m. POOH for bit change.
23.09 .81	960'm	POOH with bit No. 3 and laid down bumper sub. Made up new bit and bumper sub and RIH. Drilled $17 \frac{1}{2}{ }^{\prime \prime}$ hole to 960 m .
24.09.81	1138 m	Drilled $17 \frac{1}{2}{ }^{\prime \prime}$ hole to 1138 m .
25.09 .81	1318m	Drilled $17 \frac{1}{2} / 1$ hole to 1318 m .
26.09.81	1320m	Drilled $17 \frac{1}{2}$ " hole to 1320 m . Conditioned hole and dropped survey. POOH to 1272 m . Picked up Kelly to work past tight spot. POOH to the jars to retrieve survey. RIH to 1267 m . Ream and wash to 1320 m . Condition hole and POOH to log. Ran DIT-BHC-GR.
27.09 .81	1320 m	Ran FDC-CNL-GR and CST, RIH to 1272 m with $17 \frac{1}{2}{ }^{\prime \prime}$ bit. Reamed and washed to bottom. Conditioned hole and then POOH to run $13-3 / 8^{\prime \prime}$ casing.
28.09 .81	1320 m	Finished POOH with $17 \frac{1}{2 \prime \prime}$ bit. Ran $13-3 / 8^{\prime \prime}$ casing and landed same on HWDP.
29,09,81	1320m	Cemented $13-3 / 8^{\prime \prime}$ casing. Backed out running tool and washed wellhead. Pulled 20-3/4" stack.
30.09 .81	1320m	Function tested 13-5/8" stack. Ran 13-5/8" stack. Pressure tested stack and choke manifold. Set $13-5 / 8^{\prime \prime}$ WB after modifying the threads. Made up $12 \frac{1}{4}{ }^{\prime \prime}$ assembly and RIH.
01.10 .81	1440m	Tagged cement at 1260 m and drilled to 1323 m . Performed pressure integrity test to 1.99 SG equivalent. Drilled $12 \frac{1}{4}$ " hole to 1412 m and circulated bot toms up for sample. Drilled $12 \frac{2}{4} "$ hole to 1440 m circulating bottoms up every 5 m .
02.10 .81	1461m	Drilled $12 \frac{3}{4} "$ hole to 1450 m . Made a 5 stand wiper trip and circulated bottoms up. POOH with $12 \frac{3}{4}$ " bit and RIH with core barrel. Cut core to 1461 m and POOH.
03.10 .81	1560m	Recovered core and made up 121/" bit. Unable to pass bit through wellhead. RIH and retrieve damaged WB. RIH with $12 \frac{1}{4} "$ bit and drilled to 1560 m .
04.10 .81	1678m	Drilled $12 \frac{1}{4}{ }^{\prime \prime}$ hole to 1662 m . POOH with plugged jets. . Ran new $13-5 / 8^{\prime \prime} \mathrm{WB}$. Made up new bit and RIH to drill to 1678 m .
05.10 .81	1744m	Drilled $12 \frac{1}{4}$ " hole to 1744 m . Made 15 stand wiper trip. POOH to log. Ran ISF-BHCS-GR, FDC-CNL-GR, and DLT-MSFL-GR.
06.10 .81	1744m	Reran DLT-MSFL-GR due to tool failure. Ran HDT, RFT's, and CST's.
07.10 .81	1801m	Finished running CST's. RIH with 123" bit and drilled to 1801m.
08.10 .81	1975m	Drilled 12㘶" hole to 1975 m . Dropped survey and POOH .
09.10 .81	2078m	Finished POOH. Retrieved WB and ran test plug. Pressure tested stack. Retrieved test plug and ran WB. Made up $12 \frac{1}{4} \frac{1}{4}^{\prime \prime}$ bit and drilled to 2078 m . POOH for bit change.
10.10 .81	2158m	Finished POOH. RIH with new bit to 2111m. Surveyed. Drilled ahead to 2158 m .

DAILY DRILLING OPERATIONS SUMMARY

WELL

DATE	DEPTH	OPERATION
11.10 .81	2210m	Drilled $12 \frac{1}{4}$ " hole to 2168 m . Surveyed. Drilled to 2210 m and dropped survey. Made wiper trip to the shoe and then POOH.
12.10 .81	2210 m	Finished POOH. Made four RFT runs. RIH with $12 \frac{1}{4}$ " bit. Reamed from $2183-2200 \mathrm{~m}$.
13.10 .81	2276m	Ream to bottom and drilled to 2212 m . POOH to 2183 m and reamed the interval 2183-2212m. Drilled to 2276 m . Dropped survey and POOH.
14.10 .81	2325m	Finished Pooh. Made up new bit and RIH to 2249. Reamed 2249-2276m. Drilled to 2325 m and dropped survey.
15.10.81	2357m	Retrieved survey. Drilled $12 \frac{1}{4}$ " hole to 2357 m . Dropped survey and POOH for a bit change.
16.10.81	2365m	Finish POOH. RIH with new bit and ream 2350-2357m. Drilled to 2365 m and then twisted off. POOH and made up overshot. RIH and latched onto fish. POOH with fish.
17.10.81	2366m	Finished POOH with fish. RIH with $12 \frac{12}{4}$ bit and junk sub. Milled on junk to 2366m. POOH with bit and junk sub.
18.10 .81	2387m	Retrieved $13-5 / 8^{\prime \prime}$ WB and RIH with test plug. Tested stack, choke manifold, standpipe manifold and Kelly cock. Pulled test plug and ran WB. RIH to 2366 m and drilled to 2387 m .
19.10.81	2416m	Drilled to 2416 m . RIH with new bit.
20.10.81	2485m	RIH to 2402 m . Reamed to 2416 m . Drilled $12 \frac{1}{4}{ }^{\prime \prime}$ hole to 2485 m .
21.10 .81	2490m	Drilled to 2490 m . Dropped survey and POOH to log. Ran MSFL-DLL-GR, BHCS-GR, and FDC-CNL-GR.
22.10 .81	2490m	Ran HDT, velocity survey, and CST's.
23.10 .81	2490m	Finished running CST's and ran RFT's. Laid down $8^{\prime \prime} \mathrm{DC}$'s and picked up 6年" DC 's.
24.10.81	1565m PBD	Finished picking up $6 \frac{2}{2}{ }^{2}$ DC's. RIH with OEDP to 2015 m . Set cement plug No. 1 over the interval 2015 - 1940m. POOH to 1675 m and set plug No. 2 over the interval 1675-1575m. POOH to lay down excess DP.
25.10 .81	1527m PBD	RIH with $12 \frac{1}{4}$ " bit and tagged plug No. 2 at 1556 m . POOH and retrieved WB. Ran $9-5 / 8^{\prime \prime}$ casing to 1552 m . Cemented $9-5 / 8^{\prime \prime}$ casing.
26.10 .81	1527m PBD	Displaced cement and backed out the running tool. POOH with running tool and RIH with $9-5 / 8^{1 "}$ seal assembly. Set seal assembly. Pressure tested same and POOH with running tool. Pulled $13-5 / 8^{\prime \prime}$ stack and changed UPR to $3 \frac{11}{2}$. Stump tested stack and then ran stack.
27.10.81	1527m PBD.	Finished running BOP. Landed stack and RIH with test plug to pressure test. POOH and reran test plug on $3 \frac{13}{2} \frac{1}{2}$ pipe to test UPR. POOH with test plug and RIH with WB. RIH with $8 \frac{1}{2}$ " bit, $9-5 / 8^{\prime \prime}$ scraper on $3 \frac{1}{2}$ " tubing.
28.10 .81	1527 mPB	Finished RIH with bit and scraper. Worked scraper over the interval 1350-1400m. POOH with scraper. Ran CBL-VDL-GR-CCL. Pressure tested casing to 2200 psi . Perforated the interval 1411-1416m. Began making up DST tools.
29.10 .81	1527 mPBD	Made up DST tools and ran same on $3 \frac{13}{2}$ " tubing. Repaired leak in SSTT and then ran same. Started hooking up surface installations.
30.10 .81	1527 mPD	Completed surface installations. Rigged up wireline equipment, and pressure tested surface equipment. Conducted DST No. 1.
31.10 .81	1527m PBD	Closed PCT, reversed out tubing and rigged down pressure control equipment. Unsealed packer and circulate the well. POOH laying down tubing and DC's. Laid down testing tools. RIH with OEDP to 1514 m and circulate high pH mud.
01.11.81		POOH and set BP at 1390 m . Spotted 100 sacks of cement on top of BP. POOH to 160 m and spotted 100 sacks of cement. Retrieved WB and then pulled 13-5/8" stack
02.11.81		Ran corrosion cap. Attached marker buoy and cut guide wires. Rig shut down due to seamen's strike.
03.11.81		Pulled anchors 6, 2, 3 and 1.
04.11.81		Pulled anchors 7, 5, 4 and 8. Rig released 1400 hours November 3rd 1981.

2.2.2 Bottom Hole Assembly Record
36" hole: $26^{\prime \prime}$ bit, $36^{\prime \prime}$ HO, bit sub, 8" DC, XO, 5" HWDP
26" hole: 26" bit, bit sub, $12 \times 8^{\prime \prime}$ DC, $11 \times 5{ }^{\prime \prime}$ HWDP
17늘 " hole: $17 \frac{1}{2}$ " bit, bit sub, $6 \times 8^{\prime \prime}$ DC, bumper sub, $5 \times 8^{\prime \prime}$ DC,XO, $1 \times 5{ }^{\prime \prime}$ HWDP, jars, 9×5 " HWDP
1212" ${ }^{\prime \prime}$ hole: 1305-1450m
$12 \frac{1}{4}{ }^{\prime \prime}$ bit, bit sub, 6×8 " DC, bumper sub, $8 \times 8^{\prime \prime}$ DC,XO, $1 \times 5{ }^{\prime \prime}$ HWDP, jars, 9×5 " HWDP
1461 - 1662 m
$12 \frac{1}{4}$ " bit, bit sub, $2 \times 8^{\prime \prime}$ DC, stab, $1 \times 8^{\prime \prime}$ DC, stab,$3 \times 8 "$ DC, bumper sub, $5 \times 8^{\prime \prime}$ DC, XO, $1 \times 5{ }^{\prime \prime}$ HWDP, jars,9x5" HWDP
1662-2078m
$12 \frac{1}{4}$ " bit, bit sub, 2×8 " DC, stab, 1×8 " DCstab, $3 \times 8^{\prime \prime}$ DC, bumper sub, $8 \times 8^{\prime \prime}$ DC, XO, $1 \times 5^{\prime \prime}$ HWDPjars, 9×5 " HWDP
2078-2210m$12 \frac{1}{4}$ " bit, bit sub, $3 \times 8^{\prime \prime}$ DC, stab, $1 \times 8^{\prime \prime}$ DC, stab,$2 \times 8^{\prime \prime}$ DC, bumper sub, $8 \times 8^{\prime \prime}$ DC, XO, 10×5" HWDP
2210-2365m
$12 \frac{1}{4}{ }^{\prime \prime}$ bit, bit sub, $2 \times 8^{\prime \prime}$ DC, stab, $1 \times 8^{\prime \prime}$ DC, stab,$3 \times 8^{\prime \prime}$ DC, bumper sub, $14 \times 8^{\prime \prime}$ DC, XO, $13 \times 5{ }^{\prime \prime}$ HWDP
2365-2416m
$12 \frac{1}{4}$ " bit, junk sub, bit sub, $2 \times 8^{\prime \prime}$ DC, stab, $1 \times 8^{\prime \prime}$ DC,stab, $3 \times 8^{\prime \prime}$ DC, bumper sub, 14×8 " DC, XO, 13x5" HWDP2416-2490m$12 \frac{1}{4}$ " bit, junk sub, bit sub, $2 \times 88^{\prime \prime}$ DC, stab, $1 \times 8^{\prime \prime}$ DC,stab, $17 \times 8^{\prime \prime}$ DC, XO, $13 \times 5{ }^{\prime \prime}$ HWDP
2.2.3 Bit Record
(See attachment.)
2.2.4 Time Breakdown Analysis
(See attachment.)
2.2.5 Time vs Depth Chart
(See àttachment.)
2.3 Casing Record
2.3.1 Cásing Details.
(See 'Casing and Tubing Tally Reports' attached.)
2.3.2 Cementation Details
(See 'Casing Running Reports' attached.)

BII RECORD

NO.	SIZE	MAKE	TYPE	SERIAL NO.	JETS	$\begin{gathered} \text { DEPTH } \\ \text { OUT } \end{gathered}$	METRES	HRS	M/HR	$\begin{aligned} & \text { WOB } \\ & 1000 \mathrm{LBS} \end{aligned}$	RPM	\|PuMPPRESS	SPM	DULL COND			REMARKS
														T	B	G	
1	$26^{\prime \prime}$	HTC	OSC3AJ ${ }^{-}$	RB267	Open	61	12.02	1012		5/10	80	250	75	2	1	I	
2	$26^{\prime \prime}$	HTC	OSC3AJ	LJ320	Open	205	143	211/2	6.6	20	100	600	160				
3	17312 ${ }^{\prime \prime}$	HTC	OSC3A	A2030	3×24	856	651	37	17.5	35	100	1350	150				
4	171212	HTC	OSC3AJ	A2031	3×24	1320	464	$52 \frac{1}{2}$	7.4	35	100	1350	150	2	2	I	
5	12191"	HTC	OSC3AJ	EV151	3×14	1450	137	12	11.4	35	120	1300	100	8	6	I	
C\#1	$\begin{array}{\|l\|} \hline 8- \\ 15 / 32 \\ \hline \end{array}$	CHRIS	C20	81 E0672		1461	11	2	5.5								
6	12121"	HTC	J4	EZ415	3×14	1662	201	1812	10.9	40	75/80	2200	110	3	2	I	
7	1212"	HTC	OSC3AJ	EV983	3×14	1744	82	6	13.6	40	70	1875	110	3	5	1/8	
RR6	1212"	HTC	J4	EZ415	3×14	1975	231	261/2	8.7	40/50	75	2300	130	5	2	1/8	
8	1212"	HTC	JD3	HX252	3×14	2078	103	14	7.4	40	80	1800	110	5	2	1/16	
9	123" ${ }^{\text {" }}$	HTC	JD3	HX191	3×14	2210	132	26	5.1	25/40	90	1750	110	6	2	1/8	
10	1212"	HTC	J7	BK061	3×13	2276	66	$16 \frac{1}{2}$	4	50/60	80	1250	100				
11	1214"	SMITH	A1	BN7038	$\begin{array}{\|l\|} \hline 2 \times 15 \\ 1 \times 10 \\ \hline \end{array}$	2357	81	32	2.5	26	100	1000	110	7	7	3/8	
12	1214"	HTC	JD3	HX271	3×13	2365	8	3	2.7	20/30	70	1000	110	4	2	I	fished due to parted bumper sub
RR7	123" ${ }^{12}$	HTC	OSC3AJ	EV983	3×13	2366	1	$\frac{1}{2}$	2.0	20/30	70	1000	110				mill on junk
13	1212"	HTC	J44	075CF	3×13	2416	50	2512	2.0					2	2	I	
14	1212"	SMITH	F57	BN3634	3×13	2487	71	27	2.6	40	60	1300	120	2	2	I	
15	8글	HTC	XV	57062	Open												clean inside 9-5/8" casing

WELL：WEST SEAHORSE NO 1

		TIME ANALYSIS（Hours）	Moving／ Anchorin	$\begin{aligned} & 36 " / 26^{\prime \prime} \\ & \text { Hole } \\ & \hline \end{aligned}$	$\text { 17 }{ }_{2}{ }^{\prime \prime} \text { Hole }$	$\text { 12 } \frac{1}{4} \text { "Hole }$	$\begin{aligned} & \text { SECTION } \\ & 8^{\frac{2}{2}} \text { "Hole } \\ & \hline \end{aligned}$	OF HOLE 6＂Hole	Comp/Test	Total	
$\stackrel{\text { \％}}{\sim}$		DRILLING：									
		Moving to／from Location	374							374	23.6
		Anchor Handling	48						21	69	4.3
		Drilling		32	97	203h				$332{ }^{1}$	20.9
		Round Trips	\cdots	92	22	$81{ }_{8}$				113	7.1
		Reaming，Cond．Hole，Cond．Trips		54	28	37				$70{ }^{1}$	4.4
		Running，Pulling and Cementing Casing		9	42	7\％			19	$77 \frac{1}{2}$	4.9
	TI	Running，Pulling Subsea Equipment		21	231					4412	2
	$\underline{I T}$	Testing Wellhead and BOP＇s		15	$6{ }^{2}$	8				2914	2.9
	Γ	Plugging Back，Abandonment，Completion							$56 \frac{1}{2}$	563	3.6
	－	Curing Lost Circulation									
		Fishing and Washouts				341				34\％	2.2
		Well Control									
	11	Surveys			$\frac{1}{2}$	8				$8^{\frac{1}{3}}$	0.5
	W	Downtime：Weather									
	》	Mechanical Surface			$5^{\frac{1}{2}}$	7				$12^{\frac{1}{4}}$	0.8
	II	Mechanical Subsea									
	\％	Others		$5 \frac{1}{2}$						$5 \frac{1}{2}$	0.3
	\bigcirc										
	$0 \stackrel{5}{\square}$										
	$\sum \underset{=}{\underline{I}}$	EVALUATION：									
	2	Circulating Samples				$6{ }^{2}$				$6{ }^{1}$	0.4
		Hole Cond，Trips for Coring，Logging，Testing				56				56	3.5
	2	Coring－＿－				5				5	． 3
	2	Electric Logging			123	$66 \frac{1}{2}$				79	
		Wireline Flow Testing				3512				3512	2.2
	(3)	Drill Stem and Production Testing		．					13512	1351\％	8.5
	\boldsymbol{O}	Downtime：Logging				8				8	0.5
		Flow Testing									
		－Others									
		OTHERS				10			242	34hy	2.2
f	$z^{\frac{0}{\square}}$										
劦	雨										
$\dot{\square}^{8}$		Total Time	422	9712	2374	574 ${ }^{2}$			2561 ${ }_{\text {\％}}$	1588	
		\％Downtime			2	3					

$$
\begin{aligned}
& \text { R.T. }- \text { S.L. } \quad 9.45 \mathrm{~m} \\
& \text { S.L. }- \text { S.F. } 39.35 \mathrm{~m} \\
& \hline
\end{aligned}
$$

Author: K. Putnam	Hudbay Oil (Australia) Ltd.	Date :
Drawn by: K. Ryan	WEST SEAHORSE -1	November, 1981

Well Name and No. WEST SEAHORSE NO 1
Date 17 SEPTEMBER 1982 Casing Size 20 inch Weight (0.438 in WT) 94 1b/ftrade $\times 52$ Connection Cameron 'CC' Joints Run

Joint No.	$\begin{gathered} \text { Length } \\ \text { of }(\mathrm{m}) \\ \text { joint } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { in }(m) \\ & \text { Hole } \end{aligned}$	Joint No.	$\begin{aligned} & \text { Length } \\ & \text { of }(\mathrm{m}) \\ & \text { Joint } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { in }(m) \\ & \text { Hole } \end{aligned}$	Joint No.	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { ooint } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { Hole } \end{gathered}$
	-							
	.		Carrie	Forward		Carrie	Forward	
01	$13 \cdot 15$	incl shoe	41	-		81	.	
02	$12 \cdot 50$		42	-		82	-	
03	12.00		43	-		83	-	
04	12.00		44	-		84	-	
05	$12 \cdot 00$		45	-		85	-	
06	12.00		46	-		86	-	
07	12.00		47	-		87	-	
08	$12 \cdot 50$		48	-		88	-	
09	12.00		49	-		89	-	
10	$12 \cdot 00$		50	-		90	-	
Sub tot	$122 \cdot 15$		Sub tot	\cdot		Sub tot	\cdot	
11	12.00		51	-		91	-	
12	$10 \cdot 15$		52	\cdot		92	\cdot	
13	-		53	-		93	-	
14	\cdot		54	-		94	-	
15	-		55	-		95	-	
16	-		56	-		96	\cdot	
17	-		57	-		97	\cdot	
18	-		58	-		98	-	
19	-		59	-		99	-	
20	-		60	\cdot		100	-	
Sub tot	22.15		Sub tot	\cdot		Sub tot	-	

21	-		61	-
22	\cdot		62	-
23	-		63	-
24	-		64	-
25	-		65	-
26	-		66	-
27	-		67	-
28	-		68	-
29	-		69	-
30	-		70	-
Sub tot	-		Sub tot	-
31	-		71	-
32	-		72	-
33	-		73	-
34	-		74	-
35	-		75	-
36	-		76	-
37	-		77	-
38	-		78	-
39	-		79	-
40	-		80	-
Sub tot	-		Sub tot	-

TALLY SUMMARY

TALLY SUMMARY	
Group No. Ending	Length (Forward)
10	$122 \cdot 15$
20	$22 \cdot 15$
30	\bullet
40	\bullet
50	\bullet
60	\bullet
70	\bullet
80	\bullet
90	
100	

remarks_1) $30^{\prime \prime} \times 20^{\prime \prime}$ combination landing joint measured from top of $20^{\prime \prime}$ casing housing to bottom of $20^{\prime \prime} \mathrm{CC}^{\prime}$ connector box. 2) Length of $20^{\prime \prime}$ float shoe 0.90 m .

HUDBAY OIL (AUSTRALIA) LIMITED \qquad of

Well Name and No. WEST SEAHORSE NO					1981 Casing			13-3/8 inch
Well Name and No. $61 \mathrm{lb} / \mathrm{ft}$					BTC Joints			105
$\begin{aligned} & \text { Joint } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Length } \\ \text { joint } \\ \text { joint } \end{gathered}$	$\begin{aligned} & \text { Total }(m) \\ & \text { in }(m) \\ & \text { Hole } \end{aligned}$	$\begin{aligned} & \text { Joint } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Length } \\ & \text { of }(m) \end{aligned}$	$\begin{aligned} & \text { Total }(\mathrm{m}) \\ & \text { inole } \end{aligned}$	$\begin{aligned} & \text { Joint } \\ & \text { No. } \end{aligned}$	$\underset{\substack{\text { Length } \\ \text { Joint }}}{ }$	$\begin{aligned} & \text { Total } \\ & \text { Hol } \\ & \text { Hole } \end{aligned}$
Shoe	$0 \cdot 60$	0.60						
01	12.06	12.66	Carrie	d Forward		Carried	Forward	
Colla	$r 0.43$	13.09	41	11.99	490.79	81	11.41	969.01
02	12.07	25.16	42	12.02	502.81	82	$12 \cdot 08$	981.09
03	11.75	36.91	43	12.10	514.91	83	$12 \cdot 11$	993.20
04	11.89	48.80	44	11.96	526.87	84	$12 \cdot 07$	1005.27
05	$11 \cdot 76$	60.56	45	12.02	538.89	85	11.91	1017.18
06	11.91	72.47	46	11.83	550.72	86	11.98	1029.16
07	11.60	84.07	47	11.86	562.58	87	11.89	1041.05
08	$12 \cdot 01$	96.08	48	11.98	574.56	88	11.99	1053.04
09	11.90	107.98	49	11.98	586.54	89	11.89	1064.93
10	$12 \cdot 07$	120.05	50	12.08	598.62	90	11.93	1076.86
Sub tot	$120 \cdot 05$		Sub tot	$119 \cdot 82$		Sub tot	119.26	
11	12.08	132.13	51	12.08	610.70	91	11.97	1088.83
12	11.93	144.06	52	$11 \cdot 95$	622.65	92	11.75	1100.58
13	11.98	156.04	53	12.08	634.73	93	$12 \cdot 08$	1112.66
14	11.97	168.01	54	12.00	646.73	94	$12 \cdot 08$	1124.74
15	11.92	179.93	55	$12 \cdot 08$	658.81	95	12.03	1136.77
16	$12 \cdot 02$	191.95	56	11.87	670.68	96	11.82	1148.59
17	11.99	203.94	57	$12 \cdot 08$	682.76	97	11.82	1160.41
18	12.04	215.98	58	11.90	694.66	98	11.91	1172.32
19	11.98	227.96	59	$12 \cdot 03$	706.69	99	11.95	1184.27
20	12.08	240.04	60	11.94	718.63	100	$12 \cdot 03$	1196.30
Sub tot	119.99		Sub tot	$120 \cdot 01$		Sub tot	$119 \cdot 44$	
21	12.09	252.13	61	11.92	730.55			
22	11.89	264.02	62	12.06	742.61		tally	mary
23	11.95	275.97	63	11.97	754.58	Group		Length
24	11.98	287.95	64	11.96	766.54	End		(Forward)
25	11.98	299.93	65	11.94	778.48	10		$120 \cdot 05$
26	12.03	311.96	66	11.88	790.36	20		119.99
27	12.08	324.04	67	12.08	802.44	30		119.71
28	11.83	335.87	68	11.98	814.42	40		119.05
29	11.87	347.74	69	11.97	826.39	50		119.82
30	12.01	359.75	70	$12 \cdot 08$	838.47	60		$120 \cdot 01$
Sub tot	119.71		Sub tot	119.84		70		119.84
31	11.86	371.61	71	11.85	850.32	80		$119 \cdot 13$
32	$12 \cdot 10$	383.71	72	11.62	861.94	90		119.26
33	11.92	395.63	73	11.86	873.80	100		119.44
34	11.86	407.49	74	11.89	885.69	total	L	196.30
35	$12 \cdot 08$	419.57	75	11.99	897.68	Tally	H Sh	
36	11.64	431.21	76	$12 \cdot 07$	909.75	Check	ed By	
37	12.04	443.25	77	12.08	921.83			
38	11.53	454.78	78	$12 \cdot 04$	933.87			
39	12.05	466.83	79	$12 \cdot 05$	945.92			
40	11.97	478.80	80	11.68	957.60			
Sub tot	119.05		Sub tot	119.13				

REMARKS
Length Work String $=45.0 \mathrm{~m}$
Shoe Depth
$=1305.5 \mathrm{~m}$

Well Name and No. WEST SEAHORSE NO 1 Date_ 27 SEPTEMBER 1981 Casing Size 13-3/8 inch

$61 \mathrm{lb} / \mathrm{ft}$			K-55		BTC		Joints	05
$\begin{aligned} & \text { Joint } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Length } \\ \text { of }(m) \\ \text { joint } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { in }(m) \\ & \text { Hole } \end{aligned}$	Joint No.	$\begin{gathered} \text { Length } \\ \text { of (}(\mathrm{m}) \\ \text { Joint } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { in } \\ & \text { Hole } \end{aligned}$	Joint No.	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { Joint } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { in } \\ & \text { Hole } \end{aligned}$
	-							
	-		Carri	Forward		Carried	Forward	
101	11.92	1208.22	41	-		81	-	
102	11.63	1219.85	42	-		82	\cdot	
03	11.98	1231.83	43	-		83	-	
04	11.87	1243.70	44	-		84	-	
05	11.83	1255.53	45	-		85	-	
06	-		46	-		86	-	
07	-		47	-		87	-	
08	\cdot		48	-		88	-	
09	-		49	-		89	-	
10	-		50	-		90	\cdot	
Sub tot	59.23		Sub tot	\cdot		Sub tot	-	
11	-		51	-		91	-	
12	-		52	-		92	\cdot	
13	-		53	-		93	-	
14	\cdot		54	-		94	\cdot	
15	-		55	-		95	-	
16	-		56	\cdot		96	-	
17	-		57	\cdot		97	-	
18	-		58	-		98	-	
19	-		59	-		99	-	
20	\cdot		60	\cdot		100	\cdot	
Sub tot	-		Sub tot	-		Sub tot	-	

21	-		61	-	
22	-		62	-	
23	-		63	-	
24	-		64	-	
25	-		65	-	
26	-		66	-	
27	-		67	-	
28	-		68	-	
29	-		69	-	
30	.		70	-	
Sub tot	-		Sub tot	-	
31	-		71	-	
32	-		72	-	
33	-		73	-	
34	-		74	-	
35	-		75	-	
36	-		76	-	
37	-		77	-	
38	-		78	-	
39	-		79	-	
40	-		80	-	
Sub tot	-		Sub tot	-	

TALLY SUMMARY

Group No. Ending	Length (Forward)
10	\bullet
20	\bullet
30	\bullet
40	\bullet
50	\bullet
60	\bullet
70	\bullet
80	\bullet
90	
100	
TOTAL	
Tally By	
Checked By	

REMARKS

Well Name and No. WEST SEAHORSE NO 1					OCTOBER	81	Casing Size \qquad Joints Run \qquad			
Weight $40 \mathrm{lb} / \mathrm{ft}$			K55 Connection_BTC							
$\begin{aligned} & \text { Joint } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Length } \\ \text { joint } \\ \text { joint } \\ \hline \end{gathered}$	$\begin{gathered} \text { Total } \\ \text { Hole } \\ \text { Hole } \end{gathered}$	$\begin{aligned} & \text { Joint } \\ & \text { No. } \end{aligned}$	$\underset{\substack{\text { Length } \\ \text { Joint } \\ \text { Jof }}}{ }$	$\begin{gathered} \text { Total } \\ \text { Hole } \\ \text { Hole } \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Joint } \\ \text { No. } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Length } \\ \text { Joint } \end{gathered}$	$\begin{aligned} & \text { Total } \\ & \text { Hole } \\ & \text { Hole } \end{aligned}$		
Shoe	0.57									
01	11.99		Carrie	d Forward		Carried	Forward			
Collar	0.45		41	12.01		81	11.57			
02	11.96		42	11.98		82	11.71			
03	12.06		43	12.10		83	12.04			
04	11.87		44	11.77		84	11.98			
05	$12 \cdot 07$		45	12.04		85	11.98			
06	11.77		46	11.95		86	11.66			
07	$12 \cdot 02$		47	12.00		87	11.98			
08	11.87		48	11.87		88	11.36			
09	11.81		49	12.09		89	$12 \cdot 00$			
10	12.09		50	12.08		90	12.09			
Sub tot	$119 \cdot 51$		Sub tot	$119 \cdot 89$		Sub tot	$118 \cdot 37$			
11	$12 \cdot 10$		51	11.92		91	11.75			
12	11.86		52	11.66		92	12.05			
13	$11 \cdot 82$		53	11.75		93	11.94			
14	$12 \cdot 00$		54	11.75		94	11.79			
15	11.77		55	11.89		95	11.68			
16	$11 \cdot 35$		56	11.76		96	11.77			
17	$12 \cdot 02$		57	11.74		97	11.95			
18	11.78		58	$12 \cdot 06$		98	11.77			
19	11.79		59	11.92		99	11.69			
20	11.96		60	11.95		100	11.74			
Sub tot	118.45		Sub tot	118.40		Sub tot	$118 \cdot 13$			
21	11.92		61	11.91		TALLY SUMMARY				
22	11.98		62	12.07						
23	12.09		63	11.62		Group No. Ending		$\begin{gathered} \text { Length } \\ \text { (Forward) } \end{gathered}$		
24	11.81		64	11.84						
25	11.85		65	11.93		10		119.51		
26	11.81		66	11.81		20		$118 \cdot 45$		
27	11.91		67	11.77		30		118.78		
28	11.91		68	11.83		40		$118 \cdot 24$		
29	11.83		69	11.93		50		119.89		
30	11.67		70	11.95		60		118.40		
Sub tot	118.78		Sub tot	118.66		70		118.66		
31	11.97		71	11.72		80		$118 \cdot 63$		
32	11.86		72	11.86		90		$118 \cdot 37$		
33	11.80		73	11.93		100		$118 \cdot 13$		
34	11.75		74	11.72		tota	AL	187.06		
35	11.66		75	$12 \cdot 10$		Tally	Br H			
36	11.75		76	11.82		Check	ed By			
37	$12 \cdot 10$		77	12.05						
38	11.96		78	11.65						
39	11.78		79	11.99						
40	11.61		80	11.79						
Sub tot	118.24		Sub tot	118.63						

REMARKS Ran a total of 126 Jts $K 55401 \mathrm{~b}$ casing with shoe a 1552.15 m . Broke circulation a 1300 m - OK. Thread locked all connections from shoe to collar. Centralizers at 1st, 3 rd and 5th Jt, and Jts 40, 41 and 42. Pressure tested cmt line to 3500 psi, pumped 10 bbl DW ahead. Mixed and pumped 503 sx ' $\mathrm{G}^{\prime} \mathrm{cmt}$ with 5 pct CFR2. Launched dart and sheared plug with 3250 psi. Followed with 2 bbl DW, followed with 370 bbls mud. Bumped plug 1750 psi. Checked float shoe - holding OK.

Note: Average slurry wt. 15.6 - 15.8 ppg .

REMARKS

detailed casing and cementing report

1330 to 1900 hrs ran and landed 11 Jts 201794 casing washed from 188 m to 189 m with seawater with float shoe at 189.38 m . Circulated out full casing volume 180 bbl .

1930-2100 Test cement line to 3000 psi, ok. Mix and pump 2000 sx Class 'G' neat cement slurry start 15.4 ppg tail of slurry 15.8 ppg . Displaced with 154 bbls sea water.
Ck for back flow static float holding ok.

	Size	17312				
	Depth (mi	1320.00				
	Size	13-3/8				
CASING	Depth (m)	1305				
MUD: Type						
Power Tong Torque Fill up Points Cont. \& Ea 5 Maximum Jts 7000 Calc. Displ. $\left(\mathrm{m}^{3}\right)$ 624.5						
				1800	psi	
CASING INFORMATION						
TD						1320.00
OFF BOTTOM					15.00	
Shoe (make and type) Baker Float Shoe				Landed at	1305	1305.00
Length Shoe --- -- - - - - - - - -					. 60	1304.40
105 Joints. Grade K55 wit 61 Ib/ft 10.515 ins.					1254.64	49.76
Landing Collar (make and type) -- Baffle collar BTC					43	49.33
Wellhead					4.37	44.96
Wellhead to rotary table					44.96	
Hanger or Suspension joint (make and type)						
Top Hanger or Suspension joint						
Landing String					52.10	
metres above R.T. at Zero Tide						
Less tide of						
metres up from R.T.					7.14 m	

detailed casing and cementing report
Run $105 \mathrm{Jt} \mathrm{K} 5561 \mathrm{lb} / \mathrm{ft}$ casing from 0730 to 0530 . Rough weather cont. Adjusting anchor mooring to keep rig on location. Rig up 350 ton casing equipment @ $20^{\prime \prime}$ shoe and broke circulation.
Landed casing in $20^{\prime \prime}$ casing housing and circulated full casing volume prior to cementing with $13-3 / 8^{\prime \prime}$ casing shoe at 1305 m .

Pumped 10 bbls CS-2 spacer ahead. Pressure test cement line and head to 3500 psi, OK. Start cement at 08.10 mix and pump 2350 sx Class ' G ' in 520 bbls mixing water containing 2.5% prehydrated bentonite and 0.1% HRL average slurry wt on lead 13.5 ppg. Mix and pump 300 sx CTass ' G ' cement in 36 bbls seawater with 0.1% HRL average slurry wt on tail_15.8. Finish mixing 0950.

Release dart and shear top plug with 3500 psi. Pump 10 bbls seawater with cement unit followed with 621 bbls using rig pump. Final pumping pressure 1800 psi. Plug did not bump. Had displaced 7 bbls over casing volume to F.collar, OK. Float shoe not holding work float by surging-holding OK.

HUDBAY OIL (AUSTRALIA) LIMITED
Casing, Running Report
Well Name and No. WEST SEAHORSE NO. 1 Date 25 OCTOBER 1981 Casing Size 9-5/8"

CASING INFORMATION

Hanger or Suspension joint (make and type)		
Top Hanger or Suspension joint		
Landing String HWDP		

DETAILED CASING AND CEMENTING REPORT

Ran a total of 126 joints $\mathrm{K} 5540 \mathrm{lb} / \mathrm{ft}$ casing with shoe at 1552.15 . Broke circulation at 1300 m OK thread lock all conn F/Shoe to collar. Cent 1st 3rd 5th joints and jt 40-41-41. Pressure test cement line to 3500, pump 10 bbl DW ahead. Mix and pump 503 sax ' G ' cement with. 5% CFK2. Launch dart and shear plug with 3250 psi followed with 2 bbl DW followed with 370 bbls mud. Bump plug 1750 psi. Check float shoe holding, OK. Note: Average slurry weight: 15.6-15.8.

2.4 Mud System

2.4.1 Mud Report Summary

Water Depth 49 m , Hole to 205, Set $30^{\prime \prime}$ Casing at 189 m
This hole was spudded at 1800 hrs on the 16 th September in 39 m of water. $20-25 \mathrm{bbls}$ of high viscosity mud was pumped on each connection and 400 bbls of mud spotted in the open hole at casing point. A further 400 bbls of mud was spotted after a wiper trip prior to running casing.

Drill $17 \frac{1}{2}$ " Hole to 1320 m , Set $13-3 / 8^{\prime \prime}$ Casing at 1305 m
The cement was drilled and a leak off test conducted to an SG of 1.07. The hole was then displaced to mud. All settling tanks were cleaned and solids control equipment checked out.

At the outset seawater was accidentally added to the system which raised the chlorides to 14000 ppm by 470 m . Thereafter drill water was added at the shakers, partly compensating for the $25-35 \mathrm{bbls} /$ hour losses from the desilter.

The traps were dumped when necessary and dilution volume made from Q-Mix prepared in the reserve tanks and fresh water. The mud weight was kept below 1.10 SG.

At 960 m the drillship ran out of drill water necessitating the use of seawater. Dextrid additions commenced at 1318 m so that the WL was reduced to below 15 mls .

The hole was conditioned at 1320 m for logs. The hole showed a few signs of instability when POOH - at 1272 m there was 50 tonne overpull. The pipe was pumped out to 1233 m with the hole swabbing.to 1220 m . RIH the hole bridged at 1217 m and reaming was required to 1320 m . The hole was circulated and conditioned prior to logging. During logging the hole took 30 bbls of mud and afterwards, when conditioning the hole 1272 - 1320 m required reaming with bridges at 1272 and 1288 m and 2 m of fill on bottom. Cuttings showed signs of geopressures.

The $13-3 / 8^{\prime \prime}$ casing was landed and set without problem with cement returns to the surface. This mud system was then dumped and new mud prepared.

12 $\frac{1}{4}$ " Hole Interval

The $12 \frac{1}{4}$ " hole section was spudded with bit No. 5 on the 29 th September after drilling the shoe and cement. The ensuing leak off test recorded an equivalent MW of 1.99 SG. The mud weight was raised to 1.08 SG at 1412 m then cut back to 1.05 SG at 1421m. The interval 1412 - 1456 was drilled in $5-10 \mathrm{~m}$ spurts with bottoms up being circulated out each time. A core was cut from 1456 - 1460 with 81% recovery.

Cement from within one of the collars blocked the jets at 1662m. On re-entering the hole the interval 1658-1678 required washing and reaming.

Intermediate logs were run at 1745m. 4 runs plus 2 RFT and 2 CST tests were conducted with no hole trouble. The hole was shown to be in good gauge.

There was a drilling break at 1929 m and then slow seepage to the formation (approximately 70 bbls) thereafter. The mud weight then was 1.06 SG. Drilling continued to 2210 m where 4 RFT runs were made with no hole problems. 2183-2210m required washing and reaming on return to drilling.

A fishing operation was mounted at 2365 m for the BHA below the bumper sub. The fish was retrieved and a mill tooth bit run with junk basket subsequently.

TD was reached on the 20 th 0 ctober at 2489 m . The last 74 m were drilled noticeably faster due to a different bit (Smith F57) being employed.

Two days logging followed with the suite being completed with no hole problems.

2.4.2 Mud Engineering
 Mud Engineering services and mud additives were provided by Baroid Australia Pty Ltd.

2.4.3 Mud Record (Daily Characteristics)

(See'Mud Properties' Record attached.)

WELL ...WEST SEAHORSE NO. 1
MUD COMPANY:BAROID

1. Specific gravity Viscosity (sec)
A.P.I. Water Loss (ml)
. Cake Condition
A.P.I. Cake (millimetre)

Sand (\%)
Chloride ($\mathrm{ppm} \times 1000$)
pH
. Solids (\%)
10. Plastic Viscosity (cp@ $50^{\circ} \mathrm{C}$)
11. Yield Point (lb/100ft. ${ }^{2}$)
12. Gels ($\mathrm{lb} / 100 \mathrm{ft} 2 \mathrm{2} 10 \mathrm{sec} / 10 \mathrm{~min}$)
13. Total Hardness (epm)
14. Pf
15. Mf
16. Oil \%
17. "N" Factor
18. Bentonite (lbs/bbl)

Date	$\begin{aligned} & \text { Depth } \\ & \text { O600 hrs } \\ & \text { (metres) } \end{aligned}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
17/9	61	1.04	100																
18	205	1.04	100																
19	205	1.04	100																
20	205	1.01	36	19		1	0	9	10					6	1.5				28
21	477	1.10	48	24		3	. 5	14	8					6	0				34
22	856	1.08	40	18		2	. 5	8.5	10	8				12	. 4				34
23	959	1.07	35	32		2	. 4	12.5	8.3	6	5	14	6/9	80	. 1				34
24	1138	1.08	36	35		2	. 5	14.7	9.5	6	4	13	6/10	100	Tr				23
25	1318	1.09	40	13.6		2	. 5	19	8.5	7	9	15	2/6	80	Tr				43
26	1320	1.10	38	13.8		2	. 5	19	8.5.	6	8	8	2/4	80	. 1				34
27	1320	1.08	38	16.8		2	. 6	19	8.3	6	6	9	2/5	80	Tr				34
28	1320	1.08	38	18.4		2	. 5	19	8.0	6	5	9	2/4	80	0				34
29	1320	1.08	38	18.4		2	. 5	19	8.0	6	5	9	2/4	80	0				34
30	1320	1.02	38	6		1	0	8.5	9:2	1	9	7	0/1	14	. 7				28
1/10	1440	1.06	43	5.4		1	. 4	10	9.0	4	8	14	8/14	12	. 3				28
2	1460	1.06	48	5.3		1	1.0	10.	9.6	3	10	21	8/15	6	. 5				23
3	1551	1.06	42	7.5		1	1.25	12.5	8.5	4	10	10	6/9	14	. 15				23
4	1678	1.03	40	7.8		1	. 2	12.5	8.7	4	7	12	2/5	22	. 2				23
5	1745	1.04	40	4.4		1	. 4	12.5	8.7	3	10	12	3/10	22	. 1.				23
6	1745	1.04	40	4.4		1	. 4	12.5	8.7	3	10	12	3/10	22	.1				23
7	1801	1.05	39	4.0		1	Tr	12	8.6	3	9	7	$2 / 5$	50	.1				23
8	1975	1.06	44	4.2		1.5	Tr	10.5	9.5	2.5	14	14	$2 / 7$	200	Tr				30
9	2077	1.07	44	4.8		1.5	Tr	10	9.5	2.5	14	12	$2 / 11$	200	$\cdot 1$				28
10	2160	1.07	45	4.4		1.5	Tr	10	9.5	2.5	15	14	$2 / 11$	200	Tr				33
11	2210	1.08	44	4.0		1.5	Tr	10	9.5	3	14	12	$2 / 10$	200	$\cdot 1$				32
12	2220	1.07	44	3.6		1.5	Tr	9.5	9.5	2.5	14	13	278	180	. 1				32
13	2276	1.08	42	5.6		1.5	Tr	8.5	9.0	3	13	12	2/10	160	Tr				28
14	2325	1.07	43	4.8		1.5	Tr	8	9.5	2.5	13	12	$2 / 8$	140	. 1				29
15	2357	1.08	41	4.2		1.5	Tr	7.5	9.5	3	14	10	177	150	. 1				29
16	2365	1.07	42	4.6		1.5	Tr	7.5	9.5	3	14	12	279	150	. 1				29
-17	2365	1.07	40	4.8		1.5	Tr	7.2	9.5	3	13	10	1/6	120	. 1				28
18	2386	1.06	45	4.8		1.5	Tr	7.	9.5	2.5	15	14	$2 / 11$	100	$\cdot 1$				27
19	2416	1.06	43	4.8		1.5	Tr	7	9.5	2.5	14	13	$2 / 9$	100	$\cdot 1$				28
20	2484	1.06	40	4.0		1.5	Tr	6	9.5	3.9	11	10	$2 / 6$	100	Tr				26

2.4.4 Materials Consumption and Costs

MATERIALS	UNIT	COST PER UNIT	QUANTITY		COST	
			EST.	ACTUAL	EST.	ACTUAL

2.4.4 (Continued)

123"1 ${ }^{\prime \prime}$ hole Interval $1320-2450 \mathrm{~m}$							
Gel	100	1b	10.15	106	554	1075.90	5623.10
Dextrid	50	1b	39.90	386	502	15401.40	20029.80
Mon Pac	50	1b	135.84	154	138	20919.36	18745.92
XC Polymer	50	1b	250.80	-	3		752.40
Caustic Soda	20	kg	14.20	68	83	965.60	1178.60
Soda Ash	50	kg	17.75	72	30	1278.00	532.50
Bicarbonate	50	kg	21.49	-	20		429.80
Barite	100	1b	6.21	2900	881	18009.00	5471.01
Coat 888	50	1b	23.20	-	20		464.00
Surflo H35	55	gal	473.50	-	1		473.00
Total Cost for $12 \frac{1}{4}{ }^{\prime \prime}$ hole						57642.20	53700.63

Consumption for $36^{\prime \prime}, 26^{\prime \prime}$, $17 \frac{1}{2}{ }^{\prime \prime}$ \& $12 \frac{1}{4}{ }^{\prime \prime}$ hole						
Gel	100 lb	10.15	1038	1520	10535.70	15428.00
Dextrid	50 lb	39.90	501	652	19989.90	26014.80
Mon Pac	50 lb	135.84	154	150	20919.36	20376.00
XC Polymer	50 1b	250.80	-	3		752.40
Q-Broxin	50 lb	24.15	-	53		1279.95
Caustic Soda	20 kg	14.20	68	111	965.60	1576.20
Caustic Soda	50 kg	35.50	35	28	1242.50	994.00
Bicarbonate	50 kg	21.49	5	25	107.45	537.25
Soda Ash	50 kg	17.75	112	54	1988.00	958.50
Lime	25 kg	6.17	7	8	43.19	49.36
Barite	100 1b	6.21	2900	989	18009.00	6141.69
Coat 888	50 1b	23.20	-	38		881.60
Surflo H35	55 gal	473.50	-	2		947.00
Total Cost for all Intervals					73800.00	74108.15

2.4.5 Mud Equipment Description

1. Reserve mud storage tanks 4×500 bbls.
2. Active mud storage 400 bbls complete with 150 bbl settling tank and 85 bbl pill tank.
3. Brandt Duel Tandem shaker.
4. Demco Desander, 6 cone $\times 6$ inch rated at 1050 gpm with Mission 6 inch $x 8$ inch centrifuged pump and 75 HP electric motor.
5. Demco Desilter, 12 cone $\times 4$ inch rated at 1080 gpm with Ingersoll-Rand centrifuged pump and 75 HP electric motor.
6. Pioneer Mud Cleaner, 16 cone $x 4$ inch rated at 800 gpm with 75 psi head.
7. Degasser - Drilco.
8. Pit Volume Totalizer.
9. Mud Mixer, Lightning mixers 2 ea $\times 25 \mathrm{HP}$ in active tanks, 4 ea $\times 25 \mathrm{HP}$ in reserve tanks.
10. Pioneer Sidewinder Mud Mixing Hopper.
11. Mud Mixing Pumps, Ingersoll-Rand MIR 150 with 75 HP electric motors, two on active tank, two on reserve tanks.
12. Mud/Gas separator with vent to Crown block.
13. Swaco super adjustable choke 10,000 psi with control panel.
14. Trip tank - 25 bbls with high-low level switch activated motor for transfer pump to annulus.

$2.5 \quad$ Flow Testing

2.5.1 Flow Testing Summary

One drill stem test was run over the interval 1411-1416 m R.T. The interval was perforated with a 4 inch casing gun at 4 shots per foot with a 90 degree phasing.

Three downhole gauges were used to record pressures and temperatures during the test and a Surface Pressure Read Out (SPRO) unit was used to provide a continuous surface monitor of the downhole conditions.

An initial 11 minute flow period was followed by a 69 minute initial shut in period. The final flow period last 411 minutes and was followed by a final shut in period of 553 minutes. During the final flow period, the well flowed oil at an average rate of 1827 BOPD and gas at an average rate of 242 Mscf/d through a $1 / 2$ inch choke at a wellhead pressure of 460 psi. The flow was switched through a separator and several gas and oil samples were obtained. The oil had a gravity of 48° API and an estimated solution gas-oil ratio of 200 scf/bbl. The gas contained approximately $200 \mathrm{ppm} \mathrm{H}_{2} \mathrm{~S}$.

2.5.2 Flow Data

The flow data as reported by Flopetrol are attached as Appendix A1 to this report.

2.5.3 Pressure Data

The bottomhole pressure data as reported by Dowell Schlumberger are attached as AppendixA2 to this report.

2.5.4 Interpretation and Analysis

The interpretation and analysis of the DST is as follows:

- The well flowed in excess of $1800 \mathrm{stb} / \mathrm{d}$ of 48° API light crude on a one half inch choke. Separator gas rates averaged 242 Mscf/d and contained 200 ppm $\mathrm{H}_{2} \mathrm{~S}$.
- The reservoir is undersaturated with a bubble point pressure of 800-900 psi as estimated from the two DST samples. The solution gas-oil ratio is about $200 \mathrm{cf} / \mathrm{stb}$.
- Formation permeability is estimated to be in the range of 118 to 175 md .
- The well has a skin factor of -1.7 to -3.3 , thus indicating no wellbore damage.
- The radius of investigation of the test is approximately 800 feet.
- The test did not indicate any barriers or reservoir boundaries, nor did it indicate reservoir depletion.
- The productivity index of the well is $8.4 \mathrm{BPD} / \mathrm{psi}$.

2.6 General Data

2.6.1 Positioning Report

(See attached Appendix A3.)

2.6.2 Downhole Surveys

Depth	Drift
205 m	$3 / 4^{\mathrm{o}}$
856 m	1^{0}
1320 m	1^{0}
1450 m	1^{0}
1744 m	$1 \frac{1}{2}{ }^{0}$
2078 m	$7 \frac{1}{2}{ }^{0}$
2111 m	$6 \frac{1}{2}$
2168 m	7^{0}
2210 m	7^{0}
2325 m	7^{0}
2357 m	6^{0}
2489 m	6^{0}

2.6.3 Plug Back and Squeeze Cementation Record

On October 24, 1981 the well was plugged back to 1556 m to facilitate testing of the Latrobe section as follows:

Plug No 1	$2015-1940 \mathrm{~m}$	200 sacks
Plug No 2	$1675-1575 \mathrm{~m}$	267 sacks

Plug No 2 was tagged at 1556 m .

2.6.4 Fishing Operations

On October 16th, 1981 the BHA parted at the bumper sub. The fish consisted of bit, bit sub, $2 \times 8^{\prime \prime} \mathrm{DC}$, stab, $1 \times 8^{\prime \prime} \mathrm{DC}$, stab, $3 \times 8^{\prime \prime}$ DC, bumper sub mandrel.

The fishing BHA consisted of overshot with $6-3 / 4$ " spiral grapple, X0, bumper sub, $14 \times 8^{\prime \prime}$ DC, XO, jars, 13 HWDP. The fish was successfully caught and recovered. A junk sub was run on subsequent bit run to collect remaining bumper sub pieces.

2.6.5 Side Tracked Hole

None performed.

2.7 Abandonment Report

West Seahorse No. 1 was suspended on November 3rd, 1981.
The Mud in the $9-5 / 8^{\prime \prime}$ casing was conditioned to a pH of 11 and a wireline $B P$ was set at 1394 m . After pressure testing to 2200 psi, 100 sacks of cement was circulated onto the BP. Another 100 sack plug was placed over the interval $160-77 m$. A corrosion cap was placed over the wellhead, pinger operation was checked, and the guide lines were cut. A temporary marker buoy was attached to the PGB in lieu of a permanent type buoy to be placed at a later date. See attached schematic for downhole and subsea configuration.

2.8 Recommendation For Future Drilling Programmes

With the exception of the fishing job, there were no major problems either downhole or mechanical associated with this well. Some excessive bit weight below 1744 did cause some deviation however no problem resulted due to the drift. The section of hole from 2200 - 2490m was particularly firm and required longer to drill than expected. With regard to changes in future drilling programmes, one possible area to examine would be the mud programme - not from a hole problem viewpoint but for evaluation purposes. The salinity of the formation waters appears to be fairly low which tends to complicate log interpretation. By adjusting the salinity of the mud to contrast that of the formation fluid, electric logs and RFT's may be more readily evaluated.

APPENDIX A1. WELL TESTING REPORT

No. 26108131181

FLOPETRDL

```
DIVISION = N.T.D.
BASE = PERTH
REPORT N`= 261081311081
```


Well Testing Report

Client : hudbay oil

Field $=$	WEST SEAHORSE	Well $:$	非 1
Zone $=$	SANDStONE $1411 \mathrm{M}-1418 \mathrm{M}$	Date $:$	
	26.10 .81 то 31.10 .81		

(INCLUDES INFORMATION ON R.F.T. TRANSFERS OBTAINED PRIOR TO TEST AND P.C.T. CHAMBER TRANSFERS OBTATNED DURING TEST).

INDEX

囚 1．TEST PROCEDURE＿

区 ᄅ＿main results－
（3＿opERATING AND MEASURING CONDITIONS－
区 4＿surface equipment data－
囚 5＿well completion data－
图 G＿sequence of events－
囚 7＿well testing data－

- TEST PROCEDURE -

1) SCHLUMBERGER R.I.H. WITH $4^{\prime \prime}$ CASING GUN 90° PHASING AND PERFORATE INTERVAL" 14111418 METERS.
2) R.I.H. WITH D.S.T. TEST STRING CONSISTING OF P.C.T., MODIFIED M.F.E., FLOPETROL E.Z. TREE AND FLOPETROL LUBRICATOR VALVE.
3) AFTER SPACE-OUT THE FLOWHEAD WAS FITTED AND THE SYSTEM PRESSURE TESTED.
4) THE "POSTTEST" PACKER WAS SET.
5) THE SPRO LATCH WAS RUN IN HOLE AND LATCHED TO GAUGE.
6) THE WELL WAS FLOWED FOR A PRE-FLOW PERIOD OF 11 MINUTES THEN SHUT-IN FOR AN INITIAL BUILD UP OF 69 MINUTES.
7) THE WELL WAS THEN FLOWED TO BURNERS ON $\frac{1}{2} "$ CHOKE AND AFTER CLEANING UP WAS SWITCHED THROUGH THE SEPARATOR TO OBTAIN RATES OF ± 1800 BBLS/DAY OF LIGHT CRUDE OIL WITH GAS RATES IN THE REGION OF 242 MSCF/DAY.
8) AFTER FLOWING FOR A NUMBER OF HOURS H2S STARTED TO APPEAR IN LARGE QUANTITIES (IN THE ORDER OF ± 200 PPM CONSISTANTLY).
9) TWO OIL AND TWO GȦS SAMPLES WERE OBTAINED AND THE WELL THEN SHUT-IN FOR FINAL BUILD UP.
10) THE WELL WAS THEN KILLED AND THE STRING REMOVED FROM THE WELL.

$$
=\text { MAIN RESULTS }=\text { D.S.T. NO. } 1
$$

Tested interval: \qquad Perforations: $\quad 1411-1418 \mathrm{M}$

OPERATION	DURATION	BOTTOM HOLE PRESSURE	WELL HEAD PRESSURE	OIL PROD. RATE	GAS PROD.RATE	G.O.R
Units	MIN	PSIG	PSIG	B.O.P.D.	MSCF /D	MSCF/BBL
$\begin{aligned} & \text { PRE-FLOW } \\ & \text { ON } \frac{13}{2} \text { " CHOKE } \end{aligned}$	11	-	200			
INITIAL BUILD UP P.C.T. CLOSED	69	-	261			
FLOW PERIOD $\frac{1}{2}$ " FIXED CHOKE	65	-	472			
FLOW THRO' SEPARATOR ON高" CHOKE	340	-	450	1752	242.1	$\begin{gathered} 7.24 \\ 0.138 \end{gathered}$

Depth of bottom hole measurements : \qquad Reference :

Temperature : \qquad at : \qquad depth

Separator gas gravity (air : 1) at choke size : \qquad
STO gravity at choke size.
BSW: \qquad Water cut : \qquad

REMARKS AND OTHER OPERATIONS.

NO WATER PRODUCED DURING TEST.
RATES AVERAGED.
REFER DOWELL SCHLUMBERGER SPRO REPORT FOR B.H.P. AND TEMPERATURE. UNABLE TO FLOW TO GAUGE TANK DUE TO H2S PRODUCTION.

FLDPETRDL Base : \qquad PERTH		Section :
		Page : 01
		Report $N^{\circ}=2610813110$

= OPERATING AND MEASURING CONDITIONS -
$A=$ TYPE OF GAUGE $=$

GAS PRODUCTION RATE
Orifice meter
Standard conditions.
14.73 @ $60^{\circ} \mathrm{F}$

WATER PRODUCTION RATE
Tank
要 Meter
$\square \ldots \quad$ NIL PRODUCED

$$
C=W E L L \text { DATA - }
$$

WELL STATE DURING SURVEY:

Main casing size 9 5/8" set at 1500 M Total well depth
Tubing size $3 \frac{1}{2}$ PH6 set at \qquad Packer \qquad set at
Perforations:
\qquad

- Zone \qquad From \qquad to \qquad From \qquad to \qquad -

WELL STATE BEFORE TEST :

EXPLORATION

Well closed since \qquad Producing zone \qquad Choke size- SURFACE EQUIPMENT LAYOUT -

REMARKS :

NOT TO SCALE.
FIXED PIPING FROM RIG FLOOR DOWN.

- WELL COMPLETION DATA -

\qquad

30' SET @ 52.5 M

20" SET @ 189.4 M

13 3/8' SET @ 1305 M
$95 / 8^{\prime \prime}$ SET @ 1500 M
(ESTTMATED)

REMARKS:

N.T.S.

FOR TEST STRING LAYOUT REFER HUDBAY DRAWING NO. A4DR-283 AND/OR DOWELL SCHLUMBERGER REPORT.

- SEQUENCE OF EVENTS =

DATE	TIME	OPERATION
		D.S.T. \#1
		PERFORATIONS @ 1411M - 1418 M
		POSITEST PACKER
		WATER CUSHION - 228 METERS.
28.10.81		SCHLUMBERGER PERFORATE INTERVAL 1411 - 1418M WITH 4" CASING
		GUN 4 SHOTS PER FT. 90° PHASING.
		TEST STRING R.I.H.
29.10.81	0330	E.Z. TREE R.I.H. AFTER UNLATCH ON SURFACE.
	0430	LUBRICATOR VALVE R.I.H.
	0515	START RIG UP TO FLOWHEAD AND SURFACE EQUIPMENT. SET PACKER.
	0820	SPRO LATCH R.I. H. AND LATCHED ONTO GAUGE AT 1376.8 METERS.
		Start pressure testing of surface lines.
	1235	Pressure annulus to open p.c.t. valve - Steady pressure blowin
		WATER OUT OF bubble hose.
	1240	OPEN WELL TO BURNER ON ADJ. CHOKE $\frac{1}{2}$ ".
	1244	WATER CUSHION TO SURFACE.
	1246	bleed down annulus pressure to close p.c.t.
	1355	PRESSURE ANNULUS TO OPEN P.C.T. FOR 2ND FLOW PERIOD.
	1356	FLOWING WATER CUSHION TO SURFACE.
	1358	CHANGE TO $\frac{1}{2}$ " FIXED CHOKE.
	1359	WELL SLUGGING WATER CUSHION.
	1402	SLUGGING WATER AND MUD.
	1407	OIL TO SURFACE.
	1411	B.S.W. - 97\% LIGHT CRUDE AND 3\% SEDIMENT.
	1500	SWITCHED FLOW THROUGH SEPARATOR.
	1515	CHANGE BURNER DUE TO WIND DIRECTION.
	1700	SWItch flow to gauge tank.
	1710	by-pass gatige tank mite to hos prinder

No.: DOP 109

No.: DOP 110

No. : DOP 110

DATE - TIME		PRESSURE AND TEMPERATURE MEASUREMENTS							PROD. RATES AND FLUID PROPERTIES					GOR			
		BOTTO	OM HOLE		ELL HE		SEPA	ATOR	OIL OR CO	ONDENS	SATE	GA					
Time	Cumul	Temp.	Pressure	Tg. temp	Tg. press.	Cg.press.	Temp.	Press.	Rate	Gravity	BSW	Rate	Gravity				
HR MIT	MTN			${ }^{\circ}{ }^{\circ} \mathrm{C}$	PSIG	PSIG							Air=1				Units
1359			\%)				\%	M	\%	\%		,	\%	1		S-
1400	85			26	400												
1401	86			27	400												
1402	87			27	410				SLUGGIT	IG LARC	E AMOU	NTS OF WAT	ER AND	MUD.			
1403	88			28	450												
1404	89			28	460												
1405	90			28	462												
1406	91			28	481												
1401	92			29	480				OIL TO	SURFAC	E.						
1408	93			29	485												
1409	94			29	493										.		
1410	95			29	495												
1411	96			29	490				BWS $=$	97\% LIC	HiT CRU	yde and 3\%	SEDIME	T.			
1415	100			29	475						-	,					
1420	105			29	477												
1425	110			30	487												
1430	115			29	479							,					
1445	130			32	480												

No.: DOP 110

DATE - TIME		PRESSURE AND TEMPERATURE MEASUREMENTS							PROD. RATES AND FLUID PROPERTIES					GOR			
		BOTTOM HOLE		WELL HEAD			SEPARATOR		OIL OR CONDENSATE			GAS			H 2 S	\square	
Time	Cumul	Temp.	Pressure	Tg. temp	Tg. press.	Cg.press.	Temp.	Press.	Rate	Gravity	BSW	Rate	Gravity	MSCE/	PPM		
				${ }^{\circ} \mathrm{C}$	PSIG	PSIG	OF	PSIG	B.OPD	SPGR	\%	MSCF/D	Air $=1$	BBL			Units
1445	\square		-						-	\square				-	\bigcirc	-	rew
29.10	81																
1500	145			35	472												
1500	-		SWITCH	LOW TH	ROUGH SE	EPARATOR							. 6375		(95\% CRURE	E 5\% SED	MENT)
1515	160			33	457												
1515	-		CHANGE	QURNERS	DUE TO	WIND DI	RECTIO	N.									
1530	175			33	460		77	180					. 635				
1545	190			34	460		75	180	1502		TR	253.4	. 6725	6			
1600	205			34	460		75	180	1802		TR	240.8	. 672	- 7			
1615	220			35	460		75	180	1802	$\begin{array}{\|c\|} \hline 789^{\circ} \\ @ 19^{\circ} \mathrm{c} \\ \hline \end{array}$	TR	240.8		7			
1630	235			34	460		79	170	1802		TR	224.9		8	(98\% CRU	DE 2% SED	IMENT)
1645	250			33	460		79	180	1662		TR	233.9	. 655	7			
1700	265			33	460		79	180	1906		TR	242.3		8	200		
1700	-		SWITCH	HLOW TH	ROUGH G	AUGE TAN	K.				\cdots						
1710	275		BY PASS	GAUGE	TANK DU	TO H2S											
1715	280			31	455		81	180	1774			242.3		7.3			-
1730	295			31	455		81	175	1784	$\dot{Q} 21^{\circ} \mathrm{C}$		239.1		7	± 200		
1745	310			31	457.		81	175	1774			239.1		7			

DATE - TIME		PRESSURE AND TEMPERATURE MEASUREMENTS							PROD. RATES AND FLUID PROPERTIES					GOR	H2S		
		BOTTOM HOLE		WELL HEAD			SEPARATOR		OIL OR CONDENSATE			GAS					
Time	Cumul	Temp.	Pressure	Tg.temp	Tg. press.	Cg.press.	$\begin{array}{\|c\|} \hline \text { Temp. } \\ \hline 0_{F} \\ \hline \end{array}$		$\frac{\text { Rate }}{\text { BA }}$	Gravity	$\frac{B S W}{\%}$	Rate	Gravity	MSCF/			
				${ }^{\circ} \mathrm{C}$	pste	PSTA				Spgr			Air $=1$	BBL			$\begin{aligned} & \text { Units } \\ & \text { Ever } \end{aligned}$
1745)	\%)	-							\bigcirc		P	M	\%		
1800	325			33	458		82	180	1770 a	$.984$		242.1		7	± 200		
1815	340			33	455		82	180	1850			242.1		8			
1830	355			33	455		82	180	1690			246.4		7	± 200		
1845	370			33	453		82	180	1774	$\mathrm{a}_{21} \mathrm{al}^{\circ} \mathrm{C}$		246.4		7.0			
1900	385			33	453		82	180	1765			242.1		7	± 200		
1915	400			33	452		82	180	1784			242.1		7			
1920	405		START	TO TAK	里 FIRST	OF SEPAR	布ATOR	PRESSU	E SAMPIES.								
1930	415			32	450		82	180	1746			242.1		7			
1945	430			33	450		82	180	1634			242.1		7			
2000	445			33	450		82	180	1709			242.1		7			
2015	460			33	450		82	180	1812			242.1		7			
2030	475			33	450		82	180	1859			242.1		8			
2040	485		BY PAS	SS SEP	Parator												
2045	490		BLEED	Down	annulus	to CLOS	P.C.	7. FOR	final butid	D UP.							
						END 0	D.S.	7. \#1 1				1					

Well Testing Report Annexes

Client $=$ hudbay oil
Field $=$ west seahorse Well $=$ \#1
Zone $=$ SANDSTONE Date $=26.10 .81$ то 31.10 .81

INDEX of ANNEXES

$\square 1$－BOTTOM HOLE PRESSURE AND TEMPERATURE MEASUREMENT＿
$\square 1.1$－B．H．gauge calibration－
$\square 1.2$－B．H．pressure calculation－
$\square 1.3$－B．H．temperature calculation－

且 己＿liQuID PRODUCTION RATE MEASUREMENT－
娄 2.1 －Measurements with tank－
圆 2.2 ．Measurements with meter－

3．GAS PRODUCTION RATE MEASUREMENT－

图 4＿SAMPLING SHEETS－
娄 4.1 －Bottom hole sampling－
4．2 Surface sampling－－

署 5＿CHARTS AND MISCELLANEOUS＿

2.1- MEASUREMENT WITH TANK -

$V_{0}=V \times K \times(1-B S W)$
Vo : Net oil volume at $60^{\circ} \mathrm{F}$ and atmospheric pressure.
\mathbf{V} : Gross oil volume measured by tank gauging.
K : Volume correction factor to be applied between the tank temperature during gauging and $60^{\circ} \mathrm{F}$.
BSW: Basic sediments and water.

2.2-MEASUREMENT WITH METER -

a) Shrinkage factor is measured by shrinkage tester.

$$
V_{0}=V_{S} \times f \times(1-S h r) \times K \times(1-B S W)
$$

$V_{0}=$ Net oil volume at $60^{\circ} \mathrm{F}$ and atmospheric pressure.
VS : Gross oil volume measured by meter under separator conditions.
$\mathrm{f}=$ Meter correction factor $=\frac{\text { Volume measured in tank }}{\text { Volume measured by meter }}$
Shr: Percentage of oil volume reduction between separator and tank conditions, reported to oil volume at separator conditions.
K : Volume correction factor to be applied between the final temperature during shrinkage measurement and $60^{\circ} \mathrm{F}$. BSW = Basic sediments and water .
b) Shrinkage factor is measured with tank.

$$
V_{0}=V_{S} \times\left(1-S h r^{\prime}\right) \times K \times(1-B S W)
$$

$\mathrm{V}_{\mathrm{o}}, \mathrm{V}_{\mathrm{S}}, \mathrm{K}$ and $\mathrm{BSW}=$ Same meaning as in a) .
(1-Shr') = Shrinkage factor incfuding meter correction factor .

FLDPETPDD Base : PERTH			Client: \qquad Field : \qquad Well \qquad				_ OIL PRODUCTION RATE -- MEASUREMENT WITH TANK -					Section:ANNEX ${ }^{\text {a }}$					
			$\begin{aligned} & \text { Page }: \frac{01}{\text { Report } \mathrm{N}: \frac{1081311081}{261}} . \end{aligned}$														
DATE - TIME		Gauge graduation					tank volume		STO GRAVITY			K	BSW	Net volume of STO V_{0}	Net STO product. rate	Cumulative	
Time	Interval		Volume V	Temp.	Gravity	Temp.	Grav. $60^{\circ} \mathrm{F}$	production									
									\%		Iday		Units				
					\%	\%							Se:				
											,		1				
29.1																	
			DUE TO H2S	PRODU	CTITON UNA	ABLE TO	FLOW TO	GAUGE TAN	DURING	EEST.							
			METERS CHE	CHED A	GAINST G	AUGE TA	ANK AND H	hlitiburton	PUMP AFT	R TEST.							
			HALIIBURT	N PUM	ED 10 B	BLS war	dér.										
			FLOCO METE	R SHOW	ED 9.5	BBLS WA	ATER.										
			GAUGE TANK	K SHOWED	D 9.9	BBLS WA	ATER.										
													-				
								,									
								TESTED IN PERFORATI	NTERVAL: ONS								

No.: DOP 122

No．：DOP 123

FHロpETRDL MEASUREMENT WITH METER－（Continuation）Page $=\frac{03}{26101311}$ Section：ANNEX』．』 Report $N:=26108131101$

DATE－TIME		Meter reading	V_{S}	BSW	V_{0}^{\prime}	1－Shr		OIL GRAVITY			K	Net volume of STO：V_{0}	Net STO product．rate	Cumulative production	
Time	Interval					Factor	Temp．	Gravity	Temp．	Grav．60\％					
HR MIN	MIN	BBLS	BBLS	\％	BBL	1－\％	${ }^{\circ} \mathrm{C}$	SP GR	${ }^{\circ} \mathrm{C}$	API		BBLS	BBL Iday	BBL	Units
1700	\％	113.2	，							\％		\％		\％	E
1715	15	132.1	18.9	TR	18.90							18.48	1774	235.63	
1730	15	151.1	19.0	TR	19.00	． 98	18	． 784	21	48.1	． 9975	$18.58{ }^{\prime}$	1784	254.21	
1745	15	170.0	18.9	TR	18.9	．						18.48	1774	272.69	
1800	15	188.85	18.85	TR	18.85	． 98	18	． 784	21	48.1	． 9975	18.43	1770	291.12	
1815	15	208.55	19.70	TR	19.70							19.27	1850	310.39	
1830	15	226.30	18.00	TR	18.00							19.60	1690	327.99	
1845	15	245.2	18.90	TR	18.90			． 784	21	48.1	． 9975	18.48	1774	346.47	
1900	15	264.0	18.80	TR	18.80							18.39	1765	364.86	
1915	15	283.0	19.00	TR	19.00							18.58	1784	383.44	
1930	15	301.6	18.60	TR	18.60							18.19	1746	401.63	
1945	15	319.0	17.40	TR	17.40							17.02	1634	418.65	
2000	15	337.2	18.20	TR	18.20							17.80	1709	436.45	
2015	15	356.5	19.30	TR	19.30							18.87	1812	455.32	
2030	15	376.3	19.80	TR	19.80							19.36	1859	474.68	
2040	－	BY PASS	eparator	READY F	QR FINAL BU	ILD UP									
2045	BLEED	DOWN ANNU	LUS TO CL	OSE P．C	T．										

_ GAS PRODUCTION RATE MEASUREMENT by orifice meter _

Reference is made to the rules and coefficients given in AGA gas measurement Comittee Report No. 3 for orifice metering.

a) EQUATIONS =

$$
Q=C \sqrt{h_{w} \times P_{f}}
$$

Q : Production rate at reference conditions.
C = Orifice flow coefficient.
hw: Differential pressure in inches of water.
Pf : Flowing pressure in psia.

$$
C=F_{u} \times F_{b} \times F_{g} \times Y \times F_{t f} \times F_{p v}
$$

$F_{u}=$ Unit conversion factor in desired reference conditions.
F_{b} : Basic orifice factor (O in $\mathrm{Cu} . \mathrm{ft} /$ hour).
$\mathrm{Fg}=$ Specific gravity factor.
$\mathbf{Y}=$ Expension factor
Fff = Flowing temperature factor.
Fpv: Supercompressibility factor (estimated).

Remarks

Fm: Manometer factor is equal one since only bellows type meters are used.
Fr : Reynolds factor is considered to be one.

TABLE OF Fu FACTOR				
UNITS	REFERENCE CONDITIONS			
	$60^{\circ} \mathrm{F}$ 14.73	$\begin{gathered} 0^{\circ} \mathrm{C} \\ 760 \mathrm{mmHg} \end{gathered}$	$\begin{gathered} 15^{\circ} \mathrm{C} \\ 760 \mathrm{mmHg}^{*} \end{gathered}$	$\begin{gathered} 15^{\circ} \mathrm{C} \\ 750 \mathrm{mmHg} \end{gathered}$
Cu.ft / hour Cu.ft / day	$\begin{array}{r} 1 \\ 24 \\ \hline \end{array}$	$\begin{gathered} 0.9483 \\ 22.760 \\ \hline \end{gathered}$	$\begin{gathered} 1.0004 \\ 24.009 \end{gathered}$	$\begin{aligned} & 1.0137 \\ & 24.329 \end{aligned}$
$m^{3} /$ hour $m^{3} /$ day	0.02832 0.6796	0.02685 0.6445	$\begin{aligned} & 0.02833 \\ & 0.6799 \end{aligned}$	$\begin{aligned} & 0.02870 \\ & 0.6889 \end{aligned}$

* Mercury at $32^{\circ} \mathrm{F}$
b) METER DATA -

Meter type : DANIEL
Flow recorder type: BARTON
Flange taps - Pf_{f} t

SPECIFIC GRAVITY SOURCE
Sampling point :-GAS OUTLET LINE
Gravitometer type: KIMRAY
d) SUPFRCOMPRESSIBILITY FACTOR FpV $=$ manual for natural gas free of air, CO2 and $\mathrm{H}_{2} \mathrm{~S}$. More accurate values could only be determined by laboratory measurement.

FLOPETROL
Base ：
PERTH

DATE	－TIME	Flowing		h_{w}	$\sqrt{h_{w} \times P_{f}}$	Orifice		Fb		Y			C	Gas production	Cumulative
Time	Interval	Temp．	absolute	h_{w}		diameter	gravity	F_{b}	F_{g}	Y	$\mathrm{F}_{\text {tf }}$	F_{pv}	C	rate ：Q	Production
HR MIN	MIN	${ }^{\circ} \mathrm{F}$	psia	＂of wat．		Inches	（air $=1$ ）							MSCF／D	CUFT
	－	\％	\bigcirc	\bigcirc			－					\％	N	过	\％ers．
29．10．8					D．S．T．\＃⿰三丨⿰丨三一11								？		
				PERFQ	QRATIONS AT	－ 1411	1418M								
				PACK	R SET＠	－									
				CUSH	ON＝WATER	$=228 \mathrm{M}$	ters．								
		WELL	OPENED	TO Bu	RNER ON AD．	．CHOKE	changing	T0 $\frac{11}{2 \prime}$	FIXED．						
1500		SWIT	¢H FLOM	THROU	gh Separat	R									
1530	30	STAR	TO TA	KE REA	ADINGS．										
1530		77	195			． 500	． 635	50.224							
1545	15	75	195	62	109	． 625	． 6725	78.421	1.2194	1.0021	． 9859	1.016	2304.75	253.4	2640
1600	15	75	195	56	104.5	． 625	． 6725	78.421	1.2194	1.0019	． 9859	1.016	2304.75	240.8	5148
1615	15	75	195	56	104.5	． 625	． 6725	78.421	1.2194	1.0019	． 9859	1.016	2304.28	240.8	7656
1630	15	79	185	52	98.08	＂	＂	＂	＂	＂	． 9882	1.015	2292.65	224.9	9998
1645	15	79	195	52	100.70	＂	． 655	＂	1.2356	1.0018	． 9822	1.015	2323.16	233.9	12435
1700	15	81	195	56	104.5	＂	＂．	＂	＂	1.0019	． 9804	1.015	2318.75	242.3	14959
$F u=-24$			$\text { Recorder ranges: } P_{f}=1000 \text { PSIG }$$h_{w}=\frac{200^{\prime \prime}}{\text { Temp }=}$						TESTED INTERVAL ：SANDSTONEPERFORATIONS $: 1411-1418 \mathrm{M}$						

FLDPETRDL GAS PRODUC. RATE MEASUREMENT-(Continuation) Page $: \frac{02}{26108131108}$ Report $\mathrm{N}: 2$
 Section: ANNEX

date - time		Flowing Temp.	$\begin{array}{\|c\|} \hline \mathrm{P}_{\mathrm{f}} \\ \text { absolute } \end{array}$	h_{w}	$\sqrt{h_{w} \times P_{f}}$	Orifice diameter	$\begin{gathered} \text { Gas } \\ \text { gravity } \end{gathered}$	F_{b}	Fg	Y	F_{tf}	F_{pv}	C	Gas production rate: Q	Cumulative Production
Time	Interval														
HR MIN	MIN	${ }^{\circ} \mathrm{F}$	psia	"of wat.		Inches	(air $=1$)								
1700				-										\%	M
1715	15	81	195	56	104.5	. 625	. 655	78.421	1.2356	1.0019	. 9804	1.015	2318.75	242.3	17483
1730	15	81	190	56	103.15	"	"	1	"	1.0020	. 9804	"	2317:89	239.1	19974
1745	15	81	190	56	"	"	"	"	"	"	"	"	"	239.1	22465
1800	15	82	195	56	104.50	"	"	"	"	1.0019	. 9795	"	2316.40	242.1	24986
1815	15	82	195	56	"	"	"	"	"	"	"	"	"	242.1	27507
1830	15	82	195	58	106.35	"	"	"	"	1.0020	. 9795	"	2316.55	246.4	30073
1845	15	82	195	58	"	"	"	"	"	"	"	"	"	246.4	32639
1900	15	82	195	56	104.50	"	"	"	"	1.0019	"	"	2316.40	242.1	35160
1915	15	82	195	56	"	"	"	"	"	"	"	"	"	242.1	37681
1930	15	82	195	56	"	"	"	"	"	"	"	"	"	242.1	40202.
1945	15	82	195	56	"	"	"	"	"	"	"	"	"	242.1	32723
2000	15	82	195	56	"	"	"	"	"	"	"	"	"	242.1	45244
2015	15	82	195	56	"	"	"	1	"	"	"	"	"	242.1	47765
2030	15	82	195	56	"	"	"	"	"	"	"	"	"	242.1	50286
2040	10	82	195	56	"	"	"	"	"	"	"	"	"	242.1	51967
2040	-	BY P	Pass SEP	ARator	READY FOR	FINAL B ψ	IILD UP.								

FLOPETROL Base : PERTH Date of Sampling : \qquad Date of Transfer : $\mathbf{2 3}$ TO 26 OCTOBER 1981	Field: \qquad WEST SEAHORSE Well : \qquad \# 1 Service Order No : \qquad Sampling No : \qquad Run No: \qquad		PAGE 02 F.I.T. \& R.F.T. BOTTOM HOLE SAMPLE
Reservoir and Well Characteristics			
Producing Zone :		Sample Depth :	
Depth Origin :Z:\qquad		Casing - Diameter : Shoe : \qquad	
Sampling and Transfer Conditions			
Sampling Bottom Hole Pressure (Amerada)___ psig		Volume of Bottle	628 _cc (a)
Sampling Bottom Hole Temp. (Schlumberger) __- ${ }^{\text {F }}$		Volume of top liner	$N / \mathrm{A} \quad \mathrm{cc}(\mathrm{b})$
Time at which Sample taken _		Total volume $=\mathrm{a}+\mathrm{b}$	628 _cc (c)
OPENING PRESSURESurface Pressure of Sample		Vol. Hg. at end of transfer	$\ldots \ldots$ _ \quad cc (d)
OPENING TEMPERATURE Surface Temp. of Sample	$\underline{70}{ }^{\circ} \mathrm{F}$	(1) Vol. Hg. remaining in bottle	60 _cc (c-d)
Transfer Pressure ± 6500 psig		Vol. Hg. withdrawn	$20 \quad c c(e)$
Transfer Temperature $\quad \pm \mathbf{1 7 5}$		Bubble point measured in bottle___ psig	
Gradient (when necessary)		Bubble Point temperature	$\underline{\square}{ }^{\circ} \mathrm{F}$
Transfer by gravity by bump		(2) Vol. Hg. remaining in bottle $=(1)-(\mathrm{e}) \underline{40} \mathrm{Cc}$	
Final Conditions in Bottle Vol. Hg. Remaining in bottle $=(2)-(1)=$ \qquad cc Pressure \qquad 0 psig Temp. \qquad *F		Vol. Hg. withdrawn to decompression of shipping bottle $=$ \qquad 35 cc (f)	
Identification of Sample			
Bottle Serial No. \qquad 80-291/207 FLO No. \qquad sent the \qquad by \qquad Destination : \qquad			
COMMENTS: (Special Advice to Laboratory)5 SAMPLES TAKEN FROM R.F.T. CHAMBER. (VERY LIGHT CRUDE)			Chief Operator

Base : $\frac{\underline{\text { FLOPETROL }}}{\text { PERTH }}$ Date of Sampling : Date of Transfer $: 23-26$ OCTOBER, 1981	\qquad		PAGE 03 F.I.T. \& R.F.T. BOTTOM HOLE SAMPLE
Reservoir and Well Characteristics			
Producing Zone :		Sample Depth :	
Depth Origin : Z: \qquad		Casing - Diameter : Shoe: \qquad	
Sampling and Transfer Conditions			
Sampling Bottom Hole Pressure (Amerada) ___ psig		Volume of Bottle	628 ccc (a)
Sampling Bottom Hole Temp. (Schlumberger)		Volume of top liner	- \quad cc (b)
Time at which Sample taken ______		Total volume $=a+b$	628 cc (c)
OPENING PRESSURE Surface Pressure of Sample	[35 psig	Vol. Hg. at end of transfer	568 cc (d)
OPENING TEMPERATURE Surface Temp. of Sample	$\underline{70}{ }^{\circ} \mathrm{F}$	(1) Vol. Hg. remaining in bottle	$60 \ldots c c(c-d)$
Transfer Pressure	± 6500 psig	Vol. Hg. withdrawn	$\underline{21}$ cc (e)
Transfer Temperature	± 175	Bubble point measured in bottle ___ psig	
Gradient (when necessary)		Bubble Point temperature	$\underline{ }{ }^{\circ} \mathrm{F}$
Transfer by gravity by bump		(2) Vol. Hg. remaining in bottle $=(1)-(\mathrm{e})$	
Final Conditions in Bottle Vol. Hg. Remaining in bottle $=(2)-(1)=$ \qquad cc Pressure \qquad 0 psig Temp. \qquad 72 *F		Vol. Hg. withdrawn to decompression of shipping bottle $=34 \quad \mathrm{cc}(\mathrm{f})$	
Identification of Sample			
Bottle Serial No. 80-291/236 \qquad FLO No. \qquad sent the \qquad by Destination : \qquad			
Coupled with Bottle Serial No.$80-291 / 242$ $80-291 / 234$ $80-291 / 207$ From the same FIT Run \quad FLO No.___			
COMMENTS: (Special Advice to	5 SAMPLES	EN FROM R.F.T. CHAMBER	Chief Operator

BLOPETROL Base $: \frac{\text { PERTH }}{\text { Date of Sampling }: \overline{23-26}}$ Date of Transfer $:$ OCTOBER 1981	Field : \qquad WEST SEAHORSE Well : \qquad Service Order No : \qquad Sampling No : \qquad Run No: \qquad		PAGE 04 F.I.T. \& R.F.T. BOTTOM HOLE SAMPLE
Reservoir and Well Characteristics			
Producing Zone :		Sample Depth :	
Depth Origin : Z: \qquad \qquad		Casing - Diameter : Shoe :	
Sampling and Transfer Conditions			
Sampling Bottom Hole Pressure (Amerada) ___ psig		Volume of Bottle	628 _cc (a)
Sampling Bottom Hole Temp. (Schlumberger) $\square^{\circ} \mathrm{F}$		Volume of top liner	- coc (b)
Time at which Sample taken ___		Total volume $=\mathrm{a}+\mathrm{b}$	628 cc (c)
OPENING PRESSURE Surface Pressure of Sample	- 35 psig	Vol. Hg . at end of transfer	$\underline{568}$ cc (d)
OPENING TEMPERATURE Surface Temp. of Sample	$\underline{70}{ }^{\circ} \mathrm{F}$	(1) Vol. Hg. remaining in bottle	$60 \ldots$ cc (c-d)
Transfer Pressure ± 6500 psig		Vol. Hg. withdrawn	$21.1 . c c(e)$
Transfer Temperature	$\pm 175{ }^{\circ} \mathrm{F}$	Bubble point measured in bottle___ psig	
Gradient (when necessary) \qquad		Bubble Point temperature	\ldots
Transfer by gravity by pump		(2) Vol. Hg. remaining in bottle $=(1)-(\mathrm{e}) 39 \ldots \mathrm{cc}$	
Final Conditions in Bottle Vol. Hg. Remaining in bottle $=(2)-(1)=$ \qquad cc Pressure $\quad 0 \quad$ psig Temp. \qquad *F		Vol. Hg. withdrawn to decompression of shipping bottle $=$ \qquad cc (f)	
Identification of Sample			
Bottle Serial No. 80-291/234 \qquad FLO No. \qquad sent the \qquad by \qquad Destination : \qquad			
			Chief Operator K. RUSSELL

Base : PERTH	\qquad	Section:ANNEX 4
		Page $\quad=01$
		Report $N^{\prime}: \overline{2610813110}$

-SURFACE SAMPLING -

B-MEASUREMENT AND SAMPLING CONDITIONS -
Time at which sample was taken: 1920 -1950HR Time elapsed since stabilisation: $\pm 4 \mathrm{HR}$

L

APPENDIX A2. DOWELL SCHLUMBERGER TECHNICAL

$$
\text { REPORT No. } 31014
$$

Dowell Schlumberger (Western) S.A.

Telephone: 4514319
Cables:
Telex: Orang AA 94215

January 4th, 1982

Report No: 81014

Dear Sirs,
The enclosed report would be of a mechanically sound Drill Stem Test. Surface pressure readout equipment was used and it performed satisfactorily. The well flowed at an approximate mean rate of 1775 Bbls/Day of oil. While H2S gas was encountered its effect (approx 200 ppm in $\frac{1}{4}$ MMCFD) was considered negligible.

The controlling factor would be the anomalies noted during both shut-in build-ups. The break upward in slope exhibited during the initial shut-in would suggest that the anomaly was close to the well bore. After a drawdown of eight (8) minutes the radius of investigation would be slightly more than a few feet. Since the recorder (SPRO) reflected this heterogenity it would suggest that the immediate well bore was non-homogeneous. The final shut-in also reflected heterogenities. Multiple zones or a lenticular formation could be present. A phase change of fluids - (i.e. water - oil) would not be suspected since the anomaly was close to the well bore. Water production would have become evident during the final flow period.

The formation exhibited high permeability and depletion was not apparent.

Respectfully yours

John F. Viscarde
TECHNICAL DEPARTMENT

RECORDER No : J-1629 CAPACITY : 2800 psi DEPTH : 1385

OPENING : Inside TEMPERATURES : $150^{\circ} \mathrm{F}$

CLOCK No : 9-0354

CAP: 48 HRS

Pressure Data From This Chart Is Presented On The Next Page

PRESSURE DATA FOR RECORDER :
DESCRIPTION LABEL
POINT PRESSURE
(PSI)
INITIAL HYDROSTATIC
INITIAL FLOW (1)
INITIAL FLOW (2)12070.1

2

1921.0
1792.4

THIRD FLOW (1)
THIRD FLOW (2)

THIRD SHUT-IN

FINAL FLOW (1)
FINAL FLOW (2)

FINAL SHUT-IN

RECORDER NO: J-1629 DEPTH: 13855 M

DESCRIPTION	$\begin{gathered} \text { TIME } \\ \text { (MINS) } \\ \hline \end{gathered}$	PRESSURE
Initial flow (1)	0	1620.3
	1	1650.6
	2	1653.2
	3	1669.9
	4	1694.4
	5	1721.1
	6	1746.1
	7	1773.4
	8	1792.5
	9	1807.5
	10	1809.6
Initial Flow (2)	11	1821.4
	0	1821.4
	1	1877.5
	2	1891.5
	3	1901.3
	4	1909.4
	5	1915.4
	6	1920.5
	7	1924.7
	8	1938.7
	9	1942.2
	10	1944.7
	15	1956.7
	-... 20	1963.2
	25	1968.9
	30	1971.9
	45	1973.8
Initial Shut-In	69	1975.8

DESCRIPTION	$\begin{gathered} \text { TIME } \\ (\text { MINS }) \end{gathered}$	PRESSURE
Final flow (1)	0	1921.0
	1	1921.6
	2	1924.4
	3	1953.5
	4	1930.8
	5	1924.4
	6	1920.7
	7	1916.4
	8	1913.6
	9	1910.2
	10	1909.4
	15	1902.3
	20	1884.6
	25	1879.8
	30	1871.0
	45	1863.5
	60	1832.4
	90	1821.4
	120	1818.4
	150	1818.6
	180	1815.2
	240	1812.2
	300	1811.6
	360	1809.4
	400	1807.2
Final flow (2)	412	1805.2
	0	1792.4
	1	1838.4
	2	1851.4
	--3	1860.8
	4	1871.6
	5	1875.1
	6	1880.5
	7	1886.5
	8	1890.0

DESCRIPTION	TIME (MINS)	
	9	1894.5
	10	1897.9
	15	1912.9
	20	1922.7
	25	1929.7
	30	1936.2
	45	1945.1
	60	1951.3
	90	1960.4
	120	1965.3
	150	1970.4
	180	1974.3
	240	1979.3
	300	1983.8
	360	1984.8
	420	1984.9
	480	1985.5
	540	1986.0
	572	1986.4

RECORDER No :
J-1630
CAPACITY : 2816 psi DEPTH :
1398

OPENING : Outside TEMPERATURES : $150{ }^{\circ} \mathrm{F}$

CLOCK No : 9-1583

CAP: 48 HRS

Pressure Data From This Chart Is Presented On The Next Page

PRESSURE DATA FOR RECORDER : J-1630

DESCRIPTION	LABEL POINT	PRESSURE (PSI)
INITIAL HYDROSTATIC	1	2091.0
INITIAL FLOW (1)	2	1641.3
INITIAL FLOW (2)	3	1842.5
INITIAL SHUT-IN	4	1996.5
SECOND FLOW (1)	5	1943.5
SECOND FLOW (2)	6	1812.2
SECOND SHUT-IN	7	2007.8
THIRD FLOW (1)		
THIRD FLOW (2)		
THIRD SHUT-IN		
FINAL FLOW (1)		
FINAL FLOW (2)		
FINAL SHUT-IN		
FINAL HYDROSTATIC	8	2088.1

RECORDER NO: J-1630 DEPTH: 1398 M

DESCRIPTION	$\begin{gathered} \text { TIME } \\ \text { (MINS) } \\ \hline \end{gathered}$	PRESSURE
Initial flow (1)	0	1641.3
	1	1671.6
	2	1674.0
	3	1690.7
	4	1716.6
	5	1744.0
	6	1771.0
	7	1797.0
	8	1816.0
	9	1830.6
	10	1831.3
Initial Flow (2)	11	1842.5
	0	1842.5
	1	1898.7
	2	1912.8
	3	1922.3
	4	1930.2
	5	1936.3
	6	1941.5
	7	1945.9
	8	1949.9
	9	1953.8
	10	1956.6
	15	1968.4
	20	1975.2
	25	1980.8
	30	1984.9
	45	1993.2
Initial Shut-In	69	1996.5
Final Flow (1)	0	1943.0
	1	1943.5
	2	1936.4
	3	1965.1

DESCRIPTION	$\begin{gathered} \text { TIME } \\ \text { (MINS) } \\ \hline \end{gathered}$	PRESSURE
	4	1928.0
	5	1922.3
	6	1918.4
	7	1914.0
	8	1911.1
	9	1907.7
	10	1906.6
	15	1899.1
	20	1881.9
	25	1876.2
	30	1867.9
	45	1861.0
	60	1830.8
	90	1820.0
	120	1817.2
	150	1817.8
	180	1815.4
	240	1814.2
	300	1813.8
	360	1813.2
	400	1812.8
Final Flow (2)	412	1812.2
	0	1811.0
	1	1857.1
	2	1870.6
	3	1880.1
	4	1890.9
	5	1894.2
	6	1899.9
	7	1905.0
	8	1908.8
	9	1913.3
	10	1916.7
	15	1931.3
	20	1941.0
	25	1948.2

DESCRIPTION	$\begin{gathered} \text { TIME } \\ \text { (MINS) } \\ \hline \end{gathered}$	PRESSURE
	30	1954.9
	45	1963.9
	60	1970.1
	90	1979.2
	120	1984.3
	150	1889.3
	180	1993.2
	240	1998.8
	300	2003.3
	360	2005.5
	420	2007.8
Final Shut-In	572	2007.8

Pressure Data From This Chart Is Presented On The Next Page

PRESSURE DATA FOR RECORDER : J-1782

DESCRIPTION	$\begin{aligned} & \text { LABEL } \\ & \text { POINT } \end{aligned}$	$\begin{aligned} & \text { PRESSURE } \\ & \text { (PSI) } \end{aligned}$
INITIAL HYDROSTATIC	1	2101.4
INITIAL FLOW (1)	2	1639.5
INITIAL FLOW (2)	3	1846.9
INITIAL SHUT-IN	4	2007.2
SECOND FLOW (1)	5	1941.2
SECOND FLOW (2)	6	1780.9
SECOND SHUT-IN	7	1999.6
THIRD FLOW (1)	N/A	
THIRD FLOW (2)	N/A	

THIRD SHUT-IN

FINAL FLOW (1)
FINAL FLOW (2)

FINAL SHUT-IN

DESCRIPTION	$\begin{gathered} \text { TIME } \\ \text { (MINS) } \\ \hline \end{gathered}$	PRESSURE
Initial Flow (1)	0	1639.5
	1	1674.7
	2	1677.0
	3	1693.2
	4	1719.1
	5	1746.9
	6	1774.1
	7	1800.0
	8	1819.1
	9	1835.4
	10	1835.4
Initial Flow. (2)	11	1846.9
	0	1846.9
	1	1901.1
	2	1915.8
	3	1925.4
	4	1933.1
	5	1939.4
	6	1942.8
	7	1948.4
	8	1952.1
	9	1956.8
	10	1959.5
	15	1971.5
	20	1978.1
	- 25	1983.4
	30	1987.9
	45	2000.1
Initial Shut-In	69	2007.2
Final Flow (1)	0	1941.2
	1	1941.7
	2	1935.8

DESCRIPTION	$\begin{gathered} \text { TIME } \\ \text { (MINS) } \\ \hline \end{gathered}$	PRESSURE
	3	1967.1
	4	1929.1
	5	1925.1
	6	1921.1
	7	1917.2
	8	1914.1
	9	1910.0
	10	1909.6
	15	1902.1
	20	1886.1
	25	1879.1
	30	1870.1
	45	1864.1
	60	1833.8
	90	1823.4
	120	1820.4
	150	1820.6
	180	1800.1
	240	1790.1
	300	1785.1
	360	1784.1
	400	1782.1
Final Flow (2)	412	1780.9
	0	1780.9
	1	1831.1
	2	1842.4
	3	1857.3
	4	1868.1
	5	1874.6
	6	1886.1
	7	1898.1
	8	1901.3
	9	1905.8
	10	1909.2
	15	1923.7

DESCRIPTION
TIME

(MINS)	PRESSURE
20	1933.3
25	1940.5
30	1947.0
45	1956.1
60	1962.4
90	1971.1
120	1976.2
150	1981.4
180	1985.3
240	1990.2
300	1993.2
360	1996.0
420	1998.2
572	1999.6

WELL IDENTIFICATION

Company: HUDBAY OII AUSTRALIA Well No :WEST SEAHORSE \# 1 Test No.:_1
Field:__ Location:_BASS STRAIT Country: AUSTRALIA
Tested Interval: From_4629_ Ft, to $4645.6 \ldots$ Ft. \quad 1411 M - 1416 M
Co-ordinates: LAT - 147 37 21.83E LONG- 038 12 10.935
Type Test: Open Hole \square Casing; \square Conventional \square Straddle; \square Land rig \square Jack-up \square Floater
Valve:MFED PCT SPRO Other: with Packer Retainer
HOLE DATA
Geologic Level: UPPER CRETACEOUS/IWR TERTIARYescription: SANDSTONE - SHALE - COAL
Net Productive Interval : — 5-M 16.4_ft. Estimated Porosity : Total Depth :_1527 M_ft. Depths measured from :_ KB__ Elevation: 9.35 M_f. Open Hole Size : $\frac{12 \frac{1}{4}}{}$ Casing Size :_ $9-5 / 8$ in.__ $40 \mathrm{lbs} / \mathrm{ft}$. Liner Size:___ in.,___ $\mathrm{lbs} / \mathrm{ft}$. from___ ft Before test: Caliper Yes \square No \square Scraper Yes \mathbb{X} No \square Circulation Yes \square for hrs; No \mathbb{X}^{\square}

MUD DATA

INSTRUMENT AND CHART DATA				
Recorder No .	J. 1782	J-1630	J-1629	
Capacity (psig)	4700	2800	2800	
Depth	1400.17 m	1398.37 M	1385.37	
Inside/Outside	Out	Out	In	
Above/Below valve	Below	Below	Below	
Clock No.	9-13487	9-11583	9-10354	
Capacity (hrs.)	48 Hrs	48 Hrs	48 Hrs	
Temperature	144 F	$146{ }^{\circ} \mathrm{F}$	146 F	
Initial Hydrostatic Pressure	2167 psi	2136 psi		
Pre-flow (1) Start Pressure	1837	1844		
(2) Finish Pressure				
Initial Shut-in Pressure	1837	1844		
Second Flow (1) Start Pressure	1998	1995		
(2) Finish Pressure	1781	1793		
Second Shut-in Pressure	1828	1832		
Final Flow (1) Start Pressure				
(2) Finish Pressure				
Final Shut-in Pressure	2007	1995		
Final Hydrostatic Pressure	2195	2192		

OPERATIONS SUMMARY

Left Station at $22: 00$ on 25 0ct. On Location at $07: 30$ on 26 0ct.
Started Operations at _ 02 : 00 on_ 28 0ct. Finished Operations at_10_00_on 31 0ct.

Comments :

Station: AUS
Customer
Purrhace Orter

SIR No. : $61384-61385$
Tester D. ADAMS, A. ABREU Customer__BRUCF MCFIhinney \& \cap PחCA A Renresentative

Customer: HUDBAY OIL AUSTRALIA Well No:WEST SEAHORSE \# 1
Test No. I
TEST SEQUENCE AND FLOW RATE DATA

TEST SEQUENCE AND FLOW RATE DATA					
Description and Flow Rates	Date	$\begin{gathered} \hline \text { Time } \\ \text { hrs mins } \end{gathered}$		$\begin{gathered} \text { Pressure } \\ \text { psig } \end{gathered}$	Surface Choke
Packer Depth: 4563.6 ft. 1391 M Set at :	29-10-81				
Opened Tool: (Annulus pressure 1300 psi)					
1235 Good B1ow		12	35	35	$\frac{1}{4}$ BH
1244 Water Cushion to surface			44	160	$\frac{1}{2}$ ADJ
1245 Light crude oil to surface			45		
1246 Bled off to close tool			46	200	
1354 Press up on annulus				1400	
1355 Tool Open (2nd flow)		13	55		"
Open to burner		13	55	370	"
1358 Well slugging rat hole mud + oil		13	58	420	"
1401 0il to surface - Bur ning off		14	01	400	"
1500 Switch flow to seperator		15	00	480	"
2046 Bled off to close tool		20	46	450	
0600 Unlatch SPRO	30-10-81	06	00		
0620 Prepare to reverse out		06	20		
0628 Pressure up on annulus to overpressure		06	28	2200	
PCT (
Bleed off annulus		06	29		
Press up on TBG to pump out sub			46	5-600	
Start Reversing out thru burner			49	400	
Stop reversing out		07	10		
Attempt to unset packer - will not		08	20		
go to safety					
Held string weight - reverse out		08	30		
down DP up annulus					
Finish reversing		11	50		
P.O.H. laying down tubing		12	30		
Tools at floor		19	30		
Reverse Circulation Started (Pump pressure 400 psig)	30-10-81				
Reverse Circulation Finished					
Pulled Packer Loose/Rulled_Qutof_Retainer					
Cushion Type: WATER Amount bbls Length 288	ft ; Pressu	e 32	4psi	Bottom Choke	PCT

RECOVERY DATA								
	Recovery Description			Feet	Bbls	$\begin{aligned} & \% \\ & \text { \% } \\ & \text { Oil } \end{aligned}$	$\begin{gathered} \% \\ \text { Water } \end{gathered}$	$\begin{gathered} \% \\ \text { Other } \end{gathered}$
1	1 STAND D/C			85	0.7	100		
2								
3								
4								
5								
6								
	Oil-API Gravity	Gas Gravity	G.O.R.	Resistivity		Chlorides		
1	$.784{ }^{\circ}$ at $66^{\circ} \mathrm{F}$			at	${ }^{\circ} \mathrm{F}$	ppm		
2	${ }^{\circ}$ at ${ }^{\circ} \mathrm{F}$			at	${ }^{\circ} \mathrm{F}$			ppm
3	${ }^{\circ}$ at ${ }^{\circ} \mathrm{F}$			at	${ }^{\circ} \mathrm{F}$			ppm
4	${ }^{\circ}$ at ${ }^{\circ} \mathrm{F}$			at	${ }^{\circ} \mathrm{F}$			ppm
5	${ }^{\circ}$ at ${ }^{\circ} \mathrm{F}$			at	${ }^{\circ} \mathrm{F}$			ppm
6	${ }^{\circ}$ at ${ }^{\circ} \mathrm{F}$			at	${ }^{\circ} \mathrm{F}$			ppm

Comments :

Report No. 81014
Customer: HUDBAY OIL AUSTRALIA
Well No.: WEST SEAHORSE \# I

SAMPLE CHAMBER RECOVERY DATA			
Sampler Drained Transferred to	Recovery	Resistivity	Chlorides (ppm)
On Location [X] shipping bottles	Gas____cu ft.	Water	${ }^{\circ} \mathrm{F}$
Elsewhere \square	Oil __C.c.	Mud	${ }^{\circ} \mathrm{F}$
Name : FLOPETROL	Water_c.c.	Mud Filtrate	${ }^{\circ} \mathrm{F}$
Address	Mud___c.c.	Pit Mud	${ }^{\circ} \mathrm{F}$
	${ }^{\circ} \mathrm{API}$	Pit Mud Filtrate	of
Gas/Oil Ratio cu ft./bbl	$\mathrm{cuft} / \mathrm{bbl}$ Sample Chamber Pressur	735	psi. $17^{\circ} \mathrm{C}$

EQUIPMENT SEQUENCE					
Components (including D.P. and D.C.)	Type	O.D. (in)	I.D. (in)	Length	Depth
FIOW HFAD					
Floor					
Drill Pipe				9.58	
X-Over				2.21	
Lub Valve				2.21	
X-Over				2.21	
Tubing				31.50	
x-Over				4.76	
F7 Tree	FIOPETROL			4.76	
Slick Joint	FIOPETROL			4.76	
Fluted Hangar	FLOPETROL			4.76	
X -Over				4.76	
Tubing				1147.13	
X-Over					
Slip Joint (extended)	J0TC0	5'	$2 \frac{1}{4}$	8.68	
Slip loint (collapsed)	J0TC0	5"	$2 \frac{1}{1}$	7.16	
x-Over		$6 \frac{1}{4}$	2-11/16	0.30	
X-Over		$6 \frac{1}{4}$	2-7/8	0.50	
Drill Collars (4 stands)		$6 \frac{1}{2}$	2-7/8	111.36	
X-over		$6 \frac{1}{2}$	$2-5 / 16$	0.81	
Pump Out Sub (Pin type)	JOTCO	6-1/8	2-3/4	0.36	
Drill collar (1 stand)		6-1/8	$2-7 / 8$	26.34	
Pump Out Sub (800 psi).	30TC0	6-1/8	2-3/4	0.36	
Drill Collar (1 stand)		6-1/8	2-7/8	25.88	
X-Over		$6^{\prime \prime}$	2-7/8	0.25	
X-0ver		4-3/4	2-7/16	0.25	
SPRO Connection/Housing	J0TC0	4-3/4	$21 / 4$	2.40	1375.80
PCT	, 10 TCO	4-3/4	11	4.66	
MFE/HRT (collapsed)	J0TCO	5"	1-3/8	2.90	
Recorder Carrier J-200, J-1629	J0TCO	4-7/8	$11 / 2$	1.80	1385.37
Hydraulic Jars	JOTCO	4-7/8	$11 / 2$	2.35	
Safety Joint	BOWEN	4-5/8	27/16	0.60	
X-Over		4-3/4	2-5/16	0.33	
Packer Above Seat	J0TC0		$3^{\prime \prime}$	0.55	
Packer Below Seat	30 TCO		3 "	0.95	
X-Over		4-3/4	2-5/16	0.32	
Perforated Anchor	J0TCO	4-3/4	$2 \frac{1}{4}$		1398. 37
Recorder Carrier 3200 J-1630	JOTCO	4-7/8	$1 \frac{1}{2}$	1.80	1400.17
Recorder Carrier J200 J-1782	JOTCO	4-7/8	11/2	1.80	
Bullnose	נOTCO	4-3/4	$2 \frac{1}{4}$	0.25	
Total Drill Pipe /Tubing 1188	TOOLS BEI	WW PACKE		1122	140227
Total Drill Collar $\quad 163.58$ Meters	TOOLS BEL	OW PACKE	-	11.28	1402.22

Comments : Start Picking up tools 054-28th 0ct. 0900 Slip Joints in
Tools our of the hole 1930 30th Oct. SLip Joints Remainder 2215-2400
Tools exposed to H 2 S 200 ppm in $\frac{1}{4}$ MMCFD Gas with 1800 BOPD

To be completed by Customer Representative
Well No.: WEST SEAHORSE \# 1
Report No. 81014
Customer: HUDBAY OIL AUSTBALIA

Tested Interval	Sand- stone	Lime- stone	Chalk	Clay	Shale	Other (please specify)
Major Mineral Species	X					
Minor Mineral Species						
Stringers or Lenses						

Test No.: 1

Is the tested interval :
Open Hole : \square I.D.

Open Hole Interval : Perforated Intervals:

(Total Depth) 1527 PBTD

\square O.D.

Wt:

ib.

In the tested interval how many productive zones do logs show:

more
What is the average porosity of the interval ?
Is the interval homogeneous?
Is formation consolidation:
What is the clay content :
is the formation fractured

In this interval, is there expected near the wellbore:
Geological fault?
Interval thickness change?
Fluid phase contact?
-If yes:-
Oil-Water

During drilling of the interval, was there:
Lost circulation?
Sand production?
Yes

Other (please specify) \qquad
Before testing was there a:
Scraper run?
Caliper run?
Mud circulation to bottom?
—If yes :-
for how long

Additional Comments :

\qquad

SYMBOLS USED
$\triangle T$ - INCREMENT OF TIME (MINUTES)
$\frac{T+\triangle T}{\triangle T}-$ DIMENSIONLESS TIME CONSTANT USED FOR THE HORNER PLOT $\triangle T$ IS THE INCREMENT OF SHUT-IN TIME (MINUTES)

T IS TOTAL FLOW TIME PRECEDING SHUT-IN (MINUTES)

LOG $\quad-$ LOGARITHM TO BASE 10 OF $\frac{T+\triangle T}{\Delta T}$
Pw - Pf - PRESSURE BUILD-UP ABOVE FINAL FLOWING PRESSURE PRECEDING THE BUILD UP WHICH IS USED FOR THE MCKINLEY PLOT.

DOWELL SCHLUMBERGER

SURFACE
PRESSURE
READ
OUT

COMPANY	HUDBAY OIL AUSTRALIA LTD.
WELL	WEST SEA HORSE 1
TEST	1
DEPTH	PBTD. 1527 mts.
PRESS/TEMP GAUGE	$-\operatorname{FLOPETROL} 81193$
GAUGE CAPACITY	10000
GAUGE DEPTH	1374.8 mts.

TIME	DEL T	PRESSURE TEMPERATURE	T+DEL T	LOG (T+DELT)	PRESSURE	COMMENTS		
HR:MN:SE	MIN	PSI	DEGREES F	DEL T	$(D E L T)$	DIFF		
$12: 34: 00$		2754.6	121.38			SPRO LATCHED		

	12:44:00	6.0	1829.9	146.53			
	12:44:10	6.2	1829.2	146.53			
\checkmark	12:44:20	6.3	1825.9	146.53			
	12:44:30	6.5	1821.4	146.53			
	12:44:40	6.7	1823.6	146.53			
\sim	12:44:50	6.8	1824.3	146.53			
	12:45:00	7.0	1828.4	146.65			
	12:45:10	7.2	1829.5	146.65			
\checkmark	12:45:20	7.3	1831.7	146.65			
	12:45:30	7.5	1834.2	146.65			
	12:45:40	7.7	1836.9	146.65			
\smile	12:45:50	7.8	1840.1	146.65			
	12:46:00	8.0	1842.2	146.72			
	12:46:10	0.2	1843.8	1.46 .72	49.000	1.6902	-1
-	12:46:20	0.3	1845.3	146.72	25.000	1.3979	0
	12:46:30	0.5	1901.8	146.72	17.000	1.2304	57
	12:46:40	0.7	1908.8	146.72	13.000	1.1139	64
\bigcirc	12:46:50	0.8	1913.6	146.72	10.600	1.0253	69
	12:47:00	1.0	. 1917.7	146.77	9.000	0.9542	73
	12:47:10	1.2	1921.0	146.77	7.857	0.8953	76
-	12:47:20	1.3	1923.7	146.77	7.000	0.8451	79
	12:47:30	1.5	1926.3	146.77	6.333	0.8016	81
	12:47:40	1.7	1928.9	146.77	5.800	0.7634	84
\cdots	12:47:50	1.8	1931.1	146.77	5.364	0.7295	86
	12:48:00	2.0	1933.2	146.79	5.000	0.6990	88
	12:48:10	2.2	1935.1	146.79	4.692	0.6714	90
\smile	12:48:20	2.3	1936.9	146.79	4.429	0.6463	92
	12:48:30	2.5	1938.5	146.79	4.200	0.6232	93
	12:48:40	2.7	1940.2	146.79	4.000	0.6021	95
\cdots	12:48:50	2.8	1941.7	146.79	3.824	0.5825	97
	12:49:00	3.0	1943.2	146.77	3.667	0.5643	98
	12:49:10	3.2	1944.5	146.77	3.526	0.5473	100
-	12:49:21	3.3	1946.0	146.77	3.388	0.5300	101
	12:49:30	3.5	1947.1	146.77	3.286	0.5166	102
	12:49:41	3.7	1948.5	146.77	3.172	0.5013	103
'-	12:49:51	3.8	1.948 .8	146.77	3.078	0.4883	104
	12:50:00	4.0	1950.9	146.71	3.000	0.4771	106
	12:50:14	4.2	1952.5	146.71	2.890	0.4609	107
\cdots	12:50:22	4.4	1953.3	146.71	2.832	0.4521	108
	12:50:30	4.5	1954.1	146.71	2.778	0.4437	109
	12:50:40	4.7	1955.2	1.46 .71	2.71 .4	0.4337	110
\checkmark	12:50:50	4.8	1956.2	146.71	2.655	0.4241	111
	12:51:00	5.0	1957.1	146.62	2.600	0.4150	112
	12:51:10	5.2	1958.1	146.62	2.548	0.4063	1.13
\sim	12:51:20	5.3	1958.9	146.62	2.500	0.3979	114

	12:59:00	13.0	1984.7	145.84	1.615	0.2083	140
	12:59:10	13.2	1985.0	145.84	1.608	0.2062	140
\checkmark	12:59:20	13.3	1985.4	145.84	1.600	0.2041	140
	12:59:30	13.5	1985.7	145.84	1.593	0.2021.	141
	12:59:40	13.7	1986.0	145.84	1. 1.585	0.2001	141
-	12:59:50	13.8	1986.3	145.84	1.578	0.1982	141
	13:00:00	14.0	1986.7	145.77	1.571	0.1963	142
	13:00:20	14.3	1987.4	145.77	1.558	0.1926	142
\cdots	13:00:40	14.7	1987.9	145.77	1.545	0.1891	143
	13:01:00	15.0	1988.6	145.72	1.533	0.1856	144
	13:01:20	15.3	1989.1	145.72	1.522	0.1823	144
-	13:01:40	15.7	1989.7	145.72	1.511	0.1792	145
	13:02:00	16.0	1990.2	145.67	1.500	0.1761	145
	13:02:20	16.3	1990.8	145.67	1.490	0.1731	1.46
-	13:02:40	16.7	1991.3	145.67	1.480	0.1703	146
	13:03:00	17.0	1991.8	145.62	1.471	0.1675	147
	13:03:20	17.3	1992.3	145.62	1.462	0.1648	147
'	13:03:40	17.7	1992.8	145.62	1.453	0.1622	148
	13:04:00	18.0	1993.2	145.58	1.444	0.1597	148
	13:04:20	18.3	1993.7	145.58	1.436	0.1573	149
-	13:04:40	18.7	1994.2	145.58	1.429	0.1549	149
	13:05:00	19.0	1994.6	145.53	1.421	0.1526	150
	13:05:20	19.3	1995.0	145.53	1.414	0.1504	150
-	13:05:40	19.7	1995.5	145.53	1.407	0.1482	150
	13:06:00	20.0	1995.8	145.49	1.400	0.1461	151
	13:06:20	20.3	1996.2	145.49	1.393	0.1441	151
'	13:06:40	20.7	1996.6	145.49	1.387	0.1421	152
	13:07:00	21.0	1997.0	145.45	1.381	0.1402	152
	13:07:20	21.3	1997.3	145.45	1.375	0.1383	152
:	13:07:40	21.7	1997.7	145.45	1.369	0.1365	153
	13:08:00	22.0	1998.0	145.41	1.364	0.1347	153
	13:08:20	22.3	1998.4	145.41	1.358	0.1330	153
\cdots	13:08:40	22.7	1998.7	145.41	1.353	0.1313	154
	13:09:00	23.0	1999.0	145.37	1.348	0.1296	154
	13:09:20	23.3	1999.3	145.37	1.343	0.1280	154
\because	13:10:00	24.0	2000.0	145.33	1.333	0.1249	155
	13:10:30	24.5	2000.4	145.33	1.327	0.1227	155
	13:11:00	25.0	2000.8	145.29	1.320	0.1206	156
'	13:11:30	25.5	2001.2	145.29	1.314	0.1185	156
	13:12:00	26.0	2001.7	145.25	1.308	0.1165	157
	13:12:30	26.5	2002.0	145.25	1.302	0.1146	157
\checkmark	13:13:00	27.0	2002.4	145.21	1. 296	0.1127	157
	13:13:30	27.5	2002.8	145.21	1.291	0.1109	158
	13:14:00	28.0	2003.2	145.17	1.286	0.1091	158
v	13:14:30	28.5	2003.5	145.17	1.281	0.1074	159

串	13:15:00				1.276	0.1058	159
		29.0	2003.8	145.13	1.271	0.1042	159
	13:15:30	29.5	2004.1	145.13 145.08	1.267	0.1027	160
*	13:16:00	30.0	2004.5	145.08	1.261	0.1007	160
	13:16:40	30.7	2004.9	145.08	1.254	0.0983	160
	13:17:30	31.5	2005.4	145.04	1.247	0.0960	161
6	13:18:20	32.3	2005.8	145.00	1.241	0.0938	161
	13:19:10	33.2	2006.3	144.96	1.235	0.0918	162
	13:20:00	34.0	2006.7	144.93	1.230	0.0898	162
v	13:20:50	34.8	2007.1	144.93	1.224	0.0879	163
	13:21:40	35.7	2007.5	144.90	1.224 1.219	0.0861	163
	13:22:30	36.5	2007.8	144.88	1.216	0.0850	163
\cdots	13:23:00	37.0	2008.1	144.85	1.211	0.0830	163
	13:24:00	38.0	2008.5	144.81	1.205	0.0810	164
	13:25:00	39.0	2008.9	144.77	1.200	0.0792	1.64
N	13:26:00	40.0	2009.3	144.74	1.195	0.0774	165
	13:27:00	41.0	2009.6	144.71	1.190	0.0757	165
	13:28:00	42.0	2010.0	144.68	1.182	0.0726	166
8	13:30:00	44.0	2010.6	144.62	1.174	0.0696	166
	13:32:00	46.0	.2011.2	144.57	1.167	0.0669	167
	13:34:00	48.0	2011.8	144.52	1.167	0.0645	167
*	13:36:00	50.0	2012.3	144.48	1.154	0.0621	168
	13:38:00	52.0	2012.8	144.45	1.148	0.0600	168
	13:40:00	54.0	2013.2	144.41	1.148	0.0580	169
\star	13:42:00	56.0	2013.5	144.38	1.138	0.0561	169
	13:44:00	58.0	2013.9	144.34	1.133	0.0544	169
	13:46:00	60.0	2014.3	144.32	1.139	0.0527	170
$*$	13:48:00	62.0	2014.5	144.29	1.125	0.0512	170
	13:50:00	64.0	2014.9	144.27	1.121	0.0497	170
	13:52:00	66.0	2015.2	144.24	1.121	0.0483	170
g	13:54:00	68.0	2015.4	144.22	1.118		
	13:55:01	0.0	1904.5	144.21			
	13:55:10	0.2	1.912 .1	144.21			
0	13:55:20	0.3	1929.2	144.21			
	13:55:30	0.5	1944.3	144.21			
	13:55:40	0.7	1955.4	144.21			
2	13:55:50	0.8	1948.1	144.21			
	13:56:00	1.0	1939.9	144.20			
	13:56:10	1.2	1934.9	144.20			
\downarrow	13:56:20	1.3	1930.8	144.20			
	13:56:30	1.5	1925.2	144.20			
	13:56:40	1.7	1919.6	144.20			
\star	13:56:50	1.8	1914.8	144.20			
	13:57:00	2.0	1910.1	144.22			
	13:57:10	2.2	1941.6	144.22			
\checkmark	$13: 57: 20$	2.3	1958.7	144.22			

y^{\prime}	13：57：30	2.5	1971.2	144.22
	13：57：40	2.7	1978.2	144.22
\smile	13：57：50	2.8	1982.4	144.22
	13：58：00	3.0	1977.4	144.24
	13：58：10	3.2	1967.8	144.24
－	13：58：20	3.3	1978.5	144.24
	13：58：30	3.5	1962.0	144.24
	13：58：40	3.7	1928.6	144.24
\checkmark	13：58：50	3.8	1915.4	144.24
	13：59：00	4.0	1908.1	144.29
	13：59：10	4.2	1904.3	144.29
し	13：59：20	4.3	1903.6	144.29
	13：59：30	4.5	1903.8	144.29
	13：59：40	4.7	1904.5	144.29
\checkmark	13：59：50	4.8	1904.2	144.29
	14：00：00	5.0	1903.7	144.37
	14：00：10	5.2	1902.6	144.37
\checkmark	14：00：20	5.3	1901.2	144.37
	14：00：30	5.5	． 1900.0	144.37
	14：00：40	5.7	1899.8	144.37
－	14：00：50	5.8	1899.8	144.37
	14：01：00	6.0	1900.1	144.52
	14：01：10	6.2	1900.3	144.52
－	14：01：20	6.3	1900.5	144.52
	14：01：30	6.5	1901.0	144.52
	14：01：40	6.7	1901.3	144.52
し	14：01：50	6.8	1.900 .8	144.52
	14：02：00	7.0	1900.8	144.73
	14：02：10	7.2	1893.9	144.73
\checkmark	14：02：20	7.3	1896.9	144.73
	14：02：30	7.5	1897.4	144.73
	14：02：40	7.7	1896.8	144.73
\checkmark	14：02：50	7.8	1896.2	144.73
	14：03：00	8.0	1894.7	144.97
	14：03：10	8.2	1892.6	144.97
＇	14：03：20	8.3	1891.8	144.97
	14：03：30	8.5	1891.1	144.97
	14：03：40	8.7	1890.9	144.97
＇	14：03：50	8.8	1890.4	144.97
	14：04：00	9.0	1889.5	145.22
	14：04：10	9.2	1888.4	145.22
\smile	14：04：20	9.3	1887.9	145.2
	14：04：30	9.5	1887.9	145.2
	14：04：40	9.7	1888.1	145.2
\checkmark	14：04：50	9.8	1888.5	145.22

\%				145.44
	14:05:00	10.0	1889.4	145.44
\pm	14:05:10	10.2	1890.6	145.44
	14:05:20	10.3	1891.7 1892.8	145.44
	14:05:30	10.5	1892.8	145.44
\downarrow	14:05:40	10.7	1893.9	145.44
	14:05:50	10.8	1894.8 1895.5	145.63
	14:06:00	11.0	1895.5	145.63
v	14:06:10	11.2	1895.6	145.63
	14:06:20	11.3	1892.4	145.63
	14:06:30	11.5		145.63
-	14:06:40	11.7	1891.2	145.63
	14:06:50	11.8	18888.2	145.79
	14:07:00	12.0	1886.9	145.79
ψ	14:07:10	12.2	1886.9	145.79
	14:07:20	12.3	18884.8	145.79
	14:07:30	12.5	1885.0	145.79
\checkmark	14:07:40	12.7	1885.0	145.79
	14:07:50	12.8	1884.6 1884.4	145.93
	14:08:00	13.0	1884.4	145.93
v	14:08:10	13.2	1884.	145.93
	14:08:20	13.3	1884.4	145.93
	14:08:30	13.5		146.05
\downarrow	14:09:00	14.0	1884.	146.05
	14:09:30	14.5	1884	146.17
	14:10:00	15.0	1883.0	146.17
\sim	14:10:30	15.5	1880.5	146.19
	14:11:00	16.0	1876.	146.29
	14:11:30	16.5	1874.5	146.29
\sim	14:12:00	17.0	1873.4	146.41
	14:12:30	17.5	1872.2	146.41
	14:13:00	18.0	1871.4	146.52
\star	14:13:30	18.5	1869.7	146.52
	14:14:00	19.0	1868.0	146.63
	14:14:30	19.5	1864.8	146.63
\checkmark	14:15:00	20.0	1862.5	146.73
	14:15:30	20.5	1860.0	146.73
	14:16:00	21.0	1858.2	146.82
\sim	14:16:30	21.5	1857.6	146.82
	14:17:00	22.0	1858.2	146.90
	14:17:30	22.5	1858.5	146.98
\cdots	14:18:00	23.0	1858.3	146.98
	14:18:30	23.5	1857.8	146.98
	14:19:00	24.0	1857.7	147.05
	14:19:30	24.5	1856.1	147.0
	14:20:00	25.0	1854.9	147.11

－	14：20：30	25.5	1855.5	147.11
	14：21：00	26.0	1853.9	147.16
	14：21：30	26.5	1851.8	147.16
	14：22：00	27.0	1845.1	147.21
－	14：22：30	27.5	1849.7	147.21
	14：23：00	28.0	1847.2	147.25
	14：23：30	28.5	1846.1	147.25
勺	14：24：00	29.0	1844.3	147.29
	14：24：30	29.5	1845.6	147.29
	14：25：00	30.0	1846.5	147.33
\％	14：25：30	30.5	1847.0	147.33
	14：26：00	31.0	1846.0	147.36
－	14：26：30	31.5	1845.7	147.36
	14：27：00	32.0	1844.0	147.39
	14：27：30	32.5	1842.9	147.39
	14：28：00	33.0	1841.3	147.42
－	14：28：30	33.5	1839.7	147.42
	14：29：00	34.0	1839.1	147.45
	14：29：30	34.5	1839.0	147.45
－	14：30：00	35.0	1838.6	147.48
	14：30：30	35.5	1839.5	147.48
	14：31：00	36.0	1842.9	147.50
－	14：31：30	36.5	1843.0	147.50
	14：32：00	37.0	1842.9	147.53
	14：32：30	37.5	1843.7	147.53
－	14：33：00	38.0	1844.0	147.55
	14：33：30	38.5	1843.6	147.55
	14：34：00	39.0	1843.5	147.57
\cdots	14：34：30	39.5	1843.6	147.57
	14：35：00	40.0	1843.1	147.58
	14：35：30	40.5	1843.4	147.58
－	14：36：00	41.0	1842.8	147.60
	14：36：30	41.5	1843.2	147.60
	14：37：00	42.0	1843.2	147.61
\smile	14：37：30	42.5	1842.8	147.61
	14：38：00	43.0	1842.5	147.63
	14：38：30	43.5	1842.8	147.63
－	14：39：00	44.0	1842.3	147.65
	14：39：30	44.5	1842.6	147.65
	14：40：00	45.0	1841.8	147.66
\checkmark	14：40：30	45.5	1839.8	147.66
	14：41：00	46.0	1838.1	147.67
	14：41：30	46.5	1836.9	147.67
	14：42：00	47.0	1835.4	147.69
\smile	14：42：30	47.5	1834.4	147.69

	14:43:00	48.0	1833.1	147.70
	14:43:30	48.5	1832.2	147.70
\cdots	14:44:00	49.0	1831. 3	147.72
	14:44:30	49.5	1831.0	147.72
	14:45:00	50.0	1830.3	147.74
\cdots	14:45:30	50.5	1829.7	147.74
	14:46:00	51.0	1829.4	147.75
	14:46:30	51.5	1829.5	147.75
ω	14:47:00	52.0	1829.3	147.77
	14:47:30	52.5	1828.9	147.77
	14:48:00	53.0	1828.8	147.79
	14:48:30	53.5	1828.6	147.79
	14:49:00	54.0	1827.8	147.80
	14:49:30	54.5	1828.2	147.80
\because	14:50:00	55.0	1827.6	147.82
	14:50:30	55.5	1827.9	147.82
	14:51:00	56.0	1827.9	147.84
\checkmark	14:51:30	56.5	1827.4	147.84
	14:52:00	57.0	1828.0	147.86
	14:52:30	57.5	1827.6	147.86
\cdots	14:53:00	53.0	1827.1	147.88
	14:53:30	58.5	1826.4	147.88
	14:54:00	59.0	1826.9	147.89
\checkmark	14:54:30	59.5	1826.3	147.89
	14:55:00	60.0	1825.9	147.30
	14:55:30	60.5	1825.3	147.90
"	14:56:00	61.0	1824.6	147.91
	14:56:30	61.5	1824.1	147.91
	14:57:00	62.0	1822.7	147.92
	14:57:30	62.5	1822.3	147.92
	15:01:01	66.0	1810.0	147.92
	15:02:00	67.0	1808.2	148.01
	15:03:00	68.0	1807.0	148.03
	15:04:00	69.0	1806.3	148.05
	15:05:00	70.0	1805.1	148.08
\checkmark	15:06:00	71.0	1804.7	148.10
	15:07:00	72.0	1804.3	148.12
	15:07:30	72.5	1804.0	148.12
	15:07:40	72.7	1803.7	148.12
	15:07:50	72.8	1803.6	148.12
	15:08:00	73.0	1803.4	148.14
\cdots	15:08:10	73.2	1803.2	148.14
	15:08:20	73.3	1802.9	148.14
	15:08:30	73.5	1802.9	148.14
	15:08:40	73.7	1802.8	148.14

	.15:19:00	84.0	1798.1	148.32
\cdots	15:20:00	85.0	1797.7	148.34
	15:21:00	86.0	1797.4	148.35
	15:22:00	87.0	1796.7	148.36
-	15:23:00	88.0	1796.3	148.37
	15:24:00	89.0	1795.9	148.39
	15:25:00	90.0	1795.5	148.40
	15:26:00	91.0	1795.1	148.41
\checkmark	15:27:00	92.0	1794.8	148.42
	15:28:00	93.0	1794.5	148.43
	15:29:00	94.0	1793.5	148.45
	15:30:00	95.0	1793.0	1.48 .46
	15:31:00	96.0	1792.5	148.47
	15:32:00	97.0	1789.7	148.48
\cdots	15:33:00	98.0	1791.6	148.49
	15:34:00	99.0	1791.2	148.51
	15:35:00	100.0	1790.2	148.52
\cdots	15:36:00	101.0	1790.6	148.53
	15:37:00	102.0	1790.3	148.54
	15:38:00	103.0	1790.0	148.56
-	15:39:00	104.0	1789.8	148.57
	15:40:00	105.0	1789.4	148.58
	15:41:00	106.0	1789.1	148.59
\checkmark	15:42:00	107.0	1788.9	148.60
	15:43:00	108.0	1788.7	148.61
	15:44:00	109.0	1788.5	148.63
,	15:45:00	110.0	1788.4	148.64
	15:46:00	111.0	1788.0	148.65
	15:47:00	112.0	1787.3	148.66
\sim	15:48:00	113.0	1786.8	148.67
	15:49:00	114.0	1786.5	148.68
	15:50:00	115.0	1786.3	148.69
\sim	15:52:00	117.0	1.786 .4	148.70
	15:54:00	119.0	1786.2	148.72
	15:56:00	121.0	1785.5	148.74
\checkmark	15:58:00	123.0	1786.7	148.76
	16:00:00	125.0	1785.3	148.78
	16:02:00	127.0	1784.3	148.80
\cdots	16:04:00	129.0	1784.6	148.82
	16:06:00	131.0	1784.5	148.84
	16:08:00	133.0	1784.2	148.86
	16:10:00	135.0	1783.9	148.88
	16:12:00	137.0	1783.8	148.89
	16:14:00	139.0	1783.5	148.91
	16	141	1783.2	148.93

ω	18:49:00	294.0	1773.5	149.95
	18:50:00	295.0	1773.9	149.95
	18:51:00	296.0	1772.2	149.96
	18:52:00	297.0	1774.0	149.96
6	18:53:00	298.0	1772.2	1.49 .97
	18:54:00	299.0	1772.6	149.97
	18:56:00	301.0	1773.5	149.98
4	18:58:00	303.0	1772.9	149.99
	19:00:00	305.0	1772.7	150.00
	19:02:00	307.0	1772.0	150.01
0	19:04:00	309.0	1772.4	150.02
	19:06:00	311.0	1772.0	150.03
	19:08:00	313.0	1772.2	1.50 .04
6	19:10:00	315.0	1772.1	150.05
	19:12:00	317.0	1772.2	1.50 .06
	19:14:00	319.0	1770.1	150.07
\%	19:16:00	321.0	1769.2	1.50 .08
	19:18:00	323.0	1771.8	150.09
	19:20:00	325.0	1771.0	150.1 .0
\because	19:22:00	327.0	1771.1	150.11
	19:24:00	329.0	1769.5	150.11
	19:26:00	331.0	1771.5	150.12
1	19:28:00	333.0	1771.2	150.13
	19:30:00	335.0	1771.3	150.14
	19:32:00	337.0	1770.5	1.50 .15
\square	19:34:00	339.0	1770.8	150.16
	19:36:00	341.0	1770.3	150.17
	19:38:00	343.0	1770.2	150.18
\checkmark	19:40:00	345.0	1771.1	150.19
	19:42:00	347.0	1770.6	150.19
	19:44:00	349.0	1768.4	150.20
\because	19:46:00	351.0	1770.6	150.21
	19:48:00	353.0	1769.8	150.22
	19:50:00	355.0	1770.0	150.23
	19:52:00	357.0	1770.5	150.24
	19:54:00	359.0	1770.1	150.24
	19:56:00	361.0	1770.0	150.25
4	19:58:00	363.0	1769.6	150.26
	20:00:00	365.0	1769.3	150.27
	20:02:00	367.0	1768.1	150.28
ℓ	20:04:00	369.0	1769.6	150.29
	20:06:00	371.0	1769.7	1.50 .29
	20:08:00	373.0	1769.5	150.30
4	20:10:00	375.0	1769.5	150.31
	20:12:00	377.0	1769.1	150.32

$20: 14: 00$	379.0	1770.2	150.32		
$20: 16: 00$	381.0	1769.1	150.33		
$20: 18: 00$	383.0	1768.6	150.34		
$20: 20: 00$	385.0	1767.6	150.35		
$20: 22: 00$	387.0	1768.6	150.36		
$20: 24: 00$	389.0	1768.2	150.36		
$20: 26: 00$	391.0	1769.0	150.37		
$20: 28: 00$	393.0	1770.5	150.38		
$20: 30: 00$	395.0	1768.0	150.39		
$20: 32: 00$	397.0	1768.5	150.40		
$20: 34: 00$	399.0	1768.0	150.40		
$20: 36: 00$	401.0	1767.9	150.41		
$20: 38: 00$	403.0	1764.9	150.42		1

SECON
SECOND SHUT IN

4.3	1902.2
4.5	1903.1
4.7	1904.0
4.8	1904.9
5.0	1905.7
5.2	1906.5
5.3	1907.3
5.5	1908.1
5.7	1908.8
5.8	1.909 .6
6.0	1910.4
6.2	1911.1
6.3	1911.9
6.5	1912.5
6.7	1.913 .1
6.8	1913.9
7.0	1914.5
7.2	1915.2
7.3	1915.8
7.5	1916.4
7.7	1917.0
7.8	1917.7
8.0	1918.2
8.2	1918.8
8.3	1.919 .4
8.5	1920.0
8.7	1920.5
8.8	1921.0
7.0	1921.6
9.2	1922.1
9.3	1922.7
3.5	1923.2
9.7	1923.7
3.8	1924.3
100.0	1924.7
10.2	1925.3
10.3	1925.7
10.5	1926.2
10.7	1926.7
10.8	1927.1
11.0	1927.6
11.2	1928.0
11.3	1928.5
11.5	1929.0
11.7	1929.4

150.34
150.34
150.34
150.34
150.29
150.29
150.29
150.29
150.29
150.29
150.23
150.23
150.23
150.23
150.23
150.23
150.16
150.16
150.16
150.16
150.16
150.16
150.09
150.09
150.09
150.09
150.09
150.09
150.02
1.50 .02
150.02
150.02
150.02
150.02
149.95
149.95
149.95
149.95
149.95
149.95
149.87
149.87
149.87
149.87
149.87

93.769	1.9721	1.36
90.333	1.9558	1.37
87.143	1.9402	1.38
84.172	1.9252	139
81.400	1.9106	140
78.806	1.8966	1.40
76.375	1.8830	1.41
74.091	1.8698	142
71.941	1.8570	1.43
69.914	1.8446	144
68.000	1.8325	1.44
66.189	1.8208	145
64.474	1.8094	146
62.846	1.7983	146
61.300	1.7875	147
59.829	1.7769	148
58.292	1.7656	149
57.093	1.7566	149
55.818	1.7468	150
54.600	1.7372	150
53.435	1.7278	151
52.319	1.7187	152
51.250	1.7097	152
50.224	1.7009	153
49.240	1.6923	153
48.294	1.6839	1.54
47.385	1.6756	155
46.509	1.6675	155
45.667	1.6596	156
44.855	1.6518	156
44.071	1.6442	157
43.316	1.6366	157
42.586	1.6293	158
41.881	1.6220	158
41.200	1.6149	159
40.541	1.6079	159
39.903	1.6010	160
39.286	1.5942	160
38887	1.5876	161
38.108	1.5810	161
37.545	1.5746	162
37.000	1.5682	162
36.471	1.5619	162
355957	1.5558	163
35.457	1.5497	163

\cdots	20:58:50	11.8	1929.8	149.87	34.972	1.5437	164
	20:59:00	12.0	1930.2	149.80	34.500	1.5378	164
	20:59:10	12.2	1930.7	149.80	34.041	1.5320	165
	20:59:20	12.3	1.931 .0	149.80	33.595	1.5263	165
\smile	20:59:30	12.5	1.931 .5	149.80	33.160	1.5206	166
	20:59:40	12.7	1931.9	149.80	32.737	1.5150	166
	20:59:50	12.8	1932.3	149.80	32.325	1.5095	166
\cdots	21:00:00	13.0	1932.6	149.73	31.923	1.5041	167
	21:00:10	13.2	1933.1	149.73	31.532	1.4987	167
	21:00:20	13.3	1933.5	1.49 .73	31.150	1.4935	167
\because	21:00:30	13.5	1933.8	149.73	30.778	1.4882	168
	21:00:40	13.7	1934.2	149.73	30.415	1.4831	168
\checkmark	21:00:50	13.8	1934.6	149.73	30.060	1.4780	169
	21:01:00	14.0	1935.0	149.66	29.714	1.4730	169
	21:01:10	14.2	1935.3	149.66	29.376	1.4680	169
	21:01:20	14.3	1935.7	149.66	29.047	1.4631	1.70
\checkmark	21:01:30	14.5	1.936 .0	149.66	28.724	1.4582	170
	21:01:40	14.7	1936.4	149.66	28.409	1.4535	170
\cdots	21:01:50	14.8	1936.7	149.66	28.101	1.4487	171
	21:02:00	15.0	1937.1	149.59	27.800	1.4440	171
	21:02:10	15.2	1937.4	149.59	27.505	1.4394	171
\checkmark	21:02:20	15.3	1937.8	149.59	27.217	1.4348	172
	21:02:30	15.5	1938.1	149.59	26.935	1.4303	172
	21:02:40	15.7	1938.4	149.59	26.660	1.4259	172
\checkmark	21:02:50	15.8	1938.7	149.59	26.389	1.4214	173
	21:03:00	16.0	1939.1	149.53	26.125	1.4171	173
	21:03:10	16.2	1939.4	149.53	25.866	1.4127	1.73
	21:03:20	16.3	1939.6	149.53	25.612	1.4084	174
-	21:03:30	16.5	1940.0	149.53	25.364	1.4042	174
	21:03:40	16.7	1940.3	149.53	25.120	1.4000	174
-	21:03:50	16.8	1940.6	149.53	24.881	1.3959	175
	21:04:01	17.0	1940.9	149.47	24.624	1.3914	175
	21:04:10	17.2	1941.2	149.47	24.417	1.3877	175
	21:04:20	17.3	1941.5	149.47	24.192	1.3837	176
	21:04:30	17.5	1941.8	149.47	23.971	1.3797	176
	21:04:40	17.7	1942.1	149.47	23.755	1.3757	176
	21:04:50	17.8	1942.3	149.47	23.542	1.3718	176
	21:05:00	18.0	1942.6	149.41	23.333	1.3680	177
	21:05:10	18.2	1942.9	149.41	23.128	1.3641	177
-	21:05:20	18.3	1943.2	149.41	22.927	1.3604	177
	21:05:30	18.5	1.943 .5	149.41	22.730	1.3566	177
	21:05:40	18.7	1943.7	149.41	22.536	1.3529	178
	21:05:50	18.8	1944.1	149.41	22.345	1.3492	178
	21:06:00	19.0	1944.3	149.36	22.158	1.3455	178
	21:06:10	17.2	1944.6	149.36	21.974	1.3419	1.79

6	21:06:20	19.3	1944.9	149.36	21.793	1.3383	179
	21:06:30	19.5	1945.1	149.36	21.615	1.3348	179
	21:06:40	19.7	1945.4	1.49 .36	21.441	1.3312	179
	21:06:50	19.8	1945.6	149.36	21.269	- 1.3277	180
4	21:07:00	20.0	1945.8	149.30	21.100	1.3243	180
	21:07:10	20.2	1946.1	149.30	20.934	1.3208	180
	21:07:20	20.3	1946.3	149.30	20.770	1.3174	180
6	21:07:30	20.5	1946.6	149.30	20.610	1.3141	181
	21:07:40	20.7	1946.8	149.30	20.452	1.3107	181
	21:07:50	20.8	1947.1	149.30	20.296	1.3074	181
ω	21:08:00	21.0	1947.3	149.25	20.143	1.3041	181
	21:08:10	21.2	1947.6	149.25	19.992	1.3009	182
	21:08:20	21.3	1947.8	149.25	19.844	1.2976	182
6	21:08:30	21.5	1948.0	149.25	19.698	1.2944	182
	21:08:40	21.7	1948.3	149.25	19.554	1.2912	182
	21:08:50	21.8	1948.5	149.25	19.412	1.2881	1.82
\checkmark	21:09:00	22.0	1948.7	149.20	19.273	1.2849	183
	21:09:30	22.5	1.949 .4	149.20	18.867	1.2757	183
	21:10:00	23.0	1950.0	149.15	18.478	1.2667	184
\checkmark	21:10:30	23.5	1950.6	149.15	18.106	1.2578	185
	21:11:00	24.0	1951.3	149.10	17.750	1.2492	185
	21:11:30	24.5	1951.9	149.10	17.408	1.2408	186
6	21:12:00	25.0	1952.5	149.06	17.080	1.2325	186
	21:12:30	25.5	1953.0	149.06	16.765	1.2244	187
	21:13:00	26.0	1953.7	149.00	16.462	1.2165	1.88
ω	21:13:30	26.5	1954.2	149.00	16.170	1.2087	188
	21:14:00	27.0	1954.8	148.95	15.889	1.2011	189
	21:14:30	27.5	1955.3	148.95	15.618	1.1936	189
6	21:15:00	28.0	1955.8	148.91	15.357	1.1863	190
	21:15:30	28.5	1956.3	148.91	15.105	1.1791	190
	21:16:00	29.0	1956.8	148.86	14.862	1.1721	191
6	21:16:30	29.5	1957.2	148.86	14.627	1.1652	1.91
	21:17:00	30.0	1957.7	148.81	14.400	1.1584	192
	21:17:30	30.5	1958.2	148.81	14.180	1.1517	192
'-	21:18:00	31.0	1958.7	148.77	13.968	1.1451	193
	21:18:30	31.5	1959.1	148.77	13.762	1.1.387	193
	21:19:00	32.0	1959.5	148.72	13.562	1.1.323	194
4	21:19:30	32.5	1960.0	148.72	13.369	1.1261	194
	21:20:00	33.0	1.960 .4	148.68	13.182	1. 1.1200	194
	21:20:30	33.5	1960.8	148.68	13.000	1.1139	1.95
4	21:21:00	34.0	1961.2	148.63	12.824	1.1080	195
	21:21:30	34.5	1961.6	148.63	12.652	1.1022	196
	21:22:00	35.0	1962.0	148.59	12.486	1.0964	196
6	21:23:00	36.0	1962.7	148.55	12.167	1.0852	197
	21:24:00	37.0	1963.5	148.51	11.865	1.0743	198

$22: 30: 00$	103.0	1986.3	147.20	4.903	0.6905	220
$22: 32: 00$	105.0	1986.6	147.17	4.829	0.6838	221
$22: 34: 00$	107.0	1986.9	147.15	4.757	0.6773	221
$22: 36: 00$	109.0	1987.2	147.13	4.688	0.6710	221
$22: 38: 00$	111.0	1987.5	147.11	4.622	0.6648	221
$22: 40: 00$	113.0	1987.9	1.47 .09	4.558	0.6587	222
$22: 42: 00$	115.0	19988.2	147.07	4.496	0.6528	222
$22: 44: 00$	117.0	1988.5	147.05	4.436	0.6470	222
$22: 46: 00$	119.0	1988.8	147.03	4.378	0.6413	223
$22: 48: 00$	121.0	1989.1	147.01	4.322	0.6357	223
$22: 50: 00$	123.0	1989.3	146.99	4.268	0.6303	223
$22: 52: 00$	125.0	19989.7	146.97	4.216	0.6249	224
$22: 54: 00$	127.0	1989.9	146.95	4.165	0.6197	224
$22: 56: 00$	129.0	1990.2	146.94	4.116	0.6145	224
$22: 58: 00$	131.0	1990.4	146.92	4.069	0.6095	224
$23: 00: 00$	133.0	1990.7	146.91	4.023	0.6045	225
$23: 02: 00$	135.0	1990.9	146.89	3.978	0.5996	225
$23: 04: 00$	137.0	1991.1	146.88	3.934	0.5949	225
$23: 06: 00$	139.0	1991.4	146.87	3.892	0.5902	225
$23: 08: 00$	141.0	1991.7	146.85	3.851	0.5856	226
$23: 10: 00$	143.0	1991.8	146.84	3.811	0.5811	226
$23: 12: 00$	145.0	1992.1	146.81	3.772	0.5766	226
$23: 14: 00$	147.0	1992.3	146.80	3.735	0.5723	226
$23: 16: 00$	149.0	1.992 .5	146.77	3.698	0.5680	227
$23: 18: 00$	151.0	1992.8	146.75	3.662	0.5637	227
$23: 20: 00$	153.0	1993.0	146.73	3.627	0.5596	227
$23: 22: 00$	155.0	1993.2	146.72	3.594	0.5555	227
$23: 24: 00$	157.0	1993.4	146.70	3.561	0.5515	227
$23: 26: 00$	159.0	1993.6	146.69	3.528	0.5476	228
$23: 23: 00$	151.0	1993.8	146.68	3.497	0.54377	228
$23: 30: 00$	163.0	1994.0	146.66	3.466	0.5399	228
$23: 32: 00$	165.0	1994.2	146.65	3.436	0.5361	228
$23: 34: 00$	167.0	1994.4	146.64	3.407	0.5324	228
$23: 36: 00$	169.0	1994.6	146.63	3.379	0.5287	229
$23: 33: 00$	171.0	1994.7	146.61	3.351	0.5252	229
$23: 40000$	173.0	1995.0	146.60	3.324	0.5216	229
$23: 41: 00$	174.0	1995.0	146.59	3.310	0.5199	229
$23: 42: 00$	175.0	1995.2	146.59	3.297	0.5181	229
$23: 43: 00$	176.0	1.995 .2	146.58	3.284	0.5164	229
$23: 44: 00$	177.0	1995.3	146.58	3.271	0.5147	229
$23: 45: 00$	178.0	1995.4	146.57	3.258	0.51 .30	229
$23: 46: 00$	179.0	1995.5	146.57	3.246	0.5113	229
$23: 47: 00$	180.0	1995.5	146.56	3.233	0.5097	230
$23: 48: 00$	181.0	1995.6	146.56	3.221	0.5080	230
$23: 49: 00$	182.0	1995.8	146.54	3.209	0.5063	230

	23:50:00	183.0	1995.8	146.54	3.197	0.5047	230
ω	23:51:00	184.0	1995.9	146.53	3.185	0.5031	230
	23:52:00	185.0	1995.9	146.53	3.173	0.5015	230
	23:53:00	186.0	1996.0	146.51.	3.161	0.4999	230
	23:54:00	187.0	1996.2	146.51	3.150	0.4983	230
	23:55:00	188.0	1996.2	146.50	3.138	0.4967	230
	23:56:00	189.0	1996.3	146.50	3.127	0.4951	230
0	23:57:00	190.0	1996.4	146.49	3.116	0.4936	230
	23:58:00	191.0	1996.5	146.49	3.105	0.4920	230
	23:59:00	192.0	1996.6	146.47	3.094	0.4905	231
\because	00:01:00	194.0	1996.7	146.46	3.072	0.4874	231.
	00:02:00	195.0	1996.8	146.46	3.062	0.4859	231
	00:03:00	196.0	1.996 .8	146.45	3.051	0.4844	231
-	00:04:00	197.0	1996.9	146.45	3.041	0.4830	231
	00:05:00	198.0	1997.0	146.43	3.030	0.4815	231
	00:06:00	199.0	1997.1	146.43	3.020	0.4800	231
'	00:07:00	200.0	1997.1	146.42	3.010	0.4786	231
	00:08:00	201.0	-1997.3	146.42	3.000	0.4771	231
	00:09:00	202.0	1997.2	146.41	2.990	0.4757	231
-.	00:10:00	203.0	1997.4	146.41	2.980	0.4743	231
	00:11:00	204.0	1997.4	146.40	2.971	0.4728	231
	00:12:00	205.0	1997.5	146.40	2.961	0.4714	232
\because	00:13:00	206.0	1997.5	1.46 .39	2.951	0.4700	232
	00:14:00	207.0	1997.7	146.39	2.942	0.4686	232
	00:16:00	209.0	1997.8	146.38	2.923	0.4659	232
-	00:17:00	210.0	1997.8	146.37	2.914	0.4645	232
	00:18:00	211.0	1997.9	146.37	2.905	0.4632	232
	00:19:00	212.0	1998.0	146.35	2.896	0.4618	232
-	00:20:00	213.0	1998.1	146.35	2.887	0.4605	232
	00:21:00	214.0	1.998 .2	146.34	2.879	0.4592	232
	00:37:08	230.1	1999.3	146.34	2.747	0.4388	233
\cdot	00:38:00	231.0	1999.3	1.46 .24	2.740	0.4378	233
	00:39:00	232.0	1999.3	146.23	2.733	0.4366	233
	00:40:00	233.0	1999.3	146.23	2.725	0.4354	233
\cdots	00:41:00	234.0	1.999 .5	146.22	2.718	0.4342	234
	00:42:00	235.0	1999.5	146.22	2.711	0.4331	234
	00:43:00	236.0	1999.6	146.21	2.703	0.431 .9	234
\checkmark	00:44:00	237.0	1999.7	146.21	2.696	0.4308	234
	00:45:00	238.0	1999.7	146.21	2.689	0.4296	234
	00:46:00	239.0	1999.8	146.21	2.682	0.4285	234
1.	00:47:00	240.0	1999.8	146.20	2.675	0.4273	234
	00:48:00	241.0	1999.9	146.20	2.668	0.4262	234
	00:49:00	242.0	2000.0	146.18	2.661	0.4251	234
	00:50:00	243.0	2000.0	146.18	2.654	0.4240	234
	00:51:00	244.0	2000.2	146.17	2.648	0.4228	234

4	00:52:00	245.0	2000.1	146.17	2.641	0.4217	234
	00:53:00	246.0	2000.2	146.16	2.634	0.4206	234
	00:54:00	247.0	2000.3	146.16	2.628	0.4195	234
6	00:55:00	248.0	2000.3	146.15	2.621	0.4185	234
	00:56:00	249.0	2000.4	146.15	2.614	0.4174	234
	00:57:00	250.0	2000.4	146.14	2.608	0.4163	234
6	00:58:00	251.0	2000.5	146.14	2.602	0.4152	234
	00:59:00	252.0	2000.6	146.13	2.595	0.4142	235
	01:00:00	253.0	2000.6	146.13	2.589	0.4131	235
6	01:01:00	254.0	2000.7	146.12	2.583	0.4121	235
	01:02:00	255.0	2000.7	146.12	2.576	0.4110	235
	01:03:00	256.0	2000.8	146.12	2.570	0.4100	235
	01:04:00	257.0	2000.8	146.12	2.564	0.4090	235
4	01:05:00	258.0	2000.9	146.11	2.558	0.4079	235
	01:06:00	259.0	2001.0	146.11	2.552	0.4069	235
	01:07:00	260.0	2001.0	146.10	2.546	0.4059	235
4	01:08:00	261.0	2001.0	146.10	2.540	0.4049	235
	01:10:00	263.0	2001.2	146.09	2.529	0.4029	235
	01:12:00	265.0	2001.3	146.08	2.517	0.4009	235
\sim	01:14:00	267.0	2001.3	146.07	2.506	0.3989	235
	01:16:00	269.0	2001.4	146.07	2.494	0.3970	235
	01:18:00	271.0	2001.6	146.06	2.483	0.3950	236
ω	01:20:00	273.0	2001.7	146.05	2.473	0.3931	236
	01:22:00	275.0	2001. 8	1.46 .04	2.462	0.3913	236
	01:24:00	277.0	2001.9	146.03	2.451	0.3894	236
6	01:26:00	279.0	2002.0	146.02	2.441	0.3875	236
	01:28:00	281.0	2002.1	1.46 .01	2.431	0.3857	236
	01:30:00	283.0	2002.2	146.00	2.420	0.3839	236
6	01:32:00	285.0	2002.2	145.99	2.411	0.3821	236
	01:34:00	287.0	2002.4	145.99	2.401	0.3803	236
	01:36:00	289.0	2002.5	145.97	2.391	0.3786	236
6	01:38:00	291.0	2002.6	145.96	2.381	0.3768	237
	01:40:00	293.0	2002.6	145.95	2.372	0.3751	237
	01:42:00	295.0	2002.7	145.94	2.363	0.3734	237
-	01:44:00	297.0	2002.8	145.93	2.354	0.3717	237
	01:46:00	299.0	2002.9	145.92	2.344	0.3700	237
	01:48:00	301.0	2003.0	145.91	2.336	0.3684	237
4	01:50:00	303.0	2003.1	145.90	2.327	0.3667	237
	01:52:00	305.0	2003.2	145.89	2.318	0.3651	237
	01:54:00	307.0	2003.3	145.88	2.309	0.3635	237
	01:56:00	309.0	2003.4	145.87	2.301	0.3619	237
	01:53:00	311.0	2003.5	145.86	2.293	0.3603	237
	02:00:00	313.0	2003.6	145.85	2.284	0.3588	238
6	02:02:00	315.0	2003.7	145.84	2.276	0.3572	238
	02:04:00	317.0	2003.7	145.83	2.268	0.3557	238

APPENDIX A3. RIG. POSITIONING REPORT

WEST SEAHORSE-1

RIG POSITIONING REPORT
P.A. CARTER

SEPTEMBER, 1981

INTRODUCTION

CONCLUSION

DAILY LOG

RIG LOCATION AND BUOY PATTERN

SURVEY NET VERIFICATION

PERSONNEL

APPENDICIES: 1. Area of Operations
2. Scatter Plot of accepted satellite passes
3. Three Point fix (Trisponder) for drill stem

INTRODUCTION

The West Seahorse-1 well location is in the south-west corner of the Vic/P-11 permit block and four kilometres west of the Seahorse-1 oil discovery.

The proposed location for West Seahorse was S.P. 152.8 on 1 ine GB81-1A. The co-ordinates for this position were:

Latitude	38°	12^{\prime}	$16.93^{\prime \prime}$ South
Longitude	147°	37^{\prime}	$21.88^{\prime \prime}$ East

UTM co-ordinates from central Meridian 147°

554523 metres East
5771275 metres North

Water Depth: 40 metres

The positioning survey consisted of four phases:

1. Setting up the Trisponder survey
2. Checking the survey system
3. Positioning and setting the anchor buoys.
4. Determining the final rig position.

The survey system consisted of a Trisponder System and a JMR-4 satellite receiver both supplied and operated by Decca Survey Australia. The Trisponder net was the primary navigation system used for positioning the rig with the satellite navigation providing an independent check on the system and a 100% back-up if the Trisponder system did not function. A licensed surveyor, contracted from Navigation Australia, was on board the "Yardie Creek" during the positioning of the "Petromar North Sea" to verify all readings during the positioning operations.

Independent reports were prepared by Navigation Australia and Decca Survey Australia.

CONCLUSION

The "Petromar North Sea" was moored in the final position for the West Seahorse-1 well on September 16, 1981. The calm seas and good Trisponder signals allowed the rig to be positioned and moored within twenty one hours. The Trisponder system proved to be both accurate and reliable throughout the whole operation.

Final position for West Seahorse-1

Latitude	38°	12^{\prime}	$17.17^{\prime \prime}$ South
Longitude	147°	37^{\prime}	$21.70^{\prime \prime}$ East

UTM co-ordinates from the 147° central Meridian:
Australian Map Grid: Zone 55

Northing	5771267 metres
Easting	554519 metres

Proposed location to final location 9 metres at a bearing of 206°.

JMR-4 Satellite Doppler observations were taken on board the "Petromar North Sea" to check the location of West Seahorse-1 which had been established by Trisponder observations. The final Satellite position (Lat. $38^{\circ} 12^{\prime} 17.288^{\prime \prime}$, Long. $147^{\circ} 37^{\prime} 21.504^{\prime \prime}$) was very close to the Trisponder location.

DAILY LOG

Friday - September 11
0800 P. Carter and R. Keene (Navigation Australia's surveyor) departed Melbourne for Port Welshpool.

1100 Arrived Port Welshpool. Checked "Yardie Creek" and found Decca personnel, Trisponder equipment and JMR-4 receiver installed. Base plate guide also aboard.

Saturday - September 12
Rough seas in survey area. Waiting on rig.

Sunday - September 13
0930 "Yardi Creek" departed Port Welshpool enroute to Vic/P-11 permit block.

1710 Arrived at Seahorse buoy. Checked Trisponder location with known location of Seahorse buoy. Trisponder net checked out (3 way fix 1 m).

1840 Headed for anchorage closer to shore. Seas moderate.

Monday - September 14
0700 Departed anchorage enroute to West Seahorse-1 location.
0745 Arrived on location and proceeded to position marker buoys. Seas calm. Trisponder signals excellent.

1030 All anchor buoys and Moon Pool buoy positioned and double checked. Two good satellite fixes placed Moon Pool within 20 metres of Trisponder location.

1100 Anchored within marker buoy pattern. Alterted local fishing fleet of rig positioning.

Tuesday - September 15
0530 "Petromar North Sea" within 5 km of location. Seas calm. Yardie Creek checked Moon Pool buoy location (within 25 m of proposed location due to ocean current).

0945 "Lady Joyce" dropped \#5 anchor. "Sea Emerald" towed rig towards Moon Pool buoy.

1200 "Sea Emerald" dropped \#1 anchor. Rig blown south of proposed location.

1400 Four anchors dropped. First Trisponder fix on the rig, 150 m S.S.E. of proposed location.

All anchors in position. Petromar North Sea 25 metres N.W. of proposed location. Trisponder signals very good. (3 way fix: 4m). HOAL Perth office informed of rigs logation.

Wednesday - September 16
0000 Commenced tensioning up anchors. Satellite fix placed position within 20 metres of Trisponder location.

Completed tensioning up. Rig 10 m off proposed location at a bearing of 210°. Trisponder signals good.

0410 Phoned R. Keto, Perth. Rig location accepted. Rig still 10m off location at 210°. Three way fix: 3 m .

0810 Position by Trisponder:
Latitude $38^{\circ} 12^{\prime \prime} 17.3^{\prime \prime}$
Longitude $147^{\circ} 37^{\prime} 21.7^{\prime \prime}$
UTM co-ordinates
5771262 N.
554520 E.
No satellite fixes since 0330. Decca remained on board to take further satellite passes and determine final Trisponder position.

0830 P. Carter and R. Keene departed rig by helicopter for Bairnsdale.
0845 Arrived Bairnsdale
0915 Departed Bairnsdale
1045 Arrived Melbourne
1900 Departed Melbourne
2130 Arrived Perth.

RIG LOCATION AND BUOY PATTERN

Proposed Location

The proposed location for West Seahorse-1 was shotpoint 152.8 on line GB81-1A.

The co-ordinates for this position were:

Latitude	38°	12^{\prime}	$16,93^{\prime \prime}$ South
Longitude	147°	37^{\prime}	$21.83^{\prime \prime}$. East

UTM co-ordinates from central Meridian 147°
554523 metres East
5772375 metres North
Water depth: 40 metres.

The following base stations were used for the Trisponder survey net:

	Easting	$\frac{\text { Northing }}{5827551.6}$
Mt. Nowa Nowa Tower	596073.9	5826499.9
Mt. Taylor Tower	549316.2	5769507.0
Longford Tower Jimmy Lookout Tower (Back-up)	584544.2	5806793.0

Distances to West Seahorse-1 from base stations:

Mt. Nowa Nowa Tower 69980 metres
Mt. Taylor Tower 55494 metres
Longford Tower 41033 metres
Jimmys Lookout Tower 46603 metres

Anchor Pattern

The optimum bow heading for the "Petromar North Sea" was decided as 230°. Using this heading the position of the anchors was determined graphically.

The following table lists the positions:

Anchor Number	Bearing	Northing	Easting
	260°	5771180	554028
2	290°	5771412	554056
3	350°	5771764	554488

	020°	5771738	554731
4	080°	5771369	555023
5	110°	5771127	554993
6	170°	5770790	554551
7	200°	5770818	554308

Nine marker buoys were used for the positioning, eight anchor buoys and one Moon Pool buoy. They consisted of 2-inch pipe, approximately eighteen feet long, with a Norwegian buoy at the centre, a 2 foot length section of chain attached to the bottom and a coloured pennant attached to the top. These were anchored by 3, three foot lengths of steel railing, each weighing 150 LBS. Three small concrete cylinders were also attached to the base of buoy in order to keep the pipe vertical.

Forty seven metres of rope were used at each marker buoy. This allowed a maximum swing of 25 metres. A full set of spare marker buoys, weights and ropes were left aboard the "Yardie Creek".

SURVEY NET VERIFICATION

A large buoy marking the location of the Seahorse-1 well was used to verify the Trisponder survey net. Decca supplied the exact location of the buoy knowing its maxium radius of drift, 49 metres, and the direction of the ocean currents. Decca obtained this information from Esso Australia.

By positioning the Yardie Creek alongside the Seahorse-1 buoy and comparing the Trisponder location with the known location a concrete check was made. The Trisponder system located the buoy to within 1 metre of its known location.

The JMR-4 Satellite Doppler receiver was also used to check the Trisponder survey net. The location of the Moon Pool buoy was checked with the JMR-4 and after two passes found to be within 15 metres of the Trisponder location. The final position for West Seahorse-1 was also checked with the satellite receiver. Twenty one passes were taken over a period of three days.

Final Satellite Position \quad Final Trisponder Position
 5771264
 554514
 Northing
 Easting
 5771267
 554519

Thus there is a very close agreement between the Satellite location and the Trisponder position.
Ian Freeman Decca Survey Australia
Rod Keene Navigation Australia
Paul CarterHudbay 0il (Australia) Ltd.

DSA 1118
Moonpool position
Latitude
Longitude
A.G.D.
$38^{\circ} 12 \cdot 17!^{\prime} 288$ South $147^{\circ} 37^{\prime} 21^{\prime!} 504$ East

SCATTER PLOT OF ACCEPTED PASSES
SCALE 1:1000 :

DRILL STEM

EASTING 554519
NORTHING 5771267

GEOLOGY
(Pages 15-40)

3.0 GEOLOGY

3.1 Summary of Previous Investigations

Gippsland Basin exploration commenced in 1924 with the reported discovery of oil and gas in a water bore drilled onshore near Lakes Entrance. To date, over 125 wells have been drilled in the onshore part of the basin but only minor hydrocarbon accumulations have been encountered.

Initial exploration in the offshore Gippsland Basin was conducted by the Bureau of Mineral Resources when they undertook a regional gravity and aeromagnetic survey between 1951 and 1956. The first permits, covering a large part of the offshore Gippsland Basin, were taken up by BHP Co. Ltd. (later Hematite Petroleum Pty. Ltd.) in 1960. Esso joined the original permittee in 1964 and the first offshore well, Barracouta No.1, was drilled in 1965. Over eighty offshore wells have now been drilled in the basin resulting in the discovery of recoverable reserves approximately 3 billion barrels ($0.466 \times 10^{12} \mathrm{~m}^{3}$) of oil and 8 trillion cubic feet (220.4 $\times 10^{12} \mathrm{~m}^{3}$) of gas.

A summary of early contributions to the understanding of the geology and hydrocarbon potential of the Gippsland Basin was presented by W.F. Threlfall and others in 1974. Esso-BHP have published several papers on basinal stratigraphy and geological evolution during their exploration and development of the basin, and papers dealing with the geology of individual fields have been published as the fields were developed.

Exploration Permit Vic/P-11 consists of 51 blocks which previously formed parts of the Exploration Permits Vic/P-1 and Vic/P-8, held by Esso-BHP and a consortium headed by BOC Australia respectively. The area now covered by Vic/P-11 was gazetted in December 1976 and applications for the permit were invited. The permit was granted to Gas and Fuel Corporation of Victoria on August 8, 1978, and Beach Petroleum subsequently became joint Permittee and Operator.

Hudbay Oil (Australia) Ltd. farmed into the Permit in December, 1980, and in February 1981 shot the GB81 Seismic Survey, consisting of 359 line kilometres of 36 -fold seismic survey. Detailed mapping, incorporating data from the GB81 survey, Beach Petroleum's GB79 Seismic Survey and trade data from Esso's G80A Seismic Survey, defined several prospects. West Seahorse-1 was the first of these to be drilled, and was the first well to be drilled by HOAL outside Western Australian waters.

3.2.1 Regional Setting

The West Seahorse structure lies towards the northern margin of the Gippsland Basin, which is situated in south-eastern Australia and is bounded to the north and south by the Victorian Highlands and Bassian Rise respectively (Enclosure 2). The western limit of the basin is taken as the Mornington Peninsula and to the east the basin opens to the Tasman Sea. The Gippsland Basin covers approximately $50,000 \mathrm{~km}^{2}$ and is filled with up to 10,000 metres of Lower Cretaceous to Recent sediments.

3.2.2 Tectonic Elements (Enclosure 2)

The offshore Gippsland Basin is separated by fault complexes into three major divisions: The North Platform, or Lakes Entrance Platform; the graben-like Central Deep or Strzelecki Basin; and the South Platform (Hocking \& Taylor, 1964; James and Evans, 1971; Hocking, 1972).

The stable platforms to the north and south are areas where the Tertiary sequence unconformably overlies Palaeozoic basement. In these areas the structures within the Tertiary section consist simply of small-scale drapes over palaeotopographic ridges and small fault scarps.

The Southern Platform is separated from the Central Deep Basin by a major fault complex, the South Bounding Fault. This is an offshore extension of the Foster Fault System and consists of a system of down-to-basin normal faults arranged en echelon. The northern boundary of the Central Deep is less well defined.

Major fault trends within the central part of the basin are offshore extensions of the southwest-northeast trending Yarram Fault and the antithetic, east-west trending Rosedale Fault System. The latter is known to be a reverse fault superimposed upon an older normal fault within the Lower Cretaceous, and to have a throw of up to 160 metres in the West Seahorse area. Reverse movement along the fault system is believed to have occurred as a result of the same stresses that led to the
development of the major anticlines in the central basin during the late Eocene to early 01igocene. Numerous northwest-southeast, basin-forming normal faults have been recognized within the Central Deep.

The major hydrocarbon-bearing anticline structures in the central basin are elongate, with a dominant southwestnortheast axial trend. They were formed by right-lateral, convergent shearing brought about by the movement of continental plates, as will be discussed in Section 3.2.3. The main hydrocarbon traps in the Vic/P-11 Permit were formed as a result of the same shearing stress, resulting in arching associated with reverse movement superimposed upon older normal faults.
3.2.3 Geological Evolution and Regional Stratigraphy (Figure 2)

During the Lower to Middle Palaeozoic a series of major orogenies occurred within the Tasman Geosyncline. this resulted in a dominantly north-south structural grain within the tightly folded and faulted Palaeozoic metamorphics. These geosynclinal sediments were subsequently intruded by Lower Devonian granitic rocks. A major rift formed across southern Australia during the Jurassic due to the operation of the Antarctic and Australian cratons. The rift valley formed over the entire length of the present southern coast of Australia. Into this major depositional axis a typical sequence of rift valley sediments was rapidly deposited, as clastics were stripped from the adjacent Palaeozoic highlands. The initial deposits of the Upper Jurassic to Lower Neocomian consists of conglomeratic wedges and alluvial fan detritus, commonly of a quartzose sandstone nature. Jurassic intrusives and Lower Cretaceous extrusives, both associated with rifting, provided a major provenance for the 3,500 metres of Lower Cretaceous Strzelecki Group sediments.

During Lower Cretaceous times, the Gippsland Basin formed a half graben with the major subsidence along the southern Foster Fault system. The Strzelecki Group sediments are texturally mature but mineralogically immature, being felspathic and chloritic. They consist of a monotonous,

cyclic sequence of interbedded sands, silts and muds deposited on a subsiding fluvial plain. A large east-west rift developed, separating sediments of the Tasman Geosyncline. The eastern end of this rift is believed to have terminated in a triple junction formed by the Australian, Antarctic and Lord Howe Rise plates. The western arm of the triple junction was coincident with the ancestral Otway and Gippsland Basins and, as this arm of the triple junction failed during the Turonian, the Lord Howe Rise plate moved eastwards away from the Australian-Antarctic plate. This resulted in the rifting of the eastern portion of the Antarctic and Australian plates along a line parallel to, and off the west coast of, Tasmania. Therefore the Tasmanian craton remained attached to the Australian plate but was separated from it by an east-west, aborted, rift valley basin.

The Lower Cretaceous Strzelecki Group sediments are unconformably overlain by up to 5,000 metres of fluviatile and lacustrine Latrobe Group sediments. Upper Cretaceous sedimentation tended to be superimposed on the underlying Strzelecki Group with the deposition of shales, minor coals and poorly sorted sandstones in a fluviatile environment. In the early Senonian, approximately 85 million years B.P., the Lord Howe Rise Plate moved away, resulting in the deposition of a complex system of fluvial and deltaic plain sediments sourced from the northwest and north. Growth and movement on the basin-forming normal faults resulted in continued subsidence of the basin during the Palaeocene and Eocene.

The northern part of the basin was uplifted as fault movement elsewhere in the basin lessened during the Eocene. A period of submarine and subaerial channel-cutting occurred during the Middle to Upper Eocene in the Tuna-Flounder area. The channel-cutting marked the onset of a marine transgression from the southeast during the uppermost Eocene to Lower 0ligocene, a period of instability and basin tilting. The en echelon disposition of the fold trends and fault systems is most likely the result of Upper Eocene east-west, right lateral, convergent shear deformation. The crestal areas of the folds were subsequently eroded during an associated
period of relative sea level drop, while the deeper parts of the basin continued to receive sediments. The compressional regime reactivated the severe channeling and the Marlin Channel was formed as subaerial and submarine drainage systems were laterally restricted.

The transgression continued into the Lower 0ligocene with the deposition of the shallow water glauconitic sands and silts of the Gurnard Formation. Around the margins of the basin, sand buildups occurred as the transgression reached its maximum extent. During the uppermost Eocene to Lower 01igocene, a marked change in sediment type occurred: the fluvial and deltaic coarse grained clastics were replaced by fine grained, calcareous shales and marls. The change in sediment type may be due, in part, to a change in provenance related to the widespread deposition onshore of volcanics during the Upper Eocene wrenching episode.

Sea level fluctuations during the Miocene produced a complex system of interfingering and overlapping channels, which cut into the soft limestones and marls of the Lakes Entrance Formation and Gippsland Limestone. A linear, submarine slump zone of over 125 kilometres in length has been observed along the major south-bounding fault system. A wedge of sediment moved towards the centre of the basin as a result of reactivation of this fault system during the Miocene, and a major cratonic uplift, the Kosciusko Uplift, occurred during the Upper Pliocene and Lower Pleistocene. The Victorian Highlands were uplifted and provided a renewed clastic provenance, while faults and associated structures around the northern margins of the basin were rejuvenated. Extensive erosion is currently occurring in the Strzelecki Hills and a relatively thin veneer of Quarternary sediments is being deposited across the southeastern Gippsland coastal plain.

3.3 Stratigraphy

A sedimentary section ranging in age from Recent to Upper Cretaceous (Senonian) was penetrated in West Seahorse No. 1 (Figure 3).

Age determinations are based upon palaeontological and palynological studies of sidewall cores (Appendices B1 and B2). The boundaries of individual units were established by using the age determinations in conjunction with lithological data from the microscopic examination of drill cuttings and sidewall cores, and wireline log interpretations. Time-rock subdivisions were placed midway between sidewall core points, unless more accurate subdivisions were made possible by log response or cuttings lithology.

Owing to the standard practice of not installing a marine riser until after the setting of the 20 inch casing, no samples were recovered from the seabed to 189 metres.

The stratigraphy encountered in the well is described below. All depths quote are below the Rotary Table, which is 9.45 metres above Mean Spring Low Nater.

Upper Cretaceous (2093 - 2490 metres)
Underlying the Palaeocene is a conformable non-marine sequence of medium and coarse grained sandstones, with minor interbeds of siltstone and claystone, plus occasional thin coal seams. The sandstones show an increasing degree of recrystallisation with depth, and below 2310 metres have been cemented by dolomite.

Lower Eocene to Palaeocene (1395.5 - 2093 metres)
The Latrobe Group sediments underlying the transition zone are represented by non-marine sequence of coarse sandstones, siltstones and minor claystones, with abundant coal in the section above 1800 metres. Above 1422 metres no reliable palynological dating could be obtained, but samples between 1422-1468 m were assigned to the M. diversus biostratigraphic zone. Between 1651-2083 metres the rocks were again largely devoid of diagnostic palynomorphs, but recognition of L. balmei in a few samples enabled the assignation of a Palaeocene age.
?Latest 01igocene to Lower Eocene (1344.5-1395.5 metres)
The interval between 1344.5 metres and 1395.5 metres was devoid of diagnostic planktonic foraminifera and could not be assigned a definite age.

The glauconitic calcisiltites and calcilutites of this zone are distinguished from overlying lithologies by their high glauconite content, and appear to constitute a zone of transition between the marine sequence above and the non-marine lithologies below. The absence of sediments bearing Zone K/J planktonic foraminifera suggests a marked unconformity between the latest Eocene and latest 01igocene in West Seahorse No. 1

Lower Miocene to Latest 01igocene (640 - 1344.5 metres)
Most of the Lower Miocene section above 930 metres is represented by recrystallised calcarenite with minor calcilutite, calcisiltite and very coarse quartz sand. Below 930 metres the lithology changes fairy rapidly to an interbedded sequence of calcisiltite/calcilutite and marl, which grades, with an incerasing porportion of clay minerals, to the calcareous claystones and carbonates of the Lakes Entrance Formation.

The uppermost part of the Lower Mioceen was deposited on a beach front, in water depths of less than 10 metres. This was transitional to a near shore canyon head (about 40 metres deep) at around 770 metres and to a submarine canyon between 802 and 1055 metres. Below 1100 metres, the unit was deposited in a mid-shelf environment, in water depths of 40-150 metres, and there is evidence of a rapid transgression at the base of this zone.

Middle Miocene (400 - 640 metres)
Below 400 metres the Middle Miocene consists of very coarse to medium skeletal fragments, calcilutite and calcisiltite, with minor quartz sandstone below 525 metres. A decrease with depth, in the average size of the skeletal fragments was apparent over this interval, and below 515 metres a gradually increasing degree of recrystallisation was observed.

The entire interval was deposited in an inner shelf environment, in water depths of $10-40$ metres.

Recent to Middle Miocene (205 - 400 metres)
A carbonate sequence, consisting of varying proportions of skeletal fragments, calcite silt and micrite, with minor amounts of coarse quartz grains, was the first of the Gippsland Limestone logged in West Seahorse No.1. Faunal types recognized included corals, echinoids, pelecypods and forams, and fragment sizes were dominantly very coarse to rudaceous. The lower half of this zone was deposited in an inner shelf, seaweed zone in water depths of $10-40$ metres.

Structure

West Seahorse No. 1 was drilled on the southern side of a major east-west, high angle reverse fault which is upthrown to the south, i.e. towards the centre of the basin. Reverse movement, associated with wrenching along a pre-existing, normal, down-to-the-basin fault trend, caused arching into the fault and thereby formed the northern boundary of the structure.

The normal fault trend formed during Upper Jurassic to Lower Cretaceous times, with further growth continuing during the Upper Cretaceous and Lower Tertiary. The wrench faulting believed to have been associated with the reverse movement took place during the Upper Eocene to Lower 0ligocene. The West Seahorse structure is a 5 km by 2 km , east-northeast trending, asymmetric anticline. Closure has been mapped at three horizons, designated "Top Latrobe", "Intra Latrobe" and "Top Strzelecki", though palynological data indicates that the latter may be a misnomer (Figure 3).

A high resolution dipmeter was run from 2482 metres to the base of the $13-3 / 8^{\prime \prime}$ casing, at 1305 metres. Interpretations of the dipmeter data were enhanced by the use of a ClusterPooled Arrow Plot, Cyberdip and a Geodip run over selected intervals. The dipmeter data may be subdivided into several intervals, according to the magnitude and direction of recorded dips, viz:

Above 1345	m		dips are generally high, varying between $10-32^{\circ}$; mainly to the northeast
1345-1411	m		ess than 5°; dominantly $1-2^{\circ}$; random orientation
1412-1425	m	:	-20°; direction variable but mainly east to south
1425-1437	m		-9 ${ }^{\circ}$; south-south-easterly
1441-1448	m		generally higher, $6-14^{\circ}$; generally east-north-easterly
1450-1492	m		ess than 6°; random or very enerally to the south
1500-1790	m		inly less than 6°, with occasional

3.5 Predicted and Actual Depth to Seismic Markers
 The depths to the main seismic events recognized in West Seahorse No. 1 are listed in the following table. Further details are given in Enclosures 3 and 4, and Figure 4.

Horizon Identification - West Seahorse-1

Location : Line GB81-1A Shot Point 152.5

Horizon	Predicted Depth		Actual Depth	
	-40 m		Recorded 2-way Time	
Water Bottom	-1404 m	-40 m	0.052	
Top Latrobe		-1386 m	1.120	
Intra Latrobe	-1842 m	-1552 m.	1.246	
Top Strzelecki		(under review)		

* Note: Depths quoted in this table are subsea, i.e. R.T. Depth - 9.45 m .

Hudbay Oil (Australia) Ltd.
 Subsidiary of Hudson's Bay Oil \& Gas Company Ltd

WEST SEAHORSE-1

ACTUAL SECTION
LAT. 38°
s. LONG . $147^{\circ} 37^{\prime} 21.70^{\prime \prime}$ E.
S.P. ...152.:8

LINE ...GB $81-1 \mathrm{IA}$
WATER DEPTH ... 39.35
METRES

3.6 Porosity and Permeability

Porosities for West Seahorse No. 1 have been estimated by wireline \log interpretation and microscopic examination. A detailed breakdown of porous zones is given in the Log Analysis section of this report (Appendix B3).

Two sandstone interval in the upper part of the Latrobe Group, between 1411-1416 metres and between 1455-1453.5 metres, have sonic-derived porosities of $28-30 \%$ and 31% respectively. However visual examination showed that the upper sand contained a large proportion of silty, finely divided mica flakes and carbonaceous material, which would be expected to reduce permeability in that interval.

Several zones in the Eocene to Palaeocene section between 1500-1770 metres showed porosities of between $20-30 \%$, with a maximum value of 31% calculated for the zone between 1500-1516 metres. Below 1770 metres porosities were reduced by an increase in the amount of silty clay in the matrix; below 1960 metres, the sands showed evidence of recrystallisation and cementation by silica; and below 2310 metres porosity was further reduced by dolomite cement.

Based on data obtained from DST No.1, formation permeability is estimated to be in the range of 118 to 175 md . The radius of investigation of the DST was approximately 244 metres, indicating that there are no major permeability barriers in the vicinity of the well.

Analyses of Core No. 1 cut over the interval 1450-1461 metres determined a maximum porosity of 29.4%. This figure was obtained from a sample of sandstone at the top of the core, i.e. at 1450.0 metres. Analytical procedures and further results are detailed in Appendix B4.

3.7 Hydrocarbon Indications

3.7.1 Summary

Interpretation of wireline logs from West Seahorse No. 1 indicated two oil-bearing zones, which were subsequently confirmed by testing. Several thin zones apparently containing hydrocarbons were also noted, but these are interpreted as being due to shoulder effects (Appendix B3).

The oil-bearing zones were between 1500-1503 metres (R.T.) and between 1411-1418 metres (R.T.).

The well flowed at a rate of $1800 \mathrm{stb} / \mathrm{d}$ of 48° API light crude on a half inch choke during DST No. 1 over the 1411-1416 m interval.

3.7.2 During Drilling

Continuous Gas Monitoring
A continuous record of gas levels in the drilling mud was maintained by Exploration Logging Inc., using a total gas analyser and gas chromatograph. Monitoring commenced at 205 metres, in the 17-1/2 inch hole, and continued to the total depth of 2490 metres.

Table 1, on the following page, summarizes the gas readings observed during drilling.

Fluorescence from Drill Cuttings

Examination of drill cuttings showed up to 20% fluorescence on quartz grains between 1417 and 1565 metres. This was described as being bright,blue-white and yellow-white, with a trace of dull yellow-gold, and exhibited slow to faststreaming, blue-white solvent fluorescence.

Traces of fluorescence were observed in drill cuttings below 1565 metres, but may have been from cavings or contamination.

RANGE OF GAS READINGS

DEPTH (m)	Total Gas	Pet. Vap.	C_{1}	C_{2-}	C_{3}	iC_{4-}	nC_{4}	C_{5}
205-870	0	0	0	0	0	0	0	0
870-1040	$0-\mathrm{Tr}$	0	0-20	0	0	0	0	0
1040-1380	Tr-5	0	25-700	0-25	Tr-15	0	0	0
1380-1415	12-140	Tr-20	1480-17050	71-910	36-700	5-310	5-340	0-85
1415-1475	4-65	Tr-10	137-8000	9-400	Tr-300	Tr-150	Tr-150	0
1475-1550	3-32	Tr-2	320-3249	150-342	35-380	30-74	Tr-124	0
1550-1975	Tr-10	Tr-1.5	25-872	Tr-250	Tr-140	Tr-15	Tr-20	0
1975-2005	Tr	0	Tr-7	0	0	0	0	0
2005-2180	Tr-10	0-1	9-1433	0-156	0-56	0-3	0-8	0
2180-2205	Tr	Tr	15-77	Tr	0	0	0	0
$\begin{gathered} \text { 2205-2490 } \\ \text { T.D. } \end{gathered}$	Tr-9	$0-\mathrm{Tr}$	46-1750	Tr-54	0-60	$0-\mathrm{Tr}$	0	0

Notes: 1) "Petroleum Vapours" includes C_{2} and higher hydrocarbons.
2) Total Gas and Petroleum Vapours are given in units, where 1 unit $=200 \mathrm{ppm}$
3) $\mathrm{C}_{1}-\mathrm{C}_{5}$ are given in ppm.
4) The high gas readings are generally associated with coal seams rather than hydrocarbon zones.

Oil Staining/Free 0il

Light brown to dark brown staining was observed on quartz grains between 1495-1565 metres. Furthermore, a small amount of free oil, calculated at less than 0.5% from mud analysis, was observed as a sum on the surface of the mud in the mud pits. Geochemical Analyses of the West Seahorse-1 oil are contained in Appendix B5.

3.7.3 Sidewall Cores and Conventional Cores

Bright, greenish-gold and blue-white fluorescence was observed in sidewall cores between 1385.5 and 1503.5 metres. This ranged from a few bright pinpricks on a fresh cross-sectional surface of core to 100% of the core surface. Maximum fluorescence occurred in two zones: from 1411.2-1423.4 metres and from 1499.5-1501.6 metres. Dull, brown-gold fluorescence was also observed in several sidewall cores between these intervals.

For further details, refer to the Sidewall Core Descriptions in Appendix B6.

Traces of pinpoint and spotty, blue-white fluorescence were observed on Core No.1, which was recovered from 1450-1458.9 metres. Moderately fast, blue-white to milky white solvent fluorescence was obtained from several sections of core. Further details are again provided in Appendix B6.

3.7.4 Further Indications

Section 2.5 of this report summarizes the DST results. The RFT program is summarized in Section 4.3.2 and discussed further in Appendix B3.

3.8 Contributions to Geological Knowledge

1. West Seahorse No. 1 confirmed the presence of suitable reservoir rocks towards the northern edge of the Central Deep Basin in the western portion of Vic/P-11. Maximum log-derived porosities were calculated at 31%, for sands near the top of the Latrobe Group sequence between 1411-1453 metres. Porosities decrease with depth, and below approximately 2200 metres the sequence displayed poor reservoir characteristics.
2. West Seahorse No. 1 contained moveable hydrocarbons in two separate zones, viz: 1411.1418 metres and 1500-1503 metres.
3. The top of the Latrobe Group, the base of the first oil sand, and certain of the intervening coal/ sandstone intervals can be correlated with reasonable surety from West Seahorse No. 1 to Seahorse No.1, although the following differences were observed:
i) the top of the Latrobe Group is represented in Seahorse No. 1 by a sandstone and in West Seahorse No. 1 by a coal seam.
ii) the base of the first oil sand in Seahorse No. 1 is a shale unit and in West Seahorse No. 1 it is a dolomitic sandstone.
4. The upper hydrocarbon zone in West Seahorse No. 1 may share a common oil-water contact with that in Seahorse No.1.
5. The apparent absence of sediments of latest Eocene to latest 01igocene age (Zones $\mathrm{K} / \mathrm{J}-\mathrm{H} 2$) in West Seahorse No. 1 and their presence in Seahorse No. 1 strongly suggests faulting during the Upper 01igocene (25-32 m.y.) between the two locations, with Seahorse No. 1 on the downthrown side (Appendix B1).
6. The oil recovered from West Seahorse No. 1 tested at 48° API and flowed at 1800 barrels/day, which compares reasonably well with results from Seahorse No. 1
(53° API; 2040 BOPD). However, West Seahorse No. 1 produced with a gas/oil ratio of $200 \mathrm{scf} / \mathrm{bbl}$ whereas Seahorse No. 1 produced with 1100 scf/bbl. The gas from West Seahorse No. 1 contained approximately 200 ppm $\mathrm{H}_{2} \mathrm{~S}$, compared with $300 \mathrm{ppm} \mathrm{H}_{2} \mathrm{~S}$ in gas from Seahorse No. 1 .
7. The drill stem test over the 1411-1416 m interval tested a radius of 244 m , indicating that the formation is homogeneous, i.e. that no major permeability barriers exist in the vicinity of West Seahorse No. 1
8. West Seahorse No.1 bottomed in dolomitic, silicified sandstone of Senonian age. The well penetrated both a marked angularity which had been interpreted from seismic studies and a change in lithological character corresponding to a density increase on the logs below 2275 m .
9. A Repeat Formation Test at 1976.1 m recovered water with a surface scum of oil. Wireline log interpretation shows up to 20% hydrocarbon saturation at this point, which is consistant with the RFT results. Several other thin zones in the interval between $1976-2005 \mathrm{~m}$ are also interpreted to contain hydrocarbons, but all show less than 20\% hydrocarbon saturation (See enclosures to Appendix B3).

A standard "Alpha" unit from Exploration Logging Australia Inc. was used for the 1981-82 Gippsland Basin drilling programme. Exlog personnel provided continuous monitoring of ditch gas and mud pit levels, and recorded the following parameters every 5 metres: ditch gas, gas chromatography, calcimetry, blendor gas analyses and mud weight in and out. Corrected drilling exponent calculations were also performed every 5 metres in shaly intervals, but are not considered reliable due to a faulty motion compensator on the drilling vessel. A Drill Monitor System panel provided continuous readings of engineering/drilling parameters, which were noted every 5 metres.

Washed and dried cuttings samples were collected in 5 metre (minimum) compilations from below the base of the 20 " casing shoe, at 189 m , to total depth at 2489.6 m . Hudbay and Exlog geologists maintained separate lithological logs (see Enclosures 5 \& 6 and Appendix B7).

400 g unwashed, 15 m composite samples were bagged from below the 20 " casing shoe, and 100 g unwashed, 15 m composite samples were taken from below the $13-3 / 8$ inch casing shoe, at 1304 m . The former were submitted for palynological study; the latter were sealed, with preservative, in cans and submitted for geochemical analysis.

4.2

Coring Program

4.2.1 Conventional Cores

One conventional core was cut in West Seahorse No.1:
Core No. 1
Cut $\quad: \quad 11$ metres ($1450-1461 \mathrm{~m}$)
Recovered : 8.9 metres ("1450-1458.9 m")
Recovery : 81\%

Lithological Description (see also Appendix B6).
1450_1451.15 metres
Sandstone, clear, very fine to granule, dominantly coarse, angular to rounded, moderately sorted, 5% clay minerals, trace calcite cement, trace carbonaceous matter, unconsolidated.
1451.15-1451.18 metres

Coal, black, bituminous, brittle.
1451.18-2 1451.70 metres

Sandstone, clear to light grey, very fine to granule, dominantly medium, angular to rounded, dominantly sub-angular, poorly sorted, $5-15 \%$ quartz silt, trace-10\% clay minerals, moderately hard to unconsolidated, excellent porosity.
1451.70-_1451.75 metres

Coal, black, brittle as thin laminae.
1451.75_-1452 metres

Sandstone, light olive grey to olive grey, very fine to granular, dominantly very fine to fine, bimodal, $10-20 \%$ quartz silt, $5-20 \%$ clay minerals, moderately hard, poor to very good porosity, becoming silty with depth.

1452_-1453 metres
Siltstone, micaceous, medium dark grey to dark grey, $5-30 \%$ quartz silt, $20-40 \%$ clay minerals, $10-50 \%$ biotite mica, preferentially orientated, 0-30\% carbonaceous material, hard, subfissile,
separating into interbedded white to very light grey siltstone with dark grey to dark brown micaceous siltstone in millimetre laminae towards 1453 metres. Cross bedded, trace convoluted bedding, rare slumip structures.

1453 - 1453. 3 metres

Sandstone, silty, clear to white to light grey, very fine to fine, occasionally medium, dominantly very fine, moderately well sorted, angular to subrounded, dominantly angular, 20\% quartz silt, 5% clay, 5% carbonaceous material, trace pyrite moderately hard, good porosity, good permeability, cross bedded.

1453.3_1455.13 metres

Claystone, light olive grey to olive grey, up to 15% quartz silt, $0-5 \%$ carbonaceous material, trace mica, moderately hard to hard, becoming harder with depth, possible slickensides at 1453.7 metres.
1455.13 - 1455.6 metres

Sandstone, silty, carbonaceous, micaceous, clear to white to dark brown grey, fine to granular, dominantly medium, poorly sorted, subangular to subrounded, 20% quartz silt, $10 \% \mathrm{mlca}$, 10% mica, 10% carbonaceous material, moderately hard, fair to good intergranular porosity.
1455.6-21455.9 metres

Siltstone, micaceous, carbonaceous, dark grey to black, subfissile, hara.
1455.9-1456.1 metres

Coal, black, vitreous, conchoidal fracture, blocky, brittle to hard, possible slickensides.
1456. 1 - 1456.6 metres

Siltstone, argillaceous, micaceous in part, carbonaceous in part, white to light grey to olive brown-black, 20-30\% clay minerals, $10-20 \%$ micaceous material, $5-20 \%$ carbonaceous material, trace-5\% pyrite inclusions, hard.
1456. 6 - 1457.0 metres

Coal, black, brittle, interbedded with minor laminae of siltstone as between 1456.1-1456.6 metres, abundant slickensides.
1457.0 - 1457.6 metres

Siltstone, argillaceous, dark green grey to olive grey, 40% clay minerals, 10% mica, trace carbonaceous material, hard.
1457.6-2 1457.7 metres

Claystone, micaceous, dark olive grey to black, hard.
1457.7 = 1458.0 metres

Coal, black, vitreous, conchoidal fracture, brittle, with slickensides.
1458.0 - 1458. 1 metres

Claystone, micaceous, carbonaceous, very dark grey to Dlack, very hard.
1458.1 1458.2 metres

Coal, black, brittle.
1458.2-=1458.6 metres

Claystone, silty, micaceous, carbonaceous, dark grey to black with coaly deformations and en echelon fracturing in the coal.
1458.6 = 1458.7 metres

Siltstone, argillaceous, micaceous, carbonaceous, dark grey to dark olive grey, subfissile, very hard.
1458.7 - 1458.9 metres

Coal, black, brittle, vitreous, hard, high rank, becoming silty.
1458.9_-1461 metres

No recovery.

4.2.2 Sidewall Cores

Summary
Suite $1 \quad(26 / 9 / 81)$

Interval Cored	$:$	$191.0-1293.0$ metres
Shots attempted	$:$	30
Cores recovered	$:$	29
Bullets empty	$:$	1
Bullets misfired	$:$	nil
Bullets lost	$:$	nil

Suite 2 (6/10/81)

Interval cored	$:$	$435.8-1732.0$ metres
Shots attempted	$:$	$60(2 \times 30)$
Cores recovered	$:$	55
Bullets empty	$:$	4
Bullets misfired	$:$	$n i l$
Bullets lost	$:$	1

Suite 3 (22/10/81)
Interval cored : 1322.0-2486.7 metres
Shots attempted
$90(3 \times 30)$
Cores recovered
72
Bullets empty
16
Bullets misfired
nil
Bullets lost
2

TOTAL : 180 shots 156 recovered

Refer to Appendix B6 for Sidewall Core Description sheets.

42 sidewall cores over the interval 313.5-1390.0 metres were sent to Paltech Pty. Ltd. for palaeontological examination (Appendix B1).

52 sidewall cores over the interval 1403.6-2486.9 metres were sent to Western Mining Corporation, South Australia, for palynological examination (Appendix B2).
4.3 Wireline Logs and Wireline Sampling

Schlumberger Seaco ran the following wireline logs and Repeat Formation Tests in West Seahorse No.1:

Suite	Date	Logs	Interval	Remarks
1	26/09/81	$\begin{aligned} & \text { DIT-BHC-GR } \\ & (1: 200 \& 1: 500) \end{aligned}$	191-1293 m	
	26/09/81	$\begin{aligned} & \text { FDC-GR } \\ & (1: 200 \& 1: 500) \end{aligned}$	191-1293 m	
	26/09/81	$\begin{aligned} & \text { CST } \\ & \langle 1: 200) \end{aligned}$	191-1293 m	
2	04/10/81	$\begin{aligned} & \text { DIT-BHC-GR } \\ & (1: 200 \& 1: 500) \end{aligned}$	1306-1743m	
	04/10/81	$\begin{aligned} & \text { FDC-CNL-GR } \\ & (1: 200 \& 1: 500) \end{aligned}$	1305-1743m	
	05/10/81	$\begin{aligned} & \text { DLL-MSFL-GR } \\ & (1: 200 \& 1: 500) \end{aligned}$	1305-1737 m	
	05/10/81	$\begin{aligned} & \text { HDT } \\ & (1: 200) \end{aligned}$	1304-1742m	
	05/10/81	RFT-GR	1413-1716m	
	06/10/81	$\begin{aligned} & \text { CST } \\ & (1: 200) \end{aligned}$	1438-1732 m	
	11/10/81	RFT	1417-1505 m	
3	20/10/81	$\begin{aligned} & \text { BHC-GR } \\ & (1: 200 \& 1: 500) \end{aligned}$	1305-2482m	
	20/10/81	$\begin{aligned} & \text { FDC-CNL-GR } \\ & (1: 200 \& 1: 500) \end{aligned}$	1700-2486m	
	20/10/81	$\begin{aligned} & \text { DLL-MSFL-GR } \\ & (1: 200 \& 1: 500) \end{aligned}$	1672-2482 m	
	21/10/81	$\begin{aligned} & \text { HDT } \\ & (1: 200) \end{aligned}$	1730-2486m	
	22/10/81	RFT	1805-2420 m	
	22/10/81	$\begin{aligned} & \text { CST } \\ & (1: 200) \end{aligned}$	1322-2486m	
	27/10/81	$\begin{aligned} & \text { CBL-VDL } \\ & (1: 200) \end{aligned}$	1305-1525m	
	28/10/81	Perforation Record (1:200)	1411-1416m	
	31/10/81	Bridge Plug Setting Record (1:200)	1375-1405m	
	Additional Services			
	Date	Logs	Interval	
	05/10/81	Geodip (1:40 \& 1:200)	1375-1575 m	

	West Senhorse - 1.	
05/10/81	$\begin{aligned} & \text { Geodip } \\ & (1: 20) \end{aligned}$	1400-1570 m
17/10/81	$\begin{aligned} & \text { Geodip } \\ & (1: 20) \end{aligned}$	620-1000 m
10/10/81	$\begin{aligned} & \text { Cyberdip } \\ & (1: 100) \end{aligned}$	1305-1741m
11/10/81	Cyberlook (1:200)	1305-1743m
21/10/81	CST Dipmeter $(1: 500)$	1313-2479 m

Log interpretations and further details of the logging programme are provided in Appendix B3.

A Vertical Seismic Profile (VSP) was run by Seismic Services Limited (Enclosures 3 \& 4).

Repeat Formation Tests (RFT)

The following Table summarizes the Repeat Formation Testing programme in West Seahorse No.1:

Date	Interval (m)	Pressure Tests	Sampling Attempts	Total
05/10/81	1413.5-1716.5	7	8	15
11/10/81	1417.0-1505.5	1	8	9
22/10/81	1975.8-2420.5	18	1	19
		26	17	43

The RFT programme indicated the following:
a) a free oil-water contact occurs at 1503 m .
b) there is apparently no oil-water contact within the 1411-1418 m sand.
c) the silty sand underlying the permeability barrier at 1418-1419.5 metres is water saturated.

0il recoveries of at least 1700 cc were recovered from tests at $1415.5 \mathrm{~m}, 1417.0 \mathrm{~m}$ and 1502.0 m ; traces of oil were recovered from tests at $1413.5 \mathrm{~m}, 1505.0 \mathrm{~m}, 1505.5 \mathrm{~m}$ and 1976.1 m .

Details of the RFT programme at West Seahorse No. 1 are given in Appendix B3. Enclosure 2 therein is a plot of the pressure gradient determined from the RFT results.

5.0
 REFERENCES

Hocking, J.B., 1972: Geological Evolution and Hydrocarbon Habitat, Gippsland Basin. J. Aust. Petrol. Expl. Assoc., 12 (1), pp 132137.

Hocking, J.B., and Taylor, D., 1964: The Initial Marine Transgression in the Gippsland Basin, Victoria, Paps. Aust. Petrol. Expl. Assoc., 1964.

James, E.A., and Evans, P.R., 1971: The Stratigraphy of the Offshore Gippsland Basin. J. Aust. Petrol. Expl. Assoc., 11 pp. 71-74..

Threlfall, W.F., Brown, B.R., and Griffith, B.R., 1976; Petroleum Geology of the offshore Gippsland Basin, in Economic Geology of Australia and Papua New Guinea. 3 Petroleum Australia Inst. Min. Metall.

FORAMINIFERAL SEQUENCE
 IN
 WEST SEAHORSE \# 1.

for:- HUDBAY OIL (AUSTRALIA) LTD.
December 4th, 1981.

THE FORAMINIFERAL SEQUENCE
IN WEST SEAHORSE \# 1 .

Forty sidewall cores from WEST SEAHORSE \# 1 were examined for
foraminiferal content. On the basis of that examination the
following breakdown of the sequence according to broad E-log
patterns was noted:-

Sidewall Cores Depth (m)	```Approx. E-log Unit Boundary```	Age	Zone*	Paleoenvironment
$\begin{gathered} 313.5 \\ \text { to } \end{gathered}$	Top	$\begin{aligned} & ? \\ & \text { to } \end{aligned}$	$\begin{aligned} & ? \\ & \text { to } \end{aligned}$	Inner shelf, seaweed zone (10-40m)
455.2		cene	D	

$\begin{aligned} & 494.8 \\ & \text { to } \end{aligned}$	Mid Miocene	$\begin{aligned} & D \\ & \text { to } \end{aligned}$	Inner shelf, undifferentiated (10-40m)
624.0		E-1	
-	- - - -		-

662.8	Early	E	Transitional from near
to	Miocene	to	shore canyon head ($\sim 40 \mathrm{~m}$)

$\begin{aligned} & 802.0 \\ & \text { to } \end{aligned}$	Early Miocene	$\begin{aligned} & \text { ?G } \\ & \text { to } \end{aligned}$	Submarine canyon (Depth indeterminate)
1055.0		G	
--- - - - - - -			
1100.1	Early	G	Mid shelf ($40-150 \mathrm{~m}$) with
to	Miocene	to	rapid transgression at
1336.8		H-2	base.

1359.4 ? \quad No $\left.\begin{array}{c}\text { diagnostic } \\ \text { to Back barrier lagoon }\end{array}\right]$
1392.0 foraminifera

- - - - - base of sequence examined - - - - - - - - - - - - - - - - -
*Planktonic foraminiferal zones after Taylor (in prep.).

Planktonic foraminiferal content of the samples was generally poor, mainly due to the persistence of environments unfavourable to planktonic life (back barrier lagoon - inner shelf) or preservation of these fragile forms (canyon).
Р.т.о.

Tables I \& II (herein) detail the record summarised above. A micropaleontological data sheet shows the interpreted reliability of the planktonic foraminiferal zone determinations.

The list of sidewall cores studied is shown on Tables I \& II. Sidewall cores at 590.1 and 623.9 m were not examined as they were near duplicates of other samples. Sidewall core at 1247 m had no sample in the jar.

OLIGOCENE FAULTING BETWEEN SEAHORSE \# 1 AND WEST SEAHORSE \# 1. SEAHORSE \# 1 recorded a Latest Eocene to Early Oligocene (Zone K/J) shallow water facies overlain unconformably by a basin deep facies of latest Oligocene age (Zone $\mathrm{H}-2$) with reworked shallow water elements of Zone K / J age. None of these sediments were recorded in WEST SEAHORSE \# 1. On the evidence of this study it seems reasonable to suggest that during the latest oligocene (Zone H-2) the shelf/slope break was between WEST SEAHORSE \# 1 and SEAHORSE \# 1 and that sediments of Latest Eocene to Mid Oligocene age at WEST SEAHORSE \# 1 (if present originally) were exposed, eroded and transported to the nearby basin deep areas such as at the SEAHORSE \# l site. The SEAHORSE \# 1 and WEST SEAHORSE \# 1 sites were not at comparable paleowater depths subsequently until mid Early Miocene (Zone G).

This evidence strongly suggests faulting during the late oligocene (25-32m.y.) between SEAHORSE \# 1 and WEST SEAHORSE \# 1 with SEAHORSE \# 1 on the down thrown side.

TABLE 2: SIGNIFICANT BENTHONIC FORAMINIFERAL DISTRIBUTION, RESTDUE LITHOLOGY \& PALEOENVIRONMENTAL ASSESSMENT -

B AS IN：GIPPSLAND
WELL NAME：WEST SEAHORSE \＃I

A G E		FORAM． ZONULES	HIGHEST DATA					LOWEST DATA					
		Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Wa Time		
			${ }^{\text {A }} 1$										
		A_{2}											
		A_{3}											
		${ }^{\text {A }} 4$											
		B_{1}											
$\begin{aligned} & \text { 田 } \\ & \text { Z } \\ & \text { My } \\ & 0 \\ & 0 \\ & H \\ & \Sigma \end{aligned}$	$$	${ }^{\text {B }} 2$											
		C											
	$\begin{aligned} & \text { H } \\ & \text { H } \\ & \text { A } \\ & \text { Q } \\ & H \\ & \Sigma \end{aligned}$	D_{1}	420.0	2	455.2	1						\cdot	
		D_{2}						560.0	1				
		E_{1}	624.1	1									
		E_{2}						662.8	2				
	$\begin{aligned} & \text { 盆 } \\ & \underset{\text { un }}{1} \end{aligned}$	F	773.1	2				773.1	2				
		G	837.0	2	950.0	1		1137.1	1				
		H_{1}	1171.5	2				1205.0	1				
	$\begin{aligned} & \mathrm{M} \\ & \mathrm{E} \\ & \mathbb{A} \\ & \mathrm{H} \end{aligned}$	H_{2}	1282.0	2				1336.8	1				
		I_{1}										－	
		I_{2}											
	$\begin{aligned} & \text { 금 } \\ & \text { 品 } \\ & \hline \end{aligned}$	J_{1}										．	
		J_{2}											
		K			\％								
		Pre－K											

COMMENTS \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SWC or Core－Complete assemblage（very high confidence）．
SWC or Core－Almost complete assemblage（high confidence）．
SWC or Core－Close to zonule change but able to interpret（low confidence）．
Cuttings－Complete assemblage（low confidence）．
Cuttings－Incomplete assemblage，next to uninterpretable or SWC with depth suspicion（very low confidence）．
NOTE： If an entry is given a 3 or 4 confidence rating，an alternative depth with a better confidence rating should be entered，if possible．If a sample cannot be assigned to one particular zone， then no entry should be made，unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another．

APPENDIX B2. PALYNOLOGY REPORT

WEST SEAHORSE NO. 1 WELL

SIDEWALL CORE
by
W.K. Harris

WESTERN MINING CORPORATION LIMITED

PALYNOLOGICAL REPORT

CLIENT: Hudbay Oil (Australia) Ltd.
STUDY: West Seahorse No. 1 Well, Gippsland Basin.
AIMS: Determination of age of sediments from 53 sidewall cores.

INTRODUCTION

Fifty three sidewall cores from West Seahorse No. 1 Well drilled in the Gippsland Basin at Lat. $38^{\circ} 12^{\prime} 17.17^{\prime \prime} \mathrm{S}$, Long. $147^{\circ} 37^{\prime} 21.7^{\prime \prime} \mathrm{E}$ in Vic P-11, were processed by normal palynological procedures.

The basis for the biostratigraphic and consequent age determinations are based on Stover and Partridge (1973) and Partridge (1976). The current nomenclature of zones and their correlation with the geological time scale is presented in Figure 1.

OBSERVATIONS AND INTERPRETATION

Table 1 summarizes the distribution of palynomorph species that have significant time ranges during the Late Cretaceous and Early Tertiary. Long ranging species have been omitted.

Table II summarizes the interpreted biostratigraphy and age determinations based on the observations collated in Table I. Many of the samples from this well are barren of plant microfossils and this is mostly due to unfavourable lithologies being samples. The lithologies that dominate these barren samples are light grey to white argillaceous sandstones and claystones and these would generally represent oxidising environments.

In general the assemblages were not well preserved and were mostly very sparse with regard to numbers of microfossils although many samples yielded moderate amounts of organic matter. Poorly preserved assemblages are predominant in the lower section of the well in the Late Cretaceous and Paleocene sections whereas assemblages in the Malvacipollis diversus Assemblage Zone are reasonaby well preserved but are very sparse. The organic matter in these samples consists mostly of inertinite-like material suggestive of at least some oxidation during deposition.

These two factors result in many samples being classed as "indeterminate". For the same reasons it has not been possible to more finely subdivide the assemblages into "Lower", "Middle" or "Upper" units.

Nothofagidites senectus Zone - two samples at 2468 and 2403.1m are identified as this zone. In particular the assemblages include Nothofagidites senectus, Tricolpites sabulosus, Aequitriradites sp. aff. A. verrucosus and Krauselisporites aff. K. jubatus. Diagnostic species from the succeeding unit are absent. The assemblage is non-marine.

Figure 1

Correlation of Gippsland Basin zonations
with the geological time scale (From Partridge, 1976)

TABLE 1

West Seahorse No. 1 Well
Distribution of selected species

TABLE II
WEST SEAHORSE NO. 1 WELL
SUMMARY OF BIOSTRATIGRAPHY AND AGE DETERMINATIONS

SWC No.
44
68
43
67
55
54
40
65
39
38

$$
64
$$

30
62
25
24
36
22
32
15
60
11
8
7
6
31
58
57
56
53
52
51
50
49
48
47
46
45
43
41
40
36
35
34
33
32
30
29
28
19
12
11

Depth in Metres
1403.6 m
1405.0 m
1408.4 m
1409.0 m
1411.2 m
1416.0 m
1418.7 m
1422.4 m
1423.4 m
1432.2 m
1434.0 m
1435.8 m
1460.5 m
1475.5 m
1484.6 m
1487.2 m
1498.4 m
1512.8m
1530.2m
1574.2m
1594.9 m
1648.2m
1651.8 m
1662.5 m
1665.0 m
1726.0 m
1738.2 m
1741.0 m
1778.0 m
1787.5 m
1796.8 m
1801.5 m
1855.3 m
1872.0 m
1881.5 m
1894.2 m
1913.6 m
1933.4 m
1947.2m
1968.4 m
2031.8 m
$2072.1 m$
2083.2 m
2103.1 m
2125.1 m
2171.8 m
2204.5 m
2211.3
2332.2m
2403.1 m
2409.9 m
2468.0 m
2486.9 m

Biostratigraphic Uni
Age
Indeterminate
Indeterminate
Indeterminate
Indeterminate
Indeterminate
Barren
Barren
? M. diversus
? M. diversus Barren
? M. diversus
? M. diversus
M. diversus
M. diversus

Indeterinate ? M. diversus
Indeterminate
? M. diversus Barren
Barren
? M. diversus
M. diversus

Barren
Barren
Barren
Barren
Barren
Barren
L. balmei

Barren
Barren
Barren
L. balmei
L. balmei

Barren
L. balmei

Barren
Barren
Barren
Indeterminate
Indeterminate
Indeterminate
L. balmei

No older than T. longus
No older than T. lilliei
Barren
T. lilliei

Barren
Indeterminate
N. senectus Senonian

Barren
N. senectus Senonian

Late Paleocene to Early Eocenc
Late Paleocene to Early Eocene

Late Paleocene to Early Eocens
Late Paleocene to Early Eocene

Paleocene

Paleocene
Paleocene
Paleocene

Paleocene
?Maastrichtian
?Campanian
Campanian
Senonian
Senonian

Barren

Tricolpites lilliei Assemblage Zone - The base of this zone is marked by the first appearance of T. lilliei at 2204.5 m . Associated species include Lygistepollenites balmei, Gambierina rudata, Tricolpites confessus and Latrobosporites ohaiensis. The zone extends to 2125.1 m and is non-marine.
?Tricolpites longus Assemblage Zone - One sample at $2103.1 m$ yielded a sparse assemblage which cannot be accurately placed. It is no older than the T. longus assemblage but may belong to the younger Lygistepollenites balmei Assemblage Zone. The assemblage includes Gambierina spp., Tetracolporites verrucosus and Phyllocladidites reticulosaccatus. The last named species would tend to argue for a correlation with the L. balmei zone but there is insufficient evidence to confirm this. The unit is non-marine.

Lygistepollenties balmei Assemblage Zone - this unit extends from 2083.2m to at least 1778.0 m and the section contains many either barren or indeterminate samples. The base of the zone is marked by the consistent occurrence of Haloragacidites harrisii, Phyllocladidites reticulosaccatus, Herkosporites elliottii, Ruqulatisporites mallatus and Simplicepollis meridianus. Nothofagidites flemingii ocurs at 1855.3 m suggesting that the upper part of the L. balmei zone is present. There are however no other criteria in the samples to support a finer zonation of the unit in this well. The zone in this well is non-marine.

Malvacipollis diversus Assemblage Zone - The assemblage from 1648.2 m contains both Malvacipolis diversus and Cupanieidites orthoteichus indicating a correlation with this zone. Other elements in this zone include Proteacidites pachypolus, P. kopiensis, Kuylisporites waterbolki often abundant Haloragacidites harrisii and frequent Nothofagidites spp. The presence of Santalumidites cainozoicus at 1475.5 m would suggest that this sample is within the Upper M. diversus zone. As mentioned previously the residues from this part of the section consist almost entirely of inertinite-like matter with very few spores and pollen. Consequently no further subdivision of this zone is possible. Indeed the extreme paucity of identifiable microfossils from betwen 1418.7 and 1403.6 m hinders any correlation of these samples. However it is unlikely that they are much younger from those at about 1422 m . The kerogens are essentially similar and indicate that the same lithological unit is represented between 1422 and 1403 m .

No marine microfossils were recorded from this unit.

REFERENCES

Stover, L.E.,\& Partridge, A.D., 1973: Tertiary and Late Cretaceous spores and Pollen from the Gippsland Basin, southeastern Australia. Proc. R. Soc. Vict., 85: 237-286.

Partridge, A.D., 1976: The Geological Expression of Eustacy in the Early Tertiary of the Gippsland Basin. J. Aust. Petrol. Expl. Assoc., 16: 73-79.

W.K. Harris

Consulting Geologist - Petroleum

WEST SEAHORSE NO. 1 WELL
KEROGEN TYPES AND SPORE COLOURATION

FROM SELECTED SIDEWALL CORES
by
W.K. Harris

Consulting Geologist - Petroleum

WESTERN MINING CORPORATION LIMITED

PALYNOLOGICAL REPORT

Client:
Hudbay Oil (Australia) Ltd.
Study: West Seahorse No. 1 Well, Gippsland Basin.
Aims: Kerogen typing and spore colouration.

INTRODUCTION

During routine palynological processing of sidewall cores from the above well, an unoxidised kerogen sample was taken and the nature of the kerogens and spore colouration are documented in Table II. Only those samples which yielded spore/pollen assemblages have been examined for this report. Spore colour is expressed as the "Thermal Alteration Index" (TAI) of Staplin (1969) according to the scale in Table I.

TABLE I

Thermal - Alteration Index

1 - none
2 - slight
3 -moderate
4 - strong
5 -severe

Organic matter/spore colour

fresh, yellow
brownish yellow
brown
black
black and evidence of rock metamorphism

Total organic matter (TOM) is expressed semi-quantitatively in the scale-abundant, moderate, low, very low, barren. Samples classed as having abundant or moderate amounts of TOM would be expected to have TOC's (total organic content) greater than 1%.

In this report four classes of organic matter are recognised - amorphogen, phyrogen, hylogen and melanogen and these terms are more or less synonymous with amorphous, herbaceous, woody and coaly. For reasons as outlined by Bujak et al. (1977) the former terms are preferred because they do not have a botanical connatation. The thermal alteration index scale follows that of Staplin (1969) and as outlined by Bujak et al. (1977). At a TAI of $2+$ all four types of organic material contribute to hydrocarbon generation whereas at a TAI of 2, only amorphogen forms liquid hydrocarbons. The upper boundary defining the oil window is at a TAI of approximately 3 but varies according to the organic type. Above TAI 3+ all organic types only have a potential for thermally derived methane.

INTERPRETATION

The best potential source rocks occur between 1430 and 1770 m where high organic yields have been recorded. These occur within the M. diversus assemblage zone and are only very marginally mature to immature for hydrocarbon generation. However amorphogen is often the dominant organic matter and may produce hydrocarbons at a low temperature regime.

The organic matter near the base of the well in the Late Cretaceous section is very variable in TOM with some samples yielding moderate amounts. This section is also more mature and the kerogens tend to be dominated by phyrogen which when mature would be expected to source liquid hydrocarbons.

In general the thermal maturity of West Seahorse No. 1 appears to be low and little if any hydrocarbons would appear to have been generated from this section.

TABLE II

WEST SEAHORSE NO. 1 WELL

DISTRIBUTION OF KEROGEN TYPES AND SPORE COLOUR IN SELECTED SAMPLES

Depth (m)	TAI	TOM	Amorpho.	Phyro.	Hylo.	Melano
1422.4	$1+$	v. low	95	5	Tr	Tr
1423.4	$1+$	v. low	90	5	Tr	5
1434.0	2-	abundant	60	10	10	20
1435.8	2-	moderate	50	10	10	30
1460.5	2-	abundant	90	5	Tr	5
1475.5	2 -	abundant	Tr	10	20	70
1487.2	2 -	moderate	Tr	10	20	70
1512.8	2-	moderate	Tr	75	15	10
1594.9	2-	v. low	Tr	50	5	45
1648.2	2-	abundant	Tr	30	10	60
1778.0	2	moderate	Tr	90	Tr	10
1855.3	2	low	Tr	5	5	90
1894.2	2	low	5	20	5	70
2083.2	2	- low	Tr	55	15	30
2125.1	2	v. low	-	5	5	90
2332.5	2	low	-	75	5	10
2703.1	2	moderate	-	80	10	10
2468.0	2+	moderate	-	30	5	65

Kerogen macerals are given as a percentage. Less than 5% is recorded as a trace (Tr).

REFERENCES

Bujak, J.P., Barss, M.S., and Williams, G.L., 1977: Offshore East Canada's Organic Type and Color and Hydrocarbon Potential. Oil Gas J., 45 (14): 198-202.

Staplin, F.L., 1969: Sedimentary Organic Matter, Organic Metamorphism and Oil and Gas Occurrence. Bull. Can. Pet. Geol., 17: 47-66.

W.K. Harris

Consulting Geologist - Petroleum

$$
17 \text { Moreh } 1982 \text {. }
$$

APPENDIX B3. WIRELINELOGINTERPRETATION (Refer to accompanying report)

APPENDIX B4. PETROLOGY REPORT

SPECIAL CORE ANALYSIS STUDY FOR
 HUDBAY OIL (AUSTRALIA) LTD WELL: WEST SEAHORSE 1

Hudbay Oil (Australia) Ltd

256 Adelaide Terrace

Perth

Western Australia

ATTENTION: MR. E M L TUCKER
MR. G DANN

Subject: Special Core Analysis
Well: West Seahorse 1
File : SNSCAL 81056

31st March 1982

Gentlemen,

In a letter dated 7 October, 1981, from Mr. Tucker of Hudbay Oil (Australia) Ltd, Core Laboratories were requested to perform formation resistivity factor tests on core samples from the subject well.

Seven one-and-one-half-inch diameter plug-size core samples were drilled with liquid nitrogen at our Perth facility for use in this study. The samples were received in our Singapore Laboratory on 7 th November 1981. These samples are described with respect to depth and lithology on page 1 of this report.

All samples were cleaned in cool solvents before drying in a humidity oven maintained at $40-45 \%$ relative humidity and $60^{\circ} \mathrm{C}$.

Following measurements of helium injection porosity, the samples were saturated with a brine having a concentration of approximately 200,000 ppm. The brine comprised 80% sodium chloride, 10% calcium chloride and 10% potassium chloride since an exact analysis was not available. The electrical resistivities of the brine saturated samples and the saturant brine were measured on consecutive days until the readings stabilised indicating ionic equilibrium within the samples. Formation factor values were then calculated and plotted against porosity; the resultant plot yielded values of 1.00 for "a", the intercept, and an average value of 1.68 for "m", the cementation exponent.

A11 samples were then re-cleaned, humidity dried, porosities were remeasured and then the samples were re-saturated with a brine having a concentration of approximately $30,000 \mathrm{ppm}$. Again the constituents were 80% sodium chloride, 10% calcium chloride and 10% potassium chloride.

```
Hudbay Oil (Australia) Ltd
Special Core Analysis
We11: West Seahorse 1
31st March }198
Page Two
```

As before electrical readings were made until they became stable, whereupon formation factor values were calculated. The subsequent plot yielded values of 1.00 for "a" and 1.67 for "m". The data is presented in tabular form on page 2 and in graphical form on pages 3 and 4.

To all intents and purposes formation factor data yielded using 200,000 ppm is no different from the data using the 30,000 ppm brine.

In a telex (ref. no. 1314) dated 15 February 1982, from our Perth office, we were requested to perform cation exchange capacity measurements on the seven samples used for formation factor measurements. The ammonium-acetate, wet-chemistry technique was used and data is given on page 5, together with core resistivities (values for ko) as requested.

Please contact us should you require any further assistance.

Yours faithfully
CORE LABORATORIES INTERNATIONAL LTD

TONY KENNAIRD
Manager - Core Analysis Services

Enc

TK : sb

COMPANY:	HUDBAY. OIL (AUSTRALIA) LTD	D FORMATION :
WELL :	WEST SEAHORSE 1	COUNTRY : AUSTRALIA
FIELD		
	IDENTIFICATION AND	DESCRIPTION OF SAMPLES
Sample Number	Depth, Metres	Lithological Description
1	1450.0	SST:lt brn, cg, p-mod cmtd, subangsubrnd, mod std, carb lam.
2	1450.3	SST:1t brn, m-vcg, mod cmtd, subangsubrnd, mod std, carb lam.
3	1450.6	A A
4	1450.9	SST:lt brn, m-cg, mod cmtd, subangsubrnd, w std.
5	1451.2	SST:lt brn, f-vcg, mod cmtd, subangsubrnd, p-mod std, carb lam.
6	1451.5	SST:gy, mg, mod cmtd, subang-subrnd, p std, arg, carb.
-7	1451.8	SST:lt gy, vfg, mod-w cmtd, subangsubrnd, w std, abd arg lams.

Page 2 of 5
File_SNSCAL 81056

FORMATION RESISTIVITY FACTOR DATA

$0.061200,000 \mathrm{ppm}$
Resistivity of saturant brine, $0 h m / m 0.267$ 30,000 ppm

Sample Number		Porosity, Per Cent	
		$\frac{200,000 \mathrm{ppm}}{30,000 \mathrm{ppm}}$	
1	29.4	9.4	9.4
2	24.7	9.9	9.9
3	26.7	9.4	9.3
4	27.8	8.6	8.6
5	21.9	12.1	12.1
6	18.3	16.4	16.1
7	22.7	10.6	10.1

Field

Company_ HUDBAY OIL (AUSTRALIA) LTD	Formation__ \quad Country__ AUSTRALIA
Well	

Field

Page 5 of \qquad
File SNSCAL 81056

ELECTRICAL RESISTIVITY AND CATION EXCHANGE CAPACITY DATA

Company : Hudbay Oil (Australia) Ltd	Well : West Seahorse 1
Formation:	Field:
Country : Australia	

	0.052 @ $72{ }^{\circ} \mathrm{F}$ *	200,000 ppm
Resistivity of Saturant Brine, Ohm-Metres:	0.226 @ $72^{\circ} \mathrm{F}$ *	$30,000 \mathrm{ppm}$

Cation

Sample Number	Porosity Per Cent	$\begin{aligned} & \text { Grain } \\ & \text { Density } \\ & \mathrm{gm} / \mathrm{cc} \\ & \hline \end{aligned}$	Cation Exchange Capacity Meq/ 100 gms	Core Resistivity Ro	Formation Factor	Cementation Exponent m**
				200,000 ppm		
1	29.4	2.66	0.70	0.490	9.4	1.83
2	24.7	2.66	0.50	0.516	9.9	1.64
3	26.7	2.66	0.52	0.491	9.4	1.70
4	27.8	2.66	0.66	0.447	8.6	1.68
5	21.9	2.61	0.59	0.631	12.1	1.64
6	18.3	2.63	1.22	0.854	16.4	1.65
7	22.7	2.67	1.31	0.552	10.6	1.59

			$30,000 \mathrm{ppm}$			
1	29.4	2.66	0.70	2.124	9.4	1.83
2	24.7	2.66	0.50	2.237	9.9	1.64
3	26.7	2.66	0.52	2.102	9.3	1.69
4	27.8	2.66	0.66	1.944	8.6	1.68
5	21.9	2.61	0.59	2.735	12.1	1.64
6	18.3	2.63	1.22	3.639	16.1	1.64.
7	22.7	2.67	1.31	2.283	10.1	1.56

[^0]APPENDIX B5.
Page
TABULATED DATA 2
MASS FRAGMENTOGRAMS 7
THEORY AND METHOD 12
COMMENTS AND CONCLUSIONS 19
n-ALKANE DISTRIBUTIONS 24
CAPILLARY GLC TRACES 32

OILNAME U. SEAHORSE DST 1 W.SEAH. RFT 4a 1417n W.SEAH. RFT 4b 1417M U.SEAHHORSE 1502M OI W.SEAH. RFT 5a 1502m H.SEAH. RFT 5a 1502M
H.SEAH. RFT 1505.5m

AFI GRAVITY (deg)
40.2
45.3
47.7
44.4
nd
\% SULPHUR (W / H)
0.22
0.25
9.22
0.07
0.10
8.40
nd

COMPOSITIONAL DATA

	OILNAME
	U.SEAHORSE DST
OIL-	W.SEAH. RFT 4a 1417m
EMU.-	U.SEAH. RFT 4b 1417M
	W.SEAHHORSE 1502m OI
OIL-	W.SEAH. RFT 5a 1502m
EMU.-	W.SEAH. RFT 5a 1502m
	W.SEAH. RFT 1505.5m

\%SAT	\%AROK	KNSO	PRIST/PHYT	FRIST/NC17	PHYT/NC18
84.9	10.2	4.8	5.32	.36	.07
91.1	7.3	1.6	5.40	.36	.07
92.8	5.4	1.8	5.70	.36	.07
91.5	6.8	1.6	5.61	.30	.06
92.0	7.1	1.0	5.39	.29	.06
91.5	7.6	0.8	5.36	.31	.06
44.1	53.2	2.7	5.62	.40	.07

N-alkane distributions

oIlname

- U.SEAHORSE DST

OIL- H.SEAH. RFT Aa 1417n EMU.- W.SEAH. RFT 4b 1417m

- H.SEAHHORSE 1502M OI OIL - U.SEAH. RFT 5a 1502~ EMU.- U.SEAH. RFT 5a 1502m
- W.SEAH. RFT 1505.5M

CN12 CN13 CN14 CN15 CN16 CN17 CN18 CN19 CN20 CN21 CN22 CN23 CN24 CN25 CN26 CN27 CN28 CN29 CN3O CN31 $\begin{array}{lllllllllllllllllllll}0.0 & 0.0 & 0.7 & 2.8 & 8.5 & 12.0 & 11.9 & 11.3 & 9.6 & 8.7 & 7.6 & 6.6 & 5.3 & 4.5 & 3.1 & 2.6 & 1.8 & 1.4 & 0.9 & 0.7\end{array}$ $\begin{array}{lllllllllllllllllllllllll}0.0 & 0.0 & 0.7 & 2.9 & 8.4 & 11.8 & 11.5 & 10.9 & 9.6 & 8.5 & 7.6 & 6.8 & 5.5 & 4.7 & 3.4 & 2.8 & 1.8 & 1.4 & 0.9 & 0.8\end{array}$ $\begin{array}{llllllllllllllllllllllllll}0.0 & 0.0 & 0.7 & 3.3 & 9.1 & 12.7 & 12.2 & 10.6 & 9.7 & 8.4 & 7.3 & 6.4 & 5.1 & 4.3 & 3.1 & 2.5 & 1.8 & 1.3 & 0.8 & 0.7\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}9.4 & 9.7 & 9.9 & 10.2 & 9.8 & 9.1 & 8.0 & 6.8 & 5.8 & 4.7 & 3.9 & 3.3 & 2.6 & 2.1 & 1.5 & 1.2 & 0.8 & 0.5 & 0.3 & 0.3\end{array}$ $\begin{array}{llllllllllllllllllllllllll}10.0 & 10.4 & 10.4 & 10.0 & 9.0 & 8.1 & 7.1 & 6.5 & 5.6 & 4.7 & 4.1 & 3.6 & 2.9 & 2.3 & 1.6 & 1.3 & 0.9 & 0.6 & 0.4 & 0.3\end{array}$ $\begin{array}{llllllllllllllllllll}9.1 & 9.2 & 10.0 & 9.4 & 8.6 & 7.9 & 7.4 & 6.9 & 6.1 & 5.2 & 4.6 & 4.0 & 3.1 & 2.6 & 1.8 & 1.5 & 1.0 & 0.7 & 0.5 & 0.4\end{array}$ $\begin{array}{lllllllllllllllllll}6.3 & 6.7 & 7.0 & 7.3 & 7.8 & 8.4 & 8.2 & 7.7 & 7.3 & 6.5 & 5.8 & 5.2 & 4.2 & 3.6 & 2.7 & 1.9 & 1.4 & 0.9 & 0.6\end{array} 0.4$
$\%$ SAT $=$ Percentage by weight of saturated compounds in the oil
\%AROM $=$ Percentage by weight of aromatic compounds in the oil
$\% N S O=$ Percentage by weight of asphaltenes plus resins in the oil
NC17 $=$ n-heptadecane (i.e. n-alkane with 17 carbon atoms)
NC18 = n-octadecane (i.e. n-alkane with -8 carbon atoms)
CPI = Carbon Preference Index
PRIST $=$ Pristane
PHYT $=$ Phytane
PAP $=$ - Percentage of aromatic protons in the aromatic fraction
n-Alkane Composition: $C N 12$ etc. $=$ n-alkane with 12 carbon atoms etc. (Values are weight percent of the n-alkane fraction)
nd $\quad=$ No data
$\mathrm{HC}=$ Hydrocarbon
$21+22 / 28+29$: Sum of percentages of n-alkanes with carbon numbers 21 and 22 divided by sum of percentages of \underline{n}-alkanes with carbon numbers 28 and 29

1533

183.1
183.1

NAME WEST SEAHORSE \# 1 , IST $1,1411-16 \mathrm{~m} . \mathrm{SATS}$.

NAME UEST SEAHORSE \# 1, IST $1,1411-16 m$. SATS.
FRN 5279
MISC 31-S-82. EEC. 1 MLL.
191.1
191.1

HAME UEST SEAHORSE \#1, IST 1, 1411-1Em. SATS.
FREN 5279
MISC 31-5-82. EEE. 1 M L .
191.1
191.1

231.2
231.2
217.2
217.2
218.2
218.2
为
414.4
414.4

1. API GRAVITY

A 1 ml specific gravity (SG) bottle was accurately weighed, then filled with crude oil at $60^{\circ} \mathrm{F}$ and finally reweighed. The weight difference was divided by the weight of 1 ml of water at $60^{\circ} \mathrm{F}$ to obtain the specific gravity. The following formula was then used to calculate the API gravity :

$$
\text { API Gravity }=\left(\frac{141.5}{\operatorname{SG}\left(60^{\circ} \mathrm{F}\right)}\right)-131.5
$$

The reported gravity value is the average of duplicate determinations.

2. SULPHUR DETERMINATION

The \% sulphur values were measured using an x-ray fluorescence spectrometer equipped with a liquid sample holder. This parameter is influenced by the nature of the source material from which a crude is derived, the depositional environment of the source rocks, and reservoir alteration processes such as bacterial alteration.
3. SEPARATION OF OIL INTO CONSTITUENT FRACTIONS

The oils were separated into saturated, aromatic and NSO (asphaltenes plus resins) fractions by column chromatography on silicic acid. The crude was applied to the top of a silicic acid column (sample to adsorbent ratio $1: 50$) and the saturated compounds were eluted with n-pentane, aromatic compounds with a 50:50 mixture of ether and n-pentane, and finally the NSO fraction was eluted with a $20: 1$ mixture of methanol and dichloromethane. The neat fractions were recovered by careful removal of the solvent by fractional distillation and weighed.

The weight of each fraction was used to calculate the \% by weight of each fraction in the oil according to the following formula:

$$
\% \text { Fraction }=\frac{\text { Wt. Fraction }}{\text { Wt. All Fractions }} \times \frac{100}{1}
$$

4. GLC ANALYSIS OF SATURATED COMPOUNDS

Capillary GLC traces were recorded for each saturate fraction. The following information was obtained from these traces:
(a) n-Alkane Distribution - The $C_{12}-C_{31}$ n-alkane distribution was determined from the area under peaks representing each of these n-alkanes. This distribution can yield information about both the level of maturity and the source type (LeTran et al., 1974).
(b) Carbon Preference Index - Two values were determined: \because

$$
\begin{aligned}
& \operatorname{CPI}(1)=\frac{\left(c_{23}+c_{25}+c_{27}+c_{29}\right) W t \%+\left(c_{25}+c_{27}+c_{29}+c_{31}\right) W t \%}{2 \times\left(c_{24}+c_{26}+c_{28}+c_{30}\right) W t \%} \\
& \operatorname{CPI}(2)=\frac{\left(c_{23}+c_{25}+c_{27}\right) W t \%+\left(c_{25}+c_{27}+c_{29}\right) W t \%}{2 \times\left(c_{24}+c_{26}+c_{28}\right) W t \%}
\end{aligned}
$$

The CPI is believed to be a function of both the level of maturity (Cooper and Bray, 1963; Scalan and Smith, 1970) and the source type (Tissot and Welte, 1978). Marine crudes tend to have values close to 1 irrespective of maturity whereas values for terrestrial crudes decrease with maturity from values as high as 20 but don't usually reach a value of 1 .
(c) $C_{21}+C_{22} / C_{28}+C_{29}$ - This parameter provides information about the source of the organic matter (Philippi, 1974). Generally, a terrestrial source gives values <1.2 whereas a marine source results in values >1.5.
(d) Pristane/Phytane Ratio - This value was determined from the areas of peaks representing these compounds. The ratio renders information about the depositional environment according to the following scale (Powell and McKirdy, 1975):
<3.0 Marine depositional environment (i.e. reducing environment) • 3.0-4.5 Mixed depositional environment (i.e. reducing/oxidising environment)
>4.5 Terrestrial depositional environment (i.e. oxidising environment)
(e) Pristane $\underline{n}^{-} \mathrm{C}_{17}$ Ratio - This ratio was determined from the areas of peaks representing these compounds. The value can provide information about both the source type and the level of maturation
(Lijmbach, 1975). Very immature crude oil has a pristane/n-C ${ }_{17}$ ratio >1.0, irrespective of the source type. However, the following classification can be applied to mature crude oil:

$$
\begin{array}{cl}
<0.5 & \text { Marine source } \\
0.5-1.0 & \text { Mixed source } \\
>1.0 & \text { Terrestrial source }
\end{array}
$$

In the case of sediment extracts these values are significantly higher and the following classification is used:

<1.0	Marine source
$1.0-1.5$	Mixed source
>1.5	Terrestrial source

(f) Phytane/n-C C_{18} Ratio - This ratio was determined from the areas of peaks representing these compounds. The value usually only provides information about the level of maturity of petroleum. The value decreases with increased maturation.
(g) Relative Amounts of n-Alkanes and Naphthenes - Since $n-a l k a n e s$ and naphthenes are the two dominant classes of compounds in the saturate fraction, a semi-quantitative estimate of the relative amounts of these compounds was made. This information can be used to assess the degree of maturation and/or the source type of the petroieum (Philippi, 1974; Tissot and Welte, 1978). Very immature petroleum has only small proportions of n-alkanes, but as maturity increases the relative amount of n-alkanes increases. In addition, terrestrial petroleum has a greater proportion of high molecular weight naphthenes than marine petroleum.

5. DETERMINATION OF THE PAP VALUE

The PAP value (percentage of aromatic protons in the aromatic fraction) was determined by proton magnetic resonance spectroscopy on the aromatic fraction. This parameter is a quantitative measure of the level of maturation of petroleum (Alexander et. al., 1979).

This measurement was carried out on one or more of the following mixtures; topped oil; saturate fraction; aromatic fraction; NSO fraction. The organic matter was combusted at $860^{\circ} \mathrm{C}$ in oxygen and the carbon dioxide formed was purified and transferred to an isotope mass spectrometer. The carbon isotope ratio was measured relative to a standard gas of known isotopic composition. In this case the standard gas was prepared from the NBS No. 22 oil. However, since the isotopic relationship between NBS No. 22 oil and the international reference PDB limestone are known, the values were adjusted to be relative to PDB limestone.

REFERENCES

Alexander, R., Kagi, R.I. and Woodhouse, G.W. "Measurement of thermal maturation of petroleum by proton magnetic resonance spectroscopy". Nature, 276, 1978, 598.

Alexander, R., Kagi, R.I. and Woodhouse, G.W. "A new method for measuring the maturity of petroleum in source rocks". APEA J., 19, 1979, 90-93.

Cooper, J.E. and Bray, E.E. "Apostulated role of fatty acids in petroleum formation". Geochim. Cosmochim. Acta, 27, 1963, 1113-1127.

Gransch, J.A. and Eisma, E. "Characterization of the insoluble organic matter of sediments by pyrolysis". Advances in Organic Geochemistry, 1966, 407-426.

Hunt, J.M. "Geochemistry of petroleum". Am. Assoc. Pet. Geol. Continuing Education Lecture Series.

Lijmbach, G.W.M. "On the origin of petroleum". Proc. 9th World Petroleum Congress, 2, 1975, 357-369.

LeTran, K., Connan, J. and Van der Weide, B. "Diagenesis of organic matter and occurrence of hydrocarbons and hydrogen sulphide in the S.W. Aquitaine Basin". Bull. Centre Rech., Pau-SNPA, 8, 1974, 111.

Philippi, G.T. "The influence of marine and terrestrial source material on the composition of petroleum". Geochim. Cosmochim. Acta, 38, 1974, 947.

Powell, T.G. and McKirdy, D.M. "Geological factors controlling crude oil composition in Australia and Papua New Guinea". Amer. Assoc. Petrol. Geol. 59, 1975, 1176 .

Scalan, R.S. and Smith, J.E. "An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum". Geochim. Cosmochim. Acta, 34, 1970, 611-620.

Stah1, W.J. "Carbon and nitrogen isotopes in hydrocarbon research and exploration". Chem. Geol., 20, 1977, 121-149.

Stah1, W.J. "Source rock-crude oil correlation by isotopic type-curves". Geochim. Cosmochim. Acta, 42, 1978, 1573-1577.

Tissot, B. et al. "Origin and evolution of hydrocarbons in early Toarcian shales, Paris Basin, France". Amer. Assoc. Petrol. Geol., 55, 1971, 2177.

Tissot, B. et al. "Influence of nature and diagenesis of organic matter in the formation of petroleum". Amer. Assoc. Petrol. Geol., 58 1974, 499.

Tissot, B. and Welte, D.H. "Petroleum Formation and Occurrence". Springer-Verlag. Berlin Heidelberg New York, 1978.

Welte, D.H., et al., "Correlation between petroleum and source rock". Proc. 9th World Petroleum Congress, 2, 1975, 179-191.

General

Seven samples (one DST and six RFT tests) of formation fluid were provided for geochemical analysis. The RFT 4b (1417m) and RFT 1b (1505.5m), and one of the RFT 5a (1502m) samples were oil:water emulsions whereas all other samples were neat crude oil.

The following comments summarize the results from the geochemical analysis of these samples.

API Gravity

Since the values are generally in the mid to high forties these samples are all considered light crudes. The value of 48.3 for the DST sample is likely to be the most accurate due to the method by which this sample has been collected. The RFT samples are likely to be slightly water wet resulting in a lowering of the API gravity. The low values for the samples received as emulsions is probably related to their high sulphur content.

Sulphur Content

The DST 1 and RFT 4a samples have similar \%S values at around 0.25%. The two oil samples from 1502 m also have similar $\%$ s values of approximately 0.10%.

Although both of these values are considered low, there is a measureable difference between the two pairs of oils, and this difference is most likely due to the fact that the shallower pair of oils are apparently partially biodegraded whereas the deeper pair are unaltered.

The samples provided as emulsions have very high \% S values and this is most likely attributed to dissolved hydrogen sulphide and elemental sulphur, and to a lesser extent organic sulphur compounds.

The \%SAT, \%AROM and \%NSO values show that the six shallowest samples generally have similar gross compositions. The slight difference between the DST sample and the other five samples probably reflects the more representative sampling method used for the DST. The gross composition of the deepest sample (1505.5m) is significantly different from that of the six shallower samples. However, this sample was provided as a very small volume of petroleum in a large volume of water and has clearly been severely affected by the presence of the large volume of water. Consequently, data for this sample should be used with caution. This gross composition data shows that the crudes are very rich in saturated compounds. Further, the GLC traces show that the saturated fraction is dominated by n-alkanes and hence these crudes are highly paraffinic.

The n-alkane distributions for the three samples from the shallowest depth are very similar, each showing an absence of the low molecular weight compounds as a result of biodegradation and/or water washing. The three samples from 1502 m have distributions which are similar within the group but are different to the shallower group in that they have a significant low molecular weight component and hence are not biodegraded.

The pristane/n-C C_{17} and $\left(\mathrm{C}_{21}+\mathrm{C}_{22}\right) /\left(\mathrm{C}_{28}+\mathrm{C}_{29}\right)$ ratios, and CPI values all suggest that the West Seahorse crudes are derived from marine or hydrogen rich organic matter. This suggestion is somewhat difficult to understand when considering the pristane/phytane ratios because these values indicate that the crudes are derived from source rocks deposited in a relatively oxidising depositional enviroment. Such enviroments are usually associated with terrestrial organic matter.

Gas Chromatography/Mass Spectrometry Analysis of Saturates

A GC/MS run was carried out on the DST非 (1411-1416m) sample. Although this technique has its greatest application as an oil:oil or oil:source rock correlation tool, it can still be used to accurately determine specific information about a single crude. The data from the GC/MS analysis consists of 20 ion fragmentograms, of which the five most useful for this sample have been magnified to a size more useful for interpretation. These latter fragmentograms represent the following compound classes:

177	Triterpanes
183	Isoprenoids
191	Triterpanes
217	Steranes (including diasteranes)
259	Diasteranes

The $C_{29} 5 \alpha, 14 \alpha, 17 \alpha 20 \mathrm{~S} / 20 \mathrm{R}$ and $\mathrm{C}_{29} 5 \alpha, 14 \alpha, 17 \alpha$ (20R)/5 $14,14 \beta, 17 \beta$ (20R) sterane ratios (0.98 and 1.33 respectively) clearly indicate that this crude is highly mature, and further the latter parameter appears not to have been significantly influenced by migration suggesting that the source of this oil is reasonably close to the reservoir. The $\mathrm{C}_{29} 5 \alpha, 14 \alpha, 17 \alpha$ (20R) sterane is present in a much greater quantity than the corresponding C_{27} compound and this dominance of the C_{29} compound suggests that this oil has a significant terrestrial component. This contention is supported by the diasteranes which also show a dominance of the C_{29} compounds over the C_{27} compounds. Further, the consistent dominance of C_{29} steranes and diasteranes over their corresponding C_{27} compounds suggests that the West Seahorse crude is not a mixed oil i.e. it is from one type of source, and that it has not been severely biodegraded.

The $C_{31} 17 \alpha, 21 \beta 22 \mathrm{~S} / 22 \mathrm{R}$ hopane ratio and the C_{29} and C_{30} hopane/moretane ratios support the steranes in suggesting that this crude is highly mature. Further, since the triterpane fragmentogram is dominated by hopanes and moretanes, and appears to have a very low content of higher plant triterpanes, the source rocks for this crude oil are likely to be geologically older than

Cretaceous.

Since the steranes are derived from the organic matter deposited in sediments and the hopanes result from bacterial activity at the time of deposition, the C_{29} sterane/ C_{30} hopane ratio reflects the degree of preservation of the organic matter in the source rocks. Our experience is that this ratio varies from 0.3 to 13.0 . The value of 0.57 for West Seahorse crude indicates that there was a relatively poor preservation of organic matter in the source rocks from which this crude was derived.

In conclusion, although the use of GC/MS for correlation cannot be demonstrated with data from one sample, it is worthy of note that the source type dependence of the distributions of steranes, diasteranes, regular isoprenoids and triterpanes makes this technique particularly powerful for correlation studies.

n-ALKANE DISTRIBIJTIONS

I 1 I 1 1

- mammamman

WEST SEAHORSE \#1
RFT SAMPLE 5a-1502m OIL
SATURATED FRACTION

SEAHORSE \#1
RFT SAMPLE 5a - 1502m EMULSION
Saturated fraction

APPENDIX B6.

SIDEWALL CORE DESCRIPTIONS

4. Hudbay Oil (Australia) Ltd.

SIDEWALL CORE DESCRIPTIONS

(1) Hudbay Oil (Australia) Ltd.

SIDEWALL CORE DESCRIPTIONS

SIDEWALL CORE DESCRIPTIONS

SIDEWALL CORE DESCRIPTIONS

(1) Hudbay Oil (Australia) Ltd.

SIDEWALL CORE DESCRIPTIONS
WELL: WEST SEAHORSE-1

DEPTH （metres）		ROCK TYPE	COLOUR	CLAY SIZE \％		$\left\lvert\, \begin{gathered} \text { SILT } \\ \text { SIZE \% } \end{gathered}\right.$		GRAINS					CEMENT		DIAGENESIS				$\stackrel{0}{0}$			ACCESSORIES					SUPPLEMENTARY DATA		
						TYPE Q \％	SIZE																						
					$\frac{\underset{\sim}{r}}{\frac{\underset{y}{x}}{\Sigma}}$			$\left\lvert\, \begin{gathered} N \\ \underset{\sim}{x} \\ \frac{1}{3} \\ 0 \end{gathered}\right.$	$$	$\begin{aligned} & N \\ & \frac{N}{x} \\ & \frac{1}{3} \\ & 0 \end{aligned}$	爯	㐌			$\begin{aligned} & \infty 0 \\ & \infty \\ & 山 \\ & \stackrel{1}{\lambda} \\ & \stackrel{\rightharpoonup}{2} \\ & \hline \end{aligned}$		$\left\|\begin{array}{l} w \\ \frac{w}{2} \\ \stackrel{r}{r} \end{array}\right\|$	๐ㅇ				$\left.\begin{array}{\|c} \overline{0} \\ z_{2} \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\left\|\begin{array}{l} 2 \\ 1 \\ x_{0} \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \infty 0 \\ & \infty \\ & \infty \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$					$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \infty \\ & \omega \\ & \omega \\ & \frac{1}{2} \\ & 卜 \end{aligned}$
1410.2	N2I																										No recovery－bullet lost		
1411.2	3.8	Argillaceous Carbonaceous SILASTONE	$\begin{aligned} & \text { Lt olv gry - } \\ & \text { olv b1k } \end{aligned}$	25		35		20			VF－M	VE						$\left\|\begin{array}{l} S A \\ S R \end{array}\right\|$	M	vS		Cc 20			＊		A． 60% strong bi－wh on silty 11 thology B．Fast，mod strong pale grn－wh E．Dk brn oil stain on qtz grns		
1412．2．	5.0	Argillaceous SANDSTONE	Grnsh gry	40		10		50			VF－M	F						$\begin{array}{\|l\|} \hline \mathrm{SA} \\ \mathrm{SR} \end{array}$	M	vs	g 5				＊		A．100\％strong yel－wh B．Strong fast yel－wh F ．HC odour		
1413.2	3.5	$\begin{aligned} & \text { Argillaceous } \\ & \text { Sility } \\ & \text { SANDSTONE } \\ & \hline \end{aligned}$	Lt grnsh gry （brnsh blk strks）	35		20		40			VF－M	F						$\begin{aligned} & \frac{S A}{} \\ & \frac{S R}{} \end{aligned}$	M	S	gTx	Cc 5			＊	T m	A．80t even strong bl－wh B．Fast mod strong lt grn－wh．Brn blk coal bands up to 1.5 rmm wide		
1414.2	4.0	$\begin{aligned} & \text { Silty } \\ & \text { Argillaceous } \\ & \text { SANDSTONE } \end{aligned}$ SANDSTONE	Grnsh gry	20		20		60			VF－M	F						$\begin{array}{\|c\|} \hline \mathrm{SA} \\ \mathrm{SR} \\ \hline \end{array}$	M	vS	$\begin{array}{\|l\|} \hline 9 \\ 5-10 \\ \hline \end{array}$				＊		A． 100% weak to strong bl－wh B．Fast，streaming pale bl－wh E．strong HC odour		
1415.1	3.6	Argillaceous Carbonaceous SANDSTONE	$\begin{aligned} & \text { Grnsh gry - } \\ & \text { olv gry } \\ & \hline \end{aligned}$	30		15		40			VF－M	F						$\begin{array}{\|l\|} \hline A- \\ S R \\ \hline \end{array}$	M	S	g Tr	Cc 15			＊		A． 95% strong bl－wh $\&$ grn－wh B．Fast，mod strong yel－wh C．Lt brn F．Brn，patchy oll stain		
1416.0	4.0	Argillaceous Arenaceous SILISTONE	Lt grnsh gry	20		55		25			VF－M	VF						$\begin{array}{\|c\|} \hline \frac{S A}{} \\ \mathrm{SR} \\ \hline \end{array}$	M	5	g Tr				＊		A． 80% strong bl－wh B．Mod strong pale－yal		
1417	Nil																										No recovery－bullet smashed		
1418	0.5	（Dolomitic） SANDSTONE	Med dk gry	15				55			F－C	M	$\begin{aligned} & \text { Dol } \\ & 20 \end{aligned}$	Q 10						VH	Nil				＊		A． 30% dull gold； 10% mod wh B．Slow，dull wh very hard		
1418.7	4.0	Argillaceous Arenaceous SILTSTONE	$\begin{aligned} & \text { Lt olv gry - } \\ & \text { olv gry } \end{aligned}$	35		40		25			$\mathrm{VF}-\mathrm{N}$	F								s					＊	鲴	A．10\％mod strong，even grn－th on sdy Bnds B．V slow wk gen－wh．Mainly pale silty mat w dkr clay Bnds		

SIDEWALL CORE DESCRIPTIONS

STRUCTUR

WELL：WEST SEAHORSE－1
\int Hudbay Oil (Australia) Ltd.
SIDEWALL CORE DESCRIPTIONS

SIDEWALL CORE DESCRIPTIONS
WELL: WEST SEAHORSE-1

WELL: WEST SEAHORSE-1

(1) Hudbay Oil (Australia) Ltd.

SIDEWALL CORE DESCRIPTIONS
WELL: WEST SEAHORSE-1

DEPTH (metres)		ROCK TYPE	COLOUR	$\begin{gathered} \text { CLAY } \\ \text { SIZE \% } \end{gathered}$		$\begin{gathered} \text { SILT } \\ \text { SIZE \% } \end{gathered}$		GRAINS					CEMENT		DIAGENESIS			$\stackrel{\square}{2}$				ACCESSORIES					SUPPLEMENTARY DATA		
						TYPE \& \%	SIZE																						
					$\frac{\stackrel{\omega}{v}}{\frac{\underset{v}{0}}{\Sigma}}$			N $\stackrel{N}{2}$ $\frac{2}{4}$ 0	$\left\|\begin{array}{c} w \\ \underset{y}{c} \\ \frac{1}{d} \\ 0 \end{array}\right\|$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{r} \\ & \frac{1}{u} \\ & \mathrm{D} \end{aligned}$		屶	$\begin{aligned} & \text { u } \\ & 0 \\ & \underset{\alpha}{\alpha} \\ & \underset{\alpha}{2} \end{aligned}$	$\begin{aligned} & \underline{z} \\ & \vdots \\ & \frac{z}{z} \\ & \bar{z} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & \omega \\ & \omega \\ & \stackrel{\alpha}{2} \\ & \vdots \end{aligned}$	$\begin{aligned} & \hline 0 \\ & \infty \\ & \infty \\ & \omega \\ & \underset{\sim}{2} \\ & \end{aligned}$		ஃㅇ					$\left\|\begin{array}{c} 2 \\ k \\ k \\ \infty \\ 0 \\ i \end{array}\right\|$	$\begin{aligned} & \hline 0 \\ & \infty \\ & \infty \\ & \frac{0}{2} \\ & \end{aligned}$				$\begin{aligned} & \text { ơ } \\ & \infty \\ & \underset{\sim}{\omega} \\ & \stackrel{\omega}{\gtrless} \\ & \stackrel{1}{2} \end{aligned}$	
1512.8	$\left\lvert\, \begin{array}{r} \text { appr } \\ 3.5 \end{array}\right.$	$\begin{aligned} & \text { Arenaceous } \\ & \text { Sility } \\ & \text { CLAYSTONE } \\ & \hline \end{aligned}$	Olv gry 1t grnsh gry	60		30		10			F-F	F								5					*	sm	A. Slight Tx, pinpoint bl-wh slow mod strong grn-yel. Paler Bndswesdy sit: Dkr endseslty clay		
1514.5	4.8	SANDSTONE	Clr - lt gry			Tr		100			F-G	c						$\begin{aligned} & \mathrm{A}- \\ & \mathrm{SR} \end{aligned}$	P	U	$\begin{aligned} & g- \\ & 25 \end{aligned}$				*		A. Nil B. Very slow, weak, yel-wh		
1520.0	5.5	Argillaceous SANDSTONE	Olv gry	40		$T r$		60			F-VC	c						$\begin{aligned} & \mathrm{A-} \\ & \mathrm{SA} \\ & \hline \end{aligned}$	M	H	g 5	Py Tr			*		A. Tr pinpoint gold (min fi) B. Nil Speckled appearance		
1525.0	4.0	COAL	Blk - brn blk																	H		Cc 100			*		A. Mod strong, grn-wh B. Med fast, mod strong wh :V hd, scraping taken		
1530.2	2.8	Argillaceous SILTSTONE	Lt olv gry olv gry-blk	20		55		15			VF-M	F								S		Mc Tr	Cc 10		*	而	Finely laminated. A. Trace pinprick, brt grn-wh B. Med slow, mod strong grn-wh		
1548.8	5.1	Argillaceous sANDSTONE	Lt gry - it grn gry	20		15		65			VF-G	NF						$\left\|\begin{array}{l} S A \\ -R \end{array}\right\|$		$\begin{gathered} \text { vs } \\ -\mathrm{u} \end{gathered}$	95	GTr			*		A. 100\% faint, even, brn-gold B. Vexy slow, dull, yel-wh C. Nil		
1558.2	3.5	Argillaceous SANDSTONE	It gry - It grn gry	30		10		60			F-G	NC						$\begin{array}{\|l\|} \hline A- \\ S R \end{array}$	p	$\begin{array}{\|c} \hline \mathrm{vs} \\ -\mathrm{U} \end{array}$	95	Mc Tr							
1574.2	3.4	$\begin{aligned} & \text { Silty } \\ & \text { CLAYSTONE } \end{aligned}$	$\begin{aligned} & \text { Lt olv gry } \\ & \text { dk olv gry } \end{aligned}$	75		25		Tr					C Tr							M							A. Nil B. Very slow, weak, wh, from most of sample		
1578.5	4.4	Argillaceous SANDSTONE	Lt olv gry	20		5		75			VF-C	F						$\begin{aligned} & A- \\ & R \\ & R \end{aligned}$	M	vs	g Tr				*		A. Nil \quad B. Weak grn-wh		
1594.9	3.2	CLAXSTONE	Lt olv gry	95		5														M					*		A. Very dull brn, even, 80% B. Mod. strong grn-wh		
										TRUC	TURE	ES	RA	ca	ON	,	DIM	N	TAR	Y	GENE	TIC)							

(4) Hudbay Oil (Australia) Ltd.

SIDEWALL CORE DESCRIPTIONS
WELL: WEST SEAHORSE-1

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE-1

SIDEWALL CORE DESCRIPTIONS

DEPTH （metres）		ROCK TYPE	COLOUR	$\begin{aligned} & \text { CLAY } \\ & \text { SIZE \% } \end{aligned}$		$\left\|\begin{array}{c} \text { SILT } \\ \text { SIZE } \% \end{array}\right\|$		GRAINS					CEMENT		DIAGENESIS							ACCESSORIES					SUPPLEMENTARY DATA		
						TYPE \＆\％	SIZE																						
					$\begin{aligned} & \frac{\mu}{t} \\ & \frac{1}{x} \\ & \frac{U}{\Sigma} \end{aligned}$				$\left\|\begin{array}{c} \underset{⿺}{\mathrm{E}} \\ \frac{1}{4} \\ \frac{1}{4} \end{array}\right\|$	N $\stackrel{y}{4}$ $\substack{2 \\ O}$					$\begin{aligned} & \text { ぷ } \\ & \infty \\ & \mathbf{\omega} \\ & \stackrel{1}{2} \\ & \stackrel{1}{2} \end{aligned}$		$\left\|\begin{array}{c} \omega \\ \stackrel{u}{2} \\ \stackrel{1}{2} \end{array}\right\|$	ஃํ				$$		$\begin{aligned} & \infty 0 \\ & \infty \\ & \omega \\ & \stackrel{n}{2} \\ & \gtrless \end{aligned}$				$$	
1801.5	3.7	$\begin{aligned} & \hline \text { Silty } \\ & \text { CLAYSTONE } \end{aligned}$	Lt gry	75		20		5												M									
1855.3	3.9	$\begin{aligned} & \hline \text { Silty } \\ & \text { CLAYSTONE } \end{aligned}$	$\begin{aligned} & \text { Med gry - } \\ & \text { brn gry } \end{aligned}$	80		20														M		Cc Tr							
1872.0	2.8	Carbonaceous CLAYSTONE／ SILTSTONE	$\begin{aligned} & \text { Lt gry - med } \\ & \text { gry-blk } \end{aligned}$	50		40														M		Cc 10			＊		A．Tr pinpoint grn B． Tr fast，strong grn－wh		
1881.5	4.1	$\begin{aligned} & \text { Silty } \\ & \text { CLAYSTONE } \end{aligned}$	Lt gry－ med gry	60		35		5			VF－F	vF								M									
1894.2	2.7	$\begin{aligned} & \text { Silty } \\ & \text { CLAYSTONE } \end{aligned}$	$\begin{aligned} & \text { v lt gry - } \\ & \text { med dk gry } \end{aligned}$	45		40		10			VF－F	VF								M		Cc 5			＊		A．Tr pinpoint grn－wh B．V slow dull grn ？inclined bedding		
1913.6	4.0	Carbonaceous SILTSTONE／ CLAYSTONE	Lt gry－med dk gry－blk（cc）	30		25		15			F－C	M		（Py）				$\begin{aligned} & S A \\ & S \bar{R} \end{aligned}$	M	H	g 5	Py 10	Cc20			mm	Trace mineral fluorescence Bnc of coal \＆pyrite		
1919.0	3.9	Argillaceous SANDSTONE	```Lt gry - med gry```	40		Tr		60			F－VC	M						$\begin{aligned} & \mathrm{SA} \\ & \mathrm{SR} \end{aligned}$	M	S	g 5	Py Tr							
1933.5	2.6	Silty Arenaceous CLAYSTONE	Med gry，med dk gry	50		25		25			VF－M	VF						$\begin{aligned} & \mathrm{A}- \\ & \mathrm{SR} \\ & \hline \end{aligned}$	M	S		Py Tr							
1941.0	3.3	Carbonaceous Argillaceous SANDSTONE	Med gry to gry blk	25		15		25			VF－M	vF						$\begin{aligned} & A- \\ & S R \end{aligned}$	M	S	g Tr	Cc 35	PyTr			嗗	A．Tr pinpoint gold．B．Nil Irr blk mins；coaly bnds		
1947.2	2.5	$\begin{aligned} & \text { Silty } \\ & \text { Arenaceous } \\ & \text { CLAYSTONE } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Lt gry - lt } \\ & \text { olv gry } \end{aligned}$	50		20		30			VF－M	VF	$\begin{array}{\|l} \hline \mathrm{Tr} \\ \mathrm{DOL} \end{array}$					$\begin{aligned} & \text { A- } \\ & \text { SA } \end{aligned}$	M	S	$g \mathrm{Tr}$	Cc Tr	PyTr		＊	mmin	A．Sli tr，pinpoint yel B．V slow wh on crushing．Dkr less silty bnds up to 1 mm wide		

SIDEWALL CORE DESCRIPTIONS

WELL:WEST SEAHORSE - 1

SIDEWALL CORE DESCRIPTIONS
WELL:WEST SEAHORSE - 1

SIDEWALL CORE DESCRIPTIONS
WELL: WEST SEAHORSE - 1

$($ Hudbay Oil (Australia) Ltd.
SIDEWALL CORE DESCRIPTIONS
WELL:WEST SEAHORSE - 1

Hudbay Oil (Australia) Ltd.

West Seahorse-1

CORE DESCRIPTION

Hudbay Oil (Australia) Ltd.

West Seahorse-1

CORE DESCRIPTION

Core NO: 1

Hudbay Oil (Australia) Ltd.

West Seahorse-1

CORE DESCRIPTION

Core No: 1

Hudbay Oil (Australia) Ltd.
West Seahorse-1
CORE DESCRIPTION

West Seahorse-1

CORE DESCRIPTION

\int Hudbay Oil (Australia) Ltd.
West Seahorse-1
CORE DESCRIPTION

Core №: 1

Hudbay Oil (Australia) Ltd.
West Seahorse-1

CORE DESCRIPTION

Core No: 1

LIthology					DEPTH(metres)		言	LITHOLOGICAL	DESCRIPTION			HYDROCARBON INDICATIONS
			¢									
								SILISTONE:- White to light grey to olive brown black, 20\% clay, 20% mica, 20\% carbonaceous material, hard. SILTSTONE:- Dark grey, 30\% clay, 10\% mica, 15% carbonaceous material, 5\% pyrite inclusions, hard. COAL:- Black, brittle, high rank, minor siltstone interbeds. COAL:- Black, brittle, high rank. COAL:- Black, vitreous, fractured, brittle, high rank, with interbedded siltstone as at 1456.32 M .				
Geology By: E.T., \& J.R Drawn By: K. Lynch						Vertical Scale: $1: 5(20 \mathrm{~cm}=1 \mathrm{~m})$ Date: $2-10-81$			Drawing №			A4-GL-528

Hudbay Oil (Australia) Ltd.

West Seahorse-1

CORE DESCRIPTION

Core No: 1

West Seahorse-1
CORE DESCRIPTION

APPENDIX B7. LOG. OF SAMPLES

WEST SEAHORSE No. 1 - LOG OF SAMPLES

Cuttings Sample Descriptions

All depths quoted are below Rotary Table, which is 9.45 metres above Mean Spring Low Water and 48.8 metres above sea floor.

Colours are taken from the Geological Society of America "Rock Colour Chart".

Samples were collected from the base of the 20 inch casing shoe, at 189 metres R.T.

200-215 metres
(15 metres)

215-230 metres
(15 metres)

230-250 metres
(20 metres)

250-325 metres
(75 metres)

Sandstone, clear to white to light grey, fine to granule, dominantly coarse to very coarse, moderately well sorted, unconsolidated.

With $35-45 \%$ Calcirudite, skeletal, white to grey to reddish brown, coarse to rudaceous, dominantly rudaceous, poorly to moderately sorted, unconsolidated.

And 5\% Calcilsiltite, silty in part, light grey to medium grey, $10-20 \%$ quartz silt, poor porosity.

Calcilutite, olive grey, $20-25 \%$ silt sized skeletal fragments, 5-10\% quartz silt, soft.

With 15-25\% Calcirudite, as between 200-215 m.

And 5-10\% Sandstone, as between 200-215 m.

Calcarenite, calciruditic, skeletal, white to light grey, very fine to granule, dominantly medium, poorly sorted, unconsolidated.

And 0-10\% Calcilutite, as between 215-230 m.

Calcisiltite, calcilutitic, calcarenitic in part, olive grey, 25-35\% micrite, $15-25 \%$ fossil fragments, very fine to medium, dominantly very fine, trace to 5% clay minerals, trace to 5% calcite cement, soft to moderately hard, nil to trace porosity.

With 15-20\% Calcarenite, calciruditic, generally as between 230-250 m, but becoming dominantly coarse.

And $0-10 \%$ Sandstone, light grey to white to clear, medium to very coarse, dominantly coarse, poorly to moderately sorted, unconsolidated.

325-355 metres
(30 metres)

355-410 metres (55 metres)

410-515 metres (105 metres)

Calcarenite, skeletal, white to light grey to dark grey, 100% skeletal fragments, fine to rudaceous, dominantly coarse, moderately well sorted, angular to subrounded, unconsolidated.

With 30-50\% Calcisiltite, calcilutitic, calcarenitic in part, olive grey, 40% calcite silt, $20-30 \%$ micrite, $15-25 \%$ skeletal fragments, very fine to fine, dominantly very fine, poorly to moderately sorted, angular to subrounded, soft to moderately hard, nil-trace intergranular porosity.

And trace to 10% Sandstone, as between $250-325 \mathrm{~m}$.

Calcisiltite, calcilutitic, olive grey to light grey, $30-35 \%$ micrite, 15% skeletal fragments, very fine to fine, dominantly very fine, nil-trace clay minerals, 5\% calcite cement, moderately hard, nil porosity.

With 35-50\% Calcarenite, calciruditic, as between 250-325 m.

And 0-10\% Sandstone, as between 250-325 m.

Calcarenite, calciruditic in part, white to light grey to dark grey, skeletal, fine to rudaceous, dominantly coarse and very coarse, poorly to moderately sorted, unconsolidated.

With 10-55\% Calcisiltite, calcilutic, calcarenitic in part, olive grey to light grey, dominantly silt size fossil fragments, $25-40 \%$ micrite, $15-20 \%$ very fine to fine fossil fragments, trace-5\% calcite cement, trace-5\% quartz silt, very soft to moderately hard.

And $0-5 \%$ Sandstone, clear to white, fine to granule, dominantly coarse and medium, subangular to rounded, poorly to moderately sorted, unconsolidated.

Calcarenite, calciruditic in part, white to light grey to dark brown grey, skeletal, very fine to rudaceous, dominantly coarse and very coarse, nil-5\% calcite cement, nil-15\% recrystallisation, nil-5\% micrite, traces of pyrite, glauconite, chlorite and mica, unconsolidated to moderately hard where recrystallised.

Grading below 840 metres to Recrystallised Limestone, calcarenitic, white to light grey, $10-25 \%$ carbonate grains, $10-45 \%$ skeletal fragments, fine to rudaceous, dominantly coarse, poorly to moderately sorted, niltrace micrite, traces of pyrite, chlorite, glauconite and carbonaceous material, sucrosic, moderately hard, poor porosity.

With 10-65\% (maximum between $635-645 \mathrm{~m}$) Calcisiltite, calcilutitic, calcarenitic in part, as between 410-515 m.

And between 520-795 m, 5-35\% Sandstone, as between 410-515 m.

And below 750 m , trace- 40% Marl, skeletal in part, olive grey, $5-25 \%$ skeletal fragments, very fine to fine, very soft to soft, trace intergranular porosity.
(35 metres)

915-965 metres
(50 metres)

965-1155 metres
(190 metres)

1155-1200 metres (45 metres)

Sandstone, colourless to light grey, medium to granule dominantly very coarse and granular, poorly sorted, unconsolidated.

With $15-40 \%$ Limestone, skeletal, recrystallized, as between 840-880 m.

And 5-35\% Marl, skeletal, as between 750-880 m.

Marl, skeletal in part, olive grey to dark greenish grey to light grey, trace-20\% skeletal fragments, trace-5\% pyrite, very soft to moderately hard.

With 5-35\% Sandstone, as between $880-915 \mathrm{~m}$.

And 5-20\% Limestone, skeletal, recrystallized, as between $840-880 \mathrm{~m}$.

Calcisiltite, calcilutitic, becoming argillaceous below 1050 m , medium grey to greenish grey, $20-35 \%$ clay minerals, $0-5 \%$ calcite cement, $0-5 \%$ recrystallisation, trace pyrite, trace chlorite and below 1125m trace glauconite, soft to moderately hard.

With 25-60\% Marl, olive grey to dark greenish grey, $35-40 \%$ micrite, $0-10 \%$ calcite silt, trace-5\% pyrite, soft to moderately hard.

And $0-5 \%$ Sandstone, clear to white, very fine to very coarse, dominantly medium, subangular to rounded, poorly sorted, unconsolidated.

Note: Calcisiltite becoming more argillaceous with depth and grading to marl.

Marl, calcisiltitic in part, olive-grey to grey-black, $35-60 \%$ clay minerals, $35-65 \%$ micrite, $0-35 \%$ calcite silt (decreasing with depth), trace skeletal fragments, trace pyrite, trace glauconite, moderately hard.

With Calcisiltite, calcilutitic, argillaceous in part, medium grey to dark greenish grey, $30-50 \%$ calcite silt, $30-40 \%$ micrite, $10-35 \%$ clay minerals, $0-10 \%$ skeletal fragments, moderately hard.

1200-1320 metres (120 metres)
$1320-1360$ metres (40 metres)

1360-1390 metres (30 metres)

1390-1410 metres
(20 metres)

Claystone, calcisiltitic, calcilutitic, dark grey to olive grey to greenish black to (below 1310m) light blue-grey, $30-60 \%$ clay minerals, $20-40 \%$ calcite silt, 20-30\% micrite, trace-10\% skeletal fragments, trace pyrite, trace glauconite, trace chlorite, moderately hard.

With $10-35 \%$ Marl, medium grey to dark grey, and olive black, main constituents as between 1180-1200 metres.

Calcisiltite, calcarenitic in part, white to light grey to olive grey, $10-45 \%$ calcite silt, $10-45 \%$ calcite grains, 5\% quartz grains, fine to granule, dominantly fine granined, angular to subangular, 5\% micrite, trace clay minerals, glauconite, pyrite, soft.

Calcilutite, in part calcisiltitic and, below 1380 m , glauconitic, very light grey to medium light grey, $15-70 \%$ micrite, $15-20 \%$ calcite silt, 5% calcite grains, trace quartz grains, medium to granule, dominantly medium, subangular to rounded, trace-15\% clay minerals, $5-30 \%$ glauconite, traces pyrite, carbonaceous material, trace recrystallisation, soft to moderately hard.

Coal, lignitic, micaceous below 1405m, dark reddish brown to greyish black to black, $0-5 \%$ quartz silt, $0-35 \%$ mica, trace clay minerals, plant fragments, pyrite, subfissile to blocky, brittle to moderately hard.

With 0-10\% Calcisiltite, very light grey to greenish grey, 0-5\% micrite, traces pyrite, glauconite.
$\frac{1410-1415 \text { metres }}{(5 \text { metres })}$

1415-1425 metres
(10 metres)

1425-1435 metres (10.metres)

1435-1447 metres (12 metres)

And below $1405 \mathrm{~m}, 0-5 \%$ Sandstone, clear to white, $90-100 \%$ quartz grains, very coarse to granular, dominantly granular, subangular to subrounded, $0-10 \%$ calcite cement, traces pyrite cement, glauconite, carbonaceous matter, moderately hard, poor porosity.

Claystone, micaceous and carbonaceous in part, reddish brown to dark reddish brown, $0-10 \%$ quartz silt, $0-35 \%$ clay minerals, 0-20\% carbonaceous matter, 30\% mica, 5% glauconite, soft to moderately hard.

With Sandstone, up to 30% between $1414-1415 \mathrm{~m}$, as between 1405-1410 metres, poor porosity.

Calcisiltite, calcilutitic in part, medium dark grey to greenish black, trace-15\% calcite grains, 60-80\% calcite silt, $10-20 \%$ micrite, trace-5\% clay minerals, trace-10\% glauconite, traces pyrite, carbonaceous material, soft to moderately hard.

With 0-10\% Sandstone, as between 1405-1410 metres, poor porosity.

Coal, lignitic, dark reddish brown to black, subfissile to blocky, dominantly subfissile, brittle to moderately hard.

And trace Sandstone, as between 1405-1410 metres, poor porosity.

Coal, silty, micaceous, dark brown to black, 30% quartz silt, 30% mica, 40% carbonaceous material, trace clay, moderately hard.

With 30% Limestone, calcisiltitic, calcilutitic, medium grey to grey, $50-70 \%$ calcite silt, 20% calcilutite, $10-30 \%$ coaly material, moderately hard.

	And 5\% Sandstone, clear to white, 100% quartz grains, fine to granular, dominantly coarse, poorly sorted, angular to subrounded, trace calcite cement, trace pyrite, unconsolidated.
$\frac{1447-1450 \text { metres }}{(3 \text { metres })}$	Sandstone, clear to white, 100% quartz grains, fine to granular, dominantly coarse, poorly sorted, angular to subrounded, trace calcite cement, trace pyrite, unconsolidated.
1450-1461 metres (11 metres)	Core number 1, $02 / 10 / 81$, recovered 81%, 1ithology to 1459 metres only. (See detailed lithological description under Section 4.2)
$\frac{1461-1465 \text { metres }}{(4 \text { metres })}$	Sandstone, clear to white, 90-95\% quartz grains, 5-10\% calcite grains, fine to granular, dominantly coarse, moderately sorted, angular to subrounded, trace calcite cement, trace pyrite, unconsolidated. With 30\% Coal, black, brittle, high rank, moderately hard.
$\frac{1465-1480 \text { metres }}{(15 \text { metres })}$	Coal, as between 1461-1465 m.
$\frac{1480-1490 \text { metres }}{(10 \text { metres })}$	Sandstone, as between 1458.9-1465 m.
$1490-1495 \text { metres }$ (5 metres)	Coal, as between 1465 and 1480 m.
$\frac{1495-1520 \text { metres }}{(25 \text { metres })}$	Sandstone, clear to white, nil-trace calcite grains, 100% quartz grains, medium to granular, dominantly coarse, poorly sorted, angular to subrounded, nil-trace pyrite, unconsolidated. With $0-10 \%$ Siltstone, brown to dark brown, micaceous, carbonaceous, moderately hard.

And nil to 20% Coal, as between 1465 - 1480m.

Coal, black, brittle.

Sandstone, clear to white, 100% quartz grains, medium to granular, dominantly very coarse, poorly sorted, angular to subrounded, trace pyrite, unconsolidated.

With 0-40\% Coal, black brittle.

Coal, black, vitreous, conchoidal fracture, brittile, high rank.

Sandstone, clear to white, 100% quartz grains, fine to granular, occasional pebbles, dominantly very coarse, poorly sorted, subangular to subrounded, trace calcite cement, unconsolidated.

Coal, black, brittle.

Sandstone, clear to white, 100% quartz grains, medium to granular, dominantly very coarse, occasional pebbles, poorly sorted, angular to subrounded, unconsolidated.

Coal, black, vitreous, brittle, anthracitic.

Sandstone, clear to white, slightly grey at lower end of interval, $95-100 \%$ quartz grains, very fine to granular, dominantly medium to very coarse, poorly sorted, angular to subrounded, trace-5\% clay matrix between 1740 and 1745 metres, trace calcite cement, trace siliceous cement, trace-10\% pyrite, unconsolidated to moderately hard, fining downwards.

With 0-30\% Siltstone, argillaceous, micaceous in part, maximum at 1660 m , light grey to greenish grey to dark brown, $30-50 \%$ quartz silt, $30-40 \%$ clay minerals, $0-30 \%$ mica, slightly calcareous, trace glauconite, trace carbonaceous material, soft.

And at $1620 \mathrm{~m}, 5 \%$ Coal, black, brittle.

And trace Siltstone, light greyish brown to grey, 50% quartz silt, 30% mica, 20% clay trace carbonaceous material, moderately hard.

1745-1770 metres (25 metres)

1770-1775 metres
(5 metres)

1775-1780 metres
(5 metres)

1780-1790 metres
(10 metres)

Sandstone clear to white to light grey, very fine to granular, dominantly coarse, poorly to moderately sorted, $0-5 \%$ clay minerals, trace-5\% pyrite, trace glauconite, trace carbonaceous material, trace calcite cement, unconsolidated.

With trace-15\% Siltstone, argillaceous, light grey to grey brown, $30-50 \%$ clay minerals, $0-10 \%$ mica, trace glauconite, moderately hard.

And 0-10\% Coal, black to brownish black, brittle, moderately hard.

Coal, black to dark brownish.black, vitreous, 10% pyrite, hard, brittle with conchoidal fracture.

With 45\% Siltstone, argillaceous, as between 17451770 m.

And 5\% Sandstone, as between 1745-1770m.

Claystone, silty, light grey to brownish grey to greenish grey, 20% quartz silt, trace calcite cement, trace pyrite, trace glauconite, soft.

With 10% Sandstone, as between 1745 -1770m.

Coal, as between 1770-1775m.

With $30-45 \%$ Claystone, silty, as between 1775-1780m.

And trace Sandstone, as between 1745-1770m.

$\frac{1790-1800 \text { metres }}{}$	Sandstone, as between 1745-1770 m.
(10 metres)	
	With 10% Claystone, silty in part, light grey to light greenish grey to dark brown, 10-20\% quartz silt, $5-15 \%$ calcite cement, trace glauconite, soft.
	And nil to 10% Coal, as between 1770-1775 m.
$\frac{1800-1805 \text { metres }}{(5 \text { meres }}$	Claystone, silty, as between 1790-1800 m.
	With 25% Sandstone, as between 1745-1770 m.
$\frac{1805-1875 \text { metres }}{(70 \text { metres })}$	Sandstone, as between 1745-1770 m.
	With $5-15 \%$ Claystone, silty in part, as between 1790-1800 m.
	And $\mathrm{nil}-10 \%$ Coal, as between 1770-1775 m.
$\frac{1875-1950 \text { metres }}{(100 \text { metres })}$	Sandstone, clear to white to light grey, very fine
	to granule, dominantly coarse between 1875-1935 m, dominantly fine to medium between 1935-1955 m, dominantly granular (with siliceous overgrowths) below 1960 m , poorly to moderately sorted, angular to subrounded, trace calcite cement, trace-5\% pyrite, trace-10\% glauconite (maximum at 1935 m), unconsolidated.
	With trace-35\% Claystone, silty, white to medium grey to dark brown, 50-70\% clay minerals, 20-45\% quartz silt, $5-20 \%$ calcite cement, trace-5\% glauconite, soft to moderately hard.
	And nil -10\% Coal, , as between 1770-1775 m.
$\frac{1975-2070 \text { metres }}{(95 \text { metres })}$	Sandstone, clear to white, 90-100\% quartz grains,
	fine to granular, dominantly very coarse, poorly to moderately sorted, angular to subangular, occasionally subrounded, trace pyrite trace-10\%

	silicification, unconsolidated to moderately hard.
	With trace siltstone, argillaceous at 2040 metres,
	light grey to dark grey, 40% quartz silt, 40% clay
minerals, 10% micaceous material, 10% carbonaceous	

	trace-20\% clay matrix, trace-5\% pyrite, trace-20\% silica cement, moderately hard to hard, fair to good intergranular porosity, conchoidal fracture.
	With 0-10\% Siltstone, argillaceous, light grey to dark grey black, $40-60 \%$ quartz silt, $40-50 \%$ clay minerals, 0-10\% pyrite, trace carbonaceous material, moderately hard to hard.
2210-2250 metres (40 metres)	Sandstone, silicified in part, clear to white to grey, very fine to granule, dominantly coarse, poorly to moderately well sorted, angular to subangular, trace kaolin, trace-5\% pyrite, $0-20 \%$ silicification, hard, poor to fair intergranular porosity, conchoidal fracturing across grains.
2250-2265 metres (15 metres)	Sandstone, as between 2210-2250 m, with trace lithic fragments, trace feldspars, trace very fine quartz sandstone fragments.
$\frac{2265-2315 \text { metres }}{(50 \text { metres })}$	Sandstone, clear to white to grey, occasionally reddish brown, $75-100 \%$ quartz grains, very fine to very coarse, dominantly very coarse down to 2280 m , becoming dominantly medium below 2290m, poorly sorted, angular to subangular, trace clay matrix, trace-5\% pyrite, 0-20\% silicification, moderately hard to hard, poor to fair intergranular porosity.
$\frac{2315-2350 \text { metres }}{(35 \text { metres })}$	Sandstone, clear to white to grey, very fine to granule, dominantly medium above 2325 m , becoming very coarse below 2330 m , poorly to moderately well sorted, angular to subangular, trace clay matrix above 2325 m , trace pyrite, trace-5\% dolomite cement, nil-trace lithic fragments, $0-15 \%$ silicification, moderately hard to hard, poor to fair intergranular porosity.

2350-2380 metres (30 metres)

2380-2400 metres
(20 metres)

2400-2415 metres
(15 metres)

With $10-20 \%$ Dolomite, white to light grey, coarse to very coarse crystals, strong yellow mineral fluorescence.

And trace-5\% Siltstone, argillaceous, brown to greyish brown and black, moderately hard.

And at $2330 \mathrm{~m}, 5 \%$ Coal. black, hard, conchoidal fracture (? cavings).

Sandstone, dolomitic, clear to white to grey, fine to granule, dominantly medium and coarse, moderately well sorted, angular to subangular, 5-20\% dotomite cement, trace-5\% pyrite, trace-5\% silicification, moderately hard, poor porosity.

Sandstone, clear to white to grey, rarely to light orange pink, fine to gränule, dominantly medium and coarse, poorly to moderately well sorted, angular to subangular, occasionally subrounded, 10% dolomite cement, trace pyrite, trace glauconite, nil-trace lithic fragments, trace -5% silicification, moderately hard, poor porosity.

With, at 2390 and 2400 metres, nil- 20% Coal, black, moderately hard, vitreous lustre, conchoidal fracture.

And nil-5\% Siltstone, argillaceous, brown to very dark brown, 40% clay minerals, nil-5\% glauconite, moderately hard.

Sandstone, dolomitic in part, clear to white to grey, rarely to moderate orange pink, fine to granule, dominantly coarse, moderately well sorted, angular to subangular, $15-20 \%$ dolomite cement, trace pyrite, trace glauconite, trace lithic fragments, 5% silicification, moderately hard, trace porosity.

With trace-5\% Coal, black, moderately hard, conchoidal fracture, sub-vitreous lustre.
$\left.\begin{array}{cc}2415-2480 \text { metres } & \begin{array}{l}\text { Sandstone, silicified in part, clear to white to grey, } \\ \text { fine to granular, dominantly coarse and very coarse, } \\ \text { moderately well sorted, angular to subrounded, trace- } \\ 25 \% \text { silicification, trace- } 5 \% \text { dolomite cement, }\end{array} \\ \text { trace-5\% pyrite, trace lithic fragments, } 0-5 \% \text { glau- } \\ \text { conite, nil-trace chlorite, trace to fair porosity. }\end{array}\right\}$

This is an enclosure indicator page. The enclosure PE905512 is enclosed within the container PE902688 at this location in this document.

```
    The enclosure PE905512 has the following characteristics:
            ITEM_BARCODE = PE905512
CONTAINER_BARCODE = PE902688
            NAME = Air Gun Well Velocity Survey and
                Calibrated Log Data
            BASIN = GIPPSLAND
            PERMIT = VIC/P11
                TYPE = WELL
            SUBTYPE = VELOCITY_CHART
        DESCRIPTION = Air Gun Velocity Survey and Calibrated
                Log Data(from WCR) for West Seahorse-1
        REMARKS =
        DATE_CREATED = 21/10/81
    DATE_RECEIVED = 18/06/82
            W_NO = W755
        WELL_NAME = WEST SEAHORSE-1
        CONTRACTOR =
        CLIENT_OP_CO = HUDBAY OIL (AUSTRALIA) LTD
```

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE902689 is enclosed within the container PE902688 at this location in this document.

```
The enclosure PE902689 has the following characteristics:
        ITEM_BARCODE = PE902689
CONTAINER_BARCODE = PE902688
                NAME = Tectomic Elements Map
            BASIN = GIPPSLAND
            PERMIT = VIC/P11
                TYPE = WELL
            SUBTYPE = GEOL_MAP
        DESCRIPTION = Tectomic Elements Map (enclosure from
                WCR) fro West Seahorse-1
        REMARKS =
        DATE_CREATED = 31/05/82
    DATE_RECEIVED = 18/06/82
            W_NO = W755
        WELL_NAME = West Seahorse-1
        CONTRACTOR = HUDBAY OIL AUSTRALIA LTD
    CLIENT_OP_CO = HUDBAY OIL AUSTRALIA LTD
(Inserted by DNRE - Vic Govt Mines Dept)
```


This is an enclosure indicator page.
The enclosure PE905512 is enclosed within the container PE902688 at this location in this document.

```
The enclosure PE905512 has the following characteristics:
            ITEM_BARCODE = PE905512
CONTAINER_BARCODE = PE902688
            NAME = Air Gun Well Velocity Survey and
                                    Calibrated Log Data
                            BASIN = GIPPSLAND
            PERMIT = VIC/P11
                            TYPE = WELL
            SUBTYPE = VELOCITY_CHART
        DESCRIPTION = Air Gun Velocity Survey and Calibrated
                                    Log Data(from WCR) for West Seahorse-1
        REMARKS =
    DATE_CREATED = 21/10/81
    DATE_RECEIVED = 18/06/82
            W_NO = W755
        WELL_NAME = WEST SEAHORSE-1
        CONTRACTOR = SEISMOGRAPH SERVICE ENGLAND LTD
        CLIENT_OP_CO = HUDBAY OIL (AUSTRALIA) LTD
```

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.
The enclosure PE604583 is enclosed within the container PE902688 at this location in this document.

```
The enclosure PE604583 has the following characteristics:
    ITEM_BARCODE = PE604583
CONTAINER_BARCODE = PE902688
                        NAME = Pressure Log
            BASIN = GIPPSLAND
            PERMIT = VIC/P11
                        TYPE = WELL
            SUBTYPE = WELL_LOG
        DESCRIPTION = Pressure Log (from WCR) for West
                Seahorse-1
            REMARKS =
        DATE_CREATED =
        DATE_RECEIVED =
            W_NO = W755
        WELL_NAME = WEST SEAHORSE-1
        CONTRACTOR = DOWELL SCHLUMBERGER
        CLIENT_OP_CO = HUDBAY OIL (AUSTRALIA) LTD
```

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.
The enclosure PE603908 is enclosed within the container PE902688 at this location in this document.

The enclosure PE603908 has the following characteristics: ITEM_BARCODE = PE603908 CONTAINER_BARCODE = PE902688

NAME = Composite Well Log
BASIN = GIPPSLAND
PERMIT = VIC/P11
TYPE = WELL
SUBTYPE = COMPOSITE_LOG
DESCRIPTION = Composite Well Log(from WCR) for West Seahorse-1
REMARKS =
DATE_CREATED $=3 / 11 / 81$
DATE_RECEIVED $=18 / 06 / 82$
W _NO $=\mathrm{W} 755$
WELL_NAME = WEST SEAHORSE-1
CONTRACTOR =
CLIENT_OP_CO = HUDBAY OIL (AUSTRALIA) LTD
(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.
The enclosure PE601380 is enclosed within the container PE902688 at this location in this document.

The enclosure PE601380 has the following characteristics: ITEM_BARCODE = PE601380
CONTAINER_BARCODE = PE902688
NAME = Exlog Formation Evaluation Log/Mud Log
BASIN $=$ GIPPSLAND
PERMIT $=$ VIC/P11
TYPE = WELL
SUBTYPE = MUD_LOG
DESCRIPTION = Exlog Formation Evaluation Log/Mud Log (enclosure from WCR) for West Seahorse-1
REMARKS =
DATE CREATED $=20 / 10 / 81$
DATE_RECEIVED $=18 / 06 / 82$
W_NO $=$ W755
WELL_NAME = West Seahorse-1
CONTRACTOR = EXLOG
CLIENT_OP_CO = HUDBAY OIL AUSTRALIA LTD
(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page.
The enclosure PE601381 is enclosed within the container PE902688 at this location in this document.

```
The enclosure PE601381 has the following characteristics:
            ITEM_BARCODE = PE601381
CONTAINER_BARCODE = PE902688
                            NAME = Wellsite Lithology Log
            BASIN = GIPPSLAND
            PERMIT = VIC/P11
                TYPE = WELL
            SUBTYPE = WELL_LOG
        DESCRIPTION = Wellsite Lithology Log (enclosure from
                                    WCR) for West Seahorse-1
            REMARKS =
    DATE_CREATED = 3/11/81
        DATE_RECEIVED = 18/06/82
                W_NO = W755
            WELL_NAME = West Seahorse-1
        CONTRACTOR = HUDBAY OIL AUSTRALIA LTD
        CLIENT_OP_CO = HUDBAY OIL AUSTRALIA LTD
```

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE601379 is enclosed within the container PE902688 at this location in this document.

```
    The enclosure PE601379 has the following characteristics:
        ITEM_BARCODE = PE601379
CONTAINER_BARCODE = PE902688
                NAME = Velocity Log Linear Time Scale
            BASIN = GIPPSLAND
            PERMIT = VIC/P11
                TYPE = WELL
            SUBTYPE = VELOCITY_CHART
        DESCRIPTION = Velocity Log Linear Time Scale
            (encloure from WCR) for West Seahorse-1
                REMARKS =
        DATE_CREATED = 21/10/81
    DATE_RECEIVED = 18/06/82
            W_NO = W755
        WELL_NAME = West Seahorse-1
        CONTRACTOR = Seismograph Service England Ltd
    CLIENT_OP_CO = HUDBAY OIL AUSTRALIA LTD
(Inserted by DNRE - Vic Govt Mines Dept)
```


[^0]: * Temperature at which Ro measurements were made ** Assuming intercept " a " is 1.00

