

WEST SEAHORSE - 1 WELL COMPLETION REPORT

PERMIT Vic/P11 1982

18 JUN 1982

WEST SEAHORSE No.1

WELL COMPLETION REPORT

Authors: B. Butcher, GEOLOGIST.

K. Putnam, DRILLING ENGINEER.

Supervised By: E.M.L. Tucker, AREA GEOLOGIST

Hudbay Oil (Australia) Ltd.

CONTENTS

1

				- Dago No
				Page No.
1.0			WELL HISTORY	1
	1.1		Name and Address of Operator	1
	1.2		Participants	1
	1.3		Petroleum Title	1
	1.4		District	1
	1.5		Location Lats/Longs., AMG Co-ords	1
	1.6		Water Depth, Total Depth, Spud Date, Rig Release Date	1
	1.7		Status of the Well	1
	1.8		Drilling Summary	2
	1.9		Geological Summary	3
2.0			DRILLING	
	2.1		Drilling General	4
		2.1.1	Drilling Data Summary	
		2.1.2	General Well Data	
	2.2	-	Daily Operations Record	4
		2.2.1	Daily Drilling Operations Summary	
		2.2.2	Bottom Hole Assembly Record	
		2.2.3	Bit Record	
		2.2.4	Time Breakdown Analyses	
		2.2.5	Time vs Depth Chart	
	2.3		Casing Record	5
		2.3.1	Casing Details	
		2.3.2	Cementation Details	
	2.4		Mud System	6
		2.4.1	Mud Report Summary	
		2.4.2	Mud Engineering	
		2.4.3	Mud Record (Daily Characteristics)	
		2.4.4	Materials Consumption and Costs	
		2.4.5	Mud Equipment Description	
	2.5		Flow Testing	11
		2.5.1	Flow Testing Summary	
		2.5.2	Flow Data	
		2.5.3	Pressure Data	
		2.5.4	Interpretation and Analyses	

			•	Page No.
٠.	2.6		General Data	13
		2.6.1	Positioning Report	
		2.6.2	Downhole Surveys	
		2.6.3	Plug Back and Squeeze Cementation Record	
		2.6.4	Fishing Operations	
		2.6.5	Side Tracked Hole	
	2.7		Abandonment Report	14
	2.8		Recommendations for Future Drilling Programmes	14
3.0	•		GEOLOGY	
	3.1		Summary of Previous Investigations	15
	3.2		Geological Setting	17
	,	3.2.1	Regional Setting	
		3.2.2	Tectonic Elements	
		3.2.3	Geological Evolution and Regional Stratigraphy	
	3.3		Stratigraphy	21
	3.4		Structure (including basic dipmeter data)	24
	.3.5		Predicted and Actual Depth to Seismic Marker	26
	3.6		Porosity and Permeability	27
	3.7		Hydrocarbon Indications	28
		3.7.1	Summary	
		3.7.2	During Drilling	
		3.7.3	Sidewall Cores and Conventional Cores	
		3.7.4	Further Indications	
	3.8		Contributions to Geological Knowledge	31
4.0		· · · · ·	WELL DATA	
	4.1		Formation Sampling	33
	4.2		Coring Programme	34
		4.2.1	Conventional Cores	
		4.2.2	Sidewall Cores	
	4.3		Wireline Logs and Wireline Sampling	.38
5 0			DEFEDENCES	40

5.

REFERENCI

DRILLING

APPENDICES A

- A1 Well Testing Report No. 26108131181
- A2 Dowell Schlumberger Technical Report No. 81014
- A3 Positioning Report

<u>GEOLOGY</u>

APPENDICES B

Same Series

B1	Palaeontology Report
B2	Palynology Report
B3	Wireline Log Interpretation
B4	Petrology Report 2
B5	Geochemical Analyses
B6	Log of Cores
Β7	Log of Samples

FIGURES

FIGURE 1	Location Diagram
FIGURE 2	Gippsland Basin Stratigraphic Diagram
FIGURE 3	Stratigraphic Diagram for West Seahorse-1
FIGURE 4	Predicted vs Actual Section

ENCLOSURES

ENCLOSURE 1	Composite Log
ENCLOSURE 2	Tectonic Elements
ENCLOSURE 3	Air Gun Well Velocity Survey and Calibrated Log Data
ENCLOSURE 4	Velocity Log
ENCLOSURE 5	Lithological Log
ENCLOSURE 6	Mud Log

WELL HISTORY

1.0

(Pages 1-3)

WELL HISTORY

1.0

1.1

Name and Address of Operator:-

Hudbay Uli (nuss. 256 Adelaide Terrace, W.A. 6000 Hudbay Oil (Australia) Ltd.,

1.2 Participants

> Beach Petroleum N.L., G.P.O. Box 1280L, 3000 MELBOURNE VIC.

Gas and Fuel Exploration N.L., 171 Flinders Street, MELBOURNE VIC. 3 3000

Hudbay Oil (Australia) Ltd., 256 Adelaide Terrace, PERTH W.A. 6000

Petroleum Title

Vic/P-11

1.4 District:- Melbourne

1.5

1.3

Location - Ref. Figure No.1

Latitude	38 ⁰	12'	17.17"	S
Longitude	147 ⁰	37 '	21.70"	Ε

AMG Co-ordinates:

E 554519 N 5771267

Final position is 9 metres S.S.W. of the intended location.

Water Depth	-	39.35 m below Mean Spring Low Water
Total Depth	-	2490 m below Rotary Table, reached on October 20, 1981.
Rotary Table	-	9.45 m above Mean Spring Low Water
Rig on Locatior) <i>-</i> -	September 15, 1981
Spud Date		September 16, 1981
Rig Release Date	-	November 3, 1981
Drilling Unit	-	Petromar "North Sea" (Drillship)
Well Status on	Rig	Release

1.7

1.6

Suspended Oil Well

1.8 Drilling Summary

The drillship "Petromar North Sea" was mobilized from the Northwest Shelf of Western Australia to Gippsland Basin and arrived at the West Seahorse location on September 15th 1981 at 0600 hours. The anchors were run and tensioned, and the Temporary Guide Base was landed on the sea floor.

The well was spudded on September 16th 1981 at 1800 hours. A 36" hole was drilled to 61m and the Hole Opener was pulled and laid down. The 26" assembly was run in and 26" hole was drilled to 205m. After spotting Hi-viscosity mud and checking for fill, the drilling assembly was pulled and a casing string, comprising one 30" pile joint plus 20" casing, was run to 189m. The casing was cemented in place with 2000 sacks of Class 'G' cement. The landing string was pulled and the 20-3/4" stack was stump tested and run. The stack was landed and finally pressure tested after a test plug failure.

A $17\frac{1}{2}$ " assembly was run, the cement and shoe were drilled out, and the hole was deepened to 200m. A pressure integrity test was performed to a 1.07 SG equivalent. The $17\frac{1}{2}$ " hole was drilled to 1320m and a series of electric logs were run. A conditioning trip was made prior to running 13-3/8" casing. The 13-3/8" shoe was set at 1305m and cemented back to seafloor. The 20-3/4" stack was pulled and replaced by the 13-5/8" stack.

The 13-3/8" shoe was drilled out with a $12\frac{1}{4}"$ assembly and a pressure integrity test was performed after drilling to 1323m. Drilling continued until 1450m where it was decided to cut a core. An 11m core was cut and retrieved. The hole was deepened to 1744m and a series of logs were run. Drilling continued to 2210m where four RFT's were run at 1505.5m, 1421m, 1417m and 1502m. The hole was deepened to 2365m at which point the drill string parted at the rotary sub below the kelly. The fish was recovered and drilling continued to 2490m. The remainder of the open hole was logged and the well was plugged back to 1565m. A string of 9-5/8" casing was run to 1552m and cemented in place. The 13-5/8" stack was pulled and the UPR's changed to $3\frac{1}{2}"$. The stack was stump tested, rerun, and then pressure tested after landing. The $3\frac{1}{2}$ " tubing was run with an $8\frac{1}{2}$ " bit and 9-5/8" casing scraper. After pulling the tubing, a CBL-VDL-GR-CCL was run, the casing was pressure tested to 2200 psi and the interval 1411 - 1415m was perforated. A cased hole DST was performed over the interval 1411 - 1415m with a 288m fresh water cushion. During the DST, the well flowed gas and oil at rates of $\frac{1}{4}$ MMSCFD and 1800 BOPD respectively. Approximately 0.7 bbls of oil was recovered from the test string. A wireline bridge plug was then set at 1394m. A cement plug was spotted on top of the bridge plug and a second cement plug was placed at 160m. The 13-5/8" stack was retrieved, a corrosion cap was installed, a marker buoy was attached to the PGB, and the guide lines were cut. The anchors were pulled and the rig was moved to Baleen No 1.

Geological Summary (Enclosure 1)

West Seahorse-1 was drilled to test an asymmetric anticline formed by arching into a major reverse fault. Closure was mapped at three different horizons, designated "Top Latrobe". "Intra Latrobe" and "Top Strzelecki" (Figure 2). No samples were caught prior to the installation of the marine riser at 189 metres R.T. The interval 189-1344.5 metres consisted of skeletal calcarenites, calcisiltites, calcilutites and marl, with minor sandstones and calcareous claystones. This section ranged in age from pre-Miocene to latest Oligocene and was underlain by 51 metres of glauconitic calcilutite and calcisiltite of uncertain age. Underlying these was a sequence of non-marine sandstones, siltstones and claystones with coal seams common at the top but decreasing towards the total depth at 2490 metres. The non-marine sequence ranged in age from Lower Eocene to Senonian and represents the Latrobe Group.

Movable hydrocarbons were encountered in two zones within the Latrobe Group, and the well flowed at 1800 BOPD during a DST over the interval 1411-1416 metres. Electric logs indicated a density and corresponding velocity below 2275 metres. The seismic reflections from this interface dip more steeply to the south-west than overlying reflections and, therefore, the well penetrated a marked unconformity before bottoming in sediments of Upper Cretaceous/Senonian age.

- 3 -

1.9

18 JUN 1982

DRILLING

(Pages 4-14)

2.0

٠,

2.0 DRILLING

2.1.1 Drilling Data Summary

Drilling Contractor:

Drawworks:

Blow Out Preventor Equipment:

Elevation:

Pumps:

2.1.2 General Well Data

Location:

Dates:

Petromarine Drilling Aust. Pty Ltd Office Suite 1-5 1st Floor, Stratham House 49 Melville Parade SOUTH PERTH WA

National 1625 powered by two 752 GE Traction motors

Two stack system 20-3/4" x 2000 psi - Hydril MSP Cameron double gate Type U 13-5/8" x 5000 psi - Hydril GL Cameron triple gate Type U

RT to MSL - 9.45m Water Depth - 39.35m Datum - rotary table

Two National 12-P-160 Triplex driven by two GE 752 motors

Latitude 38⁰ 12' 17.17" S Longitude 147⁰ 37' 21.70" E

1600 hrs August 15th 1981 -Rig released from Lawley No. 1

0600 hrs September 15th 1981 arrived at location

1800 hrs September 16th 1981 spudded

1300 hrs October 20th 1981 -TD reached

1400 hrs November 3rd 1981 -Rig released

Days to total depth - 34 days

2.2 Daily Operation Record

2.2.1 Daily Drilling Operation Summary

See attachment

- 4 -

DAILY DRILLING OPERATIONS SUMMARY

WELL _____ WEST_SEAHORSE_NO. 1

DATE	DEPTH	OPERATION						
16.09.81	-	Ran and set anchors. Picked up TGB and landed same.						
17.09.81	61m	Made up 36" BHA. Drilled 36" hole to 61m.						
18.09.81	205m	Laid down 36" BHA and picked up 26" BHA. Drilled 26" hole to 205m.						
19.09.81	205m	Spotted hi-vis mud in 26" hole. POOH to run 20" casing. Ran 20" casing and cemented same. Stump tested 20-3/4" stack and began running same.						
20.09.81	205m	Finished running 20-3/4" stack. Choke line failed on pressure test. Pulled LMR package to install new choke line hose at the goose neck. Pressure tested PR's and annulars after changing seals on the test plug. Pressure tested the stand pipe and choke manifolds to 3000 and 5000 psi respectively. Made up $17\frac{1}{2}$ " BHA and RIH.						
21.09.81	477m	Tagged cement at 176m. Drilled out shoe and cleaned out to 205m. Drilled 17½" hole to 208m. Performed integrity test to 1.07 SG. Drilled 17½" hole to 353m. Dropped survey. Overshot would not pass through jars. POOH to retrieve survey. RIH and drilled 17½" hole to 477m.						
22.09.81	856m	Drilled 17½" hole to 856m. POOH for bit change.						
23.09.81	960m	POOH with bit No. 3 and laid down bumper sub. Made up new bit and bumper sub and RIH. Drilled $17\frac{1}{2}$ " hole to 960m.						
24.09.81	1138m ·							
25.09.81	1318m	Drilled 17½" hole to 1318m.						
26.09.81	1320m	Drilled 17½" hole to 1320m. Conditioned hole and dropped survey. POOH to 1272m. Picked up Kelly to work past tight spot. POOH to the jars to retrieve survey. RIH to 1267m. Ream and wash to 1320m. Condition hole and POOH to log. Ran DIT-BHC-GR.						
27.09.81	1320m	Ran FDC-CNL-GR and CST, RIH to $1272m$ with $17\frac{1}{2}$ " bit. Reamed and washed to bottom. Conditioned hole and then POOH to run $13-3/8$ " casing.						
28.09.81	1320m	Finished POOH with 17½" bit. Ran 13-3/8" casing and landed same on HWDP.						
29,09,81	1320m	Cemented 13-3/8" casing. Backed out running tool and washed wellhead. Pulled 20-3/4" stack.						
30.09.81	1320m	Function tested 13-5/8" stack. Ran 13-5/8" stack. Pressure tested stack and choke manifold. Set 13-5/8" WB after modifying the threads. Made up 12¼" assembly and RIH.						
01.10.81	1440m	Tagged cement at 1260m and drilled to 1323m. Performed pressure integrity test to 1.99 SG equivalent. Drilled 12½" hole to 1412m and circulated bottoms up for sample. Drilled 12½" hole to 1440m circulating bottoms up every 5m.						
02.10.81	1461m	Drilled 12¼" hole to 1450m. Made a 5 stand wiper trip and circulated bottoms up. POOH with 12¼" bit and RIH with core barrel. Cut core to 1461m and POOH.						
03.10.81	1560m	Recovered core and made up 12¼" bit. Unable to pass bit through wellhead. RIH and retrieve damaged WB. RIH with 12½" bit and drilled to 1560m.						
04.10.81	1678m	Drilled 12¼" hole to 1662m. POOH with plugged jets. Ran new 13-5/8" WB. Made up new bit and RIH to drill to 1678m.						
05.10.81	1744m	Drilled 12½" hole to 1744m. Made 15 stand wiper trip. POOH to log. Ran ISF-BHCS-GR, FDC-CNL-GR, and DLT-MSFL-GR.						
06.10.81	1744m	Reran DLT-MSFL-GR due to tool failure. Ran HDT, RFT's, and CST's.						
07.10.81	1801m	Finished running CST's. RIH with 12 ½" bit and drilled to 1801m.						
08.10.81	1975m	Drilled 12¼" hole to 1975m. Dropped survey and POOH.						
09.10.81	2078m	Finished POOH. Retrieved WB and ran test plug. Pressure tested stack.Retrieved test plug and ran WB. Made up 12½" bit and drilled to 2078m. POOH for bit change.						
10.10.81	2158m	Finished POOH. RIH with new bit to 2111m. Surveyed. Drilled ahead to 2158m.						

Hudbay Oil (Australia) Ltd. Subsidiary of Hudson's Bay Oil and Gas Company Limited

DAILY DRILLING OPERATIONS SUMMARY

WELL WEST SEAHORSE NO. 1

DATE	DEPTH	OPERATION
11.10.81	2210m	Drilled 12½" hole to 2168m. Surveyed. Drilled to 2210m and dropped survey. Made wiper trip to the shoe and then POOH.
12.10.81	2210m	Finished POOH. Made four RFT runs. RIH with 12½" bit. Reamed from 2183-2200m.
13.10.81	2276m	Ream to bottom and drilled to 2212m. POOH to 2183m and reamed the interval 2183 - 2212m. Drilled to 2276m. Dropped survey and POOH.
14.10.81	2325m	Finished POOH. Made up new bit and RIH to 2249. Reamed 2249 - 2276m. Drilled to 2325m and dropped survey.
15.10.81	2357m	Retrieved survey. Drilled 12½" hole to 2357m. Dropped survey and POOH for a bit change.
16.10.81	2365m	Finish POOH. RIH with new bit and ream 2350 - 2357m. Drilled to 2365m and then twisted off. POOH and made up overshot. RIH and latched onto fish. POOH with fish.
17.10.81	2366m	Finished POOH with fish. RIH with $12\frac{1}{4}$ " bit and junk sub. Milled on junk to 2366m. POOH with bit and junk sub.
18.10.81	2387m	Retrieved 13-5/8" WB and RIH with test plug. Tested stack, choke manifold, standpipe manifold and Kelly Cock. Pulled test plug and ran WB. RIH to 2366m and drilled to 2387m.
19.10.81	2416m ·	Drilled to 2416m. RIH with new bit.
20.10.81	2485m	RIH to 2402m. Reamed to 2416m. Drilled 12¼" hole to 2485m.
21.10.81	2490m	Drilled to 2490m. Dropped survey and POOH to log. Ran MSFL-DLL-GR, BHCS-GR, and FDC-CNL-GR.
22.10.81	2490m	Ran HDT, velocity survey, and CST's.
23.10.81	2490m	Finished running CST's and ran RFT's. Laid down 8" DC's and picked up $6\frac{1}{2}$ " DC's.
24.10.81	· 1565m PBD	Finished picking up 6½" DC's. RIH with OEDP to 2015m. Set cement plug No. 1 over the interval 2015 – 1940m. POOH to 1675m and set plug No. 2 over the interval 1675 – 1575m. POOH to lay down excess DP.
25.10.81	1527m PBD	RIH with 12¼" bit and tagged plug No. 2 at 1556m. POOH and retrieved WB. Ran 9-5/8" casing to 1552m. Cemented 9-5/8" casing.
26.10.81	1527m PBD	Displaced cement and backed out the running tool. POOH with running tool and RIH with 9-5/8" seal assembly. Set seal assembly. Pressure tested same and POOH with running tool. Pulled 13-5/8" stack and changed UPR to $3\frac{1}{2}$ ". Stump tested stack and then ran stack.
. 27.10.81	1527m PBD [.]	Finished running BOP. Landed stack and RIH with test plug to pressure test. POOH and reran test plug on $3\frac{1}{2}$ " pipe to test UPR. POOH with test plug and RIH with WB. RIH with $8\frac{1}{2}$ " bit, 9-5/8" scraper on $3\frac{1}{2}$ " tubing.
28.10.81	1527m PBD	Finished RIH with bit and scraper. Worked scraper over the interval 1350-1400m. POOH with scraper. Ran CBL-VDL-GR-CCL. Pressure tested casing to 2200 psi. Perforated the interval 1411 - 1416m. Began making up DST tools.
29.10.81	1527m PBD	Made up DST tools and ran same on 3½" tubing. Repaired leak in SSTT and then ran same. Started hooking up surface installations.
30.10.81	1527m PBD	Completed surface installations. Rigged up wireline equipment, and pressure tested surface equipment. Conducted DST No. 1.
31.10.81	1527m PBD	Closed PCT, reversed out tubing and rigged down pressure control equipment. Unsealed packer and circulate the well. POOH laying down tubing and DC's. Laid down testing tools. RIH with OEDP to 1514m and circulate high pH mud.
01.11.81		POOH and set BP at 1390m. Spotted 100 sacks of cement on top of BP. POOH to 160m and spotted 100 sacks of cement. Retrieved WB and then pulled 13-5/8" stack.
02.11.81		Ran corrosion cap. Attached marker buoy and cut guide wires. Rig shut down due to seamen's strike.
03.11.81		Pulled anchors 6, 2, 3 and 1.
04.11.81		Pulled anchors 7, 5, 4 and 8. Rig released 1400 hours November 3rd 1981.

2.2.2 Bottom Hole Assembly Record

36" hole:	26" bit, 36" HO, bit sub, 8" DC, XO, 5" HWDP
26" hole:	26" bit, bit sub, 12x8" DC, 11x5" HWDP
17½" hole:	17½" bit, bit sub, 6x8" DC, bumper sub, 5x8" DC, XO, 1x5" HWDP, jars, 9x5" HWDP
12¼" hole:	<u>1305 - 1450m</u>
	12¼" bit, bit sub, 6x8" DC, bumper sub, 8x8" DC, XO, 1x5" HWDP, jars, 9x5" HWDP
	<u>1461 - 1662m</u>
	12¼" bit, bit sub, 2x8" DC, stab, 1x8" DC, stab, 3x8" DC, bumper sub, 5x8" DC, XO, 1x5" HWDP, jars, 9x5" HWDP
	<u>1662 - 2078m</u>
	12 ¼" bit, bit sub, 2x8" DC, stab, 1x8" DC stab, 3x8" DC, bumper sub, 8x8" DC, XO, 1x5" HWDP jars, 9x5" HWDP
≏.	<u>2078 – 2210m</u>
	12¼" bit, bit sub, 3x8" DC, stab, 1x8" DC, stab, 2x8" DC, bumper sub, 8x8" DC, XO, 10x5" HWDP
	<u>2210 – 2365m</u>
	12¼" bit, bit sub, 2x8" DC, stab, 1x8" DC, stab, 3x8" DC, bumper sub, 14x8" DC, X0, 13x5" HWDP
	<u>2365 - 2416m</u>
	$12\frac{1}{4}$ " bit, junk sub, bit sub, 2x8" DC, stab, 1x8" DC stab, 3x8" DC, bumper sub, 14x8" DC, X0, 13x5" HWDP
	<u>2416 – 2490m</u>
	12½" bit, junk sub, bit sub, 2x8" DC, stab, 1x8" DC stab, 17x8" DC, X0, 13x5" HWDP
Bit Record	
(See attachment.)	

- 2.2.4 <u>Time Breakdown Analysis</u> (See attachment.)
- 2.2.5 <u>Time vs Depth Chart</u> (See attachment.)

2.3 Casing Record

2.2.3

- 2.3.1 Casing Details
 (See 'Casing and Tubing Tally Reports' attached.)
- 2.3.2 <u>Cementation Details</u> (See 'Casing Running Reports' attached.)

- 5 -

B	Ī	Ţ	<u>R</u>	E	<u>C</u>	<u>0</u>	<u>R</u>	<u>D</u>

ه.

NO.	SIZE	MAKE	ТҮРЕ	SERIAL NO.	JETS	DEPTH OUT	METRES	HRS	M/HR	WOB 1000LBS	RPM	PUMP PRESS	SPM	DULL COND		ND	REMARKS
											at a sa			Т	В	G	
1	26"	нтс	OSC3AJ [^]	RB267	Open	61	12.02	10 ¹ 2		5/10	80	250	75	2	1	I	۲
2	26"	нтс	OSC3AJ	LJ320	Open	205	143	21½	6.6	20	100	600	160				
3	17½"	нтс	OSC3A	A2030	3x24	856	651	37	17.5	35	100	1350	150				
4	17½"	нтс	OSC3AJ	A2031	3x24	1320	464	52½	7.4	35	100	1350	150	2	2	I	
5	12¼"	нтс	OSC3AJ	EV151	3x14	1450	137	12	11.4	35	120	1300	100	8	6	I	
C#1	8- 15/32	CHRIS	C20	81E0672		1461	11	2	5.5								
6	12¼"	HTC	J4	EZ415	3x14	1662	201	18 ¹ 2	10.9	40	75/80	2200	110	3	2	I	
7	12¼"	HTC	OSC3AJ	EV983	3x14	1744	82	6	13.6	40	70	1875	110	3	5	1/8	
RR6	12¼"	HTC	J4	EZ415	3x14	1975	231	26 ¹ 2	8.7	40/50	75	2300	130	5	2	1/8	
8	12¼"	HTC	JD3	HX252	3x14	2078	103	14	7.4	40	80	1800	110	5	2	1/16	
9	12¼"	HTC	JD3	HX191	3x14	2210	132	26	5.1	25/40	90	1750	110	6	2	1/8	
10	12¼"	HTC	J7	BK061	3x13	2276	66	16½	4	50/60	80	1250	100				
11	12¼"	SMITH	A1	BN7038	2x15 1x10	2357	81	32	2.5	26	100	1000	110	7	7	3/8	
12	12¼"	нтс	JD3	HX271	3x13	2365	8	3	2.7	20/30	70	1000	110	4	2	I	fished due to parted bumper sub
RR7	12¼"	нтс	0SC3AJ	EV983	3x13	2366	1	1/2	2.0	20/30	70	1000	110				mill on junk
13	12¼"	нтс	J44	075CF	3x13	2416	50	25½	2.0					2	2	I	
14	12¼"	SMITH	F57	BN3634	3x13	2487	71	27	2.6	40	60	1300	120	2	2	I	
15	8½"	НТС	XV	57062	0pen												clean inside 9-5/8" casing

						•	WELL:	WEST SEAHORSE NO	1	
Dräwn: A.Clark Date:	Autho	TIME ANALYSIS (Hours)	Moving/ Anchoring	•	17 ¹ 3" Hole	12 ¹ "Hole		OF HOLE 6"Hole Comp/Test	Total	00
A.Clark	- 1	DRILLING:								
lar		Moving to/from Location	374						374	23.6
	ŀ	Anchor Handling	48					21	69	4.3
	{	Drilling		32	97	2034			332 ¹ 2	20.9
	ŀ	Round Trips		94	22	814			113	7.1
	ŀ	Reaming, Cond. Hole, Cond. Trips		54	28	37		· · · · · · · · · · · · · · · · · · ·	701	4.4
_	ł	Running, Pulling and Cementing Casing	-	9	42	74		19	774	4.9
WEL	Ī	Running, Pulling Subsea Equipment		21	234	-			443	2
	t	Testing Wellhead and BOP's		15	64	8			294	1.9
'n	t	Plugging Back, Abandonment, Completion						561	561	3.6
	f	Curing Lost Circulation			1					
	f	Fishing and Washouts			1	344			345	2.2
_ ≦ (£ţ	Well Control	·						· · ·	1
	Ŧ	Surveys			13	8			81	0.5
Β	Hudbay	Downtime: Weather			1					
R	ž [Mechanical Surface			51	7			124	0.8
Ē	F	Mechanical Subsea		e e mar a care			··· · · · · · · · · · · · · · · · · ·			+
Å	외	Others		51					51	0.3
Ő	Â									
BREAKDOWN	(Australia)	EVALUATION:								
Z	ē	Circulating Samples		· · · · · · · · · · · · · · · · · · ·		61			64	0.4
~	E	Hole Cond, Trips for Coring, Logging, Testing				56	<u></u>		56	3.5
A	ā	Coring				5			5	.3
Ā	ŀ	Electric Logging			124	664				
	ŀ	Wireline Flow Testing		ļ	147				79	5
5	ŀ	Drill Stem and Production Testing				351/3			3512	2.2
ANALYSIS	ŀ			•			·····	1354	1354	8.5
0	ŀ	Downtime: Logging				8			8	0.5
		Flow Testing								
	┟	Others						· ·		
P	Sca	OTHERS				10		241	344	2.2
N.T.S.	ale:						······································			
N.T.S.	ł	Total Time	422	97 ¹ 3	2371	5741		2561	1588	
2		% Downtime			2	3				

. .

ير الدر بره مشد در بر

HUDBAY OIL (AUSTRALIA) LIMITED Casing and Tubing Tally

6	-

(METRIC)

						<i>,</i>)			
			SEAHORSE				ER 198	2 Casing S	ize <u>20 inch</u>
Weight_	<u>(0.438 i</u>	n WT)	<u>94 1b/f</u> &ra	ade <u>X</u> 5	2c	Connection <u>Cameron</u>	1001	Joints R	un
Joint No.	Length of (m) joint		Total in (m) Hole	Joint No.	Length of (m) Joint	Total in (m) Hole	Joint No.	Length of Joint	Total in Hole
	•				1			1	
	•			Carrie	ed Forward		Carrie	d Forward	
01	13.15	incl	shoe	41	•		81	•	
02	12.50			42	•		82	•	
03	12.00		·····	43	•		83	•	
04	12.00			44	•		84	•	
05	12.00			45	•		85	•	
06	12.00			46	•		86	•	
07	12.00		·····	47	•		87	•	
08	12.50			48	•		88	•	
09	12.00			49	•		89	•	
10	12.00			50	•		90	•	
Sub tot	122.15			Sub tot	•		Sub tot	•	
11	12.00			51	•		91	•	
12	10.15			52	•		92	•	
13	•			53	•		93	•	
14	•			54	•		94	•	
15	•			55	•		95	•	
16	•		·····	56	•		96	•	
17	•			57	•		97	•	
18	•			58	•		98	•	
19	•			59	•		99	•	
20 Sub tot	22.15			60	•		100	•	
21				Sub tot 61	•		Sub tot	•	
22	•			62	•		-	TALLY S	UMMARY
23	•			63	•		Grou	p No.	Length
24	•			64	•		Enc	ding	(Forward)
25	•			65`	•		10		122.15
26	•			66	•		20		22 ·15
27	•			67	•				•
28	•			68	•		40		•
29	•			69	•		50		•
30 Sub tot	•			70			60		•
				Sub tot	•				•
31	•	· · · · · · · · · · · · · · · · · · ·		71	•		80		•
32 33				72	•		90		•
33	•			73	•	· · · · · · · · · · · · · · · · · · ·			144.30
35				74 75	•				<u>144.JU</u>
36	•		<u>_</u>	75	•		Taily I Check		. <u></u>
37	•			77	•	· · · · · · · · · · · · · · · · · · ·	1		
38	•			78	•	· · · · · · · · · · · · · · · · · · ·	-1		
39	•			79	•		1		
40	•			80	•	·	1		

REMARKS 1) 30" x 20" combination landing joint measured from top of 20" casing housing to bottom of 20" 'CC' connector box. 2) Length of 20" float shoe 0.90 m.

•

Sub tot

Sub tot

•

H Shire Operator's Representative_

Casing and Tubing Tally (METRIC) Page_____0f____2

		WEST SEAHORSE N	101		07 05075405	D 100	1	12 2/9 inch
	ne and No	61 1b/ft		D	DTC	<u>K 190.</u>		105
Weight_		Grad	de				Joints Ru	
Joint	Length of (m)	Total in (m)	Joint	Length of (m)	Total in (m)	Joint	Length of	Total in
No.	joint	Hole	No.	Joint	Hole	No.	Joint	Hole
Shoe	0.60	0.60						
01	12.06	12.66	Carrie	ed Forward			d Forward	000 01
<u>Colla</u>	tt	13.09	41	11.99	490.79	81	11.41	969.01
02	12.07	25.16	42	12.02	502.81	82	12.08	981.09
03	11.75	36.91	43	12.10	514.91	83	12.11	993.20
04	11.89	48.80	44	11.96	526.87	84	12.07	1005.27
05	11.76	60.56	45	12.02	538.89	85	<u>11·91</u>	1017.18
06	11.91	72.47	46	11.83	550.72	86	11.98	1029.16
07	11.60	84.07	47	11.86	562.58	87	11.89	1041.05
08	12.01	96.08	48	11.98	574.56	88	11.99	1053.04
09	<u>11·90</u>	107.98	49	11.98	586.54	89	11.89	1064.93
10	12.07	120.05	50	12.08	598,62	90	11.93	1076.86
Sub tot	120.05	100 10	Sub tot	119.82	<u> </u>	Sub tot	<u>119·26</u>	1000 02
11	12.08	132.13	51	12.08	610.70	91	11.97	1088.83
12	11.93	144.06	52	11.95	622.65	92	11.75	1100.58 1112.66
13	11.98	156.04	53	12.08	634.73	93	12.08	1124.74
14	$\frac{11\cdot 97}{11\cdot 92}$	168.01	54	12.00	646.73	94	<u>12.08</u> 12.03	1124.74
15	12.02	179.93	55 56	<u>12·08</u>	658.81	95 96	12.03 11.82	1148.59
16	12.02	<u> 191.95</u> 203.94	50	11 [.] 87 12 [.] 08	670.68	97	11.82 11.82	1140.33
17 18	12.04	215.98		$12^{\circ}08$ 11°90	<u> 682.76</u> 694.66	98	11 02 $11 \cdot 91$	1172.32
	12.04 11.98	227.96	58 59	12.03	706.69		$11 \cdot 91$ 11 · 95	1184.27
19 20	12.08	240.04	60	12.03 11.94	718.63	<u>99</u> 100	12.03	1196.30
Sub tot	119.99	240.04	Sub tot	120.01	/10.05		119.44	1150100
21	12.09	252.13	61	11.92	730.55		<u> </u>	
22	11.89	264.02	62	12.06	742.61	1	TALLY SU	JMMARY
23	11.95	275.97	63	11.97	754.58	Grou		Length
24	11.98	287.95	64	11.96	766.54	Enc	ling	(Forward)
25	11.98	299.93	65	11.94	778.48	10		120.05
26	12.03	311.96	66	11.88	790.36	20		119.99
27	12.08	324.04	67	12.08	802.44	30		119.71
28	11.83	335.87	68	11.98	814.42	40		119.05
29	11.87	347.74	69	11.97	826.39	50		119 •82
30	12.01	359.75	70	12.08	838.47	60		120.01
Sub tot	119.71		Sub tot	119.84		70		119 •84
31	11.86	371.61	71	11.85	850.32	80		119 ·13
32	12.10	383.71	72	11.62	861.94	90		119 26
33	11.92	395.63	73	11.86	873.80	100		119 •44
34	11.86	407.49	74	11.89	885.69	ΤΟΤΑ		1196.30
35	12.08	419.57	75	11.99	897.68	Tally	_{By} H Shi	re
36	11.64	431.21	76	12.07	909.75	Check	ed By	
37	12.04	443.25	77	12.08	921.83	l		
38	11.53	454.78	78	12.04	933.87	ļ		
39	12.05	466.83	79	12.05	945.92			
40	11.97	478.80	80	11.68	957.60	ļ		
Sub tot	119.05		Sub tot	119.13		J		

REMARKS_

Length Work String = 45.0m

Shoe Depth

= 1305.5m

Operator's Representative_

2_____of____2 Page.____

Casing and Tubing Tally (METRIC)

Well	Name and	d No

Well Nan	ne and No	WEST SEAHORSE N	01	D	ate 27 SEPTEMB	ER 198	31 Casing Siz	<u>13-3/8 inch</u>
		<u>ft</u> Grade			onnection BTC		Joints Ru	n <u>105</u>
Joint No.	Length of (m) joint	Total in (m) Hole	Joint No.	Length of (m) Joint	Total in (m) Hole	Joint No.	Length of Joint	Total in Hole
	•							
	•		Carrie	ed Forward		Carrie	d Forward	
101	11.92	1208.22	41	•		81	•	
102	11.63	1219.85	42	•		82	•	
03	11.98	1231.83	43	•		83	•	
04	11.87	1243.70	44	•		84	•	
05	11.83	1255.53	45	•		85	•	
06	•		46	•		86	•	
07	•		47	•		87	•	
08	•		48	•		88	•	•
09	•		49	•		89	•	
10	•		50	•		90	•	
Sub tot	59·23		Sub tot	•		Sub tot	•	
11	•		51	•		91	•	
12	•		52	•		92	•	
13	•		53	•		93	•	
14	•		54	•		94	•	
15	•		55	•		95	•	
16	•		56	•		96	•	
17	•		57	•		97	•	
18	•		58	•		98	•	
19	•		59	•		99	•	
20	•	· · · · · · · · · · · · · · · · · · ·	60	•		100	•	
Sub tot	•		Sub tot	•		Sub tot	<u> </u>	
21	•		61	•		1		
22	•		62	•			TALLY SU	JMMARY
23	•		63	•		Grou	p No.	Length
24	•		64	•			ling	(Forward)
25	•		65	•		10		•
26	•		66	•	······	20		•
27	•	· · · · · · · · · · · · · · · · · · ·	67	•		30		•
28	•		68	•	······································	40		•
29	•		69	•		50		•
30	•		70	•		60	1	•
Sub tot	•		Sub tot	•		70	_	•
31	•		71	•		80		•
32	•		72	•		90		•
33	•		73	•		100		•
34	•		74	•		τοτα		
35	•		75	•		Tally		
36	•		76	•		Check	ed By	······································
37	•		77	•				
38	•		78	•				
39	•		79	•				
40	•		80	•				
Sub tot	•		Sub tot	•	·····			

REMARKS_

Operator's Representative___

Page_____0f___2___

Casing and Tubing Tally (METRIC)

Well Name and No.	WEST	SEAHORSE	NO	1	r
well hame and ho.					. . .

and a subscription of the second s

Date 10 OCTOBER 1981 ____ Casing Size ____ 9-5/8 inch___

	40 1b/	f+	V	0	onnection <u>BTC</u>		Casing 512	_
Weight_			e				Joints Ru	
Joint No.	Length of (m) joint	Total in (m) Hole	Joint No.	Length of (m) Joint	Total in (m) Hole	Joint No.	Length of Joint	Total in Hole
Shoe	0.57			140.12				
01	11.99		Carrie	d Forward		Carrie	d Forward	
Colla			41	12.01	·····	81	11.57	
02	11.96		42	11.98		82	11.71	
03	12.06		43	12.10		83	12.04	
04	11.87		44	11.77		84	11.98	
04	12.07		45	12.04		85	11.98	
	11.77		46	11.95		86	11.66	
06	12.02		47	12.00		87	11.98	
07	11.87		48	11.87		88	11.36	
09	11.81		40	12.09		89	12.00	,
10	12.09		50	12.08		90	12.09	
Sub tot	12 09 119.51		Sub tot	119.89		Sub tot	118.37	
11	$119^{\circ} 51$ 12.10		51	11.92		91	110 - 57 11.75	
12	12.10 11.86		51	11.66		92	12.05	
13	11.82		53	11.75		93	11.94	
13	12.00		54	11.75		94	11.79	
14	12 00 11.77		55	11.89		95	11.68	······································
16	$11 \cdot 77$ 11 · 35		56	11.76		96	11.00 11.77	·····
17	12.02		57	11.74		97	11.95	
17	11.78		58	12.06		98	11.50 11.77	
	11.78 11.79	a	59	11.92		99	11.69	
19	11.79 11.96		60	11.95		100	$11 \cdot 74$	
20 Sub tot	118.45		Sub tot	118.40		Sub tot	110 10	
Sub tot 21	110.45		61	11.91		000 101	110 10	
	11.92		62	12.07			TALLY SU	IMMARY
22	12.09		63	11.62				Length
23	12 09 11.81		64	11.84			p No. ding	(Forward)
24	11.81 11.85		65	11.93		10	- <u>r</u>	119.51
25 26	11.85 11.81		66	11.81		20	1	$\frac{119 \cdot 91}{118 \cdot 45}$
	11.01		67	11.77		30		118.78
27 28	11.91		68	11.83		40		118.24
28	11.91			11.93		50		119 • 89
30	11.03 11.67		69 70	11.95		60		118.40
	118.78			118.66		70		118.66
31	11.97		71	11.72		80		118.63
31	11.86		72	11.86		90		118 • 37
32	11.80		72	11.93		100		118.13
33	11.00		73	11.72		 TOT /		1187.06
34	11.75		74	12.10			By H Shī	
36	11.75		76	11.82			ced By	·
37	12.10		77	12.05			·	
37	11.96		78	11.65				
38	11.78		79	11.99		1		
40	11.70 11.61		79 80	11.79		1		
	118.24			118.63				
Sub tot	110.71		SUD LOT	110,00		1		

REMARKS Ran a total of 126 Jts K55 40 lb casing with shoe @ 1552.15m. Broke circulation <u>REMARKS</u> Kan a total of 120 ots K35 40 Hb tasing with shoe e 1352.15m. Droke circulation @ 1300m - OK. Thread locked all connections from shoe to collar. Centralizers at 1st, 3rd and 5th Jt, and Jts 40, 41 and 42. Pressure tested cmt line to 3500 psi, pumped 10 bbl DW ahead. Mixed and pumped 503 sx 'G' cmt with 5 pct CFR2. Launched dart and sheared plug with 3250 psi. Followed with 2 bbl DW, followed with 370 bbls mud. Bumped plug 1750 psi. Checked float shoe - holding OK.

Note: Average slurry wt. 15.6 - 15.8 ppg.

Casing and Tubing Tally

(METRIC)

WEST SEAHORSE NO 1 _____ Date ____ 10 OCTOBER 1982 _____ Casing Size _____ 9-5/8 inch

2

Page_

____of____2

Weight_	40 1b/	ftGrac	le		onnection <u>BTC</u>		Joints R	un
Joint No.	Length of (m) joint	Total in (m) Hole	Joint No.	Length of (m) Joint	Total in (m) Hole	Joint No.	Length of Joint	Total in Hole
	•			•				
	•		Carrie	ed Forward		Carrie	d Forward	
101	12.07		41	•		81	•	
102	11.76		42	•	· · · · · · · · · · · · · · · · · · ·	82	•	
03	11.70		43	•		83	•	
04	11.74		44	•		84	•	
05	11.65		45	•		85	•	
06	11.73		46	•		86	•	
07	12.09		47	•		87	•	
08	11.38		48	•		88	•	
09	11.63		49	•		89	•	
10	11.68		50	•		90	•	
Sub tot	117.43		Sub tot	•		Sub tot	•	
11	11.70		51	•		91	•	
12	12.09		52	•		92	•	
13	11.89		53	•		93	•	
14	$11 \cdot 91$	·	54	•		94	•	
15	12.09	· · · · · · · · · · · · · · · · · · ·	55	•	· · · · · · · · · · · · · · · · · · ·	95 96	•	
16	11.74		56	•		1	•	
17	11•63 11•92		57			97	•••••••	<u> </u>
18	11.92 11.65		58	•		98	•	
19	11.05		59	•		<u>99</u> 100	•	
20 Sub tot	118.41		60 Sub tot			Sub tot	•	
21	110.41		61	•				
22	11.80 11.81		62	•		1	TALLYS	UMMARY
23	11.93		63	•		Grou		Length
24	$11 \cdot 79$	an allow on a low a second of the second	64	•	· · · · · · · · · · · · · · · · · · ·	Enc	ding	(Forward)
25	11.98	•	65	•	······································	110		117.43
26	11.75	· · · · · · · · · · · · · · · · · · ·	66	•	· · · · · · · · · · · · · · · · · · ·	120	4	118.41
27	3.96	Pup Jt	67	•	.,	130		83.15
28	4.02	Pup Jt	68	•		40		•
29	4.05	Hanger Jt	69	•	· · · · · · · · · · · · · · · · · · ·	50		•
30	•		70	•		60	c/f	1187.06
Sub tot	83·15		Sub tot	•		70	1	•
31	•	1	71	•		80		•
32	•		72	•		90		•
33	•		73	•		100		•
34	•		74	•		ΤΟΤΑ	L	1506.05
35	•		75	•		Tally	Ву	
36	•		76	•			ed By	
37	•		77	•				
38	•		78	•				
39	•		79	•				
40	•		80	•				
Sub tot	•		Sub tot	•]		

REMARKS_

1.1

Well Name and No.

Operator's Representative_

HUDBAY OIL (AUSTRALIA) LIMITED Casing, Running Report	þ		
Well Name and No. WEST SEASHORE NO. 1 Date 18 SEPTEMBER 1983	Casing Size	20"	
HOLE Size 36" 26" Depth (m) 61m 205m			
Size 20" 20"			
CASING Depth (m) 189.38			
MUD: Type Seawater spud mud s.g. 1.04 Vis. 100+ YP Power Tong Torque Maximum N/Aft/lbs. Minimum N/	A ft/lt	_WL	
Fill up Points Ea. Jt			
Calc. Displ. (m ³) NONE Pump Strokes Ir	ncluding Lar	nding String	
CASING INFORMATION	Length	Depth B/RT	
TD	Lengen	205.00m	
	15.62	100.00	
Shoe (make and type) Baker Float Shoe Landed at Length Shoe	.90	<u>189.38</u> 188.48	
		· · · · ·	
<u>11 Joints. Grade X52 wt. 94</u> Ib/ft ID. <u>19.124</u> ns.	133.25	55.23	
Landing Collar (make and type) 30"x20" combination landing Jt with 20" CIW casing housing	10.15	45.08	
Top of 20" casing housing 45.08m B/RT			
	· · · · · · · · · · · · · · · · · · ·		
Hanger or Suspension joint (make and type)			
Top Hanger or Suspension joint	17 00		
Landing String	47.00		
	2.0	98	
metres above R.T. at Zero Tide	1.30		
metres up from R.T.	.78		
DETAILED CASING AND CEMENTING REPORT			
1330 to 1900 hrs ran and landed 11 Jts 20" 94# casing washe	d from 188m	to 189m with	
seawater with float shoe at 189.38m. Circulated out full c	asing volum	ne 180 bbl.	
1930 - 2100 Test cement line to 3000 psi, ok. Mix and pum	n 2000 sx (lass 'G' neat	
cement slurry start 15.4 ppg tail of slurry 15.8 ppg. Disp	laced with	154 bbls sea	
water.			
<u>Ck for back flow static float holding ok</u> ,			
Operators Representative Harold	Shire		

•

a marine a subscription of the second

.

· · · · · · · ·

...

		HUDBAY OIL (Casing	AUSTRALIA) Running Repo			
Well Name and No.	WEST SEAHOR			EPTEMBER 198	Casing Size	13-3/8"
HOLE	Size	172		T		
	Depth (m) Size	1320.00 13-3/8				
CASING	Depth (m)	1305				
MUD: Type Power Tong Torque	Maxim	s.g. <u>1.08</u> um 7000	Vis	<u>38</u> YP	200	wL18.4
Fill up Points CON			ft/ibs	. Minimum <u>6</u> (<u>500</u> ft	/lbs.
Calc. Displ. (m ³)	624.5		Pump Stro		<u>lO bbls wit</u>	h HOWCO
CASING INFORMAT		psi			psi	
TD						1320.00
OFF BOTTOM Shoe (make and type)	Baker Floa	at Shoo			15.00 1305	1305.00
Length Shoe	Daker Flug			Landed at	.60	1305.00
100					1	'
105 Join	ts. Grade K55	wt. 61 lb/	ft ID. 12.515	ins	1254.64	49.76
Landing Collar (make	and type)	Baffle colla	r BTC		.43	49.33
		Wellhead			4.37	44.96
				· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·					
		Wellhead to	rotary tab	1e	44.96	
Hanger or Suspension j Top Hanger or Suspens		e)				
Landing String					52.10	
metres above R.T. at Z	ero Tide					
Less tide of metres up from R.T.					7.14m	·
					/ 1 1 m	
DETAILED CASING A			0730 +0 05	20 Pough	wathan co	nt. Adjusting
anchor moorir	ng to keep r	ig on locati	on. Rig u	p 350 ton ca	sing equip	ment @ 20"
shoe and brok						
Landed casing cementing wit	th 13-3/8" c	asing shoe a	an <u>d circui</u> it 1305m.	ated tull ca	sing volum	e prior to
<u>Pumped 10 bbl</u> Start cement	<u>s CS-2 spac</u> at 08.10 mi	er ahead. H	' <u>ressure te</u> '350 sx Cla	<u>st cement li</u> ss 'G' in 52	ne and head O bbls mix	<u>d to 3500 psi,</u> Ok ing water
<u>containing 2.</u>	5% prehydra	ted bentoni	te and 0.1	<u>% HRL averag</u>	<u>e slurry w</u>	<u>t on lead 13.5</u>
ppg. Mix and	l pump 300 s	x Class 'G'	cement in	36 bbls seaw	ater with	0.1% HRL average
slurry wt on	tail 15.8.	Finish mixi	ng_0950			
Release dart unit followed did not bump. not holding w	l with 621 b Had displ	bls using ri aced 7 bbls	g pump. F over casin	Pump 10 bb inal pumping g volume to	ls seawate pressure F.collar, (r with cement 1800 psi. Plug OK. Float shoe

Operators Representative Harold Shire

		Casing	g, Running Repo	ort 🔍 🔍		5 (0)
	WEST SEAHOF	-	- 25.00	TOBER 1981	9-	5/8"
Well Name and No.	WEST SEAHUP		Date 25 00			
HOLE	Size		26205	17 <u>1</u> 1320	12 ¹ / ₂ 2490	
	Depth (m) Size	<u>61</u> 30"	20"	13-3/8"	9-5/8"	
CASING	Depth (m)	53	189	1305	1552	
MUD: Type Go	l/Polymer			38 YP		L 7
ower Tong Torque	-	um		. Minimum		
-ill up Points						
Calc, Displ. (m ³)	376 bb1	<u>s</u>	Pump Stro	kes		
		psi			psi	
ASING INFORMA	TION					
D				·		2490
FF BOTTOM				Landed at		1552
ength Shoe					. 57	1551.43
1 Jo	int . Grade K55	wt. 40	Ib/ft ID.8.835	ins.	11.99	1539.44
anding Collar (mak					.45	153 <u>8.99</u>
125 Jo	oints Gr. K5,	wt_40_1b/	ft ID 8.835	ins	1481.01	57.98
Pup Joint					3.96	54.02
Pup Joint					4.02	50.00
	n joint (make and typ ension joint	e)			4.05	45.95 R
Hanger or Suspensior Top Hanger or Suspe Landing String HWD	ension joint	e)			4.05	45.95 R
Top Hanger or Suspe Landing String HWD	ension joint JP	e)			4.05	45.95 R
Fop Hanger or Suspe	nsion joint)P Zero Tide	e)			4.05	45.95 R
Top Hanger or Suspe Landing String HWD netres above R.T. at Less tide of netres up from R.T.	nsion joint)P Zero Tide				4.05	45.95 R
Top Hanger or Suspe anding String HWD netres above R.T. at cess tide of netres up from R.T. DETAILED CASING Ran a total circulation ioints and i	S AND CEMENTING of 126 joint at 1300m OK	REPORT S K55 40 1 thread loc Pressure	<u>k all conn F</u> test cement	with shoe at /Shoe to coll line to 3500,	1552.15. Bro ar. Cent 1s pump 10 bb1	oke t 3rd 5th DW ahead.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of netres up from R.T. DETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	with shoe at /Shoe to coll line to 3500, Launch dart 370 bbls mud. slurry weight	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of metres up from R.T. ETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of netres up from R.T. ETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of netres up from R.T. DETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of netres up from R.T. DETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of netres up from R.T. DETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of netres up from R.T. DETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of netres up from R.T. DETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of netres up from R.T. DETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.
op Hanger or Suspe anding String HWD netres above R.T. at ess tide of metres up from R.T. ETAILED CASING Ran a total circulation joints and jump 3250 psi fol	S AND CEMENTING of 126 joint at 1300m OK jt 40-41-41. 503 sax 'G'	REPORT s K55 40 1 thread loc Pressure cement_wi bbl_DW_fo	test_cement th .5% CFK2.	/Shoe to coll line to 3500, Launch dart 370 bbls mud.	1552.15. Br ar. Cent 1s pump 10 bbl and shear p Bump plug	oke t 3rd 5th DW ahead. lug with 1750 psi.

A CONTRACTOR OF A CONTRACTOR

5

Operators Representative

Harold Shire

2.4 Mud System

2.4.1 Mud Report Summary

Water Depth 49m, Hole to 205, Set 30" Casing at 189m

This hole was spudded at 1800 hrs on the 16th September in 39m of water. 20-25 bbls of high viscosity mud was pumped on each connection and 400 bbls of mud spotted in the open hole at casing point. A further 400 bbls of mud was spotted after a wiper trip prior to running casing.

Drill 17¹/₂" Hole to 1320m, Set 13-3/8" Casing at 1305m

The cement was drilled and a leak off test conducted to an SG of 1.07. The hole was then displaced to mud. All settling tanks were cleaned and solids control equipment checked out.

At the outset seawater was accidentally added to the system which raised the chlorides to 14000 ppm by 470m. Thereafter drill water was added at the shakers, partly compensating for the 25-35 bbls/ hour losses from the desilter.

The traps were dumped when necessary and dilution volume made from Q-Mix prepared in the reserve tanks and fresh water. The mud weight was kept below $1.10 \, \text{SG}$.

At 960m the drillship ran out of drill water necessitating the use of seawater. Dextrid additions commenced at 1318m so that the WL was reduced to below 15 mls.

The hole was conditioned at 1320m for logs. The hole showed a few signs of instability when POOH - at 1272m there was 50 tonne overpull. The pipe was pumped out to 1233m with the hole swabbing to 1220m. RIH the hole bridged at 1217m and reaming was required to 1320m. The hole was circulated and conditioned prior to logging. During logging the hole took 30 bbls of mud and afterwards, when conditioning the hole 1272 - 1320m required reaming with bridges at 1272 and 1288m and 2m of fill on bottom. Cuttings showed signs of geopressures.

The 13-3/8" casing was landed and set without problem with cement returns to the surface. This mud system was then dumped and new mud prepared.

12¼" Hole Interval

The $12\frac{1}{4}$ " hole section was spudded with bit No. 5 on the 29th September after drilling the shoe and cement. The ensuing leak off test recorded an equivalent MW of 1.99 SG. The mud weight was raised to 1.08 SG at 1412m then cut back to 1.05 SG at 1421m. The interval 1412 - 1456 was drilled in 5-10m spurts with bottoms up being circulated out each time. A core was cut from 1456 - 1460 with 81% recovery.

Cement from within one of the collars blocked the jets at 1662m. On re-entering the hole the interval 1658 - 1678 required washing and reaming.

Intermediate logs were run at 1745m. 4 runs plus 2 RFT and 2 CST tests were conducted with no hole trouble. The hole was shown to be in good gauge.

There was a drilling break at 1929m and then slow seepage to the formation (approximately 70 bbls) thereafter. The mud weight then was 1.06 SG. Drilling continued to 2210m where 4 RFT runs were made with no hole problems. 2183 - 2210m required washing and reaming on return to drilling.

A fishing operation was mounted at 2365m for the BHA below the bumper sub. The fish was retrieved and a mill tooth bit run with junk basket subsequently.

TD was reached on the 20th October at 2489m. The last 74m were drilled noticeably faster due to a different bit (Smith F57) being employed.

Two days logging followed with the suite being completed with no hole problems.

2.4.2 Mud Engineering

Mud Engineering services and mud additives were provided by Baroid Australia Pty Ltd.

2.4.3 Mud Record (Daily Characteristics)

(See'Mud Properties' Record attached.)

HUDBAY OIL (AUSTRALIA) LIMITED **Mud Properties**

WELL WEST SEAHORSE NO. 1

MUD COMPANY: BAROID

12

- 1. Specific gravity
- 2. Viscosity (sec)
- 3. A.P.I. Water Loss (ml) 4. Cake Condition

5. A.P.I. Cake (millimetre)

- 6. Sand (%)
- 7. Chloride (ppm x 1000)
- 8. pH
- 9. Solids (%)

- 10. Plastic Viscosity (cp @ 50°C)
- 11. Yield Point (lb/100ft.²) 12. Gels (lb/100ft.² 10 sec/10 min)
- 13. Total Hardness (epm)
- 14. Pf

- 14. PT 15. Mf 16. Oil % 17. "N" Factor 18. Bentonite (lbs/bbl)

•			,		• · · · · · · · · · · · · · · · · · · ·	-	+	·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	10. 00	ntonite	105/001	, ,	,		·······	·····
Date	Depth 0600 hrs (metres)	1	2	3	4	5	6	7	8	9	10	11	. 12	13	14	15	16	17	18
17/9	61	1.04	100	1				1				1	1		1		1	1	1
18	205	1.04	100																[
19	205	1.04		1				1		1		1					1		1.
20	205	1.01	36	19		1	0	9	10	1	1	1		6	1.5		1		28
21	477	1.10	48	24		3	.5	14	8	1		1		6	0				34
22	856	1.08	40	18		2	.5	8.5	10	8		1		12	.4				34
23	959	1.07	35	32		2	.4	12.5	8.3	6	5	14	6/9	80	.1		1		34
24	1138	1.08	36	35		2	.5	14.7	9.5	6	4	13	6/10	100	Tr				23
25	1318	1.09	40	13.6		2	.5	19	8.5	7	9	15	2/6	80	Tr				43
26	1320	1.10	38	13.8		2	.5	19	8.5	6	8	8	2/4	80	.1				34
27	1320	1.08	38	16.8		2	.6	19	8.3	6	6	9	2/5	80	Tr				34 34
28	1320	1.08	38	18.4		2	.5	19	8.0	6	5	9	2/4	80	0		<u> </u>		34
29	1320	1.08	38	18.4		2	.5	19	8.0	6	5	9	2/4	80	0				34
30	1320	1.00	38	6		1	0		9:2	1	9	7	0/1	14	.7				28
1/10	1440	1.02	43	5.4		1	.4	8.5	9.0	4		1	8/14	12	.3				
2	1460	1.06	48	6.3		1	1.0	10	9.6	3	8	14		6					28 23
3	1551	1.06 1.06	42	7.5	·	$\frac{1}{1}$	1.25	10. 12.5	8.5	4	10 10	21	8/15 6/9		.5				23
4	1678	1.08	40	7.8		$ \bar{1} $.2	12.5	8.7	4		10 12	2/5	14 22	.15				23
5	1745	1.03 1.04	40	4.4		1	.4	12.5	8.7	3	7 10	12	3/10	22	.1.				23
6	1745	1.04	40	4.4		1	1	12.5	8.7	3	10	12	3/10	22	.1				23
7	1801	1.04 1.05	39	4.0			Tr	12.5	8.6	3	9	12	2/5	50	.1				23
	1975	1.05 1.06	44	4.2		L	Tr	10.5	9.5	2.5		14	2/7	200	Tr				30
8		1.00	44	4.8		1.5	Tr	10.5	9.5	2.5		14	2/11	200	1				28
	2077			4.8		1.5		10	9.5	2.5		14	2/11	200	Tr				20
	2160	1.07	45	4.4	·	1.5	Tr		9.5	3	14	12	2/11		.1				33 32
11	2210	1.08	44	3.6		1.5	Tr	10	9.5	2.5	1	1	2/10						32
12	2220	1.07	44			1.5	•	9.5			14 13	13 12	2/10	180 160	.1				32 28
	2276	1	42	5.6		1.5		8.5	9.0	3		12		140	Tr				20
	2325	1.07	43	4.8		1.5		8	9.5	2.5	13	10	2/8		.1				
	2357	1.08	41 42	4.2		1.5		7.5	9.5	3	14	12	1/7 2/9	150 150	$\frac{.1}{.1}$				29
	2365	1.07		4.6		1.5		7.5	9.5	3			1 1		.1				29
/	2365	1.07	40	4.8		1.5	T	7.2	9.5		13	10	1/6	120	.1				28
- -	2386	1.06	45	4.8		1.5		7.	9.5	2.5		14	2/11	100	.1				27
		1.06	43	4.8		1.5		7	9.5	2.5		13	2/9	100					28
20	2484	1.06	40	4.0		1.5	Tr	6	9.5	3.0	-11	10	2/6	100	Tr				26
				1															
														<u>.</u>					
]				
]	
]						
		T]			1		ļ				

2.4.4 Materials Consumption and Costs

MATERIALS	UNIT		COST PER	QU	ANTITY	COȘT		
			UNIT	EST.	ACTUAL	EST.	ACTUAL	
	•							
		36" &	26" hole	Interval	49 - 205m			
Gel	100	1ь	10.15	212	185	2151.80	1877.75	
Caustic	50	kg	35.50	4	8	142.00	284.00	
Bicarbonate	50	kg	21.49	5	5	107.45	107.45	
Mon Pac	50	1b	135.84	-	12	-	1630.08	
Lime	25	kg	6.17	7	8	43.19	49.36	
		Total	Cost for a	36"/26" ho	le	2444.44	3948.64	
			- · · · · · · · · · · · · · · · · · · ·	- <u></u>				

17½" hole Interval 205 - 1320m											
Ge1	100 lb	10.15	720	781	7308.00	7927.15					
Soda Ash	50 kg	17.75	40	24	710.00	426.00					
Caustic	50 kg	35.50	31	20	1100.50	710.00					
Caustic	20 kg	14.20	-	28	-	397.00					
Dextrid	50 lb	39.90	115	150	4588.50	5985.00					
Barite	100 lb	6.21	-	108	-	670.68					
Q-Broxin	50 1b	24.15	-	53	-	1279.95					
Coat 888	50 lb	23.20	-	18	-	417.60					
Surfla H35	55 gal	473.50	-	1	-	473.50					
	Total Cost for 17½" hole 13707.00 19178.58										

1

- 8 -

2.4.4 (Continued)

-

- anat

		12	¼"hole Into	erval 1320	- 2450m		
Ge1	100	lЬ	10.15	106	554	1075.90	5623.10
Dextrid	50	1b	39.90	386	502	15401.40	20029.80
Mon Pac	50	1Ь	135.84	154	138	20919.36	18745.92
XC Polymer	50	1b	250.80	-	3		752.40
Caustic Soda	20	kg	14.20	68	83	965.60	1178.60
Soda Ash	50	kg	17.75	72	30	1278.00	532.50
Bicarbonate	50	kg	21.49	-	20		429.80
Barite	100	1b	6.21	2900	881	18009.00	5471.01
Coat 888	50	1b	23.20	-	20		464.00
Surflo H35	55	gal	473.50	-	1		473.00
		Tota	al Cost for 3	12¼" hole		57642.20	53700.63

		Cor	sumption for	36", 26",	17½" & 12	2¼" hole	
Ge1	100	1ь	10.15	1038	1520	10535.70	15428.00
Dextrid	50	٦ь	39.90	501	652	19989.90	26014.80
Mon Pac	50	Ъ	135.84	154	150	20919.36	20376.00
XC Polymer	50	1ь	250.80	-	3		752.40
Q-Broxin	50	lР	24.15	-	53		1279.95
Caustic Soda	20	kg	14.20	68	111	965.60	1576.20
Caustic Soda	50	kg	35.50	35	28	1242.50	994.00
Bicarbonate	50	kg	21.49	5	25	107.45	537.25
Soda Ash	50	kg	17.75	112	54	1988.00	958.50
Lime	25	kg	6.17	7	8	43.19	49.36
Barite	100	1Þ	6.21	2900	98 9	18009.00	6141.69
Coat 888	50	1ь	23.20	-	38		881.60
Surflo H35	55	gal	473.50	-	2		947.00
		Tot	al Cost for a	all Interv	als	73800.00	74108.15

2.4.5 Mud Equipment Description

- 1. Reserve mud storage tanks 4 x 500 bbls.
- 2. Active mud storage 400 bbls complete with 150 bbl settling tank and 85 bbl pill tank.
- 3. Brandt Duel Tandem shaker.
- Demco Desander, 6 cone x 6 inch rated at 1050 gpm with Mission 6 inch x 8 inch centrifuged pump and 75 HP electric motor.
- 5. Demco Desilter, 12 cone x 4 inch rated at 1080 gpm with Ingersoll-Rand centrifuged pump and 75 HP electric motor.
- 6. Pioneer Mud Cleaner, 16 cone x 4 inch rated at 800 gpm with 75 psi head.
- 7. Degasser Drilco.
- 8. Pit Volume Totalizer.
- Mud Mixer, Lightning mixers 2 ea x 25 HP in active tanks, 4 ea x 25 HP in reserve tanks.
- 10. Pioneer Sidewinder Mud Mixing Hopper.
- 11. Mud Mixing Pumps, Ingersoll-Rand MIR 150 with 75 HP electric motors, two on active tank, two on reserve tanks.
- 12. Mud/Gas separator with vent to Crown block.
- 13. Swaco super adjustable choke 10,000 psi with control panel.
- 14. Trip tank 25 bbls with high-low level switch activated motor for transfer pump to annulus.

2.5 Flow Testing

2.5.1 Flow Testing Summary

One drill stem test was run over the interval 1411-1416 m R.T. The interval was perforated with a 4 inch casing gun at 4 shots per foot with a 90 degree phasing.

Three downhole gauges were used to record pressures and temperatures during the test and a Surface Pressure Read Out (SPRO) unit was used to provide a continuous surface monitor of the downhole conditions.

An initial 11 minute flow period was followed by a 69 minute initial shut in period. The final flow period last 411 minutes and was followed by a final shut in period of 553 minutes. During the final flow period, the well flowed oil at an average rate of 1827 BOPD and gas at an average rate of 242 Mscf/d through a 1/2 inch choke at a wellhead pressure of 460 psi. The flow was switched through a separator and several gas and oil samples were obtained. The oil had a gravity of 48° API and an estimated solution gas-oil ratio of 200 scf/bbl. The gas contained approximately 200 ppm H₂S.

2.5.2 Flow Data

The flow data as reported by Flopetrol are attached as Appendix A1 to this report.

2.5.3 Pressure Data

The bottomhole pressure data as reported by Dowell Schlumberger are attached as Appendix A2 to this report.

2.5.4 Interpretation and Analysis

The interpretation and analysis of the DST is as follows:

- The well flowed in excess of 1800 stb/d of 48^o API light crude on a one half inch choke.
 Separator gas rates averaged 242 Mscf/d and contained 200 ppm H₂S.
- The reservoir is undersaturated with a bubble point pressure of 800-900 psi as estimated from the two DST samples. The solution gas-oil ratio is about 200 cf/stb.

- 11 -

- Formation permeability is estimated to be in the range of 118 to 175 md.
- The well has a skin factor of -1.7 to -3.3, thus indicating no wellbore damage.
- The radius of investigation of the test is approximately 800 feet.
- The test did not indicate any barriers or reservoir boundaries, nor did it indicate reservoir depletion.
- The productivity index of the well is 8.4 BPD/psi.
2.6 General Data

2.6.1 Positioning Report

(See attached Appendix A3.)

2.6.2 Downhole Surveys

Depth	Drift
205m	3/4 ⁰
856m	1 ⁰
1320m	1 ⁰
1450m	1 ⁰
1744m	1 ¹ 2 ⁰
2078m	7½0
2111m	6 ¹ 2 ⁰
2168m	7 ⁰
2210m	7 ⁰
2325m	7 ⁰
2357m	6 ⁰
2489m	6 ⁰

2.6.3 Plug Back and Squeeze Cementation Record

On October 24, 1981 the well was plugged back to 1556m to facilitate testing of the Latrobe section as follows:

Plug	No	1	2015 - 1940m	200 sacks
Plug	No	2	1675 - 1575m	267 sacks
Plug	No	2 was	tagged at 1556m.	

2.6.4 Fishing Operations

On October 16th, 1981 the BHA parted at the bumper sub. The fish consisted of bit, bit sub, 2×8 " DC, stab, 1×8 " DC, stab, 1×8 " DC, stab, 3×8 " DC, bumper sub mandrel.

The fishing BHA consisted of overshot with 6-3/4" spiral grapple, XO, bumper sub, 14 x 8" DC, XO, jars, 13 HWDP. The fish was successfully caught and recovered. A junk sub was run on subsequent bit run to collect remaining bumper sub pieces.

2.6.5 Side Tracked Hole

None performed.

2.7 Abandonment Report

Y

West Seahorse No. 1 was suspended on November 3rd, 1981.

The Mud in the 9-5/8" casing was conditioned to a pH of 11 and a wireline BP was set at 1394m. After pressure testing to 2200 psi, 100 sacks of cement was circulated onto the BP. Another 100 sack plug was placed over the interval 160 - 77m. A corrosion cap was placed over the wellhead, pinger operation was checked, and the guide lines were cut. A temporary marker buoy was attached to the PGB in lieu of a permanent type buoy to be placed at a later date. See attached schematic for downhole and subsea configuration.

2.8 Recommendation For Future Drilling Programmes

With the exception of the fishing job, there were no major problems either downhole or mechanical associated with this well. Some excessive bit weight below 1744 did cause some deviation however no problem resulted due to the drift. The section of hole from 2200 - 2490m was particularly firm and required longer to drill than expected. With regard to changes in future drilling programmes, one possible area to examine would be the mud programme - not from a hole problem viewpoint but for evaluation purposes. The salinity of the formation waters appears to be fairly low which tends to complicate log interpretation. By adjusting the salinity of the mud to contrast that of the formation fluid, electric logs and RFT's may be more readily evaluated.

•

、!

APPENDIX A1. WELL TESTING REPORT

No. 26108131181

-

FLOPETROL

DIVISION	1	N.T.D.
BASE	=	PERTH
REPORT	N':	261081311081

Well Testing Report

Client :	HUDBAY OIL		
Field :	WEST SEAHORSE	Well:	# 1
Zone:	SANDSTONE 1411M - 1418M	Date:	26.10.81 TO 31.10.81

(INCLUDES INFORMATION ON R.F.T. TRANSFERS OBTAINED PRIOR TO TEST AND P.C.T. CHAMBER TRANSFERS OBTAINED DURING TEST).

100 0 0 P

z

FLOPE FROL Base :	Client :_ Field :_ Well :_	HUDBAY OIL WEST SEAHORSE # 1	Section : INDEX Page : 01 Report N [*] :2610813110
	INE	EX	
🛛 1 теst	PROCED	URE _	
		- D MEASURING	CONDITIONS _
		PMENT DATA	
I 5-WELL			:
			4

ŀ.

FLC	OPETROL	Client :HUDBAY OIL	Section : 1
Base :		Field : WEST SEAHORSE	Page : 01 Report N*:2610813110
	_ TEST PROCEDU	JRE _	
1)	SCHLUMBERGER R.I.H. WI 1411 1418 METERS.	TH 4" CASING GUN 90 ⁰ PHASING AN	D PERFORATE INTERVAL
2)		STRING CONSISTING OF P.C.T., 1 FLOPETROL LUBRICATOR VALVE.	MODIFIED M.F.E.,
3)	AFTER SPACE-OUT THE FLO	WHEAD WAS FITTED AND THE SYSTEM	M PRESSURE TESTED.
4)	THE "POSITEST" PACKER W	AS SET.	
5)	THE SPRO LATCH WAS RUN	IN HOLE AND LATCHED TO GAUGE.	
6)	THE WELL WAS FLOWED FOR INITIAL BUILD UP OF 69	A PRE-FLOW PERIOD OF 11 MINUTE MINUTES.	ES THEN SHUT-IN FOR AN
7)	SWITCHED THROUGH THE SE	D TO BURNERS ON $\frac{1}{2}$ " CHOKE AND APPARATOR TO OBTAIN RATES OF \pm 18 S IN THE REGION OF 242 MSCF/DAY	800 BBLS/DAY OF LIGHT
8)		BER OF HOURS H2S STARTED TO APPR OF \pm 200 PPM CONSISTANTLY).	PEAR IN LARGE
9)	TWO OIL AND TWO GAS SAM BUILD UP.	PLES WERE OBTAINED AND THE WELL	THEN SHUT-IN FOR FINAL
10)	THE WELL WAS THEN KILLE	D AND THE STRING REMOVED FROM I	THE WELL.
			-
4			۰ ۲

V.: DOP 102

FLOPE			ht :HUDB d :WEST 		Section Page Report	:0	
		SANDSTONE			1411 - 1418	М	
OPERATION	DURATION	BOTTOM HOLE PRESSURE	WELL HEAD PRESSURE	OIL PROD. RATE	GAS PROD.RATE	G.O.R	
Units	MIN	PSIG	PSIG .	B.O.P.D.	MSCF/D	MSCF/BB	
PRE-FLOW ON 놏'' CHOKE	11	-	200				
INITIAL BUILD UP P.C.T. CLOSED	69	-	261				
FLOW PERIOD 눛" FIXED CHOKE	65	-	472				
FLOW THRO' SEPARATOR ON 냧'' CHOKE	340	-	450	1752	242.1	7.24 0~138	
Depth of bo	ottom hole	measurement	ts :	Refere	nce : RT		
		at:					
Separator g	as gravity	/ (air : 1) a	at choke siz	e:655@	支" FIXED CHO	KE	
STO gravi							
BSW :			Water	cut :	-		
REMARKS	AND OTHE	R OPERATI	ONS				
NO WATER PRODU RATES AVERAGED REFER DOWELL S UNABLE TO FLOW). CHLUMBERGH	ER SPRO REPOR			ATURE.		

FLOPETROL	Client :	HUDBAY OIL	Section : 3
Base :	Field : Well :	WEST SEAHORSE	Page : 01 Report N = 26108131
_ OPERATING AN	ND MEASUR	ING CONDITIO	NS _
			8
A <u>_ TYPE OF</u>	GAUGE		
BOTTOM HOLE : GREG		NGT 1900	
Pressure : Temperature :SPRO	- DOWELL GA		
Pressure		PRESSURE GAUGE,	
Temperature : GLASS	<u>KUD THERMUM</u> E	IEK .	
Pressure	ON STATIC 0-10		
Temperature <u>GLAS</u>	S ROD THERMOME	TER	
*			
B PRODUCTIC	N RATE CONDIT	TIONS AND SOURCES	
OIL PRODUCTION RATE Tank rest Floco	Reference	<u>conditions</u>	<u>Shrinkage measurement</u>
Meter.	Se Se	eparator	With tank With shrinkage
Dump - Rotron		tmospheric ressure 60°F	tester
GAS PRODUCTION RATE Orifice meter		Standard conditions	s
□	·	14.73 @ 60 ⁰ F	
WATER PRODUCTION RATE			
Tank Meter			۲
<u>NIL PRODU</u> CED			
C <u>- WELL D</u>	ATA _		
WELL STATE DURING SUF	RVEY :		
Well producing through			
			ll depth set at
Perforations :			to
ZoneF	romto	From	to
	-		
WELL STATE BEFORE TEST		ION	
<pre>Well closed since_ Well flowing since_</pre>	P	roducing zone	
	C	hoke size	

l

1

l.

.|

(

i X

ľ

† | |

| |

REMARKS :

NOT TO SCALE.

FIXED PIPING FROM RIG FLOOR DOWN.

P 105

000...

 \mathbb{R}^{n}

. .

° 106

0 0 P

.. . z

	PET	Field : WEST SEAHORSE Page : 01									
	. SEQUEN	ICE OF EVENTS _									
DATE	TIME	OPERATION									
		D.S.T. # 1									
		PERFORATIONS @ 1411M - 1418 M									
		POSITEST PACKER									
•		WATER CUSHION - 228 METERS.									
28.10.81		SCHLUMBERGER PERFORATE INTERVAL 1411 - 1418M WITH 4" CASING									
		GUN 4 SHOTS PER FT. 90° PHASING.									
		TEST STRING R.I.H.									
29.10.81	0330	E.Z. TREE R.I.H. AFTER UNLATCH ON SURFACE.									
	0430	LUBRICATOR VALVE R.I.H.									
	0515	START RIG UP TO FLOWHEAD AND SURFACE EQUIPMENT. SET PACKER.									
	0820	SPRO LATCH R.I.H. AND LATCHED ONTO GAUGE AT 1376.8 METERS.									
		START PRESSURE TESTING OF SURFACE LINES.									
	1235	PRESSURE ANNULUS TO OPEN P.C.T. VALVE - STEADY PRESSURE BLOWIN									
		WATER OUT OF BUBBLE HOSE.									
c.	1240	OPEN WELL TO BURNER ON ADJ. CHOKE ½".									
	1244	WATER CUSHION TO SURFACE.									
	1246	BLEED DOWN ANNULUS PRESSURE TO CLOSE P.C.T.									
	1355 ·	PRESSURE ANNULUS TO OPEN P.C.T. FOR 2ND FLOW PERIOD.									
	1356	FLOWING WATER CUSHION TO SURFACE.									
	1358	CHANGE TO 'z" FIXED CHOKE.									
	1359	WELL SLUGGING WATER CUSHION.									
	1402	SLUGGING WATER AND MUD.									
	1407	OIL TO SURFACE.									
	1411	B.S.W 97% LIGHT CRUDE AND 3% SEDIMENT.									
	1500	SWITCHED FLOW THROUGH SEPARATOR.									
	1515	CHANGE BURNER DUE TO WIND DIRECTION.									
	1700	SWITCH FLOW TO GAUGE TANK.									
	1710	BY-PASS GAUGE TANK DUE TO H2S PRODUCTION + 200 PPM									

--

i

1

. . .

.....

•

1

., | .

| | |

i

1 · ·

F T

.

FLC	PET	ROL	Section : 6										
		OF EVENTS _(Continuation)	Page : Report N ⁻ 761081311										
DATE	TIME	OPERATION											
29.10.81	1920	START TO TAKE SEPARATOR SAMPLES GAS, SAMPLE # 1 BOTTLE NO.											
		A-8287. OIL, SAMPLE # 1 BOTTLE NO. 22024-7.											
·······	1950	FINISH TAKING ABOVE SAMPLES.											
	2010	START TO TAKE SEPARATOR SAMPLES GAS, SA	AMPLE # 3 BOTTLE NO.										
· · ·		A-11927, OIL, SAMPLE # 4, BOTTLE NO. 92											
	2040	FINISH TAKING ABOVE SAMPLES. BY-PASS											
	2045	BLEED DOWN ANNULUS TO CLOSE P.C.T. FOR FINAL BUILD UP.											
30.10.81	0630	UNLATCH SPRO AND P.O.O.H.											
<u>.</u>	0700	SHEAR REVERSE-SUB AND START TO REVERSE	CIRCULATE.										
	1205	. START TO RIG DOWN AND P.O.O.H.											
	1300	LUBRICATOR VALVE ON SURFACE.											
	1355	E.Z. TREE ON SURFACE.											
		· · · · · · · · · · · · · · · · · · ·											
		END OF D.S.T. # 1.											
	·····												
		*											
		· · · · · · · · · · · · · · · · · · ·											
and the second		an a	an a										

ľ

1.1.1

ł

-

.

F

. . .

¥. 1

i.

. . .

FL		ET	ROI		lient :										Sectio	on :	7
Base				Fi	eld : Vell :_	WEST : # 1	SEAHOR	SE		- WELL TESTING DATA SHEET -							01 108131108
DATE - 1	ГІМЕ	PRE	SSURE AN	ID TEN	IPERATUR	RE MEASU	JREMEN	NTS	PROD. R	ATES A	ND FLL	ID PROPER	RTIES	GOR			i
	<u>C</u>		M HOLE		ELL HEA		SEPAR		OIL OR C			G/	and the second se				
and the second se	Cumul MIN	Temp.	Pressure	°C		Cg. press. PSIG	remp.	Press.	Rate	Gravity	B3VV	Rate	Gravity Air = 1				Units
								D.S.T	<u># 1</u>					,			
							PERFOR	 <u>ATIONS</u>	<u>@ 1411 -</u>	418 MI	TERS.						
							PACKER	; , = F	OSI-TEST		•						
29.10	81						CUSHIO	N =	WATER 228	METERS	7						
1235	0		PRESSUR	E ANNI	LUS TO	OPEN P.C	.T. VA	LVE.									
	-		STEADY	PRESSU	RE BLOW	ING WATE	r out	OF BUI	BLE HOSE	(² / ₂ " EFFI	CTIVE	CHOKE)					
1235	0			38	35												
1240	-		OPEN WE	LL TO	BURNER	ON ADJ.	CHOKE	211									
1240	5			38	60												
1244	9		WATER (USHIO	FLOWIN	G TO SUR	FACE.										
1245	. 10			34	160				LIGHT (CRUDE TO	SURFA	œ.					
1246	11		BLEED 1	OWN A	NULUS F	RESSURE	TO CLO	DSE P.	с.т.								
1247	12			34	215												
LIQ	UID FL		<u>TE MEASU</u> 73 @ 60 ⁰ F		CONDITIC	DNS_:				TESTED DEPTH I DEPTH (REFERE	NCE	:; ; MENTS :	S	ANDSTONE RT		

.

.

• • • •

and the second second

-- .

FL	OP	ET	RO	L__\	NELL T	ESTINC	g da	TA SH	IEET_(Co	ntinua	tion)		Page Repor	:: t N 326	02 108131108	_Sectio	on :	7
DATE -	TIME		SSURE AI	SUREME	NTS	PROD. RA	ATES AN	ND FLUI	ID PI	ROPERT	IES	GOR						
			M HOLE		ELL HEA			ATOR	OIL OR C				GA					
Time HK MIN	Cumul MIN	lemp.	Pressure	Tg.temp	lg. press. PSIG	Cg.press. PSIG	Temp.	Press.	Rate B.O.P.D.	Gravity			ate UF/D	Gravity Air=1	MSCUF/ BBL			Units
1247																		
1248	13			34	220								•					6
1249	14			33	222													
1250	15			33	226					-								
1300	25			35	254													
1305	30			36	255													
1310	35			37	262													
1315	40			37	254 .													
1320	45			34	260										•			
1330	55			31	268								•					
1340	65			29	281								•					
1355	80		PRESSURE	ANNUL	US OPEN	P.C.T.	FOR 2N	D FLOW										
1355	-			29	370													
29.10.	81								WELL OPP	NED TO	BURNE	R ON	AD.	r				
1356	81			29	290				FLOWING	WATER	CUSHIO	и тс	SURFA	ce.				
1357	82			29	430													
1358	83			27	420				CHANGE :	IO 戈'' F	IXED C	HOKE	•					
1359	84			26	310 [.]				WELL SLI	GGING	WATER	CUSH	IION.					

FL	OP	ET	RO	L _\	NELL 7	ESTINC	G DA	TA SH	IEET_(Co	ntinua	ition)	Page Repo	ort N'26	03 108131108	_Sectio	n :	7
DATE -	TIME	PRE	SSURE AI	ND TEN	MPERATL	RE MEAS	SUREME	NTS	PROD. RA	TES A	ND FLUI	D PROPER	TIES	GOR			
	,		M HOLE		ELL HE			RATOR	OIL OR C			the second s	IAS				
	and the second sec	Temp.	Pressure			Cg. press.	Temp.	Press.	Rate	Gravity	BSW	Rate	Gravity				Units
<u>HR MI</u>	N MIN			°C	PSIG	PSIG											R. M.
1359																10000000000000000000000000000000000000	Shitter .
1400	85			26	400												
1401	86			27	[.] 400												
1402	87			27	410				SLUGGI	IG LAR	E AMOU	NTS OF WA	TER AND	MUD.	energina da da ele altera de consecuencia da esta de consecuencia da esta de consecuencia da esta de consecuenc		
1403	88			28	450												
1404	89			28	460												
1405	90			28	462												
1406	91			28	481												
1401	92			29	480				OIL TO	SURFA	CE.			•			
1408	93			29	485								•				
1409	94			29	493								•		۰.		
1410	95			29	495												
1411	96	1		29	490				BWS =	97% LI	CHT CRU	DE AND 3	% SEDIME	NT.			
1415	100	,		29	475						-						
1420	105	;		29	477		-	-									
1425	110)	-	30	487												
1430	115	;	-	29	479							3					
1445	130)		32	480 .			-				-					

FL	OP	ET	RO		NELL T	ESTINC	G DA	TA SH	HEET_(Co	ntinua	tion)	Page	•	04 108131108	_ Sectio	n :	7
DATE -			SSURE A									D PROPERT		GOR	<u></u>		
			OM HOLE		ELL HE		SEPAR		OIL OR C			GA			7700		
Time	Cumul		Pressure	Ta temp	Ta. press.	Cg. press. PSIG	Temp.	Press.	Rate	Gravity		Rate	Gravity	MSCF/	H2S PPM		
				00	PSIG	PSIG	OF	PSIG	B.O.P.D.	SP GR		MSCF/D	Air=1	BBL			Units
1445									<u> </u>			<u></u>					Mar Chi
29.10			·														
1500	145			35	472									,			9
1500	-		SWITCH	FLOW TH	ROUGH S	EPARATOR							.6375		(95% CRUI	E 5% SEDI	MENT)
1515	160		,	33	457												
1515	-		CHANGE	BURNERS	DUE TO	WIND DI	RECTIO	N.									
1530	175			33	460		77	180					.635				
1545	190			34	460		75	180	1502		TR	253.4	.6725	6			
1600	205			34	460		75	180	1802		TR	240.8	.672	• 7			
1615	220			35	460		75	180	1802	.789 @ 19 ⁰ c	TR	240.8		7			
1630	235			34	460		79	170	1802		TR	224.9		8	(98% CR	DE 2% SEI	IMENT
1645	250			33	460		79	180	1662		TR	233.9	.655	7			•
1700	265			33	460		79	180	1906		TR	242.3		8	200		
1700	-		SWITCH	FLOW TH	ROUGH G	AUGE TAN	к.										
1710	275		BY PASS	GAUGE	TANK DU	т то н29	5										
1715	280			31	455		81	180	1774	70%		242.3		7.3			•
1730	295			31	455		81	175	1784	.784 @ 21°C		239.1		7	<u>+</u> 200		
1745	310			31	457.		81	175	1774			239.1		7			

••••

FL	OP	'ET	ROI	`	WELL T	ESTIN(G DA	TA SH	HEET_(Co	ntinua	tion)	Pa Re	ge :_ port N`: <u>2</u>	05 610813110	Sectio	n :	7
DATE -	TIME		ESSURE AN			JRE MEAS					ND FLUI	D PROP	ERTIES	GOR			
Time	Cumul		OM HOLE Pressure	Sector Concerns	ELL HEA			RATOR	OIL OR C	and the second		Data	GAS Gravity	MSCF/	H2S PPM		
Time	Cumui	Temp.	Pressure		IG. press. PSTG	Cg. press. PSTG	lemp. ੦ _ਸ	Press.		Gravity SP GR		Rate MSCF		BBL			Units
1745																	
1800	325			33	458		82	180	1770	.784 @ 21°C		242.1		7	<u>+</u> 200		
1815	340			33	455		82	180	1850			242.1		, 8			
1830	355			33	455		82	180	1690 .			246.4		7	<u>+</u> 200		
1845	370			33	453		82	180	1774	.784 @ 21°C		246.4		7.0			
1900	385			33	453		82	180	1765			242.1		7	<u>+</u> 200		
1915	400			33	452		82	180	1784			242.1		7			
1920	405		START	ГО ТАК	E FIRST	OF SEPA	RATOR	PRESSU	E SAMPLES	•							
1930	415	!		32	450		82	180	1746			242.1	•	. 7			
1945	430			33	450		82	180	1634			242.1	•	7			
2000	445	<u> </u> !		33	450		82	180	1709			242.1		7			
2015	460			33	450		82	180	1812		Ť	242.1		7			
2030	475	<u> </u> '		33	450		82	180	1859			242.1		8			
2040	485		BY PA	ASS SEP	ARATOR												
2045	490		BLEED	DOWN	ANNULUS	TO CLOS	E P.C.	T. FOR	FINAL BUI	LD UP.							
						END C)F D.S.	. <u>.</u> #1				\$					

- •

FLOPETROL

DIVISION	:	N.T.D.
BASE	=	PERTH
REPORT	N*=	261081311081

3

|

| ·

N.: DOP 111

Well Testing Report Annexes ___

Client	=	HUDBAY OIL			
Field	=	WEST SEAHORSE	Well	=	#1
Zone	=	SANDSTONE	Date	=	26.10.81 TO 31.10.81

FLOR	PETROL	Client :	HUDBAY OIL	_ Section : ANNEX
Base :	PERTH	Field : Well :	WEST SEAHORSE	- Page : 01 Report N: 2610813110
				•
			-	
	INIDE	X of		VEC
			ANNE	AE5
	П 1 воттом		RESSURE AND	TEMPEDATIOE
		REMENT _	RESSORE AND	
			calibration -	
			re calculation -	
	[] 1.3 . E	3.H. temper	ature calculatio	n _
		PRODUCTI	ON RATE MEASU	JREMENT _
	📓 2.1 - N	Measuremen	ts with tank _	
	🔀 2.2 - N	Measuremer	nts with meter -	
4				•
	B. GAS PR	ODUCTION	RAIE MEASURE	
	4_'SAMPLI	NG SHE	FTS	
			e sampling _	
		Surface sa		
	5_CHARTS	S AND N	IISCELLANEOUS	-

• ļ

!

. . .

Ì

[

. 1

FLOPETROL	Client :	HUDBAY OIL		Section:	ANNEX 2
Base :PERTH	Field : Well :	WEST SEAHOR	SE	Page Report	: 01 N 2 <u>61081311</u>

LIQUID PRODUCTION RATE MEASUREMENT _

2.1_ MEASUREMENT WITH TANK -

 $V_0 = V \times K \times (1 - BSW)$

Vo: Net oil volume at 60°F and atmospheric pressure.

V : Gross oil volume measured by tank gauging.

K : Volume correction factor to be applied between the tank temperature during gauging and 60°F.

BSW: Basic sediments and water.

2.2_MEASUREMENT WITH METER -

a) Shrinkage factor is measured by shrinkage tester.

$V_0 = V_S \times f \times (1 - Shr) \times K \times (1 - BSW)$

 V_0 = Net oil volume at 60°F and atmospheric pressure.

Vs: Gross oil volume measured by meter under separator conditions.

f : Meter correction factor = Volume measured in tank

Volume measured by meter Shr:Percentage of oil volume reduction between separator and tank

conditions , reported to oil volume at separator conditions . K : Volume correction factor to be applied between the final

temperature during shrinkage measurement and 60°F. BSW:Basic sediments and water.

b) Shrinkage factor is measured with tank.

: DOP 119

Ŋ.

 $V_0 = V_S \times (1 - Shr') \times K \times (1 - BSW)$

 V_0 , V_S , K and BSW = Same meaning as in a). (1 - Shr') = Shrinkage factor including meter correction factor.

• :

No.: DOP 120

FLO	DE.	TRO			DBAY OIL		-	- OIL PR	RODUC	TION RAT	Е _	Section:ANN	
Base :			Field : Well :	₩ES	T SEAHORS	SE	- <u>- M</u> E	ASUREM	ENT V	ITH TANK	<u> </u>	Page :_ Report N 26	01 10813110
DATE - Time	TIME Interval	Gauge graduation	TANK VOL Volume V	UME Temp.		GRAVI Temp.	TY Grav. 60°F	К	BSW %	Net volume of STO Vo	Net STO product. rate /day	Cumulative production	Units
29.10.81	1										,		
			DUE TO H2:	S PRODU	CTION UN	ABLE TO	FLOW TO	GAUGE TANH	DURING	TEST.			
			METERS CH	ECHED A	GAINST G	AUGE TA	NK AND H	ALLIBURTON	PUMP AFJ	ER TEST.			
			HALLIBURT	ON PUMI	ED 10 B	BLS WAT	EŔ.						· .
			FLOCO MET										
			GAUGE IAN									-	
										-			
			· · · · · · · · · · · · · · · · · · ·							· ·			
											-		
Nagrandra i sela se di cinterne an		1	I	I	I	J	·	TESTED IN PERFORATI					

----- <u>`</u>

. .

No.: DOP 122

FLC Base :		ETR	_	Client : Field : Well :	WEST	OIL SEAHORSE	<u> </u>					RATE _	۲ I	Section:ANNEX 22 Page : Report N:261081311081		
DATE - Time HR MIN	TIME Interval MIN	Meter reading BBLS	Vs	B SW	Vo*	1 – Sł Factor 1-%	Temp.	OIL Gravity SP GR	GRAVI Temp. oC	TY Grav. 60°F API	К	Net volume of STO: Vo BBLS			Units	
29.10.8	L				D.S.T	<u>. # 1</u>						,				
		WELL OPEN	ED TO BU	RNER AT	ADJ. CHOKE	CHANGIN	5 TO ½	' FIXED.								
1500		SWITCH FI	OW THROU	CH SEPAR	ATOR											
1530		START TO	TAKE REA	DINGS.												
		PRODUCTIO	n from 1	355 HRS	ro 1530 HRS	ESTIMA	TED AT	108 BBI	s.							
		1.6		TR												
1530		1.6		TR					•					108.00		
1545	15	17.6	16.0	TR	16.0							15.65	1502.1	123.65		
1600	15	36.8	19.2	TR	19.2	.98	19	.789	19	48.1	.9979	18.78	1802	142.43		
1615	15	56.0	19.2	TR	19.2							18.78	1802	161.21		
1630	15	75.2	19.2		19.2	.98	18	.784	21	48.1		18.78	1802	179.99		
1645	15	92.9	17.70	TR	17.70	.98	19				.9975	17.31	1662	197.30		
1700	15	113.2	20.30	TR	20.30							19.85	1906	217.15		
		or measured (1 – BSW)			X Tank [] t separator co	onditions	. f=-	1			INTERV. RATIONS	AL :	SANDSTON 1411 - 1	IE 1418 MTRS.		

FL	<u>op</u>	ETR		MEASI	UREMENT	WIT	H MI	ETER -	(Cont	tinuation	n) <mark>Page</mark> Repo	e : ort N:26	03 Se 51081311031	ection:ANNE	XZE
DATE - Time TR MIN	- TIME Interval MIN	Meter reading BBLS	V _S	вsw _{°/о}	V _o BBL	1 - 5 Factor 1-%				/ITY Grav. 60°F API	K		e Net STO product. rate BBL /day		Units
1700		113.2								AL 1		<u>61100</u>	BBL (Udy	BBL	
1715	15	132.1	18.9	TR	18.90							. 18.48	1774	235.63	
1730	15	151.1	19.0	TR	19.00	.98	18	.784	21	48.1	.9975	18.58 '	1784	254.21	
1745	15	170.0	18.9	TR	18.9							18.48	1774	272.69	
1800	15	188.85	18.85	TR	18.85	.98	18	.784	21	48.1	.9975	18.43	1770	291.12	
1815	15	208.55	19.70	TR	19.70							19.27	1850	310.39	
1830	15	226.30	18.00	TR	18.00							19.60	1690	327.99	
1845	15	245.2	18.90	TR	18.90			.784	21	48.1	.9975	18.48	1774	346.47	
1900	15	264.0	18.80	TR	18.80							18.39	1765	364.86	
1915	15	283.0	19.00	TR	19.00							18.58	1784	383.44	
1930	15	301.6	18.60	TR	18.60							18.19	1746	401.63	·
1945	15	-319.0	17.40	TR .	17.40							17.02	1634	418.65	۲
2000	15	337.2	18.20	TR	18.20							17.80	1709	436.45	
2015	15	356.5	19.30	TR	19.30							18.87	1812	455.32	
2030	15	376.3	19.80	TR	19.80							19.36	1859	474.68	
2040	-	BY PASS ?	SEPARATOR	. READY F	FOR FINAL BU	JILD UP									
2045	BLEET	D DOWN ANNU	ULUS TO C	LOSE P.C	. T.								-		
							-		1			-	-		-
										1					

. . .

FLOPETROL	Client	*	HUDBAY OIL	Section:	ANNEX 3
	Field		WEST SEAHORSE	Page	: 01
Base :	Well	* ;	# 1	Page Report	N°-2610813110°

_ GAS PRODUCTION RATE MEASUREMENT by orifice meter _

Reference is made to the rules and coefficients given in AGA gas measurement Comittee Report No.3 for orifice metering.

a) EQUATIONS _

$$Q = C \sqrt{h_w \times Pf^2}$$

- **Q** : Production rate at reference conditions.
- C : Orifice flow coefficient.
- hw: Differential pressure in inches of water.
- Pf : Flowing pressure in psia.
 - $C = F_{u} \times F_{b} \times F_{g} \times Y \times F_{tf} \times F_{pv}$

Fu: Unit conversion factor in desired reference conditions.

- F_b : Basic orifice factor (Q in Cu.ft / hour).
- F_g : Specific gravity factor. Y: Expension factor

Etf: Flowing temperature factor.

Fpv: Supercompressibility factor (estimated).

Remarks

Em: Manometer factor is equal one since only bellows type meters are used. Fr : Reynolds factor is considered to be one.

	TABLE O	F Fu FACTO	OR ·	
	1	REFERENCE	CONDITIONS	
UNITS	60°F	0°C	15°C	15°C
	14.73 psia	760mmHg*	760mmHg *	750mmHg *
Cu.ft / hour	1	0.948 3	1.0004	1.0137
Cu.ft / day	24	22.760	24.009	24.329
m3 / hour	0.02832	0.02685	0.02833	0.02870
m ³ / day	0.6796	0.6445	0.6799	0.6889

* Mercury at 32°F

b) METER DATA -

c† 12

۵ O Δ

Meter type	DANIEL			tarea adama/up	stream
Flow recorder	type: BARTON	ID of n	neter tube	: 4.026"	

c) SPECIFIC GRAVITY SOURCE ______ _ Gravitometer type:__KIMRAY ON SEPARATOR BODY

d) SUPERCOMPRESSIBILITY FACTOR Fpv -

All coefficients are taken from AGA NX 19 manual for natural gas free of air, CO2 and H2S . More accurate values could only be determined by laboratory measurement.

FLOPETROL Client : HUDBAY OIL Base : Field : Well : # 1						:	- GAS PRODUCT. RATE MEASUREMENT - Page : 01 Report N 2610813110								
DATE - Time IR MIN		Flowing Temp. o _F		h _w ″of wat.	√h _w x P _f	Orifice diameter Inches	Gas gravity (air=1)	Fb	Fg	Y	F _{tf}	F _{pv}	С	Gas production rate : Q MSCF/D	Cumulative Production CUFT
29.10.8	1				<u>D.S.T. # 1</u>										•
					RATIONS AT	- 1411 - -	- 1418 M								
				CUSH	ON = WATER	= 228 M	ETERS.								
		WELL	OPENEI	TO BU	RNER ON AD.	. CHOKE	CHANGIN	G TO 눛''	FIXED.						
1500		SWIT	CH FLOV	THRO	GH SEPARATO	R							1		· · · · · · · · · · · · · · · · · · ·
1530	30	STAR	TO TA	KE REA	DINGS.										
1530		77	195			.500	.635	50.224							
1545	15	75	195	62	109	.625	.6725	78.421	1.2194	1.0021	.9859	1.016	2304.75	253.4	2640
1600	15	75	195	56	104.5	.625	.6725	78.421	1.2194	1.0019	.9859	1.016	2304.75	240.8	5148
1615	15	75	195	56	104.5	.625	.6725	78.421	1.2194	1.0019	.9859	1.016	2304.28	240.8	7656
1630	15	79	185	52	98.08	11	11	11	11	11	.9882	1.015	2292.65	224.9	9998
1645	15	.79	195	52	100.70	11	.655	11	1.2356	1.0018	.9822	1.015	2323.16	233.9	12435
1700	15	81	195	56	104.5	. 11	и.	11	11	1.0019	.9804	1.015	2318.75	242.3	14959
Fu =	24				ges : P _f =					CED INT		SA	NDSTONE 1411 -	1418M	na 1977 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 2017 - 201

_____ · · · ·

.

FL	OP	ET	RC	DL	GAS PRO	ODUC. F	ATE M	EASURE	MENT-	(Continu	ation)	Page Report	: <u>02</u> : N [:] :2610813	Section:	ANNEX 3
DATE • Time HR MIN	- TIME Interval MIN	Flowing Temp. o _F	Pf absolute psia	h _w ″of wat.	√h _w ×P _f	Orifice diameter Inches	Gas gravity (air = 1)	Fb	Fg	Y	F _{tf}	F _{pv}	С	Gas production rate : Q	Cumulative Production
1700															
1715	15	81	195	56	104.5	.625	.655	78.421	1.2356	1.0019	.9804	1.015	2318.75	242.3	17483
1730	15	81	190	56	103.15	11	11	11	11	1.0020	.9804	11	2317.89	[·] 239.1	19974
1745	15	81	190	56	11	11	11	11	11	11	81	n	11	239.1	22465
1800	15	82	195	56	104.50	11	11	11	11	1.0019	.9795	11	2316.40	242.1	24986
1815	15	82	195	56	11	11	11	11	11	11	11	11	11	242.1	27 507
1830	15	82	195	58	106.35	11	11	11	11	1.0020	.9795	11	2316.55	246.4	30073
1845	15	82	195	58	11	11	11	п	17	11	11	11	11	246.4	32639
1900	15	82	195	56	104.50	11	11	11	11	1.0019	11	11 .	2316.40	242.1	35160
1915	15	82	195	56	11	11	11	11	11	11	11	11	11	242.1	37681
1930	15	82	195	56	11	11	11	11	11	11	11	11	11	242.1	40202
1945	15	82	195	56	11	11	11	11	11	11	11	11	11	242.1	32723 ●
2000	15	82	195	56	11	11	11	11	11	11	11	11	11	242.1	45244
2015	15	82	195	56	11	11	11	11	11	11	11	11	11	242.1	47765
2030	15	82	195	56	11	11	11	11	11	17	11	11	11	242.1	50286
2040	10	82	195	56	71	11	11	13	11	11	11	11	11	242.1	51967
2040	-	BY P	ASS SE	PARATO	READY FOR	FINAL B	WILD UP	•							
		_										_		yan nangyumaan siteriem at Neutline (1975 maay 1975 maay 1975	ere particular de la compactica de la comp
L							1	1	1	1					

FLOPETROL PERTH Base : PERTH Date of Sampling :	Field : <u>WEST</u> SEA	HUDBAY OIL AHORSE Well : # 1	PAGE 01 F.I.T. & R.F.T. BOTTOM HOLE SAMPLE	
	Reservoir and We	II Characteristics		
Producing Zone :		Sample Depth :		
Depth Origin : Z :				
	Sampling and Tra	nsfer Conditions		
Sampling Bottom Hole Pressure (A		Volume of Bottle	<u>628</u> cc (a	
Sampling Bottom Hole Temp. (Schl	×	Volume of top liner	22 cc (b	
Time at which Sample taken		Total volume = a+b	<u> 650 </u> cc (c	
OPENING PRESSURE Surface Pressure of Sample	<u>35</u> psig	Vol. Hg. at end of transfer	590cc (d	
OPEN ING TEMPERATURE Surface Temp. of Sample	<u>70</u> °F	(1) Vol. Hg. remaining in bottle	<u>60</u> cc (c-d	
Transfer Pressure	<u>+ 6500</u> psig	Vol. Hg. withdrawn	cc (e)	
Transfer Temperature	<u>+</u> 175 • _F	Bubble point measured in I	pottlepsig	
Gradient (when necessary)		Bubble Point temperature	° F	
Transfer by gravity 🗹 by	/pump 🗹	(2) Vol. Hg. remaining in bottle =	= (1) - (e) <u>41</u> cc	
Final Conditions in Bottle Vol. Hg. Remaining in bottle = (2)- (Pressure <u>0</u> psig Temp. <u>66</u> *F	1) = <u>5</u> cc	Vol. Hg. withdrawn to decompression of shipping R.F.T. CHAMBER OPENING P = 35 PSIG @ 70 ⁰ F		
	Identification of	f Sample		
Destination :		sent theby		
Coupled with Bottle Serial No80-29	91/236 91/207 FLO No. 91/242 91/234			
COMMENTS : (Special Advice to La		TAKEN FROM R.F.T. CHAMBER	Chief Operator	

4. 1. 1. 1. 1.

1------

•

FLOPETROL Base : Date of Sampling : Date of Transfer : 23 TO 26 OCTOBER 1981	Field : <u>WEST_SEAH</u> Service Order No :	HUDBAY OIL	PAGE 02 F.I.T. & R.F.T. BOTTOM HOLE SAMPLE
	Reservoir and We	ell Characteristics	
Producing Zone :		Sample Depth :	
Depth Origin : Z :		Casing — Diameter : Shoe :	
	Sampling and Tra	insfer Conditions	
Sampling Bottom Hole Pressure (A	merada) psig	Volume of Bottle	628cc (
Sampling Bottom Hole Temp. (Schl	umberger)•F	Volume of top liner	N/A cc (
Time at which Sample taken		Total volume = a+b	628cc (
OPENING PRESSURE Surface Pressure of Sample	35psig	Vol. Hg. at end of transfer	cc (
OPENING TEMPERATURE Surface Temp. of Sample	<u>70</u> •F	(1) Vol. Hg. remaining in bottle	e <u>60</u> cc (c-c
Transfer Pressure	<u>+ 6500 psig</u>	Vol. Hg. withdrawn	cc (i
Transfer Temperature	<u>+</u> 175 ° F	Bubble point measured in	n bottle psig
Gradient (when necessary)		Bubble Point temperature	e•
Transfer by gravity 🗹 b	y pump 🗹	(2) Vol. Hg. remaining in bottle	e = (1) - (e) <u>40</u> co
Final Conditions in Bottle Vol. Hg. Remaining in bottle = (2)- Pressure psig Temp72 *F	(1) =cc	Vol. Hg. withdrawn to decompression of shippir	ng bottle = cc (
	Identification of	of Sample	
Bottle Serial No. <u>80-291/207</u> Destination :	<u> </u>	sent thet	
Coupled with Bottle Serial No. 80- From the same FIT Run 80-	291/236 291/201 FLO No 291/242	D	
	291/234		

:

. 1 1

.

.

[. [.

> 1. . .

[. . [.]

|__: [r

Ĺ

Date of Sampling : Service Order No :	HUDBAY OIL PAGE 03 CAHORSE Well : # 1 Sampling No : # 3 BOTTOM HO
OCTOBER, 1981	SAMPLE
Reservoir and W	ell Characteristics
Producing Zone :	Sample Depth :
Depth Origin : Z :	
Sampling and Tr	ansfer Conditions
Sampling Bottom Hole Pressure (Amerada) psig	Volume of Bottle628
Sampling Bottom Hole Temp. (Schlumberger)•F	Volume of top liner c
Time at which Sample taken	Total volume = a+b628c
OPENING PRESSURE 35 Surface Pressure of Samplepsig	Vol. Hg. at end of transfer68c
OPENING TEMPERATURE70•F	(1) Vol. Hg. remaining in bottlecc
Transfer Pressure $\frac{\pm 6500}{\text{psig}}$	Vol. Hg. withdrawn c
Transfer Temperature <u>+ 175</u> •F	Bubble point measured in bottle p
Gradient (when necessary)	Bubble Point temperature
Transfer by gravity 🖌 by pump 🖌	(2) Vol. Hg. remaining in bottle = (1) - (e) <u>39</u>
Final Conditions in Bottle Vol. Hg. Remaining in bottle = (2)- (1) = 5 cc Pressure 0 psig Temp. 72 *F	Vol. Hg. withdrawn to decompression of shipping bottle = <u>34</u> c
Identification	of Sample
Bottle Serial No 80-291/236 FLO No Destination :	by
80-291/242 Coupled with Bottle Serial No. 80-291/234 From the same FIT Run 80-291/207 80-291/207)
COMMENTS : (Special Advice to Laboratory)	Chief Opera

Ì

FLOPETROL	Customer :	HUDBAY OIL	PAGE 04
Base :PERTH Date of Sampling : Date of Transfer : 23 - 26	Service Order No :	ORSEWell :# 1 Sampling No :# 4	F.I.T. & R.F.T. BOTTOM HOLE SAMPLE
OCTOBER 1981			SAWFLE
••••••••••••••••••••••••••••••••••••••	Reservoir and Well	Characteristics	
Producing Zone :		Sample Depth :	
Depth Origin : Z :		Casing — Diameter : Shoe :	
	Sampling and Trans	sfer Conditions	
Sampling Bottom Hole Pressure		Volume of Bottle	<u>628</u> cc (
Sampling Bottom Hole Temp. (So	hlumberger)•F	Volume of top liner	cc (
Time at which Sample taken		Total volume = a+b	<u>628</u> cc (
OPENING PRESSURE Surface Pressure of Sample	35psig	Vol. Hg. at end of transfer	cc (
OPENING TEMPERATUR Surface Temp. of Sample	^E [●] F	(1) Vol. Hg. remaining in bottle	60cc (c-
Transfer Pressure	<u>+ 6500</u> psig	Vol. Hg. withdrawn	cc (
Transfer Temperature	<u>+</u> 175 • _F	Bubble point measured in	bottle psig
Gradient (when necessary)		Bubble Point temperature	•
Transfer by gravity	by pump	(2) Vol. Hg. remaining in bottle	= (1) - (e) <u>39</u> c
Final Conditions in Bottle Vol. Hg. Remaining in bottle = (2 Pressure <u>0</u> psig Temp. <u>73</u> *F)- (1) =5cc	Vol. Hg. withdrawn to decompression of shipping	bottle = cc (
	Identification of	Sample	
Bottle Serial No. <u>80-291/234</u> Destination :		_sent theby	
Ecoupled with Bottle Serial No8	0-291/236 0-291/242 FLO No. 0-291/207		
	0-291/201		Chief Operato
COMMENTS: (Special Advice to	Laboratory) 5 SAMPLES 1	TAKEN FROM R.F.T. CHAMBER	•

l

. .

• [• ,

-

•

FLOPETROL	Customer :	HUDBAY OIL	PAGE 05			
Base : PERTH	Field : WEST SEAHO		F.I.T. & R.F.T.			
Date of Sampling :		Sampling No : # 5				
Date of Transfer : <u>23 - 26</u>		<u>, , , ,</u>	BOTTOM HOLE			
OCTOBER 1981			SAMPLE			
· · · · · · · · · · · · · · · · · · ·	Reservoir and Well	<u>Characteristics</u>				
Producing Zone :		Sample Depth :				
Depth Origin :		Casing – Diameter :				
Z :		-				
×		•				
	Sampling and Tran	sfer Conditions				
Sampling Bottom Hole Pressure (Am	erada) psig	Volume of Bottle	<u>628</u> cc (a)			
Sampling Bottom Hole Temp. (Schlu	mberger)•F	Volume of top liner	cc (b)			
Time at which Sample taken		Total volume = a+b	628cc (c)			
OPENING PRESSURE	35 neig	Vol Hant and of the form	568 cc (d)			
Surface Pressure of Sample	psig	Vol. Hg. at end of transfer	cc (d)			
OPENING TEMPERATURE Surface Temp. of Sample	°F	(1) Vol. Hg. remaining in bottle	60cc (c-d)			
Transfer Pressure	<u>+</u> 6500 _{psig}	Vol. Hg. withdrawn	21cc (e)			
Transfer Temperature	<u>+ 175</u> • _F	Bubble point measured in b	pottle psig			
Gradient (when necessary)		Bubble Point temperature	°F			
Transfer by gravity 🗹 by	pump	(2) Vol. Hg. remaining in bottle =	= (1) - (e) <u>39</u> cc			
Final Conditions in Bottle Vol. Hg. Remaining in bottle = (2)- (1 Pressure psig Temp73 *F) = <u>5</u> cc	Vol. Hg. withdrawn to decompression of shipping	bottle = <u>34</u> cc (f)			
	Identification of	Sample				
Bottle Serial No. 80-291/242		cont the				
Destination :						
	91/234					
Coupled with Bottle Serial No. <u>80-2</u> From the same FIT Run 80-2						
COMMENTS : (Special Advice to Lab	oratory)		Chief Operator			
	5 SAMPLES	TAKEN FROM R.F.T. CHAMBER	. K. RUSSELL.			
	(VERY LIGH	T CRUDE).				

1

i

[...;

FIO	PETROL	Client :_	HUDBAY OIL	Section: ANNEX 42
Base :	•	Field : Well :_	WEST SEAHORSE	Page : 01 Report N:2610813110
Date of sam Sample pat	SU ppling :	RFACE SA	AMPLING _ er:	TOP CAS OUTLET LINE
Producing Depth orig	<u>A – RESERVOIR</u> zone :	AND WELL Perforations	<u>CHARACTERISTICS</u> 	= ampling interval: asing Dia.:
Bottom hole static conditions	Initial pressure Latest pressure measure Temperature	= d : :	at depth: at depth: at depth:	date : date : date :
Time at whi	<u>B- MEASUREM</u> ch sample was taken:	ENT AND SA 20-1950HR	MPLING CONDITIO	NS
Bottom hole dynamic conditions	Bottom hole pressure:	1770 PSIG	at depth:13768_M	<u>0PSIG</u> Well head temp :91 ⁰ F TRdate :29_10_81 TRdate :29_10_81
Flow measur Values used	rement of sampled_gas_Gr for calculations:	avity(air:1):_	.655 Factor	Fpv = $\frac{1}{\sqrt{Z}}$:
Separator	Pressure: <u>18</u> PSIG <u>F</u> Temp. : <u>82</u> · F	<u>lates</u> _ Gas Dil (separator c	. 242.1 M ond.): 1634	SCFD GOR: 7 MMSCF/BBL BOPD B (separator cond.)
<u>Stock</u> tank	Atmosphere : Tank temperature :			F :BOPD [A]B]C]a]b
	% WLR:	%	·	
	uid:VACUUM	4	Transfer duration:	30 MINS
Pressure :	ons of the shipping bottle: 180°F Temp: 19	·		
Shipping bot Addressee:_		on :	by:	Shipping order No.:
Coupled with	<u> </u>	LIQUID		GAS
<u>Bottom ho</u>	le samples No.			
<u>Surface sa</u>	mples No. 9209-53 22024-	2-1980 7	A·	-11927
Measurement		B_ Meter . shrinkage te	ster. D_ Corrected	C_Dump_ with tank_
	D _ REMARKS _		**********	Visa Chief Operator
H2S AT	TIME OF SAMPLING= ± 2	200 PPM.		

.

Vo.: DOP 127

1

•

1

.

-

1

.

-

								الكوال والمرادة عود المحاول المراجعة الأراب	
FLO	PENA	OL	Client	:	HUDBAY	Y OIL		Section:	ANNEX 42
Base :	PERTH		Field Well		TEST SEAL	HORSE		Page Report	:02 N°2610813110
Date of sam	19.10. ure :				MPLIN(Sam	pling No.: COM OIL	#2 •
		SERVOIR	AND W	ELL (CHARACT	ERISTICS	SEP/	RATOR	
Depth orig Surface ele	in : evation:	RT	Tubing D Shoe)ia.:. :	311		. Casing _ Shoe	Dia.:	
Bottom hole static conditions		measured	j :		at d	epth:		date :	;;
Time at whi	ch sample was ta		0-1950 1	HRS	Time ela	psed sind	ce stabilis	ation:	
Bottom hole dynamic conditions	Choke size : Bottom hole pre Bottom hole tem	<u>}</u> "_sin ssure: p. :	1770 PS 1500 _F	NING IG	Vell head p at depth: at depth:	1376.8	450 PS1 MTR MTR	GWell head _ date : _29 _ date : _29	temp: <u>91°F</u> 9.10.81 9.10.81
Flow measu Values used	rement of sampled for calculations :	<u>d gas</u> _ Gr	avity(air:1):	.655	Fact	or Fpv=	$\frac{1}{VZ}$: -1.	015
<u>Separator</u>	Pressure: <u>180</u> Temp : <u>82</u>	PSIG <u>R</u> *F 0	ates - Gas iil (separat	s or co	: <u>24</u> nd.): <u>1</u>	<u>2.1 м</u> 634	SCFC BOPC	GOR B (sep	: 7 MSCF/BBL arator cond.)
<u>Stock</u> tank	Atmosphere Tank temperature	:	mmHg	•	•F	Oil at 6	50 °F :		_BOPD ABCa
· · · · · · · · · · · · · · · · · · ·	% W			_%					
	uid: <u>MERCIN</u>	· · ·			Iranster	duration :	30	MINS	
Shipping bot	$\frac{C - IDE}{22024}$	NTIFICATI	ON OF T on :		by:	:	Sh	ipping ord	ler No.:
Addressee:_								GAS	
	<u>le samples No.</u>	<u></u>							
Surface sa	mples No.	9209-52	1980				A-8287 A-11927		· · · · · · · · · · · · · · · · · · ·
Measurement A Tank	conditions,		B_ Mete shrinkage		ter. b-	. Correct	<u> </u>	Dump .	
VOL. OF VOL. WIT GAS CAP	$\frac{D - REM}{D - REM}$ IME OF SAMPLI BOTTLE = 628 HDRAWN = 560 = 56 NING = 12	cc. cc.	00 PPM.					Visa	Chief Operator

.

•

	-								
FLO	PET	IOL				AY OIL AHORSE			
Base :	PERTH		Field Well	:		# 1		-age Report	: 03 N°2 <u>610813110</u>
Date of san Sample nat	npling:29.10 ure :	GAS		order	: Samplin	g point : T ERISTICS		bling No.: SOUTLET	#3 ON SEPARATOR
Producing	zone:							j interval	:
Depth orig Surface ele	in : <u>RT</u> evation:		_Tubing Di _Shoe	a.: :	35"	C	Casing Shoe	Dia : :	
Bottom hole static conditions		e measured	J :: t	•	at de	epth:		date :	
Time at whi	<u>B – Me</u> ch sample was ta	ASUREMI aken: 2010	ENT AND 0-2040HR	SAM T	PLING ime elaj	CONDITIO	NS _ stabilis	ation:	<u>+</u> 4월 HRS
Bottom hole dynamic conditions		<u>in</u> sin	ce: <u>OPENIN</u> 768.5PSI	IG_We G a	ell head p	ressure:450 1376.8	OPSIG MTRS	Well head	temp.: <u>91°F</u> 29.10.81
Flow measu Values used	rement of sample for calculations :	<u>d gas</u> _ Gr	avity(air:1)):	.65	5Factor	Fpv = _	<u>1</u> :	1.015
<u>Separator</u>	Pressure : 180 Temp. : 82	DPSIG <u>R</u> *F 0	l <u>ates</u> _ Gas Dil (separato	or conc	: <u>242</u> 1.): <u>18</u>	.1M 59	_ SCFD _ BOPD	GOR B (sepa	78 MMSCF/BBL arator cond.)
<u>Stock</u> <u>tank</u>	Atmosphe re Tank temperatur					Oil at 60	*F :		_BOPD ABCat
	º/o W	-		%	I			<u> </u>	
Transfering f	luid :VACU	UM		T	ransfer o	duration:		BO MINS	
Final condition	ons of the shippin 180 PSIGTe	g <u>bottle :</u>	82 ⁰ F	<u></u>					
Shipping bot Addressee:_	ttle No.: $A-11$	927_sent	ON OF TH on :		_by:			pping ord	
Coupled with	<u>1</u>		LIQUID					GAS	
<u>Bottom ho</u>	<u>le samples No</u> .								
Surface sa	mples No.	·	21980	•		<u>A-82</u>	287		
Measurement A. Tank .	<u>conditions</u> a_Corre	Г	R Meter	•		Corrected	C_ C I with)ump _ tank _	
	<mark>D _</mark> Rei	MARKS _	*****			· ····································		Visa	Chief Operator
H2S	AT TIME OF SA	MPLING =	= <u>+</u> 200 P	PM					
								1	

ł

1

FLO	PETROL	Client :_	HUDBAY OIL	Section:ANNEX
Base :		Field : Well :_	WEST SEAHORSE	Page : 04 Report N•2610813110
	ç	SURFACE SA	MPLING	
Date of sar Sample na			er: Sampling point: ^{BOI}	Sampling No.: <u>#4</u> • TOM OF OIL SIGHT GLASS
Producing			CHARACTERISTICS _	
Depth orig Surface el	in : <u>RT</u> evation:	Tubing Dia. : Shoe	3½" Ca Sh	bsing Dia.: we :
Bottom hole static conditions	Latest pressure measu	red :	at depth:	date : date : date :
Time at wh	$\frac{B - MEASURE}{1000}$	MENT AND SA 010-2040HRS	MPLING CONDITION Time elapsed since s	IS _ + 4월 HRS tabilisation:
Bottom hole dynamic conditions	Bottom hole pressure:	1768.5PSIG	at depth:1376.8 M	PSIG_Well head temp: 91°F TR date: 29.10.81 TR date: 29.10.81
Flow measu Values used	Internet of sampled gas _ for calculations :	Gravity(air:1):	.655 Factor I	Fpv = $\frac{1}{VZ}$: <u>1.015</u>
Separator	Pressure: <u>180</u> PSIG Temp. : <u>82</u> F	<u>Rates</u> – Gas Oil (separator co	: <u>242.1 M</u> ond.): <u>1859</u>	SCFD GOR: <u>8 MSCF/BBL</u> BOPD B (separator cond.)
<u>Stock</u> tank	Atmosphere : Tank temperature :			F :BOPD ABCab
BSW:	% WLR:	º _o	↓	
Transfering 1	luid : MERCURY		Transfer duration:	30 MINS
Final conditi Pressure : 6	ons of the shipping bottle D PSIG Temp:	82 ⁰ F		
Shipping bo Addressee :	<u>C_ IDENTIFIC</u> ttle No.: <u>9209-52-1</u>	ATION OF THE S	by:	Shipping order No:
Coupled wit	<u>h</u>	LIQUID		GAS
<u>Bottom ha</u>	ble samples No.	······································		
	amples No. 22024	-7	A-82 A-11	927
<u>Measuremen</u> A Tank	t conditions. a_Corrected wi	B_ Meter . th shrinkage tes		Cl_ Dump
VOL. OF B VOL. WITH GAS CAP	$\frac{D - REMARKS}{DE OF SAMPLING = +}$ $OTTLE = 628 cc.$ $DRAWN = 560 cc.$ $= 56 cc.$ $HG = 12 cc.$	200 PPM.	·····	Visa Chief Operator
	•			

ł

-

• [

•

1

7<u>A.M.</u> 6DAY -5 A.M. BA.M. 100 ā 94.4. .90 80 70 80 60 10 10P.M. 50 60 40 0 19 19 307 1007 180. A.) 60 11 A.M. 20 10 CHART No I Humitex Phantom Chart Humite ON IME ON NDDN 091042 2045He Ð TIME OFF 29-10-81 ι 1 1 DATE Well-West Seath Re #1 Ō 898413 THE FOXBORD COMPAN FOXBORD, MASS. U.S.A. ប៉ IP.M. ULE 00 DZ: 20.1 00 07 09 0s <u>{</u> 24 09 .08 06 08 W.94 76 00 W'd8 100 30 W.92 81 W .d7 - 1ноін9

6000.

5000.

25.10.81

BOTTLE NO, 80-291/236

BOTTLE VOL. = 628 cc.

TRANSFER =+ 6500 PSIG/175°F

CHAMBER OPENING PRESSURE = 35 PSIG @ 70°F

SAMPLE NO. 4 FROM R.F.T. CHAMBER

25,10.81

BOTTLE NO. 80-291/234 BOTTLE VOL. - 628cc. TRANSFER = \pm 6500 PSIG/175°F CHAMBER OPENING PRESSURE = 35 PSIG @ 70°F

,

FINAL CONDITIONS

PRESSURE = **0** PSIG TEMP. = 23^oC

5 cc. Hg LEFT IN BOTTLE.

÷

ì

1

5000_

4000.

PRESSURE IN PSIG

3000

. 2000.

1000

edy

x

x

¥

SAMPLE NO. 1 FROM P.C.T. CHAMBER

IN PSIG

PRESSURE

5000

31.10.81

BOTTLE NO. = 9024-37

BOTTLE VOL. = 628 cc.

TRANSFER @ + 3500 PSIG/15°C

· 小屠

Saul Start

CHAMBER OPENING PRESSURE = 735 PSIG / 17°C

.

SAMPLE NO. 2 FROM P.C.T. CHAMBER

Psig

≧

PRESSURVE

5000

31.10.81

BOTTLE NO. = 80-291-64

BOTTLE VOL. = 628 cc.

TRANSFER @ ± 3500 PSIG/15°C

翻

i. N

Ì

11

1

1

3

が小田峰

1

ing i

1993-71-599 1975-1975-1975-

÷.

CHAMBER OPENING PRESSURE = 735 PSIG / 17⁰C.

APPENDIX A2. DOWELL SCHLUMBERGER TECHNICAL

- Aller

R E P O R T No. 81014

all the standard and all a

and the second of the second second

REPORT Nº	81014
JOB N°	
INVOICE/SIR.	61384-61385
DATE	29-10-81

TEST N°

COMPANY __HUDBAY_OIL_AUSTRALIA WELL_WEST_SEAHORSE # 1

FIELD

COUNTRY_AUSTRALIA

TECHNICAL REPORT

Dowell Schlumberger (Western) S.A.

(Incorporated with limited liability in Panama)

Telephone: 451 4319 Cables: Telex: Orang AA 94215

January 4th, 1982

Report No: 81014

Dear Sirs,

The enclosed report would be of a mechanically sound Drill Stem Test. Surface pressure readout equipment was used and it performed satisfactorily. The well flowed at an approximate mean rate of 1775 Bbls/Day of oil. While H2S gas was encountered its effect (approx 200 ppm in ½ MMCFD) was considered negligible.

The controlling factor would be the anomalies noted during both shut-in build-ups. The break upward in slope exhibited during the initial shut-in would suggest that the anomaly was close to the well bore. After a drawdown of eight (8) minutes the radius of investigation would be slightly more than a few feet. Since the recorder (SPRO) reflected this heterogenity it would suggest that the immediate well bore was non-homogeneous. The final shut-in also reflected heterogenities. Multiple zones or a lenticular formation could be present. A phase change of fluids - (i.e. water - oil) would not be suspected since the anomaly was close to the well bore. Water production would have become evident during the final flow period.

The formation exhibited high permeability and depletion was not apparent.

Respectfully yours

John F. Viscarde TECHNICAL DEPARTMENT

Pressure Data From This Chart Is Presented On The Next Page

PRESSURE DATA FOR RECORDER : J-1629

DESCRIPTION	LABEL · POINT	PRESSURE (PSI)
INITIAL HYDROSTATIC	1	2070.1
INITIAL FLOW (1)	2	1620.3
INITIAL FLOW (2)	3	1821.4
INITIAL SHUT-IN	4	1975.8
SECOND FLOW (1)	5	1921.0
SECOND FLOW (2)	6	1792.4
SECOND SHUT-IN	7	1986.4
THIRD FLOW (1)		
THIRD FLOW (2)		
THIRD SHUT-IN		
FINAL FLOW (1)		
FINAL FLOW (2)		
FINAL SHUT-IN		
FINAL HYDROSTATIC	8	2068.4

•

DESCRIPTION	TIME (MINS)	PRESSURE
Initial Flow (1) 0 ·	1620.3
	1	1650.6
	2	1653.2
	3	1669,9
	4	1694.4
	5	1721.1
	6	1746.1
	7	1773.4
	8	1792.5
	9	1807.5
	10	1809.6
Initial Flow (2) 11	1821.4
	0	1821.4
	1	1877.5
	2	1891.5
	3	1901.3
	4	1909.4
	5	1915.4
	6	1920.5
	7	1924.7
	8	1938.7
	. 9	1942.2
	10	1944.7
	15	1956.7
	. 20	1963.2
	25	1968.9
	30	1971.9
	45	1973.8
Initial Shut-In	69	1975.8

.

A

.

	TIME	
DESCRIPTION	(MINS)	PRESSURE
Final Flow (1)	0	1921.0
	1	1921.6
	2	1924.4
	3	1953.5
	4	1930.8
	5	1924.4
	6	1920.7
	7	1916.4
	8	1913.6
	9	1910.2
	10	1909.4
	15	1902.3
	20	1884.6
	25	1879.8
	30	1871.0
	45	1863,5
	60	1832.4
	90	1821.4
	120	1818.4
	150	1818.6
	180	1815.2
	240	1812.2
	300	1811.6
	360	1809.4
	400	1807.2
Final Flow (2)	412	1805.2
	0	1792.4
	1	1838.4
	2	1851.4
	- 3	1860.8
	4	1871.6
	5	1875.1
	6	1880.5
	7	1886.5
	8	1890.0

•

RECORDER NO: J-1629 - Continuation

ł

9	
2	1894.5
10	1897.9
15	1912.9
20	1922.7
25 [′]	1929.7
30	1936.2
45	1945.1
60	1951.3
90	1960.4
120	1965.3
150	1970.4
180	1974.3
240	1979.3
300	1983.8
360	1984.8
420	1984.9
480	1985.5
540	1986.0
572	1986.4
	10 15 20 25 30 45 60 90 120 150 180 240 300 360 420 480 540

• • • • •

a and a

Pressure Data From This Chart Is Presented On The Next Page

PRESSURE DATA FOR RECORDER : J-1630

DESCRIPTION	LABEL POINT	PRESSURE (PSI)
INITIAL HYDROSTATIC	1	2091.0
INITIAL FLOW (1)	2	1641.3
INITIAL FLOW (2)	3	1842.5
INITIAL SHUT-IN	4	1996.5
SECOND FLOW (1)	5	1943.5
SECOND FLOW (2)	6	1812.2
SECOND SHUT-IN	7	2007.8
THIRD FLOW (1)		
THIRD FLOW (2)		
THIRD SHUT-IN		
FINAL FLOW (1)		
FINAL FLOW (2)		
FINAL SHUT-IN		
FINAL HYDROSTATIC	. 8	2088.1

RECORDER NO: J-1630 DEPTH: 1398 M

.

.

DESCRIPTION	TIME (MINS)	PRESSURE
Initial Flow (1)	0	1641.3
	1 ·	1671.6
	2	1674.0
	3	1690.7
	4	1716.6
	5	1744.0
	6	1771.0
	7	1797.0
•	8	1816.0
	9	1830.6
	10	1831.3
Initial Flow (2)	11	1842.5
	0	1842.5
	1	1898.7
	2	1912.8
· .	3	1922.3
· ·	4	1930.2
	5	1936.3
	6	1941.5
	7	1945.9
	8	1949.9
	9	1953.8
	10	1956.6
	15	1968.4
	20	1975.2
	_ 25	1980.8
	30	1984.9
	45	1993.2
Initial Shut-In	69	1996.5
Final Flow (1)	0	1943.0
	1	1943.5
	2	1936.4
	3	1965.1

RECORDER	NO:	J-1630	-	Conti	inuatio
----------	-----	--------	---	-------	---------

DESCRIPTION	TIME (MINS)	PRESSURE
	4	1928.0
	5	1922.3
	6	1918.4
	7	1914.0
	8	1911.1
	9	1907.7
	10	1906.6
	15	1899.1
	20	1881.9
	25	1876.2
	30	1867.9
	45	1861.0
	60	1830.8
	90	1820.0
	120	1817.2
	150	1817.8
	180	1815.4
	240	1814,2
	300	1813.8
	360	1813.2
	400	1812.8
Final Flow (2)	412	1812.2
·	0	1811.0
	1	1857.1
	2	1870.6
	3	1880.1
	4	1890.9
	5	1894.2
	6	1899.9
	7	1905.0
	8	1908.8
	9	1913.3
	10	1916.7
	15	1931.3
	20	1941.0
	25	1948.2

RECORDER NO: J-1630	-	Continuation
---------------------	---	--------------

DESCRIPTION	TIME (MINS)	PRESSURE
	30	1954.9
	45	1963.9
	60	1970.1
	90	1979.2
	120	1984.3
	150	1889.3
	180	1993.2
	240	1998.8
	300	2003.3
	360	2005.5
	420	2007.8
Final Shut-In	572	2007.8

and a second second

•

× ,

Pressure Data From This Chart Is Presented On The Next Page

PRESSURE DATA FOR RECORDER : J-1782

.

DESCRIPTION	LABEL . POINT	PRESSURE (PSI)
INITIAL HYDROSTATIC	1	2101.4
INITIAL FLOW (1)	2	1639.5
INITIAL FLOW (2)	3	1846.9
INITIAL SHUT-IN	4	2007.2
SECOND FLOW (1)	5	1941.2
SECOND FLOW (2)	6	1780.9
SECOND SHUT-IN	7	1999.6
THIRD FLOW (1)	N/A	
THIRD FLOW (2)	N/A	<i></i>

8

THIRD SHUT-IN

FINAL FLOW (1)

FINAL FLOW (2)

.

FINAL SHUT-IN

FINAL HYDROSTATIC

2110.9

RECORDER NO: J-1782 DEPTH: 1400 M

•

•

DESCRIPTION	TIME (MINS)	PRESSURE
Initial Flow (1)	0	1639.5
	1	1674.7
	2	1677.0
	3	1693.2
	4	1719.1
	5	1746.9
	6	1774.1
	7	1800.0
	8	1819.1
	9	1835.4
	10	1835.4
Initial Flow (2)	10	1846.9
	**	2010.0
	0	1846.9
	1	1901.1
	2	1915.8
	3	1925.4
	4	1933.1
	5	1939.4
	6	1942.8
	7	1948.4
	8	1952.1
	9	1956.8
	10	1959.5
	15	1971.5
	20	1978.1
	- 25	1983.4
	30	1987.9
	45	2000.1
Initial Shut-In	69	2007.2
Final Flow (1)	0	1941,2
	1	1941.7
· · · · · · · · · · · · · · · · · · ·	2	1935.8

RECONTR	NO:	J-1782
---------	-----	--------

•

.

_

.

•

DESCRIPTION	TIME (MINS)	PRESSURE
	3	1967.1
	4	1929.1
	5	1925.1
	6 ·	1921.1
	7	1917.2
	8	1914.1
	9	1910.0
	10	1909.6
	15	1902.1
	20	1886.1
	25	1879.1
	30	1870.1
	45	1864.1
	60	1833.8
· · ·	90	1823.4
	120	1820.4
	150	1820.6
	180	1800.1
	240	1790.1
	300	1785.1
	360	1784.1
	400	1782.1
Final Flow (2)	412	1780.9
	0	1780.9
	1	1831.1
	2	1842.4
	3	1857.3
	4	1868.1
	5	1874.6
	6	1886.1
	7	1898.1
	8	1901.3
	9	1905.8
	10	1909.2
	15	1923.7

`

.

RECO	R	NO;	J.
, ,	1.1		-

۲

J-1782 - Continuation

DESCRIPTION	TIME (MINS)	PRESSURE
	20	1933.3
	25	1940.5
	30	1947.0
	45 ⁻	1956.1
	60	1962.4
	90	1971.1
	120	1976.2
	150	1981.4
	180	1985.3
	240	1990.2
	300	1993.2
	360	1996.0
	420	1998.2
Final Shut-In	572	1999.6

.

Fermation Testing Field Report

Page 1 of 4

			nope			
	WELL IDENT	IFICATION				
Company : HUDBAY OIL AUSTRAL	IA Well N	IO WEST SEAHORS	# 1 Test No. :_			
Field : Loc	ation : <u>BASS_STR</u>	AIT Cour	ntry :AUSTRA			
Tested Interval : From <u>4629</u>						
Co-ordinates : LAT - 147 37 21	83E LONG -	038 12 10 935		*		
Type Test : Open Hole 🗋 Casing ;	Conventional	Straddle ; Land	rig Jack-up	Floater 😡		
Valve : MFE PCT SPRO	Other:		with Packer	Retainer		
		······				
	HOLE					
Geologic Level : UPPER_CRETACEO						
Net Productive Interval :5_M	<u> 16 4 ft. </u>	stimated Porosity :		%		
Total Depth : <u>1527_M</u> ft. Dep						
Open Hole Size :1214 in	Rat Hole Siz	e: <u>9-5/8</u>	_ in., from1390	<u>–1527 M</u> ft.		
Casing Size : <u>9_5/8</u> in	40_lbs/ft. Liner	Size : in.,.	lbs/ft.	fromft		
Before test: Caliper Yes No	Scraper Yes 🛛	No Circulation	n Yes 🗌 🛛 for	hrs; No 🖾		
			·····			
	MUD D			0 0 0 11 / 0 1		
Mud Type : L0/S0L1DS P0L1MER Viscosity : 38 Water Los	10		Weight $\frac{107}{7}$	66		
Viscosity : <u>30</u> Water Los		Mud Resistivity	<u>····</u> at	<u>05</u> °F		
Filtrate Resistivity :at	°F ; Chloride p	pm:4400				
INSTRUMENT AND CHART DATA						
Recorder No.	J.1782	J-1630	J-1629			
Capacity (psig)	4700	2800	2800			
Depth	1400.17 m	1398.37 M				
Inside/Outside	Out	Out	In			
Above/Below valve	Below	Below	Below			
Clock No.	9-13487	9-11583	9-10354	1		

Above/Below valve	Below	Below	Below	
Clock No.	9-13487	9-11583	9-10354	
Capacity (hrs.)	48 Hrs	48 Hrs	48 Hrs	
Temperature	144 ^o F	146 ^O F	146 °F	
Initial Hydrostatic Pressure	2167 psi	2136 psi		
Pre-flow (1) Start Pressure	1837	1844		
(2) Finish Pressure				
Initial Shut-in Pressure	1837	1844		
Second Flow (1) Start Pressure	1998	1995		
(2) Finish Pressure	1781	1793		
Second Shut-in Pressure	1828	- 1832		
Final Flow (1) Start Pressure				
(2) Finish Pressure				
Final Shut-in Pressure	2007	1995		
Final Hydrostatic Pressure	2195	2192		

OPERATIONS SUMMARY						
Left Station at <u>22</u> : <u>00</u> on <u>25</u> Oct. On Location at <u>07</u> : <u>30</u> on <u>26</u> Oct.						
Started Operations at 02: 00 on 28 Oct. Finished Operations at 10: 00 on 31 Oct.						
Off Location at;onReturn Station at;onMileage						

Comments :_

Station : _____AUS Customer Purchase Order

Customer: HUDBAY OIL AUSTRALIA

Well No: WEST SEAHORSE # 1

Report No. 81014 Test No. 1

		TEST SEC		ND FLOW RA	TE DATA				
	Descrip	tion and Flow Rates	5		Date		me mins	Pressure psig	Surface Choke
Packer Depth :	4563.6	ft. 1391 M		Set at:	29-10-81	08	37		
Opened Tool :		(Annulus	pressure	1300 psi)					
1235	Good Blow					12		35	⅓ BH
1244		ion to surfa	се			12		160	1/2 ADJ
1245		le oil to sur					45		
1246	Bled off t	close tool				12	46	200	1
1354	Press up c							1400	11
1355		(2nd flow)				13			11
	Open to bu					13		370	51
1358		ing rat hole	mud + a	pil		13	58	420	11
1401		face - Bur n				14	01	400	11
1500		w to seperat				15		480	11
2046		to close tool				20	46	450	11
0600	Unlatch SF	RO	·····		30-10-81	06	00		
0620		reverse out				06	20		
0628	Pressure u	p on annulus	to over	rpressure		06	28	2200	
	PCT (· ·		_					
	Bleed off	annulus				06			
	Press up c	n TBG to pum	p out su	ıb		06		5-600	
	Start Reve	rsing out th	ru burne	er 👘		06		400	
	Stop rever					07			
	Attempt to	unset packe	r - wil	not		08	20		
	qo to saf	ety							
	Held strin	g weight - r	everse (out		08	30		
		p annulus							
	Finish rev	ersing				11			
	P.O.H. 1ay	ing down tub	ing			12			-
	Tools at f	loor			1.	19	30		
Povorse Circula	tion Started	(Pump pressure	400	psig)	30-10-81	06	50		
Reverse Circula		(1 amp pressure	<u>400</u>	yuy/	10-10-01	11		· · · · · · · · · · · · · · · · · · ·	
Pulled Packer L		Out of Retainer			<u> </u>	08			
Cushion Type :		Amount	bbls	; Length 288M	ft; Pressu			Bottom Choke	L" PCT

RECOVERY DATA % Oil % % Feet Bbis **Recovery Description** Other Water 0.7 100 85 1 1 STAND D/C 2 3 4 5 6 G.O.R. Resistivity Chlorides **Oil-API Gravity** Gas Gravity ppm at °F .784 ° at 66 °F 1 °F ppm ° at °F 2 at °F ppm 3 ° at °F at °F ° at °F at ppm 4 ° at ° at °F ppm °F at 5 °F ppm at °F 6

Comments : _

Equipment Data

Customer: HUDBAY OIL AUSTRALIA

Well No.: WEST SEAHORSE # 1

Report No. 81014 Test No.: 1

SAM	IPLE CHAMBER RECOVE	RY DATA		
Sampler Drained Transferred to On Location [X] shipping bottles Elsewhere [] Name:	Recovery Gascu ft. Oilc.c. Waterc.c. Mudc.c. °API°F	Resistivity Water Mud Mud Filtrate Pit Mud Pit Mud Filtrate	at at at	°F °F °F
Gas/Oil Ratio cu ft./bbl S	Sample Chamber Pressur	e 735		psi. 17 ⁰ C

EQUIPME	NT SEQUENCE				•
Components (including D.P. and D.C.)	Туре	O.D. (in)	I.D. (in)	Length	Depth
FLOW HEAD					
Floor					
Drill Pipe,				9,58	
X-Over				2.21	
Lub Valve				2.21	
X-Over				2.21	
Tubing				31.50	
X-Over				4.76	
FZ Tree	FLOPFTROL			4.76	
Slick Joint	FLOPETROL			4.76	
Fluted Hangar	FLOPETROL	L		4.76	
X-Over		ļ		4.76	
Tubing				1147.13	
X-Over		ļ	L		
	JOTCO	5"	21/2	8.68	
Slip_Joint (collapsed)	ЈОТСО	5"	21/2	7.16	
X-Over		61	2-11/16		
X-Over		61/4	2-7/8		
Drill Collars (4 stands)		6 ¹ 2	2-7/8	111.36	
X-Over			2-5/16		
Pump Out Sub (Pin type)	JOTCO	6-1/8	2-3/4	0.36	
Drill Collar (1 stand)		6-1/8	2-7/8	26.34	
Pump Out Sub (800 psi)		6-1/8	2-3/4	0.36	
Drill Collar (1_stand)		6-1/8	2-7/8	25,88	
X-Over		6"	2-7/8	0.25	
X-Over		4-3/4		0.25	<u></u>
SPRO_Connection/Housing	JOTCO	4-3/4	21/4		1375.80
	JOTCO	4-3/4	1"	4,66	
MFE/HRT (collapsed)	JOTCO	5"	1-3/8		
Recorder Carrier J-200, J-1629	JOTCO	4-7/8	11/2		1385.37
Hydraulic Jars	JOTCO	4-7/8		2.35	
Safety_Joint	BOWEN		27/16		
X-Over		4-3/4			
Packer Above Seat	JOTCO		3"	0.55	
Packer Below Seat	JOICO	1 2 / 4	3"	0.95	
X-Over	10700	4-3/4	2-5/16	0.32	1000.07
Perforated Anchor	JOTCO	4-3/4	21 ₄	1.00	1398.37
Recorder Carrier J200 J-1630	JOTCO	4-7/8	11/2	1.80	1400.17
Recorder Carrier J200 J-1782	JOTCO	4-7/8	$1\frac{1}{5}$	1.80	
Bullnose	JOTCO	4-3/4	2 ¹ / ₄	0.25	
Total Drill Pipe/Tubing 1188.21 Meters	TOOLS BEL		D _	11.22	1402.22
Total Drill Collar 163, 58 Meters	- JUULS DEL	W PALAE			

Customer: HUDBAY OIL AUS	To be comp TRALIA		·: WEST SE	AHORSE #		ort No. 81014 st No.: 1
Tested Interval	Sand- stone	Lime- stone	Chalk	Clay	Shale	Other (please specify)
Major Mineral Species	X					(please specify)
Minor Mineral Species						
Stringers or Lenses		1	I	Ļ	<u> </u>	J
Is the tested interval :	C	Dpen Hole :		in		
Open Hole Interval : (To Perforated Intervals :	tal Depth) <u>152</u> 1411 M	In Casing : 7 PBTD TO		9-5/8 in. ot of Casing)_	Wt : 40	ft. I.D. <mark>8.835 in 1.1.11111111111111111111111111111111</mark>
In the tested interval how m	any producti		logs show :			
In the tested interval now in	any productiv		2			·· · · · · · · · · · · · · · · · · · ·
Mitrat is the suspense negative	af tha interval	<u>لا</u> بان	L ² L	3		۳ <u>ا</u> %
What is the average porosity		f		Maa		
Is the interval homogeneous	?			Yes		
Is formation consolidation :			Good	Mod		
What is the clay content :			% or High	Mod		
Is the formation fractured			Heavily	Mod		ttle X
In this interval, is there expec	ted near the v	vellbore :				
Geological fault?				Yes		o 🗌
Interval thickness chan	ge?			Yes		
Fluid phase contact?				Yes		
—If yes :—	C	il-Water χ]	Gas-Water	Oi	I-Gas
During drilling of the interval,	was there :		-			
Lost circulation ?				Yes		
Sand production ?				Yes		
Other (please specify).				100		
Before testing was there a :						
Scraper run ?				Yes	X No	
Caliper run ?				Yes		
Mud circulation to botto	um 2			Yes		
—If yes :—	//// :	for	how long			
-				I III	o, how long s	
ditional Comments :	······································	· · · · · · · · · · · · · · · · · · ·				······
	,,,,		<u></u>			
			······	•		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·						······································
······			· · ·			
	<u> </u>					

•

•

.

Ľ

.

PACKARD

م «

w/~

1

*

SYMBOLS USED

- $\triangle T$ INCREMENT OF TIME (MINUTES)
- $\frac{T + \Delta T}{\Delta T} DIMENSIONLESS TIME CONSTANT USED FOR THE HORNER PLOT$ $<math display="block">\Delta T \text{ is the increment of shut-in time (minutes)}$

T IS TOTAL FLOW TIME PRECEDING SHUT-IN (MINUTES)

- LOG LOGARITHM TO BASE 10 OF $T + \triangle T$
- Pw Pf PRESSURE BUILD-UP ABOVE FINAL FLOWING PRESSURE PRECEDING THE BUILD UP WHICH IS USED FOR THE MCKINLEY PLOT.

DOWELL SCHLUMBERGER

1;

SURFACE PRESSURE READ OUT

COMPANY HUDBAY OIL AUSTRALIA I	TD.
WELL WEST SEA HORSE 1	
TEST 1	
DEPTH PBTD. 1527 mts.	
PRESS/TEMP GAUGE FLOPETROL 81193	
GAUGE CAPACITY 10000	
GAUGE DEPTH 1374.8 mts.	

` _	TIME HR:MN:SE	DEL T MIN	PRESSURE PSI	TEMPERATURE DEGREES F	T+DEL T DEL T	LOG(T+DEL T) (DEL T)	PRESSURE DIFF	COMMENTS
5								
	12:34:00		2754.6	121.38				SPRO LATCHED
	12:34:10		2754.6	121.38				
<u>ب</u>	12:34:20		2754.7	121.38				
	12:34:30		2754.8	121.38				
	12:34:40		2754.8	121.38			•	
	12:34:50		2754.9	121.38				
	12:35:00		2756.4	92.61				
	12:35:10		2756.5	92.61				
-	12:35:20		2756.9	92.61				
	12:35:30		2757.7	92.61				
	12:35:40		2759.1	92.61				
\sim	12:35:50		2761.3	92.61				
	12:36:00		2763.9	101.17				
	12:36:10		2767.4	101.17				
\sim	12:36:20		2771.5	101.17				

ping
- 2			
12:36:30	777	5 5 101	17
		5.5 101	
12:36:41	277	7.5 101	17
₩ 12:36:50	140	4.1 101	.17
12:37:00			
	142		.81
12:37:10	144	0.4 142	.81
* 12:37:20	145		.81
12:37:31	146		.81
12:37:40	280	5.4 142	.81
12:37:40 12:37:50		2810.5	142.81
12:38:00	0.0	2819.0	107.79
12:38:10		2824.2	107.79
- 12:38:20	0.3	2828.8	107.79
12:38:30		2833.6	107.79
12:38:40		1583.6	107.79
₩ 12:38:50	0.8	1599.4	107.79
12:39:00		1609.7	144.42
12:39:10		1623.1	144.42
₩ 12:39:20	1.3	1635.2	144.42
12:39:30		1648.6	
			144.42
12:39:40		1660.6	144.42
₩ 12:39:50	1.8	1670.9	144.42
12:40:00		1679.7	
			145.12
12:40:10	2.2	1690.2	145.12
≠ 12:40:20	2.3	1700.0	145.12
12:40:30		1709.2	
			145.12
12:40:40	2.7	1719.7	145.12
₩ 12:40:50	2.8	1729.5	145.12
12:41:00			
		1737.3	145.66
12:41:10	3.2	1745.8	145.66
₩ 12:41:20	3.3	1754.0	145.66
12:41:30		1761.6	145.66
12:41:40	3.7	1766.2	145.66
₩ 12:41:50	3.8	1776.5	145.66
12:42:00			146.06
12:42:10			146.06
₩ 12:42:20	4.3	1791.3	146.06
12:42:30		1787.7	146.06
12:42:40		1791.6	146.06
₩ 12:42:50	4.8	1805.2	146.06
12:43:00		1811.2	146.34
12:43:10		1818.5	146.34
<i>₩</i> 12:43:20	5.3	1823.6	146.34
12:43:30		1827.0	146.34
12:43:40	5.7	1829.9	146.34
≠ 12:43:50	5.8	1829.8	146.34
	2.0		

·. •

INITIAL FLOW

ÿ	х.								. *
-7-1	12:44:00	6.0	1829.9	146.53					
	12:44:10	6.2	1829.2	146.53					
	12:44:20	6.3	1825.9	146.53					•
,	12:44:30	6.5	1821.4	146.53					
	12:44:40	6.7	1823.6	146.53					
\sim	12:44:50 12:45:00	6.8	1824.3	146.53					
	12:45:00	7.0 7.2	1828.4 1829.5	146.65					
<u> </u>	12:45:20	7.3	1829.5	146.65 146.65					
-	12:45:30	7.5	1834.2	146.65			•		
	12:45:40	7.7	1836.9	146.65					
\cup	12:45:50	7.8	1840.1	146.65					
	12:46:00	8.0	1842.2	146.72				FIRST SHU	ττΝ
	12:46:10	0.2	1843.8	146.72	49.000	1.6902	-1		
	12:46:20	0.3	1845.3	146.72	25.000	1.3979	ō		
	12:46:30	0.5	1901.8	146.72	17.000	1.2304	57		
	12:46:40	• 0.7	1908.8	146.72	13.000	1.1139	64		
l,_	12:46:50	0.8	1913.6	146.72	10.600	1.0253	69		
	12:47:00	1.0	1917.7	146.77	9.000	0.9542	73.		
	12:47:10	1.2	1921.0	146.77	7.857	0.8953	76		
١_	12:47:20	1.3	1923.7	146.77		0.8451	79		
	12:47:30	1.5	1926.3	146.77	6.333	0.8016	81		:
Ν.,	12:47:40 12:47:50	1.7	1928.9	146.77	5.800	0.7634	84		*
<u> </u>	12:47:50	1.8 2.0	1931.1 1933.2	146.77	5.364	0.7295	86		
	12:48:10	2.0	1935.1	146.79 146.79	5.000 4.692	0.6990 0.6714	88 90		
\subseteq	12:48:20	2.3	1936.9	146.79	4.429	0.6463	90		
	12:48:30	2.5	1938.5	146.79	4.200	0.6232	93		
	12:48:40	2.7	1940.2	146.79	4.000	0.6021	95		
\Box	12:48:50	2.8	1941.7	146.79	3.824	0.5825	97		
	12:49:00	3.0	1943.2	146.77	3.667	0.5643	98		
	12:49:10	3.2	1944.5	146.77	3.526	0.5473	100		
	12:49:21	3.3	1946.0	146.77	3.388	0.5300	101		
	12:49:30	3.5	1947.1	146.77	3.286	0.5166	102		
	12:49:41	3.7	1948.5	146.77	3.172	0.5013	103		
۱	12:49:51	3.8	1948.8	146.77	3.078	0.4883	104		
	12:50:00	4.0	1950.9	146.71	3.000	0.4771	106		
U I	12:50:14	4.2	1952.5	146.71	2.890	0.4609	107		
\smile	12:50:22	4.4	1953.3	146.71	2.832	0.4521	108		
	12:50:30 12:50:40	4.5 4.7	1954.1 1955.2	146.71 146.71	2.778 2.714	0.4437	109		
	12:50:50	4.7	1955.2	146.71	2.655	0.4337 0.4241	$\begin{array}{c} 110\\ 111 \end{array}$		
	12:51:00	5.0	1957.1	146.62	2.600	0.4241	111		
	12:51:10	5.2	1958.1	146.62	2.548	0.4063	112		
\smile	12:51:20	5.3	1958.9	146.62	2.500	0.3979	114		
							ه دور به		

.

Construction of the second second

ب تر الم	, ,							
1.	12:51:30	5.5	1959.8	146.62	2.455	0.3900 .	115	
	12:51:40	5.7	1960.7	146.62	2.412	0.3823	116	
*	12:51:50	5.8	1961.5	146.62	2.371	0.3750	116	
	12:52:00	6.0	1962.4	146.52	2.333	0.3680	117	
	12:52:10	6.2	1963.1	146.52	2.297	0.3612	118	·
10	12:52:20	6.3	1963.9	146.52		0.3547	119	
-	12:52:20	6.5	1964.7	146.52	2.231	0.3485	120	•
				146.52	2.200	0.3424	120	
3	12:52:40	6.7	1965.4			0.3366	121	
	12:52:50	6.8	1966.1	146.52		0.3310	122	
	12:53:00	7.0	1966.8	146.41	2.143		1.2.3	
	12:53:10	7.2	1967.6	146.41	2.116	0.3256		
~	12:53:20	7.3	1968.2	146.41	2.091	0.3203	123	
	12:53:30	7.5	1968.9	146.41	2.067	0.3153	124	
	12:53:40	7.7	1969.5	146.41	2.043	0.3104	125	
*	12:53:50	7.8	1970.1	146.41	2.021	0.3056	125	
	12:54:00	. 8.0	1970.7	146.29	2.000	0.3010	126	
	12:54:10	8.2	1971.4	146.29	1.980	0.2966	126	
*	12:54:20	8.3	1971.9	146.29	1.960	0.2923	127	
	12:54:30	8.5	1972.5	146.29	1.941	0.2881	128	
	12:54:40	8.7	1973.0	146.29	1.923	0.2840	128	
94	12:54:50	8.8	1973.6	146.29	1.906	0.2800	129	
	12:55:00	9.0	1974.2	146.18	1.889	0.2762	129	
	12:55:10	9.2	1974.7	146.18	1.873	0.2725	130	*
¥	12:55:20	9.3	1975.2	146.18	1.857	0.2688	130	
	12:55:30	9.5	1975.7	146.18	1.842	0.2653	131	
	12:55:40	9.7	1976.2	146.18	1.828	0.2619	131	
¥	12:55:50	9.8	1976.7	146.18	1.814	0.2585	132	
		10.0	1977.2	146.08	1.800	0.2553	1.32	
	12:56:00		1977.7	146.08	1.787	0.2521	133	
محال	12:56:10	10.2		146.08	1.774	0.2490	133	
1	12:56:20	10.3	1978.2		1.762	0.2460	134	
	12:56:30	10.5	1978.6	146.08	1.750	0.2430	134	
	12:56:40	10.7	1979.0	146.08		0.2402	135	
3	12:56:50	10.8	1979.5	146.08	1.738	0.2374	135	
	12:57:00	11.0	1979.9	145.99	1.727		135	
	12:57:10	11.2	1980.4	145.99	1.71.6	0.2346		
**	12:57:20	11.3	1980.8	145.99	1.706	0.2319	136	
	12:57:30	11.5	1981.2	145.99	1.696	0.2293	136	
	12:57:40	11.7	1981.6	145.99	1.686	0.2268	137	
Ŵ	12:57:50	11.8	1982.1	145.99	1.676	0.2243	137	
	12:58:00	12.0	1982.5	145.91	1.667	0.2218	137	
	12:58:10	12.2	1982.9	145.91	1.658	0.2195	138	
20	12:58:20	12.3	1983.2	145.91	1.649	0.2171	138	
	12:58:30	12.5	1983.5	145.91	1.640	0.2148	139	
	12:58:40	12.7	1983.9	145.91	1.632	0.2126	139	
ميد	12:58:50	12.8	1984.3	145.91	1.623	0.2104	139	

en en la seconda de la seco

•

.

÷	X						• • • • • • • • •	х
T ,	12:59:00	13.0	1984.7	145.84	1.615	0.2083	140	
	12:59:10	13.2	1985.0	145.84	1.608	0.2062	140	
\sim	12:59:20	13.3	1985.4	145.84	1.600	0.2041	140	
	12:59:30	13.5	1985.7	145.84	1.593	0.2021	141	
	12:59:40	13.7	1986.0	145.84	1.585	0.2001	141	
_	12:59:50	13.8	1986.3	145.84	1.578	0.1982	141	
	13:00:00	14.0	1986.7	145.77	1.571	0.1963	142	
	13:00:20	14.3	1987.4	145.77	1.558	0.1926	142	
$\mathbf{\dot{\mathbf{v}}}$	13:00:40	14.7	1987.9	145.77	1.545	0.1891	143	
	13:01:00	15.0	1988.6	145.72	1.533	0.1856	144	
	13:01:20	15.3	1989.1	145.72	1.522	0.1823	144	
<u> </u>	13:01:40	15.7	1989.7	145.72	1.511	0.1792	145	
	13:02:00	16.0	1990.2	145.67	1.500	0.1761	145	
	13:02:20	16.3	1990.8	145.67	1.490	0.1731	146	
<u>ب</u>	13:02:40	16.7	1991.3	145.67	1.480	0.1703	146	
	13:03:00	17.0	1991.8	145.62	1.471	0.1675	147	
	13:03:20	17.3	1992.3	145.62	1.462	0.1648	147	
`	13:03:40	17.7	1992.8	145.62	1.453	0.1622	148	
	13:04:00	18.0	1993.2	145.58	1.444	0.1597	148	
	13:04:20	18.3	1993.7	145.58	1.436	0.1573	149	
	13:04:40	18.7	1994.2	145.58	1.429	0.1549	149	ť
	13:05:00	19.0	1994.6	145.53	1.421	0,1526	150	
	13:05:20	19.3	1995.0	145.53	1.414	0.1504	150	,
\sim	13:05:40	19.7	1995.5	145.53	1.407	0.1482	150	
	13:06:00	20.0	1995.8	145.49	1.400	0.1461	151	
,	13:06:20	20.3	1996.2	145.49	1.393	0.1441	151	
	13:06:40	20.7	1996.6	145.49	1.387	0.1421	152	
	13:07:00	21.0	1997.0	145.45	1.381	0.1402	152	
۰. ب	13:07:20	21.3	1997.3	145.45	1.375	0.1383	152 153	
	13:07:40	21.7	1997.7	145.45	1.369	0.1365	153	
	13:08:00	22.0	1998.0	145.41	1.364	0.1347 0.1330	153	
	13:08:20	22.3	1998.4	145.41	1.358	0.1313	154	
\sim	13:08:40	22.7	1998.7	145.41	1.353 1.348	0.1296	154	
	13:09:00	23.0	1999.0	145.37	1.348	0.1280	154	
۲. سه	13:09:20		1999.3 2000.0	145.37 145.33	1.333	0.1249	155	
- -	13:10:00 13:10:30	24.0 24.5	2000.0	145.33	1.327	0.1227	155	
	13:11:00	24.5	2000.4	145.29	1.320	0.1206	156	
<u>\</u>	13:11:30	25.0	2000.8	145.29	1.314	0.1185	156	
~	13:12:00	25.5	2001.2	145.25	1.308	0.1165	157	
	13:12:00	26.0	2001.7	145.25	1.302	0.1146	157	
U I	13:13:00	27.0	2002.0	145.21	1.296	0.1127	157	
	13:13:30	27.5	2002.4	145.21	1.291	0.1109	158	
	13:14:00	28.0	2002.0	145.17	1.286	0.1091	158	
\mathbf{C}	13:14:30	28.5	2003.5	145.17	1.281	0.1074	159	
	T.) • T.4 • 70	ر • ن <i>ع</i>	2003.3	729971	T • 201	V • 1 0 / 1	5. J J	

La companya and a companya an

	X .			145 13	1.276	0.1058	159		-	
	13:15:00	29.0	2003.8	145.13	1.271	0.1042	159			
	13:15:30	29.5	2004.1	145.13		0.1027	160			
1 11	13:16:00	30.0	2004.5	145.08	1.267	0.1007	160			
-	13:16:40	30.7	2004.9	145.08	1.261		160			
4		31.5	2005.4	145.04	1.254	0.0983				
	13:17:30		2005.8	145.00	1.247	0.0960	161			
L.	13:18:20	32.3		144.96	1.241	0.0938	161			
	13:19:10	33.2	2006.3		1.235	0.0918	162			
	13:20:00	34.0	2006.7	144.93		0.0898	162			
¥	13:20:50	34.8	2007.1	144.93	1.230	0.0879	163			
	13:21:40	35.7	2007.5	144.90	1.224		163			
		36.5	2007.8	144.88	1.219	0.0861	163			· .
	13:22:30	37.0	2008.1	144.85	1.216	0.0850				·
	13:23:00		2008.5	144.81	1.211	0.0830	163			
	13:24:00	38.0		144.77	1.205	0.0810	164			
	13:25:00	39.0	2008.9	144.74	1.200	0.0792	164			
Jef	13:26:00	40.0	2009.3		1.195	0.0774	165			
	13:27:00	41.0	2009.6	144.71	1.190	0.0757	165			
	13:28:00	42.0	2010.0	144.68		0.0726	166			
łz.,	13:30:00	44.0	2010.6	144.62	1.182	0.0696	166			
	13:32:00	46.0	.2011.2	144.57	1.174	0.0669	167			
	13:34:00	48.0	2011.8	144.52	1.167		167			
		50.0	2012.3	144.48	1.160	0.0645	168	1		
*	13:36:00	52.0	2012.8	144.45	1.154	0.0621		1		
	13:38:00		2013.2	144.41	1.148	0.0600	168			
	13:40:00	54.0		144.38	1.143	0.0580	169			
3	13:42:00	56.0	2013.5	144.34	1.138	0.0561	169			
	13:44:00	58.0	2013.9		1.133	0.0544	169			
	13:46:00	60.0	2014.3	144.32	1.129	0.0527	170			
1	13:48:00	62.0	2014.5	144.29		0.0512	170			
	13:50:00	64.0	2014.9	144.27	1.125	0.0497	170			
	13:52:00	66.0	2015.2	144.24	1.121		170			
		68.0	2015.4	144.22	1.118	0.0483	710			
5 .2	13:54:00	0.0	1904.5	144.21						
	13:55:01		1912.1	144.21						
	13:55:10	0.2	1929.2	144.21						,
19	13:55:20	0.3		144.21						
	13:55:30	0.5	1944.3							
	13:55:40	0.7	1955.4	144.21						
بحد:	13:55:50	0.8	1948.1	144.21						
	13:56:00	1.0	1939.9	144.20						
	13:56:10	1.2	1934.9	144.20						
Ŷ	13:56:20	1.3	1930.8	144.20						
+	13:56:30	1.5		144.20						
		1.7	1919.6	144.20						
	13:56:40	1.8	-	144.20						
Ψ	13:56:50			144.22						
	13:57:00	2.0	_	144.22			•			
	13:57:10	2.2		144.22						
<i></i>	13:57:20	2.3	1958.7	144.44						
									,	

•

4				
- P -	13:57:30	2.5	1971.2	144.22
	13:57:40	2.7	1978.2	144.22 144.22
\smile	13:57:50 13:58:00	2.8 3.0	1982.4 1977.4	144.24
	13:58:10	3.2	1967.8	144.24
<u>ко</u>	13:58:20	3.3	1978.5	144.24
	13:58:30	3.5 3.7	1962.0 1928.6	144.24 144.24
\cup	13:58:40 13:58:50	3.8	1915.4	144.24
	13:59:00	4.0	1908.1	144.29
	13:59:10	4.2	1904.3	144.29
\cup	13:59:20	4.3	1903.6 1903.8	144.29 144.29
	13:59:30 13:59:40	4.5 4.7	1904.5	144.29
1	13:59:50	4.8	1904.2	144.29
	14:00:00	5.0	1903.7	144.37
6	14:00:10	5.2 5.3	1902.6 1901.2	144.37 144.37
1	14:00:20 14:00:30	5.5	1900.0	144.37
	14:00:40	5.7	1899.8	144.37
\subseteq	14:00:50	5.8	1899.8	144.37 144.52
	14:01:00 14:01:10	6.0 6.2	1900.1 1900.3	144.52
1	14:01:20	6.3	1900.5	144.52
	14:01:30	6.5	1901.0	144.52
	14:01:40	6.7	1901.3	144.52 144.52
C	14:01:50 14:02:00	6.8 7.0	1900.8 1900.8	144.73
	14:02:10	7.2	1893.9	144.73
	14:02:20	7.3	1896.9	144.73
	14:02:30	7.5	1897.4	144.73 144.73
C	14:02:40 14:02:50	7.7 7.8	1896.8 1896.2	144.73
•	14:03:00	8.0	1894.7	144.97
	14:03:10	8.2	1892.6	144.97
\subseteq	14:03:20	8.3	1891.8 1891.1	144.97 144.97
	14:03:30 14:03:40	8.5 8.7	1890.9	144.97
`	14:03:50	8.8	1890.4	144.97
	14:04:00	9.0	1889.5	145.22
١.	14:04:10	9.2 9.3	1888.4 1887.9	145.22 145.22
\sim	14:04:20 14:04:30	9.5	1887.9	145.22
	14:04:40	9.7	1888.1	145.22
C	14:04:50	9.8	1888.5	145.22

.

.

In the second se

et, ·			•	1 A F A A
	14:05:00	10.0	1889.4	145.44
		10.2	1890.6	145.44
	14:05:10	10.3	1891.7	145.44
W .	14:05:20	10.5	1892.8	145.44
	14:05:30	10.5		145.44
	14:05:40	10.7	1893.9	
i.	14:05:50	10.8	1894.8	145.44
~		11.0	1895.5	145.63
	14:06:00	11 0	1895.6	145.63
	14:06:10	11.2		145.63
W	14:06:20	11.3	1894.8	145.63
	14:06:30	11.5	1892.4	
	14:06:40	11.7	1891.2	145.63
		11.8	1889.6	145.63
-	14:06:50		1888.2	145.79
	14:07:00	12.0		145.79
	14:07:10	12.2	1886.9	145.79
V	14:07:20	12.3	1885.8	
-	14:07:30	, 12.5	1884.8	145.79
		12.7	1885.0	145.79
	14:07:40		1884.6	145.79
U	14:07:50	12.8	1884.4	145.93
	14:08:00	13.0		145.93
	14:08:10	13.2	1884.6	T47.22
v	14:08:20	13.3	1884.4	145.93
v	14:00.20	13.5	1884.0	145.93
	14:08:30		1884.9	146.05
	14:09:00	14.0		146.05
J.	14:09:30	14.5	1884.8	146.17
	14:10:00	15.0	1883.0	140.17
	14:10:30	15.5	1880.5	146.17
		16.0	1876.6	146.29
2	14:11:00		1874.5	146.29
	14:11:30	16.5	1873.4	146.41
	14:12:00	17.0		146.41
<i></i>	14:12:30	17.5	1872.2	140.14
	14:13:00	18.0	1871.4	146.52
		18.5	1869.7	146.52
	14:13:30	19.0	1868.0	146.63
مي:	14:14:00		1864.8	146.63
	14:14:30	19.5		146.73
	14:15:00	20.0	1862.5	146.73
~	14:15:30	20.5	1860.0	
		21.0	1858.2	146.82
	14:16:00	21.5	1857.6	146.82
	14:16:30	21.0	1858.2	146.90
حرب	14:17:00	22.0		146.90
	14:17:30	22.5		146.98
	14:18:00	23.0	1858.3	
N	14.10.20	23.5		146.98
	14:18:30	24.0		147.05
	14:19:00			147.05
	14:19:30	24.5	_	147.11
See.	14:20:00	25.0	1854.9	

· · ·

ъ.

t. T

,

.

.

¥Γ.					
• . ·	14:20:30	25.5	1855.5	147.11	
	14:21:00	26.0	1853.9	147.16	
مد ا	14:21:30	26.5	1851.8	147.16	
`	14:22:00	27.0	1845.1	147.21	
	14:22:30	27.5	1849.7	147.21	
۱ <u>ــ</u>	14:23:00	28.0	1847.2	147.25	
	14:23:30	28.5	1846.1	147.25	
	14:24:00	29.0	1844.3	147.29	
۱ <u>۰</u>	14:24:30	29.5	1845.6	147.29	
	14:25:00	30.0	1846.5	147.33	
	14:25:30	30.5	1847.0	147.33	
1	14:26:00	31.0	1846.0	147.36	
	14:26:30	31.5	1845.7	147.36	
	14:27:00	32.0	1844.0	147.39	
	14:27:30	32.5	1842.9	147.39	
	14:28:00	33.0	1841.3	147.42	
(14:28:30	33.5	1839.7	147.42	•
· • •	14:29:00	34.0	1839.1	147.45	
	14:29:30	34.5	1839.0	147.45	
	14:30:00	35.0	1838.6	147.48	
·	14:30:30	35.5	1839.5	147.48	
	14:31:00	36.0	1842.9	147.50	
	14:31:30	36.5	1843.0	147.50	· · · · · · · · · · · · · · · · · · ·
" *** "	14:32:00	37.0	1842.9	147.53	
	14:32:30	37.5	1843.7	147.53	
	14:33:00	38.0	1844.0	147.55	
·	14:33:30	38.5	1843.6	147.55	
	14:34:00	39.0	1843.5	147.57	
	14:34:30	39.5	1843.6	147.57	,
	14:35:00	40.0	1843.1	147.58	
	14:35:30	40.5	1843.4	147.58	
•	14:36:00 14:36:30	41.0 41.5	1842.8	147.60 147.60	
	14:30:50	41.5	1843.2	147.61	
	14:37:30	42.0	1842.8	147.61	
<u> </u>	14:37:50	42.5	1842.5	147.63	
	14:38:30	43.5	1842.8	147.63	
	14:39:00	44.0	1842.3	147.65	
	14:39:30	44.5	1842.6	147.65	
	14:40:00	45.0	1841.8	147.66	. "
	14:40:30	45.5	1839.8	147.66	
\mathbf{C}	14:41:00	46.0	1838.1	147.67	
	14:41:30	46.5	1836.9	147.67	
	14:42:00	47.0	1835.4	147.69	
\cup	14:42:30	47.5	1834.4	147.69	
			T 0 2 3 6 3	÷ • • • • • • •	

Channel and an and a start of the start of the

· · · · • •						1967 - 1977 - 19
÷۲	х 1					
· • •	14:43:00	48.0	1833.1	147.70		
	14:43:30	48.5	1832.2	147.70		
10	14:44:00	49.0	1831.3	147.72		
	14:44:30	49.5	1831.0	147.72		
,	14:45:00	50.0	1830.3	147.74		
1	14:45:30	50.5	1829.7	147.74		•
	14:46:00	51.0	1829.4	147.75		
W	14:46:30	51.5	1829.5	147.75 147.77		.•
•	14:47:00	52.0	1829.3 1828.9	147.77		
	14:47:30 14:48:00	52.5 53.0	1828.8	147.79		
	14:48:00	53.5	1828.6	147.79		
	14:49:00	54.0	1827.8	147.80		
	14:49:30	54.5	1828.2	147.80		
۰ <i>.</i> ۲	14:50:00	55.0	1827.6	147.82		
	14:50:30	55.5	1827.9	147.82		
	14:51:00	56.0	1827.9	147.84		
L	14:51:30	56.5	1827.4	147.84		
	14:52:00	57.0	1828.0	147.86		
	14:52:30	57.5	1827.6	147.86		
' _ '	14:53:00	58.0	1827.1	147.88 147.88		
	14:53:30	58.5	1826.4 1826.9	147.89		
	14:54:00	59.0 59.5	1826.3	147.89		
	14:54:30 14:55:00	60.0	1825.9	147.30		
	14:55:00	60.5	1825.3	147.90		
	14:56:00	61.0	1824.6	147.91		
	14:56:30	61.5	1824.1	147.91		
	14:57:00	62.0	1822.7	147.92	•	
•	14:57:30	62.5	1822.3	147.92		
	15:01:01	66.0	1810.0	147.92		
	15:02:00	67.0	1808.2	148.01		
	15:03:00	68.0	1807.0	148.03		
	15:04:00	69.0	1806.3	148.05 148.08		
	15:05:00	70.0	1805.1 1804.7	148.10		
Ŷ	15:06:00	71.0 72.0	1804.7	148.12		
	15:07:00 15:07:30	72.5	1804.0	148.12		
,	15:07:40	72.7	1803.7	148.12		
1	15:07:50	72.8	1803.6	148.12		
	15:08:00	73.0	1803.4	148.14		
مون	15:08:10	73.2	1803.2	148.14		
	15:08:20	73.3	1802.9	148.14		
	15:08:30	73.5	1802.9	148.14		
-	15:08:40	73.7	1802.8	148.14		

•

.

•

1 1 juni 1	15:08:50 15:09:00 15:09:10 15:09:20 15:09:30 15:09:40	73.8 74.0 74.2 74.3 74.5 74.7	1802.6 1802.4 1802.4 1802.4 1802.3 1802.3	148.14 148.16 148.16 148.16 148.16 148.16 148.16							
- 	15:09:50 15:10:00 15:10:10 15:10:20 15:10:30 15:10:40 15:10:50	74.8 75.0 75.2 75.3 75.5 75.7 75.8	1802.1 1802.0 1802.0 1801.9 1801.8 1801.7 1801.7	148.16 148.18 148.18 148.18 148.18 148.18 148.18 148.18 148.18 148.20				·		1	e
-	15:11:00 15:11:10 15:11:20 15:11:30 15:11:40 15:11:50 15:12:00	76.0 76.2 76.3 76.5 76.7 76.8 77.0	1801.6 1801.5 1801.5 1801.3 1801.2 1801.2 1801.0	148.20 148.20 148.20 148.20 148.20 148.20 148.22 148.22			·		÷		
-	15:12:10 15:12:20 15:12:30 15:12:40 15:12:50 15:13:00 15:13:10	77.2 77.3 77.5 77.7 77.8 78.0 78.2	1800.4 1800.6	$148.22 \\ 148.22 \\ 148.22 \\ 148.22 \\ 148.22 \\ 148.23 \\ 1$	· .				1		
-	15:13:20 15:13:30 15:13:40 15:13:50 15:14:00 15:14:10	78.3 78.5 78.7 78.8 79.0 79.2 79.3	1800.2 1800.1 1800.1 1799.9 2 1799.9 1799.8	148.23 148.23 148.23 148.25 148.25 148.25 148.25							۲
	15:14:20 15:14:30 15:14:40 15:14:50 15:15:00 15:15:10 15:15:20	79.5 79.7 79.1 80.0 80.1 80.1	5 1799.7 7 1799.6 8 1799.5 0 1799.5 2 1799.3 3 1799.3	148.26 148.26							
-	15:15:30 15:15:40 15:16:00 15:17:00 15:18:00	82.	7 1799.2 0 1798.9 0 1798.5	148.26 148.28 148.29 148.31		ш. н					

111	· · · · ·			7 10					
¥2.	•								
1 ·	.15:19:00	84.0	1798.1	148.32					
	15:20:00	85.0	1797.7	148.34					
بر ۲	15:21:00	86.0	1797.4	148.35					
	15:22:00	87.0	1796.7	148.36					
•	15:23:00	88.0	1796.3	148.37					
·	15:24:00	89.0	1795.9	148.39	•				
	15:25:00	90.0	1795.5	148.40					
	15:26:00	91.0	1795.1	148.41					
C.	15:27:00	92.0	1794.8	148.42	•				
	15:28:00	93.0	1794.5	148.43	•				
	15:29:00	94.0	1793.5	148.45					
	15:30:00	95.0	1793.0	148.46					
	15:31:00	96.0	1792.5	148.47					
	15:32:00	97.0	1789.7	148.48					
<u>(</u> ,	15:33:00	98.0	1791.6	148.49					
	15:34:00	99.0	1791.2	148.51					
	15:35:00	100.0	1790.2	148.52					
14-	15:36:00		1790.6	148.53					
	15:37:00	102.0	1790.3	148.54					
	15:38:00	103.0	1790.0	148.56					
14 A	15:39:00	104.0	1789.8	148.57			:		
	15:40:00	105.0	1789.4	148.58			1		
	15:41:00	106.0	1789.1	148.59					
U	15:42:00	107.0	1788.9	148.60)				
	15:43:00	108.0	1788.7	148.61					
	15:44:00	109.0	1788.5	148.63					
\sim	15:45:00	110.0	1788.4	148.64					
	15:46:00	111.0	1788.0	148.65					
	15:47:00	112.0	1787.3	148.66					
*	15:48:00	113.0	1786.8	148.67				,	
	15:49:00	114.0	1786.5	148.68					-
	15:50:00	115.0	1786.3	148.69					
`~*	15:52:00	117.0	1786.4	148.70					
	15:54:00	119.0	1786.2	148.72		、			
	15:56:00	121.0	1785.5	148.74		```			
~	15:58:00	123.0	1786.7	148.76					
	16:00:00	125.0	1785.3	148.78					
	16:02:00	127.0	1784.3	148.80					
يە	16:04:00	129.0	1784.6	148.82					
	16:06:00	131.0	1784.5	148.84					
	16:08:00	133.0	1784.2	148.86					
<u> </u>	16:10:00	135.0	1783.9	148.88					
	16:12:00	137.0	1783.8	148.89					
	16:14:00	139.0	1783.5	148.91					
·+•	16:16:00	141.0	1783.2	148.93					
								. f	

-Fine					
. X.	16:18:00	143.0	1783.2	148.95	
	16:20:00	145.0	1782.8	148.97	
N	16:22:00	147.0	1782.6	148.99	
	16:24:00	149.0	1782.6	149.00	
	16:26:00	151.0	1782.3	149.02	
•	16:28:00	153.0	1782.0	149.04	
	16:30:00	155.0	1782.0	149.05	
	16:32:00	157.0	1781.6	149.07	
·	16:34:00	159.0	1781.2	149.09	
	16:36:00	161.0	1781.1	149.10	
s. * wa	16:38:00	163.0	1781.2	149.12	
*	16:40:00	165.0	1781.1	149.13	·
	16:42:00	167.0	1780.8	149.15	
¥.,	16:44:00	169.0	1780.9	149.16	
•	16:46:00	171.0	1780.7	149.18	
	16:48:00	173.0	1780.6	149.19	
1 ' 1996	16:50:00	175.0	1780.4	149.21	
*D4	16:52:00	177.0	1780.3	149.22	
	16:54:00		1780.2	149.24	·
: -	16:56:00	181.0	1780.0	149.25 149.27	
	16:58:00	183.0	1779.9	149.27	
	17:00:00	185.0	1779.9	149.20	
۱ <u>.</u>	17:02:00	187.0	1779.8 1779.3	149.30	
	17:04:00	189.0	1779.3	149.33	
	17:06:00	191.0	1779.0	149.34	
١.,	17:08:00	193.0 195.0	1779.1	149.36	
	17:10:00	195.0	1778.3	149.37	
	17:12:00	197.0	1778.1	149.39	
.	17:14:00 17:16:00	201.0	1778.3	149.40	
	17:18:00	201.0	1777.2	149.42	
	17:20:00	205.0	1.777.2	149.43	
.	17:22:00	207.0	1777.5	149.44	
	17:24:00	209.0	1777.7	149.46	
	17:26:00	211.0	1777.8	149.47	
	17:28:00	213.0	1777.2	149.48	
	17:30:00	215.0	1777.7	149.50	
	17:32:00	217.0	1776.5	149.51	
κ.,	17:34:00	219.0	1777.3	149.52	
	17:36:00	221.0	1777.1	149.54	
	17:38:00	223.0	1776.6	149.55	
- J	17:40:00	225.0	1780.1	149.56	
	17:42:00	227.0	1777.3	149.58	
	17:44:00	229.0	1776.3	149.59	
1	17:46:00	231.0	1776.1	149.60	

X

-9

•

- F	,					
•	17:48:00	233.0	1776.4	149.61		
	17:50:00	235.0	1776.3	149.62		
\cup	17:52:00	237.0	1776.2	149.64		
	17:54:00	239.0	1775.9	149.65		
	17:56:00	241.0	1775.9	149.66		
5	17:58:00	243.0	1775.2	149.67		
	18:00:00	245.0	1775.2	149.68		
	18:02:00	247.0	1775.9	149.70		
	18:04:00	249.0	1774.0	149.71		
	18:06:00	251.0	1775.5	149.72		
	18:08:00	253.0	1774.5	149.72		
14	18:10:00	255.0	1775.8	149.74		
	18:12:00	257.0	1775.7	149.75		
	18:12:40	257.7	1774.8	149.75		
\sim	18:13:20	258.3	1775.1			
	18:14:00	258.5		149.76		
		259.0	1774.8	149.76		
N#	18:15:00		1775.4	149.76		
		260.0	1774.8	149.77		
	18:16:00		1774.3	149.77		
•	18:17:00	262.0	1775.2	149.79		
	18:18:00	263.0	1774.3	149.79		
	18:19:00	264.0	1774.2	149.80		
5	18:20:00	265.0	1774.1	149.80	•	
	18:21:00	266.0	1774.3	149.81		
	18:22:00	267.0	1773.9	149.81		
* r	18:23:00	268.0	1774.3	149.82		
	18:24:00	269.0	1774.0	149.82		
	18:25:00	270.0	1774.2	149.83		
**	18:26:00	271.0	1775.0	149.83		
	18:27:00	272.0	1774.3	149.84		
	18:34:41	279.7	1773.5	149.84		
÷	18:35:00	280.0	1774.5	149.88		
	18:36:00	281.0	1773.9	149.88		
	18:37:00	282.0	1773.5	149.89		
,	18:38:00	283.0	1775.1	149.89		
	18:39:00	284.0	1774.2	149.90		
	18:40:00	285.0	1775.9	149.90		
~	18:41:00	286.0	1773.3	149.91		
	18:42:00	287.0	1774.1	149.91		
	18:43:00	288.0	1771.2	149.92		
	18:44:00	289.0	1773.3	149.92		
	18:45:00	290.0	1773.0	149.93		
	18:46:00	291.0	1772.8	149.93		
••	18:47:00	292.0	1774.1	149.94		
	18:48:00	293.0	1773.8	149.94		

•

.

`

32-

1,						
1 ×	18:49:00	294.0	1773.5	149.95		
C	18:50:00	295.0	1773.9	149.95		
	18:51:00	296.0	1772.2	149.96		
•	18:52:00	297.0	1774.0	149.96		
C	18:53:00	298.0	1772.2	149.97		
	18:54:00	299.0	1772.6	149.97		
	18:56:00	301.0	1773.5	149.98		
6	18:58:00	303.0	1772.9	149.99		
	19:00:00	305.0	1772.7	150.00		
	19:02:00	307.0	1772.0	150.01		
	19:04:00	309.0	1772.4	150.02		
6	19:06:00	311.0	1772.0	150.03		
	19:08:00	313.0	1772.2	150.04		
L	19:10:00	315.0	1772.1	150.05		
×	19:12:00	317.0	1772.2	150.06		
	19:14:00	319.0	1770.1	150.07		
h.,	19:16:00	321.0	1769.2	150.08		
₩e,, /	19:18:00	323.0	1771.8	150.09		
	19:20:00	325.0 '	1771.0	150.10		
0	19:22:00	327.0	1771.1	150.11		
N 2	19:24:00	329.0	1769.5	150.11		
	19:26:00	331.0	1771.5	150.12		
1.	19:28:00	333.0	1771.2	150.13		
	19:30:00	335.0	1771.3	150.14		
	19:32:00	337.0	1770.5	150.15		
h	19:34:00	339.0	1770.8	150.16		
••••	19:36:00	341.0	1770.3	150.17		
	19:38:00	343.0	1770.2	150.18		
L.	19:40:00	345.0	1771.1	150.19	·	
• 2	19:42:00	347.0	1770.6	150.19		
	19:44:00	349.0	1768.4	150.20		
12	19:46:00	351.0	1770.6	150.21		
	19:48:00	353.0	1769.8	150.22		
	19:50:00	355.0	1770.0	150.23		
	19:52:00	357.0	1770.5	150.24		
	19:54:00	359.0	1770.1	150.24		
	19:56:00	361.0	1770.0	150.25		
6	19:58:00	363.0	1769.6	150.26		
~r	20:00:00	365.0	1769.3	150.27		
	20:02:00	367.0	1768.1	150.28		
6	20:04:00	369.0	1769.6	150.29		
- -	20:06:00	371.0	1769.7	150.29		
	20:08:00	373.0	1769.5	150.30		
L.	20:10:00	375.0	1769.5	150.31		
-	20:12:00	377.0	1769.1	150.32		

A statistic in the second sec second sec

`							
,	20.14.00	270 0	1770 0	150 22			
	20:14:00	379.0	1770.2	150.32			
	20:16:00	381.0	1769.1	150.33			
`	20:18:00	383.0	1768.6	150.34			
	20:20:00	385.0	1767.6	150.35			
	20:22:00	387.0	1768.6	150.36			
	20:24:00	389.0	1768.2	150.36			
	20:26:00	391.0	1769.0	150.37			
	20:28:00						
		393.0	1770.5	150.38	•		
	20:30:00	395.0	1768.0	150.39			
	20:32:00	397.0	1768.5	150.40			
	20:34:00	399.0	1768.0	150.40			
	20:36:00	401.0	1767.9	150.41			
	20:38:00	403.0	1764.9	150.42			
	20:40:00	405.0	1768.8	150.43			
	20:42:00	407.0	1768.9	150.43			
		409.0	1768.4	150.44			
	20:46:00	411.0	1766.7	150.45			
	20:46:59	412 0	1863.2	150.45		•	
	20:47:00	412.0	1003.2				
	20:47:00	412.0	1863.7	150.45			
	20.47.10	0 0	1000 5	150 45	0410 000	2 2 2 2 2	
	20:47:10	0.2	1866.5	150.45	2413.000	3.3826	
	20:47:20	0.3	1869.0	150.45	1207.000	3.0817	
	20:47:30	0.5	1871.4	150.45	805.000	2.9058	
	20:47:40	0.7	1873.4	150.45	604.000	2.7810	
	20:47:50	0.8	1875.5	150.45	483.400	2.6843	
	20:48:00	1.0	1877.3	150.44	403.000	2.6053	
	20:48:10	1.2	1879.2	150.44	345.571	2.5385	
	20:48:20	1.3	1880.9	150.44	302.500	2.4807	
	20:48:30	1.5	1882.4	150.44	269.000	2.4298	
	20:48:40	1.7	1884.0	150.44	242.200	2.3842	
	20:48:51	1.9	1885.6	150.44			
	20:49:01				218.297	2.3390	
		2.0	1886.9	150.42	200.339	2.3018	
	20:49:17	2.3	1887.8	150.42	177.058	2.2481	
	20:49:20	2.3	1889.6	150.42	173.286	2.2388	
	20:49:30	2.5	1890.8	150.42	161.800	2.2090	
	20:49:40	2.7	1892.0	150.42	151.750	2.1811	
	20:49:50	2.8	1893.2	150.42	142.882	2.1550	
	20:50:00	3.0	1894.6	148.77	135.000	2.1303	
	20:50:10	3.2	1895.5	148.77	127.947	2.1070	
	20:50:20	3.3	1896.7	148.77	121.600	2.0849	
	20:50:30	3.5	1897.7	148.77	115.857	2.0639	
	20:50:40	3.7	1898.7	148.77	110.636	2.0439	
	20:50:50	3.8	1899.8	148.77	105.870		
	20:51:00	4.0				2.0248	
	20:51:00		1900.3	150.34	101.500	2.0065	
	20:21:10	4.2	1901.3	150.34	97.480	1.9889	

.1

1.

۰.

٨...

١....

۰.,

~

``

SECON SECOND SHUT IN

.

,

	20:51:20	4.3	1902.2	150.34	93.769	1.9721	136	
	20:51:20	4.5	1903.1	150.34	90.333	1.9558	137	
	20:51:50	4.7	1904.0	150.34	87.143	1.9402	1.3.8	
•			1904.0	150.34	84.172	1.9252	139	
	20:51:50	4.8				1.9106	140	
	20:52:00	5.0	1905.7	150.29	81.400		140	
	20:52:10	5.2	1906.5	150.29	78.806	1.8966	1.41	
	20:52:20	5.3	1907.3	150.29	76.375	1.8830		
	20:52:30	5.5	1908.1	150.29	74.091	1.8698	142	
	20:52:40	5.7	1908.8	150.29	71.941	1.8570	1.4.3	
	20:52:50	5.8	1909.6	150.29	69.914	1.8446	144	
	20:53:00	6.0	1910.4	150.23	68.000	1.8325	1.44	
	20:53:10	6.2	1911.1	150.23	66.189	1.8208	145	
	20:53:20	6.3	1911.9	150.23	64.474	1.8094	146	
	20:53:30	6.5	1912.5	150.23	62.846	1.7983	146	
	20:53:40	6.7	1913.1	150.23	61.300	1.7875	147	
	20:53:50	6.8	1913.9	150.23	59.829	1.7769	148	
	20:54:01	7.0	1914.5	150.16	58.292	1.7656	149	
	20:54:10	7.2	1915.2	150.16	57.093	1.7566	149	
	20:54:20	7.3	1915.8	150.16	55.818	1.7468	150	
	20:54:30	7.5	1916.4	150.16	54.600	1.7372	150	
	20:54:40	7.7	1917.0	150.16	53.435	1.7278	151	
	20:54:50	7.8	1917.7	150.16	52.319	1.7187	1.52	
	20:55:00	8.0	1918.2	150.09	51.250	1.7097	152	,
•	20:55:10	8.2	1918.8	150.09	50.224	1.7009	153	
	20:55:20	8.3	1919.4	150.09	49.240	1.6923	153	
	20:55:20	8.5	1920.0	150.09	48.294	1.6839	154	
	20:55:50	8.7	1920.5	150.09	47.385	1.6756	155	
	20:55:50	8.8	1921.0	150.09	46.509	1.6675	155	
	20:55:50	Э.О	1921.6	150.02	45.667	1.6596	156	
	20:56:10	9.0	1922.1	150.02	44.855	1.6518	156	
			1922.7	150.02	44.071	1.6442	157	
	20:56:20	9.3		150.02	43.316	1.6366	157	
	20:56:30	9.5	1923.2		42.586	1.6293	158	
	20:56:40	9.7	1923.7	150.02	41.881	1.6220	158	
	20:56:50	9.8	1924.3	150.02	41.200	1.6149	159	
	20:57:00	10.0	1924.7	149.95		1.6079	159	
	20:57:10	10.2	1925.3	149.95	40.541		160	
	20:57:20	10.3	1925.7	149.95	39.303	1.6010	1.60	
	20:57:30	10.5	1926.2	149.95	39.286	1.5942		
	20:57:40	10.7	1926.7	149.95	38.687	1.5876	161	
	20:57:50	10.8	1927.1	149.95	38.108	1.5810	161	
	20:58:00	11.0	1927.6	149.87	37.545	1.5746	162	
	20:58:10	11.2	1928.0	149.87	37.000	1.5682	162	
	20:58:20	11.3	1928.5	149.87	36.471	1.5619	162	
	20:58:30	11.5	1929.0	149.87	35.957	1.5558	163	
	20:58:40	11.7	1929.4	149.87	35.457	1.5497	163	

A construction of the second second

. . . .

١.

4.

₩.,

10

١.

20:58:50	11.8	1929.8	149.87	34.972	1.5437	164		
20:59:00	12.0	1930.2	149.80	34.500	1.5378	164		
20:59:00	12.2	1930.7	149.80	34.041	1.5320	165		
20:59:20	12.3	1931.0	149.80	33.595	1.5263	165		
	12.5	1931.5	149.80	33.160	1.5206	166		
20:59:30	12.7	1931.9	149.80	32.737	1.5150	166		
20:59:40		1932.3	149.80	32.325	1.5095	166		
20:59:50	12.8	1932.6	149.73	31.923.	1.5041	167		
21:00:00	13.0		149.73	31.532	1.4987	167		
21:00:10	13.2	1933.1	149.73		1.4935	167		
21:00:20	13.3	1933.5	149.73	30.778	1.4882	168		
21:00:30	13.5	1933.8	149.73	30.415	1.4831	168		
21:00:40	13.7	1934.2		30.060	1.4780	1.69		
21:00:50	13.8	1934.6	149.73	29.714	1.4730	1.69		
21:01:00	14.0	1935.0	149.66	29.376	1.4680	1.69		
21:01:10	14.2	1935.3	149.66	29.047	1.4631	170		
21:01:20	14.3	1935.7	149.66	28.724	1.4582	170		
21:01:30	14.5	1936.0	149.66	28.409	1.4535	170		
21:01:40	14.7	1936.4	149.66	28.101	1.4487	171		
21:01:50	14.8	1936.7	149.66	27.800	1.4440	171		
21:02:00	15.0	1937.1	149.59		1.4394	171		
21:02:10	15.2	1937.4	149.59	27.505	1.4348	172	:	
21:02:20	15.3	1937.8	149.59	27.217	1.4303	172	•	
21:02:30	15.5	1938.1	149.59	26.935	1.4259	172		
21:02:40	15.7	1938.4	149.59	26.660		173		
21:02:50	15.8	1938.7	149.59	26.389	1.4214	173		
21:03:00	16.0	1939.1	149.53	26.125	1.4171	173		
21:03:10	16.2	1939.4	149.53	25.866	1.4127	174		
21:03:20	16.3	1939.6	149.53	25.612	1.4084	174		
21:03:30	16.5	1940.0	149.53	25:364	1.4042			
21:03:40	16.7	1940.3	149.53	25.120	1.4000	174		
21:03:50	16.8	1940.6	149.53	24.881	1.3959	175		
21:04:01	17.0	1940.9	149.47	24.624	1.3914	175		
21:04:10	17.2	1941.2	149.47	24.417	1.3877	175		
21:04:20	17.3	1941.5	149.47	24.192	1.3837	176		
21:04:30	17.5	1941.8	149.47	23.971	1.3797	176		
21:04:40	17.7	1942.1	149.47	23.755	1.3757	176		
21:04:50	17.8	1942.3	149.47	23.542	1.3718	176		
21:05:00	18.0	1942.6	149.41	23.333	1.3680	177		
21:05:10	18.2	1942.9	149.41	23.128	1.3641	177		
21:05:20	18.3	1943.2	149.41	22.927	1.3604	177	•	
21:05:30	18.5	1943.5	149.41	22.730	1.3566	177		
21:05:40	18.7	1943.7	149.41	22.536	1.3529	178		
21:05:50	18.8	1944.1	149.41	22.345	1.3492	178		
21:05:00	19.0	1944.3	149.36	22.158	1.3455	178		
21:06:10	19.2	1944.6	149.36	21.974	1.3419	179		
7T:00:TO	1904			-				

÷۲

•

\$								
•	21:06:20 21:06:30 21:06:40 21:06:50 21:07:00 21:07:10 21:07:20 21:07:30 21:07:40 21:07:50 21:08:00 21:08:10 21:08:20 21:08:30	19.3 19.5 19.7 19.8 20.0 20.2 20.3 20.5 20.7 20.8 21.0 21.2 21.3 21.5	1944.9 1945.1 1945.4 1945.6 1945.8 1946.1 1946.3 1946.6 1946.8 1947.1 1947.3 1947.6 1947.8 1947.8	149.36 149.36 149.36 149.30 149.30 149.30 149.30 149.30 149.30 149.30 149.30 149.25 149.25 149.25 149.25	21.793 21.615 21.441 21.269 21.100 20.934 20.770 20.610 20.452 20.296 20.143 19.992 19.844 19.698	1.3383 1.3348 1.3312 1.3277 1.3243 1.3208 1.3174 1.3141 1.3107 1.3074 1.3074 1.3009 1.2976 1.2944	179 179 179 180 180 180 180 181 181 181 181 181 181	
· ·	21:08:40 21:08:50 21:09:00 21:09:30 21:10:30 21:11:00 21:11:00 21:11:30 21:12:00 21:12:30 21:12:30 21:13:00 21:13:30 21:14:00 21:14:30 21:15:30 21:15:30 21:15:30 21:16:00 21:16:30 21:17:00 21:17:00 21:17:30 21:18:30 21:19:00 21:19:30 21:20:00 21:21:30 21:21:30 21:22:00 21:23:00 21:24:00	21.8 1 22.0 1 23.0 1 23.5 1 23.5 1 24.0 1 24.5 1 25.0 1 25.5 1 26.0 1 26.5 1 27.5 1 28.0 1 28.5 1 29.0 1 30.5 1 31.0 1 32.5 1 33.0 1 34.0 1 35.0 1 36.0 1	949.4 950.0 950.6 951.3 951.9 1952.5 1953.0 1953.7 1954.2 1955.3 1955.8 1955.8 1956.3 1956.8 1956.8 1957.7 1958.2 1958.7	149.25 149.25 149.20 149.20 149.15 149.15 149.10 149.00 149.00 149.00 149.00 149.00 149.00 148.95 148.95 148.91 148.91 148.86 148.81 148.81 148.81 148.81 148.77 148.77 148.77 148.72 148.72 148.72 148.68 148.68 148.63 148.63 148.63 148.55 148.51	19.554 19.412 19.273 18.867 18.478 18.106 17.750 17.408 17.080 16.765 16.462 16.170 15.889 15.618 15.357 15.105 14.862 14.627 14.400 14.180 13.968 13.762 13.562 13.369 13.182 13.000 12.824 12.652 12.486 12.167 11.865	1.2912 1.2881 1.2849 1.2757 1.2667 1.2578 1.2492 1.2408 1.2325 1.2244 1.2165 1.2087 1.2011 1.1936 1.1863 1.1791 1.1721 1.1652 1.1584 1.1517 1.1584 1.1517 1.1451 1.1387 1.1323 1.1261 1.1200 1.139 1.1080 1.1022 1.0964 1.0852 1.0743	182 182 183 183 183 184 185 185 186 186 187 188 188 189 190 190 190 191 191 192 192 192 193 193 194 194 194 194 195 196 197 198	1

:<u>-</u> 1

1									
	21:25:00	38.0	1964.2	148.47	11.579	1.0637	198		
	21:26:00	39.0	1964.9	148.43	11.308	1.0534	199		
	21:27:00	40.0	1965.6	148.40	11.050	1.0434	200		
	21:28:00	41.0	1966.2	148.36	10.805	1.0336	200		
۰ <u>ـ</u>	21:29:00	42.0	1966.8	148.33	10.571	1.0241	201		
~		42.0	1967.4	148.29	10.349	1.0149	201		
	21:30:00	43.0	1968.0	148.26	10.136	1.0059	202		
	21:31:00		1968.6	148.23	9.933	0.9971	203		
	21:32:00	45.0		148.20	9.739	0.9885	203		
	21:33:00	46.0	1969.1	148.18	9.553	0.9801	204		
	21:34:00	47.0	1969.6	148.15	9.375	0.9720	204		
61	21:35:00	48.0	1970.2		9.204	0.9640	205		-
	21:36:00	49.0	1970.7	148.12	9.040	0.9562	205		
	21:37:00	50.0	1971.1	148.09		0.9485	205		
κ	21:38:00	51.0	1971.6	148.06	8.882	0.9411	206		
	21:39:00	52.0	1972.1	148.04	8.731		206		
	21:40:00	53.0	1972.5	148.02	8.585	0.9337	200		
C.	21:41:00	54.0	1973.0	147.99	8.444	0.9266	207		
	21:42:00	55.0	1973.4	147.97	8.309	0.9196	208		
	21:43:00	56.0	1973.8	147.94	8.179	0.9127			
N.J.	21:44:00	57.0	1974.2	147.91	8.053	0.9059	208	, -	
	21:45:00	58.0	1974.6	147.89	7.931	0.8993	209	•	
	21:46:00	59.0	1975.0	147.86	7.814	0.8928	209		
	21:47:00	60.0	1975.3	147.84	7.700	0.8865	209		
	21:48:00	61.0	1975.7	147.82	7.590	0.8803	210		
	21:49:00	62.0	1976.1	147.79	7.484	0.8741	210		
١	21:50:00	63.0	1976.5	147.77	7.381	0.8681	211		
	21:52:00	65.0	1977.2	147.73	7.185	0.8564	211		
	21:54:00	67.0	1977.8	147.69	7.000	0.8451	212		
	21:56:00	69.0	1978.4	147.65	6.826	0.8342	212		
	21:58:00	71.0	1979.0	147.61	6.662	0.8236	213		
	22:00:00	73.0	1979.6	147.59	6.507	0.8134	214		
		75.0	1980.1	147.57	6.360	0.8035	214		
••	22:02:00	77.0	1980.7	147.55	6.221	0.7938	215		
	22:04:00	79.0	1981.2	147.52	6.089	0.7845	215		
	22:06:00	79.0 81.0	1981.7	147.49	5.963	0.7755	216		
	22:08:00		1982.1	147.46	5.843	0.7667	216		
	22:10:00	83.0		147.42	5.729	0.7581	217		
	22:12:00	85.0	1982.6	147.39	5.621	0.7498	217		
<u> </u>	22:14:00	87.0	1983.1	147.36	5.517	0.7417	217		·
	22:16:00	89.0	1983.5		5.418	0.7338	218		
	22:18:00	91.0	1983.9	147.33	5.323	0.7261	218		
	22:20:00	93.0	1984.3	147.32		0.7186	219		
	22:22:00	95.0	1984.8	147.30	5.232	0.7113	219		
	22:24:00	97.0	1985.1	147.27	5.144		220		
	22:26:00	99.0	1985.5	147.25	5.061	0.7042	220		
	22:28:00	101.0	1985.8	147.22	4.980	0.6972	220		

1 F

	22:30:00	103.0	1986.3	147.20	4.903	0.6905	220	
6	22:32:00	105.0	1986.6	147.17	4.829	0.6838	221	
	- 22:34:00	107.0	1986.9	147.15	4.757	0.6773	221	
	22:36:00	1.09.0	1987.2	147.13	4.688	0.6710	221	
6	22:38:00	111.0	1987.5	147.11	4.622	0.6648	221	
	22:40:00	113.0	1987.9	147.09	4.558	0.6587	222	
	22:42:00	115.0	1988.2	147.07	4.496	0.6528	222	
6	22:44:00	117.0	1988.5	147.05	4.436	0.6470	222	
	22:46:00	119.0	1988.8	147.03	4.378	0.6413	223	
	22:48:00	121.0	1989.1	147.01	4.322	0.6357	223	
6	22:50:00	123.0	1989.3	146.99	4.268	0.6303	223	
	22:52:00	125.0	1989.7	146.97	4.216	0.6249	224	
	22:52:00	127.0	1989.9	146.95	4.165	0.6197	224	
6	22:54:00	129.0	1990.2	146.94	4.116	0.6145	224	
	22:58:00	131.0	1990.2	146.92	4.069	0.6095	224	
		131.0	1990.4	146.91	4.023	0.6045	225	
6	23:00:00				3.978	0.5996	225	
-	23:02:00	135.0	1990.9	146.89		0.5949	225	
	23:04:00	137.0	1991.1	146.88	3.934	0.5949	225	
6	23:06:00	139.0	1991.4	146.87	3.892		225	
-	23:08:00	141.0	1991.7	146.85	3.851	0.5856	226	-
	23:10:00	143.0	1991.8	146.84	3.811	0.5811		1
L	23:12:00	145.0	1992.1	146.81	3.772	0.5766	226	
-	23:14:00	147.0	1992.3	146.80	3.735	0.5723	226	
	23:16:00	149.0	1992.5	146.77	3.698	0.5680	227	
	23:18:00	151.0	1992.8	146.75	3.662	0.5637	227	
•	23:20:00	153.0	1993.0	146.73	3.627	0.5596	227	
	23:22:00	155.0	1993.2	146.72	3.594	0.5555	227	
U	23:24:00	157.0	1993.4	146.70	3.561	0.5515	227	
•	23:26:00	159.0	1993.6	146.69	3.528	0.5476	228	
	23:28:00	151.0	1993.8	146.68	3.497	0.5437	228	
6	23:30:00	163.0	1994.0	146.66	3.466	0.5399	228	
~	23:32:00	165.0	1994.2	146.65	3.436	0.5361	228	
	23:34:00	167.0	1994.4	146.64	3.407	0.5324	228	
	23:36:00	169.0	1994.6	146.63	3.379	0.5287	229	
	23:38:00	171.0	1994.7	146.61	3.351	0.5252	229	
	23:40:00	173.0	1995.0	146.60	3.324	0.5216	229	
	23:41:00	174.0	1995.0	146.59	3.310	0.5199	229	
Ŵ	23:42:00	175.0	1995.2	146.59	3.297	0.5181	229	
	23:43:00	176.0	1995.2	146.58	3.284	0.5164	229	
	23:44:00	177.0	1995.3	146.58	3.271	0.5147	229	
ler -	23:45:00	178.0	1995.4	146.57	3.258	0.5130	229	
	23:46:00	179.0	1995.5	146.57	3.246	0.5113	229	
	23:47:00	180.0	1995.5	146.56	3.233	0.5097	230	
6	23:48:00	181.0	1995.6	146.56	3.221	0.5080	230	
	23:49:00	182.0	1995.8	146.54	3.209	0.5063	230	

 \mathbf{A} () and a second secon

4

	23:50:00	183.0	1995.8	146.54	3.197	0.5047	230			
U I	23:51:00	184.0	1995.9	146.53	3.185	0.5031	230			
-	23:52:00	185.0	1995.9	146.53	3.173	0.5015	230			
	23:53:00	186.0	1996.0	146.51	3.161	0.4999	230			
•	23:54:00	187.0	1996.2	146.51	3.150	0.4983	230			
	23:55:00	188.0	1996.2	146.50	3.138	0.4967	230	,		
	23:56:00	189.0	1996.3	146.50	3.127	0.4951	230			
107	23:57:00	190.0	1996.4	146.49	3.116	0.4936	230			
	23:58:00	191.0	1996.5	146.49	3.105	0.4920	230			
	23:59:00	192.0	1996.6	146.47	3.094	0.4905	231			
E.		192.0	1996.7	146.46	3.072	0.4874	231			
-	00:01:00		1996.8	146.46	3.062	0.4859	231			
	00:02:00	195.0		146.45	3.051	0.4844	231			
8.2	00:03:00	196.0	1996.8		3.041	0.4830	231			
	00:04:00	197.0	1996.9	146.45		0.4815	231			
	00:05:00	198.0	1997.0	146.43	3.030		231			
	00:06:00	199.0	1997.1	146.43	3.020	0.4800	231			
12	00:07:00	200.0	1997.1	146.42	3.010	0.4786				
	00:08:00	201.0	1997.3	146.42	3.000	0.4771	231			
	00:09:00	202.0	1997.2	146.41	2.990	0.4757	231			
1	00:10:00	203.0	1997.4	146.41	2.980	0.4743	231	-		
	00:11:00	204.0	1997.4	146.40	2.971	0.4728	231	,		
	00:12:00	205.0	1997.5	146.40	2.961	0.4714	232			
N ₂ ,	00:13:00	206.0	1997.5	146.39	2.951	0.4700	232			
	00:14:00	207.0	1997.7	146.39	2,942	0.4686	232			
	00:16:00	209.0	1997.8	146.38	2.923	0.4659	232			
· _	00:17:00	210.0	1997.8	146.37	2.914	0.4645	232			
	00:18:00	211.0	1997.9	146.37	2.905	0.4632	232			
	00:19:00	212.0	1998.0	146.35	2.896	0.4618	232			
14 2	00:20:00	213.0	1998.1	146.35	2.887	0.4605	232			
	00:21:00	213.0	1998.2	146.34	2.879	0.4592	232			
		230.1	1999.3	146.34	2.747	0.4388	233			
	00:37:08		1999.3	146.24	2.740	0.4378	233			
-	00:38:00	231.0		146.23	2.733	0.4366	233			-
	00:39:00	232.0	1999.3		2.725	0.4354	233			
1.	00:40:00	233.0	1999.3	146.23	2.71.8	0.4342	234			
	00:41:00	234.0	1999.5	146.22		0.4331	234			
	00:42:00	235.0	1999.5	146.22	2.711		234			
	00:43:00	236.0	1999.6	146.21	2.703	0.4319	234			
C	00:44:00	237.0	1999.7	146.21	2.696	0.4308				
	00:45:00	238.0	1999.7	146.21	2.689	0.4296	234			
	00:46:00	239.0	1999.8	146.21	2.682	0.4285	. 234			
۲	00:47:00	240.0	1999.8	146.20	2.675	0.4273	234			
	00:48:00	241.0	1999.9	146.20	2.668	0.4262	234			
	00:49:00	242.0	2000.0	146.18	2.661	0.4251	234			
۰.	00:50:00	243.0	2000.0	146.18	2.654	0.4240	234			
	00:51:00	244.0	2000.2	146.17	2.648	0.4228	234			
									· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

¥.

$ \begin{array}{c} 0 0 1 2 1 0 0 1 2 4 0 0 1 4 0 1 0 1 4 0 1 1 4 0 1 1 2 1 4 0 1 0 1 2 4 0 0 1 2 4 1 0 1 2 4 0 0 1 2 4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0$		00.53.00	245 0	2000 1	146 17	2 641	0 4017	224		
00153400 240.0 240.0 240.0 2440.0 2440 00155400 2440.0 2000.3 146.15 2.621 0.4185 234 00155400 2440.0 2000.4 146.15 2.614 0.4185 234 00155400 250.0 2000.4 146.15 2.614 0.4163 234 00153400 251.0 2000.5 146.14 2.603 0.4162 235 0160400 252.0 2000.6 146.13 2.595 0.4142 235 0160400 254.0 2000.7 146.12 2.576 0.4110 235 0160400 255.0 2000.7 146.12 2.570 0.4109 235 0160400 256.0 2000.8 146.12 2.552 0.4079 235 0160500 250.0 2010.1 146.10 2.546 0.4090 235 0160400 250.0 2010.1 146.10 2.546 0.4090 235 0161600 26	6	00:52:00	245.0	2000.1	146.17	2.641	0.4217	234		
00:55:00 244.0 200.3 146.15 2.621 0.4185 234 00:57:00 250.0 2000.4 146.15 2.614 0.4174 234 00:53:00 251.0 2000.5 146.14 2.602 0.4152 234 00:53:00 252.0 2000.6 146.13 2.535 0.4131 235 01:00:00 255.0 2000.7 146.12 2.533 0.4121 235 01:01:00 256.0 2000.7 146.12 2.576 0.4100 235 01:03:00 256.0 2000.8 146.12 2.576 0.4100 235 01:04:00 257.0 2000.9 146.11 2.558 0.4090 235 01:06:00 259.0 2001.0 146.10 2.546 0.4099 235 01:10:00 261.0 2001.0 146.00 2.590 2.04099 235 01:10:00 265.0 2001.0 146.00 2.540 0.4029 235 <td< th=""><th>-</th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	-		-	-						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
001305100 244.0 2000.4 146.14 2.603 0.4163 234 00153100 251.0 2000.5 146.14 2.602 0.4163 234 00153100 251.0 2000.6 146.13 2.595 0.4142 235 0110100 253.0 2000.6 146.12 2.595 0.4131 235 0110100 255.0 2001.7 146.12 2.576 0.4121 235 0110100 255.0 2000.8 146.12 2.570 0.4100 235 01104100 257.0 2000.8 146.11 2.556 0.4079 235 01105100 236.0 2001.0 146.11 2.552 0.4069 235 01105100 261.0 2001.0 146.10 2.546 0.4059 235 01106100 265.0 2001.2 146.09 2.523 0.4029 235 0112100 265.0 2001.3 146.07 2.494 0.3950 235 0112100 265.0 2001.4 146.05 2.443 0.3951 236 <th>6</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	6									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		00:57:00	250.0	2000.4	146.14	2.608	0.4163	234		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	£	00:58:00	251.0	2000.5	146.14	2.602	0.4152	234		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U	00:59:00	252.0	2000.6	146.13		0.4142	235		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
01:02:00 255.0 2000.7 146.12 2.576 0.4100 235 01:04:00 256.0 2000.8 146.12 2.564 0.4090 235 01:05:00 258.0 2001.9 146.11 2.552 0.4069 235 01:05:00 250.0 2001.0 146.11 2.552 0.4069 235 01:07:00 260.0 2001.0 146.10 2.546 0.4059 235 01:01:00 261.0 2001.2 146.09 2.529 0.4029 235 01:11:00 265.0 2001.4 146.07 2.506 0.3993 235 01:18:00 271.0 2001.4 146.07 2.494 0.3970 235 01:18:00 271.0 2001.7 146.04 2.462 0.3931 236 01:22:00 275.0 2001.8 146.04 2.462 0.3931 236 01:22:00 277.0 2002.0 146.02 2.441 0.3875 236 01:22:00 279.0 2002.1 146.01 2.420 0.3839 236										
01:03:00 256.0 2000.8 146.12 2.570 0.4100 235 01:05:00 257.0 2000.8 146.11 2.558 0.4079 235 01:05:00 259.0 2001.0 146.11 2.552 0.4059 235 01:05:00 260.0 2001.0 146.10 2.540 0.4059 235 01:05:00 261.0 2001.2 146.09 2.529 0.4029 235 01:10:00 263.0 2001.3 146.08 2.517 0.4009 235 01:11:00 267.0 2001.3 146.07 2.494 0.3970 235 01:12:00 267.0 2001.4 146.07 2.494 0.3970 235 01:12:00 271.0 2001.7 146.05 2.473 0.3931 236 01:22:00 277.0 2001.2 146.03 2.451 0.3875 236 01:24:00 277.0 2002.1 146.01 2.431 0.3875 236 01:24:00 285.0 2002.2 146.01 2.431 0.3875 236	G									
01:04:00 257.0 2000.8 146.11 2.554 0.4090 235 01:05:00 258.0 2001.0 146.11 2.552 0.4069 235 01:07:00 260.0 2001.0 146.10 2.546 0.4079 235 01:07:00 260.0 2001.0 146.10 2.546 0.4099 235 01:10:00 263.0 2001.2 146.09 2.529 0.4029 235 01:14:00 265.0 2001.3 146.07 2.506 0.3989 235 01:14:00 267.0 2001.4 146.05 2.473 0.3970 235 01:18:00 271.0 2001.7 146.05 2.473 0.3931 236 01:22:00 273.0 2001.7 146.05 2.473 0.3875 236 01:22:00 273.0 2001.4 146.01 2.431 0.3875 236 01:26:00 273.0 2002.1 146.01 2.431 0.3819 236 01:26:00 280.0 2002.2 145.99 2.411 0.3803 236										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
01:06:00 259.0 2001.0 146.11 2.552 0.4069 235 01:07:00 260.0 2001.0 146.10 2.546 0.4059 235 01:01:00 265.0 2001.2 146.09 2.529 0.4029 235 01:11:00 265.0 2001.3 146.07 2.506 0.4029 235 01:14:00 267.0 2001.4 146.07 2.506 0.3989 235 01:18:00 271.0 2001.6 146.06 2.463 0.3950 236 01:22:00 275.0 2001.8 146.04 2.462 0.3913 236 01:22:00 275.0 2001.9 146.03 2.451 0.3875 236 01:22:00 277.0 201.9 146.01 2.431 0.3875 236 01:22:00 285.0 2002.1 146.01 2.441 0.3837 236 01:22:00 285.0 2022.2 145.99 2.411 0.3827 236 01:32:00 285.0 2022.2 145.99 2.401 0.3839 236 <	6									
 01:07:00 260.0 2001.0 146.10 2.546 0.4059 235 01:08:00 261.0 2001.0 146.10 2.540 0.4049 235 01:110:00 263.0 2001.2 146.09 2.529 0.4029 235 01:12:00 265.0 2001.3 146.07 2.506 0.3989 235 01:16:00 269.0 2001.4 146.07 2.506 0.3989 235 01:18:00 271.0 2001.6 146.06 2.493 0.3950 236 01:20:00 273.0 2001.7 146.05 2.473 0.3931 236 01:22:00 275.0 2001.8 146.04 2.462 0.3913 236 01:22:00 275.0 2001.8 146.02 2.441 0.3875 236 01:22:00 279.0 2002.0 146.02 2.441 0.3875 236 01:22:00 283.0 2002.2 146.00 2.420 0.3839 235 01:32:00 283.0 2002.2 146.00 2.420 0.3839 236 01:32:00 283.0 2002.2 146.92 2.441 0.3875 236 01:32:00 283.0 2002.2 146.92 2.441 0.3807 236 01:32:00 283.0 2002.2 146.99 2.411 0.3803 236 01:32:00 285.0 2002.2 145.99 2.411 0.3803 236 01:34:00 285.0 2002.2 145.99 2.401 0.3803 236 01:34:00 285.0 2002.5 145.95 2.372 0.3751 237 01:44:00 295.0 2002.6 145.95 2.372 0.3751 237 01:44:00 295.0 2002.7 145.94 2.363 0.3717 237 01:44:00 295.0 2002.7 145.94 2.364 0.3717 237 01:44:00 295.0 2002.7 145.95 2.372 0.3751 237 01:44:00 295.0 2002.7 145.94 2.364 0.3717 237 01:44:00 295.0 2002.7 145.94 2.366 0.3717 237 01:44:00 295.0 2002.7 145.95 2.372 0.3751 237 01:44:00 295.0 2002.7 145.94 2.366 0.3717 237 01:44:00 295.0 2002.7 145.94 2.366 0.3717 237 01:44:00 295.0 2002.7 145.94 2.366 0.3684 237 01:44:00 295.0 2002.7 145.94 2.366 0.3684 237 01:44:00 295.0 2002.7 145.94 2.366 0.3684 237 01:44:00 295.0 2002.7 145.95 2.372 0.3667 237 01:52:00 303.0 2003.1 145.96 2.327 0.3667 237 01:52:00 303.0 2003.1 145.98 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:54:00 307.0 2003.4 145.97 2.301 0.3619 237 01:54:00 307.0 2003.4 145.97 2.301 0.3619 237 01:54:00 307.0 2003.5 145.86 2.284 0.3588 238 02:00:00 313.0 2003.7 145.83 2.268 0.3557										
$ \begin{array}{c} 01:08:00 & 261.0 & 2001.0 & 146.10 & 2.540 & 0.4049 & 235 \\ 01:10:00 & 263.0 & 2001.2 & 146.09 & 2.529 & 0.4029 & 235 \\ 01:14:00 & 265.0 & 2001.3 & 146.07 & 2.506 & 0.3989 & 235 \\ 01:14:00 & 269.0 & 2001.4 & 146.07 & 2.494 & 0.3970 & 235 \\ 01:18:00 & 271.0 & 2001.6 & 146.06 & 2.483 & 0.3950 & 236 \\ 01:20:00 & 273.0 & 2001.7 & 146.05 & 2.473 & 0.3931 & 236 \\ 01:22:00 & 275.0 & 2001.8 & 146.04 & 2.462 & 0.3913 & 236 \\ 01:24:00 & 277.0 & 2001.9 & 146.03 & 2.451 & 0.3894 & 236 \\ 01:26:00 & 279.0 & 2002.1 & 146.01 & 2.431 & 0.3857 & 236 \\ 01:26:00 & 283.0 & 2002.2 & 146.01 & 2.441 & 0.3875 & 236 \\ 01:30:00 & 283.0 & 2002.2 & 146.01 & 2.441 & 0.3875 & 236 \\ 01:31:00 & 283.0 & 2002.2 & 145.99 & 2.411 & 0.3821 & 236 \\ 01:33:00 & 283.0 & 2002.2 & 145.99 & 2.401 & 0.3803 & 236 \\ 01:33:00 & 287.0 & 2002.4 & 145.97 & 2.391 & 0.3766 & 237 \\ 01:38:00 & 291.0 & 2002.6 & 145.96 & 2.381 & 0.3768 & 237 \\ 01:44:00 & 293.0 & 2002.6 & 145.95 & 2.372 & 0.3751 & 237 \\ 01:44:00 & 297.0 & 2002.6 & 145.92 & 2.344 & 0.3701 & 237 \\ 01:44:00 & 297.0 & 2002.8 & 145.92 & 2.344 & 0.3700 & 237 \\ 01:44:00 & 297.0 & 2002.8 & 145.92 & 2.318 & 0.3768 & 237 \\ 01:55:00 & 303.0 & 2003.0 & 145.91 & 2.336 & 0.3734 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.92 & 2.344 & 0.3700 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.92 & 2.327 & 0.3651 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.93 & 2.301 & 0.3651 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.93 & 2.301 & 0.3651 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.88 & 2.301 & 0.3651 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.88 & 2.301 & 0.3651 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.88 & 2.301 & 0.3651 & 237 \\ 01:55:00 & 303.0 & 2003.4 & 145.85 & 2.283 & 0.3603 & 237 \\ 01:55:00 & 303.0 & 2003.4 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 303.0 & 2003.4 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 303.0 & 2003.4 & 145.86 & 2.284 & 0.3557 & 238 \\ 02:04:00 & 317.0 & 2003.7 & 145.83 & 2.268 & 0.3557 & 238 \\ 02:04:00 & 317.0 & 2003.7 & 145.83 & 2.268 & 0.3557 & 238 \\ 02:04:00 & 317.0 & 2003.7 & 145.83 & 2.268 & 0.3557 & 238 $										
$ \begin{array}{c} 01:08:00 & 263.0 & 2001.2 & 146.09 & 2.529 & 0.4029 & 235 \\ 01:12:00 & 265.0 & 2001.3 & 146.08 & 2.517 & 0.4009 & 235 \\ 01:14:00 & 267.0 & 2001.3 & 146.07 & 2.506 & 0.3989 & 235 \\ 01:16:00 & 213.0 & 2001.4 & 146.07 & 2.494 & 0.3970 & 235 \\ 01:18:00 & 271.0 & 2001.6 & 146.06 & 2.483 & 0.3950 & 236 \\ 01:22:00 & 275.0 & 2001.8 & 146.04 & 2.462 & 0.3913 & 236 \\ 01:22:00 & 275.0 & 2001.9 & 146.03 & 2.451 & 0.3875 & 236 \\ 01:24:00 & 277.0 & 2001.9 & 146.03 & 2.441 & 0.3875 & 236 \\ 01:26:00 & 283.0 & 2002.1 & 146.01 & 2.431 & 0.3857 & 236 \\ 01:33:00 & 283.0 & 2002.2 & 145.99 & 2.411 & 0.3803 & 236 \\ 01:34:00 & 285.0 & 2002.2 & 145.99 & 2.411 & 0.3803 & 236 \\ 01:34:00 & 285.0 & 2002.2 & 145.97 & 2.391 & 0.3786 & 237 \\ 01:36:00 & 289.0 & 2002.6 & 145.96 & 2.381 & 0.3768 & 237 \\ 01:44:00 & 291.0 & 2002.6 & 145.96 & 2.381 & 0.3768 & 237 \\ 01:44:00 & 297.0 & 2002.6 & 145.95 & 2.372 & 0.3751 & 237 \\ 01:44:00 & 297.0 & 2002.6 & 145.95 & 2.372 & 0.3751 & 237 \\ 01:44:00 & 297.0 & 2002.8 & 145.93 & 2.354 & 0.3700 & 237 \\ 01:44:00 & 301.0 & 2003.0 & 145.91 & 2.336 & 0.3667 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.92 & 2.344 & 0.3700 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.92 & 2.344 & 0.3700 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.93 & 2.356 & 0.3667 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.93 & 2.356 & 0.3667 & 237 \\ 01:55:00 & 303.0 & 2003.1 & 145.88 & 2.309 & 0.3655 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.87 & 2.301 & 0.3651 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.6 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:55:00 & 311.0 & 2003.7 & 145.83 & 2.268 & 0.3557 & 238 $	4									
0 01:12:00 265.0 2001.3 146.08 2.517 0.4009 235 01:14:00 267.0 2001.3 146.07 2.506 0.3989 235 01:16:00 269.0 2001.4 146.07 2.494 0.3970 235 01:20:00 271.0 2001.6 146.06 2.483 0.3950 236 01:22:00 275.0 2001.8 146.03 2.461 0.3911 236 01:24:00 277.0 2002.0 146.02 2.441 0.3875 236 01:26:00 279.0 2002.0 146.02 2.441 0.3875 236 01:28:00 281.0 2002.2 146.002 2.441 0.3857 236 01:38:00 287.0 2002.2 145.99 2.401 0.3803 236 01:34:00 287.0 2002.2 145.99 2.401 0.3803 236 01:34:00 287.0 2002.6 145.97 2.391 0.3768 237 01:36:00 291.0 2002.6 145.95 2.372 0.3751	-									
 01:14:00 267.0 2001.3 146.07 2.506 0.3989 235 01:16:00 269.0 2001.4 146.07 2.494 0.3970 235 01:20:00 273.0 2001.7 146.06 2.483 0.3950 236 01:22:00 277.0 2001.8 146.04 2.462 0.3913 236 01:24:00 277.0 2001.9 146.03 2.451 0.3894 236 01:26:00 279.0 2002.0 146.01 2.431 0.3857 236 01:30:00 283.0 2002.2 146.01 2.431 0.3857 236 01:34:00 285.0 2002.2 145.09 2.411 0.3821 236 01:34:00 285.0 2002.2 145.99 2.401 0.3803 236 01:34:00 289.0 2002.4 145.99 2.401 0.3803 236 01:36:00 289.0 2002.6 145.95 2.372 0.3768 237 01:40:00 297.0 2002.6 145.93 2.354 0.3734 237 01:44:00 297.0 2002.9 145.91 2.364 0.3734 237 01:44:00 297.0 2002.9 145.90 2.318 0.3651 237 01:54:00 305.0 2003.2 145.89 2.318 0.3651										
 01:14:00 267.0 2001.3 146.07 2.506 0.3989 235 01:16:00 269.0 2001.4 146.07 2.494 0.3970 235 01:20:00 273.0 2001.7 146.06 2.483 0.3950 236 01:22:00 277.0 2001.8 146.04 2.462 0.3913 236 01:24:00 277.0 2001.9 146.03 2.451 0.3894 236 01:26:00 279.0 2002.0 146.01 2.431 0.3857 236 01:30:00 283.0 2002.2 146.01 2.431 0.3857 236 01:34:00 285.0 2002.2 145.09 2.411 0.3821 236 01:34:00 285.0 2002.2 145.99 2.401 0.3803 236 01:34:00 289.0 2002.4 145.99 2.401 0.3803 236 01:36:00 289.0 2002.6 145.95 2.372 0.3768 237 01:40:00 297.0 2002.6 145.93 2.354 0.3734 237 01:44:00 297.0 2002.9 145.91 2.364 0.3734 237 01:44:00 297.0 2002.9 145.90 2.318 0.3651 237 01:54:00 305.0 2003.2 145.89 2.318 0.3651	1.		265.0	2001.3	146.08		0.4009			
01:16:00 269.0 2001.4 146.07 2.494 0.3970 235 01:18:00 271.0 2001.6 146.06 2.483 0.3950 236 01:20:00 273.0 2001.7 146.05 2.473 0.3931 236 01:22:00 275.0 2001.8 146.03 2.462 0.3913 236 01:26:00 279.0 2002.0 146.03 2.451 0.3894 236 01:26:00 279.0 2002.0 146.01 2.441 0.3857 236 01:30:00 283.0 2002.1 146.00 2.420 0.3839 236 01:32:00 285.0 2002.2 146.00 2.421 0.3803 236 01:32:00 285.0 2002.2 145.99 2.401 0.3803 236 01:36:00 291.0 2002.6 145.97 2.391 0.3766 237 01:40:00 293.0 2002.6 145.96 2.381 0.3758 237 01:40:00 297.0 2002.7 145.94 2.366 0.3734 237	4	01:14:00	267.0	2001.3				235		
 01:18:00 271.0 2001.6 146.06 2.483 0.3950 236 01:20:00 273.0 2001.7 146.05 2.473 0.3931 236 01:22:00 275.0 2001.8 146.03 2.451 0.3894 236 01:26:00 279.0 2002.1 146.03 2.451 0.3875 236 01:26:00 279.0 2002.1 146.01 2.431 0.3857 236 01:32:00 285.0 2002.2 145.99 2.411 0.3857 236 01:32:00 285.0 2002.4 145.99 2.411 0.3803 236 01:32:00 285.0 2002.4 145.99 2.411 0.3803 236 01:34:00 287.0 2002.4 145.99 2.411 0.3803 236 01:36:00 289.0 2002.5 145.97 2.391 0.3768 237 01:40:00 293.0 2002.6 145.95 2.372 0.3754 237 01:42:00 295.0 2002.7 145.93 2.354 0.3768 237 01:40:00 299.0 2002.7 145.94 2.363 0.3734 237 01:46:00 299.0 2002.9 145.91 2.36 0.3764 237 01:46:00 299.0 2002.9 145.92 2.344 0.3700									•	
$ \begin{array}{c} 01:20:00 & 273.0 & 2001.7 & 146.05 & 2.473 & 0.3931 & 236 \\ 01:22:00 & 275.0 & 2001.8 & 146.04 & 2.462 & 0.3913 & 236 \\ 01:24:00 & 277.0 & 2001.9 & 146.02 & 2.441 & 0.3875 & 236 \\ 01:26:00 & 281.0 & 2002.1 & 146.01 & 2.431 & 0.3857 & 236 \\ 01:30:00 & 283.0 & 2002.2 & 146.99 & 2.411 & 0.3839 & 236 \\ 01:32:00 & 285.0 & 2002.2 & 145.99 & 2.411 & 0.3821 & 236 \\ 01:34:00 & 287.0 & 2002.4 & 145.99 & 2.401 & 0.3803 & 236 \\ 01:36:00 & 291.0 & 2002.6 & 145.96 & 2.381 & 0.3768 & 237 \\ 01:36:00 & 293.0 & 2002.6 & 145.95 & 2.372 & 0.3751 & 237 \\ 01:40:00 & 293.0 & 2002.6 & 145.95 & 2.372 & 0.3751 & 237 \\ 01:44:00 & 297.0 & 2002.8 & 145.93 & 2.354 & 0.3717 & 237 \\ 01:44:00 & 297.0 & 2002.8 & 145.91 & 2.336 & 0.3768 & 237 \\ 01:44:00 & 297.0 & 2002.8 & 145.93 & 2.354 & 0.3717 & 237 \\ 01:44:00 & 303.0 & 2003.1 & 145.91 & 2.336 & 0.3664 & 237 \\ 01:50:00 & 303.0 & 2003.1 & 145.90 & 2.327 & 0.3667 & 237 \\ 01:50:00 & 303.0 & 2003.1 & 145.90 & 2.327 & 0.3667 & 237 \\ 01:52:00 & 305.0 & 2003.2 & 145.88 & 2.309 & 0.3651 & 237 \\ 01:55:00 & 307.0 & 2003.2 & 145.88 & 2.309 & 0.3635 & 237 \\ 01:55:00 & 307.0 & 2003.3 & 145.88 & 2.309 & 0.3663 & 237 \\ 01:55:00 & 307.0 & 2003.4 & 145.88 & 2.309 & 0.3663 & 237 \\ 01:50:00 & 311.0 & 2003.5 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:50:00 & 311.0 & 2003.5 & 145.86 & 2.293 & 0.3603 & 237 \\ 01:50:00 & 311.0 & 2003.7 & 145.88 & 2.309 & 0.3651 & 237 \\ 01:50:00 & 311.0 & 2003.7 & 145.88 & 2.309 & 0.3653 & 237 \\ 02:00:00 & 313.0 & 2003.7 & 145.88 & 2.284 & 0.3508 & 238 \\ 02:04:00 & 317.0 & 2003.7 & 145.83 & 2.268 & 0.3557 & 238 \\ \end{array}$									1 .	
01:22:00 275.0 2001.8 146.04 2.462 0.3913 236 01:24:00 277.0 2001.9 146.03 2.451 0.3894 236 01:26:00 279.0 2002.0 146.01 2.441 0.3875 236 01:30:00 283.0 2002.2 146.00 2.420 0.3839 236 01:32:00 285.0 2002.2 145.99 2.411 0.3821 236 01:34:00 287.0 2002.4 145.99 2.401 0.3803 236 01:34:00 287.0 2002.6 145.96 2.381 0.3768 237 01:40:00 293.0 2002.6 145.95 2.372 0.3751 237 01:44:00 297.0 2002.8 145.93 2.354 0.3717 237 01:44:00 297.0 2002.9 145.92 2.334 0.3667 237 01:44:00 297.0 2003.1 145.90 2.327 0.3667 237 01:50:00 305.0 2003.2 145.89 2.318 0.3661 237	L ar									
01:24:00 277.0 2001.9 146.03 2.451 0.3894 236 01:26:00 279.0 2002.0 146.02 2.441 0.3875 236 01:30:00 283.0 2002.1 146.01 2.431 0.3875 236 01:30:00 283.0 2002.2 146.00 2.420 0.3839 236 01:32:00 285.0 2002.2 145.99 2.411 0.3803 236 01:34:00 287.0 2002.4 145.99 2.401 0.3803 236 01:36:00 289.0 2002.5 145.97 2.391 0.3786 236 01:40:00 293.0 2002.6 145.95 2.372 0.3751 237 01:42:00 295.0 2002.7 145.94 2.363 0.3717 237 01:44:00 297.0 2002.8 145.92 2.344 0.3700 237 01:46:00 299.0 2003.0 145.91 2.336 0.3667 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237										
01:26:00 279.0 2002.0 146.02 2.441 0.3875 236 01:28:00 281.0 2002.1 146.01 2.431 0.3857 236 01:30:00 283.0 2002.2 145.99 2.411 0.3803 236 01:32:00 285.0 2002.4 145.99 2.401 0.3803 236 01:36:00 289.0 2002.5 145.97 2.391 0.3786 236 01:36:00 291.0 2002.6 145.95 2.372 0.3736 237 01:40:00 293.0 2002.6 145.95 2.372 0.3734 237 01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:42:00 295.0 2002.9 145.92 2.344 0.36684 237 01:48:00 301.0 2003.0 145.91 2.336 0.3667 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237										
01:28:00 281.0 2002.1 146.01 2.431 0.3857 236 01:30:00 283.0 2002.2 146.00 2.420 0.3839 236 01:32:00 285.0 2002.2 145.99 2.411 0.3803 236 01:34:00 287.0 2002.4 145.99 2.401 0.3803 236 01:36:00 289.0 2002.5 145.97 2.391 0.3786 236 01:40:00 291.0 2002.6 145.95 2.372 0.3751 237 01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:44:00 297.0 2002.8 145.93 2.354 0.3717 237 01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:46:00 301.0 2003.0 145.91 2.336 0.3664 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237 01:54:00 307.0 2003.2 145.89 2.318 0.3651 237	6									
01:30:00 283.0 2002.2 146.00 2.420 0.3839 236 01:32:00 285.0 2002.2 145.99 2.411 0.3821 236 01:34:00 287.0 2002.4 145.99 2.401 0.3803 236 01:36:00 289.0 2002.5 145.97 2.391 0.3786 236 01:40:00 293.0 2002.6 145.96 2.381 0.3768 237 01:41:00 295.0 2002.7 145.94 2.363 0.3734 237 01:42:00 295.0 2002.9 145.93 2.354 0.3717 237 01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.99 2.318 0.3651 237 01:54:00 307.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237	à									
01:32:00 285.0 2002.2 145.99 2.411 0.3821 236 01:34:00 287.0 2002.4 145.99 2.401 0.3803 236 01:36:00 289.0 2002.5 145.97 2.391 0.3786 236 01:38:00 291.0 2002.6 145.96 2.381 0.3768 237 01:40:00 293.0 2002.7 145.95 2.372 0.3751 237 01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:46:00 297.0 2002.8 145.91 2.364 0.3700 237 01:46:00 297.0 2002.9 145.92 2.344 0.3700 237 01:48:00 301.0 203.0 145.91 2.336 0.3684 237 01:50:00 305.0 2003.2 145.89 2.318 0.3651 237 01:52:00 305.0 2003.2 145.87 2.301 0.3619 237 01:54:00 307.0 2003.3 145.86 2.293 0.3603 237 <										
01:34:00 287.0 2002.4 145.99 2.401 0.3803 236 01:36:00 289.0 2002.5 145.97 2.391 0.3786 236 01:38:00 291.0 2002.6 145.96 2.381 0.3768 237 01:40:00 293.0 2002.6 145.95 2.372 0.3751 237 01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:44:00 297.0 2002.8 145.93 2.354 0.3717 237 01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:46:00 301.0 2003.0 145.91 2.366 0.3684 237 01:50:00 305.0 2003.2 145.89 2.318 0.3651 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.87 2.301 0.3619 237 01:54:00 307.0 2003.5 145.86 2.293 0.3603 237	(
01:36:00 289.0 2002.5 145.97 2.391 0.3786 236 01:38:00 291.0 2002.6 145.96 2.381 0.3768 237 01:40:00 293.0 2002.6 145.95 2.372 0.3751 237 01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:44:00 297.0 2002.8 145.92 2.344 0.3717 237 01:46:00 290.0 2003.0 145.91 2.336 0.3684 237 01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.87 2.301 0.3619 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:56:00 311.0 2003.5 145.86 2.293 0.3603 237										
01:38:00 291.0 2002.6 145.96 2.381 0.3768 237 01:40:00 293.0 2002.6 145.95 2.372 0.3751 237 01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:44:00 297.0 2002.8 145.93 2.354 0.3717 237 01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.99 2.327 0.3667 237 01:54:00 307.0 2003.2 145.89 2.318 0.3651 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:56:00 309.0 2003.5 145.86 2.293 0.3603 237 01:58:00 311.0 2003.6 145.85 2.284 0.3588 238 02:00:00 313.0 2003.6 145.85 2.284 0.3577 238										
01:38:00 291.0 2002.6 145.96 2.381 0.3768 237 01:40:00 293.0 2002.6 145.95 2.372 0.3751 237 01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:44:00 297.0 2002.8 145.93 2.354 0.3717 237 01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3508 238	منا									
01:42:00 295.0 2002.7 145.94 2.363 0.3734 237 01:44:00 297.0 2002.8 145.93 2.354 0.3717 237 01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.83 2.268 0.3557 238	-									
01:44:00 297.0 2002.8 145.93 2.354 0.3717 237 01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.91 2.336 0.3667 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:58:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238										
01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238	,		295.0	2002.7	145.94					
01:46:00 299.0 2002.9 145.92 2.344 0.3700 237 01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238	*	01:44:00	297.0	2002.8	145.93	2.354	0.3717	237		
01:48:00 301.0 2003.0 145.91 2.336 0.3684 237 01:50:00 303.0 2003.1 145.90 2.327 0.3667 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:58:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238		01:46:00					0.3700	237		
01:50:00 303.0 2003.1 145.90 2.327 0.3667 237 01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:58:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238										
01:52:00 305.0 2003.2 145.89 2.318 0.3651 237 01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238	U									
01:54:00 307.0 2003.3 145.88 2.309 0.3635 237 01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238										
01:56:00 309.0 2003.4 145.87 2.301 0.3619 237 01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238										
01:53:00 311.0 2003.5 145.86 2.293 0.3603 237 02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238	`									
02:00:00 313.0 2003.6 145.85 2.284 0.3588 238 02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238										
02:02:00 315.0 2003.7 145.84 2.276 0.3572 238 02:04:00 317.0 2003.7 145.83 2.268 0.3557 238										
02:04:00 317.0 2003.7 145.83 2.268 0.3557 238	<u>ما</u>									
An end and an end of the second se		02:04:00	317.0	2003.7	145.83	2.268	0.3557	238		
	Á									

02:00:00 02:08:00 02:10:00 02:12:00 02:14:00 02:16:00 02:18:00 02:20:00 02:22:00 02:22:00	21.0 20 23.0 20 23.0 20 25.0 20 27.0 20 333.0 2 333.0 2 337.0 2 337.0 2 341.0 2 343.0 3 43.0 3 57.0 3 57.0 3 69.0 3 57.0 3 69.0 3 77.0 3 81.0 3 89.0 3 77.0 3 89.0 3 77.0 3 89.0 3 77.0 3 89.0 3 77.0 3 89.0 3 97.0 4 401.0 4 405.0 4 413.0 4 413.0 4 417.0 4 425.0 4 433.0 4 43.0 4 453.0 4 463.0 4 463.0 4 463.0 2 463.0	03.9 04.0 004.0 004.1 004.2 004.3 004.4 004.5 2004.6 2004.7 2004.7 2004.8 2005.0 2005.2 2005.3 2005.4 2005.6 2005.6 2005.7 2005.8 2005.6 2005.7 2005.8 2005.6 2006.1 2006.2 2006.4 2006.5 2006.6 2006.6 2006.6 2006.6 2006.6 2007.1 2007.2 2007.3 2007.5 2007.6 2007.7 2008.2 2008.2 2008.5	$ \begin{array}{c} 145.41 \\ 145.40 \\ 145.38 \\ 145.35 \\ 145.35 \\ 145.35 \\ 145.32 \\ 145.35 \\ 145.$	2.260 2.252 2.245 2.237 2.229 2.222 2.215 2.207 2.200 2.193 2.186 2.179 2.172 2.165 2.152 2.139 2.126 2.114 2.101 2.089 2.078 2.066 2.055 2.044 2.033 2.023 2.023 2.013 2.023 2.013 2.023 2.013 1.973 1.964 1.973 1.928 1.907 1.887 1.868 1.850	0.3541 0.3526 0.3511 0.3497 0.3482 0.3467 0.3453 0.3438 0.3424 0.3410 0.3396 0.3396 0.3355 0.3328 0.3302 0.3276 0.3250 0.3250 0.3225 0.3200 0.3176 0.3152 0.3128 0.3105 0.3082 0.3060 0.3038 0.3016 0.2994 0.2973 0.2952 0.2911 0.2851 0.2851 0.2851 0.2759 0.2714 0.2671	$\begin{array}{c} 238\\ 238\\ 238\\ 238\\ 238\\ 238\\ 238\\ 238\\$
--	---	--	--	--	--	--

. م

APPENDIX A3. RIG POSITIONING REPORT

WEST SEAHORSE-1

RIG POSITIONING REPORT

P.A. CARTER SEPTEMBER, 1981

TABLE OF CONTENTS

INTRODUCTION

CONCLUSION

DAILY LOG

RIG LOCATION AND BUOY PATTERN

SURVEY NET VERIFICATION

PERSONNEL

APPENDICIES:

1. Area of Operations

:

an an the second state of the s

- 2. Scatter Plot of accepted satellite passes
- 3. Three Point fix (Trisponder) for drill stem

and the

INTRODUCTION

The West Seahorse-1 well location is in the south-west corner of the Vic/P-11 permit block and four kilometres west of the Seahorse-1 oil discovery.

The proposed location for West Seahorse was S.P. 152.8 on line GB81-1A. The co-ordinates for this position were:

> Latitude 38⁰ 12' 16.93" South Longitude 147⁰ 37' 21.88" East

UTM co-ordinates from central Meridian 147⁰

554523 metres East 5771275 metres North

Water Depth: 40 metres

The positioning survey consisted of four phases:

- 1. Setting up the Trisponder survey
- 2. Checking the survey system
- 3. Positioning and setting the anchor buoys.
- 4. Determining the final rig position.

The survey system consisted of a Trisponder System and a JMR-4 satellite receiver both supplied and operated by Decca Survey Australia. The Trisponder net was the primary navigation system used for positioning the rig with the satellite navigation providing an independent check on the system and a 100% back-up if the Trisponder system did not function. A licensed surveyor, contracted from Navigation Australia, was on board the "Yardie Creek" during the positioning of the "Petromar North Sea" to verify all readings during the positioning operations.

Independent reports were prepared by Navigation Australia and Decca Survey Australia.

CONCLUSION

The "Petromar North Sea" was moored in the final position for the West Seahorse-1 well on September 16, 1981. The calm seas and good Trisponder signals allowed the rig to be positioned and moored within twenty one hours. The Trisponder system proved to be both accurate and reliable throughout the whole operation.

Final position for West Seahorse-1

Latitude 38⁰ 12' 17.17" South Longitude 147⁰ 37' 21.70" East

UTM co-ordinates from the 147⁰ central Meridian:

Australian Map Grid: Zone 55

Northing 5771267 metres Easting 554519 metres

Proposed location to final location 9 metres at a bearing of 206°.

JMR-4 Satellite Doppler observations were taken on board the "Petromar North Sea" to check the location of West Seahorse-1 which had been established by Trisponder observations. The final Satellite position (Lat. 38⁰ 12' 17.288", Long. 147⁰ 37' 21.504") was very close to the Trisponder location.

DAILY LOG

Friday - September 11

- 0800 P. Carter and R. Keene (Navigation Australia's surveyor) departed Melbourne for Port Welshpool.
- 1100 Arrived Port Welshpool. Checked "Yardie Creek" and found Decca personnel, Trisponder equipment and JMR-4 receiver installed. Base plate guide also aboard.

Saturday - September 12

Rough seas in survey area. Waiting on rig.

Sunday - September 13

- 0930 "Yardi Creek" departed Port Welshpool enroute to Vic/P-11 permit block.
- 1710 Arrived at Seahorse buoy. Checked Trisponder location with known location of Seahorse buoy. Trisponder net checked out (3 way fix 1m).
- 1840 Headed for anchorage closer to shore. Seas moderate.

Monday - September 14

- 0700 Departed anchorage enroute to West Seahorse-1 location.
- 0745 Arrived on location and proceeded to position marker buoys. Seas calm. Trisponder signals excellent.
- 1030 All anchor buoys and Moon Pool buoy positioned and double checked. Two good satellite fixes placed Moon Pool within 20 metres of Trisponder location.
- 1100 Anchored within marker buoy pattern. Alterted local fishing fleet of rig positioning.

Tuesday - September 15

- 0530 "Petromar North Sea" within 5 km of location. Seas calm. Yardie Creek checked Moon Pool buoy location (within 25m of proposed location due to ocean current).
- 0945 "Lady Joyce" dropped #5 anchor. "Sea Emerald" towed rig towards Moon Pool buoy.

- 1200 "Sea Emerald" dropped #1 anchor. Rig blown south of proposed location.
- 1400 Four anchors dropped. First Trisponder fix on the rig, 150m S.S.E. of proposed location.
- 1720 All anchors in position. Petromar North Sea 25 metres N.W. of proposed location. Trisponder signals very good. (3 way fix: 4m).
- 1900 HOAL Perth office informed of rigs location.

Wednesday - September 16

- 0000 Commenced tensioning up anchors. Satellite fix placed position within 20 metres of Trisponder location.
- 0330 Completed tensioning up. Rig 10m off proposed location at a the bearing of 210⁰. Trisponder signals good.
- 0410 Phoned R. Keto, Perth. Rig location accepted. Rig still 10m off location at 210⁰. Three way fix: 3m.
- 0810 Position by Trisponder:

Latitude 38⁰ 12' 17.3" Longitude 147⁰ 37' 21.7" UTM co-ordinates 5771262 N. 554520 E.

No satellite fixes since 0330. Decca remained on board to take further satellite passes and determine final Trisponder position.

- 0830 P. Carter and R. Keene departed rig by helicopter for Bairnsdale.
- 0845 Arrived Bairnsdale
- 0915 Departed Bairnsdale
- 1045 Arrived Melbourne
- 1900 Departed Melbourne
- 2130 Arrived Perth.

RIG LOCATION AND BUOY PATTERN

Proposed Location

The proposed location for West Seahorse-1 was shotpoint 152.8 on line GB81-1A.

The co-ordinates for this position were: 38⁰ 12' 16,93" South Latitude Longitude 147⁰ 37' 21.83" East

UTM co-ordinates from central Meridian 147⁰

554523 metres East 5772375 metres North

Water depth: 40 metres.

The following base stations were used for the Trisponder survey net:

	Easting	<u>Northing</u>
Mt. Nowa Nowa Tower	596073 .9	5827551.6
Mt. Taylor Tower	549316.2	5826499 .9
Longford Tower	513544.2	5769507.0
Jimmys Lookout Tower (Back-up)	584670.0	5806793.0

Distances to West Seahorse-1 from base stations:

Mt. Nowa Nowa Tower	69980 metres
Mt. Taylor Tower	55494 metres
Longford Tower	41033 metres
Jimmys Lookout Tower	46603 metres

Anchor Pattern

The optimum bow heading for the "Petromar North Sea" was decided as 230°. Using this heading the position of the anchors was determined graphically.

The following table lists the positions:

Anchor Number	Bearing	Northing	Easting
1	260 ⁰	5771180	554028
2	290 ⁰	5771412	554056
3	350 ⁰	5771764	554488

4	020 ⁰	5771738	554731
5	080 ⁰	5771369	555023
6	110 ⁰	5771127	554993
7	170 ⁰	5770790	554551
8	200 ⁰	5770818	554308

Nine marker buoys were used for the positioning, eight anchor buoys and one Moon Pool buoy. They consisted of 2-inch pipe, approximately eighteen feet long, with a Norwegian buoy at the centre, a 2 foot length section of chain attached to the bottom and a coloured pennant attached to the top. These were anchored by 3, three foot lengths of steel railing, each weighing 150 LBS. Three small concrete cylinders were also attached to the base of buoy in order to keep the pipe vertical.

Forty seven metres of rope were used at each marker buoy. This allowed a maximum swing of 25 metres. A full set of spare marker buoys, weights and ropes were left aboard the "Yardie Creek".

A.C.S.

:

SURVEY NET VERIFICATION

A large buoy marking the location of the Seahorse-1 well was used to verify the Trisponder survey net. Decca supplied the exact location of the buoy knowing its maxium radius of drift, 49 metres, and the direction of the ocean currents. Decca obtained this information from Esso Australia.

By positioning the Yardie Creek alongside the Seahorse-1 buoy and comparing the Trisponder location with the known location a concrete check was made. The Trisponder system located the buoy to within 1 metre of its known location.

The JMR-4 Satellite Doppler receiver was also used to check the Trisponder survey net. The location of the Moon Pool buoy was checked with the JMR-4 and after two passes found to be within 15 metres of the Trisponder location. The final position for West Seahorse-1 was also checked with the satellite receiver. Twenty one passes were taken over a period of three days.

Final Satellite Position	•	Final Trisponder Position
5771264	Northing	5771267
554514	Easting	554519

Thus there is a very close agreement between the Satellite location and the Trisponder position.

and the second and and

PERSONNEL

Ian Freeman

Decca Survey Australia

Rod Keene

Navigation Australia

Paul Carter

Hudbay Oil (Australia) Ltd.

1.000

UDBAY PROJECT

EST SEAHORSE-1 LOCATION

DSA 1118

Moonpool positionLatitudeLongitudeA.G.D.38° 12' 17"288 South147° 37' 21"504 East

SCATTER PLOT OF ACCEPTED PASSES

SCALE 1:1000 .

3.0 GEOLOGY

3.1 Summary of Previous Investigations

Gippsland Basin exploration commenced in 1924 with the reported discovery of oil and gas in a water bore drilled onshore near Lakes Entrance. To date, over 125 wells have been drilled in the onshore part of the basin but only minor hydrocarbon accumulations have been encountered.

Initial exploration in the offshore Gippsland Basin was conducted by the Bureau of Mineral Resources when they undertook a regional gravity and aeromagnetic survey between 1951 and 1956. The first permits, covering a large part of the offshore Gippsland Basin, were taken up by BHP Co. Ltd. (later Hematite Petroleum Pty. Ltd.) in 1960. Esso joined the original permittee in 1964 and the first offshore well, Barracouta No.1, was drilled in 1965. Over eighty offshore wells have now been drilled in the basin resulting in the discovery of recoverable reserves approximately 3 billion barrels (0.466 x 10^{12} m³) of oil and 8 trillion cubic feet (220.4 x 10^{12} m³) of gas.

A summary of early contributions to the understanding of the geology and hydrocarbon potential of the Gippsland Basin was presented by W.F. Threlfall and others in 1974. Esso-BHP have published several papers on basinal stratigraphy and geological evolution during their exploration and development of the basin, and papers dealing with the geology of individual fields have been published as the fields were developed.

Exploration Permit Vic/P-11 consists of 51 blocks which previously formed parts of the Exploration Permits Vic/P-1 and Vic/P-8, held by Esso-BHP and a consortium headed by BOC Australia respectively. The area now covered by Vic/P-11 was gazetted in December 1976 and applications for the permit were invited. The permit was granted to Gas and Fuel Corporation of Victoria on August 8, 1978, and Beach Petroleum subsequently became joint Permittee and Operator. Hudbay Oil (Australia) Ltd. farmed into the Permit in December, 1980, and in February 1981 shot the GB81 Seismic Survey, consisting of 359 line kilometres of 36-fold seismic survey. Detailed mapping, incorporating data from the GB81 survey, Beach Petroleum's GB79 Seismic Survey and trade data from Esso's G80A Seismic Survey, defined several prospects. West Seahorse-1 was the first of these to be drilled, and was the first well to be drilled by HOAL outside Western Australian waters.

3.2 Geological Setting

3.2.1 <u>Regional Setting</u>

The West Seahorse structure lies towards the northern margin of the Gippsland Basin, which is situated in south-eastern Australia and is bounded to the north and south by the Victorian Highlands and Bassian Rise respectively (Enclosure 2). The western limit of the basin is taken as the Mornington Peninsula and to the east the basin opens to the Tasman Sea. The Gippsland Basin covers approximately 50,000 km² and is filled with up to 10,000 metres of Lower Cretaceous to Recent sediments.

3.2.2 Tectonic Elements (Enclosure 2)

The offshore Gippsland Basin is separated by fault complexes into three major divisions: The North Platform, or Lakes Entrance Platform; the graben-like Central Deep or Strzelecki Basin; and the South Platform (Hocking & Taylor, 1964; James and Evans, 1971; Hocking, 1972).

The stable platforms to the north and south are areas where the Tertiary sequence unconformably overlies Palaeozoic basement. In these areas the structures within the Tertiary section consist simply of small-scale drapes over palaeotopographic ridges and small fault scarps.

The Southern Platform is separated from the Central Deep Basin by a major fault complex, the South Bounding Fault. This is an offshore extension of the Foster Fault System and consists of a system of down-to-basin normal faults arranged en echelon. The northern boundary of the Central Deep is less well defined.

Major fault trends within the central part of the basin are offshore extensions of the southwest-northeast trending Yarram Fault and the antithetic, east-west trending Rosedale Fault System. The latter is known to be a reverse fault superimposed upon an older normal fault within the Lower Cretaceous, and to have a throw of up to 160 metres in the West Seahorse area. Reverse movement along the fault system is believed to have occurred as a result of the same stresses that led to the development of the major anticlines in the central basin during the late Eocene to early Oligocene. Numerous northwest-southeast, basin-forming normal faults have been recognized within the Central Deep.

The major hydrocarbon-bearing anticline structures in the central basin are elongate, with a dominant southwestnortheast axial trend. They were formed by right-lateral, convergent shearing brought about by the movement of continental plates, as will be discussed in Section 3.2.3. The main hydrocarbon traps in the Vic/P-11 Permit were formed as a result of the same shearing stress, resulting in arching associated with reverse movement superimposed upon older normal faults.

3.2.3 Geological Evolution and Regional Stratigraphy (Figure 2)

During the Lower to Middle Palaeozoic a series of major orogenies occurred within the Tasman Geosyncline. this resulted in a dominantly north-south structural grain within the tightly folded and faulted Palaeozoic metamorphics. These geosynclinal sediments were subsequently intruded by Lower Devonian granitic rocks. A major rift formed across southern Australia during the Jurassic due to the operation of the Antarctic and Australian cratons. The rift valley formed over the entire length of the present southern coast of Australia. Into this major depositional axis a typical sequence of rift valley sediments was rapidly deposited, as clastics were stripped from the adjacent Palaeozoic highlands. The initial deposits of the Upper Jurassic to Lower Neocomian consists of conglomeratic wedges and alluvial fan detritus, commonly of a quartzose sandstone nature. Jurassic intrusives and Lower Cretaceous extrusives, both associated with rifting, provided a major provenance for the 3,500 metres of Lower Cretaceous Strzelecki Group sediments.

During Lower Cretaceous times, the Gippsland Basin formed a half graben with the major subsidence along the southern Foster Fault system. The Strzelecki Group sediments are texturally mature but mineralogically immature, being felspathic and chloritic. They consist of a monotonous,

- 18 -

	۲		BA	STRATIGRAPHY
MILLION		FORMATION /	PLANKTONIC	PALYNOLOGICAL
YEARS	AGE	SEISMIC EVENT	FORAMINIFERAL	(SPORE - POLLEN)
			ZONATION	ZONATION
		۵۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	(TAYLOR,1981)	(PARTRIDGE, 1976)
-	·	- SEA LEVEL -	, , ,	
0 -	PLEISTOCENE		AI/A2	<u>, , , , , , , , , , , , , , , , , , , </u>
2	LATE/MID	-1	A3	
4 -	PLIOCENE EARLY PLIOCENE	-	A4	
6 -		- <u>A</u> N	Bl	
8 -	LATE	Z Z Z		
	MIOCENE		B2	
10 -		- v =	c	
12 -	MID	ວ ຊີ່ ເມ		
14 -	MIOCENE	M N	D1 D2	_1
16 -			E	2
		ч ^щ	E,	
18 -	EARLY MIOCENE	σ		
20 -		Z	G	
22 -		R N R N		
24 -			HL	
	• • •		<u>H2</u> I1	
26 -	LATE	E E		
28 -	OLIGOCENE	S Z	12	
30 -		i i i i i i i i i i i i i i i i i i i		
32 -		× 0 -	Jl	
	DB DY 57		01	
34 -	EARLY OLIGOCENE	н	J2	P. TUBERCULATUS
36 -		"TRANSITION ZONE" DR		
38 -	LATE	GURNARD FORMATION	<u> </u>	UPPER N. ASPERUS
40 -	EOCENE			
42 -		. Р		MIDDLE
	:	Ð	N	N. ASPERUS
44 -	MID EOCENE	о ж		LOWER
46 -	LOCDINE	н 5	0	NOTHOFAGIDITES
48 -			<u>P</u>	ASPERUS PROTEACIDITES
50 -		(Base of Gippsland	`	PROTEACIDITES ASPEROPOLUS
52 -	EARLY EOCENE	Foram sequence)		U. M. DIVERSUS LOWER
54 -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			MALVACIPOLLIS
	LATE PALEOCENE	· ·	1	DIVERSUS UPPER D. BAIMEI
56 -	<u> </u>	-1		wetle in Brindel
58 -	MIDDLE	ы м		LOWER
60 -	PALEOCENE	e O		LYGISTEPOLLENITES
62 -	·	K]	BALMEI
64 -	EARLY	E		
	PALEOCENE	- A		
66 -	CRETACEOUS CRETACEOUS ICHTIAN SENGNIAN SENGNIAN	H		TRICOLDERS
68 -	ELATE ETACEG MAAST ICHTIA			LONGUS
70 -		-		T. LILLIEI
				N. SENECTUS
Author: B.Butcher		Hudbey Oil (Australia)	-	Scale:
Drawn: A. Clark	OF	FSHORE GIPPSLAND	BASIN	
)ate:	REGIONAL	STATIGRAPH		
April 1982				

cyclic sequence of interbedded sands, silts and muds deposited on a subsiding fluvial plain. A large east-west rift developed, separating sediments of the Tasman Geosyncline. The eastern end of this rift is believed to have terminated in a triple junction formed by the Australian, Antarctic and Lord Howe Rise plates. The western arm of the triple junction was coincident with the ancestral Otway and Gippsland Basins and, as this arm of the triple junction failed during the Turonian, the Lord Howe Rise plate moved eastwards away from the Australian-Antarctic plate. This resulted in the rifting of the eastern portion of the Antarctic and Australian plates along a line parallel to, and off the west coast of,Tasmania. Therefore the Tasmanian craton remained attached to the Australian plate but was separated from it by an east-west, aborted,rift valley basin.

The Lower Cretaceous Strzelecki Group sediments are unconformably overlain by up to 5,000 metres of fluviatile and lacustrine Latrobe Group sediments. Upper Cretaceous sedimentation tended to be superimposed on the underlying Strzelecki Group with the deposition of shales, minor coals and poorly sorted sandstones in a fluviatile environment. In the early Senonian, approximately 85 million years B.P., the Lord Howe Rise Plate moved away, resulting in the deposition of a complex system of fluvial and deltaic plain sediments sourced from the northwest and north. Growth and movement on the basin-forming normal faults resulted in continued subsidence of the basin during the Palaeocene and Eocene.

The northern part of the basin was uplifted as fault movement elsewhere in the basin lessened during the Eocene. A period of submarine and subaerial channel-cutting occurred during the Middle to Upper Eocene in the Tuna-Flounder area. The channel-cutting marked the onset of a marine transgression from the southeast during the uppermost Eocene to Lower Oligocene, a period of instability and basin tilting. The en echelon disposition of the fold trends and fault systems is most likely the result of Upper Eocene east-west, right lateral, convergent shear deformation. The crestal areas of the folds were subsequently eroded during an associated period of relative sea level drop, while the deeper parts of the basin continued to receive sediments. The compressional regime reactivated the severe channeling and the Marlin Channel was formed as subaerial and submarine drainage systems were laterally restricted.

The transgression continued into the Lower Oligocene with the deposition of the shallow water glauconitic sands and silts of the Gurnard Formation. Around the margins of the basin, sand buildups occurred as the transgression reached its maximum extent. During the uppermost Eocene to Lower Oligocene, a marked change in sediment type occurred: the fluvial and deltaic coarse grained clastics were replaced by fine grained, calcareous shales and marls. The change in sediment type may be due, in part, to a change in provenance related to the widespread deposition onshore of volcanics during the Upper Eocene wrenching episode.

Sea level fluctuations during the Miocene produced a complex system of interfingering and overlapping channels, which cut into the soft limestones and marls of the Lakes Entrance Formation and Gippsland Limestone. A linear, submarine slump zone of over 125 kilometres in length has been observed along the major south-bounding fault system. A wedge of sediment moved towards the centre of the basin as a result of reactivation of this fault system during the Miocene, and a major cratonic uplift, the Kosciusko Uplift, occurred during the Upper Pliocene and Lower Pleistocene. The Victorian Highlands were uplifted and provided a renewed clastic provenance, while faults and associated structures around the northern margins of the basin were rejuvenated. Extensive erosion is currently occurring in the Strzelecki Hills and a relatively thin veneer of Quarternary sediments is being deposited across the southeastern Gippsland coastal plain.

3.3 <u>Stratigraphy</u>

A sedimentary section ranging in age from Recent to Upper Cretaceous (Senonian) was penetrated in West Seahorse No.1 (Figure 3).

Age determinations are based upon palaeontological and palynological studies of sidewall cores (Appendices B1 and B2). The boundaries of individual units were established by using the age determinations in conjunction with lithological data from the microscopic examination of drill cuttings and sidewall cores, and wireline log interpretations. Time-rock subdivisions were placed midway between sidewall core points, unless more accurate subdivisions were made possible by log response or cuttings lithology.

Owing to the standard practice of not installing a marine riser until after the setting of the 20 inch casing, no samples were recovered from the seabed to 189 metres.

The stratigraphy encountered in the well is described below. All depths quote are below the Rotary Table, which is 9.45 metres above Mean Spring Low Nater.

Upper Cretaceous (2093 - 2490 metres)

Underlying the Palaeocene is a conformable non-marine sequence of medium and coarse grained sandstones, with minor interbeds of siltstone and claystone, plus occasional thin coal seams. The sandstones show an increasing degree of recrystallisation with depth, and below 2310 metres have been cemented by dolomite.

Lower Eocene to Palaeocene (1395.5 - 2093 metres)

The Latrobe Group sediments underlying the transition zone are represented by non-marine sequence of coarse sandstones, siltstones and minor claystones, with abundant coal in the section above 1800 metres. Above 1422 metres no reliable palynological dating could be obtained, but samples between 1422-1468 m were assigned to the M. diversus biostratigraphic zone. Between 1651-2083 metres the rocks were again largely devoid of diagnostic palynomorphs, but recognition of L. balmei in a few samples enabled the assignation of a Palaeocene age.

- 21 -

?Latest Oligocene to Lower Eocene (1344.5 - 1395.5 metres)

The interval between 1344.5 metres and 1395.5 metres was devoid of diagnostic planktonic foraminifera and could not be assigned a definite age.

The glauconitic calcisiltites and calcilutites of this zone are distinguished from overlying lithologies by their high glauconite content, and appear to constitute a zone of transition between the marine sequence above and the non-marine lithologies below. The absence of sediments bearing Zone K/J planktonic foraminifera suggests a marked unconformity between the latest Eocene and latest Oligocene in West Seahorse No.1

Lower Miocene to Latest Oligocene (640 - 1344.5 metres)

Most of the Lower Miocene section above 930 metres is represented by recrystallised calcarenite with minor calcilutite, calcisiltite and very coarse quartz sand. Below 930 metres the lithology changes fairy rapidly to an interbedded sequence of calcisiltite/calcilutite and marl, which grades, with an incerasing porportion of clay minerals, to the calcareous claystones and carbonates of the Lakes Entrance Formation.

The uppermost part of the Lower Mioceen was deposited on a beach front, in water depths of less than 10 metres. This was transitional to a near shore canyon head (about 40 metres deep) at around 770 metres and to a submarine canyon between 802 and 1055 metres. Below 1100 metres, the unit was deposited in a mid-shelf environment, in water depths of 40-150 metres, and there is evidence of a rapid transgression at the base of this zone.

Middle Miocene (400 - 640 metres)

Below 400 metres the Middle Miocene consists of very coarse to medium skeletal fragments, calcilutite and calcisiltite, with minor quartz sandstone below 525 metres. A decrease with depth, in the average size of the skeletal fragments was apparent over this interval, and below 515 metres a gradually increasing degree of recrystallisation was observed.

- 22 -

The entire interval was deposited in an inner shelf environment, in water depths of 10-40 metres.

Recent to Middle Miocene (205 - 400 metres)

A carbonate sequence, consisting of varying proportions of skeletal fragments, calcite silt and micrite, with minor amounts of coarse quartz grains, was the first of the Gippsland Limestone logged in West Seahorse No.1. Faunal types recognized included corals, echinoids, pelecypods and forams, and fragment sizes were dominantly very coarse to rudaceous. The lower half of this zone was deposited in an inner shelf, seaweed zone in water depths of 10-40 metres.

				1		T
STRATIGRAPHY.		PALYNOLOGICAL	DRILL	SUBSEA	EVENT	DEPOSITIONAL
	FORAM ZONE	(SPORE - POLLEN)	DEPTH	DEPTH		ENVIRONMENT
	(TAYLOR, 1981)	(PARTRIDGE,1976)	-			
			9.45	L 0		
				Ţĭ	+ SEA LEVEL	
			48.8	+39.35	+ SEA FLOOR	<u>+</u>
RECENT TO	A to				, ,	313.5
MIOCENE	20 7D					INNER SHELF,
			- 400	 		SEAWEED ZONE
	D		00	- 191 ·		473 (10-40m)
MID MIOCENE			602	500	A N N O N	INNER SHELF
MICCENE	7 E1		- 607	- 598 .		640 (10-40m)
	Е		- ?640	- 631 .	ບ ເນ A (A)	BEACH FRONT
	2		678	+ 669 ·	A 2	(0-10m) TO
	F		- 752 -	- 743 -	нн чо	NEAR SHORE CANYON
		•	- 788 ·	779 -		785 (40n
175 mr 11			- 819.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	?
EARLY	7 G					
			932.5	- 923 -		SUBMARINE
:	G		- 1060 -	-1051 -	1060 -	CANYON 1090
	·		-1154.3-	1144 0-		
	H-1					MID SHELF
	? H-1		- 1244 -	-1235 -	LAKES ENTRANCE FORMATIO	(40-150m)
ATEST OLIGOCENE	н 2		-1334 -	-1325 -	T HOA	RAPID
?	2		1344.5-	-1335 -		TRANSGRESSION
£	4 4				TRANSITION ZONE ?	BACK BARRIER
BASE OF FORMINI	FERAL SEQU	ENCE EXAMINED	13,95.5	1386	1395.5	LAGOON 1392.0
?		.	1404	= =		
	· ·	BARREN	- 1421 -	1412 -		
EARLY EOCENE		7M. diversus				
TO	+	M. diversus	- 1448 -	-1439 -	A	NON MARINE
TE PALAEOCENE		(?UPPER)	- 1650 -	1641 -	0	
		BARREN			×	
PALABOCENE	T	L. balmei	- 1759 -	1750 -	9 8	
MARCONDICUMITAR	+	•	- 2093 -	2084 -	а а	NON MARINE
MABSTRICHTIAN		$-\frac{T. longus}{-}$	- 2114 -	2105 -	а 0	NON MARINE
CAMPANIAN		T. lilliei			64	and a precine
		BARREN	- 2208 -	2199 -	r a	NON MARINE
SENONIAN	-		-2368 -	2359 _	н	
(T.D.)		N. senectus	2486.9	477.5		NON MARINE
thor:		Hudbay Oil				Date :
B.Butcher.		WEST SEA		4		March, 1982
awn by:		HEOT OFA	HUNGE -	1		

3.4 <u>Structure</u>

West Seahorse No.1 was drilled on the southern side of a major east-west, high angle reverse fault which is upthrown to the south, i.e. towards the centre of the basin. Reverse movement, associated with wrenching along a pre-existing, normal, down-to-the-basin fault trend, caused arching into the fault and thereby formed the northern boundary of the structure.

The normal fault trend formed during Upper Jurassic to Lower Cretaceous times, with further growth continuing during the Upper Cretaceous and Lower Tertiary. The wrench faulting believed to have been associated with the reverse movement took place during the Upper Eocene to Lower Oligocene. The West Seahorse structure is a 5 km by 2 km, east-northeast trending, asymmetric anticline. Closure has been mapped at three horizons, designated "Top Latrobe", "Intra Latrobe" and "Top Strzelecki", though palynological data indicates that the latter may be a misnomer (Figure 3).

A high resolution dipmeter was run from 2482 metres to the base of the 13-3/8" casing, at 1305 metres. Interpretations of the dipmeter data were enhanced by the use of a Cluster-Pooled Arrow Plot, Cyberdip and a Geodip run over selected intervals. The dipmeter data may be subdivided into several intervals, according to the magnitude and direction of recorded dips, viz:

Above 1345 m	: dips are generally high, between 10-32 ⁰ ; mainly t northeast	• •
		40
1345-1411 m	: less than 5 ⁰ ; dominantly	1-2°;
	random orientation	
1412-1425 m	: 7-20 ⁰ ; direction variable	e but
	mainly east to south	
1425-1437 m	: 3-9 ⁰ ; south-south-easter	ly
1441-1448 m	: generally higher, 6-14 ⁰ ;	generally
	east-north-easterly	
1450-1492 m	: less than 6 ⁰ ; random or	very
	generally to the south	-
1500 1700		
1500-1790 m	: mainly less than 6 ⁰ , with	n occasional

-			higher readings of between 14-18 ⁰ ,
			random orientation
1790-1960	m	:	slightly higher dips, 8-14 ⁰ , mainly
			about 10 ⁰ , random orientation
1960-1980	m	:	14-18 ⁰ ; random orientation
1980-2100	m	:	2-12 ⁰ ; mainly 6-10 ⁰ ; random or very
			general south-south-easterly
			orientation
2100-2131	m	:	dips mainly between 8 ⁰ and 32 ⁰ ;
			southerly orientation
2131-2410	m	•	2-15 ⁰ (average about 8-10 ⁰);
			southerly or south-south-easterly
			orientation
2410-2480	m	:	14-28 ⁰ ; south-south-easterly
			orientation

3.5 Predicted and Actual Depth to Seismic Markers

The depths to the main seismic events recognized in West Seahorse No.1 are listed in the following table. Further details are given in Enclosures 3 and 4, and Figure 4.

Horizon Identification - West Seahorse-1

Location : Line GB81-1A Shot Point 152.5

Horizon	Predicted Depth*	Actual Depth	Recorded 2-way Time
Water Bottom	-40 m	-40 m	0.052
Top Latrobe	-1404 m	-1386 m	1.120
Intra Latrobe		-1552 m .	1.246
Top Strzelecki	-1842 m	(under revi	ew)

* Note: Depths quoted in this table are subsea,i.e. R.T. Depth - 9.45 m.

Figure 4

Hudbay Oil (Australia) Ltd. Subsidiary of Hudson's Bay Oil & Gas Company Ltd. WEST SEAHORSE – 1 ACTUAL SECTION LAT. <u>38° 12' 17-17''</u> S. LONG. <u>147° 37' 21-70''</u> E. S.P. <u>152-8</u> LINE. <u>GB. 81 - 1A</u>						
	WATER DEPTH 39.35 METRES					
	DRILLING DATA	DEPTH SUB-SEA METRES	AGE	LITHOLOGY	LITHOLOGIC SUMMARY	
	Floor		RECENT	\searrow	NO RETURNS	
		189	1 0			
	dippsland				SKELETAL LIMESTONE / CALCARENITE,	
	Limestone		MIDDLE		CALCISILTITE and CALCILUTITE, MINOR SANDSTONE	
			MIOCENE		RECRYSTALLISED LIMESTONE with	
		631	1		CALCILUTITE, CALCISILTITE and MINOR	
					SANDSTONE	
			LOWER			
	Lakes		MIOCENE			
	Entrance Formation		то	┝┯ ^{╼┯} ╼┯┥	MARL with CALCILUTITE / CALCISILTITE	
	roimanon		LATEST		CALCAREOUS CLAYSTONE	
	Top Latrobe	1335 1386	OLIGOCENE		GLAUCONITIC CALCISILTITE / CALCILUTITE and SHAL	
	"Intra	1402	LOWER EOCENE TO		SANDSTONE and COAL with MINOR SILTSTONE	
	Latrobe"	1552		1.4.4.4.4	and CLAYSTONE	
		1641				
			PALAEOCENE			
	l atraba			÷ 11. ÷	SANDSTONE, SILTSTONE and CLAYSTONE	
	Latrobe Group			÷		
		2007				
			UPPER CRETACEOUS	÷	SANDSTONE, with MINOR CLAYSTONE	
	.				SILTSTONE and COAL	
-+	Total Deptn	2480	(SENONIAN)	₩ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>		

,

÷

3.6 Porosity and Permeability

Porosities for West Seahorse No.1 have been estimated by wireline log interpretation and microscopic examination. A detailed breakdown of porous zones is given in the Log Analysis section of this report (Appendix B3).

Two sandstone interval in the upper part of the Latrobe Group, between 1411-1416 metres and between 1455-1453.5 metres, have sonic-derived porosities of 28-30% and 31% respectively. However visual examination showed that the upper sand contained a large proportion of silty, finely divided mica flakes and carbonaceous material, which would be expected to reduce permeability in that interval.

Several zones in the Eocene to Palaeocene section between 1500-1770 metres showed porosities of between 20-30%, with a maximum value of 31% calculated for the zone between 1500-1516 metres. Below 1770 metres porosities were reduced by an increase in the amount of silty clay in the matrix; below 1960 metres, the sands showed evidence of recrystallisation and cementation by silica; and below 2310 metres porosity was further reduced by dolomite cement.

Based on data obtained from DST No.1, formation permeability is estimated to be in the range of 118 to 175 md. The radius of investigation of the DST was approximately 244 metres, indicating that there are no major permeability barriers in the vicinity of the well.

Analyses of Core No.1 cut over the interval 1450-1461 metres determined a maximum porosity of 29.4%. This figure was obtained from a sample of sandstone at the top of the core, i.e. at 1450.0 metres. Analytical procedures and further results are detailed in Appendix B4.

3.7 Hydrocarbon Indications

3.7.1 Summary

Interpretation of wireline logs from West Seahorse No.1 indicated two oil-bearing zones, which were subsequently confirmed by testing. Several thin zones apparently containing hydrocarbons were also noted, but these are interpreted as being due to shoulder effects (Appendix B3).

The oil-bearing zones were between 1500-1503 metres (R.T.) and between 1411-1418 metres (R.T.).

The well flowed at a rate of 1800 stb/d of 48⁰ API light crude on a half inch choke during DST No.1 over the 1411-1416 m interval.

3.7.2 During Drilling

Continuous Gas Monitoring

A continuous record of gas levels in the drilling mud was maintained by Exploration Logging Inc., using a total gas analyser and gas chromatograph. Monitoring commenced at 205 metres, in the 17-1/2 inch hole, and continued to the total depth of 2490 metres.

Table 1, on the following page, summarizes the gas readings observed during drilling.

Fluorescence from Drill Cuttings

Examination of drill cuttings showed up to 20% fluorescence on quartz grains between 1417 and 1565 metres. This was described as being bright,blue-white and yellow-white, with a trace of dull yellow-gold, and exhibited slow to faststreaming,blue-white solvent fluorescence.

Traces of fluorescence were observed in drill cuttings below 1565 metres, but may have been from cavings or contamination.

RANGE OF GAS READINGS

<u>DEPTH (m)</u>	<u>Total Gas</u>	Pet. Vap.	<u>c</u> 1	<u> </u>	<u>C</u>	<u>iC</u> 4	<u>nC</u> 4	<u>C</u> 5_
205-870	0	0	0	0	0	0	0	0
870-1040	0-Tr	0	0-20	0	0	0	0	0
1040-1380	Tr-5	0	25-700	0-25	Tr-15	0	0	0
1380-1415	12-140	Tr-20	1480-17050	71-910	36-700	5-310	5-340	0-85
1415-1475	4-65	Tr-10	137-8000	9-400	Tr-300	Tr-150	Tr-150	0
1475-1550	3-32	Tr-2	320-3249	150-342	35-380	30-74	Tr-124	0
1550-1975	Tr-10	Tr-1.5	25-872	Tr-250	Tr-140	Tr-15	Tr-20	0
1975-2005	Tr	0	Tr-7	0	0	0	0	0
2005-2180	Tr-10	0-1	9-1433	0-156	0-56	0-3	0-8	0
2180-2205	Tr	Tr	15-77	Tr	0	0	0	0
2205-2490 T.D.	Tr-9	0-Tr	46-1750	Tr-54	0-60	0-Tr	0	0

Notes: 1) "Petroleum Vapours" includes C2 and higher hydrocarbons.

2) Total Gas and Petroleum Vapours are given in units, where 1 unit = 200 ppm

3) $C_1 - C_5$ are given in ppm.

4) The high gas readings are generally associated with coal seams rather than hydrocarbon zones.

0il Staining/Free 0il

Light brown to dark brown staining was observed on quartz grains between 1495-1565 metres. Furthermore, a small amount of free oil, calculated at less than 0.5% from mud analysis, was observed as a sum on the surface of the mud in the mud pits. Geochemical Analyses of the West Seahorse-1 oil are contained in Appendix B5.

3.7.3 Sidewall Cores and Conventional Cores

Bright, greenish-gold and blue-white fluorescence was observed in sidewall cores between 1385.5 and 1503.5 metres. This ranged from a few bright pinpricks on a fresh cross-sectional surface of core to 100% of the core surface. Maximum fluorescence occurred in two zones: from 1411.2-1423.4 metres and from 1499.5-1501.6 metres. Dull, brown-gold fluorescence was also observed in several sidewall cores between these intervals.

For further details, refer to the Sidewall Core Descriptions in Appendix B6.

Traces of pinpoint and spotty, blue-white fluorescence were observed on Core No.1, which was recovered from 1450-1458.9 metres. Moderately fast, blue-white to milky white solvent fluorescence was obtained from several sections of core. Further details are again provided in Appendix B6.

3.7.4 Further Indications

Section 2.5 of this report summarizes the DST results. The RFT program is summarized in Section 4.3.2 and discussed further in Appendix B3.

3.8 Contributions to Geological Knowledge

- West Seahorse No.1 confirmed the presence of suitable reservoir rocks towards the northern edge of the Central Deep Basin in the western portion of Vic/P-11. Maximum log-derived porosities were calculated at 31%, for sands near the top of the Latrobe Group sequence between 1411-1453 metres. Porosities decrease with depth, and below approximately 2200 metres the sequence displayed poor reservoir characteristics.
- West Seahorse No.1 contained moveable hydrocarbons in two separate zones, viz: 1411.1418 metres and 1500-1503 metres.
- 3. The top of the Latrobe Group, the base of the first oil sand, and certain of the intervening coal/ sandstone intervals can be correlated with reasonable surety from West Seahorse No.1 to Seahorse No.1, although the following differences were observed:
 - i) the top of the Latrobe Group is represented in Seahorse No.1 by a sandstone and in West Seahorse No.1 by a coal seam.
 - ii) the base of the first oil sand in Seahorse No.1 is a shale unit and in West Seahorse No.1 it is a dolomitic sandstone.
- 4. The upper hydrocarbon zone in West Seahorse No.1 may share a common oil-water contact with that in Seahorse No.1.
- 5. The apparent absence of sediments of latest Eocene to latest Oligocene age (Zones K/J-H2) in West Seahorse No.1 and their presence in Seahorse No.1 strongly suggests faulting during the Upper Oligocene (25-32 m.y.) between the two locations, with Seahorse No.1 on the downthrown side (Appendix B1).
- 6. The oil recovered from West Seahorse No.1 tested at 48⁰ API and flowed at 1800 barrels/day, which compares reasonably well with results from Seahorse No.1

- 31 -

(53° API; 2040 BOPD). However, West Seahorse No.1 produced with a gas/oil ratio of 200 scf/bbl whereas Seahorse No.1 produced with 1100 scf/bbl. The gas from West Seahorse No.1 contained approximately 200 ppm H_2S , compared with 300 ppm H_2S in gas from Seahorse No.1.

- 7. The drill stem test over the 1411-1416 m interval tested a radius of 244 m, indicating that the formation is homogeneous, i.e. that no major permeability barriers exist in the vicinity of West Seahorse No.1
- 8. West Seahorse No.1 bottomed in dolomitic, silicified sandstone of Senonian age. The well penetrated both a marked angularity which had been interpreted from seismic studies and a change in lithological character corresponding to a density increase on the logs below 2275 m.
- 9. A Repeat Formation Test at 1976.1m recovered water with a surface scum of oil. Wireline log interpretation shows up to 20% hydrocarbon saturation at this point, which is consistant with the RFT results. Several other thin zones in the interval between 1976-2005m are also interpreted to contain hydrocarbons, but all show less than 20% hydrocarbon saturation (See enclosures to Appendix B3).

4.0 WELL DATA

Ø

4.1 Formation Sampling

A standard "Alpha" unit from Exploration Logging Australia Inc. was used for the 1981-82 Gippsland Basin drilling programme. Exlog personnel provided continuous monitoring of ditch gas and mud pit levels, and recorded the following parameters every 5 metres: ditch gas, gas chromatography, calcimetry, blendor gas analyses and mud weight in and out. Corrected drilling exponent calculations were also performed every 5 metres in shaly intervals, but are not considered reliable due to a faulty motion compensator on the drilling vessel. A Drill Monitor System panel provided continuous readings of engineering/drilling parameters, which were noted every 5 metres.

Washed and dried cuttings samples were collected in 5 metre (minimum) compilations from below the base of the 20" casing shoe, at 189 m, to total depth at 2489.6m. Hudbay and Exlog geologists maintained separate lithological logs (see Enclosures 5 & 6 and Appendix B7).

400 g unwashed, 15m composite samples were bagged from below the 20" casing shoe, and 100 g unwashed, 15 m composite samples were taken from below the 13-3/8 inch casing shoe, at 1304m. The former were submitted for palynological study; the latter were sealed, with preservative, in cans and submitted for geochemical analysis.

4.2 Coring Program

e na state a state de la second

4.2.1 Conventional Cores

One conventional core was cut in West Seahorse No.1:

Core No.1

Cut : 11 metres (1450 - 1461 m) Recovered : 8.9 metres ("1450 - 1458.9 m") Recovery : 81%

Lithological Description (see also Appendix B6).

1450 - 1451.15 metres

Sandstone, clear, very fine to granule, dominantly coarse, angular to rounded, moderately sorted, 5% clay minerals, trace calcite cement, trace carbonaceous matter, unconsolidated.

1451.15 - 1451.18 metres

<u>Coal</u>, black, bituminous, brittle.

1451.18 - 1451.70 metres

<u>Sandstone</u>, clear to light grey, very fine to granule, dominantly medium, angular to rounded, dominantly sub-angular, poorly sorted, 5-15% quartz silt, trace-10% clay minerals, moderately hard to unconsolidated, excellent porosity.

1451.70 - 1451.75 metres

Coal, black, brittle as thin laminae.

1451.75 - 1452 metres

<u>Sandstone</u>, light olive grey to olive grey, very fine to granular, dominantly very fine to fine, bimodal, 10-20% quartz silt, 5-20% clay minerals, moderately hard, poor to very good porosity, becoming silty with depth.

1452 - 1453 metres

<u>Siltstone</u>, micaceous, medium dark grey to dark grey, 5-30% quartz silt, 20-40% clay minerals, 10-50% biotite mica, preferentially orientated, 0-30% carbonaceous material, hard, subfissile,

- 34 -

separating into interbedded white to very light grey siltstone with dark grey to dark brown micaceous siltstone in millimetre laminae towards 1453 metres. Cross bedded, trace convoluted bedding, rare slump structures.

1453 - 1453.3 metres

2221

<u>Sandstone</u>, silty, clear to white to light grey, very fine to fine, occasionally medium, dominantly very fine, moderately well sorted, angular to subrounded, dominantly angular, 20% quartz silt, 5% clay, 5% carbonaceous material, trace pyrite moderately hard, good porosity, good permeability, cross bedded.

1453.3 - 1455.13 metres

<u>Claystone</u>, light olive grey to olive grey, up to 15% quartz silt, 0-5% carbonaceous material, trace mica, moderately hard to hard, becoming harder with depth, possible slickensides at 1453.7 metres.

1455.13 - 1455.6 metres

<u>Sandstone</u>, silty, carbonaceous, micaceous, clear to white to dark brown grey, fine to granular, dominantly medium, poorly sorted, subangular to subrounded, 20% quartz silt, 10% mica, 10% mica, 10% carbonaceous material, moderately hard, fair to good intergranular porosity.

1455.6 - 1455.9 metres

<u>Siltstone</u>, micaceous, carbonaceous, dark grey to black, subfissile, hard.

1455.9 - 1456.1 metres

<u>Coal</u>, black, vitreous, conchoidal fracture, blocky, brittle to hard, possible slickensides.

1456.1 - 1456.6 metres

<u>Siltstone</u>, argillaceous, micaceous in part, carbonaceous in part, white to light grey to olive brown-black, 20-30% clay minerals, 10-20% micaceous material, 5-20% carbonaceous material, trace-5% pyrite inclusions, hard.

1456.6 - 1457.0 metres

enance i sta

<u>Coal</u>, black, brittle, interbedded with minor laminae of siltstone as between 1456.1-1456.6 metres, abundant slickensides.

1457.0 - 1457.6 metres

<u>Siltstone</u>, argillaceous, dark green grey to olive grey, 40% clay minerals, 10% mica, trace carbonaceous material, hard.

1457.6 - 1457.7 metres

Claystone, micaceous, dark olive grey to black, hard.

1457.7 - 1458.0 metres

<u>Coal</u>, black, vitreous, conchoidal fracture, brittle, with slickensides.

1458.0 - 1458.1 metres

<u>Claystone</u>, micaceous, carbonaceous, very dark grey to black, very hard.

1458.1 - 1458.2 metres

<u>Coal</u>, black, brittle.

1458.2 - 1458.6 metres

<u>Claystone</u>, silty, micaceous, carbonaceous, dark grey to black with coaly deformations and en echelon fracturing in the coal.

1458.6 - 1458.7 metres

<u>Siltstone</u>, argillaceous, micaceous, carbonaceous, dark grey to dark olive grey, subfissile, very hard.

1458.7 - 1458.9 metres

Coal, black, brittle, vitreous, hard, high rank, becoming silty.

1458.9 - 1461 metres

No recovery.

4.2.2 Sidewall Cores

Summary		
Suite 1 (26/9/81)		
Interval Cored	:	191.0 - 1293.0 metres
Shots attempted	•	30
Cores recovered	:	29
Bullets empty	:	1
Bullets misfired	:	nil
Bullets lost	:	nil

Suite 2 (6/10/81)		
Interval cored	:	435.8 - 1732.0 metres
Shots attempted	:	60 (2 x 30)
Cores recovered	•	55
Bullets empty	:	4
Bullets misfired	:	nil
Bullets lost	:	1

Suite 3 (22/10/81)		
Interval cored	:	1322.0 - 2486.7 metres
Shots attempted	:	90 (3 x 30)
Cores recovered	:	72
Bullets empty	:	16
Bullets misfired	:	nil
Bullets lost	:	2

TOTAL : 180 shots

156 recovered

Refer to Appendix B6 for Sidewall Core Description sheets.

42 sidewall cores over the interval 313.5-1390.0 metres were sent to Paltech Pty. Ltd. for palaeontological examination (Appendix B1).

52 sidewall cores over the interval 1403.6-2486.9 metres were sent to Western Mining Corporation, South Australia, for palynological examination (Appendix B2).

4.3 Wireline Logs and Wireline Sampling

Schlumberger Seaco ran the following wireline logs and Repeat Formation Tests in West Seahorse No.1:

Suite	Date	Logs	Interval	Remarks
1	26/09/81	DIT-BHC-GR (1:200 & 1:500)	191 - 1293 n	1
	26/09/81	FDC-GR (1:200 & 1:500)	191 - 1293 n	1
	26/09/81	CST (1:200)	191 - 1293 n	ו
2	04/10/81	DIT-BHC-GR (1:200 & 1:500)	1306 - 1743 n	1
	04/10/81	FDC-CNL-GR (1:200 & 1:500)	1305 - 1743 n	n
	05/10/81	DLL-MSFL-GR (1:200 & 1:500)	1305 - 1737 n	1
	05/10/81	HDT (1:200)	1304 - 1742 m	n
	05/10/81	RFT-GR	1413 - 1716 m	n
	06/10/81	CST (1:200)	1438 - 1732 n	n
	11/10/81	RFT	1417 - 1505 m	n
3	20/10/81	BHC-GR (1:200 & 1:500)	1305 - 2482 m	n
	20/10/81	FDC-CNL-GR (1:200 & 1:500)	1700 - 2486 r	n
	20/10/81	DLL-MSFL-GR (1:200 & 1:500)	1672 - 2482 r	n
	21/10/81	HDT (1:200)	1730 - 2486 r	n
	22/10/81	RFT	1805 - 2420 r	n
	22/10/81	CST (1:200)	1322 - 2486 r	n
	27/10/81	CBL-VDL (1:200)	1305 - 1525 r	n
	28/10/81	Perforation Record (1:200)	1411 - 1416 1	n
	31/10/81	Bridge Plug Setting Record (1:200)	1375 - 1405 r	n
	Ndditti anal C			

Additional Services

Date	Logs	Interval
05/10/81	Geodip (1:40 & 1:200)	1375 - 1575 m

.

	WEST SEAMORSE	- / -	e
05/10/81	Geodip (1:20)	1400 - 1	570 m
17/10/81	Geodip (1:20)	620 - 1	000 m
10/10/81	Cyberdip (1:100)	1305 - 1	741 m
11/10/81	Cyberlook (1:200)	1305 - 1	743 m
21/10/81	CST Dipmeter (1:500)	1313 - 2	479 m

Log interpretations and further details of the logging programme are provided in Appendix B3.

A Vertical Seismic Profile (VSP) was run by Seismic Services Limited (Enclosures 3 & 4).

Repeat Formation Tests (RFT)

The following Table summarizes the Repeat Formation Testing programme in West Seahorse No.1:

Date	Interval (m)	Pressure Tests	- Sampling Attempts	<u>Total</u>
05/10/81	1413.5 - 1716.5	7	8	15
11/10/81	1417.0 - 1505.5	1	8	9
22/10/81	1975.8 - 2420.5	`18	1	19
		26	17	43

The RFT programme indicated the following:

- a) a free oil-water contact occurs at 1503 m.
- b) there is apparently no oil-water contact within the 1411-1418 m sand.
- c) the silty sand underlying the permeability barrier at 1418-1419.5 metres is water saturated.

Oil recoveries of at least 1700 cc were recovered from tests at 1415.5 m, 1417.0 m and 1502.0 m; traces of oil were recovered from tests at 1413.5 m, 1505.0 m, 1505.5 m and 1976.1 m.

Details of the RFT programme at West Seahorse No.1 are given in Appendix B3. Enclosure 2 therein is a plot of the pressure gradient determined from the RFT results.

- Hocking, J.B., 1972: Geological Evolution and Hydrocarbon Habitat, Gippsland Basin. J. Aust. Petrol. Expl. Assoc., 12 (1), pp 132-137.
- Hocking, J.B., and Taylor, D., 1964: The Initial Marine Transgression in the Gippsland Basin, Victoria, Paps. Aust. Petrol. Expl. Assoc., 1964.
- James, E.A., and Evans, P.R., 1971: The Stratigraphy of the Offshore Gippsland Basin. J. Aust. Petrol. Expl. Assoc., 11 pp. 71-74.
- Threlfall, W.F., Brown, B.R., and Griffith, B.R., 1976; Petroleum Geology of the offshore Gippsland Basin, <u>in</u> Economic Geology of Australia and Papua New Guinea. 3 Petroleum Australia Inst. Min. Metall.

- 40 -

APPENDIX B1

wings.

PALAEONTOLOGY REPORT

÷.

FORAMINIFERAL . SEQUENCE IN WEST SEAHORSE # 1.

for:- HUDBAY OIL (AUSTRALIA) LTD. December 4th, 1981.

Paltech Report 1981/22.

PALTECH III

MARINE MICROPALEONTOLOGISTS SYDNEY NEW SOUTH WALES MIDLAND WESTERN AUSTRALIA

THE FORAMINIFERAL SEQUENCE IN WEST SEAHORSE # 1.

Forty sidewall cores from WEST SEAHORSE # 1 were examined for foraminiferal content. On the basis of that examination the following breakdown of the sequence according to broad E-log patterns was noted:-

Sidewall Cores Depth(m)	Approx. E-log Unit Boundary	Age	Zone*	Palecenvironment	
313.5	Тор	?	?	Inner shelf, seaweed	
to		to	to	zone (10-40m)	
455.2	470	Miocene	D		
	- 473				
494.8		Mid	D	Inner shelf, undifferentiated	
to		Miocene	to	(10-40m)	
624.0	_		E-1		
	?				
662.8		Early	E	Transitional from near	
tọ		Miocene	to	shore canyon head (~40 m)	
773.1			F	at base to beach front	
				(0-10m) at top.	
802.0		Early	?G	Submarine canyon	
to		Miocene	to	(Depth indeterminate)	
1055.0			G		
	1090				
1100.1		Early	G	Mid shelf (40-150m) with	
to		Miocene	to	rapid transgression at	
1336.8			н-2	base.	
	1344.5				
1359.4		?	No	Back barrier lagoon	
to			diagnostic		
1392.0			foraminifera		
base of sequence examined					

*Planktonic foraminiferal zones after Taylor (in prep.).

Planktonic foraminiferal content of the samples was generally poor, mainly due to the persistence of environments unfavourable to planktonic life (back barrier lagoon - inner shelf) or preservation of these fragile forms (canyon).
Tables I & II (herein) detail the record summarised above. A micropaleontological data sheet shows the interpreted reliability of the planktonic foraminiferal zone determinations.

The list of sidewall cores studied is shown on Tables I & II. Sidewall cores at 590.1 and 623.9m were not examined as they were near duplicates of other samples. Sidewall core at 1247m had no sample in the jar.

OLIGOCENE FAULTING BETWEEN SEAHORSE # 1 AND WEST SEAHORSE # 1.

SEAHORSE # 1 recorded a Latest Eocene to Early Oligocene (Zone K/J) shallow water facies overlain unconformably by a basin deep facies of latest Oligocene age (Zone H-2) with reworked shallow water elements of Zone K/J age. None of these sediments were recorded in WEST SEAHORSE # 1. On the evidence of this study it seems reasonable to suggest that during the latest Oligocene (Zone H-2) the shelf/slope break was between WEST SEAHORSE # 1 and SEAHORSE # 1 and that sediments of Latest Eocene to Mid Oligocene age at WEST SEAHORSE # 1 (if present originally) were exposed, eroded and transported to the nearby basin deep areas such as at the SEAHORSE # 1 site. The SEAHORSE # 1 and WEST SEAHORSE # 1 sites were not at comparable paleowater depths subsequently until mid Early Miocene (Zone G).

This evidence strongly suggests faulting during the late Oligocene (25-32m.y.) between SEAHORSE # 1 and WEST SEAHORSE # 1 with SEAHORSE # 1 on the down thrown side.

, de Calina

a the Contract of the second second

	PLANKTONIC FORAMINIFERA		
	fies ecta (S.S.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.) (S.L.)		
CORE)	bodi fruit fruit for for for for for for for for	PLANK. FORAM.	AGE
		ZONE	
SIDEWALL NUMBER & DEPTH	ак раний сарадарии н вакоодарини страдарии н вакоодарини страдарии		
the set of a state of the set of	ALLA P P P P P P P P P P P P P P P P P P		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$?	?
(27) 420.0→			
(25) 494.8 _→	NO PLANKTONICS SEEN NO PLANKTONICS SEEN	D	MID
(23) 560.0			MIOCENE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NO PLANKTONICS SEEN •	E-1	
$(18) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	• • • • • • • • • • • • • • • • • • •	<u>E</u>	
$\begin{array}{c} (16) -731 \cdot 0 \\ (15) & 773 \cdot 1 \end{array}$		F	
$(14) 802.0_{\rightarrow} \\ (13) 837.0_{\rightarrow}$	o	?	· · · · · · · · · · · ·
(12) 874.3_{\rightarrow} (11) 915.0_{\rightarrow}	······································	prob.G	EARLY
$(10) 950.0 \rightarrow$ $(9) 985.0 \rightarrow$	o X	· · · · · · · · · · · · · · · · · · ·	
(8)1025.0 _→ (7)1055.0 _→		G	MTOCIDNIE
(5)1137.1.	X		MIOCENE
(4)1171.5→ (3)1205.9→	oo		
(1)1282.0→ (89)1330.5→		?H-1	
(88)1336.8→ (81)1359.4→	× • • • • • •	H-2-	
(77)1368.8 _→ (75)1373.5 _→			OLIGOCENE
(74) 1375. ⁴ → (73) 1378.6→	NO PLANKTONICS SEEN	?	
(71)1383.8→ (48)1383.8→		· · · · · · · · · · · · · · · · · · ·	
(90)1386.5→ (47)1388.0→			
(69)1390.0→ (46)1392.0→	Base of sequence examined		
	KEY - • <20 specimens		
	? questionable identification		
		· · · · · · · · · · · · · · · · · · ·	
	TABLE 1: PLANKTONIC FORAMINIFERAL DISTRI WEST SEAHORSE #1.	BUTION	
CAE A4 2mm		<u> </u>	

TABLE 2: SIGNIFICANT BENTHONIC FORAMINIFERAL DIST RIBUTION, RESIDUE LITHOLOGY & PALEOENVIRONMENTAL ASSESSMENT WEST SEAHORSE # 1.

MICROPALEONTOLOGICAL DATA SHEEI

÷

	S I L NA		PPSLAND ST SEAHOR	CF #	1			ATION: KE L DEPTH:		.8m GL:	-90-	
			H I (АТ) W E	ST D	АТ	 A
	GE	FORAM. ZONULES	Preferred	Rtg	Alternate Depth	Rtg	Two Way	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Tir
PLEIS- TOCENE		Al										
PLE		^A 2										
		^А з				1						
PLIO- CENE	ſ	A ₄										
ы 1 1 1		^B 1					-					
	LATE	B ₂										
1		С				1						
ы	ы	Dl	420.0	2	455.2	1						
N	н Д	D ₂						560.0	1			
ы С		El	624.1	1								
ο	н М	^Е 2						662.8	2			
H M		F	773.1	2				773.1	2			
	EARLY	G	837.0	2	950.0	1		1137.1	1			
	EA	Hl	1171.5	2				1205.0	1			
	ы	^н 2	1282.0	2				1336.8	1			
NE	H	1 1										
OLIGOCENE	L A	^I 2										
DII	ΓΛ	Jl										
0	EARLY	^J 2										
EOC- ENE		ĸ										
E E	Ιſ	Pre-K										

	•								
	.						······		
									
	<u> </u>								
			· · · · · · · · · · · · · · · · · · ·		<u> </u>				
			·····						
CONFIDENC	E	0:	SWC or Core	- Con	nplete assem	blage (very	high confid	ence).	
RATING:		1:	SWC or Core						
		2:	SWC or Core	- Clos	se to zonule	change but	able to inter	pret (low confidence).	
		3:	Cuttings		iplete assem				
		4 :	Cuttings		mplete asse h suspicion			pretable or SWC with	
NOTE:	rating then i	should no entry	be entered, if	possible. e, unless	If a sampl s a range of	e cannot be zones is give	assigned to en where the	a better confidence one particular zone , highest possible	
DATA RECO	RDED	BY:	PALTECH P	TY. LT	D.		DATE :	December 1, 1981	•
DATA REVI	SED I	3Y:					DATE :		· .

•

en al antipa de la companya de la co

a and a second and a second and a second and

APPENDIX B2. PALYNOLOGY REPORT

.

der State

•

WEST SEAHORSE NO. 1 WELL

PALYNOLOGICAL EXAMINATION OF SIDEWALL CORE

by

W.K. Harris

WESTERN MINING CORPORATION LIMITED

PALYNOLOGICAL REPORT

CLIENT: Hudbay Oil (Australia) Ltd.

STUDY: West Seahorse No. 1 Well, Gippsland Basin.

AIMS: Determination of age of sediments from 53 sidewall cores.

INTRODUCTION

Fifty three sidewall cores from West Seahorse No. 1 Well drilled in the Gippsland Basin at Lat. 38^o 12'17.17"S, Long. 147^o37'21.7"E in Vic P-11, were processed by normal palynological procedures.

The basis for the biostratigraphic and consequent age determinations are based on Stover and Partridge (1973) and Partridge (1976). The current nomenclature of zones and their correlation with the geological time scale is presented in Figure 1.

OBSERVATIONS AND INTERPRETATION

Table 1 summarizes the distribution of palynomorph species that have significant time ranges during the Late Cretaceous and Early Tertiary. Long ranging species have been omitted.

Table II summarizes the interpreted biostratigraphy and age determinations based on the observations collated in Table I. Many of the samples from this well are barren of plant microfossils and this is mostly due to unfavourable lithologies being samples. The lithologies that dominate these barren samples are light grey to white argillaceous sandstones and claystones and these would generally represent oxidising environments.

In general the assemblages were not well preserved and were mostly very sparse with regard to numbers of microfossils although many samples yielded moderate amounts of organic matter. Poorly preserved assemblages are predominant in the lower section of the well in the Late Cretaceous and Paleocene sections whereas assemblages in the <u>Malvacipollis diversus</u> Assemblage Zone are reasonaby well preserved but are very sparse. The organic matter in these samples consists mostly of inertinite-like material suggestive of at least some oxidation during deposition.

These two factors result in many samples being classed as "indeterminate". For the same reasons it has not been possible to more finely subdivide the assemblages into "Lower", "Middle" or "Upper" units.

Nothofagidites senectus Zone - two samples at 2468 and 2403.1m are identified as this zone. In particular the assemblages include <u>Nothofagidites senectus</u>, <u>Tricolpites sabulosus</u>, <u>Aequitriradites</u> sp. aff. <u>A. verrucosus and Krauselisporites</u> aff. <u>K. jubatus</u>. Diagnostic species from the succeeding unit are absent. The assemblage is non-marine.

-2-Figure 1

with the geological time scale (From Partridge, 1976)

s			PLANKTONIC FORAMINI ZONATIONS			PALYNOLOGICAL	zo	NATIONS
MM YEARS	EPOCH	SERIES	CENOZOIC AFTER STAINFORTH ot.al. 1975 CRETACEOUS AFTER VAN HINTE 1972	BERGGREN, 1969 BERGGREN, 1971	BASS STRAIT TAYLOR 1966	DINOFLAGELLATE ASSEMBLAGE ZONES		SPORE – POLLEN ASSEMBLAGE ZONES
-35-	OLIG OCENE	EARLY	Cassigerinella chipolensis Pseudohastigerina	P.19 P.18	J.I	Operculodinium spp.		PROTEACIDITES TUBERCULATUS
			Globorotalia	P.17	J.2 K	Phthanoperidinium coreoides		UPPER NOTHOFAGIDITES ASPERUS
-40-		LATE	<i>cerroazulensis</i> (sensu lato)	P.16		Deflandrea	GONIATUS	MIDDLE
45			Globigerinatheka semiinvoluta Truncorotaloides rohi	P.15 P.14		extensa		NOTHOFAGIDITES ASPERUS
-45-	EOCENE	MIDDLE	Orbulinoides beckmanni Globorotalia lehneri Globiderinatheka subcondiobata	P.13 P.12 P.11		Deflandrea heterophylcta (Wetzeliella echinosuturata)	SHLIDLYCHDILES	LOWER NOTHOFAGIDITES ASPERUS
-50-			Hantkenina arajonensis Globorotalia pentacamerata Globorotalia arajonensis	P.10 P.9 P.8		Wetzelicila edwardsii Wetzelicila thorpsonae Wetzelicila ornate	TON	FROTEACIDITES ASPEROFOLUS UPPER MALVACIPOLLIS
		EARLY	Globorotalia fotmosa formosa Globorotalia subbotinae	P.7 b. P.6 a.		Wetz-liella warpuwaensis Wetzeliella hyperacantha		DIVERSUS LOWER MALVACIPOLLIS DIVERSUS
-55-		LATE	Globorotalia velascoensis Globorotalia pseudomenardii	P.5 P.4		Wetzeliella homomorpha		UPPEP LYGISTEPOLLENITES BALMEI
-60-	LEOCENE	MIDDLE	Globorotalia pusilla pusilla Globorotalia angulata	P.3		Eisenackia crassitabulata		LOWER
	PAI	١٢	Globorotalia uncinata Globorotalia trinidadensis	P.2 C.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		LYGISTEPOLLENITES BALMEI
-65-			Globorotalia pseudobulloides Globigerina eugubina Globotruncanella mayaroensis	а.	ļ	Trithyrodinium evittii Deflandrea druggii		
-70-	CRETACEOUS	MAASTRICHTIAN EARLY LATE	Globotruncana contusa Globotruncana stuarti Globotruncana qansseri Globotruncana scutilla		• • • • • • • • • • • • • • • • • • • •	BASE OF DINOFLAGELLATE SEQUENCE		TRICOLPITES LONGUS
	LATE CR	CAMPANIAN EARLY LATE	Globotruncana calcarata Globotruncana subspinosa Globotruncana stuartiformis			Section without diaynostic dinoflayellates		TRICOLPORITES LILLIEI

-3-

TABLE 1

West Seahorse No. 1 Well

Distribution of selected species

Depth in metres Species	2468.0	2403.1	2204.5	2125.1	2103.1	2083.2	1894.2	1872.0	1855.3	1778.0	1648.2	1594.9	1512.8	1487.2	1475.5	1460.5	1435.8	1434.0	1423.4	1422.4
Aequitriradites cf A. verrucosus	X	Х		<u>.</u>					•											
Krauselisporites cf K. jubatus	X																			
Tricolpites sabulosus	X	Х																		
Nothofagidites senectus	X	х																		
Gambierina rudata	X	Х	Х	х	Х	Х	Х													
Proteacidites amoloseximus	X	Х																		
Tricolpites lilliei			Х																	
Tricolpites confessus			Х																	
Lygistepollenites balmei			Х	Х	Х	Х	Х	Х	Х	Х										
Latrobosporites ohaiensis			Х	Х	Х	Х	Х	÷	Х	Х										
Triporopollenites sectilis	[Х	Х	Х	Х														
Nothofagidites endurus			Х	х	Х															
Proteacidites scaboratus]		Х	х	Х	Х	Х			Х										
Gambierina edwardsii	1			х	Х	х	Х		Х	Х										
Tricolpites gillii				х	х	Х	х			Х										
Tricolpites longus				х																
Tetracolporites verrucosus					Х		Х		Х											
Herkosporites elliottii						х	Х		Х	Х		Х		Х						
Phyllocladidites reticulosaccatus					х	Х	х		х											
Proteacidites angulatus	1						х		Х	Х										
Dilwynites granulatus								х	х	х										
Austalopollis obscurus								х	Х	Х										
Simplicepollis meridianus								х	Х											
Nothofagidites flemingii									Х	Х		Х	Х	Х						
Rugulatisporites mallatus										Х		х								
Malvacipollis diversus											Х	Х	х	х		Х	Х	Х	Х	Х
Cupanieidites orthoteichus	1										х	х	х			Х		Х	Х	Х
Verrucosisporites kopukuensis											х	х		х		х			х	
Liliacidites lanceolatus											Х	х						Х	Х	
Proteacidites pachypolus													х	х		Х		Х		
Kuylisporites waterbolki														Х		Х				
Santalumidites cainozoicus															х	Х		Х	Х	
Tricolporites adelaidensis															х		Х		Х	у
Periporopollenites demarctus																	х	Х		

TABLE II

WEST SEAHORSE NO. 1 WELL

SUMMARY OF BIOSTRATIGRAPHY AND AGE DETERMINATIONS

SWC No.	Depth in Metres	Biostratigraphic Unit	Age
44	1403 . 6m	Indeterminate	
68	1405.0m	Indeterminate	
43	1409.4m	Indeterminate	
67	1409.0m	Indeterminate	
55	140, 0m	Indeterminate	
54	1416.0m	Barren	
40	1418.7m	Barren	
65	1422.4m	? M. diversus	Late Paleocene to Early Eocen ϵ
39	1423 . 4m	? M. diversus	Late Paleocene to Early Eocene
38	1432 . 2m	Barren	
64	1434.0m	? M. diversus	Late Paleocene to Early Eocene
30	1435 . 8m	? M. diversus	Late Paleocene to Early Eocene
62	1460 . 5m	M. diversus	Late Paleocene to Early Eocene
25	1475.5m	M. diversus	Late Paleocene to Early Eocene
24	1484.6m	Indeterinate	
36	1487 . 2m	? M. diversus	Late Paleocene to Early Eocene
22	1498.4m	Indeterminate	
32	1512.8m	? M. diversus	Late Paleocene to Early Eocene
15	1530 . 2m	Barren	
60	1574 . 2m	Barren	
11	1594 . 9m	? M. diversus	Late Paleocene to Early Eocene
8	1648.2m	M. diversus	Late Paleocene to Early Eocene
7	1651.8m	Barren	
6	1662.5m	Barren	
31	1665 . 0m	Barren	
58	1726 . 0m	Barren	
57	1738.2m	Barren	
56	1741.0m	Barren	
53	1778.0m	L. balmei	Paleocene
52	1787 . 5m	Barren	
51	1796 . 8m	Barren	
50	1801.5m	Barren	
49	1855 . 3m	L. balmei	Paleocene
48	1872 . 0m	L. balmei	Paleocene
47	1881 . 5m	Barren	
46	1894 . 2m	L. balmei	Paleocene
45	1913.6m	Barren	
43	1933 . 4m	Barren	
41	1947 . 2m	Barren	
40	1968 . 4m	Indeterminate	
36	2031 . 8m	Indeterminate	
35	2072 . 1m	Indeterminate	
34	20 83 . 2m	L. balmei	Paleocene
33	2103. 1m	No older than T. longus	?Maastrichtian
32	2125 . 1m	No older than T. lilliei	?Campanian
30	2171. 8m	Barren	
29	2204 . 5m	T. lilliei	Campanian
28	2211.3	Barren	
19	2332. 2m	Indeterminate	
12	2403 . 1m	N. senectus	Senonian
· 11	2409 . 9m	Barren	
3	2468 . 0m	N. senectus	Senonian
1	2486.9m	Barren	

,

51

<u>Tricolpites lilliei</u> Assemblage Zone - The base of this zone is marked by the first appearance of <u>T. lilliei</u> at 2204.5m. Associated species include <u>Lygistepollenites</u> balmei, <u>Gambierina rudata</u>, <u>Tricolpites confessus</u> and <u>Latrobosporites ohaiensis</u>. The zone extends to 2125.1m and is non-marine.

?Tricolpites longus Assemblage Zone - One sample at 2103.1m yielded a sparse assemblage which cannot be accurately placed. It is no older than the <u>T. longus</u> assemblage but may belong to the younger <u>Lygistepollenites balmei</u> Assemblage Zone. The assemblage includes <u>Gambierina spp.</u>, <u>Tetracolporites verrucosus</u> and <u>Phyllocladidites reticulosaccatus</u>. The last named species would tend to argue for a correlation with the L. balmei zone but there is insufficient evidence to confirm this. The unit is non-marine.

Lygistepollenties balmei Assemblage Zone - this unit extends from 2083.2m to at least 1778.0m and the section contains many either barren or indeterminate samples. The base of the zone is marked by the consistent occurrence of Haloragacidites harrisii, Phyllocladidites reticulosaccatus, Herkosporites elliottii, Rugulatisporites mallatus and Simplicepollis meridianus. Nothofagidites flemingii ocurs at 1855.3m suggesting that the upper part of the L. balmei zone is present. There are however no other criteria in the samples to support a finer zonation of the unit in this well. The zone in this well is non-marine.

Malvacipollis diversus Assemblage Zone - The assemblage from 1648.2m contains both <u>Malvacipolis diversus</u> and <u>Cupanieidites orthoteichus</u> indicating a correlation with this zone. Other elements in this zone include <u>Proteacidites pachypolus</u>, <u>P.</u> <u>kopiensis</u>, <u>Kuylisporites waterbolki</u> often abundant <u>Haloragacidites harrisii</u> and frequent <u>Nothofagidites</u> spp. The presence of <u>Santalumidites cainozoicus</u> at 1475.5m would suggest that this sample is within the Upper <u>M. diversus</u> zone. As mentioned previously the residues from this part of the section consist almost entirely of inertinite-like matter with very few spores and pollen. Consequently no further subdivision of this zone is possible. Indeed the extreme paucity of identifiable microfossils from betwen 1418.7 and 1403.6m hinders any correlation of these samples. However it is unlikely that they are much younger from those at about 1422m. The kerogens are essentially similar and indicate that the same lithological unit is represented between 1422 and 1403m.

No marine microfossils were recorded from this unit.

REFERENCES

- Stover, L.E., & Partridge, A.D., 1973: Tertiary and Late Cretaceous spores and Pollen from the Gippsland Basin, southeastern Australia. <u>Proc. R. Soc. Vict.</u>, 85: 237-286.
- Partridge, A.D., 1976: The Geological Expression of Eustacy in the Early Tertiary of the Gippsland Basin. J. Aust. Petrol. Expl. Assoc., 16: 73-79.

W.K. Harris Consulting Geologist - Petroleum

WEST SEAHORSE NO. 1 WELL

< 1

KEROGEN TYPES AND SPORE COLOURATION

FROM SELECTED SIDEWALL CORES

by

W.K. Harris Consulting Geologist - Petroleum

WESTERN MINING CORPORATION LIMITED

PALYNOLOGICAL REPORT

Client: Hudbay Oil (Australia) Ltd.

Study: West Seahorse No. 1 Well, Gippsland Basin.

Aims: Kerogen typing and spore colouration.

INTRODUCTION

During routine palynological processing of sidewall cores from the above well, an unoxidised kerogen sample was taken and the nature of the kerogens and spore colouration are documented in Table II. Only those samples which yielded spore/pollen assemblages have been examined for this report. Spore colour is expressed as the "Thermal Alteration Index" (TAI) of Staplin (1969) according to the scale in Table I.

TABLE I

Thermal - Alteration Index

Organic matter/spore colour

1 - none

- 2 slight
- 3 moderate
- 4 strong
- 5 severe

fresh, yellow brownish yellow brown black black and evidence of rock metamorphism

Total organic matter (TOM) is expressed semi-quantitatively in the scale-abundant, moderate, low, very low, barren. Samples classed as having abundant or moderate amounts of TOM would be expected to have TOC's (total organic content) greater than 1%.

In this report four classes of organic matter are recognised - amorphogen, phyrogen, hylogen and melanogen and these terms are more or less synonymous with amorphous, herbaceous, woody and coaly. For reasons as outlined by Bujak et al. (1977) the former terms are preferred because they do not have a botanical connatation. The thermal alteration index scale follows that of Staplin (1969) and as outlined by Bujak et al. (1977). At a TAI of 2+ all four types of organic material contribute to hydrocarbon generation whereas at a TAI of 2, only amorphogen forms liquid hydrocarbons. The upper boundary defining the oil window is at a TAI of approximately 3 but varies according to the organic type. Above TAI 3+ all organic types only have a potential for thermally derived methane.

The best potential source rocks occur between 1430 and 1770m where high organic yields have been recorded. These occur within the <u>M. diversus</u> assemblage zone and are only very marginally mature to immature for hydrocarbon generation. However amorphogen is often the dominant organic matter and may produce hydrocarbons at a low temperature regime.

The organic matter near the base of the well in the Late Cretaceous section is very variable in TOM with some samples yielding moderate amounts. This section is also more mature and the kerogens tend to be dominated by phyrogen which when mature would be expected to source liquid hydrocarbons.

In general the thermal maturity of West Seahorse No. 1 appears to be low and little if any hydrocarbons would appear to have been generated from this section.

TABLE II

WEST SEAHORSE NO. 1 WELL

DISTRIBUTION OF KEROGEN TYPES AND SPORE COLOUR IN SELECTED SAMPLES

<u>Depth (m)</u>	TAI	TOM	Amorpho.	Phyro.	Hylo.	Melano
1422.4	1+	v. low	95	5	Tr	Tr
1423.4	1+	v. low	90 [`]	5	Tr	5
1434.0	2-	abundant	60	10	10	20
1435.8	2-	moderate	50	10	10	30
1460.5	2-	abundant	90	5	Tr	5
1475.5	2-	abundant	Tr	10	20	70
1487.2	2-	moderate	Tr	10	20	70
1512.8	2-	moderate	Tr	75	15	10
1594.9	2-	v. low	Tr	50	5	45
1648.2	2-	abundant	Tr	30	10	60
1778.0	2	moderate	Tr	90	Tr	10
1855.3	2	low	Tr	5	5	90
1894.2	2	low	5	20	5	70
2083.2	2	· low	Tr	55	15 .	30
2125.1	2	v. low	-	5	5	90
2332,5	2	low	-	75	5	10
2703.1	2	moderate	-	80	10	10
2468.0	2+	moderate	-	30	5	65

Kerogen macerals are given as a percentage. Less than 5% is recorded as a trace (Tr).

REFERENCES

- Bujak, J.P., Barss, M.S., and Williams, G.L., 1977: Offshore East Canada's Organic Type and Color and Hydrocarbon Potential. <u>Oil Gas J.</u>, 45 (14): 198-202.
- Staplin, F.L., 1969: Sedimentary Organic Matter, Organic Metamorphism and Oil and Gas Occurrence. <u>Bull. Can. Pet. Geol.</u>, 17: 47-66.

17 Morch 1982.

W.K. Harris Consulting Geologist - Petroleum

APPENDIX B3. WIRELINE LOG INTERPRETATION

(REFER TO ACCOMPANYING REPORT)

24.5

. Antel annan com 10000

S. S. S. S. S. S. S.

utility and a state of a second

adilla.

APPENDIX B4. PETROLOGY REPORT

Special Core Analysis

Hudbay Oil (Australia) Ltd 256 Adelaide Terrace Perth Western Australia

ATTENTION: MR. E M L TUCKER MR. G DANN

Subject:Special Core AnalysisWell :West Seahorse 1File :SNSCAL 81056

31st March 1982

Gentlemen,

In a letter dated 7 October, 1981, from Mr. Tucker of Hudbay Oil (Australia) Ltd, Core Laboratories were requested to perform formation resistivity factor tests on core samples from the subject well.

Seven one-and-one-half-inch diameter plug-size core samples were drilled with liquid nitrogen at our Perth facility for use in this study. The samples were received in our Singapore Laboratory on 7th November 1981. These samples are described with respect to depth and lithology on page 1 of this report.

All samples were cleaned in cool solvents before drying in a humidity oven maintained at 40-45% relative humidity and $60^{\circ}c$.

Following measurements of helium injection porosity, the samples were saturated with a brine having a concentration of approximately 200,000 ppm. The brine comprised 80% sodium chloride, 10% calcium chloride and 10% potassium chloride since an exact analysis was not available. The electrical resistivities of the brine saturated samples and the saturant brine were measured on consecutive days until the readings stabilised indicating ionic equilibrium within the samples. Formation factor values were then calculated and plotted against porosity; the resultant plot yielded values of 1.00 for "a", the intercept, and an average value of 1.68 for "m", the cementation exponent.

All samples were then re-cleaned, humidity dried, porosities were remeasured and then the samples were re-saturated with a brine having a concentration of approximately 30,000 ppm. Again the constituents were 80% sodium chloride, 10% calcium chloride and 10% potassium chloride. Hudbay Oil (Australia) Ltd Special Core Analysis Well: West Seahorse 1 31st March 1982 Page Two

As before electrical readings were made until they became stable, whereupon formation factor values were calculated. The subsequent plot yielded values of 1.00 for "a" and 1.67 for "m". The data is presented in tabular form on page 2 and in graphical form on pages 3 and 4.

To all intents and purposes formation factor data yielded using 200,000 ppm is no different from the data using the 30,000 ppm brine.

In a telex (ref. no. 1314) dated 15 February 1982, from our Perth office, we were requested to perform cation exchange capacity measurements on the seven samples used for formation factor measurements. The ammonium-acetate, wet-chemistry technique was used and data is given on page 5, together with core resistivities (values for Ro) as requested.

and a

Please contact us should you require any further assistance.

Yours faithfully CORE LABORATORIES INTERNATIONAL LTD

Kennsind

TONY KENNAIRD Manager - Core Analysis Services

Enc

TK:sb

CORE LABORATORIES Petroleum Reservoir Engineering

.

COMPANY:	HUDBAY OIL (AUSTRALIA) LTD	FORMATION:
WELL :	WEST SEAHORSE 1	COUNTRY : AUSTRALIA
FIELD :		

IDENTIFICATION AND DESCRIPTION OF SAMPLES

Sample Number	Depth, Metres	Lithological Description
1	1450.0	SST:lt brn, cg, p-mod cmtd, subang- subrnd, mod std, carb lam.
2	1450.3	SST:lt brn, m-vcg, mod cmtd, subang- subrnd, mod std, carb lam.
3	1450.6	ΑΑ
4	1450.9	SST:lt brn, m-cg, mod cmtd, subang- subrnd, w std.
5	1451.2	SST:lt brn, f-vcg, mod cmtd, subang- subrnd, p-mod std, carb lam.
6	1451.5	SST:gy, mg, mod cmtd, subang-subrnd, p std, arg, carb.
-7	1451.8	SST:lt gy, vfg, mod-w cmtd, subang- subrnd, w std, abd arg lams.

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

FORMATION RESISTIVITY FACTOR DATA

0.061 200,000 ppm Resistivity of saturant brine, Ohm/m 0.267 30,000 ppm

		Formation	
Sample Number	Porosity, Per Cent	200,000 ppm	30,000 ppm
1	29.4	9.4	9.4
2	24.7	9.9	9.9
3	26.7	9.4	9.3
4	27.8	8.6	8.6
5	21.9	12.1	12.1
6	18.3	16.4	16.1
7	22.7	10.6	10.1

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

Porosity, Fraction

Formation Resistivity Factor

Pag

Porosity, Fraction

Formation Resistivity Factor

Page $\frac{5}{\text{File}}$ of $\frac{5}{5}$

ELECTRICAL RESISTIVITY AND CATION EXCHANGE CAPACITY DATA

Company :	Hudbay Oil (Australia) Ltd	Well :	West Seahorse l
Formation:		Field:	

Country : Australia

Resistivity of Saturant Brine, Ohm-Metres: 0.052 @ 72[°]F* 200,000 ppm 0.226 @ 72[°]F* 30,000 ppm

Sample Number	Porosity Per Cent	Grain Density gm/cc	Cation Exchange Capacity Meq/100gms	Core Resistivity Ro	Formation Factor	Cementation Exponent m**
					200,000 ppm	
1	29.4	2.66	0.70	0.490	9.4	1.83
2	24.7	2.66	0.50	0.516	9.9	1.64
3	26.7	2.66	0.52	0.491	9.4	1.70
4	27.8	2.66	0.66	0.447	8.6	1.68
5	21.9	2.61	0.59	0.631	12.1	1.64
6	18.3	2.63	1.22	0.854	16.4	1.65
7	22.7	2.67	1.31	0.552	10.6	1.59
					30,000 ppm	
1	29.4	2.66	0.70	2.124	9.4	1.83
2	24.7	2.66	0.50	2.237	9.9	1.64
3	26.7	2.66	0.52	2.102	9.3	1.69
4	27.8	2.66	0.66	1.944	8.6	1.68
5	21.9	2.61	0.59	2.735	12.1	1.64
6	18.3	2.63	1.22	3.639	16.1	1.64
7	22.7	2.67	1.31	2.283	10.1	1.56

* Temperature at which Ro measurements were made ** Assuming intercept "a" is 1.00

These analyses, opinions or interpretations are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productivity, proper operation, or profitableness of any oil, gas or other mineral well or sand in connection with which such report is used or relied upon.

e in stationer

) Silan

APPENDIX B5. GEOCHEMICAL ANALYSES

e verden kan ser ander van de state fielden aan de staar in de state een de state de state een de state een de

GEOCHEMICAL EVALUATION OF WEST SEAHORSE #1 OILS

G. Woodhouse
Petroleum Geochemistry Group
School of Applied Chemistry
W.A. Institute of Technology
Kent Street
BENTLEY 6102

CONTENTS

	Page
TABULATED DATA	2
MASS FRAGMENTOGRAMS	7
THEORY AND METHOD	12
COMMENTS AND CONCLUSIONS	19
n-ALKANE DISTRIBUTIONS	24
CAPILLARY GLC TRACES	32

TABULATED DATA

GRAVITY AND SULPHUR DATA

ω

.

-	OILNAME	API GRAVITY (deg)	% SULPHUR (w/w)
	W.SEAHORSE DST 1	48.3	0.22
••••	W.SEAH. RFT 4a 1417m	44.3	0.25
	W.SEAH. RFT 4b 1417m	40.2	9.22
	W.SEAHHORSE 1502m DI	45.3	0.07
-	W.SEAH. RFT 5a 1502m	47.7	0.10
	W.SEAH. RFT 5a 1502m	44.4	8.40
	W.SEAH. RFT 1505.5m	nd	nd

.

_

-				CO	MPOSITIONAL	DATA					
- DILNAME	ZSAT	%ARON	ZNSO	PRIST/PHYT	PRIST/NC17	PHYT/NC18	PAP	ARON/SAT	CPI(1)	CPI(2)	21+22/28+29
- W.SEAHORSE DST 1	84.9	10.2	4.8	5.32	.36	.07	nd	0.12	1.09	1.09	5.1
OIL- W.SEAH. RFT 4a 1417m	91.1	7.3	1.6	5.40	.36	.07	nd	0.08	1.09	1.09	4.9
ENU W.SEAH. RFT 4b 1417m	92.8	5.4	1.8	5.70	.36	.07	nd	0.06	1.09	1.08	5.1
- W.SEAHHORSE 1502m DI	91.5	6.8	1.6	5.61	.30	.06	nd	0.07	1.10	1.09	6.5
OIL- W.SEAH. RFT 5a 1502m	92.0	7.1	1.0	5.39	.29	.06	nd	0.08	1.07	1.06	5.8
EMU W.SEAH. RFT 5a 1502m	91.5	7.6	0.8	5.36	.31	.06	nd	0.08	1.10	1.09	5.6
- W.SEAH. RFT 1505.5m	44.1	53.2	2.7	5.62	.40	.07	nd	1.20	1.03	1.02	5.2

•

4

N-ALKANE DISTRIBUTIONS

S

- OILNANE	CN12 C	N13	CN14	CN15	CN16	CN17	CN18	CN19	CN20	CN21	CN22	CN23	CN24	CN25	CN26	CN27	CN28	CN29	CN30	CN31
- W.SEAHORSE DST 1	0.0	0.0	0.7	2.8	8.5	12.0	11.9	11.3	9.6	8.7	7.6	6.6	5.3	4.5	3.1	2.6	1.8	1.4	0.9	0.7
OIL- W.SEAH. RFT 4a 1417m	0.0	0.0	0.7	2.9	8.4	11.8	11.5	10.9	9.6	8.5	7.6	6.8	5.5	4.7	3.4	2.8	1.8	1.4	0.9	0.8
EMU W.SEAH. RFT 4b 1417m	0.0	0.0	0.7	3.3	9.1	12.7	12.2	10.6	9.7	8.4	7.3	6.4	5.1	4.3	3.1	2.5	1.8	1.3	0.8	0.7
- W.SEAHHORSE 1502m OI	9.4	9.7	9.9	10.2	9.8	9.1	8.0	6.8	5.8	4.7	3.9	3.3	2.6	2.1	1.5	1.2	0.8	0.5	0.3	0.3
OIL - W.SEAH. RFT 5a 1502m	10.0 1	0.4	10.4	10.0	9.0	8.1	7.1	6.5	5.6	4.7	4.1	3.6	2.9	2.3	1.6	1.3	0.9	0.6	0.4	0.3
EMU W.SEAH. RFT 5a 1502m	9.1	9.2	10.0	9.4	8.6	7.9	7.4	6.9	6.1	5.2	4.6	4.0	3.1	2.6	1.8	1.5	1.0	0.7	0.5	0.4
- W.SEAH. RFT 1505.5m	6.3	6.7	7.0	7.3	7.8	8.4	8.2	7.7	7.3	6.5	5.8	5.2	4.2	3.6	2.7	1.7	1.4	0.9	0.6	0.4

1

н

-...

~ .

ł

%SAT	* *	Percentage by weight of saturated compounds in the oil
%AROM	=	Percentage by weight of aromatic compounds in the oil
%NSO	=	Percentage by weight of asphaltenes plus resins in the oil
NC17	=	<u>n-heptadecane</u> (i.e. <u>n-alkane</u> with 17 carbon atoms)
NC18	=	<u>n</u> -octadecane (i.e. <u>n</u> -alkane with -8 carbon atoms)
CPI	=	Carbon Preference Index
PRIST	=	Pristane
PHYT	=	Phytane
PAP	= [Percentage of aromatic protons in the aromatic fraction
<u>n</u> -Alka	ine (Composition: CN12 etc. = \underline{n} -alkane with 12 carbon atoms etc.
		(Values are weight percent of the <u>n</u> -alkane fraction)
nd	*	No data
HC	=	Hydrocarbon
. 21+22/	28+	29. Sum of percentages of $n = 1$ kapes with carbon numbers 21

,

 \sim 21+22/28+29: Sum of percentages of <u>n</u>-alkanes with carbon numbers 21 and 22 divided by sum of percentages of <u>n</u>-alkanes with carbon numbers 28 and 29

MAS

MASS FRAGMENTOGRAMS

.

. .

.

I

NAME WEST SEAHORSE # 1, DST 1, 1411-16m. SATS. MISC 31-5-82. GEC. 1 M/L.

FRN 5279

191.1 191.1	from the second and t
177.1	Manahan
356.3 356.3	pharthather and the second and the s
370.3 370.3	www.alahanahananahalla.http://www.alahanananananananananananananananananan
384.3 384.3	way was a way and a w
398.3 398.3	
412.4 412.4	
426.4 426.4	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
440.4 440.4	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
454.4 454.4	58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98
NAME WE MISC 31 183.1 183.1	ST SEAHORSE ¥ 1, DST 1, 1411-16m. SATS.
231.2 231.2	Man marken the marken the second seco
217.2 217.2	manulannal
218.2 218.2	man Mar
259.2 259.2	Van min and Mader and Marken and Ma
358.3 358.3	
372.3 372.3	warden Mandel Man and Man Man and Man
386.3 386.3	have an and the man and the second a
400.4	man marker and a second
414.4 414.4	58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

THEORY AND METHOD

.

THEORY AND METHOD

1. API GRAVITY

A 1 ml specific gravity (SG) bottle was accurately weighed, then filled with crude oil at 60°F and finally reweighed. The weight difference was divided by the weight of 1 ml of water at 60°F to obtain the specific gravity. The following formula was then used to calculate the API gravity :

API Gravity =
$$\left(\frac{141.5}{\text{SG} (60^{\circ}\text{F})}\right)$$
 - 131.5

The reported gravity value is the average of duplicate determinations.

2. SULPHUR DETERMINATION

The % sulphur values were measured using an x-ray fluorescence spectrometer equipped with a liquid sample holder. This parameter is influenced by the nature of the source material from which a crude is derived, the depositional environment of the source rocks, and reservoir alteration processes such as bacterial alteration.

3. SEPARATION OF OIL INTO CONSTITUENT FRACTIONS

The oils were separated into saturated, aromatic and NSO (asphaltenes plus resins) fractions by column chromatography on silicic acid. The crude was applied to the top of a silicic acid column (sample to adsorbent ratio 1:50) and the saturated compounds were eluted with <u>n</u>-pentane, aromatic compounds with a 50:50 mixture of ether and <u>n</u>-pentane, and finally the NSO fraction was eluted with a 20:1 mixture of methanol and dichloromethane. The neat fractions were recovered by careful removal of the solvent by fractional distillation and weighed.

The weight of each fraction was used to calculate the % by weight of each fraction in the oil according to the following formula:

% Fraction =
$$\frac{Wt. Fraction}{Wt. All Fractions} \times \frac{100}{1}$$

4. GLC ANALYSIS OF SATURATED COMPOUNDS

Capillary GLC traces were recorded for each saturate fraction. The following information was obtained from these traces:

- (a) <u>n</u>-Alkane Distribution The C₁₂-C₃₁ <u>n</u>-alkane distribution was determined from the area under peaks representing each of these <u>n</u>-alkanes. This distribution can yield information about both the level of maturity and the source type (LeTran et al., 1974).
- (b) Carbon Preference Index Two values were determined: ...

$$CPI(1) = \frac{(c_{23} + c_{25} + c_{27} + c_{29})Wt^{\%} + (c_{25} + c_{27} + c_{29} + c_{31})Wt^{\%}}{2 \times (c_{24} + c_{26} + c_{28} + c_{30})Wt^{\%}}$$

$$CPI(2) = \frac{(c_{23} + c_{25} + c_{27})Wt\% + (c_{25} + c_{27} + c_{29})Wt\%}{2 \times (c_{24} + c_{26} + c_{28})Wt\%}$$

The CPI is believed to be a function of both the level of maturity (Cooper and Bray, 1963; Scalan and Smith, 1970) and the source type (Tissot and Welte, 1978). Marine crudes tend to have values close to 1 irrespective of maturity whereas values for terrestrial crudes decrease with maturity from values as high as 20 but don't usually reach a value of 1.

- (c) C₂₁+C₂₂/C₂₈+C₂₉ This parameter provides information about the source of the organic matter (Philippi, 1974). Generally, a terrestrial source gives values <1.2 whereas a marine source results in values >1.5.
- (d) Pristane/Phytane Ratio This value was determined from the areas of peaks representing these compounds. The ratio renders information about the depositional environment according to the following scale (Powell and McKirdy, 1975):

 <3.0 Marine depositional environment (i.e. reducing environment) ·
3.0-4.5 Mixed depositional environment (i.e. reducing/oxidising environment)
>4.5 Terrestrial depositional environment (i.e. oxidising environment)

(e) Pristane/n-C₁₇ Ratio - This ratio was determined from the areas of peaks representing these compounds. The value can provide information about both the source type and the level of maturation

(Lijmbach, 1975). Very immature crude oil has a pristane/ \underline{n} -C₁₇ ratio >1.0, irrespective of the source type. However, the following classification can be applied to mature crude oil:

<0.5 Marine source 0.5-1.0 Mixed source >1.0 Terrestrial source

In the case of sediment extracts these values are significantly higher and the following classification is used:

<1.0	Marine source
1.0-1.5	Mixed source
>1.5	Terrestrial source

- (f) Phytane/<u>n</u>-C₁₈ Ratio This ratio was determined from the areas of peaks representing these compounds. The value usually only provides information about the level of maturity of petroleum. The value decreases with increased maturation.
- (g) Relative Amounts of <u>n</u>-Alkanes and Naphthenes Since <u>n</u>-alkanes and naphthenes are the two dominant classes of compounds in the saturate fraction, a semi-quantitative estimate of the relative amounts of these compounds was made. This information can be used to assess the degree of maturation and/or the source type of the petroleum (Philippi, 1974; Tissot and Welte, 1978). Very immature petroleum has only small proportions of <u>n</u>-alkanes, but as maturity increases the relative amount of <u>n</u>-alkanes increases. In addition, terrestrial petroleum has a greater proportion of high molecular weight naphthenes than marine petroleum.

5. DETERMINATION OF THE PAP VALUE

The PAP value (percentage of aromatic protons in the aromatic fraction) was determined by proton magnetic resonance spectroscopy on the aromatic fraction. This parameter is a quantitative measure of the level of maturation of petroleum (Alexander et. al., 1979).

e	5.0	25	.0
	<u></u>		
VERY	IMMATURE	VERY	MATURE

6. CARBON ISOTOPE ANALYSIS

This measurement was carried out on one or more of the following mixtures; topped oil; saturate fraction; aromatic fraction; NSO fraction. The organic matter was combusted at 860°C in oxygen and the carbon dioxide formed was purified and transferred to an isotope mass spectrometer. The carbon isotope ratio was measured relative to a standard gas of known isotopic composition. In this case the standard gas was prepared from the NBS No. 22 oil. However, since the isotopic relationship between NBS No. 22 oil and the international reference PDB limestone are known, the values were adjusted to be relative to PDB limestone.

REFERENCES

- Alexander, R., Kagi, R.I. and Woodhouse, G.W. "Measurement of thermal maturation of petroleum by proton magnetic resonance spectroscopy". Nature, 276, 1978, 598.
- Alexander, R., Kagi, R.I. and Woodhouse, G.W. "A new method for measuring the maturity of petroleum in source rocks". APEA J., <u>19</u>, 1979, 90-93.
- Cooper, J.E. and Bray, E.E. "Apostulated role of fatty acids in petroleum formation". Geochim. Cosmochim. Acta, 27, 1963, 1113-1127.
- Gransch, J.A. and Eisma, E. "Characterization of the insoluble organic matter of sediments by pyrolysis". <u>Advances in Organic Geochemistry</u>, 1966, 407-426.
- Hunt, J.M. "Geochemistry of petroleum". Am. Assoc. Pet. Geol. Continuing Education Lecture Series.
- Lijmbach, G.W.M. "On the origin of petroleum". Proc. 9th World Petroleum Congress, 2, 1975, 357-369.
- LeTran, K., Connan, J. and Van der Weide, B. "Diagenesis of organic matter and occurrence of hydrocarbons and hydrogen sulphide in the S.W. Aquitaine Basin". Bull. Centre Rech., Pau-SNPA, <u>8</u>, 1974, 111.
- Philippi, G.T. "The influence of marine and terrestrial source material on the composition of petroleum". Geochim. Cosmochim. Acta, <u>38</u>, 1974, 947.
- Powell, T.G. and McKirdy, D.M. "Geological factors controlling crude oil composition in Australia and Papua New Guinea". Amer. Assoc. Petrol. Geol. 59, 1975, 1176.
- Scalan, R.S. and Smith, J.E. "An improved measure of the odd-even predominance in the normal alkanes of sediment extracts and petroleum". Geochim. Cosmochim. Acta, 34, 1970, 611-620.
- Stahl, W.J. "Carbon and nitrogen isotopes in hydrocarbon research and exploration". Chem. Geol., 20, 1977, 121-149.
- Stahl, W.J. "Source rock-crude oil correlation by isotopic type-curves". Geochim. Cosmochim. Acta, 42, 1978, 1573-1577.

- Tissot, B. et al. "Origin and evolution of hydrocarbons in early Toarcian shales, Paris Basin, France". Amer. Assoc. Petrol. Geol., <u>55</u>, 1971, 2177.
- Tissot, B. et al. "Influence of nature and diagenesis of organic matter in the formation of petroleum". Amer. Assoc. Petrol. Geol., <u>58</u> 1974, 499.
- Tissot, B. and Welte, D.H. "Petroleum Formation and Occurrence". Springer-Verlag. Berlin Heidelberg New York, 1978.
- Welte, D.H., et al., "Correlation between petroleum and source rock". Proc. 9th World Petroleum Congress, <u>2</u>, 1975, 179-191.

COMMENTS AND CONCLUSIONS

.

.

General

Seven samples (one DST and six RFT tests) of formation fluid were provided for geochemical analysis. The RFT 4b (1417m) and RFT 1b (1505.5m), and one of the RFT 5a (1502m) samples were oil:water emulsions whereas all other samples were neat crude oil.

The following comments summarize the results from the geochemical analysis of these samples.

API Gravity

Since the values are generally in the mid to high forties these samples are all considered light crudes. The value of 48.3 for the DST sample is likely to be the most accurate due to the method by which this sample has been collected. The RFT samples are likely to be slightly water wet resulting in a lowering of the API gravity. The low values for the samples received as emulsions is probably related to their high sulphur content.

Sulphur Content

The DST 1 and RFT 4a samples have similar %S values at around 0.25%. The two oil samples from 1502m also have similar %S values of approximately 0.10%. Although both of these values are considered low, there is a measureable difference between the two pairs of oils, and this difference is most likely due to the fact that the shallower pair of oils are apparently partially biodegraded whereas the deeper pair are unaltered.

The samples provided as emulsions have very high %S values and this is most likely attributed to dissolved hydrogen sulphide and elemental sulphur, and to a lesser extent organic sulphur compounds.

Hydrocarbon Composition

The %SAT, %AROM and %NSO values show that the six shallowest samples generally have similar gross compositions. The slight difference between the DST sample and the other five samples probably reflects the more representative sampling method used for the DST. The gross composition of the deepest sample (1505.5m) is significantly different from that of the six shallower samples. However, this sample was provided as a very small volume of petroleum in a large volume of water and has clearly been severely affected by the presence of the large volume of water. Consequently, data for this sample should be used with caution. This gross composition data shows that the crudes are very rich in saturated compounds. Further, the GLC traces show that the saturated fraction is dominated by <u>n</u>-alkanes and hence these crudes are highly paraffinic.

The <u>n</u>-alkane distributions for the three samples from the shallowest depth are very similar, each showing an absence of the low molecular weight compounds as a result of biodegradation and/or water washing. The three samples from 1502m have distributions which are similar within the group but are different to the shallower group in that they have a significant low molecular weight component and hence are not biodegraded.

The pristane/n-C₁₇ and $(C_{21}+C_{22})/(C_{28}+C_{29})$ ratios, and CPI values all suggest that the West Seahorse crudes are derived from marine or hydrogen rich organic matter. This suggestion is somewhat difficult to understand when considering the pristane/phytane ratios because these values indicate that the crudes are derived from source rocks deposited in a relatively oxidising depositional enviroment. Such enviroments are usually associated with terrestrial organic matter.

Gas Chromatography/Mass Spectrometry Analysis of Saturates

A GC/MS run was carried out on the DST#1 (1411-1416m) sample. Although this technique has its greatest application as an oil:oil or oil:source rock correlation tool, it can still be used to accurately determine specific information about a single crude. The data from the GC/MS analysis consists of 20 ion fragmentograms, of which the five most useful for this sample have been magnified to a size more useful for interpretation. These latter fragmentograms represent the following compound classes:

- 177 Triterpanes
- 183 Isoprenoids
- 191 Triterpanes
- 217 Steranes (including diasteranes)
- 259 Diasteranes

The C_{29} 5 α ,14 α ,17 α 20S/20R and C_{29} 5 α ,14 α ,17 α (20R)/5 α ,14 β ,17 β (20R) sterane ratios (0.98 and 1.33 respectively) clearly indicate that this crude is highly mature, and further the latter parameter appears not to have been significantly influenced by migration suggesting that the source of this oil is reasonably close to the reservoir. The C_{29} 5 α ,14 α ,17 α (20R) sterane is present in a much greater quantity than the corresponding C_{27} compound and this dominance of the C_{29} compound suggests that this oil has a significant terrestrial component. This contention is supported by the diasteranes which also show a dominance of the C_{29} compounds over the C_{27} compounds. Further, the consistent dominance of C_{29} steranes and diasteranes over their corresponding C_{27} compounds suggests that the West Seahorse crude is not a mixed oil i.e. it is from one type of source, and that it has not been severely biodegraded.

The C_{31} 17 α ,21 β 22S/22R hopane ratio and the C_{29} and C_{30} hopane/moretane ratios support the steranes in suggesting that this crude is highly mature. Further, since the triterpane fragmentogram is dominated by hopanes and moretanes, and appears to have a very low content of higher plant triterpanes, the source rocks for this crude oil are likely to be geologically older than Cretaceous.

Since the steranes are derived from the organic matter deposited in sediments and the hopanes result from bacterial activity at the time of deposition, the C_{29} sterane/ C_{30} hopane ratio reflects the degree of preservation of the organic matter in the source rocks. Our experience is that this ratio varies from 0.3 to 13.0. The value of 0.57 for West Seahorse crude indicates that there was a relatively poor preservation of organic matter in the source rocks from which this crude was derived.

In conclusion, although the use of GC/MS for correlation cannot be demonstrated with data from one sample, it is worthy of note that the source type dependence of the distributions of steranes, diasteranes, regular isoprenoids and triterpanes makes this technique particularly powerful for correlation studies.

n-ALKANE DISTRIBUTIONS

•.

.

.

Ì

ļ

CAPILLARY GLC TRACES

1

1

and the second second

APPENDIX B6. LOG

LOG OF CORES

:

SIDEWALL CORE DESCRIPTIONS

WELL WEST SEAHORSE -1

	RY es)		<u>, , , , , , , , , , , , , , , , , , , </u>	CL SIZE		SI SIZI	LT E % T	ГҮРЕ	GR. 8	AIN %	S siz	E	CEN	IENT	DIA	GENE		٥ ۲		SS	ТҮРЕ	ACCI	ESSOR	IES	BONS	rary Res		
DEPTH (metres)	RECOVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	QUARTZ	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	ТҮРЕ	%	TEXTURE	ROUNDIN	SORTING	HARDNESS	POROSITY B %	түре в %	түре в %	түре в %	HYDROCARBONS	SEDIMENTAR	SUPF	PLEMENTARY DATA
313.5	5.0	Calcisiltitic Calcilutitic CALCARENITE	Lt olv gry - dk grn gry	10	20	Tr	20		30	20					x	Tr	Мх		p,	s		G Tr						•
345.0	5.2	Argillaceous Calcilutitic CALCARENITE	Gry grn - grn gry	20	20	Tr	10		5	45	VF-F	VF			x	Tr	Mx		P	м		G Tr						
383.1	4.5	Calcarenitic Calcilutitic CALCISILTITE	Grn gry - gry wh	5	20	Tr	30		20	10			C 5		x	10	Мх			S	v;i10	Py Tr			L		Fossil fr	ags are rexlzd & hard
420.0	4.7	Calcarenitic CALCISILTITE	Dusky yel grn- dk grn gry	15	15	Tr	40		20	10					x	Tr	Мж			S		Py Tr					Fossil fr	ags are hard & rexlzd
455.2	5.6	Argillaceous CALCISILTITE	Gry-olv grn - dk grn gry	20	15	Tr	50		10	5					x	Tr	Мx			м		Py Tr	G Tr					
494.8	5.1	Calcilutitic CALCISILTITE	Gry grn	5	30	Tr	55		5	5					x	Tr	Мx			s		G Tr						
526.6	4.7	Calcilutitic Calcisiltitic CALCARENITE	Dk grn g ry	5	20	Tr	30		5	35	VF-F	VF			x	5	Мх			s	i;v 5	G. Tr					Fossil fr	ags rexlzd
560.0	5.0	Calcisiltitic Calcilutitic CALCARENITE	Gry grn	5	20		35		Tr	40	VF-F	VF			x	Tr	Mх		·	М		Py Tr					Some Calc	ite crystals formed
590.1	4.5	Calcisiltitic Calcilutitic CALCARENITE	Med dk gry - grn gry	10	25		30		Tr	35	VF-F	VF			х	Tr	Сх			S		G Tr					Two bulle	ts at this depth
590.2	4.75	Calcilutitic Calcarenitic CALCISILTITE	Med dk gry - grn gry	10	25		35		Tr	30	VF-F	VF			x	Tr	Сх			S-M	g Tr							
Thicknes millimete centimet	<u>Metri</u> r bed er bed	<u>Stratification</u> Parallel Type ding ic System imm-10mm mm icm-10cm cm	Irregular bedding Graded bedding No apparent bedding	≈ + – ≈	Currel Ripple asyn inter sym	nt-pro mar nmetr fereno metric	ical ce al	markı	STR ngs ~~ ~~	UCT	URES Organis Burrow slight model well b	<u>m-pro</u> ed y burn ately l urrowe	oduced m rowed	 		Peneci Mud c Rain o Pull- c Slump	ontem cracks or hail opart o struc	porane prints tures	and	defor		tructures		Disolutio Sylolite Vadose	solution on - com pisolit	ures , collapse paction (hor	GENETIC ST rse tail) → JmL	RUCTURES Tectonic structures Fractures ## Slickensides I I Breccia, tectonic \bigcirc
chevron climbing festoon planar	al gle indicat	<u>↓</u> ↓ ↓ ↓			Scour Flute Groov Striat Partir	and f cast re cas tion			\$ + + ₹		Churned Bored Bored s Organis Plant re Verteb	urface m trac pot tub rate_t	oes racks	rails ×		Load Tepee Birdse	cast stru	nestral	fabr			-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Vadose Boxwor Salt hoj	k opers or	845	L []@@	Miscellaneous Geopetal fabric Cone-in-cone Stromatactics Boudinage, ball and age flow
Abbrevi	ations	GRAIN SIZE VF Very Fine F Fine M Medum C Course VC Very Coarse G Granule & larger	CEMENT Q Silica Py Pyrite C Calcite D Dolomite Sd Siderite	Q S X R	NESIS iolomiti ilicifico ecrysti chloritiz	ation allizat	tioń	R SR SA	NDING Roun Subro Suba Angu	- ded ounde ngula		M I W	'ING Poor Moderate Well Very Wel	U VS S	Very Soft	onsolic Soft erate		P gj v i	· \	<u>SITY</u> ntergro Vugular ntraske		Hm Heo Lf Liti	ite a	rals		NETIC TE rypto<1/2 licro 1/256	EXTURES 56mm - 1/16mm	HYDROCARBONS Signifies presence Full details described unde supplementary data

SIDEWALL CORE DESCRIPTIONS

WELL WEST SEAHORSE -1

	RY es)			CL SIZE	AY %	SII SIZE	LT E % T		GRA 88 %		ZE		IENT	DIA	GENE		υ Z	, ₈	TYPE	A	CESSC	RIES	BONS	TARY RES		
DEPTH (metres)	RECOVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	QUARTZ	SKELETAL CALCITE	RANGE	DOMINANT	түре в %	түре в %	ТҮРЕ	%	TEXTURE	ROUNDIN	HARDNESS	POROSITY	в % ТҮРЕ 8 %	түре в %	ТҮРЕ & %	HYDROCARBONS	SED IMENTAF STRUCTURE	SUPPL	_EMENTARY DATA
623.9	3.6	Calcisiltitic CALCARENITE	Med lt gry - gry grn	5	15	Tr	20	I	[r 5	0				x	10	Mх		М		G	'r				Two bullets	s at this depth
624	4.0	Calcisiltitic Calcilutitic CALCARENITE	Med lt gry - gry grn	5	25		20	ī	r 4	0 VF-1	VF			x	10	Mx		м	g T	r						
662.8	4.2	Calcilutitic Calcisiltitic SANDSTONE	Lt olv gry - wh	5	20	5	20	40 I	[r 1	0 м-с	м	C Tr					SA -R M	м	g 5	Lf	rG	r			material	occupied by calcareous
695	3.6	Calcilutitic SANDSTONE	Lt gry - lt gry wh	Tr	20	5	5 1	50	2	0 M-G	м						SA -R F	s	g 5	Lf	r				Pores clogo material	ged with calcareous
731	3.4	Calcilutitic CALCISILTITE	Lt olv gry - med gry	Tr	30	Tr	60	т	r 10	O VF	VF			x	Tr	Мх		s		Ру	r					
773.1	3.4	Calcilutitic CALCISILTITE	Lt gry - lt gry wh	10	25	Tr	60	Tr		5				x	Tr	Mх		s								
802	2.1	Calcilutitic CALCISILTITE	Lt olv gry - grn gry	Tr	30	Tr	70		T	r				x	Tr	Мх		s								
837	4.5	Argillaceous Calcilutitic CALCISILTITE	Med dk gry - dk gry	30	20		40	л	r 1					x	Tr	Мx		м						cm	3 interbeds subfissile	s of calcisiltite;
874.3	2.2	CALCILUTITE	Dk grn gry - gry	10	90			Т	r									s								
915	2.3	MARL	Dk gry	65	35		2	Tr T	r									s								
Thicknes millimete centimet <u>Cross Be</u> with an chevron climbing festoon planar <u>Abbrevi</u>	<u>Metr</u> r bed er bed edding ral gle indica	i <u>c System</u> Imm-IOmm <u>mm</u> Icm-IOcm <u>cm</u>	<u>-</u> Irregular bedding = Graded bedding - No apparent bedding =	Q S X R	Ripple asym inter symi Pull ov Scour Flute Groov Striat Partir	nt-pro e marl metric ference wer fla and f cast re cast tion ng line zation allizat	ks ical ce al ime stru fill t teation	ucture ROUN R SR SA		C TURE Organ Burro sligi moc wel Churr Bored Organ Plant Verte d d nded ular	<u>S</u> ism - provide the second s	oduced m rowed burrowed ed cks and to bes tracks	-0 ⁵ -0 ⁴ -0 ⁴	DNES Unco Very Soft	Penec Mud c Rain c Putl-c Slump Convo Load Tepee Birdse Birdse SS soft	ontem cracks or hail apart struc blute l cast struc aye, fer	poranec prints tures d bedding sture hestral	nd cont fabric ROSITY Inter- Vugu	formatio forted b	n structur 	- - - T-	Breccia Disoluti Sylolita Vadose Vadose Boxwor Salt ho	on - com pisolit silt k pppers or <u>DIAGE</u> CX C	vures , collapse npaction (ho re r casts <u>NETIC T</u>	sse tail)	UCTURES Tectonic structures Fractures # Silckensides II Bareccia, tectonic Wiscellaneous Beopetal fabric Cone-in-cone A Stromatactics Boudinage, ball and age flow HYDROCARBONS # Signifies presence Full details described under supplementary data

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE - 1

	RY es)			CL SIZE	.AY 5 %	SI SIZI	LT E%1	TYPE	GRA		SIZE	CE	MENT	DI4	GEN	ESIS	g		S	ТҮРЕ	ACC	ESSOF	RIES	SNOE	'ARY RES		المسالم المراجع والتقريب والتقريب والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم	
DEPTH (metres)	RE COVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	QUARTZ	SKELETAL	CALCITE	DOMINANT	түре в %	түре в %	TYPE	%	TEXTURE	ROUNDING	SORTING	HARDNESS	POROSITY B %	түре а %	түре в %	ТҮРЕ Ө.%	HYDROCARBONS	SED IMENTAR STRUCTURES	SUP	PLEMENTARY	DATA
950	2.0	Argillaceous Calcilutitic CALCISILTITE	Dk gry - dk olv gry	30	20		50												S									
985	4.2	MARL	Dk gry	60	40														ន									
1025	3.0	Calcisiltitic Calcilutitic CLAYSTONE	Dk g ry - olvgry	40	20		40												s									
1055	2.5	Argillaceous Calcilutitic CALCISILTITE	Dk gry - grnsh gry	30	20	Tr	50												S									
1100.1	5.5	MARL	Dk olv gry - grn blk	35	65		Tr												S		Py Tr				mm	1 mm thic sample	k band of Pyrit	e across
1137.1	4.2	MARL	Dk gry - gry blk	50	50														s							Subfissil	e	
1171.5	4.2	MARL	Dk grn gry - dk gry	40	60					T									s		Py Tr					Subfissil	e	
1205.9	3.5	MARL	Dk gry grn - grn gry	40	60														м							Blocky -	subfissile	
1247		NO RECOVERY												}												Bullet em	pty	1 N 12
1282	5.0	CLAYSTONE	Dk gry - gry blk	100															м							Subfissil	e with white sp	ecks
millimete centime <u>Cross B</u> in gene with ar chevro climbine festoor planar	er bed ler bed e <u>dding</u> eral igle indica n g	i <u>c System</u> Imm-IOmm mm Icm-IOcm <u>cm</u>	Irregular bedding Graded bedding No apparent bedding	D D Q S X F	Curre Ripple asyr inter sym Pull o Scour Flute Groov Striat	nt-pro mmetr ference metric ver flo and t cast ve cas tion ng lin ation allization	oduced ks icai ce cai ame str fill st neation	ructure ROUI R SR	STRU	CTUR Bur si m W Chu Bor Orc Pla Unded gular	ES panism - p rowed lightly bu oderately ell burrow irned red solar ad surfac ganism tri nt root ti rtebrate SOR P M W	rrowed burrowe ved e acks and ibes	trails [™] HA U VS e S	RDNE Unc Ver Sof	Penec Mud a Rain o Pull- Slump Conv Load Tepee Birds	cracks or hail apart o struc olute cast e stru eye, fe dated t	prints ctures beddir incture nestral	and g fabr	defori contort	nation s ed bedd nular	ACCESS Py Pyr Mc Mic Ch Ch Ch	SORIES rite	Sylolite Vadose Vadose Boxwork Salt hop	solution, n - com pisoliti silt pers or <u>DIAGE</u>	collapse paction(hore	XTURES	FRUCTURES Tectonic structures Fractures Slickensides Breccia, tectonic Miscellaneous Geopetal fabric Cone-in-cone Stromatactics Boudinage, ball and a HYDROCARBOI * Signifies pr Full details d supplementary	ge flow

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE - 1

	RY es)			CL SIZE	AY 5 %	SIL SIZE	т % түі	-	RAIN %			CEM	IENT	DIA	GENE		<u>ي</u>	, v	TYPE	1	ESSOF	RIES	BONS	rary Res	
DEPTH (metres)	RE COVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE QUARTZ	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	ТҮРЕ	%	TEXTURE	ROUNDING	HARDNESS	POROSITY . A %	түре в %	түре а %	ТҮРЕ Ө.%	HYDROCARBONS	SEDIMENTARY STRUCTURES	SUPPLEMENTARY DATA
1322.0	Nil																								No recovery - bullet lost
1330.5	5.5	Glauconitic CLAYSTONE	Dk olv gry	35	25	Tr												M-H		G 40			Nil		
1336.8	5.3	CLAYSTONE	Olv gry	75	15	5												M-H		G 5			Nil		
1341.1	Nil																								No recovery - bullet lost
1347.8	Nil																								No recovery - bullet lost
1350	Nil																								No recovery - bullet lost
1353.3	Nil																								No recovery - bullet lost
1355.6	Nil																								No recovery - bullet lost
1357.3	Nil																								No recovery - bullet lost
1359.4	5.0	CLAYSTONE	Olv gry	85	5	5												м		G 5			Nil		No Fl No Sol Fl
Thicknes: millimete centimete <u>Cross Be</u> in gener with an chevron climbing festoon planar <u>Abbrevi</u>	<u>Metri</u> er bed dding al gle indicat	c System Imm-I0mm mm I cm -I0cm cm icm -10cm cm we we we GRAIN SIZE VF Very Fine F Fine M Medium C Course VC Very Coorse	Irregular bedding Graded bedding No apparent bedding	DIAGE D D Q Si	Currer asym inter symr Pull ov Scour Flute Groov Striat Partin NESIS olomitiz licifica ecrysto	e marks metrical ference netrical ver flom and fill cast e cast ion ig line zation tion	e structu ution R SF	rkings		URES Organism Burrowed slightly moderat well bur Churned Bored sur Organism Plant roo Vertebra Si P d M r W	face face track track tube face face face face face face face fac	wed rrowed s and tro s acks	irkings ⊕⊕♥♥ ⊕♥♥ ⊕♥ ⊕♥ ⊕♥ ⊕♥ ↓ ×→ HAR U VS S M	F F F S C C DNES Uncor	Peneco Mud cr Rain or Pull-ap Slump Convol Load c Tepee Birdsey Sissing Soft	ntemp racks hail p part struct ute b sast struc ve, fend	oraneo orints ures a edding ture estral f	us defo nd conto	rted beda anular	structures	SORIES rite ca ert gnite / Coc	Sylolite Vadose Vadose Boxwor Salt hoy	solution, n - comp pisolite silt k opers or DIAGEN	ures collapse paction(hors	
		G Granule & larger	• 01 V																	Lf Li	thic fragm auconite				A4-G1

4

Hudbay Oil (Australia) Ltd. Subsidiary of Hudson's Bay Oil and Gas Company Limited -

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE - 1

	RY es)			CL SIZE	AY : %	S I L SIZE	Т 5%Т		GRA & %		SIZE	-	CEM	IENT	DIAG	ENES	- 1 //	2 6	ş	ТҮРЕ	ACC	ESSOR	IES	BONS	rary Res	
DEPTH (metres)		ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	QUARTZ	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	ТҮРЕ	%	TEXTURE	SORTING	HARDNESS	POROSITY B %	түре в %	түре в %	ТҮРЕ 8%	HYDROCARBONS	SEDIMENTARY STRUCTURES	SUPPLEMENTARY DATA
1361.2	Nil						·																			No recovery - bullet lost
1363.3	Nil																									No recovery - bullet lost
1365.2	Nil																									No recovery - bullet lost
1368.8	5.4	CLAYSTONE	Dk olv blk	75	5	5	5		5	VI	F-F	VF							м		G 5			Nil		
1370.9	Nil																									No recovery - bullet lost
1373.5	5.5	Glauconitic CLAYSTONE	Olv blk	40	10	10		T	10	v	F-М	F			Π				м		G 30			Nil		
1375.4	5.5	Glauconitic CLAYSTONE	Olv blk	45	15	15				Τ					Π				м		G 25			Nil		
1378.6	4.2	Silty Glauconitic CLAYSTONE	Olv blk	55		30													S-М		G 15	Cc Tr		Nil		No Fl No Sol Fl
1380.3	Nil																									No recovery - bullet lost
1383.8	5.5	CLAYSTONE	Olv grn - olv blk	65		15	Ì	10		v	F-M	F							м		G 10					A. Nil. B. Very slow, very weak wh on crushing
Thicknes millimete centimete <u>Cross Be</u> in gener with an chevron climbing festoon plandr <u>Abbrevi</u>	<u>Metr</u> r bed er bed kiding rat gle indica	i <u>c System</u> Imm-IOmm <u>mm</u> Icm-IOcm <u>cm</u>	<u>Irregular bedding</u> <u>Graded bedding</u> <u>No apparent bedding</u>	D D Q S X R	Currer Ripple asym inter symr	int-pro mark metric ferenci netrica ver flar cast e cast ion ig line zation tion	cal e ne stru ili sation	ROUN R R SR SA		Ch Bu Bu Bu Bu Ch Bo Or Pla Ve unded gular	RES ganism rrowed lightly noderat vell bur urned red sur ganism ant roo rrtebra P W W	face face face face face face face face	duced m owed urrowed d ks and tr es racks iNG roor foderate	ails ≈ × + HAF U VS S	P = M R S C L L T E E RDNES	Penecon Aud crc Rain or Pull-op Slump s Convolu Load cc Tepee s Birdseye Sordseye Soft	atempo ocks hail pr part structur ast structur e, fenes	raneou ints res an dding re tral fo	is defoi d contor	ted bedd	tructures	SORIES Ite	Sylolite Vadose Vadose Boxworl Salt hop	solution, n - composite silt opers or DIAGE1	collapse paction (hors	

A4-GL-519

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE-1

	RY es)			CL SIZE	AY 5 %	SIL SIZE	Т % ТҮ		RAIN %	S		CEM	ENT	DIAG	ENES	- C	2 0	8	ТҮРЕ	ACC	ESSOR	IES	BONS	rary Res	
DEPTH (metres)	RECOVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	ТҮРЕ	%	TEXTURE	SORTING	HARDNESS	POROSITY B %	түре в %	түрЕ в %	ТҮРЕ & %	HYDROCARBONS	SED IMENTARY STRUCTURES	SUPPLEMENTARY DATA
1383.8	5.1	Silty Glauconitic CLAYSTONE	Olv gry	50		35								Π				м		G 15			*		A. Nil B. V.Slow, v pale yel-grn
1386.5	4.0	Argillaceous Siltstone	Lt olv gry- olv gry	40		55		5		VF-F	vr							8-M		Cc Tr			*		A. 30% bright yel on siltstone B. Past, pale, yel-wh. C. Lt brn
1388.0	appr 4.0	CLAYSTONE	Olv blk with olv gry bnds	70		15												5		Co 15				<u>m5</u>	A. Nil. B.Mod slow, pale grn-wh - paler bands more silty
1390.0	3.5	Silty CLAYSTONE	Olv blk - lt gry	70		30	Ŧ			VF-F	VF							s-⊮		Cc Tr	Py Tr	? G Tr	•		A. Slight trace, pinpoint gold B. Med fast mod strong wh lent slty pods
1392.0	3.0	Argillaceous SILTSTONE	Olv gry	20		80												M							A. Faint trace pinpoint gold B. Slow, pale, yel-wh
1397.5	4+	Argillaceous COAL	Brnsh blk	20														н		Cc 80					A. Trace spotty, grn-yel B. Slow pale grn-wh. Scraping taken
1403.6	3.7	CLAYSTONE	Olv gry - lt olv gry	100		Tr												м		Cc Tr			٠		A. Trace pinpoint gold B. V weak, slow, pale yel-gold
1405	5.0	Argillaceous SILTSTONE	Yelsh gry - v lt olv gry	40		60												s		Cc Tr	Py Tr		•		A. 70% wh. B. Fast, strong bl-wh-yel C. Lt brn
1408.4	3+	Carbonaceous CLAYETONE	Olv blk - brnsh blk	65		10												M- R		Co 25			٠		A. Nil. B. Slow, mod, pale yel-wh. Scrapings taken
1409	3.9	Argillaceous SILTSTONE	Olv gry - bra blk	30		50												M		Cc 10	Py 10		•		A. Mod strong pale wh in Bnds = 40% B. Slow mod strong wh of Spl - Obligne bedding .planes
millimete centimet <u>Cross B</u> in gene with an chevro climbing festoor planar	er bed ter bed edding eral egle indica n g	i <u>c System</u> Imm-IOmm <u>mm</u> Icm-IOcm <u>cm</u>	Irregular bedding Graded bedding No apparent bedding	Q S X R	Currer Ripple asyn inter symr Pull ov Scour Flute Groov Striat Partin	at-pro mark nmetrica ferenci metrica ver flar and fi cast e cast ion ig line zation allizati	cal e il me struct ill eation F	C ST rrkings ure ♀ ? ↓ SOUNDI Ro R Sul		URES Organism Burrowec slightly modera well bu Churned Bored su Organism Plant roc Vertebro Sed Mar	n-pro- burro tely burro trace trace trace trace trace trace trace trace trace	duced ma owed urrowed d ks and tr es acks	rkings +⊕e +⊕e +⊕e +⊕e +⊕e +⊕e +⊕e +⊕e	P M R P S C L T B DNESS	enecon lud cro lud ro lump e convolu coad co epee s Birdseye Sirdseye Sirdseye	acks hail pr bart structu ute be ast structu e, fenes	raneou: ints res and dding re stral fa	s defor	ted bedd anular	ACCESS Py Pyr Mc Mic Ch Ch Ch	ite	Disolutio Sylolite Vadose Boxwork Salt hop	solution, n - com pisolite silt pers or <u>DIAGEI</u> CX Cr	ures collapse paction(hor	56mm * Signifies presence

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE-1

			DESCRI			<u> </u>					_														ن ۔ ا جہ اے ۱	WEDT OFAITOHOF I
	₹۲ es)			CL SIZE	AY 5 %	SII SIZE	LT 5 % 1	TYPE		AINS	SIZI	E	CEN	AENT	DIAG	ENES	0	T	S	түрЕ	ACC	CESSO	RIES	SNOS	ARY tes	
DEPTH (metres)	RE COV ERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS								DOMINANT	түре а %	түре в %	TYPE	% TEVTIDE	ROUNDIN	SORTING	HARDNESS	POROSITY .	түре в %	түре а %	ТҮРЕ 8 %	HYDROCARBONS	SED IMENTARY STRUCTURES	SUPPLEMENTARY DATA
1410.2	Nil							Ī									Τ									No recovery - bullet lost
1411.2		Argillaceous Carbonaceous SILTSTONE	Lt olv gry - olv blk	25		35		20		v	F-M	VF					SI SI	R M	vs		Cc 20	2				A. 60% strong bl-wh on siltylithology B. Fast, mod strong pale grn-wh E. Dk brn oil stain on qtz grns
1412.2.		Argillaceous SANDSTONE	Grnsh gry	40		10		50		v	F-M	F					SI SI		vs	g 5						A. 100% strong yel-wh B. Strong fast yel-wh F. HC odour
1413.2	3.5	Argillaceous Silty SANDSTONE	Lt grnsh gry (brnsh blk strks)	35		20		40		v	F-M	F			\prod		SZ SI	A R M	s	g Tr	Cc 5				mm	A. 80% even strong bl-wh B. Fast mod strong lt grn-wh. Brn blk coal bands up to 1.5mm wide
1414.2		Silty Argillaceous SANDSTONE	Grnsh gry	20		20		60		v	F-M	F					SI SI		vs	g 5-10				*		A. 100% weak to strong bl-wh B. Fast, streaming pale bl-wh F. strong HC odour
1415.1	3.6	Argillaceous Carbonaceous SANDSTONE	Grnsh gry - olv gry	30		15		40		v	F-M	F					A- SI	RM	s	g Tr	Cc 1	5				A. 95% strong bl-wh & grn-wh B. Fast, mod strong yel-wh C. Lt brn F.Brn, patchy oil stain
1416.0		Argillaceous Arenaceous SILTSTONE	Lt grnsh gry	20		55		25		v	F-M	VF					5 <u>7</u> 51		S	g Tr						A. 80% strong bl-wh B. Mod strong pale-yel
1417	Nil																									No recovery - bullet smashed
1418	0.5	(Dolomitic) SANDSTONE	Med dk gry	15				55		F	'-c		Dol 20	Q 10	Π	T			VH	Nil						A. 30% dull gold; 10% mod wh B. Slow, dull wh Very hard
1418.7	40	Argillaceous Arenaceous SILTSTONE	Lt olv gry - olv gry	35		40		25		V	/F-M	F							s						cm	A. 10% mod strong, even grn-wh on sdy Bnds B.V slow wk grn-wh. Mainly pale silty mat w dkr clay Bnds
												ES (S	STRAT	TIFICAT	TION	, SED	IME	NTA	RY, D	IAGEN	IETIC)					
		Stratification						TIC S														1				SENETIC STRUCTURES
Thicknes	Metri	<u>Parallel Type</u> ding c System		*	Ripple asym	mark metric ference	is iaí e		20 20 21	Bui s	rrowed lightly nodera	í burro tely bu	irrowed	<u>-8</u> - 8	≕ M Ro	ud crac ain or h ull-apar	iks ail prir		s detor	mation s		. ∦		solution, on - com	ures collapse paction(hors	
centimete Cross Be		1 mm - 10 mm mm 1 cm - 10 cm cm		~~		netrica er flan		ucture	<u>∽~</u> ≛		veil bur urned	rrowed		-ም ወ	SI		ructure		i contor	ted bedd	ling V	1	Vadose	pisolite	9	
in gener	al al indicat	∠ ed -∠lo°			Scour Flute	and fi			¥	Bo	red red sur			- + -		onvolute oad cas		aing			-^- -~-		Vadose Boxwori			Miscellaneous Geopetal fabric
chevron		4			Groove	e cast							is and tr	ails 🛹		epee st irdseve.			brio		<u>ک</u>	11	Salt hop	opers or	casts	Cone-in-cone
festoon		4			Striati Partin		ation		↔		int roo rtebro			\times	D	nuseye,	lenesi		DITC		-0-					Stromatactics 🎬 Boudinage,ball and age flow
Abbrevi	ations :	GRAIN SIZE VF Very Fine F Fine M Medium C Course VC Very Coarse G Granule & larger	CEMENT Q Silica Py Pyrite C Calcite D Dolomite Sd Siderite	Q Si X R		ation tion		ROUN R F SR S		ed Inded Jular	SPX	ORTI P PO M M V W		U VS S M	Uncons Very Soft Modern Hard	solidate Soft	d	g v	<u>OSITY</u> Intergra Vugular Intrask		Mic Mir Ch Ch Cc Lig Hm He	rite ca	rais	CX Cr	VETIC TE ypto<1/25 cro 1/256 -	XTURES HYDROCARBONS 6mm ¥ Signifies presence

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE -1

	RY es)			CL. SIZE	AY %	SIL SIZE	Т %т		GRAI	-	IZE	CEI	MENT	DIAG	ENES	SIS	2 0	S S	ТҮРЕ	ACC	ESSOR	IES	BONS	TARY RES	
DEPTH (metres)	RECOVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	QUARTZ	SKELETAL CALCITE	DANCE	DOMINANT	түре в %	түре в %	TYPE	%		SORTING	HARDNESS	POROSITY B %	түре в %	түре а %	ТҮРЕ Ө%	HYDROCARBONS	SED IMENTAR STRUCTURES	SUPPLEMENTARY DATA
1419.7	1	Silty Argillaceous SANDSTONE	Grnsh gry	20		25	5	5		VF	-M VF					51 -1		vs	g 5				•		A. Trace pinpoint gold. B. Ver wow very pale yel F. Viscous bubble w HCL
1422.4		Argillaceous SILTSTONE	Olv gry	35		50	1	.0		VF	-M VF							м		Cc 5			*		A. Dull pinpoint gold B. Slow, weak, pale yel-wh
1423.4	3.7	Argillaceous Arenaceous SILTSTONE	Lt grnsh gry - olv gry	35		45	2	20		VF	-M VF							м					*		A. Mod strong even pale grn-wh on 80% of sample (-paler col, silty mat) B. Slow - strong grn-wh
1432.2	э.о	CLAYSTONE	Olv gry	85		15												S-M					•		A. Trace pinpoint yel B. Mod strong grn-wh
1434.0	4.7	CLAYSTONE	Olv gry - lt olv gry	75		10	1	10		VF	-M F							м		Cc 5			*	cm	A. Trace pinpoint gold B. Fast mod strong wh from pinpoints Banding :silty/clay layers
1435.8	3.8	CLAYSTONE	Dk olv gry	100		Tr												S-M					•		A. Nil B. Very slow, wk, bl-wh
1444.4	Nil																								No recovery - bullet shattered
1444.4	Nil																								No recovery - bullet shattered
1449.5	5.1	Silty Argillaceous SANDSTONE	Lt gry	25		20		55		VF	-M F						A- SF			Cc Tr					A. Nil B. Very dull, v slow grn-gold
1457.6	3+	COAL	Blk-brn blk	10		Tr	5 2	Fr										н		Cc 85	Py Tr		•		A. Nil B.Slow, mod strong grn-wh, C. Lt brn. Scrapings taken.
Thicknes millimete centimet <u>Cross Be</u> in gene with an chevron climbing festoon planar <u>Abbrevi</u>	<u>Metr</u> bed er bed <u>dding</u> al jle indico	ic_System_ Imm-IOmm_mm_ Icm-IOcm_cm_	<u>Irregular bedding</u> <u>Graded bedding</u> <u>No apparent bedding</u>	DIAGE D C Q S X F	Currer Ripple asyn inter symr Pull ov Scour Flute Groov Striat	nt-pro metric ference metric ver fla and f cast ve cas tion ng lin ization allizat	ks ical ce al arme str fill seation	ucture ROUI R SR SA	STRU ngs ~~ ~ ~	CTUR Burn sli ma Chui Bore Org Plar Ver d nded jular	ES anism - p owed ghtly bu oderately all burrow rned ad surfac anism tr nt root th tebrate <u>SOF</u> P M M	rrowed burrowed wed e acks and ubes	trails × X HA US S	P M F Y S C C C C C C C C C C C C C C C C C C	Peneco Aud cr Rain or Pull-a Slump Convol Load c Tepee Birdsey S S nsolide Soft erate	racks r hail pr part structu lute be cast structu ye, fene ated	rints res ar adding ure stral f	us defo nd conto abric ROSITY	rranular	ding 2 ACCES Py Py Mc Mi Ch Ch Ch Ch	SORIES	Disoluti Sylolite Vadose Vadose Boxwor Salt ho	, solution on - corr pisolit silt k ppers or <u>DIAGE</u> CX C	tures 1, collapse 1paction (ho te	56mm * Signifies presence
		G Granule & larger	4																		thic fragm auconite	ents		أجذار فاعترب	۸۵ - ۵۱ - ۵۱

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE-1

	R Y es)			CL SIZE		SIL SIZE	т % түн		AIN: %	S SIZE	-	CEME	ENT	DIAG	ENESI	s or	6	<i>х</i>	ТҮРЕ	ACC	ESSOR	IES	BONS	rary res	
DEPTH (metres)	RECOVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	QUARTZ	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	ТҮРЕ	% техтиве	ROUNDING	SORTING	HARDNESS	POROSITY B %	түре а %	түре в %	ТҮРЕ 8%	HYDROCARBONS	SED IMENTARY STRUCTURES	SUPPLEMENTARY DATA
1459	Nil																								No recovery - bullet lost
1460.5	4.5	CLAYSTONE	Olv gry	90		10												м-н		Cc Tr	Py Tr		*		A. Nil B. Very weak, wh
1468.7	3+	Silty Argillaceous COAL	Olv blk	20		20												м-н		Cc 60	Py Tr		*		A. Nil B. Slow, wk, even, grn-wh C. Lt brn Scraping taken
1475.5	appr 4.0	CLAYSTONE	Olv gry - lt olv gry	90		10												s		Py Tr			×	<u>mm</u>	A. Nil B. Fast, strong, milky wh on 80%. Slty laminae <lmm col<="" have="" lt="" td=""></lmm>
1484.6	4+	Silty CLAYSTONE	Olv gry - lt olv gry	50		40	5			VF-F	VF							м		Cc 5	Mc Tr		*	mm	A. Nil B.Med fast, strong grn-wh. Scrapings taken - minor coal; <1.5 mm laminae of silt/claystone
1487.2	appr 4.0	Silty CLAYSTONE	Olv blk - lt olv gry	85		15												s-M					*	mm	A. Trace pinprick bl-wh B. Med fast mod strong grn-wh. Mainly dk clayst w/lmm paler silt bnds
1490.7	4+	COAL	Blk - dk brn blk	Tr		Tr												н		Cc 100			*		Scraping taken A. Nil B. Slow bl-wh, mod strong
1498.4	3.1	Argillaceous SILTSTONE	Lt olv gry	35		60	5			vf-f	VP							м					*		A. Trace pinpoint/gold B. Med fast, strong, pale grn-wh
1499.5	4.1	Argillaceous SANDSTONE	Lt grnsh gry	40		10	50			VF-M	F					SA SF	a M	vs	g Tr				*		A. 95% fair to strong bl-wh B. Fast, pale yel-wh
1500.6	3.6	Argillaceous Silty SANDSTONE	Lt olv gry	30		25	45			VF-M	F					A- SF		vs	g Tr				*		A. 90% strong bl-wh B. Med slow mod strong grn-wh C.Lt brn F.Hc odour & acid bubbles
					- -	YNG		-			ES (S	STRAT	FICAT	ION	,SED	IME	NTA	RY, C	IAGEN	IETIC)				FPI	
		<u>Stratificatio</u>			-		uced ma				n-prod	luced mar	kings	Pe	enecont	empor	aneous	s defor	mation s	tructures	T	Solution	structi		Tectonic structures
Thickness millimete centimet <u>Cross Ba</u> in gene with an chevror climbing festoon planar	<u>Met</u> er bed er bed adding ral gle indica	r <u>ic System</u> Imm-IOmm mm I cm-IOcm cm	Irregular bedding Graded bedding No apparent bedding	≈ + ≈	asyn inter symi Pull o Scour Flute Groov Striat	and fil cast e cast	e structo	ssi ≥ssi ≥ssi 2ssi 2ssi 2ssi 2ssi 2ssi 2		Burrowed slightly modera well bu Churned Bored Bored su Organism Plant roo Vertebri	burrov itely bu rrowed rface n track ot tube	irrowed s and tra s	×	Ri Pi S C L Ti B	onvolut oad cas epee st irdseye,	ail prii rt ructuri e bed st iructur	es and Iding re tral fal	bric	ted bedd			Sylolite Vadose Vadose Boxwork Salt hop	n - com pisolite silt pers or	casts	Jm_ Breccia, tectonic Image: Second and age flow Image: Second age flow
<u>Abbrev</u>	iations :	GRAIN SIZE VF Very Fine F Fine M Medium C Course VC Very Coarse G Granule & larger	CEMENT Q Silica Py Pyrite C Calcite D Dolomite Sd Siderite	D D Q S X R	NESIS Dolomiti Silicifico Recrysti Chloritiz	ition Ilizatio	R	A Subo	nded ounde ongulai	d N r V	M Mo N W	NG oor oderate ell ery Well	U VS S M	ONESS Uncon Very Soft Moder Hard	solidate Soft	d	g v	<u>OSITY</u> Intergra Vugular Intrask		Hm Hee Lf Lit	ite a	als	CX Cr	VETIC TE ypto<1/25 cro 1/256	56mm * Signifies presence

3.1

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE-1

	RY es)			CL SIZE	AY	SILT	r % TYP	GRA E & G		ZE	CEN	IENT	DIAGE	NESIS	υ		s	түре	ACCI	ESSOR	IES	SNOE	'ARY RES	
DEPTH (metres)	RE COVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE		QUARTZ	SKELETAL	CALCITE	DOMINANT	түре в %	түре в %	TYPE %	ZEXTURE	ROUNDING	SORTING	HARDNESS	POROSITY ₽8 %	түре в %	түре в %	ТҮРЕ 8%	HYDROCARBONS	SED IMENTAR STRUCTURES	SUPPLEMENTARY DATA
1501.6	4.0	Arenaceous SILTSTONE	V lt gry - yel gry	5		55	40		VF-	MF	C Tr				A- R	Р	vs					*		A. Very strong, even 100% grn-g B. Very strong, fast strmg grn-wn
1502.6	4.4	Argillaceous SANDSTONE	Lt olv gry	35		10	55		VF- VC	м					A SR	P	vs	g Tr				*		A. 80% mod to strong bl-wh B. Slow pale yel-wh
1503.5	3.0	Argillaceous SANDSTONE	Lt olv gry	25		5	70		VF-	мм					A- SA	м	vs	g 5 -1 0				*		A. ? very slight trace, pinpt bl-wh B. Nil
1504.6	3.9	Silty SANDSTONE	Lt gry - med gry	5		20	75		VF- VC	м					A- SR	P	U	g 15	Mica Tr			*		A. Trace spotty, creamy-wh B. Dull, grn-wh, med. fast
1505.6	appr 4.0	Argillaceous SANDSTONE	Lt olv gry - dk grn gry	40		5	55		F-G	с					A- SR	м	VS	g 5	Cc Tr			*		A. Nil B. V dull, v slow gold
1506.6	3.0	Argillaceous SANDSTONE	Dk yelsh brn - olv gry	20		15	65		VF-	g vc					A- SA	₽	vs	g 15 - 20				*		A. Slight Tr, pinpoint yel B. V weak wh
1507.8	4.8	SANDSTONE	Clr - lt gry			Tr	100		м-с	с					A- SR	м	U.	g - 25	G Tr			*		A. Nil B. Trace very dull yel-wh
1508.9	3.0	Argillaceous SANDSTONE	Lt olv gry	25		5	70		VF-	g c					SA SR	₽	vs	g 10				*		A. V slight Tr pinpoint yel-grn B. Nil
1509.2	3.9	Argillaceous SANDSTONE	Yelsh gry - dk grn gry	35		5	60		M-G	vc	Tr C				A- SA	м	vs	g 10	Mc Tr	Cc Tr		*		A. Nil B. Fast strong, bl-wh
1510.5	3.7	SANDSTONE	Clr-lt gry			? Tr T:	r 100		F-G	с					A- SR	P	U	g 25	G Tr					
Thicknes: millimete centimett <u>Cross Be</u> in gener with an chevron climbing festoon planar <u>Abbrevi</u>	<u>Metr</u> r bed er bed <u>dding</u> al gle indica	ic System Imm-IOmm mm Icm-IOcm cm ted 200° +	Irregular bedding f Graded bedding - No apparent bedding - Nodular bedding -	≫ → ∞ <u>DIAGE</u>	Curren Ripple asymm interfi symm Pull ove Scour o Flute o Groove Striatio Parting NESIS	t-produ marks metrical erence etrical er flame and fill cast cast on linea	e structur tion <u>RO</u>	s TRU kings 2 2 1 2	CTURE Orga Burro slig mo Wel Churi Bored Bored Orga Plant Vert	<u>S</u> nism-pr wed htly bui derately l burrow l burrow l surface nism tro root tu ebrate <u>SOR</u>	rowed burrowed ed cks and th bes tracks TING	- 0 ^s + 0 + 0 + + + + + + + + + + + + + + + + + + +	Per Mu Rai Pul Slu Co Lo Ter Bir	d cracks in or hail II-apart imp stru nvolute ad cast pee stru dseye, fe	nporan i l prints beddi ucture enestro	s and ing al fab	defor contor pric DSITY	mation s	itructures		Sylolite Vadose Vadose Boxwork Salt hop	solution, n - com pisolite silt oppers or DIAGE	ures collapse paction(hor e casts NETIC TE	
		VF Very Fine F Fine M Medium C Course VC Very Coarse G Granule & larger	Q Silica Py Pyrite C Calcite D Dolomite Sd Siderite	Q S X R	olomitiz ilicificat ecrystal hloritiza	ion Ilization	R SR SA A	Round Subro Suban Angula	inded gular	M W	Poor Moderate Well Very Wel	S M	Unconso Very S Soft Modera Hard			v	Intergro Vugular Intraska		Hm Hec Lf Litt	a	als	CX Ci MX Mi	rypto<1/2 icro 1/256	56mm ≱ Signifiës presence - 1∕I6mm Full details described under supplementary data

SIDEWALL CORE DESCRIPTIONS 1

•-

WELL: WEST SEAHORSE-1

	RΥ res)			CL SIZE	AY : %	SIL SIZE	Т %Тү		RAIN %		E	CEN	IENT	DIAG	ENES	0	0	ŝ	TYPE	ACC	ESSOF	IES	SNOE	ARY RES	
DEPTH (metres)		ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	TYPE 2	%	TEXTURE	SORTING	HARDNESS	POROSITY B %	түре в %	түре в %	ТҮРЕ Ө.%	HYDROCARBONS	SED IMENTARY STRUCTURES	SUPPLEMENTARY DATA
1512.8	appr 3.5	Arenaceous Silty CLAYSTONE	Olv gry - lt grnsh gry	60		30	10	,		VF-F	VF							s						Ē	A. Slight Tr, pinpoint bl-wh I ed slow mod strong grn-yel. Paler of Ends=sdy Slt; Dkr Ends=slty clay
1514.5	4.8	SANDSTONE	Clr - lt gry			Tr	10	0		F-G	с					A- SI		υ	g - 25				*		A. Nil B. Very slow, weak, yel-wh
1520.0	5.5	Argillaceous SANDSTONE	Olv gry	40		Tr	60	>		F-VC	с					A- SZ		н	g 5	Py Tr			•		A. Tr pinpoint gold (=min fl) B. Nil Speckled appearance
1525.0	4.0	COAL	Blk - brn blk															н		Cc 100			*		A. Mod strong, grn-wh B. Med fast, mod strong wh :V hd, scraping taken
1530.2	2,8	Argillaceous SILTSTONE	Lt olv gry - olv gry-blk	20		55	19	5		VF-M	F							s		Mc Tr	Cc 10		*	mm	Finely laminated. A. Trace pinprick, brt grn-wh B. Med slow, mod strong grn-wh
1548.8	5.1	Argillaceous SANDSTONE	Lt gry - lt grn gry	20		15	6	5		VF-G	VF					S7 -1		vs -u	g 5	G Tr			*		A. 100% faint, even, brn-gold B. Very slow, dull, yel-wh C. Nil
1558.2	3.5	Argillaceous SANDSTONE	Lt gry - lt grn gry	30		10	. 60	,		F-G	vc					A- SI	·	VS -U	g 5	Mc Tr					
1574.2	3.4	Silty CLAYSTONE	Lt olv gry dk olv gry	75		25	T	:				C Tr						м							A. Nil B. Very slow, weak, wh, from most of sample
1578.5	4.4	Argillaceous SANDSTONE	Lt olv gry	20		5	7!	5		VF-C	F					A- R	м	vs	g Tr				*		A. Nil B. Weak grn-wh
1594.9	3.2	CLAYSTONE	Lt olv gry	95		5							IFICAT					м							A. Very dull brn, even, 80% B. Mod. strong grn-wh
Thicknes: millimete centimete in gener with an chevron climbing festoon planar <u>Abbrevi</u>	<u>Metr</u> bed r bed <u>dding</u> al le indica	ic System Imm-I0mm mm I cm -10cm mm ted ∠ie° ↓ ↓ GRAIN SIZE VF Very Fine F Fine	Irregular bedding a Graded bedding - No apparent bedding = Nodular bedding c Nodular bedding c CEMENT Q Silica Py Prrite	Q Si	Ripple asymm interf Symm Pull ove Scour of Flute of Groove Striati Parting NESIS	t-prod mark metric ference netrical er flom and fil cast cast cast on g line ation	al ne struct l ation	ure	E B G rounded	Organist Burrowe slightly moderc well bu Churned Bored su Organist Vertebr	d y burra ately b irrowed rface n trac ot tub ate tr SORTI P P M N	urrowed d ks and tr es acks <u>ING</u> oor toderate		Mi Ra Pu Shi Cc Lc Te Bin DNESS Uncons Very S	ud cro ain or ail-ap lump s onvolu oad co apee s irdsey	acks hail prin iart structure ute bed ast structur e, fenest	its and ding a ral fat	contor		ing 2 ACCESS Py Pyr Mc Mic	ite	Sylolite Vadose Vadose Boxwork Salt hop	solution, n - comp pisolite silt pers or <u>DIAGEN</u> CX Cr	ures collapse paction(hom	66mm * Signifies presence
		M Medium C Course VC Very Coarse G Granule & larger	C Calcite D Dolomite Sd Siderite		ecrysta hloritiza *:	ition	on S	A Sub A Ang	angu la ular	ır ,	w v	Veli /ery Well	М	Soft Moderc Hard	ate		i	Intrask	eletal	Hm Hec Lf Lith	rt nite/Coal ivy miner nic fragme uconite	als		-	supplementary data

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE -1

	RY es)			CL SIZE		SIL SIZE	т % тү		GRAIN 3 %	-	Έ.	CEN	IENT	DIAGE	NESIS	3 US		ş	ТҮРЕ	ACC	ESSOR	IES	BONS	TARY RES	
DEPTH (metres)	RE COVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	SKFI FTAI	CALCITE	RANGE	DOMINANT	түре в %	ТҮРЕ & %	T.YPE %	TEXTURE	ROUNDING	SORTING	HARDNESS	POROSITY B %	түре в %	түре в %	ТҮРЕ & %	HYDROCARBONS	SED IMENTAR STRUCTURES	SUPPLEMENTARY DATA
1600.0	4.3	Silty SANDSTONE	Wh-gry	5		25	70	,		VF-(G M					SA -R		vs- u	g - 5				*		A. Very dull brn B. Nil - very weak grn
1621.4	Nil																								No recovery - bullet lost
1626.3	3.6	Argillaceous SANDSTONE	Lt gry - brn blk	30		10	55	5		VF-I	1VF					SA -R		s	g Tr	Cc 5	Mc Tr		*	mm	≤2mm Laminae of coaly-rich mat A. Nil B.Mod strong grn-wh (contamiant fluor at edges)
1648.2	4.7	CLAYSTONE	Olv gry	100		Tr												vs					*		A. Nil B. Mod strong grn
1651.8	2.0	Argillaceous SILTSTONE	Lt gry	40		60	-T2	-		VF-	4							vs		Cc Tr	Mc Tr		*		A. Nil B. Mod strong grn
1662,5	4.0	CLAYSTONE	Lt gry	95		5												s					*		A. 100% dull gold B. Strong grn-wh C. Faint brn
1665.0	Nil																								No Recovery
1665.0	5.1	CLAYSTONE	Gnsh gry - lt grnsh gry	100															S				*		A. Trace patchy gold B. V slow, dull gold
1685.0	3.2	Silty Argillaceous SANDSTONE	Lt gry - dk gry	20		20	55	5		VF-	GF							S- VS	g Tr	Py 5	Cc Tr			cm	Coarsely laminated (4mm): Dkr bands of Pyr & carb mat
1707.7	3.1	Pyritic SANDSTONE	Med gry	Tr		Tr	65	5		M-G	vc	Q Tr				A- SR	M	VS- H	g - 25	Ру35			*	Ē	Hard Pyr bands A. Nil B. Med grn-wh solvent fluor
Thicknes millimete centimet <u>Cross Be</u> in gene with an chevror climbing festoon planar <u>Abbrevi</u>	<u>Metr</u> r bed er bed e <u>dding</u> ral gle indica	i <u>c System</u> Imm-IOmm mm Icm-IOcm cm	<u>Irregular bedding</u> <u>Graded bedding</u> <u>No apparent bedding</u> <u>Nodular bedding</u> <u>Nodular bedding</u> <u>Silica</u> <u>Py Pyrite</u> C Calcite D Dolomite Sd Siderite	D D Q S X R	Curren Ripple asym inter symn Pull ov Scour Flute Groove Striati	e mark metrica ference netrica ver flan and fil cast e cast ion ig line zation ition	al ne struc l ation	arking arking ture		TURES Organi: Burrow slight mode well Churne Bored Bored Bored Organi: Plant Verteb	ed ly burr rately i purrowe d wurface sm trace oot tub rate t <u>SORT</u> P M	oduced m rowed burrowed ad cks and tr bes racks	ails × × → F HAF U VS S	Pei Mu Ra Pu Slu Ca Lo Te	neconte in or hoc II-apar Imp str Involute iad cast pee str dseye, olidated Soft	mporc all prin t ucture bedo t ructure fenesti	ts s and ding ral fal <u>POR</u> (y	defor contor	mation s ted bedd anular	tructures	SORIES rate	Disolutio Sylolite Vadose Vadose Boxworl Salt hop	solution. n - com pisoliti silt opers or <u>DIAGE</u> CX C	<u>ures</u> , collapse paction (hor e	Image: Strong to the strong

SIDEWALL

CORE DESCRIPTIONS

WELL: WEST SEAHORSE-1

	RY res)			CL SIZE	AY	SIL SIZE	_Т : % ТҮІ		AIN %	S Size		CÊM	IENT	DIAG	ENES	SIS (ş	ТҮРЕ	ACC	ESSOR	IES	BONS	rary Res	
DEPTH (metres)	RE COV ERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE QUARTZ	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	TYPE 2	%		SORTING	HARDNESS	POROSITY B %	түре в %	түре в %	ТҮРЕ 8%	HYDROCARBONS	SED IMENTAR STRUCTURES	SUPPLEMENTARY DATA
1725.7	2.2	SILTSTONE	Lt bl gry	15		80	5											s		Py Tr	G Tr			面面	Finely laminated clay/silty lat
1726.0	4.0	Argillaceous Arenaceous SILTSTONE	Lt gry	40		40	20			VF-M	VF							м							A. Trace pinpoint gold. B.
1732.0	3.2	Silty Argillaceous SANDSTONE	Lt bl gry - med bl gry	30		30	40			VF-G	м					A- Si	- R P	vs	g Tr	G Tr					
1738.2		Argillaceous Arenaceous SILTSTONE	Med lt gry	35		40	25			VF-M	F	-				SI SI		м		Py Tr	Cc Tr				
1741.0	4.0	Argillaceous SILTSTONE	Lt gry - med lt gry	45		35	15			VF	VF							м		Py 5				mm	Minor mineralogical banding, 1mm
1753.5	5.2	Argillaceous SANDSTONE	Med lt gry - med gry	25		10	60			VF-M	F					si	м	м		Py 5					V crs Pyr grs A. Tr pinpoint gold B. Nil
1766.0	3.4	Silty Pyritic Argillaceous SANDSTONE	Med gry	25		25	35			VF-C	F	-				s: si	A R P	н		Py 15					A. Tr pinpoint gold B. Nil.Pyrite granules
1778.0	3.3	CLAYSTONE	Dusky yelsh brn	85		15	Tr			VF		-						м							A. Nil B. Slow, mod strong from most of sample
1787.5	3.6	CLAYSTONE	Dk gry	85		15	Tr			VF-F	VF							м		Py Tr	Cc Tr				A. Tr pinpoint gold B. Slow med strong wh from 2 spots
1796.8	4.9	Silty Pyritic CLAYSTONE	Lt gry - dk gry	55		25	Tr			VF-F	VF		(Py)					н		Ру 20				≋≋	A. 40% even, v dull brn on claystone B. Nil.Dkr part = pyritic claystone
Thicknes millimete centimete in gener wift ang clevron climbing festoon planar <u>Abbrevi</u>	<u>Metri</u> bed r bed <u>dding</u> al al jle indicat	ic System Imm-IOmm mm I cm-IOcm om ted ∠ue° ↓ GRAIN SIZE VF Very Fine F Fine M Medium C Course VC Very Coarse	<u>Irregular bedding</u> <u>Graded bedding</u> <u>No apparent bedding</u> :	Q S X R	Curren Ripple asym intert symn Pull ov Scour Flute Groove Striati Partine	mark metric ference netrical er flam and fil cast e cast ion g line cation tion	al ne structu l ation <u>R</u> SF	STR STR STR STR STR STR STR STR	ded bunde ngula	URES Organism Burrowed sightly moderat well bur Churned Bored surf Organism Plant roc Vertebra St Plant org Wertebra	face face track track t tube to RTI	duced ma owed urrowed d ks and tra es acks	ails × → HARI U VS S M	Pe Mu Ra Pu Slu Cc Te	ud cra un or l ull-apo ump s onvolu oad ca spee s rdseye solidat	tempoi icks hail pri art tructur te bec ist structur a, fenes	raneou nts es anc Iding re tral fa	s defo	rmation s rted bedd anular	ACCESS Py Pyr Mc Mic Ch Che Clig Hm Hete	ite -	Sylolite Vadose Vadose Boxwork Salt hop	solution, n - comp pisolite silt pers or <u>DIAGEN</u> CX Cr	ures collapse paction(hors	6mm * Signifies presence
L		G Granule & larger	jeve energy				01							(- p		nic fragme uconite	nts			A4-GI -519

•

A4-GL-519

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE - 1

	.RΥ res)			CL SIZE	AY 5 %	SIL SIZE	T % TYF	_	AIN %	S SIZE		CEN	IENT	DIAG	ENE		2	ş	ТҮРЕ	ACC	ESSOF	RIES	SNOE	ARY RES	
DEPTH (metres)		ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE QUARTZ	SKELETAL	CALCITE	RANGE	DOMINANT	түре а %	түре в %	ТҮРЕ	%	TEXTURE	SORTING	HARDNESS	POROSITY B %	0.	түре в %	ТҮРЕ Ө.%	HYDROCARBONS	SED IMENTAR STRUCTURES	SUPPLEMENTARY DATA
1801.5	3.7	Silty CLAYSTONE	Lt gry	75		20	5		Π									м							•
1855.3	3.9	Silty CLAYSTONE	Med gry - brn gry	80		20									┨		T	м		Cc Tr					
1872.0	2.8	Carbonaceous CLAYSTONE/ SILTSTONE	Lt gry - med gry-blk	50		40												м		Cc 10			*		A. Tr pinpoint grn B. Tr fast, strong grn-wh
1881.5	4.1	Silty CLAYSTONE	Lt gry - med gry	60		35	5			VF-F	VF							м							
1894.2	2.7	Silty CLAYSTONE	v lt gry - med dk gry	45		40	10			VF-F	VF							м		Cc 5			*		A. Tr pinpoint grn-wh B. V slow dull grn ? inclined bedding
1913.6	4.0	Carbonaceous SILTSTONE/ CLAYSTONE	Lt gry - med dk gry-blk(Cc)	30		25	15			F-C	м		(Py)			SA SR	м	н	g 5	Py 10	Cc20			mm	Trace mineral fluorescence Bnc of coal & pyrite
1919.0	3.9	Argillaceous SANDSTONE	Lt gry - med gry	40		Tr	60			F-VC	м					SA SR		s	g 5	Py Tr					
1933.5	2.6	Silty Arenaceous CLAYSTONE	Med gry, med dk gry	50		25	25			VF-M	VF					A- SR	м	s		Py Tr					
1941.0	3.3	Carbonaceous Argillaceous SANDSTONE	Med gry to gry blk	25		15	25			VF-M	VF					A- SR	м	s	g Tr	Cc 35	PyTr			mm	A. Tr pinpoint gold. B. Nil Irr blk mins; coaly bnds
1947.2	2.5	Silty Arenaceous CLAYSTONE	Lt gry - lt olv g ry	50		20	30			VF-M	VF	Tr DOL				A- SA	м	s	g Tr	Cc Tr	PyTr		*	mm	A. Sli tr, pinpoint yel B. V slow wh on crushing. Dkr less silty bnds up to lmm wide
Thicknes millimete centimetr <u>Cross Be</u> in gene with an chevron climbing festoon planar Abbrevi	<u>Metri</u> r bed er bed edding ral gle indicat	Imm-lOmm <u>mm</u> Icm-lOcm <u>cm</u> Icm-lOcm <u>cm</u>	Irregular bedding S Graded bedding	Q Si X Re	Curren Ripple asymi interf symm Pull ove Scour o Flute o Groove Striatio Parting	t-prod marks metrical erence ietrical er flam and fill cast cast cast g linea ation ion	e structur tion ROI R SR	STR kings STR 2 ≦ 3 4 2 5 4 2	UCTL O B C B B C C P V V ded D unded ngular	JRES Drganism Urrowed slightly moderat well bur churned Bored Bored surf Drganism Plant roo /ertebra St M W W	- prod burro ely bu rowed face track t tube te tra <u>DRTIN</u> Po	wed irrowed s and tro s icks <u>VG</u> boor boor	oils [∞] HARC U VS M	Pe Mu Ro Pu Sli Co Te	ud cro ain or ull-ap ump s onvolu oad co epee s rdseyu solida	ntempor acks hail pri bart structure ute bed ast ast structur e, fenest	an eou: es and ding e tral fal	defor	mation s' ted beddi inular	tructures	ite a	Sylolite Vadose Vadose Boxwork Salt hop	solution, n - comp pisolite silt pers or o <u>DIAGEN</u> CX Cr	collapse baction (hor	56mm * Simifies presence

SIDEWALL CORE DESCRIPTIONS

1

WELL: WEST SEAHORSE - 1

	RY es)			CL. SIZE		SIL SIZE	_Т :% тү	_	RAIN %	IS SIZ	E	CEN	IENT	DIAG	GENE	SIS	5 5		ŝ	түре	ACCI	ESSOR	IES	BONS	rary Res	
DEPTH (metres)	RE COV ERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	SKELETAL	CALCITE	RANGE	DOMINANT	түре а %	түре в %	ТҮРЕ	%	TEXTURE	SORTING		HARDNESS	POROSITY 8⊦%	түре в %	түрЕ в %	ТҮРЕ & %	HYDROCARBONS	SED IMENTARY STRUCTURES	SUPPLEMENTARY DATA
1968.4	1.7	CLAYSTONE	Dk gry	85		10	Tr		Γ	VF		C-Tr		Π					М		Cc 5			*		A. Nil B. Very slow, dull grn
1975.2	2.8	Argillaceous SANDSTONE	Lt med gry	40		5	55			VF-C	F						A- SA I	P	s	g Tr	Py Tr					
1976.3	3.3	Argillaceous SANDSTONE	V lt gry-lt gry	30		15	55			VF-VC	м						A- SR I	P	s	g 5	Py Tr					
1978.0	2.0	Argillaceous SANDSTONE	V lt gry - lt gry	35			65			M-G	с						A- SR 1	м	s	g 5	Py Tr			*		A. 40% V dull yel-wh B. V slow, V dull/wh
2031.8	3.2	CLAYSTONE	Olv blk	95 _.		5													М		Cc Tr	Py Tr		*		A. Trace pinpoint bl-wh B. Med fast bright bl-wh from 40% of sample
2072.1	3.4	CLAYSTONE	Olv gry	85		10	Tr			VF-F	VF								м		Cc 5					A. Nil B. V slow, V dull grn
2083.2	5.2	CLAYSTONE	Dk gry	95		5													M		Cc Tr					
2103.1	2.3	CLAYSTONE/ SILTSTONE	Med - dk gry	45		4 5	5			VF-M	F								м		Cc 5			*	EM	A. Tr pinpoint yel-grn B. V slow v weak grn-wh Mineralogical bnding
2125.1	3.2	CLAYSTONE	Med gry	80		15	5			VF-M	м								М							
2140.0	3.4	SANDSTONE	Lt - med gry	10			75			M-G	vc	₽у 5		Q	5		A- SR		s	g 10	Py 5			*		A. Tr spotty grn-yel B. V slow V dull/grn
Thickness millimete centimete <u>Cross Be</u> in gener with any climbing festoon planar Abbrevi	<u>Metric</u> bed bed <u>Iding</u> bl e indicate	<u>c System</u> Imm-I0mm <u>mm</u> I cm-I0cm <u>cm</u> ed ∠u• <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u> <u>↓</u>	Irregular bedding S Graded bedding	₩ ¥ ∞ DIAGE	Ripple asym inter symn Pull ov Scour Flute Groovy Striati Partin	e mark hometric ferenci netrica ver flor and fi cast e cast ion	cal e il me struct ill eation	C_S1 arkings ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		TURES Organis Burrowe slighti moder well bi Churned Bored Bored su Organis Plant rc Vertebi	m-pro y burr ately b urrowe i urface m trac pot tub	oduced m owed ourrowed d :ks and tr ies racks	- + + + + + + + + + + + + +	P M R S C L	Penecc Aud c Rain o Pull-a Slump Convo Load o Tepee Birdse	ontemp racks ir hail p ipart structio blute bi	oraneo rints ures ar edding ure istral fi	nd co	ontort		tructures	ORIES	Disolutio Sylolite Vadose Vadose Boxworl Salt hop	solution, n - com pisoliti silt opers or DIAGE	ures collapse paction(hor e casts NETIC TE	Image: ball and age flow Image: ball and age flow Image: ball and age flow
		VF Very Fine F Fine M Medium C Course VC Very Coarse G Granule & larger	Q Silica	D Di Q Si	olomitiz ilicifica ecrysta	ition Illizati	ER S	R Su A Su	unded bround bangul gular	ed ar	P P M N W	Poor Moderate Well Very Wel	U VS S	Uncon Very Soft Mode Hard	nsolid Soft		g v i	Int Vu	ergran Igular Iraske		Py Pyr Mc Mic Ch Che Cc Lig Hm Hea Lf Lith	ate a	l als		rypto<1/2 loro 1/256	

SIDEWALL CORE DESCRIPTIONS

ł

WELL: WEST SEAHORSE - 1

	RY es)			CL. SIZE	AY	SIL SIZE	Т %Т	(YPE	GRAIN	IS SIZI	E	CEM	IENT	DIA	GENE	sis		ş	ТҮРЕ	ACC	ESSOR	IES	BONS	rary Res	
DEPTH (metres)	RE COVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	QUARIZ SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре а %	ТҮРЕ	%	TEXTURE	SORTING	HARDNESS	POROSITY B %	түре в %	түре а %	ТҮРЕ & %	HYDROCARBONS	SED IMENTARY STRUCTURES	SUPPLEMENTARY DATA
2171.8	3.0	Argillaceous SILTSTONE	Lt gry - med gry	40		45		5		M-C	м	-		Π				м - н		Py 10				٥	Banded: 1 cm lighter bands/3m dkr pyrite-rich bands
2204.5	4.2	CLAYSTONE	Dsky brn	80			·	5		M-C	с	-						м		Cc 15			*		A. Tr pinprich grn-wh B. V slow, weak grn
2211.3	3.5	Silty Sandy CLAYSTONE	Lt gry	55		25	2	20		VF-M	VF					A- SI	R M	M/S		Py Tr					Trace mineral fluor
2223.0	3.9	Silty Argillaceous SANDSTONE	Wh-lt gry	30		20	4	15		VF-M	VF					A- SI		М		Ру 5		`			A. Nil B. Weak slow grn 1.5mm diam pyrite sphere
2249.0	3.0	Argillaceous SANDSTONE	Wh- lt gry	40		5	4	10		VF-G	F	Dol 5		Q	10	A- MS SZ	P	м						≋≋	Mineral fluor Pod of wh clay in centre of sample
2259.4	2.9	Argillaceous SANDSTONE	Med gry - Olv gry	40		5	5	55		VF-C	с					A- SI	м	м	g Tr				*		Minor dull yel min fluor A. Nil B. Slow, weak milky
2275.4	3.7	Argillaceous SANDSTONE/ CLAYST, Pyritic	Lt gry - gry blk	25 70		5	e	50		F-G	М	Pol Tr		Q	10	MS A-	P	м	g Tr	Ру 30				cm	2 separate lithologies:- Dull gold mineral fluor
2285.2	1.0	Silicified SANDSTONE	Wh - med lt gry	15			5	50		M-G	с	Dol 15		Q	20	A MS S		н	g Tr	Cc Tr					Mineral fluors - extremely hard.
2296.8	3.3	Argillaceous SANDSTONE	Wh-dk gry	25		15	4	15		F⊷G	с	Dol 5		Q	10	MS S	A P	м	g Tr	Py Tr				DM	Minor mineral fluor Small bnds of dark clay minerals
2314.4	2.9	Argillaceous SANDSTONE	Wh - dk gry	25		5	4	15		F-VC	м	Dol 10	Py 5	Q	10	MS 7	P	М	g Tr						Blocky texture due to silicification Minor mineral fluor
Thicknes millimete centimet <u>Cross Be</u> in gene with an chevron allmbing festoon planar <u>Abbrevi</u>	<u>Metr</u> r bed er bed edding ral gle indica	<u>Stratification</u> Parallel Type Iding Imm-IOmm mm Imm-IOmm mm Icm-IOcm cm	<u>irregular bedding</u> <u>Graded bedding</u> <u>No apparent bedding</u>	Q S X R	Curren Ripple asym interf Symr Pull ove Scour o Flute o Groove Striati Parting	it-proc mark imetric ference hetrical er flon and fil cast e cast on g line ation tion	duced r cal e il me strui ill aation	ROUND R R SR SS SA S		URES Organism Burrowen slightly moderc well bu Churned Bored su Organism Plant ro Vertebr	n-pro d y burr ately b irrowe rface n trac ot tub ate tu <u>soRT</u> P F M M	oduced m rowed burrowed kd cks and tr res racks	الم الم الم	DN ES Unco	Penecc Mud c Rain o Pull-a Slump Convo Load Tepee Birdse Birdse	ntempo racks r hail pr ipart structu lute be cast structu ye, fene: ated	raneou ints res and dding re tral fa	<u>s defo</u> d conto	rmation s rted beda	ACCESS Py Pyr Mc Mic C Li	ite :a ert inite/Coa	Sylolite Vadose Vadose Boxworl Salt hop	solution, n - com pisolite silt opers or DIAGE	ures collapse paction(hor	Image: Second
		VC Very Coarse G Granule & larger	Sd Siderite				-0.00		-				Ĥ	Hard						Hm Heo Lf Lit	nic fragme nic fragme nuconite	rais			

A4-GL-519

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE - 1

				CL SIZE		SIL SIZE	Т % ТҮ		RAIN %		E	СЕМ	ENT	DIAGE	ENESI		U	ş	ТҮРЕ	ACC	ESSOF	IES	SNOE	'ARY RES		,	
DEPTH (metres)		ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	TYPE «	% TEVTUDE		SORTING	HARDNESS	POROSITY B %	түре а %	түре в %	ТҮРЕ & %	HYDROCARBONS	SED IMENTARY STRUCTURES	SUPPLEN	IENTARY DATA	A
2320.5	3.4	Argillaceous SANDSTONE	wh-med gry	20		5	7	0		VF-G	C/ M	Dol 5			T	A- SR	Р			Py Tr					Golā mineral f	luor	
2332.2	3.2	Sandy Argillaceous SILTSTONE	Lt gry - dk gry	30		35	2	5		VF-M	VF	Dol 10					м			Cc Tr					Slight Tr pinp fluor	oint gold minera	al
2343.5	3.0	Silty Argillaceous SANDSTONE	Lt gry - olv gry	30		25	3	5		VF-M	VF	Dol 10	_			A- SR	м			Cc Tr			*		A. Nil B. Wea Tr gold minera	k, slow dull grn l fluor	n.
2351.0	Nil							ľ																	No recovery -	empty	
2360 .5	Nil								T																No recovery -	empty	
2368.7	3.5	Argillaceous SANDSTONE	Lt gry	30		10	4	5		VF-C	F	Dol 15				A- SR	м	м	g Tr	Py Tr	Cc Tr			mm	Blk bands of c	oal up to 0.5mm	wide
2376.0	3.2	Argillaceous SANDSTONE	Wh - lt gry	35		5	4	5		VF-M	F	Dol 15				A SR	P	м	g Tr	Py Tr		•			Dull gold mine	ral fluor	
2391.0	Nil																								No recovery -	bullet lost	
2403.1	3.1	Silty CLAYSTONE	Olv gry	60		20	10	5		VF'-M	F	Dol 10						м		Cc Tr			*		A. 90% dull go B. V slow, dul		ι
2409.9	2.75	Silty Arenaceous CLAYSTONE	Olv gry	50		15	20	5		VF-M	F	Dol 15						м		Cc Tr			*	1	A. 40% dull go B. Slow, med -	ld on claystone wk grn-wh	kanimi di Kananan i di Agje
millimete centimet <u>Cross Be</u> in gene	r bed er bed edding ral gle indicat	i <u>c System</u> Imm-lOmm <u>mm</u> !cm-lOcm <u>cm</u> ∠	Irregular bedding & Graded bedding ~ No apparent bedding = Nodular bedding o Odular bedding o CEMENT Q Silica Py Pyrite	Q Si X R	Curren Ripple asymm symm Pull ove Scour o Flute o Groove Striatio Parting	t-proc mark metrical erence hetrical er flam and fill cast e cast on g line ation tion	al me struct l ation R Son S	C ST arkings ure ♀♀ ♀↓ OUNDII Rou Rou R Sub		URES Organisr Burrowe slightly moderc well bu Churned Bored su Organisn Plant rov Vertebri	n-pro d y burra ately b irrowed rface n trac ot tube ate tr SORTI	urrowed d ks and trai es racks	kings →⊕™ →⊕™ ⊕⊕ ↓ ↓ HARI U VS S M	Per Mu Rai Pul Slu Co Loo Ter	neconte in or hi ll-apar ump str novolute nad cas pee st dseye, olidate Soft	emporc ks all prin rt ructure e bedo t ructure fenestr	ts s and ding ral fab	defor contor ric	mation si ted beddi inular	tructures 	te a	Sylolite Vadose Vadose Boxwork Salt hop	solution, n - comp pisolite silt pers or o	res collapse vaction (hors	e tail)	<u>c structures</u> es ≤€ sides ŢŢ , tectonic ↔ al fabric -cone	

SIDEWALL CORE DESCRIPTIONS

WELL: WEST SEAHORSE - 1

	H VERY netres)			CL SIZE	AY E %		LT E %	ТҮРЕ	GR/	_	S SIZI	E	CEN	IENT	DIAG	GENE		ġ	5	ş	түре	ACC	ESSOF	IES	SNOE	'ARY RES	
DEPTH (metres)	RECOVERY (centimetres)	ROCK TYPE	COLOUR	CLAY MINERALS	MICRITE	QUARTZ	CALCITE	QUARTZ	SKELETAL	CALCITE	RANGE	DOMINANT	түре в %	түре в %	ТҮРЕ	%	TEXTURE	ROUNDING	SORTING	HARDNESS	POROSITY B %	түре в %	түре а %	ТҮРЕ & %	HYDROCARBONS	SED IMENTARY STRUCTURES	SUPPLEMENTARY DATA
2416.1	Nil																										No recovery - bullet lost
2420.1	3.0	Silty SANDSTONE	Wh-gry	15		20		50			VF- C		Dol 10	Py 5	Q	Tr	MS	A- SR	Р	н	g Tr						Py occurs as encrusting "cement" on silty grains. Tr dull gold min. fluor
2424.2	3. 0	Silty SANDSTONE	Wh - lt gry	10		20		55			VF- VC	F	Dol 10	Py Tr	Q	5	MS	A- SR	Р	н	g Tr						Minor mineral fluorescence
2435.3	2.5	Argillaceous SANDSTONE	Wh - gry	20				60			M-G	с	Dol 10		Q	15	MS	A~ SA	м	Н	g 5	Py Tr			*		A. 10% spotty, bright bl-wh B. Mod wh-lt yel.F.Viscous Bubls in HCl
2447.0	3.4	Argillaceous SANDSTONE	Wh-gr-olv blk	30		10		40			VF- VC	F	Dol 5					A= SA	Р	н	g 5	Lf 15	Py Tr				Sst is very dirty. Gold mineral fluor = dolomite
2458.0	1.75	Argillaceous SANDSTONE	Wh-gry	20		10	<u></u>	50			VF- VC		Dol 10	Py Tr	Q	10	MS	A	м	S-M	g 5						Wh clay resembles Fd (high power)but breaks up % of dolomite qtz & por unsure
2466.0	4.2	Silicified SANDSTONE	Wh-lt gry	Tr				70					Dol 5	Py Tr	Q	25		A- SA	₽	М-н	g 5						% of diagenesis difficult to estimate
2468.0	3.25	Silty, Pyritic CLAYSTONE	Olv gry - lt gry	40		10	1	15					Dol 5							м-н	g Tr	Ру 30					Lt gry steaks = dolomitic sst. Silt size pyrite throughout
2474.9	2.2	Dolomitic Silty SANDSTONE	Wh-v lt gry	25				45			C+G		Dol 10		Q	15		A- SA	м	vs	g 10	₽у 5				mm	Bnds of claystone up to lmm thick; Difficult to estimate % of qtz.
2486. 9	3.0	Arenaceous CLAYSTONE/ SILTSTONE	Dk gry - v lt gry	100		- 40		- 35			f-c		Dol 15	Pyr 10				A SA	м	S-M	g 5						Mineral fluor from dolomite 2 lithologies
Thicknes millimete centimete <u>Cross Be</u> in geneu	<u>Metri</u> r bed er bed dding al	i <u>c System</u> Imm-IOmm <u>mm</u> Icm-IOcm <u>cm</u> 	Irregular bedding Graded bedding No apparent bedding	≈≠⊒≋	Currer Ripple asym inter symr	nt-pro mar nmetri ferenc metrico ver fla	bduced ks ical ce al me s tr	marki	STRU	<u>UC TI</u> (E	<u>URES</u> Drganism Burrowed slightly	1-pro 1 burr tely b	oduced m rowed	TIFICAT	P F R S C	Peneco Aud cr Rain or Pull-a Slump	ntemp racks r hail j part struct lute b	orane orints	ous	defor		tructures			solution, n - comp pisolite silt	ures , collapse paction (hon	SENETIC STRUCTURES Tectonic structures Fractures Fractures Slickensides Miscellaneous Georetal fabric
chevron climbing festoon planar		<u>↓</u> + + + + + + + + + + + + + + + + + + +				e cas ion	t eation		> ¦ ↓ ≋	(F	Plant roo Vertebra	trac t tub te tr	racks	ails 🐳 X	T B	Tepee Birdse	struc	estral				ب م م		Salt hop	pers or		Cone-in-cone A Stromatactics 27 Boudinage, ball and -age flow
Abbrevi	utions :	GRAIN SIZE VF Very Fine F Fine M Medium C Course VC Very Coarse G Granule & larger	<u>CEMENT</u> Q Silica Py Pyrite C Calcite D Dolomite Sd Siderite	Q Si X R	NESIS olomitiz ilicifica ecrysta hloritiza	ition Ilizat	ion	R SR SA	NDING Round Subrou Suban Angula	led under gular	d M	1 N V V	<u>ING</u> Poor Moderate Well Very Well	VS S M	Jncon	- isolide Soft rate	oted	P g v i	li V	SITY ntergra /ugular ntraske		Hm Heo Lf Lith	ite a	als		NETIC TE rypto<1/25 cro 1/256	

•

West Seahorse-1

				Core Nºः 1			
LITHOLOGY	3Y JRES S TARY RAL DIP	LITHOLOGICAL	DESCRIPTION	HYDROCARBON			
S Granule Granule V. Coarse Coarse Medium Fine Silt Clay	LITHOLOGY STRUCTURES TEXTURES SEDIMENTARY DIP STRUCTURAL		DESCRIPTION	INDICATIONS			
			lear, very fine minantly coarse,	A. Trace pin- point blue			
1450.1		angular to rou subrounded, mo trace calcite carbonaceous m	unded, dominantly oderately sorted,	white fluorescence. B. Moderately fast blue white			
1450.2	0			solvent fluorescence.			
1450.3-							
1450.4	e						
		to granule, do angular to rou sorted, 5% cla calcite cement	lear, very fine ominantly coarse, unded, moderately ay minerals, trace c, trace carbon- unconsolidated,	 A. Trace pin- prick blue white fluorescence. B. Moderately fast solvent 			
1450.6		excertenc porc	sity.	fluorescence.			
	• •	to granule, do angular to rou sorted, 5% cla calcite cement	lear, very fine minantly medium, anded, moderately ay minerals, trace t, trace carbon- unconsolidated, osity.				
1450.8							
1450.9							
Geology By: E.T., & J.R.		5 (20 cm = 1m)	Drawing N2:	4 – GL – 528			
Drawn By: K. Lynch	Date: 2-10-'8	I	A4 - GL - 520				

West Seahorse-1

			Core Nº: 1
Pitter Coarse Co	LITHOLOGY STRUCTURES TEXTURES SEDIMENTARY DIP STRUCTURAL DIP	LITHOLOGICAL DESCRIPTION	HYDROCARBON INDICATIONS
1451.0		COAL:- Black, bituminous, brittle.	
1451.3 1451.4		SANDSTONE: - Clear to light grey, very fine to granule, dominantly medium, angular to rounded, dominantly sub-angular, poorly sorted, 5 to 15% quartz silt trace - 10% clay minerals, thin coal laminae, moderately hard to unconsolidated, good to excellent porosity.	 A. Trace spotty blue white sample fluorescence. B. White solvent fluorescence.
1451.5	н — П П		
		ThingCoal laminae. SANDSTONE:- Light olive grey to olive grey, fine to granule, dominantly very fine to fine, 10-20% quarts silt, 5-20% olay minerals, poor to very good porosity, moderately hard.	
Geology By: E.T.,& J.R. Drawn By: K. Lynch		Interval is becoming silty with depth.	4 - GL - 528

West Seahorse-1

		Core Nº: 1
V Granule Granule Granule V. Coarse Coarse Medium Medium Fine Clay LITHOLOGY	STRUCTURES SEDIMENTARY DIP STRUCTURAL DIP DIP CULURAL DIP	ESCRIPTION HYDROCARBON
D ~ 1452.0 = 	SILTSTONE:- Medium d dark grey, micromics mica, 20-30% clay mi quartz silt, hard, d in part.	iceous, 10-204 inerals, 5-106
1452.2_ #		
1452.3	- dark grey to grey i - vitreous, 40-50% mid 10-15% quarts silt,	ca-biotite, 20-30% al, hard,
1452.4		
D - 1452.6	- - SILTSTONE:- Medium (- - -<	-30% quartz clay min- aceous
1452.7		
D 1452.8	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	50-70% quartz 0% mica, carbon-
Geology By: E.T., & J.R. Drawn By: K. Lynch	Imica more prevellen Imica more prevellen fraction. Vertical Scale : 1:5 (20 cm = 1m) Date: 2-10-281	et in dark

West Seahorse - 1

Г		_							<u> </u>			T	Core Nº⊨1
> Granule		V.Coarse			—	T	Т		DEPTH (metres)	LITHOLOGY STRUCTURES TEXTURES SEDIMENTARY DIP	STRUCTURAL DIP	LITHOLOGICAL DESCRIPTION	HYDROCARBON INDICATIONS
ں ^	Grai	ٽ >				V.Fine		_			STRI		
						D			1453.0	= = =		SANDSTONE: - Silty, clear to white to light grey, very fine to fine, occasionally medium, dominantly very fine, moderate- ly well sorted, angular to sub- rounded, dominantly angular, 708 quartz grains, 20% quartz silt, 5% clay, 5% carbonaceous mat- erial trace pyrite, moderately hard, good permeability and porosity.	
								D	1453.3 1453.4 1453.4		-	CLAYSTONE:- Olive grey, 80% clay minerals, 15% quartz silt, 5% carbonaceous material, trace mica, moderately hard to hard.	
]]	453.6			CLAYSTONE: - Light olive grey, soapy feel with possible slickensides, hard.	
								1.	453.8 453.9 453.9 453.9				
Geolo			_				_			Vertical Scale :	1:5	(20 cm = 1m) Drawing №	
Draw	n E	By :	ł	< .	Ly	nc	h			Date: 2-10-	'81	A4	– GL – 528

ž

West Seahorse -1

CORE DESCRIPTION

			Core Nº: 1
LITHOLOGY	RES S TARY AL DIP		HYDROCARBON
A Granule Granule V. Coarse Coarse Medium Medium Silt Clay	LITHOLOGY STRUCTURES TEXTURES SEDIMENTARY DIP STRUCTURAL	LITHOLOGICAL DESCRIPTION	INDICATIONS
1454.0			
D 1454.1		CLAYSTONE: - Light blue to grey, 5% mica, hard.	
1454.2			
1454.3			
1454.4		CLAYSTONE: - Olive grey, trace	
1454.5		mica, blocky, hard.	
1454.6			
D 1454.7		CLAYSTONE:- Olive grey, 5-10% mica, blocky, hard.	
1454.8			
1454.9 D 1455.0		CLAYSTONE:- Brownish black, 10- 25% mica, blocky, hard.	
╞┉┥╸┥╺┥╸┥╴┥╴┽┉┽┉┽╴╢╴╴╴╴╴╴	1		
Geology By: E.T., & J.R.		1:5 (20 cm = 1m) Drawing № A	4 – GL – 528
Drawn By: K.Lynch	Date: 2-10-81	L	

1

West Seahorse - 1

	· ·			Core Nº: 1
> Granule Granule V.Coarse Coarse Medium Fine Silt Clay	DEPTH (metres)	LITHOLOGY STRUCTURES TEXTURES SEDIMENTARY DIP	-	HYDROCARBON INDICATIONS
	1455.0 1455.1 1455.2 1455.3 1455.4 1455.6		SANDSTONE:- Silty, carbonaceous, micaceous, clear to white to dark brown grey, fine to gran- ular, dominately medium, poorly sorted, subangular to subround- ed, 20% quartz silt, 10% mica, 10% carbonaceous matter, mod- erately hard, fair to good intergranular porosity. SILTSTONE:- Micro micaceous, dark grey to black, subfissile, carbonaceous, hard.	 A. Trace to pinpoint blue white fluorescence. B. Moderately fast milky blue white solvent fluorescence. A. Trace pin- point fluorescence.
	1456.0 ⁻		COAL:- Black, vitreous, con- choidal fracture, high grade, blocky, brittle to hard, high rank anthracite depicting slicken side, tectonic struct- ures.	fluorescence, B. Moderately fast blue white solvent fluorescence on crushing.
Geology By: E.T., & J.F	२.	·····	1:5 (20 cm = 1m) Drawing №	4 – GL – 528
Drawn By: K. Lynch		Date: 2-10-8	1 <u> </u>	

West Seahorse - 1

CORE DESCRIPTION

											c	ore N空⊨ 1
0	e		DLOGY DEPTH (metres)						LITHOLOGY STRUCTURES TEXTURES SEDIMENTARY DIP	STRUCTURAL DIP		YDROCARBON INDICATIONS
> Granule Granule	V.Coarse	Coarse	Medium	Fine	V.Fine	Silt	Clay		LITHC STRU SEDIN SEDIN DIP	STRUC		
						D	~	1456.0			SILTSTONE: - White to light gray to olive brown black, 20% clay, 20% mica, 20% carbon- aceous material, hard.	
						D		1456.2			SILTSTONE:- Dark grey, 30% clay,	
								1456.4	" 2 mm 2 " " _ " " " "		10% mica, 15% carbonaceous material, 5% pyrite inclusions, hard.	
								1456.6			COAL:- Black, brittle, high rank, minor siltstone inter- beds.	
								1456.8			COAL:- Black, brittle, high rank.	
								1456.9			COAL:- Black, vitreous, fractured, brittle, high rank, with interbedded siltstone as at 1456.32 M.	
Geolo Drawr			-			ncl			Date: 2-10		$\frac{1}{20 \text{ cm} = 1 \text{ m}} \text{Drawing } \mathbb{N}^{2}$	- GL – 528

ļ

West Seahorse - 1

CORE DESCRIPTION

						Core Nº: 1
>Granule Granule V.Coarse Coarse Medium Medium V.Fine Silt Clay	DEPTH (metres)	LITHOLOGY STRUCTURES TEXTURES SEDIMENTARY DIP	STRUCTURAL DIP	LITHOLOGICAL	DESCRIPTION	HYDROCARBON INDICATIONS
	1457.0-		<i></i>		······································	
	1457.1	- " - " - - " - " - - " - " - " - " - " - " - " - " - " - " -	•			
	1457.2	"_ I _ U _ U · I _ U U U U - # _ U " # _ U " U _ U				
DD	1457.3	" " _ " " _ " _ "		green grey to 40% clay miner	gillaceous, dark olive dark grey, als, 10% mica, eous material,	
	1457.4 1457.4			hard. Grading to	eous material,	
	1457.5					
D	1457.6			CLAYSTONE:- Da to black, micr trace coal.	rk olive grey omicaceous, hard,	
	1457.7	V		COAL		
	1457.8					
	1457.9					
	1458.0					
Geology By E.T., & J	.R.	4		5 (20 cm = 1m)	Drawing Nº:	A4 – GL – 528
Drawn By≑ K. Lynch		Date: 2-1	0-'81			

.-

West Seahorse - 1

									se				Core №: 1
	LI	TH	10	LO	G١	1			DEPTH	ay IRES S TARY	RAL DIP	LITHOLOGICAL DESCRIPTION	HYDROCARBON
> Granule Granule	V.Coarse	Coarse	Medium	Fine	V. Fine	Silt		Clay	(metres)	LITHOLOGY STRUCTURES TEXTURES SEDIMENTARY DIP	STRUCTURAL	LITHOLOGICAL DESCRIPTION	INDICATIONS
		Ť	1	1	Ť		1		1458.0-			CLAYSTONE: - Very dark grey to	A. Trace, spotty
												black, micromicaceous, carb- onaceous, very hard.	blue, white pinpoint fluorescence
									1458.1			COAL:- Black, brittle.	B. Moderately fast, blue white milky
									1458.2	<pre></pre>		CLAYSTONE:- Dark grey to black,	solvent fluorescence
												silty, micromicaceous, carbon- aceous, shows coaly deformations and en echelon fractures.	on crushing.
									1458.3				
									1458.5				
						C		5	1458.6.			SILTSTONE: - Dark grey to dark olive grey, argillaceous,	
												micromicaceous, carbonaceous, subfissile, very hard.	
								•	1458.7	7		COAL:- Black, brittle, vitreous, hard, high rank, becoming silty towards base of core.	
									1458.8-				
									111111			NO RECOVERY	
Geol				E	<u> </u> Е.т	<u> </u>	8			Vertical Sca	le : 1	:5 (20 cm = 1m) Drawing №:	
	Geology By:E.T., & J.R.Vertical Scale:Drawn By:K. LynchDate: 2-10-7						44 – GL – 528						
			-										

APPENDIX B7. LOG OF SAMPLES

WEST SEAHORSE No.1 - LOG OF SAMPLES

Cuttings Sample Descriptions

All depths quoted are below Rotary Table, which is 9.45 metres above Mean Spring Low Water and 48.8 metres above sea floor.

Colours are taken from the Geological Society of America "Rock Colour Chart".

Samples were collected from the base of the 20 inch casing shoe, at 189 metres R.T.

<u>200 - 215 metres</u> (15 metres)	<u>Sandstone</u> , clear to white to light grey, fine to granule, dominantly coarse to very coarse, moderately well sorted, unconsolidated.
	With 35-45% <u>Calcirudite</u> , skeletal,white to grey to reddish brown, coarse to rudaceous, dominantly rudaceous, poorly to moderately sorted, unconsol- idated.
	And 5% <u>Calcilsiltite</u> , silty in part, light grey to medium grey, 10-20% quartz silt, poor porosity.
<u>215 - 230 metres</u> (15 metres)	<u>Calcilutite</u> , olive grey, 20-25% silt sized skeletal fragments, 5-10% quartz silt, soft.
	With 15-25% Calcirudite, as between 200-215 m.
	And 5-10% Sandstone, as between 200-215 m.
<u>230 - 250 metres</u> (20 metres)	<u>Calcarenite</u> , calciruditic, skeletal, white to light grey, very fine to granule, dominantly medium, poorly sorted, unconsolidated.
	And 0-10% <u>Calcilutite</u> , as between 215-230 m.
<u>250 - 325 metres</u> (75 metres)	<u>Calcisiltite</u> , calcilutitic, calcarenitic in part, olive grey, 25-35% micrite, 15-25% fossil fragments, very fine to medium, dominantly very fine, trace to 5% clay minerals, trace to 5% calcite cement, soft to moderately hard, nil to trace porosity.

With 15-20% <u>Calcarenite</u>, calciruditic, generally as between 230-250 m, but becoming dominantly coarse.

And 0-10% <u>Sandstone</u>, light grey to white to clear, medium to very coarse, dominantly coarse, poorly to moderately sorted, unconsolidated.

325 - 355 metresCalcarenite, skeletal, white to light grey to dark(30 metres)grey, 100% skeletal fragments, fine to rudaceous,
dominantly coarse, moderately well sorted, angular
to subrounded, unconsolidated.

With 30-50% <u>Calcisiltite</u>, calcilutitic, calcarenitic in part, olive grey, 40% calcite silt, 20-30% micrite, 15-25% skeletal fragments, very fine to fine, dominantly very fine, poorly to moderately sorted, angular to subrounded, soft to moderately hard, nil-trace intergranular porosity.

And trace to 10% Sandstone, as between 250-325 m.

<u>Calcisiltite</u>, calcilutitic, olive grey to light grey, 30-35% micrite, 15% skeletal fragments, very fine to fine, dominantly very fine, nil-trace clay minerals, 5% calcite cement, moderately hard, nil porosity.

With 35-50% <u>Calcarenite</u>, calciruditic, as between 250-325 m.

And 0-10% Sandstone, as between 250-325 m.

<u>Calcarenite</u>, calciruditic in part, white to light grey to dark grey, skeletal, fine to rudaceous, dominantly coarse and very coarse, poorly to moderately sorted, unconsolidated.

<u>355 - 410 metres</u>

(55 metres)

<u>410 - 515 metres</u> (105 metres) With 10-55% <u>Calcisiltite</u>, calcilutic, calcarenitic in part, olive grey to light grey, dominantly silt size fossil fragments, 25-40% micrite, 15-20% very fine to fine fossil fragments, trace-5% calcite cement, trace-5% quartz silt, very soft to moderately hard.

And 0-5% <u>Sandstone</u>, clear to white, fine to granule, dominantly coarse and medium, subangular to rounded, poorly to moderately sorted, unconsolidated.

515 - 880 metresCalcarenite, calciruditic in part, white to light
grey to dark brown grey, skeletal, very fine to
rudaceous, dominantly coarse and very coarse, nil-5%
calcite cement, nil-15% recrystallisation, nil-5%
micrite, traces of pyrite, glauconite, chlorite and
mica, unconsolidated to moderately hard where
recrystallised.

Grading below 840 metres to <u>Recrystallised Limestone</u>, calcarenitic, white to light grey, 10-25% carbonate grains, 10-45% skeletal fragments, fine to rudaceous, dominantly coarse, poorly to moderately sorted, niltrace micrite, traces of pyrite, chlorite, glauconite and carbonaceous material, sucrosic, moderately hard, poor porosity.

With 10-65% (maximum between 635-645m) <u>Calcisiltite</u>, calcilutitic, calcarenitic in part, as between 410-515 m.

And between 520-795 m, 5-35% <u>Sandstone</u>, as between 410-515 m.

And below 750 m, trace-40% <u>Marl</u>, skeletal in part, olive grey, 5-25% skeletal fragments, very fine to fine, very soft to soft, trace intergranular porosity. 880 - 915 metres (35 metres)

Sandstone, colourless to light grey, medium to granule dominantly very coarse and granular, poorly sorted, unconsolidated.

With 15-40% Limestone, skeletal, recrystallized, as between 840-880 m.

And 5-35% Marl, skeletal, as between 750-880 m.

915 - 965 metres (50 metres)

Marl, skeletal in part, olive grey to dark greenish grey to light grey, trace-20% skeletal fragments, trace-5% pyrite, very soft to moderately hard.

With 5-35% Sandstone, as between 880-915 m.

And 5-20% Limestone, skeletal, recrystallized, as between 840-880 m.

Calcisiltite, calcilutitic, becoming argillaceous below 1050m, medium grey to greenish grey, 20-35% clay minerals, 0-5% calcite cement, 0-5% recrystallisation, trace pyrite, trace chlorite and below 1125m trace glauconite, soft to moderately hard.

> With 25-60% Marl, olive grey to dark greenish grey, 35-40% micrite, 0-10% calcite silt, trace-5% pyrite, soft to moderately hard.

And O-5% Sandstone, clear to white, very fine to very coarse, dominantly medium, subangular to rounded, poorly sorted, unconsolidated.

Note: Calcisiltite becoming more argillaceous with depth and grading to marl.

Marl, calcisiltitic in part, olive-grey to grey-black, 35-60% clay minerals, 35-65% micrite, 0-35% calcite silt (decreasing with depth), trace skeletal fragments, trace pyrite, trace glauconite, moderately hard.

965 - 1155 metres (190 metres)

1155 - 1200 metres (45 metres)

With <u>Calcisiltite</u>, calcilutitic, argillaceous in part, medium grey to dark greenish grey, 30-50% calcite silt, 30-40% micrite, 10-35% clay minerals, 0-10% skeletal fragments, moderately hard.

<u>1200 - 1320 metres</u> (120 metres) Claystone, calcisiltitic, calcilutitic, dark grey to olive grey to greenish black to (below 1310m) light blue-grey, 30-60% clay minerals, 20-40% calcite silt, 20-30% micrite, trace-10% skeletal fragments, trace pyrite, trace glauconite, trace chlorite, moderately hard.

With 10-35% <u>Marl</u>, medium grey to dark grey, and olive black, main constituents as between 1180 - 1200 metres.

<u>1320 - 1360 metres</u> (40 metres) Calcisiltite, calcarenitic in part, white to light grey to olive grey, 10-45% calcite silt, 10-45% calcite grains, 5% quartz grains, fine to granule, dominantly fine granined, angular to subangular, 5% micrite, trace clay minerals, glauconite, pyrite, soft.

1360 - 1390 metresCalcilutite, in part calcisiltitic and, below 1380m,
glauconitic, very light grey to medium light grey,
15-70% micrite, 15-20% calcite silt, 5% calcite
grains, trace quartz grains, medium to granule,
dominantly medium, subangular to rounded, trace-15%
clay minerals, 5-30% glauconite, traces pyrite,
carbonaceous material, trace recrystallisation, soft
to moderately hard.

<u>1390 - 1410 metres</u> (20 metres) <u>Coal</u>, lignitic, micaceous below 1405m, dark reddish brown to greyish black to black, 0-5% quartz silt, 0-35% mica, trace clay minerals, plant fragments, pyrite, subfissile to blocky, brittle to moderately hard.

With 0-10% <u>Calcisiltite</u>, very light grey to greenish grey, 0-5% micrite, traces pyrite, glauconite.

And below 1405m, 0-5% <u>Sandstone</u>, clear to white, 90-100% quartz grains, very coarse to granular, dominantly granular, subangular to subrounded, 0-10% calcite cement, traces pyrite cement, glauconite, carbonaceous matter, moderately hard, poor porosity.

<u>Claystone</u>, micaceous and carbonaceous in part, reddish brown to dark reddish brown, 0-10% quartz silt, 0-35% clay minerals, 0-20% carbonaceous matter, 30% mica, 5% glauconite, soft to moderately hard.

With <u>Sandstone</u>, up to 30% between 1414-1415m, as between 1405-1410 metres, poor porosity.

<u>Calcisiltite</u>, calcilutitic in part, medium dark grey to greenish black, trace-15% calcite grains, 60-80% calcite silt, 10-20% micrite, trace-5% clay minerals, trace-10% glauconite, traces pyrite, carbonaceous material, soft to moderately hard.

With 0-10% <u>Sandstone</u>, as between 1405-1410 metres, poor porosity.

<u>Coal</u>, lignitic, dark reddish brown to black, subfissile to blocky, dominantly subfissile, brittle to moderately hard.

And trace <u>Sandstone</u>, as between 1405-1410 metres, poor porosity.

<u>Coal</u>, silty, micaceous, dark brown to black, 30% quartz silt, 30% mica, 40% carbonaceous material, trace clay, moderately hard.

With 30% <u>Limestone</u>, calcisiltitic, calcilutitic, medium grey to grey, 50-70% calcite silt, 20% calcilutite, 10-30% coaly material, moderately hard.

<u>1415 - 1425 metres</u> (10 metres)

1410 - 1415 metres

(5 metres)

<u>1425 - 1435 metres</u> (10_metres)

<u>1435 - 1447 metres</u> (12 metres) And 5% <u>Sandstone</u>, clear to white, 100% quartz grains, fine to granular, dominantly coarse, poorly sorted, angular to subrounded, trace calcite cement, trace pyrite, unconsolidated.

1447 - 1450 metresSandstone, clear to white, 100% quartz grains, fine
to granular, dominantly coarse, poorly sorted,
angular to subrounded, trace calcite cement, trace
pyrite, unconsolidated.

<u>1450 - 1461 metres</u> (11 metres) Core number 1, 02/10/81, recovered 81%, lithology to 1459 metres only. (See detailed lithological description under Section 4.2)

<u>1461 - 1465 metres</u> (4 metres) <u>Sandstone</u>, clear to white, 90-95% quartz grains, 5-10% calcite grains, fine to granular, dominantly coarse, moderately sorted, angular to subrounded, trace calcite cement, trace pyrite, unconsolidated.

With 30% <u>Coal</u>, black, brittle, high rank, moderately hard.

<u>1465 - 1480 metres</u> (15 metres)

<u>1480 - 1490 metres</u> (10 metres)

1490 - 1495 metres

Coal, as between 1465 and 1480 m.

Sandstone, as between 1458.9 - 1465 m.

Coal, as between 1461-1465 m.

(5 metres)

<u>1495 - 1520 metres</u> (25 metres) <u>Sandstone</u>, clear to white, nil-trace calcite grains, 100% quartz grains, medium to granular, dominantly coarse, poorly sorted, angular to subrounded, nil-trace pyrite, unconsolidated.

With 0-10% <u>Siltstone</u>, brown to dark brown, micaceous, carbonaceous, moderately hard.

And nil to 20% Coal, as between 1465 - 1480m.

<u>1520 - 1525 metres</u> (5 metres)

<u>1525 - 1560 metres</u> (35 metres) <u>Sandstone</u>, clear to white, 100% quartz grains, medium to granular, dominantly very coarse, poorly sorted, angular to subrounded, trace pyrite, unconsolidated.

With 0-40% Coal, black brittle.

Coal, black, brittle.

<u>1560 - 1565 metres</u> (5 metres) <u>Coal</u>, black, vitreous, conchoidal fracture, brittle, high rank.

<u>1565 - 1585 metres</u> (20 metres) <u>Sandstone</u>, clear to white, 100% quartz grains, fine to granular, occasional pebbles, dominantly very coarse, poorly sorted, subangular to subrounded, trace calcite cement, unconsolidated.

<u>1585 - 1590 metres</u> (5 metres)

<u>1590 - 1615 metres</u> (60 metres)

<u>1615 - 1620 metres</u> (5 metres)

<u>1620 - 1745 metres</u> (125 metres) <u>Coal</u>, black, brittle.

<u>Sandstone</u>, clear to white, 100% quartz grains, medium to granular, dominantly very coarse, occasional pebbles, poorly sorted, angular to subrounded, unconsolidated.

<u>Coal</u>, black, vitreous, brittle, anthracitic.

<u>Sandstone</u>, clear to white, slightly grey at lower end of interval, 95-100% quartz grains, very fine to granular, dominantly medium to very coarse, poorly sorted, angular to subrounded, trace-5% clay matrix between 1740 and 1745 metres, trace calcite cement, trace siliceous cement, trace-10% pyrite, unconsolidated to moderately hard, fining downwards.

With 0-30% <u>Siltstone</u>, argillaceous, micaceous in part, maximum at 1660m, light grey to greenish grey to dark brown, 30-50% quartz silt, 30-40% clay minerals, 0-30% mica, slightly calcareous, trace glauconite, trace carbonaceous material, soft. And at 1620m, 5% Coal, black, brittle.

And trace <u>Siltstone</u>, light greyish brown to grey, 50% quartz silt, 30% mica, 20% clay trace carbonaceous material, moderately hard.

<u>Sandstone</u> clear to white to light grey, very fine to granular, dominantly coarse, poorly to moderately sorted, 0-5% clay minerals, trace-5% pyrite, trace glauconite, trace carbonaceous material, trace calcite cement, unconsolidated.

With trace-15% <u>Siltstone</u>, argillaceous, light grey to grey brown, 30-50% clay minerals, 0-10% mica, trace glauconite, moderately hard.

And 0-10% <u>Coal</u>, black to brownish black, brittle, moderately hard.

<u>Coal</u>, black to dark brownish black, vitreous, 10% pyrite, hard, brittle with conchoidal fracture.

With 45% <u>Siltstone</u>, argillaceous, as between 1745-1770 m.

And 5% Sandstone, as between 1745-1770m.

<u>Claystone</u>, silty, light grey to brownish grey to greenish grey, 20% quartz silt, trace calcite cement, trace pyrite, trace glauconite, soft.

With 10% Sandstone, as between 1745-1770m.

<u>1780 - 1790 metres</u> (10 metres) <u>Coal</u>, as between 1770-1775m.

With 30-45% Claystone, silty, as between 1775-1780m.

And trace Sandstone, as between 1745-1770m.

<u>1745 - 1770 metres</u> (25 metres)

<u>1770 - 1775 metres</u> (5 metres)

<u>1775 - 1780 metres</u> (5 metres) <u>1790 - 1800 metres</u> (10 metres)

Sandstone, as between 1745-1770 m.

With 10% <u>Claystone</u>, silty in part, light grey to light greenish grey to dark brown, 10-20% quartz silt, 5-15% calcite cement, trace glauconite, soft.

And nil to 10% Coal, as between 1770-1775 m.

<u>1800 - 1805 metres</u> (5 metres)

1805 - 1875 metres

(70 metres)

<u>Claystone</u>, silty, as between 1790-1800 m.

With 25% Sandstone, as between 1745-1770 m.

Sandstone, as between 1745-1770 m.

With 5-15% <u>Claystone</u>, silty in part, as between 1790-1800 m.

And nil-10% Coal, as between 1770-1775 m.

<u>Sandstone</u>, clear to white to light grey, very fine to granule, dominantly coarse between 1875-1935 m, dominantly fine to medium between 1935-1955 m, dominantly granular (with siliceous overgrowths) below 1960m, poorly to moderately sorted, angular to subrounded, trace calcite cement, trace-5% pyrite, trace-10% glauconite (maximum at 1935 m), unconsolidated.

With trace-35% <u>Claystone</u>, silty, white to medium grey to dark brown, 50-70% clay minerals, 20-45% quartz silt, 5-20% calcite cement, trace-5% glauconite, soft to moderately hard.

And nil-10% Coal, as between 1770-1775 m.

<u>Sandstone</u>, clear to white, 90-100% quartz grains, fine to granular, dominantly very coarse, poorly to moderately sorted, angular to subangular, occasionally subrounded, trace pyrite trace-10%

<u>1875 - 1950 metres</u> (100 metres)

<u>1975 - 2070 metres</u> (95 metres) silicification, unconsolidated to moderately hard.

With trace <u>Siltstone</u>, argillaceous at 2040 metres, light grey to dark grey, 40% quartz silt, 40% clay minerals, 10% micaceous material, 10% carbonaceous material, soft.

And 5% Coal, at 2070 metres, black, brittle.

<u>Sandstone</u>, clear to white, 90-100% quartz grains, fine to granule, dominantly coarse to very coarse, poorly to moderately well sorted, angular to subangular, trace-10% clay, trace-10% pyrite, trace silicification, moderately hard to unconsolidated.

With trace-30% <u>Siltstone</u>, argillaceous, light grey to medium greyish brown to grey, 50% quartz silt, 45% clay minerals, 5% pyrite, trace carbonaceous material, soft to hard.

Grading to

Claystone, silty, light grey to dark grey, 30% quartz silt, 20% matrix, trace micrite, moderately hard.

With 20-40% Sandstone, as between 2070 and 2130m.

Sandstone, as between 2070 - 2130 m.

<u>Sandstone</u>, clear to white, 75% quartz grains, medium to granule, dominantly coarse to very coarse, poorly sorted, angular to subrounded, dominantly subangular, conchoidal fracturing across grains, trace-20% clay matrix, 10-20% silicification, 5% pyrite, moderately hard to hard, fair to good intergranular porosity.

<u>Sandstone</u>, clear to white to yellow, 85-100% quartz grains, very fine to granule, dominantly coarse, poor to moderately sorted, angular to subangular.

<u>2140 - 2150 metres</u> (10 metres)

<u>2150 - 2175 metres</u> (25 metres)

<u>2175 - 2210 metres</u> (35 metres)

(10 metres)

2130 - 2140 metres

(60 metres)

2070 - 2130 metres

With 0-10% <u>Siltstone</u>, argillaceous, light grey to dark grey black, 40-60% quartz silt, 40-50% clay minerals, 0-10% pyrite, trace carbonaceous material, moderately hard to hard.

<u>2210 - 2250 metres</u> (40 metres) <u>Sandstone</u>, silicified in part, clear to white to grey, very fine to granule, dominantly coarse, poorly to moderately well sorted, angular to subangular, trace kaolin, trace-5% pyrite, 0-20% silicification, hard, poor to fair intergranular porosity, conchoidal fracturing across grains.

<u>Sandstone</u>, as between 2210-2250 m, with trace lithic fragments, trace feldspars, trace very fine quartz

sandstone fragments.

<u>2250 - 2265 metres</u> (15 metres)

<u>2265 - 2315 metres</u> (50 metres) <u>Sandstone</u>, clear to white to grey, occasionally reddish brown, 75-100% quartz grains, very fine to very coarse, dominantly very coarse down to 2280m, becoming dominantly medium below 2290m, poorly sorted, angular to subangular, trace clay matrix, trace-5% pyrite, 0-20% silicification, moderately hard to hard, poor to fair intergranular porosity.

<u>2315 - 2350 metres</u> (35 metres) <u>Sandstone</u>, clear to white to grey, very fine to granule, dominantly medium above 2325 m, becoming very coarse below 2330 m, poorly to moderately well sorted, angular to subangular, trace clay matrix above 2325 m, trace pyrite, trace-5% dolomite cement, nil-trace lithic fragments, 0-15% silicification, moderately hard to hard, poor to fair intergranular porosity.

71

With 10-20% <u>Dolomite</u>, white to light grey, coarse to very coarse crystals, strong yellow mineral fluorescence.

<u>.</u>

et angere nate in s

And trace-5% <u>Siltstone</u>, argillaceous, brown to greyish brown and black, moderately hard.

And at 2330m, 5% <u>Coal</u>, black, hard, conchoidal fracture (? cavings).

<u>Sandstone</u>, dolomitic, clear to white to grey, fine to granule, dominantly medium and coarse, moderately well sorted, angular to subangular, 5-20% dolomite cement, trace-5% pyrite, trace-5% silicification, moderately hard, poor porosity.

<u>Sandstone</u>, clear to white to grey, rarely to light orange pink, fine to granule, dominantly medium and coarse, poorly to moderately well sorted, angular to subangular, occasionally subrounded, 10% dolomite cement, trace pyrite, trace glauconite, nil-trace lithic fragments, trace-5% silicification, moderately hard, poor porosity.

With, at 2390 and 2400 metres, nil-20% <u>Coal</u>, black, moderately hard, vitreous lustre, conchoidal fracture.

And nil-5% <u>Siltstone</u>, argillaceous, brown to very dark brown, 40% clay minerals, nil-5% glauconite, moderately hard.

Sandstone, dolomitic in part, clear to white to grey, rarely to moderate orange pink, fine to granule, dominantly coarse, moderately well sorted, angular to subangular, 15420% dolomite cement, trace pyrite, trace glauconite, trace lithic fragments, 5% silicification, moderately hard, trace porosity.

With trace-5% <u>Coal</u>, black, moderately hard, conchoidal fracture, sub-vitreous lustre.

<u>2350 - 2380 metres</u> (30 metres)

<u>2380 - 2400 metres</u> (20 metres)

<u>2400 - 2415 metres</u> (15 metres) <u>2415 - 2480 metres</u> (65 metres)

<u>2480 - 2490 metres</u> (10 metres) <u>Sandstone</u>, <u>silicified in part</u>, clear to white to grey, fine to granular, dominantly coarse and very coarse, moderately well sorted, angular to subrounded, trace-25% silicification, trace-5% dolomite cement, trace-5% pyrite,trace lithic fragments, 0-5% glauconite, nil-trace chlorite, trace to fair porosity.

With nil-5% <u>Siltstone</u>, <u>argillaceous</u>, brown to grey to light grey, 40% clay minerals, trace coal, trace glauconite.

<u>Sandstone</u>, <u>silicified</u>, clear to white to light grey, rarely to orange-red, medium to granule, dominantly very coarse, moderately well sorted, angular to subangular, 20-25% silicification, 5-10% dolomite cement, trace-5% pyrite, trace lithic fragments, hard, trace porosity.

With trace <u>Siltstone</u>, argillaceous, brown to grey brown, moderately hard.

And nil-trace <u>Coal</u>, (2489), black, moderately hard.

This is an enclosure indicator page. The enclosure PE905512 is enclosed within the container PE902688 at this location in this document.

The enclosure PE905512 has the following characteristics: ITEM_BARCODE = PE905512 CONTAINER_BARCODE = PE902688 NAME = Air Gun Well Velocity Survey and Calibrated Log Data BASIN = GIPPSLAND PERMIT = VIC/P11 TYPE = WELLSUBTYPE = VELOCITY_CHART DESCRIPTION = Air Gun Velocity Survey and Calibrated Log Data(from WCR) for West Seahorse-1 REMARKS = $DATE_CREATED = 21/10/81$ $DATE_RECEIVED = 18/06/82$ $W_NO = W755$ WELL_NAME = WEST SEAHORSE-1 CONTRACTOR = CLIENT_OP_CO = HUDBAY OIL (AUSTRALIA) LTD

This is an enclosure indicator page. The enclosure PE902689 is enclosed within the container PE902688 at this location in this document.

The enclosure PE902689 has the following characteristics: ITEM_BARCODE = PE902689 CONTAINER_BARCODE = PE902688 NAME = Tectomic Elements Map BASIN = GIPPSLAND PERMIT = VIC/P11 TYPE = WELLSUBTYPE = GEOL_MAP DESCRIPTION = Tectomic Elements Map (enclosure from WCR) fro West Seahorse-1 REMARKS = $DATE_CREATED = 31/05/82$ DATE_RECEIVED = 18/06/82 $W_NO = W755$ WELL_NAME = West Seahorse-1 CONTRACTOR = HUDBAY OIL AUSTRALIA LTD CLIENT_OP_CO = HUDBAY OIL AUSTRALIA LTD

This is an enclosure indicator page. The enclosure PE905512 is enclosed within the container PE902688 at this location in this document.

The enclosure PE905512 has the following characteristics: ITEM_BARCODE = PE905512 CONTAINER_BARCODE = PE902688 NAME = Air Gun Well Velocity Survey and Calibrated Log Data BASIN = GIPPSLAND PERMIT = VIC/P11 TYPE = WELLSUBTYPE = VELOCITY_CHART DESCRIPTION = Air Gun Velocity Survey and Calibrated Log Data(from WCR) for West Seahorse-1 REMARKS = $DATE_CREATED = 21/10/81$ DATE RECEIVED = 18/06/82 $W_NO = W755$ WELL_NAME = WEST SEAHORSE-1 CONTRACTOR = SEISMOGRAPH SERVICE ENGLAND LTD CLIENT_OP_CO = HUDBAY OIL (AUSTRALIA) LTD

This is an enclosure indicator page. The enclosure PE604583 is enclosed within the container PE902688 at this location in this document.

The enclosure PE604583 has the following characteristics: $ITEM_BARCODE = PE604583$ CONTAINER_BARCODE = PE902688 NAME = Pressure Log BASIN = GIPPSLAND PERMIT = VIC/P11 TYPE = WELLSUBTYPE = WELL_LOG DESCRIPTION = Pressure Log (from WCR) for West Seahorse-1 REMARKS = DATE_CREATED = DATE_RECEIVED = $W_NO \approx W755$ WELL_NAME = WEST SEAHORSE-1 CONTRACTOR = DOWELL SCHLUMBERGER CLIENT_OP_CO = HUDBAY OIL (AUSTRALIA) LTD

	and the second			
	and the second	second second		
	and the state of the second of the	and digeneration of the		50
	all the second second to the second	en e		in.
\$	and the state of the addition of the second	2 March March 2017 Contract Contract	•	- 10 ² 10 ² 0
	and the second state of the second	W. Land and the second second	\$	· store
		Carthalas da a	1.00	. Male
 A state of the sta	the fight of the fight of the fight of the fight of the second second second second second second second second	and the stand was a second	A STATE OF A STATE	440
120	and the second secon	2 Land Brand M. C.	Philippe - Philippe	State .
See Sec.	 A statistical sector of the sec	Safe State government of the same		
A Martin and a second second second		And	Western States Been all Street	Sec.
A A A A A A A A A A A A A A A A A A A		SALANSSAN	المراجع المتوجد المتعادية	"小田都有…
a and a second se	a sa katala na katal	an a	6. 25 (1997) April 10 (1997)	· State
Mere war		The man and the second second second		
540-53		r shi ka shi ka ka shi ka s		- and the second se
R. Car.	 A start first in the start of the start start of the star	a set that we want the set of the	an ender an	an Sec.
Although the second second second second		and the second secon	and the second	
the second s	and the second secon	a that when a second the a second	and the state of the second	- Sector
	[5] S. S. M. Market and M. S. Sandara and M. S.	and the second		
No. Alexandre de la companya de la c		And the second states in the second states of the second states and the second states and the second states and	different an	建设 制度
Sec. 3428 and a second s	and the second secon	and a construction of the second s	the state of the s	
Ser. Ser.		entral la grant de la company de la company	CAN BARRY CONTRACTOR	skiller:
Maria - Carlo	(a) An addition of the standard states in the second se Second second s Second second sec	a the second	and the former of the second se	California - 1
Night .	and the second	と認識問題を知った。これの認知れていた。	Station -	
Calls .		The second se	\$\$\$\$\chi_\$	
NYNEL .	² Contraction of the second state of the		All and the second s	State of the second
		and the second second second second		
				a state of the second
panta a		DECU3008	(強調)的時代 一、市場上	
		PE003300		

This is an enclosure indicator page. The enclosure PE603908 is enclosed within the container PE902688 at this location in this document.

The enclosure PE603908 has the following characteristics: ITEM_BARCODE = PE603908 CONTAINER_BARCODE = PE902688 NAME = Composite Well Log BASIN = GIPPSLAND PERMIT = VIC/P11 TYPE = WELLSUBTYPE = COMPOSITE_LOG DESCRIPTION = Composite Well Log(from WCR) for West Seahorse-1 REMARKS = $DATE_CREATED = 3/11/81$ DATE_RECEIVED = 18/06/82 $W_NO = W755$ WELL_NAME = WEST SEAHORSE-1 CONTRACTOR = CLIENT_OP_CO = HUDBAY OIL (AUSTRALIA) LTD

n an the second seco		
	(1) The second secon	
in the second	and a stand when the stand of the	
and the second	Charge Delle Casta and Casta	
alfalla i conta a data	n new second	
and a second		
	en vieleg nywer segan pas na tagan gen i nywer i nywer i nywer i nywer i nywer nywer nywer nywer nywer nywer i nywer n Nywer nywer nyw	
parts	an a	
		i.
		1
		£
		ae in c
		9.5 X
	a she an	Es-1
		Sec. 1
		ás is
		50.
		ta.
		-
		715 5.2
		19-
		fine .
a sa a s		iða: .
		84. ⁻
		£
		1º .
	PE601380	s
		digita da se na
		÷
The second se		814 ·
	DD:C01320	1
	EFOOT200	

This is an enclosure indicator page. The enclosure PE601380 is enclosed within the container PE902688 at this location in this document.

The enclosure PE601380 has the following characteristics: ITEM_BARCODE = PE601380 CONTAINER_BARCODE = PE902688 NAME = Exlog Formation Evaluation Log/Mud Log BASIN = GIPPSLAND PERMIT = VIC/P11 TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Exlog Formation Evaluation Log/Mud Log (enclosure from WCR) for West Seahorse-1 REMARKS = $DATE_CREATED = 20/10/81$ $DATE_RECEIVED = 18/06/82$ $W_NO = W755$ WELL_NAME = West Seahorse-1 CONTRACTOR = EXLOGCLIENT_OP_CO = HUDBAY OIL AUSTRALIA LTD (Inserted by DNRE - Vic Govt Mines Dept)

	and the second	
- 1990 pro - 1, -	niji se	
「「「」」、「「「」」、「「」」、「「」」、「「」」、「「」」、「「」」、「	- 職員 医臓炎が出た ほうしん しょうしん しょうしょう しゅうしょう しょうしょう	
 Anti-Maria Anti-Anti-Anti-Anti-Anti-Anti-Anti-Anti-		
and a second		2.11
	and a second	
and the second	and a second	i.
	Characterization in the second sec	ġ.
		£
		8. 20
		95.1
		÷
		\$
		$b_{i,j} \in \mathcal{C}$
		R.
	Martin Martin and State of the	
	All a Manager and a second state of the second state of the second state of the second state of the second state	ι.
		97
		21
and the second		e.,6
		1.
And the second		
	and the second secon	
		294
		њ° .
		¢
		ę.
and the second		÷.,
		10 M
Constant of the second s	a second a second s	g
		2.
		12
And a second	$\overline{DEC} (1201)$	99 P

This is an enclosure indicator page. The enclosure PE601381 is enclosed within the container PE902688 at this location in this document.

The enclosure PE601381 has the following characteristics: ITEM_BARCODE = PE601381 CONTAINER_BARCODE = PE902688 NAME = Wellsite Lithology Log BASIN = GIPPSLAND PERMIT = VIC/P11 TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Wellsite Lithology Log (enclosure from WCR) for West Seahorse-1 REMARKS = $DATE_CREATED = 3/11/81$ $DATE_RECEIVED = 18/06/82$ $W_NO = W755$ WELL_NAME = West Seahorse-1 CONTRACTOR = HUDBAY OIL AUSTRALIA LTD CLIENT_OP_CO = HUDBAY OIL AUSTRALIA LTD

·			
-	12 N.		
1			
8			
1	- 648-12		
	e kali - seki	and the first second	•
1. 1.	¢≩	an a	
	Start .	an and the and a standard to set the set of	
	a second a second s		
	and the second	and the second state of the se	1.
MARCH.	and the second states	All factors from the statement of the stat	· 2.
a water			e - 465
			- 1940 - 1 1
			- 1996-18- - 18 1855-
Branch March March 199		a na manana ana ana ana ana ana ana ana	32.98 B
			Carline .
「読練録をつくし」にしてもいたか。			
Sector And the sector of the s	and the particular states and the		"花碗"
and the second second	and the second	and the second secon	Calific -
A Martin Law			Sec.
and the second se			a - 282
and the second			
			4.4.23 2.142
revise state			200
and the second			1999 (1999) 1997 - 1997 (1997)
SET STATE OF A	 Construction of the second s Second second seco	na ya na	Sec. Sales
Contraction of the second			the approximation of the second se
		PEGUI378	
and the second second			
A Contract of the second		and the second secon	Sec.
著稿時にたべてい	an it in the state of the state	$\mathbf{D}\mathbf{F}\mathbf{C}\mathbf{O}1379$	\$ - Trate - 1
		E E O C E O	

This is an enclosure indicator page. The enclosure PE601379 is enclosed within the container PE902688 at this location in this document.

The enclosure PE601379 has the following characteristics: ITEM_BARCODE = PE601379 CONTAINER_BARCODE = PE902688 NAME = Velocity Log Linear Time Scale BASIN = GIPPSLAND PERMIT = VIC/P11 TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Velocity Log Linear Time Scale (encloure from WCR) for West Seahorse-1 REMARKS = DATE_CREATED = 21/10/81DATE_RECEIVED = 18/06/82 $W_NO = W755$ WELL_NAME = West Seahorse-1 CONTRACTOR = Seismograph Service England Ltd CLIENT_OP_CO = HUDBAY OIL AUSTRALIA LTD (Inserted by DNRE - Vic Govt Mines Dept)