

FAIRHOPE #1

TABLE OF CONTENTS

	CONTENTS			PAGE
	WELL DATA CAR	DS		1
	LOCATION	1. 2.	PEP 98 FAIRHOPE #1	7 8
	WELL HISTORY	1. 2. 3.	GENERAL DATA DRILLING DATA DRILLING SUMMARY	10 11 16
	GEOLOGY	1. 2. 3. 4. 5. 6. 7. 8.	STRATIGRAPHY: PREDICTED VS. ACTUAL SUMMARY OF STRATIGRAPHY GEOPHYSICAL ANALYSIS	21 22 27 28 29 31 31 32
-	APPENDICES APPENDIX " " " " " " "	1. 2: 3. 4. 5. 6. 7. 8. 9.	DAILY DRILLING REPORTS DAILY GEOLOGICAL REPORTS FIELD ELECTRIC LOG REPORT SIDEWALL CORE REPORT WIRE LINE LOG EVALUATION REPORT BIOSTRATIGRAPHIC REPORT AND SOURCE ROCK EVALUATION HEADSPACE GAS ANALYSIS FROM DITCH CUTTINGS HORNER TEMPERATURE PLOT VSP/SONIC CALIBRATION/GEOGRAM PROCESSING REPORT (ALSO SEE ENCLOSURES 4 & 5). SURVEYOR'S REPORT	
	ENCLOSURES	1. 2. 3. 4. 5.	1:200 COMPOSITE LOG 1:500 COMPOSITE LOG MUDLOG VELOCITY SURVEY (V.S.P.) TIME VERSUS DEPTH CURVE (Missing)	

WELL DATA CARDS

WELL DATA CARDS

AMPOL EXPLORATION LTD.

Location : Latitude : 37° 54 ' 48.327 ' S

Longitude: 147° 35' 16.37"E

Seismic S.P. 337 Line GM83A-21

Elevation: G.L.: 39m ASL K.B. 42.96 ASL

Map: BAIRNSDALE 1:50,000

Grid :

Spudded: 0530 hrs Completed: 1300 hrs 25/6/85 30/6/85 Type Structure: Tertiary Sediments draped over Basement high

Cutting Samples Collected from: 132m to T.D.

WELL: FAIRHOPE #1

Status	PLUGGED	&	ABANDONED

Rig ATCO-3

Total Depth: Driller: 569m. Log: 567.5m.

Completion Details: ABANDONMENT PLUGS SET AT

1. 508m - 554m

2. 113.7 - 150m

	Shoe Depth
244 MM	129.05m (DRILLER)
	129.5m (LOGGER)

	FORMATIONS PENETRA	TED		
Age	Formation	Depth	Elevation	Thickness
PLIOCENE TO PLEISTOCENE	HAUNTED HILLS GRAVEL	5 3.96m	+39m	89±3m
PLIOCENE	JEMMYS POINT FM.	93±3m	-50 <u>+</u> 8m	28±8m
LATE MIOCENE TO PLIOCENE	TAMBO RIVER FM.	121±5m	-78±5m	11±5m
EARLY TO LATE MIOCENE	GIPPSLAND LIMESTONE	132.4m	-89.4m	363.6m
LATE OLIGOCENE TO EARLY				
MIOCENE	LAKES ENTRANCE FM.	496.0m	-453.0m	37.0m
EARLY TO LATE OLIGOCENE	LATROBE GROUP	533.Om	-490.0m	11.0m
ORDOVICIAN	BASEMENT	544.Om	-501.0m	25.0m
	T.D.	569.Om	-526.0m	
· · · · · · · · · · · · · · · · · · ·				
~				

AMPOL EXPLORATION LTD. WELL: FAIRHOPE #1

Type Log	Run. No.	Interval	BHT/Time
DLL-GR	1	567-129.5 m	35°C/
			3½ hrs
MSFL	1	567-267 m	35°C/
			3½ hrs
LDT-GR	1	567-129.5m	37.7°C/
			6 hrs
CNL	1	560-260 m	37.7°C/
			6 hrs

l.

LOG	S		· · · · · · · · · · · · · · · · · · ·	
e	Type Log	Run. No	Interval	BHT/Time
	BHC(SON)-GR	1	560-129.5 m	38.3°C/
				8 hrs
	NGT (GR	1	560-249 m	40.5°C/
	TO SURFACE)			10 hrs
4				
	V.S.P.			
4				
	С.S.T.			

-		· · · · · · · · · · · · · · · · · · ·										······································
		·····	-		FORMATION							
Test No.	Interval	Formation	Flow (min)	Shut in (min)	Bottom gauge IP/FP	Shut in Press	Fluid to Surf. (min)	Max Press	тс.	B.C.	Rev. Circ.	Results
	NIL											
		1										
T												

	F	ULL HOLE CORES	PERFORATIONS				
No.	Interval	Formation	Cut	Rec.	Interval	Formation	Shots/ft
	NIL				NIL		

AMPOL EXPLORATION LTD.

WELL: FAIRHOPE #1

Interval	Forma	tion	Øg	Sw.g	Interval	Forma	ation	Ø	
533-535 m	LATROBE		0	-					+
535-542.5	LATROBE		9.3	88.5				1	+
	LATROBE		17	168					
544-556.5 m	BASEMENT	<u></u> ח	2	23.3				1	+
			1					1	╈
									+
						· · · · · · · · · · · · · · · · · · ·			╉
				{				1	+
								<u> </u>	+
	<u></u>			<u> </u>]				<u> </u>	╀
								 	+
									\downarrow
			<u> </u>]		<u> 14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-</u>			1
				I					\downarrow
								1	
	NO								
			LYSIS (1	NTERVAL	AVERAGES) - LOG	GERS DEPTH			
Interval			LYSIS (1 So.	NTERVAL /	AVERAGES) – LOGO Interval	GERS DEPTH	К.	So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
Interval NIL	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	
	CC	DRE ANA	· · · · · · · · · · · · · · · · · · ·					So.	

AMPOL EXPLORATION LTD. #1

SIDEWALL CORES

WELL:	FAIRHOPE	ł
-------	----------	---

			SIDEWA	LL CORES			
Depth	Lithology	Depth	Lithology	Depth	Lithology	Depth	Lithology
555 m	SANDSTONE	454 m	SANDSTONE				
547 m	NO RECOVERY	439 m	NO RECOVERY				
544.5m	SANDSTONE	421 m	NO RECOVERY				
543 m	SANDSTONE	419 m	SANDSTONE				
541.5m	SANDSTONE	390.5m	SANDSTONE				
540 m	SANDSTONE	351.5m	NO RECOVERY				
538.5m	CLAYSTONE	324.5m	SANDSTONE				
536 m	SANDSTONE	314 m	SANDSTONE				
533.5m	SANDSTONE	296.5m	SANDSTONE				
532 m	SANDSTONE	267 m	SANDSTONE				
524 m	NO RECOVERY	257 m	MARL				
511.5m	NO RECOVERY	200 m	SANDSTONE				
483 m	NO RECOVERY	179 m	MARL				
464 m	NO RECOVERY	138 m	NO RECOVERY				
456 m	MARL	136 m	NO RECOVERY				

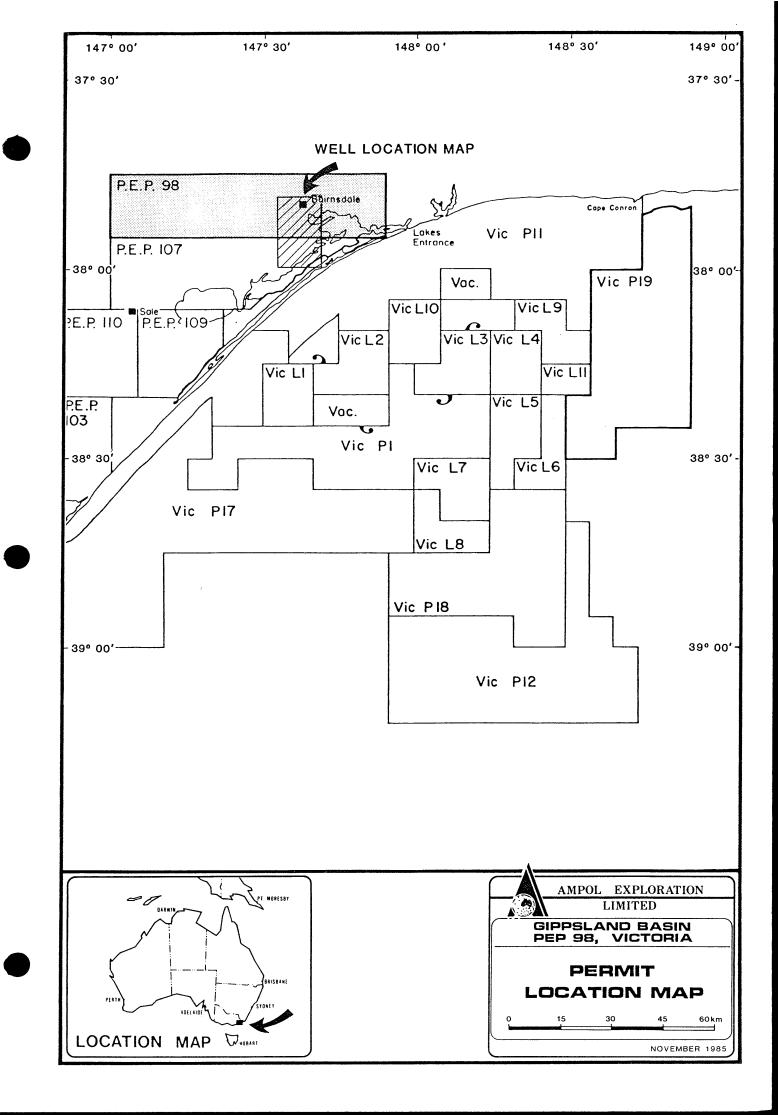
SUMMARY: Fairhope #1 is an exploration well located approximately 12 km south of Bairnsdale in PEP .98 in the onshore Gippsland Basin.

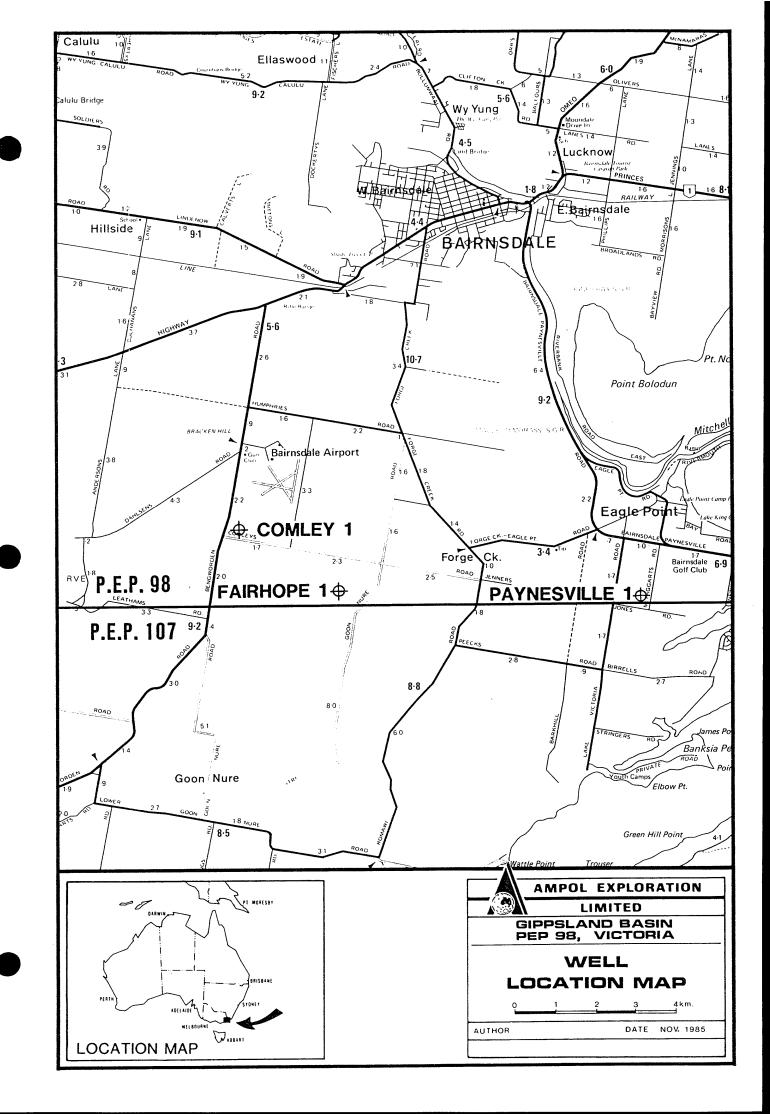
The Fairhope prospect was prognosed to be a fourway closed drape of Tertiary sediments over a basement high. The primary objectives were sandstone reservoirs in the Latrobe Valley Coal Measures.

The well reached a total depth of 569 m in metasedimentary Basement of Ordovician age. The top Latrobe Group was 4 m. low to prognosis and Basement came in 88 m high. No oil or gas shows were encountered and the log interpretation showed the Latrobe Group to be 100% water-saturated. The well was plugged and abandoned. Re-mapping of the seismic for the Fairhope prospect suggests that there is only a maximum 5 millseconds of possible closure at the top of the Latrobe Group.

Wellsite Geologist M. SCHMEDJE

Card Prepared By M. SCHMEDJE


Date: September 1985


LOCATION

.

.

LOCATION

WELL HISTORY

WELL HISTORY

1. GENERAL DATA

Well Name & Number:	FAIRHOPE NO. 1	
Location:	Latitude: 37 ⁰ 54' 48.327" S Longitude: 147 ⁰ 35' 16.37" E Seismic Line: 83A - 21 Shot Point: 337 Elevation-GL: 39.00 m A.S.L. Elevation-KB: 42.96 m A.S.L.	
Licence Area:	Onshore Victoria PEP-98	
Interest Holders:	Ampol Exploration Limited Mincorp Petroleum N.L. National Oil Texas Gas Messrs. A.R. Burns & D.R. Gascoine Phoenix Oil & Gas N.L. Victoria Exploration Bralorne International Petroleum Royalties Pty. Ltd. Versatile Farm Equipment	38.32%* 27.30% 8.75% 6.88% 5.00% 5.00% 5.00% 1.25% 1.25% 1.25%
 * Ampol Explorati earning interes 	on and Victoria Exploration current	Ly
Participating Interests:	Ampol Exploration Limited Victoria Exploration Phoenix Oil & Gas N.L.	85.15% 11.10% 3.75%
Operator:	Ampol Exploration Limited on behalf Mincorp Petroleum N.L.	f of
District:	Bairnsdale, Victoria	
Total Depth:	569.0 m (Driller) 567.5 m (Logger)	
Date Spudded:	June 25, 1985	`
Date T.D. Reached:	June 28, 1985	
Date Rig Released:	June 30, 1985	
Drilling time to T.D.:	3 days	
Status:	Dry hole. Plugged and abandoned.	

1. DRILLING DATA

Drilling Contractor:	Atco-APM Drillin 33 Barfield Cress	_	Ltd.,
	ELIZABETH WEST.	S.A.	5112
Rig:	Atco Rig No. A3		

Atco Rig No. A3

DRILLING RIG:

Trailer mounted Franks Cabot drilling rig Mounted on a 12'8" wide x 47' long Goose Neck trailer Tandem Rear Axles: 16 - 11R 22.5 Radial Tyres Hydraulic support legs: Four Locknut Feature Dog House and Generator Set are mounted on trailer Trailer Weight: 40.857 tonnes Axle Loading: 28.0 tonnes

DRAWWORKS

Franks Cabot, Model 1287-TD Single Drum Drawworks Hydromatic: 22" SR Parmac

DRAWWORKS MOTOR

G.E. Series SGE-76101 electric motor, complete with blower driven by a 5 h.p. electric motor.

HYDRAULIC SYSTEM

1 - 1/4" x 2" hydraulic pump, driven by a 50 h.p. electric motor 575 volts, ID# 9002764-049, connected to a 270 gallon fluid reservoir.

S.C.R. SYSTEM

Manufactured by Integrated Power Systems Corporation

Ratings:	Input Voltage	:	600 VAC 30-3W
	Output Voltage	:	0-750 VDC
	Input Current	:	600 ADC Cont
			1250 ADC Int

GENERATORS A.C.

Generators Nos. 1 and 2 E.M. Bemac Brushless Generator 500 KVA, 400 KW, 600 Volts, 60HZ/110V/220V Rig Supply Powered by a Caterpillar Model D-353E Diesel engine S.C.R. generator system fully inter-dependent

TABLE ROTARY MACHINE

Ideco Model C-175 Rotary Table Size: 17 1/2" x 44" complete with split master bushings

SUBSTRUCTURE

Two Section Box Style Substructure Top Section : ll'W x ll'L x 9' high (BOP Rack) Pony Sub : ll'W x ll'L x 3'8" high Overall Size : ll'W x ll'L x 12'8" high

LIGHTING

Including: Mast Light String, Flood Lights, Building Lighting

MAST

96' Two Section Telescoping Type Mast, manufactured by Greco Steel Corp. Deadline Anchor: Attached to Carrier Crown Blocks: Working Sheaves : 4 - 22" dia. - 1" grooving Fastline Sheave : 1 - 32" dia. - 1" grooving

BLOCKS AND HOOK

Sowa Hook-Block Assembly, 150 ton capacity, Model 3630-4, S/N: 3896-1 with 4 - 30" sheaves, grooved for 1" drilling line

SWIVEL

Oilwell Model No. SA-150 Swivel, Job No. 2048 Kelly Spinner, Foster Model 77, S/N: 77-1-412 complete with 2 - 1" x'60' Long Hydraulic Hoses

KELLY, KELLY BUSHING, KELLY COCK AND STABBING VALVE

1 - 1-1/4" x 40' long Kelly with 4-1/2" XH pin & 6-5/8" Reg. box 1 - Baash Ross 2RCS4 Kelly Bushings 1 - Griffith Upper Kelly Cock, 5000 psi, S/N: 5139 452U-33 1 - Hydril Stabbing Valve with 4-1/2" XH pin and box 1 - Grey Inside B.O.P. with 4-1/2" XH pin and box

PUMPS - SLUSH NO. 1 AND 2

1 - TSM-500 Duplex Slush Pump, Size: 7-1/2" x 16" Maximum Pump Speed: 65 S.P.M. Maximum Fluid End Test Pressure: 3000 psi Pumps loaded w/- 5-1/2" liners Rated at 1902 psi @D 65 SP.M 5.31 Gallons (U.S)/Stroke @ 90% effic.

NO. 1 PUMP ENGINE

G.E. Electric Motor, Model 5-GE-761-JI

NO. 2 PUMP ENGINE

Caterpillar Model D-353 Diesel Engine, 435 H.P.

TANKS - MUD AND MUD SYSTEM

Mud Tanks - Total Capacity 650 BBL
Tank 1
265 BBL capacity in 3 compartments with sand trap
Low pressure mud system with 3 subsurface guns
2 Grey Agitators model 72-0-5 powered by 2 x 5 hp electric motors
1 Harrisburg double deck shale shaker powered by 5 h.p. electric
motor
1 x 3 cone Desander complete sq header manifold and overflow trough
1 Mission 5" x 6" centrifugal pump 1 7/8 shaft
powered by 50 HP 575 volt electric motor
1 x 16" Poorboy Degasser fed by 3" mud line
Tank 2

385 BBL capacity in two compartments (suction tank 342 BBL's and pill) tank of 43 BBL's Connected to tank 1 via 10" suctions and 12" mud trough Low pressure mud systems with 4 subsurface guns Fitted with 2 - 4 x 2 standard mud mix hopper 1 Mission 5" x 6" centrifugal powered by 60 HP 575 volts electric motor 1 x 10 Cone Desilter (Swabco) @D 500 GPM

BLOWOUT AND WELL CONTROL EQUIPMENT

1 - Shaffer "Annular" Blowout Preventer 3000 psi, Assembly
No. 5820'
Trim ' : Internal H₂S
Top Connection : Studded
Btm Connection : Flanged
Bore Size : 11"

1 - Cameron 3000 psi Double Gate Blowout Preventer, Type "SS"
No. 165. Fitted with 4 1/2" Rams x Blind Rams
Bore Size : 11"
Top and Bottom:
Connections : Studded
Outlets : 2 - 3" 3000 psi Flanged
Extra Rams to Fit - 2 3/8", 2 7/8", 5 1/2" and 7"

HYDRAULIC FLUID ACCUMULATOR

1 - Wagner Model 5-80-IBN Hydraulic Fluid Accumulator Unit Four Station Control Manifold with 4 - 20 gallon bladder type Accumulator Bottles, hydraulic pump powered by a 5 HP electric motor 2 - 220 cu. ft. Nitrogen Bottle Back-up System 2 - CIW 3000 and 5000 PSI Hydro Poise Readout Gauges, A-B On/Off Switch panel System is complete with Remote Control Panel, mounted in Dog House

B.O.P SPOOLS AND VALVES

Including:

1 - 900 Series 11" Adaptor Spool with 2 - 3" Flanged Outlets 1 - 3" 3000 PSI McEvoy Gale Valve with Otis Actuator 2 - 3" McEvoy 3000 PSI Gate Valves 2 - 3" 3000 PSI National Ball Valves 1 - 3" 3000 PSI Check Valve

WELL CONTROL MANIFOLD

McEvoy 3" x 2" Well Control Manifold consisting of:

8 - 2" 3000 PSI Flanged McEvoy Gate Valves
2 - 3" 3000 PSI Flanged McEvoy Gate Valves
2 - 2" Three Way Block Connectors
2 - 3" x 3" x 2" Four Way Block Connectors
2 - Willis Multi-Orifice Chokes
1 - CIW, 3000 PSI Pressure Gauge
1 - Marsh 3000 PSI Gauge complete with 100' 1/2" Hydraulic Hose

DRILL PIPE

90 - Joints (approx 900M) 4 1/2" 16.60# Grade "E" Range 2 Drill Pipe W/ 6 1/4" ID 18 Deg. Reed 4 1/2" XH Tool Joints. Drill Pipe is complete with Hardfacing, Series 200 inspected and internall coated with PA-2000.

10 - Joints 4 1/4" XH Heavi-Wate Drill Pipe Range 2 with 4 1/2" XH Box to pin complete ID Tube cote and Hardfacing Premium No. 1.

DRILL COLLARS

20 - 6 1/4 OD Drill Collars, Hardbanded with 4 1/2 Xh Connections 3 - 8 0.D. Drill Collars - Hardbanded - W/- 6 5/8 reg Connections

INSTRUMENTATION

1 - Cameron Type "C" Weight Indicator, 180,000 LB. 2 - 2" Gauges Int. Mud Gauges type "D" (Standpipe) 1 - 2" Cameron type "F" Pressure Gauge (Pump)

TOOL HOUSE

11'6" wide x 30' long x 8'4" high Broken Panel Steel Construction

DOG HOUSE

Mounted on Rig Carrier - Size: 12'W x 12'L x 7'H Dog House Contents: 1 - Knowledge Box 2 - NRL Light Fixtures recessed into roof of building

COMBINATION BUILDING

S.C.R. Building/Generator Room/Fuel Tank

Fuel Tank Size: 10'L x 6'6"H x 45" Deep (approx. 1500 gallons) or 6860 Overall Skid Size: 10'W x 38'L x 10'6"H

CATWALK - PIPE RACKS

Catwalk - 8'W x 40'L 2 - Sets Pipe Racks built with 4" Square Tubing

PUMPS CENTRIFUGAL

Water Circulating:

l - 2" x 2" Centrifugal Pump driven by a 5 HP Lincoln Electric Motor

Rig Wash Pump:

Magikist Model 32-C Triplex pump driven by a 3HP Brook Electric Motor, 230-460 Volts Type "DP", S/N: X807080.

Fuel Transfer Pump:

1 - 1" x 1" Fuel Transfer Pump driven by a 3/4 HP Electric Motor.

MATTING - RIG

4 - 8' Wide x 20' Long x 8" High Rig Mats.

WINCHES

Gearmatic Pullmaster Model H-10 powered by a Commercial 1" x 1" Hydraulic motor, Model D230-154-2, S/N: C39-647, complete with approx. 300' - 1/2" steel cable.

1 - Wireline Survey unit, powered by a Hydrailic motor and complete with 7000' of.092 Wire Line.

FISHING EQUIPMENT

1 - 8 1/8" OD S.H. Series 150 Overshot with 4 1/2" FH Box Connection, complete with 4 3/8", 4 1/2", 5 3/4", 6", 6 1/8", 6 1/4" Basket Grapples and Mill Control Packers for each.

CAMP AND FACILITIES

1 - Toolpush Shack - fully furnished and airconditioned

2 - Toyotas - four wheel drive (crewcab, ute)

3. DRILLING SUMMARY: (K.B. DEPTHS)

Fairhope No. 1 was spudded at 0130 hours on June 25, 1985 in 12-1/4" hole and drilled to 132 metres with surveys. The hole was conditioned and 9 joints of 40 PPF N.80 Range 3 BT&C casing run, landed at 129.05 metres and cemented with 378 sacks Class "A" cement with 2% Calcium Chloride. Good returns were noticed throughout with cement to surface.

After waiting on cement, the bradenhead and B.O.P's were installed, nippled up and then tested to the required pressures.

The float collar and shoe were drilled out with a Gel/Polymer mud and a Pressure Integrity Test held 4 metres below the shoe gave a mudweight limit of 15.5 P.P.G.

Drilling continued in 8-1/2" hole with surveys to 569 metres, (T.D), having improved the properties of the Gel/Polymer mud at 300 metres, where the hole was conditioned and electric logs were run.

Consequently the well was plugged and abandoned with 2 cement plugs and the rig was released at 1300 hours on June 30, 1985.

(a) Drilling Fluid

Chemical additives and mud control services were supplied by Geofluids Pty. Ltd. Drilling Fluids.

Spud mud was used from surface to 132 metres in the 12-1//4" surface hole and a Gel/Polymer mud from 132 metres to 569 metres (T.D) in the 8-1/2" hole.

Properties:

Date	Mudweight (P.P.G)	Viscosity (Secs) (ml	<u>W.L</u> . s/30 min	<u>P.H</u> . s)	Solids
June 25	9.1	35	N/A	9.5	N/A
June 26	9.0	36	N/A	9.0	N/A
June 27	8.8	46	9.6	10.5	3.5
June 28	8.9	41	8.8	9.5	4.0
Chemicals Use	d (12-1/4" Su	rface Hole)			
Milgel	60 sacks	(100 lbs)	2727 kg	JS	
Caustic Soda	2 drums	(50 kgs)	100 kgs	5	

Chemicals Used (8-1/2" Hole)

Milgel	7 sacks	(100 lbs)	318 kgs
Caustic Soda	l drum	(50 kgs)	50 kgs
Celpol	l2 sacks	(25 kgs)	300 kgs

(b) Water Supply

Make-up water for drilling was obtained from the local Shire Council and trucked to location approximately 4 kilometres.

LOGGING AND TESTING

(a) Formation Sampling

Mudlogging was provided by Geoservices Overseas S.A. Spot samples of ditch cuttings were collected at 10 metre intervals from 10 metres to 132 metres. Regular ditch cuttings samples were collected at 5 metre intervals to 425 metres and then at 3 metre intervals to T.D. All samples were washed, checked for fluorescence and visual porosity, described and bagged. One set of washed and dried cuttings samples was forwarded to:

> Oil & Gas Division, Office of Minerals & Energy, Dept. of Industry, Technology & Resources, 151 Flinders Street, MELBOURNE. VICTORIA. 3000

(b) Coring

No cores were cut on Fairhope No. 1.

(c) <u>Sidewall Cores</u>

One gun of sidewall cores was shot. 30 shots were fired and 20 samples were recovered.

(d) <u>Wireline Logging</u>

Electric wireline logging was carried out by Schlumberger Seaco, Inc.

Log	From (m)	<u>To (m</u>)	Temperature (^O C)
DLL-MSFL-GR	567.0	129.5	35.5 (3.5 hrs)
LDT-CNL-GR	567.0	129.5	37.7 (6 hrs)
BHC (Sonic)-GR	560.0	129.5	38.3 (8 hrs)
NGT-GR (to surface)	560.0	249.0	40.5 (10 hrs)

Hole Problems: The hole bridged off at 556 metres, a trip had to be made to clean the hole but logging tools still could not get to bottom. GR run to surface run on NGT and not the BHC (Sonic) as tool malfunctioned in the casing.

(e) Formation Testing

No D.S.T's were attempted on Fairhope No. 1.

(f) Deviation Surveys

Depth (m)	Deviation
31.0	1/40
82.3	10
131.9	10
214.0	1/4 ⁰
321.0	1/40
499.0	1/20

(g) Velocity Survey

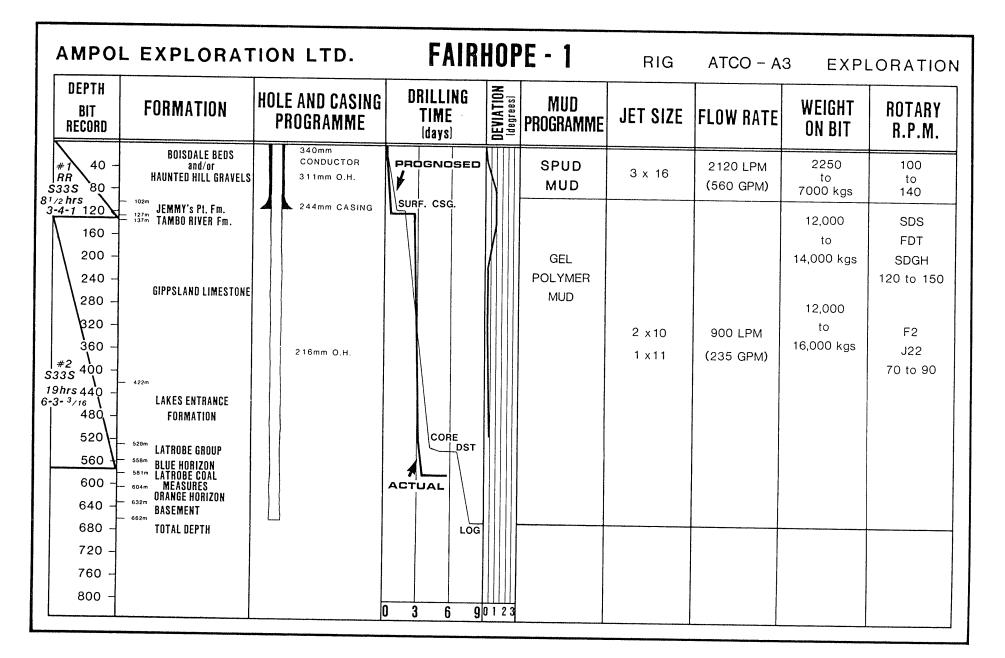
Survey was carried out using a VSP tool with shots taken going down with the tool closed.

Interval surveyed was from 42.9 metres to 561 metres.

37 levels were recorded with a total of 272 shots stacked.

(h) Bits

2 bits were used to drill Fairhope No. 1.


Size	IADC Type	Depth Out (m)	Hours
12-1/4"	1-1-4	132	8.5
8-1/4"	1-1-4	569	19

(i) Completion

Fairhope No. 1 was plugged and abandoned with 2 cement plugs and a cap screwed on the casing stub with a 1" valve installed.

	Plug Interval (m)	Remarks
1.	554-508 m	54 sacks of Class "A" cement across the top of the Gurnard formation.
2.	150-113.7 m	56 sacks of Class "A" cement with 2% CACL2 across the surface casing shoe. (Tagged at 113.7 metres).

GEOLOGY

GEOLOGY

20.

1. SUMMARY

Fairhope #1 is an exploration well located approximately 12 km. south of Bairnsdale in PEP 98 in the onshore Gippsland Basin.

The Fairhope prospect was prognosed to be a four-way closed drape of Tertiary sediments over a basement high. The primary objectives were sandstone reservoirs in the Latrobe Valley Coal Measures.

The well reached a total depth of 569 m. in metasedimentary Basement of Ordovician age. The top Latrobe Group was 4 m. low to prognosis and Basement came in 88 m. high. No oil or gas shows were encountered and the log interpretation shows that the Latrobe Group is 100% water-saturated. The well was plugged and abandoned. Re-mapping of the seismic for the Fairhope prospect suggests that there is only a maximum 5 milliseconds of possible closure at the top of the Latrobe Group.

2. REGIONAL GEOLOGY

Tectonic Setting

PEP 98 is located in the onshore portion of the Gippsland Basin. The Gippsland Basin is the most easterly of several small Mesozoic-Cainozoic basins along the south coast of Australia. The development of the basin was controlled by the opening of the Tasman Sea as the Lord Howe Rise separated from the east coast of Australia late in the Cretaceous.

The basin proper can be considered as that area west of the Lakes Entrance granite high, south of the Tertiary-Paleozoic contact on the north side of the basin and east of a line between the Wilson's Promontory granite and the town of Warragul. The position of the south boundary of the basin is not known as it lies in the area of Bass Strait.

The Gippsland Basin formed on the site of an earlier infilled rift system, (Strzelecki Basin) which developed across the southern margin of Australia during the early Mesozoic. A new rift, the Gippslnd Basin, formed during the Late Cretaceous by down-faulting between two east-west fault systems. The southern margin of the new graben, the Foster Fault System, closely follows that of the ancient rift while the northern boundary, the Rosedale Fault and its offshore extensions, lies some kilometres to the south of the ancient rift margin. Mid-Eocene to Miocene transgressive events combined with progressive subsidence of the platform north of the Rosedale Fault system resulted in deposition of an onlapping series of formations which extended the basin northward to the line of present day paleozoic outcrop. Although normal fault movements predominate, a major phase of wrench faulting along the trend of the Rosedale Fault System during the Late Eocene resulted in the formation of a number of large anticlines which host the major known hydrocarbon reserves of the offshore Gippsland Basin. Although the influence of this event is less pronounced in the onshore areas it probably had significant effects on the stratigraphy, facies distribution and structure. The northern flank of the Gippsland Basin underwent basinwards tilting during the Kosciusko uplift in the Late Pliocene.

Stratigraphy

The basement of the Gippsland Basin is probably very similar to the area of Paleozoic outcrops on the north side of the basin. Ordovician and Silurian sediments, altered by dynamic metamorphism and intruded by granite, probably underlie Mesozoic strata over most of the basin. Highly folded marine strata of Middle Devonian age occur as erosional remnants, or down-faulted blocks, north of the eastern half of the basin. Isolated occurrences of Middle Devonian rocks could be expected in the subsurface in the eastern half of the basin. Overlying these altered and highly folded older Paleozoic rocks on the northern side of the basin is a thick continental sequence of red shales, sandstones, conglomerates and volcanics of Upper Devonian-Lower Carboniferous age. These beds are slightly to moderately folded and probably extend south at least as far as the Lake Wellington area.

2000 T T T T T T T T T T T T T	I Limestone I Limestone I Limestone I Limestone I Limestone I Lance Fm , Valley Sures Sures Sures Sures Construction Const	Sand, gravet and clay <u>Shelleys sand and mari</u> <u>Shelleys sand and mari</u> Limestone and mari <u>Shale clay & mari</u> Greensand <u>Mir & Colouboun Gravet at bas</u> <u>Sand, brown coat clas</u> and gravet <u>Basalt, gravet, coat</u> <u>Shale, mudstone - mudstone</u> <u>Shale, mudstone, graywacke, sand</u> <u>wonotonous sequence of shale, mudstone, graywacke, shale, mudstone, graywacke, shale, mudstone, graywacke, saud-graywacke, sand minor conglomerate <u>Volcanics</u> <u>volcanics</u> <u>rigBaceous, line grained</u> <u>andstone, siltstone and</u> <u>conglomerate with volcanics in basal part</u> <u>Non-marine</u></u>	5 - 2007/18 0-2500 Unkingen probabi 0-650 0-650 Missing in norther part of basin	MESOZOIC TERTIARY		
2000 Image: state st	I Limestone Irance Fm , /alley sures sures sures soup coop? Add Bore only Meriman No. 1 sible cki Group en only in .1 only in .1 sony in .1 solution .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	Limestone and mari Limestone and mari Shale.clay & mari-Greensand Mir & Colguboun Gravel at bas Sand, brown coal.cla, and gravel Basalt.gravel.coal Basalt.gravel.coal Shale.mudstone and porous sand Wonotonous sequence of shale, mudstone.graywacke, thin coal beds and minor conglomerate Non - marine Volcances rigitaceous,tine graned andstones Red and green shale, sandstone aitistone and conglomerate with volcances in basal pari	500-1650 5e 200-776 0-2500 Unk nown probabl very flun 0-650 0-20,000 Missing in northerr Dart of basin 490 in Duck Bay No 1 000-20,000 Missing in northerr Bart of basin 490 in Duck Bay No 1 000-20,000 estimated in Strzetecki Ranges Duck Bay No 1 0-10,000 0-10,000 2396' in Southwes Bainsdale No.1 Absent in eastern part	MESOZOIC TERTIAR	U MIOCENE MIOCENE L OLIGOCENE L OLIGOCENE EOCENE CRETACEOUS L CRETACEOUS 10 U.JURASSIC PERMIAN? L.PERMIAN? L.PERMIAN? L.PERMIAN?	
2000 Transformed sets 4000 Control of the set of the s	trance Fm , /alley sures bup trance Fm , /alley sures bup trang? tran	Shale, clay & mart-Greensand Mir & Colgubioun Gravet at bas Sand, brown coal.cla, and gravet Basalt, gravet.coal Sitistone - mudstone Shale, mudstone and porous Sand Wonotonous sequence of shale, mudstone, graywacke, sub-graywacke, thin coal beds and minor conglomerate Non - marine Volcanics Volcanics Red and green shale, sandstone, sitistone and conglomerate with volcanics in basal part	50 200-776 0-2500 0-400° Unk nown probabl 0-550 0-550 0-550 0-550 0-550 Missing in northerribard 0-550 0-20,000° Missing in northerribard Missing in northerribard 0-50 0-20,000° Missing in northerribard Muck Bay No 1 8236° + in 0.000-20,000° estimated in Strzelecki Ranges 225° in 0uck Bay No 1 624° in 0uck Bay No 1 0-10,000 2396° in Southwes Bairnsdale No.1 Absent in eastern part	MESOZOIC	OLIGOCENE L OLIGOCENE I E COENE L CRETACEOUS L CRETACEOUS 10 U.JURASSIC PERMIAN? L.PERMIAN? L.PERMIAN?	
4000 4000	Valley sures but feeous? doing Bore only feeous? Merima Vo 1 sible to the nformity cki Group en only in and sorty in and sorty in chi Group er Group or	Mir & Colquiboun Gravel at bas Sand, brown coal.cla, and gravel Basait,gravel.coal Sitistone - mudstone Shate, mudstone and porous sand Wonotonous sequence of shale, mudstone.graywacke, sub-graywacke, thin coal beds and minor conglomerate Non - marine Volcanics rigilaceous,tine graned andstones Red and green shale, sandstone silfstone and conglomerate with volcanics in basal part	Se 2007/16 0-2500 0-400 Unking weige obablic very fluin 0-650 0-20,000 Missing in northeri Dart of basin 0-650 0-20,000 Missing in northeri Dart of basin 0-20,000 Missing in northeri Dart of basin 0-20,000 Missing in northeri 0-20,000 Missing in northeri 0-20,000 Missing in northeri 0-20,000 Missing in northeri 0-20,000 0-20,000 0-20,000 0-20,000 0-10,000 2396' in Southwess Bainsdale No.1 Absent in eastern part	MESOZOIC	L OLIGOCENE 10 U EOCENE CRETACEOUS L CRETACEOUS 10 U.JURASSIC PERMIAN? L.PERMIAN? L.PERMIAN? L.PERMIAN?	
4000 6000 6000 10000 12000 14000 14000 16000 Coal Mea Narracan G Strzelecki	sures	and gravel Basalt,gravel.coal Sitistone - mudstone Shate,mudstone and porous Shate,mudstone and porous Shate,mudstone,graywacke, sub-graywacke, thin coal beds and minor conglomerate Non - marine Volcanics rigBaceous,tine graned andstone,sitistone and conglomerate with volcanics in basal part	0-400 Unk nawn probibil 0-650 0-20,000 Missing in northeri Daff of Dasin 490 in Duck Bay No 1 8236'+ in Wellington Park No 10,000-20,000 estimated in Strzetecki Ranges Duck Bay No 1 624 in Duck Bay No 1 0-10,000 2396' in Southwes Bairnsdale No. 1 Absent in eastern part	MESOZOIC	IO UEOCENE I CRETACEOUS IL CRETACEOUS IO U.JURASSIC U.JURASSIC L.PERMIAN? L.PERMIAN?	
Maine Crist Maine Crist Strzelecki Gri Strzelecki Gri 8000 Strzelecki Gri 10000 Maine Grid Unco Strzelecki Gri 10000 Maine Grid Maine Grid 10000 Maine Grid Maine Grid<	croup? inding Bore only roup? is sible informity cki Group chi Group chi Group if Group cr Group or	Sitistone - mudstone Shale mudstone and porous Shale mudstone and porous Monotonous sequence of shale, mudstone,graywacke, thu coal beds and minor conglomerate Non - marine Volcanics rgilaceous,line graned andstones Red and green shale, sandstone,sitistone and conglomerate with volcanics in basal part	Unknown.probabl 0-50 0-50 Missing in northerri Dart of basin 490 in Duck Bay No 1 8236'+ in Wellington Park No 10.000-20,000' estimated in Strzelecki Ranges 0ck Bay No 1 0ck Bay No 1 0	MESOZOIC	L CRETACEOUS L CRETACEOUS 10 U.JURASSIC PERMIAN? L.PERMIAN? L.PERMIAN?	
6000 6000 10000 10000 12000 12000 14000 16000	cki Group	Konotonous sequence of shale, mudstone.graywacke, siub-graywacke, thin coal beds and minor conglomerate Non - marine Volcanics rigilaceous,line graned andstones Red and green shale, sandstone, silfstone and conglomerate with volcanics in basal part	0-650 0-20,000 Missing in northerri Dart of basin 490' in Duck Bay No 1 8236' e in Wellington Park No 10,000-20,000' estimated in Strzelecki Ranges 0-10,000 2396' in Southwes Bairnsdale No. 1 Absent in eastern part	MESOZOIC	L CRETACEOUS 10 U JURASSIC PERMIAN? L.PERMIAN? L.PERMIAN? L.CARBONIFEROUS 10	
6000 8000 10000 12000 12000 14000 16000	cki Group	mudstone.graywacke, sub-graywacke, thin coal beds and minor conglomerati- Non - marine Volcanics rightaceous,tine grained andstones Red and green shale, sandstone,siltstone and conglomerate with volcanics in basal part	Missing in northers part of basin 490' in Duck Bay No 1 8236' + in Wellington Park No 10.000-20,000' estimated in Strzetecki Ranges Duck Bay No 1 0ck Bay No 1	MESOZOI	10 U.JURASSIC PERMIAN? L.PERMIAN? L.PERMIAN?	
8000 10000 12000 12000 14000 16000	en only in only in only in only in ser Group or	mudstone.graywacke, sub-graywacke, thin coal beds and minor conglomerati- Non - marine Volcanics rightaceous,tine grained andstones Red and green shale, sandstone,siltstone and conglomerate with volcanics in basal part	Missing in northers part of basin 490' in Duck Bay No 1 8236' + in Wellington Park No 10.000-20,000' estimated in Strzetecki Ranges Duck Bay No 1 0ck Bay No 1	MESOZO	10 U.JURASSIC PERMIAN? L.PERMIAN? L.PERMIAN?	~
8000 10000 12000 12000 14000 16000	en enly in only in only in er Group or	Non - marine Volcanics Volcanics rgilaceous, line graned and stones Red and green shale, sandstone, siltstone and conglomerate with volcanics in basal part	490 in Duck Bay No 1 8236'+ in Wellington Park No 10.000-20.000' estimated in Strzetecki Ranges Duck Bay No 1 624' in Duck Bay No 1 0-10.000 2396' in Southwes Bairnsdale No.1 Absent in eastern part	MESOZ	10 U.JURASSIC PERMIAN? L.PERMIAN? L.PERMIAN?	~
8000 10000 12000 12000 14000 16000	en only in o.1 only in sonly in ser Group or	Non - marine Volcanics rgflaceous,line graned andstones Red and green shale, sandstone silfstone and conglomerate with volcanics in basal part	8236'+ in Wellington Park No 10.000-20.000' estimated in Strzetecki Ranges Duck Bay No 624' in Duck Bay No 0-10.000 2398' in Southwes Bairnsdale No.1 Absent in eastern part	MES	PERMIAN? L.PERMIAN? L.CARBONIFEROUS 10	~
12000 Avon Riv	rer Group or	Volcanics rgflaceous,tine graned andstories Red and green shale, sandstone,siltstone and conglomerate with volcanics in basal part	10.000-20,000 estimated in Strzelecki Ranges Duck Bay No 1 0ck Bay No 1 0ck Bay No 1 0ck Bay No 1 0ck Bay No 1 0-10,000 2398' in Southwes Bairnsdale No. 1 Absent in eastern part	S E	L.PERMIAN?	~
12000 Avon Riv	rer Group or	rgitaceous.line graned andstones Red and green shale, sandstone,siltstone and conglomerate with volcanics in basal part	Strzelecki Ranges Duck Bay No 1 624 in Duck Bay No 1 Duck Bay No 1 0-10,000 2396 in Southwes Bainsdale No.1 Absent in eastern part	X	L.PERMIAN?	~
12000 Avon Riv	rer Group or	rgitaceous.line graned andstones Red and green shale, sandstone,siltstone and conglomerate with volcanics in basal part	0-10,000 2398'ın 0-10,000 2398'ın Southwes Barnsdale No.1 Absent in eastern part		L.PERMIAN?	
12000 12000 12000 14000 16000	rer Group or	rgitaceous.line graned andstones Red and green shale, sandstone,siltstone and conglomerate with volcanics in basal part	0-10,000 2398'ın 0-10,000 2398'ın Southwes Barnsdale No.1 Absent in eastern part	7	L.PERMIAN?	
12000 12000 140000 140000 14000 14000 14000 14000 14000 14000 14000	or	sandstone siltstone and conglomerate with volcanics in basal part	0- 10,000 2398' in Southwes Bairnsdale No. 1 Absent in eastern part	7	L.CARBONIFEROUS	
Avon Riv Iduana Cr	or	sandstone siltstone and conglomerate with volcanics in basal part	2398' in Southwes Bairnsdale No. 1 Absent in eastern part		to	
lguana Cr	or	sandstone siltstone and conglomerate with volcanics in basal part	Bairnsdale No. 1 Absent in eastern part		to	
14000 vvvvvvvvvvv vvvvvvvvvv 16000	reek Beds	in basal part	eastern part			
		Non-marine	or the basin	1 1		
16000	mund					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\left  \right $	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-			5000' +			
	bera Beds, L n Group	imestone,dolomite, sittstone and shale with basal	at Tabberabbera		MIDDLE	
18000 ar	nd	conglomerate. Bioherms in Buchan Group	at Buchan	0	DEVONIAN	
	,	Marine	1200'+ at Waratah Bay	<b>  -</b>		
				0		
				N		
VVVVVVVV VVVVVVV VVVVVVVV VVVVVVVV	r Volcanics	Flows and pyroclastics	0-2500	о ш	MIDDLE to LOWER DEVONIAN	
2000		~~~~~				
				4		
				٩		
4000						
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					SILURIAN	
6000 Baser	ment sa	Strongly folded slate.shale, indstone and quartzite with	30,000' +		and ORDOVICIAN	
		rtz veins intruded by granite and other igneous rocks				
27277777777777777777777777777777777777					Undifferentiated	
8000 -						
				MPO	DL EXPL	ORATIO

选手

23.

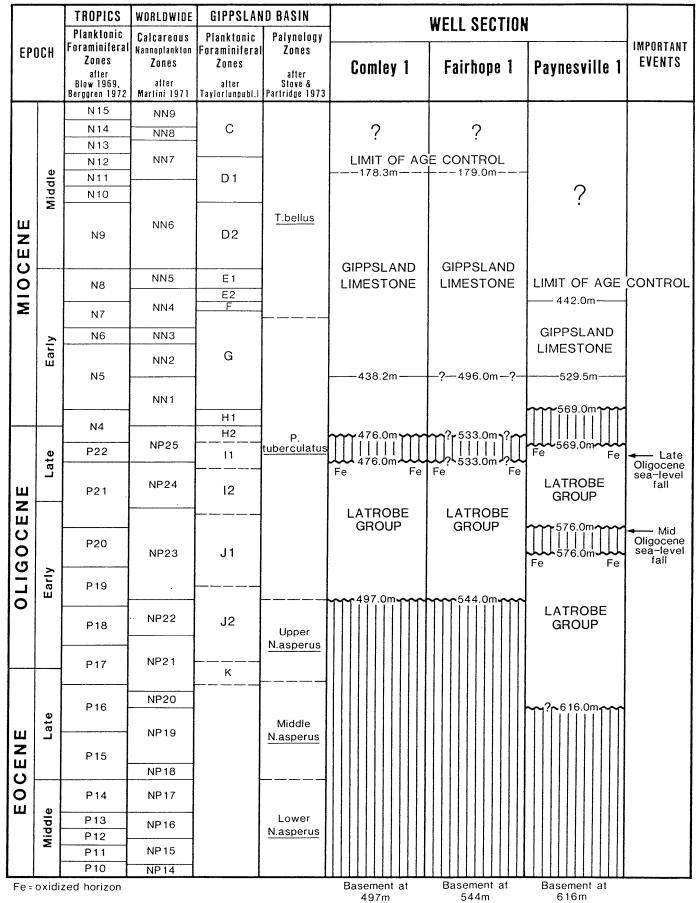
No Permian sediments are known in the subsurface of the basin. However, conglomerate exposed along a major fault on the south side of the Carrajung uplift, is thought to be glacial tillite of Permian age.

The major structural trend in the Tasman geosyncline is north-south, and because the Paleozoic rocks in the sub-surface of the Gippsland Basin are an extension of this geosyncline the same trend is thought to persist.

No sediments of Triassic age are known in the Gippsland Basin.

The oldest sediments in the basin are those of the Early Cretaceous Strzelecki Group which were deposited in the earlier Strzelecki rift system. Where it is known on the uplifted and eroded flanks of the basin, the Strzelecki Group consists of distinctive non-marine greywackes, shales and minor coals. These rocks were deposited in coalescing alluvial fan and alluvial plain complexes.

Overlying the Strzelecki Group, often with pronounced angular unconformity, is the Latrobe Group. Onshore in the western portion of the basin, the "Latrobe Valley Coal Measures" contain the world's largest commercial brown coal deposits. These are Miocene to Oligocene in age. Offshore a similar sequence is known from exploratory oil wells where the Latrobe Group ranges in age from Late Cretaceous to Late Eocene. The group thins rapidly north of the Rosedale fault system but is still present at Bairnsdale (located in PEP 98) near the northern limit of the Basin. Well control is very sparse but there may have been several of these embayment areas along the northern basin edge interspersed with locally high areas of non-deposition during Late Latrobe time.


Offshore the Latrobe Group consists of up to 5,000 metres of sandstone, siltstone, shale and coal deposited largely in non-marine environments. Marine incursions are indicated by zones rich in dinoflagellates which have assisted in the subdivision of this otherwise monotonous sequence. In the southeastern part of the basin, foresetted strandline sandstones which have been recognized in well intersections and on seismic records, represent a limit of non-marine sedimentation in the basin at that time. Since the Tasman Sea existed as early as the Late Cretaceous, marine sediments laterally-equivalent to the Latrobe Group may be preserved in deep water along the southeastern margin of the basin.

Onshore to the north of the basin centre, the Latrobe Group consists of up to some hundred metres of fluvial sandstones and gravels interbedded with siltstones and shales and some coals. The sequence appears to be fining upwards with braided stream deposits succeeded by meandering stream deposits with perhaps some marine influence towards the top of the Latrobe transgressive sequence. The Latrobe group here is probably intermediate in age between the older sequence in the offshore area and the younger sequence in the western onshore Coal Measures area.

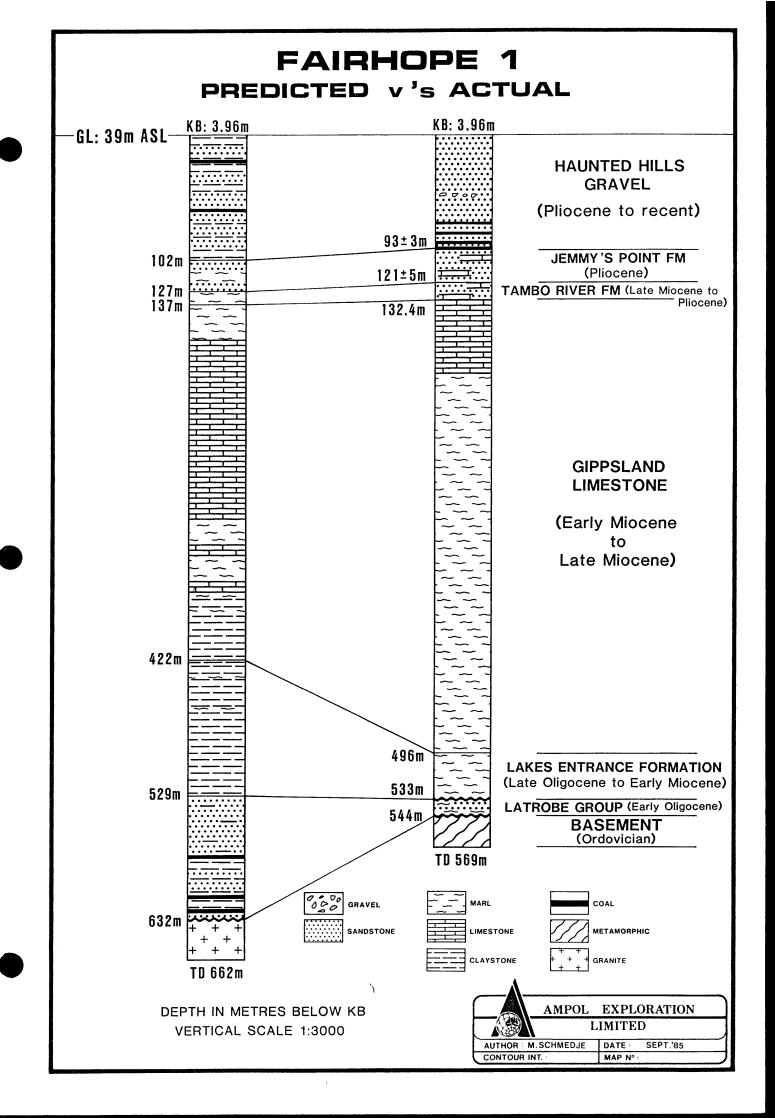
Uplift of the northeastern part of the basin during Late Eocene periods of wrench faulting, led to the formation of submarine channels in the top of the Latrobe Group which was simultaneously subject to marine

# Tentative chronostratigraphic correlation between COMLEY 1, FAIRHOPE 1 & PAYNESVILLE 1 wells,

onshore Gippsland Basin - revised by Ampol Exploration Ltd



transgression. Marine greensands at the top of the Latrobe Group mark the onset of Late Eocene transgression, and are overlain by marine shales and marls of the Lakes Entrance Formation (Oligocene to Early Miocene). Deposition of shallow marine shelf carbonates of the Gippsland Limestone began in the Early Miocene with laterally equivalent shales of the Lakes Entrance Formation in deeper water.


A marine environment continued into Pliocene time but then gradual retreat of the sea ended marine deposition in the Gippsland area of the Gippsland basin. From Upper Pliocene to recent time non-marine conditions prevailed, and a cover of sand, gravel and clay was deposited over part of the basin (Haunted Hills Gravel).

Although only a limited amount of time-stratigraphic data is publicly available it is clear that many of the lithostratigraphic units recognised in the Gippsland Basin are diachronous.

#### Hydrocarbon Occurrence

Apart from the vast accumulations of oil and gas in the offshore Gippsland Basin, only one field has been discovered onshore to date. The Lakes Entrance oil field is located within the original limits of PEP 98 and was discovered in 1924. During the life of the field 64 bores were drilled and a total of 10,000 barrels of 15.7° A.P.I. gravity crude oil produced (peak production was 572 barrels per annum). The oil is an asphaltic base crude which is devoid of gasoline and The oil is stratigraphically trapped in a kerosene fractions. glauconitic sandstone (greensand) placed at the base of the Lakes Entrance Formation/top Latrobe Group. The areal extent of the greensand is approxmately 15  $\text{km}^2$ . Porosity and permeability are highly variable throughout the reservoir but it is usually tight and unproductive. Geochemical analysis of the Lakes Entrance oil shows that it is heavily biodegraded. The gas associated with the oil is rich in  $CH_4$  (up to 94%) and N₂ (up to 71%). The composition of this gas is markedly different to that produced in the offshore Gippsland Basin. The gas in the Lakes Entrance field is likely to have been derived from biodegradation of the crude oil after it had migrated into the Lakes Gravel (Colquhoun Gravel) with excellent reservoir Entrance trap. potential underlies the greensand. Wireline logs show the gravel to be Prior to the Kosciusko uplift late in the 100% water-saturated. Pliocene it is possible that the gravel may have contained significant quantities of oil. Basinward tilting would have resulted in the flushing of the gravel leaving only residual oil in the less porous overlying greensand.

26.



#### 4. SUMMARY OF STRATIGRAPHY

HAUNTED HILLS GRAVEL: Surface to 93+3M (89+3M) (Pliocene to Recent)

Predominantly SAND: unconsolidated, coarse to very coarse grained, subangular to subrounded, milky to translucent, moderate to well sorted. Occasional lithic grains and muscovite. Good visual porosity

with common GRAVEL at 50 m: pebbles up 1/2 cm. diameter, mainly fine grained brown quartzite

with abundant LIGNITE from 74 m: black, dull, very poorly indurated, soft, stringy, woody texture, fissile in part

with abundant SANDSTONE from 74 m: very fine grained quartz, grey, non-calcareous, abundant argillaceous matrix, poorly sorted, soft, abundant carbonaceous matter, micaceous. Poor visual porosity.

JEMMY'S POINT FORMATION: 93+3 to 121+5m (28+8M) (Pliocene)

Predominantly SANDSTONE A/A, calcareous and pyritic

with common to abundant CARBONATE: unconsolidated, coarse to very coarse fossil fragments.

TAMBO RIVER FORMATION: 121+5 m to 132.4 m (11.4+5 m) (Late Miocene to Pliocene)

Predominantly SANDSTONE: A/A, less consolidated, more argillaceous with abundant CARBONATE: A/A.

GIPPSLAND LIMESTONE: 132.4m to 496 m (363.6 m) (Early Miocene to Late Miocene)

Predominantly CARBONATE to 194 m: unconsolidated, coarse to very coarse, angular to subangular, off-white & smokey grey, fossil fragments. Poor to moderately well sorted, good visual porosity.

Predominantly MARL from 194 m: grey, soft, unconsolidated, poorly sorted micrite and fossil fragments, rare glauconite and pyrite. Nil visual porosity

with occasional ARENACEOUS LIMESTONE: grey, bioclastic, fine grained, moderately indurated, glauconitic. Nil visual porosity

with rare CLAYSTONE: pale green-grey, calcareous, soft, poor to moderately indurated, subfissile in part.

LAKES ENTRANCE FORMATION: 496 to 533 m (37 m) (Late Oligocene to Early Miocene) 28.

Predominantly MARL: A/A, common to abundant glauconite, trace pyrite

with minor SANDSTONE: grey, very fine grained, moderately indurated, hard, calcareous, glauconitic?/chloritic?, pyritic. Poor visual porosity

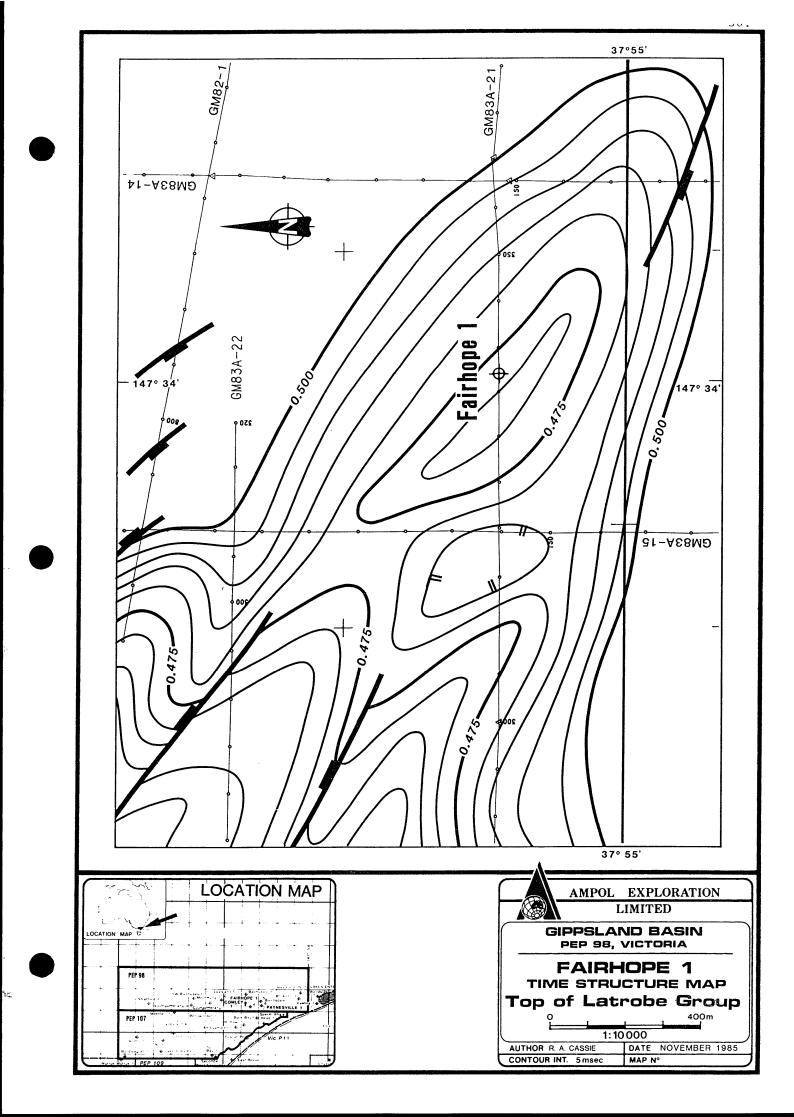
with minor CLAYSTONE: A/A

LATROBE GROUP: 533 to 544 m (ll m) (Early Oligocene)

Predominantly SANDSTONE: Type A, dominate at top, red-brown, fine grained, translucent quartz, poorly sorted, calcareous, abundant glauconite, hard, indurated, brittle, trace pyrite. Poor visual porosity. Type B, dominate from 536 m, coarse grained, subangular, translucent, well sorted quartz, common pyrite and trace glauconite. Moderate visual porosity

with common MARL A/A.

BASEMENT: 544 to 569 m (25 m) (Ordovician)


Predominantly QUARTZITE: coarse grained, angular to subangular, translucent quartz with trace to abundant red-grey argillaceous matrix and pyrite. Poor visual porosity.

#### 5. GEOPHYSICAL ANALYSIS

Fairhope-1 was predicted to penetrate a 103m thick section of Latrobe Group but only 11m of Latrobe Group was present; the basement was encountered 88m high to prediction. The top of the Latrobe Group was only 4m low to prediction. The vertical seismic profile (VSP) and well checkshot survey indicate that the top of the Latrobe Group is a half-cycle higher than mapped at 0.464s rather than 0.470s This correlation error was countered by the use of an average velocity of 2070 m/s as against the actual velocity of 2110 m/s.

Post-drill mapping of the prospect shows that the top of Latrobe Group structure is basically_unchanged... The positive half-cycle at 0.472 has been mapped as there is no significant difference in the structure, in this area. The mapping indicates that the well was located slightly off the crest of a northwest trending anticline and was probably within a small closure. The critical dip direction for the trap is to the northwest where closure depends on only a few milliseconds of relief on line GM83-15. Some doubt must exist about the closure.

The most surprising result was the very thin Latrobe Group. A number of coherent reflectors below the top of Latrobe Group had been interpreted as being coal measures and other units within a locally thick section. The exact nature of these reflectors is uncertain but they may be due to the following causes:



- 1) multiples the synthetic seismogram (GEOGRAM) shows a number of strong multiples below the basement reflector, which would show up even stronger using a short scalar. The best correlation between the synthetic and the actual seismic section was achieved using the primaries and multiples synthetic. The VSP also showed a large number of multiples in the downgoing wavelet, which may not have been fully attenuated by the processing of the actual seismic section.
- 2) Sideswipe some of the events may be due to reflectors off the line of the section. It is believed that the area has a complicated basement structure which could lead to stray events being recorded.
- 3) Basement layering while drilling, a weathered basement layer was recognized over fresh basement but the wireline logs did not go deep enough to confirm a difference in velocity between these two layers.

The effects of the multiple and off-line reflectors could be tested by reprocessing, possibly using the VSP down-going wavelet to design the deconvolution operator, and migration; although the latter will not remove off-line events it will remove other sources of diffraction, sharpen fault cuts and generally improve structural interpretation, allowing a more accurate recognition of basement lows and associated thick Latrobe Group sediments.

#### 6. POROSITY AND PERMEABILITY

Wireline log evaluation indicates the Latrobe Group is the only sequence in Fairhope #1 with effective porosity. Log calculated porosities range from 0% to 19% with an average of 6.2% Analysis of wireline logs also indicates that the Latrobe Group is very clayey and that the sand content increases with depth while the clay and glauconite content decrease.

Log evaluation indicates that basement has no effective porosity although up to 8% porosity may exist at 556.5 m. Basement is unlikely to be permeable unless it is fractured.

#### 7. HYRDROCARBONS

No significant indications of hydrocarbons were encountered in Fairhope #1. Evaluation of wireline logs show that the Latrobe Group is 100% water-saturated.

Analysis of the headspace gas from ditch cuttings yielded the highest readings from 488 to 508 m. at the base of the Gippsland Limestone and top of the Lakes Entrance Formation (560 ppm Cl, 17 ppm C2 and 2 ppm C3). Headspace gas levels in the Latrobe Group were significantly lower (294 ppm Cl, 1 ppm C2, 1 ppm C3).

#### 8. CONCLUSIONS AND CONTRIBUTIONS TO GEOLOGICAL KNOWLEDGE

- Fairhope #1 was drilled to test sandstone reservoirs of the Latrobe Group. The objective was encountered at 533m KB, 4m low to prognosis.
- The basement was encountered at 544m KB, 88m high to prognosis. This reduced the total thickness of the Latrobe Group from the predicted 103m to only 11m. A number of coherent reflectors are present below the top of Latrobe Group and had been interpreted as being coal measures and other units within a locally thick Latrobe section.
- Mapping indicates that the well was located slightly off the crest of a northwest trending anticline and was probably within a small closure.
- The top 3m of the Latrobe Group consists of glauconitic siltstone, below which the sand content increases. The bottom 1.5m consists of almost clean sandstone with a porosity of 17%. The sediments are water-wet.
- . No significant hydrocarbon shows were encountered.
- The well was plugged and abandoned.

# APPENDICES

#### APPENDICES

ξņ:

#### APPENDIX 1.

#### DAILY DRILLING REPORTS

		AI	MPC	)L	EXPL	OR	ATI	10	N LII	MI	TEI	)			
		w	WELL: FAIRHOPE #1 DAILY DRILLING REPORT 1									Τ ₁			
RIG SU	PERVISO	дJ.H	ANSON		CONTRACTO	R AT	со	RIG	A3	то	OLPUSH	ER	B. NIE	HAUS	
DATE 25.6.8		E SPUD	DEPTH 42M		PREVIOUS DEPT	ГН F	FOOTAGE 42M		BIT SIZE 311MM	1	<b>SING</b> 06MM		SHOE AT 6M		
ACTIVI	ΓY	DRILL	ENG 31	1MM	HOLE										
BHABI	T/2 x	203mm I	D.C's	N	MUD RECORD		IN		OUT	PL	IMP DATA	٩	1	2	
2 x 15	2mm D.	с.		V	Vt S.G.	:	1.03			МАКЕ					
LENGTH	1	37.8M	<u> </u>		/is	1	32			MODEL TS-500				TSM-50	
вна то	TAL WT			V	V.L.					LII	VER		140	140	
DRILL P	IPE	1	1	P	νV	s	PUD			ST	ROKE		406	406	
TOT. ST	п. WT.	1	1	Υ	′P					S.I	 Р.М.		65		
W.O.B.		2-4000	)kg						ESSURE		400	-			
BIT NO		1 R.R.							1306	<u> </u>					
TYPE		\$33 <b>\$</b>	Chlorides Total G.P.M.						1306						
JETS		3 x 16	;	pH D.C. Annul Vel 30						30 M/MIN					
DEPTHI	N	0	1	к	CI					D.P. Annul Vel 23.2 M/I			M/MIN		
FOOTAG	E	42M	1	s	olids					Circ. Time					
RPM		100	1	Т	EMP.					Ho	Hole Volume 3.2 M ³			₄ 3	
ROT. HR	S	4		A	dditives	GEL:	25 C	AUSI	FIC: 2	Pit Volume 15.9 M ³			4 ³		
CONDIT	ION	IN,													
FROM	то	HR	s		OPERAT	TIONS	SUMMAF	RY		T	DAY CO	ST	\$1	07,387	
0600	2400	18	N	IOVE	RIG FROM	COMLE	Y#1 &	RIC	G UP		Previous	Cos	t		
2400	0130	14	I	RILI	L RATHOLE	& RIG	TO SI	PUD			Cumulat	tive C	ost \$10	07,387	
0130	0530	4	s	PUD	IN & DRIL	L 311	MM HOI	LE I	TO 42M		Major Ite	ems			
0530	0600	12	C	CIRCI	JLTE & RUN	SURV	'EY @ :	31M	= ¹ ₄ DG	R.	RIG MO LEASE	OVE PRI	; EP} \$10	04,000	
				<u> </u>			· ••• ·							· · · · · · · · ·	
								•			BUDGET	•			
				<u></u>							Cond.				
											Surf.				
										Int.					
										Prod.					
NEXT 24 HRS DRILL SURFACE HOLE; RUN & CEMENT 244MM CASING															
DISCUSS	ION	·····													
										<u>.                                    </u>			1-7-12-1-1		
001170											-1				
CONTRAC 14	JUR PER	S.			AMPOL PER	s.				HERS		TC	TAL		
F-1			2 5 21												

(

Ę

		WE	ELL:	FAIRHOPE #	1		DAILY	DRILLING REPORT 2					
RIG SU	PERVISO	ЯІ.С. Н	OFFMEIE	MEIER CONTRACTOR ATCO RIG A3				TOOLPUS	TOOLPUSHER B. NIEHAUS				
DATE 26.6.8		E SPUD 2	DEPTH 132M	PREVIOUS DEP 42M	TH FOOTA		BIT SIZE 311MM	CASING 244MM	1	<b>SHOE</b> 129.		м	
ACTIVI	TY NI	PPLE UP	BOP										
вна				MUD RECORD IN OUT			OUT	PUMP DA	ATA	1		2	
				Wt			MAKE TSM-500 TSM				SM-5		
LENGTI	4	123.1		Vis 1.09			MODEL						
вна то	TAL WT	58K.		W.L.	-			LINER		51		5 ¹ ₂	
DRILL P	IPE			PV	_			STROKE		16		16	
TOT. ST	R. WT.			YP				S.P.M.		42		42	
W.O.B.		5ĸ.		GELS	-	-		PRESSU	RE	550			
BIT NO		lrr		FILT CK.	-			G.P.M.		851		851	
TYPE		S335		Chlorides	-			Total G.P.	м.	1702			
JETS		3 x 16		рН	9.5			D.C. Ann	ul Vel	38.	4 M	/MIN	
DEPTH	N	0		КСІ				D.P. Ann	ul Vel			/MIN	
FOOTAG	iE	13.2 M		Solids		1		Circ. Time	•	28			
RPM		120		TEMP.							5M3		
ROT. HR	S	8.5,	Additives MILGEL-60 Pit Volume					e		7M3			
CONDIT	ION	4-4-1		CAUSTIC - :	2								
FROM	то	HRS	5	OPERAT	FIONS SUMM	ARY		DAY C	OST	6	16	,705	
0600	0700	1	DR	DRILL FROM 42M TO 60M				Previo	us Cost			,387	
0700	0800	1	REI	REPAIR PUMPS				Cumu	lative C	ost ₆	124	,092	
0800	1130	3.5		DRILL & SURVEY 60M TO 120M				Major	ltems				
1130	1230	1	WIE	PER TRIP - ST	RAP OUT			CEMENTING SERVICE					
1230	1300	.5	DRI	ILL FROM 120M	1 TO 132M			CEMEN	r & Ç	HEMI		5	
1300	1400	1	CIF	RC HOLE CLEAN	SPOT HI	VIS	MUD						
1400	1500	1		H – LAY OUT 2				BUDG	ET	·	•		
1500	1830	3.5	RIG	G TO'& RUN 24	4MM CSG &	CI	RC	Cond.					
1830 2000	2000	1.5	TES	T CMT LINES				Surf.					
0200	0200	6											
0200	0600	4	4 CUT COLLAR - LAY OUT LANDING JOINT - Prod. INSTALL CSG HEAD - INSTALL BOP STACK										
NEXT 24 HRS PRESS TEST BOP - DRILL 8 ¹ / ₂ HOLE DISCUSSION SURVEYS 82.3M - 1 DGR / 131.97 - 1 DEGREE													
CMT SA	MPLES 1			<u>4 HOURS - HA</u> S (RISER HEI		<u>6 н</u> с	OURS.						
	CTOR PER		101010104		·····			1580		ד מידי			
CONTOA				AMPOL PERS. OTHERS						TOTAL			

ţ

(

		w	ELL:	FAIRHOPE NO.1	L	DAILY	DRILLI	NG REF	POR	Γ ₃
RIG SU	PERVISO	я _{т. но}	FFMEIER	CONTRACTOR	ATCO R	IG _{A3}	TOOLPUS	SHER B	NEIH	
<b>DATE</b> 27/6/8	SINC	E SPUD	DEPTH 132m	PREVIOUS DEPTI 132m		BIT SIZE 216mm	CASING 244r	SH	OE AT	
ACTIVI	TY RIG	UP TO	P/TEST	CASING.	······			<b>-</b>		
BHA B	IT-BIT	SUB-14x	165mmD.		IN	OUT	PUMP D	ATA	1	2
6 x HW	IDP			Wt	1.08		MAKE			
LENGT	н	1		Vis	36		MODEL			
вна то	DTAL WT	1		W.L.			LINER			
DRILL F	PIPE	1		PV			STROKE			
TOT. ST	R. WT.	<u> </u>	<u>  </u>	YP			S.P.M.			
W.O.B.				GELS			PRESSU	RE		
BIT NO				FILT CK.		<u> </u>	G.P.M.			
TYPE		2 S33S	<u> </u>	Chlorides			Total G.P.			
JETS		3x11		pH	9.0					
DEPTH	IN	132m		KCI		· · · · <u>· · · · · · · · · · · · · · · </u>		D.C. Annul Vel		
FOOTAG				Solids		·····	Circ. Time			
RPM		-								
ROT. HR	c		_ TEMP. Hole Volum					<u> </u>		
CONDIT				Additives	NIL Pit Volume					
FROM	r1	IN,		005047						
	то	HR		•	ONS SUMMARY			Providuo Cost		6,480
0600	1600	10		ISTALL BOP STA	ACK & NIPPI	E UP				4,092
1600 1930	<u>1930</u> 2400	<u> </u>		<u>PAIR PIPE RAM</u> RESSURE TEST (		the second s		lative Cost	\$150	<u>,578</u>
	2400			LESSURE TEST (	HOKE MANIF		Major	Items		
				P STACK, KELI						
			VA	LVES - REPAIR	R 3" VALVE	IN CHOKE				
			MA	NIFOLD.				· · · · · · · · · · · · · · · · · · ·		
2400	0200	2	MA	KE UP BHA & F	R.I.H. TO		BUDG	1		
0200	0600	4	4 DRILL ON PLUG AT 113.63M Cond.							
					·····		Surf.			
							Int.	- <b> </b>		
		Prod.								
NEXT 24 HRS DRILL OUT & DRILL 81/2 HOLE TO CORE POINT. DISCUSSION NO PARTS ON RIG TO REPAIR 3" MCEVOY VALVE - HAD PARTS DELIVERED										
DISCUSS					MCEVOY VAL	VE - HAD	PARTS DI	ELIVEREI	)	·
	IN	TAXI F	ROM MELI	BOURNE	·					
CONTRAC		s.		AMPOL PERS.		ΟΤ	HERS	TOTA	L.	

(

|--|

(

# AMPOL EXPLORATION LIMITED

WELL: FAIRHOPE NO. 1

DAILY DRILLING REPORT 4

RIG SU	PERVISOR	71.C. 1	HOFF	MEIER	CONTRACTOR	ATCO	R	IG _{A3}	т	OOLPUSHEF	≀в.	NIEHA	AUS
<b>DATE</b> 28/6/8		e spud 4	<b>DE</b> F 51		REVIOUS DEPT	H FOOT 379	AGE	<b>BIT SI</b> 216 m		CASING 244 mm	S	HOE AT 129	
ACTIVI	ry _{DRIL}	LING 3	216	mm HOL	E								
BHABI	T-BITS	UB-14x	5 ³ /8	" D.C.	AUD RECORD	IN		OUT		PUMP DATA		1	2
6 HWDP		•		v	Vt S.G.	1.06			МАКЕ		TSM		
LENGTH	1	185.4			/is	45				MODEL		500	
вна то	TAL WT	15,900	Okg	v	V.L.	8.6				LINER		140	L
DRILL P	IPE			Р	v	15				STROKE		406	
TOT. ST	R. WT.	40,000	Dkg	Y	'P	18		_,		S.P.M.		43	
W.O.B.		8-110	Dkg	- 6	ELS	3/11				PRESSURE	·	720	
BIT NO		2		F	ILT CK.	3 mm				G.P.M.		890	
TYPE	····	S33S		c	hlorides	200				Total G.P.M.		890	
JETS		3 x 11		p	н	10				D.C. Annul V	el	58.5 1	M/MIN
DEPTH	N	132m		к	CI					D.P. Annul V	el	33.8 1	M/MIN
FOOTAG	E	379M		s	Solids 3.5					Circ. Time	·	70	
RPM		110	<u> </u>	т	TEMP. 27 DGRS. C.					Hole Volume		14.3m ³	
ROT. HR	S	14 ,	Additives CAUSTIC 1 -							Pit Volume		47.7m	3
CONDIT	ION	IN	CELPOL 6 - MILGEL 7						1				
FROM	то	HF	RS		OPERATIONS SUMMARY					DAY COS	T	\$_;	12,183
0600	0800	2	2	DRILL	DRILL PLUG - FLOAT COLLAR & CMT					Previous	Cost	\$1	50,578
0800	0930	]	5	CMT CONDUCTOR TOP					Cumulati	ve Co	st \$1	62,761	
0930	1130	2	?	DRILL	DRILL CMT & TEST CSG TO 500 PSI					Major Iter	ns		
1130	1230	1	·	DRILL	DRILL CMT - SHOE & FORMATION TO 1:35M								
1230	1300		5	CIRC	CIRC & PIT EQUIV.M/W: 150PSI W/1.08 N					UD = 1.8	6 C2	AP	
1300	1400	1		FINIS	FINISH REPAIRS TO CHOKE MANIFOLD							<u>_</u>	
1400	1500	1	·	TEST (	CHOKE MANIF	OLD O.K	•			BUDGET			
1500	0530	14	.5	DRILL	& SURVEY F	ROM 135	то	511M		Cond.			-
0530	0600		5	CIRC S	SAMPLE @ 51	1M				Surf.			
										Int.			
										Prod.			
NEXT 24		CUT C	TUT CORE # 1 - DRILL TO T.D LOGGING										
DISCUSS	SION	SURVE	SURVEYS: $-214 = 4 - 321 = 4 - 499 = 4 DEGREES.$										
CONTRA	CTOR PE	R PERS. OTHERS TOTAL											
	HACTOR PERS.         AMPOL PERS.         OTHERS         TOTAL           13         2         6         21												

# AMPOL EXPLORATION LIMITED

WELL: FAIRHOPE # 1

| DA

### DAILY DRILLING REPORT 5

RIG SU	IPERVISOF	₹ I. HOF	HOFFMEIER CONTRACTOR ATCO RIG A3 TOOLP						B. N	IEHA	US
<b>DATE</b> 29.6.		E SPUD	<b>DEPTH</b> 569м	PREVIOUS DEPT 511M	" <b>Н FOOTA</b> 58М		SIZE CA	ASING 244mm	<b>SHO</b>	<b>E AT</b> 9.06	
ACTIVI	TY LOG	GING W/	SCHLUMB	ERGER							
BHA ^B	IT/B.SU	B/14x6 ¹	" D.C.	MUD RECORD	IN	0	ΙΤ ΡΙ	JMP DATA		1	2
6 HWDI	2			Wt S.G.	1.07		м	AKE			
LENGT	н	185.4M		Vis 40			м	ODEL	TSM	-500	
ΒΗΑ ΤΟ	DTAL WT	16,000	kg				LI	NER	14		
DRILL F	PIPE			PV	13		SI	TROKE	40	6	
TOT. ST	R. WT.	42,300	kg	YP	16		S.	P.M.	4	3	
W.O.B.		11-13,	500kg	GELS	3/6		PF	RESSURE	77	5	
BIT NO		2		FILT CK.	2		G.	P.M.	88	9.	
TYPE		S33S		Chlorides	200		То	tal G.P.M.	889	9	
JETS		3x11		рН	9.5		D.	C. Annul Vel	58	.5 M	/MIN
DEPTH	IN	132M		КСІ			D.	P. Annul Vel	33.	33.8 M/MIN	
FOOTAC	SE	437M		Solids	4%			<u>.</u>		82	
RPM		60-110		TEMP. 30 DGRS.C				le Volume	20	. 7M3	
ROT. HR	S	19 ,		Additives	CELPOL	: 6	Pit	Volume	52	. 5M ³	
CONDIT		6-3-3/	16					· · · · · ·			
FROM	то	HRS	5	OPERAT	IONS SUMM	ARY		DAY COST		\$ 1	1,539
0600	0630	<u><u></u></u>	CIRC	CIRCULATE SAMPLE @ 511M					st	\$16	2,761
0630	0700	12	DRII	DRILL 216MM HOLE TO 521M					Cost	\$17	4,300
0700	0730	12	CIRC	CIRCULATE SAMPLE @ 521M							<u>-</u>
0730	0800	<u> </u>	DRII	DRILL 216MM HOLE TO 536M							
0800	0830	<u> </u>	CIRC	CIRCULATE SAMPLE @ 536M							·
0830	1230	4	DRIL	DRILL 216MM HOLE TO 569M							
1230	1330	11		ULATE HOLE C	CLEAN			BUDGET		-	
1330	1500	14	MIPE	R TRIP TO SH	IOE (STRAP	OUT)		Cond.			
1500	1530	<u> </u>	CIRC	ULATE HOLE C	LEAN			Surf.			
1530	1700	14	P.O.	H. TO LOG				Int.			· .
1700	1900	2	R/U	SCHLUMBERGER	& R.I.H.	.: BRID	66 6 1	Prod.			•
1900	2130	21	2 ¹ ₂ R/D SCHLUMBERGER & R.I.H.								2/
NEXT 24		CONTI	CONTINUE LOGGING								
DISCUSS											
				·····							
CONTRA	CTOR PER	S.		AMPOL PERS	5.	• • • • • • • • • • • • • • • • • • •	OTHERS	Т	<b>'OTAL</b>		
	3			2			5		20		

.

# AMPOL EXPLORATION LIMITED

WELL: FAIRHOPE # 1

DAILY DRILLING REPORT 5

(2)

**RIG SUPERVISOR** CONTRACTOR ATCO I. HOFFMEIER RIG TOOLPUSHER Α3 **B. NIEHAUS** DATE SINCE SPUD DEPTH PREVIOUS DEPTH FOOTAGE BIT SIZE CASING SHOE AT ACTIVITY BHA MUD RECORD IN OUT PUMP DATA 1 2 Wt MAKE LENGTH Vis MODEL BHA TOTAL WT W.L. LINER **DRILL PIPE** ΡV STROKE TOT. STR. WT. YP S.P.M. W.O.B. GELS PRESSURE BIT NO FILT CK. G.P.M. TYPE Chlorides Total G.P.M. . JETS pН D.C. Annul Vel **DEPTH IN** KCI D.P. Annul Vel FOOTAGE Solids Circ. Time **RPM** TEMP. **Hole Volume** ROT. HRS Additives Pit Volume r CONDITION FROM то HRS **OPERATIONS SUMMARY** DAY COST 2130 2200 ł WASH TO BTM & CIRC. HOLE CLEAN **Previous Cost** 2200 2330 15 **Cumulative Cost** CHAIN OUT TO LOG 2330 0600 612 RIG UP SCHLUMBERGER & LOG Major Items BUDGET Cond. Surf. Int. Prod. NEXT 24 HRS DISCUSSION CONTRACTOR PERS. AMPOL PERS. OTHERS

WELL: FAIRHOPE NO. 1

### DAILY DRILLING REPORT 6

RIG SU	JPERVISOR	I.C. Н	OFFMEI		ATCO	RIG A	3 Т	OOLPUSHE	R _{B.N}	IIEHA	US	
DATE 30.6.	SINCE S		DEPTH 569	PREVIOUS DEPT	H FOOTA		SIZE C	CASING 44mm	SH	<b>DE AT</b> 29.0		
ACTIV	ITY LAYO	UT D/P	C DC.	•								
вна		. <u> </u>		MUD RECORD	IN	01	JT I	PUMP DATA		1	2	
				Wt			1	МАКЕ	r	ЗM		
LENGT	н			Vis MODEL 500								
BHA TO	DTAL WT			W.L. LINER								
DRILL	PIPE			PV			S	STROKE				
TOT. ST	TR. WT.			YP			9	5.P.M.				
W.O.B.				GELS			F	RESSURE				
BIT NO				FILT CK.			6	G.P.M.				
TYPE				Chlorides			т	otal G.P.M.				
JETS				рН				D.C. Annul V	/el			
DEPTH	IN			ксі			(	D.P. Annul V	/el			
FOOTAC	GE			Solids Circ. Time								
RPM				TEMP. Hole Volume								
ROT. HR	IS	,		Additives Pit Volume								
CONDIT	ΠΟΝ	1										
FROM	то	HRS		OPERATIONS SUMMARY DAY COST \$ 72,186								
0600	2200	16	LOGG	ING WITH SCH	LUMBERGE	R		Previous	Cost	\$17	4,300	
2200	2300	1	RIG	DOWN SCHLUMB	ERGER &	LAY		Cumulativ	ve Cost	\$24	5,486	
			OUT	HWDP.				Major Iter	ns			
2300	0100	1.5	RIH	<u> PICK UP SI</u>	NGLES			LOGGIN	G			
0100	0130	.5	MIX	S PUMP CMT PI	LUG #1:	508M-55	4M w/54	sx 'A'	CMT			
0130	0230	1		HSTOP - CIRC	•							
0230	0300	5	MIX 8	PUMP CMT PI	LUG#2: 5	<u>6sx 'A'</u>	CMT W/	28 CACL	•			
0300	0330	.5	HOWCO	D PUMP FAILE	) - CIRC	PLUG OU	דנ	Cond.				
0330	0500	1.5	CLEAN	NOUT HOWCO E	PUMP - W	ASHED V	ALVE	Surf.				
0500	0530	.5	MIX 8	PUMP CMT PI	UG#2: 1	04m-150n	n w/56s	x 'A' C	MT w/2	28 CZ	ACL	
0530	0600	.5	PULL	4 STANDS & C	CIRC - L	AY OUT I	D/PIPE	Prod.	•			
NEXT 24	HRS											
NEDERSE RIG - TEAR OUT SAME & MOVE SU& OF RIG.												
HOWCO UNIT DOES NOT HAVE A SEPARATE MIX PUMP THEREFORE THEY DO NOT HAVE A BACKUP PUMP IF ONE FAILS ON CMT JOBS.												
	HAV	L A BA	LKUP PU	MP IF ONE FA	ILS ON (	MT JOBS	5 <b>.</b> .					
CONTRA	CTOR PERS.		AMPOL PERS. OTHERS TOTAL									
13				2			5		20	)		
		1	2 5 20									

		A	AMPOL EXPLORATION LIMITED									
		M	/ELL:	FAIRHOPE # 1			DAILY	DRILLIN	G REF	POR	<b>T</b> 7	
RIG SU	JPERVISO	RI.H	OFFMEIE		ATCO	RIC	S _{A3}	TOOLPUSH	ER B.	NIEH		
DATE 1.7.85	SINC	<b>E SPUD</b> 7	<b>DEPTH</b> 569 м	PREVIOUS DEPTH 569 M	1 FOOT/ -							
ACTIV	ITY RIG	G RELEA	LEASED @ 1300 hrs. 30/6/85									
вна			MUD RECORD IN OUT PUMP DATA 1							1	2	
			Wt MAKE									
LENGT	н		Vis MODEL									
BHA TO	DTAL WT		W.L. LINER									
DRILL	PIPE		PV STROKE									
TOT. ST	rr. wt.		YP S.P.M.									
W.O.B.			GELS PRESSURE									
BIT NO			FILT CK. G.P.M.									
TYPE			Chlorides Total G.P.M.									
JETS			pH D.C. Annul Vel									
DEPTH	IN		KCI D.P. Annul Vel									
FOOTAC	GE			Solids				Circ. Time				
RPM				TEMP.				Hole Volume				
ROT. HR	IS			Additives				Pit Volume				
CONDIT	ΓΙΟΝ	1										
FROM	то	НЕ	RS	OPERATIO	ONS SUMM	IARY		DAY COS	ST ST	6	5,712	
0600	0830	2	LAY	OUT D. PIPE &	D. COL	LARS	5	Previous	Cost		5,486	
0830	0900	Ŀ		.H. TAG PLUG #				Cumulat	ve Cost			
0900	1000	1		DOWN D. PIPE				Major Ite				
1000	1200	2		PLE DOWN & LAY	OUT B.	).P'	s					
1200	1300	1	1	VER BRADEN HE				AY OUT KE	LLY &	SWIV	/EL	
1300			t	EASE RIG @ 130								
	0600		MOVE	TO PAYNESVIL	LE #1			BUDGET		1		
			Cond.									
			Surf.									
			. Int.									
				Prod.								
NEXT 24	HRS	MC	MOVE RIG & SPUD PAYNESVILLE #1									
DISCUSS	ION											
			•			<del>,</del>						
CONTRA	CTOR PER	S.	- <u>-</u>	AMPOL PERS.	1		отн	ERS	TOT	AL		
1:	3			2			5		2	0		

#### APPENDIX 2.

#### DAILY GEOLOGICAL REPORTS



#### DAILY GEOLOGICAL REPORT

DEPTH: 42m REPORT PERIOD: 060 FORMATION: HAUN	00, 2 FED H	P 24/6 HILLS	ROGR to GRA	ERMIT:       P.E.P. 98       DATE: 25.6.85         RESS:       42m       DAYS FROM SPUD: 1         0600, 25/6       OPERATION: DRILLING AHEAD         AVEL       PAGE: 1       OF: 1         f         JDLOGGING IN TOP HOLE, SPOT SAMPLES ONLY.
DEPTH INTERVAL		r · · · · · · · · · · ·	M/hr	LITHOLOGY
	MIN	AVE	MAX	SAND: (100%)
4m	75	98	120	· · · · · · · · · · · · · · · · · · ·
to	13	98	120	
42m				coarse to very coarse grained, subangular- subrounded, milky white to translucent,
······································				
SAMPLES AT:				moderately to well sorted.
12m				Infered good visual porosity. b) LITHIC SAND, (Trace-15%)
20				
20m 30m				occurs as minor component of quartz sand.
4 Om				Predominately fine grained, hard, well
				indurated igneous (grey, blue, black, red) &
				<u>quartzite (yellow-orange) coarse-very coarse</u>
				rock fragments.
				CLAY (Trace)
	-+			Yellow & dispersed.
				MUSCOVITE (Rare)
				Very coarse grained plates.
GAS: BACKGROUND:			U	NITS; C1, C2, C3, C4 ⁺ .
PEAK @	M:		U	INITS; C1, C2, C3, C4 ⁺ .
SHOWS: NIL				



#### DAILY GEOLOGICAL REPORT

WELL:	FAIRHOPE # 1	PERMIT: P.E.P. 98	DATE: 26/6/85
DEPTH:	132m	PROGRESS: 90m	DAYS FROM SPUD: 2
REPORT	PERIOD: 0600,	25/6 to 0600, 26/6 ·	OPERATION: NIPPLING UP B.O.P
FORMAT	ION: TAMBO R	IVER FORMATION	PAGE: 1 OF: 3

FORMATION TOPS: _____JEMMY'S POINT FORMATION (93m), TAMBO RIVER FORMATION (121m)_____ NOTE: NO MUD LOGGING IN TOP HOLE. SPOT SAMPLES ONLY.

DEPTH INTERVAL		ROP	M/hr			LITHOLOG		
	MIN	AVE	MAX			LITHOLOG	T	
42m				SAND	95-100%)			
to	_			unconsc	lidated,	<u>coarse to v</u>	ery_coarse_	
70m						lar-subround		. milkv
SAMPLES AT:						ent, modera		
50						in part. In		
60 '								
70					·····			
				GRAVEL	<u>(5%) at</u>	50m_only		
						er, subangu		ninately
						own, extreme		-
				quartzi	te.			
				·····				· · · · · · · · · · · · · · · · · · ·
				LITHIC S	SAND - (I	'race) <mark>–</mark> as	above	
	<u> </u>			CLAY	r) –	race) – as	above	
				MUSCOVII	<u>'E – (</u> R	<u>are - trace</u>	) - as abo	ove
7 Om	<b></b>							
to				COAL (50	-60%)			
93m				black, d	ull, very	poorly indu	urated,	
SAMPLES AT:				soft, st	ringy in	part, woody		
76m						n part.		2/
GAS: BACKGROUND	):		U	IITS;		C ₂ ,		
PEAK @	M:		U	IITS;	С1,	C2,	С3,	C₄⁺.
-10 -								



·····		C	DAIL	Y GE	OLOGICAL	REPORT	(2)	
WELL: FAIRHOPE	# 1		PF	RMIT	P.E.P. 98	ΠΔΤΕ·	26/6/85	
DEPTH:		D		ESS:				
		E f		233.		DAYS FROM S	2	
REPORT PERIOD:			to			OPERAT		•
FORMATION:						PAGE: 2		
FORMATION TOPS:							£	
	- <del></del>				· · · · · · · · · · · · · · · · · · ·			
	1							
DEPTH INTERVAL		ROP	1			LITHOLOGY		
	MIN	AVE	MAX					
80m				SAN	DSTONE (35-	40%)		
90m				ver	y fine grain	ed (occasiona	<u>l fine grained</u>	)
				qua	rtz, grey, no	on-calcareous	, abundant	
				arg	illaceous mat	crix ( 30%),	poorly sorted,	
				ver	y soft and ve	ery poorly ind	durated,	
	abundant carbonaceous fragments, mica					nts, micaceous	•	
· · · · · · · · · · · · · · · · · · ·				Ver	y poor visual	porosity.		
				SAN	D (Trace-15%	.)		
				coar	rse to very c	oarse grained	l_quartz	
				type	e as above.	······		
							-	
93m				SANI	DSTONE: (50	-70%)	<u></u>	
to				as a	bove but str	ongly calcare	ous and	
121m				rare	e pyrite.			
SAMPLES AT:				LIME	STONE: (15	-50%)		
96m				Unco	nsolidated fo	ossil fragmen	ts, up to	
107m				¹₂ cm	in length;	predominately	corals,	
117m						ods & shell		
					· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	.3/.
AS: BACKGROUND:			U	NITS;	С1,	C 2,	С3,	C₄⁺
PEAK @	M:		U	NITS;	С1,	C 2,	С3,	C.
HOWS: NIL								

_____



		1	DAIL	Y GEOLOG	ICAL F	EPORT		(3)
WELL: FAIRHOPE	# 1		PE	RMIT: P.E.	P. 98	DATE	26/6/8	5
DEPTH:			ROGR			DAYS FROM		
REPORT PERIOD:			to			OPERA	-	
FORMATION:					·		0F: 3	
								·····
FORMATION TOPS:								
							··········	
DEPTH INTERVAL		ROP	M/hr	- W M 14 14		LITHOLOGY	,	
	MIN	1	ΜΑΧ					······································
				COAL (Tr	ace - 2º	58)		
	<u> </u>			as above				
121m						······································		
to				SANDSTONE	(50-70	8)		
132m				as above h	<u>ut less</u>	consolidat	ed & more	
SAMPLES AT:				argillaced	ous.			
126								
132				LIMESTONE	(30-50	%)		
				as above				
				<u> </u>	ace - 5	<u>}</u>		
				as above				
				· · · · · · · · · · · · · · · · · · ·				
							······	
GAS: BACKGROUND:			U	NITS;	С1,	C 2,	С3,	C₄⁺.
PEAK @	M:		U	NITS;	С1,	C 2,	С3,	C₄+. C₄+.
SHOWS: NIL								



#### DAILY GEOLOGICAL REPORT

WELL: FAIRHOP	E # 1	PE	RMIT:	P.E.P. 98	DATE:	27/6/85	
DEPTH: 132m		PROGR	ESS:	NIL	DAYS FROM SP	UD: 3	
REPORT PERIOD: 0					OPERATIO	N: DRILLIN	IG OUT
FORMATION: TAM					PAGE: 1	DF: 1	COLLAR
· · · · · · · · · · · · · · · · · · ·				****		<u>-</u>	
FORMATION TOPS:							
DEPTH INTERVAL		ROP			LITHOLOGY		
	MIN	AVE MAX					
				····			
<u> </u>						<del> </del>	
			· · · · · · · · · · · · · · · · · · ·				
· · · · · · · · · · · · · · · · · · ·	+						<u>.</u>
	+			······································			
	╉╼╼╉						
	+						<u></u>
					·		
<b></b>	╂╂						
· · · · · · · · · · · · · · · · · · ·					······································		·
				······································			
						·	<del></del>
<u></u>							·····
	<u>├</u> ├						
							<u> </u>
······						<u></u>	
	<u>├</u>					<u>, , , , , , , , , , , , , , , , , , , </u>	
GAS: BACKGROUND	·1- ):	<u>ii</u>	NITS;	С1,	C ₂ ,	С ₃ ,	C₄⁺.
PEAK @	M:		NITS;	C1,	C ₂ ,	C ₃ ,	C₄⁺.
SHOWS:	·	Ū	-,	-1/	~ 27		



#### DAILY GEOLOGICAL REPORT

WELL: FAIRHOPE # 1	PERMIT:	P.E.P. 98	DATE: 28/6/85
DEPTH: 511 M	PROGRESS:	379 M	DAYS FROM SPUD: 4
REPORT PERIOD: 0600,	27/6 to 0600,	28/6 .	OPERATION: DRILLING AHEAD
FORMATION: LAKES EN	FRANCE FORMATIO	N	PAGE: 1 OF: 3

FORMATION TOPS: <u>GIPPSLAND LIMESTONE (135m), LAKES ENTRANCE FM. (423m),</u> *NOTE: CHROMATOGRAPH NOT WORKING *

٠,,

DEPTH INTERVAL		ROP _{M/hr}				LITHOLOGY	,	
	MIN	AVE	ΜΑΧ					
132m	20	48.6	120	LIMEST	<u> 05-1 (95-1</u>	00%)		
to				unconse	olidated,	coarse, occ	asional ver	У
185m				coarse	, angular-	subangular,	off-white	&
····				smokey	grey foss	il fragment	s. Moderat	ely
				sorted	becoming	poorly sort	ed at base.	
				Infered	l fair-goo	d visual po:	rosity.	
				COAL	(NIL-5%)			
				black,	soft, dull	l (probable	cavings)	
				SAND	(NIL-Trace	e)		
				medium	grained, s	subrounded,	unconsolida	ated
				quartz.				
					······································	······································		
185m	100	100	100	MARL	(100%)	······		
to				Fossil	fragments	(80%) as ab	ove, medium	
205m				grained				· · · · · · · · · · · · · · · · · · ·
				Micrite	(20%), gr	ey, very fi	ne grained,	
				very so	ft, uncons	olidated.		
				Nil vis	ual porosi	ty.		
							• • • • •	2/
GAS: BACKGROUND	): NI	L	U	NITS;	С1,	C 2,	С ₃ ,	C₄⁺.
PEAK @	M:		U	NITS;	С1,	C 2,	С3,	C₊⁺.
SHOWS: NIL								



			DAIL	Y GEOLOGICAL REPORT (2)
WELL: TATABUODA	Шэ		PF	RMIT: P.E.P. 98 DATE: 28/6/85
DEPTH:	# 1			-/ -/
		Pr		
REPORT PERIOD:			to	. OPERATION:
FORMATION:				PAGE: 2 OF: 3
FORMATION TOPS:				
				·····
		ROP	M/hr	
DEPTH INTERVAL	MIN	AVE		LITHOLOGY
205m	60	77.1	120	MARL (100%)
to				Fossil fragments (50-60%) as above
305m				Micrite (40-50%) as above
				rare-trace glauconite. Nil visual porosity.
·				ARENACEOUS LIMESTONE (NIL-Trace)
·				grey, bioclastic, fine grained, moderately
				indurated, glauconitic. Nil visual porosity.
305m	40	92	100	MARL (100%)
to				Fossil fragments (5-20%) as above,
400m				fine-medium grained
				Micrite (80-95%) as above
400m	28.5	36.1	75	MARL (85-100%)
to				Fossil fragments (15-30%) as above
458m				but occasional massive, arenaceous,
				moderately indurated Limestone.
				Micrite (65-80%) as above, rare pyrite.
				SANDSTONE (NIL-15%)
				grey, moderately indurated, poorly sorted
GAS: BACKGROUND	D: N	IIL	U	NITS; $C_1$ , $C_2$ , $C_3$ , $\cdots$ , $C_4$ .
PEAK @	M:		U	NITS; $C_1$ , $C_2$ , $C_3$ ; $\cdots ^{3/}$ $C_4$ NITS; $C_1$ , $C_2$ , $C_3$ , $C_4$
HOWS: NIL			_	· · · · · · · · · · · · · · · · · · ·

		 	DAII	LY GEC	LOGICAL F	REPORT	(3)	
WELL: FAIRHO	OPE #	1	Р	ERMIT:	P.E.P. 98	DATE:	28/6/85	
DEPTH:		Р	ROGF	RESS:		DAYS FROM	SPUD: 1	
REPORT PERIOD:			to			OPERAT	-	
FORMATION:					·		OF: 3	
								·····
FORMATION TOPS:								
				·····		· · · · · · · · · · · · · · · · · · ·		
DEPTH INTERVAL		1	M/hr			LITHOLOGY		
	MIN	AVE	MAX					
				1	grained, ve			tic,
				giaud	conitic, Nil	visual poro	sity.	-
458m	24	28.1	37.	5 MARL	(45-90%) a:	above		
to				SANDS	STONE (10-3	5%) as above		
476m /				SAND	(Trace - 1	58)		-
·				coars	e grained, s	subangular -	subrounde	ed,
				trans	lucent, uno	consolidated	quartz.	
				PYRIT	E (Trace -	5%)		
				fine	grained aggr	egates.		
476m	21.4	41.	5 54	5 MARL	(85-100%) a	s above		
to				SANDS	TONE (Trace	-10%) as ab	ove	
511m				SAND	(NIL-5%) a			
				PYRIT	E (NIL-Trac			
						·····		
						·		
AS: BACKGROUND	: N	IL	U	NITS;	С1,	C 2,	С3,	C₄⁺
PEAK @								



#### DAILY GEOLOGICAL REPORT

				ERMIT: P.E.P. 98 DATE: 29/6/85
				RESS: 58m DAYS FROM SPUD: 5
REPORT PERIOD: C	600,	28/0	6 to	0600, 29/6 . OPERATION: WIRE LINE LOGG
FORMATION: BASE	MENT			PAGE: 1 OF: 3
FORMATION TOPS:		TOI	P LAI	ROBE (536m)
BASEMENT (442m)				
*NOTE: CHROMAT	OGRAI	PH NC	OT WO	RKING*
DEPTH INTERVAL		ROF	M/hr	
	MIN		MAX	
511m	25	39.4	67.	7 MARL (75-100%)
to				Fossil fragments (5-15%)
526m				Micrite (60-90%)
		1		GLAUCONITE (TRACE - 15%)
	1			green & black, medium grained,
				rounded pellets.
				SANDSTONE (NIL-10%)
· · · · · · · · · · · · · · · · · · ·				grey, very fine grained, poorly sorted,
				moderately indurated & hard, very calcareous,
· · · · · · · · · · · · · · · · · · ·				chloritic, pyritic. Poor visual porosity.
				CLAYSTONE (NIL-10%)
				pale green-grey, strongly calcareous, soft,
·····				poor-moderately indurated, subfissile in part.
526m	30	52.9	120	SANDSTONE (70%)
to				Type A: (55-70%) red brown, fine grained,
536m				translucent, poorly sorted quartz,
	╞──┤		-+	
				abundant fine to coarse grained glauconite pellets, very calcareous, hard, indurated,
AS: BACKGROUND		l. T.	I	NITS; $C_1$ , $C_2$ , $C_3$ , $C_4^+$ . NITS; $C_1$ , $C_2$ , $C_3$ , $C_4^+$ .
		ه. د	0	11110. Ut. Us. Us. (*.*

			DAIL	Y GEO	DLOGICAL R	EPORI	(2)	
WELL: FAIRHOPE	#·1		PE	RMIT:	P.E.P. 98	DATE:	29/6/8	5
DEPTH:		f	PROGR	FSS		DAYS FROM S		-
REPORT PERIOD:		,	to	200.		OPERAT	5	
FORMATION:			10		•			
					······	PAGE: 2	OF: 3	
FORMATION TOPS:							<u>_</u>	
DEPTH INTERVAL			M/hr			LITHOLOGY		
				brit	tle, salt & p	epper textu	re, trace	pyrite
					visual poros			
					<u> </u>			
				Туре	B: (TRACE -	15%)		
					se grained, s			
,					sorted, fria			
					te encrusting			
·····				glau	conite. Mode:	rate visual	porosity.	
					(20-25%)			
				Micr	ite (80%) as	above		
				Fossi	l fragments	(TRACE-20%)	as above	
526								
536	100	105	120	SANDS	TONE (70-80%	5)		
to				as ab	ove (Type B).	Inferred MC	dgood.	
542m				visua	l porosity.			
				PYRIT		as above & 1	olocky ago	regates.
				Micri	te: (10-15%)	as above.		
				<u> </u>			3	/
GAS: BACKGROUND:	NI	L	U	NITS;	С1,	C 2,	С3,	C₄⁺.



	·····		DAIL	Y GEOLOGICAL REPORT
WELL: FAIRHOP	E # 1		PF	ERMIT: P.E.P. 98 DATE: 29/6/85
DEPTH:			ROGR	
		F		ESS: DAYS FROM SPUD: 5
REPORT PERIOD:			to	•
FORMATION:				PAGE: 3 OF: 3
FORMATION TOPS:				
		ROP	M/hr	
DEPTH INTERVAL	MIN		MAX	LITHOLOGY
542m	10	12.	30	BASEMENT (WEATHERED) (100%)
to		<u> </u>		GRANITE? (75-80%)
552m	_			Quartz (65-75%), coarse, angular-subangular,
				translucent. Clay (15-20%) red-grey, soft.
(				QUARTZITE (15%), red, fine grained guartz,
,				abundant red argillaceous matrix, soft &
				micaceous.
				PYRITE (5-10%)
552m	3.5	5.5	9.2	BASEMENT (FRESH) (100%)
to				
569				GRANITE?(100%): quartz (95%), as above,
.D.	+			occasional euhedral shape , Feldspar (5%) white, hard.
	$\left  - \right $			PYRITE (TRACE) as above,
GAS: BACKGROUND	: N]	[L	U	NITS; C1, C2, C3, C4+.
PEAK @	M:		UI	NITS; C1, C2, C3, C4*.
SHOWS: NIL				

#### APPENDIX 3.

#### FIELD ELECTRIC LOG REPORT

		NERAL INFO			
WELL: FAIRHOP			ROGNOSED TO T.D.:	662m	
CO-ORDINATES:	0 370 54 <b>'</b> 49" 147 35 <b>'</b> 14"	M	UD TYPES: FRESH (	GEL-POLYMER	
AREA: GIPPSLAND			GGING COMPANY:		
PERMIT: P.E.P. 9	98		OGGING ENGINEER:		
ELEVATION: GL 3	AM DOT :KB 40		EOLOGIST:		
	ASL MO 42.			M. SCHMEDJE	
RUN No: 1		LOGS R DF	UN RILLERS DEPTH:	569M	
HOLE SIZE: 812"		LO	GGERS DEPTH:	567.5M	
CASING SHOE: 12	.9.5m			28-29/6/85	
				- /	
NOT GET LOGGING	TOOLS TO T.D.	ED OFF AT 556	M, HAD TO RUN IN H	OLE. STILL COULD	
TYPE OF LOG	FROM M	том	REPEAT SECTION	M Time Since Last Circ/BH	
DLL-GR MSFL	567	129.5	565.5 - 474	35.5DGRS.C/3 ¹ / ₂ hr	
	567	267	11 11	11 11	
LDT - GR CNL	567	129.5	567 - 469.5	37.7DGRS.C/6 hrs	
BHC (SONIC) - GR		260	" " 560 - 459.5	" "	
				38.3DGRS.C/8 hrs	
NGT (GR to SURFAC	CE) 560	249	560 - 495.5	40.5DGRS.C/10hrs	
V.S.P.			-		
C.S.T.	-	-	_	-	
•					
S.W.C. No. OF ATTE R.F.T. No. OF ATTE		RECOVERED	(only 19 bought)	SFIRED: 10 (Formatic to soft)	
		ORMATION			
FORMATION	PROGNOSED	CUTTINGS		IFF.FROM PROGNOSE	
HAUNTED HILLS			C		
GRAVEL	9м		A		
			S		
JEMMYS POINT	1		I		
FM FAMBO RIVER	102M	93M	N		
FM	1.274		G		
IPPSLAND	127M	121M			
	137M	135M	137M	<u>OM</u>	
IMESTONE	+		455M	OM	
	422M	2 / / M	1 435M	+33M	
AKES ENTRANCE	422M 529M	<u>422M</u> 536M			
IMESTONE AKES ENTRANCE URNAID/LATROBE	1		533M	+ 4M	

COMMENTS ON LOGGING RUN: NOTE: GR ran to surface on NGT not BHC (sonic) as tool malfunctioned in casing.

#### APPENDIX 4.

•

1

• • •

#### SIDEWALL CORE REPORT

.



WELL:

FAIRHOPE # 1

#### SIDEWALL CORE REPORT

DEPTH INTERVAL: 569m – 524m					GEOLOGIST: M. SCHMEDJE
GUN	I NO. 1	:			SHEET : 1 OF: 3
SWC NO.	DEPTH M	REC.	BOUGHT/ REJECT	PALYN. EVAL.	LITHOLOGICAL DESCRIPTION, FLUORESCENCE, ETC.
1	555	80%	В	PAL	SANDSTONE: Very pale grey, fine
					grained quartz sandstone: Abundant
					pyrite, tight, friable. NIL FLÚORESCENCE
2	547	NIL	REJ		
	547		REU		NOT RECOVERED.
3	544.5	100%	В	PAL	As above; hard & argillaceous
4	543	50%	В	THIN	SANDSTONE, coarse grained to very coarse,
				SECT.	poorly consolidated quartz (extremely friable)
					Argillaceous, pyritic, mod-good visual porosity.
					NIL FLUORESCENCE.
5	541.5	100%	В	PAL	SANDSTONE: fine grained quartz, abundant
					glauconite, argillaceous, pyritic Moderately
	•				indurated. Poor visual porosity.
					NIL FLUORESCENCE.
6	540	100%	В	PAL	As above. Extremely pyritic, calcareous
			·		fragments (fossiliferous?)
7	538.5	60%	В	PAL	CLAYSTONE: sandy in part, very poorly
					indurated and glauconitic. NIL FLUORESCENCE.
8	536	100%	В	PAL	SANDSTONE: red-brown, very fine to fine
				& THIN	grained quartz. Abundant glauconite, pyritic.
9	- <u></u>			SECT.	Poor visual porosity. NIL FLUORESCENCE.
9	538.5	60%	В	PAL	As above. Extremely argillaceous.
10	532	100%	В	PAL	SANDSTONE: fine grained quartz, grey-brown,
]					indurated, glauconitic, fossiliferous. Poor
					visual porosity. NIL FLUORESCENCE.
11	524				
	524	NIL	REJ		NOT RECOVERED.

COMMENTS: 30 CORES SHOT, 20 RECOVERED, 19 BOUGHT.

NOTE: NIL FLUORESCENCE; OCCASIONAL DULL MINERAL FLUORESCENCE NOTE: if more than one gun of SWC is shot please number the cores consecutively.



WELL: FAIRHOPE # 1

SIDEWALL CORE REPORT

DEP	TH INTER	VAL:	524m - 296	5.5m	GEOLOGIST: M. SCHMEDJE	
GUN	I NO.	:	1		SHEET : 2 OF: 3	
SWC NO.	DEPTH M	REC.	BOUGHT/ REJECT	PALYN. EVAL	LITHOLOGICAL DESCRIPTION, FLUORESCENCE, ETC.	
12	511.5	NIL	REJ		NOT RECOVERED	
13	483	NIL	REJ		И н	
14	464	NIL	REJ		11 11	
15	456	80%	В	PAL	MARL. White-very pale grey, moderately	
					indurated, sandy in part, pyritic, NIL VISUAL POROSITY. NIL FLUORESCENCE.	
16	454	80%	В	PAL	SANDSTONE: grey, well cemented, moderately indurated, fine grained quartz, abundant	
					argillaceous matrix, NIL VISUAL POROSITY. NIL FLUORESCENCE.	
17	439	NIL	REJ		NOT RECOVERED.	
18	421	NIL	REJ		11 11	
19	419	100%	В	PAL	SANDSTONE: White-very pale grey, very fine grained, argillaceous glauconite, indurated NIL VISUAL POROSITY. NIL FLUORESCENCE.	
20	390.5	100%	В	PAL	SANDSTONE: As above. Pyritic not glauconitic	
21	351.5	NIL	REJ		NOT RECOVERED.	
22	324.5	100%	В		SANDSTONE: Very fine grained, white-very pale grey, very argillaceous, soft NIL VISUAL POROSITY. NIL FLUORESCENCE.	
23	314	100%	В		As above	
24	296.5	100%	B	PAL	As above	
COMMENTS: 30 CORES SHOT, 20 RECOVERED, 19 BOUGHT.						

NOTE: if more than one gun of SWC is shot please number the cores consecutively.



WELL: FAIRHOPE # 1

SIDEWALL CORE REPORT

DEP	TH INTER\	/AL: 29	96.5M - 13	36M	GEOLOGIST: M. SCHMEDJE	
GUN	I NO.	: 1			SHEET : 3 OF: 3	
SWC NO.	DEPTH M	REC.	BOUGHT/ REJECT	PALYN. EVAL.	LITHOLOGICAL DESCRIPTION, FLUORESCENCE, ETC.	
25	267	100%	В		SANDSTONE: grey, very fine grained quartz, argillaceous, glauconitic. NIL VISUAL	
					POROSITY. NIL FLUORESCENCE.	
_26	257	15%	REJ		MARL, grey, soft, silty-fine sand in part. NIL VISUAL POROSITY. NIL FLUORESCENCE.	
27	200	100%	В		SANDSTONE: Very fine grained, extremely argillaceous, soft, grey, fossiliferous, NIL VISUAL POROSITY. NIL FLUORESCENCE.	
28	179	90%	В	PAL	MARL, soft, grey, poorly indurated, silty- sand in part, fossiliferous, NIL VISUAL	
					POROSITY, NIL FLUORESCENCE.	
29	138	NIL	REJ		NOT RECOVERED.	
30	136	NIL	REJ		NOT RECOVERED.	
			•		· · · · · · · · · · · · · · · · · · ·	
COMMENTS: 30 CORES SHOT, 20 RECOVERED, 19 BOUGHT						
NOTE: if more than one gun of SWC is shot please number the cores consecutively.						

#### APPENDIX 5.

#### WIRELINE LOG EVALUATION REPORT

JACK BOWLER Telephone: (051) 56 6170

P.O. BOX 2, PAYNESVILLE, VICTORIA. AUSTRALIA, 3880.

14 July, 1985

Ms Erna de Vries Ampol Exploration Limited 7th Floor 76 Berry Street North Sydney, NSW, 2060

Dear Erna,

Please find my evaluation of the Latrobe and Basement for Fairhope #1. Log computions listed in Table Two show the two formations to be water wet.

#### Latrobe 533-544 meters

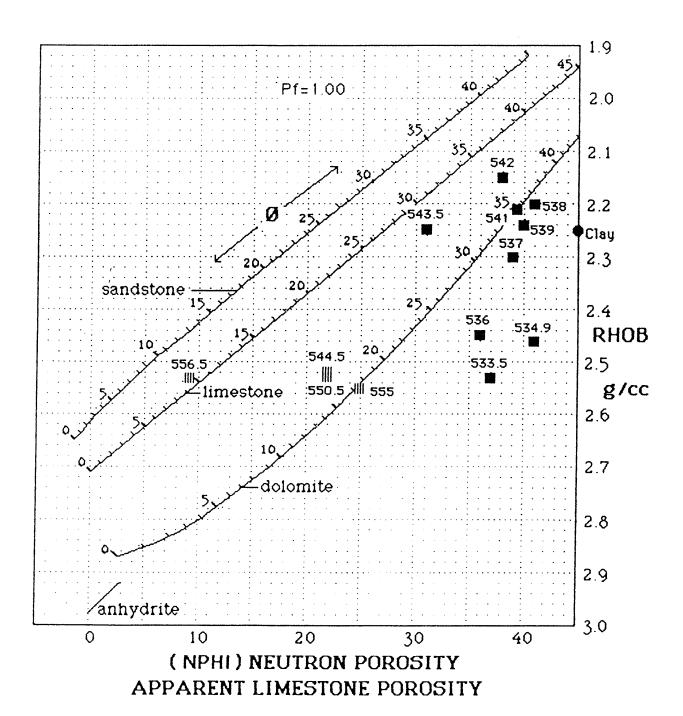
The top 3 meters from 533-536 meters have similar log characteristics to the top 7 meters in Paynesville #1 and are most likely the same kind of glauconitic siltstone with no effective porosity. See the Density-Neutron and Resistivity-Porosity plots.

Below this there is a trend, with increasing depth, of decreasing PEF, RHOB and K. Travel time and negative SP increase with depth. This all suggests an increasing sand content with depth and a decreasing clay and gauconite content with depth. This conclusion is confirmed by the sidewall cores. The pyrite content at 541.5 and 543 meters is so high that it is causing the resistivity curves to read too low and thus the computed  $S_W$  is too high. Pyrite also causes density derived porosities to be low.

The Lartobe then is very clayey and maximum porosity is 17 to 19 % with clay percentages around the low forties in the best sand. The Density-Neutron plot clearly shows that the sands are not as clean as the better sands of Paynesville #1

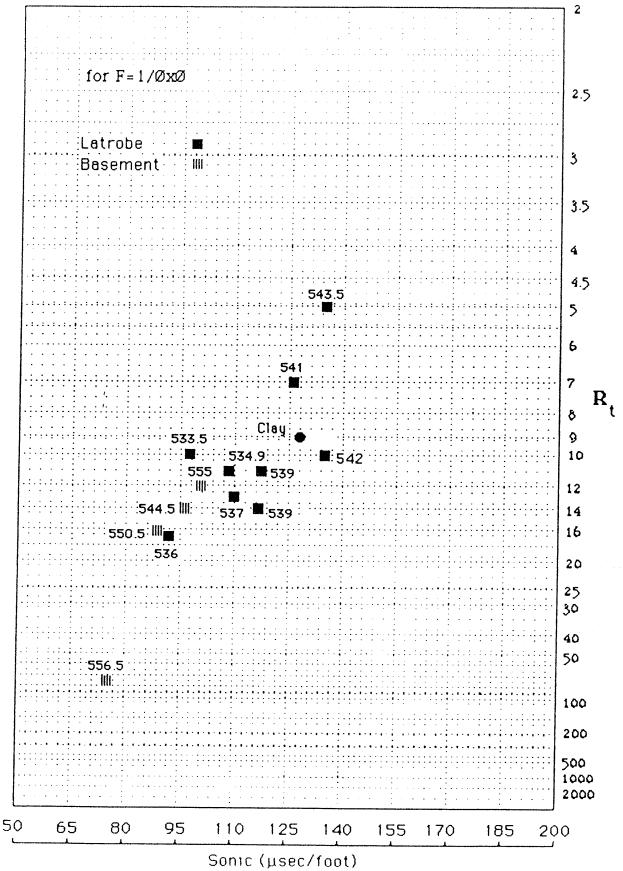
#### Basement 544-569

Basement is characterized by a decreasing NPHI with increasing depth suggesting a decrease of clay with depth. The position of the data on the Density-Neutron and Resistivity-Porosity plots is not too different than some of the data in Paynesville #1 so the lithology may be somewhat similar except that there is less clay in the Basement rock of Fairhope #1. Generally there is no effective porosity. There may be around 8% porosity at 556.5 meters in the granite but unless it is fractured there is probably little permeability.


Yours truly,

Jack Bowler




### DENSITY-NEUTRON POROSITY AND LITHOLOGY

Latrobe 🛛 🖬 Basement 🛙 🕅



## Fairhope 🗢 1

#### **RESISTIVITY-POROSITY**



## TABLE ONE Fairhope #1

Level		MSFL	RT	GR	RHOB	NPHI	SONIC
1	(meters)	(ohm.m)	(ohm.m) LATROBE		(g/cc)	(ls. por.)	(sec/ft)
2	533.5	12.0		e e le recrete a	2 57	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	10		· · · · · · · · · · · · · · · · · · ·		97
3 4	534.9	11.0	11	105	2.46	41	108
4	536.0	39.0	17		2.45	36	92
5	537.0	17.0	13	80	2.30	39	110
6	538.0	20.0	14		2.20	41	115
7	539.0	17.0	11	75	2.24	40	117
8	541.0	10.0	7	75	2.21	39	126
9	542.0	12.0	10	•••••	2.15	38	135
10 11	543.5	8.0	5 BASEMENT	35	2.25	31	135
12	544.5	20.0	· · · · · · · · · · · · · · · · · · ·	135	2.52	22	96
13	550.5	16.0	16			22	89
14	555.0	12.0	• • • • • • • • • • • • • • • • • • •	135		25	100
15	556.5	160.0	70	· · · · · · · · · · · · · · ·	2.53	<u>2</u> 3	75
16				:			· · · · · · · · · · · · · · · · · · ·
17	•••••••••••••••••••••••••••••••••••••••	••••••••••••		· · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	
18	•••••••••••••••••••••••••••••••••••••••	••••••••••••	•	• • • • • • • • • • • • • • • • • • • •			•
19	· · · · · · · · · · · · · · · · · · ·	••••••	• • • • • • • • • • • • • • • • • • • •	••••••••••••••••••••••••••••••••••••••		••••••	• • • • • • • • • • • • • • • • • • • •
20	• • • • • • • • • • • • • • • • • • • •	•••••	<b></b>	• • • • • • • • • • • • • • • • • • • •		•••••	•••••••••••••••••
21	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••			•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •
22	·····	•••••••••••••••••••••••••••••••••••••••	••••••		••••••		••••••
23	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••	•••••		• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••
24	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••			• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••
25	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	•••••			: 	
26	••••••	••••••••••••••••••	••••••••••••••••	•••	•••••		
27	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••	••••••		····· ··· ··		•••••••••
28	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••	••••••	····	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
29	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·		••••••	•••••••••••••••••••••••••••••••••••••••	: : :	·····
30	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	: 		••••	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
31	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •			················		•••••••••••••••••••••••••••••••••••••••
32	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • •	•••••••	• • • • • • • • • • • • • • • • • • • •		•••••••••••••••••••••••••••••••••••••••
33	• • • • • • • • • • • • • • • • • • • •		• • •••• • • •	· · · · · · · · · · · ·	• • • • • • • • • • • • • • • •		•••••••••••••••••••••••••••••••••••••••
34	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•	• • •	: 	·····	
35	••••••	·····		• • •	· · · · · · · · · · · · · · · · · · ·	·····	
36 :		••••••	••••••				•••••••••••••••••••••••••••••••••••••••
37 :	•••••	•••••••••••••••••••••••••••••••••••••••	•••••	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
37 38	••••••	••••••	· · · · · ·	•			· · · · · · · · · · · · · · · · · · ·
39 39	•	· · · · · · · · ·				• • • • • • • • • • • • • • • • • • •	•••••

-

## TABLE TWO Fairhope #1

1 2 3 4 5 6 7 8 9 10 11 12 13 14	neters) 533.5 534.9 536.0 537.0 538.0 539.0 541.0 542.0 543.5 544.5 550.5 555.0 556.5	0.69 0.86 2.64 1.74 2.74 1.97 1.23 1.56 0.67 0.58 0.41	0.86 1.15 1.33 1.92 1.27 0.86 1.30 0.42 BASEMENT 0.40	x 24 28 26 32 37 34 35 36 29 17 16	x 100 100 100 85 70 76 64 46 41 100	Porosity 2 0 0 0 5 11 8 13 19 17 0	Sw % 101 90 106 129 105 168	Sxo % 95 89 96 130 130 179
1         2         3         4         5         6         7         8         9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	533.5 534.9 536.0 537.0 538.0 539.0 541.0 542.0 543.5 544.5 550.5 555.0	0.69 0.86 2.64 1.74 2.74 1.97 1.23 1.56 0.67 0.58 0.41 0.35	LATROBE 0.58 0.86 1.15 1.33 1.92 1.27 0.86 1.30 0.42 BASEMENT 0.40 0.41	24 28 26 32 37 34 35 36 29 17	100 100 85 70 76 64 46 41 100	0 0 5 11 8 13 19 17	101 90 106 129 105	95 89 96 130 130
3         4         5         6         7         8         9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	534.9 536.0 537.0 538.0 539.0 541.0 542.0 543.5 544.5 550.5 555.0	0.86 2.64 1.74 2.74 1.97 1.23 1.56 0.67 0.58 0.41 0.35	0.86 1.15 1.33 1.92 1.27 0.86 1.30 0.42 BASEMENT 0.40 0.41	28 26 32 37 34 35 36 29 17	100 100 85 70 76 64 46 41 100	0 0 5 11 8 13 19 17	90 106 129 105	89 96 130 130
3         4         5         6         7         8         9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	536.0 537.0 538.0 539.0 541.0 542.0 543.5 544.5 550.5 555.0	2.64 1.74 2.74 1.97 1.23 1.56 0.67 0.58 0.41 0.35	1.15 1.33 1.92 1.27 0.86 1.30 0.42 BASEMENT 0.40 0.41	26 32 37 34 35 36 29 17	100 85 70 76 64 46 41 100	0 0 5 11 8 13 19 17	90 106 129 105	89 96 130 130
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 20 21 22 23 24 25	537.0 538.0 539.0 541.0 542.0 543.5 544.5 550.5 555.0	1.74 2.74 1.97 1.23 1.56 0.67 0.58 0.41 0.35	1.33 1.92 1.27 0.86 1.30 0.42 BASEMENT 0.40 0.41	26 32 37 34 35 36 29 17	100 85 70 76 64 46 41 100	0 5 11 8 13 19 17	90 106 129 105	89 96 130 130
5         6         7         8         9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	538.0 539.0 541.0 542.0 543.5 544.5 550.5 555.0	2.74 1.97 1.23 1.56 0.67 0.58 0.41 0.35	1.92 1.27 0.86 1.30 0.42 BASEMENT 0.40 0.41	32 37 34 35 36 29 17	85 70 76 64 46 41 100	5 11 8 13 19 17	90 106 129 105	89 96 130 130
7         8         9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	539.0 541.0 542.0 543.5 544.5 550.5 555.0	1.97 1.23 1.56 0.67 0.58 0.41 0.35	1.27 0.86 1.30 0.42 BASEMENT 0.40 0.41	37 34 35 36 29 17	70 76 64 46 41 100	11 8 13 19 17	90 106 129 105	89 96 130 130
7         8         9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	541.0 542.0 543.5 544.5 550.5 555.0	1.97 1.23 1.56 0.67 0.58 0.41 0.35	1.27 0.86 1.30 0.42 BASEMENT 0.40 0.41	34 35 36 29 17	76 64 46 41 100	8 13 19 17	106 129 105	96 130 130
9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	542.0 543.5 544.5 550.5 555.0	1.56 0.67 0.58 0.41 0.35	0.86 1.30 0.42 BASEMENT 0.40 0.41	35 36 29 17	64 46 41 100	13 19 17	129 105	130 130
9         10         11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	543.5 544.5 550.5 555.0	0.67 0.58 0.41 0.35	0.42 BASEMENT 0.40 0.41	36 29 17	46 41 100	19 17	105	130
11         12         13         14         15         16         17         18         19         20         21         22         23         24         25	544.5 550.5 555.0	0.58 0.41 0.35	BASEMENT 0.40 0.41	17	41 100	17	• • • • • • • • • • • • •	• • • • • • • • • •
12         13         14         15         16         17         18         19         20         21         22         23         24         25	550.5 555.0	0.58 0.41 0.35	BASEMENT 0.40 0.41	17	100			
13         14         15         16         17         18         19         20         21         22         23         24         25	550.5 555.0	0.58 0.41 0.35	0.40	• • • • • • • • • • • •	· · · · • • • • • • • • • • • • • • • •	0		••••••
14         15         16         17         18         19         20         21         22         23         24         25	555.0	0.41 0.35	0.41	• • • • • • • • • • • •	· · · · • • • • • • • • • • • • • • • •			
15         16         17         18         19         20         21         22         23         24         25	••••••••••••••		· · · · · · · · · · · · · · · · · · ·		100	0	•••••••	•••••••••
16         17         18         19         20         21         22         23         24         25	556.5		••••••••••••••••••••••••••••••••••••••	17	100	0	·····	••••••••••
16         17         18         19         20         21         22         23         24         25		•••••••••••••••••••••••••••••••••••••••	0.70	10	21		93	
18         19         20         21         22         23         24         25			•••••••••••••••••••••••••••••••••••••••		·····	·····		······································
19         20         21         22         23         24         25	• • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		·····	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••
20 21 22 23 24 25	:	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	•••••••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••
20 21 22 23 24 25	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		••••••
22 23 24 25	······································		······	••••••		· · · · · · · · · · · · · · · · · · ·	·················	••••••••
23 24 25		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••
23 24 25	· · · · · · · · · · · · · · · · · · ·		•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••
25	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	···········	······	•••••••••••••••••••••••••••••••••••••••	••••••••••••	• • • • • • • • • •
•••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	••••••••••	•••••
26	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	· • • • • • • • • • • • • • • • • • • •		•••••••••••••••••••••••••••••••••••••••	••••••	•••••
	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	······	•••••••••••••••••••••••••••••••••••••••	•••••••	••••••
27 :	•••••••••••••••••••••••••••••••••••••••	······································	•••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	·····	•••••••	
28	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	***************************************	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	
29	•••••••••••••••••••••••••••••••••••••••	· · · · • · • · • • • • • • • • • • • •	***************************************		•••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••••••
30	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		•••••	· ··· · · ·	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••••••
31	•	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	• • • • • •	· · · · · · · · · · · · · · ·	••••••	•••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • •
32	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	· • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••	······································		•••••••••••	••••••••••
33		· · · · · · · · · · · · · · · · · · ·	••••••	••••••			••••••	
34	•	· · · · · · · · · · · · · · · · · · ·	· • · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	••••••	••••••••••	••••••••••
35		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••
36	••••••	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	·····	•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · ·
37	······	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	••••••	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••	•••••••
38	••••••••••••••••••••••••••••••••••••••		•••••••••••••••••		• • • • • • • • • • • • •	····· ·	•••••••••••••••••••••••••••••••••••••••	· · • • · · · / •
39	••••••	• • • • • • • • • • • • • • • • • • • •	···· · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • •
40	:	· · · · ·		•		· · · · · · · · · · · · · · · · · · ·		· · • • · · ·
****	· · · · · · · · · · · · · · · · · · ·							

#### TABLE ONE & TWO comments

<u>Formation</u>	Levels	<u>Rmf</u>	Rw	<u>Temp. °F</u>	Source of Rw	<u>Rclay</u>
Latrobe	2-10	5.84	1.5	96	estimated	15
Basement	12-15	5.84	1.5	96	estimated	15

 $R_W$  cannot be computed from the SP because there is no clean sand available. The -30mv SP (which is depressed due to clay content) at 543 meters gives  $R_{Weq} = 1.94 @ 96^{\circ}F$ . This is out of range for determining  $R_W$  from Schlumberger Chart SP-2. As a result the  $R_W$  has been estimated at 1.5 ohm.m @ 96°F (3,000 PPM NaCl_{eqv}). This is an optimistic value and gives reasonable results.

Rmf= 8.215 ohm.m @ 66.2°F measured. BHT = 96°F @ 567.5 meters.

R_t is determined from LLD, LLS, MSFL and Schlumberger Chart Rint-9.

 $R_{wa}$  and  $R_{mfa}$  are computed from density-neutron porosity prior to clay correction.  $R_{wa}$ =PHIT²R_t  $R_{mfa}$ =PHIT²R_{MSFL}

Porosity values are clay corrected. Porosity and  $V_{clay}$  are determined from the density-neutron crossplot. Porosity=(1- $V_{clay}$ )PHIT.

The density and neutron log characteristics for the micrite at 588-591 meters in Paynesville #1 have been used again for the clay parameters. This seems to be a reasonable choice for the clay point from the way the data falls on the Fairhope #1 Density-Neutron plot.

Water saturations are computed from the Indonesian Water Saturation Equation and thus are clay corrected.

a=1 and m=n=2.

#### APPENDIX 6.

<u>}</u>.

## BIOSTRATIGRAPHIC REPORT AND SOURCE , ROCK EVALUATION

C O N T E N T S

- I. ABSTRACT
- II. INTRODUCTION
- III. ROCK-STRATIGRAPHIC NOMENCLATURE
- IV. GEOLOGICAL COMMENTS
- V. MICROPALAEONTOLOGY
  - (A) Calcareous Nannoplankton Biostratigraphy.
  - (B) Planktonic Foraminiferal Biostratigraphy.
  - (C) Environment of Deposition.
- VI. PALYNOLOGY
  - (A) Palynostratigraphy
  - (B) Environment of Deposition
- VII. SOURCE ROCK POTENTIAL AND MATURITY
- VIII. REFERENCES

FIGURE 1

Ċ

Summary Chart, Fairhope-1.

FIGURE 2

Tentative chronostratigraphic correlation between

Comley-1, Fairhope-1 and Paynesville-1.

FIGURE 3

Spores and pollen recorded in Fairhope-1.

FIGURE 4

Dinoflagellates and acritarchs recorded in Fairhope-1.

## APPENDIX 1

Glossary of semiquantitative source rock parameters recorded using palynological techniques.

APPENDIX 2

Į

L

ſ

£

Vitrinite reflectance results on samples from Fairhope-1.

ENCLOSURE 1

Micropalaeontological distribution chart for Fairhope-1.

TABLE 1

Summary of the source rock and maturity data

from Fairhope-1.

.

ſ

Fairhope-1 was drilled to 567.5m KB in Permit PEP 98, onshore Gippsland Basin. Sidewall core samples from 179.0m to 541.5m have been examined for calcareous nannoplankton, foraminifera and palynomorphs.

DEPTH (m)	UNIT	ZONE	AGE
179	Gippsland Limestone	NN6, D	Middle Miocene
296.5-419	Gippsland Limestone	NN4-NN5, G	Early Miocene- lower Middle Miocene
454	Gippsland Limestone	H2 or younger	Latest Oligocene or younger
456	Gippsland Limestone	_	Indeterminate
532	Lakes Entrance Fm. ('lower member')	_	Indeterminate
533.6-541.5	Lakes Entrance Fm. ('lower member')	NP23-24, P. tuberculatus	Early-Late Oligocene

The Gippsland limestone sampled from 179m-456m was deposited in an inner neritic environment. From 533.6m to 541.5m the 'lower member' of the Lakes Entrance Formation was also deposited in a marine environment.

No significant source rocks were observed in the sampled section. Spore colours of light yellow, fluorescence of white and vitrinite reflectance of 0.29%-0.30% indicate the section penetrated by Fairhope-1 is immature.

## II. INTRODUCTION

ECL Geological Laboratory was contracted by Ampol Exploration Ltd to undertake laboratory studies of sidewall core samples from the well Fairhope-1. The well is located in onshore exploration Permit PEP 98, Gippsland Basin, Victoria, and was drilled to a total depth of 567.5m KB.

Sidewall core samples from the interval 179.0 to 541.5m were analysed for calcareous nannoplankton, foraminifera, palynomorphs, source rock potential and maturity. The objective of this study was to provide biostratigraphic zonations, interpretation of depositional environment and information on hydrocarbon habitat for geological evaluation of the well section.

#### (A) Lakes Entrance Formation (Lower Member)

In this investigation Early-Late Oligocene glauconitic sandstone, oxidized glauconitic sandstone-siltstone and glauconitic marl, are referred to informally as the "lower member" of the Lakes Entrance Formation. The "lower member" includes the following formal onshore stratigraphic units : Colquhoun Sandstone Member, Cunninghame Greensand Member, Metung Marl Member, Giffard Sandstone Member and Seacombe Marl Member.

#### (B) Lakes Entrance Formation (Upper Member)

In this investigation Late Oligocene-Early Miocene marls are referred to informally as the "upper member" of the Lakes Entrance Formation.

#### (C) Gippsland Limestone

(

In Fairhope-1 Early-Middle Miocene clean skeletal limestone and calcarenites with common bryozoan fragments are referred to as the Gippsland Limestone.

#### IV. GEOLOGICAL COMMENTS

The mid-Oligocene disconformity recorded in both Comley-1 and Paynesville-1 is interpreted to occur at 536m in Fairhope-1 (see Figure 2). The disconformity is defined at the top of the oxidized horizon (536-537m). The oxidized horizon formed during the mid-Oligocene (Zone NP23-NP24 time). Sidewall core samples above (536m) and below (540m) the disconformity surface at 536m are NP23-NP24 in age. The sample at 536m is a glauconitic sandstone which contains an oxidized sandstone fraction. The mixed fresh glauconitic (dominant) and oxidized glauconitic fractions in the sample is consistent with its position just above the disconformity surface. The mid-Oligocene disconformity is considered to have resulted from the major global fall in sealevel at 30Ma proposed by Vail <u>et</u>. <u>al</u>. (1977). This event has resulted in a widespread Oligocene disconformity in offshore Gippsland Basin wells (unpublished data).

Lack of sample control above 532m, and the absence of <u>in situ</u> calcareous nannoplankton in samples at 532 and 533.6m in Fairhope-1 has restricted stratigraphic interpretation of this interval. However, log correlation with the nearby Comley-1 Well has assisted in resolving the stratigraphy of this interval. A second and younger oxidized horizon occurs between 530.5 and 534m. Sidewall core samples at 532 and 533.6m penetrated oxidized fine grained sandstone and oxidized siltstone respectively. The top of the oxidized horizon has been selected at 530.5m. The oxidized horizon has also been recognized in Comley-1 between 476 and 478m and in Paynesville-1 between 569 and 570.5m. The top of the horizon is interpreted to equate with the Late Oligocene disconformity recognized in Comley-1. This

disconformity cannot be confirmed on palaeontological evidence in Fairhope-1. The thickness of the Lakes Entrance Formation ('lower member') between the Mid and Late Oligocene disconformities in Fairhope-1 is 5.5m. This is almost identical to that recorded in Comley-1 (5m) and Paynesville-1 (7m).

Log correlation with Comley-1 indicates that the 'upper member' of the lakes Entrance Formation in Fairhope-1 is probably represented by the interval 476.5m (tentative log pick) to 530.5m. Definite Gippsland Limestone consisting of bryozoan rich calcarenite was penetrated by the sidewall core sample at 456.0m.

A total of 14 sidewall core samples from the interval 161.0-486.5m were analysed for foraminifera and calcareous nannoplankton. Calcareous microfossil species identified in the well section, interpreted zonation and depositional environment subdivision have been plotted on the micropalaeotological distribution chart (Enclosure 1).

The planktonic foraminiferal letter zonal scheme of Taylor (in prep.) and the NP-NN calcareous nannoplankton letter scheme of Martini (1971) are used in this investigation. Foraminiferal studies by Carter (1964) and Jenkins (1971), and calcareous nannoplankton investigations by Edward (1971) and Siesser (1979) have also been consulted.

#### (A) Calcareous Nannoplankton Biostratigraphy

- i) 179m : Zone NN6 (Middle Miocene)
   The presence of <u>Cyclicargolithus floridanus</u> (extinction at top of Zone NN6) without <u>Sphenolithus heteromorphous</u> (extinction at top of Zone NN5) in a moderate yielding and moderately well preserved nannofossil assemblage is indicative of Zone NN6.
- ii) 296.5m : Zones NN4-NN5 (upper Early Miocene early Middle Miocene).

The occurrence of <u>Sphenolithus</u> <u>heteromorphous</u> at 296.5m is indicative of Zones NN4 to NN5.

- iii) 390.5m : Zone NN4 (upper Early Miocene)
  The association of moderate numbers of <u>Sphenolithus</u>
  <u>heteromorphous</u> with rare <u>S. belemnos</u> at 390.5m indicates a
  position at the base of Zone NN4.
- iv) 419.0-533.6m : Indeterminate Samples 419.0-456.0m inclusive contain impoverished and poorly preserved nannofossil assemblages which are not agediagnostic. Samples 532.0 and 533.6m are barren of calcareous nannoplankton.
- v) 536.0m 540.0m : Zones NP23-NP24 (Early/Late Oligocene boundary)

The uphole extinction of <u>Chiasmolithus oamaruensis</u> at 536.0m defines the top of Zone NP24 in the well. The absence of <u>Reticulofenestra umbilica</u> indicates that the nannofossil assemblage in the interval is no older than Zone NP23.

vi) 541.5m : Indeterminate

The nannofossil assemblage at 541.5m lacks oligocene species and appears to have caved from higher in the well.

٢.

B) Planktonic Foraminiferal Biostratigraphy

 i) 179.0m : Zone D (Middle Miocene)
 The association of <u>Orbulina universa</u> and <u>Globigerinoides</u> <u>sicanus</u> indicates that the sample at 179.0m is Zone D in age. ii) 296.5-390.5m

: Zone G or younger (Early Miocene or younger).

The occurrence of very rare specimens of <u>Globigerinoides</u> <u>trilobus</u> in a very low yielding planktonic foraminiferal assemblage indicates that the interval is assignable to Zone G or younger zones.

iii) 419.0m : Zone G (Early Miocene) The occurrence of moderate numbers of <u>Globigerinoides</u> <u>trilobus</u> without its descendants <u>Globigerinoides sicanus</u> and the <u>Praeorbulina-Orbulina</u> group indicates that the sample at 419.0m is assignable to Zone G.

The occurrence of rare specimens of <u>Globigerina woodi</u> woodi in a very low yielding and poorly preserved planktonic foraminiferal assemblage indicates that the sample at 454.0m is Zone H2 or younger in age.

v) 456.0-541.5m : Indeterminate With the exception of the sample at 456.0m the interval is barren of <u>in situ</u> planktonic foraminifera. The sample at 456.0m contained one specimen of <u>Catapsydrax dissimilis</u> which is of limited biostratigraphic value. A zone F planktonic foraminiferal assemblage was noted at 538.5m but this has caved from higher in the well.

## C) Environment of Deposition

# i) 179.0-456.0m : Inner neritic An inner neritic environment of deposition for the interval is indicated by the common occurrence of bryozoan fragments, very low percentage of planktonic foraminifera and the absence or rare occurrence of <u>Euvigerina</u> spp., <u>Brizalina</u> spp., and <u>Sphaeroidina bulloides</u>. The moderate to common occurrence of <u>Elphidium crassatum</u> in the upper samples at 179.0 and 296.5m is also indicative of an inner neritic environment of deposition.

### ii) 536.0m and 540.0m : Marine

The samples at 536.0 and 540.0m consist of a low yielding, low diversity and abraded benthonic foraminiferal assemblage which can only be interpreted to have been deposited in a marine environment. The moderate to high abundance of cálcareous nannoplankton in the samples confirms a marine environment of deposition.

Five sidewall core samples ranging in depths from 533.6m to 541.5m from Fairhope No. 1 well were palynologically examined. The upper two samples were moderate in organic richness but rich in palynomorph contents while the lower three were rich on both accounts. The following palynostratigraphic classification is suggested according to the scheme of Stover and Partridge (1973) updated by Raine (1984) and ECL file data.

#### A) Palynostratigraphy

i) 533.6m-541.5m : <u>Proteacidites tuberculatus</u> Zone
 (Early Oligocene)

The interval is correlated with the <u>Proteacidites tuberculatus</u> Zone of Early Oligocene age due to occurrences of <u>Cyathidites</u> <u>subtilis</u> with its base in the zone, and <u>Nothofagidites asperus</u> with its top in the zone. Dinoflagellates support this dating in precise terms. <u>Kallosphaeridium biarmatum</u> occurring at 533.6m is known to be restricted to the Early Oligocene, while <u>Deflandrea</u> <u>spinulosa</u> occurring at 541.5m, and the acritarch <u>Ascostomocystis</u> <u>granulatus</u> occuring at 533.6m are not known from rocks younger than the Oligocene. <u>Operculodinium israelianum</u> occurring in most of the samples is not known to be older than the Oligocene.

#### B) Environment of Deposition

All samples treated contain abundant and diverse dinoflagellate cysts and common foraminiferal chamber-linings except the sample at 540.0m which is low in dinoflagellate cysts. The entire interval is therefore considered to have been deposited in a marine environment. Three samples at 533.6m, 536.0m and 540.0m were studied for source rock potential and organic maturity. The results are given in Tables 1A, 1B and 1C, and the methods and terms used are explained in Appendix No. 1.

All samples yielded around 1.0ml/10g organic matter which suggests a good source-rock potential. The liptinite contents and the fluorescing liptinites were, however, very poor, negating a good potential. Most of the palynomorphs were oxidised and nonfluorescing. The spore colours ranged from light yellow through yellow to light orange. The fluorescence colours were white and yellow. All these data indicate immaturity to early oil generating potentials only.

Samples from 538.5m and 541.5m were analysed for vitrinite reflectance (Appendix 2). A total of 14 and 19 determinations respectively were made and gave mean reflectances of 0.29% and 0.30% with a range of 0.22% to 0.36%, indicating the immaturity of the section. CARTER, A.N., 1964. Tertiary foraminifera from Gippsland, Victoria and their stratigraphic significance. <u>Geol. Surv. Vict.</u>, Mem. 23.

EDWARDS, A.R., 1971. A calcareous nannoplankton zonation of the New Zealand Paleogene. In : FARINACCI, A. (Ed). <u>2nd plank.</u> Conf., Roma 1970., <u>Proc</u>. 1 : 381-419.

JENKINS, D.J., 1971. New Zealand Cenozoic foraminifera. <u>N.Z.</u> Geol. Surv. Bull. 42 : 278p.

MARTINI, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In : FARINACCI, A., (Ed.). <u>2nd plank.</u> <u>Conf., Roma 1970., Proc</u>. : 739-785.

RAINE, J.I., 1984. Outline of a palynological zonation of Cretaceous to Paleocene terrestrial sediments in West Coast Region, South Island, New Zealand. <u>N.Z. Geol. Surv</u>., Report No. 109.

SIESSER, W.G., 1979. Oligocene-Miocene calcareous nannofossils from the Torquay Basin, Victoria, Australia. <u>Alcheringa</u>, 3 : 159-170.

STOVER, L.E., and PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceus spores and pollen from the Gippsland Basin, Southeastern Australia. Proc. R. Soc. Vict., 85(2) : 237-286. TAYLOR, D.J., (in prep). Observed Gippsland biostratigraphic sequences of planktonic foraminiferal assemblages.

VAIL, P.R., MITCHUM R.M, AND THOMPSON, S., 1977. Global cycles of relative changes of sea level. In PAYTON, C.E. (Editor), Seismic Stratigraphy – Applications to Hydrocarbon Exploration. <u>Am. Assoc. Pet. Geol., Mem.</u>, 26 : 83-97.

				IGURE 1 : SUMMARY CHA	RT, FAIRHOPE-1		
DEPTH (mkB)	LITHOLOGY *	UNIT	NANNOFOSSIL ZONE	PLANK FORAM ZONE	PALYNOLOGY ZONE	AGE	ENVIRONMENT
179.0 296.5	Calcarenite Calcarenite		NN 6 NN 4 - NN 5	B G or younger	Not studied Not studied	Middle Miocene Upper Early Miocene -	Inner neritic Inner neritic
390.5 419.0 454.0	Calcarenite Calcarenite/calcisiltite Calcisiltite	Gippsland Limestone	NN4 Indeterm. Indeterm.	G or younger G H2 or younger	Not studied Not studied Not studied	lower Middle Miocene Upper Early Miocene Early Miocene Latest Oligocene	Inner neritic Inner neritic Inner neritic
456.0	Calcarenite		Indeterm.	Indeterm.	Not studied	or younger Indeterm.	Inner neritic
			lo	og break at 476.5m			
Not stu		Lakes Entrance Formation ("upper member")					
		Entrance Formation ("upper member")	10	og break at 530.5m			
Not stur		Entrance Formation ("upper member")	lo Indeterm.	og break at 530.5m Indeterm.	Not studied	Indeterm.	Indeterm.
 #532.0 #533.6	Oxidized fine grained sandstone Oxidized siltstone Glauconitic sandstone/ oxidized sandstone	Entrance Formation ("upper member") Lakes Entrance Formation ("lower member")	Indeterm. Indeterm. NP23-NP24	Indeterm. Indeterm. Indeterm.	Not studied <u>P. tuberculatus</u> <u>P. tuberculatus</u>	Indeterm. Early Oligocene Early/Late Oligocene boundary	Indeterm. + Marine Marine
	Oxidized fine grained sandstone Oxidized siltstone Glauconitic sandstone/ oxidized sandstone	Entrance Formation ("upper member") Lakes Entrance Formation ("lower member")	Indeterm. Indeterm. NP23-NP24	Indeterm. Indeterm. Indeterm.	Not studied <u>P. tuberculatus</u> <u>P. tuberculatus</u>	Indeterm. Early Oligocene Early/Late Oligocene boundary	Indeterm. + Marine Marine
 #532.0 #533.6	Oxidized fine grained sandstone Oxidized siltstone Glauconitic sandstone/ oxidized sandstone	Entrance Formation ("upper member") Lakes Entrance Formation ("lower member")	Indeterm. Indeterm. NP23-NP24	Indeterm. Indeterm. Indeterm.	Not studied <u>P. tuberculatus</u> <u>P. tuberculatus</u>	Indeterm. Early Oligocene Early/Late Oligocene	Indeterm. + Marine Marine

# Downhole contamination noted.

. Invironment based on palynomorph data.

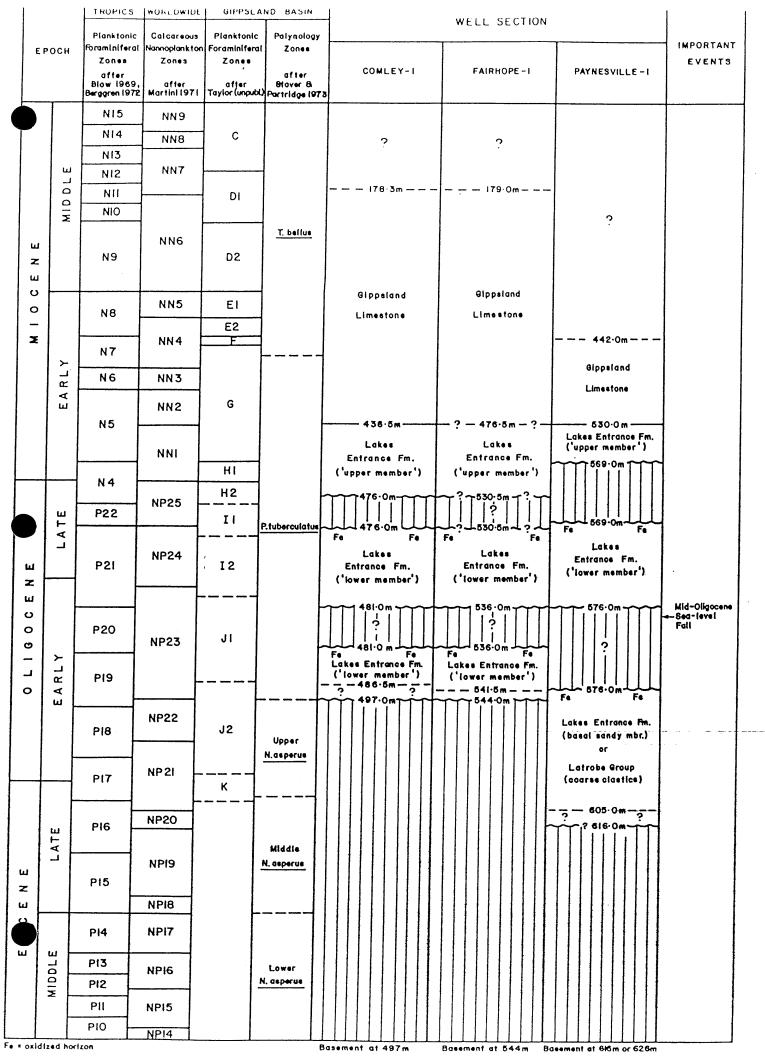



Fig.2 Tentative chronostratigraphic correlation between Comley-1, Fairhope-1, & Paynesville-1 wells, onshore Gippsland Basin.

## Tentative chronostratigraphic correlation between COMLEY 1, FAIRHOPE 1 & PAYNESVILLE 1 wells,

onshore Gippsland Basin - revised by Ampol Exploration Ltd

	-		TROPICS	WORLDWIDE	GIPPSLAN	D BASIN				
			Planktonic	Calcareous	Planktonic	vnolonvicq		WELL SECTION		IMPORT
EF	POC	CH	Foraminiferal Zones	Nannoplankton Zones	Foraminiferal Zones	Zones	Comlay 1	Eairbana 1	Devreeville 1	IMPORTANT EVENTS
			after Blow 1969, Berggren 1972	after Martini 1971	after Tayloríunpubl.)	after Stove & Partridoe 1973	Comley 1	Fairhope 1	Paynesville 1	
	Τ		N15	NN9						
			N14	NN8	С		?	?		
			N13 N12	NN7			LIMIT OF AG			
		e	N12 N11		D1					
		Middle	N10						?	
ENE		2	N9	NN6	D2	<u>T.bellus</u>			·	
			N8	NN5	E1		GIPPSLAND LIMESTONE	GIPPSLAND LIMESTONE	LIMIT OF AGE	CONTROL
Ξ					E2 F		LIMEOTONE		442.0m	OONTHOL
2			N7	NN4	Ľ					
		2	N6	NN3					GIPPSLAND LIMESTONE	
		Early		NN2	G				LIMESTONE	
			N5				438.2m	— <b>?</b> —496.0m <i>—</i> ?—	529.5m	
				NN 1					<b>~~~</b> 569.0m <b>~~~~</b>	
	╇		N4		H1 H2	_		• • <b>9</b> · 522 0m • 9 • •		
		0	P22	NP25		P. tuberculatus	₩ ^{476.0m} ₩ 476.0m	<b>~~?;~</b> 533.0m <b>)</b> ? <b>~~</b>	Fe 569.0m Fe	Late
		Late					Fe 476.0m Fe	Fe Fe Fe	10	Oligocene sea-level
ш			P21	NP24	12				LATROBE GROUP	fall
N N				•			LATROBE	LATROBE	GROOP	
0		ŀ					GROUP	GROUP	<b>↑↑</b> ^{576.0m} <b>↑↑</b>	<ul> <li>▲ Mid</li> <li>Oligonopo</li> </ul>
0			P20	NP23	J1				Fe 576.0m Fe	Oligocene sea-level fall
0	.	arly							ге ге	i'dii
0		ш	P19	•			~~~ 497.0m~~~~	~~~~544.0m~~~~		
ľ		ſ	P18	NP22	J2				LATROBE GROUP	
						Upper N.asperus			encer	
			P17	NP21						
		ŀ								
			P16	NP20					~~?~616.0m~~~~	
<b> </b>		Late		NP19		Middle				
Ш И	-	┙╽	Dic	141 13		N.asperus				
ш			P15	NP 18						
00		-†	P14	NP17	F					
Ш	-	<u>e</u>								
		Middle	P13 P12	NP 16		Lower N.asperus				
		Σ	P11	NP15						
			P10	NP 14						
Fe	= o X	kidiz	ed horizon				Basement at 497m	Basement at 544m	Basement at 616m	

#### FIGURE 3

Spores and pollen recorded in Fairhope-1

KEY:

(

(

ŗ

(

.....

x	present					
L.	common	ε	E	F	E	ε
cf	compared with	533.6m	0.0	.5	0.0	541.5m
		533	536.0m	538 <b>.</b> 5m	540.0m	54.
				2)		
	porites varius		x		×	x
	cariacites australis	×	х	×	×	×
Bacul	latisporites comaumensis	x	x			
Bacul	atisporites disconformis					x
Camar	ozonosporites bullatus					x
	ozonosporites sherlockensis			x		
	nidites australis	x	x	х	х	x
•	idites minor	х	х	х	х	x
	idites subtilis	x	х	x	x	x
Cycad	opites follicularis	×				x
Dacry	carpites australiensis	х	×			x
	heniidites circinidites				×	
	heniidites senonicus	×		×	×	
	agacidites harrisii	x	x	x	×	x
	sporites elliottii		×	x	x	x
Laevi	gatosporites major	x	x		x	x
Laevi	gatosporites ovatus	×	x		x	x
	cidites bainii				x	
Lygis	tepollenites florinii	×	x	х	×	x
Marvao	cipollis subtilis			x	x	x
	cachryidites antarcticus		x			
	ceidites mesonesus fagidites asperus				x	
Nothol	fagidites brachyspinulosus	x	x	x	x	
Nothof	fagidites deminutus				x	x
Nothof	fagidites emarcidus			x	x	
Nothof	fagidites falcatus	x		x	x	x
	lagidites flemingii	x	x x	x x	×	x
	fagidites goniatus	^	~	^	x	x
	agidites heterus	x	x	x	x	x
Nothof	agidites incrassatus	x	x		x	x
Nothof	agidites vansteenisii	x		x	x	x
	lacidites wellmanii	x		x	x	
	accites catastus	x	x	x	x	x
	cladidites verrucatus		x	x	x	x
	rpidites ellipticus	x	x	x		x
Podoca	rpidites microreticulatus	cf				
Propyl	ipollis annularis					x
	ipollis beddoesii			x		
	ipollis latrobensis					cf
Protea	cides recavus	cf		cf		
	cidites adenanthoides		×	cf		
	cidites granulatus		x		×	x
	cidites obscurus			x	×	×
	cidites pseudomoides cidites symphyonemoides		x			x
	cidites tuberculatus			x	,	x
	iletes austroclavatidites			x	cf	x
	tes sphaerica	x x	x			
Rugula	tisporites mallatus	x				x 
Rugulat	tisporites trophus	~			v	x
Tricol	porites leuros	x	x	x	×	
Trilete	es ornamentalis	~	~	~		x
	es tuberculiformis	x	x	x	x	x
Verruce	osisporites cristatus	x		x		x

## FIGURE 4

Dinoflagellates and acritarchs recorded in Fairhope-1

## KEY:

ł

ŕ

{

x = present					
C = common	E	E	ε	ε	Ę
cf = compared with	33.6m	0.0	3.5	10.0	.51
	533	536.0m	538 <b>.</b> 5m	540.0m	541.5m
					4,
Alisocysta sp.		х	х		
Areosphaeridium polypetellum			cf		
Ascostomocystis granulatus	х				
Cyclonephelium-Glaphyrocysta complex	х				
Deflandrea spinulosa					x
Eatonicysta n.sp.		х	х		
Kallosphaeridium biarmatum	х				
Leiosphaeridia sp.		x	х		
Lejeunecysta paratenella					x
Lingulodinium funginum					х
Lingulodinium machaerophorum	х		x		x
Lingulodinium siculum			x	x	x
Millioudodinium sp.			x		x
Operculodinium bellulum	х	x	x	x	х
Operculodinium centrocarpum	x	x	х	х	х
Operculodinium israelianum	x	x	х		х
Operculodinium microtriainum		x	x		
Paucisphaerídium sp.			x		
Polysphaeridium subtile			x		x
Pterodinium cingulatum	x				
Selenopemphix armata		x	х		х
Selenopemphix nephroides		х			
Spiniferites membranaceous	x	х	х		
Spiniferites mirabilis	x	х	x		x
Spiniferites pachydermus		x	x		
Spiniferites ramosus gracilis	x	x	x		x
Spiniferites ramosus granomembranaceous	х				
Spiniferites ramosus multibrevis	x	x	x		x
Spiniferites ramosus ramosus	x	x	х	х	х
Spiniferites spp.	x	x		x	x

#### PE900764

This is an enclosure indicator page. The enclosure PE900764 is enclosed within the container PE902393 at this location in this document.

The enclosure PE900764 has the following characteristics: ITEM_BARCODE = PE900764 CONTAINER_BARCODE = PE902393 NAME = Micropalaeontological Chart BASIN = GIPPSLAND PERMIT = PEP98TYPE = WELLSUBTYPE = DIAGRAM DESCRIPTION = Micropalaeontological Distribution Chart for Fairhope-1 REMARKS = DATE_CREATED = 30/09/1985 DATE_RECEIVED =  $W_NO = W910$ WELL_NAME = FAIRHOPE-1 CONTRACTOR = ECL AUSTRALIA CLIENT_OP_CO = AMPOL EXPLORATION (Inserted by DNRE - Vic Govt Mines Dept)

#### TABLE 1

Summary of the source rock and maturity data from Fairhope-1

TABLE 1A

DEPTH (m)	PALYNOLOGICA ZONE	L AGE	ENVIRONMENT OF DEPOSITION	OIL POTENTI	MATURITY
533.6	P. tuberculatus	Early Oligocene	Marine	Poor	Immature
536.0	P. tuberculatus	Early Oligocene	Marine	Poor	Immature
540.0	P. tuberculatus	Early Oligocene	Marine	Poor	Immature

TABLE 1B

DEPTH (m)	SAMPLE NO.	WEIGHT (g)	VOM (ml)			PLANKTON		YIELD	_	-OGEN	-OGEN	SAPROPEL	AMORPHOUS SAPROPEL (0-4)
533.6	9	10	1.1	3	90	3	4	1	1	3	3	2	2
536.0	8	10	0.9	3	50	2	4	1	1	3	3	2	2
540.0	6	10	0.8	3	10	2	4	1	1	3	3	2	2

#### TABLE 1C

DEPTH (m)	VOM ml/10g		INITE	%FLUORESCENT LIPTINITES		INDEX		SPORE COLOUR	UV LIPTINITE FLUORESCENCE COLOUR
533.6	1.10	85	5	2	22	1	2	Lt yell-Yell-Lt or	White — Yellow
536.0	0.90	85	2	1	9	1	2	Lt yell-Yell-Lt or	White - Yellow
540.0	0.80	90	2	1	8	1	2	Lt yell-Yell-Lt or	White - Yellow

Explanation of the source rock parameters recorded using palynological techniques.

INTRODUCTION

A rapid and reliable technique for estimating the abundances of the various kerogen components and relating these back to the source rock potential of the sediments has been developed.

Samples that are to be examined for palynology and source rock potential are processed using standard techniques that include acid digestion in cold HC1, cold HF and then boiling HC1. Any remaining mineral matter is removed by flotation of the organic material in a Zn2Br solution of SG 2.10. The heavy liquid is removed by washing and the volume of organic material (VOM, see below) recovered is measured in a 10ml conical centrifuge tube after spinning at 3000 rpm for 5 minutes. A measured proportion by volume of the organic residue (kerogen) is dried on a coverslip with PVA and is then mounted on to a microscope slide with a plastic resin (Elvacite or Eukit).

Counts of the various kerogen components are made on the kerogen slide using modified pointcounting procedures and the results related back to the weight of rock processed. For example, a kerogen slide may represent the residue from 1/25g~(0.04g) of the sediment. It has been measured that the field of view of the 20X objective on a Nikon microscope used by ECL is 1/4000~(1/4E3) of the total area of the kerogen slide. If, on average, there are 4 palynomorphs observed in each field of view when scanning the slide, then the number of palynomorphs estimated per gram of sediment is 4x25x4E3 = 4E5/g~(400,000 per gram). This would be regarded as a good yield that could provide a significant contribution to the source rock potential of the sediment.

Each of the measured kerogen components usually show a wide size range that also must be taken into consideration during the counts. In an effort to reduce the subjective element of the estimates, the same microscope objective is used to count the same parameter where this is possible. It is not feasible to directly relate the measured number of particles of a particular kerogen component or their area to an estimated volume or mass for that component. However, an empirical relationship between the abundance estimates and source rock potential has been determined based on the examination of known source rock sequences. To facilate the display of the abundance data and discussion of these results, a simplified four point scale has been developed based on comparisons with source rocks from a wide variety of locations. For example, palynomorph abundances vary from less than 1000(1E3)/g in poor source rocks to more than 1000000(1E6)/g in very good source rocks.

#### GLOSSARY

1. PALYNOMORPH YIELD

The estimated number of palynomorphs per gram of sediment expressed in terms of low (=1), moderate (=2), high (=3) and very high (=4) when compared with other source rocks (1=<1E3/g; 2=1E3-<3E4/g; 3=3E4-1E6/g; 4=>1E6/g; 20X Objective).

#### 2. PRESERVATION

Estimate of the general preservation level of the palynomorphs, recorded in terms of poor (=1), moderate or fair (=2), good (=3) and very good (=4).

#### 3. SPORE-POLLEN AND MICROPLANKTON DIVERSITY

The estimated number of different species in the sample expressed in terms of low (=1), moderate (=2), high (=3) and very high (=4) when compared with other source rocks (1=1-5; 2=6-15; 3=16-25; 4=>25).

#### 4. PERCENT MICROPLANKTON

The estimated proportion of dinoflagellates, acritarchs and other algal cysts expressed as a percentage when compared with the total palynomorph assemblage.

#### 5. CUTICLE ABUNDANCE

The estimated number of cuticle fragments (large and small) per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E2/g; 2=1E2-<3E3/g; 3=3E3-1E5/g; 4=>1E5/g; 10X Objective).

#### 6. PERCENTAGE OF LIPTINITES

The proportion of the unfiltered kerogen (as observed on a kerogen slide) that comprises palynomorphs (spores, pollen and algal cysts) and cuticle fragments is ECL AUSTRALIA PTY LTD

estimated and expressed as a percentage of the total organic matter. Unly the larger, properly identifiable liptinites can be included in this category. Finely degraded liptinites (less than 1 micron) are regarded as part of the sapropel group of macerals except when distinguishable by UV fluorescence.

#### 7. PERCENTAGE OF FLUORESCENT LIPTINITES

The proportion of the unfiltered kerogen (as observed on a kerogen slide) that comprises fluorescing palynomorphs (spores, pollen and algal cysts) and fluorescing cuticle fragments is estimated and expressed as a percentage of the total organic matter. This includes the finely degraded liptinites that are regarded as Amorphous Sapropel (see below). Those liptinites that are unoxidised and able to autofluoresce are regarded as the most oil-prone fraction of the organic matter.

#### 8. HYLOGEN ABUNDANCE

The estimated number of partially translucent woody or lignitic fragments per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E3/g; 2=1E3-<3E4/g; 3=3E4-1E6/g; 4=>1E6/g; 20X Objective). Broadly equivalent to vitrinite and previously referred to as fusain or fusinite.

#### 9. MELANOGEN ABUNDANCE

The estimated number of opaque and angular woody fragments per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E3/g; 2=1E3-<3E4/g; 3=3E4-1E6/g; 4=>1E6/g; 2DX Objective). Broadly equivalent to inertinite. As there is usually a gradation between melanogen and hylogen the two components can be difficult to distinguish,

#### 10. GRANULAR SAPROPEL YIELD

The estimated number of clumps of granular sapropel per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E4/g; 2=1E4-<3E6/g; 3=3E6-1E7/g; 4=>1E7/g; 40X Objective). Granular sapropel is regarded as the very fine, fluffy, degraded and oxidised organic matter that shows no fluorescence and is usually a darker colour than the amorphous sapropel. The measurement of "clumps" of sapropel is highly subjective but provides a good order of magnitude estimate that is relatively consistent provided the sample processing is constant and the same objective is used.

#### 11. AMORPHOUS SAPROPEL YIELD

The estimated number of clumps of amorphous sapropel per gram of sediment expressed in terms of low (=1) to very high (=4) when compared with other source rocks (1=<1E4/g; 2=1E4-<3E6/g; 3=3E6-1E7/g; 4=>1E7/g; 40X Objective). Amorphous sapropel is here regarded as weakly fluorescing, finely degraded liptinitic material. It, appears to consist of fragments of palynomorphs eg. algae, and cuticles but may also include adsorbed hydrocarbons onto the organic debris, however, the particles are usually too small to be resolved by the microscope. The measurement of "clumps" of sapropel is highly subjective but provides a good order of magnitude estimate that is relatively consistent provided the sample processing is constant and the same objective is used.

#### 12. PERCENTAGE OF SAPROPEL

The proportion of the unfiltered kerogen (as observed on a kerogen slide) that comprises sapropel, here regarded as very fine, (less than 1 micron) degraded organic matter is estimated and expressed as a percentage of the total organic matter. This includes both Granular and Amorphous Sapropel (see above).

#### 13. SAPROPEL COLOUR

The overall colour of the dispersed organic matter and was the original parameter observed to estimate Thermal Alteration Index (TAI). Generally the most dominant colour is that of the granular sapropel which usually has a darker colour than the amorphous sapropel. Not usually recorded as it reflects both the environment of deposition and the maturation level.

#### 14. SPORE COLOUR

The colour of the spore or pollen exines in transmitted white light. Variables that can affect the colour (apart from maturation) are the species type and exine thickness as well as any exposure to oxidising environments during and after deposition. The darkest colours of the least oxidised exines are taken as being the most significant. The change in colour from yellow to orange is regarded as indicating the onset of oil generation. Gas generation is suggested as becoming significant as the colours change to brown. Oil generation appears to cease as the spore ECL AUSTRALIA PTY LTD colouis approach dark brown and when they become black significant gas generation also probably ceases.

#### 15. UV LIPTINITE FLUORESCENCE COLOUR

The dominant colour of the unoxidised liptinites (exines, cuticle and some amorphous sapropel) in reflected UV light observed with a Nikon EF-D UV330-380/4000M/420K filter combination and a 20x UV-fluor objective. Liptinites that have been oxidised prior to deposition (mostly by recycling) show reduced intensities. The fluorescent colours observed are a complex mixture not comparable to normal colours as seen with white light. The hues range from light blue to white to light yellow with increasing maturity. The colours change to yellow at the beginning of the oil window (as here interpreted) and change to gold, dull yellow, orange and dull orange to dull red at the base of the oil window. The maturation level of sediments near the base of the oil window and deposited in an oxidising environment can be difficult to interpret.

#### 16. VOLUME OF ORGANIC MATTER (VOM)

The measured volume of organic matter (VOM) left after removal of the mineral matter in the sample (see Introduction above) provides a rapid and reliable indication of the organic richness of the samples. From experience it has been found that the values of VOM when expressed as ml/10g approximate the %TOC determinations. Generally, <0.5 ml/10g is regarded as a poor (lean) source rock, 0.5-<2.5 ml/10g is moderate, 2.5-4.5 ml/10g is good (rich) and >4.5 ml/10g is very good (very rich). However, the abundance of unoxidised liptinites in the kerogen must also be considered in assessing the oil source rock potential of the sediments.

#### 17. VOLUME OF FLUORESCENT LIPTINITES

The total amount of potential oil generating liptinites is calculated by multiplying the Volume of Organic Matter (VOM/10g) with the percentage of fluorescent liptinites observed in the sample (see above). The results are expressed as microlitres per gram. On an empiric basis, values greater than 200 are regarded as good source rocks.

18. OIL INDEX

An estimate of the overall abundance of liptinitic material in the kerogen expressed on a scale of 1-4 (being equivalent to poor, moderate, good and very good). This provides a broad indication of the potential of the sample to generate oil or condensate. The OIL INDEX is calculated by averaging the values for Palynomorph Abundance, Cuticle Abundance and Amorphous Sapropel Abundance (see above) and rounding the result to one digit.

#### 19 GAS INDEX

An estimate of the overall abundance of that part of the organic matter in the kerogen that is regarded as being capable of generating gas if a high enough maturation level is reached. The estimate is expressed on a scale of 1-4 (being equivalent to poor, moderate, good and very good). The GAS INDEX is calculated by averaging the values for Palynomorph Abundance, Cuticle Abundance, Amorphous Sapropel Abundance, Granular Sapropel Abundance and Hylogen Abundance (see above) and rounding the result to one digit.

#### SELECTED REFERENCES

Brooks, J., 1981.

Organic maturation of sedimentary organic matter and petroleum exploration: A review, in Brooks, J. (Ed.), Organic maturation studies and fossil fuel exploration. Academic Press, London.

Bujak, J.P., Barss, M.S., & Williams, G.L., 1977.

Offshore East Canada's organic type and color and hydrocarbon potential. <u>Oil & Gas</u> Journ., Part I, pp.198-202, Part II, pp. 96-100.

Staplin, F.L., et al., 1982.

How to Assess Maturation and Paleotemperatures. Soc. Econ. Paleont. Mineral. Short Course Number 7. P.O. Box 4756, Tulsa, OK74104.

Van Gijzel, P., 1981.

Applications of geomicrophotometry of kerogen, solid hydrocarbons and crude oils to petroleum exploration, <u>in</u> Brooks, J. (Ed.), <u>Organic maturation studies and fossil fuel</u> <u>exploration</u>. Academic Press, London.

#### APPENDIX NO. 2

#### FAIRHOPE NO. 1

К.К.	Depth	_	Exini	re Fluorescence
No.	(m)	R _v max Range	N	Remarks)
x2970	538.5 SWC	0.29 0.22-0.36	yello rare,	sporinite/phytoplankton, yellow, rare liptodetrinite, w to orange. (Sandstone>>carbonate>claystone. Dom V>E>I. All three maceral groups rare. ?Forams nt. Iron oxides common. Pyrite abundant.)
x2971	541.5 SWC	0.30 0.23-0.36	spori (Clay exini	e liptodetrinite, greenish yellow to orange, rare nite, yellow, rare phytoplankton, greenish yellow. stone>sandstone. Dom sparse, V>E>I. Vitrinite and te sparse, inertinite rare. Diffuse humic matter e. Pyrite abundant.)

.

.

A1/1

## APPENDIX 7.

## HEADSPACE GAS ANALYSIS FROM DITCH CUTTINGS

## AMDEL HEADSPACE ANALYSIS

____

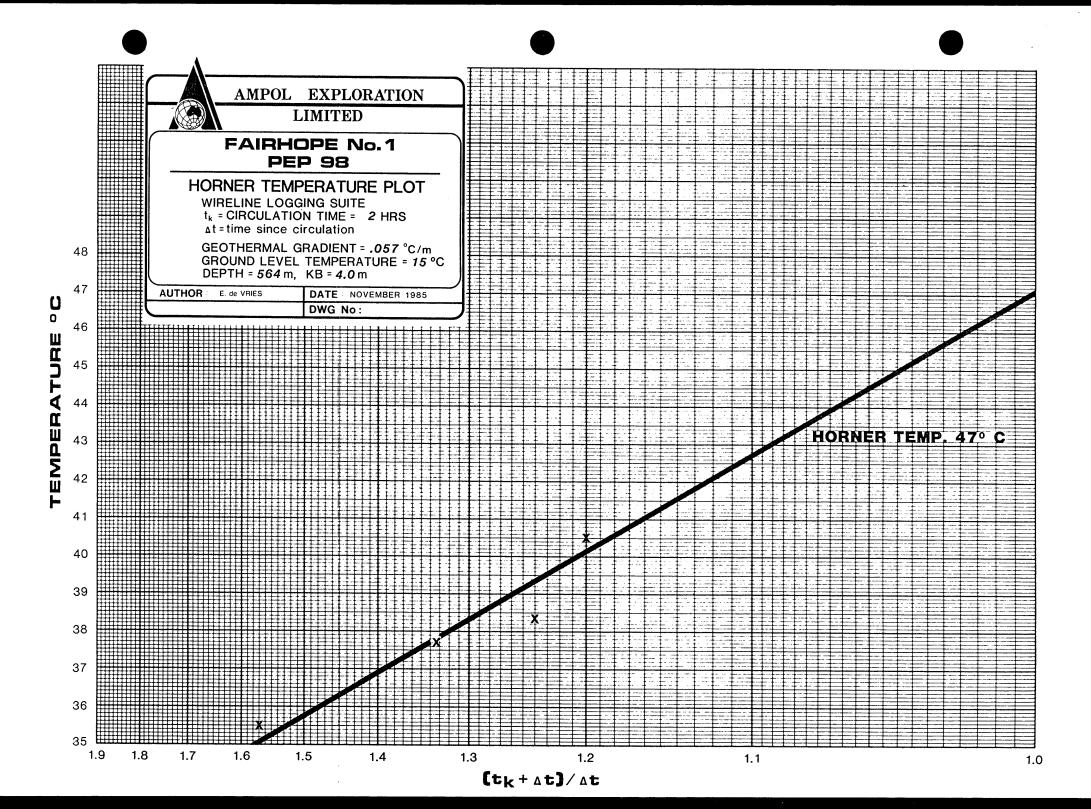
Well:	FAIRHOPE-1			
DEPTH	METHANE	ETHANE PP	PROPANE m	TOTAL GAS
428-458	127	37	4	168
458-488	324	15	1	340
488-508	560	17	2	579
508-538	294	<1	<1	296
538-569	42	<1	<1	44

# Client: AMPOL EXPLORATION

### APPENDIX 8.

## HORNER TEMPERATURE PLOT

#### HORNER TEMPERATURE PLOT


The following data was used to estimate the geothermal gradient in Fairhope #1.

Log Run	Depth	Temp.	Time after last circulation
DLL-MSFL-GR	567m	35.5 ⁰ C	3 hrs 30 mins
LDT-CNL-GR	567m	37.7 ⁰ C	6 hrs
BHC-GR	560m	38.3 ⁰ C	8 hrs
NGT	560m	40.5 ⁰ C	10 hrs

This data gave an extrapolated BHT of  $47.0^{\circ}$ C @ 564m, a geothermal gradient of  $0.0571^{\circ}$ C/m.

A surface temperature of 15°C was assumed.

Ŀ



### APPENDIX 9.

VSP/SONIC CALIBRATION/GEOGRAM PROCESSING REPORT (SEE ALSO ENCLOSURES)

## CONTENTS

- 1 Introduction
- 2 Data Acquisition
- 3 Check Shot Data
- 4 VSP Processing
- \$5 Sonic Calibration
- 76 Sonic Calibration Processing
- \$7 Geogram Processing

#### Additions

Fig. 1 : Wavelet polarity convention Well seismic service computation request Well seismic service field report Gun geometry sketch Colour Velocity Profile

## **1.0 INTRODUCTION**

A Vertical Seismic Profile was shot in the FAIRHOPE #1 well on 29-June -1985. Thirty-seven levels were shot using an airgun source, thirty-three of which were used in the final VSP processing.

All shot times have been corrected to a nominal Mean Sea Level Datum.

#### VSP Objectives:

- to obtain a high resolution time-depth curve. As the levels are separated by between 3 to 10 milliseconds, accurate velocity analysis can be made.
- to obtain a better tie between the VSP and Seismic. The lateral depth of investigation of a VSP is intermediate between surface seismic and logs. (radius 20metres)
- to determine the multiple content of the area by analysis of the downgoing wavetrains.

In addition to the above the VSP has other applications:

- Further analysis of the downgoing wavetrain provides information on the earth filtering of the seismic wave versus depth.
- The VSP has the properties of being Vertical, therefore minimising the effects of moveout. This simplifies greatly the analysis of highly dipping reflectors, and also the interpretation of data recorded in faulted areas.
- One of the most important applications of VSP's is the analysis of reflected signals below the sensor.
- As the VSP can be considered the optimum seismic expression at the wellbore it may be used as the input for further studies such as:-
  - Inversion
  - Trace Attributes
  - Power Spectra
  - Attenuation

## 2.0 DATA ACQUISITION

Elevation SRD	Mean Sea Level
Elevation KB	42.9metres AMSL
Elevation DF	42.3metres AMSL
Elevation GL	39.0 metres AMSL
Well Deviation	Odegrees
Total Depth	569 <i>metres</i> measured depth below KB
Energy Source	Bolt airgun,120 <i>cu.in</i> .
Source Offset	50.6metres
Source Depth	1.5 metres below Ground Level
Source Azimuth	230degrees
Reference Sensor	Accelerometer
Sensor Offset	50.8metres
Sensor Depth	1.5 metres below Ground Level
Sensor Azimuth	230degrees
Downhole Geophone	Geospace HS-1
(WST tool)	High Temp. $(350^{\circ}F)$
(	Coil Resist. $225\Omega + 10\%$
	Natural Freq. $8 - 12Hz$
	Sensitivity $52V/m/sec$
	Maximum tilt angle 60°

## Table 1 : Field Equipment and Survey Parameters

Recording was made on the Schlumberger Computerized Service Unit (CSU) using LIS format.

----

## 3.0 VSP SHOT DATA

A total of 37 check levels were shot between 42.9 metres and 561 metres below KB.

Timing of the data was made using a constant reference delay time of 10ms. This time was obtained from the accelerometer data on the first 19 shots of the survey and applied globally to all other shots. Data from the reference hydrophone was not used in the timing of the shots. Hence transit times picked in the computing centre differ from those picked in the field (using hydrophone data) by up to 11msecs.

The check level data recorded at 516metres and 471metres below KB is extremely noisy due to poor coupling of the well geophone with the formation. These levels have been omitted from the VSP, however good data has been recorded at the nearby depths of 514metres and 471.5metresbelow KB. Also omitted from the final VSP processing were the levels at SRD (42.9metres) and 561metres below KB. Both stacked signals were distorted by noise. Most of the check levels are affected by high amplitude noise from a tube wave. At and below these distortions the reliability of the data is greatly reduced. Steps have been taken in the processing chain to reduce the affect of the tube wave (see VSP PROCESSING - 4.2) but generally only the data above the tube wave should be interpreted with confidence.

Level Depth (m below KB)	Stacked Shots	Rejected Shots	Quality	Comments
42.9	6	4	Poor	Omitted
69.0	1	4	Fair	
83.5	. 8	1	Fair	
98.0	6	0	Fair	
110.5	6	0	Fair	
127.5	9	0	Fair	
137.5	7	0	Fair	
153.0	6	0	Fair	
167.5	10	0	Fair	
181.0	10	0	Fair	
197.0	8	0	Fair	
212.0	. <b>9</b>	2	Fair	
227.5	7	0	Fair	
241.5	8	0	Fair	
260.0	8	1	Fair	
275.0	8	1	Fair	
286.5	7	0	Fair	
303.5	8	3	Fair	

Table 2	2
---------	---

Level Depth (m below KB)	Stacked Shots	Rejected Shots	Quality	Comments
319.0	7	1	Fair	
327.5	6	2	Fair	
340.0	5	0	Fair	
348.5	9	0	Fair	
368.5	10	1	Fair	
384.0	5	1	Fair	
402.0	7	0	Fair	
417.0	5	2	Fair	
436.0	4	1	Fair	
454.0	6	2	Fair	
471.0	0	2	Poor	Omitted
471.5	5	0	Fair	
490.0	4	2	Fair	
500.0	5	0	Fair	
514.0	9	2	Fair	
516.0	0	2	Fair	Omitted
532.0	5	5	Fair	
550.0	5	16	Fair	
561.0	7	2	Poor	Omitted

t

Table 2 (continued)

## 4.0 VSP PROCESSING

### 4.1 PLOT 1 - STACKED DATA

All the shots at each level, excluding those with a high level of noise are stacked. Labelled depths are depths referenced to Kelly Bushing.

#### 4.2 PLOT 2 - BPF, TAR and NORMALISATION

Plot 2 data is displayed in One Way Time and corrected to SRD.

A Band Pass Filter of bandwidth 14-64 Hz is applied to eliminate high and low frequency noise.

True Amplitude Recovery is a time variant gain function to compensate for spherical spreading and attenuation losses. The amplitude at time T is multiplied by  $\left(\frac{T}{T_0}\right)^{\alpha}$  where  $T_0$  is the first break time and  $\alpha$  is the TAR factor.

In an attempt to reduce the high amplitude of the tube wave the data has been normalised.

<b>Band Pass Filter</b>	:	14 - 64Hertz
TAR Factor	:	1.2
Normalisation Window	:	200 <i>ms</i>

#### 4.3 PLOT 3 - VELOCITY FILTER

A 7 level median velocity filter is used to seperate the upgoing and downgoing components of the total wavefield. Data from this stage is displayed in Two Way Time.

#### 4.4 PLOT 4 - WAVESHAPE DECONVOLUTION

The objective of deconvolution is to remove multiples and to shape the seismic signal to a zero phase Ricker wavelet. The parameters for the deconvolution are selected from the downgoing signals after velocity filtering.

The WSF parameters used:

Window : 2.0seconds Wavelet : Zero Phase 14 – 48Hertz

## 4.5 PLOTS 5/6 - FINAL DISPLAY WITH CORRIDOR STACKS AND GEOGRAM

The upgoing events after waveshape deconvolution are stacked and displayed alongside the deconvolved upgoing wavefield. Two stacks are made, one using all data and the other using the first 200ms of each wavetrain. The latter should simulate the reflectors at the borehole. Automatic gain control (AGC) using a window of 200ms has been applied to the corridor stacks.

Alongside this data are geogram traces convolved using a 30hz zero phase ricker wavelet. Relevant log data has also been displayed.

Both polarities of this data have been displayed.

All plots have been displayed at a time scale of 10in/sec.

## 5.0 SONIC CALIBRATION

A 'drift' curve is obtained using the sonic log and the vertical check level times. The term 'drift' is defined as the seismic time (from check shots) minus the sonic time (from integration of edited sonic). Commonly the word 'drift' is used to identify the above difference, or to identify the gradient of drift verses increasing depth, or to identify a difference of drift between two levels.

The gradient of drift, that is the slope of the drift curve, can be negative or positive.

For a negative drift  $\frac{\Delta drift}{\Delta depth} < 0$ , the sonic time is greater than the seismic time over a certain section of the log.

For a positive drift  $\frac{\Delta drift}{\Delta depth} > 0$ , the sonic time is less than the seismic time over a certain section of the log.

The drift curve, between two levels, is then an indication of the error on the integrated sonic or an indication of the amount of correction required on the sonic to have the TTI of the corrected sonic match the check shot times.

Two methods of correction to the sonic log are used.

- 1. Uniform or block shift This method applies a uniform correction to all the sonic values over the interval. This uniform correction is applied in the case of positive drift and is the average correction represented by the drift curve gradient expressed in  $\mu sec/ft$ .
- 2.  $\Delta T$  Minimum In the case of negative drift a second method is used, called  $\Delta T$  minimum. This applies a differential correction to the sonic log, where it is assumed that the greatest amount of transit time error is caused by the lower velocity sections of the log. Over a given interval the method will correct only  $\Delta T$  values which are higher than a threshold, the  $\Delta t_{min}$ . Values of  $\Delta t$  which are lower than the threshold are not corrected. The correction is a reduction of the excess of  $\Delta T$  over  $\Delta t_{min}$ ,  $\Delta T - \Delta t_{min}$ .

 $\Delta T - \Delta t_{min}$  is reduced through multiplication by a reduction coefficient which remains constant over the interval. This reduction coefficient, named G, can be be defined as:

$$G = 1 + \frac{drift}{\int (\Delta T - \Delta t_{min}) dZ}$$

Where drift is the drift over the interval to be corrected and the value  $\int (\Delta T - \Delta t_{min}) dZ$ is the time difference between the integrals of the two curves  $\Delta T$  and  $\Delta t_{min}$ , only over the intervals where  $\Delta T > \Delta t_{min}$ .

Hence the corrected sonic:  $\Delta T = G(\Delta T - \Delta t_{min}) + \Delta t_{min}$ .

## **6.0 SONIC CALIBRATION PROCESSING**

### 6.1 Open Hole Logs

Both the sonic and density log data has been edited prior to input into the Sonic calibration / Geogram chain.

#### **6.2** Correction to Datum

Seismic reference Datum (SRD) is at Mean Sea Level. The airgun was positioned 1.5metres below Ground Level (37.5metres above SRD). Correction to datum has been made using a surface velocity of 829.79m/sec which resulted in a correction of -45.19 msecs between gun and datum. This velocity has been calculated using the elevation statics from the seismic line GM83A - 21.

#### **6.3** Velocity Modelling

Interval velocities between the top of the sonic log and the top check shot were calculated from the checkshot data.

#### **6.4** Sonic Calibration Results

The top of the sonic log (127.5 metres below KB) is chosen as the origin for the calibration drift curve.

A number of shifts, well defined by the drift curve, have beeen applied to the sonic log. These shifts are listed below.

	Equiv Block Shift µ8ec/ft	$\Delta t_{min}$ $\mu sec/ft$	Block Shift µ8ec/ft	Depth Interval (m below KB)
-	0	-	0	0-127.5
·	6.23		6.23	127.5-352.5
	13.72	-	13.72	352.5-472.5
	6.2	-	6.2	472.5-561

#### Table 3

The adjusted sonic curve is considered to be the best result using the available data.

## 7.0 GEOGRAM PROCESSING

Geograms were generated using zero phase Ricker wavelets with frequencies at 30, 40 and 50Hz. The presentations are in normal and reverse polarity at time scales of 10in/sec.

Geogram processing produces synthetic seismic traces based on reflection coefficients generated from sonic and density measurements in the well-bore. The steps in the processing chain are the following:

> Time to depth conversion Generate reflection coefficients Generate attenuation coefficients Choose a suitable wavelet Convolution Output.

#### 7.1 Time to Depth Conversion

Open hole logs are recorded from the bottom to top with a depth index. This data is converted to a two-way time index and flipped to read from the top to bottom in order to match the seismic section.

#### 7.2 Primary Reflection Coefficients

Sonic and density data are averaged over chosen time intervals (normally 2 or 4 millisecs). Reflection coefficients are then computed using:

$$R = \frac{\rho_2 . \nu_2 - \rho_1 . \nu_1}{\rho_2 . \nu_2 + \rho_1 . \nu_1}$$

where

 $\rho_1 = \text{density of the layer above the reflection interface}$ 

 $\rho_2 = \text{density of the layer below the reflection interface}$ 

 $\nu_1$  = compressional wave velocity of the layer above the reflection interface

 $\nu_2 = \text{compressional wave velocity of the layer below}$ the reflection interface

This computation is done for each time interval to generate a set of primary reflection coefficients without transmission losses.

#### 7.3 Primaries with Transmission Loss

Transmission loss on two-way attenuation coefficients are computed using:

$$A_n = (1 - R_1^2) \cdot (1 - R_2^2) \cdot (1 - R_3^2) \cdot (1 - R_n^2)$$

A set of primary reflection coefficients with transmission loss is generated using:

$$Primary_n = R_n A_{n-1}$$

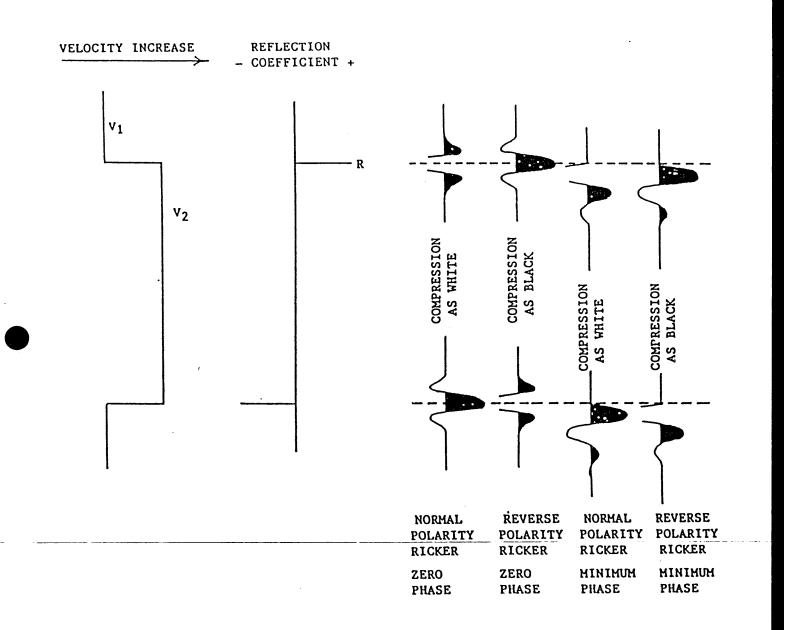
#### 7.4 Primaries plus Multiples

Multiples are computed from these input reflection coefficients using the transform technique from the top of the well to obtain the impulse response of the earth. The transform outputs primaries plus multiples.

#### 7.5 Multiples Only

By subtracting previously calculated primaries from the above result we obtain multiples only.

#### 7.6 Wavelet


A theoretical wavelet is chosen to use for convolution with the reflection coefficients previously generated. Choices available include:

Klauder wavelet Ricker zero phase wavelet Ricker minimum phase wavelet User defined wavelet.

All wavelets can be chosen with or without butterworth filtering and with user defined centre frequencies. Polarity conventions are shown in Figure 1. These Geograms were generated using zero-phase ricker wavelets.

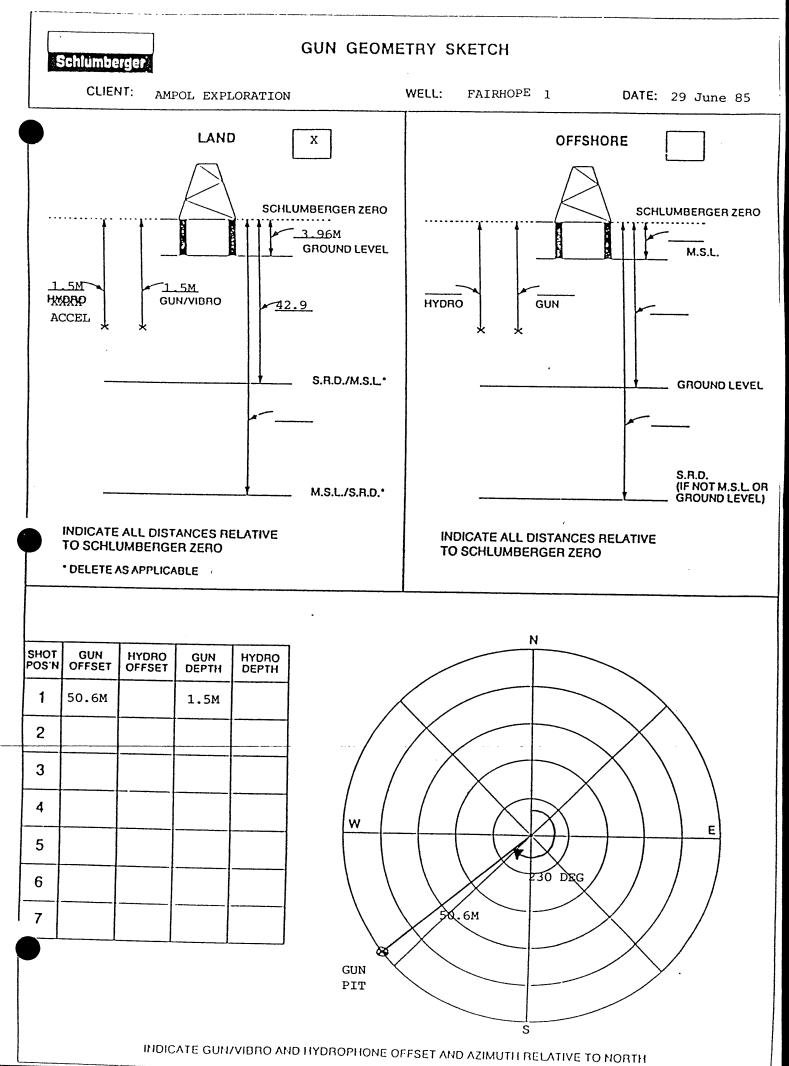
#### 7.7 Convolution

Standard procedure of convolution of wavelet with reflection coefficients. The output is the synthetic seismogram.



NOTE: WAVELET DISPLAYED UNDER GEOGRAMS ARE FOR A REFLECTION COEFFICIENT OF -0.5

Schlumberger WELL SEISMIC SERVIC	E COMPUTA	TION REC	QUEST			
COMPANY: AMPOL EXPLOR, CONTACT: B. CASSIE	NUMBER OF COPIES OF RESULTS (CLIENT)					
FAIDHODE #1	PRODUCT	REPORTS	PLOT TRANSP.	PLOT PRINT	TAPE	
ELL:	WSE				#1 X 1	
	wsc	3	1	3	#2 _{X1}	
DATE WST JOB:	GEO	3	1	3		
BY:	VSP	3	1	3		
DATA SUPPLIED FOR INTERVALS TO BE PROCESSEDFROMTOA. LOGS : DENSITY561SONIC561127.5B. SHOTS561	<u>UNITS:</u> CLIENT T/	APE: FOI	RMAT: SEG	E #1	TRES 🛛 <u>TAPE #2</u> LIS 🖾 O BPI 🖾	
SONIC CALIBRATION BY WST (WSC) URGENT? YES NO IS A WELL SEISMIC EDIT (WSE) REQUESTED? YES NO I (WSE IS RECOMMENDED WHERE FIELD STACK QUALITY IS AFFECTED BY BAD HOLE CONDITIONS) REQUESTED TIME ORIGIN (SRD) METRES ABOVE/BELOW MEAN SEA LEVEL (MSL)						
STATIC CORRECTION TO BE APPLIED : -	-	LAYER 1	VELOCITY	FROM	то	
MILLISECONDS FROM GROUND LEVEL	OR	2				
RUE VERTICAL DEPTH (TVD) CORRECTION? YES	<u> </u> NO 🗌 (ту	3				
DEVIATION DATA SUPPLIED? / YES		D IS RECOMN	IENDED IF DE	VIATION EXC	EEUS 5')	
11 INCH WSC DISPLAY DEPTH SCALES TO BE USED (UP TO 22INCH WIDE TIME/DEPTH DISPLAY SPECIAL TIME FUNCTIO 22 INCH WIDE GEOLOGICAL INTERVAL VELOCITY DISPLAY? SPECIAL SCALES TO BE USED? SPECIFY	N? (T - DEPT		YES 🗆 🛚			
	OGRAM		URGEN	NT? YES	NO 🗌	
FREQUENCY TEST TO BE SUPPLIED BEFORE FINALIZATION FINAL GEOGRAM PARAMETERS : -			P			
(ONE GEOGRAM INCLUDES DISPLAYS IN BOTH POLARITIES	WAVELET KLAUDER MIN PHASE	FREO.	T. 1. LOW	T. HIGH F. LO	W F. HIGH	
FOR EACH OF, PRIMARIES, PRIMARIES + MULTIPLES, PRIMARIES WITH TRANSMISSION LOSS, MULTIPLES ONLY	ZERO PHASE		F			
FOR THE CHOSEN WAVELET AND T.V.F.)	·	5 10 CM/SEC	+ ONE OTHER	R – SPECIFY [		
DIP OPTION YES NO SEISMIC LINE NUMBER	<u>۲</u> کر	B LINE NOB	d			
(ENCLOSE WELL LOCATION MAP VERSUS SEISMIC LINE) DISTANCE BETWEEN TRACES SECTION PERSPECTIVE: SEEN SFROM A	SEISMIC	d WELL	∝ (CLO	CKWISE)		
SPECIAL REQUESTS:	/					
VERTICAL SE TO 3 VELOCITY FILTER TESTS WILL BE SENT PROVISION SPECIFY NUMBER OF TRACES IN WINDOW REQUIRED TIME VARIANT FILTER (TVF) TO BE APPLIED ON FINAL DISPL SCALE IS 10 CM/SEC + ONE OTHER. SPECIFY SPECIAL REQUESTS? ENCLOSE SEISMIC SECTION. INDICATE RELATION TO WELL	ALLY 3 🗍 AY : –	5 🗍	7 🗆	9 [] ME 2 FLOY	NO	


Schlu	mberger		WELL	SEISMIC	SERVICE	FIE	LD REF	PORT	1 OF 2
СОМР	ANY	WELL	DA	TE	LOCATION	ENGINE	ER	WITNESSED BY	
AMPOI	, EXPL	FAIRHO		JUNE 85		J.A. E	ELLIS	M. SCHMEDJE	
ET I METRES I JACK UP I SHIF					-SUB 🗌	WEATH	ER: W	ET AND MUDDY	
SCHLU	IMBERGER Z	ERO KE	LLY BUSH			42.96			N SEA LEVEL (M.S.I
	EASURED FF				ELEVATION	0 M 0 M			LUMBERGER ZERO LUMBERGER ZERO
	NG MEASUHI				T			DISTANCE	HOUR DATE
	YPE WA				TIDE LEVE			DISTANCE	HOUN DATE
	ИЕ <u>1                                    </u>				(RECORD	IF LEVEL	VARIES		
RESS	SURE	ВА	RS		MORE THA	N 2 METF	RES		
	TOR TYPE				DURING S	URVEY)			
	P LENGTH								
FROM	HZ	TO	H	Z	CSU SOFT	WARE VE	RSION: 2	6.2 MAX. HOLE DE	EV: 0 AZIM:
	NOTE: SHO	OTS HIGHL	Y RECOM	IENDED AT	TD, TOP EACH	I SONIC, A	ABOVE AN	D BELOW BAD HOLE	
				UN	CORRECTED	RESULT	S	Quality: G = Good, P =	Poor, U = Unsatisfacto
SHOT NO.	DEPTH	GUN PRESSURE	FILTERS	TRANSIT TIME	HOUR SHOT	FILE	STACK	STACKED SHOTS	QUALITY / REMAR
	561	80		_		<u>                                      </u>	11	1 - 9	V. POOR POOR
	550	<u></u>			10:28	1	2	10 - 15	
	550	90			10:35	$\begin{array}{ }1\\1\end{array}$	3	10 - 19	POOR
	532	90							
	550	95		274.4		33	2	1 - 10 12 - 18	<u>О.К.</u>
	532	95				3		19 - 20	NOISE
	516	95		-		3	1		
	<u>513</u> 5 514	95			12:57	3	3	21 - 31	POOR
	500	95		253.3	13:05	3	4	32 - 36	О.К.
	490	95		248.8		3		37 - 42	О.К
	470	95				4	<u> </u>	43	BAD
	471.5	95		238.9	13:26	4	8	45 - 49	О.К.
	454	95		231.5	13:33	4	9	50 - 57	О.К.
	436	95		223.2	13:40	4	10 11	<u>58 - 63</u> 64 - 70	0.K.
	417	95	- <u>-</u>	215.7		4			О.К.
	402	95		208.4		4	12	<u>71 - 77</u> 78 - 83	0.K.
	384 368.5	<u>95</u> 95		193.9	14.04	4	14	84 - 94	TUBE WAVE
	1	95		185.3		4	15	95 - 103	TUBE WAVE
	348_5	95		181.9		4	16	104 - 108	TUBE WAVE
	327.5	95		175.8	14:30	4	17	109 - 116	О.К.
	319	95		172.6	14:35	4	18	117 - 124	0.K.
	303.5	95		165.0	14:41	4	19	125 - 135	
	286.5	95		157.5		4	20	136 - 142 143 - 151	<u>О.К.</u>
	275	95		152.6		4	21		T.W. T.W.
	260	95		146.6	15:03 15:08	4	22	152 - 160 161 - 168	T.W.
/	241.5	95	.	137.9			23	169 - 175	T.W.
	227_5			131.8	<u>15:14</u> 15:19	4	25	176 -186	О.К.
	212 197	<u>95</u> 95	+		15:27	4	26	187 - 194	T.W.
				117.5	15:37	4	27	195 -204	T.W.
	181	95	l				1		1
	167.5	95		104.6	15:42	4	28	205 -214	TW

Distribution: White - computing centre: Green + District: Pink + Location

. ______

СОМР	ANY	WELL	0,	ATE	LOCATION	ENGINE	ER	WITNESSED BY	
ETC	] METRES	JACK PLAT		SHIP	SUB 🗌	WEATH	IER:		
	JMBERGER IEASURED I				ELEVATION ELEVATION	•		RELATIVE TO MEA RELATIVE TO SCH	•
RILLI	NG MEASU	RED FROM		AT	ELEVATION			RELATIVE TO SCH	LUMBERGER ZER
		SOURCE					NOITAN	DISTANCE	HOUR DATE
	YPE V	VATER 📋 « Cl			TIDE LEVE				
		с СС ВА			(RECORD I MORE THA				
					DURING SI		123		
					bormido	5			
		то			CSU SOFT	WARE VE	RSION:	MAX. HOLE DE	EV: AZIM:
	NOTE: SH	HOTS HIGHL	YRECOM	IENDED AT T	D, TOP EACH	I SONIC, A	BOVE AN	D BELOW BAD HOLE	
				UNC	ORRECTED	RESULT	5	Quality: G = Good, P =	Poor, U = Unsatisfac
SHOT NO.	DEPTH	GUN PRESSURE	FILTERS	TRANSIT TIME	HOUR SHOT	FILE	STACK	STACKED SHOTS	QUALITY / REMAR
	137.5	95		92.4	15.55	4	30	221 - 227	TUBE WAVE
	127.5	95		86.5	16:05	4	31	228 - 236	TUBE WAVE
I	110.5	95		79.9	16:09	4	32	237 - 242	TUBE WAVE
	98	95		74.3	16.13	4	33	243 - 248	TUBE WAVE
	83.5	95		67.7	16:22	4	34	249 - 257	TUBE WAVE
	69.0	95		61.8	16:27	4	35	258 - 262	TUBE WAVE
	42.9	95			16:39	4	36	263 - 272	BAD BREAK
	WE	АТНЕР	י ר די	ONE		v			
				JONE	SURVE	<u> </u>			
	OFFSET								
	5	45		17.6		6		278 - 281	
		45		21.6	<b></b>	6	40	282 - 283	
	15	45			1	6	41	284 - 285	
	20 25	45		21.6	16:39	6	42	286 - 287	
		45		25.0	17:01	6 6	43	288 - 289	
		50					44	<u>290 - 294</u> 295 - 296	
	<u>    30                                </u>	<u> </u>			17:08	6			
				37.9	17:13	<u>6</u>	45	<u>297 - 299</u> 300 - 301	
					1			302 - 305	
	40	<u> </u>			17:15 17:18	66	46		
					17:18	<u>6</u>	<u>47</u> 48	<u>    306         307         </u> 308          310	
	<u>10</u>	<u> </u>		19.3	17:23	6	<u></u>	311 - 313	
				17.1					
]									
							ļ		<u> </u>
									<u> </u>
				1	1			1	1

Distribution: Mibin - computing centre: Green = District: Pink = Location



-----



#### GEUPHYSICAL AIRGUN REPORT

COPPANY	:	AMPOL EXPLORATION	LIMITED
*FUL	1	FAIRHOPE #1	
FIELD	:	WILDCAT	
COUNTY	:	PEP=98	
STATE	:	VICTORIA	
COUNTRY	:	AUSTRALIA	
REFERENCE	:	FS2A,540,362	

COMPANY : AMPOL EXPLORATION LIMITED

LONG DEFINITIONS

~

EKB - GL - VELHYD -	ELEVATION OF THE ELEVATION OF KELL FLEVATION OF USED	CELLY-BUSHING ABOVE MSL SEISMIC REFERENCE DATUM PUSHING S REFERENCE (GENERALLY EDIUM BETWEEN THE SOURCE EDIUM BETWEEN THE SOURCE	ABOVE MSL OR MWL GROUND LEVEL) ABOVE SRD
HIDEW2 - HYDNSZ - TRTHYD - TRTSRD -	HYDROPHONE DISTAN Hydrophone distan Travel time from Travel time from	ABOVE SRD (CNE FOR THE MOM THE BOREHOLE AXIS IN RUM THE BOREHOLE AXIS IN RUM THE BOREHOLE AXIS IN LUN ABOVE SRD (CF, GUNEL 24 FROM THE BOREH AXIS I 24 FROM THE BOREH AXIS I 25 FROM THE BOREH AXIS I 26 FROM THE BOREH AXIS I 26 FROM THE BOREH AXIS I 26 FROM THE BOREH AXIS I 27 FROM THE BOREH AXIS I 28 FROM THE BOREH AXIS I 29 FROM THE BOREH AXIS I 20 FROM THE BOREH AXIS I	N EW DIRECTION (CF GUNELZ) N NS DIRECTION (CF GUNELZ) DURCE
SHOT, GSH DKB, GSH DSRD, GSH TIMO, GSH TIMO, GSH SHTM, GSH AVGV, GSH DELZ, GSH DELT, GSH INTV, GSH	SAMPLED SHOT NUMBER MEASURED DEPT DEPTH FROM S VERTICAL DEPT MEASURED TRAV VERTICAL TRAV SHUT TIME (WS AVERAGE SEISM DEPTH INTERVA	FROM KELLY-BUSHING RELATIVE TO GROUND LEV L TIME FROM HYDROPHONE L TIME FROM THE SOURCE C VELOCITY BETWEEN SUCCESSIVE SHO TERVAL BETWEEN SUCCESSI	EL (USER'S REFERENCE) To geuphone To the geophone
ELEV OF H ELEV OF S ELEVATION ELEV OF C VEL SOURC VEL SOURC	SRD AB. MSL(WST) N OF KELLY BUSHI GL AB. SRD(WST) GE-HYDRO(WST)		· · · · · · · · · · · · · · · · · · ·

1

 $\frown$ 

PAGE 1

COMPANY	: AMPGL	EXPLORATION LIM:	LIED WELL	: FAIRHOPE	#1	PAGE
501 1	URCE ELV 37.50	SOURCE EW -38.76	SOURCE NS. -32.52	HYDRO ELEV M 37,50	HYDRO EW M 38,76	HYDRO NS -32.52
TR1 1	I HYD-SC MS 0	TRT SC-S MS -45		~		·
123456789012345678901234567890123	MD 8 KE 900 838.500 11277.500 12277.500 12277.500 12277.500 12277.500 12277.500 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12272.2240 12275.000 12275.000 12272.2240 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.000 12275.0000 12275.0000 12275.0000 12275.0000 12275.0000 12275.0000 12275.0000 12275.0000 1	42,90 69.00 83.50 98.00 1107.50 127.50 153.50 167.00 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 197.50 1	26.10       60         55.10       60         57.60       60         24.60       60         24.60       60         24.60       60         24.60       60         24.60       60         24.60       60         24.60       60         24.60       60         24.60       60         24.60       60         25.60       60         24.60       60         25.60       60         24.60       60         25.60       60         24.10       60         25.60       60         27.10       60         27.10       60         27.10       70         10       70	DRD N-S CDORD M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

COMPANY . ANDLE EVELODATION TIME

.

 $\frown$ 

2

-

COMPANY	: AMPUL E	EXPLORATIO	N LIMITED	WE	: 56 - <b>:</b>	FAIRHOPE	* 1		ΡA	GE 3
34 35 Level Number	550.00 561.00 MEÅSUR DEPTH FROM KB M	550.00 561.00 VERTIC DEPTH FROM SRD M	507.1 518.1 VERTIC DEPTH FROM GL	O C TRAVEL TIME HYD/GEO MS	0 VERTIC TRAVEL TIME SRC/GED MS	0 VERTIC TRAVEL TIME SRD/GEO MS	AVERAGE VELOC SRD/GED M/S	DELTA DEPTH BETAEEN SHOTS	DELTA TIME BETWEEN SHOTS MS	INTERV Veloc Bet#een Shots #/s
1	42,90	0	39,00	75.90	45,19	0				
2	69.00	26.10	65.10	71.00	55,56	10.37	2517	<b>26,1</b> 0	10.37	2517
3	83,50	40.60	79.60	77.00	64.62	19.43	2090	14,50	9.06	1600
4	98,00	55.10	94.10	83.00	72,84	27.64	1993	14.50	8.21	1766
5	110.50	67.60	106.60	89.00	80.19	35.00	1932	12,50	7.36	1700
6	127.50	84,60	123.60	96,00	88,69	43.49	1945	17.00	8,50	2001
7	137,50	94.60	133.60	101.00	94.32	49.13	1926	10.00	5,63	1776
8	153,00	110,10	149.10	107.00	101,22	56.03	1965	15.50	6.90	2246
9	167.50	124.60	163.60	113.00	107.87	62.67	1988	14,50	6.65	2181
10	181.00	138,10	177.10	120,00	115,31	70.12	1970	13.50	7.44	1814
11	197,00	154.10	193.10	126.00	121.82	76,63	2011	16.00	6,52	2456
12	212.00	169,10	208.10	133.00	129,18	83,99	2013	15.00	7,36	2038
13.	227.50	184,60	223.60	140,00	136,50	91.31	2022	15,50	7,32	2117
14	241.50	198.60	237.60	147.00	143.74	98,54	2015	14.00	7,23	1935
15	260.00	217.10	256.10	155,00	152.03	106.83	2032	18,50	8.29	2231
16	275.00	232.10	271.10	161,00	158,24	113.04	2053	15,00	6.21	2415
17	286,50	243.60	282,60	167,00	164.36	119,17	2044	11,50	6.12	1879
. 18	303,50	260.60	299.60	174,00	171.55	126,35	2062	17,00	7.19	2365
19	319.00	276,10	315,10	181.00	178,69	133.50	2068	15.50	7.14	2170
20	327.50	284.60	323,60	184.00	181,77	136.58	2084	8,50	3.08	2758
21	340.00	297.10	336.10	190.00	187.86	142.67	2082	12,50	6.09	2051
22	348.50	305.60	344.60	194.00	191,92	146.73	2082	8,50	4.06	2094
23	368.50	325.60	364.60	204,00	202.05	156.86	2005	20.00	10.12	1976
		-				H 4 4 8 0 0	2010			

1.

COMPANY : AMPOU EXPLORATION LIMITED WELL : FAIRHOPE #1

.

PAGE 4

- - - -

LEVEL Number	MEASUR DEPTH FROM KB M	VERTIC DEPTH FROM SRD M	VERTIC DEPTH FROM GL	OBSERV TRAVEL TIME HYD/GEO MS	VERTIC TRAVEL TIME SRC/GEO MS	VERTIC TRAVEL TIME SRD/GEO MS	AVERAGE Veloc Srd/geo M/s	DELTA DEPTH BETWEEN SHOTS M	DELTA TIME Between Shots MS	INTERV VELOC BETWEEN SHOTS M/S
24	384.00	341.10	380.10	210,00	208.15	162,96	2093	15,50	6.10	2540
25	402.00	359.10	398.10		216,25	171.05	2099	18.00	8.10	2223
. 26	417.00	374.10	413.1(	-	223.32	178.13	2100	15.00	7.07	2121
27	436.00	393.10	432.10	233.00	231.41	186.22	2100	19,00	8.09	2349
28	454.00	411.10	450.10		239.48	194.29	2116	18,00	8.07	2229
29	471.50	428.60	467.60		247.55	202,35	2118	17.50	8.06	2170
30	490.00	447.10	486.10	259.00	257,60	212.41	2105	18.50	10.05	1840
31	500.00	457.10	496.10		261.63	216.44	2112	10,00	4.03	2478
32	514.00	471.10	510.10		269.67	224.48	2099	14.00	8.03	1743
33	532.00	489.10	528.10		276,73	231.53	2112	18.00	7,06	2551
34	550,00	507.10	546.10		283.78	238,59	2125	18,00	7.05	2552
35	561.00	518,10	557.10		286.81	241.62	2144	11.00	3.04	3624

## ANALYST: R.BUNT

 $\widehat{}$ 

.

14-AUG-85 22:13:35 PROGRAM: GDRIFT 007.E09

****** ****** SCHLUMBERGER *****

DRIFT COMPUTATION REPORT

COMPANY : AMPOL EXPLORATION LIMITED WELL **# FAIRHOPE #1** FIELD : WILDCAT COUNTY : PEP-98 STATE : VICTORIA COUNTRY : AUSTRALIA REFERENCE: FS2A.540,362

COMPANY : AMPOL EXPLORATION LIMITED

 $\frown$ 

LONG DEFINITIONS GLOBAL - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL KB SRD - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL EKB - ELEVATION OF KELLY BUSHING - ELEVATION OF USERIS REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD GL . XSTART - TAP OF ZUNE PROCESSED BY WST XSTOP - BUTTOM OF ZONE PROCESSED BY WST GADOO1 - RAW SONIC CHANNEL NAME USED FOR WST SONIC ADJUSTMENT UNFDEN - UNIFORM DENSITY VALUE ZONE LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER SAMPLED SHOT - SHOT NUMBER DKB - MEASURED DEPTH FROM KELLY-BUSHING DSRD - DEPTH FROM SRD DGL - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE) SHTM - RAW SONIC (WST) - DRIFT AT SHOT UR KNEE RAWS SHDR BLSH - BLOCK SHIFT BETWEEN SHOTS OR KNEE (GLOBAL PARAMETERS) (VALUE) ELEV OF KB AB. MSL (WST) ELEV OF SRD AB. MSL(WST) ELEVATION OF KELLY BUSHI ĸа 42,9000 SRD 0 M EKB 42.9000 ELEV OF GL AB, SRD(WST) TOP OF ZONE PROCD (*ST) Μ GL M XSIART BOT OF ZONE PROCO (WST) RAW SONIC CH NAME (WST) 0 M XSTOP 0 1 м DT.BHC.004 IPA.FUN.FLP.* 2.30000 G/C3 GAD001 UNIFORM DENSITY VALUE UNFDEN (ZONED PARAMETERS) (VALUE) (LIMITS) LAYER OPTION FUAG DENS LOFDEN 30479.7 : 1,000000 USER SUPPLIED DENSITY DA LAYDEN 0 -999,2500 G/C3 30479.7 -0

PAGE 1

# COMPANY : AMPOL EXPLORATION LIMITED WELL : FAIRHOPE #1

.

					- ··		PAGE 2
LEVEL NUMBER	MEASURED DEPTH FROM KB M	VERTICAL DEPTH FRUM SRD M	VERTICAL DEPTH FROM GL M	VERTICAL TRAVEL TIME SRD/GEO MS	INTEGRATED RAW SONIC TIME MS	COMPUTED DRIFT AT LEVEL MS	COMPUTED BLK-SHFT CORRECTION
1	42.90						US/F
2		0	39,00	0	0	0	0
		26,10	65.10 -	10.37	10,37	0	0
3	•	40.60	79,60	19.43	19,43	0	0
4		55.10	94.10	27.64	27.64	0	0
5		67,60	106,60	35,00	35.00	0	0
6		84.60	123.60	43.49	43.49	0	0
7	137.50	94.60	133.60	49.13	48.36	.77	23,48
8	153.00	110.10	149,10	56.03	55,75	.27	-9.83
9	167.50	124,60	163.60	62,67	62,65		-5,12
10	181.00	138.10	177.10	70.12	68.63	.03	32,91
11	197,00	154.10	193,10	76,63	75,68	1,48	-10.11
12	212.00	169.10	208.10	83,99	82.54	,95	10.17
13	227,50	184.60	223.60	91,31		1.45	1.56
14	241.50	198.60	237.60	98.54	89.78	1.53	21.10
15	260.00	217.10	256,10	106,83	96.04	2.50	6,78
16	275,00	232.10	271.10		103.92	2.91	-3,25
( 17		243.60	282,60	113,04	110,29	2.75	29.12
18		260,60		119.17	115.31	3,85	-2,02
19		276.10	299,60	126.35	122.61	3.74	7.18
20	327,50	1	315,10	133,50	129.39	4.11	
21	340.00	284.60	323,60	136,58	133.06	3.52	-21.07
21		297.10	336.10	142.67	138,36	4.32	19.46
		305.60	344.60	146.73	142.19	4.54	8,09
23	368.50	325.60	364,60	156,86	150.53	6.32	27.12
24	384.00	341.10	380,10	162,96	157.28	5.67	-12.75
						÷ .	

COMPANY ; AMPOL EXPLORATION LIMITED WELL : FAIRHOPE #1

 $\frown$ 

۰.

.

PAGE 3 .

							· · · · · ·
LEVEL Number	MEASURED DEPTH FROM KB M	VERTICAL DEPTH FROM SRD M	VERTICAL DEPTH FROM GL M	VERTICAL TRAVEL TIME SRD/GEO MS	INTEGRATED RAW SONIC TIME MS	COMPUTED DRIFT AT LEVEL MS	COMPUTED BLK-SHFT CORRECTION
• -		а. 			· U	011	US/F
25	402.00	359,10	398,10	171.05	164.84	6.21	9.14
26	417.00	374.10	413.10 -	178.13	171.12		16.09
27	436.00	393,10	432.10			7,00	9,46
· 28		1		186.22	178,62	7.59	
28	454.00	411.10	450,10	194.29	185.52	8,77	19.92
29	471.50	428,60	467.60	202.35	192.53	9.82	18,25
30	490.00	447.10	486,10				23,99
( 31	500.00			212.41	201.13	11.27	
	500.00	457,10	496.10	216.44	205.77	10.67	-18,49
32	514.00	471.10	510,10	224,48	212.39	12.09	30.86
33	532,00	489.10	528,10	231.53	-		-18.93
34	550.00		-		220.57	10,97	
	-	507.10	546.10	238,59	227,17	11.42	7,59
35	561.00	518.10	557.10	241.62	230.24	11.38	<b>-</b> ,86

#### ANALYST: R.BUNT

1

SONIC ADJUSTMENT PARAMETER REPORT

COMPANY : AMPOL EXPLORATION LIMITED WELL : FAIRHUPE #1 FIELD : WILDCAT COUNTY : PEP-98 : VICTORIA COUNTRY : AUSTRALIA REFERENCE: FS2A.540,362

15-AUG-85 11:37:01 PROGRAM: GADJST 008.E07

******** ****** SCHLUMBERGER ******

STATE

COMPANY : AMPOL EXPLORATION LIMITED

 $\overline{}$ 

•

LONG DEFINITIONS	
GLOBAL SRCDRF - ORIGIN OF ADJUSTMENT DATA CONADJ - CONSTANT ADJUSTMENT TO AUTOMATIC DELTA- UNERTH - UNIFORM EARTH VELOCITY (GTRFRM)	T MINIMUM = 7.5 US/F
ZONE ZDRIFT - USER DRIFT AT BOTTOM OF THE ZONE ADJOPZ - TYPE OF ADJUSTMNENT IN THE DRIFT ZONE : ADJUSZ - DELTA-T MINIMUM USED FOR ADJUSTMENT IN LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE LAYVEL - USER SUPPLIED VELOCITY DATA	O=DELTA-T MIN, 1=BLOCKSHIFT THE DRIFT ZONE ; O=UNIFORM; 1=UNIFORM+LAYER
SAMPLED SHOT - SHUT NUMBER VDKB - VERTICAL DEPTH RELATIVE TO KB DSRD - DEPTH FROM SRD DGL - VERTICAL DEPTH RELATIVE TO GROUND LEVEL KNEE - KNEE BLSH - BLOCK SHIFT BETWEEN SHOTS OR KNEE DTMI - VALUE OF DELTA-T MINIMUM USED COEF - DELTA-I MIN COEFFICIENT USED IN THE DRIF DRGR - GRADIENT OF DRIFT CURVE	,
(GLOBAL PARAMETERS) (VALUE)	
ORIG OF ADJ DATA (WST) SRCDRF 2.00000 CONS SONIC ADJST (WST) CONADJ 7.50000 UNIFORM EARTH VELOCITY UNERTH 2133.60	US/F M/S
(ZONED PARAMETERS) (VALUE)	(LIMITS)
USER DRIFT ZONE (WST) ZDRIFT : 11.80000 10.00000 4.600000	$\begin{array}{c} \text{MS} & 561.000 - 472.500 \\ 472.500 & 352.500 \\ 352.500 & 127.500 \\ 127.500 & 0 \\ 30479.7 - 0 \end{array}$
ADJUSMNT MODE (WST) ADJOPZ :-999.2500 USER DELTA-T MIN (WST) ADJUSZ :-999.2500 LAYER OPTION FLAG VELOC LOFVEL : 1,000000 USER VELOC (WST) LAYVEL : 829.7900	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

COMPANY	;	AMPUL EXPLO	RATION LIMI	TED W	ELL : I	FAIRHOPE #1			PAGE	2
KNEE NUMBER		VERTICAL DEPTH FROM	VERIICAL DEPTH FROM	VERTICAL DEPTH From	DRIFT	BLOCKSHIFT	DELTA-T MINIMUM	REDUCTION FACTOR	EQUIVAL	ENT
		KB	SRD	GĹ	KNEE	USED	USED	G	BLOCKSH	IFT
		M	M	M	MS	US/F	US/F		US/F	
	2	127.50	84.60	123.60	0	0				0
	3	352,50	309,60	348,60	4.60	6,23			6	.23
	4	472.50	429.60	468.60	10.00	13.72			13	,72
	5	561.00	518.10	557,10	11,80	6,20			6	.20

.

the second se

#### ANALYST: R.BUNT

 $\overline{}$ 

· · · ·

C

15-AUG-85 11:40:52

PROGRAM: GADJST 008,E07

#### VELOCITY REPORT

COMPANY: AMPOL EXPLORATION LIMITEDWELL: FAIRHOPE #1FIELD: WILDCATCOUNTY: PEP-98STATE: VICTORIACOUNTRY: AUSTRALIAREFERENCE:FS2A.540.362

COMPANY : AMPOL EXPLORATION LIMITED WELL : FAIRHOPE #1

PAGE 3

LUNG DEFINITIONS - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL KB SRD - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL EKB - ELEVATION OF KELLY BUSHING GL - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD UNERTH - UNIFORM EARTH VELOCITY (GIRFRM) ZUNE LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER LAYVEL - USER SUPPLIED VELOCITY DATA SAMPLED SHOT - SHOT NUMBER DKB - MEASURED DEPTH FROM KELLY-BUSHING - DEPTH FROM SRU - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE) - SHOT TIME (WST) DSRD DĞL SHTM - ADJUSTED SONIC TRAVEL TIME ADJS SHDR - DRIFT AT SHOT OR KNEE - RESIDUAL TRAVEL TIME AT KNEE REST INTV INTERNAL VELOCITY, AVERAGE (GLOBAL PARAMETERS) (VALUE)

ELEV OF KB AB, MSL (#ST) KB ELEV OF SRD AB, MSL(WST) SRD ELEVATION OF KELLY BUSHI EKB ELEV OF GL AB, SRD(WSI) GL UNIFORM EARTH VELOCITY UNERTH	42,9000 M 0 M 42,9000 M 39,0000 M 2133,60 M/S	
(ZONED PARAMETERS)	(VALUE)	(LIMITS)
LAYER OPTION FLAG VELOC LOFVEL USER VELOC (WST) LAYVEL	: 1.000000 : 829.7900 M/S	<b>30479.7</b> - 0 <b>30479.7</b> - 0

COMPANY : AMPOL EXPLORATION LIMITED

.

+

LEVEL NUMBER	MEASURED DEPTH FROM KB M	VERTICAL DEPTH FROM SRD	VERTICAL DEPTH FROM GL M	VERTICAL TRAVEL TIME SRD/GEOPH MS	INTEGRATED ADJUSTED SONIC TIME MS	DRIFT SHOT TIME - RAW SON MS	RESIDUAL SHOT TIME - ADJ SON MS	ADJUSTED INTERVAL VELOCITY M/S
1	42.90	0	39,00	0	0	0	0	
2	69.00	26,10	65,10	10.37	10.38	0	01	2515
3	83.50	40,60	79.60	19.43	19,44	0	01	1601
4	98.00	55.10	94.10	27.64	27,65	0	01	1765
5	110.50	67.60	106,60	35.00	35.00	0	0	1701
6	127.50	84.60	123,60	43.49	43,49	0	Ō	2001
7	137.50	94.60	133,60	49.13	48,56	.77	.57	1974
8	153.00	110.10	149.10	56.03	56,28	.27	<del>-</del> ,25	200 <b>9</b>
9	167.50	124.60	163,60	62,67	63.46	.03	-,79	2017
10	181.00	138.10	177.10	70.12	69,72	1.48	.39	2158
11	197.00	154.10	193.10	76.63	77.10	.95	-,46	2170
12	212.00	169.10	208.10	83,99	84.26	1,45	27	2094
13	227.50	184.60	223.60	91.31	91.82	1,53	<b>-</b> ,51	2050
14	241.50	198.60	237.60	98,54	98.37	2,50	.18	2138
15	260.00	217.10	256.10	106,83	106.62	2,91	.21	2241
16	275.00	232.10	271.10	113,04	113.30	2,75	26	2245
17	286.50	243.60	282.60	119.17	118.56	3.85	.61	2187
18	303,50	260.6¢	299.60	126.35	126.21	3.74	.15	2224
19	319.00	276.10	315.10	133.50	133.30	4.11	.20	2186
20	327.50	284 <b>.</b> 60	323,60	136,58	137.15	3.52	-,57	2206
21	340.00	297.10	336,10	142.67	142.69	4,32	~.02	2256
22	348.50	305.60	344.60	146.73	146.70	4.54	.03	2119
23	368,50	325.00	364.60	156.86	155,85	6,32	1.01	2187
24	364.00	341.10	380,10	162,96	163.30	5,67	34	2081

COMPANY : AMPOL EXPLORATION LIMITED

550,00

561.00

34

35

WELL : FAIRHOPE #1

LEVEL NUMBER	MEASURED DEPTH FROM KB M	VERTICAL DEPTH FROM SRD M	VERTICAL DEPTH FROM GL M	VERTICAL TRAVEL TIME SRD/GEOPH MS	INTEGRATED ADJUSTED SONIC TIME MS	DRIFT SHOT TIME - RAW SON MS	RESIDUAL SHOT TIME - ADJ SON MS	ADJUSTED INTERVAL VELOCITY M/S
25	402,00	359.10	398,10	171.05	171.67	6,21	-,61	2151
26	417.00	374.10	413,10	178,13	178.62	7.00	-,49	2158
27	<b>436</b> ,00	393.10	432.10	186.22	186,97	7.59	<b></b> 76	2274
28	454,00	411.10	450,10	194.29	194.67	8.77	<b>-</b> ,38	2337
29	471.50	428.60	467,60	202.35	202.49	9.82	13	2240
30	490.00	447.10	486,10	212.41	211.49	11.27	.92	2055
31	500.00	457.10	496,10	216,44	216.33	10.67	. 1 1	2065
32	514.00	471.10	510,10	224,48	223.23	12.09	1,24	2029
33	532,00	489.10	528.10	231.53	231,77	10.97	24	2109
					-		• • •	

238.59

241.62

238.73

242.00

11.42

11.38

507.10

518.10

546,10

557.10

PAGE

5

2586

3368

-.14

-.38

(

 $\frown$ 

 $\sim$ 



TIME CONVERTED VELOCITY REPORT

COMPANY	8	AMPOL EXPLORATION LIMITED
WELL	:	FAIRHOPE #1
FIELD	:	WILDCAT
COUNTY	:	PEP-98
STATE	1	VICTORIA
COUNTRY		AUSTRALIA
REFERENCE	ł	FS2A,540,362

COMPANY : AMPOL EXPLORATION LIMITED

WELL : FAIRHOPE #1

PAGE 1

LONG DEFINITIONS GLOBAL - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL KB SRD - ELEVATION OF USERIS REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD GL UNERTH - UNIFORM EARTH VELOCITY (GTRFRM) UNFDEN - UNIFORM DENSITY VALUE ~ MATRIX MVODIS - MOVE-OUT DISTANCE FROM BOREHOLE ZONE LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; 0=UNIFORM; 1=UNIFORM+LAYER LAYVEL - USER SUPPLIED VELOCITY DATA LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER LAYDEN - USER SUPPLIED DENSITY DATA SAMPLED - TWO WAY TRAVEL TIME (RELATIVE TO THE SEISMIC REFERENCE TWOT - MEASURED DEPTH FROM KELLY-BUSHING DKB - DEPTH FROM SRD DSRD - AVERAGE SEISMIC VELOCITY - ROOT MEAN SGUARE VELOCITY (SEISMIC) - NORMAL MOVE-OUT AVGV RMŠV MVOT NVOT - NORMAL MOVE-OUT MÝŌŦ - NORMAL MOVE-OUT INTV - INTERNAL VELOCITY, AVERAGE (GLOBAL PARAMETERS) (VALUE) **D1 D1** 

.

ELEV OF ELEV OF UNIFORM	KB AB. MSL (WST) SRD AB. MSL(WST) GL AB. SRD(WS1) EARTH_VELOC1TY	KB SRD GL UNERTH	:	42,9000 0 39,0000 2133,60	M M
UNIFORM	DENSITY VALUE	UNERTH	2	2133.60 2,30000	M/S G/C3

(MAIRIX PARAMETERS)

1



COMPANY : AMPOL EXPLORATION LIM	ITED WELL	# FAIRHOPE #1
(ZONED PARAMETERS)	(VALUE)	(LIMITS)
LAYER OPTION FLAG VELOC LOFVEL USER VELOC (#ST) LAYVEL LAYER OPTION FLAG DENS LOFDEN USER SUPPLIED DENSITY DA LAYDEN	: 1,000000 : 829,7900 M/S :-1,000000 :-999,2500 G/C3	30479.7 - 0 30479.7 - 0 30479.7 - 0 30479.7 - 0 30479.7 - 0

.

-

.

1

PAGE 2



1

COMPANY : AMPOL EXPLORATION LIMITED WELL : FAIRHOPE #1

PAGE 3

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPIH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL Velocity
MS	4	M	M/S	M/S	MS	MS	MS	MIS
2,00'	45.42	2.52	2517	2517	361,26	542,89	724,52	2517
4.00	47.93	5.03	2517	2517	359,28	540,90	722.53	2517
6.00	50,45	7,55	2517	2517	357.31	538,92	720,54	2517
8.00	52,97	10.07	2517	2517	355,35	536,95	718.56	2517
10.00	55,49	12,59	2517	2517	353,40	534,98	716.59	2517
12,00	58.00	15.10	2517	2517	351,46	533.02	714.62	2517
14,00	60.52	17.62	2517	2517	349.53	531.07	712,65	2517
16.00	63.04	20.14	2517	2517	347.61	529.12	710,69	2517
18.00	65,55	22,65	2517	2517	345.70	527.19	708.74	2517
20.00	68.07	25,17	2517	2517	343,81	525.26	706.79	2517
22.00	70.00	27,10	2463	2469	348,98	533.93	718.98	1924
24.00	71,60	28.70	2391	2409	356,37	545,93	735,61	1600
26.00	73.20	30,30	2330	2356	362,92	556,65	750.53	1600
28,00	74.80	31,90	2278	2311	368,73	566,27	763,97	1600
30.00	76.40	33.50	2233	2270	373,90	574.92	776.13	1600
32,00	78,00	35.10	2194	2234	378.52	582.74	787.17	1600
34,00	79.60	36.70	2159	2202	382,65	589.82	797,23	1600
36.00	81.20	38,30	2128	2173	386,36	596,25	806,41	1600
38,00	82.80	39,90	2100	2147	389,67	602.10	814.81	1600
40,00	84.50	41.60	2080	2126	391.87	606,26	820.96	1699
42.00	86.26	43,36	2065	2111	393,26	609,20	825.48	1766
44.00	88.03	45.13	2051	2096	394.43	611.80	829.54	1766
46.00	89.79	46.89	2039	2083	395,40	614.10	833,20	1766
48.00	91.56	48.66	2027	2071	396.20	616.13	836,50	1766

COMPANY : AMPOL EXPLORATION LIMITED

۰ ،

WELL : FAIRHOPE #1

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPIH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL VELOCITY
MS	M	M	MIS	M/S	MS	MS	MS	M/S
50,00	93.32	50.42	2017	2059	396,83	617,92	839,46	1766
52,00	95.09	52.19	2007	2049	397.33	619,48	842,13	1766
54.00	96.86	53,96	1998	2039	397,69	620.84	844.52	1766
56,00	98.59	55,69	1989	2029	398.11	622.29	847.03	1739
58.00	100,29	57.39	1979	2019	398,68	623.95	849.82	1700
60,00	101,99	59,09	1970	2009	399,14	625,43	852.37	1700
62.00	103.69	60.79	1961	2000	399,48	626.75	854.70	1700
<b>64</b> ,00	105.39	62.49	1953	19.91	399,73	627.91	856.82	1700
66 <u>.</u> 00	107.09	64.19	1945	1983	399,90	628,94	858.75	1700
68,00	108,79	65.89	1938	1975	399.97	629.83	860,51	1700
70.00	110.50	67,60	1932	1968	399,89	630,48	861.93	1713
72.00	112.51	69.61	1933	1969	397,98	628,36	859,65	2001
74.00	114,51	71.61	1935	1970	396.09	626,26	857.40	2001
76.00	116.51	73.61	1937	1971	394.21	624.18	855,17	2001
78.00	118,51	75.61	1939	1971	392,36	622.13	852.97	2001
80.00	120.51	77,61	1940	1972	390,52	620.09	850.79	2001
82.00	122,51	79.61	1942	1973	388.70	618.07	848.63	2001
84.00	124.51	81,61	1943	1973	386,90	616.08	846,49	2001
86,00	126.51	83.61	1944	1974	385.11	614.09	844.37	2001
88.00	128.51	85.61	1946	1975	383,38	612.19	842.35	1994
90,00	130,49	87,59	1946	1975	381.70	610,36	840.43	1985
92.00	132.48	89,58	1947	1975	380.03	608.54	838.52	1985
94,00	134.45	91.55	1948	1975	378.44	606.82	836,75	1972
96.00	136.40	93,50	1948	1974	376.96	605,28	835.20	1949

COMPANY : AMPOL EXPLORATION LIMITED

<b>_</b> .						* 4. 77 \$		PAGI
TKO-WAY TRAVEL TIME FROM SRD MS	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST Normal Movegut	SECOND Normal Movegut	THIRD Normal Moveout	INTERVAL Velocity
	,9 <b>9</b> ,	M	M/S	M/S	MS	MS	MS	M/S
98.00 100.00	138,38	95.48	1949	1975	375.34	603.51	833.34	1982
102.00	140.43	97.53	1951	1976	373,39	601.23	830,80	2054
102.00	142.46	99.56	1952	1977	371,58	599.15	828.53	2028
104.00	144.43	101.53	1952	1977	370.07	597,53	826.87	1964
108.00	146.43	103,53	1953	1978	368,39	595,64	824.84	2006
110,00	148,45	105.55	1955	1978	366.69	593.72	822,76	2013
112.00	150.44	107.54	1955	1978	365.10	591,95	820,90	1990
-	152.44	109.54	1956	1979	363.44	590,08	818,88	2009
114.00	154,46	111,56	1957	1980	361.78	588.19	816,84	2014
116.00	156.46	113,56	1958	1980	360.16	586.37	814.89	2004
118.00	158.45	115,55	1959	1980	358.61	584,63	813.04	1993
120.00	160.47	117,57	1959	1981	356,98	582,78	811.05	2012
122.00	162.51	119.61	1961	1982	355,27	580.80	808,87	2038
124.00	164,53	121.63	1962	1982	353,62	578,89	806.79	2027
126.00	166,56	123.66	1963	1983	352,00	577.03	804.76	2023
128,00	168,58	125.68	1964	1984	350.37	575.14	802.71	2028
130.00	170.65	127.75	1965	1985	348,61	573.05	800,36	2070
132.00	172,70	129.80	1967	1986	346.93	571.08	798,18	2050
134,00	174,90	132.00	1970	1989	344,75	568,32	794,94	2199
136.00	177.12	134.22	1974	1993	342,53	565,50	791.62	2217
138.00	179.41	136.51	1978	1998	340.08	562.33	787.81	2291
140.00	181.61	138.71	1982	2001	337,99	559,69	784.72	2202
142.00	183.81	140,91	1985	2004	335,95	557.12	781.72	2197
144.00	186.09	143.19	1989	2008	333.67	554.19	778.21	2276
							114044	

COMEANY :	AMPOL EXP	UORATIGN L	IMITEC	WELL	: FAIRHO	PF #1		PAGE
TWO-WAY TRAVEL TIME FRCM SRD	₩EASURED DEPTH FROM KP	VERTICAL DEPIH FROM SRL	AVERAGE Velocity Src/gfo	RMS Velocity	FIRST NORMAL MGVEOUT	SECOND Normal Moveout	THIRD Normal Noveout	INTERVAL Velocity
∧ S	¥	y y	MIS	M/S	MS	MS	MS	M/S
146.00	188.32	145.42	1992	2011	331,58	551.52	775.07	2234
148.00	190.48	147.58	1994	2013	329.73	549.24	772.44	2163
150.00	192.61	149.71	1996	2015	328.01	547.13	770.04	2131
152.00	194.73	151.83	1998	2016	326,35	545.10	767.75	2118
154.00	196.80	153.90	1999	2017	324.83	543,30	765,76	2071
156.0U	198.87	155,97	2000	2017	323.34	541.53	763.81	2068
158.00	201.01	158.11	2001	2019	321.65	539.46	761.44	2140
160.00	203,16	160.20	2003	2021	319,97	537.37	759.06	2146
162.00	205,25	162.35	2004	2022	318,44	535.54	757.01	2094
164.00	207.32	164.42	2005	2022	317.00	533.82	755.11	2068
166.00	209.39	166.49	2006	2023	315,56	532.09	753.21	2072
168.00	211.46	168.56	2007	2023	314.14	530.39	751.33	2069
170.00	213,59	170.69	2008	2025	312,56	528,44	749.11	2133
172.00	215.68	172.78	2009	2025	311.11	526.69	747.15	2089
174.00	217.71	174.81	2009	2025	309,82	525.17	745.50	2030
176.00	219,79	176.89	2010	2026	308,42	523.47	743.62	2078
178.00	221.82	178.92	2010	2026	307.13	521.95	741.96	2035
180.00	223.80	180,96	2011	2026	305.83	520,40	740.28	2041
182.00	225.80	182.96	2011	2026	304.64	519.03	738.82	1996
164.00	227.86	184.96	2010	2026	303.45	517.65	737.35	1998
186.00	229.94	187.04	2011	2026	302.09	515.98	735.49	2080
188.00	232,02	189.12	2012	2027	300.74	514.33	733.64	2081
190.00	234.23	191.33	2014	2029	299.10	512.22	731,18	2209
192.00	236.39	193.49	2015	2030	297.59	510.32	728,99	2159

E 6

MPANY :	858016 888 8	LORATION L	IMITED	WELL	: FAIRHO.	PE #1		PAG	E
TWO-WAY TFAVEL TIME ROM SRU	MEASURED DEPTH FROM NH	VERTICAL DEPIH FROM SRD	AVERAGE VELOCITY SRD/GEC	KMS Velocity	FIRST Normal Movecut	SECOND Normal Moveout	THIRD Normal Movegut	INTERVAL Velocity	
* S	ъ.,	M	m/s	M/S	۳S	MS	MS	M/S	
194.00	238.50	195.60	2016	2031	296.21	508.59	727.03	2112	
196.00	240.71	197.81	2018	2033	294.61	506.54	724.63	2211	
158,00	242.87	199.97	2020	2034	293,16	504.69	722,50	2156	
200.00	245,01	202.11	2021	2035	291.74	502,90	720.45	2144	
202.00	247.14	204.28	2023	2037	290,28	501.03	718.29	2170	
204.00	249.37	206.47	2024	2038	288,80	499.13	716.08	2187	
200.00	251.61	208.71	2026	2040	287,22	497.07	713.65	2239	
208.00	253.84	210.94	2028	2042	285.67	495.04	711.20	2236	
210.00	256.20	213.30	2031	2046	283.87	492.61	708.33	2360	
212.00	258.53	215.63	2034	2048	282.16	490.33	705.58	2328	
214.00	260.93	218.03	2038	2052	280.33	487.84	702.55	2397	
216.00	263.28	220.38	2041	2055	278.61	485.52	699.75	2355	
218.00	205.53	222.62	2042	2057	277.14	483.58	697.46	2244	
220.00	267.65	224,75	2043	2057	275,90	482.01	695,68	2124	
222.00	209,89	226.99	2045	2059	274.46	480.11	69 <b>3.</b> 44	<b>224</b> 0	
224.00	272.05	229.15	2046	2060	273.17	478.45	691.52	2166	
225.00	274.33	231.43	2048	2062	271.69	476.48	689.18	2274	
228.00	276.61	233.71	2050	2064	270.23	474.52	686,86	2277	
239.00	278.82	235.92	2051	2065	268.89	472.77	684.8U	2212	
232.00	280.99	238.09	2053	2066	267.63	471.13	682,91	2174	
234,00	283.16	240.26	2053	2067	266,40	469.53	681.06	2165	
236,00	285,32	242.42	2054	2068	265.18	407.94	679.22	2166	
238.00	287.43	244.53	2055	2068	264.07	466.52	677.61	2104	
240.00	289.64	246.74	2056	2070	262.78	464.83	675.63	2212	

COMPANY : FMPLE EXPLORATION LIMITED WELL : FAIRHOPE #1

8

100-0AY 16AVEL 11ME FRON SRD *S	NEASURED DEFIH FROM KB	VERTICAL DEPIH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS Velocity	FIRST Normal Movfout	SECOND Nurmal Moveouii	THIRD NORMAL MOVEOUT	INTERVAL Velocity
0 Ch	v	A	M/S·	M/S	MS	MS	MS	M/S
242.00	291.69	248.79	2056	2070	261.77	463.56	674.22	2050
244.00	293,90	251.00	2057	2071	260.51	461.88	672.25	2213
246.00	296.23	253.33	2060	2073	259.07	459,92	669,88	2326
248.00	298.37	255.47	2060	2074	257,94	458.44	668.18	2143
250.00	360.62	257.72	2062	2075	256.65	456.71	666.12	2250
252.00	303.00	260,10	2064	2078	255.16	454.65	663.61	2381
254.00	365.15	202.25	2065	2078	254,00	453.21	661.95	2143
256.00	307.29	264.34	2066	2079	252,97	451.77	660.29	2144
258.00	369.52	266.62	2067	2080	251.75	450.14	658.36	2231
260.00	311.60	268,76	2067	2080	250,69	448.73	656,73	2139
262.00	313.91	271.01	2069	2082	249.46	447.07	654,75	2251
264.00	316,24	273.34	2071	2084	245.13	445.23	652,54	2326
265.00	318.26	275.36	2070	2483	247.24	444.11	651.28	2026
268.00	320.64	277.74	2073	2086	245.86	442.17	648,92	2379
270.00	323.01	280.11	2075	2088	244.51	440.28	646.62	2365
272.00	325.06	282.16	2075	2088	243,61	439.11	645.31	2054
274.00	327.21	284.31	2075	2088	242.58	437,75	643.72	2149
276,00	329.45	286.55	2076	2089	241.45	436.20	641.88	2235
278,00	331,80	288,90	2078	2091	240.16	434.39	639.67	2355
280.00	334.00	291.10	2079	2092	239.10	432.94	637,96	2201
282.00	336.07	293.17	2079	2092	238.20	431.77	636.63	2071
284.00	338.40	<b>295.5</b> 0	2081	2094	236.98	430.08	634.54	2328
286.00	340.75	297.P6	2083	2096	235,73	428.29	632.38	2359
208.00	342.90	300.00	2083	2096	234.77	427.00	630,88	2141

COMPANY : AMPOL EXPLORATION LIMITED WELL : FAIRHOPE #1

 $\overline{}$ 

PAGE 9

TWO-XAY TRAVEL TIME FRCM SRU	MEASHREU Clpin Fron KB	VERTICAL DEPIH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST Normal Movedut	SECOND Normal Moveoui	THIRD Normal Movecut	INTERVAL VELOCITY
MS	¥,	M	MIS	M/S	MS	MS	MS	MIS
<b>290.</b> 00	345,04	302.14	2084	2096	233.83	425.74	629.40	2134
292.00	346.99	304,09	2083	2095		424.82	628.41	- 1951
294.00	349.08	306.18	2083	2095	232.22	423.64	627.05	2094
296.00	351.20	308,30	2083	2095	231.32	422.42	625.63	2119
298.00	353,46	310,56	2084	2096	230.24	420.91	623.81	2264
300.00	355.07	312:77	2085	2097	229.24	419,52	622.16	2208
302.0G	357,90	315,00	2086	2098	228,22	418.10	620,46	2231
304.00	360.07	317,17	2087	2099	227,29	416.82	618,94	2164
306.00	362.31	319,41	2088	2100	226,27	415.38	617.21	2246
308.00	364.58	321.68	2089	2101	225.23	413.92	615,44	2265
310.00	366.72	323.82	2089	2101	224.34	412.70	614.01	2141
312,00	368.83	325,93	2089	2101	223,50	411.55	612,66	2110
314.00	370,96	328.06	2090	2101	222,63	410,35	611,25	2134
316.00	373.12	330.22	2090	2102	221.74	409.11	609,78	2161
318.00	375.23	332.33	2090	2102	220.91	407.98	608.45	2106
320.00	377.20	334,30	2089	2101	220.22	407.08	607.45	1971
322.00	379.28	336.38	2089	2101	219.44	406.00	606.20	2077
324.00	381.25	338,38	2089	2100	218.72	405.05	605.12	2004
326,00	363 <b>.</b> 3h	340.48	2089	2100	217.92	403.95	603.83	2099
<b>328</b> ,00	385.48	342.58	2089	2100	217.13	402.85	602.54	2097
330,00	367.60	344.70	2089	2100	216.31	401.71	601.19	2121
332,00	389,68	346.78	2089	2100	215,53	400.64	599.93	2087
334.00	391.89	348,99	2090	2101	214.64	399.37	598.40	2206
336.00	394.16	351.26	2091	<b>21</b> 02	213.70	398.00	596.72	2265

1

COMPANY : //PUD EXPLORATION DIMITED WELL : FAIRHOPE #1

1xC-WAY TFAVEL TIME FROM SRD	VEASURED DEPTH FROM KB	VERTICAL DEPIH FRCM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELUCITY	FIRST NURMAL Moveout	SECUND NORMAL MGVEOUT	THIRD Normal Moveout	JNTERVAL VELOCITY
r s	r,	₽.	M/S	m/s	MS	MS	MS	¥/S
338.00	396.37	353.47	2092	2102	212.81	396.73	595.19	2213
340,00	398.44	355.54	2091	2102	212,07	395.70	593,98	2072
342.00	4(10.52	357.62	2091	2102	211.33	394.67	<b>592.7</b> 7	2077
344.00	402.68	359,78	2092	2103	210.50	393,50	591.36	2165
346.00	404.80	361.90	2092	2103	209.73	392.40	590,05	2121
348,00	406.88	363;98	2092	2102	209.01	391.39	588.86	2072
350.001	469.04	365.14	2092	2103	208,20	390.24	587,48	2159
352.00	411.21	368.31	2093	2103	207.39	389.07	586.06	2178
354.00	413.36	370,46	2093	2103	206.62	387,96	584.73	2143
356.00	415.57	372.67	2094	2104	205,78	386.75	583.24	2212
358.00	417.86	374.96	2095	2105	204.87	385.41	581,58	2293
360.00	420.09	377.19	2095	2106	204.04	384.18	580.08	2227
362.00	422.39	379.49	2097	2107	203.14	382.86	578,43	2297
364.00	424.73	381.83	2098	2108	202.21	381.46	576,68	2344
366.00	427.03	384.13	2099	2109	201.32	380.14	575.03	2304
368.00	429.38	386.48	2100	2111	200.40	378.75	573.29	2348
370.00	431.74	388.84	2102	2112	199,48	377.37	571.55	2354
372.00	433.90	391.00	2102	2113	198.74	376.29	570,24	2159
374.0)	436.06	393.16	2102	2113	198.0U	375.21	568.93	2166
375.00	438.26	395.36	2103	2113	197.24	374.09	567,54	2200
378.00	440,54	397.64	2104	2114	196.41	372.86	566.01	2275
380.00	442.99	400.09	2106	2116	195.44	371.30	564.09	2453
362.00	445.30	402.40	2107	2117	194.60	370,09	562.50	2310
384,00	447,59	404.69	2108	2118	193.78	368.86	560,96	2294

COMPANY : AMPUL EXPLORATION LIMITED WELL : FAIRHOPE #1

 $\overline{}$ 

168 $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $166$ $1666$ $1666$ $1666$ $1666$ $1666$ $1666$ $1666$ $1666$ $16666$ $166666$ $1666666666666666666666666666666666666$	THO-WAY TRAVEI TIME FROM SPD	MEASURED DEPTH FROM KS	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST Normal Moveout	SECUND NORMAL MOVEOUT	THIRD Normal Movegut	INTERVAL Velocity
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	# <b>S</b>	₽.	N	M/S	MIS	MS	MS	MS	×/S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	386.00	449.86	406,96	2109	2119	192,98	367.66	559,47	2271
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	388.00	452.36	409,46	2111	2121	192.00			2495
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<b>390.</b> 00	454.88	411.98	2113	2123	191.00	364.58		2519
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	392.00	457.20	414.30	2114	2124	190,19			2319
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	394.11	459.36	416.40	2114	2124	189,51			2158
400.00 $466.00$ $423.16$ $2116$ $2126$ $188.04$ $360.12$ $549.92$ $2220$ $402.00$ $469.27$ $425.37$ $2116$ $2127$ $186.63$ $357.99$ $547.28$ $2208$ $404.00$ $470.46$ $427.56$ $2117$ $2127$ $185.94$ $356.95$ $545.98$ $2207$ $406.00$ $470.46$ $429.76$ $2117$ $2127$ $185.94$ $356.95$ $545.98$ $2207$ $406.00$ $474.72$ $431.62$ $2117$ $2127$ $185.31$ $356.02$ $544.84$ $2123$ $408.00$ $474.72$ $431.62$ $2117$ $2127$ $184.69$ $355.09$ $543.70$ $2122$ $410.00$ $476.92$ $434.02$ $2117$ $2127$ $184.02$ $354.07$ $542.43$ $2198$ $412.00$ $478.99$ $436.09$ $2117$ $2127$ $183.44$ $353.22$ $541.40$ $2068$ $414.00$ $461.07$ $438.17$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $2087$ $416.00$ $485.08$ $440.16$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $2087$ $418.00$ $487.13$ $444.23$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $2052$ $422.00$ $487.13$ $444.23$ $2115$ $2124$ $180.77$ $349.30$ $536.69$ $1933$ $424.00$ $491.06$ $448.16$ $2114$ $2124$ $180.26$ $348.54$ $535.78$ $1999$	<b>396.</b> Gu	461,50	418:60	2114	2125	188,85	361.35		2143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	398.00	463,84	420.94	2115	2126	188.04		-	2341
404.00 $470.46$ $427.58$ $2117$ $2127$ $186.83$ $357.99$ $547.28$ $2207$ $406.60$ $472.60$ $429.70$ $2117$ $2127$ $185.94$ $356.95$ $545.98$ $2123$ $406.00$ $474.72$ $431.82$ $2117$ $2127$ $185.31$ $356.02$ $544.84$ $2123$ $406.00$ $474.72$ $431.82$ $2117$ $2127$ $184.69$ $355.09$ $543.70$ $2122$ $416.00$ $476.92$ $434.02$ $2117$ $2127$ $184.02$ $354.07$ $542.43$ $2198$ $417.00$ $478.99$ $436.09$ $2117$ $2127$ $182.85$ $352.35$ $540.34$ $2087$ $416.00$ $481.07$ $438.17$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $2087$ $416.00$ $485.08$ $440.16$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $2087$ $416.00$ $487.13$ $444.23$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $2052$ $418.00$ $487.13$ $444.23$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $2052$ $422.00$ $489.07$ $446.17$ $2115$ $2124$ $180.77$ $349.30$ $536.69$ $1933$ $424.00$ $491.66$ $448.16$ $2114$ $2124$ $180.26$ $348.54$ $535.78$ $1999$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$	-	466.00	423.16	2116	2126	187.33			2220
404.00 $470.46$ $427.56$ $2117$ $2127$ $185.94$ $356.95$ $545.96$ $2207$ $406.00$ $472.60$ $429.70$ $2117$ $2127$ $185.31$ $356.02$ $544.84$ $2123$ $406.00$ $474.72$ $431.62$ $2117$ $2127$ $184.69$ $355.09$ $543.70$ $2122$ $416.00$ $476.92$ $434.02$ $2117$ $2127$ $184.69$ $355.09$ $543.70$ $2198$ $417.00$ $478.99$ $436.09$ $2117$ $2127$ $183.44$ $353.22$ $541.40$ $2068$ $414.00$ $461.07$ $438.17$ $2117$ $2127$ $182.85$ $352.35$ $540.34$ $2087$ $416.00$ $465.06$ $440.16$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $1988$ $418.00$ $485.06$ $442.16$ $2116$ $2126$ $181.80$ $350.81$ $538.49$ $2020$ $420.00$ $487.13$ $444.23$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $2052$ $422.00$ $489.07$ $446.17$ $2115$ $2124$ $180.77$ $349.30$ $536.69$ $1933$ $424.00$ $491.06$ $448.16$ $2114$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $179.19$ $346.95$ $532.73$ $2126$ <		468.27	425.37	2116	2127	186.63	357.99	547.28	<b>22</b> 08
406.00 $472.60$ $429.70$ $2117$ $2127$ $185.31$ $356.02$ $544.84$ $2123$ $406.00$ $474.72$ $431.62$ $2117$ $2127$ $184.69$ $355.09$ $543.70$ $2122$ $410.00$ $476.92$ $434.02$ $2117$ $2127$ $184.02$ $354.07$ $542.43$ $2198$ $412.00$ $478.99$ $436.09$ $2117$ $2127$ $184.02$ $354.07$ $542.43$ $2068$ $414.00$ $481.07$ $438.17$ $2117$ $2127$ $182.85$ $352.35$ $540.34$ $2087$ $416.00$ $483.06$ $440.16$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $1988$ $418.00$ $485.08$ $442.16$ $2116$ $2126$ $181.80$ $350.81$ $538.49$ $2020$ $420.00$ $487.13$ $444.23$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $2052$ $422.00$ $489.07$ $446.17$ $2115$ $2124$ $180.77$ $349.30$ $536.69$ $1933$ $424.00$ $491.06$ $448.16$ $2114$ $2124$ $180.26$ $348.54$ $535.78$ $1999$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $179.59$ $346.05$ $532.73$ $2126$ <	404.00	470.48	427.58	2117	2127	185,94	356.95		2207
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		472.60	429.70	2117	2127	185.31	356.02		2123
412.00 $478.99$ $436.09$ $2117$ $2127$ $184.02$ $354.07$ $542.43$ $2068$ $414.00$ $4F1.07$ $438.17$ $2117$ $2127$ $183.44$ $353.22$ $541.40$ $2087$ $416.00$ $4F1.07$ $438.17$ $2117$ $2127$ $182.85$ $352.35$ $540.34$ $2087$ $416.00$ $4F3.06$ $440.16$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $1988$ $418.00$ $4F5.08$ $442.16$ $2116$ $2126$ $181.80$ $350.81$ $538.49$ $2020$ $420.00$ $487.13$ $444.23$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $2052$ $422.60$ $4F9.07$ $446.17$ $2115$ $2124$ $180.77$ $349.30$ $536.69$ $1933$ $424.00$ $491.06$ $448.16$ $2114$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2126$ $432.00$ $499.33$ $456.43$ $2143$ $2123$ $178.59$ $346.05$ $532.73$ $2126$	408.06	474.72	431.82	2117	2127	184.69	355.09	543.70	2122
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	410,00	476.92	434.02	2117	2127	184.02	354.07	542.43	
416.00 $483.06$ $440.16$ $2117$ $2127$ $182.85$ $352.35$ $540.34$ $416.00$ $483.06$ $440.16$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $1988$ $418.00$ $485.08$ $442.16$ $2116$ $2126$ $181.80$ $350.81$ $538.49$ $2020$ $420.00$ $497.13$ $444.23$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $2052$ $422.00$ $489.07$ $446.17$ $2115$ $2124$ $180.77$ $349.30$ $536.69$ $1933$ $424.00$ $491.06$ $448.16$ $2114$ $2124$ $180.26$ $348.54$ $535.78$ $1999$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2126$ $432.00$ $469.33$ $456.43$ $2114$ $2123$ $178.59$ $346.05$ $532.73$ $2126$	412.00	478.99	436.09	2117	2127	183,44	353.22	541,40	
416.00 $4E3.06$ $440.16$ $2116$ $2126$ $182.34$ $351.59$ $539.44$ $1988$ $418.00$ $4E5.08$ $442.18$ $2116$ $2126$ $181.80$ $350.81$ $538.49$ $2020$ $420.00$ $487.13$ $444.23$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $2052$ $422.00$ $4E9.07$ $446.17$ $2115$ $2124$ $180.77$ $349.30$ $536.69$ $1933$ $424.00$ $491.06$ $448.16$ $2114$ $2124$ $180.26$ $348.54$ $535.78$ $1999$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2126$ $432.00$ $499.33$ $456.43$ $2114$ $2123$ $178.59$ $346.05$ $532.73$ $2126$	414.00	461.07	438.17	2117	2127	182.85	352.35	540.34	
420.00 $487.13$ $444.23$ $2115$ $2125$ $181.80$ $350.81$ $538.49$ $2052$ $422.00$ $489.07$ $446.17$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $1933$ $424.00$ $491.06$ $448.16$ $2114$ $2124$ $180.77$ $349.30$ $536.69$ $1999$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2065$	416.00	483.06	440.16	2116	2126	182.34	351.59		
422.00 $489.07$ $446.17$ $2115$ $2125$ $181.25$ $349.98$ $537.49$ $424.00$ $491.06$ $448.16$ $2115$ $2124$ $180.77$ $349.30$ $536.69$ $1933$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2126$ $432.00$ $499.33$ $456.43$ $2143$ $2123$ $178.59$ $346.05$ $532.73$ $2065$	418.00	485.08	442.18	2116	2126	181.80	350,81	538,49	
424.00 $491.06$ $448.16$ $2114$ $2124$ $180.77$ $349.30$ $536.64$ $426.00$ $493.04$ $450.14$ $2114$ $2124$ $180.26$ $348.54$ $535.78$ $1999$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2126$ $432.00$ $499.33$ $456.43$ $2143$ $2123$ $178.59$ $346.05$ $532.73$ $2065$			444.23	2115	2125	181.25	349.98	537,49	
426.00 $493.04$ $450.14$ $2114$ $2124$ $180.26$ $348.54$ $535.78$ $426.00$ $493.04$ $450.14$ $2113$ $2123$ $179.76$ $347.81$ $534.91$ $1977$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2126$ $432.00$ $499.33$ $456.43$ $2143$ $2123$ $178.59$ $346.05$ $532.73$ $2065$	422.00	489.07	446.17	2115	2124	180.77	349.30	536,69	
428.00 $495.14$ $452.24$ $2113$ $2123$ $1/9.76$ $347.81$ $534.91$ $428.00$ $495.14$ $452.24$ $2113$ $2123$ $179.19$ $346.94$ $533.85$ $2095$ $430.00$ $497.26$ $454.36$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2126$ $432.00$ $499.33$ $456.45$ $2113$ $2123$ $178.59$ $346.05$ $532.73$ $2065$	424.00	491.06	448.16	2114	2124	180,26	348.54	535,78	
428.00       495.14       452.24       2113       2123       179.19       346.94       533.85       2095         430.00       497.26       454.36       2113       2123       178.59       346.05       532.73       2165         432.00       499.33       456.43       2113       2123       178.59       346.05       532.73       2065		493.04	450.14	2113	2123	179.76	347.81		
430.00       497.26       454.36       2113       2123       178.59       346.05       532.73       2126         432.00       499.33       456.43       2113       2123       178.59       346.05       532.73       2065		495.14	452.24	2113	2123	179,19	346.94		
	430.00	497.26	454,36	2113	2123	178,59	346.05		
	432.00	499.33	456.43	2113	2123	178,05	345.22		2065

# COMPANY : AMPOL EXPLORATION DIMITED WELL : FAIRHOPF #1

								r Al	Ģ
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPIH FROM KH	VERTICAL DEPIH From Sri	AVERAGE VELUCITY SPD/GEG	RMS Velocity	F1RST Normal Moveout	SECOND Normal Movedui	THIRD Normal Moveoui	INTERVAL Velocity	
81 <b>S</b>	4	N. 1	MIS	MIS	MS	MS	MS	M/S	
434.00	501,35	458.45	2113	2122	177.53	344.45	530,79	2020	
436.00	503,42	460.52	2112	2122	176,99	343.63	529,77	2072	
438.00	505,43	462.53	2112	2122	176.48	342.88	528,86	2008	
440.00	507,44	464.54	2112	2121	175,98	342,13	527,95	2009	
442.00	509.48	466.58	2111	2121	175,46	341.34	526,99	2039	
444.00	511.51	468;61	2111	2120	174,95	340,57	526.05	2031	
446.00	513.52	470.62	2110	2120	174.45	339.82	525.13	2018	
448.00	515,54	472,64	2110	2120	173,95	339.07	524.21	2016	
450.00	517.45	474.55	2109	2119	173.52	338.44	523.46	1904	
452.00	519,53	476.63	2109	2118	172,99	337.62	522,44	2084	
454,00	521.45	478.55	2108	2118	172,56	336,98	521.68	1919	
456.00	523,51	480 * 61	2108	2117	172.04	336.19	520.70	2061	
458,00	525.64	482.74	2108	2117	171.49	335.33	519.61	2128	
460.00	527.91	485.01	2109	2118	170,85	334.31	518,31	2269	
462.00	530.16	487.26	2109	2119	170.23	333.32	517,03	2254	
464.00	532.56	489.66	2111	2120	169.51	332.17	515,52	2398	
466.00	535,26	492,36	2113	2123	168.58	330.63	513,45	2704	
468.00	537.93	495.03	2115	2125	167.70	329.16	511.47	2666	
470,00	540.37	497.47	2117	2127	166.97	327.98	509,91	2442	
472.00	542.61	499.71	2117	2127	166.38	327.04	508,70	2242	
474,00	545.13	502.23	2119	2129	165,62	325.78	507.02	2519	
476.00	547.92	505.02	2122	2132	164.67	324.19	504.87	2786	
478,00	550.87	507.97	2125	2136	163.61	322.40	502.41	2952	
480.00	554.01	511.11	2130	2142	162.41	320,35	499,58	3145	

COMPANY :	AMPOL EXP	LORATION LI	IMITED	WELL	: FAIRHOP	PE #1		PAGE	13
TXC-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE Velocity Srd/gfo	RMS Velocity	FIRST Normal Moveout	SECOND Normal Moveout	THIRD Normal Moveout	INTERVAL Velocity	
MS	M	M M	M/S	M/S	MS	MS	MS	M/S	
482.00	557.24	514.34	2134	2147	161.17	318.21	496,62	3224	

.

.

 $\frown$ 

## ANALYST: R.BUNT

1

# 16-AUG-85 00:11:52 PRDGRAM: GTRFRM 007,E08

****		• •			• •			. L	1
*									r k
*									*
****	**	**	**	**	**	**	**	*	*
*								;	¥
*	SC	ΗГ	ŲΜ	BE.	RG	ER		;	*
~ ****								:	*

## SYNTHETIC SEISMOGRAM TABLE

COMPANY :	AMPOL EXPLORATION	LIMITED
WELL :	FAIRHOPE #1	
FIELD :	WILDCAT	
COUNTY :	PEP-98	
STALE :	VICTORIA	
COUNTRY :	AUSTRALIA	
REFERENCE:	FS2A.540,362	

COMPANY : AMPOL EXPLORATION LIMITED THE HEADINGS AND FLAGS SHOWN IN THE DATA LIST ARE DEFINED

IGEOFL- FLAG_INDICATING__MCDE_OF_PROCESSING NST LATA AVAILABLE AND, PRUCESSED IGEOFI = 0||GEOFL|| = 1WST DATA NOT AVAILABLE

WELL

: FAIRHOPE #1

LOG INPUT DATA : GREGOI- CHANNEL NAME FOR INPUT DENSITY LOG DATA GTROGI- CHANNEL NAME FOR INPUT SUNIC LOG DATA GCURVE- CURKELATION LOG NAMES

USER DEFINED MUDELING

LOFVEL- LAYER OPTION FLAG FOR VELOCITY LOFDEN- LAYER OPTION FLAG FOR DENSITY LAYVEL- LAYERED VELOCITY VALUES FOR USER SUPPLIED ZUNE LIMIT WITH RESPECT TO SONIC LUG DATA LAYDEN- LAYERED DEASITY VALUES FOR USER SUPPLIED ZONE LIMITS WITH RESPECT TO SONIC LOG DATA UNERTH- UNIFORM EARTH VELUCITY UNFDEN- UNIFORM EARTH DENSITY SRATE SAMPLING RATE IN MS START DEPTH FOR COMPUTING SYNTHETIC SEISMOGRAM WITH RESPECT TO SCHIC LOG DATA STOP DEPTH FOR COMPUTING SYNTHETIC SEISMOGRAM WITH RESPECT TO SUNIC LOG DATA INIDEP IGESTP TWO WAY TRAVEL TIME FROM TOP SUNIC TO SRD INITAU EKB ELEVATION OF RELLY BUSHING WITH RESPECT TO MEAN SEA LEVEL SEISMIC REFERENCE DEPTH WITH RESPECT TO SRDGEO MEAN SEA LEVEL ICDP FLAG FOR COMPUTING RESIDUAL MULTIPLES CDPTIM TWO WAY TIME INTERVAL FOR COMPUTATION OF RESIDUAL AULTIPLES SURFACE REFLECTUR TWO WAY TIME ABOVE INITAU SURFACE REFLECTION COEFFICIENT SCRTIM SCREFL REFLECTION COEFFICIENTS THAT ARE EQUAL TO OR RCMAX GREATER THAN THIS VALUE SHALL BE FLAGGED *NOTE* IN CASE OF MODELING A SYNTHETIC SEISMOGRAM WITHOUT

SONIC LOG DATA , THE DEPTH REFERENCES SHALL BE USER DEFINED

OUTPUT DATA

RMSVWE ROUT MEAN SQUARE VELOCITY FOUND FOR THE WELL SRDTIM TWO WAY TRANSIT TIME BETWEEN INIDEP AND SRDGED

CHANNNEL NAMES



WELL

(VALUE)

.

: FAIRHOPE #1

PAGE

2

TWOT- TWO WAY TRAVEL TIME DSRD- DEPTH OF COMPUTED DATA WITH RESPECT TO SRD INTV- INTERVAL VELOCITY ON A TIME SCALE RHOT- INTERVAL DENSITY ON A TIME SCALE REFL- REFLECTION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES ATTE- ATTENUATION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES PRIM- SYNTHETIC SEISMOGRAM - PRIMARIES + MULTIPLES MULT- SYNTHETIC SEISMOGRAM - PRIMARIES + MULTIPLES MUON- MULTIPLES ONLY

• .

#### CHARDEL HAMES

CHAN	1	-	CWOT.	GMU	.002	*	•
CHAN	2	68 <b>1</b> 0	DSRD	GRE	006	*	
CHAN	3	-	INTV,	GRE	.007	<b>*</b>	
CHAN	4	•	поня.	GRE	.001	*	
CHAN	5	-	PEFL	GRF	.001	*	
CHAN	b,	-	ATTE.	GKE.	.001	*	
CHAN CHAN	1		PRIM	GRE	.001	*	
CHAN	89	-	MULT	Ginu,	001	*	
CUMN	3	-	ROON.	<b>,</b> 679.0	,001,	, <b>*</b>	٠

### (GLOBAL PARAMETERS)

1

COMPANY : AMPON EXPLORATION DIMITED WELL : FAIRHOPE #1

	i			
		,		
1 GR* 2 CALI*				
2 CALI*	I.		~	

(ZONED PARAMETERS)		(VALUE)		(T.	IMITS)	
	LCEDEN LCEVEL LAYDEN LAYDEN LAIVEL	-1.000000 1.000000 -999.2500 829.7900	G/C3 M/S	30479.7 30479.7 30479.7 30479.7 30479.7	,	0 0 - 0 0

PAGE

3

PAGE

4

.

TRO MAY TRAVEL TIME MS	DEPIH FROX SRD (OF TOP) H	INTERVAL VFLCCITY P/S	INTERVAL DENSITY G/C3	PEFLECT. COEFF.	TWO WAY AITEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY HULTIPLES	*ULTIPLES Owly
85.0 91.0	86.59	1986 1985	1.933 1.929	001	1.00000	00112	00112	Û
-	88.57	1982	1.962	.007	.99994	.00742	.00742	0
93.V	90.55	1957	1.904	021	.99949	02121	02119	.00002
95,0	92.51	1961	1.923	.006	,99946	.00585	.00575	00011
97.0	94.47	2011	1,957	.022	<b>6</b> 99899	.02164	.02197	.00033
<b>93.</b> 0	98.48	2056	2.008	• 024	,99842	.02386	.02338	-,00048
101.0	94.54	2004	1,943	029	.99755	(2945	02947	00002
103.0	100.54	1960	1,916	018	.99723	01797	01748	• U()()49
195.0	102.50	2025	1.976	.032	.99623	.03162	. () 3274	.00111
107.0	104.53	2025		017	.99594	01698	01871	00173
109.0	106.53	1978	1.933	003	,99593	-,00305	00491	00187
111.0	108.51	2030	1.943	.014	.99572	.01436	.01689	
113.0	110.54		1.949	-,008	.99565	00808	00700	.00253
115.0	112.56	2020	1.927	003	,99565	00258	00415	.00108
117.0	114.54	1988	1.948	.001	.99565	.00091	-	00157
119.0	116,55	2002	1.937	.005	.99562	.00480	00008	00099
121.0	118.58	2033	1,926	005	.99560		.00689	.00209
123.0	120.60	2022	1,918	.001	.99560	-,00488	00528	-,00040
125.0	122.63	2025	1.920	.010	•99550	.00121	-,00111	-,00232
127.0	124.66	2032	1,951	.010		.00978	.01247	.00269
129.0	126.70	2043	1.985		.99538	.01103	.01100	-,00003
131.0	128.75	2052	1.867	028	.99458	02825	03012	00187
133.0	130.85	2095	1,908	,021	.99413	.02116	.02224	.00108
135,0	133.05	2201	1.957	037	.99273	.03723	.03859	,00136
<b>*</b> #*	v ت ∌ ت ي ب	2299	1,907	,009	,99266	.00861	.00626	-,00235

CCMFANY :	AMPOL EXPL	бкантон <b>ст</b>	TIED	»ይርር	: FAIRHOPE	# 1		PAGE	5
TRC AA TRAVEL ITRE MS	DEPIA FROM SRD (OR TOP) M	LATERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. CUEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY	, J
113E	(OR TOP)	->/S 2246 2192 2262 2218 2207 2144 2157 2068 2079 2108 2148 2099 2084 2082 2084 2082 2048 2097 2141	G/C3 1.955 1.979 2.018 2.013 1.998 2.004 1.998 2.004 1.998 2.014 1.994 2.011 2.013 1.994 2.001 2.001 2.014 1.991 2.002 .002 .040	.001 006 .025 011 006 013 .002 017 002 .011 .010 016 002 .003 014 .015 .020 020	ATTEN COEFF .99266 .99262 .99198 .99186 .99185 .99165 .99165 .99135 .99135 .99135 .99135 .99135 .99135 .99135 .99135 .99136 .99187 .99087 .99086 .99066 .99066 .99066 .99006 .99006	SEISMO.	+	00036 .00309 .00102 00473 00241 .00597 00161 00262 .00094 .00199 00044 00168 .00264 .00061 00310 00047 .00254 00143	
173.0 175.0 177.0 179.0 181.0 183.0 185.0	173.80 175.86 177.92 179.92 181.96 183.96 185.97	2077 2062 2059 1998 2035 2001 2015	1,983 1,949	-,012 .006 -,031 .017 -,017 .009 .024	<ul> <li>98954</li> <li>98950</li> <li>98853</li> <li>98823</li> <li>98795</li> <li>98788</li> <li>98731</li> </ul>	01161 .00589 03105 .01700 01676 .00855 .02356	01286 .00872 03194 .01134 01739 .01399 .02170	-,00126 ,00283 -,00089 -,00566 -,00063 ,00544 -,00186	, , ,

 $\sim$ 

,

				14.2 M	I FAIRHOPE	#1		PAGE
IAC AAY IRAAVEL IIGE YS	LEPTH FROM SHD (OR IOF) M	LATERVAL VELOCITY #/8	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	FRIMARY MULTIPLES	MULTIPLES
187,0	188.05	2080	2.002					
189.0	190.15	2101	2.006	.006	.98728	.00600	.00218	00382
191.	192.38	2224	2.066	.043	.98543	.04267	.04736	.00469
] <b>G R</b> ₆ ()	194.52	2147	2.047	<b>-</b> .0-22	.98495	02179	02106	.00073
195.0	196.70	2178	2.035	.004	.98493	.00399	.00147	00252
197.4	190.70	2164	2.018	007	.98488	00716	00445	.00271
199.1	201,02	2149	2,018	003	.98487	00321	00460	00138
201.0	203.17	2155	2.012	V	.98487	00013	.00142	.00155
203.1		2174	2.016	.005	.98485	.00495	.00250	00245
205.0	205.34	2223	2,034	.016	.98460	.01547	.01685	.00137
201.0	207.57	2220	2,034	001	.98460	00071	.00304	.00375
204.0	209,79	2321	2.086	.035	.98340	.03440	.02931	00509
231.0	212.11	2313	2.060	008	.98334	00786	<b>~.</b> 00377	.00409
213.0	214,42	2359	2.025	.001	.98334	.00115	.00061	
	216.78	2404	2,057	.017	.98304	.01709	.01558	00054
215.0	219,18	2278	2.003	∪25	.98240	02500	02631	00151
217.	221.46	2217	2.019	024	,98182	02393	02305	-,00130
219.0	223.68	2122		034	.98071	03305	02305 03260	.00088
221.0	<b>225</b> ,80	2252	1,972	.044	.97885	.04271		.00045
223.0	228.05	2232	2.027	004	.97883	00398	.04372	.00101
225.0	230.29	2222	2.029	-,012	.97869	01176	00445	00047
221.0	232.51		1,990	.036	.97739	.03571	01426	-,00250
279.0	234.82	2313	2.056	058	.97405		.04400	.00829
231.0	236.97	2149	1,969	.018	•97374	05710	<b>~</b> ,05825	00115
233.0	239.16	2185	2,006	009		.01735	.01337	00398
		2158	1,997	• • • • 7	.97367	00857	01185	00328

COMPANY AMPOL EXPLORATION LIMITED

WELL : FAIRHOPE #1

6

COMPANY : AMPUN EXPLORATION DIMITED

~

WELL : FAIRHOPE #1

••

						т. <b>д</b>		PAGE	
THU AAY TRAVEL UTOF BS	DEPTH FRGM SAD (OF TDP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY Atten. Coeff.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES Only	
IT⊂ F	(OF TOP)	2138 2171 2158 2054 2340 2200 2133 2376 2378 1938 2330 2127 2089 2526 2041 2225 2359 2246 2151 1980	DENSITY G/C3 2,025 2,033 2,017 1,971 2,067 2,031 2,009 2,087 2,063 1,919 2,067 2,064 1,989 2,106 1,979 2,013 2,056 2,058 2,048 1,942	.002 .010 007 036 .089 039 021 .073 005 138 .129 061 013 .123 137 .051 .040 024 024 024 024 068 .143	ATTEN.	SEISMO.	+		
277.0 279.0 281.0 283.0	287.70 289.90 292.13 294.28	2425 2203 2232 2147	2.117 2.007 2.065 2.029	074 .021 028 .071	.85778 .85742 .85673 .85238	06421 .01777 02422 .05108	.14715 05474 00091 01606 .06498	.02088 .00947 01869 .00816 .00391	

COMPANY : AMPUL EXPLORATION LIMITED

:

TAU WAY TRAVEL TIME	DEF1H FRGM SHD (ok Jof)	LUTERVAL VELOCITY	INTERVAL DENSITY	REFLECT. COLFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMU. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
× 5	N	11/S	G/C3		-			
285.1	296.07	2390	2.103	~,050	.85024	04266	-,03967	.00300
287.0	298.88	2212	2,055	.007	.85020	.00614	-,00553	01166
289.0	301.07	2186	2.109	-, 0ŝ1	.84798	04340	05061	00721
291.0	303,13	2059	2.022	029	.84727	02464	00859	,01604
293.0	305.10	1968	1,996	.054	.84480	.04575	.01914	02661
-		2123	2.062					
295.0	307.22	2175	2.031	,005	.84478	.00381	.00957	.00576
297.0	309.39	2240	2.113	.035	.84377	.02926	.04760	.01834
299.0	311.63	2232	2.092	007	.84372	-,00588	00184	.00404
301.0	313,87	2213	•	-,011	.84361	00965	00989	00024
303.0	316.08			-,015	.84342	01287	-,02062	-,00775
305.0	318.24	2160	r.	.026	.84284	.02216	.01081	-,01134
307.0	320.48	2,238	2,085	,011	.84273	.00934	.02044	.01110
309.0	322.76	2279	2.092	-,046	.84091	03917	-,04515	-,00598
311.0	324,86	2108	2,001	021	.84053	01800	01493	.00308
313.0	326,93	2067	2,014	.041	.83914	.03418	.02450	00968
315.0	329,12	2186	2,066	008	83909	-,00644	00872	00228
317.0		2130	2.088			02343	•.00270	.02073
-	331.25	2028	2,074	-,028	.83843			
319.0	333.28	2009	2,086	-,002	.83843	00146	-,02425	-,02279
321.0	335,28	2077	2.083	.016	.83822	.01328	.03296	.01967
323.0	337.30	2093	-	002	<b>.</b> 838 <b>22</b>	00191	02043	01852
325.0	339,45		2.025	-,017	.83798	01416	01389	.00027
321.0	341.51	2056	1	.024	.83750	.01991	.03659	.01668
324.0	343.62	2112	2.068	.004	.83749	.00298	00823	-,01121
331.4	345.75	2124	2,070	.033	.83055	.02804	.01853	00951
		6116	<b>4</b> • 100					

COMPANY : AMPOL EXPLORATION LIMITED

.

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES CNLY
333.0 335,0 337.0	347.92 350.12	2202 2214	2.073 2.131	-,015 ,016	.83637 .83615	01230 .01366	.01323 .02195	•02553 •00830
339.0 341.0	352.33 354.49 356.62	2158 2127	2,092	022 0 010	.83574 .83574 .83567	01846 00026 00800	-,04018 .02404 -,02793	02173 .02429 01994
343.0 345.0 347.0	358.73 360.87 362.91	2115 2133 2048	2,092 2,153 2,075	.019 039	.83538 .83411	.01554 -,03248	.01529 03111	00025 .00137
349.0 351.0	365.04 367.22	2126 2183 2116	2,065 2,096 2,089	.016 .021 017	.83389 .83353 .83328	.01364 .01724 01441	.00223 .02745 01771	01141 .01021 00330
353,0 355.0 357.0	369,34 371,50 373,80	2160 2306	2,149 2,136	•024 •030 -•017	.83279 .83205 .83181	.02036	.01630 .05396	00406 .07919
359.0 361.0	376.05 378.31	2241 2264 2295	2.124 2.124 2.109	.005 .003	.83178 .83178	01430 .00434 .00246	03116 .01240 00213	01686 .00806 00459
363.0 365.0 367.0	380.60 382.92 385.26	2321 2334	2.131	,011 ,003 ,025	.83167 .83167 .83114	.00922 .00243 .02088	.00039 .02317 <b>-</b> .00540	00883 .02073 02627
369.0 371.0 373.0	387.66 369.89 392.07	2402 2232 2173	2.178 2.143 2.170	-,045 -,007	•82948 •82944	03717 00587	01222 01666	.02495 01079
375,0 377,0	394.25 396.46	2180 2210 2380	2,162 2,127 2,168	0 ~.001 .047	•82944 •82944 •82763	00022 00121 .03868	.00681 00969 .01908	.00703 00848 01960
379.0 381.0	398.64 401.21	2377	2,205	.008 030	.82758 .82684	.00653 02468	.03705 03381	.03052 00913

COMPANY : AMPOL EXPLORATION LIMITED

UIMITED WEDD

WELL : FAIRHOPE #1

								1 1 L
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR IOP) *	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES GNLY
383.C 385.0 387.0 389.0 391.0	403.51 405.82 408.15 410.63 413.10	2291 2311 2336 2475 2471	2.155 2.212 2.200 2.190 2.257	.017 .003 .026 .014	.82660 .82660 .82602 .82584 .82425	.01412 .00233 .02190 .01191 03633	-,00059 .00949 .03601 .00207	01471 .00716 .01411 00984
393.0 395.0 397.0	415.36	2263 2181 <b>22</b> 56	2,257 2,133 2,191	047 .030	.82245 .82169	03833 03850 .02502	01109 03139 03986	.02524 .00711 06488
399.0 401.0	419,80 422.03 424.20	2232 2169	2.116 2.144	-,023 -,008 -,005	.82126 .82122 .82120	01863 00638	.03566 03886	.05429 03249
403.0 405.0 407.0	426.42 428.61 430.72	2223 2192 2110	2.073 2.132 2.118	.007 022	.82116 .82075	00385 .00574 01823	02277 .04120 04696	01892 .03546 02874
409.0 411.0	432.93 435.02	2201 2098 2050	2,106	.018 027 027	.82049 .81988 .81930	.01480 02221 ~.02185	.03091 00893 05074	.01612 .01328 02889
413.0 415.0 417.0	437.07 439.15 441.12	2030 2078 1970	2.030 2.112 2.051	.026 041	.81873 .81732	.02168 03390	.03138 01907	.00970 .01483
419.0 421.0	443.18 445.20	2050 2015 1915	2.078 2.042 1.989	.029 020 039	.81664 .81632 .81510	•02371 -•01610 -•03159	00742 00674 00419	03113 .00936 .02740
423.0 425.0 427.0	447.11 449.16 451.20	2048 2040 2127	2.085 2.085 2.095	.057 002 .023	.81244 .81244 .81200	.04653 00155 .01883	01150 .03675 .04301	05803 .03830 .02418
429.0	453.33	2055	2,034	-,032	.81117	02592	04623	-,02031

COMPANY : AMPOL EXPLORATION DIMITED WELL : FAIRHOPE #1

431.0 $455.38$ $-008$ $81113$ $-00635$ $-02669$ $433.0$ $457.42$ $2023$ $2.070$ $009$ $81106$ $00700$ $01736$ $435.0$ $459.45$ $2023$ $2.070$ $009$ $81106$ $00700$ $01736$ $437.0$ $461.51$ $2058$ $2.103$ $017$ $81084$ $01352$ $00124$ $439.0$ $463.51$ $2000$ $2.058$ $-025$ $81033$ $-02042$ $-01241$ $439.0$ $463.51$ $2029$ $2.070$ $010$ $81024$ $00824$ $-01308$ $441.0$ $445.83$ $2029$ $2.070$ $010$ $81023$ $00267$ $.05734$ $443.0$ $467.55$ $2044$ $2.069$ $-008$ $81018$ $-00623$ $-04685$ $443.0$ $467.55$ $2017$ $2.064$ $-008$ $81015$ $00515$ $.02700$ $447.0$ $471.63$ $2035$ $2.072$ $006$ $81015$ $00515$ $.02700$ $449.0$ $473.58$ $1951$ $2.043$ $-028$ $80952$ $-02269$ $-01904$ $451.0$ $475.56$ $1974$ $2.075$ $.014$ $80935$ $.01164$ $-00961$ $455.0$ $479.56$ $1974$ $2.054$ $-029$ $80828$ $-02376$ $-02541$ $457.0$ $479.56$ $1974$ $2.054$ $-029$ $80633$ $.02020$ $.00751$ $456.0$ $491.65$ $2041$ $2.128$ $.0466$ $80654$ $.03750$ $.02531$ $457.$					PAGE 1
433.0 $457.42$ $2043$ $2.014$ $006$ $.81113$ $00635$ $02063$ $435.0$ $459.45$ $2023$ $2.070$ $.009$ $.81106$ $.00700$ $.01736$ $437.0$ $461.51$ $2058$ $2.103$ $.017$ $.81084$ $.01352$ $.00124$ $439.0$ $463.51$ $2000$ $2.058$ $0250$ $.81033$ $02042$ $01241$ $441.0$ $465.53$ $2029$ $2.070$ $.010$ $.81024$ $.00824$ $01308$ $443.0$ $467.58$ $2044$ $2.069$ $.003$ $.81023$ $.00267$ $.05734$ $445.0$ $469.60$ $2017$ $2.064$ $008$ $.81018$ $00623$ $04685$ $447.0$ $471.63$ $2035$ $2.072$ $.006$ $.81015$ $.00515$ $.02700$ $449.0$ $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $477.58$ $1978$ $2.075$ $.014$ $.80335$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01626$ $.03914$ $455.0$ $477.58$ $2024$ $2.054$ $029$ $.80828$ $02306$ $02541$ $455.0$ $477.58$ $2044$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $459.0$ $483.41$ $2164$ $2.1274$ $.061$ $.80303$ $.04917$ $.09163$ $461.0$ $486.14$ $2322$ $2.263$	FRON	LOCITY DENSITY COEFF. ATTE	EN. SEISMO.	PRIMARY + MULTIPLES	MULTIPLES Only
435.0 $459.45$ $2023$ $2.070$ $1009$ $81106$ $.00700$ $.01736$ $437.0$ $461.51$ $2058$ $2.103$ $.017$ $.81084$ $.01352$ $.00124$ $439.0$ $453.51$ $2000$ $2.058$ $025$ $.81033$ $02042$ $01241$ $441.0$ $465.53$ $2029$ $2.070$ $.010$ $.81024$ $.00824$ $01308$ $443.0$ $467.58$ $2044$ $2.069$ $.003$ $.81023$ $.00267$ $.05734$ $443.0$ $467.58$ $2044$ $2.069$ $008$ $.81015$ $.006123$ $04685$ $445.0$ $469.60$ $2017$ $2.064$ $008$ $.81015$ $.00515$ $.02700$ $449.6$ $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01626$ $.03914$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01626$ $.03914$ $453.0$ $479.56$ $1974$ $2.054$ $029$ $.80828$ $02306$ $02541$ $455.0$ $479.56$ $1974$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $457.0$ $481.65$ $2091$ $2.128$ $.046$ $.80303$ $.04917$ $.09163$ $457.0$ $481.42$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $457.0$ $493.70$ $2692$ $2.411$ $.0$		2043 2.014		-,02069	01434
437.0 $461.51$ $2058$ $2.103$ $.017$ $.81084$ $.01352$ $.00124$ $439.0$ $463.51$ $2000$ $2.058$ $-025$ $.81033$ $-02042$ $-01241$ $441.0$ $445.53$ $2029$ $2.070$ $.010$ $.81024$ $.00824$ $-0.01241$ $443.0$ $467.58$ $2044$ $2.069$ $.003$ $.81023$ $.00267$ $.05734$ $443.0$ $467.58$ $2044$ $2.069$ $-0.08$ $.81018$ $00623$ $04685$ $445.0$ $469.60$ $2017$ $2.064$ $008$ $.81018$ $00259$ $0269$ $449.0$ $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $475.56$ $1978$ $2.075$ $.014$ $.80935$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01626$ $.03914$ $455.0$ $477.58$ $2027$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $457.0$ $481.65$ $2041$ $2.128$ $.046$ $.80303$ $.04917$ $.09163$ $457.0$ $481.64$ $2322$ $2.263$ $003$ $.80303$ $00239$ $.00176$ $463.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $457.0$ $491.01$ $2553$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $494.66$ $2370$ $2.272$ $$		2023 2.070	•••••	.01736	.01036
439.0 $463.51$ $2000$ $2.058$ $4.023$ $.81033$ $02042$ $01241$ $441.0$ $4F5.53$ $2029$ $2.070$ $.010$ $.81024$ $.00824$ $01308$ $443.0$ $4F5.53$ $2029$ $2.070$ $.003$ $.81023$ $.00267$ $.05734$ $443.0$ $4F7.5F$ $2044$ $2.069$ $.003$ $.81023$ $.00267$ $.05734$ $445.0$ $469.60$ $2017$ $2.064$ $008$ $.81018$ $00623$ $04885$ $447.0$ $471.63$ $2035$ $2.072$ $.006$ $.81015$ $.00515$ $.02700$ $449.0$ $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $475.56$ $1978$ $2.075$ $.014$ $.80935$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01626$ $.03914$ $455.0$ $477.58$ $2022$ $2.128$ $.0466$ $.90654$ $.03750$ $.02253$ $457.0$ $481.65$ $2091$ $2.128$ $.0466$ $.90654$ $.03750$ $.02254$ $457.0$ $481.46$ $2322$ $2.263$ $003$ $.80303$ $.04917$ $.09163$ $453.0$ $498.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $461.0$ $486.14$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $461.0$ $496.13$ $2525$ $2.267$ <td< td=""><td></td><td>2038 2.103</td><td>• · · · • •</td><td>.00124</td><td>-,01228</td></td<>		2038 2.103	• · · · • •	.00124	-,01228
441.0 $4F5.53$ $2029$ $2.070$ $.010$ $.81024$ $.00824$ $=.01308$ $443.0$ $467.58$ $2044$ $2.069$ $.003$ $.81023$ $.00267$ $.05734$ $445.0$ $469.60$ $2017$ $2.064$ $008$ $.81018$ $00623$ $04685$ $447.0$ $471.63$ $2035$ $2.072$ $.006$ $.81015$ $.00515$ $.02700$ $449.0$ $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $475.56$ $1978$ $2.075$ $.014$ $.80935$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01826$ $.03914$ $455.0$ $477.58$ $1974$ $2.054$ $029$ $.80828$ $02306$ $02541$ $457.0$ $461.65$ $2091$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $459.0$ $493.81$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $484.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.022519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $467.0$ $493.70$ $2525$ $2.267$		2,058		•.01241	.00801
443.0 $467.58$ $2044$ $2.069$ $.003$ $.81023$ $.00267$ $.05734$ $445.0$ $469.60$ $2017$ $2.064$ $008$ $.81018$ $00623$ $04685$ $447.0$ $471.63$ $2035$ $2.072$ $.006$ $.81015$ $.00515$ $.02700$ $449.0$ $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $475.56$ $1978$ $2.075$ $.014$ $.80935$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01826$ $.03914$ $453.0$ $477.58$ $1974$ $2.054$ $029$ $.80828$ $02306$ $02541$ $455.0$ $479.56$ $2091$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $457.0$ $481.65$ $2091$ $2.128$ $.046$ $.80303$ $.04917$ $.09163$ $457.0$ $483.81$ $2324$ $2.274$ $.061$ $.80303$ $.00239$ $00176$ $461.0$ $486.14$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02450$ $03445$ $473.0$ $500.79$ $2195$ $2.285$ $0$		2029 2,070	•••••	-,01308	-,02132
445.0 $469.60$ $2017$ $2.064$ $008$ $.81018$ $00623$ $04685$ $447.0$ $471.63$ $2035$ $2.072$ $.006$ $.81015$ $.00515$ $.02700$ $449.0$ $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $475.56$ $1978$ $2.075$ $.014$ $.80935$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01626$ $.03914$ $455.0$ $479.56$ $1974$ $2.054$ $029$ $.80828$ $02308$ $02541$ $457.0$ $481.65$ $2091$ $2.128$ $.0466$ $.80654$ $.03750$ $.02053$ $459.0$ $493.81$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $486.14$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $471.0$ $498.60$ $2370$ $2.272$		2044 2.069		.05734	.05466
447.0 $471.63$ $2035$ $2.072$ $.006$ $.81015$ $.00515$ $.02700$ $449.0$ $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $475.56$ $1978$ $2.075$ $.014$ $.80935$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01826$ $.03914$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01826$ $.02541$ $455.0$ $479.56$ $1974$ $2.054$ $029$ $.80828$ $02308$ $02541$ $457.0$ $481.65$ $2041$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $459.0$ $493.81$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $486.14$ $2322$ $2.263$ $003$ $.80303$ $.00239$ $00176$ $463.0$ $498.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.022519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $471.0$ $498.66$ $2195$ $2.285$		2017 2.064		04685	04062
449.0 $473.58$ $1951$ $2.043$ $028$ $.80952$ $02269$ $01904$ $451.0$ $475.56$ $1978$ $2.075$ $.014$ $.80935$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01826$ $.03914$ $453.0$ $477.58$ $1974$ $2.054$ $029$ $.80828$ $02306$ $02541$ $455.0$ $479.56$ $1974$ $2.054$ $029$ $.80828$ $02306$ $02541$ $457.0$ $481.65$ $2091$ $2.128$ $.0466$ $.80654$ $.03750$ $.02053$ $459.0$ $493.81$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $486.14$ $2322$ $2.274$ $.061$ $.80303$ $.04917$ $.09163$ $463.0$ $488.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $471.0$ $498.66$ $2370$ $2.285$ $035$ $.79298$ $02805$ $05768$ $473.0$ $500.79$ $2195$ $2.285$		2035 2,072	••••••••	•0 <b>27</b> 00	.02185
451.0 $475.56$ $1978$ $2.075$ $.014$ $.80935$ $.01164$ $00961$ $453.0$ $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01626$ $.03914$ $453.0$ $477.58$ $2022$ $2.123$ $029$ $.80828$ $02305$ $02541$ $455.0$ $479.56$ $1974$ $2.054$ $029$ $.80828$ $02305$ $02541$ $457.0$ $481.05$ $2091$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $457.0$ $481.05$ $2091$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $459.0$ $493.81$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $486.14$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $463.0$ $498.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $467.0$ $496.60$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $473.0$ $500.79$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $473.0$ $503.65$ $2710$ $2.489$ <		1951 2.043	95202269	01904	.00365
453.0 $477.58$ $2022$ $2.123$ $.023$ $.80894$ $.01826$ $.03914$ $453.0$ $477.58$ $1974$ $2.054$ $029$ $.80828$ $02308$ $02541$ $455.0$ $479.56$ $2991$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $457.0$ $481.65$ $2091$ $2.128$ $.046$ $.80633$ $.02020$ $.00751$ $457.0$ $481.65$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $486.14$ $2324$ $2.274$ $.061$ $.80303$ $.04917$ $.09163$ $463.0$ $488.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $467.0$ $493.70$ $2525$ $2.267$ $031$ $.79398$ $02450$ $03445$ $471.0$ $496.23$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $473.0$ $500.79$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $473.0$ $503.65$ $2710$ $2.489$ $027$ $.76874$ $02040$ $02895$ $477.0$ $506.36$ $2710$ $2.501$ <t< td=""><td></td><td>17/0 2.0/5</td><td>935 .01164</td><td>-,00961</td><td>02125</td></t<>		17/0 2.0/5	935 .01164	-,00961	02125
455.0 $479.56$ $1974$ $2.054$ $029$ $.80828$ $02308$ $02541$ $457.0$ $481.05$ $2091$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $459.0$ $483.81$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $486.14$ $2324$ $2.274$ $.061$ $.80303$ $.04917$ $.09163$ $463.0$ $498.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2525$ $2.267$ $062$ $.79473$ $02450$ $03445$ $471.0$ $498.66$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $473.0$ $500.79$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $475.0$ $503.65$ $2854$ $2.492$ $.173$ $.76928$ $.13711$ $.16316$ $477.0$ $506.36$ $2710$ $2.489$ $027$ $.76874$ $02040$ $02895$ $479.0$ $509.47$ $3109$ $2.501$ $.071$ $.76487$ $.05451$ $.07082$		2022 2.123	894 .01826	.03914	•02088
457.0 $481.65$ $2091$ $2.128$ $.046$ $.80654$ $.03750$ $.02053$ $459.0$ $483.81$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $486.14$ $2324$ $2.274$ $.061$ $.80303$ $.04917$ $.09163$ $463.0$ $486.14$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2570$ $2.272$ $031$ $.79398$ $02450$ $03445$ $471.0$ $498.60$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $473.0$ $500.79$ $2195$ $2.285$ $027$ $.76874$ $02040$ $02895$ $477.0$ $506.36$ $2710$ $2.489$ $027$ $.76874$ $02040$ $02895$ $479.0$ $509.47$ $3109$ $2.501$ $.071$ $.76487$ $.05451$ $.07082$		1974 2.054029 .80	82802308	02541	00233
459.0 $483.81$ $2164$ $2.161$ $.025$ $.80603$ $.02020$ $.00751$ $461.0$ $486.14$ $2324$ $2.274$ $.061$ $.80303$ $.04917$ $.09163$ $463.0$ $486.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $469.0$ $496.23$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $471.0$ $498.66$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $473.0$ $500.79$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $475.0$ $503.65$ $2854$ $2.492$ $.173$ $.76928$ $.13711$ $.16316$ $479.0$ $509.47$ $31.09$ $2.501$ $.071$ $.76487$ $.05451$ $.07082$		2091 2.128 .046 .80	654 .03750	.02053	01698
461.0 $486.14$ $2324$ $2.274$ $.061$ $.80303$ $.04917$ $.09163$ $463.0$ $488.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $469.0$ $496.23$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $471.0$ $498.60$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $473.0$ $500.79$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $475.0$ $503.65$ $2854$ $2.492$ $.173$ $.76928$ $.13711$ $.16316$ $477.0$ $506.36$ $2710$ $2.489$ $027$ $.76874$ $02040$ $02895$ $479.0$ $509.47$ $3109$ $2.501$ $.071$ $.76487$ $.05451$ $.07082$		2164 2.161 .025 .80	603 .02020	.00751	-,01269
463.0 $488.46$ $2322$ $2.263$ $003$ $.80303$ $00239$ $00176$ $465.0$ $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $469.0$ $496.23$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $471.0$ $498.60$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $473.0$ $500.79$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $475.0$ $503.65$ $2854$ $2.492$ $.173$ $.76928$ $.13711$ $.16316$ $477.0$ $506.36$ $2710$ $2.489$ $027$ $.76874$ $02040$ $02895$ $479.0$ $509.47$ $3109$ $2.501$ $.071$ $.76487$ $.05451$ $.07082$		2324 2.274 .061 .80	303 ,04917	.09163	.04246
465.0 $491.01$ $2553$ $2.386$ $.074$ $.79864$ $.05933$ $.05641$ $467.0$ $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $471.0$ $498.60$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $473.0$ $500.79$ $2854$ $2.492$ $.173$ $.76928$ $.13711$ $.16316$ $475.0$ $503.65$ $2710$ $2.489$ $027$ $.76874$ $02040$ $02895$ $477.0$ $506.36$ $2710$ $2.489$ $.0711$ $.76487$ $.05451$ $.07082$ $479.0$ $509.47$ $3109$ $2.501$ $.0711$ $.76487$ $.05451$ $.07082$		2322 2,263 -,003 .80	30300239	00176	.00063
467.0 $493.70$ $2692$ $2.411$ $.032$ $.79785$ $.02519$ $.04684$ $467.0$ $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $471.0$ $498.60$ $2370$ $2.272$ $035$ $.79298$ $02805$ $05768$ $473.0$ $500.79$ $2195$ $2.285$ $.173$ $.76928$ $.13711$ $.16316$ $475.0$ $503.65$ $2710$ $2.489$ $027$ $.76874$ $02040$ $02895$ $477.0$ $506.36$ $2710$ $2.489$ $.071$ $.76487$ $.05451$ $.07082$ $479.0$ $509.47$ $3109$ $2.501$ $.071$ $.76487$ $.05451$ $.07082$		2553 2.386 .074 .79	864 .05933	.05641	00293
467.0 $493.70$ $2525$ $2.267$ $062$ $.79473$ $04986$ $04750$ $469.0$ $496.23$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $471.0$ $498.60$ $2370$ $2.272$ $035$ $.79298$ $02805$ $03445$ $473.0$ $500.79$ $2195$ $2.285$ $.173$ $.76928$ $.13711$ $.16316$ $475.0$ $503.65$ $2854$ $2.492$ $.027$ $.76874$ $02040$ $02895$ $477.0$ $506.36$ $2710$ $2.489$ $.071$ $.76487$ $.05451$ $.07082$ $479.0$ $509.47$ $3109$ $2.501$ $002$ $-21407$ $.16316$		.032 79	785 .02519	.04684	.02165
479.0 $498.23$ $2370$ $2.272$ $031$ $.79398$ $02450$ $03445$ $471.0$ $498.60$ $2195$ $2.285$ $035$ $.79298$ $02805$ $05768$ $473.0$ $500.79$ $2854$ $2.492$ $.173$ $.76928$ $.13711$ $.16316$ $475.0$ $503.65$ $2710$ $2.489$ $027$ $.76874$ $02040$ $02895$ $477.0$ $506.36$ $2710$ $2.489$ $.071$ $.76487$ $.05451$ $.07082$ $479.0$ $509.47$ $3109$ $2.501$ $002$ $.74497$ $.05451$ $.07082$		• 062 79	47304986	04750	.00237
473.0       500.79       2195       2.285      035       .79298      02805      05768         473.0       500.79       2854       2.492       .173       .76928       .13711       .16316         475.0       503.65       2710       2.489      027       .76874      02040      02895         477.0       506.36       3109       2.501       .071       .76487       .05451       .07082         479.0       509.47       3109       2.501      002       .74407       .05451       .07082		<b>7.031</b> 79	39802450	03445	00995
475.0       503.65       2854       2.492       .173       .76928       .13711       .16316         475.0       503.65       2710       2.489      027       .76874      02040      02895         477.0       506.36       3109       2.501       .071       .76487       .05451       .07082         479.0       509.47       3109       2.501      002       .74407       .05451       .07082		<b></b> 035 .78 ⁴	29802805	-,05768	-,02962
477.0       506.36       2710       2.489      027       .76874      02040      02895         477.0       506.36       3109       2.501       .071       .76487       .05451       .07082         479.0       509.47       3109       2.501      002       .74407       .05451       .07082		.173 769	928 ,13711	.16316	.02605
479.0 509.47 3109 2.501 .071 .76487 .05451 .07082		<b>-</b> .027 765	87402040	02895	-,00855
		.071 764	487 .05451	.07082	.01631
	205	-	48700153	.01077	.01230

COMPANY :	AMPOL EXPL	ORATION LI	MITEC	WEL.L	: FAIRHOPE	# 1		PAGE 12
THO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) X	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
*S         481.0         483.0         485.0         485.0         487.0         489.0         491.0         493.0         495.0         497.0         499.0         501.0         503.0         505.0         507.0         509.0         511.0         513.0         515.0         517.0         519.0	(CR TOP)			.075 .013 0	ATTEN COEFF .76051 .76038 0	SEISMO.	+	.01281 01227 .00644 .00261 00925 .00300 .01364 04050 .04177 00730 01048 00408 01591 .02503 01360 02177 .00712 .02736 02312 .02237
521.0 523.0							00382	00382
525.0 527.0							02501 .03051 03501	02501 .03051 03501

1

.

•

COMPANY : AMPOL EXPLORATION LIMITED WELL : FAIRHOPE #1

.

.

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (DR TOP)	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. CUEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES Only
<b>529.</b> 0							.01081	.01081
531,0			-				.00374	.00374
533.0				-			.00566	.00566
535.0 ₇							01353	01353
537.0							.01097	.01097
539.0							.00456	.01057
541.0							-,00556	•00455 •00556
543,0							00648	<b>~</b> ,00538
545.0			į				.02129	•02129
547.0			1				03000	03000
<b>549</b> ,0							.04076	•04076
551.0							00873	•04078 ••00873
553,0							01132	01132
555,0							.02070	.02070
<b>557.</b> 0							00448	
559.0							01469	-,00448
561.0							01588	-,01469
<b>563</b> ,0							.02571	-,01588
565,0			i.				02390	,02571
567,0							•01580	•.02390
569.0							.00874	.01580
571.0								.00874
573.0							00572	~.00572
575.0							,01659	.01659
577.0							05120	-,05120
-							.00523	.00523

COMPANY :	AMPOL EXPL	ORATION LI	MITED	WELL	: FAIRHOPE	PAGE 14			
TWO WAY TRAVEL TIME MS	DEPTH FPON SRD (OR TOP) H	INTERVAL VELOCITY M/S	INTERVAL Density G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES GNLY	
579.0							.01037	.01037	
581.0				~			01265	01265	
583.0			1				.00226	.00226	
585,0							01665	01665	
587.0							.01453	.01453	
589.0							.01263	.01263	
<b>591</b> .0		·	I				00404	-,00404	
<b>593.</b> 0							.01391	.01391	
595,0			1				03095	-,03095	
597.0							01326	-,01326	
599.0							.00544	.00544	
601.0							00845	-,00845	
603,0/							.01009	.01009	
605.0							.01887	.01887	
607.0							-,01856	-,01856	
609,0							.02204	.02204	
611.0							,01863	.01863	
613.0							-,02887	02887	
615.0							01046	01046	
617.0							.02381	.02381	
619.0							00877	-,00877	
621.0							-,00883	00883	
623.0							00671	00671	
525.0							.01749	.01749	
25									

.

COMPANY :	AMPOL EXPL	ORATION LI	MITED	WELL	: FAIRHOPE	<b>#1</b>		PAGE	15
TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (or top) M	INTERVAL Velocity M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY	
627.0							.01437	,01437	
629.0							01868	01868	
631.0				-			.02727	.02727	
633.0							04679	-,04679	
635,0							.02108	.02108	
637.0							03601	03601	
639.0							.04754	.04754	
641.0							02791	02791	
643.0							.01599	.01599	
645.0							.00850	.00850	
647,0							03640	03640	
649.0							.05436	.05436	
651,0							-,03287	03287	
653.0							01716	01716	
655.0							01311	-,01311	
657.0							.03363	.03363	
659.0							.01532	.01532	
661.0							04112	-,04112	
663.0		·					.04742	.04742	
665.0							02527	02527	
667.0							03837	.03837	
669.0							-,05536	-,05536	
671.0							-,00013	00013	
673.0							.01219	.01219	
675.0							-,00123	00123	

1

•

COMPANY : AMPOL EXPLORATION LIMITED				WELL	PAGE 16	5			
TWO WAY TRAVEL TIME MS	DEPTH FROM SHD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES GNLY	
677,0							.00896	.00896	
679.0				-			.01420	.01420	
681.0							-,00373	00373	
683.0							.00908	.00908	

•

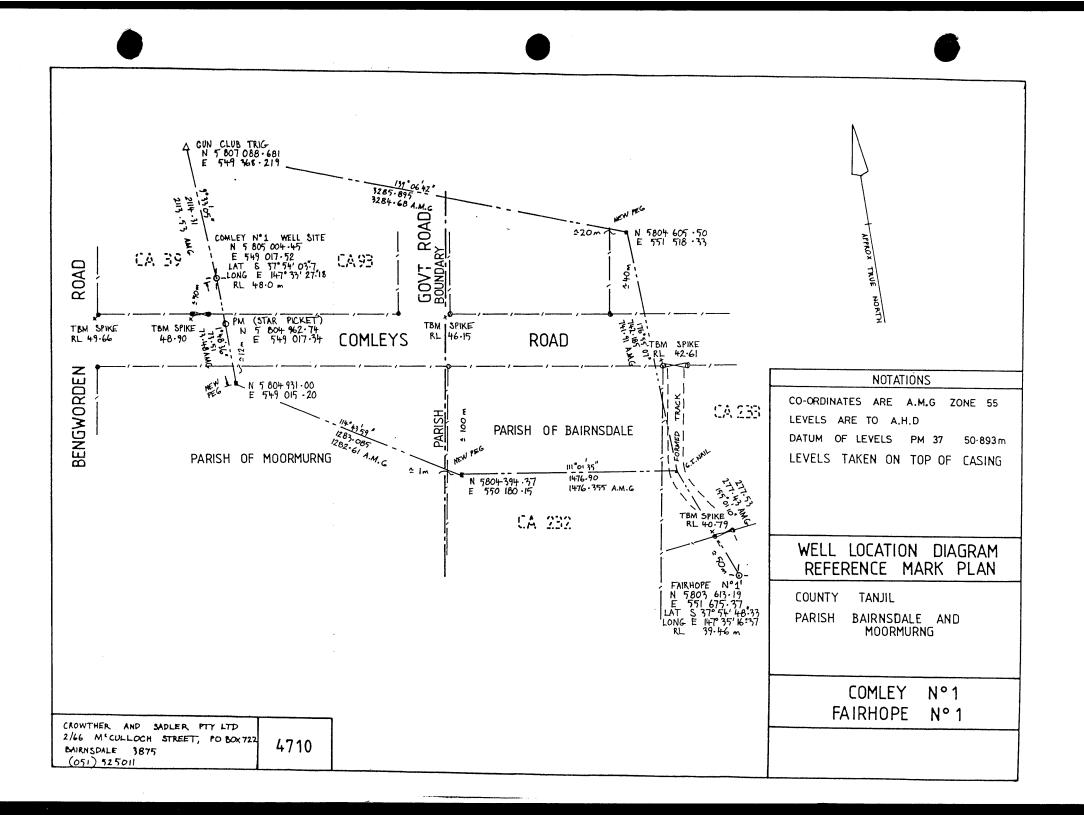
.

### APPENDIX 10

#### SURVEYORS REPORT

# Crowther & Sadler pty. Ltd.

LICENSED SURVEYORS -P.O. BOX 722, BAIRNSDALE, 3875 TELEPHONE (051) 52 5011


Our Ret. 4710 Your Ret. 1st November, 1985 Ampol Exploration Limited. P.O. Box 907, <u>NORTH SYDNEY</u>, 2060 Dear Sir, Please find listed below co-ordinates as requested for the drill sites situated to the south of Bairnsdale. The co-ordinates are as follows:-Comley No. 1 A.M.G. Zone 55 E 549 017 • 52 N 5 805 004 • 45 S 37°54′03°717 Latitude Longitude E 147°33'27"181 Fairhope No. 1 A.M.G. Zone 55 E 551 675 • 366 N 5 803 613 • 188 S 37°54′48°327 Latitude E 147°35'16"37 Longitude Paynesville No. 1 A.M.G. Zone 55 E 559 117.6 N 5 803 391.00 Latitude S 37°54'53" Longitude E 147°40'21"2

If you require any additional information please do not hesitate to contact me.

Yours faithfully,

( Watter

CROWTHER & SADLER PTY. LTD.



# ENCLOSURES

#### ENCLOSURES

This is an enclosure indicator page. The enclosure PE601148 is enclosed within the container PE902393 at this location in this document.

The enclosure PE601148 has the following characteristics: ITEM_BARCODE = PE601148 CONTAINER_BARCODE = PE902393 NAME = Composite Well Log BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = COMPOSITE_LOG DESCRIPTION = Composite Well Log. Enclosure 1 of WCR. Scale 1:200. REMARKS =  $DATE_CREATED = 30/06/1985$  $DATE_RECEIVED = 12/12/1985$  $W_NO = W910$ WELL_NAME = Fairhope-1 CONTRACTOR = Ampol Exploration Ltd CLIENT_OP_CO = Ampol Exploration Ltd (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE601149 is enclosed within the container PE902393 at this location in this document.

The enclosure PE601149 has the following characteristics: ITEM_BARCODE = PE601149 CONTAINER_BARCODE = PE902393 NAME = Composite Well Log BASIN = GIPPSLAND PERMIT = TYPE = WELL SUBTYPE = COMPOSITE_LOG DESCRIPTION = Composite Well Log. Enclosure 2 of WCR. Scale 1:500. REMARKS =  $DATE_CREATED = 20/07/1985$  $DATE_RECEIVED = 12/12/1985$  $W_NO = W910$ WELL_NAME = Fairhope-1 CONTRACTOR = Schlumberger CLIENT_OP_CO = Ampol Exploration Ltd (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603209 is enclosed within the container PE902393 at this location in this document.

The enclosure PE603209 has the following characteristics: ITEM_BARCODE = PE603209 CONTAINER_BARCODE = PE902393 NAME = Fairhope 1 Mudlog BASIN = GIPPSLAND PERMIT = PEP 98TYPE = WELLSUBTYPE = MUD_LOG DESCRIPTION = Fairhope 1 Mudlog. Enclosure 3 of WCR. REMARKS =  $DATE_CREATED = 29/06/85$  $DATE_RECEIVED = 12/12/85$  $W_NO = W910$ WELL_NAME = Fairhope-1 CONTRACTOR = Geoservices overseas S.A. CLIENT_OP_CO = Ampol

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE902394 is enclosed within the container PE902393 at this location in this document.

The enclosure PE902394 has the following characteristics: ITEM_BARCODE = PE902394 CONTAINER_BARCODE = PE902393 NAME = Vertical Seismic Profile BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = VELOCITY_CHART DESCRIPTION = Vertical Seismic Profile REMARKS =  $DATE_CREATED = 31/08/1985$ DATE_RECEIVED = 12/12/1985W_NO = W910 WELL_NAME = Fairhope-1 CONTRACTOR = Schlumberger CLIENT_OP_CO = Ampol Exploration Ltd (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE601150 is enclosed within the container PE902393 at this location in this document.

The enclosure PE601150 has the following characteristics: ITEM_BARCODE = PE601150 CONTAINER_BARCODE = PE902393 NAME = Seismic Calibration Log BASIN = GIPPSLAND PERMIT = TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Seismic Calibration Log REMARKS =  $DATE_CREATED = 16/08/1985$ DATE_RECEIVED = 12/12/1985  $W_{NO} = W910$ WELL_NAME = Fairhope-1 CONTRACTOR = Schlumberger CLIENT_OP_CO = Ampol Exploration Ltd

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE902395 is enclosed within the container PE902393 at this location in this document.

The enclosure PE902395 has the following characteristics: ITEM_BARCODE = PE902395 CONTAINER_BARCODE = PE902393 NAME = Synthetic Seismogram - Geogram BASIN = GIPPSLAND PERMIT = TYPE = WELLSUBTYPE = SYNTH_SEISMOGRAM DESCRIPTION = Synthetic Seismogram - Geogram REMARKS =  $DATE_CREATED = 16/08/1985$ DATE_RECEIVED = 12/12/1985 $W_NO = W910$ WELL_NAME = Fairhope-1 CONTRACTOR = Schlumberger CLIENT_OP_CO = Ampol Exploration Ltd (Inserted by DNRE - Vic Govt Mines Dept)