

HYDRIOAR BON

Remont.

GIPPS LAND

BASN.

FORTESCUE - A 13.

TESERVOIL AND THE SERVOIL AND

H/C Box

OIL and GAS DIVISION

M

2 3 AUG 1985 ESSO AUSTRALIA LIMITED

FORTESCUE A13

RESERVOIR FLUID STUDY

Petroleum Reservoir Engineering

22nd June, 1985

ESSO AUSTRALIA LIMITED, 127 Kent Street, SYDNEY, N.S.W. 2000

Attention: Mr. R.S.W. Neil

Subject : Reservoir Fluid Study

Well : Fortescue Al3 File : AFL 85027

Dear Sir,

A subsurface fluid sample was collected from the subject well and submitted to our Adelaide laboratory for use in a reservoir fluid study. Presented in the following report are the results of this study as requested by Esso Australia.

The sample was transferred out of Esso's storage cylinder into special high pressure PVT cylinder in single phase.

As a quality check, the room temperature saturation pressure of the transferred sample was initially determined. At 65°F the subsurface fluid sample in cylinder ADL-10-022 (Welker #2718) was found to have a bubble point pressure of 293 psig. The result is reported on page two and depicted graphically on page twelve.

The hydrocarbon composition of the subsurface fluid was measured through hexanes plus by low temperature fractional distillation along with gas chromatography. This compositional analysis, together with the hexanes plus properties, is reported on page three.

The hexanes plus fraction was then further broken down through undecanes plus by high temperature fractional distillation. These results may be found on page four.

A full hydrocarbon composition of the subsurface fluid through undecanes plus is reported on page five.

A portion of the reservoir fluid was charged to a high pressure visual cell and thermally expanded to the reported reservoir temperature of 220°F. This sample was then subjected to a constant composition expansion during which a bubble point pressure of 364 psig was observed. The volumetric and pressure-volume data are reported on pages six and seven respectively and depicted graphically on pages thirteen and fourteen.

Page ii

The viscosity of the fluid was measured over a range of pressures in a rolling ball viscosimeter at 220°F. The viscosity was found to vary from a minimum of 0.525 centipoise at saturation pressure to 0.853 centipoise at atmospheric pressure. This data is tabulated on page eight and is shown in graphic form on page fifteen.

Two single-stage separator tests were performed to determine the effects of separator pressure upon gas-oil ratio, stock tank oil gravity and formation volume factor. Gases from the 150 psig separator test were collected and analysed by routine chromatography. This data is reported on pages nine and ten respectively.

Basic crude tests were performed on the stock tank oil and this data is reported on page eleven.

We thank you for the opportunity to be of service. Should you have any questions concerning the data, please do not hesitate to contact us.

Yours sincerely,

Jan Bon, Manager.

Petroleum Reservoir Engineering

Page : 1 of 15 File: AFL 85027

Company : Esso Australia Limited

Date Sampled:

Well

: Fortescue Al3

State : Victoria

Field

: Fortescue

Country : Australia

FORMATION CHARACTERISTICS

Formation Name:

Date First Well Completed: Original Reservoir Pressure: Original Produced Gas-Oil Ratio:

Production Ratio:

Separator Pressure and Temperature :

Oil Gravity @ 60°F:

Datum :

Original Gas Cap:

2419.5m TVDSS

WELL CHARACTERISTICS

Elevation:

Total Depth:

Producing Interval:

Tubing Size and Depth:

Productivity Index:

Last Reservoir Pressure:

Date:

Reservoir Temperature:

Status of Well:

Pressure Gauge:

Normal Production Rate:

Gas-Oil Ratio:

Separator Pressure and Temperature :

Base Pressure :

Well Making Water:

SAMPLING CONDITIONS

Depth sampled @:

Sampling Pressure:

Sampling Temperature :

Estimated Reservoir Pressure:

Estimated Reservoir Temperature :

319 psig

203°F

3200 psig (at datum depth)

220°F

Sampled by: Type Sampler:

REMARKS:

Petroleum Reservoir Engineering.

Page: 2 of 15 File: AFL 85027

Well: Fortescue Al3

QUALITY CHECK OF SAMPLE RECEIVED IN THE LABORATORY

Cylinder #:

ADL-10-022 (Welker #2718)

Opening Pressure:

230 psig @ 65°F

200 210 220 225 235
200 210 220 225
210 220 225
220 225
225
235
433
245
250
260
270
295
330
420
810
1215
1620

Psat = 293 psig @ 65°F

Petroleum Reservoir Engineering.

Page: 3 of 15 File: AFL 85027

Well: Fortescue Al3

HYDROCARBON ANALYSIS OF RESERVOIR FLUID SAMPLE

Cylinder #:

ADL-10-022 (We1ker #2718)

Component	Mol Percent	Weight Percent
Hydrogen Sulphide	0.00	0.00
Carbon Dioxide	0.61	0.18
Nitrogen	0.16	0.03
Methane	3.20	0.35
Ethane	1.80	0.37
Propane	5.18	1.57
iso-Butane	3.53	1.41
n-Butane	5.34	2.13
iso-Pentane	3.70	1.83
n-Pentane	3.54	1.75
Hexanes plus	72.94	90.38
	100.00	100.00

Properties of Hexanes plus

API gravity @ 60°F	39.7
Density, gm/cc @ 60°F	0.8259
Molecular weight	180

CORE LABORATORIES
Petroleum Reservoir Engineering

Page : 4 of 15 File : AFL 85027

Well: Fortescue Al3

HIGH TEMPERATURE DISTILLATION OF HEXANES PLUS FRACTION OF RESERVOIR FLUID SAMPLE TO UNDECANES PLUS

Mol Weight	87	93	109	119	131	245	
°API @ 60°F	73.7	62.3	55.0	50.8	48.4	33.1	
Density, gm/cc @ 60°F	0.6889	0.7296	0.7580	0.7754	0.7859	0.8589	
Volume Percent	4.09	7.73	8.93	4.28	4.76	70.21	100.00
Weight	3.41	6.83	8.19	4.01	4.53	73.03	100.00
Mol Percent	7.08	13.25	13.56	60.9	6.24	53.78	100.00
Cut Temp°C IBP 49	84	112	138	162	185	FBP 185	-
Component	Hexanes	Heptanes	Octanes	Nonanes	Decanes	Undecanes plus	

Petroleum Reservoir Engineering.

Page : 5 of 15 File : AFL 85027

Well: Fortescue Al3

HYDROCARBON ANALYSIS OF RESERVOIR FLUID SAMPLE TO UNDECANES PLUS

Cylinder #:

ADL-10-022 (Welker #2718)

Component	Mol Percent	Weight <u>Percent</u>
Hydrogen Sulphide	0.00	0.00
Carbon Dioxide	0.61	0.18
Nitrogen	0.16	0.03
Methane	3.20	0.35
Ethane	1.80	0.37
Propane	5.18	1.57
iso-Butane	3.53	1.41
n-Butane	5.34	2.13
iso-Pentane	3.70	1.83
n-Pentane	3.54	1.75
Hexanes	5.16	3.08
Heptanes	9.67	6.17
Octanes	9.89	7.40
Nonanes	4.44	3.63
Decanes	4.55	4.09
Undecanes plus	39.23	66.01
	100.00	100.00

Petroleum Reservoir Engineering.

Page: 6 of 15 File: AFL 85027 Well: Fortescue Al3

VOLUMETRIC DATA OF RESERVOIR FLUID SAMPLE

Saturation pressure (bubble point pressure):

364 psig @ 220°F

Specific volume @ saturation pressure, ft 3/1b:

0.02252 @ 220°F

Thermal expansion of saturated oil @ 5000 psig @ $\frac{220^{\circ}F}{66^{\circ}F} = 1.08845$

Compressibility of saturated oil @ reservoir temperature: Vol/Vol/Psi:

From 5000 psig to 4000 psig = 7.88×10^{-6}

From 4000 psig to 3000 psig = 8.74×10^{-6}

From 3000 psig to 2000 psig = 9.64×10^{-6}

From 2000 psig to 1000 psig = 10.66×10^{-6}

From 1000 psig to $364 \text{ psig} = 11.75 \times 10^{-6}$

Petroleum Reservoir Engineering.

Page: 7 of 15 File: AFL 85027 Well: Fortescue Al3

PRESSURE - VOLUME RELATIONS @ 220°F

5000 0.9566 7.45 4500 0.9603 7.88 4000 0.9641 8.31 3500 0.9683 8.74 3000 0.9726 9.18 2500 0.9772 9.63 2000 0.9820 10.11 1500 0.9871 10.64 1000 0.9926 11.25 700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962 238 1.1890 2.635	<u>3)</u>
4000 0.9641 8.31 3500 0.9683 8.74 3000 0.9726 9.18 2500 0.9772 9.63 2000 0.9820 10.11 1500 0.9871 10.64 1000 0.9926 11.25 700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
3500 0.9683 8.74 3000 0.9726 9.18 2500 0.9772 9.63 2000 0.9820 10.11 1500 0.9871 10.64 1000 0.9926 11.25 700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
3000 0.9726 9.18 2500 0.9772 9.63 2000 0.9820 10.11 1500 0.9871 10.64 1000 0.9926 11.25 700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
2500 0.9772 9.63 2000 0.9820 10.11 1500 0.9871 10.64 1000 0.9926 11.25 700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
2000 0.9820 10.11 1500 0.9871 10.64 1000 0.9926 11.25 700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
1500 0.9871 10.64 1000 0.9926 11.25 700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
1000 0.9926 11.25 700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
700 0.9960 11.70 600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
600 0.9972 11.87 500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
500 0.9983 12.04 400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
400 0.9996 12.24 364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
364 * 1.0000 12.31 357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
357 1.0063 2.970 350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
350 1.0111 3.450 340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
340 1.0193 3.502 327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
327 1.0312 3.463 305 1.0566 3.257 273 1.1067 2.962	
305 1.0566 3.257 273 1.1067 2.962	
273 1.1067 2.962	
239	
238 1.1890 2.635	
203 1.3201 2.307	
173 1.5005 2.030	
1.7126	
121 2.1528 1.550	
92 2.9860 1.280	
73 3.9980 1.103	

* Saturation Pressure

- (1) Relative volume: V/Vsat is barrels @ indicated pressure per barrel @ saturation pressure.
- (2) Instantaneous Compressibility = $-\frac{dV}{dV}$
- (3) Y Function = $\frac{(Psat P)}{(Pabs) (V/Vsat-1)}$

Petroleum Reservoir Engineering.

Page: 8 of 15 File: AFL 85027

Well: Fortescue Al3

VISCOSITY DATA @ 220°F

Pressure,psig	Oil Viscosity, Centipoise
5000	0.746
4500	0.723
4000	0.698
3500	0.675
3000	0.650
2500	0.628
2000	0.603
1500	0.580
1000	0.555
500	0.532
<u>364</u> *	0.525
250	0.555
150	0.593
50	0.667
0	0.853

^{*} Saturation Pressure.

Petroleum Reservoir Engineering.

Page: 9 of 15 File: AFL 85027

Well: Fortescue Al3

SEPARATOR TESTS OF RESERVOIR FLUID SAMPLE

Separator Pressure, psig	Temp.	Gas/Oil Ratio (1)	Gas/Oil Ratio (2)	Tank Oil Gravity, °API @ 60°F	Formation Volume Factor (3)	Separator Volume Factor (4)	Gas Gravity
150	195	28	35			1.255	1.156 *
to							
0	195	204	218	41.4	1.305	1.069	2.144 *
250	195	8	10			1.295	1.027 *
to							
0	195	242	259	41.1	1.332	1.069	2.238 *

^{*} These gases were collected and analysed by gas chromatography.

⁽¹⁾ Gas/Oil Ratio in cubic feet of gas @ 14.696 psia and 60°F per barrel of oil @ indicated pressure and temperature.

⁽²⁾ Gas/Oil Ratio in cubic feet of gas @ 14.696 psia and $60^{\circ}F$ per barrel of stock tank oil @ $60^{\circ}F$.

⁽³⁾ Formation Volume Factor is barrels of saturated oil @ 364 psig and 220°F per barrel of stock tank oil @ 60°F.

⁽⁴⁾ Separator Volume Factor is barrels of oil @ indicated pressure and temperature per barrel of stock tank oil @ 60°F.

Petroleum Reservoir Engineering.

Page: 10 of 15 File: AFL 85027 Well: Fortescue A13

HYDROCARBON ANALYSIS OF SEPARATOR GAS SAMPLES

150 psig, 195°F

	Separator Gas		Stock Tank Gas		
	Mol		Mol		
Component	Percent	<u>GPM</u>	Percent	<u>GPM</u>	
Hydrogen Sulphide	0.00		0.00		
Carbon Dioxide	6.06		1.59		
Nitrogen	4.31		0.28		
Methane	45.66		6.69		
Ethane	10.88	2.902	5.66	1.510	
Propane	14.55	3.993	17.17	4.713	
iso-Butane	4.98	1.625	10.34	3.374	
n-Butane	6.12	1.924	16.04	5.043	
iso-Pentane	2.34	0.855	9.84	3.593	
n-Pentane	1.89	0.683	9.32	3.369	
Hexanes	1.24	0.505	11.22	4.565	
Heptanes plus	1.97	0.892	11.85	5.366	
	100.00	13.379	100.00	31.533	
Gas gravity (Air = 1.000):	1.156		2.1	44	
Gross heating value (BTU per cubic foot of dry gas @ 14.696 psia and 60°F):	172	1	342	5	

Petroleum Reservoir Engineering.

Page: 11 of 15 File: AFL 85027

Well: Fortescue Al3

BASIC CRUDE TESTS ON STOCK TANK OIL

POUR POINT: 45°F

WAX CONTENT: 4.762%

CYLINDER #ADL-10-022 (WELKER #2718)
cm³ MERCURY INJECTED

PRESSURE: POUNDS PER SQUARE INCH GAUGE

Page 14 of 15 File AFL 85027

PRESSURE: POUNDS PER SQUARE INCH GAUGE

100

0

PRESSURE: POUNDS PER SQUARE INCH GAUGE