

Ì)

)

)

Palynological Analysis of Vaughan-1, Port Campbell Embayment, Otway Basin

by

Alan D. Partridge

Biostrata Pty Ltd A.C.N. 053 800 945

Biostrata Report 1995/5

31 May 1995

CONTENTS

INTERPRETATIVE DATA

Introduction	1
Table-1: Palynological Summary Vaughan-1	2
Geological Comments	3
Table-2: Microplankton Abundances in Selected Samples in Vaughan-1.	4
Biostratigraphy	6
References	10
Table-3: Interpretative Palynological Data for Vaughan-1.	11
Confidence Ratings	12

BASIC DATA

Table 4: Basic Sample Data - Vaughan-1.	13
Table-5: Basic Palynomorph Data for Vaughan-1	14
Spore-Pollen Range Chart for Vaughan-1	Attached
Microplankton Range Chart for Vaughan-1	Attached

)

)

INTERPRETATIVE DATA

Introduction

)

)

Seventeen sidewall cores samples between 803.0m to 1899.0m were analysed in Vaughan-1. The author cleaned and split the samples then forwarded them to Laola Pty Ltd in Perth for processing to prepare the palynological slides.

Between 2.7 to 12 grams (average 7.7 g) of the sidewall cores were processed for palynological analysis. Moderated to high residue yields were extracted from most samples. Kerogen slides were prepared with filtered and unfiltered fractions, and where sufficient residue was recovered separate oxidised slides were prepared from fractions concentrated from the residues using 8 and 15 micron filters. Palynomorph concentrations on the palynological slides were mostly low to moderate, while palynomorph preservation was poor to fair and only very occasionally good.

Overall spore-pollen diversity was high averaging 26+ species per sample. Recorded microplankton diversity was usually low to very low in most samples with only two samples showing a moderate diversity. The microplankton abundance data presented in Table 2 was obtained from counts made on slides prepared using 8 micron filter cloth.

Geological ages, formations and palynological zones for the interval sampled in Vaughan 1 are given in Table 1. Additional interpretative data with zone identification and Confidence Ratings are recorded in Table 3, whilst basic data on sidewall core lithologies, residue yields, preservation and diversity are recorded on Tables 4 and 5. All species which have been identified with binomial names are tabulated on separate range charts for spore-pollen and microplankton, which present the recorded assemblages in order of lowest appearances.

)

Table-1:	Palynological	Summary Vaughan-1
----------	---------------	-------------------

AGE	UNIT	SPORE-POLLEN ZONES	MICROPLANKTON ZONES (SUBZONES)	
EOCENE	PEMBER MUDSTONE	NOT SAMPLED	NOT SAMPLED	
	742-813m	Upper L. balmet 803.0m	Indeterminate	
PALEOCENE	PEBBLE POINT FORMATION 813-870m	NOT SAMPLED	NOT SAMPLED	
	K/T BOUNDARY SHALE	Lower L. balmei 874.0-883.0m	Indeterminate	
MAASTRICHTIAN	870-898m	Upper <i>T. longus</i> 889.0-895.0m	M. druggii 895.0m	
CAMPANIAN	PAARATTE FORMATION 898-1157m	NOT SAMPLED	NOT SAMPLED	
	SKULL CREEK MUDSTONE 1157-1316m	N. senectus 1164.0m	N. aceras 1559m 1164.0	
SANTONIAN	NULLAWAXRRE 1316-1407m	NOT	NOT	
CONIACIAN	BELFAST MUDSTONE 1407-1588m	SAMPLED	NOT SAMPLED	
TURONIAN	WAARRE FORMATION 1588-1692m	P. mawsonit 1595.5-1692.5m	P. infusorioides 1595.5-1674.0m (C. edwardsii) 1650.0m	
LATE ALBIAN	EUMERALLA FORMATION 1692-2014m (T.D.)	P. pannosus 1797.0-1899.0m	NO ZONES PRESENT	

)

Page 3

Geological Comments

)

)

)

- 1. The sequence sampled in Vaughan-1 spans the time interval of Late Albian to Late Paleocene. With some minor modifications most samples can be readily assigned to the Mesozoic spore-pollen and microplankton zones defined by Helby, Morgan & Partridge (1987) or the Tertiary spore-pollen zones of Stover & Partridge (1973).
- 2. A number of the spore-pollen zones used or discussed herein represent modifications or name changes by Helby *et al.* (1987) of zones originally erected by Dettmann & Playford (1969) upon wells from the Port Campbell Embayment. As these zones are is still widely used in reports and publications on the Otway Basin it is appropriate to provide a summary of the equivalence between the two zonation schemes. Explanations of the reasons for the zone name changes can be found in Helby *et al.* (1987). The zones referred to in this report are:

Dettmann & Playford (196	Dettmann & Playford (1969)		
Nothofagidites Microflora	=	N. senectus Zone	
(in part only)			
T. pachyexinus Zone	=	T. apoxyexinus Zone	
C. triplex Zone	=	P. mawsonii Zone	
A. distocarinatus Zone	=	A. distocarinatus Zone	
P. pannosus Zone	=	P. pannosus Zone	

3. The spore-pollen succession commences with the *P. pannosus* Zone identified in the Eumeralia Formation. In the overlying Waarre Formation the P. mawsonii Zone was found to extend to the base of the unit and the Cenomanian A. distocarinatus Zone as redefined by Helby et al. (1987) is considered to be absent at the unconformity between the Waarre and Eumeralla Formations. This relationship confirms results previously obtained from Iona-2, Langley-1 and Howmains-1 (Partridge 1994a, b, c). The P. mawsonii Zone includes all samples from Waarre Formation up to 1595.5m, after which there is a 431-metre gap to the next Late Cretaceous sample from the Skull Creek Mudstone, followed by a further sampling gap of 269 metres to a suite of samples from the K/T boundary shale, which approximates the boundary between the Sherbrook Group and overlying Pebble Point Formation. These four samples were disappointing, for although displaying high diversity they contained few key species. The shallowest samples was from near the base of the Pember Mudstone.

)

)

)

4. Marine microplankton were recorded from seven of the nine samples in the Waarre Formation (Table 2). Except in those samples containing abundant cysts of *Amosopollis cruciformis*, the microplankton abundances were notably less than found in either Langley-1 or Howmains-1, suggesting that Vaughan 1 was located closer to the palaeoshoreline. In the deeper of the two samples lacking microplankton (SWC 7 at 1689m) the spore-pollen assemblage is similar to adjacent samples and the microplankton were probably not recorded due to the overall low palynomorph concentration. In the shallower sample at 1599.5m the assemblage has a distinct spore-pollen composition which needs extended discussion.

Sample Type	Depth (m)	Microplankton Zone and (Subzone)	Microplankton Abundance as % Relative to total Spore-pollen and microplankton	Most abundant microplankton sp e cies as % of total microplankton count
			count	
SWC 24	803.0	Indeterminate	6%	No species dominant in low count.
SWC 23	874.0	Indeterminate	3%	Paralecaniella indentata 50%.
SWC 21	889.0	Indeterminate	<2%	No species dominant in low count.
SWC 20	895.0	M. druggii	6%	Micrhystridium spp. >50%.
SWC 19	1164.0	N. aceras	9%	Heterosphaeridium spp. >50%.
SWC 18	1595.5	P. infusorioides	26%	Amosopollis cruciformis >25% Heterosphaeridium spp. >20%.
SWC 17	1599.5	No zone possible.	<<1%	Only single specimen recorded
SWC 15	1609.0	P. infusorioides	19%	Amosopollis cruciformis >90%.
SWC 13	1622.0	P. infusorioides	3%	No species dominant in low count.
SWC 11	1650.0	(C. edwardsii)	10%	Amosopollis cruciformis 50%.
SWC 9	1674.0	P. infusorioides	<3%	No species dominant in low count.
SWC 4	1797.0	Indeterminate	0.7%	Micrhystridium sp. 100%.

Table-2: Microplankton Abundances in Selected Samples in Vaughan-1

5. The sidewall core at 1599.5m from a high gamma ray spike above the highest sand in the Waarre Formation contained an unusual and very distinctive spore-pollen assemblage dominated by *Gleichentidites* spp. (45%), *Podosporites microsaccatus* (18%), *Podocarpidites* spp. (14%) and *Cyathidites minor* (sensus lato) with an abundance of 9%. The rest of the assemblage was of low diversity and, except for a single acritarch, the sample lacked microplankton. Because the four most abundant species represent 86% of the assemblage the sample is considered to be providing a snapshot of the local vegetation. The exceptional abundance of *Gleichentidites* spp. which is mostly the species *Gleichentidites circinidites* suggests the components of the

)

- assemblage cannot have been transported far to the depositional site or otherwise the assemblage would have displayed spore-pollen abundances more similar to the other samples. The environment of deposition is envisaged to be essentially non-marine, perhaps representing an overbank deposit. Relative to the Waarre Formation in the Langley-1 well, where all the analysed samples contained marine microplankton (Partridge, 1994b), this sample in Vaughan-1 would represent a proximal non-marine equivalent, perhaps representing part of a highstand system tract. This latter interpretation is reinforced by the overlying sample at 1595.5m in Vaughan-1, which is interpreted as relatively deep or open marine, as it
- contains a microplankton abundance of 26% and a diversity of >12 microplankton species. The abrupt change from a non-marine assemblage to $\frac{1}{2}$ open marine assemblage is typical of a "downward shift" in facies, which is diagnostic of a sequence boundary. It is therefore proposed that in Vaughan 1 a major sequence boundary occurs at the top of Unit C of the Waarre Formation which is picked from the gamma and sonic logs to lie at 1597.5m.
- 6. The sample at 1692.5m was comprised of two lithologies, a light grey feldspathic sandstone and a medium grey claystone, of which only the latter was submitted for processing. The presence of mixed lithologies makes the reliability of this sample questionable, particularly as the character of the extracted assemblage is similar to the sample recovered at 1904m in Howmains-1. This latter sample was below the log break for top of the Eumeralia Formation and was interpreted as possibly from a clastic dyke. A similar interpretation is possible for the sample in Vaughan-1. Such clastic dykes are a typical features of the better exposures of the unconformity between the Eumeralia and Pebble Point Formations which outcrop at Point Margaret and Buckleys Point (see Keating 1993).
- Subdivision of the Waarre Formation into the units proposed by Buffin (1989) is provisionally suggested as follows:

Waarre Unit D:	1588-1597.5m
Waarre Unit C:	1597.5-1642m
Waarre Unit B:	1642-1656m
Waarre Unit A:	1656-1692m

These picks are consistent with palynomorph ranges recorded and units picked in Langley-1. The assemblages in Vaughan-1 suggest that the SWC at 1650m can be no younger than Waarre B whilst the SWC at 1622m is no younger than the sample from core-1 at 1750m in Langley-1. The shallowest sample from the Waarre in Vaughan-1 at 1595.5m is interpreted

to lie within Unit D based on current understanding of microplankton ranges.

- 8. The oldest unit penetrated in Vaughan-1 is the Eumeralla Formation between 1692-2014m (T.D.). The lithology of the five sidewall cores over this interval comprised blue-grey feldspathic sandstone and medium grey claystone or siltstone (Table 4). The sandstone lithologies were considered unlikely to yield diagnostic assemblages so only the two sidewall cores with finer grained lithologies were analysed to give a Late Albian *P. pannosus* Zone age. The spore-pollen composition and abundance show most similarity to assemblages from the *P. pannosus* Zone sections in Langley-1 and are significantly different from assemblages in Howmains-1.
- 9. The Cretaceous/Tertiary (K/T) boundary shale Vaughan 1 between 870-898m was sampled with four sidewall cores. Although the recorded assemblages contained moderate to diverse spore-pollen they lacked key index species, and unfortunately the associated microplankton were rare and/or of low diversity. Consequently the resulting age assignments are given only low confidence ratings and the observations whilst consistent with results from the K/T boundary shale in other wells do not provide any new insights to understanding the age and correlation potential of this unit.

Biostratigraphy

The zone and age determinations for the Cretaceous samples are based on the Australia wide Mesozoic spore-pollen and microplankton zonation schemes described by Helby, Morgan & Partridge (1987). For the Tertiary zone and age determinations are based on the spore-pollen zonation scheme of Stover & Partridge (1973) with subsequent unpublished modifications.

Author citations for most spore-pollen species can be sourced from Helby, Morgan & Partridge (1987), Dettmann (1963) Stover & Partridge (1973) or other references cited herein. Author citations for dinoflagellates can be found in the indexes of Lentin & Williams (1993) or other references cited herein. Species names followed by "ms" are unpublished manuscript names.

Lygistepollenites balmei Zone. Interval: 803.0 - 883.0 metres.

) Age: Paleocene.

The three samples assigned to the *L. balmet* Zone contain high diversity assemblages of spore-pollen but comparatively few index species. The total

Biostrata Report 1995/5

)

)

)

diversity was 53+ species, but of this 15% were distinctive reworked species mainly derived from the Early Cretaceous or Permian.

The shallowest sample at 803m can be no older than Upper *L. balmet* Zone on presence of *Proteacidites grandis* and *Banksieaidites elongatus* and no younger on presence of eponymous species and *Australopollis obscurus*.

The samples at 874m and 883m are no older than the Lower *L. balmei* Zone on presence of *Haloragacidites harrisii* and no younger on presence of *Proteacidites angulatus* at 874m. The presence of *Beaupreaidites orbiculatus* Dettmann & Jarzen 1988 suggests a position low in the zone.

The associated microplankton in the three samples are of low diversity and whilst supporting a Paleocene age do not allow finer age dating.

Upper Tricolporites longus Zone. Interval: 889.0 - 895.0 metres. Age: Late Maastrichtian.

The two samples assigned to the zone although of moderate to high diversity contain very few index species. The shallowest sample is assigned to the zone primarily on several specimens of *Proteacidites otwayensis* ms. The lack of other restricted species means the zone assignment has low confidence. The deeper sample contains the extra index species *Proteacidites wahooensis* ms and *Tricolporites lilliei* neither of which range above this zone. An age no older than the Upper subzone is firmly constrained by the consistent presence of *Stereisporites (Tripunctisporis)* spp. Both samples are dominated by small nondescript *Proteacidites* pollen.

Manumiella druggii Zone.

Interval: 895.0 metres.

Age: Late Maastrichtian.

Although both samples assigned to Upper *T. longus* Zone contain rare microplankton only the deeper sample can be assigned to *M. druggii* Zone on presence of *Manumiella conorata* and a possible apical fragment of *M. seelandica*.

Nothofagidites senectus Spore-pollen Zone and Nelsoniella aceras Microplankton Zone. Interval: 1164.0 metres.

Age: Early Campanian.

The sample is assigned to the *N*. *senectus* Zone on the occurrence of a single recorded specimen of the eponymous species. The rest of the spore-pollen

ì

assemblage is dominated by *Proteacidites* spp. (20%) and *Podocarpidites* spp. (17%) and whilst consistent with this assignment contains no other diagnostic taxa.

The microplankton assemblage is much more diagnostic with the present of *Nelsoniella aceras*, *N. tuberculata* and *Amphidiadema nucula* (represented by transitional morphology to *Xenikoon australis*) all supporting the zone assignment.

Phyllocladidites mawsonii Zone (formerly the Clavifera triplex Zone).Interval:1828.01887.5metres (60+ metres).1595.5-I692.54

The nine samples assigned to the *P. mawsonii* Zone can be subdivided into two subzones based mainly on the range of *Hoegisporis trinalis* ms.

The lower subzone represented by the six samples between 1622-1692.5m is characterised by the consistent and often frequent occurrence of *H. trinalis* ms, *Appendicisporites distocarinatus*, *Rugulatisporites admirabilis* ms and *Laevigatosporites musa* ms with only the very rare occurrence of the eponymous species *P. mawsonii* (at 1674m and 1631m). Other rare species from this lower interval include angiosperms *Striatopollis paraneus* and *Australopollis obscurus*. These samples correlate well with assemblages documented from the Waarre Units A and B in Langley 1 and Howmains 1 (Partridge 1994b, c).

The upper subzone represented by the three samples between 1595.5-1609m is characterised by higher abundances of *Gleicheniidites circinidites* but otherwise is rather non descript. The overall character of the assemblages does however change with the incoming of abundances of the enigmatic algal cyst *Amosopollis cruciformis*. Important LADs (Last Appearance Datums) include *Rugulatisporites admirabilis* ms and *Laevigatosporites musa* both at 1599.5m.

Palaeohystrichophora infusorioides Zone.

Interval: 1595.5-1692.5 metres (97+ metres).

Age: Turonian.

As with other wells recently analysed from the Otway Basin the *P. infusorioides* Zone is identified on the absence of index species *Pseudoceratium ludbrookiae* and the significant accessory species *Litosphaeridium siphoniphorum* and *Canninginopsis denticulata* diagnostic of the underlying *D. multispinum* Zone and absence of *Conosphaeridium striatoconus* whose FAD defines the base of the

) overlying zone. The zone is therefore recognised on negative evidence as originally defined by Helby *et al.* (1987, p.62). In Vaughan-1^{*} zone has an average microplankton diversity of 7+ species/sample and a total diversity of 25+ species in the seven marine samples. Only the oldest of three subzones established in Langley-1 could be recognised in Vaughan-1.

Cribroperidinium edwardsii Subzone.

Interval: 1650.0 metres

Age: Turonian.

)

'n

)

)

This zone was originally defined in Iona-2 and Langley-1 palynological reports (Partridge 1994a, b). In Vaughan-1 it was only confidently recorded in the sample with the highest microplankton abundance in the lower part of the Waarre Formation based on the presence of rare and fragmented specimens of *Cribroperidinium edwardsii*. The other species recorded in the sample are all long ranging forms previously recorded from the zone. The possible record of the species on the range chart at 1674m is based on opercula only and must be treated with caution.

Phimopollenites pannosus Zone. Interval: 1797.0-1899.0 metres. Age: Late Albian.

The two samples analysed from the Eumeralla Formation are assigned to the zone on the presence of the eponymous species *P. pannosus* at 1797m and other tricolpate pollen at 1899m. The assemblages are dominated by *Podocarpidites* spp. *Cyathidites* spp. and *Baculatisportes* spp. which together with frequent to common *Corollina torosa* makes them compositionally distinct from the over lying Waarre Formation assemblages. Although the deep sidewall core sample was apparently well cleaned it did contained some obvious down-hole contaminants.

References

Ì

)

- BUFFIN, A.J., 1989. Waarre Sandstone development within the Port Campbell Embayment. APEA J. 29 (1), 299-311.
- DETTMANN, M.E., 1963. Upper Mesozoic microfloras from southeastern Australia. *Proc. R. Soc. Vict.* 77, 1-148.
- DETTMANN, M.E. & JARZEN, D.M., 1988. Angiosperm pollen from uppermost Cretaceous strata of southeastern Australia and the Antarctic Peninsula. *Mem. Ass. Australas. Palaeontols 5*, 217-237.
- DETTMANN, M.E. & PLAYFORD, G., 1969. Palynology of the Australian Cretaceous: a review. In Stratigraphy and palaeontology. Essays in honour of Dorothy Hill, K.S.W. Campbell, ed., A.N.U. Press Canberra, 174-210.
- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., 1987. A palynological zonation of the Australian Mesozoic. *Mem. Ass. Australas. Palaeontols* 4, 1-94.
- KEATING, K., 1993. The lithostratigraphy, palynology and sequence stratigraphy of the Pebble Point Formation. BSc Honours thesis, La Trobe University (unpubl.).
- LENTIN, J.K. & WILLIAMS, G.L., 1993. Fossil Dinoflagellates: Index to genera and species, 1993 Edition. AASP Contribution Series No. 28, 1-856.
- PARTRIDGE, A.D., 1994a. Palynological analysis of Iona-2 in Port Campbell Embayment, Otway Basin. *Biostrata Report 1994/4*, 1-25.
- PARTRIDGE, A.D., 1994b. Palynological analysis of Langley-1, Port Campbell Embayment, Otway Basin. *Biostrata Report 1994/11*, 1-28.
- PARTRIDGE, A.D., 1994c. Palynological analysis of Howmains-1, Port Campbell Embayment, Otway Basin. *Biostrata Report* 1994/13, 1-22.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and late Cretaceous spores and pollen from the Gippsland Basin, southeastern Australia. *Proc. R. Soc. Vict.* 85, 237-286.

)

Sample Type

SWC 24 **SWC 23**

SWC 22

SWC 21

SWC 20

SWC 19

SWC 18 SWC 17

SWC 15

SWC 13

SWC 12

SWC 11

SWC 9

SWC 7

SWC 6 1692.5 P. mawsontt

SWC 4 1797.0 P. pannosus

SWC 2 1899.0 P. pannosus

Depth (m)	Spore-pollen Zone	*CR	Microplankton Zones and (Subzones)	*CR	Comments and Key Species
803.0	Upper L. balmei	B3			FAD Proteacidites grandis.
874.0	Lower L. balmei	B3			LAD Proteacidites angulatus. Microplankton rare only Deflandrea speciosus significant.
883.0	Lower L. balmei	B5			Age dating weak as key index species were not recorded. Microplankton extremely rare and not diagnostic.
889.0	Upper <i>T. longus</i>	B5			Concentration of palynomorphs very low with high diversity of reworked species. Zone pick of low confidence based on multiple specimens of <i>Proteacidites otwayensis</i> ms.
895.0	Upper T. longus	B3	M. druggii	B3	Proteacidites spp. dominant at >40%. Manumiella conorata present. FAD Stereisporites (Tripunctisporis) spp.
1164.0	N. senectus	B3	N. aceras	B3	Nelsoniella aceras and N. tuberculata present.
1595.5	P. mawsonii	B5	P. infusorioides	B3	LAD Kiokansium polypes.
1599.5	P. mawsonii	B3			LAD Rugulatisporites admirabilis ms. Deltaic or coastal plain environment dominated by <i>Gleicheniidites</i> spp. <45%.
1609.0	P. mawsonii	B4	P. infusorioides	B5	Amosopollis cruciformis >18%.
1622.0	P. mawsonii	B2	P. infusoroides	B5	LAD Hoegisporis trinalis ms. and Appendicisporites distocarinatus.
1631.0	P. mawsonii	B1	P. infusorioides	B5	FADs for good Phyllocladidites mawsonii, Clavifera triplex and Laevigatosporites musa ms.
1650.0	P. mawsonii		P. infusorioides (C. edwardsii)	B3	Cribroperidinium edwardsii Acme.
1674.0	P. mawsonii	B2	P. infusorioides	B5	FAD of poor P. mawsonii.
1689.0	P. mawsonii	B3			Moderate diversity assemblage with <i>H. trinalis</i> ms and <i>Appendicisporites</i> <i>distocutingtus</i> No microplankton

distocarinatus. No microplankton

Reliable Waarre assemblage from

Phimopollenites pannosus present in spore dominated assemblage with Classopollis spp. common at 9%.

Tricolpites sp. and Perotrilites majus

recorded from this sample.

claystone fraction of SWC.

present. Some downhole contamination present.

Table-3:	Interpretative	Palynological Data	for Vaughan, 1	Otway Basin
I abic-0.	micipiciative	i alynological Data	ivi vaugilaii-1,	Otway Dasin

*CR **Confidence Ratings** =

B2 P. infusorioides B5

B2

B4

LAD Last Appearance Datum =

FAD = First Appearance Datum

)

Confidence Ratings

)

Ì

)

)

The Confidence Ratings assigned to the zone identifications on Table-4 are quality codes used in the STRATDAT relational database being developed by the Australian Geological Survey Organisation (AGSO) as a National Database for interpretive biostratigraphic data. Their purpose is to provide a simple relative comparison of the quality of the zone assignments. The alpha and numeric components of the codes have been assigned the following meanings:

Alpha codes: Linked to sample type

- A Core
- **B** Sidewall core
- **C** Coal cuttings
- **D** Ditch cuttings
- E Junk basket
- **F** Miscellaneous/unknown
- **G** Outcrop

Numeric codes: Linked to fossil assemblage

1	Excellent confidence:	High diversity assemblage recorded with
		key zone species.
2	Good confidence:	Moderately diverse assemblage recorded
		with key zone species.
3	Fair confidence:	Low diversity assemblage recorded with
		key zone species.
4	Poor confidence:	Moderate to high diversity assemblage
		recorded without key zone species.
5	Very low confidence:	Low diversity assemblage recorded without
		key zone species.

•

)

)

)

)

BASIC DATA

SAMPLE TYPE	DEPTH (Metres)	REC (cm)	LITHOLOGY	SAMPLE WT (g)	RESIDUE YIELD
SWC 24	803.0	4.5	Blk glauconitic? claystone. Firm sample well cleaned.	12.0	Moderate
SWC 23	874.0	4.3	Blk pyritic very fine sandstone. Minor burrowing possibly glauconitic. Firm sample well cleaned.	9.3	Moderate
SWC 22	883.0	4.3	Brown-dk grey coarse grained sandstone with dk grey clay matrix. Sample firm but may be mud penetrated. Poorly cleaned.	9.7	Moderate
SWC 21	889.0	4.0	Dk gry-blk homogeneous siltstone. No structure or obvious accessories. Firm sample well cleaned. With floating sand grains of quartz up to 2mm - sample more a sandstone.	9.4	High
SWC 20	895.0	4.0	Dk gry-bk homogeneous sandstone. No obvious structure. Well cleaned firm. Floating quartz grains up to 1.5mm.	10.1	High
SWC 19	1164.0	3.5	Mixed lithologies. Lt grey fine grained sst and dk-med grey claystone. Contact irregular. Sample soft but well cleaned.	6.7	Moderate
SWC 18	1595.5	3.0	Medium grey mottled sandstone with patchy clay matrix. Firm sample well cleaned.	10.5	Moderate
SWC 17	1599.5	<1.0	Med grey-dk grey claystone with carbonaceous lenses. Firm, well cleaned.	2.7	High
SWC 15	1609.0	1.8	Dk grey fillile (irregular) claystone. Well cleaned/firm.	5.4	High
SWC 13	1622.0	2.5	Dk brown grey claystone with thin <1mm light grey siltstone laminae. Firm, well cleaned.	7.8	High
SWC 12	1631.0	2.5	Med grey claystone with thin <1mm light grey silstone laminae. Firm, well cleaned.	7.9	High
SWC 11	1650.0	3.0	Med grey mottled sandstone, possibly glauconitic.	8.2	High
SWC 9	1674.0	<1.5	Dark grey soft claystone. Not cleaned.	3.7	High
SWC 7	1689.0	2.5	Med grey claystone with light grey fine grained sandstone laminae up to 1.5mm. Firm sample well cleaned.	7.3	High
SWC 6	1692.5	2.7	Mostly 60% light grey feldspathic sandstone with med grey claystone. Only latter processed - well cleaned.	5.3	Moderate
SWC 4	1797.0	3.0	Medium grey clayey siltstone. Well cleaned/firm.	8.6	Moderate
SWC 2	1899.0	1.8	Med grey - blue grey homogeneous claystone. Firm, well cleaned.	6.4	Moderate

•

)

)

SAMPLE TYPE	DEPTH (metres)	Palynomorph Concentration	Palynomorph Preservation	No. S-P spp*	Microplankton Abundance	No MP Species*
SWC 24	803.0	Moderate	Good	39+	Frequent	6+
SWC 23	874.0	Moderate	Good	42+	Rare	5+
SWC 22	883.0	Low	Good	30+	Rare	2+
SWC 21	889.0	Very low	Fair-good	21+	Rare	3+
SWC 20	895.0	Low	Poor-good	31+	Frequent	7+
SWC 19	1164.0	Moderate	Low	33+	Common	8+
SWC 18	1595.5	Moderate	Poor-fair	21+	Abundant	12+
SWC 17	1599.5	Moderate	Poor-fair	16+	Very rare	1
SWC 15	1609.0	Moderate	Fair-good	17+	Common	5+
SWC 13	1622.0	Moderate	Poor-fair	33+	Rare	4+
SWC 12	1631.0	Moderate	Poor-fair	21+	Frequent	6+
SWC 11	1650.0	Low	Poor-fair	23+	Frequent	11+
SWC 9	1674.0	Low	Fair	27+	Rare	6+
SWC 7	1689.0	Low	Fair	25+	NR	
SWC 6	1692.5	Moderate	Poor	25+	Frequent	5+
SWC 4	1797.0	Moderate	Fair	22+	Very rare	1
SWC 2	1899.0	High	High	21+	Rare	3+

Table-5:	Basic Pa	lynomorph	Data for	Vaughan-1,	Otway Basin.
----------	----------	-----------	----------	------------	--------------

*Diversity:

Very low	=	1-5 species
Low	=	6-10 species
Moderate	=	11-25 species
High	=	26-74 species
Very high	=	75+ species
NR	=	Not recorded in sample

)