PE990664

PALYNOLOGICAL ANALYSIS OF YELLOWTAIL-1

GIPPSLAND BASIN

.

by

HOWARD E. STACY

ESSO AUSTRALIA LTD

PALAEONTOLOGICAL REPORT 1982/7

FEBRUARY 25, 1982

PART I

INTERPRETATIVE DATA

Introduction Summary Table Geological Comments Comments on Age Zones Table-1: Interpretative Data Palynology Data Sheet

INTRODUCTION.

Twenty five (25) sidewall cores were processed and examined for palynomorphs. The recovery of microfossils was poor to fair from most samples, however, all but two yielded enough palynomorphs so that an age determination could be made.

. 3 - .

Palynological zones and lithological facies subdivisions, from the base of the Lakes Entrance Formation to the total depth of the well, is given below. Table 1 presents a summary of the palynological analysis for each sample and the occurrence of each species is tabulated in the accompanying check-charts.

S	U	М	М	A	R	Y	
		_	_	_	_		

UNIT/FACIES Lakes Entrance Formation	<u>ZONE</u> <u>P. tuberculatus</u>	S DEPTH KB (metres) 2402
(base)		
Gurnard Formation	UNCONFORMITY Middle <u>N. asperus</u>	2406-2410
	UNCONFORMITY	
Latrobe Group	Upper <u>L. balmei</u>	2415-2438
"Coarse Clastics"		
· · · ·	Lower <u>L. balmei</u>	2470-2570
		T.D. 2571

GEOLOGICAL COMMENTS:

1) Two major periods of non-deposition and/or unconformities are evident in the well section examined. One is located between 2402 and 2406 metres, between the base of the Lakes Entrance Formation (Oligocene, <u>P. tuberculatus</u> Zone) and the top of the Gurnard Formation (Late Eocene, Middle <u>N. asperus</u> Zone). Foraminiferal studies of this section will probably offer more accurate estimates of the amount of time missing, but it appears, from this study to be in excess of 4 million years.

The second time gap is much larger. At least 13 million years appear to be missing from the stratigraphic record between 2410 and 2415 metres. The flora changes from one of the Middle <u>N. asperus</u> Zone at 2410 metres to an Upper <u>L. balmei</u> Zone assemblage in the sidewall core from 2415 metres. The 5 metre sand in between was barren of fossils.

Foraminiferal examination of the basal Lakes Entrance sediments revealed that uppermost Eocene (Zone K) was present in the Opah-1 section. A similar occurrence is possible in this well.

The Gurnard Formation (Middle <u>N</u>. <u>asperus</u> Zone) which extends from 2406 to 2410 metres is almost pure quartz sand in this well. The lithological evidence for equating this to the Gurnard Formation is the presence of glauconite in most of the samples. The 5 metres of sand between the last <u>N</u>. <u>asperus</u> Zone sample (2410 metres) and the highest <u>L</u>. <u>balmei</u> Zone record at 2415 metres was barren of palynomorphs.

The section between the base of <u>P</u>. <u>tuberculatus</u> Zone at 2402 metres and top of <u>L</u>. <u>balmei</u> Zone at 2415 metres is similar in thickness and sandiness in both Opah-1 (14 metres) and Yellowtail-1 (13 metres). In Yellowtail-1, the upper 8 metres to 2410 metres includes a well-defined Middle <u>N</u>. <u>asperus</u> Zone fora. The bottom 5 metres of this section is barren of fossils. The reverse situation is true in Opah-1, where the upper 11 metres of the section

- 4 -

N

~~

2)

3)

4)

is barren of significant fossils and a poorly developed assemblage of probable <u>P</u>. <u>asperopolus</u> Zone age was identified from the sidewall cores taken from the lower 3 metres.

5 -

Samples in Yellowtail-1 from the upper part of the <u>L</u>. <u>balmei</u> section, from 2415 to 2421 metres, were badly contaminated by drilling mud and originally were considered to be a mixed flora of <u>N</u>. <u>asperus</u> Zone with <u>L</u>. <u>balmei</u> Zone reworking. Because additional study shows that the younger element of the flora is a mixture of <u>P</u>. <u>tuberculatus</u> and <u>N</u>. <u>asperus</u> Zone species, rather than just an <u>N</u>. <u>asperus</u> Zone Assemblage, it is believed that the post <u>L</u>. <u>balmei</u> Zone fossils were introduced by drilling mud infiltration of this sandy section.

This well bottomed in the Lower <u>L</u>. <u>balmei</u> Zone of the Paleocene age. The bottom sample (2570 metres) contained not only a well developed spore-pollen flora, but also included a fairly diverse dinoflagellate assemblage that included both <u>Palaeoperidinium pyrophorum</u> and <u>Deflandrea</u> <u>speciosus</u>, dinoflagellate marker species for the Lower <u>L</u>. <u>balmei</u> Zone.

DISCUSSION OF ZONES:

5)

6)

Lower Lygistepollenites balmei Zone: 2470 to 2570 metres Samples from this section contained specimens of <u>Tetracolporites</u> <u>verrucosus</u>, a marker of the Lower L. <u>balmei</u> Zone, in addition to the usual general <u>L</u>. <u>balmei</u> markers, such as <u>Lygistepollenites</u> <u>balmei</u>, <u>Australopollis obscurus</u>, <u>Gambierina edwardsii</u> and <u>G</u>. <u>rudata</u>. The bottom sample (2570 metres) is especially notable because of the addition of marine dinoflagellates, which include <u>Palaeoperidinium pyrophorum</u> and <u>Deflandrea speciosus</u> as well as <u>Senegalinium dilwynensis and Ginginodinium palaeocenicum</u>. Upper Lygistepollenites balmei Zone 2415 to 2438 metres. Common and consistent occurrence of L. balmei, A. obscurus, G. edwardsii and G. rudata in these samples indicate an age of Paleocene (L. balmei Zone) or lower; and the regular presence of Apectodinium homomorpha demonstrates that they are no older than Upper L. balmei Zone.

Middle Nothofagidites asperus Zone: 2406 to 2410 metres. Samples from this section contained well-developed floras of both dinoflagellates and spore-pollen that included the following important markers: Triorites magnificus, Eisenackia ornata, Phthanoperidium comatum, Holoroginella spinosa, Systematophora placacantha and Schematophora speciosus.

<u>Proteacidites tuberculatus</u> Zone: 2371 to 2402 metres. The regular presence of <u>Cyatheacidites annulatus</u> and <u>Protoellipsodinium simplex</u> in these samples are indicative of post-Eocene sediments.

TABLE-1

INTERPRETATIVE DATA

SUMMARY OF PALAEONTOLOGICAL ANALYSIS, YELLOWTAIL-1, GIPPSLAND BASIN

	DEPTH	DEPTH		(CONFIDENCE		SPORE-POLLEN	DINO.	
SAMPLE	METRES	FEET	ZONE	AGE	RATING	YIELD	DIVERSITY	DIVERSITY	COMMENTS
									· ·
SVC 72	2371	7779	P. tuberculatus	Oligocene	1	Poor	Low	Moderate	
5.:C 67	2381	7812	P. tuberculatus	Oligocene	1	Poor	Low	Moderate	
SVC 64	2388	7835	P. tuberculatus	Oligocene	1	Poor	Low	Moderate	
STIC 58	2399	7871	P. tuberculatus	Oligocene	1	Poor	Moderate	Moderate	C. annulatus
SVC 55	2401 .9	7880	P. tuberculatus	Oligocene	1	Poor	Low	Moderate	C. annulatus
SAC 52	2405	7890 .5	Indeterminate	-	-	Poor	None	Moderate	
SKC 51	2406.1	7894	Middle N. asperus	Late Eocene	1	Poor	Very Low	Low	Eisenackia ornata
SKC 50	2407	7897	Middle N. asperus	Late Eocene	1	Fair	Moderate	Moderate	T. magnificus
SVC 49	2408	7900	N. asperus	Late Eocene	2	Poor .	Low	Low	
SWC 47	2409 .9	7906.5	Middle N. asperus	Late Eocene	1	Poor	Low	Moderate	
SAC 42	2415	7923	Upper L. balmei	Late Paleocene	2	Good ·	Moderate	Moderate	Badly mud contaminated
SAC 41	2415 .9	7926	Upper L. balmei	Late Paleocene	1	Poor	Moderate	None	• • • • • •
SIR 40	2417	7930	Upper L. balmei	Late Paleocene	1	Fair	Moderate	Very Low	, , , , , , , , , ,
SWC 39	2418	7933	Upper L. balmei	Late Paleocene	1	Fair	Moderate	Low	
SHC 37	2420.1	7940	Indeterminate		-	Poor	Low	Low	
SWC 36	2420 .9	7942.5	L. balmei	Paleocene	2	Poor	Low	Low	
SWC 34	2423	7949.5	Upper L. balmei	Late Paleocene	1	Poor	Moderate	LOW	
SAC 33	2424	7953	Upper L. balmei	Late Paleocene	1	Fair	Moderate	Low	Mud contamination
SVC 28	2429	7969	Upper L. balmei	Late Paleocene	ī	Very Poor	None	Low	W. homomorpha
SHC 21	2438 .2	7999	Upper L. balmei	Late Paleocene	1	Fair	Moderate	Low	
SWC 18	2456	8058	L. balmei	Paleocene	2	Fair s	Moderate	Low	
Sric 14	2470	8103.5	Lower L. balmei	Paleocene	1	Poor	Moderate	None	
SVC 10	2483.4	8147.5	Lower L. balmei	Paleocene	2	Fair	Moderate	LOW	
SAC 7	2519.8	8267	Lower L. balmei	Paleocene	2.	Fair	Moderate	Low	
SVC 1	2570	8432	Lower L. balmei	Paleocene	ō	Fair	Moderate	Moderate	P. pyrophorum, D. speciosus

AS	GIPPSEAND				EL	EVAILON:	м. Кв: –	<u></u> 2571	motros		
ELL	NAME: ILLIOWIALI-	L .			10		H:	2371			
ы Ц	PALYNOLOGICAL	HIG	НE	ST D	A T	A The West	LO			A T #	1 Two W
۵ ۲	ZONES	Depth	Rtg	Depth	Rtg	Time	Depth	Rtg	Depth	Rtg	Time
	T. pleistocenicus										
ы	M. lipsis										
GEN	C. bifurcatus										
NEO	T. bellus										
	P. tuberculatus	2371	1				2401.9	1			
	Upper N. asperus										
	Mid N. asperus	2406.1	1				2409.9	1			
ធ	Lower N. asperus										
GEN	P. asperopolus									_	·
С Ц Ц	Upper M. diversus		ŀ	•.				ŀ			
PA	Mid M. diversus										
	Lower M. diversus										
	Upper L. balmei	2415	1				2438.2	1			
	Lower L. balmei	2470	1				2570	0			
	T. longus						۴,				
sno:	T. lilliei										
ACE	N. senectus								·		
REI	U. T. pachyexinus										
	L. T. pachyexinus					Ì					
ATE	C. triplex					·		<u> </u>			
-	A. distocarinatus									1	
.:	C. paradoxus							 			
E E	C. striatus							<u> </u>		<u> </u>	İ
<u> </u>	F. asymmetricus										
FE	F. wonthaggiensis									<u> </u>	
ធ	C. australiensis	i									
	PRE-CRETACEOUS										
COM	MENTS:										
C OIN											<u> </u>
	<u></u>				<u>-</u> *.						
				(;)					-11		
RA	TING: 1: SWC or C	ore, <u>Exceller</u> ore, Good Co	nfide	nce, assemb	motage lage w	ith zone spe	cies of spores	леs, р i and p	ollen or mici	roplanl	kton.
	2: SWC or C	ore, <u>Poor Co</u>	nfiden	<u>ce</u> , assembl	lage wi	th non-diag	nostic spores	, polle	in and/or mic	roplar	ikton.
	3: Cuttings, or both.	Fair Contide	nce, a	issemblage w	ith 20n	e species of	either spores	and p	ollen or mici	optani	ston,
	4: Cuttings,	No Confiden	<u>ce</u> , as	semblag <mark>e</mark> wit	h non-	diagnostic	spores, poller	1 and/o	or microplan	kton.	
NOJI	E: If an entry is give	ven a 3 or 4 c	onfid	ence rating,	an alte	mative dep	th with a bet	ter con	fidence ratio	ng shou	ild be
	entered, if possi unless a range of	ible. If a sar f zones is give	nple c en who	annot be assi are the higher	igned to st possi	o one partic ble limit w	ular zone, th ill appear in	en no one zo	entry should ne and the le	be mae west r	de, possible
	limit in another				- 1-0-0-1		and a filler of the				
DNTI	A RECORDED BY:	HOWARD E	. ST	٨CY		DA	TE: FEI	BRUAR	Y 25, 198	12	

•		-	-	••	-	-			
	-	-		-	-	 _	 	 	

BASIC DATA

PART II

1

• Table-1: Basic Data Range Charts 4

_ . -

. BASIC DATA

SUMMARY OF PALAEONTOLOGICAL ANALYSIS, YELLOWTAIL-1, GIPPSLAND BASIN

SAMPLE	DEPTH METRES	DEPTH FEET	YIELD	SPORE-POLLEN DIVERSITY	DINO. DIVERSITY
			_	_	
SWC 72	2371	7779	Poor	Low	Moderate
SWC 67	2381	7812	Poor	Low	Moderate
SWC 64	2388	7835	Poor	Low	Moderate
SWC 58	2399	7 <mark>871</mark>	Poor	Moderate	Moderate
SWC 55	2401.9	7880	Poor	Low	Moderate
SWC 52	2405	7890.5	Poor	None	Moderate
SWC 51	2406.1	7894	Poor	Very Low	Low
SWC 50	2407	7897	Fair	Moderate	Moderate
SWC 49	2408	7900	Poor	Low	Low
SWC 47	2409.9	7906.5	Poor	Low	Moderate
SWC 42	2415	7923	Good	Moderate	Moderate
SWC 41	2415.9	7926	Poor	Moderate	None
SWC 40	2417	7930	Fair	Moderate	Very Low
SWC 39	2418	7933	Fair	Moderate	Low
SWC 37	2420.1	7940	Poor	Low	Low
SWC 36	2420.9	7942.5	Poor	Low	Low
SWC 34	2423	7949.5	Poor	Moderate	Low
SWC 33	2424	7953	Fair	Moderate	Low
SWC 28	2429	7969	Very Poor	None	Low
SWC 21	2438.2	7999	Fair	Moderate	Low
SWC 18	2456	8058	Fair	Moderate	Low
SWC 14	2470	8103.5	Poor	Moderate	None
SWC 10	2483.4	8147.5	Fair	Moderate	Low
SWC 7	2519.8	8267	, Fair	Moderate	Low
SWC 1	2570	8432	Fair	Moderate	Moderate

1 de L