APPENDIX

PALYNOLOGICAL ANALYSIS OF WHITING-2, GIPPSLAND BASIN

by

M.K. Macphail

Esso Australia Ltd.

Palaeontology Report 1985/34

November 1985

INTERPRETATIVE DATA

INTRODUCTION

SUMMARY TABLE

GEOLOGICAL COMMENTS

BIOSTRATIGRAPHY

TABLE-1: INTERPRETATIVE DATA

TABLE-2: ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE POLLEN

PALYNOLOGY DATA SHEET

TABLE-3: BASIC DATA

INTRODUCTION

Eighty six sidewall core samples were processed and examined for spore-pollen and dinoflagellates. Despite the good sampling densities, recovery and preservation were mostly fair to poor with the Early Eocene and Paleocene sections providing few confident age determinations.

Lithological units and palynological zones from the base of the Lakes Entrance Formation to T.D. are summarized below; anomalous and unusual occurrences of taxa are listed in Table 2. Basic data are given in Table 3.

SUMMARY

AGE:	UNIT	ZONE	DEPTH (m)
Early Miocene	Lakes Entrance Fm.	P. tuberculatus	126U.Om
	minor log brea	ak at 1263.5m	
(undatable samples)	Gurnard Fm.	-	1265.0m-1268.0m
	log break	at 1269m	
Late Eocene Early Eocene Early Eocene Early Eocene Early Eocene Paleocene	Latrobe Group coarse clastics " " " " "	Middle N. <u>asperus</u> Lower N. <u>asperus</u> P. <u>asperopolus</u> Upper M. <u>diversus</u> Middle M. <u>diversus</u> Lower M. <u>diversus</u> Upper L. balmei	1272.0-1285.0m 1289.0-1421.0m 1440.9-1568.0m 1730.0m not recognised 1754.0-1874.9m 1899.9-2224.9m
Paleocene Paleocene Maastrichtian Late Cretaceous Late Cretaceous	17 17 17	Lower L. <u>balmei</u> Upper T. <u>longus</u> Lower T. <u>longus</u> <u>T. lilliei</u>	2308.0-2980.9m 3120.0-3235.0m 3300.5-3434.0m 3489.0-3515.0m

T.D. 3353m

GEOLOGICAL COMMENTS

- Although sediments of Middle <u>M</u>. <u>diversus</u> Zone age were not recognized in Whiting-2, it is highly likely that the well contains a continuous sequence of sediments from the Late Cretaceous <u>T</u>. <u>lilliei</u> Zone to the Late Eocene, Middle <u>N</u>. <u>asperus</u> Zone (see Biostratigraphy Section).
- 2. Unlike in Whiting-1 where a 4-5m thick section of Gurnard Formation is present (P. Arditto pers. comm.; cf. Macphail 1983; Rexilius 1985), the only evidence that the equivalent greensand occurs in Whiting-2 is sidewall cores 109 and 110, taken at 1268.0m and 1265.0m respectively. These are barren sandstones containing moderate to abundant pelletal glauconite and pyrite. A marked log break at 1269m separates this unit from the underlying glauconite-free, carbonaceous sandstones. Recognition of the Gurnard Formation in Whiting-2 is made more difficult by the fact that the typical 'Gurnard Formation log response' of (well-separated) high density, high neutron porosity between 1269.0-1277.0m is associated with the upper part of the unit of carbonaceous sandstones, dated as Middle N. asperus Zone in age. Based on log character, the maximum thickness of Gurnard Formation in Whiting-2 is 5.5m.
- 3. As in Whiting-1, dinoflagellates are rare to absent throughout most of the Latrobe Group coarse clastics section. In both wells, the earliest recorded marine influence is Early Eocene, basal Lower <u>M. diversus</u> Zone the <u>Apectodinium hyperacantha</u> transgression, equated with the Rivernook Member, Princetown Section, onshore Otway Basin (see Cookson & Eisenack 1967). In both wells <u>L. balmei</u> Zone spore-pollen from the underlying

non-marine Paleocene sediments has been extensively reworked into the <u>A</u>. <u>hyperacantha</u> Zone sediments. This marine unit would appear to provide an ideal datum for correlating the two wells and also adjacent wells such as Snapper A-21 where the same transgression is recorded.

- 4. The absence of Paleocene-Late Cretaceous marine transgressions across the Whiting Field is consistent with data from the Barracouta Field. Evidently neither area was reached by the widespread Paleocene <u>Apectodinium homomorpha</u> marine transgression. This is not the case with the Snapper Field which lies closer to the axis of the Paleocene, Tuna-Flounder Channel. E.g. in Snapper-4, <u>A. homomorpha</u> Zone sediments occur at 1765.5m (overlying a <u>non-marine basal Lower M. diversus</u> Zone unit), and 2029.0m and 2078.9m (both Upper L. <u>balmei</u> Zone) (Macphail 1984).
- 5. Apart from the Lower M. <u>diversus</u> Zone, <u>A. hyperacantha</u> marine transgression, the only other marine-influenced sediments in Whiting-2 that can be assigned to a named (Partridge 1976) marine transgression is the carbonaceous sandstone at 1275.0m which is <u>Corrudinium incompositum</u> Zone in age. The equivalent marine-influenced unit was not recognized in Whiting-1 although dinoflagellates typically associated with <u>C</u>. <u>incompositum</u>, e.g. <u>Vozzhenikovia</u> extensa, occur in both wells. Of the other Eocene marginal marine sediments recognized in Whiting-2 (1421.0, 1466.0, 1530.0,1766.0m), the one at 1530.0m which is characterized by common-abundant <u>Homotryblium</u> tasmaniense, is almost certainly the same as the <u>P. asperopolus</u> sediments at 1527.5m in Whiting-1 and 4498 ft in Barracouta-4. If correct this <u>H. tasmaniense</u> 'stratum' may prove to be a useful datum horizon.
- 6. The Whiting-2 well is unusual in that the Middle/Lower N. asperus Zone boundary is well-defined by confidently-dated samples only ca 4m apart. Logs indicate the intervening unsampled section (1285.0-1289.0m) is one of a number of small coarsening upwards parasequences occurring between

1372-1390m - possibly representing a lower shoreface environment although dinoflagellate numbers and diversity in samples taken within this interval are low.

- Significant differences exist in the total thicknesses of Upper and Lower 7. L. balmei sediments between Whiting-1 and -2. In the case of Upper L. balmei Zone sediments (469m in Whiting-1, 325m in Whiting-2) the difference largely disappears if the first occurrence of Malvacipollis spp., not Verrucosisporites kopukuensis (a species now known to first appear infrequently in the Lower L. balmei Zone), is used to define the base of the Upper L. balmei Zone. The revised thickness of Upper L. balmei Zone sediments in Whiting-1 is 333m (from 1889.5 to 2233.0m, see revised data sheet). Differences in the thickness of Lower L. balmei Zone sediments between the two wells (336m in Whiting-1, 673m in Whiting-2) are less easily resolved. The critical difference here is that the highest Upper T. longus Zone sediments occur at 2767.Um in Whiting-1 and 3120.0m in Whiting-2. Explanations include (i) the - very unlikely - mislabelling of SWC's 30 (2960.0m) and 29 (2980.9m) which contain good Lower L. balmei Zone palynofloras or (ii) intersection of an oblique growth fault.
- 8. Palynofloras at 2485, 2774.Um and between 3434.0-3515.Um have TAI values of 2.2-2.4, slightly above TAI values found in adjoining samples or in samples from similar depths in other Gippsland wells. This may be due to hydrothermal activity related to volcanic intrusions, e.g. 18m of volcanics were encountered near the base of the Lower L. balmei Zone in Whiting-1.
- Consistent with its deeper T.D., Whiting-2 penetrated older Late Cretaceous sediments than Whiting-1 (<u>T. lilliei</u> Zone versus Upper <u>T</u>. Longus Zone respectively).

BIOSTRATIGRAPHY

Zone boundaries have been established using the criteria of Stover & Partridge (1973) and subsequent proprietary revisions.

Tricolporites lilliei Zone: 3489.0-3515.0m

Three samples are assigned to this zone on the basis of common to abundant <u>Nothofagidites</u> associated with two species which first appear in this zone, Gambierina edwardsii and G. rudata.

Lower Tricolpites longus Zone: 3300.5-3434.0m

Samples within this section contain either or both common to abundant <u>Nothofagidites</u> and <u>Gambierina</u> pollen. The base of the zone is defined by the first appearance of <u>Tricolpites longus</u> and the upper boundary is picked at the highest sample lacking Upper <u>T. longus</u> Zone indicator species.

Upper Tricolpites longus Zone: 3120.0-3235.0m

Occurrences of <u>Stereisporites punctatus</u> with frequent to common <u>Gambierina</u> <u>rudata</u> confirm an Upper <u>T</u>. <u>longus</u> Zone age for this section. Species which range no higher than this zone occur at: 3235.0m (<u>Triporopollenites sectilis</u>, <u>Proteacidites reticuloconcavus</u>, <u>P</u>. <u>wahooensis</u>), 3165.0m (<u>Tricolporites</u> lilliei) and 3120.0m (<u>Triporopollenites megasectilis</u> ms.).

Lower Lygistepollenites balmei Zone: 2308.0-2980.9m

Palynofloras within this and the Upper <u>L</u>. <u>balmei</u> Zone are dominated by (i) gymnosperms, in particular <u>Lygistepollenites</u> <u>balmei</u> and <u>Podocarpidites</u> spp., and (ii) <u>Proteacidites</u> spp. with sporadic but occasionally frequent occurrences of

species which range no higher than the Upper <u>L</u>. <u>balmei</u> Zone e.g. <u>Australopollis</u> <u>obscurus</u>, <u>Proteacidites</u> <u>angulatus</u>, <u>Gambierina</u> spp., Tetracolporites <u>verrucosus</u> and <u>Integricorpus</u> <u>antipodus</u>.

The base of the Lower <u>L</u>. <u>balmei</u> Zone is picked at 2980.9m, the lowest sample lacking Late Cretaceous indicator species. <u>Integricorpus antipodus</u> shows this sample is no older than the Lower <u>L</u>. <u>balmei</u> Zone. <u>Haloragacidites harrisii</u> is first recorded at 2960.0m. <u>Tetracolporites verrucosus</u> is frequent in this sample and at 2739.0m, the highest sample containing <u>T</u>. <u>verrucosus</u> (3 specimens). the first appearance of <u>Verrucosisporites kopukuensis</u> is at 2390.0m

Upper Lygistepollenites balmei Zone: 1899.9-2224.9m

The lower boundary is provisionally placed at 2224.9m, based on the abundance of <u>Gleicheniidites</u> and presence of <u>Verrucosisporites kopukuensis</u>. <u>Malvacipollis</u> spp. pollen first occurs at 2105.9m, in a sample containing <u>Polycolpites langstonii</u>. The upper boundary is placed at 1899.9m, based on the occurrence of <u>Banksieaeidites lunatus</u> and frequent <u>Lygistepollenites</u> balmei and Nothofagidites endurus.

Lower Malvacipollis diversus Zone: 1754.0-1874.9m

Occurrences of <u>Cyathidites gigantis</u>, <u>Crassiretitriletes vanraadshoovenii</u>, <u>Spinzonocolpites prominatus</u> (abundant), and <u>Polypodiaceosporites varus</u> in a <u>Malvacipollis diversus</u>-dominated palynoflora at 1874.9m confirm a Lower <u>M</u>. <u>diversus</u> Zone age for this sample. The presence of <u>Apectodinium hyperacantha</u>, <u>Fibrocysta bipolare</u> and <u>Proteacidites pachypolus</u> in the same assemblage demonstrate this sample is the time-equivalent of the Rivernook Member, Princetown Section in the onshore Otway Basin (see Cookson & Eisenack 1967). Frequent occurrences of reworked Paleocene-Late Cretaceous species, including Lygistepollenites balmei and Australopollis obscurus, are consistent with the marine-nature of this sample. Uther samples assigned to this zone contain general <u>M. diversus</u> Zone palynofloras (including <u>Malvacipollis</u> <u>diversus</u>, <u>Tricolporites moultonii</u> and <u>Schizocolpus</u> <u>marlinensis</u>) but lack indicator species. The upper boundary is provisionally placed at 1754.0m, the highest sample lacking species first appearing in the Middle <u>M. diversus</u> Zone.

Upper Malvacipollis diversus Zone: 1730.0m

One sample is provisionally assigned to this zone, based on the occurrence of a single poorly preserved specimen of <u>Proteacidites pachypolus</u>. Since spore-pollen yield from this sample was very low and the assemblage contained reworked <u>Australopollis obscurus</u>, the Upper <u>M. diversus</u> Zone age is of low confidence. The sample at 1703.Om contains <u>Proteacidites tuberculiformis</u>, <u>Cupanieidites orthoteichus</u> and <u>Intratriporopollenites notabilis</u> (all first occurrences) and is therefore no older than Middle <u>M. diversus</u> Zone in age. The overlying section from 1601.9 to 1670.9m was barren.

Proteacidites asperopolus Zone: 1440.9-1568.0m

The base of this zone is defined by the first appearances of <u>Clavastephanocolporites meleosus</u> and <u>Proteacidites asperopolus</u> at 1568.0m. This sample includes species which range no higher than this zone, e.g. <u>Myrtaceidites tenuis</u>, <u>Proteacidites ornatus</u>, <u>P. tuberculiformis</u> and (usually) <u>Intratriporopollenites notabilis</u>. <u>Clavastephanocolporites meleosus</u> and (frequent) <u>Myrtaceidites tenuis</u> also occur at 1547.5m, this time in association with <u>Proteacidites leightonii</u> and <u>P. xestoformis</u>. The typically Early Eocene dinoflagellate <u>Homotryblium tasmaniense</u> is common at 1530.0m, associated with <u>Conbaculites apiculatus</u>, <u>Tricolpites incisus</u> and <u>Sapotaceoidaepollenites rotundus</u>. The highest occurrence of <u>Myrtaceidites</u> <u>tenuis</u> is at 1460.0m. The upper boundary is picked at 1440.9m, the highest sample containing <u>Proteacidites asperopolus</u> and <u>P. leightonii</u>.

Lower Nothofagidites asperus Zone: 1289.0-1421.0m

The lower boundary is placed at 1421.0m, based on the simultaneous first appearance of <u>Tricolpites simatus</u> and <u>Tricolporites leuros</u> in a <u>Nothofagidites</u>- dominated palynoflora containing <u>Proteacidites asperopolus</u>. <u>Tricolporites delicatus</u> first appears at 1353.9m, associated with a rare instance of <u>Intratriporopollenites notabilis</u> occurring above the <u>P</u>. <u>asperopolus</u> Zone. The upper boundary is picked at the highest occurrence of Proteacidites asperopolus at 1289.0m.

Middle Nothofagidites asperus Zone: 1272.0-1285.0m

Three samples are assigned to this zone. The lowermost at 1285.0m contains multiple specimens of <u>Tricolpites thomasii</u> with <u>Verrucatosporites attinatus</u>, species which first appears in the uppermost Lower <u>N</u>. <u>asperus</u> Zone; the middle sample at 1275.0m contains the Middle <u>N</u>. <u>asperus</u> Zone indicator dinoflagellate <u>Corrudinium incompositum</u>; the uppermost at 1272.0m contains <u>Proteacidites</u> <u>pachypolus</u>, and <u>Bysmapollis emaciatus</u>, species which ranges no higher than this zone. This sample also includes <u>Proteacidites rectomarginis</u> and <u>P</u>. stipplatus, species which range no lower than the Middle <u>N</u>. <u>asperus</u> Zone.

Proteacidites tuberculatus Zone: 1260.0m.

The occurrence of the dinoflagellates <u>Protoellipsodinium simplex</u> and <u>Pyxidinopsis pontus</u> indicate a <u>P. tuberculatus</u> Zone age for this sample. The samples at 1265.0 and 1268.0m yielded insufficient microfossils for dating but did contain single specimens of <u>Pyxidinopsis pontus</u>.

- COOKSON, T.C. & EISENACK, 1967. Microplankton from the Paleocene Rivernook Bed, Victoria. Proc. Roy. Soc. Vict., 80:247-258.
- MACPHAIL, M.K., 1984. Palynological analysis, Whiting-1, Gippsland Basin. Esso Australia Ltd. Palaeontological Report, 1983/28.
- MACPHAIL, M.K. 1984. Palynological analysis, Snapper-4, Gippsland Basin. Esso Australia Ltd. Palaeontological Report, 1984/8.
- PARTRIDGE,.A.D., 1976. The geological expression of eustacy in the Early Tertiary of the Gippsland Basin. <u>Apea</u> (1976):73-79.
- REXILIUS, J.P., 1983. Micropalaeontological analyses of Whiting-1, Gippsland Basin, Victoria. Esso Australia Ltd., Palaeontological Report, 1983/25.
- STOVER, L.E. & PARTRIDGE, A.D. (1973). Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. <u>Proc. Roy</u>. Soc. Vict., 85, 237-86.

PALYNOLOGY DATA SHEET

щ	PALYNOLOGICAL	ніс	НЕ	ST D	АТ	 A	LO	WES	ст р	ATZ	A .
U	ZONES	Preferred	T	Alternate	<u> </u>	Two Way	<u> </u>		Alternate		Two W:
×		Depth	Rtg	Depth	Rtg	Time	Depth	Rtg	Depth	Rtg	Time
1	T. pleistocenicus								<u> </u>		
INE	M. lipsis					·					
NEOGENE	C. bifurcatus T. bellus										
E	P. tuberculatus	1000.0					100.0		·····		
	Upper N. asperus	1260.0	2				1260.0	2			
	Mid N. asperus		<u> </u>								
	Lower N. asperus	1272.0			$\left - \right $		1285.0	1			
ENE	P. asperopolus	1289.0	1	1.466.0			1421.0	1			
PALEOGENE	Upper M. diversus	1440.9	2	1466.0	0		1568.0	0			
PAL	Mid M. diversus	1730.0	2				1730.0	2			
	Lower M. diversus	1754 0					1074.0				
	Upper L. balmei	1754.0	2				1874.9	0			
	Lower L. balmei	1899.9	1				2224.9	2			
	Upper T. longus	2308.0	2	. <u> </u>	$\left - \right $		2980.9				
SD	Lower T. longus	3120.0	1				3235.0				
CRETACEOUS	T. lilliei	3300.0	2				3434.0		· · · · · · · · · · · · · · · · · · ·		
ETA	N. senectus	3489.0	2	·····			3515.0	1			
្តទ											
LATE	T. apoxyexinus P. mawsonii										
A	A. distocarinatus					·					
	P. pannosus						i 				
CRET.	C. paradoxa			·							
Ű	C. striatus										
гү	C. hughesi										
EARLY	F. wonthaggiensis							-			
	C. australiensis										
	c. additation513	l									
СОМ	MENTS: <u>C. incompo</u>	situm Zon	e 12	75.Om							
	<u>H. tasmani</u>	ense comm	on_a	t 1530.0m							
	A. hyperac	antha Zon	e 18	74.9m							
CON	FIDENCE O: SWC or C	ore, Excellen	t Coni	idence, assem	nblage	with zone	species of spo	res, po	llen and mic	roplan	kton.
RA	TING: 1: SWC or C	ore, <u>Good Co</u>	nfiden	<u>ce</u> , assembla	ige wi	h zone spe	cies of spores	and po	llen or micro	oplank	ton.
	2: SWC or C 3: Cuttings.	ore, <u>Poor Con</u> Fair Confiden	fidence	e, assembla semblage wit	ge wit h zone	h non-dia; species of	gnostic spores feither spores	, poller	and/or mici	roplan	kton.
	or both.									-	ion,
- ·							spores, poller				
NOTE	l: If an entry is giv entered, if possi	ven a 3 or 4 co ble. If a sam	onfide	nce rating, an	alter ned to	native dep	oth with a bett	er conf	idence rating	shoul	d be
	unless a range of limit in another.	[zones is give	n whe	re the highest	possib	le limit w	ill appear in	one zon	e and the low	e maa vest p	e, ossible
DATA	A RECORDED BY:	M.K. Macpl	nail			DA	TE: 21	Noven	ber 1985		

- 1,241

- 1925

{

- ディー・ディー・ディー・ディー 第三人間 ひょうしょう ディー・ディー・ディー ひかい ひょうしょう かいしょう アンビン ひょう かいしょう アンビン

	SIN: NAME:	Gippsla Whiting				-	EVATION	• • • •	+21.0r 301	n GL: ⁻ Llm	-53.0)m
	1		ніс	ЧF	<u>ст</u> D	A T		· · · · · · · · · · · · · · · · · · ·	WE		АТ Л	A.
A A	PALY	NOLOGICAL ZONES	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Ti
	T. ple	istocenicus										
ш	M. lip	sis										
NEOGENE	C. bif	urcatus										
NEC	T. bel	lus										
	P. tub	erculatus	1276.6	0				1276.6	0			
	Upper .	N. asperus									· ·	
	Mid N.	asperus	1301.2	2				1301.2	2			
ш	Lower i	N. asperus	1317.8	0				1417.0	1			
PALEOGENE	P. asp	eropolus	1456.0	1				1542.0	0		<u> </u>	
Der 1	Upper /	M. diversus	1577.5	1				1590.3	0			
A	Miđ M.	diversus	1640.7	2				1715.8	1			
	Lower 1	M. diversus	1734.0	0				1859.1	0			
	Upper 1	L. balmei	1889.5	2				2233.0	1			
	Lower 1	L. balmei	2358.5	2				2738.5	2	2551.0	1	
	Upper 7	f. longus	2767.0	1				2993.5	1			ļ
CRETACEOUS	Lower A	R. longus										
ACE	T. 111	liei										
E	N. sene	ectus										
-	T. apos	vyexinus									·	
LATE	P. maws	sonii										
	A. dis	tocarinatus										
	P. panr	nosus										
CRET	C, para	idoxa										
U U	C. stri	latus								•		
EARLY	C. hugh	iesi										
EA	F. wont	haggiensis:										
	C. aust	raliensis										
col	MMENTS:	7 humaw	acantha Zo		1859.lm							
			lium tasma	-		Lage	1527.5	m				
			64.0mG			•ر.						
റ	VF IDENCE	O: SWC or (Core, Excelle	nt Con	fidence. asses	nblage	e with zone	species of s	ores. r	ollen and mi	cropla	nkte
	ATING	1: SWC or (Core, Good Co	onfider	nce, assembl	age w	ith zone sp	ecies of spore	es and p	ollen or mici	roplan	kton
•			Core, <u>Poor Co</u> Fair Confide									
·		or both.										
			<u>No Confiden</u>									
NO	ΓE:	If an entry is given entered, if poss unless a range limit in anothe	sible. If a sam of zones is giv	nple c	annot be assig	gned t	o one parti	cular zone, t	hen no	entry should	be ma	de,
DA	TA RECORE	DED BY:	M.K. Mac	phai	1		D.	ATE: 27	June	1983		

CONTRACTOR C

1. 1**2**27 1. 1. 1. 1. 1.

WHITING-2

p.lof 5

SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	D I NOFLAGELLATE ZONE	AGE	CONFIDENCE RATING	COMMENTS
SWC 111	1260.0	P. tuberculatus	_	Early Miocene	2	<u>P. simplex, P. pontus, V. attinatus</u>
SWC 110	1265.0	Indeterminate	, -			P. pontus
SWC 109	1268.0	Indeterminate	-			
SWC 108	1272.0	Middle <u>N. asperus</u>	-	Late Eocene	I	<u>P. stipplatus, P. rectomarginis, P. pachypolus, S. punctatus</u>
SWC 107	1275.0	Middle N. asperus	C. incompositum	Late Eocene	0	<u>C. Incompositum, T. thomasii, P. pachypolus</u>
SWC 106	1280.0	N. asperus	-	Eocene	-	-
SWC 105	1285.0	Middle <u>N.</u> asperus	-	Late Eccene	I	T. thomasil, V. attinatus
5WC 104	1289.0	Lower N. asperus	-	Middle Eocene	I	P. asperopolus, abund. Nothofagidites
SWC 102	1302.0	Lower N. asperus	-	Middle Eccene	2	
SWC 101	1337.5	Lower N. asperus	· –	Middle Eccene	1	P. asperopolus, abund. Nothofagidites
SWC 100	1353.9	Lower N. asperus	-	Middle Eccene	I	<u>T. delicatus, I. notabilis</u>
SWC 99	1374.0	Lower N. asperus	-	Middle Eocene	1	T. leuros, P. asperopolus, N. falcatu
SWC 98	1397.0	Lower N. asperus	-	Middle Eccene	1	T. leuros, P. recavus
SWC 97	1421.0	Lower N. asperus	-	Middle Eccene	1	<u>T. leuros, T. simatus, P. asperopolu</u>
						abund. Nothofagidites
SWC .96	1440.9	P. asperopolus	-	Early Eccene	2	P. asperopolus, T. Incisus, S. rotum P. leightonii
SWC 95	1466.0	P. asperopolus	-	Early Eccene	0	<u>P. asperopolus, M. tenuis, freq. P.</u> leightonii

.

ę

WHITING-2

						p. 2 of 5
SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	D I NOFLAGELLATE ZONE	AGE	CONFIDENCE RATING	COMMENTS
SWC 94	1484.9	-	-			
SWC 93	1517.5	No older than Upper	M. diversus	Early Eccene	-	P. pachypolus, M. tenuis
SWC 92	1530.0	P. asperopolus	-	Early Eccene	1	S. rotundus, T. incisus, common H. tasmaniense
SWC 90	1547.5	P. asperopolus	-	Early Eccene	I	C. meleosus, M. tenuis, I. notabilis, P. leightonii, abund. P. pachypolus
SWC 89	1568.0	P. asperopolus	-	Early Eccene	0	<u>P. asperopolus, C. meleosus, P. ornatus,</u> <u>M. tenuis</u>
SWC 88	1601.9	-	-	-	-	
SWC 87	1603.0	-	-	-	-	
SWC 86	1613.0	-	-	-	-	
SWC 84	1670.9	-	-	-	-	
SWC 83	1703.0	No older than Middle	M. diversus	Early Eccene	-	P. tuberculiformis
SWC 82	1730.0	Upper <u>M. diversus</u>	-	Early Eccene	2	Sing poor spm. of <u>P. pachypolus</u>
SWC 81	1754.0	Lower M. diversus	-	Early Eccene	2	General <u>M</u> . <u>diversus</u> Zone palynoflora
SWC 80	1766.0	Lower M. diversus	-	Early Eocene	2	M. diversus freq., S. marlinensis
SWC 78	1800.0	Lower M. <u>diversus</u>	-	Early Eocene	2	General <u>M. diversus</u> Zone palynoflora
SWC 77	1840.0	Lower M. diversus	-	Early Eocene	2	General <u>M. diversus</u> Zone palynoflora
SWC 76	1860.0	Lower M. diversus	-	Early Eccene	2	General M. <u>diversus</u> Zone palynoflora
SWC 75	1874.9	Lower <u>M. diversus</u>	<u>A.</u> <u>hyperacantha</u>	Early Eccene	O	<u>M. diversus</u> and <u>S. prominatus</u> abund., <u>C.</u> gigantis, P. varuno, P. pachypolus, <u>A</u> . hyperacantha

,

p. 2 of 5

-

.

1988L/13

. .

WHITING-2

SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	D I NOFLAGELLATE ZONE	AGE	CONFIDENCE RATING	COMMENTS
WC 74	1899.9	Upper <u>L. balmei</u>	-	Paleocene	I	<u>B. lunatus, freq. L. balmei</u> and <u>N.</u> endurus
WC 73	1924.0	Upper L. balmel	-	Paleocene	I	<u>M. subtilis, freq. L. baimei</u>
WC 72	1945.0	Upper L. <u>balmel</u>	-	Paleocene	I	M. subtilis, freq. L. balmel
WC 71	1970.0	Upper <u>L. balmei</u>	-	Paleocene	2	<u>G. rudata, V. kopukuensis, freq. L.</u> <u>balmei</u>
WC 70	1985.0	Upper <u>L. balmel</u>	-	Paleocene	I	B. lunatus, G. rudata, freq. L. balmei
WC 69	2000.0	L. baimei	-	Paleocene	-	I. antipodus, freq. L. balmei
WC 67	2045.0	L. balmei	-	Paleocene	-	<u>I. antipodus, L. amplus, H. elliotii,</u> <u>V. kopukuensis</u> , common <u>L. balmei</u>
WC 66	2073.0	L. balmel	-	Paleocene	-	common L. balmei
WC 65	2105.9	Upper L. balmel	-	Paleocene	I	<u>M. diversus, M. subtilis, P. langstoni</u>
WC 63	2144.9	L. balmel	-	Paleocene	-	common L. balmei
NC 61	2185.0	L. baimel	-	Paleocene	-	L. balmel
NC 60	2205.0	Upper L. <u>balmel</u>	-	Paleocene	2	Freq. L. balmei, V. kopukuensis
WC 59	2224.9	Upper <u>L. balmei</u>	-	Paleocene	2	L. balmei and Gleichenildites common, kopukuensis
WC 58	2250.0	L. balmel	-	Paleocene	-	Abund. L. balmel
NC 57	2285.0	L. balmel	-	Paleocene	-	H. <u>harrisli</u>
NC 56	2308.0	Lower L. balmei	-	Paleocene	2	T. verrucosus, common L. balmei
VC 55	2330.0	L. batmet	-	Paleocene	-	<u>A. obscurus abundant</u>

WHITING-2

p. 4 of 5

ŧ

.

SAMPLE NO.	DEPTH (m)	Spore-Pollen d Zone	ZONE	AGE	CONFIDENCE RATING	COMMENTS
WC 53	2370.0	L. baimei	-	Pateocene	-	L. balmel
WC 52	2390.0	L. balmei	-	Paleocene	-	V. kopukuensis, L. balmel
WC 51	2409.9	L. balmei	-	Paleocene	-	A. obscurus common
WC 50	2438.0	Lower L. balmel	-	Paleocene	2	T. verrucosus, freq. L. balmei
WC 48	2485.0	L. balmel	-	Paleocene	-	A. obscurus frequent
WC 47	2505.0	L. balmei	-	Paleocene	-	L. <u>balmel</u> common
WC 46	2526.0	L. balmel	-	Paleocene	-	L. balmei frequent
WC 45	2548.0	L. balmei	-	Paleocene	-	L. balmei frequent
WC 44	2570.0	L. balmel	-	Paleocene	-	A. obscurus common
WC 43	2590.0	L. balmet	-	Paleocene	-	L. balmei
WC 42	2608.0	Indeterminate	-	-	-	A. obscurus
WC 40	2655-0	L. <u>balmei</u>	-	Paleocene	-	Abund. <u>P. angulatus</u> , sample extensivel contaminated
WC 39	2675.0	L. baimel	- "	Paleocene	-	P. angulatus common
WC 38	2694.0	No older than Upper T. Ic	ongus	. –	-	S. punctatus
SWC 36	2739.9	Lower L. balmel	-	Paleocene	-	L. balmei, freq. T. verrucosus
SWC 35	2774.0	Indeterminate	-	-	-	
WC 34	2801.0	Indeterminate	-	-	-	A. obscurus
SWC 33	2892.9	Indeterminate	-	-	-	
WC 30	2960.0	Lower L. balmei	-	Paleocene	1	<u>H. harrisii,</u> freq. <u>L. balmei</u> and <u>T.</u> verrucosus

WHITING-2

p.5 of 5

.

SAMPLE NO.	DEPTH (m)	SPORE-POLLEN ZONE	D INOFLAGELLATE ZONE	AGE	CONFIDENCE RATING	COMMENTS
WC 29	2980.9	Lower L. balmel	-	Paleocene	ł	1. antipodus, T. verrucosus, L. baimei
WC 26	3049.9	Indeterminate	-	-	-	
WC 25	3075.0	Indeterminate	-	-	-	
iwc 23	3120.0	Upper <u>T. longus</u>	- ·	Maastrichtian	1	<u>S. punctatus, freq. G. rudata</u>
WC 20	3133.5	Indeterminate	-	-	-	Badly contaminated sample
WC 19	3165.0	T. longus	-	Late Cretaceous	-	T. verrucosus, T. IIIIIeI, G. Rudata, N endurus
5WC 14	3235.0	Upper T. longus		Maastrichtian	I	<u>S. punctatus, T. sectilis, common G.</u> rudata
WC 6	3300.0	Lower T. longus	-	Late Cretaceous	2	G. rudata and Nothofagldites abund.
SWC 4	3318.0	Indeterminate	-	-	-	
WC 2	3329.8	Lower T. longus	-	Late Cretaceous	2	<u>G. rudata common</u>
SWC	3417.3	Indeterminate	-	-	-	
SWC 129	3434.0	Lower T. longus	-	Late Gretaceous	1	Nothofagidites common, T. longus
WC 121	3489.0	<u>T. 11111e1</u>	-	Late Cretaceous	2	Nothofagidites common, T. sectilis
WC 120	3492.3	<u>T. 1111e1</u>	-	Late Cretaceous	. ja 2	Nothofagidites abund., <u>G. rudata</u>
WC 118	3515.0	T. 11111e1	-	Late Cretaceous	1	<u>G. rudata, G. edwardsii</u>
WC 114	3534.3	In determinate	-	-	-	
WC 112	3548.2	IndetermInate	-	-	-	

TABLE 2 ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WHITING-2

1

p.lof 3

~

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 108	1272.0	Middle <u>N.</u> asperus (1)	Lygistepollenites balmei	Reworked
SWC 108	1272.0	Middle <u>N. asperus</u> (1)	Proteacidites stipplatus	Rare sp. (assoc. with <u>V. attinatus</u>)
SWC 108	1272.0	Middle <u>N. asperus</u> (1)	Bysmapollis emaciatus	Close to top of rare
SWC 107	1275.0	Middle <u>N. asperus</u> (1)	Tricolpites thomasil	Rare sp.
SWC 107	1275.0	Middle <u>N. asperus</u> (1)	Helcisporites astrus	Uncommon sp.
SWC 106	1280.0	(Middle <u>N. asperus</u>)	Curroniaceae 3-p	Modern taxon
SWC 105	1285.0	Middle <u>N. asperus</u> (1)	Tricolpites thomasil	Rare sp. (assoc. with <u>V. attinatus</u>)
SWC 105	1285.0	Middle <u>N. asperus</u> (1)	Beaupreadites trigonalis	Rare sp. (assoc. with <u>V. attinatus</u>)
SWC 104	1289.0	Lower <u>N. asperus</u> (1)	Clavatipollenites glarius	V. rare sp.
SWC 104	1289.0	Lower N. asperus (1)	Concolpites leptos	V. rare sp.
SWC 104	1289.0	Lower N. asperus (1)	Curoniaceae 3-p	Modern taxon
SWC 104	1289.0	Lower <u>N. asperus</u> (1)	Matonisporites or namentalis	Uncommon in this zone
SWC 104	1289.0	Lower <u>N. asperus</u> (1)	Phyllociadidites palaeogenicus	Uncommon sp.
SWC 102	1302.0	Lower N. asperus (2)	Proteacidites reflexus	Rare sp.
SWC 102	1302.0	Lower N. asperus (2)	Proteacidites echinatus	Ms. sp. (MKM)
SWC 100	1353.9	Lower N. asperus (1)	Cupanieidites reticulatus	Rare sp.
SWC 100	1353.9	Lower N. asperus (1)	Intratriporopollenites notabilis	Rare above <u>P.</u> asperopolus Zone
SWC 98	1397.0	Lower N. asperus (1)	Elphredripites notensis	Rare sp.
SWC 97	1421.0	Lower N. asperus (1)	Quintinia	Modern taxon
SWC 97	1421.0	Lower N. asperus (1)	Stephanocolpites sp.	cf. <u>oblatus</u>
SWC 97	1421.0	Lower N. asperus (1)	Tricolpites thomasii	Not prev. recorded below Middle <u>N.</u> asperus Zone
SWC 96	1440.9	P. asperopolus (2)	Droseraceae	Rare taxon

1988L/17

ŧ

TABLE 2

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WHITING-2

.

.

p. 2 of 3

· · · · · ·

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 96	1440.9	P. asperopolus (2)	<u>Gyrostemonaceae</u> -type	Modern taxon
SWC 96	1440.9	P. asperopolus (2)	Reticulosporis	Uncommon in Eccene
SWC 96	1440.9	P. asperopolus (2)	Step ha nocolpites	cf. <u>oblatus</u>
SWC 95	1466.0	P. asperopolus (1)	Proteacidites obesolabrus	V. rare sp., first offshore record in Basin
SWC 95	1466.0	P. asperopolus (1)	Proteacidites tuberculotumulatus	Rare sp.
SWC 95	1466.0	P. asperopolus (1)	Proteacidites reticulatus	Rare sp.
SWC 95	1466.0	P. asperopolus (1)	Tricolpites palisadus	Ms. sp. (MKM)
SWC 92	1530.0	P. asperopolus (1)	Conbaculites apiculatus	Ms. sp. (ADP)
SWC 92	1530.0	P. asperopolus (1)	Triporopollenites heleosus	Uncommon sp.
SWC 92	1530.0	P. asperopolus (I)	Homotryblium tasmaniensis	Population of this dimo. assoc. with <u>Wetzeliella</u> longispinosa
SWC 90	1547.5	P. asperopolus (1)	Clavastephinocolporites meleosus	Rare sp.
SWC 90	1547.5	P. asperopolus (1)	Dryptopolienites semilunatus	Rare sp.
SWC 90	1547.5	P. asperopolus (1)	Triporopollenites heleosus	Uncommon sp.
SWC 90	1547.5	P. asperopolus (1)	Gamblerina rudata	In essentially non-marine sample
SWC 89	1568.0	P. asperopolus (1)	Crassiretitriletes vanraadshoovenil	Uncommon in this zone
SWC 89	1568.0	P. asperopolus (1)	Kuylisporites waterbolkii	Uncommon in this zone
SWC 89	1568.0	P. asperopolus (1)	Cupanieidites reticulatus	Rare sp.
SWC 83	1703.0	(Upper <u>M. diversus</u>)	Basopollis mutabilis	Uncommon in this zone
SWC 83	1703.0	(Upper <u>M. diversus</u>)	Retistephanocolpites nixonii	Rare sp.
5WC 81	1754.0	Lower <u>M. diversus</u> (2)	Tricolpites gigantis	Ms. sp. (MKM)
SWC 80	1766.0	Lower M. diversus (2)	Dryptopollenites semilunatus	Rare sp.

TABLE 2

.

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WHITING-2

p.3 of 3

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 80	1766.0	Lower <u>M.</u> diversus (2)	Rouseisporites reticulatus	Uncommon in Eccene
SWC 77	1840.0	Lower <u>M. diversus</u> (2)	Retistephanocolpites nixonii	Rare sp.
SWC 77	1840.0	Lower M. diversus (2)	Rotverrusporites stallatus	V. rare sp.
SWC 77	1840.0	Lower <u>M. diversus</u> (2)	Selagosporis	V. rare ms. sp. (Stough)
5WC 72	1945.0	Upper <u>L. baimei</u> (1)	Triporopollenites sp.	Rel. to <u>T. bellus</u>
SWC 72	1945.0	Upper L. <u>baimei</u> (1)	Gleicheniidites apiculatus	Ms. sp. (MKM)
SWC 71	1970.0	(Upper <u>L. balmei</u>)	Schizaea digitatoides	Uncommon sp.
SWC 66	2073.0	(Upper <u>L. baimei</u>)	Peromonolites baculatus	Uncommon sp.
SWC 65	2105.9	Upper <u>L. baimei</u> (1)	Phyllociadidites verrucosus	Uncommon in this zone
SWC 57	2285.0	(Upper <u>L. balmei</u>)	Nothofagidites asperus	Uncommon in this zone
SWC 56	2308.0	Lower L. baimei (2)	Tricolporites scabratus	Assoc. with <u>T.</u> verrucosus
SWC 56	2308.0	Lower L. <u>balmei</u> (2)	Proteacidites ademonosus	Not previously recorded in Paleocene

1988L/19

1

WHITING-2

р.	l of	5

.

		1					DIVERSITY – S&P io D	əss than 10 I(edium high D-30 greater than 30 3-10 10
SAMPLE NO.	DEPTH (m)	Y SPORE-POLLEN	IELD D INOS	Dive Spore-Pollen	RSITY DINOS	PRESERVATION	LITHOLOGY	PYRIZATION	COMMENTS
SWC 111	1260.0	Low	Low	Low	Low	Good	Slst., calc., glau.	-	·····
SWC 110	1265.0	Low	Low	Medium	Low	Fair	Ss., glau.	-	
SWC 109	1268.0	Neg I .	Neg I.	-	-	Good	Ss., glau.	-	
SWC 108	1272.0	Low	Fair	High	High	Good	Ss., carb.	-	
SWC 107	1275.0	Low	V. low	High	Low	Fair	Ss., slty, carb.	-	
SWC 106	1280.0	V. Iow	V. Iow	Med I um	Low	Good	Ss., carb.	-	
SWC 105	1285.0	Fair	Low	High	Low	Good	Ss., carb.	-	
SWC 104	1289.0	Fair	V. Iow	High	Low	Fair	Ss., carb.	-	
SWC 102	1302.0	V. low	V. low	Med i um	Low	Good	Ss., slty, carb.	-	
SWC 101	1337.5	Low	-	Low	-	Poor	Sist., clayey	-	hydrocarbon - affected?
SWC 100	1353.9	Low	-	Med i um	-	Good	Sist.	Minor	
SWC 99	1374.0	Fair	-	Medium	-	Good	Sist.	-	
SWC 98	1397.0	Fair	-	Med 1 um	-	Good	Sist./lignite	-	
SWC 97	1421.0	High	V. low	High	Low	V. good	Sist., carb.	-	
SWC 96	1440.9	High	-	High	-	Good	Slst., carb.	-	
SWC 95	1466.0	High	High	High	Low	Fair	Sist., carb.	-	

1988L/20

•

Ŧ

WHITING-2

	P).	2	of	5
--	---	----	---	----	---

							DIVERSITY - S&PI D		nedium high 10-30 greater than 30 3-10 10
SAMPLE NO.	DEPTH (m)	y i Spore -p ollen	ELD D I NOS	Dive Spore-Pollen	RSITY DINOS	PRESERVATION	LITHOLOGY	PYRIZATION	COMMENTS
WC 94	1484.9	Neg 1 .			-	-	Ss., slty.		<u></u>
WC 93	1517.5	Low	-	:pw	-	Fair	Clyst.	-	
WC 92	1530.0	High	High	High	Med i um	Fair	Sist., carb.	-	
WC 90	1547.5	Fair	V. low	High	Low	Fair	Sist., carb.	-	
WC 89	1568.0	Fair	-	High	-	Good	Sist.	-	
WC 88	1601.9	-	-	-	-	-	Clyst.	-	
WC 87	1603.0	Neg I.	-	-	-	Poor	Sist.	-	
WC 86	1615.0	-	-	-	-	-	Ss.	-	
WC 84	1670.9	-	-	-	-	-	Sist.	-	
WC 83	1703	Fair	-	High	-	Good	Sist.	-	
WC 82	1730.0	V. low	-	Low	-	Fair	Sist.	-	
WC 81	1754.0	Good	-	Medlum	-	Good	Sist.	-	
WC 80	1766.0	Good	Med i um	High	Low	Fair	Sist., carb.	-	
WC 78	1800.0	Fair	-	High	-	Fair	Clyst.	-	
WC 77	1840.0	Low	-	High	-	Fair	Sist.	-	
WC 76	1860.0	Low	-	Medium	-	Fair	Slst.	-	
WC 75	1874.9	High	High	High	Medium	Good	Slst., calc., carb.	-	

WHITING-2

							DIVERSITY – S&P le: D	low medlun ss than 10 10-30 1-3 3-10	n high greater than 30 10
SAMPLE NO.	DEPTH (m)	Y SPORE-POLLEN	IELD D I NOS	Dive Spore-Pollen	RSITY DINOS	PRESERVATION	LITHOLOGY	PYRIZATION	COMMENTS
5WC 74	1899.9	Low	_	Medium	-	Fair	Sist.	_	
SWC 73	1924.0	Fair	-	Medium	-	Fair	Sist., carb.	-	
5WC 72	1945.0	High	-	Medium	-	Fair	Sist.	-	
SWC 71	1970.0	Low	-	Medium	-	Fair	Slst., carb.	-'	
SWC 70	1985.0	High	-	Med i um	-	Fair	Coal	-	
SWC 69	2000.0	Fair	-	Medium	-	Fair	Sist., carb.	-	
SWC 67	2045.0	Low	-	Medium	-	Fair	Sist.	-	
SWC 66	2073.0	Fair	-	Low	-	Fair	Sist., carb.	-	
SWC 65	2105.9	Low	-	Medium	-	Fair	Sist.	-	
SWC 63	2144.9	Fair	-	Medium	-	Poor	Sist., carb.	-	
SWC 61	2185.0	Neg I.	-	-	-	Good	Ss.	-	
SWC 60	2205.0	Low-	-	Low	-	Poor	Sist., carb.	-	
5WC 59	2224.9	High	-	Med i um	-	Poor	Sist.	-	
SWC 58	2250.0	Low	-	Medium	-	Poor	Slst.	-	
SWC 57	2285.0	Low	-	Medium	-	Fair	Slst., carb.	-	
SWC 55	2330.0	High	-	Low	-	Poor	Slst., carb.	-	
SWC 53	2370.0	V. low	-	Low	-	V. poor	Ss.	-	
SWC 52	2390.0	Low	-	Low	-	Poor	Sist.	-	

1988L/22

.

WHITING-2

DIVERSITY - Iow medium high S&P less than 10 10-30 greater than 30 D 1-3 3-10 10

SAMPLE	DEPTH	YI	ELD	DIVE	RSITY	PRESERVATION	LITHOLOGY	PYR IZAT ION	COMMENTS
NO.	(m)	SPORE-POLLEN	DINOS	SPORE-POLLEN	DINOS				
			<u> </u>						
SWC 51	2409.9	Fair	-	Low	-	Poor	Sist.	-	contaminated
SWC 50	2438.0	Low	-	Low	-	Poor	Sist.	-	
SWC 48	2485.0	Low	-	Low	-	V. poor	Sist.	-	
SWC 47	2505.0	Fair	-	Low	-	Poor	Sist.	-	
SWC 46	2526.0	Low		Low	-	Poor	Sist.	-	
SWC 45	2548.0	Low	-	Low	-	V. poor	Sist., carb.	-1SWC 44	2570.0
Low	-	Low	-	Poor	Sist.	-			
SWC 43	2590.0	Low	-	Low	-	Poor	Sist.	-	
SWC 42	2608.0	V. low	-	Low	-	V. poor	Sist.	-	
SWC 40	2655.0	Low		Medium	-	Poor	Slst., carb.	-	contam i nated
SWC 39	2675.0	Low	-	Low	-	Fair	Sist., carb.	-	
SWC 38	2694.0	V. low	-	Low	-	V. poor	Sist.	-	
SWC 36	2739.9	Low	-	Low	-	Poor	Carb., sist.	-	
SWC 35	2744.0	Neg I .	-	-	-	-	Carb., slst.	-	
SWC 34	2801.4	Neg I .	-	-	-	-	Coal	-	
SWC 33	2892.9	-	-	-	-	-	Sist.	-	
SWC 30	2960.0	High	-	Hlgh	-	Falr	Sist., carb.	-	
SWC 29	2980.9	High	-	Med i um	-	Fair	Ss.	-	

ę

WHITING-2

.....

								DIVERSITY S&PI D		nedlum high 10-30 greater than 30 3-10 10
SAMPLI NO.	E	DEPTH (m)	YI SPORE-POLLEN	ELD D I NOS	Dive Spore-Pollen	RSITY DINOS	PRESERVATION /	LITHOLOGY	PYRIZATION	COMMENTS
SWC 2	:6	3049.9	Negl.	_		_	-	Ss.	-	
SWC 2	5	3075.0	Neg i .	- *	-	-	-	Carb., ss.	-	
SWC 2	3	3120.0	Low	-	Med i um	-	Poor	Ss.	-	
SWC 2	90	3133.5	Fair	-	Medium	-	Poor	Sist.	-	contaminated
SWC I	9	3165.0	V. low	-	Low	-	Poor	Sist., carb.	-	
SWC I	4	3235.0	Low	-	Medium	-	V. poor	Sist.	-	contaminated
SWC (6	3300.5	High	-	Medium	-	V. poor	Carb. shale	-	
SWC ·	4	3318.0	Negl.	-	-	-	- 、	Sist.	-	
SWC :	2	3329.8	Fair	-	High	-	V. poor	Sist.	-	
SWC 13	52	3417.3	-	-	- '	-	-	Coal	-	
SWC 12	9	3434.0	Low	-	Med i um	-	V. poor	Sist., carb.	-	
SWC 12	21	3489.0	Fair	-	Low	-	V. poor	Slst., carb.	-	
SWC 12	0	3492.3	Fair	-	Low	-	V. poor	Sist./coal	-	
SWC I	18	3515.0	Low	-	Medium	-	V. poor	Sist.	-	
SWC I	14	3534.3	-	-	-	-	-	Slst., carb.	-	
SWC I	12	3548.2	-	-	-	-	-	Coal	-	

1988L/24

;