PE990592

PALYNOLOGICAL ANALYSIS SUNFISH-2, GIPPSLAND BASIN

by

M.K. Macphail.

Esso Australia Ltd.

March, 1984

Palaeontology Report 1984/9.

0772L

INTERPRETATIVE DATA

INTRODUCTION SUMMARY TABLE GEOLOGICAL COMMENTS DISCUSSION OF AGE ZONES TABLE-1 INTERPRETATIVE DATA TABLE-2 ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE POLLEN PALYNOLOGY DATA SHEET

Ì

GEOLOGICAL COMMENTS

- Although Lower and Upper M. diversus Zone age sediments were not recorded, the interval between 1634.0 and 1721.2m was poorly sampled and it is likely that deposition at the Sunfish-2 well was continuous from the Late Cretaceous <u>Tricolporites apoxyexinus</u> Zone to the Early/Middle Eocene <u>Proteacidites asperopolus</u> Zone. Sediments of <u>T. apoxyexinus</u> (= <u>T. pachyexinus</u>) Zone age have not been previously recorded in the Gippsland Basin.
- 2. The base of the Lakes Entrance Formation is picked on lithological characteristics and electric logs as occurring at 1615.5m. The spore-pollen data support foraminiferal evidence (Hannah 1984) for a major unconformity at the top of Latrobe. This represents all or part of Late Eocene, Oligocene and possibly early Early Miocene time. It is possible that the sandstones between 1634.6 and 1615.7m, dated as P. asperopolus Zone in age, includes a condensed sequence of lowermost Lower N. asperus Zone sediments. Absence of (i) greensands referable to the Gurnard Formation and (ii) calcareous sediments of Oligocene and Early Miocene (Zone H₁) age suggests substantial erosion has taken place (see Rexilius, 1984).
- 3. Dinoflagellates occur in low numbers in the top 3m of the Latrobe Group coarse clastics but the first unequivocal evidence of a marine environment within this Group is at 1683.8m. This sample contains <u>Apectodinium hyperacantha</u> and is likely to represent a <u>M. diversus</u> Zone marine transgression. Unlike in Sunfish-1 (5580 ft, Stover 1974) there is no evidence for a Lower <u>M. diversus</u> Zone marine transgression equivalent to that recorded in the Rivernook Bed, Princetown Section, Otway Basin (Cookson & Eisenack 1967)
- 4. Earlier marine or marginal marine environments are recorded between 1838.4 to 1943.3m (Upper L. balmei Zone) and at 2089.0m (Upper T. longus Zone). The latter can almost certainly be correlated with the <u>Isabelidium (Deflandrea) druggii</u> marine transgression defined by Partridge (1976).
- 5. Because of relatively poor sample control in Sunfish-1, it is difficult to compare this well with Sunfish-2. Nevertheless several major inconsistencies appear to exist:

(a) In Sunfish-2, the Upper L. <u>balmei</u> Zone sediments are thick (ca 210m) relative to the Lower L. <u>balmei</u> section (ca 74m) with the total possible

thickness of <u>L</u>. <u>balmei</u> sediments being about 390m. The "<u>T</u>. <u>longus</u> seismic horizon" appears to occur within the Upper L. balmei Zone. In Sunfish-1 one sample only (5790') has been dated as Upper <u>L</u>. <u>balmei</u> Zone in age and the total possible thickness of <u>L</u>. <u>balmei</u> sediments is ca. 280m. The "<u>T</u>. <u>longus</u> seismic horizon" occurs within an undated interval below some 60m of Lower <u>L</u>. <u>balmei</u> sediments.

(b) Marine sediments of <u>Isabelidinium</u> <u>druggii</u> Zone age occur in both wells: at 6510' (1984m) in Sunfish-1 and 2089m in Sunfish-2. The former depth is considerably higher than would be anticipated given the structural relationship between the two wells.

(c) The Sunfish-1 well bottomed in sediments identified as Early Cretaceous (<u>Coptospora paradoxa</u> Zone) in age. Conversely Sunfish-2 bottomed in sediments no older than the Late Cretaceous <u>Clavifera triplex</u> Zone in age. It is noted that virtually all of the spores used by Stover (1974) to assign a C. <u>paradoxa</u> Zone age to the interval between 8000' and 8152' in Sunfish-1 are found reworked into Late Cretaceous sediments.

BIOSTRATIGRAPHY

The zone boundaries have been established using the criteria of Stover & Evans (1973), Stover & Partridge (1973), subsequent proprietary revisions including Macphail (1983), and palynological range data for Morum-1 well, Otway Basin.

Tricolporites apoxyexinus Zone 2639.0m

One sidewall core sample has been assigned to this age on the basis of (i) <u>Tricolpites vergillus</u>, a species which in Morum-1 first appears in this zone and (ii) the absence of <u>Nothofagidites</u>, a taxon which first appears in the overlying <u>N. senectus</u> Zone. The occurrence of <u>Phyllocladidites mawsonii</u> and undescribed <u>Tricolpites</u> and <u>Proteacidites</u> spp. (abundant) demonstrate the sample is no older than C. <u>triplex</u> Zone in age.

Nothofagidites senectus Zone 2534.8 - 2630.5m

Seven samples have been assigned to this zone. The lowermost three, at 2630.5, 2621.1 and 2599.6m lack <u>Nothofagidites</u> but contain either <u>Tricolpites</u> <u>sabulosus</u> or <u>Proteacidites</u> <u>otwayensis</u>, species which in Morum-1 first appear in the <u>N. senectus</u> Zone. The first appearance of <u>Nothofagidites</u>, including the nominate species <u>N. senectus</u>, is at 2564.0m. The upper boundary is picked at 2534.8m, the highest sample containing <u>Nothofagidites</u>, <u>Tricolpites</u> <u>sabulosus</u> and <u>T. vergillus</u> but lacking species first appearing in the overlying <u>T. lilliei</u> Zone. A feature of this latter zone and the <u>N. senectus</u> Zone is the presence (due to reworking ?) of spores which are usually indicative of an Early Cretaceous age.

Tricolporites lilliei Zone 2437.0-2530.8m

The base of the <u>T</u>. <u>lilliei</u> Zone is defined by the first appearance of <u>Gambierina rudata</u> at 2530.8m. Although <u>G</u>. <u>rudata</u> is present throughout, it is always much less common than <u>Nothofagidites</u>. The first appearance of the nominate species, Tricolporites lilliei, is at 2477.7m.

Lower Tricolpites longus Zone 2421.2-2284.9m

The base of the Lower <u>T</u>. <u>longus</u> Zone is defined by the first appearance of the nominate species <u>Tricolpites</u> longus. This sample contains relatively frequent Nothofagidites and occasional occurrences of species which become frequent

within the Upper <u>T. longus</u> Zone, e.g. <u>Proteacidites clinei</u>, <u>P. palisadus</u> and <u>P. reticuloconcavus</u>, but lacks <u>Tetracolporites verrucosus</u> and <u>Stereisporites</u> <u>punctatus</u>. <u>Gambierina</u> <u>rudata</u> and <u>Triporopollenites</u> <u>sectilis</u> become uncommon upwards through the zone. The upper boundary of the Zone is defined by the occurrence of <u>Quadraplanus</u> <u>brossus</u> in a <u>Gambierina</u> <u>rudata</u>-dominated assemblage which lacks species first appearing in the Upper <u>T. longus</u> Zone.

Upper Tricolpites longus Zone 2269.5-2089.Om

Palynofloras within this interval are dominated by <u>Cambierina rudata</u> and include at least several <u>Proteacidites</u> <u>clinei</u>, <u>P. gemmatus</u>, <u>P. otwayensis</u>, <u>P. palisadus</u>, <u>P. reticuloconcavus</u>, <u>P. wahooensis</u>, <u>Quadraplanus</u> brossus, <u>Tricolporites</u> <u>lillei</u>, <u>Tricolpites</u> <u>longus</u>, <u>T. waiparensis</u>, <u>Tetracolporites</u> <u>verrucosus</u>, <u>Stereisporites</u> <u>punctatus</u> and <u>S. regium</u>. The base of the zone is defined by the first appearance of <u>Proteacidites</u> <u>gemmatus</u> and <u>Stereisporites</u> <u>punctatus</u>, at 2269.5m. <u>Dilwynites</u> <u>granulatus</u> first occurs at 2268.1m. The upper boundary is picked at 2089.0m, based on occurrences of the Late Cretaceous dinoflagellate species <u>Isabelidinium</u> <u>druggii</u> and the very rare spore <u>Ornamentifera</u> <u>sentosa</u>. Neither species is known to range above the Upper <u>T. longus</u> Zone. The sample also contains frequent occurrences of <u>Stereisporites</u> <u>punctatus</u> and <u>Tetracolporites</u> verrucosus but is unusual in that <u>Lygistepollenites</u> <u>balmei</u> is frequent. This suggests the sample lies closer to the <u>L. balmei/T. longus</u> Zone boundary than is usually the case with <u>T. longus</u> Zone age sidewall core samples taken in the Gippsland Basin.

Lower Lygistepollenites balmei Zone 1999.1-2073.Om

Samples within this interval are dominated by <u>Proteacidites</u> and gymnosperm pollen but the nominate species, <u>Lygistepollenites</u> <u>balmei</u>, does not become frequent until 1999.lm. The first occurrence of species which first appear in the <u>L. balmei</u> Zone is considerably higher up the section again: six grains of <u>Polycolpites langstonii</u> at 1915.Om. The lower boundary is placed at 2073.Om, a sample containing <u>Tetracolporites verrucosus</u> and <u>Proteacidites angulatus</u>. These species typically range no higher than the Lower <u>L. balmei</u> Zone and species restricted to the Late Cretaceous are absent. The upper boundary is provisionally picked at 1999.lm, the highest <u>L. balmei</u> Zone sample lacking zone indicator species of Upper <u>L. balmei</u> Zone. The common occurrence of <u>Herkosporites elliottii</u> in this sample supports the age-determination.

Upper Lygistepollenites balmei Zone 1768.5-1978m

The lower boundary is picked at 1978.Om, based on the occurrence of Verrucosisporites kopukuensis and frequent Gleicheniidites. As is usually the case in L. balmei Zone sections of Gippsland wells, the first occurrence of V. kopukuensis lies below occurrences of species which are usually reliable indicators of the Lower L. balmei Zone. For example Proteacidites angulatus is common at 1966.Om; Tetracolporites verrucosus and the Late Cretaceous species Tetradopollis securus and Camarozonosporites horrendus occur at 1934.Om; Jaxtacolpus pieratus occurs in a marine sample at 1915m. Occurrences of Verrucosisporites kopukuensis are continuous from 1915.Om up to the upper boundary at 1768.5m, defined by the simultaneous occurrence of V. kopukuensis, Cyathidites gigantis with abundant Lygistepollenites balmei and Gleicheniidites. Preservation and diversity are unusually good over this (largely marine) interval and anomalous occurrences of several Eocene species may represent real extensions of range into the Paleocene e.g. Gemmatricolporites divaricatus and Triporopollenites ambiguus. There is now no doubt that 'Eocene' taxa such as Ilexpollenites anguloclavatus, Matonisporites ornamentalis and Polycolpites esobalteus first appear within the L. balmei Zone. The dinoflagellate species Glaphryacysta retiintextum is frequent at 1934.Om and Apectadinium homomorpha present to frequent in good dinoflagellate assemblages over the interval 1934.0 to 1834.4m.

Lower Malvacipollis diversus Zone 1721.2m

One sample, at 1721.2m, is provisionally assigned to this zone on the basis of a single, poorly preserved specimen of <u>Cyathidites gigantis</u>. This species has not been recorded above the Lower <u>M</u>. <u>diversus</u> Zone but it is noted that the sample also contains <u>Banksieacidites elongatus</u>, a species first appearing in the Middle <u>M</u>. <u>diversus</u> Zone and <u>Tricolporites moultonii</u>, which is rarely recorded below the same zone. The samples at 1699.6 and 1683.8m cannot be precisely dated, but are no older than Lower M. diversus Zone in age.

Proteacidites asperopolus Zone 1615.7-1634.6m

Three samples, including the top sample of the Latrobe Group coarse clastics are assigned to this zone. The lowermost, at 1634.6m, contains <u>Proteacidites</u> <u>asperopolus</u>, <u>P. rugulatus</u> and <u>Sapotaceoidaepollenites</u> rotundus, species which first appear at or within this zone. <u>Myrtaceidites</u> tenuis, a species which ranges no higher than the <u>P. asperopolus</u> Zone is present at 1618.2m and, in association with <u>Proteacidites</u> asperopolus and <u>Tricolpites</u> incisus, at 1615.7m. Although this combination of taxa by definition defines the interval as <u>P. asperopolus</u> Zone in age, <u>Nothofagidites</u> pollen are rather more common (up to 24%) than is usually the case in <u>P. asperopolus</u> Zone palynofloras. This

- 8 -

fact plus isolated occurrences of typically <u>N</u>. <u>asperus</u> Zone taxa, e.g. <u>Proteacidites vesicus</u> and <u>Proteacidites reticulatus</u> at 1618.2m, makes it possible that the section extends into lower Lower <u>N</u>. <u>asperus</u> Zone time. Species whose first appearance defines the Lower <u>N</u>. <u>asperus</u> Zone, e.g. Tricolporites leuros, T. delicatus and <u>Nothofagidites</u> falcatus, are absent.

Proteacidites tuberculatus 1499.7-1613.9m

Occurrences of <u>Cyatheacidites annulatus</u> at 1611.6 and 1499m confirm a <u>P</u>. <u>tuberculatus</u> Zone age for this interval. The sample at 1613.9m lacks <u>C</u>. <u>annulatus</u> but is included in this zone on the basis of (i) the dinoflagellate species <u>Dinosphaera pontus</u> and <u>D</u>. <u>vietus</u> and (ii) a general similarity to the above samples.

REFERENCES

- COOKSON, T.C. & EISENACK, 1967. Microplankton from the Paleocene Rivernook Bed, Victoria. Proc. Roy. Soc. Vict., 80, 247-258
- HANNAH, M.J., 1984. Micropalaeontological analyses of Sunfish-2 Gippsland Basin, Victoria. Esso Australia Ltd., Palaeontological Report 1984/1.
- MACPHAIL, M.K., 1984. Revision of the Maastrichtian <u>T</u>. <u>longus</u> Zone based on palynological data from the Hapuka-l and Pilotfish-lA wells, Gippsland Basin. Esso Australia Ltd., Palaeontolgocal Report 1983/19.
- PARTRIDGE, A.D., 1976. The geological expression of eustacy in the Early Tertiary of the Gippsland Basin. APEA Jour. (1976):73-79.
- STOVER, L.E., 1974. Palynological interpretation for Sunfish-1, Gippsland Basin, Australia. <u>Esso Production Research Company, Palaeontological</u> Report 1974/07.
- STOVER, L.E. & EVANS, P.R., 1973. Upper Cretaceous spore-pollen zonation, offshore Gippsland Basin, Australia. Spec. Publ. Geol. Soc. Aust., 4, 55-72.
- STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. <u>Proc. Roy.</u> <u>Soc. Vict.</u>, 85, 237-86.

0772L

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS SUNFISH-2

.

.

INTERPRETATIVE DATA

SAMPLE '	DEPTH		DIVERSITY			C	ONF IDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE R	ATING	
	1400.7	Fair		Siet onlo	P tuborculatur	Early-Middle Eocene	0	C appulate D simpley
	1499.7	Fair	Low	Sist., calc.	P. tuberculatus	n	0	<u>C. annulata, D. simplex</u>
WC 89	1611.6	Good	Low	Sist., calc.	P. tuberculatus			C. annulata, reworked G. rudata
WC 88	1613.9	Fair	Low	Sist., calc.	P. tuberculatus		2	<u>D. pontus, D. vietus</u>
WC 87	1615.7	Good	High	Ss.	P. asperopolus	*	I	<u>M. tenuis, P. asperopolus</u>
WC 86	1618.2	Good	High	Ss.	P. asperopolus	64	2	M. tenuis, P. pachypolus
WC 84	1623.9	Fair	Fair	Ss.	Indeterminate		-	
WC 83	1634.6	Good	High	Ss.	P. asperopolus	**	1	P. asperopolus, P. rugulatus
WC 82	1659.0	NII	-	Ss.	Indeterminate			
WC 117	1683.8	V. Low	Low	Sist. ss.	No older than Lower <u>M</u> .	diversus Zone		A. homomorpha
WC 116	1699.6	V. Low	Low	Sist.	No older than Lower <u>M</u> .	diversus Zone		P.latrobensis, reworked Late Cret.spo
WC 115	1721.2	Good	High	Sist.	Lower M. diversus	Early Eccene	0	C.gigantis, T.moultonii, P.esobalteus
WC 113	1768.5	V. good	High	Ss.	Upper L. baimei	Paleocene	0	L.baimei common, C.gigantis, L.ampius
WC 112	1784.2	Good	Low	Ss.	Upper L. balmel	Paleocene	i	<u>L. balmei</u> abundant, <u>V. kopukuensis</u>
WC 110	1819.5	V. good	Low	Sist.	L. balmei	Paleocene	-	L. balmei common, A. obscurus
WC 109	1838.4	V. good	High	Sh., carb.	Upper L. <u>balmel</u>	Paleocene	0	L.balmel abund., P.incurvatus, V.
								kopukuensis, G.Edwardsii, P.langstoni
WC 108	1853.1	V. good		Sist., carb.	Upper L. baimel	Paleocene	0	as for SWC 109
WC 107	1867.5	Good	Fair	Sh., carb.	Upper L. balmel	Paleocene	2	L.balmel abund., Gleicheniidites freq
WC 106	1882.9	V. good	High	Sist., carb.	Upper L. balmei	Paleocene	0	C.gigantis, V.kopukuensis,
		· 3	·· 3···					P.incurvatus, P.langstonii (freq.),
								G.rudata, G.edwardsli

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS SUNFISH-2

.

•

.

INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONFIDENCE	COMMENTS	
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING		
SWC 105	1898.1	Good	High	Sh., carb	Upper <u>L. baimei</u>	Paleocene	I	<u>Gleicheniidites</u> & <u>L.baimei</u> abundant,	
SWC 104	1915.0	V. good	High	Sist., carb.	Upper <u>L. baimei</u>	Paleocene	1	kopukuensis L.baimei abudant, V.kopukuensis	
SWC 103	1934.0	Good	High	Sist., carb.	Upper L. balmel	Paleocene	2	L.balmei common, <u>P.annulares</u>	
SWC 66	1943.3	Fair	Low	Sist., carb.	L. baimei	Paleocene	-	G. rudata	
SWC 64	1978.0	Falr	Low	Sh.	Upper L. balmei	Paleocene	1	L. balmel & Gleicheniltes frequent, V	
								kopukuensis	
SWC 63	1999 . 1	Good	Fair	Sist.	Lower L. <u>baimei</u>	Paleocene	2	H. elliottii common	
SWC 62	2014.6	Fair	Low	Sist.	Lower L. <u>balmel</u>	Paleocene	2	Proteacidites dominant, P.angulatus	
								abundant	
SWC 61	2032.2	Fair	Low	Sist.	Lower L. balmel	Paleocene	2	as above	
SWC 60	2045.2	Low	Fair	Sist.	Lower L. baimei	Paleocene	2	L.balmei & B.otwayensis frequent	
SWC 59	2057.8	Low	Fair	Ss., carb.	Lower L. balmel	Paleocene	1	T. verrucosus	
SWC 57	2073.0	Good	Fair	Sist., carb.	Lower L. balmel	Paleocene	I	Proteacidites abundant, D. granulatus	
		,						<u>T. phillipsii</u> & <u>T. verrucosus</u> frequer	
SWC 56	2089.0	Good	Falr	Sist., carb.	Upper <u>T. longus</u>	Maastrichtian	0	O. sentosa, I. druggii, S. punctatus,	
								T. verrucosus, P. gemmatus, T. securi	
								T. walparensis	
SWC 55	2102.7	Good	High	Sist., carb.	Upper T. longus	Maastrichtian	0	T. longus, S. punctatus, P. wahooens	
								P. otwayensis, P. palisadus, P. cline	
								<u>G. rudata</u> frequent	

.

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS SUNFISH -2

INTERPRETATIVE DATA

SAMPLI	E	DEPTH		DIVERSITY				CONF IDENCE	COMMENTS
NO.		(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
SWC :	54	2116.7	Low	Fair	Ss.	Upper <u>T.</u> longus	Maastrichtian	0	Q. brossus, T. longus, S. punctatus,
								_	verrucosus
WC !	53	2135.1	Good	High	Sist., carb.	Upper T. longus	Maastrichtian	0	as SWC 53 with T. verrucosus &
								•	<u>S. punctatus</u> frequent
WC !	52	2150.2	Good	High	Sist.	Upper <u>T. longus</u>	Maastrichtian	0	P.gemmatus, S.punctatus (common), Q.
				••					brossus, P.reticuloconcavus, T.sectil
		2165.0	Negligible	SS.	-	Indeterminate	M+	A	
		2224.8	Good	Fair	Sist., coaly	Upper <u>T. longus</u>	Maastrichtian	0	T.verrucosus, S.punctatus, J.pieratus
		2241.9	Fair	High	SS., carb.	Upper T. longus	Maastrichtian	0	T.longus, T.verrucosus, P.angulatus
•		2254.6	Good	Fair	Slst., carb.	Upper T. Longus	Maastrichtian	1	<u>G. rudata</u> abundant, <u>P. gemmatus</u>
		2268.1	Good	Fair	Sist., coaly	Upper <u>T. longus</u>	Maastrichtian	1	as above plus <u>D.</u> <u>granulatus</u>
		.2269.5	Good	High	Sist.	Upper T. longus	Maastrichtian	0	as above plus <u>S. punctatus</u>
WC 4	42	2284.9	V. good	High	Sist., coaly	Lower T. longus	Late Cretaceous	!	<u>N. endurus & G. rudata</u> abundant, <u>T.</u>
									<u>sectilis</u> (common), <u>Q. brossus</u> , <u>T.</u>
					.	town T towns	Lata Castanaana	2	<u>lililei, T. waiparensis, P. polyoratu</u>
WC 4	41	2295.1	Low	Fair	Coal	Lower T. longus	Late Cretaceous	2	N. endurus & G. rudata common, T.
									securus, T. waiparensis, N. flemingli
					Mala		_		<u>T. sectilis</u> (frequent)
		2361.1	Barren	-	Volcanic	- No older then T (1111a)	-	_	<u>N. endurus</u> frequent, <u>S. regium, T.</u>
WC :	ככ	2393.6	Good	Fair	Ss., carb.	No older than <u>T. IIIIIe</u>			waiparensis
	21	2421 2	5-1-	Mah	Sist.	Lower T. longus	Late Cretaceous	1	T.longus, P.palisadus, P.reticuloconcav
	31	2421.2	Fair	High Sala			Late Cretaceous	2	G. rudata, T. sabulosus, T. sectilis
		2437.0 2477.7	Fair Good	Fair Fair	Sist. Sist., coaly	<u>T. 1111101</u> T. 1111101	Late Cretaceous	2	T.IIIIei, G.rudata. N.endurus (freq.

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS SUNFISH-2

INTERPRETATIVE DATA

AMPLE DEPTH		DEPTH		DIVERSITY	Y	α	CONF IDENCE	COMMENTS	
NO.		(m)	YIELD	SPORE POLLEN	L I THOLOGY	ZONE	AGE	RATING	
		· · · · <u>-</u> ··					· · ·		
WC	27	24900.0	Barren	-	Ss.	-	-	-	
WC	26	2509.0	Barren	-	Volcanic	-	-	-	
WC	23	2521.7	Fair	Fair	Sist., carb.	T. IIIIiei	Late Cretaceous	2	N. endurus common, <u>T. sabulosus</u> ,
									P. polyoratus
WC	22	2523.1	Low	Low	Sist.	No older than <u>T. IIIIIe</u>	<u>i</u>	-	T. sabulosus
WC	20	2530.8	Low	Low	Sist.	<u>T. 111101</u>	Late Cretaceous	2	G. <u>rudata</u>
WC	19	2534.8	Low	Low	Ss.	N. senectus	Late Cretaceous	I	Nothofagidites spp., T. sabulosus
									T. apoxyexinus, P. amolosexinus
WC	17	2546. I	Low	Low	Ss.	N. senectus	Late Cretaceous	2	Nothofagidites abundant,
									T. sabulosus common
WC	16	2547.6	V. Low	Low	Ss.	N. senectus	Late Cretaceous	2	Nothofagidites, T. sabulosus, T. vergill
WC	П	2559.4	Barren	-	Ss.	Indeterminate		-	
WC	10	2564.0	Low	Fair	Sist.	N. senectus	Late Cretaceous	2	Nothofagidites, T. sabulosus
WC	8	2599.6	Fair	Fair	Coal	N. senectus	Late Cretaceous	I.	P.otwayensis, B.otwayensis, T. vergillu
									L.balmei, A.obscurus
WC	7	2611.0	V. Low	V. low	Sist., carb.	No older than C. triples	Zone	-	P. mawsonii
WC	6	2617.5	Barren			-	-	-	
WC	5	2621.1	Low	Fair	Slst./Sh.	N. senectus	Late Cretaceous	2	T. sabulosus
WC	4	2623.5	Barren	-	Ss.	-	-	-	
WC		2630.5	V. low	Low	Sist.	N. senectus	Late Cretaceous	2	T. sabulosus, Gleichenlidites (commo
WC	2	2636.0	V. low	Low	Sist.	No older than <u>C. triple</u>		-	P. mawson11
πu	∠	2639.0	Good	Fair	Sist., carb.	T. apoxyexInus	Late Cretaceous	2	T. vergillus, abundant Proteacidites

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN SUNFISH-2

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 86	1618.2	P. asperopolus (2)	Periporopollenites vesicus	Very rarely recorded below Lower <u>N. asperus</u> Zone
SWC 86		Ħ	Proteacidites reticulatus	Rarely recorded below middle of Lower <u>N. asperus</u> Zonw
SWC 84	1623.9	P. asperopolus	Periporopollenites vesicus	as above
SWC 84	*	N	Proteacidites reticulatus	as above
SWC 84	*		Phyllociadidites paleogenicus	Rare sp.
SWC 83	1634.6	P. asperopolus (1)	P. paleogenicus	as above
SWC 83		W	Proteacidites callosus	Rare sp.
SWC 83	**	Ħ	Tricolpites reticulatus Cookson	Rare sp.
SWC 115	1721.2	Lower M. diversus (0)	Banksi eacidites.elongatus	Not recorded below Middle <u>M. diversus</u> Zone
SWC 115		W	<u>Clavifera Vultuosus</u>	Very rare ms sp. (A. Partridge)
SWC 113	1768.5	Upper L. balmel (0)	Triporopolienites ambiguus	Not recorded below Middle <u>M. diversus</u> Zone
SWC 113	**		Matonisporites ormanentalis	Unusual below Lower N. asperus Zone
SWC 109	1838.4	Upper L. <u>balmel</u> (0)	Tricolpites gigantis	Rare ms sp. (Macphall)
SWC 109		Ħ	llexpollenites anguloclavatus	Early occurrance
SWC 108	1853.1	Upper <u>L. balmei</u> (O)	Amosopollis cruciformis	Rare sp.
SWC 108		Ħ	Camarozonosporites dumus	Not previously noted in this zone
SWC 108		91	Polycolpites esobalteus	Extends range of species into Upper L. baimel Zone
SWC 108			Tricolpites gigantis	Rare ms sp. (Macphall)
SWC 106	1882.9	Upper L. <u>balmei</u> (O)	llexpollenites anguloclavatus	as above
SWC 106		11	Tricolpites gigantis	Rare ms sp. (Macphail)
SWC 106	Ħ		Triporopolienites ambiguus	See SWC 113
SWC 105	1898.1	Upper <u>L. balmei</u> (1)	llexpollenites anguloclavatus	as above
SWC 104	1915.0	Upper L. balmei (1)	liexpolienites angulociavatus	as above

.

. ABLE .

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN SUNFISH-2

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 104	1915.0	Upper <u>L. balmei</u> (1)	Jaxtacolpus pieratus	Not previously recorded above Lower L. balmei Zone
SWC 103	1934.0	Upper L. <u>baimei</u> (2)	Camorozonosporites horrendus	Not previously noted in this zone
SWC 103	Ħ	•	Tetradopollis securus	Late Cretaceous sp.
SWC 66	1943.3	L. baimei	Deflandrea dartmooria	Lower <u>M. diversus</u> Zone species
SWC 63 -	1999.1	Lower L. balmei (2)	Proteacidites amolosexinus	Late Cretaceous sp. in non marine sediment
SWC 62	2014.6	Lower L. <u>balmel</u> (2)	Schizæa digitatoides	Rare sp.
SWC 57	2073.0	Lower L. <u>balmei</u> (I)	Proteacidites of vulgaris	cf rare ms sp. (Harris)
SWC 56	2089.0	Upper <u>T. longus</u> (O)	Lygistepolienites baimei	Frequent in assemblage
SWC 56	*	н	Ornamentlfera sentosa	Very rare in Maastrichtian
SWC 56	••	M	Proteacidites protograndis	Ms sp. (Macphall)
SWC 53	2135.1	Upper <u>T. longus</u> (O)	Tricolpites vergillus	Rare ms sp. (Partridge)
5WC 53		×	Grapnellspora evansii	Rare sp., tips of processes bifurcated
SWC 53	2150.2	Upper <u>T. longus</u> (O)	Tubulifloridites truswellii	Rare ms sp. (Macphail)
SWC 52	2150.2	Upper <u>T. longus</u> (0)	Grapnelispora evansii	as for SWC 53
SWC 47	2224.8	Upper <u>T. longus</u> (0)	Jaxtacolpus pieratus	Rare sp.
SWC 47		· •	Grapnellspora cf evansli	Tips of processes simple
SWC 47	n	M	Foveogleicheniidites sp.	Rare genus
SWC 42	2284.9	Lower T. longus (1)	Proteacidites vulgaris	Rare ms sp. (Harris)
SWC 42	**	W	Grapnelispora cf evansii	as for SWC 47
SWC 41	2295.1	Lower T. longus (2)	Phyllocladidites paleogenicus	Rare sp.
SWC 31	2421.2	Lower T. longus (1)	Cyclosporites hughesii	Early Cretaceous sp.

.

.

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN SUNFISH-2

SAMPLE NO.	DEPTH(m)	ZONE	TAXON	COMMENTS
SWC 23	2521.7	T. []]][[2]	Periporopollenites polyoratus	First appears in this zone?
SWC 22	2523.1	Indet.	Cyclosporites hughesii	as for SWC 31
SWC 19	2534.8	N. senectus (2)	Tricolpites sabulosus	Forms with and without strongly thickened endexine along
				margins of colpi
SWC 17	2546.1	N. senectus (1)	Tricolpites sabulosus	Population as in SWC 19
SWC IO	2564.0	N. senectus (2)	Foraminisporis asymmetricus	Early Cretaceous sp.
SWC 5	2621.1	N. senectus (2)	Basopollis otwayensis	Early occurrence
SWC 5		· •	Gephyrapollenites wahooensis	Early occurrence

,