

1.

APPENDIX

PALYNOLOGICAL ANALYSIS, PILOTFISH-1A

.

GIPPSLAND BASIN

by

M.K. Macphail.

Esso Australia Ltd. Palaeontology Report 1983/20 0387L March 1983.

INTERPRETATIVE DATA

S.

INTRODUCTION SUMMARY TABLE GEOLOGICAL COMMENTS DISCUSSION OF AGE ZONES TABLE 1 : INTERPRETATIVE DATA PALYNOLOGY DATA SHEET

INTRODUCTION

Forty five (45) sidewall cores were processed and examined for spore-pollen and dinoflagellates. Recovery was usually good and preservation adequate to enable confident age-determinations for most samples (see Table 1). A feature of this well is the unusually good sample control for the <u>T. longus</u> Zone section.

Palynological zones and lithological facies divisions from the base of the Lakes Entrance Formation to the total depth of the well are given below. The occurrences of the more stratigraphically important species are tabulated in the accompanying range chart.

\$ V.

SUMMARY

UNIT FACIES .	ZONE	DEPTH (m)
Lakes Entrance Formation	P. tuberculatus	2914.9
	major unconformity	
	Lower L. <u>balmei</u> assemblage	
Un-named unit	(reworked during Late Eocene to Early Oligocene)	2915.0-2925.0
	unconformity	
Gurnard Equivalent	Lower L. <u>balmei (T. evittii</u> Zone)	2927.0-2935.0
	Lower L. balmei	2937.0-2949.0
······		
Latrobe Group	Upper <u>T. longus</u> (<u>I. druggii</u> Zone)	2961.1-2963.0
Coarse Clastics	Upper <u>T. longus</u>	3014.5-3400.1
	Lower T. longus	3424.5
	<u>T. lilliei</u>	3455.5-3496.0

3505 TD

GEOLOGICAL COMMENTS

- The Pilotfish-IA well contains an apparently continuous sequence of sediments from the Late Cretaceous <u>T. lilliei</u> Zone to the Paleocene Lower <u>L. balmei (T. evittii)</u> Zone. Lower <u>L. balmei</u> Zone sediments of <u>E. crassitabulata</u> and <u>W. homomorpha</u> Zone ages and Upper <u>L. balmei</u> Zone sediments recorded in Hapuku-1 (Partridge 1975) were not recognised and are almost certainly absent.
- 2. The base of the Lakes Entrance Formation, picked on lithological and log characteristics as occurring at 2915.0m corresponds to the first occurrence of a <u>P. tuberculatus</u> Zone flora. Foraminiferal data demonstrate the horizon is Early Miocene in age (Hannah 1983). The sample at 2917.0m contains Late Eocene-Early Oligocene (Zone J2/K) forams, indicating a major unconformity or very condensed sequence occupies most of the Oligocene as in Hapuku-1.
- 3. Gamma-ray and resistivity logs for the glauconite-containing interval between 2915.0m and 2949.0m indicate three sedimentary units are present. The uppermost of these, 2915.0 to 2925.0m, contains only trace amounts of glauconite and is identified as possible Turrum Formation. Samples in this interval contain good dinoflagellate assemblages diagnostic of the Lower L. <u>balmei</u> Zone <u>T. evittii</u> marine transgression (this report) and Late Eocene-Early Oligocene forams (Hannah, ibid). Hence the glauconite and palynomorphs have been derived by redeposition, probably through erosion and bioturbation of the underlying massive greensands. The same formation may be represented by a unit of fine grained sandstone and siltstones containing good Upper <u>N. asperus</u> Zone palynofloras in Hapuku-1. This is equivalent in age to the J2/K forams detailed by Hannah (1983) in Pilotfish-1A from 2915.0 to 2925.0m.
- 4. The middle and lower units, 2927.0 to 2935.0m and 2937.0 to 2949.0m are characterised by large amounts of non-pelletal glauconite but lack forams. Accordingly these greensands are not Gurnard Formation (<u>sensu</u> <u>stricto</u>) and are termed here Gurnard Equivalent. The middle unit contains abundant <u>Palaeoperidinium pyrophorum</u> and is therfore the chronostratigraphic equivalent of the <u>T. evittii</u> Zone marine transgression. The lower unit lacks this dinoflagellate species and accordingly represents a marine sequence chronologically positioned between the <u>T. evittii</u> and <u>I. druggii</u> marine transgressions (see Partridge 1975, 1976).

Glauconitic sediments in Hapuku-1 extends from the Lower <u>L</u>. <u>balmei</u> Zone to the Upper <u>N</u>. <u>asperus</u> Zone. This strengthens the case for considering that erosion of the greensand facies in Pilofish-1A has occurred, removing sediments of Lower <u>L</u>. <u>balmei</u> (<u>E</u>. <u>crassitabulata</u>) to Upper <u>L</u>. <u>balmei</u> Zone ages.

5. The Maastrichtian <u>I</u>. <u>druggii</u> marine transgression is recorded in the uppermost two samples of the <u>T</u>. <u>longus</u> Zone (2961.1 and 2963.0m). This section is separated from the overlying Lower <u>L</u>. <u>balmei</u> Zone greensands by a stratum of barren sandstones, part of which is carbonaceous. It is unclear whether these sediments were deposited in a marine or deltaic environment. No biological indicators of marine deposition are recorded below 2963.0m but the first coal is considerably deeper, at 3028m.

6. The Pilotfish-1A well bottomed in T. lilliei Zone sediments.

BIOSTRATIGRAPHY

The zone boundaries for Tertiary sediments have been established using the criteria of Stover & Evans (1973), Stover & Partridge (1973) and Partridge (1976). The Cretaceous sediments have been zoned according to the criteria proposed in Macphail (1983).

Tricolporites lilliei Zone: 3495.0 to 3455.5m.

As is usually the case with the deeper samples within the Late Cretaceous sediments, samples from this zone contained poorly preserved palynofloras dominated by gymnosperm and <u>Proteacidites</u> pollen. The two samples assigned to this zone contain species which first appear in the <u>T. lilliei</u> Zone, eg. <u>Tricolpites waiparensis</u>, <u>Triporopollenites sectilis</u> and <u>Proteacidites reticuloconcavus</u> (see Partridge 1975) and lack species indicative of the <u>T. longus</u> Zone. The occurrence of <u>Periporopollenites</u> <u>polyoratus</u> at 3496.Om supports the conclusion (Table 1 <u>in</u> Stover & Evans 1973) that, unlike in Bass Basin wells, the species ranges lower than the <u>T. longus</u> Zone in the Gippsland Basin. <u>Tricolporites lilliei</u> is first recorded at 3455.5m.

Lower T. longus Zone: 3424.5m.

One sample is assigned to this zone, based on the occurrence of the nominate species in an assemblage lacking indicator species of the Upper T. longus Zone.

Upper T. longus Zone: 3400.1 to 2961.1m.

The base of the zone is defined by the first appearance of Stereisporites (Tripunctisporis) punctatus at 3400.1m. This sample contains abundant Cambierina as well as the first occurrence of Proteacidites otwayensis. Proteacidites gemmatus is first recorded at 3383.5m and Proteacidities palisadus and Concolpites leptos at 3363.5m. Tetracolporites verrucosus occurs (with Proteacidites wahooensis) at 3263.1m and frequently thereafter within the section. Of interest is the occurrence, apparently in situ, of Beaupreadites elegansiformis/verrucosus at 3294m. This species complex is usually a reliable indicator of Middle M. diversus or younger sediments but may well be one of a small number of taxa with as yet unexplained disjunct age ranges. The sidewall core samples at 3039.0 and 3014.5m contained particularly rich palynofloras, including Grapnelispora evansii and Quadraplanus brossus as well as the typical <u>T. longus</u> indicator species. The latter (3014.5m) contained an undescribed Tricolporites species ca. 80, u in diameter. This species has been previously recorded in T. longus Zone sediments in Wahoo-1 and may prove to be stratigraphically useful.

The uppermost two samples, at 2963.0m and 2961.1m contained well preserved dinoflagellates in addition to diverse spore-pollen assemblages including <u>Tricolpites longus</u>. The occurrence of <u>Isabelidinium</u> cf. <u>druggii</u> and <u>Deflandrea coronata</u> strongly suggest the section is the chrono stratigraphically equivalent of those recording the <u>I</u>. <u>druggii</u> marine transgression (Partridge 1976) in wells closer to shore.

The upper boundary is placed at the highest occurrence of <u>Tricolpites</u> <u>longus</u> in a rich spore-pollen assemblage including distinctive and large named and unnamed <u>Proteacidites</u> spp. (2961.1m). This is overlain by 10m of barren sandstones.

Lower Lygistepollenites balmei Zone: 2949.0 to 2919.0m.

The section is characterised by species-poor spore-pollen assemblages and diverse, well-preserved dinoflagellates. Age-determinations are based entirely on the latter since reworked Upper Cretaceous species including <u>Proteacidites otwayensis</u> and <u>P. reticuloconcavus</u> occur throughout the section. Nevertheless it is noted that the poor diversity of the palynofloras, abundance of small indeterminate <u>Proteacidites</u> spp. and sporadic occurrences of <u>Lygistepollenites balmei</u>, <u>Tetracolporites</u> <u>verrucosus</u>, <u>Australopollis obscurus</u>, <u>Basopollis</u> spp., <u>Stereisporites</u> <u>regium</u>, <u>Proteacidites gemmatus</u> and <u>Tricolpites gillii</u> are entirely

- 6 -

consistent with a Lower L. <u>balmei</u> Zone age. The sole possible (see p. 5) anomaly noted is the occurrence of <u>Beaupreadites verrucosus</u> at 2925.Om. The presence of <u>Parvisaccites catastus</u> at 2921.Om and <u>Tetracolporites</u> <u>multistrixus</u> at 2941.Om demonstrate these samples are no older than Lower L. <u>balmei</u> Zone in age. The (?) algal species <u>Amosopollis cruciformis</u> is unusually infrequent within the zone. Excellent preservation suggests this sporomorph has been locally derived.

The base of the zone is provisionally placed at 2949.0m on the basis of a sparse <u>Gambierina-Proteacidites</u> assemblage in which a single specimen of <u>Proteacidites reticuloconcavus</u> is the sole Upper Cretaceous indicator species. It is noted that the sample immediately below (2951.0m) is lithologically part of the same glauconite unit and both samples contain the dinoflagellate <u>Hystrichosphaeridium tubiferum</u>, absent in the <u>T. longus</u> Zone interval.

The Lower <u>L</u>. <u>balmei</u> Zone indicator dinoflagellates <u>Deflandrea medcalfii</u> and <u>Palaeoperidinium pyrophorum</u> first occur at 2947.0m and 2935.0m respectively. The latter species occurs consistently from 2935.0 to 2919.0m indicating the section is chronostratigraphically equivalent to the <u>I. evittii</u> Zone. The highest occurrence of <u>P. pyrophorum</u> defines the top of the Lower <u>L. balmei</u> Zone in this well. As noted under Geological Comments, foraminiferal data indicate the interval 2917.0 to 2925.0m has been reworked during the Late Eocene to Early Oligocene.

REFERENCES

<u>.</u> .

- HANNAH, M.J., 1983. Micropalaeontological analysis of Pilotfish-1A, Gippsland Basin, Victoria. <u>Esso Australia Ltd</u>., Palaeontological Report 1983/16.
- MACPHAIL, M.K. 1983). Revision of the Maastrichtian <u>T</u>. <u>longus</u> Zone based on Palynological data from Hapuku-1 and Pilotfish-1A wells. <u>Esso Australia Ltd</u>. Palaeontological Report, 1983/19.
- PARTRIDGE, A.D., 1975. Palynological Analysis of Hapuku-1, Gippsland Basin, Victoria. <u>Esso Australia Ltd</u>., Palaeontological Report 1975/13.
- PARTRIDGE, A.D., 1976. The geological expression of eustacy in the Early Tertiary of the Gippsland Basin. <u>Apea</u> (<u>1976</u>), 73-79.
- STOVER, L.E. & EVANS, P.R., 1973. Upper Cretaceous spore-pollen zonation, Offshore Gippsland Basin, Australia. <u>Spec. Publ. Geol. Soc. Aust.,</u> 4, 55-72.
- STOVER, L.E. & PARTRIDGE, A.D. 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. Proc. Roy. Soc. Vict. 85, 237-86.

PALYNOLOGY DATA SHEET

ΒA	SIN:	GIPPSLAN	D			$\mathbf{E}\mathbf{L}$	EVATION	: КВ:	21.0	m GL:	-205	.6m
WELI	L NAME:	PILOTFIS	H-lA			то	TAL DEP	TH:	3505	m		
щ	PALY	NOLOGICAL	OGICAL HIGHEST DAT			A	LOWEST DATA					
0 4		ZONES	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Ti:
	T. ple.	istocenicus	Depar	ing	Depin					Depti		
	M. lip											
NEOGENE		urcatus										
	T. bel											
	P. tub	erculatus	2911.1	0				2914.9	· 0		1	
	Upper	N. asperus			· · · · · · · · · · · · · · · · · · ·						1	†
	Mid N.	asperus								· · · · · · · · · · · · · · · · · · ·		
ω	Lower	N. asperus										
PALEOGENE	P. asp	eropolus										
E O	Upper .	M. diversus										
PA	Mid M.	diversus										
	Lower	M. diversus										
	Upper .	L. balmei										
	Lower .	L. balmei	2919.0	1				2949.0	2	2935.0	1	
	T. long	gus	2961.1	0				3424.5	0			
SUC	T. 1i1.	liei	3455.5	2				3496.0	2			
ACE	N. sene	ectus										
CRETACEOUS	U. T. 1	pachyexinus									·	
	L. T.)	pachyexinus										
LATE	C. tri	plex										
	A. dis	tocarinatus								-,		
E.	C. para	adoxus										
CRE	C. str	iatus										
		nmetricus			•							
EARLY		thaggiensis								<u> </u>		
ш	_I	traliensis										
	PRE-CRI	ETACEOUS	· · ·	24								
CO	MMENTS:	Ages of 1	Late Creta	ceou	s samples	hav	e been d	determined	l usir	ng criteri	la pr	opc
		by Macpha	ail, M.K.	(198	3) Palyno	logi	cal Anal	lysis, Pil	otfis	sh-lA, Gip	psla	and
		Basin. 1	Esso Austr	alia	Ltd. Pal	aeon	tology I	Report 198	33/20			
											· · · · · · · ·	
	NFIDENCE		Core, Excellen						-			
R	ATING:		Core, <u>Good Co</u> Core, Poor Coi				-	-	-	ollen or micr en and/or mic		
		3: Cuttings,	Fair Confider						-		-	
		or both. 4: Cuttings,	No Confidence	e, as	semblage with	ı non-	diagnostic	spores, polle	n and/o	or microplant	ton.	
NOT	ГЕ:	If an entry is gi										ild be
		entered, if poss		•		-	•					
		unless a range o limit in anothe		a who	are the highes	r possi	ore runit i	viii appear in	one zo	ae and the lo	west	102211
DAT	fa record	DED BY:	M.K. Macph	ail			D	ATE: 8	Marc	ch, 1983.		
			· · · · · · · · · · · · · · · · · · ·	•••••				• <u>—</u>				
DAT	TA REVISE	ED BY:					D.	ATE:				

1

- 7

· ·]

TABLE 1.

SUMMARY OF PALYNOLOGICAL ANALYSIS, PILOTFISH-IA, GIPPSLAND BASIN.

INTERPRETATIVE CHART

			DIVERSITY				CONF I DENC	æ
SAMPLE	DEPTH(m)	YIELD	SPORE-POLL	EN LITHOLOGY	ZONE	AGE	RATING	COMMENTS
102	960.0	V. Low	Low	Lst., silty	Indeterminate		-	
76	2670.0	Good	Low	Sist.	Indeterminate		-	
52	2907.0	V. Low	Low	Sist.	Indeterminate	•	-	
50	2911.1	Good	Low	Sist.	P. tuberculatus		0	<u>C. annulatus</u> frequent.
48	2914.9	Good	Low	Sist.	P. tuberculatus		0	C. annulatus frequent, F. lacunosus.
47	2917.0	V. Low	Low	Ss.,Tr.glau.	Indeterminate		-	Reworked <u>G. rudata</u> , <u>P. otwayensis</u> .
46	2919.0	Good	Moderate	Ss.,Tr.glau.	Lower L. baimei	Paleocene	I.	Palaeoperidinium pyrophormum, P.otwayensis.
45	2921.0	Fair	Low	Ss., glau	Lower L. balmet	Paleocene	I	P.pyrophormum, P.catastus, L.balmei, Allocyst
								circumtabulata, A.margarita
44	2923.0	Fair	Moderate	Ss., glau	Lower L. balmei	Paleocene	1	P.pyrophormum
43	2925.0	Good	Moderate	Ss., glau	Lower L. balmel	Paleocene	I	P.pyrophormum, S.regium, B.verrucosus
42	2927.0	Good	Low	Glau.	Lower L. balmei	Paleocene	1	P.pyrophormum
41	2929.0	Low	Low	Glau.	Lower L. balmei	Paleocene	1	P.pyrophormum, G.wahooensis
40	2931.0	Fair	Hlgh	Glau.	Lower L. balmei	Paleocene	1	L.balme1, T.verrucosus, C.leptos
39	2933.0	V. Low	Low	Glau.	Indeterminate	-	-	Ceratopsis diebelii
38	2935.0	Good	Moderate	Glau.	Lower L. balmel	Paleocene	1	P. pyrophormum
37	2937.0	Fair	Low	Ss., glau.	Lower L. balmei	Paleocene	2	Deflandrea medcalfi, frequent A. cruciformis
								P. otwayensis.
36	2939.0	V. Low	Low	Ss., glau.	Indeterminate	-	-	A. cruciformis
35	2941.0	Low	Low	Glau.	Lower L. balmei	Paleocene	2	T. multistrixus, L. balmei

- 11 -

TABLE 1.

SUMMARY OF PALYNOLOGICAL ANALYSIS, PILOTFISH-IA, GIPPSLAND BASIN.

INTERPRETATIVE CHART

			DIVERSITY				CONF I DENC	æ
SAMPLE	DEPTH(m)	YIELD	SPORE-POLL	EN LITHOLOGY	ZONE	AGE	RATING	COMMENTS
34	2943.1	V. Low	Low	Glau.	Indeterminate	-	-	
33	2944.9	Fair	Low	Glau.	Lower <u>L. balmei</u>	Paleocene	2	<u>L. balmel. H. cf. harrisli, S. punctatus,</u> <u>D. medcalfii</u>
32	2947.0	Low	Low	Glau.	Lower L. balmel	Paleocene	2	D. medcalfii, frequent H. tubiferum.
31	2949.0	Low	Moderate	Glau.	Lower L. baimei	Paleocene	2	S. regium, P. reticuloconcavus
30	2951.0	V. Low	V. Low	Ss., glau.	Indeterminate	· -	-	H. tubiferum
29	2953.0	NEI	-	Ss., carb.	-	-	-	
28	2955.0	NEI	-	Ss.	-	-	-	
27	2957.0	NII	-	Ss.	-	-	-	
26	2959.1	NLI	-	Ss.	-	-	-	
25	2961.1	Good	V. High	Ss., silty	Upper <u>T. longus</u> (<u>1. druggil)</u>	Maastrichtian	0	<u>T. longus, T. securus, S. punctatus,</u> <u>Deflandrea coronata</u>
24	2953.0	Low	V. Hìgh	Ss., silty	Upper <u>T.</u> longus	Maastrichtian	0	T. longus, T. waiparensis, P. palisadus, P. wahooensis, D. coronata, l.cf. druggii
23	2965.0	NTI	-	Ss.	-	-	-	
22	3002.5	V. Low	V. Low	Sist.	Indeterminate	-	-	
21	3014.5	Good	Moderate	Ss., silty	Upper T. longus	Maastrichtian	0	T. longus, Q. brossus, T. securus.
20	3025.0	V. Low	V. Low	Sist.	Indeterminate	-	-	
19	3039.0	Good	High	Sist.	Upper T. longus	Maastrichtian	0	T. longus, Q. brossus, T. waiparensis, T. lilliei, Grapnelispora evansii.

TABLE I.

SUMMARY OF PALYNOLOGICAL ANALYSIS, PILOTFISH-IA, GIPPSLAND BASIN.

INTERPRETATIVE CHART

			DIVERSITY	,			CONF I DENC	Έ
SAMPLE	DEPTH(m)	YIELD	SPORE-POLL	EN LITHOLOGY	ZONE	AGE	RATING	COMMENTS
16	3103.0	V. Low	V. Low	Slst.	Indeterminate	-	-	
15	3124.0	Fair	Moderate	Sist.	Upper T. longus	Maastrichtian	0	P. wahooensis, T. verrucosus
14	3148.5	V. Low	Low	Sist. carb.	Upper <u>T.</u> longus	Maastrichtian	1	T. verrucosus, E. notensis
13	3178.0	Fair	Moderate	Sist.	Upper T. longus	Maastrichtian	i I	P. wahooensis, P. reticuloconcavus,
								P. otwayensis, T. securus, T. verrucosus.
12	3209.5	Low	Low	Sist. glau.	Indeterminate	·. -	-	Caved dinoflagellates
10	3253.0	Good	Low	Sist.	Upper T. longus	Maastrichtian	1	Abundant <u>G.rudata, T. securus, T. verrucosus</u> .
9	3263.1	Fair	Low	Slst.	Upper T. longus	Maastrichtian	1	Abundant G.rudata, T. verrucosus, P. wahooensi
8	3294.0	V. Low	Low	Slst.	Indeterminate	-	-	P. palyoratus, B. elegansiformis
7	3318.0	V. Low	Low	Sist., carb.	Upper T. longus	Maastrichtian	1	<u>T. longus, T. sectilis</u>
6	3363.5	Low	High	Ss.	Upper T. longus	Maastrichtian	i 1	P. palisadus, C. leptos, T. waiparensis
5	3383.5	V. Low	V. Low	Slst.	Upper T. longus	Maastrichtian	2	P. gemmatus
4	3400.1	Fair	Moderate	Sist., carb.	Upper <u>T.</u> longus	Maastrichtian	0	<u>S. punctatus,</u> abundant <u>G. rudata</u> ,
					,			P. reticuloconcavus, P.otwayensis, T. sectilis
3	3424.5	Good	Moderate	Sist., carb.	Lower T. longus	Maastrichtian	0	T. longus, abundant G. rudata, T. walparensis
2	3455.5	V. Low	Moderate	Sist., carb.	<u>T. 11111ei</u>	Maastrichtian	2	T. waiparensis, P. cliniei, T. lilliei
I	3496.0	Low	Low	Ss.	T. 11111ei	Maastrichtiar	1 2	T. waiparensis, P. polyoratus.

- 12 -

.

BASIC DATA

TABLE 2 : Palynological data. RANGE CHART : Dinoflagellates.

RANGE CHART : Spore-Pollen.

~

TABLE 2.

BASIC DATA, PILOTFISH-1A, GIPPSLAND BASIN.

			DIVERSITY		
SAMPLE	DEPTH(m)	YIELD	SPORE-POLLEN	LITHOLOGY	
102	960.0	V. Low	Low	Lst. silty	
76	2670.0	Good	Low	Slst.	
52	2907.0	V. Low	Low	Slst.	
50	2911.1	Good	Low	Slst.	
48	2914.9	Good	Low	Slst.	
47	2917.0	V. Low	Low	Ss.,Tr.glau	
46	2919.0	Good	Moderate	Ss., tr.glau	
45	2921.0	Fair	Low	Ss., glau	
44	2923.0	Fair	Moderate	Ss., glau	
43 42	2925.0 2927.0	Good Good	Moderate Low	Ss., glau	
42 41	2929.0	Low	Low	Glau. Glau.	
40	2931.0	Fair	High	Glau.	
39	2933.0	V. Low	Low	Glau.	
38	2935.0	Good	Moderate	Glau.	
37	2937.0	Fair	Low	Ss., glau.	
36	2939.0	V. Low	Low	Ss., glau.	
35	2941.0	Low	Low	Glau.	
34	2943.1	V. Low	Low	Glau.	
33	2944.9	Fair	Low	Glau.	
32	2947.0	Low	Low	Glau.	
31	2949.0	Low	Moderate	Glau	
30	2951.0	V. Low	V. Low	Ss., glau	
29	2953.0	Nil	-	Ss., carb.	
28	2955.0	Nil	-	Ss.	
27	2957.0	Nil	-	Ss.	
26	2959.1	Nil	-	Ss.	
25	2961.1	Good	V. High	Ss., silty	
24	2963.0	Low	V. High	Ss., silty	
23	2965.0	Nil	—	Ss.	
22	3002.5	V. Low	V. Low	Slst.	
21 20	3014.5	Good	Moderate	Ss., silty	
20 19	3025.0 3039.0	V. Low Good	V. Low High	Slst. Slst.	
16	3103.0	V. Low	V. Low	Sist.	
15	3124.0	Fair	Moderate	Sist.	
14	3148.5	V. Low	Low	Slst.	
13	3178.0	Fair	Moderate	Slst.	
12	3209.5	Low	Low	Slst.	
10	3253.0	Good	Low	Slst.	
9	3263.1	Fair	Low	Slst.	
8	3294.0	V. Low	Low	Slst.	
7	3318.0	V. Low	Low	Slst.	
6	3363.5	Low	High	Ss.	
5	3383.5	V. Low	V. Low	Slst.	
4	3400.1	Fair	Moderate	Slst.	
3 2	3424.5	Good	Moderate	Slst.	
2	3455.5	V. Low	Moderate	Slst.	
1	3496.0	Low	Low	Ss.	

.

. -----