PE990487

APPENDIX-2

PALYNOLOGICAL ANALYSIS OF KIPPER-1, GIPPSLAND BASIN

by

N. Marshall and A.D. Partridge

Esso Australia Ltd Palaeontology Report 1986/18 September, 1986

.

ŗ

2431L

INTERPRETATIVE DATA SECTION

INTRODUCTION SUMMARY TABLE GEOLOGICAL COMMENTS BIOSTRATIGRAPHY REFERENCES TABLE-1: INTERPRETATIVE DATA PALYNOLOGY DATA SHEET

INTRODUCTION

One hundred and six samples, comprising 67 sidewall cores, 21 conventional cores and 18 cuttings samples from Kipper-1 were processed and examined for spore-pollen and dinoflagellates. Only 11 samples were barren. Residue yield was generally moderate, while preservation was poor to fair below the volcanics at 1893-1989m and generally fair to good above them. Similarly, in the Late Cretaceous section below the volcanics diversity is generally low for both spore-pollen and dinoflagellates, while in the latest Cretaceous to Tertiary above the volcanics diversity, although variable is better.

Lithological units and palynological zones from the base of the Lakes Entrance Formation to T.D. are summarised below. Interpretative data with zone identifications and confidence ratings are recorded in Table-1 and basic data on residue yield, preservation and diversity are recorded in Table-3. The occurrence of spore-pollen and dinoflagellate species are tabulated on the accompanying three range charts.

AGE	UNIT	SPORE-POLLEN / KEY MICROPLANKTON ZONES ZONES	DEPTH (m)
Oligocène- Miocene	Seaspray Group	P. <u>tuberculatus</u>	1412.5
Middle Eocene		Lower N. asperus/A. diktyoplokus	1427.6-1433.4
Early	Flounder Formation	<u>P. asperopolus</u>	1436.2-1454.4
Early Eocene Early Eocene Paleocene Paleocene Maastrichtian Maastrichtian Campanian	-1461.Om Latrobe Group (coarse clastics)	Lower M. <u>diversus</u> Lower M. <u>diversus/A.hyperacanthum</u> Upper L. <u>balmei</u> Lower L. <u>balmei</u> Lower L. <u>balmei/T. evittii</u> Upper T. <u>longus/M. druggii</u> Upper T. <u>longus</u> T. <u>lilliei</u>	1478.0-1486.0 1493.0 1506.0-1562.5 1603.0-1646.0 1727.0 1733.5 1760.0-1855.0 *1895.0
	Volcanics		
Campanian - Santonian	Latrobe Group (coarse clastics)	N. <u>senectus</u> T. <u>apoxyexinus</u>	1995.0-2080.0 2135.0-2196.5
Santonian- Turonian	-2279.0m Kipper Formation	<u>P. mawsonii</u>	2296.5-2862.0

SUMMARY TABLE KIPPER-1

+9 1 11

* Pick for T. lilliei Zone is based on cuttings sample.

GEOLOGICAL COMMENTS

- 1. The lowest 600 metres of section in Kipper-1 is composed predominantly of carbonaceous siltstones and shales (based on sidewall core descriptions) and has a consistent log character. As such it is recognised as a discrete lithological unit referred to as the Kipper Formation of the Latrobe Group. The whole unit is assigned to the <u>P. mawsonii</u> Zone which has an age range of Turonian to just into the base of the Santonian (Helby, Morgan & Partridge, in press). Low diversity microplankton assemblages composed of dinoflagellates, acritarchs and algae suggest a restricted marine influence. Some lithological support for this interpretation is indicated by the presence of limestone or carbonate in the formation as sampled by sidewall core at 2756.5m.
- 2. A moderately diverse microplankton assemblage occurs in the <u>T</u>. <u>apoxyexinus</u> Zone over the interval 2187.5-2192.Om and is referred to the informal <u>Chatangiella perforata</u> Zone. The assemblage is more diverse than indicated by the few species recorded on the range chart, as many of the microplankton could not be adequately named. Attention is drawn to this zone because it may have significance to the source potential or as a correlation horizon in the deeper parts of the Latrobe Group.
- 3. Kipper-1 has probably the thickest and best sampled sequence for palynological analysis of the Santonian to Turonian interval in the Gippsland Basin. Overall the composition of the spore-pollen assemblages from the <u>P. mawsonii</u> and <u>T. apoxyexinus</u> Zones are very similar. Although the distinct log break at the top of the Kipper Formation lies at the boundary between the two zones and may represent an unconformity it is not possible to demonstrate from the palynology whether any section is missing.
- 4. Predrill the top of the Strzelecki Group was predicted at 2079mKB. This is equivalent to the boundary between the <u>N</u>. <u>senectus</u> and <u>T</u>. <u>apoxyexinus</u> Zones. Although there is no obvious lithological change on the electric logs there may be an unconformity between the zones. Both the <u>P</u>. <u>mawsonii</u> and <u>T</u>. <u>apoxyexinus</u> Zones contain restricted marine microplankton assemblages which are not recognised in the overlying <u>N</u>. <u>senectus</u> Zone, indicating a shift in facies. Further the lack of key species in the <u>T</u>. <u>apoxyexinus</u> Zone suggest that it may represent only the lower portion of that zone. These broad palynological differences suggest some Santonian section may be missing in Kipper-1.

- 5. The 96 metres of volcanics(?) in Kipper-1 is tightly controlled by the palynological age dating. If extrusive, the volcanics are Campanian.
- 6. The Cretaceous/Tertiary boundary in Kipper-l are picked at 1731.5m
 between the M. druggii and T. evittii dinoflagellate Zones (Helby, Morgan & Partridge in press).
- 7. The Latrobe Group coarse clastic facies of sands, shales and coals extends into the Early Eocene Lower M. <u>diversus</u> Zone; a sequence similar to the adjacent Tuna-3. The Upper and Middle M. <u>diversus</u> Zones and possibly part of the Lower M. <u>diversus</u> Zone are missing at unconformity at the top of the coarse clastics. This erosional event on the north-north-eastern flank of the Tuna-Flounder Channel is likely to be latest Upper M. <u>diversus</u> Zone in age.
- 8. All samples analysed from cores-2 and 3 are from the <u>P</u>. <u>asperopolus</u> Zone and are typical of assemblages from the Flounder Formation. Similarly the samples from core-1 are all Lower <u>N</u>. <u>asperus</u> Zone and typical of assemblages from the Gurnard Formation. Assuming core depths are correct the palynology data favours a log pick for the base of the Gurnard Formation at 1434.0 or 1435.0m.
- 9. A significant unconformity also occurs at the top of the Latrobe with Early Miocene Seaspray Group resting on probable Middle Eocene Gurnard Formation.

BIOSTRATIGRAPHY

The zone boundaries have been established for Tertiary zones using the criteria of Stover & Partridge (1973), and subsequent proprietary revisions, and follows Helby, Morgan & Partridge (in press) for Cretaceous zones.

Phyllocladidites mawsonii Zone: 2296.5 - 2862.0 metres

This zone is a new name proposed by Helby, Morgan & Partridge (in press) for the <u>Clavifera triplex</u> Zone of Dettmann & Playford (1969). The zone has been renamed and the original definition modified because the spore <u>C</u>. <u>triplex</u> has not proved a reliable indicator species. The base of the zone is defined, and recognised in Kipper-1, by the oldest occurrence of <u>P</u>. <u>mawsonii</u>. The oldest occurrence of <u>Proteacidites</u> spp. is an associate indicator for the base of the zone, while the youngest occurrence of <u>Appendicisporites distocarinatus</u> and youngest consistent occurrence of <u>Cyatheacidites tectifera</u> are used to pick the top of the zone. Helby, Morgan & Partridge (in press, fig. 33) also show the youngest consistent occurrence of <u>Interulobites intraverrucatus</u> as occurring within the <u>P</u>. <u>mawsonii</u> Zone. In Kipper-1 the occurrence of this spore is sporadic and it ranges into the base of the overlying zone. The discredited zone indicator <u>Clarifera triplex</u> was only recorded in the highest sample at 2296.5m. Sporadic acritarchs, dinoflagellates and algal bodies occurring in the Kipper Formation are of no age significance.

Tricolporites apoxyexinus Zone: 2135.0 - 2196.5 metres

The base of the zone is defined by the oldest occurrence of <u>Tricolporites</u> <u>apoxyexinus</u> Partridge (in press). Unfortunately, this species was not recorded in Kipper-1, and in general is rare in the Gippsland Basin. Instead a local base to the zone is taken at the oldest occurrence of <u>Tricolpites</u> <u>labrum</u> (manuscript name), albeit with lower confidence. The oldest occurrences of <u>Lygistepollenites florinii</u> (which normally first occurs in the upper part of the <u>P</u>. <u>mawsonii</u> Zone) at 2245.5m, <u>Tricolpites sabulosus</u> and <u>Larobosporites amplus</u> also support this zone assignment. The sidewall core at 2187.5m gave a moderate concentration and moderate yield of microplankton suggesting a significant marine incursion in the Santonian. The interval 2187.5-2192.0m is referred to the informal <u>Chatangiella perforata</u> dinoflagellate Zone. Neither the species nor the zone have yet been described.

2431L:6

L ...

Nothofagidites senectus Zone: 1995.0 - 2080.0 metres

The <u>N</u>. <u>senectus</u> Zone is identified from two low yielding sidewall core samples and six cuttings samples. Although the exact limits of the zone may be uncertain the better assemblages obtained from the cuttings samples confirm the presence of approximately 100 metres of this zone in Kipper-1. The Zone is characterised by consistent <u>Nothofagidites</u> <u>senectus</u> in association with <u>Tricolpites labrum</u> and <u>T</u>. <u>sabulosus</u>.

Tricolporites lilliei Zone: 1895 - 1900 metres (cuttings).

The cuttings sample at 1895-1900m assigned with poor confidence to the <u>T. lilliei</u> Zone is considered to represent the maximum age of the sediments immediately above the top of the volcanics at 1893m. The spore-pollen assemblage is considered to be slightly caved rather than derived from the volcanic interval. A <u>T. lilliei</u> Zone age is preferred on the presence of <u>Tricolporites lilliei</u> and <u>Tricolpites labrum</u>. A younger <u>T. longus</u> Zone age is however still possible.

Upper Tricolpites longus Zone: 1733.5 - 1855.0 metres.

The base of this zone is picked with low confidence at the oldest occurrence of the spore <u>Stereisporites</u> (<u>Tripunctisporis</u>) <u>punctatus</u> in cuttings at 1850-1855m. A pick of higher confidence based on the same spore is from core-5 at 1832.5m. The top of the zone is picked at 1735.5m on the youngest occurrence of <u>Quadraplanus</u> <u>brossus</u>. The latter sample is also assigned to the <u>Manumiella druggii</u> Zone on the presence of several specimens of that species.

Lower Lygistepollenites balmei Zone: 1603.0 - 1727.0 metres.

The Lower L. <u>balmei</u> Zone is recognized by its overall assemblage characteristics, particularly the consistent presence of <u>L</u>. <u>balmei</u>, <u>Australopollis</u> <u>obscurus</u> and <u>Gambierina</u> <u>rudata</u>. Confidence in the pick of the base of the zone is increased by the presence of dinoflagellates including <u>Trithyrodinium</u> <u>evittii</u> the key species of the basal Danian <u>T</u>. <u>evittii</u> Zone. The top of the zone is chosen with lower confidence at the highest productive sample below the oldest occurrences of key Upper L. balmei Zone species.

Upper Lygistepollenites balmei Zone: 1506.0 - 1562.5 metres

Two samples are assigned to this zone on the basis of the oldest occurrences of <u>Proteacidites</u> <u>annularis</u>, <u>Malvacipollis</u> <u>subtilis</u> and <u>Proteacidites</u> <u>incurvatus</u>. The bottom sample is also assigned to the <u>Apectodinium</u> homomorphum Zone on the presence of that dinoflagellate.

Lower Malvacipollis diversus Zone: 1478.0 - 1493.0 metres

The base of the zone is represented by a substantial assemblage change and key spore-pollen and dinoflagellates characteristic of the condensed section or transgression at the <u>Apectodinium hyperacanthum</u> dinoflagellate Zone. Most notable is the mangrove palm pollen <u>Spinozonocolpites prominatus</u> (see Partridge, 1976) and the pantropically distributed spore <u>Crassiretitriletes vanraadshoovenii</u>. Other important spore-pollen are <u>Intratriporopollenites</u> <u>notabilis</u>, <u>Cupanieidites orthoteichus</u> and common <u>Malvacipollis diversus</u>. Samples at 1478.Om and 1486.5m have poorer assemblages but are still assigned to the Lower <u>M. diversus</u> Zone on the prominence of <u>M. diversus</u>. The sample at 1464.Om cannot be assigned confidently to a zone on the basis of the assemblage it contains. It is however very likely to still lie in the Lower <u>M. diversus</u> Zone as it lies below the highest coal within the well at 1461-1462m, and is therefore undoubtedly below the base of the Tuna-Flounder Channel.

Proteacidites asperopolus Zone: 1436.2 - 1454.4 metres.

All samples from cores-2 and 3 are referrable to the <u>P. asperopolus</u> Zone. Key and consistently occurring species, in order of importance for diagnosing this zone are: <u>Conbaculites apiculatus</u>, <u>Santalumidites cainozoicus</u>, <u>Proteacidites</u> <u>asperopolus</u>, <u>P. pachypolus</u> and <u>Myrtaceidites tenuis</u>. Two additional important but rare pollen are <u>Clavastephanocolporites meleosus</u> at 1440.44m and <u>Bombacacidites bombaxoides</u> at 1438.0m. Microplankton are generally present in only low concentrations and moderate diversity but they do support the Early Eocene age. The important zone fossil <u>Kisselovia thompsonae</u> was only found in the one sample at 1440.44m. The sporadic occurrence of this important dinoflagellate is typical of wells in the northern end of the Tuna-Flounder Channel. It is considered likely that the 24 metres of Flounder Formation can all be referred to the K. thompsonae Zone.

Lower Nothofagidites asperus Zone: 1427.6 - 1433.4 metres

The three samples from core-l yielded similar assemblages referrable to both the Lower <u>N</u>. <u>asperus</u> spore-pollen Zone and <u>Areosphaeridium diktyoplokus</u> dinoflagellate Zone. No attempt was made to record the full spore-pollen suite because of the definitive associated dinoflagellates and acritarchs. Therefore diagnostic pollen are restricted to <u>Proteacidites recavus</u> at 1433.4m and <u>Gothanipollis</u> <u>bassensis</u> at 1427.6m. The most important microplankton are <u>Areosphaeridium diktyoplokus</u> and <u>Tritonites tricornus</u> (manuscript name). Proteacidites tuberculatus Zone: 1412.5 metres

The occurrence of the spore <u>Foveotriletes lucunosus</u> and a moderately diverse dinoflagellate assemblage suggests a correlation with the middle or upper subdivision of the zone (Stover & Partridge, 1973, p. 243). The palynology is consistent with the Early Miocene Hl foraminiferal zone reported by Hannah (1986).

REFERENCES

DETTMANN, M.E. & PLAYFORD, G., 1969. Palynology of the Australian Cretaceous: a review. In <u>Stratigraphy and Palaeontology: Essays in Honour of</u> <u>Dorothy Hill</u>, K.S.W. Campbell, ed., Aust. Nat. Univ. Press Canberra, 174-210.

HANNAH, M.J., 1986. Foraminiferal analysis, Leatherjacket-l Gippsland Basin. Esso Australia Ltd. Paleo. Rept. 1986/14.

- HELBY, R., MORGAN, R. & PARTRIDGE, A.D., in press. A palynological zonation of the Australian Mesozoic. Mem. Ass. Australas. Palaeontols 4.
- PARTRIDGE, A.D., in press. <u>Tricolporites apoxyexinus</u> sp. nov., nominate species for a Late Cretaceous spore-pollen zone in Australia. Mem. Ass. Australas. <u>Palaeontols 4</u>.

PARTRIDGE, A.D., 1976. The geological expression of eustacy in the Early Tertiary of the Gippsland Basin. APEA J. 16, 73-79.

STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. <u>Proc. R.</u> Soc. Vict. 85, 237-86.

SAMPLE TYPE	DEPTH (m)	SPORE-POLLEN ZONE	DINOFLAGELLATE ZONE (OR ASSOCIATION)	CONF IDENCE RATING	COMMENTS
SWC III	1412.5	P. tuberculatus		 I	Foveotriletes lucunosus present
Core-I	1427.6	Lower N. asperus	A. diktyoplokus	0	Tritonites tricornus present
Core-I	1430.7	Lower N. asperus	A. diktyoplokus	ł	
Core-I	1433.4	Lower N. asperus	A. diktyoplokus	Ŏ	<u>Tirtonites</u> tricornus present
Core-2	1436.2	P. asperopolus		I	Depth to top of Core-2 uncorrected
Core-2	1436.6	P. asperopolus		2	
Core-2	1437.0	P. asperopolus		2	
Core-2	1437.5	l ndetermi nate			Virtually barren
Core-2	1437.72	P. aspercpolus		2	
Core-2	1438.0	P. asperopolus		I	Bombacacidites bombaxoides present
Core-2	1438.6	l nder termi nate			Sample barren
Core-2	1439.0	indeterminate			Virtually barren
Core-2	1440.44	P. asperopolus	K. thompsonae	0	
Core-2	1442.8	Indeterminate			
Core-2	1444.5	P. asperopolus		I	
Core-2	1445.4	P. asperopolus		2	
Core-3	1449.8	P. asperopolus		I	
Core-3	1453.8	P. asperopolus		1	
Core-3	1454.4	P. asperopolus		1	
SWC 108	1457.5	i ndetermi nate			Sample barren
SWC 107	1464.0	indeterminate	Indeterminate		

2431L:10

ļ

.

.

SAMPLE TYPE	DEPTH (m)	SPORE-POLLEN ZONE	DINOFLAGELLATE ZONE (OR ASSOCIATION)	CONFIDENCE RATING	COMMENTS
SWC 106	1478.0	Lower <u>M. diversus</u>		2	
SWC 105	1486.5	Lower M. diversus		2	Dominated by semi opque kerogen
SWC 104	1493.0	Lower M. diversus	A. hyperacanthum	0	
SWC 103	1506.0	Upper L. balmei		I	
SWC 100	1562.5	Upper L. balmei	A. homomorphum	2	
SWC 99	1576.6	Indeterminate			Virtually barren
SWC 98	1603.0	Lower L. balmei		2	
SWC 96	1646.0	Lower L. <u>balmei</u>		2	
SWC 92	1727.0	Lower L. balmel	<u>T. evittii</u>	0	
SWC 91	1733.5	Upper T. longus	M. druggii	0	
SWC 90	1743.0	Indeterminate			Barren
SWC 89	1760.0	Upper T. longus		. I	
Cuttings	1765-70	Upper T. longus		3	Common S. (Tripunctisporis) punctatus
SWC 87	1797.0	i ndetermi nate			Virtually barren
SWC 86	1805.0	Upper T. longus		1	
Cuttings	1825-30	Upper T. longus		4	
Соге-5	1832.5	Upper T. longus		. 1	
Core-5	1835.0	Upper <u>T. longus</u>		2	Freq. <u>T. lilliei</u>
Core-5	1840.6	Upper T. longus		2	
Cuttings	1850-55	Upper T. longus	,	3	Some contamination
Cuttings	1875-80	I ndeterm i nate			

•

2431L:11

;

Sheet 2 of 5

يسر ممتر ور الداري

SAMPLE TYPE	DEPTH (m)	SPORE-POLLEN ZONE	DIONFLAGELLATE ZONE (OR ASSOCIATION)	CONFIDENCE RATING	COMMENTS
SWC 84	1872.0	I ndetermi nate			
Cuttings	1885-90	i ndeterm i nate			Contamination high
Cuttings	1895-1900	<u>T. e </u>		4	
SWC 60	1990.0	Indeterminate			Barren
Cuttings	1995-2000	N. senectus		3	
SWC 58	1998.0	N. senectus		2	
Cuttings	2000-2005	N. senectus		3	•
SWC 57	2008.0	N. senectus		2	Contaminated from T. longus Zone
Cuttings	2015-20	N. senectus		3	
SWC 56	2025.0	, Indeterminate			Barren
Cuttings	2045-50	N. senectus		3	
Cuttings	2050-55	N. senectus		3	
SWC 54	2052.0	I ndeterm i nate			
Cuttings	2075-80	N. senectus		4	
Cuttings	2085-90	Indeterminate			
SWC 53	2088.0	l ndetermi nate			
SWC 79	2095.0	Indeterminate			Barren
Cuttings	2135-40	T. apoxyexinus		3	
SWC 49	2143.0	Indeterminate			Virtually barren
SWC 47	2155.0	T. apoxyexinus		2	•
SWC 43	2187.5	T. apoxyexinus	Ch. perforata	2	
SWC 42	2192.0	T. apoxyexinus	Ch. perforata	2	

.

Sheet 3 of 5

Sheet 4 of 5

SAMPLE TYPE	DEPTH (m)	SPORE-POLLEN ZONE	DINOFLAGELLATE ZONE (OR ASSOCIATION)	CONF IDENCE RATING	COMMENTS
SWC 41	2196.5	T. apoxyexinus		2	
SWC 40	2209.5	Indeterminate			Barren
SWC 37	2234.0	T. apoxyex1nus-			
		P. mawson11			
SWC 36	2245.5	T. apoxyexinus-			
		P. mawsonii			
SWC 32	2296.5	P. mawsonii		2	
SWC 78	2307.0	Indeterm I nate			
SWC 31	2320.0	P. mawsonii		I	
SWC 30	2342.5	P. mawsonii		I	
SWC 77	2357.0	Indeterminate			
SWC 76	2381.0	indeterminate			
SWC 27	2396.0	P. mawsonii		ł	
SWC 75	2408.0	P. mawsonii		2	
SWC 74	2420.0	P. mawsonii		Ľ	
SWC 25	2442.0	Indeterminate			
SWC 24	2451.0	P. mawsonil		I	
SWC 73	2460.0	P. mawsonii		I	
SWC 72	2483.0	P. mawson11		I	
SWC 71	2493.0	P. mawsonli		2	Freq. algal remains
SWC 21	2500.0	P. mawsonii	'	2	
SWC 70	2519.0	P. mawsonii		2	

2431L:13

¥

SAMPLE TYPE	DEPTH (m)	Spore-Pollen ' Zone	DINOFLAGELLATE ZONE (OR ASSOCIATION)	CONF IDENCE RATING	COMMENTS
SWC 19	2538.0	Indeterminate			
SWC 18	2559.0	P. mawsonii		2	
SWC 69	2581.5	P. mawsonii		2	
SWC 16	2601.0	Indeterminate			
Cuttings	2605-10	Indeterminate			
SWC 15	2617.0	P. mawsonii		1	
SWC 68	2635.5	P. mawsonii		2	
SWC 12.	2661.0	P. mawsonii		I	Mud contamination
Cuttings	2685-90	P. mawsonii		3	Common algal remains
SWC 66	2686.0	P. mawsonii		2	Abundant algal remains
SWC 10	2697.0	P. mawsonii		2	
SWC 9	2709.0	P. mawsonii		2	
SWC 65	2730.0	P. mawsonii		I.	
Cuttlngs	2730-35	Indeterminate			Quick scan only
Cuttings	2735-40	P. mawsonii		3	Significant contamination
SWC 7	2756.5	I ndeterm i nate			
SWC 6	2773.0	Indeterminate			
SWC 64	2794.0	P. mawsonli		2	Common algae cysts
SWC 63	2805.0	Indeterminate			
SWC 62	2824.0	l ndeterm i nate			
SWC 3	2839.0	P. mawsonii		1	
SWC I	2862.0	P. mawsonli		I	

24311+14

.

.

Sheet 5 of 5

PALYNOLOGY DATA SHEET

ВА	ASIN: GIPPSLAND					EVATION	: кв: _	21m	GL:	-94	m(MSL)
WELL NAME: KIPPER-1 TOTAL DEPTH: 2875.0m											
щ	PALYNOLOGICAL	HIG	ΗE	ST D	АТ	А	LOI	νE	ST D2	T I	A
A G	ZONES	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time
GENE	T. pleistocenicus										
	M. lipsis					· ·					
	C. bifurcatus										
NEO	T. bellus										
┣───	P. tuberculatus						1412.5	1			•
	Upper N. asperus										
	Mid N. asperus										
щ	Lower N. asperus	1427.6	0	-			1433.4	0			
DCEN	P. asperopolus	1436.2	1				1454.4	1			
LEC	Upper M. diversus	· · · · · · · · · · · · · · · · · · ·									
PA	Mid M. diversus										
	Lower M. diversus	1478.0	2	· _			1493.0	0			
	Upper L. balmei	1506.0	1				1562.5	2	,		
	Lower L. balmei	1603.0	2				1727.0	0			
	Upper T. longus	1733.5	0				1855.0	3	1832.5	1	
Sno:	Lower T. longus										
ACE	T. lilliei	1895.0	4				1895.0	4			
REI	N. senectus	1998.0	2				2080.0	4			_
0	T. apoxyexinus	2135.0	3	2155.0	2		2196.5	2			
ATE	P. mawsonii	2296.5	2	2320.0	1		2862.0	1			
н	A. distocarinatus										
	P. pannosus										
RET	C, paradoxa										
	C. striatus										
RLY	C. hughesi										
EA	F. wonthaggiensis										
	C. australiensis										
CO.4				Velerei			1007 1000	_			

i

All depths in metres. Volcanics interval: 1893-1989m

	Dinoflagellate Zones: A. diktyoplokus 1427.6-1433.4m,								
	K. thompsonae 1440.4m, A. hyperacanthum 1493.0m,								
	<u>A.</u> ho	momorphum 1562.0m, <u>T. evittii</u> 172	27.0m, <u>M</u> .	druggii 1733.5m					
CONFIDENCE RATING:	O: SWC 1: SWC 2: SWC 3: Cuttin or bot	or Core, <u>Excellent Confidence</u> , assemblage with or Core, <u>Good Confidence</u> , assemblage with zo or Core, <u>Poor Confidence</u> , assemblage with n ngs, <u>Fair Confidence</u> , assemblage with zone spe ch.	h zone species one species of on-diagnostic ccies of either	of spores, pollen and microplankton. spores and pollen or microplankton. spores, pollen and/or microplankton. spores and pollen or microplankton,					
	4: Cuttir	ngs, No Confidence, assemblage with non-diag	nostic spores,	pollen and/or microplankton.					
NOTE:	If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another.								
DATA RECORD	ED BY:	N. MARSHALL	DATE:	JUNE 30, 1986					
DATA REVISE	D BY:	A.D. PARTRIDGE	DATE :	JULY 29, 1986					

BASIC DATA SECTION

TABLE-2: SUMMARY OF BASIC DATA THREE PALYNOMORPHY DISTRIBUTION CHARTS

2431L:15

ļ

•

SAMPLE TYPE	DEPTH (m)	LITHOLOGY	RESIDUE YIELD	PRESERVATION	SPORE POLLEN DIVERSITY	MICROPL Y IELD	ANKTON NO. SPECIES	SAMPLE CODE
SWC III	1412.5	Calc. clayst.	Very low	Good	Low	Moderate	7+	77921N
Core-I	1427.6	Glauc. sandst.	Moderate	Fair	High	Ļow	4+	77934S
Core-I	1430.7	Glauc. sandst.	Moderate	Falr-good	Moderate	Moderate	7+	77934T
Core-I	1433.4	Glauc. sandst.	High	Good	High	Moderate	7+	779340
Core-2	1436.2	Silty sandst.	Moderate	Poor	Low	Low	3	77934A
Core-2	1436.6	Silty sandst.	Low	Poor	Low	Low	3	77934B
Core-2	1437.0	Silty sandst.	Moderate	Poor-fair	Moderate	Low	5	77934C
Core-2	1437.5	Silty sandst.	Very low	Poor	Very low			77934D
Core-2	1437.72	Silty sandst.	Moderate	Poor-good	Moderate	Moderate	7	77934E
Core-2	1438.0	Silty sandst.	Moderate	Good	Moderate	Low	I.	77934F
Core-2	1438.6	Silty sandst.	Barren					77934G
Core-2	1439.0	Silty sandst.	Very low	Poor	Very low			77934H
Core-2	1440.44	Sandstone	Moderate	Fair	Low	Low	2	779341
Core-2	1442.8	Sandstone ,	Moderate	Fair	Moderate	Low	1 I	77934 J
Core-2	1444.5	Silty sandst.	Moderate	Fair-good	High	Moderate	4+	77934K
Core-2	1445.4	Silty sandst.	High	Fair-good	High	Moderate	5+	77934L
Core-3	1449.8	Siltstone	High	Fair-good	High	Low	2	77934V
Core-3	1453.8	Siltstone	High	Fair-good	High	Low	4	77934W
Core-3	1454.4	Siltstone	High	Good	High	Low	4	77934X
SWC 108	1457.5	Sandstone	Barren					77934X
SWC 107	1464.0	Carb. sandst.	Low	Good	Low			77921 J

SAMPLE TYPE	DEPTH (m)	LITHOLOGY	RESIDUE YIELD	PRESERVATION	SPORE POLLEN DIVERSITY	MICROPLANKTON YIELD NO	. SPECIES	SAMPLE CODE
SWC 106	1478.0	Coal	High	Very good	Moderate			779211
SWC 105	1486.5	Silty. glauc. sandst.	High	Fair	Low	Low	1+	77921H
SWC 104	1493.0	Glauc. sandst.	Low	Fair	High	Low	4	77921G
SWC 103	1506.0	Siltstone	Low	Good	Moderate			77921F
SWC 100	1562.5	Siltstone	Moderate	Good	Moderate	Low	3	77921C
SWC 99	1579.6	Sandstone	Very low	Poor	Very low			77921B
SWC 98	1603.0	Coaly shale	Low	Good	Moderate			77921A
SWC 96	1646.0	Shale	High	Good	Moderate			77920Y
SWC 92	1727.0	Sandy slitst.	Low	Good	Moderate	Low	3	779200
SWC 91	1733.5	Sandy siltst.	Low	Good	Moderate	Low	2	779200
SWC 90	1743.0	Pyritic sandst.	Barren					77920T
SWC 89	1760.0	Siltstone	Moderate	Good	Moderate			779205
Cuttings	1765-70		High	Good	High			779301
SWC 87	1797.0	Sandstone	Very low	Poor	Very low			77920R
SWC 86	1805.0	Silty sandst.	High	Fair-good	High	Low	2	77920Q
Cuttings	1825-30		Moderate	Fair	Moderate			77930J
Core-5	1832.5		Moderate	Good	Moderate			77934M
Core-5	1835.0		Moderate	Good	Moderate			77934N
Core-5	1840.6		Moderate	Good	Moderate			77934R
Cuttings	1850-55		Moderate	Good	Moderate			77930K
Cuttings	1875-80		Moderate	Falr	Moderate			77930L

2431L:17

4

.

.

Sheet	3	of	5
0,,,0,0,1	~	v .	~

SAMPLE	DEPTH	LITHOLOGY	RESIDUE	PRESERVATION	SPORE POLLEN	MICROPLANKTO	4	SAMPLE
TYPE	(m)		YIELD		DIVERSITY	YIELD N	. SPECIES	CODE
SWC 84	1872.0	White sandstone	Low	Poor-fair	Low		······································	77920P
Cuttings	1885.90		Low	Fair-good	Moderate			77930M
Cuttings	1895-1900		Moderate	Fair-good	Moderate			77930N
SWC 60	1990.0	Sandstone	Barren					77919U
Cuttings	1995-2000		Moderate	Fair	Moderate			77930A
SWC 58	1998.0	Sandstone	Low	Fair-good	Moderate			779195
Cuttings	2000-2005		Moderate	Falr-good	Low			77930B
SWC 57	2008.0	Sandstone	Low	Fair	Low			77919R
Cuttings	2015-20		Moderate	Fair	Low			779300
SWC 56	2025.0	Sandstone	Barren					77930Q
Cuttings	2045-50		Low	Fair-good	Moderate			77919D
Cuttings	2050-55		Moderate	Fair	Low			77930E
SWC 54	2052.0	Silty Sandst.	Low	Poor	Very low			779190
Cuttings	2075-80		Moderate	Poor	Low			77930F
Cuttings	2085-90		Low	Fair	Low			77930G
SWC 53	2088.0	Siltstone	Low	Falr	Low			77919N
SWC 79	2095.0	Pyritic sandst.	Barren					77920N
Cuttings	2135-40		High	Fair	Moderate			77930H
SWC 49	2143.0	Shale	Low	Poor	Low			77919J
SWC 47	2155.0	Carb. siltstone	Moderate	Fair-good	Moderate			77919H
SWC 43	2187.5	Carb. siltstone	High	Fair-good	High	Moderate	6+	779190
SWC 42	2192.0	Carb. siitstone	Moderate	Poor-fair	Low	Low	2+	77919C

.

.

Ŧ

.

SAMPLE TYPE	DEPTH (m)	LITHOLOGY	RES IDUE Y IELD	PRESERVATION	SPORE POLLEN DIVERSITY	MICROPLANKTON		SAMPLE
						YIELD	NO. SPECIES	CODE
SWC 41	2196.5	Carb. siltstone.	Moderate	Fair-good	Moderate			77919B
SWC 40	2209.5	Shale	Barren					77919A
SWC 37	2234.0	Silty shale	Low	Fair	Low	Very low	1	77918X
SWC 36	2245.5	Sandstone	Moderate	Fair-good	Moderate	Very low	2	77918W
SWC 32	2296.5	Siltstone	Moderate	Falr	Low	Low	1	77918S
SWC 78	2307.0	Sandy siltstone	Moderate	Fair	Very low			77920M
SWC 31	2320.0	Siltstone	Moderate	Poor-fair	Low	Low	I	77918R
SWC 30	2342.5	Carb. Siltstone	Moderate	Fair-good	Low			77918Q
SWC 77	2357.0	Sandstone	Moderate	Poor	Low			77920L
SWC 76	2381.0	Carb. sandstone	Moderate	Fair	Low	•		77920K
SWC 27	2396.0	Carb. siltstone	Moderate	Fair	Moderate			77918P
SWC 75	2408.0	Carb. siltstone	Moderate	Fair	Low			77920J
SWC 74	2420.0	Carb. shale	Moderate	Fair-good	Low	Low	2+	779201
SWC 25	2442.0	Carb. siltstone	Low	Fair	Low			779180
SWC 24	2451.0	Shale	Moderate	Fair-good	Moderate	Low	L	7791 8N
SWC 73	2460.0	Carb. siitst.	Moderate	Poor-fair	Low			77920H
SWC 72	2483.0	Siltstone	Moderate	Fair	Low			77920G
SWC 71	2493.0	Siltstone	Moderate	Fair	Low	Low	2+	77920F
SWC 21	2500.0	Shale	Low	Fair	Low			77918M
SWC 70	2519.5	Siltstone	Moderate	Poor-fair	Low	Low	L	77920E

2431L:19

Sheet 4 of 5

•

SAMPLE TYPE	DEPTH (m)	LITHOLOGY	RESIDUE YIELD	PRESERVATION	SPORE POLLEN DIVERSITY	MICROPLANKTON		SAMPLE
						YIELD	NO SPECIES	CODE
SWC 19	2538.0	Carb. shale	Low	Poor-fair	Low	Low	2	77918L
SWC 18	2559.0	Carb. shale	Moderate	Fair	Moderate	Low	1	77918K
SWC 69	2581.5	Siltstone	Low	Poor	Low		1	77920D
SWC 16	2601.0	Carb. siltstone	Low	Fair	Low			77918J
Cuttings	2605-10		Moderate	Fair	Low	Low	2	77919P
SWC 15	2617.0	Carb. siltstone	Moderate	Fair	Low			779181
SWC 68 .	2635.5	White sandstone	Low	Fair	Low		•	77920C
SWC 12	2661.0	Calc. siltstone	Moderate	Poor-Fair	Moderate	Low	2	77918G
Cuttings	2685-90		Moderate	Fair	Low	Low	2	77917R
SWC 66	2686.0	Carb. shale	Moderate	Good	Low	Moderate	3	77920A
SWC 10	2697.0	Shale	Moderate	Fair	Low	Low	3	77918F
SWC 9	2709.0	Carb. siltstone	Moderate	Fair	Moderate	Low	I	77918E
SWC 65	2730.0	Carb. siltstone	Low	Fair	Low			77919Z
Cuttings	2730-35		Moderate	Poor-Fair	Low			779175
Cuttings	2735-40		Low	Poor-Fair	Low			7791 7T
SWC 7	2756.5	Limestone	Moderate	Poor	Low			77918D
SWC 6	2773.0	Siltstone	Moderate	Poor	Low			77918C
SWC 64	2794.0	Carb. shale	Moderate	Fair-good	Moderate	Moderate	2	77919Y
SWC 63	2805.0	Carb. shale	Moderate	Poor	Low	Low	1	77919X
SWC 62	2824.0	Siltstone	Moderate	Fair	Low			77919W
SWC 3	2839.0	Sandy slitstone	Moderate	Fair	Moderate	Low	2	77918B
SWC I	2862.0	Sandy siltstone	Moderate	Poor-fair	Moderate	Low	1	77918A

2431L:20

•

I

.

Į.

Sheet 5 of 5

.