APPENDIX 1.

PALYNOLOGICAL ANALYSIS OF KINGFISH-9 GIPPSLAND BASIN

by

A.D. PARTRIDGE
 CONSULTANT

INTERPRETED DATA

INTRODUCTION
SUMMARY OF RESULTS
GEOLOGICAL COMMENTS
BIOSTRATIGRAPHY
REFERENCES
TABLE-1: INTERPRETED DATA
CONFIDENCE RATINGS

INTRODUCTION

Eleven sidewall cores in Kingfish-9 were examined, cleaned and split by author and then forwarded to Laola Pty Ltd in Perth for processing to extract organic microfossils (palynomorphs). All samples were examined by author for their contained spores, pollen and microplankton to derive the data and interpretations in this report.

Between 8 to 12 grams (average 9.9 g) of each sidewall core was processed for palynological analysis. High residue yields were recovered from most samples in the Latrobe Group coarse clastic section, very low yields from the overlying Gurnard Formation and variable low to high yields from the basal Lakes Entrance Formation. Palynomorph concentrations in general was directly proportional to yield. Spore-pollen diversity averaged 18+ species per sample. Microplankton were very rare and of very low diversity in the Latrobe coarse clastics section but occurred in abundance and of moderate diversity in the overlying Gurnard and Lakes Entrance Formations. From the latter units diversity averaged $11+$ species per sample. Preservation varied from poor to good but overall was fair. Some degrading of the preservation was caused by the use of polyvinyl alcohol (PVA) and EUKITT mounting medium.

The palynological preparation by Laola Pty Ltd were overall better than in the Kingfish-8 well, drilled immediately preceding Kingfish-9. This reflects increasing experience in processing Gippsland Basin samples.

Lithological units and palynological zones from the base of the Lakes Entrance Formation to Total Depth are given in the following summary. The interpretative data with zone identification and Old and New Confidence Ratings are recorded in Table-1 and basic data on residue yields, preservation and diversity are recorded on Tables-2 and 3. All species which have been identified with binomial names are tabulated on the accompanying range charts. Relinquishment lists for palynological slides and residues from samples analysed in Kingfish-9 are provided at the end of the report.
2. The Gurnard Formation in Kingfish-9 is identified between 2304.0 m to 2309.0 m . It is characterised on the gamma ray log by high values raising from a background of below 80 gapi to two discrete peaks of 180 gapi at 2305 m and 128 gapi at 2307.5 m . Both peaks were sampled by sidewall cores which were subsequently analysed for palynology. There is also a characteristic wide separation of the Bulk Density and Neutron Porosity logs. The lithologies of the two sidewall cores taken in this interval are, however, somewhat atypical as they contained only minor glauconite. The shallowest sample at 2305 m identified as a mottled siltstone, which upon cleaning for the palynological analysis was found to contain burrows up to 1 cm in diameter distinguished by a change in colour of the siltstone from green to grey. The deeper sample at 2307.5 m was a firm homogeneous dark grey-green to almost black claystone which apparently contained only minor amounts of glauconite. Both samples could be confidently assigned to the Lower N. asperus and A. australicum Zones based on very low yielding but obviously highly diverse assemblages. The occurrence of the A. australicum zone and associated acritarchs species Tritonites pandus and T. tricornus indicate that only the lower part of the Gurnard Formation is to be found in Kingfish-9. As was recorded in Kingfish-8 (Partridge, 1992) the absence of an interval in Kingfish-9 containing T. tricornus before the FAD (First Appearance Datum) of T. pandus suggests that part of the early Middle Eocene (approx. 44-48 Ma) is missing at the base of the Gurnard Formation in Kingfish-9 (see fig. 5 in Marshall \& Partridge 1988).

Additional palynological age dating of the Gurnard Formation is still possible by processing samples from the 1.6 metres recovered from core-1 cut between 2307 m to 2309 m .
3. All samples from the Lakes Entrance Formation are dominated by open marine dinoflagellate assemblages. The rare but consistent presence of the spore Cyatheacidites annulatus associated with Foveotriletes lacunosus the index species for the Middle subzone of the P. tuberculatus zone suggests that the very basal part of Lakes Entrance Formation is probably missing. The length of the hiatus is also extended by apparent absence of both the Upper and Middle N. asperus zones from the underlying Gurnard Formation.
by moderate diversity microplankton assemblages with key zone species. The most significantly spore-pollen identified are Conbaculites apiculatus ms and Proteacidites asperopolus both identified on single specimens from the deeper sample and Proteacidites pachypolus recorded as a single specimen from the shallower sample.

The index dinoflagellate species Areosphaeridium australicum ms is abundant in both samples assigned to the zone. Other key dinoflagellate species are Achilleodinium biformoides (2307.5m), Deflandrea flounderensis (2307.5m) and Deflandrea truncata (2305.0m). Associates of the dinoflagellates are the frequent occurrence in both samples of the key acritarch species Tritonites pandus and T. tricornus. Anomalous dinoflagellate species occurring in the deeper of the two samples are Areosphaeridium sp. cf. A. capricornum which was poorly preserved and may be misidentified and Homotryblium tasmaniense which is considered to be reworked.

Proteacidites tuberculatus Zone: 2290.0-2300.5 metres Oligocene.

Four sidewall core samples are assigned to the P. tuberculatus Zone on the occurrence of the key spore Cyatheacidites annulatus which is present in the highest three sidewall cores and represented by a corroded (ghosted) specimen in the deepest sidewall core at 2300.5 m . Other indicator spores present in these samples are Foveotriletes crater at 2291.5 m and Foveotriletes lacunosus at 2297.0 m . The latter spore is regarded as the key indicator species for the Middle subzone of the P. tuberculatus Zone by Stover \& Partridge (1973). The associated microplankton assemblages contain typical Lakes Entrance Formation index dinoflagellate species including Protoellipsodinium simplex ms (common in all samples), P. mamilatus ms and Tectactodinium scabroellipticus ms. Overall the samples are dominated by the dinoflagellates Spiniferites ramosus s.l., Operculodinium centrocarpum, Dapsilidinium pseudocolligerum and Nematosphaeropsis spp. Most samples also contain microforaminiferal liners and scolecodonts.

9
TABLE 1: Interpretative Palynological Data Kingfish-9, Gippsland Basin.

SAMPLE TYPE	DEPTH (M)	SPORE-POLLEN ZONES	$\begin{aligned} & \star \mathrm{CR} \\ & \text { OLD } \end{aligned}$	$\begin{aligned} & \star C R \\ & \text { NEW } \end{aligned}$	DINOFLAGELLATE ZONE (OR ASSOCIATION)	$\begin{aligned} & \star C R \\ & \text { OLD } \end{aligned}$	$\begin{aligned} & \text { *CR } \\ & \text { NEW } \end{aligned}$	COMMENTS
SWC 20	2290.0	P. tuberculatus	0	B2	(Operculodinium spp.)	1	B2	Cyatheacidites annulatus present.
SWC 19	2291.5	P. tuberculatus	0	B2	(Operculodinium spp.)	1	B2	C. annulatus present.
SWC 18	2297.0	P. tuberculatus	0	B2	(Operculodinium spp.)	1	B3	Frequent C. annulatus.
SWC 17	2300.5	P. tuberculatus	2	B5	(Operculodinium spp.)	1	B3	Corroded specimen of C. annulatus present.
SWC 16	2305.0	Lower N. asperus	2	B5	A. australicum	1	B4	Tritonites pandus and T. tricornus present.
SWC 15	2307.5	Lower N. asperus	0	B1	A. australicum	0	B2	T. pandus and T. tricornus present.
SWC 8	2328.5	Indeterminate						Virtually barren.
SWC 7	2357.5	Lower M. diversus	1	B2				Common Proteacidites grandis.
SWC 6	2358.5	Lower M. diversus	1	B2				
SWC 5	2364.0	Lower M. diversus	1	B2				Common P. grandis.
SWC 4	2365.5	Lower M. diversus	1	B2				Frequent P. grandis.

BASIC DATA

TABLE 2: Basic Sample Data

TABLE 3: Basic Palynomorph Data

RANGE CHARTS

RELINQUISHMENT LISTS

RELINQUISHMENT LIST - PALYNOLOGICAL SLIDES

WELL NAME \& NO: PREPARED BY:

DATE:

KINGFISH-9
A.D. PARTRIDGE

July 1992

SAMPLE TYPE	DEPTH (M)	CATALOGUE NUMBER	DESCRIPTION
SWC 20	2290.0	P195984	Kerogen slide sieved/unsieved fractions
SWC 20	2290.0	P195985	Kerogen slide unsieved fraction
SWC 20	2290.0	P195986	Oxidized slide 2 ($1 / 2$ cover slip)
SWC 20	2290.0	P195987	Oxidized slide 3 (1/2 cover slip)
SWC 19	2291.5	P195988	Kerogen slide sieved/unsieved fractions
SWC 19	2291.5	P195989	Kerogen slide unsieved fraction
SWC 19	2291.5	P195990	Oxidized slide 2
SWC 19	2291.5	P195991	Oxidized slide 3
SWC 18	2297.0	P195992	Kerogen slide sieved/unsieved fractions.
SWC 18	2297.0	P195993	Kerogen slide unsieved fraction
SWC 18	2297.0	P195994	Oxidized slide 2
SWC 18	2297.0	P195995	Oxidized slide 3 ($1 / 2$ cover slip)
SWC 17	2300.5	P195996	Kerogen slide sieved/unsieved fractions
SWC 17	2300.5	P195997	Kerogen slide unsieved fraction
SWC 17	2300.5	P195998	Oxidized slide 2 (1/2 cover slip)
SWC 16	2305.0	P195999	Kerogen slide sieved/unsieved fractions
SWC 16	2305.0	P196000	Kerogen slide unsieved fraction
SWC 16	2305.0	P196001	Oxidized slide 2 (1/4 cover slip)
SWC 15	2307.5	P196002	Kerogen slide sieved/unsieved fractions
SWC 15	2307.5	P196003	Kerogen slide unsieved fraction
SWC 15	2307.5	P196004	Oxidized slide 2 (1/2 cover slip)
SWC 8	2328.5	P196005	Kerogen slide unsieved fraction
SWC 7	2357.5	P196006	Kerogen slide sieved/unsieved fractions
SWC 7	2357.5	P196007	Oxidized slide 2
SWC 7	2357.5	P196008	Oxidized slide 3 (1/2 cover slip)
SWC 6	2358.5	P196009	Kerogen slide sieved/unsieved fractions
SWC 6	2358.5	P196010	Kerogen slide unsieved fraction
SWC 6	2358.5	P196011	Oxidized slide 2
SWC 6	2358.5	p196012	Oxidized slide 3
SWC 5	2364.0	P196013	Kerogen slide sieved/unsieved fractions
SWC 5	2364.0	P196014	Kerogen slide unsieved fraction
SWC 5	2364.0	P196015	Oxidized slide 2
SWC 5	2364.0	P196016	Oxidized slide 3
SWC 4	2365.5	P196017	Kerogen slide sieved/unsieved fractions
SWC 4	2365.5	P196018	Kerogen slide unsieved
SWC 4	2365.5	P196019	Oxidized slide 2
SWC 4	2365.5	P196020	Oxidized slide 3

Format: Relative Abundance By Lowest Appearance

Key to Symbols

W = REWORKING

D = CONTAMINATION
$\mathrm{X}=\mathrm{PRESENT}$
$R=R A R E$
$\mathrm{F}=\mathrm{FREQUENT}$
$\mathrm{A}=\mathrm{ABUNDANT}$
? = Questionably Present
$=$ Not Present

Format: Relative Abundance By Lowest Appearance

