

MICROPALAEONTOLOGICAL ANALYSIS, GUMMY-1, GIPPSLAND BASIN

-

· .

.

J.P. Rexilius INTERNATIONAL STRATIGRAPHIC CONSULTANTS PTY LTD Unit 2, 10 Station Street COTTESLOE WA 6011 WESTERN AUSTRALIA August, 1990.

:

CONTENTS

- I. SUMMARY
- II. INTRODUCTION
- BIOSTRATIGRAPHIC ANALYSIS III.

 - (A) Planktonic Foraminiferal Subdivision(B) Calcareous Nannoplankton Subdivision
- ENVIRONMENT OF DEPOSITION IV.
- REFERENCES v.
- APPENDIX NO. 1

Summary of micropalaeontological data, Gummy-1.

APPENDIX NO.2

۰.

Micropalaeontological distribution chart, Gummy-1.

1. SUMMARY

Gummy-1 was drilled in offshore petroleum permit Vic P/19, Gippsland Basin to a depth of 3563mKB. Sidewall cores from 1215m to 2078m have been examined for foraminifera and calcareous nannoplankton. A summary of the biostratigraphic breakdown of the respective microfossil groups and environmental sub-division is given below:-

Planktonic Foraminiferal Subdivision

1215m & 1387m	:	Zone B2	mid-lower Late Miocene
1519m	:	Zones B2 & C	mid Late-upper Middle Miocene
1642m	:	Zones C & Dl	upper-mid Middle Miocene
1749m & 1788m	:	Zone Dl	mid Middle Miocene
1852m	:	Zone D2	lower Middle Miocene
1956m	:	Zone F	upper Early Miocene
2065m	:	Zone Hl	basal Early Miocene
2078m	:	Zone H2	latest Late Oligocene

Calcareous Nannoplankton Subdivision

1215m	:	Zones NN14 to NN10	Early Pliocene-Late Miocene
1387m	:	Indeterminate	
1519m & 1642m	:	Zones NN9 to NN7	upper Middle Miocene
1749m-1852m	:	Zone NN6	mid Middle Miocene
1956m	:	Zones NN5 & NN4	lower Middle-upper Early Miocene
2065m & 2078m	:	Zones NN1 & NP25	lower Early Miocene-latest Late
			Oligocene

Environment of Deposition

Samples 1215m-1642m inclusive	:	outer neritic
Samples 1749m-2078m inclusive	:	outer neritic-upper bathyal

II. INTRODUCTION

A total of 10 sidewall cores have been scrutinized for foraminifera and calcareous nannoplankton from the interval 1215m to 2078m in Gummy-1. Fossil assemblages identified in the well section are provided in Appendix No. 2.

۰.

III. BIOSTRATIGRAPHIC ANALYSIS

The planktonic foraminiferal letter zonal scheme of Taylor (in prep.) and the NN/NP calcareous nannoplankton zonal scheme of Martini (1971) are used for biostratigraphic subdivision.

- (A) Planktonic Foraminiferal Subdivision
 - 1. 1215m & 1387m : Zone B2 (mid-lower Late Miocene)

Assignment to Zone B2 is based on the association of <u>Globorotalia</u> acostaensis and <u>Globorotalia miotumida</u>.

2. 1519m : Zones B2 & C (mid Late-upper Middle Miocene)

The occurrence of <u>Globorotalia miotumida miotumida</u> (few) indicates assignment to Zones B2 and C. The single recorded occurrence of <u>Globorotalia acostaensis</u> in the sample at 1519m indicates a possible Zone B2 age however an undifferentiated B2/C assignment is given a higher degree of confidence.

3. 1642m : Zones C & Dl (upper-mid Middle Miocene)

The low yielding and very poorly preserved planktonic foraminiferal fauna at 1642m includes single specimens of <u>Globorotalia praescitula/G. scitula</u> and <u>Globorotalia</u> aff. <u>miotumida</u>. These taxa suggest assignment to Zones C and Dl.

4. 1749m & 1788m : Zone Dl (mid Middle Miocene)

Assignment to Zone Dl is based on the association of <u>Globorotalia</u> praescitula and <u>Globorotalia</u> miozea miozea.

5. 1852m : Zone D2 (lower Middle Miocene)

The sample at 1852m is assigned to Zone D2 on the basis of the association of <u>Orbulina universa</u>, <u>Orbulina suturalis</u> and <u>Globigerinoides sicanus</u>.

6. 1956m : Zone F (upper Early Miocene)

The occurrence of <u>Globigerinoides sicanus</u> (single specimen) and lack of the <u>Orbulina/Praeorbulina</u> group indicates assignment to Zone F.

7. 2065m : Zone Hl (basal Early Miocene)

The occurrence of <u>Globigerina woodi connecta</u> and lack of <u>Globigerinoides trilobus</u> indicates that the sample at 2065m is Zone Hl in age.

8. 2078m : Zone H2 (latest Late Oligocene)

Assignment to Zone H2 is based on the occurrence of <u>Globigerina</u> woodi woodi without <u>Globigerina woodi connecta</u>.

(B) Calcareous Nannoplankton Sub-division

1. 1215m : Zones NN14 to NN10 inclusive (Early Pliocene-Late Miocene)

The high yielding nannoplankton asemblage at 1215m contains frequent <u>Sphenolithus abies</u> and lacks <u>Sphenolithus moriformis</u>, and on this basis is assigned to Zones NN14 to NN10 inclusive.

2. 1387m : Indeterminate

The impoverished and very poorly preserved calcareous nannoplankton assemblage at 1387m lacks age-diagnostic taxa and no zonal assignment is possible.

3. 1519m & 1642m : Zones NN9 to NN7 inclusive (upper Middle Miocene)

The samples at 1519m and 1642m are assigned to Zones NN9 to NN7 inclusive on the basis of the occurrence of <u>Sphenolithus</u> moriformis and lack of <u>Cyclicargolithus floridanus</u>.

4. 1749m-1852m : Zone NN6 (mid Middle Miocene)

The high yielding and moderately diverse nannoplankton assemblages in the interval contain frequent to abundant <u>Cyclicargolithus</u> <u>floridanus</u>, and lack <u>Sphenolithus heteromorphous</u>, and on this basis are indicative of Zone NN6.

5. 1956m : Zones NN5 & NN4 (lower Middle-upper Early Miocene)

The diverse nannoplankton assemblage at 1956m is assigned to Zones NN5 and NN4 on the basis of the occurrence of rare <u>Sphenolithus</u> heteromorphous.

6. 2065m & 2078m : Zones NN1 & NP25 (lower Early Miocene-latest Late Oligocene)

Assignment to Zones NN1 and NP25 is based on the association of <u>Zygrhablithus bijugatus</u> (rare at 2065m), <u>Dictyococcites</u> aff. <u>bisectus</u> (frequent at 2065m and rare at 2078m), <u>Cyclicargolithus</u> <u>abisectus</u> (frequent at 2078m) and <u>Sphenolithus</u> cf. <u>capricornatus</u> (rare at 2078m).

IV. ENVIRONMENT OF DEPOSITION

1. Samples 1215m-1642m inclusive : Outer neritic

The micritic limestones in the interval are interpreted to have been deposited in an outer neritic environment on the basis of containing the following bathymetrically-diagnostic taxa: <u>Cassidulina delicata/laevigata</u> (rare-frequent), <u>Bulimina</u> aff. <u>aculeata</u> (rare-few), <u>Sphaeroidina bulloides</u> (few-frequent) and <u>Siphouvigerina proboscidea</u> (rare-few). The foraminiferal faunas in the samples in the interval contain generally even numbers of planktonics and benthonics.

2. Samples 1749m-2078m inclusive : Outer neritic-upper bathyal

The rich foraminiferal faunas in the interval comprise 80-95% planktonics and the benthonic assemblages include : <u>Pleurostomella</u> (rare at 1749m), <u>?Osangularia</u> (rare at 1788m and 2078m), <u>Hyperammina</u> (frequent at 1956m) and <u>Cyclammina</u> (few at 2065m). Deposition in an outer neritic to upper bathyal environment is envisaged.

V. <u>REFERENCES</u>

,

1

MARTINI, E., 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: A. Farinacci (ed.). <u>Proc. II Plank</u>. <u>Conf., Roma</u>, 1970, 2: 739-785.

TAYLOR, D.J., (in prep.). Observed Gippsland biostratigraphic sequences of planktonic foraminiferal assemblages.

 SAMPLE (mKB)	FORAM YIELD	FORAM PRESERV.	FORAM DIVERSITY	NANNO YIELD	NANNO PRESERV.	NANNO DIVERSITY
SWC, 1215 SWC, 1387 SWC, 1519 SWC, 1642 SWC, 1749 SWC, 1788 SWC, 1852 SWC, 1852 SWC, 1956 SWC, 2065 SWC, 2078	high high mod/high low high high high mod/low high high	poor poor v. poor v. poor poor mod/poor mod/poor mod/poor mod/poor	high mod/high mod/low moderate moderate moderate moderate moderate moderate	high v. low moderate moderate high high high high high high	poor v. poor poor poor poor mod/poor moderate moderate moderate	mod/low low low moderate moderate mod/high high mod/high mod/high

.

APPENDIX NO. 1 : SUMMARY OF MICROPALAEONTOLOGICAL DATA, GUMMY-1