THE FORAMINIFERAL SEQUENCE
in
BASKER SOUTH \# 1, GIPPSLAND BASIN
for: SHELL DEVELOPMENT (AUSTRALIA) PTY. LTD.

March 8, 1984.

David Taylor,
23 Ballast Point Road, Birchgrove, 2041
AUSTRALIA. (02)810 5643

Page 1.

~~~(5 my) ~~~~ = hiatus with time span parentheses. N.B. change in vertical scale at 2100 m .

FIGURE 1: INTERPRETED FORAMINIFERAL SEQUENCE in BASKER SOUTH \# 1 .

\section*{INTRODUCTION.}

Forty three sidewall cores were submitted from BASKER SOUTH \# 1, between 747 and 2190 metres. All samples contained foraminifera in a sequence from Late Eocene to Mid Pliocene. However, as was common in the offshore Gippsland Basin, this sequence was twice interrupted; firstly by extending over most of the Oligocene into the Early Miocene, and later by a shorter hiatus at the top of the Early Miocene (refer Fig. l on previous page). Also in these Gippsland sequences, lateral facies changes over short distances make correlation difficult in a sedimentary regime dominated by submarine cutting and filling, and continental shelf edge progradation. This is exemplified by the comparison of the Basker \# 1 with Basker South \# 1 sequences which conclude this report.

Interpretations and conclusions drawn in this report are based on the same evidence cited in my reports for Basker \# 1 (August 11, 1983) and Bignose \# 1 (November 17, 1983).

The following Figures and Tables constitute this report:-
FIGURE 1 : INTERPRETED FORAMINIFERAL SEQUENCE based on Tables \(1 \& 2\). TABLE 1 : BIOSTRATIGRAPHIC DATA SUMMARY with reliability of zonal picks.

TABLE 2 : PLANKTONIC FORAMINIFERAL DISTRIBUTION.
TABLE 3 : SELECTED BENTHONIC FORAMINIFERAL DISTRIBUTION.
TABLE 4 : PALEOENVIRONMENTAL ANALYSIS based on Table 3.

LATE EOCENE - ZONE K, 2190-2180m (?2220 to 2178 on E-logs).
The lower part of the Late Eocene interval was not represented by samples, so that its presence below 2190 m can only be inferred from E-logs. This inference is supported by the fact that the benthonic assemblage at 2190 m was indicative of a rapid sedimentary transgression on a mid shelf platform, suggesting that the initial, in-shore, phase of this transgression was represented in samples below 2190m.

The only real differences in the planktonic foraminiferal assemblages
between Zone \(K\) and Zone J-2 in Basker South \# 1 , was the presence of Globigerina linaperta in Zone K (at 2190 \& 2180 m ) and its absence in Zone J-2 (at 2170 \& 2157.7 m ). This implies a biostratigraphic position very high in the Eocene for the samples at 2190 and 2180 m ; once again supporting the contention that the Eocene sample suite was incomplete.

EARLY OLIGOCENE - ZONE J-2, 2170 to 2157.7 m ( 2178 to 2150 m on E-logs) and the "COBIA EVENT" HIATUS at 2150m (E-logs).
The rapid deepening of the depositional site apparent during the Late Eocene, continued and in fact accelerated during the earliest Oligocene; with the sample at 2157.7 m having been deposited on the continental slope. This may have been a response to tectonic adjustment, associated with Late Eocene volcanism and uplift of the East Gippsland Highlands (Wellman, 1974).

The sudden change in planktonic components between the Zone J-2 sample at 2157.7 m and the Zone \(G\) at 2145 m , is the evidence of a hiatus of some 12 million years; during most of the Oligocene as well as the lower part of the Early Miocene. The "Cobia Event" Hiatus was widespread over the Gippsland Basin Deep. Despite the real change in the planktonic assemblages above the depositional break, there was no such dramatic alteration in benthonic components (compare Tables \(2 \& 3\) ). Therefore, depositional depth was much the same before and after the "Cobia Event" in Basker South \# l: with deposition continuing on the continental slope. This stability in paleoenvironments across the "Cobia Event" has been noted in many Gippsland sequences and would imply that the event was not caused by any tectonic adjustment; such as during the Eo/Oligocene transition (see above).

One apparent difference in the carbonate sediment above the hiatus is that it was subjected to a greater degree of diagenesis than that below (refer Table 4).

\section*{EARLY MIOCENE - ZONE G, 2145 to 2126m (2145 to 2057m - E-Logs) and EARLY MIOCENE HIATUS at 2075m (E-LOgs).}

This deep water, continental slope carbonate was heavily recrystallised, yet almost complete planktonic assemblages representing Zone \(G\), were recognised. Unfortunately, the sidewall core jar \# 13, labelled 2110 m , was empty, so that the interval could not be examined completely, but Zones \(F\) and \(E\) are probably missing between the Zone \(G\) sample at 2126 m and the zone D-2 sample at 2075 m .

MID MIOCENE - ZONE D-2, 2075 to 2005m (2075 to 1970m on E-LOgs). The lowest appearance of Orbulina universa was at 2075m. Other species present, particularly Globorotalia miozea miozea and G. praescitula, indicate a position low in the Mid Miocene. Paleoenvironmentally, this interval was very similar to the Early Miocene sediment below the hiatus. Therefore, the hiatus may have been due to slumping on an unstable continental slope. It is noted that the carbonates in this interval are not as heavily recrystallised as those of the Early Miocene below the hiatus.

MID MIOCENE - ZONE D-1, 1970 to 1655m (1970 to 1623 on E-LOgs).
Planktonic specimens within this interval were in general, poorly preserved, yet what identification was possible, confirmed a Zone D-1 designation. The difficulty in identification was due in part to carbonate diagenesis, but also to the fact that a high proportion of the specimens were very small (<. 2 mm ); indicating size sorting in a high energy depositional regime. Size and shape sorting is also apparent in the benthonic assemblages with dominance of small lens and shaped forms such as Cassidulina leavigata. This sedimentary unit is believed to have been deposited as fill in a submarine canyon on the upper continental slope.

MID MIOCENE - ZONE C, 1620 to 1130 m .
Presence, as well as preservation of planktonic foraminifera, fluctuates within this interval. Misplaced, inner shelfal elements, occur, suggesting
progradation of the shelf, accompanied by strong bottom currents, operating from the inner shelf to the shelf edge.

LATE MIOCENE to MID PLIOCENE - ZONES B-2, B-1 and A-4, 1095 to 747m. This interval of prograding shelfal biogenic carbonates, contains abundant foraminiferal faunas, which exhibit size and shape sorting; for instance, note dominance of small size planktonics and the lens shaped benthonic Cassidulina leavigata. Together with the presence of misplaced inner shelf species, the size and shape sorted assemblages are evidence of high energy bottom currents associated with a seaward, prograding shelf.

\section*{COMPARISON WITH BASKER \# 1.}

Despite the proximity of Basker \# 1 to Basker South \# 1, there are differences in the sequences of sedimentary events during the Miocene. For instance -
\begin{tabular}{|c|c|}
\hline BASKER \# 1 & BASKER SOUTH \# \\
\hline ZONE C & ZONE D-2 \\
\hline บงนานาง &  \\
\hline ZONE F & ZONE G \\
\hline
\end{tabular}

From these differences in timing of sediment preserved on either side of the intra Miocene Hiatus, it could be assumed that the slumping on the unstable slope occurred at differing times when the two sequences are compared. Greater accumulation rates during the Late Miocene in Basker \# 1, when compared with Basker South \# 1, is reflection of later slumping in the former sequence.

The benthonic foraminiferal assemblages listed for the Mid and Late Miocene in Basker \# I and Basker South \# 1, are almost identical in sequence of occurrence of nominated species. However, the correlation between the two sequences is offset in time, when the planktonic foraminiferal biostratigraphy is superimposed; with shelf edge progradation commencing in the Mid Miocene Pasker South \# 1, but was delayed to Late Miocene in Basker \# 1.

Such paleoenvironmental situations, as an unstable upper slope and prograding shelf edge, inhibit correlations by means other than proven biostratigraphic ones, even over a short distance; as between Basker \# 1 and Basker South \# 1.

\section*{REFERENCE.}

WELLMAN, P., 1974 - Potassium-Argon ages on the Cainozoic Volcanic Rocks of Eastern Victoria, Australia. J. Geol. Soc. Aust., 21; 359-376.

\section*{MICROPALEONTOLOGICAL DATA SHEET}


COMMENTS: No_sample receiyed below 2190 m .
\(\qquad\)
*Sidewall core iar \#13, labelled 2110 m , was empty.


DATA RECORDED BY: David Taylor.
DATA REVISED BY:
\(\qquad\)

DATE: March 7, 1984.
DATE: \(\qquad\)


TABLE 2: PLANKTONIC RORAMINITERAL DISTRIBUTION - BASXER SOUTH:1.

~~~

