

WELL COMPLETION REPORT

25 FEB 1988

PETROLEUM DIVISION

WINDERMERE-1

WELL COMPLETION REPORT

PETROLEUM EXPLORATION PERMIT 111

OTWAY BASIN

VICTORIA, AUSTRALIA

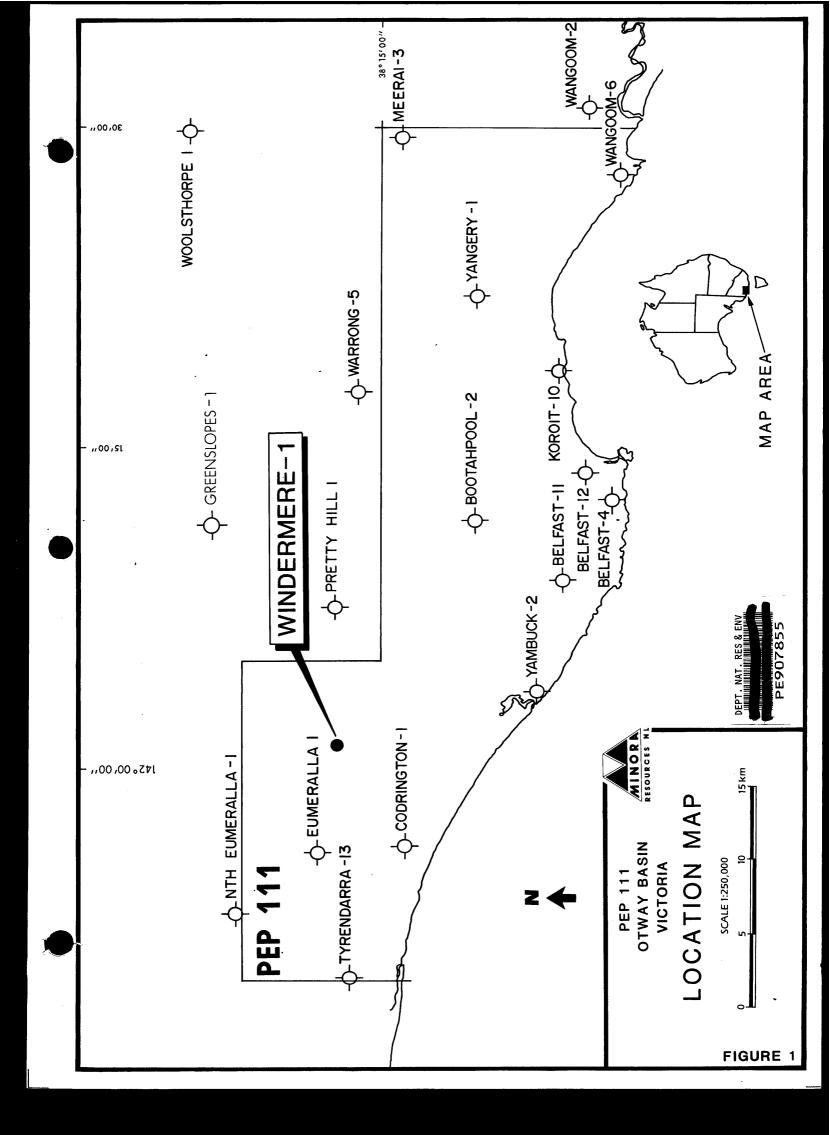
MINORA RESOURCES NL FEBRUARY 1988

(PlllA)

1. INTRODUCTION

The Windermere-1 well is located 27.5 km northwest of Port Fairy, Victoria on seismic line OPP85A-04, V.P.645 (Figure 1).

Windermere-1 was spudded on 17 March 1987 at 1500 hours, and drilling completed on 8 April 1987 at a total depth of 1852 m. The well was completed as a Heathfield Member of the Eumeralla Formation oil discovery and was suspended on 10 April 1987 for later evaluation of oil producibility of the Heathfield Member. Operations to test the Heathfield Member resumed on 14 May and continued till 29 June when the well was again suspended and the rig released.


Windermere-1 was the first well to be drilled in PEP 111 since the permit was granted to the Joint Venture in 1984.

The PEP 111 Joint Venture participants for the drilling of Windermere-1 were:-

ક

	•
Minora Resources NL (Operator)	20.5
Pan Pacific Petroleum NL	25.0
National Venture Corporation NL	12.5
Marlin Oil NL	12.0
Petro Energy Limited	15.0
NOMECO-Command NL	15.0

(PlllC)

CONTENTS

- 1. INTRODUCTION

2

.

1

2. <u>WELL DATA CARD</u>

3. WELL HISTORY

3.1	General Da	ata	4
3.2	Drilling S		5
3.3		e Testing Operations	6
3.4	Drilling 1		7
3.5	Drilling 1		8
	3.5.1	Well Configuration	
	3.5.2	Completion	
	3.5.3	Drilling Fluid	
	3.5.4	Deviation Surveys	
	3.5.5	Formation Sampling	
	3.5.6	Gas Detector and Penetration Rate	
	3.5.7	Conventional Coring	
	3.5.8	Sidewall Coring	
	3.5.9	Wireline Logging	
	3.5.10	Drill Stem Testing	
	3.5.11	Selective Formation Testing	
	3.5.12	Swabbing	
	3.5.13	Velocity Survey	

4. <u>GEOLOGY</u>

4.1 4.2 4.3 4.4		12 12 14 17
4.5	Windermere-1 Stratigraphy 4.5.1 Tertiary 4.5.2 Cretaceous	18
4.6	Structure and Reservoir Geometry	22
4.7	Occurrence of Hydrocarbons	23
4.8	Reservoir Porosity and Permeability 4.8.1 Heathfield Sandstone Member 4.8.2 Upper Eumeralla Sub-unit 4.8.3 Pebble Point Formation 4.8.4 Paaratte Formation 4.8.5 Pebble Point Formation 4.8.6 Dilwyn Formation	25

5.

Following Page No

LIST OF FIGURES

1.	Location Map	l
2.	Drilling Time-Depth Curve/Well Summary	6
3.	Well Configuration	8
4.	Completion Diagram	8
5.	Wellhead Completion Schematic	8
6.	Otway Basin Tyrendarra Embayment	
	Biostratigraphy	12
7	Two Way Time to Aptian Unconformity	
	Map (1:25,000) post drill	17
8.	Two Way Time to Heathfield Member	
	Map (1:25,000) post drill	17
9.	Pre-drill Interpreted Seismic Line 85B-33	17
10.	Stratigraphic Table	19

ENCLOSURES

1.	Composite Lo	og 2	28
2.	Mudlog	2	28
3.	Synthetic Se	eismogram 2	28

APPENDICES

	VOLUME I
Α.	Sample Descriptions
в.	Sidewall Core Descriptions
с.	Sidewall Core Analyses
D.	Petrological Report
Ε.	Petrophysical Evaluation/Log Interpretation
F.	Drilling Fluid Report and Bit Record
G.	DST Reports
	VOLUME II
н.	SFT Results

н.	SFT Results
I.	Swabbing Reports
J.	Oil and Gas Analyses
К.	Geochemical Report and Water Analyses
L.	Palynology
Μ.	Survey of Well Location
N.	Well Velocity Survey

(P111B)

WELL. I	DATA CARD			
	/ICTORIA BASIN: OTWAY			
Minora PERMIT: PEP 111 OPERATOR: Resources NL LOCATION: LATITUDE 38° 13' 44.7" S	STATUS: Suspended RIG: GEARHART RIG 2			
LONGITUDE 142° 00' 52.1" E	TD: 1852 m Driller			
GRID CO-ORDS: 588,792.15m E 5,768,267.0m N	COMPLETION DETAILS: Casing set and cemented with tubing, sliding sleeve and packer in place, the xmas tree			
SEISMIC LINE/SP NO: OPP85A-04/VP645 ELEVATIONS: GL 49m KB 54m ASL	installed with valves chained. CASING SIZE: SHOE DEPTH:			
ELEVATIONS: GL 49m RB 54m ASI CASING 512E: SHOE DEF 16" 6m SPUDDED: 1500 hrs, 17/3/87 95/8" 286m 7" 1849m				
WELL SUSPENDED: 1800 hrs, 10/4/87				
OPERATIONS RESUMED: 1200 hrs 14/5/87				
SUSPENSION & RIG RELEASED: 1800 hrs 29/6/87				

SUMMARY:

Windermere-1 made an oil discovery in the Heathfield Member of the Eumeralla Formation. Open hole DST's 1 and 2 recovered 0.5 and 31.9 bbl oil respectively, however cased hole testing failed to recover significant hydrocarbons. The well was left suspended pending further evaluation.

AGE	FORMATION	DEPTH (KB)	DEPTH (SS)	THICKNESS
Miocene Miocene-Oligocene Oligocene Palaeocene Palaeocene Campanian-Santonian Santonian-Coniacian Albian Albian Albian Albian	Port Campbell Limestone Gellibrand Marl Clifton Formation Dilwyn Formation Pember Mudstone Pebble Point Formation Paaratte Formation Belfast Mudstone Upper Eumeralla Sub-Unit Middle Eumeralla Sub-Unit Heathfield Member Lower Eumeralla Sub-Unit Total Depth	5m 110m 340m 433m 645.5m 725.5m 761m 966m 1024m 1191m - 1750m 1817m 1852m	+ 49m - 56m - 286m - 286m - 379m - 591.5m - 671.5m - 707m - 912m - 912m - 970m -1137m * -1696m * -1763m -1798m	

39

(PlllD)

- 2 -

		<u>,.</u>			WELL DA	TA CA	RD				. <u></u>	
WEIL: Windermere-l				S	STATE: Vi	.ctori	a		BAS	IN:	Otwa	Y
				CONVER	TIONAL CO	RES (Log	Depth	s)		· · · ·	
NO	CORED		FOR		RECOVERED	NO		CORED		FORM	ATIC	N RECOVERED
	No cores	cut										
					WIRELIN		<u>c</u> (Gearh	art)			
Τſ	G TYPE	RUN	TN	TERVAL	BHT/TIME				RUN		TERV	AL BHT/TIME
11		NO	l	ETRES	°C			** 14	NO			°C
									1	1		
	MSFL/GR	1		-1828	67/5.25	l						
	MEL/GR	1			74/n/a							
	/CNS/GR	1		-1827.6	•							
CIS	SWC	1	452	-1816.5	17 cores			,shot	47,1	ost l	0,	
	_	1 -	- 4	1000	misfired/	empty	20					
	x. Survey			-1828			40			-		
SFT		1	435	-1806, 52 I	2 survey p	OINTS I	, 43	succ	essiu	Ц		
		1		FORMZ	TION TEST		a De	pths)				
	1			101012	SHUT			20101				
TEST	INTERVAL	FORMA	TION	FLOW	IN	IHP	IFP	ISP	FFP	FSP	REV	RESULTS
NO	metres			min	min	psi		psi	psi	psi	CIR	
1	1791-	H'fie	ld	6,120,14	27,242			2360				
	1838	Membe	r									15.5 muddy
												water
2	1790-	н		5,794	34,398	2888	87	2360	1071	2420	Y	Gas TSTM,6.8
	1814											bbl mud,11.5
												bbl gas cut
												oil,20.4 bbl
												oil,20.3 bbl
2	1750				CO 5 107							water
3	1750-			5,65,7	62,5,137							nil
٨	1790	17		7 607	61 202	run	0.4	21 41	100	2222	v	E Chh] hrind
4	1798- 1813			7,607	61,393	2653	94	2141	400	<i>LLLL</i>	ľ	5.6bbl brine & trace oil
5	1782-											& LIACE OIL
5	1787	11		7,75,41	67.7	2614	656	0	0	2614	v	3000cc brine
HYDE	OCARBON E	VALUAT	TON:	///3/12		2011		0	V			Stores Stine
Alth	ough a sid	anific	ant	volume of	oil was	recov	ered	duri	na ope	en ho	le t	esting, only
	es of oil											
oper	ations. '	The sw	abbi	ng result	s and the	asso	ciate	ed st	eady :	inflo	w of	formation
	r suggest											
comp	letion.											
												d 5 metres of
oil	pay from 1	1805-1	810 1	metres, p	orobably i	n an	oil	trans	ition	zone	•	
	ELLANEOUS				2 500						0~	
Heathfield Member Swab Water: 13,500 ppmcl, Rw 0.286 ohm m at 25°C												
	is 81°C		i -	2 2°0 /100		~~ ^m	<u>م</u> د ،	01 ° a				
	hermal gra hfield Mer					ng ST	OL 1	21 °C				
неат	nitieta Mei	uper 0		40.9° AF 27°C pou								
					r point y (40°C)	1 21	aont.	iatole	05			
					gravity				22			
			-	spectric	, gravity	0.020	Jy/C	~				
(P111												1

- 3 -

.•

.

3. WELL HISTORY

3.1 <u>General Data</u> Well Name: Name of Operator:

> Petroleum Title: Basin: Location:

Elevation:

Water Supply: Total Depth:

Well Spudded:

Rig Released:

Spud to Release:

Re-entry and Evaluation Programme Commenced:

Evaluation Programme Completed:

Well Status:

Windermere-1

Minora Resources NL 7th floor 55 St George's Terrace Perth WA 6000

Petroleum Exploration Permit 111

Otway, Victoria

Latitude 38°13'44.7" South Longitude 142°00'52.1" East

North 5,768,267.00 metres East 588,792.15 metres

Seismic Line OPP85A-04, VP 645

Approximately 27.5 km northwest of Port Fairy.

Ground Level 49m ASL KB 54m ASL

Shallow bore at site

Driller - 1852m Logger - 1828m (logger unable to reach TD, logs ran at 1838 m, 1838 - 1852 m unlogged).

17 March 1987

10 April 1987

25 days

14 May 1987

29 June 1987

Suspended oil producer.

3.2 <u>Drilling Summary</u> (all depths correspond to driller's depths)

Windermere-1 was spudded at 1500 hours on 17 March 1987 with a programmed total depth of 1400m and primary objectives in the Pebble Point Formation, and Upper and Middle Eumeralla Sub-units. A 21" hole was augered to 8m and 16" conductor pipe was cemented at 6m with 30 sacks of class "A" cement. Due to the high water table, the cement job was not sufficient and a further 40 sacks of class "A" cement were pumped through the conductor with returns to surface. A 12 1/4inch surface hole was drilled to 290m and 24 joints of 9 5/8 inch 361b/ft J55 casing were installed with the shoe at 286m. The string was cemented with 350 sacks of class "A" cement with 0.5% calcium chloride. Good cement returns were observed at the surface.

After nippling up the BOP's, an $8^{\perp}/2$ " hole was drilled to 292m. A formation integrity test was performed to 14.1 lb/gal equivalent mud weight without breakdown. The 8 l/2" hole was then drilled to 1838m, 438m below the programmed depth due to increasing gas readings and favourable drilling conditions and the following suite of electric logs was recorded:

DLL/MSFL/GR/SP/CAL BCS/MEL/GR to surface/CAL CDL/CNS/GR CIS/SWC VELOCITY SURVEY

Mud log and electric log analysis indicated possible oil saturated sands within the Heathfield Member and an off bottom test, DST. 1, was conducted across the interval 1791 to 1838m. A total of 0.5 barrels of oil was recovered, with 11.5 barrels of gas cut water and 15.5 barrels of muddy water. Gas also flowed to surface during the test at a rate too small to measure. A conventional off bottom straddle test, DST 2, was performed over the interval 1790m to 1814m. The test resulted in a recovery of 20.4 barrels of oil, 11.5 barrels gas cut oil and 20.3 barrels mud cut water with gas TSTM over a 13.25 hour flow period. The well flowed until the test was terminated.

Gearhart Australia conducted an SFT Pressure/Depth survey. Two segregator samples were collected at 435m and 535m. Both samples contained some evidence of mixed mud filtrate and formation water and no evidence of hydrocarbons. The 435m sample appears to be the least contaminated. A total of 52 pressure sampling points were attempted between 1805 and 435m with 43 tight or successful readings. Few successful readings were obtained in the Eumeralla Formation due to low permeabilities. Details of the survey are contained in Appendix H. A conventional off bottom straddle test, DST. 3 was conducted over the interval 1750m to 1790m but was a mechanical failure and further testing was discontinued.

The hole was deepened to 1852m and a 7" production casing string was run and cemented at 1849m using 53 joints of 291b/ft N80, buttress thread casing and 104 joints of 261b/ft K55, buttress thread casing. The casing was cemented with 680 sacks of class "G" cement returns calculated to 120m KB. The rig was released at 1800 hours 10 April 1987 and stacked in a rigged up mode over the well for use in later productivity evaluation operations.

A drilling time/depth chart is shown in Figure 2.

3.3 Cased Hole Testing Operations

The hole was re-entered on 14 May 1987 and the cement was drilled out to 1833.62m with a 6" bit and casing scraper.

The casing was discplaced with KCL/Polymer brine and perforated from 1798-1813m for DST. 4, which was a valid test and recovered 5.6 barrels brine with a trace of oil.

The casing was again perforated over the interval 1782m to 1787m and DST. 5 was run over the interval with straddle packers. DST. 5 was also a valid test, however only 3000 cc of filtrate, diesel and a trace of possible oil were recovered. Both DST 4 and DST 5 indicated the tested intervals had low productivity and permeability.

On 22 May 1987, 2 7/8" tubing was run with a closed sliding sleeve at 1786.5 metres, an Otis Packer at 1789m and tailpipe to 1800m. The well was swabbed for a total of 113.68 barrels of fluid in 88 runs over a 9 day swabbing operation. Swabbing operations were suspended from 30 May to 11 June to observe fluid inflow. Results of the swabbing are discussed in Appendix I.

Between 0800 hours 13 June and 1700 hours 18 June, the rig was standing by on a care and maintenance basis for a possible sole risk operation to be conducted by Pan Pacific. The operation would have involved milling a window in casing from 1596.5-1614.5m, sidetracking the well to a depth of 1950m and testing and coring the top and basal sand bodies of the Heathfield Member. The sole risk operations were indefinitely deferred by Pan Pacific and the well returned to the Joint Venture.

The well was suspended with the tubing, sliding sleeve and packer in place. The Well Head was installed with all valves chained and the rig was released at 1800 hours on 29 June 1987.

3.4 Drilling Equipment

Drilling Contractor:

Drilling Rig:

Make:

Rated Depth:

Power:

Mast:

Pumps:

Rotary Table:

Drill Pipe:

Drill Collars:

BOP's:

Gearhart Drilling 5 Westcombe Street Darra QLD 4076

Gearhart Rig #2

Superior 700E

3500 m

4 CAT. 3412 PCTA

Dreco model no. Ml2713-510. Height 127', base width 13'6", gross nominal capacity 510,000 lbs.

2 x Gardner Denver PZ-8-750.

Oilwell 20 1/2

3,000 m 4 1/2"OD.16.6 lb/ft, Grade E

3 x 8" OD drill collars 26 x 6 1/4" OD drill collars.

One Hydril $13^5/8$ " x 3000 PSI spherical annular BOP, studded top and flanged bottom. One Hydril 13 5/8" x 5000 PSI flanged double gate BOP. One Wagner model 130-160 3 BND 160 gallon accumulator.

3.5 Drilling Data

3.5.1 Well Configuration (Figure 3)

<u>Hole Size</u>	Depth	Casing and Cementing Details
12 1/4"	290m	Ran 24 joints of 9 ⁵ / ₈ " J55 36lb/ft casing. Shoe at 286m and float collar at 275m. Cemented with 350 sacks of class A with 0.5% calcium chloride, 15.6 PPG.
8 1/2"	1852m	Ran 53 joints of 7" N80 29 lb/ft casing and 104 joints of K55 26 lb/ft buttress thread casing. Cemented with 680 sacks of class "G" cement.

3.5.2 Completion

The well was completed as a Heathfield Member oil producer. Details are shown in the completion diagram (Figure 4). A summary of the wellhead configuration is shown as Figure 5.

3.5.3 Drilling Fluid

Drilling fluid materials and engineering services were provided by Baroid Australia Pty Ltd. A KCL Polymer mud system was used. Details are given in Appendix F.

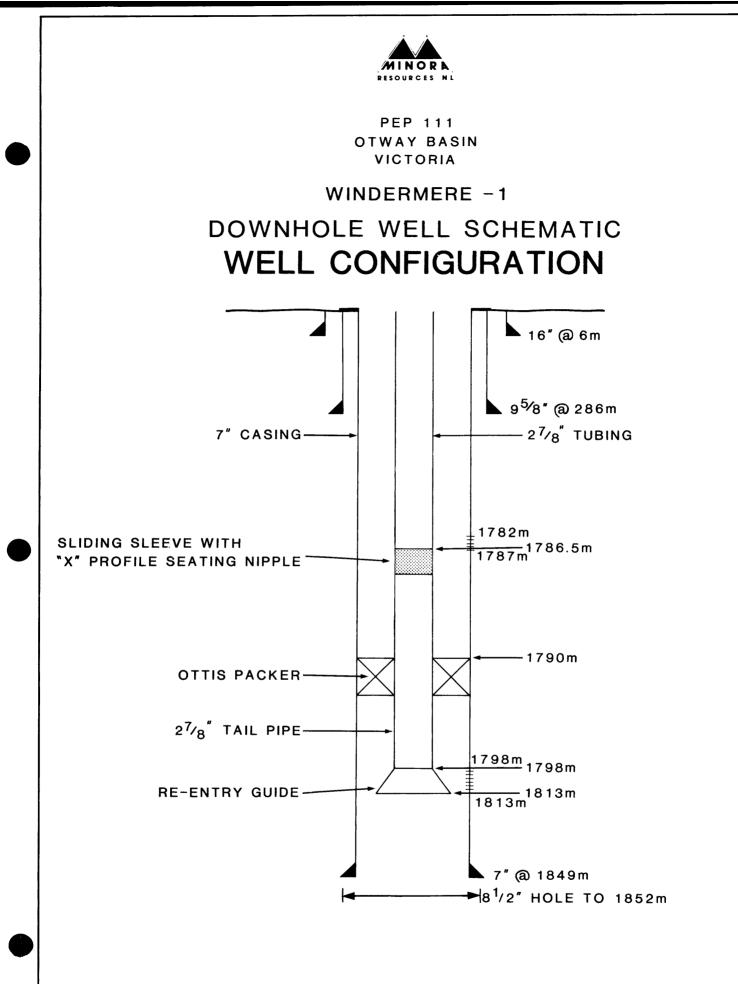
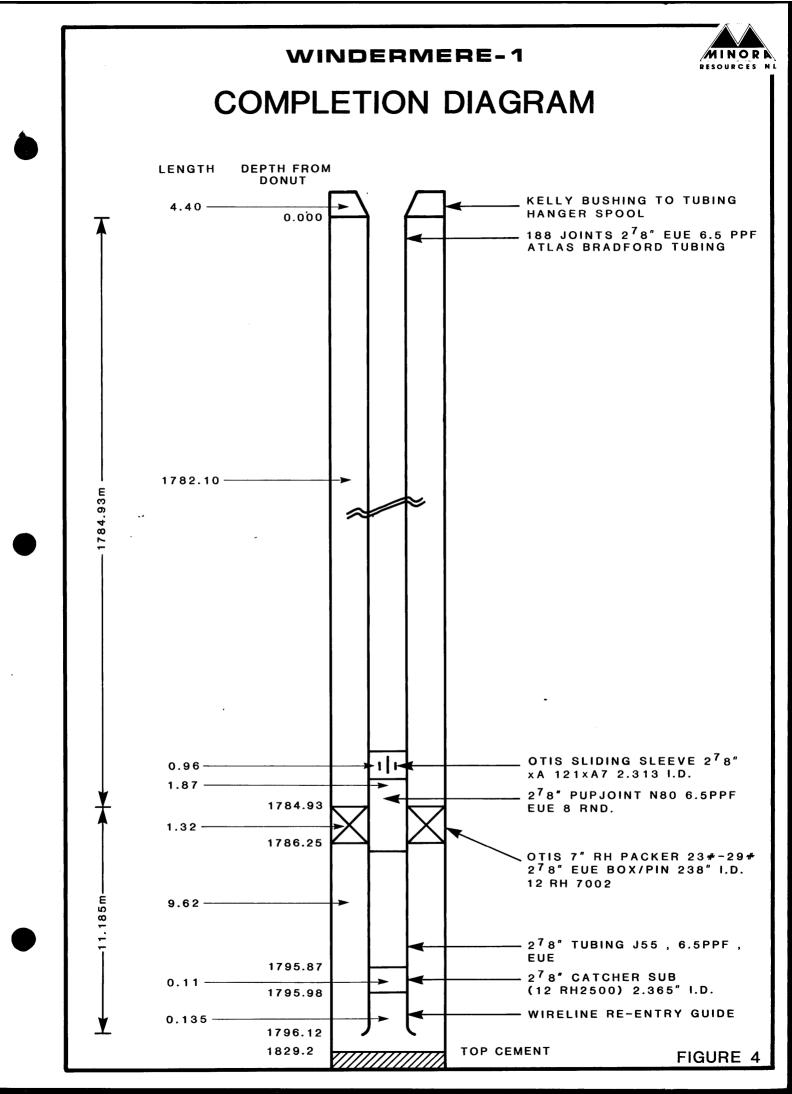
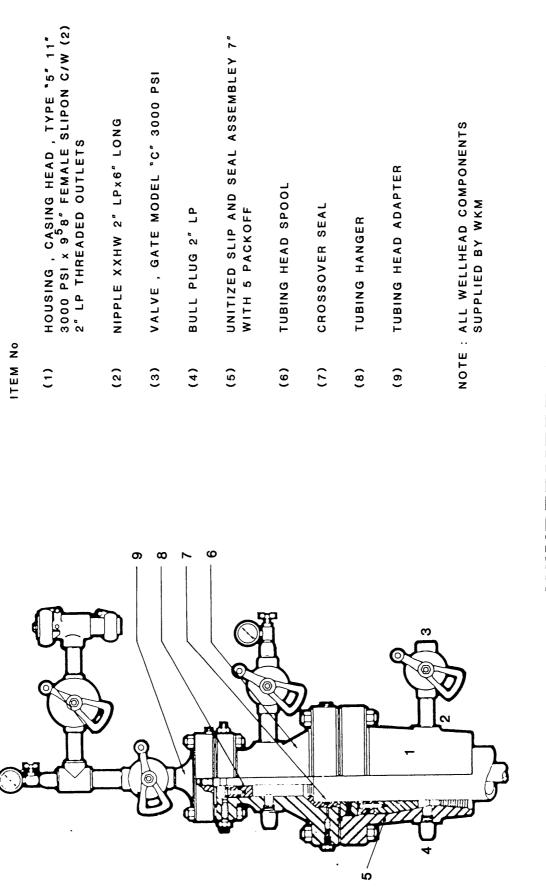



FIGURE 3



.

ŝ
ш
Ê
\supset
G
ш

WELLHEAD COMPLETION SCHEMATIC

WINDERMERE-1

3.5.4 Deviation Surveys

Deviation surveys were recorded at regular intervals. A maximum deviation of 4° was recorded at 1835 m.

Depth (m)	Deviation (Deg.)
69.9	1/4
153.2	1/4
285.0	1/4
368.0	1/4
429.0	3/4
544.0	1
648.0	1 1/4
756.0	1/4
901.0	0
998.0	3/4
1021.0	1
1067.0	1 1/2
1167.0	1
1500.0	3/4
1600.0	3/4
1835.0	4

3.5.5 Formation Sampling

Drill cuttings samples were collected at 10m intervals from surface to $9^5/8$ " casing depth at 286 m and at 5m intervals thereafter to the total depth of 1852m. Samples were air dried and split with one set of samples forwarded to the Government Core Laboratory, Petroleum Division, Department of Industry, Technology and Resources, Port Melbourne. Three sets of washed and dried samples and two sets of wet composited samples were retained by Minora Resources NL at their offices in Perth.

3.5.6 Gas Detector and Penetration Rate

A continuous reading total gas detector (flame ionisation detector) and gas chromatograph were in operation from surface to total depth. This equipment, together with drilling rate, pump rate and pit volume recorders, were operated by Gearhart Geodata Pty Ltd. Drilling rate was recorded at one metre intervals throughout the well and, together with total gas and chromatography readings, is displayed on the 1:500 scale mud log (Enclosure 2).

3.5.7 Conventional Coring

No cores were cut in Windermere-1.

3.5.8 Sidewall Cores

Two guns of sidewall samples were run with 47 shots attempted, 10 lost, 20 empty and 17 cores recovered.

A list of sidewall samples and descriptions is given in Appendix B.

3.5.9 Wireline Logging

The following suite of logs was recorded by Gearhart when the well was at a depth of 1838 ${\tt m:-}$

1827.4 - 286 DLL-MSFL-GR-SP-CAL 1828.0 - 286 GR to surface BCS-MEL-GR-CAL CDL-CNS-GR 1827.6 - 286 CIS-SWC 1816.5 - 452SFT 1806 - 435 VELOCITY SURVEY 1828 _ 54

The following bottom-hole temperatures were recorded on successive Gearhart logging runs:-

.

Log	Maximum <u>Temp (°C</u>)	Time Since Circulation
DLL-MSFL-GR-SP-CAL	67	5.25
BCS-MEL-GR-CAL	74	N/A
CDL-CNS-GR	75	16.9

The projected bottom hole temperature is 81°C at 1828m, giving a calculated geothermal gradient of 3.3°C/100m (assuming a mean surface temperature of 21°C).

3.5.10 Drill Stem Tests

Three open hole drill stem tests (1,2 & 3) and two cased hole drill stem tests (4 & 5) were conducted in Windermere-1. DST.'s 1 & 4 were conventional off bottom tests. DST's no. 2, 3 & 5 were off bottom straddle tests. All tests were run after evaluation with electric logs.

DST No.	INTERVAL (metres)	FLOW PERIODS (minutes)	SHUT-IN (minutes)	RECOVERY
1	1791-1838	6,120,14	27,242	0.5 bbl oil 15.5 bbl muddy
				water
2	1790-1814	5,794	34,398	59 bbl oil, water & mud
3	1750-1790	5,65,7	62,5,137	·NIL
4	1798-1813	7,607	61,393	5.6 bbl brine
5	1782-1787	7,75,41	67 , 7	& trace oil 3000 cc brine

The drill stem test reports are given in Appendix G.

3.5.11 Selective Formation Testing

Results of the SFT's conducted at 52 points in the well between 435 and 1806m are given in Appendix E, along with a plot of pressure and depth data.

3.5.12 Swabbing

Results of swabbing program conducted over nine days are included in Appendix I showing per run fluid recovery and total fluid recovery.

3.5.13 Velocity Survey

A well check shot survey was conducted by Velocity Data Pty Ltd and is uncluded as Appendix N.

GEOLOGY

4.1 Regional Geology

The Otway Basin formed as a rifted continental margin basin with the rifting and initial breakup stage during the Late Jurassic to Mid-Cretaceous being dominated by continental sedimentation. The Late Cretaceous - Tertiary sequence deposited during the period of continental dispersal of Southern Australia and Antarctica is comprised of four depositional sequences with widespread marine shales or marls intercalated with carbonates or porous sandstones. Tectonic activity associated with the breakup movements caused extensive block faulting through the basin. These faults were the control for early wrench movements and localised Tertiary rejuvenation.

The prospectivity of the basin is recognised from the thick Early Cretaceous sequence of source rocks which have demonstrated oil maturity. The basin has extensive structuring and numerous potential reservoirs and seals. Stranding of bitumen has been observed along the southern coastlines of Victoria and South Australia. It appears to have been derived from continental sourcebeds and is believed to have seeped up fault planes in the offshore portion of the Otway Basin.

4.2 Regional Stratigraphy (Refer figure 6)

Economic basement consists of Palaeozoic rocks of the Tasman Geosyncline. The structural history of the Palaeozoic sequence is complex, with deposition mainly aligned north-south in fault bounded lows and high areas.

Late Jurassic - Early Cretaceous

A late Jurassic sequence of volcanic and clastic rocks, the <u>Casterton Beds</u>, has been drilled near the South Australian border and represents the oldest known sequence in the basin. The overlying <u>Otway Group</u> was deposited under non-marine conditions prior to continental dispersal in a deep graben, probably formed in an extensional wrench-related setting. The <u>Pretty Hill Sandstone</u> at the base of the group is a thick sequence of coarse, quartzose sandstones deposited under high energy fluvial conditions, either as proximal fanglomerates or more distal braided stream sediments. Partially time equivalent to, and overlying the Pretty Hill Sandstone, is the Geltwood Beach Formation, a sequence of finer grained interbedded arenaceous and argillaceous sediments. Towards the northern basin margin, there is evidence for unconformities bounding the Pretty Hill Sandstone, the Geltwood Beach Formation and the overlying unit, the Eumeralla Formation. In the deepest parts of the basin, the boundaries between these three units may be represented by hiatuses but are essentially conformable. The Eumeralla Formation is the major unit of the Otway Group and consists of fine-grained fluviatile and lacustrine deposits of immature feldspathic sediments and bentonitic claystones. Up to 50% of the arenaceous beds in the unit were derived from volcanic sources. In the PEP 111 area, the Eumeralla appears to constitute three depositional sequences. Although occasional thick arenaceous bodies may be developed towards the base of the oldest Eumeralla sequence, it is the most argillaceous and coally of the three Eumeralla sub-units, forming a broad fining towards sequence. Logs show the Middle Eumeralla Sub-unit to comprise numerous argillaceous and arenaceous interbeds. The log character and palynological correlations in the Middle Eumeralla suggest that an equivalent of the Heathfield Member is present at the base of the sequence in the PEP 111 area and also show that the sandstones higher in the middle sub-unit are thicker and cleaner than those in the enveloping Eumeralla sequences. Locally, angularity can be recognised between the Middle and Upper Eumeralla. Lithologically, the Upper Eumeralla is similar to the middle sub-unit, but the arenaceous bodies are somewhat thinner bedded and more argillaceous.

Late Cretaceous

Near the end of the Early Cretaceous, volcanic activity paused. A major unconformity (the breakup unconformity) represents a hiatus between the Otway Group and overlying <u>Sherbrook Group</u> sediments. The <u>Waare Sandstone</u>, a fluvio-deltaic unit, was the first to be deposited on the unconformity and was restricted to depressions in the Otway Group terrain to the west and to the east of PEP 111. This formation is conformably overlain by the shallow marine to paralic <u>Flaxman Formation</u>. This in turn is overlain by an extensive marine silty claystone, the <u>Belfast Mudstone</u>, partially time equivalents, <u>Nullawaare Greensand</u> and the <u>Paaratte Formation</u>. The non-marine coarse sandstones, gravels and coals at the top of the Paaratte are referred to as the <u>Timboon Sand</u>.

Tertiary

The Cretacous-Tertiary boundary is unconformable with the Sherbrook Group, being overlain by the <u>Wangerrip Group</u>. This younger group comprises a basal transgressive conglomeratic sandstone, the <u>Pebble Point Formation</u> overlain by a fine-grained pro-delta marine facies unit, the <u>Pember Mudstone</u>. The latter interfingers with, and is overstepped by, a deltaic sandstone, siltstone and shale sequence, the Dilwyn Formation.

A regional unconformity separates the Wangerrip Group from the <u>Nirranda</u> and the <u>Heytesbury Groups</u>, each being extensive sequences of marls and limestone with minor sandstones deposited under open marine conditions on a subsiding shelf.

The former group usually comprises a basal sandstone unit, the Mepunga Formation which passes up into the Narrawaturk Marl. The basal unit of the Heytesbury Group usually consists of a shallow water bioclastic limestone/sandstone unit, the <u>Clifton Formation</u>, which passes upwards into a deeper water facies, the <u>Gellibrand Marl</u>. The <u>Port</u> <u>Campbell Limestone</u> is the overlying formation and consists of an offlapping wedge of coarse bioclastic limestones.

A late Tertiary period of wrench-related faulting and folding is apparent in several areas of the basin, including the major fault system bounding the Windermere Prospect.

4.3 PREVIOUS EXPLORATION

Frome-Broken Hill was granted PEP 5 prior to 1958 and conducted reflection and refraction seismic surveys in the years 1958 to 1964. During this period the wells Pretty Hill-1 and Eumeralla-1 were drilled. Shell farmed into the area in 1965 and conducted seismic surveys from 1966 to 1973. In addition, an aeromagnetic survey was conducted in 1970. North Eumeralla-1 was drilled in 1974 before Shell relinquished the area. Government water bores were drilled from 1959 to 1968.

PEP 5 expired in mid-1975 and the area was taken up by Beach Petroleum in 1976 under PEP 93. Beach did not conduct any exploration within the area, now known as PEP 111. PEP 111 was granted on 4th September 1984 for an initial period of 2 years. The initial term of the Permit was extended by another year, during which Windermere-1 was drilled. Seismic Surveys carried out in or near PEP 111 are summarised as follows:

Date	Name of Survey	Company	Contractor
1958	Portland and Port Campbell-Timboon	Frome-Broken Hill	United Geophysical
1962 1964	Yambuck-Portland Koroit	Frome-Broken Hill Frome-Broken Hill	
	NOIOIC	TIOMO DIONON MILL	Geophysical
1966	Port Fairy-Nelson	Shell	United Geophysical
1969	Hawkesdale	Shell	GSI
1970	Portland-McArthur	Shell	GSI
1971	Nelson-Koroit	Shell	Petty
			Geophysical
1973	Coastal Strip	Shell	Ray
	_		Geophysical
1985	Toolong	Pan Pacific	Geo Systems
1985	Windermere to Port Fairy	Pan Pacific	Seiscom Delta

In addition to the 1985 seismic acquisition, the current permittees have reprocessed the 1971, 1973 and certain older data from the permit area.

Port Campbell Embayment

Port Campbell-1, drilled in 1959 encountered a small flow of petroliferous gas from the Waarre Formation and Port Campbell-4, drilled in 1964, recovered free oil from the Eumeralla Formation. North Paaratte-1, drilled by Beach in 1979, flowed gas at rates of up to 270,000 cm/d (9.6 mmcf/d) from the Waarre Formation. In 1981, Beach's Grumby-1 flowed gas at 200,000 cm/d (7.3 mmcf/d) with approximately 50% carbon dioxide and Wallaby Creek-1, also drilled in 1981, tested gas at 280,000 cm/d (9.8 mmcf/d).

North Paaratte and Wallaby Creek fields contain at least 425 million cubic metres (15 bcf) of gas, and a pipeline transports this gas to Warrnambool.

Tyrendarra Embayment

Few structurally valid wells have been drilled in this area. Modern exploration commenced in the late 1970's with Beach Petroleum acquiring extensive coverage of high resolution seismic. Drilled by Beach in 1983, the Lindon-1 well recovered a small amount of heavy, waxy oil from a drillstem test of the Pebble Point Formation over the interval 891-912m. The Fahley-1 well, drilled farther west by Beach in 1985 is believed to have encountered strong gas shows.

Several exploration wells have been drilled in or near PEP 111, but only Eumeralla-1, drilled by Frome-Broken Hill in 1962-63 was drilled within the permit area. The remaining boreholes in PEP 111 were drilled by the Victorian Government to evaluate the ground water of the area, or to supply water for local towns. Most of the latter wells penetrated the top of the Eumeralla Formation, whilst Eumeralla-1 appears to have been terminated in the Geltwood Beach Formation, or uppermost part of the Pretty Hill Sandstone. Pretty Hill-1 and North Eumeralla-1 both penetrated the Pretty Hill Sandstone, the latter was terminated in pre-Cretaceous basement. The only well in the proximity of PEP 111 with recorded oil shows is Eumeralla-1, which had fluorescence from several zones between 1448 and 2956m (4750 and 9700 feet). Eumeralla-1 tested a rotated fault block and was on the downthrown side of the major antithetic fault until it entered the Middle Eumeralla in the upthrown block. North Eumeralla-1 tested a similar structure and penetrated two major fault zones, one of which placed the Pretty Hill Sandstone structural crest upthrown from the well. While Pretty Hill-1 drilled good Pretty Hill Sandstone reservoirs in a prominent upthrown block, the well does not appear to have been crestal at all hydrocarbon objective levels.

Wells and boreholes drilled within, or close to, the permit are listed in the following table.

Year	Well Name	Company	<u>T.D</u> .	Oldest Fm Penetrated
1959 1967 1968	Belfast-4 Belfast-11 Bootahpool-2	Government Government Government	-1674m -1464m -1343m	Eumeralla Eumeralla Eumeralla Eumeralla
1968 1962	Codrington-l Eumeralla-l	Government Frome-Broken Hill	-1262m -3091m	Eumeralla Prob. Geltwood Beach
1985 1966 197?	Greenslopes-1 Koroit-10 Meerai-3	Phoenix Government Government	-2520m -1496m - 561m	Basement Eumeralla Pebble Point
1968 1973 1967 1962	Nautilus-1 Nth Eumeralla-1 Pecten-1A Pretty Hill-1	Esso Shell Shell Frome-Broken	-1982m -2677m -2816m -2416m	Belfast Shale Casterton Beds Eumeralla Casterton Beds
1982 1968 1967 1960	Triton-1 Tyrendarra-13 Voluta-1 Wangoom-2	Hill Esso Government Shell Government	-3516m -1362m -3940m -1036m	Waarre Eumeralla Flaxman Eumeralla

	GROUP		HEYTESBI	URY GROU	JP II			ANDA OUP	WANG RII GRC			SHERBE	ROOK	GROUP		}		отw	AY GR	OUP		}]
STRATIGRAPHY	FORMATION/MEMBER	NEWER VOLCANICS, SANDS AND LIMESTONES		GEL LIBRAND MARL	CLIFTON FMN		NARRAWATURK MARL	MEPUNGA FORMATION	DILWYN FMN PEMBER MUDST.	PEBBLE POINT FMN	TIMBOON SST.	FMN	BELFAST MUDSTONE	FLANMAN FUN		{	∑α	LOWER A N	.1	BEACH FORMN.	PRETTY HILL SANDSTONE		CASTERTON BEDS		
PALYNOLOG - UNITS OF	EVANS (1966G)															K2b	K2a K1d	7 1 1			K 1a				
SPORE/POLLEN ZONES OF DETTMANN AND	PLAYFORD (1969) AND DETTMAN (1968D)										Tricolpites lilliei Zone	Nothofagidites senectus Zone	Tricolpites pachyexinus	Clavifera triplex Zone	Appendicisporites distocarinatus Zone	Phimopollenites pannosus Zone	Coptospora paradox Zone D.filosus Unit Crybelosporites striatus Subzone	Dic	du S to to t	≥ ites hi zone sporite	s		Crybelosporites stylosus Zone		
RELATIVE CHANGES OF					V		V			~		PRESENT SEA				N				Ň			1	<u> </u>	
STAGES										-	MAASTRICHTIAN	CAMPANIAN	CONIACIAN CONIACIAN	TURONIAN	CENOMANIAN		ALBIAN	APTIAN	BARREMIAN	HAUTERIVIAN		Z BERRIASIAN	PORTLANOLAN TITHONIAN KIMMERIDGIAN	OXFORDIAN	CALLOVIAN
SERI EPO		PLEIS	міс	DCENE		LIGO- CENE	E	DCENE	PA	LEO			LAT	E					EARL	Y			LA	ΓE	
PER	IOD				T	ERTIAR	Y								CRET	ACE	ou	s							
SCALE	(Ma)		_T					50 -		Į		1				100				1] 				150 -

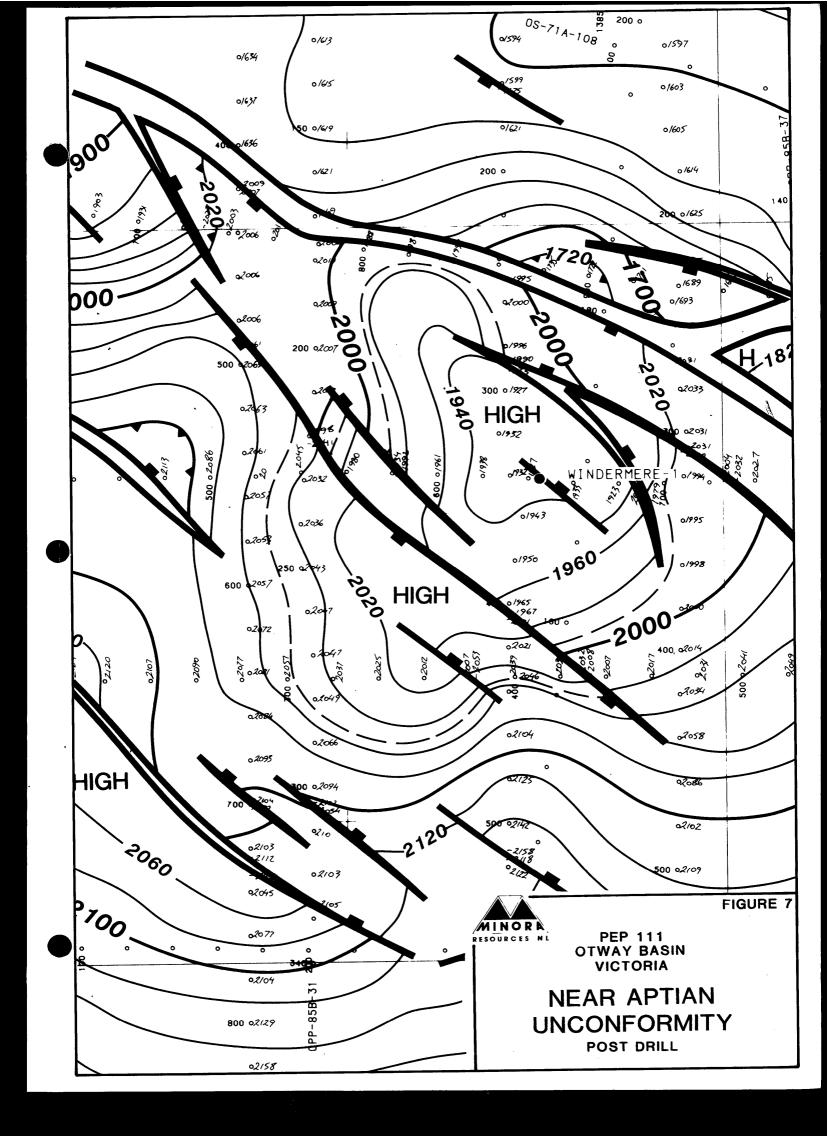
PEP 111 OTWAY BASIN VICTORIA

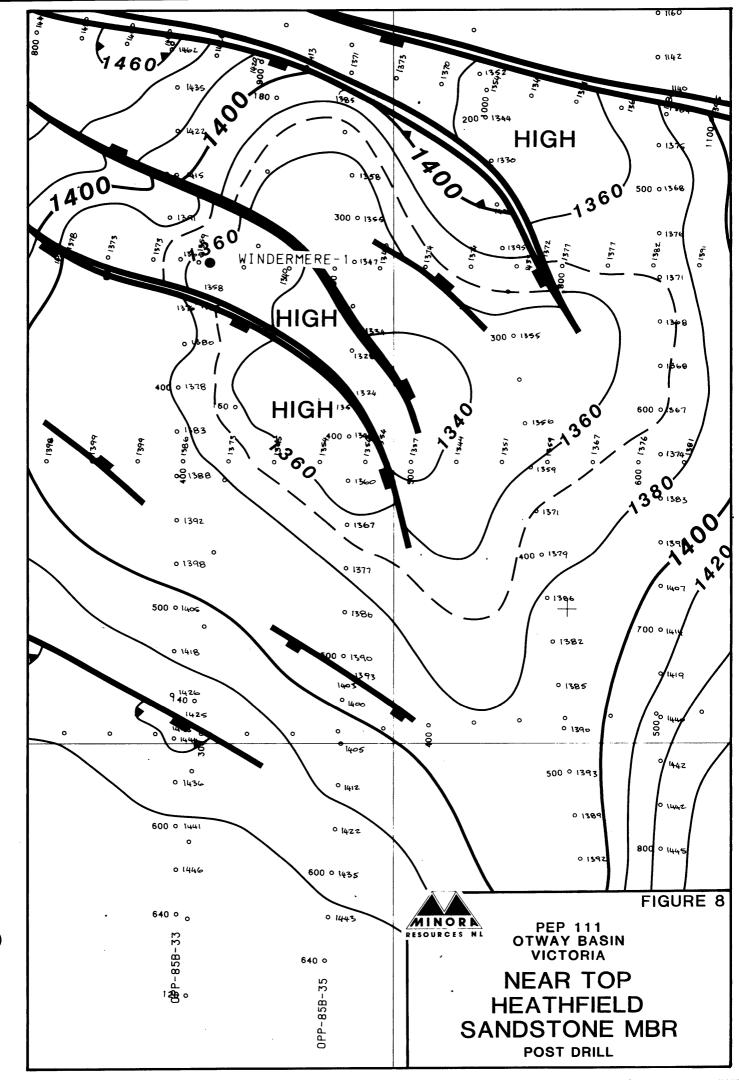
OTWAY BASIN TYRENDARRA EMBAYMENT BIOSTRATIGRAPHY

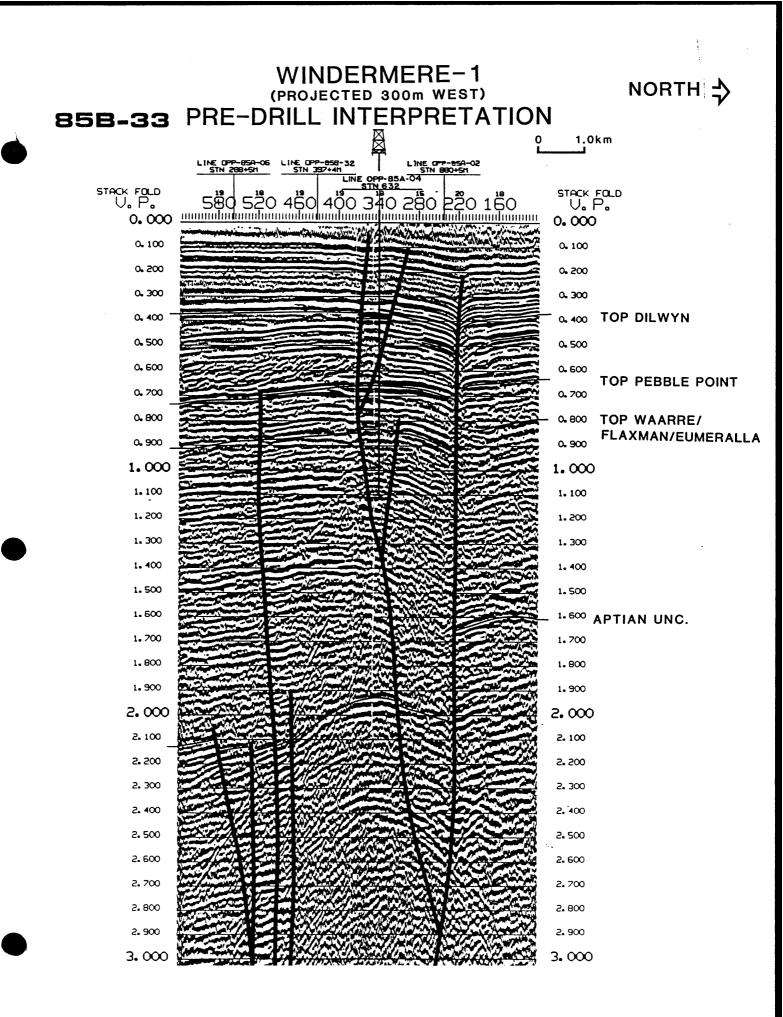
FIGURE 6

1961	Wangoom-6	Government	-1186m	Eumeralla
1967	Warrong-5	Government	-1021m	Eumeralla
1968	Woolsthorpe-1	Interstate Oil Ltd	-1846m	Casterton
1967	Yambuck-2	Government	-1530m	Eumeralla
1960	Yangery-l	Government	-1239m	Eumeralla

4.4 Rationale for Drilling


4.4.1 Geophysical Mapping and Structure


Prior to the drilling of Windermere-1, the structure was identified and delineated by two rounds of seismic shooting acquired during 1985. This data provided an approximate 1 kilometre detail grid over the prospect.


The Windermere structure is an anticlinal feature on the downthrown side of a major growth fault. A broad anticlinal structure at top Dilwyn Formation level crests 1.8 km southwest of the Windermere-1 drilling location while at deeper levels, the structural crest is displaced to the northeast. At Pebble Point horizon, the structure is a simple anticline while at the top Heathfield Sandstone Member some faulting is observed. Deeper in the sequence at the Aptian Unconformity, the structure is a faulted anticline, with throw across the fault in the order of 700 m. in the order of 700 m. Thickening of the Eumeralla sequence on the northern flank of the structure indicates early growth. Onlap onto the Aptian Unconformity indicates a positive structure at base Eumeralla time. (Refer Figures 7 and 8)

Young fault movement on the north bounding fault, probably during the Late Tertiary, is evident on seismic recorded over the area northwest of the Windermere-1 well. Localised wrenching is believed to have formed part of this younger tectonic movement.

Prior to drilling, the structure had been mapped on near top Dilwyn Formation (good regional reflector), near base Tertiary (reasonably reliable reflector) and near base Belfast Mudstone (good regional reflector) seismic horizons. The well was located primarily on the most suitable location for the Pebble Point Formation (near base Tertiary).

4.4.2 Objectives

The Windermere structure exhibits generally co-incident closure between Basement and Pebble Point Formation but the well also tested the Dilwyn Formation within closure. The Joint Venture programmed the well to evaluate all potential objectives between the Dilwyn Formation and the thickest Eumeralla sands, usually developed in the upper part of the Middle Eumeralla sub-unit. The primary objectives however were the Pebble Point Formation, suitable sands beneath the Belfast Mudstone and sands within the Middle/Upper Eumeralla Formation. These units respectively reservoir, oil at Lindon-1, gas at the North Paaratte field and oil at Port Campbell-4.

The Heathfield Member was recognised as a possible secondary objective prior to the drilling of Windermere-1 but the well was not programmed to test the Heathfield Member due to the generally poor reservoir characteristics in nearby wells, and the incremental increase in depth.

It was anticipated that the sequence to be drilled would be thermally immature. It was however expected that the minor crestal faults and major bounding fault could provide hydrocarbon migration conduits from deeper levels where potential oil source and adequate maturity have been identified in adjacent wells.

4.5 Windermere-1 Stratigraphy

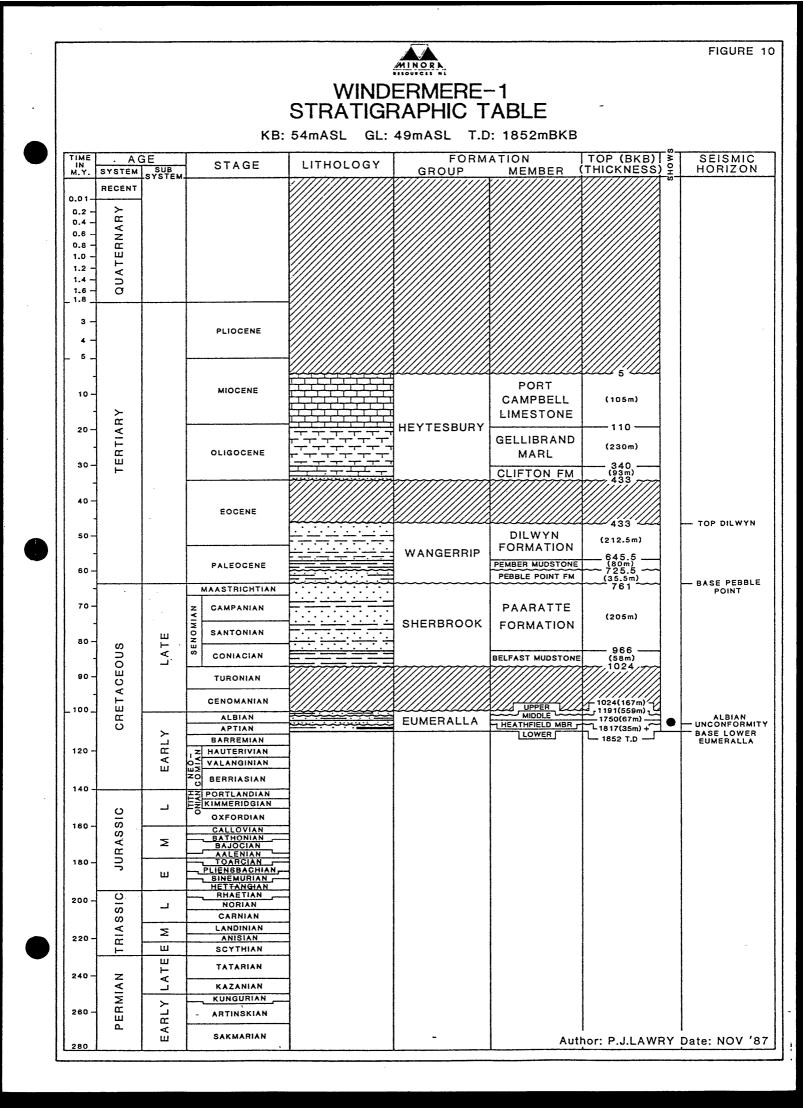
(depths Below KB)

Refer Figure 9.

4.5.1 Tertiary

5-110m Port Campbell Limestone (Miocene)

The Port Campbell Limestone is 105m thick at Windermere-1 and consists of cream to grey limestone with abundant fossil fragments and traces of ferruginous and carbonaceous material and glauconite. The limestone is soft to firm and has no visual porosity. This unit comprises light grey to olive grey soft, slightly silty marl with traces of carbonaceous material and glauconite and is interbedded with minor, finely crystalline, fossiliferous grey limestone.


340-433m Clifton Formation (Oligocene)

The top 76.5m of this formation, which conformably underlies the Gellibrand Marl, consists of interbedded marl and limestone, with the basal 16.5m being volcanics. The marl is light grey to olive grey, fossiliferous, soft, with traces of carbonaceous material and glauconite. The limestone increases with depth to about 50% of the lithology and is grey to buff, finely crystalline, fossiliferous and firm with very low porosity. Minor light grey to buff, calcareous claystone is also present.

The volcanics at the base of the formation appear to be dark grey to black, medium grained dolerite or basalt, with feldspar phenocrysts in a finergrained, mafic matrix. The matrix appears to be partly replaced by chlorite and calcite. Seismic data shows several discrete volcanic bodies to be present at the same stratigraphic level in PEP 111.

433-645.5m Dilwyn Formation (Palaeocene)

The Dilwyn Formation consists of a series of blocky and coarsening upwards marine beach barrier sandstones interbedded with shallow marine shales, overlain by lower coastal plain interbedded sandstone and carbonaceous shales. The beach barrier sandstones, below 480m, are clear to light brown, medium to coarse-grained, well sorted, with traces of fossil fragments and calcite and good visual porosity. The interbedded claystones are brown to olive grey, fossiliferous and calcareous in part and grade to marl in places. The overlying lower coastal plain sequence consists of clear to white, fine to coarse-grained, poorly to moderately sorted, porous sandstone interbedded with brown, silty, carbonaceous claystone.

645.5-725.5m Pember Mudstone (Palaeocene)

The Pember Mudstone is a thick shallow marine unit of olive grey to grey brown, soft, silty claystone which is calcareous and carbonaceous in part with traces of coal and sandstone.

725.5-761m Pebble Point Formation (Palaeocene)

This unit consists of sandstone with minor interbedded claystone. The sandstone is clear to brown, medium-grained, moderately well sorted, subangular to subrounded and friable with good visual porosity. The claytone is olive grey to dark brown, calcareous in part, soft and silty.

4.5.2 Cretaceous

761-966m Paaratte Formation (Campanian-Santonian)

The Paaratte Formation unconformably underlies the Pebble Point Formation and consists of interbedded blocky sandstone and claystones. The sandstones are clear, medium to coarse-grained, moderately sorted, subrounded and with good visual porosity. The claystones are dark grey-brown, soft and silty in part.

966-1024m Belfast Mudstone (Santonian-Coniacian)

Dark grey-brown, soft to firm, fossiliferous claystone comprises the Belfast Mudstone. The claystone is silty in part and grades to light grey-greeen subfissile, silty, slightly carbonaceous claystone with depth.

1024-1191m Upper Eumeralla Sub-unit (Albian)

The Eumeralla Formation unconformably underlies the Belfast Mudstone and parts of the Tyrendarra Embayment can be subdivided into an Upper, Middle and Lower Eumeralla Sub-units. The Upper Eumeralla Sub-Unit comprises a sequence of interbedded claystones and sandstones of continental origin. The claystones are greenish grey, silty and micromicaceous and the sandstones are clear to light grey, fine to medium-grained, moderately well sorted, subangular, lithic and argillaceous. Visual porosity is low.

1191-1750m Middle Eumeralla Sub-unit (Albian)

Unconformably underlying the Upper Eumeralla Sub-unit is the Middle Eumeralla Sub-unit. The unconformity is apparent on seismic data and on electric logs the break between the two is marked by a shift on the resistivity and sonic values. The Middle Eumeralla Sub-unit is lithologically similar to the Upper Eumeralla, with compositionally immature sandstones and consists of interbedded sandstone, light grey to greenish grey, fine-grained moderately to well sorted, subangular, argillaceous, calcareous in part with multicoloured lithic fragments, common chlorite and fair to low visual porosity; claystone, light brownish grey to olive grey, silty and slightly carbonaceous and micaceous and siltstone, light grey, argillaceous and sandy in part, slightly carbonaceous and micaceous.

1750-1817m Heathfield Member (Albian)

The Heathfield Member is included as the basal unit of the Middle Eumeralla Sub-unit. As in other areas of the basin an unconformity separates the Heathfield Member Sandstone (a lithologically more mature equivalent) from the underlying Lower Eumeralla sequence. The Heathfield Member in Windermere-1 has been identified as a tuff or tuffaceous sandstone from sidewall core petrology. This showed the lithology to be that of a lithic crystal tuff with fine to medium, well sorted, angular to subrounded grains comprising about 20% quartz, 20% feldspar, 55% unaltered lithic fragments (volcanics and metamorphics) and minor opaques and mica. Matrix and cement comprise 14-22% of the rock, with chlorite making up 60-93% of this The chlorite forms both grain rims and fraction. interstitial matrix. It is likely that many of the sandstone bodies in the Middle Eumeralla Sub-unit have a similar composition. Moderate fluorescence was observed in the tuff over the interval 1805-1810m. It was dull, yellowish with poor to nil crush cut and decreased from poor to trace from 1810 Interbedded with the tuff are minor - 1815 m. siltstone and claystone beds. The siltstone is light grey, argillaceous, carbonaceous and micaceous and the claystone is olive to light grey, soft and silty in part.

1817-1852m Lower Eumeralla Sub-unit (Albian-Aptian) (TD)

> The upper boundary of this unit is an unconformity. The Lower Eumeralla sequence comprises interbedded claystone, siltstone, sandstone and minor coal. The presence of these coal beds near the top of the Lower Eumeralla is a characteristic feature of the formation in nearby wells, such as Eumeralla-1. The claystone is brownish grey, subfissile and carbonaceous, micaceous siltstone. Sandstones are grey, very fine-grained, well sorted subangular, argillaceous and clacareous in part and the coal is black and earthy.

4.6 Structure and Reservoir Geometry

Seismic data over the Windermere struture was reprocessed subsequent to the drilling of the well. The top Dilwyn Formation was not remapped after drilling, but data quality is good and a re-interpretation would not substantially change the structural interpretation at that level.

Post-drill mapping showed that the well was within closure on one of several culminations at Pebble Point level with the well lying at the north western extremeity of a small partly faulted high on the anticline. This is not the highest point on the structure at this level and in view of the interpreted fault throws being less than the thickness of the Pembler Mudstone seal, a valid trap may still exist updip at this level.

Below the base Tertiary, most horizons were encountered some 100 m low to prognosis. A thicker than expected Paratte Formation resulted in deeper horizons comming in low to prognosis. A lack of geophysical control was probably responsible.

The only Cretaceous horizons which were mapped post-drill were the top Heathfield Member and the Aptian unconformity (near base Eumeralla Formation). Prior to drilling, the drilling location was shown to be within closure at base Belfast level.

An increase in velocity at top Heathfield level gives rise to a locally mappable seismic horizon while the coals at the top of the Lower Eumeralla Sub-Unit give rise to a regional seismic marker. At top Heathfield level, the structure has anticlinal expression with several crestal faults and the well lying some 35 milliseconds (44 m) downdip from the crest. The well also lies some 10 milliseconds within the lowest closing contour. The only horizon with obvious oil shows in the Heathfield however occurs from 1805-1810m, some 55 m below the top of the Member and the base of the overlying Eumeralla seal. This suggests a number of trapping mechanisms, either diagenetic or stratigraphic, and possibly in combination with fault sealing. The relatively thick and largely blocky gamma ray log character of the individual sand bodies in the Heathfield Member suggests that the unit may be comprised of relatively few depositional cycles. From the Neocomian and subsequent growth history recognized from seismic data over the major basement related fault north of the well, it is possible that Windermere-1 penetrated an alluvial fan facies developed at the foot of a major growth fault related scarp. Correlation of the Heathfield Member with nearby wells shows it is thicker and slightly cleaner at Windermere-1. Thin zones of microlog separation between the oil bearing interval and the top of the Heathfield Member indicate that few permeable zones are developed in the unit and suggest that the reservoir may be either a diagenetic trap or a relatively thin zone in the lower depositional cycle of the member.

4.7 Occurrence of Hydrocarbons

Ditch gas readings were low over most of the sequence penetrated and there were no significant gas readings until the base of the Paaratte Formation. From 940 m, gas levels began to increase in strength and richness and over the interval $1740 - 1850 \text{ m C}_3$ and C₄ were recorded. The 35 m of Lower Eumeralla Sub-unit drilled before TD exhibited good gas shows, recording up to C₅ gases. The increased readings from 1075 m were one of the reasons they well was deepened from its original proposed total depth of 1400m. The mudlog is included as Enclosure 2.

The only hydrocrabon fluorescence was recognized in the Heathfield Member over the interval 1805-1810m, where 100% dull yellowish fluorescence with poor to nil crush cut was observed. Mud log shows indicated the only zone of significance in the well with possible reservoir development was the interval 1805-1810m in the Heathfield Member.

A comprehensive logging suite was recorded to evaluate The logs indicated three zones of anomalous these shows. resistivities in the Dilwyn Formation from 434-515m and 605-641m and the Pebble Point Formation from 725-758m. Initial log analysis of the Heathfield Member was complicated by the unusual lithology and was not definitive as to the presence of hydrocarbons. A computer log interpretation by Crocker Data Processing (Appendix E) handled the data interactively and indicated water saturations in the lower part of the Heathfield Member to be about 60%. This interpretation was calibrated against a water-bearing unit from 1367-1373m and the resistivity of water recovered from DST 1, which was 0.32 ohmm at 25°C. This resistivity is similar to the run 82 swab water Rw of 0.286 at 25°C from the zone 1798-1813m. The computer interpretation however also shows more optimistic water saturations and higher levels of movable oil in shallower Eumeralla sand bodies where no significant mud logging shows were recorded. The reliability of this relatively sophisticated log interpretation is therefore uncertain due to the complexity of the lithology and inability of "conventional" analysis methods to account for:

(a) high content of clay (chlorite) forming grain coatings and interstitial matrix.

(b) high and possible variable amounts of granular matrix formed by rock fragments giving a clay log response.

(c) variable salinities associated with high volumes of bound and interstitial water between various intervals.

On subsequent wells, conventional cores should be cut to calibrate the logs and enable more reliable quantitative interpretation.

Drill stem tests 1 and 2 were conducted over the interval with fluorescence and recovered 0.5 barrel and 31.9 barrels oil respectively. Details of the tests are given in Appendix G. The recovery of oil from this zone, which had negligible electric log response, and the existence of several high resistivity anomalies in the Tertiary sequence led to an SFT programme being undertaken. Although low permeabilities in the Eumeralla limited the usefulness of the tool, pressure gradients confirmed the water-bearing nature of sands in the Upper Eumeralla, Paaratte and Pebble Point Formations. Possible gas and oil pressure gradients were interpreted from 439-456m and 515-569m respectively. SW values of 70-100% are calculated for both these zones. Formation fluid samples taken at 535m and 435m recovered only water with no indications of hydrocarbons. Both water samples have evidence of filtrate contamination with potassium concentrations of 2600 and 9200 ppm. As the least contaminated sample at 435m near an interpreted gas show did not contain any show of gas it is likely that the top of the Dilwyn was conclusively tested and is water bearing. The sample at 535m is however less conclusive as the water sample was heavily contaminated with filtrate and the inferred fluid type from the pressure survey was oil.

Cased hole testing of the Heathfield Member failed to produce significant hydrocarbons and formation water was swabbed from the oil show interval during an extended evaluation programme.

The log analysis also showed several sands at the top of the Dilwyn Formation to have water saturations of between 40-60%. Self potential deflections between 434 and 900m however suggested that all but the 434-515m resistivity anomaly were likely to be related to salinity gradients recognized in other wells in the area.

4.8 Reservoir Porosity and Permeability

4.8.1 Lower Eumeralla Sub-unit

This unit was only partly logged but there appear to be no sandstones with any significant reservoir potential.

4.8.2 Heathfield Sandstone Member

No conventional cores were cut in the Heathfield Member as reservoir quality and hydrocarbon shows appeared poor while drilling. Porosity and permeability measurements are therefore restricted to the four sidewall cores between 1816m and 1802.3m in the lower part of the reservoir. The lithology is a lithic tuff, with matrix and cement comprising 14-22% of the rock and chlorite making up 60-93% of this fraction. The chlorite forms both grain rims and interstitial matrix and is partly associated with kaolin flakes. As a consequence the macroporosity observable in this section is less than 5%. However SEM images show high microporosity between the chlorite platelets and this observation is in keeping with the measurements from the sidewall cores (Appendix C), of porosity values from 22-24%. Permeabilities are low however, 1.2-1.6 md, similar to values interpreted from the open hole DST's. The porosity values are higher than those from electric log interpretation, and this may be a result of the sidewall coring process.

Middle and Upper Eumeralla Sub-units

No reservoir quality sandstones are interpreted from ditch cuttings samples from within this sequence. Although some porosities are interpreted in the range 25-30% the sandstones are considered to be low permeability. The microlog infers however that some permeability development is scattered through various sand bodies, particularly within the Middle Eumeralla eg. 1585-1589m and 1591-1598m. This suggests that Eumeralla zones other than the Heathfield may be prospective updip on the structure.

4.8.4 Paaratte Formation

Clear porous sandstones are interpreted within the Paaratte Formation, although they appear to lose reservoir quality with depth. Neutron Density porosities range 29 to 33% but v. clay increases with depth.

4.8.5 Pebble Point Formation

Clean porous permeable sandstones are interpreted in the Pebble Point Formation. Density/Neutron porosities are in the range 27-28% and permeabilities appear to be relatively good.

4.8.6 Dilwyn Formation

Good quality sandstones were encountered in the Dilwyn Formation. Porosities are calculated to range between 28 and 33%.

5. CONCLUSIONS AND CONTRIBUTIONS TO GEOLOGICAL KNOWLEDGE

Windermere-1 drilled a substantial closed antiform structure in the Tyrendarra Embayment of the Otway Basin.

Several closed potential reservoir units were tested by the well.

The Dilwyn formation contains good potential reservoirs and was penetrated within closure on the edge of the structure at that level. The top of the Dilwyn was interpreted to be gas bearing from logs and pressure data but one slightly contaiminated water sample suggests it is water-bearing. A deeper Dilwyn zone interpreted from pressure gradients to be possibly oil-bearing was sampled and the filtrate - contaminated water suggests that the zone may not have been conclusively tested. Post-drill mapping based on reprocessed seismic data shows that the main objective, the Pebble Point Formation, was within closure but not on the highest culmination on the prospect. An adequate and substantially thicker than prognosed Pember Mudstone appears to seal the unit. The absence of hydrocarbons is probably due to a downdip location and/or a lack of migration paths from the deeper, thermally mature source rocks within the Eumeralla Formation. Reservoir quality of the Pebble Point is interpreted as very good. It is considered the Pebble Point Play is still valid but needs to be in proximity to source of oil migration paths and conduits.

The Paaratte Formation contains an excellent sequence of interbedded reservoirs and seals.

The base Belfast Mudstone play is productive on the Port Campbell high where it overlies the Waaree Sandstone. Ιn the area of PEP 111 the Upper Eumeralla Sub-unit generally Impermeable Upper subcrops the Belfast Mudstone. Eumeralla Sub-unit sandstones subcrop to this potential seal in Windermere-1. Reservoir quality sandstones have been encountered nearby at the base Belfast horizon. At Codrington-1, 7½km south west Arkosic Sandstones cored in the Upper Eumeralla Sub-unit equivalent had core porosities 29-31% and permeabilities of 11-36 darcies. Reservoirs of this quality in closed position could be a very attractive objective. As prognosed, the best potential Eumeralla reservoirs were encountered in the Middle Eumeralla Sub-Unit. Although the Eumeralla sands generally appear to be highly argillaceous in ditch cuttings the microlog suggests that scattered poor to moderate permeabilities may be developed and that additional potential may exist updip on the structure.

Oil was discovered in the Heathfield Member of the Eumeralla Formation. A total of 31.9 barrels of oil was recovered from the interval 1790-1814m on open hole drill stem test No. 2 but a cased hole test over a similar interval (1798-1813m) recovered only filtrate and formation water with a slight trace of oil. The reasons for the failure of the cased hole test to reproduce the results of the earlier test in recovering significant hydrocarbons are unclear but may be due to i) the oil productive section is a transition zone, ii) preferential permeability of the reservoir, iii) damage due to the cementing and casing procedures, iv) lack of access of the perforations to oil-bearing layers, or V) DST 2 may have produced all the oil accessible by the well.

The steady inflow of formation water during swabbing operations refutes the possibility of damage being done during cementing and casing installation. A different completion technique may however prove more beneficial for oil production. The fact that oil was recovered from the Heathfield Member indicates generation and migration of oil has occurred within the Eumeralla Formation in this part of the Otway Basin. Geochemical data suggest the maturity of the oil is about 0.57% VR, and it had probably been sourced from the coaly part of the Eumeralla Formation below the Heathfield Member, where VR's of 0.5% were measured.

The strongly humic sourced character of the Heathfield oil contrasts markedly with the more algal-rich source interpreted from the Pretty Hill Formation and Casterton Beds which are believed to have sourced the coastal bitumen strandings. It could also imply that the faults cutting the Windermere structure have not been conduits for migration from these deeper Otway Group source intervals and that the faults are sealed.

The variable nature and thickness of the Heathfield Sandstone is illustrated by wells in the area. Windermere-1 penetrated a gross 54 m Heathfield sand Member, among the thickest sections yet penetrated in the basin. Reservoir quality is poor but better than Pretty Hill-1, Eumeralla-1 and North Eumeralla-1. Proximity to the Windermere Fault may well be a factor in improving Heathfield reservoir development. The depositional environment at Windermere-1, based on log character and setting, is interpreted to have been located in a proximal alluvial fan position, whereas North Eumeralla-1 and Eumeralla-1 are interpreted to be in a distal position.

Further drilling and coring is required to determine the setting and reservoir development of the Heathfield Sand Member.

(P111F)

This is an enclosure indicator page. The enclosure PE902220 is enclosed within the container PE902219 at this location in this document.

٠

. -

 \bigcirc

The enclosure PE90	2220 has the following characteristics:
ITEM_BARCODE =	PE902220
CONTAINER_BARCODE =	PE902219
NAME =	Synthetic Seismogram
BASIN =	OTWAY
PERMIT =	PEP 111
TYPE =	WELL
SUBTYPE =	SYNTH_SEISMOGRAM
DESCRIPTION =	Synthetic Seismogram (enclosure from
	WCR vol.1) for Windermere-1
REMARKS =	
DATE_CREATED =	22/04/87
DATE_RECEIVED =	25/02/88
W_NO =	W956
WELL_NAME =	Windermere-1
CONTRACTOR =	Digimap Geodata Services
CLIENT_OP_CO =	Minora Resources NL
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE902221 is enclosed within the container PE902219 at this location in this document.

The enclosure PE902221 has the following characteristics: ITEM_BARCODE = PE902221 CONTAINER_BARCODE = PE902219 NAME = Complex Lithology Model BASIN = OTWAY PERMIT = PEP 111 1 TYPE = WELL SUBTYPE = WELL_LOG DESCRIPTION = Complex Lithology Model (enclosure from WCR vol.1) for Windermere-1 REMARKS = DATE_CREATED = 27/11/87 $DATE_RECEIVED = 25/02/88$ W_NO = W956 WELL_NAME = Windermere-1 CONTRACTOR = Crocker Data Processing CLIENT_OP_CO = Minora Resources NL

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE601093 is enclosed within the container PE902219 at this location in this document.

The enclosure PE601093 has the following characteristics: ITEM_BARCODE = PE601093 CONTAINER_BARCODE = PE902219 NAME = Gearhart Mud Log BASIN = OTWAY PERMIT = PEP 111TYPE = WELL SUBTYPE = MUD_LOG DESCRIPTION = Gearhart Mud Log (enclosure from WCR vol.1) for Windermere-1 REMARKS = $DATE_CREATED = 8/04/87$ $DATE_RECEIVED = 25/02/88$ $W_NO = W956$ WELL_NAME = Windermere-1 CONTRACTOR = Gearhart Pty Ltd Geodata Services CLIENT_OP_CO = Minora Resources NL

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE601094 is enclosed within the container PE902219 at this location in this document.

}

The enclosure PE601094 has the following characteristics: ITEM_BARCODE = PE601094 CONTAINER_BARCODE = PE902219 NAME = Composite Well Log BASIN = OTWAY PERMIT = PEP 111TYPE = WELL SUBTYPE = COMPOSITE_LOG DESCRIPTION = Composite Well Log (enclosure from WCR vol.1) for Windermere-1 REMARKS = $DATE_CREATED = 29/06/87$ $DATE_RECEIVED = 25/02/88$ $W_NO = W956$ WELL_NAME = Windermere-1 CONTRACTOR = Minora Resources NL CLIENT_OP_CO = Minora Resources NL (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE907856 is enclosed within the container PE902219 at this location in this document.

The enclosure PE907856 has the following characteristics: ITEM_BARCODE = PE907856 CONTAINER_BARCODE = PE902219 NAME = Drilling Data Summary Sheet BASIN = OTWAY PERMIT = PEP 111TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Drilling Data Summary Sheet (figure 2 of Well Completion Report vol.1) for Windermere-1 REMARKS = \cdot DATE_CREATED = 10/04/87 $DATE_RECEIVED = 25/02/88$ $W_NO = W956$ WELL_NAME = Windermere-1 CONTRACTOR = Minora Resources CLIENT_OP_CO = Minora Resources (Inserted by DNRE - Vic Govt Mines Dept)

Appendix A Sample Descriptions

A second se

APPENDIX A - SAMPLE DESCRIPTION

•

INTERVAL (m)	ROP min/m	LITHOLOGY
10 - 20	2	100% limestone, cream to grey, abundant fossil fragments, trace ferruginous material, soft to firm, good porosity.
20 - 30	2.5	100% limestone as above - predominantly cream. Trace carbonaceous material.
30 - 40	2.3	100% limestone as above
40 - 50	1.8	100% limestone as above.
50 - 60	1.9	100% limestone as above becoming light grey and with trace glauconite.
60 - 70	1.5	100% limestone as above, grading in part (10%) to grey marl, low porosity.
70 - 80	1.5	100% limestone as above.
80 - 90	0.8	100% limestone as above but with a smaller proportion of fossil fragments.
90 - 100	1.5	100% limestone as above - becoming finer grained and a little more argillaceous (about 10% acid insoluble).
100 - 110	1.7	100% limestone as above.
110 - 120	2.2	100% marl, light grey, slightly silty with trace carbonaceous material and glauconite, soft, nil porosity.
120 - 130	1.3	Marl, as above, with trace limestone.
130 - 140	1.2	100% marl as above, but softer.
140 - 150	2.0	100% marl - very soft
150 - 160	2.1	100% marl - very soft.
160 - 170	1.5	100% marl - very soft.
170 - 180	1.6	100% marl - very soft
180 - 190	1.7	100% marl - very soft.
190 - 200	1.8	100% marl - very soft.
200 - 210	1.7	100% marl - very soft.
210 - 220	2.3	100% marl - very soft.

220 - 230	1.6	100% marl - very soft.
230 - 240	1.4	100% marl - very soft.
240 - 250	1.6	100% marl, light grey, trace carbonaceous material, glauconite and finely crystalline grey limestone. The marl is very soft with zero porosity.
250 - 260	1.1	100% marl, as above.
260 - 270	1.0	100% marl, as above.
270 - 280	0.8	100% marl, as above.
280 - 290	0.9	100% marl, as above.
290 - 300	2.0	100% marl, light grey to olive grey with numerous fossil fragments. Traces of carbonaceous material and glauconite, very soft, zero porosity. The proportion of fossil fragments is dependent on the amount of washing.
300 - 305	1.5	100% marl as above.
305 - 310	1.4	100% marl as above.
310 - 315	2.0	100% marl as above.
315 - 320	2.4	100% marl as above.
320 - 325	3.2	100% marl as above.
325 - 330	2.2	100% marl as above.
330 - 335	2.6	100% marl as above.
335 - 340	1.4	100% marl as above. The fossil fragments are now buff in part rather than grey and a trace of limestone is present.
340 - 345	4.1	90% marl as above. 10% limestone, light grey to buff. Finely crystalline, firm, tight.
345 - 350	3.6	90% marl as above. 10% limestone as above.
350 - 355	4.3	100% marl.
355 - 360		100% marl as above becoming a little firmer.
360 - 365	2.8	80% marl as above. 20% limestone as above.

365 - 370	3.0	80% marl as above. 20% limestone as above.
370 - 375	2.2	80% marl as above 20% limestone as above.
375 - 380	1.8	60% marl as above. 40% Limestone as above.
380 - 385	1.1	50% marl, olive grey, grading to calcareous claystone, with traces of carbonaceous material and glauconite. Soft to firm, zero effective porosity. 50% limestone, buff, finely crystalline, firm, abundant buff fossil fragments and very low porosity.
385 - 390	1.8	60% marl as above. 40% limestone and fossil fragments.
390 - 395	1.6	80% marl as above. 20% limestone as above.
395 - 400	1.7	80% marl as above. 20% limestone as above.
400 - 405	1.3	80% marl as above. 20% limestone as above.
405 - 410	1.0	80% marl as above, darker grey and more argillaceous. 20% limestone as above.
410 - 415	2.6	40% marl as above. 40% limestone as above and minor brown crystalline limestone. 20% claystone, light grey to buff, calcareous, soft to firm.
415 - 420	2.4	40% marl as above. 40% limestone as above. 20% claystone as above. The whole sample is darker grey brown. Trace quartz grains.
420 - 425	8.4	<pre>100% volcanic rock, black, possibly dolerite.</pre>
425 - 430	27	100% dolerite - sample contaminated with caving due to slow drilling.

- 430 435 5.5 50% volcanics (dolerite?), dark grey to black, medium crystallinity. Composed of clear and white feldspar and black mafic mineral (hornblende?). Some greenish chloritic material and calcite grains. 50% marl and limestone as previously probably cavings. Trace quartz grains medium, angular to sub-rounded.
- 435 440 2.5 40% volcanics as above 10% calcite - coarsley crystalline. 50% sand, clear, medium-grained, sub-rounded, moderately sorted.
- 440 445 0.5 100% sand, clear and white, medium to coarse, dominantly medium, moderately sorted, sub-rounded individual quartz grains. No matrix and only trace calcite cement is present in washed samples. Unwashed samples contain a considerable amount of dark brown clay which is probably the sandstone matrix, trace of coarse mica flakes, apparent porosity is good.

445 - 450 1.4 100% sand, as above.

450 - 455 1.6 100% sand, as above with more coarse grains. Trace claystone, brown, carbonaceous, silty.

- 455 460 1.5 100% sand, as above.
- 460 465 1.0 100% sand, as above, finer grained.
- 465 470 2.4 100% sand, as above.

470 - 475 100% sand, as above.

475 - 480 4.1 100% sand, clear grains with brown stain, fine to coarse, dominantly medium-grained, poorly sorted, sub-rounded to rounded, no matrix in washed sample but probably soft brown argillaceous matrix in situ. Trace calcareous cement, numerous grains of crystalline calcite and trace white mica. Soft friable, good apparent porosity.

480 - 485 4.1 100% sand as above but cleaner and more coarse grains.

485 - 490 3.1 100% sand as above.

490 - 495	0.8	100% sand as above, very clean and moderately to well-sorted, although still numerous coarse grains.
495 - 500	1.9	40% sand as above but finer. 60% marl grading to calcareous claystone, light grey, soft to firm. Numerous fossil fragments - lithology is very similar to that of Clifton Formation but have no reason to suspect excessive casing.
500 - 505	4.6	60% sand as above. 40% marl/claystone as above.
505 - 510	1.9	70% sand. 30% marl/claystone as above.
510 - 515	0.6	70% sand as above. 30% marl/claystone as above.
515 - 520	0.4	100% sand as above, clean, clear quartz grains, very high porosity.
520 - 525	0.4	100% sand, as above.
525 - 530	1.6	100% sand, as above.
530 - 535	1.1	100% sand, clear, medium to coarse (mostly coarse) grained, sub-rounded quartz grains, moderately well sorted, very high porosity.
535 - 540	0.5	100% sand, as above. Trace fossil fragments and calcite - may be caving.
540 - 545	0.3	100% sand, as above.
545 - 550	2.3	80% sand as above, better sorted with few coarse grains. 20% claystone/marl, olive grey, soft. Fossil fragments and calcite.
550 - 555	2.8	70% sand as above. 30% claystone/marl as above.
555 - 560	1.5	60% sand. 40% claystone/marl as above.
560 - 565	6.0	50% sand as above. 50% claystone/marl as above.

•

.

ر ^

565 - 570	1.4	50% sand as above. 50% claystone mostly brown, silty in part, carbonaceous, only slightly calcareous, soft.
570 - 575	1.0	40% sand, as above. 60% claystone, as above.
575 - 580	1.0	40% sand, as above. 60% claystone, as above.
580 - 585	1.9	100% sand, light brown to clear, medium to coarse, dominantly medium, sub-rounded, moderately sorted, no matrix, trace of calcite cement, traces of fossil fragments and calcite, soft and friable, high apparent porosity.
585 - 590	1.3	100% sand, as above, more coarse grains.
590 - 595	1.6	100% sand, clear with brown staining, fine to coarse, poorly sorted, sub-angular to sub-rounded, trace calcareous cement, no matrix (may be brown clay washed out), traces calcite grains, mica and fossil fragments, possibly caving, soft and friable, fair apparent porosity. Trace brown and olive-grey claystone.
595 - 600	1.6	100% sand as above.
600 - 605	1.4	90% sand as above. 10% claystone as above.
605 - 610	1.9	80% sand. 20% claystone - a large proportion of raw sample is dark brown very soft clay which washes away.
610 - 615	0.6	70% sand as above. 30% claystone as above.
615 - 620	0.7	70% sand as above. 30% claystone as above.
620 - 625	0.6	100% sand as above.
625 - 630	0.6	100% sand, as above.
630 - 635	0.6	100% sand, as above.
635 - 640	0.7	100% sand, as above.

•

640 -	645	0.7	80% sand as above. 20% claystone, as above, grading in part to siltstone, dark grey, carbonaceous, micaceous, argillaceous, soft.
645 -	650	0.8	100% sand, as above - better sorted with dominant grain size medium.
650 -	655	1.1	10% sand, as above. 90% claystone, olive grey and grey brown, grading to siltstone as above. Trace coal.
655 -	660	1.7	10% sand, as above. 90% claystone,as above.
660 -	665	6.6	<pre>30% sand, clear, medium with few coarse grains, moderately sorted, sub-rounded. No adhering matrix, trace calcite cement, calcite grains and fossil fragments common but probably caving, friable, fair apparent porosity. 70% claystone, olive grey to brown, soft, silty in part, mostly calcareous.</pre>
665 -	670	7.9	30% sand, as above. 70% claystone, as above.
670 -	675	2.8	20% sand as above. 80% claystone as above.
675 -	680	2.6	20% sand. 80% claystone.
680 -	685	5.7	10% sand, as above. 90% claystone, as above.
685 -	690	4.1	100% claystone, as above, trace sand.
690 -	695	6.6	100% claystone, as above.
695 -	700	5.1	100% claystone, as above, trace sand.
700 -	705	5.0	100% claystone, as above, trace sand.
705 -	710	5.0	100% claystone, as above, trace sand.
710 -	715	5.0	100% claystone, as above, trace sand.
715 -	720	4.6	100% claystone, as above, trace sand.

720 - 725	3.6	80% claystone, as above. 20% sand, clear to dark brown, medium to coarse, mostly medium-grained, poorly sorted, sub-angular to sub-rounded, brown argillaceous clay matrix adhering to grains, calcite and fossil fragments common but probably caving. The sand is friable and apparent porosity good to fair.
725 - 730	2.4	60% sand, clear to dark brown stained, dominantly medium grained, moderately well sorted, sub-angular to sub-rounded, brown clay matrix, no cement, very friable with good apparent porosity. 40% claystone, olive grey to dark brown, calcareous, soft, silty in part.
730 - 735	1.2	50% sand, as above. 50% claystone, as above, mostly brown non-calcareous.
735 - 740	1.2	40% sand, as above. 60% claystone, as above.
740 - 745	1.0	60% sand, as above. 40% claystone, as above.
745 - 750	1.0	70% sand, as above. 30% claystone, as above.
750 - 755	1.0	70% sand, as above, a little cleaner. 30% claystone, as above.
755 - 760	1.1	80% sand, as above. 20% claystone, as above.
760 - 765	1.1	80% sand, as above. 20% claystone, as above.
765 - 770	3.4	60% sand, clear to brown stained, dominantly medium with numerous coarse grains, moderately well sorted, sub-angular to rounded, brown clay matrix, no cement, friable to soft (matrix washes out), fair to good porosity. 40% claystone, dark grey-brown. Silty in part. Soft to very soft.
770 - 775	1.9	20% sand, as above. 80% claystone, as above.
775 - 780	2.9	10% sand, as above. 90% claystone, as above, very soft.

7	780 - 7	85	1.2	100% claystone, as above, trace sand.
7	785 - 7	90	1.1	100% claystone, as above, trace sand.
7	790 - 7	95	0.9	20% sand, as above. 80% claystone, as above.
7	795 - 8	00	1.0	100% claystone, as above, trace sand.
8	300 - 8	05	1.1	20% sand, as above (caving?). 80% claystone, as above.
8	805 - 8	10	1.1	100% claystone, as above.
8	810 - 8	15	1.8	100% claystone, as above.
8	815 - 8	20	1.7	100% claystone, as above.
8	320 - 8	25	1.2	100% claystone, as above.
8	825 - 8	30	1.7	100% claystone, as above, trace sand.
8	830 - 8	35	2.4	100% claystone, as above, trace sand.
8	835 - 8	40	5.7	100% claystone, as above, trace sand.
8	340 - 8	45	2.3	80% sandstone, clear, medium to coarse-grained, mostly medium, individual quartz grains, moderately sorted, sub-rounded, no matrix or cement in washed sample, soft and friable, excellent apparent porosity. 20% claystone, as above, very soft and dispersive. Can be completely removed by washing.
8	345 - 8	50	1.7	80% sand, clear, medium to coarse, mostly medium, poorly to moderately well sorted, sub-angular to sub-rounded, no matrix or cement in washed sample, soft and friable, good apparent porosity. 20% claystone, dark grey-brown, soft.
` 8	850 - 8	55	2.4	60% sand, as above. 40% claystone, as above.
8	855 - 8	60	1.9	50% sand, as above. 50% claystone, as above.
8	860 - 8	65	1.1	40% sand, as above. 60% claystone, as above.
8	865 - 8	70	2.5	10% sand, as above. 90% claystone, as above.

870 - 875	1.8	100% claystone, as above. Trace sand.
875 - 880	2.4	10% sand, as above. 90% claystone, as above.
880 - 885	2.6	100% claystone, as above. Trace sand.
885 - 890	2.0	100% claystone, as above.
890 - 985	4.9	100% claystone, as above.
895 - 900	3.0	100% claystone, as above.
900 - 905	2.5	100% claystone, as above. Trace sand.
905 - 910	1.7	100% claystone, as above. Trace sand.
910 - 915	6.2	100% claystone, as above.
915 - 920	2.8	100% claystone, as above.
920 - 925	10.0	100% claystone, as above.
925 - 930	6.4	100% claystone, as above. Trace sand.
930 - 935	3.9	100% claystone, as above.
935 - 940	4.1	100% claystone, as above. Trace sand.
940 - 945	1.8	80% sand, clear, medium-grained, well sorted, well rounded, little clay matrix, no cement, soft, porous. 20% claystone, as above.
945 - 950	0.9	80% sand, clear, fine to medium-grained dominantly medium, well sorted, sub-angular to rounded, minor clay matrix, no cement, minor calcite grains and rare fossil fragments, soft, with good porosity. 20% claystone, dark grey brown, soft to very soft.
950 - 955	1.2	80% sand, as above, with very minor orange coloured siliceous lithic fragments. 20% claystone, as above.
955 - 960	1.0	30% sand, as above. 70% claystone, as above, grading in part to siltstone.
960 - 965	2.8	60% sand, as above. 40% claystone, as above.

965 - 970	1.0	50% sand, as above. 50% claystone, as above, slightly firmer.
970 - 975	3.0	20% sand, as above. 80% claystone, as above, slightly firmer.
975 - 980	4.4	30% sand, as above, trace pyrite. 70% claystone, as above. The presence of calcite and fossil fragments may be due to caving.
980 - 985	4.0	20% sand, as above. 80% claystone, as above, becoming soft-firm.
985 - 990	12.0	30% sand, as above. 70% claystone, as above.
990 - 995	24.0	20% sand, as above. 80% claystone, as above.
995 - 1000	23.0	50% sand, as above, and brown stained, rounded grains are numerous, trace pyrite. 50% claystone, as above, numerous fossil fragments possibly due to caving.
1000 - 1005	21	30% sand, clear and brown stained, dominantly medium grained with numerous fine and coarse grains, poorly sorted, angular to sub-rounded, clay matrix, in part pyrite matrix, minor siliceous lithic fragments and chloritic material - soft to hard, low porosity. 70% claystone (i) dark grey brown, soft, silty in part, (ii) light grey-green sub-fissile.
1005 - 1010	9.4	100% claystone, dark grey-brown greenish in part, slightly carbonaceous, silty in part, trace sand, pyrite.
1010 - 1015	15.0	100% claystone, dark grey brown to olive grey, firm to soft, silty in part, slightly carbonaceous in part, trace sand, fossil fragments and calcite (cavings?).
1015 - 1020	7.0	100% claystone, as above.
1020 - 1025	21.0	50% sand, clear, medium to coarse, sub-rounded, moderately sorted quartz grains. 50% claystone, as above.

1025 - 1030	38.0	100% claystone (i) greenish grey with some glauconite grains, firm, (ii) grey brown with carbonaceous flecks, firm to soft.
1030 - 1035	58.0	100% claystone, as above, due to slow drilling abundant cavings are present.
1035 - 1040	1.7	80% sandstone, light, slightly greenish grey, fine-grained, sub-angular to sub-rounded, moderately well sorted, abundant white clay matrix, variably calcareous, green, orange and brown, also common siliceous and chloritic lithic fragments, moderately hard, low porosity. 20% claystone, as above.
1040 - 1045	24.0	20% sandstone, as above. 80% claystone, as above and about 20% off white, silty, micromicaceous claystone.
1045 - 1050	26.0	100% claystone, light olive grey to light grey in part, silty and micromicaceous, soft to firm. Trace sand grains and carbonaceous claystone.
1050 - 1055	12.5	100% claystone, as above.
1055 - 1060	26.0	100% claystone, light grey as above. Numerous fossil fragments, probably cavings due to slow drilling.
1060 - 1065	9.3	100% claystone, as above.
1065 - 1070	10.0	100% claystone, as above.
1070 - 1075	2.7	40% (i) sandstone, light grey, fine grained, moderately sorted, sub-angular, abundant clay matrix, lithic, firm, tight; (ii) clear, medium sub-rounded quartz grains. 60% claystone, olive grey, brownish grey and light grey - mixture due to trip.
1075 - 1080	1.2	90% sandstone, as (i) above. 10% claystone.
1080 - 1085	1.3	30% sandstone, as above. 70% claystone, as above.
1085 - 1090	2.8	70% sandstone, as above. 30% claystone, as above.

1090 - 1095	2.6	10% sandstone, as above. 90% claystone, as above.
1095 - 1100	4.6	10% sandstone, as above. 90% claystone, as above.
1100 - 1105	5.5	10% sandstone, as above. 90% claystone, as above.
1105 - 1110	1.3	10% sandstone, as above. 90% claystone, as above.
1110 - 1115	3.7	100% claystone, as above.
1115 - 1120	2.1	100% claystone, as above. Trace sand.
1120 - 1125	1.7	40% sandstone, light grey, fine-grained, moderately well sorted, sub-angular, abundant clay matrix, numerous coloured lithic grains, brown mica and carbonaceous? particles, firm to soft, low porosity. 60% claystone, light grey, silty and micromicaceous in part, soft to very soft.
1125 - 1130	1.2	30% sandstone, as above. 70% claystone, as above.
1130 - 1135	2.7	10% sandstone, as above. 90% claystone, as above.
1135 - 1140	2.6	10% sandstone, as above. 90% claystone, as above.
1140 - 1145	2.3	10% sandstone, as above. 90% claystone, as above.
1145 - 1150	1.5	100% claystone, as above.
1150 - 1155	1.8	10% sandstone, as above. 90% claystone, as above.
1155 - 1160	1.2	50% sandstone, as above. 50% claystone, as above.
1160 - 1165	0.5	60% sandstone, as above. 40% claystone, as above.
1165 - 1170	0.8	100% claystone, as above. Trace sand.
1170 - 1175	1.8	100% claystone, as above. Trace sand.
1175 - 1180	1.7	100% claystone, as above, Trace sand.
1180 - 1185	1.1	100% claystone. as above. Trace sand.

· ·

1185 - 1190	2.0	100% claystone, as above. Trace sand.
1190 - 1195	2.2	100% claystone, as above. Trace sand.
1195 - 1200	2.3	70% sandstone, as above. 30% claystone, as above.
1200 - 1205	0.9	60% sandstone, as above. 40% claystone, as above.
1205 - 1210	2.2	70% sandstone, light greenish grey, fine grained, well sorted, sub-angular, abundant white clay matrix, slightly calcareous in part, yellow, green and orange siliceous or chloritic lithics are present, minor calcite grains, minor to trace brown mica and carbonaceous particles, firm, fair to very poor porosity. 30% claystone, light brownish grey, silty in part, slightly carbonaceous in part, soft to mushy.
1210 - 1215	2.2	20% sandstone, as above. 80% claystone, as above.
1215 - 1220	1.9	60% sandstone, as above. 40% claystone, as above.
1220 - 1225	2.0	80% sandstone, as above. 20% claystone, as above.
1225 - 1230	1.5	90% sandstone, as above. 10% claystone, as above.
1230 - 1235	1.1	80% sandstone, as above. 20% claystone, as above.
1235 - 1240	1.3	70% sandstone, as above. 30% claystone, as above.
1240 - 1245	1.3	90% sandstone, as above. 10% claystone, as above.
1245 - 1250	2.0	70% sandstone, as above. 30% claystone, as above.
1250 - 1255	1.3	10% sandstone, as above. 90% claystone, as above.
1255 - 1260	2.8	20% sandstone, as above. 80% claystone, as above.

1260 - 12653.4 100% claystone, as above, more olive grey to greyish green, with a trace of sand. 1265 - 12703.6 100% claystone, olive grey to light brownish grey, slightly silty and carbonaceous in part, trace slightly micromicaceous, soft to firm, trace grains of calcite. 1270 - 1275 1.5 90% claystone, as above. 10% sand - individual, clear, medium quartz and lithic grains. Trace calcite grains and fossil fragments. 1275 - 12801.8 90% claystone, as above. 10% sand/sandstone, as above. 1280 - 12852.0 90% claystone, as above. 10% sandstone, as above. 1285 - 1290 2.4 90% claystone, as above. 10% sandstone, as above. 1290 - 1295 100% claystone, light grey, soft, silty in 1.7 Slightly carbonaceous and part. micromicaceous in part. Trace sand, fine grained, lithic. 1295 - 13006.0 70% sandstone, light grey, fine grained, (1296.5 moderately well sorted, sub-angular, - 1297.5 17.0) abundant argillaceous matrix, variably calcareous, common siliceous and chloritic lithic grains, trace brown mica, firm to friable, porosity very poor to fair. 30% claystone, as above. 1300 - 13052.8 60% sandstone, as above. 40% claystone, as above. 1305 - 13102.4 100% claystone, as above. 1310 - 1315100% claystone, as above. 1.9 1315 - 13202.5 100% claystone, as above. 1320 - 1325100% claystone, as above. 3.4 Trace sand. 1325 - 13302.8 100% claystone, as above. A larger percentage is grading to siltstone. Trace sand and sandstone. 1330 - 13353.7 100% claystone, as above.

1335 - 1340	2.8	30% sandstone, as above. 70% claystone, as above.
1340 - 1345	3.2	10% sandstone, as above. 90% claystone, as above.
1345 - 1350	2.7	10% sandstone, as above. 90% claystone, as above.
1350 - 1355	3.0	100% claystone, as above. Trace sandstone and siltstone.
1355 - 1360	1.9	100% claystone, as above. Trace sandstone and siltstone.
1360 - 1365	1.1	50% siltstone, very light grey, very argillaceous, in part micromicaceous. 50% claystone, as above.
1365 - 1370	2.5	20% sandstone, light grey, fine-grained, moderately well sorted, sub-angular, clay matrix abundant and variably calcareous, coloured lithic grains common, trace of mica and carbonaceous material, firm to soft, very low porosity grading to siltstone. 40% siltstone, light grey, soft, argillaceous and sandy in part, variably calcareous, slightly carbonaceous and micaceous in part, grading to claystone. 40% claystone, light grey to light brownish grey, silty in part.
1370 - 1375	2.3	40% sandstone, as above. 20% siltstone, as above. 40% claystone, as above.
1375 - 1380	1.5	70% sandstone, as above. 10% siltstone, as above. 20% shale, as above.
1380 - 1385	1.3	60% sandstone, as above. 20% siltstone, as above. 20% claystone, as above.
1385 - 1390	2.1	60% sandstone, as above. 40% siltstone, as above. 20% claystone, as above.
1390 - 1395	2.3	20% sandstone, as above. 40% siltstone, as above. 40% claystone, as above.

1395 - 1400	3.1	70% sandstone, as above. 10% siltstone, as abhove. 20% claystone, as above.
1400 - 1405	3.5	40% siltstone, as above. 60% claystone, as above.
1405 - 1410	2.1	40% siltstone, as above. 60% claystone, as above.
1410 - 1415	2.1	30% siltstone, light grey, argillaceous, variably calcareous, soft, in part grading to sandstone, in part to claystone. 70% claystone, olive grey to light grey, brownish, in part calcareous, in part carbonaceous, trace sand.
1415 - 1420	2.1	30% siltstone, as above. 70% claystone, as above.
1420 - 1425	3.0	<pre>20% sandstone, light grey, fine grained, moderately sorted, sub-angular argilllaceous matrix, calcareous in part, lithic grains common, firm to soft, low porosity. 20% siltstone, as above. 60% claystone, as above.</pre>
1425 - 1430	2.1	20% sandstone, as above. 20% siltstone, as above. 60% claystone, as above.
1430 - 1435	2.5	10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above.
1435 - 1440	6.1	10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above.
1440 - 1445	4.8	20% sandstone, as above. 20% siltstone, as above. 60% claystone, as above.
1445 - 1450	3.5	30% siltstone, as above, trace sand. 70% claystone, as above, more calcareous.
1450 - 1455	4.1	20% siltstone, as above. 80% claystone, as above, trace coal.
1455 - 1460	4.1	30% siltstone, as above, trace sand. 70% claystone, as above.

ų ese¹

1460 - 1465 3.3 40% sandstone, light grey, fine grained, moderately well sorted, sub-angular, white clay matrix, variably calcareous, common coloured lithic fragments, trace brown mica, soft to firm - low porosity. 30% siltstone, light grey to off-white, very argillaceous, sandy in part. 30% claystone, olive grey to light grey brown, in part calcareous, in part slightly carbonaceous, becoming firmer.

- 1465 1470 5.4 30% siltstone, as above. 70% claystone, as above. Trace sand.
- 1470 1475 6.0 20% siltstone, as above. 80% claystone, as above.
- 1475 1480 5.4 20% siltstone, as above. 80% claystone, as above.
- 1480 14854.020% siltstone, as above.80% claystone, as above.
- 1485 14905.020% siltstone, as above.80% claystone, as above.
- 1490 14952.630% siltstone, as above.70% claystone, as above.
- 1495 15004.640% sandstone, as above.20% siltstone, as above.40% claystone, as above.
- 1500 1505 2.1 30% sandstone, as above. 20% siltstone, as above. 50% claystone, as above.
- 1505 1510 3.3 10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above.
- 1510 1515 8.0 20% siltstone, as above. 80% claystone, as above. Trace Sand.

1515 - 1520 6.6 20% siltstone, light grey, very argillaceous, calcareous, sandy in part. 80% claystone, olive grey to brownish grey, variably calcareous, slightly carbonaceous and silty in part.

20% sandstone, light grey, fine grained, 1520 - 15255.6 moderately sorted, lithic, argillaceous, calcareous, firm, tight. 20% siltstone, as above. 60% claystone, as above. 5.4 1525 - 1530 40% sandstone, as above. 20% siltstone, as above. 40% claystone, as above. 1530 - 1535 6.5 10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above. 1535 - 15406.1 10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above. 1540 - 15459.6 40% siltstone, as above. 60% claystone, as above. 1545 - 15505.0 30% siltstone, as above. 70% claystone, as above. 1550 - 1555 6.1 20% siltstone, as above. 80% claystone. 1555 - 15605.1 20% siltstone, as above. 80% claystone, as above. 1560 - 15654.7 20% siltstone, as above. 80% claystone, as above. 1565 - 1570 6.1 20% siltstone, light grey, very argillaceous, in part slightly micaceous and carbonaceous, in part grading to sandstone, firm to soft. 80% claystone, light grey to brownish grey, silty in part, soft. 1570 - 1575 20 30% siltstone, as above. 70% claystone, as above. 1575 - 158020% siltstone, as above. 6.6 80% claystone, as above. 1580 - 158514.0 40% siltstone, as above. 60% claystone.

1585 - 1590 2.1	70% sandstone, light grey, fine grained, moderately well sorted, sub-angular, abundant white clay matrix, variably calcareous, siliceous and chloritic lithic fragments common, trace mica and calcite grains, firm, low porosity. 10% siltstone, as above. 20% claystone, as above.
1590 - 1595 10.5	60% sandstone, as above. 10% siltstone, as above. 30% claystone, as above.
1595 - 1600 7.3	70% sandstone, as above, but less matrix, probably some porosity. 10% siltstone, as above. 20% claystone, as above.
1600 - 1605 7.6	20% sandstone, as above. 20% siltstone, as above. 60% claystone, as above.
1605 - 1610 8.4	30% sandstone, as above. 20% siltstone, as above. 50% claystone, as above.
1610 - 1615 9.4	<pre>10% siltstone, light grey, very argillaceous, sandy in part, soft. 90% claystone, light grey to light brownish grey, mostly non-calcareous, silty in part, soft.</pre>
1615 - 1620 12.6	30% siltstone, as above. 70% claystone, as above.
1620 - 1625 3.8	60% sandstone, light grey, fine grained, well sorted, sub-angular, white clay matrix sparse to abundant, slightly calcareous in part. Coloured lithic grains are common with traces of brown mica and calcite grains, firm to soft, porosity poor to fair. 10% siltstone, as above.
	30% claystone, as above.
1625 - 1630 5.3	50% sandstone,as above. 10% siltstone, as above. 40% claystone, as above.
1630 - 1635 3.0	70% sandstone, as above. 10% siltstone, as above. 20% claystone, as above.

1635 - 16403.5 40% sandstone, as above. 20% siltstone, as above. 40% claystone, as above. 1640 - 16458.7 10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above. 1645 - 16508.9 20% siltstone, as above. Trace sand. 80% claystone, as above. 1650 - 16558.9 100% claystone, as above. Trace of siltstone and sandstone. 1655 - 166030% sandstone, as above. 7.1 20% siltstone, as above. 50% claystone, as above. 1660 - 166540% sandstone, light grey, fine-grained, 4.7 moderately well sorted, sub-angular, argillaceous matrix, calcareous in part, numerous lithic grains and trace of brown mica, firm, low porosity. 10% siltstone, light grey, very argillaceous, in part micromicaceous and silty. 50% claystone, light grey, brownish grey and olive grey, slightly carbonaceous, silty in part. 1665 - 16707.7 10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above. 1670 - 16759.2 30% siltstone, as above. 70% claystone, as above, trace of sand. 1675 - 168011.0 10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above. 1680 - 168540% siltstone, as above. 8.5 60% claystone, as above. 1685 - 16908.5 40% siltstone, as above. 60% claystone, as above. 1690 - 16957.0 40% siltstone, as above. 60% claystone, as above. 1695 - 17008.2 20% siltstone, as above. 80% claystone, as above.

1700 - 1705	8.2	20% siltstone, as above. 80% claystone, as above.
1705 - 1710	6.3	10% sandstone, as above. 20% siltstone, as above. 70% claystone, as above.
1710 - 1715	8.4	10% sandstone, as above. 30% siltstone, as above. 60% claystone, as above.
1715 - 1720	5.8	<pre>10% sandstone, light grey, fine-grained, moderately well sorted, sub-angular, off-white clay matrix, slightly calcareous in part, common coloured lithic grains with trace brown mica and rare carbonaceous fragments, firm to soft, poor porosity. 40% siltstone, light grey, very argillaceous, soft. 50% claystone, olive grey, light grey and greenish grey, silty, in part soft.</pre>
1720 - 1725	6.3	10% sandstone, as above. 30% siltstone, as above. 60% claystone, as above.
1725 - 1730	9.2	40% siltstone, as above. 60% claystone, as above.
1730 - 1735	10.0	30% siltstone, as above. 70% claystone, as above.
1735 - 1740	11.9	10% sandstone, as above. 40% siltstone, as above. 50% claystone, as above.
1740 - 1745	15.7	40% siltstone, as above. 60% claystone, as above.
1745 - 1750	10.1	30% siltstone, as above. 70% claystone,as above.
1750 - 1755	10.5	20% sandstone, as above. 30% siltstone, as above. 50% claystone, as above.
1755 - 1760	8.7	30% sandstone, as above. 30% siltstone, as above. 40% claystone, as above.
1760 - 1765	12.0	20% sandstone, as above. 30% siltstone, as above. 50% claystone, as above.

1765 - 1770	9.6	<pre>30% sandstone, light grey, fine-grained, moderately well sorted, sub-angular, abundant white clay matrix, calcareous in part, abundant coloured lithic fragments, trace brown mica, calcite grains, soft to firm, low porosity. 30% siltstone, light grey, very argillaceous, in part slightly carbonaceous - partly micromicaceous. 40% claystone, olive grey, light grey and brownish grey, soft, silty in part.</pre>
1770 - 1775	6.8	50% sandstone, as above. 20% siltstone, as above. 30% claystone, as above.
1775 - 1780	9.4	60% sandstone, as above. 10% siltstone, as above. 30% claystone, as above.
1780 - 1785	4.4	60% sandstone, as above. 10% siltstone, as above. 30% claystone, as above.
1785 - 1790	5.8	50% sandstone, as above. 20% siltstone, as above. 30% claystone, as above.
1790 - 1795	5.2	40% sandstone, as above. 20% siltstone, as above. 40% claystone, as above.
1795 - 1800	12.6	70% sandstone, as above, with some coarse grains. 10% siltstone, as above. 20% claystone, as above.
1800 - 1805	6.8	70% sandstone, as above. 10% siltstone, as above. 20% claystone, as above.
1805 - 1810	3.3	<pre>90% sandstone, light grey to very light grey, fine to coarse, dominantly fine to medium-grained, poorly sorted, sub-angular to sub-rounded, abundant white clay matrix, very calcareous with numerous siliceous and chloritic lithic grains and a trace brown mica and carbonaceous material - firm to hard, very low porosity. 10% claystone, brownish grey to olive grey, silty in part, firm to soft. Trace coal, brown to black, earthy. Fluorescence is very dull (almost 100%), yellowish, very poor to nil crush cut.</pre>

60% sandstone, light grey, fine-grained, 1810 - 18153.3 moderately sorted, sub-angular to sub-rounded, abundant white clay matrix, very calcareous, lithic grains, weathered ?feldspar and calcite grains common. Trace brown mica and carbonaceous material. Firm, very low apparent porosity. 20% siltstone, light grey, very argillaceous, micromicaceous in part. 20% claystone, light grey, olive grey and grey green to brownish grey, in part silty, in part carbonaceous, soft.

- 1815 1820 3.3 70% sandstone, as above. 20% siltstone, as above. 10% claystone, as above.
- 1820 1825 8.0 40% sandstone, as above. 20% siltstone, as above. 35% claystone, as above. 5% coal, black, earthy.

1825 - 1830 8.2 20% siltstone. 80% claystone, as above, mostly light grey, as above. Trace sand.

1830 - 1835 8.9 Trace sandstone, as above. 10% siltstone, as above. 70% claystone, as above. 20% coal, as above.

1835 - 1838 8.5 10% siltstone, as above. 90% claystone, as above. Trace coal.

1838 - 1852 1 -17 Predominantly claystone, grading in part to siltstone, light to dark grey, grey brown, firm, sub fissile, carbonaceous. 0% - 10% sandstone, light grey to grey, very fine-grained, well sorted, sub-angular, light grey, argillaceous matrix, very calcareous, poor visual porosity, no fluorescent or cut.

PlllG

Appendix B

sidewall Core Descriptions

MINORN	ESOURCES ML	
~		

SIDE WALL CORE DESCRIPTION

WELL: WINDERMERE-1

- - · ·

.

- N	7		ŭ ×	COLOUR	Ì	NOLAM	GHAIN		Ī	ğ	RAIN	NOM	WH TFY	TEXTURE	MATRIX		Į	Ž	7 43			4,	LUORE	FLUORESCENCE		5	┝	
	_	2	+		3ZR	ł	BIZE BHAPE TYPE BATE		ž	×	TYPE %		5 E	_	COL	TYPE		ŝ	N 35	ø	×	12	% cor	COL TYPE	ទ	TYPE RESD	ESD	REMARKS
	5 SST		100 EI	LIGHT GREY	FINE ANG	SUB	HLID	8	δz	E E	FELD CHLOR				МН	ARG	SL			POOR		<u> </u>	TIN			TIN		MANY LITHIC FRAGS
	3.0 SST		100 LI GR	LIGHT GREY	FINE	SUB-	нділ	8	δz	FE CH	FELD CHLOR				МН	ARG	SI			POOR		1	TIN			TIN	WEE	THOMAS IG
	3.0 SST		100 LI GR		FINE	SUB-	HLIT	R B	2Z	EE	FELD				НМ	ARG	S.			POOR	T		TIN			TIN		
	3.0 SST		100 LI GR		MED.	SUB- ANG	LITH I	PR Q	δz	E E	FELD									POOR		1	TIN			JIN		
	2.5 CL	CLST 1	100 DK BI GREY	DK BROWN GREY							-		S FI	SÖFT - FIRM			1						TIN	<u> </u> .,		TIN		
	3.0 CL	CLST 1	100 LI GR	LIGHT GREY				†	1					FIRM	1		1					+	TIN	-		TIN		
	3.5 SST		100 LT OFI	LT GREY-	FINE	SUB- RND	5 ZZ	1 B	LITH	\vdash	<u>+</u>		FRI SO	FRIABLE- SOFT	Z	н		1		8	6	1	TIN			NIL	-NON	NON-CALCAREOUS
• •	4.0 CLST		100 ^{DK} BR(DK GREY BROWN		h			5Z	TR MIC	MICA TR			1	1	1			1	1	1	+	TIN			NIL	TR 0	TR COAL-LIKE MAT-
•	4.0 CLST		100 ^{DK} BR(DK GREY BROWN							-		ļ	1	1	1		1			+	+	NIL			NIL	ERI/ TR 5	ERIAL TR SLTST
•	4.0 SST		95 LIC	LIGHT BROWN	FINE	SUB-	5 5 7	8		<u> </u>					Z	ц	1	1	'IIN	₿	8	+	NIL	-		TIN		
1	CLST	гı	5 BR	DK GREY- BROWN											1		1		1			+					_	
	4.0 SST		100 LT GRI	LT BROWN-I GREY	FINE	SUB-	20 ZQ	V. GD L	L HTIJ	TR CARB	RB TR	R SFT	L L		z	1.1	1		HIN	8	1	+	NIL			TIN		
						RND							ļ	1	+				†	1	1	+	+					
•	3.5 CLST		100 OLI GRE	OLIVE GREY			 	 		\vdash		FRM- SFT		1			1		1	†		+	NIL			NIL	TRAC	TRACE MICA
••]	4.0 CLST		90 ^{DK} BRC	DK GREY- BROWN				<u> </u>				FRM			1		+	1-	+	1	1	+	TIN			NIL	_	
	SST		10 WHITE	ß	FINE- MED.		δz	<u> </u>			<u> </u>	<u> </u>		1	-					1		+	TIN			NIL		
•	4.0 SST		100 MED. GREY		FINE-SUB- MED. ANG	SUB-	щ	PR L	HLI	TR		SFT			GREY I	ARG	1	+	<u> </u>	POOR	1	+	NIL			NIL		
1	4.0 SLTST		100 GREY BROWN	NW(FRM	F F			1	<u>† </u>	1		1		+	TIN			NIL	ARG, CARR	ARG, SANDY, CARB IN DADT
	5 SST		100 BROW	HSIN	FINE A	SUB-		ß							н z	ц		-	TIN	G	8	+	NIL		- 2	TIN		
					4	RND											+	1	1	+		+			1	+		
4.0	0 SST	r 100	8	20	MED- S CRS R	SUB- RND	- ⁶⁴	PR LJ	E	TR			 	1 <u>5 m</u>	CREAM-	ARG	1	+	Ť	8	8	+	TIN		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TIN	-	
															<u> </u>	+		1	+	+	†						+	
1								┟──┤	┟───┤	<u> </u>	┨───┤	ļ	ļ	 	+	+	+	+	+	+	+	+	_		+	+		
															+	 	+	†	†	+	+	+-			+	-		

• •

Appendix C

Porosity & Permiability Results from Sidewall Samples

WINDERMERE -1

PRELIMINARY POROSITY AND PERMEABILITY RESULTS

FROM SIDEWALL SAMPLES

Sample I.D.	Depth Metres	Perm to Air, MD	Porosity Percent	Grain Density
1	1816.5	NOT SUITABLE	24.2	2.71
2	1811.0	1.2	21.9	2.69
3	1806.3	1.6	22.4	2.72
4	1802.3	NOT SUITABLE	22.9	2.68

Ref: PlllH

(

(

CORE ANALYSIS REPORT

FOR

MINORA RECOURCES N.L.

WINDERMERE 1 WILDCAT

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom; and for whose exclusive and confidential use; this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories Australia Pty., Ltd. (all errors and omissions excepted); but Core Laboratories Australia Pty., Ltd. and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas or other mineral well or formation in connection with which such report is used or relied upon.

Litton Core Lab

Core Laboratories Australia Pty. Ltd 6 Marlow Road. Keswick, South Australia 5035 (08) 297 0777

5th May, 1987

Minora Resources N.L. 55 St. George's Terrace Perth W.A. 6000

Attention: Mr Ed. Kopson

Subject : Core Analysis Well : Windermere #1 File : WA-CA-380

Dear Sir,

Core Laboratories Australia Pty Ltd was requested by Mr. Kopson to perform porosity, permeability and grain density determinations on four sidewall core samples from the subject well.

Preliminary data was reported by telex on 16th April, 1987. This report now finalizes all data.

Thank you for the opportunity to have been of service. If you have any questions please do not hesitate to contact us.

Yours faithfully, CORE LABORATORIES AUSTRALIA PTY LTD

Peter Lane Laboratory Supervisor

PRL:jc:64

Incorporated in Delaware, U.S.A.

	: WACA380 : 30-APRIL-87 s: OEK					Data 1-1
L T D.	File : Date : Analysts:					
РТҮ.,		Ч С				
RALIA	: WILLDCAT : [: tr: 20 mm	RESUL		.		
AUST	Field : Formation : Coring Fluid : Core Diameter:	Y S I S	GRAIN DENSITY gm/cc	N N N	2.68	
ORIES		ANAL	POROSITY (HELIUM) %	24.2 21.9 22.4	•	
L A B O R A T	urces n.l. 1	CORE	PERMEABILITY (HORIZONTAL) Kair md	 		
CORE	: MINORA RECOURCES N. L. : WINDERMERE 1 :		ж т с е о	1816.50 1811.00 1806.30	1802.30	
U	Company : Well : Location : Country :		S N N N N N N N N N N N N N N N N N N N	- N M	4	
а. 19						

Ч

Appendix D Petrology

**

A Division of Macdonaid Hamilton & Co. Pty. Ltd. ANALYTICAL CHEMISTS • PERTH: 52 MURRAY ROAD, WELSHPOOL, WESTERN AUSTRALIA, 6106 TELEPHONE (09) 458 7999 TELEX: ANALAB AA 92560 P.O. BOX 210, BENTLEY, W.A. 6102

28-4-87

Mr E Kopsen,

Minora Resources,

55 St Georges Tce,

Perth

. .

1000 0 07 71

Preparation of four thin sections and petrographic descriptions of four core plugs Windermere No 1.

SEM examination of four plugs.

R Townend.

Summary

The four samples are similar, except that core 4. is much less well sorted due to the presence of coarse dimension muddy sediments. The other three are classified as tuffs on the basis of the dominance of their volcanic clast and feldspar crystal component, although vitroclastic material was not identified.

The tuffaceous origin is supported by the ubiquity of a chlorite cement, that forms narrow rims to most of the clasts. Otherwise matrix is confined to minor kaolin. This chlorite may represent devitrified glass. Core 4 has a much higher component of non volcanic material, including possible plutonic acid igneous material.

The tuffs have a low porosity /permiability due to the close packing of the originally ?plastic volcanic fragments, plus the pervasiveness of the chlorite cement. This may have reduced alteration of the potentially unstable lithic fragments by acting as a barrier. Likewise the quartz apparently did not develop overgrowths. Windermere 1 1816.5m

Lithology Lithic Crystal Tuff.

Sorting Good, fine to medium sand.

Grainsize 0.1-0.3mm

Grainshape subrounded to angular; euhedral to subeuhedral.

Modal Constituents

Lithics

Micas

Heavies

Framework	78.4%	- 1
Quartz	17.8%	Monocrystalline,0.1-0.3mm,habit subangular dominant, rare subround or angular;equant=elongate.Over- growths not visible.
Feldspar	29.7%	Plagioclase and K feldspar about =. Crystals euhedral to subeuhedral, also angular cleavage fragments of plag.Dimensions 0.15-0.3mm. Plag. well twinned Na>Ca.,K feldspar includes microcline perthite.Both feldspars fresh, except for slight sericite spotting of plag.
T ithing	E0 48	

50.4% Volcanics>others;dimensions as for feldspars.Habits angular to subangular; Plagioclase-rich porps. common, often trachytic textured. Foliated micaceous ?volcanics also common.Microcrystalline clasts either cherts or aphanitic volcs. 1.3% Rare coarse deformed partly chloritised biotite to 0.3mm.or similar muscovite. 0.4% Leucoxene 0.1mm subrounded, rare zircon, round. rare epidote

common with cavity nucleus of clay. Width consistent around (2) microns.

flakes, probably authigenic, sporadic

Kaolin? rich fine pore filling

enclosed by chlorite rim.

Opaques0.4%Single 0.5x0.3mm mass of h/carbon.
Sulphides occur within some lithic
pieces.Matrix/Cement21.6%Chlorite60%Ubiquitous as rim or coating to
framework clasts.Identified as
Fe chlorite(SEM).Common separating
almost touching framework,less

Clay

3

40%

Windermere No 1 1816m cont.

Porosity

The macroporosity measured at 3.5%.Erratic isolated due to loss of clay?Dissolution of feldspars negligible, except for rare part leached trachytic volcanic.Low intergranular pore development partly due to the accommodation of more plastic volcanic material under burial.

Diagenesis

The main diagenetic activity was the deposition of chlorite as a rim or coating to the clasts. This was followed by authigenic kaolin filling the occasional intergranular pore. The source of the Fe chlorite may be devitrified glass, as the bulk of the minerals particularly the feldspars remain relatively fresh in the clasts. PHOTO 1 ALKALI FELDSPAR CRYSTAL PARTLY REPLACED BY KAOLIN, ARROW 2, AND RIMMED BY CHLORITE, ARROW 1. NIC UNC. FIELD WIDTH 0.25MM

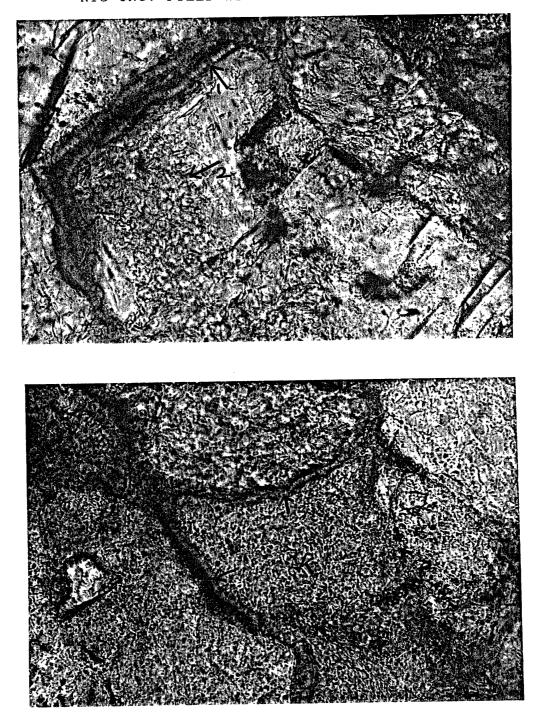


PHOTO 2 KAOLIN FILLED PORE(K), WITH CHLORITE (ARROW) LINING CLASTS . NOTE DYE PENETRATION OF KAOLIN. NIC UNC. FIELD WIDTH 0.25MM Windermere No 1 1811.0m

Lithology Lithic Crystal Tuff

Sorting Good, V fine to medium sand.

Grainsize 0.075-0.3mm

Grainshape Angular to subangular, euhedral to subeuhedral.

elongate.

Modal Constituents

Framework 83.4%

Quartz 15.9%

Feldspar 19.1%

Lithics 61.8%

Heavies 0.8%

2.4%

Matrix/Cement 16.6%

Micas

Chlorite 78%

Clay 22%

Ubiquitous rim or coating to clasts. separates many lithic and crystal fragments as narrow ,~10 micron, deposit with individuals roughly normal to contact surface. Kaolin flakes infilling occasional intergranular pores lined by chlorite.

Monomineralic,0.075-0.25mm. habit is

or subhedral (phenocryst).Equant =

on broken faces.Plagioclase Na>Ca. Volcanics< metamorphics. Habit more

Biotite>Muscovite. Coarse deformed

flake, biotite part chloritised. Can

Sphene,0.2mm subrounded,leucoxene.

angular to subangular, rarely sub rounded

Plagioclase=K feldspar.Dimensions 0.1-

O.3mm.habit euhedral to subhedral, rare angular cleavage crystal or subrounded. Alteration limited to sericite spotting Occasional fracturing with chlorite rims

elongate than equant, some orientation. dimensions 0.1-0.3mm.Volcanics fresh porphyritic and aphyric plagioclaserich some trachytic textured.Part sericitic volcanics common, also some saussurite, resulting in semischists. Microcrystalline grey polarising mosaic textured clasts either cherts or felsic volcanic.Rare partly leached plag. volc.

5

measure 0.5x0.1mm

Windermere No 1 1811m cont.

Porosity

-

The macroporosity measured at 0.3%. The macroporosity is low due to the compaction of plastic tuffaceous fragments and the crystallization of authigenic chlorite lining the clasts and filling the cavities except for the occasional coarser intergranular pore, that was subsequently filled by authigenic kaolin.

Diagenesis

As for sample 1816.5m.

Windermere No 1 1806.3m

Lithic Crystal Tuff. Lithology

Sorting good, very fine to medium sand.

0.08-0.5mm Grainsize

Angular to sub angular, euhedral to subhedral Grainshape

Modal constituents

85.7% Framework

> 21.4% Monomineralic, dimensions 0.1-0.35m with Quartz one equant grain of 0.5mm.Habit is angular to subangular, equant > elongate Slight corrosion by matrix. Overgrowths not visible.

> Feldspar 21.0% Plagioclase = K feldspar. habits tabular laths plag., to rhombic crystals for microcline.Subhedral plag.for smaller crystals.Alteration limited to spotting of sericite on plag.Rare leaching of plag. produces secondary porosity.Sizes 0.08-0.4mm.Some slight deformation of plagioclase leading to splitting on twinning.

- Lithics 56.8% Volcanics and altered volcanics dominant lithology.Plagioclase porphyry and plag. aphyric volcanic of variable fabric including trachytic.Most of these quite fresh.Habit subangular, dimensions as for quartz.Uncommon leaching to give secondary porosity.?intrusive textured quartz feldspar type common, with mica spotting.Well foliated micaceous chips may be meta volcanics. Graphic qtz/feld. pieces minor .
- 0.8% Biotite, part chloritised, rare heavily puckered narrow long flakes around clasts. Heavies 0.1%
 - Zircon, 0.2mm subhedral, sphene wedge, and tourmaline, angular.

Matrix/Cement 14.3%

Micas

Chlorite 93% coating

Clay 7%

Chlorite occurs as a ubiquitous rim or clasts, to most commonly separating them.Partly brown coloured due to oxidation of an iron-rich type. Kaolin as a very minor pore filling enclosed by the chlorite.

Windermere No 1 1806.3m cont.

Porosity

No macroporosity was measured. This is due to the coalescence of the "plastic" volcanoclastic fragments, plus their sealing with the authigenic chlorite. There is a little secondary porosity where some plag. -rich volcanics were leached, and clay is lacking.

. ۲

Diagenesis As for the 1816.5m interval.

Windermere No	1 1802.3m	
Lithology	Tuff	aceous sandstone.
Sorting	Poor	,V. fine sand to V. coarse sand.
Grainsize	0,1 ,	2 m m
Grainshape	angu	lar to subrounded, subhedral.
Modal Constitu	ents	
Framework	79.2%	
Quartz	33.0%	Monomineralic,dimensions from 0.1 to 1.5mm.Coarse to v coarse quartz sand is rather angular,prob. due to plutonic origin.Finer quartz commonly between 0.1 and 0.2mm.and angular.
Feldspar	16.7%	K feldspar > plagioclase.Exceptional microcline of 2mm slightly leached and subhedral.Most below 0.5mm with alteratn limited to sericite spotting.Crystals commonly broken.
Lithics	48.9%	Coarse sediments dominate over finer volcanics.Former to 2.5mm are non lam- inated mudstones ,some silty,with semi-rounded outlines. Plutonic textured quartz alkali feldspar clasts common around 1mm.Volcanic clasts are under 0.3mm, mostly plagioclase-rich, and aphyric.Some of the coarser examples show leaching.Foliated micaceous chips are quite minor.
Micas	1.3%	Biotite , some part chloritised. Deformed against clasts.
Opaques	0.1%	Part leucoxenised, plus equant 0.1mm chromites.
Matrix/Cement	20.8%	
Chlorite	90.9%	Chlorite forms ubiquitous rims against clasts, as sub 10 micron plates roughly normal to the clast surface.It is rarely absent from clast surface locally infilling of intergranular pore is also coarse chlorite.
Clay	9.1%	

9___

Windermere No 1 1802.3m cont.

Porosity

The macroporosity is 3.7%. This is both intergranular and secondary.The latter is due to the leaching of feldspar volcanics, or the removal of Kaolin leaving chlorite shells.

Diagenesis

Similar to the 1816.5m sample.

.

SEM Examinations

Pieces of the core plugs were taken and mounted on stubs, gold coated and examined with an SEM.

All samples displayed a similar phenomenon, that is concentrations of authigenic chlorite .These form a series of semi-hexagonal plates that have grown normal to the clast surface.Their packing is relatively open and thus some microporosity may be present.However their format may result in a low permiability.

Examples from each 'sample are illustrated in the following pages.

PE907857

This is an enclosure indicator page. The enclosure PE907857 is enclosed within the container PE902219 at this location in this document.

The enclosure PE907857 has the following characteristics: $ITEM_BARCODE = PE907857$ CONTAINER_BARCODE = PE902219 NAME = Thinsection Core Photographs BASIN = OTWAY PERMIT = PEP 111TYPE = WELL SUBTYPE = CORE_PHOTOS DESCRIPTION = Thinsection Core Photographs (photo 1 & 2 from Well Completion Report vol.1) for Windermere-1 REMARKS = DATE_CREATED = $DATE_RECEIVED = 25/02/88$ $W_NO = W956$ WELL_NAME = Windermere-1 CONTRACTOR =CLIENT_OP_CO = Minora Resources

(Inserted by DNRE - Vic Govt Mines Dept)

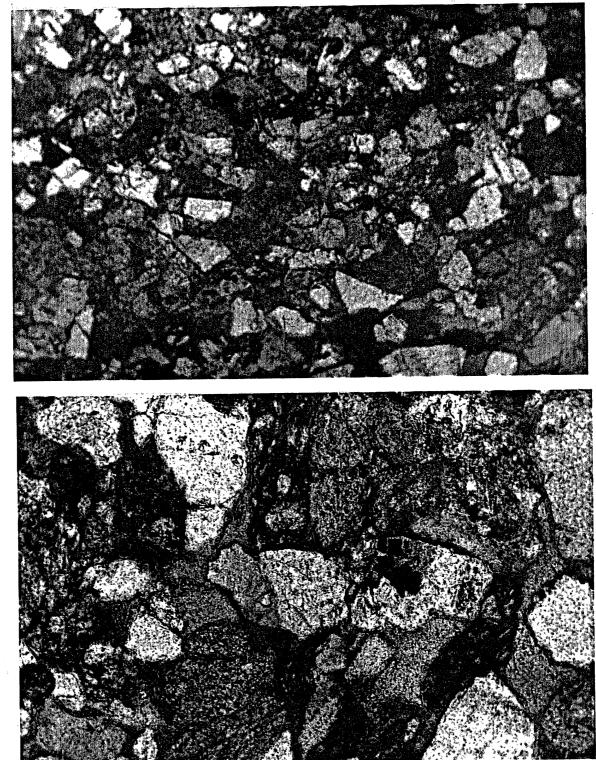


PHOTO 1 1816.5M WELL SORTED LITHIC CRYSTAL TUFF.NIC UNC. FIELD WIDTH 1.8MM

PHOTO 2 1816.5M TUFF SHOWING RARE POROSITY, HETEROGENEOUS CLAST COMPONENTS, AND NARROW CHLORITE RIM TO CLASTS. NIC UNC. FIELD WIDTH 0.7MM

PE907858

This is an enclosure indicator page. The enclosure PE907858 is enclosed within the container PE902219 at this location in this document.

The enclosure PE907858 has the following characteristics: ITEM_BARCODE = PE907858 CONTAINER_BARCODE = PE902219 NAME = Thinsection Core Photographs BASIN = OTWAY PERMIT = PEP 111TYPE = WELLSUBTYPE = CORE_PHOTOS DESCRIPTION = Thinsection Core Photographs (photo 3 & 4 from Well Completion Report vol.1) for Windermere-1 REMARKS = DATE_CREATED = $DATE_RECEIVED = 25/02/88$ W_NO = W956 WELL_NAME = Windermere-1 CONTRACTOR = CLIENT_OP_CO = Minora Resources

(Inserted by DNRE - Vic Govt Mines Dept)

PHOTO 3 1811.0M WELL SORTED LITHIC CRYSTAL TUFF. NIC UNC. FIELD WIDTH 1.8MM

1,

ł

.

DEPT. NAT. RES & ENV

907858

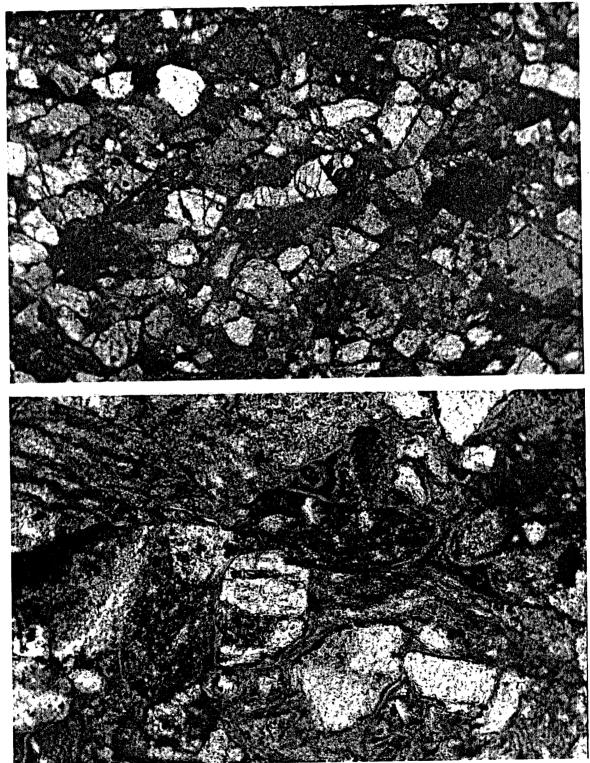


PHOTO 4 1811.OM LITHIC CRYSTAL TUFF SHOWING NARROW CHLORITE RIMS. NIC UNC. FIELD WIDTH 0.7MM

PE907859

This is an enclosure indicator page. The enclosure PE907859 is enclosed within the container PE902219 at this location in this document.

The enclosure PE907859 has the following characteristics: ITEM_BARCODE = PE907859 CONTAINER_BARCODE = PE902219 NAME = Thinsection Core Photographs BASIN = OTWAY PERMIT = PEP 111TYPE = WELL SUBTYPE = CORE_PHOTOS DESCRIPTION = Thinsection Core Photographs (photo 4 & 5from Well Completion Report vol.1) for Windermere-1 REMARKS = DATE_CREATED = $DATE_RECEIVED = 25/02/88$ $W_NO = W956$ WELL_NAME = Windermere-1 CONTRACTOR =CLIENT_OP_CO = Minora Resources

(Inserted by DNRE - Vic Govt Mines Dept)

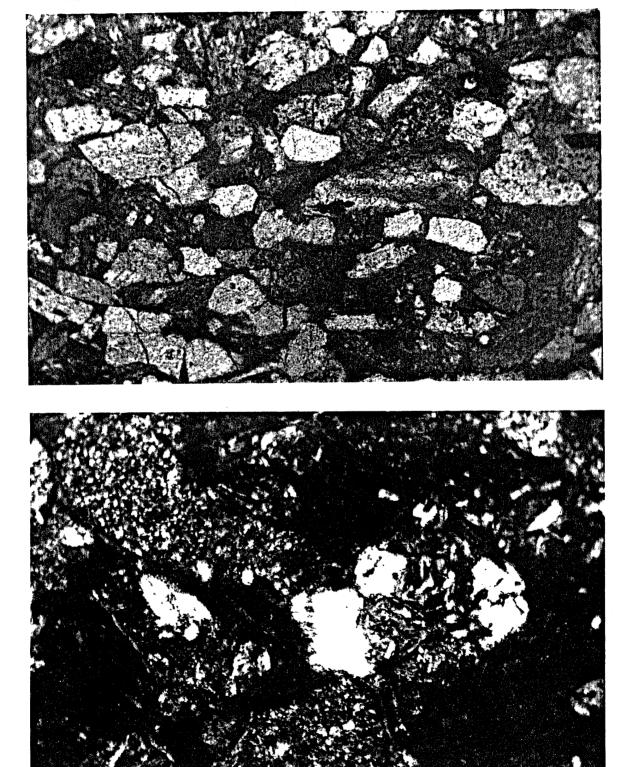


PHOTO 5 1806.3M WELL SORTED LITHIC CRYSTAL TUFF, SHOWING SLIGHT ALIGNMENT OF CLASTS. NIC UNC. FIELD WIDTH 1.8MM

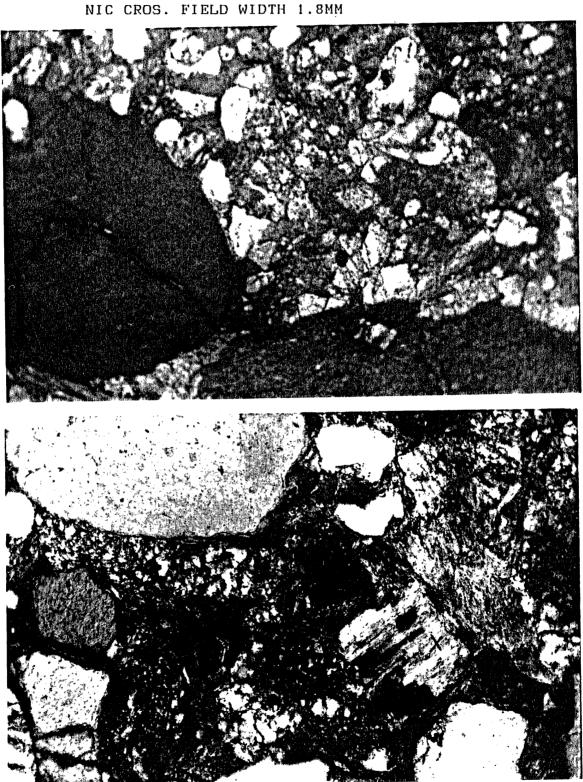
PHOTO 6 1806.3M VOLCANIC CLASTS IN LITHIC TUFF, PLUS CHLORITE RIM. NIC CROS. FIELD WIDTH 1.8MM

PE907860

This is an enclosure indicator page. The enclosure PE907860 is enclosed within the container PE902219 at this location in this document.

The enclosure PE907860 has the following characteristics: ITEM_BARCODE = PE907860 CONTAINER_BARCODE = PE902219 NAME = Thinsection Core Photographs BASIN = OTWAY PERMIT = PEP 1111 TYPE = WELL SUBTYPE = CORE_PHOTOS DESCRIPTION = Thinsection Core Photographs (photo 5 & 6 from Well Completion Report vol.1) for Windermere-1 REMARKS = DATE_CREATED = $DATE_RECEIVED = 25/02/88$ W_NO = W956 WELL_NAME = Windermere-1 CONTRACTOR =CLIENT_OP_CO = Minora Resources

(Inserted by DNRE - Vic Govt Mines Dept)



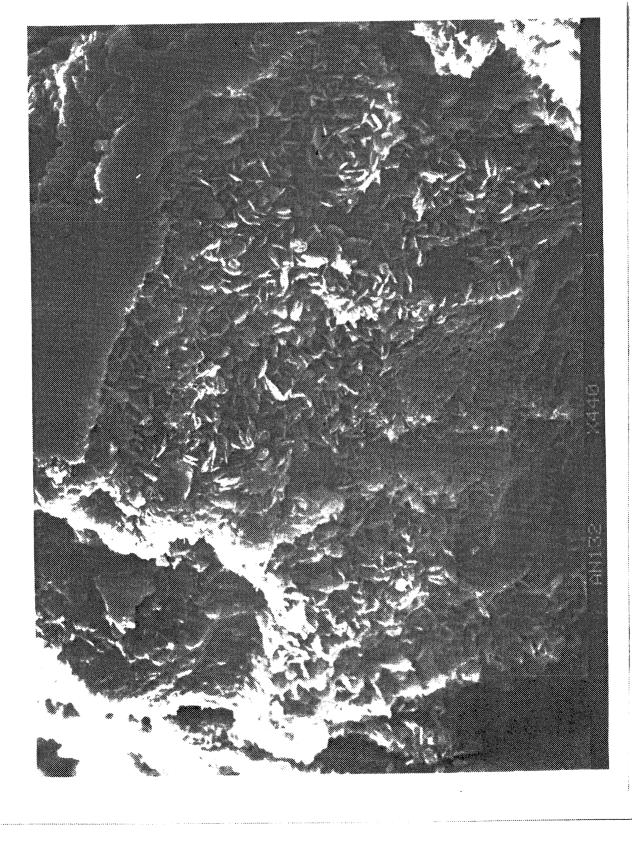
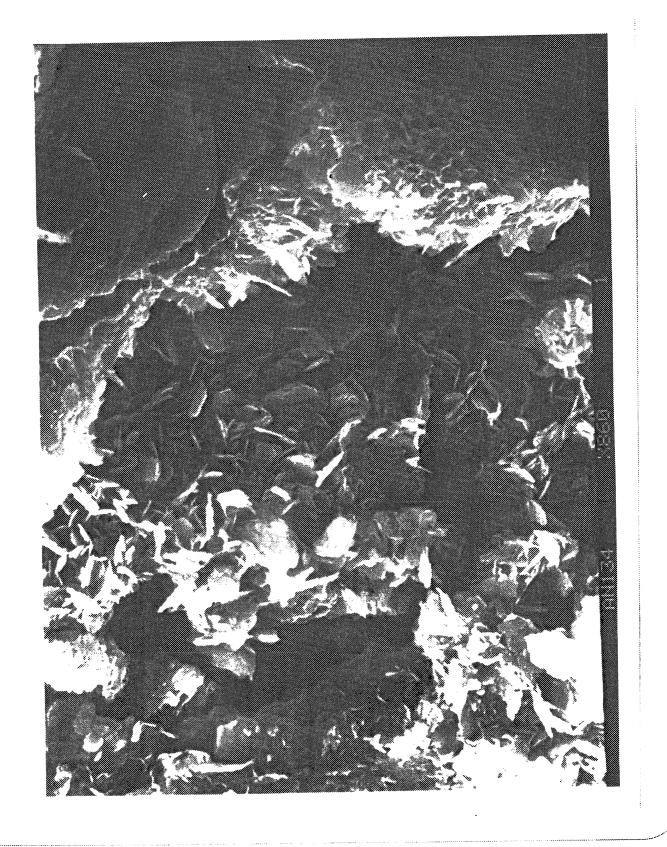

PHOTO 7 1802.3M POORLY SORTED TUFFACEOUS SANDSTONE.

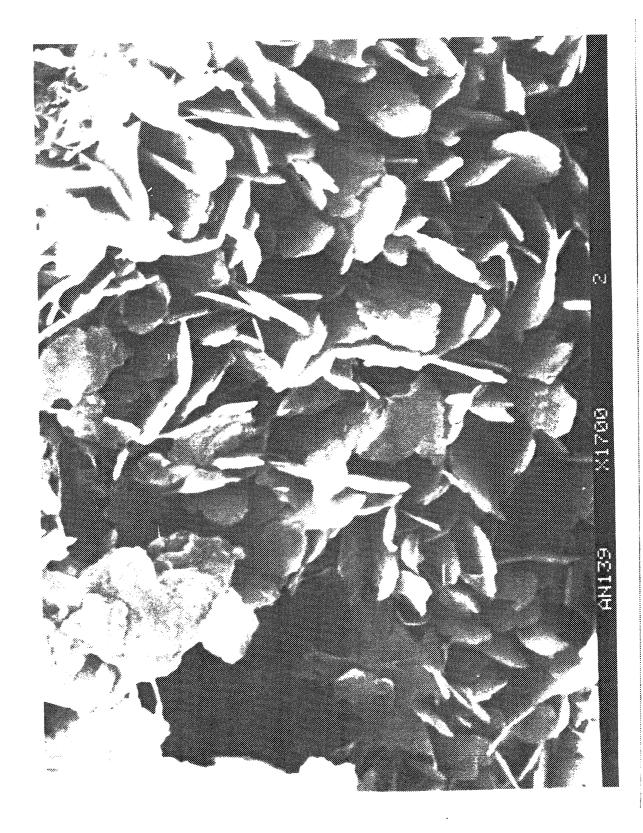
PHOTO 8 1802.3M SUBROUNDED QUARTZ, ALTERED BIOTITE, VOLCANICS, AND PARTLY LEACHED PLAGIOCLASE(X) IN SANDSTONE.

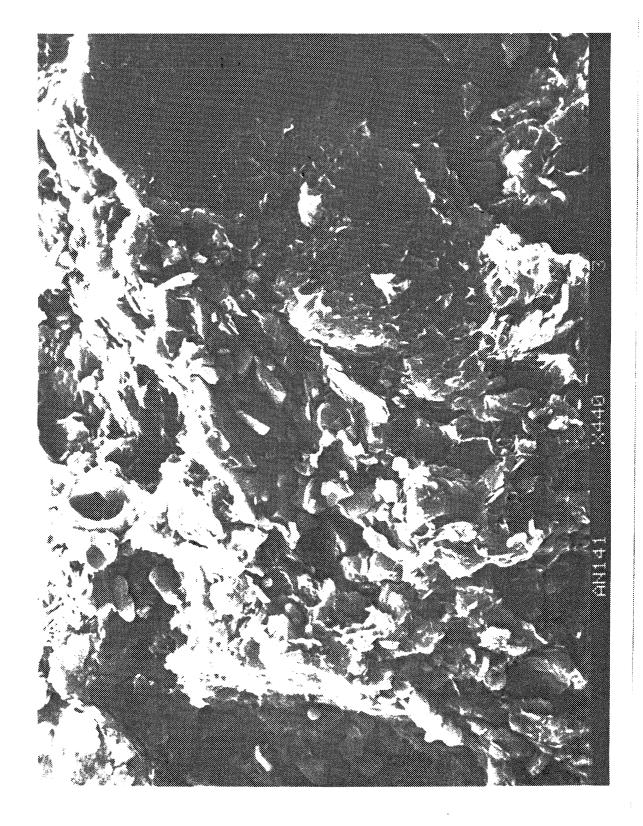
NIC CROS. FIELD WIDTH 0.7MM

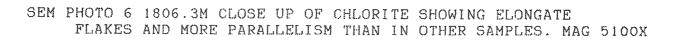

SEM PHOTO 1 1816.5M CHLORITE DOMINANT CEMENT LINING CLAST. MAG 1320X.

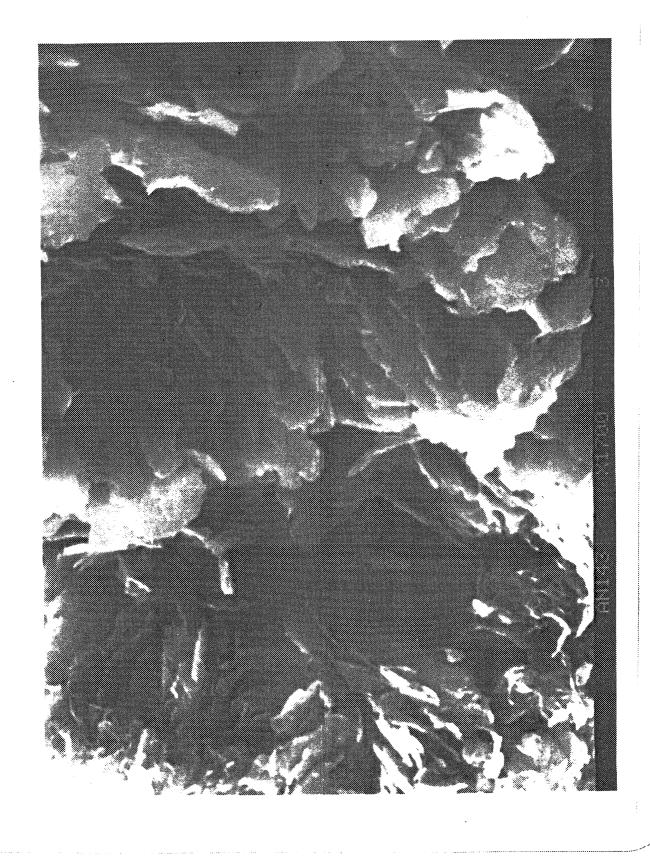
e. .

a 10 -

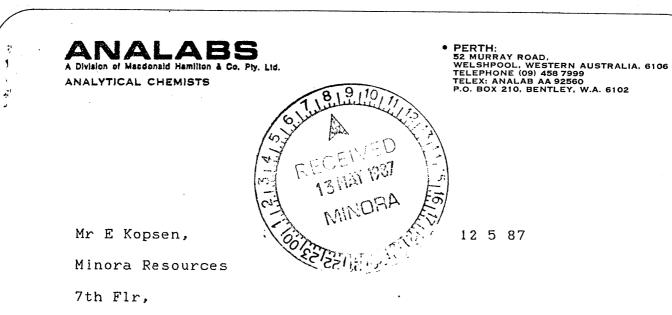

SEM PHOTO 2 1816.5M CONCENTRATION OF CHLORITE BETWEEN SURFACES OF CLASTS. MAG 2580X




SEM PHOTO 3 1811.OM CHLORITE DEPOSIT AGAINST CLAST. MAG 2580X


SEM PHOTO 4 1811.OM CHLORITE SHOWING SUBHEXAGONAL SLIGHTLY IRREGULAR MARGIN, AND POROSITY. MAG 5100X


SEM PHOTO 5 1806.3M SURFACE OF VOLCANIC? ROCK FRAGMENT PLUS FACE (RIGHT) WITH REMNANT CHLORITE. MAG 1320 X



SEM PHOTO 7 1802.3M AUTHIGENIC CHLORITE SHOWING NON PARALLELISM .(ORIGIN OF SPOTS UNKNOWN). MAG 5100 X

55 St Georges tce

Perth

-.'

ŝ

and the second string the agents before some of the second string of the

1000 0 07 71

Further examination of core plug sample Windermere No 1 1816.5m by thin section, XRD and SEM/EDS.

R Townend. man

Windermere No 1 1816.5m

Lithology

Feldspathic Litharenite.

÷ .

Framework

Quartz	A few quartzes show fracturing producing slivers
	and some associated macroporosity.

Feldspar The SEM found that all plagioclases examined as single crystals were albite. A high proportion of both feldspars are quite fresh, ie, are not the source of the matrix Kaolin.

Lithics The SEM found that all volcanics examined were composed of alkali feldspars.Classified as rhyolitic or trachytic depending on qtz. content. Sericite fragments also contained alkali feldspar supporting altered acid volcanics. Cherts confirmed by SEM, also pyrite in fine quartzite host.Rare possible plutonic textured association of K feldspar and quartz.

Matrix/Cement

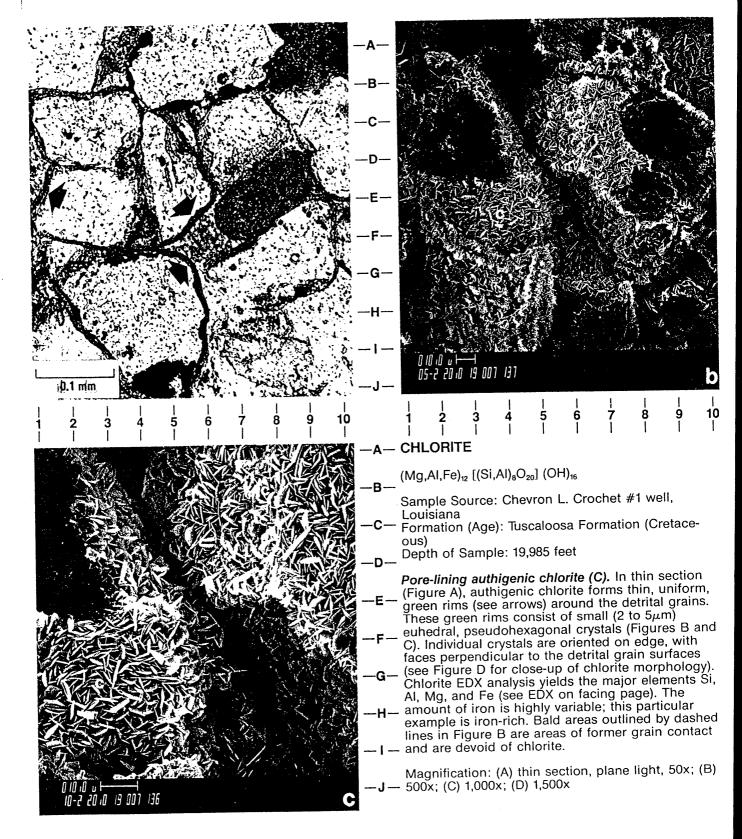
Clay

XRD of clay fraction confirms kaolin with chlorite and muscovite subordinate.

Porosity

Macroporosity as measured in this report is classified as primary visible holes in the thin section, emphasized by the blue dye. This is intergranular porosity. Secondary porosity due to the dissolution of minerals post deposition where coarse enough would also be included. Microporosity is not measured by point counting. It may form a significant part of the overall porosity in this sample as suggested by the penetration of the dye through the kaolin and chlorite matrix.

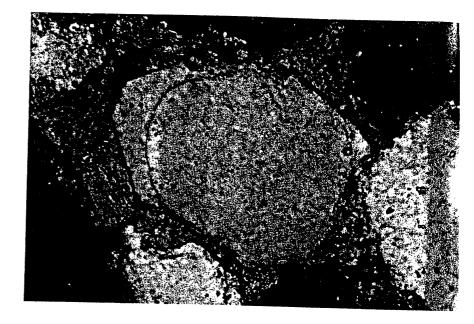
Comment on genesis/nomenclature


The classification of Lithic Crystal Tuff was based on the proportion of feldspars/lithic material very high mainly volcanic, about 80% of the framework, and the lack of a clastic cement.It was also thought that the unusual chlorite may represent devitrified glass. The proportion of framework to matrix was also quite high. Features that are not typical σf greywackes are the high content of K feldspar, the non detrital matrix and the good sorting. Features that are not typical of lithic arenites were the low quartz content,the high Na20 content, and the relative uniformity of the volcanic material, plus the lack of carbonate.

Genesis/nomenclature cont.

With regard to the matrix, the Tuscaloosa Fmn from the Upper Cretaceous of Louisiana, appears very similar from the literature illustrations. A copy of a photomicrograph showing the chlorite rim, and an SEM showing a later kaolin is attached. The chlorite from this 'Fmn was also studied by Curtis et al(Clay Minerals, 19, p471, 1984) who described the host as a Litharenite. Others are classified as Feldspathic Litharenites and can have porosities >25%. However comments in the AAPG Memoir 28 on the matrix of this Litharenite refer to a considerable intercrystalline porosity but very low intercrystalline permiability. (P. 138).

In the absence of unequivocal evidence such as vitroclastic material, the Windermere sample is reclassified as a Feldspathic Litharenite, and its authigenic matrix appears to be very similar to that of the Cretaceous Tuscaloosa Fmn.



Lower Permian Brushy Canyon Fm. Texas

Complex cementation of sandstone. Quartz overgrowths formed as the first generation of cement and were followed by calcite which both filled pore space and marginally replaced the quartz overgrowths. Such textural relationships can be determined with relatively little expense in time and effort using petrography.

XN

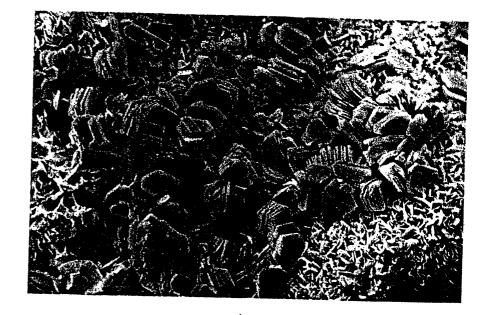
0.06 mm

Upper Cretaceous Frontier Fm. Wyoming ca. 610 m (2,000 ft)

Multiple stages of cementation and their relative timing can also be determined using SEM techniques. In this example, montmorillonite coats detrital grains and is followed by a later generation of kaolinite cement (upper part of photo). Photo by E. D. Pittman.

7 μm

SEM



Upper Cretaceous Tuscaloosa Fm. * Louisiana 5,073 m (16,645 ft)

An example of multiple generations of cementation visible using SEM. Detrital grains are completely coated with a rind of radially oriented, platy chlorite crystals. These are succeeded by a second generation of kaolinite (or dickite) cement in the form of short, vermicular stacks of pseudohexagonal crystals. Considerable remnant, intercrystalline porosity can still be seen. Photo by G. W. Smith.

SEM

12 μm

Appendix E

Petrophysical Evaluation & Interpretation Log

APPENDIX E

	WELL:	WINDERM	ERE-1.	UPPER EUME	ralla													
	TD (m):			RHOma:			Rsh:	2.5		GRmin:	: 30							
	BHT:			RHOf1:			DTma:			GRmax:								
	ST:			RHOSH:	2.22		DTfl:	189		a:	0.065							
	GRAD:	0.032		PHISH:	38		DTsh:	130		a:	2.15							
	Rm@ST:	0		R₩ (SP):	0.37					n:	2							
	Rafest:	0.24		RW (RTO):							•							
				• •														
	Rmc@ST:	0		SP:	15													
	INTERVA	L (m)	FM TEM	P Rafetemp	RWETEMP	GR	Rmsf1	Rlls	Rlld	Rt	DT	POR	POR	POR	POR		SM	SW
	FROM	TO	(C)	(ohma))(oheen)						VSH GR		INDO
															•			
	•	1,027.0				76		1.0			118	47* 2.2					1223	814
	1,064.0	1,066.0	56	0.134	0.208	75	1.4	1.4	1.4	1.4	112	423 2.1	.5 36	14	k 27	614	1023	69%
	1.097.0	1,100.0	57	0.132	0.205	78	1.1	1.2	1.2	1.2	105	37* 2.1	7 35	12	26	654	113	73\$
		1,116.0						1.0	1.0		107	393 2.						
	1,156.0	1,164.0	59	0.129	0.200	75	2.6	2.3	2.3	2.3	103	36\$ 2.2	3 37	10	\$ 27	61%	754	52*
		UTHOROW																
			LKE-1,	MIDDLE EUM		JRMAL												
	TD (m):	1832		RHOma:	2.65		Rsh:	2.0		GRmin:	28	- Hi	gh Vcl	ay coni	tent of	these these	"sands	
	BHT:	81		RHOf1:	1		DT m a:	55.5		GRmax:	105	re	sults	in too	low Se	value:	s	
	ST:	22		RHOSH:	2.25		DTfl:	189			0.065						-	
	GRAD:	0.032		PHISH:	39		DTsh:	105		a :	2.15							
	Rm@ST:	0		R₩ (SP):	0.34					n:	2							
	Refest:	0.24		RW (RTO):	0.05													
•	Rmc@ST:	0		SP:	13													
	TURVEUT	v		01.	10													
	INTERVAL	_ (魚)		P Rafetemp	RWETEMP	GR	R m sfl	Rlls	Rlld	Rt	DT	por	POR	POR	POR		SW	SN
•	FROM	TO	(0)	(oheen)	(oh aa)	(API))(ohaaa)	(ohaa)	(ohen))(ohaan)	(ms/f)	SONIC Rho	b NEU	DEN	N/D	vsh gr	SIM	INDO
	1,196,0	1,197.0	61		0.182	70		2.8	2.7	2.6	96	30\$ 2.3		71	-		71*	
		1,221.0	61		0.180	70	3.0	2.5	2.5	2.5	92	27\$ 2.		81			724	
	•	1,226.0	61	0.126	0.180	75	3.0	2.4	2.4	2.4	- 99	33\$ 2.	3 35	- 61	254	613	69*	49*
	1,306.0	1,307.0	64	0.122	0.174	75	4.5	3.0	3.0	3.0	100	33* 2.2	5 34	91	254	61*	59%	423
	1,356.0		66	0.120	0.171	74	3.2	2.5	2.5	2.5	97	31* 2.2		91			62*	
	-																	
	1,490.0	-	70		0.163	70	4.0	3.4	3.4	3.4	87	24\$ 2.2		91			58*	
	1,657.0	-	75	0.108	0.154	72	3.9	3.3	3.2	3.1	92	27* 2.	3 30	73	223	57\$	61*	463
	1,705.0	1,706.0	77	0.106	0.151	81	7.0	5.0	5.0	5.0	90	264 2.3	4 35	24	254	69%	37*	26*
				,														
	1000	UTURFOUR																
			:KE-1, H	EATHFIELD		e men	18ER											
	TD (m):	1832		RHOma:	2.65		Rsh:	5.0		GRmin:	28	- Hi	gh Vcla	ay cont	ent of	these	"sands	
	BHT:	81		RHOf1:	1		DT n a:	55.5		GRmax:			-			values		
	ST:	22		RHOSH:	2.45		DTfl:											n)
								189			0.065	- KW	useu		ad wat	er (ohi	e 23	()
	GRAD:	0.032		PHISH:	36		DTsh:	95		R :	2.15							
	Rmest:	0		RW (SP):	0.31					n:	2							
	RafeST:	0.24		RW (RTO):	0.04													
	Rac@ST:	0		SP:	11													
		v																
	.	<i>.</i>		RW(SWAB):	0.268	_	. -				_							
	INTERVAL	. (8)		P Rafetemp	RW@TEMP	GR	R#sf1	Rlls	R11d	Rt	DT	por	POR	POR	POR		SW	SW
	FROM	TO	(C)	(ohaa)	(oh na)	(API)	(ohen)	(oh na)	(ohen)	(ohaa)	(ms/f)	SONIC Rhol	NEU	DEN	N/D	vsh gr	SIM	INDO
	1,752.0		78	0.104	0.117	70	7.0	5.5	5.5	5.5	91	27\$ 2.3		123	-		47\$	34\$
	-	-																
	1,754.0	-	78	0.104	0.117	77	6.0	4.6	4.6	4.6	84	21* 2.3		9\$			51*	33*
	1,755.0		79	0.104	0.117	82	5.0	3.9	3.9	3.9	85	223 2.3	7 30	8\$	223	70\$	58%	35\$
	1,756.0	1,757.0	79	0.104	0.117	72	5.2	4.0	4.0	4.0	88	24\$ 2.3	7 30	103	22*		58%	403
	1,762.0		79	0.104	0.116	75	5.5	4.2	4.2	4.2	88	24* 2.3		10*			56%	37%
	1,768.0	-	79	0.104	0.116	75	8.0	5.2	5.2	5.2	89	25\$ 2.3		10*			51*	34%
	1,770.0	1,771.0	79	0.104	0.116	75	7.5	5.2	5.2	5.2	83	21* 2.52	28	0\$	20%	61\$	55%	37\$
	1,772.0		79	0.104	0.116	72	3.8	4.5	4.5	4.5	90	26* 2.3		14%			50%	34\$
	1,775.0																	
			79	0.104	0.116	72	8.0	5.0	5.0	5.0	78	17\$ 2.3		11\$			51\$	35\$
	1,779.0		79	0.104	0.116	75	5.0	5.0	5.0	5.0	89	25* 2.3	5 30	124	23\$	61*	504	33\$
	1,787.0	1,788.0	80	0.103	0.115	75	6.0	4.2	4.2	4.2	88	24 2.34	30	11\$	23\$	613	55%	37\$
	1,802.0	-	80	0.103	0.115	76	5.0	4.2	4.2	4.2	89	25* 2.32		124		62%	52%	34\$
	1,807.0		80	0.103	0.115	75	5.7	4.8	4.8	4.8	86	23\$ 2.36		104			49\$	33\$
	1,808.0	1,809.0	80	0.103	0.115	74	5.7	4.8	4.8	4.8	77	16\$ 2.34	31	124	23\$	60\$	504	34\$
	1,812.0	1 817 0	80	0.102	0.114	74	5.5										51*	35*
	1,012.0	1,010.0	00	0.102	0.114	74	J.J	4.6	4.6	4.6	86	23 2.35	5 31	11\$	23*	60\$	J14	134

. .

·. ··

WINDERMERE-1 LOG EVALUATION

WELL:	WINDERM	ERE-1, D	ILWYN FOR	MATION														
TD (m):	1832		RHOma:	2.65		Rsh:	11.3		GRmin:	20				- Usin	g rat:	io metho	d for i	Rw calc
8HT:	81		RHOf1:	1		DTma:	55.5		GRmax:	82				- Soni	c valu	ies not	availa	ole
ST:	22		RHOSH:	2.1		DTfl:	189		a:	0.065								
GRAD:	0.032		PHISH:	37		DTsh:	130		童:	2.15								
RmeST:	0		RW (SP):	0.88					n:	2								
Rafest:	0.24		R₩ (RTO):	3.14														
Rmc@ST:	0		SP:	34														
INTERVAL	• •		Rafetemp			R#sf1			Rt	DT	POR		POR	POR	POR		S₩	SW
FROM	TO	(0)	(ohaan)	(ohaan)						(ms/f)	SONIC	Rhob	NEU	DEN	•	vsh gr	SIM	INDO
435.0	441.0	36	0.182	2.372	42	1.0		12.0		-		1.97	36	29%			80%	68%
454.0	458.0	37	0.180		25	1.2	12.0	20.0	25.6	-		2.15	30	284	29		86*	83\$
507.0	-	38	0.175	2.280	20	1.4	18.0	21.0	23.1	-		2.07	30	35%	33	; 0*	86%	86*
508.0	-	38	0.174	2.279	22	1.2	15	18	20.1	-		2.07	33	34\$	341	34	88\$	86*
509.0	-	38	0.174	2.278	24	0.9	7	9	10.4	-		2.04	33	35*	341	64	119\$	115*
510.0	-	38	0.174	2.276	25	0.85	5.2	9.9	13.2	-		2.07	33	32*	33	84	108%	103*
534.0	-	39	0.172	2.247	39	0.8	8.4	13	16.2	-		2.07	36	25*	313	31*	85%	74 \$
535.0	-	39	0.172	2.246	40	1.0	7.8	13.0	16.6	-		2.05	38	26%	321	32*	80*	69\$
536.0	-	39	0.172	2.245	36	0.88	8.5	12	14.5	-		2.06	37	27\$	321	26*	91*	80\$
567.0	-	40	0.169	2.209	29	1.1	9.5	13	15.5	-		2.09	32	29\$	314	15\$	99%	92*
568.0	-	40	0.169	2.208	33	1	10	15	18.5	-		2.05	33	29\$	31	21*	84\$	76*
569.0	-	40	0.169	2.206	27	1	6.9	10	12.2	-		2.09	32	30\$	314	113	114\$	108*
570.0	-	40	0.169	2.205	29	1	9	15	19.2	-		2.10	31	28\$	304	154	90\$	84\$
610.0	615.0	42	0.165	2.160	30	1.1	11	17	21.2	-		2.07	33	30%	314	164	79\$	73*
																	•	

WELL:	WINDERMERE-1,	PEBBLE POINT	FORMATION			
TD (m):	1832	RHOma:	2.65	Rsh:	11.0	GRmin: 35
BHT:	81	RHOf1:	1	DT s a:	55.5	GRmax: 102
ST:	22	RHOSH:	2.24	DTfl:	189	a: 0.065
GRAD:	0.032	PHISH:	39	DTsh:	123	m: 2.15
Rm@ST:	0	RW (SP):	2.43			n: 2
Raf@ST:	0.24	RW (RTO):	0.75			
Rac@ST:	0	SP:	46			

•

 INTERVAL (m)
 FM TEMP
 Rmf@TEMP
 GR Rmsfl
 Rlls
 Rlld
 Rt
 DT
 POR
 POR
 POR
 SN
 SN

 FROM
 T0
 (C)
 (ohmm)
 (mss/f)
 SONIC
 Rhob
 NEU
 DEN
 N/D
 VSH GR
 SIM
 INDO

 727.0
 746.0
 45
 0.156
 1.578
 42
 1.7
 10.0
 14.0
 16.8
 102
 35%
 2.27
 35
 20%
 29%
 10%
 89%
 84%

 755.0
 758.0
 46
 0.154
 1.557
 49
 1.7
 7.0
 11.5
 14.7
 105
 37%
 2.22
 32
 21%
 27%
 21%
 93%
 84%

WELL:	WINDERMERE-1,	PAARATTE FOR	MATION			
TD (m):	1832	RHOma:	2.65	Rsh:	6.0	GRmin: 25
BHT:	81	RHOf1:	1	DT m a:	55.5	GRmax: 117
ST:	22	RHOSH:	2.25	DTfl:	189	a: 0.065
GRAD:	0.032	PHISH:	39	DTsh:	123	m: 2.15
RmeST:	0	RW (SP):	0.76			n: 2
Refest:	0.24	RW (RTO):	0.26			
Rmc@ST:	0	SP:	32			

INTERVAL	(a)	FM TEMP	Rafetemp	RW@TEMP	GR	Rasfl	Rlls	Rlld	Rt	DT	POR		POR	POR	POR		SW	SN
FROM	TO	(C)	(ohana)	(ohaan)	(API)) (ohaana)	(ohaan)	(ohaaa)	(ohaa))(m s/f)	SONIC	Rhob	NEU	DEN	N/D	vsh gr	SIM	INDO
780.0	792.0	47	0.152	0.483	28	1.3	4.0	6.0	7.4	120	48\$	2.14	37	30%	34	3%	67%	66*
817.0	820.0	48	0.150	0.475	32	0.9	2.5	3.2	3.7	130	56%	2.12	32	30%	31	: 81	101*	97\$
838.0	840.0	49	0.148	0.470	45	1.0	2.0	2.3	2.5	124	51\$	2.03	37	32*	35	22*	106*	94\$
901.0	903.0	51	0.144	0.457	47	10.0	4.6	4.6	4.6	117	46%	2.13	42	26\$	354	24*	75\$	66*
937.0	938.0	52	0.142	0.450	44	1.0	1.2	1.6	1.9	113	43	2.15	35	25*	31	21*	137\$	1223
960.0	962.0	53	0.140	0.445	45	1.2	1.4	1.6	1.7	113	43\$	2.17	42	24*	341	223	127\$	113\$

Drilling Fluid Report

&

Bit Record

DRILLING FLUID

Chemical additives and mud control services were supplied by Baroid Australia Pty Ltd.

A Quikgel Spud Mud was used from surface to 9 5/8" casing point (290m). Drill from 290m - Total Depth using 3% - 5% KCL/Polymer Mud System.

MUD PROPERTIES

6

 C_{1}^{*}

Date	WT (PPG)	Vis (Secs)	Chloride (Hg/L)	рН	Solids (%)	PV	YР
$\begin{array}{c}\\ 18.3.87\\ 19.3.87\\ 21.3.87\\ 22.3.87\\ 23.3.87\\ 23.3.87\\ 24.3.87\\ 25.3.87\\ 25.3.87\\ 25.3.87\\ 25.3.87\\ 25.3.87\\ 29.3.87\\ 3.87\\ 29.3.87\\ 31.3.87\\ 4.4.87\\ 5.4.87\\ 5.4.87\\ 6.4.87\\ 7.4.87\\ 8.4.87\end{array}$	9.0 9.1 9.1/9.2 9.4/9.3 9.3+ 9.4/9.5 9.3/9.6 9.3/9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4 9.4	35 38 37 42/32 41/40 42 44/38 40/38 39 38/40 40 42 38/42 38/42 38 39 39 39 39 39 39	22500 18500 21000 29000 29000 28000 21000 21000 16500 13000 38000 38000 35000 30000	11.0 10.0/11.0 11.0/10.5 11.0 9.5/10.5 11.0/10.0 11.0/10.0 11.2/10.5 10.0 11.0 10.5 10.5 9.5 10.5 9.5 10.5	5.0 6.0 3.7 6.0/7.0 8.0 8.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 4.0 4.0 4.0 6.0 6.0	5 6 6 15 16/14 12 19/11 14/12 14/12 13/16 14 14 10/11 13 10 12 14	8 11/7 7 8 7 8 10
9.4.87	9.4+	36	28000	10.5	6.0	9	14

Water Loss was in the Range 4.0 cc - 9.0 cc with the average being 5.0 - 6.0 cc.

MATERIALS/CHEMICALS USED

Quikgel	67 Sacks	(25 kg sks)	1675 kgs
Aquagel	174 Sacks	(100 lb sks)	7909 kgs
Kwikseal	6 sacks	(40 lb sks)	112 kgs
Soda Ash	4 sacks	(40 kg sks)	160 kgs
Caustic Soda	41 sacks	(25 kg sks)	1025 kgs
Bicarbonate of Soda	2 sacks	(40 kg sks)	80 kgs
Dextrid	122 sacks	(50 lb sks)	2773 kgs
Condet	4	(200 ltr Drum)	800 litres
PAC-R	90 sacks	(50 lb sks)	2045 kgs
Barite	172 sacks	(50 kg sks)	8600 kgs
KCL	491 sacks	(50 kg sks)	24550 kgs

DRILLING BITS

. -

. . . .

(-

and the

A total of seven (7) bit runs were made to drill Windermere -1 utilizing five bits and two re-runs.

.

. .

.....

. -

Bit No.	1	2	3	4
Size (Inches)	12 1/4	8 1/2	8 1/2	8 1/2
Type	SHITH S-11	HTC JD3	HTC J-22	HTC JD3
Depth In (M)	8	290	430	1024
Depth Out (M)	290	430	1024	1070
Metreage	182	140	594	46
Condition	4-4-IN	?	2-2-1/16	8-8-IN
Hours	16.5	11	40	11.5
W.O.B. (lbs)	10,000	10-14,000	5-15,000	10-15,000
R.P.M.	110	100	100-110	100
G.P.M.	400-450	240-260	240	240
Pressure (PSI)	900	500	700	680
Nozzles	3 x 13	3 x 11	3 x 11	3 x 11
Bit No.	5 (R.R.3)	6	7 (R.R.6)	
Size (Inches)	8 1/2	8 1/2	8 1/2	
Type	HTC J-22	CHRIST C-2	CHRIST C-2	
Depth In (M)	1070	1568	1838	
Depth Out (M)	1568	1838	1852	
Metreage	498	270	14	
Condition	4-4 1/8	2-2-in	2-2-in	
Hours	73	43	3	
W.O.B.	10,000	25-30,000	30,000	
R.P.M.	60	75	80	
G.P.M.	240	200-250	200-260	
Pressure (PSI)	680-850	850	900	
Nozzles	3 x 11	3 x 11	3 x 11	

Ref: PlllH

MINORA RESOURCES NL DRILLING FLUID RECAP WINDERMERE NO. 1.

Prepared By : M. Thackray

Dated : March 1987

TABLE OF CONTENTS

O

32

 6°

1.

6

с. С

3

1.	WELL SUMMARY
2.	DISCUSSION BY INTERVAL
3.	CONCLUSIONS AND RECOMMENDATIONS
4.	MATERIAL RECAP (BY INTERVAL)
5.	MATERIAL RECAP SUMMARY
6.	DRILLING FLUID PROPERTIES RECAP
7.	BIT RECORD
8.	GRAPHS
9.	TESTING

WELL SUMMARY

Operator	:	Minora Resources NL
Well Number	•	Windermere No. 1
Location	:	PEP 111, Otway Basin Victoria
Contractor	:	Gearhart
Rig	:	No. 2
Rig on Location	:	16 March 1987
Spud Date	:	17 March 1987
Total Depth	:	1838 ft
* Date Reached T.D.	:	28 March 1987
* Total Days Drilling	:	14
Rig off Location	:	-
Total Days on Well	:	-

Drilling Fluid Type	Interval	<u>Hole Size</u>	Cost
	Surface - 290 m	12 ¹ /4"	\$686.50
	290 - 1383 m	8 ¹ /2"	\$19,906.14

MUD MATERIALS CHARGED TO DRILLING \$20,592.04

Engineer on Location from : * Mud Engineering : 15 days * TOTAL DRILLING COST MATERIA	@ \$375/d	ay	<u>\$5,625.00</u> \$26,217.04
Mud Materials not charged t Mud Materials used for Test			\$2,182.20 \$5,747.13
Casing Program	:	9 ⁵ /8" @ 281 m	
Drilling Supervisors	:	G. Jackman	
Baroid Mud Engineers	:	M. Thackray	

цч - ,

G.

INTRODUCTION

٩

 C_{i}

<u>,</u>

. .

4

3

2

1.5

E

Windermere No. 1 was spudded on 17th March, 1987 and drilled to a T.D. of 1838 m in 14 days. A thicker more dispersive Eumeralla Formation than other Otway wells was intersected resulting in higher than anticipated mud costs.

The soft dispersive clays of the Belfast and Upper Eumeralla Formations caused some bit balling resulting in slower drilling rates and higher mud weights. Faster methods of drilling these sections should be examined. Stratapax type bits or four jet toothed bits with carefully controlled hydraulics, could provide great improvements.

MINORA RESOURCES NL

WINDERMERE NO. 1

DISCUSSION BY INTERVAL

12¹/4" HOLE

Surface - 290 m

9⁵/8" Casing @ 281 m

Windemere No. 1 was spudded on the 17th March, 1987 and a $12^{1}/4$ " hole drilled to 290 m in 16.5 hours rotating time.

A Quik Gel Spud Mud was initially used, but after the conductor pipe was recemented, a cement flocculated Gel-Native Clay mud was used to the casing point.

Viscosity was maintained at 35 - 40 secs by small additions of prehydrated gel although the Gellibrand Marl provided an excellent spud mud in a Caustic-Lime environment.

Following a wiper trip at casing point, a large quantity of cuttings and mud ring was circulated to surface choking the flowline. The well was circulated for over an hour and cavings were still evident over the Shaker Screens.

A Hi-Vis Pill was spotted on bottom and $9^5/8$ " casing run to 281 m and cemented with good returns to surface.

ť,

. سريا

DISCUSSION BY INTERVAL

8¹/2" HOLE TO 1838 M

While nippling up BOP's, the mud pits were dumped and cleaned, and 400 bbls of KCl-Polymer mud mixed.

Water was used to drill out the shoe and for the leak off test giving an equivalent mud weight of 14.0 ppg. Due to a leaking valve, 80 bbls of cement contaminated water was added to the KCl-Polymer mud severely flocculating it and requiring high concentrations of Dextrid to control fluid loss.

Although the KCl content was held at 5-6% through the Gellibrand and Clifton Marls, the Caliper logs indicated this section was washed out to 12" probably as a result of the high fluid loss +15 ml.

Very fast drilling (60 m/hr) occurred through the underlying Dilwyn Sands 436 - 658 m. To reduce mud losses, the lower Shaker Screens were changed from 60 x 60# to 60 x 40#. The KCl content was allowed to drop to 4%. With the arrival of further chemical stock, the fluid loss was reduced to around 6.5 ml and the rheology stabilised by 500 m. High Viscosity Pills were periodically circulated to sweep the hole clean.

The Pember Mudstone, Pebble Point and Paarate Sandstones at 658, 726 and 765 m respectively, also drilled rapidly with 4% KCl mud. No problems were encountered in this sector and the Caliper log showed the hole to be in good condition.

Some balling of the J22 bit occurred in the Belfast mudstone (866 m), but was alleviated by additions of Condet. The KCl content had fallen to 3.5% due to supply shortages and the level of excess polymer was subsequently increased to reduce dispersion rates. Very high dilution rates were required to keep the mud weight less than 9.2 ppg even with the Desilter now operational. Caliper logs indicated this section to be in excellent condition.

DISCUSSION BY INTERVAL

<u>8¹/2" HOLE TO 1838 M</u> (Cont.)

The Eumeralla Clay - Sand sequence was intersected at 931 m and continued to around 1800 m. Further bit balling occurred in the upper section and was only partially alleviated by additions of Condet. These clays were almost "Gumbo" and showed a great capacity for base exchange as well as requiring high dilution rates to keep mud weights less than 9.4 ppg.

At 1024 m, a Hughes JD-3 was run to improve drilling rates but was removed after 11.5 hours having averaged 4 m/hr. The cones were locked and the bit had been skidding, explaining the low R.O.P. and the lack of cuttings over the Shakers. Caliper logs showed this section to be washed out up to 13" despite increasing the KCl content to 4.5% and maintaining high concentrations of excess polymer.

The J22 bit used earlier was rerun as the cones rotated more freely than a new journal bearing bit, and the chances of skidding would be reduced. This bit drilled to 1668 m averaging 15.1 m/hr. Very high dilution rates were required through this section and the mud weight allowed to increase to 9.5 ppg to reduce chemical costs. All solids control equipment was run continuously and the possum belly and sand trap dumped frequently.

Bit No. 6 was run and completed the well to 1838 m through the Middle Eumeralla Formation and Heathfield Sand. The KCl content was allowed to fall to 2.8% as the reactive clay content of the formations reduced with depth. Excess polymer was still maintained to reduce dispersion rates and stabilise upper formations.

Caliper logs showed the well to be "gun barrel" from 1025 to 1838 m indicating this section of well to be adequately stabilised by 3-4% KCl and excess polymer.

The well was logged prior to a testing program. The mud engineer was released prior to testing to hand carry logs to Perth office.

CONCLUSIONS AND RECOMMENDATIONS

12¹/4" Hole

G

 \mathcal{C}^{Λ}

Ē

10

- - - -

्रि

•

Ċ.

In a Caustic/Lime environment, the Gellibrand Marl provided an excellent Spud Mud requiring only small additions of prehydrated gel to maintain adequate properties. Surface hole in future wells would be better drilled with prehydrated Aquagel flocculated as required with Lime.

8¹/2" Hole

Windermere No. 1 intersected almost 900 m of Upper and Middle Eumeralla Formation. Although caliper logs indicated this formation was generally stabilised by 3-4% KCl with excess polymer, the first 100 m of very sticky clay was washed out and will require higher concentrations in future nearby wells.

Very high dilution rates were required through the Eumeralla Formation due to the dispersive nature of the clays. If mud weights are to be kept to a minimum and costs reduced, improved methods of solids control or chemical salvage must be looked at.

A Centrifuge would be the ideal piece of solids control equipment in low solids KCl muds, but its cost effectiveness on single two week wells is doubtful.

KCl was a major chemical cost on this well. Some of this KCl could be recovered by surface skimming the sump and reusing this brine in the mud system. Addition of polyacrylamide flocculants would enhance recovery.

To minimise hole enlargement in the Marls beneath the $9^5/8"$ shoe and in the Upper Eumeralla Formations, future mud programs should allow for 7-10% KCl through these sections and an excess of partially hydrolised polyacrylamide. The KCl content and polymer excess can be relaxed once these sections have been drilled.

N IIIIII Baroid Australia PTY. LTD./NL INDUSTRIES INC.

MATERIAL RECAP

COMPANY MINORA RESOURCES MUD TYPES GEL SPUD MUD WELL WINDERMERE NO.1 LOCATION PEP 111, VICTORIA COST/DAY \$686.50 COST/M \$ 2.37 CONTRACTOR COST/M³ \$ 7.89 DRILLING DAYS/PHASE 1 RECAPPED BY M. THACKRAY ROTATING HRS/PHASE 16.5 DATE 30-03-87

 \bigcirc

e

•

ંગ

÷

HOLE SIZE 121" **INTERVAL TO** 290 FROM 0 MTRS DRILLED 290

MUD CONSUMPTION FACTOR 0.3 m³/m

MATERIAL	UNIT	UNIT COST	ESTIMATED USED KG/M ³	ACTUAL USED KG/M ³	TOTAL ESTIMATED	- COST ACTUAL
QUIK GEL	25 kg	9.08		60	1316.00	544,80
SODA ASH	40 kg	17.86		1		17.86
AQUAGEL	100 lb	15.48		8		123.84

1

i

GEARHART

CHEMICAL VOLUME FRESH WATER SEA WATER TOTAL MUD MADE COST LESS BARYTES COST WITH BARYTES COMMENTS

2 m³ 85 m³

87 m³

1316.00

SECTION DRILLED PREDOMINANILY WITH CEMENT FLOCCULATED BENIONITE AND NATIVE CLAY.

\$686.50

Baroid Australia PTY. LTD./NL INDUSTRIES INC.

Ç,

MATERIAL RECAP

COMPANY MINORA RESOURCES MUD TYPES KC1-POLYMER HOLE SIZE 81/2" WELL WINDERMERE NO.1 INTERVAL TO 1838 FROM LOCATION 290 PEP 111, VICTORIA MTRS DRILLED 1548 COST/DAY \$2211.79 COST/M \$ 12.86 GEARHART RIG 2 CONTRACTOR COST/M³ \$ 44.40 DRILLING DAYS/PHASE 9 RECAPPED BY M. THACKRAY ROTATING HRS/PHASE 138.50 DATE MUD CONSUMPTION FACTOR 0.29 m³/m 31-03-87

MATERIAL	UNIT	UNIT COST	ESTIN USED	MATED KG/M³	ACTUAL USED KG/M³			L COST
			0320	KG/WP	03ED	KG/M ^s	ESTIMATED	ACTUAL
AQUAGEL	100 lb	15.48	127		116	11.8	1965.96	- 1795.68
QUIK GEL	25 kg	9.08	-	I.	4	.2	·	63.32
SODA ASH	40 kg	17.86	14		3	.3	205.04	53.58
BICARBONATE OF SODA	40 kg	21.83			2	.2		43.66
DEXTRID	25 kg	39.99	90		96	5.4	3599.10	3839.04
PAC-R	25 kg	76.92	40	•	76	4.1	3076.80	5845.92
CONDET	200 lt	195.84	-		4	1.8	_ 1	783.36
CAUSTIC SODA	25 kg	22.03	26		34	1.9	572.78	749.02
KCl	50 kg	19,48	196	•	347	38.7	3818.08	6759.56

CHEMICAL VOLUME FRESH WATER SEA WATER TOTAL MUD MADE COST LESS BARYTES COST WITH BARYTES COMMENTS

13282.76

19906.14

1

ł

COMPANY	. м	JD TYPE	S	HOLE SIZE					
WELL LOCATION COST/DAY	MATERIAL	NOT CI		DRILLING	INTERVAL TO FROM MTRS DRILLED				
COST/M COST/M ³ RECAPPED BY DATE	DR		OR DAYS/PHASE HRS/PHASE	MUD CONSUMP		۸ _נ וח			
MATERIAL	UNIT	UNIT COST	ESTIMATED USED KG/M³	ACTUAL USED KG/M ³	TOTAL C ESTIMATED	OST ACTUAL			
CEMENTING MATERIALS					-				
AQUAGEL	100 lb	15.48		16	·	247.68			
KWIK SEAL	· 40 lb	36.98		10		369.80			
						617.48			
									
MATERIAL NOT CHARGED TO	O DRILLING		. i						
SODIUM NITRATE	54 kg	40.81		2		81.62			
BARITE	100 lb	9.28		121		1122.88			
		!	i			1204.50			
DAMAGED STOCK									
QUIK GEL	25 kg	9.08		5					
WIK SEAL	40 lb	36.98		5		45.40			
	100 lb	9.28		14		184.90 129.92			
BARITE	100 10								

CHEMICAL VOLUME FRESH WATER SEA WATER TOTAL MUD MADE ADST/LESS/BARYTES ADST/WHA/BARYTES COMMENTS

TOTAL MATERIAL NOT CHARGED TO DRILLING

÷

2182.20

BARITE USED ONLY FOR TRIPS. DAMAGED STOCK CAUSED BY STORMS DURING FINAL WEEK.

,

3

3

Q -

 G_{i}^{2}

r s

· . .

Baroid Australia PTY. LTD./NL INDUSTRIES INC.

 \bigcirc

ر ایران میرید

ني:

MATERIAL SUMMARY

COMPANY WELL	MINORA RESOURCES WINDERMERE NO.1	MUD TYPE	GEL SPUD MUD KC1-POLYMER		HOLE SIZE	METRES DRILLED	DRILLING DAYS
LOCATION	PEP 111, Victoria		i		12 <u>1</u>	290	1
COST/DAY	·				8 <u>1</u>	1548	9
COST/M	· ·	TOTAL ROT	ATING HRS				
COST/M ³		TOTAL DAY	S ON HOLE [,]				
RECAPPED BY	/	TOTAL DEP	тн		TOTAL	1838	
		MUD CONSU	JMPTION : WELL	AVERAG	Ε.		

		UNIT	ESTIN	MATED	ACT	UAL	TOTA	LCOST
MATERIAL	UNIT	UNIT COST	USED	KG/M ³	USED	KG/M ³	ESTIMATED	ACTUAL
· · · · · · · · · · · · · · · · · · ·					<u></u>		•	
AQUAGEL	100 lb	15.48	127		124		1965.96	1919.52
QUIK GEL	25 kg	9.08	145		64		1316.60	581.12
SODA ASH	40 kg	17.86	14		4		250.04	71.44
BICARBONATE OF SODA	40 kg	21.83	0		2		-	43.66
CAUSTIC SODA	25 kg	22.03	26		34		572.78	749.02
DEXTRID	25 kg	39.99	90		96		3599.10	3839.04
PAC-R	25 kg	76.92	40		76		3076.80	5845.92
CONDET	200 kg	195.84	0		4		-	783.76
KCl	50 kg	19.48	196		347		3818.08	6759.56
							14599.36	20592.04
		•						
		•		:				
					,			

TOTAL MATERIAL NOT CHARGED TO DRILLING

		1		
AQUAGEL	100 lb	15.48	16	247.68
QUIK GEL	25 kg	9.08	5	45.40
KWIK SEAL	40 lb	36.98	, 15	554.70
SODIUM NITRATE	54 kg	40.81	2	81.62
BARITE	100 lb	9.28	135	1252.80
			· ·	
			· .	2182.20

CHEMICAL VOLUME		
FRESH WATER		
SEA WATER		
TOTAL MUD MADE		
COST LESS BARYTES	14599.36	21521.44
COST WITH BARYTES	1	22774.24
COMMENTS	TOTAL COST INCLUDES ALL DAMAGED STOCK,	
	CEMENTING CHEMICALS AND TRACERS USED TO 30-03-87.	
	DOES NOT INCLUDE STOCK USED OR DAMAGED FROM 30-03-87	

TO END OF TESTING.

DRILLING FLUID PROPERTY RECAP E STORE AUSTRALIA PTY. LTD./NL INDUSTRIES INC.

COMPANY MINORA RESOURCES

	ORMATION	[.imestone. Mar]			- Marl.	Sands	Clavs.	Clavs.	Clavs.	Clavs. Sands	Clav. Siltstone	Clavs.	T.D.
	REMARKS TREATMENT FORMATION	Gel, Native clav. Spud Mud.	Cmt csa, mix KCl mud.	W.O.C. Nipple up BOP	Mud Flocculated by Ont.	Mud dispersed with Pac R.	Rapid Solids build up.	High dilution required.	High dilution required.	Fast Drilling.	n		
WINDERMERE NO. 1	MBC MBC				49	43	50	43	50	50	50	43	50
MERE	ĕ.ĕ				0	0	0	0	0	0	0	0	0
NDER	W.ATER				94	93	92	92	91	91	92	92	91
IM	ORR.				3.7	5.0	6.0	5.3	6. 6	6.9	6.4	6.3	7.4
WELL	CORR SAND SOLIDS WATER	-	-		.2	, FI	Æ	Ĕ	Æ	TTR	Ę	Ë	뚔
Š	ບ ບໍ່				80	80	120	100	120	160	240	80	160
	ü				22500	18000	21000	29000	25000	22000	16000	17500	16500
	ž				6.	9.	9.	م	9.	5.	ŗ.	4.	.15 .35
	Σ				<u>د</u>	m.	.2	ŗ.	m.	.15	۲.	.2	.15
	F				11.0	11.0	10.5	11	10.5	10	10	10.5	10
	C AKE B B C	ı	ı		m	2	2	.?	7	2	2	2	7
	WATER LOSS A P I	N/C	N/C		14.6	6.4	6.2	6.02	5.3	6.7	6.0	5.9	5.8
	GELS 10 10 sec min	9	25		13	m	2	7	7	7	7	2	m
	ڏ د و	4	12		4	2	-	-	-	7	7	-	7
	a. ≻	12	20		10	9	8	ω	5	٢	8	7	œ
10	2	ы	9		9	15	14	12	1	12	12	16	14
URCES	SEC	35	38		37	38	40	42	38	38	39	40	40
MINORA RESOURCES	WEIGHT 5 G	1.08	1.08		1.09	1.10	1.12	1.12	1.14	1.15	1.13	1.13	1.13
NORA	% KCl	ı	1				.4	4.2	4.8	5.	2.8	3.2	2.8
IW	HOLE SIZE	12 <u>4</u>	124		8 ² 2	8 ¹ / ₂	8 <u>1</u> 32	8 <u>1</u> 4	8 <u>1</u> 4	8 <u>1</u> 3	8 <u>1</u> 2	8 <u>1</u> 3	8 7 8 7
COMPANY	т Базо С	246 1	290 1	290	430	750	1010	1050	1290	1568	1658	1810	1838
000	DATE	18/3	19/3	20/3	21/3	22/3	23/3	24/3	25/3	26/3	27/3	28/3	29/3

; 1,1 1,1

Ð

 \bigcirc ...

/ -·

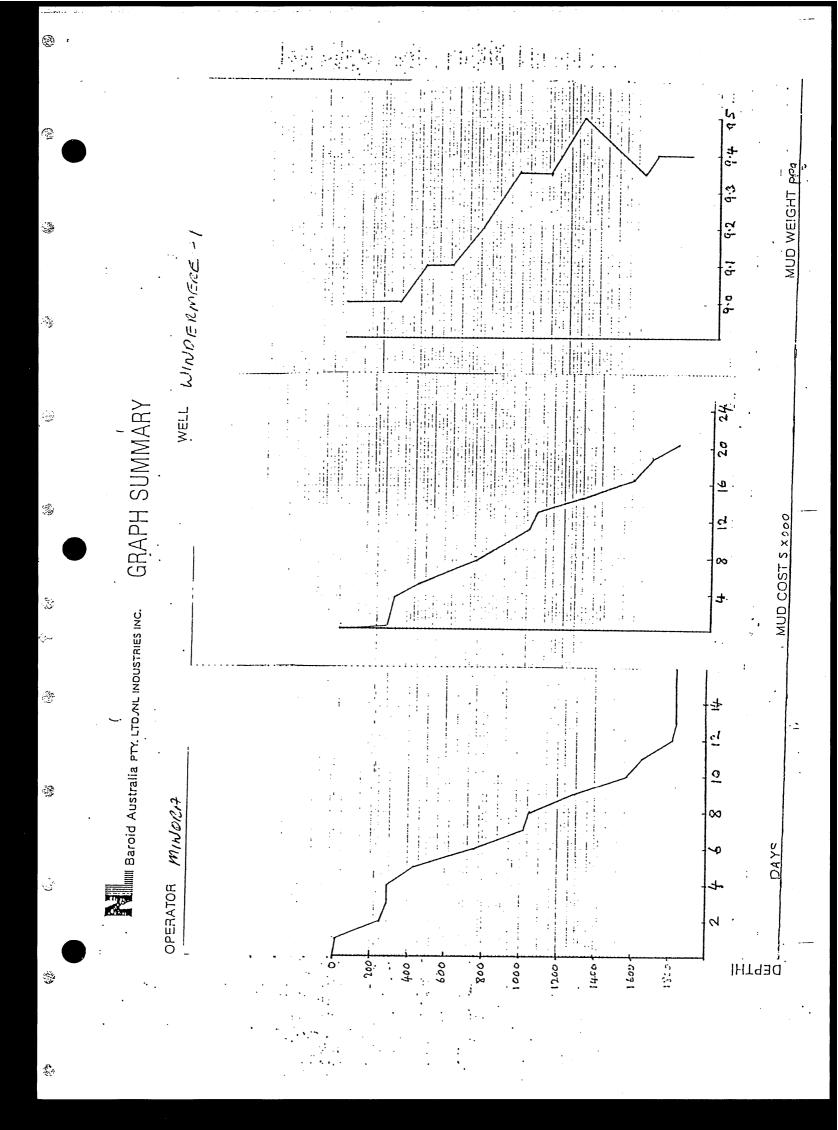
S.

Mathematical Australia PTY. LTD./NL INDUSTRIES INC. BIT REORD COMPANY Marken Seconces WELL WINDERVERS NOTIFICATION Examiner risk (No.2) COMPANY Marken TII, VICTORALA WELL WINDERVERS NO.1 CONTRACTOR/RIG Examiner risk (No.2) LOCATION FR. 11, VICTORALA WELL WINDERVERS NO.1 CONTRACTOR/RIG Examiner risk (No.2) LOCATION FR. 11, VICTORALA S. JACORAN WELL MINDERVERS FORMARY DATE 17/03/87 DATE FEACHED T.D. COMPANY SUPERVISORS C. JACORAN S. JACORAN MARKE, TYPE DATE 17/03/87 DATE FEACHED T.D. PUMPS: MAKE, TYPE C.D. POR INTERNAL TOOLPUSHERS Examiner risk (No.2) EXAMAR DRILL COLLARS 64, B* DATE 17/03/87 DATE FEACHED T.D. PUMPS: MAKE, TYPE 0.0 PUMPS DRILL COLLARS 64, B* DRILL PULPER 64, B* DRILL PULP						REMARKS	RR.			ied.	RR 3.	T.D.	
Minimulation BIT RECORD Minimulation Minimulati				217		A E V	кl.			Lock	щ		
Minimulation BIT RECORD Minimulation Minimulati		<u> </u>		Ш		ATION	ле, Ма		Clays	Cones		Sands.	
Minimulation BIT RECORD Minimulation Minimulati		5 5 П Т				FORM	nestoi	г.	/ spu	ays -	ays.	ays, S	
Minimul Baroid Australia PTV. LTD./NL INDUSTRIES INC: MELL WINDERVERS INC: BIT RECORD MPANY MINORA RESOURCES WELL WINDERVERS IN: CONTRACTOR/RIG GERMENT CATION EP 111, VICTORIA SPUD DATE 17/03/67 DATE REA MPANY SUPERVISORS G. JACRAMAN WELL WINDERVERS IN: CONTRACTOR/RIG GERMENT MPS: MAKE, TYPE G.D. P28 LINERS USED 8" TOOLPUSHERS IN: FORMER DATE REA MPS: MAKE, TYPE G.D. P28 LINERS USED 8" DRILL COLLARS 64, 8" DATE REA MPS: MAKE, TYPE G.D. 290 SFDD MD 2 200 LINER USED 8" DRILL COLLARS 64, 8" 17/03/67 JD SYSTEMS, DEPTHS G. 290 SFDD MD 2 200 LINER USED 8" 001111 1/4 0001107 28 4 4 1 JD SYSTEMS, DEPTHS G. 10 110 1/4 000156 10/14 10 1/4 000 10/07 28 4 4 1 JD SYSTEMS, DEPTHS S.11 1024 61 10 1/4 00 10/07 2 1		RIG 1 CHE		DRIL			. Liı	Ma	16 Sai	ปี		16 CL	
MILL		rhart REA		L1		DITION		4 I	2 1/	8 I	4 1/		
MILL		GEA VTE				- CON		4	7	ω	4		
Minimulation BIT REC0 Minimulation Manual Australia PTY. LTD./NL INDUSTRIES INC. WELL WINDERVERS NOT RATE 1/03/87 MPANY MINORA RESOURCES WELL WINDERVERS NOT RATE 1/03/87 OMPANY REP 111, VICTORIA CONTRACTOR CONTRACTOR CATION REP 111, VICTORIA CATOR DATE 1/03/87 MPANY SUPERVISORS C. JACRAMA NOCLUCHERS S. Reveal Reveal MPANY REP 111, VICTORIA CATORA REPUD DATE 1/03/87 Reveal MPS: MAKE, TYPE G.D. P28 LINERS USED 8" Reveal Reveal Reveal MPS: MAKE, TYPE G.D. P28 LINERS USED 8" Reveal Reveal Reveal MPS: MAKE, TYPE G.D. P28 LINERS USED 8" Reveal Reveal<		D D U				MUD VIS sec	, 38						
MMM Minora resources WELL Minora resources MPANY Minora resources WELL WINDERMERE NO.1 CATION PEP 111, VICTORIA SPUD E OMPANY SUPERVISORS G. JACKMAN TOOLPUG MPS: MAKE, TYPE G.D. P28 LINERS USED 8" TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" DRILL COLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" DRILL TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" MIG 100 100 MPS: MAKE, TYPE 0 - 290 SPUD MID 11.0 12.7 27.5 10.14 100 MPS: MAKE 5.11 3.11 1024 594 40 11.2 20.14 100 RNI 12ª SMITH 5-11 1070 46 11.5 4.0 7014 100 2 8ª HIC 33 11.10 12.7 27.5 1014 100 3 8 [†] HIC 33 15.1	ВD	۱۶/۲	ĥ				1.07	1.09	1.12	1.14	1.14	1.14	•
MMM Minora resources WELL Minora resources MPANY Minora resources WELL WINDERMERE NO.1 CATION PEP 111, VICTORIA SPUD E OMPANY SUPERVISORS G. JACKMAN TOOLPUG MPS: MAKE, TYPE G.D. P28 LINERS USED 8" TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" DRILL COLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" DRILL TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" MIG 100 100 MPS: MAKE, TYPE 0 - 290 SPUD MID 11.0 12.7 27.5 10.14 100 MPS: MAKE 5.11 3.11 1024 594 40 11.2 20.14 100 RNI 12ª SMITH 5-11 1070 46 11.5 4.0 7014 100 2 8ª HIC 33 11.10 12.7 27.5 1014 100 3 8 [†] HIC 33 15.1	CO	CTOF /03/87	FOWLI			PUMP RATE spm	150	90	88	90	80	82	
MMM Minora resources WELL Minora resources MPANY Minora resources WELL WINDERMERE NO.1 CATION PEP 111, VICTORIA SPUD E OMPANY SUPERVISORS G. JACKMAN TOOLPUG MPS: MAKE, TYPE G.D. P28 LINERS USED 8" TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" DRILL COLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" DRILL TOOLPUG MPS: MAKE, TYPE 0 - 290 SPUD MID 8" MIG 100 100 MPS: MAKE, TYPE 0 - 290 SPUD MID 11.0 12.7 27.5 10.14 100 MPS: MAKE 5.11 3.11 1024 594 40 11.2 20.14 100 RNI 12ª SMITH 5-11 1070 46 11.5 4.0 7014 100 2 8ª HIC 33 11.10 12.7 27.5 1014 100 3 8 [†] HIC 33 15.1		NTRAC E 17,	RS B.	ARS 61		PUMP PRESSURE P.s.i.	006	200	600	600	850	006	
MPANY MINORA RESOURCES WELL WINDERWERE NG CATION PEP 111, VICTORIA CATION PEP 111, VICTORIA MPS: MAKE, TYPE G.D. P28 LINERS USED 8" MPS: MAKE, TYPE G.D. 290 SPUD MJD MPS: MAKE, TYPE G.D. 291 200 MJD MPS: MAKE, TYPE G.D. 200 MJD MPS: MPS: MPS: MPS: MPS: MPS: MPS: MPS:	B	CO DAT	SHE	OLL/		VERT DEV'N	1/4	1/4	3/4	- - - -	3/4	4	
MPANY MINORA RESOURCES WELL WINDERWERE NG CATION PEP 111, VICTORIA CATION PEP 111, VICTORIA MPS: MAKE, TYPE G.D. P28 LINERS USED 8" MPS: MAKE, TYPE G.D. 290 SPUD MJD MPS: MAKE, TYPE G.D. 291 200 MJD MPS: MAKE, TYPE G.D. 200 MJD MPS: MPS: MPS: MPS: MPS: MPS: MPS: MPS:		SPUD	OLPU	ILL CO		МАЯ	110	100	110	100	60/09	70/80	
MPANY MINORA RESOURCES WELL OMPANY MINORA RESOURCES WELL CATION PEP 111, VICTORIA WELL CATION PEP 111, VICTORIA WELL OMPANY SUPERVISORS G. JACKMAN WELL OMPANY SUPERVISORS G. JACKMAN WELL OMPANY SUPERVISORS G. JACKMAN WELL MPS: MAKE, TYPE G.D. P28 LINERS USED JD SYSTEMS, DEPTHS 0 - 290 SPUD MUD JD SYSTEMS, DEPTHS 0 - 290 SPUD MUD RRI 12 ¹ 3 x 11 RN 13 290 284 RRI 12 ¹ 3 x 11 1024 S B ¹ HTC S22 3 x 11 1020 3 B ¹ HTC S22 3 x 11 1070 4 B ¹ HTC S22 3 x 11 1070 5 B ¹ HTC S22 3 x 11 1070 46 6 B ¹ HTC S22 3 x 11 1070 46			0 L	DR		BIT WEIGHT IJBS	10	10/14	5/15	10/15	22/28	22/30	
MPANY MINORA RESOURCES WELL OMPANY MINORA RESOURCES WELL CATION PEP 111, VICTORIA WELL CATION PEP 111, VICTORIA WELL OMPANY SUPERVISORS G. JACKMAN WELL OMPANY SUPERVISORS G. JACKMAN WELL OMPANY SUPERVISORS G. JACKMAN WELL MPS: MAKE, TYPE G.D. P28 LINERS USED JD SYSTEMS, DEPTHS 0 - 290 SPUD MUD JD SYSTEMS, DEPTHS 0 - 290 SPUD MUD RRI 12 ¹ 3 x 11 RN 13 290 284 RRI 12 ¹ 3 x 11 1024 S B ¹ HTC S22 3 x 11 1020 3 B ¹ HTC S22 3 x 11 1070 4 B ¹ HTC S22 3 x 11 1070 5 B ¹ HTC S22 3 x 11 1070 46 6 B ¹ HTC S22 3 x 11 1070 46		DERMER				ACCUM DRLG HOURS	16.5	27.5	67.5	79	12	55	
MIDANY MINORA RESOURCES OMPANY MINORA RESOURCES CATION PEP 111, VICTORIA CATION PEP 111, VICTORIA MPANY SUPERVISORS G. JACKMAN MPANY SIT YIT MPANK JAC JAO MPAN SIT <				"8		MTRS/ HR	7.6				5.11	6.3 1	
MPANY MINORA RESOURCES CATION PEP 111, VICTORIA MPANY SUPERVISORS G. JACKMAN MPS: MAKE, TYPE G.D. P28 LINERS JD SYSTEMS, DEPTHS 0 - 290 SPUD MJD JD SYSTEMS, DEPTHS 0 - 290 SPUD MJD RRI 12 ¹ / ₄ SMITH S-11 3 x 13 290 - 284 RRI 12 ¹ / ₄ SMITH S-11 3 x 13 290 - 284 RRI 12 ¹ / ₄ SMITH S-11 3 x 13 290 - 284 RRI 12 ¹ / ₄ SMITH S-11 3 x 13 290 - 284 BRI 12 ¹ / ₆ SMITH S-11 3 x 13 290 - 284 BRI 12 ¹ / ₆ SMITH S-11 3 x 13 290 - 284 FRC S22 3 x 11 1024 594 6 8 ¹ / ₂ HTC S22 3 x 11 1024 594 6 8 ¹ / ₂ HTC S22 3 x 11 1070 46 5 8 ¹ / ₂ HTC S22 3 x 11 1070 47 5 8 ¹ / ₂ HTC S22 3 x 11 10070 50 5 8 ¹ / ₂ HTC S22 3 x 11 10070 50 5 8 ¹ / ₂ HTC	ů z	/ELL		SED		SR		-	•	Ŀ.			
MPANY MINORA RESOURCES CATION PEP 111, VICTORIA OMPANY SUPERVISORS G. JACKMAN MPS: MAKE, TYPE G.D. P28 JD SYSTEMS, DEPTHS 0 - 290 SPU JD SYSTEMS, DEPTHS 0 - 290 SPU	RIES	3		S U		1 1	- 16.	11	40	1.	33	43	
MPANY MINORA RESOURCES CATION PEP 111, VICTORIA OMPANY SUPERVISORS G. JACKMAN MPS: MAKE, TYPE G.D. P28 JD SYSTEMS, DEPTHS 0 - 290 SPU JD SYSTEMS, DEPTHS 0 - 290 SPU	TSUO			NEP	MUD	METRE DRILLE	284	140	594	46	498	270	
MPAN CATIO MPAN MPS: N MPS: N MPAN	NL IN		MAN		SPUD	DEPTH OUT B				0			
MPAN CATIO MPAN MPS: N MPS: N MPAN	, LTD.		JACI		- 290		29(43(102	107(156	183	
MPAN CATIO MPAN MPS: N MPS: N MPAN	a TT	ES	່ ທ	. P28		JETS 32nd"	x 13	x 11	x 11	x 11	x 11	x 11	
MPAN CATIO MPAN MPS: N MPS: N MPAN	strali	SOURCI	SOR	G.D	THS	ЪЕ		m	m			m	
MPAN CATIO MPAN MPS: N MPS: N MPAN	id Au	RA RE 111, 1	RVIS	ΥPΕ	DEP	F	S-11	SD3	S22	Д СД	S22	ប	
MPAN CATIO MPAN MPS: N MPS: N MPAN	ll Baroi		SUPE	KE, T	EMS,	MAKE	HILIWS	HIC	HIIC	HIC	HIIC	CHRIST	
COMPA COMPA LOCAT COMPA PUMPS MUD S MUD S MUD S 20/3 2 21/3 3 23/3 4 22/3 5 25/3 6		NV ION	ŃΥ	AM ∵	ΥSTI	SIZE							
CO CO FU FU FU FU FU FU CO CO CO CO CO CO CO CO CO CO CO CO CO	A. area	MPA CAT	MPA	MPS	С О	1 1	RR1	7	m	4	S	9	
		CO LOO	00	ЪЛ	MU	DATE	17/3	20/3	21/3	23/3	24/3	25/3	

.

•

(). .


.

•

ť_

G

ĨŢ

TESTING

 $(\cap$

÷.

Ľ,

ŝ

Following wireline logging a testing program lasting 8 days was embarked on and included drilling a further 12 m of rathole.

During this time the KCl content ranged from 2 to 4% and the hole remained stable.

Typical mud properties were:

Mud Weight	:	9.4 ppg
Viscosity	:	39 secs
YP	:	9 lb/100 ft ²
Filtrate	:	5 cc/30 min
Chloride	:	30,000 mg/1
KC1%	:	3

After testing, 7" casing was run and perforated.

The well was completed as an oil producer.

Baroid Australia PTY. LTD./NL INDUSTRIES INC.

 \mathcal{Q}

MATERIAL SUMMARY

COST/DAYTESTINGCOST/MTOTAL ROTATING HRSPROGRAMMECOST/M³TOTAL DAYS ON HOLEPROGRAMMERECAPPED BYTOTAL DEPTHTOTAL	COMPANY MINORA RESOURCES WELL WINDERMERE NO. 1 LOCATION PEP 111, VICTORI		HOLE SIZE	METRES DRILLED	DRILLING DAYS
COST/MTOTAL ROTATING HRSCOST/M³TOTAL DAYS ON HOLERECAPPED BYTOTAL DEPTHTOTAL DEPTHTOTAL		A	ጥ	FSTINC	
TOTAL					-
	RECAPPED BY	TOTAL DEPTH	TOTAL		
MUD CONSUMPTION : WELL AVERAGE		MUD CONSUMPTION : WELL AVE	ERAGE		

MATERIAL	UNIT	UNIT	ESTIMATED	ACTUAL	TOTAL	COST '
		COST	USED KG/M ^a	USED KG/M ³	ESTIMATED	ACTUAL
				2		· · ·
CAUSTIC SODA	25 kg	22.03		5		110.15
QUIR GEL	25 kg	9.08		3		27.24
AQUAGEL	100 lb	15.48	1	34		526.32
DEXTRID	25 kg	39.99	1	26		1039.74
PAC R	25 kg	76.92		12		923.04
KCl	50 kg	19.48		44		2805.12
BARITE	100 lb	9.28		34		315.52

CHEMICAL VOLUME FRESH WATER SEA WATER TOTAL MUD MADE COST LESS BARYTES COST WITH BARYTES COMMENTS

47.7 m³

5431.61 5747.13

1

C

۰.

DST Reports

WINDERMERE-1

SUMMARY OF TESTING OPERATIONS

Testing operations on this well consisted of five (5) drill stem tests (DST's fifty two (52) selective formation tests (SFT's) and six (6) days of swabbing.

DST's 1 and 2 were conducted during the period 31 March - 2 April 1987 and the intervals tested were 1791m - 1838m and 1790m - 1814m respectively.

DST-1 did not flow to surface (except gas) but produced sixteen (16) barrels of fluid from the formation (15.5 barrels of muddy water and 0.5 barrels of crude oil).

DST-2 also did not flow to surface but was not far below and produced approximately 30 barrels plus of oil and gas cut oil with about 20 barrels of water.

SFT's (52) were run over a period of 4 days (3-6 April 1987) and brief results of these are shown in this appendix detailed results were distributed to the Joint Venture Partners.

DST-3 was conducted on 7 April 1987 but was considered a failure due to mechanical malfunction of downhole test tools.

DST's 4 and 5 were conducted during the period 16 - 19 May 1987 and the intervals tested were 1798m - 1813m and 1782m - 1787m respectively. DST-4 did not flow to surface but produced 5.6 barrels of brine with a trace of crude oil.

DST -5 did not flow to surface and very little fluid was produced.

Swabbing operations commenced on 23 May 1987 and continued until 29 May 1987 recovering approximately 33 barrels of fluid from the formation (Filtrate and Formation Water). Swab reports are included in this appendix.

DST-1

Was a conventional open hole off bottom test conducted over the interval 1791m - 1838m.

Test tool was opened at 0737 hrs on 31 March 1987 for Initial Flow and closed at 0743 hrs for Initial Shut In. Second flow period was of 2 hrs duration commencing at 0815 hrs. Well was flowed through bubble hose only and a maximum pressure of 3 psi was recorded. Gas came to surface approximately 1 hr and 20 mins after tool was closed at 1015 hrs. The well was opened to flare pit on a 96/64" choke and gas burnt bright orange (no smoke) with a 1-3 foot flame. Test tool was again opened at 1417 hrs for a period of 18 mins, after which the tool was closed and packer unseated at 1437 hrs. Test string was pulled out of the hole and fluid recovered was 15.5 barrels of muddy water and 0.5 barrels of crude oil. DST - 2

Was an off bottom open hole straddle test and was conducted over the interval 1790m -1814m.

Test tool was opened at 1745 hrs on 1 April 1987 for Initial Flow and closed at 1750 hrs for Initial Shut-In. Second flow period was of 13 hrs and 14 mins duration commencing at 1824 hrs, moderate blow was recorded through bubble hose and gas came to surface at 1945 hrs with a maximum FWHP of 2 PSI. Well continued to flow until test tool was shut in at 0738 hrs on 2 April 1987. Final Shut-In period continued until 1416 hrs when packer was unseated and test string pulled out. Recovery from this test during reverse circulation was in excess of 30 barrels of oil/gas and approximately 20 barrels of water.

DST - 3

Was an off bottom open hole straddle test conducted over the interval 1750m - 1790m.

Test tool was opened at 0633 hrs on 7 April 1987 and shut in for Initial Shut-In at 0638 hrs. Second flow period commenced at 0740 hrs but mechanical failure of test string component caused this test to be considered a failure and therefore no valid data was obtained.

DST -4

Was a conventional off bottom cased hole test conducted over the interval 1798m - 1813m.

Test tool was opened at 0728 hrs on 17 May 1987 and closed for Initial Shut-In at 0735 hrs. Second flow period was of 10 hrs 13 mins duration commencing at 0837 hrs and ending at 1900 hrs. Final Shut-In period was from 1900 hrs to 0130 hrs on 18 May 1987. Recovery from reverse circulation was 5.6 barrels of brine with trace of crude oil.

DST -5

Was an off bottom cased hole straddle test conducted over the interval 1782m - 1787m.

Test tool was opened at 1932 hrs on 19 May 1987 and closed for Initial Shut-In at 1938 hrs. Second flow period commenced at 2049 hrs and continued until 2120 hrs with the only indication of flow being very weak blow from bubble hose for approximately 15 mins. Packer was unseated at 2208 hrs and test string pulled out. The only recovery from this test was a small amount of water with a trace of crude oil.

Ref: PlllH NOVEMBER 1987 SUBJECT: WINDERMERE-1 DST-1 1791-1838M - SYNOPSIS

DST-1 is a valid test and indicates oil recovery from a low productivity/permeability zone conventionally pressurised to 0.43-0.44 psi/ft.

Low productivity, without benefit of chart interrogation, is possibly due to shock loading of formation due to no water cushion and/or excessive mud hydrostatic of circa 500 psi.

Recoveries from test over a 2 hour flow period were:

	====	
Total	12.0	bbls
Mud (Sump)	7.7	bbls
Gas/Cut Mud/Water	3.8	bbls
Oil	0.5	bbl

As Well was continuing to flow against increasing pipe hydrostatic head, it is recommended that this test interval is repeated and the flow period extended.

P11146/A/300687

SUBJECT: WINDERMERE-1 DST-1 - BUILD-UP ANALYSIS

Further to the interpretation from Schlumberger Sydney, on behalf of Dowell Schlumberger, for the subject test selected parameters for input to analysis were:

	DST 1
Q, Res. bbls per day	240
Thickness ft	75

Resultant output from Horner Plot Computerised analysis is:

M, psi/cycle	577
P lhr psia	2279
P (extrap) psia	2554
Pwb psia	429.7
Kh md ft	34
K md	0.45
Skin	-0.299

DST#1 interpretation is invalid due to the limited flow period precluding reservoir investigation. Note that Horner Plot techniques as used are invalid unless constant flow is achieved preferably to surface. Horner interpretation is more valid and acceptable for DST#2. As DST#2 was a repeat of the DST#1 interval further investigation of DST#1 with Ramey-Agarwal-Martin type curves is not justified.

P11119/300687

SUBJECT: WINDERMERE-1 DST-2 1791-1815M - SYNOPSIS

DST-2 recovered 57.8 bbls of fluid in 13.23 hours.

Recoveries were:

11.3 bbls Gas Cut Oil (surface bubble)
20.4 bbls Oil (41° API)
20.3 bbls Gas Cut Water RW=0.32 ohm m at 71°F
5.8 bbls Mud

Test was conducted without a water cushion to repeat the DST-1 which proved oil. Well continued to produce to time of shut-in.

Test is valid and exhibits low productivity and permeability. However, the interval tested appears to be capable of producing in excess of 100 barrels of fluid per day on current recoveries.

P11146/B/300687

1. T

SUBJECT: WINDERMERE-1 DST-2 - BUILD-UP ANALYSIS

Further to the interpretation from Schlumberger Sydney, on behalf of Dowell Schlumberger, for the subject test selected parameters for input to analysis were:

	DST 2
Q, Res. bbls per day	131.5
Thickness ft	75

Resultant output from Horner Plot Computerised analysis is:

	(1)	(2)
M, psi/cycle	191	223
P lhr psia P (extrap) psia	2410 2630	2286 2543
Pwb psia	1113.7	1086
Kh md ft	56	48
K md Skin	0.75 +3.58	0.64 +2.0
SKIII	±2.00	τ Ζ .Ο

(1) Facsimilied charts used for interpretation due to misdirection of actual charts.

(2) Actual charts used 24/6/87. Results unchanged materially.

Horner interpretation is more valid and acceptable for DST#2. As DST#2 was a repeat of the DST#1 interval further investigation of DST#1 with Ramey-Agarwal-Martin type curves is not justified.

P11119/B/300687

SUBJECT: WINDERMERE-1 DST-3 1750-1790M - SYNOPSIS

DST-3 failed due to mechanical reasons while running-in the hole with tools. Pipe filled with mud and necessitated aborting the test.

JV agreed not to repeat test but reconsider after installation of 7" casing.

P11146/C/300687

SUBJECT: WINDERMERE-1 DST-4 SFT PROGRAMME - SYNOPSIS

Due to the apparent multiplicity of potential hydrocarbon intervals from log interpretation, the SFT Programme was initiated to define the hydrostatic gradient, identify zones for testing through 7" casing and obtain samples where warranted.

Fifty points were attempted from 439M to 1806M and samples were recovered from 435M and 535M.

Results are summarised in the attached tabulations and pressure depth plots.

Indications are that a regional gradient of 0.43 to 0.44 psi/ft exists in most permeable zones with anomalies in sands at 435, 535, 1050 and 1370 M, the latter anomalies of 1050 and 1370M being probably due to thin sand development and paucity of data points.

Low permeability precluded obtaining valid data from circa 1400 M to 1806 M.

P11146/D/300687

SUBJECT: WINDERMERE #1 DST #4 1798 - 1813m - SYNOPSIS

DST #4 recovered 5.6 bbls of fluid and trace of oil. Gas bubble reported was air due to use of low volume but accurate displacement pump during start of reverse circulation.

Recovery was brine 37,400/36,500 ppm Cl. Thus test recovered almost entirely sump volume brine and filtrate. Spotting diesel for perforation and sump fluid was ineffective. Annulus did not drop during test.

Test is valid and exhibits low productivity and permeability as known. Reservoir fluid recovery is masked by brine recovery.

Ξ.

SWABBING DST#4 INTERVAL 1798 - 1813m - SYNOPSIS

Status: 2 7/8" EUE 6.5 lb/ft tubing with closed sliding sleeve at 1786.5 metres, OTIS packer at 1789m and tailpipe to 1800m. Well full of brine 8.7 lb/gallon salinity 35,000 PPM Cl. (NB Well previously perforated in 8.7 lb/gallon brine with diesel spotted across perforation interval, shot at 8 shots/ft with 5" guns).

A total of 113.68 barrels of fluid were recovered in 88 runs including two fishing operations over an effective 9 days swabbing operation.

Chlorides content was measured on each recovered swab volume and results are appended in the daily swabbing report sheets 1-9 inclusive.

Recovery was calculated as:

Completion brine	34.0	barrels
Diesel, circa	2.0	barrels
Oil, less than	1.0	barrels
Formation water	76.68	barrels.

Final fluid sample from Run No. 88 was analysed as follows:

Annulus (2 7/8"/7") was monitored and found full before, during and after swabbing operations.

P11146/E/300687

SUBJECT: WINDERMERE #1 DST #5 1782 - 1787m - SYNOPSIS

DST 5 is a valid test. An initial flow was not achieved and resulted in a pseudo build-up prior to the initial build-up. Build-up was rapid achieving 75% of reservoir pressure (extrapolated) in one hour indicating little damage. Formation was exposed to 2600 psi drawdown with only 3000 cc of filtrate, diesel and trace of possible oil being recovered in a 77 min flow period. No displacement was observed at surface and tools were cycled with no improvement in flow. Tools were pulled without reverse circulating to ensure 100% fluid recovery. DST #5 exhibits extremely low productivity for an apparent low permeability.

P11146/F/300687

FLOPETROL JOHNSTON Schlumberger

. . . .

· ·

ST / 84001

FORMATION TESTING REPORT

COMPANY	:	Minora Resources NL
FIELD	:	Otway Basin
WELL	:	Windermere 1
DST No	:	1
DATE	:	31 March, 1987
COUNTRY	:	Australia
LOCATION	:	Victoria
ZONE	:	1791m - 1838m RKB

REGION	:	ANZ
DISTRICT	:	LEA
BASE	•	LEF
REPORT No	:	87-4-1

CLIENT <u>Minora</u> FIELD <u>Windermere</u>	FORI	MATION TEST	NG REPORT	1 1	OPETROL JOHNST
WELL1					07 / 1
DST No1	VV	IELL AND JO	B DATA		No <u>87-4-1</u>
DATE31/3/87				PAGE	No1
Type test Open hole		1 70 1	1020		m
Total depth <u>1838 m</u>		Interval, from 1791			111
Main hole size <u>8.5 ins</u>		ng size ng weight			
Down to		ng shoe depth			
All depths measured fromRKB	Ceme	ent plug top			-
PERFORATIONS					
FORMATION - System Lower Eum	erella		Estimated porc	sity0.15	5
Geologie level			Estimated perr	neability	-
Lithology <u>Sandstone</u>	<u></u>				3 m
MUD, Type KCL		Wt Viscosi	w. <u>4.0</u> w.	<u>5.8 cc</u>	Chloride PPM 13000
CUSHION, TypeNIL	Length	1	Top Depth		_ Weight
TIMES	רחי ווי	:43 _{on} 31	ł		1 1 1
07.40 0	31 to 07 1 to 08:				
00.15 3					
10.15 2	1 1				
			erse circulation	. on	to on
	to		al equalization	on	
3rd shut-in from ODL SEQUENCE - Tool		0.D (in)	1.D. (in)	Length (m)	Depth.(m
Test Head			-		
Drill Plpe		4.5	3.5	1539.0	1533.1
Drill Collars		6.25	2.375	245.42	1748.5
Pump Out Sub		6.25	2.75	.35	1748.85
Drill Collars		6.25	2.375	27.82	1776.67
Knock out Sub		6.25	2.75	.35	1777.02
Xover		6.25	2.75	.35	+ 777 50
Catcher Sub		4.75	.75	.16	1777.53 1779.33
Recorder Carrier Hydrosta	tic	4.875	- 075	1.8	1782.43
MFE		5.0	.875	3.1	1783.33
Bypass		5.0	1.12	.9	1785.93
T R Jar		4.75	1.75	2.6 .65	1786.58
Safety Joint		4.75	2.5	1.51	1788.09
Safety Seal		6.00	1.5	1.52	1789.61
Packer		7.5 7.5	1.15	2.15	1791.76
Packer		4.875	-	1.8	1898.56
Recorder Carrier Inside		4.875	_	1.8	1796.36
Recorder Carrier Inside		4.75	2.25	4.88	1800.24
Perf. Anchor		6.25	2.75	.35	1800.6
Xover Drill Collars		6.25	2.375	36.77	1837.36
Shoe		6.25	-	.64	1838.0
Tatal Drill Pipo			-	1539	
Total Drill Pipe Total Drill Collar				279.99	
					_{ize:} 0.75 ins

.

CLIENT	Minora
FIELD	
WELL	4
DST No .	1
DATE	31-3-87

•

•

121

FORMATION TESTING REPORT

FLUID RECOVERY

FLOPETROL JOHNSTON

REPORT No <u>87 -4 -1</u> PAGE No <u>2</u>

	L										
DESCRIPTION OF FLU	IDS RECOV	ERED					SURFACE OBS	ERVATI	ONS		·
Air blow :					Description Time				- 1	Pressure	Surfac choke
During 2nd and 3rd	flow	period	S		Pack	er set a	at 1791m	07	:34		
3rd flow started ve	ery slow	wly, bu	uilding		Tool	open	for first				
to a moderate blow	w in bu	icket v	with		flow			07	:37		
flareline closed.					No b	low at	bubble				
		···· ····			hose.						
Flowed at surface during test :			Amoun	۱ ۱	Tool	closed	for first				<u> </u>
					shut-				:43		ļ
No surface recover	v				Tool	open f	or 2nd flo	<u>w 08</u>	:15	<u></u>	
					No b	low at	bubble				ļ
					hose				:15		
							bucket	08	:30		ļ
						erate bl	ow in	1 00	10	0	ļ
					buck			08	:40	2 psig	
				,		erate bl	ow in	- 00	:40	3	ļ
Reversed out :			Amoun	. 1	buck		6 . O !	1 09	.40	<u> </u>	
							for 2nd		<u></u> -		ļ
Mud and water cut	mud		15.3 E	SRT 5	<u>shut-</u>	-in	<u> </u>	10	:15	3	
Oil .			U./ E			<u>to surfa</u>	ace in low		.05		
					blow	C1 C1	£1 .	11	:35	0	
						tt flame	e on flare				
					line	open fo	or 3rd				
					flow	open n	<u> </u>	14	:17		
				1		rate bl	ow in				
								11	:17	0	
					bucke	d tool		14			
(Maximum Pumping pressure)						d packe	r loose		:37		
Recovered in DP and DC'S	,		Amoun	t -							
					Maximu	ım surface pi	ressure)	-}	ł-		
	FEET	BARREL	S % OIL		WATER	% OTHERS		<i>(</i>)	RESI	STIVITY	CHL P
RECOVERY DESCRIPTION							(a)	۰F	(a)	°F	
Mud/Water Cut Mud	1,076	15.	3 n.a		n.a	n.a	(a)	۰F	0.37 _(a)	64 _{°F}	
	49	0.	7 100				(a) 38+ (A) 64	•F	(a)		
Oil- dark greenish brown Est. pour point 70 F	. 49	0.	/ 100		-				(a)		
Est. pour point 70 F						-	(A)	°F	(A)		
		ļ					(A)	°F	(a)		
							(a)	•F	(a)		
		l		<u> </u>		1	(a)	<u>°F</u> SISTIVIT	(a) V		DRIDE
MFE/PCT FLU		·				-	RE	וואווכוט	•	CON	TENT
Sampler Pressure <u>Blocked by v</u> Recovery Cul Ft Gas <u>Too small t</u>	vaxy oi o meas	I at sure	Surface		Rec	covery Water		. W	°F		Pi
400	·					mone kind			9E		
					1	overy Mud	Filtrate				D
cc. Water cc			<u></u>			overy Mud	FNU818	. (87	P		F1
			<u></u>			d Pit Camala		(a)	•£		
cc. Mud cc						a ru and DOMP		· +04	?		
cc. Mud cc Tot. Liquid cc Gravity °API			:		1		Filtrate	(a)		· ·	pc

CLIENT _	Minora
FIELD	Windermere
WELL	1
DST No _	1
DATE	31/3/87

a i. Si e i

÷ (

DST / 84006

FORMATION TESTING REPORT

PRESSURE CHART SUMMARY

FLOPETROL JOHNSTON

Schlumberger

REPORT No 87-4-1

PAGE No <u>3</u>

	Turo	and Number	J 1782	J 2197	J 2196			
			4700	4700	4700	 (*) Shut-in pressure did not reach reservoir pressure. 		
	Capacity (Psi) Depth (ft) (m)		1779 m	1793 m	1795 m	- reservoir pressure	.	
	· ·	erature (°F) (°C)				-		
	Positio		Inside-above	Inside-below	Outside-be	low		
		number	3777	4110 ·	1636	1	easured in bars	
	1	capacity (hr)	96	96	96	-	psi 🔀	
		travel (in/min) (mm/mn)			0	· .	1	
				0005		Given time	Computed Time	
GS	A	Initial Hydrostatic Mud Pressure		2885		-		
DIN	(B)	First flow { initial pressure		46 110	· · · · · · · · · · · · · · · · · · ·			
READINGS	{C1	(final pressure		2360 +	•	mn	T1 =mn	
	Di	First shut-in pressure		144		mn	mn	
PRESSURE	(B2	Second flow { initial pressure		415			T2 =	
RES	{ C2	(final pressure	•	2439 .	•	mn		
đ	CD2	Second shut-in pressure		465		mn	mn	
	(Вз	Third flow		469			T2	
	{C3	(final pressure				mn	T3 =	
	(D3	Third shut- in pressure			•	mn	mn	
	. .	·		· · · · · · · · · · · · · · · · · · ·	<u>.</u>		۲4 = أسم	
	· · · · · ·		-			mn		
		Fluid cushion pressure		2890		mn	mn	
	E	Final hydrostatic mud pressure		2875		Total time	mr	
		Calculated hyd. mud pressure		0				
		Calc. fluid cushion pressure						
	Type ar	nd Number				(*) Shut-in pressu	re did not reach static	
	Capacit	y (Psi)				reservoir pressure.		
	Depth (ft) (m)						
	Temper	ature (°F) (°C)						
	Positior	1					_	
	Clock n	umber				All pressures me	easured in bars	
	Clock c	apacity (hr)					psi 🛀	
	Clock tr	avel (in/min) (mm/mn)				Given time	Computed Time	
s	А	Initial Hydrostatic Mud Pressure						
READING	(B1	(initial pressure						
AD A	<pre>ci</pre>	First flow { final pressure				mn	T1 =m	
	(D)	First shut-in pressure	*	*	•	mn	mn	
PRESSURE	(B2	(initial pressure						
SSI	{C2	Second flow { final pressure				mn	T2 =	
PRE	(_{D2}	Second shut-in pressure	•	*	•	mn	mn	
	(B3	(initial pressure						
	{c₃	Third flow { final pressure				mn	<u>T3 = mn</u>	
	(D3	Third shut- in pressure				mn	n	
Ļ					-	mn	T4 =mn	
		Fluid cushion pressure				mn	nm	
	E	Final hydrostatic mud pressure						
		Calculated hyd. mud pressure				Total time	ma	
		Calc. fluid cushion pressure						
REM	IARKS							
	<i>F</i>	All pressures A,M and	temperature c	corrected.				
					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			·····			• <u>•••••••••••••••••••</u> •••••••		

CLIENT <u>Minora</u> FIELD <u>Windermere</u>	FORMATION TESTING REPORT	FLOPETROL JOHNSTON
WELL1	PRESSURE DATA	
DST No1	PRESSURE DATA	REPORT No <u>87-4-1</u>
DATE		PAGE No

PRESSURE DATA FOR RECORDER :

ţ

DST / 84008

÷.

LABEL POINT	∆T (mins)	PRESSURE	$\frac{T + \Delta T}{\Delta T}$	LOG	Pbu – Pwf	COMMENTS
	(11110)					Initial hydrostatic processo
A		2885	} 	-	-	Initial hydrostatic pressure
B1	0	46				Initial Open at 07:37
and the second	1	. 55				
	2	69				
	3	80				
	4	88				
	5	96				
C1	6	110				
		110			-	
C1	0	110				Initial Shut In at 07:43
	1	139				
<u> </u>	2	207				
	3	318			<u> </u>	
	4	465				
	5	666		· ·		
	6	888				•
	7	1109				
	12	1991				
	17	2231			-	
	22	2315				
	27	2315		<u> </u>		
D1		2300	· · · · ·			
B2	0	144				Open for Second flow 08:15
BZ_	1	152				Copen for occond now co.no
	2	163		· · · · · · · · · · · · · · · · · · ·		
	3	169				
	4	173				
	5	177				
	6	180				
	7	182				· · · · · · · · · · · · · · · · · · ·
	8	186		<u> </u>		· · · · · · · · · · · · · · · · · · ·
	9	188		 		
<u> </u>	10	193				
	15	195			 -	
	20	223				
	25	240				
	30	256				
	35	271				
	40	284				·
	45	299			-	
	55	314		· .		· · · · · · · · · · · · · · · · · · ·
	. 65	321	· ·			
	75	332				· · · · · · · · · · · · · · · · · · ·
	85	344				
	95	361	•			
	105	378		•		
	115	394				
C2 -	120	415	•			
		<u>·_</u> · <u>·</u> ··×	······································			·

CLIENT _	Minora
FIELD	Windermere
WELL	
DST No _	1
DATE	31/3/87

DST

FORMATION TESTING REPORT

PRESSURE DATA

FLOPETROL JOHNSTON

Schlumberger

REPORT No <u>87-4-1</u> PAGE No <u>5</u>

PRESSURE DATA FOR RECORDER :

LABEL	ΔT	PRESSURE	$\frac{T + \Delta T}{\Delta T}$	LOG	Pbu – Pwf	COMMENTS
POINT		415			0	Casand Chut In at 10.15
	0	415	101 007		31	Second_Shut-In_at_10:15
	1	446	121.387			-
	2	488	61.097		73	
	3		41.043		114	
	4	568	31.024		153	
	5	610	25.015		195	
	6	657	21.011		242	
	7	703	18.151		288	
	8	753	16.006		338	
	9	816	14.338		401	
	10	869	13.004		454	· · · · · · · · · · · · · · · · · · ·
	11	.931	11.912		516	
	12	992	11.003		577	
	13	1061	10.223		646	
•	14	. 1125 .	9.573		710	
····	15	1187	9.002		772	
	16	1260	8.502		845	•
	17	1330	8,060		915	
	18	1397	7.668		982	
	18 19 ·	1462	7.317		1047	
	20	1529	7.001		1114	
	20	1589	6.715		1174	
	22	1642	6.455		1227	
·····	23	1695	6.218		1280	
	24	1817	6.001	~ .	1	
	26	1826	5.616	<u></u>	<u>1411</u> 1447	
	27	<u>1862</u> 1894	5.445		1447	· · · · · · · · · · · · · · · · · · ·
	28 29	1922	5.138	····- ··· ····· ····	1479	
	30	1949	5.000		1534	
	31	1971	4.871		1556	· · · · · · · · · · · · · · · · · · ·
	32	1994	4.750		1579	
	33	2012	4.637		1597	
	34	2029	4.530		1614	·
	35	2046	4.429		1631	
	36	2059	4.334		1644	
	37	2073	4.244		1658	
	38	2085	4.158		1670	
	39	2099	4.077		1684	
	_40	2109	4.000		1694	
	45	2153	3.667		1738	
	50	2188	3.400		1773	
	.55	2217	3.182		1802	-
	60	2241	3.000		1826	
	65	2260	2.846		1845	
	70	2276	2.714		1861	nama
	75	2291	2.600		1876	
	80	2303	2.500		1888	
	85	2315	2,412		1900	·
- +	-05-1		<u> </u>			

CLIENT	Minora
	Windermere
WELL	
DST No	1
DATE	31/3/87
0,	

FORMATION TESTING REPORT

PRESSURE DATA

REPORT No <u>87-4-1</u> PAGE No <u>6</u>

FLOPETROL JOHNSTON

Schlumberger

PRESSURE DATA FOR RECORDER :

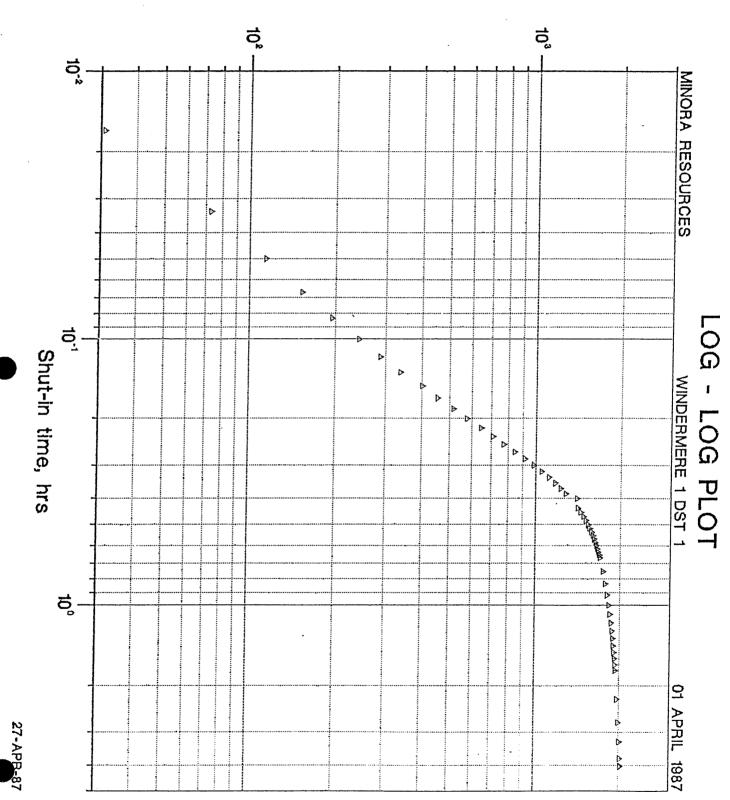
LABEL		PRESSURE	$\frac{T + \Delta T}{\Delta T}$	LOG	Pbu – Pwf	COMMENTS
POINT	(mins)					
	90	2324	2.333		1909	
	95	2333	2.263		1918	
	100	2343	2.200		1928	-
	105	2349	2.143		1934	
	135	2380	1.889		1965	
	165	2403	1.727		1988	
	195	2419	1.615		2004	
	225	2432	1.533		2017	
	240	2438	1.500		2023	
D2	242	2439	1.496		2024	1
	0	2439			.	Open for 3rd flow at 14:17
B3	1	465				
	2	465		•		
	3	464	·			
	4	464				
•	5	465				
	6	464				
	7	465				
	8	465				
	9	467				
	14	467				
	19	468				
C3	24	469			L	
						Close tool at 14:35
						All pressures have been A, I
						temperature corrected.
						-
· · · · · · · · · · · · · · · · · · ·						
	1					
	1					
			· · ·			
	+ ·					
					.	
:	1					•

;

DST

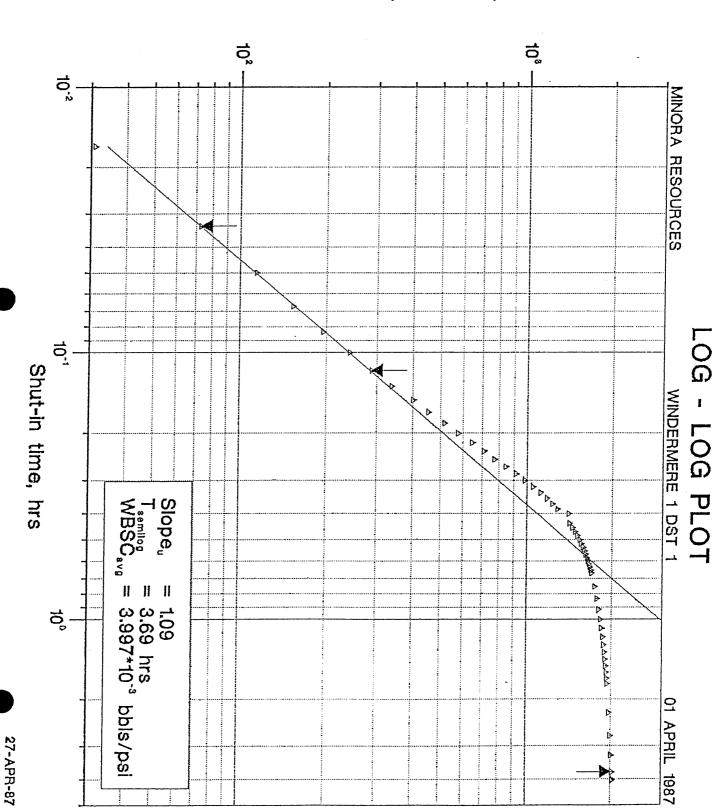
Well No : WINDERMERE 1 DST 1 Test Date : 01 APRIL 1987 Field : WILDCAT

Interpretation by : F HALFORD Interpretation date : 27-APR-87


1

ADVANCED RESERVOIR TESTING INTERPRETATION

ADVRT



ADVRT - 001H04

Delta shut-in pressure, psi

ŋ.

Delta shut-in pressure, psi

1. A. C. M. C. M. C. M. BATTER'S 5 7 7 7 10 m . . .

11.24

2

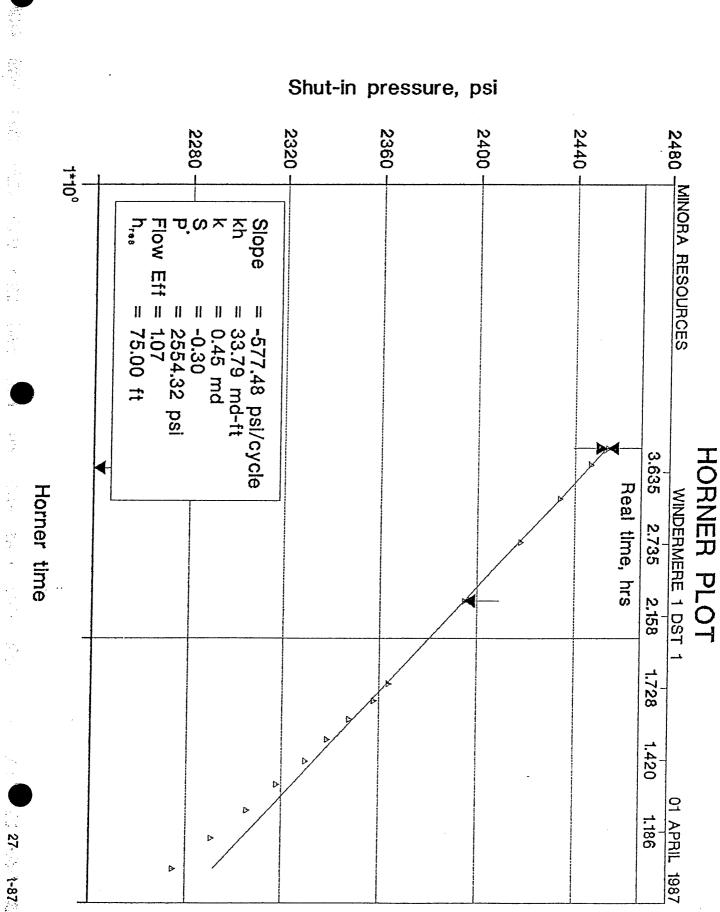
.

01 APRIL 1987

LOG-LOG INTERPRETATION

Start of straight line	= 0.033 hrs
End of straight line	= 0.117 hrs

Slope


Start semi-log (1.5 cycle rule)	= 3.688 hrs
Avg. well-bore storage coeff.	= 3.997*10 ⁻³ bbls/psi

= 1.089

27-APR-87

Shut-in pressure, psi 2500 -1000 -2000 -3000 MINORA RESOURCES 1500 500 -ರೆ 40 A A A A Proventier Þ 0.5127 ADDAD HORNER PLOT WINDERMERE 1 DST 1 0.2732 0.1523 0.0871 0.0503 Real time, hrs ġ, Horner time Þ Þ 0.0302 0.0174 **1**0² 01 APRIL 1987 ⊳

>

Shut-in pressure, psi

27 - 1-87

×

01 APRIL 1987

HORNER INTERPRETATION

Start of semi-log straight line= 2.250 hrsEnd of semi-log straight line= 4.033 hrsComputed start of semi-log straight line= 9.642 hrsStart of semi-log straight line= 1.889 Horner timeEnd of semi-log straight line= 1.496 Horner timeComputed start of semi-log straight line= 1.207 Horner timePressure at 1 hour= 2278.792 psi

Slope= -577.482 psi/cyclePermeability-thickness product= 33.788 md-ftReservoir thickness= 75.000 ftPermeability= 0.451 mdSkin= -0.299Pressure drop due to skin= -150.339 psiExtrapolated pressure (P')= 2554.321 psi

Extrapolated pressure (P)= 2554.321 psiWellbore flowing pressure (P_*)= 429.696 psiFlow Efficiency= 1.071

A THE REAL PROPERTY AND A REAL

27-APR-87

01 APRIL 1987

CONSTANTS SUMMARY

Porosity	= 0.150
Well radius	= 0,354 ft
Reservoir thickness	= 75.000 ft
Perforation thickness	= 75.000 ft
Viscosity	= 0.500 cp
Pressure (t=0)	= 429.696 psi
Total producing time	= 2.000 hrs
Production rate	= 240.000 RB/D
Water saturation	= 0.650
Gas saturation	= 0.000
Water compressibility	= 2.000*10 ⁻⁸ psi ⁻¹
Oil compressibility	= 1.000*10 ⁻⁵ psi ⁻¹
Gas compressibility	$= 3.900*10^{-4} \text{ psi}^{-1}$
Formation compressibility	= 5.000*10 ⁻⁶ psi ⁻¹
Total compressibility	= 9.800*10 ⁻⁶ psi ⁻¹

the address of the work for the party of the

27-APR-87

;

 $\sim 227 \times 10^{-3}$

.

÷

• • •

-

· · · ·

27-APR-87

. .

MINORA RESC	OURCES WINDE	RMERE 1 DST 1	01 APRIL 1987
Time, hrs	Pressure, psi	Delta-P, psl	Horner time
1.583	2347.696	1918.000	2.263
1.667	2357.696	1928.000	2.200
1.750	2363.696	1934.000	2.143
2.250	2394.696	1965.000	1.889
2.750	2417.696	1988.000	1.727
3,250	2433.696	2004.000	1.615
3.750	2446.696	2017.000	1.533
4.000	2452.696	2023.000	1.500
4.033	2453.696	2024.000	1.496

. .

ļ.

ţ,

.....

27-APR-87

A CONTRACTOR OF A CONTRACTOR O

...

FLOPETROL JOHNSTON

84001

FORMATION TESTING REPORT

COMPANY	:	Minora Resources NL
FIELD	:	Otway Basin
WELL	:	Windermere 1
DST No	:	2

DATE	:	1-2 April, 1987
COUNTRY	:	Australia
LOCATION	:	Victoria
ZONE	•	1790 m - 1814 m RKB

REGION : ANZ DISTRICT : LEA BASE : LEF REPORT No : 87-4-2

CLIENT _	Minora
FIELD	Windermere
 WELL	
DST No _	2
DATE	1-2/4/87

Г

FORMATION TESTING REPORT

FLUID RECOVERY

REPORT No <u>87-4-2</u>

FLOPETROL JOHNSTON

Schlumberger

PAGE No 2

DESCRIPTION OF FLUIDS RECOVERED)			1			SURFACE OBSI	ERVATIONS		
Air blow :					Description			Time hr	Pressure	Surface choke
Moderate blow_during_2nd_flow				- Packer		set at	1790m	17:40		
				ΤοοΙ	l op	en for	1790m 1st flow	17:45		
				_		osed fo	or 1st			
	······				nut -			17:50		
Flowed at surface during test :		Amo	unt				2nd_flow			
-							oble hose		0	
Gas to surface at 19:45			-				bubble hos		1	
				Gas	to	surfac	e	19:45	2	11/2
								21:00	1	11/2
						osed fo	or 2nd	07.00		
					ut-			07:38		
						Circ.		12:15	100	_
	<u>`</u>					Circ.		14:05		
				Unse	eat	packer		14:16		
Reversed out :		Amo	unt							
Gas cut oil (surface bubbles)		1.5								<u> </u>
Oil	2	20.4	BBL				•			
Water – gas cut		20.3								
Mud		5.8	BBL							
				_						
Oil : 0.82 g/cc				_						ļ
Water : 1.01 g/cc				-						
Mud : 1.12 g/cc				.						ļ
										ļ
(Maximum Pumping pressure)										
Recovered in DP and DC'S		Αποι	int							
		****		1						
				1						
				(Maxi	imum	surface pre	ssure)			,
FEET BAF	RRELS	80		% WATE	<u> </u>	% OTHERS	API GRAVITY		SISTIVITY	CHL PPM
RECOVERY DESCRIPTION							(a)	°F (a) °F	
	1.5						41 (a) 71		a) °F	
).4						41 _(a) 71	°F (i	a) °F	
	0.3						(A)	_{•F} 0.32 "	_{a)} 71 ₀ _F	<u> </u>
Mud 5	5.8						(A)	°F (A) ⁰F	
							(A)	°F (;	a) °F	
							(a)	°F (;	a) °F	
		<u> </u>							9) °F	
MFE/PCT FLUID SAMPLE	•							ISTIVITY		DRIDE
Sampler Pressure260 psi	at Su	rface		F	Recov	ery Water		(A)°	۶ <u></u>	PPM
-Recovery Cul Ft Gas										
cc. Oil cc <u>400</u>						•				
cc. Water cc <u>800</u>	·			F	Recov	ery Mud F	iltrate	(a)•I	z ·	PPM
cc. Mud cc										
Tot. Liquid cc	·······						(
Gravity 4 I •API / /	_•F				Viud P	it Sample F	iltrate ((a)•1	·	PPM
Gaz/Oil Ratlo cu. ft/l	ы	l n	n ³ /m ³	<u> </u>						
Technician I SCOTT		•								•

ĸ

CLIENT _	Minora
FIELD	Windermere
WELL	1
DST No _	2
DATE	1-2/4/87

FORMATION TESTING REPORT

PRESSURE CHART SUMMARY

FLOPETROL JOHNSTON

Schlumberger

REPORT No -	87-4-2
-------------	--------

PAGE No <u>3</u>

L		·······			<u> </u>			
Г			1 4700	1.0107	1.0106	T		
	Туре	and Number	J 1782 4700	J 2197 4700	J 2196 4700	(*) Shut-in pressure did not reach static		
	Capac	ity (Psi)				reservoir pressure		
	Depth	(ft) (m)	<u>1776 m</u>	1781m	<u>1818 m</u>			
	Temp	erature (°F) (°C)	and About	Jacida Dalay	Lacida Dala			
	Positio	n	nside Above	Inside Belov			_	
	Clock	number	3777	4110	1636	All pressures m	r N	
		capacity (hr)	96	96	96		psi 🗠	
	Clock	travel (in/min) (mm/mn)			-	Given time	Computed Time	
l v	A	Initial Hydrostatic Mud Pressure		2888				
	(B1	(initial pressure		77				
READINGS	}C1	First flow { final pressure		87		mn	T1 =mn	
		First shut-in pressure	•	2360 *	*	mn	mn	
PRESSURE	(B2	Second flow { initial pressure		134	······································			
ESS	C2	final pressure		1071		mn	T2 =n	
H H	(D2	Second shut-in pressure	•	2420 •	•	mn	mn	
	(B3	Third flow { initial pressure						
	}C₃	final pressure				mn	T3 =mn	
	(D3	Third shut- in pressure				ភាព	mn	
		. •	:•				74	
1				0		mn	T4 =	
		Fluid cushion pressure		<u> </u>		mn	mn	
	E	Final hydrostatic mud pressure		2856		Total time	mn	
1		Calculated hyd. mud pressure		0				
-		Calc. fluid cushion pressure						
	Type a	nd Number				(*) Shut-in pressur	e did not reach static	
	Capacity (Psi) Depth (ft) (m)					reservoir pressure.		
		rature (°F) (°C)						
	Positio							
	1	number				All pressures measured in bars psi		
	1	apacity (hr) ravel (in/min) (mm/mn)					<u>:</u>	
						Given time	Computed Time	
S	A	Initial Hydrostatic Mud Pressure						
N	(^{B1}	First flow { initial pressure						
READINGS	{C1	(final pressure	*	*	•	mn	mn	
	(Di	First shut-in pressure				mn	mn	
SUF	B2	Second flow				mn	T2 =n	
PRESSURE	C2 D2	final pressure	*	*	•	mn	mn	
	(B3	Second shut-in pressure (initial pressure		· ·				
		Third flow { final pressure				mn	T3 =n	
	(D3	Third shut- in pressure				mn		
					-	mn	T4 =mn	
		Fluid cushion pressure				mn	mn	
	Е	Final hydrostatic mud pressure						
		Calculated hyd. mud pressure				Total time	mn	
		Calc. fluid cushion pressure						
RE	MARKS				<u></u>			
	All pressures A, M and temperature corrected.							
				·····				

CLIENT <u>Minora</u> FIELD <u>Windermere</u>	FORMATION TESTING REPORT	FLOPETROL JOHNSTON
WELL1		
DST No _2	PRESSURE DATA	REPORT No <u>87-4-2</u>
DATE		PAGE No <u>4</u>

PRESSURE DATA FOR RECORDER :

.

1991 Bar 1985

.

ч. . . ус

DST 72008

A 2888 Initial Hydrostatic Pressure B1 3 77 Initial Open at 17.45 4 82 Initial Open at 17.45 C1 5 87 Initial Shut In at 17.50 1 135 Initial Shut In at 17.50 2 198 Initial Shut In at 17.50 3 272 Initial Shut In at 17.50 4 369 Initial Shut In at 17.50 5 10 1407 4 369 Initial Shut In at 17.50 7 835 Initial Shut In at 17.50 8 1030 Initial Shut In at 17.50 9 1226 Initial Shut In at 17.50 10 1407 Initial Shut In at 17.50 2024 Initial Shut In at 17.50 Initial Shut In at 17.50 21 1030 Initial Shut In at 17.50 Initial Shut In at 17.50 22 2215 Initial Shut In at 17.50 Initial Shut In at 17.50 23 124 Initial Shut In at 17.50 Initial Shut In at 18.24 3 144 Initial Shut In at 18.24 Initial Shut In at 18.24 3	LABEL POINT	TΔ	PRESSURE	$\frac{T + \Delta T}{\Delta T}$	LOG	Pbu – Pwf	COMMENTS
4 82 Initial Shut In at 17:50 C1 0 87 Initial Shut In at 17:50 2 198 Initial Shut In at 17:50 3 272 Initial Shut In at 17:50 4 369 Initial Shut In at 17:50 7 835 Initial Shut In at 17:50 8 1030 Initial Shut In at 17:50 9 1226 Initial Shut In at 17:50 9 1226 Initial Shut In at 17:50 10 1407 Initial Shut In at 17:50 20 2215 Initial Shut In at 17:50 20 2215 Initial Shut In at 17:50 30 2341 Initial Shut In at 17:50 11 1407 Initial Shut In at 17:50 30 2341 Initial Shut In at 18:24 21 134 Initial Shut In at 18:24 3 144 Initial Shut In at 18:24 5 153 Initial Shut In at 18:24 5 153 Initial Shut In at 18:24 9 169 Initial Shut In at 18:24 9 169 Initial Shut In at 18:24 <td></td> <td></td> <td>2888</td> <td></td> <td></td> <td></td> <td>Initial Hydrostatic Pressure</td>			2888				Initial Hydrostatic Pressure
C1 5 87 Initial Shut In at 17:50 1 135 Initial Shut In at 17:50 2 198 Initial Shut In at 17:50 3 272 Initial Shut In at 17:50 4 369 Initial Shut In at 17:50 4 369 Initial Shut In at 17:50 7 835 Initial Shut In at 17:50 7 835 Initial Shut In at 17:50 9 1226 Initial Shut In at 17:50 9 1226 Initial Shut In at 17:50 10 1407 Initial Shut In at 17:50 11 1407 Initial Shut In at 17:50 9 1226 Initial Shut In at 17:50 20 215 Initial Shut In at 17:50 21 1407 Initial Shut In at 17:50 22 2165 Initial Shut In at 17:50 30 2341 Initial Shut In at 17:50 121 134 Open for 2nd flow at 18:24 23 144 Initial Shut In at 18:24 3 144 Initial Shut In at 18:24 4 148 Initial Shut In at 18:24	B1						Initial_Open_at_17;45
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C1				-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			07		·		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							Initial Shut in at 17:50
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						· ·	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
6 650 650 7 835 9 9 1226 9 10 1407 9 20 2215 9 20 2215 9 21 20 2341 01 34 2360 9 6 7 1824 9 9 122 137 9 10 134 2360 9 11 34 2360 9 12 137 9 18 13 144 9 9 13 144 9 18 13 144 9 18 14 148 9 18 14 148 9 19 15 153 9 16 16 173 9 16 17 161 9 16 18 128 9 16 198 9 19 10 11 175 10<			1			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							· · · · · · · · · · · · · · · · · · ·
8 1030 9 9 1226 9 10 1407 9 20 2215 9 25 2295 9 30 2341 9 D1 34 2360 9 B2 1 134 Open for 2nd flow at 1824 2 137 9 16 33 144 9 1824 4 148 9 1824 5 153 9 16 6 157 9 16 9 169 9 10 10 173 9 11 11 175 11 11 21 198 9 19 221 198 9 11 33 230 11 11 34 230 11 11 131 230 11 11 331 230 11 11 351 268 11 11							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						+	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
20 2215							· · · · · · · · · · · · · · · · · · ·
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				· · ·		-	
D1 34 2360 Open for 2nd flow at 18:24 2 137 Open for 2nd flow at 18:24 3 144 Image: constraint of the state of th		1					· · · · · · · · · · · · · · · · · · ·
B2 1 134 Open for 2nd flow at 18:24 2 137	D1						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			2000		<u>. </u>	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	B2	1	134	······		-	Open for 2nd flow at 18:24
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							Open 101 2110 110w at 10.24
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					······································		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			198				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					·		
$ \begin{array}{ c c c c c c c c } \hline 51 & 268 & & & & & \\ \hline 56 & 273 & & & & & \\ \hline 61 & 278 & & & & & \\ \hline 66 & 283 & & & & & \\ \hline 66 & 283 & & & & & \\ \hline 81 & 302 & & & & & \\ \hline 96 & 329 & & & & & \\ \hline 111 & 355 & & & & & \\ \hline 126 & 380 & & & & & \\ \hline \end{array} $							
56 273 61 278 66 283 81 302 96 329 111 355 126 380							
61 278 66 283 81 302 96 329 111 355 126 380							· · · · · · · · · · · · · · · · · · ·
66 283 81 302 96 329 111 355 126 380							
81 302 96 329 111 355 126 380			278				
96 329 111 355 126 380							
111 355 126 380			302				
126 380					•		
	<u> </u>						
				· .			
		141	405	· · · ·			

CLIENT <u>Minora</u> FIELD <u>Windermere</u>	FORMATION TESTING REPORT	FLOPETROL JOHN
WELL1 DST No _2	PRESSURE DATA	REPORT No <u>87-4-2</u>
DATE1_2/4/87		PAGE No 5

PRESSURE DATA FOR RECORDER :

8

DSJ

••• د آ . معند

r

LABEL POINT	Δτ	PRESSURE	$\frac{T + \Delta T}{\Delta T}$	LOG	Pbu – Pwf	COMMENTS
	156	430				
	186	475				
	216	517		-		-
	246	543		-	-	-
	276	573				
	306	618				
	336	650				
	366	685				
	396	716				
	426	746				
	456	776				
	486	806				
	516	831				
	546	856				
	576	900				·
	606	911				
	636	938				•
	666	962				
	696	984				
	726	1007				
i.	756	1029				
	786	1048				
C2	794	1071				
C2	0	1071		•	0	Second shut-in at 07:38
	1	1124	795		53	
	2	1228	398	•	157	
	3	1367	265.667		296	
	4	1478	199.500		407	
	5	1578	159.800		507	
	6	1666	133.333		595	
	7	1730	114,429		659	
	8	1808	100.250		737	
	9	1867	89.222		796	
	10	1909	80.400		838	
	11	1951	73.182		880	
	12	2006	67.167		935	
	13	2045	62.077		974	
	14	2069	57.714		998	
	15	2079	53.933		1008	
	16	2089	50.625		1018	
	.17	2101	47.706		1030	
	. 18	2112	45.111		1041	
	19	2120	42.789		1049	
	20	2129	40.700		1058	
	21	2138	· 38.810		1067	
	22	2146	37.091		1075	
<u>. </u>		<u>. </u>				
1	1	· .		4		
				l		

JOHNSTON

berger

CLIENT	Minora
	Windermere
WELL	1
DST No .	2
DATE	1-2/4/87

FORMATION TESTING REPORT

PRESSURE DATA

Schlumberger

FLOPETROL JOHNSTON

REPORT No <u>87-4-2</u> PAGE No <u>6</u>

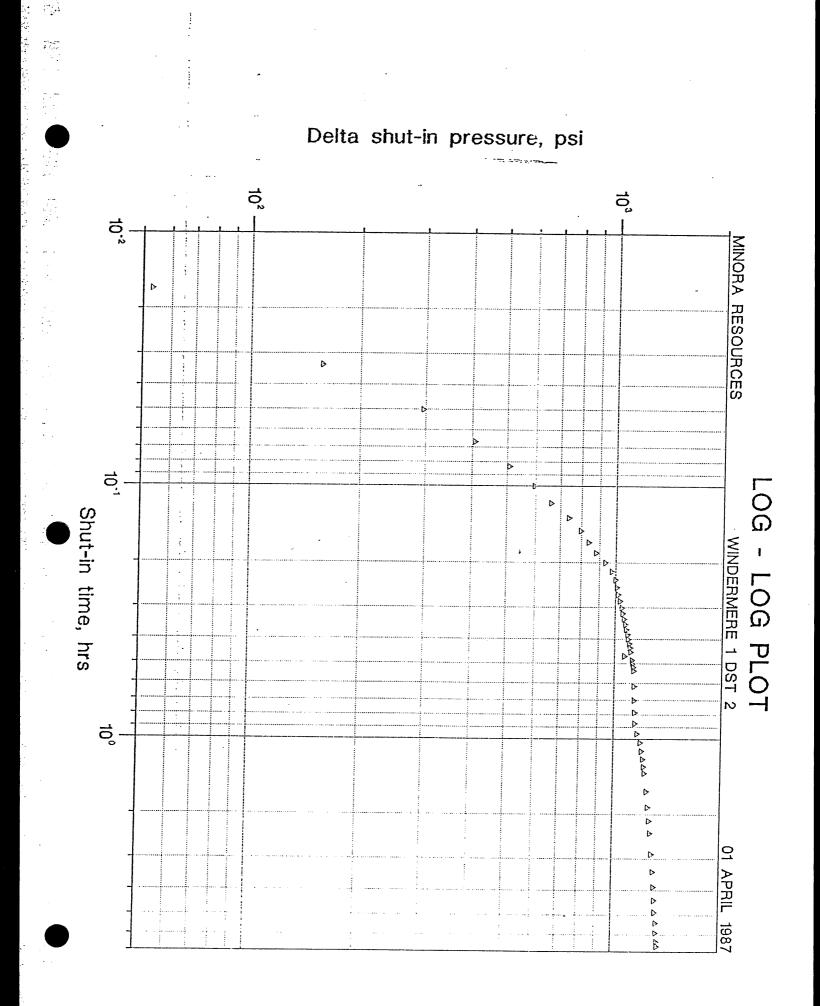
PRESSURE DATA FOR RECORDER :

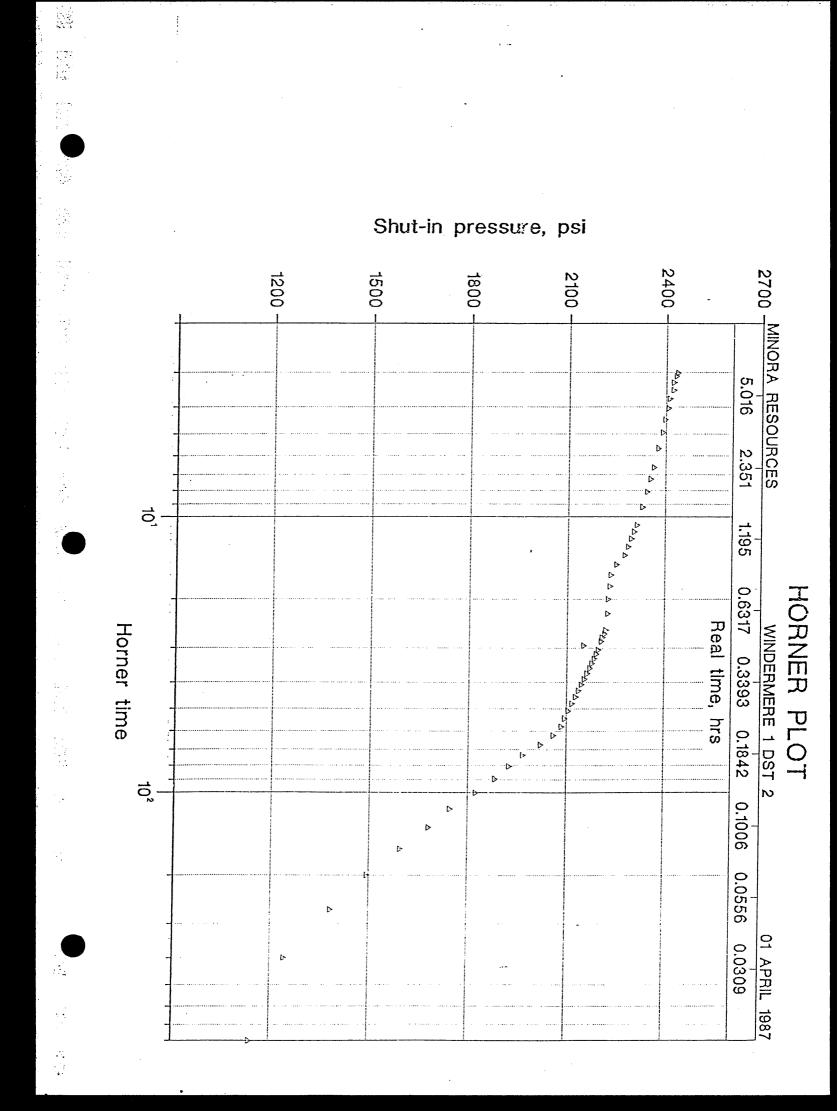
LABEL	ΔT	PRESSURE	$\frac{T + \Delta T}{\Delta T}$	LOG	Pbu – Pwf	COMMENTS
		0154				
	23	2154	35.522		1083	
	24	2160	34.083		1089	
	25	2167	32.760		1096	
	26	. 2173	31.538		1102	
	27	2179	30.407		1108	
	29	2188	28.379		1117	
	30	2192	27.467	····	1121	
	31	2198	26.613		1127	
	32	2202	25.813		1131	
	37	2207	22.459		1136	
·	42	2209	19.905		1138	· · · · · · · · · · · · · · · · · · ·
	47	2214	17.894		1143	
ļ 	52	2217	16.269		1146	
	57	2234	14.930		1163	-
	62	2259	13.806		1188	
	67	2269	12.851		1198	
	72	2279	12.028		1208	
	77	2288	11.312		1217	
	82	2296	10.683		1225	
	97	2313	9.186		1242	
	112	2327	8.089		1256	
	127	2338	7.252		1267	
	142	2348	6.592		1277	
	172	2361	5_616		1290	
	202	2375	4.931		1304	
	232	2382	4.422		1311	
	262	2392	4.031		1321	
	292	2396	3,719		1325	
	322	2408	3.466		1325	
	352	2408	3.256		1337	· · · · · · · · · · · · · · · · · · ·
• •	382	2416	3.079		1345	
D2	398	2420	2.995		1349	End of 2nd shut-in period
		2893				Einal Hydrostatic Pressure
	· · · · · · · · · · · · · · · · · · ·					
					-	
	·					
						·
			·			
				·		
			·····			
		·				
			<u> </u>	·		

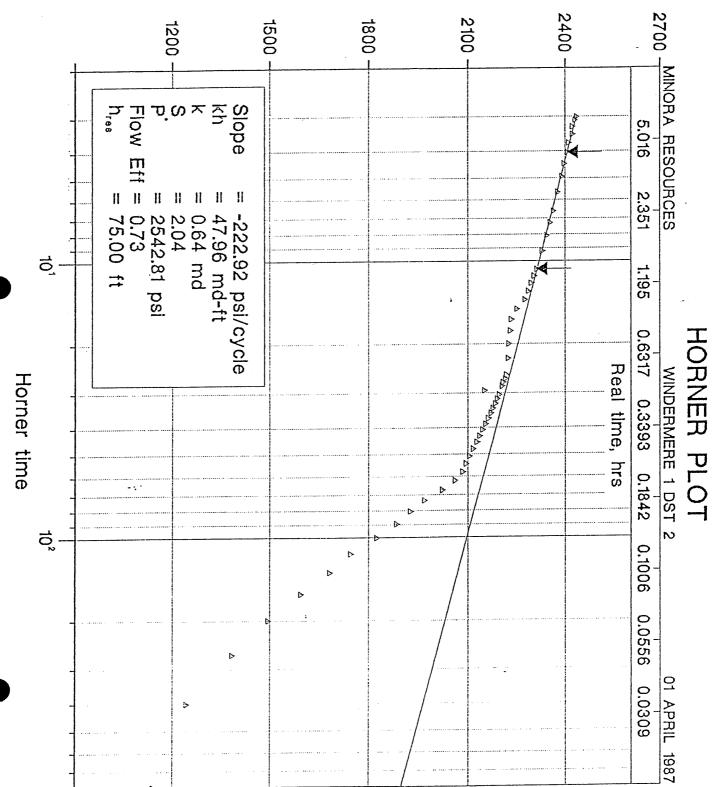
ä

Well	No		WINDERMERE 1 DST 2
Test	Date	•	01 APRIL 1987
Field			WILDCAT

Interpretation by : F HALFORD Interpretation date :


.


REVISED INTERPRETATION MADE JUNE 24, 1987 USING CORRECTED AMERADA GAUGE DATA


ADVANCED RESERVOIR TESTING INTERPRETATION

ADVRT

Schlumberger

Shut-in pressure, psi

-

, **1**

01 APRIL 1987

HORNER INTERPRETATION

Start of semi-log straight line End of semi-log straight line Start of semi-log straight line = 10.681 Horner time End of semi-log straight line Pressure at 1 hour

Flow Efficiency

= 1.367 hrs = 4.357 hrs = 4.030 Horner time = 2265.738 psi

= -222.923 psi/cycle
= 47.958 md-ft
= 75.000 ft
= 0.639 md
= 2.037
= 395.040 psi
= 2542.813 psi

Wellbore flowing pressure (P_{w1}) = 1085.696 psi

= 0.729

では、

14.07

NAMES I

R. W.

and the second

New York

a we have

14 2.00

WINDERMERE 1 DST 2

01 APRIL 1987

CONSTANTS SUMMARY

Porosity	=	0.150	
Well radius	. =	0.354 f	t
Reservoir thickn	ess =	75.000	ft
Perforation thick	ness =	75.000	ft
Viscosity	==	0.500 c	р
Pressure (t=0)	=	1085.69	6 psi
Total producing	time =	13.230	nrs
Production rate	=	131.500	RB/D
Water saturation) =	0.650	
Gas saturation	:=	0.000	
			-6

Gas saturation	÷	0.000
Water compressibility	:=	2.000*10 ⁻⁶ psi ⁻¹
Oil compressibility	=	1.000*10 ^{-₅} psi ⁻¹
Gas compressibility	=	3.900*10 ⁻⁴ psi ⁻¹
Formation compressibility	=	5.000*10 ⁻⁶ psi ⁻¹
Total compressibility	:=	9.800*10 ⁻⁶ psi ⁻¹

FLOPETROL JOHNSTON Schlumberger

1....

DST / 84001

. .

FORMATION TESTING REPORT

COMPANY	:	Minora Resources NL
FIELD	:	Otway Basin
WELL	:	Windermere 1
DST No	:	4
DATE	:	17 May, 1987
COUNTRY	:	Australia
LOCATION	:	Victoria
ZONE	:	1798 m - 1813 m RKB

REGION	:	ANZ
DISTRICT	:	LEA
BASE	:	LEF
REPORT No	•	87-5-1

CLIENT <u>Minora</u> FIELD <u>Windermere</u>	FOR	MATION TESTI	NG REPORT	FLOPETROL JOHN		
WELL 1 DST No 4 DATE 17-5-87	v	VELL AND JOB DATA REPORT No _8 PAGE No				
Type testCased Hole Total depth1,835m Main hole sizeRain hole sizeRain hole sizeRKB All depths measured fromRKB PERFORATIONS798R1813 m FORMATION - SystemLower Eum Geologie level LithologySandstone MUD, TypeNII CUSHION, TypeNII	Casi Casi Casi Cerr <u>0 8 Sp</u> <u>erel</u> la	wt_8.7 ppg_ _{Viscosity}	s/ft Estimated poro Estimated perr Estimated prod	neability 0.64 md (DST-2) luctive interval L Chloride PPM35 ,		
TIMES Ist flow from 07:31 on 17 Ist shut-in from 07:37 on 17 2nd flow from 08:37 on 17 2nd shut-in from 19:00 on 17 3rd flow from on 00 17 3rd flow from 00 00 17 TOOL SEQUENCE - Tool 00 00 00	to 19			0:32 on 17 to 21:00 or 1:00 on 17 to 21:00 or Length XnXrX X		
Drill Pipe 2 Single Pup Joint Drill Collars Cross-Over Cross-Over Corss-Over Brake-Off Pump-Out Cross-Over Recorder Mulit-Flow Evaluator 1" Bais Safety Joint Recorder Recorder Recorder Recorder Recorder Full Bore Positive Packer		2 7/8 2 7/8 2 7/8 4 3/32	2 1/16 2 1/16 2 1/16 2 1/16	1,629.19 m 17.87 m 3.65 m 143.15 m 260.00 mm 310.00 mm 300.00 mm 255.00 mm 355.00 mm 320.00 mm 1,800.00 mm 1,800.00 mm 1,800.00 mm 1,800.00 mm 1,800.00 mm 1,800.00 mm 1,800.00 mm		

Bottom choke size :

DST / B4002

.

•••

.:

CLIENT	Minora
FIELD _	Windermere
WELL _	
DST No	4
DATE	17-5-87
1	

FORMATION TESTING REPORT

FLUID RECOVERY

REPORT No 87-5-1

FLOPETROL JOHNSTON

Schlumberger

PAGE No .	2
-----------	---

DESCRIPTION OF FLUIDS RECOVERED					SURFACE OBSERVATIONS					
Air blow : Moderate blow during both flow				Description Time hr				Pressure	Surface choke	
periods.				S	et r	<u>ackers</u>	<u>at 1,798m</u>	07:30		
)pen	for ini	tial flow_	07:31		
							: Bubbles	. <u>.</u>		
						rface		07:32	0	
Flowed at surface during test :			Amount				st shut-in			
-)pen	for 2nd	d flow	08:37	0	
Nil	"				pen	les to s to flar	urface e 1"	08:39	0	
				С	hoke)	<u> </u>	08:48	0	1"
				В	ubb	les to s	urface			
				d	urin	g entire	flow			
				р	erio	d.				
Reversed out :	· · · · · · · · · · · · · · · · · · ·		Amount							
						·				
Oil Cut Mud			5 BBL	<u>s</u>						
•										
									ļ	
										·
						<u>.</u>			·	-
(Maximum Pumping pressure)										
Recovered in DP and DC'S			Amount		. <u></u>					<u> </u>
		`_`								
	······································		······································							
				(M	laximur	n surface pre	essure)			
RECOVERY DESCRIPTION	FEET	BARREL	S % OIL	% W/	ATER	% OTHERS	API GRAVITY (a)	1	SISTIVITY (a) °F	CHL PPM
Oil Cut Mud		5					(a)	°F	a) °F	
							(a) ·	°F	a) °F	
							(A)	°F (a) °F	
							(A)	°F (A) °F	
							(A)	°F (a) °F	
							(a)	°F (a) °F	
		l	<u> </u>		1	L			a) ⁰F	
MFE/PCT F	LUID SAMPLI	E				-		ISTIVITY	CON	ORIDE
		at	Surface		Reco	overy Water		(A)°	۶۶ <u></u>	PPM
Sampler Pressure					1					
Recovery Cul Ft Gas										
Recovery Cul Ft Gas cc. Oil cc	.						<u></u>			
Recovery Cul. Ft Gas							 iltrate			РРМ
Recovery Cul Ft Gas					Reco	overy Mud F	iltrate	(a)°	F	PPM
Recovery Cul. Ft Gas					Reco	overy Mud F Pit Sample		(a)°	F	

Technician C Danials

S

CLIENT	Minora
FIFID	Windermere
WELL	
DST No	4
DATE	17-5-87
0,	

FORMATION TESTING REPORT

PRESSURE CHART SUMMARY

FLOPETROL JOHNSTON

Schlumberger

REPORT	No	87-5-1
PAGE	No	3

J 2,197 J 2,196 Type and Number (*) Shut-in pressure did not reach static 4,700 4,700 Capacity (Psi) reservoir pressure. 1,792 m 1,794 m Depth (ft) (m) 180°F 180°F Temperature (°F) (°C) Inside/below Inside/below Position 3,775 3,777 All pressures measured in bars Clock number X 96 96 psi Clock capacity (hr) Clock travel (in/min) (mm/mn) Given time **Computed Time** 2,653 2,687 Initial Hydrostatic Mud Pressure READINGS Α 81 94 (B1 initial pressure } First flow 81 94 mn T1 = mn ζ_C, final pressure . 2,141 2,148 mn mn (D1 First shut-in pressure PRESSURE Second flow { initial pressure final pressure 73 (B2 initial pressure $T_{2} =$ 488 A. M Temp Corrected mn mn C2 2,222 mn mn (D2 Second shut-in pressure Βз initial pressure Third flow mn T3 = mn final pressure Сз mn mn (D3 Third shut- in pressure T4 =mn mn m'n mn Fluid cushion pressure 2,660 E Final hydrostatic mud pressure Total time mn 2,660 Calculated hyd. mud pressure Calc. fluid cushion pressure Type and Number (*) Shut-in pressure did not reach static Capacity (Psi) reservoir pressure. Depth (ft) (m) Temperature (°F) (°C) Position All pressures measured in bars Clock number psi Clock capacity (hr) Clock travel (in/min) (mm/mn) Computed Time Given time Initial Hydrostatic Mud Pressure А READINGS (B1 initial pressure First flow T1 = mn rnn ζ_{C1} final pressure . * * mn mn (D) First shut-in pressure PRESSURE (B2 initial pressure Second flow T2 = mn mn C2 final pressure * . * mn mn (D2 Second shut-in pressure initial pressure (B3 final pressure Third flow T3 =mn mn Сз mn mn (D3 Third shut- in pressure mn T4 =mn mn mn Fluid cushion pressure Ε Final hydrostatic mud pressure m Total time Calculated hyd. mud pressure Calc. fluid cushion pressure REMARKS Pressure not A, M temperature corrected unless indicated.

CLIENT .	Minora	
FIELD	Windermere	
WELL	1	
DST No _	4	
DATE	17-5-87	

FORMATION TESTING REPORT

PRESSURE DATA

FLOPETROL JOHNSTON

REPORT No <u>87-5-1</u> PAGE No <u>5</u>

PRESSURE DATA FOR RECORDER :

LABEL		PRESSURE	<u>T + Δ</u> T	LOG	Pbu – Pwf	COMMENTS
POINT	(Hrs)					
	0.0623	906	163.457		418	
	0.0701	964	145.381		476	
	0.0779	1,010	130.924		522	-
	0.0856	1 ,055	119.237		567	
	0.0934	1,106	109.363		618	
	0.1012	1,155	101.011		667	
	0.1090	1,202	93.854		714	
	0.1168	1,240	87.653		752	
	0.1246	1,278	82.229		790	
	0.1324	1,316	77.443		828	
	0.1401	1,350	73.242		862	
	0.1479	1,382	69.432		894	
	0.1557	1,413	66.004		925	
	0.1635	1,439	62.903		951	
	0.1713	1,469	60.084		981	
•	0.1791	1,482	57.511		994	
	0.1869	1,516	55.152		1,028	· · · ·
	0.1946	1,536	53.010		1,048	
	0.2024	1,556	51.005		1,068	
	0.2102	1,576	49.150		1,088	
	0.2258	1,613	45.823		1,125	
	0.2336	1,629	44.327		1,141	
	0.3114	1,775	33.502		1,287	
	0.3893	1,867	26.998		1,379	
	0.5450	1,981	19,571		1,493	
	0.6228	2,020	17.251		1,532	
	0.7007	2,051	15.444		1,563	
	0.7786	2,078	13.999		1,590	
	0.8564	2,099	12.818		1,611	
	0.9343	2,119	11.833		1,631	
	1.0121	2,136	11.000		1,648	
	1.0900	2,153	10.285		1,665	· · · · · · · · · · · · · · · · · · ·
•••••	1.1678	2,166	9.667		1,678	
	1.2457	2,179	9.125		1,691	
	1.3235	2,192	8.647		1,704	
	1.4014	2,203	8.222		1,715	
	1.4792	2,212	7.842		1,724	
D2	1.5571	2,222	7.500		1,734	End of 2nd buildup
					;. _ ·	
All pres	sures A.	M, Tempera	ature correc	ted.		·
	, , , , , , , , , , , , , , , , , , ,	,				
	·					
· ·						
		·	· · · ·		·	
				•		•••••••••••••••••••••••••••••••••••••••

DST / 8

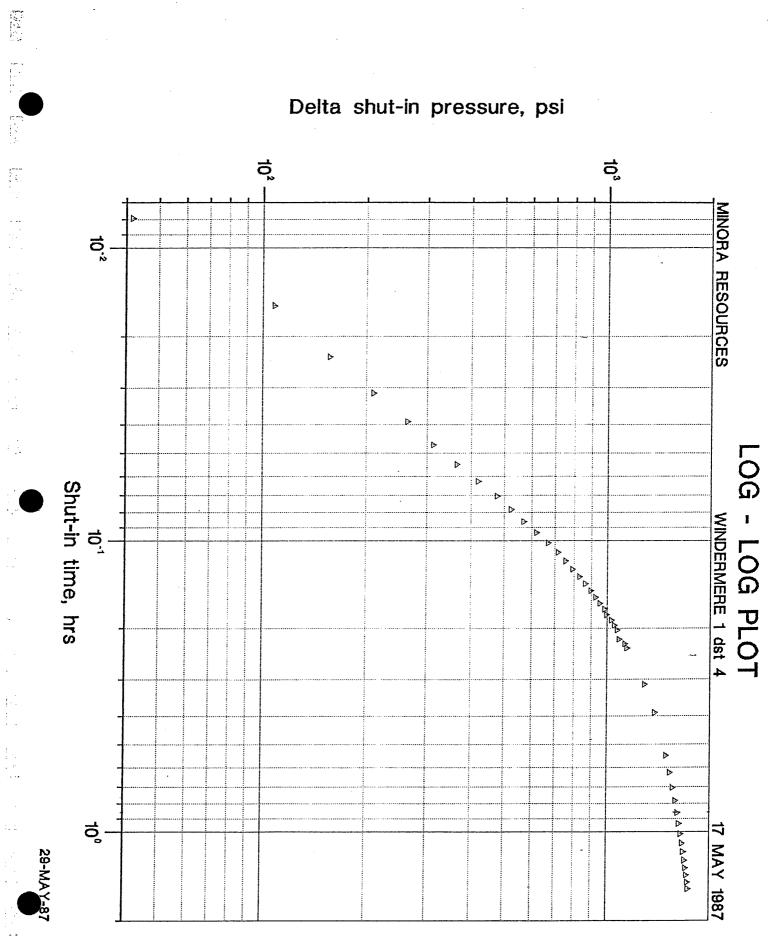
. .

Field

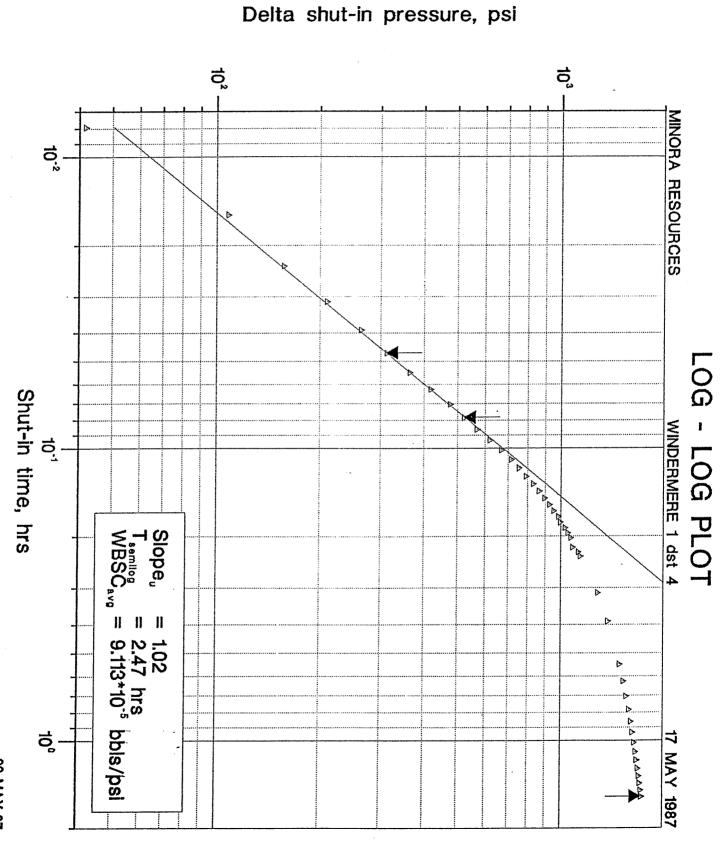
1 2 2

02

1.....


Well No : WINDERMERE 1 dst 4 Test Date : 17 MAY 1987 WILDCAT

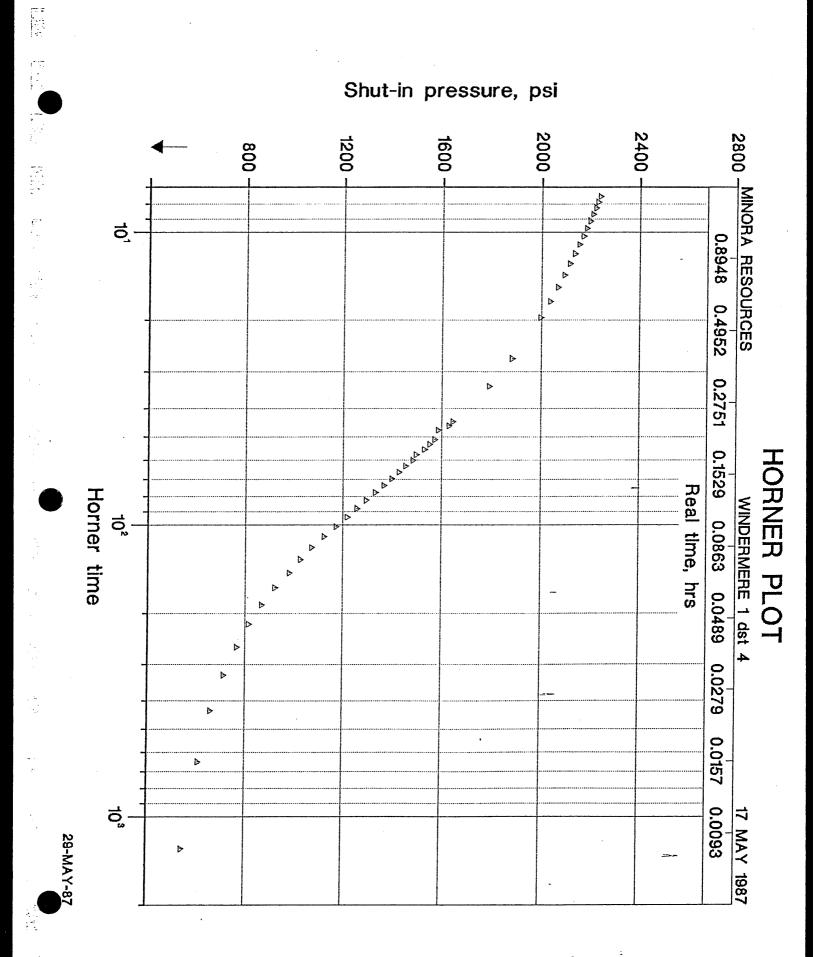
Interpretation by : F HALFORD Interpretation date : 29-MAY-87

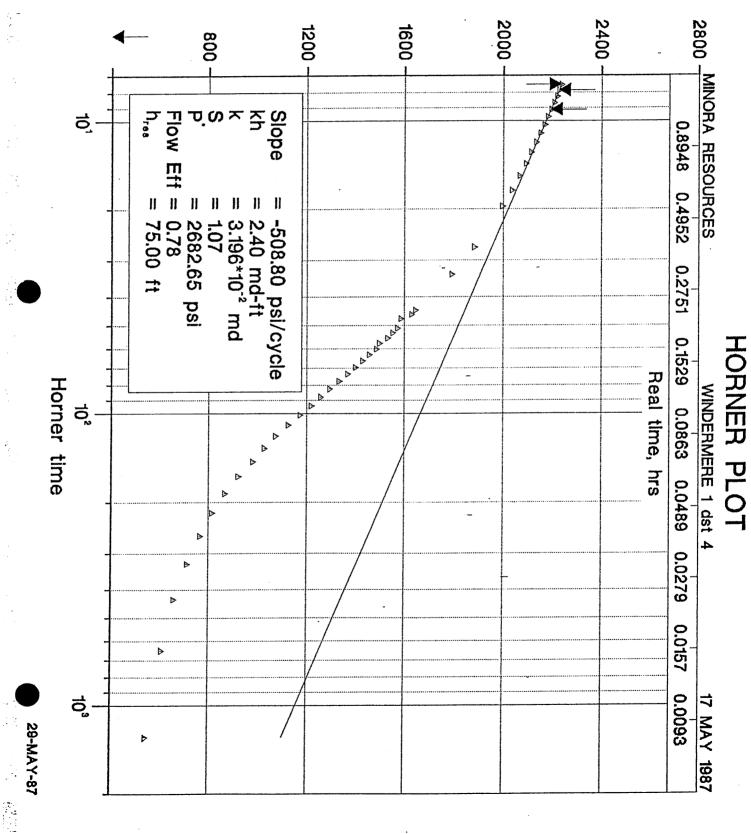

ADVANCED RESERVOIR TESTING **INTERPRETATION**

ADVRT

Schlumberger

:


29-MAY-87


17 MAY 1987

LOG-LOG INTERPRETATION

Start of straight line	= 0.047 hrs
End of straight line	= 0.078 hrs
·	
Slope	= 1.023
Start semi-log (1.5 cycle rule)	= 2.466 hrs
Avg. well-bore storage coeff.	

29-MAY-87

Shut-in pressure, psi

17 MAY 1987

HORNER INTERPRETATION

Start of semi-log straight line = 1.246 hrs End of semi-log straight line Computed start of semi-log straight line = 3.752 hrs Start of semi-log straight line End of semi-log straight line Computed start of semi-log straight line = 3.698 Horner time Pressure at 1 hour

= 1.479 hrs = 9.124 Horner time = 7.842 Horner time = 2150.373 psl

Slope

Permeability-thickness product **Reservoir** thickness Permeability Skin

Pressure drop due to skin Extrapolated pressure (P) Wellbore flowing pressure (P_{w1}) Flow Efficiency

= -508.797 psi/cycle

- = 2.397 md-ft
- = 75.000 ft
- = 0.032 md
- = 1.066

= 472.010 psi

- = 2682.649 psi
- = 502.396 psi
- = 0.784

29-MAY-87

17 MAY 1987

CONSTANTS SUMMARY

Porosity	= 0.150
Well radius	[–] = 0.354 ft
Reservoir thickness	= 75.000 ft
Perforation thickness	= 49.000 ft
Viscosity	= 0.500 cp
Pressure (t=0)	= 502.396 psi
Total producing time	= 10.121 hrs
Production rate	= 15.000 RB/D
Water saturation	= 0.650
Gas saturation	= 0.000
Water compressibility	$= 2.000 \cdot 10^{-8} \text{ psl}^{-1}$
Oil compressibility	= 1.000*10 ⁻⁵ psi ⁻¹
Gas compressibility	= 3.900*10 ⁻⁴ psl ⁻¹

Total compressibility

-1 psl⁻¹ $= 3.900*10^{\circ}$ Formation compressibility = $5.000*10^{-8} \text{ psi}^{-1}$ $= 9.800 \times 10^{-6} \text{ psi}^{-1}$

	MINORA RESOURC		ERMERE 1 dst 4 Delta-P, psi	17 MAY 1987 Horner time
the second s	Time, hrs 0.000 0.008 0.016 0.023 0.031 0.039 0.047 0.055 0.062 0.070 0.078 0.086 0.093 0.101 0.109 0.117 0.125 0.132 0.140 0.148 0.156 0.164 0.171 0.171 0.171 0.187 0.195 0.202 0.218 0.226 0.234 0.311 0.389 0.545	Pressure, psi 502.396544.096610.196659.096711.896765.696814.096865.996920.696978.2961024.6961070.0961121.0961216.6961292.7961365.0961396.6961427.2961454.1961496.7961550.6961571.0961583.9961627.6961643.3961789.8961881.7961995.996	$\begin{array}{c} \text{Delta-P, psi}\\ 0.000\\ 41.700\\ 107.800\\ 107.800\\ 209.500\\ 209.500\\ 209.500\\ 263.300\\ 311.700\\ 363.600\\ 418.300\\ 475.900\\ 522.300\\ 567.700\\ 618.700\\ 618.700\\ 667.700\\ 714.300\\ 752.300\\ 790.400\\ 828.400\\ 862.700\\ 894.300\\ 924.900\\ 951.800\\ 924.900\\ 951.800\\ 994.400\\ 1027.900\\ 1048.300\\ 994.400\\ 1027.900\\ 1048.300\\ 1068.700\\ 1081.600\\ 1125.300\\ 1141.000\\ 1287.500\\ 1379.400\\ 1493.600\\ \end{array}$	Horner time * 1 2 8 2. 7 3 2 6 4 5. 7 9 9 4 3 1. 7 4 7 3 2 5. 4 3 0 2 6 0. 5 3 7 2 1 7. 2 7 8 1 8 6. 3 7 9 1 6 3. 2 0 5 1 4 5. 1 8 1 1 3 0. 7 6 2 1 1 9. 1 0 3 1 0 9. 2 5 0 1 0 0. 9 1 6 9 3. 7 7 2 8 7. 5 8 2 8 2. 1 6 6 7 7. 3 8 7 7 3. 1 9 2 6 9. 3 8 8 6 5. 9 6 3 6 2. 8 6 6 6 0. 0 5 1 5 7. 4 8 0 5 5. 1 2 5 5 2. 9 8 4 5 0. 9 8 2 4 7. 4 0 7 4 5. 8 0 4 4 4. 3 0 9 3 3. 4 9 2 2 6. 9 9 2 1 9. 5 6 8
•	0.623 0.701 0.779 0.856 0.934 1.012 1.090 1.168 1.246 1.324 1.401 1.479	1995.996 2034.896 2092.396 2113.796 2133.296 2150.896 2167.596 2180.596 2193.596 2206.496 2217.696 2226.996 2236.296	$1 493.600 \\1532.500 \\1563.100 \\1590.000 \\1611.400 \\1630.900 \\1648.500 \\1665.200 \\1665.200 \\1678.200 \\1691.200 \\1691.200 \\1704.100 \\1715.300 \\1724.600 \\1733.900$	$ \begin{array}{r} 1 9.568 \\ 1 7.248 \\ 1 5.442 \\ 1 3.997 \\ 1 2.817 \\ 1 1.832 \\ 1 0.999 \\ 1 0.285 \\ 9.666 \\ 9.124 \\ 8.647 \\ 8.222 \\ 7.842 \\ 7.500 \\ \end{array} $

29-MAY-87

÷ -----

And Andrew Andrew

FLOPETROL JOHNSTON

.

.

/ 84001

FORMATION TESTING REPORT

COMPANY	:	Minora Resources N.L
FIELD	:	Otway Basin
WELL	:	Windermere 1
DST No	:	5
DATE	:	10 10.07
DATE	•	19 May 1987
COUNTRY	:	Australia
LOCATION	:	Victoria
ZONE	:	1782m - 1787m

REGION	•	ANZ
DISTRICT	:	LEA
BASE	:	LEF
REPORT No):	87-5-2

	[
	CLIENT <u>Minora</u> FIELD <u>Windermere</u>	FORMATION TESTING	REPORT FLOPETROL JOHNSTON
	WELL DST No	WELL AND JOB	DATA REPORT No 87-5-2
	DATE 19-5-87		PAGE No1
n Angel en Angel n	Type test <u>Cased Hole</u>		54-
	Total depth Main hole size8.5 ins	Casing size7"	Liner size
	Down to	Casing weight27 lbs/ft	Liner weight
	Rat hole sizeAll depths measured from	•	
	PERFORATIONS 1,782 - 1787m		
	FORMATION - System Lower Eum	erella	Estimated porosity0.15
	Geologie level LithologySandstone		Estimated permeability 0.64 md (DST 2)
5 °	Daina		Estimated productive interval Chloride PPM
		· · · · · · · · · · · · · · · · · · ·	Depth Weight
	TIMES		Vergin
	Ist flow from 21:20 on 19	to 21:27 on 19 to 22:34 on 19	
	Ist shut-in from 21:27 on 19 2nd flow from 22:34 on 19	to 22:34 on 19 to 23:49 on 19	
	2nd shut-in from on	to on	
	3rd flow from on 3rd shut-in from on	to on Reverse circ to on Final equali	
	TOOL SEQUENCE - Tool	Туре	O. D. Remarks
n			
•			
	•		
			_
DSJ N -			
÷			
• •			
s île			
μ. ¹² Ταν σ. τ. σπ σ. σπ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ			Bottom choke size :

CLIENT	Minora
FIELD	Windermere
WELL	1
DST No _	5
DATE	19-5-87

FORMATION TESTING REPORT

FLUID RECOVERY

FLOPETROL JOHNSTON

	1.4 1.4 1.4	A St. S. Markers
		I-I A T-I SI
		erger.
Seconder	at the state of a	

REPORT No _____87-5-2 2

No _____ PAGE

DESCRIPTION OF FL	UIDS RECOV	/ERED	DESCRIPTION OF FLUIDS RECOVERED				SURFACE OBSERVATIONS						
Air blow :							Descripti	ion		Time hr	Pressur	re Surface choke	
No blow observed	J.				Op	ven	for firs	st_flow	3	21:20_	0		
					No	<u>o in</u>	ndicatior	n of flo	<u>ow 2</u>	21:26	0		
					Clo	ose	for fir	rst shut	-in 2	21:27	0		
							for 2nd			22:34	0		
Flowed at surface during test :			A	Amount		-	ndicatior			23:48	0		
Nil					-								
	_												
					-							<u> </u>	
	······				-						-		
- · · .					<u> </u>						<u> </u>		
Reversed out :				Amount									
No reverse circula ensure 100% fluid								<u></u>					
	160000	у.		<u> </u>	·								
		· · · · · · · · · · · · · · · · · · ·		······································	<u> </u>						<u> </u>		
			.										
			<u> </u>										
		!		I									
			<u> </u>		<u> </u>					,			
(Maximum Pumping pressure)		!	ļ	,									
Recovered in DP and DC'S			Ar	mount									
Filtrate, diesel, po	ossible c	sil		······································									
traces.			3,0	00 ccs									
				/	Max		m surface pre				ļ		
RECOVERY DESCRIPTION	FEET	BARREL	s	% OIL 9	% WATE		% OTHERS	API GRA	AVITY	1	ESISTIVITY	CHL PPM	
	++						├	(a) (a)	•F •F		(a) °F (a) °F		
	+t							(a) (a)	۰۶ ۴			F	
								(A)	•F			F	
		L				$ \rightarrow $	I	Ŵ	٩F	Ţ'	(A) °F	;	
<u></u>		 					i	(A)	۴		(a) °F		
		i					i}	(a)	°F °F		(a) °F (a) °F		
MFE/PCT FL	LUID SAMPLE		l			k	ll	(a)	•F RESISTI			F HLORIDE ONTENT	
Sampler Pressure		· · ·	Surfac		$\neg \uparrow$,	Beco	overy Water		(A)	°		ONTENT	
Recovery Cul Ft Gas			50	3		1002	Very Trace.		v		۲ <u> </u>		
cc. Oil <u>cc</u>					F	Reco	wery Mud		(a) .	•	. * F		
cc. Water cc							wery Mud Fi	•				PPM	
cc. Mud cc													
Tot. Liquid cc							Pit Sample						
Gravity °API °F Gaz/Oil Ratio cu. ft/bbi 🚺 m³/m³ 🔲					1.0	Mur	Pit Sample P	iltrate		⁶⁷	۴	PPM	

DST / B

CLIENT	Minora
FIELD _	Windormoro
WELL	4
DST No	5
DATE	19-5-87

S

÷

FORMATION TESTING REPORT

FLOPETROL JOHNSTON

Schlumberger

PRESSURE CHART SUMMARY

REPORT No 87-5-2

PAGE No 3

		I			L	·	·	
			J 2,196	J 2,197	J 1,663	T		
1 1		and Number	4,700	4,700	4,700		ure did not reach stat	
1)	1	city (Psi)	1,773 m		4,700 1,787 m	- reservoir pressure	3.	
1 1	1	n (ft) (m)	175°F	<u>1,775 m</u> 175 ⁰ F	= 175 ⁰ F			
1	· ·	erature (°F) (°C)			vInside/below			
1	Positio		1,623	3,777	1,636		- bore	
i 1		number	96	96	96	All pressures m	R. R.	
,)	1	capacity (hr)					psi 🖌	
, 1	Clock t	travel (in/min) (mm/mn)	/	L		Given time	Computed Time	
s l	A	Initial Hydrostatic Mud Pressure	2,604	2,614	′			
READINGS	(B1	(initial pressure	474	656	_[′			
EAD	{c1	First flow final pressure	847	860	<u> </u>			
	(D1	First shut-in pressure	1,938 •	1,908 •	•	mn	mr	
PRESSURE	(B2		12	0	,			
I SSI	} C2	Second flow { final pressure	12	0			T2 =mr	
PRE	(D2	Second shut-in pressure	•	•	*	Mu	mn	
1	(B3	(initial pressure	·}	· · · · · · · · · · · · · · · · · · ·				
	C₃	Third flow { final pressure		· · · · · · · · · · · · · · · · · · ·	· · · · ·	mn	T3 =mr	
	(D3	Third shut- in pressure		ıı		mn	mr	
ļ	· /			·,		[
	·!	Pressure data not A,	M and Temp	perature cor	rected.	mn	T4 =	
	· '	Fluid cushion pressure				mn	mn	
	E	Final hydrostatic mud pressure	2,604	2,614	2,638			
	. ⁻ I	Calculated hyd. mud pressure		·		Total time	m	
	, 1	Calc. fluid cushion pressure		,,		1		
+	, 	· · · · · · · · · · · · · · · · · · ·	+	+	F	r	· <u> </u>	
		and Number		1	lI	(*) Shut-in pressur	ire did not reach stati	
	Capacity			1	ll	reservoir pressure.		
	Depth (!	ll	i -		
		erature (°F) (°C)	-	/	l	í.		
	Position	le la	-	ļ	t1	I.	. F	
	Clock n				t}	All pressures me		
		capacity (hr)				l	psi _	
ŀ	Clock tr	travel (in/min) (mm/mn)		J	t	Given time	Computed Time	
s	A	Initial Hydrostatic Mud Pressure	I]	i	,,	ſ	
READING	(B)	(initial pressure	1		1	, 1	1	
ΙΨ		First flow { final pressure	1		1	mn	T1 =mn	
		First shut-in pressure	•	+	•	mn	mn	
PRESSURE	(B2	(initial programs	1		1	,,	1	
ssu SSU		Second flow final pressure	i		1	mn	T2 =n	
۲ <u>۲</u>	$\binom{D_2}{D_2}$	Second shut-in pressure	•	*	•	mn	mn	
	/ B2		i				1	
'		Third flow { final pressure	ı			mn	T3 =mn	
	1	Third shut- in pressure	1			mn	mn	
L							i	
Γ]	mn	T4 =m	
Γ		Fluid cushion pressure				mn	mn	
Γ	- I	Final hydrostatic mud pressure			•		\sim	
		Calculated hyd. mud pressure				Total time		
		Calc. fluid cushion pressure						
 >=w								
íEiv.	IARKS							
		······································						
	····					·		

·····			
CLIENT _	Minora		
FIELD	Windermere		
WELL	1		
DST No _	5		
DATE1	9-5-87		

FORMATION TESTING REPORT

PRESSURE DATA

FLOPETROL JOHNSTON

REPORT No <u>87-5-2</u> PAGE No <u>4</u>

PRESSURE DATA FOR RECORDER :

LABEL	∆⊺	PRESSURE	$T + \Delta T$	LOG	Pbu – Pwf	COMMENTS
POINT	(Hrs)					
B1	0	513				Open for 1st flow at 21:20
	0.0156					
	0.0311					
	0.0467	773				
	0.0623	797				· · ·
	0.0779					
	0.0934					
	0.1043		-			
C1	0.1168	703				
			-			
	0	703	-	-		Close for 1st shut-in at 21:27
	0.0389	768		-		
	0.0778		-			
	0.1168					·
	0.1557	1,011				
	0.1946		۰.			
	0.2335					
	0.2725	1,131			-	
	0.3114	1,185				
	0.3503	1,241		-		
	0.3893	1,292			-	
	0.4282	1,342				(a) a fille de la companya
	0.4671	1,389				
	0.5060	1,435				
	0.5450	1,480		-		
	0.5839	1,523		-		
	0.6228	1,563				
-	0.6617	1,603				
	0.7007	1,638				
	0.7396	1,672		-	-	
	0.7785	1,706	-	-	-	
	0.8175	1,735				
					-	
	0.8564	1,766			-	
	0.8953	1,795				
	0.9342	1,821				· · · · · · · · · · · · · · · · · · ·
	0.9732	1,847				
	1.0121	1,873				
	1.0510	1,895				
	1.0899	1,916				
C1	1.1133	1,926			-	End of 1st buildup at 22:34
					1	
B2	0	20				Start second flow at 22:34
	0.4780	20				
	1.2581	20				
						Conclude test
			· · · · · · · · · · · · · · · · · · ·	·		
All pre	ssure r	eadings A, N	1 and Temp	erature	corrected.	
			•			
•						
			•	1	1	

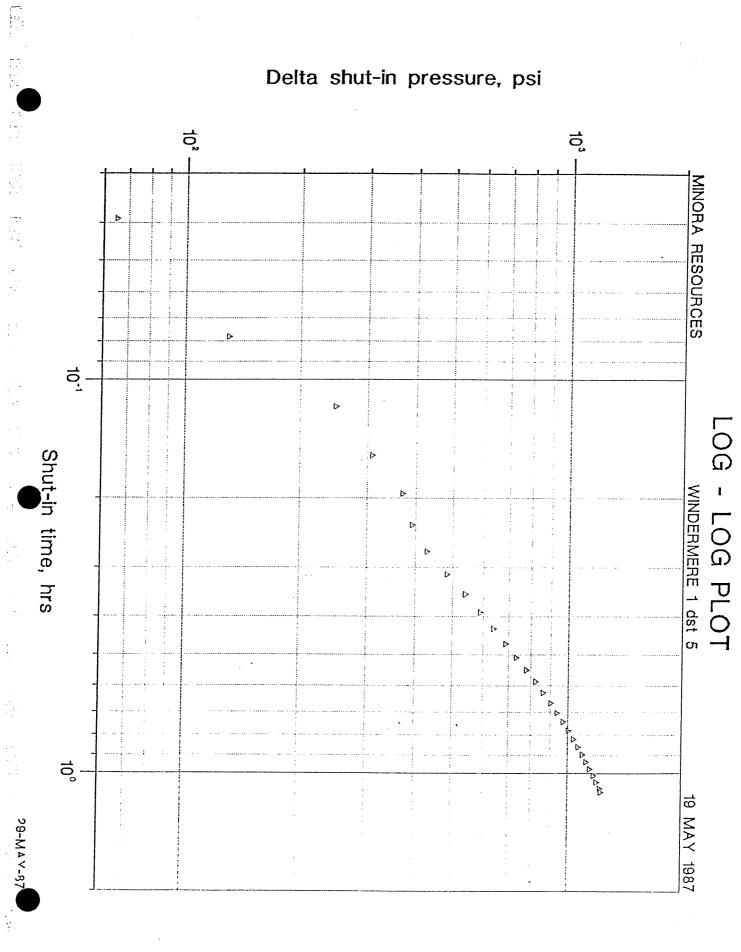
DST

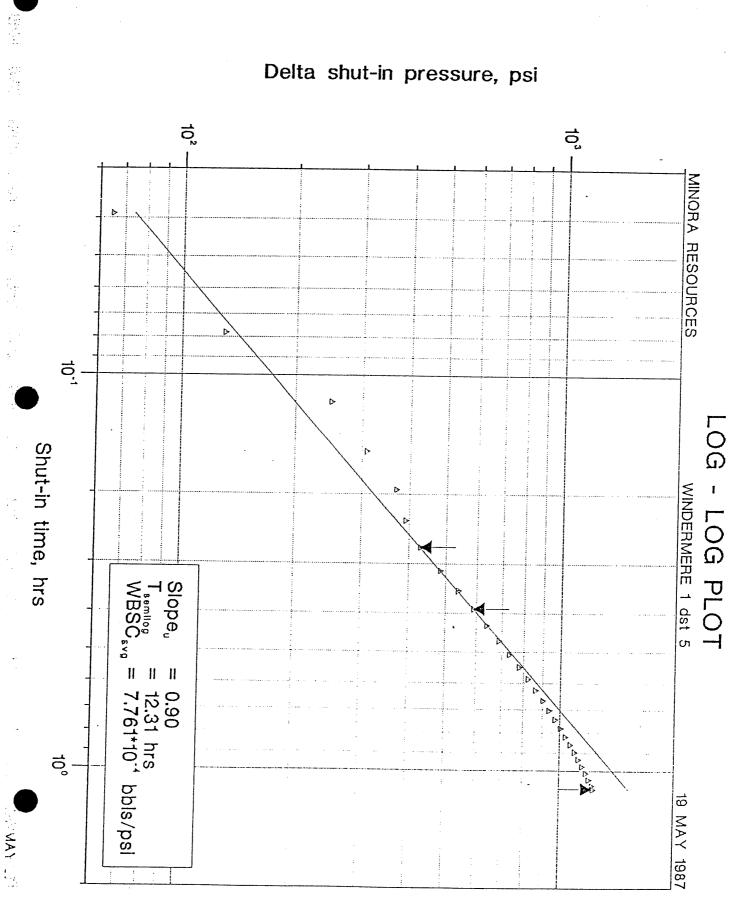
.

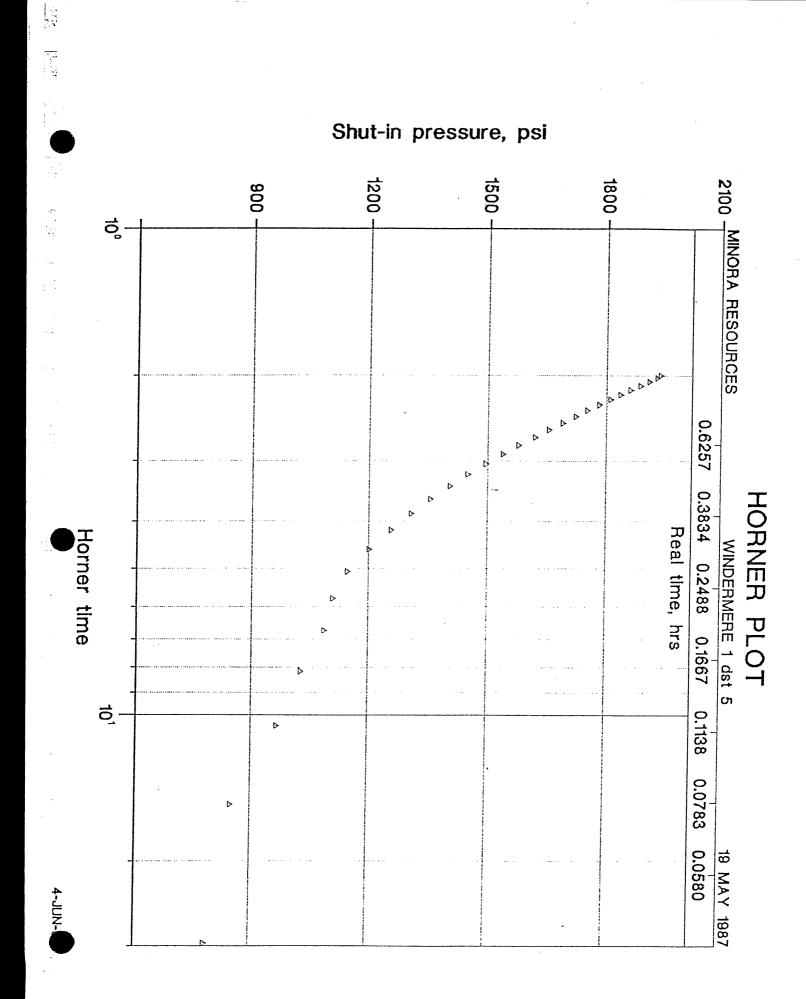
Well No : WINDERMERE 1 dst 5 Test Date : 19 MAY 1987 Field : WILDCAT

Interpretation by : F HALFORD Interpretation date : 29-MAY-87

£7.


. . .


ADVANCED RESERVOIR TESTING INTERPRETATION


ADVRT

ADVRT - 001H04

CONSTANTS SUMMARY

Porosity Well radius Reservoir thickness Perforation thickness Viscosity Pressure (t=0) Total producing time Production rate

Water saturation Gas saturation Water compressibility Oil compressibility Gas compressibility Formation compressibility = $5.000*10^{-6} \text{ psi}^{-1}$ Total compressibility

= 0.150 = 0.354 ft= 75.000 ft= 16.000 ft= 0.500 cp= 717.596 psi = 1.110 hrs = 0.010 RB/D

= 0.850 = 0.000= 2.000*10⁻⁶ psi⁻¹ $= 1.000^{10^{-5}} \text{ psl}^{-1}$ $= 3.900 \times 10^{-4} \text{ psl}^{-1}$ $= 9.800^{10^{-6}} \text{ psi}^{-1}$