SANTOS - BEACH

07 MAY 2001

COMPILED FOR

SANTOS LIMITED

(A.C.N. 007 550 923)

MCINTEE 1

RAW DATA REPORT

Prepared By: Operations Geology March 2001

McINTEE 1 RDR

TABLE OF CONTENTS

LOCATION MAP

SECTION 1:

PRELIMINARY WELL CARD

SECTION 2:

DAILY GEOLOGICAL REPORTS

SECTION 3:

HYDROCARBON SHOWS

SECTION 4:

WIRELINE LOGGING REPORTS

(A) LOGGING ORDER FORM

(B) ELECTRIC LOGGING TIME SUMMARY

(C) FIELD ELECTRIC LOG REPORT

(D) PRESSURE SURVEY DATA

SECTION 5:

SIDEWALL CORE REPORT

SECTION 6:

DEVIATION DATA

SECTION 7:

GEOTHERMAL GRADIENT

SECTION 8:

PRELIMINARY WELL LOCATION SURVEY

SECTION 9:

TIME/DEPTH CURVE

SECTION 10:

CATALOGUE OF WELLSITE SAMPLES

SECTION 11:

CASING AND CEMENTING RECORDS

ENCLOSURES

ENCLOSURE I:

5'' = 100' MUDLOG

LOCATION MAP

SECTION 1: PRELIMINARY WELL CARD

REVISION 1 (11/11/96)

٢	WELL: McINTEE 1 WELL CATEGORY: EXP (WILDCA	SPIID: 10/02/01	11:00hrs TD PEACH	ED: 19/02/01 06:00hrs
		·		ED. 19/02/01 00.001115
	WELL INTENT: GAS	RIG RELEASEI	D: 23/02/01 06:00hrs	
	LAT: 38° 29' 21.10" S LONG: 142° 49' 21.18" E (AGD84)	RIG: OD&	E 30	
1	LAT: 38° 29' 15.78" S LONG: 142° 49' 26.12" E (GDA94)	STATUS: C&S	GAS WELL	
		CURRENT STA	TUS: COMPLETED	GAS WELL
	SEISMIC STATION: INLINE 2447 C'VALE 3D CDP 10254	REMARKS: NI	EW FIELD WILDCA	T DISCOVERY
	ELEVATION GND: 59.5 m RT: 64.5m (Prelim)			
	BLOCK/LICENCE: PEP 154 (VICTORIA – OTWAY BASIN)			
	TD : 1799.5m (Logr Ext) 1803m (Drlr)			
	PBTD: m (Logr) m (Drlr)			
	TYPE STRUCTURE: HORST BLOCK	CASING SIZE	SHOE DEPTH	TYPE
	TYPE COMPLETION: 3 ½" MONOBORE	7 5/8"	428m	L80 26.4#/ft BTC
S	ZONE(S): WAARE SANDSTONE	3 ½"	1677m	J55 9.3#/ft NEW
			1	NK35B
_				

AGE	FORMATION OR ZONE TOPS	DEPTH	I (m)	THICKNESS	HIGH (H)
		LOGGERS	TVD SS	TVD (m)	LOW (L)
MIDDLE-LATE MIOCENE	PORT CAMPBELL LIMESTONE	Surface	65	162	-
EARLY MIOCENE	GELLIBRAND MARL	162	-98	317	N/P
E-L OLIGOCENE – E AQUITANIAN	CLIFTON FM	479	-415	16	-3L
LATE EOCENE	NARRAWATURK MARL	495	-431	35	N/P
MIDDLE EOCENE	MEPUNGA FM	530	-466	92	N/P
EARLY – MIDDLE EOCENE	DILWYN FM	622	-558	239	N/P
L PALEOCENE – EARLY EOCENE	PEMBER FM	861	-797	43	N/P
E-L PALEOCENE	PEBBLE PT FM	904	-840	. 20	-32L
LATE SENONIAN	PAARATTE FM	924	-860	314	-11L
LATE SENONIAN	SKULL CK MUDSTONE	1238	-1174	113	-8H
LATE SENONIAN	NULLAWARRE	1351	-1287	96	-2L
LATE SENONIAN	BELFAST MUDSTONE	1447	-1383	74	-151H
LATE SENONIAN	FLAXMAN FM	1521	-1457	17	-163H
LATE SENONIAN	WAARRE FM – UNIT C	1539	-1474	16	-171H
	UNIT B	1555	-1490	10	N/P
	UNIT A	1565	-1500	36	N/P
EARLY NEOCOMIAN	EUMERALLA FM	1601	-1536		-163H
	TD	1799			

PRELIMINAF	PRELIMINARY LOG INTERPRETATION (Interval Averages)				PERFORATIONS					
INTERVAL (m)	ø%	SW %	INTERVAL (m)	Ø%	SW %	FORMATION			INTERVAL	
						WAA	RE SST	1	539.5-154	3.5m
			·					CORES		
						FORM	NO.	INTERVAL	CUT	REC
						NIL				

LOG	SUITE/	INTERVAL	BHT/TIME/	LOG	SUITE/	INTERVAL	BHT/TIME/
	RUN	(m)	REMARKS	-	RUN	(m)	REMARKS
RI	EEVES LO	GGING		PDS-	1/2	1795-1300	70°C / 13.5 hrs
DLL-	1/1	1790-400	64°C / 6.35 hrs	CNS		1795-1300	
MLL		1792-400		GR		1790-1300	
GR		1795-18		RFS	1/3	1756-1736.5	72.2°C / 34 hrs
LSC		1780-400	``				22 TESTS, 3 CURTAILED,
SP		1775-400					2 SPURIOUS, 17 NORMAL
CAL		1792-400					SEGREGATED SAMPLE
							TAKEN AT 1545.7m
				SWC	1/4	1702.5-1424.5	24 SHUT, REC 21

	FORMATION TESTS									
NO.	INTERVAL	FORMATION	FLOW	SHUT IN	воттом	SIP	MAX SURF	FLUID	TC/	REMARKS
ĺ.	(m)		(mins)	(mins)	GAUGE IP/FP	- 1	PRESS	TO SURF	BC	
/					(psia)		(psia)	(mins)		
										NO TESTS
<u></u>	L]								CONDUCTED

SECTION 2: DAILY GEOLOGICAL REPORTS

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 11/02/01 (0600 Hours)

DEPTH: 30M

PROGRESS: 30M

DAYS FROM SPUD: 1

OPERATION: DRILLING AHEAD 9 7/8" SURFACE HOLE

NOPE COST (P&A)\$1,083,179

FINAL FORECAST COST (P&A)\$

(C&S)\$

CASING DEPTH: 10M

RIG: ODE 30

COST TO DATE: \$

PROGRAMMED TD: 1798M

ROTARY TABLE: 64.2M (Prelim)

GROUND LEVEL: 59.5M

MUD DATA

Type:

Wt:

Visc:

WL:

pH:

K +:

PV/YP:

Rmf:

(2400 Hours)

No.

Make

Type

Size

Hours

Cl -:

Footage

Condition

BIT DATA (2400 Hours) **PRESENT**

(C&S)\$1,351,788

LAST

SURVEYS:

<u>MD</u>

INCLINATION AZIMUTH (T) MD

INCLINATION

AZIMUTH (T)

PREVIOUS 24 HOURS OPERATIONS:

SPUD WELL AT 11:00 HRS ON 10/02/01. DRILL AHEAD 9 7/8" SURFACE HOLE, AT 28M MUD COMING UP THROUGH MOUSE HOLE. DRILL OUT WITH 17 1/2" HOLE, PUMP CEMENT, DRILL THROUGH CEMENT WITH 6 5/8" BIT TO 30M.

ANTICIPATED OPERATIONS:

DRILL AHEAD WITH 9 7/8" BIT AS PROGRAMMED

Barton Carlos Company

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

FORMATION TOPS:		
	•	
		1

	HYDROCARBON SHOW SUMMARY	
INTERVAL	LITHOLOGY	GAS

41	GEOLOGICAL SUMMARY							
INTERVAL	LITHOLOGY	GAS						
5-30	Calcarenite – light grey, off white, occasionally yellow to orange, clear to translucent grains, fine to medium crystalline, very fossil, commonly to abundant shell fragments and corals.	Nil						

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 12/02/01 (0600 Hours)

DEPTH:

433.5m

THE BUILDING

PROGRESS: 397.5m

DAYS FROM SPUD: 1.4

OPERATION: CIRCULATING BOTTOMS UP AT SURFACE CASING POINT

NOPE COST (P&A)\$1,083,179

(C&S)\$1,351,788

FINAL FORECAST COST (P&A)\$

(C&S)\$

K +:

Size

9.88

17.5

COST TO DATE: \$

CASING DEPTH: 10M

pH:

RIG: ODE 30

PROGRAMMED TD: 1798M

ROTARY TABLE: 64.2M (Prelim)

WL:

GROUND LEVEL: 59.5M

Rmf:

MUD DATA Type: Wt: Visc: (2400 Hours) **GEL** 9.1 39 No. Make **BIT DATA PRESENT** 1RR2 SM VA (2400 Hours) **LAST**

Type FGSS+2C L114

Hours 7.5 8.0

Cl -:

Footage 214 14m

PV/YP:

12/25

Condition I1DLBG2R11WT

AEINNOHP

SURVEYS: MD **INCLINATION** MD**INCLINATION** AZIMUTH (T) AZIMUTH (T) 5 64 .5 319 174 2.8 351 2 82 1.25 337 2.25 6 212 345 100 3 1.4 2 7 319 1.4 348 2.5 137 350

PREVIOUS 24 HOURS OPERATIONS:

CEMENT 17 1/2"/9 7/8" HOLE TO 28M, WAIT ON CEMENT, DRILL CEMENT AND FORMATION WITH 9 7/8" BIT & 3 1/2" HWDP TO 60M (CONTROLS FOR LOSSES), CHANGE BHA AND JET/DRILL AND SURVEY FROM 60 M TO 250M. DRILL AHEAD TO CASING POINT AT 433.5 M.

ANTICIPATED OPERATIONS:

WIPER TRIP TO SURFACE. RUN IN HOLE CIRCULATE, PULL OUT OF HOLE AND RUN 7 5/8" CASING.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

FORMATION TOPS:	RT	-SUBSEA	H/L TO PRO H/L TO OFFSETS
GELLIBRAND MARL	151 M	-87 M	2.M LOW TO BOGGY CREEK 1

	HYDROCARBON SHOW SUMMARY	
INTERVAL	LITHOLOGY	GAS

INTERVAL	GEOLOGICAL SUMMARY LITHOLOGY	GAS
30m-151m ROP:0.4-8.0 Ave:1.2 min/m	Massive Calcarenite - light grey, off white, occasionally yellow to orange, clear-translucent grains, fine to medium crystalline, very fossiliferous, common to abundant shell fragments and corals.	nil
151-433m ROP: 0.5-1.3 Ave:0.9 min/m	MARL - light grey - medium grey, finely calcareous, abundant fossils and shell fragments, rare pyrite in parts, soft, sticky, amorphous.	nil

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 13/02/01 (0600 Hours)

DEPTH:

433.5m

Line Workship

PROGRESS: 0m

DAYS FROM SPUD: 2.4

CURRENT OPERATION: INSTALLING BRAIDENHEAD HAVING RUN AND SET 7 5/8" SURFACE CASING.

NOPE COST (P&A)\$1,083,179

(C&S)\$1,351,788

FINAL FORECAST COST (P&A)\$

COST TO DATE: \$ 639,468

(C&S)\$

CASING DEPTH: 424m

RIG: ODE 30

PROGRAMMED TD: 1798m

ROTARY TABLE: 64.2m (Prelim)

GROUND LEVEL: 59.5m

MUD DATA (2400 Hours)

Type: **GEL**

Wt: Visc:

No.

2

WL:

K +:

PV/YP:

Rmf:

BIT DATA (2400 Hours)

PRESENT

LAST

Make 1RR2 SM VA

Type FGSS+2C L114

Size 9.88 17.5

pH:

Hours 3.5 0.8

Cl -:

Footage 183

Condition I1DLBG2R11WTAEINNOTD

SURVEYS:

.5

AZIMUTH (T) **INCLINATION**

<u>MD</u> 5 174

14m

I1DLBG2R11WTAEINNOHP

AZIMUTH (T)

2 3

64 82 1.25 100 1.4 137 2.5

MD

319 337 2

350

6 212 7 319 415

2.25 1.4 1.63

2.8

INCLINATION

345 348 324

351

PREVIOUS 24 HOURS OPERATIONS:

DRILL & SURVEY 9 7/8" HOLE FROM 250M TO 433M, CIRCULATE, WIPER TRIP, CIRCULATE, PULL OUT OF HOLE, LAY OUT BOTTOM HOLE ASSEMBLY, RIG TO AND RUN 7 5/8" CASING, CIRCULATE AND CEMENT CASING.

ANTICIPATED OPERATIONS:

INSTALL BRAIDED HEAD. PREPARE AND NIPPLE UP BOP.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

FORMATION TOPS:	RT	-SUBSEA	H/L TO PROG	H/L TO OFFSETS
GELLIBRAND MARL	151 M	-87 M		2 M LOW TO BOGGY CREEK 1

HYDROCARBON SHOW SUMMARY					
INTERVAL	LITHOLOGY	GAS			

	GEOLOGICAL SUM	MARY		
INTERVAL	LITHOLOGY			GAS
	<u> </u>		·	

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 14/02/01 (0600 Hours)

DEPTH:

433.5m

THE WARRING

PROGRESS: 0m

DAYS FROM SPUD: 3.4

CURRENT OPERATION: PRESSURE TESTING BLOWOUT PREVENTERS.

NOPE COST (P&A)\$1,083,179

FINAL FORECAST COST (P&A)\$

COST TO DATE: \$

(C&S)\$1,351,788

(C&S)\$

CASING DEPTH: 424m

RIG: ODE 30

Footage

PROGRAMMED TD: 1798 m ROTARY TABLE: 64.2m

GROUND LEVEL: 59.5m

MUD DATA (2400 Hours)

(2400 Hours)

Type:

Wt: 9.0

No.

Visc: 42

Make

WL:

Type

K +:

Size

pH:

PV/YP: Cl -: 8/16

Hours

Rmf:

Condition

BIT DATA

PRESENT

LAST

SURVEYS:	<u>MD</u>	INCLINATION	AZIMUTH (T)		<u>MD</u>	<u>INCLINATION</u>	AZIMUTH (T)
1	64	.5	319	5	174	2.8	351
2	82	1.25	337	6	212	2.25	345
3	100	1.4	2	7	319	1.4	348
4	137	2.5	350	8	415	1.63	324

PREVIOUS 24 HOURS OPERATIONS:

CEMENT, WAIT ON CEMENT, NIPPLE DOWN RISER AND LAND JOINT, NIPPLE UP BLOWOUT PREVENTERS. FAILURE ON INNER KILL VALVE UNABLE TO CIRCULATE.

ANTICIPATED OPERATIONS:

PRESSURE TEST BOPS, MAKE UP 6 3/4" BOTTOM HOLE ASSEMBLY, DRILL CEMENT AND SHOE TRACK, CONDUCT LEAK OFF TEST, DRILL AHEAD 6 3/4" HOLE.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

FORMATION TOPS:	RT	-SUBSEA	H/L TO PRO H/L TO OFFSETS
GELLIBRAND MARL	151 M	-87 M	2 M LOW TO BOGGY CREEK 1

HYDROCARBON SHOW SUMMARY						
INTERVAL	LITHOLOGY		GAS			

	GEOLOGICAL SUMMARY	
INTERVAL	LITHOLOGY	GAS
	·	

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 15/02/01 (0600 Hours)

DEPTH: 433m

PROGRESS: 0m

DAYS FROM SPUD: 4.4

OPERATION: INSTALING NEW HYDRIL ELEMENT AND MAKE UP HYDRIL CAP.

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$

COST TO DATE: \$ 689,405

(C&S)\$1,351,788

(C&S)\$

CASING DEPTH: 428M

RIG: ODE #30

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.2m **GROUND LEVEL:** 59.5m

MUD DATA Type: Wt: Visc: WL: pH: K +: Cl -: PV/YP: Rmf: (2400 Hours) **GEL SPUD** 9.0 42 0 0 8/16

No. Make Type Size Hours Footage Condition **BIT DATA PRESENT** 2 FM 2465 6.75" (2400 Hours) **LAST**

SURVEYS:

MD

<u>INCLINATION</u> <u>AZIMUTH (T)</u>

MD

INCLINATION

AZIMUTH (T)

PREVIOUS 24 HOURS OPERATIONS:

TROUBLE SHOOT AND IDENTIFY DAMAGED INNER KILL VALVE. REMOVE INNER KILL VALVE AND NIPPLE UP OUTER VALVE TO INNER. CIRCULATE AND FLUSH THROUGH TO CHOKE MANIFOLD AND PRESSURE TEST BLOW OUT PREVENTERS. ALL ITEMS TESTED BUT FAILURE ON HYDRIL (1200PSI MAX PRESSURE HELD). ODE NOTIFIED TO MOBILIZE HYDRIL ELEMENT TO LOCATION. MAKE UP 6 34" BIT AND BOTTOM HOLE ASSEMBLY. TONGS NOT BITING 4 3/" DRILL COLLARS, RECTIFY. CONTINUE MAKING UP BIT AND RUN IN HOLE TO 395M. ATTEMPT TO TEST HYDRIL ELEMENT WITH HIGH VISCOSITY MUD AT VARYING ANNULAR PRESSURSE, NO GO. PULL OUT OF HOLE. LAY DOWN 9 EXCESS SINGLES OF 3 1/2" DRILL PIPE. PULL OUT OF HOLE WITH BOTTOM HOLE ASSEMBLY AND BREAK BIT. WORK HYDRIL ON 2 7/8" TUBING AND TEST, NO GO. RETRY ON 3 1/2" DRILL PIPE, NO GO. FULLY CLOSE ELEMENT ON EMPTY HOLE TO STROKE ELEMENT FULLY. RETEST ON 3 1/2" DRILL PIPE, NO GO. HOLD PREJOB SAFETY MEETING. LIFT OUT MOUSE HOLE, NIPPLE DOWN FLOWLINE AND BELL NIPPLE. RIG UP KELLY AND FLANGE PLATES AND BREAK HYDRIL CAP. LIFT OUT SAME AND REMOVE ELEMENT, NO OBVIOUS DAMAGE. WAIT ON LOAD OF NEW HYDRIL ELEMENT. SERVICE SURVEY UNIT AND DERRICK SHEAVE. GENERAL HOUSE KEEPING. RACK DRILL PIEP BACK AND CLEAN. HYDRIL ELEMENT ARRIVED 04:30 HRS. INSTALL NEW HYDRIL ELEMENT AND MAKE UP HYDRIL CAP.

ANTICIPATED OPERATIONS:

CONTINUE MAKING UP HYDRIL. TEST ANNULAR PRESSURE TO HOLD 2000 PSI. WHEN SUCCESSFUL RUN IN DRILL OUT OF SHOE CONDUCT FORMATION INTEGRITY TEST. DRILL AHEAD 6 3/4" HOLE.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 16/02/01 (0600 Hours)

DEPTH: 627m

PROGRESS: 194m

DAYS FROM SPUD: 5.4

OPERATION: DRILLING AHEAD 6 3/4" HOLE IN THE MEPUNGA SANDSTONE/DILWYN FORMATION.

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$

COST TO DATE: \$

(C&S)\$1,351,788

"一个"的"我特别**是**"就

(C&S)\$

CASING DEPTH: 428M

RIG: ODE #30

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.5m (REV)

GROUND LEVEL: 59.8m (REV)

MUD DATA (2400 Hours)	Type: KCL/PHPA	Wt: 8.5	Visc: 33	-	р Н : Э.0	K +: 3.7	Cl ⁻ : 18,500	PV/YP: 5/3	Rmf:
BIT DATA (2400 Hours)	PRESENT LAST	No. 2	Make SE	Type FM 2465	5	Size 6¾"	Hours 1.8	Footage 145m	Condition DRILLING
SURVEYS:	<u>MD</u> 415	INCLIN 1.63	ATION	AZIMUTH 324	<u>(T)</u>	<u>M</u> 57	<u>ID</u> 70	INCLINATIO 1.3	<u>AZIMUTH (T)</u> 342

PREVIOUS 24 HOURS OPERATIONS:

INSTALL NEW HYDRIL ELEMENT AND MAKE UP HYDRIL CAP. PRESSURE TEST HYDRIL TO 2000PSI/10 MINUTES OKAY. NIPPLE UP BELL NIPPLE AND FLOW LINE. MAKE UP BIT 2 AND 6 ¾" BOTTOM HOLE ASSEMBLY AND RUN IN HOLE TO 393M. BREAK CIRCULATION AND WASH FROM 393M TO TAG CEMENT STRINGERS AT 400M. DRILL PLUGS AND FLOAT COLLAR AT 401M. DRILL FLOAT AND SHOE TRACK TO 433M. CIRCULATE TO BALANCED MUD SYSTEM AND CONDUCT LOT TO 15.7 PPG EMW, PRESSURE TEST KELLY VALVES AND STAB IN VALVES WITH DOWELL TO 300/1200 PSI, OKAY. DRILL 6 3/4" HOLE FROM 437M TO 501M. CIRCULATE AND SURVEY AT 484M, MISRUN. DRILL 6 34" HOLE FROM 501M TO 578M, MISRUN. TOOL NOT PICTURING, NOT REACHING MONEL. PULL OUT OF HOLE TO INSPECT THE BOTTOM HOLE ASSEMBLY. LIFT OUT DRIFT STRING STABILIZER 3 WITH INTERNAL DIAMETER OF 1 7/8". RUN IN HOLE TO 578M. DRILL 6 34" HOLE FROM 578M TO 588M. CIRCULATE AND SURVEY 1 3/8" 342 CORRECTED AZIMUTH. DRILL 6 34" HOLE TO 627M

ANTICIPATED OPERATIONS:

CONTINUE DRILLING AHEAD 6 3/4" EXPLORATION HOLE.

PAGE 2

Santos

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

FORMATION TOPS:	MDRT (m)	SS (m)	Thickness (m)	H/L TO PROG	H/L CALLISTA 1
GELLIBRAND MARL	151	86.5	324	N/P	N/P
CLIFTON FORMATION	475	410.5	33.5	1m H	2.5m L
NARRAWATURK MARL	508	443.5	23	N/P	N/P
MEPUNGA SANDSTONE	532	467.5		N/P	N/P
DILWYN FORMATION					
PEMBER MUDSTONE			;		
PEBBLE POINT FORMATION					

	HYDROCARBON SHOW SUMMARY	
INTERVAL	LITHOLOGY	GAS

	GEOLOGICAL SUMMARY	*
INTERVAL	LITHOLOGY	GAS
433m-475m ROP 0.45-6min/m Av 0.7 min/m	GELLIBRAND MARL MARL: (100%) pale to medium greenish/grey, commonly silty and also argillaceous, very calcareous, common to abundant fossil fragments, echinoid spines, gastropods, fenestrate bryozoans, forams, rare carbonaceous specks, soft-dispersive, sticky, competency and firmness increases with depth, predominantly sub blocky, occasionally blocky again increasing with depth.	NIL GAS
475m-508m ROP 0.3-0.65min/m Av0.45min/m	CLIFTON FORMATION CALCARENITE: (60%) orange-brown, off white, dark brown, common Fe oxide, common dark brown Fe oxide pellets, there are instances where Fe oixde has replaced fossil fragments, common echinoid spines, gastropods, and bryozoans, common to abundant medium to coarse grained, Fe stained, well rounded quartz grains, some of the quartz grains exhibit good quartz overgrowthing and euhedral faces, cryptocrystalline calcareous matrix, friable, poor inferred porosity, quartz grains probably float in the matrix, no shows.	NIL GAS
	MARL: (40%) dark greenish/grey, commonly silty, commonly calcareous, common to abundant fossil fragments, echinoid spines, gastropods, fenestrate bryozoans, forams, rare carbonaceous specks, soft to firm, predominantly sub blocky, occasionally blocky increasing with depth.	
508m-532m ROP 0.3-0.5min/m Av 0.45min/m	NARRAWATURK MARL MARL: (100%) pale grey to medium green grey, medium olive brown, moderately calcareous, argillaceous, silty in part, common very fine carbonaceous specks, common to abundant fossil fragments, echinoid spines, gastropods, fenestrate bryozoans, forams, soft to firm, predominantly sub blocky.	NIL GAS

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

	GEOLOGICAL SUMMARY	
INTERVAL	LITHOLOGY	GAS
531m-627m ROP 0.3-2.5min/m Av 0.7min/m	MEPUNGA SANDSTONE SANDSTONE: (80%) pale brown/orange, clear, translucent, off white, fine to very coarse, predominantly medium to coarse lower, sub rounded to rounded, poor to moderately sorted, minor weak siliceous cement, rare weak siliceous cement, rare pale brown argillaceous matrix, common flat grain boundaries, common Fe staining, minor bituminous looking quartz inclusions, predominantly loose, fair to good inferred porosity, no fluorescence. MARL: (20%) medium green/grey, dark olive brown to dark grey, very calcareous, argillaceous, rare very fine glauconite and carbonaceous specks, rare fossil fragments, echinoid spines, shells, forams, soft to firm, sub blocky.	NIL GAS

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 17/02/01 (0600 Hours)

DEPTH: 1263m

PROGRESS: 636m

DAYS FROM SPUD: 6.4

OPERATION: DRILLING AHEAD 6 34" HOLE IN THE SKULL CREEK FORMATION.

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$

COST TO DATE: \$

(C&S)\$1,351,788

1 人名英格拉德

(C&S)\$

CASING DEPTH: 428M

RIG: ODE #30

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.5m

GROUND LEVEL: 59.8m

MUD DATA (2400 Hours)	Туре: КСL/РНРА	Wt: 8.8	Visc:	WL: pH: 8 9.0	K +: 3.3	Cl ⁻ : 16,000		Rmf: -
BIT DATA (2400 Hours)	PRESENT LAST	No. 3	Make SE	Type FM 2465	Size 6 ¾"	Hours 9.8	Footage 695m	Condition DRILLING
SURVEYS:	MD 415 720 990 1193	INCLINA 1.63 1.5 1.6 1.75	ATION	AZIMUTH (T) 324 339 333 331	<u>MI</u> 570 886 109) 5	INCLINATION 1.3 1.6 1.8	N AZIMUTH (T) 342 332 315

PREVIOUS 24 HOURS OPERATIONS:

DRILL 6 3/4" HOLE TO 742M, CIRCULATE AND SURVEY AT 720M. DRILL 6 3/4" HOLE TO 907M, CIRCULATE AND SURVEY AT 886M. DRILL 6 3/4" HOLE TO 1002M, CIRCULATE AND SURVEY AT 985M. DRILL 6 3/4" HOLE TO 1109M, CIRCULATE AND SURVEY AT 1090M. DRILL 6 3/4" HOLE TO 1215M. SERVICE RIG. CIRCULATE AND SURVEY AT 1190M. DRILL 6 34" HOLE TO 1263M.

ANTICIPATED OPERATIONS:

CONTINUE DRILLING AHEAD 6 3/4" EXPLORATION HOLE WITH SURVEYS.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

FORMATION TOPS:	MDRT (m)	SS (m)	Thickness (m)	H/L TO PROG	H/L CALLISTA 1
GELLIBRAND MARL	151	86.5	324	N/P	N/P
CLIFTON FORMATION	475	410.5	33.5	1.5 m H	5.5m L
NARRAWATURK MARL	508	443.5	23	N/P	22.5m L
MEPUNGA SANDSTONE	532	467.5	85	N/P	2.5m L
DILWYN FORMATION	617	552.5	245	N/P	3.5 m L
PEMBER MUDSTONE	862	797.5	13	N/P	3.5 m L
PEBBLE POINT FORMATION	875	810.5	38	2.5 m L	16.5 m H
PAARATTE FORMATION	913	848.5		0.5 m H	29.5 m H
SKULL CREEK FORMATION					

	HYDROCARBON SHOW SUMMARY	
INTERVAL	LITHOLOGY	GAS
	·	

	GEOLOGICAL SUMMARY	
INTERVAL 617m-687m	LITHOLOGY DILWYN FORMATION	GAS
ROP 0.4-3.0min/m Av 1.1 min/m	SANDSTONE: (90%) clear, light brown, translucent, common light orange/brown Fe stained grains, fine to medium grain size, minor coarse, poor to moderately sorted, sub rounded to rounded, trace sub angular, minor very weak calcareous cement, trace pyrite cement, minor pale brown argillaceous matrix, trace lithics, predominantly loose, poor inferred porosity, no fluorescence.	NIL GAS
	CLAYSTONE: (10%) pale to medium green/grey, occasionally dark grey, common medium to dark olive brown, commonly very calcareous, commonly very argillaceous, rare very fine carbonaceous specks, rare fossil fragments including echinoid spines, bryozoan fragments and forams, soft to firm, sub blocky.	
687m-777m ROP 0.35-1.4min/m Av 0.65min/m	SANDSTONE: (100%) clear, opaque, translucent, noticeable loss of common light orange/brown Fe stained grains as above, fine to medium grain size, minor coarse, poor to moderately sorted, sub rounded to rounded, trace sub angular, minor very weak calcareous cement, trace pyrite cement, loss of pale brown argillaceous matrix which is present in the interval above, trace lithics, predominantly loose, poor inferred porosity, no fluorescence.	NIL GAS
777m-831m ROP 0.35-1.5min/m Av 0.7min/m	SANDSTONE: (100%) clear, translucent, off white, fine to medium grain size, minor coarse, poor to moderately sorted, sub angular to sub rounded, moderate weak siliceous cement, trace off white argillaceous matrix preserved under some grain contacts presume silty matrix is being washed out of the sample?, common quartz overgrowths, commonly moderately compacted, predominantly loose, poor inferred porosity, no fluorescence.	B/G TG 0 units Max T/G 130 units 82/8

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

	GEOLOGICAL SUMMARY	
INTERVAL 831m-862m ROP 0.45-8.0min/m Av 1.2min/m	LITHOLOGY SANDSTONE: (100%) clear, translucent, off white, light grey, fine to medium grain size, minor coarse, poor to moderately sorted, sub angular to sub rounded, minor weak siliceous cement, trace calcareous cement stringers? seen by drill bit towards the top of the zone, difficult to see in the sample, trace off white argillaceous matrix preserved under some grain contacts, presume silty matrix is being washed out of the sample?, common quartz overgrowths, commonly moderately compacted, predominantly loose, rare friable, poor inferred porosity, no fluorescence.	GAS B/G TG 0 units Max T/G 10 units 100
862m-875m ROP 2.5-6.4min/m Av 4min/m	PEMBER MUDSTONE CLAYSTONE: (100%) medium brown/ dark grey, pale green grey, argillaceous, commonly silty in part, occasionally grading to clay rich SILTSTONE, in part very fine quartz grains are entrained in the CLAYSTONE, trace to common medium to dark green glauconite which is generally associated with the pale grey CLAYSTONE, common carbonaceous specks in part especially associated with the siltier and dirtier looking CLAYSTONE, minor very fine carbonaceous specks, soft to firm, sub blocky.	NIL GAS
875m-913m ROP 0.85-2.3min/m Av 1.3 min/m	PEBBLE POINT FORMATION SANDSTONE: (90%) moderate yellow-brown, clear, translucent, fine to very coarse, predominantly medium to coarse, occasionally granular, sub rounded to rounded, fine to medium fraction is more subangular to subrounded, potentially diagentic surface features, poorly sorted, trace pyrite cement, minor weak siliceous cement, pale brown silty matrix washing out of sample?, large flat grain boundaries, predominantly loose, poor inferred porosity, no fluorescence. CLAYSTONE: (10%) pale to medium grey, pale brown grey, silty with minor very fine quartz grains, common dark green glauconite, minor fossils, echinoid spines, trace very fine carbonaceous specks, trace very fine mica specks, soft to firm, sub blocky.	B/G TG 0 units Max T/G 1 units 100
913m-978m ROP 0.5-4.2min/m Av 1.7min/m	PAARATTE FORMATION SANDSTONE: (75%) pale grey, pale grey/brown, clear to opaque, medium to very coarse grained, predominantly medium to coarse, poor to moderately sorted, subangular to sub rounded, occasional siliceous cement and quartz over growths, occasional pyrite cement, occasional Fe staining on quartz grains, predominantly loose quartz grains, minor dark grey/brown argillaceous matrix, poor to fair inferred porosity, no fluorescence. CLAYSTONE: (25%) medium to dark grey/ brown, dark brown/ grey in part, commonly calcareous, common fossil fragments, common dark green glauconite in part, minor pyrite nodules, soft to firm, occasionally dispersive, sub blocky.	NIL GAS

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

200	GEOLOGICAL SUMMARY	
INTERVAL	LITHOLOGY	GAS
978m-1062m	SANDSTONE: pale grey, clear translucent to opaque, fine to coarse	TRACE C1
ROP	grained, predominantly medium, poor to moderately sorted, subrounded to	
0.5-2.9min/m	rounded, common weak siliceous cement and quartz overgrowths,	
Av 1.2min/m	occasional pyrite cement locally, predominantly loose quartz grains, poor to fair inferred porosity, no fluorescence.	
	CLAYSTONE: medium to dark grey, pale grey/brown in part, commonly	
	calcareous, commonly silty, common fossil fragments, echinoid spines and	
	forams, minor pyrite nodules, soft to firm, occasionally dispersive, sub blocky to occasionally blocky.	
1062m-1106m ROP 0.8-2.5min/m Av 1.6min/m	SANDSTONE: (85%) clear translucent to opaque, pale grey, medium to very coarse grained, predominantly coarse, poorly sorted, subrounded to rounded, occasionally subangular, minor weak siliceous cement and quartz overgrowths, rare disseminated and nodular pyrite cement, trace pyrite cement, predominantly loose quartz grains, fair to good inferred porosity, no fluorescence.	TRACE C1
	CLAYSTONE: (15%) medium to dark grey, light grey brown, moderately calcareous, commonly silty in part, very fine arenaceous in part, minor fossil fragments, echonid spines and forams, trace carbonaceous specks, rare pyrite and trace glauconite, soft to firm, sub blocky to occasionally blocky.	
1106m-1131m ROP 0.8-2.5min/m Av 1.6min/m	SANDSTONE: (80%) clear translucent to opaque, pale grey, medium to coarse grained, predominantly coarse, poorly sorted, subrounded to rounded, occasionally subangular, common weak siliceous cement and quartz overgrowths, rare pyrite cement locally, trace disseminated pyrite, predominantly loose quartz grains, poor to fair inferred porosity, no fluorescence.	TRACE C1
	CLAYSTONE: (20%) medium to dark grey, trace medium green grey and dark brown grey, moderately calcareous, commonly silty in part, common fossil fragments, echonid spines and forams, minor glauconite, soft to firm, sub blocky.	
		I

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

	GEOLOGICAL SUMMARY	
INTERVAL	LITHOLOGY	GAS
1131m-1207m	SANDSTONE: (80%) clear translucent to opaque, pale grey, in part off	TRACE C1
ROP	white, medium to very coarse grained, predominantly coarse, poorly sorted,	
0.45-6.5min/m	subrounded to rounded, occasionally subangular, common weak siliceous	
Av 1.1min/m	cement and common quartz overgrowths, which make the depositional	
	quartz grains look very angular, rare pyrite cement locally, trace	
	disseminated pyrite, predominantly loose quartz grains, poor to fair inferred	
	porosity, minor good inferred porosity, no fluorescence.	
	CLAYSTONE: (10%) pale medium green/grey, minor medium and pale	-
	grey, moderately calcareous, dominantly argillaceous, commonly silty in	
	part, common fossil fragments, echinoid spines and forams, minor	
	glauconite, occasionally glauconite replaces fossils, soft to firm, sub blocky.	
	SILTSTONE: (10%) dark grey/dark brown grey, medium brown, trace to	
	locally common very fine arenaceous grading to very fine SANDSTONE,	
	commonly very dirty looking due to the amount of very fine carbonaceous	
	specks and flecks locally, minor mica specks, common pyrite nodules, soft	
	to moderately hard, sub blocky.	

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 18/02/01 (0600 Hours)

DEPTH: 1523m

PROGRESS: 260m

DAYS FROM SPUD: 7.4

OPERATION: DRILLING 6 3/4" HOLE IN THE NULLAWARRE FORMATION.

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$ (C&S)\$1,351,788

(C&S)\$

COST TO DATE: \$

CASING DEPTH: 428M

RIG: ODE #30

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.5m

GROUND LEVEL: 59.8m

MUD DATA (2400 Hours)	Type: KCL/PHPA	Wt: 8.9	Visc:	WL: 6	pH: 9	K +: 3.5	Cl ⁻ : 17,000	PV/YP: 10/7	Rmf:
BIT DATA (2400 Hours)	PRESENT LAST	No. 3	Make SE	Type FM 24	165	Size 6¾"	Hours 19.6	Footage 955M	Condition DRILLING
SURVEYS:	MD 415 720 990 1193 1405	INCLIN 1.63 1.5 1.6 1.75 1.3	ATION	AZIMUT 324 339 333 331 332	TH (T)		0	INCLINATIO 1.3 1.6 1.8 1.2	ON AZIMUTH (T) 342 332 315 332

PREVIOUS 24 HOURS OPERATIONS:

DRILL TO 1321M. CIRCULATE BOTTOMS UP AND PUMP PILL, SURVEY AT 1299M. PULL OUT OF HOLE FOR WIPER TRIP.TO SHOE WORKING TIGHT SPOTS AT 1009M AND 685M. SLIP 33FT OF LINE. RUN IN HOLE TO 684M WORK TIGHT SPOT. RUN IN HOLE TO 1294M. LAY OUT TOP SINGLES AND PULL UP KELLY. ATTEMPT TO BREAK CIRCULATION, STRING PACKED OFF AND STUCK WITH NIL CIRCULATION AT 1294M. WORK AND JAR TO MOVEMENT. REGAIN ROTATION, REGAIN CIRCULATION, WORK AND REAM TO FULL FREE. REAM FROM 1294M TO 1321M. DRILL ON TO 1427M. CIRCULATE AND SURVEY AT 1405M. DRILL 6 34" HOLE TO 1523M.

ANTICIPATED OPERATIONS:

DRILL AHEAD 6 3/4" EXPLORATION HOLE TO TD.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

FORMATION TOPS:	MDRT (m)	SS (m)	Thickness (m)	H/L TO PROG	H/L CALLISTA 1
GELLIBRAND MARL	151	86.5	324	N/P	N/P
CLIFTON FORMATION	475	410.5	33.5	1.5 m H	5.5m L
NARRAWATURK MARL	508	443.5	23	N/P	22.5m L
MEPUNGA SANDSTONE	532	467.5	85	N/P	2.5m L
DILWYN FORMATION	617	552.5	245	N/P	3.5 m L
PEMBER MUDSTONE	862	797.5	13	N/P	3.5 m L
PEBBLE POINT FORMATION	875	810.5	38	2.5 m L	16.5 m H
PAARATTE FORMATION	913	848.5	328	0.5 m H	29.5 m H
SKULL CREEK FORMATION	1241	1176.5	108	5.5 m H	9.5m H
NULLAWARRE SANDSTONE	1349	1284.5		0.5m H	3.5m H
BELFAST MUDSTONE					
`					

HYDROCARBON SHOW SUMMARY					
INTERVAL	LITHOLOGY	GAS			

	GEOLOGICAL SUMMARY	
INTERVAL	LITHOLOGY	GAS
1207m-1241m	SANDSTONE: (70%) clear translucent to opaque, pale grey, in part off	TRACE C1
ROP	white, medium to very coarse grained, predominantly coarse, common very	
0.55-3.3min/m	fine grained sandstone aggregates, poorly sorted, sub angular to	
Av 1.3min/m	predominantly sub rounded, very fine aggregates have common off white	
	silty matrix, kaolin ?, common weak to moderate siliceous cement and	
	common quartz overgrowths, which make the depositional quartz grains	
	look very angular, rare pyrite cement locally, trace disseminated pyrite,	
	predominantly loose quartz grains, fair inferred porosity, poor to fair visible	
	porosity in the fine aggregates (around 9% porosity), no fluorescence.	
	CLAYSTONE: (20%) pale to medium green/grey, minor medium and pale	
	grey, trace calcareous associated with fossil fragments, dominantly	
	argillaceous, commonly silty in part, locally common fossil fragments, echinoid spines and forams, rare branching bryozoans (identified by zooidal	
	structure), minor glauconite, soft to firm, sub blocky.	·
	SILTSTONE: (10%) medium brown/grey, commonly argillaceous, trace to	
	locally common very fine arenaceous grading to very fine SANDSTONE,	·
· .	commonly very dirty looking due to the amount of very fine carbonaceous	
	specks and flecks locally, rare carbonaceous laminations, minor mica	
	specks, common pyrite nodules, soft to moderately hard, sub blocky.	
	,	
1241m-1285m	SKULL CREEK FORMATION	B/G TG 0 units
ROP	CLAYSTONE: (70%) pale brown/grey, medium grey/brown, pale grey,	Max TG 1 unit
1.0-12.2min/m	predominantly argillaceous, silty in part, trace very fine arenaceous grading	100
Av 1.7 min/m	to SILTSTONE, locally common very fine carbonaceous specks and flecks	
	which along with trace mica specks make the CLAYSTONE look dirty,	
	soft, sticky, amorphous, minor sub blocky. (cont.)	

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

	GEOLOGICAL SUMMARY	
INTERVAL	LITHOLOGY	GAS
1241m-1285m	SANDSTONE: (20%) clear, translucent, smoky in part, minor off white to	
ROP	pale grey, dominantly medium to coarse, minor very coarse, trace fine to	
1.0-12.2min/m	very fine aggregates, poorly sorted, sub angular to sub rounded, moderate	
Av 1.7 min/m	weak siliceous cement, trace pyrite cement in part, rare off white	
	argillaceous matrix, common quartz overgrowths, trace pyrite nodules,	
	dominantly loose, trace firm to moderately hard aggregates, fair inferred	
	porosity, poor visual porosity, no fluorescence.	
	SILTSTONE: (10%) dark grey to dark brown, arenaceous, abundant pyrite	
	nodules, common carbonaceous flecks, trace mica specks, soft to firm sub	
	blocky.	
1285m-1321m	CLAYSTONE: (90%) medium to dark brown grey, minor medium grey,	B/G TG 0 units
ROP	predominantly argillaceous, silty in part, trace to locally common very fine	Max TG 30 units
0.9-4.1min/m	carbonaceous specks and flecks, trace micromicaceous, soft, amorphous,	TR/8/51/41
Av 2.4 min/m	sub blocky.	
	SANDSTONE: (10%) clear, translucent, pale grey, dominantly medium to	
	coarse, minor very coarse, poorly sorted, sub angular to sub rounded,	,
	moderate weak siliceous cement, trace pyrite cement in part, rare off	
	white/pale grey argillaceous matrix, minor quartz overgrowths, trace pyrite nodules, dominantly loose, fair inferred porosity, no fluorescence.	
	nodules, dominantly roose, rail interred porosity, no indorescence.	
1321m-1349m	SANDSTONE: (90%) pale grey, clear, translucent, fine to very coarse,	B/G TG 4 units
ROP	predominantly medium to coarse, minor very coarse, poorly sorted, sub	Max TG 30 units
0.9-4.1min/m	rounded to rounded, minor weak siliceous cement, minor off white/pale	TR/8/51/41
Av 2.4 min/m	grey argillaceous matrix, minor quartz overgrowths, common disseminated	
	pyrite, occasional Fe stained grains, moderately flat grain boundaries on the	
	larger grains, dominantly loose, fair inferred porosity, no fluorescence.	
	CLAYSTONE: (10%) pale grey, pale grey brown, trace pale green grey,	
	very argillaceous, locally commonly silty, trace to locally common very fine	
	carbonaceous specks, minor micromicaceous, soft, dispersive in part, amorphous, sub fissile.	
	amorphous, suo fissile.	
1349m-1403m	NULLAWARRE FORMATION	B/G TG 9 units
ROP	SANDSTONE: (100%) dominantly pale green, clear, translucent,	Max TG 10 units
0.5-3.0min/m	occasionally yellow, fine to very coarse, dominantly medium to coarse,	31/10/33/26
Av 1.2min/m	moderate to poorly sorted, predominantly sub rounded to rounded,	
	occasionally well rounded, minor weak siliceous cement, common light	
	green/grey matrix, common to abundant glauconite pellets, minor	
	disseminated pyrite, loose, fair to good inferred porosity, no fluorescence.	
		L

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

	GEOLOGICAL SUMMARY	
INTERVAL	LITHOLOGY	GAS
1403m-1448m	SANDSTONE: (90%) dominantly clear to translucent, common light	B/G TG 10 units
ROP	yellow and light green, dominantly medium to coarse, trace very coarse, sub	Max TG 23 units
0.5-3.0min/m	angular to sub rounded, moderately well sorted, minor weak siliceous	65/6/13/16
	cement, rare off white argillaceous matrix, common glauconite pellets, trace	
	calcareous grains, trace pyrite nodules, occasional quartz overgrowths, fair	
	inferred porosity, no fluorescence.	
•	CLAYSTONE (10%) pale green, light to medium grey, very argillaceous,	
	trace calcareous in part, trace to locally abundant glauconite specks,	
	dominantly soft and amorphous, minor firm and sub blocky.	
1448m-1513m	SANDSTONE: (80%) dominantly clear to translucent, common light	B/G TG 20 units
ROP	yellow and light green, dominantly medium to coarse, trace very coarse,	Max TG 230 units
0.5-3.0min/m	well to very well sorted, sub angular to sub rounded, minor weak siliceous	82/12/5/1
	cement, rare off white argillaceous matrix, abundant green/black glauconite	02/12/3/1
	pellets increasing with depth, occasional quartz overgrowths, fair inferred	
	porosity, no fluorescence.	
	CLAYSTONE (20%) medium to dark brown grey, olive brown, very	
	argillaceous, silty in part, grading to glauconitic SILTSTONE, trace	
	calcareous in part, abundant green/black glauconite pellets, dominantly	
	firm, minor soft, sub blocky.	
		·

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 19/02/01 (0600 Hours)

DEPTH: 1803m

PROGRESS: 271m

DAYS FROM SPUD: 8.4

OPERATION: PULLING OUT OF HOLE ON WIPER TRIP

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$

COST TO DATE: \$ 840,323

(C&S)\$1,351,788

CASING DEPTH: 428M

RIG: ODE #30

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.5m

GROUND LEVEL: 59.8m

MUD DATA	Type:	Wt:	Visc:	WL:	pH:	K +:	Cl ⁻ :	PV/YP:	Rmf:
(2400 Hours)	KCL/PHPA	9.2	43	7	9	4	20,000	11/7	
BIT DATA	PRESENT	No.	Make	Type		Size	Hours	Footage	Condition
(2400 Hours)	LAST	3	SE	FM 2		6¾"	34.2	1303M	TD
SURVEYS:	MD 415 720 990 1193 1405 1685	INCLIN. 1.63 1.5 1.6 1.75 1.3 1.2	ATION	AZIMU 324 339 333 331 332 338	ГН (Т)	12	0	INCLINATIO 1.3 1.6 1.8 1.2 1.3	ON AZIMUTH (T) 342 332 315 332 12

PREVIOUS 24 HOURS OPERATIONS:

DRILL 6 3/4" HOLE TO 1427M. CICULATE AND SURVEY AT 1405M. DRILL HOLE FROM 1427 TO 1543M. SERVICE RIG. SURVEY AT 1525M. DRILL 6 3/4" HOLE TO 1697M. CIRCULATE AND SURVEY. DRILL 6 3/4" HOLE FROM 1697M TO 1803M. TOTAL DEPTH REACHED 06:00HRS ON 19-2-01.

ANTICIPATED OPERATIONS:

WIPER TRIP TO SHOE PULL OUT OF HOLE FOR WIRELINE LOGS.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 19/02/01 (0600 Hours)

FORMATION TOPS:	MDRT (m)	SS (m)	Thickness (m)	H/L TO PROG	H/L CALLISTA 1
GELLIBRAND MARL	151	86.5	324	N/P	N/P
CLIFTON FORMATION	475	410.5	33.5	1.5 m H	5.5m L
NARRAWATURK MARL	508	443.5	23	N/P	22.5m L
MEPUNGA SANDSTONE	532	467.5	85	N/P	2.5m L
DILWYN FORMATION	617	552.5	245	N/P	3.5 m L
PEMBER MUDSTONE	862	797.5	13	N/P	3.5 m L
PEBBLE POINT FORMATION	875	810.5	38	2.5 m L	16.5 m H
PAARATTE FORMATION	913	848.5	328	0.5 m H	29.5 m H
SKULL CREEK FORMATION	1241	1176.5	108	5.5 m H	9.5m H
NULLAWARRE SANDSTONE	1349	1284.5	69	0.5m H	2.5m H
BELFAST MUDSTONE	1418	1353.5	104	180.5 m H	144.5 m H
FLAXMANS FORMATION	1522	1457.5	14	162.5 m H	68.5 m H
WAARRE FORMATION .	1536	1471.5	59	173.5 m H	117.5 m H
EUMERALLA FORMATION	1595	1530.5		168.5 m H	122.5 m H

	HYDROCARBON SHOW SUMMARY	
INTERVAL	LITHOLOGY	GAS
1524m-1528m	SANDSTONE: pale grey, pale brown/yellow, clear translucent, fine to	B/G TG 100units
ROP	coarse, predominantly medium, sub rounded to rounded, moderately well	Max TG 800units
1.0-3.0min/m	sorted, trace weak siliceous cements, abundant off white silty kaolin matrix	88/7/3/2
Av 1.8min/m	(10-20micron booklet size, microsucrosic), kaolin lines the pore network	
	and would preserve some permeability, common glauconite, predominantly	
	loose, minor friable, fair to good inferred porosity, fair visible porosity,	
	(most visible porosity is associated with the kaolin matrix, no fluorescence.	
	·	
1534m-1553m	SANDSTONE: clear, translucent, pale to medium grey/green, fine to very	B/G TG 120units
ROP	coarse, predominantly fine to medium, sub angular to sub rounded, trace	Max TG 3000units
0.8-3.8min/m	rounded, poor to moderate sorting, minor weak siliceous cement, minor off	78/14/6/2
Av 1.4min/m	white silty kaolin matrix (5-15micron booklet size, microsucrosic), kaolin	а
	lines the pore network and would preserve some permeability, abundant	
	green/black glauconite pebbles, common quartz overgrowths,	
	predominantly loose, minor friable, fair to occasionally good inferred	
	porosity, poor visible porosity, (most visible porosity is associated with the	
	kaolin matrix, no fluorescence.	

AND THE STATE

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 19/02/01 (0600 Hours)

HYDROCARBON SHOW SUMMARY **INTERVAL** LITHOLOGY GAS 1555m-1575m SANDSTONE: off white, clear, translucent, pale grey, very fine to medium, B/G TG 200units ROP occasionally very coarse, predominantly fine to medium, sub angular to sub Max TG 4000units rounded, moderate sorting, minor weak siliceous cement, minor off white 1.0-8.5min/m 80/13/5/2 Av 2.3min/m silty kaolin matrix (5-15micron booklet size, microsucrosic), kaolin lines the pore network and would preserve some permeability, common quartz overgrowths, predominantly loose, minor friable, trace moderately hard, poor to fair inferred porosity, poor visible porosity, (as above most visible porosity is associated with the kaolin matrix), no fluorescence. NO SHOWS IN THE WAARRE FORMATION. THIS MAY BE DUE TO THE SANDY NATURE OF THE OVERLYING BELFAST MUDSTONE. AN INTRAFORMATIONAL SEAL? IN THE NULLAWARRE **APPEARS** TO BE ABLE TRAP TO. **HYDROCARBONS** IN THE LOWER **NULLAWARRE** FORMATION.

The William Control of the Control o	AVERAGE AND	
	GEOLOGICAL SUMMARY	
INTERVAL	LITHOLOGY	GAS
1513m-1534m	SANDSTONE: (65%) pale grey, pale brown/yellow, clear translucent, fine	B/G TG 100units
ROP	to coarse, predominantly medium, sub rounded to rounded, moderately well	Max TG 800units
1.0-3.4min/m	sorted, trace weak siliceous cements, abundant off white silty kaolin matrix	88/7/3/2
Av 1.9min/m	(10-20micron booklet size, microsucrosic), kaolin lines the pore network	
	and would preserve some permeability, common glauconite, predominantly	•
	loose, minor friable, fair to good inferred porosity, fair visible porosity,	
	(most visible porosity is associated with the kaolin matrix, no fluorescence.	
	CLAYSTONE: (35%) pale grey, pale medium grey/green, minor	
	olive/brown, argillaceous, commonly locally silty, trace pyrite nodules,	
	abundant glauconite, grading to glauconitic SILTSTONE, commonly	
	micromicaceous, common very fine carbonaceous specks, soft, sticky,	
	dispersive, amorphous.	
		·
1534m-1555m	SANDSTONE: (80%) clear, translucent, pale to medium grey/green, fine to	B/G TG 120units
ROP	very coarse, predominantly fine to medium, sub angular to sub rounded,	Max TG 3000units
0.8-5.2min/m	trace rounded, poor to moderate sorting, minor weak siliceous cement,	78/14/6/2
Av 2.3min/m	minor off white silty kaolin matrix (5-15micron booklet size,	
	microsucrosic), kaolin lines the pore network and would preserve some	
	permeability, abundant green/black glauconite pebbles, common quartz	
	overgrowths, predominantly loose, minor friable, fair to occasionally good	
	inferred porosity, poor visible porosity, (most visible porosity is associated	·
	with the kaolin matrix, no fluorescence.	
	CLAYSTONE: (20%) pale grey, pale medium brown/grey, medium to dark	
	grey, argillaceous, commonly silty in part, occasionally grading to clay rich	·
	SILTSTONE, trace pyrite, common dark green glauconite, common fine	
	carbonaceous specks, minor micromicaceous, soft, dispersive, occasionally	
	firm, sub blocky.	

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 19/02/01 (0600 Hours)

GEOLOGICAL SUMMARY INTERVAL LITHOLOGY **GAS** 1555m-1583m SANDSTONE: (90%) off white, clear, translucent, pale grey, very fine to B/G TG 200units ROP medium, occasionally very coarse, predominantly fine to medium, sub Max TG 4000units 1.0-8.2min/m angular to sub rounded, moderate sorting, minor weak siliceous cement, 80/13/5/2 Av 2.6min/m minor off white silty kaolin matrix (5-15micron booklet size, microsucrosic), kaolin lines the pore network and would preserve some permeability, common quartz overgrowths, predominantly loose, minor friable, trace moderately hard, poor to fair inferred porosity, poor visible porosity, (as above most visible porosity is associated with the kaolin matrix, no fluorescence. CLAYSTONE: (10%) pale grey, pale medium brown/grey, medium to dark grey, argillaceous, commonly silty in part, common dark green glauconite, trace pyrite, common fine carbonaceous specks, minor micromicaceous, soft, dispersive, occasionally firm, sub blocky. 1583m-1605m SANDSTONE: (65%) off white, clear, translucent, pale grey, fine to B/G TG 200units ROP medium, occasionally very coarse, predominantly medium, sub angular to Max TG 300units 1.2-5.9min/m sub rounded, moderate sorting, minor weak siliceous cement, trace off 90/6/3/1 Av 3.1min/m white silty kaolin matrix, minor quartz overgrowths, minor to common locally medium to dark green glauconite, predominantly loose, minor friable, poor inferred porosity, poor visible porosity, no fluorescence. CLAYSTONE: (35%) pale to medium olive brown, pale grey/green, silty in part, occasionally grading to slightly argillaceous glauconitic SILTSTONE, abundant medium to dark, glauconite, commonly micromicaceous, common very fine carbonaceous specks associated preferentially with the olive brown CLAYSTONE, dispersive, soft, occasionally sub fissile. **BELFAST MUDSTONE** 1605m-1638m B/G TG 40units ROP SANDSTONE: (60%) off white, clear to translucent, pale grey/green, trace Max TG 100units 2.0-8.0 min/m iron stained grains, fine to very coarse, predominantly medium, sub angular 99/7/3/1 to sub rounded, moderate to minor well sorted, minor weak siliceous Av 3.3min/m cement, common off white silty kaolin matrix, minor to common locally medium to dark green glauconite, trace pyrite, predominantly loose, minor friable, poor inferred porosity, poor visible porosity, no fluorescence. CLAYSTONE: (40%) pale to medium olive brown, pale grey/green, silty in part, occasionally grading to slightly argillaceous glauconitic SILTSTONE, abundant medium to dark, glauconite, commonly micromicaceous, common very fine carbonaceous specks associated preferentially with the olive

brown CLAYSTONE, dispersive, soft, occasionally sub fissile.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CEOLOCICAL CHAMANA	production of the state of the
INTERVAL	GEOLOGICAL SUMMARY LITHOLOGY	GAS
1638m-1683m ROP 1.8-9.0min/m Av 4.5min/m	CLAYSTONE: (40%) predominantly pale green/grey, minor dark olive/grey, medium brown, dark olive/grey CLAYSTONE has common carbonaceous specks and common micromicaceous, pale green/grey CLAYSTONE has common very fine glauconite grains locally, soft to firm, sub blocky. SANDSTONE: (60%) off white, pale grey/green, clear, translucent, fine to medium, predominantly medium, sub angular to sub rounded, moderate to well sorted, minor weak siliceous cement, common off white silty kaolin matrix, trace glauconite, predominantly loose, minor friable, poor inferred porosity, poor visible porosity, no fluorescence.	B/G TG 40units Max TG 90units 87/9/3/1
1683m-1710m ROP 3.5-8.1min/m Av 4.7min/m	FLAXMANS FORMATION SANDSTONE: (60%) (1) pale to medium grey becoming off white with depth, very fine to fine grained, subrounded to sub angular, moderately well sorted, trace calcareous and moderate siliceous cement, common medium green glauconite grains, firm to moderately hard, poor visual porosity, no fluorescence.(2) clear to opaque to translucent quartz, medium to coarse grain size, predominantly medium, sub angular to sub rounded, poorly sorted, trace glauconite, off white silty matrix washed away?, poor to fair inferred porosity, no fluorescence. SILTSTONE: (TRACE) off white, minor pale brown, common very fine arenaceous grading to very fine SANDSTONE, minor carbonaceous specks, minor glauconite, soft to firm, occasionally moderately hard, sub blocky. CLAYSTONE: (40%) pale green/grey, pale brown, very argillaceous, minor to common glauconite locally, soft, dispersive, amorphous.	B/G TG 30units Max TG 180units 88/9/4/1
1710m-1739m ROP 2.0-8.0min/m Av 3.5min/m	WAARRE FORMATION SANDSTONE: pale grey, opaque to translucent, fine to coarse lower, minor very coarse, becoming predominantly fine to medium with depth, sub angular to sub rounded, poor to moderately sorted, trace siliceous cement, trace to common off white argillaceous matrix, common medium green glauconite, predominantly loose, minor friable, fair to good inferred porosity, poor visual porosity, no fluorescence. SILTSTONE: off white, minor pale brown, commonly very fine arenaceous, grading to very fine SANDSTONE, minor pale green glauconite, common micromicaceous, soft to firm, occasionally moderately hard. CLAYSTONE: pale grey, off white, minor pale brown, minor medium blue/grey, very fine arenaceous in part, grading to very argillaceous SILTSTONE, minor pale green glauconite, soft, sticky to firm, sub blocky to amorphous.	B/G TG 100units Max TG 200units 91/6/2/1

ara gragui

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

		GEOLOGICAL SUMMARY	
	INTERVAL	LITHOLOGY	GAS
١	1739m-1762m	SANDSTONE: off white clear, translucent, pale grey/green, fine to	B/G TG 100units
	ROP	medium, minor very coarse, becoming finer grained with depth, sub angular	
	1.8-6.0min/m	to sub rounded, becoming more rounded with depth, poor to moderately	92/6/1/1
	Av 3.5min/m	sorted, trace siliceous cement, trace to common off white argillaceous	
		matrix, matrix supported quartz grains, minor medium green glauconite,	
		predominantly loose, minor friable, poor to fair inferred porosity, poor	
		visual porosity, no fluorescence.	
		CLAYSTONE: pale grey, medium brown grey, silty in part grading to	
		argillaceous SILTSTONE, locally micromicaceous, trace carbonaceous	
	i	specks, minor pale green glauconite, dispersive, soft to amorphous.	
	1762m-1802m	EUMERALLA FORMATION	B/G TG 100units
	ROP	SANDSTONE: off white, pale grey/green, clear, translucent, very fine to	
	2.01-2.9min/m	medium, sub angular to sub rounded, moderately well sorted, trace siliceous	
	Av 4.0min/m	cement, common pale grey/off white argillaceous matrix, matrix supported	, , , , , , , , , , , , , , , , , , , ,
		quartz grains, common pale green volcanic lithics, minor brick red lihics,	
		loose, poor to fair inferred porosity, no fluorescence.	•
*		CLAYSTONE: pale grey, pale medium brown, silty in part grading to	
		argillaceous SILTSTONE, locally micromicaceous, rare carbonaceous	
		specks, minor pale green glauconite, dispersive, soft to amorphous, pale	
		medium brown aggregates are commonly sub fissile.	
1			

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 20/02/01 (0600 Hours)

DEPTH: 1803m

PROGRESS: 0m

DAYS FROM SPUD: 9.4

OPERATION: RIGGING UP SIDEWALL CORE GUN.

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$

(C&S)\$1,351,788

&A)\$ COST TO DATE: \$840,323 (19/2/01)

(C&S)\$

CASING DEPTH: 425M

RIG: ODE #30

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.5m

GROUND LEVEL: 59.8m

MUD DATA (2400 Hours)	Type: KCL/PHPA	Wt: 9.4	Visc: 50	WL: 5	pH: 9.5	K +: 4.5	Cl ⁻ : 22,000	PV/YP: 14/14	Rm -	nf:
BIT DATA (2400 Hours)	PRESENT LAST	No. 3	Make SE	Typ FM	e 2465	Size 6 3/4"	Hours 38.7	Footage 1369M		ndition -CT-S-X-IN-WT-
SURVEYS:	MD 1193 1405 1685 1790	INCLIN 1.75 1.3 1.2 1.2	ATION	AZIMU 331 332 338 342	JTH (T)	1:	.99 525	INCLINATI 1.2 1.3 1.2	<u>ON</u>	AZIMUTH (T) 332 12 338

PREVIOUS 24 HOURS OPERATIONS:

PULL OUT OF HOLE FOR WIPER TRIP FROM 1803M TO SHOE AT 425M. WORK TIGHT HOLE BETWEEN 1380 AND 1420M CLEAN. RUN IN HOLE FROM 425M TO 1781M. ATTEMPT TO BREAK CIRCULATION. NO GO BUT HOLE WORKING SLICK. ROTATE AT 140 RPM AND LOCK 1000PSI ON STRING. SLOWLY GAIN CIRCULATION. REAM FROM 1781M TO 1803M. CIRCULATE HOLE CLEAN AND LOW GAS- PEAK 240 UNITS. FLOW CHECK, STATIC. SURVEY AT 1790M. PULL OUT OF HOLE FOR WIRELINE LOGGING FROM 1803M AND RACK BOTTOM HOLE ASSEMBLY. BREAK BIT AND CLEAR RIG FLOOR. RIG UP REEVES WIRELINE LOGGING. HOLD PRE JOB SAFETY MEETING. RUN IN HOLE TO TOTAL DEPTH AND LOG RUN 1 GR-DLS-MRS-LCS. ACQUIRE MAIN LOG TO 1300M. RUN BACK TO TOTAL DEPTH. ACQUIRE WAVEFORM TAPING DATA. ONE COMPUTER HARD DRIVE AND BOTH MAGNETIC TAPE RECORDERS FAILED. ONLY RECORDED WAVEFORM DATA TO 1540M DUE TO MEMORY CONSTRAINTS (REQUIRED TO 1330M). WILL ATTEMPT OBTAINING WAVEFORM TAPING DATA ONCE NEW MAGNETIC DRIVE ARRIVES AROUND LUNCH TIME TODAY. LOG OUT MAIN LOG AND RIG DOWN RUN 1. (LOG MAKE CORRECTION OF TOPS OF APPROXIMATELY 180M BELFAST/FLAXMANS, WAARRE AND EUMERALLA FORMATIONS). RIG UP RUN 2, SGS-PDS-CNS. RUN IN HOLE. LOG OUT. RIG DOWN RUN 2. RIG UP RUN 3 SIDEWALL CORES.

ANTICIPATED OPERATIONS:

RUN IN HOLE WITH SIDEWALL CORE GUN AND TAKE 24 POINTS.

Sell Militaria

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

FORMATION TOPS:	MDRT (m)	SS (m)	Thickness (m)	H/L TO PROG	H/L CALLISTA
GELLIBRAND MARL	151	86.5	324	N/P	N/P
CLIFTON FORMATION	475	410.5	33.5	1.5 m H	5.5m L
NARRAWATURK MARL	508	443.5	23	N/P	22.5m L
MEPUNGA SANDSTONE	532	467.5	85	N/P	2.5m L
DILWYN FORMATION	617	552.5	245	N/P	3.5 m L
PEMBER MUDSTONE	862	797.5	13	N/P	3.5 m L
PEBBLE POINT FORMATION	875	810.5	38	2.5 m L	16.5 m H
PAARATTE FORMATION	913	848.5	328	0.5 m H	29.5 m H
SKULL CREEK FORMATION	1241	1176.5	108	5.5 m H	9.5m H
NULLAWARRE SANDSTONE	1349	1284.5	69	0.5m H	2.5m H
BELFAST MUDSTONE	1418	1353.5	104	180.5 m H	144.5 m H
FLAXMANS FORMATION	1522	1457.5	14	162.5 m H	68.5 m H
WAARRE FORMATION	1536	1471.5	59	173.5 m H	117.5 m H
EUMERALLA FORMATION	1595	1530.5		168.5 m H	122.5 m H

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 21/02/01 (0600 Hours)

DEPTH: 1803m

PROGRESS: 0m

DAYS FROM SPUD: 10.4

OPERATION: RIGGING DOWN REPEAT FORMATION SONDE.

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.5m

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$

(C&S)\$

COST TO DATE: \$ 901,212

CASING DEPTH: 425M

(C&S)\$1,351,788

The state of the state of the

RIG: ODE #30

GROUND LEVEL: 59.8m

MUD DATA (2400 Hours)	Туре: КСL/РНРА	Wt: 9.4	Visc: 50		р Н : 9.5	K +: 4.5	Cl ⁻ : 22,000	PV/YP: 14/14	Rmf:
BIT DATA (2400 Hours)	PRESENT LAST	No. 3	Make SE	Type FM 2465		Size Hours 6 3/4" 38.7		Footage 1369M	Condition 2-6-CT-S-X-IN- WT-TD
SURVEYS:	<u>MD</u> 1193 1405 1685 1790	INCLIN 1.75 1.3 1.2 1.2	ATION	AZIMUTE 331 332 338 342	I (T)	15	99	INCLINATIO 1.2 1.3 1.2	ON AZIMUTH (T) 332 12 338

PREVIOUS 24 HOURS OPERATIONS:

REEVES WIRELINE LOGGING, MAKE UP LOG RUN 2 SGS-PDS-CNS. RUN IN HOLE LOG AND THEN PULL OUT AND RIG DOWN. PREPARE AND MAKE UP PROGRAMMED RUN 4 SIDEWALL CORES. GAMMA RAY FAILURE WITH NIL BACKUP. RIG DOWN SIDE WALL CORE GUN. RERUN RUN 1B (WAVEFORM TAPING). FAILURE AT TRUCK WITH DEPTH COUNTER. PULL OUT OF HOLE AND RECTIFY FAULT. RERUN 1C RUN IN HOLE AND LOG INTERVAL 1543M-1490M. PULL OUT OF HOLE RIG DOWN TOOLS. WAIT ON TECHNICIAN AND SAMPLING KIT FOR REPEAT FORMATION SONDE RUN 3. ATTEMPT REPAIR GAMMA RAY FROM SIDEWALL CORE, NO GO. TECHNICIAN ARRIVE 13:00 HRS. REPEAT FORMATION SONDE TOOLS ARRIVE 16:45 HOURS. DRESS AND SERVICE REPEAT FORMATION TOOL STRING. HOLD PREJOB SAFETY MEETING. MAKE UP RUN 3 AND RUN IN HOLE. CONDUCT PRESSURE SURVEYS. 20 SURVEY POINTS BETWEEN 1356.5M AND 1742.5M WITH SAMPLING AT 1545.7M. PULL REPEAT FORMATION SONDE OUT OF HOLE. CHECK SAMPLED GAS ON SIGHT WITH GEOSERVICES GAS EQUIPMENT, 1.33% CO2 AND 2452 UNITS OF HYDROCARBON 48%.

ANTICIPATED OPERATIONS:

RUN IN HOLE WITH SIDEWALL CORE GUN AND TAKE 20 POINTS.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 21/02/01 (0600 Hours)

FORMATION TOPS:	MDRT (m)	SS (m)	Thickness (m)	H/L TO PROG	H/L CALLISTA 1
GELLIBRAND MARL	151	86.5	324	N/P	N/P
CLIFTON FORMATION	475	410.5	33.5	1.5 m H	5.5m L
NARRAWATURK MARL	508	443.5	23	N/P	22.5m L
MEPUNGA SANDSTONE	532	467.5	85	N/P	2.5m L
DILWYN FORMATION	617	552.5	245	N/P	3.5 m L
PEMBER MUDSTONE	862	797.5	13	N/P	3.5 m L
PEBBLE POINT FORMATION	875	810.5	38	2.5 m L	16.5 m H
PAARATTE FORMATION	913	848.5	328	0.5 m H	29.5 m H
SKULL CREEK FORMATION	1241	1176.5	108	5.5 m H	9.5m H
NULLAWARRE SANDSTONE	1349	1284.5	69	0.5m H	2.5m H
BELFAST MUDSTONE	1418	1353.5	104	180.5 m H	144.5 m H
FLAXMANS FORMATION	1522	1457.5	14	162.5 m H	68.5 m H
WAARRE FORMATION	1536	1471.5	59	173.5 m H	117.5 m H
EUMERALLA FORMATION	1595	1530.5		168.5 m H	122.5 m H

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 22/02/01 (0600 Hours)

DEPTH: 1803m

PROGRESS: 0m

DAYS FROM SPUD: 11.4

OPERATION: RUNNING 3 1/2" PRODUCTION CASING.

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$

COST TO DATE: \$

(C&S)\$1,351,788

(C&S)\$

CASING DEPTH: 425M

RIG: ODE #30

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.5m

GROUND LEVEL: 59.8m

MUD DATA (2400 Hours)	Type: KCL/PHPA	Wt: 9.5	Visc:	WL:	pH: 9	K +: 4.3	Cl ⁻ : 21000	PV/YP: 15/12	Rmf:
BIT DATA (2400 Hours)	PRESENT LAST	No. Make 3 SE		Type FM 2465		Size Hours 6 34" 38.7		Footage 1369M	Condition 2-6-CT-S-X-IN- WT-TD
SURVEYS:	MD 1193 1405 1685 1790	INCLIN 1.75 1.3 1.2 1.2	ATION	AZIMU 331 332 338 342	JTH (T)	1:	<u>D</u> 1999 525 585	INCLINATIO 1.2 1.3 1.2	ON AZIMUTH (T) 332 12 338

PREVIOUS 24 HOURS OPERATIONS:

RIG DOWN REPEAT FORMATION SONDE. HOLD RADIO SILENCE MEETING. RIG UP RUN 4 SIDEWALL CORE GUN. 24 SHOTS. 21 BULLETS RECOVERED, 2 INCOMPLETE FORMATION RECOVERIES, 2 NOT SHOT AND 1 LOST BULLET (19 VALID SIDEWALL CORES). PULL OUT SIDEWALL CORE GUN AND RIG DOWN TOOL AND SHEAVES. LAY OUT MONEL DRILL COLLAR, PONY DRILL COLLAR AND STABILISER. MAKE UP BIT AND BOTTOM HOLE ASSEMBLY AND RUN IN HOLE TO SHOE AT 424M FOR WIPER TRIP TO 1762M. BREAK CIRCULATION AFTER INITIAL PACK OFF, WASH AND REAM FROM 1762M TO 1803M. CIRCULATE BOTTOMS UP, HOLE CLEAN AND LOW GAS COUNT. FLOW CHECK STATIC. PUMP PILL AND PULL OUT OF HOLE FROM 1803M TO 240M LAYING DOWN DRILL PIPE. PICK UP KELLY AND SOFT BREAK CONNECTIONS. LAY OUT BOTTOM HOLE ASSEMBLY BREAK BIT. MAKE ASSEMBLY AND RETRIEVE WEAR BUSHING. RIG UP PREMIUM CASING SERVICES TO RUN CASING. MAKE UP SHOE AND FLOAT TRACK. TEST FLOATS OKAY. RUN 3 1/2" PRODUCTION CASING.

ANTICIPATED OPERATIONS:

RUN 3 1/2' PRODUCTION CASING.

A.C.N. 007 550 923

WELL PROGRESS REPORT

McINTEE 1

DATE: 23/02/01 (0600 Hours)

DEPTH: 1803m

PROGRESS: 0m

DAYS FROM SPUD: 12.4

OPERATION: RIG RELEASED AT 0600 HOURS

NOPE COST (P&A)\$1,083,179 FINAL FORECAST COST (P&A)\$

COST TO DATE: \$

(C&S)\$1,351,788

(C&S)\$

CASING DEPTH: 425M

RIG: ODE #30

PROGRAMMED TD: 1798m (MD) ROTARY TABLE: 64.5m

GROUND LEVEL: 59.8m

MUD DATA (2400 Hours)

Type:

Wt:

No.

Visc:

Make

pH:

K +:

Cl -:

PV/YP: Rmf:

1/0

KCL/PHPA

8.4

0

WL:

Size

Hours

Footage

Condition

BIT DATA (2400 Hours) **PRESENT**

LAST

SURVEYS:

MD

INCLINATION

AZIMUTH (T)

Type

MD

INCLINATION

AZIMUTH (T)

PREVIOUS 24 HOURS OPERATIONS:

MAKE UP SHOE AND FLOAT TRACK, TEST FLOATS - OK, RUN 3 1/2" CASING TO 1677M, MAKE UP CIRCULATING SWAGE AND CIRCULATE CASING, TREAT 75 BBLS WITH IDCIDE AND TO PH 10+, PUMP PREFLUSH, MAKE UP CEMENT HEAD, DOWELL PRESSURE TEST LINES, DROP BOTTOM PLUG, DOWELL MIX AND PUMP 168 BBLS, 11.5 PPG LEAD AND 28 BBLS 15.6 PPG TAIL CEMENT, FLUSH TO HEAD, DROP TOP PLUG, DISPLACE CEMENT WITH RIG PUMPS, BUMP PLUG, DOWELL PRESSURE TEST CASING TO 2500 PSI / 10 MINUTES - OK, BLEED BACK 1/2 BBLS, FLOATS HOLDING, WAIT ON CEMENT AND MONITOR WELL OVER TRIP TANK, PREPARE TO NIPPLE DOWN BLOW OUT PREVENTORS, DUMP AND CLEAN PITS, LOWER AND SET 3 1/2" CASING SLIPS, SET WITH 55K OVERPULL, RAISE BLOW OUT PREVENTORS AND ROUGH CUT CASING AT 10", LAY OUT KELLY, RAT HOLE AND MOUSE HOLE, RIG DOWN V-DOOR AND CATWALK AND REMOVE, NIPPLE DOWN BLOW OUT PREVENTORS AND LAY OUT SAME, FINAL CUT, DRESS AND BEVEL CASING STUMP, INSTALL AND NIPPLE UP ADAPTOR FLANGE, RIG RELEASE McINTEE 1 AT 0600 HOURS ON 23/02/01.

ANTICIPATED OPERATIONS:

RIG DOWN AND RIG MOVE OPERATIONS.

SECTION 3: HYDROCARBON SHOWS

No oil shows were recorded. See Well Progress Reports for gas shows. **SECTION 4: WIRELINE LOGGING REPORTS**

SECTION 4 (a): LOGGING ORDER FORM

A.C.N. 007 550 923

REVISION 1.0 (DATE: 22/11/96)

WELL: McINTEE #1 FIELD: WILDCAT RIG: OD & E 30 STATE: VIC LOCATION: INLINE 2447, CDP 10254 CURDIEVALE 3D LATITUDE: 38 29 21.10" S LONGITUDE: 142 49 21.18" E ELEVATIONS GL: 59.8m RT: 64.5m DF: 4.7m 97/8" HOLE: 433m 75/8" CSG: 425m WT: 26.4 LB/FT 63/4" HOLE: 1803m TD 31/2" CSG: 1677.5m WT: 93 LB/FT TD (Drir.): 1803m TD TD (Logr.): 1794.8m MUD SYSTEM: KCL/PHPA/POLYMER CIRCULATION STOPPED: 12.40 HRS ON 19-2-01 WT: 9.4 VISC: 47 PV/YP: 12/14 PH: 9 FLUID LOSS: 6 CHL: 22,000 GEOLOGIST: TIM CONROY RNFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDISTIONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PGOGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.		LOGG.	ING ORDI		
RIG: OD & E 30 STATE: VIC LOCATION: INLINE 2447, CDP 10254 CURDIEVALE 3D LATITUDE: 38 29 21.10" S GL: 59.8m RT: 64.5m DF: 4.7m DF: 4.7m	COMPANY:	SANTOS LTD & BEACH PETROLEU	JM		
LOCATION: INLINE 2447, CDP 10254 CURDIEVALE 3D LATITUDE: 38 29 21.10" S LONGITUDE: 142 49 21.18" E ELEVATIONS GL: 59.8m RT: 64.5m DF: 4.7m 97/8" HOLE: 433m 77 5/8" CSG: 425m WT: 26.4 LB/FT 63/4" HOLE: 1803m TD 31/2" CSG: 1677.5m WT: 93 LB/FT TD (Drlr.): 1803m TD TD (Logr.): 1794.8m MUD SYSTEM: KCL/PHPA/FOLYMER CIRCULATION STOPPED: 12.40 HRS ON 19-2-01 WT: 9.4 VISC: 47 PV/YP: 12/14 PH: 9 FLUID LOSS: 6 CHL: 22,000 GEOLOGIST: TIM CONROY INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 45%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 45%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	WELL:	McINTEE #1	FIELD:	WILDCAT	
LATITUDE: 38 29 21.10" S	RIG:	OD & E 30	STATE:	VIC	
BLEVATIONS GL: 59.8m RT: 64.5m DF: 4.7m 9 7/8" HOLE: 433m 75/8" CSG: 425m WT: 26.4 LB/FT 6 3/4" HOLE: 1803m TD 3 1/2" CSG: 1677.5m WT: 9.3 LB/FT TD (Drlr.): 1803m TD TD (Logr.): 1794.8m MUD SYSTEM: KCL/PHPA/POLYMER CIRCULATION STOPPED: 12:40 HRS ON 19-2-01 WT: 9.4 VISC: 47 PV/YP: 12/14 PH: 9 FLUID LOSS: 6 CHL: 22,000 GEOLOGIST: TIM CONROY INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15.00 HOURS ON 19/2/01.	LOCATION:	·	BLOCK:	PEP 154	
97/8" HOLE: 433m TD	LATITUDE:	38 29 21.10" S	LONGITUDE:	142 49 21.18" E	
6 3/4" HOLE: 1803m TD 3 1/2" CSG: 1677.5m WT: 9.3 LB/FT TD (Drlr.): 1803m TD TD (Logr.): 1794.8m MUD SYSTEM: KCL/PHPA/POLYMER CIRCULATION STOPPED: 12.40 HRS ON 19-2-01 WT: 9.4 VISC: 47 PV/YP: 12/14 PH: 9 FLUID LOSS: 6 CHL: 22,000 GEOLOGIST: TIM CONROY INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	ELEVATIONS	GL: <u>59.8m</u>	RT:	64.5m	DF : 4.7m
TD (DrIr.): 1803m TD TD (Logr.): 1794.8m MUD SYSTEM: KCL/PHPA/POLYMER CIRCULATION STOPPED: 12:40 HRS ON 19-2-01 WT: 9.4 VISC: 47 PV/YP: 12/14 PH: 9 FLUID LOSS: 6 CHL: 22,000 GEOLOGIST: TIM CONROY INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED, WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	9 7/8" HOLE:	433m	7 5/8" CSG:	425m	WT: 26.4 LB/FT
MUD SYSTEM: KCL/PHPA/POLYMER CIRCULATION STOPPED: 12:40 HRS ON 19-2-01 WT: 9.4 VISC: 47 PV/YP: 12/14 PH: 9 FLUID LOSS: 6 CHL: 22,000 GEOLOGIST: TIM CONROY INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	6 3/4" HOLE:	1803m TD	3 1/2" CSG:	1677.5m	WT: 9.3 LB/FT
WT: 9.4 VISC: 47 PV/YP: 12/14 PH: 9 FLUID LOSS: 6 CHL: 22,000 GEOLOGIST: TIM CONROY INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	TD (Drlr.):	1803m TD	TD (Logr.):	1794.8m	-
INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (FIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	MUD SYSTEM:	KCL/PHPA/POLYMER	CIRCULATION S	STOPPED: <u>12:40</u>	HRS ON 19-2-01
INFORMATION GIVEN ABOVE IS TO BE USED ON LOG HEADING SHEETS. HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED, WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	WT: 9.4	VISC: <u>47</u> PV/YP: <u>12/14</u> I	PH: 9 FLUID	LOSS: 6	CHL:22,000
HOLE CONDITIONS: (TIGHT SPOTS, DEVIATION, COALS, BARITE IN MUD, ETC) LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	GEOLOGIST:	TIM CONROY			
LEDGES AROUND 684M CAUSED PROBLEMS WITH TRIPPING IN AND OUT OF THE HOLE. EXPECT IT TO BE HARD STINGERS OF CALCIFIED SANDSTONE. IT HAS BEEN REAMED. WORKED TIGHT HOLE AT 1370M-1430M THIS MORNING, NO PROBLEMS TRIPPING IN AND OUT OF THE HOLE FOR WIRELINE LOGS. NO WELL DEVELOPED COALS PRESENT. KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969". DRILL STEM TESTS/CORED INTERVALS: NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	INFORMATION	GIVEN ABOVE IS TO BE USED ON L	OG HEADING SHE	EETS.	
NO DRILL STEM TESTS OR FULL HOLE CORES ARE PLANNED FOR THIS WELL. COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET) KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	LEDGES AROUN HARD STINGER THIS MORNING DEVELOPED CO KCL 4.5%.	ND 684M CAUSED PROBLEMS WITH S OF CALCIFIED SANDSTONE. IT H I, NO PROBLEMS TRIPPING IN AND DALS PRESENT.	TRIPPING IN AND AS BEEN REAMED	OUT OF THE HO WORKED TIGHT	T HOLE AT 1370M-1430M
KCL 4.5%. INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	<i>y</i>		PLANNED FOR TH	HS WELL.	· .
INTERNAL DIAMETER OF 7 5/8" CASING IS 6.969" LOGS: PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.	COMMENTS: (T	O BE INCLUDED IN REMARKS SEC	ΓΙΟΝ ON HEADER	SHEET)	
PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 HOURS ON 19/2/01.		METER OF 7 5/8" CASING IS 6.969"			
	LOGS:				
	PROGRAM CON	FIRMED WITH OPERATIONS GEOL	OGIST AT 15:00 HC	OURS ON 19/2/01	1.
PROGRAM VARIES FROM PRE-SPUD NOTES: YES: NO: X	/		YES:		

MARKING THE LOC ASSISTANCE OF	LIMAS ESTABLISHMONT, INTO ERRY ACCEPT FILLES PRINCES	MENDEREPEAT SECTION TOTAL NE
RUN 1		
SGS (GR)	TD TO SURFACE	AQUIRE RUNNING IN HOLE
LCS	TD TO SCS	AQUIRE RUNNING IN HOLE
	WAVEFORM TAPING TD TO 1250M	
DLS (LLS, LLD)	TD TO SCS	AQUIRE RUNNING IN HOLE
MRS (MLL, CALIPER)	TD TO SCS	
	(SCS = SURFACE CASING SHOE)	
RUN 2		
SGS (GR)	TD TO SURFACE	AQUIRE RUNNING IN HOLE
PDS (RHOB)	TD TO 1250M	AQUIRE RUNNING IN HOLE
CNS (NPHI)	TD TO 1250M	AQUIRE RUNNING IN HOLE
RUN 3		
RFS (20 POINTS COSTED)	20 POINTS TO BE PICKED	TIE IN EVERY 50M
DUN 4		
RUN 4	CVVC 70-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
SCG(SIDE WALL CORE GUN)	SWC POINTS TO BE PICKED,	CORRELATE DEPTH
1 FULL GUN	PALYNOLOGY AND PROJECT	
	TEAM	

REMARKS:

(ALL OPERATIONS ARE TO CONFORM TO CURRENT SCHLUMBERGER AND SANTOS OPERATING PROCEDURES)

- 1. TENSION CURVE TO BE DISPLAYED ON LOG FROM T.D. TO CASING SHOE.
- 2. ALL CALIBRATIONS IN CASING MUST BE VERSUS DEPTH. (IF HOLE CONDITIONS PERMIT).
- 3. SONIC WAVEFORMS TO BE RECORDED OVER ENTIRE PERMIAN SECTION.
- 4. ALL ZONES OF SONIC CYCLE SKIPPING OR POOR QUALITY DATA TO BE REPEATED AND NOTED IN REMARKS SECTION. (EXCEPT ABOVE CADNA-OWIE FM. IF HOLE CONDITION IS POOR).
- REPEAT SECTION NOT TO BE RUN IN 6" HOLES, COMPARE DOWN LOG FOR REPEAT ANALYSIS.
- 6. REPEAT SECTION TO BE LOGGED PRIOR TO MAIN LOG OVER INTERVAL OF INTEREST. (IF HOLE CONDITIONS ALLOW). CONFIRM REPEAT SECTION INTERVAL WITH OPERATIONS GEOLOGIST:
- 7. ALL THERMOMETER READINGS TO BE RECORDED ON LOG
- 8. ALL SCALES AND PRESENTATIONS TO CONFIRM TO STANDARDS UNLESS OTHERWISE ADVISED.
- 9. THE FIELD/EDIT TAPE MUST BE A MERGED COPY OF ALL LOGS RUN. SEPARATE TAPES ARE ONLY ACCEPTABLE AS AN INTERIM MEASURE.
- ANY CHANGE FROM STANDARD PROCEDURES/SCALES TO BE NOTED IN REMARKS SECTION.
- 11. RM, RMF, RMC AND BHT MUST BE ANNOTATED ON FAXED LOGS. FAXED LOGS SHOULD ALSO INDICATE IF ON DEPTH OR NOT.
- 12. LOG DATA IS TO BE TRANSMITTED AS SOON AS POSSIBLE AFTER ACQUISITION. IF ANY DELAYS ARE LIKELY OR IF DATA TRANSMISSION WILL ADVERSELY EFFECT THE OPERATION THEN THE OPERATIONS GEOLOGIST MUST BE IMMEDIATELY INFORMED.
- 13. THE OPERATIONS GEOLOGIST MUST BE INFORMED IMMEDIATELY OF ANY TOOL OR HOLE PROBLEMS, LOST TIME OR ANY OTHER EVENT WHICH MAY AFFECT THE LOGGING OPERATIONS.

SECTION 4 (b): ELECTRIC LOGGING TIME SUMMARY

Geology Operations

Santos

ACN 007 550 923

ELECTRIC LOGGING TIME SUMMARY

LOGGING UNIT:	V1030 ROMA
START DATE:	19/2/01
END DATE:	21/2/01
DEPTH DRILLER:	1803M
DEPTH LOGGER:	1794.8M

LEFT BASE:	17/2/01
ARRIVED AT THE WELLSITE:	18/2/01
INITIAL RIG UP:	19/2/01
FINAL RIG DOWN:	21/2/01
RETURN TO BASE:	22/2/01

WELL NAME:	McIntee 1
TRIP NUMBER:	1-2-3-4
WELLSITE GEOLOGIST:	TIM CONROY
LOGGING ENGINEER:	M.BARNES, J.CASALECNO
PAGE / DATE:	PAGE 1 OF 6 19/02/2001

DATE/ TIME	RIG UP/ DOWN	TOOL	RIH/POOH	LOGGING	DATA TX	LOST TIME Rev	LO.	WIPER TRIP	LOST TIME OTHERS	OTHERS	COMMENTS/REMARKS
00:00						•					
:30	 										
01:00											
:30											
02:00											
:30								-			
:30					 						
03:00											
		-									
:30											
			<u> </u>								
04:00											
20											
:30		ļ									·
05:00		 	 	 				 			
05.00								 			
:30						l					
06:00				<u> </u>							
		ļ	<u> </u>			ļ				 	
:30		<u> </u>		ļ		<u> </u>	ļ	 			
07:00				 	 		 	<u> </u>			
07.00						 					
:30							· · · · · · · · · · · · · · · · · · ·				
					l						
08:00											
		<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	
:30			-	-		<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	
09:00		 	 	 	 	-			 	 	
05.00		 	 	 	 	 		 	 		
:30		<u> </u>							 		
10:00				L							^
							L				
:30					ļ	ļ	<u> </u>				
	<u> </u>	-	 	-	 		ļ	-	 		
11:00		 	 	 	<u> </u>	 	ļ	-		-	
:30	-	 			 	 	-	 	 	 	
.50	 	 	 	 	 	 	-	 			
											1

LOGGING	G UNIT:	V1030 R	OMA '	WEL	L NAME:		MCINTE	E1		PAG	E: PAGE 2 OF 6 19/02/2001
·		1	r					·			
DATE/ TIME	RIG UP/ DOWN	TOOL CHECK	RIH/POOH	LOGGING	DATA TX	LOST TIME SLB	1. ().	WIPER TRIP	LOST TIME OTHERS	OTHERS	COMMENTS / REMARKS
12:00											
						ļ					·
:30		-									
13:00		 	<u> </u>		<u> </u>			-			
:30		ļ									
14.00		 									
14:00								 			
:30		1						1	-)	
15:00									ļ		
:30						 		 			
:30		 						 	 		
16:00						1					
:30	X	ļ	ļ			<u> </u>					RIG UP RUN IGR-DLS-MRS-LCS
17.00		ļ			-	ļ			ļ	X	HOLD SAFETY MEETING
17:00	Х		x						 		RUN IN HOLE FIRST RUN !
:30		T X	-		-	 					NOT BY HOLD I BOT NOT!
į			х								
18:00				х							COMMENCE LOG I
			ļ	X				<u> </u>	<u> </u>		
:30		1	 	X				 			
19:00		1		X	-			1		 	TD TO 1200M MAIN LOG
Į				х							
:30				х							
		 	ļ	X				 	ļ	ļ	<u> </u>
20:00		 		X X			-	 			FINISH MAIN LOG 1
:30		+	х	 ^	-	-	·	 	<u> </u>		RUN TO TD FOR WFT DATA ACQUISITION
Ì			х								
21:00		1		х							WFT VERY MEMORY INTENSIVE, ONE HARD
		 	 	X	ļ	<u> </u>		<u> </u>	<u> </u>		DRIVE FAILED PLUS BOTH MAGNETIC TAPES.
:30		 	 	X	 	 	<u> </u>	 	 	 	RAN OUT OF MEMORY AT 1548M. ABORT WAVEFORM AQUIRE MAIN LOG TO SURF
22:00		1		X			 	 	 	 	ABOILT WAVELOUNT AQUIRE MAIN LOG TO SURP
				X				†			
:30				х							
,			х	ļ					ļ		PULL OUT OF HOLE
23:00		-	X	<u> </u>	ļ	-		<u> </u>	 		
:30			X X			 		 	╁───	<u> </u>	
:50		 	X	 	 	 		 	 	 	TOOL AT SURFACE

GGINO	UNIT:	V1030 R	OMA	WEL	L NAME:		MCINTE	E1		PAC	GE: PAGE 3 OF 6 20/02/2001
		,									
DATE / TIME	RIG UP/ DOWN	TOOL	RIH/POOH	LOGGING	DATA TX	LOST TIME Rev	I. O.	WIPER TRIP	LOST TIME OTHERS	OTHERS	COMMENTS / REMARKS
00:00	Х										RIG DOWN SBT
[х			х					RUN IN HOLE LCS
:30			· X			х					
		ļ	X			Х					CAN'T AQUIRE DATA DUE TO BAD DRIVES
01:00	X					х			ļ		RIG DOWN DLS-LCS
		ļ						<u> </u>		х	SAFETY MEETING BEFORE PDS-CNS
:30	X	<u> </u>									
		X						_	ļ		CASING CHECK
02:00		ļ	X			ļ			ļ		RUN IN HOLE
		 	X					├	ļ		
:30				X			<u> </u>		-		START LOG OF PDS-CNS
03:00		 		X			<u> </u>	 		ļ	HADDY WITH TOOL DESPONSE
03.00		 		X			 	 		-	HAPPY WITH TOOL RESPONSE
:30		 	 	x			-	 	 		
.50		<u> </u>	<u> </u>	X			 	t	 		CLEAN SAND PASS
04:00		1	x				<u> </u>	 			PULL PDS-CNS OUT OF HOLE
		·	x					 			TODA DO CINO OCT ON HOLE
:30		x		-							AFTER SURVEY CHECK
	х	<u> </u>				·	· · · · · · · · · · · · · · · · · · ·	 			RIG DOWN PDS-CNS
05:00	х							1			LOAD CORE GUN SAFETY MEETING
Ī	X										
:30	х						i				
	х							1		i	
06:00	Х							1			
[Х										
:30	x										
	X	<u> </u>						L			
07:00	х						L				
L		ļ	X			х			<u> </u>	<u> </u>	RUNNING IN HOLE GR FAILURE
:30		<u> </u>	х			X					
		ļ	х			X		ļ	<u> </u>		PULL OUT OF HOLE
08:00		 	Х			X		ļ	ļ		
	X	ļ			ļ	<u> </u>		-			RIG DOWN SCG
:30	<u>X</u>	 				 	 	 	 	<u> </u>	
00.00	X	 		 -	 	 	<u> </u>	+	 	ļ	
09:00	х	 	 		 	 	ļ	-	-		RIG UP LCS WAVEFORM
:30			X			X	 	-	-	 	RUN IN HOLE
:30		 	X		 	X		+	 		PROBLEM WITH SOFTWARE AND
10:00		 	X			X		+	 	-	UNDERSTANDING OF EQUIPMENT
10.00		 	X			X		+	1		
:30		†	x			X	-	1	1	 	
		 	X		 	X	 	 	 	 	PULL OUT OF HOLE
11:00		x	<u> </u>			X		 	 		CASING CHECK OF LCS
		 	х		 	X	 	1	1		RUN IN HOLE
:30		1 —		х		 ~	1	 		-	START SECOND PART OF WAVEFORM LOG
1		† · · · · ·		X		 		 	 		FINISH SECOND WAVEFORM LOG

OGGING	UNIT:	V1030 R	OMA	WEL	L NAME:		MCINTE	E1		PAC	SE: PAGE 4 OF 6 20/02/2001
T				•		<u> </u>	·	T	T		·
DATE/ TIME	RIG UP/ DOWN	TOOL	RIH/POOH	LOGGING	DATA TX	LOST TIME SLB	1.0.	WIPER TRIP	LOST TIME OTHERS	OTHERS	COMMENTS / REMARKS
12:00		ļ	х			Х					PULL LCS OUT OF HOLE
1		 	X			X					
:30		ļ	х			X		ļ	ļ.,		
	х	ļ				X	<u> </u>				RIG DOWN LCS
13:00		ļ				Х					RFS AND SWC GUN BOTH NON FUNCTIONAL
						X	ļ	ļ <u>-</u>			TOOLS, WAITING ON PARTS FROM NZ
:30						X	 	ļ			
14:00		<u> </u>	<u> </u>			X X	ļ				
14:00		1				X	 				
:30						X	 				
						X			<u> </u>		
15:00		1				X					
, 1						X					
:30		1				Х					
						х					
16:00						х					
						х					
:30		<u> </u>				, X					SPARE PARTS FOR RFS ARRIVE
L		l				X					PREPARE 3 CHAMBERS OF RFS
17:00		<u> </u>				X		<u> </u>			
ļ.		<u> </u>				X					
:30		<u> </u>	ļ			X					
		ļ				X		ļ			
18:00					·	X		<u> </u>			
-20			ļ			X					
:30		<u> </u>				X X		-			
19:00	· · · · · ·				<u> </u>	X		-			
13.00		 				x	 	 			
:30		 				x		<u> </u>			
		†	-			<u> </u>	-			х	SAFETY MEETING RFS
20:00	х				<u> </u>	—			<u> </u>		RIG UP RFS
Ţ	х										
:30	Х										
			X								RUN RFS IN HOLE
21:00			X			`					
L		ļ	Х								
:30		ļ	X						<u> </u>	ļ	
-		ļ	Х		ļ		ļ		ļ	ļ	
22:00		 		х	ļ	ļ	L			 	CORRELATE RUN 1 + ().8M
		 		X	ļ	 	ļ	-	 		
:30		 		X			-	-	<u> </u>	 	
22.00		 	 	X		 		-	 	<u> </u>	
23:00		 		X	-	<u> </u>		 	 		
:30		 	 	X		 	 	 	ļ	-	· · · · · · · · · · · · · · · · · · ·
:50		+	 	X	 	 	 	+	 	 	

OGGING	UNIT:	V1030 R	OMA	WEL	L NAME:		MCINTE	E1		PAG	E: PAGE 5 OF 6 21/02/2001
DATE/ TIME	RIG UP / DOWN	TOOL	RIH / POOH	LOGGING	DATA TX	LOST TIME SLB	LO.	WIPER TRIP	LOST TIME OTHERS	OTHERS	COMMENTS / REMARKS
00:00				х					-	-	
				X					,		
:30				х							
				х							
01:00				х							·
-				X							
:30				X		ļ		ļ			
02:00				X X				ļ			
02:00				X							
:30				X				 	-		
				X				 			
03:00				X						<u> </u>	
				х							
:30				Х							
.				x							
04:00				Х				<u> </u>			
		· · ·		X				<u> </u>		<u> </u>	
:30			X			·			ļ	ļ	PULL RFS OUT OF HOLE
05:00			X X				•	ļ	ļ		ATTOUR ACT
13.00										x	AT SURFACE MEASURE PRESSURE BOTTOM TANKS 1850PSI
:30		·						 	 	X	MEASURE PRESSURE BUTTOM TANKS 1850PST
										X	TAKE SAMPLE GAS BALLOON (2% CO2)
06:00										X	(2,0 002)
	X										START RIG DOWN RFS
:30	х										
.	х										FINISH RIG DOWN RFS
07:00	Х										
 	х							ļ			SAFETY MEETING FOR SCG.
:30	X										RIG UP SCG
00.00	X								_	-	
08:00	X X				-			-		<u> </u>	
:30	X							-	 	 	
	X							\vdash			
09:00				х				 		l	CORRELATION PASS #1
				х							
:30	-			х					l		1ST SHOT
				х							
10:00				х							
 -				x							
:30				х							
-اا				X				· .		ļ	
11:00		-	- , 	х				 	 		LAST SHOT (LOST COMM FOR LAST 2 BULLETS)
:30			X	-					 	<u> </u>	PULL SCG OUT OF HOLE
			X X								L

Company Comp	PAGE 6 OF 6 21/02/2001			
X	.KS			
1500 X				
13 13 14 15 16 16 16 16 16 16 16				
3.00				
X				
X				
14-00				
15.00				
15:00				
16:00 16:00				
16:00 16:00				
16:00				
17:00				
17:00				
18:00				
18-00				
18-00				
19:00 19:00				
19-00 3-30				
20,000				
20:00 -30 -21:00 -30 -30 -30 -30 -30 -30 -30				
20:00				
21:00				
21:00				
30				
22:00 23:00 25:00				
23:00 :30 :30 :30 TOTALS TOTALS TOTALS TOTALS TOTALS TOOLS RUN: GR-LCS-DLL-N 0.5				
23:00 :30 :30 :30 TOTALS TOTALS TOTALS TOTALS TOTALS TOOLS RUN: GR-LCS-DLL-N 0.5				
23:00 :30 TOTALS TOTALS TOTALS TOTALS TOTALS TOTALS TOOLS RUN; GR-LCS-DLL-N 0.5				
30				
TOTALS TOTALS TOTALS TOTALS 1.25				
TOTALS				
TOTALS	SIGN)			
1.25	·			
1.75	OLL-MLL-SLL-0			
1.75				
CLIENT WSG				
CLIENT WSG ENGINEER 2 3 4 5 5 5 5 5 5 5 5 5				
CLIENT WSG ENGINEER 1 2 3 4 5 1 2 3 4 5				
1 2 3 4 5 1 2 3 4 5 x - - x - SAFETY x x PROMPTNESS TOOL & SURFACE SYSTEM PERFO				
x x PROMPTNESS x x TOOL & SURFACE SYSTEM PERFO				
x x TOOL & SURFACE SYSTEM PERFO				
	REODMANCE			
x x ATTITUDE & CO-OPERATION				
x x wellsite products / Log Qual				
x x COMMUNICATIONS / TX PERFORM				

SECTION 4 (c): FIELD ELECTRIC LOG REPORT

SANTOS LIMITED

FIELD ELECTRIC LOG REPORT

WELL:

McIntee 1

GEOLOGIST:

Tim Conroy

LOGGING ENGINEER:

100

M. Barnes, J. Casalecno

RUN NO.:

1-2-3-4

DATE LOGGED:

19-21/02/01

DRILLERS DEPTH:

1803m

LOGGERS DEPTH:

1794.8 m

ARRIVED ON SITE:

ACTUAL LOG TIME:

18/2/01

LOST TIME LOGGER:

11 HRS

TOTAL TIME:

15.5 HRS 48.25 HRS

LOST TIME OTHER:

0 HRS

TYPE OF LOG	DLL-SLL-LCS-	PDS-CNS	RFS-GR	SCG
	GR-CAL-CSS-SP			
TIME CIRC. STOPPED	6.35 HRS	13.5 HRS	34 HRS	38 HRS
TIME TOOL RIG UP	0.75 HRS	0.25 HRS	0.75 HRS	4.0 HRS
TIME TOOL RIH	4.25 HRS	1 HR	2 HRS	0.75 HRS
TIME TOOL RIG DOWN	0.75 HRS	0.25 HRS	1 HR	2.75 HRS
TOTAL TIME	10.5 HRS	3.75 HRS	17.75 HRS	11.75 HRS

TYPE OF LOG	FROM	TO	REPEAT	TIME SINCE LAST	BHT
			SECTION	CIRCULATION	
DLL-SLL-MLL-SP-CSS-	1793.5M	SURFACE	DOWNLOG	6:35 HRS	64 °C
GR-CAL					
PDS-CNS-GR	1791.3M	1300M	DOWNLOG	13.5 HRS	70 °C
RFS	1356.5M	1756M	TIE IN	34 HRS	72.24 °C
SCG	1702.5M	1424.5M	TIE IN	38	_

MUD SYSTEM:

KCL/PHPA/POLYMER

HOLE CONDITIONS:

WEIGHT:

9.4 PPG

Very good borehole conditions. PHPA mudcake could potentially be plugging the snorkel of the RFS tool.

REMARKS / RECOMMENDATIONS

Good log quality for the resistivity/ sonic and density neutron runs. Good side wall core run. Waveform acquisition was problematical due to two magnetic tape drives failing and one hard drive failing. Reeves will do a better job next time. RFS run was sub standard.

WELLSITE LOG QUALITY CONTROL CHECKS

LOG ORDER FORM	X	MUD SAMPLE RESISTIVITY	×	TOOL NO. / CODE CHECK	X
OFFSET WELL DATA	×	CABLE DATA CARD	×	LOG SEQUENCE CONFIRM.	X

LOG TYPE	STS	GR	CAL	DLL	MLL	PDS	CNS	CSG	RFS	REMARKS
CASING CHECK	×		×							
SCALE CHECK	×	×	×	×	×	X	×	×	×	
DEPTH Casing Total	×	X	×	X		X				
CALIBRATIONS OK	×	×	×	X	×	X	×	X	i	
REPEATABILITY	×	×	·	×	X	X	X		Z	
LOGGING SPEED	X	X	X	X	X	X	X	X	X	
OFFSET WELL Repeatability	×	×	×	×	X	X	X	X	Z	
NOISY / MISSING DATA										
CURVES/LOGS Depth Matched	×	×	×	×	×	×	X			
Rm MEASUREMENT				X	X					
LLS/LLD/CHECK				X	X					
PERF / RHOB CHECK						X	X			
LOG HEADER / TAIL	X	X	X	X	X	X	X	X	X	-
PRINT/FILM QUALITY	X	X	X	X	X	X	X	X	×	

COMMENTS:

RFS run was very problematical. Pressures were not increasing with depth and were not repeatable within 20 psi (unacceptable). Good sample was taken. Reeves specialist continuestigate the RFS run. Potentially the PHPA mud system mudcake was causing plugging of the snorkel. Density/neutron and resistivity sonic runs were good. MLL continues and the tool at the end of the run missed two points. Make sure capas a little low due to limited penetration (pad is for a 4 ¾" borehole). RFS run went well. Lost contact with the tool at the end of the run missed two points. Make sure ceeves has redundancy for all equipment to be run and make sure they have a truck with DAT drive capabilities and experienced engineers.

ENGINEERS COMMENTS (If this report has not been discussed with the Engineer, state reason)

We will do a really good job next time. We promise.

SECTION 4 (d): PRESSURE SURVEY DATA

NORMAL : PRESSURE DOES NOT DROP TO ZERO LIMITED : PRESSURE DROPS TO ZERO

DRAWDOWN

0.025 °C/M 0.45 PSI/FT

ANTICIPATED GEOTHERMAL GRADIENT:

ANTICIPATED WATER GRADIENT:

MUD WEIGHT / GRADIENT:

9.2 PPG

BUILD UP

TYPES: IMMEDIATE - RAPID - GOOD - SLOW

SANTOS LIMITED PRESSURE SURVEY

19-2-01 1 OF 2 PAGE: DATE: HP QUARTZ/STRAIN NORMAL TOOL AND GAUGE TYPE: PROBE / PACKER TYPE: 12:40 19-2-01 34HRS 64.5M TIME SINCE LAST CIRC.: K.B.: TIM CONROY McINTEE 1 WELL: WITNESS:

											_		J
COMMENTS	(FLUID TYPE)		GOOD TEST	GOOD TEST	GOOD TEST	GOOD TEST	GOOD TEST	GOOD TEST	GOOD TEST GOOD SAMPLE	GOOD TEST	GOOD TEST	GOOD TEST	GOOD TEST
NOL	DEPLET -S/C		Z	z	z	z	z	z	z	Z	z	Z	Z
INTERPRETATION	TYPE BUILDUP		RAPID	RAPID	RAPID	G00D	G00D	G005	RAPID	G00D	RAPID	RAPID	RAPID
Z	TYPE D/D		z	z	z	z	z	z	z	Z	z	z	z
	DRAW D. MOBILITY	MD/CP	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TS	TEMP.	°F/°C	• .		61.01	61.01	10.19	64.91	65.4	64.91	65.40	64.91	62.79
TEST RESULTS	HYDR. AFTER	PSI	2225.77	2279.50	2292.60	2308.80	2531.11	2534.49	2535.68	2540.80	2545.55	2551.52	2553.15
TE	FORM. PRESS	PSI	1867.41	1914.17	1925.49	1939.1	2094.53	2089.36	2113.69	2106.16	2101.59	2115.53	2092.80
	HYDR. BEFORE	PSI	2225.63	2279.44	2292.48	2308.72	2531.03	2534.42	2533.47	2540.72	2545.56	2551.43	2553.40
FILE	NO.												
EXPECT.	TEMP.	°F/P°C	54 C	55 C	55 C	55 C	58 C	58 C	59 C	29 C	29 C	29 C	29 C
EXPECT.	FORM PRESS.	PSIG	1900	1900	1900	1900	2100	2100	2100	2100	2100	2100	2100
DEPTH	S.S.	FT/M	1292	1324.5	1332.5	1342.3	1477	1479	1481.2	1482.8	1485.7	1489.2	1490.3
DEPTH	K.B.	FT/M	1356.5	1389	1397	1406.8	1541.5	1543.5	1545.7	1547.3	1550.2	1553.7	1554.8
FORMATION	UNIT SANDS		NULLAWARRE	NULLAWARRE	NULLAWARRE	NULLAWARRE	WAARRE	WAARRE	SAMPLE 3 CHAMBER/ AIR CUSHION	WAARRE	WAARRE	WAARRE	WAARRE
TEST			-	2	3	4	5	9	7	∞	6	10	=

SANTOS LIMITED PRESSURE SURVEY

Hander H		· .														
SS: TIMCONROY TIME SINCE LAST CIRC. TIME SINCE L	F 2	20-2-01	COMMENTS	(FLUID TYPE)		GOOD TEST	CURTAILED	CURTAILED	CURTAILED	SPURIOUS	SPURIOUS					
SSS. TIME SINCE LAST CIRC. EA5 M TOOL AND GAUGE TYPE: HPQUARTYPE: HPQUARTYPE: HPQUARTYPE: HPQUARTYPE: NORMAL FORMATION DEPTH EXPECT. FILE TEST RESULTS FORMATION TYP	,	'	LION	DEPLET -S/C		z	z	z	z	z	Z	Z	Z	Z	Z	z
SSS. TIME SINCE LAST CIRC. EA5 M TOOL AND GAUGE TYPE: HPQUARTYPE: HPQUARTYPE: HPQUARTYPE: HPQUARTYPE: NORMAL FORMATION DEPTH EXPECT. FILE TEST RESULTS FORMATION TYP	.	DA	TERPRETA	TYPE BUILDUP		SLOW	G00D	G00D	G005	G00D	G00D	SLOW	SLOW	SLOW	GOOD	GOOD
SSS: TIME CONROY TIME SINCE LAST CIRC.: ACABLE ISOL TOOL AND GAUGE TYPE: FORMATION DEPTH EXPECT FILE TEXTRESULTS FORMATION DEPTH DEPTH EXPECT FILE TEST RESULTS UNIT SANDS K.B. S.S. FORM TEMP. NO. HYDR. FORM HYDR. FFM DBA WAARRE 1562.4 1497.9 2100 59 C 2565.74 2103.47 256.59 N N WAARRE 1562.4 1497.9 2100 59 C 2567.64 2103.47 256.59 N N WAARRE 1568.5 1504 2100 59 C 2575.78 2107.48 2575.90 65.89 N WAARRE 1570.5 1506.5 2100 60 C 2579.30 2103.48 2579.38 65.89 N WAARRE 1577.4 1512.9 2200 61 C 2590.68 2117.73 2590.82 65.89 N EUMERALLA	RTZ/STR	_	NI	TYPE D/D		z	z	z	z	z	z	z	z	z	Z	Z
SS: McNTEE I K.B.: ACANTEE I K.B.: TIME SINCE LAST CIRC.: 64.5 M FORMATION OF TH FORM VAARRE I STATE TIME SINCE LAST CIRC.: 12:40 19-2-01 34HRS FORMATION OF TH FORM VAARRE I STATE S.S. FORM TEMP. NO. HYDR. FORM PRESS FORMATION PRICE ISTATE PRESS WAARRE I STATA 1497.9 2100 59 C 2565.74 2103.4 WAARRE I STATA 150.5 150.6 2100 59 C 2575.78 2107.4 WAARRE I STATA 150.5 150.6 2100 59 C 2575.78 2107.4 WAARRE I STATA 1512.9 2100 60 C 2575.78 2107.4 WAARRE I STATA 1512.9 2100 60 C 2579.30 2108.8 EUMERALLA I TO9 1644.5 2200 63 C 2807.4 965.53 EUMERALLA I TOS 1646.7 2200 63 C 2888.16 233 WAARRE I SSO.2 1485.7 2100 59 C 2545.88 2091.4 WAARRE I SSO.2 1646.7 2200 63 C	ப்	1		DRAW D. MOBILITY	MD/CP	N/A	N/A	N/A								
SS: McNTEE I K.B.: ACANTEE I K.B.: TIME SINCE LAST CIRC.: 12:40 19-2-01 34HRS FORMATION DEPTH EXPECT. FILE PRESS FORMATION DEPTH EXPECT. FILE PRESS FT/M FT/M FT/M PRIGS. PRESS WAARRE 1562.4 1497.9 2100 59 C 2565.74 2103.4 WAARRE 1563.5 1499 2100 59 C 2575.78 2107.4 WAARRE 1563.5 1504 2100 59 C 2575.78 2107.4 WAARRE 1570.5 1506 2100 59 C 2575.78 2107.4 WAARRE 1570.5 1507.5 2100 60 C 2579.30 2108.8 EUMERALLA 1709 1644.5 2200 63 C 2807.4 965.53 EUMERALLA 1756 1646.7 2200 63 C 2811.51 487.81 EUMERALLA 1756.2 1485.7 2100 59 C	UGE TYP	ER TYPE:	S	TEM P.	°F/°C	65.4	62.89	62.89	62.89	62.89	62.89	8.69	69.82	72.24	65.4	62.79
SS: McNTEE I K.B.: ACANTEE I K.B.: TIME SINCE LAST CIRC.: 64.5 M FORMATION OF TH FORM VAARRE I STATE TIME SINCE LAST CIRC.: 12:40 19-2-01 34HRS FORMATION OF TH FORM VAARRE I STATE S.S. FORM TEMP. NO. HYDR. FORM PRESS FORMATION PRICE ISTATE PRESS WAARRE I STATA 1497.9 2100 59 C 2565.74 2103.4 WAARRE I STATA 150.5 150.6 2100 59 C 2575.78 2107.4 WAARRE I STATA 150.5 150.6 2100 59 C 2575.78 2107.4 WAARRE I STATA 1512.9 2100 60 C 2575.78 2107.4 WAARRE I STATA 1512.9 2100 60 C 2579.30 2108.8 EUMERALLA I TO9 1644.5 2200 63 C 2807.4 965.53 EUMERALLA I TOS 1646.7 2200 63 C 2888.16 233 WAARRE I SSO.2 1485.7 2100 59 C 2545.88 2091.4 WAARRE I SSO.2 1646.7 2200 63 C	OL AND GA	JBE / PACK	ST RESULT	HYDR. AFTER	PSI	2565.95	2567.67	2575.90	2579.38	2581.79	2590.82	2808.40	2804.06	2885.53	2545.72	2553.26
McINTEE K.B.: K.B.: EXPECT EXPECT E1240			TE	FORM. PRESS	PSI	2103.47	2106.25	2107.48	2108.80	2111.21	2117.73	965.53	487.81	233	2091.47	2069.47
McNTEE TIM CONROY	J	19-2-01 34HR		HYDR. BEFORE	PSI	2565.74	2567.64	2575.78	2579.30	2581.84	2590.68	2807.4	2811.51	2888.16	2545.88	2553.21
ESS: TIM CONROY FORMATION DEPTH DEPTH UNIT SANDS K.B. S.S. FT/M FT/M WAARRE 1562.4 1497.9 WAARRE 1563.5 1499 WAARRE 1570.5 1506 WAARRE 1577.4 1512.9 EUMERALLA 1711.2 1646.7 EUMERALLA 1716.5 1678 WAARRE 1550.2 1485.7 WAARRE 1550.2 1485.7	64.5 N	12:40	FILE	NO.												
ESS: TIM CONROY FORMATION DEPTH DEPTH UNIT SANDS K.B. S.S. FT/M FT/M WAARRE 1562.4 1497.9 WAARRE 1563.5 1499 WAARRE 1570.5 1506 WAARRE 1577.4 1512.9 EUMERALLA 1711.2 1646.7 EUMERALLA 1716.5 1678 WAARRE 1550.2 1485.7 WAARRE 1550.2 1485.7		AST CIRC.:	EXPECT.	TEMP.	°F/P°C	59 C	29 C	29 C	29 C	O 09	61 C	O 89	O 89	2 E9	29 C	26S
ESS: TIM CONROY FORMATION DEPTH DEPTH UNIT SANDS K.B. S.S. FT/M FT/M WAARRE 1562.4 1497.9 WAARRE 1563.5 1504 WAARRE 1570.5 1506 WAARRE 1577.4 1512.9 EUMERALLA 1711.2 1646.7 EUMERALLA 1716.5 1678 WAARRE 1550.2 1485.7 WAARRE 1550.2 1485.7	.B.:	IME SINCE I	EXPECT.	FORM PRESS.	PSIG	2100	2100	2100	2100	2100	2100	2200	2200	2200	2100	2100
ESS: TIM CONRC FORMATION UNIT SANDS WAARRE WAARRE WAARRE WAARRE WAARRE EUMERALLA EUMERALLA EUMERALLA WAARRE WAARRE	¥ £		DEPTH	S.S.	FT/M	1497.9	1499	1504	1506	1507.5	1512.9	1644.5	1646.7	1678	1485.7	1490.3
FOR W. W. W. EUM EUM EUM W.		SOY SOY	DEPTH	K.B.	FT/M	1562.4	1563.5	1568.5	1570.5	1572	1577.4	1709	1711.2	1756	1550.2	1554.8
WELL: WITNE: 12 13 13 15 15 16 16 16 19 20 20 20 20 8A 11A	'	•	FORMATION	UNIT SANDS		WAARRE	WAARRE	WAARRE	WAARRE	WAARRE	WAARRE	EUMERALLA	EUMERALLA	EUMERALLA	WAARRE	WAARRE
	WELL:	WINE	TEST			12	13	14	15	16	17	18	19	20	9A	11A

Very difficult to quality control Reeves RFS due to poor pressure display. Inexperienced RFS engineer running tool. Was not confident with pressures acquired. The TYPES: IMMEDIATE - RAPID - GOOD - SLOW LIMITED: PRESSURE DROPS TO ZERO BUILD UP 0.45 PSI/FT 9.2 PPG ANTICIPATED WATER GRADIENT: MUD WEIGHT / GRADIENT:

NORMAL: PRESSURE DOES NOT DROP TO ZERO

DRAWDOWN

0.025 °C/M

ANTICIPATED GEOTHERMAL GRADIENT:

pressures did not increase with depth as they should have. Pressures were not repeatable within reasonable accuracy. Potentially plugging of the tool was occurring. Reeves in England will be investigating the RFS logging run and getting back to operations geology. McINTEE 1 GAS BREAK DOWN FROM SEGREGATED SAMPLE TAKEN AT 1545.7M ON 21-2-01. ANALYSIS BY GEOSERVICES UNIT.

TOTAL GAS 2542 UNITS 79/13/6/1/1

C1 236379 PPM C2 40027 PPM C3 16320 PPM IC4 3630 PPM NC4 3901 PPM

CO₂ 1.33%

(NOTE: MAXIMUM ${\rm CO_2}$ Gas reading during the drilling of the well was 2.66%.)

SECTION 5: SIDEWALL CORE REPORT

Abdt large glauconite grains

Abdt large glauconite grains

Lost

Not Shot

Not Shot

SANTOS LIMITED

SIDEWALL CORE DESCRIPTION

WELL	: <u>MC</u>	INTEE	1	DATE:	•	20-2-01	PAG	E: 1 OF 1
GUN N	iO.: 1			SHOTS	S FIRED:	_22	ѕно	TS BOUGHT: 20
į				GEOL	OGIST:	TIM CONR	OY	
CORE NO.	DEPTH	REC.	PALY N EVAL. REJEC T	LITH.	COLOUR	GRAIN SIZE	HYDR. INDIC. (Y/N)	SUPPLEMENTARY INFORMATION
1	1702.5	F	N	SLTST	Pale grey	2-65μm	N	Occasional carb lams, minor mica
2	1685	F	Y	SST	Pale grey	62-160 μm	N	Com silty matrix and lithics
3	1642	F	Y	SST	Pale grey	62-160 μm	N	Com silty matrix and lithics
4	1598	F	N	CLYST	Olive/grey	<2 μm	N	Very arg with minor mica spks
5	1596	F	N	CLYST	Olive/grey	<2 μm	N	Very arg with minor mica spks
6	1591	F	Y	SST	Off white	62-160 μm	N	Com off wh silty matrix, friable
7	1586.5	F	Y	SST	Off white	62-130 μm	N	Abdt off wh silty matrix, friable
8	1573.5	F	Y	SST	Off white	62-130 μm	N	Abdt off wh silty matrix, mnr carb frags
9	1564	F	Y	SST	Off white	62-130 μm	N	Com off wh silty matrix
10	1560.5	F	Y	SST/SLTST	Off white	40-100 μm	N	Com off wh silty matrix, g/t SLTST
11	1559	F	Y	SST/SLTST	Off white	40-100 μm	N	G/t SLTST, com dissem pyrite
, 12	1556.5	F	N	CLYST	Olive/grey	<2 μm	N	Very arg,minor mica & carb spks
13	1553	POOR	N	SST	Off white	100-500 μm	N	Com off wh silty matrix, minor crs
14	1547	F	Y	SST	Off white	100-250 μm	N	Com off wh silty matrix, carb lams, good perm, com kaolin
15	1542	F	Y	SST	Off white	200-500 μm	Ņ	Com off wh silty matrix, minor carb lams, excellent perm, kaolin
16	1540	F	N?	SST/SLTST	Off white	80-190 μm	N	Com off wh silty matrix, minor carb lams, minor shale bands, trace coarse grns, fine g/t SLTST
17	1539	F	N?	SST & SLTST & CLYST	Off wh/org Off white Med grey	100-800 μm 50-80 μm <5 μm	N	Pr srt, org & wh mtx Off white, very f arenaceous Dirty CLYST with floating grns
18	1533.5	MOD	N	CLYST ·	Pl/brn gy	<5 μm	N	Common glauconite grains
19	1515	F	N	CLYST	Dk Gn/gy	<2 μm	N	Very argillaceous, homogeneous

COMMENTS:

1497

1451

1431

1424.5

1473.5

F

F

Lost

N

CLYST

CLYST

Good sidewall coring run. 24 side wall cores originally planned. 22 shot, 2 did not fire, 1 side wall core lost, 1 insufficient recovery. 19 good recoveries and 1 moderate recovery in all. The side wall core that was lost was a result of the bullet getting excellent penetration and not coming off the wall of the wellbore. After several attempts to retrieve the bullet from the wall of the wellbore it was pulled from the tool.

Dk Gn/gy

Dk Gn/gy

<2 μm

<2 μm

N

N

SECTION 6: DEVIATION DATA

McIntee 1 Deviation plots

Rt= 64

Minimum Curvature Method

Enter Azimuth

33

						,						
				•	•				,	(offset)	:	
DEPTH	INCLIN	Azimuth	TVD	TVD	Northing	Easting	Q	Vert	Vert	Displ	Direction `	
FT	DEG	DEG	·FT	S/S ft	north	east	DEG	Sect	Plane		True	
0	0.00	0	0.00	-64.00	0.00	0.00	0.00000	0.00	0	0.00	0.00	1
64	0.5	0	64.00	0.00	0.28	0.00	0.00871	0.24	-0.2418	0.28	0.00	
82	1.25	0	82.00	18.00	0.55	0.00	0.01307	0.48	-0.4799	0.55	0.00	
1,00	1.4	0	99.99	35.99	0.97	0.00	0.00260	0.84	-0.8403	0.97	0.00	
137.00	2.5	0	136.97	72.97	2.23	0.00	0.01918	1.93	-1.9306	2.23	0.00	
174.00	2.8	0	173.93	109.93	3.94	0.00	0.00522	3.41	-3.4121	3.94	0.00	
212.00	2.25	0	211.89	147.89	5.61	0.00	0.00962	4.86	-4.8619	5.61	0.00	
319.00	1.4	0	318.84	254.84	9.02	0.00	0.01485	7.81	-7.8129	9.02	0.00	
415.00	1.63	324	414.81	350.81	11.30	-0.80	0.01677	10.19	10.1865	11.33	355.94	
570.00	1.3	342	569.76	505.76	14.75	-2.64	0.00982	14.10	14.0988	14.99	349.85	
720.00	1.5	339	719.71	655.71	18.21	-3.87	0.00370	17.70	17.7023	18.61	348.00	
886	1.6	332	885.65	821.65	22.28	-5.74	0.00372	22.16	22.1643	23.01	345.56	
990	1.6	333	989.61	925.61	24.86	-7.08	0.00049	25.07	25.0653	25.84	344.10	
1090	1.8	315	1089.57	1025.57	27.21	-8.82	0.00989	27.98	27.9765	28.61	342.04	•
1193	1.75	331	1192.52	1128.52	29.73	-10.73	0.00866	31.11	31.1115	31.61	340.16	
1299	1.2	332	1298.48	1234.48	32.13	-12.03	0.00963	33.84	33.8391	34.31	339.46	
1405	1.3		1404.46	1340.46	34.17	-13.12	0.00173	36.15	36.1501	36.60	338.99	
1525	1.3	12	1524.43	1460.43	36.70	-13.48	0.01551	38.52	-38.522	39.10	339.84	•
1685	1.2	338	1684.39	1620.39	40.03	-13.73	0.01286	41.53	41.5301	42.32	341.07	
1790	1.2	342	1789.37	1725.37	42.09	-14.48	0.00146	43.69	43.6943	44.52	341.02	

SECTION 7: GEOTHERMAL GRADIENT

Assumed surface temperature = 20°C. Calculated BHT @ 1800m = 75°C. Geothermal Gradient = 31°C/km.

SECTION 8: PRELIMINARY WELL LOCATION SURVEY

908039 068

Ø 04 Ø 0

Paul D Crowe, B.App.Sci. (Surv), LS, M.I.S. Trevor W McDowell, B.App. Sci. (Surv), LS. M.I.S.

Paul Crowe Licensed Surveyor 192 Koroit Street, WARRNAMBOOL 3280 Ph 5561 1500 Fax 5561 2935

ABN 3952 1601 183

27 Nov 2000

EFS Attention Ray Willox PETERBOROUGH Fax 55985329

LOCATION NAME; McIntee #1

ORIGINAL LOCATION 00 - 074NORTHING 5 738 317.06 EASTING 658 952.91

38° 29' 21.10" LAT LONG 142° 49' 21.18"

REVISION #1 00 - 074/1

SEISMIC REFERENCE 318. 0 METRES AT BEARING 273° 51' FROM ORIGINAL LOCATION

NORTHING 5 738 338.44 EASTING 658 635.60

LAT 38° 29' 20.61" LONG 142° 49' 08.07"

REVISION #2 00 - 074/2

SEISMIC REFERENCE 149. 14 METRES AT BEARING 204° 25' FROM ORIGINAL LOCATION

NORTHING 5 738 181.25

EASTING 658 891.28 **FINAL**

38° 29' 25,54" LAT

LONG 142° 49' 18.75"

FINAL

PEG PLACED ON WED 23 NOV 2000 BY RAY WILLOX AND MEASURED BY TREVOR MCDOWELL

LICENSED SURVEYOR

PAUL D CROWE LICENSED SURVEYOR

NULLAWARRE - TIMBOON RO

→22H

WJ+WJ COUCH

ACCEST RD 3-41 HA
PAO AREA 2-6 HA
5-47 HA - 13-51

1300 M

Y

;

((- 23 -

ZSOM

125 Jan 200 200 711-5

* NOT TO SCALE.

SECTION 9: TIME/DEPTH CURVE

McINTEE #1 TIME v DEPTH CURVE

SECTION 10: CATALOGUE OF WELLSITE SAMPLES

SAMPLE MANIFEST

McINTEE #1

Sampling Frequency

10m: Spud - 870 m 3m: 870m - 918m 6m: 918m - 1584m 3m: 1584m - 1802mTD

SANTOS

Santos Core Laboratory

Samplex Trays:

Box 1 of 1: Spud-1802m

Washed & Dried Cuttings:

Box 1 of 5: Spud - 460m

" 2 of 5: 460m - 972m " 3 of 5; 972m - 1372m

" 4 of 5:1372m - 1641m

" 5 of 5: 1641m - 1802mTD

DNRE (Victoria)

Petroleum Branch 250 Victoria Pde. Fitzroy, Victoria, 3065.

Washed & Dried Cuttings:

Box 1 of 6: Spud - 460m

2 of 6: 460m - 909m

11 28 - 1128

" 3 of 6: 909m - 1128m

Box 4 of 6:1128m - 1440m " 5 of 6:1440m - 1653m " 6 of 6:1653m - 1802mTD

Total No of Boxes

SECTION 11: CASING AND CEMENTING RECORDS

CASING AND CEMENTING

FORM

Santos Ltd

A.C.N. 007 550 923

Well Name:

McINTEE #1

DQMS F-220

kole Size:	9 7/8''	T.D.:	<u></u>	433.55	By:	A.CHOMLI	E Date:	13/02/2001	Contra	ctor:	Dowell S	chlum.
Pre-Flush	40	bbls	@	8.5	ppg.	WATER	Spacer		bbls	@		pg
Additives:					FF6.		-				r	76
CEMENT					ADDIT	IVES	Pr	oduct	%		Amount	
LEAD SLURRY	7:	138		sacks class			S001 A	ccelerator	1.50		194.58 I	LBS
lurry Yield:		2.85	***************************************	cu.ft./sack	***************************************			entonite	4.00		518.88 1	LBS
Mixwater Req't:		17.5		gal./sack			D081 R	Letarder	0.00	1	0 {	gal
Actual Slurry Pu	mped:	70	***************************************	bbls @	11.5	ppg	D047 D	Defoam	0.01		1.2972 §	
AIL SLURRY:		85		sacks class	G		S001 A	ccelerator	0.05		3.995 1	LBS
Slurry Yield:		1.19	(*************************************	cu.ft./sack	······································	3.91.04B	D145A	Dispersan	t 0.05		3.995 {	gal
Mixwater Req't:		5.3		gal./sack			D081 R	Letarder	0.00		0 {	gal
ctual Slurry Pu	mped:	18		bbls @	15.6	ppg	D047 D	Defoam	0.01		0.799 į	gal
DISPLACEME	NT			Fluid	: MUD	(9 .1	ppg				
heoretical Disp	1.:	62.8		bbl.		·····	***************************************	Bumped p	olug with		1000	psi
ctual Displ.		62.5		bbl @	5	bpm		Pressure 7	Tested to:		2500	psi
Displaced via		RIG P	UMP	····				Bleed bac	:k:		***************************************	bbls
ACTIVIT	Y	Ti	me	Returns to S	Surface:	138 & 40	bbls mu	d & water		12	bbls cmt.	
tart Running cs	g.	18	:00	Reciprocate	/ Rotate C	Casing:	Yes			***************************************		
Start Circulating		21	:30	Top Up Job		Yes / No	YES	***************************************	sx class	G	H M H 187 M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***************************************
ump PreFlush			:20	⊣ · ·		Weatherford	***************************************	ting Float ed	MINI.	***************************************	***************************************	
lead Up		22	:25	-		type/depth:				loating it	#2, 10' abo	ve float,
Start Press Test		22	:35	Jt # 5 & 7,	1 at 28m a	and cement bas	***************************************	***************************************		***************************************		
tart Mixing		22	:45	Remarks:	***************************************	nd Cementing		ogram		***************************************		***************************************
inish Mixing		23	:25	1	Francisco de Laboratorio de Laborato		MINISTER MANAGEMENT TO SERVICE STREET			***************************************		
Start Displacing		23	:25		li läeta <u>, mist</u> emiekki ferner m ee t ti fastionus m	***************************************	Hibsilesi eti imizomaranen erangajuspi sapisali			***************************************	***************************************	***************************************
top Displ./Bum	ıp	23	:35		***************************************	***************************************	ikini maratu (m. m. imai m.) ki in mar kaam		***************************************	······································	51411414HM W1111414144 W1141144MA) (1964	hteken gyelgen tirs i feliosofovi so sor s bi see e
ress. Test Finis	h	23	:45		***************************************	***************************************			Visit I I I I I I I I I I I I I I I I I I I		***************************************	
											***************************************	,
No. JOINTS					DESCR	IPTION				METERS	FROM	TO
	Stick U	p (Ente	er as n	egative num	nber)	-				-0.87	-0.87	0.00
1	RT to T	Γop Bra	adenhe	ead "A" Sect	ion					4.70	0.00	4.70
1	7 5/8 B	TC x	9 5/8"	x 11" 5k B	radenhead	d "A" Section	(WG-22-	-L)		0.72	4.70	5.42
34						ar removed)				398.44	5.42	403.86
1	Float C	Collar (NR) -	Weatherford	l					0.40	403.86	404.26
2	7 5/8"	26.4#	L80 B	TC Casing						23.44	404.26	427.70
1	Float S	hoe - V	Veathe	erford						0.44	427.70	428.14
				· .								
<u>/</u>												
												•
	***NB	. Casin	g is 11	1.72m avera	ige length	. ***NB. R7	Γ - $GL = 4$.70m				
neoretical Bouye	d wt of o	casing(k	clb):		32	2	Bradenh	nead Height	above GI		0.00	m
Actual wt of casin					34	4.		wt just prio			STUCK	
Landing WT (after	r cement	ing and	press.	bleed off)	STUCE	ζ	setting s	slips (klbs)				10
Revision 2,	April 1999											

CASING AND CEMENTING

FORM

Santos Ltd

A.C.N. 007 550 923

Well Name:

McIntee #1

DQMS F-220

Hole Size:	6 3/4"	TD.		1803m	By:	A.CHOMLE	Date	05/05/2000	Contra	ctor	Dowell S	Schlum
Pre-Flush	40	bbls	@	8.6	ppg.	A.CHOWLL	Spacer	03/03/2000	bbls	@		ppg
Additives:				austic to 10			Spacer		0013	G		PPS
Fidultives.		idelde		idstic to 10								
CEMENT					ADDIT	IVES	Pr	oduct	%		Amount	
LEAD SLURRY	7.	332		sacks class	G		D066	SILICA	0.00		0	LBS _
Slurry Yield:		2.84		cu.ft./sack				0 BENT	4.00		1328	LBS
Mixwater Req't:		17.6		gal./sack			S001	Anti Set	0.50		166	LBS
Actual Slurry Pu	mped:	168		bbls @	11.5	ppg	D047	Anti Foam	0.01		3.32	gals
TAIL SLURRY:		130		sacks class	G		D066	SILICA	0.00		0	LBS
Slurry Yield:		1.19		cu.ft./sack	mundanganpaga	14441	D080a	Dispersant	0.05		6.5	gals
Mixwater Req't:		5.24		gal./sack			D15	3 STAB	0.00		0	LBS _
Actual Slurry Pu	mped:	28		bbls @	15.6	ppg	D047	Anti Foam	0.01		1.3	gals /
DISPLACEME	NT			Fluid	: 2% KCl	@	8.5	ppg				
Theoretical Disp	1.:	47.6		bbl.		MANU .	***************************************	Bumped p	lug with		1800	psi 💣
Actual Displ.		47.5	***************************************	bbl @	5	bpm		Pressure 7	ested to:	•	***************************************	psi 🔻
Displaced via		RIG P	UMP		***************************************	-		Bleed bac	k:	<u> </u>	***************************************	bbls
ACTIVIT	Y	Ti	me`	Returns to S	Surface:	237	bbls mu	d		5	bbls water	
Start Running cs	g.	04	:30	Reciprocate	/ Rotate C	asing:	YES			***************************************		
Start Circulating		14:	:00	Top Up Job		Yes / No	NO		sx class	***************************************		
Head up			:23	-1 ' '		Weatherford N	***************************************	ing Float ed		OilTools p	lugs.	. 1
Pump PreFlush			:15	-		type/depth:		ve shoe, 10'		*******		to 1580h
Start Press Test			:45	-		2 at shoe 422 &			***************************************	***************************************	**************************************	
Start Mixing		16	:00	Remarks:	Excellent	tly executed cen	nent job.		***************************************	***************************************	***************************************	
Finish Mixing			:55	1	***************************************	ontrol of Lead S		ellent at 11.	5ppg, Ta	il excellent	at 15.6 ppg	
Start Displacing			:00	STR WT - :	***************************************	0k, 50k, 50k, 50						
Stop Displ./Bum	ıp	17:	:10							***************************************	***************************************	
Press. test		17	:25								***************************************	<u> </u>
No. JOINTS					DESCR	RIPTION				METERS	FROM	TO
	Stick U	Jp (Ent	ter as	negative nur	nber)					1.40	1.40	0.3
1	3 1/2"	J55 9.	3# NE	W NK3SB	CASING	LAND JOINT	CUT OF	Ŧ		4.70	0.00	4.
1	CASIN	NG HA	NGE	R SLIP & SI	EAL ASSI	EMBLY (TYP	E WG-2	2)		0.00	4.70	4.70
1	3 1/2"	J55 9.:	3# NE	W NK3SB	Casing PA	ART JOINT				3.53	4.70	8
152	3 1/2"	J55 9.	3# NE	W NK3SB	Casing(Le	ength includes	0.5m stre	tch for 551	c overpul	1463.22	8.23	1471.45
1	3 1/2"	J55 9.	3# NE	W NK3SB	Casing M	ARKER JOIN	T			3.21	1471.45	1474.66
20	3 1/2"	J55 9.	3# NE	W NK3SB	Casing	-				192.44	1474.66	1667
1	Float C	Collar (NR)							0.36	1667.10	1667.40
1	3 1/2"	J55 9.	3# NE	EW NK3SB	Casing					9.63	1667.46	1677.09
1	Float S	Shoe								0.41	1677.09	1677)
												,
				•								
					,					· ·		
												. (
	***NE	3. Casir	ng is 9	.62m avera	ge length.	***NB. RT	-GL = 4	.7m				,
Theoretical Bouye	d wt of	casing(klb):		4:	2	Bradenl	nead Height	above GI		0m	
Actual wt of casin					4:	2	Casing	wt just prio	to landin	g csg/	95	,
Landing WT (after	r cemen	ting and	d press	. bleed off)	4	0.	setting s	lips (klbs)				1

ENCLOSURE I: 5"= 100' MUDLOG

WILL BE FORWARDED WHEN AVAILABLE