PAGE 1 OF 75) 909075 001

LAVERS 1 **GAS EXPLORATION WELL** WELL PROPOSAL

DRILLING PROGRAM COMPLETING & TESTING PROGRAM

antos

P.E.P. 154, OTWAY BASIN

South Australian Business Unit **Exploration & Development**

Santos (BOL) Ltd (A.C.N. 000 670 575)

EXPLORATION & DEVELOPMENT - SA

G. Parsons / M. Majedi January 2001

CONTENTS

1. WELL DATA SUMMARY

2. EXECUTIVE SUMMARY

3. GEOLOGICAL RISK ASSESSMENT

- 3.1 Play Analysis
- 3.2 Trap
- 3.3 Reservoir
- 3.4 Seal
- 3.5 Charge
- 3.6 CO₂ Issues

4. **RESOURCE DISTRIBUTION AND ECONOMIC EVALUATION**

- 4.1 Resource Distribution
 - 4.1.1 Area
 - 4.1.2 Porosity
 - 4.1.3 Hydrocarbon Saturation
 - 4.1.4 Net Pay
 - 4.1.5 Recovery Factor
 - 4.1.6 Gas Composition
 - 4.1.7 Flow Rate
- 4.2 Economic Evaluation
- 4.3 Location

FIGURES, ENCLOSURES AND ATTACHMENTS

FIGURES

- 1. Well Location
- 2. Otway Basin Stratigraphic Column
- 3. Proposed Lavers 1 Stratigraphic Column
- 4. Proposed Lavers 1 Diagrammatic Structural Cross-Section
- 5. Lavers Prospect Near top Waarre Sand Time Map
- 6. Seismic Line Curdievale 3D Proposed Lavers 1 Proposed McIntee 1
- 7. Lavers Prospect Belfast to Waarre Time Interval
- 8. Dip Line Lavers Prospect
- 9. Far offset v's Near offset display
- 10. Curdievale 3D Average Amplitude Near offset stack
- 11. Curdievale 3D Average Amplitude Far offset stack
- 12. Curdievale 3D Average Amplitude Far-Near offset stack
- 13. Curdievale 3D Average Amplitude Full stack
- 14. Port Campbell Embayment Waarre Depositional model
- 15. Log Display Callista 1
- 16. Log Display Boggy Creek 1
- 17. Log Display Rowans 1
- 18. Lavers McIntee Allen Diagram
- 19. Fault Seal Evaluation Lavers & McIntee Prospect

TABLES

1. Resource Computation

ENCLOSURES

- 1. Curdievale 3D Near top Waarre Sand Time Map
- 2. Stratigraphic Cross Section Boggy Creek 1 Callista 1 Rowans 1

ATTACHMENTS

- 1. Geophysical Prognosis
- 2. Drilling Program
- 3. Completion and Testing Program

WELL DATA SUMMARY

Waarre Sandstone (gas) Clifton 544 476 Peable Pt 1005 937 Paaratte 1043 975 Skull Ck 1219 -1151 Nullawarre 1315 -1247 Beifast 1620 -1552 WAARRE 1645 -1620 Fizamans 1620 -1552 Warre Iai 1688 -1620 TD 1723 -1655 Formation Evaluation Hole Design/Drilling Issues Wreline Logging: PEX-HRS TD to Surface Casing to Surface SDT (WFT) TD to Surface Casing to Permber Hole Type: Monobore MCFL-CALL TD to 100° above Waare Sst 6 ¹⁴⁴ ///////////////////////////////////	WELL NAME: Lavers 1		WELL TYPE: 0	as Explor	WELL TYPE: Gas Exploration				
Santos Ltí 90% Santos \$1.003 mm Ground Level: 63.5m (preliminary) Beach Petroleum 10% Beach \$0.111 mm Rotary Table: 63.5m (preliminary) TOTAL 100.00% TOTAL \$1.114 mm (P&A)** Nearest Facilities: Heytesbury Resource Estimate Cost Estimates Heytesbury Mean Success Volume: 0.74 BCF Cost Estimates Objectives/Fluid Contacts Stratigraphic Prognosis	EQUITY:				Latitude: 38 28 44.75" S Longitude: 142 48 12.21" E			12.21" E	
Nearest Facilities: Heytesbury Resource Estimate (Recoverable) Cost Estimates Mean Success Volume: 0.74 BCF Mean Expected Volume: 0.74 BCF Objectives/Fluid Contacts Premation Primary Secondary Waarre Sandstone (gas) Secondary Primary Secondary Vaarre Sandstone (gas) Secondary Primary Secondary Vaarre Sandstone (gas) Secondary Pebble Pt 1005 Paratte 1043 Skuil CK 1219 Vireline Logging: Pebble Pt PEX-HRS TD to Surface Casing to Surface SDT (WFT) TD to Surface Casing (WFT across Waare Sst) PEX-LOL-CNL TD to 10° above Waare Sst MCFL: (dependent on shows and reservoir development) SWC's: 1 Gun (20) MDT's: 20 point pressure survey Velocity Survey: Surface Targets: Yes. Minmum survey points Mudlegging: Mudigging: Ton Surface Casing to approx 1000m RT (-932m ss) <tr< td=""><td>Santos Ltd Beach Petroleum</td><td>10%</td><td>Santos Beach</td><td>\$1.003 mm \$0.111 mm</td><td>Rotary Table: Proposed Total</td><td>6 6 Depth: 1</td><td>63.5m () 68.2m () 1723m </td><td>preliminary) preliminary) RT (-1655m)</td></tr<>	Santos Ltd Beach Petroleum	10%	Santos Beach	\$1.003 mm \$0.111 mm	Rotary Table: Proposed Total	6 6 Depth: 1	63.5m () 68.2m () 1723m	preliminary) preliminary) RT (-1655m)	
Mean Success Volume: 2.2 BCF PA: \$1.114 mm Mean Expected Volume: 0.74 BCF CAS: \$1.30 mm Objectives/Fluid Contacts Stratigraphic Prognosis Cost Code: 8EE-84D895 Objectives/Fluid Contacts Stratigraphic Prognosis	IUTAL	100.00%	TOTAL	\$1.114 mm (P&A) ***	Nearest Faciliti	es:	Heytes	bury	
Mean Expected Volume: 0.74 BCF C&S: \$1.340 mm Objectives/Fluid Contacts Stratigraphic Prognosis Primary Secondary Formation Depth (m-RT) Depth (m-ST) Waarre Sandstone (gas) Secondary Formation Depth (m-RT) Depth (m-ST) Primary Secondary Formation Depth (m-RT) Depth (m-ST) Waarre Sandstone (gas) Situit (k 1219 -1151 Nullawarre 1315 -1247 Buffast 1554 -4366 Formation Evaluation Hole Design/Drilling Issues Wireline Logging: Well Class: Conventional/Exploration PEX-LD.CNL T0 to Surface Casing to Surface Well Class: Conventional/Exploration Hole Type: Monobore Hole Type: Monobore 97%: T0 to Surface Casing WFT across Waare Sst 07% Surface to 25m 97%: T0 to Surface Casing VFT across Waare Sst 07% Surface to 7D 97%: Surface to 7D Do till Fluid: Norbore 1 Gun (20) MDT's: Sub-Surface Targets: Sub-Surface Targets: 20 point pressure survey S	Resource Estimate (Recov	erable)			Cost Estimates			······································	
Primary Secondary Formation Depth (m-RT) Depth (m-RT) Waarre Sandstone (gas) 544 476 Waarre Sandstone (gas) 544 476 Pable Pt 1005 937 Paaratie 1043 -975 Nullaware 1315 -1247 Beffast 1554 -1247 Beffast 1560 -1552 Warnes 1640 -1577 Eumeralia 1688 -1620 Formation Evaluation Hole Design/Drilling Issues -1665 Wireline Logging: PEX-HRS TD to Surface Casing WFT acrose Waare Sst) Hole Size Casing Depth OFC-CAL TD to 10 above Waare Sst 9 ⁷⁶⁶ 5 ⁹⁶⁶ 9 ⁷⁶⁶ Surface to 425n SWC's: 1 Gun (20) Surface Casing to approx 1000m RT (-932m ss) 3 ½* Surface to 1D Drill Fluid: Accuracy points Sub-Surface Targets: Lavers 1is a verical wells No acuracy of 50m MDT's: 20 point pressure survey -1640 strue creace at TD has been requested. The oritical structural directions are the northeast. No hazardous zones in offset wells No hazardous zones in offset wells					C&S: \$1.340 mr	n			
Waarre Sandstone (gas) Cliffon 544 476 Pabble Pt 1005 397 Paratte 1043 3975 Skull Ck 1219 -1151 Nullawarre 1315 -1247 Belfast 1554 -1486 Formation Evaluation 1645 -1577 Wreline Logging: Pex-HRS TD to Surface Casing to Surface PEX-HRS TD to Surface Casing to Surface Well Class: Conventional/Exploration MCFL-CALI TD to 100° above by Pember Hole Design/Drilling Issues WWC's: 1 Gun (20) MDT's: Quotation generation reference at TD as been requested. The ortical structural directions are t the northeast. Velocity Survey: Yes. Minimum survey points Deviation Sub-Surface Targets: Lavors 1 is a vertical wells. An accuracy of 50m radius from seismic reference at TD has been requested. The ortical structural directions are t the northeast. Mudlogging: 10m Samples from Surface Casing to approx 1000m RT (-932m ss) 3m samples threater to TD Sub-Razardusz zones in offset wells Samples as per well programme None Programmed Nearby Wells and Duration: None Programmed Coring: Nearby Wells and Duration: None Progra								<u>`</u>	
Pebble Pt1005937Paratte1043975Skull Ck1219-1151Nullaware1315-1247Befast1554-1486Flaxmans1620-1552Formation EvaluationHole Design/Drilling IssuesWireline Logging: PEX-HRSWell Class: Conventional/ExplorationPEX-HRSTD to Surface Casing to Surface SDT (WFT)Well Class: Conventional/ExplorationSDT (WFT)TD to Surface Casing (WFT across Waare Sst) (dependent on shows and reservoir development)Well Class: Conventional/ExplorationSWC's: 1 Gun (20)TO to 100 above twaare Sst (dependent on shows and reservoir development)976 976 976 976 976 976 976 976 976 976 976 976Surface Casing Oberth 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 976 	•		Secondary				n-RT)	Depth (m-SS)	
Nullawarre Beifast Flaxmans1315 1554 1554 1552 1552 1552 1552 1552 1552 1552 1552 1552 1552 1552 1552 1663 1723 1663 1577 1663 1723 16651315 1554 1554 1552 1663 1665Formation EvaluationHole Design/Drilling IssuesWireline Logging: PEX-HRS DT to Surface Casing to Surface SDT (WFT) TD to 10 m above top Pember (dependent on shows and reservoir development)Well Class: Conventional/ExplorationSWC's: 1 Gun (20)To to 10 m above top Pember (dependent on shows and reservoir development)Drill Fluid: Surface to 425m 6 ^{344m} 3 ½* Surface to 425m 6 ^{344m} 9 ½* No hazardous zones in offs	waarre Sandstone (gas)				Pebble Pt Paaratte	1005 1043		-937 -975	
WAARRE Eumeralia 1945 1988 -1577 -1620 Formation Evaluation Hole Design/Drilling Issues Wireline Logging: PEX-HRS TD to Surface Casing to Surface SDT (WFT) TD to Surface Casing (WFT across Waarre Sst) (dependent on shows and reservoir development) Well Class: Conventional/Exploration SWC's: 1 Gun (20) TD to 100° above top Pember (dependent on shows and reservoir development) Well Class: Casing Depth 9 ⁷⁵ / ₆ Hole Type: Monobore Hole Size 6 ³⁴ / ₇ Monobore Hole Size 6 ³⁴ / ₇ SWC's: 1 Gun (20) Drill Fluid: (dependent on shows and reservoir development) Drill Fluid: KC//PHPA/Polymer Surface to TD SWC's: 1 Gun (20) Drill Fluid: 1 Gun (20) Not Surface Targets: Lavers 1 is a vertical well. An accuracy of 50m radius from selsmic reference at TD has been requested. The critical structural directions are t the northeast. Velocity Survey: Yes. Minimum survey points Dother Information/Hazards: No hazardous zones in offset wells No hazardous zones		Nullawarre Belfast	1315 1554		-1247 -1486				
Formation Evaluation Hole Design/Drilling Issues Wireline Logging: PEX-HRS TD to Surface Casing to Surface SDT (WFT) TD to Surface Casing (WFT across Waarre Sst) Hole Tacross Waarre Sst) MCFL-CALI TD to 10 on above top Pember PEX-LDL-CNL TD to 100' above Waarre Sst Hole Type: Monobore (dependent on shows and reservoir development) 5 ^{376a} Surface to 425m SWC's: 1 Gun (20) Drill Fluid: KCI/PHPA/Polymer 20 point pressure survey Deviation Sub-Surface Targets: 20 point pressure survey Lavers 1 is a vertical well. An accuracy of 50m radius from seismic reference at TD has been requested. The critical structural directions are t the northeast. Mudlogging: 10m Samples from Surface Casing to approx 1000m RT (-932m ss) 3m samples thereafter to TD So hallow gas expected Samples as per well programmed Coring: Nearby Wells and Duration: None Programmed Carling: Nearby Wells and Duration: REMARKS/RECOMMENDATIONS: Nil Nearby Wells and Duration:					WAARRE	1645		-1577	
Wireline Logging: PEX-HRS TD to Surface Casing to Surface Sort (WFT) Well Class: Conventional/Exploration MOFL-CALI TD to 10 mabove top Pember mostore top Pember (dependent on shows and reservoir development) Hole Type: Monobore Casing Depth 9 ^{70%} , Surface to 425m 6 ³⁴⁴ , 3 ½" Surface to TD SWC's: 1 Gun (20) TD to 100' above Waare Sst (dependent on shows and reservoir development) Drill Fluid: KCI/PHPA/Polymer MDT's: 20 point pressure survey Deviation Sub-Surface Targets: Lavers 1 is a vertical well. An accuracy of 50m radius from seismic reference at TD has been requested. The critical structural directions are to the northeast. Velocity Survey: Yes. Minimum survey points Other Information/Hazards: No hazerdous zones in offset wells No shallow gas expected Mudlogging: 10m Samples from Surface Casing to approx 1000m RT (-932m ss) 3m samples as per well programme Other Information/Hazards: No hazerdous zones in offset wells No shallow gas expected Formation Testing: None Programmed Nearby Wells and Duration: Callista 1 11 days 1800 m (1988) Boggy Creek 1 22 days 1900m (1992)								-1655	
1 Gun (20) KCI/PHPA/Polymer MDT's: 20 point pressure survey Deviation 20 point pressure survey Sub-Surface Targets: Lavers 1 is a vertical well. An accuracy of 50m radius from seismic reference at TD has been requested. The critical structural directions are the northeast. Yes. Minimum survey points Mudlogging: Other information/Hazards: 10m Samples from Surface Casing to approx 1000m RT (-932m ss) Other information/Hazards: 3m samples thereafter to TD No shallow gas expected Samples as per well programme Waarre Sandstone has excellent reservoir properties (porosity 20%, permeability up to 20 darcies Formation Testing: None programmed None programmed Callista 1 11 days 1800 m (1988) Boggy Creek 1 22 days 1900m (1992) REMARKS/RECOMMENDATIONS: NII	PEX-HRSTD to 5SDT (WFT)TD to 5MCFL-CALITD to 7PEX-LDL-CNLTD to 7	Hole Type: Hole Size 9 ^{7/8} "	Hole Type:MonoboreHole SizeCasing Depth9 7/8n7 5/8n Surface to 425m						
20 point pressure survey Sub-Surface Targets: Lavers 1 is a vertical well. An accuracy of 50m radius from seismic reference at TD has been requested. The critical structural directions are to the northeast. Yes. Minimum survey points Other Information/Hazards: Nom Samples from Surface Casing to approx 1000m RT (-932m ss) 3m samples thereafter to TD Other Information/Hazards: No hazardous zones in offset wells No shallow gas expected Waarre Sandstone has excellent reservoir properties (porosity 20%, permeability up to 20 darcies Formation Testing: Nearby Wells and Duration: None Programmed Callista 1 11 days 1800 m (1988) REMARKS/RECOMMENDATIONS: Nil						ner			
Yes. Minimum survey pointsOther information/Hazards: No hazardous zones in offset wells No hazardous zones in offset wells No shallow gas expected Waarre Sandstone has excellent reservoir properties (porosity 20%, permeability up to 20 darciesFormation Testing: None ProgrammedNearby Wells and Duration: Callista 1 11 days 1800 m (1988) Boggy Creek 1 22 days 1900m (1992)	20 point pressure survey	Sub-Surface Targets: Lavers 1 is a vertical well. An accuracy of 50m radius from seismic reference at TD has been requested. The critical structural directions are to							
Mudlogging: 10m Samples from Surface Casing to approx 1000m RT (-932m ss) 3m samples thereafter to TD Samples as per well programmeOther information/Hazards: No hazardous zones in offset wells No shallow gas expected Waarre Sandstone has excellent reservoir properties (porosity 20%, permeability up to 20 darciesFormation Testing: None ProgrammedNearby Wells and Duration: Callista 1 11 days 1800 m (1988) Boggy Creek 1 22 days 1900m (1992)REMARKS/RECOMMENDATIONS: NIINi	Yes. Minimum survey points	3 .			the northeast.				
None Programmed Nearby Wells and Duration: Coring: None programmed Callista 1 11 days 1800 m (1988) Boggy Creek 1 22 days 1900m (1992) REMARKS/RECOMMENDATIONS: NII Boggy Creek 1 22 days 1900m (1992)	Mudlogging: 10m Samples from Surface (3m samples thereafter to TD	No hazardous zones in offset wells No shallow gas expected Waarre Sandstone has excellent reservoir properties (porosity 20%, permeability up to 20							
None programmed Callista 1 11 days 1800 m (1988) Boggy Creek 1 22 days 1900m (1992) NII									
REMARKS/RECOMMENDATIONS: NII		Callista 1 11 days 1800 m (1988)							
Approved by: Project Leader: Team Leader: Operations Geology Drilling Engineer:		20399 0100K T	uyo 10						
Approved by: Project Educit Poun Educit. Operations decledy Priming Engineer.	Approved by::	Project Lea	der:	Team Leader:	Operations Geo	ology	Drilling	Engineer:	

ALL COORDINATES WITHIN THIS DOCUMENT USE AN AGD84 DATUM

2. EXECUTIVE SUMMARY

Lavers 1 is proposed as an Otway Basin gas exploration well to be located in the PEP 154 licence (90% Santos (operator) and 10% Beach Petroleum N.L), It lies approximately 13 km north of the town of Peterborough, 5.6 km NNW of the Boggy Creek CO_2 field and 10 km west of the producing Mylor and Fenton Creek Gas Fields (Santos 100%). The Lavers structure is situated within the Port Campbell Embayment and the productive Waarre Sandstone play fairway. (Figure 1).

The Lavers Prospect is a tilted-fault closure within the greater McIntee Structural Complex and defined by 3D seismic. The well is expected to intersect a Waarre Sandstone reservoir with mean average net pay of 15.8m. The prospect exhibits a strong amplitude anomaly coincident with structural closure similar to other wells in the area which have proven to be gas filled.

The risk of major CO_2 is considered to be low as structurally Lavers is quite different to Boggy Creek structure (90% CO_2), which lies within a "shattered" zone, believed to provide the conduit for the migration of CO_2 . Spill from Boggy Creek is likely to be to the northeast, away from Lavers 1.

The prognosed stratigraphic succession is summarised by Figures 2 & 3.

The Lavers prospect is relatively small and drilling is contingent upon success at *McIntee 1*. It has a mean prognosed success case of 2.2 BCF sales gas (4.92 BCF OGIP) and a Pc (probability of commercial success) of 33%, resulting in expected mean reserves of 0.74 BCF sales gas. Success at McIntee 1 would see the Pc increasing to about 50% with a resultant expected mean reserves of about 1.1 BCF.

3. GEOLOGICAL RISK ASSESSMENT

3.1 Play Analysis

The Lavers Prospect is mapped as a tilted fault-block closure with the primary reservoir the Waarre Sandstone. Vertical seal is provided by the Belfast Mudstone (Figure 4) with the critical cross-fault seal against the Skull Creek Mudstone due to large fault throw on the south-west bounding fault. The spill-point of the structure will depend on the effectiveness of shale smear where there is juxtaposition of Waarre reservoir against the Nullawaarre Greensand. Structures are charged from mature source beds located within the underlying Eumeralla and / or Crayfish Group with migration directly into the reservoir or via fault conduits. The play has proven successful to the east in Skull Creek Gas Field although at that location the Nullawaarre Greensand is absent and the Skull Creek Mudstone lies directly upon the Belfast Mudstone. Lavers exhibits a strong amplitude anomaly at the Waarre Sandstone horizon, which is interpreted as being a well-developed gas-saturated reservoir.

3.2 <u>Trap</u> (Pcl = 85%)

Interpretation and mapping of the Lavers prospect was based on the Curdievale 3D survey, which was recorded in early 2000. The Curdievale 3D data quality is good in the Lavers area.

Several migrated volumes including migrated stacks with and without spectral whitening, near and far offset migrated stacks were generated and used for interpretation. Due to better horizon continuity and amplitude preservation the migrated stack volume without spectral whitening was used for horizon interpretation. Far and near offset volumes were used for amplitude extraction and AVO analysis. A coherency cube (similarity volume) was also generated and used in conjunction with other volumes for fault interpretation.

Main mapping was carried out at near top Waarre Sandstone, which is the primary target reservoir (Figure 5). The Waarre sand package has a distinctive seismic characteristic and therefore a high degree of consistancy was maintained with mapping of this unit. Well ties were performed for Boggy Creek 1 and Callista 1.

The Lavers prospect is a relatively small tilted fault block structure within a much broader McIntee Structural Complex situated southwest of Callista 1 and southeast of Rowans 1 (Enclosure 1). Three independent structural closures are present within the greater McIntee Structural Complex which are separated by shallow troughs and faulting. The McIntee Structural Complex forms a major NW-SE trending horst block. The southern margin fault dies out just south of McIntee prospect but extends northwesterly beyond the Curdievale surveyed area. The throw of this fault increases towards the northwest and as a result the Waarre sand reservoir in the footwall is in juxtaposition with the Belfast Mudstone in the hanging wall to the southeast, and with the Skull Creek Formation to the northwest within the Lavers structural closure. Such a situation could provide a critical side-seal problem along the fault plane where Waarre sand is juxtaposed against the Nullawarre Sandstone somewhere between McIntee and Lavers prospects.

The top Belfast Mudstone was interpreted over the McIntee Structural Complex on and a time-interval map for the Belfast to Waarre section was generated (Figure 7).

A strong amplitude event is present within the Waarre sand unit over the Lavers prospect (Figures 8 and 9). Similar events over all gas fields within the Port Campbell region suggest that the amplitude anomaly is likely related to the presence of gas in these structures. Furthermore, near and far-offset volumes were also used to evaluate the amplitude anomaly over Lavers structure. Figures 10 to 13 are displays of amplitudes extracted within the Waarre sand unit. Figure 13 is particularly encouraging as the display of the far-offset amplitude minus the near-offset amplitude clearly indicates an AVO anomaly over the Lavers structure.

The location for the proposed Lavers 1 was selected on inline 2490 CDP 10163. This location is at a near-crestal position and is within the highest expression of amplitude.

Depth conversion for the prognosis was performed using Callista 1 velocities. The result of this conversion is presented in Attachment 1.

3.3 <u>Reservoir</u> (Prs= 80%)

The Waarre Sandstone reservoir was deposited as the initial post-rift sequence at the commencement of the Turonian time under non-marine to marginal marine conditions. The section is divided into three sub-units - Waarre "A", "B" & "C". The lower A unit represents a basal transgressive systems tract (TST) characterised by the flooding of an incised valley with sediments deposited under marginal marine / estuarine conditions. The basal portion of Unit A is represented by either shale (as in Callista 1 or Boggy Creek 1 - interflue?) or sand (Curdie 1). This section was overlain by the widespread predominantly argillaceous Unit B, deposited under estuarine conditions. Unit C followed and is characterised by initial estuarine/deltaic conditions succeeded by high energy sands as the transgression pushed sediments up the valley system. Figure 14 illustrates this model. The Waarre Sandstone thins to the north and in the Callista 1 and Rowans 1 (Figures 15 & 16) wells to the north, the section appears to be relatively shaley (based on the gamma ray log) with only a thin well developed section at the top of unit C. To the south at Boggy Creek 1 (Figure 16), a thick well-developed Waarre sand was penetrated. Between Callista 1 and Lavers there is significant change in the seismic character at the top Waarre level. This possibly is indicative of better sand development at the Lavers location.

There are no secondary targets in this well although the Heathfield Sandstone Member of the Eumeralla is considered to have some (albeit minor) potential. It is not proposed to investigate this unit in Lavers 1, as it lies some 200m into the Eumeralla and when tested at other locations has proved to be tight.

3.4 <u>Seal</u> (PsI = 60%)

All Otway Basin successes In the Port Campbell Embayment area have been in high-side, tilted fault blocks or tilted horst blocks. The ultimate top seal to Waarre reservoirs is the marine Belfast Mudstone. While a potential waste or " thief" zone exists between the Waarre sands and the Belfast seal, the Flaxmans Formation, deposited under transitional marginal marine conditions is most likely to act as a seal.

Cross-fault seal is considered the key risk for prospects within the Port Campbell Embayment area. For structures where the fault throw is greater than the thickness of the overlying Belfast Mudstone there is considerable risk that cross-fault seal will leak due to Waarre sands being juxtaposed against sands of the Nullawarre Greensand. If the throw is great enough, the reservoir could however be juxtaposed against the Skull Creek Mudstone and this appears evident at Lavers 1.

The Lavers structure is controlled primarily by two faults lying to the southwest and south of the prospect. The fault to the south demonstrates relatively minor offset at Belfast level and is regarded as unlikely to leak. The seal across the southwest bounding fault appears to be more problematic as the fault demonstrates both growth during the time of Belfast deposition and potential Waarre/Nullawarre sand juxtaposition in the southern portion of the structure. The appearance within the proximal hanging wall zone of high angle reflectors may indicate the presence of shale smear along the fault zone that would provide additional confidence in fault seal. The presence of the higher amplitudes and AVO anomaly over the prospect (if reflecting the presence of gas as seems likely) provide corroboration of seal validity.

3.5 <u>Charge</u> (Pch = 90%)

Hydrocarbons are produced in the Port Campbell Embayment, with the Eumeralla Formation and/or the Crayfish Group being the source beds. Analysis of the condensates and oils from the area suggest a non-marine origin with both algal and higher land plant components (Type III kerogen). Maturation studies indicate that the top of the hydrocarbon window lies at about 2500m. Thus mature Eumeralla source units that underlie the local gas fields are most likely to charge directly into the overlying structures through source-reservoir juxtaposition or via fault conduits. This model is proposed for Lavers 1.

The formation of the Lavers structure commenced at the time of Belfast Mudstone deposition in the Late Cretacous although its current configuration was not completed until the end of the Eocene. Generation and migration commenced in the Late Cretaceous and has continued through until the present day.

3.6 <u>CO2 Issues</u>

The distribution of CO_2 within the Port Campbell area appears to be related to the introduction of a restricted CO_2 volume at a number of locations and its subsequent migration. The CO_2 is considered to be from a mantle source and is likely to have occurred in conjunction with the emplacement of an igneous body during the Miocene.

A review of high-resolution aeromagnetic data has been undertaken in an effort to understand the distribution of deep-seated faulting, believed to be the conduit for CO_2 migration and the location of igneous bodies. The preliminary results of the study indicate the presence of an intrusive marginal to the coast and proximal to a major NNE-SSW lineament. This lineament appears to be co-incident with major faulting identified on the seismic and is seen as a likely conduit for the Langley and Grumby CO_2 . While an intrusive is not identified at nearby Boggy Creek, a similar trending lineament is mapped through the Boggy Creek well location.

4. RESOURCE DISTRIBUTION AND ECONOMIC EVALUATION

4.1 <u>Resource Distribution</u>

Distributions for local gas field parameters are estimated primarily from those at Boggy Creek 1 and Callista 1 with data from other nearby wells reviewed to provide details of the upper and lower limits. These results are set forth in Table 1 and are used in the resource calculation sheets.

4.1.1 Area

The seismic mapping shows an independent closure of 255 acres (Enclosure 1) and this is used as the P1 area. A low side 40 acre area forms the basis of the P99 estimation. The mean area corresponds to the extent of the main amplitude anomoly associated with the prospect.

4.1.2 Porosity

In the adjacent Boggy Creek 1 and Callista 1 wells, average porosity of about 15-17% is calculated from the logs. Spot core porosities of over 25% were measured in Boggy Creek 1. A range of 15% to 24% average porosity for min & max calculates a mean porosity around 19% for the proposed Lavers 1. Carrying a higher mean porosity for Lavers 1 is considered justified based on the shallower depth of burial and betterpredicted sand quality at the proposed location.

4.1.3 Hydrocarbon Saturation

A hydrocarbon saturation distribution of 60-90% (min/max) captures all of the discoveries in the Port Campbell Embayment. Based on a log-normal distribution this calculates a mean of 73.8% which is close to the Boggy Creek 1 S_{gas} average of 71.5%.

4.1.4 Net Pay

Boggy Creek 1 has a total net sand (in Waarre A, B & C) of 30.5m (100 ft), Callista 1 has a net sand of 28.2m (93 ft). The mean average net pay estimated for Lavers is 15.8m (52 ft). Net / Gross ratios of 87% & 68% are recorded for the Waarre section in Callista 1 and Boggy Creek respectively with a range from 60% (P99) and 85% (P1) providing a mean 72% N/G for the proposed Lavers 1. This would allow for a column potentially extending into the Waarre Unit A sand which has a lower net / gross. Structural relief at the Lavers 1 is in the order of 25m (82').

4.1.5 Recovery Factor

The recovery factor for Santos' Mylor and Fenton Creek gas fields is estimated to be 50%, the mean recovery factor of 49.6% is calculated for Lavers based on 40% and 60% P90 and P10 respectively. Santos has no experience with these reservoirs in the Port Campbell area and the mean assigned RF from the existing fields reflects the best estimate from reservoir engineering. The low recovery factor reflects a postulated strong acquifer support.

4.1.6 Gas Composition

The ranges of gas compositions utilised for Lavers were provided by the analysis of the Mylor 1 and Fenton Creek 1 gas compositions. No detailed information from other nearby fields is available although there is potential for the gas to be drier. The main risk in Lavers regarding this issue is the percentage of CO_2 and this is incorporated in the shrinkage factor low-side of 80%.

4.1.7 Flow Rate

Flow rates used range between 2 MMCFD and 25 MMCFD. These estimates are based on the results of the Mylor and Fenton Creek extended production tests and the Boggy Creek DST. Mylor flowed at 25mmcfd on a ³/₄" choke, Fenton Creek flowed 17mmcfd on a ¹/₂" choke and Boggy Creek flowed at 4.5mmcfd on DST (¹/₂" choke).

4.2 Location

The site for the proposed Lavers well is located within an intensive farming area and utmost attention needs to be given to environmental and landholder issues.

$PE9\phi9\phi75_color\phi\phi2$

909075 013

OTWAY BASIN STRATIGRAPHIC COLUMN

Santos

Figure 2

LAVERS 1 STRATIGRAPHIC COLUMN

Santos Ltd ABN 80 007 550 923, Dec 2000, File No. OTWAY 377

Lat.: 38° 28' 44.75"S (ANS) Long.: 142° 48' 12.21"E (ANS) Seismic : Curdievale 3D Inline 2490, CDP 10163 G.L.: 63.5m(prelim) R.T.: 68.2m(prelim)

909075 014

Santos

					u	.L.: 63.5 m	(hienin)	n.	T.: 68.2m(hiem	11)	:				
A	GE	FORMATION	elev.(m) Subsea Progn.	LITHOLOGY	COMMENTS	CASING	CORING	TESTING	LOGGING	MOI GAS		ANALYSIS				
	MIOCENE					7 ⁵ / ₈ " @ -361m SS (425m RT)			(ELOPMENT)							
TERTIARY	OLIGOCENE	HEYTESBURY GROUP (INCLUDING CLIFTON FM)	-490 – 500mSS			75/ ₈ " @ -361m \$			T.D. TO SURFACE T.D. TO SURFACE CASING T.D. TO 10m ABOVE TOP PEMBER T.D. TO100m ABOVE EUMERALLA FORMATION (DEPENDENT ON SHOWS AND RESERVOIR DEVELOPMENT)							
	D. EOCENE	NIRRANDA GROUP (INCLUDING MEPUNGA FM)	– 500mSS						EPENDENT ON SHOW	0 T.D.	10m INTERVALS to 905m (SS)					
	PALEO.		-848						ATION (D	RFACE T	Jm INTER	i				
		PEMBER PEBBLE PT	-937 -975 - 1000mSS						R A FORM	ROM SU	<u> </u>					
		PAARATTE	-1000mSS						ASING EUMERALL	OGRAPH F						
	LATE	SKULL CREEK	-1151						ACE FACE CA ABOVE T ABOVE I	HROMAT		ELAIDE				
		NULLAWARRE 								lired	NO CONVENTIONAL CORES 1 GUN (20 SIDEWALL CORES)	<u></u> (0)		GAS DETECTOR AND GAS CHROMATOGRAPH FROM SURFACE TO T.D.	(0)	PALYNOLOGY : SANTOS, ADELAIDE
S		FLAXMANS WAARRE	- 1480 - 1500mSS		PRIMARY OBJECTIVE	31/ ₂ " @ T.D. if required	ONVENTIA	20 MDT POINTS	GR-DLL SDT MSFL-CALJ LDL/LDS-CNL	ретесто	3m INTERVALS	IOFOGY :				
CRETACEOUS		EUMERELLA	-1597 -1630		T.D.	31	NO C 1 GUP	20 ME	GR-D SDT MSFL LDLL	GAS I	3m IN	PALYA				
CRET	EARLY															
			- 2000mSS													

Figure 3

PE909075-colorda 903075 015

N

PE909075 $color \phi \phi 5$

FIGURE 14

PE9\$9\$9\$75_color\$14 909075 026

FIGURE 15

PE909075-color 015 909075 027

FIGURE 16

PE9\$9\$75-color\$16 909075 028

FIGURE 18

202075 029 PE909075-COLORDIT

ATTACHMENT 1 GEOPHYSICAL PROGNOSIS

WP:01/00 Rev. 0

GEOPHYSICAL PROGNOSIS

Latitude 38° 28' 44.75"S Longitude 142° 48' 12.21"E

		CALLISTA 1					PROPOSE	PROPOSED LAVERS		
TWT	DEPTH	Isopach	VAV		TWT	DEPTH	ERROR	Isopach	VAV	VINT*
(ms)	(m-ss)	(m)	(m/s)	(m/s)	(ms)	(m-ss)	(+/-m)	(m)	(m/s)	(m/s)
416	408		1962		485	476			1962	
		420		2373				462		2373
770	828		2151		874	937			2145	
		50		3448				38		3448
799	878		2198		896	975			2177	
		308		2976				176		2976
1006	1186		2358		1014	1151			2270	
		101		3015				96		3015
1073	1287		2399		1078	1247			2314	
		312		3410				239		3410
1189	1498		2520		1154	1486			2575	
		108		3429				16		3429
1252	1606		2565		1207	1577	+/- 20m		2613	
		47		2765				43		2765
1286	1653		2571		1252	1620			2617	
		37						35		
	1690					1655				

909075 032

S:\TEAM2\GENERAL\EXPGLP\OTWAY\PEP154\w-002glp Govt Edition.doc

ATTACHMENT 2 DRILLING PROGRAM

S:\TEAM2\GENERAL\EXPGLP\OTWAY\PEP154\w-002glp Govt Edition.doc

14

TABLE OF CONTENTS

 GENERAL DRILLING PROCEDURES Introduction Sequence of Operations Sectional Summary 	3 3 4			
2. BITS AND HYDRAULICS	8			
3. BOTTOM HOLE ASSEMBLIES	9			
4. SURVEYING PROGRAMME	9			
 CASING CEMENTING AND WELLHEAD 5.1 Casing Design Summary 5.2 Centraliser & Marker Joint Programme 	10 10			
6. WELLHEAD DETAILS	12			
7. PRESSURE TESTING SCHEDULE				
8. ABANDONMENT PLUG PROGRAMME	13			

APPENDICIES

1. Montage

1. GENERAL DRILLING PROCEDURES

1.1 INTRODUCTION

This document outlines the various steps in the drilling operation. A separate document, the "Santos DQMS Drilling Operations Manual", summarises the Santos General Operating and Well Control Procedures, drilling equipment and other procedures. This 'Drilling Program' is to be read in conjunction with the above 'Drilling Operations Manual'.

Lavers #1 is a gas exploration well drilled in PEP154 in the Victorian Otway Basin. The primary target is the Waarre Sandstone for gas. Anticipated spud date is April 20, 2001.

1.2 SEQUENCE OF OPERATIONS

- Rig up, drill mousehole & rathole (Note 20" conductor pre-installed)
- Drill 9 7/8" hole to approx 425m (1395 ft).
- Wiper trip and laydown 6 ¹/₂" drill collars
- Run & cement 7 5/8" casing leaving 2m rathole
- NU & test Bradenhead & BOP's
- RIH PU 6 ³/₄" drilling assembly
- Drill out shoetrack & 3m (10') of new formation Perform LOT to fracture propagation
- Drill 6 ¾" hole to 35 m into Eumeralla (approx 1723 m TVD)
 Wireline log 3 runs. Run 1 GR-LCS-MRS-DLS-CAL. Run 2 CDS-CNS. Run 3 RFS (20 points)
- Run and cement 3 ½" tubing or P&A. Install seal adaptor flange and Xmas tree if C&S and pressure test.
- Release rig.

1.3 SECTIONAL SUMMARY

Pre-Spud

- A 20" conductor has been pre-installed by the lease preparation contractor
- Drill rat hole and mouse hole. Inspect rig and complete prespud rig inspection form.
- Hold pre-spud safety meeting.

9 7/8" Surface Hole

Hazards & General Notes

- Mud rings may be encountered on this well in the Gellibrand Marl. The section is to be drilled with a caustic spud mud system.
- Potential total lost circulation at very shallow depths.

Operation

- Spud well with 9 7/8" bit with spud mud.
- Drill with reduced flow rate (under 300 gpm) and parameters until 6 1/2" drill collars buried. Then
 increase to full drilling flowrate and drilling parameters for optimum ROP. Ensure vis at least 50
 sec/qrt in the surface limestone prior to reaching the marl formations. If mud rings become a
 problem in the clay-rich formations then dilute with drill water as a first recourse.
- Take a MSS survey at approx 30m (100ft).
- Drill ahead surveying with MSS every 150m (500ft) to approximately 425m. Allow for approximately 2m of rathole.
- Check bottoms up sample to confirm competent seat.
- Wiper trip back to old hole if required. Increase mud weight only if dictated by hole conditions.
- POOH. Laydown 6 1/2" Drill Collars.

Surface Hole Shallow Lost Circulation Contingency

On the recent "Wild Dog Road 1" well drilled by OCA/Boral nearby, total lost circulation was experienced from 14m to 16m below ground level. If uncontrollable losses are encountered on "Lavers #1", then a 13 3/8" second conductor string will be set to case off the entire limestone section. The decision to proceed with this plan will be at the discretion of the Santos representative, depending on the severity of losses experienced.

Contingency Operation

- Continue drilling 9 7/8" hole blind or with limited returns to 50m below RT.
- POOH and change bit out to 17 1/2" mill tooth with open jets
- Open 9 7/8" hole to 17 ½" to up to 160m below RT
- Set LCM pill on bottom or pump LCM sweep if partial returns and POOH, layout 17 ½" bit.
- Run 13 3/8" STC casing with float shoe, 2 x centralisers and landing joint, tag bottom, pick up 3m and attempt to circulate
- Rig up STC cement head with top plug installed, pump 5 bbls water spacer then pump neat cement with 2% CaCl2. Pump as slow as practical.
- Land casing on bottom
- Drop top plug and displace plug with mud to 5m above the float shoe. Pump as slow as practical.
- If no cement returns are observed, perform top up job with neat cement with 2% CaCl with 1" cement stinger.
- Remove cement head, cut casing and weld on flow-riser sleeve and fit flowline riser
- MU 9 7/8" bit and BHA and RIH. Drill out shoe and continue drilling 9 7/8" surface hole
7 5/8" Surface Casing

Hazards & Géneral Notes

No hazards are anticipated during this section

Operation

• Rig up and run 7 5/8" surface casing. Thread lock shoe track. Run 3m (10') BTC pup above float collar and thread lock to float collar.

- Run casing.
- Wash last joint to bottom and cement casing.
- Soft break collar on last joint below landing joint.
- Displace cement with old mud. Do not displace more than theoretical casing volume plus half the shoetrack volume. If bump observed, increase pressure to 2000 psi for 10 mins to test casing.
- Space out to set top flange of Bradenhead 4-6" <u>above</u> ground level (check space underneath rig floor. If not possible to set 4-6" above ground level, then set as high as possible).
- Perform 20m top-up job while WOC regardless of cement returns.
- WOC until surface samples have set (minimum of 4hrs).
- Nipple up 5k wellhead and BOP's and pressure test BOP's with rig pumps. Pressure test casing to 2000 psi for 10 mins with rig pumps **if plug did not bump**.
- Run wear bushing.
- RIH picking up 6 3/4" drilling assembly.
- Drill shoe track & 3m (10') of new formation.
- Perform leak-off test with pressure test unit (A 15.5 ppg leak off is expected, which would give the well a 14 bbl kick tolerance. Minimum required leakoff for 10 bbls kick tolerance is 14.4 ppg EMW. Notify the drilling engineer immediately if less than 14.4 ppg leakoff is achieved). Pump to fracture propagation or max allowable surface pressure.

6 ¾" Production Hole

Hazards & General Notes

- Differential sticking has been observed in the Paaratte Formation, and the Eumeralla Formation.
- Swelling clays in the Skull Creek and Belfast mudstones and filter cake build-up in the Nullawarre greensand may cause tight hole.

Operation

- Drill 6-3/4" hole with MSS surveys every 150 m (500 ft). The target tolerance is a 50 m radius around the surface location at the Waarre formation top.
- Drill in rotary as long as possible, but if the well trajectory indicates the target may be missed, drill no further than will allow for a correction run of no more than 30 degrees maximum inclination and no more than 8 degrees / 30m dogleg. If there is need for a correction run, use a rockbit and survey with MWD as necessary.
- Drill TD at 35m into Eumeralla (at approx 1723 m TVD). Make wiper trips as required. After TD, make a wiper trip back to old hole, take final survey and POOH to run logs. Rig up & run wireline logs: Run 1 GR-LCS-MRS-DLS-CAL. Run 2 CDS-CNS. Run 3 RFS (20 points)
- Avoid a wiper trip between run 2 and 3 unless absolutely necessary. This is to avoid super charging of the formation.

3 ¹/₂" Production Casing

Hazards & General Notes

- The casing will require drifting with a 2.867" drift.
- Differential sticking of 7" casing in 8.5" hole has been observed in the Eumeralla in offset wells
- The slips will be set with buoyed casing string weight plus 40klbs against the **tail cement ONLY** WOC until tail cement sample set lead cement samples should not have set.
- Once slip and seal assembly is in place, the annulus valve is to remain open while cement sets. Ensure this valve is closed once the lead surface cement samples have set.
- Mud left between 3-1/2" & 7-5/8" casing after cementing will contain biocide and the pH will be increased to more than 10 using caustic.

Operation

- If casing is to be run, RIH with bit (open nozzles and no stabilisers required).
- Condition hole and POOH laying down drill pipe and BHA.
- Rig up and run 3½" tubing. Threadlock the two joint shoe track. Monitor torque vs turns with JAM system provided by casing running contractor.
- Wash last joint to bottom and cement casing.
- Displace cement with 2% KCI brine. Ensure surface lines flushed from cement unit all the way to the cement head prior to displacing with the cementing unit. Use a ball below the top plug. Every attempt to bump the plug should be made. Do not displace more than 3 bbls over theoretical with the planned shoe depths and formation tops. This will be confirmed by the DE prior to the job. Pressure test casing to 2000 psi for 10 mins.
- Record string weight prior to cementing, at end of cement job and again prior to landing tubing.
- WOC <u>until tail cement surface samples have set</u>. Record string weight at start and then every 30 min. while WOC. Record these values on the Casing and Cementing report.
- Run slip and seal assembly. Set 3½" casing in tension with 40 klb overpull above buoyed string weight.
- Nipple down BOP's, install seal adaptor flange & 5k 3 1/8" Xmas Tree and pressure test (as per Section 7).
- Release rig.

Abandonment

Hazards & General Notes

- All plugs to be set on a 30 m (100ft) hi-vis pill (Min YP=50).
- Min plug length 60 m (30m above & 30m below formation top).
- Shoe plug to be 120 m (60m above and 60m below the shoe)
- All plugs 10% over calliper or 20% over gauge hole.
- Mud left in the surface casing will contain corrosion inhibitor and biocide.
- DE will confirm final depths from wireline logs.

Operation

- RIH 6 ³/₄" BHA and POOH laying down same.
- RIH with 2 7/8" EUE cement stinger and set balanced abandonment plugs as per program (Section 8).

- Tag shoe plug with 10klbs. Shut annular and pressure test to 500 psi above shoe leak-off pressure.
- POOH & LD DP.
- Pull wear bushing.
- Nipple down BOP's and remove Bradenhead.
- Set surface cement plug.
- Install identification plate and release rig.

2. PRELIMINARY BIT AND HYDRAULICS PROGRAMME

TBA

3. BOTTOM HOLE ASSEMBLIES

TBA

4. SURVEYING PROGRAMME

Hole section	9 7/8"	6 ³ ⁄ ₄ "
Survey Type & frequency	MSS at 30m then	MWD or MSS surveys 150m
	every 150m	minimum frequency

5. CASING PROGRAMME

5.1 CASING DESIGN SUMMARY

Casing String		Surface	Production					
		Casing	Casing					
Casing size (in)		7-5/8	3 1/2"					
Shoe depth (m M	ID/ft RT MD)	480 / 1575	2192 / 7192					
Grade		L80	J55					
Weight (lb/ft)		26.4	9.3					
Burst rating (psi)		6020	6980					
Collapse rating (psi)	3400	7400					
Tensile rating (kl	b)	602	142					
Connection		BTC	New NK3SB					
Nominal Wall (in)		0.328	0.254					
Inside diameter (in)	6.969	2.992					
Drift Diameter (in	I)	6.844	2.867					
Capacity (bbl/ft)		0.0472	.0087					
Coupling OD (in)		8.5	4.25					
Make-Up	Minimum	To bottom	2160					
Torque	Optimum	Of triangle	2700					
(ft/lbs)	Maximum		2970					
FLOAT EQUIPME	ENT	Dowell	Dowell					
Float Shoe		Non-Rotating						
Float Collar		Non-Rotating						
Shoe Track Leng	th	2 Joints	1 Joint					
Threadlock		Shoe Track	Shoe Track					
Safety Factors								
Burst		2.4	2.8					
Collapse		5.9	2.6					
Tension - Runni	ng	5.0	1.6					
- Pressu		4.6	1.8					

Design based on deepest possible well depth of 2192m.

5.2 CENTRALISER & MARKER JOINT PROGRAMME

Casing Size	7 5/8"	3 1⁄2"
Centraliser Placement	Middle 1 st & 2 nd jts 3 rd ,5 th and 7 th coupling 1st coupling below cellar	3m above shoe Next 2 couplings Every 2 nd coupling from 15m above Flaxmans formation top to 15m below the Eumeralla formation top.
		1 st & 3 rd coupling above 7 5/8" shoe
Centraliser Type	Bow spring	Bow spring
Marker Joints	Not req'd.	15m (50ft)above each pay zone separated by more than 60m 200ft Same weight & weight & grade as casing (higher grade is OK but not heavier weight).

NOTE:

7 5/8" Surface Casing

- Drift every joint using the 6.84" drift.
- The two joint shoe-track will be made up and a 10' BTC pup joint will be run immediately above the float collar (Threadlock the float/pup joint connection). This will allow the shoe track to be stood back in the derrick if necessary.

3 1/2" Production Casing

- Drift every joint using the 2.867" drift.
- The two joint shoe-track will be made-up of a two 9.3 J55 New NK3SB.
- Dowell will provide the 3 ¹/₂" circulating swedge.

6. WELLHEAD DETAILS

	Туре	Flange size	Connection
Bradenhead	Wood 5k 7 5/8"	11" 5000psi	7 5/8" BTC
	BTC Box		Box down
Slip & Seal Assy	Wood WG-22 11" x	NA	
	3 ½" S&S		
Seal Adaptor Flange	Wood WG-A4-P	11" 5000psi x 3 1/8" 5000psi	
	11" x 3 1/8" 5k		
X Mas Tree	Wood	3 1/8" 5000psi Blind Flange, 1/2"	•
		NPT pressure gauge	

Santos Petroleum Engineering require that the Xmas tree (5k 3 1/8") be installed by the drilling rig and tested. Test the Xmas tree valves and the slip and seal packoff to 5000 psi. When testing the slip and seal packoff from above, ensure the bradenhead wing valve is open in case the slip and seal passes and exposes the surface casing to 5000 psi.

7. PRESSURE TESTING SCHEDULE

Component	Pressure Test
7 5/8" Surface casing	2000 psi
Pipe rams, K&C lines, choke manifold,	2000 psi
Standpipe, kelly & safety valves	
Annular	2000psi
Bradenhead – casing connection	2000psi
3 ¹ / ₂ " Production casing	2000psi
Packoff and Seal Assembly	5000 psi
7 5/8" x 3 ½" annulus	2000 psi
Xmas tree valves	5000 psi
LOT	Minimum allowable 14.4ppg EMW
	(to fracture propagation or max allowable
	surface pressure)

NOTE:

Pressure tests will be a 10 minute low pressure test to 200psi and a 10 minute high pressure test as above. Pressure test BOPs, choke line and manifold, casing and conduct leak off test with rig pumps. Retest BOPs after 14 days of operations since last test, or nearest operational opportunity thereafter.

8. Abandonment Program for Lavers #1

If production casing is not run, the well will be abandoned with cement plugs and the wellhead removed.

Plug No	Depth (m RT MD / ft RT MD)	Purpose					
1	1645 – 1615 m RT	Waarre Isolation					
	5500 – 5300 ft RT						
2	1345 – 1285 m RT	Nullawarre Isolation					
	4415 – 4215 ft RT						
3	1075 – 1015 m RT	Paaratte Isolation					
	3530 – 3330 ft RT						
4	1000 – 940 m RT	Pember Isolation					
	3280 – 3080 ft RT						
	· · · · · · · · · · · · · · · · · · ·						
· 5	455 – 395 m RT	Surface casing shoe					
	1495 – 1295 ft RT						
6	0 – 15 m	Surface plug					
	0 – 50 ft RT						

909075 04**5**

APPENDICIES

1. Montage

Mathematical interfactorial interfactoria interfactoria interfactorial in		GAS EXPLORATION DED 154	ODE 30	LITHO- TOPS 8 P WELL LOGY TARGETS 8 SCHEMATIC TVD (m) A	Limestone to [525 ft]	9-7/B:	• •	- 100 - 100 	Mart to 550 m		<u> </u>		544 Erro	Γ	686 ·					Pember 1005		Paaratte		1219	Skuft Creek 6-3/4	1315 1315 Nutlawarre			1554	r	Faxmans 1545 Waare • 1688	EZ21		1/23 m (5653) TVD						No changes to the drilling programme can be made	without the Programme Change Controll form (DQMS-F207) first being signed and sent to the rig.		DSTs or logging runs) must be accompanied by DQMS Form-F208 (Change of Scope).		
Antiolic Support State Antiol Antion Antiol Antiol </th <th></th> <th></th> <th></th> <th></th> <th>SURFACE CASING If necessary, make</th> <th></th> <th></th> <th>26.4 ppf</th> <th></th> <th></th> <th></th> <th></th> <th>torqued to triangle</th> <th>425 m (1395 ft)</th> <th>Pice had not been a set of the se</th> <th>PRODUCTION</th> <th>CASING</th> <th>9.3 ppf</th> <th>J55 New NK3SB</th> <th>Make up a two joint shoe</th> <th>track</th> <th>Run Dowell</th> <th>non equipuer.</th> <th>Use Kleepo type thread protectors</th> <th></th> <th>when handling premium threads.</th> <th>Run centralisers and</th> <th>as per programme</th> <th>Make un</th> <th>connections to</th> <th>2,7000.lbs (opt).</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>n be made</th> <th>form t to the rig.</th> <th>g extra</th> <th>nied by</th> <th></th> <th>Prepared by.</th>					SURFACE CASING If necessary, make			26.4 ppf					torqued to triangle	425 m (1395 ft)	Pice had not been a set of the se	PRODUCTION	CASING	9.3 ppf	J55 New NK3SB	Make up a two joint shoe	track	Run Dowell	non equipuer.	Use Kleepo type thread protectors		when handling premium threads.	Run centralisers and	as per programme	Make un	connections to	2,7000.lbs (opt).									n be made	form t to the rig.	g extra	nied by		Prepared by.
SANDS Limited The - Depin Connection 1-0.2017(21) EVU.VII(10) DVIA WELNED 100 EVU.VII(10) DVIA EVU.VII(10) DVIA 100 EVU.VII(10) DVIA EVU.VII(10) DVIA 100 EVU.VII(10) DVIA EVU.VII(10) DVIA 100 EVU.VII(10) DVIA EVU.VII(10) DVIA <td>LATITUDE (SURFACE / TARGET):</td> <td>LONGITUDE (SURFACE / TARGET):</td> <td>SEISMIC REF TARGET: ELEVATION (prelim):</td> <td>CEMENTATION</td> <td>SURFACE CASING Lead: Class G 11.8 ppg</td> <td>W 6% PH Bentonite, 1 % CaCl2 BWOC 0.07 gaVsx D080 and 0.01 gaVsx D047</td> <td>Yield 2.92 cuft/sx</td> <td>0.01 gal/sx D047, Yield 1.19 cuf/sx</td> <td>Top Fig: Class G with</td> <td>Lead to surface</td> <td>Tail sturry 300 ft rise (1095; 334m).</td> <td>returns to surface.</td> <td>Perform Top Fill Job using</td> <td>Displace cement with old mud</td> <td>Use 55% excess for lead</td> <td>PRODUCTION CASING</td> <td>Lead: G 11.8 ppg w/ 6% Bentonite</td> <td>uor gavax bood and uor gavax book Yield 2.92 cuft/sx</td> <td>Tail: G 15.6 ppg w/- 0.1 gal/sx D080</td> <td>0.04 gaves boost and 0.01 gat.sx bo4/ Yield 1.19 cuff/sx</td> <td>The top of lead cement to</td> <td>go a minimum of 500 ft (150 m)</td> <td>Top of tail to go to 200' (60 m)</td> <td>above top Waare</td> <td>Use 10% excess over calliper</td> <td>Condition the mud prior to cernenting-circ. a min. 2</td> <td>hole vols AV same as</td> <td>While draining with low TP. Hold safety meeting and</td> <td>pressure tests etc. prior to vico dation is minimize</td> <td>datouaton re. manase delays.</td> <td></td> <td></td> <td>Displacing cement with 2%</td> <td>KCI brine. Pump to bump on</td> <td>production casing. (ensure top plug has fallen)</td> <td>A 3 1/2" top plug above a the hall is to be non</td> <td>following the cement in the</td> <td>production casing Reciprocate the production</td> <td>casing string during job.</td> <td>Well Objectives: Waare</td> <td>Water Source: TBA</td> <td></td> <td>DRILLING HAZARDS:</td> <td></td> <td>Checked by.</td>	LATITUDE (SURFACE / TARGET):	LONGITUDE (SURFACE / TARGET):	SEISMIC REF TARGET: ELEVATION (prelim):	CEMENTATION	SURFACE CASING Lead: Class G 11.8 ppg	W 6% PH Bentonite, 1 % CaCl2 BWOC 0.07 gaVsx D080 and 0.01 gaVsx D047	Yield 2.92 cuft/sx	0.01 gal/sx D047, Yield 1.19 cuf/sx	Top Fig: Class G with	Lead to surface	Tail sturry 300 ft rise (1095; 334m).	returns to surface.	Perform Top Fill Job using	Displace cement with old mud	Use 55% excess for lead	PRODUCTION CASING	Lead: G 11.8 ppg w/ 6% Bentonite	uor gavax bood and uor gavax book Yield 2.92 cuft/sx	Tail: G 15.6 ppg w/- 0.1 gal/sx D080	0.04 gaves boost and 0.01 gat.sx bo4/ Yield 1.19 cuff/sx	The top of lead cement to	go a minimum of 500 ft (150 m)	Top of tail to go to 200' (60 m)	above top Waare	Use 10% excess over calliper	Condition the mud prior to cernenting-circ. a min. 2	hole vols AV same as	While draining with low TP. Hold safety meeting and	pressure tests etc. prior to vico dation is minimize	datouaton re. manase delays.			Displacing cement with 2%	KCI brine. Pump to bump on	production casing. (ensure top plug has fallen)	A 3 1/2" top plug above a the hall is to be non	following the cement in the	production casing Reciprocate the production	casing string during job.	Well Objectives: Waare	Water Source: TBA		DRILLING HAZARDS:		Checked by.
SATION Linitie With Minicipation Continue Time - Deph Current - Manual Time Oral FULL With Minicipation With Minicipation Oral Anamatrian Minicipation FULL States Fundaminicipation Anamatrian Minicipation Anamatrian Minicipation FULL Fundaminicipation Minicipation Anamatrian Minicipation Anamatrian Minicipation FULL Fundaminicipation Minicipation Anamatrian Minicipation Anamatrian Minicipation FULL Fundaminicipation Minicipation Minicipation Anamatrian Minicipation MINICIP Minicipation Minicipation Minicipation Anamatrian Minicipation MINICIP Minicipation Minicipation Minicipation Anamatrian Minicipation MINICIP Minicipation Minicipation Minicipation Minicipation MINICIPATION Minicipation Minicipation	38 deg 28' 44.75" S	142 deg 48' 12.21" E	CDP 10163 INLINE 2490 GL - 63.5.0m (208 ft) RT - 68.2m (224 ft)		SURFACE HOLE Spud Mud	MW: ALAP	furmel viscosity 45 - 50 sec/art	S-0-1	lies 84 / 110 masch shakar erreane		Use plenty of fresh water for dilution and					MAIN HOLE	2 - 3% KCVPHPA/Polymer	PU: ALAP	YP:8-12	PHPA 1 pob at all times	API fittrate < 10 cc/30 mins	API fittrate < 8 cc/30 mins below 1300 m	unless operational conditions		2 % KCI to 1300 m	3% KCI 1300m - TD		Use intest possible shaker screens to 250 mesh	Energy of Topics and C O Molecular Providence								-								
Time - Depth Curve Fill INFC 200 Tell INFC 200 Te		n 		EVALUATION	SURFACE HOLE	Mudioadina -	Samples		Mudlogging Contractor	(Equipment - Total Gas	Detector and FID	futerBorenions				MAIN HOLE	1. discoine	Samples every 15m	to approx 1000 m	samples every 3m to TD			None	Wreline Logs	GR-LCS (TD to	surface casing) MRS-DLS-CAL (TD to	surface casing, MRS to	CDS-CNS	(TD to 20m above top	(sugural)	RFS	(20 points)	service company Reeves												Uale.
Time - Depth Curve Fill INFC 200 Tell INFC 200 Te	ANTOC LIN			WELL DATA	20° Conductor	set at 5.5 m betow G.L.					Tast station	to 2000 psi.				MAIN								200/2000 psi. Hvdril to		using rig pumps FIT 14.4 ppg		Т	T						Drop surveys	where possible	extra ver ing				۵ C				
Time - Depth Curve 200	mitod	mitea		OFFSET WELL INFO.	Assumed Temp Grad 1.48 degrees / 100 ft	Fenton Creek #1: 1.4deg/100ft Mytor #1: 1.7deg/100ft	Boggy Creek #1 : 1.6 deg/100ft	renyn #1:1.5 degruo n			Offsets include:	Callista #1: 3.2 km	and the second	limestones and mud rings in	deeper marts	LUI Uata.	Fenton Creek 13.6 ppg EMW	Mylor 1 16.5 ppg EMVV at 293m	middle Gellibrand Mart	Pennyn #1 15.9 ppg EMVV at 6/0m in too Pember mudstone		Survey Data:	Leimi Alcev I . V.A J.A. delices	Mylor #1 : 0.5 - 2.5 degrees	enryn #1 0.25 - 3.5 deg 0 - 1428 m	3.5 - 5.5 deg 1428 - 1813 m	iggy Creek #1 4 deg max at 1595 m	allista #1; 1 degree max at 1000 m	Potential for 8.9 ppg reservoir	ressure in curreneux, may require weight up to 9.4 ppg			owearing carys in the oxual creek and Beffast mudstones may	cause light hole				Maximum possible surface pressure (gas filled pipe) is	2000 psi.	WELL COST	&S: \$ 1,340,000 LA: \$ 1,114,000				
epth Curve	-			200			400] 			600			000	000	 	· · · · ·									1400							1800								Rig Move Surface Hole - Drill 9 7.	Run 7 5/8" casing & ce	Nipple up wellhead, B(Main Hole - Drtil to TD	Logs, RFS	real les
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Time - Depth (All depths are in I																_				_															4	Time (Da		ERATION	/8" Hole to 425 m (1395)	tment same	OPs & Test Same at 1723 m (5653)		
	urve	aRT																					-										_		•		2	/s from Spud)		NOPE	4 (4) 0.9 (4.9)		3.4 (10.5)	2.4 (12.9)	(0.01) 4.7

3月

Santos Ltd

A.C.N. 007 550 923

Cost Code:

8ED - 83D*** - 813

BCRs:

Contractor	Contract Number	Release no.	Comment
Ascots			
Slickline contractor			
Electric-line			
contractor		•	

Purpose of Program:

To complete and test Lavers #1 to determine well deliverability. The program has been split into two parts to enable review/revision of the testing activities based on the results of the performing. The testing equipment will be mobilised after the performing has been completed, at a time determined by the performing has been completed, at a

Suckline perforate Waarre Unit "C" sandstone underbalance clean up flow and wellhead samples

Part B

2 rate flow test complete with HP samples.

Current Well Status:

3-1/2" monobore cased and suspended as a future Waarre Unit "C" gas producer.

Block:

PEP 154, Onshore Otway Basin, Victoria.

Location:

Latitude 38° 28' 44.75" S Longitude: 142° 48' 12.21" E Seismic line CDP 10163 INLINE 2490

Elevation:

Ground Level63.5mRotary Table:68.2mElevations are Above Mean Sea Level.All depths are m. RT unless otherwise noted.

Brief Well History:

Lavers #1 was drilled as a monobore in South Western Victoria in the Otway Basin. This well is planned to intersect high porosity, high permeability net pay in the Waarre Unit "C" formation. The 3-1/2" J55 production casing will be run (based on a well life of < 4 years) to 1723 m and the well suspended as a future Waarre Unit "C" gas producer. The well is located approximately 5.6 km from Boggy Creek #1 and 3.2 km from Callista #1

Santos

909075

Rev 0 Page 3 of 26

Wellhead Maintenance:

A 3-1/8" x 5000# trim 2 wellhead installed & pressure tested.

Casing Details:

Surface Casing:

Plan to run 35 Joints 7-5/8" casing to 425m (1394') RT as follows:

Refer to attachment #1 - Surface Casing & Cementing report

Production Casing:

6-3/4" hole drilled to 1723m. Plan to run 180 Jts of 3-1/2" 9.3 #/ft New NK3SB tubing to 1723m RT.

Refer to attachment #2 - Production Casing & Cementing report

planned 1723m RT (5653' RT)

planned 1712.5m RT (5618' RT)

yet to be perforate from the from the formed of the formed

TD:

PBTD:

Perforations:

Rev 0 Page 4 of 26

Reservoir Pressure & Temperature:

Formation	<u>Pressure</u>	<u>Temperature</u>	Source
Waarre Unit "C"	2563 psia @ 1688m RT (5538' RT)	153 F	Lavers #1 montage Feb 2001

Wellhead Equipment:

See Proposed Wellhead Schematic (Attachment 3.)

Downhole Equipment:

See Proposed Wellbore Schematic (Attachment 4.)

Lavers #1			
Perforation	&	Flow	Testing
CONTENTS			

Rev 0 Page 5 of 26

PROCEDURE	
1. INSTALL WELLHEAD & DRIFT WELL	8
2. CONDUCT SLICKLINE CORRELATION LOGS	
3. SWAB WELL	9
4. RUN SLICKLINE PERFORATING SYSTEM	9
5. DEPTH CORRELATION	9
6. PREPARE GUN MODULE	9
7. RUN PERFORATING GUN MODULE & FIRING HEAD	<u> 10</u>
8. DROP BAR AND FLOW	10
9. RETRIEVE PERFORATING ASSEMBLY	10
10. RIG IN TESTING EQUIPMENT	12
11. PRE-FLOW & RUN BOTTOMHOLE GAUGES	12
12. TWO RATE FLOW TEST & SAMPLING	12
13. STATIC GRADIENT & RIG DOWN	14

ATTACHMENTS

- 1. Surface Casing & Cementing Report
- 2. Production Casing & Cementing Report

- 3. Proposed Wellhead Schematic
- 4. Proposed Downhole Schematic
- Perforation Request Advice 5.
- 6. Lease Layout
- 7. **Equipment Requirements**
- 8. Condensate Production
- 9. **Emergency Contacts**
- 10. **CFA Fire Permits**
- 11. Determination Of Cement Quality

900075 05**3**

Lavers #1 Perforation & Flow Testing

KILL FLUID CALCULATION SHEET

Formation:	Waarre Unit "C"
Reservoir Depth (ft.)	5538
Reservoir Pressure (psi)	2563
Reservoir Temperature (°F) 153
Kill Fluid Weight	2563 <u>+150</u>
	5538 x 0.052
	9.42 lb/gal
Temperature Correction:	Average Downhole Temp.
	<u>= 153 + 70</u>
	2
	= 114.5 °F
	Density Correction
D	(++-0.003 (111.5-70) lb/gal
	= 0.125 lb/gal
	Kill Fluid Weight at 70°F
	= 9.55 lb/gal

If required to kill well, then use 2% KCl fluid with a density of at least 9.55lb/gal

Page 6 of 26

Rev 0 Page 7 of 26

PROCEDURE

Note: Refer to the following SANPE procedures where necessary.

Note: Phone numbers for the site are <u>03 TBA & 03 TBA</u>

Refer to the following SANPE procedures where necessary.

- 1-7 Wellsite Inspection for Downhole and Surface Completion Equipment.
- 1-10 Tubing Conveyed Perforating Special Considerations.
- 1-11 Well Control Equipment Testing
- 1-13 Well Maintenance-Top Up and Pressure Testing
- 1-14 Installation of Flarelines.
- 2-1 Coiled Tubing Operations
- 5-1 Slick line rig up
- 7-1 Work Place Hazard Inspections
- 7-2 Chemical Handling and Transport
- 7-3 Manual Handling Task Assessment

Rev 0 Page 8 of 26

PART A - PERFORATING

1. INSTALL WELLHEAD & DRIFT WELL

- 1.1. Conduct wellsite safety meeting.
- 1.2. Install suitable flareline to flare up to 10 MMscf/d complete with 2-1/16" choke to wing valve (2-1/16") to existing flare pit.
- Note: Ensure that the flare line is laid out taking into account the prevailing wind.

Rig up wing valve, variable choke and flowlines according to the normal procedures ensuring that an appropriate spacing is allowed between each major item of equipment. Refer to attachments #6 for lease layout, and #7 for equipment requirements.

Flare pit must be bunded for flare containment.

- 1.3. Function test 3-1/8" 5000 psi Trim 2 wellhead.
- 1.4. Rig in slickline with 3000 psi lubricator and pressure test to 3000 psi for 10 mins. Pressure test wellhead to 3000 psi.
- 1.5. Pressure test surface casing string to 200 then to 3000 and hold for minimum of 10 minutes. Record and report results of the pressure tests.
- Note: The maximum expected shutin surface pressure (full column of gas) is approximately 2000 psi.
- 1.6. Make up and RIH 1.75" drift and tag PBTD @ 1712.5m RT.
- 1.7. Make up and RIH 2.867" API drift and tag PBTD.
- 1.8. Make up and RIH 2.80" x 20' dummy perforating drift and tag PBTD (for 2-1/8" perforating guns).
- 1.9. Break out toolstring and prepare to run Memory Production Logging Tool (MPLT).

2. CONDUCT SLICKLINE CORRELATION LOGS

- Note: If the cementing is problematic, or a successful pressure test is not obtained on the surface casing, then a Program Change Request (PCR) will be issued to mobilise electric-line to conduct a Cement Bond Log (CBL/VDL/GR/CCL). Refer to Attachment #11.
- 2.1. Make up MPL toolstring to record Gamma Ray (GR), Casing Collar Locator (CCL) and Temperature (T).
- 2.2. RIH to PBTD and log up to at to approx. 1538m RT to record GR/CCL across the Waarre Unit "C" interval for correlation to open hole logs.
- Note: The pup joint (marker joint) above the Waarre Unit "C" must be logged.
- 2.3. POOH to approx. 455m RT (30m below surface casing shoe).
- 2.4. Log across' the surface casing shoe to 203m RT (70m above expected top of cement) to obtain a temperature pass. Logging speed will be approximately 18m/min (60 ft/min).

909075 056

	ers #1 oration & Flow Testing	Rev 0 Page 9 of 26
2.5.	RIH and repeat log from 455 to 203m RT at a logging speed of approximate ft/min).	ly 36m/min (120
2.6.	POOH and download data for depth correlation purposes. Correlate to oper MRS-DLS-CAL,CDS-CNS, dated not run yet as provided in PRA:yy/###/Rev in the original program).	-
Note:	If a suitable log has not been recorded, then the MPL will need to be re-run.	
2.7.	Prepare to swab well.	
3.	SWAB WELL	
3.1.	Rig in swabbing equipment.	
3.2.	RIH and swab well down to at least 400m. This will provide an underbalanc psi. Swabbed fluids must be directed to the flare pit.	e of approx. 500

Note: Brine in wellbore is 9.2 ppg.

A fluid head of at least 300 psi is required on top of the firing head.

3.3. Rig down swabbing equipment.

4. RUN SLICKLINE PERFORATING SYS

- 4.1. Upon arrival at the wellsite, and prior to rigging up, conduct an onsite safety meeting and job review.
- Note: Before commencing operations, report any wellhead pressures that may be present.

Ensure that the full details of the tubing stop and other downhole components are recorded.

- 4.2. RIH Slickline contractor with G type tubing stop assembly to approx. 1708m RT (20m below Waarre Unit "C" to minimise spacer requirements) and perform setting procedure in accordance with standard procedures.
- Note: Ensure that the tubing stop setting depth does not interfere with the required perforation intervals given in PRA (Attachment #5). The lowest perforation is at *****m RT - TO BE CONFIRMED

5. DEPTH CORRELATION

- 5.1. Connect memory CCL/GR gauges to Slickline contractor slickline.
- 5.2. RIH and tag tubing stop. Log off and up to at least 1524m (5000') RT (ie include marker joint at ****m RT). POOH.
- 5.3. The perforating engineer will download the data so that a hard copy of the depth correlation is available for reference. Correlate to the open hole depth reference log GR-LCS, MRS-DLS-CAL,CDS-CNS, dated not run yet, and cased hole GR/CCL run previously.

6. PREPARE GUN MODULE

S:\Gas_well_ALL_WELLFILES_Otway Basin\Lavers 01\0102_ Lavers 01_perfo_test_program_Rev 0.doc

909075 00

Rev 0

Page 10 of 26

d Slickline contractor Job

5

- 6.1. Hold safety meeting to discuss operations with explosives. Conduct "Job Safety Analysis" and "Step Back" to review operations.
- 6.2. Load 2-1/8" Owen Raptor guns @ 6 spf 6.4g HMX charges, 60° phasing to perforate the Waarre Unit "C" sands as outlined in PRA:yy/###/Rev. # (Attachment #5). Determine spacer requirements taking into account the setting depth of the tubing stop.

7. RUN PERFORATING GUN MODULE & FIRING HEAD

- 7.1. RU Slickline contractor slickline unit and 3-1/2" lubricator.
- 7.2. Connect running tool to Slickline contractor slickline.
- 7.3. Connect spacer gun/perforating gun module to tool string and RIH.
- 7.4. RIH gun module and firing head.

Note: The Santos representative is to double check perforation interval as marked on gun module.

7.5. Rig down Slickline contractor.

8. DROP BAR AND FLOW

- 8.1. Conduct WSSM & OB and record on Logs.
- Note: Ensure that there are not any fire restrictions (ie. total fire ban), and that the appropriate authorities (CFA, Police etc.) and local residents have been notified. Refer to attachment #9.

If fire restrictions are in place then do not proceed with perforating of the well. Refer to attachment #10.

Ensure that the DNRE have been notified 24 hours prior to perforating the well.

Monitor annulus pressure during all of the following operations. Maximum Allowable Annulus Pressure (MAAP) is 200 psi.

- 8.2. Drop detonating bar **WITH THE WELL OPEN** to detonate the guns. It will be approximately 500 psi underbalance.
- 8.3. Flow to flare to unload water cushion and any perforating debris.
- 8.4. Report flare status, rates, FTHP, SIPCP and choke setting. Bleed down SIPCP as required.
- 8.5. Shut in well.
- 8.6. Report results to GWS-Adelaide immediately.

9. RETRIEVE PERFORATING ASSEMBLY

- 9.1. RU ET with 3-1/2" lubricator in preparation to fish perforating assembly. Ensure sufficient length of lubricator is available to fish gun hanger system components.
- Note: Perforating specialist MUST be on location during slickline operations fishing gun modules.
- 9.2. Pressure test lubricator to 3000 psi for ten minutes

909075 058

Lavers #1 **Perforation & Flow Testing**

Rev 0 Page 11 of 26

- Conduct safety meeting and review JSA for pulling perforating guns. 9.3.
- 9.4. RIH and retrieve bar, firing head and gun/spacer modules.
- 9.5. RIH and pull tubing stop.

Note: Advise GWS-Adelaide if any difficulties are encountered in recovering any of the perforating system components

- 9.6. RDMO Slickline contractor.
- 9.7. Flow well on cleanup for a minimum of 2 hours.
- 9.8. Report flare status, rates, FTHP, SIPCP and choke setting. Bleed down SIPCP as required.

Note: Obtain at least one hour of stable flowing tubing head pressure (1300 psi is the target).

Just prior to shutting in the well, obtain 2 HP gas samples from the wellhead.

Ensure that the samples are despatched to Adelaide ASAP via the Santos representative at the wellsite.

- 9.9. Shut in well and secure.
- preliminary 9.10. Report results to GWS-Adelaide.

Rev 0

Page 12 of 26

PART B - TESTING

10. RIG IN TESTING EQUIPMENT

- 10.1. Ensure that the flare line is laid out taking into account the prevailing wind.
- 10.2. Rig up wing valve, variable choke, flowlines, separator, heater, gauge tank and frac tank according to the normal procedures ensuring that an appropriate spacing is allowed between each major item of equipment. Refer to attachments #6 for lease layout, and #7 for equipment requirements.
- Note: Connect liquid flowlines to the riser of the test tank so that a constant head is maintained against the separator.

Piping should allow flow to tank and a loading point of tanker trucks to remove condensate produced.

Tank, lines and loadout pump are to be earthed to eliminate EMF differentials.

Refer to Slickline contractor Job Safety Analysis.

11. PRE-FLOW & RUN BOTTOMHOLE GAUGES

Note: Ensure that there are not any the restrictions lie total fire ban), and that the appropriate authorities (CFA, Police etc.) and local residents have been notified. Refer to attachment #9

If fire restrictions are in place then do not proceed with testing of the well. Refer to attachment #10.

Ensure that the DNRE have been notified 24 hours prior to commencement of testing.

Do not run gauges until there is a clear indication that there will not be any fire bans for the next 2 days.

- 11.1. Pressure test all lines and equipment to full SITHP.
- 11.2. Open well to flare and determine appropriate choke settings. Warm separator and establish levels.
- 11.3. Shut in well to stabilise.
- 11.4. Rig up electronic gauge programmed as per Reservoir Development engineer's specifications. Connect battery, noting time and hang in lubricator. Pressure lubricator to full SITHP.
- Note: The well must have a stable SITHP and have been shutin for at least 6 hours.

It is anticipated that the buildup will be less than 2 hours, so a high gauge rate of data sampling is required (refer to attachment #8).

11.5. After a 15 minute stop in the lubricator, RIH conducting a Static Gradient Survey with stops at each 305m (1000') (sufficient for gauge stabilisation). Hang gauges 15m (50') below the perforations at approximately 1688m RT (refer to attachment #4). Secure slickline and prepare for flow test.

12. TWO RATE FLOW TEST & SAMPLING

S:\Gas_well_ALL_WELLFILES_Otway Basin\Lavers 01\0102_ Lavers 01_perfo_test_program_Rev 0.doc

909075 **(1999)** OGQ

Page 13 of 26

- 12.1. Prepare to flow well at pressure of 1000 psi **OR** at a rate of approximately 10 MMscf/d. During the flow periods, monitor all separator parameters every 15 minutes and calculate all flow rates every 30 minutes for the first 2 hours, then hourly thereafter. During the shutin, also monitor pressures.
- Note: Wellhead temperatures are important for flowline design.
- 12.2. Gradually bring the well on line and trim through the separator to flare.
- 12.3. Commence flowing the well through the separator. Adjust the choke to maintain a FTHP of approximately 1000 psi **OR** at a rate of approximately 10 MMscf/d. Flow well for 8 to 12 hours. The flow duration will be determined based on pressure/flow stability.
- Note: Test gas for both H2S and CO2 by means of a Draeger test kit. If a positive H2S reading is registered, confirm and notify GWS Adelaide immediately. Full test equipment will then be mobilised in order to accurately ascertain the gas composition.
- 12.4. At the end of the first flow period, adjust choke setting to obtain a flowing pressure of 1350 psi (anticipated flowline pressure) **OR** at a rate of approximately 5 MMscf/d. Flow well for 8 to 12 hours. The flow duration will be determined based on pressure/flow stability.
- Note: Refer to attachment #8 for approximate condensate (15+), volumes expected to be produced. It is anticipated that the yield will be similar to nearby wells at approximately 12-18 bbls/MMscf.Condensate volumes will also depend on duration of frietest

Scotts T <u>r</u> ansport	(Calin PR	chardson,	08 83473449) need to	be advised	on timing for p	ickup of conden	sate
Scotts T <u>r</u> ansport from location.			-					

Western District Pumping Service (Peter Kavanagh, 018 528549, fax 03 55611337) will be mobilised to transfer the condensate.

- 12.5. Near the end of the second rate (after stable flow has been reached), take 2 sets of high pressure samples (gas & liquid), ensuring that the flow rates and pressures are stable. All separator functions are to be monitored and recorded. Also take 2 x 20L stock tank samples of the produced condensate.
- Note: All samples should be taken under the same separator operating conditions and labelled accordingly.

LGR conditions MUST be stable.

Duplicate samples should be taken approximately one hour apart.

It is required to ensure stable conditions for sampling. If necessary, extend the flow period. Use evacuated cylinders for gas and acidified saturated brine solution for condensate sampling by displacement.

During the sampling monitor all the flow parameters.

Clearly label all samples and report sample container numbers in morning and final report.

- 12.6. Flow the well for a sufficient period (1-2 hours) after taking the duplicate set of samples to ensure that stabilised conditions have existed after sampling.
- 12.7. Shut well in on build up for approximately 24 hours, or 6 hours after the surface pressure stabilises. Notify the Project Leader if there are any problems with the test, or if the shutin monitoring can be curtailed earlier.

13. STATIC GRADIENT & RIG DOWN

13.1. At the end of the shutin period with the well still shutin, POOH with gauges conducting a Static Gradient Survey at 305m (1000') intervals (stop duration dependent on gauge stabilisation time) on the way out. Stop in lubricator for 15 minutes prior to isolating and bleeding down the lubricator and retrieving the gauges. Download the data and forward to the Project Leader as soon as is practically possible.

Note: The notice to end the test (or to rerun gauges) will be given by the on-site Reservoir Engineer.

Rig down separator and all associated equipment and demobilise from location.

- 13.2. RDMO slickline equipment and secure the well. Wellhead valves are to be chained and padlocked, as is the cage surrounding the wellhead. One set of padlock keys are to be handed to the Supervisor at the Heytesbury Gas Plant and the duplicate set returned to SABU Petroleum Engineering in Adelaide.
- 13.3. Ensure that the total liquids production is recorded and trucked away from the well site as previously arranged. Any water can be drained to the flare pit (which must be securely fenced).
- 13.4. Ensure that the lease is left in a clean and tidy state and contact the Project Leader to notify Land owner that test is complete

Surface Casing & Cementing Report

Attachment #1

NO'I' YR'I AVAILE Preliminery

Rev 0 Page 15 of 26

111 062

909075 000 063

NOT Y

Rev 0 Page 16 of 26

R

Attachment #2

PRODUCTION CASING & CEMENTING REPORT

preimi

PROPOSED WELLHEAD SCHEMATIC

3-1/8" 5000 psi Trim 2 wellhead

D

9

 Rev 0

 Page 17 of 26

064

Attachment #3

alima

WBL IE

Rev 0 Page 18 of 26

PROPOSED DOWNHOLE SCHEMATIC

NOT YET A

Attachment #4

Prelimina

PERFORATION REQUEST ADVICE

Page 19 of 26

Rev 0

900075 065

NOT $|A_{n}^{\vee}|$ Mé prell

Attachment #5

909075 067 Rev 0

Page 20 of 26

Attachment #6

PROPOSED LEASE LAYOUT

909075 068 Rev 0 Page 21 of 26

Attachment #7

EQUIPMENT REQUIREMENTS

- 1. Swab valve to fit 3-1/8" wellhead.
- 2. Flowline to separator

frac tank/road tanker c/w static earth lines and unloading pump

small gauge tank (2 x 55 bbl compartments)

tank piping

chiksans

line heater

choke manifold

flare line

methanol & injection equipment

3. Caravan & generator

lighting equipment fire extinguishers

- 4. Slickline unit complete with:
 - running/pulling tools for perforating system
 - high rate electronic gauges
 - swabbing equipment for 3-1/2" monobore
 - dummy gun drifts.
- 5. Separator (1440 psi) & well test equipment
- 6. PVT sampling equipment, including
 - 3 x 20 litre HP gas sample bombs
 - 3 x 0.5 litre HP liquid sample bombs
- 7. Memory Production Logging tool for GR/CCL correlation & associated hard/software

Imfnær,

CONDENSATE PRODUCTION

Rev 0 Page 22 of 26

Attachment #8

(psi)(mmscr(d)(hours)(mmscr(d)(muscr(d)(muscr(d)(muscr(d)Rate determinationvarious 2.0 2 0.2 Shut well in for stabilisationvarious 2.0 2 0.2 Shut well in for stabilisationratious 2.0 2 0.2 Shut well in for stabilisationratious 2.0 2 0.2 Shut well in for stabilisation 1000 9.5 8 1.8 Shutin 1 1000 9.5 8 1.8 Shutin 1 1000 5.5 8 1.8 Shutin 1 1000 5.5 8 1.8 Shutin 1 1000 5.5 8 1.8 SGS while POOH 1300 5.5 2 0.5 SGS while POOH 1000 2.6 1450 2.6 Minimum rate to lift tubing 1450 2.6 1150 2.1 1000 2.6 1300 2.6 2.1 1000 2.6 1150 2.1 2.1 1000	Generic well	FTHP	Anticipated rate	Test duration	Gas produced	C5+, @ CGR = 12	C5+, @ CGR = 18
Cleanup flow 1300 5.0 6 Rate determination various 2.0 2 ell in for stabilisation RIH gauges 2.0 2 RIH gauges Flow 1 1000 9.5 8 Flow 1 1000 9.5 8 2 Shutin 1 Flow 2 1300 5.5 8 Shutin 1 Buildup 5.5 8 8 Buildup 1300 5.5 2 2 SGS while POOH 5.5 2 2 18 Inductod Inductod 5.5 2 2 2 SGS while POOH 5.5 2 2 2 2 Inductod Inductod 3.1/2*** 2 2 2 2 In rate to lift 1600 2.6 1300 2 2 2 2 2.4 1150 2.4 1150 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		(isd)	(MMscf/d)	(hours)	(MMscf)	(sldd)	(bbls)
Rate determinationvarious 2.0 2 ell in for stabilisationell in for stabilisationRIH gaugesFlow 11000Shutin 1 1000 Shutin 1 1300 Since 2 1450 Since 2 1150 Since	Cleanup flow	1300	5.0	9	1.3	15	23
eell in for stabilisation 6 RIH gauges Flow 1 1000 9.5 8 Shutin 1 Shutin 1 0 5.5 8 Shutin 1 Elow 2 1300 5.5 8 Suldup Buildup 5.5 8 8 SGS while POOH 5.5 2 8 18 Induction 1300 5.5 2 8 Buildup SGS while POOH 5.5 2 2 Induction Induction 13 18 2 Induction Induction 13 10 10 Induction 1600 2.6 1150 2 3.0 1600 2.6 1300 2.6 2.6 2.4 1150 2.4 1150 2.4 1150 2.1 1000 2.4 1150 2.4 1150	Rate determination	various	2.0	0	0.2	2	က
Flow 1 1000 9.5 8 Flow 2 1300 5.5 8 Shutin 1 5.5 8 8 Shutin 1 1300 5.5 8 Buildup Buildup SGS while POOH 5.5 2 2 Image 23 1300 5.5 2 2 Image 28 100 18 18 18 Image 2.4 1150 2 2 2 2.1 1000 2.4 1150 2 2.1 2.4 1150 2 2	ut well in for stabilisation			90			
Shutin 1 Flow 2 1300 5.5 8 Flow 2 1300 5.5 2 8 Buildup Buildup SGS while POOH 1300 5.5 2 8 Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH 2 18 Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH 2 2 Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH 2 2 Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH 2 2 2 Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH 2 2 2 Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH Image: SGS while POOH 2 <t< td=""><td>Flow 1</td><td>1000</td><td>9.5</td><td>1 00</td><td>3.2</td><td>38</td><td>57</td></t<>	Flow 1	1000	9.5	1 00	3.2	38	57
Flow 2 Tow 2 Tow 2 Tow 2 Tow 2 S.5 8 Buildup Buildup SGS while POOH 1300 5.5 5.5 8 SGS while POOH Tow 2 18 18 18 SGS while POOH Tow 2 2 2 2 In rate to lift liquids for 3-1/2" 10 18 2 2 3.0 1600 2.8 1450 2 2 2 2.1 1000 2.4 1150 2 2 2 2 2.1 1000 2.4 1150 2 2 2 2 2 2 2 2 2	Shutin 1	5 5 1		0			
ow 2 (after sampling) 1300 5.5 2 Buildup Buildup 1300 5.5 2 SGS while POOH I 1 18 2 SGS while POOH I I 1 18 SGS while POOH I I 1 18 SGS while POOH I I I 18 I I I I 18 2 I I I I 18 2 2 I I I I 18 2 2 2 I I I I I 18 2 2 2 2 2 2 2 2 2 3 3 1 1 2 3 2 3 3 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3	Flow 2	1300	5.5	ω	1.8	22	33
Buildup Buildup SGS while POOH Im rate to lift Joint for 3-1/2" 3.0 2.6 1450 2.8 1450 2.6 170 0 (MMscfd) 1600 2.8 1450 2.6 1300 2.6 1300 2.6 1300 2.6 1300 2.6 1300 2.6 1300 2.6 1300 2.6 1300 2.6 1150 2.6 1150 2.6 1150 2.6 1150 2.6 1150 2.6 1150 1150 1150 1150 1150 1150 1150 115	Flow 2 (after sampling)	1300	5.5	0	0.5	9	ω
Buildup SGS while POOH Im rate to lift I TOFAL Im rate to lift I quidts for 3-1/2" 3.0 2.8 1450 2.8 1300 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	Buildup			9			
SGS while POOH Image: SGS while POOH <td>Buildup</td> <td></td> <td></td> <td>18 18</td> <td></td> <td>·</td> <td></td>	Buildup			18 18		·	
Total Total Im rate to lift India for 3-1/2" Im rate to lift India for 3-1/2" Image: Second S	SGS while POOH			2			
TQML TQML Im rate to lift Inuids for 3-1/2" Q (MMscf/d) FTHP (psi) 3.0 1600 2.8 1450 2.6 1300 2.4 1150 2.1 1000			i, i				
um rate to lift liquids Q (MMscf/d) 3.0 2.8 2.8 2.6 2.4 2.1	TOTAL		arai)		6.9 MMscf	83 bbis	124 bbis
Q (MMscf/d) 3.0 2.8 2.4 2.4 2.1		Or 3-1/2"					
Q (MMscf/d) 3.0 2.8 2.6 2.4 2.1							
	Q (MMscf/d)	THP (psi)					
	3.0	1600	-		·		
	2.8	1450					
	2.6	1300				•	
	2.4	1150					
	2.1	1000					

2

S:\Gas_well_ALL_WELLFILES_Otway Basin\Lavers 01\0102_Lavers 01_perfo_test_program_Rev 0.doc

909075 0

070 Rev 0 Page 23 of 26

Attachment #9

EMERGENCY CONTACTS

OTWAY BASIN

POSITION	NAME	PHONE	FAX
Aboriginal Heritage	Lionel Harridine	03 5567 1236	
Aircraft Hire	Shipwreck Coast Flights	03 5598 5441	
Ambulance, Timboon		000	
Ambulance, Warrnambool		000	
Backhoe Hire	lan White	03 5598 6376	
CFA, Colac			
Region 6 Headquarters Operations Officer	Brian Brady	03 5232 1923	03 5231 1370
CFA, Colac		•	
Region 6 Headquarters Operations Manager	Mark Gunning	03 5232 1923	03 5231 1370
CFA, Timboon	Bassett	03 5598 3386	03 5598 3060
D.N.R.E.	Kaurosh Mehin	1 01 W 10 504 19 59 W 10	03 9412 5156
Drilling Conductor	Des Gladmam	6355620783	
Earth Moving	John Mölan	03 5592 1261 0408 529 559	03 5592 2122
Exploration Field Service	RayWillox	03 5598 5329	
		018 529 314	03 5598 5329
Fire Brigades	Timboon	03 5598 3386	
(Fire Calls Only)	Port Campbell	03 5598 6243	
Heavy Haulage	Alan Spikin	03 5561 6111	
Helicopter Hire	Helicopter	03 5561 5800	
	Operations Aust.	018 529 959	· · · ·
Hospital, Timboon		03 5598 3000	
Hospital, Warrnambool	Delevel Ober of stal	03 5563 1666	· · · · ·
Land Owner (Access)	Roland Stansfield	03 5598 5383	
Land Owner (Camp)	Wayne Thompson	03 5598 5286 03 5598 3333	
Land Owner (Penryn)	Garry Thompson Gus Thompson	03 5598 5385	
Medical Centre, Timboon	Gus mompson	03 5598 3104	
O.D.E	Nic Hausburugh	0145 117 941	
Police, Port Campbell	B. Hair	03 5598 6310	
Police, Timboon	Russell Martin	03 5598 3026	
Police, Warrnambool		03 5562 1111	
Power Cor	Hutchins	03 5563 2512	03 5563 2511
Shire Council Corangamite	Paul Younis (Eng)	03 5593 7100	03 5593 2695
	Allan Kerr (Councilor)	03 5598 3240	
South West Water	John Huff	03 5564 7600	
State Emergency Services Port Campbell		03 5598 6231	
Surveying	Paul Crowe	03 5561 1500 0419 515 422	03 5561 2935
Water Carting	John Molan	03 5592 1261 0408 529 559	03 5592 2122
Water Pumping	Exploration Field	03 5598 5329	03 5598 5329
Wreck Hire Warrnambool	Service	018 529 314	······································
	1	03 3302 1411	

S:\Gas_well_ALL_WELLFILES_Otway Basin\Lavers 01\0102_ Lavers 01_perfo_test_program_Rev 0.doc

909075 0071

Rev 0 Page 24 of 26

SANTOS

POSITION	NAME	PHONE	FAX
Gas Well Services Design Team Leader	Andrew DeGaris	(wk) 08 8224 7793 (ah) 08 8449 2610	08 8224 7755
Gas Well Services Operations Superintendent	Milt Gillies	(wk) 08 8224 7295 (ah) 08 8295 2414	08 8224 7755
Reservoir Development Eastern/Northern Gas Team Leader	John Hulme	(wk) 08 8224 7324 (ah) 08 8338 0169	08 8224 7755
Project Leader Staff Geologist	Graeme Parsons	(wk) 08 8224 7182 (ah) 08 8391 0967	
Environmental Dept.	Catriona McTaggart	(wk) 08 8224 7894 (ah) 08 8373 2961	08 8224 7141

SERVICE COMPANIES

	al and a second s		
POSITION	NADE	PHONE	FAX
Expertest Ltd	_ David Hawkesh	08 8354 0488	08 8443 7408
Ascots Haulage	Davezubley	08 8347 3449	08 8347 3414
Western District Pumping	Peter Kavanagh	018 528549	03 55611337

NOT YET

CFA FIRE PERMITS Rz.zz.00/01

Attachment #10

Page 25 of 26

R

Rev 0

909075 1 072

Preimin

Attachment #11

DETERMINATION OF CEMENT QUALITY

If the cementing of Lavers #1 was not problematic, and was pumped as per design to place the top of lead cement approximately 152m inside the surface casing shoe (ie. ~273m), the running of a Cement Bond Log (CBL/VDL/GR/CCL) will not be conducted for the following reasons:

- It is considered that a memory temperature log will be able to detect changes in geothermal gradient across the cement top.
- Due to the sensitivity of the location of Lavers #1, minimising the number of contractors on site will be beneficial in reducing the impact of operations on the local residents.
- A cost reduction will be realised, as mobilisation of the crews and equipment for the cement bond logging is substantial.
- Correlation to the open hole logs will be performed with the same Memory Production Logging Tool (MPLT) used for the temperature pass.
- A pressure test will be conducted on the Surface Casing to determine integrity of the pipe to withstand full shutin wellhead pressure

PE909076

This is an enclosure indicator page. The enclosure PE909076 is enclosed within the container PE909075 at this location in this document.

The enclosure PE909076 has the following characteristics: ITEM_BARCODE = PE909076CONTAINER_BARCODE = PE909075 NAME = Encl.1 Lavers-1 Curdievale 3D Time Map BASIN = OTWAY ONSHORE? = YDATA_TYPE = SEISMIC DATA_SUB_TYPE = ISOCHRON_MAP DESCRIPTION = Encl.1 Lavers-1 Curdievale 3D Time Map, Near Top of Waarre Sand, Scale 1:25000, C.I. 10m, by Santos Ltd, W1317, PEP154. Enclosure 1 contained within "Well Proposal Report" [PE909075]. REMARKS = DATE_WRITTEN = 02-FEB-2001 DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Santos (BOL) Pty Ltd WELL_NAME = Lavers-1 CONTRACTOR = AUTHOR = ORIGINATOR = Santos (BOL) Pty Ltd TOP_DEPTH = BOTTOM_DEPTH = ROW_CREATED_BY = CD000_SW

(Inserted by DNRE - Vic Govt Mines Dept)

PE909077

This is an enclosure indicator page. The enclosure PE909077 is enclosed within the container PE909075 at this location in this document.

The enclosure PE909077 has the following characteristics: ITEM BARCODE = PE909077CONTAINER_BARCODE = PE909075 NAME = Encl.2 Stratigraphic Cross Section BASIN = OTWAY ONSHORE? = YDATA_TYPE = WELL DATA_SUB_TYPE = CROSS_SECTION DESCRIPTION = Encl.2 Stratigraphic Cross Section Boggy Creek-1, Callista-1, Rowans-1, Datum: Belfast Mudstone, by Santos Ltd, W1317, PEP154. Enclosure 2 contained within "Well Proposal Report" [PE909075]. REMARKS = Marked Enclosure 1 on Cross Section, actually is supposed to be Enclosure 2. $DATE_WRITTEN = 31 - DEC - 2000$ DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Santos (BOL) Pty Ltd WELL_NAME = Rowans-1 CONTRACTOR = AUTHOR = ORIGINATOR = TOP_DEPTH = BOTTOM DEPTH = ROW_CREATED_BY = CD000_SW

(Inserted by DNRE - Vic Govt Mines Dept)