WCR

Well Completion Report

Ballangeich - 1 (W965)

BALLANGEICH NO. 1 25 NOV 1987

WELL COMPLETION REPORT

PHOENIX OIL & GAS N.L.

PETROLEUM DIVISION

COMPILED BY: A. J. WILLIAMS

DATE: NOVEMBER, 1987

BALLANGEICH 1

TABLE OF CONTENTS

Contents			PAGE
Location Map			
Well Data Card			
Well History		General Data Drilling Data Drilling Summary	1 1 8
Geology	1. 2. 3. 4. 5.	Results of Drilling (a) Stratigraphy (b) Stratigraphic Prognosis (c) Hydrocarbon Summary Summary	11 11 12 12 14 14 14 15
Appendices			
Enclosures	I II III	1:1000 Composite Log Mudlog Velocity Survey	

LOCATION MAP

OTWAY BASIN
PEP 101

Author : A.J.Williams	
	Date: 29 10/87

WELL DATA CARD

BALLANGEICH 1 WELL SUMMARY SHEET

OPERATOR	Phoenix Oil & Gas N.L.	LOCATION	
DRILLING CONTRACTOR	G.D.S.A.	Latitude	38 14'15" S
RIG	Superior 700E SCR	Longitude	142 38'30" E
SPUDDED	19.7.87 0010 Hours	Easting	54643645.97m
COMPLETED	29.7.87. 2400 Hours	Northing	.5766625.32m
	•	Seismic	Line OPX84A-17 SP 186 Line OPX84A-18 SP 140

TOTAL DEPTH		ELEVATION		
Driller	1249.9m	G.L.	98.25m	
Lagger .	1245.7m	K.B.	103.53m	

STRUCTURE TYPE

. Tilted horst block play with westerly dip and rollover into the horst faults.

COMPLETION DETAILS PLUG 1	1125-1175m	PLUG 2		800-850m
SURFACE PLUG	10 Sacks	PLUG 3		150-180m
CASING DETAILS Casing Size	9 5% "	Shoe Depth	162m(D)	162m(L)

FORMATIONS PENETRATED					
AGE	FORMATION	DEPTH	ELEVATION	THICKNES	
Tertiary	Unnamed Basalt_	surface	98.25m	37.0m	
	Pt.Campbell Limestone	37.0m	61.25m	80.0m	
•	Gellibrand Marl	117.0m	-18.75m	250.0m	
	Clifton Formation	367.0m	-268.75m	110:0	
Early Cretaceous	Eumeralla Formation	477.0m	-378.75m	341.0m	
	Heathfield Sandstone	818.0m	-719.75m	26.0m	
	Geltwood Beach Formation	844.0m	-745.75m	306.0m	
	Pretty Hills Sandstone	1150.0m	-1051.75m	26.0m	
Early Jurassic	Shale Unit	1176.0m	-1077.75m	25.0m	
	Casterton Beds	1201.0m	-1102.75m	25.0m	
	•		a.		
Pre Jurassic ?	Unnamed Basement	1226.0m	-1127.75m	23.9m	
÷	TOTAL DEPTH (Driller)	1249.9m	-1151.65m		
	TOTAL DEPTH (Logger)	1245.7m	-1147.45m		

		LOGS	
LOG TYPE	SUITE	INTERVAL (M)	BHT / TIME
DDL/MSFL/GR/CAL/SP BHC/CAL/GR	1	161-TD 161-TD	126°F/6'42" (6.7)hrs 138°F/10'50" (10.8)hrs

CORES	TESTS
Nil	Nil

PE905660

This is an enclosure indicator page. The enclosure PE905660 is enclosed within the container PE905659 at this location in this document.

The enclosure PE905660 has the following characteristics:

ITEM_BARCODE = PE905660
CONTAINER_BARCODE = PE905659

NAME = Drilling Time Graph

BASIN = OTWAY
PERMIT = PEP101
TYPE = WELL
SUBTYPE = DIAGRAM

DESCRIPTION = Ballangeich-1 Drilling Time Graph from

Well Completion Report

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 25/11/87

 $W_NO = W965$

WELL_NAME = BALLANGEICH-1

CONTRACTOR =

CLIENT_OP_CO = PHOENIX OIL & GAS N.L.

(Inserted by DNRE - Vic Govt Mines Dept)

WELL HISTORY

1. GENERAL DATA

WELL NAME: Ballangeich # 1

Interest Holder:

Phoenix Oil and Gas N.L.
Santos Limited
22.5%
Bridge Resources
Winton Oil N.L.
Lakes Oil Limited
Conex Australia

44.5%
6.67%
10.45%

* Conex Australia earned its interest from all partners but Lakes Oil by contributing to the cost of this well.

Participating Interest: Phoenix Oil and Gas N.L. 44.5% Santos Limited 22.5% Bridge Resources 11.125% Winton Oil N.L. 6.675% Lakes Oil Limited 5.0% Conex Australia 10.45%

Operator: Phoenix Oil and Gas N.L.

Permit: PEP-101

Location: Latitude 38° 14' 12.3942" S Longitude 142° 38' 28.8292" E

Eastings 54643645.97m

Northings 5766625.32m

Elevation: GL: 98.25m AHD KB: 103.53m

Seismic Reference: Line OPX 84A-17 SP 186 Line OPX 84A-18 SP 140

Total Depth: 1250m

Well Status: Plugged and Abandoned

2. DRILLING DATA

Drilling Commenced: 0010 hrs. 19.7.87

Drilling Completed: 27.7.87

2400 hrs. 29.7.87 Rig Released:

Total Rig Time: 11 days

Gearhart Drilling Services (Australia) Contractor:

Pty. Ltd.

Rig: Gearhart Rig No. 2

Superior Model 700E SCR Type:

One superior model 700E electric driven Drawworks:

drawworks complete with auxiliary brake and Maxium input H.P. 1000. Driven by sandreel.

EMD Motor.

One Foster Model 37 Break-out Cathead. Mounted

on drillers side.

One Foster Model 24 Break-out Cathead. Mounted

off drillers side.

Transmission - 2 speed transmission with high chain 1 1/4" triple 26T to 24T. Twin disc air clutch. Low chain 1 1/4" triple 20T

to 39T twin disc PO218 air clutch.

Four Caterpiller Model 3412 PCTA Engines:

diesel engines.

Floor mounted cantilever mast Dreco -Mast:

Model No: M12713-510 designed in accordance with A.P.I. specification 4E "Drilling and Well

Servicing Structures".

127' Clear Working Height 13' 6" Base Width

Hook Load

Gross Nominal Capacity 510,000 LBS

Hook Load Capacity With:

410,000 LBS 10 Lines Strung 365,000 LBS 8 Lines Strung 340,000 LBS 6 Lines Strung 306,000 LBS 4 Lines Strung Maximum Wind Load 100 MPH No Setback Rated Setback Maximum Wind Load 84 MPH

Adjustable racking board with capacity for 108 stands of $4\frac{1}{2}$ " drill pipe, 10 stands of 6 $\frac{1}{2}$ " drill collars, 3 stands of 8" drill collars designed to withstand an A.P.I. windload of 84 MPH with pipe racked.

Crown Block 215 ton with five 36" sheaves, and one 36"

fastline sheave grooved 1 1/8"

Substructure: One piece substructure. 14' H X 13'6"

W X 50'L W/12' BOP clearance. Set-back-200,000

LBS - Casing=210,000 LBS

Rig Lighting: Explosion proof fluorescent.

Travelling

Block: One 667 Crosby McKissick 250 ton combination

block hook Web Wilson 250 Ton Hydra - Hook

Unit 5 - 36" sheaves.

Kelly Drive: One Foster Kelly Spinner for an Ideco TL-200

swivel.

Kelly: One square Kelly Drive 4½ X 40' complete with

scabbard.

Swivel: One oilwell PC-300 ton Swivel.

Rotary Table: One oilwell a 20 ½ Rotary Table Torque tube

driven from drawworks

Air Compressors

& Receivers: Two Leroi Dresser Model 660A air compressor

packages c/w 10 H.P. motors rated at 600 volt 60 HZ 3 phase. Receivers each 120 gallon

capacity and fitted with relief valves.

Instrumentation: One (1) 6 Pen Drill Sentry Recorder to record:

Weight (D) 1-Martin Decker Sealtite

1-Cameron Deadline Type Penetration (Feet)

Pump pressure (0-6000 P.S.I.)

Electric Rotary Torque Rotary Speed R.P.M.)

Pump S.P.M. (with selector switch)

One (1) Drillers console including the

following equipment:

Martin Decker weight indicator type "D"

Electric rotary torque Guage

Pit scan

S.P.M. gauge (2 per console)

Rotary R.P.M. gauge

One set of "Double Shot" Deviation instrument

"Totco".

One set of mud testing laboratory standard kit

(Baroid)

Drilling Line: 5000' of 1 1/8" - Tiger brand

Mud Pumps: Two Gardner Denver mud pumps model No.

PZ-8 750 each driven by 800 HP EMD Motor

Generator: Four Brown Boveri 600 Volt 3 Phase 60 HZ AC Generators, powered by four Cat 3412 PCTA

Diesel Engines.

B.O.P.'s and Accumulator:

One Hydril 13 5/8" X 3000 P.S.I. spherical

annular B.O.P., studded top and flanged bottom.

Height 14"

One Hydril 13 5/8" X 5000 P.S.I. flanged double

gate B.O.P.

One Galaxie 13 5/8" X 5000 P.S.I. 3000 double studded adaptor flanges complete with studs and

nuts.

One cup tester. Gray c/w test cups for 9-5/8"

and 13 3/8"

One Wagner model 130-160 3 BND 160 gallon

accumulator consisting of:

Sixteen 11 gallon bladder type bottles

One 20 H.P. electric driven tripex pump 600

volt 60 HZ 3 phase motor and controls

One Wagner model A-60 auxiliary air pump 4.5

gals/minute

One Wagner Model UM2SCB5S mounted hydraulic control panel with five (5) 1" stainless steel fitted selector valves and two (2) stripping controls and pressure reducing valves. Three

(3) 4" hydraulic readout gauges:

-one for annular pressure

-one for accumulator pressure

-one for manifold pressure

One Wagner Model GMSB - 5A 5 station remote drillers control with three pressure readback increase and decrease control gauges, annular pressure.

Spools:

One set flanged adaptor spools to mate 13-5/8" LOT X 5000 P.S.I. A.P.I. B.O.P. flange to following wellhead flanges:

12" X 900 Series, Height 14" 10" X 900 Series, 11 8" X 900 Series,

B.O.P. Spacer. Flange 12" 3000 R57 studded X 6"

3000 R45 Flange, Height 16"

B.O.P. Spacer Spool (Drilling Spool) 12" 5000 X

12" 5000 BX160, Height 14"

Kelly Cocks:

One Griffith Lower Kelly Cocks 6 $\frac{1}{2}$ " O.D. with

 $4\frac{1}{2}$ " X H Connections.

One Griffith Upper Kelly Cock 7 3/4" with 6-

5/8" A.P.I. Connections.

Drill Pipe

One Griffith $6\frac{1}{2}$ " inside blowout preventors Safety Valve:

 $(4\frac{1}{2}" X H)$

Two Griffith 6 $\frac{1}{2}$ " Stabbing Value ($4\frac{1}{2}$ " X H)

Choke Manifold:

One McEvoy choke and kill manifold 3"-5000

P.S.I.

One Pill tank capacity 25 BBLS Mud System:

Two Mix tanks capacity 108 BBLS. (each)

One Reserve tank capacity 120 BBLS One Desilt tank capacity 120 BBLS One Desand tank capacity 120 BBLS One Shaker Tank capacity 130 BBLS One sand trap capacity 15 BBLS

Fuel Tanks:

One 140 BBLS

One 6000 GALS - 30,000 litres

Water Tanks:

One 400 BBLS

Mixing Pumps:

Five Mission Magnum 5" X 6" X 14" Centrifugal pumps complete with 50 HP 600 volt HZ 3 PH $\,$

explosion proof electric motors

Trip Tank Pump:

One Mission Magnum 2" X 3" Centrifugal pump complete with 20 HP 600 Volt 60 HZ 3 PH

explosion proof motors.

Water Transfer Pumps:

Three Mission Magnum 2" X 3" Centrifugal Pumps c/w 20 H.P. 600 volt 60 HZ 3 PH explosion

proof motors.

Mud Agitators:

Six Geolograph/Pioneer 40 TD - 15" 'Pitbull' mud agitators with 15 H.P. 600 Volt 60 HZ 3 PH

electric motors.

Shale Shaker:

One Brandt - Dual Tandem shale shaker.

Desander:

One Pioneer T8-6 'Sandmaster' desander.

Desilter:

One Pioneer T12-4 'Siltmaster' desilter.

Drill Pipe:

10000 FT of $4\frac{1}{2}$ " Grade 'E' 16.60 lbs/ft hard

banded drill pipe 326 joints.

Drill Collars:

 $1 - 6\frac{1}{2}$ " OD drill collar (short) 15'

29 - $6\frac{1}{2}$ " OD drill collars

8 actual 8" OD drill collars.

8 actual joints of $4\frac{1}{2}$ " Hevi-Wate drill pipe

Two (2) bit subs - 6-5/8" Reg DBL box

Two (2) bit subs - $4\frac{1}{2}$ " Reg x $4-\frac{1}{2}$ " XH DBL box

One (1) XO sub - 7-5/8" Reg x 6-5/8" Reg DBL

box

One (1) XO sub - $4-\frac{1}{2}$ " XH box x $4-\frac{1}{2}$ " IF pin

One (1) XO sub - $4-\frac{1}{2}$ Reg x $4-\frac{1}{2}$ XH DBL pin

Two (2) XO sub - 6-5/8" Reg pin x $4-\frac{1}{2}$ " XH box

One (1) Junk sub - 6-5/8" Reg pin x 6-5/8" Reg

box

One (1) Junk sub - $4-\frac{1}{2}$ " Reg box x $4-\frac{1}{2}$ " Reg pin

One (1) Junk sub - $4-\frac{1}{2}$ " Reg box x $4-\frac{1}{2}$ " XH Box Two (2) Kelly saver sub s/w rubber $4-\frac{1}{2}$ " XH PXB

Two (2) Circular subs- $4-\frac{1}{2}$ " XH x 1502 Hammer

Union

Two (2) $12-\frac{1}{4}$ " Ezi Change S/STAB 6-5/8" Reg PXB

Two (2) $8-\frac{1}{2}$ " Intergral Blade Stabilizers $4-\frac{1}{2}$ "

XH PXB

One (1) $4-\frac{1}{2}$ " BJ 250 ton 18 degree taper d/p Elevators: Elevators One (1) 2-7/8" IUS 100 ton Tubing Elevators One (1) 2-7/8" EUI 100 ton Tubing Elevators One (1) 13-3/8" Baash Ross 150 ton S/Door Elevators One (1) 13-3/8" S/Joint P.U. Elevators One (1) 9-5/8" Webb Wilson 150 ton S/Door Elevators One (1) 9-5/8" S/Joint P.U. Elevators One (1) 7" BJ 200 ton S/Door Elevators One (1) 7" S/Joint P.U. Elevators All P.U. Elevators c/w Slings & Swivel One (1) 8" Webb Wilson 150 ton S/Door Elevators D/C One (1) 5-3/4" Webb Wilson 150 ton S/Door Elevators D/C Above c/w Lift Nubbing and Bails Rotary Slips Two (2) $4-\frac{1}{2}$ " Varco SDML D/P Slips D/P Tubing: One (1) 3-1 Varco SDML tubing slips Two (2) 8" $-6-\frac{1}{2}$ " DCS-R drill collar slips Kelly Cocks One (1) $6-\frac{1}{2}$ Hydril Kelly Guard $4-\frac{1}{2}$ XH PXB I.B.O.P.: One (1) $6-\frac{1}{2}$ " Griffith I.B.O.P. full opening valve 4-1" XH PXB One (1) 8" Griffiths full opening Upper Kelly Cock 6-5/8" Reg L/H PXB One (1) BJ type 'B' c/w Latch & Lug Jaws Rotary Tongs: $13-3/8" - 3-\frac{1}{2}"$ Three (3) 13-3/8" - 9-5/8" - 7" Varco CSML Casing Slips: casing slips Four (4) $17-\frac{1}{2}$ " - $12-\frac{1}{4}$ " - $8-\frac{1}{2}$ " - 6" Bit Breakers: One (1) 8-1/8" Bowen series 150 F.S. O/Shot Fishing Tools: One (1) 10-5/8" Bowen series 150 F.S. O/Shot c/w grapples & backoffs to fish contractors down hole equipment One (1) 8 O.D. Fishing Magnet 4-1 Reg Pin

One (1) Reverse Circ Junk basket 4-1 XH Box (1) Junk basket Mill type c/w Mill Shoe One

 $4-\frac{1}{2}$ " Reg Pin

One (1) Jars $6-\frac{1}{2}$ O.D. Griffiths Fishing $4-\frac{1}{2}$ " XH PXB

(1) Jar Accelerator Griffiths Fishing 6-1" One

O.D. $4-\frac{1}{2}$ " XH PXB One (1) Bumper Sub $6-\frac{1}{2}$ " O.D. Fishing $4-\frac{1}{2}$ " XH

PXB One (1) 12" Junk Mill - 6-5/8" Reg Pin One (1) 8" Junk Mill $4-\frac{1}{2}$ " Reg Pin

One (1) $6-\frac{1}{2}$ O.D. Drilco N.B. Roller Reamer Rotary Reamers:

c/w type K Cutters 8-12" hole

Three (3) 5' -10; 15; $4-\frac{1}{2}$ " O.D. Grade 'G' Pup Pup Joints:

Joints

One (1) $27-\frac{1}{2}$ " Auger $4-\frac{1}{2}$ " XH Nox Auger:

Rathole Digger: One (1) Fabricated Rotary Table chain driven

One (1) Farr $13-5/8" - 5-\frac{1}{2}"$ Hydraulic Power Power Tong:

Tong c/w hydraulic power pack & hoses & torque

quage assembly

DRILLING SUMMARY (Drillers Depths)

Ballangeich 1 was spudded at 0010 hrs. on the 19th July, 1987.

A $17\frac{1}{2}$ " surface hole was drilled to 22m, 2 joints of 13-3/8" -481b - H40 casing was run and cemented with 60 sacks of cement with an addition of 1% CaCl.

A 12½" hole was drilled to 163m with surveys, 15 joints of 9.5/8" - 43.51b - N80 casing was run to 162 metres and cemented with 300 sacks of cement with $\frac{1}{2}$ % CaCl slurry (wt 15.6 ppg)

The BOP's were installed and tested prior to drilling out of the casing shoe.

An 8½" hole was drilled with surveys to total depth of 1249.9m.

At TD a suite of Gearhart logs was run. These were DLL-MSFL-GR-SP, BHC-GR and a velocity survey (Velocity Data).

Ballangeich 1 was plugged and abandoned with plugs being set as follows:

PLUGS	INTERVAL	CEMENT	ADDITIVES
1	1175-1125m	50 sacks	15.4 ppg
2	850-800m	50 sacks	15.6 ppg
3	180-150m	50 sacks	
4	Suface Plug	10 sacks	

(a) Lost Time

No time was lost during drilling the Ballangeich 1.

(b) Water Supply

(c) Mudlogging

Mudlogging services were provided by Exploration Logging Australia Inc. Ditch cuttings were caught, washed and descibed at 10m intervals to 300m and at 5m intervals to total depth. All samples were checked for fluorescence.

A total gas detector and FID Chromatograph were in operation from suface casing shoe to TD. Rate of penetration, depth and pumpstrokes were monitored for the duration of the well from the logging unit.

(d) Testing and Coring

No tests were run and no cores were cut.

(e) Electric Logging

Suite 1	DLL-MSFL-GR-CAL-SP	162m-TD
	BHC-GR-CAL	162m-TD

(f) Sidewall Cores

No sidewall cores were taken.

(g) Geothermal Gradient and Bottom Hole Temperature

An extrapolated bottom hole temperature of 71.1°C (160°F) was calculated from temperatures recorded during the logging run. The geothermal gradient at Ballangeich 1 is calculated as 4.09°C/100m (2.24°F/100 feet). These results are shown graphically in Appendix IV.

(h) Deviation Survey

Refer Enclosure II.

(i) Velocity Survey

A velocity survey was run at total depth by Velocity Data Pty. Ltd. (Enclosure III).

(j) Completion Details

Ballangeich 1 was plugged and abandoned. Abandonment plugs were set as follows:-

Plug 1 1175-1125m Plug 2 850-800m Plug 3 180-150m Plug 4 Surface

1. OBJECTIVES

The exploration well Ballangeich 1 is located 15km SE of Woolsthorpe 1 and 22km NNE of Warrnambool in PEP-101, south-west Victoria. The well was drilled to test the hydrocarbon potential of the Lower Cretaceous Pretty Hills Sandstone.

The Ballangeich feature is a tilted horst block situated immediately to the west of the Warrnambool High and trap potential was defined at the Near Top Pretty Hills seismic horizon with westerly dip and rollover into the horst faults.

Secondary objectives for the well were the Lower Cretaceous Heathfield Sandstone.

2. SUMMARY OF REGIONAL GEOLOGY

The Otway Basin is a major WNW trending trough which previously extended eastwards over what are now the Gippsland and Bass Basins and was formed by numerous syndepositional faults sub-parallel to the basin axis. The basin was initiated during the Upper Jurassic to Lower Cretaceous when the continental breakup of Australia with Antarctica commenced.

Rifting with associated right-lateral wrenching developed several intrabasinal highs. This separated the Otway Trough into the Otway, Gippsland and Bass Basins. Consequently compressional forces caused en-echelon folding as in the Otway Ranges High. Block faulting and tilting of the basement superimposed a number of NE trending highs on the Otway Basin which later divided the area into four sub-basins, the Gambier, the Tyrendarra, the Port Campbell and Torquay Embayments.

Following post-rift erosion, progressive downwarping occurred in the Upper Cretaceous. This caused a marine transgression to occur. Deposition of a "Rift Valley Type" sequence followed and the basin became peri-cratonic or open-marginal. At this time a number of marine incursions occurred along the northern edge of the basin margin. Deposition of a series of transgressive-regressive sedimentary cycles continued into the Tertiary. The Otway Basin remained a pericratonic feature throughout the Tertiary.

3. RESULTS OF DRILLING

(a) Stratigraphy

AGE	FORMATION	DEPTH KM (m)	ELEV. (m)	THICK (m)
Recent	Unnamed Basalt	0	98.25	37.0
Tertiary	Pt. Campbell			
	Limestone	37.0	61.25	80.0
	Gellibrand Marl	117.0		250.0
	Clifton Formation	367.0	-268.75	90.0
Early				
Cretaceous	Eumeralla Formation	477.0	-378.75	341.0
	Heathfield Sandstone	818.0	-719.75	26.0
	Geltwood Beach			
	Formation	844.0	- 745.75	306.0
	Pretty Hills			
	Sandstone	1150.0	-1051.75	26.0
Upper Jurassic	'Shale Unit'	1176.0	-1077.75	25.0
	Casterton Beds	1201.0	-1102.75	25.0
Pre Jurassic?	Unnamed Basement	1226.0	-1127.75	23.9+
	TD	1249.9	-1151.65	

Table 1- Ballangeich 1 Stratigraphy.

A brief description of each formation follows (refer Table

UNNAMED BASALT (RECENT) comprises medium to very hard, fine grained basalt which is weathered in part.

The PORT CAMPBELL LIMESTONE (TERTIARY) consists of a sucrosic, bioclastic limestone, commonly glauconitic. A transgressive, shallow marine environment is proposed for this formation.

The GELLIBRAND MARL (UPPER TERTIARY) comprises dominantly marl with some pyrite. Fossil fragments are extremely common throughout the section. At the top of the unit there is an approximate 50m transition zone between the Gellibrand and the Port Campbell Limestone with the amount of clay increasing with depth. Below 320m, minor interbeds of siltstone appear increasing towards the base of the unit. The Gellibrand Marl is interpreted as being marine.

The CLIFTON FORMATION (UPPER TERTIARY) is dominantly a sandstone unit interbedded with and grading to limestone, very fossiliferous, in the upper 20m, of the unit. Below this level the sandstone is interbedded with occasional siltstone bands to the base. This unit is of a shallow marine, transgressive environment, unconformably overlying the Cretaceous.

The EUMERALLA FORMATION (LOWER CRETACEOUS) consists of interbedded sandstone and siltstone. Towards the base of the unit, occasional limestone interbeds occur and the formation becomes clayey, with claystone representing up to 30% of the interval. Minor coal seams are intersected near the base where the Eumeralla grades to siltstone. This zone represents a paralic type environment changing upward to a 'tidal flat' or lacustrine to marginal marine.

The HEATHFIELD SANDSTONE (LOWER CRETACEOUS) is sandstone with minor siltstone interbeds. The siltsone is commonly fossiliferous and coal is common throughout the unit. The depositional environment is fluviatile.

The GELTWOOD BEACH FORMATION (LOWER CRETACEOUS) consists of siltstone, predominantly, interbedded with sandstones and minor coals in the upper 35m grading to purely coaly siltstone. Below 920m claystone interbeds become common and coal more predominant. The unit represent a fluviatile, floodplain environment.

The PRETTY HILLS SANDSTONE (LOWER CRETACEOUS) comprises interbedded sandstone and siltstone and represents a fluviatile deposit.

The 'SHALE UNIT' (UPPER JURASSIC) is interbedded siltstone, sandstone and claystone grading to carbonaceous shale at the base. The environment is interpreted as non-marine (fluvial?) with minor marginal marine influences.

The CASTERTON BEDS (UPPER JURASSIC) consist dominantly of shale with minor sandstones, and siltstones (less than 10%). It is interpreted to be of a paludal origin.

Economic BASEMENT (PRE JURASSIC?) at Ballangeich 1 consists of dark green to green basalt with minor calcite veining.

(b) Stratigraphic Prognosis

Table 2 Stratigraphic Prognosis v's Actual

FORMATION	PROG DEPTH KB (m)	ACTUAL DEPTH KB (m)	DIFF	PROG THICK	ACTUAL THICK	DIFF
Tertiary Eumeralla Geltwood Bead Pretty Hills Basement	100 300 2h 780 1234 1300	37 477 844 1150 1226	63H 177L 64L 84H 74H	200 480 454 66	440 367 306 76	+240 -113 -148 +10

Geophysical control for Ballangeich was provided by the 1984 Terang Seismic Survey and stratigraphic control obtained from Greenslopes 1 and Woolsthorpe 1. Most selected tops were well outside prognosis indicating that only poor control existed at Ballangeich 1. The difference in prognosis was due to the lack of reliable velocity data concerning the prospect area.

Prior to drilling, it was unclear whether the Heathfield Sandstone existed at the locality but it was subsequently proven to occur with no structural closure.

(c) Hydrocarbon Summary

A total gas detector and FID chromatograph were in operation from surface casing shoe to TD. Ditch cuttings were washed, described, checked for fluorescence and bagged throughout the section.

Gas values remained low throughout the entire section penetrated and no fluorescence or shows were recorded.

4. SUMMARY

Ballangeich 1 was drilled as an exploration well on the western flank of the Warrnambool High. The well is located approximately 15kms SE of Woolsthorpe 1 and 22kms NNE of Warrnambool.

The primary objective was the Lower Cretaceous Pretty Hills Sandstone with a secondary objective being the Lower Cretaceous Heathfield Sandstone.

Total depth was reached at 1249.9m (driller) in Pre-Jurassic (?) 'Basement'. Geophysical control was poor with a large discrepency between prognosed and actual tops. The well confirmed the presence of the Heathfield Sandstone in the locality.

No gas, fluorescence or hydrocarbon shows were recorded in the penetrated section. Log interpretation indicates the Heathfield and Pretty Hills Sandstones to be water saturated.

Ballangeich 1 was plugged and abandoned.

5. CONTRIBUTIONS TO GEOLOGICAL KNOWLEDGE

- (i) No hydrocarbons exist at the Ballangeich location
- (ii) All potential reservoir objectives encountered in Ballangeich 1 are water wet
- (iii) The well confirmed the presence of the Heathfield Sandstone in proximity to the Warrnambool High and of good potential reservoir quality.
- (iv) The lack of any show in the penetrated section would indicate that there was no generation of hydrocarbon within or migration into the Ballangeich structure.
- (v) No closure exists at the 'Base Eumeralla' or Heathfield level at Ballangeich 1.
- (vi) Palynology indicates the shale unit below the Pretty
 Hills does, in fact, belong to the Jurassic Casterton
 Beds.

6. REFERENCES

1971

Jackman, G. 1987

Ballangeich No. 1 Proposal to Drill, Phoenix Oil and Gas N.L. (Unpublished)

Mitchell, L. P. Greenslopes 1 Well Completion Report, Phoenix Oil and Gas N.L. (Unpublished)

Leslie, R. B. & Woolsthorpe 1 Well Completion Report, Open file (unpublished)

Wopfner, H. &. Open file (unpublished)

Wopfner, H. &. The Otway Basin SE Australia. Special Bulletin of the Geological Surveys of

S.A. and Victoria

APPENDIX I.

LITHOLOGICAL DESCRIPTIONS

In accordanace with the Well Proposal, cuttings were collected, washed, bagged and described at $10\,\mathrm{m}$ intervals from $30\,\mathrm{m}$ to $30\,\mathrm{m}$ and at $5\,\mathrm{m}$ intervals to TD at $1250\,\mathrm{m}$ (Exlog.).

BALLANGEICH NO. 1

SAMPLE DESCRIPTIONS

AT:

20-30m:

BASALT (100%). dark brown to dark brown-black to slight reddy brown; medium-very hard; medium grained; common quartz grains; plagioclase and mica; idioblastic texture; weathered in part; occasional iron staining

30-40m: BASALT (60%) as above.

LIMESTONE (40%) white-off white-yellow; friable-very soft; sucrosic texture; common bioclasts; trace fine quartz; crypto crystalline in part; inferred good porosity

40-50m: BASALT (10%) as above.

LIMESTONE (90%) as above

50-60m: LIMESTONE (100%) light grey-off white, friable-very soft; sucrosic texture; common lithic fragments; trace glauconite; good inferred porosity; sandy in part; common fossils in part.

60-70m: LIMESTONE (100%) as above

70-80m: LIMESTONE (100%) as above

80-90m: LIMESTONE (100%) as above

90-100m: LIMESTONE (100%) as above; common glauconite nodules

100-110m: LIMESTONE (100%) off white-light grey;
friable-crumbly; sucrosic texture; fine grained;
calcite crystals; slight organic matrix; trace
lithic fragments; good porosity; cryptocrystalline
in part

110-120m: LIMESTONE (100%) off white-light grey; friable-soft-occasionally brittle; surcrosic texture; fine grained; occasional organic matrix; common glauconite, fossils, lithic fragments; slight to fair porosity.

120-130m	LIMESTONE (100%) as above; sample has 30% dispersive clay
130-140m:	LIMESTONE (100%) light grey-offwhite-orange in part; soft-silty-plastic; very fossiliferous; abundant glauconite; poor porosity.
140-150m:	LIMESTONE (100%) as above
150-160m:	LIMESTONE (100%) as above
160-170m:	MARL (100%) medium grey-dark grey; very soft- plastic; amorphous; very fossilferous; trace glauconite; trace iron stained quartz grains.
170-180m:	MARL (95%) as above LOOSE QUARTZ GRAINS (5%) orange; coarse, iron stained.
180-190m:	MARL (100%) as above
190-200m:	MARL/CALCAREOUS CLAYSTONE (100%) Medium grey- light grey; plastic-dispersive; angular quartz common; very fossiliferous; trace mica; trace pyrite; trace lithic fragments
200-210m:	MARL (100%) as above
210-220m:	MARL (100%) as above
220-230m:	MARL (100%) as above; slightly more calcareous
230-240m:	MARL (100%) as above; abundant fossils

240-250m: MARL (100%) as above

250-260m:

MARL (100%) as above

260-270m:	MARL (100%) as above
270-280m:	MARL (100%) as above
280-290m:	MARL (100%) as above
290-300m:	MARL (100%) as above
300-305m:	MARL (100%) light grey-soft-mushy; abundant fossil fragments; clay dispersive
305-310m:	MARL (100%) as above
310-315m:	MARL (100%) as above
315-320m:	MARL (100%) as above
320-325m:	MARL (80%) as above
	SILTSTONE (20%) medium brownish-grey; very argillaceous and lithic; soft
325-330m:	MARL (80%) as above
•	SILTSTONE (20%) as above
330-335m:	MARL (80%) as above
	SILTSTONE (20%) as above
335-340m	MARL (70%) as above
	SILTSTONE (30%) as above, more carbonaceous in part
340-345m:	MARL (70%) as above
	SILTSTONE (30%) as above
345-350m:	MARL (70%) as above
	SILTSTONE (30%) as above

350-355m:	MARL (70%) as above
	SILTSTONE (30%) as above
355-360m:	MARL (40%) as above; grading to silty claystone
	SILTSTONE (60%) as above
360-365m:	LIMESTONE (100%) calcarenite; cream; broken fossil fragments; no cement
365-370m:	LIMESTONE (100%) as above but more yellow brown
370-375m:	LIMESTONE (100%) as above
375-380m:	LIMESTONE (100%) cream-brown; fossiliferous, calcarenite; brown iron staining may indicate surface wEathering
380-385m:	LIMESTONE (40%) as above SANDSTONE (60%) brown; medium to coarse grained; subangular to well rounded; iron stained; excellent porosity; some pyrite.
385-390m:	SANDSTONE (80%) as above SILTSTONE (20%) as above
390-395m:	SANDSTONE (100%) as above
395-400m:	SANDSTONE (100%) as above; grains are more rounded and better sorted
400-405m:	SANDSTONE (100%) as above; pyritic
405-410m:	SANDSTONE (100%) as above
410-415m:	SANDSTONE (100%) as above

415-420m: <u>SANDSTONE (100%)</u> as above

420-425m: SANDSTONE (100%) as above

425-430m: SANDSTONE (80%) as above

SILTSTONE (20%) medium grey-brown to dark grey-black; firm-soft-crumbly; moderately argillaceous; trace carbonaceous fragments; common fine, well

rounded quartz grains

430-435m: SANDSTONE (70%) as above

SILTSTONE (30%) as above

435-440m: SANDSTONE (80%) as above

SILTSTONE (20%) as above

440-445m: SANDSTONE (90%); clear-translucent; friable-loose;

fine-medium, occasionally coarse; subangular to subrounded; occasionally angular; poor-moderate sorting; slighty calcareous; trace carbonaceous matter and carbonaceous smear; good-fair porosity;

no fluorsecence

SILTSTONE (10%) as above

445-450m: SANDSTONE (100%) clear-translucent; loose; medium

grained; subrounded-rounded; well sorted; carbonaceous stains; good inferred porosity; no

fluorencence.

450-455m: SANDSTONE (100%) clear-translucent; loose; medium

grained; well sorted; pyrite in part; good visible

porosity; no fluorescence

455-460m: SANDSTONE (100%) as above; occasional coarse

angular grains; non calcareous

460-465m: SANDSTONE (80%) as above

SILTSTONE (20%) medium grey brown-grey black;

soft-firm; very argillaceous; blocky; carbonaceous fragments; trace lithic fragments; trace fossils;

noncalcareous

465-470m: SANDSTONE (70%) clear-translucent-orange brown;

friable-loose; medium coarse;

subangular-subrounded; common chart fragments; non calcareous; carbonaceous stain; good porosity; no

fluorescence; trace granitic fragments

SILTSTONE (30%) as above

470-475m: SANDSTONE (70%) as above

SILTSTONE (30%) as above

475-480m: SANDSTONE (80%) as above

SILTSTONE (20%) as above

480-485m: SANDSTONE (80%) clear-translucent-white-green in

part; fine-medium, occasional coarse grained; subangular-subrounded occasional angular; poorly sorted; common green lithic fragments; trace fossil fragments; trace pyrite; slight-non calcareous; poor-nil porosity; nonfluorescence;

trace koalinitic matrix

SILTSTONE (20%) brown-dark brown, occasional green-grey; hard-brittle, predominantly soft; very argillaceous; trace carbonaceous fragments and

coaly stringers; non-calcareous

485-490m: SANDSTONE (95%) as above

SILTSTONE (5%) as above

490-495m: SANDSTONE (80%) as above

SILTSTONE (20%) as above

LIMESTONE -trace

495-500m: SANDSTONE (90%) clear-translucent; loose; medium-

coarse-very coarse; angular-subrounded; poorly sorted; common green minerals; trace koalinitic matrix; common fossil fragments; slightly calcareous; trace carbonaceous smear; fair

porosity; no fluorescence.

SILTSTONE (10%) as above; clay dispersing

500-505m: SANDSTONE (70%) as above

SILTSTONE (30%) as above

505-510m: SANDSTONE (60%) as above

SILTSTONE (40%) as above

510-515m: SANDSTONE (60%) clear-grey; loose-firm; fine-

medium-occasionally coarse; subangular-angular; poorly sorted; common green minerals; common argillaceous matrix; trace mica; non-calcareous;

no porosity; no fluorescence.

SILTSTONE (40%) as above

515-520m: SANDSTONE (50%) as above

SILTSTONE (50%) green grey-grey brown; soft;

amorphous; very argillaceous; moderate to very common, fine, well rounded quartz; slightly

calcareous; trace coal.

520-525m: SANDSTONE (100%) as above

SILTSTONE (100%) medium grey-grey green; softdispersive; blocky-amorphous; very argillaceous;

common fossil fragments; common well rounded fine quartz; slightly calcareous; trace coaly

fragments.

530-535m: SILTSTONE (100%) as above

535-540m: SILTSTONE (100%) as above

540-545m: SILTSTONE (100%) as above

545-550m: SILTSTONE (100%) as above; up to 5% loose quartz

grains; pyrite; clear-translucent-orange brown;

coarse-very coarse; angular.

550-555m: SILTSTONE (100%) medium grey-dark grey green-

occasional brown; soft-hard; blocky; trace carbonaceous flecks; slight to non-calcareous.

SILTSTONE (100%) medium grey to brownish; 555-560m:

quartzose; lithic; argillaceous; soft; trace sand

and fossils (cavings?).

SILTSTONE (100%) as above 560-565m:

SILTSTONE (100%) as above; numerous loose sand 565-570m:

grains and fossils (cavings?)

SILTSTONE (100%) as above; minor claystone, 570-575m:

grey-brown; soft

SILTSTONE (100%) as above; grading in part to very light grey, fine grained sandstone 575-580m:

SANDSTONE (60%) light grey, fine-very fine 580-585m:

grained; firm; quartzose; lithic; argillaceous; very calcareous; tight; grading in part to

siltstone; trace coal

SILTSTONE (40%) as above

585-590m: SANDSTONE (40%) as above

SILTSTONE (60%) as above

SILTSTONE (50%) as above 590-595m:

SANDSTONE (30%) as above

CLAYSTONE (20%) grey brown; soft; silty;

carbonaceous in part

SILTSTONE (70%) as above; grading to sandstone 595-600m:

and claystone

SANDSTONE (10%) as above

CLAYSTONE (20%) as above

600-605m: SILTSTONE (60%) as above

SANDSTONE (20%) light grey; fine grained; firm;

argillaceious; variably calcareous;

carbonaceous; tight grading to siltstone

CLAYSTONE (20%) brownish; carbonaceous and green

grey; soft; trace coal.

605-610m:	SILTSTONE (50%) as above
	SANDSTONE (30%) as above
	CLAYSTONE (20%) as above
610-615m:	SANDSTONE (40%) as above
	SILTSTONE (30%) as above
	<pre>CLAYSTONE (30%) mostly light grey; silty with carbonaceous specks</pre>
615-620m:	SANDSTONE (40%) grading to siltstone; quartzose; very argillaceous; firm
	SILTSTONE (40%) as above
	CLAYSTONE (20%) as above
620-625m:	SILTSTONE (70%) dark brown grey; slightly carbonaceous
	SANDSTONE (10%) as above
	<pre>CLAYSTONE (20%) as above, becoming more carbonaceous; trace coal</pre>
625-630m:	SILTSTONE (70%) as above
	CLAYSTONE (20%) as above
	SANDSTONE (10%) as above
630-635m:	SILTSTONE (60%) as above

SANDSTONE (20%) as above

CLAYSTONE (20%) as above

SILTSTONE (50%) as above

CLAYSTONE (50%) as above

SANDSTONE - trace

635-640m:

640-645m:	SILTSTONE (50%) as above
	CLAYSTONE (30%) as above
	SANDSTONE (20%) as above
645-650m:	SILTSTONE (50%) as above
	CLAYSTONE (30%) as above
	SANDSTONE (20%) as above
650-655m:	SILTSTONE (50%) as above
	CLAYSTONE (30%) as above
	SANDSTONE (20%) as above
655-660m:	SILTSTONE (50%) as above
	CLAYSTONE (30%) as above
	SANDSTONE (20%) as above
660-665m:	SILTSTONE (60%) as above
	SANDSTONE (15%) as above
	CLAYSTONE (15%) as above
	COAL (10%) dark brown, earthy
665-670m:	SILTSTONE (60%) as above; grading to claystone
	CLAYSTONE (40%) as above
	COAL - trace
670-675m:	SILTSTONE (60%) as above
	CLAYSTONE (40%) as above
	COAL - trace

SANDSTONE - trace

675-680m:	SILTSTONE	(60%)	light	grey;	soft	to	firm;
				7 7 7			

quartzose; very argillaceous; micaceous and carbonaceous in part; sandy grading to sandstone

CLAYSTONE (30%) light grey to brownish; variably

calcareous; silty in part

COAL (10%) dark brown; earthy

SANDSTONE - trace

680-685m: SILTSTONE (50%) as above

CLAYSTONE (40%) as above

SANDSTONE (10%) as above

685-690m: CLAYSTONE (60%) as above

SILTSTONE (40%) as above

COAL/SANDSTONE - trace

690-695m: SILTSTONE (60%) as above

CLAYSTONE (40%) as above

SANDSTONE - trace

695-700m: SILTSTONE (60%) as above

CLAYSTONE (40%) as above

SANDSTONE - trace

700-705m: SILTSTONE (100%) as above

SANDSTONE/CLAYSTONE - trace

705-710m: SILTSTONE (100%) as above; trace coal

710-715m: SILTSTONE (100%) light grey-white-medium grey

green; soft-sticky; amorphous; common-very argillaceous; trace carbonaceous-coaly fragments; slight-non calcareous; micromicaceous; trace coal

715-720m: SILTSTONE (100%) as above

SILTSTONE (100%) as above 720-725m:

725-730m: SILTSTONE (80%) as above

COAL (20%) brown-brown black; blocky; dull

SILTSTONE (80%) as above 730-735m:

COAL (20%) as above

SILTSTONE (100%) as above; common fossil fragments 735-740m:

SILTSTONE (100%) as above; trace coal 740-745m:

SILTSTONE (100%) as above; trace coal 745-750m:

SILTSTONE (100%) light grey-medium grey; soft-750-755m: plastic; amorphous; trace fine, well rounded sand; trace fossil fragments; slight to non-calcareous;

very argillaceous grading to claystone in part.

755-760m: SILTSTONE (90%) as above

SANDSTONE (10%) white-off white; soft-friable; very fine-fine grained; subangular to subrounded; well sorted; abundant kaolinitic matrix; slightly

calcareous; trace glauconite; tight.

SILTSTONE (100%) as above 760-765m:

765-770m: SILTSTONE (100%) as above

SILTSTONE (80%) as above 770-775m:

SANDSTONE (20%) as above

SILTSTONE (80%) as above 775-780m:

SANDSTONE (20%) as above

780-785m: SILTSTONE (90%) as above

SANDSTONE (10%) as above

785-790m: SILTSTONE (100%) as above

790-795m: SILTSTONE (100%) light grey-medium grey-brown grey; firm-soft; amorphous; blocky; very argillaceous; trace lithic fragments; trace mica; very fossiliferous in part; slight to

noncalcareous; grading to claystone in part

795-800m: SILTSTONE (100%) as above

800-805m: SILTSTONE (100%) as above

805-810m: <u>SILTSTONE (100%)</u> as above

810-815m: SANDSTONE (90%) clear-translucent; loose; coarse; subangular-subrounded; occasionally rounded; well sorted; trace mica; trace calcitic cement; trace pyrite; common coaly fragments; assumed good

porosity; no fluorescence.

SILTSTONE (10%) brown-grey brown-occasional green grey; soft-plastic; amorphous; occasionally blocky; trace lithic fragments; very fossiliferous; slight to moderately calcareous;

common coal

815-820m: SANDSTONE (100%) as above

820-825m: SILTSTONE (100%) as above

825-830m: SILTSTONE (100%) as above

830-835m: SANDSTONE (100%) clear-translucent; loose; medium to coarse; subangular-subrounded; occasionally rounded; moderate sorting; trace calcareous cement; trace carbonaceous matter; assumed fair-good porosity; trace dull orange mineral

fluorescence.

835-840m: SANDSTONE (100%) as above; trace smokey quartz;

trace pyrite

840-845m: SANDSTONE (60%) as above

SILTSTONE (40%) light grey-off white-yellow grey; soft-plastic; amorphous; very argillaceous; coaly fragments; non-slightly calcareous

SILTSTONE (40%) as above

850-855m: SILTSTONE (80%) as above; slight-moderately

calcareous in part

SANDSTONE (20%) as above; coarse-very coarse;

loose; milky

855-860m: SILTSTONE (80%) as above

SANDSTONE (20%) as above

860-865m: SILTSTONE (805) as above

SANDSTONE (20%) as above

865-870m: SILTSTONE (80%) as above

SANDSTONE (20%) as above

870-875m: SILTSTONE (100%) light brown-grey green; soft-

plastic; amorphous; occasionally blocky; very argillaceous; common fossils; common coal

fragments; slightly calcareous

875-880m: <u>SILTSTONE (100%)</u> as above

880-885m: SILTSTONE (100%) as above

885-890m: SILTSTONE (100%) as above

890-895m: SILTSTONE (100%) as above

895-900m: <u>SILTSTONE (100%)</u> as above

SANDSTONE - trace; trace pyrite

900-905m: SILTSTONE (100%) as above

905-910m: <u>SILTSTONE (100%)</u> as above

910-915m: SILTSTONE (100%) medium grey-grey green-light brown; soft-plastic-dispersive in part; very argillaceous; very fossiliferous; moderate to very

calcareous; very coaly; moderately sandy in part

915-920m: SILTSTONE (100%) as above

920-925m: <u>SILTSTONE (100%)</u> as above

925-930m: SILTSTONE (60%) medium grey to brownish grey;

quartzose; lithic; very argillaceous; variably

carbonaceous and calcareous; micromicaceous

SANDSTONE (20%) fine-medium grained; clear; common

coaly fragments

CLAYSTONE (20%) light medium grey; slightly

carbonaceous; micromicaceous; silty in part; soft

but not very sticky

930-935m: SILTSTONE (60%) as above

CLAYSTONE (30%) as above

SANDSTONE (10%) as above

935-940m: SILTSTONE (70%) as above

CLAYSTONE (20%) as above

SANDSTONE (10%) as above

940-945m: SITLSTONE (50%) as above

CLAYSTONE (40%) as above

SANDSTONE (10%) as above; subrounded to rounded;

maybe cavings

945-950m: SILTSTONE (50%) as above

CLAYSTONE (40%) as above

SANDSTONE (10%) as above

		(500)		. 1
950-955m:	SILTSTONE	(/ ひゃ)	as	apove

CLAYSTONE (30%) as above

<u>SANDSTONE</u> - trace

955-960m: SILTSTONE (70%) as above

CLAYSTONE (30%) as above

SANDSTONE - trace

960-965m: SILTSTONE (60%) as above; trace sand

CLAYSTONE (40%) as above

965-970m: SILTSTONE (60%) as above; trace sand

CLAYSTONE (40%) as above

970-975m: SILTSTONE (80%) as above; trace sand

CLAYSTONE (20%) as above

975-980m: SILTSTONE (70%) medium grey to grey brown; firm-

soft; very argillaceous; lithic; variably carbonaceous; micromicaceous; calcareous in part

grading to claystone

CLAYSTONE (20%) grey and brown; firm-soft.

SANDSTONE (10%) medium; clear; individual rounded

quartz grains (possibly cavings)

980-985m: SANDSTONE (60%) light grey; fine grained; firm;

lithic; argillaceous; calcareous; tight

SILTSTONE (20%) as above

CLAYSTONE (20%) as above

985-990m: SILTSTONE (50%) as above

CLAYSTONE (40%) as above

SANDSTONE (10%) as above

990-995m: <u>SILTSTONE (50%)</u> as above

SANDSTONE (40%) as above; trace pyrite

CLAYSTONE (10%) as above

995-1000m: SANDSTONE (60%) as above; pyrite common; trace

dull, dark brown coal

SILTSTONE (20%) as above

CLAYSTONE (20%) as above

1000-1005m: CLAYSTONE (40%) as above; generally darker brown;

more carbonaceous

SILTSTONE (30%) as above

SANDSTONE (30%) as above

1005-1010m: CLAYSTONE (50%) as above

SILTSTONE (30%) as above

SANDSTONE (20%) as above

1010-1015m: CLAYSTONE (50%) as above

SILTSTONE (30%) as above

SANDSTONE (20%) as above

1015-1020m: CLAYSTONE (50%) as above

SILTSTONE (40%) as above

SANDSTONE (10%) as above

1020-1025m: SANDSTONE (50%) as above

SILTSTONE (30%) as above

CLAYSTONE (20%) as above

1025-1030m: SANDSTONE (50%) as above

SILTSTONE (30%) as above

CLAYSTONE (20%) as above

1030-1035m: SANDSTONE (50%) as above; more clean individual

grained; medium, coarse grains

SILTSTONE (30%) as above

CLAYSTONE (20%) as above

1035-1040m: SILTSTONE (40%) as above

SANDSTONE (30%) as above

CLAYSTONE (30%) as above

1040-1045m: SILTSTONE (50%) as above

CLAYSTONE (40%) as above

SANDSTONE (10%) as above

1045-1050m: SILTSTONE (60%) as above

SANDSTONE (20%) as above

CLAYSTONE (20%) as above

1050-1055m: SILTSTONE (60%) light grey to brown; quartzose;

lithic; argillaceous in part; carbonaceous and

calcareous; micro-micaceous

CLAYSTONE (30%) brownish to medium grey; soft to

firm; chunky; silty in part

SANDSTONE (10%) light grey; fine grained; lithic;

argillaceous; calcareous; tight; some medium

individual rounded grains.

1055-1060m: <u>SILTSTONE (40%)</u> as above

CLAYSTONE (40%) as above

SANDSTONE (20%) as above

1060-1065m: SILTSTONE (60%) as above; trace sand

CLAYSTONE (40%) as above

1065-1070m: SILTSTONE (50%) as above; trace sand

CLAYSTONE (50%) as above

1070-1075m: SILTSTONE (80%) as above

CLAYSTONE (10%) as above

SANDSTONE (5%) as above

COAL (5%) dull; dark brown

1075-1080m: SILTSTONE (80%) as above

CLAYSTONE (10%) as above

SANDSTONE (5%) as above

COAL (5%) as above

1080-1085m: SILTSTONE (100%) light grey-grey green-

occasionally brown; soft-firm-occsionally moderatley hard; very argillaceous; blocky; common

angular sand; trace pyrite; common coaly stringers; slightly calcareous; moderately

fossiliferous

1085-1090m: SILTSTONE (100%) as above

1090-1095m: SILTSTONE (95%) as above

COAL (5%) dark brown-brown black; hard-brittle;

blocky; silty; dull

1095-1100m: SILTSTONE (90%) as above

SANDSTONE (10%) white-clear-translucent; friable-moderately hard; fine-occasionally medium; subangular-subrounded; moderately well sorted; trace koalinitic matrix; trace silica cement; trace carbonaceous flecks; tight; poor porosity;

no fluorescence.

1100-1105m: SILTSTONE (70%) as above

SANDSTONE (30%) as above

1140-1145m: <u>SILTSTONE (65%)</u> as above

SANDSTONE (30%) as above; no fluorescence

COAL (5%) as above

1145-1150m: SILTSTONE (60%) as above; very argillaceous in

part; grading to claystone

SANDSTONE (40%) clear to brownish iron-stained; friable; medium to coarse; rounded; well sorted;

excellent apparent porosity; no fluorescence;

trace coal

1150-1155m: <u>SANDSTONE (95%)</u> as above

SILTSTONE (5%) as above

1155-1160m: <u>SILTSTONE (35%)</u> as above

SANDSTONE (65%) as above

1160-1165m: SANDSTONE (100%) as above; increasing calcitic

cement; trace silt

1165-1170m: SANDSTONE (100%) as above; clean; only

moderately well sorted; trace silt

1170-1175m: SANDSTONE (80%) as above; pyritic

SILTSTONE (20%) as above; minor greenish; lithic

fragments; argillaceous

1175-1180m: SANDSTONE (80%) as above; trace dark green

minerals; (possibly weathered igneous rock)

SILTSTONE (20%) as above

1180-1185m: <u>SANDSTONE (50%)</u> as above

SILTSTONE (30%) as above; grading to claystone

CLAYSTONE (20%) as above

1105-1110m: SILTSTONE (80%) as above

SANDSTONE (20%) as above; common coarse quartz

grains

1110-1115m: SILTSTONE (95%) as above

SANDSTONE (5%) as above

1115-1120m: <u>SILTSTONE (65%)</u> as above

SANDSTONE (30%) as above

COAL (5%) dirty brown-black; blocky; dull

1120-1125m: <u>SILTSTONE (70%)</u> as above

SANDSTONE (25%) as above

COAL (5%) as above

1125-1130m: SILTSTONE (95%) grey green-light grey-occasional

grey brown; soft-moderately hard; blocky; very argillaceous in part; common fossil fragments; moderately calcareous; very coaly; grading to

sandstone in part

SANDSTONE (5%) white-off white; soft-friable;

fine-very fine; subangular-subrounded; well sorted; abundant kaolinitic matrix in part;

noncalcareous; tight; no fluorescence.

1130-1135m: SILTSTONE (60%) as above

SANDSTONE (40%) clear-translucent; friable-

loose; fine-medium-occasional coarse;

subangular-subrounded; moderate sorting; trace
silica cement; non calcareous; tight; no

fluorescence.

1135-1140m: SILTSTONE (65%) as above

SANDSTONE (30%) as above; common quartz over-

growths

COAL (5%) as above

1185-1190m: <u>SANDSTONE (50%)</u> as above

SILTSTONE (30%) as above

CLAYSTONE (20%) as above

1190-1195m: SANDSTONE (40%) as above

SILTSTONE (40%) as above

CLAYSTONE (20%) as above

1195-1200m: SHALE (60%) dark brown; carbonacous; poorly

fissile

SANDSTONE (20%) as above

SILTSTONE (20%) as above

1200-1205m: SHALE (80%) dark brown; carbonaceous; firm;

poorly fissile; silty; micromicaceous

SANDSTONE (10%) as above

SILTSTONE (10%) as above

1205-1210m: <u>SHALE (100%)</u> as above

1210-1215m: SHALE (80%) as above

COAL (20%) black; hard brittle; conchoidal

fracture; vitreous lustre; bright

1215-1220m: SHALE (100%) as above

1220-1225m: BASALT (10%) green-dark green; hard;

phenocrysts; common plagioclase; trace free quartz; olivine groundmass; olivine crystals;

trace calcite veining

SHALE (90%) as above

1225-1230m: SHALE (50%) as above

BASALT (50%) as above

BASALT (100%) grey-grey black; hard-very hard; very fine grained 1230-1235m:

1235-1240m: BASALT (100%) as above

1240-1245m: BASALT (100%) as above

1245-1250m: BASALT (100%) as above APPENDIX II.

LOG ANALYSIS

BALLANGEICH NO. 1

Well Log Analysis

Available Logs:

BHC-GR-Cal 161-1249.9m DLL-MSFL-GR-SP-Cal 161-1249.9m

Well logs recorded by Gearhart Australia Pty. Ltd.

Borehole Conditions:

9 5/8" Casing set at 162m. $8\frac{1}{2}$ " Bit drilled to TD.

Fluid in hole: Freshwater Gel

Density: 9.2 lbs/gal Viscosity: 41 secs

Viscosity: 41 secs pH: 11

Fluid loss: 7cc Rm: 2.0 @ 70°F Rmf: 0.95 @ 76°F

Bottom Hole Temperature: 126°F

GENERAL:

Both the Heathfield Sandstone and Pretty Hills Sandstone have moderate log porosity sections with values ranging from 12.6 - 22.6% (Heathfield) and 0.9 - 21.7% (Pretty Hills). The logs values together with associated water saturations are listed in Table A1. All values have been shale corrected.

Only the Sonic log was available for direct porosity determination and a travel time (tma) of 182 μ s/m and fluid travel time of 620 μ s/m were selected.

TABLE: A1

WELL: BALLANGEICH NO. 1 DATE: October, 1987

DEPTH (m)	SONIC	Øs(corr)	SP	LLS	LLD	Rw (Q m)	Sw ક
818	220	17.7	-15	3.0	3.1	0.102	97.4
820	197.5	12.6	-26	2.8	2.8	0.055	100 *
820.5	226	18.1	-26	2.8	2.8	0.062	100 *
821.5	226	18.6	-24	2.7	3.0	0.062	74.8
822.5	216	19.7	-12	3.1	3.2	0.119	93.2
824	226	21.8	0	2.6	2.7	0.247	100 *
824.8	222	20.7	0	2.6	2.7	0.247	100 *
825.5	223	22.5	0	2.6	2.7	0.247	100 *
826.8	225	22.1	0	2.7	2.8	0.247	100 *
887.5	227	22.6	0	2.9	2.9	0.247	100 *
829	226	21.5	0	2.6	2.6	0.246	100 *
830	229	22.0	0	3.0	3.0	0.246	100 *
831	228	20.2	. 0	3.2	3.2	0.246	100 *
831.5	228.5	20.9	0	3.2	3.2	0.246	100 *
832.9	220.5	19.1	0	3.2	3.2	0.246	100 *
834	203	14.5	-10	3.2	3.2	0.131	100 *
835	220	17.9	-16	3.4	3.4	0.095	88.8
836	215	16.6	-15	3.9	3.9	0.098	90.5
837	215	16.8	-22	3.3	3.3	0.071	83.7
837.6	211	15.7	-22	3.3	3.3	0.071	83.0
839	220	18.6	0	2.9	2.9	0.245	100 *
840	219	17.9	0	3.2	3.2	0.245	100 *
840.5	219.5	17.8	0	3.2	3.2	0.245	100 *
842	220	20.0	-18	3.2	3.2	0.086	79.3
843	215	15.1	- 19	4.0	4.0	0.080	90.6
844	212	19.8	-19	4.0	4.0	0.080	82.1

^{*} Values of Sw calculated 100% or over are labeled 100*

TABLE: A1

WELL: BALLANGEICH NO. 1
DATE: October, 1987

DEPTH (m)	SONIC	Øs(corr)	SP	LLS	LLD	Rw (<u>a</u> m)	Sw %
1150.5	196	12.5	7	7.0	7.0	0.418	100 *
1151	193	15.0	9	7.0	7.0	0.451	100 *
1151.5	200	16.6	11	4.0	4.0	0.494	100 *
1152.5	203	16.4	11	4.4	4.4	0.500	100 *
1153.5	207	7.7	11	4.4	4.4	0.569	100 *
1154.5	203	12.6	2	6.1	6.1	0.254	100 *
1157	218	21.7	6	7.9	7.9	0.354	100 *
1158	198	16.2	. 1	10.0	10.0	0.237	74.1
1158.5	196	14.1	0	10.0	10.0	0.219	91.9
1159	196	15.5	8	6.2	6.2	0.407	100 *
1161	195	13.9	9 3	6.7	6.7	0.447	100 *
1162	201	16.0	3	7.0	7.0	0.275	95.4
1163	213	18.8	- 6	9.0	9.0	0.139	57.2
1164	199	12.2	-8	10.0	11.3	0.120	72.6
1165	201	15.0		8.0	9.0	0.118	67.5
1166	199	14.7	-12	9.0	9.5	0.093	59.1
1167	200	11.6	-21	10.0	11.0	0.054	56.8
1168	186	0.9	-25	7.0	8.0	0.047	100 *
1169	192	13.7	-22	8.0	8.5	0.053	53.3
1170	201	17.3	-21	6.5	6.5	0.058	50.5
1171	189	10.2	- 20	13.0	13.0	0.053	58.4
1172	180	7.0	-1	11.0	11.0	0.201	100 *
1173	190	14.6	5	8.3	8.3	0.325	83.7
1174	193	16.2	9	9.5	9.5	0.468	85.5
1175	187	11.6	6	8.3	8.3	0.353	100 *
1176	193	15.9	10	7.0	7.0	0.488	91.0
1177	199	17.8	10	7.0	7.0	0.488	82.9

^{*}Values of Sw calculated 100% or over are labeled 100*

APPENDIX III.

PALYNOLOGY

PALYNOLOGY AND KEROGEN ANALYSIS OF FIVE SAMPLES FROM BALLANGEICH NO. 1 WELL

M. AZIZ ISLAM

Report No. 4 October, 1987

Australasian Palynostratigraphic Services 60 Wilber Street Rossmoyne Western Australia 6155

SUMMARY

Sample Depth (m)	Zone	Age		
810	Crybelosporites striatus	Aptian-Albian		
860	Cyclosporites hughesi	Aptian		
865	Foraminisporis wonthaggiensis	Valanginian- Aptian		
1200	Retitriletes watherocensis	Tithonian		
1240	-	Indeterminate		

CONTENTS

	Page
SUMMARY	2
INTRODUCTION	4
PALYNOSTRATIGRAPHY	5
PALYNOFACIES	7
MATURITY AND SOURCE-ROCK POTENTIAL	7
REFERENCE	8
TABLE 1. DISTRIBUTION OF SPECIES	9
TABLE 2. VISUAL ASSESSMENT OF KEROGEN	11

INTRODUCTION

Five cuttings samples from Ballangeich No. 1 well were received from the Phoenix Oil and Gas N.L. for palynological analyses and visual kerogen assessment. The samples were from these depths: 800-810 m, 860 m, 860-865 m, 1190-1200 m and 1230-1240 m (hereinafter only last depths of the sample intervals are mentioned).

All samples except the lowest one at 1240 m were rich in sporomorph yields. Caving has been appreciable in all samples and mostly took place from immediately overlying sections. Obvious cavings from higher sections were minimal which were easily distinguished and ignored (such as much younger dinoflagellate cysts).

Due to caving from immediately overlying sections, only top occurrences of significant sporomorph species have been taken into account for zonal correlation. Generally, most species occur rarely and sporadically in the upper (and lower) parts of their respective stratigraphic ranges. Yet greater emphasis have been placed on such rare occurrences rather than on the whole assemblages which have been masked by caving. That explains why, except these significant species, the sporomorph assemblages in all samples look identical.

PALYNOSTRATIGRAPHY

The following zonal correlations are based on top occurrences of significant species and remain subject to confirmation by core sample analyses. The distribution of species is presented in Table 1.

810 m

Crybelosporites striatus Interval Zone

Aptian-Albian

Top occurrence of <u>Biretisporites</u> <u>eneabbaensis</u> together with abundant <u>Microcachryidites</u> antarcticus suggest that the sample is not younger than the <u>Crybelosporites</u> striatus Interval Zone as modified by Helby <u>et al</u>. (1987). Other species supportive to this correlation are the nominate species, <u>Cyclosporites</u> hughesi, common <u>Pilosisporites</u> notensis and abundant <u>Foraminisporis</u> asymmetricus. The age of the zone is latest Aptian to early Albian.

860 m

Cyclosporites hughesi Interval Zone

Aptian

Top occurrence of <u>Callialasporites</u> <u>turbatus</u> suggests that the sample is not younger than the Aptian <u>Cyclosporites</u> <u>hughesi</u>
Interval Zone as modified by Helby <u>et al.</u> (<u>op. cit.</u>). Other species supporting this correlation are the nominate species, <u>Foraminisporis asymmetricus</u>, <u>F. wonthaggiensis</u>, <u>Microcachryidites antarcticus</u> and common <u>Pilosisporites</u> notensis.

865 m

Foraminisporis wonthaggiensis Interval Zone

Valanginian-Aptian

Top occurrence of Aratrisporites sp. indicate that the sample is not younger than the Foraminisporis wonthaggiensis Interval Zone as modified by Helby et al. (op. cit.). F. wonthaggiensis Interval is a broad zone ranging from Valanginian to basal Aptian. Other notable species are the nominate species, Contignisporites cooksoniae and Microcachryidites antarcticus.

1200 m

Retitriletes watherocensis Oppel Zone

Tithonian

The sample is considered to be not younger than the Tithonian Retitriletes watherooensis Oppel Zone as modified by Helby et al. (op. cit.) from the top occurrence of Araucariacites fissus. Abundant Microcachryidites antarcticus, and rare Callialasporites dampieri and C. turbatus are important accessory species.

1240 m

Indeterminate

Although some distinction in kerogen properties is observed, the sample yielded almost identical sporomorph assemblage which is considered to be almost entirely caving. The sample is, therefore, thought to be almost barren of palynomorphs. Possible sampling error is also not entirely ruled out. The only significant species, <u>Duplexisporites</u> problematicus, is very weathered and is probably not indigenous.

PALYNOFACIES

All samples examined contain abundant terrestrial sporomorphs and a few dinoflagellate cysts noticed are obvious caving from much younger strata. Rare fungal palynomorphs are present. The samples are, therefore, considered non-marine. There were no evidence to indicate otherwise. The lowest sample at 1240 m is considered nearly barren of palynomorphs and is probably non-marine.

MATURITY AND SOURCE-ROCK POTENTIAL

Visual assessment of kerogen components is presented in Table 2. Due to caving, the results remain tentative and subject to confirmation by core sample analyses.

With Thermal Alteration Indices (TAI) ranging from 2.75 to 3.0, the upper 4 samples are considered mature to generate liquid hydrocarbon. Moderate yield of organic residue (VOM = volume of organic matter) together with moderate sporinite component indicate good source-rock potential but this is downgraded in terms of oil potential by low cuticle yields, moderate woody substances and high sapropelic components. These samples are, therefore, more potent to generate gas and condensate than oil.

The lowest sample at 1240 m with high VOM is a very good source-rock but for low sporinite and cuticle, moderate woody material and high sapropel is potent to generate gas and condensate with little oil.

REFERENCE

HELBY, R., MORGAN, R. and PARTRIDGE, A.D., 1987.

A palynological zonation of the Australian Mesozoic.

Association of Australasian Palaeontologists, Memoir No. 4, pp. 1-94.

TABLE 1. DISTRIBUTION OF SPECIES

		Samj	ple de	oth (m)		
	810	860	865	1200	1240	
	17	v	x	x		
Aequitriradites spinulosus	X 	X		X	x	
Araucariacites australis	X	Χ.	X		X	
Biretisporites eneabbaensis	X		v	X	X	
Camarozonosporites clivosus	X	· X	X	X		
Ceratosporites equalis	X	X	X 	X	X	
Cibotiumspora juriensis	X	X	X		X	
Cicatricosisporites australiensis		Х	X	X	X	
Classopollis torosus	X	X	Х	X	X	•
Clavatipollenites hughesi	X	X	X	X	X	
Crybelosporites striatus	X	X	Х	X		
Cyathidites asper	X		X	X	X	
Cyathidites australis	X	X	X	X	X	
Cyathidites minor	X	X	X	X	X	
Cycadopites follicularis	X	X	X	X	X	
Cycadopites nitidus	Х	X	X	X	\mathbf{X}	
Cyclosporites hughesi	x	X	X	X	X	
Dictyophyllidites equiexinus	X		x		X	
Dictyophyllidites harrisii	X	x	X	X	X	
Dictyophyllidites mortonii	x	x	x	X	X	
Dictyotosporites complex	x	x	X	X	X	
Dictyotosporites speciosus	X	X	x	X		
Foraminisporis asymmetricus	X	x		X		
Foraminisporis daylii	X		x	X		
Foraminisporis wonthaggiensis	x	X	X	X	X	
Gleicheniidites senonicus	Х		X		X	
Klukisporites lacunus	Х	x	x	X	X	
Leptolepidites major	Х	х	X			
Matonisporites cooksoniae	x	х	X	X	X	
Microcachrydites antarcticus	Х	х	х	х	X	
Neoraistrickia truncata	Х	X	х	_ X	Х	
Osmundacidites wellmanii	Х	х	x	X	х	
Pilosisporites grandis	Х	х				
11103135011000 3100010				, •	cont'	đ

TABLE	1 (cont	'd)
-------	-----	------	-----

INDEE 1 (cont 1)		Sam	ole de	pth (m)	
	810	860	865	1200	1240
Pilosisporites notensis	x	х	x	X	x
Pilosisporites parvispinosus	x	x	x	x	X
Pinuspollenites globosaccatus	x	•	x		X
Pinuspollenites parvisaccatus	x	x	x	X	x
Podocarpidites ellipticus	x	x	X	X	x
Retitriletes austroclavatidites	x	x	x	x	X
Retitriletes circolumenus	X	x	X	X	X
Retitriletes facetus	x	x	x	X	x
Retitriletes reticulumsporites	x	X	x		x
Retitriletes rosewoodensis	x	x	x	· X	X
Retitriletes semimuris	x	х	x	X	
Rogalskaisporites cicatricosus	x	X	X	X	x
Stereisporites antiquasporites	x	X	x	X	X
Trilobosporites trioreticulosus	x		x		
Triporoletes reticulatus	x	x	x	X	
Trisaccites variabilis	x		x	x	x
Vitreisporites pallidus	x	x	•	X	х
Alisporites grandis		x		X	x
Alisporites similis		x	X	X	X
Aequitriradites verrucosus		x			X
Callialasporites dampieri		X		x	x
Callialasporites turbatus		X		X	X
Camarozonosporites ramosus		X	x	X	X
Cicatricosisporites hughesi		x	X		
Crybelosporites stylosus		x			X
Foveosporites canalis		X	X	X	X
Leptolepidites verrucatus		X	x	X	
Aratrisporites sp.			X		X
Contignisporites cooksoniae			x		
Araucariacites fissus				X	X
Callialasporites segmentatus				x	X
Retitriletes watherooensis				X	X
Staplinisporifes caminus			•	X	X
Callialasporites trilobatus					X
Coronatispora perforata					X
Duplexisporites problematicus					Х

TABLE 2. VISUAL ASSESSMENT OF KEROGEN

OTENTIAL	Gas/	Cond.	~	٣	m	Ņ	4	Poor Fair Good Very good
SOURCE POTENTIAL		0i1		2	2	2	· -	1. Poor 2. Fair 3. Good 4. Very
	TAI		2.75	2.75	2.75	3.00	3.00	1+ Immat. 2 Semimat. 2+ Mature 3+ Postmat.
	_	Sap.	4	4	4	7	7	T. 0-2%
INTS		Ine	2			- -		8-10% 20-25% 40-50% 50%+ setratigra
KEROGEN COMPONENTS		Woo.	2	2	7		~	1+ 8-10 2+ 20-2 3+ 40-50 4 50%+
ROGEN		Cut.	- 	г 		- 		an Pa]
KE	ļ.	Alg.	o 	o 			0	0-2% 2-10% 11-25% 26-50%
		Spo.	2	7	2	2	- 	1. 1. 2. 1 3. 2
	L	₹		<u> </u>			0	
ORPHS		×						1-10 11-20 21-30 30+
PAL YNOMO	Diver	Sp.	4	4	4	4		4.32.1
P/d		PRES.	4	4	4	. 4	<u>۳</u>	Very poor Poor Fair Good
	NOV	(m1.)	1.0	0.8	0.8	1.3	3.5	1. Very 2. Poor 3. Fair 4. Good
	WE	(b)	10	10	10	10	01	
SAMPLE		TYPE	Cuttg.	=	=	=	=	
S		DEPTH	810 m	₩ 098	865 m	1200 m	1240 m	

PE907918

This is an enclosure indicator page. The enclosure PE907918 is enclosed within the container PE905659 at this location in this document.

The enclosure PE907918 has the following characteristics:

ITEM_BARCODE = PE907918
CONTAINER_BARCODE = PE905659

NAME = Palynological Table

BASIN = OTWAY
PERMIT = PEP101
TYPE = WELL
SUBTYPE = DIAGRAM

DESCRIPTION = Ballangeich-1 Palynological Table,

figure 1 from well Completion Report

REMARKS = This item was previously barcoded as PE990792 from Andrews Palynology.

DATE_CREATED =

DATE_RECEIVED = 21/09/87

 $W_NO = W965$

WELL_NAME = BALLANGEICH-1

CONTRACTOR =

CLIENT_OP_CO = PHOENIX OIL & GAS N.L.

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX IV

GEOTHERMAL GRADIENT

The following data is available

Logging Run

DLL-MSFL-GR-CAL-SP	126°F @ TD	6.7 hours after circulation ceased
BHC-Cal-GR	138°F @ TD	10.8 hours after circulation ceased

Extrapolated BHT = 164°F @ TD

Assuming a mean annual surface temperature of 55.4°F and a linear temperature-depth relationship, the geothermal gradient at Ballangeich 1 is 2.63°F per 100 feet.

BOTTOM HOLE TEMPERATURE EXTRAPOLATION NOMOGRAPH. 2 3 4 5 0,TIME SINCE CIRCULATION STOPPED (hours) 6 8 9 10 ٠, P . 5 13 14 TI CIRCULATING TIME 15 16 ON BOTTOM (HOURS) 17 18 19 20 21 22 23 DIRECTIONS FOR USE OF NOMOGRAPH 1 Determine T circulating time on bottom. 2. For each temperature measurement, determine θ time since Eirculation 3 Set appropriate temperature scale 4 Proceed as shown below 170 160 Enter θ time here 150 140 Read true EMPERATURE formation temperature 130 120 PHOENIX OIL & GAS N.L. LOG SUITE 1 WELL BALLANGEICH 1 MEAN ANNUAL S REACE TEMPERATURE 13° C (55.4° F) EXTRAPOLATEL SHT 164° F (73.3° C) AT DEPTH 1249.9m (driller) REMARKS Thermal Gradient 4.8° C 100m (8.64° F 100m or 2.63° F 100ft) DATE 24 8 87 GEOLOGIST A.J. Williams

PE604036

This is an enclosure indicator page.

The enclosure PE604036 is enclosed within the container PE905659 at this location in this document.

The enclosure PE604036 has the following characteristics:

ITEM_BARCODE = PE604036

CONTAINER_BARCODE = PE905659

NAME = Composite Well Log

BASIN = OTWAY

PERMIT = PEP101

TYPE = WELL

SUBTYPE = COMPOSITE_LOG

DESCRIPTION = Ballangeich-1 Composite Well Log,

enclosure 1 from Well Completion Report

REMARKS =

DATE_CREATED = 31/10/87

DATE_RECEIVED = 25/11/87

 $W_NO = W965$

WELL_NAME = BALLANGEICH-1

CONTRACTOR =

CLIENT_OP_CO = PHOENIX OIL & GAS N.L.

(Inserted by DNRE - Vic Govt Mines Dept)

PE604037

This is an enclosure indicator page. The enclosure PE604037 is enclosed within the container PE905659 at this location in this document.

The enclosure PE604037 has the following characteristics:

ITEM_BARCODE = PE604037

CONTAINER_BARCODE = PE905659

NAME = Mud Log

BASIN = OTWAY

PERMIT = PEP101

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Ballangeich-1 Mud Log, enclosure 2 from

Well Completion Report

REMARKS =

DATE_CREATED =

 $DATE_RECEIVED = 25/11/87$

 $W_NO = W965$

WELL_NAME = BALLANGEICH-1

CONTRACTOR = EXLOG

CLIENT_OP_CO = PHOENIX OIL & GAS N.L.

(Inserted by DNRE - Vic Govt Mines Dept)

ENCLOSURE - 3

VELOCITY SURVEY

A copy of this report was forwarded to your Company on September 16th, 1987 and should be attached to this copy.

(See PE905662)