WONGA BINDA NO. 1

PEP 120

WELL COMPLETION REPORT

WCR WONGA BINDA - 1 (W973)

W973.

12 SEP 1988

PETROLEUM DIVISION

WONGA BINDA NO. 1

PEP 120

WELL COMPLETION REPORT

D. A. Short for Crusader Resources N.L. July 1988

CONTENTS

			PAGE	
1.	ABSTR	4		
2.	WELL DATA CARD			
3.	GENERAL DATA			
્ર4 .	ENGINEERING:			
	4.1 ENGINEERING SUMMARY			
	4.2	RIG DATA	8	
	4.3	DRILLING DATA		
		 (a) Hole Sizes and Depths (b) Casing and Cementing Record (c) Mud Summary (d) Water Supply (e) Formation Testing (f) Abandonment Data 	9 9 10 10 10	
5.	GEOLOGICAL DATA			
	5.1	GEOLOGICAL SUMMARY	11	
	5.2	REASONS FOR DRILLING	12	
	5.3	STRATIGRAPHY	13	
	5.4	DESCRIPTIVE STRATIGRAPHY		
	5.5 FORMATION EVALUATION			
		(a) Mud Logging(b) Wireline Logging(c) Temperatures(d) Coring	16 16 16 16	
	5.6	RESERVOIR POTENTIAL	17	
	5.7	HYDROCARBON SHOWS	17	
	5.8	CONTRIBUTIONS-TO-GEOLOGIC-CONCEPTS	17	
6	CONTCT 1	LISTONIS	10	

LIST OF FIGURES

- 1. Wonga Binda No. 1 Well Location Map
- 2. Wonga Binda No. 1 Predicted vs Actual Time Depth Curve
- 3. Composite Stratigraphic Column

LIST OF ENCLOSURES

Enclosure 1: Wonga Binda No. 1 Composite Well Log

Enclosure 2: Wonga Binda No. 1 Mudlog

Enclosure 3: Wonga Binda No. 1 Striplog

APPENDICES

- 1. Daily Operations Reports
- 2. Bit and Hydraulics Record/Deviation Record
- 3. Mud Record
- 4. Time Analysis
- 5. Drill Stem Test Reports
- 6. Description of Cutting Samples
- 7. Description of Sidewall Cores
- 8. Wireline Log Evaluation
- 9. Water Analysis
- 10. Well Velocity Survey Drift Corrected Seismic Seismic calibrated Log
- 11. Well Location Survey

1. ABSTRACT

Wonga Binda No. 1 was drilled for Crusader Resources N.L. by ATCO-APM Drilling Pty. Ltd. in the southwest of PEP 120 - Victoria about 35 kilometres south of the city of Sale.

The closest wells to Wonga Binda No. 1 were Darriman No. 1 (Frome Lakes Pty. Ltd. - 1955) located 3 kilometres to the west and Salt Lake No. 1 (Woodside Oil N.L. - 1970) located 4 kilometres to the east. No shows were recorded in either well. The only hydrocarbons recorded from nearby onshore wells were gas flows up to 100 MCFD from the Strzelecki Group at North Seaspray No. 1 immediately to the northeast of the PEP 120 and minor oil recoveries reported from Woodside No. 2 and Sunday Island No. 1 to the southwest in PEP 123. Offshore are the marginally economic Dolphin and Perth Oilfields.

Drilling commenced on April 8 1988 and total depth was reached on April 17 1988 in Cretaceous Age Strzelecki Group sediments. The rig was released on April 20 1988. Total depth was 1,394 metres.

The well was located on the Wonga Binda Prospect, a small "Top Latrobe" culmination on the Darriman Anticline which plunges offshore to the east-northeast. Mapped areal closure of the prospect is about 1.27 sq. km. with a maximum vertical closure of 30 metres.

The primary target was a seismically mapped barrier/bar sand at the top of the Latrobe Group. Four way dip closure was confined to the top of the Latrobe Group and above and this vertically localised closure was interpreted as being due to sand build up associated with a buried barrier/bar sand. Secondary targets were possible stratigraphic traps in the intra Latrobe Group sands and sands in the Yarram Formation.

The sands at the top of the Latrobe Group are the reservoirs for the Dolphin and Perch Oilfields and also for the Golden Beach Gasfield and the giant Barracouta Gasfield.

The section encountered was as predicted with the Latrobe Group sands being well developed and having good reservoir quality but no oil or gas shows were recorded from them. The sands of the Yarram Formation had only poor to fair reservoir quality and no gas or oil shows were recorded. Two attempts were made to test the top sand of the Latrobe Group but both were unsuccessful due to plugging of the test tool.

After reaching total depth wireline logs, sidewall cores, a velocity survey and an RFT were run. The wireline logs indicated all prospective reservoir sands to be water saturated and the RFT on the top sand of the Latrobe Group recovered water.

Cement plugs were set across the top of the Latrobe Group, the casing shoe and at surface and the well was abandoned.

WONGA BINDA NO. 1 - WELL CARD

LATITUDE: 38°27'02.82"S 147°02'25.70"E LONGITUDE: LINE/SP NO.: GCR-87A-22/1170 DRILLER:

LEASE: VIC PEP 120 OPERATOR: Crusader Limited SPUD: 08.04.88 (0330) COMPLETION: 20.04.88 (1330)

DATA SOURCE: Well records

STATUS: Dry Hole, P & A PARTNERS: Omega Oil Ltd.

ATCO-APM Drilling P/L RIG: Troy 600 (Rig A7)

ELEVATION (K.B.): 29.4m ELEVATION (G.L.): 25.6m TOTAL DEPTH: 1394m

FORMATION TOPS:

	Depth (K.B.)	Depth (S.S.)	Thickness
Boisdale Fm.	Surface	+25.6	33.0
Jemmys Point Fm.	?37.0	-7.6	14.0
Seaspray Group:			
Tambo River Fm.	?51.0	- 21.6	85.0
Gippsland Limestone	?136.0	-106.6	394.5
("Base Lst. Seismic			
Marker"	481.7	-452.3)	
Lakes Entrance Fm.			
Seacombe Marl Mbr.	530.5	-501.1	59.7
Giffard Sandstone	590.2	-560.8	15.3
Latrobe Group:			20.0
Traralgon Fm.	605.5	-576.1	638.5
Older Volcanics	1244.0	-1214.6	86.5
Yarram Fm.	1330.5	-1301.1	13.5
Strzelecki Group:	1344.0	-1314.6	50.0

HOLE SIZES:

 $12\frac{1}{4}$ " to 175m. / $8\frac{1}{2}$ " to 1394m (T.D.)

CASING:

Conductor - 13-3/8" set at 38m.

Surface - 14 jts of 9-5/8", 36lb/ft, K-55 set @ 173m & cemented with 280 sx

Class A cement + 2% CaC12.

DRILL STEM TESTS:

DST #1 600-608m. Top Latrobe Group. Tool opened with a very weak blow which died after 7½ minutes due to tool plugging. Closed tool after 60 minutes flow and shut-in for 60 minutes. Recovered 2.4m of rathole mud.

DST #2 590-609m. Top Latrobe Group. Tool opened with a strong blow dying to zero after 3 minutes due to tool plugging. Closed tool after 60 minutes flow and shut-in for 37 minutes. Recovered 91m of water cushion and 76m of rathole

mud.

REPEAT FORMATION TESTS: A Schlumberger RFT @ 606.5m recovered a total of 18 litres of muddy water with some sand grains. No chamber pressure was recorded and the field measurement Rw of 0.4 chm-m @18°C equates to the sample being approximately 50% formation water and 50% mud filtrate.

WIRELINE LOG DATA:

(Queensland Shallow Logging)

DLL-GR-SP-CAL

173-1367.5m (GR to surface)

LDL-CNL-NGS

570-1371.0m

SHDT-GR

570-1371.0m

MSFL

570-1362.5m

BHC-GR

173-1370.0m

Velocity Survey

MUD PROPERTIES:

Mud Type - KC1. S.G. 1.16; Vis 44; pH 10;

FL 6.4; Rm=0.29; Rmf=0.25; Rmc=0.56.

(All @ 13°C).

SIDEWALL CORES:

A total of 30 SWC were recovered from the

interval 754.0-1398.0m.

PALYNOLOGY:

WATER ANALYSIS:

TEMPERATURES:

(Recorded from logs at total depth).

38°C after 4.0 hours 41°C after 8.0 hours 42°C after 12.5 hours

Extrapolated bottom hole temperature

at 1372m is 44.5°C.

ABANDONMENT PLUGS:

Plug #1 620-590m. 65 sacks. Across top of

Latrobe Group.

Plug #2 189-158m. 90 sacks. Across surface

casing shoe. (Tagged @ 152m.)

Plug #3 6- 1m. 10 sacks. At top of surface

casing.

REMARKS:

Located between Darriman No. 1 and Salt Lake No. 1 as a test of a "bar sand" developed at

the top of the Latrobe Group. The sand was well developed with good reservoir quality but no gas or oil shows were recorded while drilling and a Schlumberger RFT recovered only formation water and mud filtrate. (Two DST's of the sand were attempted but both failed due to tool plugging.) No hydrocarbon shows were recorded from any other zones and the well was plugged and abandoned.

3. GENERAL DATA

Well Name:

WONGA BINDA NO. 1

Name and Address

Crusader Resources N.L.

of Operator:

27th Level

12 Creek Street

BRISBANE. QLD. 4000.

Interests:

Crusader Limited

50.0%

Omega Oil Pty. Ltd.

50.0%

Petroleum Title:

PEP 120 Victoria

Location:

Latitude - 38° 27' 02.82"S

Longitude - 147° 02' 25.70"E

Elevations:

Ground level - 25.7 metres

Kelly Bushing - 29.5 metres

Dates:

Spudded - April 8 1988 @ 0330 hours TD Reached - April 17 1988 @ 1330 hours

Rig Released - April 20 1988 @ 1000 hours

Total Depth:

1,394 metres - driller

1,372 metres - logs (22 metres of fill).

Status:

Plugged and Abandoned.

4. ENGINEERING DATA

4.1 ENGINEERING SUMMARY

Wonga Binda No. 1 spudded at 0330 hrs, April 4, 1988. 13-3/8" conductor pipe had been pre-cemented, in $17\frac{1}{2}$ " hole, to a depth of 38m. $12\frac{1}{4}$ " surface hole was drilled to 175m. 14 joints of 9-5/8" 36 lb/ft K-55 LTC casing were run and cemented at 173.0m. Cement was in place at 0137 hrs, 9.4.88.

BOPs were installed and successfully pressure tested. Cement was tagged at 159m and the cement, float collar, shoe and rat hole were drilled out. Prior to drilling further $8\frac{1}{2}$ " hole, the mud system was converted to a potassium chloride brine/prehydrated gel system.

Drilling of $8\frac{1}{2}$ " hole continued to 608m, Top of Latrobe Group, at which point the bit was pulled to run a drill stem test.

Two attempts were made to test the Top of Latrobe. Both failed due to plugging of the test tools.

Drilling of $8\frac{1}{2}$ " hole continued and TD of 1394m was reached at 1330 hrs, 17.4.88.

After logging, an RFT survey was run and samples taken. Both samples and RFT pressures confirmed the presence of a water column.

Wonga Binda No. 1 was plugged back to surface and abandoned. The rig was released at 1000 hrs, 20.4.88.

4.2 RIG DATA

Contractor: ATCO APM Drilling Pty. Limited

4 Formation Street WACOL. OLD. 4076

Rig: A7

Drawworks: Troy 600. Mechanical drive, Single drum.

Rated Capacity: 2,500 metres.

Power: Caterpillar D353 diesel engine and National

torque convertor.

Drill String: Drill Pipe 4½", 16.6 lbs/ft, Grade E

4" IF connections. (API NC46) 10 joints 4½" Hevi-Wate drill pipe 4" IF connections. (API NC46)
Drill Collars 3 x 8" (3" ID) 6-5/8" Reg. connections. (API Reg.) Drill Collars 21 x $6\frac{1}{2}$ " (2-13/16" ID)

4" IF connections. (API NC46).

Troy (111' x 14') free standing with GNC 420,000 lbs and 280,000 lbs with 8 lines.

1 - Continental Emsco D500 (7½ x 16") Mud Pumps:

powered by a D353 Caterpillar engine. 1 - Continental Emsco D500 (7½" x 14")

powered by a GM 6-71 twin set diesel engine.

Blowout Annular - Shafco (11" x 3000 psi)

Rams - 2 Shafco double gate 11" x 3000 psi. Preventors:

Accumulator - Troy type K-90, 90 gallon,

4 station control.

Choke Manifold - Willis adjustable

2" x 3000 psi.

4.3 DRILLING DATA

Mast:

Hole sizes and depths: (a)

Conductor hole: $17\frac{1}{2}$ " to 38m. $12\frac{1}{4}$ " to 175m. Surface hole:

 $8\frac{1}{2}$ " to 1394m. (TD) Main hole:

Casing and Cementing Record: (b)

13-3/8" conductor was preset to 38m Conductor:

belog G.L. and cemented to surface.

Surface:

14 joints of 36 lb/ft K-55 9-5/8" casing

fitted with Halliburton guide show and

float collar at the first collar.

Spring box centralisers were run on the

first three collars and at a depth of

0.7m below GL.

The casing was cemented with 280 sacks of API Class A cement mixed with fresh water containing 2% calcium chloride. A top plug only was used and was bumped with 6,900 kPa and held. No returns were observed during displacement.

(c) Mud Summary:

Surface hole was drilled using a fresh water based native clay system.

After drilling cut surface casing, the hole was displaced to a potassium chloride brine drilling fluid. Drilling proceeded into the Latrobe Group where large amounts of coal were encountered and the mud weight was raised to help stabilize the formation.

Drilling continued to total depth with no further problems.

(d) Water Supply:

Water was pumped from a water bore on the site.

(e) Formation Testing:

DST No. 1	600-608m.	Latrobe Group. Conventional bottom hole test. Misrum due to tool plugging.
DST No. 2	590 – 609m	Latrobe Group. Conventional bottom hole test. Misrum due to tool plugging.
RFT No. 1	606.5m	Recovered approximately 18 litres of muddy water. (Field Rw = 0.4 ohm-m @ 18°C which equates to the sample being 50:50 formation water and mud filtrate).

(f) Abandonment Data:

Plug No. 1: 620-590m. 65 sx. - Across top of Latrobe Gp. Plug No. 3: 189-158m. 90 sx. - Across casing shoe. Plug No. 3: 6- 1m. 10 sx. - At top of surface casing.

5.1 GEOLOGICAL SUMMARY

Wonga Binda No. 1 spudded on April 8 1988 into loose sands of the Boisdale Formation. The top of the Jemmy's Point Formation was at 37.0m which was as predicted while the Tambo River Formation was encountered at 51.0m, 46.0m higher than prognosed.

The top of the Gippsland Limestone was placed at 136.0m from cuttings and was 7.0m low to prognosis but because of the lithologic similarity between the Tambo River Formation and the Gippsland Limestone there is a degree of uncertainty to this boundary.

After drilling $12\frac{1}{4}$ " hole to 175.0m 9-5/8" surface casing was set at 173.0m and $8\frac{1}{2}$ " hole was then drilled to total depth.

The Seacombe Marl Member of the Lakes Entrance Formation was encountered at 530.5m, 13.5m high to prognosis while the Giffard Sandstone Member was at 590.2m, 23.8m high to prognosis.

At 600m the cuttings sampling interval was changed from 10 to 3m and the top of the Traralgon Formation of the Latrobe Group was encountered at 605.5m, 14.5m high to prognosis. A sample circulated at 608m was sand with good reservoir character but no fluorescence or gas.

DST No. 1 was attempted over the interval 600.0 - 608.0m but after 7½ minutes the tool had completely plugged and the packer (in-flate) would not seat. Drilled to 609m and ran DST No. 2 over the interval 590 - 609m. On DST No. 2 there was a strong blow for 3 minutes before the tool became completely plugged. Recovered 91m of water cushion and 76m of mud.

Drilling was then resumed and 3m samples were collected from 600m to total depth. The Older Volcanics were encountered at 1244.0m, 1lm high to prognosis at the top of the Yarram Formation was at 1330.5m, 54.5m high to prognosis.

The top of the Strzelecki Group was encountered at 1344.0m, 61.0m high to prognosis and total depth was 1394m, still within the Strzelecki Group.

After reaching a total depth of 1394.0m on April 17 1988 wireline logs were run as well as a velocity survey and sidewall cores. An RFT was then run at 606.5m in the top sand of the Traralgon Formation and it recovered water.

Sample monitoring and gas detection while drilling indicated there were no significant hydrocarbons in any of the sands penetrated and this was confirmed by the wireline logs and the RFT which showed all potential reservoirs to be water saturated.

The well was then plugged and abandoned and the rig released on April 20 1988.

5.2 REASONS FOR DRILLING

Wonga Binda No. 1 was drilled to test for hydrocarbons in a northeast - southwest trending structure with four-way dip closure on the Darriman Anticline. Seismic mapping indicated the closure was only present at the top of the Latrobe Group (Traralgon Formation) and the top Latrobe Group sand was the primary target of the well. Secondary targets included possible intra Latrobe Group sands and in particular structural/stratigraphic traps associated with the Yarram Formation and the overlying Older Volcanics.

The four way dip closure at the top of the Latrobe Group was interpreted to be the result of draping and compaction over a buried barrier or bar sand which would have been a high since deposition. Because of this the sand should have been in a prime position to trap hydrocarbons migrating onshore ever since the marls of the Lakes Entrance Formation covered and sealed the porous sand.

No significant accumulations of hydrocarbons have yet been discovered in the on-shore Gippsland Basin but off-shore from PEP 120 are several marginally economic oil and gas fields, Golden Beach, Whiptail, Tarwhine, Dolphin and Perch. The sands at the top of the Latrobe Group are the reservoirs for all these fields.

On-shore, gas flowed at up to 100,000 cubic feet per day from the Strzelecki Group in North Seaspray No. 1 but other wells in the area failed to encounter the reservoir sand suggesting a strong stratigraphic component in its distribution. In the south of the permit minor oil shows were reported from Sunday Island No. 1 and Woodside No. 2. The closest well was Darriman No. 1 which was drilled in 1955, about 3km to the west but although it is mapped on a separate closure up-dip from Wonga Binda No. 1 the latest seismic indicates it to be off the crest of the structure.

ge

5.3 STRATIGRAPHY

AGE	GROUP / FORMATION	TOP KB	TOP MSL	THICK
Pliocene	Boisdale	Surface	+25.6	33.0
Pliocene	Jemmys Point	37.0	- 7.6	14.0
Miocene Miocene	Seaspray Group Tambo River Gippsland Lst. ("Base Lst. Seismic Marker"	51.0 136.0 481.7	-21.6 -106.6 -452.3)	85.0 394.5
Oligocene	Lakes Entrance Seacombe Marl Mbr. Giffard Sst. Mbr.	530.5 590.2	-501.1 -560.8	58.7 15.3
Eocene Eocene Eocene	Latrobe Group Traralgon Older Volcanics Yarram	605.5 1244.0 1330.5	-1214.6	638.5 86.5 13.5
Cretaceous	Strzelecki Group	1344.0	-1314.6	+50.0
	Total Depth	1394.0	-1364.6	

5.4 DESCRIPTIVE STRATIGRAPHY

BOISDALE FORMATION (Pliocene)

Surface - 37.0m

No description.

JEMMYS POINT FORMATION (Pliocene)

37.0 - 51.0m

SANDSTONE, clear to milky white, common yellow iron stained, medium to coarse, sub-rounded, poorly sorted, trace ferruginous/argillaceous matrix/cement, loose, good porosity.

TAMBO RIVER FORMATION (Miocene)

51.0 - 136.0m

LIMESTONE with minor SANDSTONE and MARL.

Limestone is off-white, pale brown, light to medium grey, firm to moderately hard, sandy in part, grading to marl, argillaceous and very dispersive in part, abundant fossils, trace glauconite and lithic fragments.

STRATIGRAPHIC UNITS GIPPSLAND BASIN

outlied from Chom sold and water, 1000

GIPPSLAND LIMESTONE (Miocene)

136.0 - 530.5m

LIMESTONE and MARL, predominantly limestone at the top and marl at the base.

Limestone is white to cream, minor light to medium grey, grey-brown, friable, grading to coquina with abundant fossil fragments including bryozoa, foraminifera and molluscs, common light to dark green glauconite as grains and as calcite replacement in shells, firm to hard, crystalline in part, trace clear and yellow iron stained silty to very fine quartz grains.

Marl is white, cream, light grey-brown, light to dark grey, soft to firm, argillaceous, calcareous, fossiliferous, grading to limestone, with silt and very fine sand grains, dark green-black glauconite.

LAKES ENTRANCE FORMATION (Oligocene)

530.5 - 590.2m

SEACOMBE MARL MEMBER, MARL with minor LIMESTONE.

Marl is light to dark bluish-grey, grey-green, soft, sticky, dispersive, silty, glauconitic, trace pyrite, grading to calcareous claystone.

Limestone is white, grey, brown, crystalline, fossiliferous, hard.

LAKES ENTRANCE FORMATION (Oligocene)

590.2 - 605.5m

GIFFARD SANDSTONE MEMBER, CLAYSTONE/MARL and SANDSTONE.

Claystone/Marl, light to dark green, very dark grey-green, soft to firm, very abundant, very fine to coarse glauconite grains, common finely disseminated pyrite, minor to common clear, rounded, medium to very coarse quartz grains. Common white shell fragments.

Sandstone is grey, fine to very coarse, some pebbles of quartz and quartzite, sub-rounded to rounded, poorly sorted, white to light grey silty calcareous claystone matrix, tight to very poor porosity. LATROBE GROUP, TRARALGON FORMATION (Eocene) 605.5 - 1244.0m.

SANDSTONE with interbeds of SILTSTONE, SHALE/CLAYSTONE and COAL.

Sandstones are white, minor light brown (lignite stained in part), fine to very coarse, angular to sub-angular, minor sub-rounded, poor to moderate sorted, friable to loose, some dispersive white to brown clay/argillaceous matrix, minor to common mica, minor lithic/quartzite grains, minor black carbonaceous/lignitic specks, trace feldspar, rare pyrite, predominantly very good porosity.

Siltstones are light brown, grey-brown to black, firm to hard, very argillaceous, carbonaceous and shaly.

Shales/Claystones are light grey, light to very dark brown, soft to firm, dispersive in part, silty, carbonaceous, lignitic, grading to coal in part.

Coal is dark brown to black, lignitic, shaly in part.

LATROBE GROUP, OLDER VOLCANICS (Eocene) 1244.0 - 1330.5m.

BASALT, weathered in part to CLAYSTONE.

Basalt is dark grey-green to black, hard, crystalline, feldspar, ferro-magnesian minerals, minor green serpentine and white calcite. Weathered in part.

Claystones are purple-red, dark chocolate brown, soft to firm, rare to common green-black ferro-magnesian grains.

LATROBE GROUP, YARRAM FORMATION (Eocene) 1330.5 - 1344.0m.

SANDSTONE with minor SILTSTONE bands.

Sandstones are white, pale green to grey-green, light grey, very fine to coarse, minor conglomerate, sub-angular to sub-rounded, poor to moderate sorted, abundant greenish clay matrix, minor lithics and feldspar, silty, poor porosity.

Siltstone is light to dark brown, grey-brown, firm, shaly, lignitic.

STRZELECKI GROUP (Cretaceous)

1344.0 - 1394.0m

SANDSTONE and CLAYSTONE.

Sandstones are white to light grey, grey-green, green, black, fine to coarse, sub-angular to sub-rounded, moderate sorted quartz and lighic/quartzite grains, white feldspar, trace mica, abundant clay matrix, poor porosity.

Claystone is white, medium to dark blue-grey, soft to firm, silty, sandy, dispersive in part.

5.5 FORMATION EVALUATION

(a) MUD LOGGING

Mud logging services were provided by Gearhart Geodata. Basic rate of penetration, pit level, total gas and FID chromatography services were provided as well as lagged sample collection, description and processing. Cuttings were collected at 10 metre intervals from 40 to 600m and then at 3m intervals to total depth. These were examined for oil and gas indications, described then split into two sets of plastic sample packets and two sets of Samplex trays. One set of sample packets was sent to the Victorian Department of Industry, Technology and Resources, and the other to the Operator. One set of Samplex trays was retained by the Operator and the other was sent to Omega Oil Pty. Ltd..

(b) WIRELINE LOGGING

The following logs were run by Queensland Shallow Logging at total depth:

DLL-GR-SP-CAL 173.0 - 1367.5 (GR to surface)
MSFL 570.0 - 1362.5
LDL-CNL-NGS 570.0 - 1371.0
SLS-GR 181.5 - 1370.0
SHDT-GR 570.0 - 1371.0
WST
CST-GR
RFT-HP-GR

(c) TEMPERATURES

The following temperatures were recorded from wireline logs:

38°C after 4.0 hours 41°C after 8.0 hours 42°C after 12.5 hours

A time temperature plot of these gives an extrapolated BHT of 44.5°C @ 1,372 metres.

(d) CORING

No conventional cores were cut.
30 sidewall cores were attempted and 27 were recovered.

5.6 RESERVOIR POTENTIAL

The wireline logs and samples indicated the sands of the Latrobe Group had good porosity and permeability with clean sands having only minor amounts of clay matrix and lithic fragments.

The sands of the Yarram Formation and Strzelecki Group had poor porosities and permeabilities and in general had a high proportion of lithic fragments, feldspar and argillaceous/clay matrix.

Within the Lakes Entrance Formation the Giffard Sandstone graded to a sandy, calcareous and glauconitic claystone with very poor reservoir quality and there was no reservoir development within the Seacombe Marl Member.

Samples from the Gippsland Limestone and the Tambo River Formation indicate some intervals to be friable and to have good reservoir quality.

(Appendix 8 gives a tabulation of log derived porosities.)

5.7 HYDROCARBON SHOWS

No gas peaks were recorded and there was no background gas while drilling until below the Latrobe Group at which stage very small amounts ($\frac{1}{2}$ unit) of methane were detected.

No indications of oil or fluorescence were observed but there was dark brown to black lignitic staining on some quartz grains. Sidewall cores showed this to be a lignitic material.

Wireline logs indicated all potential reservoir sands to be water saturated and an RFT of the top sand of the Latrobe Group recovered formation water.

5.8 CONTRIBUTIONS-TO-GEOLOGIC-CONCEPTS

Formation tops were generally as prognosed. The lithological distinctions from Tambo River Formation to the Gippsland Limestone and the Gippsland Limestone to the Lakes Entrance are imprecise. However, there is fair agreement between lithologically picked tops and the tops as picked from the wireline logs.

The Giffard Sandstone Member (not strictly a sandstone unit) is 15.3 metres thick at this location. The member here contains minor to common clear, rounded, medium to very coarse quartz grains.

The Traralgon Formation in Wonga Binda No. 1 does not have coal at the very top of the Formation. This is not the case in any other well in PEP 120 and 123 and in wells immediately to the north of these permits. The drilling results confirmed the seismic prognosis that a thick sand unit is present at the top of the Latrobe Group. This unit is believed to be a result of deposition in a barrier/bar complex.

The Traralgon Formation contains considerably less coal and thinner coals than are present in Macalister No. 1 and wells to the north.

The Older Volcanics are present and overlie the Yarram Formation. The Yarram is almost entirely sandstone, however, reservoir quality is low in comparison to the Traralgon Formation.

The Strzelecki Group was readily picked lithologically and confirmed by wireline logs.

6. CONCLUSIONS

Wonga Binda No. 1 was located at a crestal position on a structure showing four way dip closure at the top Latrobe Group horizon only. No dip closure was mapped seismically at other horizons. The closure at the Top Latrobe Group at this location is due to a sand build-up, probably a buried barrier/bar.

It was thought that the barrier may have trapped east to west migrating hydrocarbons which would have then collected at the structural high at Wonga Binda No. 1. However, this was not the case.

LIST OF APPENDICES

1. Daily Operations Reports

Commence of the Artist Commence of the Artist

- 2. Bit and Hydraulics Record/Deviation Record
- 3. Mud Record
- 4. Time Analysis
- 5. Drill Stem Test Reports

- 6. Description of Cutting Samples
- 7. Description of Sidewall Cores
- 8. Wireline Log Evaluation
- 9. Water Analysis
- 10. Well Velocity Survey
- 11. Well Location Survey

APPENDIX 1

APPENDIX 1

DAILY OPERATIONS REPORTS

MORNING REPORT

Well Name: Wonga Binda #1

Date: 21.4.88

Days from Spud: 13

th at 0700 hrs: 1394 m

Progress Last 24 hrs:

0.0 m

Hole Size: 8.5 in

Last Casing: 9.625" at

173.00 m

Mud Weight: -

Viscosity: -

PV/YP: -/-

WL: -

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

Set 5m cement plug from 6m BGL to 1m BGL. Completed cleaning mud tanks etc. Rig released 1000 hrs 20.4.88.

Estimated Costs: Daily = \$131,341

Cumulative = \$476,051

MORNING REPORT

Well Name: Wonga Binda #1

Date: 20.4.88

Days from Spud: 12

Deoth at 0700 hrs: 1394 m

Progress Last 24 hrs:

0.0 m

re Size: 8.5 in

Last Casing: 9.625" at

173.00 m

Mud Weight: -

Viscosity: -

PV/YP: -/-

WL: -

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

Complete running CST (shot 30 - recovered 27). Rig down. RIH with BHA and layout. RIH DEDP to 620m. Circulate and balance mud system. Set cement plug #1 from 620m. to 590m. with 65 sx class "A" cement. P.O.O.H. and circulate hole clean. P.O.O.H. to 189m. Set plug #2 from 189m. to 158m. with 90 sx class "A" cement with 2% CaClc. P.O.O.H. and circulate hole clean. P.O.O. H. laying down pipe. RIH and tag cement plug #2 at 152m. P.O.O.H. laying down pipe. Nipple down flow line and BOPs and lay down. Break and lay down Kelly. Commence cleaning mud tanks. Cut off Bradenhead at minus one metre GL. Set plug #3 from 6m. to 1m. below GL (10 sx class "A" cement). Continue rigging down.

Estimated Costs: Daily =

\$88,473

Cumulative = \$344.710

MORNING REPORT

| Well Name: Wonga Binda #1

Date: 19.4.88

Days from Spud: 11

h at 0700 hrs: 1394 m

Progress Last 24 hrs:

Hole Size: 8.5 in

Last Casing: 9.625" at

173.00 m

0.0 m

Mud Weight: 9.7 ppg

Viscosity: 44 sec

PV/YP: 12/18

WL: 7 ml

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

Continued logging with Schlumberger. Ran DLL-MSPL-GR-CAL/LDL-CNL-NGT-CAL/SLS-GR/BHC-GR/SHDT-GR/WST Survey/RFT.

Estimated Costs: Daily = \$11,989

Cumulative = \$256,237

MORNING REPORT

Well Name: Wonga Binda #1

Date: 18.4.88

Days from Spud: 10

Depth at 0700 hrs: 1394 m

Progress Last 24 hrs:

59.0 m

Hore Size: 8.5 in

Last Casing: 9.625" at 173.00 m

Mud Weight: 9.7 ppg

Viscosity: 44 sec

PV/YP: 12/18

WL: 6.4 ml

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

Drill to 1394m TD. Circulate sample. Wiper trip to shoe prior to logging. Hole tight from 1259m. Pumped and reamed out singles from 1225m. Circulated hi vis/hi density pill & lifted out coals. Continue POOH. Slip 20' drill line at shoe. RIH to 1338m. Wash & ream loose fill from 1338m to 1394m. Circulate & condition hole with hi vis sweep. POOH to log - no tight hole. Rig up Schlumberger & commence logging DLL-MSFL-GR-CAL.

Estimated Costs: Daily = \$12,711

Cumulative = \$244,248

MORNING REPORT

Well Name: Wonga Binda #1

Date: 17.4.88

Days from Spud: 9

Death at 0700 hrs: 1335 m

Progress Last 24 hrs:

Last Casing: 9.625" at 173.00 m

107.0 m

Hole Size: 8.5 in

PV/YP: 13/19

~Mud Weight: 9.6 ppg

Viscosity: 45 sec

WL: 6 ml

Preliminary Formation Tops:

at 1,332.0 m (53.0H)

Older Volcanics

at 1,243.0 m (12.0H)

0.50° at 1,325.0 m

Deviation Surveys:

Operations Summary:

RIH with new bit. Ream tight spots at 838m & from 1021m to 1051m. Wash & ream last 15m to bottom. Drill to 1335m. (Circulate sample at 1332m - top of Yarram Fm).

Estimated Costs: Daily = \$12,030

Cumulative = \$231,537

MORNING REPORT

Well Name: Wonga Binda #1

Date: 16.4.88

Days from Spud: 8

Daoth at 0700 hrs: 1228 m

Progress Last 24 hrs:

130.0 m

here Size: 8.5 in

Last Casing: 9.625" at

173.00 m

Mud Weight: 9.4 ppg

Viscosity: 44 sec

WL: 7 ml

Preliminary Formation Tops:

Older Volcanics

at 1,227.0 m (28.0H)

Deviation Surveys: 1.00° at 1,219.0 m

PV/YP: 13/18

Operations Summary:

Circulate hole clean & make wiper trip to 609m. Hole tight from 853m to 655m. Slip 20' drill line & RIH. Drill to 1228m. Circulate hole clean & pump pill. Drop survey & POOH. P/U new bit

Estimated Costs: Daily =

\$18,523

Cumulative = \$219,507

MORNING REPORT

Well Name: Wonga Binda #1

Date: 15.4.88

Days from Spud: 7

th at 0700 hrs: 1098 m

Progress Last 24 hrs:

Last Casing: 9.625" at 173.00 m

Hole Size: 8.5 in

Viscosity: 43 sec

-Mud Weight: 9.4 ppg

WL: 8 ml

PV/YP: 13/17

Deviation Surveys:

Preliminary Formation Tops: Nil

1.00° at 874.0 m

Operations Summary:

Complete circulation of hi vis sweep. Drill to 874m. Bit torquing up on bottom. Circulate hole clean. Pump slug & drop survey. POOH for bit. Hole pulled tight from 874m to 628m. Bit came out 5-4-3/16. Stabiliser in gauge but showed signs of torquing up in U/G hole. Picked up new bit & RIH. Took weight at 628m. Washed & reamed from 628m to 874m. Drilled to 1098m.

Estimated Costs: Daily = \$19,528

andrometric processing for the contraction of the c

Cumulative = \$200,984

MORNING REPORT

Well Name: Wonga Binda #1

Date: 14.4.88

Days from Spud: 6

th at 0700 hrs: 872 m

Progress Last 24 hrs: 263.0 m

Last Casing: 9.625" at 173.00 m

_Mud Weight: 9.5 ppg

Hole Size: 8.5 in

Viscosity: 44 sec

PV/YP: 11/16

WL: 8.5 ml

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

Break down test head and survace equipment and deflate packer. DST assembly stuck in hole. Jarred for half an hour but could not free. Pulled 140000 lb. over string weight to free. P.O. O.H. with DST #2. Recovered 300 ft. water cushion and 249 ft. rat hole mud. Break down and layout test tools. Plugged with chunks of marl and mud. Pick up bit and stabiliser and RIH with BHA to shoe. Slip and cut 60' of drill line. RIH to 588m. Wash and ream fill 21m. to bottom. Drill 8.5" hole from 609m. to 872m. Drill string torquing up. Work pipe and circulate hole clean with Hi-Vis sweep.

Estimated Costs: Daily = \$47,371 Cumulative = \$181,456

MORNING REPORT

Well Name: Wonga Binda #1

Date: 13.4.88

Days from Spud: 5

h at 0700 hrs: 609 m

Progress Last 24 hrs:

•

Hole Size: 8.5 in

Last Casing: 9.625" at

173.00 m

1.0 m

more order ord in

_Mud Weight: 9.5 ppg

Viscosity: 49 sec

PV/YP: 15/19

WL: 6 ml

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

Bet packers on DST #1 (inflate bottom hole). Open tool at 0845. Very weak blow for 7.5 mins. No blow and shut in for one hour after one hour open. Pull to fluid - approx. 8' of rat hole mud. Tool completely blocked. RIH with drilling assembly to condition hole and mud. Drill 1m. extra hole from 608m. to 609m. Circulate hole clean with Hi-Vis sweep. P.O.O.H. for DST #2. Pick up and make up Baker DST tools and Halliburton EMR guages. R.I.H. and tag TD. Set and inflate pkr. Open DST #2 at 0543 hrs. 3 min strong blow then tool plugged. No more blow - shut tool in after one hour at 0643 hrs. 300 ft. water cushion run on DST #2.

Estimated Costs: Daily = \$11,414

Cumulative = \$134,085

·

MORNING REPORT

Well Name: Wonga Binda #1

Date: 12.4.88

Days from Spud: 4

Deoth at 0700 hrs: 608 m

Progress Last 24 hrs:

Last Casing: 9.400" at

106.0 m

nole Size: 8.5 in Mud Weight: 9.4 ppg

Deviation Surveys:

514.0 m

PV/YP: 14/17

0.25° at

Viscosity: 46 sec

WL: 8 ml

Preliminary Formation Tops:

Latrobe Group/Traralgon Fm

at 606.0 m (14.0H)

Giffard Sandstone

at 588.0 m (26.0H)

Seacombe Marl

at 519.0 m (25.0H)

Operations Summary:

Drill to 514m. Circulate and survey at 514m. Drill to 608m. Circulate up sample. Circulate hole clean with Hi-Vis sweep. Make wiper trip to shoe. Pulled tight all the way - Had to pump out 6 singles. R.I.H. and circulate Hi-Vis sweep 4 stds up BHA. P.O.O.H. 2 stds. Complete circulate hole clean. P.O.O.H. Pick up Bake test tools with Halliburton EMRs. Make up and R.I. H. Make up test head - manifold etc.

Estimated Costs: Daily = \$17,393

Cumulative = \$122,671

MORNING REPORT

Well Name: Wonga Binda #1

Date: 11.4.88

Days from Spud: 3

Depth at 0700 hrs: 502 m

Progress Last 24 hrs:

hore Size: 8.5 in

327.0 m

173.00 m

Deviation Surveys:

PV/YP: 14/18

0.00° at

Mud Weight: 9.3+ ppg

Last Casing: 9.625" at

Viscosity: 46 sec

WL: 8 ml

Preliminary Formation Tops:

Tambo River Fm

at 51.0 m (46.0H)

Gippsland Lst

at 136.0 m (7.0L)

Operations Summary:

Stabilise top part of 9.625" casing and BOPs. Complete drill out float joint and shoe. Drill to 308m. Circulate and survey at 295m. Drill to 502m.

Estimated Costs: Daily = \$13,789

295.0 m

Cumulative = \$105,278

MORNING REPORT

Well Name: Wonga Binda #1

Date: 10.4.88

Days from Spud: 2

Depth at 0700 hrs: 175 m

Progress Last 24 hrs:

0.0 m

173.00 m

e Size: 8.5 in

Mud Weight: 9 ppg

Last Casing: 9.625" at

Viscosity: 39 sec

PV/YP: 6/11

WL: 20+ ml

Deviation Surveys: Nil

Preliminary Formation Tops: Nil

Operations Summary:

Wait on cement. Slack off casing. Cut and lay out conductor and casing. Prepare casing stub for welding. Install Bradenhead and weld. Cool and pressure test - good. Top up cement in annulus. Pick up BOPs and nipple up. Rig up and test BOPs. Rig up and drill mouse hole and install sock. Make up BHA and RIH to drill out. Tag cement at 159m. Drill cement. Tag top plug at 160m. Drill top plug and float collar. Drill 4m. of shoe track. Problem with BOPs rocking. P.O.O.H. 2 stds. Take remedial action.

Estimated Costs: Daily = \$31,972 Cumulative = \$91,489

MORNING REPORT

Well Name: Wonga Binda #1

Date: 9.4.88

Days from Spud: 1

122.0 m

Depth at 0700 hrs: 175 m

e Size: 12.25 in

Last Casing: 9.625" at 173.00 m

Mud Weight: 9.1 ppg

Viscosity: 39 sec

Progress Last 24 hrs:

PV/YP: 5/12

WL: 20+ ml

—Deviation Surveys:

Preliminary Formation Tops: Nil

1.00° at 108.0 m .1.00° at 174.0 m

Operations Summary:

Drill to 108m. Circulate and survey at 108m. Drill to 174m. Circulate hole clean with Hi-Vis sweep and make wiper trip to top of 8" collars. SLM (no correction). Drill to 175m. Circulate hole clean with Hi-Vis sweep and spot in 100 BBL Hi-Vis mud. Survey and P.O.O.H. for casing. Rig up to run casing. Run 14 JTS 9.625" - 36 PPF - K - 55 casing. Circulate casing for 1/2 hour. Rig up Halliburton and mix and pump 280 sxs class "A" cement - 15.6 PPG slurry with 2% CaClc. Displace cement with 41 BBLs water. Bump plug with 1000 PSI - Hold pressure 10 mins - good. W.O.C.

Estimated Costs: Daily = \$12,471

Cumulative = \$59,517

-72

MORNING REPORT

Well Name: Wonga Binda #1

Date: 8.4.88

Days from Spud: 0

Depth at 0700 hrs: 53 m

Progress Last 24 hrs:

Last Casing: 13.375" at

53.0 m

38.00 m

e Size: 12.25 in Mud Weight: 8.8 ppg

Viscosity: 34 sec

PV/YP: -/-

WL: -

Deviation Surveys:

Preliminary Formation Tops: Nil

1.00° at 50.0 m

Operations Summary:

Rigged up and drilled rat hole. Spudded 0330 hrs 8.4.88. Tagged cement at 38m. Drilled to 53m. Circulate & survey at 50m.

Estimated Costs: Daily = \$47,046

Cumulative = \$47,046

REMARKS:

Drilling with 8% KCl & maintaining low hydraulics sufficient only to clean hole

se hole will be drilled after surface casing is set

APPENDIX 2

APPENDIX 2

BIT AND HYDRAULICS RECORD

&

DEVIATION RECORD

BIT & HYDRAULIC RECORD

Wonga Binda #1 8.4.88 - 20.4.88

tun	S/N	Size (in)	Туре	Nozzles (32nds)	W.O.B. (m lb)	R.P.M.	Volume (gpm)	Pressure (psi)	Depth in, m	Depth out, m	Total Metres	Total Hours	R.O.P. (m/hr)		
IRR leman	NL9497 ks: Drill	12.25 ing with	S11 just eno	3 x 16 ugh hydrauli	5/ 7 cs to ke	80/90 ep hole c	250 lean	200/ 300	38.0	175.0	137.0	11.9	5.0	3	4 I
? lemar	KH549 'ks: -	хза	хза	3 x 11	15/16	70/100	200	650	175.0	608.0	433.0	25.0	0.0	2	2 I
3RR lemar	KH549 ks: -	8.5	ХЗА	3 x 11	5	80	200	650	608.0	609.0	1.0	0.0	0.0	2	2 I
4RR leman	KH549 ks: Total	8.5 this bit	X3A = 699m.	3 x 11	10/20	80/100	200	800	609.0	874.0	265.0	16.0	17.0	5	4 3/1/
5 Yemar	CH605 ks: -	8.5	JD4	3 x 11	15/35	50/ 90	237	1,000	874.0	1228.0	354.0	31.0	15.0	6	4 1/1 <i>č</i>
0 Regar	AA428	8.5	J22	3 x 11	25/35	50/ 60	237	1,000	1,228.0	1394.0	166.0	25.5	0.0	3 :	3 I

APPENDIX 3

APPENDIX 3

APPENDIX 3

MUD REDCORD

OPERATOR: CRUSADER RESOURCES	WELLSITE REP: E. BATT
CONTRACTOR: ATCO	CONTRACTOR REP: C. DANN
RIG: #7	
WELL: WONGA BINDA #1	
TOTAL DRILLING DAYS: 11	SPUD DATE: 8.4.88
TOTAL DAYS ON WELL: 14	TOTAL DEPTH DATE: 18.4.88
DRILLING FLUID BY INTERVAL:	MUD COST BY INTERVAL:
SPUD MUD 0.to173 METR	ES\$2966.03
KCL/POLYMER173.to.1394 METR	ES\$9518.84
to	• • • • • • • • • • • • • • • • • • • •
to	••••••
TOTAL MUD COST:	\$.12484.87
DRESSER MAGCOBAR ENGINEERS:	R. SWEET

CRUSADER OIL N.L.
LIBRARY.
SHELF NO:
DATE: 1 7 JUN 1988

INTRODUCTION

INTRODUCTION

Crusader Resources N.L's exploration well Wonga Binda #1 was spudded on the 8th April 1988 by the Atco Drilling Company using Rig A-7. This was the second of two wells drilled in the Gippsland Basin located in Permit PEP-120 near Seaspray. The primary target was the fluvial sandstones near the top of the Latrobe Group, and the secondary target was the sandstones of the Strzelecki Group.

The well was drilled to a total depth of 1394 metres in 11 drilling days. The geological formation tops, as supplied by the well site geologist, were:-

AGE	FORMATION	DEPTH (METRES)	LITHOLOGY
	Tambo River	51	Sandstone/Marl/ Limestone.
Miocene	Gippsland Limestone	136	Limestone/Marl
Late Eocene	Seaćombe Marl	519	Marl
Late Cretaceous	Latrobe Group	606	Sands tone/Coal
Late Cretaceous	Older Volcanic	1243	Sandstone/Basalt/ Coal
Late Cretaceous	Yarram Formation	1332	Sandstone
Early Cretaceous	Strzelecki Form.	1346	Sandstone/Clayst.
	TOTAL DEPTH	1394	• .

MUD SUMMARY BY INTERVAL

OBSERVATIONS AND RECOMMENDATIONS

SUMMARY BY INTERVAL

INTERVAL: 0-173 METRES

12 1/4" HOLE

9 5/8" CASING

On the 8th April, 1988 Wonga Binda #1 was spudded using a 12 1/4" bit to clean out the conductor and cement. The drilling fluid used for this interval was an 8% KCl fluid supplemented with high viscosity sweeps of either Bentonite or Polymer.

At 173 metres a wiper trip was made and some high viscosity mud was spotted on bottom. The 9 5/8" casing was run and cemented successfully.

INTERVAL: 173-1394 METRES

8 1/2" HOLE

The BOP's were rigged up and the casing shoe was drilled out with fresh water before reverting back to a KCl mud system. Drilling continued quickly through the Gippsland Formation with the centrifuge being run instead of the desilter which had been loosing 10-20 bbls/hr. Upon reaching 608 metres the hole was cleaned with a high viscosity sweep and wiper trip to the shoe was made. The hole was tight on the trip and 6 singles were pumped out. The hole was circulated, cleaned and DST #1 was run unsuccessfully as the tool appeared to have plugged. The same ocurred for a second DST which became stuck and was pulled free with 140,000 lbs over string weight.

Drilling proceeded to 872 metres with regular additions of Polymer to maintain a higher yield point. A bit change was made at 874 metres. Drilling continued to 1098 metres with Caustic Soda additions necessary to combat the drop in pH caused by the coals. A thinning effect caused by the coals was countered by the additions of Polymer.

At 1228 metres the bit stopped drilling and was changed for a J22 to drill the volcanic section.

The trip encountered tight spots at 838 and 1021-1051 metres. As drilling continued the mud weight was increased to 10.6 ppg to help stabilize the formation.

The total depth of 1394 metres was reached and circulated prior to a wiper trip. The hole was very tight so a 12 ppg high viscosity sweep

was circulated which removed large amounts of coal cuttings. The hole was circulated and conditioned prior to rigging up a logging run. The following electric logs were run:-

- a) DLL-MSFL-GR-CAL-SP
- b) LDL-CNL-NGT-CAL
- c) SLS-GR
- d) SHDT-GR
- e) RFT pressure survey

Wonga Binda #1 was plugged and abandoned on the 20th April, 1988.

OBSERVATIONS AND RECOMMENDATIONS

The 8% KCl drilling mud functioned well on Wonga Binda #1 with none of the major problems experienced on Macalister #1 occurring. The hole remained in better shape and the system never was overloaded by clays. The control over the fluid loss and yield points was maintained by the use of Polypac polymers.

The cost of the well was cheaper even with the use of KCl which is more expensive than NaCl.

To avoid any further drilling problems it is strongly recommended to run a KCl system when drilling the formations above the Latrobe.

WELL SUMMARY

MUD CONSUMPTION BY INTERVAL

TOTAL MATERIAL CONSUMPTION

WELL SUMMARY

OPERATOR: CRUSADER RESOURCES

WELL: WONGA BINDA #1

HOLE SIZE...12 1/4"...

INTERVAL....0-173 METRES....

CASING SIZE..9 5/8"..

PRODUCT	QUANTITY		COST
MAGCOGEL	7 x 100 lb sx	\$	511.92
CAUSTIC SODA	6 x 25 kg sx	\$	148.50
KCL	94 x 25 kg sx	\$	957.86
KCL	40 x 50 kg sx	\$	536.00
MAGCOPOLYPAC	8 x 25 kg sx	\$	722.00
LIME	1 x 25 kg sx	\$	5.25
MAGCOPOLYSAL	2 x 25 kg sx	<u>\$</u>	84.50
•	INTERVAL COST	: \$	2966.03

OPERATOR: CRUSADER RESOURCES WELL: WONGA BINDA #1

HOLE SIZE...8 1/2"...

INTERVAL....173-1394 METRES..

CASING SIZE....-.

PRODUCT	QUANTITY		COST
BARITE	159 x 100 lb sx	Ş	1351.50
MAGCOGEL	15 x 100 lb sx	Ş	284.40
CAUSTIC SODA	20 x 25 kg sx	Ş	495.00
KCL	306 x 25 kg sx	ş	3118.14
MAGCOPOLYPAC	44 x 25 kg sx	Ş	3971.00
LIME	1 x 25 kg sx	Ş	5.25
MAGCOPOLYSAL	4 x 25 kg sx	Ş	169.00
SPERSENE	1 x 25 kg sx	Ş	25.15
SODIUM NITRATE	1 x 50 kg sx	5	42.30
	INTERVAL COST	: 5	9518.84

TOTAL MATERIAL CONSUMPTION

OPERATOR: CRUSADER RESOUCES

WELL: WONGA BINDA #1

LOCATION: PEP-120, SEASPRAY, VICTORIA.

PRODUCT	UNIT	COST	*
BARITE	159 x 100 lb s	\$ \$ 1351.50	10.83
MAGCOGEL	42 x 100 lb s	sx \$ 796.32	6.38
CAUSTIC SODA	26 x 25 kg s	\$ 643.50	5.15
KCL .	400 x 25 kg s	\$ 4076.00	32.65
KCL	40 x 50 kg s	\$ 536.00	4.29
MAGCOPOLYPAC	52 x 25 kg s	\$ 4693.00	37.59
MAGCOPOLYSAL	6 x 25 kg s	\$ 253.50	2.03
LIME	2 x 25 kg s	\$ 10.50	0.08
SPERSENE	1 x 25 kg s	\$ 25.25	0.20
SODIUM NITRATE	1 x 50 kg s	\$ 42.30	0.34
CALCIUM CHLORIDE	3 x 25 kg s	\$ 57.00	· <u>0.46</u>
	TOTAL MATERIAL COS	ST : \$12484.87	100.00

GRAPHS

Australia Pty. Ltd.

Magcobar/IMCO A Dresser/Halliburton Company WELL SUMMARY CRUSADER RESOURCES WONGA BINDA #1 DEPTH vs MUD WEIGHT 200 400 600 800 1000 1200 1400 MUD WEIGHT (LBS/GAL)-1600 8.6 9.8 10.0

BIT AND HYDRAULICS RECORD

BIT & HYDRAULIC RECORD

Contra	actor ATC	0	Rig N	°A-7	Location	VIC.	PEP-1	20					Well WOI	NGA BIND	A #1
pera	tor CRUS	ADER	RESOUR	CES	NEAR SEASPRAY, VICTORIA							Engineer R. SWEET			
Pump N		- 1	iner Size/St	roke	DRILL (O D. x I.D.	Collars x Length	Pipe D	rill	Tool Joint Type		Wt/Ft	Pum 8b	p Output is/Stks-		
C-E	D39		4 x 5½' 6 x 5½'	. 8	8½"/6½" 89m		41/2	4½"		16	5.60).124	/0.1362	0 9	7%
Date	Run No.	Size	Make	Type	Jet Size	Depth Out	Metres Drilled.	Hours Run	Weight On Bit	R.P.M.	Pump Pressure	Vert Dev.	Stks/min	Ann Vel Ft./min	Condition T-B-G
	1	12¼"	Smi th	S 1:	1 3x16	175	137	11	-	-=	300	10	48	58	3-4-I
				`	· ·							·			
	2	812"	HTC	хЗА	3x11	608	471	25	_	=	625	140	38	95	-
	2 RR	8½"	HTC	хЗА	3x11	874	266	16	_	-	800	10	47	95	5-4-3/16
	3	812"	HTC	хЗА	3x11	1228	354	31	-		1000	10	49	111	6-4-1/16
	4	812"	HTC	хЗА	3x11	1394	166	24	_	_	1100	10	44	111	•
												<u> </u>			
					_										
												<u></u>			
												<u> </u>			
															·····
	-														
												ļ			
								-				ļ			
												<u> </u>			
															
REMA	RKS	<u>.</u> i								<u> </u>	<u> </u>		<u> </u>		
AMA					·				· · · · · · · · · · · · · · · · · · ·						
												· · · · · ·		•	
															

WELL SUMMARY

DAILY MUD REPORTS

P. O. BOX 6504 HOUSTON, TEXAS 77265

DRILLING MUD REPORT NO	. /	
DATE 8 4 -	19 <u>98</u> DEPT	H_ 53,7
	PRESENT ACT	IVITY

ATE	. 19 _		DEPTH	 <u>~ '</u>	_
		PRESEN	NT ACTIVITY		
DUD DATE					

MAGC	OBAR GROUP	
Dresser	Industries,	Inc.

Dresser Industries, Inc.									I				PRES	ENT ACTIVITY					
ATOR										CONTRA	ACTOR		D DATE			RIG NO.			
SIDE OF FOR	CRUSA	ne k		RES	(OU /	2(2	,	\sim	<u>L</u>	-			(0			SECT, TWNSHI	•		
	[. F.	BAT	1								(. <i>i)</i> A	λM				GIPPSLA	IN VALLE		
WELL NAME	AND NO. WONC	A	81	~nA	:	*	FF	E P BL	ogkyvo)	СТХ	., PAR.	OR OFFSI	ORE AREA	STATE /	PROVINCE			
DRILLING A						SING		NUD VC	LUME (E						DATA				
BIT SIZE	TYPE,	, JET S	SIZE	su	RFACE	13	<u>}</u>	Н		PITS PUMP SIZE : 4									
DRILL PIPE	TYPE	LENG	16 ith		@ جُدِّ ERMEDI		E		CIRCUL	ATING VOL	<u>+0 </u>	PUMP MAKE, MODEL ASSUME				De DC 77			
ORILL PIPE	TYPE	LENG	тн	SET (@ TERMEDIA	ATE	FT.	IN STO	CBAGE LWEIGHT		Falley took	BBUS		JUSOU EFF.	112 70	OTTOMS			
SIZE		<u>L</u>		SET	@		FT. 100					115	52/-121	545	48 1	JP (MIN)			
DRILL COLLAI		LENGTH PRODUCTION OR L				FT.		<u>KCL</u>			BBLA	MIN		GALMIN	TOTAL CIRC. TIME (MIN) -				
					1	MUD	PROPER	TIES				MU	D PROPE	RTY SPECIF	CATIONS	3			
SAMPLE FROM	SAMPLE FROM						□ F.L. (⊉ PIT	□ F.L.	PIT	WEIGHT		V	SCOSITY	FILT	RATE			
TIME SAMPLE	TAKEN						ುತ	-			8	8		34					
											BY AUTH	IORITY		OPERATOR'S WRITT	EN	DRILLING CONTRA	CTOR		
DEPTH (ft)							50	ion						OPERATOR'S REPRI		OTHER			
NEIGHT []	ppg) 🔲 (lb/cu.	ft) 🗆 S	Sp. G				2	8	<u> </u>		PI	RODU	ICTS		TRE	EATMENT			
FUNNEL VISC	OSITY (sec./qt.	API @				۰۴			ļ		1-1-1			USE)	<u></u>	SELLEPT	<u> </u>		
PLASTIC VISC	OSITY cP @					۰F					CAUSTIC			FOR 91)					
/IELD POINT	(lb/100ft²)						·				K CL			86%	1.16	D.A 11	<u> </u>		
	TH (lb/100ft²) 1	0 sec./10) min.				/	-		/	Per	¥ 34	1 (¥,54	<u> Side</u> :	Switz			
FILTRATE API														-					
_	FRATE (cm3 /30					۰F		,		,				 					
SOLIDS CONT	ESS (32nd in. A		<u> </u>	DETOR			/			/									
	ENT (% BY Vol	<u> </u>		HEIOH				,		/				-					
	NT (% BY Vol.)	, 0.0												 					
	BLUE CAPACIT	Y		b/bbi equ							REMAR	KS:	(1)000	J J(50	32	12612G	12.1		
<u>'</u> н 🗆	STRIP	☐ METI		m³ /cm³	mua	۰F			 										
ALKALINITY M														-	HRI WELLES TO OLE THELE A T				
ALKALINITY F	ILTRATE (P, /M)						/	 	/						· ·			
ALTERNATE A	LKALINITY FIL	TRATE (P, /P ₂)				/	,	,	/	100 BULL POLIFA					•			
CHLORIDE (mg	g/L)										1.16,5	. د	ال يا وا	LLS Y	DELL	(L) U	1006		
OTAL HARDN	NESS AS CALC	IUM (mg	/L)								8%		KCI	100	1.2.4	L MAN	1.1		
K (1							<u> </u>									1000			
Lesis	tivity !						·26 G	56° F	ļ							EL (757)			
	· · · · · · · · · · · · · · · · · · ·				- 51/	ļ			L								, . 		
PRODUCT	•/		<i>;</i> / .	: //	./.	/			$^{\prime }/% =\left\langle \frac{1}{2}\right\rangle ^{\prime }$	-/-				EQUIF	MENT				
PRODUCT 'NVENTORY		<u>/</u> .	7 .5	/-: :	<u> </u>	/ :	<u>:/ </u>	7 3	1 -	12 3		\bot	HOURS		HOUR	S	HOURS		
STARTING NVENTORY	7	4.0	7%	1	30	,	60	10	9		Centrifu	ige		Desilter	3 :	H. S. Cent.			
RECEIVED		_	47			4.	240		40	·> 4.	Degass	er	•	Shaker	3 5	Super Cyclone	-		
JSED LAST			7,			 	3			21, 4.	Desand	ler	3)	Other			-		
CLOSING	2,0000				 		10	4":	 	DAILY COST				CUMULATIVE COST					
INV RY	3 176	ر، ید	. 43	 ' -	70	83		1.		600	+ 1 1347 or								
4 HR.	NOMEST		7	<u> </u>	<u> </u>	1707		1 .	- ADDE	34 154	<u> </u>				1 17	DUPANE -			
MAGCOBAR E	i, i	<u>) b</u>	11 1 1						E ADDRI	LOCATION		90	<i>!</i> !!	LADIN S		PHONE GGO	<u>,)</u>		
ODILE CIVIT								1 4476		. LOCATION	•				1 '	LICINE			

DRILLING MUD REPORT DRESSER MAGOBAR REGIONAL OFFICE

DRESSER	3 O DOV 65	-0.4	/	ま	DRILLING MUD REPORT NO.						
	P. O. BOX 65 STON, TEXA:			(L	DATE	DEPTH 17	5~				
MAGCOBAR GROUP			1	T			PRESENT	PRESENT ACTIVITY			
Dresser Industries, Inc.			CONTR		SPUD DATE _	<u> </u>		NG ON (A	IN TO SET		
CRUSADER RESOURCES	. (۸	L.		1.	1700		ı	RIG NO.	7		
REPORT FOR E BATT			REPOR	TFOR	. DAN	N	(SECT. TWISHP	HANGE VALLEY		
WELL NAME AND NO.	FIELD OI	R BLOCK NO	5	CTY.,	PAR. OR OFFE	SHORE AREA	STATE / PR				
DRILLING ASSEMBLY CASING	; ·	MUD VO	DLUME (E	BBL)		CIRCU	ULATION DATA				
SIT SIZE TYPE STATE JET SIZE SURFACE 137		H9L5 44	3/	UTS I	PUMP SIZE			ANNULAR VEL. (FT/MIN)			
PRILL PIPE TYPE LENGTH INTERMEDIATE	FE TO	TAL CIRCUL	ATING VOL		PUMP MAKE. N		JMED CIRC	CIRCULATION PRESSURE (PSI)			
ORILL PIPE TYPE LENGTH INTERMEDIATE			MEIGH.		₹ Ŋঽৢৢৢৢৢ৻ BBL/STK	;	STK/MJN BOT	TOMS	00_		
1 135: @	FT.	STORAGE 100	<u> 1 8</u>	0	17645		48 UP (UP (MIN) TOTAL CIRC.			
PRILL COLLAR SIZE LENGTH PRODUCTION OR L	FT.	UD TYPE			BBLIMIN		SALMIN TIME	(MIN)			
MUD	PROPERTIE	s			MUD PROF	PERTY SPECIFI	CATIONS				
AMPLE FROM	□ F.L. 🖙	IT 🗆 F.L.	. 🔲 PIT	WEIGHT		VISCOSITY	FILTRAT	E			
IME SAMPLE TAKEN	1800			1,50) · (39	-1/2	O_{i}^{*}			
				BY AUTHO	RITY:	OPERATOR'S WRITTE	EN 🗆	DRILLING CONTRAC	TOR		
DEPTH (ft)	175-	`		ļ		OPERATOR'S REPRE		OTHER			
VEIGHT 🗖 (ppg) 🔲 (lb/cu. ft) 🔲 Sp. G	9.1			PRODUCTS			TREAT	REATMENT			
FUNNEL VISCOSITY (sec./qt.) API @ ° F	35				CAUSTIC		A.W.TAILL	- 			
PLASTIC VISCOSITY of @	5				COGEL		SWLEP				
TELD POINT (Ib/100ft²)	12		/		IPAC		idi run)) YP		
IGTH (lb/100ft²) 10 sec./10 min.	5/19		/		HUP (HL		450_M				
ELTRATE API (cm ³ /30 min.)	20+	<u> </u>		LINE				GEL	<u> </u>		
PI HTHP FILTRATE (cm³ /30 min.) @ °F	- 2/		/	1, Cr. 1	SAL	108	RHLEU	X : 1 21	Jugaria.		
CAKE THICKNESS (32nd in. API/HTHP)	3/32		/	 							
OLIDS CONTENT (% BY Vol.) CALCD. RETORT IQUID CONTENT (% BY Vol.) OIL/WATER	 		/	<u> </u>							
AND CONTENT (% BY Vol.)	101		/								
□ ib/bbl equiv.	1%			REMARK	S: POL	1004	N		JP 10		
PH	110	,		1							
LKALINITY MUD (Pm)	1.7			· ·		of some swelps and in					
LKALINITY FILTRATE (P. /M,)	04/0	2.6	/	Stor	1 11	nt n	nt nece for 32 ca				
LTERNATE ALKALINITY FILTRATE (P. /P2)	1			10.17	IALLY	GL-	1111)	BULLAR	4500		
CHLORIDE (mg/L)	16 00	0		γι. ε. ε		A lide	1.5.5	· + 1.	15/11/		
OTAL HARDNESS AS CALCIUM (mg/L)	40					Ar Arms					
Survey 355	1"	·		1		HS Di	•				
573	1			0.23		ito bu Li Abb					
	<u> </u>					2 11 /	2, 1 2 1911				
		/ h/.	.==-/.~	المنافق المنافق	1. 1. E. S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	EQUIP	MENT				
PRODUCT WENTORY	<u> </u>	57/ 5	7 ×		HOURS	3 .	HOURS		HOURS		
TARTING 4 120 40 52 1 30 6	1 1	10 49	164	Centrifug	e _	Desilter	3	H. S. Cent.	-		
ECEIVED 440	- -	- -	200	Degasser	9	Shaker	11	Super Cyclone	-		
	F 2	- -	58	Desande	, -	Other		<u> </u>	-		
LOSING 444 93 40 49 1 29 C		10 49	306	DAILY COS	ST	CUMUL		ULATIVE COST			
OST LAST _ 13122 - 7425 - 1514			39102	\$	1718	4J	1 \$ 3	2966-03			
ACCOBAR ENGINEER	10	HOME ADDR	. L	11 1.				N\$3600			
ACCOBAR ENGINEER SWCCT		WAREHOUSE			1133	. 7112716) / F		, <u>, , , , , , , , , , , , , , , , , , </u>		

P. O. BOX 6504 HOUSTON, TEXAS 77265

P

DRILLIN	G MUD RE	PORT NO.	. خ			
DATE _	10	4.	19 27 2	DEPTH _	1)5	
	8.	4 88	PRESE	NT ACTIVIT	Υ	

	44000	0.40	COOL							۱.,		DATE	<u> </u>			DE				
Dres:	MAGCO ser l				Inc	١.				/			8.	4 68	PRE	SENT A	ACTIVITY			
OPERATOR		USA					RCE S		. 1 1	CONTR	RACTOR	AT (L	RIC	3 NO. A7			
RT FOR					KLY	<u> </u>	<u> </u>	, ,	V. L	REPOR	RT FOR					ŞE	CT., TWNSHP	RANGE		
WELL NAME A	ND NO	. F. i		T)) FIEL	D OR BI	LOCK NO		II CTY.	, PAR. OR O	FESHO		II STATE	STATE / PROVINCE				
THE TANK A	المأسا	DNG	A	BI	NOA		1 5	م خ	120					RAY			VIC			
DRILLING A	SSEMBL'	1				SING		1	MUD VO	DLUME (I	BBL)	L) CIRCUL					ATION DATA			
BIT SIZE	TYPE Y 3A	JET	SIZE	SET	IRFACE @ ス分	13/	8 CUMP. EL	1 2	OLE T		PITS OG	PUMP SIZE	14	X 5.5 IN.		ANNUL DP /	AB VEL. (FT/	MIN)		
DRILL PIPE SIZE	TYPE	LENG		IN'	@ ス分 TERMEDI @ 1フス	ATE 3) ½	TOTAL		ATING VOI		PUMP MAKE	E, MOL	DEL ASSI	MED %	ED CIRCULATION				
DRILL PIPE SIZE	TYPE	LENG	зтн	IN	TERMEDI		IN STORAGE			WEIGH	(B)		70	70 -01						
DRILL COLLAR	SIZE	LENG	ath		DUCTION	OR L				<u> </u>	1.0	-1152/-	146		20	TOTAL	0100	<u>:</u> 5		
1 C Z			37 64 611	SET			FT.		K	<u> </u>	l	BENMIN				TIME (I	MIN)			
<u> </u>						MUD	PROPER		 		WEIGHT	MUD PR		COSITY		TRATE				
SAMPLE FROM					F.L.		☐ F.L.	PIT	WeiGH	\sim	Vis	COSIT		IMAIL	13					
TIME SAMPLE	TAKEN						7 •		 		-	i i		.			\cup \leftarrow			
DEDE: (1)									┼		BY AUTH	ORITY:		PERATOR'S WRITTE			RILLING CONTRAC	CTOR		
DEPTH (ft) WEIGHT ☐ (ppg) ☐ (lb/cu. ft) ☐ Sp. G								 		PE	RODUCTS		PERATOR'S REPRE		EATN					
						· ()	 		Non) ځې د ل									
PLASTIC VISC						۰F		<u></u>	 		1,012		<u> </u>							
YIELD POINT (lb/100ft²)							11	1		 			<u> </u>						
GEL STRENGT	'H (lb/100ft²)	10 sec./1	0 min.				:. /	/ ;	1	/										
FILTRATE API	(_{cm³} /30 mir	٦.)					7.0	:	1											
API HTHP FILT	RATE (cm3	/30 min.) (@			۰۴														
HICKN	ESS (32nd in	. API/HTH	P)				7	<u> </u>	,	/										
S CONT	ENT (% BY 1	/ol.) □ C	ALCD.	RETOR	RETORT . t															
LIQUID CONTE	NT (% BY V	ol.) OIL/W	ATER				3/	<u> </u>		/										
SAND CONTEN	NT (% BY Vo	1.)																		
METHYLENE B	LUE CAPAC	ITY		p/ppi edi							REMAR	KS: 🔨	· :	را. سا	Maria.	- C		Ų.		
РН ☑:	STRIP	☐ MET	ER @			۰F	11				CASING TO SET						507	1 <u> </u>		
ALKALINITY M					, ,			7		,	∥ ₆₀₀	XLLT.	ł :	المال	ē ,	1)1	OUNT	ار باز)		
ALKALINITY FI							0 4/	<u>, </u>	 	/	11		_	٠.	د خان			$A^* \supset Y$		
ALTERNATE AI		ILTRATE	(P. /P.).				/ _	-			آ: لما	f 2	i / (•		• •	• • • • •			
FOTAL HARDN		CUIM (me	7/1 3				465 C		-		12.7	1 - 1	-	147.0	•	(€	13C /			
		° F			J: ky		٠	· .	╁			11	<u>.</u>	. A	St. 15		75 9	1-6		
-33	a oc			3.3	3. 77				 		100-	-;	, s ¿	Suc	در .					
														•				•		
	.1/	<u>}</u>	337	.¥/_			_x~/	<u></u>	7/	3/=	1			EQUIP	MENT	~~~~				
PRODUCT 'NVENTORY			عَيْر /نِ ^ي			\ \[\]					 	HOU	IRS		HOUF	RS	· · · · · · · · · · · · · · · · · · ·	HOURS		
STARTING NVENTORY4	44 3	40	47	1	29	6		10	49	306	Centrifuç			Desilter	,,,,,,	-	H. S. Cent.	-		
RECEIVED		1 -	1-	<u> </u>	-	_		-	1	-	Deyasse	er	:-	Shaker	3	$-\parallel$	Super Cyclone	-		
JSED LAST		+	1_		-	-	+	-	+-	-	Desande		, ,	Other	نب	$-\parallel$				
CLOSING INVENTORY		٠- :	16.3		29	63	107	10	49	30%	DAILY CO			L	CUMUL	ATIVE	COST			
ST		+	41)	1	ر ۽ ا	() >	+10/	1.0	1	· 0 \$ 296			363-	ນ 3 ້						
MACCOBAR;E	NGINEER	1	1	<u> </u>	<u> </u>			HOM	IE ADDRI	ESS 17	1	1)(1)	1 11	<u> Λ. Α.</u> ε. ε.	1,	PHONE	<i></i>			
MOBILE UNIT	<u>``</u>	<u>`</u>	ويدي بزر	.				WAF	REHOUSE	LOCATIO		OR M. IND	17	. • 16 : 4 34	· 1	PHONE		*************************************		

P. O. BOX 6504 HOUSTON, TEXAS 77265

MAGCOBAR GROUP

	DRILLING MUD REPORT NO.	(I)
19 <u>88</u> рертн <u>"502.я</u>	DATE 11 - 4 -	(A)
PRESENT ACTIVITY	9.4.8	
	SPUD DATE	
	DATE 11 - 4 - 31	4

Dresse	er In	du	stri	es,	Inc					ſ		SPU	D DATE _	<u> </u>	4 · 3	<u>8 </u>	DRILL	ING	AH	AD_
ATOR	CRI)5A	DER		RE	30	U 8. C 1	:5	NL	CONTR	ACTOR	A	TC	<u>つ</u>				RIG NO.	A7	
REPORT FOR			NIT							REPOR	FOR	(. DAN	141				SECT TWI		
WELL NAME AND P	NO.		4 F	IN	DA	-			OCK NO.		CTY.	, PAR	OR OFF	SHORE	AREA	ST	ATE / PR	OVINCE		
DRILLING ASSE		4 (01	·····			SING				LUME (E	BL)	CIRCULATIO								
BIT SIZE . TY	PENTC			SUI	RFACE (3 37	1 <u>"</u> COM	H	OLE	4	ITS	PUMP SIZE LA X 5.5 IN.					ANNULAR VEL. (FT/MIN) DP 15 DC 164			
ORILL PIPE TYI		LENG		INT	ERMEDI.	ATE::)		TOTAL	CIRCULA			P MAKE,			SUMED	CIB	CULATION SSURE (PS			
DRILL PIPE TY		LENG	TH	INT	ERMEDI	- 1994	FI.	IN STO	RAGE	WEIGHT		BBL	STK,	•		FC\()	% BOT		15	23
DRILL COLLAR SIZ	<i>∙(₅()</i> E	LENG	CH C]	UCTION	OR LIN	FT. NER	MUD T	YPE		In ()		52 /·L	174)	<u>ں د</u>	TOT	AL CIRC. !-	1066	: 1)
6.5.		111).6m	SET @		MUD F	PROPER		72117c	1 (HL.	(KCI)			DEDT	Y SPECI	GAL/M	IN	E (MIN)	150	:110
SAMPLE FROM							□ F.L. Ø		Пе.	Ø PIT	WEIGHT		7	VISCO		HOATI	FILTRA	TE .	- <u></u> -	
TIME SAMPLE TAKE	EN					\dashv	240C			7 00 2	la	. 3	+		LC		5	2		
									8	3	BY AUTHO	<u>ر ,</u>	/.	~	0			166		
DEPTH (ft)							412	M	40	30m					RATOR'S WR			OTHER	NTRACT	
WEIGHT 🗆 (ppg) [🗌 (lb/cu.	ft) 🗆 s	Sp. G				9.4		9.	3+	PF	RODU	JCTS				TREA	TMENT		
FUNNEL VISCOSIT	Y (sec./qt.) API @				°F	49		4		CAUS	110	<u>. </u>		TO.	MAI	VTA	NP	H	
PLASTIC VISCOSIT					_	°F	15		14		MAG				FOR			SW		
YIELD POINT (Ib/10)		0.000/11	3 min						16		1			1	_				EAS	<u> () Vo</u> l
SEL STRENGTH (lb/100ft²) 10 sec./10 min. 6 / I								19	POLY	PA	۷	-	to R	AISE	<u> Y</u> 1	·				
iP FILTRATE (cm³ /30 min.) @ °F						<u>د د</u>	<u>පි</u>													
CAKE THICKNESS (1/3		1	32										
SOLIDS CONTENT	(% BY Vo	i.) 🗘 C/	ALCD.	RETOR	г		13.		13											
LIQUID CONTENT (% BY Vol	.) OIL/W	ATER					64		86.9										
SAND CONTENT (%				/bbl equ	uise		27	, 2	1.5	50%	DEMAR	140.				 -				
METHYLENE BLUE			cr	n³ /cm³ ı	mud		-		•	·	1									125 A
PH STRII		MET	EH @			°F	10.5 1.8		11.		1									1)2166
ALKALINITY FILTRA		,)					.) /	+	·3/		1									9€ (A) ⊂∆200
ALTERNATE ALKAL	INITY FIL	TRATE (P. /P;)			_		-	-/											FRESH ID ON
CHLORIDE (mg/L)							15 60			000	INT	, .	THE	EA	284	177	OCE.	VE L	ME	TONE !
TOTAL HARDNESS	AS CALC	IUM (mg	/L)				120			20	(14-2	2.5	myu) (F T	1.1E	GIF	SLAN	<i>⇒</i>	Frt. A
<u> </u>							<u> 27@6</u>			52°F	CHEC	V	(7A)	1.11	: 0	ب ۱۲ کاز	- T (_ 16	5 14	نا نسنا ن	in Eco
POTASSI			0210c			(J)	3.5			:75	0 स ६ र १€ :	10 17	-∠-151 V€	パレ <i>ー</i> 1つビ	ा राष्ट्र	`; į, ;	:	LUSIC WAS	(12.	
<u> </u>	15111	1/2	7 <u>De</u>	<u> </u>	3 /		13.1	<u>.</u> /	L	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	112.	11-16	<u> </u>		115	IA:K	SHAK	1.1.	<u>.2; - 267</u> 56406 J
PRODUCT NVENTORY											(1) Ar	<u>ي ر.</u>	()	\mathcal{F}_{R}	EQQ.	2 D.H.C	100	; , ~		HOURS N
STARTING NVENTORY444	73	40	40	1	20	63	1 1	10	49	306	Centrifu	ge	10		Desilter		4	H. S. C	ent.	-
RECEIVED .		•	-	•				•	-	-	Degasse	er	16.5		Shaker		5.5	Supe Cyclor	r ne	•
JSED LAST	ε	-	4	•		Э		-	-	100	Desand	er	-		Other		-	-	-	•
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		40	45	1	29	55	107	10	49	206	DAILY CO			ـــالـــ				VE COST		<u> </u>
	15168		3900		-	7220	+	•		101900	1	19	91-	68 "	•		14	954	71	7
MAGCOBAR ENGIN		2 _{かし}	iss I	Sw	JEE			НОМ	E ADDRE	38		J K	D. PA.	3 A D		 S.A.	PHO	ONE 336	60	53
MOBILE UNIT								WAR	WAREHOUSE LOCATION PHONE 33660											

P. O. BOX 6504

DRILLING MUD REPORT NO.	<u> </u>	
1: 4	_ ,, 스타	DEDTU 608

ATE _	12.4	19 _	<u>~13</u>	DEPTH .	<u>608</u>	
			PRESEN	NT ACTIV	ITY	
	2.4	22		. 		

	Britalita inda trai diri tta:				
	DATE 12 - 4	_ 19	13	DEPTH .	608
•		PI	RESEN	T ACTIVI	TY
	SPUD DATE 출- 4 · 경우		v	5 T	٦٥٥٢

	· ·	HOU	STON, TE	XAS 77265	5 .		DATE	. 7	^	17 Income	<u>608</u>
MAGCOBA	AR GROUP				\-	7	DATE		19 P	PRESENT ACTIVI	
Oresser Inc	dustrie	es, Inc.			(SPUD DATE	3-4-88	3	DIT	TEST
PERATOR (RUSAD	ER RE	SOURCES	N.L		CONTR	ACTOR	ATCO	;		RIG NO.	A7
I F. BA	(TT				REPOR	T FOR	C.D1	ンファ		SECT. T	wnshp, range LAMP KAMA
ELL NAME AND NO. WONGA	BINI	DA I		D OR BLOCK		CTY	PAR. OR OFF SEASP	SHORE AREA RAY	STA	ATE / PROVINCE V/C T(ORIA
RILLING ASSEMBLY		CASIN	G	MUD	VOLUME (3BL)		CI	RCULATIO	ON DATA	
T SIZE TYPE:-16	JET SIZE	SURFACE 13.	375 (V~	144	+ 4	ITS	PUMP SIZE	14 × 5-5	IN.	DP 35	DC 164
RILL PIPE TYPE ZE	LENGTH	INTERMEDIATE	9.625 " #.	TOTAL CIR	CULATING VOL	-	PUMP MAKE,	MODEL IS D S O O	ASSUMED C	CIRCULATIO PRESSURE (N -
	LENGTH 380 m	INTERMEDIATE SET @	FT.	IN STORAG	E WEIGH	т	-12645		STK/MI	UP (MIN)	18
RILL COLLAR SIZE	LENGTH	PRODUCTION OR SET @		MUD TYPE PUTAS	SIUM CI	IFOG10E	4.8 BBL/MIN		ZO Z GALMI	TOTAL CIRC TIME (MIN)	HOLE : 23 SYSTEM: 116
		MU	PROPER	TIES			MUD PRO	PERTY SPE	CIFICATION		
AMPLE FROM			☐ F.L. [PIT 🗆	F.L. PIT	WEIGHT		VISCOSITY		FILTRATE	
						۰ ۱			- 1	_	

	MUD	PROPERTIES	}	rions					
SAMPLE FROM		F.L. PIT	□ F.L. ØPIT	WEIGHT	VISCOSITY	FILTRATE			
TIME SAMPLE TAKEN		1200	7330	9.4	56	800			
				BY AUTHORITY:	OPERATOR'S WRITTEN	DRILLING CONTRACTOR			
DEPTH (ft)		561m	608n		OPERATOR'S REPRESENT				
WEIGHT (ppg) (lb/cu. ft) Sp. G		9.4	0.4	PRODUCTS		TREATMENT			
FUNNEL VISCOSITY (sec./qt.) API @	۰۶	46	56	CAUSTIC	ADDED TO	MAINTAIN DH.			
PLASTIC VISCOSITY of @	۰۴	14	14	POLYPAC		TAIN A GOOD Y !			
YIELD POINT (Ib/100ft²)		15	17	POLYSAL	1	LOLOGY CONTROL			
GEL STRENGTH (lb/100ft²) 10 sec./10 min.		4/15	7/20	BARITE	TO WEIGH	T UP SCUG MIX.			
FILTRATE API (cm³ /30 min.)		1000	822						
API HTHP FILTRATE (cm3 /30 min.) @	. °F	•	-						
dickness (32nd in. API/HTHP)		/	1/22						
SOLIDS CONTENT (% BY Vol.) CALCD. RETORT		13 1	13-1						
LIQUID CONTENT (% BY Vol.) OIL/WATER		/86-9	/86.9						
SAND CONTENT (% BY Vol.)		1.5%	1.5%						
METHYLENE BLUE CAPACITY ☐ Ib/bbl equiv.		-		REMARKS: AT	1300 HRS	0-0 (01700000			
PH ØSTRIP ☐ METER @	۰۴	11.0	11.0	WAL BLED	INTO THE	SYSTEM TO			
ALKALINITY MUD (Pm)		1.8	1.8	PREJENT 3	LACOTISE	MARL FROM			
ALKALINITY FILTRATE (P. /Mr.)		3/6	.2/.5			317. MUD WEIGH			
ALTERNATE ALKALINITY FILTRATE (P. /P;)		-/-	-/-			*00NA 94 PEG			
CHLORIDE (mg/L)		22 000	22,000	302126 141	1 24 226	PERIOR BY 100			
TOTAL HARDNESS AS CALCIUM (mg/L)		200	100			F THE CONTRACTOR			
RESISTIONEY		·15 @ 7247	-22 @ 60° F						
						DAILLING AT			
			ح روا			EGARET FOR DST.			
	//	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			EQUIPME	NT			

										1	ح رو	6080	A.J0	MERARE	F.03	DST.	
		/يد		37) ////////////////////////////////////	·~ / ~	٠ المالية			EQUIP	MENT	 	
PRODUCT 'NVENTORY	8A.		2 / 🚅 .	₹/ ₹				/ a	?/ j	ĭ/ ≤			HOURS		HOURS		HOURS
STARTING NVENTORY4	44	85	40	45	1	29	55	107	10	49	206	Centrifuge	6	Desilter	6	H. S. Cent.	-
RECEIVED	-	-		-	-	-	-	-		-	-	Degasser	9.5	Shaker	17	Super Cyclone	-
JSED LAST 34 HR.	20			3			6	4	,	-	-	Desander	3.5	Other	-		-
CLOSING INVENTORY 4	24	85	40	42	1	29	49	103	10	49	206	DAILY COST	954.	754	CUMULATIV		
ET	1000	-	-	7425	-	-	54150	16900	•	-	-	#	774-	7 3	\$50) 12 - 40	•
MAGCOBAR E	NGINE	ER a		, -		30.5	-		HOM	E ADDRE	ESS . 3	1 . 160.	1 30	. 24432	PHO	NE 77 66	-50

Р.	O. E	3OX 650	4
HOUST	ON,	TEXAS	77265

	3	7
1	П	1
L	Н	J
۲	_	- 1
ſ	_	עב

DRILLING MUD REPORT NO.	
DATE	<u> </u>
SPUD DATE	PRESENT ACTIVITY 1) ST TLST (2)

P	MAGC	OBAR	GBOI	P		.000		_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	200	-	7	DAT	TE			T ACTIVITY	
Dres					Inc					/		SPL	JD DATE	. 4 FB		T TEST	<u> (? </u>
OPERATOR		SADE	. 0	12.7.5	sout	0 4		NI	,	CONTR	RACTOR	1	ATC			RIG NO.	
T FOR			TT	->-				<u></u>		REPOR	T FOR		C DA			SECT., TWNSHP	
WELL NAME A	AND NO.	1.10r			INDA		FIE	D OR BL	OCK NO.	Pt.P	CTY.	., PAI	R. OR OFFSHO	RE AREA	STATE / PE		
DRILLING A			y GA	TB		SING	1-11	1 N		LUME (I		Π	-1-1-11		ILATION DA		
BIT SIZE	T SIZE TYPE JET SIZE SURFACE 3.37						5 CON		44	T	PITS	PUN	AP SIZE	X ; Ç IN.		NULAR VEL. (FT/	MIN)
RILL PIPE	TYPE	LEN	GTH	SET	@ : C	ÂTE	<u>. 日</u> . ・6 <u>2</u> 5 **	TOTAL		4		PUN	AP MAKE, MOD	DEL ASSI	JMED CIR	CULATION	
SIZE DRILL PIPE	TYPE	IEN	GTH	JEI	@ ! 7	<u> </u>	·····································	IN STO	BAGE	S S WEIGH	~	(.	C D375) JSTK	OST OF EFFE	30 % PRI	ESSURE (PSI) (<u>450</u>
SIZE			GTH	SET			FT.	MUD T	-	-		. 1	2645		353 UP	(MIN)	
RILL COLLAI	H SIZE	LEN	GIR	SET		OR L	FT.	1-3		m c	11178.05	BBL	· Ò /MIN	کر	SALMIN TIM	TAL CIRC. المالية E (MIN)	. 116
						MUD	PROPE	RTIES				M	UD PROPER	RTY SPECIFI	CATIONS		
SAMPLE FROI	м						☐ F.L.	□ PIT	☐ F.L.	☐ PIT	WEIGHT		VIS	COSITY	FILTRA	TE	
IME SAMPLE	TAKEN						183	3			19	.5		49		6	
									ļ		BY AUTH	IORIT	= `	PERATOR'S WRITTI		DRILLING CONTRAC	CTOR
DEPTH (ft)							60		-		 	BOD	UCTS	PERATOR'S REPRE		OTHER TMENT	
VEIGHT (۰F		.5			 			<u></u>			
PLASTIC VISC						۰F		<u>+9</u> 5			BARITE POLYPAC		650 10		Sive mix. H		
TELD POINT (Ib/100ft²)							9			11.64	PA		<u>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) </u>	IN H	<u>1, 9.G </u>	7.15.6	
SEL STRENG	TH (lb/100	t²) 10 sec./	10 min.				7,	20	 	/							
ILTRATE API	(_{cm³} /30	min.)					ho										
PI HTHP FILT	TRATE (cr	_{n³} /30 min.)	æ			ء اد		<u> </u>	-	-							
_		in. API/HTI						32									
COLUS CONT				RETOR	RT			3 /or 7			 						
AND CONTE			VAIEH					<u> 85.7</u> 0	/								
METHYLENE 8			==	lb/bbl eq	uiv.			<u> </u>			REMAR	RKS:	OST (1 114		- 5000	St 2E
	STRIP	□ ме		cm³ /cm³	mud	۰۴	10	. 3	 		As.	i	シン・ (! ふご・みて	EARLE.	PAC	KER CO	20F9
LKALINITY M	IUD (Pm)							.45			NOT		SEAT	PRDT	を見して	りりも	i. 1116
LKALINITY F	ILTRATE (P. /M.)					+) /	1.45	/	/	Soun	ðs.	6 1707	TENT	183 1) DUJN HE	ilė Mu
LTERNATE A	LKALINIT	Y FILTRATE	(P. /P;)				-/	<u> </u>	-/	/	P.O.	0.1	H. A.	J0 T.	25123	3A021 38 = J.	1 1 J
HLORIDE (m)							11),4	+00	ļ		icsi		AMLIM	LY F	:12 C	· (- 1) c	NULT :
OTAL HARDI	NESS AS (CALCIUM (m	ig/Li					0	ļ							DAILL	
RICHT							·2 @		-		Tile A	,	P.O.0	14. 10	o pal	PARAFIE	J ಕ್ರೌಡ
Jerrans	4-12-5	ij sektisk	• (1 3	V1)		%			057	(Ž	Mr. N	03 WILL	ا الآو	0563 1	N BAR
	16.	/ 3/	\ <u>`````</u>	<u>.u/</u>	<u>.</u> :/		<u>.</u>	<i>≈/</i> ?	- Ju/	7.5	11	1 C V	J E7(1)	EQUIP		red w	<u>(36-1-06</u>
PRODUCT NVENTORY	<u>.</u>		6.7	0.0716		-					<u> </u>		HOURS	1	HOURS	П	HOURS
TARTING	70 0			7		1	i	1	1	1	Centrifu	ige	i	Desilter	1.00113	H. S. Cent.	
·	14 7	5 40	42		29	40	1193	200	10	49	 				-	Super	
RECEIVED	-	- -	+-	 	+	 -		 	-	-	Degass		2	Shaker	2_	Cyclone	-
	10	- -	<u> </u>	<u> -</u>	 -	-	-	1 -	ļ -	-	Desand DAILY CO			Other	 CUMULATI	VE COST	
LOSING NVENTORY	04/8	5 40	42	1	13	48	3 103	206	10	4:3	11		260.25		1		
	70" -	. •	•	-		302	٠ -	-	<u> </u>	-		#	46U		4-	169.71	
MAGCOBAR E	NGINEER	3.53		6.3	=			HOM	E ADDRE	SS			3.4.		PH	ONE 22/	0° 3

MOBILE UNIT

MAGCOBAR GROUP

P. O. BOX 6504 HOUSTON, TEXAS 77265 1

DRILLING MUD REPORT NO.

DATE 19 4 - 19 68 DEPTH 872 N

Dresser Industries, Inc.			•		SPUD DATE	3 4 88	METER	11365 F	मुमाह भेड़े	
OPERATOR CRUSADER RESCU	12114	Ni i		AOTOD	NTCO		F	RIG NO.	7	
FOR E F. RATT	13 130 tm 3	·	REPOR							
WELL NAME AND NO.	FIELD	OR BLOCK N		CTY.	PAR. OR OFF	SHORE AREA	I STATE / PRO	OVINCE		
WONGA BINDA 1			170		EASP			CTO	<u> </u>	
DRILLING ASSEMBLY CASING BIT SIZE TYPE 1-17 (JET SIZE SURFACE; 3.37		HOLE	VOLUME (E		DUMP SIZE .		LATION DA		F/MINI) - A	
84 1436 341 SET @ 20	FT.	204.0) 4	11		4 X 5.5 IN.		95 C	c 164	
DRILL PIPE TYPE LENGTH INTERMEDIATE, SIZELL SET @ 173	· 51 ?" T		JLATING VOL	ما	PUMP MAKE.	MODEL ASSI	O % PRE	CULATION SSURE (PSI)	පිටට	
DRILL PIPE TYPE LENGTH INTERMEDIATE SIZE SET @	FT.	N STORAGE		r	ввизтк -12645	7	TK/MIN BOT	TOMS MIN) 2	5	
DRILL COLLAR SIZE LENGTH PRODUCTION OR L	INER N	AUD TYPE		1	5.3/4.	8 2		AL CIRC. LI	1. 32-	
61 170.6 SET@	PROPERTI		M (IL	MUD PROPERTY SPECIFICATIONS						
		,		WEIGHT	WOO PRO	VISCOSITY	FILTRAT	E	_	
SAMPLE FROM	F.L. Z		L. PIT	0		A. /L				
TIME SAMPLE TAKEN	18 0)6 ¹⁵)·	47		8.20	د	
DEST: (b)	(7 7			BY AUTHO		OPERATOR'S WRITTI		DRILLING CONTR	ACTOR	
DEPTH (ff)	677		720	PB	ODUCTS	OPERATOR'S REPRE		MENT		
WEIGHT (ppg) □ (ib/cu. ft) □ Sp. G FUNNEL VISCOSITY (sec./qt.) API @ °F	9.4		<u>3-5</u>	 		123 22			6.3636365	
PLASTIC VISCOSITY CP @ °F	13		'+ 	11	-	100 FOR PR			(W(XFuck	
YIELD POINT (Ib/100ft²)	16		! i	CAUS			AINTAIN IN SL			
GEL STRENGTH (lb/100ft²) 10 sec./10 min.	7/20		1/18	POLYP	AC	U 3E 0	10 16	JEEF 2		
FILTRATE API (_{Cm3} /30 min.)	7		3.5cc							
API HTHP FILTRATE (cm³ /30 min.) @ °F	160	- `	- 166							
C ICKNESS (32nd in. API/HTHP)	1/32	,	1/32							
SOLIDS CONTENT (% BY Vol.) A CALCD. A RETORT LUGE:	11.6		2.1							
LIQUID CONTENT (% BY Vol.) OIL/WATER	,		/87.9							
SAND CONTENT (% BY Vol.)	Tr		C+5							
METHYLENE BLUE CAPACITY ☐ Ib/bbl equiv. ☐ cm³ /cm³ mud	•		-	REMAR	(S: DST	@ WA	UNSUC	CESSFU	LAN	
PH	11-5		೧.೦	TOOL APPEARED TO BE PLUGGED.						
ALKALINITY MUD (Pm)	1.4		<u> </u>	SCOTON WITHALL AT 500 mg/C						
ALKALINITY FILTRATE (P. /M.)	7	1.0 0.2	10.5	UNED IN WATER CORNIDA FOR						
ALTERNATE ALKALINITY FILTRATE (P, /P,)	-/-		/ -	DIT.		MMALK				
CHLORIDE (mg/L)	15 60	0 12	000	Hick	E3 :	187 W	HEC	N. NO	Colores	
FOTAL HARDNESS AS CALCIUM (mg/L)	40	100 30	120	ن جي ر		wed At		7/4	1 .	
RESISTIVITY	+12 (a) 7	6 F - 20	@ CO. 1-	13.0.0		7630	10 4 171			
				FELL.	FROM	1. 3. 500	A THE		COLLAS	
	-27	21/2 2 7	F. ~	10 (17)	0.1012	<u> 1.14 </u>	α_0,α_1	. 11/21LL1.	. 	
PRODUCT TO THE PRODUC									T. 1101100	
PEASTING 1		*** C/_	<u>~ </u>	П	HOUR		HOURS		HOURS	
STARTING NVENTOR 4 04 55 40 42 1 29 48	103 2	106 10	4	Centrifug	• ! <u>(</u>	Desilter	-	H. S. Cent.	ļ <u> </u>	
RECEIVED	•	- -	-	Degasse	- 20	Shaker	20	Super Cyclone	-	
JSED LAST 24 HR	-	50 -	1	Desande	16	Other	-		-	
CLOSING 404 85 40 30 1 29 44	' 	156 10) 2	DAILY CO		~ ¢	CUMULATIV	E COST	4	
				1 4	187	.05 4	1\$ 7	7156.	76	
MAGCOBAR ENGINEER 1 - 74 25 - 36		HOME ADD	TEA	11 7			1 1	NE ~		
MAGCOBAR ENGINEER 201322 SWEET			SE LOCATIO		(OLN)	10 · PALAS	PHO	<u> </u>	6053	

P. O. BOX 6504 HOUSTON, TEXAS 77265

617

SWEET

ROBERT

MOBILE UNIT

DIG

WAREHOUSE LOCATION

	\sim	
	·	
DILLING MUD DEDORT NO	F ;	

	<u>a 11105</u>	1121 0111 110			_
ATE_	15	- 4	19 <u>86</u>	DEPTH 1098	
			PRESE	NT ACTIVITY	_

PHONE 7

PHONE

LINCOLN RO PARADIST 'SA

366053

MAGCOBAR GROUP SPUD DATE 8-4-88 Dresser Industries, Inc. OPERATOR CONTRACTOR Aīco CRUSADER NI.L RESCURCES REPORT FOR C. DANN E.F. RATT FIPPSLAND BASIN WELL NAME AND NO. FIELD OR BLOCK NO. Y., PAR. OR OFFSHORE AREA BINDA WONGA PEP 170 SEASPRAY VICTURIA CASING DRILLING ASSEMBLY MUD VOLUME (BBL) **CIRCULATION DATA** SURFACE 13.375 BIT SIZE TYPE HTC JET SIZE HOLE ANNULAR VEL. (FT/MIN) PUMP SIZE 14 X 3.5 IN. SET@ 3 S EI DP | | | DRILL PIPE SIZE TOTAL CIRCULATING VOL. PUMP MAKE MODEL ASSUMED 94 CIRCULATION PRESSURE (PSI) (COO SET@173~ -E DITE 10 500 DRILL PIPE TYPE = LENGTH INTERMEDIATE IN STORAGE BRI /STE BOTTOMS 100 863.4 SET @ FT. .1152 40 PRODUCTION OR LINER DRILL COLLAR SIZE LENGTH MUD TYPE 39 170.6 FT. POTASSIUM B.H.A. 118-6 MUD PROPERTIES MUD PROPERTY SPECIFICATIONS VISCOSITY FILTRATE WEIGH1 SAMPLE FROM □ F.L. 🕩IT F.L. PIT 1700 TIME SAMPLE TAKEN 06" 00 BY AUTHORITY: OPERATOR'S WRITTEN DRILLING CONTRACTOR DEPTH (ft) 1089 OPERATOR'S REPRESENTATIVE ☐ OTHER 2795 **PRODUCTS** TREATMENT 9.4 WEIGHT (ppg) (lb/cu. ft) Sp. G 9.4 FUNNEL VISCOSITY (sec./qt.) API @ ۰ ج 43 44 KIL Morris & A forta Will PLASTIC VISCOSITY CP @ ۰F 13 13 BARITE E 3.2 \$1.07.5 17 17 YIELD POINT (lb/100ft2) CAUSTIC TO DE STAND OF AROUND 105. GEL STRENGTH (lb/100ft2) 10 sec./10 min. 8/22 POLYPAC MAINTAIN YO ABOVE FILTRATE API (cm3 /30 min.) 800 USE? THE THAT THOSE PIT HOS 1000 SPERSENE API HTHP FILTRATE (cm3 /30 min.) @ ۰ د 1/32 HICKNESS (32nd in. API/HTHP) 1/33 12.6 S CONTENT (% BY Vol.) CALCD. ARETORT 17 6 LIQUID CONTENT (% BY Vol.) OIL/WATER 0/27.4 0/27.4 SAND CONTENT (% BY Vol.) ☐ lb/bbl equiv. REMARKS: P. O. H. TE METHYLENE BLUE CAPACITY cm3 /cm3 mud HTC X3A TO HTC JOA. REconnected STRIP ☐ METER @ ء ہ 10.0 10.5 AT 1530 HRS. MIXED ALKALINITY MUD (Pm) 0.5 100 RELY OF 0.85 0.15/0.5 MUD ALKALINITY FILTRATE (P. /Mr.) 10.17/0.4 10 ADO 1.5 54176 ALTERNATE ALKALINITY FILTRATE (P. /P.) 1-11 REALES VOLUME 27 14 000 000 CONTROLLE TO 08602 DRILLIDE TOTAL HARDNESS AS CALCIUM (mg/L) 96 152 LATROBE COAL といてもえれにつく .23@71°F |.18@ 58°F RESISTIVITY CAUSTIC 1.5 BEING AMMINIC AGOEG 10.5. RETAINING - !! MARWAR MISHONITY. DROPPED AT 800 30,000 40 1786C 13 UT EQUIPMENT SETTINE 11/17 POLYMA A . 15, PRODUCT INVENTORY HOURS HOURS HOURS 15.5 Desilter H. S. Cent. Centrifuge 20 10 40 Super Cyclone RECEIVED Shaker 20 Degasser 20 JSED LAST Ŀ. 155 00 Desander Other DAILY COST CUMULATIVE COST CLOSING INVENTORY 35 29 103 56 40 10 49 2058-25 9215.01

WELL NAME AND NO.

BIT SIZE

DRILL PIPE SIZE

DRILL COLLAR SIZE

3 W A.

TIME SAMPLE TAKEN

SAMPLE FROM

DEPTH (ft)

DRILLING ASSEMBLY

TYPE ; . . .

WEIGHT (ppg) (lb/cu. ft) Sp. G

GEL STRENGTH (lb/100ft²) 10 sec./10 min.

LIQUID CONTENT (% BY Vol.) OIL/WATER

ALTERNATE ALKALINITY FILTRATE (P. /P.)

TOTAL HARDNESS AS CALCIUM (mg/L)

ICKNESS (32nd in. API/HTHP) SOLIDS CONTENT (% BY Vol.) Z CALCD. ARETORT

FUNNEL VISCOSITY (sec./qt.) API @

PLASTIC VISCOSITY of @

FILTRATE API (cm3 /30 min.) API HTHP FILTRATE (cm3 /30 min.) @

SAND CONTENT (% BY Vol.)

METHYLENE BLUE CAPACITY

STRIP

ALKALINITY FILTRATE (P. /M,)

RESISTIVITY

Sugar & Ca

ALKALINITY MUD (Pm)

CHLORIDE (mg/L)

YIELD POINT (Ib/100ft2)

MAGCOBAR GROUP Dresser Industries, Inc.

WIDNGA

CRUSADER

F. BATT

220.6

P. O. BOX 6504

RESOURCES

CASING

SURFACE 13-375 CUA

SET @ 173 m

PRODUCTION OR LINER

FT.

MUD PROPERTIES

□ F.L. ØPIT

1164 m

9.4

1)

19

/16

1/32

0 /88.4

11.6

10 5

0.6

15/05

-/-18 000

80

@62°1

۰F

۰F

o F

1700

SET @

SET @

☐ lb/bbl equiv.

☐ METER @

4000

cm3 /cm3 mud

BINDA

HOUSTON, TEXAS 77265

N.L

FIELD OR BLOCK NO.

IN STORAGE

MUD TYPE

PEPIC

POTASSIUM CHLOR

	1	
11	Π	1
	41	J
1	I	
<i></i>		_

L	LING M	IUD RE	EPORT	ORT DRESSER MAGOBAR REGIONAL OFFICE												
			E	DRI	LLING MU	D RE	PORT NO.		9		······································					
1 77	265		D	DAT	DATE 16-4 19 88 DEPTH 1213											
		J		SPUD DATE 6-4-86 K.IH.												
. §		CONTR	ACTOR	ATCO RIG NO. AT												
		REPOR	FOR		C DANN SECT., TWISHP., RANGE											
	OCK NO.	`	CTY	., PAI	. OR OFF	SHC	RE AREA	STAT		VICTOIZ						
	IND AOF		IBL)		SEASPRAY VICTORIA CIRCULATION DATA											
- 1	OLE	t ·	ITS	•	PUMP SIZE 14 X 5.5 IN. ANNULAR VEL. (FT/MIN)											
ίĽ	CIRCULAT	ING VOL		PUN	1P MAKE.	MOD	ASSU EFFC	MED %	1 2:00	ULATION SSURE (PSI)						
О	RAGE	WEIGHT	•	BBL	/sтк 52/-120	-		TK/MIN	BOT UP (A	TOMS _	4					
	(PE	1 ()4).	DRIDE	5	.6			ZAJMIN	TOTA	L CIRC.	44					
	7)101	1 (110	שעואכ			PEF	RTY SPECIFIC		<u> </u>	1,000						
_	☐ F.L.	□/PIT	WEIGHT			VIS	COSITY	FI	LTRAT	E						
	060	၀ပ		1.1	-	J	44			166	-					
			BY AUTH	IORIT	Y:	_ c	PERATOR'S WRITTE	PERATOR'S WRITTEN DRILLING CONTRACTOR								
		<u>8n</u>		ROD	UCTS	0	PERATOR'S REPRES			MENT						
-	9.		1361				.2 0			50G ME						
_	13	Τ	(A)							of put.						
	18		ific							r 4 to .						
_	7/	15	K	1				The Albert of the Road Course								
<u>-</u>	-Tc															
_		,	ļ													
_	11.0	7,														
4	0/	č8.4														
_	7.															
	-		REMAR	RKS:	DRIL	Ĺζ	2 00	1	120	00611	THE					
_	10.	· 5	T. A.	(f, 3	L 60x	ا 	FU: MA	:). v	;	12 CO 101	\$3 0 0 G					
•											1.00 E 3000M					
_	-/															
_											70 J. 10					
-	12	(4)	1	. ~	A . A				v., ,*	ditt . A	1.7 1.2					
i-	·3@	47"5	1.16	1_1	4 - 3,003	ć.	GROW	, ,-	160	ic) (net	CY RASAL					
_			A I	(17) 25	GCE Market	ے در	終 - 多げ 94 - アロ	. A. 	: :70	TOU TH	CARAGE					
, .	12/5	: / 3				••	EQUIP									
	1-/50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(3)			HOUR	s		HOL	IRS		HOURS					
Ċ	3	. . 7.	Centrifu	ige	16.5		Desilter	2		H. S. Cent.	-					
_			,			-				,						

												,	LIA .	21 2 (4 (3)		S 1150	700 10	1.88 5
PRODUCT	RODUCT STATE OF STATE										100	EQUIPMENT						
INVENTORY	4		/= .	= /₹ ;	/d :	5 / 3	7	*/ E	Y ×	ند/ء ند/م	₹/\$? ;			HOURS		HOURS		HOURS
STARTING NVENTORY	589	80	40	36	-	29	35	103	56	ė	3	ř. J.	Centrifuge	16.5	Desilter	2	H. S. Cent.	_
RECEIVED	-	-	_	-	•	-	-	-	-	-	-	•	Degasser	24	Shaker	24	Super Cyclone	-
JSED LAST 24 HR.	36	7	-	2	-	1	7	-	18		-	1	Desander	18	Other	-		-
CLOSING INVENTORY	353	78	40	34	1	28	28	103	38	10	:	48	DAILY COST	C 1) - D		CUMULATIV		01
77	Cb"	1327	-	47.50		5.25	631.75	-	182	-	-	1	₩ 1.	220 - 2	•	1. 4	0.565	.75

MAGCOBAR ENGINEER SWEET LINCOLN RD. PARADICE 336605 Rubert MOBILE UNIT WAREHOUSE LOCATION

MOBILE UNIT

P. O. BOX 6504

DRESSER	MAGCBAR	REGIONAL	OFFICE	

HOUSTON, TEXAS 77265 MAGCOBAR GROUP

	DRILLING MUD REPORT NO.	1	
	DATE	DEPTH 1335-	
		PRESENT ACTIVITY	
	SPUD DATE	DRILLING AHEAR	
_		DIG NO	

D1.62	361 II	.uu		٠-,		•							SPUD DATE			" \	<u> </u>	10 G /4/P!	- 43
CAUSAPEN RESPONDEN					• •	N.L.		CONTR		ATCC			RIG NO.						
FOR	EF					·					REPOR		C. VAN	171				ECT., TWNSHP.,	
WELL NAME A	ND NO.						FIEL	OR BL				CTY.	, PAR. OR OF			STATE	/ PRO	VINCE	
DRILLING A	SSEMBLY		1-12	15.18	CA	SING	<u>Ji</u>	<i>⊙ ⊆ ∶</i>			C UME (E	(BL)	<u> </u>			LATION	DAT	 	
	TYPE		SIZE	SUF	RFACE	3.77	5°0M	•		-	Р	riTS	PUMP SIZE	14					INA 7
C.F	TYPE		<u>. 11</u>	SET @	@ la .		EI.	<u> </u>	OLE	III AT	41		PUMP MAKE,	16	XTI	IMED		DC DC	
DRILL PIPE SIZE				SET @	BRMED!	~~	·625"			<u> </u>			(-E 03		IDION EFF	30 %		ULATION SURE (PSI) (C	000
DRILL PIPE	16.60	LENG	門	SET @		ATE	FT.	IN STO	RAGE		WEIGHT		-152/-12	ر 4 4 ع	, 2	TK/MIN 1-3	BOTT UP (M	oms 3	7
DRILL COLLAR	SIZE	LENG	TH 0.6	PROD SET @	DUCTION	OR LI		MUDT		·		LORIDE	5.6			237	TOTA TIME	L CIRC. (MIN) HOLE:	47 141:
13, F1.A	٠.		28.6	1.55		MUD I	PROPER				,-: <u>.</u> .	CONTUS-		PER	TY SPECIFIC				·····
SAMPLE FROM					1		☐ F.L. [J/PIT	□ F	.L.	☑ PIT	WEIGHT		VISC	COSITY	FiL	TRATE		
TIME SAMPLE	TAKEN						170	0	(06	00	9	. (45		,	Gec	
												BY AUTH	ORITY:		PERATOR'S WRITTE	EN .		DRILLING CONTRACT	OR
DEPTH (<u>ft)</u>							1775	-	13	35	-				PERATOR'S REPRES			OTHER	
WEIGHT 🗖 (p	pg) 🗌 (lb/cu	ı. ft) 🗆 S	Sp. G				9.6			9	.6	PF	RODUCTS			TF	REATI	MENT	
FUNNEL VISCO	OSITY (sec./q	t.) API @				۰F	48			4	5	-	MIC		ADDED	10 1	7410	174 ml 14	<u>4.10.5</u>
PLASTIC VISCO	OSITY CP @					۰F	12		<u> </u>	13		 	(PAC		UNIO T				
YIELD POINT (I	b/100ft²)						_18			15		POTA	प्राप्ति (गर	okik	FOR PR	ENIX	<u>137</u>	ng folk y	$6\omega \le 1$
GEL STRENGT			0 min.					15	é		16								
FILTRATE API (6	د. د								
API HTHP FILT						°F	-			-		ļ							
	SS (32nd in.			4400	-5 5A	173	1/	-		1/		1							
SOLIDS CONTE				RETOR	т	- '	12.			$\frac{11\cdot i}{2}$									
LIQUID CONTE			AIGN					<u>87.7</u> -		<u> </u>	88.4								
METHYLENE B			= 1 1	o/bbl equ	iiv.		0.5	<u> </u>		1/		REMAR	KS: 10 11 1	1.3	17E-)	(;)	ГП	J) FR	:)/5
	STRIP	☐ MET		m³ /cm³	mud	۰F	10.		1	<u>.</u>	_	1						FORM	
ALKALINITY MU			<u> </u>			\dashv				<u>. 9</u>			•						
ALKALINITY FIL		Μ.)					·6 ·08/				.6	1						S LEF	
ALTERNATE AL			(P. /P;)					-	<u> </u>			1						ING	
CHLORIDE (mg)/L)						18.		27	<u> </u>	00	1,00	ALAKE	\cdot)	HYDAU	1.72	716	DRE S	3012
TOTAL HARDN	ESS AS CAL	CIUM (mo	g/L)				2 ?		$\overline{}$	12		1 \$						UC (6	
RESIST	VIFY						20€					11			147102);
	<u> </u>										,							CAUSE	
		110										Sici	UIFICA	`J-	1100	ب بازد تروناس		A 64.	1.36
	7.17	3/3	\$ / -	_/	الأشي	/ر	7		21/	4/	A 3	1			EQUIP	MENT			
PRODUCT NVENTORY		" " " " " " " " " " " " " " " " " " "		\$ /3 3						// //			HOUF	RS		HOU	RS		HOURS
STARTING NVENTORY	53 78		34	1	28	25	1	38		3	412	Centrifu	ge 8		Desilter	-		H. S. Cent.	-
RECEIVED		_	_	-	-	_	-	-	-	-	-	Degass	er 24		Shaker	24	t	Super Cyclone	•
JSED LAST 24 HR.		-	4	-	_	4		38	-	-	-	Desand	er 2 4	f	Other	_			•
CLOSING	57 78	40	30	1	28	24	103	0	10	3	48	DAILY CO	OST			ł		E COST	+
7.0 T	_		99"	_	-	361°		3872	-		-		847	. 2	2	1\$	()	413.1	7
MAGCOBAR E	NGINEER 2		<u> </u>		EET		 -		E ADI	DRES	SS 12	LINCO	LN 01	٠,	PARADIS		PHO	NE 33660	753
MOBILE UNIT	.,,,	<u> </u>	<u> </u>	1	<u> </u>			WAR	EHOL	JSE L	OCATIO	N	=: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	'	11-11-11-1		PHO	NE	

DKF22FH	MAGUDAN	REGIONAL	OFFICE

	нои	STON, TEXA	504 AS 77265	5			DATE	18 -	4 -	<u>. දිළ</u>	DEPTH 13 9	14.
MAGCOBAR GROUP		- · · · · · · · · · · · · · · · · · · ·			14	7/	DATE			PRESENT	ACTIVITY	
Dresser Industrie	es, Inc.				Ĺ		SPUD DA	τε <u>8</u> :	4-88		(-(-) + N+ (
	RESOURCE	<u>.</u>	N.L		CONTR		ATO	10			RIG NO. A	7
E.F. BATT			•		REPOR	T FOR C	.DA	NN		l	SECT., TWISHP	NI RANGE
WELL NAME AND NO. WONGA	BINDA		OR BLOCK		20	CTY.	PAR. OR	OFFSHO		STATE / PR	OVINCE	
DRILLING ASSEMBLY	CASING	3			LUME (E					LATION DA		
SIT SIZE TYPE LIC JET SIZE	SURFACE 13		HOLE						× 5.5 IN.	ANN	ULAR VEL. (FT/	MINI
DRILL PIPE TYPE LENGTH	INTERMEDIATE	FI.	324 OTAL CIR		TING VOL	://	PUMP MA	KE, MOD	EL ASSL	MED CIRC	LU ATION	
SIZE LENGTH	SET @ 17 ?		N STORAG	<u>73</u>	WEIGHT		C-E O BBUSTK	37s/i)500 EFF (O % PRE	SSURE (PSI)	100
SIZE 4 1 16.60 1166 m	SET @	FT.			<u> </u>		1764	<u>-5</u>	4	4 UP (MIN)	39
DRILL COLLAR SIZE LENGTH	PRODUCTION OR I	FT.	OT A S	بال	1 (1	الناداء	S. C BBL/MIN		ŧ	ALMIN TIME	AL CIRC. SYS	iさつ:131 :50
228-6m	MUD	PROPERTI	ES				MUD P	ROPER	TY SPECIFIC			
SAMPLE FROM		□ F.L. □	PIT 🗆] F.L.	PIT	WEIGHT		VIS	COSITY	FILTRAT	É	
TIME SAMPLE TAKEN						9	.7		44		6.4	
						BY AUTHO	ORITY:		PERATOR'S WRITTE		DRILLING CONTRAC	
DEPTH (ft)		1334				51 7.511.			PERATOR'S REPRE		OTHER	HOT
WEIGHT (ppg) (lb/cu. ft) Sp. G		9.7				PF	RODUCTS	S		TREAT	MENT	
FUNNEL VISCOSITY (sec./qt.) API @	۰۴	44				BAR	ITE		USCO	1N 5	LUGS	
PLASTIC VISCOSITY op @	۰F	12				POLY	PAC		- 1350)		Vil Se	July 28
YIELD POINT (Ib/100ft²)		18	·			CAU	STIL		io ria	in TA.	011	
GEL STRENGTH (lb/100ft²) 10 sec./10 min.		9/1	9		/						1	
FILTRATE API (cm3 /30 min.)		6.4.	د ا									
API HTHP FILTRATE (cm3 /30 min.) @	• F	-			,							
ICKNESS (32nd in. API/HTHP)		1/3		_/	,							
SOLIDS CONTENT (% BY Vol.) CALCD. A	ETORT	8.4			/	ļ						
LIQUID CONTENT (% BY Vol.) OIL/WATER		1	16									
SAND CONTENT (% BY Vol.) METHYLENE BLUE CAPACITY	obl equiv.	0.5				REMAR	KS: a					
	³ /cm³ mud • F	10.5	_			1.2	KE	ACI	にり	1.V. (g 1394	tm.
PH STRIP METER @ ALKALINITY MUD (Pm)		0.4	' -			RAN	A	W	MEL	TRIP.	HULE	T1611
ALKALINITY FILTRATE (P, /M,)		0.1 /0			/	ķī.	. +1 .	0T	BOTT	on.	CIRCUL	ATER
ALTERNATE ALKALINITY FILTRATE (P, /P ₂)					/	1					الاشاع	
CHLORIDE (mg/L)		19 000	0			. t				-	RABLE	
FOTAL HARDNESS AS CALCIUM (mg/L)		200				ł						
RESISTIVITY		-24@53									61NG 1	
200		12.				1				ri . 170	BSEB	AKNTO
تهتر بهت	19.3	T	Ţ	!,,	7	1 + 01	د ز	.06	GING.			
# 33 85 c	8 8 W	Ž j		/_	25/24				EQUIP	MENT		
PRODUCT NVENTORY		0/20/20/20/20/20/20/20/20/20/20/20/20/20		3/2	50£405		но	URS		HOURS		HOURS
STARTING NVENTORY 353 78 40 30	1 28 2	1 1	ı	7 3	48	Centrifuç	ge 4	5	Desilter	-	H. S. Cent.	•
RECEIVED		- -		-	_	Degasse		9	Shaker	19	Super Cyclone	-
JSED LAST 60 1	4	7 -		. _	•	Desande	er 4	.5	Other	-		_
CLOSING NVENTORY 293 78 40 29	1 28 20		_ 10) 3	48	DAILY CO	ST		•	CUMULATIV	2 308,	42
$\frac{1}{24}$ $\frac{1}{10}$	361		- 10	. .	<u>-</u>	\$	89	5 - 7	2	1812	光岩	2
MAGCOBAR ENGINEER ROBERT	SWEET		HOME A		12	LINCO	OLN !	20:	PARADI	E 3A PHO	<u> 3366</u>	.053
MOBILE UNIT			WAREHO	DUSE	LOCATIO	N		1		PHO	NE	

DRILLING MUD REPORT

11.10 - T

1.00

MOBILE UNIT

DRILLING MUD REPORT NO.

DHESSER	HAGUDAN	REGIONAL	OFFICE

Act Control	attache Town		4 4				P. O. BO STON, TI		7265		U)	DATE				DEDTU	
	MAGCO	BAR (3ROL	JΡ						1	7/	DATE			PRESEI	DEPTH IT ACTIVITY	
Dres	sser Ir	ndu	str	ies,	, Ind	c.				'		SPUD DATE			<u>. </u>		
OPERATOR				•			,		ı	CONTR	ACTOR					RIG NO.	:
T FO	R .									REPOR	T FOR	, ,	4,1 1			SECT., TWNSHI	
WELL NAME	AND NO.				. ;		; FIE	LD OR BI	OCK NO.	<u> </u>	CTY.,	PAR. OR O	FFSHOR		STATE / P	ROVINCE	
		~ { · · ·	<u>/ \</u>				<u>: :</u>	Τ.								<u> 1 × 1 仏</u>	
BIT SIZE	ASSEMBLY	JET S	SIZE	SI	JRFACE	ASING	·		OLE	LUME (I		PUMP SIZE			JLATION D.	NULAR VEL. (FT.	(AAINI)
				SET	@		FT.	77	- A				·		DF	DC	-
DRILL PIPE SIZE	TYPE	LENG	iTH		TERMED		FT.	TOTAL	. CIRCULA	TING VOI	- '	PUMP MAKE	. MODEI	- ASS	UMED CIP	ICULATION ESSURE (PSI)	
DRILL PIPE SIZE	TYPE	LENG	TH	IN ¹ SET	TERME	DIATE	FT.	IN STO	RAGE	WEIGH	T [BBL/STK			STK/MIN BC	TTOMS (MIN) -	
DRILL COLL	AR SIZE	LENG	iTH		OITOUCTIO			MUD T							To	TAL CIRC.	
	·			SET	@ .		FT.		(BBL/MIN			GALIMIN	IE (MIN)	
						MUD	PROPE	RTIES	ļ		II	MUD PR		Y SPECIF			
SAMPLE FRO	ОМ						□ F.L.	PIT	F.L.	PIT	WEIGHT		VISCO	SITY	FILTRA	TE	
TIME SAMPL	E TAKEN								<u> </u>								
									<u> </u>		BY AUTHO	RITY:		RATOR'S WRITT		DRILLING CONTRA	CTOR
DEPTH (ft)									ļ				OPE	RATOR'S REPRE			
	(ppg) (lb/cu		ip. G						ļ		<u> </u>	DDUCTS				TMENT	
FUNNEL VIS	COSITY (sec./qt	.) API @				۰۶					BARIT			useo 1	for nix	10 101	of Holo
PLASTIC VIS	COSITY op @					۰F					POLY	PAC		· ·	••••	•• ••	-
YIELD POINT								7		,							
GEL STRENG	GTH (lb/100ft²)	10 sec./10) min.				/								·		
	Pl (_{cm³} /30 min.																
	LTRATE (cm³ /3					۰F		,	ļ	,	<u> </u>				-		
-	NESS (32nd in.						/				ļ						
	ITENT (% BY Vo			J RETOR	RT.			,	ļ	,				 			
	TENT (% BY Vo		ATER				/	, 	/	, 	ļ					· 	
	ENT (% BY Vol.			lb/bbl eq	uiv.		-		ļ		DEMARK	·			-		
	BLUE CAPACIT			cm ₂ /cm ₂												_	以こしし
ALKALINITY I	J STRIP	☐ METE	ER @			۰F										ال ناذ	
	FILTRATE (P. /N							,		, 						10). F	
	ALKALINITY FIL		P (P)				/	/	/	/	171.C -	的好。	- 7 8	(- KP ,	Liter	146 N	$\sim RW$
CHLORIDE (r		-IMAIE (-, 1-2)				/		/		(11)7	. (J. 12	61	$\sim fet$	$_{i,j}(L)+L_{\infty}$	L) Kri	1.47 1.4
	DNESS AS CALC	TILIM (ma	/I \	-							11				1	$e_i(I_{ij},t_i)$	$= 1 - C_{\mathcal{F}^{*}}$
· [· · ·	· 1		(:					·			11			11 71.		$\zeta = \frac{2}{7} \times t_0$	246
	. :							to the second							- 1 Res		$\langle \cdot \cdot \cdot \rangle$.
			· \	•					<u> </u>		FILLE					ns wa	
	/	.:/					-5/	-:-/-	+ /	. / . ;	1.17.4	<u>``:</u>	^_			<u> 533 (18</u>	
PRODUCT INVENTORY			/			£/			//			HOU	RS	EQUIP	HOURS		HOURS
STARTING INVENTORY	., .	40	70	!	78	20				43	Centrifuge	-		Desilter	-	H. S. Cent.	-
RECEIVED		<u> </u>			1	 .				-	Degasser	-		Shaker	-	Super Cyclone	
USED LAST 24 HR.		†		 	1	+	\dashv	†			2		$-\parallel$			#	
	70		•	1	1	į į	1	1	1	-	Desander	-	H	Other	-		-

P. O. BOX 6504 HOUSTON, TEXAS 77265

DRILLING	MUD RE	PORT NO.	! -		
DATE		_ 4-	_19	DEPTH	- \-+
			PRESE	NT ACTIVITY	

										1 1		UATE			19	_ 0	EP17	
MAGCOBAR GROUP Dresser Industries, Inc.							J				4-27	PRE		ACTIVITY				
OPERATOR					. 7 10		·	N	<u> </u>	CONTR	ACTOR	AT CO					IG NO. A 7	
IT FOR	- 12.	ATT			, , ,	· · ·	·	- : •	<u> </u>	REPOR							ECT., TWNSHP	., RANGE
VELL NAME AND	NO.						FIEL	D OF BL	OCK NO.	<u></u>	CTY.	PAR. OR O	FFSHOR	E AREA	STATE	/ PRO		BASIN
	. 1		3,100	1/2								EASI	7.7.4				INR 14	
DRILLING ASS			0175	 		SING				DLUME (E		21112 2122			LATION			ALL D
-	YPE	JET :	_	SET	@ ₹ <u>₹</u>	ر ا	€ E E		OLE		-	PUMP SIZE	11	F. 5		DP	LAR VEL. (FT/I	-
ORILL PIPE T	YPE	LENG	3TH 	SET	@ 7. Q TERMEDI @173.	C ata	SEE.	TOTAL	CIRCUL	ATING VOL		PUMP MAKE	E, MODE	ASSU EFF.	MED %		ULATION SURE (PSI)	
ORILL PIPE T	YPE	LENG	STH -	IN'	TERMEDI.	ATE	FT.	IN STO	RAGE	WEIGHT	r -	BBL/STK	· / ·		TK/MIN	BOTT UP (M	OMS IIN)	
PRILL COLLAR SI	ZE	LENG	3TH		DUCTION	OR LI		MUDT		iijes C		BBL/MIN			SAL/MIN	TOTAL	L CIRC.	<u>-</u>
•						MUD	PROPER			(() () \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ار چن		OPERT	TY SPECIFI		s		
SAMPLE FROM							☐ F.L. (PIT	☐ F.L.	PIT	WEIGHT		VISC	OSITY	FIL	TRATE		
IME SAMPLE TAI	KEN							 -						-				
											BY AUTHO	ORITY:		ERATOR'S WRITTE			ORILLING CONTRAC	
EPTH (ft)							****							ERATOR'S REPRE				TOR
VEIGHT 🗌 (ppg)	☐ (lb/cu	. ft) 🔲 🤄	Sp. G								PF	RODUCTS			TF	REATI	MENT	
UNNEL VISCOSI	TY (sec./qı) API @				۰۴					(ALCID	~ (HOA	10=	- FOR	(EM	έMi	INK PI	UC-
LASTIC VISCOSI	TY cP @					۰F												
TELD POINT (Ib/1	00ft²)								<u> </u>							- 4		
EL STRENGTH (b/100ft²)	10 sec./1	0 min.							/								
ILTRATE API (cm									<u> </u>		ļ <u>.</u>							
PI HTHP FILTRA						۰F		,		,								
HICKNESS							/			/								
CENTENT CONTENT				RETOR	RT			,		,	ļ							
IQUID CONTENT			ATER				/			/	ļ							
AND CONTENT (lb/bbl eq	uiv.						REMAR	KS.						
H STF		□ MET		cm³ /cm³	mud	_					1		5	1 6.2 1	1.10		PLUGO	در جری
LKALINITY MUD		U ME:	EH @			, F					i i					•	1,000	ر ے پر
LKALINITY FILTE		A.)						,	-	/ 	دم حد	IBANI	DOM	E) i	JEL	٠.		
LTERNATE ALKA			(P. /P ₂)				/ /	,		/								
HLORIDE (mg/L)				- -					 			•						
OTAL HARDNESS	S AS CALO	CIUM (mg	g/L)															
																		
				•														
								~			4							
RODUCT			~/ ~/_				1,1/2 of 100 of	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 / 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /		нои	RS	EQUIP	MENT	35		HOURS
TARTING TO THE	7.2	40	7.	,	723	1")		10		48	Centrifuc		-	Desilter		-	H. S. Cent.	
ECEIVED _	+-		1	-	160	<i>'''</i> -	1-	1,		7.0	Degasse			Shaker			Super	
SED LAST	+	3	-	-	-		-	-	_		Desande			Other		$-\parallel$	Cyclone	
LOSING	- :,.	 	20	 	171		1, 5	-	-	11.12	DAILY CO				CUMUL	_ATIVE	COST	
LOSING IVENTORY ST	123	37	25		18	10	103	10	3	4.8	4	157.	1.1		1	12) 17 -	17 *
AGCOBAR ENGI	NEER -	<u> </u>	L -		1-		<u> </u>	HOM	E ADDRE	SS · -	•	· · ·	\ \ \		1	PHON		·
OBILE UNIT		<u>(())</u>	<u>L. 12</u>	1	7.6	<u>1 E</u>	LT			LCCATION		OLNI F	<i>⟨∀</i> ,	PARRI		PHON	<u> </u>	<u>.053</u>
											-							

PAGE H HITE HOUSE COTTER DESANCES CONTEST (1500) 13 3/8 38 m WELL HISTORY 60_{/80} CRUSADER RESOURCES N.L. PEP-120 SEASPRAY POTASSIUM CHLORIDE 9 5/8 173 (WONGA BINDA #1 GIPPSLAND BASIN 8th April, 1988 ATCO DRILLING 18th April, 1988 CO DRILING JUIO SERVICES CO R. G. SWEET VICTORIA SALT OR CHLORIDE ANGLE AND DIREC-TION PH FLUID HTHP WUD DATE TVD Sič SOL OIL PV. YP. . M Pm MUD T2OS 0" [] ppm i) mg/i 53 53 88 1247.84 9.4 175 175 9 1 39 10 255 5 12 5 /15 11.0 20+ 0.4 0.6 1.2 16000 40 175 175 9.0 46 6 11 4 /15 11 0 20+ 0.4 | 0.6 | 1.2 | 16000 | 40 | 11. 11.4 502 502 9 3+ 46 202 14 186/1911.5 8 0.3 0.6 1.8 22000 200 13. 1991.68 12.4 | 608 | 608 | 9.4 | 56 202 14 17 7 /20 11.0 8 0.2 0.5 1.8 22000 200 13 954.75 13.4 609 609 9.5 49 202 15 19 7 /20 10 3 6 0.2 0.45 1.45 19400 160 14 8 20 260.25 14.4 872 872 9.5 44 11 | 16 5 /18 10.0 8.5 0.2 | 0.5 | 0.8 | 18000 | 120 | 12. 987.05 5.4 1098 1098 9.4 43 13 17 8 /22 10.0 8 0.12 0.4 | 0.5 | 22000 | 96 | 12 6.4 | 1228 | 1228 | 9.4 | 44 13 18 7 /15 10.5 7 0.2 0.6 0.7: 17000 120 11.6 1350.94 7.4 | 1335 | 1335 | 9.6 | 45 13 19 6 /16 10.5 6 0.1 0.6 0.9 22000 120 647.22 18.4 | 1394 | 1394 | 9.7 | 44 12 189 /19 10.0 6.4 200 8.4 895.75 158.25 57.00

APPENDIX 4

APPENDIX 4

APPENDIX 4

TIME ANALYSIS

CRUSADER LIMITED

TIME ANALYSIS: Wonga Binda #1 8.4.88 - 21.4.8	TIME	ANALYSIS:	Wonga	Binda	# 1	8.4.88 -	- 21.4.88
---	------	-----------	-------	-------	-----	----------	-----------

C43 Wait Time C44 Miscellaneous APRIL, 1988

	·						'	HENTI	L, 170	0								
	Opcode + Description	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
•																		
	PREPARATION																	

	A 1 Preparation	•	•	•		•		•	•	•		•	•	•	•	•	•	
	MOBILIZATION/MOVING																	
	######################################																	
																•		
	B 1 Mobilization	•	•	•	• •	•	•	•	•	•	•	•	• •	•	•	•	•	
	B 2 Moving	•	•	•	•	•	•	•	20.5	•	2.5	•	•	•	•	•	•	
	B 3 Rigging up	•	•	•	•	•	•	•		•		•	•	•	•		•	
	B 4 Rigging Down B 5 Demobilization	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
-	B 6 Dismantling	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
l	MAKING HOLE																	
!	######################################																	

	C10 Drilling								3.0	8.8		16.5	8.5	0.5	16.0	15.5	16.0	
Γ-	C11 Adding Pipe	•	•	•					•		•	•		•		•	•	
	C12 Survey	•	•	•		•	•	•	0.5	1.0	•	0.5	0. 5	•	•	•	9. 5	
	Check Trip	•		•	•	•	•	•	•	•	•	•	•		•	•	2.5	
!	czo Trip - Bit Change	•	•	•	•	•	•	•	•	•	•	•		1.0	2.5	8.0	3.0	
	C21 Trip - Deviation Op	•	•	•	•	•	•	•	•	•	•	٠	•		•	•	•	
l	-C30 Circulation	•	•	•	•	•	•	•	•	1.0	•	•	•	1.0	•	0. 5	2.0	
,	C31 Reaming/Washing	•		•	•	•	•	•	•	•	•	•	•	1.0	•	•	•	
	C32 Formation Kick	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	C33 Lost Circulation	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	
	C39 Stuck Pipe	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	C40 Fishing	•	•	•	•	•	•	•	•		•	•	•	•		•	•	
	C41 Rig Service	•	•		•	•	•	•	•	•	•	•	•	•	1.0	•	•	
	C42 Repairs	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	
	D47 U.11 Time																	

Opcode + Description	. 1	2	3	4	5	6	7	8	9	18	11	12	13	14	15	16
SECURING HOLE																
Orilling cement	•									3.5	3.0					
Adding Pipe	• ,	•														
D12 Survey						•										
D13 Check Trip									1.0							
D14 Reaming			•		•	•										
D20 Trip - Drilling Cement	•				•					1.5				•		
D22 Trip - Reaming												•	•		•	
D25 Trip - Before Casing				•		•			1.0		•	•		•		
D26 Trip - Bit & Scraper	•		•		•											
D30 Circulation	•		•	•	•	•	•	•	0.5	•		•	•		•	
D31 Reaming/Washing	•		•		•	•		•		•						
D32 Formation Kick	•		•	•	•	•		•	•	•			•			•
D33 Lost Circulation	•	•	•		•	•		•	•			•		•	•	
D39 Stuck Pipe		•	•	•	•	•		•		•	•		•	•	•	
D40 Fishing					•					•		•	•		•	
D41 Rig Service				• .	•	•	•	•		•			•			•
D42 Repairs			•	•				•			•		•			
D43 Wait Time	• ,	•		•		•		•	•			•		•		•
D44 Miscellaneous	•	•		•			•	•	•	•	4.0		•			•
D55 Run & Cement Casing	•		•		•	•	•		6.5	•	•		•			•
, D56 Nippling Up BOP	•	•					•	•		15.5			•	•	•	
D57 Standing Cement		•	•	•	•		•		5.0	1.0				•	•	•
FORMATION EVALUATION	•															
# <u>##</u> #################################																
- En Coring	_	_	_	_	_		_		_	_	_	_	_	_		_
Ell Adding Pipe			•		•	:	•	•	•	·	•	•		•	:	•
E12 Survey	-															
E13 Check Trip																
E14 Reaming												•	•			•
E20 Trip - Coring																
E22 Trip - Reaming																
E23 Trip - Logging																
E24 Trip - Formation Test	•											12.0	11.5	3.0		
E30 Circulation												2.9				
, E31 Reaming/Washing																
E32 Formation Kick																
E33 Lost circulation																
E34 Fan Strength Test																
E39 Stuck Pipe									•					1.5		
E40 Fishing	•															
E41 Rig Service	•			٠,		•										
E42 Repairs																
E43 Wait Time	•												2.5	•		
E44 Miscellaneous	•	•					•									
, E50 Logging - Open Hole			•	•	•				•	•						
E60 Testing Formation		•	•		•		•			•	•		6.0	•	•	•
E65 Circ - Geol/Res Info	•	•	•		•	•	•		•		•	1.0		•		

	Opcode + Description	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	COMPLETION/SUSPENSION																
	rilling Cement																
	Adding Pipe																
:	F12 Survey																
	F13 Check Trip																
	F14 Reaming																
	F20 Trip - Drilling Cement																
	F22 Trip - Reaming											_		-	-	•	•
_	F25 Trip - Before Casing	-		-		-		-	-	•	•	-	•	•	•	•	•
	F26 Trip - Bit & Scraper		-	_		_		•	•	•	•	•	•	•	•	•	•
ĺ	F30 Circulation	-	•	•	•	•	•	•	•	•	•	•	•			•	•
	F31 Reaming/Washing		•	•	•	•	•	•	•	•		•	٠	•	•	•	•
	F32 Formation Kick	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
	F33 Lost Circulation	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	F34 Fan Leak Off Test	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	F39 Stuck Pipe	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	F40 Fishing	•	•	•	•	•	•		:	•	•	•	•	• .	•	•	•
	F41 Rig Service	•	•	•	•			•			:	•		•	•		•
	F42 Repairs	•	•	•	•		•	•		•	•	•	•	•	•	•	•
	F43 Wait Time	•	•	•	•	•	•	•		• •	•	•	•	•	•	•	•
	F44 Miscellaneous	•	•	•	•					•	•	•	•	•	•	•	•
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	F50 Logging - Completion	•	•	•	• `	•	•	•	•	•	•	•	•	•	•	•	•
	F55 Run & Cement Casing	•	•	•	•	•	•	•	•	•	•	•	• .	•	•	•	•
	F56 Nippling Up Wellhead	, •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	F57 Standing Cemented	•	•	•	•	•	•	• '	•	•	•	•	•	•	•	•	•
	F60 Testing & Perforation	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•
	Run Tubing	•	•	. •	•	•	•	•	•	•	•	•	•	•	•	•	•
	un Production Pakcer	•		•	•	•	•	•	•		•	•	•	•	•		•
	F72 Run Wireline	•	•	•	•	•	•		•	•	•	•	•	•	•		
	F73 Pressure Surveys		•	•	•	•		•	•	•	•	•	•		•	•	•
	F90 Well Stimulation		•		•	•	•		•	•	•	•	•	•	•	•	•
	F81 Sand Exclusion	•	•	•	•	•		•	•	•	•		•		•		
	•																
	PLUGBACK/ABANDONMENT																
	640 Fishing																
	641 Rig Service															•	
	642 Repairs					-				-	•		•		•	•	•
	643 Waiting	-					•	•	•	-	•		•	•		-	
	644 Miscellaneous		•		:		•	•	•	•	•	•	•	•	•	•	
	690 Abandonment	-				-	•	•	•	•			:	•		•	•
	695 Plugback for sidetrack	-	:	•	•	-		•	•	_	•	•	•	•	•	•	•
		-	•	•	•	•	.•	-	•		•	•	•	•	•	•	

1								APRIL	, 198	В									
	Opcode + Description	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Month Total	7.	Grand Total	7.
	RATION				٠														
	A 1 Preparation		•	•	•	•	•		•	٠	•	•	T(DTAL	PREPARATION:			•	:
	MOBILIZATION/MOVING																		
	B 1 Mobilization B 2 Moving B 3 Rigging up B 4 Rigging Down B 5 Demobilization B 6 Dismantling	•		•	•	•		•		•	•	•				23.0	6.8	23.0	6.8
. [3	MAKING HOLE											TOTAL	MOBI	ILIZA	TION/MOVING:	23.0	6.8	23.0	6.8
	C10 Drilling C11 Adding Pipe C12 Survey C13 Check Trip C20 Trip - Bit Change	19.0 0.5 3.5	6.5		•			•						:		3.5	32.6 1.0 0.7 5.4	109.5 3.5 2.5 18.0	32.6 1.0 0.7 5.4
	irculation C31 Reaming/Washing C32 Formation Kick C33 Lost Circulation	•	•	•		•		•	•			•	:	•	•	4.5 1.0	1.3	4.5 1.0	1.3 0.3
	C42 Repairs C43 Wait Time		•				•					•				1.0	0.3	1.0	0.3 0.1
i 3		-	-	-	-	-	-	-	-	-	-	-	TO	TAL I	AKING HOLE:	140.5			

	Opcode + Description	17	18	19	20	21	22	23	24	25	26	27	28	29	30		Month Total	7.	Grand Total	7,
i	SECURING HOLE																			
•	**********																			
!	Drilling cement				•												6.5	1.9	6.5	1.9
1	D11 Adding Pipe		Ċ	·	•	•	•	•	•	•	•	•	•	•	•		0.5	1.1	0.3	E = 7
	D12 Survey			•				•	•		:	:	:	•	•		•	•	•	•
	D13 Check Trip					•	•		•	•		•					1.0	ø.3	1.0	0.3
1	D14 Reaming																			
	D20 Trip - Drilling Cement				•												1.5	0.4	1.5	0.4
-	D22 Trip - Reaming								•											
1	D25 Trip - Before Casing					•	•					•			•		1.0	0.3	1.0	8.3
	D26 Trip - Bit & Scraper		•		•	•	•	•		•	•	•					•			
1	D30 Circulation		•	•	•	•	•	•	•	•	• ,				•		0.5	0.1	0.5	0. i
Ī	D31 Reaming/Washing	•	•	•	• .	•	•					•	• •		•		•	,0		•
	D32 Formation Kick	•	•	•	•	•	•	•		•	•	•	•	•	•			•		
	D33 Lost Circulation	•	•	•	•	•	• .	•	•	•	•	•			•		. •		•	
i	D39 Stuck Pipe	•	•	•	•	. •	•	. •	•	•	•	•	•	•	•			•	•	•
-	D40 Fishing	•	•	•	•	•	•	•	•.	•	•	•	•	•	•			•	•	. •
	D41 Rig Service	•	•	•	•	•	•	•	٠	•	•	•		• .	•		•	•	•	•
i	D42 Repairs	•		•		•	•	•	•	•	•	•	•	•	•		٠	•	•	•
	D43 Wait Time	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•
	D44 Miscellaneous	•	•	•	•	•	. •	•	•	•	•	•	•	•	•	•	4.0	1.2	4.0	1.2
	D55 Run & Cement Casing	•	•	•	•	•	•	•	•	•	•	•	•	•	•		6.5	1.9	6.5	1.9
	D56 Nippling Up BOP D57 Standing Cement	٠	•	•	•	•	•		•	•	•	•	•	•	•		15.5	4.6	15.5	4.6
	Day Standing Cement	•	٠	•	•	•	•	•	•	•	•	•	TOTA		URING H	ini c.	6.0 42.5	1.8	6.0 42.5	1.8
																	1210	12.0	74.5	12.0
-	FORMATION EVALUATION											٠					1210	12.0	72.0	12.0
	FORMATION EVALUATION															,	1210	12.0	72.3	11.0
	***********																1210	12.0	72.3	12.0
	E18 Coring		•						•			•	•						12.3	
-	E10 Coring E11 Adding Pipe	:				:	:			:									•	
	E10 Coring E11 Adding Pipe E12 Survey		8.5												•					
	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip		8.5												•		8.5	2.5	8.5	
-	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming		8.5												•					
-	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring		8.5																	
	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming		8.5														8.5	2.5	8.5	2.5
	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring		•														8.5	2.5	8.5	2.5
	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging		3.B														8.5 3.0 26.5	2.5	8.5 3.0 26.5	2.5
	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing		3.0														8.5 3.0 26.5	2.5	8.5 3.0 26.5	2.5
	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick		3.0														8.5 3.0 26.5 4.0	2.5	8.5 3.9 26.5 4.0	2.5
* Company Comp	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation		3.0 2.0 1.5														8.5 3.0 26.5 4.0	2.5	8.5 3.9 26.5 4.0	2.5
· Company	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test		3.0 2.0 1.5														8.5 3.0 26.5 4.0	2.5	8.5 3.9 26.5 4.0	2.5
· Commence of the commence of	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe		3.0 2.0 1.5							• • • • • • • • • • • • • • • • • • • •							8.5 3.0 26.5 4.0	2.5	8.5 3.9 26.5 4.0	2.5
· Commence of the commence of	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing		3.0 2.0 1.5							•••••••••••••							8.5 3.8 26.5 4.0 1.5	2.5 0.9 7.9 1.2 0.4	3.0 26.5 4.0 1.5	2.5
· management in the second in	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing E41 Rig Service		3.0														8.5 3.0 26.5 4.0 1.5	2.5 0.9 7.9 1.2 0.4	3.0 26.5 4.0 1.5	2.5
The second secon	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing E41 Rig Service E42 Repairs		3.0 2.0 1.5														8.5 3.0 26.5 4.0 1.5	2.5 0.9 7.9 1.2 0.4	3.9 26.5 4.0 1.5	2.5 9.9 7.9 1.2 9.4
The second secon	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing E41 Rig Service E42 Repairs E43 Wait Time		3.0 2.0 1.5														8.5 3.0 26.5 4.0 1.5	2.5 0.9 7.9 1.2 0.4	3.0 26.5 4.0 1.5	2.5 9.9 7.9 1.2 9.4
* The second sec	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous		3.89 2.69 1.5														8.5 26.5 4.0 1.5 0.5	2.5 0.9 7.9 1.2 0.4 0.4	8.5 3.9 26.5 4.0 1.5	2.5 7.9 1.2 0.4 0.1
The second secon	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E50 Logging - Open Hole		3.89 2.69 1.5	24.8	3.5												8.5 3.8 26.5 4.0 1.5 2.5 2.5	2.5 	8.5 3.0 26.5 4.0 1.5 0.5 2.5	2.5 9.9 7.9 1.2 9.4 9.1 9.7 8.8
The second secon	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E50 Logging - Open Hole E60 Testing Formation		3.89 2.69 1.5	24.8													8.5 3.5 4.0 1.5 2.5 2.5 2.5 6.0	2.5 	8.5 3.0 26.5 4.0 1.5 2.5 2.5 2.5	2.5
· · · · · · · · · · · · · · · · · · ·	E10 Coring E11 Adding Pipe E12 Survey E13 Check Trip E14 Reaming E20 Trip - Coring E22 Trip - Reaming E23 Trip - Logging E24 Trip - Formation Test E30 Circulation E31 Reaming/Washing E32 Formation Kick E33 Lost circulation E34 Fmn Strength Test E39 Stuck Pipe E40 Fishing E41 Rig Service E42 Repairs E43 Wait Time E44 Miscellaneous E50 Logging - Open Hole	1.0	3.89 2.69 1.5	24.0													8.5 26.5 4.0 1.5 2.5 29.5 6.0 2.8	2.5 0.7 7.9 1.2 0.4 0.7 8.8 1.8 0.6	8.5 3.0 26.5 4.0 1.5 2.5 2.5 2.5	2.5

Ì	Opcode + Description	17	18	19	20	21	22	23	24	25	26	27	28	29	30	Month Total	%	Grand Total	7.
	COMPLETION/SUSPENSION																		
	Drilling Cement					_		_	_	_	_	_			_				
1	F11 Adding Pipe	•								-		_		-		-	•		•
	F12 Survey			•					•					•	•		•		•
ĺ	F13 Check Trip																	•	
	F14 Reaming									•	•		•		•				
	F20 Trip - Drilling Cement														•			•	
ſ	F22 Trip - Reaming														•				
ļ	F25 Trip - Before Casing																		
Ĺ	F26 Trip - Bit & Scraper								•										
r	F30 Circulation																		
İ	F31 Reaming/Washing	•																	
i	F32 Formation Kick																		
	F33 Lost Circulation						•												
ſ	F34 Fmn Leak Off Test	•			•	•				•					• .			•	
	F39 Stuck Pipe			•							•				•				
	F40 Fishing						•												
[F41 Rig Service				•			•		•						•			
	F42 Repairs		•	•	•	•	•	•		•		•				•	٠.		
,	F43 Wait Time							•			•		•		•	•			
1	F44 Miscellaneous	•	•	•	•	•		•			•				•				•
-	F50 Logging - Completion	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	
i	F55 Run & Cement Casing		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•
	F56 Nippling Up Wellhead	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		•
	F57 Standing Cemented	•	•	•	•	•	•	•	•	•	•	•	•	•	• .	•	•		•
(FAR Testing & Perforation	•	•	•	•	•	•	•	•			•	•	•	•	•	•		•
	un Tubing	•**	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	
1	F71 Run Production Pakcer	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	F72 Run Wireline	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•
,	F73 Pressure Surveys	•	•	•	•	•	•	•	•	•	•	•	•	•	• .	•	•	•	•
{	F80 Well Stimulation	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	F81 Sand Exclusion	•	•	•	•	•	•	•	•	•	•	* TAL 8			*	•	•	•	•
į											IU	IAL C	UNPLE	I IUN/	SUSPENSION:	•	•	•	•
,	PLUGBACK/ABANDONMENT																		
Ì	######################################															•			
	************										•								
	640 Fishing																		
i	641 Rig Service	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
-	642 Repairs	• ,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	643 Waiting	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1	644 Miscellaneous	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1	690 Abandonment	•		. ,	0.5 2	4. A	•	•	•	•		•	•	•	•	44.5	17 7	44.5	י דו
•	695 Plugback for sidetrack							•	•	•	•	•	•	•	•	TTed	14.2	TT.J.	13.4
		•	•	•	•	•	•	•	•	•	• т	OTAI	PLUGR	• ACK/A	BANDONMENT:	44.5	13.2	44.5	13.2
į											•						.v		

APPENDIX 5

APPENDIX 5

DRILL STEM TEST REPORTS

HALLIBURTON RESERVOIR EVALUATION SYSTEM

Lease Owner

Country

Lease

Well No.

Test No.

Test Date

Ticket No. : 330038

: CRUSADER RES.

: AUSTRALIA

WONGA BINDA

: 12-APR-88

HALLIBURTON SERVICES

REPORT TICKET NO: 330038

MEMORY GAUGE TICKET NO: 330038

DATE: 12-APR-88

HALLIBURTON CAMP: SALE

TESTER: W.FARRELLY / I.HOVELL

WITNESS: E.BATT

DRILLING CONTRACTOR: ACTO #7

LEGAL LOCATION:

OPERATOR: CRUSADER RES. LEASE NAME: WONGA BINDA

WELL NO: 1 TEST NO: 1

TESTED INTERVAL: 1968.00 - 1995.00 ft

FIELD AREA: GIPPSLAND BASIN

COUNTY/LSD:

STATE/PROVINCE: VICTORIA

COUNTRY: AUSTRALIA

NOTICE: THIS REPORT IS BASED ON SOUND ENGINEERING PRACTICES, BUT BECAUSE OF VARIABLE WELL CONDITIONS AND OTHER INFORMATION WHICH MUST BE RELIED UPON HALLIBURTON MAKES NO WARRANTY, EXPRESS OR IMPLIED AS TO THE ACCURACY OF THE DATA OR OF ANY CALCULATIONS OR OPINIONS EXPRESSED HEREIN. YOU AGREE THAT HALLIBURTON SHALL NOT BE LIABLE FOR ANY LOSS OR DAMAGE, WHETHER DUE TO NEGLIGENCE OR OTHERWISE ARISING OUT OF OR IN CONNECTION WITH SUCH DATA, CALCULATIONS OR OPINIONS.

TABLE OF CONTENTS

SECTION 1:	TEST SUMMARY	& INFORMATION	
Test Per Pressure Test and Rate His Tool Str	of Test Resultiod Summary vs. Time Plot Formation Dastory Table ring Configuration Job Log	1. ot 1. ata 1.	2 3 4 5 6
SECTION 2: A	ANALYSIS		
Plots		2.	1
SECTION 3:	MEMORY GAUGE	DATA	
Gauge No Gauge No		3. 3.	

PRESSURE VS TIME
CPC gauge no.: 63027
hory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)			COMM	ENTS
12-APR-88		Data Print		:	2		
02:37:26			61.2				
03:15:00				MAKE	UP	GAUGE	CARRIERS
03:37:26			49.4				
04:37:26		65.044	59.8				
05:37:26			71.5				
05:38:24		352.866	71.6				
05:39:21		346.794	71.7				
05:40:19		361.247	71.9				
05:41:16			72.0				
05:42:14		378.724	72.1				
05:43:12		398.245	72.2				
05:44:09		411.166	72.3				
05:45:07		410.654	72.4				
05:46:04		403.282	72.5				
05:47:02		451.580	72.6				
05:48:00			72.7				
05:48:57		478.366	72.8				
05:49:55		465.949	72.9				
<u>05</u> :50:52		518.217	73.0				
51:50		510.935	73.1				
05:52:48		554.605	73.1				
05:53:45		544.379	73.2				
05:54:43			73.3				
05:55:40		577.193	73.4				
05:56:38		619.861	73.5				
05:57:36		610.881	73.5				
05:58:33		651.514	73.6				
05:59:31		644.725	73.7				
06:00:28		681.985	73.8				
06:01:26			73.8				
06:02:24		707.291	73.9				
06:03:21		709.879	74.0				
06:04:19		707.361	74.0				
06:05:16		750.685	74.1				
06:06:14		738.747	74.2				
06:07:12		769.358	74.2				
06:08:09			74.3				
06:09:07		804.394	74.4				
06:10:04		804.929	74.5				
06:11:02		863.363	74.5				
06:12:00		837.006	74.6				
06:12:57		872.227	74.7				
06:13:55		868.703	74.8				
06:14:52			74.8				
06:15:50		900.296	74.9				
16:48		950.861	75.0				

SUMMARY OF TEST

Lease Owner: CRUSADER RES. Lease Name: WONGA BINDA

Well No.: 1 Test No.: 1

County/LSD: State/Province: VICTORIA

Country: AUSTRALIA

Formation Tested: TRARALGON

Hole Temp: 84.00 F

Total Depth: 1995.00 ft

Net Pay: 7.00 ft

Gross Tested Interval: 1968.00 - 1995.00 ft

Perforated Interval (ft):

COVERY:

8 FT RAT HOLE MUD

REMARKS:

TEST PERFORMED WITH BAKER HYDROFLATE TEST STRING.

TEST PERIOD SUMMARY

Gauge No.: 63027 Depth: 1941.00 ft Blanked off: No

PERIOD ID DESCRIPTION PRESSURE (psi) DURATION (min) Α 1 Start Draw-down 1042.20 В End Draw-down 39.55 60.00 В Start Build-up 2 39.55 С End Build-up 39.92 61.44

NOTE: for Pressure vs. Time Plot, see next page.

TEST AND FORMATION DATA

Formation Tested: TRARALGON All Depths Measured From: K.B

Elevation:
Total Depth: 96.80 ft 1995.00 ft

Net Pay: 7.00 ft
Hole or Casing Size: 8.500 in
Gross Tested Interval: 1968.00 - 1995.00 ft

Perforated Interval (ft):

HOLE FLUID HOLE TEMPERATURE

Type: MUD Depth: 1941.00 ft Weight: 9.40 lb/gal Estimated: 0.00 F Viscosity: 49 seconds Actual: 84.00 F 1941.00 ft

HYDROCARBON PROPERTIES CUSHION DATA

Oil Gravity (API): 0.0 @ 60 F TYPE
Gas/Oil ratio (ScF/STB): 0.0 NIL AMOUNT WEIGHT

Gas Gravity (SG): 0.00

FLUID PROPERTIES FOR RECOVERED MUD AND WATER

SOURCE	RESISTIV	YTI	CHLORIDES	SG	PH
	@	F	PPM		
	@	F	PPM		
	9	F	PPM		
	@	F	PPM		
	6	F	PPM		
	9	F	PPM		

SAMPLER DATA

Surface Pressure: 0 psi 0 cc Volume of Gas: Volume of Oil: Volume of Water: Volume of Mud: 0 cc 0 cc 0 cc Total Liquids:

REMARKS:

Date: 12-APR-88

Ticket no: 330038

Page no: 1.6.1

TEST STRING CONFIGURATION

•	0.D. (in)	I.D. (in)	LENGTH (ft)	DEPTH (ft)
ELECTRONIC GAUGE RUNNING CASE	5.000	1.000	7.950	1934.20
ELECTRONIC GAUGE RUNNING CASE	5.000	1.000	7.950	1941.20
TOTAL DEPTH				1995.00

Date: 12-APR-88

Ticket No: 330038 Page No: 1.7.1

Test No: 1

OPERATOR JOB LOG

pe of Flow Measuring Device: 1/2" CHOKE

TIME HH:MM:SS	CHOKE SIZE (in)	SURFACE PRESSURE (psi)	GAS RATE (MCF/D)	LIQUID RATE (bbl/d)	REMARKS
12-APR-88				,	
03:15:00	32/64				MAKE UP GAUGE CARRIERS
07:34:00	32/64				ROTATE TO PUMP UP PACKER
08:45:00	32/64				TOOL OPEN
09:45:00	32/64				TOOL CLOSED
10:50:00	32/64				PULL FREE BYPASS OPEN
13:00:00	32/64				BREAK DOWN GAUGE CARRIERS

TEST PERIOD SUMMARY

Gauge No.: 63027 Depth: 1941.00 ft Blanked off: No PRESSURE (psi) DURATION (min) DESCRIPTION ID PERIOD 1042.20 Start Draw-down Α End Draw-down 39.55 60.00 В Start Build-up 39.55

39.92

61.44

NOTE: for Pressure vs. Time Plot, see next page.

End Build-up

В

С

PRESSURE VS TIME

gauge no.: 63027 Memory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
10 100 00		Data Drint	Fromionaire	2	
12-APR-88		Data Print 930.708	75.1	2	
06:17:45		992.346	75.2		
06:18:43		960.248	75.2 75.2		
06:19:40 06:20:38		1031.000	75.3		
06:20:36		1031.000	75.4		
06:21:36		1018.868	75.5		
06:22:33		1005.912	75.6		
06:24:28		1006.053	75.7		
06:25:26		1005.848	75.8		
06:26:24		1005.596	75.9		
06:27:21		1005.297	76.0		
06:28:19		1003.297	76.1		
06:29:16		1004.722	76.2		
06:30:14		1004.722	76.3		
06:30:14		1004.421	76.4		
06:31:12		1004.025	76.5		
06:32:09		1003.700	76.6		
06:33:07 06:34:04		1003.473	76.7		
35:02		1003.222	76.8		
00:36:00		1002.832	76.9		
06:36:57		1002.626	77.0		
06:37:55		1002.444	77.0		
06:38:52		1002.402	77.1		
06:39:50		1002.269	77.2		
06:40:48		1002.182	77.3		
06:41:45			77.4		
06:42:43		1002.838	77.5		
06:43:40		1002.686	77.6		
06:44:38		1002.510	77.6		
06:45:36		1002.314	77.7		
06:46:33		1002.142	77.8		
06:47:31		1002.039	77.9		
06:48:28			77.9		
06:49:26		1001.860	78.0		
06:50:24		1001.761	78.1		
06:51:21		1001.662	78.1		
06:52:19		1001.565	78.2		
06:53:16		1001.514	78.3		
06:54:14		1001.394	78.3		
06:55:12			78.4		
06:56:09		1001.273	78.4		
06:57:07		1001.225	78.5		
06:58:04		1001.200	78.5		
06:59:02		1001.108	78.6		
00:00		1001.063	78.6		
07:00:57		1000.971	78.7		

PRESSURE VS TIME
gauge no.: 63027
Memory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		C	COMME	NTS		
12-APR-88		Data Print		y: 2					
07:01:55			78.7						
07:02:52		1000.653	78.8						
07:03:50		1000.587	78.8						
07:04:48		1000.613	78.9						
07:05:45		1000.501	78.9						
07:06:43		1000.391	78.9						
07:07:40		1000.234	79.0						
07:08:38 07:09:36		1000.058	79.0 79.1						
07:10:33		999.902	79.1						
07:10:33		999.814	79.1						
07:12:28		999.890	79.2						
07:12:28		999.993	79.2						
07:13:24		1000.233	79.2						
07:15:21		1000.255	79.3						
07:16:19		1000.161	79.3						
07:17:16		1000.377	79.3						
A7:18:14		1000.316	79.4						
:19:12		1000.050	79.4						
07:20:09		1001.599	79.4						
07:21:07		1001.058	79.4						
07:22:04			79.5						
07:23:02		1003.788	79.5						
07:24:00		1017.329	79.5						
07:24:57		1016.766	79.5						
07:25:55		981.539	79.6						
07:26:52		1033.755	79.6						
07:27:50		1044.764	79.6						
07:28:48			79.6						
07:29:45		1000.655	79.7						
07:30:43		1003.032	79.7						
07:31:40		1015.723	79.7						
07:32:38		1015.001	79.7						
07:33:36		1027.310	79.8						
07:34:00		2020 405	70.0	ROTATE	TO	PUMP	UP	PACKER	
07:34:33		1030.405	79.8						
07:35:31		1006 000	79.8 79.8						
07:36:28 07:37:26		1026.223 1022.718	79.8						
07:37:28		1020.938	79.9						
07:38:24		1019.479	79.9						
07:40:19		1019.479	79.9						
07:41:16		1016.882	79.9						
42:14			80.0						
43:12		1014.469	80.0						
07:44:09		1013.286	80.0						

PRESSURE VS TIME

C gauge no.: 63027 mory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88			Frequency:	2	
07:45:07		1012.470	80.0		
07:46:04		1022.868	80.1		
07:47:02		1021.178	80.1		
07:48:00		1019.786	80.1		
07:48:57			80.1		
07:49:55		1017.855	80.2		
07:50:52		1015.638	80.2		
07:51:50		1013.949	80.2		
07:52:48		1012.559	80.2		
07:53:45		1011.491	80.3		
07:54:43		1010.492	80.3		
07:55:40		1000 006	80.3		
07:56:38		1009.896 962.929	80.3		
07:57:36 07:58:33			80.4		
07:59:31	•	1046.456 979.938	80.4		
08:00:28		1012.266	80.4		
08:00:26		988.586	80.4 80.5		
:02:24		300.300	80.5		
:03:21		998.135	80.5		
08:04:19		998.103	80.5		
08:05:16		998.392	80.5		
08:06:14		1006.189	80.6		
08:07:12		1005.169	80.6		
08:08:09		1004.265	80.6		
08:09:07		20017200	80.6		
08:10:04		1002.893	80.6		
08:11:02		1002.288	80.7		
08:12:00		1001.637	80.7		
08:12:57		1000.963	80.7		
08:13:55		1000.474	80.7		
08:14:52		972.595	80.7		
08:15:50			80.7		
08:16:48		1053.444	80.8		
08:17:45		1005.814	80.8		
08:18:43		1008.194	80.8		
08:19:40		1006.487	80.8		
08:20:38		1005.308	80.8		
08:21:36		1004.084	80.9		
08:22:33			80.9		
08:23:31		1002.463	80.9		
08:24:28		1001.560	80.9		
08:25:26		1000.819	80.9		
08:26:24			80.9		
:27:21		999.612	80.9		
:28:19		999.468	81.0		

PRESSURE VS TIME

c gauge no.: 63027 mory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88		Data Print	Frequency:	2	
08:29:16			81.0		
08:30:14		997.367	81.0		
08:31:12		996.856	81.0		
08:32:09		996.276	81.0		
08:33:07		995.627	81.0		
08:34:04		995.049	81.0		
08:35:02		994.355	81.0		
08:36:00			81.1		
08:36:57		993.243	81.1		
08:37:55		992.756	81.1		
08:38:52		978.300	81.1		
08:39:50		979.349	81.1		
08:40:48		1054.042	81.1		
08:41:45		1076.061	81.1		
08:42:43			81.2		
08:43:40		1047.663	81.9		

PRESSURE VS TIME

c gauge no.: 63027 mory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME	D TIME	PRESSURE	TEMP COMMENTS
HH:MM:SS	(min)	(psi)	(F)
12-APR-88		Data Print	Frequency: 1
11 111 00			of Period 1 ***
08:44:38	0.0	1042.200	82.7
08:45:00			TOOL OPEN
08:45:07	0.5	655.337	83.1
08:45:36	1.0	41.289	83.5
08:46:04	1.4		83.9
08:46:33	1.9	40.939	83.9
08:47:02	2.4	41.283	83.9
08:47:31	2.9	40.802	83.9
08:48:00	3.4	40.603	83.9
08:48:28	3.8	40.165	84.0
08:48:57	4.3	39.923	84.0
08:49:26	4.8		84.0
08:49:55	5.3	39.841	83.9
08:50:24	5.8	39.894	83.9
08:50:52	6.2	39.946	83.9
08:51:21	6.7	39.999	83.9
08:51:50	7.2	40.029	83.8
52:19	7.7	40.082	83.8
52:48	8.2		83.8
08:53:16	8.6	40.102	83.8
08:53:45	9.1	40.157	83.7
08:54:14	9.6	40.146	83.7
08:54:43	10.1	40.158	83.7
08:55:12	10.6	40.169	83.7
08:55:40 08:56:09	11.0 11.5	40.180	83.6 83.6
08:56:38	12.0	40.159	83.6
08:57:07	12.5	40.170	83.5
08:57:36	13.0	40.170	83.5
08:58:04	13.4	40.149	83.5
08:58:33	13.9	40.138	83.5
08:59:02	14.4	40.128	83.4
08:59:31	14.9	101220	83.4
09:00:00	15.4	40.084	83.4
09:00:28	15.8	40.072	83.3
09:00:57	16.3	40.082	83.3
09:01:26	16.8	40.049	83.3
09:01:55	17.3	40.059	83.3
09:02:24	17.8	40.025	83.2
09:02:52	18.2		83.2
09:03:21	18.7	40.022	83.2
09:03:50	19.2	40.009	83.2
09:04:19	19.7	39.996	83.1
04:48	20.2	39.983	83.1
05:16	20.6	39.970	83.1

PRESSURE VS TIME

c gauge no.: 63027 Gauge Depth: 1941.00 ft mory Recorder No.: 61771

D TIME PRESSURE TEMP TIME COMMENTS HH:MM:SS (min) (psi) (F) 12-APR-88 Data Print Frequency: 1 21.1 09:05:45 39.935 83.1 09:06:14 21.6 83.1 21.6 22.1 39.930 83.0 22.6 39.916 83.0 23.0 39.902 83.0 23.5 39.887 83.0 24.0 39.873 83.0 24.5 39.859 82.9 09:06:43 09:07:12 09:07:40 09:08:09 09:08:38 09:09:07 09:09:36 25.0 82.9 39.656 82.9 39.663 82.9 25.4 09:10:04 25.9 09:10:33 09:11:02 26.4 39.692 82.9 26.9 39.721 09:11:31 26.9 39.721 82.8 27.4 39.728 82.8 27.8 39.735 82.8 82.8 09:12:00 09:12:28 28.3 09:12:57 82.8 28.8 39.769 29.3 39.754 29.8 39.760 30.2 39.766 30.7 39.772 31.2 39.778 09:13:26 82.8 09:13:55 82.8 82.7 :14:24 :14:52 82.7 09:15:21 82.7 09:15:50 82.7 31.7 09:16:19 82.7 32.2 39.724 09:16:48 32.2 39.724 32.6 39.729 33.1 39.713 33.6 39.718 34.1 39.723 34.6 39.707 82.7 09:17:16 82.7 09:17:45 82.6 09:18:14 82.6 09:18:43 82.6 34.6 09:19:12 82.6 35.0 09:19:40

 35.0
 82.6

 35.5
 39.695
 82.6

 36.0
 39.700
 82.6

 36.5
 39.682
 82.6

 37.0
 39.687
 82.5

 37.4
 39.757
 82.5

 37.9
 39.674
 82.5

 38.4
 82.5

 39.4
 39.640
 82.5

 39.8
 39.644
 82.5

 39.8
 39.626
 82.5

 40.3
 39.630
 82.5

 40.8
 39.613
 82.4

 41.3
 39.617
 82.4

 41.8
 82.4

 82.6 09:20:09 09:20:38 09:21:07 09:21:36 09:22:04 09:22:33 09:23:02 09:23:31 09:24:00 09:24:28 09:24:57 09:25:26 09:25:55 09:26:24 41.8 82.4 42.2 39.646 82.4 42.7 39.650 82.4 :26:52

:27:21

PRESSURE VS TIME

C gauge no.: 63027 hory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
12-APR-88		Data Duint	The contract of	
09:27:50	43.2	Data Print 39.631	rrequence 82.4	y: 1
09:27:30	43.7	39.656	82.4	
09:28:48	44.2	39.638	82.4	
09:29:16	44.6	39.642	82.4	
09:29:45	45.1	39.042	82.4	
09:30:14	45.6	39.626	82.4	
09:30:43	46.1	39.608	82.4	
09:31:12	46.6	39.611	82.3	
09:31:40	47.0	39.636	82.3	
09:32:09	47.5	39.617	82.3	
09:32:38	48.0	39.620	82.3	
09:33:07	48.5	37.020	82.3	
09:33:36	49.0	39.605	82.3	
09:34:04	49.4	39.585	82.3	
09:34:33	49.9	39.588	82.3	
09:35:02	50.4	39.591	82.3	
09:35:31	50.9	39.572	82.3	
09:36:00	51.4	39.574	82.3	
36:28	51.8		82.3	
36:57	52.3	39.601	82.3	
09:37:26	52.8	39.582	82.2	
09:37:55	53.3	39.585	82.2	
09:38:24	53.8	39.565	82.2	
09:38:52	54.2	39.590	82.2	
09:39:21	54.7	39.592	82.2	
09:39:50	55.2		82.2	
09:40:19	55.7	39.597	82.2	
09:40:48	56.2	39.577	82.2	
09:41:16	56.6	39.623	82.2	
09:41:45	57.1	39.603	82.2	
09:42:14	57.6	39.605	82.2	
09:42:43	58.1	39.586	82.2	
09:43:12	58.6		82.2	
09:43:40	59.0		82.2	
09:44:09	59.5		82.2	
09:44:38	60.0	39.549	82.2	
09:45:00				TOOL CLOSED
		*** End o	of Period	1 ***

PRESSURE VS TIME

C gauge no.: 63027 mory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
12_3_00_00		Doto Dwint		
12-APR-88		*** Start	Frequency: 1 of Period 2 ***	
09:45:07	0.5	44.137	82.2	
09:45:36	1.0		82.2	
09:46:04	1.4	62.761	82.2	
09:46:33	1.9		82.2	
09:47:02	2.4	59.718	82.1	
09:47:31	2.9		82.1	
09:48:00	3.4	56.307	82.1	
09:48:28	3.8	53.829	82.1	
09:48:57	4.3	52.374	82.1	
09:49:26	4.8	51.572	82.1	
09:49:55	5.3		82.1	
09:50:24	5.8	50.423	82.1	
09:50:52	6.2	50.293	82.1	
09:51:21	6.7	50.208	82.1	
09:51:50	7.2	50.035	82.1	
09:52:19	7.7	44.730	82.1	
09:52:48	8.2	43.187	82.1	
:53:16	8.6		82.1	
:53:45		41.320	82.1	
09:54:14	9.6	40.886	82.1	
09:54:43 09:55:12	10.1	40.387	82.1	
09:55:40	10.6 11.0	40.388	82.1	
09:56:09	11.5	40.454 40.498	82.1 82.1	
09:56:38	12.0	40.490	82.1	
09:57:07	12.5	40.544	82.1	
09:57:36	13.0	40.589	82.1	
09:58:04	13.4	40.590	82.1	
09:58:33	13.9	40.613	82.1	
09:59:02	14.4	40.614	82.1	
09:59:31	14.9	40.637	82.1	
10:00:00	15.4		82.0	
10:00:28	15.8	40.639	82.0	
10:00:57	16.3	40.640	82.0	
10:01:26	16.8	40.663	82.0	
10:01:55	17.3	40.664	82.0	
10:02:24	17.8	40.665	82.0	
10:02:52	18.2	40.645	82.0	
10:03:21	18.7		82.0	
10:03:50	19.2		82.0	
10:04:19	19.7		82.0	
10:04:48	20.2		82.0	
10:05:16	20.6		82.0	
05:45	21.1		82.0	
. 00:14	21.6	40.608	82.0	

Ticket No: 330038 Page No: 3.1.10 Date: 12-APR-88

PRESSURE VS TIME

Gauge Depth: 1941.00 ft

CRC gauge no.: 63027 mory Recorder No.: 61771

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
12 300 00		Data Duduk	-	_
12-APR-88 10:06:43	22 1	Data Print	Frequency:	1
10:03:43	22.1 22.6	40 610	82.0	
10:07:40	23.0	40.610 40.589	82.0	
10:08:09	23.5		82.0	
10:08:38	24.0	40.590 40.569	82.0	
10:09:07	24.5		82.0	
10:09:36	25.0	40.592	82.0	
10:10:04		40.571	82.0	
	25.4	40 551	82.0	
10:10:33		40.551	82.0	
10:11:02	26.4	40.552	82.0	
10:11:31	26.9	40.531	82.0	
10:12:00	27.4	40.510	82.0	
10:12:28 10:12:57	27.8	40.533	82.0	
10:12:57	28.3 28.8	40.490	82.0	
10:13:55	29.3	40 400	82.0	
10:13:33	29.8	40.492	82.0	
10:14:52	30.2	40.471 40.472	82.0	
10:14:32	30.7	40.472	82.0	
:15:50	31.2	40.452	82.0	
10:16:19	31.7	40.452	82.0 82.0	
10:16:48	32.2	40.455	82.0	
10:17:16		40.433	82.0	
10:17:45		40.412	82.0	
10:18:14	33.6	40.413	82.0	
10:18:43	34.1	40.436	82.0	
10:19:12	34.6	40.393	82.0	
10:19:40	35.0	40.394	82.0	
10:20:09	35.5	101334	81.9	
10:20:38	36.0	40.374	81.9	
10:21:07	36.5	40.375	81.9	
10:21:36	37.0	40.332	81.9	
10:22:04	37.4	40.355	81.9	
10:22:33	37.9	40.334	81.9	
10:23:02	38.4	40.313	81.9	
10:23:31	38.9		81.9	
10:24:00	39.4	40.293	81.9	
10:24:28	39.8	40.293	81.9	
10:24:57	40.3		81.9	
10:25:26	40.8		81.9	
10:25:55	41.3		81.9	
10:26:24	41.8		81.9	
10:26:52	42.2		81.9	
10:27:21	42.7		81.9	
27:50	43.2		81.9	
28:19	43.7	40.211	81.9	

PRESSURE VS TIME

mory Recorder No.: 61771 Gauge Depth: 1941.00 ft

12-APR-88 10:28:48 10:29:16 44:6 40.191 81.9 10:30:14 45.6 81.9 10:30:14 45.6 81.9 10:31:12 46.6 40.149 81.9 10:31:12 46.6 40.149 81.9 10:31:12 46.6 40.149 81.9 10:31:40 47.0 40.193 81.9 10:31:40 47.0 40.193 81.9 10:32:38 48.0 40.151 81.9 10:32:38 48.0 40.151 81.9 10:33:36 49.0 81.9 10:33:36 49.0 81.9 10:34:33 49.9 40.087 81.9 10:34:33 49.9 40.087 81.9 10:35:21 50.4 40.087 81.9 10:35:21 50.9 40.088 81.9 10:36:28 51.8 40.067 81.9 10:36:28 51.8 40.067 81.9 10:36:28 51.8 40.046 81.9 10:38:52 52.3 81.9 10:37:26 52.8 40.046 81.9 10:38:52 54.2 40.025 81.9 10:39:50 55.2 40.004 81.9 10:39:50 55.2 40.004 81.9 10:39:50 55.2 40.004 81.9 10:39:50 55.2 40.004 81.9 10:40:48 56.6 39.984 81.9 10:41:45 57.1 39.984 81.9 10:42:24 57.6 39.963 81.9 10:44:09 59.5 39.942 81.9 10:44:38 60.0 39.920 81.9 10:44:38 60.0 39.921 81.9 10:44:38 60.0 39.921 81.9 10:44:38 60.0 39.921 81.9 10:44:38 60.0 39.921 81.9 10:44:38 60.0 81.9 PULL FREE BYPASS OPEN	TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
10:28:48					
10:28:48			Data Print	Frequenc	y: 1
10:29:45	10:28:48	44.2			-
10:30:14	10:29:16	44.6	40.191	81.9	
10:30:43	10:29:45	45.1	40.191	81.9	
10:31:12		45.6		81.9	
10:31:40		46.1	40.149	81.9	
10:32:09		46.6	40.149	81.9	
10:32:38	10:31:40	47.0	40.193	81.9	
10:33:07	10:32:09	47.5	40.172	81.9	
10:33:36	10:32:38	48.0	40.151	81.9	
10:34:04	10:33:07	48.5	40.129	81.9	
10:34:33		49.0		81.9	
10:35:02 50.4 40.087 81.9 10:35:31 50.9 40.088 81.9 10:36:28 51.8 40.066 81.9 10:36:57 52.3 81.9 10:36:57 52.3 81.9 10:38:24 53.8 40.046 81.9 10:39:21 54.7 40.004 81.9 10:39:21 54.7 40.004 81.9 10:40:49 55.7 81.9 10:41:16 56.6 39.984 81.9 10:41:45 57.1 39.983 81.9 10:42:14 57.6 39.963 81.9 10:42:43 58.1 39.963 81.9 10:42:43 58.1 39.963 81.9 10:43:12 58.6 39.941 81.9 10:43:40 59.0 81.9 10:44:09 59.5 39.942 81.9 10:44:38 60.0 39.920 81.9 10:45:07 60.5 39.920 81.9 10:45:36 61.0 39.921 81.9 10:45:36 61.0 39.921 81.9 10:45:36 61.0 39.921 81.9 10:46:33 10:47:31 145.494 81.9 10:48:28 10:49:26 80.510 81.9 PULL FREE BYPASS OPEN		49.4		81.9	
10:35:31	10:34:33	49.9	40.087	81.9	
10:36:00 51.4 40.066 81.9 10:36:28 51.8 40.067 81.9 10:36:57 52.3 81.9 10:37:26 52.8 40.046 81.9 37:55 53.3 40.046 81.9 10:38:52 54.2 40.025 81.9 10:39:50 55.2 40.004 81.9 10:40:19 55.7 81.9 10:40:48 56.2 39.983 81.9 10:41:16 56.6 39.984 81.9 10:42:14 57.6 39.984 81.9 10:42:14 57.6 39.983 81.9 10:42:43 58.1 39.963 81.9 10:42:43 58.1 39.963 81.9 10:42:43 58.1 39.963 81.9 10:43:40 59.0 81.9 10:44:38 60.0 39.920 81.9 10:45:07 60.5 39.920 81.9 10:45:07 60.5 39.920 81.9 10:45:36 61.0 39.921 81.9 10:46:33 75.149 81.9 10:48:28 102.050 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 PULL FREE BYPASS OPEN			40.087	81.9	
10:36:28		50.9	40.088	81.9	
10:36:57			40.066	81.9	
10:37:26			40.067	81.9	
37:55					
10:38:24 53.8 40.047 81.9 10:38:52 54.2 40.025 81.9 10:39:50 55.2 40.004 81.9 10:40:19 55.7 81.9 10:41:16 56.6 39.984 81.9 10:42:14 57.6 39.963 81.9 10:42:14 57.6 39.963 81.9 10:42:43 58.1 39.963 81.9 10:43:40 59.0 81.9 10:43:40 59.0 81.9 10:44:09 59.5 39.942 81.9 10:44:38 60.0 39.920 81.9 10:45:36 61.0 39.920 81.9 10:45:36 61.0 39.921 81.9 10:46:04 61.4 39.921 81.9 10:46:04 61.4 39.921 81.9 10:47:31 145.494 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN			40.046	81.9	
10:38:52		53.3	40.046	81.9	
10:39:21 54.7 40.004 81.9 10:39:50 55.2 40.004 81.9 10:40:19 55.7 81.9 10:40:48 56.2 39.983 81.9 10:41:16 56.6 39.984 81.9 10:42:14 57.6 39.963 81.9 10:42:14 57.6 39.963 81.9 10:42:43 58.1 39.963 81.9 10:43:12 58.6 39.941 81.9 10:43:40 59.0 81.9 10:44:09 59.5 39.942 81.9 10:44:38 60.0 39.920 81.9 10:45:07 60.5 39.920 81.9 10:45:36 61.0 39.921 81.9 10:46:04 61.4 39.921 81.9 10:46:04 61.4 39.921 81.9 10:46:33 75.149 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:24 PULL FREE BYPASS OPEN		53.8	40.047	81.9	
10:39:50		54.2	40.025	81.9	
10:40:19		54.7	40.004	81.9	
10:40:48 56.2 39.983 81.9 10:41:16 56.6 39.984 81.9 10:41:45 57.1 39.984 81.9 10:42:14 57.6 39.963 81.9 10:42:43 58.1 39.963 81.9 10:43:40 59.0 81.9 10:44:09 59.5 39.942 81.9 10:44:38 60.0 39.920 81.9 10:45:07 60.5 39.920 81.9 10:45:36 61.0 39.921 81.9 10:46:04 61.4 39.921 81.9 *** End of Period 2 *** Data Print Frequency: 2 10:46:33 75.149 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN			40.004	81.9	
10:41:16				81.9	
10:41:45			39.983	81.9	
10:42:14 57.6 39.963 81.9 10:42:43 58.1 39.963 81.9 10:43:12 58.6 39.941 81.9 10:43:40 59.0 81.9 10:44:09 59.5 39.942 81.9 10:45:07 60.5 39.920 81.9 10:45:36 61.0 39.921 81.9 10:46:04 61.4 39.921 81.9 *** End of Period 2 *** Data Print Frequency: 2 10:46:33 75.149 81.9 10:47:31 145.494 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 PULL FREE BYPASS OPEN 10:50:24		56.6	39.984	81.9	
10:42:43		57.1	39.984	81.9	
10:43:12	10:42:14	57.6	39.963	81.9	
10:43:40 59.0 81.9 10:44:09 59.5 39.942 81.9 10:44:38 60.0 39.920 81.9 10:45:07 60.5 39.920 81.9 10:45:36 61.0 39.921 81.9 10:46:04 61.4 39.921 81.9 *** End of Period 2 *** Data Print Frequency: 2 10:46:33 75.149 81.9 10:47:31 145.494 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24	10:42:43	58.1	39.963	81.9	
10:44:09		58.6	39.941	81.9	
10:44:38 60.0 39.920 81.9 10:45:07 60.5 39.920 81.9 10:45:36 61.0 39.921 81.9 10:46:04 61.4 39.921 81.9 *** End of Period 2 *** Data Print Frequency: 2 10:46:33 75.149 81.9 10:47:31 145.494 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24 81.9				81.9	
10:45:07 60.5 39.920 81.9 10:45:36 61.0 39.921 81.9 10:46:04 61.4 39.921 81.9 *** End of Period 2 *** Data Print Frequency: 2 10:46:33 75.149 81.9 10:47:31 145.494 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24 81.9			39.942		
10:45:36 61.0 39.921 81.9 10:46:04 61.4 39.921 81.9 *** End of Period 2 *** Data Print Frequency: 2 10:46:33 75.149 81.9 10:47:31 145.494 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24 81.9				81.9	
10:46:04 61.4 39.921 81.9 *** End of Period 2 *** Data Print Frequency: 2 10:46:33 75.149 81.9 10:47:31 145.494 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24 81.9			39.920	81.9	
*** End of Period 2 *** Data Print Frequency: 2 10:46:33			39.921	81.9	
Data Print Frequency: 2 10:46:33	10:46:04	61.4			
10:46:33 75.149 81.9 10:47:31 145.494 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24 81.9			*** End o	f Period	2 ***
10:47:31 145.494 81.9 10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24 81.9			Data Print	Frequency	7: 2
10:48:28 102.050 81.9 10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24 81.9			75.149	81.9	
10:49:26 80.510 81.9 10:50:00 PULL FREE BYPASS OPEN 10:50:24 81.9					
10:50:00 PULL FREE BYPASS OPEN 81.9					
10:50:24 81.9			80.510	81.9	
					PULL FREE BYPASS OPEN
51:21 49.600 81.9					
	51:21		49.600	81.9	

Ticket No: 330038 Page No: 3.1.12 Date: 12-APR-88

PRESSURE VS TIME

C gauge no.: 63027 hory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88		Data Print	Frequency:	2	
10:52:19		41.728	81.9		
10:53:16		38.468	81.9		
10:54:14		36.968	81.9		
10:55:12		42.381	81.9		
10:56:09		42.295	81.9		
10:57:07			81.9		
10:58:04		42.252	81.9		
10:59:02		42.274	81.9		
11:00:00		42.253	81.9		
11:00:57		42.275	81.9		
11:01:55		42.276	81.9		
11:02:52		42.125	81.9		
11:03:50			81.9		
11:04:48		42.148	81.9		
11:05:45		42.128	81.9		
11:06:43		42.108	81.8		
11:07:40		42.240	81.8		
11:08:38 11:09:36		42.134	81.8		
10:33		42.115	81.8 81.8		
11:11:31		42.078	81.8		
11:12:28		42.078	81.8		
11:13:26		42.044	81.8		
11:14:24		41.875	81.8		
11:15:21		41.967	81.8		
11:16:19		41.951	81.7		
11:17:16		,,,,	81.7		
11:18:14		41.766	81.7		
11:19:12		41.555	81.7		
11:20:09		41.604	81.7		
11:21:07		41.394	81.7		
11:22:04		41.359	81.7		
11:23:02		41.150	81.6		
11:24:00			81.6		
11:24:57		40.912	81.6		
11:25:55		40.839	81.5		
11:26:52		40.615	81.5		
11:27:50		40.633	81.5		
11:28:48		40.350	81.4		
11:29:45		40.371	81.3		
11:30:43		40.00=	81.3		
11:31:40		40.031	81.2		
11:32:38 11:33:36		39.910	81.1		
11:33:36 1-34:33		39.767 39.562	81.1 81.0		
35:31		39.562	80.9		
-33.31		39.400	00.5		

Ticket No: 330038 Page No: 3.1.13 Date: 12-APR-88

PRESSURE VS TIME

C gauge no.: 63027 hory Recorder No.: 61771 Gauge Depth: 1941.00 ft

12-APR-88 Data Print Frequency: 2 11:36:28 39.293 80.8 11:37:26 80.7 11:38:24 39.031 80.6	
11:36:28 39.293 80.8 11:37:26 80.7	
11:37:26 80.7	
11 • 20 • 24	
11:38:24 39.031 80.6	
11:39:21 38.904 80.4	
11:40:19 38.734 80.3	
11:41:16 38.675 80.2	
11:42:14 38.620 80.1	
11:43:12 38.456 79.9	
11:44:09 79.8	
11:45:07 38.240 79.6	
11:46:04 38.101 79.5	
11:47:02 37.983 79.4	
11:48:00 37.845 79.2	
11:48:57 37.751 79.1	
11:49:55 37.809 78.9	
11:50:52 78.8	
11:51:50 37.578 78.6	
11:52:48 37.507 78.5	
11:53:45 54:43 78.3	
54:43 37.277 78.2	
11:55:40 37.227 78.0	
11:56:38 37.112 77.9	
11:57:36 77.8 11:58:33 36.904 77.6	
11:59:31 36.831 77.5 12:00:28 36.759 77.3	
12:01:26 36.664 77.2	
12:02:24 36.547 77.0	
12:03:21 36.430 76.9	
12:04:19 76.8	
12:05:16 36.258 76.6	
12:06:14 36.116 76.5	
12:07:12 36.127 76.4	
12:08:09 36.027 76.2	
12:09:07 35.970 76.1	
12:10:04 35.739 76.0	
12:11:02 75.9	
12:12:00 35.426 75.8	
12:12:57 35.366 75.6	
12:13:55 34.284 75.5	
12:14:52 34.005 75.4	
12:15:50 33.725 75.3	
12:16:48 32.467 75.2	
12:17:45 75.1	
18:43 31.860 75.0	
19:40 31.229 74.9	

PRESSURE VS TIME

GRC gauge no.: 63027 Gauge Depth: 1941.00 ft

CPC gauge no.: 63027 hory Recorder No.: 61771

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
12-APR-88		Data Print		y: 2
12:20:38		30.664	74.8	
12:21:36		30.077	74.7	
12:22:33		29.685	74.6	
12:23:31		29.271	74.5	
12:24:28			74.4	
12:25:26		28.987	74.3	
12:26:24		29.008	74.2	
12:27:21		28.725	74.0	
12:28:19		28.180	73.9	
12:29:16		27.742	73.9	
12:30:14		27.500	73.8	
12:31:12			73.7	
12:32:09		27.035	73.6	
12:33:07		26.790	73.5	
12:34:04		26.654	73.4	
12:35:02		26.257	73.3	
12:36:00		26.099	73.2	
12:36:57		25.810	73.1	
<u>12</u> :37:55			73.0	
38:52		25.384	73.0	
12:39:50		25.333	72.9	
12:40:48		25.239	72.8	
12:41:45		25.015	72.7	
12:42:43		24.833	72.6	
12:43:40		24.478	72.5	
12:44:38			72.4	
12:45:36		24.590	72.4	
12:46:33		24.666	72.3	
12:47:31		24.743	72.2	
12:48:28		24.755	72.1	
12:49:26		24.789	72.0	
12:50:24		24.758	72.0	
12:51:21			71.9	
12:52:19		24.071	71.8	,
12:53:16		23.784	71.7	
12:54:14		23.692	71.6	
12:55:12		23.473	71.5	
12:56:09		26.145	71.4	
12:57:07		26.341	71.3	
12:58:04			71.2	
12:59:02		37.873	71.0	
13:00:00				BREAK DOWN GAUGE CARRIERS
13:00:00		38.103	70.9	
13:00:57		36.157	70.7	
13:01:55		36.084	70.5	
02:52		36.034	70.5	
_				

Ticket No: 330038 Page No: 3.1.15 Date: 12-APR-88

PRESSURE VS TIME

Gauge Depth: 1941.00 ft

C gauge no.: 63027 mory Recorder No.: 61771

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
12-APR-88		Data Print	Frequency:	2
13:03:50		37.571	70.4	
13:04:48			70.3	
13:05:45		41.157	70.2	
13:06:43		41.075	70.1	
13:07:40		40.797	70.0	
13:08:38		40.536	69.9	
13:09:36		40.467	69.8	
13:10:33		40.398	69.7	
13:11:31			69.6	
13:12:28		40.397	69.5	
13:13:26		40.379	69.5	
13:14:24		40.273	69.4	
13:15:21		38.507	69.4	
13:16:19		36.232	69.4	
13:17:16		35.435	69.3	
13:18:14		25 054	69.3	
13:19:12		35.854 36.546	69.3	
13:20:09 13:21:07		36.413	69.3	
22:04			69.3 69.4	
13:23:02		36.360 36.323	69.4	
13:23:02		35.916	69.4	
13:24:57		33.910	69.5	
13:25:55		35.439	69.5	
13:26:52,		35.413	69.6	
13:27:50		30.517	69.6	
13:28:48		30.439	69.7	
13:29:45		28.485	69.8	
13:30:43		27.053	69.9	
13:31:40			70.0	
13:32:38		21.868	69.2	
13:33:36		22.050	68.4	
13:34:33		21.105	67.6	
13:35:31		15.066	66.9	·
13:36:28		17.943	66.3	
13:37:26		19.714	65.8	
13:38:24			65.2	
13:39:21		20.380	65.2	
13:40:19		20.774	65.3	
13:41:16		21.125	65.3	
13:42:14		21.390	65.4	
13:43:12		21.439	65.5	
13:44:09	•	21.402	65.7	
13:45:07		01 160	65.8	
47:02		21.163	66.3	
47:02		22.309	66.7	

Ticket No: 330038 Page No: 3.1.16 Date: 12-APR-88

PRESSURE VS TIME

C gauge no.: 63027 hory Recorder No.: 61771 Gauge Depth: 1941.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88		Data Print	Frequency:	2	
13:48:00		23.412	67.2		
13:48:57		23.544	67.7		
13:49:55	•	23.248	68.3		
13:50:52		23.148	68.9		
13:51:50			69.6		
13:52:48		23.202	70.1		
13:53:45		23.028	70.7		
13:54:43		22.790	71.2		
13:55:40		22.625	71.7		
13:56:38		22.599	72.1		
13:57:36		22.486	72.6		
13:58:33			73.0		
13:59:31		21.895	73.2		
14:00:28		21.742	73.5		
14:01:26		22.241	73.8		
14:02:24		22.346	74.0		
14:03:21		21.623	74.3		
14:04:19		21.725	74.6		
24: 05:16			74.9		
06:14		21.415	74.9		
14:07:12		21.523	74.9		
14:08:09		21.219	74.9		

TEST PERIOD SUMMARY

62530 Depth: 1934.00 ft Blanked off: No Gauge No.: PRESSURE (psi) DURATION (min) DESCRIPTION PERIOD Start Draw-down 1029.05 Α End Draw-down 30.15 60.00 В Start Build-up 30.15 В 32.34 С End Build-up 60.96

NOTE: for Pressure vs. Time Plot, see next page.

PRESSURE VS TIME

C gauge no.: 62530 Gauge Depth: 1934.00 ft

hory Recorder No.: 65478 D TIME PRESSURE TEMP TIME COMMENTS HH:MM:SS (min) (psi) (F) 12-APR-88 Data Print Frequency: 2 02:46:30 69.1 03:15:00 MAKE UP GAUGE CARRIERS 03:46:30 54.0 04:46:30 76.359 62.7 05:46:30 73.3 05:47:28 431.882 73.4 05:48:25 456.725 73.5 05:49:23 464.439 73.6 05:50:20 73.7 05:51:18 497.886 73.8 05:52:16 519.848 73.9 05:53:13 531.237 74.0 05:54:11 557.093 74.1 05:55:08 564.034 74.2 05:56:06 585.457 74.3 05:57:04 74.4 05:58:01 617.595 74.4 05:58:59 631.399 74.5 35:59:56 00:54 652.403 74.6 00:54 665.806 74.7 06:01:52 660.347 74.8 06:02:49 710.222 74.9 06:03:47 75.0 06:04:44 730.068 75.0 06:05:42 727.622 75.1 06:06:40 764.568 75.2 06:07:37 759.504 75.3 06:08:35 799.431 75.3 06:09:32 791.121 75.4 06:10:30 75.5 06:11:28 823.060 75.6 06:12:25 860.694 75.7 06:13:23 854.781 75.7 06:14:20 891.080 75.8 06:15:18 886.333 75.9 06:16:16 883.503 76.0

76.1

76.2

76.2

76.3

76.4

76.5

76.6

76.7

76.8

76.9

959.258

946.659

976.929

993.644

983.900

998.079

992.956

992.799

06:17:13

06:18:11

06:19:08

06:20:06

06:21:04

06:22:01

06:22:59

06:23:56

24:54

25:52

PRESSURE VS TIME

C gauge no.: 62530 emory Recorder No.: 65478 Gauge Depth: 1934.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88		Data Print	Frequency:	2	
06:26:49		992.391	77.0	2	
06:27:47		992.026	77.1		
06:28:44		991.662	77.2		
06:29:42		991.423	77.3		
06:30:40			77.4		
06:31:37		990.578	77.5		
06:32:35		990.306	77.6		
06:33:32		989.992	77.7		
06:34:30		989.759	77.8		
06:35:28		989.565	77.9		
06:36:25		989.412	78.0		
06:37:23			78.1		
06:38:20		989.141	78.2		
06:39:18		989.149	78.2		
06:40:16		988.990	78.3		
06:41:13 06:42:11		988.953	78.4		
06:42:11		989.622 989.540	78.5 78.6		
:44:06		969.540	78.7		
:45:04		989.201	78.8		
06:46:01		989.027	78.8		
06:46:59		988.811	78.9		
06:47:56		988.675	79.0		
06:48:54		988.537	79.1		
06:49:52		988.439	79.1		
06:50:49			79.2		
06:51:47		988.198	79.3		
06:52:44		988.137	79.3		
06:53:42		988.118	79.4		
06:54:40		988.053	79.5		
06:55:37		988.068	79.5		
06:56:35		988.040	79.6		
06:57:32			79.6		
06:58:30		987.981	79.7		
06:59:28		987.992	79.7		
07:00:25 07:01:23		987.919	79.8		
07:01:23		987.760 987.723	79.8 79.9		
07:02:20		987.561	79.9		
07:03:16		907.30I	80.0		
07:05:13		987.526	80.0		
07:06:11		987.444	80.1		
07:07:08		987.363	80.1		
07:08:06		987.153	80.2		
:09:04		987.025	80.2		
:10:01		986.897	80.2		

PRESSURE VS TIME

GRC gauge no.: 62530 Gauge Depth: 1934.00 ft

mory Recor	der No.:	654/8	3						
TIME HH:MM:SS	D TIME (min)	PRESS (ps		TEMP (F)			COMME	NTS	
									~
12-APR-88		Data	Print	Frequenc	cy: 2				
07:10:59				80.3	•				
07:11:56		986.	846	80.3					
07:12:54			839	80.4					
07:13:52		987.		80.4					
07:14:49		987.		80.4					
07:15:47		987.		80.5					
07:16:44		987.	227	80.5					
07:17:42				80.5					
07:18:40		987.		80.6					
07:19:37		988.		80.6					
07:20:35		988.		80.6					
07:21:32		987.		80.6					
07:22:30		991.		80.7					
07:23:28		1018.	063	80.7					
07:24:25				80.7					
07:25:23		1022.		80.8					
07:26:20		1023.		80.8					
07:27:18		970.		80.8					
07:28:16		970.		80.8					
29:13		1048.		80.9					
:30:11		990.		80.9					
07:31:08				80.9					
07:32:06		1006.		80.9					
07:33:04		1007.	941	81.0					
07:34:00					ROTATE	TO	PUMP	UP	PACKER
07:34:01		1017.		81.0					
07:34:59		1011.		81.0					
07:35:56		1015.		81.0					
07:36:54		1009.		81.0					
07:37:52				81.1					
07:38:49		1006.		81.1					
07:39:47 07:40:44		1004.		81.1					
07:40:44		1003.		81.1					
07:42:40		1002.		81.2					
07:42:40		1001. 999.		81.2					
07:43:37		999.		81.2					
07:45:32		000		81.3					
07:46:30		998. 1007.		81.3					
07:47:28		1007.		81.3					
07:47:28		1005.		81.3					
07:48:23		1004.		81.4					
07:50:20		1003.		81.4					
07:50:20		1002.		81.4					
07:51:16		999.		81.5 81.5					
53:13		997.		81.5 81.5					
33.13		221.0	رون	01.0					

Ticket No: 330038 Page No: 3.2.4 Date: 12-APR-88

PRESSURE VS TIME

C gauge no.: 62530 mory Recorder No.: 65478 Gauge Depth: 1934.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
10 100 00			_		
12-APR-88		Data Print		2	
07:54:11		996.921	81.6		
07:55:08 07:56:06		995.904	81.6		
07:57:04		994.971	81.6		
07:58:01		972.575	81.6		
07:58:59		963.867	81.7 81.7		
07:59:56		965.355	81.7		
08:00:54		1045.022	81.8		
08:01:52		989.121	81.8		
08:02:49		984.382	81.8		
08:03:47		984.111	81.8		
08:04:44		204.111	81.8		
08:05:42		993.636	81.9		
08:06:40		991.821	81.9		
08:07:37		990.884	81.9		
08:08:35		989.987	81.9		
08:09:32		988.839	82.0		
08:10:30		988.401	82.0		
:11:28			82.0		
12:25		987.188	82.0		
08:13:23		986.496	82.0		
08:14:20		987.099	82.1		
08:15:18		949.847	82.1		
08:16:16		1033.855	82.1		
08:17:13		973.501	82.1		
08:18:11			82.1		
08:19:08		992.910	82.2		
08:20:06		991.507	82.2		
08:21:04		990.439	82.2		
08:22:01		989.286	82.2		
08:22:59		988.592	82.2		
08:23:56		987.480	82.2		
08:24:54		004 004	82.3		
08:25:52		986.091	82.3		
08:26:49 08:27:47		985.563	82.3		
08:27:47		985.119	82.3		
08:29:42		984.089 983.477	82.3		
08:30:40		982.947	82.3 82.3		
08:31:37			82.4		
08:32:35			82.4		
08:33:32			82.4		
08:34:30			82.4		
08:35:28			82.4		
36:25			82.4		
37:23			82.4		
•					

PRESSURE VS TIME

gauge no.: 62530 hory Recorder No.: 65478

Gauge Depth:

1934.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88		Data Print	Frequency:	2	
08:38:20			82.4		
08:39:18		964.530	82.5		
08:40:16		982.284	82.5		
08:41:13		1049.297	82.5		
08:42:11		1043.954	82.5		
08:43:08		1035.556	82.5		•
08:44:06		1029.795	82.5		

PRESSURE VS TIME

Gauge no.: 62530 Gauge Depth: 1934.00 ft

TIME D TIME PRESSURE TEMP COMMENTS
HH:MM:SS (min) (psi) (F)

	HH:MM:SS	(min)	(psi)	(F)	COMMENTS
12	2-APR-88		Data Print	Freque	ency: 1
			*** Start	of Per	iod 1 ***
	08:44:35	0.0	1029.047	82.5	
	08:45:00				TOOL OPEN
	08:45:04	0.5		82.5	
	08:45:32	1.0	37.603	82.7	
	08:46:01	1.4	32.927	82.9	
	08:46:30	1.9	31.939	83.1	
	08:46:59	2.4	31.114	83.3	
	08:47:28	2.9	30.572	83.5	
	08:47:56	3.4	30.475	83.7	
	08:48:25	3.8		83.8	
	08:48:54	4.3	30.335	83.8	
	08:49:23	4.8	30.292	83.8	
	08:49:52	5.3	30.288	83.8	
	08:50:20	5.8	30.285	83.8	
	08:50:49	6.2	30.323	83.8	
	08:51:18	6.7	30.360	83.8	
	08:51:47	7.2		83.8	
- (52:16	7.7	30.391	83.8	
,	52:44	8.2	30.425	83.8	
	08:53:13	8.6	30.419	83.8	
	08:53:42	9.1	30.453	83.8	
	08:54:11 08:54:40	9.6	30.446	83.8	
	08:55:08	10.1	30.480	83.8	
	08:55:37	10.6	20 507	83.8	
	08:56:06	11.0 11.5		83.8	
	08:56:35	12.0		83.8	
	08:57:04	12.5		83.8	
	08:57:32	13.0		83.7	
	08:58:01	13.4		83.7 83.7	
	08:58:30	13.9		83.7	
	08:58:59	14.4		83.7	
	08:59:28	14.9		83.7	
	08:59:56	15.4		83.7	
	09:00:25	15.8		83.7	
	09:00:54	16.3		83.7	
	09:01:23	16.8		83.7	
	09:01:52	17.3		83.7	
	09:02:20	17.8		83.7	
	09:02:49	18.2		83.7	
	09:03:18	18.7		83.6	
	09:03:47	19.2		83.6	
	09:04:16	19.7		83.6	
	04:44	20.2		83.6	
1	05:13	20.6		83.6	
					

PRESSURE VS TIME

C gauge no.: 62530 mory Recorder No.: 65478 Gauge Depth: 1934.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS	
					-
12-APR-88			Frequency:	1	
09:05:42	21.1	30.463	83.6		
09:06:11	21.6	30.536			
09:06:40	22.1		83.6		
09:07:08	22.6		83.6		
09:07:37	23.0		83.6		
09:08:06	23.5	30.463	83.6		
09:08:35	24.0		83.6		
09:09:04	24.5	30.449	83.5		
09:09:32	25.0	30.483	83.5		
09:10:01	25.4	30.395	83.5		
09:10:30	25.9	30.348	83.5		
09:10:59	26.4	30.341	83.5		
09:11:28	26.9	30.375	83.5		
09:11:56	27.4		83.5		
09:12:25	27.8	30.361	83.5		
09:12:54	28.3	30.354	83.5		
09:13:23	28.8		83.5		
09:13:52	29.3		83.5		
:14:20	29.8	30.334	83.5		
:14:49	30.2	30.327	83.5		
09:15:18	30.7		83.5		
09:15:47	31.2	30.356	83.5		
09:16:16	31.7	30.310	83.5		
09:16:44	32.2	30.304	83.4		
09:17:13	32.6	30.339	83.4		
09:17:42	33.1	30.293	83.4		
09:18:11	33.6	30.328	83.4		
09:18:40	34.1		83.4		
09:19:08	34.6	30.277	83.4		
09:19:37	35.0	30.272	83.4		
09:20:06	35.5	30.308	83.4		
09:20:35	36.0	30.303	83.4		
09:21:04	36.5	30.298	83.4		
09:21:32	37.0	30.253	83.4		
09:22:01	37.4		83.4		
09:22:30	37.9	30.243	83.4		
09:22:59	38.4	30.280	83.4		
09:23:28	38.9	30.275	83.4		
09:23:56	39.4	30.231	83.4		
09:24:25	39.8	30.267	83.4		
09:24:54	40.3	30.222	83.4		
09:25:23	40.8	20 255	83.4		
09:25:52	41.3	30.255	83.4		
09:26:20	41.8	30.211	83.4		
26:49	42.2	30.207	83.3		
2/:18	42.7	30.244	83.3		

PRESSURE VS TIME

C gauge no.: 62530 hory Recorder No.: 65478 Gauge Depth: 1934.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
10 177 00		D. I. D. I.	_	-
12-APR-88	42.2	Data Print		y: 1
09:27:47	43.2	30.200	83.3	
09:28:16 09:28:44	43.7	30.197	83.3	
09:28:44	44.2	20 220	83.3	
09:29:13	44.6 45.1	30.230	83.3 83.3	
09:30:11	45.1	30.227 30.182	83.3	
09:30:40	46.1	30.182	83.3	
09:30:40	46.1	30.216	83.3	
09:31:37	47.0	30.216	83.3	
09:31:37	47.5	30.171		
09:32:35	47.5	30.165	83.3 83.3	
09:32:35	48.5		83.3	
09:33:32	49.0	30.162 30.199	83.3	
09:33:32	49.4	30.155	83.3	
09:34:01	49.4	30.193	83.3	
09:34:59	50.4	30.149	83.3	
09:35:28	50.9	20.149	83.3	
09:35:56	51.4	30.144	83.3	
36:25	51.8	30.142	83.3	
36:54	52.3	30.139	83.3	
09:37:23	52.8	30.177	83.3	
09:37:52	53.3	30.135	83.3	
09:38:20	53.8	30.132	83.3	
09:38:49	54.2	30.132	83.3	
09:39:18	54.7	30.128	83.3	
09:39:47	55.2	30.167	83.3	
09:40:16	55.7	30.165	83.3	
09:40:44	56.2	30.122	83.3	
09:41:13	56.6	30.161	83.3	
09:41:42	57.1	30.118	83.3	
09:42:11	57.6	001220	83.3	
09:42:40	58.1	30.155	83.3	
09:43:08	58.6	30.153	83.3	
09:43:37	59.0	30.110	83.3	
09:44:06	59.5	30.149	83.3	
09:44:35	60.0	30.147	83.2	
09:45:00				FOOL CLOSED

*** End of Period 1 ***

PRESSURE VS TIME

Gauge Depth: 1934.00 ft

GRC gauge no.: 62530 nory Recorder No.: 65478

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
12-APR-88		Data Print *** Start	Frequency: of Period 2 *	1 ***
09:45:04	0.5	35.698	83.2	
09:45:32	1.0		83.2	
09:46:01	1.4	53.492	83.2	
09:46:30	1.9	50.772	83.2	
09:46:59	2.4	50.363	83.2	
09:47:28	2.9	50.238	83.2	
09:47:56	3.4	47.517	83.2	
09:48:25	3.8	45.041	83.2	
09:48:54	4.3		83.2	
09:49:23	4.8	43.009	83.2	
09:49:52	5.3	42.035	83.2	
09:50:20	5.8	41.790	83.2	
09:50:49	6.2 '	41.708	83.2	
09:51:18	6.7	41.666	83.2	
09:51:47	7.2	41.625	83.2	
09:52:16	7.7		83.2	
09:52:44	8.2	35.745	83.2	
09:53:13	8.6	34.448	83.2	
53:42	9.1	33.718	83.2	
54:11	9.6	33.312	83.2	
09:54:40	10.1	32.826	83.2	
09:55:08	10.6	32.785	83.2	
09:55:37	11.0		83.2	
09:56:06	11.5	32.865	83.2	
09:56:35	12.0	32.905	83.2	
09:57:04	12.5	32.904	83.2	
09:57:32	13.0	32.944	83.2	
09:58:01	13.4	32.943	83.2	
09:58:30	13.9	32.942	83.2	
09:58:59	14.4		83.2	
09:59:28	14.9	32.981	83.2	
09:59:56	15.4	32.980	83.2	
10:00:25	15.8		83.2	
10:00:54	16.3	33.019	83.2	
10:01:23	16.8	32.978	83.2	
10:01:52	17.3	32.977	83.2	
10:02:20	17.8		83.2	
10:02:49	18.2	33.016	83.2	
10:03:18	18.7	33.015	83.2	
10:03:47	19.2	33.014	83.2	
10:04:16	19.7	33.013	83.2	
10:04:44	20.2	33.012	83.2	
10:05:13	20.6	33.011	83.2	
10:05:42	21.1	22 252	83.2	
06:11	21.6	32.969	83.2	

PRESSURE VS TIME

Gauge Depth: 1934.00 ft

C gauge no.: 62530 mory Recorder No.: 65478

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	С	OMMENTS
			_		
12-APR-88		Data Print	Frequency:	1	
10:06:40	22.1	33.009	83.2		
10:07:08	22.6	33.009	83.2		
10:07:37	23.0	32.968	83.2		
10:08:06	23.5	32.967	83.2		
10:08:35	24.0	32.966	83.2		
10:09:04	24.5		83.2		
10:09:32	25.0	32.965	83.2		
10:10:01	25.4	32.964	83.2		
10:10:30	25.9	32.923	83.2		
10:10:59	26.4	32.922	83.2		
10:11:28	26.9	32.921	83.2		
10:11:56	27.4	32.960	83.2		
10:12:25	27.8		83.2		
10:12:54	28.3	32.918	83.2		
10:13:23	28.8	32.918	83.2		
10:13:52	29.3	32.877	83.2		
10:14:20	29.8	32.917	83.2		
10:14:49	30.2	32.875	83.2		
10:15:18	30.7	32.834	83.2		
15:47	31.2		83.2		
10:16:16	31.7	32.874	83.2		
10:16:44	32.2	32.833	83.2		
10:17:13	32.6	32.833	83.2		
10:17:42	33.1	32.873	83.2		
10:18:11	33.6	32.833	83.2		
10:18:40	34.1	32.792	83.2		
10:19:08	34.6		83.2		
10:19:37	35.0		83.2		
10:20:06	35.5		83.2		
10:20:35	36.0		83.2		
10:21:04	36.5		83.2		
10:21:32	37.0		83.2		
10:22:01	37.4	32.789	83.2		
10:22:30	37.9		83.2		
10:22:59	38.4		83.2		
10:23:28	38.9		83.2		
10:23:56	39.4		83.2		
10:24:25	39.8		83.2		
10:24:54	40.3		83.2		
10:25:23	40.8		83.2		
10:25:52	41.3		83.2		
10:26:20	41.8		83.2		
10:26:49	42.2		83.2		
10:27:18	42.7		83.2		
28:16	43.2		83.2		
20:10	43.7	32.624	83.2		

Ticket No: 330038 Page No: 3.2.11 Date: 12-APR-88

PRESSURE VS TIME

C gauge no.: 62530 hory Recorder No.: 65478 Gauge Depth: 1934.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
12-APR-88		Data Print	Frequenc	:y: 1
10:28:44	44.2	32.624	83.2	•
10:29:13	44.6		83.2	
	45.1		83.2	
	45.6		83.2	
	46.1		83.2	
10:31:08	46.6	32.583	83.2	
	47.0		83.2	
	47.5	32.582	83.2	
10:32:35	48.0		83.2	
10:33:04	48.5	32.542	83.2	
10:33:32	49.0	32.542	83.2	
10:34:01	49.4	32.542	83.2	
10:34:30	49.9	32.543	83.2	
10:34:59	50.4	32.502	83.2	
10:35:28	50.9	32.503	83.2	
10:35:56	51.4		83.2	
10:36:25	51.8	32.503	83.2	
10:36:54	52.3	32.503	83.2	
10 :37:23	52.8	32.503	83.2	
	53.3	32.503	83.2	
10:38:20		32.462	83.2	
10:38:49	54.2	32.503	83.2	
10:39:18	54.7		83.2	
10:39:47	55.2	32.462	83.2	
10:40:16	55.7	32.462	83.2	
10:40:44	56.2	32.422	83.2	
10:41:13	56.6	32.462	83.2	
10:41:42	57.1	32.422	83.2	
10:42:11	57.6	32.381	83.2	
10:42:40	58.1		83.2	
10:43:08	58.6	32.422	83.2	
10:43:37		32.381	83.2	
10:44:06	59.5	32.381	83.2	
10:44:35	60.0	32.381	83.2	
10:45:04	60.5		83.2	
10:45:32	61.0		83.2	
		*** End c	of Period	2 ***
		Data Print		y: 2
10:46:01			83.2	
10:46:59			83.2	
10:47:56			83.2	
10:48:54			83.2	
10:49:52		58.293	83.2	
10:50:00				PULL FREE BYPASS OPEN
10:50:49			83.2	
51:47		40.285	83.2	

PRESSURE VS TIME

C gauge no.: 62530 Gauge Depth: 1934.00 ft.

TIME D TIME PRESSURE TEMP COMMENTS HH:MM:SS (min) (psi) (F)

HH:MM:SS	(min)	(psi)	(F)	<u> </u>
12-APR-88		Data Pri	int Frequency:	2
10:52:44			83.2	
10:53:42		30.881		
10:54:40		33.922		
10:55:37		33.802		
10:56:35		33.803		
10:57:32		33.803		
10:58:30		33.804		
10:59:28			83.2	
11:00:25		33.844		
11:01:23		33.803		
11:02:20 11:03:18		33.762		
11:03:18		33.721		
11:04:16		33.761		
11:05:13		33.801		
11:00:11		22 750	83.2	
11:07:08		33.758		
11:09:04		33.837 33.794		
11:09:04		33.832		
10:59		33.827		
11:11:56		33.827	· ·	
11:12:54		33.022	83.1	
11:13:52		33.728		
11:14:49		33.801		
11:15:47		33.752		
11:16:44		33.662		
11:17:42		33.651		
11:18:40		33.599		
11:19:37			83.1	
11:20:35		33.414		
11:21:32	<i>3</i>	33.320		
11:22:30		33.266		
11:23:28		33.088		
11:24:25		33.069	83.0	
11:25:23		32.887	83.0	
11:26:20	•		83.0	
11:27:18		32.915	82.9	
11:28:16		32.841		
11:29:13		32.726		
11:30:11		32.685		
11:31:08		32.595		
11:32:06		32.425		
11:33:04			82.7	
11:34:01 14:34:59		32.270		
35:56		32.286		
33:36		32.180	82.5	

Ticket No: 330038 Page No: 3.2.13 Date: 12-APR-88

PRESSURE VS TIME

Gauge Depth: 1934.00 ft

CRC gauge no.: 62530 mory Recorder No.: 65478

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88		Data Print	Frequency:	2	
11:36:54		32.105	82.4	4	
11:37:52		32.021	82.3		
11:38:49		31.977	82.2		
11:39:47			82.2		
11:40:44		31.793	82.1		•
11:41:42		31.734	82.0		
11:42:40		31.635	81.9		
11:43:37		31.529	81.8		
11:44:35		31.457	81.7		
11:45:32		31.345	81.5		
11:46:30			81.4		
11:47:28		31.071	81.3		
11:48:25		31.032	81.2		
11:49:23		30.870	81.1		
11:50:20		30.869	81.0		
11:51:18		30.785	80.8		
11:52:16		30.579	80.7		
11:53:13			80.6		
11:54:11		30.408	80.5		
:55:08		30.280	80.3		
11:56:06		30.232	80.2		
11:57:04		30.104	80.1		
11:58:01		30.057	80.0		
11:58:59		29.848	79.8		
11:59:56			79.7		
12:00:54		29.671	79.6		
12:01:52		29.543	79.5		
12:02:49		29.373	79.3		
12:03:47		29.286	79.2		
12:04:44		29.161	79.1		
12:05:42		28.995	79.0		
12:06:40		20 020	78.8		
12:07:37 12:08:35		28.828	78.7		
		28.705	78.6		
12:09:32 12:10:30		28.623	78.5		
12:11:28		28.461	78.4 78.2		
12:11:25		28.343 28.184	78.1		
12:12:23		20.104	78.0		
12:14:20		27.263	77.9		
12:14:20		26.907	77.8		
12:16:16		26.632	77.7		
12:17:13		25.670	77.6		
12:18:11		25.279	77.5		
12:19:08		24.807	77.4		
20:06			77.3		

PRESSURE VS TIME

GRC gauge no.: 62530 Gauge Depth: 1934.00 ft

12-APR-88	TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
12:21:04	סס_ממג_נ		Data Dwint	T	
12:22:01 12:22:59 12:23:56 12:24:54 12:25:52 12:24:54 12:25:52 12:26:49 76.6 12:27:47 12:28:44 12:29:42 12:27:47 12:28:44 12:29:42 12:30:40 12:30:40 12:31:37 12:30:40 12:33:32 12:33:32 12:34:30 12:33:32 12:34:30 12:35:28 12:36:25 18:707 75.7 12:38:20 18:241 17:58 12:38:20 18:41 17:58 12:38:20 18:41 17:58 12:44:13 17:603 18:241 17:58 12:44:13 17:603 18:241 17:38 18:453 18:453 18:241 18:244:16 18:454 18:46:69 18:46:69 18:46:59 18:54:40 18:54:54 18:54:54 18:54:54 18:54:54 18:55:47 18:64:67 18:55:47 18:18 18:18 18:18 18:18 18:18 18:18 18:18 18:18 18:18 18:36					cy: 2
12:22:59 12:23:56 12:23:56 12:24:54 12:25:52 12:26:49 12:27:47 12:26:49 12:27:47 12:28:44 12:29:42 12:30:40 12:30:40 12:31:37 12:33:37 12:35:35 12:36:25 12:34:30 12:33:32 12:35:28 12:36:25 12:37:23 12:36:25 12:37:23 12:36:25 12:37:23 12:36:25 12:37:23 12:37:23 12:36:25 12:37:23 12:36:25 12:37:23 12:36:25 12:36:26 12:					
12:23:56 12:24:54 12:24:54 12:25:52 12:26:49 76.6 12:27:47 12:28:44 21.247 76.4 12:29:42 20.774 76.3 12:30:40 20.445 76.2 12:31:37 20.148 76.1 12:33:32 75.9 12:33:32 75.9 12:33:32 75.9 12:35:28 19.043 75.8 12:36:25 18.707 75.7 12:38:20 18.453 75.6 12:38:20 18.453 75.6 12:38:20 18.453 17.98 75.3 12:42:11 17.389 75.1 12:43:08 17.216 75.3 12:42:11 17.389 75.1 12:43:08 17.216 17.389 75.1 12:44:06 16.674 17.49 12:46:59 12:47:56 16.451 17.46 12:46:59 12:47:56 16.451 17.46 12:48:54 12:52:44 12:55:47 12:55:44 12:55:47 12:55:47 12:55:37 18.118 17.00 18.287 18.287 18.29 18.29 18.21 18.29 18.21 18.22 25.51 27.066 27.29					
12:24:54 12:25:52 12:26:49 12:27:47 21.751 76.6 12:27:47 21.751 76.5 12:28:44 12:29:42 20.744 76.3 12:30:40 20.445 76.1 12:32:35 19.932 76.0 12:33:32 12:34:30 19.420 75.8 12:35:28 19.043 75.7 12:37:23 18.453 19.942 75.8 12:37:23 18.453 19.943 75.9 12:37:23 18.453 19.943 75.7 12:37:23 18.453 19.943 75.8 12:37:23 18.453 19.943 75.7 12:37:23 18.453 19.943 75.8 12:41:13 17.389 75.1 12:42:11 17.389 75.1 12:42:11 17.389 75.1 12:43:08 17.216 75.3 12:44:06 16.6883 75.0 12:45:04 16.674 74.9 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.443 74.5 12:49:52 16.394 74.5 12:59:28 16.394 74.5 12:59:28 12:56:35 18.362 73.9 12:59:28 27.066 73.3 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25					
12:25:52 12:26:49 12:27:47 12:28:44 21.247 76.4 12:29:42 20.744 76.3 12:30:40 20.445 76.6 12:31:37 20.148 76.1 12:33:35 19.932 76.0 12:33:32 75.9 12:33:32 19.932 76.0 12:33:32 12:43:30 19.40 19.420 75.8 12:36:25 18.707 75.7 12:37:23 18.453 75.6 12:38:20 18.241 75.5 12:38:20 18.241 75.5 12:38:20 18.241 75.5 12:38:20 18.241 75.5 12:38:20 18.241 17.988 75.4 40:16 75.3 12:42:11 17.389 75.1 12:43:08 17.216 75.1 12:45:04 16.674 74.9 12:46:01 16.546 74.8 12:49:52 16.394 74.5 12:49:52 16.394 74.5 12:59:24 16.266 73.3 18.287 73.8 12:55:342 12:55:32 18.362 73.9 12:59:28 27.066 73.3 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25 13:00:25					
12:26:49 12:27:47 12:28:44 12:29:42 20.744 76.3 12:30:40 20.445 76.2 12:31:37 20.148 76.1 12:32:35 19.932 76.0 12:33:32 75.9 12:34:30 19.420 75.8 12:36:25 18.707 75.7 12:37:23 18.453 75.6 12:38:20 18.241 75.5 12:41:13 17.988 75.4 12:42:11 17.389 75.1 12:42:11 17.389 75.1 12:44:06 16.883 75.0 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:01 12:46:05 12:46:01 12:46:59 74.7 12:47:56 12:48:54 16.443 74.5 12:49:52 16.394 74.5 12:55:44 16.216 74.6 12:55:37 18.362 73.1 12:55:37 18.362 73.1 12:55:38 18.362 73.9 18.287 74.1 12:55:38 18.362 73.9 18.287 73.8 18	12:25:52				
12:28:44 12:29:42 20:744 76:3 12:30:40 20:445 76:2 12:31:37 20:148 76:0 12:33:32 75:9 12:34:30 19:932 75:9 12:34:30 19:420 75:8 12:35:28 19:043 75:8 12:36:25 18:707 75:7 12:37:23 18:453 75:6 12:38:20 18:241 75:5 13:39:18 17:988 75:4 40:16 75:3 12:42:11 17:389 75:1 12:43:08 17:216 75:1 12:44:06 16:883 75:0 12:44:06 16:883 75:0 12:46:01 12:46:09 74:7 12:47:56 12:46:01 16:546 74:8 12:46:59 74:7 12:47:56 12:48:54 16:443 74:5 12:49:52 16:347 74:6 12:49:52 16:347 74:6 12:55:44 16:216 74:7 12:55:342 12:55:37 18:118 74:0 12:55:37 18:362 73:1 12:55:28 27:066 73:3 13:00:25 73:1 13:00:25 73:1 13:00:25 73:1 13:00:25 73:1 13:00:25 73:1 13:00:25 73:0 12:00:20 73:542 72:9	12:26:49				
12:29:42 12:30:40 12:30:40 12:31:37 20:148 76:1 12:32:35 19:932 76:0 12:33:32 75:9 12:34:30 19:420 75:8 12:35:28 19:043 75:8 12:35:28 19:043 75:7 12:37:23 18:453 75:6 12:38:20 18:241 75:5 12:38:20 18:241 75:5 12:41:13 17:603 75:2 12:42:11 17:389 75:1 12:43:08 17:216 75:1 12:44:06 16:674 74:9 12:46:01 16:546 74:8 12:46:59 74:7 12:47:56 16:451 74:6 12:48:54 16:443 74:5 12:49:52 16:394 74:5 12:55:44 16:216 74:2 12:55:37 18:18 74:0 12:55:37 18:18 74:0 12:55:37 18:18 74:0 12:55:37 18:18 74:0 12:55:38 12:55:38 12:55:38 13:00:00 13:00:25 13:00:25 13:00:25 13:00:20 25:55:22 25:55:25 25:55:55:25 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55 25:55:55:55:55 25:55:55:55:	12:27:47		21.751	76.5	
12:30:40 12:31:37 20.148 76.1 12:32:35 19.932 76.0 75.9 12:34:30 19.420 75.8 12:35:28 19.043 75.8 12:36:25 18.707 75.7 12:37:23 18.453 75.6 12:38:20 18.241 75.5 12:41:13 17.988 75.4 75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:43:08 17.216 75.1 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:59 74.7 12:46:59 12:48:54 12:49:52 16.394 74.5 12:49:52 16.394 74.5 12:55:44 16.216 74.2 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:35 18.362 73.9 12:57:32 12:59:28 13:00:00 13:00:25 73.1 13:00:25 73.1 13:00:25 73.1 13:00:25 73.0 12:00:20 25.519 73.0 12:00:20 25.519 73.0			21.247	76.4	
12:31:37					
12:32:35 12:33:32 12:33:32 12:33:32 12:33:32 12:33:32 12:35:28 12:35:28 12:36:25 18:707 75.7 12:37:23 18:453 75.6 12:38:20 18:241 75.5 13:18 17.988 75.4 140:16 17.389 75.1 12:42:11 17.389 75.1 12:43:08 17.216 75.1 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:01 16.546 74.8 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.443 74.5 12:49:52 16.394 74.5 12:50:49 16.347 74.4 12:55:44 16.216 74.2 12:53:42 12:53:42 12:53:42 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:38 12:59:28 13:00:00 13:00:25 73.1 13:00:25 13:00:25 13:00:20 25.512 72.9					
12:33:32 12:34:30 12:35:28 12:36:25 18.707 75.7 12:37:23 18.453 75.6 12:38:20 18.241 75.5 13:9:18 17.988 75.4 75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:43:08 17.216 16.883 75.0 12:45:04 16.674 74.9 12:46:01 16.546 74.8 12:46:59 12:47:56 16.451 74.6 12:48:54 16.394 74.5 12:49:52 12:50:49 16.394 74.5 12:50:49 16.347 74.4 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:32 12:52:37 18.118 74.0 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:28 12:59:28 12:59:28 13:00:20 13:00:25 13:00:25 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25 13:00:20 13:00:25					
12:34:30 12:35:28 12:36:25 18:707 75.7 12:37:23 18:453 75.6 12:38:20 18:241 75.5 12:40:16 75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:44:06 16.883 75.0 12:44:04 16.674 74.9 12:46:01 12:46:01 16.546 74.8 12:46:59 74.7 12:47:56 16.451 74.6 12:49:52 16.394 74.5 12:50:49 16.347 74.4 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:42 74.1 12:55:37 18:118 74.0 12:55:37 18:118 74.0 12:55:37 18:188 74.0 12:55:38 12:55:39 12:55:28 27.066 73.1 13:00:20 13:00:25 13:00:20 25.542 72.9			19.932		
12:35:28 12:36:25 12:36:25 18:707 75.7 12:37:23 18:453 75.6 12:38:20 18:241 75.5 13:18 17.988 75.4 75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:43:08 17.216 75.3 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:59 74.7 12:47:56 16.451 16.394 74.5 12:49:52 16.394 74.5 12:50:49 16.347 74.4 12:55:342 12:55:342 12:53:42 12:55:37 18:18 74.0 12:55:37 18:18 74.0 12:55:37 18:18 74.0 12:55:37 18:18 74.0 12:55:38 12:55:38 18:362 73.8 12:59:28 27.066 73.3 BREAK DOWN GAUGE CARRIERS 13:00:20 13:00:25 13:01:23 25.519 73.0 13:00:20 13:00:25					
12:36:25 18.707 75.7 12:37:23 18.453 75.6 12:38:20 18.241 75.5 39:18 17.988 75.4 75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:43:08 17.216 75.1 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:01 16.546 74.8 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.443 74.5 12:49:52 16.394 74.5 12:50:49 12:51:47 12:51:47 12:52:44 16.216 74.2 12:53:42 12:53:42 12:53:42 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:56:35 18.362 73.9 12:57:32 18.287 73.8 12:59:28 27.066 73.3 13:00:00 13:00:25 13:01:23 25.519 73.0 13:01:23 25.519 73.0 13:01:23 25.519 73.0 13:01:23 25.542 72.9					
12:37:23 12:38:20 18.453 75.6 139:18 17.988 75.4 75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:43:08 17.216 75.3 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:59 12:46:59 12:47:56 16.451 12:48:54 16.347 12:49:52 16.394 74.5 12:50:49 16.347 12:51:47 16.464 74.3 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:42 12:53:42 12:53:42 12:55:37 18.118 74.0 12:56:35 18.362 73.9 12:57:32 18.287 73.8 12:59:28 27.066 73.3 13:00:00 13:00:25 13:01:23 25.519 73.0 13:01:23 25.519 73.0					
12:38:20 18.241 75.5 139:18 17.988 75.4 75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:43:08 17.216 75.1 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:01 16.546 74.8 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.394 74.5 12:50:49 12:50:49 12:50:49 12:50:49 12:51:47 12:52:44 12:53:42 12:53:42 12:55:37 18.18 74.0 12:55:37 18.18 74.0 12:55:37 18.18 74.0 12:55:37 18.18 74.0 12:55:38 12:58:30 12:59:28 12:59:28 13:00:00 13:00:25 13:01:23 13:02:20 25.542 72.9					
39:18 240:16 75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:43:08 17.216 75.1 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.443 74.5 12:49:52 16.394 74.5 12:50:49 16.347 74.4 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:42 12:53:42 12:53:37 18.118 74.0 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:38 12:59:28 12:59:28 12:59:28 13:00:00 13:00:25 13:01:23 25.519 73.0 13:01:23 25.542 72.9					
75.3 12:41:13 17.603 75.2 12:42:11 17.389 75.1 12:43:08 17.216 75.1 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.443 74.5 12:49:52 16.394 74.5 12:50:49 16.347 74.4 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:42 12:53:42 12:53:42 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:35 18.362 73.9 12:57:32 18.287 73.8 12:59:28 27.066 73.3 13:00:00 13:00:25 73.1 13:01:23 25.519 73.0 13:02:20 25.542 72.9		•			
12:41:13 17.603 17.389 75.1 12:42:11 17.389 75.1 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:01 16.546 74.8 12:47:56 16.451 74.6 12:48:54 16.443 74.5 12:49:52 16.394 74.5 12:50:49 16.347 74.4 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:42 12:53:42 12:53:42 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:55:32 18.362 73.9 12:57:32 18.362 73.8 12:59:28 12:59:28 12:59:28 12:59:28 13:00:00 13:00:25 13:01:23 13:02:20 25.542 72.9			17.500		
12:42:11 12:43:08 17:216 75.1 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:01 16.546 74.8 12:46:59 74.7 12:47:56 16.451 16.443 74.5 12:49:52 16.394 74.5 12:50:49 16.347 74.4 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:42 74.1 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:56:35 18.362 73.9 12:57:32 18.287 73.8 12:59:28 27.066 73.3 13:00:00 13:00:25 73.1 13:01:23 25.519 73.0 13:02:20 25.542 72.9			17,603		
12:43:08 12:44:06 16.883 75.0 12:45:04 16.674 74.9 12:46:01 16.546 74.8 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.394 74.5 12:50:49 16.347 74.4 12:51:47 16.464 74.3 12:52:44 16.216 74.1 12:53:42 74.1 12:55:37 18.118 74.0 12:56:35 18.362 73.9 12:57:32 18.287 73.8 12:59:28 27.066 73.3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25.519 73.0 13:02:20 25.542 72.9	12:42:11				
12:45:04 12:46:01 16.546 74.8 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.394 74.5 12:50:49 16.347 12:51:47 16.464 74.3 12:51:47 16.464 74.3 12:52:44 16.216 74.1 12:53:42 74.1 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:56:35 18.362 73.9 12:57:32 18.287 73.8 12:59:28 27.066 73.3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25.519 73.0 13:02:20 25.542 72.9	12:43:08				
12:46:01 16.546 74.8 12:46:59 74.7 12:47:56 16.451 74.6 12:48:54 16.443 74.5 12:49:52 16.394 74.5 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:42 74.1 12:54:40 15.807 74.1 12:55:37 18.118 74.0 12:55:37 18.118 74.0 12:57:32 18.287 73.8 12:59:28 27.066 73.3 13:00:00 13:00:25 73.1 13:01:23 25.519 73.0 13:02:20 25.542 72.9			16.883	75.0	
12:46:59 12:47:56 16:451 74:6 12:48:54 16:443 74:5 12:49:52 16:394 74:5 12:50:49 16:347 74:4 12:51:47 16:464 74:3 12:52:44 16:216 74:2 12:53:42 74:1 12:53:42 74:1 12:55:37 18:118 74:0 12:55:37 18:118 74:0 12:56:35 18:362 73:9 12:57:32 18:287 73:8 12:58:30 26:893 73:5 12:59:28 27:066 73:3 13:00:00 13:00:25 73:1 13:01:23 25:519 73:0 13:02:20 25:542 72:9			16.674	74.9	
12:47:56 12:48:54 16:443 74.5 12:49:52 16:394 74.5 12:50:49 16:347 16:464 74:3 12:51:47 16:464 74:3 12:52:44 16:216 74:2 12:53:42 74:1 12:53:42 74:1 12:55:37 18:118 74:0 12:56:35 18:362 73:9 12:57:32 18:287 73:8 12:58:30 26:893 73:5 12:59:28 27:066 73:3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25:542 72:9			16.546		
12:48:54 12:49:52 16:394 74.5 12:50:49 16:347 16:464 74.3 12:51:47 16:464 74.3 12:52:44 16:216 74.2 12:53:42 74.1 12:54:40 15:807 74.1 12:55:37 18:118 74.0 12:56:35 18:362 73.9 12:57:32 18:287 73.8 12:58:30 26:893 73.5 12:59:28 27.066 73.3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25.519 73.0 13:02:20 25.542 72.9					
12:49:52					
12:50:49 16.347 74.4 12:51:47 16.464 74.3 12:52:44 16.216 74.2 12:53:42 74.1 12:54:40 15.807 74.1 12:55:37 18.118 74.0 12:56:35 18.362 73.9 12:57:32 18.287 73.8 12:58:30 26.893 73.5 12:59:28 27.066 73.3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25.519 73.0 13:02:20 25.542 72.9					
12:51:47 12:52:44 16:216 74:2 12:53:42 74:1 12:54:40 15:807 18:118 74:0 12:56:35 18:362 73:9 12:57:32 18:287 73:8 12:58:30 26:893 73:5 12:59:28 27:066 73:3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25:519 73:0 13:02:20 25:542 72:9					
12:52:44 12:53:42 12:53:42 12:54:40 15:807 74.1 12:55:37 18:118 74.0 12:56:35 18:362 73.9 12:57:32 18:287 73.8 12:58:30 26:893 73.5 12:59:28 27.066 73.3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25:519 73.0 13:02:20 25:542 72.9					
12:53:42 12:54:40 15.807 74.1 12:55:37 18.118 74.0 12:56:35 18.362 73.9 12:57:32 18.287 73.8 12:58:30 26.893 73.5 12:59:28 27.066 73.3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25.519 73.0 13:02:20 25.542 72.9					
12:54:40 15.807 74.1 12:55:37 18.118 74.0 12:56:35 18.362 73.9 12:57:32 18.287 73.8 12:58:30 26.893 73.5 12:59:28 27.066 73.3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:01:23 25.519 73.0 13:02:20 25.542 72.9			10.210		
12:55:37			15.807		
12:56:35					
12:57:32					
12:59:28 27.066 73.3 13:00:00 BREAK DOWN GAUGE CARRIERS 13:00:25 73.1 13:01:23 25.519 73.0 13:02:20 25.542 72.9	12:57:32				
13:00:00 BREAK DOWN GAUGE CARRIERS 13:00:25 73.1 13:01:23 25.519 73.0 13:02:20 25.542 72.9					
13:00:25 73.1 13:01:23 25.519 73.0 13:02:20 25.542 72.9			27.066	73.3	
13:01:23					BREAK DOWN GAUGE CARRIERS
13:02:20 25.542 72.9					
25.485 /2.8					
	03:18		43.485	12.8	

Ticket No: 330038 Page No: 3.2.15 Date: 12-APR-88

PRESSURE VS TIME

GRC gauge no.: 62530 mory Recorder No.: 65478

Gauge Depth: 1934.00 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88		Data Print	Frequency:	2	
13:04:16		25.423	72.7	_	
13:05:13		29.696	72.6		
13:06:11		29.710	72.5		
13:07:08			72.4		
13:08:06		29.555	72.3		
13:09:04		29.466	72.2		
13:10:01		29.459	72.2		
13:10:59		29.336	72.1		
13:11:56		29.261	72.0		
13:12:54		29.186	71.9		
13:13:52			71.9		
13:14:49		28.857	71.8		
13:15:47		26.577	71.8		
13:16:44		24.945	71.7		
13:17:42 13:18:40		24.460	71.7		
13:19:37		24.392	71.7		
13:20:35		24.973	71.6 71.6		
13:21:32		24.775	71.6		
22:30		24.646	71.6		
22:30		24.638	71.6		
13:24:25		24.359	71.6		
13:25:23		23.606	71.6		
13:26:20		23.582	71.6		
13:27:18			71.6		
13:28:16		19.602	71.7		
13:29:13		17.309	71.8		
13:30:11		16.272	71.8		
13:31:08		16.022	72.0		
13:32:06		14.775	72.2		
13:33:04		17.257	72.4		
13:34:01			72.7		
13:34:59		12.214	72.0		
13:35:56		11.457	71.4		
13:36:54		3.118	70.8		
13:37:52		-0.271	70.0		
13:38:49 13:39:47		8.301	69.2		
13:40:44		9.452	68.3		
13:41:42		9.435	67.5 67.6		
13:42:40		9.435	67.8		
13:42:40			67.9		
13:44:35			68.2		
13:45:32			68.5		
13:46:30	•		68.8		
47:28			69.2		

PRESSURE VS TIME

GRC gauge no.: 62530 Gauge Depth: 1934.00 ft

GRC gauge no.: 62530 rory Recorder No.: 65478

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12-APR-88		Data Print		2	
13:48:25		16.764	69.6		
13:49:23		13.096	70.0		
13:50:20		11.860	70.4		
13:51:18		11.718	70.6		
13:52:16		11.779	70.6		
13:53:13		11.677	70.6		
13:54:11			70.6		
13:55:08		11.464	70.7		
13:56:06		11.230	70.7		
13:57:04		11.442	70.8		
13:58:01		11.620	70.8		
13:58:59		11.886	70.9		
13:59:56		11.949	70.9		
14:00:54			71.0		
14:01:52		12.442	71.1		
14:02:49		12.305	71.2		
14:03:47		12.127	71.3		
14:04:44	j	12.713	71.4		
14:05:42		12.726	71.5		
06:40		12.577	71.6		
07:37			71.7		
14:08:35		12.388	71.7		
14:09:32		12.671	71.7		
14:10:30		12.753	71.7		
14:10:59			71.7		

HALLIBURTON RESERVOIR EVALUATION SYSTEM

Lease Owner

Country

Lease

Well No.

Test No.

Test Date

Ticket No.

: CRUSADER RES.

: AUSTRALÍA

: WONGA BINDA

•

. 2

: 13-APR-88

: 330039

HALLIBURTON SERVICES

REPORT TICKET NO: 330039

MEMORY GAUGE TICKET NO: 330039

DATE: 13-APR-88

HALLIBURTON CAMP: SALE

TESTER: W.FARRELLY /I.HOVELL

WITNESS: E.BATT

DRILLING CONTRACTOR: ACTO #7

LEGAL LOCATION:

OPERATOR: CRUSADER RES. LEASE NAME: WONGA BINDA

WELL NO: 1 TEST NO: 2

TESTED INTERVAL: 1936.00 - 1998.00 ft

FIELD AREA: GIPPSLAND BASIN

COUNTY/LSD:

STATE/PROVINCE: VICTORIA

COUNTRY: AUSTRALIA

NOTICE: THIS REPORT IS BASED ON SOUND ENGINEERING PRACTICES, BUT BECAUSE OF VARIABLE WELL CONDITIONS AND OTHER INFORMATION WHICH MUST BE RELIED UPON HALLIBURTON MAKES NO WARRANTY, EXPRESS OR IMPLIED AS TO THE ACCURACY OF THE DATA OR OF ANY CALCULATIONS OR OPINIONS EXPRESSED HEREIN. YOU AGREE THAT HALLIBURTON SHALL NOT BE LIABLE FOR ANY LOSS OR DAMAGE, WHETHER DUE TO NEGLIGENCE OR OTHERWISE ARISING OUT OF OR IN CONNECTION WITH SUCH DATA, CALCULATIONS OR OPINIONS.

TABLE OF CONTENTS

SECTION 1: TEST SUMMARY & INFORM	NOITA
Summary of Test Results Test Period Summary Pressure vs. Time Plot Test and Formation Data Rate History Table Tool String Configuration Operator Job Log	1.1 1.2 1.3 1.4 1.5 1.6
SECTION 2: ANALYSIS	
Plots	2.1
SECTION 3: MEMORY GAUGE DATA	
Gauge No. 63027 Gauge No. 62530	3.1 3.2

SUMMARY OF TEST

Lease Owner: CRUSADER RES. Lease Name: WONGA BINDA

Well No.: 1 Test No.: 2

County/LSD: State/Province: VICTORIA

Country: AUSTRALIA

Formation Tested: TRARALGON

Hole Temp: 82.00 F

Total Depth: 1998.00 ft

Net Pay: 10.00 ft

Gross Tested Interval: 1936.00 - 1998.00 ft

Perforated Interval (ft):

COVERY:

300 ft WATER CUSHION 249 ft RAT HOLE MUD

REMARKS:

TEST PERFORMED WITH BAKER HYDROFLATE TEST STRING.

TEST PERIOD SUMMARY

Gauge No.: 63027 Depth: 1915.60 ft Blanked off: No

ID	PERIOD	DESCRIPTION	PRESSURE (psi)	DURATION (min)
A	1	Start Draw-down	1003.75	
В		End Draw-down	788.75	59.52
В	2	Start Build-up	788.75	
С		End Build-up	820.00	33.60

NOTE: for Pressure vs. Time Plot, see next page.

TEST AND FORMATION DATA

Formation Tested: TRARALGON All Depths Measured From: K.B.

Elevation: 96.80 ft
Total Depth: 1998.00 ft
Net Pav:

Net Pay: 10.00 ft

Net Pay: 10.00 ft
Hole or Casing Size: 8.500 in
Gross Tested Interval: 1936.00 - 1998.00 ft

Perforated Interval (ft):

HOLE FLUID HOLE TEMPERATURE

Type: MUD Deptn: 1900.00 F. Weight: 9.40 lb/gal Estimated: 0.00 F. Viscosity: 49 seconds Actual: 82.00 F. 1908.60 ft

> HYDROCARBON PROPERTIES CUSHION DATA

Oil Gravity (API): 0.0 @ 60 F TYPE Gas/Oil ratio (ScF/STB): 0.0 WATER S Gravity (SG): 0.00 TRUOMA WEIGHT 300 FT 8.34 PPG

FLUID PROPERTIES FOR RECOVERED MUD AND WATER

SOURCE	RESISTIV	'ITY	CHLORIDES	SG	PH
	@	F	PPM		
	@	F	PPM		
	9	F	PPM		
	@	F	PPM		
	@	F	PPM		
	@	F	PPM		

SAMPLER DATA

0 psi 0 cc Surface Pressure: Volume of Gas: Volume of Oil: 0 cc Volume of Water: 0 cc 0 cc Volume of Mud: Total Liquids: 0 cc

REMARKS:

RATE HISTORY TABLE

Period No	Test Type	j 	Prod Rate q(j) (bbl/d)	Duration (hrs)	Cum. Time t(j) (hrs)
			0.0	0 00	2 22
•	22	0	0.0	0.00	0.00
1	DD	1		0.99	0.99
2	BU	2	0.0	0.56	1.55
3	DD	3		1.64	3.19

Date:13-APR-88

Ticket no: 330039

Page no: 1.6.1

TEST STRING CONFIGURATION

	0.D. (in)	I.D. (in)	LENGTH (ft)	DEPTH (ft)
ELECTRONIC GAUGE RUNNING CASE	5.000	1.888	7.950	1908.60
ELECTRONIC GAUGE RUNNING CASE	5.000	1.808	7.958	1915.60
TOTAL DEPTH				1998.00

Date: 13-APR-88

Ticket No: 330039 Page No: 1.7.1

Test No: 2

OPERATOR JOB LOG

Type of Flow Measuring Device: 1/2 " CHOKE

TIME HH:MM:SS	CHOKE SIZE (in)	SURFACE PRESSURE (psi)	GAS RATE (MCF/D)	LIQUID RATE (bbl/d)	REMARKS
12-APR-88					
22:45:00	32/64				MAKE UP GAUGE CARRIERS
13-APR-88					
05:30:00	32/64				INFLATE PACKER
05:43:00	32/64				TOOL OPEN STRONG BLOW
05:46:46	32/64				BLOW DECEASED TO DEAD
06:43:00	32/64				TOOL CLOSED
07:20:00	32/64				PULL FREE BYPASS OPEN
11:00:00	32/64				TEST TOOLS OUT OF HOLE

Date: 13-APR-88

Ticket No: 332039

Page No: 2.2.2

Date: 13-APR-88

Ticket No: 330039

Page No: 2.2.2

...

(t+dt)/dt

TEST PERIOD SUMMARY

Gauge No.: 63027 Depth: 1915.60 ft Blanked off: No DESCRIPTION ID PERIOD PRESSURE (psi) DURATION (min) Α Start Draw-down 1003.75 End Draw-down 788.75 59.52 В 2 Start Build-up 788.75 С End Build-up 820.00 33.60

NOTE: for Pressure vs. Time Plot, see next page.

Ē

PRESSURE VS TIME
C gauge no.: 63027
Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

12-APR-88	TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMI	ENTS	·
22:45:00 23:17:10 13-APR-88 00:17:10 01:17:10 02:18:08 096.361 02:219:05 996.252 76.2 02:20:03 996.213 76.2 02:21:58 996.180 76.3 02:22:56 996.180 76.3 02:22:56 996.180 76.3 02:22:56 996.170 76.4 02:23:53 996.170 76.4 02:25:48 1004.727 76.4 02:25:48 1000.951 76.5 02:27:44 02:26:46 1000.951 76.5 02:31:34 1000.950 76.6 02:31:32 1000.990 76.6 02:31:32 1000.991 76.6 02:33:29 1000.991 76.6 02:33:29 1000.991 76.6 02:33:29 1000.991 76.7 02:36:22 1000.991 76.7 02:36:22 1000.991 76.7 02:36:22 1000.991 76.7 02:36:24 1000.991 76.7 02:36:22 1000.991 76.7 02:36:22 1000.991 76.7 02:37:20 1000.840 76.8 02:39:15 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.991 76.8 02:44:03 1000.855 76.9 02:44:03 1000.798 76.9 02:45:58 1000.798 77.0 02:46:56 1000.778 77.0 02:46:56 1000.766 77.1 02:50:46 1000.676 77.1 02:50:44 1000.606 77.1 02:51:14 1000.606 77.1 02:51:14 1000.606 77.1 02:51:14 1000.607 77.1 02:51:14 1000.606 77.1 02:51:14 1000.607 77.1 02:51:14 1000.597 77.1 02:51:14 1000.597 77.1 02:51:14 1000.597 77.1 02:51:14 1000.597 77.1 02:51:14 1000.597 77.1	12_100_00		Data Drint	Examination				
23:17:10 13-APR-88 00:17:10 01:17:10 10:17:10 02:18:08 996.361 02:19:05 996.252 76.2 02:20:03 996.213 76.3 02:21:58 996.180 76.3 02:22:56 996.163 76.3 02:22:56 996.170 76.4 02:25:48 1004.727 76.4 02:25:48 1004.727 76.5 02:27:44 76.5 02:27:44 76.5 02:23:33 1000.950 76.6 02:31:34 1000.950 76.6 02:31:34 1000.970 76.6 02:31:32 1000.981 76.7 02:33:22 1000.981 76.7 02:33:22 1000.981 76.7 02:33:22 1000.981 76.7 02:33:22 1000.981 76.7 02:33:22 1000.981 76.7 02:33:22 1000.981 76.7 02:33:22 1000.981 76.7 02:33:25 1000.984 76.7 02:33:27 02:33:27 76.7 02:35:24 1000.991 76.6 02:33:37 1000.840 76.8 02:39:15 1000.840 76.8 02:44:10 02:42:08 02:44:03 1000.855 76.9 02:44:03 1000.765 77.0 02:45:58 1000.778 77.0 02:48:51 1000.772 77.0 02:48:51 1000.772 77.0 02:48:51 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.597 77.1 102:52:41 1000.597 77.1 102:52:41 1000.597 77.1 102:52:41 1000.597 77.1			Data Pilit			CAUCE	CADDIEDC	
13-APR-88 00:17:10					O F	GAUGE	CARRIERS	
01:17:10 02:17:10 02:18:08 996.361 76.1 02:19:05 996.252 76.2 02:20:03 996.213 76.2 02:21:00 76.3 02:21:58 996.180 76.3 02:22:56 996.163 76.3 02:22:56 996.170 76.4 02:24:51 996.177 76.4 02:25:48 1004.727 76.4 02:25:48 1000.051 76.5 02:27:44 02:26:46 1000.051 76.5 02:27:44 02:23:33 1000.960 76.6 02:31:34 1000.960 76.6 02:33:34 1000.970 76.6 02:33:29 1000.985 76.7 02:34:27 02:35:24 1000.991 76.7 02:36:22 1000.999 76.7 02:36:22 1000.999 76.7 02:37:20 1000.840 76.8 02:39:15 1000.840 76.8 02:44:10 02:44:10 02:44:08 02:44:08 1000.765 77.0 02:45:58 1000.778 77.0 02:45:58 1000.778 77.0 02:45:58 1000.778 77.0 02:48:51 1000.760 77.1 02:52:41 1000.776 77.0 02:45:58 1000.778 77.0 02:45:58 1000.778 77.0 02:45:58 1000.778 77.0 02:48:51 1000.615 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.606 77.1 02:52:41 1000.597 77.1								
02:17:10 02:18:08 996.361 76.2 02:20:03 996.213 76.2 02:21:00 76.3 02:21:58 996.180 76.3 02:22:56 996.180 76.3 02:23:53 996.170 76.4 02:24:51 996.177 76.4 02:24:51 996.177 76.4 02:25:48 1004.727 76.4 02:26:46 1000.051 76.5 02:27:44 1000.895 76.5 02:31:34 1000.950 76.6 02:31:34 1000.950 76.6 02:33:29 1000.981 76.7 02:34:27 76.7 02:35:24 1000.981 76.7 02:36:22 1000.991 76.7 02:38:17 1000.874 76.8 02:39:15 1000.874 76.8 02:39:15 1000.960 76.9 02:44:10 02:44:10 02:44:10 02:44:10 02:44:58 1000.765 76.9 02:45:58 1000.766 77.0 02:45:58 1000.778 77.0 02:45:58 1000.778 77.0 02:49:48 1000.778 77.0 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1	00:17:10			66.8				
02:18:08 996.361 76.2 02:19:05 996.252 76.2 02:20:03 996.213 76.2 02:21:00 76.3 02:21:58 996.180 76.3 02:22:56 996.163 76.3 02:23:53 996.170 76.4 02:24:51 996.177 76.4 02:25:48 1004.727 76.4 02:26:46 1000.051 76.5 02:27:44 76.5 02:27:44 1000.895 76.5 02:31:34 1000.960 76.6 02:31:34 1000.970 76.6 02:33:32 1000.981 76.6 02:33:32 1000.981 76.7 02:35:24 1000.921 76.7 02:35:24 1000.921 76.7 02:36:22 1000.909 76.7 02:38:17 1000.840 76.8 02:38:17 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:44:08 1000.855 76.9 02:45:08 1000.756 77.0 02:45:58 1000.778 77.0 02:45:58 1000.778 77.0 02:49:48 1000.778 77.0 02:48:51 1000.766 77.1 02:50:46 1000.670 77.1 02:50:46 1000.670 77.1 02:51:44 1000.696 77.1 02:52:41 1000.696 77.1 02:52:41 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1 02:52:241 1000.697 77.1	01:17:10		903.779	71.8				
02:19:05								
02:20:03 02:21:00 02:21:58 02:22:56 02:23:53 02:23:53 02:23:53 02:23:53 02:23:54 02:25:48 02:27:44 02:26:46 02:31:34 02:33:32 02:34:27 02:34:27 02:35:24 02:36:22 02:37:20 02:37:20 02:38:17 02:38:17 02:38:17 02:38:17 02:38:17 02:38:17 02:38:17 000.840 02:38:17 000.840 02:38:17 000.840 02:40:12 02:40:12 02:40:12 000.910 02:42:08 02:43:05 02:43:05 02:45:58 02:45:58 02:46:56 02:47:53 02:48:51 000.726 02:48:51 000.726 02:49:48 000.778 7:0 02:49:48 000.778 7:0 02:49:48 000.778 7:0 02:49:48 000.778 7:0 02:49:48 000.778 7:0 02:49:48 000.615 7:1 02:50:46 02:51:44 000.606 7:1 02:52:41 000.557 7:1 02:52:41 000.557 7:1 02:52:41 000.557 7:1								
02:21:00 02:21:58 996.180 76.3 02:22:56 996.163 76.3 02:23:53 996.170 76.4 02:25:48 1004.727 76.4 02:25:48 1004.727 76.4 02:25:48 1000.051 76.5 02:27:44 1000.895 76.6 02:31:34 1000.990 76.6 02:31:34 1000.990 76.7 02:33:29 1000.981 76.7 02:35:24 1000.991 76.7 02:35:24 1000.991 76.7 02:36:22 1000.990 76.7 02:37:20 1000.874 76.8 02:39:15 1000.760 76.8 02:39:15 1000.960 76.8 02:42:08 1000.960 76.9 02:42:08 1000.960 76.9 02:42:08 1000.970 76.8 02:42:08 1000.970 76.8 02:42:08 1000.970 76.8 02:42:08 1000.970 76.8 02:42:08 1000.970 76.8 02:42:08 1000.970 76.8 02:42:08 1000.970 76.8 02:42:08 1000.970 76.8 02:42:08 1000.970 76.8 02:43:05 1000.770 76.9 02:45:00 1000.775 77.0 02:45:58 1000.778 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1								
02:21:58			996.213					
02:22:56 02:23:53 02:23:53 996.177 76.4 02:25:48 1004.727 76.4 02:26:46 1000.051 76.5 02:27:44 1000.950 76.6 02:31:34 1000.950 76.6 02:31:34 1000.970 76.6 02:32:32 1000.981 76.7 02:34:27 76.7 02:35:24 1000.991 76.7 02:35:24 1000.991 76.7 02:35:24 1000.997 76.8 02:37:20 1000.840 76.8 02:37:20 1000.840 76.8 02:38:17 1000.840 76.8 02:40:12 1000.910 76.8 02:40:12 1000.910 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.855 76.9 02:44:03 1000.765 77.0 02:45:58 1000.778 77.0 02:48:51 1000.766 77.0 02:49:48 1000.767 77.1 02:55:44 1000.597 77.1 02:55:436 1000.597 77.1 153:39 1000.543 77.1			006 100					
02:23:53 02:24:51 996:177 76.4 02:22:48 1004.727 76.4 02:26:46 1000.051 76.5 02:27:44 1:28:41 1000.895 76.5 02:30:36 1000.950 76.6 02:31:34 1000.950 76.6 02:31:34 1000.968 76.7 02:32:32 1000.981 76.7 02:34:27 02:34:27 02:35:24 1000.991 76.7 02:35:24 1000.990 76.7 02:37:20 1000.874 76.8 02:39:15 1000.760 76.8 02:39:15 1000.760 76.8 02:41:10 02:42:08 1000.855 76.9 02:44:03 1000.798 76.9 02:45:58 1000.798 77.0 02:45:58 1000.768 77.0 02:48:51 1000.768 77.0 02:48:51 1000.768 77.0 02:48:51 1000.768 77.1 02:55:44 1000.606 77.1 02:55:44 1000.597 77.1 155:339 1000.543 77.1								
02:24:51								
02:25:48 02:27:44 02:28:41 1000.051 76.5 02:27:44 1000.895 76.5 02:30:36 1000.950 76.6 02:31:34 1000.970 76.6 02:31:34 1000.981 76.6 02:31:32 1000.981 76.6 02:33:29 1000.981 76.6 02:33:29 1000.981 76.7 02:34:27 02:36:22 1000.991 76.7 02:35:24 1000.909 76.7 02:37:20 1000.874 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.855 76.9 02:44:03 1000.798 76.9 02:45:58 1000.798 76.9 02:45:58 1000.798 77.0 02:45:58 1000.765 77.0 02:45:58 1000.765 77.0 02:48:51 1000.765 77.0 02:48:51 1000.765 77.0 02:48:51 1000.765 77.0 02:49:48 1000.676 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 153:39 1000.543 77.2								
02:26:46 02:27:44 1:29:39 1000.950 76.5 02:30:36 02:31:34 1000.960 76.6 02:32:32 1000.981 76.6 02:33:29 1000.981 76.6 02:33:29 1000.988 76.7 02:34:27 02:35:24 1000.991 76.7 02:36:22 1000.999 76.7 02:37:20 1000.874 76.8 02:39:15 1000.840 76.8 02:39:15 1000.910 76.8 02:40:12 1000.910 76.8 02:41:10 02:42:08 1000.865 76.9 02:43:05 02:45:58 1000.768 77.0 02:45:58 1000.778 77.0 02:45:58 1000.768 77.0 02:47:53 02:48:51 1000.615 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 1:54:36								
02:27:44 :28:41 :29:39 1000.950 76.6 02:30:36 1000.960 76.6 02:31:34 1000.970 76.6 02:33:29 1000.981 76.7 02:33:29 1000.968 76.7 02:34:27 76.7 02:35:24 1000.921 76.7 02:37:20 1000.874 76.8 02:38:17 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:44:03 1000.798 76.9 02:44:50 1000.798 76.9 02:45:50 1000.798 77.0 02:46:56 1000.765 77.0 02:46:56 1000.766 77.0 02:49:48 1000.766 77.0 02:49:48 1000.767 77.1 02:50:44 1000.606 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1								
1000.895 76.5 1000.950 76.6 1000.950 76.6 1000.950 76.6 1000.950 76.6 1000.950 76.6 1000.950 76.6 1000.970 76.6 1000.970 76.6 1000.970 76.6 1000.981 76.6 1000.981 76.6 1000.981 76.7 1000.981 76.7 1000.981 76.7 1000.981 76.7 1000.981 76.7 1000.981 76.7 1000.981 76.7 1000.981 76.7 1000.981 76.8 1000.981 76.8 1000.981 76.8 1000.981 76.8 1000.981 76.8 1000.981 76.9 1000.981 76.9 1000.981 76.9 1000.985 76.9 1000.985 76.9 1000.985 76.9 1000.985 76.9 1000.985 76.9 1000.985 76.9 1000.985 76.9 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.0 1000.978 77.1 1000.978 77.2 1000.978			1000.051					
1000.950 76.6 1000.950 76.6 1000.960 76.6 1000.960 76.6 1000.970 76.6 1000.970 76.6 1000.931 76.6 1000.931 76.6 1000.931 76.7 1000.931 76.7 1000.931 76.7 1000.931 76.7 1000.931 76.7 1000.931 76.7 1000.931 76.7 1000.931 76.7 1000.931 76.8 1000.931 76.8 1000.931 76.8 1000.931 76.8 1000.931 76.8 1000.931 76.8 1000.931 76.8 1000.931 76.8 1000.931 76.8 1000.931 76.9 1000.931 76.9 1000.931 76.9 1000.931 76.9 1000.931 76.9 1000.931 76.9 1000.931 76.9 1000.931 76.9 1000.931 76.9 1000.931 77.0 1000.931 77.0 1000.931 77.0 1000.931 77.0 1000.931 77.0 1000.931 77.0 1000.931 77.0 1000.931 77.0 1000.931 77.0 1000.931 77.1 1000.931 77.1 1000.9331 77.1 1000.9331 77.1 1000.9331 77.1 1000.9331 77.1 1000.9331 77.1 1000.9331 77.1 1000.9331 77.1 1000.9331 77.1 77.2 77.0 77.0 77.1 1000.9331 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.1 77.2 77.2 77.1 77.2 77.2 77.1 77.2			1000 805					
02:30:36 1000.960 76.6 02:31:34 1000.970 76.6 02:32:32 1000.981 76.6 02:33:29 1000.968 76.7 02:34:27 76.7 76.7 02:35:24 1000.909 76.7 02:37:20 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:45:00 1000.798 76.9 02:45:58 1000.776 77.0 02:45:58 1000.776 77.0 02:45:58 1000.776 77.0 02:46:56 1000.776 77.1 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.599 77.1 02:52:41 1000.543 77.1 53:39 1000.543 77.1 53:39 1000.543 77.1 70.0 70.0 70.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
02:31:34 02:32:32 1000.981 76.6 02:33:29 1000.968 76.7 02:34:27 76.7 02:35:24 1000.909 76.7 02:37:20 1000.874 76.8 02:38:17 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:58 1000.768 77.0 02:45:58 1000.768 77.0 02:45:58 02:46:56 1000.768 77.0 02:48:51 1000.760 77.1 02:52:41 1000.606 77.1 02:52:41 1000.597 77.1								
02:32:32 1000.981 76.6 02:33:29 1000.968 76.7 02:34:27 76.7 02:35:24 1000.921 76.7 02:36:22 1000.909 76.7 02:37:20 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:44:03 1000.798 76.9 02:45:00 1000.765 77.0 02:45:58 1000.778 77.0 02:45:58 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 02:52:41 1000.543 77.1 54:36 77.2								
02:33:29 1000.968 76.7 02:34:27 76.7 02:35:24 1000.921 76.7 02:36:22 1000.909 76.7 02:37:20 1000.874 76.8 02:38:17 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:00 1000.765 77.0 02:45:58 1000.768 77.0 02:46:56 1000.768 77.0 02:48:51 1000.726 77.0 02:49:48 1000.615 77.1 02:50:46 1000.615 77.1 02:52:41 1000.597 77.1 02:52:41 1000.543 77.1 54:36 77.2								
02:34:27 76.7 02:35:24 1000.921 76.7 02:36:22 1000.909 76.7 02:37:20 1000.874 76.8 02:38:17 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.855 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:58 1000.765 77.0 02:45:58 1000.768 77.0 02:46:56 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 53:39 1000.543 77.1 54:36 77.2								
02:35:24 1000.921 76.7 02:36:22 1000.909 76.7 02:37:20 1000.874 76.8 02:38:17 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:58 1000.778 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:52:41 1000.597 77.1 02:52:41 1000.543 77.1 53:39 1000.543 77.1 54:36 77.2	02:34:27							
02:37:20 1000.874 76.8 02:38:17 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:43:05 1000.798 76.9 02:44:03 1000.798 76.9 02:45:58 1000.778 77.0 02:45:58 1000.778 77.0 02:48:51 1000.726 77.0 02:48:51 1000.726 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 53:39 1000.543 77.1 54:36 77.2	02:35:24		1000.921	76.7				
02:38:17 1000.840 76.8 02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:58 1000.765 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.1 02:49:48 1000.615 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 02:52:41 1000.597 77.1 53:39 1000.543 77.1 54:36 77.2	02:36:22		1000.909	76.7				
02:39:15 1000.760 76.8 02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:50 1000.765 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 53:39 1000.543 77.1 54:36 77.2	02:37:20		1000.874	76.8				
02:40:12 1000.910 76.8 02:41:10 76.9 02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:00 1000.765 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 53:39 1000.543 77.1 :54:36 77.2			1000.840	76.8				
02:41:10 76.9 02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:00 1000.765 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 53:39 1000.543 77.1 :54:36 77.2								
02:42:08 1000.865 76.9 02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:00 1000.765 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 53:39 1000.543 77.1 :54:36 77.2			1000.910					
02:43:05 1000.855 76.9 02:44:03 1000.798 76.9 02:45:00 1000.765 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 53:39 1000.543 77.1 :54:36 77.2								
02:44:03 1000.798 76.9 02:45:00 1000.765 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2								
02:45:00 1000.765 77.0 02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2								
02:45:58 1000.778 77.0 02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2								
02:46:56 1000.768 77.0 02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2		-						
02:47:53 77.0 02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2								
02:48:51 1000.726 77.0 02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2			1000.768					
02:49:48 1000.670 77.1 02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2			1000 726					
02:50:46 1000.615 77.1 02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2								
02:51:44 1000.606 77.1 02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2								
02:52:41 1000.597 77.1 :53:39 1000.543 77.1 :54:36 77.2								
:53:39 :54:36 1000.543 77.2								
:54:36 77.2	_							
	02:55:34		1000.503					

PRESSURE VS TIME
RC gauge no.: 63027
Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
10 100 00		D. b. D. 1. 1	_		
13-APR-88			Frequency:	2	
02:56:32		1000.494	77.2		
02:57:29		1000.463	77.2		
02:58:27		1000.478	77.2		
02:59:24		1000.424	77.2		
03:00:22 03:01:20		1000.416	77.3		
03:01:20		1000 255	77.3		
03:02:17		1000.355	77.3		
03:03:15		1000.325	77.3		
03:04:12		1000.294	77.3		
03:05:10		1000.287	77.3		
03:07:05		1000.280	77.4		
03:07:03		1000.250	77.4		
03:09:00		1000.236	77.4 77.4		
03:09:58		1000.236	77.4		
03:10:56		1000.207	77.4		
03:10:50		1000.225	77.4		
3:12:51		1000.171	77.5		
3:13:48		1000.154	77.5		
03:14:46		1000.130	77.5		
03:15:44		1000.099	77.5		
03:16:41		1000.093	77.5		
03:17:39		1000.042	77.5		
03:18:36		1000.036	77.5		
03:19:34		999.984	77.5		
03:20:32		999.955	77.6		
03:21:29			77.6		
03:22:27		999.920	77.6		
03:23:24		999.938	77.6		
03:24:22		999.863	77.6		
03:25:20		999.835	77.6		
03:26:17		999.806	77.6		
03:27:15		999.778	77.6		
03:28:12			77.7		
03:29:10		999.744	77.7		
03:30:08		999.739	77.7		
03:31:05		999.711	77.7		
03:32:03		999.683	77.7		
03:33:00		999.655	77.7		
03:33:58		999.627	77.7		
03:34:56		000 577	77.7		
03:35:53 03:36:51			77.7		
3:36:51			77.8		
3:38:46			77.8		
03:39:44			77.8 77.8		
00.00.44		222.404	11.0		

Ticket No: 330039 Page No: 3.1.3 Date: 13-APR-88

Gauge Depth: 1915.60 ft

PRESSURE VS TIME

C gauge no.: 63027

Memory Recorder No.: 61771

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
13-APR-88		Data Print	Frequency:	2	
03:40:41		999.456	77.8		
03:41:39			77.8		
03:42:36		999.401	77.8		
03:43:34	ŕ	999.373	77.8		
03:44:32		999.346	77.8		
03:45:29		999.318	77.8		
03:46:27		999.291	77.8		
03:47:24		999.264	77.9		
03:48:22			77.9		
03:49:20		999.255	77.9		
03:50:17		999.205	77.9		
03:51:15		999.155	77.9		
03:52:12		999.151	77.9		
03:53:10		999.124	77.9		
03:54:08		999.074	77.9		
03:55:05			77.9		
03:56:03		998.973	77.9		
57:00		1000.484	77.9		
:57:58		1000.503	78.0		
03:58:56		1000.430	78.0		
03:59:53		1000.380	78.0		
04:00:51		1000.330	78.0		
04:01:48			78.0		
04:02:46		1000.253	78.0		
04:03:44		1000.202	78.0		
04:04:41		1000.175	78.0		
04:05:39		1000.102	78.0		
04:06:36		1000.053	78.0		
04:07:34		1000.026	78.0		
04:08:32			78.1		
04:09:29		999.927	78.1		
04:10:27		999.877	78.1		
04:11:24		999.827	78.1		
04:12:22		999.800	78.1		
04:13:20		999.750	78.1		
04:14:17		999.654	78.1		
04:15:15			78.1		
04:16:12		999.601	78.1		
04:17:10		999.552	78.1		
04:18:08		999.548	78.1		
04:19:05		999.476	78.1		
04:20:03		999.426	78.2		
04:21:00		999.377	78.2		
21:58		000 070	78.2		
22:56 04:23:53		999.278	78.2		
04.23:33		999.229	78.2		

PRESSURE VS TIME
RC gauge no.: 63027
Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
13-APR-88		Data Print	Frequency:	2	
04:24:51		999.157	78.2	2	
04:25:48		999.131	78.2		
04:26:46		999.128	78.2		
04:27:44		999.102	78.2		
04:28:41			78.2		
04:29:39		1000.312	78.2		
04:30:36		1000.285	78.2		
04:31:34		1000.282	78.2		
04:32:32		1000.163	78.2		
04:33:29		1000.091	78.3		
04:34:27		1000.064	78.3		
04:35:24			78.3		
04:36:22		999.965	78.3		
04:37:20		999.939	78.3		
04:38:17		999.890	78.3		
04:39:15		999.841	78.3		
04:40:12		999.815	78.3		
:41:10		999.766	78.3		
:42:08			78.3		
04:43:05		999.691	78.3		
04:44:03		999.642	78.3		
04:45:00		999.593	78.3		
04:45:58		999.567	78.3		
04:46:56		999.541	78.3		
04:47:53 04:48:51		999.469	78.4		
04:48:51		999.394	78.4 78.4		
04:49:46		999.368	78.4		
04:51:44		999.343	78.4		
04:52:41		999.294	78.4		
04:53:39		999.245	78.4		
04:54:36		999.220	78.4		
04:55:34			78.4		
04:56:32		999.146	78.4		
04:57:29		999.097	78.4		
04:58:27		999.048	78.4		
04:59:24		999.022	78.4		
05:00:22		1000.717	78.4		
05:01:20		999.842	78.4		
05:02:17			78.4		
05:03:15		999.882	78.5		
05:04:12		999.765	78.5		
05:05:10		1000.152	78.5		
:06:08		999.828	78.5		
:07:05		999.779	78.5		
05:08:03		1000.718	78.5		

PRESSURE VS TIME
C gauge no.: 63027
Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

į

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
13-APR-88		Data Print	Frequenc	y: 2
05:09:00			78.5	
05:09:58		1002.040	78.5	
05:10:56		1030.022	78.5	
05:11:53		1116.158	78.5	
05:12:51		1164.774	78.6	
05:13:48		1022.428	78.6	
05:14:46		1030.837	78.7	
05:15:44			78.8	
05:16:41		1029.769	78.9	
05:17:39		1027.281	79.0	
05:18:36		1031.577	79.1	
05:19:34		1040.176	79.1	
05:20:32		1034.583	79.1	
05:21:29		1035.616	79.2	
05:22:27			79.2	
05:23:24		1030.506	79.2	
05:24:22		1028.229	79.2	
:25:20		1026.067	79.2	
:26:17		1024.021	79.2	
05:27:15		1022.021	79.2	
05:28:12		1020.113	79.2	
05:29:10			79.2	
05:30:00				INFLATE PACKER
05:30:08		1016.552	79.2	
05:31:05		980.857	79.2	
05:32:03		982.853	79.2	
05:33:00		983.266	79.2	
05:33:58		983.655	79.2	
05:34:56		983.449	79.2	
05:35:53			79.2	
05:36:51		1019.793	79.2	
05:37:48		1017.196	79.2	
05:38:46		1014.968	79.2	*
05:39:44		1012.830	79.2	
05:40:41		1010.623	79.2	
05:41:39		1008.509	79.2	
05:42:36			79.2	moot open ampona prou
05:43:00				TOOL OPEN STRONG BLOW

Ticket No: 330039 Page No: 3.1.6 Date: 13-APR-88

PRESSURE VS TIME RC gauge no.: 63027
Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

_				
TIME	D TIME	PRESSURE	TEMP	COMMENTS
HH:MM:SS	(min)		(F)	
13-APR-88		Doto Dwint	Eve enter 1	
13-APK-00			Frequency: 1 of Period 1 ***	
05:43:05	0.0	1003.750	79.4	
05:43:34	0.5	757.115	79.6	
05:44:03	1.0		79.8	
05:44:32	1.4	457.606	80.0	
05:45:00	1.9	412.196	80.2	
05:45:29	2.4	507.490	80.4	
05:45:58	2.9		80.6	
05:46:27	3.4	695.929	80.6	
05:46:46	2 0	700 100		EASED TO DEAD
05:46:56	3.8	700.102	80.6	
05:47:24 05:47:53	4.3 4.8	707.369 711.477	80.6	
05:47:53	5.3	713.959	80.6 80.7	
05:48:51	5.8	732.717	80.7	
05:49:20	6.2	752.717	80.7	
05:49:48	6.7	735.180	80.7	
5:50:17	7.2	736.583	80.7	
:50:46	7.7	737.896	80.7	
05:51:15	8.2	739.164	80.7	
05:51:44	8.6	740.386	80.7	
05:52:12	9.1	741.609	80.7	
05:52:41	9.6		80.7	
05:53:10	10.1	743.831	80.6	
05:53:39	10.6	744.944	80.6	
05:54:08 05:54:36	11.0 11.5	745.966	80.6	
05:55:05	12.0	746.988 747.943	80.6 80.6	
05:55:34	12.5	747.743	80.6	
05:56:03	13.0	, 10., 01	80.6	
05:56:32	13.4	750.581	80.6	
05:57:00	13.9	751.492	80.6	
05:57:29	14.4	752.334	80.6	
05:57:58	14.9	753.154	80.5	
05:58:27	15.4	751.371	80.5	
05:58:56	15.8	767.412	80.5	
05:59:24	16.3	7.57 000	80.5	
05:59:53 06:00:22	16.8	767.399	80.5	
06:00:22	17.3 17.8	767.631 767.886	80.5 80.5	
06:00:31	18.2	768.231	80.5	
06:01:48	18.7	768.231	80.5	
06:02:17	19.2	768.943	80.4	
:02:46	19.7		80.4	
:03:15	20.2	769.769	80.4	
06:03:44	20.6	770.227	80.4	

PRESSURE VS TIME

C gauge no.: 63027 Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
13-APR-88		Data Print	Frequency:	1	
06:04:12	21.1	770.663	80.4	_	
06:04:41	21.6	771.076	80.4		
06:05:10	22.1	771.534	80.4		
06:05:39	22.6	771.970	80.4		
06:06:08	23.0		80.4		
06:06:36	23.5	772.863	80.3		
06:07:05	24.0	773.298	80.3		
06:07:34	24.5	773.688	80.3		
06:08:03	25.0	774.123	80.3		
06:08:32	25.4	774.150	80.3		
06:09:00	25.9	774.631	80.3		
06:09:29	26.4		80.3		
06:09:58	26.9	775.524	80.3		
06:10:27	27.4	775.913	80.3		
06:10:56	27.8	776.348	80.3		
06:11:24	28.3	776.737	80.2		
06:11:53	28.8	777.127	80.2		
06:12:22	29.3	777.494	80.2		
:12:51	29.8		80.2		
06:13:20	30.2	767.233	80.2		
06:13:48	30.7	767.758	80.2		
06:14:17	31.2	768.351	80.2		
06:14:46	31.7	768.989	80.2		
06:15:15	32.2	769.605	80.2		
06:15:44	32.6	770.243	80.2		
06:16:12	33.1	555 406	80.2		
06:16:41	33.6	771.406	80.2		
06:17:10 06:17:39	34.1	771.863	80.1		
06:17:39	34.6	772.410	80.1		
06:18:36	35.0		80.1		
06:19:05	35.5	773.505	80.1		
06:19:34	36.0 36.5	774.052	80.1		
06:20:03	37.0	775.033	80.1 80.1		
06:20:32	37.4	775.534	80.1		
06:21:00	37.9	776.013	80.1		
06:21:29	38.4		80.1		
06:21:58	38.9		80.1		
06:22:27	39.4		80.1		
06:22:56	39.8		80.1		
06:23:24	40.3		80.1		
06:23:53	40.8		80.1		
06:24:22	41.3		80.1		
26:24:51	41.8		80.0		
:25:20	42.2		80.0		
06:25:48	42.7		80.0		

Ticket No: 330039 Page No: 3.1.8 Date: 13-APR-88

PRESSURE VS TIME

RC gauge no.: 63027 Hemory Recorder No.: 61771 Gauge Depth: 1915.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
			_	
13-APR-88		Data Print	Frequency:	1
06:26:17	43.2	500 000	80.0	
06:26:46	43.7	780.803	80.0	
06:27:15	44.2	781.168	80.0	
06:27:44	44.6	781.510	80.0	
06:28:12	45.1	781.807	80.0	
06:28:41	45.6	781.990	80.0	
06:29:10	46.1	781.675	80.0	
06:29:39	46.6		80.0	
06:30:08	47.0	782.245	80.0	
06:30:36	47.5	782.633	80.0	
06:31:05	48.0	782.884	80.0	
06:31:34	48.5	783.226	80.0	
06:32:03	49.0	783.523	80.0	
06:32:32	49.4	783.842	80.0	
06:33:00	49.9		80.0	
06:33:29	50.4	784.458	80.0	
06:33:58	50.9	784.731	80.0	
06:34:27	51.4	785.119	80.0	
:34:56	51.8	785.392	80.0	
35:24	52.3	785.621	80.0	
06:35:53	52.8	785.894	80.0	
06:36:22	53.3		80.0	
06:36:51	53.8	786.328	79.9	
06:37:20	54.2	786.534	79.9	
06:37:48	54.7	786.739	79.9	
06:38:17	55.2	786.922	79.9	
06:38:46	55.7	787.082	79.9	
06:39:15	56.2 .	787.287	79.9	
06:39:44	56.6		79.9	
06:40:12	57.1	787.630	79.9	
06:40:41	57.6	787.835	79.9	
06:41:10	58.1	788.109	79.9	
06:41:39	58.6	788.314	79.9	
06:42:08	59.0	788.543	79.9	
06:42:36	59.5	788.748	79.9	
06:43:00				CLOSED
		*** End (of Period 1 *	**

PRESSURE VS TIME

C gauge no.: 63027 Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
13-APR-88			Frequency: 1	
06.40.05		*** Start	of Period 2 ***	
06:43:05	0.5	704 105	79.9	
06:43:34	1.0	794.195	79.9	
06:44:03	1.4	799.394	79.9	
06:44:32	1.9	802.890	79.9	
06:45:00	2.4	807.046	79.9	
06:45:29	2.9	810.226	79.9	
06:45:58	3.4	811.862	79.9	
06:46:27	3.8	012 476	79.9	
06:46:56	4.3	813.476	79.9	
06:47:24 06:47:53	4.8 5.3	813.954 814.546	79.9 79.9	
06:47:53	5.8	814.979	79.9	
06:48:51	6.2	815.366	79.9	
06:49:20	6.7	815.662	79.9	
06:49:48	7.2	013.002	79.9	
06:50:17	7.7	816.232	79.9	
6:50:46	8.2	816.483	79.9	
3:51:15	8.6	816.688	79.9	
06:51:44	9.1	816.916	79.9	
06:52:12	9.6	817.076	79.9	
06:52:41	10.1	817.213	79.9	
06:53:10	10.6		79.9	
06:53:39	11.0	817.464	79.9	
06:54:08	11.5	817.579	79.9	
06:54:36	12.0	817.693	79.9	
06:55:05	12.5	817.785	79.9	
06:55:34	13.0	817.876	79.9	
06:56:03	13.4	817.945	79.9	
06:56:32	13.9		79.9	•
06:57:00	14.4	818.105	79.9	
06:57:29	14.9	818.174	79.9	
06:57:58	15.4	818.265	79.9	
06:58:27	15.8	818.311	79.9	
06:58:56	16.3	818.380	79.9	
06:59:24	16.8	818.425	79.9	
06:59:53	17.3		79.9	
07:00:22	17.8	818.562	79.9	
07:00:51	18.2	818.608	79.9	
07:01:20	18.7	818.676	79.9	
07:01:48	19.2	818.745	79.9	
07:02:17	19.7	818.768	79.9	
07:02:46	20.2	818.836	79.9	
7:03:15 7:03:44	20.6	010 020	79.9	
07:04:12	21.1 21.6	818.928	79.9	
07.04:12	21.0	818.974	79.9	

Ticket No: 330039 Page No: 3.1.10 Date: 13-APR-88

PRESSURE VS TIME

C gauge no.: 63027 Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
13-APR-88		Data Print		y: 1
07:04:41		819.019	79.9	
07:05:10		819.065		
			79.9	
		819.157	79.9	
07:06:36	24.0		79.9	
		819.248	79.9	
07:07:34		819.294	79.9	
07:08:03			79.9	
07:08:32	25.9	819.340	79.9	
07:09:00	26.4	819.409	79.9	
07:09:29	26.9	819.455	79.8	
07:09:58 07:10:27	27.4 27.8	819.592	79.8	
		819.592	79.8	
07:11:24			79.8 79.8	
			79.8	
			79.8	
7:12:51	30.2	819.752	79.8	
	30.7	013.732	79.8	
07:13:48	31.2	819.820	79.8	
07:14:17	31.7	819.865	79.8	
07:14:46	32.2	819.911	79.8	
07:15:15	32.6		79.8	
07:15:44	33.1		79.8	
07:16:12	33.6	820.002	79.8	
		*** End o		2 ***
		Data Print	Frequenc	y: 2
07:16:41			79.8	•
07:17:39		814.341	79.9	
07:18:36		849.726	79.9	
07:19:34		835.819	79.9	
07:20:00				PULL FREE BYPASS OPEN
07:20:32			79.9	
07:21:29			79.9	
07:22:27		996.815	79.9	
07:23:24			79.9	
07:24:22		998.374	79.9	
07:25:20		997.134	79.9	
07:26:17		998.879	79.9	
07:27:15		995.551	79.9	
07:28:12 07:29:10		998.420	79.9	
07:29:10		998.926	79.9 79.9	
7:31:05		998.720	79.9 79.9	
:32:03		998.996	79.9	
07:33:00		998.881	79.9	
		220001		

Gauge Depth: 1915.60 ft

PRESSURE VS TIME
C gauge no.: 63027
Memory Recorder No.: 61771 TIME D TIME PRESSURE TEMP COMMENTS

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
13-APR-88		Data Prin	t Frequency:	2
07:33:58		997.642	79.9	2
07:34:56		999.042	79.9	
07:35:53		998.767	79.9	
07:36:51			79.9	
07:37:48		999.112	79.9	
07:38:46		987.065	79.9	
07:39:44		997.896	79.9	
07:40:41		999.711	79.9	
07:41:39		1001.778	79.9	
07:42:36		999.231	79.9	
07:43:34			79.9	
07:44:32		1028.226	79.9	
07:45:29		999.462	79.9	
07:46:27		998.360	79.9	
07:47:24		991.360	79.9	
07:48:22		982.804	79.9	
07:49:20		1005.661	79.9	
<u>0</u> 7:50:17		1000.001	79.9	
:51:15		999.990	79.9	
1:52:12		1000.885	79.9	
07:53:10		1000.448	79.9	
07:54:08		1000.701	79.9	
07:55:05		999.989	79.9	
07:56:03		1000.747	79.9	
07:57:00			79.9	
07:57:58		993.080	79.9	
07:58:56		993.769	79.9	
07:59:53		993.792	79.9	
08:00:51		993.884	79.9	
08:01:48		993.884	79.9	
08:02:46		973.494	79.9	
08:03:44			79.9	
08:04:41		951.822	79.9	
08:05:39		961.464	79.9	
08:06:36		961.395	79.9	
08:07:34		939.829	79.9	
08:08:32		914.886	79.9	
08:09:29		928.328	79.9	
08:10:27			79.9	
08:11:24		928.082	79.8	
08:12:22		942.153	79.8	
08:13:20		946.344	79.8	
08:14:17		946.214	79.8	
08:15:15		946.087	79.8	
:16:12		895.585	79.8	
03:17:10			79.7	

.: - . .

PRESSURE VS TIME
C gauge no.: 63027
emory Recorder No. Gauge Depth: 1915.60 ft Memory Recorder No.: 61771

TIME D TIME PRESSURE TEMP COMMENTS
HH:MM:SS (min) (psi) (F)

		_		
13-APR-88		Frequency:	2	•
08:18:08	878.956	79.7		
08:19:05	879.838	79.7		
08:20:03	879.989	79.6		
08:21:00	825.382	79.6		
08:21:58	841.594	79.6		
08:22:56	810.737	79.5		
08:23:53		79.5		
08:24:51	774.673	79.4		
08:25:48	780.591	79.4		
08:26:46	751.814	79.3		
08:27:44	747.040	79.3		
08:28:41	743.244	79.2		
08:29:39	702.922	79.1		
08:30:36		79.1		
08:31:34	679.811	79.0		
08:32:32	683.229	78.9		
08:33:29	683.151	78.8		
08:34:27	645.857	78.8		
:35:24	647.770	78.7		
08:36:22	607.859	78.6		
08:37:20		78.5		
08:38:17	561.008	78.3		
	560.385	78.2		
08:40:12	524.475	78.1		
08:41:10	550.857	78.0		
08:42:08	519.373	77.9		
08:43:05	514.734	77.8		
08:44:03		77.6		
08:45:00	471.846	77.5		
08:45:58	448.006	77.4		
08:46:56	448.932	77.2		
08:47:53	417.234	77.1		
08:48:51	385.949	77.0		
08:49:48	373.526	76.8		
08:50:46		76.7		
08:51:44	351.141	76.5		
08:52:41	355.629	76.4		
08:53:39	355.579	76.3		
08:54:36	320.515	76.1		
08:55:34	320.334	76.0		
08:56:32	291.936	75.8		
08:57:29		75.7		
08:58:27	266.685	75.5		
08:59:24	266.615	75.4		
:00:22	216.323	75.3		
09:01:20	249.914	75.1		

Gauge Depth: 1915.60 ft

PRESSURE VS TIME
C gauge no.: 63027
Memory Recorder No.: 61771

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12 100 00		Data Datat	-		
13-APR-88			Frequency:	2	
09:02:17		263.492	75.0		
09:03:15		263.485	74.8		
09:04:12		262 012	74.7		
09:05:10		263.913	74.6		
09:06:08		263.929	74.4		
09:07:05		232.057	74.3		
09:08:03		213.853	74.2		
09:09:00		214.194	74.0		
09:09:58		217.610	73.9		
09:10:56		174 700	73.8		
09:11:53		174.798	73.7		
09:12:51 09:13:48		200.860	73.5		
09:13:46		201.109	73.4 73.3		
09:14:48		201.181 151.740	73.2		
09:15:44		151.740	73.1		
09:17:39		131.307	73.0		
<u>09:17:39</u>		154.443	72.9		
:19:34		125.901	72.8		
09:20:32		138.167	72.6		
09:21:29		138.583	72.5		
09:22:27		138.692	72.4		
09:23:24		88.723	72.3		
09:24:22		337.23	72.2		
09:25:20		108.772	72.2		
09:26:17		108.857	72.1		· ·
09:27:15		59.907	72.0		
09:28:12		59.271	71.9		
09:29:10		59.222	71.8		
09:30:08		61.176	71.7		
09:31:05			71.6		
09:32:03		61.681	71.5		
09:33:00		20.195	71.5		
09:33:58		44.377	71.4		
09:34:56		45.562	71.3		
09:35:53		45.573	71.2		
09:36:51		45.845	71.2		
09:37:48			71.1		
09:38:46		29.775	71.0		
09:39:44		30.220	70.9		
09:40:41		30.187	70.9		
09:41:39		30.000	70.8		
09:42:36		30.204	70.7		
09:43:34		30.299	70.7		
:44:32 09:45:29		20 277	70.6		
03.43.23		30.377	70.5		

PRESSURE VS TIME

RC gauge no.: 63027 Gauge Depth: 1915.60 ft Memory Recorder No.: 61771

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
13-APR-88		Data Print	Frequency:	2	
09:46:27		28.425	70.5	2	
09:47:24		26.170	70.4		
09:48:22		25.935	70.3		
09:49:20		24.133	70.3		
09:50:17		20.290	70.2		
09:51:15			70.2		
09:52:12		16.421	70.1		
09:53:10		14.919	70.1		
09:54:08		15.436	70.0		
09:55:05		16.373	70.0		
09:56:03		18.750	69.9		
09:57:00		16.784	69.8		
09:57:58			69.8		
09:58:56		17.426	69.7		
09:59:53 10:00:51		17.689 17.887	69.6 69.5		
10:00:31		18.019	69.4		
10:01:46		18.152	69.2		
0:03:44		18.306	69.1		
0:04:41			69.0		
10:05:39		18.517	69.0		
10:06:36		18.508	68.9		
10:07:34		18.738	68.8		
10:08:32		18.810	68.7		
10:09:29		20.982	68.7		
10:10:27		18.809	68.6		
10:11:24 10:12:22		10 510	68.6		
10:12:22		19.512 19.652	68.6 68.5		
10:13:20		19.856	68.5		
10:15:15		20.469	68.5		
10:16:12		20.556	68.5		
10:17:10		20.316	68.5		
10:18:08			68.5		
10:19:05		23.637	67.4		
10:20:03		18.444	66.4		
10:21:00		17.514	65.3		
10:21:58		18.467	64.4		
10:22:56		19.304	63.8		
10:23:53		19.012	63.1		
10:24:51 10:25:48		10 041	62.5		
10:25:48		19.941 20.140	62.1 61.8		
10:20:40		20.140	61.5		
:28:41		20.624	61.2		
20:29:39		20.516	60.9		

PRESSURE VS TIME

RC gauge no.: 63027 Memory Recorder No.: 61771 Gauge Depth: 1915.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		(COMMEN	TS		
									 -
13-APR-88		Data Print	Frequenc	y:	2				
10:30:36		20.798	60.7	_					
10:31:34			60.5						
10:32:32		21.267	60.6						
10:33:29		21.257	60.8						
10:34:27		22.768	61.0						
10:35:24		29.100	61.0						
10:36:22		30.253	61.0						
10:37:20		23.883	61.0						
10:38:17			61.0						
11:00:00				TEST	TOOLS	OUT	OF	HOLE	

TEST PERIOD SUMMARY

Gauge No.: 62530 Depth: 1908.60 ft Blanked off: No PERIOD DESCRIPTION PRESSURE (psi) DURATION (min) ID Start Draw-down 991.89 End Draw-down 725.43 60.48 В Start Build-up 725.43 В End Build-up 803.47 33.12 С

NOTE: for Pressure vs. Time Plot, see next page.

PRESSURE VS TIME
C gauge no.: 62530
Memory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)			COMMI	ENTS
12-APR-88 22:45:00		Data Print	Freque			CAUCE	CARRIERS
23:20:00 13-APR-88			59.9	TANL	OF	GAUGE	CARRIERS
00:20:00			67.8				
01:20:00		931.287	73.1				
02:20:00			77.4				
03:20:00 04:20:00		984.180	78.7 79.4				
04:20:58		983.897	79.4				
04:21:55		983.865	79.4				
04:22:53		983.791	79.4				
04:23:50		7000,72	79.4				
04:24:48		983.646	79.4				
04:25:46		983.657	79.5				
04:26:43		983.668	79.5				
04:27:41		983.596	79.5				
04:28:38		984.776	79.5				
24:29:36		984.828	79.5				
:30:34			79.5				
04:31:31		984.764	79.5				
04:32:29		984.689	79.5				
04:33:26 04:34:24		984.656 984.623	79.5 79.5				
04:34:24		984.548	79.5				
04:35:22		984.515	79.6				
04:37:17		304.313	79.6				
04:38:14		984.449	79.6				
04:39:12		984.415	79.6				
04:40:10		984.382	79.6				
04:41:07		984.307	79.6				
04:42:05		984.273	79.6				
04:43:02		984.239	79.6				
04:44:00			79.6				
04:44:58		984.171	79.6				
04:45:55		984.137	79.6				
04:46:53 04:47:50		984.102 984.027	79.6 79.7				
04:48:48		983.993	79.7				
04:49:46		984.002	79.7				
04:50:43		JU4.002	79.7				
04:51:41		983.891	79.7				
04:52:38		983.897	79.7				
04:53:36		983.862	79.7				
:54:34		983.827	79.7				
:55:31		983.792	79.7				
04:56:29		983.716	79.7				

PRESSURE VS TIME

RC gauge no.: 62530 Memory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
12 370 00		Data Daint	E		
13-APR-88 04:57:26		Data Print	79.7	:y: 2	
04:57:20		983.647	79.7		
04:59:22		983.612	79.7		
05:00:19		979.276	79.8		
05:00:13		984.753	79.8		
05:02:14		984.801	79.8		
05:03:12		984.598	79.8		
05:04:10		904.590	79.8		
05:05:07		984.820	79.8		
05:06:05		984.535	79.8		
05:07:02		984.792	79.8		
05:07:02		985.510	79.8		
05:08:58		986.353	79.8		
05:09:55		986.988	79.8		
05:10:53		300.300	79.8		
05:11:50		1109.406	79.8		
05:12:48		1147.890	79.9		
Q5:13:46		1007.645	79.9		
5:14:43		1016.750	79.9		
5:15:41		1014.043	80.0		
05:16:38		1014.513	80.0		
05:17:36			80.1		
05:18:34		1016.676	80.1		
05:19:31		1025.016	80.1		
05:20:29		1022.277	80.1		
05:21:26		1020.036	80.2		
05:22:24		1017.455	80.2		
05:23:22		1015.041	80.2		
05:24:19			80.2		
05:25:17		1010.672	80.2		
05:26:14		1008.673	80.2		
05:27:12		1006.633	80.2		
05:28:10		1004.802	80.2		
05:29:07		1002.969	80.2		
05:30:00				INFLATE	PACKER
05:30:05		1000.718	80.2		
05:31:02			80.2		
05:32:00		967.991	80.2		
05:32:58		968.290	80.3		
05:33:55		968.631	80.3		
05:34:53		968.434	80.3		
05:35:50		968.159	80.3		
05:36:48		1004.301	80.3		
05:37:46			80.3		
:38:43		999.648	80.3		
5:39:41		997.444	80.3		

Ticket No: 330039 Page No: 3.2.3 Date: 13-APR-88

PRESSURE VS TIME

Gauge Depth: 1908.60 ft C gauge no.: 62530

emory Recorder No.: 65478

TIME D TIME PRESSURE TEMP
HH:MM:SS (min) (psi) (F) COMMENTS

Data Print Frequency: 2 13-APR-88 05:40:38 05:41:36 995.323 80.4 993.443 80.6

Ticket No: 330039 Page No: 3.2.4 Date: 13-APR-88

PRESSURE VS TIME

GRC gauge no.: 62530 Memory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
13-APR-88		Data Print	Freque	ncv: 1
		*** Start		
05:42:34	0.0	991.886		
05:43:00				TOOL OPEN STRONG BLOW
05:43:02	0.5	616.619	81.2	
05:43:31	1.0	747.753	81.4	
05:44:00	1.4	385.852	81.6	
05:44:29	1.9		81.8	
05:44:58			81.9	
05:45:26			81.9	
05:45:55			82.0	
05:46:24 05:46:46	3.8	665.847	82.0	DION DECEMBED TO DELD
05:46:46	4.3	666.308	82.1	BLOW DECEASED TO DEAD
05:47:22	4.8	669.540	82.1	
05:47:50	5.3	009.540	82.2	
<u>0</u> 5:48:19	5.8	671.905	82.2	
:48:48	6.2	690.354	82.2	
5:49:17			82.2	
05:49:46	7.2		82.2	
05:50:14	7.7		82.2	
05:50:43	8.2	691.806	82.2	
05:51:12	8.6		82.2	
05:51:41	9.1	692.835	82.2	
05:52:10	9.6	693.448	82.1	
05:52:38	10.1	694.104	82.1	
05:53:07	10.6	694.676	82.1	
05:53:36	11.0	695.248	82.1	
05:54:05	11.5	695.821	82.1	
05:54:34 05:55:02	12.0	607 045	82.1	
05:55:02	12.5 13.0	697.045	82.1	
05:56:00	13.4	697.779 698.224	82.1 82.1	
05:56:29	13.9	698.710	82.1	
05:56:58	14.4	699.154	82.1	
05:57:26	14.9	699.599	82.0	
05:57:55	15.4		82.0	
05:58:24	15.8	695.230	82.0	
05:58:53	16.3	707.717	82.0	
05:59:22	16.8	708.491	82.0	
05:59:50	17.3	709.099	82.0	
06:00:19	17.8	709.666	82.0	
06:00:48	18.2	710.150	82.0	
:01:17	18.7	710 001	81.9	
06:01:46	19.2	710.994	81.9	
06:02:14 06:02:43	19.7	711.436	81.9	
00.02.43	20.2	711.796	81.9	

RC gauge no.: 62530 Memory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
13-APR-88		Data Print	Frequency:	1	
06:03:12	20.6	712.156	81.9		
06:03:41	21.1	712.599	81.9		
06:04:10	21.6	712.959	81.9		
06:04:38	22.1		81.9		
06:05:07	22.6	713.680	81.8		
06:05:36	23.0	714.041	81.8		
06:06:05	23.5	714.402	81.8		
06:06:34	24.0	714.721	81.8		
06:07:02	24.5	715.124	81.8		
06:07:31	25.0	715.485	81.8		
06:08:00	25.4		81.8		
06:08:29	25.9	716.621	81.8		
06:08:58	26.4	716.941	81.7		
06:09:26	26.9	717.262	81.7		
06:09:55	27.4	717.541	81.7		
06:10:24	27.8	717.861	81.7		
06:10:53 -06:11:22	28.3	718.140	81.7		
5:11:50	28.8	710 700	81.7		
06:12:19	29.3 29.8	718.780	81.7		
06:12:48	30.2	719.059 700.955	81.7 81.7		
06:13:17	30.7	700.955	81.6		
06:13:46	31.2	703.220	81.6		
06:14:14	31.7	703.912	81.6		
06:14:43	32.2	704.522	81.6		
06:15:12	32.6	705.661	81.6		
06:15:41	33.1	706.150	81.6		
06:16:10	33.6	706.679	81.6		
06:16:38	34.1	707.375	81.6		
06:17:07	34.6	707.904	81.6		
06:17:36	35.0	708.434	81.6		
06:18:05	35.5		81.6		
06:18:34	36.0	709.370	81.5		
06:19:02	36.5		81.5		
06:19:31	37.0		81.5		
06:20:00	37.4		81.5		
06:20:29	37.9		81.5		
06:20:58	38.4		81.5		
06:21:26	38.9		81.5		
06:21:55	39.4		81.5		
06:22:24	39.8	712.664	81.5		
06:22:53	40.3		81.5		
06:23:22	40.8		81.5		
06:23:50	41.3		81.5		
5:24:19	41.8		81.5		
06:24:48	42.2		81.4		

PRESSURE VS TIME

RC gauge no.: 62530 Memory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME	D TIME	PRESSURE	TEMP	COMMENTS
HH:MM:SS	(min)	(psi)	(F)	
13-APR-88		Data Print	Frequenc	y: 1
06:25:17	42.7	714.943	81.4	-
06:25:46	43.2	715.351	81.4	
06:26:14	43.7	715.677	81.4	
06:26:43	44.2	716.085	81.4	
06:27:12	44.6	716.411	81.4	
06:27:41	45.1	716.736	81.4	
06:28:10	45.6		81.4	
06:28:38	46.1	718.051	81.4	
06:29:07	46.6	718.047	81.4	
06:29:36	47.0	718.497	81.4	
06:30:05	47.5	718.783	81.4	
06:30:34	48.0	719.068	81.4	
06:31:02	48.5	719.436	81.4	
06:31:31	49.0		81.4	
06:32:00	49.4	720.089	81.4	
06:32:29	49.9	720.374	81.4	
06:32:58	50.4	720.701	81.4	
06:33:26	50.9	720.945	81.4	
:33:55	51.4	721.230	81.3	
6:34:24	51.8	721.598	81.3	
06:34:53	52.3		81.3	
06:35:22	52.8	722.127	81.3	
06:35:50	53.3	722.331	81.3	
06:36:19	53.8	722.409	81.3	
06:36:48	54.2	722.696	81.3	
06:37:17	54.7	722.816	81.3	
06:37:46	55.2	723.019	81.3	
06:38:14	55.7		81.3	
06:38:43	56.2	723.674	81.3	
06:39:12	56.6	723.920	81.3	
06:39:41	57.1	723.916	81.3	
06:40:10	57.6	724.120	81.3	
06:40:38	58.1	724.324	81.3	
06:41:07	58.6	724.527	81.3	
06:41:36	59.0		81.3	
06:42:05	59.5	725.021	81.3	
06:42:34	60.0	725.227	81.3	
06:43:00				TOOL CLOSED
06:43:02	60.5		81.3	
		*** End c	of Period	1 ***

Ticket No: 330039 Page No: 3.2.7 Date: 13-APR-88

PRESSURE VS TIME

RC gauge no.: 62530 Hemory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
13-APR-88		Data Print	Frequency: 1	
13-APK-00			of Period 2 ***	
06:43:31	0.5	782.317	81.3	
06:44:00	1.0	785.055	81.3	
06:44:29	1.4	788.001	81.3	
06:44:58	1.9		81.3	
06:45:26	2.4	794.764	81.3	
06:45:55	2.9	796.257	81.3	
06:46:24	3.4	796.961	81.3	-
06:46:53	3.8	797.416	81.3	
06:47:22	4.3	797.912	81.3	
06:47:50	4.8	798.366	81.3	
06:48:19	5.3	500 151	81.3	
06:48:48	5.8	799.151	81.3	
06:49:17	6.2	799.439	81.3	
06:49:46 06:50:14	6.7 7.2	799.727 799.974	81.3 81.3	
06:50:43	7.7	800.179	81.3	
06:50:45 06:51:12	8.2	800.384	81.3	
:51:41	8.6	000.304	81.3	
6:52:10	9.1	800.711	81.3	
06:52:38	9.6	800.875	81.2	
06:53:07	10.1	800.997	81.2	
06:53:36	10.6	801.120	81.2	
06:54:05	11.0	801.200	81.2	
06:54:34	11.5	801.323	81.2	
06:55:02	12.0		81.2	
06:55:31	12.5	801.485	81.2	
06:56:00	13.0	801.567	81.2	
06:56:29	13.4	801.648	81.2	
06:56:58	13.9	801.688	81.2	
06:57:26		801.770	81.2	
06:57:55	14.9	801.851	81.2	
06:58:24 06:58:53	15.4	001 072	81.2	
06:59:22	15.8 16.3	801.973 802.014	81.2	
06:59:50	16.8	802.014	81.2 81.2	
07:00:19	17.3	802.137	81.2	
07:00:48	17.8	802.177	81.2	
07:00:40	18.2	802.259	81.2	
07:01:46	18.7		81.2	
07:02:14	19.2	802.340	81.2	
07:02:43	19.7	802.463	81.2	
07:03:12	20.2	802.462	81.2	
07:03:41	20.6	802.543	81.2	
:04:10	21.1	802.583	81.2	
:04:38	21.6	802.582	81.2	

PRESSURE VS TIME C gauge no.: 62530 Memory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)	COMMENTS
			_	
13-APR-88	22.1	Data Print	Frequency	: 1
07:05:07		000 700	81.2	
07:05:36		802.703		
			81.2 81.2	
07:00:34		802.782	81.2	
07:07:31		802.823	81.2	
07:08:00	25.0		81.2	
07:08:29	25.4	002.003	81.2	
07:08:58		802.944	81.2	
07:09:26	26.4	802.984	81.2	
07:09:55			81.2	
07:10:24		803.149	81.2	
			81.2	
	28.3	803.189	81.2	
07:11:50	28.8		81.2	
07:12:19	29.3	803.228	81.2	
07:12:48	29.8	803.228	81.2	
27:13:17	30.2	803.310	81.2	
:13:46	30.7	803.309	81.2	
07:14:14	31.2	803.350	81.2	
07:14:43	31.7	803.391	81.2	
07:15:12	32.2		81.2	
07:15:41		803.473		
07:16:10	33.1	803.473	81.2	
		*** End (of Period	2 ***
		Data Print		2
07:16:38		807.293	81.2	
07:17:36		809.121	81.2	
07:18:34		251 212	81.2	
07:19:31		954.943	81.2	
07:20:00 07:20:29		070 531		JLL FREE BYPASS OPEN
07:20:29		978.531 981.378		
07:21:26		980.631	81.2	
07:23:22		981.927	81.2 81.2	
07:23:22		982.679	81.2	
07:25:17		502.075	81.2	
07:26:14		982.679	81.2	
07:27:12		979.921	81.2	
07:28:10		982.675	81.2	
07:29:07		981.588	81.2	
07:30:05		981.921	81.2	
07:31:02		981.335	81.2	
7:32:00			81.2	
:32:58		986.552	81.2	
07:33:55		981.707	81.2	

PRESSURE VS TIME

RC gauge no.: 62530 Gauge Depth: 1908.60 ft

Memory Recorder No.: 65478 TIME D TIME PRESSURE TEMP HH:MM:SS (min) (psi) (F) COMMENTS Data Print Frequency: 2 07:34:53 983.501 81.2 07:35:50 979.574 81.2 07:36:48 980.449 81.2 07:37:46 983.454 81.2 07:38:43 81.2 982.491 81.2 981.196 81.2 07:39:41 07:40:38

13-APR-88 07:41:36 991.343 81.2 983.283 81.2 983.282 81.2 1001.993 81.2 07:42:34 07:43:31 07:44:29 07:45:26 81.2 983.993 81.2 07:46:24 975.102 81.2 966.089 81.2 1162.921 81.2 07:47:22 07:48:19 07:49:17 985.418 81.2 985.584 81.2 07:50:14 07:51:12 7:52:10 81.2 984.789 81.2 985.916 81.2 985.415 81.2 985.748 81.2 999.823 81.2 977.896 81.2 7:53:07 07:54:05 07:55:02 07:56:00 07:56:58 07:57:55 07:58:53 81.2 07:59:50 978.560 81.2 978.600 81.2 978.681 81.2 08:00:48 08:01:46 959.980 81.2 949.214 81.2 08:02:43 08:03:41 08:04:38 934.992 81.2 81.2 08:05:36 08:06:34 946.454 81.2 921.768 81.2 898.059 81.2 913.885 81.2 913.713 81.2 08:07:31 08:08:29 08:09:26 08:10:24 08:11:22 913.584 81.2 08:12:19 81.1 08:13:17 931.526 81.1 08:14:14 931.386 81.1 08:15:12 931.286 81.1 875.616 81.1 895.364 81.1 <u>9</u>8:16:10

864.702 81.0

:17:07 8:18:05

PRESSURE VS TIME

RC gauge no.: 62530 Memory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
13-APR-88		Data Drint	Tromionau		
08:19:02		Data Pilit	Frequency: 81.0	2	
08:20:00		865.599	81.0		
08:20:58		824.984	80.9		
08:21:55		827.236	80.9		
08:22:53		791.147	80.9		
08:23:50		789.901	80.8		
08:24:48		750.449	80.8		
08:25:46			80.7		
08:26:43		730.668	80.7		
08:27:41		732.894	80.6		
08:28:38		706.293	80.6		
08:29:36		689.138	80.5		
08:30:34		664.376	80.4		
08:31:31		667.451	80.4		
08:32:29			80.3		
08:33:26		669.323	80.2		
08:34:24 08:35:22		624.895	80.1		
3:36:19		634.185	80.0		
8:37:17		585.465 590.971	79.9 79.8		
08:38:14		540.699	79.7		
08:39:12		340.033	79.6		
08:40:10		515.199	79.5		
08:41:07		537.895	79.4		
08:42:05		502.420	79.3		
08:43:02		489.877	79.2		
08:44:00		459.538	79.0		
08:44:58		448.238	78.9		
08:45:55			78.8		
08:46:53		423.549	78.7		
08:47:50		405.155	78.5		
08:48:48		363.003	78.4		
08:49:46		361.721	78.3		
08:50:43 08:51:41	•	356.834	78.1		
08:52:38		341.302	78.0		
08:53:36		326.211	77.9 77.7		
08:54:34		308.930	77.6		
08:55:31		308.667	77.5		
08:56:29		263.526	77.3		
08:57:26		255.502	77.2		
08:58:24		255.481	77.0		
08:59:22			76.9		
09:00:19		197.019	76.8		
:01:17			76.6		
:02:14		251.971	76.5		
•					

Ticket No: 330039 Page No: 3.2.11 Date: 13-APR-88

PRESSURE VS TIME
C gauge no.: 62530
Memory Recorder No.: 65478 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
13-APR-88		Data Print	Frequency:	2	
09:03:12		252.034	76.3	_	
09:04:10		252.344	76.2		
09:05:07		252.287	76.1		
09:06:05			75.9		
09:07:02		208.349	75.8		
09:08:00		202.870	75.7		
09:08:58		204.200	75.5		
09:09:55		206.311	75.4		
09:10:53		206.226	75.3		
09:11:50		168.933	75.2		
09:12:48			75.0		
09:13:46		189.506	74.9		
09:14:43		189.549	74.8		
09:15:41		139.826	74.7		
09:16:38		140.361	74.6		
09:17:36 09:18:34		143.628 133.099	74.5		
<u>09:18:34</u> <u>09:19:31</u>		133.099	74.4 74.3		
:20:29		127.148	74.3		
09:21:26		127.148	74.2		
09:22:24		123.646	74.0		
09:23:22		85.008	73.9		
09:24:19		97.791	73.8		
09:25:17		97.774	73.7		
09:26:14			73.6		
09:27:12		49.619	73.5		
09:28:10		48.756	73.4		
09:29:07		48.583	73.3		
09:30:05		50.848	73.2		
09:31:02		51.048	73.2		
09:32:00		51.126	73.1		
09:32:58			73.0		
09:33:55		31.658	72.9		
09:34:53		32.845	72.9		
09:35:50 09:36:48		32.977	72.8		
09:36:48		33.350	72.7		
09:37:46		20.297 18.963	72.7 72.6		
09:39:41		10.903	72.5		
09:40:38		19.465	72.4		
09:41:36		19.353	72.4		
09:42:34		19.404	72.3		
09:43:31		19.498	72.2		
09:44:29		19.514	72.2		
:45:26		19.490	72.1		
09:46:24			72.1		

PRESSURE VS TIME

RC gauge no.: 62530 Gauge Depth: 1908.60 ft

TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		COMMENTS
13-APR-88		Data Print	Frequency:	2	
09:47:22		15.840	72.0	_	
09:48:19		15.296	72.0		
09:49:17		13.008	71.9		
09:50:14		9.429	71.9		
09:51:12		6.747	71.8		
09:52:10		5.200	71.8		
09:53:07			71.7		
09:54:05		4.526	71.7		
09:55:02		5.967	71.6		
09:56:00		6.070	71.6		
09:56:58		5.431	71.5		
09:57:55		5.511	71.4		
09:58:53		5.631	71.3		
09:59:50 10:00:48		5 060	71.3		
10:00:48		5.863 5.895	71.2 71.1		
10:01:48		5.927	71.1		
10:02:43		5.968	70.9		
:04:38		5.977	70.9		
:05:36		5.985	70.8		
10:06:34		3.703	70.7		
10:07:31		6.029	70.7		
10:08:29		6.064	70.6		
10:09:26		6.301	70.6		
10:10:24		6.308	70.6		
10:11:22		6.734	70.5		
10:12:19		6.835	70.5		
10:13:17			70.5		
10:14:14		6.854	70.5		
10:15:12		7.015	70.5		
10:16:10		6.892	70.5		
10:17:07		6.536	70.5		
10:18:05		11.296	70.5		
10:19:02		11.598	70.5		
10:20:00			70.6		
10:20:58		14.652	70.6		
10:21:55 10:22:53		14.568	70.6		
10:22:53		12.050	70.7		
10:24:48		11.342	70.1		
10:24:46		5.829 -0.137	68.9 67.7		
10:26:43		-0.137	66.4		
10:27:41		2.592	65.6		
10:28:38		2.372	64.8		
:29:36		3.082	64.0		
30:34		3.619	63.5		
			-		

Ticket No: 330039 Page No: 3.2.13 Date: 13-APR-88

PRESSURE VS TIME
C gauge no.: 62530
emory Recorder No.: 65478 Gauge Depth: 1908.60 ft

13-APR-88 10:31:31 4.718 63.3 10:32:29 5.370 63.1 62.9 10:34:24 11.852 64.5 10:35:22 22.455 66.1 10:36:19 13.573 67.7 10:37:17 7.889 68.7 10:39:12 11.484 69.6 10:40:10 70.0 10:41:07 10:42:05 13.037 71.4 10:44:00 13.593 72.8 10:44:58 14.237 73.7 10:44:58 10:46:53 10:47:50 14.185 76.2 14.185 76.2 14.185 76.2 14.185 76.2 14.185 76.2 14.185 76.2 14.185 76.2 16.51:41 10.52:38 10.55:31 10.55:31 10.55:31 10.55:31 10.56:58 10:56:58 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE	TIME HH:MM:SS	D TIME (min)	PRESSURE (psi)	TEMP (F)		(COMME	NTS		
10:31:31	13_100_22		Data Brint	Fromione		2				
10:32:29 10:33:26 10:34:24 11:852 22:455 66.1 10:36:19 13:573 67.7 10:37:17 7.889 68.7 10:39:12 11.484 69.6 10:40:10 10:41:07 10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:58 10:45:55 13.742 74.6 10:45:55 10:47:50 14:185 76.2 14:848 14.921 77.0 10:50:43 10:55:38 10:55:31 10:56:29 11:30 78.3 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE					-y :	2				
10:33:26 10:34:24 11.852 64.5 10:35:22 22.455 66.1 10:36:19 13.573 67.7 10:37:17 7.889 68.7 10:38:14 11.370 69.2 10:39:12 11.484 69.6 10:40:10 70.0 10:41:07 10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:58 14.237 73.7 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 75.5 10:47:50 14.185 76.2 14.8848 14.921 77.0 10:50:43 13.437 78.1 10:51:41 13.501 78.3 10:55:31 10:55:31 10:56:29 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE										
10:34:24 10:35:22 22.455 66.1 10:36:19 13:573 67.7 10:37:17 7.889 68.7 10:38:14 11.370 69.2 10:40:10 70.0 10:41:07 10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:58 14.237 73.7 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 76.2 14.848 14.921 77.0 14.921 77.0 14.946 14.559 77.7 10:50:43 13.437 78.1 10:51:41 13.501 13.501 78.2 10:52:38 10:53:36 10:54:34 11:00:50:53 11:00:50:58 11:00:50:00 TEST TOOLS OUT OF HOLE			3.370							
10:35:22			11 852							
10:36:19 10:37:17 7.889 68.7 10:38:14 11.370 69.2 10:40:10 70.0 10:41:07 10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:58 14.237 73.7 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 76.2 14.848 14.921 77.0 10:50:43 13.437 78.1 10:51:41 13.501 78.2 10:53:36 10:53:36 10:54:34 10:55:31 10:56:29 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE										•
10:37:17 10:38:14 11:370 69:2 10:39:12 11:484 69:6 10:40:10 10:41:07 10:42:05 13:037 71:4 10:43:02 13:611 72:1 10:44:58 14:237 73:7 10:45:55 10:47:50 14:185 76:2 148:48 14.921 77:0 10:50:43 10:51:41 10:51:41 10:52:38 10:53:36 10:54:34 10:55:31 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE										
10:38:14 10:39:12 11.484 69.6 10:40:10 10:41:07 12.542 70.7 10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:58 14.237 73.7 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 76.2 148:48 14.921 77.0 10:50:43 13.593 78.3 10:53:36 10:54:34 10:55:31 10:55:31 10:55:31 10:56:29 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE										
10:39:12 10:40:10 10:41:07 10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:58 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 75.5 10:47:50 14.185 76.2 14.848 14.921 77.0 10:50:43 13.437 78.1 10:51:41 13.501 78.2 10:52:38 10:53:36 10:55:31 10:56:29 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE										
10:40:10 10:41:07 10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:58 10:44:58 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 76.2 14.848 14.921 17.0 10:50:43 13.501 78.1 10:51:41 13.501 78.3 10:53:36 10:54:34 12.859 78.3 10:56:29 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE										
10:41:07 10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:00 13.593 72.8 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 76.2 14.848 14.921 77.0 10:50:43 13.437 78.1 10:51:41 13.501 78.2 10:52:38 10:53:36 78.3 10:55:31 10:56:29 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE			111101							
10:42:05 13.037 71.4 10:43:02 13.611 72.1 10:44:00 13.593 72.8 10:44:58 14.237 73.7 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 75.5 10:47:50 14.185 77.7 10:50:43 13.437 78.1 10:51:41 13.501 78.2 10:52:38 10:53:36 78.3 10:54:34 12.859 78.3 10:56:29 12.130 78.3 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE			12,542							
10:43:02 10:44:00 13.593 72.8 10:44:58 14.237 73.7 10:45:55 13.742 74.6 10:46:53 10:47:50 14.185 76.2 14.848 14.921 77.0 14.559 77.7 10:50:43 10:51:41 13.501 78.2 10:52:38 10:53:36 10:54:34 10:55:31 10:56:29 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE										
10:44:00 10:44:58 10:44:58 10:45:55 10:46:53 10:47:50 14.185 14.921 17.0 149:46 10:50:43 10:51:41 10:52:38 10:53:36 10:54:34 10:55:31 10:56:29 10:56:58 11:00:00 13.593 72.8 14.237 73.7 74.6 75.5 13.742 74.6 75.5 14.185 76.2 77.7 78.1 78.1 10:50:43 12.187 78.3 10:52:38 12.187 78.3 10:56:29 12.130 78.3 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE	10:43:02									
10:45:55 10:46:53 10:47:50 14.185 76.2 14.921 77.0 14.559 77.7 10:50:43 10:51:41 13.501 13.437 78.1 10:52:38 10:53:36 78.3 10:54:34 12.859 78.3 10:56:29 12.130 78.3 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE	10:44:00		13.593	72.8						
10:46:53 10:47:50 14.185 76.2 149:46 14.559 77.7 10:50:43 10:51:41 13.501 12.187 18.3 10:53:36 10:54:34 12.859 12.187 10:56:29 10:56:58 11:00:00 TEST TOOLS OUT OF HOLE	10:44:58		14.237	73.7						
10:47:50 14.185 76.2 14.921 77.0 14.9246 14.559 77.7 10:50:43 13.437 78.1 10:51:41 13.501 78.2 10:52:38 12.187 78.3 10:53:36 78.3 10:54:34 12.859 78.3 10:55:31 12.940 78.3 10:56:29 12.130 78.3 10:56:58 78.3 11:00:00 TEST TOOLS OUT OF HOLE	10:45:55		13.742	74.6						
148:48 14.921 77.0 149:46 14.559 77.7 10:50:43 13.437 78.1 10:51:41 13.501 78.2 10:52:38 10:53:36 78.3 10:54:34 12.859 78.3 10:55:31 12.940 78.3 10:56:29 12.130 78.3 10:56:58 78.3 11:00:00 TEST TOOLS OUT OF HOLE	10:46:53			75.5						
0:49:46			14.185	76.2						
10:50:43 13.437 78.1 10:51:41 13.501 78.2 10:52:38 10:53:36 78.3 10:54:34 12.859 78.3 10:55:31 12.940 78.3 10:56:29 12.130 78.3 10:56:58 78.3 11:00:00 TEST TOOLS OUT OF HOLE			14.921	77.0						
10:51:41		`		77.7						
10:52:38			13.437							
10:53:36 78.3 10:54:34 12.859 78.3 10:55:31 12.940 78.3 10:56:29 12.130 78.3 10:56:58 78.3 11:00:00 TEST TOOLS OUT OF HOLE										
10:54:34			12.187							
10:55:31 12.940 78.3 10:56:29 12.130 78.3 10:56:58 78.3 11:00:00 TEST TOOLS OUT OF HOLE										
10:56:29										
10:56:58 78.3 11:00:00 TEST TOOLS OUT OF HOLE										
11:00:00 TEST TOOLS OUT OF HOLE			12.130							
				78.3						
	11:00:00		*		TEST	TOOLS	OUT	OF	HOLE	

• APPENDIX 6

APPENDIX 6

DESCRIPTION OF CUTTING SAMPLES

WCNGA BINDA #1 : SAMPLE DESCRIPTIONS.

Metres % Description

- 50 100 SANDSTONE, clear to milky white, common yellow iron stained, medium to coarse, sub-rounded, poorly sorted, trace ferruginous / argillaceous matrix / cement, loose, good porosity.
- 40 10 SANDSTONE, a.a.

 90 LIMESTONE, light to medium grey, pale brown, firm to moderately hard, sandy in part, argillaceous in part, fossiliferous, trace lithic/volcanic fragments.
- 70 20 SANDSTONE, a.a. 80 LIMESTONE, off white to light grey, silty in part, firm, abundant fossils, trace glauconite.
- 80 Tr SANDSTONE, a.a. 100 LIMESTONE, a.a.
- 90 10 SANDSTONE, a.a. 90 LIMESTONE, a.a. grading to marl, dispersive and argillaceous in part.
- 100 Tr SANDSTONE, a.a. 100 LIMESTONE, a.a.
- 110 10 SANDSTONE, a.a. 90 LIMESTONE, a.a. grades to marl, silty and argillaceous in part.
- 120 Tr SANDSTONE, a.a. 100 LIMESTONE, a.a.
- Tr SANDSTONE, a.a. 100 LIMESTONE, a.a. grades to marl in part, trace glauconite and lithic fragments.
- 140 100 LIMESTONE, a.a.
- 150 100 LIMESTONE, a.a.
- 160 100 LIMESTONE, a.a.
- 170 100 LIMESTONE, white, cream, sandy in part, friable, fossiliferous.
- 180 100 LIMESTONE, a.a.
- 190 100 LIMESTONE, white, cream, very fossiliferous, abundant light to dark green glauconite.
- 200 100 LIMESTONE, a.a. fossiliferous, abundant shell fragments, bryozoa, some forams, common to abundant glauconite which replaces shell in part.
- 210 100 LIMESTONE, a.a. very glauconitic.
- 220 NO SAMPLE, changing shaker screen.
- 230 100 LIMESTONE, white, off white, fossiliferous, green glauconite, trace mica.

```
248
       20 MARL, light brown, grey, silty, argillaceous, dispersive, grading to limestone.
       80 LIMESTONE, white, cream, light grey-brown, firm, fossiliferous, common to abundant glauconite, silty
           in part, grading to marl in part.
250
       10 MARL, a.a.
       90 LIMESTONE, a.a.
260
       Tr MARL, a.a.
      100 LIMESTONE, a.a. - common glauconite, very fossiliferous.
270
       10 MARL, a.a. - grades to limestone.
       90 LIMESTONE, a.a. - white, cream, light grey, silty in part, glauconitic, very fossiliferous.
280
       90 LIMESTONE, a.a. - grey, hard, crystalline in part.
290
       10 MARL, a.a.
       90 LIMESTONE, a.a.
300
       20 MARL, white to light grey-brown, soft to firm, dispersive, silty in part, grading to limestone.
       80 LIMESTONE, white, light grey-brown, argillaceous in part, grading to marl, fossiliferous, glauconitic.
310
       30 MARL, a.a. - white to light grey, silty, dispersive, trace glauconite.
       70 LIMESTONE, a.a. - trace glauconite.
320
       40 MARL, a.a.
       60 LIMESTONE, a.a. - grey-brown, crystalline, hard.
330
       30 MARL, a.a. - also greenish white, glauconitic.
       70 LIMESTONE, a.a. - fossiliferous, crystalline in part.
340
       30 MARL, a.a.
       70 LIMESTONE, a.a.
350
       30 MARL, light grey-brown, firm, silty, fossiliferous, glauconitic, grading to limestone.
       70 LIMESTONE, white, light grey-brown, firm to hard, fossiliferous, glauconitic, grading to marl in part.
360
       40 MARL, a.a.
       60 LIMESTONE, a.a.
370
       30 MARL, a.a.
       70 LIMESTONE, a.a.
       40 MARL, a.a.
380
       60 LIMESTONE, a.a.
       40 MARL, a.a.
390
       60 LIMESTONE, a.a.
      -- NO SAMPLE, changing shaker screen.
400
410
       70 MARL, a.a. - grey, grey-brown, silty, argillaceous, glauconitic.
       30 LIMESTONE, a.a.
```

age berde.

```
70 MARL, a.a.
30 LIMESTONE, a.a.
420
430
       70 MARL, a.a. - grades to claystone in part.
       30 LIMESTONE, a.a.
440
       30 MARL, light to medium grey, light grey-brown, soft to firm, dispersive, silty, minor glauconite,
          fossiliferous.
       20 LIMESTONE, a.a.
       70 MARL, a.a. - argillaceous / dispersive.
450
       30 LIMESTONE, a.a. - cream, glauconitic.
       70 MARL, a.a. - also grey-green, glauconitic.
460
       30 LIMESTONE, a.a.
470
       80 MARL, a.a. - also green-grey, glauconitic.
       20 LIMESTONE, a.a.
480
       70 MARL, a.a.
       30 LIMESTONE, a.a.
490
       80 MARL, a.a.
       20 LIMESTONE, a.a.
       80 MARL, white to bluish grey, soft to firm, argillaceous, minor glauconite and fossils.
500
       20 LIMESTONE, a.a. - mostly white to yellow brown, hard, crystalline, some fossils.
510
       90 MARL, a.a. - white to dark bluish grey, fossiliferous.
       10 LIMESTONE, a.a.
       90 "APL, a.a. - mostly medium to dark blue-grey.
       20 LIMESTONE, a.a. - pinkish white, light yellow-brown, fossilliferous and crystalline.
      100 MARL, light to dark bluish grey, soft, sticky, dispersive, very argillaceous, grading to claystone.
       Tr LIMESTONE, a.a.
      100-MARL, a.a. - grades to claystone.
       Tr LIMESTONE, a.a.
550
       90 MARL, a.a.
       10 LIMESTONE, a.a.
560
       90 MARL, a.a.
       10 LIMESTONE, a.a.
      100 MARL, a.a. - trace pyrite.
       Tr LIMESTONE, white, brown, grey, hard, fossiliferaous, some crystalline grains.
      198 MARL, a.a. - grey-green, grey-blue, argillaceous, dispersive in part, soft, silty, grades to
580
          calcareous claystone.
       Tr LIMESTONE, a.a.
```

100 MARL, a.a. - also light green, soft, argillaceous, trace glauconite.

Tr LIMESTONE, a.a.

```
poorly sorted, loose, no matrix or cement. No Fluorescence.
       40 MARL, dark grey, soft, very glauconitic with fine to coarse grains, disseminated pyrite, occasional
          embedded sand grains.
       Tr LIMESTONE, a.a.
603
       30 SANDSTONE, a.a.
       70 MARL, light green, light to dark grey, soft to firm, abundant fine to coarse glauconite grains.
       Tr LIMESTONE, a.a.
       70 SANDSTONE, a.a.
606
       30 MARL, a.a.
       Tr LIMESTONE, a.a.
609
      100 SANDSTONE, clear, fine to coarse, angular to sub-angular, poorly sorted, no matrix or cement, very
          good porosity.
     100 SANDSTONE, clear, fine to coarse, sub-angular to sub-rounded, poorly sorted, no matrix or cement, very
612
       Tr CLAYSTONE/MARL, green, soft to firm, trace glauconite.
     100 SANDSTONE, a.a.
615
     100 SANDSTONE, a.a.
618
621
     100 SANDSTONE, a.a.
       50 SANDSTONE, clear, medium to very coarse, sub-angular to sub-rounded, moderate sorted, no matrix or
624
         cement, good porosity.
       50 CLAYSTONE, dark brown, soft, dispersive, silty in part, slightly calcareous.
627
       50 SANDSTONE, a.a.
       50 CLAYSTONE, a.a.
630
       60 SANDSTONE, a.a.
       40 CLAYSTONE, a.a.
633
       80 SANDSTONE, a.a. - fine to very coarse, good porosity.
       20 CLAYSTONE, a.a.
636
     100 SANDSTONE, a.a. - fine to very coarse, sub-angular, poorly sorted, no matrix or cement, good porosity.
      Tr CLAYSTONE, a.a.
639
     100 SANDSTONE, a.a.
642 100 SANDSTONE, a.a.
645
       70 SANDSTONE, a.a.
       30 CLAYSTONE, a.a.
       30 SANDSTONE, a.a.
648
```

70 CLAYSTONE, a.a. - dark brown, soft, dispersive.

60 SANDSTONE, clear, fine to coarse, angular to occasional rounded, (polished surfaces on some grains),

600

```
50 SANDSTONE, clear, fine to very coarse, sub-angular, poorly sorted quartz grains, trace mica, good
651
          porosity.
       50 CLAYSTONE, a.a.
       Tr COAL, black, shaley.
654
       30 SANDSTONE, a.a. - common white mica.
       70 CLAYSTONE, a.a.
657
       50 SANDSTONE, a.a. - mostly fine to medium, abundant white mica.
       40 CLAYSTONE, a.a.
       10 COAL, a.a.
       40 SANDSTONE, a.a. - predominantly fine, abundant white mica.
660
       50 CLAYSTONE, a.a.
       10 COAL, a.a.
663
       20 SANDSTONE, a.a.
      80 CLAYSTONE, a.a.
666
       50 SANDSTONE, a.a. - abundant white mica.
       50 CLAYSTONE, a.a.
      Tr COAL, a.a.
669
       50 SANDSTONE, a.a. - fine to coarse, abundant white mica.
       40 CLAYSTONE, a.a.
       10 COAL, black, shaley.
672
       60 SANDSTONE, a.a. - fine to coarse, sub-angular to sub-rounded, occsional rounded, poor to moderate
          sorted, loose, trace brown lignitic/clay stain on grains, trace mica, good porosity.
       40 CLAYSTONE, a.a.
      Tr COAL, a.a.
       50 SANDSTONE, a.a. - fine to coarse,
675
       40 CLAYSTONE, a.a.
       10 COAL, a.a.
678
       20 SANDSTONE, a.a.
       60 CLAYSTONE, a.a.
       20 COAL, a.a.
       40 SANDSTONE, a.a.
681
       50 CLAYSTONE, a.a.
       10 COAL, a.a.
684
      30 SANDSTONE, a.a. - common mica.
       60 CLAYSTONE, a.a.
       10 COAL, a.a.
687
      20 SANDSTONE, a.a.
       60 CLAYSTONE, a.a.
       20 COAL, a.a.
690
      40 SANDSTONE, a.a.
       60 CLAYSTONE, brown, silty, dispersive, soft.
       Tr COAL, dark brown to black, shaley.
```

```
40 SANDSTONE, a.a.
693
       60 CLAYSTONE, a.a.
       Tr COAL, a.a.
      Tr SANDSTONE, a.a.
      Tr CLAYSTONE, a.a.
      100 COAL, very dark brown to dull black, silty, shaley.
     100 SANDSTONE, clear, very fine to coarse, angular to occasional sub-rounded, poorly sorted, common white
         mica, no matrix or cement, very good porosity.
      Tr CLAYSTONE, a.a.
      Tr COAL, a.a.
702
       90 SANDSTONE, a.a.
       10 CLAYSTONE, a.a.
       60 SANDSTONE, a.a.
705
       10 CLAYSTONE, a.a.
       30 COAL, a.a.
708
       90 SANDSTONE, a.a. - fine to coarse, loose, good porosity.
       10 CLAYSTONE, a.a. - very dispersive.
      100 SANDSTONE, a.a. - angular to sub-rounded, occasional rounded, poor to moderate sorted, minor white and
          grey lithic/quartzite grains, good porosity.
       Tr CLAYSTONE, a.a.
714
     100 SANDSTONE, a.a.
     100 SANDSTONE, clear medium to very coarse, angular to sub-rounded, poorly sorted quartz grains, trace
717
          grey lithic/quartzite grains, no matrix or cement, good porosity.
       Tr COAL, a.a.
720
       60 SANDSTONE, a.a. - fine to medium, some coarse to very coarse, sub-angular to sub-angular, poor to
          moderate sorted, minor lithic/quartzite grains, trace mica, good porosity.
       40 CLAYSTONE, a.a.
       Tr COAL, a.a.
       90 SANDSTONE, a.a.
723
       10 COAL, a.a.
726
       70 SANDSTONE, a.a.
       30 SHALE, brown and black, carbonaceous, coally, firm to hard, sub-fissile.
729
       30 SANDSTONE, a.a.
       20 SHALE, a.a.
       50 COAL, a.a. - shaley.
       40 SANDSTONE, a.a.
732
       20 CLAYSTONE, a.a.
       40 COAL, a.a.
```

```
735
       50 SANDSTONE, clear, very fine, minor fine to coarse, sub-angular, moderate sorted, micaceous, minor grey
          lithic/quartzite grains, loose, good porosity.
       20 CLAYSTONE, a.a.
       30 COAL, a.a.
738
       80 SANDSTONE, clear, very fine to coarse, angular to sub-rounded, poorly sorted, loose, trace grey
          lithic/quartzite grains and mica, good porosity.
       10 CLAYSTONE, a.a.
       10 COAL, a.a.
741
      100 SANDSTONE, a.a. - medium to very coarse.
744
      100 SANDSTONE, clear, fine to coarse, angular to sub-angular, poor to moderate sorted, no matrix or
          cement, very good porosity.
747
      100 SANDSTONE, a.a.
750
      100 SANDSTONE, a.a.
753
      100 SANDSTONE, a.a.
756
      100 SANDSTONE, a.a.
759
      100 SANDSTONE, a.a.
762
      100 SANDSTONE, a.a.
765
      100 SANDSTONE, a.a.
768
      100 SANDSTONE, a.a.
771
      100 SANDSTONE, a.a.
774
      100 SANDSTONE, a.a.
777
     100 SANDSTONE, a.a.
       80 SANDSTONE, a.a.
780
       10 SHALE, dark brown to black, grades to coal.
       10 COAL, black, grading to shale.
783
       70 SANDSTONE, clear, brown "lignite/clay stained", fine to coarse, angular to sub-rounded, poor to
         moderate sorted, no matrix or cement, good porosity.
       20 CLAYSTONE, dark brown, silty, dispersive, soft.
       10 COAL, black, shaley.
786
       60 SANDSTONE, a.a.
       40 COAL, a.a.
789
       50 SANDSTONE, a.a.
       20 CLAYSTONE, a.a.
      30 COAL, a.a.
       90 SANDSTONE, a.a. - common white mica.
```

10 COAL, a.a.

```
20 SANDSTONE, a.a.
795
      30 SHALE, light to dark brown, sub-fissile, firm to hard, carbonaceous, gradiing to coal.
      50 COAL, a.a.
798
      20 SANDSTONE. a.a.
      10 SHALE, a.a.
       20 CLAYSTONE, a.a.
      50 COAL, a.a.
801
     100 SANDSTONE, clear, medium to very coarse, angular to sub-rounded, poor to moderate sorted, trace brown
          clay matrix, very good porosity.
      Tr COAL, a.a.
    100 SANDSTONE, a.a.
804
     100 SANDSTONE, a.a.
807
810
     100 SANDSTONE, a.a.
    100 SANDSTONE, a.a.
813
816 100 SANDSTONE, a.a. - angular, some sub-angular to sub-rounded.
      Tr COAL, a.a.
      100 SANDSTONE, a.a.
819
      Tr COAL, a.a.
822
     100 SANDSTONE, a.a.
      Tr COAL, a.a.
       80 SANDSTONE, a.a.
825
       20 CLAYSTONE, a.a.
828
       90 SANDSTONE, clear, minor grey, angular to sub-angular, occasional sub-rounded, poor to moderate sorted,
          trace grey lithic/quartzite grains and white mica, no matrix or cement, very good porosity.
       10 CLAYSTONE, a.a.
     100 SANDSTONE, a.a. - trace pyrite, mica and brown clay matrix.
       Tr CLAYSTONE, a.a.
     100 SANDSTONE, clear, medium to very coarse quartz grains, angular to sub-angular, poor to moderate
          sorted, trace pyrite, very good porosity.
837
      III SANDSTONE, a.a.
840
      100 SANDSTONE, a.a.
843
      100 SANDSTONE, a.a.
      100 SANDSTONE, a.a.
846
       Tr COAL, a.a.
      100 SANDSTONE, a.a.
849
       Tr COAL, a.a.
```

```
855
     100 SANDSTONE, a.a.
     100 SANDSTONE, a.a.
858
      Tr CLAYSTONE, a.a.
      Tr COAL, a.a.
     100 SANDSTONE, a.a.
861
864
     100 SANDSTONE, a.a.
867
     100 SANDSTONE, a.a.
     100 SANDSTONE, a.a.
870
      Tr COAL, a.a.
873
    100 SANDSTONE, a.a.
876 100 SANDSTONE, clear, medium to very coarse, angular to sub-angular, poorly sorted, no matrix or cement,
         very good porosity.
      Tr COAL, a.a.
    100 SANDSTONE, a.a.
      Tr COAL, a.a.
     100 SANDSTONE, a.a.
882
      Tr COAL, a.a.
885
     100 SANDSTONE, a.a. - trace white weathered feldspar and white mica, rare pink garnet and brown
         tourmaline.
      Tr COAL, a.a.
888
    100 SANDSTONE, a.a.
      Tr COAL, a.a.
     100 SANDSTONE, a.a. - fine to coarse.
      Tr COAL, a.a.
     100 SANDSTONE, clear quartz, rare white feldspar, grey lithic/quartzite grains, white mica, fine to
         coarse, angular to sub-angular, poorly sorted, loose, good porosity.
      Tr COAL, a.a.
897
       70 SANDSTONE, a.a.
       30 COAL, dark brown to black, shaley, lignitic.
900
       30 SANDSTONE, a.a. - rare garnet.
       70 COAL, dark brown to black, lignitic, shaley, dull lustre.
       20 SANDSTONE, a.a. - occasional sub-rounded.
       80 COAL, a.a. - soft to dispersive inpart, grading to carbonaceous shale / claystone.
```

852

100 SANDSTONE, a.a.

·

```
40 SANDSTONE, a.a. - rare pyrite.
30 CLAYSTONE, white, very soft and very dispersive.
706
        30 COAL, brown to black, shaley in part.
909
        70 SANDSTONE, a.a.
        20 CLAYSTONE, a.a.
        10 COAL, a.a.
912 100 SANDSTONE, clear, coarse to very coarse, angular to sub-angular, poor to moderate sorted, loose, trace
          mica, very good porosity.
915
      100 SANDSTONE, a.a. - occasional sub-rounded.
918
      100 SANDSTONE, a.a.
921
      100 SANDSTONE, a.a. - rare feldspar, mica and lithic grains.
924
      100 SANDSTONE, a.a.
927
       40 SANDSTONE, a.a.
       60 COAL, dark brown to black, shaley.
930
       40 SANDSTONE, a.a.
       30 CLAYSTONE, white to brown, silty, sticky, dispersive.
       30 COAL, a.a.
     100 SANDSTONE, a.a.
933
936
      100 SANDSTONE, a.a.
939
      100 SANDSTONE, a.a.
942
       90 SANDSTONE, clear, fine to coarse, angular, poorly sorted, loose, very good porosity.
       10 COAL, a.a.
945
       90 SANDSTONE, a.a.
       10 COAL, a.a.
948 100 SANDSTONE, a.a.
951
      100 SANDSTONE, clear, medium to very coarse, angular to sub-angular, poor to moderate sorted, no matrix or
          cement, very good porosity.
954
     100 SANDSTONE, a.a.
      100 SANDSTONE, a.a.
957
       Tr COAL, a.a.
     100 SANDSTONE, a.a.
       Tr COAL, a.a.
    100 SANDSTONE, a.a.
963
     100 SANDSTONE, a.a.
```

- 969 100 SANDSTONE, a.a. Tr COAL, a.a.
- 972 100 SANDSTONE, a.a. Tr COAL, a.a.
- 973 100 SANDSTONE, clear, fine to very coarse, angular to sub-angular, poor to moderate sorted, loose, trace grey lithic/quartzite grains, rare mica, very good porosity.
- 984 100 SANDSTONE, a.a. common to abundant pinkish white mica flakes and "books".
- 990 100 SANDSTONE, a.a. Tr COAL, a.a.
- 996 100 SANDSTONE, a.a. angular with common pinkish white mica, trace grey and grey-green lithic/quartzite grains.
- 1002 100 SANDSTONE, a.a. coarse to very coarse. Tr COAL, a.a.
- 1008 100 SANDSTONE, medium to very coarse, trace mica and rare grey lithic/quartzite grains.
- 1014 100 SANDSTONE, a.a. medium to very coarse, trace white to buff clay matrix and grey lithic/quartzite grains.
- 1020 100 SANDSTONE, fine to very coarse, angular, trace mica, rare pyrite.
- 1026 100 SANDSTONE, a.a.
- 1032 100 SANDSTONE, a.a. trace mica and grey and green lithic/quartzite grains.
- 1038 100 SANDSTONE, a.a. trace mica, grey-green lithic/quartzite grains and pyrite.
- 1041 100 SANDSTONE, a.a.
- 1044 80 SANDSTONE, clear, fine to coarse, angular, poorly sorted, trace white clay matrix and weathered feldspar, pink mica, grey lithic/quartzite grains, rare aggregates, good porosity.

 20 COAL, a.a.
- 1050 100 SANDSTONE, a.a.
- 1053 100 SANDSTONE, a.a. trace white to light brown clay matrix and weathered feldspar, grey and green lithic / quartzite grains, mica, rare aggregates, good porosity.
- 1056 100 SANDSTONE, a.a. Tr COAL, a.a.
- 70 SANDSTONE, clear quartz, minor pinkish white feldspar, green and grey lithic/quartzite grains, minor white to cream clay matrix / weathered feldspar, fine to coarse, angular to sub-angular, poor to moderate sorted, loose, rare aggregates, good porosity.
 30 COAL, a.a.
- 1062 30 SANDSTONE, a.a. 70 COAL, a.a.

```
1065
     100 SANDSTONE, a.a.
       Tr COAL, a.a.
      100 SANDSTONE, clear, fine to coarse, angular to sub-angular, minor sub-rounded, poor to moderate sorted,
1068
           trace white clay matrix / weathered feldspar, minor pinkish white mica, mostly loose, rare aggregates,
           good porosity.
1071
        30 SANDSTONE, a.a.
        70 COAL, a.a.
        60 SANDSTONE, a.a.
1074
        40 COAL, a.a.
       100 SANDSTONE, clear, fine to very coarse, angular to sub-angular, some sub-rounded, poor to moderate
1077
           sorted, trace clay matrix / weathered feldspar, trace grey-green lithic/quartzite grains, rare pinkish
           white mica, loose, very good porosity.
      100 SANDSTONE, a.a.
1080
      100 SANDSTONE, a.a.
1083
      100 SANDSTONE, a.a.
1086
       100 SANDSTONE, clear, medium to very coarse, angular to sub-rounded, poor to moderate sorted, trace
           feldspar and pyrite, minor grey lithic/quartzite grains, good porosity.
      100 SANDSTONE, a.a.
1092
       100 SANDSTONE, a.a.
1095
        50 SANDSTONE, a.a. - trace pyrite.
1098
        50 COAL, a.a.
        60 SANDSTONE, a.a.
1101
        40 COAL, a.a.
       100 SANDSTONE, clear, fine to very coarse, angular to sub-angular, poorly sorted, trace feldspar, pyrite
1194
           and grey lithic/quartzite grains, very good porosity.
        Tr COAL, a.a.
1107
       100 SANDSTONE, a.a. - occasional sub-rounded.
        Tr COAL, a.a.
1110
        90 SANDSTONE, a.a. - also trace mica.
        10 COAL, a.a.
       100 SANDSTONE, a.a.
1113
        Tr COAL, a.a.
        80 SANDSTONE, a.a.
1116
        20 COAL, a.a.
        60 SANDSTONE, a.a.
1119
         40 COAL, a.a.
```

.

```
1122 100 SANDSTONE, a.a.
Tr CCAL, a.a.
```

- 1125 100 SANDSTONE, a.a. Tr COAL, a.a.
- 1128 100 SANDSTONE, a.a.
- 1131 100 SANDSTONE, clear, medium to very coarse, angular to sub-angular, occasional sub-rounded, poor to moderate sorted, trace white feldspar, grey lithics and pinkish white mica, rare white clay matrix, very good porosity.
- 1134 100 SANDSTONE, a.a.
- 1137 100 SANDSTONE, a.a. trace pyrite.
- 1140 90 SANDSTONE, a.a. 10 COAL, a.a.
- 1143 100 SANDSTONE, a.a. trace grey lithic/quartzite grains and pyrite.
- 90 SANDSTONE, a.a. trace lithic/quartzite grains, mica and pyrite.
 10 COAL, black, dull lustre, shaley.
- 1149 100 SANDSTONE, a.a. trace to common pyrite. Tr COAL, a.a.
- 1152 100 SANDSTONE, clear, medium to coarse, angular to sub-rounded, moderate sorted, trace pyrite, mica and grey lithic/quartzite grains, good porosity.

 Tr COAL, a.a.
- 1155 100 SANDSTONE, a.a. medium to very coarse, trace white feldspar and grey lithic/quartzite grains.
- 1158 100 SANDSTONE, a.a. trace pyrite, mica and lithic/quartzite grains.
- 1161 100 SANDSTONE, clear, fine to very coarse, angular to sub-angular, poorly sorted, trace clay matrix / weathered feldspar, mica, pyrite and lithic/quartzite grains, loose, good porosity. Tr COAL, a.a.
- 1164 100 SANDSTONE, a.a. Tr COAL, a.a.
- 1167 100 SANDSTONE, a.a. trace pyrite, mica lithic/quartzite grains and white feldspar. Tr COAL, a.a.
- 1170 80 SANDSTONE, a.a. 20 COAL, a.a.
- 1173 100 SANDSTONE, clear, medium to very coarse, angular to sub-angular, poor to moderate sorted, trace pyrite, grey lithic/quartzite grains, white feldspar, white mica, crystal faces on some quartz grains, no matrix or cement, very good porosity.
 Tr COAL, a.a.
- 1176 80 SANDSTONE, a.a. 20 COAL, a.a.

```
1179 100 SANDSTONE, a.a.
1182
      100 SANDSTONE, a.a.
1185
        40 SANDSTONE, a.a. - white dispersive clay matrix.
        60 COAL, a.a.
1188
        40 SANDSTONE, a.a.
        60 COAL, a.a.
       100 SANDSTONE, a.a. - fine to coarse, angular, poor to moderate sorted, trace grey lithic/quartzite
1191
           grains, no matrix or cement, good porosity.
       Tr COAL, a.a.
       100 SANDSTONE, a.a. - fine to very coarse, angular, poorly sorted, trace lithic/quartzite grains, pinkish
1194
           white mica, very good porosity.
1197
       100 SANDSTONE, a.a.
      100 SANDSTONE, a.a.
1200
1203
       100 SANDSTONE, a.a. - trace pyrite.
1206
        70 SANDSTONE, a.a.
        30 COAL, dull black, shaley.
1209
        30 SANDSTONE, a.a.
        70 COAL, a.a.
1212
        70 SANDSTONE, clear quartz, minor white feldspar, pink to white mica, grey lithic/quartzite grains, trace
           pyrite, fine to coarse, angular to sub-angular, occasional sub-rounded, poorly sorted, loose, trace
           white clay matrix, good porosity.
        30 COAL, a.a.
       100 SANDSTONE, a.a. - minor grey lithic/quartzite grains, trace mica, white feldspar and pyrite, very good
1215
           porosity.
        Tr CCAL, a.a.
1218
       100 SANDSTONE, a.a. - minor to common lithic/quartzite grains, trace white clay matrix / weathered
           feldspar, minor pyrite.
1221
        70 SANDSTONE, a.a.
        Tr SILTSTONE, white to light brown, hard, sandy, carbonaceous specks and laminae.
        30 COAL, a.a. - grading to carbonaceous shale in part.
1224
        70 SANDSTONE, a.a. - also trace very fine, hard, silicified, tight.
        30 COAL, a.a.
1227
        80 SANDSTONE, clear, fine to very coarse, angular to sub-angular, poorly sorted, trace grey lithic /
           quartzite grains, feldspar mica and pyrite, rare garnet. Trace white to brown, very fine, hard,
           siliceous, greyish black lithics, tight. clay matrix, good porosity.
        Tr SILTSTONE, brown to black, carbonaceous, shaley.
        20 COAL, a.a.
```

```
Tr SILTSTONE, a.a.
        Tr CLAYSTONE, white, dispersive, soft.
        Tr BASALT, brown, weathered with needle crystals.
        20 COAL, a.a.
1238
        40 SANDSTONE, a.a.
        60 COAL, brown to dull black, shaley.
1233
        60 SANDSTONE, a.a. - also white to yellow limonitic/feldspathic grains, minor clear, fine grained, hard,
           siliceous, poor porosity sandstone, trace to common white, grey and green-brown mica, trace pyrite,
           minor lithics.
        Tr BASALT, a.a.
        40 COAL. a.a.
       100 SANDSTONE, a.a. - trace greenish "doleritic" quartzitic grains, common mica.
1236
        Tr SHALE, a.a.
1239
       100 SANDSTONE, a.a.
        Tr COAL, a.a.
       100 SANDSTONE, a.a. - green and grey lithic/quartzite grains, trace white and brown mica, good porosity.
1242
       100 SANDSTONE, a.a. - trace pyrite.
1245
        Tr CCAL, a.a.
        Tr BASALT/VOLCANICS, reddish brown to purple, firm, weathered.
1248
        30 SANDSTONE, a.a.
        70 CLAYSTONE/WEATHERED BASALT, dark red-brown, silty, soft, dispersive, minor red-brown and greenish
           grains of weathered basalt.
        Tr COAL, a.a.
1251
        40 SANDSTONE, a.a.
        60 BASALT, white to grey and black, some purple-red, green, soft to firm, weathered.
1254
        30 SANDSTONE, a.a.
        40 CLAYSTONE, medium to dark brown, silty, dispersive, soft.
        30 BASALT/VOLCANICS, white, grey-black, red-brown, green, firm, cream-white feldspar, dark ferro-
           magnesians, weathered in part.
        20 SANDSTONE, a.a.
1257
        30 CLAYSTONE, dark grey-brown, silty, dispersive, soft.
        50 BASALT, a.a. - very fine, crystalline.
        10 SANDSTONE, a.a.
1260
        40 CLAYSTONE, dark red-brown, soft to firm, silty, dispersive.
        10 CCAL, a.a.
        40 BASALT, a.a.
        50 CLAYSTONE, purple, red-brown, soft to firm, dispersive, weathered basalt.
1263
        50 BASALT, dark grey-green to black, crystalline, very fine, crystal needles of feldspar and dark ferro-
           magnesian minerals, hard, weathereing to soft claystone in part.
        50 CLAYSTONE, a.a.
1266
        50 BASALT, a.a.
```

1228

80 SANDSTONE, a.a. - trace very hard, siliceous, tight.

```
1269
        50 CLAY, a.a. - weathered basalt.
        50 BASALT, a.a. - becoming coarser grained.
1272
        20 CLAY, a.a.
        80 BASALT, dark green, black, hard, crysatlline, feldspar, olivine.
1275
        20 CLAY, a.a.
        80 BASALT, a.a.
1278
        20 CLAY, a.a.
        80 BASALT, a.a. - green serpentine.
1281
        20 CLAY, a.a.
        80 BASALT, a.a. - white calcite veining.
1284
       100 BASALT, a.a.
1287
       100 BASALT, a.a.
1290
       100 BASALT, a.a. - some grey and weathered.
1293
       100 BASALT, grey, grey-green to black, hard, crystalline, feldspar, ferro-magnesians, green serpentine,
           weathered in part, calcite veins.
1296
       100 BASALT, a.a. - also weathered brown, purple, grey, soft to firm, grading to claystone.
1299
       100 BASALT, a.a. - weathered in part.
1302
       100 BASALT, a.a.
1305
      100 BASALT, a.a.
1308
       100 BASALT, a.a. - grey to brick red, weathering to claystone in part.
1311
       100 BASALT, a.a. - minor weathered.
1314
      100 BASALT, a.a.
1317
      100 BASALT, a.a.
1320
      100 BASALT, a.a.
1323
      100 BASALT, a.a.
1326
      100 BASALT, a.a.
      100 BASALT, a.a. - weathered to brick red claystone in part.
1329
1332 100 BASALT, a.a.
1335
        60 SAMDSTONE, clear, medium to coarse, angular to sub-angular, poor to moderate sorted, common white
           feldspar, loose, good porosity.
        40 BASALT, a.a.
```

```
1338
        70 SANDSTONE, a.a.
        30 BASALT, a.a.
1341
        80 SANDSTONE, clear, coarse quartz grains, angular, good porosity.
        20 BASALT, a.a.
1344
        70 SANDSTONE, a.a.
        30 BASALT, a.a.
1347
        80 SANDSTONE, a.a. - also abundant grey lithic/quartzite grains, some orange, pink and green, white
           feldspar, fine to coarse, mostly fine to medium, sub-rounded, moderate sorted, loose, trace clay
           matrix, fair to good apparent porosity.
        20 BasalT, a.a.
1350
        90 SANDSTONE, a.a. - 50:50 quartz and grey lithic/quartzite grains.
        10 BASALT, a.a.
1353
        90 SANDSTONE, a.a.
        10 CLAYSTONE, grey, silty, soft to firm.
1356
        50 SANDSTONE, clear quartz, grey, green and red-brown lithic/quartzite grains, fine to medium, minor
           coarse, sub-rounded, moderate sorted, dispersive clay matrix, fair porosity.
        50 CLAYSTONE, grey, silty, soft to firm, trace carbonaceous material, also white, soft, sticky,
           dispersive.
1359
        40 SANDSTONE, clear white, grey, green, yellow, red, fine to medium, some coarse, sub-angular to sub-
           rounded, moderate sorted quartz and quartzite grains, white feldspar, loose, trace dispersive white
           clay matrix, fair to good? porosity.
        60 CLAYSTONE, grey, silty, soft to firm, blocky, also white, soft, dispersive, sticky.
1362
        30 SANDSTONE, a.a.
        70 CLAYSTONE, a.a.
        Tr BASALT, a.a.
1365
        20 SANDSTONE, a.a.
        80 CLAYSTONE, a.a
        Tr BASALT, a.a.
1368
        70 SANDSTONE, a.a. - loose quartz and quartzite grains, common feldspar.
        30 CLAYSTONE, a.a.
        70 SANDSTONE, a.a. - black and multi-coloured grains, quartz/quartzite/lithic grains, white feldspar,
1371
           weathered in part, sub-rounded, moderately sorted, trace clay matrix, fair porosity.
        30 CLAYSTONE, a.a.
1374
        80 SANDSTONE, a.a. - trace pyrite.
        20 CLAYSTONE, a.a.
        80 SANDSTONE, a.a.
1377
        20 CLAYSTONE, a.a.
1380
        20 SANDSTONE, a.a.
        80 CLAYSTONE, grey, grey-green, soft, dispersive, silty to very fine sand grains.
```

20 SANDSTONE, a.a.

1386 20 SANDSTONE, a.a.

80 CLAYSTONE, a.a.

40 SANDSTONE, a.a. - clear quartz, grey, green quartzite, white feldspar, sub-rounded, moderate sorted, loose, poor to fair porosity.

60 CLAYSTONE, white to grey, grey-green, soft to firm, silty/sandy.

1392 70 SANDSTONE, a.a.

30 CLAYSTONE, a.a.

1394 80 SANDSTONE, a.a. 20 CLAYSTONE, a.a.

· APPENDIX 7

APPENDIX 7

DESCRIPTION OF SIDEWALL CORES

WONGA BINDA #1 SIDEWALL CORE DESCRIPTIONS

SWC	DEPTH m. (Rec mm)	DESCRIPTION
1	1357.5 (18)	SANDSTONE/CLAYSTONE, grey, grey-green, black, white, fine to medium, sub-angular to sub-rounded, moderate sorted, quartz and lithic / quartzite grains, white feldspar, trace brown biotite, abundant white clay matrix, poorporosity.
2	1353.0	CLAYSTONE, medium to dark blue-grey, soft.
3	1347.5 (21)	SANDSTONE, white, grey, green, black, fine to coarse, sub-rounded, moderate sorted quartz and lithic/quartzite grains, feldspar, trace mica, abundant clay matrix, poor porosity.
4	1342.5 (15)	SANDSTONE/CONGLOMERATE, white to light grey, fine to coarse with pebbles to 10 mm., sub-rounded, poorly sorted, minor lithics and feldspar, abundant clay matrix, trace siltstone bands, poor porosity.
5	1336.0 (20)	SANDSTONE/CONGLOMERATE, as for SWC #4.
6	1331.5 (14)	SANDSTONE, white, pale green to grey-green, very fine to fine, sub-angular to sub-rounded, moderate to well sorted, minor very coarse to granular grains, abundant greenish clay matrix, poor porosity.
7	1328.0 (20)	CLAYSTONE, dark chocolate brown, soft to firm, weathered basalt?/indurated haematite clay? trace hard olivine grains.
8	1300.5	NO RECOVERY.
9	1242.5 (20)	SANDSTONE, clear, white, grey, fine to very coarse, sub-angular to sub-rounded, poorly sorted, quartz and lithic/quartzite grains, minor feldspar, moderate to abundant clay matrix, trace mica, poor to fair porosity.
10	1206.5 (28)	SILTSTONE, white, light grey, sandy, lithic, carbonaceous specks, micaceous.
11	1159.5 (20)	SANDSTONE/SILTSTONE, white, light grey, very fine, sub-rounded, well sorted, argillaceous/clay matrix, trace grey-black lithics and mica, poor porosity.

これの 海岸の大学 本語 古殿の高橋田の は、大学の大学のかったの

12	1175.5 (27)	CLAYSTONE, grey, silty, firm, trace mica and lithic grains.
13	1042.5 (32)	SILTSTONE, light brown, grey-brown, firm to hard, very argillaceous.
14	1002.0	CLAYSTONE, light grey, soft to firm, silty in part.
15	933.5 (50)	SANDSTONE, light brown, fine to medium, sub- angular, moderate sorted, friable, trace clay, minor black carbonaceous specks and grey-black lithic grains, good porosity.
16	907.0 (42)	CLAYSTONE, light grey, soft to firm, silty in part.
17	823.5 (40)	SHALE, dark brown, silty, very carbonaceous.
18	789.0 (40)	Laminated dark brown to black very carbonaceous to coally SHALE and white to brown very fine, sub-angular, moderate sorted, quartzose SANDSTONE, fair porosity.
19	722.0 (50)	SHALE/COAL, dull brown to black, lignitic.
20	675.0	NO RECOVERY.
21	644.0 (50)	SHALE, very dark chocolate brown, very carbonaceous, grading to lignite.
22	624.0 (50)	Bands of shale as for SWC #21 and SANDSTONE, white to brown, very fine, sub-angular, moderate sorted quartz grains, fair porosity.
23	612.0 (30)	SANDSTONE, medium to dark honey brown, very fine medium, sub-angular, poor to moderate sorted quartz grains in a brown lignitic/argillaceous matrix, very friable to loose, good porosity.
24	607.0 (28)	SANDSTONE, as for SWC #23.
25	602.5	NO RECOVERY.
26	597.0 (50)	Sandy pyritic and glauconitic CLAYSTONE, very dark grey to green, probably 20% glauconite, up to 5% very fine disseminated pyrite, 10% clear, rounded, medium to very coarse quartz grains.
27	594.5 (50)	CLAYSTONE, as for SWC #26.

28	593.0 (45)	CLAYSTONE, light green, firm.
29	590.5 (50)	SANDSTONE, grey grains an pebbles of quartz and grey quartzite to 10 mm. diameter, sub-rounded to rounded, poorly sorted in a white to light grey silty calcareous claystone.
30	587.5 (45)	CLAYSTONE, dark green, firm, very calcareous with abundant white fossil fragments.

これに、東京の東京の東京では、「中では、中では、東京の東京では、中での子

APPENDIX 8

APPENDIX 8

WIRELINE LOG EVALUATION

Lu

CRUSADER RESOURCES N.L.

WONGA BINDA #1

WIRELINE LOG EVALUATION

BOWLER LOG CONSULTING SERVICES PTY. LTD.

JACK BOWLER Telephone: (051) 56 8170 P.O. BOX 2, PAYNESVILLE, VICTORIA. AUSTRALIA, 3880.

21 April, 1988

Mr. Doug Barrenger Crusader Resources N.L. 27th Floor, AMP Centre 12 Creek Street Brisbane, Queensland 4000

Dear Doug,

Please find my evaluation for the porous intervals of Wonga Binda #1. The evaluation, RFT pressure plot and recovered water samples show the sands to be 100% water saturated with very fresh formation waters which are fresher than those found in Macalister #1.

Logs and data available over the zones of interest included:

- -DLL-MSFL-GR-CAL-SP
- -LDL-CNL-NGS-CAL
- -BHC-GR
- -SHDT-GR
- -RFT-HP-GR pressures and formation water samples.
- -Mudlog
- Rmf=0.248 ohm.m @ 13°C. RHOF=1.02 g/cc. BHT first log=38°C. Mudweight=9.7*/gal which contains barite.

Log Quality

The Traralgon (605.5-1243.5 meters) from the logs consists of clean porous sandstones, 60 meters of thin to thick (10 meters) coals and three 3-5 meter shales. Generally the coals are badly washed out, in some cases to the maximum LDL caliper reading of 22 inches. As in Macalister #1 the sands are usually washed out less than three inches resulting in good quality RHOB and MSFL readings when the hole is not too rugose. This is confirmed by the Rmfa=0.158 ohm.m computed from the Rxo-Density porosity plot which is equal to the surface measured value of Rmf converted to reservoir temperature of 91°F at 750 meters. The MSFL resistivity has been corrected for mudcake thicknes by multiplying it by 0.8.

To a lesser extent than in Macalister #1 the PEF values are reading too high due to the barite in the mud. A correction of -0.7 has been made to the PEF resulting in an improvement which can be seen in the Traralgon RHOmaa-Umaa plot where most of the data clusters around the quartz point.

Log Evaluation

Representative data points were taken in the sands and evaluated using MacLog® software. The sands have a high radioactivity (20-75 API) and the coals a low radioactivity (20-30 API) while the few shales have gamma ray radioactivity greater than 150 API. Generally the increase in radioactivity is due to uranium. Schlumberger are concerned about the low K content of rocks shown by the NGS and will check that out.

Again it appears that the "freshwater wedge" mentioned in the 1986 APEA Journal paper "Freshwater Influx in the Gippsland Basin: Impact on Formation Evaluation, Hydrocarbon Volumes, and Hydrocarbon Migration", by Kuttan, Kulla and Neumann, may be present from 907-1243.5 meters. This is suggested by DLL-MSFL log, the Pre Evaluation Rwa values and the RT-Porosity plots. Rw= 19 ohm.m was used from 605.5-907 meters while Rw=46 ohm.m was used from 907-1243.5 meters.

<u>Formation</u>	<u>Porositu</u>	<u>Sw</u>	<u>Remarks</u>
Giffard Sandstone (590.2-605.5m)	20	100	heavy minerals
			or glauconite?
Traralgon (605.5-1243.5m)	20-37	100	clean, unconsolidated,
			qtz. sandstone.
Yarram (1330-1344m)	14-20	100	some clay, looks tight
Strzelecki (1344-1372m)	14-20	100	more clay, looks tight

RFT Evaluation

The RFT HP gage pressure profile of 1.03 g/cc clearly show that the free fluid within the pore space of the upper Translgon is fresh water.

The Long Nose Probe was used to obtain HP formation pressures at 5 levels within the Traralgon. Five attempts in the Giffard Sandstone from 593-601 meters resulted in seal failures as the probe pushed its way as far as it could into the soft formation and than lost the seal. The tool would not pass below 903 meters probably due to a ledge present at a large washout there.

The Martineau Probe, designed for unconsolidated sands, was used to sample the top of the Traralgon at 605.5 meters. The 6 gallon sample chamber was opened first and sampled at around 70 psia HP recovering 9,000 cc of 0.455 ohm.m water @ 18°C. Due to the low sampling pressure and the resulting long fillup time it was decided to close the 6 gallon chamber before fillup. The sample was sealed and the 2 3/4 gallon chamber was opened and filled with 9,000 cc of recovered water measuring 0.359 ohm.m @ 18°C.

No surface chamber pressure was reported nor was gas or oil reported. Sand grains and dirty water was reported for the 2 3/4 gallon chamber while less muddy water was reported from the 6 gallon chamber.

Mud salinity and resistivity data extracted from the mud report are:

<u>Depth (meters)</u>	<u>C1</u>	<u>Rmf</u>	<u>Temperature °F</u>
490	20,000	0.18	52
608	22,000	0.22	60
608	19,400	0.20	70
872	18,000	0.20	60
1089	22,000	0.18	58
1228	17,000	0.3	47
1335	22,000	0.23	46
Schlumberger		0.248	55.4
circulated sample.		0.217	64.4 18°C

The percent formation water recovered (H) can be computed knowing Rmf, Rw and the resistivity of the recovered water (Rrf): 1/Rrf = H/Rw + (1-H)/Rmf

Rmf=0.217 @ 18°C Rrf 6 gal =0.455 @ 18°C Rw=26 @ 18°C **H=53**%

Rrf 2 3/4 gal = 0.359

H=40

The recovery of around 50% formation water and 50% mud filtrate without a trace of hydrocarbons suggests that the 605.5 meter sand will produce fresh water.

Yours truly, Souler

Jack Bowler

Volay is min. of VolayDN, VolayGR & VolayRt. PHIE=(1-Volay)*PHIT. RHOF=1.02 GRclean=30.00 GRclay=160.00 Rtclay=15.000 Rwb=2.465. Clean matrix density= 2.65 Clay matrix density= 2.95. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. Rw=1.000 everywhere except from 0.00 to 0.00 where Rw=1.000. a=1.00 m=2.00 n=2.00 Sonic por. comp. factor=1.50. PHIE cutoff sets Sw and Sxo to 100% below 0.0 % porosity. Coal is detected if RHOB<1.50 or if NPHI>55.0 or if Sonic>200.0 microsec/ft. PHIT clay=35.0. (1/RT)^0.5=(PHIT-PHIE)^0.86*(SWDPor^(n/2)/Rwb)^0.5 + ((PHIE^m)*SwDPor^n/a*Rw)^0.5 Rwb=Rclay*PHITclay~1.72 **** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters. **** Sonic porosity when MSFL<=0.00 from 0.00 to 0.00 meters. **** Sonic porosity with PHITclay= 35.0

EVALUATION

Depth meters	RHOma	PHIT	Vclay	PHIE	SwDPor	SxoDPor
590.50	2.78	30.0	23.1	23.1	100.0	100.0
591.00	2.75	37.1	33.1	24.8	100.0	100.0
593.00	2.61	48.7	0.0	48.7	100.0	100.0
594.50	2.87	11.2	19.2	9.0	100.0	100.0
596.00	2.78	37.0	42.6	21.3	100.0	100.0
597.00	2.74	31.7	30.2	22.1	100.0	100.0
598.00	2.77	35.4	39.7	21.4	100.0	100.0
600.00	2.73	41.2	26.4	30.3	100.0	100.0
604.00	2.83	34.8	59.7	14.0	95.6	100.0

WONGA BINDA #1 GIFFARD SANDSTONE (590.20-405.50 meters)

Vc)ay is min. of Vc)ayDN, Vc)ayGR & Vc]ayRt. PHIE=(1-Vc)ay)*PHIT. Clean matrix density=2.65 Clay matrix density=2.95 Rt c]ay=3.0. RHOF=1.02 GR clean=30.00 GR c]ay=160.00. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. $RWA=(RT*PHIT^2.00)/1.00\ RMFA=(Rxo*PHIT^2.00)/1.00\ Son\ por\ comp\ fac=1.50. ***** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters. ***** Sonic porosity when Rxo<=0.00 from 0.00 to 0.00 meters.$

PRE EVALUATION

Depth meters	RHOma	PHIT	VclayRt	Vc1ayGR	VclayDN	Vc1ay	PHIE	RWA	RMFA
590.50	2.78	30.0	66.7	23.1	43.0	23.1	23.1	0.405	0.432
591.00	2.75	37.1	85.7	33.1	34.7	33.1	24.8	0.481	0.385
593.00	2.61	48.7	100.0	42.3	0.0	0.0	48.7	0.498	0.190
594.50	2.87	11.2	25.8	19.2	72.1	19.2	9.0	0.237	0.399
596.00	2.78	37.0	34.7	100.0	42.6	34.7	24.2	1.113	0.219
597.00	2.74	31.7	33.3	84.6	30.2	30.2	22.1	0.931	0.176
598.00	2.77	35.4	42.0	100.0	39.7	39.7	21.4	0.897	0.201
600.00	2.73	41.2	49.6	100.0	26.4	26.4	30.3	1.025	0.203
604.00	2.83	34.8	31.1	88.5	59.7	31.1	24.0	1.396	0.349

Volay is min. of VolayDN, VolayGR & VolayRt. PHIE=(1-Volay)*PHIT. RHDF=1.02 GRclean=30.00 GRclay=160.00 Rtclay=100.000 Rwb=9.214. Clean matrix density= 2.65 Clay matrix density= 3.16. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. Rw=19.000 everywhere except from 0.00 to 0.00 where Rw=19.000. Rmf=0.160 a=1.00 m=2.00 n=2.00 Sonic por. comp. factor=1.50. PHIE cutoff sets Sw and Sxo to 100% below 0.0 % porosity. Coal is detected if RHOB<1.50 or if NPHI>55.0 or if Sonic>200.0 microsec/ft. PHIT clay=25.0. (1/RT) ^0.5=(PHIT-PHIE) ^0.86*(SWDPor ^(n/2)/Rwb) ^0.5 + ((PHIEⁿm)*SwDPorⁿ/a*Rw)⁰.5 Rwb=Rclay*PHITclay*1.72 **** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters. **** Sonic porosity when MSFL<=0.00 from 0.00 to 0.00 meters. **** Sonic porosity with PHITclay= 25.0

EVALUATION

Depth meters	RHOma	PHIT	Vclay	PHIE	SwDPor	SxoDPor
606.00	2.66	33.4	1.7	32.9	100.0	100.0
608.00	2.63	47.0	0.0	47.0	100.0	100.0
610.00	2.63	35.4	0.0	35.4	100.0	100.0
615.00	2.63	35.1	0.0		100.0	100.0
619.00	2.64	31.5	0.0	31.5	100.0	100.0
625.00	2.72	41.7	13.0	36.3	100.0	100.0
632.80	2.68	39.2	5.4		100.0	100.0
635.00	2.66	30.5	1.6		100.0	100.0
640.30	2.63	34.3	0.0	34.3	99.6	99.6
644.70	2.79	32.7	26.6	24.0	100.0	100.0
453.50	2.66	36.4	1.7		100.0	100.0
660.00	2.67	38.0	3.1	36.8	100.0	100.0
667.00	2.64	35.9	0.0	35.9	100.0	100.0
680.00	2.64	31.5	0.0		100.0	100.0
687.50	2.66	35.3	2.0		100.0	100.0
707.80	2.63	32.1	0.0	32.1	100.0	100.0
711.00	2.66	31.6	0.0	31.6	100.0	100.0
732.00	2.76	33.0	20.7	26.2	100.0	100.0
740.00	2.64	34.4	0.0	34.4	100.0	100.0
761.20	2.64	29.6	0.0	29.6	93.1	93.1
770.00	2.65	30.0	0.0	30.0	91.6	100.0
791.00	2.66	33.4	1.7	32.9	100.0	100.0
801.00	2.63	29.1	0.0	29.1	77.0	100.0
833.00	2.66	33.1	2.6	32.2	89.0	100.0
854.00	2.67	32.0	3.0	31.1	97.9	100.0
877.00	2.66	22.3	2.1	21.8	100.0	100.0
907.00	2.89	30.1	47.2	15.9	100.0	100.0

Volay is min. of VolayDN, VolayGR & VolayRt. PHIE=(1-Volay)*PHIT. RHOF=1.02 GRclean=30.00 GRclay=160.00 Rtclay=100.000 Rwb=9.214. Clean matrix density= 2.65 Clay matrix density= 3.16. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. Rw=46.000 everywhere except from 0.00 to 0.00 where Rw=46.000. Rmf=0.190 a=1.00 m=2.00 n=2.00 Sonic por. comp. factor=1.50. PHIE cutoff sets Sw and Sxo to 100% below 0.0 % porosity. Coal is detected if RHOB<1.50 or if NPHI>55.0 or if Sonic>200.0 microsec/ft. PHIT clay=25.0. (1/RT) ^0.5=(PHIT-PHIE) ^0.86*(SWDPor^(n/2)/Rwb) ^0.5 + ((PHIE^m)*SwDPor^n/a*Rw)^0.5 Rwb=Rclay*PHITclay^1.72 **** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters.

**** Sonic porosity when MSFL<=0.00 from 0.00 to 0.00 meters.

**** Sonic porosity with PHITclay= 25.0

EVALUATION

Depth meters	RHOma	PHIT	Vclay	PHIE	SwDPor	SxoDPor
907.00	2.89	30.1	47.2	15.9	100.0	100.0
926.00	2.65	34.1	0.0	34.1	100.0	100.0
961.00	2.67	23.8	3.4	23.0	100.0	100.0
974.10	2.62	25.7	0.0	25.7	85.1	85.1
1013.00	2.66	24.5	1.5	24.1	100.0	100.0
1027.00	2.65	30.0	0.0	30.0	100.0	100.0
1048.00	2.67	30.6	4.2	29.3	100.0	100.0
1106.00	2.80	28.9	30.3	20.1	87.0	100.0
1159.00	2.87	23.1	42.8	13.2	100.0	100.0
1185.00	2.90	24.7	49.1	12.5	100.0	100.0
1215.00	2.68	19.1	5.6	18.0	100.0	100.0

WONGA BINDA #1 TRARALGON (605.50-907.00 meters.

Vclay is min. of VclayDN, VclayGR & VclayRt. PHIE=(1-Vclav)*PHIT. Clean matrix density=2.65 Clay matrix density=3.16 Rt clay=100.0. RHOF=1.02 GR clean=30.00 GR clay=160.00. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. RWA= $(RT*PHIT^2.00)/1.00$ RMFA= $(Rxo*PHIT^2.00)/1.00$ Son por comp fac=1.50. **** Sonic porosity when RHOB<0.009/cc from 0.00 to 0.00 meters. **** Sonic porosity when 0.00 from 0.00 to 0.00 meters.

PRE EVALUATION

Depth meters	RHOma	PHIT	VclayRt	Vc1ayGR	Vc1ayDN	Vc1 ay	PHIE	RWA	RMFA
606.00	2.66	33.4	100.0	44.6	1.7	1.7	32.9	5.695	0.170
608.00	2.63	47.0	100.0	21.5	0.0	0.0	47.0	7.971	0.170
610.00	2.63	35.4	90.5	23.1	0.0	0.0	35.4	13.870	0.161
615.00	2.63	35.1	100.0	23.1	0.0	0.0	35.1	9.825	0.187
619.00	2.64	31.5	68.2	10.0	0.0	0.0	31.5	14.519	0.111
625.00	2.72	41.7	100.0	94.6	13.0	13.0	36.3	6.304	0.279
632.80	2.68	39.2	100.0	69.2	5.4	5.4	37.0	9.027	0.196
635.00	2.66	30.5	77.8	3.8	1.6	1.6	30.0	11.919	0.148
640.30	2.63	34.3	62.7	6.2	0.0	0.0	34.3	18.790	0.189
644.70	2.79	32.7	100.0	61.5	26.6	26.6	24.0	4.693	1.367
653.50	2.66	36.4	100.0	23.1	1.7	1.7	35.8	9.744	0.159
660.00	2.67	38.0	100.0	34.6	3.1	3.1	36.8	14.143	0.219
667.00	2.64	35.9	90.6	15.4	0.0	0.0	35.9	14.194	0.206
680.00	2.64	31.5	77.8	34.6	0.0	0.0	31.5	12.715	0.127
687.50	2.66	35.3	81.7	15.4	2.0	2.0	34.6	15.254	0.140
707.80	2.63	32.1	67.9	0.0	0.0	0.0	32.1	15.199	0.140
711.00	2.66	31.6	54.4	0.0	1.3	0.0	31.6	18.307	0.143
732.00	2.76	33.0	100.0	100.0	20.7	20.7	26.2	5.394	0.261
740.00	2.64	34.4	74.3	11.5	0.0	0.0	34.4	15.965	0.152
761.20	2.64	29.6	40.7	5.4	0.0	0.0	29.6	21.477	0.189
770.00	2.65	30.0	40.7	3.8	0.0	0.0	30.0	22.167	0.144
791.00	2.66	33.4	87.5	23.1	1.7	1.7	32.9	12.776	0.179
801.00	2.63	29.1	31.5	2.3	0.0	0.0	29.1	31.249	0.122
833.00	2.66	33.1	51.0	46.2	2.6	2.6	32.2	21.493	0.167
856.00	2.67	32.0	58.2	17.7	3.0	3.0	31.1	17.593	0.164
877.00	2.66	22.3	73.9	23.1	2.1	2.1	21.8	6.729	0.072
907.00	2.89	30.1	100.0	100.0	47.2	47.2	15.9	8.798	2.029

WONGA BINDA #1 TRARALGON (907.00-1243.50 meters)

Vclay is min. of VclayDN, VclayGR & VclayRt. PHIE=(1-Vclay)*PHIT. Clean matrix density=2.65 Clay matrix density=3.16 Rt clay=100.0. RHOF=1.02 GR clean=30.00 GR clay=160.00. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. RWA=(RT*PHIT^2.00)/1.00 RMFA=(Rxo*PHIT^2.00)/1.00 Son por comp fac=1.50. **** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters. **** Sonic porosity when Rxo<=0.00 from 0.00 to 0.00 meters.

PRE EVALUATION

Depth meters	RHOma	PHIT	VclayRt	VclayGR	VclayDN	Vclay	PHIE	RWA	RMFA
907.00	2.89	30.1	100.0	100.0	47.2	47.2	15.9	8.798	2.029
926.00	2.65	34.1	31.5	11.5	0.0	0.0	34.1	42.721	0.130
961.00	2.67	23.8	35.5	19.2	3.4	3.4	23.0	14.303	0.091
974.10	2.62	25.7	21.2	7.7	0.0	0.0	25.7	45.089	0.265
1013.00	2.66	24.5	25.1	11.5	1.5	1.5	24.1	40.875	0.192
1027.00	2.65	30.0	28.7	3.8	0.0	0.0	30.0	43.244	0.216
1048.00	2.67	30.6	32.2	5.4	4.2	4.2	29.3	32.066	0.164
1106.00	2.80	28.9	40.8	34.6	30.3	30.3	20.1	20.445	0.147
1159.00	2.87	23.1	79.3	100.0	42.8	42.8	13.2	6.718	1.918
1185.00	2.90	24.7	99.9	92.3	49.1	49.1	12.5	6.089	0.341
1215.00	2.68	19.1	58.0	26.9	5.6	5.6	18.0	6.284	0.117

EVALUATION

Depth meters	RHOma	PHIT	Vclay	PHIE	SwDPor	SxoDPor
1331.60	2.74	16.8	17.3	13.9	100.0	100.0
1334.00	2.71	17.1			100.0	100.0
1334.00	2.71	16.8	12.7	14.7	100.0	100.0
1339.00	2.69	22.2	8.3	20.3	100.0	100.0
1342.00	2.72	16.5	13.9	14.2	100.0	100.0

**** Sonic porosity with PHITclay= 25.0

Volay is min. of VolayDN, VolayGR & VolayRt. PHIE=(1-Volay)*PHIT. RHOF=1.02 GRclean=30.00 GRclay=160.00 Rtclay=4.000 Rwb=0.369. Clean matrix density= 2.65 Clay matrix density= 3.16. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. Rw=0.700 everywhere except from 0.00 to 0.00 where Rw=0.700. Rmf=0.150 a=1.00 m=2.00 n=2.00 Sonic por. comp. factor=1.00. PHIE cutoff sets Sw and Sxo to 100% below 0.0 % porosity. Coal is detected if RHOB<1.50 or if NPHI>55.0 or if Sonic>200.0 microsec/ft. PHIT clay=25.0.

(1/RT) *0.5=(PHIT-PHIE) *0.86*(SWDPor*(n/2)/Rwb) *0.5 + ((PHIE^m)*SwDPorⁿ/a*Rw)⁰.5 Rwb=Rclay*PHITclay^1.72 **** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters. **** Sonic porosity when MSFL<=0.00 from 0.00 to 0.00 meters. **** Sonic porosity with PHITclay= 25.0

EVALUATION

Depth	RHOma	PHIT	Vclay	PHIE	SwDPor	SxoDPor
meters						
1346.00	2.79	25.4	28.1	18.2	100.0	100.0
1350.00	2.78	26.7	26.4	19.7	94.9	94.9
1355.00	2.80	26.2	29.0	18.6	100.0	100.0
1354,20	2.77	19.4	23.3	14.9	100.0	100.0

Vclay is min. of VclayDN, VclayGR & VclayRt. PHIE=(1-Vclay)*PHIT. Clean matrix density=2.65 Clay matrix density=3.16 Rt clay=10.0. RHOF=1.02 GR clean=30.00 GR clay=160.00. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. RWA=(RT*PHIT^2.00)/1.00 RMFA=(Rxo*PHIT^2.00)/1.00 Son por comp fac=1.00. **** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters. **** Sonic porosity when Rxo<=0.00 from 0.00 to 0.00 meters.

PRE EVALUATION

Depth meters	RHOma	PHIT	VclayRt	Vc1ayGR	Vc1ayDN	Vclay	PHIE	RWA	RMFA
1331.60	2.74	16.8	49.4	38.5	17.3	17.3	13.9	0.569	0.247
1334.00	2.71	17.1	83.3	34.6	11.5	11.5	15.1	0.350	0.164
1336.00	2.71	16.8	58.8	46.2	12.7	12.7	14.7	0.480	0.271
1339.00	2.69	22.2	100.0	38.5	8.3	8.3	20.3	0.492	0.126
1342.00	2.72	16.5	47.6	53.8	13.9	13.9	14.2	0.573	0.218

WONGA BINDA #1 STRZELECKI (1344.00-1372.00 meters)

Vclay is min. of VclayDN, VclayGR & VclayRt. PHIE=(1-Vclay)*PHIT. Clean matrix density=2.65 Clay matrix density=3.16 Rt clay=3.0. RHOF=1.02 GR clean=30.00 GR clay=160.00. Fluid DT=189.00 & clean matrix DT=55.50 microsec/ft. RWA=(RT*PHIT^2.00)/1.00 RMFA=(Rxo*PHIT^2.00)/1.00 Son por comp fac=1.00. **** Sonic porosity when RHOB<=0.00g/cc from 0.00 to 0.00 meters. **** Sonic porosity when Rxo<=0.00 from 0.00 to 0.00 meters.

PRE EVALUATION

Depth	RHOma	PHIT	VclayRt	VclayGR	Vc1ayDN	Vclay	PHIE	RWA	RMFA
meters									
1346.00	2.79	25.4	50.0	46.2	28.1	28.1	18.2	0.386	0.309
1350.00	2.78	26.7	45.5	46.2	26.4	26.4	19.7	0.471	0.263
1355.00	2.80	26.2	50.0	46.2	29.0	29.0	18.6	0.411	0.438
1356.20	2.77	19.4	63.0	42.3	23.3	23.3	14.9	0.180	1.661

Wonga Binda #1 RFT Pressure Plot

Formation Pressure (psia HP)

[(1148.42-859.96)/(802-605.5)]*[1/3.281]*[1/0.433]=1.03 g/cc

Wonga Binda #1 RFT Pressure Plot

Formation Press	Depth (meters)
859.96	605.5
874.67	616
889.23	626
1097.6	765
1148.42	802

Mud filtrate density=1.02 g/cc.
Surface temperature=80.00 deg. F. Bottom hole temperature=100.40 deg. F.
Surface depth=0.00 Meters. Depth logger=1372.00 Meters.

DATA LISTING

				ruin er	311140				
Depth Meters	MSFL	LLS	LLD	RT	RHOB	NPHIls	NPHIc GR	PEF	Sonic mcs/ft
596.00	1.60	6.00	7.00	8.12	2.14	40.0	40.0 160.0	3.2	129.0
598.00	1.60	6.00	6.50	7.15	2.16	38.0	38.0 165.0		135.0
600.00	1.20	5.00	5.50	6.05	2.03	42.0	42.0 210.0		145.0
604.00	2.88	9.00	10.00	11.53	2.22	40.0	40.0 145.0		140.0
606.00	1.52	22.00	41.00	50.95	2.10	30.0	30.0 88.0		160.0
608.00	0.80	13.00	29.00	36.07	1.85	42.0	42.0 58.0		170.0
610.00	1.28	50.00	90.00	110.47	2.04	30.0	30.0 60.0		125.0
615.00	1.52	45.00	65.00	79.74	2.05	30.0	30.0 60.0		151.0
619.00	1.12	80.00	120.00	146.73	2.12	27.0	27.0 43.0		162.0
					2.01	42.0	42.0 153.0		146.0
625.00	1.60	26.00	31.00	36.21	2.01	37.0	37.0 120.0		148.0
632.80 635.00	1.28	35.00 75.00	48.00 105.00	58.87 128.49	2.15	27.0	27.0 35.0		130.0
	1.60								
640.30	1.60	72.00	130.00	159.43	2.06	29.0	29.0 38.0		143.0
644.70	12.80	29.00	38.00	43.93	2.22	36.0	36.0 110.0		133.0
653.50	1.20	43.00	60.00	73.50	2.05	33.0	33.0 60.0		143.0
660.00	1.52	50.00	80.00	98.20	2.03	35.0	35.0 75.0		145.0
667.00	1.60	60.00	90.00	110.32	2.04	31.0	31.0 50.0		142.0
680.00	1.28	70.00	105.00	128.49	2.12	27.0	27.0 75.0		130.0
687.50	1.12	65.00	100.00	122.37	2.07	32.0	32.0 50.0		140.0
707.80	1.36	60.00	120.00	147.29	2.10	27.0	27.0 25.0		132.0
711.00	1.44	80.00	150.00	183.80	2.13	28.0	28.0 27.0		135.0
732.00	2.40	28.00	40.00	49.54	2.19	35.0	35.0 185.0		121.0
740.00	1.28	70.00	110.00	134.65	2.07	30.0	30.0 45.0		135.0
761.20	2.16	100.00	200.00	245.41	2.15	25.0	25.0 37.0	1.8	119.0
770.00	1.60	70.00	200.00	245.97	2.15	26.0	26.0 35.0	1.7	118.0
791.00	1.60	52.00	93.00	114.30	2.10	30.0	30.0 60.0		150.0
801.00	1.44	100.00	300.00	367.84	2.15	24.0	24.0 33.0	1.8	129.0
833.00	1.52	80.00	160.00	196.18	2.11	30.0	30.0 90.0	1.4	130.0
856.00	1.60	70.00	140.00	171.85	2.13	29.0	29.0 53.0	1.8	120.0
877.00	1.44	50.00	110.00	135.35	2.29	19.0	19.0 60.0	1.8	118.0
907.00	22.40	48.00	70.00	97.12	2.35	38.0	38.0 190.0	1.5	105.0
926.00	1.12	100.00	300.00	367.40	2.08	30.0	30.0 45.0	1.9	120.0
961.00	1.60	80.00	205.00	251.74	2.27	21.0	21.0 55.0	1.5	104.0
974.10	4.00	220.00	800.00	982.91	2.20	20.0	20.0 40.0	2.0	102.0
1013.00	3.20	100.00	550.00	680.79	2.25	21.0	21.0 45.0		110.0
1027.00	2.40	110.00	390.00	479.85	2.15	26.0	26.0 35.0	1.7	118.0
1048.00	1.76	110.00	280.00	343.35	2.16	28.0	28.0 37.0		108.0
1106.00	1.76	90.00	200.00	245.40	2.30	33.0	33.0 75.0		110.0
1159.00	36.00	75.00	105.00	126.07	2.45	30.0	30.0 160.0	1.4	91.0
1185.00	5.60	50.00	80.00	100.10	2.45	33.0	33.0 150.0	1.7	97.0
1215.00	3.20	80.00		172.43	2.36	17.0	17.0 65.0	1.8	95.0
			2000.00		2.86	18.0	18.0 55.0	3.8	55.0
1275.50	0.96	5.00	5.00	5.00	2.12	48.0	48.0 60.0		103.0
1280.20	18.40	21.00	20.00	20.00	2.60	31.0	31.0 55.0	4.9	75.0
1283.00	800.00	190.00			2.76	23.0	23.0 52.0	4.3	59.0
	1360.00	600.00	500.00	340.50	2.81	18.0	18.0 58.0	3.8	54.0
1330.00	3.60	5.50	6.00	6.60	2.25	40.0	40.0 55.0		115.0
1331.60	8.80	16.00	18.00	20.25	2.45	18.0	18.0 80.0	2.1	77.0
1334.00	5.60	12.00	12.00	12.00	2.42	17.0	17.0 75.0	1.8	83.0
1336.00	9.60	17.00	17.00	17.00	2.43	17.0	17.0 70.0	1.8	78.0
1339.00	2.56	10.00	10.00	10.00	2.32	21.0	21.0 80.0	2.0	78.0 88.0
1342.00	8.00	21.00							
1342.00	4.80		21.00	21.00	2.44	17.0	17.0 100.0	1.8	77.0
		6.00 5.00	6.00	6.00	2.35	29.0	29.0 90.0		100.0
1350.00	3.68	5.80	6.00	6.60	2.32	30.0	30.0 90.0	2.8	96.0
1355.00	6.40	6.00	6.00 9.50	6.00	2.34	30.0	30.0 90.0	2.4	94.0
1356.20	44.00	9.00	8.50	4.76	2.43	22.0	22.0 85.0	2.8	78.0

Mud filtrate density=1.02 g/cc.
Surface temperature=80.00 deg. F. Bottom hole temperature=100.40 deg. F. Surface depth=0.00 Meters. Depth logger=1372.00 Meters.

DATA LISTING

				DOIN CI	OTTINO			
Depth	MSFL	LLS	LLD	RT	RHOB	NPHI1=	NPHIc GR	PEF Sonic
Meters	1107 =	h	L-L-L-	* * *	MICE	141 1121 2	1411175 017	mcs/ft
590.50	6.00	5.00	4.50	3.90	2.26	33.0	33.4 60.0	4.0 115.0
591.00	3.50	3.50	3.50	3.50	2.12	39.0	39.4 73.0	3.5 130.0
593.00	1.00	2.10	2.10	2.10	1.80	42.0	42.6 85.0	3.1 170.0
594.50	40.00	13.00	19.00	19.00	2.65	18.0	18.1 55.0	3.7 95.0
596.00	2.00	6.00	7.00	8.08	2.14	40.0	40.4 160.0	3.7 129.0
597.00	2.20	7.00	8.00	9.24	2.20	33.0	33.4 140.0	3.5 125.0
598.00	2.00	6.00	6.50	7.15	2.16	38.0	38.4 165.0	4.1 135.0
600.00	1.50	5.00	5.50	6.05	2.03	42.0	42.5 210.0	3.2 145.0
604.00	3.60	9.00	10.00	10.81	2.22	40.0	40.4 145.0	3.7 140.0
606.00	1.90	22.00	41.00	51.21	2.10	30.0	30.4 88.0	2.5 160.0
608.00	1.00	13.00	29.00	36.26	1.85	42.0	42.6 58.0	4.4 170.0
610.00	1.60	50.00	90.00	110.65	2.04	30.0	30.4 60.0	2.5 125.0
615.00	1.90	45.00	65.00	79.87	2.05	30.0	30.4 60.0	2.5 151.0
619.00	1.40	80.00	120.00	146.83	2.12	27.0	27.4 43.0	2.5 162.0
625.00	2.00	26.00	31.00	37.01	2.01	42.0	42.5 153.0	2.5 146.0
632.80	1.60	35.00	48.00	58.96	2.02	37.0	37.5 120.0	2.4 148.0
635.00	2.00	75.00	105.00	128.61	2.15	27.0	27.4 35.0	2.5 130.0
640.30	2.00	72.00	130.00	159.66	2.06	29.0	29.4 38.0	2.5 143.0
644.70	16.00	29.00	38.00	46.22	2.22	36.0	36.4 110.0	2.5 133.0
653.50	1.50	43.00	60.00	73.59	2.05	33.0	33.5 60.0	2.2 143.0
660.00	1.90	50.00	80.00	98.37	2.03	35.0	35.5 75.0	2.3 145.0
667.00	2.00	60.00	90.00	110.46	2.04	31.0	31.5 50.0	2.2 142.0
680.00	1.60	70.00	105.00	128.61	2.12	27.0	27.4 75.0	2.3 130.0
687.50	1.40	65.00	100.00	122.48	2.07	32.0	32.5 50.0	2.1 140.0
707.80	1.70	60.00	120.00	147.53	2.10	27.0		2.3 132.0
					2.10			
711.00	1.80	80.00	150.00	184.02		28.0	28.4 27.0	2.0 135.0
732.00	3.00	28.00	40.00	49.75	2.19	35.0	35.4 185.0	2.7 121.0
740.00	1.60	70.00	110.00	134.78	2.07	30.0	30.5 45.0	2.6 135.0
761.20	2.70	100.00	200.00	245.79	2.15	25.0	25.4 37.0	2.5 119.0
770.00	2.00	70.00	200.00	246.50	2.15	26.0	26.4 35.0	2.4 118.0
791.00	2.00	52.00	93.00	114.53	2.10	30.0	30.5 60.0	2.5 150.0
801.00	1.80	100.00	300.00	368.35	2.15	24.0	24.4 33.0	2.5 129.0
833.00	1.90	80.00	160.00	196.45	2.11	30.0	30.5 90.0	2.1 130.0
856.00	2.00	70.00	140.00	172.13	2.13	29.0	29.5 53.0	2.5 120.0
877.00	1.80	50.00	110.00	135.67	2.29	19.0	19.4 60.0	2.5 118.0
907.00	28.00	48.00	70.00	90.67	2.35	38.0	38.5 190.0	2.2 105.0
926.00	1.40	100.00	300.00	367.79	2.08	30.0	30.5 45.0	2.6 120.0
961.00	2.00	80.00	205.00	252.18	2.27	21.0	21.4 55.0	2.2 104.0
974.10	5.00	220.00	800.00	984.77	2.20	20.0	20.4 40.0	2.7 102.0
1013.00	4.00	100.00	550.00	683.37	2.25	21.0	21.4 45.0	2.5 110.0
1027.00	3.00	110.00	390.00	480.93	2.15	26.0	26.5 35.0	2.4 118.0
1048.00	2.20	110.00	280.00	343.82	2.16	28.0	28.5 37.0	3.0 108.0
1106.00	2.20	90.00	200.00	245.78	2.30	33.0	33.5 75.0	2.5 110.0
1159.00	45.00	75.00	105.00	135.39	2.45	30.0	30.5 160.0	2.1 91.0
1185.00	7.00	50.00	80.00	100.81	2.45	33.0	33.5 150.0	2.4 97.0
1215.00	4.00	80.00	140.00	172.87	2.36	17.0	17.4 65.0	2.5 95.0
1269.90	2000.00	2000.00	2000.00	2000.00	2.86	18.0	18.1 55.0	4.5 55.0
1275.50	1.20	5.00	5.00	5.00	2.12	48.0	48.9 60.0	4.4 103.0
1280.20	23.00	21.00	20.00	18.80	2.60	31.0	31.4 55.0	5.6 75.0
	1000.00	190.00	210.00	210.00	2.76	23.0	23.2 52.0	5.0 59.0
	1700.00	600.00	500.00	309.92	2.81	18.0	18.2 58.0	4.5 54.0
1330.00	4.50	5.50	6.00	6.60	2.25	40.0	40.7 55.0	3.0 115.0
1331.60	11.00	16.00	18.00	21.41	2.45	18.0	18.4 80.0	2.8 77.0
1334.00	7.00	12.00	12.00	12.00	2.42	17.0	17.4 75.0	2.5 83.0
		17.00						
1336.00	12.00		17.00	17.00	2.43	17.0	17.4 90.0	2.5 78.0
1339.00	3.20	10.00	10.00	10.00	2.32	21.0	21.5 80.0	2.7 88.0
1342.00	10.00	21.00	21.00	21.00	2.44	17.0	17.4 100.0	2.5 77.0
1346.00	6.00	6.00	6.00	6.00	2.35	29.0	29.6 90.0	2.7 100.0
1350.00	4.60	5.80	6.00	6.60	2.32	30.0	30.6 90.0	3.5 96.0
1355.00	8.00	6.00	6.00	6.00	2.34	30.0	30.6 90.0	3.1 94.0
1356.20	55.00	9.00	8.50	3.71	2.43	22.0	22.4 85.0	3.5 78.0

Mud filtrate density=1.02 g/cc.
Surface temperature=80.00 deg. F. Bottom hole temperature=100.40 deg. F. Surface depth=0.00 Meters. Depth logger=1372.00 Meters.

DATA LISTING

Depth Meters	MSFL	LLS	LLD	RT	RHOB	NPHIls	NPHIc GR	PEF Sonic mcs/ft
590.50	6.00	5.00	4.50	3.90	2.26	33.0	33.4 60.0	4.0 115.0
591.00	3.50	3.50	3.50	3.50	2.12	39.0	39.4 73.0	3.5 130.0
593.00				2.10	1.80	42.0	42.6 85.0	3.1 170.0
594.50	40.00	13.00	19.00	19.00	2.65	18.0	18.1 55.0	3.7 95.0
596.00			7.00	8.08	2.14	40.0	40.4 160.0	3.9 129.0
597.00	2.20	7.00	8.00	9.24	2.20	33.0	33.4 140.0	3.5 125.0
						38.0		
598.00			6.50		2.16		38.4 165.0	4.1 135.0
600.00	1.50		5.50	6.05	2.03	42.0	42.5 210.0	3.2 145.0
604.00	3.60		10.00	10.81	2.22	40.0	40.4 145.0	3.7 140.0
606.00	1.90		41.00	51.21	2.10	30.0	30.4 88.0	2.5 160.0
608.00	1.00			36.26	1.85	42.0	42.6 58.0	4.4 170.0
610.00	1.60	50.00	90.00	110.65	2.04	30.0	30.4 60.0	2.5 125.0
615.00	1.90		65.00	79.87	2.05	30.0	30.4 60.0	2.5 151.0
619.00	1.40	80.00	120.00	146.83	2.12	27.0	27.4 43.0	2.5 162.0
625.00	2.00	26.00	31.00	37.01	2.01	42.0	42.5 153.0	2.5 146.0
632.80	1.60	35.00	48.00	58.96	2.02	37.0	37.5 120.0	2.4 148.0
635.00	2.00	75.00	105.00	128.61	2.15	27.0	27.4 35.0	2.5 130.0
640.30	2.00	72.00	130.00	159.66	2.06	29.0	29.4 38.0	2.5 143.0
644.70	16.00	29.00	38.00	46.22	2.22	36.0	36.4 110.0	2.5 133.0
653.50	1.50	43.00	60.00	73.59	2.05	33.0	33.5 60.0	2.2 143.0
660.00	1.90	50.00	80.00	98.37	2.03	35.0	35.5 75.0	2.3 145.0
667.00	2.00	60.00	90.00	110.46	2.04	31.0	31.5 50.0	2.2 142.0
680.00	1.60	70.00	105.00	128.61	2.12	27.0	27.4 75.0	2.3 130.0
687.50	1.40	65.00	100.00	122.48	2.07	32.0	32.5 50.0	2.1 140.0
707.80	1.70	60.00	120.00	147.53	2.10	27.0	27.4 25.0	2.3 132.0
711.00	1.80	80.00	150.00	184.02	2.13	28.0	28.4 27.0	2.0 135.0
732.00	3.00	28.00	40.00	49.75	2.19	35.0	35.4 185.0	2.7 121.0
740.00	1.60	70.00	110.00	134.78	2.07	30.0	30.5 45.0	2.6 135.0
761.20	2.70	100.00	200.00	245.79	2.15	25.0	25.4 37.0	2.5 119.0
770.00	2.00	70.00	200.00	246.50	2.15	26.0	26.4 35.0	2.4 118.0
791.00	2.00	52.00	93.00	114.53	2.10	30.0	30.5 60.0	2.5 150.0
801.00	1.80	100.00	300.00	368.35	2.15	24.0	24.4 33.0	2.5 129.0
833.00	1.90	80.00	160.00	196.45	2.11	30.0	30.5 90.0	2.1 130.0
856.00	2.00	70.00	140.00	172.13	2.13	29.0	29.5 53.0	2.5 120.0
877.00	1.80	50.00	110.00	135.67	2.29	19.0	19.4 60.0	2.5 118.0
907.00	28.00	48.00	70.00	90.67	2.35	38.0	38.5 190.0	2.2 105.0
926.00	1.40	100.00	300.00	367.79	2.08	30.0	30.5 45.0	2.6 120.0
961.00	2.00	80.00	205.00	252.18	2.27	21.0	21.4 55.0	2.2 104.0
974.10	5.00	220.00	800.00	984.77	2.20	20.0	20.4 40.0	2.7 102.0
1013.00	4.00	100.00	550.00	683.37	2.25	21.0	21.4 45.0	2.5 110.0
1027.00	3.00	110.00	390.00	480.93	2.15	26.0	26.5 35.0	2.4 118.0
1048.00	2.20	110.00	280.00	343.82	2.16	28.0	28.5 37.0	3.0 108.0
1106.00	2.20	90.00	200.00	245.78	2.30	33.0	33.5 75.0	2.5 110.0
1159.00	45.00	75.00	105.00	135.39	2.45	30.0	30.5 160.0	2.1 91.0
1185.00	7.00	50.00	80.00	100.81	2.45	33.0	33.5 150.0	2.4 97.0
1215.00	4.00	80.00	140.00	172.87	2.36	17.0	17.4 65.0	2.5 95.0
1269.90	2000.00	2000.00	2000.00		2.86	18.0	18.1 55.0	4.5 55.0
1275.50	1.20	5.00	5.00	5.00	2.12	48.0	48.9 60.0	4.4 103.0
1280.20	23.00	21.00	20.00	18.80	2.60	31.0	31.4 55.0	5.6 75.0
	1000.00	190.00	210.00		2.76	23.0	23.2 52.0	5.0 59.0
	1700.00	600.00	500.00		2.81	18.0	18.2 58.0	4.5 54.0
1330.00	4.50	5.50	6.00	6.60	2.25	40.0	40.7 55.0	3.0 115.0
1331.60	11.00	16.00	18.00	21.41	2.45	18.0	18.4 80.0	2.8 77.0
1334.00	7.00	12.00	12.00	12.00	2.42	17.0	17.4 75.0	2.5 83.0
1336.00	12.00	17.00	17.00	17.00	2.43	17.0	17.4 90.0	2.5 78.0
1339.00	3.20	10.00	10.00	10.00	2.32	21.0	21.5 80.0	2.7 88.0
1342.00	10.00	21.00	21.00		2.44	17.0	17.4 100.0	2.5 77.0
1346.00	6.00	6.00	6.00	6.00	2.35	29.0	29.6 90.0	2.7 100.0
1350.00	4.60	5.80	6.00	6.60	2.32	30.0	30.6 90.0	3.5 96.0
1355.00	8.00	6.00	6.00	6.00	2.34	30.0	30.6 90.0	3.1 94.0
1356.20	55.00	9.00	8.50	3.71	2.43	22.0	22.4 85.0	3.5 78.0

APPENDIX 9

Water Analysis Report

Job No. 3376/88

Method W2/1 Page W1

Sample ID. WONGA BINDA 1

1 1	Chemical	Composit	ion	Derived Data
1 1 1		mg/L	me/L	mg/L
Cations Calcium Magnesium Sodium Potassium	(Ca) (Mg) (Na) (K)	619.0 29.2 1698.0 6720.0	30.888 2.403 73.858 171.867	Total Dissolved Solids A. Based on E.C. 25347 B. Calculated (HCO3=CO3) 20221
Anions Hydroxide Carbonate Bi-Carbonate Sulphate	(OH) (CO3) (HCO3) (SO4)	186.2 167.0	3.052 3.477	Total Hardness 1666 Carbonate Hardness 174 Non-Carbonate Hardness 1492 Total Alkalinity 174 (Each as CaCO3)
Chloride	(Cl)	10895	306.901	Totals and Balance
Nitrate	(NO3)	<0.1		Cations (me/L) 279.0 Diff= 34.41 Anions (me/L) 313.4 Sum = 592.45
Other Analyse	es			ION BALANCE (Diff*100/Sum) = 5.81% Sodium / Total Cation Ratio 26.5%
1				Remarks
t t t t				IMBALANCE UNKNOWN ALL RESULTS CHECKED AND VERIFIED
Reaction - ph Conductivity		5°C)	7.2 34500	
Resistivity			0.290	Note: mg/L = Milligrams per litre me/L = MilliEqivs.per litre

Name:

ATIZVAR LTD

Address:

P.O BOX 251 NORWOOD

S.A 5067

Formation Type

LATROBE GROUP

Time Interval

Point

Date Collected Date Received

Collected by

19-4-88 20-5-88 D.A.SHORT

Geologist Depth

606.5

APPENDIX 10

APPENDIX 10

WELL VELOCITY SURVEY

Schlumberger

CRUSADER RESOURCES N.L. GEOGRAM PROCESSING REPORT

WONGA BINDA #1

FIELD: WILDCAT

STATE: VICTORIA

COUNTRY: AUSTRALIA

COORDINATES : 038 deg 27' 02.36" S

147 deg 02' 26.13" E

DATE OF SURVEY : 18-APR-1988

REFERENCE NO.: 569160

WF.

Contents

1.	Intr	itroduction 1					
2.	Dat	Data Acquisition					
3.	Son	Sonic Calibration Processing					
	3.1	Sonic Calibration	3				
	3.2	Checkshot Data	4				
	3.3	Correction to Datum	4				
	3.4	Open Hole Logs	4				
	3.5	Sonic Calibration Results	4				
4.	Syn	thetic Seismogram Processing	5				
	4.1	Depth to Time Conversion	5				
	4.2	Primary Reflection Coefficients	5				
	4.3	Primaries with Transmission Loss	6				
	4.4	Primaries plus Multiples	6				
•	4.5	Multiples Only	6				
	4.6	Wavelet	6				
	4.7	Polarity Convention	6				
	4.8	Convolution	6				
\mathbf{A}	Sun	Summary of Geophysical Listings					
	A1	Geophysical Airgun Report	7				
	A2	Drift Computation Report	7				
	A 3	Sonic Adjustment Parameter Report	8				
	A 4	Velocity Report	8				
	A 5	Time Converted Velocity Report	ç				
	A6	Synthetic Seismogram Table	10				
\mathbf{L}^{i}	ist	of Tables					
	1	Survey Parameters	2				

2	Sonic Drift					
List of Figures						
1	Wavelet Polarity Convention					
2	Stacked Checkshot Data					

1. Introduction

A checkshot survey was shot in the Wonga Binda #1 well on 18 April 1988. Data was acquired using a dynamite source located near the wellhead. Eighteen levels were shot from 1369 metres to 29.5 metres below KB. All levels are used in the sonic calibration processing.

4.7 F

2. Data Acquisition

The data was acquired using the well seismic tool (WST). Recording was made on the Schlumberger Cyber Service Unit (CSU) using LIS format at a tape density of 800 BPI.

Table 1: Survey Parameters

Datum	0.0 metres AMSL		
Elevation KB	29.5 metres AMSL		
Elevation DF	29.0 metres AMSL		
Elevation GL	25.7 metres AMSL		
Total Depth	1442 metres below KB		
Energy Source	Dynamite		
Source Offset	1370.0 metres		
Source Depth	1.5 metres		
Reference Sensor	Hydrophone		
Sensor Offset	2 metres from shot		
Downhole Geophone	Geospace HS-1		
	High Temp. $(350 \deg F)$		
	Coil Resist. $225\Omega \pm 10 \%$		
	Natural Freq. 8-12 hertz		
	Sensitivity 0.45 V/in/sec		
	Maximum tilt angle 60 deg		

3. Sonic Calibration Processing

3.1 Sonic Calibration

A 'drift' curve is obtained using the sonic log and the vertical check level times. The term 'drift' is defined as the seismic time (from check shots) minus the sonic time (from integration of edited sonic). Commonly the word 'drift' is used to identify the above difference, or to identify the gradient of drift versus increasing depth, or to identify a difference of drift between two levels.

The gradient of drift, that is the slope of the drift curve, can be negative or positive.

For a negative drift $\frac{\Delta drift}{\Delta depth}$ < 0, the sonic time is greater than the seismic time over a certain section of the log.

For a positive drift $\frac{\Delta drift}{\Delta depth} > 0$, the sonic time is less than the seismic time over a certain section of the log.

The drift curve, between two levels, is then an indication of the error on the integrated sonic or an indication of the amount of correction required on the sonic to have the TTI of the corrected sonic match the check shot times.

Two methods of correction to the sonic log are used.

- 1. Uniform or block shift This method applies a uniform correction to all the sonic values over the interval. This uniform correction is applied in the case of positive drift and is the average correction represented by the drift curve gradient expressed in $\mu \sec/ft$.
- 2. ΔT Minimum In the case of negative drift a second method is used, called Δt minimum. This applies a differential correction to the sonic log, where it is assumed that the greatest amount of transit time error is caused by the lower velocity sections of the log. Over a given interval the method will correct only Δt values which are higher than a threshold, the Δt_{min} . Values of Δt which are lower than the threshold are not corrected. The correction is a reduction of the excess of Δt over Δt_{min} , Δt Δt_{min} .

 $\Delta t - \Delta t_{min}$ is reduced through multiplication by a reduction coefficient which remains constant over the interval. This reduction coefficient, named G, can be be defined as:

$$G = 1 + \frac{drift}{\int (\Delta t - \Delta t_{min})dZ}$$

Where drift is the drift over the interval to be corrected and the value $\int (\Delta t - \Delta t_{min}) dZ$ is the time difference between the integrals of the two curves Δt and Δt_{min} , only over the intervals where $\Delta t > \Delta t_{min}$.

Hence the corrected sonic: $\Delta t = G(\Delta t - \Delta t_{min}) + \Delta t_{min}$.

3.2 Checkshot Data

The fire pulse is used as the zero time reference. The checkshot data quality is good and is displayed in Figure 2.

3.3 Correction to Datum

The sonic calibration processing has been referenced to the seismic datum at MSL. A velocity of 700 metres/sec, calculated from the checkshot at 29.5 metres is used to correct transit times to datum. The equivalent static time from source depth to datum is -34.57 msec one way time.

3.4 Open Hole Logs

The sonic log was recorded from 1370 metres to the casing shoe at 173 metres below KB. Minor zones of cycle skipping have been removed. The density log was recorded from TD upto 567 metres, and is extrapolated to the surface at a constant density of 1.95 gm/cc

The caliper and gamma ray curves are included as correlation curves.

3.5 Sonic Calibration Results

The top of the sonic log (173 metres below KB) is chosen as the origin for the calibration drift curve.

The drift curve indicates a number of corrections to be made to the sonic log. The adjusted sonic curve is considered to be the best result using the available data. A list of shifts used on the sonic data is given below.

Table 2: Sonic Drift

Depth Interval	Block Shift	Δt_{min}	Equiv Block Shift
(metres below KB)	$\mu m sec/ft$	$\mu ext{sec/ft}$	$\mu\mathrm{sec}/\mathrm{ft}$
173-424	4.61	-	4.61
424-606	0.00	-	0.00
606-778	-	128.07	-3.54
778-1369	0.00	-	0.00

Synthetic Seismogram Processing

R.M plots were generated using 10-60 and 10-80 hertz zero phase butterworth is.

ese tations include both normal and reverse polarity on a time scale of 10 cm/sec.

RAM processing produces synthetic seismic traces based on reflection coefficients tec from sonic and density measurements in the well-bore. The steps in the sing chain are the following:

t time conversion ction coefficients nuation coefficients olt ion ut.

Lepth to Time Conversion

ho logs are recorded from the bottom to top with a depth index. This data is sted to a two-way time index and flipped to read from the top to bottom in order tch the seismic section.

Fimary Reflection Coefficients

and density data are averaged over chosen time intervals (normally 2 or 4 mil1. l effection coefficients are then computed using:

$$R = \frac{\rho_2.\nu_2 - \rho_1.\nu_1}{\rho_2.\nu_2 + \rho_1.\nu_1}$$

€:

- = density of the layer above the reflection interface
- = density of the layer below the reflection interface
- = compressional wave velocity of the layer above the reflection interface
- = compressional wave velocity of the layer below the reflection interface

computation is done for each time interval to generate a set of primary reflection cie ts without transmission losses.

4.3 Primaries with Transmission Loss

Transmission loss on two-way attenuation coefficients is computed using:

$$A_n = (1 - R_1^2).(1 - R_2^2).(1 - R_3^2)...(1 - R_n^2)$$

A set of primary reflection coefficients with transmission loss is generated using:

$$Primary_n = R_n.A_{n-1}$$

4.4 Primaries plus Multiples

Multiples are computed from these input reflection coefficients using the transform technique from the top of the well to obtain the impulse response of the earth. The transform outputs primaries plus multiples.

4.5 Multiples Only

By subtracting previously calculated primaries from the above result we obtain multiples only.

4.6 Wavelet

A theoretical wavelet is chosen to use for convolution with the reflection coefficients previously generated. Choices available include:

Klauder wavelet

Ricker zero phase wavelet

Ricker minimum phase wavelet

Butterworth wavelet

User defined wavelet.

Time variant Butterworth filtering can be applied after convolution.

4.7 Polarity Convention

An increase in acoustic impedance gives a positive reflection coefficient and is displayed as a white trough under normal polarity. Polarity conventions are displayed in Figure-1.

4.8 Convolution

Standard procedure of convolution of wavelet with reflection coefficients. The output is the synthetic seismogram.

A Summary of Geophysical Listings

Six geophysical data listings are appended to this report. Following is a brief description of the format of each listing.

A1 Geophysical Airgun Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB : dkb, the depth in metres from kelly bushing .
- 3. Vertical depth from SRD: dsrd, the depth in metres from seismic reference datum.
- 4. Vertical depth from GL: dgl, the depth in metres from ground level.
- 5. Observed travel time HYD to GEO: tim0, the transit time picked from the stacked data by subtracting the surface sensor first break time from the downhole sensor first break time.
- 6. Vertical travel time SRC to GEO: timv, is corrected for source to hydrophone distance and for source offset.
- 7. Vertical travel time SRD to GEO: shtm, is timv corrected for the vertical distance between source and datum.
- 8. Average velocity SRD to GEO: the average seismic velocity from datum to the corresponding checkshot level, $\frac{dsrd}{shtm}$.
- 9. Delta depth between shots: $\Delta depth$, the vertical distance between each level.
- 10. Delta time between shots: $\Delta time$, the difference in vertical travel time (shtm) between each level.
- 11. Interval velocity between shots: the average seismic velocity between each level, $\frac{\Delta depth}{\Delta time}$.

A2 Drift Computation Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- · 2. Vertical depth from KB: the depth in metres from kelly bushing.
 - 3. Vertical depth from SRD: the depth in metres from seismic reference datum.
 - 4. Vertical depth from GL: the depth in metres from ground level.
 - 5. Vertical travel time SRD to GEO: the calculated vertical travel time from datum to downhole geophone (see column 7, Geophysical Airgun Report).

- 6. Integrated raw sonic time: the raw sonic log is integrated from top to bottom and listed at each level. An initial value at the top of the sonic log is set equal to the checkshot time at that level. This may be an imposed shot if a shot was not taken at the top of the sonic.
- 7. Computed drift at level: the checkshot time minus the integrated raw sonic time.
- 8. Computed blk-shft correction: the drift gradient between any two checkshot levels $\binom{\Delta drift}{\Delta depth}$.

A3 Sonic Adjustment Parameter Report

- 1. Knee number: the knee number starting from the highest knee. (The first knees listed will generally be at SRD and the top of sonic. The drift imposed at these knees will normally be zero.)
- 2. Vertical depth from KB: the depth in metres from kelly bushing.
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum.
- 4. Vertical depth from GL: the depth in metres from ground level.
- 5. Drift at knee: the value of drift imposed at each knee.
- 6. Blockshift used: the change in drift divided by the change in depth between any two levels.
- 7. Delta-T minimum used: see section 4 of report for an explanation of Δt_{min} .
- 8. Reduction factor: see section 4 of report.
- 9. Equivalent blockshift: the gradient of the imposed drift curve.

A4 Velocity Report

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from KB: the depth in metres from kelly bushing.
- 3. Vertical depth from SRD: the depth in metres from seismic reference datum
- 4. Vertical depth from GL: the depth in metres from ground level
- 5. Vertical travel time SRD to GEOPH: the vertical travel time from SRD to downhole geophone (see column 7, Geophysical Airgun Report)
- 6. Integrated adjusted sonic time: the adjusted sonic log is integrated from top to bottom. An initial value at the top of the sonic is set equal the checkshot time at that level. (The adjusted sonic log is the drift corrected sonic log.)

- 7. Drift=shot time-raw son: the check shot time minus the raw integrated sonic time.
- 8. Residual=shot time-adj son: the check shot time minus the adjusted integrated sonic time. This is the difference between calculated drift and the imposed drift.
- 9. Adjusted interval velocity: the interval velocity calculated from the integrated adjusted sonic time at each level.

A5 Time Converted Velocity Report

The data in this listing has been resampled in time.

- 1. Two way travel time from SRD: This is the index for the data in this listing. The first value is at SRD (0 millisecs) and the sampling rate is 2 millisecs.
- 2. Measured depth from KB: the depth from KB at each corresponding value of two way time.
- 3. Vertical depth from SRD: the vertical depth from SRD at each corresponding value of two way time.
- 4. Average velocity SRD to GEO: the vertical depth from SRD divided by half the two way time.
- 5. RMS velocity: the root mean square velocity from datum to the corresponding value of two way time.

$$v_{rms} = \sqrt{\sum_{1}^{n} v_i^2 t_i / \sum_{1}^{n} t_i}$$

where v_i is the velocity between each 2 millisecs interval.

6. First normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 3000 feet).

$$\Delta t = \sqrt{t^2 + (\frac{X}{v_{rms}})^2} - t$$

where:

 $\Delta t = \text{normal moveout (secs)}$ X = moveout distance (metres) t = two way time (secs) $v_{rms} = \text{rms velocity (metres /sec)}$

- 7. Second normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 4500 feet).
- 8. Third normal moveout: the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 6000 feet).
- 9. Interval velocity: the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.

A6 Synthetic Seismogram Table

- 1. Two way travel time from SRD: This is the index for the data in this listing. The first value is at the top of the sonic. The default sampling rate is 2 millisecs.
- 2. Vertical depth from SRD: the vertical depth from SRD at each corresponding value of two way time.
- 3. Interval velocity: the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.
- 4. Interval density: the average density between two successive values of two way time.
- 5. Reflect. coeff.: the difference in acoustic impedance divided by the sum of the acoustic impedance between any two levels. The acoustic impedance is the product of the interval density and the interval velocity.
- 6. Two way atten. coeff. : is computed from the series

$$A_n = (1 - R_1^2).(1 - R_2^2).(1 - R_3^2)...(1 - R_n^2)$$

7. Sythetic seismo. primary: the product of the reflection coefficient at each depth and the two way attenuation coefficient up to that depth.

$$Primary_n = R_n.A_{n-1}$$

- 8. Primary + multiple: a transform technique is used to calculate multiples from the input reflection coefficients.
- 9. Multiples only: (Primary + multiple) (Synthetic seismo. primary)

SCHLUMBERGER (SEG-1976) WAVELET POLARITY CONVENTION

Figure 1

1200 MS

Σ

WONGA BINDA #1 STACKED CHECKSHOT DATA

29.5	0.056	19
173.0	0.120	18
256.0	0.156	17
337.0	0.194	16
460.0	0.241	15
506.0	0.263	14
590.0	0.302	13
605.5	0.309	12
707.0	0.355	11
798.0	0.392	10
896.0	0.434	9
996.0	0.476	8
1095.0	0.508	7
1239.0	0.560	6
1267.0	0.569	4
1331.0	0.587	3
1345.0	0.592	2
1369.0	0.602	1
RAW DEPTH M	TRANSIT TIME S	LEVEL NO

ANALYST: M. SANDERS

11-MAY-83 13:16:04 PROGRAM: GSHOT 007.E08

SCHLUMBERGER

GEOPHYSICAL AIRGUN REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

CCUNTRY : AUSTRALIA

```
LONG DEFINITIONS
           GLOBAL
K -3
       - ELEVATION OF THE KELLY-SUSHING ABOVE MSL OR MUL
        ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL
       - ELEVATION OF KELLY BUSHING
       - ELEVATION OF USER'S REFERENCE (GEMERALLY GROUND LEVEL) ABOVE SRD
VELHYD - VELOCITY OF THE MEDIUM SETWERN THE SOURCE AND THE HYDROPHONE
VELSUR - VELOCITY OF THE MEDIUM BETWEEN THE SOURCE AND THE SRD
           MATRIX
GUNELZ - SCURCE ELEVATION ABOVE SRD (ONE FOR THE WHOLE JOB; OR ONE PER SHOT)
GUNERZ - SCURCE DISTANCE FROM THE PORPHOLE AXIS IN EW DIRECTION (CF. GUNELZ)
GUNNSZ - SCURCE DISTANCE FROM THE BOREHOLE AXIS IN NS DIRECTION (CF. GUNFL7)
HYDELZ - HYDROPHONE ELEVATION ABOVE SRD (CF. GUNELZ)
HYDEWZ - HYDROPHONE DISTANCE FROM THE BOREH AXIS IN EW DIRECTION (OF GUNFLZ)
HYDNSZ - HYDROPHONE DÍSTANCE FROM THE ÉGRÉH AXÍS ÍN NS DÍRECTÍCN (CE GUNELZ)
TRIHYD - TRAVEL TIME FROM THE HYDROPHONE TO THE SOURCE
TRISRD - TRAVEL TIME FROM THE SOURCE TO THE SRD
DEVWEL - DEVIATED WELL DATA PER SHOT : MEAS. DEPTH, VERT. DEPTH, EW, NS
```

SAMPLED

```
SHCT.GSH
           - SHOT NUMBER
DKE.GSH
           - MEASURED DEPTH FROM KELLY-BUSHING
DSRD.GSH
           - DEPTH FROM SRD
           - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)
DGL.GSH
             MEASURED TRAVEL TIME FROM HYDROPHONE TO GEOPHONE
TIMO.GSH
             VERTICAL TRAVEL TIME FROM THE SOUPCE TO THE GEOPHONE
TIMV.GSH
             SHOT TIME (WST)
SHTM.GSH
AVGV _ GSH
             AVERAGE SEISMIC VELOCITY
             DEPTH INTERVAL BETWEEN SUCCESSIVE SHOTS
DELZ.GSH
DELT.GSH
           - TRAVEL TIME INTERVAL BETWEEN SUCCESSIVE SHOTS
INTV.GSH
           - INTERNAL VELOCITY, AVERAGE
```

(GLOBAL PARAMETERS)

(VALUE)

WELL

ELEV OF KE AS. MSL (WST)	кa	:	29.5000	M
ELEV OF SRD AB. MSL(WST)	SRD	:	0	Μ
ELEVATION OF KELLY BUSHI	EKB		29.5000	
ELEV OF GL AR. SRD(WST)	GL	:	25.7000	М
VEL SOURCE-HYDRO(WST)	VELHYD	:	1500.00	MIS
VEL SOURCE-SRD (WST)	VELSUR	:	700.000	M/S

(MATRIX PARAMETERS)

COMPANY	•	CRU	SADER	RESO	URCES	N.I.

WELL

: WONGA BINDA #1

12345678901234567	1	1	
MD M 17533600000000000000000000000000000000000	TRT HYD-SC MS O	24.20	SCURCE ELV
VD A KB 173.00 256.000 3370.000 55905.000 6007.000 6007.000 10237.000 11237.000 13345.00	тят	SUURCE 6	SOURCE E
V M 367706000000000000000000000000000000000	SC-SRD M3 -34.57	C	W 20118
E-W COORD 00000000000000000000000000000000000		31.SO	CE NS H
N-S COORD 0000000000000000000000000000000000		24.20	YDRO ELEV
		M 0	HYDRO EW

2

PAGE

HYDRO NS

31.00

	- .									
EFVEL Noroek	MEASUR DEPTH FROM KU	VERTIC DEPTH FROM ORD	VERTIC DEPTH FROM GL M	URSTRV TRAVEL TIME HYD/GEO MS	VEPTIC TRAVEL TIME SRC/GEO MS	VERTIC TRAVEL TIME SRUMEC MS	AVERAGE VELOC SRD/GEO	DELTA DEPTH SETWSEN SHOTS M	DELTA TIME BETWEEN SHOTS MS	INTERV VELOC RETWEEN SHOTS M/S
1	173.00	143.56	157.20	120.00	118.00	03.43	1720	0.1.30		
	256,00	276.50	252.20	155.39	154.71	120.14	1395	83.00	36.71	2261
7	337.00	307.50	333.20	194.29	193.45	158.38	1935	81.00	38.74	2091
<u> </u>	460.00	430.50	455.20	240.91	240.35	205.78	2092	123.00	46.91	2527
5	506.00	476.50	502.20	262.40	261.90	227.33	2095	46.00	21.55	2135
								84.00	39.39	2137
5 -	590 . 00	560.50	536.20	301.71	301.29	260.72	2161	15.50	7.33	2114
7	605.50	576.09	691.70	309.03	308.62	274.05	2102	101.50	46.51	2137
ؙڎ	707.00	677.50	703.20	355.48	355.13	323.56	2113	91.00	36.84	2470
Q.	798.09	763.50	794.20	392.27	371.97	057.40	2150			
10	896.60	365.50	392.30	434.02	433.76	399.19	2171	98.00	41.79	2345
11	976.50	966.50	092.20	475.02	475.79	440.82	2193	100.00	41.63	2402
12	1095.00	1065.50	1091.20	508.09	507.83	473.31	2251	99.0n	32.50	3044
1.3	1239.60	1209.50	1335.20	559.94	559.76	525.19	2303	144.00	51.83	2775
14	1267.00	1237.50	1203.20	569.22	569.05	534.48	2313	28.00	9.28	3016
								64.00	17.67	3622
15	1331.50	1301.50	1327.20	586.88	586.72	552.15	2357	14.00	4.93	2337
1 ~	1045.00	1315.50	1341.20	571.81	591.65	557.08	2361	24.00	10.03	2390
17	1369 . 00	1339.50	1365.20	601.34	601.63	367.11	2362	4.00	• C · · · · · · · · · · · · · · · · · ·	<u> </u>

programmy Englished for the first fi

ANALYST: M. SANDERS

11-MAY-88 13:20:10

PROGRAM: GDRIFT 007.E09

DRIFT COMPUTATION REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

ANALYST: M. SA RS

11-MAY-88 13:20:10

PRO

M: GDRIFT 007, E09

DRIFT COMPUTATION REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

CCUNTRY : AUSTRALIA

WELL COMPANY : CRUSADER RESOURCES N.L. : WONGA BINDA #1. LONG DEFINITIONS GLOSAL - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL SRD SKB - ELEVATION OF KELLY BUSHING - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD XSTART - TOP OF ZONE PROCESSED BY WST XSTOP - BOTTOM OF ZONE PROCESSED BY WST GADOO1 - RAW SONIC CHANNEL NAME USED FOR WST SONIC ADJUSTMENT UNFOER - UNIFORM DENSITY VALUE ZONE LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER LAYDEN - USER SUPPLIED DENSITY DATA SAMPLED - SHOT NUMBER SHOT MEASURED DEPTH FROM KELLY-BUSHING DKE DSRD - DEPTH FROM SRD DGL - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE) - SHOT TIME (WST) SHTM RAWS - RAW SONIC (WST) SHDR - DRIFT AT SHOT OR KNEE BLSH - BLOCK SHIFT BETWEEN SHOTS OR KNEE (GLOPAL PARAMETERS) (VALUE) ELEV OF K8 AB. MSL (WST) 29.5000 KΒ SRD Μ 29.5000 EKB 25.7000 GL Μ XSTART 0 M

PAGE

ELEV OF SRD AB. MSL(WST) ELEVATION OF KELLY BUSHI ELEV OF GL AB. SRD(WST) OP OF ZONE PROCE (WST) BOT OF ZONE PROCE (WST) XSTOP \cap M GADO01 DT.ATT.002.FLP.* RAW SONIC CH NAME (WST) 2.30000 G/C3 INIFORM DENSITY VALUE UNFORN (ZONED PARAMETERS) (VALUE) (LIMITS) 30479.7 LAYER CPTION FLAG DENS LOFDEN : 1.000000 JSER SUPPLIED DENSITY DA LAYDEN :-999.2500 G/C330479.7 -

CMPANY : CRUS R RESOURCES N.L. WELL : WONG INDA #1 2 PAGE LEVEL MEASURED VERTICAL VERTICAL VERTICAL INTEGRATED COMPUTED COMPUTED NUMBER DEPTH DEPTH DEPTH TRAVEL RAW SONIC DRIFT BLK-SHFT CORRECTION FROM FROM FROM TIME TIME AT LEVEL K3 SRD SRD/GEO СL M 10 MS MS US/F e i MS 0 1 173.00 143.50 169.20 83.43 83.43 0 - 87 252.20 120.14 2 226.50 256.00 120.38 -.24 16.11 3 337.00 307.50 333.20 158.88 154.83 4.05 -2.71 460.00 430.50 456.20 205.78 202.83 2.95 25.87 5 506.00 476.50 502.20 227.33 220.47 6.86 -4.30 6 590.00 560.50 586.20 266.72 261.04 5.67 4.22 7 605.50 576.00 601.70 274.05 268.16

703.20

794.20

892.20

992.20

1091-20

1235.20

1263.20

1327.20

1341.20

1365.20

320.56

357.40

399.19

440.82

473.31

525.19

534.43.

552.15

557.08

567.11

316.53

356.70

397.81

436.96

473.01

524.18

534.51

551.41

555.22

562.57

3

9

10

11

12

13

14

15

16

17

707.00

798.00

896.00

996.00

1095.00

1239.00

1267.00

1331.00

1345.00

1369.00

677.50

768.50

866.50

966.50

1065.50

1209.50

1237.50

1301.50

1315.50

1339.50

5.89

4.03

1.37

3.86

1.01

-.03

1.86

4.55

.73

.30

.70

-5.57

2.09

7.58

1.49

3.64

24.49

34.14

-10.94

-11.30

-11.16

ANALYST: M. SANDERS

11-MAY-89 13:32:13

PROGRAM: GADJST 008.E08

SONIC ADJUSTMENT PARAMETER REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

ANALYST: M. NOERS

11-MAY-83 13:32:13

OGRAM: GADJST 008.E08

SONIC ADJUSTMENT PARAMETER REPORT

COMPANY : CRUSADER RESOURCES N.L.

.WELL : WONGA BINDA #1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

WELL PAGE COMPANY : CRUSADER RESOURCES N.L. : WONGA BINDA #1 LONG DEFINITIONS GLOBAL

SRCDRF - ORIGIN OF ADJUSTMENT DATA CONADJ - CONSTANT ADJUSTMENT TO AUTOMATIC DELTA-T MINIMUM = 7.5 US/F UNERTH - UNIFORM EARTH VELOCITY (GTREPM) ZDRIFT - USER DRIFT AT BOTTOM OF THE ZONF ADJUSZ - TYPE OF ADJUSTMNENT IN THE DRIFT ZONE : D=DELTA-T MIN, 1=BLOCKSHIFT ADJUSZ - DELTA-T MINIMUM USED FOR ADJUSTMENT IN THE DRIFT ZONE LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER LAYVEL - USER SUPPLIED VELOCITY DATA SAMPLED - SHOT NUMBER SHOT VERTICAL DEPTH RELATIVE TO KB - DEPTH FROM SRD DSRD

VDKB

- VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE) DGL

KNEE KNEE

- BLOCK SHIFT BETWEEN SHOTS OR KNEE BLSH

- VALUE OF DELTA-T MINIMUM USED DTMI

- DELTA-T MIN COEFFICIENT USED IN THE DRIFT ZONE COEF

- GRADIENT OF DRIFT CURVE DRGR

(GLOBAL PARAMETERS)			(VALUE)	
ORIG OF ADJ DATA (WST) CONS SONIC ADJST (WST) UNIFORM EARTH VELOCITY	SRCDRF CONADJ UNERTH	•	2.00000 7.50000 2133.60	US/F M/S

(ZONED PARAMETERS)		(VALUE)	(LIMITS)
USER DRIFT ZONE (WST)	ZDRIFT	: 1.800000 MS 1.800000 3.800000 3.800000	1369.00 - 778.000 778.000 606.000 606.000 424.000 424.000 173.000
ADJUSMNT MODE (WST) USER DELTA-T MIN (WST) LAYER OPTION FLAG VELOC USER VELOC (WST)	ADJOPZ ADJUSZ LOFVEL LAYVEL	:-999.2500 :-999.2500 US/F : 1.000000 : 1720.000 M/S 700.000	30479.7 - 0 30479.7 - 0 30479.7 - 0 173.000 - 29.5000 29.5000

NGA BINDA #1 COMPANY VSADER RESOURCES N.L. WELL PAGE DRIFT BLOCKSHIFT KNEE VERTICAL VERTICAL VERTICAL DEL TA-T REDUCTION EQUIVALENT DEPTH FROM AT MINIMUM USED NUMBER DEPTH DEPTH FACTOR FROM KB FROM USED G BLOCKSHIFT GL US/F US/F M [4] MS US/F 0 0 173.00 143.5C 169.20 0 2 4.61 4.61 424.00 394.50 420.20 3.80 3 0 0 606.00 576.50 602.20 3.80 128.07 .72 -3.54 748.50 1.80 5 778.00 774.2G 0 0 1339.50 1365.20 1.80 1369.00 6

ANALYST: M. SANDERS

11-MAY-83 13:32:35

PROGRAM: GADJST 008.E08

VELOCITY REPORT

CCMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

CCUNTRY : AUSTRALIA

ANALYST: M. NDERS

11-MAY-88 13:32:35

GRAM: GADJST 008.E08

VELOCITY REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

CCUNTRY : AUSTRALIA

COMPANY: CRUSADER RESOURCES N.L. WELL: WONGA BINDA #1 PAGE 3

GLOBAL KB - ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL SRD - ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL EK B - ELEVATION OF KELLY BUSHING - ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD GL UNERTH - UNIFORM EARTH VELOCITY (GTRFRM) ZONE LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER LAYVEL - USER SUPPLIED VELOCITY DATA SAMPLED SHOT - SHOT NUMBER DKE - MEASURED DEPTH FROM KELLY-BUSHING - DEPTH FROM SRD DSRD

DGL - VERTICAL DEPTH RELATIVE TO GROUND LEVEL (USER'S REFERENCE)

SHTM - SHOT TIME (WST)
ADJS - ADJUSTED SONIC TRAVEL TIME

SHDR - DRIFT AT SHOT OR KNEE
REST - RESIDUAL TRAVEL TIME AT KNEE
INTV - INTERNAL VELOCITY, AVERAGE

(GLOBAL PARAMETERS) (VALUE)

29.5000 ELEV OF KB AB. MSL (WST) KΒ ELEV OF SRD AB. MSL(WST) SRD 0 Μ 29.5000 ELEVATION OF KELLY BUSHI EKB ELEV OF GL AB. SRD(WST) GL М UNIFORM EARTH VELOCITY UNERTH 2133.60

(ZONED PARAMETERS) (VALUE) (LIMITS)

LAYER OPTION FLAG VELOC LOFVEL : 1.000000 30479.7 - 0 USER VELOC (WST) LAYVEL : 1720.000 M/S 173.000 - 29.5000 700.000 29.5000

COMPANY : CRUSADER RESOURCES N.L.

17

1369.00

1339.50

1365.20

WELL

: WONGA BINDA #1

PAGE LEVEL MEASURED VERTICAL VERTICAL VERTICAL INTEGRATED DRIFT RESIDUAL ADJUSTED NUMBER DEPTH DEPTH DEPTH TRAVEL ADJUSTED INTERVAL FROM FROM FROM TIME SHOT TIME SHOT TIME SONIC VELOCITY KΒ SRD GL SRD/GEOPH TIME - RAW SON - ADJ SON [4] M Μ MS MS MS MS M/S 1720 1 173.00 143.50 169.20 83.43 83.43 0 0 2173 2 256.00 226.50 252.20 120.14 121.63 -.24 -1.492270 3 337.00 307.50 333.20 158.88 157.30 4.05 1.57 2494 4 46C-00 430.50 456.20 205.78 206.62 2.95 -.84 2603 5 506.00 502.20 476.50 227.33 224.26 3.07 6.86 2070 6 590.00 560.50 586.20 266-72 264.84 5.67 1.87 2179 7 605.50 576.00 601.70 274.05 271.96 5.89 2.09 2170 8 707.00 677.50 703.20 320.56 318.72 4.03 1.84 2288 9 798.00 768.50 794-20 357.40 358.50 .70 -1.102384 10 896.00 866.50 292.20 399.19 399.61 1.37 -.42 2555 11 996.00 966.50 992.20 440.82 438.75 3.86 2.06 2746 1095.00 12 1065.50 1091.20 473.31 474.80 .30 -1.492814 13 1209.50 1239.00 1235.20 525.19 525.98 1.01 -.78 2714 1267.00 1237.50 14 1263.20 534.48 536.29 -.03 -1.82 3785 15 1331.00 1301.50 1327.20 552.15 553.20 .73 -1.053676 16 1345.00 1315.50 1341.20 557.08 557.01 1.35 .07 3248

567.11

564.40

4.55

2.71

ANALYST: M. SANDERS

11-MAY-83 13:38:07 PROGRAM: GTRFRM 001_E12

SCHLUMBERGER

TIME CONVERTED VELOCITY REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

CCUNTRY : AUSTRALIA

ANALYST: M. SANDERS 11-MAY-88 13:38:07 PROGRAM: GTRFRM 001.E12

TIME CONVERTED VELOCITY REPORT

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

COUNTRY : AUSTRALIA

```
COMPANY : CRUSADER RESOURCES N.L.
                                              WELL
                                                       : WONGA BINDA #1
        LONG DEFINITIONS
           GLOBAL
         ELEVATION OF THE KELLY-BUSHING ABOVE MSL OR MWL
         ELEVATION OF THE SEISMIC REFERENCE DATUM ABOVE MSL OR MWL
SRD
         ELEVATION OF USER'S REFERENCE (GENERALLY GROUND LEVEL) ABOVE SRD
UNERTH - UNIFORM EARTH VELOCITY (GTRFRM)
UNFOEN - UNIFORM DENSITY VALUE
           MATRIX
MVODIS - MCVE-OUT DISTANCE FROM BOREHOLE
           ZONE
LOFVEL - LAYER OPTION FLAG FOR VELOCITY: -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYVEL - USER SUPPLIED VELOCITY DATA
LOFDEN - LAYER OPTION FLAG FOR DENSITY : -1=NONE; O=UNIFORM; 1=UNIFORM+LAYER
LAYDEN - USER SUPPLIED DENSITY DATA
           SAMPLED
TWOT
       - TWO WAY TRAVEL TIME (RELATIVE TO THE SEISMIC REFERENCE
       - MEASURED DEPTH FROM KELLY-BUSHING
DKE
         DEPTH FROM SRD
DSRD
         AVERAGE SEISMIC VELOCITY
AVGV
         ROOT MEAN SQUARE VELOCITY (SEISMIC)
RMSV
       - NORMAL MOVE-OUT
MVOT
       - NORMAL MOVE-OUT
MVOT
       - NORMAL MOVE-OUT
MVCT
       - INTERNAL VELOCITY, AVERAGE
INTV
                                           (VALUE)
  (GLOBAL PARAMETERS)
                                          29.5000
ELEV OF KE AB. MSL (WST)
                           KΒ
ELEV OF SRD AB. MSL(WST)
                           SRD
                                                   М
                                         25.7000
2133.60
2.30000
ELEV OF GL AB. SRD (WST)
                           GL
                                                   M
                           UNERTH
                                                   M/S
UNIFORM EARTH VELOCITY
                           UNFDEN
                                                   G/C3
UNIFORM DENSITY VALUE
  (MATRIX PARAMETERS)
```

V' 1000.0 1500.0 2000.0

MVOUT DIST

17:25:21

PAGE

COMPANY : CRUSADER RESOURCES N.L.

WELL

: WONGA BINDA #1

PAGE

tien gebachtet

2

(ZONED PARAMETERS)

(VALUE)

(LIMITS)

LAYER OPTION FLAG VELOC LAYVEL

LAYER OPTION FLAG DENS LOFDEN
USER SUPPLIED DENSITY DA LAYDEN

OFVEL : 1.0 AYVEL : 172 700

: 1.000000 : 1726.000 M 706.0000 :-1.000000 :-999.2500 G

30479.7 173.000 29.5000 30479.7 G/C3 30479.7

7 - 29.5000 0 - 29.5000 0 - 0 COMPANY : CRUSADER RESOURCES N.L. WELL

: WONGA BINDA #1

PAGE

								, ,
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
2.00	31.22	1.72	1720	172ú	579.40	870.10	1160.79	1720
4.00	32.94	3.44	1720	1720	577.41	868.10	1158.80	1720
6.CO	34.66	5.16	1720	1720	575.43	866.11	1156.81	1720
8.00	36.38	6.88	1720	1720	573.45	864.13	1154.82	1720
10.00	38.10	8.60	1720	1720	571 48	862.15	1152.83	1720
12.00	39.82	10.32	1720	1720	569.52	860.18	1150.85	1720
14.00	41.54	12.04	1720	1720	567.56	858.21	1148.88	1720
16.00	43.26	13.76	1720	1720	565.62	856.24	1146.90	1720
18.00	44.98	15.48	1720	1720	563.67	854.28	1144.93	1720
20.00	46.70	17.20	1720	1720	561.74	852.32	1142.96	1720
22.00	43.42	18.92	1720	1720	559.81	850.37	1141.00	1720
24.00	50.14	20.64	1720	1720	557.89	848.42	1139.04	1720
26.00	51.86	22.36	1720	1720	555.98	846.48	1137.08	1720
28.00	53.58	24.08	1720	1720	554.07	844.54	1135.13	1720
30.00	55.30	25.80	1720	1720	552.17	842.61	1133.18	1720
32.00	57.02	27.52	1720	1720	550.28	840.68	1131.23	1720
34.GO	58.74	29.24	1720	1720	548.39	838.76	1129.29	1720
36.CO	60.46	30.96	1720	1720	546.51	836.84	1127.35	1720
38.00	62.13	32.68	1720	1720	544.64	834.92	1125.41	1720
40.00	63.90	34.40	1720	1720	542.77	833.01	1123.48	1720
42.00	65.62	36.12	1720	1720	540.91	831.10	1121.55	1720
44.00	67.34	37.84	1720	1720	539.06	829.20	1119.62	1720
46.00	69.06	39.56	1720	1720	537.21	827.31	1117.70	1720
48.00	78	41.28	1720	1720	535	325.41	1115.78	1720

COMPANY : CRUSADER RESOURCES N.L. WELL : WONGA BINDA #1

PAGE

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KP	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GFO	V ELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	4/3	M/S	MS	MS	MS	M/S
50.00	72.50	43.00	17 20	1720	533.54	823.53	1113.87	1720 1720
52.00	74.22	44.72	1720	1720	531.72	821.64	1111.95	
54.CO	75.94	46.44	1720	1720	529.90	819.76	1110.04	1720
56.00	77.66	48.16	1720	1720	528.09	817.89	1108.14	1720
58.00	79.38	49.88	1720	1720	526.28	816.02	1106.24	1720
60.00	81.10	51.60	1720	1720	524.48	814.15	1104.34	1720
62.00	82.82	53.32	1720	1720	522.69	812.29	1102.44	1720
64.00	84.54	55.04	1720	1720	520.91	810.44	1100.55	1720
66.CO	86.26	56.76	1720	1720	519.13	808.59	1098.66	1720
68.00	87.98	58.48	17 20	1720	517.36	806.74	1096.78	1720
70.00	89.70	60.20	1720	1720	515.59	804.90	1094.90	1720
72.CU	91.42	61.92	1720	1720	, 513.84	803.06	1093.02	1720
74.00	93.14	63.64	1720	1720	512.09	801.23	1091.14	1720
76.00	94.86	65.36	1720	1720	510.34	799.40	1089.27	1720
78.00	96.58	67.08	1720	1720	508.60	797.57	1087.40	1720
00.08	98.30	08.86	1720	1720	506.87	795.75	1085.54	1720
82.CO	100.02	70.52	1720	1720	505.15	793.94	1083.68	1720
84.00	101.74	72.24	1720	1720	503.43	792.13	1081.82	1720
86.00	103.46	73.96	1720	1720	501.72	790.32	1079.97	1720
00.88	105.18	75.68	1720	1720	500.02	788.52	1078.12	1720
90.00	106.90	77.40	1720	1720	498.32	786.72	1076.27	1720
92.00	108.62	79.12	1720	1720	496.63	784.93	1074.42	1720
94.00	110.34	80.84	1720	1720	494.95	783.14	1072.58	1720
96.00	112.06	82.56	1720	1720	493.27	781.36	1070.75	1720

COMPANY : CRUSADER RESOURCES N.L. WELL : WONGA BINDA #1 PAGE TWO-WAY MEASURED VERTICAL AVERAGE RMS FIRST SECOND THIRD INTERVAL TRAVEL DEPTH DEPTH VELOCITY VELOCITY NORMAL NORMAL NORMAL VELOCITY FROM TIME FROM SRD/GEO MOVEDUT MCVEOUT TUGBVOM FROM SRD K9 M SRD MS M/S M/S MS MS MS M/S 1720 98.00 113.78 84.28 1720 1720 491.60 779.58 1068-91 1720 100.00 115.50 86.00 1720 1720 489.93 777.81 1067.08 1720 102.00 117.22 37.72 1720 1720 483.28 776.04 1065-26 1720 104.00 118.94 89.44 1720 1720 486.62 774.27 1063.43 1720 106.00 120.66 91.16 1720 1720 484 98 772.51 1061.61 1720 108.00 122.33 92.88 1720 1720 483.34 770.75 1059.80 1720 110.00 124.10 94.60 1720 1720 481.71 769.00 1057.98 1720 112.00 125.82 96.32 1720 1720 480.08 767.26 1056.17 1720 114.00 127.54 98.04 1720 1720 478 47 765.51 1054.37 1720 116.00 129.26 99.76 1720 1720 476.85 763.77 1052.56 1720 118.00 130.98 101.43 1720 1720 475.25 762.04 1050.76 1720 120.00 132.70 103.20 1720 1720 473.65 760.31 1048.97 1720 122.00 134.42 104.92 1720 1720 472.06 758.59 1047-17 1720 124.00 136.14 106.64 1720 1720 470.47 756.86 1045.38 1720 126.00 137.86 108.36 1720 1720 468 - 89 755.15 1043.60 1720 128.00 139.58 110.08 1720 1720 753.44 467.32 1041.81 1720 130.00 141.30 111.80 1720 1720 465.75 751.73 1040.04 1720 132.00 143.02 113.52 1720 1720 464.19 750.03 1038.26 1720 134.00 144.74 115.24 1720 1720 743.33 462.64 1036.49 1720 136.00 146.45 116.96 1720 1720 461.09 746.63 1034.72 1720 138.CU 148.18 118.68 1720 1720 459.55 744.94 1032.95 1720 140.00 149.90 120.40 1720 1720 458.01 743.26 1031-19 1720 142.00 151.62 122.12 1720 1720 456.49 741.58 1029.43 1720 153.34

1720

96

739.90

1027.67

のでは、「一般のでは、「「「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」 「「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「」」というできます。「「

144.CD

123.84

1720

L i

Land

5

さらの からから 変数を変数をあるから

COMPANY : CRUSADER RESOURCES N.L.

TWO-WAY TRAVEL TIME FROM SRD	MEA SURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOPMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
146.00	155.06	125.56	1730	1720	453.45	738.23	1025.92	1720
148.00	156.78	127.28	1720	1720	451.94	736.56	1024.17	1720
150.00	158.50	129.00	1720	1720	450.43	734.90	1022.43	1720
152.00	160.22	130.72	1720	1720	448.94	733.24	1020.68	1720
154.00	161.94	132.44	1720	1720	447.45	731.59	1018.94	1720
156.00	163.66	134.16	1720	1720	445.96	729.94	1017.21	1720
158.00	165.38	135.88	1720	1720	444.48	728.29	1015.48	1720
160.00	167.10	137.60	17 20	1720	443.01	726.65	1013.75	1720
162.00	168.82	139.32	17 20	1720	441.54	725.01	1012.02	1720
164.00	170.54	141.04	1720	1720	440.08	723.38	1010.30	1720
166.00	172.26	142.76	1720	1720	438 . 63	721.75	1008.58	1720
168.CO	174.21	144.71	1723	1723	436.25	718.70	1004.95	1946
170.00	176.42	146.92	1723	1729	432.68	713.81	998.84	2216
172.00	178.55	149.05	1733	1735	429.60	709.67	993.74	2127
174.CO	180.68	151.18	1738	1740	426.55	705.57	988.68	2135
176.CO	182.81	153.31	1742	1745	423.59	701.60	983.79	2128
178.00	184.94	155.44	1747	1749	420.68	697.69	978.99	2130
180.00	187.05	157.55	1751	1754	417.92	694.01	974.48	2107
182.00	189.14	159.64	1754	1758	415.29	690.52	970.23	2086
184.00	191.31	161.81	1759	1763	412.37	686.58	965.37	2170
186.00	193.45	163.95	1763	1767	409.62	682.89	960.85	2140
188.00	195.51	166.01	1766	1771	407.21	679.72	957.02	2064
190.00	197.67	168.17	1770	1775	404.47	676.03	952.48	2162
192.00	199.75	170.25	1773	1779	402.07	672.87	948.66	2081

: WONGA BINDA #1

WELL

e u . Weil

PAGE

7

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERACE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVA VELOCIT
MS	Ň	M	M/S	M/S	MS	MS	MS	M/S
194.00	201.94	172.44	1778	1783	399.33	669.17	944.10	218
196.CD	204.05	174.55	1781	1787	396.89	665.92	940.15	21
198.00	206.14	176.64	1784	1790	394.59	662.88	936.48	208
20C.CO	208.18	178.68	1787	1793	392.48	660.13	933.20	20
202.00	210.38	180.88	1791	1798	389.86	656.59	928.34	21
204.00	212.51	183.01	1794	1801	387.50	653.43	924.99	21
206.CO	214.79	185.29	1799	1806	384.70	649.60	920.24	22
208.00	216.97	187.47	1863	1810	382.25	646.29	916.18	21
210.00	219.17	189.67	1806	1814	379.80	642.97	912.11	21
212.00	221.40	191.96	1310	1819	377.29	639.56	907.92	. 22
214.CU	223.74	194.24	1315	1824	374.44	635.61	902.99	23
216.00	226.01	196.51	1820	1829	371.86	632.08	898.61	22
218.00	228.24	198.74	1323	1833	369.48	628.85	894.64	22
220.00	230.49	200.99	1827	1837	367.07	625.56	890.60	22
222.00	232.59	203.09	1830	1840	365.13	622.99	887.51	21
224.CO	234.72	205.22	1832	1843	363.14	620.35	884.33	21
226.00	236.89	207.39	1835	1846	361.05	617.54	880.92	21
228.00	239.12	209.62	1339	1849	358.80	614.48	877.16	22
230.00	241.30	211.80	1842	1853	356.74	611.71	873.80	21
232.00	243.47	213.97	1345	1856	354.74	609.02	870.54	21
234.00	245.67	216.17	1343	1857	352.68	606.23	867.13	2,2
236.00	247.93	218.43	1851	1863	350.49	603.23	863.45	22
238.00	250.22	220.72	1355	1867	348.23	600.12	859.60	22
240.00	252.49	222.99	1858	1870	3 07	597.16	855.96	22

COMPANY : CRUSADER RESOURCES N.L.

COMPANY : CRUSADER RESOURCES N.L.

VELL : WONGA BIND	A #1	
-------------------	------	--

INTERVA VELOCIT	THIRD NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MCVEOUT	RMS VELOCITY	AVERAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM SRD	MEASURED DEPTH FROM KB	TWO-WAY TRAVEL TIME FROM SRD
M/S	MS	MS	MS	M/S	M/S	M	M	MS
218	852.81	594.56	344.15	1873	1861	225.18	254.63	242.00
216	849.80	592.07	342.30	1876	1364	227.35	256.85	244.60
233	845.96	588.98	340.07	1880	1867	229.68	259.18	246.CO
222	842.74	586.34	338.14	1883	1870	231.91	261.41	248.00
224	839.45	583.65	336.17	1886	1873	234.15	263.65	250.00
225	836.14	580.95	334.21	1889	1376	236.41	265.91	252.00
225	832.90	578.30	332.28	1893	1379	238.66	268.16	254.00
221	829.91	575.85	330.47	1895	1 882	240.88	270.38	256.00
222	826.86	573.35	328.65	1898	1885	243.10	272.60	258.00
229	823.54	570.65	326.70	1901	1888	245.40	274.90	260.00
220	820.69	568.30	324.97	1904	1890	247.60	277.10	262.00
225	817.64	565.81	323.16	1907	1893	249.85	279.35	264.00
227	814.52	563.27	321.32	1910	1896	252.12	231.62	266.00
224	811.60	560.87	319.58	1912	1898	254.36	233.86	268.00
222	808.77	558.55	317.89	1915	1901	256.59	236.09	270.00
225	805.86	556.17	316.16	1918	1903	258.84	283.34	272.00
244	802.08	553.16	314.04	1922	1967	261.28	290.78	274.00
231	798.94	550.61	312.22	1925	1910	263.60	293.10	276.CO
220	796.35	548.47	310.66	1927	1912	265.80	295.30	278.00
226	793.49	546.15	308.98	1930	1915	268.07	297.57	280.00
230	790.50	543.72	307.24	1933	1918	270.38	299.83	282.00
234	787.39	541.21	305.46	1936	1921	272.72	302.22	284.00
228	784.58	538.92	303.81	1939	1923	275.00	304.50	286.00
230	781.69	536.58	302.14	1941	1926	277.30	306.30	288.00

PAGE

COMPANY :	CRUSADER	RESOURCES	N.L.	WELL	: WONGA	BINDA #1		PAGE
TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	S R D M	A/3	M/S	MS	MS	MS	M/S
290.00	309.06	279.56	1928	1944	300.58	534.41	779.04	2256 2138
292.00	311.19	281.69	1929	1945	299.25	532.59	776.87	2250
294.00	313.44	283.94	1932	1947	297.72	530.48	774.29	2156
296.00	315.60	286.10	1933	1949	296.38	528.65	772.09	
298.00	317.88	288.38	1935	1951	294.83	526.47	769.41	2283
300.00	320.18	290.68	1933	1954	293.26	524.26	766.70	2301
302.00	322.49	292.99	1949	1956	291.71	522.08	764.00	2302
304.CO	324.76	295.26	1942	1959	290.23	520.00	761.45	2272
306.00	327.07	297.57	1945	1961	283.69	517.82	758.76	2314
00.808	329.39	299.89	1947	1964	287.16	515.66	756.09	2316
310.00	331.73	302.23	1950	1965	285.60	513.43	753.33	2345
312.00	334.04	304.54	1952	1969	284.12	511.33	750.73	2309
314.00	336.30	306.80	1954	1971	282.73	509.38	748.35	2259
316.00	338.69	309.19	1957	1974	281.15	507.11	745.51	2387
318.00	341.08	311.58	1 969	1977	279.58	504.85	742.68	2393
320.00	343.46	313.96	1962	1979	278.05	502.64	739.93	2380
322.00	345.71	316.21	1964	1981	276.73	500.78	737.65	2252
324.00	348.09	318.59	1967	1984	275.23	498.63	734.96	2377
326.00	350.45	320.95	1969	1986	273.78	496.53	732.34	2363
328.00	352.79	323.29	1971	1989	272.37	494.51	729.84	2337
330.00	355.13	325.63	1974	1991	270.98	492.51	727.36	2338
332.00	357.53	328.03	1976	1994	269.51	490.37	724.63	2401
334.00	359.87	330.37	1973	1996	268.15	488.41	722.25	2337
336.00	62.28	332.78	1981	1999	26 69	486.29	719.58	2412

COMPANY : CRUSADER RESOURCES N.L. WELL : WONGA BINDA #1 PAGE 10 TWO-WAY MEASURED VERTICAL AVERAGE RMS FIRST SECOND THIRD INTERVAL DEPTH VELOCITY TRAVEL DEPTH VELOCITY NORMAL NORMAL NORMAL VELOCITY FROM FROM SRD/GEO TIME MOVEOUT MOVEOUT TUCBVOM FROM SRD KВ SRD M MS М M/S M/S MS MS MS M/S 2406 338.00 364.69 335.19 1983 2001 265.26 484.20 716.96 2374 340.00 367.06 337.56 1986 2004 263.89 482.21 714.48 2372 342.00 369.43 339.93 1988 2006 262.53 480.24 712.02 2350 344.00 371.78 342.28 1990 2008 261.22 478.34 709.65 2371 346.00 374.15 344.65 1992 2010 259.90 476.41 707.23 2365 348.00 376.52 347.02 1994 2013 258.59 474.51 704.86 2468 378.99 1997 350.00 349.49 2016 257.16 472.39 702.18 2453 352.00 2000 381.44 351.94 2018 255.76 470.33 699.57 2492 354.00 383.93 2002 354.43 2021 254.33 468.19 696.86 2429 356.00 386.36 356.86 2005 2024 253.00 466.22 694.38 2376 358.00 388.73 359.23 2007 2026 251.75 464.39 692.08 2421 391.16 360.00 361.66 2009 2028 250.45 462.47 689.66

2426 362.C0 393.58 364.08 2012 2031 249.16 460.56 687.25 2447 396.03 364.00 366.53 2014 2033 247.85 458.62 684.80 2424 366.00 398.45 368.95 2016 2036 246.59 456.75 682.43 2383 368.00 400.84 371.34 2018 2038 245.40 454.98 680.21 2443 370.00 403.28 373.78 2020 2040 244.14 453.10 677.83 2384 372.00 405.66 2022 376.16 2042 242.96 451.35 675.64 2372 374.CO 408.03 378.53 2024 2044 241.81 449.65 673.50 2426 376.CO 410.46 380.96 2026 2046 240.60 447.85 671.22 2413 2028 378.00 412.87 383.37 2048 239.43 446.09 669.00 2452 233.22 385.33 2031 2051 666.69 380.00 415.33 444.27 2611 382.00 417.94 388.44 2034 2054 236.82 442.15 663.95 2600 2037 2057 384.00 420.54 391.04 235.46 440.07 661.26

: WONGA BINDA #1

.32

393.00

599.91

PAGE

11

WELL

: CRUSADER RESOURCES N.L.

455.09

2107

INTERVAL VELOCITY	THIRD NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MOVEOUT	RMS VELOCITY	AVERAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM SRD	MEASURED DEPTH FROM KB	TWO-WAY TRAVEL TIME FROM SRD
M/S	MS	14 S	MS	M/S	M/S	M	M	MS
2598	658.61	438.01	234.12	2060	2040	393.63	423.13	386.00
2753	655.53	435.65	232.60	2065	2043	396.39	425.89	00.885
2685	652.69	433.46	231.19	2068	2047	399.07	428.57	39C.CO
2753	649.68	431.16	229.71	2072	2050	401.83	431.33	392.00
2637	647.03	429.12	228.39	2076	2053	404.46	433.96	394.00
2873	643.74	426.62	226.80	2080	2057	407.34	436.84	396.CO
2732	640.89	424.43	225.40	2084	2061	410.07	439.57	398.00
2707	638.14	422.33	224.04	2088	2064	412.78	442.28	400.00
2716	635.39	420.22	222.70	209 1	2067	415.49	444.99	402.00
2753	632.57	418.07	221.33	2095	2071	418.24	447.74	404.00
2659	630.04	416.12	220.08	2098	2073	420.90	450.40	406.00
2686	627.46	414.15	218.81	2102	2076	423.59	453.09	408.00
2592	625.14	412.35	217.66	2104	2079	426.18	455.63	410.00
2695	622.58	410.40	216.41	2107	2082	428.88	458.33	412.CO
2450	620.64	408.88	215.42	2109	2084	431.33	460.83	414.00
2470	618.67	407.34	214.42	2111	2036	433.80	463.30	416.00
2541	616.54	405.70	213.36	2113	8305	436.34	465.84	418.00
2600	614.30	403.97	212.25	2116	2070	438.94	468.44	420.00
2571	612.14	402.30	211.19	2118	2092	441.51	471.01	422.00
2641	609.84	400.54	210.06	2121	2095	444.15	473.65	424.00
2741	607.31	398.62	208.85	2124	2098	446.89	476.39	426.00
2787	604.70	396.64	207.61	2128	2101	449.68	479.18	428.00
2842	601.97	394.58	206.33	2132	2105	452.52	482.02	430.00
2572	500 01	303 NO	72	2134	2107	455 09	184 59	432 NA

2134

COMPANY

INTERV VELOCI	THIRD NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MOVEOUT	RMS VELOCITY	AVEPAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM	MEASURED DEPTH FROM	TWO-WAY TRAVEL TIME
M/S	MS	MS	MS	M/S	M/S	S R D M	KB M	FROM SRD MS
26 26	597.73	391.33	204.26	2137	2109	457.72	487.22	434.00
26	595.62	389.71	203.24	2139	2112	460.33	489.83	436.00
26	593.47	388.07	202.21	2142	2114	462.97	492.47	438.00
28	591.23	386.37	201.14	2144	2117	465.65	495.15	44C.00
23	588.56	384.37	199.90	2148	2120	468.53	498.03	442.00
	587.09	383.20	199.15	2149	2121	470.86	500.36	444.00
20	584.87	381.52	198.10	2152	2124	473.55	503.05	446.00
2:	583.48	380.42	197.38	2153	2124	475.85	505.35	448.00
2:	582.13	379.35	196.68	2153	2125	478.13	507.63	45C.00
. 1	580.91	378.37	196.04	2153	2125	480.34	509.84	452.00
2	580.07	377.66	195.55	2153	2125	482.31	511.81	454.00
	578.71	376.59	194.85	2153	2125	484.60	514.10	456.00
2	577.68	375.75	194.29	2153	2125	486.70	516.20	458.00
	576.65	374.90	193.73	2153	2125	488.81	518.31	460.00
2	575.54	374.01	193.14	2153	2125	490.96	520.46	462.00
2	574.45	373.13	192.56	2153	2125	493.10	522.60	464.00
2	573.36	372.25	191.98	2153	2126	495.24	524.74	466.00
2	572.32	371.40	191.42	2153	2125	497.36	526.86	468.00
2	571.19	370.50	190.83	2153	2126	499.53	529.03	470.00
2	570.23	369 .71	190.30	2152	2125	501.60	531.10	472.00
2	569.28	368.94	189.79	2152	2125	503.66	533.16	474.00
1	568.48	368.27	189.33	2151	2124	505.62	535.12	476.00
1	567.70	367.61	188.89	2150	2124	507.58	537.08	478.00
2	566.41	366.59	188.24	2151	2124	509.85	539.35	480.00

			*					
TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS.	K8 M	SRD M	M/S	MIS	MS	MS	MS	M/S
482.00	541.32	511.82	2124	2150	187.79	365.92	565.61	1969
484.00	543.43	513.93	2124	2150	187.25	365.11	564.59	2108
486.00	545.49	515.99	2123	2150	186.75	364.34	563.65	2064
488.00	547.54	518.04	2123	2149	186.25	363.59	562.73	2051
490.00	549.44	519.94	2122	2148	185.85	363.00	562.03	1898
492.00	551.35	521.85	2121	2147	185.43	362.39	561.32	1910
494.00	553.20	523.70	2120	2146	185.06	361.84	560.68	1849
496.00	555.26	525.76	2120	2146	184.56	361.09	559.76	2057
498.00	557.33	527.83	2120	2146	184.06	360.33	558.30	2075
500.00	559.39	529.89	2120	2145	183.58	359.58	557.88	2059
502.00	561.48	531.98	2119	2145	183.07	358.80	556.91	2086
504.00	563.50	534.00	2119	2145	182.61	358.10	556.05	2021
506.00	565.57	536.07	2119	2144	132.12	357.34	555.10	2075
508.00	567.55	538.05	2118	2144	181.69	356.68	554.30	1978
510.00	569.59	540.09	2118	2143	181.22	355.96	553.41	2037
512.00	571.71	542.21	2118	2143	180.71	355.16	552.40	2123
514.00	573.81	544.31	2118	2143	180.21	354.39	551.43	2100
516.00	575.86	546.36	2118	2143	179.75	353.67	550.54	2045
518.00	577.96	548.45	2118	2143	179.26	352.90	549.57	2101 2094
520.00	20.08	550.55	2118	2142	178.77	352.14	548.61	2094
522.00	582.14	552.64	2117	2142	178.29	351.39	547.66	2102
524.00	534.24	554.74	2117	2142	177.81	350.63	546.70	2144
526.00	536.39	556.89	2117	2142	177.30	349.83	545.68	2081
528.00	588.47	558.97	2117	2142	176.83	349.09	544.75	2001

TWO-WAY TRAVEL TIME	MEA SURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD	M/S	M/S	MS	MS	MS	M/S
530.00	590.38	560.88	2117	2141	176.44	348.50	544.04	1917 2284
532.00	592.67	563.17	2117	2142	175.87	347.57	542.81	
534.00	594.69	565.19	2117	2141	175.43	346.89	541.97	2024
536.00	597.12	567.62	2118	2142	174.77	345.80	540.53	2430
538.00	599.38	569.88	2119	2143	174.22	344.90	539.35	2261
540.00	601.43	571.93	2118	2142	173.78	344.22	538.49	2043
542.00	603.39	573.89	2118	2142	173.39	343.61	537.73	1960
544.00	605.61	576.11	2118	2142	172.86	342.75	536.62	2228
546.00	607.62	578.12	2118	2142	172.45	342.10	535.81	2006
548.00	609.58	580.08	2117	2141	172.06	341.50	535.06	1959
550.00	611.58	582.08	2117	2140	171.65	340.85	534.25	2003
552.00	613.62	584.12	2116	2140	171.23	340.19	533.41	2035
554.CO	615.69	586.19	2116	2140	170.79	339.49	532.52	2074
556.CO	617.79	588.29	2116	2140	170.34	338.77	531.59	2098
558.00	619.84	590.34	2116	2139	169.91	338.09	530.73	2054
56C.CO	621.99	592.49	2116	2139	169.44	337.33	529.75	2142
562.00	624.19	594.69	2116	2140	168.95	336.52	528.70	2200
564.00	626.34	596.84	2116	2140	168.48	335.77	527.72	2151
566.00	628.46	598.96	2116	2140	168.03	335.04	526.78	2120
568.00	630.56	601.06	2116	2139	167.59	334.32	525.35	2108
570.00	632.74	603.24	2117	2140	167.12	333.55	524.85	2176
572.00	634.94	605.44	2117	2140	166.64	332.76	523.31	2200
574.C0	637.33	607.83	2118	2141	166.06	331.79	522.51	2388
576.00	639.55	610.05	2118	2141	5.57	330.99	521.45	2223

: WONGA BINDA #1

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERASE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
578.00	641.71	612.21	2118	2141	165.12	330.24	520.48	2158
530.00	643.98	614.48	2119	2142	164.62	329.40	519.37	2269
582.00	646.28	616.78	2120	2142	164.10	328.54	518.21	2301
584 . C0	643.60	619.10	2120	2143	163.57	327.66	517.04	2319
586.00	650.84	621.34	2121	2143	163.09	326.86	515.98	2240
588.00	653.06	623.56	2121	2143	162.62	326.08	514.94	2218
590.00	655.31	625.81	2121	2144	162.14	325.27	513.87	2253
592.00	657.53	628.03	2122	2144	161.67	324.50	512.85	2220
594.00	659.71	630.21	2122	2144	161.23	323.76	511.87	2179
596.00	661.93	632.43	2122	2144	160.76	322.99	510.85	2223
598.00	664.21	634.71	2123	2145	160.28	322.17	509.76	2277
600.00	666.45	636.95	2123	2145	159.81	321.39	508.72	2242
602.00	668.62	639.12	2123	2145	159.38	320.68	507.78	2167
604.00	670.79	641.29	2123	2145	158.96	319.97	506.84	2166
606.00	672.90	643.40	2123	2145	158.55	319.30	505.96	2115
608.00	675.04	645.54	2123	2145	158.14	318.62	505.06	2138
61C.CO	677.17	647.67	2124	2145	157.74	317.94	504.17	2136
612.00	679.28	649.78	2123	2145	157.34	317.29	503.32	2103
614.00	631.57	652.07	2124	2145	156.87	316.48	502.23	2294
616.00	633.85	654.35	2125	2146	156.41	315.70	501.17	2275
618.00	685.99	656.49	2125	2146	156.00	315.02	500.28	2143
620.00	688.21	658.71	2125	2146	155.57	314.29	499.31	2217
622.00	690.43	660.93	2125	2146	155.14	313.56	498.33	2219
624.00	692.61	663.11	2125	2147	54.73	312.86	497.40	2185

WELL

COMPANY : CRUSADER RESOURCES N.L.

nit.

PAGE

15

•

and a sylphy graphs, he have a living

	TWO-WAY TRAVEL TIME	MEASURED DEPTH FROM	VERTICAL DEPTH FROM	AVEPAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
	FROM SRD MS	KB M	SRD M	M/S	M/S	MS	MS	MS	M/S
	626.00	694.64	665.14	2125	2146	154.38	312.28	496.64	2031
	628 . CO	696.76	667.26	2125	2146	153.99	311.64	495.79	2120
	630.00	699 . CO	669.50	2125	2146	153.56	310.90	494.79	2240
	632.00	701.12	671.62	2125	2146	153.18	310.26	493.94	2123
	634.00	703.31	673.81	2126	2146	152.77	309.57	493.02	2183
	636.00	705.40	675.90	2125	2146	152.41	308.96	492.21	2090
	638.00	707.65	678.15	2126	2147	151.98	308.23	491.22	2 2 5 1
	640.00	709.90	680.40	2126	2147	151.55	307.49	490.23	2256
	642.00	712.21	682.71	2127	2147	151.10	306.72	489.18	2307
٠.	644.00	714.54	685.04	2127	2148	150.65	305.94	488.11	2326
	646.CO	716.85	687.35	2128	2149	150.20	305.17	487.06	2311
:	648.00	719.14	689.64	2129	2149	149.77	304.42	436.03	2294
	650.00	721.38	691.88	2129	2149	149.36	303.71	485.08	2238
	652.00	723.42	693.92	2129	2149	149.03	303.15	484.34	2043
	654.00	725.54	696.04	2129	2149	148.67	302.54	483.52	2116
	656.00	727.86	698.36	2129	2149	148.23	301.79	482.49	2316
	658.00	729.90	700.40	2129	2149	147.90	301.23	481.75	2041
	66C.CO	732.22	702.72	2129	2150	147.47	300.48	480.72	2319
	662.00	734.68	705.18	2130	2151	146.98	299.61	479.51	2468
	664.CC	736.92	707.42	2131	2151	146.59	298.93	478.59	2232
	666.00	739.29	709.79	2132	2152	146.14	298.15	477.50	2374
	668.00	741.56	712.06	2132	2152	145.73	297.45	476.54	2268
	670.00	743.82	714.32	2132	2152	145.34	296.75	475.60	2260
	672.00	745.22	716.72	2133	2153	144.88	295.96	474.49	2401
		_				•			

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

PAGE 17

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RM S V ELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M M	M	M/S	M/S	MS	MS	MS	M/S
674.00	748.63	719.13	2134	2154	144.43	295.16	473.39	2410 2532
676 . CO	751.16	721.66	2135	2155	143.93	294.27	472.14	2514
678.00	753.63	724.18	2136	2156	143.44	293.40	470.92	2379
680.00	756.05	726.55	2137	2157	143.01	292.64	469.86	2358
632 . CO	758.41	728.91	2138	2158	142.59	291.90	468.83	2431
684.00	760.34	731.34	2138	2158	142.14	291.10	467.72	2424
686.00	763.27	733.77	2139	2159	141.70	290.32	466.63	2427
.688 . C0	765.69	736.19	2140	2160	141.26	289.54	465.54	2585
690 . CD	763.28	738.78	2141	2161	140.76	288.64	464.26	2521
692.00	770.80	741.30	2142	-2163	140.28	237.79	463.08	2662
694.00	773.46	743.96	2144	2164	139.76	286.84	461.73	2758
696 . CG	776.22	745.72	2146	2166	139.20	285.82	460.27	2517
698.00	778.74	749.24	2147	2167	138.74	284.99	459.10	2023
700.00	730.76	751.26	2146	2167	138.45	284.50	458.45	2023
702.00	782.83	753.33	2146	2166	138.15	283.99	457.75	
704.00	784.76	755.26	2146	2166	137.90	283.55	457.17	1933 1647
706.00	786.41	756.91	2144	2165	137.72	283.27	456.82	
708.00	738.27	758.77	2143	2164	137.49	282.88	456.31	1855
710.00	790.36	760.86	2143	2164	137.19	282.35	455.60	2092
712.00	792.41	762.91	2143	2163	136.90	231.85	454.92	2054
714.00	795.00	765.50	2144	2165	136.43	280.99	453.70	2592
716.00	797.01	767.51	2144	2164	136.15	280.52	453.06	2011
718.00	799.31	769.81	2144	2165	135.79	279.88	452.16	2296
720.00	1.75	772.25	2145	2165	13	279.14	451.11	2437

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

PAGE 18

。正是相關對應了多代與正式的

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	MIS	MS	MS	MS	M/S
722.00	804.67	775.17	2147	2168	134.78	278.03	449.52	2924
724.00	807.45	777.95	2149	2170	134.25	277.05	448.11	2780
726.00	810.35	780.85	2151	2172	133.67	275.98	446.56	2901
728.00	813.08	783.53	2153	2174	133.16	275.06	445.23	2724
730.00	815.73	786.23	2154	2175	132.69	274.20	443.99	2650
732.00	818.30	788.30	2155	2176	132.25	273.40	442.85	2569
734.00	820.17	790.67	2154	2176	132.03	273.02	442.35	1879
736.00	822.13	792.63	2154	2175	131.79	272.60	441.78	1960
738.00	824.56	795.06	2155	2176	131.41	271.90	440.79	2429
740.00	826.84	797.34	2155	2176	131.07	271.30	439.95	2278
742.CO	829.17	799.67	2155	2177	130.73	270.68	439.07	2327
744.00	831.43	801.93	2156	2177	130.40	270.09	438.25	2264
746.00	833.83	804.33	2156	2177	130.04	269.43	437.31	2395
748.00	836.25	806.75	2157	2178	129.66	268.75	436.34	2424
750.00	838.79	809.29	2158	2179	129.25	268.00	435.27	2536
752.00	841.13	811.68	2159	2180	128.90	267.35	434.34	2391
754.00	843.40	813.90	2159	2180	128.59	266.80	433.57	2224
756.00	845.64	816.14	2159	2180	128.28	266.25	432.79	2236
758.00	847.87	818.37	2159	2180	127.98	265.70	432.02	2234
760.00	849.97	820.47	2159	2180	127.71	265.22	431.36	2101
762.00	852.29	822.79	2160	2180	127.39	264.63	430.52	2318
764.00	854.78	825.28	2160	2181	127.01	263.93	429.51	2491
766.CO	857.14	827.64	2161	2182	126.67	263.31	428.64	2357
768.00	859.69	830.19	2162	2183	126.27	262.58	427.59	2554
	_							

COMPANY : CRUSADER RESOURCES N.L. WELL : WONGA BINDA #1 PAGE 19 TWO-WAY MEASURED VERTICAL AVERACE RMS FIRST SECOND THIRD INTERVAL TRAVEL DEPTH DEPTH VELOCITY VELOCITY NORMAL NORMAL NORMAL VELOCITY FROM FROM TIME SRD/GEO MOVEOUT TUOBVOM MOVEOUT FROM SRD KВ SRD MS M MIS ra M/S MS MS MS M/S 2352 770.00 862.04 832.54 2162 2183 125-94 261-98 426.73 2407 772.00 864-45 834.95 2153 2184 125.60 261.34 425.82 2473 774.00 366.92 837.42 2164 2185 125.23 260.67 424.85 2508 776.00 369.43 839.93 2165 2185 124 - 86 259.98 423.86 2553 778.00 271.98 842.48 2156 2186 124.47 259.27 422.83 2513 780.00 874.50 845.00 2167 2187 124.10 258 - 58 421.84 2156 782.CO 876.65 847.15 2167 2187 123.84 258-10 421.16 1992 784.00 878.64 849.14 2166 2187 123.62 257.71 420.61 1841 786.00 880.49 850.99 2165 2186 123.43 257.38 420.17 1803 788.00 882.29 852.79 2164 2185 123.25 257.07 419.76 1957 790.00 884.25 854.75 256.69 2164 2185 123.04 419.24 2703 792.00 836-95 857-45 2165 2186 122.62 255.90 418.08 2658 794.00 889.61 860.11 2167 2187 122.21 255-14 416 - 98 2474 796.00 892.03 862.58 2167 2188 121.87 254.50 416.05 2455 798.00 894.54 865.04 2168 2189 121.53 253.87 415.14 2486 800.00 897.02 867.52 2169 2190 121.18 253.23 414.21 2195 802.00 399.22 869.72 2169 2190 120.92 252.75 413.52 1844 804.00 901-06 871-56 2168 2189 120.74 252.43 413.09 1795 806.00 902.86 873.36 2167 2188 120.57 252.13 412.69 1944 808.00 904_80 875.30 2167 2187 120.37 251.77 412.19 2634 81C_CG 937-44 877.94 2168 2189 119.98 251.05 411.14 2652 312.00 910.09 880.59 2169 2190 119.60 250.32 410.07 2520

2191

2191

214.00

816.00

912.61

915.07

883.11

885.57

2170

2171

B#2.55.0011

2011/2014

1597 - 144

118.92

119.25

249.68

249.06

409.13

403.24

STANGARED TO LETTER

INTERVAL VELOCITY	THIRD NOR MAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MOVEOUT	RMS VELOCITY	AVERAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM SRD	MEASURED DEPTH FROM KB	TWO-WAY TRAVEL TIME FRCM SRD
MIS	MS	MS	MS	M/S	M/S	M	M	MS
2471	407.35	248.45	118.60	2192	2171	888.05	917.55	818.CO
2625	406.32	247.75	118.23	2193	2172	890.67	920.17	820.00
2560	405.36	247.10	117.88	2194	2173	893.23	922.73	822.00
2461	404.49	246.50	117.56	2195	2174	895.69	925.19	824.CO
2534	403.56	245.86	117.22	2196	2175	898.23	927.73	826.00
2111	402.97	245.45	116.99	2196	2175	900.34	929.84	828.00
1927	402.50	245.11	116.80	2195	2174	902.27	931.76	830.00
2592	401.53	244.45	116.45	2196	2175	904.86	934.36	832.00
2741	400.43	243.71	116.06	2198	2176	907.60	937.10	834.00
2879	399.21	242.89	115.63	2199	2178	910.48	939.98	836.00
3009	397.87	241.99	115.17	2202	2180	913.49	942.99	838.00
1990	397.37	241.64	114.97	2 20 1	2180	915.48	944.98	840.00
2640	396.38	240.97	114.62	2 2 0 2	2181	918.12	947.62	842.00
2913	395.15	240.14	114.19	2204	2183	921.03	950.53	844.00
2854	393.99	239.36	113.78	2206	2184	923.88	953.38	846.CO
2854	392.83	238.58	113.37	2208	2186	926.74	956.24	848.00
2891	391.64	237.79	112.96	2210	2187	929.63	959.13	850.00
2868	390.48	237.01	112,56	2212	2189	932.50	962.00	852.00
2760	389.43	236.30	112.19	2213	2190	935.26	964.76	354.00
2682	388.44	235.64	111.84	2214	2191	937.94	967.44	856.00
2761	387.39	234.94	111.47	2216	2193	940.70	970.20	853.00
2712	386.40	234.27	111.12	2217	2194	943.41	972.91	860.00
2648	385.45	233.63	110.79	2218	2195	946.06	975.56	862.00
2661	384.51	232.99	110.46	2219	2196	948.72	978.22	864.00
			_					

: WONGA BINDA #1

21

PAGE

INTERVAL VELOCITY	THIRD NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MOVEOUT	RMS	AVERAGE VELOCITY SRD/GFO	VERTICAL DEPTH FROM SRD	MEASURED DEPTH FROM KB	TWO-WAY TRAVEL TIME
M/S	MS	MS	MS	M/S	M/S	M	M	FROM SRD MS
2637	383.58	232.37	110.13	2220	2197	9 51. 36	980.86	866.00
2660	382.64	231.74	109.80	2221	2198	954.02	983.52	868.00
.2689	381.69	231.10	109.47	2222	2199	956.71	986.21	876.00
2785	380.65	230.41	109.11	2224	2201	959.49	983.99	272.00
2654	379.74	229.79	108.79	2225	2202	962.15	991.65	874.00
2563	378.89	229.23	108.49	2226	2203	964.71	994.21	876.00
2482	378.11	228.70	108.21	2226	2203	967.19	996.69	878.00
2651	377.20	228.09	107.90	2228	2204	969.84	999.34	830.00
2655	376.30	227.49	107.58	2229	2205	972.50	1002.00	882.00
2756	375.32	226.83	107.24	2230	2206	975.25	1004.75	884.00
2697	374.39	226.21	106.92	2 2 3 1	2208	977.95	1007.45	386 . CO
2677	373.48	225.61	106.61	2232	2209	980.63	1010.13	888 . CO
2893	372.41	224.89	106.24	2234	2210	983.52	1013.02	39C.C0
2745	371.46	224.26	105.91	2235	2211	986.26	1015.76	892.00
2782	370.48	223.61	105.58	2237	2213	989.05	1018.54	894.00
2663	369.60	223.02	105.27	2238	2214	991.71	1021.21	896.00
2588	368.78	222.47	104.99	2238	2214	994.30	1023.80	898.00
2663	367.91	221.89	104.69	2239	2215	996.96	1026.46	900.00
2783	366.95	221.26	104.36	2 24 1	2217	999.74	1029.24	902.00
2855	365.94	220.59	104.02	2242	2218	1002.60	1032.10	904.00
2975	364.84	219.87	103.65	2244	2220	1005.57	1035.07	906.00
3087	363.66	219.09	103.25	2246	2222	1008.60	1038.16	903.00
2926	362.61	218.40	102.90	2243	2223	1011.59	1041.09	910.00
3038	361.48	217.65	12 52	2250	2225	1014.62	44.12	912.00
		. • . =				·		

WELL

COMPANY : CRUSADER RESOURCES N.L.

PAGE 22

TWO-WAY TRAVEL TIME	MEA SURED DEPTH FROM	VERTICAL DEPTH FROM	AVERAGE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY
FROM SRD MS	KB M	SRD M	M/S	M/S	M.S	MS	MS	M/S
- 4	10// 20	4047 73	2224	2254	102 27	217.09	360.63	2676
914.00	1046.30	1017.30	2226	2 2 5 1	102.23			2733
916.00	1049.53	1020.03	2227	2252	101.93	216.51	359.74 358.92	2651
918.00	1052.18	1022.68	2228	2253	101.64	215.96		2714
920.00	1054.90	1025.40	2229	2254	101.35	215.39	358.06	2686
922.CO	1057.58	1028.08	2230	2255	101.07	214.83	357.22	2952
924.00	1060.54	1031.04	2232	2257	100.72	214.16	356.19	2866
926.00	1063.40	1033.90	2233	2259	100.40	213.52	355.23	3076
928.00	1066.48	1036.98	2235	2 2 6 1	100.03	212.80	354.11	3134
930.00	1069.61	1040.11	2237	2263	99.65	212.04	352.96	2981
932.00	1072.59	1043.09	2238	2265	99.30	211.37	351.93	2630
934.00	1075.22	1045.72	2239	2266	99.04	210.86	351.16	
936.00	1077.55	1048.05	2239	2266	98.84	210.47	350.58	2326 2420
938.00	1079.97	1050.47	2240	2266	98.62	210.04	349.94	2584
940.00	1082.55	1053.05	2241	2267	98.37	209.56	349.20	
942.CO	1085.23	1055.73	2241	2268	98.10	209.03	348.41	2678 2674
944.00	1087.90	1058.40	5545	2269	97.84	208.51	347.62	2507
946.00	1090.41	1060.91	2243	2269	97.61	208.06	346.94	2534
948.00	1092.95	1063.45	2244	2270	97.37	207.60	346.25	
950.00	1095.65	1066.15	2245	2 2 7 1	97.10	207.08	345.45	2707
952.00	1098.73	1069.28	2246	2273	96.74	206.37	344.36	3128
954.00	1101.43	1071.93	2247	2274	96.48	205.85	343.57	2699
956.00	1104.28	1074.78	2248	2275	96.20	205.29	342.72	2795
958.00	1107.07	1077.57	2250	2276	95.92	204.75	341.88	2790
960.00	1109.71	1080.21	2250	2277	95.67	204.26	341.14	2644

The second secon

: WONGA BINDA #1

PAGE

23

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERACE VELOCITY SRD/GEO	RMS VELOCITY	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NOR MAL MOVEOUT	INTERVAL VELOCITY
MS	M	M	M/S	M/S	MS	MS	MS	M/S
962.00	1112.32	1082.32	2251	2273	95 43	203.79	340.43	2609
964.00	1115.30	1085.80	2253	2280	95.12	203.16	339.47	2979
966.00	1113.23	1088.73	2254	2281	94.82	202.57	338.55	2930
968.00	1120.87	1091.37	2255	2282	94.57	202.09	337.82	2647
970.00	1123.32	1093.82	2255	2282	94.37	201.69	337.22	2446
972.00	1125.80	1096.30	2256	2283	94.16	201.27	336.59	2484
974.CO	1128.34	1098.84	2256	2283	93.94	200.84	335.94	2531
976.00	1130.95	1101.45	2257	2284	93.70	200.38	335.24	2618
978.00	1133.62	1104.12	2258	2285	93.46	199.91	334.51	2670
980.00	1136.24	1106.74	2259	2286	93.23	199.45	333.81	2617
982.00	1138.72	1109.22	2259	2286	93.03	199.05	333.20	2475
984.00	1141.43	1111.93	2260	2287	92.78	198.56	332.46	2711
986.00	1144.97	1114.57	2261	2238	92.55	198.10	331.75	2643
988.00	1146.71	1117.21	2262	2288	92.32	197.65	331.06	2636
990.00	1149.45	1119.95	2263	2289	92.07	197.16	330.30	2743
992.00	1152.06	1122.56	2263	2290	91.85	196.72	329.63	2607
994.00	1154.66	1125.16	2264	2291	91.63	196.28	328.97	2600
996.00	1157.35	1127.85	2265	2292	91.39	195.82	328.25	2694
998.00	1160.27	1130.77	2266	2293	91.11	195.26	327.39	2923
1000.00	1162.91	1133.41	2267	2294	90.89	194.82	326.71	2637
1002.00	1165.73	1136.23	2268	2295	90.64	194.31	325.93	2821
1004.00	1168.45	1138.95	2269	2296	90.40	193.85	325.21	2719
1006.CO	1171.11	1141.61	2270	2297	90.18	193.40	324.53	2657
1008.CO	1173.92	1144.42	2271	2298	9.93	192.90	323.76	2816

WELL

COMPANY : CRUSADER RESOURCES N.L.

INTERVAL VELOCITY	THIRD NOR MAL MOVEOUT	SECOND NORMAL MOVEOUT	FIRST NORMAL MOVEOUT	RMS VELOCITY	AVERAGE VELOCITY SRD/GEO	VERTICAL DEPTH FROM SRD	MEASURED DEPTH FROM KB	TWO-WAY TRAVEL TIME FROM SRD
M/S	MS	MS	MS	M/S	M/S	M	M	MS
2822	322.99	192.40	89.68	2299	2272	1147.24	1176.74	1010.00
2826	322.22	191.91	89.43	2300	2273	1150.07	1179.57	1012.00
2803	321.47	191.42	89.18	2301	2274	1152.87	1182.37	1014.00
2992	320.60	190.86	88.91	2303	2275	1155.87	1185.37	1016.00
3123	319.66	190.26	88.61	2 3 0 5	2277	1158.99	1188.49	1018.00
2858	318.88	189.76	88.36	2306	2278	1161.85	1191.35	1020.00
3023	318.01	189.20	88.08	2308	2280	1164.87	1194.37	1022.00
3068	317.12	188.63	87.79	2309	2281	1167.94	1197.44	1024.CO
3110	316.21	188.04	87.50	2311	2283	1171.05	1200.55	1026.00
3025	315.35	187.49	87.23	2313	2234	1174.07	1203.57	1028.00
3103	314.45	186.92	86.94	2315	2286	1177.18	1206.68	1030.00
2889	313.68	186.42	86.70	2316	2287	1180.06	1209.56	1032.00
2695	313.03	186.00	86.49	2317	2238	1182.76	1212.26	1034.00
2884	312.27	185.52	86.24	2318	2289	1185.64	1215.14	1036.00
3199	311.33	184.91	85.95	2320	2 2 9 1	1188.84	1218.34	1038.00
2646	310.71	184.51	85.75	2321	2291	1191.49	1220.99	1040.00
3053	309.86	183.97	85.48	2322	2293	1194.54	1224.04	1042.00
2975	309.07	183.47	85.23	2324	2294	1197.52	1227.02	1044.00
3326	308.07	182.83	84.91	2326	2296	1200.84	1230.34	1046.00
2868	307.34	182.36	84.68	2327	2297	1203.71	1233.21	1048.00
2747	306.68	181.94	84.47	2328	2298	1206.46	1235.96	1050.00
3144	305.81	181.38	84.19	2330	2300	1209.60	1239.10	1052.00
3011	305.01	180.88	83.94	2331	2301	1212.61	1242.11	1054.00
2900	304.29	180.41	83.71	2 3 3 2	2302	1215.51	1245.01	1056.00

The second secon

: WONGA BINDA #1

PAGE

25

WELL

COMPANY : CRUSADER RESOURCES N.L.

TWO-WAY TRAVEL TIME FROM SRD	MEASURED DEPTH FROM KB	VERTICAL DEPTH FROM SRD	AVERAGE VELOCITY SRD/GEO	RM S V E L O C I T Y	FIRST NORMAL MOVEOUT	SECOND NORMAL MOVEOUT	THIRD NORMAL MOVEOUT	INTERVAL VELOCITY
MS	M	S K U	M/S	M/S	MS	MS	MS	M/S
1058.00	1247.70	1218.20	2303	2333	83.52	180.01	303.67	2687
1060.00	1250.45	1220.95	2304	2334	83.31	179.60	303.07	2756
1062.00	1252.98	1223.48	2304	2334	83.14	179.26	302.49	2528
1064.00	1255.71	1226.21	2305	2335	32.94	178.85	301.87	2727
1066.00	1258.38	1228.88	2306	2336	82.75	178.47	301.27	2668
1068.00	1260.94	1231.44	2306	2336	82.58	178.12	300.73	2562
1070.00	1263.48	1233.98	2307	2337	82.40	177.78	300.13	2544
1072.00	1266.13	1236.63	2307	2337	82.22	177.41	299.62	2646
1074.00	1270.34	1240.84	2311	2342	81.75	176.44	298.07	4209
1076.00	1275.21	1245.71	2315	2349	81.12	175.15	296.01	4875
1078.00	1278.56	1249.06	2317	2 35 2	80.83	174.56	295.07	3344
1080.00	1282.81	1253.31	2321	2357	80.37	173.60	293.54	4253
1082.00	1288.17	1258.67	2327	2366	79.64		291.11	5362
1084.00	1292.47	1262.97	2330	2371	79.17	171.14	289.58	4301
1086.00	1295.20	1265.70	2331	2371	78.99	170.77	289.01	2728
1088.00	1299.42	1269.92	2334	2376	78.56	169.87	287.56	4220
1090.00	1304.63	1275.13	2340	2384	77.90	168.50	285.36	5204
1092.CG	1306.84	1277.34	2339	2384	77.78	168.28	285.02	2209
1094.00	1310.06	1280.56	2341	2386	77.54	167.78	284.22	3220
1096.00	1314.94	1285.44	2346	2393	76.97	166.60	282.33	4887
1098.00	1319.12	1289.62	2349	2397	76.56	165.76	280.98	4181
1100.00	1322.10	1292.60	2350	2399	76.36	165.35	280.32	2974
1102.00	1325.09	1295.59	2351	2400	76.16	164.93	279.66	2994
1104.00	327.74	1293.24	2352	2400	.00	164.61	279.16	2654

COMPANY : CRUSADER RESOURCES N.L. WELL : WONGA BINDA #1 TRO-WAY MEASURED VERTICAL AVERAGE RMS FIRST SECOND THIRD INTERVAL TRAVEL DEPTH DEPTH VELOCITY VELOCITY NORMAL NORMAL NORMAL VELOCITY TIME FROM FROM SRD/GEO MOVEDUT MOVEOUT MOVEOUT FROM SRD KΒ SRD MS M М M/S M/S MS MS MS M/S 1106.00 1330.38 1300.88 2352 2401 75.84 164.29 278.66 1304.49 1108.00 1333.99 2355 2403 75.55 277.69 163.68 111C.CC 1337.73 1308.23 2357 2406 75.23 163.04 276.65 1112.00 1341.42 1311.92 2360 2409 74.93 162.41 275.65 1114.CO 1345.00 1315.50 2362 2412 74.65 161.83 274.72 1116.00 1348.13 1318.63 2363 2413 74.43 161.39 274.02 1118.00 1351.29 1321.79 2365 2415 74.22 160.94 273.31 1120.00 1354.35 1324.85 2366 2416 74.01 160.53 272.65

2413

2420

2421

2424

73.78

73.57

73.34

73.08

160.04

159.61

159.15

158.60

271.87

271.19

270.45

269.57

2368

2369

2370

2373

PAGE

2640

3608

3738

3689

3531

3125

3168

3060

3322

3130

3250

3542

26

1122.00

1124.00

1126.00

1128.00

1357.68

1360.81

1364.06

1367.60

1328.18

1331.31

1334.56

1338.10

11-MAY-38 14:26:39 PROGRAM: GMULTP 006.FD6

SYNTHETIC SEISMOGRAM TABLE

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

HALYST: M. SANDERS

CCUNTRY : AUSTRALIA

REFERENCE: 569160

ANALYST: M. SANDERS

SYNTHETIC SEISMOGRAM TABLE

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

FIELD : WILDCAT

CCUNTRY : AUSTRALIA

REFERENCE: 569160

THE READINGS AND FLAGS SHOWN IN THE DATA LIST ARE DEFINED AS FOLLOWS:

IGEOFL- FLAG INDICATING MODE OF PROCESSING
IGEOFL = O WST DATA AVAILABLE AND PROCESSED
IGEOFL = 1 WST DATA NOT AVAILABLE

LOG INPUT DATA:
GREGOT- CHANNEL NAME FOR INPUT DENSITY LOG DATA
GTRÚCT- CHANNEL NAME FOR INPUT SONIC LOG DATA
GCURVE- CORRELATION LOG NAMES

USER DEFINED MODELING

LOFVEL- LAYER OPTION FLAG FOR VELOCITY
LOFDEN- LAYER OPTION FLAG FOR DENSITY
LAYVEL- LAYERED VELOCITY VALUES FOR USER SUPPLIED ZONE LIMIT
WITH RESPECT TO SONIC LOG DATA
LAYDEN- LAYERED DENSITY VALUES FOR USER SUPPLIED ZONE LIMITS

WITH RESPECT TO SOULC LOG DATA UNERTH- UNIFORM EARTH VELOCITY UNFDEN- UNIFORM EARTH DENSITY SRATE SAMPLING RATE IN MS

INIDER START DEPTH FOR COMPUTING SYNTHETIC SEISMOGRAM WITH RESPECT TO SONIC LOG DATA

IGESTP STOP DEPTH FOR COMPUTING SYNTHETIC SEISMOGRAM

WITH RESPECT TO SONIC LOS DATA
INITAU TWO WAY TRAVEL TIME FROM TOP SONIC TO SRD
EKE ELEVATION OF KELLY BUSHING WITH RESPECT TO

MEAN SEA LEVEL SRDGEO SEISMIC REFERENCE DEPTH WITH RESPECT TO

MEAN SEA LEVEL

ICOP FLAG FOR COMPUTING RESIDUAL MULTIPLES

COPTIM TWO WAY TIME INTERVAL FOR COMPUTATION OF

RESIDUAL MULTIPLES
SCRTIM SURFACE REFLECTOR TWO MAY TIFE ABOVE INITAU

SCREFL SURFACE REFLECTION COEFFICIENT
RCMAX REFLECTION COEFFICIENTS THAT APE EQUAL TO OR
GREATER THAN THIS VALUE SHALL BE FLAGSED

NOTE IN CASE OF MODELING A SYNTHETIC SEISMOGRAM WITHOUT SONIC LOG DATA , THE DEPTH REFERENCES SHALL BE USER DEFINED

OUTPUT DATA

RMSVWE ROOT MEAN SQUARE VELOCITY FOUND FOR THE VELL SRUTIM TWO WAY TRANSIT TIME BETVEEN INIDER AND SRDGED

CHANNNEL NAMES

(VALUE)

G/C3

NOTH TWO WAY TRAVEL TIME SRD- DEFTH OF COMPUTED DATA WITH RESPECT TO SRD INTERVAL VELOCITY ON A TIME SCALE VIV-INTERVAL DENSITY ON A TIME SCALE HOT-REFLECTION COEFFICIENT AT GIVEN TWO WAY TRAVEL TIMES TTE- ATTENUATION COEFFICIENT AT GIVEN THO WAY TRAVEL TIMES SYNTHETIC SEISMOGRAM - PRIMARIES CYNTHETIC SEISMOGRAM - PRIMARIES + MULTIPLES ULT-UON- MILTIPLES ONLY

CHANNEL NAMES

1 - TWOT.6MU.002.* HAN DSRD_GRF_006.* HAN INTV.GRF.OO7.* MAH RHOT.GRF.001.* HAN REFL.GRF.001.* HAN ATTE GRF.001.*
PRIM.GRF.001.* HAN HAN - MULT.GMU.DO1.* JH AN - MUON .GMU.001.* CHAN

(GLOSAL PARAMETERS)

TIME SAMPLING (WST)

UNIFORM DENSITY VALUE

SRD FOR GEOGRAM

IDP TIME

SRD TIME

n 40DE OF PRCC (GEOGRAM) IGEOFL INITIALIZE COP LOGIC ICDP 00000.5 00000.5 CDPTIM MS SRATE 142.760 1333.00 .166000 Μ TOP DEPTH OF PROCESSING INIDEP 14 BOTTOM DEPTH OF PROCESSI IGESTP S INITIAL TWO WAY TRAVEL T INITAU 30479.7 M SRDGEO M ELEVATION OF KELLY BUSHI EKE MS SRDTIM MS SCRTIM SURFACE COEFFICIENT OF R -1,00000 SURFACE COEFFICIENT OF R SCREFL 300000 2532.03 2133.60 2.30000 RCMAX REFLECTION COEFF MAXIMUM M/S RMS VELOCITY IN WELL RHSVWE MIS UNIFORM EARTH VELOCITY UNERTH

UNFDEN

COMPANY : CRUSADER RESOURCES N.L.

WELL

: WONGA BINDA #1

PAGE 3

(MATRIX PARAMETERS)

1 GR* 2 CALI*

(ZONED PARAMETERS)

(VALUE)

(LIMITS)

:-1.000000 : 1.000000 :-979.2500 : 1720.000 700.0000 30479.7 LAYER OPTION FLAG DENS LOFDEN LAYER OPTION FLAG VELOC LOFVEL 30479.7 30479.7 30479.7 173.000 29.5000 Õ USER SUPPLIED DENSITY DA LAYDEN USER VELOC (MST) LAYVEL G/C30 - 29.500<u>0</u> M/S 0

PAGE

TWO WAY	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY	INTERVAL DENSITY	PEFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
TIME	M M	M/S	G/C3		COLIT	r KJIIKK I	· SETT CES	
4 () .	144 (2	1931	1.950	0.4	005/4	.17.2. 57	0//37	0
163.0	144.69	2205	1.950	.066	.99561	.05627	.06627	0
170.6	146.90	2140	1.950	J15	.99538	01490	01929	00439
172.0	149.04	2133	1.950	002	.99538	00158	.00067	.00225
174.0	151.17	2128	1.950	001	. 99538	00130	00153	00023
176.0	153.30	2118	1.950	002	.99538	00220	00203	.00016
178.0	155.41	2119	1.950	0	.99538	.00027	.00050	.00023
180.0	157.53	2085	1.950	008	.99531	00811	00824	00013
182.0	159.62	2161	1.950	.013	.99499	.01775	.01883	.00108
184.0	161.78	2143	1.950	004	.99497	00425	00692	00267
126.0	163.92	2072	1.950	017	.99470	01663	01534	.00134
183.0	165.99	2161	1.950	.021	.99426	.02090	.02279	.00190
190.0	168.16			018	.99393	01806	02145	00338
192.0	170.24	2084	1.950	.021	.99350	.02063	.02399	.00336
194.0	172.41	2172	1.950	009	.99341	00940	01307	00366
196.0	174.54	2131	1.950	012	.99326	01237	00990	.00247
198.0	176.62	2079	1.950	009	.99318	00847	00782	.00065
200.0	173.67	2044	1.950	.036	.99192	.03537	.03604	.00067
202.0	180.36	2195	1.956	014	.99174	01342	01740	00398
204.0	183.00	2136	1.950	.030	.99087	.02950	.03134	.00184
206.0	185.26	2267	1.950	019	.99052	01347	02180	00333
203.0	137.45	2134	1.950	.004	.99051	.00375	.00678	.00302
210.0	129.65	2201	1.950	.005	.99048	.00542	.00375	00167
212.0	191.37	2225	1.950	.025	.98986	.02477	.02597	.00120
214.0	194.21	2339	1.950	 013	.98969	01278	01666	00387
£ 14 . U	174 • 41	2279	1.950		• 75 70 7	• 01 6 7 0	•01000	• 00001

TWO WAY TRAVEL TIFE FS	HTGBG CR2 MCRF (OK TCP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
216.0 213.0	196.49 198.72	2227	1.950	012 .004	.98956 .98955	01142 .00395	00955 -00580	.00186 .00185
220.0	200.96	2245 2112	1.950 1.950	031	-98862	03026	03141	00115
222.0 224.0	203.08 205.20	2126 2165	1.959 1.950	-003 -009	.98861 .98853	.00331 .00886	.00674 .00966	.00344 .00080
226.0 228.0	207 . 37 209 . 61	2239	1.050	.017 015	.98825 .98802	.01669 01512	.01163 01426	00506 .00086
230.0 232.0	211.78 213.95	2172 2172	1.950 1.950	0 • 0 1 5	.98802 .98799	.00021	.00133	.00112 .00238
234.0 236.0	216.14	2194 2253	1.950 1.950	.013	.98782	.01305	.00870	00434
238.0	218.40 220.70	2301 2271	1.950 1.950	.011 007	.98771 .98767	.01044 00649	.01270 01152	.00226 00503
240.0 242.0	222 . 97 225 . 16	2195 2163	1.950 1.950	017 007	.98738 .98732	01697 00713	01320 00552	.00377 .00162
244.0 246.0	227.33 229.65	2327	1.950	.036 022	.98601 .98555	.03599 02130	.03646 02727	.00047 00597
243.0 250.0	231.83 234.13	22 <i>28</i> 2250	1.950 1.950	.005 .001	.98553	.00480 .00114	.00375 00120	.00395 00234
252.0	236.39	2255 2255	1.950 1.950	0	.98553	00009	00020	00010
254.0 256.0	233.64 240.35	22 1 4 2221	1.950 1.950	0C9 .002	.98544 .98544	00902 .00153	00516 .00052	.00386 00101
258.0 260.0	243.08 245.37	2294	1.450	.016 020	.98518 .98430	.01606 01942	.01631 02476	.00075 00534
262.0 264.0	247.58 249.83	2206 2249	1.950 1.950	.010 .005	.98471 .98468	.00950 .00320	.01534 .00319	.00634 00202

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	IMTERVAL DEMSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRINARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
266.3	252.10	2273 2241	1.950 1.950	007	.93463	00683	00626	.00062
263.0	254.34	2230	1.950	003	-98462	00247	00172	.00075
270.0	256.57	2245	1.950	.003	.98461	.00337	00182	00520
272.0	258.31	2437	1.950	.041	.98297	.04026	.04312	.00286
274.0	261.25	2331	1.950	022	.98248	02181	02726	00545
276.0	263.58	2202	1.950	028	.98169	02789	02127	.00662
278.0	265.78	2202	1.950	.011	.98157	.01089	.01008	00081
280.0	268.04			.012	.98144	.01144	.01103	00035
282.0	270.34	2305	1.750	.009	.98135	.00915	.00583	00331
234.0	272.69	2348	1.957	012	.9812C	01215	01031	.00134
236.0	274.98	2291	1.950	.001	.98120	.00137	.00463	• 00326
288.0	277.28	2297	1.959	009	.98112	00389	01063	00174
290.0	279.53	2256	1.950	026	.93048	02510	02514	00004
292.0	281.67	2143	1.950	.024	.97990	.02382	.02910	.00528
294.0	283.92	2250	1.950	022	.97944	02126	02815	00689
296.0	286.08	2154	1.950	.027	.97871	.02672	.02932	.00259
298.0	283.35	2275	1.950	.007	.97865	.00731	.00691	00040
300.0	290.66	2369	1.950	001	.97865	00135	00242	00107
302.0	292.97	2303	1.950	077	.97860	00730	00606	
304.0	295.23	2269	1.950	.010	• 97851	.00735		.00124
306.0	297.55	2313	1.950	0	.97851		.00744	00191
308.0	299.86	2315	1.950	• 005		•00043	.00028	00015
310.0	302.20	2333	1.950		.97848	.00495	.00380	00115
312.0		2322	1.950	003	.97847	00341	00264	. •00077
J14 .U	304.52	2255	1.950	015	.97826	01442	01073	.00369

TWO WAY TRAVEL TIME US	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	PEFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY H MULTIPLES	MULTIPLES ONLY
314.0	306.78			.027	.97757	.02601	.02255	00346
316.Ú	309.16	2378	1.950	.004	.97755	.00399	.00319	00080
318.9	311.55	2397	1.950	004	.97754	00367	00691	00324
320.0	313.73	2379	1.950	027	.97685	02592	02110	.00481
322.0	316.19	2256	1.950	.026	.97620	.02519	.02697	.00178
324.0	313.56	2376	1.950	003	.97619	00268	00530	00262
326.0	320.93	2363	1.950	006	.97615	00626	00588	.00038
328.0	323.26	2333 2338	1.950	.001	.97615	.00196	.00557	.00451
330.0	325.60	2336	1.950	.014	.97595	.01382	.00562	09820
332.0	323.00	2340	1.950 1.950	014	.97577	01331	01104	.00227
334.0	330.34	2404	1.950	.014	.97560	.01313	.01653	.00335
336.0	332.75	2409	1.950	.001	.97559	.00087	.00017	00070
338.0	335.16	2376	1.950	007	.97555	00675	00885	00210
340.0	337.53	2374	1.950	0	.97555	00042	00220	00178
342.0	339.91	2348	1.950	005	.97552	00526	00605	00079
344.0	342.25	2375	1.950	.006	.97549	.00553	.00672	.00119
346.0	344.63	2376		004	.97547	00391	.00162	.00553
343.C	346.98		1.950	.023	.97496	.02245	.01701	00544
350.0	349.45	2467	1.950	003	.97495	00272	00709	00437
352.0	351.90	2453 2493	1.950	.003	.97488	.00787	.01138	.00352
354.0	354.40		1.959	013	.97473	01232	00856	.00376
356.0	356.83	2431	1.930	012	.97458	01205	01679	00475
358.0	359.20	2372	1.950	.012	.97445	.01142	.01333	.00692
36C.û	361.63	2428	1.950	001	.97444	00122	00757	00635
362.0	364.35	2422	1.950	.007	97440	.00367	.00876	.00209

WELL

TWO WAY TRAVEL TIME	DEPTH FROM SAD (OR TOP)	INTERVAL VELOCITY	INTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
MS	M	M/S	G/C3		COLIT	FRIMARI	MULTIPLES	
364.0	366.50	2455	1.950	009	.97433	00342	01144	00727
360.0	358.92	2413	1.950				01166	00323
		2385	1.950	006	.97429	00572	00086	.00485
368.0	371.30	2440	1.950	.011	.97416	.01118	.00963	00155
370.0	373.74	2387	1.950	011	.97405	01063	01419	00356
372.0	376.13	2371	1.950	003	.97404	00335	.00481	.00816
374.0	373.50	2436	1.950	.013	.97386	.01309	.00374	00935
376.0	320.94	2406	1.950	006	.97332	00597	00200	.00397
373.0	383.34	2447	1.950	.008	.97375	.00376	.00702	00125
320.0	385.79	2612	1.959	.033	.97272	.03175	.03417	.00242
382.0	388.40	2589	1.950	004	.97270	00427	00878	00451
384.0	390.99	2564		.002	.97270	.00214	.00132	00082
386.0	393.59		1.950	.029	.97188	.02814	.02766	00049
388.0	396.35	2756	1.950	014	.97168	01388	01537	00149
390.0	399.03	2678	1.950	.013	.97151	.01311	.01887	.00576
392.0	401.73	2751	1.950	022	.97103	02153	02731	00578
394.0	404.41	2632	1.950	• O 4 5	.96906	.04368	.04641	.00273
396.0	407.29	2830	1.959	027	.96836	02603	03201	00598
398.0	410.02	2729	1.950	004	.96835	00388	.00318	.00706
400.0	412.73	2768	1.950	•003	. 96834	.00243	.00041	00202
402.0	415.45	2721	1.950	.007	.96830	.00658	.00642	00016
404.0	418.21	2758	1.950	020	.96792	01919	01883	
406.0	420.85	2651	1.950	.007	.96787			.00036
408.0	423.55	2691	1.950			.00711	.00753	.00042
		2602	1.950	017	.96759	01622	01574	.00048
410.0	426.15	2679	1.950	.015	.96739	.01409	.01757	.00347

WELL

TWO WAY TRAVEL TIRE	DEPTH FPOM SKD (OR TOP)	INTERVAL VELOCITY	IMTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
I/ S	М	M/S	G/03					
412.0	428.33	27.30	4 250	039	.96595	03730	04497	00767
414.0	431.31	2480	1.950	005	.96592	00509	.00093	.00601
416.0	433.76	2454	1.950	.013	.96562	.01715	.01782	.00067
418.0	436.31	2543	1.950	.010	.96553	.00939	.00569	00369
420.0	438.90	2592	1.950	003	.96552	00301	00696	00395
422.0	441.47	2576	1.950	.009	.96544	.00830	.01263	.00383
424.0	444.10	2624	1.950	.022	. 96495	.02167	.02107	00060
426.0	446.34	2744	1.950	.006	.96491	.00605	.00467	00139
428.0	449.62	2779	1.950	. 015	.96470	.01443	.00752	00691
430.0	452.48	2863	1.950	052	.96211	04998	04492	.00506
432.0	455.07	2581	1.950	.003	.96205	.00760	.00810	.00050
434.0	457.59	2622	1.950	002	.96205	00177	.00544	.00721
436.0	460.30	2613	1.950	•006	. 96202	.00535	00232	00767
438.0	462.94	2642	1.950	.096	.96198	.00609	.01241	.00633
448.0	465.62	2675	1.950	.033	.96093	.03181	.02348	00832
442.0	458.48	2853	1.050	103	.95082	09356	09403	.00453
444.0	470.30	2327	1.950	.075	.94550	.07113	.07606	.00493
446.0	473.51	2763	1.750	076	.94002	07196	07696	00500
443.0	475.83	2321	1.950	~.008	.93996	00767	00089	.00679
450.0	473.11	2283	1.950	021	.93954	01976	02181	00205
452.0	480.30	2189	1.950	048	.93738	04509	04403	.00106
454.0	482.29	1938	1.050	.073	.93242	.06314	.06915	.00101
456.9	434.59	2300	1.950	045	.93050	04229	04707	00478
453.0	486.59	2101	1.750	.003	.93050	.00287	.01064	.00776
460.3	488.30	2114	1.950	.004	93048	.00326	00394	00720

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) N	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEM. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY * MULTIPLES	MULTIPLES ONLY
462.0	490.93	2129	1.950	.008	.93043	.00720	.00378	00343
464.0	493.09	2162	1.950	005	.93041	00448	.00138	.00585
466.0	495.23	2141	1.950	010	. 93032	00923	02225	01302
468.0	497.33	2099	1.750	.016	.93009	.01447	.03676	.02229
47C.0	499.50	2165	1.950	015	.92987	01422	03224	01802
472.0	501.60	2100	1.950	012	.92974	01107	00387	
474.0	503.65	2051	1.950	021	.92934	01932		.00720
476.0	505.62	1967	1.950	008			01884	.00048
478.0	507.55	1935	1.950		.92928	00767	00056	.00711
486.0	509.83	2234	1.950	.083	.92293	.07632	.06677	01006
		1983	1.950	071	.91833	06515	05929	.00586
482.0	511.32	2103	1.750	.029	.91753	.02704	.02514	00190
484.0	513.92	2058	1.950	011	.91742	00992	01015	00022
486.0	515.98	2038	1.950	005	.91740	00452	00459	00007
433.0	518.01	1925	1.950	029	.91665	02618	02361	.00257
490.0	519.94	1905	1.950	005	.91663	00468	.00337	.00806
492.0	521.84	1842		017	.91637	01531	02485	00953
494.0	523.69		1.950	.058	.91332	.05290	.05772	.00483
496.0	525.76	2068	1.950	0	.91332	.00039	00495	00534
498.0	527.32	2070	1.950	002	.91331	00218	.00531	.00748
566.0	529.39	2060	1.950	.005	.91329	.00424	01092	01516
502.0	531.96	2079	1.950	015	.91309	01369	.00087	.01457
564.0	533.98	2018	1.950	.015	.91289	.01339	.00574	
500.0	536.06	2078	1.950	026				00764
503.0	538.03	1974	1.943		.91227	02390	02621	00231
J ⊕ C ⊕ C	7,50,00	2634	1.946	.015	. 91207	.01338	.02541	.01203

TWO WAY TRAVEL TIME	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
51C.G	540.07			.027	.91143	.02423	.02024	00404
512.0	342.20	2134	1.957	010	.91133	00946	01460	00514
514.0	544.30	2097	1.951	024	.91079	02216	01374	.00843
516.3	546.34	2042	1.908	.021	.91037	.01941	.00579	01362
518.0	543.44	2104	1.932	002	.91037	00163	.01820	.01983
520.0	550.54	2095	1.934	009	.91029	00862	02176	01314
522.0	552.63	2091	1.901	.014	.91012	.01243	.01469	.00227
504.0	554.73	2103	1.943	.006	.91009	.00530	00049	00579
526.0	556.37	2132	1.939	007	.91004	00642	.00558	.01200
523.0	558.96	2095	1.945	364	.90629	05847	06880	01033
530.0	560.35	1890	1.896	.152	.88534	.13777	.14663	.00886
532.0	563.17	2315 1979	2.103 1.874	135	.86919	11961	13527	01566
534.6	565.14	2447	7.279	. 201	.83404	.17478	.19128	.01651
536.0	567.59	2273	2.173	061	.83097	05057	05520	00463
538.0	569.36	2049	2.063	078	.82595	06460	06876	00416
54C.C	571.91	1954	2.117	011	.32586	00871	01213	00342
542.0	573.37	2230	2.257	.098	.81800	.08059	.08147	.00083
544.0	576.10	2012	2.091	039	.81146	07313	06117	.01196
546.0	573.11	1958	1.859	070	.80752	05649	08175	02526
548.0	580.07	2002	1.975	.038	.80633	.03105	.05790	.02634
550.0	532.07	2034	2.022	.020	.80601	.01610	00385	01994
552.0	534.10	2071	2.050	.016	.80581	.01275	.02073	.00802
554.0	536.17	2078	2.050	.000	.80575	.00704	.01704	.01000
556.0	583.27	2053	2.090	0	.80575	0	01980	01980
558.0	590.33	2000	2 4 % 7 ₹	.015	<u> </u>	.01247	.03102	.01855

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DEMSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO . PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
560.0	592.46	2134 2202	2.089 2.093	.018	.30529	.01451	00488	01940
562.0	594.67	2152	800.5	033	.30439	02690	.00515	.03204
564 . 0	596.82	2123	1.959	019	.80410	01547	04559	03013
566.0	598.94	2106	1.924	013	. 80396	01045	.01458	.02503
563.0	601.05	2176	2.054	.049	.80202	.03948	00148	04096
570.0	003.22	2190	2.042	0	.80202	.00004	.02472	.02467
572.0	605.41	2392	2.154	.071	.79800	.05680	.06285	.00604
574 . 0	607.80	2231	2.122	042	.79658	03365	04111	00746
576.0	610.03	2158		026	.79604	02081	03765	01684
578.0	612.19		2.082	.023	.79563	.01795	.05018	.03223
580.0	614.45	2261	2.079	.030	.79492	.02385	00055	02440
582.0	616.75	2299	2.171	006	.79439	00458	.01474	.01931
524.0	619.07	2320	2.127	030	.79413	02379	01081	.01298
526.0	621.32	2243	2.072	009	.79411	00754	02832	02078
538.0	623.54	2220	2.055	.010	.79402	.00831	.01435	.00603
596.0	625.79	2251	2.069	010	.79394	00813	00257	.00555
592.0	628.01	2222	2.053	014	.79378	01098	01374	00276
594.0	630.19	2130	2.036	.015	.79360	.01218	00649	01867
596.0	632.41	2219	2.062	.017	.79338	.01320	.02899	
598.0	634.68	2274	2.080	014	.79322	01106		.01578
600.0	035.93	2249	2.045	029	.79255		00718	.00388
602.0	639.10	2169	2.001	003		02311	04403	02092
604 . 0	641.27	2171	1.930		.79254	00211	.00398	.00609
664.0	643.38	2169	1.882	042	.79115	03326	02367	.00959
000.0	O # D # D ()	2139	1.932	.020	.79083	.01590	.00560	01030

WELL

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) H	INTERVAL VELOCITY M/S	IMTERVAL DEMSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEM. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
508 . 0	645.52	24/4	4 000	.017	.79059	.01376	.01258	00113
61C.U	647.06	2141	1.999	334	.78967	02697	02072	.00625
612.0	649.75	2039	1.913	•092	.78298	.07269	.05962	01307
614.0	652.04	2293	2.096	007	.78294	00549	.01077	.01626
616.9	654.32	2280	2.079	049	.78103	03871	04480	00609
618.0	556.47	2149	1.997	.022	. 78065	.01713	.01982	.00264
0.056	658.68	2211	2.029	.010	.78057	.00784	00014	00798
622.0	666.91	2223	2.059	018	.73031	01420	.00185	.01605
624 . 0	663.09	2188	2.017	087	. 77436	06816	06169	.00646
626.3	665.13	2033	1.823	.016	.77416	.01245	01484	02729
628.0	567.24	2111	1.813	.099	.76656	.07671	.09614	.01943
630.0	669.48	2241	2.083	048	.76476	03708	04564	00856
632.G	671.60	2124	1.995	.024	.76433	.01322	.02901	.01079
634.0	673.79	2134	2.035	078	.75968	05962	05661	.00301
636.0	675.38	2090	1.813	.037	.75390	.06626	.04586	02040
638.0	678.12	2245	2.016	.016	.75371	.01177	.03195	.02018
640.9	680.38	2260	2.567	.008	.75367	.00601	02022	02624
642.0	682.68	2302	2.061	.010	.75360	.00716	.04628	.03912
644.0	685.02	2333	2.073	050	.75172	03767	03472	.00295
545.Ü	687.32	2303	1.969	.025	.75126	.01345	01161	03005
648.0	637.62	2298	2.000	o	.7 5126	00003	.00803	.00311
656.0	691.86	2241	2.059	093	.74477	06985	07711	00725
552 . 0	693.91	2050	1.160	017	.74454	01293	00581	.00717
654.0	696.01	2161	1.753	.057	.74119	.04995	.03844	01152
656.0	693.34	2331	1.807	082	.73619	06089	06398	00308
							• (, 0, 0, 7, 0	•00000

TWO WAY TRAVEL TIME FS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DEMSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
658.0	700.38	2042 2298	1.750 1.979	.120	.72557	.08839	.09947	.01103
660.0	702.68	2471	2.132	.085	.72033	.06168	.06124	00044
662.0	705.15	2477	1.796	093	.71403	06734	03481	.03254
664.0	707.39	2372	2.047	.041	.71283	.02934	.00927	02007
666.0	709.76	2372	2.030	014	.71270	00975	01036	00061
668.0	712.04	2257	2.083	002	.71269	00157	.00265	.00422
670.0	714.29	2391	2.150	.045	.71127	.03179	.05430	.02251
672.0	716.68	2413	2.074	014	.71114	00964	01677	00713
674.0	719.10	2529	2.003	.007	.71111	.00514	00774	01283
670.0	721.63	2529	1.978	011	.71101	00812	.00359	.01171
678.0	724.13			.007	.71098	.00484	01889	02373
680.0	726.53	2390	2.106	041	.70977	02936	00982	.01954
682.0	728.88	2357	1.965	.047	.70820	.03336	.03480	.00143
684.0	731.31	2425	2.098	.004	.70819	.00285	00377	00662
686.0	733.73	2423	2.113	018	.70795	01308	01701	00393
638.0	736.16	2426	2.037	.054	.70590	.03308	.04750	.00942
690.0	738.75	2534	2.130	009	.70584	09658	.00496	.01154
692.0	741.26	2518	2.146	.035	.70496	.02482	.00570	01912
694.0	743.92	2656	2.13?	.031	.70429	.02127	.04858	.02671
696 . Û	746.63	2762	2.233	057	.70200	04009	02893	.01115
698.0	749.21	2529	2.176	175	.68055	12273	17797	05524
700.0	751.24	2030	1.904	.029	.67996	.02000	.03341	.01341
702.0	753.32	2078	1.973	093	.67403	06349	05599	.00750
704.0	755.26	1938 1661	1.755 1.750	078	.66991	05270	07775	02505

TWO WAY TRAVEL TIME FS	DEPTH FPOM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DEMSITY G/C3	REFLECT. COEFF.	THO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
766.J	756.92	4027	4 762	.050	.66823	.03352	.00347	03004
753.0	753.75	1836	1.750	.101	. 66143	.06742	.10003	.03261
710.0	760.34	2085	1.887	.055	.65946	.03607	.02934	00673
712.0	762.89	2056	2.134	.040	. 65842	.02620	.02502	00119
714.0	765.48	2586 ·		145	.64449	09579	07349	.02230
716.0	767.50	2025	1.750	.107	.63704	.06928	.03601	03327
718.0	769.78	2272	1.935	.076	. 63337	.04834	.03791	01043
720.0	772.21	2429	2.108	.126	.62326	.08003	.14079	.06076
722.0	775.12	2710	2.263	025	.62236	01572	01540	.00032
724.0	777.90	2783	2.251	.016	.62271	.00987	.03098	.02111
726.0	730.30	2894	2.233	038	.62179	02393	05527	03133
728.0	733.54	2740	2.189	013	.62153	01124	01352	00223
730.0	785.18	2646	2.187	013	.62148	00789	.00676	.01466
732.0	783.77	2538 1894	2.179	246	.58394	15276	13841	.01435
734.0	790.67		1.803	001	.58394	00061	04710	04649
776.3	792.61	1946	1.751	.211	.55789	.12334	.12092	00242
733.0	795.03	2416 2297	2.166	 025	.55753	01410	.00132	.01542
740.0	797.32		2.166	007	<u>.</u> 5575N	00407	.02427	.02833
742.0	799.63	2304	2.128	021	.55725	01178	03327	02149
744.0	301.91	2280 2335	2.061 2.125	.038	.55645	.02109	.02533	.00424
746.3	304.29	2425	2.127	.009	.55641	.00487	02522	03009
743.0	806.72		2.192	.015	.53623	.00337	.03153	.02316
750.0	809.25	2530 2408	2.159	009	.55624	00485	.01051	.01536
752.0	311.66	2218	2.694	059	.55432	03266	04148	00882
754.0	313.87	4410	6.1:74	.002	55432	.00086	05191	05273

TWO WAY TRAVEL TIME WS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DEMSITY 6/03	REFLECT. COEFF.	TWO WAY ATTEN. COFFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
756.0	316.11	22 <i>38</i> 2251	2.082 1.990	020	. 55411	01093	00049	.01043
758.0	318.36			060	.55214	03306	01682	.01624
760.0	320.45	2035	1.906	.113	.54507	.06244	.08280	.02036
762.0	822.75	2301	2.168	.047	-54338	.02550	.01459	01092
764.0	825.24	2492	2.198	030	.54338	01648	.00559	.02206
766.0	827.61	2370	2.176	.025	.54305	.01334	01180	02514
768.3	830.16	2547	2.126	032	.54251	01714	00255	.01460
776.0	332.51	2350	2.163	012	.54244	00630	02969	02339
772.0	334.92	2407	2.064	•034	.54131	.01844	.01035	00809
774.0	837.39	2475	2.149	.021	.54158	.01128	.03530	.02402
776.0	339.39	2499	2.218	.022	.54133	.01166	.01698	.00532
778.0	342.45	2554	2.766	021	. 54 1 08	01153	02950	01796
780.0	344.97	2523	2.198	099	.53579	05351	00877	.04474
782.0	847.14	2171	2.695	.002	.53579	.00096	00333	00429
784.0	349.14	1998	2.284	026	.53542	01399	02099	00700
726.0	850.98	1842	2.351	026	.53505	01407	03504	02097
788.0	852.73	1798	2.285	.006	.53503	.00307	00957	01264
790.0	354.73	1950	2.132	.129	.52698	.06923	.05600	01324
792.0	857.39	2665	2.024	.036	•52540	.01886	.03903	.02016
794.0	860.05	2656	2.182	030	.52493	01574	00663	.00912
796.0	352.55	5496	2.184	.005	.52492	.00243	02579	02322
793.0	865.01	2462	2.237	053	.52342	02306	00013	.02788
386.0	867.49	2478	1.997	120	.51583	06303	08413	02110
\$02.0	869.71	22 2C 1847	1.750 1.750	092	.51149	04728	05770	01042

TWO WAY TRAVEL TIME WS	DEPTH FRUM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
304.0	371.56	4722	4 7.50	015	.51137	00777	.02171	.02943
806.0	873.35	1792	1.750	.047	.51023	.02415	.00868	01547
803.0	375.29	1941	1.776	.240	.43077	.12261	.03231	09029
81C . 0	877.88	2595	2.169	011	.48071	.00551	.12664	.12113
812.0	880.53	2649	2.174	019	.43053	00924	01596	00672
814.0	833.08	2543	2.179	023	.48028	01105	02524	01419
316.0	835.55	2473	2.140	021	.48007	01002	.01900	.02902
818.0	888.01	2461	2.062	.067	. 47738	.03239	.03150	00089
320.0	390.64	2626	2.213	038	.47720	01804	00085	.01719
822.0	893.20	2566	2.100	025	.47691	01180	05170	03990
324.0	395.66	2453	2.035	.019	.47674	.00906	.00957	.00051
376.0	398.13	2521	2.117	150	.46603	07145	12960	05815
828.0	900.33	2147	1.234	078	.46320	03635	00761	.02874
330.0	902.25	1924	1.750	.216	.44161	.10000	.13136	.03136
832.0	904.81	2556	2.043	.070	.43941	.03112	.02783	00329
334.0	907.55	2738	2.197	.039	.43875	.01707	.06617	.04910
836.0	910.42	2874	2.261	.038	.43811	.01682	00366	02048
838.5	913.47	3050	2.301	335	.38904	14661	11934	.02727
840.0	915.47	1999	1.750	.219	.37034	.08529	.07817	00712
342.0	918.06	2592	2.103	.083	.36781	.03063	04324	07387
844.0	920.98	2915	2.213	015	.36772	00562	.09795	.10357
346.0	923.33	2854	2.19?	.002	.36772	.00056	07167	07223
348.0	926.69	2857	2.196	.006	.36771	.00231	.07065	.06834
850.0	929.58	2889	2.199	 013	•36765	00461	02268	01807
852.0	932.45	2871	2.158	020	.36751	00734	.00775	.01509

TWO WAY TRAVEL TIME	DEPTH FROM SRD (OR TCP)	INTERVAL VELOCITY	INTERVAL DENSITY	PEFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY	MULTIPLES ONLY
M/S	M	M/S	G/C3		00211	FRIMARI	MULTIPLES	
854.0	935.22	2763	2.151	- 330	7/ 7/1	00700		
856.0	937.20	2679	2.137	020	•36736	00720	.00215	•00936
858.0		2762	2.125	.012	. 36731	. 00459	.02347	.01889
	940.66	2713	2.169	.001	.36731	.00045	.00514	.00469
360.0	943.37	2650	2.151	016	.36721	00581	06540	05959
362.0	946.02	2658	2.129	004	.36721	00134	.04737	.04871
864.0	948.68	2641	2.148	.001	.36721	.00040	01641	01682
866.0	951.32	2657	2.131	001	.36721	00027	02564	02538
0.838	953.98	2680	2.139	.006	.36720	.00217	01107	01324
876.0	956.66	2784		.040	.36659	.01486	00354	01840
872.0	959.44		2.232	050	.36569	01820	.02003	.03823
874.0	962.10	2661	2.115	016	.36560	00570	.00169	.00739
876.0	964.67	2566	2.126	016	.36551	00588	01872	 01284
878.0	967.15	2481	2.129	.063	.36404	.02317	02217	
880.0	969.01	2659	2.255	030	.36371	01096		04534
882.0	972.43	2619	2.156	.060			.00716	.01813
384.0	975.21	2784	2.283		.36239	.02192	.05565	.03373
886.0	977.90	2690	2.214	034	- 36198	01217	.02806	.04023
		2686	2.209	002	. 36198	00074	03620	03545
883.0	980.59	2885	2.233	.042	.36133	.01534	01950	03485
39C.O	933.47	2751	2.220	028	.36105	01003	01324	00321
892.0	986.22	2782	2.139	013	.36099	00467	.04804	.05270
894.0	989.00	2665	2.137	022	.36081	00797	04006	03210
896.0	991.67			013	.36075	00474	.04191	.04664
893.0	994.26	2594	2.130	.014	.36068	.00507	06947	07454
900.0	996.92	2654 2774	2.150 2.190	.031	3 6033	.01128	.03498	.02369
		F11-4	⊆ ■ 1 / 1 / 1					

TWO WAY DEPTH INTERVAL INTERVAL REFLECT. TWO WAY SYNTHETIC TRAVEL FROM GRD VELOCITY DENSITY COEFF. ATTEN. SEISMO. TIME (OR TOP)	PRIMARY	MULTIPLES ONLY
TIME (OR TOP) OS M M/S G/C3 COEFF. PRÎMARY	MULTIPLES	
902.0 997.69 .021 .36017 .00761	02410	03171
904.0 1092.55 2862 2.214 .014 .36010 .00499	.03734	<u>.</u> 03285
906.0 1005.51 2957 2.203 .036 .35963 .01304	.01793	.00490
908.0 1008.61 2070 2.450053 .3586201399	.04117	.06015
910.0 1011.54 2930 2.150 .025 .35840 .00904	04622	05526
912.9 1014.58 304C 2.180061 .3570702176	00350	.01826
914.0 1017.26 2682 2.182 .009 .35704 .00333	.01688	.01354
916.0 1019.99 2734 2.187023 .3568500838	04572	03734
918.0 1022.65 2.148 .033 .35646 .01179	.06939	.05761
920.0 1025.36 2.244 +.023 .3562700816	04097	03280
972.0 1023.04 2.172 .036 .35580 .01289	01230	02518
2959 2.115 924.0 1031.00009 .3557800315	.01246	.01560
926.0 1033.83 2.172 .054 .35474 .01920	.00700	01220
928.0 1036.91 2.225	.05465	.04843
930.0 1040.08	08065	04314
2939 1.952 932.0 1043.02 -013 -35060 -00447	.00334	00113
934.0 1045.6903165	.00319	.03484
936.0 1643.02 2.110 - 916.0 24766 200569	02310	03378
938.0 1650.44 2.10? -019 -34752 -00674	02390	03065
2575 2.048 940.0 1053.01 -046 -34678 01613	.02655	.01042
942.0 1055.70 2686 2.155	01767	01940
944.0 1058.37041 -34618 - 61432	00590	.00742
2504 2.148 946.0 1040.38005 .3461700156	00588	00431
2529 2.109 948.0 1063.41 .037 .34570 .01280	03784	05064
95C.0 1066.09 2.136 .128 .34002 .04431	.11275	.06844

COMPANY : CRUSADER RESOURCES N.L. WELL : WONGA BINDA #1 PAGE 20

TWO WAY TRAVEL TIME FS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	IMTERVAL DENSITY G/CZ	PEFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
952.0 954.0 956.0 958.0	1069.22 1071.94 1074.72 1077.52	3124 2718 2788 2799	2.379 2.207 2.129 2.232	107 005 .026 022	.33614 .33613 .33591 .33575	03631 00173 .00860 00723	01214 .00475 .00067 .02122	.02417 .00647 00792 .02845
960.0 962.0 964.0	1080.17 1082.78 1035.75	2650 2609 2966 2907	2.259 2.224 2.230 2.073	015 .065 045	.33567 .33423 .33354	00520 .02197 01520	02751 -06249 04354	02231 .04052 02835
966.0 968.0 976.0 972.0	1083.65 1091.34 1093.78 1096.27	2686 2443 2437	2.276 2.124 2.134	.006 082 .011 .003	.33353 .33130 .33126 .33126	.00199 02727 .00379 .00109	.01097 .01747 04789 00186	.00898 .04474 05169 00295
974.0 976.0 978.0	1098.80 1101.42 1104.09	2531 2614 2673	2.111 2.067 2.199	.006 .042 067	.33124 .33066 .32917	.00185 .01390	02676 02240 05178	02861 02851 02957
980.0 982.0 984.0	1106.79 1109.18 1111.87	2607 2482 2697 2655	1.976 2.194 2.127 2.134	.029 .026 006	.32889 .32867 .32865	.00962 .00857 00203	03642 .02288 .01278	04604 -01431 -01480
986.0 988.0 9°C.0 992.0	1114.53 1117.15 1119.91 1122.51	2623 2758 2600	2.120 2.246 2.159	009 .054 049 .006	.32862 .32767 .32638 .32687	00309 .01768 01608 .00197	.02370 03122 .03754 .02970	.02679 04890 .05361 .02773
994.0 996.0 998.0	1125.12 1127.81 1130.71	2604 2699 2892 2658	2.182 2.236 2.262 2.230	.029 .043 050	.32660 .32600 .32517	.00938 .01399 01643	.02902 05319 00734	.01963 06719 .00909

TWO WAY TRAVEL TIME MS	DEPTH FPOM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
1000.0	1133.36			.027	.32493	.00384	.04552	.03668
1002.0	1136.19	2827	2.214	024	.32474	00789	.00754	.01543
1604.0	1138.90	2706	2.203	014	.32468	00462	03330	02863
1006.0	1141.57	2671	2.170	.027	.32443	.00891	01037	01929
1008.0	1144.38	2806	2.183	.002	.32443	.00052	.04433	.04382
1016.0	1147.20	2821	2.177	.006	.32442	.00186	01395	01581
1012.3	1150.02	2326	2.198	011	.32438	00345	02819	02474
1014.0	1152.82	2802	2.171	.060	.32320	.01962	.08640	.06678
1316.0	1155.80	2977	2.306	.053	.32229	.01717	.03876	.02159
1313.0	1153.93	3133	2.437	081	.32016	02618	09931	07313
1020.0	1161.79	2354	2.274	.036	.31974	.01157	.11009	.09853
1022.0	1164.32	3035	2.298	014	.31968	00455	12131	11727
1024.0	1167.88	3053	2.221	.017	.31958	.00557	.04255	.03698
1026.0	1171.00	3121	2.247	015	.31951	00474	.02992	.03466
1028.0	1174.01	3017	2.259	004	.31950	00115	03131	03066
1030.0	1177.11	3094	2.137	022	.31934	00719	.03222	.03940
1072.0	1180.02	2014	2.220	044	.31373	01395	04836	03441
1034.0	1132.71	2693	2.201	.042	.31818	.01332	01768	03100
1036.0	1135.58	2865	2.249	.084	.31594	.02670	.03872	.01201
1033.6	1128.79	3208	2.375	120	.31136	03803	01923	.01880
1040.0	1191.44	2647	2.262	.086	.30908	.02664	.05823	.03159
1042.0	1194.47	3631	2.745	009	.30906	00273	01487	01213
		2992	2.334	.055	.30812	.01699	.04160	.02461
1044.0	1197.46	3325	2.344	090	.30512	02783	05336	02554
1046.0	1200.78	2876	2.262					02554
1043.0	1203.66			060	30450	01342	03253	01410

22

5352

2223

3098

4900

4259

1090.0

1092.0

1094.0

1096.0

1275.09

1277.31

1230.41

1285.31

2.755

1.951

2.346

2.689

2.573

OMFARY :	CRUSADER R	ESOURCES N	.L.	WELL	: WONGA BIN	DA #1		PAGE 2
TWO WAY	DEPTH FROM SRD (OR TOP)	INTERVAL VELOCITY	IMTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY + MULTIPLES	MULTIPLES ONLY
TIME	(OR TOP)	M/S	G/C?		COEFF.	FRIFIARI	MOLTIFLES	
40000	4307 70	2735	2.103	17/	20002	0/00/	0177/	02750
1050.0	1205.39	3158	2.391	.134	.29902	.04086	.01336	02750
1052.0	1209.55	3022	2.301	041	.29851	01229	02036	00807
1054.0	1212.57	2894	2.032	084	.29642	02496	.01602	.04099
1056.0	1215.47	2689	1.953	057	.29547	01677	00740	.00937
1058.0	1218.16			.012	.29543	.00346	03278	03624
1060.0	1220.91	2757	1.950	044	.29486	01296	02984	01688
1062.0	1223.44	2525	1.950	.033	.29443	.01131	.00871	00260
1064.0	1226.16	2726	1.950	010	.29440	00304	06816	06512
1066.0	1228.33	2671	1.950	017	. 29431	00505	.08080	.08585
1068.0	1231.40	2570	1.958	007	.29430	00203	06554	 06351
		2545	1.950					
1070.0	1233.95	2628	2.071	.046	.29368	.01355	.02645	.01290
1072.0	1236.58	4109	2.594	. 324	.26233	.09518	.10268	.00750
1074.0	1240.69	4913	2.704	.110	<u>.</u> 25967	.02380	.06986	.04106
1076.0	1245.60	3364	2.357	252	.24317	06546	11607	05061
1078.0	1243.96			.155	.23733	.03770	.09649	.05879
1086.0	1253.16	4197	2.535	.152	.23185	.03607	.08968	.05361
1082.0	1255.50	5345	2.757	125	.22824	02892	.04553	.07445
1084.0	1262.84	4331	2.647	262	.21259	05977	12879	06901
1086.0	1265.66	2829	2.371	.220	.20228	.04681	.08133	.03452
		4072	2.577					
1088.0	1269.74	5352	2 - 755	.168	.19655	.03406	00967	04372

-.545

.253

.288

-.039

.13806

.12926

.11857

.11763

-.10721

.03487

.03716

-.01053

-.03233

.02423

.00334

.03096

.07489

-.01064

-.03383

.04154

1144.0

1146.0

.04630

-.01206

.04630

-.01206

PAGE 24

COMPANY : CRUSADER RESOURCES N.L.

WELL : WONGA BINDA #1

THO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TCP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY H MULTIPLES	MULTIPLES ONLY
1148.0							.05273	.05278
1150.0							02056	02056
1152.0							06110	06110
1134.0							.05731	.05731
1156.0							.02381	.02381
1158.0							01816	01816
1160.0							.01035	.01035
1162.0							.01541	.01541
1164.0							03176	03176
1166.0							04745	04745
1158.0							.00057	.00057
1170.0							.07960	.07960
1172.0							.00533	.00533
1174.0							02552	02552
1176.0							00715	00715
1178.0							03844	03844
1186.0							.03079	.03079
1182.0							06594	06594
1104.0							03357	03357
1186.0							01426	01426
0.8811							.01722	.01722
1190.0							.09525	.09525
1102.0							.00628	.00628
1194.0							.04114	.04114

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
1196.5							01363	01363
. 1198.0							06665	06665
1200.0							.04024	.04024
1202.0							.04137	.04137
1204.0							01662	01652
1206.0							01524	01524
1208.0							.02558	.02558
1210.0							01060	01060
1212.0							13155	13155
1214.0							.11041	.11041
1216.0							06843	06843
1213.0							.02130	.02130
1220.0							.01965	.01965
1222.0							06571	06571
1224.0							.06232	.06232
1226.0			•				.02717	.02717
1228.0							01152	01152
1230.0					•		01084	01084
1232.0							.03767	.03767
1234.0							04724	04724
1236.0							08664	03664
1230.0							.00574	.00574
1240.0							.00437	.00437
1242.0							.04827	.04827
1244.0							.00042	.00042

TWO WAY TRAVEL TIME NS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
1246.0							02803	02803
1248.0							.05163	.05168
1250.0							.02792	.02792
1252.0							00245	00245
1254.0							.00605	.00605
1256.0							.04096	.04096
1258.0							00193	00193
1260.0					·		06624	06624
1262.0							.01673	.01673
1264.0							11468	11468
1266.0							.04435	.04485
1268.0							00163	00168
1270.0							.00373	.00373
1272.0							.01026	.01026
1274.0							.02974	.02974
1276.0							.04293	.04293
1278.0							07302	07302
1280.0							.07934	.07934
1282.0							07716	07716
1234.0							.06399	.06399
1286.0							06144	06144
1288.0							.04150	.04150
1290.0							00044	00044
1292.0							04142	04142

TWO WAY TRAVEL TIME FS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	FEFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY H MULTIPLES	MULTIPLES ONLY
1294.0							.03499	.03499
1296.0							01834	01834
1298.0							.04920	.04920
1300.0							.02774	.02774
1302.0							07871	07871
1304.0	•	,					.03495	.03495
1306.0							01221	01221
1308.0							.04925	.04925
1316.0							02445	02445
1312.0							00344	00344
1314.0							10007	10007
1316.0							.08066	.08065
1318.0							05380	05380
1320.0							.02399	.02399
1322.0							00798	00798
1324.0							.04863	.04363
1326.0							01217	01217
1328.0							.04559	.04559
1330.0							00300	00300
1332.0							08172	08172
1334.0							.00683	.00683
1336.0							04803	04303
1338.0				•			02993	02993
1346.0				•			.07040	.07040
1342.0							.07450	.07450

COMPANY: CRUSADER RESOURCES N.L. WELL: WONGA BINDA #1 PAGE 28

TWO WAY TRAVEL TIME FS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY "/S	INTERVAL DEMSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLFS ONLY
1344.0							06127	06127
1346.0							.02062	.02062
1348.0						,	.03695	.03695
1350.0							04622	04622
1352.0							01239	01239
1354.0							.01721	.01721
1356.0							.02618	.02618
1358.0							01577	01577
1360.0							.00843	.00843
1362.0							02255	02255
1364.0							.00409	.00409
1366.0							.02461	.02461
1368.0							02251	02251
1370.0				•			01665	01665
1372.0							.03639	.03639
1374.0							03798	03798
1376.0	•						.04701	.04701
1372.0							02224	02224
1300.0							.06604	.06604
1382.0							.00290	.00290
1324.0							04430	04430
1306.0							.02012	.02012
1388.0							09375	09375
1390.0							.03047	.03047

TWO WAY TRAVEL TIME	DEPTH CR2 MOPR (OUT RO)	INTERVAL VELOCITY	INTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEM. CUEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
FS	M	M/S	G/03		C @ C F F -	r Kinsk'	FOLITPLES	
1392.0							.01601	.01601
1394.0							02047	02047
1396.0							.10385	.10385
1378.0							01789	01789
1400.0							03787	03787
1402.0							00680	00680
1404.0							06163	06163
1456.0							01862	01362
1468.0							.01955	.01955
1410.0							.04156	.04155
1412.0							04182	04182
1414.0							.01553	.01553
1416.0							02366	02366
1418.0							.03963	.03963
1420.0							.05842	.05342
1422.0							01119	01119
1424.0							.02952	.02952
1426.0							04721	04721
1428.0							04471	04471
1430.0							.00630	.00630
1432.0							.03524	.03524
1434.0							.00409	.00409
1436.0							02817	02817
1438.0							04523	04523
1446.0					_		.07905	.07905

ن	Λ	_	C	7
~	м	11	_	73

TWO WAY TRAVEL TIME MS	DEPTH INTERVAL DEROM SRD VELOCITY (OR TOP) M M/S	INTERVAL DENSITY	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEESMO. BRIMARY	PRIMARY ** ** ** ** ** ** ** ** ** ** ** ** *	MULTIPLES ONLY
1442.0			•			08647	08647
1444.0						.04159	.04159
1445.0						.02045	.02045
1448.0						.00535	.00535
1450.0						00748	00748
1452.0						.07477	.07477
1454.0						01845	01845
1456.0						10569	10569
1458.0						.04333	.04333
1460.0	•					.00727	.00727
1462.0						06451	06451
1464.0						.03917	.03917
1466.0						.04630	.04680
1468.0						01502	01502
1470.0						.03888	.03888
1472.0						.02401	.02401
1474.0						.00334	.00334
1476.0						06913	06913
1478.9						01992	01992
1480.0						.01220	.01220
1482.0						00664	00664
1484.0						.01065	.01065
1486.0						05510	05510
1438.0						.04044	.04044

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DEMSITY G/C?	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY * MULTIPLES	MULTIPLES ONLY
1498.0							.07025	.07025
1492.0							04177	04177
1494.0							.04264	.04264
1496.0							05507	05507
1498.0							00174	00174
1500.0							.00327	.00327
1502.0							05250	05250
1504.0							.01280	.01280
1506.0							02555	02555
1500.0					•		.00930	.00930
1510.0							.06799	.06799
1512.0							08823	08823
1514.0							.00485	00485
1516.0							.08204	.08204
1518.0							02246	02246
1520.0							02756	02756
1522.0				•			.02000	.02000
1524.0							00218	00213
15?6.0							.00175	.00175
1528.0							.03635	.03635
1530.0							00137	00187
1532.0				·			03340	03340
1534.0							.04770	.04770
1536.0							05721	05721
1538.0							. 02149	.02149

COMPANY: CRUSADER RESOURCES N.L. WELL: WONGA BINDA #1 PAGE 32

TWO WAY TRAVEL TIME MS	DEPTH FROM SRD (OR TOP) M	INTERVAL VELOCITY M/S	INTERVAL DENSITY G/C3	REFLECT. COEFF.	TWO WAY ATTEN. COEFF.	SYNTHETIC SEISMO. PRIMARY	PRIMARY * MULTIPLES	MULTIPLES ONLY
1540.0							.03327	.03327
1542.6							.00526	.00526
1544.0							09912	09912
1546.0					•		.03651	.03651
1548.0							02426	02426
1550.0							.00886	.00886
1552.0		•					.06569	.06569
1554.0							05461	05461
1556.0							.06490	.06490
1553.0							05721	05721
1560.0							.00003	.00003
1562.0							00168	00168
1564.0							.04801	.04801
1566.0							03010	03010
1568.0							02503	02503
1576.0						·	02448	02448
1572.0							01675	01675
1574.0							.04157	.04157
1576.0							.05642	.05642
1578.0							06724	06724
1580.0							.09524	.09524
1582.0							07279	07279
1584.0							00634	00634
1536.0				•			00325	00325

.:09848

.00430

-.07756

OFFIN CORD (CORTOP) M

TWO WAY TRAVEL TIME AS

1588.0 1590.0 1592.0 1594.0 1596.0 1598.0 1600.0 1602.0

1604.0

1606.0

1603.0

VELOCITY

MIS

والل.ؤالا	MIE FIFF	:" MANDA PER	NUAN AU		rade 5.
THE RIAL DENSITY	REFLECT.	TWO WAY ATTEN COEFF	S.Y.N.THETILIC SELISMO P.R.LIMARY	PRIMARY MULTIPLES	MULTIPLES ONLY
				.02291	.02291
				03988	03983
				02575	- 02575
	· ·			01526	01525
				00464	00464
				.03291	.03291
			·	06021	06021
				.00931	.00931

.09848

.00430

-.07756

This is an enclosure indicator page. The enclosure PE601028 is enclosed within the container PE902188 at this location in this document.

The enclosure PE601028 has the following characteristics:

ITEM_BARCODE = PE601028
CONTAINER_BARCODE = PE902188

NAME = Drift Corrected Sonic

BASIN = GIPPSLAND PERMIT = PEP/120

TYPE = WELL

SUBTYPE = VELOCITY_CHART

DESCRIPTION = Drift Corrected Sonic (enclosure from

WCR) for Wonga Binda-1

REMARKS =

DATE_CREATED = 4/05/88 DATE_RECEIVED = 12/09/88

 $W_NO = W973$

WELL_NAME = Wonga Binda-1 CONTRACTOR = SCHLUMBERGER

CLIENT_OP_CO = CRUSADER RESOURCES NL

This is an enclosure indicator page. The enclosure PE601029 is enclosed within the container PE902188 at this location in this document.

The enclosure PE601029 has the following characteristics:

ITEM_BARCODE = PE601029
CONTAINER_BARCODE = PE902188

NAME = Seismic Calibration Log

BASIN = GIPPSLAND PERMIT = PEP/120 TYPE = WELL

SUBTYPE = VELOCITY_CHART

DESCRIPTION = Seismic Calibration Log (enclosure from

WCR) for Wonga Binda-1

REMARKS =

DATE_CREATED = 4/05/88 DATE_RECEIVED = 12/09/88

 $W_NO = W973$

WELL_NAME = Wonga Binda-1
CONTRACTOR = SCHLUMBERGER

CLIENT_OP_CO = CRUSADER RESOURCES NL

This is an enclosure indicator page. The enclosure PE601030 is enclosed within the container PE902188 at this location in this document.

3 V. 1

The enclosure PE601030 has the following characteristics:

ITEM_BARCODE = PE601030
CONTAINER_BARCODE = PE902188

NAME = Geogram - Synthetic Seismogram 10-60 Hz

and the term of the state of th

GIPPSLAND

PERMIT = PEP/120

za o kontrologia (bilingua
TYPE = WELL

SUBTYPE = SYNTH_SEISMOGRAM

REMARKS =

 $DATE_CREATED = 4/05/88$

DATE_RECEIVED = 12/09/88

 $W_{NO} = W973$

WELL_NAME = Wonga Binda-1

CONTRACTOR = SCHLUMBERGER

CLIENT_OP_CO = CRUSADER RESOURCES NL

APPENDIX 11

APPENDIX 11

WELL LOCATION SURVEY

This is an enclosure indicator page. The enclosure PE601025 is enclosed within the container PE902188 at this location in this document.

The enclosure PE601025 has the following characteristics:

ITEM_BARCODE = PE601025

CONTAINER_BARCODE = PE902188

NAME = Composite well log

BASIN = GIPPSLAND

PERMIT = PEP/120

TYPE = WELL

SUBTYPE = COMPOSITE_LOG

DESCRIPTION = Composite Well Log (enclosure from WCR)

for Wonga Binda-1

REMARKS =

DATE_CREATED = 20/04/88

DATE_RECEIVED = 12/09/88

 $W_NO = W973$

WELL_NAME = Wonga Binda-1
CONTRACTOR = Crusader Limited

CLIENT_OP_CO = CRUSADER LTD

This is an enclosure indicator page. The enclosure PE601026 is enclosed within the container PE902188 at this location in this document.

The enclosure PE601026 has the following characteristics:

ITEM_BARCODE = PE601026

CONTAINER_BARCODE = PE902188

NAME = Mud log

BASIN = GIPPSLAND

PERMIT = PEP/120

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Mud log (enclosure from WCR) for Wonga

Binda-1

REMARKS =

DATE_CREATED = 17/04/88

DATE_RECEIVED = 12/09/88

 $W_NO = W973$

WELL_NAME = Wonga Binda-1

CONTRACTOR = GEARHART PTY LTD GEODATA SERVICES

CLIENT_OP_CO = CRUSADER LTD

This is an enclosure indicator page. The enclosure PE601027 is enclosed within the container PE902188 at this location in this document.

The enclosure PE601027 has the following characteristics:

ITEM_BARCODE = PE601027

CONTAINER_BARCODE = PE902188

NAME = Strip Log

BASIN = GIPPSLAND

PERMIT = PEP/120

 $\mathtt{TYPE} = \mathtt{WELL}$

SUBTYPE = WELL_LOG

DESCRIPTION = Strip Log (enclosure from WCR) for

Wonga Binda-1

REMARKS =

DATE_CREATED =

DATE_RECEIVED = 12/09/88

 $W_NO = W973$

WELL_NAME = Wonga Binda-1

CONTRACTOR =

CLIENT_OP_CO = CRUSADER LTD