Natural Resources and Environment

AGRICULTURE • RESOURCES • CONSERVATION • LAND MANAGEMENT

900566 001 Page 1 of 11.

Munel - 1

Will Summary Rep.

MUSSEL-1 WELL SUMMARY REPORT W 555

1 Folio No.	2 Referred to	3 . Date	4 Clearing Officer's Initials	1 Folio No.	2 Referred to	3 Date	4 Clearing Officer's Initials
	·			,			·
1						· · · ·	
							,
·							
				·			
				ļ <u>.</u>		·	
			ļ				
			ļ				
	1						
			<u> </u>		, .	,	
		<u> </u>	ļ				
			-				
	FILE COVER IN	1077110710110		<u> </u>	Location		

FILE COVER INSTRUCTIONS FOR ACTION OFFICERS

- (1) FOLIO NUMBERS: Each subject paper attached to a file is to be given a consecutive number by the attaching officer. Papers must not be removed from or attached to a file without approval.
- (2) REFERRAL TO OTHER OFFICERS: When an Officer completes action on the file and further action is required by some other Officer, please initial Column (4) and on the next vacant line, enter the relevant folio number in Column (1), indicate to whom the file is to be tonvarded in Column (2) and record the date in
- (3) BRING UP MARKINGS: When action on a file is Brinto OF MARKINGS: When action on a file is required at a later date, the officer will initial Column (4) and, on the next vacant line, enter the relevant folio number in Column (1), then write "B/U" followed by the action officer's name in Column (2) and the date the file is required in Column (3).
- (4) PUTAWAY MARKINGS: When ALL action on a file is completed the officer concerned will initial Column (4) and, on the next vacant line, write "P/A" in column (2).

REGISTRY MUST BE NOTIFIED OF ANY FILE MOVEMENTS BETWEEN OFFICERS

900566 002

Type of Well:

Wildcat

Purpose of Well:

Mussel 1 site was selected primarily to test the basal upper Cretaceous Waarre Sandstone in a structurally high position, being located on the southern up-dip side of a north dipping Lower Cretaceous fault block. Southern closure was anticipated, with tight Belfast Mudstone faulted against the prognosed Waarre Formation reservoir.

A secondary target was the coincident minor structural high on the top of the Tertiary Eocene Sand.

Status:

Plugged and abandoned.

38

Location:

Latitude : 37° 57' 45.993" South Longitude : 142° 46' 21.676" East Shot-point 6063 on line E.O.31.

_

Lease:

P.E.P. 40

Elevation:

Rotary table 93 feet above M.S.L.

Water Depth:

280 feet

Spudded:

August 18th, 1969, (On location August

16th, 1969).

Completed:

September 16th, 1969.

Drilling Time:

30 days

Total Depth:

Total drilled depth 8038 feet.

Top of fish abandoned in hole 7518 feet.

Casing:

30 inch at 420 feet 20 inch at 882 feet $13^3/8$ inch at 2200 feet

Cement Plugs:

Plug No.	<u>Interval</u>	<u>Cement</u>	
· 1	7390-7508 feet	100 sacks	
2	6725 - 6936 feet	150 "	Top tagged
3	2023-2262 feet	225 "	11 . 11
4	504 - 609 feet	75 "	

Cores:

Three conventional cores were cut, with aggregate footage of 95 ft. and recovery of 26 ft. (27%). The interval 6881-6954 was continuously cored to investigate reservoir characteristics of the Waarre within a predominantly sandstone interval. Core number 3 was primarily designed for stratigraphic control.

Core	<u>Interval</u>	Recovery
1	6881 - 6903	17 ft.
2	6903 - 6954	0 ft.
3	7335 - 7357	9 ft.

In addition three runs were made with the C.S.T. gun, 70 S.W. cores being cut and 60 recovered.

Mudlogs:

The well was continuously monitored by Exploration Logging from 920 to 8038 feet (T.D.).

Electric Logs:		<u>Run</u>	<u>Interval</u>
	I.E.S.	. 1	822 🧁 2247 ft.
		2	2197 - 7332 ft.
		3	2197 - 7500 ft.
	S.G.R.C.	. 1	882 - 2247
	Sonic	2	2197 - 7500
	F.D.C.	1	2197 - 7332
·	C.D.M.	i	2197 - 7500

A velocity survey was run.

Hydrocarbons:

No significant hydrocarbon shows were encountered. Generalised gas detector readings were:

Interval	Drilling Mud					•
	Hot Wire	Chromatograph		<u>C02</u>	Hot Wire	
		Cl	C2	C3 - C5		Cuttings
920 - 5800ft 5800 - 6860ft 6860 - 7030ft	0 - 5 2 - 10	5-40 80-500	0	0 0	0-5 0-5	0-1 0-1
7030 - 8083ft	2 - 10 2 - 5	100-100,000 50-1000	5-50 5-30	0 0	0 0	0-1 0-1

Core Analysis:

The following results were obtained:

Sample Number	Depth Feet	Air Perm. m.d.	Porosity Percent	Oil Saturation	Water Saturation
1	6882	3300	25.2		
2	6883	1400	23.9		
3	6884	1447	24.4	0	90.3
4	6885	897	24.1		30.3
5	6886	85	21.9		
6	6887	214	22.7	0	97.5
7	6888	117	22.5		37.5
8	6889	169	23.6		
9	6890	7.9	22.6	0	75.5

.- 3 -

900566 004

Sample Number	Depth Feet	Air Perm. m.d.	Porosity Percent	Oil Saturation	Water Saturation
10	6891	93	21.2		
11	6892	340	23.0		
12	6893	293	20.7	0	76.4
13	6894	183	23.7		
14	6895	2	8.9		
15	689 6	0	10.2	0	71.0
16	6897	1085	19.1	,	
17	6898	. 1650	25.5	0	94.2

Stratigraphy

<u>Formation</u>	<u>Age</u>	Top (RT)	Subsea	Thickness
	Recent to Upper Eocene			2950 ft.
Mepunga Fm.	Eocene	3230	3137	840
Rivernook SL.	Paleocene	4070	3977	182
Pebble Pt Fm.	Paleocene	4252 ·	4159	342
Paaratte Fm. Belfast Mudst	Upper Cret.	4594	4501	2058
Flaxmans Fm.	Upper Cret.	6652	6559	184
Waarre Fm.	Upper Cret.	6836	6743	1202 +

920 - 2950 Limestone: light grey, light buff and pink brown; firm; fossiliferous with abundant biogenic detritus; variable trace chert.

Marl: white grey to light grey, soft to firm, very fine to fine, very fossiliferous, rare trace glauconite.

Mepunga Formation

3230 - 4070 Sand: clear, light brown and frosted, subrounded to sub angular, medium - very coarse grain quartz, trace pyrite.

Siltstone: light grey, moderate firm, very fossiliferous. Sand is the dominant lithology, siltstone forms 50% of total sample only occasionally towards base of interval.

Rivernook Shale

4070 - 4252 Siltstone: dark brown, soft - firm, clayey.

Pebble Pt. Formation

-4252 - 4594 Siltstone: as above with abundant nodules, dark brown, very small, hard.

Sand: as above, very fine to medium grain, clear to frosted quartz, poor sorting.

900566 005

Paarratle/Belfast Mudstone

4594 - 6652 Siltstone: light to medium grey and dark grey, soft - firm gradational to shale.

Shale: light - medium grey, very soft, silty, sandy, trace glauconite.

Sandstone: light grey, fine - medium, well
 sorted, hard, tight.

Sand: very fine - medium grain, rounded - sub angular, clear and frosted quartz, variable pyrite aggregates.

Sandstone is a minor lithologic fraction and is rare below 5100 ft., sand is a minor lithologic fraction below 5000 ft. and does not occur below 5700 within this interval.

Flaxman's Beds

6652 - 6836 Siltstone and Shale as before with minor Sandstone and Sand as before, interbedded.

Waarre Formation

6836 - 8038 Sandstone: light grey, clear - cloudy (trace red at base of interval), fine - pebble and conglomeratic in part, sub angular - rounded quartz, variably unconsolidated or with calcareous, dolomitic or pyritic cement

Siltstone: as before, variable fossiliferous, pyrite glauconite.

Shale: as before, minor.

Coal: black, very minor.

Core 1 6881-6903 Cut 22ft. Rec. 17ft

Sandstone: white to light grey, firm to medium grain, occasionally coarse, sub angular - subrounded, well sorted, friable, slight carbon trace, white weathered felspar and very minor lithies. Massive with occasional burrows and rare laminations.

Shale: black, micaceous, carbonaceous, pyrite, slightly fissile.

6893 - 98 Sandstone and Shale: thinly interbedded, wavy bedding, abundant sand filled burrows, occasional micro cross bedding.

Sandstone: quartzose, non calcareous, white light grey, fine grain, angular - sub angular,
well sorted, moderately friable, with
occasionally thin-bedded Sandstone: medium
- coarse grain, sub angular - sub rounded,
well sorted, friable - very friable, good
visible porosity.

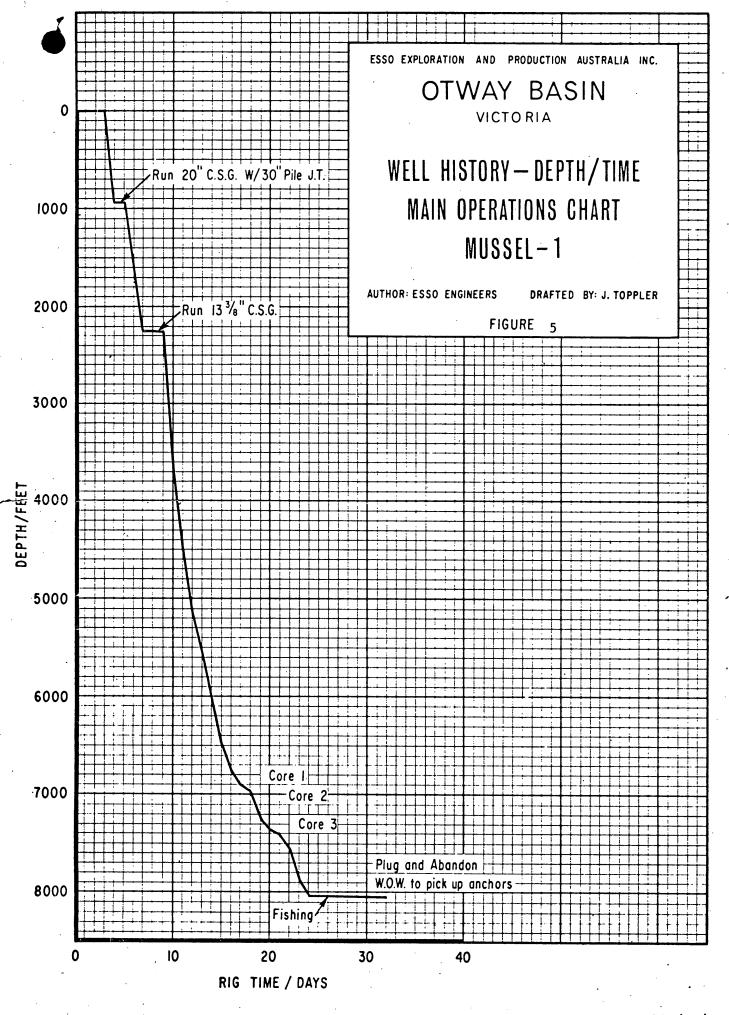
900566 006

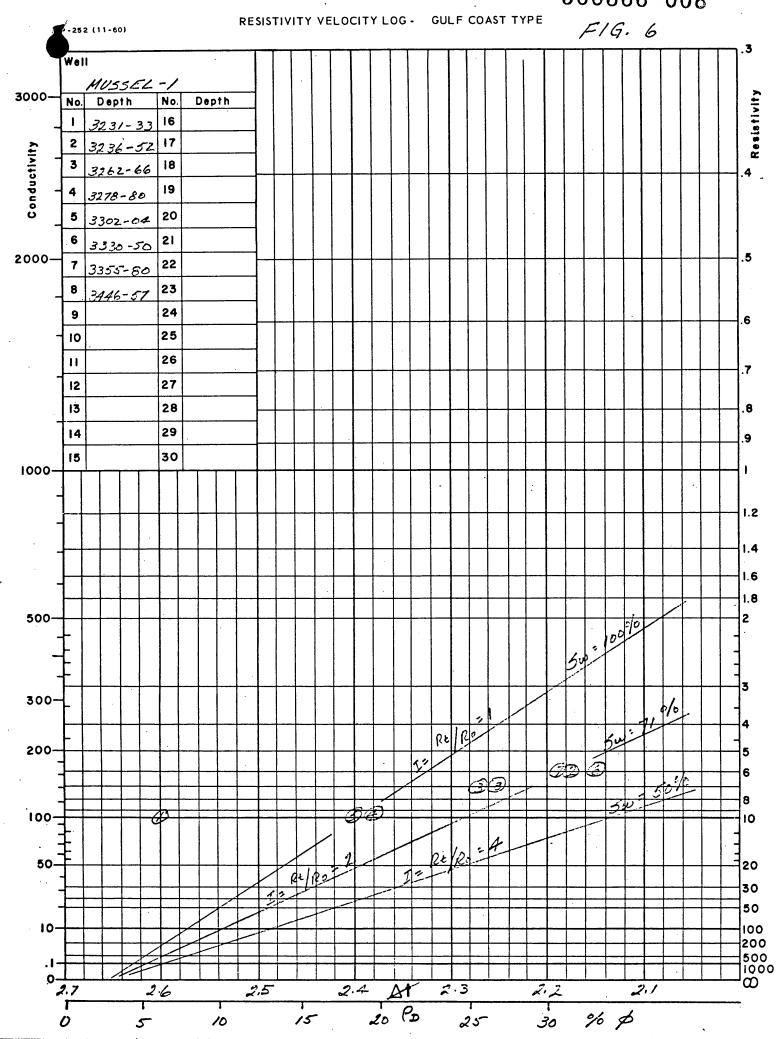
Core 2

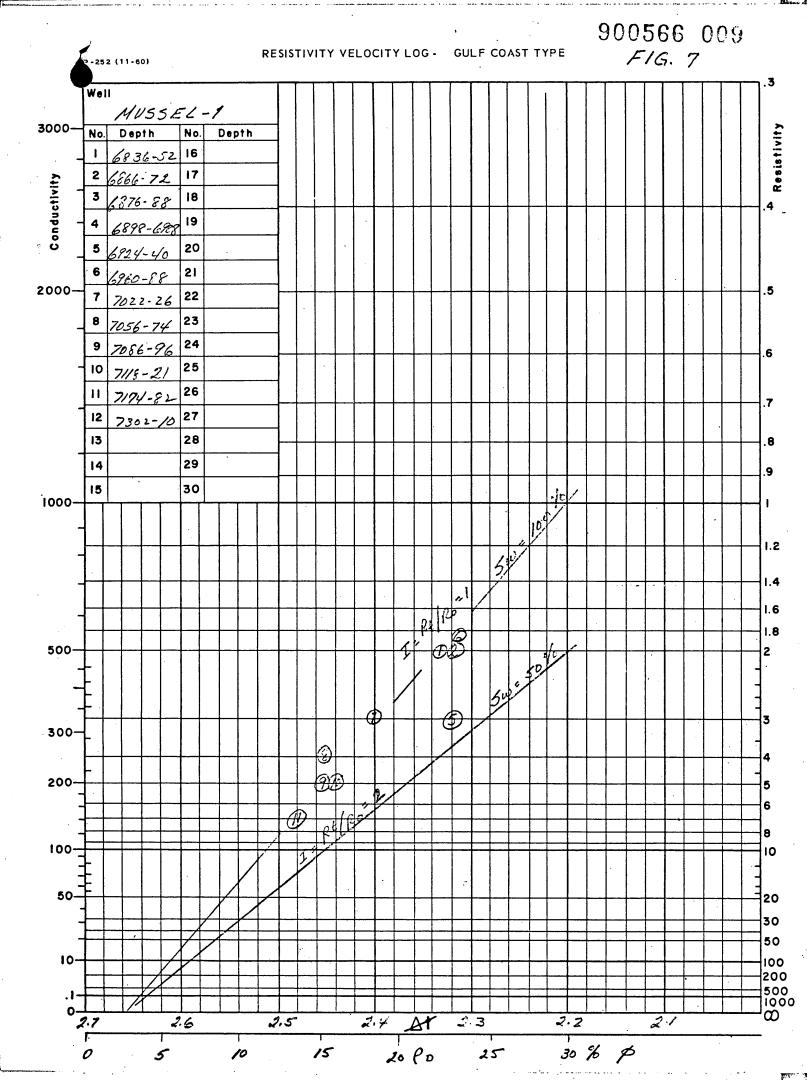
· 6898-6903

No recovery

Core 3 7335-7357 Cut 22ft. Rec. 9ft


7335 - 36 Shale: medium - dark grey, massive, hard, moderate fissile, abundant fine mica.


7336 - 3603 ?Claystone: medium grey, hard, massive, with 10% clear fine - pebble quartz grains and 20% chlorite inclusions set in a dense clay matrix with minor dispersed pyrite; very dolomitic.


7336 - 7343 Carbonaceous Shale: medium - dark grey - black,
massive - laminated, hard - very hard,
mostly very fissile, with occasional fine
silty laminae and with frequent wavy
discontinuous thin Coal laminae, partly
replaced by pyrite. Slight gas bleed

7343 - 44 <u>Coal</u>: dark brown - black, dull - vitreous; very brittle and fractured.

7344 - 7357 No recovery.

MUSSEL-1

DEPTH		SAMPLE	VI REF	NO.	
(metres)	ANALYST	TYPE	MEAN	RANGE	READINGS
1260 1385 1483 2013 2099 2100 2102 2236 2238 2238 2255 2286	PA PA PA CO CO PA CO CO CO	CTGS CTGS CTGS CTGS	0.39 0.40 0.44 0.50 0.56 0.55 0.59 0.64 0.60	0.32-0.45 0.32-0.45 0.41-0.47 0.40-0.55 0.45-0.68 0.44-0.62 0.41-0.59 0.53-0.66 0.56-0.73 0.54-0.63 0.51-0.76 0.55-0.69	20 20 8 3 20 4 14 22 25 20 11
2200	ÇÜ		3.33		

Contractor: Palteca

Author: Cook

	• •			•	MUSSEL No. 1	Value of the second of the sec
K.K.	Depth (m)	Ā ma	x Range	N	Exinite Fluorescence (Remarks)	OIL and GAS DIVISI
					WANGERRIP GROUP	1 5 JUL 1982
			•		PEMBER/RIVENOOK 1242m	· 12
15358	1260 Ctgs	0.39	0.32-0.45	20	to orange. (Siltstone wi D.o.m. rare, V>E>1. Vitr	inite and sporinite, yellow b th minor limestone and sandstone. Inite phytoclasts typically
					small, some ?reworked coa	1. Sparse pyrite.)
		`			PEBBLE POINT 1296m	
15359	1385 Ctgs	0.40	0.32-0.45		in claystone, orange, rare siltstone, sandstone and sparse, I>V>E. Phytoclast	ow to orange, rare sporinite e resinite orange. (Claystone, limestone. D.o.m. rare to ts small. Pyrite abundant.)
15360	1483	0.63	0 57 0 70		LFAST MUDSTONE 1400m	
19300	C†gs	0.44	0.53-0.78 0.41-0.47	15 8	dinoflagellates, yellow to some limestone. D.o.m. sp are present which could be total abundance they appro Either mode may represent	and resinite, orange. Rare or orange. (Siltstone>sandstone, parse, I>E. Two populations or referred to vitrinite. In eximately equal inertinite. the matuation level at the ner mode may represent a weakly
	· · · · · · · · · · · · · · · · · · ·	· 多企公司表表现地方用意识是	glenu		oxidized vitrinite populat represent a cavings popula	ion, or the lower mode may ition. The reflectance found are lower mode is more likely
•					SHERBROOK GROUP	
				FLA	XMAN FORAMTION 2010m	•
15361	2013 C†gs	?0 . 50	0.40-0.55		Mudstone. (Silty mudstone limestone. D.o.m. sparse, appears to be derived from Thucholitic bitumen found,	dull orange fluorescence on Core is of low reflectance
				WAI	RRE FORMATION 2084m	•
15362	2102 Core	0.50	0.41-0.59	F V	Rare fluorinite/resinite, g with d.o.m. rare and siitst	te yellow orange to orange. preen to yellow. (Sandstone one abundant, I>E>V. Inertinite out vitrinite population well-
				C	TWAY GROUP 2225m	
15363	2238 Core	0.64	0.56-0.73	, R	parse cutinite and rare sparse fluorinite/resinite, good the d.o.m. abundant, V>I>E	reen to orange. (Siltstone . Vitrinite abundant,
					·	

T.D. 2450m