SANTOS – INPEX - UNOCAL

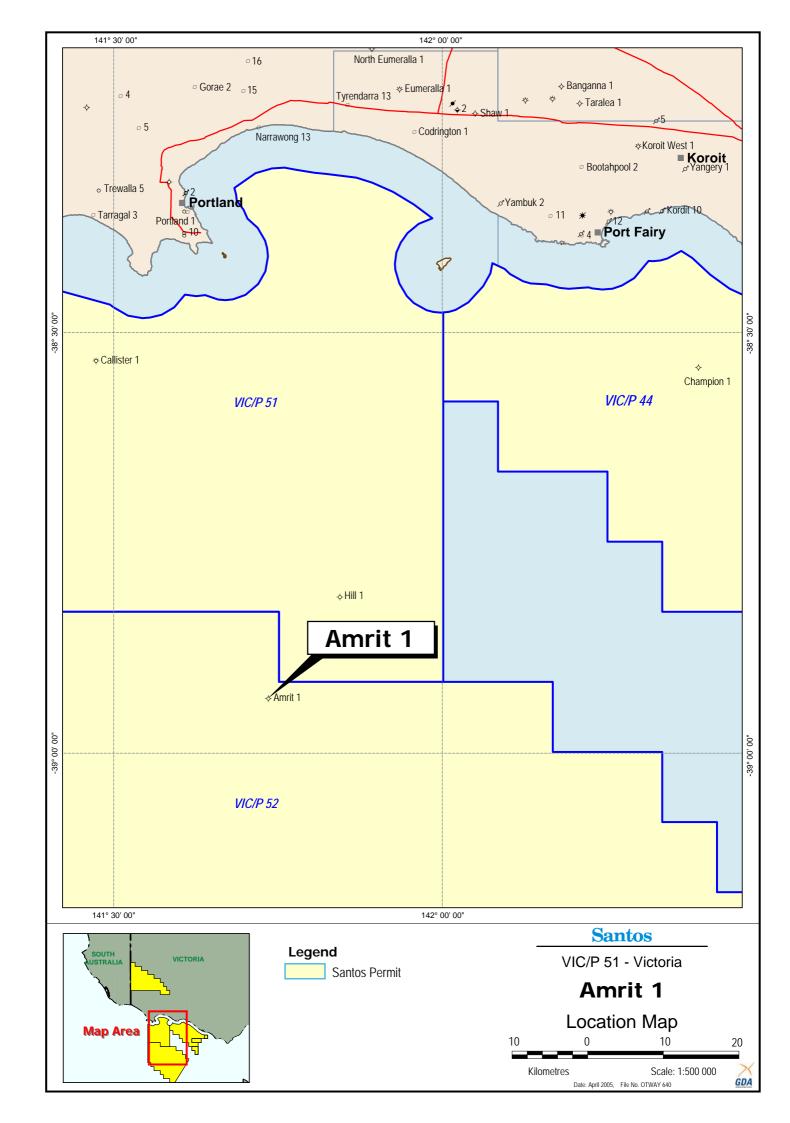
COMPILED FOR

SANTOS LIMITED

(A.B.N. 80 007 550 923)

AMRIT-1 BASIC DATA REPORT

PREPARED BY: R. Subramanian (Consultant) February 2005


AMRIT-1

BASIC DATA REPORT

TABLE OF CONTENTS

		PAGE
LOCATION MAP		THEE
GENERAL DATA CARD		
SECTION 1:	WELL HISTORY 1.1 INTRODUCTION 1.2 GENERAL DATA 1.3 DRILLING SUMMARY	1 2 3
SECTION 2:	LITHOLOGICAL DESCRIPTIONS 2.1 CUTTINGS DESCRIPTIONS 2.2 SIDEWALL CORES DESCRIPTIONS 2.3 PRELIMINARY PALYNOLOGY REPORT 2.4 CATALOGUE OF WELLSITE SAMPLES	
SECTION 3:	WIRELINE LOGGING REPORTS 3.1 LOGGING ORDER FORM 3.2 ELECTRIC LOGGING TIME SUMMARY 3.3 FIELD ELECTRIC LOGGING REPORT 3.4 MWD/LWD END OF WELL REPORT (Anadrill)	
SECTION 4:	PRODUCTION TEST REPORTS	
SECTION 5:	DAILY GEOLOGICAL REPORTS	
SECTION 6:	DAILY DRILLING REPORTS	
SECTION 7:	TIME / DEPTH CURVE	
SECTION 8:	BHA SUMMARY	
SECTION 9:	BIT RECORD AND PERFORMANCE SUMMARY	
SECTION 10:	DRILLING FLUIDS REPORT	
SECTION 11:	CASING & CEMENTING SUMMARY	
SECTION 12:	MUDLOGGING WELL REPORT	
SECTION 13:	RIG POSITIONING REPORT	
SECTION 14:	WELL ABANDONMENT AND PLUG REPORTS	
SECTION 15:	DEVIATION SUMMARY	

LOCATION MAP

GENERAL DATA CARD

WELL: AMRIT-1	WELL CATEGORY:	SPUD: 2	0-11-04	TD REAC	HED: 07-12-04
	OFFSHORE OIL/GAS EXPLORATION	RIG REL	EASED: 17-12	2-04 CN	IPLT: -
	WELL	RIG: JAC	CK BATES		
	WELL INTENT: OIL/GAS	STATUS:	PLUGGED	AND ABAN	IDONED
SURFACE LOCATION: (C	5DA94)	REMARK	KS:		
LAT: 38° 56' 05.20" S LON	I G: 141° 44' 07.08" E				
NORTHING: 5690204.1M	EASTING: 563729.6M				
SEISMIC STATION: OS02	3D SURVEY IL7404 XL1967				
ELEVATION SEA FLOOR	k: -1425M LAT RT +29M LAT				
BLOCK/LICENCE: VICTO	PRIA – OTWAY BASIN VIC/P52				
TD 2979 M (LOG	R EXTRAP) 2979 M (DRLR)				
PBTD - M (LOG	R) - M(DRLR)	HOLE	CASING	SHOE	TYPE
TYPE STRUCTURE: FAUI	LT BOUND STRUCTURAL/	SIZE	SIZE	DEPTH	
STRA	ATIGRAPHIC CLOSURE	660MM	508MM	1822M	198 KG/M X56
TYPE COMPLETION: NII	445MM	340MM	2454M	101 KG/M L80 TER	
ZONE(S): -		311MM	-	-	-

TYPE OF LOG	FROM (M)	TO (M)	REPEAT SECTION	TIME SINCE LAST CIRC	ВНТ
MWD LOGGING:	,				
RUN 1: RES-GR-SURVEYS-ANN PRESS	1425	1835			
RUN 2: RES-GR-SURVEYS-ANN PRESS	1835	2459			
RUN 3: RES-GR-SURVEYS-ANN PRESS	2459	2695			
RUN 4: RES-GR-SURVEYS-ANN PRESS	2695	2979			
WIRELINE LOGS					
RUN 1: PEX-HALS-DSI					
GR	2945	2454	DOWN LOG	22.25 HRS	56.11°C
RESISTIVITY	2945	2454			
SP	2945	2454			
CALIPER	2945	2454			
DT (FULL WAVEFORMS)	2945	2454			
X-Y NEUTRON-DENSITY (DUAL AXIS)	2945	2454			
RUN 2: VSP (50M INTERVALS)	2940	1790		34.25 HRS	62.2 °C
RUN 3: SWC	2925M	2494M			
ONE GUN – 30 SHOTS					
RECOVERED 21, 3 MISFIRE, 6 EMPTY.					

NO PRODUCTION TESTS WERE CONDUCTED AT AMRIT-1

SECTION 1:- WELL HISTORY

1.1 <u>INTRODUCTION</u>

Amrit-1 was drilled as an Otway Basin oil/gas exploration well in the Victoria Offshore VIC/P52 licence. The Surface Location is Latitude: 38° 56' 05.20" South, Longitude: 141° 44' 07.08" East (GDA94), Northing: 5690204.1m, Easting: 563729.6m (MGA-94). The Seismic Reference is OS02 3D Survey IL7404 XL1967. The location lies approximately 68 km south of the town of Portland, 50 km SE of Bridgewater Bay-1, 18 km SW of Hill-1 (see Location Map).

Amrit-1 is a "deep water" well located in 1396m of water and was drilled by the semi-submersible drilling rig "Jack Bates". Amrit-1 was drilled as an oil-prospect but there was a possibility that gas would be encountered in the reservoir. Amrit-1 was to be drilled as a vertical well to a Total Depth of 2979m (or to an alternative, deeper Total Depth of 3179m in the case of encouraging shows).

The Amrit Prospect is located on a tilted fault-block and was designed to test the fault-bound stratigraphic/structural potential of the Paaratte Formation primary target (K94/K93) at a depth of 2574m. The prime target was the top Paaratte delta section with the secondary target being the intra-Paaratte K91 amplitude anomaly.

Amrit-1 was a critical test of one of a series of amplitude features at the top Paaratte Formation. The well was planned to assist in establishing whether an oil model would be applicable to the area and confirm the top seal potential of the Timboon Formation-equivalent section encountered in the recently drilled Hill-1.

A successful oil result would have a significant impact on Paaratte prospects and leads in the VIC/P52 licence and the Southern Margins in general.

1.2 GENERAL DATA

Well Name: AMRIT-1

Well Classification: Offshore Oil/Gas Exploration

Interest Holders: Santos Ltd 33.333%

Unocal 33.333% Inpex Alpha 33.333%

Participating Interests: Santos Ltd 33.333%

Unocal 33.333% Inpex Alpha 33.333%

Operator: Santos Ltd.

Location: Offshore Victoria – Otway Basin VIC/P52.

Surveyed Location Latitude: 038° 56' 05.20" South (GDA94) Longitude: 141° 44' 07.08" East

Easting: 563729.6m Northing: 5690204.1m

Seismic Location: Inline 7404, Crossline 1967

Seismic Survey: OS02 3D Survey

Elevations: Water Depth -1396m AHD (Australian Height Datum)

Rotary Table +29.0m LAT

Total Depth: Driller: 2979m RT

Logger: 2948m RT (Hung up)

Status: Plugged and Abandoned

License: VIC/P52 Offshore Victoria

Date Drilling Commenced: 17:15 hours on 20th November 2004.

Date Drilling Completed: 03:30 hours on 7th December 2004.

Date Rig Released: 16:00 hours on 17th December 2004.

Total Well Time: 26.95 days

Contractor: Transocean

Rig: Jack Bates (semi-submersible)

1.3 DRILLING SUMMARY

(a) <u>Drilling Summary</u> (All Depths Driller's RT)

Amrit-1 was spudded at 17:15 hrs on the 20th of November 2004 utilising the semi-submersible drilling facility "Jack Bates". 760mm (30") conductor and 660mm (26") BHA was run with the Drillquip CADA tool on drillpipe and the conductor jetted with the shoe at 1509.5m.

Bit 1, a 660mm (26") Smith MSDS rock bit, drilled the 660mm (26") phase from 1510m to section total depth at 1835m. Returns were to the seafloor. A string of 762mm (20") (198 kg/m X56) casing was run and set at 1822m. The blowout preventers were run and installed on the marine riser and tested.

Bit 2, a Tricone Reed T11C was run in hole to tag the cement top at 1807m and was used to drill the entire 445mm (17.5") hole section from 1835m to 2459m. The hole was circulated clean and swept with hi-viscosity gel. While pulling out of hole, tight hole was observed. The bit was then pumped out of the hole to the casing shoe where sweeps were pumped to assist hole cleaning. The bit was run back to bottom on a wiper trip and the hole circulated clean. The bit was then pulled out of the hole. A string of 340mm (13.375") (101 kg/m L80 TER) casing was run and set at 2454m. The casing running tool was released and laid out along with the cement head. The 445mm (17.5") BHA was laid out.

Thereafter, a 311 mm (12.25") BHA with PDC Bit 3, Hughes HCM606Z was run in hole along with MWD tools and motor to tag top of cement at 2414m. The cement plugs, cement, casing shoe, rathole and 3m of new hole from 2459m to 2462 m were drilled. The hole was displaced to 1.12 SG (9.3ppg) and circulated clean. A Leak-off Test was performed to 1.60 SG (13.3ppg) EMW. The 311mm (12.25") hole was then drilled from 2462m to 2695m where poor penetration rates required a bit change. Bit #4, Reed-Hycalog DSX104 was run in hole and drilling continued from 2695m to the Total Depth of 2979m which was reached at 03:30hrs on the 7th of December 2004. The entire well 1425m to 2979m was logged while drilling with Anadrill Schlumberger MWD CDR-Powerpulse tools to record Gamma Ray, Resistivity, Annular Pressure and Deviation Survey data.

At Total Depth wireline logs were recorded as outlined in the Wellcard. After rigging down wireline logging, Amrit-1 was plugged and abandoned and the rig was released at 16:00 hours on December 17, 2004.

(b) <u>Mudlogging Services</u>

Mudlogging services were provided by Baker Hughes Inteq Unit 431 with the following parameters monitored:

- 1. Total Gas
- 2. Chromatographic Gas Breakdown
- 3. Hydrogen Sulphide Levels
- 4. Depth/Rate of Penetration
- 5. Pipe Speed/Block Position
- 6. Top drive RPM
- 7. Top drive Torque
- 8. Hook Load/Weight On Bit
- 9. Standpipe Pressure
- 10. Casing Shut-in Pressure
- 11. Mud Pump Rate (3 pumps)
- 12. Mud Flow Out
- 13. Mud Pit Levels (18 pits)
- 14. Mud Weight In and Out
- 15. Mud Temperature In and Out
- 16. Carbon Dioxide levels

Ditch cuttings were collected at 5m intervals in the 445mm (17.5") phase from 1835m to section total depth of 2459m. In the 311mm (12.25") section samples were collected in 3m intervals. However fast drilling rates required the sampling interval to be increased to 6m as necessary. In the zones of interest, samples were collected at 3m intervals. In addition to microscopic examination of all drilled cuttings, samples were subjected to fluoroscope examination.

At the end of Amrit-1, the rig was towed to Western Australia to begin work for another operator. Due to lack of time to dry and process the washed cuttings onboard the "Jack Bates", wet cuttings were sent to the Baker Hughes Inteq facility in Perth for processing. At the time of writing this report, the Sample Manifest was not available for inclusion in the Basic Data Report, but will be available from the Santos Operations Geologist in due course.

(c) MWD Data

Measurement while drilling (MWD) was acquired by Anadrill-Schlumberger in Amrit-1. The CDR / Powerpulse was used while drilling from the seabed at 1425m to Total Depth at 2979m. Gamma Ray, Resistivity, Annular Pressure and Deviation Survey data were acquired in 4 runs. Anadrill Schlumberger's detailed report is attached in Section 3.4: MWD/LWD END OF WELL REPORT

(d) <u>Testing</u>

No production tests were conducted at the Amrit-1 location.

(e) Coring

No full hole cores were cut at the Amrit-1 location.

(f) <u>Biostratigraphy</u>

No Palaeontology studies were conducted onboard during the drilling of Amrit-1. However, cuttings samples were sent to town for micro-palaeontology studies. The preliminary Palaeontology report is attached in Section 2.3: PRELIMINARY PALAEONTOLOGY REPORT

(g) <u>Electric Logging</u>

Electric Logging Services were provided by Schlumberger Wireline Services. One suite of electric logs were attempted at Amrit-1 as follows:

TYPE OF LOG	FROM	TO	REPEAT	TIME SINCE	BHT
	(m)	(m)	SECTION	LAST CIRC	
RUN 1: PEX-HALS-DSI					
GR	2945	2454	Down log	22.25 hrs	56.11°C
Resistivity	2945	2454			
SP	2945	2454			
Caliper	2945	2454			
Dt (Full waveforms)	2945	2454			
X-Y Neutron-Density (Dual axis)	2945	2454			
RUN 2: VSP (50m Intervals)	2940	1790		34.25 hrs	62.2 °C
RUN 3: SWC	2925m	2494m			
One gun -30 shots					
Recovered 21, 3 Misfire, 6 Empty.					

(h) <u>Pressure Data</u>

No Pressure survey was conducted at the Amrit-1 location.

(i) Hole Deviation

Amrit-1 was drilled as a vertical hole with the maximum deviation being 1.07° at 1454m and generally being below 1° throughout the well. Survey data are presented in Section 15: DEVIATION SURVEYS.

At Total Depth, the estimated displacement was 12.6m towards 232.8°T direction. At total depth it is estimated that the TVD would be 2978.94m.

(j) <u>Velocity Surveys</u>

A Velocity Checkshot survey was conducted as part of the logging suite. Checkshots were recorded at 50m intervals.

(k) <u>Casing & Cementing Summary</u>

The following Table summarises casing sizes, depths and cementing details for Amrit-1. Casing and Cementing Reports for each casing run are detailed in Section 11: CASING & CEMENTING SUMMARY.

HOLE SIZE	HOLE DEPTH	CASING SIZE	CASING DEPTH	JOINTS	CASING TYPE	CEMENT
660mm (26")	1835m	508mm (20")	1822m	33	198 kg/m X56	Lead: 1662 sacks ABC Class "G" cement of total volume 105m3, mixed to a slurry weight of 1.5sg. Tail: 717 sacks ABC Class "G" cement of total volume 24m3, mixed to a slurry weight of 1.9sg.
445mm (17.5")	2459m	340mm (13.375")	2454m	81	101kg/m L80 TER	Lead: 810 sacks ABC Class "G" cement of total volume 52m3, mixed to a slurry weight of 1.5sg. Tail: 380 sacks ABC Class "G" cement of total volume 12.9m3, mixed to a slurry weight of 1.9sg.
311mm (12.25")	2979m	-	-	-	-	-

Santos	Well Completion Report Volume 1 Basic
NO.	Well completion respect volume 1 Busic
	SECTION 2:- LITHOLOGICAL DESCRIPTIONS

Santos	Well Completion Report Volume 1 Basic				

2.1 <u>AMRIT-1 - LITHOLOGICAL DESCRIPTIONS</u>

From (m)	To (m)	0/0	Description
1835	1838	90 10	CEMENT MARL: Very light grey to light green grey, very argillaceous, very soft to dispersive, sticky, amorphous, sub-blocky.
1838	1840	60 40	CEMENT MARL: Very light – light grey, off-white, very argillaceous, dispersive, minor soft, amorphous, rarely subblocky.
1840	1845	40 60	CEMENT MARL: Very light – light grey, off-white, very argillaceous, dispersive, minor soft, amorphous, rarely subblocky.
1845	1850	30 70	CEMENT MARL: Very light – light grey, off-white, very argillaceous, very soft, minor amorphous, subblocky.
1850	1855	30 70	CEMENT MARL: Very light – light grey, off-white, very argillaceous, very soft, minor amorphous, subblocky.
1855	1870	-	NO RETURNS
1870	1875	5 95	CEMENT MARL: Very light grey – light grey, light green grey, predominantly argillaceous, minor arenaceous, trace fossil fragments, very soft – soft, subblocky.
1875	1880	100	MARL: Very light grey – light grey, light green grey, predominantly argillaceous, minor arenaceous, very soft – soft, subblocky.
1880	1885	100	MARL: Very light grey – light grey, light green grey, predominantly argillaceous, minor arenaceous, very soft – soft, subblocky.
1885	1890	-	NO RETURNS
1890	1895	100	MARL: Very light grey – light grey, light green grey, very argillaceous, trace Glauconite, dispersive to soft, amorphous – subblocky, grades to Calcareous Claystone.
1895	1900	100	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, very soft – soft, subblocky.
1900	1905	100	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, very soft – soft, subblocky, grades to Marl.

From (m)	To (m)	%	Description
1905	1910	100	CALCAREOUS CLAYSTONE: Light grey, off-white, rare medium dark grey, trace glauconite, very soft – soft, subblocky, grades to Marl.
1910	1915	100	CALCAREOUS CLAYSTONE: Light grey, off-white, rare medium dark grey, trace glauconite, trace fossil fragment, very soft – soft, subblocky, commonly grades to Marl.
1915	1920	100	CALCAREOUS CLAYSTONE: Light grey, off-white, green grey, common calcite grains, dispersive – very soft, rarely soft, predominantly amorphous, minor subblocky, commonly grades to Marl.
1920	1925	100	CALCAREOUS CLAYSTONE: Very light grey – light grey, off-white, common calcite grains, dispersive – soft, amorphous – subblocky.
1925	1930	100	CALCAREOUS CLAYSTONE: Very light grey – light grey, off-white, common calcite grains, dispersive – soft, amorphous – subblocky, commonly grades to Marl.
1930	1935	100	CALCAREOUS CLAYSTONE: Light grey, off-white, green grey, olive grey, common calcite grains, dispersive to very soft, rarely soft, predominantly amorphous, minor subblocky, commonly grades to Marl.
1935	1940	100	CALCAREOUS CLAYSTONE: Light grey, off-white, green grey, olive grey, common calcite grains, dispersive - soft, rarely firm, predominantly amorphous, minor subblocky, commonly grades to Marl.
1940	1945	100	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, rarely green grey, soft – firm, minor dispersive, subblocky, rarely grades to Marl.
1945	1950	100	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, rarely dark green grey, soft – firm, minor dispersive, subblocky, rarely grades to Marl.
1950	1955	100	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, rarely dark green grey, trace pyrite, trace foraminifers, firm, minor soft – dispersive, subblocky, rarely blocky.
1955	1960	100 trace	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, rarely dark green grey, trace pyrite, trace foraminifers, firm, minor soft – dispersive, subblocky, rarely blocky. CALCILUTITE: Off-white, abundant calcite crystals, moderately hard, blocky.

From (m)	To (m)	%	Description
1960	1965	95	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, trace glauconite, firm, minor soft – dispersive, subblocky, rarely blocky.
		5	CALCILUTITE: Off-white, abundant calcite crystals, moderately hard, subblocky - blocky.
1965	1970	95	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, trace glauconite, firm, minor soft – dispersive, subblocky, rarely blocky.
		5	CALCILUTITE: Predominantly light olive green, minor very light grey, abundant calcite crystals, moderately hard - hard, subblocky - blocky.
1970	1975	90	CALCAREOUS CLAYSTONE: Very light grey, light grey, off-white, trace glauconite, firm, minor soft – dispersive, subblocky, rarely blocky.
		10	CALCILUTITE: Light olive green, abundant calcite crystals, moderately hard - hard, blocky.
1975	1980	85	CALCAREOUS CLAYSTONE: Very light grey – light grey, trace glauconite, soft – firm, subblocky.
		15	CALCILUTITE: Light olive grey, very light grey, very argillaceous, moderately hard – hard, blocky.
1980	1985	95	CALCAREOUS CLAYSTONE: Very light grey – light grey, trace glauconite, soft – firm, subblocky.
		5	CALCILUTITE: Light olive grey, very light grey, very argillaceous, moderately hard – hard, blocky.
1985	1990	80	CALCAREOUS CLAYSTONE: Very light grey – light grey, trace glauconite, soft – firm, subblocky.
		20	CALCILUTITE: Light olive grey, very light grey, very argillaceous, moderately hard – hard, blocky.
1990	1995	90	CALCAREOUS CLAYSTONE: Very light grey – light grey, trace glauconite, soft – firm, subblocky.
		10	CALCILUTITE: Light olive grey, very light grey, very argillaceous, moderately hard – hard, blocky.
1995	2000	90	CALCAREOUS CLAYSTONE: Very light grey – light grey, trace glauconite, soft – firm, subblocky.
		10	CALCILUTITE: Light olive grey, very light grey, very argillaceous, moderately hard – hard, blocky.
2000	2005	50	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, soft to firm, amorphous to dispersive,
		50	subblocky CALCILUTITE: White to very light grey, micritic, soft, amorphous

From (m)	To (m)	%	Description
2005	2010	50	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		40 10	CALCILUTITE: White to very light grey, micritic, soft, amorphous SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity
2010	2015	60	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, soft to firm, amorphous to dispersive, subblocky
		40	CALCILUTITE: White to very light grey, micritic, soft, amorphous
2015	2020	70	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		20	CALCILUTITE: White to very light grey, micritic, soft, amorphous
		10	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity
2020	2025	80	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		10	CALCILUTITE: White to very light grey, micritic, soft, amorphous
		10	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity
2025	2030	80	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		10	CALCILUTITE: White to very light grey, micritic, soft, amorphous
		10	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity
2030	2035	70	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to
		10	dispersive, subblocky CALCILUTITE: White to very light grey, micritic, soft, amorphous
		20	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity

From (m)	To (m)	%	Description
2035	2040	75	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		5	CALCILUTITE: White to very light grey, micritic, soft, amorphous SANDSTONE: Clear to translucent, medium to coarse grained,
		20	subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity
2040	2045	65	CALCAREOUS CLAYSTONE: Brown grey to green grey, calcareous, abundant disseminated glauconite, trace pyrite, soft to
		30	firm, amorphous to dispersive, subblocky SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity
		5	CALCILUTITE: White to very light grey, micritic, soft, amorphous
2045	2050	75	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		20	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity
		5	CALCILUTITE: White to very light grey, micritic, soft, amorphous
2050	2055	75	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		20	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, moderately sorted, common loose quartz, fair visual porosity
		5	CALCILUTITE: White to very light grey, micritic, soft, amorphous
2055	2060	65	CALCAREOUS CLAYSTONE: Brown grey to green grey, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		30	SANDSTONE: Clear to translucent, medium to coarse grained, subangular to subrounded, occasionally angular, moderately sorted, trace glauconite, common loose quartz, fair visual porosity CALCILUTITE: White to very light grey, micritic, soft, amorphous
		5	CALCIDE TITE. White to very light grey, illicities, soft, unforphous
2060	2065	70	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		30	SANDSTONE: Clear to translucent, medium to fine grained, occasionally coarse grained, subangular to subrounded, moderate to poorly sorted, common loose quartz, fair to good visual porosity, no shows.

From (m)	To (m)	%	Description
2065	2070	80	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky SANDSTONE: Clear to translucent, medium to fine grained, occasionally coarse grained, subangular to subrounded, moderate to poorly sorted, common loose quartz, fair to good visual porosity, no shows.
2070	2075	5 85 10	CALCILUTITE: White to very light grey, micritic, soft, amorphous CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky SANDSTONE: Clear to translucent, medium to fine grained, occasionally coarse grained, subangular to subrounded, moderate to poorly sorted, common loose quartz, fair to good visual porosity, no shows.
2075	2080	5 90 5	CALCILUTITE: White to very light grey, micritic, soft, amorphous CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky SANDSTONE: Clear to translucent, medium to fine grained, locally coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2080	2085	5 95	CALCILUTITE: White to very light grey, micritic, soft, amorphous CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
2085	2090	5 90 5	CALCILUTITE: White to very light grey, micritic, soft, amorphous CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky SANDSTONE: Clear to translucent, medium to fine grained, locally coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2090	2095	60 40	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky SANDSTONE: Clear to translucent, medium to fine grained, locally coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.

From (m)	To (m)	%	Description
2095	2100	60	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		40	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2100	2105	90	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		10	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2105	2110	90	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		10	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2110	2115	80	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		20	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2115	2120	80	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		20	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2120	2125	90	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		10	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2125	2130	90	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		10	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.

From (m)	To (m)	%	Description
2130	2135	95 5	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in
			part, common loose quartz, fair to good visual porosity, no shows.
2135	2140	95	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		5	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2140	2145	95	CLAYSTONE: Brown grey to green grey, calcareous, silty in part, abundant disseminated glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky
		5	SANDSTONE: Clear to translucent, fine to coarse grained, subangular to subrounded, moderate to poorly sorted, argillaceous in part, common loose quartz, fair to good visual porosity, no shows.
2145	2150	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, soft, sticky, dispersive in part, sub-blocky
		trace	SANDSTONE: transparent, loose clean quartz grains, fine to medium grains, moderately sorted, subrounded to rounded, argillaceous in part, trace disseminated pyrite, trace glauconite, well inferred porosity, no shows.
2150	2155	100	CLAYSTONE: Light brown grey to brown grey, grading to Siltstone, trace disseminated pyrite, soft, dispersive in part, slightly streaky, amorphous, subblocky, homogeneous
2155	2160	100	CLAYSTONE: Light brown grey to brown grey, grading to Siltstone, trace disseminated pyrite, trace lithic fragments, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2160	2165	100	CLAYSTONE: Light brown grey to brown grey, grading to Siltstone, trace to common glauconite aggregates, trace disseminated pyrite, trace lithic fragments, soft, dispersive in part, slightly sticky, amorphous, subblocky, homogeneous
2165	2170	100	CLAYSTONE: Light brown grey to brown grey, grading to Siltstone, trace to common glauconite aggregates, trace disseminated pyrite, trace lithic fragments, soft, dispersive in part, slightly sticky, amorphous, subblocky, homogeneous

From (m)	To (m)	%	Description
2170	2175	100	CLAYSTONE: Light brown grey to brown grey, grading to Siltstone, trace to common glauconite aggregates, trace disseminated pyrite, trace fine quartz grains, trace lithic fragments, soft, dispersive in part, slightly sticky, amorphous, subblocky, homogeneous
2175	2180	100	CLAYSTONE: Light brown grey to brown grey, grading to Siltstone, trace to common glauconite aggregates, trace disseminated pyrite, trace lithic fragments, trace fine quartz grains, soft, dispersive in part, slightly sticky, amorphous, subblocky, homogeneous
2180	2185	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, trace to common glauconite aggregates, trace disseminated pyrite, trace lithic fragments, trace fine quartz grains, rare fossil fragment, soft, dispersive in part, slightly sticky, amorphous, subblocky, homogeneous
2185	2190	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, trace to common glauconite aggregates, trace disseminated pyrite, trace lithic fragments, trace fine quartz grains, rare fossil fragment, soft, dispersive in part, slightly sticky, amorphous, subblocky, homogeneous
2190	2195	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, trace to common glauconite aggregates, trace disseminated pyrite, trace lithic fragments, trace fine quartz grains, rare fossil fragment, soft, dispersive in part, slightly sticky, amorphous, subblocky, homogeneous
2195	2200	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, trace to common glauconite aggregates, trace disseminated pyrite, trace lithic fragments, trace fine quartz grains, rare fossil fragment, soft, dispersive in part, slightly sticky, amorphous, subblocky, homogeneous
2200	2205	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft, dispersive in part, sticky in part, amorphous, subblocky, homogeneous
2205	2210	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft, dispersive in part, sticky in part, amorphous, subblocky, homogeneous
2210	2215	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft, dispersive in part, sticky in part, amorphous, subblocky, homogeneous

From (m)	To (m)	%	Description
2215	2220	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft, dispersive in part, sticky in part, amorphous, subblocky, homogeneous
2220	2225	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft, dispersive in part, sticky in part, amorphous, subblocky, homogeneous
2225	2230	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft-slightly firm, dispersive in part, sticky, amorphous, subblocky, homogeneous
2230	2235	100	CLAYSTONE: Light brown grey – brown grey, silty in part, trace foraminifers, trace mica, trace glauconite, rarely very fine quartz grains, dispersive – soft, amorphous, rarely subblocky, sticky.
2235	2240	100	CLAYSTONE: Light brown grey – brown grey, silty in part, trace foraminifers, trace mica, trace glauconite, rarely very fine quartz grains, dispersive – soft, amorphous, rarely subblocky, sticky.
2240	2245	100	CLAYSTONE: Light brown grey – brown grey, silty in part, trace foraminifers, trace mica, trace glauconite, rarely very fine quartz grains, dispersive – soft, amorphous, rarely subblocky, sticky.
2245	2250	100	CLAYSTONE: Light brown grey – brown grey, silty in part, trace glauconite, dispersive – soft, amorphous, rarely subblocky.
2250	2255	100	CLAYSTONE: Light brown grey – brown grey, silty in part, trace glauconite, very soft– soft, minor dispersive, subblocky, minor amorphous.
2255	2260	100	CLAYSTONE: Light brown grey – brown grey, silty in part, minor fine grained quartz grains, very soft– soft, subblocky.
2260	2265	100	CLAYSTONE: Light brown grey – brown grey, silty in part, minor silty, very soft– soft, subblocky.
2265	2270	100	CLAYSTONE: Light brown grey – brown grey, silty in part, minor silt sized quartz grains, trace pyrite, very soft– soft, subblocky.
2270	2275	100	CLAYSTONE: Light brown grey – brown grey, trace pyrite, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2275	2280	100	CLAYSTONE: Light brown grey – brown grey, trace pyrite, dispersive, minor very soft, amorphous, plastic, minor subblocky.

From (m)	To (m)	0/0	Description
2280	2285	100	CLAYSTONE: Light brown grey – brown grey, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2285	2290	100	CLAYSTONE: Light brown grey – brown grey, rare fine – coarse quartz grains, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2290	2295	100	CLAYSTONE: Light brown grey – brown grey, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2295	2300	100	CLAYSTONE: Light brown grey – brown grey, dispersive, trace pyrite, minor very soft, amorphous, plastic, minor subblocky.
2300	2305	100	CLAYSTONE: Light brown grey – brown grey, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2305	2310	100	CLAYSTONE: Light brown grey – brown grey, dispersive, trace pyrite, minor very soft, amorphous, plastic, minor subblocky.
2310	2315	100	CLAYSTONE: Light brown grey – brown grey, dispersive, trace pyrite, minor very soft, amorphous, plastic, minor subblocky.
2315	2320	100	CLAYSTONE: Light brown grey – brown grey, dispersive, trace pyrite, minor very soft, amorphous, plastic, minor subblocky.
2320	2325	100	CLAYSTONE: Light brown grey – brown grey, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2325	2330	100	CLAYSTONE: Light brown grey – brown grey, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2330	2335	100	CLAYSTONE: Light brown grey – brown grey, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2335	2340	100	CLAYSTONE: Light brown grey – brown grey, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2340	2345	100	CLAYSTONE: Light brown grey – brown grey, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2345	2350	100	CLAYSTONE: Light brown grey – brown grey, trace glauconite, dispersive, minor very soft, amorphous, plastic, minor subblocky.
2350	2355	100	CLAYSTONE: Light brown grey – brown grey, trace glauconite, dispersive, minor very soft, amorphous, plastic, minor subblocky.

From (m)	To (m)	0/0	Description
2355	2360	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft-slightly firm, dispersive in part, sticky, amorphous, subblocky, homogeneous
2360	2365	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft-slightly firm, dispersive in part, sticky, amorphous, subblocky, homogeneous
2365	2370	100	CLAYSTONE: Light brown grey to brown grey, non calcareous, rare glauconite, trace pyrite, trace lithic fragments, rare fine quartz grains, soft-slightly firm, dispersive in part, sticky, amorphous, subblocky, homogeneous
2370	2375	100	CLAYSTONE: Brown grey to olive grey, non calcareous, rare pyrite, rare lithic fragments, rare very fine quartz grains, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2375	2380	100	CLAYSTONE: dominant brown grey to olive grey, non calcareous, rare pyrite, rare lithic fragments, rare very fine quartz grains, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2380	2385	100	CLAYSTONE: Brown grey to olive grey, non calcareous, rare pyrite, rare micro glauconite, rare lithic fragments, rare very fine quartz grains, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2385	2390	100	CLAYSTONE: Commonly brown grey to olive grey, non calcareous, rare pyrite, rare micro glauconite, rare lithic fragments, rare very fine quartz grains, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2390	2395	100	CLAYSTONE: Brown grey to olive grey, non calcareous, rare micro glauconite, rare lithic fragments, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2395	2400	100	CLAYSTONE: Predominantly brown grey to olive grey, trace pale yellowish brown, non calcareous, rare micro glauconite, rare lithic fragments, rare crystalline calcite, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2400	2405	100	CLAYSTONE: Predominantly brown grey to pale yellowish brown, non calcareous, rare micro glauconite, rare lithic fragments, rare white crystalline calcite, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous

From (m)	To (m)	%	Description
2405	2410	100	CLAYSTONE: Predominantly brown grey to pale yellowish brown, non calcareous, rare micro glauconite, rare lithic fragments, rare white crystalline calcite, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2410	2415	100	CLAYSTONE: Predominantly brown grey to pale yellowish brown, non calcareous, rare micro glauconite, rare lithic fragments, rare white crystalline calcite, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2415	2420	100	CLAYSTONE: Predominantly brown grey to pale yellowish brown, non calcareous, rare micro glauconite, rare lithic fragments, rare white crystalline calcite, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2420	2425	100	CLAYSTONE: Predominantly brown grey to pale yellowish brown, non calcareous, rare micro glauconite, rare lithic fragments, rare white crystalline calcite, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2425	2430	100	CLAYSTONE: Predominantly brown grey to pale yellowish brown, non calcareous, rare micro glauconite, rare lithic fragments, rare white crystalline calcite, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2430	2435	100	CLAYSTONE: Brown grey to pale yellowish brown, non calcareous, rare micro glauconite, rare lithic fragments, rare white crystalline calcite, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2435	2440	100	CLAYSTONE: Brown grey to pale yellowish brown, non calcareous, rare lithic fragments, soft, dispersive in part, sticky, amorphous, subblocky, homogeneous
2440	2445	100	CLAYSTONE: Brown grey to olive brown, non calcareous, soft, dispersive in part, slightly sticky, amorphous, subblocky
2445	2450	100	CLAYSTONE: Brown grey to olive brown, non calcareous, soft, dispersive in part, slightly sticky, amorphous, subblocky
2450	2455	100	CLAYSTONE: Brown grey to olive brown, non calcareous, rare white calcite grains, soft, dispersive in part, slightly sticky, amorphous, subblocky
2455	2459	100	CLAYSTONE: Brown grey to olive brown, non calcareous, rare white calcite grains, rare very fine grains sand, soft, dispersive in part, slightly sticky, amorphous, subblocky

From	To	%	Description
(m)	(m)		
2459	2463	30 40	CEMENT SILTSTONE: Dark grey brown, argillaceous to very finely arenaceous, occasionally pyrite nodules, minor glauconite, micro-
		30	micaceous and carbonaceous in part, firm to moderately hard, subfissile in part CLAYSTONE: Olive brown to light grey brown, dispersive, carbonaceous fragments in part, occasionally lithic fragments, soft, sub-blocky, amorphous
2463	2466	60	CLAYSTONE: Olive brown to light grey brown, dispersive, carbonaceous fragments in part, occasionally lithic fragments, soft, sub-blocky, amorphous
		40	SILTSTONE: Dark grey brown, argillaceous to very finely arenaceous, occasionally pyrite nodules, minor glauconite, micromicaceous and carbonaceous in part, firm to moderately hard, subfissile in part.
2466	2469	70	CLAYSTONE: Light brown grey to grey, dispersive, micromicaceous and carbonaceous in part, pyrite nodules, sub-blocky, amorphous
		30	SILTSTONE: Brown to brown grey, argillaceous, occasionally white calcareous fragments, occasionally micro-micaceous, firm to hard, subblocky.
2469	2472	60	CLAYSTONE: Light brown grey to grey, dispersive, micromicaceous and carbonaceous in part, pyrite nodules, sub-blocky, amorphous
		40	SILTSTONE: Brown to brown grey, argillaceous, occasionally white calcareous fragments, occasionally micro-micaceous, firm to hard, subblocky.
2472	2475	50	CLAYSTONE: Light brown grey to grey, dispersive, micromicaceous and carbonaceous in part, pyrite nodules, sub-blocky, amorphous
		50	SILTSTONE: Brown to brown grey, argillaceous, occasionally white calcareous fragments, occasionally micro-micaceous, firm to hard, subblocky.
2475	2478	20	CLAYSTONE: Light brown grey to grey, dispersive, micromicaceous and carbonaceous in part, pyrite nodules, sub-blocky, amorphous
		80	SILTSTONE: Brown to brown grey, argillaceous, occasionally white calcareous fragments, occasionally micro-micaceous, firm to hard, subblocky.

From (m)	To (m)	%	Description
2478	2481	10	CLAYSTONE: Light brown grey to grey, dispersive, micromicaceous and carbonaceous in part, pyrite nodules, sub-blocky, amorphous
		90	SILTSTONE: Brown to brown grey, argillaceous, occasionally white calcareous fragments, occasionally micro-micaceous, firm to hard, subblocky.
2481	2484	100	SILTSTONE: Brown to brown grey, argillaceous, occasionally white calcareous fragments, occasionally micro-micaceous, firm to hard, subblocky
2484	2487	100	SILTSTONE: Brown to brown grey, argillaceous, occasionally white calcareous fragments, occasionally micro-micaceous, firm to hard, subblocky
2487	2490	100	SILTSTONE: Light brown to grey brown, argillaceous, very finely arenaceous in part, trace carbonaceous specks, micro-micaceous, minor glauconite, trace white lithics, minor pyrite, firm to soft, subblocky.
2490	2493	100	SILTSTONE: Light brown to grey brown, argillaceous, very finely arenaceous in part, trace carbonaceous specks, micro-micaceous, minor glauconite, trace white lithics, minor pyrite, firm to soft, subblocky.
2493	2496	100	SILTSTONE: Light brown to grey brown, argillaceous, very finely arenaceous in part, trace carbonaceous specks, micro-micaceous, minor glauconite, trace white lithics, minor pyrite, firm to soft, subblocky.
2496	2499	100	SILTSTONE: Light brown to grey brown, argillaceous, very finely arenaceous in part, trace carbonaceous specks, micro-micaceous, minor glauconite, trace white lithics, minor pyrite, firm to soft, subblocky.
2499	2502	100	SILTSTONE: Light brown to grey brown, argillaceous, very finely arenaceous in part, trace carbonaceous specks, micro-micaceous, minor glauconite, trace white lithics, minor pyrite, firm to soft, subblocky.
2502	2505	100	SILTSTONE: Light brown to grey brown, argillaceous, very finely arenaceous in part, trace carbonaceous specks, micro-micaceous, minor glauconite, trace white lithics, minor pyrite, firm to soft, subblocky.
2505	2508	100	SILTSTONE: Light brown to grey brown, argillaceous, very finely arenaceous in part, trace carbonaceous specks, micro-micaceous, minor glauconite, trace white lithics, minor pyrite, firm to soft, subblocky.

From (m)	To (m)	%	Description
2508	2511	100	SILTSTONE: Medium brown to medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2511	2514	100	SILTSTONE: Medium brown to medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2514	2517	100	SILTSTONE: Medium brown to medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2517	2520	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2520	2523	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2523	2526	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2526	2529	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2529	2532	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2532	2535	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2535	2538	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2538	2541	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2541	2544	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace to common glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.

From (m)	To (m)	%	Description
2544	2547	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2547	2550	100	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky.
2550	2553	70	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky. SANDSTONE: Clear to translucent quartz, fine to coarse grained,
		30	dominantly medium to coarse grained, poorly sorted, subangular to subrounded, trace moderately strong to strong siliceous and calcareous cement, trace dolomite, trace pyrite, generally loose and clean, poor visual and fair inferred porosity, trace dull to moderately bright yellow fluorescence, no cut, no residue.
2553	2556	60	SILTSTONE: Medium brown - medium brown grey, argillaceous, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, trace calcite grains, trace dolomite, firm, subblocky. SANDSTONE: Clear to translucent quartz, fine to very coarse
		40	grained, dominantly medium to coarse grained, poorly sorted, subangular to subrounded, calcareous cement, trace pyrite, trace dolomite, moderately hard in part, generally loose and clean, poor visual porosity, fair inferred porosity, trace dull to moderately bright yellow patchy fluorescence, no cut, no residue.
2556	2559	60	SANDSTONE: Clear to translucent quartz, fine to very coarse grained, dominantly medium to coarse grained, poorly sorted, subangular to subrounded, trace strong siliceous cement, common calcareous cement, trace pyrite, trace dolomite, trace to moderately hard, generally loose and clean, fair inferred porosity, trace dull to moderately bright yellow patchy fluorescence, no cut, thin residue. SILTSTONE: Medium brown to medium brown grey, argillaceous,
		40	minor very finely arenaceous, trace to locally common glauconite grains, trace nodular pyrite, trace calcareous grains, trace hard dolomite, firm, subblocky.
2559	2562	80	SILTSTONE: Medium brown to brown grey, light brown grey in part, argillaceous grading to Claystone, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, firm, subblocky. SANDSTONE: Clear to translucent quartz, fine to very coarse
		20	grained, dominantly medium to coarse grained, poorly sorted, subangular to subrounded, trace strong siliceous cement, common calcareous cement, trace pyrite, trace dolomite, trace moderately hard, generally loose and clean, fair inferred porosity, trace dull to moderately bright yellow patchy fluorescence, no cut, thin residue.

From (m)	To (m)	%	Description
2562	2565	70	SILTSTONE: Medium brown to brown grey, light brown grey in part, argillaceous grading to Claystone, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, firm, subblocky. SANDSTONE: Clear to translucent quartz, pale grey, medium to
		30	very coarse grained, moderate to poorly sorted, subangular to dominantly subrounded, trace strong siliceous cement, common calcareous cement, trace pyrite, trace dolomite, moderately hard, generally loose and clean, fair inferred porosity, no shows.
2565	2568	80	SILTSTONE: Medium brown to brown grey, light brown grey in part, argillaceous grading to Claystone, minor very finely arenaceous, trace glauconite grains, trace nodular pyrite, firm, subblocky. SANDSTONE: Clear to translucent quartz, pale grey, fine to coarse
		20	grained, occasionally very coarse grained, poorly sorted, subangular to dominantly subrounded, trace strong siliceous cement, common calcareous cement, minor argillaceous matrix, trace pyrite, moderately hard in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.
2568	2571	90	SILTSTONE: Lt grey to light brown grey, light brown grey in part, argillaceous, grading to Claystone, very finely arenaceous in part, trace black lithic fragments, firm to mod hard, subblocky. SANDSTONE: Clear to translucent quartz, pale grey, fine to coarse
		10	grained, occasionally very coarse grained, poorly sorted, subangular to dominantly subrounded, trace strong siliceous cement, common calcareous cement, minor argillaceous matrix, trace pyrite, moderately hard in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.
2571	2574	60	SILTSTONE: Light grey to light brown grey, argillaceous, grades to Claystone, very finely arenaceous in part, trace black lithic fragments, firm to moderately hard, subblocky.
		40	SANDSTONE: Light grey, clear to translucent quartz, pale grey, fine to coarse grained, moderate to poorly sorted, subangular, moderately strong calcareous cement, minor light grey to off-white argillaceous matrix, moderately hard in part, friable in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.
2574	2577	90	SILTSTONE: Light brown, grey, argillaceous, grades to Claystone, micro-micaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine sandstone, firm to moderately hard, subblocky.
		10	SANDSTONE: Light grey, clear to translucent quartz, pale grey, fine to coarse grained, moderate to poorly sorted, subangular, moderately strong calcareous cement, minor light grey to off-white argillaceous matrix, moderately hard, friable in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.

From (m)	To (m)	%	Description
2577	2580	20	SILTSTONE: Light brown, grey, argillaceous, grades to Claystone, micro-micaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine sandstone, firm to moderately hard, subblocky. SANDSTONE: Light grey, clear to translucent quartz, pale grey, fine to coarse grained, moderate to poorly sorted, subangular, moderately strong calcareous cement, minor light grey to off-white argillaceous matrix, moderately hard, friable in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.
2580	2583	90	SILTSTONE: Light brown, grey, argillaceous, grades to Claystone, micro-micaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine sandstone, firm to moderately hard, subblocky. SANDSTONE: Lt grey, clear to translucent quartz, pale grey, fine to coarse grained, moderate to poorly sorted, subangular, moderately strong calcareous cement, minor light grey to off-white argillaceous matrix, moderately hard, friable in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.
2583	2586	95 5	SILTSTONE: Light brown, grey, argillaceous, grades to Claystone, micro-micaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine sandstone, firm to moderately hard, subblocky. SANDSTONE: Lt grey, clear to translucent quartz, pale grey, fine to coarse grained, moderate to poorly sorted, subangular, moderately strong calcareous cement, minor light grey to off-white argillaceous matrix, moderately hard, friable in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.
2586	2589	100 trace	SILTSTONE: Light brown, grey, argillaceous, grades to Claystone, micro-micaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine sandstone, firm to moderately hard, subblocky. SANDSTONE: Light grey, clear to translucent quartz, pale grey, fine to coarse grained, moderate to poorly sorted, subangular, moderately strong calcareous cement, minor light grey to off-white argillaceous matrix, moderately hard, friable in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.
2589	2592	100	SILTSTONE: Light brown, grey, argillaceous, grades to Claystone, micro-micaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine sandstone, firm to moderately hard, subblocky.
2592	2595	100	SILTSTONE: Light brown, grey, argillaceous, grades to Claystone, micro-micaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine sandstone, firm to moderately hard, subblocky.

From (m)	To (m)	0/0	Description
2595	2598	100	SILTSTONE: Light brown, grey, argillaceous, grades to Claystone, micro-micaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine sandstone, firm to moderately hard, subblocky.
2598	2601	90	SILTSTONE: Light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, micromicaceous, firm to moderately hard, subblocky SANDSTONE: Light grey, clear, fine to coarse grained, dominant
		10	medium to coarse grained, moderately sorted, locally common light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2601	2604	80	SILTSTONE: Light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, micromicaceous, firm to moderately hard, subblocky
		20	SANDSTONE: Light grey, clear, fine to coarse grained, dominant medium to coarse grained, moderately sorted, locally common light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2604	2607	90	SILTSTONE: Light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, micromicaceous, firm to moderately hard, subblocky SANDSTONE: Light grey, clear, fine to coarse grained, dominant
		10	medium to coarse grained, moderately sorted, locally common light grey to off-white argillaceous matrix, poor visual porosity
2607	2610	90	SILTSTONE: Light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, micromicaceous, firm to moderately hard, subblocky
		10	SANDSTONE: Light grey, clear, fine to coarse grained, dominant medium to coarse grained, moderately sorted, locally common light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2610	2613	70	SILTSTONE: Light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, micromicaceous, firm to moderately hard, subblocky
		30	SANDSTONE: Light grey, clear, fine to coarse grained, dominant medium to coarse grained, moderately sorted, locally common light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2613	2616	80	SILTSTONE: Light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, micromicaceous, firm to moderately hard, subblocky SANDSTONE: Very light grey, clear, fine to coarse grained,
		20	dominant fine to coarse grained, moderately sorting, argillaceous, locally light grey to off-white argillaceous matrix, poor visual porosity, no shows.

From (m)	To (m)	%	Description
2616	2619	90	SILTSTONE: Light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, micromicaceous, firm to moderately hard, subblocky SANDSTONE: Very light grey, clear, fine to coarse grained, dominant fine to coarse grained, moderately sorting, argillaceous, locally light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2619	2622	70 30	SILTSTONE: Light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, micromicaceous, firm to moderately hard, subblocky SANDSTONE: Very light grey, clear, fine to coarse grained, dominant fine to coarse grained, moderately sorting, argillaceous, locally light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2622	2625	70 30	SILTSTONE: Dominantly light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, trace micro-micaceous, moderately hard, subblocky SANDSTONE: Very light grey, translucent, fine to coarse grained, dominant medium to coarse grained, moderately sorting, argillaceous, locally light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2625	2628	60 40	SILTSTONE: Dominantly light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, trace micro-micaceous, moderately hard, subblocky SANDSTONE: Very light grey, translucent, fine to coarse grained, dominant medium to coarse grained, moderately sorting, argillaceous, locally light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2628	2631	20	SILTSTONE: Dominantly light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, trace micro-micaceous, moderately hard, subblocky SANDSTONE: Very light grey, translucent, fine to coarse grained, dominant medium to coarse grained, moderately sorting, argillaceous, locally light grey to off-white argillaceous matrix, poor visual porosity, no shows.
2631	2634	90	SILTSTONE: Dominantly light brown grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, trace micro-micaceous, moderately hard, subblocky SANDSTONE: Very light grey, translucent, fine to coarse grained, dominant medium to coarse grained, moderately sorting, argillaceous, locally light grey to off-white argillaceous matrix, poor visual porosity, no shows.

From (m)	To (m)	%	Description
2634	2637	90	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky SANDSTONE: Very light grey to translucent, fine to medium
		10	grained, dominant medium grained, moderate to well sorting, occasionally white to very light grey argillaceous matrix, moderately strong siliceous cement, poor visual porosity, no shows.
2637	2640	90	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
		10	SANDSTONE: Very light grey to translucent, fine to medium grained, dominant medium grained, moderate to well sorting, occasionally white to very light grey argillaceous matrix, moderately strong siliceous cement, poor visual porosity, no shows.
2640	2643	90	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
		10	SANDSTONE: Very light grey to translucent, fine to medium grained, dominant medium grained, moderate to well sorting, occasionally white to very light grey argillaceous matrix, moderately strong siliceous cement, poor visual porosity, no shows.
2643	2646	90	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
		10	SANDSTONE: Very light grey to translucent, fine to medium grained, dominant medium grained, moderate to well sorting, occasionally white to very light grey argillaceous matrix, moderately strong siliceous cement, poor visual porosity, no shows.
2646	2649	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2649	2652	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2652	2655	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2655	2658	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky

From (m)	To (m)	0/0	Description
2658	2661	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2661	2664	100 trace	SILTSTONE: Light brown grey to dark grey, very argillaceous to very finely arenaceous, grading to Claystone, abundant black carbonaceous specks, rare pyrite, trace micro-micaceous, slightly sticky, firm, moderately hard, subblocky SANDSTONE: Translucent to transparent, fine to medium grained, dominant medium grained, moderate to well sorted, occasionally white to very light grey argillaceous matrix, moderately strong siliceous cement, poor visual porosity, no shows.
2664	2667	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2667	2670	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2670	2673	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2673	2676	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2676	2679	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2679	2682	100	SILTSTONE: Light brown grey to dark grey, very argillaceous to arenaceous, grading to Claystone, common carbonaceous specks, trace pyrite, trace micro-micaceous, firm, moderately hard, subblocky
2682	2685	100 trace	SILTSTONE: Brown to brown grey, argillaceous to arenaceous, grades to very fine sandstone in part, carbonaceous specks and streaks, micro-micaceous in part, trace glauconite, white lithics in part, firm to soft, dispersive, subblocky to amorphous. SANDSTONE: Clear, translucent, fine grained, subangular to subrounded, well sorted, clean loose grains, trace siliceous cement, poor visual and fair inferred porosity, no shows.

From (m)	To (m)	%	Description
2685	2688	100	SILTSTONE: Brown to brown grey, arenaceous to argillaceous grading to Claystone in part, very fine micro-micaceous, carbonaceous specks and bands, minor Pyrite, dispersive, soft to occasionally firm, subblocky to amorphous. SANDSTONE: Clear, translucent, fine grained, subangular to subrounded, well sorted, clean loose grains, trace siliceous cement, poor visual and fair inferred porosity, no shows.
2688	2691	100	SILTSTONE: Brown to brown grey, arenaceous to argillaceous grading to Claystone in part, very fine micro-micaceous, carbonaceous specks and bands, minor Pyrite, dispersive, soft to occasionally firm, subblocky to amorphous. SANDSTONE: Clear, translucent, fine grained, subangular to subrounded, well sorted, clean loose grains, trace siliceous cement, poor visual and fair inferred porosity, no shows.
2691	2694	100	SILTSTONE: Brown to brown grey, arenaceous to argillaceous grading to Claystone in part, very fine micro-micaceous, carbonaceous specks and bands, minor Pyrite, dispersive, soft to occasionally firm, subblocky to amorphous. SANDSTONE: Clear, translucent, fine grained, subangular to subrounded, well sorted, clean loose grains, trace siliceous cement, poor visual and fair inferred porosity, no shows.
2694	2697	100	SILTSTONE: Medium grey to medium brown grey, argillaceous to very finely arenaceous in part, trace carbonaceous specks, firm, sub-blocky
2697	2700	100	SILTSTONE: Medium grey to medium brown grey, argillaceous to very finely arenaceous in part, trace carbonaceous specks, firm, sub-blocky
2700	2703	100	SILTSTONE: Medium grey to medium brown grey, argillaceous to very finely arenaceous in part, trace carbonaceous specks, firm, subblocky
2703	2706	100	SILTSTONE: Medium grey to medium brown grey, argillaceous to very finely arenaceous in part, trace carbonaceous specks, firm, subblocky
2706	2709	100	SILTSTONE: Medium grey to medium brown grey, argillaceous to very finely arenaceous in part, trace carbonaceous specks, firm, sub-blocky
2709	2712	100	SILTSTONE: Medium grey to medium brown grey, argillaceous to very finely arenaceous in part, trace carbonaceous specks, firm, sub-blocky

From (m)	To (m)	%	Description
2712	2715	100	SILTSTONE: Medium grey to medium brown grey, argillaceous to very finely arenaceous in part, trace carbonaceous specks, firm, subblocky
2715	2718	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2718	2721	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2721	2724	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2724	2727	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2727	2730	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2730	2733	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm SANDSTONE: Off-white, translucent-transparent in part, very fine grained, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, firm
2733	2736	100	to hard, fair visual porosity, no shows. SILTSTONE: Arenaceous to argillaceous, grading to Claystone in
2133	2730	100	part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2736	2739	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2739	2742	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2742	2745	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm

From (m)	To (m)	0/0	Description
2745	2748	100	SILTSTONE: Arenaceous to argillaceous, grading to Claystone in part, carbonaceous specks, occasionally fine translucent quartz grains, sub-blocky to amorphous, dispersive in part, soft to firm
2748	2751	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, trace pyrite, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2751	2754	100 trace	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2754	2757	100 trace	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2757	2760	100 trace	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.

From (m)	To (m)	0/0	Description
2760	2763	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2763	2766	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2766	2769	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2767	2772	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2772	2775	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.

From (m)	To (m)	%	Description
2775	2778	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2778	2781	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part
2781	2784	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part
2784	2787	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part
2787	2790	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part
2790	2793	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part
2793	2796	100	SILTSTONE: Brown-light brown, argillaceous to occasionally arenaceous, graded to Claystone in part, occasionally very fine quartz grains, micro-micaceous, occasionally carbonaceous specks, occasionally white calcareous fragments, dispersive, pyrite nodules in part, soft, subblocky to amorphous in part

From (m)	To (m)	%	Description
2796	2799	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2799	2802	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2802	2805	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2805	2808	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2808	2811	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2811	2814	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2814	2817	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2817	2820	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2820	2823	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2823	2826	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous

From (m)	To (m)	%	Description
2826	2829	100	SILTSTONE: Brown to occasionally brown grey, arenaceous in part, massive, occasionally micro-micaceous, carbonaceous specks and streaks, occasionally pyrite nodules, white lithic inclusions, dispersive, soft to occasionally firm, subblocky to amorphous
2829	2832	100	SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite dispersive and nodules, micro-micaceous, soft, subblocky.
2832	2835	100	SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite disseminated and nodules, micro-micaceous, soft, subblocky.
2835	2838	100	SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite dispersive and nodules, micro-micaceous, soft, subblocky.
2838	2841	100	SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite dispersive and nodules, micro-micaceous, soft, subblocky.
2841	2844	100	SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite dispersive and nodules, micro-micaceous, soft, subblocky.
2844	2847	100 trace	SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite dispersive and nodules, micro-micaceous, soft, subblocky. SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows.
2847	2850	100	SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite dispersive and nodules, micro-micaceous, soft, subblocky.
		trace	SANDSTONE: Off-white, translucent-transparent in part, very fine fragments, well sorted, subangular, strong calcareous cement, occasionally off-white arenaceous matrix, carbonaceous specks, trace pyrite inclusions, firm to hard, fair visual porosity, no shows. LIMESTONE: Off-white to off-white, micro-crystalline, very hard,
2850	2853	trace 100 trace	nil visible and no shows. SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite dispersive and nodules, micro-micaceous, soft, subblocky. LIMESTONE: Off-white to off-white, sparry, micro-crystalline, very hard, nil visible and no shows.

From (m)	To (m)	0/0	Description
2853	2856	100	SILTSTONE: Brown to brown grey, arenaceous, carbonaceous specks, pyrite disseminated and nodular, micro-micaceous, soft, subblocky.
		trace	LIMESTONE: Off-white to off-white, sparry, micro-crystalline, very hard, nil visible and no shows.
2856	2859	100	SILTSTONE: Brown to dark brown, arenaceous, black carbonaceous specks, trace pyrite inclusions, micro-micaceous, soft and dispersive in part, blocky to subblocky
2859	2862	100	SILTSTONE: Brown to dark brown, arenaceous, black carbonaceous specks, trace pyrite inclusions, micro-micaceous, soft and dispersive in part, blocky to subblocky
2862	2865	100	SILTSTONE: Brown to dark brown , arenaceous, black carbonaceous specks, trace pyrite inclusions, micro-micaceous, soft and dispersive in part, blocky to subblocky
2865	2868	100	SILTSTONE: Brown to dark brown, arenaceous, black carbonaceous specks, trace pyrite inclusions, micro-micaceous, soft and dispersive in part, blocky to subblocky
2868	2871	100	SILTSTONE: Brown to dark brown, arenaceous, black carbonaceous specks, trace pyrite inclusions, micro-micaceous, soft and dispersive in part, blocky to subblocky
2871	2874	100	SILTSTONE: Brown to dark brown, arenaceous, black carbonaceous specks, trace pyrite inclusions, micro-micaceous, soft and dispersive in part, blocky to subblocky
2874	2877	100	SILTSTONE: Brown to dark brown, arenaceous, black carbonaceous specks, trace pyrite inclusions, micro-micaceous, soft and dispersive in part, blocky to subblocky
2877	2880	100	SILTSTONE: Grey to grey brown, arenaceous to argillaceous, pyrite nodules, micro-micaceous, carbonaceous specks and fragments, subblocky to occasionally subfissile, soft to firm and dispersive in
		trace	part. LIMESTONE: Off-white to light brown, orange in part, pyrite nodules in part, micro-micaceous, micro-crystalline, very hard
2880	2883	100	SILTSTONE: Grey to grey brown, arenaceous to argillaceous, pyrite nodules, micro-micaceous, carbonaceous specks and fragments, subblocky to occasionally subfissile, soft to firm and dispersive in part.
		trace	LIMESTONE: Off-white to light brown, orange in part, pyrite nodules in part, micro-micaceous, micro-crystalline, very hard

From (m)	To (m)	0/0	Description
2883	2886	100	SILTSTONE: Grey to grey brown, arenaceous to argillaceous, pyrite nodules, micro-micaceous, carbonaceous specks and fragments, subblocky to occasionally subfissile, soft to firm and dispersive in part.
		trace	LIMESTONE: Off-white to light brown, orange in part, pyrite nodules in part, micro-micaceous, micro-crystalline, very hard
2886	2889	100	SILTSTONE: Grey to grey brown, arenaceous to argillaceous, pyrite nodules, micro-micaceous, carbonaceous specks and fragments, subblocky to occasionally subfissile, soft to firm and dispersive in part.
		trace	LIMESTONE: Off-white to light brown, orange in part, pyrite nodules in part, micro-micaceous, micro-crystalline, very hard
2889	2892	100	SILTSTONE: Grey to grey brown, arenaceous to argillaceous, pyrite nodules, micro-micaceous, carbonaceous specks and fragments, subblocky to occasionally subfissile, soft to firm and dispersive in part.
		trace	LIMESTONE: Off-white to light brown, orange in part, pyrite nodules in part, micro-micaceous, micro-crystalline, very hard
2892	2895	100	SILTSTONE: Grey to grey brown, arenaceous to argillaceous, pyrite nodules, micro-micaceous, carbonaceous specks and fragments, subblocky to occasionally subfissile, soft to firm and dispersive in part.
2895	2898	100	SILTSTONE: Grey to grey brown, arenaceous to argillaceous, pyrite nodules, micro-micaceous, carbonaceous specks and fragments, subblocky to occasionally subfissile, soft to firm and dispersive in part.
2898	2901	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.
2901	2904	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.
2904	2907	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.
2907	2910	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.

From (m)	To (m)	%	Description
2910	2913	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.
2913	2916	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.
2916	2919	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.
2919	2922	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.
2922	2925	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky.
2925	2928	100	SILTSTONE: Brown to grey brown, arenaceous, carbonaceous specks, dispersive pyrite, micro-micaceous, white lithic fragments, soft to firm, subblocky
2928	2931	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2931	2934	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2934	2937	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2937	2940	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2940	2943	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky

From (m)	To (m)	0/0	Description
2943	2946	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2946	2949	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2949	2952	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2952	2955	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2955	2958	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2958	2961	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2961	2964	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2964	2967	100	SILTSTONE: Light grey to grey, occasionally brown, argillaceous to very arenaceous, carbonaceous specks and occasional streaks, micro-micaceous, trace pyrite inclusions, pyrite nodules in part, firm to soft, dispersive in part, subblocky
2967	2970	100	SILTSTONE: Light to dominantly medium grey to brown grey, traces of carbonaceous specks, slightly micro-micaceous, argillaceous, minor calcareous, firm, subblocky
2970	2973	100	SILTSTONE: Light to dominantly medium grey to brown grey, traces of carbonaceous specks, slightly micro-micaceous, argillaceous, minor calcareous, firm, subblocky

From (m)	To (m)	%	Description
2973	2976	100	SILTSTONE: Light to dominantly medium grey to brown grey, traces of carbonaceous specks, slightly micro-micaceous, argillaceous, minor calcareous, firm, subblocky
2976	2979	100	SILTSTONE: Light to dominantly medium grey to brown grey, traces of carbonaceous specks, slightly micro-micaceous, argillaceous, minor calcareous, firm, subblocky

TOTAL DEPTH DRILLER: 2979m

TOTAL DEPTH LOGGER: 2979m (Extrapolated)

Santos	Well Completion Report Volume 1 Basic
	SECTION 2.2:- SIDEWALL CORES DESCRIPTIONS
	SECTION 2.2:- SIDE WALL COKES DESCRIPTIONS

SANTOS LIMITED

SIDEWALL CORE DESCRIPTION

WELL:	Amrit-1	_ DATE:	09-12-04	_ PAGE:	1
GUN NO.:	1	SHOTS FIRED:	30	_ SHOTS BOUGHT:	21 (6 Empty, 3 Misfires)
		GEOLOGISTS:	R Subramanian / M Bado	cock	

CORE	DEPTH	REC.	PALYN.	LITH.	COLOUR	GRAIN	HYDR.	SUPPLEMENTARY INFORMATION
NO.	(m)	(cm)	EVAL.	G11	1	SIZE	INDIC.	CH TOTONIC D
1	2925.0	2.5	Palynology	Siltstone	brown to		N	SILTSTONE: Brown to grey brown, argillaceous, grades
					brown grey			to Claystone, firm to moderately hard, subblocky to
								subfissile.,
2	2901.5	3.5	Palynology	Siltstone	brown to		N	SILTSTONE: Brown to brown grey, argillaceous, grades
					brown grey			to Claystone, firm to moderately hard, subblocky to
								subfissile.,
3	2875.0	3.0	Palynology	Siltstone	brown to		N	SILTSTONE: Brown to brown grey brown, argillaceous,
					brown grey			grades to Claystone, micro-micaceous, firm to
								moderately hard, subblocky.
4	2851.0	3.0	Palynology	Siltstone	Medium		N	Siltstone: Medium grey, medium brown grey,
					grey			argillaceous, firm to moderately hard, subblocky.
5	2834.5	3.8	Palynology	Siltstone	Medium to		N	Siltstone: Medium to dark grey, slightly argillaceous,
			, ,,		Dark grey			micro-micaceous, trace carbonaceous specks,
								moderately hard, subblocky.
6	2812.0	2.5	Palynology	Siltstone	Medium to		N	Siltstone: Medium to dark grey, slightly argillaceous,
			J 23		Dark grey			micro-micaceous, trace carbonaceous specks,
								moderately hard, subblocky.
7	2786.0	EMPTY						
8	2766.0	EMPTY						

WELL:	Amrit-1	_ DATE:	09-12-04	PAGE:	2
GUN NO.:	1	_ SHOTS FIRED:	30	SHOTS BOUGHT:	21 (6 Empty, 3 Misfires)

GEOLOGISTS: R Subramanian / M Badcock

CORE	DEPTH	REC.	PALYN.	LITH.	COLOUR	GRAIN	HYDR.	SUPPLEMENTARY INFORMATION
NO.	(m)	(cm)	EVAL.			SIZE	INDIC.	
9	2747.0	1.8	Palynology	Siltstone	Medium to Dark grey to grey brown		N	Siltstone: Medium to dark grey to grey brown, argillaceous, firm to moderately hard, subblocky.
10	2723.5	3.2	Palynology	Siltstone	Medium to Dark grey brown		N	Siltstone: Medium to dark grey brown, argillaceous, trace very finely arenaceous, soft to firm, partly moderately hard, subblocky.
11	2700.0	EMPTY						
12	2671.0	EMPTY						
13	2654.0	MISFIRE						
14	2632.0	1.7	Palynology	Arenaceous Siltstone	Medium grey to medium brown grey		YES	SILTSTONE: Medium grey to medium brown grey, common very finely arenaceous, common grading to very fine grained SANDSTONE, common carbonaceous specks and micro-laminations, micro-micaceous, friable, moderately hard, subblocky, trace dull to minor moderately bright yellow fluorescence, weak green yellow crush cut, thin ring residue
15	2621.0	MISFIRE						
16	2619.5	2.5	Reservoir	Sandstone	Pale grey	fine to medium	YES	SANDSTONE: Pale grey, white, translucent quartz, fine to medium grained, moderately well sorted, subangular to subrounded, trace weak siliceous cement, trace light grey argillaceous matrix, slightly calcareous, trace black lithic fragments, friable, poor visual porosity, trace dull bright vellow fluorescence, weak green yellow crush cut, thin ring residue

 WELL:
 Amrit-1
 DATE:
 09-12-04
 PAGE:
 3

 GUN NO.:
 1
 SHOTS FIRED:
 30
 SHOTS BOUGHT:
 21 (6 Empty, 3 Misfires)

GEOLOGISTS: R Subramanian / M Badcock

CORE NO.	DEPTH (m)	REC. (cm)	PALYN. EVAL.	LITH.	COLOUR	GRAIN SIZE	HYDR. INDIC.	SUPPLEMENTARY INFORMATION
17	2616.5	EMPTY						
18	2614.2	1.5	Reservoir	Sandstone	Pale grey	fine	YES	SANDSTONE: Pale grey, white, translucent quartz, dominantly fine grained, occasionally medium grained, well sorted, subangular to subrounded, trace weak siliceous cement, trace calcareous, common light grey argillaceous matrix, trace black and brown lithic fragments, friable, poor visual porosity, trace dull yellow fluorescence, weak yellow crush cut, thin ring residue
19	2610.0	1.0	Reservoir	Sandstone	Pale grey	fine	N	SANDSTONE: Pale grey, white, translucent quartz, dominantly fine grained, rare medium grained, well sorted, subangular to subrounded, trace weak siliceous cement, trace light grey argillaceous matrix, trace glauconite, trace black lithic fragments, friable, poor visual porosity, no fluorescence.
20	2605.5	EMPTY						
21	2603.0	2.3	Paly/Res	Sandstone	Pale grey	Very fine	N	SANDSTONE: Pale grey, translucent quartz, dominantly very fine grained, fine in part, well sorted, subangular, trace weak siliceous cement, trace light grey argillaceous matrix, trace black lithic fragments, friable, poor visual porosity, no fluorescence.

 WELL:
 Amrit-1
 DATE:
 09-12-04
 PAGE:
 4

 GUN NO.:
 1
 SHOTS FIRED:
 30
 SHOTS BOUGHT:
 21 (6 Empty, 3 Misfires)

GEOLOGISTS: R Subramanian / M Badcock

CORE NO.	DEPTH (m)	REC. (cm)	PALYN. EVAL.	LITH.	COLOUR	GRAIN SIZE	HYDR. INDIC.	SUPPLEMENTARY INFORMATION
22	2582.5	2.6	Palynology	Siltstone	Grey		N	SILTSTONE: Grey, very finely arenaceous, grades to Arenaceous Siltstone, firm to moderately hard, subblocky.
23	2576.0	2.8	Paly/Res	Sandstone	Grey	Very fine	N	SANDSTONE: Pale grey, translucent quartz, dominantly very fine grained, well sorted, subangular, trace weak siliceous cement, calcareous, silty grading to Arenaceous Siltstone, trace light grey argillaceous matrix, friable to moderately hard, , poor visual porosity, no fluorescence.
24	2571.5	2.5	Paly/Res	Sandstone	Grey	Very fine	N	SANDSTONE: Pale grey, translucent quartz, dominantly very fine grained, well sorted, subangular, trace weak siliceous cement, calcareous, silty grading to Arenaceous Siltstone, trace light grey argillaceous matrix, trace carbonaceous specks, micro-micaceous, friable to moderately hard, , poor visual porosity, no fluorescence.
25	2562.0	2.5	Palynology	Siltstone	Grey		N	SILTSTONE: Grey, dark grey in part, argillaceous, grades to Claystone, firm, subblocky.
26	2557.0	3.0	Reservoir	Sandstone	Medium grey	very fine to fine	N	SANDSTONE: Medium grey, very fine to fine grained, well sorted, trace weak siliceous cement, trace grey argillaceous to silty matrix, friable to moderately hard, poor to tight visual porosity, no fluorescence

 WELL:
 Amrit-1
 DATE:
 09-12-04
 PAGE:
 5

 GUN NO.:
 1
 SHOTS FIRED:
 30
 SHOTS BOUGHT:
 21 (6 Empty, 3 Misfires)

GEOLOGISTS: R Subramanian / M Badcock

CORE NO.	DEPTH (m)	REC. (cm)	PALYN. EVAL.	LITH.	COLOUR	GRAIN SIZE	HYDR. INDIC.	SUPPLEMENTARY INFORMATION
27	2555.5	2.3	Reservoir	Sandstone	Pale grey	Medium	N N	SANDSTONE: Pale grey, clear to translucent, medium grained, well sorted, friable, generally loose and clean, fair inferred porosity, no fluorescence
28	2548.0	2.5	Palynology	Siltstone	Grey		N	SILTSTONE: Grey to dark grey brown, argillaceous, very finely arenaceous in part, micro-micaceous, firm to moderately hard, subblocky.
29	2528.0	5.0	Palynology	Siltstone	Dark grey brown		N	SILTSTONE: Grey to dark grey brown, argillaceous, very finely arenaceous in part, micro-micaceous, firm to moderately hard, subblocky.
30	2494.0	MISFIRE						

COMMENTS:

- 1. One SWC gun was run.
- 2. 30 sidewall cores were attempted of which 21 were recovered, 70% RECOVERY, 3 Misfire, 6 Empty
- 3. 1 correlation pass was performed.

CI -	4	
39	ntos	

SECTION 2.3: PRELIMINARY PALYNOLOGY REPORT

SANTOS STRATIGRAPHIC SERVICES GEOSCIENCE & NEW VENTURES

Palynology Report No. 2004/34

Author: G.R. WOOD

<u>Date:</u> 2nd May, 2005

PALYNOLOGICAL REPORT NO. 2004/34

AMRIT NO. 1

Santos Ltd A.B.N. 80 007 550 923

Introduction

Sixteen sidewall core samples from Amrit No. 1 located in the Otway Basin were examined palynologically.
The results of this study are presented on Table 1. Range charts of the palynomorphs identified in this study are presented after the report.

SantosStudy: **Amrit No.1**Author: G.R. Wood

PALYNOSTRATIGRAPHICAL DATA

Table 1

Page 1 of 2

Report No. 2004/34

		REMARKS
SAMPLE	DEPTH	
	(metres)	
SWC 29	2528	Spore pollen dominate (98%) with common Alisporites spp, Cyathidites spp & Proteacidites spp. Prominent components include G. rudata, F. longus & M. fromensis. Trace microplankton including X. australis (?reworked) noted.
SWC 28	2548	Spore pollen dominate (90%) with common Alisporites spp, Cyathidites spp, frequent Dictyophyllidites spp, Podocarpidites spp & Proteacidites spp. F. stipulatus noted. Microplankton includes X. australis, A. wisemaniae, A. coronata & A. crassipellus.
SWC 25	2562	Spore pollen dominate (90%) with common Alisporites spp, Cyathidites spp, frequent Dictyophyllidites spp, P. mawsonii & Proteacidites spp. F. stipulatus, M. fromensis & O. sentosa noted. Microplankton includes X. sarjeantii, T. castanea & Spiniferites spp.
SWC 24	2571.5	Spore pollen dominate (88%) with common Alisporites spp, Cyathidites spp & Proteacidites spp, F. sabulosus, M. fromensis & O. sentosa noted. Microplankton includes prominent A. crassipellus, X. sarjeantii, T. castanea O. porifera & X. australis.
SWC 23	2576	Spore pollen dominate (83%) with common Proteacidites spp, Cyathidites spp & Latrobosporites spp, frequent Alisporites spp, Podocarpidites spp & Araucariacites spp, F. stipulatus, P. gillii, H. elliottii & O. sentosa noted. Microplankton includes frequent X. sarjeantii, Exochosphaeridium spp & X. australis.
SWC 22	2582.5	Spore pollen dominate (83%) with common Alisporites spp & Podocarpidites spp, frequent Araucariacites spp & Proteacidites spp, F. stipplatus, P. gillii, H. elliottii & O. sentosa noted. Microplankton includes frequent Xenascus spp., Heterosphaeridium spp, H. paracostata & X. australis.
SWC 21	2603.0	Sparse assemblage. Spore pollen dominate (98%) with abundant small <i>Proteacidites spp</i> , common <i>Alisporites spp</i> , & <i>Cyathidites spp</i> , <i>O. sentosa</i> noted. Trace microplankton including <i>Xenascus sp</i> & <i>O. operculata</i> .
SWC 14	2632.0	Spore pollen dominate (98%) with common <i>Proteacidites spp, Cyathidites spp & Alisporites spp</i> , frequent <i>Latrobosporites spp & Gleicheniidites spp, F. sabulosus, G. rudata,N. senectus, G. wahooensis, H. elliottii & O. sentosa</i> noted. Microplankton includes trace <i>Xenascus spp, A. wisemaniae, I. nuculum & X. australis.</i>
SWC 10	2723.5	Spore pollen dominate (82%) with common Proteacidites spp, Alisporites spp & Latrobosporites spp, frequent Cyathidites spp & Dictyophyllidites spp, G. edwardsii, G. rudata, R. mallatus & O. sentosa noted. Microplankton includes frequent Xenascus spp & X. australis, T. castanea, A. wisemaniae, & O. porifera.

Santos

PALYNOSTRATIGRAPHICAL DATA

Table 1

Study: **Amrit No.1** Author: G.R. Wood

Page 2 of 2

Report No. 2004/34

		REMARKS
SAMPLE	DEPTH (metres)	
SWC 9	2747.0 2812.0	Spore pollen dominate (90%) with common Alisporites spp, Cyathidites spp, frequent Dictyophyllidites spp, Latrobosporites spp & Proteacidites spp, E. crassiexinus, G. rudata & O. sentosa noted. Microplankton includes frequent X. australis, X. sarjeantii, T. castanea, Spiniferites spp, & A. wisemaniae. Spore pollen dominate (75%) with common Cyathidites spp, frequent Alisporites spp, C. tectifera & O. sentosa noted. Diverse microplankton suite includes prominent X. australis X. sarjeantii, T. castanea, A. wisemaniae & C. diversispinosum, Spiniferites spp, O. porifera & D. acuminatum noted.
SWC 5	2834.5	Spore pollen dominate (85%) with common Cyathidites spp & Alisporites spp, frequent Dictyophyllidites spp, Latrobosporites spp & Proteacidites spp, M. fromensis & F. sabulosus noted. Diverse microplankton suite includes prominent X. australis & O. porifera, X. sarjeantii, T. castanea, A. wisemaniae & C. diversispinosum noted.
SWC 4	2851.0	Spore pollen dominate (70%) with common Alisporites spp & Gleicheniidites spp, frequent Dictyophyllidites spp & Cyathidites spp, P. gillii, F. sabulosus & O. sentosa noted. Restricted microplankton suite includes abundant X. australis(29%), A. wisemaniae & Oligosphaeridium spp.
SWC 3	2875	Spore pollen dominate (85%) with common Cyathidites spp & Alisporites spp, frequent Gleicheniidites spp, Latrobosporites spp & Proteacidites spp, O. sentosa noted. Restricted microplankton suite includes abundant X. australis(20%) &N. aceras.
SWC 2	2901.5	Spore pollen dominate (80%) with common Cyathidites spp & Alisporites spp, frequent Dictyophyllidites spp, Latrobosporites spp & Proteacidites spp M. fromensis, E. scabratus, F. sabulosus & O. sentosa noted. Restricted microplankton suite includes abundant X. australis(17%) & O. porifera.
SWC 1	2925.0	Spore pollen dominate (74%) with common Cyathidites spp & Alisporites spp, frequent Araucariacites spp, Dictyophyllidites spp, Gleicheniidites spp & Proteacidites spp M. fromensis, P. gillii, G. rudata, N. senectus, F. sabulosus & O. sentosa noted. Restricted microplankton suite includes abundant X. australis(22%), N. aceras & Spiniferites spp.

SECTION 2.4:- CATALOGUE OF WELLSITE SAMPLES

At the end of Amrit-1, the rig was towed to Western Australia to begin work for another Operator. Due to lack of time to dry and process the washed cuttings onboard the "Jack Bates", wet cuttings were sent to the Baker Hughes Inteq facility in Perth for processing. At the time of writing this report, the Sample Manifest was not available for inclusion in the Basic Data Report, but will be available from the Santos Operations Geologist in due course.

SHIPPING MANIFEST

Well: Amrit-1

Includes: 1) Mud Samples

3) Samplex Trays from 1835 – 2979m

Date: 7-December
From: BHI Unit 431
Location: Jack Bates

Geological Samples

Washed & Dried Samples sent to Perth for post-well processing, due to time constraints.

Total Number of Boxes/Packages: 4

For shipment to: Santos Ltd

c/- Santos Core Library

Ascot Transport 30 Francis Street

Port Adelaide SA 5015

Attn: Santos Core Librarian

Samples shipped from Transedco Jack Bates in container # 41329

SAMPLES FOR AMRIT-1

Sample Type	No. of Sets	Packing Details and Notes
Samplex Tray	3	With Callister-1 Samples
Mud Samples	1	With Callister-1 Samples
Palynology Samples	1	Sent on Helicopter, previously.

_	
Santos	Well Completion Report Volume 1 Basic
	CECTION A WIDELINE LOCCING DEPORTS
	SECTION 3: WIRELINE LOGGING REPORTS

SECTION 3.1:- LOGGING ORDER FORM

Santos A.B.N. 80 007 550 923

LOGGING ORDER

COMPANY:	SANTOS – INPEX - UNOCAL					
WELL:	AMRIT-1	_ FIELD:	EXPLORATION	ON		
RIG:	JACK BATES	_ STATE:	VICTORIA			
LOCATION:	OTWAY BASIN	BLOCK:	VIC / P52	VIC / P52		
LATITUDE:	038° 56' 05.20" South	LONGITUDE: 141° 44′ 07.08" East				
NORTHING:	5690204.1m	EASTING:	563729.6m			
ELEVATIONS:	Water Depth: 1396m RT-Seabed: 1425m	_ RT:	29.0m LAT	DF : 29.0m		
		762mm CSG:	1510m	310 ppf X-52		
660mm HOLE:	1835m	508mm CSG:	_1822m	133 ppf X-56		
445mm HOLE:	2459 m	340mm CSG:	2454.5m	68 ppf L-80 TER		
311mm HOLE:	2979m	244mm CSG:		<u> </u>		
MUD SYSTEM:	KCl / PHPA / Glycol	CIRCULATION 06:15 hrs on 07/1				
	VISC: PV/YP: d report for mud properties	PH: FLU	JID LOSS:	CHL:		
GEOLOGIST:	R Subramanian / M Badcock					
INFORMATION GI	IVEN ABOVE IS TO BE USED ON I	LOG HEADING SHEET	S.			
	NS: (TIGHT SPOTS, DEVIATION, s expected. Junk was dropped in hole					

DRILL STEM TESTS/CORED INTERVALS:

Barite in mud = Nil. KCl=10%

No DSTs were conducted. No open hole cores were cut.

COMMENTS: (TO BE INCLUDED IN REMARKS SECTION ON HEADER SHEET)

YES:

LOGS:

PROGRAM CONFIRMED WITH OPERATIONS GEOLOGIST AT 15:00 hrs ON 07-12-04

PROGRAM VARIES FROM PRE-SPUD NOTES:

RUN 3: Sidewall Cores

LOG	INTERVAL	REPEAT SECTION / Comments		
RUN 1: PEX-HALS Resistivity-Caliper-SP Sonic (WFT) Upper Dipole X-Y Neutron Density (dual axis) GR	TD to Casing Shoe TD to Top of Cement behind Casing TD to Casing Shoe TD to Casing Shoe TD to Seabed	No repeat section required, check repeatability with down log.		
RUN 2: Velocity Checkshots (contingent)	50m interval to loss of signal in casing.			

REMARKS: (ALL OPERATIONS AS PER CURRENT SANTOS OPERATING PROCEDURES)

1 gun (30 shots)

- 1. TENSION CURVE TO BE DISPLAYED ON LOG FROM T.D. TO CASING SHOE.
- 2. ALL CALIBRATIONS IN CASING MUST BE VERSUS DEPTH.
- 3. ALL THERMOMETER READINGS TO BE RECORDED ON LOG
- 4. ALL SCALES AND PRESENTATIONS TO CONFIRM TO STANDARDS UNLESS OTHERWISE ADVISED.
- 5. THE FIELD/EDIT TAPE MUST BE A MERGED COPY OF ALL LOGS RUN. SEPARATE TAPES ARE ONLY ACCEPTABLE AS AN INTERIM MEASURE.
- 6. ANY CHANGE FROM STANDARD PROCEDURES/SCALES TO BE NOTED IN REMARKS SECTION.
- 7. RM, RMF, RMC AND BHT MUST BE ANNOTATED ON FAXED LOGS. FAXED LOGS SHOULD ALSO INDICATE IF ON DEPTH OR NOT.
- 8. LOG DATA IS TO BE TRANSMITTED AS SOON AS POSSIBLE AFTER ACQUISITION. IF ANY DELAYS ARE LIKELY OR IF DATA TRANSMISSION WILL ADVERSELY EFFECT THE OPERATION THEN THE WELLSITE GEOLOGIST MUST BE IMMEDIATELY INFORMED.
- 9. THE WELLSITE GEOLOGIST MUST BE INFORMED IMMEDIATELY OF ANY TOOL OR HOLE PROBLEMS, LOST TIME OR ANY OTHER EVENT WHICH MAY AFFECT THE LOGGING OPERATIONS.

Santos	Well Completion Report Volume 1 Basic
SECTION 3.2:- ELECT	TRIC LOGGING TIME SUMMARY

Geology Operations

Santos

ELECTRIC LOGGING TIME SUMMARY

LOGGING UNIT:	1801
START DATE:	7/12/04
END DATE:	9/12/04
DEPTH DRILLER:	2979m
DEPTH LOGGER:	2945m
	Hung up

LEFT BASE:	05/12/04
ARRIVED @ WELLSITE:	05/12/04
INITIAL RIG UP:	7/12/04
	18:00 hrs
FINAL RIG DOWN:	9/12/04
RETURN TO BASE:	9/12/04

WELL NAME:	AMRIT-1
TRIP NUMBER:	SUITE 1
WELLSITE	R Subramanian /
GEOLOGIST:	M. Badcock
LOGGING ENGINEER:	Dimitri / Justin
PAGE / DATE:	1 (7/12/04)
	, ,

DATE / TIME	RIG UP / DOWN	TOOL CHECK	RIH / POOH	LOGGING	DATA TX	LOST TIME SLB	I.O.	WIPER TRIP	LOST TIME OTHERS	OTHERS	COM	IMENTS / REMARKS
00:00												
:30												
01:00												
01.00												
:30												
02:00												
:30												
.30												
03:00												
:30												
04.00												
04:00												
:30												
05:00												
20												
:30												
06:00												
:30												
07:00												
:30												
.50												
08:00												
:30												
09:00												
07.00												
:30												
10:00												
:30												
.50												
11:00												
:30												
											WSG (SIGN)	ENGINEER(SIGN)
TOTALS										wsG (SIGN)	ENGINEER(SIGN)	
											TOOLS RUN:	
							-					
			1								TOOLS RUN:	
		1		1	1	ı					TOOLS DIIN.	

LOGGING UNIT: 1801 7/12/04						WELL I	NAM	E Al	MRIT-1	PAGE	PAGE 1A (07/12/04)			
DATE / TIME	RIG UP / DOWN	TOOL CHECK	RIH / POOH	LOGGING	DATA TX	LOST TIME SLB	I. O.	WIPER TRIP	LOST TIME OTHERS	OTHERS	CO	MMENTS / REMARKS		
12:00														
:30														
13:00														
:30														
14:00														
:30														
15:00														
:30														
16:00														
:30														
17:00							H							
:30											RUN 1: PEX			
8:00	X									X	17:45 Safety me 18:00 Rig up Sc			
	X													
:30	X										Rig up sheaves Rig up tools			
19:00	X										<i>S</i> • P • • • • • • • • • • • • • • • • • • •			
:30	X													
	X													
20:00		X									20:00 Before sur	rvey checks		
:30		X												
31.00	**	X									21.00 L LD L	·		
21:00	X										21:00 Load Rad	loactive Sources		
:30			X									m and depth compensate.		
									X		21:45 Tie back t sheaves due to h	op drive lines swinging into togigh wind.		
22:00									X			<u> </u>		
:30			X						X		22:30 Run in Ho	ماه		
.50			X								22.30 Kuli ili 110	nic .		
23:00			X											
:30			X											
			X								WCC (CICN)	ENGINEER(SIGN)		
					TOT	ALS					WSG (SIGN)	ENGINEER(SIGN)		
	2.50	1.00	1.75						0.75		TOOLS RUN	Run 1: Pex		
											TOOLS RUN:			
											TOOLS RUN:			
			ERVICE	QUALITY										
	NT WS		4		GINI		2	4	<i>E</i>					
1 2 3 4 5 1						2	3	4	5 S	SAFETY				
									I	PROMPTNESS				
	-										RFACE SYSTE! & CO-OPERAT	M PERFORMANCE		
						+			/	WELLSITE 1	PRODUCTS / L	OG QUALITY		
										COMMUNIC	CATIONS / TX F	PERFORMANCE		
									(OTHER (PLEASE SPECIFY)				

1: Excellent - 2 - 3: Normal - 4 - 5: Very Poor

Geology Operations

Santos

ELECTRIC LOGGING TIME SUMMARY

LOGGING UNIT:	1801
START DATE:	7/12/04
END DATE:	9/12/04
DEPTH DRILLER:	2979m
DEPTH LOGGER:	2945m
	Hung un

LEFT BASE:	05/12/04
ARRIVED @ WELLSITE:	05/12/04
INITIAL RIG UP:	7/12/04
	18:00 hrs
FINAL RIG DOWN:	9/12/04
RETURN TO BASE:	9/12/04

WELL NAME:	AMRIT-1
TRIP NUMBER:	SUITE 1
WELLSITE GEOLOGIST:	R Subramanian /
	M. Badcock
LOGGING ENGINEER:	Dimitri / Justin
PAGE / DATE:	2 (8/12/04)

DATE /		TOOL	RIH /	LOGGING	DATA	LOST	I.O.	WIPER	LOST	OTHERS	COMMENTS / REMARKS
TIME	/ DOWN	CHECK	РООН		TX	TIME SLB		TRIP	TIME OTHERS		
00:00			X						0.1111111		00:15 At 13 3/8' Casing shoe. Record downlog
			X								Deep resistivity intermittent spiky on downlog
:30			X								01:00 Hung Up at 2945m. Pull up.
			X								Hole sticky, 400 lbs OP on tool (1200 surface)
01:00			X								01:10 RIH and hung up at 2945. Log Up
			X								01:20 log up, Res log malfunction – flat line. Stop
:30									X		log, RIH to reverse dipole (Sonic effecting Res?)
									X		Log Up from 2945m BHT 131 F, 01:30 hrs.
02:00									X		Resistivity log malfunction – curves incorrect
									X		02:15 RIH to recalibrate resistivity tool, reverse
:30									X		dipoles to original
				X							02:45 Log Up. BHT 54 C (129 F) Time 02:45
03:00				X							Resistivity malfunction
				X							Continue up log
:30				X							1 2
				X							13 3/8" Csg Sh. Prepare DLIS, PDF, data and send
04:00				X							to town
									X		RIH to try Resistivity Pass with no Sonic plus to un
											spool tangled cable on drum
:30									X		On bottom, log up with resistivity – overpull
									X		Close Calipers. Pull free
05:00									X		Log up, same readings, stop log and POOH.
			X								(Repeats with downlog with CAL closed, no repeat
:30			X								With downlog with CAL open).
			X								Continue POOH
06:00			X								
			X								
:30			X								
			X								
07:00			X								07:00 Tools at surface
		X									
:30		X									
		X									
08:00		X									08:00 Complete rigging down Run 1
									X		RUN 2: CSAT (VSP)
:30									X		
									X		
09:00									X		09:15 Receive instructions to run VSP survey
	X										09:30 Scout around rig to ensure no whales.
:30	X										Change bridle for VSP run
40.65	X										
10:00	X										
	X										
:30	X										Charge up guns with air. Lower into water.
11.00	X										
11:00	X										OL 1 II VI
20	X		X 7								Check caliper with ring
:30			X								DHI 40 200m
			X								RIH to 200m

	1.00	3.50	1.50			2.25		TOOLS RUN: Run 1: PEX
2.25	1	0.50		l		1.00	1	TOOLS DUN. Dun 2: VSD
2.25	1	0.50				1.00		TOOLS RUN: Run 2: VSP
								TOOLS RUN:

LOGGI	NG UNIT	:	1801		,	WELL I	NAM	E Al	MRIT-1		PAGE	2A (08/12/04)			
DATE / TIME	RIG UP / DOWN	TOOL CHECK	RIH / POOH	LOGGING	DATA TX	LOST TIME SLB	I. O.	WIPER TRIP	LOST TIME OTHER	OTHERS	CO	MMENTS / REMARKS			
12:00		X									Calibrate tools				
:30		X									Check guns				
.30		Λ	X								12:45 Run in hol	e			
13:00			X									•			
20			X												
:30			X												
14:00			X												
				X								n inside casing at 2438m			
:30				X							14:30 Test @ 25	03m			
15:00				X							15:00 Test at 270)3m			
10.00				X							10.00 1000 40 27				
:30				X											
16:00				X											
10.00				X											
:30				X							Hung up at 2945	m.			
				X				-			Record VSP Surv	vey			
17:00			-	X					-		1				
:30				X											
.50				X							1				
18:00				X											
.20				X											
:30				X											
19:00				X											
				X											
:30				X											
20:00				X							Lost signal at 179	90m. Complete VSP			
20.00			X	А							Pull out of hole V				
:30			X												
21.00	**/		X								Safety meeting for	or VSP and CST			
21:00	X										Rig down VSP to	001			
:30	X														
	X														
22:00	X											n: com o			
:30	X										RUN 3: CST's:	Rig up CST Guns			
.30	X														
23:00	X														
	X										Radio Silence				
:30	X		X	-							Run in hole				
		l	Λ		1		1		1		WSG (SIGN)	ENGINEER(SIGN)			
					TOT	ALS						<u></u>			
	1.25	0.75	2.25	6.0							TOOLS RUN	Run 2: VSP			
1	1.50	<u> </u>	0.25								TOOLS RUN:	Run 3: CST's			
	1.30	<u> </u>	0.23				l .				_	Kun J. Co1 5			
						-					TOOLS RUN:				
		SI	ERVICE	QUALITY	SUMM	IARY									
CLIE	NT WS				GINI										
1	2	3	4	5 1		2	3	4	5						
										SAFETY					
	-				+			1		PROMPTNESS TOOL & SURFACE SYSTEM PERFORMANCE ATTITUDE & CO-OPERATION					
					+										
											PRODUCTS / LO				
										COMMUNICATIONS / TX PERFORMANCE					
	1: Excellent - 2 - 3: Normal - 4 - 5: Very Poor									1					
		1: Excell	ent - 2 -	5: Normal	- 4 - :	o. very I	oor								

Geology Operations

Santos

ELECTRIC LOGGING TIME SUMMARY

LOGGING UNIT:	1801
START DATE:	7/12/04
END DATE:	9/12/04
DEPTH DRILLER:	2979m
DEPTH LOGGER:	2945m
	Hung up

LEFT BASE:	05/12/04
ARRIVED @ WELLSITE:	05/12/04
INITIAL RIG UP:	7/12/04
	18:00 hrs
FINAL RIG DOWN:	9/12/04
RETURN TO BASE:	9/12/04
	I

WELL NAME:	AMRIT-1
TRIP NUMBER:	SUITE 1
WELLSITE GEOLOGIST:	R Subramanian /
	M. Badcock
LOGGING ENGINEER:	Dimitri / Justin
PAGE / DATE:	3 (9/12/04)

DATE / TIME	RIG UP / DOWN	TOOL CHECK	RIH / POOH	LOGGING	DATA TX	LOST TIME	I.O.	WIPER TRIP	LOST TIME	OTHERS	COMMENTS / REMARKS
		CHECK			124	SLB		1101	OTHERS		
00:00			X								
			X								
:30			X								
01:00			X								DILL most one floor Drook Bodio Cilonos
01:00			X								RIH past sea floor. Break Radio Silence.
:30			X								
.50			X								
02:00			X								
				X							Depth Correlation 2650 – 2540m
:30				X							
				X							
03:00				X							Tag 2945 – unable to pass
				X							Shoot CST No. 1 at 2925m
:30				X							CST: 2901.5, 2875
				X							CST: 2851, 2834.5, 2812
04:00				X							CST: 2786, 2766
20				X							CST: 2747, 2723.5
:30				X							CST: 2700
05:00				X							CST: 2671 CST: 2654, 2632
03.00				X							CST: 2634, 2632 CST: 2619.5, 2616.5
:30				X							CST: 2614.2, 2610, 2605.5
.50				X							CST: 2603, 2582.5, 2576, 2571.5, 2562
06:00				X							CST: 2557, 2555.5, 2548, 2528, 2494
			X								POOH @ 06:15hrs
:30			X								
			X								
07:00			X								
			X								
:30			X								
			X								08:00 Tools at Surface.
08:00	X										00:20 Pi- P 2
20											08:30 Rig Down Run 3
:30											
09:00											
09.00											
:30											
.50											
10:00											
:30											
11:00											
:30											
		l	l		l	l	l	l			I
	0.50	1	4.00	4.00							TOOLS RUN: Run 3: CST'S
	0.50	1	7.00	1.00				1	<u> </u>	1	100Lb K011. Run 3. Co1 5
•											TOOLS RUN:
•				·							
											TOOLS RUN:

Santos	Well Completion Report Volume 1 Basic
	SECTION 3.3:- FIELD ELECTRIC LOGGING REPORT

SANTOS LIMITED

FIELD ELECTRIC LOG REPORT

R. Subramanian & **WELL:** Amrit-1 **GEOLOGIST:**

M Badcock

LOGGING Engr: Dimitri & Justin

Suite 1 / Run 1 to 307-12-04 to 09-12-04 **RUN NO: DATE LOGGED:** 2945 (Hung up)

2979m **DRILLERS DEPTH: LOGGERS DEPTH:** 05-12-04 ARRIVED ON SITE:

ACTUAL LOG TIME: 11 hrs 30 mins **LOST TIME LOGGER:**

LOST TIME OTHER: TOTAL TIME: 38 hrs 30 mins 4.00

TYPE OF LOG	PEX-HALS	VSP	CST (1 gun)	
TIME CIRC. STOPPED	06:15 07/12/04	06:15 07/12/04	06:15 07/12/04	
TIME TOOL RIG UP	18:00 07/12/04	09:15 08/12/04	22:15 08/12/04	
TIME TOOL RIH	20:00 07/12/04	11:30 08/12/04	23:45 08/12/04	
TIME TOOL RIG DOWN	08:00 08/12/04	21:00 8/12/04	08:30 09/12/04	
TOTAL TIME	12 hrs 00 mins	11 hrs 45 mins	10 hrs 15 mins	

(m)	(m)	SECTION	LAST CIRC	
45	2454	Down log	22.25 hrs	56.11°C
45	2454			
45	2454			
45	2454			
45	2454			
45	2454			
40	1790		34.25 hrs	62.2 °C
25m	2494m			
	45 45 45 45 45 45 46	45 2454 45 2454 45 2454 45 2454 45 2454 40 1790	45 2454 45 2454 45 2454 45 2454 45 2454 40 1790	45 2454 45 2454 45 2454 45 2454 45 2454 40 1790 34.25 hrs

MUD SYSTEM: KCl - PHPA - GLYCOL WEIGHT: 1.15 SG

HOLE CONDITIONS: Unable to pass 2945m. Sticky at this point. Hole good above this

point.

WELLSITE LOG QUALITY CONTROL CHECKS

	LOG ORDER FORM	OK	MUD SAMPLE RESISTIVITY	OK	TOOL NO. / CODE CHECK	OK
ĺ	OFFSET WELL DATA	OK	CABLE DATA CARD	OK	LOG SEQUENCE CONFIRM.	OK

LOG TYPE	Run 1 PEX-HALS	Run 2 VSP	Run 3 CST	REMARKS
CASING CHECK	Y	Y		
SCALE CHECK	Y			
DEPTH Casing	Y			L=2454.5m D=2454.5m
CALIBRATIONS OK	Y			
REPEATABILITY	Y			Downlog
LOGGING SPEED	1800 ft/hr			
OFFSET WELL	Y			Compares with MWD/LWD
REPEATABILITY				
NOISY/MISSING DATA	Y	Y		Resistivity affected by metal junk in hole. VSP affected by water depth.
CURVES/LOGS Depth Matched	Y			
Rm MEASUREMENT	Y			
LLS/LLD/CHECK	Y			
PERF/RHOB CHECK	Y			
LOG HEADER/TAIL	Y	у	y	OK
PRINT/FILM QUALITY				To be sent from town after TD logs are
				recorded
CORRELATION PASSES			Y	Nil.

COMMENTS:

Suite 1/RUN 1: PEX-HALS could not pass 2945m. Logged up from 2945m.

Resistivity tool failed. Flat line readings. Stop log. Run in hole to bottom, reverse acoustic dipoles and log up (suspect one sonic dipole could be interfering with resistivity readings).(15 mins).

Run up log. Resistivity readings suspect. Stop log. Run in hole and recalibrate tool, reverse acoustic dipole back to original. (45 mins).

Log up to 13 3/8" casing shoe. Resistivity readings still suspect. Make data of first run to send to town. (105 mins) Run in hole to 2945 m to attempt resistivity with out acoustic as suspect communication problem between the two.

Resistivity log same. Stop log and pull out of hole. Sticky pulling off 2945. (45 mins)

Resistivity tool at surface had junk wedged into the centraliser (metal plate from hydraulic slips lost in hole during drilling phase).

RUN 3: SWC

One gun -30 shots

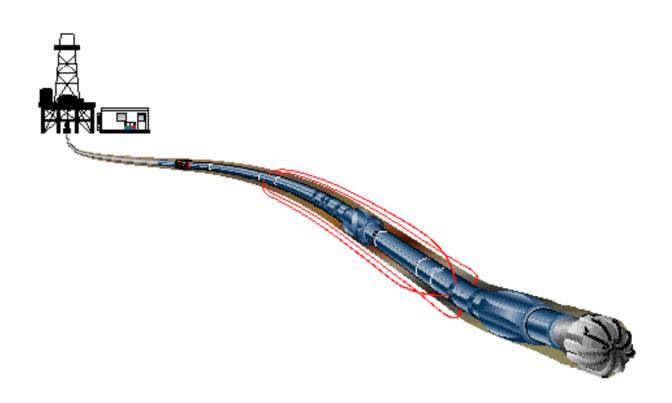
Recovered 21, 3 Misfire, 6 Empty.

Casing SLB 2454m, Driller 2454.5m.

Logger TD: 2948m (hung up) vs Drillers TD 2979m

ENGINEERS COMMENTS (If this report has not been discussed with the Engineer state reason)

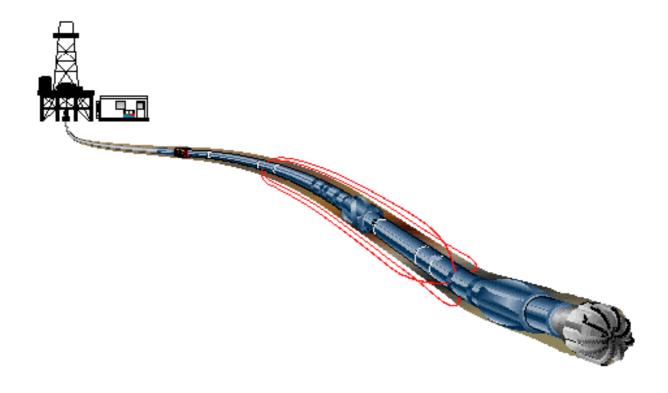
_	_
C	


SECTION 3.4:- MWD / LWD END OF WELL REPORT (Anadrill Schlumberger)

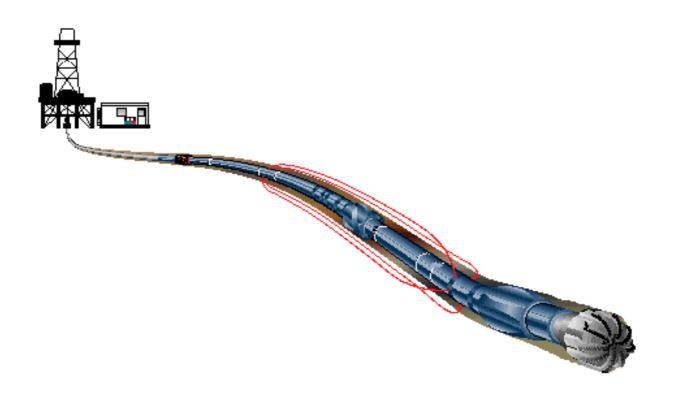
SANTOS – INPEX - UNOCAL

Amrit-1

MWD - LWD End of Well Report



End of Well Report for Amrit-1


Contents

- General Information
- Logging Overview
- Depth Control Summary
- Geomagnetic and Survey Reference Criteria
- Survey Report
- Bit Run Summary
- Performance Drilling Report

General Information

General Information

Well Name: Amrit-1

Rig: Jack Bates

Field: Exploration

Location: Otway Basin

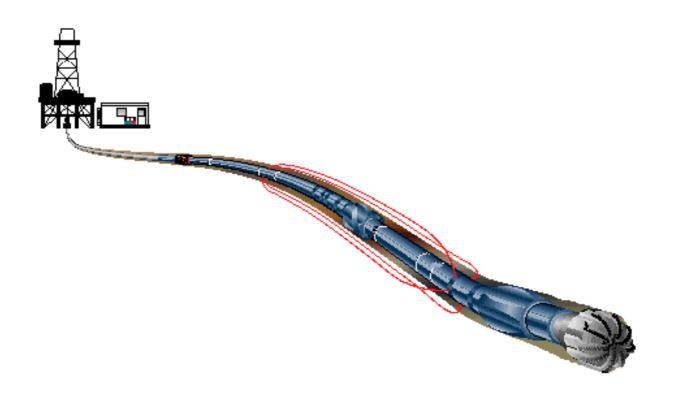
Country: Australia

Cell Members: Danielle Borges MWD / LWD Engineer

Ozren Radicevic MWD / LWD Engineer
Bob Manjencic Directional Driller
Lisa Watson MWD / LWD Trainee

Town Contacts: Jim Thompson Operations Manager

Hrvoje Spoljaric Field Services Manager


Alexander Van Den Tweel DD Coordinator

Company Representatives: D. Atkins Company Man

J. Young Company Man
P. King Drilling Engineer
R. Subramanarian Wellsite Geologist

Logging Overview

Logging Overview Amrit-1

Schlumberger Drilling and Measurements provided MWD, LWD and performance drilling services in the 26", $17\frac{1}{2}"$ and $12\frac{1}{4}"$ sections of the Amrit-1 well.

26" Section (Run 1425 m to 1835 m MD):

After successful jetting in of 30" casing to 1510mMD from sea floor depth of 1425mMD, drilling continued to a final depth of 1835mMD for the 26" hole section.

In this section, the following formation evaluation measurements were delivered in real-time and recorded modes. The PowerPulse also transmitted real-time direction and inclination measurements.

- □ Gamma Ray, real-time & recorded
- □ 2 MHz Phase Shift Resistivity, real-time & recorded
- □ 2 MHz Attenuation Resistivity, real-time & recorded
- □ Annular Pressure, real-time & recorded
- □ Equivalent Circulating Density (ECD), real-time & recorded
- □ Annular Temperature, real-time & recorded

Run	Hole Size (in.)	Service	Start Depth (m)	Stop Depth (m)
1	26"	PowerPulse / CDR / Performance Drilling	1425.00	1835.00

The PowerPulse and Compensated Dual Resistivity (CDR) tools were utilized for surveying, logging, and monitoring downhole conditions of the 26" hole section on the Amrit-1 well. The PowerPulse was programmed to transmit real-time data at 12Hz/3 bits per second, the CDR was configured with a 6-second record rate. These configurations enabled real-time formation evaluation updates every 24.67 seconds, a recorded data density greater than the Schlumberger standard of two data points per foot.

The CDR tool was installed with Annular Pressure While Drilling (APWD) sensor, which enabled continuous borehole pressure monitoring. This also enabled the monitoring of the Equivalent Circulating Density (ECD) and Equivalent Static Density (ESD) values. Whilst drilling, the ECD was continually monitored and the ESD was recorded at each connection. No unexpected changes in ECD reading were observed, indicating a stable wellbore with good conditions. Drilling conditions during the run were good and no shocks were observed. A wiper trip was performed at the completion of this run.

Upon completion of the 26" section, the tools were downloaded at the rotary table and subsequently racked back in the derrick. The recorded memory data was processed and presented to the client. Additionally, Tech Logs were downloaded and evaluated by engineer's at the well-site, verifying the recorded mode data. When compared with subsequent $17 V_2$ " run, it was discovered that the Gamma Ray readings were significantly lower. This was attributed to the enlargement of the hole size.

All real-time and recorded mode data were transmitted/delivered to the client's office in town via Internet Web Witness (IWW).

171/2" Section (Run 1835.00 m to 2459.00 m MD):

In the $17\frac{1}{2}$ " section, the following formation evaluation measurements were delivered in real-time and recorded modes. The PowerPulse transmitted the real-time direction and inclination measurements.

- ☐ Gamma Ray, real-time & recorded
- □ 2 MHz Phase Shift Resistivity, real-time & recorded
- □ 2 MHz Attenuation Resistivity, real-time & recorded
- □ Annular Pressure, real-time & recorded
- □ Equivalent Circulating Density (ECD), real-time & recorded
- □ Annular Temperature, real-time & recorded

Run	Hole Size (in.)	Service	Start Depth (m)	Stop Depth (m)
2	171⁄2″	PowerPulse / CDR / Performance Drilling	1835.00	2459.00

The same PowerPulse and Compensated Dual Resistivity (CDR) tools were used on the succeeding run for the $17\frac{1}{2}$ " section for Amrit-1. The PowerPulse programming configuration was kept at 12Hz/3 bits per second, and the CDR was again configured to a record rate of 6 seconds. APWD (Annular Pressure While Drilling) and Downhole Temperature were utilized to monitor hole condition and downhole parameters.

Drilling conditions were generally good throughout the run. Occasional low level shocks and low to moderate torsional vibrations were observed, with the highest levels whilst drilling cement. ECD was closely monitored with readings ranging from 9.07ppg at the beginning of the run, with mud weight of 8.8ppg, to 9.55ppg at the end of the run, with a mud weight of 9.2ppg. Some higher readings of ECD were observed, indicating the build up of cuttings in the annulus. Hole was wiped and high viscosity pills were pumped, which aided in lowering ECD readings to expected levels. Good communication with the client in these situations optimized the drilling performance in this run. A wiper trip to the 20" casing shoe was done after the bit reached 17½" hole TD.

Upon completion of the 17½" section, the tools were downloaded at the rotary table and subsequently racked back in the derrick. The recorded memory data was processed and presented to the client. Additionally, Tech Logs were downloaded and evaluated by engineers at the well-site, this confirmed the excellent operation of the CDR, verifying the high quality of recorded mode data.

All real-time and recorded mode data were transmitted/delivered to the client office in town via Internet Web Witness (IWW).

Schlumberger real-time leak off test was cancelled for this section. At the client request, recorded mode leak off test data was supplied after the completion of the run. This provided high quality data used for verification of results obtained in real-time leak off test.

12 1/4" Section (Run 2459.00 m to 2929 m MD):

In the $12\frac{1}{4}$ " section, drilled in two bit runs, the following formation evaluation measurements were delivered in real-time and recorded modes. The PowerPulse transmitted the real-time direction and inclination measurements.

- □ CDR Gamma Ray, real-time
- □ CDR Phase Shift and Attenuation Resistivity, real-time
- □ CDR Annular Pressure and Temperature, real-time
- □ CDR Gamma Ray, recorded mode
- □ CDR Phase Shift and Attenuation Resistivity, recorded mode
- □ CDR Annular Pressure and Temperature, recorded mode
- Multi Vibrational Chassis

Run	Hole Size (in.)	Service	Start Depth (m)	Stop Depth (m)
3	121⁄4″	PowerPulse / CDR / MVC / Performance Drilling	2459.00	2696.00

The PowerPulse and Compensated Dual Resistivity (CDR) tools were utilized for surveying, logging and monitoring downhole conditions for the 12¼" section for Amrit-1. The PowerPulse was programmed to transmit real-time data at 12hz/3 bits per second and the CDR was again configured with a 6 second record rate. APWD (Annular Pressure While Drilling), Downhole Temperature and MVC (Multi Vibrational Chassis) were utilized to monitor downhole conditions and parameters.

At the commencement of the run, while drilling cement, high levels stick and slip (up to 400rpm) was observed. Client was informed and attempts were made to rectify the situation, but high levels or stick and slip, along with torsional vibration, continued until the last stabilizer was out of the shoe. Further into the run, 2550m MD to 2640m MD, shocks were experienced with PowerPulse correlating with the increase of torsional vibration and stick and slip. Attempts were made to remedy the situation, adjusting drilling parameters. From 2640m MD to the end of the run, drilling conditions were generally good with low levels of vibrations and marginal stick and slip. Good communication with Client ensured that drilling performance was optimized.

ECD was again closely monitored, circulating in order to reduce it to lower levels before drilling ahead. Due to low rate of penetration, the decision to change the bit was made at 2696mMD. The hole was circulated clean before POOH commenced.

The CDR was downloaded at the rotary table and reinitialized for the subsequent run with new bit. The recorded mode data was processed and presented to client in a timely manner. Additionally, Tech Logs were downloaded and evaluated, verifying high quality of recorded mode data and confirming excellent operation of CDR for the run. Tech Logs also confirmed that battery life remaining was sufficient for subsequent run.

All real-time and recorded mode data were transmitted/delivered to the client office in town via Internet Web Witness (IWW).

Schlumberger real-time leak off test was cancelled for this section. At the client request, recorded mode leak off test data was supplied after the completion of the run. This provided high quality data used for verification of results obtained in real-time leak off test.

Run	Hole Size (in.)	Service	Start Depth (m)	Stop Depth (m)
4	121⁄4″	PowerPulse / CDR / MVC / Performance Drilling	2696.00	2929.00

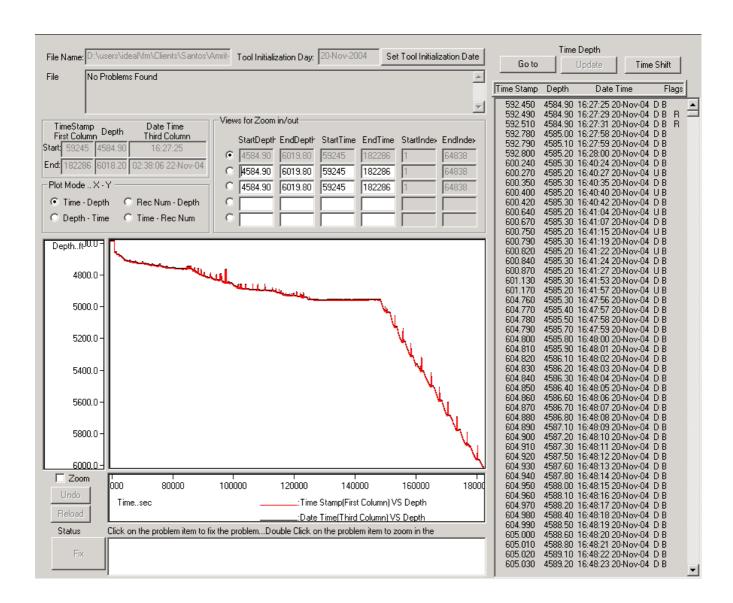
After the change of the bit, the same tools from Run 3 were used to continue drilling to a depth of 2929mMD. APWD (Annular Pressure While Drilling), Downhole Temperature and MVC (Multi Vibrational Chassis) continued to be monitored in this section.

Drilling conditions were good, with minimal shocks and vibrations present while drilling. Some stick and slip was observed, but no adverse effect on the drilling parameters or tools was observed. ECD was again closely monitored. A maximum ECD reading of 11.0ppg was observed at a depth of 2847mMD. The hole was circulated until ECD values dropped to expected value before drilling commenced once more.

The CDR was downloaded at the rotary table and the tools subsequently racked back in the derrick until final decision was made on further drilling. The recorded mode data was promptly processed and high quality logs were presented to client. Additionally, Tech Logs were downloaded and evaluated by the engineers at well-site, confirming the excellent operation of the CDR and verifying the high quality of recorded mode data. The quality of this data exceeded Schlumberger standards of 2 data points per foot and continued to do so when high rate of penetration was encountered during the run.

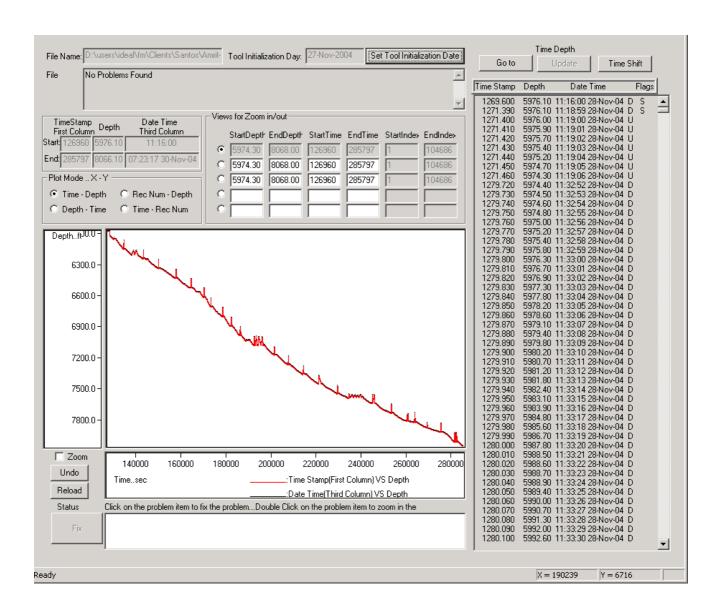
All real-time and recorded mode data were transmitted/delivered to the client office in town via Internet Web Witness (IWW).

After the completion of this run, Schlumberger Wireline was run. When the data collected was compared to that of Drilling & Measurements data, the excellent quality of the logs provided was confirmed.

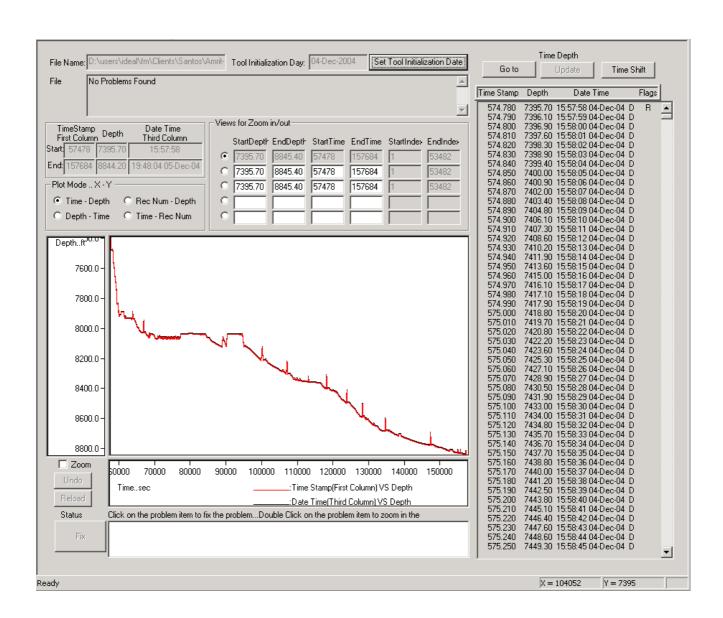


Depth Control Summary

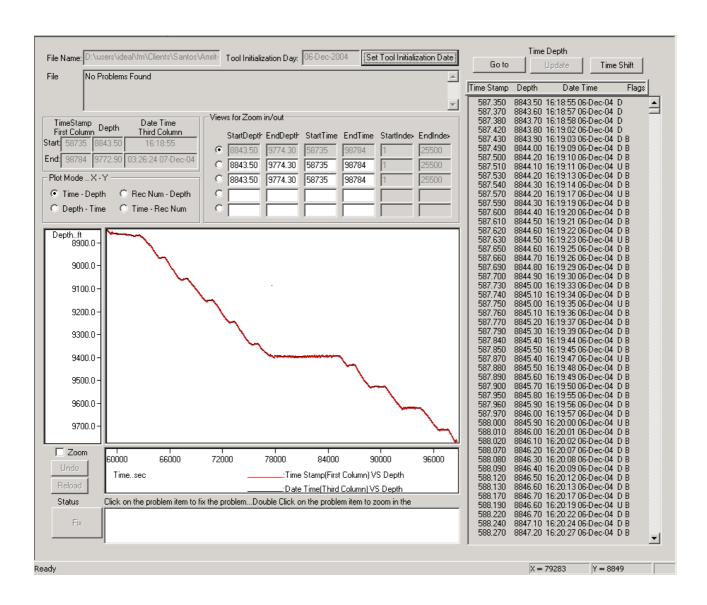
- Throughout drilling Amrit-1 well, the depth was closely monitored and kept within Schlumberger Drilling & Measurements Standards. This excellent tracking of depth was verified with the close comparison of the logs with the Schlumberger Wireline.
- 2. Depth control was undertaken with a geolograph depth tracking system. This was calibrated to operate at 100 pulses per foot prior to the job. Additionally, a GTE (Guideline tensiometer) was used to measure the heave of the rig during the drilling operations, and to subsequently correct the depth measurement made by the geolograph.
- 3. Depth tracking was excellent during the entire well. A table showing the comparisons between the driller's pipe tally and the software acquisition system is available in softcopy if requested. A plot of corrected depth versus time from the acquisition system can be seen in the following pages.
- 4. No depth anomalies or corrections were applied during any of the runs.
- 5. No editing of the raw depth/time files was done, all changes would have been undertaken on the edited depth/time files. However, as stated above, no changes were made during the entire drilling operation. Also, no time shifting was performed on the tools dump files.



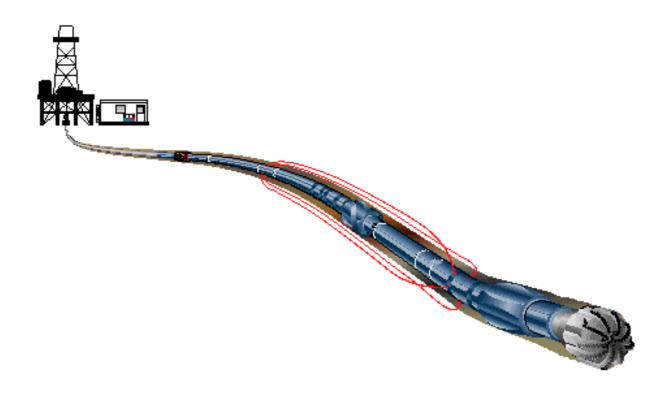
RUN 1



RUN 2



RUN 3



RUN 4

Geomagnetic and Survey Reference Criteria

Geomagnetic and Survey Reference Criteria

Geomagnetic Data

Magnetic Model: BGGM version 2004

Magnetic Date: 20 November 2004

Magnetic Field Strength: 1221.99 HCNT

Magnetic Declination: 10.48 degrees

Magnetic Dip: -70.25 degrees

Survey Reference Criteria

Reference G: 1000.09 mGal

Reference H: 1221.99 HCNT

Reference Dip: -70.25 degrees

Tolerance of G: 2.50 mGal

Tolerance of H: 6.00 HCNT

Tolerance of Dip: 0.45 degrees

Survey Corrections Applied

Reference North: Grid North

Magnetic Declination: 10.48 degrees

Grid Convergence: -0.46 degrees

Total Azimuth Correction: 10.94 degrees

Vertical Section Azimuth: 0.00 degrees

Survey Reference Location

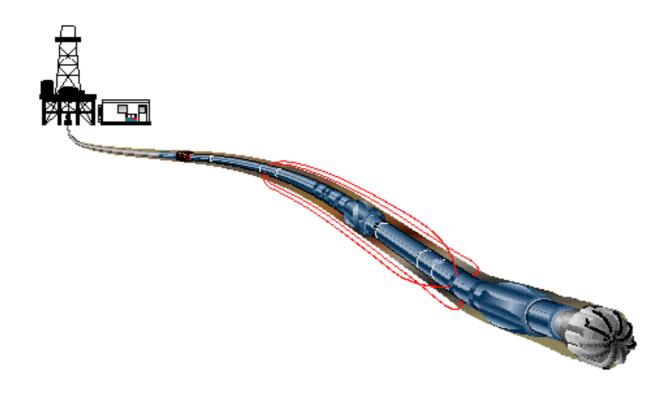
Amrit-1 Final Fix Position

Latitude: 38° 56′ 05.20″ South

Longitude: 141° 44′ 07.08″ East

Easting: 563 729.6 meters

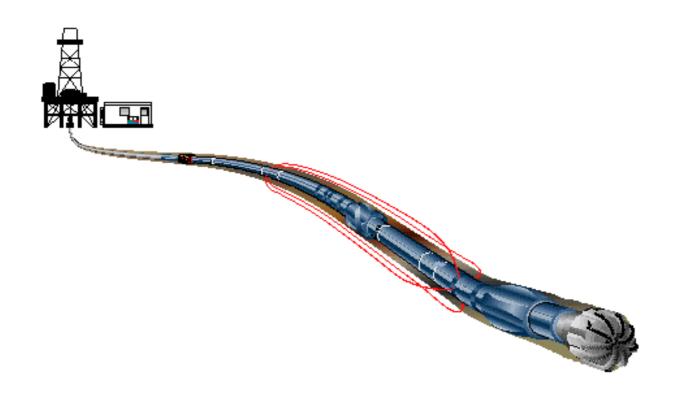
Northing: 5 690 204.1 meters


MGA: Zone 54

Note:

Data as per SANTOS "Rig Position Field Report"

Survey Report


Schlumberger

Seq #	Measured depth	Incl angle	Azimuth angle	Course length	TVD depth	Vertical section	Displ +N/S-	Displ +E/W-	Total displ	At Azim	DLS (deg/	Srvy tool	Tool Corr
-	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(m)	(m)	(deg)	10m)	type	(deg)
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	TIP	None
2	1425.49	0.59	234.33	1425.49	1425.46	-4.28	-4.28	-5.96	7.34	234.33	0.00	MWD	None
3	1454.01	1.07	295.89	28.52	1453.98	-4.25	-4.25	-6.32	7.62	236.09	0.33	MWD	None
4	1487.29	0.97	129.33	33.28	1487.26	-4.29	-4.29	-6.38	7.69	236.08	0.61	MWD	None
5	1510.95	0.86	56.64	23.66	1510.92	-4.32	-4.32	-6.08	7.46	234.60	0.46	MWD	None
6	1539.34	0.80	303.78	28.39	1539.31	-4.09	-4.09	-6.07	7.32	235.99	0.49	MWD	None
7	1568.02	0.85	315.97	28.68	1567.98	-3.83	-3.83	-6.38	7.44	239.03	0.06	MWD	None
8	1595.59	0.53	308.57	27.57	1595.55	-3.60	-3.60	-6.62	7.54	241.45	0.12	MWD	None
9	1624.12	0.56	304.38	28.53	1624.08	-3.44	-3.44	-6.84	7.66	243.29	0.02	MWD	None
10	1653.18	0.34	298.89	29.06	1653.14	-3.32	-3.32	-7.03	7.78	244.73	80.0	MWD	None
11	1681.34	0.26	305.03	28.16	1681.30	-3.24	-3.24	-7.16	7.86	245.63	0.03	MWD	None
12	1709.52	0.31	319.56	28.18	1709.48	-3.15	-3.15	-7.26	7.91	246.56	0.03	MWD	None
13	1737.89	0.40	311.67	28.37	1737.85	-3.02	-3.02	-7.38	7.98	247.73	0.04	MWD	None
14	1766.33	0.35	299.78	28.44	1766.29	-2.92	-2.92	-7.53	8.08	248.85	0.03	MWD	None
15	1809.32	0.26	261.27	42.99	1809.28	-2.86	-2.86	-7.74	8.26	249.70	0.05	MWD	None
16	1849.73	0.23	231.00	40.41	1849.69	-2.93	-2.93	-7.90	8.42	249.65	0.03	MWD	None
17	1878.02	0.37	193.70	28.29	1877.98	-3.05	-3.05	-7.96	8.53	249.02	0.08	MWD	None
18	1908.10	0.34	223.98	30.08	1908.06	-3.21	-3.21	-8.05	8.67	248.24	0.06	MWD	None
19	1935.76	0.18	265.57	27.66	1935.72	-3.28	-3.28	-8.15	8.78	248.11	0.09	MWD	None
20	1963.97	0.17	252.91	28.21	1963.92	-3.29	-3.29	-8.23	8.87	248.21	0.01	MWD	None
21	1991.95	0.12	204.40	27.98	1991.90	-3.33	-3.33	-8.29	8.93	248.11	0.05	MWD	None
22	2020.87	0.20	231.00	28.92	2020.82	-3.39	-3.39	-8.34	9.00	247.88	0.04	MWD	None
23	2049.42	0.23	223.20	28.55	2049.37	-3.46	-3.46	-8.41	9.10	247.64	0.01	MWD	None
24	2077.78	0.26	214.74	28.36	2077.73	-3.56	-3.56	-8.49	9.21	247.27	0.02	MWD	None
25	2105.32	0.33	183.75	27.54	2105.27	-3.69	-3.69	-8.53	9.29	246.63	0.06	MWD	None
26	2134.71	0.29	176.46	29.39	2134.66	-3.85	-3.85	-8.53		245.74	0.02	MWD	None
27	2162.92	0.22	203.34	28.21	2162.87	-3.97	-3.97	-8.55	9.42	245.11	0.05	MWD	
28	2192.60	0.14	180.37	29.68	2192.55	-4.06	-4.06	-8.57	9.48	244.68	0.04	MWD	
29	2220.68	0.29	203.20	28.08	2220.63	-4.15	-4.15	-8.60	9.55	244.21	0.06	MWD	
30	2248.46	0.15	220.05	27.78	2248.41	-4.25	-4.25	-8.65	9.64	243.85	0.05	MWD	None
31	2277.42	0.31	183.89	28.96	2277.37	-4.35	-4.35	-8.68	9.71	243.36		MWD	
32	2306.21	0.34	216.07	28.79	2306.16	-4.50	-4.50	-8.74	9.83	242.74		MWD	
33	2334.13	0.40	185.07	27.92	2334.08	-4.67	-4.67	-8.79	9.95			MWD	
34	2361.66	0.37	221.08	27.53	2361.61	-4.83	-4.83			241.42		MWD	
35	2390.55	0.33	232.85	28.89	2390.50	-4.95	-4.95	-8.99	10.26	241.17	0.03	MWD	None
36	2419.57	0.32	200.20	29.02	2419.52	-5.08	-5.08			240.81	0.06	MWD	
37	2433.15	0.24	208.59	13.58	2433.10	-5.14	-5.14	-9.11		240.59	0.07	MWD	
38	2476.28	0.50	232.35	43.13	2476.23	-5.33	-5.33			240.19	0.07	MWD	
39	2534.29	0.33	216.60	58.01	2534.24	-5.62	-5.62			239.67	0.04	MWD	
40	2649.13	0.37	195.11	114.84	2649.07	-6.24	-6.24			237.76	0.01	MWD	
41	2762.85	0.23	199.79	113.72	2762.79	-6.81	-6.81			235.92	0.01	MWD	
42	2878.16	0.23	190.81	115.31	2878.10	-7.26	-7.26			234.55	0.00	MWD	
43 44	2950.00	0.26	140.59	71.84	2949.94	-7.52	-7.52 7.63			233.35	0.03	MWD Proj t	
44	2979.00	0.26	140.59	29.00	2978.94	-7.63	-7.03	-10.03	12.00	232.76	0.00	Proj t	טוט.

Bit Run Summary

	Job Numbe				ompany			Date In	0.4		Date Ou		24	D&M Ru				Rig Rı	ın Num		
	AWA-04-0 Company Sar	8 ntos L1		tkins	s & J.\	Young Grid C c		20-No Brief Run Su		,		2-Nov-	J4	Bit Run I		ber		Cell N	lanage	1 r	
		k Bat						Good Run							1	ı			elle B		es
		rit-1	a a i n			Tot Cor		Hole Depth From 1425	- 00 -	_	То	1835		D&M Cr			0.1	isa Wa	taan		
	Mapfile Otv	vay Ba		Dec		PP Slot		Inclination (E		11	10	1000	'	Pumping			αL		v Rotar	v Tbi	Hrs
	BGGM 2004				10.51			From	0 (leg	To	0.26	deg			5.40 h	rs.				hrs.
-	BPS	Freque	ency		Mod Ty	/ре		Azimuth						Rotary H	lours			Rotar	y Dista	nce	
TION	3	12 Hz -		_	QPSK			From	0 0	<u> </u>	То	261.27	deg			3.70 h	rs.			5.00	m
₹ ¥	Pump Type Triplex	Pump 4.28	•		Pump S 12	in		True Vertical From 1	Depth 424		То	1834.96	m	Slide Ho		5.00 h	rc	Slide	Distan o	се 5.00	m
<u> </u>	Pump Liner ID	Min D	gp LS		Max DI			Hole Size		 /ater D		Air Gap		Drilling I			13.	Drillin	g Dista		
RUN INFORMATI	6.0 in		(0.02			0.61	26 in		1396	m	29	m		18	3.70 h	rs.		41	0.00	m
ľ	Bent Sub Angle	Bent H	ISG An	-	Depth I			RKB Height		round		Mod Ga	•	Reaming	J Hou			Ream	ing Dis	tanc	
	deg Pulse Ht Thresh	Min Pı	de ulse W	Ŭ	Max Pu	.29 m		Digit Time		-1395 /F Arc	m	0.168		On Botto	om H		rs.	Servi	20		m
					····			J.g.c Time			in	_	deg	0.11 201.11		3.70 h	rs.		~	l Se	rvices
	Conn Phase Ang	Rise C	onst		Fall Co	nst		H2S In Well	D	amp P	ress	Signal S		Last Cas	•						
	deg Directional Driller(s							Turbine RPM	0.11	, Ela	psi Poto		13.00	Size Turbine		000 i		Depth	1	1510	m
	Directional Driller(s Bob Manjeric	,						RPM		61.00		1069.00	gpm	RPM	nrM			6 FR	116	2.00	gpm
	Run Objective	Jet in	30"ca	sing	у & co	ntinue		rill 26" to 18					35								JP
	Equipment	Pump		SV			Equipr	nent	Pump		sw	Tool	Sensors	1		Real T			Recor		
	Code	Start		Ve	rs 9.5		Code		Start	Cum	Vers	Size	Code	\ 052F		Hrs	Fail	Drilled	Hrs	Fail	Drilled
	A962M-1069 CDR9-AA-9525	0	35 35	6.0 B	_								CDR9-AA MDC-HC			35.4 35.4		410 410		_	4
7	H524743-40042	0	35	J.U D	55 5.5	-							20-110			00.4		710			
<u>*</u>	H524743-40336	0	35																		
į	MDC-HC-484W	0	35	70C0	0 9.5	50															
EQUIPMENT DATA	NMDC900L-D173	0	35		9.5	50															
3																					
																				_	
	Surface Sys Version		L/SPN 09 1C (AL/SP SPM9 2															
	Manufacturer		ımber			e Leng	_	4.80	m	Rit	to Bend I	Dist		m	Rea	ring Ga	an In				
š	Туре	A962		90.	Rubb			RM100			Mfr					ring Ga	•				
MOTO	Size	9.62			Slee	ve Pos	ition			RSS	З Туре				Radi	ial Bea	ring	Play			
	Serial Number	1069				ve Size		_	in	_	Size				Thru	ıst Bea	ring	Play			
	Lobe Config.	7:8				or Fail					SN						_				
Ď.	Max Circ Temp Min Circ Temp		7.00 C 2.00 C		Avg			46.90 119.00		_	Acti Flor		3609.00	gpm		Shoci					sec. k
COND.	End Mud Wt				Avg		M	113.00		_	Pres On		3003.00	psi	1010	II DII 3	11001	CHECK S	SHOT		N.
5	End Funnel Vis		0.00 C	_	Min					_	Pres Off			psi	Туре	9					
OPEKATING	End Plastic Vis		С	PS	Max	RPM			90.0	O Avg	Surf WC	B	21.00	klbs	Dep	th					m
9	End Yield Point		С	PS		FlowRa		1069.00		_	Surf Tor	-	5.85	ft-lbs	_	ination					deg
	End Mud Resist			1.0	0 Max	Acti Fi	owRt	1162.00	gpm		x Shock I				Azin						deg
	Company	MI	0 00	d m	PH	ridos			euu ,	_	cent San		0.00			itives			Non	e	1
MUD	Brand Type		e spu Vater		Othe				ouu.l		cent Soli cent Oil	uð	0.00		Clea				_		
Í	LCM Type	۷			5.110	-					// Size		0.00	,,,	LCM	l Conc	enta	tion			
	ВНА Туре	Moto	r		Tur F	Rotor P	rt#				bine Conf	fig				ace So				_	1
₹	Int TF Offset			0.0	0 State					_	ser Confi					Used				Ē]
ВНА	Low Oil Flag				Hrs @	2 Low	0il		hrs.	Sta	b Spacin	9			Forn	nation					
	DD Objectives Achi	eved		✓	If no	t, why?															
	Bit Type	Millto			Othe			N. C.		la:					-			-			
B II	Manufacturer Smith	Model	MSDS		IADO	Code 1 5 5	i	No. of Jets			of Jets x24, 1x21,		Sit TFA 1.3	6	lota	1 Revs 1494			tick/SI	ip Yes	
•	Inner Row	Outer			Dull			Location		_	g/Seals		auge (1/1		Othe	er Chai			eason		
	1		1			WT		А			E		in			N	10			TD	
FAILURE	Trans Fail				Jami						nt Incom	<i>i</i> .]		ace N]
1	Pres Incr @ Fail D&M Trip					ming Ti Hours			hrs.	_	t Time face Vib		Г	hrs.		n Hole ace Sy			_		<u> </u>
÷	POINT THE				Sync	Hours			1115.	Jour	1408 AID		∟	_	Juri	400.9	, о га	iiui 8			J

 Printed: 11/23/2004 1:20 PM
 v3.0.005
 (c) 2002 Schlumberger

e.	hlumbannan					-	БИТ	NO C			ENGENI	Τ0	BIL	- D 4						Number			AWA-	04-08	
96	hlumberger					ע	KILLI	NG 8	ጷ ME/	450 H	REMEN	18 -	- RHV	A DA	ΙA					Number			1		
						I		la. i	1		In . a		I= -							Number			1		
l 4	Dagarintian	Vandan	Managaria		Serial	Fishing Ne		Stab OD	OD	ID	Bot Connection		Top Conne		Len	C 1 a.s.		II 1	TIME/	DEPTH DI	ETAILS 3		4	II	5
tem	Description	Vendor UNITS	Material	1	Number	in	Length m	in	in	in	Size Ty	/pe	Size	Туре	m	Cum Len m	Date/Time	21-Nov-	04 2	22-Nov-04		-	4	-	
		Julio	1	1		""	""	- "'	- ""	""					+		,	1	2	2-1404-04	<u> </u>	-		-	
1	Milltooth Bit		Steel	N	MR3808									Reg P	0.67		Field Engineer	Lisa	Lisa		├ ─	<u></u> -			
2	A962MGT7848	Schlumberger	Steel		1069						7.63 Re			Reg P	9.68		Depth	1468	_	1735.59	├ ──	—⊨		-	
3	Float sub		Steel		1087						7.63 Re	eg B	7.63	Reg P	1.05	11.40	Average ROP	5	.00	70.00	ــــــ	<u>_</u>			
4	26" WB Stabilizer		Steel		53655	i					7.63 Re	eg B	7.63	Reg P	1.68	13.08	Avg. Std. Pres.	3650	.00	4000.00	<u> </u>	<u>_</u>			
5	CDR9	Schlumberger	Monel	L	L9525						7.63 Re	eg B	7.63	Reg P	7.15	20.23	Desurger 1	800	.00	800.00	<u> </u>	L			
6	PowerPulse9	Schlumberger	Monel	V	N484						7.63 Re	eg B	7.63	H90 P	8.44	28.67	Desurger 2	800	.00	800.00					
7	26" WB Stabilizer		Steel		53656	i					7.63 HS	90 B	7.63	Reg P	1.48	30.15	Tur. RPM @ FR	3242	.19	3281.25	<u> </u>				
8	91/2" NM Drill Collar	Schlumberger	Monel	[D173						7.63 Re	eg B	7.63	Reg P	9.20	39.35	FR @ Tur. RPM	1100	.00	1134.00					
9	3 x 91/2" Drill Collar		Steel								7.63 Re	eg B	7.63	Reg P	26.62	65.97	Avg. RPM	0	.00	92.00					
10	Crossover		Steel								6.63 Re	eq B	7.63	Reg P	1.32		Max RPM	0	.00	95.00					
11	2 x 8" Drill Collar		Steel								6.63 Re			Reg P	18.51		Total Shocks		.02	0.05					
12	Drill-Quip CADA Tool		Steel								6.63 Re	-		Reg P	2.17		Max Shock		-	0.00					
13	Drill-Quip CADA Tool		Steel								6.63 Re			Reg P	0.57		Avg. Surf. WOB	35	_	15.00					
14	7 x 8" Drill Collar		Steel								6.63 Re	•	1	Reg P	64.00		Max Surf. WOB	40	-	20.00	the second	-		-	
15											4.50 IF	-		Reg P				40	-	15.00	the second	\dashv		+	
	Crossover		Steel								1 1				1.14		Avg. DH WOB		_			-		-	
16	12 x 5" HWDP		Steel								4.50 IF		4.50	IF P	110.77	264.45	Max DH WOB	40		20.00		<u>-</u>		-	
17											4.50 IF	В					Avg. Surf. Torq.		.00	2.50				-	
18																	Max Surf. Torq.	0	.00	4.00		 -		_	
19																	Avg. DH Torq.	0	.00	4.00	ــــــ	<u>_</u>			
20																	Max DH Torq.	0	.00	4.40	<u> </u>	_			
21																	Formation Type								
22																	Friction				<u> </u>				
23																	Drag Up				ĺ				
24																	Drag Down								
			Orill 8.5in se	ction verti	ically to TD.	•		Hookload				Wt. Bel	ow Jars			•	Mud Weight	8	.30	8.30					
								Pickup W				Wt. Abo					Funnel Vis.								
								Slack Wt.				Total Ai					Plastic Vis.				1	-		-	
	DICTED BHA							Oldok IVL				TOTAL PL					Circ. Temp	17	00	15.70	 	$ \vdash$			
1	ENDENCY																		_			-		-	
																	Signal Strength	12		9.50		<u>-</u>		-	
																	Bit Deviation		.50	0.31				-	
			1			I											Differential Pres.	200		200.00					
		Mid Pt To		BLADE			GAUGE	1		d Out Port			it To Measu	rement Po			BATTERY	Unloade		Loaded ((V)	Run Hrs	1	Cum Hrs	S
Stabiliz	er Description	Bit	Туре	Length	Width	Length	In	Out	CDR		16.17 M		RLWD		18.48 M		Tool	Before	After	Before	After	BOT	AMP	BOT	AM
	UNITS	m		in	in	in	in	in	PPL		21.97 M		ES LWD		15.00 M		H524743-40042	21.95		19.70					
											m	A	PWD LWD)	_{15.72} m		H524743-40336	21.74		19.11					
											m	D	&I PPL		24.32 M										
											m				m										
											m				m										
			1	1	1		1	1	1		m				m										

Schlumberger

DRILLING & MEASUREMENTS - TIME/DEPTH COMMENTS PAGE 1

Job Number: AWA-04-08
Run Number: 1

			Run Number: 1
Date	Time	Depth	Operating Details
14-Nov-04	10:00	0.00	Start making up BHA
	11:00	0.00	Program CDR-9525 @ 6sec config. & PP-W484
20-Nov-04	6:45	0.00	Connect to CDR-9525 (4 resets)
20-1107-04	7:00		Initialize CDR w/6sec configuration, Memory time=124.7 hrs
	8:00		Connect to PP-W484 to test communication between tool as SHT is not required
	8:20		Tools below rotary table
	16:40		Connect Geolograph. Set depth @ tool join
	17:15		Tag bottom
	18:48		Commence pumping. 170 strokes (730gpm). Tool In sync for few minuts
	18:50		Pumping less than minimum flow rate. Tools using battery power_company man informed
	19:16		Start pumping 190 strokes (95/95). Tools Out of Sync
	21:00		Pumping 165 strokes (84/82). Tool In Sync. SPT1=6.06psi, SPT2=7psi
21 Nov 04	0.00	1/55 75	Total numning Hours & Shro CDD 2500nsi Dump Stroke 250 (05/05/70)
21-Nov-04	0:00 1:15		Total pumping Hours=6.6hrs, SPP=3699psi, Pump Stroke=260 (95/95/70) Pump 50 barrels, sweep Hi/Low.
	1.15	1400.30	SPT1=10.8psi, SPT2=14.3psi, W0B=40, SPP=3650psi, strokes= 265 (95/95/75)
	3:30	1/82 00	Survey taken, incl=1.07deg, Co man informed.
	3:40		Working the pipe
	7:10		Increase flow to 1200gpm.
	9:17		Pump1 down, 200strokes with pumps 2 & 3 on line
	10:40		30" casing TD
	10:52		Take a survey inside casing for Inclination only (incl=1.11 deg)
	10:56		Pumping gel
	11:08		Pumps off - waiting on soak 30" conductor and on some mud to be mixed
	17:15		Start pumping @ 1200gpm
	17:30		Calibrate SWOB=5Klbf
			Drilling ahead @ 275 strokes (90/90/95), rpm=90
			TRPM=3398.4, SPPA=4030, SPT1=10, SPT2=12psi, vib torq=1035G
	18:30	1570.00	ROP exceed 90m/h, Co man informed that Max ROP @ 6sec conf is 90m/h to get 2 data point per foot.
	20:29	1639.23	Pumps off due to problem in the standpipe manifold
	20:30	1639.23	Pumps on, back drilling
	22:45	1681.34	Slight increase of ESD to 1.036. Co man informed - Stand reamed 3 times
00.11.04	0.00	1750.00	T.
22-Nov-04	0:00	1758.00	Total pumping hours =23.2hrs, SPP=4000psi, Pump Stroke = 271 SPT1=10.6psi, SPT2=14.4psi, W0B=15
	1:20	1706.00	Pumps down - liner came off
	1:23		Pumps up and running
	2:30		TD 26" hole section
	2:35		Pump high/low visc. Total Pump Hours=
	2:53		Survey taken and POOH commenced
	6:55		Run back to bottom and commence POOH
	16:00		Run 1 total pumping hours=35.4, drilling=18.7hrs
	16:30		Tools above rotary table
			F7 shows we are still in batt.1.
			Batt.1 should be with around 45% left.
 			

	Schlumber	ger)			ı	RI	LLING 8	& M	EAS	URE	MEN	ΓS - F	RU	N SU	IMI	VIAF	RY				
	Job Numbe		D /		ompany	Rep. Young		Date In	ov-04		Date Ou	ıt 1-Dec-	04		D&M Ru		mber		Rig	Run Nu	mber 2	
	Company Sai	ntos L	td.	AUKIII		Grid Corr		Brief Run Su				I-Dec-	-04		Bit Run	Numl	ber			Manag	er	
		k Bat rit-1	es		-	-U Tot Corr		Good Run Hole Depth							D&M Cr		2		Dar	iielle l	sorge	38
		vay Ba		_			_		835 r	n	То	245	i9 m		Ozren I			& L				
	Mapfile BGGM 2004		Mag	g Dec	10.48	PP Slot II		I nclination (E From (ייית) 26 ס	leg	То	0.2	24 deg		Pumping		ırs: 35.8 h	rs.	Beid	w Rota	1 ry 1 b 1 04.83	
z	BPS	Freque			Mod Ty	гре		Azimuth			i L				Rotary H				Rota	ry Dist		
ATIO	3 Pump Type	12 Hz Pump	Output	_	QPSK Pump S	Strk Len.	_	From 261 Frue Vertical	1.27 c		То	208.5	9 deg		Slide Ho	_	32.2 h	rs.	Slid	Dista	624 nce	m
ORM	Triplex	4.28	gp		12	in		From 1834			То	2458.9	95 M				h	rs.				m
RUN INFORMATION	Pump Liner ID 6.0 in	Min D 0.01	LS		Max Di 0.09	LS .	-	Hole Size 17.5 in	W	1396/	•	Air Ga	p 29 m		Drilling I		s 32.2 h	re	Drill	ing Dis	tance 624	
₽	Bent Sub Angle		ISG Ar		Depth I	Max DLS	ı	RKB Height		round	Elev.	Mod G	lap		Reaming		ırs		Rea	ning Di	stanc	:θ
	deg Pulse Ht Thresh	Min P	de ulse W	Ü		.76 m ılse Wdt		m Digit Time		-1396 /F Arc	m	0.16	iale		On Botto	om H	5 h ours	rs.	Sen	ice	634	m
											in		0 deg				32.2 h	rs.	Dire	ction	al Se	rvices
	Conn Phase Ang deg	Rise C	onst		Fall Co	nst	ľ	H2S In Well	D	amp P 800	ress psi	Signal 12	Streng.		Last Cas Size	sing	20 i	n	Dep	h	1822	m
	Directional Driller(s)						Turbine RPM		1 Flow	Rate		10		Turbine	RPM	@ Ma	x Flo				
	Bob Manjancic Run Objective	Drill 1	17.5" s	ectio	on to T	D at 24		RPM	14	106.00	FR	74	l9 gpn	1	RPM		34	+/6.	56 FR		992	gpm
	Equipment	Pump	Hrs	SV	V 1	Tool Eq	ıipm		Pump		SW	Tool					Real 1				orded	
	Code A962M-1069	Start 35	Cum 121	Ve	rs 3	Size Co	de		Start	Cum	Vers	Size	-		N-9525		Hrs 55.21	Fail	Drilled 6:	Hrs 4 104	_	Drilled 624
	CDR9-AA-9525	35	121	6.0 B	08 9.5	0							MDC-	HC	-484W		55.21		6:	4		
٩T٨	H524743-40042 H524743-40336	35 35	121 121																		-	
EQUIPMENT DATA	MDC-HC-484W	35		70C0	0 9.5	50																
PME	NMDC900L-D173	35	121		9.5	50																
EQUI																						
	Surface Sys	IDFΔ	L/SPN	/	IDE	AL/SPM														IDEAL	/SPN	/
	Version		D9_1C_			SPM9_2C	_08														, 01 10	
R	Manufacturer Tues	Schlu A962	ımber	ger	Stage Rubb	e Length		4.80 RM100	m		to Bend S Mfr	Dist.	3.	25	m	_	ring G	<u> </u>				0.00
рн мото	Size	9.62	וטו			ve Positio	n	NIVITUU	0.9	_	S Type					 	ring G					2.00
H	Serial Number	1069				ve Size		17.13	in	_	S Size					Thru	ıst Bea	aring	Play			
	Lobe Config. Max Circ Temp	7:8	3.00 (,	Avg i	r Fail		25.35	m/hı	+	S SN n Actl Flo	wRt	7/19	nn	gpm	May	Shoc	k Du	,	1	88 NN	sec.
COND.	Min Circ Temp		2.00 (Max			99.30		_	PmpPre		2506.			-	I DH S			4	0.11	
00 91	End Mud Wt		9.20 II	_		Surf RPM				_	pPres On		2500.						CHECK	SHOT		
OPERATING	End Funnel Vis End Plastic Vis		5.00 C 0.00 C		Min I Max	RPM				_	pPres Of Surf W(2350. 21.		klbs	Type Dep						m
OPE	End Yield Point	_	6.00 C	PS	+ -	FlowRate		903.00	gpm	Αv	Surf To	rq			ft-lbs		ination	1				deg
	End Mud Resist Company	MI		0.1	2 Max PH	Actl Flov	Rt	992.00	-		x Shock cent San		n	25			nuth itives			Don	ite	deg
Q	Company Brand		PHPA/	'Glyc	o Chlo	rides		3		_	cent Soli			00		Clea				Bar	_ []
MUD	Туре	KCL			Othe	r				_	cent Oil				%							
	LCM Type	.,			7	ata - P-r					VI Size	di a					l Conc				_	
A	BHA Type Int TF Offset	Moto	r			otor Prt or Prt#				_	bine Con ser Confi					 	used	CLGG	n		늗	<u></u>
표	Low Oil Flag					2 Low 0i			hrs.	Sta	b Spacin	g				Forn	nation					
	DD Objectives Achi Bit Type		ath	✓	Othe	t, why?																
	Manufacturer	Millto Model			_	Code		No. of Jets)	Siz	e of Jets		Bit TFA			Tota	l Revs	;		Stick/S	lip	
BIT	Reed Inner Row	Outer	T11C Row		Dull (4/24/1900 Char		4 Location		Brr	3x22, 1)	k20	Gauge	1.4:		Othe	er Cha			Reaso	yes Pulle	
	2	00.0.	2		Jun	ВТ		A			E		caago	1		Cane		VT			TD	
URE	Trans Fail				Jamr]	_	ent Incon	v.]	-	ace N				Ę]
FAILI	Pres Incr @ Fail D&M Trip				_	ning Time Hours		55.20	hrs.	_	t Time face Vib			Е	hrs.	_	n Hole ace Sy					
ARY	Good MWD/LV	VD rui	n. Exc	ellen			ode															
SUMMARY																						ļ
S																						

Printed: 12/3/2004 9:37 AM v3.0.005 (c) 2002 Schlumberger

ec	hlumbannan					-	B.I. I. I	NO 0		OLID		• 511	4 D 4:	T.4					lumber			AWA-0	4-08	
96	hlumberger					ט	KILLI	NG &	MEA	SUKI	EMENT	2 - RH	A DA	IA					lumber			2		
						le: 1 :		0. 1		1	2 (2								Number EPTH DE	TAUC				
Item	Description	Vendor	Material		erial Iumber	Fishing Ne		Stab OD	OD		Bot Connection Size Type	Top Con Size	Type	Len	Cum Len		II 1		2	ETAILS B 3	II	4	ı	5
ILUIII	Description	UNITS	IMIATOLIAI	<u> N</u>	IUIIIDƏI	in	m	in	in	in .	size Type	SIZE	Туре	m	m	Date/Time	28-Nov-0	_	-Nov-04	30-Nov	/-N4	•	1	9
		1	T.											_				-			_		1	
1	Milltooth Bit		Steel	J	65053				17.50				63 Reg P	0.48		Field Engineer	Danielle	Daniel		Danielle	_		-	
2	A962MGT7848	Schlumberger	Steel		1069	9.63	0.39		9.63	2.38	7.63 Reg E		63 Reg B	9.66		Depth	1858.0	_	2222.72	2045	_		-	
3	Float sub		Steel		1087	9.50			9.50	2.69	7.63 Reg P		63 Reg B	1.04	11.18	Average ROP	30.0	00	21.00	35	5.00		╽	
4	17-1/2" WB Stabilizer		Steel	20	07A34	9.50	0.71	17.50	9.50	3.00	7.63 Reg F	7.	63 Reg B	2.04	13.22	Avg. Std. Pres.	1641.5	50	2925.56	2680	0.00		<u> </u>	
5	CDR9	Schlumberger	Monel	LS	9525	9.63			9.50	3.00	7.63 Reg P	7.	63 H90 B	7.15	20.37	Desurger 1	800.0	00	800.00	800	0.00			
6	PowerPulse9	Schlumberger	Monel	W	V484	9.25	0.45		9.50	4.31	7.63 H90 P	7.	63 H90 B	8.44	28.81	Desurger 2	800.0	00	800.00	800	0.00			
7	17-1/2" WB Stabilizer		Steel	27	70A97	9.50	0.75	17.50	9.50	3.00	7.63 Reg F	7.	63 Reg B	2.05	30.86	Tur. RPM @ FR	1718.8	88	2539.06	2539	9.06			
8	91/2" NM Drill Collar	Schlumberger	Monel	D	173	9.50			9.50	3.00	7.63 Reg P	7.	63 Reg B	9.20	40.06	FR @ Tur. RPM	850.0	00	1000.00	1000	0.00			
9	2 x 91/2" Drill Collar		Steel			9.56	0.50		9.50	3.00	7.63 Reg P	6.	63 Reg B	17.90	57.96	Avg. RPM	50.0	00	90.00	105	5.00			
10	Crossover		Steel			8.06	0.62		9.50	3.00	6.63 Reg F		63 Reg B	1.32		Max RPM	64.0	00	100.00	110	0.00			
11	8 x 8" Drill Collar		Steel			7.88			8.00	2.88	6.63 Reg F		63 Reg B	74.15		Total Shocks	0.0	_	0.10		0.11		1	
12	8"Jar		Steel	45	8907C	8.06			8.06	3.00	6.63 Reg F		63 Reg B	9.78	1	Max Shock	-		0.10	<u> </u>			1	
13	3 x 8"DC		Steel	-	03076	7.88			8.00	2.88	4.50 IF P		63 Reg B	27.66		Avg. Surf. WOB	20.0	<u></u>	30.00	_	5.00		1	
									i		4.50 IF P				1			-					1	
14	Crossover		Steel	-		6.63			8.00	2.94			50 IF B	1.14		Max Surf. WOB	30.0		35.00		0.00		-	
15	12 x 5" HWDP		Steel	-		6.50			6.63	3.00	4.50 IF P	4.	50 IF B	110.77	282.78	Avg. DH WOB	17.0		15.00		5.00		-	
16																Max DH WOB	25.0		20.00		0.00		-	
17													_			Avg. Surf. Torq.	3.0	00	3.00		8.00		.	
18																Max Surf. Torq.	3.5	50	3.50		9.00			
19																Avg. DH Torq.	2.9	97	3.00	-	7.00			
20																Max DH Torq.	3.0	00	3.50		8.00			
21																Formation Type	Shale	Shale	ļ	Shale				
22																Friction								
23																Drag Up				ı				
24																Drag Down				1				
			1					Hookload		229.00	w	. Below Jars	77.20	kl	bs	Mud Weight	8.8	80	9.20	,	9.00		1	
								Pickup Wt.				L Above Jars	32.80		bs	Funnel Vis.	0.0		3.20	<u> </u>	3.00		1	
								Slack Wt.	•			tal Air Wt.				Plastic Vis.	15.0	10	15.00	1	6.00		1	
	DICTED BHA							SIECK W.			10	tai Ali WL						-					1	
T	ENDENCY															Circ. Temp	16.0	_	18.00		8.00		-	
																Signal Strength	9.0		15.00		3.00		-	
																Bit Deviation	0.2	26	0.14		0.24		.	
																Differential Pres.		<u>ا</u>						
		Mid Pt To		BLADE			GAUGE		Bit To Read	Out Port		Bit To Mea	surement Po	rt		BATTERY	Unloaded	(V)	Loaded (V) R	un Hrs	C	um Hrs	
Stabiliz	er Description	Bit	Туре	Length	Width	Length	In	Out	CDR		16.34 M	GR LWD		18.65 M		Tool	Before	After	Before	After	вот	AMP	BOT	AMP
	UNITS	m		in	in	in	in	in	PPL		22.14 M	RES LWD		15.17 M		H524743-40042								
-											m	APWD LW	/D	_{15.89} m		H524743-40336								
											m	D&I PPL		24.49 M										
			i i		1						m			m										
					†						m	1		m										
			1		1	-					m	+		m				1						
							İ																	

Schlumberger

DRILLING & MEASUREMENTS - TIME/DEPTH COMMENTS PAGE 1

Job Number: AWA-04-08
Run Number: 2

			Run Number: 2
Date	Time	Depth	Operating Details
27-Nov-04	0:00	0.00	SLB LOT for 20"section has been cancelled by client.
	12:40	0.00	Initialize CDR-9525 @ 6sec configuration on rig floor - CDR memory=134.9hrs
	13:10		Tools below rotary table
	13:30	0.00	Start acquisition
	14:00	0.00	SHT@800gpm (191 strokes), TRPM=2226.56, SPT1=18psi, SPT2=17psi, CDRstat=48, MWDstat=0,
			SPPA=1236psi, 98% BC
	22:20		Tag cement, rack back one stand
	22:30		Slip & cut.
	23:00		Pumping 30spm to fill up casing/riser.
	23:03	1778.00	Pumping 197spm (827gpm). No signal - bypassing standpipe
28-Nov-04	1:02		Stop pumping
	1:58		Pressure test surface equipment.
	2:20		Standpipe leaking. Change of standpipes, sensors moved
	3:40		Finished Standpipe swap - continued surface pressure test
	4:10		Make connection and start pumping. Mud Res 0.096ohm-m@24.2degC
	4:20		Losing mud over the shakers
	4:30		Continue to drill cement
	6:16		Connect Geolograph
	6:20		Taken SCRs
	7:15		Drill out casing shoe
	8:15		Circulate prior to LOT
	10:10		Confirm final rig poisition with Company Man
	11:36		Finish LOT, start pumping
	14:30		Pull off bottom & stop pumping - Mud loss over shakers
	14:57		Intermittent network problems during the day
	15:05		Back on bottom drilling
	18:50		Increase torsional vib to 1855G.
	22:16		Drill break. Pick up off bottom and flow check.
	22:30		Back on bottom drilling
	22:37		Pick up off bottom. Run pumps 1,2&3 @ 1000gpm
	22:44	2003.16	Back on bottom drilling
29-Nov-04	0:00	2045.00	ROP=35m/h, SPT's=12.7 / 8.4psi, TRPM=2539@230strokes, SPPA=2680psi, 96%BC
29-1100-04	4:27		Pump hi vis sweep
	4:56		Back on bottom drilling
	5:30		Circulate hole and condition mud.
	6:30		Back on bottom drilling
	8:10		Booster pump on
	16:50	2317 16	ECD jumped from 9.57 to 9.66. Pull off bottom, increase rpm & circulate hole cleaning.
	18:18		Start pumping sweeps
	19:05		Back on bottom drilling - ECD dropped to 9.47
	19:30		Calibrate WOB=20Klbf
30-Nov-04	0:00	2382 UU	ROP=8.84m/h, SPT's=6.8 / 10.2psi, TRPM=2539@226strokes,SPPA=3046psi, 94%BC
30-1107-04	0:20		Lower the WOB to 10-15Klbs
	0:25		Ream stand to lower ECD (ECD=9.52ppg)
	0:30		Back on bottom drilling
	5:20		Increase WOB to 20-30Klbs.
	7:21		TD of 17 1/2in section
	7:25		Circulate hole.
	7:58		Take a survey
	8:02		Pump hi vis pill.
	11:30		Start to pull back to the shoe.
	14:00		Geolograph line broken. Replace with spare line
	17:00		Shut down operations due to Safety Investigation. Circulating off bottom while waiting on outcome
01-Dec-04	16:30	2//50 በበ	Back to normal operations - Start to POOH
01-Dec-04	21:55		Tools above rotary table
	22:15		Download CDR-9525 on rotary and rack tools back until cement job is done.
	22.13	0.00	Estimeted battery life left is: Batt A: 0%, Batt B: 40%
		<u> </u>	Louineted battery life felt is. Datt A. U/II, Datt D. 40/II

	Job Numbe		D 4		ompan			Date In	0.4		Date Ou		04	D&M R				Rig R	un Nun		
	AWA-04-0 Company Sar	ช ntos L1	_	tkin	s & J	Young	_	4-De Brief Run Su	ec-04		<u> </u>	6-Dec-	04	Bit Run		3 ber		Cell N	/lanage	3 er	
		k Bat						Good Run								3			elle B		es
		rit-1	ain.			Tot Co	rr 10.94	Hole Depth	459 r	_	То	2695.0	n	D&M C			0.1	.isa Wa	t		
	Mapfile Ott	vay Ba	_	Dec	•	PP Slo		Inclination (I		11	10	2055.0	U III	Pumpin			αι		v Rotai	v Tbi	Hrs
	BGGM 2004				10.48).24 c	leg	То	0.3	7 deg		-	9.80 h	rs.			1.10	
	BPS	Freque	ency		Mod 1	уре		Azimuth						Rotary	Hours	}		Rotar	y Dista	nce	
3	3	12 Hz		_	QPSI				3.59		То	195.1	1 deg			1.40 h	rs.			6.00	m
á	Pump Type Triplex	Pump 4.28			Pump 12	Strk Le ir		True Vertical From 2458	Depth 3.95 r		То	2694.9	ı m	Slide H	ours	h	rs.	Slide	Distan	Ce	m
4	Pump Liner ID	Min D	gp LS		Max C		<u> </u>	Hole Size		ater D		Air Ga		Drilling	Hour		13.	Drillin	ng Dist	ance	""
ŝ	6.0 in		(0.01			0.07	12.25 in		1396	m	2	9 m		14	1.40 h	rs.		23	6.00	m
=	Bent Sub Angle	Bent H		-		Max D		RKB Height		round		Mod G	•	Reamin	g Hou			Ream	ing Dia	stanc	
	deg Pulse Ht Thresh	Min P	de ulse W	·		6.28 r		m Digit Time		-1396 F Arc	m	0.14 T/F An		On Bott	om H		rs.	Servi	CA		m
								J.g.c Time			in	,,,,,,,,,	deg	0 201.		1.40 h	rs.			l Se	rvices
	Conn Phase Ang	Rise C	onst		Fall Co	onst		H2S In Well		amp P		Signal	Streng.	Last Ca							
	deg Directional Driller(s							Turbine RPM		00.00	•		7.00	Size Turbine		375 i		Depth	1	2459	m
	Directional Driller(s Bob Manjancic	1						RPM		1 Flow 114.00		659.0	0 gpm	RPM	nrM			75 FR	87	4.00	gpm
	Run Objective	Drill 1	12 1/4	'sec	tion t	o TD															3,
	Equipment	Pump		S۱		Tool	Equip	nent	Pump		sw	Tool	Sensor	S		Real T			Reco	_	
	Code A962M-2099	Start 96	Cum 125	Ve		Size .62	Code		Start	Cum	Vers	Size	Code CDDC-E	C-8001		Hrs 21.5	Fail	Drilled 236	Hrs 51.1	Fail	Drilled 2:
	CDDC-BC-8001	0		6.0B		25							MDC-D			21.5		236		1	2.
	H524743-40338																				
ECOIL MICINI DAIA	H524743-40339																				
1	MDC-DE-ED12	0	30	70C0	00 8	.25															
1																					
3																					
	Surface Sys Version	IDEA	L/SPN 09 1C			AL/SP												l	DEAL,	/SPN	/
	Manufacturer		ımber			je Leng		4.80	m	Bit	to Bend I	Dist.	3.00	i m	Bea	ring Ga	ap In				1.0
á	Туре	A962	M		Rub	ber		RM100		RSS	Mfr				Bea	ring Ga	ар О	ut			2.0
-	Size	9.62				eve Pos				15 RS S					1	ial Bea		•			
4	Serial Number	2099				ve Size	8	12.13	in	_	Size				Thru	ıst Bea	aring	Play			
	Lobe Config.	7:8	100 (,		or Fail		10.00	/la		SN	D4	CEO 00		14	. OL	. D				
	Max Circ Temp Min Circ Temp		1.00 C		_	ROP		120.11	m/hı m/hı	_	Acti Flor		3065.00) gpm) nsi	4	Shoci				0.63	sec.
3	End Mud Wt		9.50 II			Surf R	PM			_	Pres On		0000.0	psi				CHECK	_	0.00	
	End Funnel Vis	64	1.00 C	PS	Min	RPM			68.0	00 Pm	Pres Off	Bot		psi	Тур	8					
3	End Plastic Vis	_	1.00 C		_	RPM					Surf WC			klbs	Dep						m
	End Yield Point End Mud Resist	25	5.00 C		_	FlowR		821.00	•	_	Surf Tor	-	8160.00	ft-lbs	1	ination nuth	1				deg
	Company	MI		0.0	PH	Actl F	.own(874.00		-	cent San		0.30	0/2		itives			Danis	10	deg
	Brand		HPA/	Glyc		rides		5	2500.0	_	cent San		8.80		Clea				Bari		1
2	Туре	KCL			Oth						cent Oil		3.50								
	LCM Туре									LCN	1 Size				LCM	1 Conc	enta	tion			
j	ВНА Туре	Moto	r		Tur	Rotor F	Prt#			Tur	bine Cont	fig			Surf	face So	cree	n			
-	Int TF Offset				_	or Prt #				_	ser Confi				_	Used]
	Low Oil Flag DD Objectives Achi	ove4	Ш	T -	_	@ Low ot, why			hrs.	Sta	b Spacing	9			Forr	nation					
	Bit Type	PDC		✓	Oth		•														
	Manufacturer	Model			_	C Code		No. of Jets	3	Size	of Jets		Bit TFA		Tota	ıl Revs		S	tick/S	lip	
9	Hughes		HCH60	6				6			14			90		1567				yes	
	Inner Row 1	Outer	Row 1		Dull	Char ER		Location Nos	se	Brn	g/Seals X		Gauge (1/	16") n	Oth	er Chai No	r one	F	leason	Pulle PR	
ļ	Trans Fail		П		Jan	ming			7	Clie	nt Incom	<i>1</i> .	Г	7	Surf	iace N					
=	Pres Incr @ Fail				_	ming T	ime		hrs.	_	t Time			hrs.	-	vn Hole		ise]
1	D&M Trip				Syn	c Hours	s	21.50	hrs.	Sur	face Vib		[Surf	face Sy	/s Fa	ilure			
MAINIMO	Good MWD/LV	VD rur	۱.																		

 Printed: 12/6/2004 1:33 PM
 v3.0.005
 (c) 2002 Schlumberger

é	hlumbann	0.00				1	5			OLI D		- B.I.		- 4					Number			AWA-		
96	hlumberge	er.				D	KILLI	NG &	MEA	SUKI	EMENTS	2 - RH	AUA	IA					Number			3	3	
						I		a					.,					_	Number					
ltem	Danasiatian	Vendor	Material		Serial Number	Fishing Ne		Stab OD	OD		Bot Connection	Top Conr Size		Len	Cum Len		II 1	TIME/	/DEPTH DI 2	ETAILS	п	4	ı	5
ILUIII	Description	UNITS	IMATOLIAL		Mailinei	in	Length m	in	in	in s	Size Type	Size	Туре	m	m m	Date/Time	05-Dec-	04		3		-		<u> </u>
		1	T	ı				""						_			-	-						
1	PDC Bit	Hughes			7003752	8.00			12.25				3 Reg P	0.34		Field Engineer	OR						_	
2	Crossover				L900	9.50	1		9.63	3.06	6.63 Reg B		3 Reg P	0.35		Depth	2504.	_					_	
3	Motor	Schlumberger	Monel		1060	9.63	0.47		9.63	3.06	7.63 Reg B	7.6	3 Reg B	9.68	10.37	Average ROP	21.	.00						
4	Float sub	Schlumberger	Monel		3728	9.50			9.50	2.25	7.63 Reg P	7.6	3 Reg B	0.90	11.27	Avg. Std. Pres.	2900.	00						
5	Crossover					8.06	0.62		9.00	3.00	7.63 Reg P	6.6	3 Reg B	1.32	12.59	Desurger 1	800.	00						
6	Stabilizer			,	AIB 1123	7.94	0.67	12.50	8.00	2.88	6.63 Reg P	6.6	3 Reg B	1.65	14.24	Desurger 2	800.	.00						
7	CDR	Schlumberger	Monel		8001	8.38	4.00		8.25	2.88	6.63 Reg P	6.6	3 FH B	6.98	21.22	Tur. RPM @ FR	2695.	00						
8	ILS	Schlumberger	Monel	:	213272-2	8.38	0.50	12.13	8.25		6.63 FH P	6.6	3 FH B	1.38	22.60	FR @ Tur. RPM	840.	.00						
9	PowerPulse	Schlumberger	Monel	ĺ	ED 12	8.25	0.34		8.25		6.63 FH P	6.6	3 Reg B	8.38	30.98	Avg. RPM	100.	00						
10	Stabilizer				AIB 1120	7.88	1	12.50	8.00	3.00	6.63 Reg P		3 Reg B	1.45		Max RPM	100.	_						
11	8 x DC			ĺ		8.25	1	12.00	8.00	2.88	6.63 Reg P		3 Reg B	74.15		Total Shocks	0.	_						
12	Jar				48907 C	8.06			8.06	3.00	6.63 Reg P		3 Reg B	9.78		Max Shock	2.	_			$-\parallel$			
13	3 x DC			- f	40907 0	7.88			8.00	2.88	6.63 Reg P		Ť	27.66			20.	_			-			
										-			3 Reg B			Avg. Surf. WOB		_			\dashv			
14	Crossover					6.63			8.00	2.94	6.63 IF P		0 IF B	1.14		Max Surf. W0B	20.							
15	12 x HWDP					6.50			6.63	3.00	4.50 IF P	4.5	0 IF B	110.77	255.93	Avg. DH WOB	20.						_	
16													-			Max DH WOB	20.	.00			 -		_	
17																Avg. Surf. Torq.	2.	.00						
18																Max Surf. Torq.	5.	00						
19																Avg. DH Torq.	1.	70						
20																Max DH Torq.	4.	.00						
21																Formation Type	Claystone							
22																Friction	,							
23																Drag Up								
24													1			Drag Down		-						
				l							1	Beless Issu	56.00	kll	20									
								Hookload				Below Jars	36.50	kli		Mud Weight	9.	_						
								Pickup Wt.				Above Jars	30.30	KII	us	Funnel Vis.	60.	_					_	
PRE	DICTED BHA							Slack Wt.			Tot	al Air Wt.				Plastic Vis.	21.	.00					_	
	TENDENCY															Circ. Temp	20.	.00						
																Signal Strength	7.	40						
																Bit Deviation	0.	24						
																Differential Pres.	200.	00						
		Mid Pt To		BLADE			GAUGE		Bit To Read	Out Port		Bit To Meas	urement Po	rt		BATTERY	Unloade	d (V)	Loaded ((V)	Run Hrs		Cum Hrs	S
Stabiliz	er Description	Bit	Туре	Length	Width	Length	In	Out	CDR		17.09 M	GR LWD		19.45 M		Tool	Before	After	Before	After	вот	AMP	вот	AMP
	UNITS	m	T	in	in	in	in	in	PPL		24.38 M	RES LWD		16.10 M		H524743-40338	21.73		19.59					
											m	APWD LW	D	16.63 M		H524743-40339	21.79		20.10					
					+						m	D&I PPL		26.73 M										
			<u> </u>	+	+		 				m	DATTIL		m										
			 	-	+						m	+		m										
				-	+							1		m					-					
											m	<u> </u>		111		<u> </u>								

Schlumberger

DRILLING & MEASUREMENTS - TIME/DEPTH COMMENTS PAGE 1

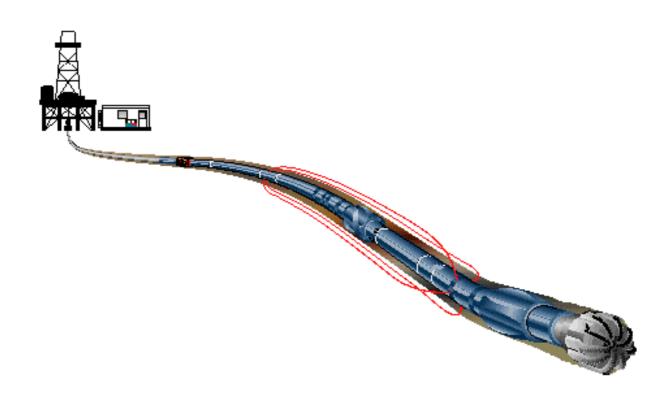
Job Number: AWA-04-08
Run Number: 3

			Run Number: 3
Date	Time	Depth	Operating Details
04-Dec-04	2:00		Initialize CDR8-8001 @ 6sec configuration
	3:50		Tools below rotary table
	5:38		Good SHT@705gpm
	5:40	0.00	Problems with rig pumps (pump 1)
	6:00		Continue to RIH
	11:44	0.00	Start pumping, testing tools, SPT1=9psi, SPT2=7psi,MWDstat=4, CDRstat=0, TRPM=1718, SPPA=980psi,
			PRSA=1091psi, Dnl TEMP=13C
	16:40		Tag cement
	19:25		On bottom drilling @ 600gpm(140 strokes)
	19:47		Off bottom. Losing mud over shakers
	21:45		Start LOT.
	22:39		Drilling ahead
	23:48	2470.00	Lost communication with Real time for 1 frame
05.0	0.00	0.174.44	000 0104 · D
05-Dec-04	0:00		SPP=2404psi, Pump Stroke=176 (88/88), Flow=740gpm
	0:12		Lost communication with Real Time for 1 frame
	1:11		Pull of bottom in preparation for repeat LOT
	1:23		Repeat LOT
	2:15		Finish second LOT
	2:33		Drilling ahead
	3:02		Incerase flow to 840gpm and RPM to 100rpm
	5:26		Incerase flow to 870gpm.
	6:29		Increase of flow to 890gpm
	6:30		ROP dropped to 2-4m/hr
	7:43		Decrease of flow to 690gpm and increase RPM to 115rpm
	9:25		CDR shock level 3 for 1 frame
	9:58		Intermitent Lost RT communication & CDR shock level 3 every now and again
	12:16		High sticknslip(>200), DD change parameters to reduce
	12:47 12:51		Sticknslip still high, pull off bottom, increase rpm & decrease WOB Change WOB to 20Klbf & rpm to 105, sticknslip dropped to 36rpm
			Pump 2 down, Pump 1 & 3 on line
	14:35 18:27		Stop pumps to pump 80 barreles fo sea water
	19:47		Decision made to POOH to change bit due to very low ROP
	21:35		Swabing the hole. Pick a stand and run it in. Pump out of the hole
	22:50		At the shoe
	22:53		Disconnect geolograph line.
	23:04		Flow check
	23:04		Circulate bottoms up
	23.00	2342.00	on curate bottoms up
06-Dec-04	1:24	25/12 00	Finish circulating bottoms up
00-060-04	1:27		Pump the slug.
	1:36		Spot the slug and start to pull out of hole.
	7:00		Tools above rotary
	7:11		Bit broken
	7:26		Connect to CDR & download data
		3.50	Check batteries and batt.A in use (20% left-batt.A)
			1

	Job Number Company Rep.						Date In		Date Out				D&M Run Number				Rig Run Number							
		AWA-04-08 D.Atkins & P.King mpany Santos Ltd. Grid Co			orr	ხ-D6 Brief Run Su	ec-04 mmarv	7-Dec-			04	4 Bit Run Number				Cell N	4 Cell Manager							
	Rig Name Jack Bates							Good Run							4 [Danielle Borges					
	Well Name Amrit-1 Location Otway Basin				Tot Corr 10.94		Hole Depth	605 -	n	То	2979.0	0 m	rew Radicevic & Lisa W				1/							
	Mapfile Mag Dec				PP Slot ID		From 2695 m Inclination (Drift)			10	2373.0	<u> </u>	Pumping			α.	Belov		y Tbi	Hrs				
	BGGM 2004			10.48				From 0.37 deg			д То 0.:		6 deg		16	6.80 h	rs.		3	1.50	hrs.			
3	BPS Frequence 3 12 Hz				Mod T QPSK			Azimuth	5.11 (<u> </u>		0 4	Rotary I				Rotar	y Dista					
Ħ								From 19! True Vertical	<u> </u>	To 140.		9 deg	Slide Ho		6.10 h	rs.	Slide	Z8 Distan	4.00 ce	III				
RUN INFORMATION	Triplex				12	ir			1.94 ľ		То	2978.9	4 M			h	rs.		- 10 10 1		m			
Ż	Pump Liner ID	Min D			Max D	LS		Hole Size		/ater D	•	Air Ga		Drilling				Drillin	g Dista					
Ž	6.0 in Bent Sub Angle Bent HSG deg			0.01	Denth	Max D	0.03	12.25 in RKB Height	G	1396 round		Mod G	9 m an	Reaming		6.10 h	rs.	Ream	28 ing Dis	4.00				
				g).00 r		m		-1396		0.14	•	, iou	,		rs.	i i o u ii	ing Die		m			
	Pulse Ht Thresh	Min P	ulse W	dt	Max P	ulse W	/dt	Digit Time	T,	/F Arc		T/F An	_	On Botte				Servi						
	Conn Phase Ang	Rise C	nnet		Fall Co	net		H2S In Well	n	amp P	in	Signal	deg Streng.	Last Cas		6.10 h	rs.	Direc	tiona	l Se	rvices			
	deg		J.101	nst Fa		ot		1781	J	amp P	psi	Signal	8.00		_	375 i	n	Depth	2	2459	m			
	Directional Driller(s							Turbine RPM						Turbine	RPM					_				
	Bob Manjancic Run Objective	Drill 12.25"sectio				TD		RPM		16.00	FR	61.0	0 gpm	RPM			97.0)0 FR	84	7.00	gpm			
	·	Drill I		secti		עו. Tool	Equipr	nent	Pump	Hrs	sw	Tool	Sensors			Real T	ime		Recor	ded '	Time			
	Code	Start		Ve	rs	Size	Code		Start		Vers	Size	Code			Hrs		Drilled	Hrs	Fail	Drilled			
	A962M-2099			0.05		62							CDDC-B			16.8		284		i	2			
	CDDC-BC-8001 H524743-40338	30	47	6.0B0	08 8.3	20							MDC-DE	-EU1Z		16.8		284			2			
EQUIPMENT DATA	H524743-40339																							
2	MDC-DE-ED12	30	47	70C0	0 8.	25																		
₹																								
₿																								
	Surface Sys Version	IDEA				AL/SP																		
	Manufacturer		09_1C_ umber			spm9_ e Leng		4.80	m	Rit	to Bend I	Dist	3.06	m	Rea	ring Ga	n In				1.0			
ž	Туре	A962		90.	Rub			RM100			RSS Mfr		0.00			ring G	•		2.					
OIOW	Size	9.62			Slee	ve Pos	Position (0.45 RSS Type					Rad	ial Bea	ring							
5	Serial Number	2099 7:8				Sleeve Size Motor Fail		12.13 in		RSS Size RSS SN					Thrust Bearing I			Play						
	Lobe Config.		6.00 C					16 E6	m/h			D÷	61.00	anm	Max	Chaal	. D	-		000				
į	Max Circ Temp Min Circ Temp		1.00 (Min RPM		152.36	m/hı m/hı	_	Min Actl FlowRt Avg PmpPres PmpPres On Bot		3516.00	gpm	-	Shoci			_	3.53	sec.			
LOND.	End Mud Wt		9.60 II		_					_				psi				CHECK S	_					
1	End Funnel Vis		5.00 C						16.0)0 Pm	Pres Off	f Bot		psi	Тур	Туре								
OPEKATING	End Plastic Vis					Max RPM Avg FlowRate		020.00		_	Surf WC			klbs	Depth						m deg			
₹	End Yield Point End Mud Resist	32.00 CPS 0.10			_	Acti F		826.00 847.00	01	_	Surf Tor x Shock I	•	10670.00	11-108	Inclination Azimuth				de					
	Company MI			PH				-		cent San		0.25	%	Additives				Barite						
ą	Brand		HPA/	Glyc		rides		4	8000.0	_	cent Soli		9.40		Clea						1			
MOD	Туре	KCL			Othe	ər				Per	cent Oil			%										
	LCM Type										LCM Size				LCM Concentation					'n				
	BHA Type					Rotor F				_	bine Con				_	ace So	reei	n]			
ВНА	Int TF Offset Low Oil Flag					or Prt # @ Low			hrs.	_	ser Confi b Spacin				_	Used nation								
	DD Objectives Achieved				_	ot, why																		
	Bit Type PDC Other																							
Į	Manufacturer Model Hycalog DSX104			IAD	IADC Code		No. of Jets		Size	ize of Jets 15		Bit TFA 0.8	16	Tota	I Revs	12.00		tick/SI	-					
0	Inner Row Outer Row		Dull Char		Location		Brng/Seal			0.8 Gauge (1/ *		Othe	or Chai			yes Reason Pulled								
	1 1			WT		A			Х		ir				0			TD						
FAILURE	Trans Fail	ans Fail		Jamming					Client Inconv.				-	ace N										
1	Pres Incr @ Fail					ming T			hrs.	_	t Time			hrs.	-	n Hole]			
3	D&M Trip ☐ [Syn	c Hours	3	hrs.			face Vib		L	Surface Sys Failure										

Printed: 12/7/2004 8:08 PM v3.0.005 (c) 2002 Schlumberger

60	blumbanne	200				1	5 11 1 1			OLI D		• 511	4 D 4 :						Number			AWA-	04-08	
96	hlumberge	31°				D	KILLI	NG 8	MEA	SUKI	EMENT	2 - RH	A DA	IΑ					Number			4		
						I													Number					
Item	Description	Vendor	Material		Serial Number	Fishing Ne		Stab OD	OD		Bot Connection Size Type	Top Con Size		Len	Cum Len		1	TIME,	DEPTH D	ETAILS 3		4	ı	5
ILUIII	Description	UNITS	IMIALEITAI	!	Mailinei	in	m	in	in	in s	Size Type	Size	Туре	m	m	Date/Time	06-Dec-	.04		- 3	-	*		3
			T .											_				04			 - -			
1	PDC Bit	Hycalog			108439	8.00			12.25				63 Reg P	0.32		Field Engineer	Danielle	- -					_	
2	Crossover			ļ.	L900	9.50			9.63	3.06	6.63 Reg B		63 Reg P	0.35		Depth	2776	_			 -			
3	Motor	Schlumberger	Monel		1060	9.63	0.47		9.63	3.06	7.63 Reg B	7.	63 Reg B	9.68	10.35	Average ROP	49	.00						
4	Float sub	Schlumberger	Monel		3728	9.50			9.50	2.25	7.63 Reg P	7.	63 Reg B	0.90	11.25	Avg. Std. Pres.	3570	.00						
5	Crossover					8.06	0.62		9.00	3.00	7.63 Reg P	6.	63 Reg B	1.32	12.57	Desurger 1	800	.00						
6	Stabilizer			,	AIB 1123	7.94	0.67	12.50	8.00	2.88	6.63 Reg P	6.	63 Reg B	1.65	14.22	Desurger 2	800	.00						
7	CDR	Schlumberger	Monel		8001	8.38	4.00		8.25	2.88	6.63 Reg P	6.	63 FH B	6.98	21.20	Tur. RPM @ FR	2695	.00						
8	ILS	Schlumberger	Monel	2	213272-2	8.38	0.50	12.13	8.25		6.63 FH P	6.	63 FH B	1.38	22.58	FR @ Tur. RPM	700	.00						
9	PowerPulse	Schlumberger	Monel	I	ED 12	8.25	0.34		8.25		6.63 FH P	6.	63 Reg B	8.38	30.96	Avg. RPM	25	.00						
10	Stabilizer			,	AIB 1120	7.88	0.56	12.50	8.00	3.00	6.63 Reg P		63 Reg B	1.45		Max RPM	100	_						
11	8 x DC					8.25			8.00	2.88	6.63 Reg P		63 Reg B	74.15		Total Shocks		.29						
12	Jar			,	48907 C	8.06			8.06	3.00	6.63 Reg P		63 Reg B	9.78		Max Shock					-			
13	3 x DC				40307 0	7.88			8.00	2.88	6.63 Reg P		63 Reg B	27.66		Avg. Surf. WOB	15	00			\dashv			
										-								_						
14	Crossover	+				6.63			8.00	2.94	6.63 IF P		50 IF B	1.14		Max Surf. WOB	30	_			+			
15	12 x HWDP					6.50			6.63	3.00	4.50 IF P	4.	50 IF B	110.77	255.91	Avg. DH WOB	10	.00			 ⊦			
16																Max DH WOB		-			 ⊦		_	
17																Avg. Surf. Torq.	1	.89			 -		_	
18																Max Surf. Torq.	3	.00						
19																Avg. DH Torq.	1	.00						
20																Max DH Torq.	1	.30						
21																Formation Type	Claystone							
22																Friction								
23																Drag Up								
24																Drag Down								
		l	I	Į.		l	ı	Hookload	L	Į.	W	. Below Jars	56.00	kl	bs	Mud Weight		.80						
								Pickup Wt.				. Above Jars	36.80	kl		Funnel Vis.	67.0			 	-			
						Slack Wt.				tal Air Wt.	10010 0410			Plastic Vis.	23	_		 	- $+$					
PRE	DICTED BHA							SINCK WIL			10	tai Air WL						-			 - -			
Т	ENDENCY															Circ. Temp	23	_			\dashv		-	
																Signal Strength		.00			 -			
																Bit Deviation		.37						
												-				Differential Pres.								
		Mid Pt To		BLADE			GAUGE		Bit To Read	Out Port		Bit To Mea	surement Po	rt		BATTERY	Unloade	d (V)	Loaded	(V)	Run Hrs		Cum Hrs	S
Stabiliz	or Description	Bit	Туре	Length	Width	Length	In	Out	CDR		17.07 M	GR LWD		19.43 M		Tool	Before	After	Before	After	вот	AMP	BOT	AMP
	UNITS	m		in	in	in	in	in	PPL		24.36 M	RES LWD		16.08 M		H524743-40338								
	<u> </u>										m	APWD LW	/D	16.61 M		H524743-40339								
		1									m	D&I PPL		26.71 M										
					1						m			m										
				1							m	1		m										
		+		1	+						m			m										
			l	1																				


DRILLING & MEASUREMENTS - TIME/DEPTH COMMENTS PAGE 1

Job Number: AWA-04-08
Run Number: 4

			Run Number: 4
Date	Time	Depth	Operating Details
06-Dec-04	7:50	0.00	Itiltialize CDR on rotary @ 6 sec configuration
	8:30		Tools BRT
	9:30		Good SHT @ 600gpm, SPT1=22psi, TRPM=1914, SPPA=821.1psi
	14:15		Connect geolograph & set depth
	15:00		A piece of the silps dropped in the hole, decision to POOH & fish
	15:05		Disconnect geolograph
	15:40		Decision made to drill ahead
	15:58		Connect geolograph & set depth again
	16:14		Start pumping
	16:20		On bottom drilling
	16:30	2497.00	High sticknslip (>150rpm), co man informed.
			Better after pull off bottom
	17:51	2723.70	Drilling ahead @ 50m/h, 700gpm, TRPM=2695, SPPA=3497, PRSA=4586, Atemp=24C, SWOB=25Klbf,
			SPT's=11 / 8 psi
	40.00	0700.00	High sticknslip (>150rpm), reduce WOB and better
	18:09		Intermitent RT communication every now and again, GR=255, AT & PS=1023
	19:58		ROP exceeded 90m/h, geologist informed and reduced it
	21:17		Increase strokes on booster pump
	21:26 21:30		Losses over the shakers Off bettem in attempt to our places
			Off bottom in attempt to cure losses
	23:40	2866.00	Back on bottom drilling
07 D 04	0.00	2070.01	CDD 0040: Flavo 00F (404/00-to-la-a) CDT/- 0 00 / 40 4:
07-Dec-04	0:00		SPP=3612psi, Flow=835gpm (101/98strokes), SPT's=6.68 / 10.1psi Take SCR's
	0:45		
	0:55		Finish SCR's, make connection and continue to drill ahead
	1:41		ECD increased to 10.14ppg. Pick off bottom and circulate Flow check - OK
	1:50 2:04		Make connection and drill ahead
	3:24		TD. Pick up off bottom and circulate
	3:46		Take a survey
	3:50		Flow check
	4:32		Circulate bottoms up
	6:10		Pulling out of hole
	7:10		Disconnect geolograph line
	16:00		Tools above rotary table
	16:20		Connect to CDR on rotary table & download data
	.0.20	0.00	
		1	
		1	
	_		

Performance Drilling Report

SANTOS Limited

End of Well Summary Amrit-1

20 November 2004 – 4 December 2004

Overview:

Amrit #1 is proposed as an Otway Basin Deepwater Wildcat Exploration Well. The Amrit feature is covered by the 3D Seismic Survey, and lies within the Paaratte Sandstone Play Fairway. The proposed well location is 68 km south of Portland, Victoria, and 48 km southeast of the Callister #1 location. The estimated water depth at the proposed Amrit #1 location is $\pm 1,395$ m MD

Amrit #1 is being drilled as a vertical well to a minimum TD of -2,950m MD or alternatively, deeper to TD of -3,150m MD in the case of encouraging shows.

The Amrit well is located on a tilted fault-block to test structural potential of the Paaratte Formation Primary Target (K-94 / K-93) at a depth of -2,545m. The Main Objective is the K-94 / K-93 Top Paaratte Deltaic Section with the Secondary Target being the K-91 Intra-Paaratte Nullawarre Amplitude Anomaly.

Amrit #1 is an oil-prospect, but there is a possibility that gas will be encountered in the reservoir.

BHA # 1 26"Performance Rotary Assembly w/CADa Tool (1424m MD - 1835m MD)

26" Mill Tooth Bit- MDSD, A962M 7:8 GT PowerPak w/0° ABH, Float Sub, 26" WBS Stabilizer, CDR9, PowerPulse9, 26" WBS Stabilizer, 9 ½" NMDC, 3 x 9 ½" DC, X/O, 2 x 8" DC, CADA Tool, 6 x 8"DC, 12 x 5" HWDP, 5" DP to surface.

A 26" Mill Tooth Bit with 9 5/8 GT Motor and CADA Tool was used to jet-in 30" Casing from the actual seabed depth of 1425m MD to 1510m MD. MWD surveys were taken approximately every 30m and MWD surveys and GRA Bullseye confirmed casing verticality. After achieving Jet-In depth 8 hours was allowed for 30" conductor to "Soak", thus ensuring firm release of CADA Tool. Riserless drilling was then continued with same bottom hole assembly utilizing seawater and pumping gel sweeps to improve hole cleaning. The 20" casing shoe depth at 1835m MD was reached with an average rate of penetration of 41.7 m/h. The well was bottoms up circulated, a wiper trip performed to 30" Casing shoe and BHA was POOH to run 20" Casing.

BHA # 2 17 ½" Packed Rotary Assembly (1835m MD – 2459m MD)

17 1/2" Mill Tooth Bit- T11C, A962M 7:8 GT PowerPak w/0° ABH, Float Sub, 17 1/2" IBS Stabilizer, CDR9, PowerPulse9, 17 1/2" IBS Stabilizer, 9 $\frac{1}{2}$ " NMDC, 2 x 9 $\frac{1}{2}$ " DC, X/O, 8 x 8" DC, 8" Jar x 3 x 8"DC, 12 x 5" HWDP, 5" DP to surface.

After drilling out the casing float collar, shoe track and 3m of new formation the well was displaced to mud and a LOT was conducted at 1838m MD. Leak-off tested to 9.6ppg EMW.

Drilling then continued ahead, with KCL/PHPA Glycol mud. As drilling advanced it became apparent that under given condition (bottom hole temperature 15°C, surface mud temperature at the flow line 12°C, long riser section, flow rate) mud properties would not be able to provide effective hole cleaning. At depth of 2317m cuttings build up was seen, with an ECD of 9.65. This is despite the fact that high viscous sweeps were pumped regularly. The decision was made to stop drilling and circulate hole for two hours and utilise high and low viscous sweeps again. The hole conditions were improved and drilling was continued to the section TD. At the section TD the hole was circulated bottoms up, a wiper trip performed to 20" Casing shoe and BHA was POOH to run 13 3/8" Casing.

BHA # 3 12 1/4" Performance Motor Assembly (2459m MD – 2695m MD)

12 1/4" PDC Bit- HCM606, A962M 7:8 GT PowerPak w/0° ABH, Float Sub, X/O, 12 $\frac{1}{4}$ " IB Stabilizer, CDR8 w/ 12 1/8" ILS, PowerPulse8, 12 $\frac{1}{4}$ " IB Stabilizer, 8 x 8"DC, 8" Jar, 3 x 8" DC, X/O, 12 x 5" HWDP, 5" DP to surface.

Tagged and drilled out cement and float equipment. Drilled out shoe and 3m of new formation and performed LOT, but could not get leak off pressure, drilled three meters more and tried again ended up doing FIT with 11ppg EMW. Continue to drill ahead with ROP from 10 – 25 m/hr. ROP dropped to 3 m/h at 2695 m MD and a variety of different drilling parameters were applied to increase ROP. Finally a decision was made to POOH and check the bit. At surface the bit was found in good condition and decrease in the ROP was considered to be formation related. The average rate of penetration for the run#3 was 16.4 m/h

BHA # 4 12 1/4" Performance Motor Assembly (2695m MD – 3179m MD)

12 1/4" PDC Bit- DSX104HGW, A962M 7:8 GT PowerPak w/0° ABH, Float Sub, X/O, 12 $\frac{1}{4}$ " IB Stabilizer, CDR8 w/ 12 1/8" ILS, PowerPulse8, 12 $\frac{1}{4}$ " IB Stabilizer, 8 x 8"DC, 8" Jar, 3 x 8" DC, X/O, 12 x 5" HWDP, 5" DP to surface.

After changing out the bit to DSX104HGW, this assembly was RIH. Once on bottom the hole was circulated and drilling commenced with low weight on bit, high RPM and high flow rate to push aside possible junk left from the sleeps. After a few meters, the weight on bit was gradually increased to 25 klbs. RPM adjusted to 100 and flow rate slightly decreased to 850 gpm. With these parameters drilling continued. Monitoring of drilling mechanics and adjusting drilling parameters accordingly. The total depth of 2979m MD was reached with average rate of penetration of 46.6 m/h. The well was bottoms up circulated and BHA POOH to conduct wireline logs.

BHA Data Sheet

Santos-Unocal-Inpex - Amrit-1

BHA#	26" BHA#1
Field	AMRIT
Structure	Amrit

Date	December 07, 2004				
Well	Amrit-1				
Borehole	Amrit-1				

				Fish. Neck					Cum.
		Vendor/		OD (in)/	OD (in)/	Max OD	Bottom/	Length	Length
	Name	Model	Serial #	Length (m)		(in)	Top Connection	(m)	(m)
1	26" Bit	Smith International	MR3808		15.60	26.00		0.67	0.67
		MSDS	1000		3.75		7.63 Reg Pin		
2	A962M7848GT	Schlumberger	1069		9.63	9.63	7.63 Reg Box	9.68	10.35
		A962M7848GT	1007		7.85		7.63 Reg Box	4.05	11.10
3	Float Sub	Schlumberger	1087		9.50	9.50	7.63 Reg Pin	1.05	11.40
L_	00 M/D0 0(alt iliaan	0 '11- 1-11'1	50055		3.00		7.63 Reg Box	4.00	40.00
4	26" WBS.Stabilizer	Smith International	53655		9.50	26.00	7.63 Reg Pin	1.68	13.08
	000		1.0505		3.00		7.63 Reg Box	7.45	00.00
5	CDR	Schlumberger	L9525		9.50	9.50	7.63 Reg Pin	7.15	20.23
		CDR	14/404		4.85		7.63 H90 Box	0.44	00.07
6	PowerPulse HF	Schlumberger	W484		9.50	9.68	7.63 H90 Pin	8.44	28.67
		PowerPulse HF			6.25		7.63 Reg Box		00.15
7	26" WBS.Stabilizer	Smith International	53656		9.50	26.00	7.63 Reg Pin	1.48	30.15
		<u> </u>			3.00		7.63 Reg Box		
8	9 1/2" NMDC	Schlumberger	D173		9.50	9.50	7.63 Reg Pin	9.20	39.35
					3.00		7.63 Reg Box		
9	3 x 9 1/2" Drill nCollar (3 joints)				9.50	9.50	7.63 Reg Pin	26.62	65.97
					3.00		7.63 Reg Box		
10	Crossover				9.50	9.50	7.63 Reg Pin	1.32	67.29
					3.00		6.63 Reg Box		
11	Crossover				9.50	9.50	7.63 Reg Pin	1.32	68.61
					3.00		6.63 Reg Box		
12	2 x 8 1/4" Drill Collar (2 joints)				8.25	8.25	6.63 Reg Pin	18.51	87.12
					3.00		6.63 Reg Box		
13	CADA Tool	Dril-Quip			7.75	7.75	6.63 Reg Pin	2.74	89.86
					3.25		6.63 Reg Box		
14	7 x 8 1/4" Drill Collar (7 joints)				8.25	8.25	6.63 Reg Pin	64.00	153.86
					3.00		6.63 Reg Box		
15	Crossover				9.50	9.50	6.63 Reg Pin	1.14	155.00
					3.00		4.50 NC50 (4 1/2		
16	12 x 5" HWDP (11 joints)				5.00	6.50	4.50 NC50 (4 1/2	110.77	265.77
	, ,				3.00		4.50 NC50 (4 1/2		
17	5" 19.50 DPS, Prem.				4.86	6.63	4.50 NC50 (4 1/2	10.00	275.77
	5,19.5,Premium				4.28		5.00 NC50 (4 1/2		
			1			1			
			1						
	<u> </u>	•		•	Total We	eight (kgf)	41835	Total Len.	275.77
					Belo	w Jar (lbf)	N A		

BHA Comments:			

Stabilizer		
Blade Length (m)		Mid-Pt. To Bit (m)
	0.46	1.39
	0.60	12.15
	0.60	29.42
		Bend To Bottom
Bent Housing Angle (deg)		Connection (m)

Sensor	
Type	Distance To Bit (m)
Resistivity	14.66
Gamma Ray	18.13
D&I	23.84

Bit Nozzles					
Count	Size(mm)				
1	20.00				
1	21.00				
2	22.00				
TFA (mm2)	895.15				

Quality Control						
Created By:	BManjenic					
Checked By:						

BOTTOM HOLE ASSEMBLY

Santos		WELL No BHA # TYPE					DATE		
		Amı	rit-1	1	et-In Perform	ance Dril	ling Assembl	20	-Nov-04
Rock Bit Connections	4 1/2 I	-	6 5/8	-	7 5/8 Reg			DEPTH IN	1425
Torque Klbs:	12K-1	6K	28 K-	32 K	34 K-40 K			DEPTH OUT	1835
PDC Bit Connections	3 1/2 I	Reg	4 1/2	Reg	6 5/8 Reg	7	5/8 Reg		
Torque Klbs:	7 K		12K-	17.7K	37 K-38.5 K	48.3	K-60.9 K		
Tool Jt Conn	3 1/2"	' IF	4 1/2	Reg	4 IF		4 1/2 IF	6 5/8 Reg	7 5/8 Reg
Torque Klbs:	9.91	K	18K-	-23K	22 K-28 K		30 K-35 K	47K-53K	70K
Stab Slve Conn	Series	62	Serie	es 65	Series 77	So	eries 85	Series 96	Series 47
Torque Klbs:	4.5K-5	5.5K	3.5K-	-4.5K	7K-8K	ģ	9K-10K	10K-12K	4K
Bent Housing	A47	15	Λ.6	575	A800		A962		
Torque Klbs:	10 F		25		35 K		60 K		
_	101		23	•					
<u>Motor Sleeves</u> Torque Klbs:	4K	-	10)K	23K		37 K		
101440 11100			Element		Serial	Fish'g		nections	REMARKS
Description	O D	I D		Length	N°'s	Neck	Down	Up	
	26"	_	0.67	0.67	MR3808	2,002		7 5/8 RG-P	
	5/8"	_	9.66	10.33	1069		7 5/8 RG-B	7 5/8 RG-B	
	9 1/2"	3"	1.04	11.37	1087		7 5/8 RG-P	7 5/8 RG-B	w/Float
	9 1/2"	3"	1.68	13.05	53655		7 5/8 RG-P	7 5/8 RG-B	Willow
	9 1/2"	5 7/8"	7.15	20.20	L9525		7 5/8 RG-P	7 5/8 H90-B	
	9 1/2"	4 1/4"	8.44	28.64	W484		7 5/8 H90-P	7 5/8 RG-B	
	9 1/2"	3"	1.48	30.12	53656		7 5/8 RG-P	7 5/8 RG-B	
	9 1/2"	3"	9.20	39.32	D173		7 5/8 RG-P	7 5/8 RG-B	
	9 1/2"	3"	26.92	66.24	rig		7 5/8 RG-P	7 5/8 RG-B	
	9 1/2"	3"	1.32	67.56	rig		7 5/8 RG-P	6 5/8 RG-B	
2 x 8" Drill Collar	8"	2 7/8"	18.52	86.08	rig		6 5/8" RG-P	6 5/8" RG-B	
	4.86"	3 1/16"	2.09	88.17	-		6 5/8" RG-P	6 5/8" RG-B	
	0 1/8"	3 1/16"	0.69	88.86			6 5/8" RG-P	6 5/8" RG-B	
6 x 8" Drill Collar	8"	2 7/8"	55.88	144.74			6 5/8" RG-P	6 5/8" RG-B	
X/O	8"	3"	1.14	145.88	x/o 9		4 1/2" IF- P	6 5/8" RG-B	
12 x 5" HWDP 6	5 5/8"	3"	110.77	256.65			4 1/2" IF- P	4 1/2" IF-B	
5" DP to Surface	5"	3"					4 1/2" IF- P	4 1/2" IF- B	
				· <u> </u>					
I	n Air								
In Wt Below Jar	n Air		BIT		Downhole 1	Motor		Instructions	
		BIT N°	BIT 1		Downhole I	Motor 1	SPM	Instructions Flow GPM	Gals/Stroke

Wt Below Jar	35		BIT	Downhole N	Downhole Motor		Instructions		
Wt Above Jar	16	BIT N°	1	Motor Run	1	SPM	Flow GPM	Gals/Stroke	
TOTAL BHA Wt	51	Size	26"	Make	Anadrill	275	1177	4.28	
String Wt	74,200	Make	Smith	Size	9 5/8"	Rev/Gal.	Motor RPM	Pressure @ TD	
Blks(T)op Drive	45,000	Type	MSDS	Type	A962M	0.11	129	4000	
Total Hk Load	119,251	IADC	115	Stages	4.8	Surface RPM	Total RPM	WOB	
Date IN	20-Nov-04	S/N	MR3808	R/S Config	7:8	100	229	5-40	
Time IN	7:00	Jets	2.22	Rotor Jet	20/32"				
Date OUT	22-Nov-04	Jets	2.20	S/N	1069	Performance Pa	cked Assembly v	with CADA Tool	
Time OUT	16:30	Jets		Bent Hsg Degs	0°	to jet-in 30" cas	ing, and cont. 20	6" drilling	
Total Hrs In Hole	57.50	TFA	1.356	B/Hsg STAB	25 3/8"	Rotor jetted wit	h 20/32" nozzle		
On Bottom Bit Hrs.	18.70	F'tage	410	GST Deg Bend	N/A				

BHA Data Sheet

Santos-Unocal-Inpex - Amrit-1

BHA#	17 1/2"BHA#2
Field	AMRIT
Structure	Amrit

Date December 07, 2004					
Well	Amrit-1				
Borehole	Amrit-1				

И	Name	Vendor/ Model	0:-1#	Fish. Neck OD (in)/	OD (in)/	Max OD	Bottom/	Length	Cum. Length
	Name 17 1/2 " Bit		Serial #	Length (m)		(in)	Top Connection	(m)	(m)
ı	17 1/2 BIL	Hycalog T11C			9.50 3.75	17.50	7 CO Dan Din	0.48	0.46
2	A962M7848GT	Schlumberger		-	9.63	17.13	7.63 Reg Pin 7.63 Reg Box	9.66	10.14
	790ZW17040O1	A962M7848GT			7.85		7.63 Reg Box	9.00	10.14
3	Float Sub	Schlumberger	1087		9.50	9.50	7.63 Reg Box 7.63 Reg Pin	1.05	11.19
		Gornamo e gor			3.00		7.63 Reg Box		
4	17 1/2" IB Stabilizer	Smith International	207A34		9.50	17.50	7.63 Reg Pin	2.04	13.23
		IB			3.50		7.63 Reg Box		
5	CDR9 w/APWD	Schlumberger	L9525		9.50	9.50	7.63 Reg Pin	7.15	20.38
		CDR			4.85		7.63 H90 Box		
6	PowerPulse HF	Schlumberger	W484		9.50	9.68	7.63 H90 Pin	8.44	28.82
		PowerPulse HF			6.25		7.63 Reg Box		
7	17 1/2" IB Stabilizer	Smith International	270A97		9.50	17.50	7.63 Reg Pin	2.05	30.87
		IB			3.50		7.63 Reg Box		
8	9 1/2" NMDC	Schlumberger	D173		9.50	9.50	7.63 Reg Pin	9.20	40.07
					3.00		7.63 Reg Box		
9	2 x 9 1/2" Drill Collar (2 joints)				9.50	9.50	7.63 Reg Pin	17.90	57.97
					3.00		7.63 Reg Box		
10	Crossover				9.50	9.50	7.63 Reg Pin	1.32	59.29
	0.04/4 D.: 0.1				3.00		6.63 Reg Box	74.45	100.11
11	8 x 8 1/4" Drill Collar (8 joints)				8.25	8.25	6.63 Reg Pin	74.15	133.44
40	la.	HE			3.00		6.63 Reg Box	0.70	143.22
12	Jar	Hydra-Jar			8.00	8.16	6.63 Reg Pin	9.78	143.22
13	3 x 8 1/4" Drill Collar (3 joints)	пуша-заі			3.00 8.25	8.25	6.63 Reg Box	27.66	170.88
13	3 x 8 1/4 Dilli Collai (3 jolitis)				3.00		6.63 Reg Pin 6.63 Reg Box	27.00	170.00
14	Crossover			+	9.50	9.50	6.63 Reg Pin	1.14	172.02
17	010330701				3.00		4.50 NC50 (4 1/2	1.17	172.02
15	12 x 5" HWDP (11 joints)				5.00	6.50	4.50 NC50 (4 1/2	110.77	282.79
.0	12 X 0 TIVIDI (TT Jonito)				3.00		4.50 NC50 (4 1/2	110.11	202.70
16	5" 19.50 DPS, Prem.			†	4.86	6.63	4.50 NC50 (4 1/2	10.00	292.79
	5,19.5,Premium				4.28		5.00 NC50 (4 1/2		
					0		0.001.000 (1.1/2		
	· ·					eight (kgf)	44437	Total Len.	292.79
ı	DUA Commenter				Belov	v Jar (kgf)	34902.9		

BHA Comments:	

	Mid-Pt. To Bit (m)
0.46	1.20
0.60	11.94
0.60	29.57
	Bend To Bottom
	Connection (m)
	0.46 0.60

Distance To Bit (m)

Bit Nozzles					
Count	Size(mm)				
1	20.00				
3	22.00				
TFA (mm2)	916.43				

Quality Control					
Created By:	BManjenic				
Checked By:					

BOTTOM HOLE ASSEMBLY

COMPANY		WEL						DATE	
Santos		Am	rit-1	2	Performan	ce Drilling	Assembly	27-Nov-04	
Rock Bit Connections	4.1/2	D	C 5 10	. n	7.5/0.D			DEPTH IN	1925
Torque Klbs:	4 1/2 1 12K-1	_		Reg -32 K	7 5/8 Reg 34 K-40 K			DEPTH OUT	1835 2459
	2.1/2	D.	4.1/0		6.5/0.D	7	5/0 D	L	
PDC Bit Connections Torque Klbs:	3 1/2 1 7K			? Reg 17.7K	6 5/8 Reg 37 K-38.5 K		5/8 Reg 8 K-60.9 K		
•								65/0 P	7.5/0.D
Tool Jt Conn Torque Klbs:	3 1/2' 9.9			Reg -23K	4 IF 22 K-28 K		4 1/2 IF 30 K-35 K	6 5/8 Reg 47K-53K	7 5/8 Reg 70K
Stab Sive Conn	Series			es 65	Series 77		Series 85	Series 96	Series 47
Torque Klbs:	4.5K-5			-4.5K	7K-8K		Series 85 9K-10K	10K-12K	4K
-								1011 1211	
<u>Bent Housing</u> Torque Klbs:	A47			675 K	A800 35 K		A962 60 K		
-	10		23		55 K				
<u>Motor Sleeves</u> Torque Klbs:	4K		16)K	23K		37 K		
Torque Hibsi	-11	`	Element	Total	Serial	Fish'g		nections	REMARKS
Description	O D	ID	Length	Length	N°'s	Neck	Down	Up	KEWIAKKS
Mill Tooth Bit	17 1/2"	-	0.48	0.48	J65053			7 5/8 RG-P	
A962MGT7848	9 5/8"	-	9.66	10.14	1069		7 5/8 RG-B	7 5/8 RG-B	
Float Sub	9 1/2"	3"	1.04	11.18	1087		7 5/8 RG-P	7 5/8 RG-B	w/Float
17 1/2" IB Stabilizer	9 1/2"	3"	2.04	13.22	207A34		7 5/8 RG-P	7 5/8 RG-B	
CDR9 w/ APWD	9 1/2"	5 7/8"	7.15	20.37	L9525		7 5/8 RG-P	7 5/8 H90-B	
PowerPulse HF	9 1/2"	4 1/4"	8.44	28.81	W484		7 5/8 H90-P	7 5/8 RG-B	
17 1/2" IB Stabilizer	9 1/2"	3"	2.05	30.86	207A97		7 5/8 RG-P	7 5/8 RG-B	
9 1/2" NM Drill Collar	9 1/2"	3"	9.20	40.06	D173		7 5/8 RG-P	7 5/8 RG-B	
2 x 9 1/2" Drill Collar	9 1/2"	3"	17.90	57.96	rig		7 5/8 RG-P	7 5/8 RG-B	
X/O	9 1/2"	3"	1.32	59.28	rig		7 5/8 RG-P	6 5/8 RG-B	
8 x 8" Drill Collar	8"	2 7/8"	74.15	133.43	rig		6 5/8" RG-P	6 5/8" RG-B	
8" Jar	8 1/16"	3"	9.78	143.21	480907C		6 5/8" RG-P	6 5/8" RG-B	
3 x 8" Drill Collar	8"	2 7/8"	27.66	170.87			6 5/8" RG-P	6 5/8" RG-B	
X/O	8"	3"	1.14	172.01	x/o 9		4 1/2" IF- P	6 5/8" RG-B	
12 x 5" HWDP	6 5/8"	3"	110.77	282.78			4 1/2" IF- P	4 1/2" IF-B	
5" DP to Surface	5"	3"					4 1/2" IF- P	4 1/2" IF- B	
	Tu Aiu								

BHA Data Sheet

Santos-Unocal-Inpex - Amrit-1

BHA#	12 1/4" BHA#3
Field	AMRIT
Structure	Amrit

Date December 07, 2004					
Well	Amrit-1				
Borehole	Amrit-1				

	Name	Vendor/ Model	Serial #	Fish. Neck OD (in)/ Length (m)	OD (in)/	Max OD (in)	Bottom/ Top Connection	Length (m)	Cum. Length (m)
1	12 1/4 " Bit	Hughes Christense	7003752		8.00 3.25	12.25	6.63 Reg Pin	0.45	0.45
2	Crossover	Schlumberger	L9000		9.50	9.50	6.63 Reg Box 7.63 Reg Pin	0.35	0.80
3	A962M7848GT	Schlumberger A962M7848GT	2099		9.63 7.85	17.13	7.63 Reg Box 7.63 Reg Box	9.68	10.48
4	Float Sub	Schlumberger	3287		9.50	9.50	7.63 Reg Pin 7.63 Reg Box	0.90	11.38
5	Crossover				9.50	9.50	7.63 Reg Pin 6.63 Reg Box	1.32	12.70
6	12 1/4" Stabilizer				8.25	12.25	6.63 Reg Pin 6.63 Reg Box	2.00	14.70
7	CDR w/APWD	Schlumberger CDR	8001		8.25 5.00	8.25	6.63 Reg Pin 6.63 FH Box	6.86	21.56
8	12 1/8" In Line Stabilizer		313272-2		8.25	12.13	6.63 FH Pin 6.63 FH Box	2.00	23.56
9	PowerPulse HF	Schlumberger PowerPulse HF	ED12		8.25 5.90	8.41	6.63 FH Pin 6.63 Reg Box	7.50	31.06
10	12 1/4" Stabilizer				8.25 3.00	12.25	6.63 Reg Pin 6.63 Reg Box	2.00	33.06
11	8 x 8 1/4" Drill Collar (8 joints)				8.25 3.00	8.25	6.63 Reg Pin 6.63 Reg Box	74.15	107.21
12	Jar	HE Hydra-Jar	480907C		8.00 3.00	8.16	6.63 Reg Pin 6.63 Reg Box	9.78	116.99
13	3 x 8 1/4" Drill Collar (3 joints)				8.25 3.00	8.25	6.63 Reg Pin 6.63 Reg Box	27.66	144.65
14	Crossover				8.50 3.00	8.50	6.63 Reg Pin 4.50 NC50 (4 1/2	1.14	145.79
	12 x 5" HWDP (11 joints)				5.00 3.00	6.50	4.50 NC50 (4 1/2 4.50 NC50 (4 1/2	110.77	256.56
16	5" 19.50 DPS, Prem. 5,19.5,Premium				4.86 4.28	6.63	4.50 NC50 (4 1/2 4.50 NC50 (4 1/2	10.00	266.56
					Total W	eight (kgf)	34556	Total Len.	266.56
ı	BHA Comments:					v Jar (kgf)		. Juli Loll.	200.00

BHA Comments:			

Stabilizer		
Blade Length (m)		Mid-Pt. To Bit (m)
	0.46	1.52
	0.60	13.45
	0.60	22.31
	0.60	31.81
•		Bend To Bottom
Bent Housing Angle (deg)		Connection (m)

Sensor	
Type	Distance To Bit (m)
Resistivity	16.45
Gamma Ray	19.81
D&I	27.16

Bit Nozzles			
Count	Size(mm)		
6	14.00		
	·		
TFA (mm2)	581.92		

Quality Control				
Created By:	BManjenic			
Checked By:				

BOTTOM HOLE ASSEMBLY

COMPANY		WELI		BHA#	ТҮРЕ		DATE		
Santos		Am	rit-1	3	Performance Drilling Assembly		4-Dec-04		
Rock Bit Connections	4 1/2 Reg 6 5/8 Reg 7 5/8 Reg		DEPTH IN	2459					
Torque Klbs:	4 1/2 1 12K-1	_		-32 K	7 5/8 Reg 34 K-40 K			DEPTH OUT	2695
_									20,0
PDC Bit Connections Torque Klbs:	3 1/2	_		Reg	6 5/8 Reg	7 5/8 Reg			
-	7K		12K-	17.7K	37 K-38.5 K	48.3	8 K-60.9 K		
Tool Jt Conn	3 1/2			Reg	4 IF		4 1/2 IF	6 5/8 Reg	7 5/8 Reg
Torque Klbs:	9.9	K	18K	-23K	22 K-28 K		30 K-35 K	47K-53K	70K
Stab Slve Conn	Series	62	Serie	es 65	Series 77	S	eries 85	Series 96	Series 47
Torque Klbs:	4.5K-5	5.5K	3.5K	-4.5K	7K-8K		9K-10K	10K-12K	4K
Bent Housing	A47	75	A	575	A800		A962		
Torque Klbs:	10	K	25	K	35 K		60 K		
Motor Sleeves									
Torque Klbs:	4K	[10)K	23K		37 K		
			Element	Total	Serial	Fish'g	Con	nections	REMARKS
Description	O D	I D	Length	Length	N°'s	Neck	Down	Up	
PDC Bit	12 1/4"	-	0.34	0.34	7003752			6 5/8 RG-P	
X/O	9 5/8"	3"	0.35	0.69	L9000	0.35	6 5/8 RG-B	7 5/8 RG-P	
A962MGT7848	9 5/8"	-	9.68	10.37	2099	Slick	7 5/8 RG-B	7 5/8 RG-B	w/Float
Float Sub	9 1/2"	3"	0.90	11.27	3287	Slick	7 5/8 RG-P	7 5/8 RG-B	
X/O	9"	3"	1.32	12.59	rig		7 5/8 RG-P	6 5/8 RG-B	
12 1/4" IB Stabilizer	8"	3"	1.65	14.24	AIB 1123		6 5/8 RG-P	6 5/8 RG-B	
CDR8 w/ APWD	8 1/4"	4 1/4"	6.98	21.22	8001		6 5/8 RG-P	6 5/8 FH-B	
12 1/8" ILS	8 1/4"	4 1/4"	1.38	22.60	313272-2		6 5/8 FH-P	6 5/8 FH-B	
PowerPulse	8 1/4"	4 1/4"	8.38	30.98	ED12		6 5/8 FH-P	6 5/8 RG-B	
12 1/4" IB Stabilizer	8"	3"	1.45	32.43	AIB 1120		6 5/8 RG-P	6 5/8 RG-B	
8 x 8" Drill Collar	8"	2 7/8"	74.15	106.58			6 5/8" RG-P	6 5/8" RG-B	
8" Jar	8 1/16"	3"	9.78	116.36	480907C		6 5/8" RG-P	6 5/8" RG-B	
3 x 8" Drill Collar	8"	2 7/8"	27.66	144.02	x/o 9		6 5/8" RG-P	6 5/8" RG-B	
X/O	8"	3"	1.14	145.16	-		6 5/8" RG-P	4 1/2" IF-B	
12 x 5" HWDP	6 5/8"	3"	110.77	255.93			4 1/2" IF- P	4 1/2" IF-B	
5" DP to Surface	5"	3"	2203.00	2458.93			4 1/2" IF- P	4 1/2" IF- B	
	Tn Ain								

BHA Data Sheet

Santos-Unocal-Inpex - Amrit-1

BHA#	12 1/4" BHA#4
Field	AMRIT
Structure	Amrit

Date	December 07, 2004		
Well	Amrit-1		
Borehole	Amrit-1		

Itom	Name	Vendor/ Model	Serial #	Fish. Neck OD (in)/ Length (m)	OD (in)/	Max OD	Bottom/ Top Connection	Length (m)	Cum. Length (m)
1	12 1/4 " Bit	Hycalog	108439	Length (III)	8.00	(in) 12.25	Top Connection	0.32	0.32
l '	12 1/4 Bit	DSX104HGW	100439		3.25		6.63 Reg Pin	0.52	0.32
2	Crossover	Schlumberger	L9000		9.50	9.50	6.63 Reg Box	0.35	0.67
-	0.000010.	Gornania or gor			3.00		7.63 Reg Pin	0.00	0.0.
3	A962M7848GT	Schlumberger	2099		9.63	17.13	7.63 Reg Box	9.68	10.35
		A962M7848GT			7.85		7.63 Reg Box		
4	Float Sub	Schlumberger	3287		9.50	9.50	7.63 Reg Pin	0.90	11.25
					3.00		7.63 Reg Box		
5	Crossover				9.50	9.50	7.63 Reg Pin	1.32	12.57
					3.00		6.63 Reg Box		
6	12 1/4" Stabilizer				8.25	12.25	6.63 Reg Pin	2.00	14.57
					3.00		6.63 Reg Box		
7	CDR w/APWD	Schlumberger	8001		8.25	8.25	6.63 Reg Pin	6.86	21.43
	40.4	CDR	0.100=0.0		5.00		6.63 FH Box		
8	12 1/8" In Line Stabilizer		313272-2		8.25	12.13	6.63 FH Pin	2.00	23.43
	Davis and LIE	0-1-1	ED40		3.00		6.63 FH Box	7.50	00.00
9	PowerPulse HF	Schlumberger PowerPulse HF	ED12		8.25	8.41	6.63 FH Pin	7.50	30.93
10	12 1/4" Stabilizer	PowerPulse HF			5.90		6.63 Reg Box	2.00	32.93
10	12 1/4 Stabilizer		_		8.25	12.25	6.63 Reg Pin	2.00	32.93
11	8 x 8 1/4" Drill Collar (8 joints)				3.00 8.25	8.25	6.63 Reg Box 6.63 Reg Pin	74.15	107.08
''	8 x 8 1/4 Dilli Collai (8 jolitis)		-	-	3.00		6.63 Reg Box	74.13	107.00
12	Jar	HE	480907C		8.00	8.16	6.63 Reg Pin	9.78	116.86
'-		Hydra-Jar	-		3.00		6.63 Reg Box	5.70	110.00
13	3 x 8 1/4" Drill Collar (3 joints)	y a. a ca.			8.25	8.25	6.63 Reg Pin	27.66	144.52
					3.00		6.63 Reg Box		
14	Crossover				8.50	8.50	6.63 Reg Pin	1.14	145.66
					3.00		4.50 NC50 (4 1/2		
15	12 x 5" HWDP (11 joints)				5.00	6.50	4.50 NC50 (4 1/2	110.77	256.43
					3.00		4.50 NC50 (4 1/2		
16	5" 19.50 DPS, Prem.				4.86	6.63	4.50 NC50 (4 1/2	10.00	266.43
	5,19.5,Premium				4.28		4.50 NC50 (4 1/2		
			-	ļ					
			4	-					
				<u> </u>	Total W	eight (kgf)	24556	Total Len.	266.43
						v Jar (kgf)		TOtal Leff.	∠00.43
	RHA Comments:				Delov	v Jar (kgr)	25101.8		

BHA Comments:	

	Mid-Pt. To Bit (m)
0.60	13.32
0.60	22.18
0.60	31.68
	Bend To Bottom
	Connection (m)
	0.60

Sensor			
Sensor Type	Distance To Bit (m)		
	•		

Bit Nozzles			
Count	Size(mm)		
5	15.00		
TFA (mm2)	556.69		

Quality Control	
Created By:	BManjenic
Checked By:	

BOTTOM HOLE ASSEMBLY

COMPANY		WELI		BHA#		TYPE		DATE		
Santos		Am	rit-1	4	Performan	ce Drilling	Assembly	6-	Dec-04	
Rock Bit Connections	4 1/2	Reg	6.5/8	Reg	7 5/8 Reg			DEPTH IN	2695	
Torque Klbs:	12K-			-32 K	34 K-40 K			DEPTH OUT	2979	
PDC Bit Connections	3 1/2	Reg	4 1/2	Reg	6 5/8 Reg	7	5/8 Reg	C		
Torque Klbs:	7 K	-		17.7K	37 K-38.5 K		K-60.9 K			
Tool Jt Conn	3 1/2	3 1/2" IF		Reg	4 IF		4 1/2 IF	6 5/8 Reg	7 5/8 Reg	
Torque Klbs:	9.9	K	18K-	-23K	22 K-28 K		30 K-35 K	47K-53K	70K	
Stab Sive Conn	Series	s 62	Serie	es 65	Series 77	S	eries 85	Series 96	Series 47	
Torque Klbs:	4.5K-	5.5K	3.5K	-4.5K	7K-8K	!	9K-10K	10K-12K	4K	
Bent Housing	A47	75	A	575	A800		A962			
Torque Klbs:	10	K	25	K	35 K		60 K			
Motor Sleeves										
Torque Klbs:	4k	(10)K	23K	•	37 K			
			Element	Total	Serial	Fish'g		nections	REMARKS	
Description	O D	I D	Length	Length	N°'s	Neck	Down	Up		
PDC Bit	12 1/4"	-	0.32	0.32	108439			6 5/8 RG-P		
X/O	9 5/8"	3"	0.35	0.67	L9000		6 5/8 RG-B	7 5/8 RG-P		
A962MGT7848	9 5/8"	-	9.68	10.35	2099		7 5/8 RG-B	7 5/8 RG-B	w/Float	
Float Sub	9 1/2"	3"	0.90	11.25	3287		7 5/8 RG-P	7 5/8 RG-B		
X/O	9"	3"	1.32	12.57	rig		7 5/8 RG-P	6 5/8 RG-B		
12 1/4" IB Stabilizer	8"	3"	1.65	14.22	AIB 1123		6 5/8 RG-P	6 5/8 RG-B		
CDR8 w/ APWD	8 1/4"	4 1/4"	6.98	21.20	8001		6 5/8 RG-P	6 5/8 FH-B		
12 1/8" ILS	8 1/4"	4 1/4"	1.38	22.58	313272-2		6 5/8 FH-P	6 5/8 FH-B		
PowerPulse	8 1/4"	4 1/4"	8.38	30.96	ED12		6 5/8 FH-P	6 5/8 RG-B		
12 1/4" IB Stabilizer	8"	3"	1.45	32.41	AIB 1120		6 5/8 RG-P	6 5/8 RG-B		
8 x 8" Drill Collar	8"	2 7/8"	74.15	106.56			6 5/8" RG-P	6 5/8" RG-B		
8" Jar	8 1/16"	3"	9.78	116.34	480907C		6 5/8" RG-P	6 5/8" RG-B		
3 x 8" Drill Collar	8"	2 7/8"	27.66	144.00			6 5/8" RG-P	6 5/8" RG-B		
X/O	8"	3"	1.14	145.14	x/o 9		6 5/8" RG-P	4 1/2" IF-B		
12 x 5" HWDP	6 5/8"	3"	110.77	255.91			4 1/2" IF- P	4 1/2" IF-B		
5" DP to Surface	5"	3"	2203.00	2458.91			4 1/2" IF- P	4 1/2" IF- B		
	T., A:									

WELL#	Amı	rit-1	DATE:	20-N	ov-04	Deptl	n In :	1425	MD	Pum	p Output	4.28	Gal / stk				d Angle :		Page 1 of 1
BHA #	1		BIT#	1		DHA.	Mill Too	2MCT	Float Sub	26" W/D	CDP0	DowneDu	126" W/D	Ctobilizo		Planned D	irection :		
SURVEY			24.32	1	-	DIIA .	IVIIII TOC	ZIVIGT	r toat Sub	20 WB	CDK9	roweiru	120 WB	Stabilizei	ı				
GAMMA			19.16						DLS & De	epths are	e. 1=°/100	0Ft. 2=°/	30Mts. 3	=°/10Mts	;:	2]	30" Casin	ng Shoe Set @ m MD
						!					,	,	,				J	13 3/8"	Casing Shoe Set @ 785m MD
	DRI	LLING T	TIME	I	Motor Wo	rk Sheet		AVG	S	URVEY		STK/	FLOW			TORQ	PRES	SURE	REMARKS
R/S	START	STOP	SUM	FROM	то	Feet Rotated	Feet Slide	TF	DEPTH	INCL	AZM	MIN	RATE	RPM	WOB	kft-lbs	On Bottom	Off Bottom	
S	17:15	22:00	4:45	1425	1455		30					190	813	-	5-30	-	2,700	2,700	Jetting-in 30" Csg
S	22:10	3:15	5:05	1455	1479		24					280	1,198	-	40	-	4,000	4,000	Jetting-in 30" Csg
S	3:20	10:05	6:45	1479	1508		29					280	1,198	-	40	-	4,000	4,000	Jetting-in 30" Csg
S	10:25	10:45	0:20	1508	1510		2					280	1,198	-	40	-	4,000	4,000	Jetting-in 30" Csg
R	17:10	17:48	0:38	1510	1537	27						275	1,177	90	5	3	4,100		Wait to "soak"
R	17:57	18:35	0:38	1537	1565	28						275	1,177	90	5	3	4,100	4,000	
R	18:42	19:12	0:30	1565	1594	29						275	1,177	90	5	3	4,100	4,000	
R	19:25	20:10	0:45	1594	1623	29						275	1,177	90	10	3	4,100	4,000	
R	20:15	21:00	0:45	1623	1651	28						275	1,177	90	10	3	4,100	4,000	
R	21:05	21:50	0:45	1651	1678	27						275	1,177	90	10	3	4,200	4,000	
R	22:00	22:37	0:37	1678	1706	28						275	1,177	90	10	3	4,200	4,000	
R	22:50	23:25	0:35	1706	1735	29						275	1,177	90	10	3	4,200	4,000	
R	23:30	0:10	0:40	1735	1763	28						275	1,177	90	10	3	4,200	4,000	
R	0:20	1:00	0:40	1763	1792	29						275	1,177	90	10	3	4,200	4,000	
R	1:05	2:05	1:00	1792	1820	28						275	1,177	90	10	3	4,200	4,000	
R	2:14	2:40	0:26	1820	1835	15						275	1,177	90	10	3	4,200	4,000	
IX	2.17	2.40	0.20	1020	1033	13						213	1,177	70	10	3	4,200	4,000	
						-													
		D ()	1.00			KDOWN	_	4 4 7	225.0										
			ed Time : de Time :		Hrs/Min			otated: et Slid:	325.0 85.0										
		311	ue illie:	10:33	1115/IVIIII	a	ге	ei onu:	03.0										
		To	tal Time :	0:54	Hrs/ Mir	ıs	Feet D	rilled :	410.0										
		10		٠			1 000 10		•=•••										

WELL#	Amı	rit-1	DATE:	27-No	ov-04	Dept	h In :	1835	MD	Pum	p Output	4.28	Gal / stk				d Angle :		Page 1 of 1
BHA #	2		BIT#	2		RHA .	Mill Toot	2MGT	Float Sub	17 1/2" T	la/ A DW/D	DowarDu	117 1/2" 1	TR Stabili		Planned D	irection :		
SURVEY			24.32		•	DIIA .	IVIIII TOOL	ZIVIOI	1 Toat Sub	1/1/2 1	W/AIWD	1 Owell u	111/1/2	ID Stabili	zcı				
GAMMA			19.16						DLS & De	epths are	e, 1=°/10	0Ft, 2=°/	30Mts, 3	=°/10Mts	:	2		30"x 20"	Casing Shoe Set @ 1510 & 1822m MD
										_						•	•	13 3/8"	Casing Shoe Set @ 785m MD
	DRI	LLING T	TIME		Motor W	ork Sheet		AVG	S	URVEY		STK/	FLOW			TORQ	PRES	SURE	REMARKS
R/S	START	STOP	SUM	FROM	то	Feet Rotated	Feet Slide	TF	DEPTH	INCL	AZM	MIN	RATE	RPM	WOB	kft-lbs	On Bottom	Off Bottom	
R	9:05	9:17	0:12	1835	1838	3						200	856	60	10	3	1,680	1,590	circulate and LOT
R	11:37	12:05	0:28	1838	1847	9						200	856	60	10	3	1,680	1,590	
R	12:20	13:20	1:00	1847	1876	29			1849.73	0.23	231.00	200	856	100	25	3	1,800	1,600	
R	13:32	15:45	2:13	1876	1905	29			1878.02	0.37	193.70	200	856	100	25	3	1,800	1,600	30' circulate shaker oferfloded
R	15:58	17:37	1:39	1905	1933	28			1908.10	0.34	223.98	200	856	100	25	3	1,800	1,600	
R	17:54	19:51	1:57	1933	1962	29			1935.76	0.18	265.57	200	856	100	25	3	1,800	1,600	
R	19:58	21:41	1:43	1962	1990	28			1963.97	0.17	252.91	235	1,006	100	25	3	2,900	2,700	
R	21:46	23:20	1:34	1990	2019	29			1991.95	0.12	204.40	235	1,006	100	25	3	2,900	2,700	
R	23:24	0:07	0:43	2019	2046	27			2020.87	0.20	231.00	235	1,006	100	25	3	2,900	2,700	
R	0:15	1:35	1:20	2046	2075	29			2049.42	0.23	223.20	235	1,006	100	25	3	2,900	2,700	
R	1:42	2:47	1:05	2075	2104	29			2077.78	0.26	214.74	235	1,006	100	25	3	2,900	2,700	
R	2:59	3:54	0:55	2104	2133	29			2105.32	0.33	183.75	235	1,006	100	25	3	2,900	2,700	
R	3:59	5:54	1:55	2133	2162	29			2134.71	0.29	176.46	235	1,006	100	25	3	2,900	2,700	
R	5:59	8:08	2:09	2162	2191	29			2162.92	0.22	203.34	235	1,006	100	25	3	2,900	2,700	
R	8:13	9:41	1:28	2191	2219	28			2192.60	0.14	180.37	200	856	100	35	4	2,400	2,200	
R	9:51	11:40	1:49	2219	2247	28			2220.68	0.14	203.20	235	1,006	100	35	4	2,900	2,700	
R	11:55	13:28	1:33	2247	2275	28			2248.46	0.25	220.05	235	1,006	100	35	4	2,900	2,700	
R	13:54	15:50	1:56	2275	2303	28			2277.22	0.13	183.89	235	1,006	100	35	4	3,000	2,800	
R	15:58	17:10	1:12	2303	2317	14				0.31	216.07	235		100	35	4	3,100	2,900	
R	17:10				2332	15			2306.21	0.34	210.07	235	1,006	100	35			2,900	
	20:25	20:20	3:10	2317					2224.12	0.40	195.07		1,006	100		4	3,100	,	
R		22:30	2:05	2332	2360	28			2334.13	0.40	185.07	235	1,006		35	4	3,200	3,000	
R	22:36	1:25	2:49	2360	2387	27			2361.66	0.37	221.08	235	1,006	100	35		3,200	3,000	
R	1:30	4:35	3:05	2387	2416	29			2390.55	0.33	232.85	255	1,091	100	35	4	3,300	3,100	
R	4:40	6:32	1:52	2416	2445	29			2419.57	0.32	200.20	255	1,091	100	35	4	3,300	3,100	
R	6:38	7:28	0:50	2445	2459	14			2433.15	0.24	208.59	255	1,091	100	35	4	3,300	3,100	
						<u> </u>													
			1.00			KDOWN			(24.0										
				<u>16:42</u>				otated:	<u>624.0</u>										
		Sli	de Time :		Hrs/Min	S	re	et Slid:											
		Tot	tal Time ·	16:42	Hrs/ Mir	ıs	Feet D	rilled :	624.0										
		100					D		U= 110										II.

WELL#	Amı	rit-1	DATE:	4-De	ec-04	Dept	h In:	2459	MD	Pum	p Output	4.28	Gal / stk				d Angle :		Page 1 of 1
	_			_			DD 6 5									Planned D	irection :		
BHA#	3	-	BIT#	3	-	BHA:	PDC Bit	X/O	A962MGT7	Float Sul	X/O	12 1/4" I	I CDR8 w	/ APWD					
SURVEY GAMMA			24.32 19.16						DLS & D	ontho or	0 1-0/404	NE+ 2_0	/20M4a 2	_°/1 OB#+~		2	1	30" Coch	ng Shoe Set @ m MD
GAMINIA	SIACIN	J –	17.10						DL3 & D	epuis ai	e, I= / IU	UF1, Z= /	SUIVILS, S	= / 1010115).	2	J	13 3/8"	Casing Shoe Set @ 785m MD
	DRI	LLING T	ГІМЕ		Motor W	ork Sheet		AVG	S	URVEY		STK /	FLOW			TORQ	PRES	SURE	REMARKS
R/S	START	STOP	SUM	FROM	то	Feet Rotated	Feet Slide	TF	DEPTH	_	AZM		RATE	RPM	WOB	kft-lbs	On Bottom	Off Bottom	, and the second
R	19:25	19:40	0:15	2459	2462	3			DETTI	INCL	AZIVI	160	685	70	20	3	1,460	1,410	
R	23:55	2:11	2:16	2462	2481	19			2476.28	0.50	234.35	196	839	100	25	3	3,150	3,000	
R	2:22	4:03	1:41	2481	2505	24			2170.20	0.50	231.33	196	839	100	25	3	3,150	3,000	
R	4:10	5:45	1:35	2505	2534	29			2524.29	0.33	216.60	196	839	100	25	3	3,350	3,150	
R	5:56	8:55	2:59	2534	2563	29			232 1.27	0.55	210.00	196	839	100	25	3	3,350	3,150	
R	9:00	10:23	1:23	2563	2592	29						196	839	100	25	3	3,350	3,150	
R	10:35	11:39	1:04	2592	2620	28						196	839	100	25	3	3,350	3,150	
R	11:46	13:23	1:37	2620	2649	29						196	839	100	25	3	3,350	3,150	
R	13:37	17:00	3:23	2649	2677	28			2649.13	0.37	195.11	196	839	100	25	3	3,350	3,150	
R	17:08	19:47	2:39	2677	2695	18						196	839	100	25	3	3,500	3,300	
												196	839				- ,	- ,	
						 													
						 													
						 													
																			
						<u> </u>													
						<u> </u>													
						KDOW													
			ed Time :					Rotated:											
		Sli	ide Time :		Hrs/Min	S	Fo	eet Slid:											
		T	tal T:	10.53	Hug/NA.	• •	E4"	Dudii - 3	226.0										
		10	tal Time :	18:52	mrs/ Mir	18	Feet I	ormed :	236.0										

WELL#	Amı	rit-1	DATE:	6-De	ec-04	Dept	th In :	2695	MD	Pum	p Output	4.28	Gal / stk				d Angle :		Page 1 of 1
DIY 4 #			DYTH!	4		DITA	DDO D'	W/C	40.60 ACT	EL .C.	W/0	10 1 /4" 7	CDDe	/ A DXX/P]	Planned D	irection :		
BHA # SURVEY	SDACINA	-	BIT# 24.32	4	_	вна :	PDC Bit	X/O	A962MGT7	Float Sub	: X/O	12 1/4" I	ICDK8 W	/ APWD					
GAMMA			24.32 19.16						DLS & Do	anthe ar	o 1=°/10	NE+ 2-°/	20Mte 3	_°/10Mts		2	1	30" Caci	ng Shoe Set @ m MD
GAMMA	DIACIN	J –	17.10						DEG & D	eptilis ai	c, 1- /10	01 t, 2- /	JUNIUS, J	_ / TOWIES	•		l	13 3/8"	Casing Shoe Set @ 785m MD
	DRI	LLING T	TIME		Motor W	ork Sheet	t	AVG	S	URVEY		STK /	FLOW			TORQ	PRES	SURE	REMARKS
R/S	START	STOP	SUM	FROM	то	Feet Rotated	Feet Slide	TF	DEPTH	INCL	AZM		RATE	RPM	WOB	kft-lbs	On Bottom	Off Bottom	
R	16:20	17:15	0:55	2695	2706	11						200	856	100	25	5	3,300	3,100	
R	17:22	18:07	0:45	2706	2735	29						200	856	100	25	5	3,500	3,300	
R	18:12	18:45	0:33	2735	2763	28			2762.85	0.23	199.79	200	856	100	25	5	3,600	3,400	
R	18:54	19:32	0:38	2763	2791	28						200	856	100	25	5	3,600	3,400	
R	19:41	20:15	0:34	2791	2820	29						200	856	100	25	5	3,600	3,400	
R	20:24	21:00	0:36	2820	2849	29						200	856	100	25	5	3,600	3,400	
R	21:08	22:02	0:54	2849	2878	29						200	856	100	25	5	3,600	3,400	
R	22:08	23:05	0:57	2878	2907	29			2878.16	0.23	190.81	200	856	100	25	5	3,600	3,400	mud losses circulate hole
R	1:10	2:00	0:50	2907	2935	28						200	856	100	25	5	3,600	3,400	
R	2:08	2:59	0:51	2935	2963	28			2950.00	0.26	140.59	200	856	100	25	5	3,600	3,400	
R	3:07	3:30	0:23	2963	2979	16			2979.00	0.26	140.59	200	856	100	25	5	3,600	3,400	
					IE BREA		N:								•		•		
			ed Time :		Hrs/Min			Rotated:											
		Sli	de Time :		Hrs/Min	s	Fe	eet Slid:											
		Tr.	4-1 TC	7.54	II/37		E 45	D-211 1	204.0										
		To	tal Time :	7:56	Hrs/ Mir	ıs	Feet I	Drilled :	284.0										

Schlumberger	
	DOWN-HOLE MOTOR RUN REPORT
Motor Size : 9 5	Ft, Mt /8" Serial No : 1069 Run No : 1 BHA No: 1 Mt
Company Santos South Aust	Location Otway Basin Country Australia
<u>Operator</u> Tra	nsocean Rig Jack Bates Engineer B Manjenic Date 22-Nov-04
Bit Size Make 26" Smith IADC CUTTING STRUCTUF Inner Row Outer 1	Row Dull Char' Location Brg/Seals Gauge Others Reason for Trip
Motor Made By Si Anadrill 9 5 Type 1 = Straight; 2 = 2 3 = Double	/8" A962M 7:8 1069 25 3/8" 0° n/a Steerable; Stator Ser № 297296-4280 Rotor Ser № 300933-1879 Drlg Cmt, Wash/Ream 6.2
Purpose of Run To Je	t-In 30"Csg from 1425m to 1510 mMD and continue 26" drilling to 1829m MD
BHA Mill Tooth Bit A962MGT7848	Surveys MD IN 1425.00 Inclin 0.59 Azim 234.33 MD OUT 1835.00 Inclin 0.22 Azim 170.41
Float Sub 26" WB Stabilizer CDR9 PowerPulse HF 26" WB Stabilizer	Flow Rate GPM Off Bttm PSI On Bttm PSI RPM WOB Klbs 1177 2,700 2,450 100 25-45
9 1/2" NM Drill Collar 3 x 9 1/2" Drill Collar X/O 2 x 8" Drill Collar Drill-Quip CADA Tool Drill-Quip CADA Tool 6 x 8" Drill Collar	Mud Type KCL/PHPA Mud Wt 8.50 Mud Grad' 0.441 Vis - PV - Filtrate - % Solids - Aniline Pt n/a YP - % Oil 100 % Sand - Circ Temp 0
X/O 5" DP to Surface	Depth In 1425 Depth Out 1835 Inter'l Drld 410 Date In 20-Nov-04 Date Out 22-Nov-04 ROP 21.93 Time In 7:00 Time Out 16:30 Time BRT 57.50 Hrs
FAILURE? No	Slide Mts 85 Previous Hrs 0.00 Cumulative Hrs 35.40
Remarks / Failure Report. 1) Motor was checked prior t 2) Motor will be used for the	Did Motor Stall No No Slide Rty No No Slode Rty No No Slode Rty No No Slode Rty No No No Slode Rty No No No Slode Rty No N

Schlumberger **DOWN-HOLE MOTOR RUN REPORT** Ft, Mt **Motor Size:** 9 5/8" Serial No: Run No: 2 **BHA No:** 2 1069 Mt Santos Well Amrit-1 Slot Callister Company **Field** South Australia Location Otway Basin Country Australia **Operator** Transocean Riq Jack Bates **Engineer** B Manjenic **Date** 1-Dec-04 **Bit Size IADC** <u>Make</u> **Type** <u>Jets</u> <u>Jets</u> <u>Jets</u> <u>Jets</u> <u>TFA</u> 17 1/2" Hycalog T11C 3.22 1.20 0.00 0.00 1.420 115 IADC CUTTING STRUCTURE **Inner Row Outer Row Dull Char'** Location **Brg/Seals** Gauge **Others Reason for Trip** WT BT F TD **Motor Made By** Model / Type Rotor/Stator **Hsq Stab OD** ° Bent Hsg ° Bent Sub Size Serial No Anadrill 9 5/8" A962M 7:8 1069 17 1/4" 1 = Straight; 2 = Steerable; **Drlg Cmt, Wash/Ream Type** Stator Ser No **297**296-4280 Rotor Ser No 300₉₃₃₋₁₈₇₉ 6.5 2 3 = Double Bend **Drlg Hrs** 32.20 **Circ Hrs** 46.80 **Total Motor Circ Hrs** 85.50 Purpose of Run To tag&drill out cement and float equipment and continue to drill to 13 3/8" Casing shoe depth **BHA** Surveys MD IN 1835.00 <u>Inclin</u> 0.26 <u>Azim</u> 261.27 Mill Tooth Bit **MD OUT** 2459.00 Inclin 0.22 170.41 **Azim** A962MGT7848 Float Sub Off Bttm PSI 17 1/2" IB Stabilizer On Bttm PSI **RPM** WOB Flow Rate CDR9 w/ APWD **GPM** Klbs PowerPulse HF 1070 2,700 2,450 100 25-45 17 1/2" IB Stabilizer 9 1/2" NM Drill Collar Mud Wt 2 x 9 1/2" Drill Collar KCL/PHPA **Mud Type** 8.90 Mud Grad' 0.462 Vis 96 X/O 8 x 8" Drill Collar 6.80 4.00 PV 15 **Filtrate** % Solids **Aniline Pt** n/a 8" Jar 3 x 8" Drill Collar **YP** 18 96 <u>% Oil</u> % Sand 0.50 Circ Temp 54 X/O 12 x 5" HWDP Depth In 1835 **Depth Out** 2459 Inter'l Drld 624 27-Nov-04 **Date Out ROP** 19.38 Date In 1-Dec-04 13:00 **Time Out Time BRT** Hrs Time In 22:30 105.50 **FAILURE?** Slide Mts Previous Hrs 34.50 120.00 **Cumulative Hrs** Bearing Play Remarks / Failure Report. Did Motor 1) Motor was checked prior to RIH. 0.0 mm Stall In Out 2.0 mm 2) Motor rotor jetted with nozzle 20/32" No No Slide Rty Condition No No Good

Schlumberger **DOWN-HOLE MOTOR RUN REPORT** Ft, Mt **Motor Size:** 9 5/8" Serial No: Run No: 3 **BHA No:** 3 2099 Mt Santos Well Amrit-1 Slot Callister Company **Field** South Australia Location Otway Basin Country Australia **Operator** Transocean Riq Jack Bates **Engineer** B Manjenic **Date** 6-Dec-04 **Bit Size IADC** <u>Make</u> **Type** <u>Jets</u> <u>Jets</u> <u>Jets</u> <u>Jets</u> <u>TFA</u> HCM606 12 1/4" Hughes 0 6.14 0.00 0.00 0.00 0.902 IADC CUTTING STRUCTURE **Inner Row Outer Row Dull Char'** Location **Brg/Seals** Gauge **Others Reason for Trip** NO ER Ν Х PR **Motor Made By** Model / Type Rotor/Stator **Hsq Stab OD** ° Bent Hsg ° Bent Sub Size Serial No Anadrill 9 5/8" A962M 7:8 2099 12 1/8" 1 = Straight; 2 = Steerable; 300₉₃₃₋₂₁₀₇ **Drlg Cmt, Wash/Ream Type** Stator Ser No 297296-4281 Rotor Ser No 4.0 2 3 = Double Bend **Drlg Hrs** 14.40 **Circ Hrs** 11.40 **Total Motor Circ Hrs** 29.80 Purpose of Run To drill 12 1/4" hole to TD **BHA** Surveys MD IN 2459.00 <u>Inclin</u> 0.24 <u>Azim</u> 208.59 PDC Bit **MD OUT** 2695.00 Inclin 0.22 170.41 **Azim** X/O A962MGT7848 Off Bttm PSI Float Sub On Bttm PSI **RPM** WOB Flow Rate **GPM** Klbs 12 1/4" IB Stabilizer 856 2,700 2,450 100 25-45 CDR8 w/ APWD 12 1/8" ILS PowerPulse KCL/PHPA Mud Wt **Mud Type** 9.50 Mud Grad' 0.493 Vis 61 12 1/4" IB Stabilizer 8 x 8" Drill Collar **PV** 21 4.40 8.80 n/a **Filtrate** % Solids **Aniline Pt** 8" Jar **YP** 25 3 x 8" Drill Collar 60 <u>% Oil</u> 87.7 % Sand 0.25 Circ Temp X/O 12 x 5" HWDP Depth In 2459 **Depth Out** 2695 Inter'l Drld 236 4-Dec-04 **Date Out ROP** 16.39 Date In 6-Dec-04 Time In **Time Out Time BRT** 2:00 7:00 53.00 Hrs **FAILURE?** Slide Mts Previous Hrs 95.50 125.30 **Cumulative Hrs** Remarks / Failure Report. **Bearing Play** Did Motor 1) Motor was checked prior to RIH. 1.0 mm Stall In Out 2) Motor will be used for the next run in BHA#4, bearing play out 2.0mm No 2.0 mm No Slide Rty Condition No No Good

Schlumberger DOWN-HOLE MOTOR RUN REPORT Ft, Mt **Motor Size:** 9 5/8" Serial No: Run No: **BHA No:** 2099 Mt Santos Well Amrit-1 Slot **Field** Callister Company South Australia Location Otway Basin Country Australia **Operator** Transocean Riq Jack Bates **Engineer** B Manjenic **Date** 7-Dec-04 **Bit Size IADC** <u>Make</u> **Type** <u>Jets</u> <u>Jets</u> <u>Jets</u> <u>Jets</u> <u>TFA</u> 12 1/4" Hycalog DSX104 0 5.15 0.00 0.00 0.00 0.863 IADC CUTTING STRUCTURE **Inner Row Outer Row Dull Char'** Location **Brg/Seals** Gauge **Others Reason for Trip** WT NO Х TD **Motor Made By** Model / Type Rotor/Stator Serial No **Hsq Stab OD** ° Bent Hsg ° Bent Sub Size Anadrill 9 5/8" A962M 7:8 2099 12 1/8" 1 = Straight; 2 = Steerable; 297296-4281 300₉₃₃₋₂₁₀₇ **Drlg Cmt, Wash/Ream Type** Stator Ser No Rotor Ser No 2.0 2 3 = Double Bend **Drlg Hrs** 6.10 **Circ Hrs** 8.70 **Total Motor Circ Hrs** 16.80 Purpose of Run To drill 12 1/4" hole to TD **BHA** Surveys MD IN 2695.00 <u>Inclin</u> 0.37 <u>Azim</u> 195.11 PDC Bit **MD OUT** 2979.00 Inclin 0.22 170.41 **Azim** X/O A962MGT7848 Off Bttm PSI Float Sub On Bttm PSI **RPM** WOB Flow Rate **GPM** Klbs 12 1/4" IB Stabilizer 856 2,700 2,450 100 25-45 CDR8 w/ APWD 12 1/8" ILS PowerPulse KCL/PHPA Mud Wt **Mud Type** 9.60 Mud Grad' 0.498 Vis 65 12 1/4" IB Stabilizer 8 x 8" Drill Collar **PV** 25 **Filtrate** 5.20 9.40 n/a % Solids **Aniline Pt** 8" Jar 3 x 8" Drill Collar **YP** 32 88.4 58 <u>% Oil</u> % Sand 0.24 Circ Temp X/O 12 x 5" HWDP Depth In 2695 **Depth Out** 2979 Inter'l Drld 284 6-Dec-04 **Date Out** 7-Dec-04 **ROP** 46.56 Date In Time In **Time Out Time BRT** 8:00 16:00 32.00 Hrs **FAILURE?** Slide Mts Previous Hrs 125.50 **Cumulative Hrs** 142.30 Bearing Play Remarks / Failure Report. Did Motor 1) Motor was checked prior to RIH. Stall 2.0 mm In 2) Motor will be back loaded No No Out 3.5 mm Slide Rty Condition No No Good

BIT GRADING CHART

BIT RUN DATA# 1

Bit Size: Manufacturer: Smith Bit Type: MSDS Serial Number: MR3808 New Bit: Yes IADC Code: 115 Number of Nozzles: Size of Nozzles: Number of Blades: **Number of Cutters:** n/a n/a Size of Cutters: n/a **T.F.A.** (sq ins): 1.3560 W.O.B. : 5-40 klbs Depth Out: 1835 m Depth In: 1425 m Feet Drilled: 410 m **Rotating Hours:** 3.70 hrs **Steering Hours:** 15.00 hr Jet-in Feet Rotary: 325 m Feet Steered: 85 m **Total Hours:** 18.70 hrs Average R.O.P: 21.93 m/hr **Circulation Rate:** 1177 gpm R.P.M. at Bit: 229 K.Revs: Motor Used: Yes 9 5/8" **Motor Size:** Bit Good for Rerun: Yes

WELL DATA

Date:	22-Nov-04
Drilling Supervisor:	Dave Atkins
Rig:	Jack Bates
Well Number:	Amrit-1
Rig Contractor:	Transocean
Average Hole Angle:	0° - 3°
Date in:	20-Nov-04
Date Out:	22-Nov-04
BHA#	1

MUD AND LITHOLOGY DATA

Majority Formation:	Sandstone
Other Formation:	Siltstone
% Formation:	100%
Mud Type:	Sea water
Mud Weight:	8.50 ppg
PV:	=
YP:	-
% Solids:	-
PH:	9.2

COMMENTS:

BIT GRADING

(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)
1	1	WT	A	E	In	NO	тс

BIT GRADING CHART AS PER IADC NOMENCLATURE

	CUTTING	STRUCTURE		В	G	REM	ARKS
INNER	OUTER	DULL	LOC	BRING	GAUGE	OTHER	REASON
ROWS	ROWS	CHAR.	ATION.	SEALS	1/16"	CHAR.	PULLED
(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)

	8	No Cutting structure
(B)	*BC	Broken Cone
	BF	Bond Failure
	BT	Broken Teeth/Cutters
	BU	Balled Up
	*CC	Cracked Cone
	*CD	Cone Dragged
	CI	Cone Interference
	CR	Cored
	CT	Chipped Cutter
	ER	Erosion
	FC	Flat Crested Wear
	HC	Heat Checking
	JD	Junk Damage
	*LC	Lost Cone
	LN	Lost Nozzle
	LT	Lost Teeth/Cutter
	OC	Off-Centre Wear
	PB	Pinched Bit
	PN	Plugged Nozzle/
		Flow Passage
	RG	Rounded Gauge
	RO	Ring Out
	SD	Shirttail Damage
	SS	Self Sharpening Wear
	TR	Tracking
	WO	Washed Out-Bit
	WT	Worn Teeth / Cutters
	NO	No Dull Characteristics

(C)	N	Nose Row	Cone#	1
	M	Middle Row		2
	G	Gauge Row		3
	Α	All Rows		

(D)	NON-SEALED BEARINGS:
	0 - No life used
	8 - All life used
	SEALED BEARINGS:
	E - Effective
I	F - Failed

(E)	1	In Gauge
	1/16	1/16" Undergauge
	2/16	1/8" Undergauge etc.

(F)	BHA	Change BHA
	DMF	Downhole Motor Fail
	DSF	Drill String Fail
	DST	Drill Stem Test
	DTF	Downhole Tool Fail
	LOG	Run Logs
	RIG	Rig Repair
	CM	Condition mud
	CP	Core Point
	DP	Drill Plug
	FM	Formation Change
	HP	Hole Problems
	HR	Hours
	PP	Pump Pressure
	PR	Penetration Rate
	TD	Total Depth
	TC	Casing Depth
	TQ	Torque
	TW	Twist-Off
	WC	Weather Conditions
	WO	Washout/Drill String

BIT GRADING CHART

BIT RUN DATA # 2

Bit Size: Manufacturer: Hycalog Bit Type: T11C Serial Number: J65053 New Bit: Yes IADC Code: 115 Number of Nozzles: Size of Nozzles: Number of Blades: **Number of Cutters:** n/a n/a Size of Cutters: **T.F.A.** (sq ins): 1.4205 W.O.B. : 5-40 klbs Depth Out: 2459 m Depth In: 1835 m Feet Drilled: 624 m **Rotating Hours:** 32.20 hrs **Steering Hours:** Jet-in 0.00 hr Feet Rotary: 624 m Feet Steered: 0 m **Total Hours:** 32.20 hrs Average R.O.P: 19.38 m/hr **Circulation Rate:** 1070 gpm R.P.M. at Bit: 218 K.Revs: 384809 Yes 9 5/8" Motor Used: **Motor Size:** Bit Good for Rerun: Yes

WELL DATA

Date:	1-Dec-04
Date.	1-060-04
Drilling Supervisor:	Dave Atkins
Rig:	Jack Bates
Well Number:	Amrit-1
Rig Contractor:	Transocean
Average Hole Angle:	0° - 3°
Date in:	27-Nov-04
Date Out:	1-Dec-04
BHA#	2

MUD AND LITHOLOGY DATA

Majority Formation:	Sandstone		
Other Formation:	Siltstone		
% Formation:	100%		
Mud Type:	KCL /PHPA/Glycol		
Mud Weight:	8.90 ppg		
PV:	15		
YP:	18		
% Solids:	4.00		
PH:	10		

COMMENTS:

BIT GRADING

(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)
2	2	ВТ	A	E	1	WT	TD

BIT GRADING CHART AS PER IADC NOMENCLATURE

CUTTING STRUCTURE			В	G	REM	ARKS	
INNER	OUTER	DULL	LOC	BRING	GAUGE	OTHER	REASON
ROWS	ROWS	CHAR.	ATION.	SEALS	1/16"	CHAR.	PULLED
(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)

	8	No Cutting structure
	•	
(B)	*BC	Broken Cone
	BF	Bond Failure
	BT	Broken Teeth/Cutters
	BU	Balled Up
	*CC	Cracked Cone
	*CD	Cone Dragged
	CI	Cone Interference
	CR	Cored
	CT	Chipped Cutter
	ER	Erosion
	FC	Flat Crested Wear
	HC	Heat Checking
	JD	Junk Damage
	*LC	Lost Cone
	LN	Lost Nozzle
	LT	Lost Teeth/Cutter
	OC	Off-Centre Wear
	PB	Pinched Bit
	PN	Plugged Nozzle/
		Flow Passage
	RG	Rounded Gauge
	RO	Ring Out
	SD	Shirttail Damage
	SS	Self Sharpening Wear
	TR	Tracking
	WO	Washed Out-Bit
	WT	Worn Teeth / Cutters
	NO	No Dull Characteristics

Middle Row

Gauge Row

3

G

(D)	NON-SEALED BEARINGS:
	0 - No life used
	8 - All life used
	SEALED BEARINGS:
	E - Effective
	F - Failed

(E)	1	In Gauge
	1/16	1/16" Undergauge
	2/16	1/8" Undergauge etc.

Change BHA
Downhole Motor Fail
Drill String Fail
Drill Stem Test
Downhole Tool Fail
Run Logs
Rig Repair
Condition mud
Core Point
Drill Plug
Formation Change
Hole Problems
Hours
Pump Pressure
Penetration Rate
Total Depth
Casing Depth
Torque
Twist-Off
Weather Conditions
Washout/Drill String
G

BIT GRADING CHART

BIT RUN DATA# 3

Bit Size: Manufacturer: Hughes Bit Type: HCM606 Serial Number: 7003752 New Bit: Yes IADC Code: 0 Number of Nozzles: Size of Nozzles: Number of Blades: **Number of Cutters:** n/a n/a Size of Cutters: n/a **T.F.A.** (**sq ins**): 0.9020 W.O.B. : 5-40 klbs Depth Out: 2695 m Depth In: 2459 m Feet Drilled: 236 m **Rotating Hours:** 14.40 hrs **Steering Hours:** 0.00 hr Feet Rotary: 236 m Feet Steered: 0 m **Total Hours:** 14.40 hrs Average R.O.P: 16.39 m/hr **Circulation Rate:** 856 gpm R.P.M. at Bit: 194 K.Revs: 156712 Yes 9 5/8" **Motor Used: Motor Size:** Bit Good for Rerun: Yes

WELL DATA

Date:	6-Dec-04		
Drilling Supervisor:	Dave Atkins		
Rig:	Jack Bates		
Well Number:	Amrit-1		
Rig Contractor:	Transocean		
Average Hole Angle:	0° - 3°		
Date in:	4-Dec-04		
Date Out:	6-Dec-04		
BHA#	3		

MUD AND LITHOLOGY DATA

Majority Formation:	Sandstone			
Other Formation:	Siltstone			
% Formation:	100%			
Mud Type:	KCL/PHPA			
Mud Weight:	9.50 ppg			
PV:	21			
YP:	25			
% Solids:	8.80			
PH:	9.3			

COMMENTS:

BIT GRADING

(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)
1	1	ER	N	X	I	NO	PR

BIT GRADING CHART AS PER IADC NOMENCLATURE

CUTTING STRUCTURE			В	G	REM	ARKS	
INNER	OUTER	DULL	LOC	BRING	GAUGE	OTHER	REASON
ROWS	ROWS	CHAR.	ATION.	SEALS	1/16"	CHAR.	PULLED
(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)

, ,	8	No Cutting structure
(B)	*BC	Broken Cone
	BF	Bond Failure
	BT	Broken Teeth/Cutters
	BU	Balled Up
	*CC	Cracked Cone
	*CD	Cone Dragged
	CI	Cone Interference
	CR	Cored
	CT	Chipped Cutter
	ER	Erosion
	FC	Flat Crested Wear
	HC	Heat Checking
	JD	Junk Damage
	*LC	Lost Cone
	LN	Lost Nozzle
	LT	Lost Teeth/Cutter
	OC	Off-Centre Wear
	PB	Pinched Bit
	PN	Plugged Nozzle/
		Flow Passage
	RG	Rounded Gauge
	RO	Ring Out
	SD	Shirttail Damage
	SS	Self Sharpening Wear
	TR	Tracking
	WO	Washed Out-Bit
	WT	Worn Teeth / Cutters
	NO	No Dull Characteristics
		•

(C)	N	Nose Row	Cone#	1	
	M	Middle Row		2	
	G	Gauge Row		3	
	Α	All Rows			

(D)	NON-SEALED BEARINGS:
	0 - No life used
	8 - All life used
	SEALED BEARINGS:
	E - Effective
	F - Failed

(E)	1	In Gauge
	1/16	1/16" Undergauge
	2/16	1/8" Undergauge etc.

(F)	BHA	Change BHA
	DMF	Downhole Motor Fail
	DSF	Drill String Fail
	DST	Drill Stem Test
	DTF	Downhole Tool Fail
	LOG	Run Logs
	RIG	Rig Repair
	CM	Condition mud
	CP	Core Point
	DP	Drill Plug
	FM	Formation Change
	HP	Hole Problems
	HR	Hours
	PP	Pump Pressure
	PR	Penetration Rate
	TD	Total Depth
	TC	Casing Depth
	TQ	Torque
	TW	Twist-Off
	WC	Weather Conditions
	WO	Washout/Drill String

BIT GRADING CHART

BIT RUN DATA# 4

Bit Size: Manufacturer: Hycalog Bit Type: DSX104 Serial Number: 108439 New Bit: Yes IADC Code: 0 Number of Nozzles: Size of Nozzles: Number of Blades: **Number of Cutters:** n/a Size of Cutters: **T.F.A.** (sq ins): 0.8629 W.O.B. : 5-35 klbs Depth Out: 2979 m Depth In: 2695 m Feet Drilled: 284 m **Rotating Hours:** 6.10 hrs **Steering Hours:** Jet-in 0.00 hr Feet Rotary: 284 m Feet Steered: 0 m **Total Hours:** 6.10 hrs 46.56 m / hr Average R.O.P: **Circulation Rate:** 856 gpm R.P.M. at Bit: 194 K.Revs: Motor Used: Yes 9 5/8" **Motor Size:** Bit Good for Rerun: Yes

WELL DATA

7-Dec-04		
Dave Atkins		
Jack Bates		
Amrit-1		
Transocean 0° - 3°		
7-Dec-04		
4		

MUD AND LITHOLOGY DATA

Majority Formation:	Sandstone			
Other Formation:	Siltstone			
% Formation:	100%			
Mud Type:	KCL/PHPA			
Mud Weight:	9.60 ppg			
PV:	25			
YP:	32			
% Solids:	9.40			
PH:	8.5			

COMMENTS:

BIT GRADING

(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)
1	1	WT	A	X	I	No	TD

BIT GRADING CHART AS PER IADC NOMENCLATURE

CUTTING STRUCTURE			В	G	REM	ARKS	
INNER	OUTER	DULL	LOC	BRING	GAUGE	OTHER	REASON
ROWS	ROWS	CHAR.	ATION.	SEALS	1/16"	CHAR.	PULLED
(A)	(A)	(B)	(C)	(D)	(E)	(B)	(F)

	8	No Cutting structure
(B)	*BC	Broken Cone
	BF	Bond Failure
	BT	Broken Teeth/Cutters
	BU	Balled Up
	*CC	Cracked Cone
	*CD	Cone Dragged
	CI	Cone Interference
	CR	Cored
	CT	Chipped Cutter
	ER	Erosion
	FC	Flat Crested Wear
	HC	Heat Checking
	JD	Junk Damage
	*LC	Lost Cone
	LN	Lost Nozzle
	LT	Lost Teeth/Cutter
	OC	Off-Centre Wear
	PB	Pinched Bit
	PN	Plugged Nozzle/
		Flow Passage
	RG	Rounded Gauge
	RO	Ring Out
	SD	Shirttail Damage
	SS	Self Sharpening Wear
	TR	Tracking
	WO	Washed Out-Bit
	WT	Worn Teeth / Cutters
	NO	No Dull Characteristics

Middle Row

Gauge Row

All Rows

3

G

(D)	NON-SEALED BEARINGS:			
	0 - No life used			
	8 - All life used			
	SEALED BEARINGS:			
	E - Effective			
	F - Failed			

_				
ı	(E)	1	In Gauge	
ı		1/16	1/16" Undergauge	
ı		2/16	1/8" Undergauge etc.	

(F)	BHA	Change BHA
	DMF	Downhole Motor Fail
	DSF	Drill String Fail
	DST	Drill Stem Test
	DTF	Downhole Tool Fail
	LOG	Run Logs
	RIG	Rig Repair
	CM	Condition mud
	CP	Core Point
	DP	Drill Plug
	FM	Formation Change
	HP	Hole Problems
	HR	Hours
	PP	Pump Pressure
	PR	Penetration Rate
	TD	Total Depth
	TC	Casing Depth
	TQ	Torque
	TW	Twist-Off
	WC	Weather Conditions
	WO	Washout/Drill String

Sar	ntoe

SECTION 4:- PRODUCTION TEST REPORTS

No production tests were conducted at the Amrit-1 location.

Santos	Well Completion Report Volume 1 Basic
NO.	Well completion respect volume 1 Busic
	SECTION 5:- DAILY GEOLOGICAL REPORTS

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 27/11/04

REPORT NO: 1

(As at 2400 hours 26/11/04) **DEPTH:** 1835 m **PROGRESS:** 0 m **DAYS FROM SPUD:** 6.28

DAYS ON WELL: 9.89

OPERATION: RIG SHUT DOWN FOLLOWING INJURY TO ROUSTABOUT ON PIPEDECK.

(As at 0600 hours 27/11/04) **DEPTH**: 1835 m **PROGRESS** (0600-0600 hrs): 0 m

OPERATION: MAKING UP 340mm (13 3/8") CASING HANGER AND CEMENT HEAD FOR LATER USE.

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m (Prelim) RIG: JACK BATES

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

PV/YP: Mud Type: (Pits) Wt: SG Vis. FL: pH: KC1% MUD DATA Cl: (2400 Hours) KCL / POLY/ 1.07 72 6.0 8.0 43000 17/30

GLYCOL

No. Make Type Size (mm) Hours Drilled Condition

BIT DATA PRESENT
(2400 Hours) LAST 1 Smith MSDS 660 18.7 410 1-1-WT-A-E-I-NO-TD

 SURVEYS:
 MD (m)
 INC (°)
 AZIM (°T)
 CLOSURE (m)
 DIRECTION (°)

 1809.26
 0.26
 261.27

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

INSTALL CHOKE & KILL LINES TO TERMINATION JOINT. MAKE UP LANDING JOINT, SKID RIG OVER LOCATION, PICK UP SLIP JOINT. PRESSURE TEST CHOKE & KILL LINES. TROUBLESHOOT PROBLEM WITH THE SLIP JOINT LOAD RING (3 HOURS). SKID RIG 30m OFF LOCATION, CHANGE OUT SHEARED SUPPORT DOGS ON THE SLIP JOINT LOAD RING (6 HOURS). SKID RIG BACK OVER LOCATION. LATCH BOP STACK ON WELLHEAD, CONFIRM CONNECTOR LATCH WITH 22.7T (50000LBS) OVERPULL. PRESSURE TEST WELLHEAD CONNECTOR TO 479KPA (10000PSI) FOR 10 MINS. PICK UP & INSTALL DIVERTER. LAYOUT DIVERTER RUNNING TOOL. RIG DOWN RISER HANDLING EQUIPMENT. RIG SHUT DOWN FOLLOWING INJURY TO ROUSTABOUT ON PIPEDECK (4.5 HOURS).

00:00 - 06:00 HOURS 27/11/04:

RIG SHUT DOWN FOLLOWING INJURY TO ROUSTABOUT ON PIPEDECK (1 HOUR). CONTINUE TO RIG DOWN RISER HANDLING EQUIPMENT. RIG UP TUBULAR HANDING EQUIPMENT. PREPARE TO MAKE UP 340mm (13 3/8") CASING HANGER AND CEMENT HEAD FOR LATER USE.

ANTICIPATED OPERATIONS:

MAKE UP 340mm (13 3/8") CASING HANGER & CEMENT HEAD FOR LATER USE. LAYOUT 660mm (26") BHA, MAKE UP 445mm (17.5") BHA. RUN IN HOLE, SLIP & CUT DRILL LINE, DRILL CEMENT, LOT, DRILL AHEAD 445mm (17.5") HOLE.

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 28/11/04

REPORT NO: 2

(As at 2400 hours 27/11/04)

DEPTH: 1835 m

PROGRESS: 0 m

DAYS FROM SPUD: 7.28

DAYS ON WELL: 10.89

OPERATION: SLIP & CUT DRILLING LINE PRIOR TO DRILLING OUT CEMENT & SHOE TRACK.

(As at 0600 hours 28/11/04)

DEPTH: 1835 m

PROGRESS (0600-0600 hrs): 0 m

OPERATION: DRILLING CEMENT AT 1818m.

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m (Prelim)

RIG: JACK BATES

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m

ROTARY TABLE: 29m LAT

WATER DEPTH: 1396 m

KCl% PV/YP: **MUD DATA** Mud Type: (Pits) Wt: SG Vis. FL: Cl: pH: (2400 Hours) KCL / POLY/ 1.07 72 6.0 8.0 43000 17/30

GLYCOL

No. Make Type Size (mm) Hours Drilled Condition T11C (Tricone) **BIT DATA PRESENT** 2 Reed 445 (2400 Hours) LAST Smith **MSDS** 660 18.7 410 1-1-WT-A-E-I-NO-TD

 SURVEYS:
 MD (m)
 INC (°)
 AZIM (°T)
 CLOSURE (m)
 DIRECTION (°)

 1809.26
 0.26
 261.27

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

RIG SHUT DOWN FOLLOWING INJURY TO ROUSTABOUT ON PIPEDECK (1 HOUR). COMPLETE RIGGING DOWN RISER HANDLING EQUIPMENT. RIG UP TUBULAR HANDING EQUIPMENT. MAKE UP 340mm (13 3/8") CASING HANGER AND LAYOUT. MAKE UP CEMENT HEAD AND RACK BACK FOR FUTURE USE. BREAK OUT 660mm (26") BHA. MAKE UP 445mm (17.5") ROCK BIT & BHA WITH ANADRILL MUD MOTOR & MWD TOOLS (CDR-POWERPULSE WITH RESISTIVITY, GAMMA RAY, ANNULAR PRESSURE, SURVEYS). SHALLOW TEST MWD, RUN IN HOLE TO 282m. PICK UP 24 JOINTS OF DRILLPIPE FROM DECK. RUN IN HOLE TO TAG TOP OF CEMENT AT 1807m. SLIP & CUT DRILLING LINE.

00:00 - 06:00 HOURS 28/11/04:

SLIP & CUT DRILLING LINE. SERVICE TOP DRIVE. DISPLACE CHOKE & KILL LINES TO NEW MUD. SWAP TO STANDPIPE No. 2 DUE TO LEAK IN STANDPIPE No. 1. BREAK CIRCULATION, DRILL CEMENT FROM 1807m.

ANTICIPATED OPERATIONS:

DRILL CEMENT, SHOE TRACK & 3m FORMATION. CIRCULATE & CONDITION MUD. PERFORM LEAK-OFF TEST. DRILL AHEAD 445mm (17.5") HOLE.

MWD OFFSETS FROM BIT:

RESISTIVITY 15.17m, PRESSURE 15.89m, GAMMA RAY 18.65m, SURVEYS 24.49m.

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 28/11/04

REPORT NO: 2

FORMATION	TOPS:	MD RT	Subsea (m)	H/L to Prognosis (m)	H/L to Hill-1 (m)
		(m)	(111)	(111)	(III)
	HYDROCARBO	N SHOW SUMN	MARY		<u>†</u>
INTERVAL	LITHOLOGY				GAS
I	l				
	GEOLOGICAL S	SUMMARY			
INTERVAL ROP (m/hr)	LITHOLOGY				GAS

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 29/11/04

REPORT NO: 3

(As at 2400 hours 28/11/04) DEPTH: 2045 m PROGRESS: 210 m DAYS FROM SPUD: 8.28

DAYS ON WELL: 11.89

OPERATION: DRILLING 445mm (17.5") HOLE

(As at 0600 hours 29/11/04) DEPTH: 2160 m PROGRESS (0600-0600 hrs); 325 m

OPERATION: DRILLING 445mm (17.5") HOLE AT 15 M/HR

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

Wt: SG KCl% PV/YP: **MUD DATA** Mud Type: (Pits) Vis: FL: Ph: C1: (2400 Hours) KCL / POLY/ 1.07 6.8 10.0 42000 15 / 18

GLYCOL

No. Make Type Size (mm) Hours Drilled Condition T11C (Tricone) **BIT DATA PRESENT** 2 Reed 445 9.3 210 (2400 Hours) LAST Smith **MSDS** 660 18.7 410 1-1-WT-A-E-I-NO-TD

SURVEYS: CLOSURE (m) MD (m) INC (°) AZIM (°T) DIRECTION (°) 2049.42 0.23 223.20 2077.78 0.26 214.74 9 2105.32 0.33 183.75 247

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

SLIP & CUT DRILLING LINE. SERVICE TOP DRIVE. DISPLACE CHOKE & KILL LINES TO NEW MUD. SWAP TO STANDPIPE No. 2 DUE TO LEAK IN STANDPIPE No. 1. BREAK CIRCULATION, DRILL CEMENT FROM 1807m, DRILL SHOE AT 1822m, DRILL RATHOLE AND 3m FORMATION TO 1838m. CIRCULATE BOTTOMS UP & CONDITION MUD. PERFORM LEAK-OFF TEST USING 1.07SG (8.9 PPG) MUD. LEAK-OFF PRESSURE 10.1KPA (210PSI), EQUIVALENT MUD WEIGHT OF 1.15SG (9.6 PPG). DRILL 445mm (17.5") HOLE FROM 1838m TO 1894m. CIRCULATE & CONTROL MUD OVERFLOW AT SHALE SHAKERS. DRILL AHEAD FROM 1894m TO 2045m.

00:00 - 06:00 HOURS 29/11/04:

DRILL AHEAD FROM 2045m TO 2160m AT 06:00 HRS.

ANTICIPATED OPERATIONS:

DRILL AHEAD 445mm (17.5") HOLE TO CASING POINT AT APPROX 2459m.

MWD OFFSETS FROM BIT:

RESISTIVITY 15.17m, PRESSURE 15.89m, GAMMA RAY 18.65m, SURVEYS 24.49m.

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 29/11/04

REPORT NO: 3

FORMATION TOPS: (Preliminary Field Picks)	MD RT (m)	Subsea (m)	H/L to Prognosis (m)	H/L to Hill-1 (m)

HYDROCARBON SHOW SUMMARY				
INTERVAL	LITHOLOGY	GAS		
	NIL			

	GEOLOGICAL SUMMARY					
INTERVAL ROP (m/hr)	LITHOLOGY	GAS				
1835-1882m ROP: 7-52 Ave: 28.4	MARL: Light olive green, greenish grey, light brownish grey, soft to firm, argillaceous in part grading to Calcareous Claystone, slightly dispersive, amorphous to sub blocky.	6-53 units 100% C1 CO2: 460 ppm				
1882-1922m ROP: 14-42 Ave: 25.0	CALCAREOUS CLAYSTONE GRADING TO MARL CALCAREOUS CLAYSTONE: Light to medium olive green, greenish grey, brownish grey, soft to firm, trace glauconite grains, trace calcite grains, trace black lithic fragments, locally grades to Marl, amorphous to sub blocky. MARL: Light olive green, pale greenish grey, light brownish grey, soft, firm, argillaceous in part grading to Calcareous Claystone, amorphous to sub blocky.	20-41 units 100/0/trace % CO2: 465 ppm				
1922-1960m ROP: 8-45 Ave: 21.2	MASSIVE CALCAREOUS CLAYSTONE CALCAREOUS CLAYSTONE: Light grey, off white, greenish grey, olive grey, common loose calcite grains, dispersive, very soft to firm, predominantly amorphous, minor subblocky, commonly grades to Marl.	19-35 units 100/0/trace % CO2: 475 ppm				
1960-1981m ROP: 9-41 Ave: 23	CALCAREOUS CLAYSTONE WITH MINOR CALCILUTITE. CALCAREOUS CLAYSTONE: Very light grey, light grey, off white, trace glauconite, dominantly firm, minor soft and dispersive, subblocky, rarely blocky. CALCILUTITE: Predominantly light olive green, minor very light grey, fine grained, common calcite grains, moderately hard to hard, subblocky to blocky.	1 – 19 units 100 % C1 CO2: 485 ppm				

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 29/11/04

REPORT NO: 3

	GEOLOGICAL SUMMARY				
INTERVAL ROP (m/hr)	LITHOLOGY	GAS			
1981-2047m ROP: 5-99 Ave: 41	INTERBEDDED CLAYSTONE, SANDSTONE AND CALCILUTITE CALCAREOUS CLAYSTONE: Brownish grey to greenish grey, occasionally dark brown, abundant glauconite, trace pyrite, soft to firm, amorphous to dispersive, subblocky CALCILUTITE: White to very light grey, fine grained, firm, amorphous. SANDSTONE: Clear to translucent, medium to coarse grained, subangular to sub rounded, moderately well sorted, generally loose and clean quartz, fair visual porosity, no shows.	1 – 11 units 100 % C1 CO2: 475 ppm			
2047-2065m ROP: 19-45 Ave:35	INTERBEDDED CLAYSTONE, SANDSTONE AND CALCILUTITE CALCAREOUS CLAYSTONE: Brownish grey to brown, greenish grey, common to locally abundant glauconite, trace nodular pyrite, soft to firm, amorphous to dispersive, subblocky SANDSTONE: Clear to translucent, medium to coarse grained, subangular to sub rounded, moderate sorted, commonly loose and clean quartz, fair visual porosity, no shows. CALCILUTITE: White to very light grey, micritic, firm to hard, amorphous to subblocky.	1 – 11 units 99/1 % CO2: 470 ppm			
2065-2114m ROP: 14-51 Ave: 36	MASSIVE CLAYSTONE INTERBEDDED WITH MINOR CALCILUTITE AND SANDSTONE CLAYSTONE: Brownish grey to greenish grey, calcareous, silty in part, trace glauconite, trace pyrite, soft to firm, amorphous to dispersive, sub blocky in part. CALCILUTITE: White to very light grey, micritic, slightly argillaceous, firm to moderately hard, amorphous to subblocky. SANDSTONE: Clear to translucent, medium to fine grained, locally coarse, subangular to subrounded, moderate to poorly sorted, argillaceous in part, commonly loose and clean quartz, fair to good inferred porosity, no show.	1 – 16 units 99/1 % CO2: 470 ppm			

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 30/11/04

REPORT NO: 4

(As at 2400 hours 29/11/04) DEPTH: 2382 m PROGRESS: 337 m DAYS FROM SPUD: 9.28

DAYS ON WELL: 12.89

OPERATION: DRILLING 445mm (17.5") HOLE

(As at 0600 hours 30/11/04) **DEPTH**: 2440 m **PROGRESS** (0600-0600 hrs): 280 m

OPERATION: DRILLING 445mm (17.5") HOLE AT 15 M/HR

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

KCl% PV/YP: **MUD DATA** Mud Type: (Pits) Wt: SG Vis: FL: Ph: Cl: (2400 Hours) KCL / POLY/ 1.08 59 5.4 9.0 8.1 39000 17 / 18

GLYCOL

No. Make Type Size (mm) Hours Drilled Condition T11C (Tricone) **BIT DATA PRESENT** 2 Reed 445 26.1 547 (2400 Hours) LAST Smith **MSDS** 660 18.7 410 1-1-WT-A-E-I-NO-TD

SURVEYS: MD (m) INC (°) AZIM (°T) CLOSURE (m) DIRECTION (°) 2334.13 0.40 185.07 0.37 221.08 2361.66 2390.55 0.33 232.85 10 241

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

DRILL 445mm (17.5") HOLE FROM 2045m TO 2318m. CIRCULATE & PUMP HIGH VISCOSITY SWEEPS TO ASSIST HOLE CLEANING. DRILL HEAD FROM 2318m TO 2382m.

00:00 - 06:00 HOURS 30/11/04:

DRILL AHEAD FROM 2382m TO 2440m AT 06:00 HRS.

ANTICIPATED OPERATIONS:

DRILL AHEAD 445mm (17.5") HOLE TO CASING POINT AT APPROX 2459m. CIRCULATE HOLE CLEAN & CONDITION MUD. PULL OUT OF HOLE. (WIPER TRIP DEPENDENT ON HOLE CONDITION). RIG TO & RUN 340mm (13.375") CASING.

MWD OFFSETS FROM BIT:

RESISTIVITY 15.17m, PRESSURE 15.89m, GAMMA RAY 18.65m, SURVEYS 24.49m.

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 30/11/04

REPORT NO: 4

FORMATION TOPS: (Preliminary Field Picks)	MD RT (m)	Subsea (-m)	H/L to Prognosis (m)	H/L to Hill-1 (m)

	HYDROCARBON SHOW SUMMARY	
INTERVAL	<u>LITHOLOGY</u>	GAS
	NIL	

GEOLOGICAL SUMMARY			
INTERVAL ROP (m/hr)	LITHOLOGY	GAS	
2114-2154m ROP: 15-42 Ave: 33	MASSIVE CLAYSTONE CLAYSTONE: Brownish grey to greenish grey, calcareous, silty in part, trace glauconite, trace pyrite, soft to firm, amorphous, dispersive in part, sub blocky in part.	Trace – 18 units 99/trace/trace % CO2: 460 ppm	
2154-2260m ROP: 11-78 Ave: 23.5	MASSIVE CLAYSTONE CLAYSTONE: Medium to dark brownish grey, occasionally light brownish grey, medium brown to occasionally dark brown, silty in part, rare mica, trace nodular pyrite, rare very fine quartz grains, dispersive, sticky in part, soft to minor firm, amorphous, rarely sub blocky.	2 – 18 units 99/trace/trace % CO2: 470 ppm	
2260-2350m ROP: 7-36 Ave: 17	MASSIVE CLAYSTONE CLAYSTONE: Light brownish grey to brownish grey, trace pyrite, dispersive, soft to minor firm, amorphous, minor subblocky.	1 – 23 units 99/trace/trace % CO2: 475 ppm	
2350-2410m ROP: 5-37 Ave: 14	MASSIVE CLAYSTONE CLAYSTONE: Predominantly brownish grey, pale yellowish brown, brown, generally non calcareous, rare glauconite, rare lithic fragments, rare crystalline calcite grains, soft, dispersive in part, steaky, amorphous, sub blocky.	10 – 18 units 99/ trace/ trace % CO2: 505 units	

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 01/12/04

REPORT NO: 5

(As at 2400 hours 30/11/04) **DEPTH**: 2459 m **PROGRESS**: 77 m **DAYS FROM SPUD**: 10.28

DAYS ON WELL: 13.89

OPERATION: RUNNING IN HOLE TO BOTTOM.

(As at 0600 hours 01/12/04) DEPTH: 2459 m PROGRESS (0600-0600 hrs): 19 m

OPERATION: CIRCULATING HOLE CLEAN AT BOTTOM WHILST AWAITING DPI INSPECTOR'S

APPROVAL TO RE-COMMENCE OPERATIONS.

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

MUD DATA Wt: SG KCl% PV/YP: Mud Type: (Pits) Vis: FL: Ph: Cl: (2400 Hours) KCL / POLY/ 1.10 55 5.0 9.0 7.6 38500 20 / 27

GLYCOL

No. Make Type Size (mm) Hours Drilled Condition T11C (Tricone) **BIT DATA PRESENT** 2 Reed 445 32.2 624 (2400 Hours) LAST Smith **MSDS** 660 18.7 410 1-1-WT-A-E-I-NO-TD

 SURVEYS:
 MD (m)
 INC (°)
 AZIM (°T)
 CLOSURE (m)
 DIRECTION (°)

 2419.57
 0.32
 200.20

2433.15 0.24 208.59 10.5 240

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

DRILL AHEAD 445mm (17.5") HOLE FROM 2382m TO 2459mRT (SECTION TOTAL DEPTH). CIRCULATE & PUMP HIGH VISCOSITY SWEEP. PULL OUT OF HOLE, TIGHT HOLE OBSERVED @ 2402m. MAKE UP TOP DRIVE & PUMP OUT OF THE HOLE TO CASING SHOE. PUMP HIGH VISCOSITY SWEEP FOLLOWED BY HIGH WEIGHT SWEEP. CIRCULATE HOLE CLEAN WHILST OPERATIONS SUSPENDED AT 17:45HRS BY DEPARTMENT OF PRIMARY INDUSTRIES (DPI) INSPECTOR FOLLOWING ON-SITE INVESTIGATION OF INCIDENT ON 26/11/04. DPI APPROVAL OBTAINED AT 22:30HRS TO RUN IN HOLE TO BOTTOM AND CIRCULATE TO MAINTAIN HOLE INTEGRITY. RUN IN HOLE TO 2336m.

00:00 - 06:00 HOURS 01/12/04:

CONTINUE TO RUN IN HOLE TO 2445m (TIGHT SPOT). WASH & REAM FROM 2445m TO BOTTOM AT 2459m. CIRCULATE HOLE CLEAN AT BOTTOM.

ANTICIPATED OPERATIONS:

CONTINUE TO CIRCULATE & CONDITION MUD WHILST AWAITING ON DPI INSPECTOR'S APPROVAL FOR RESUMPTION OF OPERATIONS. PULL OUT OF HOLE. RIG TO & RUN 340mm (13.375") CASING.

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 01/12/04

REPORT NO: 5

FORMATION TOPS: (Preliminary Field Picks)	MD RT (m)	Subsea (-m)	H/L to Prognosis (m)	H/L to Hill-1 (m)

	HYDROCARBON SHOW SUMMARY	
INTERVAL	LITHOLOGY	GAS
	NIL	

	GEOLOGICAL SUMMARY				
INTERVAL ROP (m/hr)	LITHOLOGY	GAS			
2410-2459m ROP: 3-45 Ave: 21	MASSIVE CLAYSTONE CLAYSTONE: Predominantly brownish grey, pale yellowish brown, brown, generally non calcareous, rare glauconite, rare lithic fragments, rare crystalline calcite grains, soft, dispersive in part, steaky, amorphous, sub blocky.	11 – 25 units 99/ 1 / trace % CO2: 525 units			

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 02/12/04

REPORT NO: 6

(As at 2400 hours 01/12/04) DEPTH: 2459 m PROGRESS: 0 m DAYS FROM SPUD: 11.28

DAYS ON WELL: 14.89

OPERATION: RUNNING IN HOLE TO RETRIEVE NOMINAL BORE PROTECTOR.

(As at 0600 hours 02/12/04) DEPTH: 2459 m PROGRESS (0600-0600 hrs): 0 m

OPERATION: PULLING OUT OF HOLE WITH NOMINAL BORE PROTECTOR (632m AT 06:00HRS)

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m **ROTARY TABLE:** 29m LAT **WATER DEPTH:** 1396 m

MUD DATA	Mud Type: (Pits)	Wt: SG	Vis:	FL:	Ph:	KCl%	C1:	PV/YP:	Rmf = 0.1087 @ 24C
(2400 Hours)	KCL / POLY/	1.10	61	5.0	8.5	7.5	33800	19 / 20	Rm = 0.1192 @ 25.1C
	GLYCOL								Rmc = 0.1248 @ 26.8C

BIT DATA (2400 Hours)	PRESENT LAST	No. 2 1	Make Reed Smith	Type T11C (Tricone) MSDS	Size (mm) 445 660	Hours 32.2 18.7	Drilled 624 410	Condition 2-2-BT-A-E-1-WT-TD 1-1-WT-A-E-I-NO-TD

SURVEYS:	<u>MD</u> (m)	<u>INC (°)</u>	AZIM (°T)	CLOSURE (m)	DIRECTION (°)
	2419.57	0.32	200.20		
	2433.15	0.24	208.59	10.5	240

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

CONTINUE TO RUN IN HOLE TO 2445m (TIGHT SPOT). WASH & REAM FROM 2445m TO BOTTOM AT 2459m. CIRCULATE HOLE CLEAN AT BOTTOM. PUMP HIGH VISCOSITY SWEEP, CIRCULATE HOLE CLEAN. PULL OUT OF HOLE TO RUN CASING. DOWNLOAD MWD MEMORY DATA, BREAK OUT BIT. MAKE UP MULTI-PURPOSE RUNNING TOOL & RUN IN HOLE TO RETRIEVE NOMINAL BORE PROTECTOR. (233m AT 24:00HRS)

00:00 - 06:00 HOURS 02/12/04:

CONTINUE TO RUN IN HOLE WITH MULTI-PURPOSE TOOL. JET BOP'S CLEAN. LATCH & RETRIEVE NOMINAL BORE PROTECTOR, PULL OUT OF HOLE TO 632m.

ANTICIPATED OPERATIONS:

COMPLETE PULLING OUT OF HOLE, LAYOUT MULTI-PURPOSE TOOL. RIG UP TO AND RUN 340mm (13.375") CASING. CEMENT CASING.

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 02/12/04

FORMATION	TOPS:	MD RT	Subsea	H/L to Prognosis	H/L to Hill-1	
(Preliminary F	ield Picks)	(m)	(-m)	(m)	(m)	
	HYDROCARBON SHO	OW SUMMARY	V			
		ov semining	-			
INTERVAL	LITHOLOGY				GAS	
	NIL					
	GEOLOGICAL SUMM	IARY			T	
	LITHOLOGY				CAS	
INTERVAL POP (m/hm)	<u>LITHOLOGY</u>				GAS	
ROP (m/hr)						

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 03/12/04

REPORT NO: 7

(As at 2400 hours 02/12/04) DEPTH: 2459 m PROGRESS: 0 m DAYS FROM SPUD: 12.28

DAYS ON WELL: 15.89

RIG: JACK BATES

OPERATION: RUNNING CASING ON DRILLPIPE (2388m AT 24:00HRS)

(As at 0600 hours 03/12/04) DEPTH: 2459 m PROGRESS (0600-0600 hrs): 0 m

OPERATION: PRESSURE TESTING BOP STACK.

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m

340mm (13.375") CASING DEPTH: 2454m (Prelim)

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

MUD DATA (2400 Hours)	Mud Type: (KCL / POLY GLYCOL		Wt: SG 1.10	Vis: 60	FL: 5.4	Ph 8.7		C1 : 38500	PV/YP: 22 / 34	Rmf = 0.1087 @ 24C Rm = 0.1192 @ 25.1C Rmc = 0.1248 @ 26.8C
	PRESENT	No.	Make	Ту	pe		Size (mm)	Hours	Drilled	Condition
BIT DATA (2400 Hours)	LAST	2	Reed	T1	1C (Trico	ne)	445	32.2	624	2-2-BT-A-E-1-WT-TD

SURVEYS:	<u>MD</u> (m)	<u>INC (°)</u>	<u>AZIM (°T)</u>	CLOSURE (m)	DIRECTION (°)
	2419.57 2433.15	0.32 0.24	200.20 208.59	10.5	240

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

CONTINUE TO RUN IN HOLE WITH MULTI-PURPOSE TOOL. JET BOP & WELLHEAD AREA CLEAN. RETRIEVE NOMINAL BORE PROTECTOR (WEAR BUSHING) & LAYOUT. PREPARE RIG FLOOR TO RUN CASING. HOLD SAFETY MEETING. RUN 81 JOINTS OF 340mm (13.375") CASING TO 1029m. MAKE UP CASING HANGER, RUN CASING ON DRILLPIPE TO 2388m.

00:00 - 06:00 HOURS 03/12/04:

CONTINUE TO RUN CASING ON DRILLPIPE & LAND IN WELLHEAD(SHOE AT 2454m Prelim). RIG UP CEMENT LINES & PRESSURE TEST. CIRCULATE PRIOR TO CEMENTATION. CEMENT CASING AS PER PROGRAM (LEAD SLURRY: 327BBLS/52M3 1.5SG/12.5PPG; TAIL SLURRY: 81BBLS/12.9M3 1.9SG/15.8PPG). DISPLACE WITH RIG PUMPS. RIG DOWN CEMENTING EQUIPMENT. SET SEAL ASSEMBLY. COMMENCE PRESSURE TESTING BOPS.

ANTICIPATED OPERATIONS:

PERFORM BOP TEST, INSTALL WEAR BUSHING. MAKE UP 12.25" PDC BIT & BHA WITH MOTOR & MWD.

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 03/12/04

FORMATION (Preliminary F		MD RT (m)	Subsea (-m)	H/L to Prognosis (m)	H/L to Hill-1 (m)	
	HYDROCARBON SHO	OW SUMMARY	Y		·	
INTERVAL	LITHOLOGY				GAS	
	NIL					
	GEOLOGICAL SUMM	IARY				
INTERVAL ROP (m/hr)	LITHOLOGY				GAS	

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 04/12/04

REPORT NO: 8

(As at 2400 hours 03/12/04) **DEPTH:** 2459 m **PROGRESS:** 0 m DAYS FROM SPUD: 13.28

DAYS ON WELL: 16.89

OPERATION: LAYING OUT 445mm (17.5") BHA.

(As at 0600 hours 04/12/04) **DEPTH**: 2459 m PROGRESS (0600-0600 hrs): 0 m

OPERATION: SHALLOW TESTING MWD TOOLS PRIOR TO RUNNING IN HOLE.

AFE COST **CUMULATIVE COST**

508mm (20") CASING DEPTH: 1822m

340mm (**13.375**") **CASING DEPTH**: 2454m (Prelim)

PROGRAMMED TD: 3179m **ROTARY TABLE:** 29m LAT **RIG: JACK BATES**

RT – SEAFLOOR: 1425 m WATER DEPTH: 1396 m

MUD DATA (2400 Hours)	Mud Type: (KCL / PHPA GLYCOL		Wt: SG 1.11	Vis: 62	FL: 4.4	Ph: 8.5	KCl% 7.8	C1 : 38000	PV/YP: 21 / 33	
BIT DATA (2400 Hours)	PRESENT LAST	No. 3	Make Reed	-	ype I1C (Tricor		Size (mm)	Hours 32.2	Drilled 624	Condition 2-2-BT-A-E-1-WT-TD
SURVEYS:	MD (m) 2419.57 2433.15		INC (°) 0.32 0.24)	20	ZIM (*00.20 08.59	°T)	<u>CLOS</u>	SURE (m)	DIRECTION (°) 240

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

CONTINUE TO RUN CASING ON DRILLPIPE & LAND OUT IN WELLHEAD WITH CASING SHOE AT 2454m (Prelim). RIG UP CEMENT LINES & PRESSURE TEST SAME. CIRCULATE PRIOR TO CEMENTATION. CEMENT CASING AS PER PROGRAM. LEAD SLURRY: 52M3 (327BBLS) 1.5SG (12.5PPG), TAIL SLURRY: 12.9M3 (81BBLS) 1.9SG (15.8PPG). DISPLACE WITH RIG PUMPS. RIG DOWN CEMENTING EQUIPMENT. SET SEAL ASSEMBLY. PRESSURE TEST BOP STACK ON BLUE POD TO 239KPa (5000PSI). MAKE UP WEAR BUSHING RUNNING TOOL, RUN IN HOLE & INSTALL WEAR BUSHING. PULL OUT OF HOLE WITH RUNNING TOOL. LAYOUT CEMENT HEAD FROM DERRICK. PRESSURE TEST CASING TO 239KPa (5000 PSI) WHILE LAYING OUT 445mm (17.5") BHA.

00:00 - 06:00 HOURS 04/12/04:

CONTINUE LAYING OUT EXCESS 445mm (17.5") BHA. PICK UP AND MAKE UP 311mm (12.25") PDC BIT & BHA WITH MOTOR & MWD & RUN IN HOLE TO 60m. SHALLOW TEST ANADRILL TOOLS.

ANTICIPATED OPERATIONS:

COMPLETE RUNNING IN HOLE WITH BOTTOM HOLE ASSEMBLY. PICK UP 66 JOINTS OF DRILL PIPE FROM DECK. DRILL CEMENT, SHOE TRACK & 3m FORMATION. CIRCULATE HOLE. PERFORM LEAK-OFF TEST. DRILL 311mm (12.25") HOLE.

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 04/12/04

FORMATION (Preliminary F		MD RT (m)	Subsea (-m)	H/L to Prognosis (m)	H/L to Hill-1 (m)	
	HYDROCARBON SHO	OW SUMMAR	RY			
INTERVAL	LITHOLOGY				GAS	
	NIL					
	1					
	GEOLOGICAL SUMM	IARY				
INTERVAL ROP (m/hr)	LITHOLOGY				GAS	

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 05/12/04

REPORT NO: 9

(As at 2400 hours 04/12/04) **DEPTH:** 2468 m **PROGRESS:** 9 m **DAYS FROM SPUD:** 14.28

DAYS ON WELL: 17.89

OPERATION: DRILLING AHEAD 311 mm (12.25" HOLE) AT 14 m/hr.

(As at 0600 hours 05/12/04) **DEPTH**: 2533 m PROGRESS (0600-0600 hrs): 74 m

OPERATION: DRILLING AHEAD 311 mm (12.25" HOLE) AT 25 m/hr.

AFE COST **CUMULATIVE COST**

508mm (20") CASING DEPTH: 1822m

340mm (**13.375**") **CASING DEPTH**: 2455m (Final)

PROGRAMMED TD: 3179m **ROTARY TABLE:** 29m LAT **RIG: JACK BATES**

RT – SEAFLOOR: 1425 m WATER DEPTH: 1396 m

MUD DATA (2400 Hours)	Mud Type: (KCL / PHPA GLYCOL	,	Wt: 1.11 sg/ 9.3 ppg	Vis: 60	FL: 5.2	Ph: 8.5	KCl% 8.0	C1: 42000	PV/YP: 21 / 26	
BIT DATA (2400 Hours)	PRESENT LAST	No. 3	Make Hughes Reed		606 (PDC) (Tricone)		Size (mm) 311 mm 445	Hours 0.4 32.2	Drilled 9 m 624	Condition IN HOLE 2-2-BT-A-E-1-WT-TD
SURVEYS:	MD (m) 2433.15 2476.28		INC (°) 0.24 0.5		208	ZIM 8.59 2.35		<u>CLOS</u>	SURE (m)	DIRECTION (°) 240

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

SHALLOW TEST MWD TOOLS - OKAY. CONTINUE TO RUN IN HOLE WITH BHA. PICK UP 66 JOINTS OF DRILL PIPE FROM DECK. RUN IN HOLE WITH STANDS TO TAG TOP OF CEMENT AT 2414m. WASH TO TOP OF FLOAT COLLAR AT 2418m. DRILL CEMENT, SHOE TRACK (SHOE @ 2455m), CLEAN OUT RATHOLE, DRILL 3m FORMATION TO 2462m. CIRCULATE HOLE CLEAN. CONDUCT FORMATION INTEGRITY TEST. EQUIVALENT MUD WEIGHT = 1.60 SG (13.31 PPG). DRILL AHEAD 311mm (12.25" HOLE) FROM 2462m TO 2468m IN THE TIMBOON MUDSTONE.

00:00 - 06:00 HOURS 05/12/04:

DRILL AHEAD 311mm (12.25" HOLE) FROM 2468m TO 2477m. CONDUCT LEAK OFF TEST. EQUIVALENT MUD WEIGHT = 1.32 SG (11.0 PPG). DRILL AHEAD 311mm (12.25") HOLE FROM 2477m TO 2505 m.

ANTICIPATED OPERATIONS:

DRILL 311mm (12.25") HOLE TO TOTAL DEPTH.

MWD OFFSETS: GAMMA RAY=19.45, RESISTIVITY=16.1, ANNULAR PRESSURE=16.63m, SURVEYS=26.73m.

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 05/12/04

FORMATION TOPS: (Preliminary Field Picks)	MD RT (m)	Subsea (-m)	H/L to Prognosis (m)	H/L to Hill-1 (m)

	HYDROCARBON SHOW SUMMARY	
INTERVAL	LITHOLOGY	GAS

	GEOLOGICAL SUMMARY	
INTERVAL ROP (m/hr)	LITHOLOGY	GAS
2459 – 2470 m ROP: 14 - 44 Ave: 25	INTERBEDDED CLAYSTONE AND SILTSTONE. SILTSTONE: dark grey brown, argillaceous to very fine arenaceous, micromicaceous and microcarbonaceous in part, occasional pyrite nodules, rare glauconite grains in part, firm to moderately hard and sub fissile in part. CLAYSTONE: olive brown, light grey brown, argillaceous, dispersive, carbonaceous fragments in part, occasional white lithic fragments, soft, subblocky in part to amorphous. (Note: Trace to 5% yellow fluorescence observed in cement, possibly additives.)	4 – 8 units 99 / 1 / trace CO2: 450 ppm
2470 – 2505 m ROP: 4 - 10 Ave: 15	INTERBEDDED SILTSTONE AND CLAYSTONE GRADING TO SILTSTONE BASALLY. CLAYSTONE: light brown, grey, argillaceous, microcarbonaceous in part, pyritic nodules, dispersive, sub blocky and amorphous. SILTSTONE: light brown, brown grey, argillaceous, occasionally arenaceous, very fine carbonaceous specks, micromicaceous in part, pyritic inclusions and nodules, massive, soft to firm, sub blocky. (Note: Trace to 5% yellow fluorescence observed in cement, possibly additives.)	4 – 7 units 99 / 1 CO2: 450 ppm

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 06/12/04

REPORT NO: 10

(As at 2400 hours 05/12/04) DEPTH: 2695 m PROGRESS: 227 m DAYS FROM SPUD: 15.28

DAYS ON WELL: 18.89

OPERATION: CIRCULATING BOTTOMS UP AT CASING SHOE PRIOR TO PULLING BIT No.3 OUT OF

HOLE.

(As at 0600 hours 06/12/04) **DEPTH**: 2695 m **PROGRESS** (0600-0600 hrs): 162 m

OPERATION: PULLING OUT OF HOLE FOR BIT CHANGE AT 144m.

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

340mm (13.375") CASING DEPTH: 2455m (Final)

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m **ROTARY TABLE:** 29m LAT **WATER DEPTH:** 1396 m

MUD DATA Mud Type: (Pits) Vis: FL: Ph: KCl% PV/YP: 1.14 SG/ KCL / PHPA/ (2400 Hours) 64 4.0 8.5 10.4 52500 21 / 25 **GLYCOL** 9.5 PPG

No. Make Size (mm) Hours Drilled Condition Type Hughes HCH 606 (PDC) 311 mm 236 m IN HOLE **BIT DATA PRESENT** 3 14.4 (2400 Hours) 2 Reed T11C (Tricone) 445 2-2-BT-A-E-1-WT-TD 32.2 624 LAST

 $\underline{AZIM}(^{\circ}T)$ CLOSURE (m) **SURVEYS:** INC (°) DIRECTION (°) MD (m) 2534.29 0.33 216.60 11.1 240 195.11 2649.13 0.37 11.7 238

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

DRILL AHEAD 311mm (12.25" HOLE) FROM 2468m TO 2477m. CONDUCT LEAK OFF TEST. EQUIVALENT MUD WEIGHT = 1.32~SG~(11.0~PPG). DRILL AHEAD 311mm (12.25") HOLE FROM 2477m TO 2695m. PULL OUT OF HOLE TO CHANGE BIT

DUE TO POOR RATE OF PENETRATION (<5 m/HR). PULL OUT OF HOLE FROM 2695 TO 2538 m (TIGHT HOLE AT 2559m & 2549m). RUN BACK IN HOLE TO 2552m. PUMP OUT OF HOLE FROM 2568m TO 2452m. CIRCULATE BOTTOMS UP FROM CASING SHOE.

00:00 - 06:00 HOURS 06/12/04:

CIRCULATE OUT AT CASING SHOE. PULL OUT OF HOLE BIT No.3 AT 144m.

ANTICIPATED OPERATIONS:

PULL OUT OF HOLE. DOWNLOAD MWD DATA AND CHANGE BATTERIES. RUN IN HOLE WITH PDC BIT No.4. DRILL AHEAD 311mm (12.25" HOLE) FROM 2695m TO TOTAL DEPTH. CIRCULATE HOLE CLEAN. PULL OUT OF HOLE TO RUN WIRELINE LOGS.

MWD OFFSETS: GAMMA RAY=19.45, RESISTIVITY=16.1, ANNULAR PRESSURE=16.63m, SURVEYS=26.73m.

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 06/12/04

FORMATION TOPS: (Preliminary Field Picks)	MD RT (m)	Subsea (-m)	H/L to Prognosis (m)	H/L to Hill-1 (m)

INTERVAL	LITHOLOGY	GAS
2551-2558m ROP: 6-120 Ave: 40	SANDSTONE: Clear to translucent quartz, fine to very coarse grained, dominantly medium to coarse grained, poorly sorted, subangular to subrounded, trace strong siliceous cement, common calcareous cement, trace pyrite, trace dolomite, minor moderately hard, generally loose and clean, fair inferred porosity, trace dull to moderately bright yellow patchy fluorescence, no cut, thin ring residue. (POOR SHOW)	99/1 %

	GEOLOGICAL SUMMARY	
INTERVAL ROP (m/hr)	LITHOLOGY	GAS
2505 – 2551 m ROP: 1-55 Ave: 24	MASSIVE SILTSTONE SILTSTONE: Medium brown to medium brown grey, argillaceous, very finely arenaceous in part, trace glauconite grains, trace nodular pyrite, trace calcareous grains, trace dolomite, firm to hard, subblocky.	2 – 11 units 99 / 1 CO2: 500 ppm
2551-2558m ROP: 6-120 Ave: 40	SANDSTONE: Clear to translucent quartz, fine to very coarse grained, dominantly medium to coarse grained, poorly sorted, subangular to subrounded, trace strong siliceous cement, common calcareous cement, trace pyrite, trace dolomite, minor moderately hard, generally loose and clean, fair inferred porosity, trace dull to moderately bright yellow patchy fluorescence, no cut, thin ring residue.	3 – 9 units 99/1 % CO2: 500 ppm

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 06/12/04

	GEOLOGICAL SUMMARY	
INTERVAL ROP (m/hr)	LITHOLOGY	GAS
2558-2580m ROP: 9-59 Ave: 34	INTERBEDDED SANDSTONE AND SILTSTONE SANDSTONE: Clear to translucent quartz, fine to very coarse grained, dominantly medium to coarse grained, poorly sorted, subangular to subrounded, trace strong siliceous cement, common calcareous cement, trace pyrite, trace dolomite, trace moderately hard aggregates, generally loose and clean, fair inferred porosity, trace dull to moderately bright yellow patchy fluorescence, no cut, thin ring residue. SILTSTONE: Medium brown to medium brown grey, argillaceous, occasionally very finely arenaceous, trace to locally common glauconite grains, trace nodular pyrite, trace calcareous grains, trace hard dolomite, firm, subblocky.	3 – 27 units 99/1/trace % CO2: 495 ppm
2580-2605m ROP: 18-37 Ave: 28	MASSIVE SILTSTONE WITH MINOR SANDSTONE STRINGERS SILTSTONE: Light brown grey to medium brown grey, argillaceous, grades to Claystone, micromicaceous, trace glauconite, common carbonaceous specks, arenaceous in part, locally grades to very fine Sandstone, firm to moderately hard, subblocky. SANDSTONE: Light grey, clear to translucent quartz, pale grey, fine to coarse grained, moderately poorly sorted, subangular, common moderately strong calcareous cement, minor light grey to off white argillaceous matrix, moderately hard, friable in part, common loose and clean, poor visual porosity, poor to fair inferred porosity, no shows.	16 – 32 units 99/1/trace % CO2: 500 ppm
2605-2626m ROP: 10-76 Ave: 37	SILTSTONE GRADING INTO SANDSTONE WITH DEPTH SILTSTONE: Dominantly light brownish grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, slightly micromicaceous, firm to moderate hard, sub blocky SANDSTONE: Very light grey, translucent, fine to coarse, dominant medium to coarse, moderate sorting, argillaceous, locally light grey to off white argillaceous matrix, poor visual porosity, no shows.	15 – 39 units 99/1/trace % CO2: 480 ppm
2626-2658m ROP: 8-42 Ave: 22	MASSIVE SILTSTONE WITH MINOR SANDSTONE STRINGERS SILTSTONE: Light brownish grey to dark grey, very argillaceous to arenaceous in part, grading to Claystone, common carbonaceous specks, trace pyrite, trace micromicaceous, firm, moderate hard, sub blocky SANDSTONE (Trace): Very light grey to translucent, fine to medium, dominantly medium grained, moderately well sorting, occasionally white to very light grey argillaceous matrix, moderately strong siliceous cement, poor visual porosity, no show	7 – 15 units 98/1/trace % CO2: 475 ppm

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 06/12/04

	GEOLOGICAL SUMMARY	
INTERVAL ROP (m/hr)	LITHOLOGY	GAS
2658- 2695 m ROP: 4-72 Ave: 11	SILTSTONE WITH TRACE SANDSTONE STRINGERS. SILTSTONE: Brown to brown grey, argillaceous to arenaceous, grades to very fine sandstone in part, carbonaceous specks and streaks, micromicaceous in part, trace glauconite, white lithics in part, firm to soft, dispersive, subblocky to amorphous. SANDSTONE: Clear, translucent, fine grained, subangular to subrounded, well sorted, clean loose grains, trace siliceous cement, poor visual and fair inferred porosity, no shows.	3 – 12 units 97/2/1 % CO2: 465 ppm

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 07/12/04

REPORT NO: 11

(As at 2400 hours 06/12/04) DEPTH: 2878 m PROGRESS: 183 m DAYS FROM SPUD: 16.28

DAYS ON WELL: 19.89

OPERATION: DRILLING AHEAD AT 40m/hr

(As at 0600 hours 07/12/04) **DEPTH**: 2979m (TD) **PROGRESS** (0600-0600 hrs): 284m

OPERATION: CIRCULATING BOTTOMS UP PRIOR TO PULLING OUT OF HOLE TO RUN WIRELINE LOGS.

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

340mm (13.375") CASING DEPTH: 2455m (Final)

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

MUD DATA Mud Type: (Pits) Wt: Vis: FL: Ph: KCl% Cl: PV/YP: $KCL \, / \, PHPA /$ 1.14 SG/ 5.2 10.5 52000 23 / 30(2400 Hours) 67 8.5 **GLYCOL** 9.5 PPG

No. Make Type Size (mm) Hours Drilled Condition **BIT DATA PRESENT** 4 Reed DSX 104 (PDC) 311 mm 4.2 183 IN HOLE (2400 Hours) 3 Hughes HCH 606 (PDC) 311 mm 0-0-BU-N-X-I-ER-PR LAST 14.4 236 m

 SURVEYS:
 MD (m)
 INC (°)
 AZIM (°T)
 CLOSURE (m)
 DIRECTION (°)

 (Project to TD)
 2979.00
 0.26
 140.59
 12.6
 233

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

CIRCULATE BOTTOMS UP AT CASING SHOE. PULL OUT OF HOLE TO SURFACE. DOWNLOAD MWD MEMORY DATA. MAKE UP NEW PDC BIT & MWD TOOLS, SHALLOW TEST MWD, RUN IN HOLE TO CASING SHOE. CIRCULATE HOLE CLEAN WHILST SERVICING TOP DRIVE. SUSPECT COVER PLATE OF HYDRAULIC SLIPS FALLEN INTO HOLE. CONSIDER OPTIONS - DECIDE TO DRILL AHEAD. RESUME RUNNING IN HOLE FROM CASING SHOE TO BOTTOM AT 2695m. DRILL AHEAD FROM 2695m TO 2866m. CIRCULATE & CLEAR ANNULUS OF EXCESSIVE CUTTINGS. DRILL AHEAD FROM 2866m TO 2878m IN THE PAARATTE FORMATION.

00:00 - 06:00 HOURS 07/12/04:

DRILL AHEAD FROM 2878m TO 2979m. <u>TOTAL DEPTH REACHED AT 03:30 HRS ON 07/12/04</u>. CIRCULATE BOTTOMS UP PRIOR TO PULLING OUT TO RUN WIRELINE LOGS.

ANTICIPATED OPERATIONS:

COMPLETE CIRCULATING HOLE CLEAN. PULL OUT OF HOLE. RIG UP & RUN WIRELINE LOGS.

MWD OFFSETS: GAMMA RAY=19.43m, RESISTIVITY=16.08m, ANNULAR PRESSURE=16.61m, SURVEYS=26.71m.

A.C.N. 007 550 923

WELL PROGRESS REPORT

AMRIT 1

DATE: 07/12/04

FORMATION TOPS:	MD RT	Subsea	H/L to Prognosis	H/L to Hill-1
(Preliminary Field Picks)	(m)	(-m)	(m)	(m)

	HYDROCARBON SHOW SUMMARY					
INTERVAL	<u>LITHOLOGY</u>	GAS				
	No Shows					

	GEOLOGICAL SUMMARY							
INTERVAL ROP (m/hr)	<u>LITHOLOGY</u>	GAS						
2695- 2847m ROP: 4 - 152 Ave: 53	SILTSTONE WITH TRACE SANDSTONE. SILTSTONE: Brown to brown grey, argillaceous grading to Claystone in part, trace carbonaceous specks, occasional very fine translucent loose quartz grains, firm to soft, dispersive, subblocky to amorphous. SANDSTONE (Trace): Off white, translucent to transparent, very fine to fine grained, subangular, well sorted, strong calcareous cement, occasional off white argillaceous matrix, carbonaceous specks, firm to hard, tight visual porosity, no shows.	7 – 100 units 93/3/2/1/1 % CO2: 480 ppm						
2847 – 2908m ROP: 18 - 88 Ave: 53	SILTSTONE WITH TRACE LIMESTONE SILTSTONE: Brown to dark brown, arenaceous, trace black carbonaceous specks, trace pyritic inclusions, micromicaceous, soft and dispersive in part, blocky to sub blocky. LIMESTONE (Trace): Cream to off white, sparitic, micro crystalline in part, very hard, nil visual porosity, no shows.	22 – 114 units 91/5/2/2/TR % CO2: 485 ppm						
2908 - 2979m ROP: 23-103 Ave: 56	MASSIVE SILTSTONE SILTSTONE: Light to dominantly medium grey to brown grey, trace carbonaceous specks, slightly micromicaceous, argillaceous, slightly calcareous, firm, sub blocky.	42 – 146 units 91/5/3/1/TR % CO2: 485 ppm						

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 08/12/04

REPORT NO: 12

(As at 2400 hours 07/12/04) DEPTH: 2979m (TD) PROGRESS: 101 m DAYS FROM SPUD: 17.28

DAYS ON WELL: 20.89

OPERATION: RUNNING IN HOLE TO RECORD RUN 1: PEX-HALS-DSI

(As at 0600 hours 08/12/04) DEPTH: 2979m (TD) PROGRESS (0600-0600 hrs): 0m

OPERATION: PULLING OUT OF HOLE HAVING RECORDED RUN 1: PEX-HALS-DSI.

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

340mm (13.375") CASING DEPTH: 2455m

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

MUD DATA Mud Type: (Pits) Wt: Vis: FL: Ph: KCl% (2400 Hours) KCL / PHPA/ 1.14 SG/ 66 5.0 8.5 10.0 GLYCOL 9.5 PPG		PV/YP: 24 / 30
--	--	-------------------

		No.	Make	Type	Size (mm)	Hours	Drilled	Condition
BIT DATA (2400 Hours)	PRESENT LAST	4	Reed	DSX 104 (PDC)	311 mm	14.4	236	0-0-BU-A-X-I-ER-PR

SURVEYS:	<u>MD</u> (m)	<u>INC (°)</u>	AZIM (°T)	CLOSURE (m)	DIRECTION (°)
	2950.00	0.26	140.59		
(Project to TD)	2979.00	0.26	140.59	12.6	233

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

DRILL AHEAD FROM 2878m TO 2979m. TOTAL DEPTH REACHED AT 03:30 HRS ON 07/12/04. CIRCULATE BOTTOMS UP PRIOR TO PULLING OUT TO RUN WIRELINE LOGS. PULL OUT OF HOLE TO 2910m. OBSERVE TIGHT HOLE. PUMP OUT OF HOLE FROM 2910m TO CASING SHOE. CIRCULATE HOLE CLEAN. PULL OUT OF HOLE, DOWNLOAD MWD MEMORY DATA. RIG UP SCHLUMBERGER AND RUN IN HOLE TO CASING SHOE.

00:00 - 06:00 HOURS 08/12/04:

CONTINUE TO RUN IN HOLE TO RECORD RUN 1: PEX-HALS-DSI. TOOLS HUNG UP AT 2945m. RECORD LOG FROM 2945m TO CASING SHOE. TROUBLESHOOT RESISTIVITY MALFUNCTION. PULL OUT OF HOLE.

ANTICIPATED OPERATIONS:

RIG DOWN RUN 1. RECORD RUN 2 (SIDEWALL CORES OR VSP CHECKSHOT SURVEY) – PENDING EVALUATION OF RUN 1 DATA.

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 09/12/04

REPORT NO: 13

(As at 2400 hours 08/12/04) DEPTH: 2979m (TD) PROGRESS: 0 m DAYS FROM SPUD: 18.28

DAYS ON WELL: 21.89

OPERATION: RUNNING IN HOLE WITH LOGGING RUN NO. 3: SIDEWALL CORES.

(As at 0600 hours 09/12/04) **DEPTH**: 2979m (TD) **PROGRESS** (0600-0600 hrs): 0m

OPERATION: LOGGING RUN NO. 3: SIDEWALL CORES (24 / 30 CORES CUT AT 06:00HRS).

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

340mm (13.375") CASING DEPTH: 2455m

RT – SEAFLOOR: 1425 m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

MUD DATA	Mud Type: (Pits)	Wt:	Vis:	FL:	Ph:	KCl%	Cl:	PV/YP:
(2400 Hours)	KCL / PHPA/	1.15 SG/	66	4.0	8.5	10.0	49000	22 / 29
	GLYCOL	9.6 PPG						

		No.	Make	Туре	Size (mm)	Hours	Drilled	Condition
BIT DATA (2400 Hours)	LAST	4	Reed	DSX 104 (PDC)	311 mm	14.4	236	0-0-BU-A-X-I-ER-PR

SURVEYS:	$\underline{\mathbf{MD}}$ (m)	<u>INC (°)</u>	AZIM (°T)	CLOSURE (m)	DIRECTION (°)
(Project to TD)	2979.00	0.26	140.59	12.6	233

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

CONTINUE TO RUN IN HOLE WITH RUN 1: PEX-HALS-DSI. TOOLS HUNG UP AT 2945m. RECORD UPLOG FROM 2945m TO CASING SHOE. TROUBLESHOOT RESISTIVITY MALFUNCTION. PULL OUT OF HOLE WITH RUN 1: PEX-HALS-DSI. WHEN TOOLS AT SURFACE, FIND METAL JUNK (COVER PLATE FROM HYDRAULIC SLIPS WHICH WAS PREVIOUSLY LEFT IN HOLE) ENTANGLED IN THE CENTRALISER OF THE RESISTIVITY TOOL. RIG UP FOR VELOCITY CHECKSHOT SURVEY & TEST AIR GUNS. RUN IN HOLE, TOOLS HUNG UP AT 2945m. RECORD VELOCITY CHECKSHOT SURVEY AS PER PROGRAM. RIG DOWN VELOCITY SURVEY. RIG UP LOGGING RUN 3: CST-GR (1 GUN – 30 SHOTS) & RUN IN HOLE.

00:00 - 06:00 HOURS 09/12/04:

RUN IN HOLE LOGGING RUN 3: CST-GR. TOOLS HUNG UP AT 2945m. SHOOT SIDEWALL CORES AS PER PROGRAM. 24 OF 30 SHOT AT 06:00HRS.

ANTICIPATED OPERATIONS:

COMPLETE CST RUN. PULL OUT OF HOLE. RECOVER CORES. RIG DOWN SCHLUMBERGER. LAY OUT 311mm (12.25") BHA. SET 340mm (13.375") "EZSV" CEMENT RETAINER, SET ABANDONMENT PLUGS AS PER PROGRAM.

A.C.N. 007 550 923

WELL PROGRESS REPORT AMRIT 1

DATE: 10/12/04

REPORT NO: 14

(As at 2400 hours 09/12/04) **DEPTH**: 2979m (TD) **PROGRESS**: 0 m **DAYS FROM SPUD**: 19.28

DAYS ON WELL: 22.89

OPERATION: RIGGING DOWN CEMENTING HOSE HAVING PUMPED PLUG 1: 2386-2490m.

(As at 0600 hours 10/12/04) **DEPTH:** 2979m (TD) **PROGRESS** (0600-0600 hrs): 0m

OPERATION: PULLING OUT OF HOLE SIDEWAYS AT 1141m, LAYING OUT DRILLPIPE.

AFE COST CUMULATIVE COST

508mm (20") CASING DEPTH: 1822m RIG: JACK BATES

340mm (13.375") CASING DEPTH: 2455m

PROGRAMMED TD: 3179m ROTARY TABLE: 29m LAT WATER DEPTH: 1396 m

ROGRAMMED ID. 51/7 ROTART TABLE, 27 III LAT WATER DEI III. 1370

PV/YP: **MUD DATA** Mud Type: (Pits) Wt: Vis: FL: Ph: KC1% Cl: $KCL \, / \, PHPA /$ 51000 (2400 Hours) 1.15 SG/ 5.0 8.5 10.0 23 / 29 67 **GLYCOL** 9.6 PPG

No. Make Type Size (mm) Hours Drilled Condition

BIT DATA
(2400 Hours) LAST 4 Reed DSX 104 (PDC) 311 mm 14.4 236 0-0-BU-A-X-I-ER-PR

 SURVEYS:
 MD (m)
 INC (°)
 AZIM (°T)
 CLOSURE (m)
 DIRECTION (°)

 (Project to TD)
 2979.00
 0.26
 140.59
 12.6
 233

PREVIOUS 24 HOURS OPERATIONS SUMMARY:

RUN IN HOLE WITH LOGGING RUN 3: CST-GR. TOOLS HUNG UP AT 2945m. SHOOT 30 SIDEWALL CORES AS PER PROGRAM. PULL OUT OF HOLE & RECOVER CORES. RECOVERY 70% - 21 OUT OF 30 CORES RECOVERED (3 MISFIRED & 6 EMPTY). RIG DOWN SCHLUMBERGER WIRELINE. RUN IN HOLE WITH 311mm (12.25") BHA, PULL OUT & LAYOUT BHA. MAKE UP 340mm (13.375") EZSV CEMENT RETAINER PACKER AND RUN IN HOLE TO 2435m. SET CEMENT RETAINER AT 2435m AND PRESSURE TEST TO 52.7 KPa (1100PSI) – OKAY. STING INTO EZSV AND PUMP CEMENT PLUG 1: 2386-2490m. RIG DOWN CEMENT HOSE & RACK BACK CEMENT STAND.

00:00 - 06:00 HOURS 10/12/04:

PULL OUT OF HOLE SIDEWAYS, LAY OUT DRILLPIPE (1141m AT 06:00HRS)

ANTICIPATED OPERATIONS:

CONTINUE WITH PLUG & ABANDONMENT PROGRAM. COMPLETE LAYING OUT DRILLPIPE, RETRIEVE WEAR BUSHING, CUT & RETRIEVE 340mm (13.375") CASING, SET PLUG 2: 1460-1557m, PULL MARINE RISER & BOP'S.

antos	Well Completion Report Volume 1 Basic	

		From:	D. Atkins/J. Y	oung/			
Well Data							
Country	Australia	M. Depth	0m	Cur. Hole Size	0in	AFE Cost	
Field	Otway Basin	TVD	0m	Casing OD	0in	AFE No.	
Drill Co.	Transocean	Progress	0m	Shoe TVD	0m	Daily Cost	
Rig	Jack Bates	Days from spud	0.00	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost	
Wtr Dpth(LAT)	1395.0m	Days on well	0.83			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Running an	chors #2 and #6.			
RT-ML	1424m	Planned Op	Continue to	run anchors and l	ballast down the	rig to drilling depth.	

Moved from Callister-1 to Amrit-1 location. Ran anchors #1; #8; #4; #5.

Operations For Period 0000 Hrs to 2400 Hrs on 17 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description	
RM	Р	RM	0400	1100	7.00	0m	Moved rig from Callister-1 location to Amrit-1 location.	
RM	P	АН	1100	2400	13.00	0m	Ran anchor #4 with Lady Caroline. 11:00 - PCC passed to Lady Caroline 14:15 - Anchor on bottom. 16:56 - PCC passed back Total Time = 5hrs 56mins Ran anchor #8 with Lady Caroline 17:24 - PCC passed to Lady Caroline 19:40 - Anchor on bottom. 21:12 - PCC passed back Total Time = 3hrs 48mins Lady Astrid passed back tow bridle at 20:20 Ran anchor #1 with Lady Astrid 20:55 - PCC passed to Lady Astrid 24:00 - Anchor on bottom. Ran anchor #5 with Lady Caroline 21:34 - PCC passed to Lady Caroline 23:34 - Anchor on bottom.	

Operations For Period 0000 Hrs to 0600 Hrs on 18 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description	
RM	P	АН	0000	0600	6.00	Om	Continued to run anchor #5 with Lady Caroline 01:30 - PCC passed back Total Time = 4hrs Continued to run anchor #1 with Lady Astrid 02:47 - PCC passed back Total Time = 5hrs 45mins Ran anchor #6 with Lady Caroline 01:55 - PCC passed to Lady Caroline 05:10 - Anchor on bottom. Ran anchor #2 with Lady Astrid 03:00 - PCC passed to Lady Astrid 05:23 - Anchor on bottom.	

Phase Data to 2400hrs, 17 Nov 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	20	17 Nov 2004	17 Nov 2004	20.00	0.833 days	0m

Bulk Stocks						Personnel On Board	
Name	Unit	In	Used	Adjust	Balance	Company	Pax
Fuel	MT	0	10	0	766.0	Santos	5
Drill Water	MT	0	15	0	491.0	Transocean	64
Potable Water	MT	0	29	0	207.0	BHI	2
Gel	MT	0	0	0	158.0	Halliburton	3
Cement	MT	0	0	0	157.0	M.I	2
Barite	MT	0	0	0	62.0	Subsea 7	6
						Dril-Quip	2
						Weatherford	2
						Fugro	2
						MO47	5
						ECL	1
						Anadrill	4
						Total	98

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	14 Nov 2004	3 Days	Weekly abandon rig drill.
BOP Test	28 Oct 2004	20 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	3 Days	Simulated fire in mud process room
First Aid		0 Days	
Lost Time Incident		0 Days	None
Safety Meeting	14 Nov 2004	3 Days	
Stop Cards	17 Nov 2004	0 Days	8 START Cards submitted

Marine

Weather check on 17 Nov 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
12.00nm	10.0kn	330deg	998bar	21.0C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height Swell Dir. Swell Period Weather Comme				Comments
2.0deg	2.5deg	0m	1.5m	330deg	10.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
215.0deg	0klb	7788.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	Ві	ılks	
Lady Caroline			Running Anchors	Item	Unit	Quantity
				Barite	MT	184
				Cement	MT	120
				Gel	MT	0
				Mud	bbl	910
Lady Astrid			Running Anchors	Item	Unit	Quantity
				Barite	MT	86
				Cement	MT	84
						84 39
				Cement	MT	_

Flight #	Time	Destination	Comment	Pax
VH-BZU	16:16	Jack Bates		10
VH-BZU	16:33	Essendon		5

		From:	D. Atkins/J. Y	oung o			
Well Data							
Country	Australia	M. Depth	0m	Cur. Hole Size	0in	AFE Cost	
Field	Otway Basin	TVD	0m	Casing OD	0in	AFE No.	
Drill Co.	Transocean	Progress	0m	Shoe TVD	0m	Daily Cost	
Rig	Jack Bates	Days from spud	0.00	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost	
Wtr Dpth(LAT)	1395.0m	Days on well	1.83			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Running 30	conductor into m	oonpool to land	on the GRA.	
RT-ML	1424m	Planned Op	Make up 26	6" BHA, land BHA	in 30" conductor,	RIH and spud well.	

Completed running anchors, ballasted the rig down to drilling draft and made up DrilQuip running tools.

Operations For Period 0000 Hrs to 2400 Hrs on 18 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
RM	Р	АН	0000	1200	12.00	0m	Continued to run anchor #5 with Lady Caroline 01:30 - PCC passed back Total Time = 4hrs
							Continued to run anchor #1 with Lady Astrid 02:47 - PCC passed back Total Time = 5hrs 45mins
							Ran anchor #6 with Lady Caroline 01:55 - PCC passed to Lady Caroline 05:10 - Anchor on bottom. 07:04 - PCC passed back Total time = 5hrs 9 mins
							Ran anchor #2 with Lady Astrid 03:00 - PCC passed to Lady Astrid 05:23 - Anchor on bottom. 07:26 - PCC passed back. Total time = 4hrs 26mins
							Ran anchor #7 with Lady Caroline 07:22 - PCC passed to Lady Caroline 09:52 - Anchor on bottom. 11:15 - PCC passed back. Total time = 3hrs 53mins
							Ran anchor #3 with Lady Astrid 08:33 - PCC passed to Lady Astrid 10:34 - Anchor on bottom. 12:00 - PCC passed back. Total time = 3hrs 27mins
RM	Р	JUD	1200	1900	7.00	0m	Ballasted down rig to drilling draft (29m RT-MSL). Held Prespud Presentation from 18:15 - 19:00
CH	Р	RRC	1900	2245	3.75	0m	Held Presput Presentation from 16.15 - 19.00 Held safety meeting, made up DrilQuip tools and racked back in the derrick: - 18-3/4" Running Tool - 18-3/4" MRLD Tool - CADA Tool - 30" Running Tool
CH	Р	RRC	2245	2400	1.25	0m	Rigged up to run 30" conductor.

Operations For Period 0000 Hrs to 0600 Hrs on 19 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
CH CH	P P	RRC CRN	0000	0030 0600	0.50 5.50	0m 0m	Continued to rig up to run 30" casing. Held THINK drill for running 30" casing. Ran 8 joints of 30" Casing into the into moonpool: 1x30" Jetting shoe 5x30" 1" WT Joints 1x30" 1.5" WT Joint 1x36" 1.5" WT Wellhead

·						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	5	18 Nov 2004	18 Nov 2004	44.00	1.833 days	0m

DRILLING MORNING REPORT # 2 Amrit 1 (18 Nov 2004)

Bulk Stocks						Personnel On Board			
Name	Unit	In	Used	Adjust	Balance	Company	Pax		
Fuel	MT	0	13	0	753.0	Santos	5		
Drill Water	MT	145	3	0	633.0	Transocean	64		
Potable Water	MT	0	26	0	181.0	BHI	2		
Gel	MT	0	0	0	158.0	Halliburton	3		
Cement	MT	0	0	0	157.0	M.I	2		
Barite	MT	0	0	0	62.0	Subsea 7	6		
						Dril-Quip	2		
						Weatherford	2		
						Fugro	2		
						MO47	5		
						ECL	1		
						Anadrill	4		
						Total	98		

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	14 Nov 2004	4 Days	Weekly abandon rig drill.
BOP Test	28 Oct 2004	21 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	4 Days	Simulated fire in mud process room
First Aid		0 Days	
Lost Time Incident		0 Days	None
Safety Meeting	14 Nov 2004	4 Days	
Stop Cards	18 Nov 2004	0 Days	7 START Cards submitted

Marine

Weather check on 18 Nov 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	34.0kn	290deg	1010bar	13.4C°	0m	000deg	Oft/sec
Roll	Pitch	itch Heave Swell He		Swell Dir.	Swell Period	Weather (Comments
0.8deg	0.8deg	0m	3.0m	290deg	10.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	8509.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	В	ulks	
Lady Caroline			At Rig on Standby	Item	Unit	Quantity
				Barite	MT	184
				Cement	MT	120
				Gel	MT	0
				Mud	bbl	910
Lady Astrid			Portland	Item	Unit	Quantity
				Barite	MT	86
				Cement	MT	84
				Gel	MT	39
				Mud	bbl	475

		From:	D. Atkins/J. Y	oung/			
Well Data							
Country	Australia	M. Depth	0m	Cur. Hole Size	0in	AFE Cost	
Field	Otway Basin	TVD	0m	Casing OD	0in	AFE No.	
Drill Co.	Transocean	Progress	0m	Shoe TVD	0m	Daily Cost	
Rig	Jack Bates	Days from spud	0.00	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost	
Wtr Dpth(LAT)	1395.0m	Days on well	2.83			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Release rui	nning tool from 36'	' wellhead.		
RT-ML	1424m	Planned Op	Make up 26	6" BHA and RIH wi	th jetting assemb	oly.	

Made up 30" conductor. Picked and made up 5" drill pipe whilst waiting on weather.

Operations For Period 0000 Hrs to 2400 Hrs on 19 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
СН	Р	RRC	0000	0030	0.50	0m	Continued to rig up to run 30" casing. Held THINK drill for running 30" casing.
СН	P	CRN	0030	0600	5.50	0m	Ran 8 joints of 30" Casing into the into moonpool and stopped before landing out in the GRA: 1x30" Jetting shoe 5x30" 1" WT Joints 1x30" 1.5" WT Joint 1x36" 1.5" WT Wellhead
СН	TP (WOW)	CRN	0600	0700	1.00	0m	Wait on weather. Seas too high to latch 36" wellhead into the GRA.
СН	TP (WOW)	CRN	0700	0730	0.50	0m	Wait on weather. Decided to pick and make up 5" drill pipe whilst waiting on weather. Held toolbox meeting and rigged up to make up 5" drill pipe.
СН	Р	CRN	0730	0900	1.50	0m	Decision made to proceed with running casing. Engauged 36" wellhead into the GRA and secured in the moonpool area.
СН	TP (WOW)	CRN	0900	1100	2.00	0m	Weather conditions too rough to run 26" BHA. Wait on Weather.
СН	TP (WOW)	CRN	1100	1600	5.00	0m	Wait on weather. Picked and made up 5" drill pipe in the mouse hole. Racked back in the aft side of the derrick.
СН	TP (WOW)	CRN	1600	1630	0.50	0m	Wait on weather. Ran GRA through splash zone due to increasing weather conditions. GRA suspended 137m below the rotary table.
СН	TP (WOW)	CRN	1630	1915	2.75	0m	Wait on weather. Recommenced picking up 5" drill pipe. A total of 19 stands racked back in the aft side of the derrick.
СН	TP (WOW)	CRN	1915	2400	4.75	0m	Wait on weather. Swell ~5m with a maximum wave height of ~8m.

Operations For Period 0000 Hrs to 0600 Hrs on 20 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
СН	TP (WOW)	CRN	0000	0430	4.50	0m	Waited on weather.
СН	TP (WOW)	CRN	0430	0530	1.00	0m	Pulled and secured GRA and 30" conductor in the moonpool area.
СН	Р	CRN	0530	0600	0.50	0m	Release running tool and rigged up to run 26" BHA.

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	29	18 Nov 2004	19 Nov 2004	68.00	2.833 days	0m

Bulk Stocks					Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax
Fuel	MT	0	18	0	735.0	Santos	3
Drill Water	MT	0	10	137	760.0	Transocean	66
Potable Water	MT	225	39	0	367.0	BHI	4
Gel	MT	0	28	0	130.0	Halliburton	2
Cement	MT	118	0	0	275.0	M.I	2
Barite	MT	0	2	0	60.0	Subsea 7	6
						Dril-Quip	2
						Weatherford	2
						Fugro	1
						ECL	1
						Anadrill	4
						Total	93

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	14 Nov 2004	5 Days	Weekly abandon rig drill.
BOP Test	28 Oct 2004	22 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	5 Days	Simulated fire in mud process room
First Aid		0 Days	
Lost Time Incident		0 Days	None
Safety Meeting	14 Nov 2004	5 Days	
Stop Cards	19 Nov 2004	0 Days	13 START Cards submitted

Marine
Weather check on 19 Nov 2004 at

Weather che	Weather check on 19 Nov 2004 at 24:00												
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period						
10.00nm	14.0kn	250deg	1024bar	12.4C°	0m	000deg	Oft/sec						
Roll	Pitch	Heave	Swell Height Swell Dir. Swell Period		Weather	Comments							
1.5deg	1.5deg	0m	3.0m	250deg	10.0ft/sec								
Rig Dir.	Ris. Tension	VDL		Comments									
217.0deg	0klb	9812.0klb											

Boats	Arrived (date/time)	Departed (date/time)	Status	E	Bulks	
Lady Caroline			Running Anchors	Item	Unit	Quantity
				Barite	MT	184
				Cement	MT	120
				Gel	MT	0
				Mud	bbl	910
Lady Astrid			Running Anchors	Item	Unit	Quantity
				Barite	MT	86
				Cement	MT	84
				Gel	MT	39
				Mud	bbl	475

Helicopter Movement

Flight #	Time	Destination	Comment	Pax
VH-BZU	16:15	Jack Bates		10
VH-BZU	16:35	Essendon		15

		From:	D. Atkins/J.	Young					
Well Data									
Country	Australia	M. Depth	1454.0m	Cur. Hole Size	30.000in	AFE Cost			
Field	Otway Basin	TVD	1454.0m	Casing OD	0in	AFE No.			
Drill Co.	Transocean	Progress	29.0m	Shoe TVD	0m	Daily Cost			
Rig	Jack Bates	Days from spud	0.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost			
Wtr Dpth(LAT)	1396.0m	Days on well	3.83			Planned TD	2979.0m		
RT-ASL(LAT)	29.0m	Current Op @ 0600	Jetting 30"	Jetting 30" conductor at 1492m.					
RT-ML	1425m	Planned Op	,	Finish jetting 30" conductor; Allow conductor to soak; Release CADA and drill ahead in 26" hole.					

Pulled GRA back into moonpool; Ran 26" BHA; RIH and tagged sea bed at 1425mRT; Jetted 30" conductor from 1425m - 1454m RT.

Operations For Period 0000 Hrs to 2400 Hrs on 20 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
СН	TP (WOW)	CRN	0000	0430	4.50	0m	Waited on weather.
СН	TP (WOW)	CRN	0430	0530	1.00	0m	Pulled and secured GRA and 30" conductor in the moonpool area.
СН	Р	CRN	0530	0600	0.50	0m	Release running tool and rigged up to run 26" BHA.
СН	Р	HBHA	0600	0645	0.75	0m	Ran 26" bit and motor through the rotary table and stabbed into GRA.
СН	Р	HBHA	0645	0815	1.50	0m	Programmed Schlumberger LWD (CDR) tool.
СН	Р	HBHA	0815	1030	2.25	0m	Made up and ran 26" BHA.
СН	Р	НВНА	1030	1145	1.25	0m	Latched Dril-Quip "CADA" tool into 36" wellhead with 6.5 turns anti-clockwise whilst ROV checked space out (~2"- 4" sticking out of casing).
СН	Р	HBHA	1145	1200	0.25	0m	Picked up GRA, 30" conductor, 26" BHA and skidded the moonpool transporter clear.
СН	Р	HBHA	1200	1330	1.50	0m	Continued to pick and make up the 26" BHA (from 77m - 256m)
СН	Р	CRN	1330	1615	2.75	0m	Ran in hole on 5" drill pipe, filling every 20 stands.
СН	Р	CRN	1615	1700	0.75	0m	Held pre-spud meeting prior and slightly moved rig position prior to starting jetting operations. (String weight = 420k).
СН	P	CRN	1700	1715	0.25	1425.0m	Tagged seabed at 1425m RT (tide corrected). ROV checked bullseye - 0.5 deg STBD/FWD. Preliminary Bottom Hole Location: 38deg 36' 5.265" South 141deg 44' 07.044" East. Conductor is 2m at a bearing of 293.4 deg True from the design location.
СН	P	DA	1715	2400	6.75	1454.0m	Jetted conductor from 1425m - 1454m RT. Increased pump rates from 600gpm to 1000gpm once 15m into seabed. Intermittently worked pipe to reduce the friction on the casing and increase ROP. Bullseye reading - 1/2 deg STBD/FWD.

Operations For Period 0000 Hrs to 0600 Hrs on 21 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
СН	Р	DA	0000	0600	6.00	1492.0m	Jetted conductor from 1454m - 1492m RT. Intermittently worked pipe to reduce the friction on the casing and increase ROP. Bullseye reading - 3/4deg PORT.

Phase Data to 2400hrs, 20 Nov 2004									
Phase	Phase Hrs	s Sta	art On	Finish Or	n C	um Hrs	Cum Day	ys	Max Depth
RIG MOVE/RIG-UP(RM)		39 17	Nov 2004	18 Nov 20	004	39.00	1.625	days	0m
CONDUCTOR HOLE(CH)		53 18	Nov 2004	20 Nov 20	004	92.00	3.833	days	1454.0m
Bit # 1	Wear	I	01	D	L	В	G	02	R

Bit # 1				vveai	'	Oi		_	Ь		02	IX.
Size ("):	26.00in	IADC#	1-1-5	No	zzles	Drill	Drilled over last 24 hrs			Calculated over Bit Run		
Mfr:	SMITH	WOB(avg)	30.0klb	No.	Size	Progre	ess	29.0m	Cum.	Progress		29.0m
Type:	Rock	RPM(avg)	0	1	21/32nd	" On Bo	ttom Hrs	4.60h	Cum.	On Btm H	rs	4.60h
Serial No.:	MR3808	F.Rate	830gpm	1	20/32nd	" IADC	Drill Hrs	6.75h	Cum	IADC Drill	Hrs	6.75h
Bit Model	MSDS	SPP	0psi	2	22/32nd	" Total F	Revs	C	Cum '	Total Revs		0
Depth In	1425.0m	TFA	1.387			ROP(a	avg)	6.30 m/hı	ROP(avg)		6.30 m/hr
Depth Out	0m											

BHA # 1										
Weight(Wet)	154.0klb	Length	256.6m	Torque(max)	0ft-lbs	D.C. (1) Ann Velocity				
Wt Below Jar(Wet)	0klb	String	0klb	Torque(Off.Btm)	0ft-lbs	D.C. (2) Ann Velocity				
		Pick-Up	0klb	Torque(On.Btm)	0ft-lbs	H.W.D.P. Ann Velocity				
		Slack-Off	0klb			D.P. Ann Velocity				
BHA Run Description		*	26" Bit; 9-5/8" HiFlow Motor; Float Sub; 26" stab; LWD(CDR); Power Pulse; 26" Stab; 9.5" NMDC; 3x9.5" DC; XO; 2x8" DC; CADA tool; 6x8" DC; XO; 12x5" HWDP.							
BHA Run Comment		BHA ran inside th	HA ran inside the conductor to conduct jetting operations.							

Bulk Stocks						Personnel On Board			
Name	Unit	ln	Used	Adjust	Balance	Company	Pax		
Fuel	MT	0	18	0	717.0	Santos	3		
Drill Water	MT	90	92	0	758.0	Transocean	66		
Potable Water	MT	0	25	0	342.0	ВНІ	4		
Gel	MT	0	6	0	124.0	Halliburton	2		
Cement	MT	0	0	0	275.0	M.I	2		
Barite	MT	276	83	0	253.0	Subsea 7	6		
						Dril-Quip	2		
						Weatherford	2		
						Fugro	1		
						ECL	1		
						Anadrill	4		
						Total	93		

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	20 Nov 2004	0 Days	Weekly abandon rig drill.
BOP Test	28 Oct 2004	23 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	6 Days	Simulated fire in mud process room
First Aid		0 Days	
Lost Time Incident		0 Days	None
Safety Meeting	14 Nov 2004	6 Days	
Stop Cards	20 Nov 2004	0 Days	8 START Cards submitted

Marine												
Weather check on 20 Nov 2004 at 24:00												
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period					
10.00nm	7.0kn	220deg	1026bar	12.7C°	0m	000deg	Oft/sec					
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather Comments						
0.8deg	0.8deg	0.50m	1.8m	220deg	10.0ft/sec							
Rig Dir.	Ris. Tension	VDL		Comments								
217.0deg	0klb	9812.0klb										

Boats	Arrived (date/time)	Departed (date/time)	Status	В	ulks	
Lady Caroline			On Transit to Portland.	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0
Lady Astrid			At Rig	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	84
				Gel	MT	39
				Mud	bbl	475

		From:	D. Atkins/J. \	oung/					
Well Data									
Country	Australia	M. Depth	1758.0m	Cur. Hole Size	26.000in	AFE Cost			
Field	Otway Basin	TVD	1758.0m	Casing OD	30.000in	AFE No.			
Drill Co.	Transocean	Progress	304.0m	Shoe TVD	0m	Daily Cost			
Rig	Jack Bates	Days from spud	1.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost			
Wtr Dpth(LAT)	1396.0m	Days on well	4.85			Planned TD	2979.0m		
RT-ASL(LAT)	29.0m	Current Op @ 0600	RIH to To T	RIH to To TD for 2nd displacement					
RT-ML	1425m	Planned Op	·						

Jetted 30" conductor to 1510mRT; "Soaked" 30" conductor; Released CADA tool; Drilled ahead in 26" hole.

Operations For Period 0000 Hrs to 2400 Hrs on 21 Nov 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
СН	Р	DA	0000	1100	11.00	1510.0m	Jetted conductor from 1454m - 1510m RT. Intermittently worked pipe to reduce the friction on the casing and increase ROP. Pumped 150bbl sweep at TD. Bullseye reading - 1/2deg PORT/FWD.
СН	Р	CRN	1100	1545	4.75	1510.0m	Held the weight of the casing and allowed conductor to "soak".
							FINAL WELL LOCATION: 38deg 56' 5.2" South 141deg 44' 7.08 East Well located 2.9m at a bearing of 338.7deg from the proposed location.
SH	TP (RE)	DA	1515	1630	1.25	1510.0m	Troubleshoot Heave Compensator problem
СН	Р	CRN	1630	1715	0.75	1510.0m	Released the CADA tool. Bullseye 1/4 deg.
SH	P	DA	1715	2400	6.75	1758.0m	Drilled 26" hole from 1510m - 1758mRT, pumping 50bbl PHG sweeps mid stand and around the BHA on connections. Took surveys and backreaming on connections. Averaged Drilling Parameters: WOB - 25,000 lbs; RPM - 205rpm; FLOW - 1150 gpm; Torque - 8,000 ft.lbs

Operations For Period 0000 Hrs to 0600 Hrs on 22 Nov 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
SH	Р	DA	0000	0230	2.50	1835.0m	Drilled 26" hole from 1758m - 1835mRT, pumping 50bbl PHG sweeps mid stand and around the BHA on connections. Took surveys and backreaming on connections. Averaged Drilling Parameters: WOB - 25,000 lbs; RPM - 205rpm; FLOW - 1150 gpm; Torque - 8,000 ft.lbs
SH	Р	CHC	0230	0300	0.50	1835.0m	Circulated 250bbls of PHG at 1835mRT (section TD) to clear cuttings.
SH	Р	ТО	0300	0500	2.00	1835.0m	Pumped out of the hole to the 30" casing shoe with 50% hole volume excess of 12.4 ppg PHPA mud.
SH	TP (RE)	RR	0500	0600	1.00	1835.0m	Detected a leak in the standpipe manifold. Changed out mud hose on TDS with Spare.

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.5	18 Nov 2004	21 Nov 2004	108.50	4.521 days	1510.0m
SURFACE HOLE(SH)	8	21 Nov 2004	21 Nov 2004	116.50	4.854 days	1758.0m

Bit # 1				Wear	I	01	D	L	В	G	O2	R
Size ("):	26.00in	IADC#	1-1-5	No	zzles	Dril	led over la	ast 24 hrs	(Calculated	d over Bit	Run
Mfr:	SMITH	WOB(avg)	25.0klb	No.	Size	Progre	ess	304.0n	n Cum.	Progress		333.0m
Type:	Rock	RPM(avg)	100	1	21/32nd	" On Bo	ttom Hrs	12.30	n Cum.	On Btm H	rs	16.90h
Serial No.:	MR3808	F.Rate	1100gpm	1	20/32nd	" IADC	Drill Hrs	17.45	n Cum I	ADC Drill	Hrs	24.20h
Bit Model	MSDS	SPP	4000psi	2	22/32nd	" Total	Revs	(Cum T	Total Revs		0
Depth In	1425.0m	TFA	1.387			ROP(avg)	24.72 m/h	r ROP(a	avg)		19.70 m/hr
Depth Out	0m											

BHA # 1										
Weight(Wet)	44.0klb	Length	256.6m	Torque(max)	0ft-lbs	D.C. (1) Ann Velocity				
Wt Below Jar(Wet)	0klb	String	0klb	Torque(Off.Btm)	Oft-lbs	D.C. (2) Ann Velocity				
		Pick-Up	0klb	Torque(On.Btm)	0ft-lbs	H.W.D.P. Ann Velocity				
		Slack-Off	0klb			D.P. Ann Velocity				
BHA Run Description			16" Bit; 9-5/8" HiFlow Motor; Float Sub; 26" stab; LWD(CDR); Power Pulse; 26" Stab; 9.5" NMDC; 3x9.5" DC; CO; 2x8" DC; CADA tool; 6x8" DC; XO; 12x5" HWDP.							
BHA Run Comment		BHA ran inside the conductor to conduct jetting operations.								

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
1653.18	0.34	298.89	1653.14	-3.32	0.08	-3.32	-7.03	MWD
1681.34	0.26	305.03	1681.30	-3.24	0.03	-3.24	-7.16	MWD
1709.52	0.31	319.56	1709.48	-3.15	0.03	-3.15	-7.26	MWD
1737.89	0.40	311.67	1737.85	-3.02	0.04	-3.02	-7.38	MWD
1766.33	0.35	299.78	1766.29	-2.92	0.03	-2.92	-7.53	MWD
1809.32	0.26	261.27	1809.28	-2.86	0.05	-2.86	-7.74	MWD

Bulk Stocks						Personnel On Board	
Name	Unit	In	Used	Adjust	Balance	Company	Pax
Fuel	MT	180	25	0	872.0	Santos	3
Drill Water	MT	540	293	0	1,005.0	Transocean	66
Potable Water	MT	0	26	0	316.0	BHI	4
Gel	MT	0	25	0	99.0	Halliburton	2
Cement	MT	0	0	0	275.0	M.I	2
Barite	MT	0	117	0	136.0	Subsea 7	6
						Dril-Quip	2
						Weatherford	2
						Fugro	1
						ECL	1
						Anadrill	4
						Total	93

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.

			Casing was jetted in.
HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	20 Nov 2004	1 Day	Weekly abandon rig drill.
BOP Test	28 Oct 2004	24 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	7 Days	Simulated fire in mud process room
First Aid	21 Nov 2004	0 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident		0 Days	None
Safety Meeting	21 Nov 2004	0 Days	
Stop Cards	21 Nov 2004	0 Days	7 START Cards submitted

Weather check on 21 Nov 2004 at 24:00												
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period					
10.00nm	0.00nm 18.0kn		1025bar	12.2C°	0m	000deg	Oft/sec					
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather Comments						
0.4deg	0.4deg	0.50m	2.4m	200deg	10.0ft/sec							
Rig Dir.	Ris. Tension	VDL		Comments								
217.0deg	0klb	10295.0klb										

Marine

DRILLING MORNING REPORT # 5 Amrit 1 (21 Nov 2004)

Boats	Arrived (date/time)	Departed (date/time)	Status	Ві	ılks	
Lady Caroline			In Portland	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0
Lady Astrid			At Rig	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	84
				Gel	MT	39
				Mud	bbl	463

		From:	D. Atkins/J.	oung						
Well Data										
Country	Australia	M. Depth	1835.0m	Cur. Hole Size	26.000in	AFE Cost				
Field	Otway Basin	TVD	1835.0m	Casing OD	30.000in	AFE No.				
Drill Co.	Transocean	Progress	77.0m	Shoe TVD	0m	Daily Cost				
Rig	Jack Bates	Days from spud	2.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost				
Wtr Dpth(LAT)	1396.0m	Days on well	5.88			Planned TD	2979.0m			
RT-ASL(LAT)	29.0m	Current Op @ 0600	RIH 20" ca	RIH 20" casing on 5" drill pipe.						
RT-ML	1425m	Planned Op	Run and cement 20" Casing; POOH, rig up and run BOP's.							

Drilled from 1758m - 1835mRT; Pumped out of the hole with 12.4ppg 'old' mud; RIH to bottom and pumped out of the hole with 12.4ppg 'new' mud; Displaced 400bbls of 16ppg kill mud; POOH and racked back 26" BHA; Ran 31 joints 20" casing.

Operations For Period 0000 Hrs to 2400 Hrs on 22 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SH	Р	DA	0000	0230	2.50	1835.0m	Drilled 26" hole from 1758m - 1835mRT, pumping 50bbl PHG sweeps mid stand and around the BHA on connections. Took surveys and backreaming on connections. Averaged Drilling Parameters: WOB - 25,000 lbs; RPM - 205rpm; FLOW - 1150 gpm; Torque - 8,000 ft.lbs
SH	Р	CHC	0230	0300	0.50	1835.0m	Circulated 250bbls of PHG at 1835mRT (section TD) to clear cuttings.
SH	Р	ТО	0300	0500	2.00	1835.0m	Pumped out of the hole to the 30" casing shoe with 50% hole volume excess of 12.4 ppg PHPA mud.
SH	TP (RE)	RR	0500	0600	1.00	1835.0m	Detected a leak in the standpipe manifold. Changed out mud hose on TDS with Spare.
SH	Р	TI	0600	0700	1.00	1835.0m	RIH from 1510m - 1835mRT.
SH	Р	CHC	0700	0845	1.75	1835.0m	Pumped out the hole to 1550mRT with 50% hole volume excess of 'new' 12.4 ppg PHPA/MI-Lube mud.
SH	Р	CHC	0845	0915	0.50	1835.0m	Spotted 400bbls of heavy (16ppg) mud. EMW @ TD = 9.6ppg
SH	Р	ТО	0915	1015	1.00	1835.0m	POOH from 1550m -1255m RT. Observed (with ROV) drill cuttings across the wellhead and all over the GRA.
SH	Р	WH	1015	1145	1.50	1835.0m	RIH and with ROV assistance, jetted around the wellhead and GRA (650 gpm).
SH	Р	то	1145	1415	2.50	1835.0m	POOH from 1426m to 256m RT using the rig tongs due to high torque in the 5" drill string.
SH	Р	HBHA	1400	1500	1.00	1835.0m	POOH with the 26" BHA and racked back in the derrick.
SH	Р	HBHA	1500	1545	0.75	1835.0m	Broke and laid out the Dril-Quip 'CADA' tool.
SH	Р	HBHA	1545	1630	0.75	1835.0m	POOH and racked back 26" BHA from 256m - 88m RT.
SH	Р	HBHA	1630	1715	0.75	1835.0m	Downloaded FEWD tools and racked back the last stand of the 26" BHA.
SH	Р	RUC	1715	1745	0.50	1835.0m	Made up and racked back the cementing stand.
SH	Р	RRC	1745	1830	0.75	1835.0m	Rigged up to run 20" casing and held 'THINK' session prior to running casing.
SH	Р	CRN	1830	1845	0.25	1835.0m	Picked up the shoe joint and tested float valve.
SH	Р	SM	1845	1900	0.25	1835.0m	Held 'THINK' session with incoming crew.
SH	Р	CRN	1900	2400	5.00	1835.0m	Continued to run 31 joints of RL-4S, 20" casing. Inserted one anti-rotation dog per joint from 24m - 390m RT. Filled casing every 2nd joint.

Operations For Period 0000 Hrs to 0600 Hrs on 23 Nov 2004

Opera	LIUIIS I	OI FEII	ou ou	01113	10 000	0 1113 011	23 NOV 2004
Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
SH	Р	CRN	0000	0200	2.00	1835.0m	Picked and made up the 18-3/4" high pressure wellhead housing. Pick-up and slack off weights 305k/290k.
SH	Р	CRN	0200	0430	2.50	1835.0m	Ran in 12 stands of 5" drill pipe as a cement stinger. Made up each tooljoint to required make-up torque with manual rig tongs due to iron roughneck not working.
SH	Р	CRN	0430	0530	1.00	1835.0m	Made up "MRLD" tool to the 5" stinger and installed into the 18-3/4" wellhead housing.
SH	Р	CRN	0530	0600	0.50	1835.0m	RIH 20" casing through the splash zone on 5" drill pipe. Broke circulation and closed ball valve on "MRLD" tool.

Phase Data to 2400hrs, 22 Nov 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	32.75	21 Nov 2004	22 Nov 2004	141.00	5.875 days	1835.0m

WBM Data	3													
Mud Type:	Weighted PHPA	API FL	:	0cm ³ /30m	CI:			0	Solids:		0	Viscosity:		100sec/qt
Sample-From:	:	Filter-C	ake:	0/32nd"	K+0	C*1000:		0%	H2O:		0%	PV: YP:		0cp 0lb/100ft ²
Time:		HTHP-	FL:	0cm ³ /30m		d/Ca:		0	Oil:		0%	Gels 10s:		015/10010
Weight:	12.40ppg	HTHP-		0/32nd"	MB.			0	Sand:		0,0	Gels 10m:		C
Temp:	0C°		ouno.	0/02110	PM			0	pH:		0	Fann 003: Fann 006:		C
. ср.												Fann 100:		C
					PF:			0	PHPA:		0ppb	Fann 200: Fann 300:		(
												Fann 600:		0
Comment		No rhe	ological t	esting done due	e to th	ne mud beir	ng a one	time us	е.					
WBM Data	3													
Mud Type:		API FL	:	0cm ³ /30m	CI:			0	Solids:		0	Viscosity: PV:		120sec/qt 0cp
Sample-From:	:	Filter-C	ake:	0/32nd"	K+0	C*1000:		0%	H2O:		0%	YP:		Olb/100ft
Time:		HTHP-	FL:	0cm ³ /30m	Har	d/Ca:		0	Oil:		0%	Gels 10s:		0
Weight:	9.00ppg	HTHP-	Cake:	0/32nd"	MB [*]	Т:		0	Sand:			Gels 10m: Fann 003:		(
Temp:	0C°				PM:			0	pH:		0	Fann 006:		(
					PF:			0	PHPA:		0ppb	Fann 100: Fann 200:		(
								Ū			оррь	Fann 300:		0
												Fann 600:		0
Comment		correct	weight/v	veeps as requir olume. Receive eaning of pits to	d 440	Obbls of Ex-	Calliste	r 1 WBN	1 from Lady					
Bit # 1					W	ear I		O1	D	L	В	G	O2	R
						1		1	WT	Α	E	I	NO	TD
Size ("):		26.00in	IADC#	1-1-5		Nozzles	•			ast 24 hrs	C	Calculated	over Bi	t Run
Mfr:		SMITH	WOB(a		No.	Size	е	Progre	ess	77.0m	Cum. I	Progress		410.0m
Type:		Rock	RPM(av	/g) 100	1	21	/32nd"	On Bo	ttom Hrs	1.80h	Cum.	On Btm Hr	S	18.70h
Serial No.:	V	1R3808	F.Rate	1100gpm	1		/32nd"		Drill Hrs	2.50h		ADC Drill F	Irs	26.70h
Bit Model		MSDS	SPP	4000psi	2	22	/32nd"	Total F		0		otal Revs		0
Depth In	1	425.0m	TFA	1.387				ROP(a	avg)	42.78 m/hr	ROP(a	avg)		21.93 m/hr
Depth Out	1	835.0m												
Bitwear Com	ment		This is	a preliminary b	it gra	ading. A fin	al grad	ing will b	oe made a	ifter casing is	run and	the BHA	s broker	out.
BHA # 1														
Weight(Wet)		44.0klb	Length			256.6m	Torqu	e(max)		Oft-lbs	D.C. (1) Ann Vel	ocity	
Wt Below Jar	(Wet)	0klb	String			0klb	Torqu	e(Off.Bt	m)	0ft-lbs	D.C. (2	2) Ann Vel	ocity	
			Pick-Up)		0klb	Torqu	e(On.Bt	m)	Oft-lbs	H.W.D	.P. Ann Ve	elocity	
			Slack-C	Off		0klb					D.P. A	nn Velocit	y	
BHA Run De	scription		26" Bit;	9-5/8" HiFlow B" DC; CADA t		or; Float Su				Power Pulse				9.5" DC;
BHA Run Co	mment			n inside the co										
Survey														
MD (m)	Incl Deg (deg)	Corr (de	. Az eg)	TVD (m)	"	V' Sect		gleg 1/30m)	N/S (m)		/W m)		Tool Typ	е
1653.18	0.34	298.89		1653.14	-3.3	. ,	0.08	. ,	-3.32	-7.03	•	MWD		
1681.34	0.26	305.03		1681.30	-3.2		0.03		-3.24	-7.16		MWD		
1709.52	0.31	319.56		1709.48	-3.1		0.03		-3.15	-7.26		MWD		
1737.89	0.40	311.67	•	1737.85	-3.0)2	0.04		-3.02	-7.38		MWD		
1766.33	0.35	299.78	;	1766.29	-2.9	92	0.03		-2.92	-7.53		MWD		
1809.32	0.26	261.27	,	1809.28	-2.8	36	0.05		-2.86	-7.74		MWD		

Bulk Stocks						Personnel On Board				
Name	Unit	In	Used	Adjust	Balance	Company	Pax			
Fuel	MT	0	23	0	849.0	Santos	3			
Drill Water	MT	0	36	0	969.0	Transocean	65			
Potable Water	MT	65	33	0	348.0	BHI	4			
Gel	MT	0	2	0	97.0	Halliburton	2			
Cement	MT	0	0	0	275.0	M.I	2			
Barite	MT	0	0	0	136.0	Subsea 7	6			
						Dril-Quip	2			
						Weatherford	2			
						Anadrill	4			
						Total	90			

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	20 Nov 2004	2 Days	Weekly abandon rig drill.
BOP Test	28 Oct 2004	25 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	8 Days	Simulated fire in mud process room
First Aid	21 Nov 2004	1 Day	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident		0 Days	None
Safety Meeting	21 Nov 2004	1 Day	
Stop Cards	22 Nov 2004	0 Days	13 START Cards submitted

Marine

Weather check on 22 Nov 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	16.0kn	250deg	1029bar	12.6C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Weather Comments		
0.5deg	0.5deg	0m	3.0m	250deg	10.0ft/sec		
Rig Dir.	Ris. Tension	VDL	i.	Comments	•		
217.0deg	0klb	8994.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	Bu	lks	
Lady Caroline			In Portland	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0
Lady Astrid			At Rig	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	84
				Gel	MT	39
				Mud	bbl	0
Helicopter N	Novement		•			

Flight #	Time	Destination	Comment	Pax
VH-BZU	15:35	Jack Bates		6
VH-BZU	15:50	Essendon		9

		From:	D. Atkins/J.	oung			
Well Data							
Country	Australia	M. Depth	1835.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	1835.0m	Casing OD	20.000in	AFE No.	
Drill Co.	Transocean	Progress	0m	Shoe TVD	1822.0m	Daily Cost	
Rig	Jack Bates	Days from spud	3.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	6.88			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Running B	OP's and riser.			
RT-ML	1425m	Planned Op	Run BOP's	and riser.			

Ran and cemented 20" casing. Rigged up to run BOP's and riser.

Operations For Period 0000 Hrs to 2400 Hrs on 23 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SH	Р	CRN	0000	0200	2.00	1835.0m	Picked and made up the 18-3/4" high pressure wellhead housing. Pick-up and slack off weights 305k/290k.
SH	Р	CRN	0200	0430	2.50	1835.0m	Ran in 12 stands of 5" drill pipe as a cement stinger. Made up each tooljoint to required make-up torque with manual rig tongs due to iron roughneck not working.
SH	Р	CRN	0430	0530	1.00	1835.0m	Made up "MRLD" tool to the 5" stinger and installed into the 18-3/4" wellhead housing.
SH	Р	CRN	0530	0600	0.50	1835.0m	RIH 20" casing through the splash zone on 5" drill pipe. Broke circulation and closed ball valve on "MRLD" tool.
SH	Р	CRN	0600	0900	3.00	1835.0m	Continued to RIH with 20" casing on 5" drill pipe from 428m - 1422m RT.
SH	Р	CRN	0900	0930	0.50	1835.0m	Stabbed casing into 36" wellhead and continued to RIH to the 30" shoe at 1510mRT. Broke circulation (300gpm @ 150psi).
SH	Р	CRN	0930	1115	1.75	1835.0m	Ran casing into the open hole section from 1510m - 1822m RT. The last 3 joints saw an increased amount of drag 20-50klbs and circulation was required to run casing to bottom.
SH	Р	WH	1115	1130	0.25	1835.0m	Landed out the 18-3/4" high pressure wellhead housing, setting down 50klbs string weight. Tested latch with 50klbs overpull, OK.
SH	P	CRN	1130	1300	1.50	1835.0m	Using the Dril-Quip 'MRLD' tool, preloaded the casing with 1000 klbs by pulling 80klbs over string weight. (Due to the water depth it was difficult to apply left hand torque to move tool into the preload position.)
SH	Р	CMC	1300	1530	2.50	1835.0m	Pressure tested the surface lines to 2000psi before conducting the 20" cement job. Pumped 20bbls of preflush (seawater with green dye); 660bbls of 12.5ppg lead slurry; 151bbls of 15.8ppg tail slurry and displaced with 148bbls of seawater. Stopped pumps and checked float, OK.
SH	Р	WH	1530	1615	0.75	1835.0m	Released the Dril-Quip 'MRLD' tool with 5 turns to the right and circulated the casing clean from 1763m with seawater.
SC	Р	ТО	1615	2100	4.75	1835.0m	POOH the 5" drillpipe and racked back into the derrick. Broke and laid out the Dril-Quip 'MRLD' tool and racked back the 5" drill pipe cement stinger.
SC	Р	SM	2100	2115	0.25	1835.0m	Held 'THINK' drill prior to rigging up to run BOP's and riser.
SC	Р	RR1	2115	2400	2.75	1835.0m	Rigged up to run BOP's and riser.

Operations For Period 0000 Hrs to 0600 Hrs on 24 Nov 2004

- po. a				• • • • •		• • •	- : : · · · · · · · · · · · · · · · · ·
Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SC	Р	RR1	0000	0515	5.25	1835.0m	Continued to rig up riser handling equipment.
SC	Р	SM	0515	0530	0.25	1835.0m	Held 'THINK' talk with crew prior to running BOP's and riser.
SC	Р	RR1	0530	0600	0.50	1835.0m	Picked and made up 40ft and 60ft joints of riser to latch onto LMRP.

Phase Data to 2400hrs, 23 Nov 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	7.75	23 Nov 2004	23 Nov 2004	165.00	6.875 days	1835.0m

WBM Data									
Mud Type:		API FL:	0cm ³ /30m	CI:	1300	Solids:	0	Viscosity:	26sec/qt
Sample-From:		Filter-Cake:	0/32nd"	K+C*1000:	0%	H2O:	0%	PV: YP:	0cp 0lb/100ft ²
Time:		HTHP-FL:	0cm ³ /30m	Hard/Ca:	150	Oil:	0%	Gels 10s: Gels 10m:	0
Weight:	8.40ppg	HTHP-Cake:	0/32nd"	MBT:	0	Sand:		Fann 003:	0
Temp:	0C°			PM:	0	pH:	7.3	Fann 006: Fann 100:	0
				PF:	0	PHPA:	0ppb	Fann 200:	0
								Fann 300:	0
Comment		Building mud for	the 17.5" secti	on during riser runr	ning period.			Fann 300: Fann 600:	

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
1653.18	0.34	298.89	1653.14	-3.32	0.08	-3.32	-7.03	MWD
1681.34	0.26	305.03	1681.30	-3.24	0.03	-3.24	-7.16	MWD
1709.52	0.31	319.56	1709.48	-3.15	0.03	-3.15	-7.26	MWD
1737.89	0.40	311.67	1737.85	-3.02	0.04	-3.02	-7.38	MWD
1766.33	0.35	299.78	1766.29	-2.92	0.03	-2.92	-7.53	MWD
1809.32	0.26	261.27	1809.28	-2.86	0.05	-2.86	-7.74	MWD

Bulk Stocks						Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax	
Fuel	MT	0	16	0	833.0	Santos	3	
Drill Water	MT	0	475	0	494.0	Transocean	65	
Potable Water	MT	0	27	0	321.0	BHI	4	
Gel	MT	0	0	0	97.0	Halliburton	2	
Cement	MT	84	109	0	250.0	M.I	2	
Barite	MT	0	0	0	136.0	Subsea 7	6	
						Dril-Quip	2	
						Weatherford	2	
						Anadrill	4	
						Total	90	

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	Oppg / Oppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	20 Nov 2004	3 Days	Weekly abandon rig drill.
BOP Test	28 Oct 2004	26 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	9 Days	Simulated fire in mud process room
First Aid	21 Nov 2004	2 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident		0 Days	None
Safety Meeting	21 Nov 2004	2 Days	
Stop Cards	23 Nov 2004	0 Days	8 START Cards submitted

м	ar	Tr	10
	u	••	

Weather check on 23 Nov 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	14.0kn	150deg	1026bar	13.0C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather 0	Comments
0.5deg	0.4deg	0m	1.8m	150deg	10.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	8650.0klb					

DRILLING MORNING REPORT # 7 Amrit 1 (23 Nov 2004)

Boats	Arrived (date/time)	Departed (date/time)	Status	В	ulks	
Lady Caroline			At Rig	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	100
				Gel	MT	0
				Mud	bbl	0
Lady Astrid			At Portland	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	0
				Gel	MT	39
1				Mud	bbl	0

		From:	D. Atkins/J. \	Young					
Well Data									
Country	Australia	M. Depth	1835.0m	Cur. Hole Size	17.500in	AFE Cost			
Field	Otway Basin	TVD	1835.0m	Casing OD	20.000in	AFE No.			
Drill Co.	Transocean	Progress	0m	Shoe TVD	1822.0m	Daily Cost			
Rig	Jack Bates	Days from spud	4.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost			
Wtr Dpth(LAT)	1396.0m	Days on well	7.88			Planned TD	2979.0m		
RT-ASL(LAT) RT-ML	29.0m 1425m	Current Op @ 0600	Continuing to run riser to a depth of 811mRT (43 of 76 joints run). Bullseye on GRA=1/2 deg						
<u>-</u>		Planned Op	Continue to run BOP's and riser. Skid back over wellhead, latch and pressure test connection.						

Rigged up and ran BOP's/Riser.

Operations For Period 0000 Hrs to 2400 Hrs on 24 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SC	Р	RR1	0000	0515	5.25	1835.0m	Continued to rig up riser handling equipment. (Moved rig 50m off location for dropped objects purpose)
SC	Р	SM	0515	0530	0.25	1835.0m	Held 'THINK' talk with crew prior to running BOP's and riser.
SC	TP (PR)	RR1	0530	0645	1.25	1835.0m	Picked and made up 40ft and 60ft joints of riser. Realised that the wrong riser joints were picked up.
SC	TP (PR)	SM	0645	0700	0.25	1835.0m	Held 'THINK' talk with new crew on running riser.
SC	TP (PR)	RR1	0700	0730	0.50	1835.0m	Changed out the incorrect riser joints.
SC	Р	RR1	0730	0815	0.75	1835.0m	Made up the correct 40ft and 60ft riser joints.
SC	Р	RR1	0815	1030	2.25	1835.0m	Skidded the BOP's across into the moonpool and connected the riser.
SC	Р	RR1	1030	1045	0.25	1835.0m	Ran BOP's through the splash zone.
SC	Р	RR1	1045	1145	1.00	1835.0m	Rigged up and pressure tested the choke and kill lines to 300psi for 5mins and 10,000psi for 10mins. Pressure tested the riser boost line to 300psi for 5mins and 3000psi for 10mins. Rigged down pressure testing equipment.
SC	Р	RR1	1145	1830	6.75	1835.0m	Continued to run riser from 30m - 318m RT (16 of 76 joints run).
SC	Р	RR1	1830	1930	1.00	1835.0m	Rigged up and pressure tested the choke and kill lines to 300psi for 5mins and 10,000psi for 10mins. Pressure tested the riser boost line to 300psi for 5mins and 3000psi for 10mins. Rigged down pressure testing equipment.
SC	Р	RR1	1930	2400	4.50	1835.0m	Continued to run riser from 30m - 537m RT (28 of 76 joints run).

Operations For Period 0000 Hrs to 0600 Hrs on 25 Nov 2004

Phse	CIs (RC)	Op	From	То	Hrs	Depth	Activity Description
SC	Р	RR1	0000	0130	1.50	1835.0m	Continued to run riser from 537m - 610m RT (32 of 76 joints run).
SC	Р	RR1	0130	0230	1.00	1835.0m	Rigged up and pressure tested the choke and kill lines to 300psi for 5mins and 10,000psi for 10mins. Pressure tested the riser boost line to 300psi for 5mins and 3000psi for 10mins. Rigged down pressure testing equipment.
SC	Р	RR1	0230	0600	3.50	1835.0m	Continued to run riser from 610m - 811m RT (43 of 76 joints run).

Phase Data to 2400hrs, 24 Nov 2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	31.75	23 Nov 2004	24 Nov 2004	189.00	7.875 days	1835.0m

WBM	Data
------------	------

Mud Type:		API FL:	0cm ³ /30m	CI:	1300	Solids:	0	Viscosity:	26sec/qt
Sample-From:		Filter-Cake:	0/32nd"	K+C*1000:	0%	H2O:	0%	PV: YP:	0cp 0lb/100ft ²
Time:		HTHP-FL:	0cm ³ /30m	Hard/Ca:	150	Oil:	0%	Gels 10s: Gels 10m:	0
Weight:	8.40ppg	HTHP-Cake:	0/32nd"	MBT:	0	Sand:		Fann 003:	0
Temp:	0C°			PM:	0	pH:	7.3	Fann 006: Fann 100:	0
				PF:	0	PHPA:	0ppb	Fann 200:	0
								Fann 300:	0
								Fann 600:	0
Comment Building mud for the 17.5" section during riser running period.									

Copyright IDS, 20040114, jg. SANTOS_OFFSHORE_drllg

Printed on 24 Nov 2004

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
1653.18	0.34	298.89	1653.14	-3.32	0.08	-3.32	-7.03	MWD
1681.34	0.26	305.03	1681.30	-3.24	0.03	-3.24	-7.16	MWD
1709.52	0.31	319.56	1709.48	-3.15	0.03	-3.15	-7.26	MWD
1737.89	0.40	311.67	1737.85	-3.02	0.04	-3.02	-7.38	MWD
1766.33	0.35	299.78	1766.29	-2.92	0.03	-2.92	-7.53	MWD
1809.32	0.26	261.27	1809.28	-2.86	0.05	-2.86	-7.74	MWD

Bulk Stocks						Personnel On Board			
Name	Unit	In	Used	Adjust	Balance	Company	Pax		
Fuel	MT	0	13	0	820.0	Santos	3		
Drill Water	MT	0	2	0	492.0	Transocean	67		
Potable Water	MT	0	24	0	297.0	BHI	5		
Gel	MT	0	0	0	97.0	Halliburton	2		
Cement	MT	0	0	0	250.0	M.I	2		
Barite	MT	0	0	0	136.0	Subsea 7	6		
						Dril-Quip	1		
						Weatherford	2		
						Anadrill	4		
						Total	92		

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	0ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	20 Nov 2004	4 Days	Weekly abandon rig drill.
BOP Test	24 Nov 2004	0 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	10 Days	Simulated fire in mud process room
First Aid	21 Nov 2004	3 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident		0 Days	None
Safety Meeting	21 Nov 2004	3 Days	
Stop Cards	24 Nov 2004	0 Days	8 START Cards submitted

Marine											
Weather check on 24 Nov 2004 at 24:00											
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period				
10.00nm	14.0kn	140deg	1022bar	14.1C°	0m	000deg	Oft/sec				
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments				
0.3deg	0.3deg	0m	1.8m	140deg	10.0ft/sec						
Rig Dir.	Ris. Tension	VDL	1	Comments							
217.0deg	0klb	7880.0klb									

Boats	Arrived (date/time)	Departed (date/time)	Status	Bu	lks	
Lady Caroline			At Rig	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	100
				Gel	MT	0
				Mud	bbl	0
Lady Astrid			At Portland	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	0
				Gel	MT	39
				Mud	bbl	0

Helicopter	Helicopter Movement										
Flight #	Time	Destination	Comment	Pax							
VH-BZU	16:24	Jack Bates		10							
VH-BZU	16:38	Essendon		8							

		From:	D. Atkins/J.	Young						
Well Data										
Country	Australia	M. Depth	1835.0m	Cur. Hole Size	17.500in	AFE Cost				
Field	Otway Basin	TVD	1835.0m	Casing OD	20.000in	AFE No.	5738032			
Drill Co.	Transocean	Progress	0m	Shoe TVD	1822.0m	Daily Cost				
Rig	Jack Bates	Days from spud	5.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost				
Wtr Dpth(LAT)	1396.0m	Days on well	8.88			Planned TD	2979.0m			
RT-ASL(LAT)	29.0m	Current Op @ 0600	Troublesho	ooting problem with	the KT ring on t	he slip joint.				
RT-ML	1425m	Planned Op		Pressure test casing; break out 26" BHA; make up and RIH with 17.5" BHA; drill out cement; perform LOT and drill ahead.						

Ran the riser from 537m to 1387mRT. Installed riser boost line onto the termination joint.

Operations For Period 0000 Hrs to 2400 Hrs on 25 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SC	Р	RR1	0000	0130	1.50	1835.0m	Continued to run riser from 537m - 610m RT (32 of 76 joints run).
SC	Р	RR1	0130	0230	1.00	1835.0m	Rigged up and pressure tested the choke and kill lines to 300psi for 5mins and 10,000psi for 10mins. Pressure tested the riser boost line to 300psi for 5mins and 3000psi for 10mins. Rigged down pressure testing equipment.
SC	Р	RR1	0230	0645	4.25	1835.0m	Continued to run riser from 610m - 848m RT (45 of 76 joints run).
SC	Р	SM	0645	0700	0.25	1835.0m	Held 'THINK' meeting for oncoming crew on running riser.
SC	Р	RR1	0700	0800	1.00	1835.0m	Continued to run riser from 848m - 884m RT (47 of 76 joints run).
SC	Р	RR1	0800	0915	1.25	1835.0m	Rigged up and pressure tested the choke and kill lines to 300psi for 5mins and 10,000psi for 10mins. Pressure tested the riser boost line to 300psi for 5mins and 3000psi for 10mins. Rigged down pressure testing equipment.
SC	Р	RR1	0915	1545	6.50	1835.0m	Continued to run riser from 884m - 1159m RT (62 of 76 joints run).
SC	Р	RR1	1545	1645	1.00	1835.0m	Rigged up and pressure tested the choke and kill lines to 300psi for 5mins and 10,000psi for 10mins. Pressure tested the riser boost line to 300psi for 5mins and 3000psi for 10mins. Rigged down pressure testing equipment.
SC	Р	RR1	1645	2115	4.50	1835.0m	Continued to run riser from 1159m - 1366m RT (75 of 76 joints run).
SC	Р	RR1	2115	2230	1.25	1835.0m	Rigged up and pressure tested the choke and kill lines to 300psi for 5mins and 10,000psi for 10mins. Pressure tested the riser boost line to 300psi for 5mins and 3000psi for 10mins. Rigged down pressure testing equipment.
SC	Р	RR1	2230	2330	1.00	1835.0m	Ran termination joint, 15.2m spacer joint and intermediate flex joint from 1366m - 1387mRT.
SC	Р	SM	2330	2345	0.25	1835.0m	Held 'THINK' talk prior to installing drape hoses onto termination joint.
SC	Р	RR1	2345	2400	0.25	1835.0m	Installed riser boost drape hose onto the termination joint.

Operations For Period 0000 Hrs to 0600 Hrs on 26 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SC	Р	RR1	0000	0145	1.75	1835.0m	Installed choke and kill lines onto the termination joint.
SC	Р	RR1	0145	0300	1.25	1835.0m	Installed MUX saddle onto the intermediate joint and hung the MUX cables.
SC	Р	RR1	0245	0515	2.50	1835.0m	Picked and made up landing joint, skidded rig over the location and locked KT ring onto the slip joint.
SC	Р	RR1	0300	0345	0.75	1835.0m	Picked and made up slip joint and pressure tested the choke and kill lines. Choke and Kill - 250psi / 5mins; 7500psi / 10mins. Riser Boost - 250psi / 5mins; 1200psi / 10mins.
SC	TP (RE)	RR1	0515	0600	0.75	1835.0m	Troubleshot problem with the KT ring on the slip joint.

Phase Data to 2400hrs, 25 Nov 2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	55.75	23 Nov 2004	25 Nov 2004	213.00	8.875 days	1835.0m

WBM Data	WBM Data											
Mud Type:		API FL:	0cm ³ /30m	CI:	1300	Solids:	0	Viscosity:	26sec/qt			
Sample-From:		Filter-Cake:	0/32nd"	K+C*1000:	0%	H2O:	0%	PV: YP:	0cp 0lb/100ft ²			
Time:		HTHP-FL:	0cm ³ /30m	Hard/Ca:	150	Oil:	0%	Gels 10s: Gels 10m:	0			
Weight:	8.40ppg	HTHP-Cake:	0/32nd"	MBT:	0	Sand:		Fann 003:	0			
Temp:	0C°			PM:	0	pH:	7.3	Fann 006: Fann 100:	0			
				PF:	0	PHPA:	0ppb	Fann 200:	0			
								Fann 300:	0			
								Fann 600:	0			
Comment Building mud for the 17.5" section during riser running period.												

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
1653.18	0.34	298.89	1653.14	-3.32	0.08	-3.32	-7.03	MWD
1681.34	0.26	305.03	1681.30	-3.24	0.03	-3.24	-7.16	MWD
1709.52	0.31	319.56	1709.48	-3.15	0.03	-3.15	-7.26	MWD
1737.89	0.40	311.67	1737.85	-3.02	0.04	-3.02	-7.38	MWD
1766.33	0.35	299.78	1766.29	-2.92	0.03	-2.92	-7.53	MWD
1809.32	0.26	261.27	1809.28	-2.86	0.05	-2.86	-7.74	MWD

Bulk Stocks						Personnel On Board			
Name	Unit	In	Used	Adjust	Balance	Company	Pax		
Fuel	MT	0	13	0	807.0	Santos	6		
Drill Water	MT	0	11	0	481.0	Transocean	64		
Potable Water	MT	0	27	0	270.0	BHI	5		
Gel	MT	0	0	0	97.0	Halliburton	2		
Cement	MT	0	0	0	250.0	M.I	2		
Barite	MT	0	0	0	136.0	Subsea 7	6		
						Dril-Quip	1		
						Weatherford	2		
						Anadrill	4		
						Total	92		

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	0ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail

HSE Summary									
Events	Date of Last	Days Since	Remarks						
Abandon Drill	20 Nov 2004	5 Days	Weekly abandon rig drill.						
BOP Test	24 Nov 2004	1 Day	Tested all rams etc to 250 psi low and 5000psi high.						
Environmental Incident		0 Days							
Fire Drill	14 Nov 2004	11 Days	Simulated fire in mud process room						
First Aid	21 Nov 2004	4 Days	Roustabout sprained his ankle whilst offloading 20" casing.						
Lost Time Incident		0 Days	None						
Safety Meeting	21 Nov 2004	4 Days							
Stop Cards	25 Nov 2004	0 Days	8 START Cards submitted						

Marine
Weather check on 25 Nov 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	15.0kn	115deg	1016bar	15.0C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height Swell Dir. Swell Period			Weather	Comments
0.3deg	0.3deg	0m	1.5m	110deg	10.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	7685.0klb					

DRILLING MORNING REPORT # 9 Amrit 1 (25 Nov 2004)

Boats	Arrived (date	/time)	Departed (date/time)	Status		Bulks	
Lady Caroline				At Rig	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	80
					Gel	MT	0
					Mud	bbl	0
Lady Astrid				At Rig	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	0
					Gel	MT	39
					Mud	bbl	0
Helicopter	Movement						
Flight #	Time		Destination		Comment		Pax
VH-BZU	15:15 Jac	k Bates					4
VH-BZU	15:28 Ess	sendon					4

		From:	D. Atkins/J.	Young			
Well Data							
Country	Australia	M. Depth	1835.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	1835.0m	Casing OD	20.000in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	1822.0m	Daily Cost	
Rig	Jack Bates	Days from spud	6.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	9.92			Planned TD	2979.0m
RT-ASL(LAT) RT-ML	29.0m 1425m	Current Op @ 0600	head.	tublar handling eq	uipment to make	up 13-3/8" casing	hanger and cement
		Planned Op	,	" BHA and make up OT and drill ahead.	p 17.5" BHA. RIH	I, slip and cut drill li	ine; drill out cement;

Installed choke/kill and riser boost lines to the termination joint. Repaired riser tensioner ring; latched and pressure tested BOP to the wellhead.

Operations For Period 0000 Hrs to 2400 Hrs on 26 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description				
SC	Р	RR1	0000	0145	1.75	1835.0m	Installed choke and kill lines onto the termination joint.				
SC	Р	RR1	0145	0300	1.25	1835.0m	Installed MUX saddle onto the intermediate joint and hung the MUX cables.				
SC	Р	RR1	0245	0515	2.50	1835.0m	Picked and made up landing joint, skidded rig over the location and locked KT ring onto the slip joint.				
SC	Р	RR1	0300	0345	0.75	1835.0m	Picked and made up slip joint and pressure tested the choke and kill lines. Choke and Kill - 250psi / 5mins; 7500psi / 10mins. Riser Boost - 250psi / 5mins; 1200psi / 10mins.				
SC	TP (RE)	RR1	0515	0815	3.00	1835.0m	Troubleshot problem with the slip joint load ring.				
SC	TP (RE)	RR1	0815	1415	6.00	1835.0m	Skidded rig 30m away from wellhead and changed out sheared support dogs on the slip joint load ring.				
SC	Р	RR1	1415	1500	0.75	1835.0m	Skidded rig back over the wellhead. Lowered BOP down onto the wellhead, latched the connector and took 50,000lbs overpull to confirm the BOP's are locked.				
SC	Р	RR1	1500	1545	0.75	1835.0m	Flushed the rigid conduit line and tested the wellhead connector to 1000psi for 10 mins.				
SC	Р	RR1	1545	1615	0.50	1835.0m	Removed the lock plates, installed hoses and stroked out the slip joint.				
SC	Р	RR1	1615	1630	0.25	1835.0m	Broke and laid out the riser landing joint into the fwd. caisson.				
SC	Р	SM	1630	1645	0.25	1835.0m	Held 'THINK' talk prior to installing the diverter.				
SC	Р	RR1	1645	1800	1.25	1835.0m	Picked up and installed diverter, took 30,000lbs overpull, confirmed it was locked and installed hydraulic hoses. Bullseye read 1/2deg Port.				
SC	Р	RR1	1800	1815	0.25	1835.0m	Broke and laid out the diverter running tool.				
SC	Р	RR1	1815	1930	1.25	1835.0m	Rigged down the drill floor of all riser handling equipment.				
SC	TP (MIS)	RR1	1930	2400	4.50	1835.0m	Shut the rig down due to injury to a Roustabout on the pipe deck.				

Operations For Period 0000 Hrs to 0600 Hrs on 27 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SC	TP (MIS)	RR1	0000	0100	1.00	1835.0m	Shut the rig down due to injury to a Roustabout on the pipe deck.
SC	Р	RR1	0100	0600	5.00	1835.0m	Continued to rig down riser handling equipment and rigged up tubular handling equipment.

DI	D-4-	0.400l	- 00 N-	0004
Phase	Data 1	to 2400hr	S. Zb NO	V 2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	80.75	23 Nov 2004	26 Nov 2004	238.00	9.917 days	1835.0m

WBM Data									
Mud Type:		API FL:	6cm ³ /30m	CI:	43000	Solids:	0	Viscosity:	72sec/qt
KCI/Po	olymer/Glycol							PV:	17cp
Sample-From:	Pit	Filter-Cake:	1/32nd"	K+C*1000:	0%	H2O:	0%	YP:	30lb/100ft ²
Cample-1 form.	1 11	HTHP-FL:	0cm ³ /30m	Hard/Ca:	200	Oil:	0%	Gels 10s:	0
Time:	15:00		00111700111	riara/oa.	200	OII.	070	Gels 10m:	0
\\/a:ab4.	0.00===	HTHP-Cake:	0/32nd"	MBT:	0	Sand:		Fann 003:	8
Weight:	8.90ppg			PM:	0	pH:	8	Fann 006:	10
Temp:	0C°			F IVI.	U	pi i.	0	Fann 100:	25
•				PF:	0	PHPA:	1ppb	Fann 200:	37
								Fann 300:	47
								Fann 600:	64

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
1653.18	0.34	298.89	1653.14	-3.32	0.08	-3.32	-7.03	MWD
1681.34	0.26	305.03	1681.30	-3.24	0.03	-3.24	-7.16	MWD
1709.52	0.31	319.56	1709.48	-3.15	0.03	-3.15	-7.26	MWD
1737.89	0.40	311.67	1737.85	-3.02	0.04	-3.02	-7.38	MWD
1766.33	0.35	299.78	1766.29	-2.92	0.03	-2.92	-7.53	MWD
1809.32	0.26	261.27	1809.28	-2.86	0.05	-2.86	-7.74	MWD

Bulk Stocks						Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax	
Fuel	MT	0	9	0	798.0	Santos	4	
Drill Water	MT	672	0	0	1,153.0	Transocean	65	
Potable Water	MT	155	23	0	402.0	BHI	7	
Gel	MT	0	0	0	97.0	Halliburton	2	
Cement	MT	0	0	0	250.0	M.I	2	
Barite	MT	0	0	0	136.0	Subsea 7	3	
						Dril-Quip	2	
						Weatherford	4	
						Anadrill	4	
						Total	93	

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	0ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	20 Nov 2004	6 Days	Weekly abandon rig drill.
BOP Test	24 Nov 2004	2 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	12 Days	Simulated fire in mud process room
First Aid	21 Nov 2004	5 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	0 Days	Roustabout hit by diverter running tool. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	21 Nov 2004	5 Days	
Stop Cards	26 Nov 2004	0 Days	7 START Cards submitted

M	arine	
141	aiiic	

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	13.0kn	000deg	1010bar	20.0C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather (Comments
0.3deg	0.3deg	0m	0.6m	100deg	6.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	6644.0klb					

DRILLING MORNING REPORT # 10 Amrit 1 (26 Nov 2004)

Boats	Arrived ((date/time)	Departed (date/time)	Status		Bulks	
Lady Caroline				At Rig	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	80
					Gel	MT	0
					Mud	bbl	0
Lady Astrid				At Rig	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	0
					Gel	MT	39
					Mud	bbl	0
Helicopter	Movement						
Flight #	Time		Destination		Comment		Pax
VH-BZU	16:15	Jack Bates					16
VH-BZU	16:35	Essendon					15
M3	23:15	Jack Bates		Medivac Chopper			3
M3	24:03	Prince Alfred H	lospital	Medivac Chopper			4

		From:	D. Atkins/J.	Young			
Well Data							
Country	Australia	M. Depth	1835.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	1835.0m	Casing OD	20.000in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	1822.0m	Daily Cost	
Rig	Jack Bates	Days from spud	7.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	10.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Drilling out	cement at 1818mF	RT.		
RT-ML	1425m		Bullseye 1/	2 deg PORT.			
		Planned Op	Perform LC	DT; Drill ahead in 1	7.5" hole.		

Rigged down all riser handling equipment; Rigged up pipe handling equipment; Broke out 26" BHA; Made up 17.5" BHA; RIH and tagged TOC at 1807mRT; Slipped and cut drill line.

Operations For Period 0000 Hrs to 2400 Hrs on 27 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SC	TP (MIS)	RR1	0000	0100	1.00	1835.0m	Shut the rig down due to injury to a Roustabout on the pipe deck.
SC	Р	RR1	0100	0715	6.25	1835.0m	Continued to rig down riser handling equipment and rigged up tubular handling equipment.
SC	Р	RRC	0715	0915	2.00	1835.0m	Picked and made up 13-3/8" casing hanger and running tool as per Dril-Quip's instructions.
SC	Р	RUC	0915	1000	0.75	1835.0m	Picked up and made up Weatherford cement head and racked back into the derrick.
SC	Р	НВНА	1000	1530	5.50	1835.0m	Broke out 26" BHA. Made up 17.5" BHA, verifed Schlumberger tools and continued to make up BHA.
SC	Р	НВНА	1530	1630	1.00	1835.0m	RIH with 17.5" BHA from 106m - 172m. Shallow tested motor and FEWD assembly, all OK. Contiued to RIH with 17.5" BHA from 172m - 282m.
SC	Р	RR1	1630	1830	2.00	1835.0m	Picked up 24 joints of 5" drill pipe from the deck and RIH from 282m - 510m.
SC	Р	TI	1830	2215	3.75	1835.0m	Contined to RIH on 5" DP from the derrick from 510m and tagged top of cement with 20,000lbs at 1807mRT.
SC	Р	CMD	2215	2230	0.25	1835.0m	Racked back one stand and made up the circulating swage and hose to the 5" drill pipe.
SC	Р	CMD	2230	2400	1.50	1835.0m	Cut and slipped drill line whilst circulating to new mud.

Operations For Period 0000 Hrs to 0600 Hrs on 28 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SC	Р	CMD	0000	0115	1.25	1835.0m	Continued to cut and slip drill line whilst circulating hole to new mud.
SC	Р	CMD	0115	0145	0.50	1835.0m	Seviced top drive whilst circulating new mud.
sc	Р	CMD	0145	0215	0.50	1835.0m	Displaced opened choke and kill lines and allowed u-tube effect to displace seawater to new mud.
SC	TP (RE)	RR	0215	0400	1.75	1835.0m	Leak detected in standpipe #1. Change hoses across to standpipe #2.
SC	Р	CMD	0400	0430	0.50	1835.0m	Broke circulation and filled sand traps, bypassed shaker screens as cold mud was being lost across the shakers.
SC	Р	DC	0430	0600	1.50	1835.0m	Drilled cement from 1807m - 1818mRT. WOB - 20-30,000lbs DHRPM - 150 FLOW - 850gpm

Phase Data to 2400hrs, 27 Nov 2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	104.75	23 Nov 2004	27 Nov 2004	262.00	10.917 days	1835.0m

WBM Dat	a																	
Mud Type:	(OI/D-1:/Oi:	API FL:		6	cm ³ /30m	CI:				44000	Solids:			3	Viscosity		7	72sec/qt
	CI/Polymer/Glyco	Filter-C	ake:		1/32nd"	K+C	*1000	:		8%	H2O:			94%	PV: YP:		301	18cp 1b/100ft²
Sample-From		HTHP-I	FL:	0	cm ³ /30m	Hard	l/Ca:			80	Oil:			3%	Gels 10s			8
Time:	18:00) HTHP-0			0/32nd"	MBT				0	Sand:			nil	Gels 10m Fann 003			9
Weight:	8.80ppg	g '''' '	Jake.		0/32110	PM:	•			0.2	pH:			8.3	Fann 003			9 11
Temp:	0C	0													Fann 100			26
						PF:				0.1	PHPA:			1ppb	Fann 200 Fann 300			37 48
															Fann 600			66
Comment		Building time.	g mud fo	r the 1	17.5" sect	ion. No	ote: ur	nshea	ared mu	d. Comn	nence disp	laceme	ent at	report				
Bit # 2						We	ar	I		01	D	L		В	G	O2	F	R
Size ("):		17.50in	IADC#		115		Noz	zzles	<u> </u>	Drill	ed over la	ast 24	hrs	C	alcula	ed over	Bit Run	
Mfr:		REED	WOB(a	ıvg)	0klb	No.		Size	9	Progre	SS		0r	n Cum. I	rogres	s		0m
Type:		Rock	RPM(a	va)	0	1			/32nd"	On Bo	ttom Hrs		0	h Cum. (On Btm	Hrs		0h
Serial No.:			F.Rate	0,	0gpm	3			/32nd"	IADC [Orill Hrs		0	h Cum I	ADC Dr	ill Hrs		0h
Bit Model		T11C	SPP		Opsi				J211U	Total F					otal Re			0
Depth In		1835.0m	TFA		1.420					ROP(a			N/				0 00	m/hr
Depth Out		0m	1170		1.420					1.01 (0	·•9)		1 1/7	1101 (0	· v g)		0.00	,
BHA # 2		OIII																
Weight(Wet))	0klb	Length				282.	8m	Torque	e(max)		(Oft-lb:	s D.C. (1) Ann '	/elocity		
Wt Below Ja	ar(Wet)	0klb	String				0)klb	Torque	e(Off.Bti	m)	(Oft-lb:	s D.C. (2	2) Ann '	/elocity		
	(,		Pick-U	n)klb	•	e(On.Btı	,		Oft-Ib:	,	,	Velocity		
									Torque	5(OII.DII	111)	,	JIL-ID			•		
			Slack-0)klb							nn Veld	,		
BHA Run De	escription				otor;Floa 3x8" DC;					(FEWD)	; Power P	ulse; 1	15.5'	Stab; 9.5'	NMDC	; 2x9.5"	DC; XO;	8x8"
Survey																		
MD (m)	Incl Deg (deg)	Corr (de		-	ΓVD (m)	'V	" Sec (m)	t	Dog (dea/	gleg /30m)	N/S (m)			E/W (m)		Tool 7	уре	
1653.18	0.34	298.89		1653	• •	-3.32			0.08	,	-3.32		-7.03		MWD			
1681.34	0.26	305.03		1681	.30	-3.24			0.03		-3.24		-7.16		MWD			
1709.52	0.31	319.56		1709		-3.15			0.03		-3.15		-7.26		MWD			
1737.89	0.40	311.67		1737	.85	-3.02	2		0.04		-3.02		-7.38	3	MWD			
1766.33	0.35	299.78		1766		-2.92			0.03		-2.92		-7.53		MWD			
1809.32	0.26	261.27		1809	.28	-2.86	3		0.05		-2.86		-7.74	4	MWD			
Bulk Sto	cks								Perso	onnel	On Boa	ard						
N	ame	Unit	ln	Į	Jsed A	djust	Bala	ance			Com	pany				I	Pax	
Fuel		MT		0	11	0	78	7.0	Santos	3					4			
Drill Water		MT		0	113	0	1,04	0.0	Transc	cean					65			
Potable Wat	er	MT		0	27	0	37	5.0	вні						7			
Gel		MT		0	0	0	9	7.0	Hallibu	ırton					2			
Cement		MT		0	0	0		0.0	M.I						2			
Barite		MT		0	0	0	13	6.0	Subse						3			
									Dril-Qu						2			
									Weath						4			
									Anadri	II				T	otal 93			
Casing									ļ.									
OD	L.O.T. / F.I.T	. (Csg Sho	e (MI	D/TVD)							Ceme	nting					
30 "	Oppg / Oppg		1510.0n	n / 15	10.0m		Ceme											-
	0ppg / 0ppg		1822.7n		00 =		-	-	tted in. 5ppg Le									
20 "				~ / 10	1:1 /m	1 6611k	anic a	エコツ	nna I a									

217.0deg

0klb

6563.0klb

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	20 Nov 2004	7 Days	Weekly abandon rig drill.
BOP Test	24 Nov 2004	3 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Nov 2004	13 Days	Simulated fire in mud process room
First Aid	21 Nov 2004	6 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	1 Day	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	21 Nov 2004	6 Days	
Stop Cards	27 Nov 2004	0 Days	7 START Cards submitted

Marine							
Weather ch	eck on 27 Nov	2004 at 24:	00				
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
2.00nm	17.0kn	230deg	1014bar	14.7C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments
0.1deg	0.1deg	0m	0.9m	230deg	5.0ft/sec		
Rig Dir.	Ris. Tension	VDL	•	Comments	•		

Boats	Arrived (date/time)	Departed (date/time)	Status	Bu	lks	
Lady Caroline			At Rig	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	80
				Gel	MT	0
				Mud	bbl	0
Lady Astrid			At Rig	Item	Unit	Quantity
				Barite	MT	26
				Cement	MT	42
				Gel	MT	39
ı				Mud	bbl	0

		From :	D. Atkins/J.	oung/			
Well Data							
Country	Australia	M. Depth	2045.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	2045.0m	Casing OD	20.000in	AFE No.	5738032
Drill Co.	Transocean	Progress	210.0m	Shoe TVD	1822.0m	Daily Cost	
Rig	Jack Bates	Days from spud	8.28	F.I.T. / L.O.T.	0ppg / 9.60ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	11.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Circulating	hole clean due incre	asing ECD (9.5	3ppg).	
RT-ML	1425m	Planned Op	Contiue dri POOH to ru	lling 17.5" hole from un casing.	2160m - 2459n	nRT (TD). Circulate	hole clean and

Slipped and cut drill line; Displaced choke and kill lines; Changed to standpipe #2 due to washout in #1; Drill out cement; Took SCR's; Performed LOT; Drilled from 1838m - 2045mRT.

Operations For Period 0000 Hrs to 2400 Hrs on 28 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
SC	Р	CMD	0000	0115	1.25	1835.0m	Continued to cut and slip drill line whilst circulating hole to new mud.
SC	Р	CMD	0115	0145	0.50	1835.0m	Seviced top drive and circulated to new mud.
SC	Р	CMD	0145	0215	0.50	1835.0m	Opened choke and kill lines and allowed u-tube effect to displace seawater to new mud.
SC	TP (RE)	RR	0215	0400	1.75	1835.0m	Leak detected in standpipe #1. Change hoses across to standpipe #2.
SC	Р	CMD	0400	0430	0.50	1835.0m	Broke circulation and filled sand traps, bypassed shaker screens as cold mud was being lost across the shakers.
SC	P	DC	0430	0615	1.75	1835.0m	Drilled cement from 1807m - 1819mRT. WOB - 20-30,000lbs DHRPM - 150 FLOW - 850gpm
SC	Р	DC	0615	0630	0.25	1835.0m	Took SCR's prior to drilling out the shoe.
SC	P	DC	0630	0815	1.75	1835.0m	Continued to drill out cement, casing shoe and rat hole from 1819m - 1835mRT. WOB - 20-30,000lbs DHRPM - 150 FLOW - 850gpm
IH	Р	DA	0815	0830	0.25	1838.0m	Drilled 3m of new formation from 1835m - 1838mRT.
IH	Р	CMD	0830	1015	1.75	1838.0m	Circulated and conditioned mud prior to performing the LOT.
IH	Р	LOT	1015	1130	1.25	1838.0m	Pulled back into the 20" casing shoe, rigged up surface equipment and performed LOT. Pumped 2.25bbls for 210psi (EMW = 9.6ppg) and bled back 1.65 bbls. Rigged down surface equipment.
IH	Р	DA	1130	1415	2.75	1894.0m	Drilled 17.5" hole from 1838m - 1894mRT, backreamed on connections and took surveys every stand.
IH	Р	CMD	1415	1515	1.00	1894.0m	Picked up off bottom and circulated whilst losses at the shakers are controlled.
IH	Р	DA	1515	2215	7.00	2001.0m	Drilled 17.5" hole from 1894m - 2001mRT, backreamed on connections and took surveys every stand.
IH	Р	FC	2215	2230	0.25	2001.0m	Observed a drilling break, picked up off bottom and took a flow check. Well static.
IH	Р	DA	2230	2400	1.50	2045.0m	Drilled 17.5" hole from 2001m - 2045mRT, backreamed on connections and took surveys every stand.

Operations For Period 0000 Hrs to 0600 Hrs on 29 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IH	Р	DA	0000	0430	4.50	2147.0m	Drilled 17.5" hole from 2045m - 2147mRT, backreamed and took survey each connection.
IH	Р	CHC	0430	0500	0.50	2147.0m	Pulled back off bottom and circulated 80bbl, hi-vis sweep to clean up hole (ECD reading of 9.48ppg).
IH	Р	DA	0500	0530	0.50	2160.0m	Drilled 17.5" hole from 2147m - 2160mRT, backreamed and took survey each connection.
IH	Р	CHC	0530	0600	0.50	2160.0m	ECD reading increased to 9.53ppg. Picked up off bottom and circulated hole clean.

Phase Da	nta to 2400h	rs, 28 N	lov 200	4											
Phase					Phas	e Hrs	Start C)n	Finish Or	n	Cum I	Hrs	Cum Da	ıys	Max Depth
RIG MOVE/F	RIG-UP(RM)					39	17 Nov	2004	18 Nov 2	004		39.00	1.625	days	Or
	R HOLE(CH)					69.25	18 Nov	2004	21 Nov 2	004		108.25) days	1510.0r
SURFACE H	IOLE(SH)					49	21 Nov	2004	23 Nov 2	004		157.25	6.552	2 days	1835.0r
SURFACE C	CASING(SC)					113	23 Nov	2004	28 Nov 2	004		270.25	11.260	days)	1835.0r
INTERMEDIA	ATE HOLE(IH)					15.75	28 Nov	2004	28 Nov 2	004		286.00	11.917	days days	2045.0r
WBM Dat	a														
Mud Type:	Cl/Polymer/Glyco	API FL:		7cm ³ /30m	CI:			42000	Solids:			4	Viscosity: PV:		96sec/c
Sample-From		Filter-C	ake:	1/32nd"	K+C*	1000:		7.5%	H2O:			93%	YP:		15c 18lb/100f
•		HTHP-I	FL:	0cm ³ /30m	Hard/	Ca:		320	Oil:			3%	Gels 10s:		
Time:	18:0	HTHP-0	Cake:	0/32nd"	MBT:			0	Sand:			nil	Gels 10m: Fann 003:		
Weight:	8.90pp	g			PM:			0.25	pH:			10	Fann 006:		
Temp:	12.0C	;°			PF:			0.15	PHPA:				Fann 100:		1
					PF.			0.15	РПРА.			1ppb	Fann 200: Fann 300:		2
Comment		Dieplac	o Lossos	at shakers. B	uild ron	Jacomont	volumo	with roo	duced polyr	mer co	ncontro	ations	Fann 600:		4
		Displac	e. Lusses	at snakers. b	Wea		Volume	O1	D D	L	i i ceriti a	В	G	02	2 R
Bit # 2					*****	, i	'	01		_			J	02	
Size ("):		17.50in	IADC#	115		Nozzles	\$	Drill	led over la	st 24	hrs	С	alculated	d over	Bit Run
Mfr:		REED	WOB(av	g) 25.0klb	No.	Siz	е	Progre	ess	2	10.0m	Cum. F	Progress		210.0m
Type:		Rock	RPM(avg	ı) 110	1	20	/32nd"	On Bo	ttom Hrs		9.30h	Cum. 0	On Btm H	rs	9.30h
Serial No.:		J65053	F.Rate	900gpm	3	22	/32nd"	IADC	Drill Hrs	1	0.85h	Cum I	ADC Drill	Hrs	10.85h
Bit Model		T11C	SPP	2300psi				Total F	Revs		0	Cum T	otal Revs	3	C
Depth In		1835.0m	TFA	1.420				ROP(a	avg)	22.58	3 m/hr	ROP(a	ıvg)		22.58 m/h
Depth Out		0m													
BHA # 2															
Weight(Wet))	0klb	Length			282.8m	Torque	e(max)		(Oft-lbs	D.C. (*	1) Ann Ve	locity	
Wt Below Ja	ar(Wet)	0klb	String			0klb	Torque	e(Off.Bt	m)	(Oft-lbs	D.C. (2	2) Ann Ve	locity	
			Pick-Up			0klb	Torque	e(On.Bt	m)	(Oft-lbs	H.W.D	.P. Ann V	/elocity	/
			Slack-Of	f		0klb		-(,				nn Veloci		
BHA Run De	escription		Bit; 9-5/8	" Motor;Floa		17.5" Sta		(FEWD)); Power P	ulse; 1	15.5' S			•	DC; XO; 8x8"
			DC; 8" Ja	ars; 3x8" DC	; XO 12	2x5" HWI	DP.								
Survey															
MD (m)	Incl Deg (deg)	Corr (de		TVD (m)		Sect (m)	Dog (deg	gleg /30m)	N/S (m)			/W m)		Tool	Туре
1878.02	0.37	193.70		877.98	-3.05		0.08		-3.05		-7.96		MWD		
1908.10	0.34	223.98	1	908.06	-3.21		0.06		-3.21		-8.05		MWD		
1935.76	0.18	265.57	1	935.72	-3.28		0.09		-3.28		-8.15		MWD		
1963.97	0.17	252.91	1	963.92	-3.29		0.01		-3.29		-8.23		MWD		
1991.95	0.12	204.40		991.90	-3.33		0.05		-3.33		-8.29		MWD		
2020.87	0.20	231.00	2	020.82	-3.39		0.04		-3.39		-8.34		MWD		
Bulk Sto	cks						Pers	onnel	On Boa	ırd					
Na	ame	Unit	In	Used A	Adjust	Balance			Com	pany					Pax
Fuel		MT	258	19	0	1,026.0	Santos						4		
Drill Water		MT	0	204	0	836.0	Transo	ocean					65		
Potable Wat	er	MT	0	25	0	350.0	BHI						7		
Gel		MT	0	0	0	97.0	Hallibu	ırton					2		
Cement		MT	0	0	0	250.0	M.I						2		
Barite		MT	0	0	0	136.0	Subse						3		
							Dril-Qu	•					2		
							Weath						4		
							Anadri	III					4		
							1						0401 02		

Total 93

Marine

DRILLING MORNING REPORT # 12 Amrit 1 (28 Nov 2004)

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	28 Nov 2004	0 Days	Weekly abandon rig drill.
BOP Test	24 Nov 2004	4 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	28 Nov 2004	0 Days	Simulated fire in the upper accomodation block.
First Aid	21 Nov 2004	7 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	2 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	28 Nov 2004	0 Days	
Stop Cards	28 Nov 2004	0 Days	7 START Cards submitted

Weather ch	eck on 28 Nov	2004 at 24:0	00				
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	0kn	230deg	1013bar	17.0C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments
0.1deg	0.1deg	0.60m	0.9m	230deg	6.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments	•		
217.0deg	0klb	6316.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	Ві	ılks	
Lady Caroline			At Rig	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	80
				Gel	MT	0
				Mud	bbl	0
Lady Astrid			At Rig	Item	Unit	Quantity
				Barite	MT	26
				Cement	MT	42
				Gel	MT	39
				Mud	bbl	0

		From:	D. Atkins/P.	King			
Well Data							
Country	Australia	M. Depth	2382.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	2382.0m	Casing OD	20.000in	AFE No.	5738032
Drill Co.	Transocean	Progress	337.0m	Shoe TVD	1822.0m	Daily Cost	
Rig	Jack Bates	Days from spud	9.28	F.I.T. / L.O.T.	0ppg / 9.60ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	12.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Drilling ahe	ead 17-1/2" hole @ 2	2440m.		
RT-ML	1425m	Planned Op	pump hi-vi	" hole to section TD s sweep, circulate bo on hole condition.			

Drilled 17-1/2" hole from 2045m to 2382m, reaming and circulating hole clean as required to keep ECD below LOT.

Operations For Period 0000 Hrs to 2400 Hrs on 29 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IH	Р	DA	0000	0430	4.50	2147.0m	Drilled 17.5" hole from 2045m - 2147mRT, backreamed and took survey each connection.
IH	Р	CHC	0430	0500	0.50	2147.0m	Pulled back off bottom and circulated 80bbl, hi-vis sweep to clean up hole (ECD reading of 9.48ppg).
IH	Р	DA	0500	0530	0.50	2160.0m	Drilled 17.5" hole from 2147m - 2160mRT, backreamed and took survey each connection.
IH	Р	CHC	0530	0630	1.00	2160.0m	ECD reading increased to 9.53ppg. Picked up off bottom and circulated hole clean.
IH	Р	DA	0630	1200	5.50	2248.0m	Continued drilling 17-1/2" hole from 2160m to 2248m, reaming and surveying at each connection.
IH	Р	DA	1200	1700	5.00	2318.0m	Continued drilling 17-1/2" hole from 2248m to 2318m, reaming and surveying at each connection.
IH	Р	CHC	1700	1815	1.25	2318.0m	Circulated and conditioned mud due to high ECD (approaching 9.6 ppg).
IH	Р	CHC	1815	1900	0.75	2318.0m	Pumped 100 bbl hi-vis polymer pill and circulated to ensure hole clean. (Increased cuttings over shakers at bottoms up)
H	Р	DA	1900	2400	5.00	2382.0m	Continued drilling 17-1/2" hole from 2318m to 2382m, reaming and surveying at each connection.

Operations For Period 0000 Hrs to 0600 Hrs on 30 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IH	Р	DA	0000	0600	6.00	2446.0m	(IN PROGRESS) Continued to drill 17-1/2" hole from 2382m to 2446m, reaming and surveying at each connection (controlled rate due to ECD)

Phase	Data	to 24	.00hrs	29	Nov	2004
FIIGSE	Dala	10 24	vviii 5.	23	INUV	ZUU 4

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	39.75	28 Nov 2004	29 Nov 2004	310.00	12.917 days	2382.0m

WBM Data									
Mud Type:		API FL:	5cm ³ /30m	CI:	39000	Solids:	5	Viscosity:	59sec/qt
KCI/Po	lymer/Glycol	F11. 0.1	4/00 !!!	14 0*4000	0.40/	1100	200/	PV:	18cp
Sample-From:	Flowline	Filter-Cake:	1/32nd"	K+C*1000:	8.1%	H2O:	92%	YP:	17lb/100ft ²
Campio i ioiii.	1 10 11 110	HTHP-FL:	0cm ³ /30m	Hard/Ca:	880	Oil:	3%	Gels 10s:	5
Time:	20:00							Gels 10m:	7
Weight:	0.00ppg	HTHP-Cake:	0/32nd"	MBT:	7.5	Sand:	1.0	Fann 003:	4
weignt.	9.00ppg			PM:	0.4	pH:	9	Fann 006:	6
Temp:	12.5C°			i ivi.	0.4	pi i.	3	Fann 100:	19
·				PF:	0.05	PHPA:	1ppb	Fann 200:	28
								Fann 300:	35
								Fann 600:	53

Comment Reduced PHPA concentration and flow properties due to shaker limitations. Sweep hi vis to reduce ECD.

DRILLING MORNING REPORT # 13 Amrit 1 (29 Nov 2004)

												<u>Amri</u>	<u>t 1</u> (∠9 No	v 2004
Bit # 2						We	ar I		O1	D	L	В	G	O2	R
Size ("):		17.50in	IADC#		115		Nozzles	S	Dril	led over la	st 24 hrs	Cal	culated	d over Bit	Run
Mfr:		REED	WOB(a	avg)	25.0klb	No.	Siz	е	Progre	ess	337.0n	n Cum. Pro	gress		547.0r
Туре:		Rock	RPM(a	vg)	115	1	20	/32nd"	On Bo	ttom Hrs	16.80	h Cum. On	Btm H	rs	26.10
Serial No.:		J65053	F.Rate		950gpm	3		/32nd"	IADC	Drill Hrs	22.90	h Cum IAD	C Drill	Hrs	33.75
Bit Model		T11C	SPP		2500psi				Total I	Revs		Cum Tot	al Revs	;	
Depth In		1835.0m	TFA		1.420				ROP(a	avg)	20.06 m/h	r ROP(avg	1)		20.96 m/ł
Depth Out										0,			,		
BHA # 2															
Weight(We	t)	0klb	Length	1			282.8m	Torqu	e(max)		Oft-lb:	s D.C. (1)	Ann Ve	locity	
Wt Below J	ar(Wet)	0klb	String				0klb	Torqu	e(Off.Bt	tm)	Oft-lb:	D.C. (2)	Ann Ve	locity	
50.011 0	a.(****)	Ollib	Pick-U	n			0klb		e(On.Bt	,	Oft-lb:	` ′		•	
				•				Torqu	e(On.bi	u11 <i>)</i>	UIT-ID:			•	
			Slack-				0klb					D.P. Ann		•	
BHA Run D	escription		Bit; 9-5 DC; 8"	5/8" M Jars;	otor;Floa 3x8" DC	t sub; ; XO 1	17.5" Sta 2x5" HWI	b; CDR DP.	(FEWD); Power P	ulse; 15.5'	Stab; 9.5" N	MDC; 2	2x9.5" DC	; XO; 8x8
Survey															
MD (m)	Incl Deg		r. Az	٦	L/D	'V	Sect		gleg	N/S		E/W		Tool Typ	е
(m) 2220.68	(deg)	203.20	eg)	2220	(m)	-4.15	(m)	0.06	_J /30m)	-4.15	-8.60	(m)	1WD		
2220.66 2248.46	0.29	220.05		2220 2248		-4.15		0.06		-4.15 -4.25	-8.65		1WD		
2277.42	0.13	183.89		2277		-4.35		0.03		-4.25	-8.68		1WD		
2306.21	0.34	216.07		2306		-4.50		0.06		-4.50	-8.74		1WD		
2334.13	0.40	185.07		2334		-4.67		0.07		-4.67	-8.79		1WD		
2361.66	0.37	221.08		2361		-4.83		0.09		-4.83	-8.86		1WD		
Bulk Sto	cks	"						Pers	onnel	On Boa	ırd	'			
N	lame	Unit	In	ι	Jsed A	djust	Balance			Com	pany			Pax	(
Fuel		MT		0	14	0	1,012.0	Santo	S				4		
Drill Water		MT		0	55	0	781.0	Trans	ocean				63		
Potable Wa	iter	MT		0	27	0	323.0	BHI					6		
Gel		MT		0	0	0	97.0	Hallib	urton				2		
Cement		MT		0	0	0	250.0	M.I					2		
Barite		MT		0	0	0	136.0	Subse					3		
								Dril-Q	•				2		
									nerford				4		
								Anadr	ill			- .	4		
												I Ota	al 90		
Casing															
OD	L.O.T. / F.I.T		Csg Sho	•							Cementing				
30 "	0ppg / 0ppg		1510.0r	n / 15	10.0m		Cemented ng was je								
20 "	9.60ppg / 0pp	g	1822.7r	n / 18	22.7m		bls of 12. bls of 15.								
HSE Sun	nmary	•													
· ·	Events	Date	of Last	Day	s Since						Remarks				
Abandon D	rill	28 No	v 2004	1 Da	у	Wee	kly aband	lon rig o	drill.						
BOP Test		24 No	v 2004	5 Da	ys	Teste	ed all ram	s etc to	250 ps	si low and s	5000psi hig	h.			
Environmer	ntal Incident			0 Da	ys						-				
		Simulated fire in the upper accomodation block.													
First Aid		21 No	v 2004	8 Da	ys	Rous	stabout sp	orained	his ank	le whilst of	floading 20	" casing.			
Lost Time I	ncident	26 No	v 2004	3 Da	ys	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.									
Safety Mee	ting	28 No	v 2004	1 Da	y			-							
Ston Carde	•	20 No	2004	0 Da	ve	10.5	TART Ca	rde eub	mittad						

10 START Cards submitted

29 Nov 2004 0 Days

Stop Cards

Bulks

Arrived (date/time)

Boats

Marine	arine							
Weather check on 29 Nov 2004 at 24:00								
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period	
10.00nm	26.0kn	290deg	1000bar	19.0C°	0m	000deg	Oft/sec	
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments	
0.3deg	0.3deg	0.60m	1.8m	230deg	8.0ft/sec			
Rig Dir.	Ris. Tension	VDL	1	Comments	*			
217.0deg	0klb	6224.0klb						

Status

Departed (date/time)

Lady Caroline			01:45 29/11	/04 Portland	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	80
					Gel	MT	0
					Mud	bbl	0
Lady Astrid				At Rig	Item	Unit	Quantity
					Barite	MT	26
					Cement	MT	42
					Gel	MT	39
					Mud	bbl	0
Helicopte	r Movemen	t					
Flight #	Time		Destination		Comment		Pax
BZU	15:42	Jack Bates					3
BZU	15:55	Essendon					5

		From:	D. Atkins/P.	King			
Well Data							
Country	Australia	M. Depth	2459.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	2459.0m	Casing OD	20.000in	AFE No.	5738032
Drill Co.	Transocean	Progress	77.0m	Shoe TVD	1822.0m	Daily Cost	
Rig	Jack Bates	Days from spud	10.28	F.I.T. / L.O.T.	0ppg / 9.60ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	13.92			Planned TD	2979.0m
RT-ASL(LAT) RT-ML	29.0m 1425m	Current Op @ 0600		hole clean @ 2459n nce operations.	n whilst awaitin	g DPI Inspector's ap	proval to
		Planned Op		oval to re-commence on hole condition.	e operations. Po	OH to run casing or	wiper trip

Drilled 17-1/2" hole from 2382m to 2459m. Circulated hole clean. POH to shoe & circulated hole clean. RIH to 2336m.

Operations For Period 0000 Hrs to 2400 Hrs on 30 Nov 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IH	Р	DA	0000	0630	6.50	2446.0m	Continued to drill 17-1/2" hole from 2382m to 2446m, reaming and surveying at each connection (controlled rate due to ECD)
IH	Р	CMD	0630	0645	0.25	2446.0m	Worked pipe whilst preparing to drop carbide pill and dropped same.
IH	Р	DA	0645	0730	0.75	2459.0m	Continued to drill 17-1/2" hole from 2446m to 2459m (Section TD), reaming and surveying at each connection (controlled rate due to ECD)
IH	Р	CMD	0730	0815	0.75	2459.0m	Circulated carbide pill out of hole.
IH	Р	FC	0815	0830	0.25	2459.0m	Flow checked. Well static.
IH	Р	CHC	0830	1130	3.00	2459.0m	Pumped 120 bbl hi-vis sweep and circulated hole clean (230 spm @ 3200 psi)
IH	Р	FC	1130	1145	0.25	2459.0m	Flow checked. Well static.
IH	Р	TO	1145	1200	0.25	2459.0m	Pulled out of open hole from 2459m to 2450m.
IH	Р	TO	1200	1215	0.25	2459.0m	Continued to pull out of open hole from 2450m to 2402m.
IH	Р	WIN	1215	1545	3.50	2459.0m	Tight spot at 2402m (20,000 lb overpull). Made up top drive and pumped out of hole from 2402m to 1822m (20" casing shoe)
IH	Р	CHC	1545	1745	2.00	2459.0m	Pumped 60 bbl hi-vis sweep, followed by 60 bbl hi-weight sweep and circulated hole clean (260 spm @ 3300 psi)
IH	U (OTH)	CHC	1745	2230	4.75	2459.0m	Continued to circulate hole clean. (Operations suspended awaiting DPI Inspector's findings from on-site investigation of dodge truck incident - 26/11/04)
IH	U	SM	2230	2245	0.25	2459.0m	Held tool box meeting prior to running in hole using tongs and pipe spinner. (Approval given by DPI Inspector to RIH to bottom and circulate to maintain open hole integrity)
IH	U	TI	2245	2400	1.25	2459.0m	Ran in hole from 1822m to 2336m.

Operations For Period 0000 Hrs to 0600 Hrs on 01 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IH	U	TI	0000	0030	0.50	2459.0m	Continued to run in hole from 2336m to 2445m. Took weight @ 2445m.
IH	U	WIN	0030	0100	0.50	2459.0m	Made up top drive and washed down from 2445m. Tagged bottom at 2459m
IH	U	CHC	0100	0400	3.00	2459.0m	Circulated hole clean whilst working pipe.
IH	U	CHC	0400	0600	2.00	2459.0m	Pumped 50 bbl hi-weight/hi-vis sweep and circulated out same whilst continuing to work pipe.

Phase Data to 2400hrs, 30 Nov 2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	63.75	28 Nov 2004	30 Nov 2004	334.00	13.917 days	2459.0m

WBM Dat	a															
Mud Type:	(01/0.1	API FL:		5cm ³ /30	Om CI:			;	38500	Solids:		8	Visco	osity:		55sec/qt
	(CI/Polymer/Glyco	Filter-C	ake:	1/32r	nd" K+	-C*10	00:		7.6%	H2O:		89%	PV: YP:			20cp 26lb/100ft ²
Sample-Fron		HTHP-	FL:	0cm ³ /30	Om Ha	ard/Ca	a:		1200	Oil:		3%	Gels			7
Time:	20:30	HTHP-	Cake:	0/32r	nd" MF	3T:			10	Sand:		1.0	Gels 10m: 0 Fann 003:		14 7	
Weight:	9.20pp	g	ou.io.	0,02.	PN				0.35			9	_	006:		9
Temp:	18.0C	0			PF					•		_	Fann	100:		27
					PF	•			0.05	PHPA:		1ppb		200: 300:		37 46
													Fann			66
Comment		Continu	ue to swe	eep when ne							1					
Bit # 2					V	Vear	I	'	01	D	L	В		3	O2	R
Size ("):		17.50in	IADC#	1	15	N	lozzles	;	Drill	ed over la	ast 24 hr	s	Calcu	ılated	over Bi	t Run
Mfr:		REED	WOB(a	vg) 25.0	klb No).	Size	Э	Progre	SS	77.	0m Cum.	Prog	ress		624.0m
Type:		Rock	RPM(a	vg) 1	10 1		20	/32nd"	On Bot	tom Hrs	6.1	I0h Cum.	On B	tm Hr	S	32.20h
Serial No.:		J65053	F.Rate	950gr					IADC [Orill Hrs	18.9	90h Cum	IADC	Drill H	Irs	52.65h
Bit Model			SPP	3100		-1			Total R			0 Cum				0
Depth In		1835.0m	TFA	1.4					ROP(a		12.62 m			-		19.38 m/hr
Depth Out	:	2459.0m							`							
BHA # 2																
Weight(Wet)	0klb	Length	l		28	32.8m	Torque	(max)		Oft-	lbs D.C.	(1) Ar	nn Veld	ocity	
Wt Below Jar(Wet)		0klb	String				0klb	Torque(Off.Btm)			Oft-	lbs D.C.	C. (2) Ann Velocity			
	,		Pick-U	n			0klb	Torque	` (On.Btr	m)	Oft-	lbs H.W.	`	Ann Ve	elocity	
			Slack-0	•			0klb	rorquo	(011	,	0.11			/elocity	•	
DUA Dua D	:-4:				14	b. 47		CDD/I		. Daa. D						. VO. 00"
BHA Run Do	escription			5/8" Motor;F Jars; 3x8"					-EVVD)	, rowei r	uise, 15.	5 Stab, 9.0) INIVI	DC, 2	x9.5 DC	,, AO, 0x0
Survey																
MD (m)	Incl Deg (deg)	Corr	. Az eg)	TVD (m)		'V' Se (m		Dogl (deg/3		N/S (m)		E/W (m)			Tool Typ	е
2220.68	0.29	203.20		2220.63	-4	.15	· <i>y</i>	0.06	,,,,	-4.15	-8	.60	MV	VD		
2248.46	0.15	220.05		2248.41		.25		0.05		-4.25		.65	MV			
2277.42	0.31	183.89		2277.37		.35		0.07		-4.35		.68	MV			
2306.21	0.34	216.07		2306.16	-4	.50		0.06		-4.50	-8.	.74	MV	VD		
2334.13	0.40	185.07		2334.08		.67		0.07		-4.67		79	MV	VD		
2361.66	0.37	221.08	}	2361.61	-4	.83		0.09		-4.83	-8.	.86	MV	VD		
Bulk Sto	cks							Perso	nnel	On Boa	ard					
N	ame	Unit	ln	Used	Adju	st B	alance			Com	pany				Pa	х
Fuel		MT	17	'2 15		0 1,	169.0	Santos						8		
Drill Water		MT	30	00 212			869.0	Transo	cean					69		
Potable Wat	ter	MT		0 24		0 2	299.0	BHI						6		
Gel		MT		0 0		0	97.0	Hallibur	ton					2		
Cement		MT		0 0			250.0	M.I	_					2		
Barite		MT	2	25 57		0	104.0	Subsea						3		
								Dril-Qui	•					2		
								Weathe						4		
								Anadrill DPI						4 1		
								DFI				-	Total	101		
Casing								L						<u> </u>		
OD	L.O.T. / F.I.T	. (Csg Sho	oe (MD/TVD	D)						Cementi	ng				
						Not Cemented.										

Casing was jetted in.

1822.7m / 1822.7m

660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail

9.60ppg / 0ppg

20 "

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	28 Nov 2004	2 Days	Weekly abandon rig drill.
BOP Test	24 Nov 2004	6 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	28 Nov 2004	2 Days	Simulated fire in the upper accomodation block.
First Aid	21 Nov 2004	9 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	4 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	28 Nov 2004	2 Days	
Stop Cards	29 Nov 2004	1 Day	10 START Cards submitted

Marine							
Weather ch	eck on 30 Nov	2004 at 24:0	00				
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
4.00nm	27.0kn	250deg	999bar	13.0C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments
0.3deg	0.3deg	0m	1.8m	230deg	8.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	5897.0klb					

Boats	Arrived (date/	time)	Departed (date/time)	Status		Bulks					
Lady Caroline	22:00	29/11/04		Jack Bates	ı	tem Unit	C	Quantity			
					Barite		ΛT	0			
					Cement	1	ΛT	80			
					Gel		ΛT	0			
					Mud		obl	0			
Lady Astrid			22:12 30/11/04	On route to Portland	1	tem Unit	C	Quantity			
					Barite	1	JΤ	0			
					Cement		ΛT	42			
					Gel		ΛT	39			
					Mud		obl	0			
Helicopter	Movement										
Flight #	Time		Destination		Comment		F	Pax			
BZU	15:49 Jack	Bates						11			
BZU	16:04 Ess	endon						0			

		From :	D. Atkins/P. I	King			
Well Data							
Country	Australia	M. Depth	2459.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	2459.0m	Casing OD	20.000in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	1822.0m	Daily Cost	
Rig	Jack Bates	Days from spud	11.28	F.I.T. / L.O.T.	0ppg / 9.60ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	14.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Pulling out	of hole with NB prote	ector.	1	
RT-ML	1425m	Planned Op	POH with N	NB protector. Run 13	3-3/8" casing.		

RIH to TD. Circulated and reciprocated string while awaiting DPI approval to recommence operations. POH with drill string. Commenced RIH to retrieve NB protector.

Operations For Period 0000 Hrs to 2400 Hrs on 01 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
IH	U	TI	0000	0030	0.50	2459.0m	Continued to run in hole from 2336m to 2445m. Took weight @ 2445m.
IH	U	WIN	0030	0100	0.50	2459.0m	Made up top drive and washed down from 2445m. Tagged bottom at 2459m
IH	U	CHC	0100	0400	3.00	2459.0m	Circulated hole clean whilst working pipe.
IH	U	CHC	0400	0600	2.00	2459.0m	Pumped 50 bbl hi-weight/hi-vis sweep and circulated out same whilst continuing to work pipe.
IH	U	CHC	0600	1315	7.25	2459.0m	Continued to circulate and reciprocate drill string.
IC	Р	SM	1315	1330	0.25	2459.0m	Held tool box meeting prior to pulling out of hole.
IC	Р	TO	1330	1445	1.25	2459.0m	Pulled out of hole wet from 2459m to 2194m.
IC	Р	CMD	1445	1500	0.25	2459.0m	Pumped 30 bbl slug.
IC	Р	TO	1500	1945	4.75	2459.0m	Continued to pull out of hole from 2194m to 282m.
IC	Р	SM	1945	2000	0.25	2459.0m	Held tool box meeting prior to handling BHA.
IC	Р	TO	2000	2200	2.00	2459.0m	Pulled out of hole with BHA from 282m to 20m.
IC	Р	OA	2200	2230	0.50	2459.0m	Downloaded CDR/Power Pulse.
IC	Р	HBHA	2230	2245	0.25	2459.0m	Pulled out of hole from 20m to surface, broke off bit and racked back last stand.
IC	Р	CRF	2245	2300	0.25	2459.0m	Cleared rig floor of all excess equipment.
IC	Р	WH	2300	2400	1.00	2459.0m	Made up 2 stands of 5" HWDP below Dril-Quip Multi Purpose Tool. Ran in hole to 233m to retrieve nominal bore protector.

Operations For Period 0000 Hrs to 0600 Hrs on 02 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IC	Р	WH	0000	0245	2.75	2459.0m	Continued running in hole to retrieve nominal bore protector at 1420m.
IC	Р	WH	0245	0300	0.25	2459.0m	Jetted BOP and wellhead area.
IC	Р	WH	0300	0315	0.25	2459.0m	Landed MPT in wellhead with 15,000 lb set down weight. Recorded datum measurement. Unseated NB protector with 25,000 lb overpull.
IC	Р	WH	0315	0430	1.25	2459.0m	Re-landed NB protector in wellhead. Picked up with no overpull to confirm NB protector had released. Circulated riser contents.
IC	Р	SM	0430	0445	0.25	2459.0m	Held toolbox meeting prior to pulling out of hole.
IC	Р	CMD	0445	0500	0.25	2459.0m	Pumped slug.
IC	Р	TO	0500	0600	1.00	2459.0m	(IN PROGRESS) Pulled out of hole from 1420m to surface.

Phase Data to 2400hrs, 01 Dec 2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	10.75	01 Dec 2004	01 Dec 2004	358.00	14.917 days	2459.0m

WBM Data														
Mud Type: KCI/Polymer/Glycol Sample-From: Pit Time: 22:00 Weight: 9.20ppg Temp: 18.0C°	KCI/Polymer/Glycol From: Pit Filter-Cake: 1/32nd" 22:00 HTHP-FL: 0cm³/30m 9.20ppg HTHP-Cake: 0/32nd"		CI: K+C*1000 Hard/Ca: MBT: PM: PF:	0:		33800 7.7% 1040 12.5 0.2 0.05	Solids: H2O: Oil: Sand: pH: PHPA:			7.5 89.5% 3% 0.3 8.5 Oppb	Viscosity: PV: YP: Gels 10s: Gels 10m: Fann 003: Fann 006: Fann 100: Fann 200: Fann 300: Fann 600:		61sec/qt 22cp 30lb/100ft ² 8 16 8 10 31 43 52	
Comment	Increas	se carrying ca	oacity with	XCD.								Tanii 000.		
Bit # 2				Wear	1		O1 2	D BT	L A		B E	G 1	O2 WT	R TD
Size ("):	17.50in	IADC#	115	No	zzles		Drill	ed over l	ast 24	ast 24 hrs		Calculated	over B	t Run
Mfr:	REED	WOB(avg)	0klb	No.	Size)	Progre	ess		0m	Cum. Progress			624.0m
Type:	Rock	RPM(avg)	0	1	20	/32nd"	On Bo	ttom Hrs		0h Cum		Cum. On Btm Hrs		32.20h
Serial No.:	J65053	F.Rate	0gpm	3	22	/32nd"	IADC I	Drill Hrs		0h	Cum I	ADC Drill	Hrs	52.65h
Bit Model	T11C	SPP	0psi				Total F	Revs		0	Cum 1	Total Revs	i	0
Depth In 18	335.0m	TFA	1.420				ROP(a	avg)		N/A	ROP(a	avg)		19.38 m/hr
Depth Out 24	459.0m													
BHA # 2														
Weight(Wet)	0klb	Length		282	2.8m	Torqu	ıe(max)		(Oft-lbs	D.C. (1) Ann Ve	locity	
Wt Below Jar(Wet)	0klb	String			0klb	Torqu	ıe(Off.Bt	m)	(Oft-lbs	D.C. (2) Ann Ve	locity	
		Pick-Up			0klb	Torqu	ıe(On.Bt	m)	(Oft-lbs	H.W.E	D.P. Ann V	elocity	
Slack-Off			Oklb					D.P. A	Ann Veloci	ty				
BHA Run Description		Bit; 9-5/8" N DC; 8" Jars					R(FEWD)	; Power F	Pulse; 1	5.5' S	tab; 9.5	" NMDC; 2	2x9.5" D0	C; XO; 8x8"
Survey														

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2220.68	0.29	203.20	2220.63	-4.15	0.06	-4.15	-8.60	MWD
2248.46	0.15	220.05	2248.41	-4.25	0.05	-4.25	-8.65	MWD
2277.42	0.31	183.89	2277.37	-4.35	0.07	-4.35	-8.68	MWD
2306.21	0.34	216.07	2306.16	-4.50	0.06	-4.50	-8.74	MWD
2334.13	0.40	185.07	2334.08	-4.67	0.07	-4.67	-8.79	MWD
2361.66	0.37	221.08	2361.61	-4.83	0.09	-4.83	-8.86	MWD

Bulk Stocks						Personnel On Board		
Name	Unit	ln	Used	Adjust	Balance	Company	Pax	
Fuel	MT	0	10	0	1,159.0	Santos	6	
Drill Water	MT	0	14	0	855.0	Transocean	67	
Potable Water	MT	0	24	0	275.0	BHI	6	
Gel	MT	0	0	0	97.0	Halliburton	2	
Cement	MT	0	0	0	250.0	M.I	2	
Barite	MT	0	0	0	104.0	Subsea 7	3	
						Dril-Quip	2	
						Weatherford	4	
						Anadrill	4	
						DPI	1	
						Total	97	

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail

0klb

217.0deg

6312.0klb

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	28 Nov 2004	3 Days	Weekly abandon rig drill.
BOP Test	24 Nov 2004	7 Days	Tested all rams etc to 250 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	28 Nov 2004	3 Days	Simulated fire in the upper accomodation block.
First Aid	21 Nov 2004	10 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	5 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	28 Nov 2004	3 Days	
Stop Cards	29 Nov 2004	2 Days	10 START Cards submitted

Marine												
Weather check on 01 Dec 2004 at 24:00												
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period					
10.00nm	24.0kn	250deg	1015bar	14.0C°	0m	000deg	Oft/sec					
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments					
0.8deg	0.8deg	0m	4.0m	250deg	9.0ft/sec							
Rig Dir.	Ris. Tension	VDL	-	Comments								

Boats	Arrived (da	te/time)	Departed (date/time)	Status		Bulks	
Lady Caroline	2	2:00 29/11/04		Jack Bates	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	80
					Gel	MT	0
					Mud	bbl	0
Lady Astrid			22:12 30/11/04	On route to Portland	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	42
					Gel	MT	39
					Mud	bbl	0
Helicopter	Movement						
Flight #	Time		Destination		Comment		Pax
BZU	15:42 J	ack Bates					2
BZU	15:53 E	ssendon					6

		From:	D. Atkins/P. I	King			
Well Data							
Country	Australia	M. Depth	2459.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	2459.0m	Casing OD	20.000in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	1822.0m	Daily Cost	
Rig	Jack Bates	Days from spud	12.28	F.I.T. / L.O.T.	0ppg / 9.60ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	15.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Testing BO	Ps after setting casi	ng hanger seal	assembly.	
RT-ML	1425m	Planned Op		. POH with CHSART M/U 12-1/4" BHA.	ī. Run Wear bu	shing. Lay out 17-1/	2" BHA.

Retrieved NB protector. Commenced running 13-3/8" casing.

Operations For Period 0000 Hrs to 2400 Hrs on 02 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IC	Р	WH	0000	0245	2.75	2459.0m	Continued running in hole to retrieve nominal bore protector at 1420m.
IC	Р	WH	0245	0300	0.25	2459.0m	Jetted BOP and wellhead area.
IC	Р	WH	0300	0315	0.25	2459.0m	Landed MPT in wellhead with 15,000 lb set down weight. Recorded datum measurement. Unseated NB protector with 25,000 lb overpull.
IC	Р	WH	0315	0430	1.25	2459.0m	Re-landed NB protector in wellhead. Picked up with no overpull to confirm NB protector had released. Circulated riser contents.
IC	Р	SM	0430	0445	0.25	2459.0m	Held toolbox meeting prior to pulling out of hole.
IC	Р	CMD	0445	0500	0.25	2459.0m	Pumped slug.
IC	Р	TO	0500	0700	2.00	2459.0m	Pulled out of hole from 1420m to surface.
IC	Р	WH	0700	0730	0.50	2459.0m	Broke out and layed out NB protector.
IC	Р	CRF	0730	0745	0.25	2459.0m	Cleared rig floor of excess equipment.
IC	Р	SM	0745	0800	0.25	2459.0m	Held toolbox meeting prior to rigging up 13-3/8" casing handling equipment.
IC	Р	RRC	0800	0900	1.00	2459.0m	Rigged up Weatherford 13-3/8" casing handling equipment.
IC	Р	WO	0900	1000	1.00	2459.0m	Deck crew carrying out THINK drill and permit to work preparation prior to using Landel crane.
IC	Р	SM	1000	1015	0.25	2459.0m	Held toolbox meeting with drill crew and deck crew prior to running 13-3/8" casing.
IC	Р	CRN	1015	1115	1.00	2459.0m	Picked up shoe track assembly and ran in hole to 49m.
IC	Р	CRN	1115	1200	0.75	2459.0m	Ran 13-3/8" casing from 49m to 137m.
IC	Р	CRN	1200	1800	6.00	2459.0m	Continued to run 13-3/8" casing as per program from 137m to 1029m.
IC	Р	RRC	1800	1815	0.25	2459.0m	Rigged down Weatherford casing handling equipment.
IC	Р	CRN	1815	1830	0.25	2459.0m	Picked up and made up 13-3/8" casing hanger assembly and ran in hole to 1032m.
IC	Р	CRF	1830	1945	1.25	2459.0m	Removed Weatherford EMS and cleared rig floor of excess casing equipment.
IC	Р	CRN	1945	2045	1.00	2459.0m	Ran casing on drill pipe from 1032m to 1475m.
IC	Р	BKC	2045	2130	0.75	2459.0m	Filled casing and broke circulation (30 spm @ 130 psi)
IC	Р	CRN	2130	2230	1.00	2459.0m	Continued to run casing on drill pipe from 1475m to 1822m. Broke circulation.
IC	Р	CRN	2230	2400	1.50	2459.0m	Continued to run casing on drill pipe into open hole from 1822m to 2388m.

Operations For Period 0000 Hrs to 0600 Hrs on 03 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
IC	Р	CRN	0000	0015	0.25	2459.0m	Continued to run casing on drill pipe into open hole from 2388m to 2445m.
IC	Р	CRN	0015	0030	0.25	2459.0m	Picked up and made up cement stand and opened up choke and kill lines to surface.
IC	Р	BKC	0030	0045	0.25	2459.0m	Filled string and broke circulation.
IC	Р	CRN	0045	0100	0.25	2459.0m	Slacked off casing weight (160,000 lb) and set down 20,000 lb weight. Shoe @ 2454m.
IC	Р	SM	0100	0115	0.25	2459.0m	Held toolbox meeting with all crew members involved in the cement job whilst circulating (68 spm @ 360 psi)
IC	Р	СМС	0115	0345	2.50	2459.0m	Pumped 85 bbl spacer. Pressure tested cementing lines to 3000 psi. Pumped 327 bbl 12.5 ppg Class G lead slurry, 81 bbl 15.8 ppg Class G tail slurry. Displaced landing string with 90 bbl (plug released after 85 bbl).
IC	Р	CMC	0345	0445	1.00	2459.0m	Displaced casing using rig pumps. Bumped plug @ 483 bbl. Pressured up to 2000 psi. Pressure slowly bled off. Check floats holding OK. (Lost returns after approx. 435 bbl. 95 bbl lost to formation. Kept annulus full via trip tank)
IC	Р	CRN	0445	0545	1.00	2459.0m	Pressured up to 3000 psi to set 13-3/8" casing hanger seal assembly. Pressure tested to 5000 psi down kill line against lower pipe ram.
IC	Р	ACC	0545	0600	0.25	2459.0m	Pressure test BOP on blue pod. 300 psi/5 mins & 5000 psi/10 mins.

Phase Data to 2400hrs, 02 Dec 200	4					
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	34.75	01 Dec 2004	02 Dec 2004	382.00	15.917 days	2459.0m
WBM Data		·	·	·	·	·

Mud Type:		API FL:	5cm ³ /30m	CI:	33800	Solids:	7.5	Viscosity:	60sec/qt
	olymer/Glycol	Filter-Cake:	1/32nd"	K+C*1000:	7.7%	H2O:	89.5%	PV: YP:	22cp 34lb/100ft²
Sample-From:	Pit	HTHP-FL:	0cm ³ /30m	Hard/Ca:	1080	Oil:		Gels 10s:	8
Time:	21:30	HTHP-Cake:	0/32nd"	MBT:	10	Sand:	0.3	Gels 10m: Fann 003:	16
Weight:	9.20ppg	Titti Ganer	0,02.10	PM:	0.25	pH:		Fann 006:	11
Temp:	18.0C°					'	• • • • • • • • • • • • • • • • • • • •	Fann 100:	33
				PF:	0.1	PHPA:	0ppb	Fann 200:	46
								Fann 300: Fann 600:	56 78

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2220.68	0.29	203.20	2220.63	-4.15	0.06	-4.15	-8.60	MWD
2248.46	0.15	220.05	2248.41	-4.25	0.05	-4.25	-8.65	MWD
2277.42	0.31	183.89	2277.37	-4.35	0.07	-4.35	-8.68	MWD
2306.21	0.34	216.07	2306.16	-4.50	0.06	-4.50	-8.74	MWD
2334.13	0.40	185.07	2334.08	-4.67	0.07	-4.67	-8.79	MWD
2361.66	0.37	221.08	2361.61	-4.83	0.09	-4.83	-8.86	MWD

Bulk Stocks						Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax	
Fuel	MT	129	10	0	1,278.0	Santos	4	
Drill Water	MT	0	31	0	824.0	Transocean	66	
Potable Water	MT	157	26	0	406.0	BHI	6	
Gel	MT	0	0	0	97.0	Halliburton	2	
Cement	MT	0	0	0	250.0	M.I	2	
Barite	MT	0	3	0	101.0	Subsea 7	3	
						Dril-Quip	2	
						Weatherford	4	
						Anadrill	4	
						Total	93	

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail

HSE Summary									
Events	Date of Last	Days Since	Remarks						
Abandon Drill	28 Nov 2004	4 Days	Weekly abandon rig drill.						
BOP Test	24 Nov 2004	8 Days	Tested all rams etc to 250 psi low and 5000psi high.						
Environmental Incident		0 Days							
Fire Drill	28 Nov 2004	4 Days	Simulated fire in the upper accomodation block.						
First Aid	21 Nov 2004	11 Days	Roustabout sprained his ankle whilst offloading 20" casing.						
Lost Time Incident	26 Nov 2004	6 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.						
Safety Meeting	28 Nov 2004	4 Days							
Stop Cards	29 Nov 2004	3 Days	10 START Cards submitted						

Bulks

Arrived (date/time)

Boats

Marine	larine								
Weather ch	Weather check on 02 Dec 2004 at 24:00								
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period		
10.00nm	9.0kn	230deg	1021bar	14.1C°	0m	000deg	Oft/sec		
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments		
0.8deg	0.8deg	0m	3.0m	250deg	8.0ft/sec				
Rig Dir.	Ris. Tension	VDL	1	Comments					
217.0deg	0klb	6530.0klb							

Status

Departed (date/time)

Lady Caroline		22:00 29/11/04		Jack Bates	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	80
					Gel	MT	0
					Mud	bbl	0
Lady Astrid			22:12 30/11/04	On route to Portland	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	42
					Gel	MT	39
					Mud	bbl	0
Helicopter	Movement						
Flight #	Time		Destination		Comment		Pax
BZU	12:27	Jack Bates					0
BZU	12:39	Essendon					4

		From:	D. Atkins/P.	King			
Well Data							
Country	Australia	M. Depth	2459.0m	Cur. Hole Size	17.500in	AFE Cost	
Field	Otway Basin	TVD	2459.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	2454.0m	Daily Cost	
Rig	Jack Bates	Days from spud	13.28	F.I.T. / L.O.T.	Oppg / Oppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	16.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Shallow tes	sting Power Pulse	@ 60m.		
RT-ML	1425m	Planned Op	RIH with 12	2-1/4" BHA, drill ou	t shoe track, LO	T, drill ahead 12-1/4'	' hole.

Ran casing to TD, cemented in place, set seal assembly, pressure tested BOPs, ran 13-3/8" wear bushing, layed out 17-1/2" BHA.

Operations For Period 0000 Hrs to 2400 Hrs on 03 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IC	Р	CRN	0000	0015	0.25	2459.0m	Continued to run casing on drill pipe into open hole from 2388m to 2445m.
IC	Р	CRN	0015	0030	0.25	2459.0m	Picked up and made up cement stand and opened up choke and kill lines to surface.
IC	Р	BKC	0030	0045	0.25	2459.0m	Filled string and broke circulation.
IC	Р	CRN	0045	0100	0.25	2459.0m	Slacked off casing weight (160,000 lb) and set down 20,000 lb weight.
IC	Р	SM	0100	0115	0.25	2459.0m	Held toolbox meeting with all crew members involved in the cement job whilst circulating (68 spm @ 360 psi)
IC	Р	CMC	0115	0345	2.50	2459.0m	Pumped 85 bbl spacer. Pressure tested cementing lines to 3000 psi. Pumped 327 bbl 12.5 ppg Class G lead slurry, 81 bbl 15.8 ppg Class G tail slurry. Displaced landing string with 90 bbl (plug released after 85 bbl).
IC	Р	CMC	0345	0445	1.00	2459.0m	Displaced casing using rig pumps. Bumped plug @ 483 bbl. Pressured up to 2000 psi. Pressure slowly bled off. Check floats holding OK. (Lost returns after approx. 435 bbl. 95 bbl lost to formation. Kept annulus full via trip tank)
IC	Р	CRN	0445	0545	1.00	2459.0m	Pressured up to 3000 psi to set 13-3/8" casing hanger seal assembly. Pressure tested to 5000 psi down kill line against lower pipe ram.
IC	Р	BOP	0545	0845	3.00	2459.0m	Pressure test BOP on blue pod. 300 psi/5 mins & 5000 psi/10 mins.
IC	Р	CRN	0845	0930	0.75	2459.0m	Sheared out of seal assembly. Pumped 10 bbl and re-tested seal assembly to 5000 psi @ 1421m.
IC	Р	CMD	0930	0945	0.25	2459.0m	Pumped 15 bbl slug.
IC	Р	TO	0945	1245	3.00	2459.0m	Pulled out of hole from 1421m to surface.
IC	Р	HT	1245	1315	0.50	2459.0m	Broke out and laid out CHSART.
IC	Р	HT	1315	1330	0.25	2459.0m	Picked up and made up wear bushing to running tool and cup tester.
IC	Р	WH	1330	1600	2.50	2459.0m	Ran in hole with wear bushing from surface to 1421m.
IC	Р	WH	1600	1615	0.25	2459.0m	Landed out wear bushing and set down 20,000 lb. Took 30,000 lb overpull to free running tool.
IC	Р	CMD	1615	1630	0.25	2459.0m	Pumped slug and allowed to settle.
IC	Р	TO	1630	1830	2.00	2459.0m	Pulled out of hole with running tool from 1421m to surface.
IC	Р	HT	1830	1845	0.25	2459.0m	Broke out and laid out wear bushing running tool/cup tester assembly.
IC	Р	SM	1845	1900	0.25	2459.0m	Held safety meeting prior to breaking and laying out cement head.
IC	Р	HT	1900	1930	0.50	2459.0m	Laid out Weatherford cement head from the derrick.
IC	Р	CRF	1930	1945	0.25	2459.0m	Cleared rig floor of excess equipment.
IC	Р	SM	1945	2000	0.25	2459.0m	Held safety meeting prior to laying out 17.5" BHA.
IC	Р	НВНА	2000	2145	1.75	2459.0m	Ran in hole with 17.5" BHA and laid out same.
IC	Р	PT	2145	2215	0.50	2459.0m	Pressure tested 13-3/8" casing to 1500 psi against shear rams. (Test good)
IC	Р	НВНА	2215	2400	1.75	2459.0m	Continued to run in hole with 17-1/2" BHA and lay out same.

Operations For Period 0000 Hrs to 0600 Hrs on 04 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IC	Р	НВНА	0000	0030	0.50	2459.0m	Continued to lay out excess 17-1/2" BHA.
IC	Р	RS	0030	0100	0.50	2459.0m	Serviced Top Drive
IC	Р	SM	0100	0115	0.25	2459.0m	Held toolbox meeting prior to handling 12-1/4" BHA.
IC	Р	НВНА	0115	0230	1.25	2459.0m	Picked up and made up bit and motor and ran in hole to 11m.
IC	Р	HBHA	0230	0300	0.50	2459.0m	Schlumberger initialise CDR.
IC	Р	НВНА	0300	0445	1.75	2459.0m	Continued to pick up and make up BHA from 11m to 31m.
IC	Р	НВНА	0445	0530	0.75	2459.0m	Ran in hole with BHA from the derrick from 31m to 60m.
IC	Р	HBHA	0530	0600	0.50	2459.0m	Shallow tested Schlumberger Power Pulse tool. (166 spm / 840 psi)

Phase Da	ata to 2400hrs	s, 03 Dec 20	004						
Phase				Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/	RIG-UP(RM)			39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTO	OR HOLE(CH)			69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE H	HOLE(SH)			49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE C	CASING(SC)			113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDI	ATE HOLE(IH)			77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDI	ATE CASING(IC))		58.75	01 Dec 2004	03 Dec 2004	406.00	16.917 days	2459.0m
WBM Dat	ta								
Mud Type:		API FL:	4cm ³ /30m	CI:	38000	Solids:	8	Viscosity:	62sec/qt
k	(CI/Polymer/Glycol	Filter-Cake:	1/32nd"	K+C*1000:	7.8%	H2O:	89.2%	PV: YP·	21cp
Sample-Fron	n: Pit							YP: Gels 10s:	33lb/100ft ²
Time:	21:30	HTHP-FL:	0cm ³ /30m	Hard/Ca:	1180	Oil:	2.8%	Gels 10m:	17
Weight:	9.30ppg	HTHP-Cake:	0/32nd"	MBT:	12.5	Sand:	0.5	Fann 003:	8
Ü				PM:	0.3	pH:	8.5	Fann 006:	11
Temp:	0C°			PF:	0.15	PHPA:	0ppb	Fann 100: Fann 200:	33 44
							977	Fann 300:	54
								Fann 600:	75
Comment			ss 95 bbls on dis re for 12-1/4" ope		End 17-1/2" oper	n hole interval. De	ump and clean		
Survey									
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool	Гуре
2220.68	0.29	203.20	2220.63	-4.15	0.06	-4.15	-8.60	MWD	
2248.46	0.15	220.05	2248.41	-4.25	0.05	-4.25	-8.65	MWD	
2277.42	0.31	183.89	2277.37	-4.35	0.07	-4.35	-8.68	MWD	

Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
0.29	203.20	2220.63	-4.15	0.06	-4.15	-8.60	MWD
0.15	220.05	2248.41	-4.25	0.05	-4.25	-8.65	MWD
0.31	183.89	2277.37	-4.35	0.07	-4.35	-8.68	MWD
0.34	216.07	2306.16	-4.50	0.06	-4.50	-8.74	MWD
0.40	185.07	2334.08	-4.67	0.07	-4.67	-8.79	MWD
0.37	221.08	2361.61	-4.83	0.09	-4.83	-8.86	MWD
	(deg) 0.29 0.15 0.31 0.34 0.40	(deg) (deg) 0.29 203.20 0.15 220.05 0.31 183.89 0.34 216.07 0.40 185.07	(deg) (deg) (m) 0.29 203.20 2220.63 0.15 220.05 2248.41 0.31 183.89 2277.37 0.34 216.07 2306.16 0.40 185.07 2334.08	(deg) (deg) (m) (m) 0.29 203.20 2220.63 -4.15 0.15 220.05 2248.41 -4.25 0.31 183.89 2277.37 -4.35 0.34 216.07 2306.16 -4.50 0.40 185.07 2334.08 -4.67	(deg) (deg) (m) (m) (deg/30m) 0.29 203.20 2220.63 -4.15 0.06 0.15 220.05 2248.41 -4.25 0.05 0.31 183.89 2277.37 -4.35 0.07 0.34 216.07 2306.16 -4.50 0.06 0.40 185.07 2334.08 -4.67 0.07	(deg) (deg) (m) (m) (deg/30m) (m) 0.29 203.20 2220.63 -4.15 0.06 -4.15 0.15 220.05 2248.41 -4.25 0.05 -4.25 0.31 183.89 2277.37 -4.35 0.07 -4.35 0.34 216.07 2306.16 -4.50 0.06 -4.50 0.40 185.07 2334.08 -4.67 0.07 -4.67	(deg) (deg) (m) (m) (deg/30m) (m) (m) 0.29 203.20 2220.63 -4.15 0.06 -4.15 -8.60 0.15 220.05 2248.41 -4.25 0.05 -4.25 -8.65 0.31 183.89 2277.37 -4.35 0.07 -4.35 -8.68 0.34 216.07 2306.16 -4.50 0.06 -4.50 -8.74 0.40 185.07 2334.08 -4.67 0.07 -4.67 -8.79

Bulk Stocks						Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax	
Fuel	MT	0	11	0	1,267.0	Santos	5	
Drill Water	MT	0	53	0	771.0	Transocean	62	
Potable Water	MT	0	31	0	375.0	вні	6	
Gel	MT	0	0	0	97.0	Halliburton	3	
Cement	MT	0	64	0	186.0	M.I	2	
Barite	MT	0	0	0	101.0	Subsea 7	3	
	·					Dril-Quip	2	
						Weatherford	3	
						Anadrill	4	
						Total	90	

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	0ppg / 0ppg	2454.0m / 2454.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

Bulks

Arrived (date/time)

Boats

HSE Summary	HSE Summary								
Events	Date of Last	Days Since	Remarks						
Abandon Drill	28 Nov 2004	5 Days	Weekly abandon rig drill.						
BOP Test	24 Nov 2004	9 Days	Tested all rams etc to 250 psi low and 5000psi high.						
Environmental Incident		0 Days							
Fire Drill	28 Nov 2004	5 Days	Simulated fire in the upper accomodation block.						
First Aid	21 Nov 2004	12 Days	Roustabout sprained his ankle whilst offloading 20" casing.						
Lost Time Incident	26 Nov 2004	7 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.						
Safety Meeting	28 Nov 2004	5 Days							
Stop Cards	29 Nov 2004	4 Days	10 START Cards submitted						

Marine							
Weather ch	eck on 03 Dec	2004 at 24:0	00				
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	20.0kn	080deg	1014bar	16.1C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments
0.5deg	0.5deg	0m	2.7m	200deg	8.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0dea	0klb	6091.0klb					

Departed (date/time)

Lady Caroline		22:00 29/11/04		Jack Bates	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	80
					Gel	MT	0
					Mud	bbl	0
Lady Astrid		18:40 03/12/04		Jack Bates	Item	Unit	Quantity
					Barite	MT	82
					Cement	MT	42
					Gel	MT	39
					Mud	bbl	0
Helicopte	Movement						
Flight #	Time		Destination		Comment		Pax
BZU	19:34	Jack Bates					13
BZU	19:56	Essendon					16

Status

		From:	D. Atkins/P. I	King			
Well Data							
Country	Australia	M. Depth	2459.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2459.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	9.0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	14.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	17.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Drilling 12-	1/4" hole @ 2533m		1	
RT-ML	1425m	Planned Op	Drill ahead	12-1/4" hole.			

Laid out excess 17-1/2" BHA. M/U and RIH 12-1/4" BHA. Drilled out cement and shoe track. Drilled 3m of new formation and FIT.

Operations For Period 0000 Hrs to 2400 Hrs on 04 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
IC	Р	НВНА	0000	0030	0.50	2459.0m	Continued to lay out excess 17-1/2" BHA.
IC	Р	RS	0030	0100	0.50	2459.0m	Serviced Top Drive
IC	Р	SM	0100	0115	0.25	2459.0m	Held toolbox meeting prior to handling 12-1/4" BHA.
IC	Р	HBHA	0115	0230	1.25	2459.0m	Picked up and made up bit and motor and ran in hole to 11m.
IC	Р	WO	0230	0300	0.50	2459.0m	Waiting on Schlumberger to initialise CDR.
IC	Р	HBHA	0300	0445	1.75	2459.0m	Continued to pick up and make up BHA from 11m to 31m.
IC	Р	HBHA	0445	0530	0.75	2459.0m	Ran in hole with BHA from the derrick from 31m to 60m.
IC	Р	HBHA	0530	0600	0.50	2459.0m	Shallow tested Schlumberger Power Pulse tool. (166 spm / 840 psi)
IC	Р	HBHA	0600	0745	1.75	2459.0m	Ran in hole with 12-1/4" BHA from the derrick from 60m to 255m.
IC	Р	SM	0745	0800	0.25	2459.0m	Held toolbox meeting prior to picking up 5" drill pipe from the deck.
IC	Р	TI	0800	0815	0.25	2459.0m	Installed auto slips and rigged up pipe spinners.
IC	Р	TI	0815	1300	4.75	2459.0m	Picked up 5" drill pipe in singles and ran in hole from 255m to 883m. (Drifted each joint and filled pipe each 15 stands)
IC	Р	TI	1300	1630	3.50	2459.0m	Ran in hole 5" drill pipe from derrick from 883m. Tagged top of cement at 2414m.
IC	Р	SCR	1630	1700	0.50	2459.0m	Took SCRs and perform choke drill.
IC	Р	DFS	1700	1900	2.00	2459.0m	Drilled out cement and shoe track from 2414m to 2455m.
IC	Р	DFS	1900	1930	0.50	2459.0m	Worked through shoe track and drilled out rat hole from 2455m to 2459m
PH	Р	DA	1930	1945	0.25	2462.0m	Drilled 3 m of new formation from 2459m to 2462m
PH	Р	CS	1945	2145	2.00	2462.0m	Circulate bottoms up to obtain formation sample (30% cement, 30% silt, 40% claystone).
PH	Р	LOT	2145	2200	0.25	2462.0m	Picked up inside casing shoe and rigged up side entry sub, TIW valve and hose for LOT/FIT.
PH	Р	LOT	2200	2300	1.00	2462.0m	Performed FIT (1680 psi, 9.3 ppg MW, 2455m) to 13.3 ppg EMW. 4.25 bbl pumped, 4 bbl bled back. Repeated FIT to verify result.
PH	Р	LOT	2300	2330	0.50	2462.0m	Rigged down side entry sub, TIW valve and hose and ran in hole to 2462m.
PH	Р	OA	2330	2345	0.25	2462.0m	Recalibrated Anadrill tools for WOB and torque.
PH	Р	DA	2345	2400	0.25	2468.0m	Continued to drill ahead 12-1/4" hole from 2462m to 2468m.

Operations For Period 0000 Hrs to 0600 Hrs on 05 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PH	Р	DA	0000	0045	0.75	2477.0m	Continue drilling 12-1/4" hole from 2468m to 2477m.
PH	Р	CMD	0045	0100	0.25	2477.0m	Circulated and conditioned mud prior to open hole LOT.
PH	Р	LOT	0100	0115	0.25	2477.0m	Picked up inside casing shoe and rigged up side entry sub, TIW valve and hose for LOT.
PH	Р	LOT	0115	0200	0.75	2477.0m	Performed LOT (710 psi, 9.3 ppg MW, 2455m) to 11.0 ppg. 3.5 bbl pumped, 2.5 bbl bled back.
PH	Р	LOT	0200	0230	0.50	2468.0m	Rigged down side entry sub, TIW valve and hose and ran in hole to 2477m.
PH	Р	DA	0230	0600	3.50	2468.0m	Continued drilling 12-1/4" hole from 2477m to 2533m.

Phase Data to 2400hrs	s, 04 C	Dec 2004												
Phase				Phas	e Hrs	Start C	On	Finish O	n Cı	um H	Irs	Cum Da	ys	Max Depth
RIG MOVE/RIG-UP(RM)					39	17 Nov	2004	18 Nov 2	004		39.00	1.625	days	0n
CONDUCTOR HOLE(CH)					69.25	18 Nov	2004	21 Nov 2	004		108.25	4.510	days	1510.0n
SURFACE HOLE(SH)					49	21 Nov	2004	23 Nov 2	004		157.25	6.552	days	1835.0n
SURFACE CASING(SC)					113	23 Nov	2004	28 Nov 2	004		270.25	11.260	days	1835.0n
INTERMEDIATE HOLE(IH)					77	28 Nov	2004	01 Dec 2	004		347.25	14.469	days	2459.0n
INTERMEDIATE CASING(IC)	1				78.25	01 Dec	2004	04 Dec 2	004		425.50	17.729	days	2459.0n
PRODUCTION HOLE(PH)					4.5	04 Dec	2004	04 Dec 2	004		430.00	17.917	days	2468.0n
WBM Data														
Mud Type: KCl/Polymer/Glycol	API FL	: 50	cm ³ /30m	CI:			42000	Solids:			7.5	Viscosity: PV:		60sec/q 21cp
	Filter-C	Cake:	1/32nd"	K+C*	1000:		8%	H2O:			89.5%	YP:		26lb/100ft
Sample-From: Flowline	HTHP-	FL: 0d	cm³/30m	Hard/	Ca:		840	Oil:			3%	Gels 10s:		9
Time: 21:00	HTHP-		0/32nd"	MBT:			10	Sand:			0.25	Gels 10m:		14
Weight: 9.30ppg		cano.	J/ JZIIU									Fann 003: Fann 006:		,
Temp: 16.0C°				PM:			0.3	'			8.5	Fann 100:		28
				PF:			0.05	PHPA:			0ppb	Fann 200: Fann 300:		35 47
												Fann 600:		68
Comment		e to increase K on initial circ.	CI to 12%	. Glyco	ol to 5%. T	reat for	cemen	t contam. L	oss of co	d mu	d at			
Bit # 3				Wea	ar I		01	D	L		В	G	02	R
DIL # 3							•		_			Ū		
Size ("):	12.25in	IADC#	M323		Nozzles		Dril	led over la	ast 24 hr	s	C	alculated	l over	Bit Run
Mfr: Hughes Chris	tensen	WOB(avg)	11.0klb	No.	Size	;	Progre	ess	9	.0m	Cum. F	Progress		9.0m
Type:	PDC	RPM(avg)	0	6	14/	32nd"	On Bo	ottom Hrs	0.	40h	Cum. 0	On Btm H	rs	0.40h
Serial No.: 70	03752	F.Rate	740gpm				IADC	Drill Hrs	7.	40h	Cum IA	ADC Drill	Hrs	7.40h
Bit Model HCI	M606Z	SPP	2350psi	Total		Revs		0	Cum T	otal Revs		0		
Depth In 24	159.0m	TFA	0.902				ROP(a	ava)	22.50 n	n/hr	ROP(a	ıva)		22.50 m/hr
Depth Out	0m						,	σ,			`	0,		
BHA # 3														
Weight(Wet) 7	75.0klb	Length			255.9m	Torque	e(max)		Oft-	-lbs	D.C. (1	1) Ann Ve	locity	
. , ,	5.0klb	String				•	e(Off.Bt	tm)		-lbs		2) Ann Ve	-	
Wit Delow Sai(Wet)	IJ.UKID	Ŭ				•	`	,			,	,	•	
		Pick-Up			0klb	Iorque	e(On.Bt	tm)	Oft-	-lbs		.P. Ann V	,	'
		Slack-Off			0klb					ı	D.P. A	nn Veloci	-	
Equipme	nt		Leng	gth	OD	I	D	Seria	al #			Com	ment	
X/O				85m	9.63in			L9000						
9.625in Motor				8m	9.63in			1069						
Float Sub				00m	9.50in			3728		Nor	n-ported	l float		
X/O				32m	9.00in			X/O 2						
12.25in String Stabiliser				55m	12.25in			AIB 1123						
8.25in FEWD tools				8m	8.25in			8001		CD	R w/AP	WD		
		88m	12.13in			213272-2		_		_				
8.25in MWD Tools				88m	8.25in			ED-12		POV	ver Puls	se		
12.25in String Stabiliser				5m	12.25in			AIB 1120						
8in DC			74.1		8.00in		0in	40007.0						
8in Jar				'8m	8.06in			48907 C						
8in DC			27.6		8.00in		0in	V/O 00						
X/O				4m	8.00in			X/O 09						
5in HWDP			110.7		6.63in		0in							
5in Drillpipe				0m	5.00in		0in							

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2220.68	0.29	203.20	2220.63	-4.15	0.06	-4.15	-8.60	MWD
2248.46	0.15	220.05	2248.41	-4.25	0.05	-4.25	-8.65	MWD
2277.42	0.31	183.89	2277.37	-4.35	0.07	-4.35	-8.68	MWD
2306.21	0.34	216.07	2306.16	-4.50	0.06	-4.50	-8.74	MWD
2334.13	0.40	185.07	2334.08	-4.67	0.07	-4.67	-8.79	MWD
2361.66	0.37	221.08	2361.61	-4.83	0.09	-4.83	-8.86	MWD

Bulk Stocks						Personnel On Board	
Name	Unit	In	Used	Adjust	Balance	Company	Pax
Fuel	MT	0	11	0	1,256.0	Santos	5
Drill Water	MT	0	0	0	771.0	Transocean	62
Potable Water	MT	0	27	0	348.0	ВНІ	6
Gel	MT	0	0	0	97.0	Halliburton	3
Cement	MT	41	0	0	227.0	M.I	2
Barite	MT	0	0	0	101.0	Subsea 7	3
						Weatherford	3
						Anadrill	4
						Total	88

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	0 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	31 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	0 Days	Simulated fire in the upper accomodation block.
First Aid	21 Nov 2004	13 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	8 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	28 Nov 2004	6 Days	
Stop Cards	29 Nov 2004	5 Days	10 START Cards submitted

Marine

Weather check on 04 Dec 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	14.0kn	160deg	1013bar	15.3C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather (Comments
0.2deg	0.2deg	0m	1.2m	110deg	6.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	6184.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	Bulks			
Lady Caroline		09:45 4/12/04	Portland	Item	Unit	Quantity	
				Barite	MT	0	
				Cement	MT	80	
				Gel	MT	0	
				Mud	bbl	0	
Lady Astrid	18:40 03/12/04		Jack Bates	Item	Unit	Quantity	
				Barite	MT	82	
				Cement	MT	0	
				Gel	MT	39	
				Mud	bbl	0	

		From:	D. Atkins/P. I	King			
Well Data							
Country	Australia	M. Depth	2695.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2695.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	227.0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	15.28	F.I.T. / L.O.T.	13.30ppg / 0ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	18.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Pulling out	of hole for bit change	ge at 144m		
RT-ML	1425m	Planned Op	POH. Dow	nload LWD. Change	e bit. RIH and dr	ill 12-1/4" hole.	

Drilled 12-1/4" hole to 2477m. LOT. Drill to 2695m. Slow ROP. Pumped out to casing shoe. Commenced pulling out of cased hole.

Operations For Period 0000 Hrs to 2400 Hrs on 05 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
PH	Р	DA	0000	0045	0.75	2477.0m	Continued drilling 12-1/4" hole from 2468m to 2477m.
PH	Р	CMD	0045	0100	0.25	2477.0m	Circulated and conditioned mud prior to open hole LOT.
PH	Р	LOT	0100	0115	0.25	2477.0m	Picked up inside casing shoe and rigged up side entry sub, TIW valve and hose for LOT.
PH	Р	LOT	0115	0200	0.75	2477.0m	Performed LOT (710 psi, 9.3 ppg MW, 2455m) to 11.0 ppg. 3.5 bbl pumped, 2.5 bbl bled back.
PH	Р	LOT	0200	0230	0.50	2477.0m	Rigged down side entry sub, TIW valve and hose and ran in hole to 2477m.
PH	Р	DA	0230	1200	9.50	2626.0m	Continued drilling 12-1/4" hole from 2477m to 2626m, reaming on each connection and surveying every third connection.
PH	Р	DA	1200	1945	7.75	2695.0m	Continued drilling 12-1/4" hole from 2626m to 2695m, reaming each connection and surveying every third connection. (ROP 1-3 m/hr)
PH	Р	CMD	1945	2000	0.25	2695.0m	Circulated and conditioned mud prior to pulling out of hole for bit change.
PH	Р	FC	2000	2015	0.25	2695.0m	Flow checked. Well static.
PH	Р	CMD	2015	2045	0.50	2695.0m	Pumped 25 bbl slug.
PH	Р	ТО	2045	2145	1.00	2695.0m	Pulled out of hole from 2695m to 2538m and run back in hole to 2552m (20,000 lb overpull at 2559m & 2549m. Trip tank not taking correct amount.)
PH	Р	WIN	2145	2245	1.00	2695.0m	Pumped out of open hole from 2568m to 2452m. (204 spm/50 rpm @ 3300 psi)
PH	Р	CMD	2245	2300	0.25	2695.0m	Flow checked. Well static.
PH	Р	CHC	2300	2400	1.00	2695.0m	Circulated bottoms up from casing shoe (210 spm @ 3390 psi)

Operations For Period 0000 Hrs to 0600 Hrs on 06 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description			
PH	Р	CHC	0000	0130	1.50	2695.0m	Continued to circulate bottoms up at casing shoe.			
PH	Р	CMD	0130	0145	0.25	2695.0m	Pumped 25 bbl slug whilst flushing choke and kill lines			
PH	Р	TO	0145	0530	3.75	2695.0m	Pulled out of hole from 2452m to 255m.			
PH	Р	TO	0530	0600	0.50	2695.0m	Pulled out of hole with BHA from 255m to 144m.			

Phase Data to 2400hrs, 05 Dec 2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	28.5	04 Dec 2004	05 Dec 2004	454.00	18.917 days	2695.0m

WBM Data	1															
Mud Type:		API FL	<u>.</u>	4cm	1 ³ /30m	CI:			52500	Solids:			8.8	Viscosity:		64sec/q
	I/Polymer/Glycol	Filter-C	Cake:	1,	/32nd"	K+C*	1000:		10.4%	H2O:			87.7%	PV: YP:		21cp 25lb/100ft
Sample-From:	Flowline	HTHP-			1 ³ /30m				1200	Oil:			3.5%	Gels 10s:		2315/10011
Time:	20:30	HTHP-			/32nd"									Gels 10m:		1
Weight:	9.50ppg	піпг-	Cake.	U/	3211U	MBT:			11	Sand:			0.3	Fann 003: Fann 006:		1
Temp:	12.2C°					PM:			0.15	pH:			8.5	Fann 100:		2
						PF:			0.05	PHPA:			0ppb	Fann 200: Fann 300:		3
														Fann 600:		6
Comment		Increas	se KCI wit	h availa	ble sto	ck. Glyd	col to 5%.	Raise o	arrying	capacity.						
Bit # 3						Wea	ar I		O1	D	L		В	G	O2	R
Size ("):		12.25in	IADC#		M323		Nozzles		Dril	led over la	ast 24 h	rs	C	alculated	d over Bit	Run
Mfr:	Hughes Chris	tensen	WOB(a	/g) 1	5.0klb	No.	Size)	Progre	ess	227	'.0m	Cum. F	Progress		236.0m
Туре:	-	PDC	RPM(av	g)	100	6	14	'32nd"	On Bo	ottom Hrs	14	.00h	Cum. 0	On Btm H	rs	14.40h
Serial No.:	70	003752	F.Rate		0gpm		1 -1/	OZIIG	IADC	Drill Hrs	19	.90h	Cum I	ADC Drill	Hrs	27.30h
Bit Model	НС	M606Z	SPP		000psi				Total	Revs		0	Cum T	otal Revs	;	C
Depth In		459.0m	TFA		0.902				ROP(16.21	m/hr	ROP(a			16.39 m/hı
Depth Out	_	0m							(9)		.,	(0	9)		
BHA # 3																
Weight(Wet)	-	75.0klb	Length				255.9m	Torque	e(max)		Of	t-lbs	D.C. (*	1) Ann Ve	locity	
Wt Below Jar	(Wet)	45.0klb	String				0klb	Torque	e(Off.B	tm)	Of	t-lbs	D.C. (2	2) Ann Ve	locity	
			Pick-Up				0klb	Torque	e(On.B	tm)	Of	t-lbs	H.W.D	.P. Ann V	elocity	
			Slack-C	ff			0klb	·	`	,			D.P. A	nn Veloci	tv	
	Equipme	ent			Leng	gth	OD	ı	D	Seria	al #				ment	
X/O					0.3	35m	9.63in		0in	L9000						
9.625in Motor					9.6	8m	9.63in		0in	1069						
Float Sub					0.9	00m	9.50in		0in	3728		Noi	n-ported	l float		
X/O					1.3	32m	9.00in		0in	X/O 2						
12.25in String					1.6	65m	12.25in		0in	AIB 1123						
8.25in FEWD	tools				6.9	8m	8.25in			8001		CD	R w/AP	WD		
12.125 In-line						88m	12.13in			213272-2						
8.25in MWD 7						88m	8.25in			ED-12		Po	wer Puls	se		
12.25in String	ßtabiliser					5m	12.25in			AIB 1120						
8in DC					74.1		8.00in		0in	40007.0						
8in Jar 8in DC					9.7 27.6	'8m	8.06in 8.00in		0in 0in	48907 C						
X/O						4m	8.00in			X/O 09						
5in HWDP					110.7		6.63in		0in	A O 03						
5in Drillpipe						0m	5.00in		0in							
Survey																
MD (m)	Incl Deg (deg)		r. Az eg)	TV (m			Sect (m)	Dog	leg (30m)	N/S (m)			W m)		Tool Typ	е
2390.55	0.33	232.85		2390.5		-4.95		0.03	JUIII)	-4.95		3.99	,	MWD		
2419.57	0.32	200.20		2419.5 <i>:</i>		-5.08		0.06		-5.08		9.08		MWD		
	5.52	200.20		0400 4		0.00		0.00		0.50	[]			MAND		

0.24

0.50

0.33

0.37

208.59

232.35

216.60

195.11

2433.10

2476.23

2534.24

2649.07

-5.14

-5.33

-5.62

-6.24

0.07

0.07

0.04

0.01

-5.14

-5.33

-5.62

-6.24

-9.11

-9.30

-9.60

-9.90

MWD

MWD

MWD

MWD

2433.15

2476.28

2534.29

2649.13

Bulk Stocks						Personnel On Board				
Name	Unit	In	Used	Adjust	Balance	Company	Pax			
Fuel	MT	0	14	0	1,242.0	Santos	5			
Drill Water	MT	0	0	0	771.0	Transocean	64			
Potable Water	MT	102	31	0	419.0	BHI	6			
Gel	MT	41	0	0	138.0	Halliburton	3			
Cement	MT	0	0	0	227.0	M.I	2			
Barite	MT	0	0	0	101.0	Subsea 7	3			
	·					Anadrill	4			
						Schlumberger Wireline	6			
						Total	93			

Casing	9		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	1 Day	Weekly abandon rig drill.
BOP Test	03 Nov 2004	32 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	1 Day	Simulated fire in the upper accomodation block.
First Aid	21 Nov 2004	14 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	9 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	05 Dec 2004	0 Days	
Stop Cards	29 Nov 2004	6 Days	10 START Cards submitted

Marine							
Weather ch	eck on 05 Dec	2004 at 24:0	00				
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	27.0kn	070deg	1009bar	16.9C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments
0.4deg	0.4deg	0.25m	2.1m	080deg	6.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	6488.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	В	Bulks			
Lady Caroline	17:00 05/12/04		Jack Bates	Item	Unit	Quantity		
				Barite	MT	0		
				Cement	MT	80		
				Gel	MT	0		
				Mud	bbl	0		
Lady Astrid		19:40 05/12/04	Portland	Item	Unit	Quantity		
				Barite	MT	82		
				Cement	MT	0		
				Gel	MT	0		
				Mud	bbl	0		

Helicopter	Movement			
Flight #	Time	Destination	Comment	Pax
BZU	15:30	Jack Bates		7
BZU	15:42	Essendon		2

		From:	D. Atkins/P.	King			
Well Data							
Country	Australia	M. Depth	2878.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2878.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	183.0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	16.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	19.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Circulating	bottoms up @ TD (2979m) prior to	POH.	
RT-ML	1425m	Planned Op	POH. Rig ι	ıp to log.			

POH. Download LWD. Changed bit. RIH. Drilled 12-1/4" hole from 2695m to 2878m

Operations For Period 0000 Hrs to 2400 Hrs on 06 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description		
PH	Р	CHC	0000	0130	1.50	2695.0m	Continued to circulate bottoms up at casing shoe.		
PH	Р	CMD	0130	0145	0.25	2695.0m	Pumped 25 bbl slug whilst flushing choke and kill lines		
PH	Р	TO	0145	0530	3.75	2695.0m	Pulled out of hole from 2452m to 255m.		
PH	Р	TO	0530	0600	0.50	2695.0m	Pulled out of hole with BHA from 255m to 144m.		
PH	Р	SM	0600	0615	0.25	2695.0m	Held toolbox meeting prior to handling BHA		
PH	Р	HBHA	0615	0700	0.75	2695.0m	Pulled out hole with BHA from 144m to surface		
PH	Р	HBHA	0700	0715	0.25	2695.0m	Broke off bit and checked Anadrill motor bearings.		
PH	Р	OA	0715	0800	0.75	2695.0m	Ran in hole to 21m and downloaded Anadrill LWD.		
PH	Р	HBHA	0800	0930	1.50	2695.0m	Picked up from 21m to surface. Made up new bit and ran in hole with BHA to 144m		
PH	Р	OA	0930	0945	0.25	2695.0m	Performed shallow hole LWD/MWD test. OK.		
PH	Р	HBHA	0945	1000	0.25	2695.0m	Continued to run in hole BHA from 144m to 255m		
PH	Р	TI	1000	1200	2.00	2695.0m	Ran in hole on 5" drillpipe from 255m to 1425m.		
PH	Р	TI	1200	1345	1.75	2695.0m	Continued running in hole from 1425m to 2395m.		
PH	Р	RS	1345	1415	0.50	2695.0m	Serviced top drive whilst circulating 13-3/8" casing volume.		
PH	TP (RE)	TI	1415	1500	0.75	2695.0m	Pulled auto slips, observed debris (metal plate) fall down hole. Pulled bushing and check around diverter.		
PH	TP (JNK)	TI	1500	1530	0.50	2695.0m	Pumped slug and allowed to settle. Await instructions from town.		
PH	Р	TI	1530	1615	0.75	2695.0m	Continued running in hole from 2395m to 2695m.		
PH	Р	DA	1615	2130	5.25	2866.0m	Bed in bit and drill 12-1/4" hole from 2695m to 2866m.		
PH	Р	CHC	2130	2330	2.00	2866.0m	Circulated hole clean. (ECD 10.4 ppg, increased torque and pump pressure, losses over shakers)		
PH	Р	DA	2330	2400	0.50	2878.0m	Continued drilling 12-1/4" hole from 2886m to 2878m.		

Operations For Period 0000 Hrs to 0600 Hrs on 07 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
PH	Р	DA	0000	0045	0.75	2904.0m	Continued drilling 12-1/4" hole from 2878m to 2904m
PH	Р	SCR	0045	0100	0.25	2904.0m	Took SCRs @ 2904m with 9.5 ppg mud.
PH	Р	DA	0100	0145	0.75	2935.0m	Continued drilling 12-1/4" hole from 2904m to 2935m.
PH	Р	FC	0145	0200	0.25	2935.0m	Performed pre-connection flow check prior to making connection.
PH	Р	DA	0200	0330	1.50	2979.0m	Continued drilling 12-1/4" hole from 2935m to 2979m (TD).
PH	Р	CHC	0330	0400	0.50	2979.0m	Circulated and took TD survey.
PH	Р	OA	0400	0415	0.25	2979.0m	Performed static inflow test.
PH	Р	CHC	0415	0600	1.75	2979.0m	Circulated bottoms up (200spm/3470 psi)

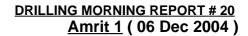
Phase Data to 2400hrs, 06 Dec 2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	52.5	04 Dec 2004	06 Dec 2004	478.00	19.917 days	2878.0m

WBM Data														
Mud Type:	API FL	.: 50	cm ³ /30m	CI:			52000	Solids:			8.6	Viscosity:		67sec/qt
KCI/Polymer/Glycol	Filter-C		1/32nd"	K+C*100	١0٠		10.5%	H2O:		8	6.4%	PV: YP:		23cp 30lb/100ft ²
Sample-From: Flowline	HTHP-		cm ³ /30m	Hard/Ca			960			Ū	5%	Gels 10s:		30ID/100IL ²
Time: 22:00					•							Gels 10m:		17
Weight: 9.50ppg	HTHP-	Саке:	0/32nd"	MBT:			11	Sand:			0.3	Fann 003: Fann 006:		8 10
Temp: 12.0C°				PM:			0.1				8.5	Fann 100:		30
				PF:			0.05	PHPA:			0ppb	Fann 200: Fann 300:		42 53
	<u> </u>											Fann 600:		76
Comment	Mainta	in volume. Cha	inge shak		r screer	ns.						T.		
Bit # 4				Wear	ı		O1	D	L	1	В	G	02	R
Size ("):	12.25in	IADC#	M323	N	ozzles		Dril	led over I	ast 24 hr	s	C	Calculated	d over E	Bit Run
Mfr: HY	CALOG	WOB(avg)	15.0klb	No.	Size		Progre	ess	183.	0m (Cum. I	Progress		183.0m
Type:	PDC	RPM(avg)	90	5	15/	32nd"	On Bo	ottom Hrs	4.2	20h (Cum.	On Btm H	rs	4.20h
Serial No.:	108439	F.Rate	824gpm		. 27		IADC	Drill Hrs	11.4	40h	Cum I	ADC Drill	Hrs	11.40h
Bit Model DSX10	04HGW		3465psi				Total I	Revs		0 0	Cum T	otal Revs	6	0
Depth In 2	695.0m	TFA	0.863				ROP(a	avg)	43.57 m	n/hr F	ROP(a	avg)		43.57 m/hr
Depth Out	0m						,	O,			•	0,		
Bit # 3		1		Wear	I		01	D	L		В	G	02	R
Dit # 3					0		0	BU	Α)	X	- 1	ER	PR
Size ("):	e ("): 12.25in IADC#		M323	No	ozzles		Dril	Orilled over last 24 hr		s	C	Calculated	d over E	Bit Run
Mfr: Hughes Chris	stensen	WOB(avg)	15.0klb	No.	Size		Progre	ess		0m Cum. Progress			236.0m	
Type:	PDC	RPM(avg)	100	6	14/:	32nd"	On Bo	Bottom Hrs		0h (Cum.	On Btm H	rs	14.40h
Serial No.: 7	003752	F.Rate	850gpm		IADC Drill Hrs				0h (Cum I	ADC Drill	Hrs	27.30h	
Bit Model HC	M606Z		3000psi				Total I	Revs		0 0	Cum T	otal Revs	5	0
Depth In 2	459.0m	TFA	0.902				ROP(a	avg)	1	N/A F	ROP(a	avg)		16.39 m/hr
	695.0m						,	O,			•	0,		
BHA # 3		1												
Weight(Wet)	75.0klb	Length		25	5.9m	Torque	e(max)		Oft-	lbs [D.C. (1) Ann Ve	elocity	
Wt Below Jar(Wet)	45.0klb	String			0klb	Torque	e(Off.Bt	tm)	Oft-	lbs [D.C. (2) Ann Ve	locity	
(1,7		Pick-Up				•	e(On.Bt	,	Oft-		`).P. Ann \	•	
		·				Torqui	J(OII.DI		Oit				•	
		Slack-Off	.		0klb		_		,	<u></u> '	D.P. A	nn Veloci	-	
Equipmo	ent		Leng	_	OD		D	Seria	al#			Com	ment	
X/O					9.63in			L9000						
9.625in Motor Float Sub					9.63in			1069		Nan		d float		
X/O					9.50in 9.00in			3728 X/O 2		NON-	portec	ı iloat		
12.25in String Stabiliser					2.25in			AIB 1123						
8.25in FEWD tools					8.25in			8001		CDR	w/AP	WD		
12.125 In-line Stabiliser					2.13in			213272-2						
				8.25in			ED-12		Powe	er Puls	se			
12.25in String Stabiliser			1.4	5m 1	2.25in		0in	AIB 1120						
8in DC			74.1	5m	8.00in		0in							
8in Jar			9.7		8.06in		0in	48907 C						
8in DC			27.6		8.00in		0in							
X/O					8.00in			X/O 09						
5in HWDP			110.7		6.63in		0in							
5in Drillpipe				0m	5.00in		0in							

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2534.29	0.33	216.60	2534.24	-5.62	0.04	-5.62	-9.60	MWD
2649.13	0.37	195.11	2649.07	-6.24	0.01	-6.24	-9.90	MWD
2762.85	0.23	199.79	2762.79	-6.81	0.01	-6.81	-10.07	MWD
2878.16	0.23	190.81	2878.10	-7.26	0	-7.26	-10.19	MWD
2950.00	0.26	140.59	2949.94	-7.52	0.03	-7.52	-10.11	MWD
2979.00	0.26	140.59	2978.94	-7.63	0	-7.63	-10.03	Proj to TD

Bulk Stocks						Personnel On Board	
Name	Unit	In	Used	Adjust	Balance	Company	Pax
Fuel	MT	0	12	0	1,230.0	Santos	5
Drill Water	MT	232	27	0	976.0	Transocean	64
Potable Water	MT	0	30	0	389.0	BHI	6
Gel	MT	0	0	0	138.0	Halliburton	3
Cement	MT	0	0	0	227.0	M.I	2
Barite	MT	0	0	0	101.0	Subsea 7	3
						Anadrill	4
						Schlumberger Wireline	6
						Total	93


Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	2 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	33 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	2 Days	Simulated fire in the upper accomodation block.
First Aid	21 Nov 2004	15 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	10 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	05 Dec 2004	1 Day	
Stop Cards	29 Nov 2004	7 Days	10 START Cards submitted

Weather check on 06 Dec 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	32.0kn	130deg	1008bar	16.2C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather (Comments
0.4deg	0.4deg	0.30m	3.0m	120deg	6.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	6398.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	Bu	MT MT MT MT MT bbl				
Lady Caroline		18:45 06/12/04	Portland	Item	Unit	Quantity			
				Barite	MT	0			
				Cement	MT	80			
				Gel	MT	0			
				Mud	bbl	0			
Lady Astrid	18:30 06/12/04		Jack Bates	Item	Unit	Quantity			
				Barite	MT	82			
				Cement	MT	0			
				Gel	MT	0			
				Mud	bbl	0			

Helicopter	Movemen	t		
Flight #	Time	Destination	Comment	Pax
BZU	15:30	Jack Bates		11
BZU	15:45	Essendon		11

		From:	D. Atkins/P.	King			
Well Data							
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	101.0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	17.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	20.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Pulling out	of hole after logging	j run #1.		
RT-ML	1425m	Planned Op	POH. Run	Checkshot if require	ed. Run CST log	. Commence laying	out drill collars.

Drilled 12-1/4" to TD (2979m). Circulated hole clean. Pumped out to shoe. POH. Rigged up Schlumberger. Commenced logging run #1.

Operations For Period 0000 Hrs to 2400 Hrs on 07 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PH	Р	DA	0000	0045	0.75	2904.0m	Continued drilling 12-1/4" hole from 2878m to 2904m
PH	Р	SCR	0045	0100	0.25	2904.0m	Took SCRs @ 2904m with 9.5 ppg mud.
PH	Р	DA	0100	0145	0.75	2935.0m	Continued drilling 12-1/4" hole from 2904m to 2935m.
PH	Р	FC	0145	0200	0.25	2935.0m	Performed pre-connection flow check prior to making connection.
PH	Р	DA	0200	0330	1.50	2979.0m	Continued drilling 12-1/4" hole from 2935m to 2979m (TD).
PH	Р	CHC	0330	0400	0.50	2979.0m	Circulated and took TD survey.
PH	Р	OA	0400	0415	0.25	2979.0m	Performed static inflow test.
PH	Р	CHC	0415	0615	2.00	2979.0m	Circulated bottoms up (200spm/3470 psi). Max 150 units gas. Hole clean.
PH	Р	FC	0615	0630	0.25	2979.0m	Flow checked. Well static.
EP	Р	тот	0630	0700	0.50	2979.0m	Pulled out of open hole from 2979m to 2910m. (Worked through tight spots from 2938m to 2910m with 20,000 lb - 30,000 lb overpull. Wiped clean. Maximum overpull 40,000 lb at 2910m.
EP	Р	WIN	0700	0915	2.25	2979.0m	Made up top drive and pumped out of open hole from 2910m to 2452m (197spm @ 3300 psi).
EP	Р	CHC	0915	1100	1.75	2979.0m	Circulated bottoms up at 2452m (13-3/8" casing shoe at 2455m)
EP	Р	FC	1100	1115	0.25	2979.0m	Flow checked. Well static.
EP	Р	CMD	1115	1130	0.25	2979.0m	Pumped slug and allowed same to settle.
EP	Р	TO	1130	1200	0.50	2979.0m	Pulled out of hole from 2454m to 2253m.
EP	Р	TO	1200	1245	0.75	2979.0m	Continued pulling out of hole from 2253m to 1710m.
EP	Р	FC	1245	1300	0.25	2979.0m	Flow checked weill prior to pulling BHA through BOPs.
EP	Р	TO	1300	1500	2.00	2979.0m	Continued pulling out of hole from 1710m to 255m.
EP	Р	НВНА	1500	1600	1.00	2979.0m	Pulled out of hole with BHA from 255m to surface. No junk damage noticed on BHA components.
EP	Р	HBHA	1600	1615	0.25	2979.0m	Broke off bit and ran in hole to 21m to download LWD.
EP	Р	OA	1615	1645	0.50	2979.0m	Downloaded LWD.
EP	Р	CRF	1645	1715	0.50	2979.0m	Racked back LWD stand from 21m. Cleared rig floor of excess equipment.
EP	Р	SM	1715	1730	0.25	2979.0m	Held toolbox meeting prior to rigging up Schlumberger wireline.
EP	Р	LOG	1730	1900	1.50	2979.0m	Rigged up Schlumberger Wireline.
EP	Р	SM	1900	1915	0.25	2979.0m	Held toolbox meeting prior to rigging up toolstring.
EP	Р	LOG	1915	2000	0.75	2979.0m	Picked up and made up Log #1.
EP	TP (VE)	LOG	2000	2100	1.00	2979.0m	Initialised and calibrated toolstring. Troubleshot caliper error.
EP	Р	LOG	2100	2115	0.25	2979.0m	Installed radioactive sources.
EP	Р	LOG	2115	2200	0.75	2979.0m	Ran in hole with wireline to 150m and set up compensator with 10,000 lb line pull.
EP	Р	LOG	2200	2230	0.50	2979.0m	Secured top drive hoses in derrick to prevent contact with wireline due to rig movement.
EP	Р	LOG	2230	2400	1.50	2979.0m	Ran Log #1 PEX-HALS-DSI-CNL-TLT-LDT-GR-CAL-SP

Operations For Period 0000 Hrs to 0600 Hrs on 08 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
EP	Р	LOG	0000	0115	1.25	2979.0m	Continued running in hole with Log #1. String hung up at 2945m. Unable to pass.
EP	Р	LOG	0115	0400	2.75	2979.0m	Logged open hole from 2945m. Resistivity tool reading incorrectly.
EP	Р	LOG	0400	0515	1.25	2979.0m	Completed Log #1. Ran in hole to 2945m to re-check resistivity reading. Hole tight, unable to pull up. Closed caliper and logged up to 2845m. Resistivity tool still reading incorrectly.
EP	Р	LOG	0515	0600	0.75	2979.0m	Commenced pulling out of hole with logging string.

Phase Data	a to 2400hrs	s, 07 C	Dec 2004													
Phase					Phase Hr	rs :	Start C	n	Finish O	n Cu	m Hrs		Cum Da	ys	Max	Depth
RIG MOVE/RIG	G-UP(RM)					39 1	17 Nov	2004	18 Nov 2	2004	39	9.00	1.625	days		0m
CONDUCTOR	HOLE(CH)				69.25 18 Nov			2004	21 Nov 2	2004	108	3.25	4.510 days			1510.0m
SURFACE HO	LE(SH)					49 2	21 Nov	2004	23 Nov 2	2004	157	6.552 days			1835.0m	
SURFACE CA	SING(SC)				113 23 Nov			2004	28 Nov 2	2004	270	11.260 days			1835.0m	
INTERMEDIAT	ΓΕ HOLE(IH)					77 2	28 Nov	2004	01 Dec 2	2004	347	7.25	14.469	days		2459.0m
INTERMEDIAT	TE CASING(IC))			7	78.25	1 Dec	2004	04 Dec 2	2004	425	5.50	17.729	days		2459.0m
PRODUCTION	HOLE(PH)					59 0	04 Dec	2004	07 Dec 2	2004	484	1.50	20.188	days		2979.0m
EVALUATION	PRODUCTION	HOLE	(EP)			17.5	7 Dec	2004	07 Dec 2	2004	502	2.00	20.917	days		2979.0m
WBM Data																
Mud Type:	/Polymer/Glycol	API FL	:	5cm ³ /30m	CI:			50500	Solids:			9	Viscosity: PV:			66sec/qt 24cp
	Pit	Filter-C	Cake:	1/32nd"	K+C*1000	0:		10%	H2O:		86.	5%	YP:			30lb/100ft ²
Sample-From:		HTHP-	·FL:	0cm ³ /30m	Hard/Ca:			840	Oil:		4.:	5%	Gels 10s:			8
Time:	20:30	HTHP-	Cake.	0/32nd"	MBT:			11	Sand:			0.3	Gels 10m: Fann 003:			18
Weight:	9.50ppg		ounc.	0/02110									Fann 003:			10
Temp:	12.0C°				PM:			0.15	pH:			8.5	Fann 100:			24
					PF:			0.05	PHPA:		0p	pb	Fann 200:			33
													Fann 300: Fann 600:			54 78
Comment		TD. Ad	ld biocide to p	revent mic	robial conta	aminatio	on whil	e e-logg	ging. Clean	s/c pits.						
Bit # 4				Wear	I		01	D	L	В		G	02)	R	
						0		1	BU	Α	X		I	BF	:	TD
Size ("):	,	12.25in	IADC#	M323	Nozzles			Drill	led over la	ast 24 hrs	3	C	alculated	over	Bit R	un
Mfr:	HYC	ALOG	WOB(avg)	15.0klb	No.	Size		Progre	ess	101.0	0m Cu	m. l	Progress			284.0m
Type:		PDC	RPM(avg)	90	5	15/3	32nd"	On Bo	ttom Hrs	1.9	00h Cu	m. (On Btm H	's		6.10h
Serial No.:	1	08439	F.Rate	824gpm				IADC	Drill Hrs	8.9	00h Cu	m l	ADC Drill I	Hrs		20.30h
Bit Model	DSX10	4HGW	SPP	3590psi				Total F	Revs		0 Cu	m T	otal Revs			0
Depth In	26	95.0m	TFA	0.863				ROP(a	avg)	53.16 m	/hr RC	P(a	avg)		46	.56 m/hr
Depth Out	29	79.0m														
Bit # 3					Wear	I		O1	D	L	В		G	02		R
0: (11)		10.05	1450#	14000		0		0	BU	Α	X		1	ER		PR
Size ("):		12.25in	IADC#	M323	_	zzles			led over la				Calculated	over	BIT K	
Mfr:	Hughes Chris		WOB(avg)	15.0klb	No.	Size		Progre		(Progress			236.0m
Type:	70		RPM(avg)	100	6	14/3	32nd"]	ttom Hrs				On Btm Hi			14.40h
Serial No.:		003752	F.Rate	850gpm					Drill Hrs				ADC Drill I			27.30h
Bit Model		M606Z	SPP	3000psi				Total F					otal Revs			0
Depth In		159.0m	TFA	0.902				ROP(a	avg)	Ŋ	N/A RC)P(a	avg)		16	.39 m/hr
Depth Out	26	895.0m														
BHA # 3			T.								_	_				
Weight(Wet)		75.0klb	Length					e(max)		Oft-		,	1) Ann Ve	•		
Wt Below Jar(Wet)	15.0klb	String		(0klb	Torque	e(Off.Bt	m)	Oft-	bs D.0	C. (2	2) Ann Ve	locity		
			Pick-Up		(0klb	Torque	e(On.Bt	m)	Oft-	bs H.	W.D	P. Ann V	elocity	/	
			Slack-Off		(0klb					D.I	P. A	nn Veloci	ty		

Equipment	Length	OD	ID	Serial #	Comment
X/O	0.35m	9.63in	0in	L9000	
9.625in Motor	9.68m	9.63in	0in	1069	
Float Sub	0.90m	9.50in	0in	3728	Non-ported float
X/O	1.32m	9.00in	0in	X/O 2	
12.25in String Stabiliser	1.65m	12.25in	0in	AIB 1123	
8.25in FEWD tools	6.98m	8.25in	0in	8001	CDR w/APWD
12.125 In-line Stabiliser	1.38m	12.13in	0in	213272-2	
8.25in MWD Tools	8.38m	8.25in	0in	ED-12	Power Pulse
12.25in String Stabiliser	1.45m	12.25in	0in	AIB 1120	
8in DC	74.15m	8.00in	0in		
8in Jar	9.78m	8.06in	0in	48907 C	
8in DC	27.66m	8.00in	0in		
X/O	1.14m	8.00in	0in	X/O 09	
5in HWDP	110.77m	6.63in	0in		
5in Drillpipe	0m	5.00in	0in		

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2534.29	0.33	216.60	2534.24	-5.62	0.04	-5.62	-9.60	MWD
2649.13	0.37	195.11	2649.07	-6.24	0.01	-6.24	-9.90	MWD
2762.85	0.23	199.79	2762.79	-6.81	0.01	-6.81	-10.07	MWD
2878.16	0.23	190.81	2878.10	-7.26	0	-7.26	-10.19	MWD
2950.00	0.26	140.59	2949.94	-7.52	0.03	-7.52	-10.11	MWD
2979.00	0.26	140.59	2978.94	-7.63	0	-7.63	-10.03	Proj to TD

Bulk Stocks						Personnel On Board			
Name	Unit	In	Used	Adjust	Balance	Company	Pax		
Fuel	MT	0	9	0	1,221.0	Santos	5		
Drill Water	MT	0	27	0	949.0	Transocean	64		
Potable Water	MT	0	38	0	351.0	BHI	6		
Gel	MT	0	0	0	138.0	Halliburton	3		
Cement	MT	0	0	0	227.0	M.I	2		
Barite	MT	0	0	0	101.0	Subsea 7	3		
						Anadrill	4		
						Schlumberger Wireline	6		
						Total	93		

Casing	9		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	0ppg / 0ppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	3 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	34 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	3 Days	Simulated fire in the upper accomodation block.
First Aid	21 Nov 2004	16 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	11 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	05 Dec 2004	2 Days	
Stop Cards	29 Nov 2004	8 Days	10 START Cards submitted

Marine									
Weather check on 07 Dec 2004 at 24:00									
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period		
8.00nm	39.0kn	140deg	1013bar	14.6C°	0m	000deg	Oft/sec		
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments		
1.4deg	1.4deg	0m	5.5m	140deg	6.0ft/sec				
Rig Dir.	Ris. Tension	VDL		Comments					
217.0deg	0klb	6389.0klb							

Boats	Arrived (date/time)	Arrived (date/time) Departed (date/time)		Bulks			
Lady Caroline		18:45 06/12/04	Portland	Item	Unit	Quantity	
				Barite	MT	0	
				Cement	MT	80	
				Gel	MT	0	
				Mud	bbl	0	
Lady Astrid	18:30 06/12/04		Jack Bates	Item	Unit	Quantity	
				Barite	MT	82	
				Cement	MT	0	
				Gel	MT	0	
				Mud	bbl	0	

		From:	D. Atkins/P. I	King					
Well Data									
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost			
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032		
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost			
Rig	Jack Bates	Days from spud	18.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost			
Wtr Dpth(LAT)	1396.0m	Days on well	21.92			Planned TD	2979.0m		
RT-ASL(LAT)	29.0m	Current Op @ 0600	Running Lo	g #3 CST-GR.					
RT-ML	1425m	Planned Op	POH with CST-GR. RIH and lay out 12-1/4" BHA. RIH and set EZSV @ 2435m. Pump cement plugs #1 and #2.						

Completed Log #1PEX-Sonic-Resistivity-Density Neutron-Caliper GR. Ran Log #2 VSP. Commenced Log #3 CST-GR.

Operations For Period 0000 Hrs to 2400 Hrs on 08 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
EP	Р	LOG	0000	0115	1.25	2979.0m	Continued running in hole with Log #1. String hung up at 2945m. Unable to pass.
EP	Р	LOG	0115	0400	2.75	2979.0m	Logged open hole from 2945m. Resistivity tool reading incorrectly. Note: BHST 56.1 deg C, 14.5 hrs after last circulation.
EP	Р	LOG	0400	0515	1.25	2979.0m	Completed Log #1. Ran in hole to 2945m to re-check resistivity reading. Hole tight, unable to pull up. Closed caliper and logged up to 2845m. Resistivity tool still reading incorrectly.
EP	Р	LOG	0515	0645	1.50	2979.0m	Commenced pulling out of hole with logging string.
EP	Р	LOG	0645	0730	0.75	2979.0m	Bled off compensator. Continued pulling out of hole.
EP	Р	LOG	0730	0845	1.25	2979.0m	Broke out and layed down logging string #1.
EP	Р	RS	0845	0915	0.50	2979.0m	Serviced top drive whilst waiting on instructions from Santos Adelaide re: next logging run.
EP	Р	SM	0915	0930	0.25	2979.0m	Held toolbox meeting prior to making up logging string #2 VSP.
EP	Р	LOG	0930	1030	1.00	2979.0m	Prepared Schlumberger tools for Log #2 VSP. (Changed out bridle for VSP)
EP	Р	LOG	1030	1145	1.25	2979.0m	Picked up and made up logging string #2 and calibrated same.
EP	Р	LOG	1145	2015	8.50	2979.0m	Ran Log #2 VSP.
EP	Р	LOG	2015	2115	1.00	2979.0m	POH with logging string #2.
EP	Р	LOG	2115	2130	0.25	2979.0m	Held toolbox meeting prior to laying out and picking up logging tools.
EP	Р	LOG	2130	2145	0.25	2979.0m	Layed out logging string #2.
EP	Р	LOG	2145	2345	2.00	2979.0m	Prepared explosives, made up and picked up logging string #3 CST. (Radio Silence at 23:15)
EP	Р	LOG	2345	2400	0.25	2979.0m	Commenced running in hole to 150m with logging string #3 CST and set compensator with 10,000 lb line pull.

Operations For Period 0000 Hrs to 0600 Hrs on 09 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
EP	Р	LOG	0000	0100	1.00	2979.0m	Continued running in hole with CST-GR to 1600m. Radio Silence ceased.
EP	Р	LOG	0100	0300	2.00	2979.0m	Continued running in hole with CST-GR. Tagged previous hang up at 2945m.
EP	Р	LOG	0300	0600	3.00	2979.0m	Ran Log #3 CST-GR. 30 core samples.

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	41.5	07 Dec 2004	08 Dec 2004	526.00	21.917 days	2979.0m

WBM Data									
Mud Type: KCl/Pd Sample-From: Time: Weight: Temp:	plymer/Glycol Pit 22:00 9.60ppg 20.0C°	API FL: Filter-Cake: HTHP-FL: HTHP-Cake:	4cm³/30m 1/32nd" 0cm³/30m 0/32nd"	CI: K+C*1000: Hard/Ca: MBT: PM: PF:	49000 10% 800 11.25 0.15 0.05	Solids: H2O: Oil: Sand: pH: PHPA:	9.4 86.4% 4.2% 0.2 8.5 Oppb	Viscosity: PV: YP: Gels 10s: Gels 10m: Fann 003: Fann 006: Fann 100: Fann 200: Fann 300:	66sec/qt 22cp 29lb/100ft² 8 19 8 10 30 43
Comment		Continued clean	ing pits. Weigh	t up Pit 2 to 17ppg	to dump barite	e.		Fann 600:	73

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2534.29	0.33	216.60	2534.24	-5.62	0.04	-5.62	-9.60	MWD
2649.13	0.37	195.11	2649.07	-6.24	0.01	-6.24	-9.90	MWD
2762.85	0.23	199.79	2762.79	-6.81	0.01	-6.81	-10.07	MWD
2878.16	0.23	190.81	2878.10	-7.26	0	-7.26	-10.19	MWD
2950.00	0.26	140.59	2949.94	-7.52	0.03	-7.52	-10.11	MWD
2979.00	0.26	140.59	2978.94	-7.63	0	-7.63	-10.03	Proj to TD

Bulk Stocks						Personnel On Board				
Name	Unit	In	Used	Adjust	Balance	Company	Pax			
Fuel	MT	0	7	0	1,214.0	Santos	5			
Drill Water	MT	0	79	0	870.0	Transocean	63			
Potable Water	MT	0	24	0	327.0	BHI	6			
Gel	MT	0	0	0	138.0	Halliburton	3			
Cement	MT	0	0	0	227.0	M.I	1			
Barite	MT	0	54	0	47.0	Subsea 7	3			
						Anadrill	4			
						Schlumberger Wireline	6			
						Total	91			

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	4 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	35 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	4 Days	Simulated fire in the upper accomodation block.
First Aid	21 Nov 2004	17 Days	Roustabout sprained his ankle whilst offloading 20" casing.
Lost Time Incident	26 Nov 2004	12 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
Safety Meeting	05 Dec 2004	3 Days	
Stop Cards	29 Nov 2004	9 Days	10 START Cards submitted

Bulks

Arrived (date/time)

Boats

Marine	Marine Marine										
Weather ch	eck on 08 Dec	2004 at 24:0	00								
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period				
4.00nm	39.0kn	130deg	1012bar	16.2C°	0m	000deg	Oft/sec				
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments				
1.5deg	1.5deg	0.80m	5.5m	140deg	6.0ft/sec						
Rig Dir.	Ris. Tension	VDL	1	Comments	•						
217.0deg	0klb	5811.0klb									

Status

Departed (date/time)

Lady Caroline			18:45 06/12/04	Portland	Item	Unit	Quantity
					Barite	MT	0
					Cement	MT	80
					Gel	MT	0
					Mud	bbl	0
Lady Astrid		18:30 06/12/04		Jack Bates	Item	Unit	Quantity
					Barite	MT	82
					Cement	MT	0
					Gel	MT	0
					Mud	bbl	0
Helicopter	Movement						
Flight #	Time		Destination	Cor	mment		Pax
BZU	15:20	Jack Bates					11
BZU	15:42	Essendon					13

		From:	D. Atkins/P. I	King						
Well Data										
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost				
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032			
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost				
Rig	Jack Bates	Days from spud	19.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost				
Wtr Dpth(LAT)	1396.0m	Days on well	22.92			Planned TD	2979.0m			
RT-ASL(LAT)	29.0m	Current Op @ 0600	Pulling out	Pulling out of hole laying out drill pipe @ 1141m.						
RT-ML	1425m	Planned Op	POH. Retriccasing.	eve wear bushing. F	R/D Anadrill T-pe	eice. RIH to cut & re	etrieve 13-3/8"			

Logging Run #3 CST-GR, POH. Layed out 12-1/4" BHA. Set EZSV @ 2435m. Pumped cement plug #1 (2386m - 2490m).

Operations For Period 0000 Hrs to 2400 Hrs on 09 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description				
EP	Р	LOG	0000	0100	1.00	2979.0m	Continued running in hole with CST-GR to 1600m. Radio Silence ceased.				
EP	Р	LOG	0100	0300	2.00	2979.0m	Continued running in hole with CST-GR. Tagged previous hang up at 2945m.				
EP	Р	LOG	0300	0800	5.00	2979.0m	Ran Log #3 CST-GR. 30 core samples.				
EP	Р	LOG	0800	0800	0.00	2979.0m	Continued Log #3.				
EP	Р	LOG	0800	0830	0.50	2979.0m	Logging string on surface. Broke out and layed out same. 21 out of 30 cores recovered.				
EP	Р	LOG	0830	0900	0.50	2979.0m	Rigged down Schlumberger wireline.				
EP	Р	HBHA	0900	1000	1.00	2979.0m	Picked up BHA from derrick and ran in hole to 144m.				
EP	Р	НВНА	1000	1015	0.25	2979.0m	Picked up one stand of HWDP made up to top drive and pumped string volume with seawater to flush Anadrill tools.				
EP	Р	SM	1015	1030	0.25	2979.0m	Held toolbox meeting prior to laying out BHA.				
EP	Р	НВНА	1030	1445	4.25	2979.0m	Pulled out of hole from 144m to surface laying out BHA.				
PA	Р	RPK	1445	1500	0.25	2979.0m	Changed out handling equipment for running 5" drillpipe.				
PA	Р	RPK	1500	1530	0.50	2979.0m	Picked up and made up 13-3/8" Halliburton EZSV Cement Retainer.				
PA	Р	RPK	1530	1730	2.00	2979.0m	Ran in hole with cement retainer on drillpipe from surface to 1200m.				
PA	Р	RPK	1730	1745	0.25	2979.0m	Picked up and made up side entry and TIW valve to a stand of HWDP and racked back.				
PA	Р	RPK	1745	2115	3.50	2979.0m	Continued to run in hole from 1200m to 2435m.				
PA	Р	RPK	2115	2130	0.25	2979.0m	Broke circulation @ 2435m (30spm/440psi). Set EZSV cement retainer at 2435m (25 turns to set) Pulled 45,000 lb to shear release running tool. Confirmed set with 20,000 lb set down weight.				
PA	Р	RPK	2130	2145	0.25	2979.0m	Picked up 3m to sting out of EZSV. Turned string 20 turns to extend running tool mandrel. Spaced out, closed annular and pressure tested EZSV to 1100 psi for 10 mins (with 9.6 ppg MW)				
PA	Р	CMP	2145	2200	0.25	2979.0m	Stung into EZSV. Established injectivity rates using rig pumps. 1 bbl/min @ 1300 psi; 2 bbl/min @ 1400 psi; 3 bbl/min @ 1450 psi; 4 bbl/min @ 1500 psi.				
PA	Р	SM	2200	2215	0.25	2979.0m	Held toolbox meeting prior to pumping cement plug #1.				
PA	Р	CMP	2215	2330	1.25	2979.0m	Pumped cement plug #1 (2386m - 2490m).				
							- 10 bbl drill water spacer - P/T cementing lines to 2000 psi (Test good) - 10 bbl drill water spacer - 55 bbl 15.8 ppg cement (Class G, 1.16 cuft/sx, 5.13 gal/sx, 20gal/10bbl Halad 413) - 75 bbl 9.6 ppg mud displacement - Stung into EZSV - 35 bbl 9.6 ppg mud squeeze - Stung out of EZSV - 10 bbl 9.6 ppg mud displacement				
PA	Р	CMP	2330	2400	0.50	2979.0m	Rigged down cement hose and racked back cement stand.				

Operations For Period 0000 Hrs to 0600 Hrs on 10 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description					
PA	Р	TO	0000	0015	0.25	2979.0m	Pulled up out of cement plug from 2345m to 2350m.					
PA	Р	CHC	0015	0145	1.50	2979.0m	Circulated bottoms up with inhibited mud (300 spm / 3480 psi)					
PA	Р	CMD	0145	0200	0.25	2979.0m	Pumped slug.					
PA	Р	TO	0200	0330	1.50	2979.0m	Continued to pull out of hole from 2350m to 1400m.					
PA	Р	ТО	0330	0400	0.50	2979.0m	Cleared rig floor of excess equipment and changed out elevators to 350 t manual. Rigged up to lay out drill pipe in singles.					

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description			
PA	Р	SM	0400	0415	0.25	2979.0m	Held toolbox meeting prior to laying out 5" drillpipe.			
PA	Р	PLD	0415	0600	1.75	2979.0m	Pulled out of hole, laying out drillpipe from 1400m to 1141m.			

Phase Data to 2400hrs, 09 Dec 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	9.25	09 Dec 2004	09 Dec 2004	550.00	22.917 days	2979.0m

WBM Data									
Mud Type:		API FL:	5cm ³ /30m	CI:	51000	Solids:	9.4	Viscosity:	67sec/qt
KCI/P	olymer/Glycol	Filter-Cake:	1/32nd"	K+C*1000:	10%	H2O:	86.4%	PV:	23cp 29lb/100ft²
Sample-From:	Pit	HTHP-FL:	0cm ³ /30m	Hard/Ca:	840	Oil:	4.2%	Gels 10s:	2915/10011-
Time:	21:30							Gels 10m:	20
Weight:	9.60ppg	HTHP-Cake:	0/32nd"	MBT:	11.5	Sand:	0.2	Fann 003:	8
Temp:	21.1C°			PM:	0.15	pH:	8.5	Fann 006: Fann 100:	10 30
remp.	21.10			PF:	0.05	PHPA:	0ppb	Fann 200:	44
								Fann 300:	52
								Fann 600:	75
Comment		Inhibited circ sys	stem and write	off balance of bari	te.				

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2534.29	0.33	216.60	2534.24	-5.62	0.04	-5.62	-9.60	MWD
2649.13	0.37	195.11	2649.07	-6.24	0.01	-6.24	-9.90	MWD
2762.85	0.23	199.79	2762.79	-6.81	0.01	-6.81	-10.07	MWD
2878.16	0.23	190.81	2878.10	-7.26	0	-7.26	-10.19	MWD
2950.00	0.26	140.59	2949.94	-7.52	0.03	-7.52	-10.11	MWD
2979.00	0.26	140.59	2978.94	-7.63	0	-7.63	-10.03	Proj to TD

Bulk Stocks						Personnel On Board	
Name	Unit	In	Used	Adjust	Balance	Company	Pax
Fuel	MT	0	9	0	1,205.0	Santos	5
Drill Water	MT	0	27	0	843.0	Transocean	63
Potable Water	MT	0	26	0	301.0	BHI	6
Gel	MT	0	0	0	138.0	Halliburton	3
Cement	MT	0	0	0	227.0	M.I	1
Barite	MT	0	47	0	0.0	Subsea 7	3
						Anadrill	4
						Schlumberger Wireline	6
						Total	91

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	0ppg / 0ppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	5 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	36 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	None
Fire Drill	04 Dec 2004	5 Days	Simulated fire on the helideck.
First Aid	09 Dec 2004	0 Days	Anadrill MWD Engineer caught fingers in MRT rucker whilst attempting to establish how to rig down guideline tensiometer wire. Injured index and middle fingers on right hand. 13 stitches applied by medic. Pain killers and anti-biotics administered.
Landel Crane	09 Dec 2004	0 Days	L/D Logging Tools, L/D 12-1/4" BHA, P/U EZSV
Lost Time Incident	26 Nov 2004	13 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
OJT Module	09 Dec 2004	0 Days	50 Modules completed since Sunday 05/12/04
Safety Meeting	05 Dec 2004	4 Days	
Safety Theme of the Week	05 Dec 2004	4 Days	Risk Assessment
START Tour	09 Dec 2004	0 Days	Snr Toolpusher, Floorman. Bundling 3-1/2" pipe on main deck aft.
Stop Cards	29 Nov 2004	10 Days	10 START Cards submitted
Transocean Management Visit	08 Dec 2004	1 Day	Sandy Thomson, Rig Manager

Weather check on 0	9 Dec 2004 at 24:00
--------------------	---------------------

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
2.00nm	31.0kn	120deg	1011bar	16.5C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather (Comments
1.3deg	1.3deg	0.60m	4.6m	120deg	7.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	5686.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	Bu	Bulks			
Lady Caroline		18:45 06/12/04	Portland	Item	Unit	Quantity		
				Barite	MT	0		
				Cement	MT	80		
				Gel	MT	0		
				Mud	bbl	0		
Lady Astrid	18:30 06/12/04		Jack Bates	Item	Unit	Quantity		
				Barite	MT	82		
				Cement	MT	0		
				Gel	MT	0		
				Mud	bbl	0		

Helicopter Movement

Flight #	Time	Destination	Comment	Pax
BZU	15:20	Jack Bates		11
BZU	15:42	Essendon		13

		From:	D. Atkins/P. I	King			
Well Data							
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	20.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	23.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Pulling out	of hole with 13-3/8"	casing cutting a	ssembly, hanger a	and 6.5 jts casing.
RT-ML	1425m	Planned Op		ement plug #2 (1460 e rigging up to pull ri		isplace riser to sea	awater. POH.

POH after setting cement plug #1. Retrieved wear bushing. Ran in hole to cut 13-3/8" casing.

Operations For Period 0000 Hrs to 2400 Hrs on 10 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	Р	TO	0000	0015	0.25	2979.0m	Pulled up out of cement plug from 2345m to 2350m.
PA	Р	CHC	0015	0145	1.50	2979.0m	Circulated bottoms up with inhibited mud (300 spm / 3480 psi)
PA	Р	CMD	0145	0200	0.25	2979.0m	Pumped slug.
PA	Р	TO	0200	0330	1.50	2979.0m	Pulled out of hole from 2350m to 1400m.
PA	Р	ТО	0330	0400	0.50	2979.0m	Cleared rig floor of excess equipment and changed out elevators to 350 t manual. Rigged up to lay out drill pipe in singles.
PA	Р	SM	0400	0415	0.25	2979.0m	Held toolbox meeting prior to laying out 5" drillpipe.
PA	Р	PLD	0415	1200	7.75	2979.0m	Pulled out of hole, laying out drillpipe from 1400m to surface.
PA	Р	HT	1200	1215	0.25	2979.0m	Broke out and layed out EZSV running tool.
PA	Р	SM	1215	1230	0.25	2979.0m	Held toolbox meeeting prior to removing Anadrill pressure transducer on mud hose.
PA	Р	OA	1230	1415	1.75	2979.0m	Removed transducer from mud hose.
PA	Р	WH	1415	1645	2.50	2979.0m	Ran in hole to 1400m with Dril-Quip 18-3/4" Multi-Purpose Tool c/w wear bushing retrieval adaptor.
PA	Р	WH	1645	1700	0.25	2979.0m	Made up top drive and broke circulation. Ran in hole to 1421m and landed out in wear bushing. Set down 20,000 lb. Pulled wear bushing with 60,000 lb overpull.
PA	Р	CMD	1700	1715	0.25	2979.0m	Pumped slug and chased same.
PA	Р	WH	1715	1930	2.25	2979.0m	Pulled out of hole from 1421m to surface.
PA	Р	WH	1930	1945	0.25	2979.0m	Broke out and layed out wear bushing and MPT.
PA	Р	RS	1945	2015	0.50	2979.0m	Greased and serviced top drive whilst Weatherford cutting assembly was being prepared on dodge truck.
PA	Р	SM	2015	2030	0.25	2979.0m	Held toolbox meeting prior to running Weatherford casing cutting assembly.
PA	Р	ССТ	2030	2130	1.00	2979.0m	Picked up and made up Weatherford 13-3/8" casing cutting assembly and ran in hole to 34m. Tested cutting assembly. (20 spm / 90 psi)
PA	Р	ССТ	2130	2230	1.00	2979.0m	Ran in hole to 95m. Picked up and made up casing spear and bumper sub. Changed out grapple on spear to suit 13-3/8" casing.
PA	Р	CCT	2230	2400	1.50	2979.0m	Continued to run in hole on drill pipe from 95m to 860m.

Operations For Period 0000 Hrs to 0600 Hrs on 11 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	Р	CCT	0000	0115	1.25	2979.0m	Continued to run in hole with casing cutter assembly to 1511m.
PA	Р	CCT	0115	0130	0.25	2979.0m	Land off in wellhead with cutter @ 1511m. Set down 20,000 lb to confirm assembly landed. Pulled 10,000 lb to engage spear in 13-3/8" casing.
PA	Р	CCT	0130	0145	0.25	2979.0m	Cut 13-3/8" casing @ 1511m. (100 rpm, 65 spm, 500 psi, 3-4 k ft.lb)
PA	Р	CCT	0145	0200	0.25	2979.0m	Pulled 150,000 lb over string weight. Casing would not release.
PA	Р	CCT	0200	0215	0.25	2979.0m	Re-cut casing @ 1511m. (100 rpm, 65 spm, 750 psi, 2-7 k ft.lb). Pulled 180,000 lb over string weight. Casing released.
PA	Р	FC	0215	0230	0.25	2979.0m	Flow checked. Well static.
PA	Р	CMD	0230	0245	0.25	2979.0m	Pumped 10 bbl slug.
PA	Р	CCT	0245	0530	2.75	2979.0m	Pulled out of hole from 1511m to 95m (13-3/8" casing hanger on surface)
PA	Р	CCT	0530	0600	0.50	2979.0m	Broke out and layed out bumper sub and casing spear.

Phase Data to 2400hrs, 10 Dec 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	33.25	09 Dec 2004	10 Dec 2004	574.00	23.917 days	2979.0m
WBM Data	_	·	·	·	·	·

WBM Data									
Mud Type: KCI/Polymer/Glycol Sample-From: Pit		API FL:	5cm ³ /30m	CI:	51000	Solids:	9.4	Viscosity:	66sec/qt
		Filter-Cake:	1/32nd"	K+C*1000:	10%	H2O:	86.6%	PV: YP:	22cp 30lb/100ft²
Sample-From: Time:	21:00	HTHP-FL:	0cm ³ /30m	Hard/Ca:	840	Oil:	4%	Gels 10s: Gels 10m:	8 19
Weight:	9.60ppg	HTHP-Cake:	0/32nd"	MBT:	11.5	Sand:	0.25	Fann 003:	8
Temp:	20.6C°			PM:	0.1	pH:	8.5	Fann 006: Fann 100:	10 31
	20.00			PF:	0.05	PHPA:	0ppb	Fann 200:	45
								Fann 300: Fann 600:	52 74
Comment		Backload mud cl	nemicals	1		L		<u> </u>	

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2534.29	0.33	216.60	2534.24	-5.62	0.04	-5.62	-9.60	MWD
2649.13	0.37	195.11	2649.07	-6.24	0.01	-6.24	-9.90	MWD
2762.85	0.23	199.79	2762.79	-6.81	0.01	-6.81	-10.07	MWD
2878.16	0.23	190.81	2878.10	-7.26	0	-7.26	-10.19	MWD
2950.00	0.26	140.59	2949.94	-7.52	0.03	-7.52	-10.11	MWD
2979.00	0.26	140.59	2978.94	-7.63	0	-7.63	-10.03	Proj to TD

Bulk Stocks						Personnel On Board			
Name	Unit	In	Used	Adjust	Balance	Company	Pax		
Fuel	MT	0	10	0	1,195.0	Santos	3		
Drill Water	MT	0	0	0	843.0	Transocean	66		
Potable Water	MT	0	38	0	263.0	BHI	2		
Gel	MT	0	0	0	138.0	Halliburton	3		
Cement	MT	0	0	0	227.0	M.I	1		
Barite	MT	0	0	0	0.0	Subsea 7	3		
						Weatherford	1		
						Dril-Quip	1		
						Woodside	1		
						Total	81		

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	6 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	37 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	6 Days	Simulated fire on the helideck.
First Aid	09 Dec 2004	1 Day	Anadrill MWD Engineer caught fingers in MRT rucker whilst attempting to establish how to rig down guideline tensiometer wire. Injured index and middle fingers on right hand. 13 stitches applied by medic. Pain killers and anti-biotics administered.
Landel Crane	10 Dec 2004	0 Days	L/O 5" Drill pipe. L/O Wear Bushing. P/U Casing Cutter. Bundling drill collars and drill pipe for backload
Lost Time Incident	26 Nov 2004	14 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
OJT Module	09 Dec 2004	1 Day	50 Modules completed since Sunday 05/12/04
Safety Meeting	05 Dec 2004	5 Days	Weekly safety meeting.
Safety Theme of the Week	05 Dec 2004	5 Days	Risk Assessment
START Tour	10 Dec 2004	0 Days	RSTC, BHI Mud logger. Aft Pipe Deck laying out 5" drill pipe.
Stop Cards	29 Nov 2004	11 Days	10 START Cards submitted
Transocean Management Visit	08 Dec 2004	2 Days	Departed 10 Dec 04

Weather check on 10 Dec 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	24.0kn	120deg	1004bar	16.5C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather 0	Comments
0.4deg	0.4deg	0.70m	2.4m	120deg	6.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	5509.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	E	Bulks	
Lady Caroline		18:45 06/12/04	Portland	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	80
				Gel	MT	0
				Mud	bbl	0
Lady Astrid	18:30 06/12/04		Jack Bates	Item	Unit	Quantity
				Barite	MT	82
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0

Helicopter Movement

Flight #	Time	Destination	Comment	Pax
BZU	16:36	Jack Bates		8
BZU	16:49	Warrnambool		9
BZU	18:29	Jack Bates		6
BZU	18:47	Essendon		15

		From:	D. Atkins/P. I	King			
Well Data							
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	21.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	24.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Rigging up	to pull BOP and rise	er.	1	
RT-ML	1425m	Planned Op	RIH and re riser.	trieve divertor. P/U r	iser landing joir	nt. Unlatch BOP. Co	mmence pulling

Cut and retrieved 13-3/8" casing. Set cement plug #2 (1461m to 1561m). Commenced rigging up to pull BOP and riser.

Operations For Period 0000 Hrs to 2400 Hrs on 11 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
PA	Р	CCT	0000	0115	1.25	2979.0m	Continued to run in hole with casing cutter assembly to 1511m.
PA	Р	CCT	0115	0130	0.25	2979.0m	Land off in wellhead with cutter @ 1511m. Set down 20,000 lb to confirm assembly landed. Pulled 10,000 lb to engage spear in 13-3/8" casing.
PA	Р	CCT	0130	0145	0.25	2979.0m	Cut 13-3/8" casing @ 1511m. (100 rpm, 65 spm, 500 psi, 3-4 k ft.lb)
PA	Р	CCT	0145	0200	0.25	2979.0m	Pulled 150,000 lb over string weight. Casing would not release.
PA	Р	ССТ	0200	0215	0.25	2979.0m	Re-cut casing @ 1511m. (100 rpm, 65 spm, 750 psi, 2-7 k ft.lb). Pulled 180,000 lb over string weight. Casing released.
PA	Р	FC	0215	0230	0.25	2979.0m	Flow checked. Well static.
PA	Р	CMD	0230	0245	0.25	2979.0m	Pumped 10 bbl slug.
PA	Р	CPL	0245	0530	2.75	2979.0m	Pulled out of hole from 1511m to 95m (13-3/8" casing hanger on surface)
PA	Р	CPL	0530	0700	1.50	2979.0m	Broke out and layed out bumper sub and casing spear and racked back.
PA	Р	CPL	0700	0715	0.25	2979.0m	Changed out handling equipment to layout 13-3/8" casing.
PA	Р	SM	0715	0730	0.25	2979.0m	Held toolbox meeting prior to laying out casing.
PA	Р	CPL	0730	0900	1.50	2979.0m	Layed out 6-1/2 joints of 13-3/8" casing. Changed out handling equipment for cutting assembly.
PA	Р	HT	0900	1000	1.00	2979.0m	Picked up cutting assembly and spear from derrick and layed out same.
PA	Р	CMP	1000	1045	0.75	2979.0m	Picked up and made up 5" mule shoe and ran in hole on 5" HWDP.
PA	Р	CMP	1045	1315	2.50	2979.0m	Ran in hole on 5" drill pipe to 1561m. Picked up and made up cement stand.
PA	Р	PT	1315	1330	0.25	2979.0m	Held toolbox meeting prior to cement job whilst pressure testing 20" casing to 250 psi against annular (with 9.6 ppg MW).
PA	Р	CMP	1330	1430	1.00	2979.0m	Pumped cement plug #2 (1461m - 1561m)
							- 2 bbl drill water spacer - P/T cementing lines to 2000 psi (Test Good) - 18 bbl drill water spacer - 81 bbl 15.8 ppg cement (382sx Class G, 1.19 cuft/sx, 5.28 gal/sx, 48 bbl mixwater) - 1 bbl drill water spacer
D 4	_	0145	4.400		0.05	0070.0	- 75 bbl 9.6 ppg mud displacement
PA	P	CMP	1430	1445	0.25	2979.0m	Picked up out of cement plug from 1561m to 1450m.
PA	P	DIS	1445	1545	1.00	2979.0m	Displaced riser to seawater (300 spm/3270 psi)
PA	P	OA	1545	1615	0.50	2979.0m	Pulled out of hole to 1420m and jetted BOPs.
PA	P	TO	1615	1815	2.00	2979.0m	Pulled out of hole from 1420m to 292m.
PA	Р	PLD	1815	1830	0.25	2979.0m	Rigged up to lay out 5" drill pipe
PA	P	SM	1830	1845	0.25	2979.0m	Held toolbox meeting prior to laying out 5" drill pipe.
PA	P	PLD	1845	2215	3.50	2979.0m	Pulled out of hole laying out 5" drill pipe from 292m to surface.
PA	P	CRF	2215	2245	0.50	2979.0m	Cleared rig floor of excess equipment.
PA	P	HT	2245	2315	0.50	2979.0m	Held toolbox meeting prior to picking up divertor running tool to break out lifting nubbin. Broke out lifting nubbin and layed out divertor RT. (Nubbin was removed from divertor RT to comply with revised procedure DRL-BOP-004. Connection was unable to be broken out on deck)
PA	Р	RR2	2315	2400	0.75	2979.0m	Commenced rigging up to pull BOPs and riser.

Operations For Period 0000 Hrs to 0600 Hrs on 12 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	Р	RR2	0000	0600	6.00	2979.0m	Continue rigging up to pull riser and BOPs.

Phase Data to 2400hrs, 11 Dec 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	57.25	09 Dec 2004	11 Dec 2004	598.00	24.917 days	2979.0m

Survey								
MD (m)	Incl Deg (deg)	Corr. Az (deg)	TVD (m)	'V' Sect (m)	Dogleg (deg/30m)	N/S (m)	E/W (m)	Tool Type
2534.29	0.33	216.60	2534.24	-5.62	0.04	-5.62	-9.60	MWD
2649.13	0.37	195.11	2649.07	-6.24	0.01	-6.24	-9.90	MWD
2762.85	0.23	199.79	2762.79	-6.81	0.01	-6.81	-10.07	MWD
2878.16	0.23	190.81	2878.10	-7.26	0	-7.26	-10.19	MWD
2950.00	0.26	140.59	2949.94	-7.52	0.03	-7.52	-10.11	MWD
2979.00	0.26	140.59	2978.94	-7.63	0	-7.63	-10.03	Proj to TD

Bulk Stocks						Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax	
Fuel	MT	0	8	0	1,187.0	Santos	3	
Drill Water	MT	0	64	0	779.0	Transocean	66	
Potable Water	MT	84	19	0	328.0	BHI	2	
Gel	MT	0	0	0	138.0	Halliburton	3	
Cement	MT	0	25	0	202.0	M.I	1	
Barite	MT	82	12	0	70.0	Subsea 7	3	
						Weatherford	1	
						Dril-Quip	1	
						Woodside	1	
						Total	81	

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

			81 bbl of 15.8 ppg Tail
HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	7 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	38 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	7 Days	Simulated fire on the helideck.
Landel Crane	11 Dec 2004	0 Days	L/O 13-3/8" casing & cutting assembly. L/O 5" Drill pipe. P/U Divertor running tool. L/O Divertor running tool. Bundling pipe for backload.
Lost Time Incident	26 Nov 2004	15 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
OJT Module	09 Dec 2004	2 Days	50 Modules completed since Sunday 05/12/04
Safety Meeting	05 Dec 2004	6 Days	Weekly safety meeting.
Safety Theme of the Week	12 Dec 2004	-1 Days	Finger/Hand Injuries
START Tour	11 Dec 2004	0 Days	RSTC, Transocean OSA
Stop Cards	29 Nov 2004	12 Days	10 START Cards submitted
Transocean Management Visit	08 Dec 2004	3 Days	Departed 10 Dec 04

Marine							
Weather che	eck on 11 Dec	2004 at 24:0	00				
Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
0.50nm	7.0kn	090deg	1004bar	15.0C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather	Comments
0.2deg	0.2deg	0.10m	1.2m	130deg	5.0ft/sec		
Rig Dir.	Ris. Tension	VDL	1	Comments			
217.0deg	0klb	5509.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	В	ulks	
Lady Caroline		18:45 06/12/04	Portland	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	80
				Gel	MT	0
				Mud	bbl	0
Lady Astrid	18:30 06/12/04		Jack Bates	Item	Unit	Quantity
				Barite	MT	82
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0

		From:	D. Atkins/P. I	King							
Well Data											
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost					
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032				
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost					
Rig	Jack Bates	Days from spud	22.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost					
Wtr Dpth(LAT)	1396.0m	Days on well	25.92			Planned TD	2979.0m				
RT-ASL(LAT)	29.0m	Current Op @ 0600	Pulling rise	r							
RT-ML	1425m	Planned Op	Continue to	pull riser. Rig dowr	n. RIH to cut an	d pull 20" & 30".					

Rigged up to pull riser and BOP. Retrieved Divertor. Unlatched BOP. Commenced pulling riser.

Operations For Period 0000 Hrs to 2400 Hrs on 12 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
PA	Р	RR2	0000	0600	6.00	2979.0m	Continue rigging up to pull riser and BOPs.
PA	Р	RR2	0600	0700	1.00	2979.0m	Installed divertor running tool, engaged into divertor with 10 turns right. Confirmed engaged with 30,000 lb overpull. Picked up divertor and landed out in spider.
PA	Р	SM	0700	0730	0.50	2979.0m	Held toolbox meeting with all personnel involved in pulling BOPs.
PA	Р	RR2	0730	0815	0.75	2979.0m	Layed out divertor.
PA	Р	RR2	0815	0930	1.25	2979.0m	Layed out short bails and picked up hydraulic nubbin. Function tested. Installed aft hatch.
PA	Р	RR2	0930	1100	1.50	2979.0m	Picked up riser landing joint and collapsed slip joint. Locked slip joint in closed position.
PA	Р	ВОР	1100	1200	1.00	2979.0m	Unlatched BOP and picked up clear of wellhead. Skidded rig 45m forward for safe handling of BOP. Locked load ring in storage area.
PA	Р	RR2	1200	1300	1.00	2979.0m	Layed out landing joint and slip joint on deck from 1420m to 1400m.
PA	Р	RR2	1300	1315	0.25	2979.0m	Held toolbox meeting prior to removing choke, kill and riser boost lines from riser termination joint.
PA	Р	RR2	1315	1500	1.75	2979.0m	Removed choke, kill and riser boost lines from riser termination joint.
PA	Р	RR2	1500	1630	1.50	2979.0m	Layed out flex joint and 50 ft spacer along with 55 ft and 25 ft pup joints on deck.
PA	Р	RR2	1630	1900	2.50	2979.0m	Pulled riser and racked in caisson from 1342m to 1195m.
PA	Р	SM	1900	1930	0.50	2979.0m	Held toolbox meeting with all new crew involved in pulling riser.
PA	Р	RR2	1930	2045	1.25	2979.0m	Continued to pull riser and rack in caisson from 1195m to 1122m.
PA	Р	RR2	2045	2400	3.25	2979.0m	Pulled riser and layed out on deck from 1122m to 921m.

Operations For Period 0000 Hrs to 0600 Hrs on 13 Dec 2004

Phse	Cls	Op	From	То	Hrs	Depth	Activity Description
	(RC)						

Phase Data to 2400hrs, 12 Dec 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	81.25	09 Dec 2004	12 Dec 2004	622.00	25.917 days	2979.0m

Bulk Stocks						Personnel On Board			
Name	Unit	In	Used	Adjust	Balance	Company	Pax		
Fuel	MT	0	8	0	1,179.0	Santos	3		
Drill Water	MT	0	1	0	778.0	Transocean	66		
Potable Water	MT	0	29	0	299.0	BHI	2		
Gel	MT	0	0	0	138.0	Halliburton	3		
Cement	MT	0	0	0	202.0	M.I	1		
Barite	MT	0	0	0	70.0	Subsea 7	3		
						Weatherford	1		
						Dril-Quip	1		
						Woodside	1		
						Total	81		

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	8 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	39 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	8 Days	Simulated fire on the helideck.
Landel Crane	12 Dec 2004	0 Days	L/O Divertor & running tool. P/U riser landing joint. L/O riser.
Lost Time Incident	26 Nov 2004	16 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
OJT Module	09 Dec 2004	3 Days	50 Modules completed since Sunday 05/12/04
Safety Meeting	05 Dec 2004	7 Days	Weekly safety meeting.
Safety Theme of the Week	12 Dec 2004	0 Days	Finger/Hand Injuries
START Tour	11 Dec 2004	1 Day	RSTC, Transocean OSA
Stop Cards	29 Nov 2004	13 Days	10 START Cards submitted
Transocean Management Visit	08 Dec 2004	4 Days	Sandy Thomson, Rig Manager. Departed 10 Dec 04

Weather check on 12 Dec 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
8.00nm	2.0kn	125deg	1006bar	15.5C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather (Comments
0.1deg	0.1deg	0.10m	0.9m	230deg	9.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	4973.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	Bu	Bulks		
Lady Caroline		18:45 06/12/04	Portland	Item	Unit	Quantity	
				Barite	MT	0	
				Cement	MT	80	
				Gel	MT	0	
				Mud	bbl	0	
Lady Astrid	18:30 06/12/04		Jack Bates	Item	Unit	Quantity	
				Barite	MT	82	
				Cement	MT	0	
				Gel	MT	0	
				Mud	bbl	0	

		From :	D. Atkins/P. I	King			
Well Data							
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	23.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	26.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Establishin	g forward plan to red	cover ROV/drill	pipe following drill st	tring part.
RT-ML	1425m	Planned Op	P/up 5" Dp Prepare fis				

Pulled riser from 921m to 43m. Pulled BOPs and landed on beams. Commenced RIH with 20"/30" casing cutting assembly.

Operations For Period 0000 Hrs to 2400 Hrs on 13 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
PA	Р	RR2	0000	0145	1.75	2979.0m	Continued pulling riser, laying out on deck from 921m to 811m.
PA	Р	RR2	0145	0515	3.50	2979.0m	Continued pulling riser, racking in caisson from 811m to 482m
PA	Р	RR2	0515	0700	1.75	2979.0m	Continued pulling riser, laying out on deck from 482m to 409m and racking in caisson from 409m to 354m.
PA	Р	SM	0700	0715	0.25	2979.0m	Held toolbox meeting with drill and deck crews prior to pulling remaining riser.
PA	Р	RR2	0715	1115	4.00	2979.0m	Continued to pull riser, racking in caisson from 354m to 226m and laying out on deck from 226m to 43m.
PA	Р	SM	1115	1145	0.50	2979.0m	Held toolbox meeting and prepared moonpool for landing BOPs on beams.
PA	Р	RR2	1145	1200	0.25	2979.0m	Pulled riser from 43m and landed BOPs on beams.
PA	Р	BOP	1200	1300	1.00	2979.0m	Disconnected double and skidded BOPs to set back.
PA	Р	RR2	1300	1345	0.75	2979.0m	Broke out and layed out double.
PA	Р	RR2	1345	1400	0.25	2979.0m	Held toolbox meeting prior to rigging down riser handling equipment.
PA	Р	RR2	1400	1700	3.00	2979.0m	Rigged down riser handling equipment.
PA	Р	CCT	1700	2000	3.00	2979.0m	Rigged up handling equipment for casing cutter.
PA	Р	CCT	2000	2015	0.25	2979.0m	Held toolbox meeting prior to running casing cutter assembly.
PA	Р	CCT	2015	2200	1.75	2979.0m	Picked up and made up Weatherford MOST casing cutting assembly (mud motor, MOST tool, bumper sub, 4 spacer subs, casing cutter).
PA	Р	CCT	2200	2215	0.25	2979.0m	Changed out to BX elevators.
PA	Р	CCT	2215	2300	0.75	2979.0m	Ran cutting assembly into moonpool. Function tested cutting assembly.
PA	Р	CCT	2300	2400	1.00	2979.0m	Ran in hole with casing cutting assembly to 305m.

Operations For Period 0000 Hrs to 0600 Hrs on 14 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	Р	CCT	0000	0230	2.50	2979.0m	Continued to run in hole with casing cutter assembly from 305m to 1417m.
PA	Р	CCT	0230	0300	0.50	2979.0m	Made up top drive to stab in wellhead. (Skidded rig back over wellhead)
PA	Р	CCT	0300	0315	0.25	2979.0m	Stabbed into wellhead and latched MOST tool onto wellhead. Confirmed engagaed with 15,000 lb overpull.
PA	Р	CCT	0315	0530	2.25	2979.0m	Commenced casing cut. (900 gpm / 2350 psi)
PA	Р	CCT	0530	0545	0.25	2979.0m	Attempted to pull 30"/20" casing. Pulled 560,000 lb on MD (320,000 lb overpull). String parted.
PA	Р	CCT	0545	0600	0.25	2979.0m	Confirmed string parted at tool joint, 2 stands below rotary table. Falling drillpipe has pinned ROV (ROV fully functional. Umbilical trapped.)

Phase	Data t	a 2400hre	13 Dac	2004

Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	105.25	09 Dec 2004	13 Dec 2004	646.00	26.917 days	2979.0m

Bulk Stocks						Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax	
Fuel	MT	0	12	0	1,167.0	Santos	4	
Drill Water	MT	0	1	0	777.0	Transocean	68	
Potable Water	MT	0	27	0	272.0	Halliburton	2	
Gel	MT	0	0	0	138.0	Subsea 7	3	
Cement	MT	0	125	0	77.0	Weatherford	1	
Barite	MT	0	0	0	70.0	Dril-Quip	1	
						Woodside	1	
						Total	80	

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	9 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	40 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	9 Days	Simulated fire on the helideck.
Landel Crane	12 Dec 2004	1 Day	L/O riser. L/O drill pipe.
Lost Time Incident	26 Nov 2004	17 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
OJT Module	09 Dec 2004	4 Days	50 Modules completed since Sunday 05/12/04
Safety Meeting	05 Dec 2004	8 Days	Weekly safety meeting.
Safety Theme of the Week	12 Dec 2004	1 Day	Finger/Hand Injuries
START Tour	13 Dec 2004	0 Days	Toolpusher, Driller.
Stop Cards	29 Nov 2004	14 Days	10 START Cards submitted
Transocean Management Visit	08 Dec 2004	5 Days	Sandy Thomson, Rig Manager. Departed 10 Dec 04

Weather check on 13 Dec 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period	
10.00nm	14.0kn	195deg	1007bar	14.8C°	0m	000deg	Oft/sec	
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather Comments		
0.2deg	0.1deg	0.10m	1.2m	195deg	6.0ft/sec			
Rig Dir.	Ris. Tension	VDL		Comments				
217.0deg	0klb	6848.0klb						

Boats Arrived (date/time)		Departed (date/time)	Status	Ві	Bulks			
Lady Caroline	17:40 13/12/04		Jack Bates	Item	Unit	Quantity		
				Barite	MT	0		
				Cement	MT	160		
				Gel	MT	0		
				Mud	bbl	0		
Lady Astrid		17:40 13/12/04	Portland	Item	Unit	Quantity		
				Barite	MT	0		
				Cement	MT	125		
				Gel	MT	0		
				Mud	bbl	0		

Helicopter Movement

Flight #	Time	Destination	Comment	Pax
BZU	15:25	Jack Bates		7
BZU	15:38	Essendon		8

		From:	D. Atkins/P.	King			
Well Data							
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	24.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	27.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	ROV performing detailed seabed survey.				
RT-ML	1425m	Planned Op	Examine re	esults of ROV survey	y. Await instruct	ions on forward plan	

Cut 20" / 30" casing. Parted string while attempting to pull casing free. RIH with hook to fish pipe off ROV and garage.

Operations For Period 0000 Hrs to 2400 Hrs on 14 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
PA	Р	CCT	0000	0230	2.50	2979.0m	Continued to run in hole with casing cutter assembly from 305m to 1417m.
PA	Р	CCT	0230	0300	0.50	2979.0m	Made up top drive to stab in wellhead. (Skidded rig back over wellhead)
PA	Р	CCT	0300	0315	0.25	2979.0m	Stabbed into wellhead and latched MOST tool onto wellhead. Confirmed engagaed with 15,000 lb overpull.
PA	Р	CCT	0315	0530	2.25	2979.0m	Commenced casing cut. (900 gpm / 2350 psi)
PA	Р	CCT	0530	0545	0.25	2979.0m	Attempted to pull 30"/20" casing. Pulled 560,000 lb on MD (320,000 lb overpull). String parted.
PA	TP (RE)	CCT	0545	0600	0.25	2979.0m	Confirmed string parted at tool joint, 2 stands below rotary table. Falling drillpipe has pinned ROV (ROV fully functional. Umbilical trapped under 2 lengths of pipe. ROV garage trapped under 2 lengths of pipe)
PA	TP (RE)	CCT	0600	0645	0.75	2979.0m	Pulled out of hole and racked back drill pipe (including parted joint). (Preliminary inspection of the failure indicated an internal crack above the base of the pin which had washed out over time)
PA	U	RS	0645	0845	2.00	2979.0m	Performed derrick inspection and serviced top drive whilst awaiting forward plan for ROV recovery.
PA	U	SM	0845	0900	0.25	2979.0m	Held toolbox meeting prior to laying out 5" drill pipe from derrick.
PA	U	PLD	0900	1015	1.25	2979.0m	Ran in hole 5" drill pipe from surface to 59m and layed out same.
PA	U	PUP	1015	1030	0.25	2979.0m	Changed out handling equipment to pick up and make up 5" drill pipe from deck.
PA	U	SM	1030	1045	0.25	2979.0m	Held toolbox meeting prior to picking up 5" drill pipe from deck.
PA	U	PUP	1045	1200	1.25	2979.0m	Picked up and made up 5" drill pipe from deck using mouse hole and racked back stands in derrick. Recorded all serial numbers on pipe. (Fabricated fishing hook as per design approved by Santos Adelaide whilst picking up drill pipe)
PA	U	PUP	1200	1345	1.75	2979.0m	Continued to pick up and make up 5" drill pipe from deck using mouse hole and racked back stands in derrick, recording all serial numbers on pipe. 11 stands total in derrick.
PA	U	FSH	1345	2145	8.00	2979.0m	Picked up and made up fishing hook and ran in hole to 1130m on 5" drill pipe, picking up singles from deck.
PA	U	FSH	2145	2200	0.25	2979.0m	Changed out handling equipment to run stands from derrick.
PA	U	FSH	2200	2230	0.50	2979.0m	Continued to run in hole from 1130m to 1420m.
PA	U	FSH	2230	2300	0.50	2979.0m	Re-positioned rig prior to commencing fishing operations.
PA	U	FSH	2300	2400	1.00	2979.0m	Commenced fishing operations. Used fishing hook to lift the drill pipe from across the ROV tether, enabling the ROV to fly under and free the its tether.

Operations For Period 0000 Hrs to 0600 Hrs on 15 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	U	FSH	0000	0145	1.75	2979.0m	Continued fishing operations. Removed drill pipe lying on top of ROV parking garage using the fishing hook. ROV garage freed.
PA	U	FSH	0145	0415	2.50	2979.0m	Pulled out of hole, racking back 5" drill pipe and layed out fishing hook. Garaged ROV to confirm no damage. ROV fully functional and no damage apparent. ROV commenced detailed seabed survey.
PA	U	FSH	0415	0600	1.75	2979.0m	Continued detailed seabed survey.

Phase Data to 2400hrs, 14 Dec 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	129.25	09 Dec 2004	14 Dec 2004	670.00	27.917 days	2979.0m

Bulk Stocks						Personnel On Board			
Name	Unit	In	Used	Adjust	Balance	Company	Pax		
Fuel	MT	0	10	0	1,157.0	Santos	4		
Drill Water	MT	0	0	0	777.0	Transocean	68		
Potable Water	MT	147	24	0	395.0	Subsea 7	4		
Gel	MT	0	116	0	22.0	Weatherford	1		
Cement	MT	0	0	0	77.0	Dril-Quip	1		
Barite	MT	0	0	0	70.0	Woodside	1		
						MO47	9		
						Fugro	2		
						Total	90		

Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	14 Dec 2004	0 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	41 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	14 Dec 2004	0 Days	Simulated fire in well test area.
Landel Crane	12 Dec 2004	2 Days	P/U Drill pipe.
Lost Time Incident	26 Nov 2004	18 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
OJT Module	14 Dec 2004	0 Days	45 Modules completed since Sunday 12/12/04
Safety Meeting	05 Dec 2004	9 Days	Weekly safety meeting.
Safety Theme of the Week	12 Dec 2004	2 Days	Finger/Hand Injuries
START Tour	11 Dec 2004	3 Days	RSTC, Transocean OSA
Stop Cards	29 Nov 2004	15 Days	10 START Cards submitted
Transocean Management Visit	08 Dec 2004	6 Days	Departed 10 Dec 04

Weather check on 14 Dec 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	17.0kn	190deg	1015bar	14.3C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather Comments	
0.5deg	0.5deg	0.15m	2.4m	215deg	6.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	7388.0klb					

DRILLING MORNING REPORT # 28 Amrit 1 (14 Dec 2004)

Boats	Arrived (date/time)	Departed (date/time)	Status		Bulks	
Lady Caroline		23:45 14/12/04	Portland	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	160
				Gel	MT	116
				Mud	bbl	0
Lady Astrid	23:30 14/12	/04	Jack Bates	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0
Helicopter	Movement					
Flight #	Time	Destination		Comment		Pax
BZU	16:01 Jack Bates	S				12
BZU	16:14 Essendon					2

		From:	D. Atkins/P.	King			
Well Data							
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	25.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	28.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Anchor har	ndling operations.		1	
RT-ML	1425m	Planned Op	Continue p	ulling anchors.			

Freed ROV and garage. POH wth fishing hook. Layed out drill pipe. Commenced de-ballasting of rig.

Operations For Period 0000 Hrs to 2400 Hrs on 15 Dec 2004

Phse	CIs (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	U	FSH	0000	0145	1.75	2979.0m	Continued fishing operations. Removed drill pipe lying on top of ROV parking garage using the fishing hook. ROV garage freed.
PA	U	FSH	0145	0415	2.50	2979.0m	Pulled out of hole, racking back 5" drill pipe and layed out fishing hook. Garaged ROV to confirm no damage. ROV fully functional and no damage apparent. ROV commenced detailed seabed survey.
PA	U	OA	0415	0600	1.75	2979.0m	Continued detailed seabed survey.
PA	U	RS	0600	0915	3.25	2979.0m	Carried out rig maintenance whilst ROV completing seabed survey
PA	Р	HT	0915	0930	0.25	2979.0m	Picked up 18-3/4" wellhead running tool, broke out pup joint and layed out.
PA	Р	SM	0930	0945	0.25	2979.0m	Held toolbox meeting prior to laying out remaining 5" drill pipe.
PA	Р	PLD	0945	1130	1.75	2979.0m	Ran in hole with 5" drill pipe from surface to 1390m.
PA	Р	PLD	1130	1300	1.50	2979.0m	Changed out elevators and layed out 5" drill pipe from 1390m to 1043m.
PA	Р	PLD	1300	1315	0.25	2979.0m	Held toolbox meeting with new crew.
PA	Р	PLD	1315	1515	2.00	2979.0m	Continued to pull out of hole from 1043m to 521m, laying out 5" drill pipe.
PA	Р	TO	1515	1630	1.25	2979.0m	Continued to pull out of hole from 521m to surface, racking back in derrick.
PA	Р	OA	1630	1845	2.25	2979.0m	De-ballasted rig and prepared rig for tow. Sea fastened all equipment. Rig @ 45 ft draft.
PA	Р	OA	1845	2145	3.00	2979.0m	Stopped de-ballasting rig @ 60 ft draft. Repositioned deck cargo for tow.
PA	Р	OA	2145	2400	2.25	2979.0m	Re-commenced de-ballasting rig from 60 ft draft.

Operations For Period 0000 Hrs to 0600 Hrs on 16 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	Р	OA	0000	0215	2.25	2979.0m	Continued to de-ballast rig.
PA	Р	SM	0215	0330	1.25	2979.0m	Held toolbox meeting prior to starting anchor operations, whilst continuing to de-ballast rig.
PA	Р	АН	0330	0345	0.25	2979.0m	Continued to de-ballast. No. 2 pennant passed to Lady Astrid. Lady Astrid commenced anchor handling operations.
PA	Р	АН	0345	0500	1.25	2979.0m	Continued to de-ballast. No. 6 pennant passed to Lady Caroline. Lady Caroline commenced anchor handling operations.
PA	Р	АН	0500	0600	1.00	2979.0m	Rig at transit draft. Continued anchor handling operations. Lady Caroline re-spooled wire.

Phase Data to 2400hrs, 15 Dec 2004

,						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	153.25	09 Dec 2004	15 Dec 2004	694.00	28.917 days	2979.0m

Bulk Stocks						Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax	
Fuel	MT	0	11	0	1,146.0	Santos	3	
Drill Water	MT	0	0	0	777.0	Transocean	66	
Potable Water	MT	0	26	0	369.0	BHI	2	
Gel	MT	0	22	0	0.0	Halliburton	3	
Cement	MT	0	1	0	76.0	M.I	1	
Barite	MT	0	70	0	0.0	Subsea 7	3	
						Weatherford	1	
						Dril-Quip	1	
						Woodside	1	
						Total	81	

Casing	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	11 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	42 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	11 Days	Simulated fire on the helideck.
Landel Crane	12 Dec 2004	3 Days	L/O Divertor & running tool. P/U riser landing joint. L/O riser.
Lost Time Incident	26 Nov 2004	19 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
OJT Module	09 Dec 2004	6 Days	50 Modules completed since Sunday 05/12/04
Safety Meeting	05 Dec 2004	10 Days	Weekly safety meeting.
Safety Theme of the Week	12 Dec 2004	3 Days	Finger/Hand Injuries
START Tour	11 Dec 2004	4 Days	RSTC, Transocean OSA
Stop Cards	29 Nov 2004	16 Days	10 START Cards submitted
Transocean Management Visit	08 Dec 2004	7 Days	Departed 10 Dec 04

Weather check on 15 Dec 2004 at 24:00

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	4.0kn	240deg	1015bar	15.1C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather (Comments
0.3deg	0.3deg	0.10m	2.4m	180deg	10.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	6936.0klb					

Boats	Arrived (date/time)	Departed (date/time)	Status	Ві	ılks	
Lady Caroline	16:45 15/12/04		Jack Bates	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	160
				Gel	MT	0
				Mud	bbl	0
Lady Astrid	23:20 14/12		Jack Bates	Item	Unit	Quantity
				Barite	MT	82
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0

Helicopte	Helicopter Movement								
Flight #	Time	Destination	Comment	Pax					
BZU	08:27	Jack Bates		4					
BZU	08:40	Essendon		9					
BZU	16:01	Jack Bates		11					
BZU	16:41	Essendon		11					

		From:	D. Atkins/P. I	King			
Well Data							
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	26.28	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	29.92			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600	Pulling and	hor #8.			
RT-ML	1425m	Planned Op	Pull anchor	rs #8 and #4. Prepa	re backload. Re	lease Rig.	

De-ballasted rig. Commenced anchor handling. Retrieved anchors #6, #2, #7, #3 & #5. Commenced retrieving anchor #1.

Operations For Period 0000 Hrs to 2400 Hrs on 16 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	Р	OA	0000	0215	2.25	2979.0m	Continued to de-ballast rig.
PA	Р	SM	0215	0330	1.25	2979.0m	Held toolbox meeting prior to starting anchor operations, whilst continuing to de-ballast rig.
PA	Р	AH	0330	2400	20.50	2979.0m	Continued to de-ballast whilst commencing anchor handling operations. De-ballasting completed at 05:00
							Pulled Anchor #2 with Lady Astrid 03:37 - PCP to Lady Astrid 10:55 - Anchor off bottom 14:08 - Anchor racked
							14:51 - PCP back to rig
							Pulled Anchor #6 with Lady Caroline 03:47 - PCP to Lady Caroline 07:22 - Anchor off bottom 09:45 - Anchor racked 10:15 - PCP back to rig Pulled Anchor #7 with Lady Caroline
							11:24 - PCP to Lady Caroline 12:54 - Anchor off bottom 15:47 - Anchor racked 16:22 - PCP back to rig
							Pulled Anchor #3 with Lady Astrid 15:35 - PCP to Lady Astrid 17:38 - Anchor off bottom 19:55 - Anchor racked 20:13 - PCP back to rig
							Anchor #5 pulled with Lady Caroline 16:38 - PCP to Lady Caroline 18:00 - Anchor off bottom 21:28 - Anchor racked 21:45 - PCP back to rig
							Anchor #1 pulled with Lady Astrid 20:45 - PCP to Lady Astrid
							23:35 - Tow bridle passed to Lady Caroline

Operations For Period 0000 Hrs to 0600 Hrs on 17 Dec 2004

Phse	Cls (RC)	Op	From	То	Hrs	Depth	Activity Description
PA	P	AH	0000	0600	6.00	2979.0m	Continued pulling Anchor #1 with Lady Astrid 02:12 - Anchor off bottom 04:36 - Anchor racked 04:50 - PCP back to rig Commenced pulling Anchor #8 with Lady Astrid 05:10 - PCP to Lady Astrid

Phase Data to 2400hrs, 16 Dec 2004						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	177.25	09 Dec 2004	16 Dec 2004	718.00	29.917 days	2979.0m

Bulk Stocks					Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax
Fuel	MT	0	10	0	1,136.0	Santos	2
Drill Water	MT	0	408	0	369.0	Transocean	63
Potable Water	MT	0	20	0	349.0	Woodside	1
Gel	MT	0	0	0	0.0	MO47	9
Cement	MT	0	0	0	76.0	Fugro	2
Barite	MT	0	0	0	0.0	Total	77

Casing)		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary							
Events	Date of Last	Days Since	Remarks				
Abandon Drill	04 Dec 2004	12 Days	Weekly abandon rig drill.				
BOP Test	03 Nov 2004	43 Days	Tested all rams etc to 300 psi low and 5000psi high.				
Environmental Incident		0 Days					
Fire Drill	04 Dec 2004	12 Days	Simulated fire on the helideck.				
Landel Crane	12 Dec 2004	4 Days	L/O Divertor & running tool. P/U riser landing joint. L/O riser.				
Lost Time Incident	26 Nov 2004	20 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.				
OJT Module	09 Dec 2004	7 Days	50 Modules completed since Sunday 05/12/04				
Safety Meeting	05 Dec 2004	11 Days	Weekly safety meeting.				
Safety Theme of the Week	12 Dec 2004	4 Days	Finger/Hand Injuries				
START Tour	11 Dec 2004	5 Days	RSTC, Transocean OSA				
Stop Cards	29 Nov 2004	17 Days	10 START Cards submitted				
Transocean Management Visit	08 Dec 2004	8 Days	Departed 10 Dec 04				

	Weather	check on	16 Dec 2004 at 24:00
--	---------	----------	----------------------

Visibi	ity	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00	nm	6.0kn	110deg	1018bar	15.0C°	0m	000deg	Oft/sec
Rol		Pitch	Heave	Swell Height	Swell Dir.	Swell Period	Weather (Comments
2.0de	eg	2.0deg	1.00m	2.1m	240deg	9.0ft/sec		
Rig D	ir.	Ris. Tension	VDL		Comments			
217.0	deg	0klb	6870.0klb		·			

DRILLING MORNING REPORT # 30 Amrit 1 (16 Dec 2004)

Boats	Arrived (date/time)	Departed (date/time)	Status		Bulks	
Lady Caroline	16:45 15/12/	04	Jack Bates	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	160
				Gel	MT	0
				Mud	bbl	0
Lady Astrid	23:20 14/	12	Jack Bates	Item	Unit	Quantity
				Barite	MT	82
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0
Helicopter	Movement					
Flight #	Time	Destination		Comment		Pax
BZU	15:47 Jack Bates	i				0
BZU	16:01 Jack Bates	•				11

		From:	D. Atkins/P.	King			
Well Data							
Country	Australia	M. Depth	2979.0m	Cur. Hole Size	12.250in	AFE Cost	
Field	Otway Basin	TVD	2979.0m	Casing OD	13.375in	AFE No.	5738032
Drill Co.	Transocean	Progress	0m	Shoe TVD	2455.0m	Daily Cost	
Rig	Jack Bates	Days from spud	26.95	F.I.T. / L.O.T.	0ppg / 11.00ppg	Cum Cost	
Wtr Dpth(LAT)	1396.0m	Days on well	30.58			Planned TD	2979.0m
RT-ASL(LAT)	29.0m	Current Op @ 0600				1	
RT-ML	1425m	Planned Op					

Finished pulling anchors. RIG RELEASED 16:00 HRS 17/12/04

Operations For Period 0000 Hrs to 2400 Hrs on 17 Dec 2004

Phse	Cls (RC)	Ор	From	То	Hrs	Depth	Activity Description
PA	P	AH	0000	0600	6.00	2979.0m	Continued pulling Anchor #1 with Lady Astrid 02:12 - Anchor off bottom 04:36 - Anchor racked 04:50 - PCP back to rig
							Commenced pulling Anchor #8 with Lady Astrid 05:10 - PCP to Lady Astrid
PA	P	AH	0600	1600	10.00	2979.0m	Continued pulling Anchor#8 with Lady Astrid 07:20 - Anchor off bottom 10:22 - Anchor Racked 10:45 - PCP back to rig
							Commenced pulling Anchor#4 with Lady Astrid 11:10 - PCP to Lady Astrid 12:43 - Anchor off bottom 16:00 - Anchor racked - END OF CONTRACT Back load 12 lifts to Lady Astrid - remaining Santos gear

Phase Data to 2400hrs, 17 Dec 2004

·						
Phase	Phase Hrs	Start On	Finish On	Cum Hrs	Cum Days	Max Depth
RIG MOVE/RIG-UP(RM)	39	17 Nov 2004	18 Nov 2004	39.00	1.625 days	0m
CONDUCTOR HOLE(CH)	69.25	18 Nov 2004	21 Nov 2004	108.25	4.510 days	1510.0m
SURFACE HOLE(SH)	49	21 Nov 2004	23 Nov 2004	157.25	6.552 days	1835.0m
SURFACE CASING(SC)	113	23 Nov 2004	28 Nov 2004	270.25	11.260 days	1835.0m
INTERMEDIATE HOLE(IH)	77	28 Nov 2004	01 Dec 2004	347.25	14.469 days	2459.0m
INTERMEDIATE CASING(IC)	78.25	01 Dec 2004	04 Dec 2004	425.50	17.729 days	2459.0m
PRODUCTION HOLE(PH)	59	04 Dec 2004	07 Dec 2004	484.50	20.188 days	2979.0m
EVALUATION PRODUCTION HOLE(EP)	56.25	07 Dec 2004	09 Dec 2004	540.75	22.531 days	2979.0m
PLUG AND ABANDON(PA)	193.25	09 Dec 2004	17 Dec 2004	734.00	30.583 days	2979.0m

Bulk Stocks						Personnel On Board		
Name	Unit	In	Used	Adjust	Balance	Company	Pax	
Fuel	MT	0	0	0	1,136.0	Santos	1	
Drill Water	MT	0	0	0	369.0	Transocean	63	
Potable Water	MT	0	0	0	349.0	Woodside	5	
Gel	MT	0	0	0	0.0	MO47	9	
Cement	MT	0	0	0	76.0	Fugro	1	
Barite	MT	0	0	0	0.0	Total	79	

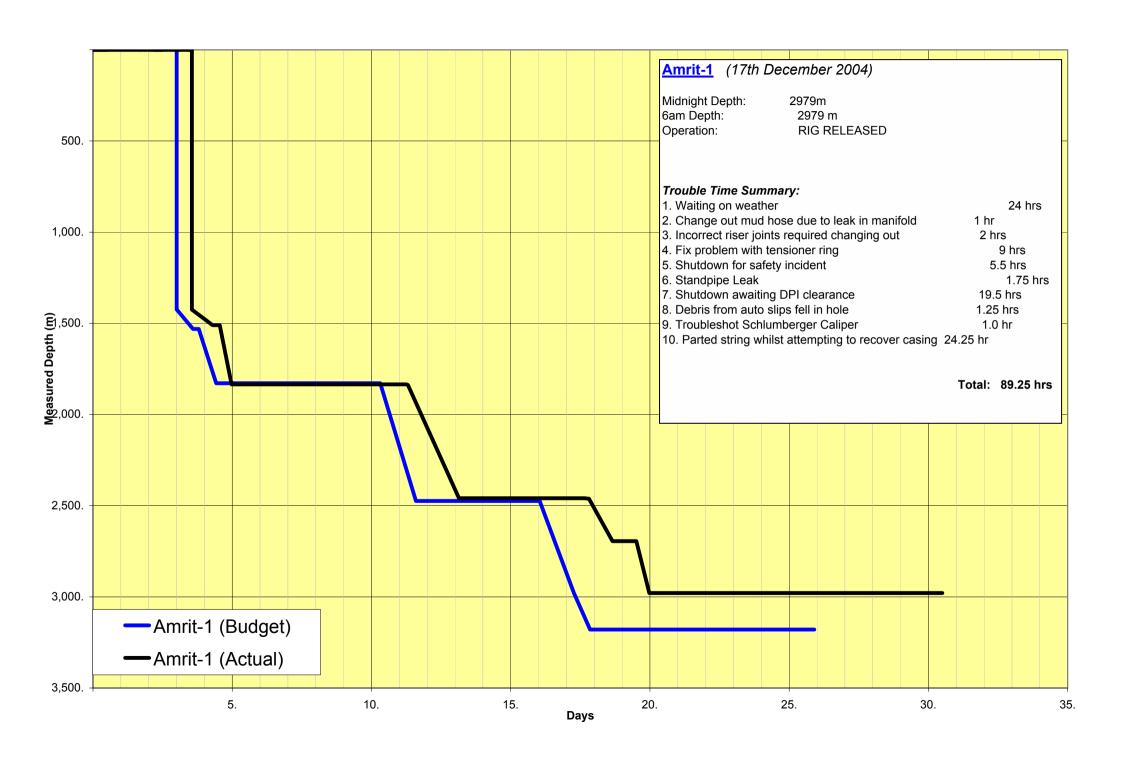
Casin	g		
OD	L.O.T. / F.I.T.	Csg Shoe (MD/TVD)	Cementing
30 "	Oppg / Oppg	1510.0m / 1510.0m	Not Cemented. Casing was jetted in.
20 "	9.60ppg / 0ppg	1822.7m / 1822.7m	660bbls of 12.5ppg Lead 151bbls of 15.8ppg Tail
13 3/8"	11.00ppg / 0ppg	2455.0m / 2455.0m	327 bbl of 12.5 ppg Lead 81 bbl of 15.8 ppg Tail

HSE Summary			
Events	Date of Last	Days Since	Remarks
Abandon Drill	04 Dec 2004	13 Days	Weekly abandon rig drill.
BOP Test	03 Nov 2004	44 Days	Tested all rams etc to 300 psi low and 5000psi high.
Environmental Incident		0 Days	
Fire Drill	04 Dec 2004	13 Days	Simulated fire on the helideck.
Landel Crane	12 Dec 2004	5 Days	L/O Divertor & running tool. P/U riser landing joint. L/O riser.
Lost Time Incident	26 Nov 2004	21 Days	Roustabout hit by diverter running tool breaking his leg. Medivaced to Prince Alfred Hospital Melbourne.
OJT Module	09 Dec 2004	8 Days	50 Modules completed since Sunday 05/12/04
Safety Meeting	05 Dec 2004	12 Days	Weekly safety meeting.
Safety Theme of the Week	12 Dec 2004	5 Days	Finger/Hand Injuries
START Tour	11 Dec 2004	6 Days	RSTC, Transocean OSA
Stop Cards	29 Nov 2004	18 Days	10 START Cards submitted
Transocean Management Visit	08 Dec 2004	9 Days	Departed 10 Dec 04

Marine

	Weather	check of	on 17	Dec 2004	at 24:00
--	---------	----------	-------	----------	----------

Visibility	Wind Speed	Wind Dir.	Pressure	Air Temp.	Wave Height	Wave Dir.	Wave Period
10.00nm	6.0kn	110deg	1018bar	15.0C°	0m	000deg	Oft/sec
Roll	Pitch	Heave	Swell Height Swell Dir. Swell Period		Weather	Weather Comments	
2.0deg	2.0deg	1.00m	2.1m	240deg	9.0ft/sec		
Rig Dir.	Ris. Tension	VDL		Comments			
217.0deg	0klb	6870.0klb					


Boats	Arrived (date/time)	Departed (date/time)	Status	В	ulks	
Lady Caroline	16:45 15/12/04		Jack Bates	Item	Unit	Quantity
				Barite	MT	0
				Cement	MT	160
				Gel	MT	0
				Mud	bbl	0
Lady Astrid	23:20 14/12		Jack Bates	Item	Unit	Quantity
				Barite	MT	82
				Cement	MT	0
				Gel	MT	0
				Mud	bbl	0

Helicopter Movement

Flight #	Time	Destination	Comment	Pax
BZU		Jack Bates		5
BZU		Essendon		4

CI -	4	
39	ntos	

SECTION 7:- TIME / DEPTH CURVE

SECTION 8:- BHA SUMMARY

e.	hlumbannan					-	БИТ	NO C			ENGENI	Τ0	BIL	- D 4						Number			AWA-	04-08	
96	hlumberger					ע	KILLI	ING 8	ጷ ME/	450 H	REMEN	18 -	- RHV	A DA	ΙA					Number			1		
						I		la. i	1		In . a		I= -							Number			1		
l 4	Dagarintian	Vandan	Managaria		Serial	Fishing Ne		Stab OD	OD	ID	Bot Connection		Top Conne		Len	C 1 a.s.		II 1	TIME/	DEPTH DI	ETAILS 3		4	II	5
tem	Description	Vendor UNITS	Material	1	Number	in	Length m	in	in	in	Size Ty	/pe	Size	Туре	m	Cum Len m	Date/Time	21-Nov-	04 2	22-Nov-04		-	4	-	
		Julio	ı	1		""	""	- "'	- ""	""					+		,	1	2	2-1404-04	<u> </u>	-		-	
1	Milltooth Bit		Steel	N	MR3808									Reg P	0.67		Field Engineer	Lisa	Lisa		├ ─	<u></u> -			
2	A962MGT7848	Schlumberger	Steel		1069						7.63 Re			Reg P	9.68		Depth	1468	_	1735.59	├ ──	—⊨		-	
3	Float sub		Steel		1087						7.63 Re	eg B	7.63	Reg P	1.05	11.40	Average ROP	5	.00	70.00	ــــــ	<u>_</u>			
4	26" WB Stabilizer		Steel		53655	i					7.63 Re	eg B	7.63	Reg P	1.68	13.08	Avg. Std. Pres.	3650	.00	4000.00	<u> </u>	<u>_</u>			
5	CDR9	Schlumberger	Monel	L	L9525						7.63 Re	eg B	7.63	Reg P	7.15	20.23	Desurger 1	800	.00	800.00	<u> </u>	_			
6	PowerPulse9	Schlumberger	Monel	V	N484						7.63 Re	eg B	7.63	H90 P	8.44	28.67	Desurger 2	800	.00	800.00					
7	26" WB Stabilizer		Steel		53656	i					7.63 HS	90 B	7.63	Reg P	1.48	30.15	Tur. RPM @ FR	3242	.19	3281.25	<u> </u>				
8	91/2" NM Drill Collar	Schlumberger	Monel	[D173						7.63 Re	eg B	7.63	Reg P	9.20	39.35	FR @ Tur. RPM	1100	.00	1134.00					
9	3 x 91/2" Drill Collar		Steel								7.63 Re	eg B	7.63	Reg P	26.62	65.97	Avg. RPM	0	.00	92.00					
10	Crossover		Steel								6.63 Re	eq B	7.63	Reg P	1.32		Max RPM	0	.00	95.00					
11	2 x 8" Drill Collar		Steel								6.63 Re			Reg P	18.51		Total Shocks		.02	0.05					
12	Drill-Quip CADA Tool		Steel								6.63 Re	-		Reg P	2.17		Max Shock		-1-	0.00					
13	Drill-Quip CADA Tool		Steel								6.63 Re			Reg P	0.57		Avg. Surf. WOB	35	_	15.00					
14	7 x 8" Drill Collar		Steel								6.63 Re	•	1	Reg P	64.00		Max Surf. WOB	40	-1-	20.00	the second	-		-	
15											4.50 IF	-		Reg P				40	-1-	15.00	the second	\dashv		+	
	Crossover		Steel								1 1				1.14		Avg. DH WOB		_			-		-	
16	12 x 5" HWDP		Steel								4.50 IF		4.50	IF P	110.77	264.45	Max DH WOB	40		20.00		<u>-</u>		-	
17											4.50 IF	В					Avg. Surf. Torq.		.00	2.50				-	
18																	Max Surf. Torq.	0	.00	4.00		 -		_	
19																	Avg. DH Torq.	0	.00	4.00	ــــــ	<u>_</u>			
20																	Max DH Torq.	0	.00	4.40	<u> </u>	_			
21																	Formation Type								
22																	Friction				<u> </u>				
23																	Drag Up				ĺ				
24																	Drag Down								
			Orill 8.5in se	ction verti	ically to TD.	•		Hookload				Wt. Bel	ow Jars			•	Mud Weight	8	.30	8.30					
								Pickup W				Wt. Abo					Funnel Vis.								
								Slack Wt.				Total Ai					Plastic Vis.				l -	-		-	
	DICTED BHA							Oldok IVL				TOCAL PA					Circ. Temp	17	00	15.70	 	$ \vdash$			
1	ENDENCY																		_			-		-	
																	Signal Strength	12		9.50		<u>-</u>		-	
																	Bit Deviation		.50	0.31				-	
			1			I											Differential Pres.	200		200.00					
		Mid Pt To		BLADE			GAUGE	1		d Out Port			it To Measu	rement Po			BATTERY	Unloade		Loaded ((V)	Run Hrs	1	Cum Hrs	S
Stabiliz	er Description	Bit	Туре	Length	Width	Length	In	Out	CDR		16.17 M		RLWD		18.48 M		Tool	Before	After	Before	After	BOT	AMP	BOT	AM
	UNITS	m		in	in	in	in	in	PPL		21.97 M		ES LWD		15.00 M		H524743-40042	21.95		19.70					
											m	Al	PWD LWD)	_{15.72} m		H524743-40336	21.74		19.11					
											m	D	&I PPL		24.32 M										
											m				m										
											m				m										
			1	1	1		1	1	1		m				m										

Santos	Well Completion Report Volume 1 Basic
SECTION 9:- BIT REC	CORD & PERFORMANCE SUMMARY

Wellname : Amrit 1 Prilling Co. : Transocean Rig : Jack Bates

DFE above MSL: 29.0m

Lat: 38 Deg 56 Min 05.2 Sec

Spud Date : 20 Nov 2004

Release Date: 17 Dec 2004

Water Depth: 1396.0m

Long: 141 Deg 44 Min 07.08 Sec

Spud Time : 17:15

Release Time: 16:00

Bit Record

Well: Am	Well: Amrit 1																									
Date In	IADC	Bit#	Size in	Ser#	Mfr	Type	Jets # x /32nd"	D.In m	D.Out m	Prog m	Hrs o/b	SPP psi	Flow gpm	WOB klb	RPM	MW	TFA	ROP m/hr	I	O1	D	L	В	G	O2	R
20 Nov 2004	1-1-5	1	26.00	MR3808	SMITH	MSDS	1 x 20 1 x 21 2 x 22	1425.0	1835.0	410	18.70	4000	1100	30.0	100	5.35	1.387	21.93	1	1	WT	A	E	l	NO	TD
27 Nov 2004	115	2	17.50	J65053	REED	T11C	3 x 22 1 x 20	1835.0	2459.0	624	32.20	3100	950	25.0	115	7.39	1.42	19.38	2	2	ВТ	Α	E	1	WT	TD
04 Dec 2004	M323	3	12.25	7003752	Hughes Christensen	HCM606Z	6 x 14	2459.0	2695.0	236	14.40	3000	850	15.0	100	8.02	0.902	16.39			BU	Α	X	1	ER	PR
06 Dec 2004	M323	4	12.25	108439	HYCALOG	DSX104HGW	5 x 15	2695.0	2979.0	284	6.10	3590	824	15.0	90	8.02	0.863	46.56		1	BU	Α	Х	1	BF	TD

Santos	Well Completion Report Volume 1 Basic
	CECTION 10. DDILLING ELLIDG DEDODT
	SECTION 10:- DRILLING FLUIDS REPORT

Fluids Recap

Santos Ltd.

Amrit-1 Otway Basin Exploration Victoria/ P52

Prepared by: Nigel Warman

M-I L.L.C. ONE-TRAX DRILLING FLUID DATA MANAGEMENT SYSTEM

Operator: Santos Ltd.

Well Name: Amrit-1

Field/Area: Otway Basin

Description: Exploration

Location: Victoria/ P52

Warehouse: Portland

Contractor: Transocean

Spud Date: 20/11/2004

TD Date: 7/12/2004

Location Code: 7001

Project Engineer: Nigel Warman

Sales Engineer: Paul Marshall

Sales Engineer: Nick Cooper/Mike McKay

M-I Well No. 16075

Comments:	The well was	P&A from	n 9-14th Dece	ember, 2004						
Туре	Size in	Depth m	TVD m	Hole in	Max MW lb/gal	Fluid 1	Fluid2	Drilling Problem	Days	Cost \$
Casing	30	1510	1510	30	9	Spud Mud		None	4	38084.35
Casing	20	1823	1823	26	9	Spud Mud		None	2	31667.44
Casing	13.375	2454	2454	17.5	9.2	GLYDRIL	N/A	None	10	174459.66
Open Hole	•	2797	2797	12.25	9.6	GLYDRIL		Slow ROP	10	92394.60

Total Depth: 2979 m TVD: 2979 m Water Depth: 1396 m Drilling Days: 23 Total Cost: 336,606.05

CONTENTS:

- DISCUSSION BY INTERVAL
- DAILY DISCUSSION REPORT
- COST BY INTERVAL
- DAILY VOLUME SUMMARY SHEET
- Total Material Cost
- HYDRAULICS REPORT
- DRILLING FLUIDS SUMMARY
- PRODUCT CONSUMPTION
- Daily Mud Reports

DISCUSSION BY INTERVAL

INTRODUCTION

Santos Limited was the Operator of Amrit-1, which was the second well of a two well exploration programme. Amrit-1 was located offshore Victoria in the Otway Basin, approximately 67 kilometres southeast of Portland, Victoria (Block: Vic/P52). Specifically, the well is situated at Latitude: 38° 56′ 05.29″ S and Longitude: 141° 44′ 07.12″ E with a water depth of 1396 metres.

Amrit–1 was planned as a conventional, vertical well to be drilled to approximately 2979 metres below the rotary table (RT). Note: all depths are measure depths below rotary table unless otherwise stated. The primary target was the K-93/94 horizon in the Paaratte Formation which was expected to be intersected at approximately 2594 metres to 2574 metres. The secondary targets were the K92 and K91 horizons, which were expected at 2759 metres and 2824 metres, respectively. TD was declared at 2979m.

The Transocean semi-submersible rig 'Jack Bates' was towed onto location and into position with anchors run on 17th and 18th November, 2004. The well was spudded on 19th November, 2004 and TD was reached on 7th December 2004.

The 30" casing interval was jetted to 1510 metres, and allowed to 'soak' for 6 hours. The 26" interval was drilled in undifferentiated carbonates to a depth of 1836 metres with 20" casing being set at 1820 metres. Both intervals were drilled with seawater and pre-hydrated bentonite (PHG) sweeps.

A potassium chloride / partially hydrolysed poly-acrylamide / glycol mud system was used to drill the $17\frac{1}{2}$ " and $12\frac{1}{4}$ " open hole intervals. The $17\frac{1}{2}$ " open hole interval was drilled to 2459 metres and the $13\frac{3}{8}$ " casing set at 2454 metres. The $12\frac{1}{4}$ " open hole interval was drilled to 2979 metres. Electric logs were run and the well plugged and abandoned.

The well was displaced to a potassium chloride (8%) / partially hydrolysed polyacrylamide / glycol (3%) mud system (KCL / PHPA / Glycol) for the 17½" interval and a potassium chloride (8%) / partial hydrated poly-acrylamide / glycol (5%) mud system for the 12¼" interval. Prior to drilling the primary target at 2594m the KCl concentration was increased to 12% wt. as a measure to suppress hydrate formation.

Age	Formation	Lithology	Depth (RT)
	Seabed		1425 m
Tertiary	Undifferentiated	Carbonates	1425-1825 m
Base tertiary	Wangerrip	Sandstone/	1825 –2042 m
		Claystone	
Up. Cretaceous	Timboon Sandstone	Sandstone	2042-2574 m
Middle Cret.	Paaratte K94	Silt/Sandstone	2574- m
	K93		2594 m
	K91		2824m
Low. Cretaceous	Nullawarre	Silt/Sandstone	
	Belfast	Siltstone	
	Waarre	Silt/Sandstone	
	Eumeralla	Sand/Siltstone	
Total Depth			2979 m

Interval I	1424-1531 metres	30" Hole Interval	30" casing set at 1510 metres
Interval II	1531-1835 metres	26" Hole Interval	20" casing set at 1820 metres

Mud Type : Seawater / Pre-hydrated bentonite sweeps.

Hole Problems : None

Mud Properties :

Mud Density : 8.8 - 9.1 ppg.

Funnel Viscosity : 100+ seconds / quart

OPERATIONS

The rig was positioned over the Amrit-1 location in 1396 metres of water with the rig air-gap of 29 metres, with a resultant rotary table to mud-line of 1425 metres.

The 30" conductor was jetted to the target depth (TD) of 1507 metres. The running tool was released and the 26" open hole drilled to 1835 metres. The 20" casing was run and set at 1820 metres without any problems.

<u>MUD</u>

The 36" interval was jetted by pumping seawater and PHG sweeps. The hole was swept at a rate of 100 barrels per stand drilled; that is, 50-barrel sweep on the half stand and another 50-barrel sweep on stand down or as deemed necessary with fluid returns to the seabed. A total of 1450 barrels of PHG was initially prepared for the two top-hole intervals with an approximate total of 4200 barrels prepared for both the 36" and 30" intervals. Of which 2200 barrels consumed as sweeps and TD hole displacement.

The preparation of the PHG was as follows: drill-water was treated with 0.25 pounds per barrel (ppb.) soda ash and 0.25 ppb, Sodium Hydroxide 35-40 ppb. Bentonite was added and allowed to hydrate under constant agitation. This provided high viscosity sweep material with a funnel viscosity of 100+ seconds / quart. Initially, 100 barrels of high viscosity PHG was pumped prior to each connection and chased with string contents of seawater. This practice was changed and two sweeps, each of 50 barrels, were pumped, one mid stand and the second at stand down. In addition to

PHG sweeps, 400 barrels of 16.0 pounds per gallon (ppg.) kill mud and 950 barrels of 12.4 ppg. PHPA mud treated with 2.5% M-I Lube were prepared.

At the 26" open hole TD (1836 metres) the hole was circulated for 15 minutes and a 200-barrel sweep was circulated. The hole was then displaced with 1.5 times the estimated hole volume with 1400 barrels of 12.4 ppg mud carried-over from the previous well (Callister-1). This was achieved by pumping-out at a rate of approximately 85 barrels per stand pulled. The string was run back to bottom and second displacement performed using 910 barrels of the newly prepared 12.4 ppg PHPA mud treated with 2.5% M-I Lube mud and 400 barrels 16.0 ppg kill mud. The displacement programme was successful in keeping the hole open. The 20" casing was run and set at 1823 metres without any problems.

The remaining 460 barrels of carried-over Callister-1 mud was retained as a contingency should further circulation be required while running the casing. Of this 460bbl, 130 barrels was pumped once the casing was landed prior to cementing.

SOLIDS CONTROL

As returns were to seabed no solids control equipment was used.

OBSERVATIONS AND RECOMMENDATIONS

No recommendations are noted which could improve the drilling of this interval.

Interval III	1836 – 2459 metres.	17½" Hole Interval	13¾" casing set
milervarm	1656 – 2459 metres.	1772 Tiole Interval	at 2451.58 metres.

Mud Type : Potassium chloride / PHPA / Glycol

Hole Problems : None

Mud Properties :

Mud Density ppg : 8.8-9.2 : 5-11 6 rpm reading Fluid Loss API cc : 4.4-6.8 10sec/10min Gel 4/6 - 8/16PV cP : 18 – 22 : 18 - 30 YP lb/100ft2 Solids % vol : 3 - 7.5Drill solids % vol : 0.3 - 2.7MBT lb/bbl : 5 – 12.5 KCl % wt : 7.6 - 8.0: 2.7 - 3.1 Glydril LC

OPERATIONS

The potassium chloride / partially hydrolysed poly-acrylamide / glycol mud was mixed. This mud system was used on both this interval and the next interval (12¼" open hole). The only variance between the two intervals' mud specifications was the use of the lower molecular weight glycol, Glydril LC at 3% on the 17½" open hole interval and the incorporation of the higher molecular weight glycol, Glydril MC, to give a total of 5% glycol for the 12¼" open hole interval. The glycols were added for shale inhibition and gas hydrate suppression.

The initial concentration of the partially hydrolysed poly-acrylamide, Polyplus, (PHPA) was 0.7 ppb of the programmed concentration of 1.5ppb. There was no polymer-shearing device available on the rig and the cold temperatures encountered at these water depths prevented adequate shearing. As a result of the inadequate polymer shearing both on surface and while circulating, there were problems with significant mud losses at the shale shakers. The shale shakers were fitted with 30 mesh (scalpers) and 84 mesh (main) screens in an attempt to minimise losses with the cold / un-sheared mud.

The blow-out preventers and riser were run and pressure tested. The 17½" bottom hole assembly was made up, surface tested and run in the hole. The bottom hole assembly consisted of a mud motor, MWD and basic LWD including an "annular pressure while drilling tool" for real-time / in-situ measurement of the equivalent circulating density (ECD).

On tagging cement at 1807 metres the hole was displaced to the 8.9 ppg potassium chloride / partially hydrolysed poly-acrylamide / glycol mud. There were heavy losses at the shale shakers. The shale shakers were by-passed and the flow rate reduced to a minimum of 850 gallons per minute. It was 16 - 18 hours of shearing through the bottom hole assembly before the shale shakers could take the flow rates required and only with a reduction of the programmed polymer concentrations. The reduced polymer concentrations, with a resultant marginal carrying capacity / hole cleaning were run throughout the drilling of the interval to minimise the losses at the shale shakers.

On drilling 3 metres of new hole a leak-off test was performed to 9.6+ ppg equivalent mud density.

The combination of the (predicted) low leak-off test results and the marginal hole cleaning properties of the mud dictated the close management of the mud throughout drilling operations. The mud density was kept to a minimum by dumping and diluting. The only solids control equipment available was the shale shakers. As the ECD increased with cuttings in the annulus, the marginal hole cleaning properties of the overall circulating system was complemented by the use of high viscosity sweeps, working the drill string and circulating until the ECD decreased to acceptable levels prior to drilling ahead.

Although the PHPA concentration was eventually run at 0.3 - 0.5 ppb the cuttings integrity / shale inhibition seen at the shale shakers was good throughout drilling operations. The programmed PHPA concentration was 1.5ppb.

The primary indicator of cuttings carrying capacity / hole cleaning is the low-end rheology 6 rpm. rheometer reading. An ideal range for a vertical well is from 11 - 13 centipoises (cps.). Due to the limitations at the shale shakers, flow rates and the reduced polymer concentrations, the rheometer 6 rpm. readings ranged from 4 - 6 cps. Even with the reduced carrying capacity there were good cuttings returned to the shale shakers, however, the cuttings were "rounded" indicating cuttings-slip in the annulus. By target depth the shale shaker screen configuration was: 10 mesh (scalpers) and 165 mesh; 84 mesh; 84 mesh and 120 mesh (main) on shale shakers #1, #2, #3 and #4, respectively.

The maximum mud density for the $17\frac{1}{2}$ " interval (at target depth) was 9.2+ ppg. The maximum annular pressure while drilling ECD was 9.6 ppg.

On reaching target depth at 2459 metres a 120-barrel sweep was pumped and the hole was circulated clean. On attempting to pull out of the hole, a tight spot with 20 thousand pounds (klbs) was encountered at 2445 metres. The string was then pumped-out to the 20" casing shoe. At the shoe, a high-density pill immediately followed by a high viscosity sweep were pumped and the hole circulated clean. The string was run back to bottom again encountering down-drag at 2445 metres. The tight hole was thought to be due to ledging. Once back on bottom a 60-barrel high-density high viscosity sweep was pumped and the hole circulated clean.

While circulating on bottom, operations were suspended for an investigation into an accident. During the suspension of operations the carrying capacity of the active system was increased with Duovis and 580 barrels of reserve mud was "weighted-up" to a density of 15.5 ppg. If tight hole were to be encountered on pulling out of the hole to run the 13%" casing, the string would be run back to bottom and the 15.5 ppg mud would be spotted in the open hole to give an overall hydrostatic pressure equivalent to 9.6 ppg. The increase in the hydrostatic pressure would give additional well bore stability through retention.

The string was then pulled out of the hole. The hole was deemed to be in good condition. The 580 barrels of "weighted-up" mud was not displaced to the open hole but carried to the 12-1/4" interval.

The 13-3/8" casing was run and set at 2454 metres without any problems. Although there were total sub-surface losses on the final 95 barrels pumped during the cement displacement.

After dumping and cleaning the solids control pits and solids accumulated in the active suction pit (from by-passing the shale shakers), 4566 barrels of mud was carried-over to the 12-1/4" open hole interval.

Solids control equipment:

Standard rig equipment on the Jack Bates is four well used VSM 300 shakers (in need of servicing), a relatively well- stocked screen inventory and five sand traps of approximately 55 barrels each.

Initially, prior to displacing the well, each shaker was dressed with the coarsest screens available; 30 mesh scalpers over 84 mesh primaries. When it became clear, even with this modest configuration, that the task of screening the system was

beyond the shakers, they were partially by-passed, the primary screens removed and the 30 mesh scalpers replaced with 10 mesh. Only then, and this is some 16 hours since displacement commenced was the 700- 900 gallons per minute (gpm) flow rate able to be accommodated.

Soon after the 84 mesh screens were re-fitted and this arrangement, 10/84, remained until approximately 2200 metres when two of the shakers receiving the least flow were change to 120s and 165 mesh.

Mud:

A total of 3440 barrels of new mud was prepared in advance of displacing the well to programmed specifications of:

KCl: 8% by weight (approx. 30 ppb.)

Sod. Bicarb: 0.25 ppb. PAC UL: 1.5-1.8 ppb. DUOVIS: 1-1.5 ppb. POLYPLUS: 0.7 ppb. GLYDRIL LC: 3%

Cement contamination as a result of drilling out cement with the newly prepared mud presented problems mainly from high pH – reaching 10 before citric acid was added to the system. Calcium was pre-treated in anticipation and subsequently to reduce total hardness to 320 ppm. Beyond these additions, no further treatment was necessary for the remainder of the interval.

Mud Density:

The initial mud density with 8% KCl was 8.8 ppg. and all but for the final day of drilling, the remainder of the interval was contained to within the range of 9.0-9.2 ppg.

Mud transferred to the 12-1/4" interval uniformly weighed 9.3 ppg. and represented a drill solids content of 3.5% by vol. Unscheduled shaker losses of approx 550 barrels and systematic dumping of the sand trap in part, achieved this mud density.

Approximately 4566 barrels were transferred to the 12-1/4" section

Solids:

Containment of the low gravity solids (LGS), taken to represent drill solids, to below 5% without the advantage of any mechanical solids control equipment other than the four VSM 300 shakers, required routine dumping either at the shakers or as was the case at TD the entire sand trap volume. In the case of the 17-1/2" interval, unintended shaker losses, a result of factors mentioned earlier but primarily due to the inability of the shakers to accommodate a cold partially-sheared PHPA system, meant that extraordinary shaker losses accounted for the bulk of surface losses that enabled dilution to contain drill solids to within the programme specifications.

.

KCl:

The initial make up KCl concentration of the system was 30.5 ppb. Subsequent premix preparation anticipated depletion and was prepared with a margin of 2-3.5ppb over the programmed 30ppb. This figure provided a roughly constant KCl determination of approx. 28.5-30.0 ppb and in doing so gave at least an indication of rates of K+ depletion.

PHPA:

Notwithstanding the reduced PHPA concentration of the initial system make up, the range 0.6-0.7 ppb proved to be too high given the conditions that prevailed for the interval, indeed the entire well, namely a flow line temperature of no less than 15 deg. C.

A judgement was made that attempted to balance, on the one hand, increasing a greatly reduced PHPA conc. in the active system with, on the other, the obvious need to limit the extent of continuous shaker losses due to a cold PHPA mud. PHPA concentration was therefore sacrificed in the interest of shaker screen mesh size and concomitant containment of drill solids.

A 700 bbl, 1.5ppb premix sustained the system once a steady active volume was established i.e. with tolerable shaker losses, and was able to maintain a PHPA excess, albeit a low one, for most of the interval. Any suggestion that the active concentration of PHPA could be maintained at programme levels of 1.0-1.5 ppb was never seriously considered, such would have been the consequent shaker losses.

MBT:

Reactive clays only occasionally reached 12.0 ppb and for the most part was maintained at or below 10.0ppb. This, to a large extent, was due to enforced whole mud dilution/replacement and the good hole cleaning practices such as periodic high viscosity sweeps and high pump rates on the riser. Programme Glydril concentration of 3% was maintained and provided the dominant inhibition.

RHEOLOGY/6RPM:

Additions of DUOVIS added via premixes and occasionally direct to the active controlled the 6rpm as close to the programmed minimum of 15 as was practically possible or indeed desirable, given the losses any significant increase would incur and the consequent need to screen down to a larger mesh size. Once again good drilling practices, in particular the systematic pumping of tandem high vis./weighted sweeps provided the riser cleaning necessary that rheology was on occasions unable to provide.

Observations and recommendations:

1) An unfortunate characteristic of the newly prepared KCl / PHPA / glycol system was, once drilling commenced, the development of intractable entrained air in the fluid. This manifested itself most clearly by high funnel viscosities (100+ seconds per quart.) and a reduced ability of the shakers to effectively screen the cuttings without intolerable shaker losses. It is possible that this state of aeration contributed to the inability of the shakers to effectively screen the system on its initial circulations, such that the shakers had to be by-passed by approximately 50%, and flow rates reduced to 640 gallons per minute (gpm.). Only after 16-18 hours of circulation was the by-pass closed completely and permanently and the four VSM 300s, dressed modestly with 10/84 mesh screens, were able to accommodate 900 gpm. of flow.

Several possible explanations for this occurrence present themselves but no single condition is convincing.

Firstly, while the initial PHPA concentration was moderate at 0.7 ppb, the newly prepared system did not have the advantage of being sheared prior to displacement. With a circulating system of some 2800 barrels and a total circulating time in excess of 3 hours, shearing through the bit was relatively infrequent.

Mud-line water temperatures of 2°C, resulting in bottom hole circulating temperature (BHCT) at 2330 metres of 15°C and flow line temperature of 12°C, provides a virtually constant low temperature environment.

The possibility of a cold, un-sheared system of PHPA and glycol retaining finely entrained air does seem to be a plausible explanation but only laboratory testing is likely to fully explain this serious rheological problem.

2) There is no doubt that poor shaker performance contributed to the considerable shaker losses experienced during the first 24 hours of drilling this interval. The least that can be suggested with respect to the four VSM 300 shakers is that they be serviced to ensure that weight, balance, stroke and speed are consistent with manufacturers' recommendations.

3) Given the problems encountered, future PHPA supplied should, at least, in part consist of low molecular weight / low viscosity polymer to mitigate against the problems described above. A suitable polymer-shearing hopper should be provided.

Interval IV	2459m-29979m	12.25 "Hole section	P & A

Mud Type : Potassium Chloride / PHPA / Glycol

Hole Problems No significant problems

Mud Properties :

Mud Density ppg. : 9.3 - 9.5 6 rpm reading : 9-11 Fluid Loss API cc : 4.4 - 5.2 : 7/16 - 10/1810sec / 10min Gels : 15 - 23PV cps YP lbs / 100 ft2 : 20 - 33 Drill Solids % vol : 2.0 - 3.5MBT lb/bbl : 9.0-12.5 Chlorides mg / l : 42000-53250 KCl % wt : 7.5-8.1 Glydril LC/MC % vol : 4.5 - 5.0

Operations

There was 4566 barrels of mud carried-over from the 17-1/2" open hole interval.

The overall glycol concentration was increased from 3% (Glydril LC) of the previous interval's mud system to 5% with Glydril MC.

Modifications to the mud specifications were made to give increased gas hydrate inhibition. Initially, the instruction was to increase the potassium chloride concentration from the programmed 8% to 12%. Due to time restraints all the materials available on the rig to make these modifications were premixed as a concentrate and bled into the active circulating system on drilling ahead. However, the resultant potassium chloride concentration in the active system was 10.2%. As the directive to increase the salinity of the mud system was given on short notice the desired 12% potassium chloride concentration was not achieved.

The Virtual Hydraulics programme was used to show the theoretical "hole cleaning indices" and ECD for various flow rates and rates of penetration. It was apparent that cuttings loading at the wellhead and lower riser would be the main concern. From these results a strategy for flow rates through the bit and riser booster was devised. A strategy for hole cleaning immediately prior to and during trips was also devised.

On drilling-out the cement the mud was treated with citric acid and sodium bicarbonate.

Three metres of new hole were made and a leak-off test performed with no leak-off at 13.0 ppg EMD. This was considered to be an erroneous result. On drilling to 2477 metres a second leak-off test was performed with leak-off at 11.0 ppg. EMD. The mud density was 9.5 ppg.

On drilling ahead the priority mud treatment, apart from increasing the potassium chloride and glycol concentrations, was to provide as efficient hole cleaning as possible (taking into account the flow rates and shale shaker limitations). The carrying capacity was increased by the addition of Duo-vis.

As the shale shakers were the only solids control equipment available, due consideration was given to modifying the mud specifications so as to maximise the shale shaker efficiency and maintain the mud density at 9.5 ppg. On achieving satisfactory hole cleaning properties the shale shakers were fitted with progressively finer mesh sizes. The first change was from: 120 / 84 / 84 / 165 to 120 / 165 / 165 / 165 and finally to 165 / 180 / 180 / 180, respectively. Additions of the shale inhibiting / encapsulating polymer, PHPA (Polyplus), were not made so as to enable the shale shakers to be fitted with finer mesh sizes. Although the PHPA concentration was constantly depleting, there was still good shale inhibition from the increased potassium ion and glycol concentrations. The predominantly shale cuttings returned to the shale shakers indicated that the mud had good shale inhibition and carrying capacity.

A trip was made for the bit at 2468 metres due to slow rates of penetration. The bit was "green". Two flow paths between the fins were found to be "balled-up". A "soft-formation" bit was run and made excellent rates of penetration to total depth at 2797 metres.

Although the pore pressure predictions indicated that the mud density at total depth would need to be 10.2 ppg. the majority interval was drilled with 9.5 ppg. The mud density at total depth was 9.6 ppg.

Electric logs were run and both run hung-up at 2945 metres. However, the primary and secondary target zones of interest were successfully logged.

Plug and abandon operations followed and were completed on 9th December 2004.

MUD:

Approximately 3989 bbls of existing mud from the 17 1/2" section was used as a base for this section. A further 580 bbls was build for whole mud dilution with the following formulation.

KCl: 12% wt/wt
Sod. Bicarb: 0.25ppb
PAC UL: 1.5ppb
DUOVIS: 1.6ppb
GLIDRIL MC: 5%

Anticipated cement contamination was treated prior to and during drilling out with approx. 0.7ppb citric acid and 0.5ppb sodium bicarbonate; concentrations deemed adequate under usual circumstances. However circumstances conspired to cause down-hole precipitation of the PHPA as evidenced by the return at the shakers of large volumes gelled polymer. This was easily removed at the shakers while circulating bottoms up after performing the leak off test and once screened out did not appear again.

This is an uncommon phenomenon possibly caused by exposure of the mud to high pH contamination. Notwithstanding pre-treatment of the system, the mud was exposed to soluble cement for a lengthy period in the riser while performing the LOT. The resultant precipitate took a curved form suggestive of being formed while static in the near zero temperatures of the riser.

This occurrence had no discernable affect on the mud system, save possibly the loss of PHPA polymer.

Mud Weight:

At the commencement of the interval and prior to increasing the KCl concentration, the mud weight was 9.3ppg. By TD (2979m) the weight had increased to 9.5ppg due primarily to the addition of 10.0-12.0 ppb KCl, with the final mud weight after circulating the hole clean at the commencement of logging of 9.6ppg.

At no stage was there evidence of hole instability or cavings.

Solids:

The LGS or rather the Drill solids % / volume criterion of 5% was also observed for this interval. At no time was this figure exceeded despite the low levels of PHPA and the less than ideal shaker screen configuration. Glydril MC at 5% by vol. proved exceptional in providing inhibition, limiting drill solids to maximum of 4.4% and an LGS of 5.6% by vol.

KCl:

An amended programme increased the initial 8% by wt to 12 % by the intersection of the primary target at 2574mRT, some 120m below the 13 3/8" shoe. This change was initiated as a hydrate suppression measure. The full 4% increase, however was not achieved with a maximum recorded, prior to intersecting the primary objective, of 10.6%

PHPA:

In the interest of fitting the finest possible screens while accepting tolerable losses, no further additions of PHPA were made and depletion continued throughout this interval

MBT:

For the most part MBT remained within the respectable range of 10-11.5 ppb equivalent and can be attributable to inhibition conferred on the system by the Glydril MC. As the lithology was mainly siltstone with minor sands in the lower reaches of the section little dilution was required to achieve these values.

RHEOLOGY/6RPM:

With a 6 rpm range of 10-12 considered adequate, low end rheology was maintained within the range of 9-11 (with an associated a yield point minimum rarely below 29 lb/100sq.ft) by means of premix additions and a minor direct to active supplement, of Duovis.

Higher values would have compromised the overall rheology with increased losses on shakers and an inability to fine down screens and maintain solids within specification.

Observations and recommendations:

No recommendations are noted which could improve the drilling of this interval.

DAILY DISCUSSION REPORT

Well Name : Amrit-1 Contractor : Transocean

Day -1

Field/Area: Otway Basin

Description: Exploration

Location: Victoria/ P52

Daily Discussion

M-I Well: 16075

17/11/2004 TD = 0 m Day -2

Moved onto Amrit-1 location and commenced running anchors.

18/11/2004 TD = 0 m

Set and tensioned anchors. Ballasted down rig, making preparations to spud.

Brought 1368bbls of Polymer mud from Callister-1 off the Lady Caroline for 26" displacement.

Commenced building PHG spud mud and 400bbls of 17ppg Kill Mud.

19/11/2004 TD = 0 m Day 0

Made up 30" casing with injection assy. Waiting for weather to calm to run in and land.

Completed mixing spud mud with gel. Weighting up 1st displacement mud with remaining barite on board. Waiting on weather to offload further barite from boats.

Built half of the 2nd displacement fluid volume.

20/11/2004 TD = 1460 m Day 1

Commence jetting 30" casing approx 17:20hrs.

Drill with seawater pumping 50bbl hi-vis PHG sweeps at half stand jetted and 50bbl at stand down

Weighted up displacement fluids with barite.

Started building further fluid for the second displacement.

Spud Amrit-1. Jet 30" casing.

21/11/2004 TD = 1758 m Day 2

Jet to 30" TD at 1510m. Released tool from casing and commenced drilling 26" section to 1758m.

Received mud chems, as per Inventory and shaker screens: 16x200XR, 16x180XR mesh. Prepared kill mud in pit #2

Pumped PHG each 15m. Mixing PHG volume as required for sweeps.

Jet to 30" TD at 1510m. Release running tool and POOH.

22/11/2004 TD = 1835 m Day 3

Drilled ahead to 26" section TD 1836mRT. Pumped remaining PHG as sweep before displacing and POOH to shoe with KCl/polymer Mud. Ran back to bottom and displaced once more with new PHPA/polymer/M-I Lube WBM, followed by 16ppg kill mud while POOH to run casing. Run 20" casing.

Built PHG for sweeps as required.

Added 128bbls seawater to first displacement fluid to give correct weight/volume. Recieved 470bbl old Callister#1 mud from Astrid. Commence dumping and cleaning all pits and prepare to mix 17.5" Glydril system.

Drill to 26" TD. Displace hole x2 with 12.4ppg PHPA/M-I Lube system. POOH and run casing.

Well Name: Amrit-1 Contractor: Transocean Field/Area: Otway Basin

Description: Exploration

Location: Victoria/ P52

Daily Discussion M-I Well: 16075

23/11/2004

TD = 1823 m

Day 4

Charged off Calcium Chloride used in cementing 20" casing.

Cleaned pits and started building KCl/polymer/Glydril WBM for next section.

24/11/2004

TD =

1823 m

Day 5

Ran riser to 537m, pressure testing each 10 joints.

Continued mixing WBM for next section when possible.

25/11/2004

TD =

1823 m

Day 6

Continued with riser running operations

(currently at 1324m).

Continued mixing of WBM for next section.

26/11/2004

TD = 1823 m

Day 7

Continue to run riser and slip joint. Nipple up. Operations suspended due to LTA.

Continue to prepare KCl/PHPA/Glycol system.

Note: The mud check reported was on an unsheared pit sample and does not represent the entire system. A full representative mud check will be carried out and reported once circulation has taken place and drilling commenced.

Continue running riser and slip joint.

27/11/2004

TD = 1825 m

Day 8

Make up BHA. RIH. Prepare to displace well to mud and drill out cement.

Complete preparation of KCl / PHPA / Glycol mud.

Mud properties confirmed once system is sheared and drilling commenced.

Make up BHA and RIH and prepaare to drill out cement.

28/11/2004

TD = 2045 m

Day 9

Displace while slip and cut. Displace kill / choke / booster lines. Test. Drill-out. Make 3 m. new hole. LOT to 9.6+ ppg EMD. Drill ahead to 2045m.

Displace hole to KCl / polymer / glycol mud. Losses at shakers of unsheared / cold mud. By-pass same. Add brine / glycol premix to decrease polymer concentration / viscosity. Treat active with citric acid / sodium bicarbonate for cement contamination. Continue to loose at shakers with 12deg. C flowline temp. Build additional volume. Maintain Vol with premix of varying polymer conc. Attempting to regain properties to specifications with premix.

Drill ahead.

Well Name : Amrit-1 Contractor : Transocean Field/Area: Otway Basin

Description: Exploration

Location: Victoria/ P52

Daily Discussion

M-I Well: 16075

29/11/2004 TD = 2370 m Day 10

Drill ahead.

Build replacement volume. Dump sandtraps on connections and as necessary to contain mud weight increase. Marginal flow properties run due to shaker limitations. No indications of tight hole on connections. ECD stabilised with mud weight at 9.0 ppg. Prepare and pump high vis. pills with good cuttings returns. Change up or replace all shaker screens to finest possible. Received 12.25" mud chemicals and backloaded Lime and M-I Lube.

Drill ahead.

30/11/2004 TD = 2459 m Day 11

Drill ahead. Occassionally circulate and work pipe to reduce ECD as shown on the annular pressure while drilling tool - maximum ECD = 9.6 ppg EMD, average = 9.48 ppg EMD. TD. Circulate. Flow check. Pump 120 bbl sweep. Circulate hole clean. POOH. Circulate and pump sweeps at 20" shoe and run to bottom.

Prepare additional premix. Mix and pump high vis. sweeps to reduce cuttings load and concomitant ECD. Dump and dilute circulating system to contain mud weight. At TD (2459m), pumped out of hole to shoe and circulated from 1818m with high vis (50bbl) & weighted (50bbl@ 12.0ppg) pills, returning considerable cuttings volume and losses over the shakers. Currently preparing additional pre-mix and weighting 400bbl pre-mix to 11.5ppg to provide contingent hole stability. Replace worn shaker screens.

Drill to TD at 2459m and perform wiper trip.

1/12/2004 TD = 2459 m Day 12

Circulate on bottom. Sweep 50 barrels high vis / high density mud. Wait on accident enquiry while circulating. POOH and prepare to run casing. Continue to build replacement volume. Mix and pump high vis / high density sweep. Add Duovis directly to active to increase carrying capacity.

Wait on accident enquiry. Prepare to run casing.

2/12/2004 TD = 2459 m Day 13

Prepare to run casing. Rig-up and run 13-3/8" casing.

Prepare for 12-1/4" open hole interval. Cement volumes, spacer 85 bbls + lead 327 bbls = tail 81 bbls = 493 bbls. Barytes used in cement spacer.

Run 13 3/8" casing.

3/12/2004 TD = 2459 m Day 14

Land and set 13-3/8" casing at 2454 m, without any problems. Set seal assembly. Test BOPs, Make up 12-1/4" BHA.

No apparent loss on running casing or while pumping cement. Approx. 95bbl lost sub-surface loss on displacing cement. Mud left behind casing 131 bbls. Dump and clean sand traps / active suction pit. Mud carried to 12-1/4" open hole interval = 4566 bbls. Prepare for 12-1/4" open hole interval. Commence preparation of KCl brine to raise system KCl to 12% and glycol to 5%.

Land and cement 13-3/8" casing.

4/12/2004 TD = 2468 m Day 15

M/u BHA. P/u additional drill pipe and RIH. Drill-out cement. Make 3 m. new hole. Perform FIT (13.3ppg EMW) Drill ahead. Build new KCl brine and Glydril MC volume to be bled to active system over a circulation while drilling ahead to raise KCl to 12% and Glydril to 5% by primary target. Increase KCl and Glydril concentration in reserve mud. Sustained shaker losses with cold gelled mud on first bottoms up when back on bottom. Treat system for cement contamination with Sod.bicarb. and citric acid. Received 20x1mt KCl, polymers and chemicals as per Inventory.

RIH and drill out cement. Perform LOT.

Well Name : Amrit-1 Contractor : Transocean Field/Area: Otway Basin

Description: Exploration

Location: Victoria/ P52

Daily Discussion

M-I Well: 16075

5/12/2004 TD = 2696 m Day 16

Circulate hole clean at 2477 m. Perform second LOT with leak-off at 11.0 ppg EMD. Assume previous LOT at 13.0 ppg. EMD as erroneous. Drill ahead to 2696 m. Slow ROPs. Circulate. Pump-out to shoe. Circulate.

Continue to add concentrate premix to active prior to intersecting primary target. Change to finer mesh shaker screens. Used 6 new 165 mesh screens. Add oxygen scavenger and defoamer. Add XCD for carrying capacity. Moderate losses at shakers on sand returns. Note: Adjustment to Polyplus usage and cummulative cost. Additional KCl will be added to the active to achieve 12% on delivery.

Drill to 2696 m. POOH for bit.

6/12/2004 TD = 2866 m Day 17

Continue to circulate at shoe. POOH. Dump log info. P/u new bit RIH. Junk in hole decide to drill ahead at ROPs up to 80-85m/hr. Circulate riser for ECD reduction.

Received bulk bentonite (41 mt) from "Lady Astrid". Received KCl and mud balance from "Lady Caroline". Maintain active vol. with 12%KCl / 5%Glydril premix. Change shakers to finest possible given current flow rates.

Drll ahead.

7/12/2004 TD = 2979 m Day 18

Drill to total depth at 2979.43 m, MD / 2978.94 m. TVD. Maximum BHCT = 25 deg.C. ECD = 9.96 ppg. Maximum gas = 145 unit at 2928 m. Inflow test, Circulate, POOH, Rig up and Log.

Add biocide (Glute 25) to active to prevent microbial contamination while e-logging. Dump and clean pits and sand traps. Retain active and reserve voume.

Drill to TD at 2979m. POOH and Log.

8/12/2004 TD = 2979 m Day 19

Continue e-logging. Logging tool stood up at 2945m on each of the two runs. Primary and secondry targets successfuly logged. Rig up to run Log #3

Continue cleaning pits. Weight up pit #2 to 17ppg. Note adjustment to Glydril MC usage.

Contin. logging.

9/12/2004 TD = 2979 m Day 20

P&A. Set EZSV packer and prepare to pump cement plug #1, 2386-2490m.

Inhibit circulating system and write off balance of barite. Propose backloading Gel and leaving on board the remaining Duovis, Guar Gum, Soda Ash and Caustic Soda.

P&A

10/12/2004 TD = 2979 m Day 21

P&A. Cement plug #1 (TOC 2386m). RIH and pull w/bushing. Prepare to RIH and cut 13 3/8" casing below mud line.

Backload chemicals as per inventory. Balance to be backloaded on L. Astrid and will appear on report #25. Duovis and Guar gum to remain on board.

P&A.

Well Name : Amrit-1 Contractor : Transocean Field/Area: Otway Basin

Description: Exploration

Location: Victoria/ P52

Daily Discussion

M-I Well: 16075

11/12/2004 TD = 1557 m Day 22

Set balanced plug f/1557-1460m. Pull back and displace riser and kill and choke to seawater and dump returns. Prepare to pull riser and BOPs. Backload chemicals as per Inventory. Received 82 MT of Barite- to be disposed.

P&A. Set final cement plug.

12/12/2004 TD = 1557 m Day 23

Pull riser and BOPs. Pits #2, 3 & 4 to be dumped.

82 mt Barite to be used for other and 138 mt Gel to be backloaded to L.Caroline. 48 sx of Soda ash and 24 drms Caustic soda to be received and with 67sx Guar gum and 45 sx Duovis will remain on board. Laboratory testing equipment and reagents, along with monitor, printer and computer wil be backloaded to Santos base in Portland to await shipping instructions.

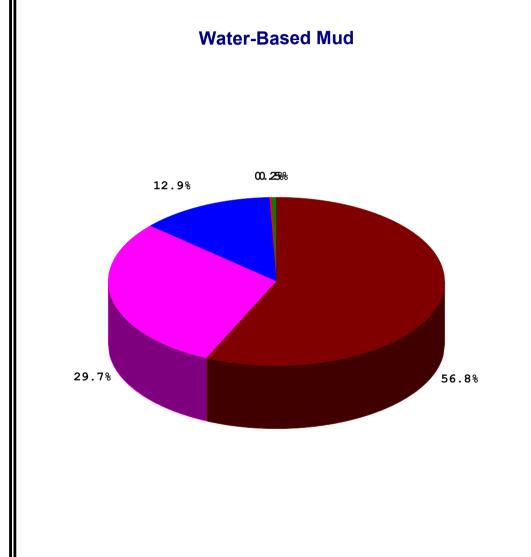
P&A. Pull riser and BOPs and prepare to cut 20" and 30" casing.

COST BY INTERVAL

PRODUCT SUMMARY

Operator :Santos Ltd.Field/Area :Otway BasinWell Name :Amrit-1Description :ExplorationContractor :TransoceanLocation :Victoria/ P52

SUMMARY OF PRODUCT USAGE	FOR INTERVAL	17/11/2	2004 - 20/11/200	04, 0 - 1510m
WATER-BASED MUD	SIZE	AMOUNT	UNIT COST	PROD COST
			(\$)	(\$)
1 - M-I BAR BULK	1 MT BK	103	210.00	21630.00
2 - M-I GEL	1 MT BK	29	228.67	6631.43
3 - CAUSTIC SODA	25 KG CN	4	20.46	81.84
4 - SODA ASH	25 KG BG	7	13.04	91.28
5 - DUO-VIS	25 KG BG	17	227.00	3859.00
6 - POLYPAC UL	25 KG BG	9	90.00	810.00
7 - PHPA POLYPLUS	25 KG BG	1	85.80	85.80
3 - Ex-Callister WBM	1 BL BK	1368	0.00	0.00
9 - M-I LUBE	55 GA DM	11	445.00	4895.00
SUB TOTAL:				38084.35
ΓΑX:				0.00



Operator: Santos Ltd. Well Name : Amrit-1 Field/Area: Otway Basin **Description: Exploration** Location : Victoria/ P52

Cost **Analysis**

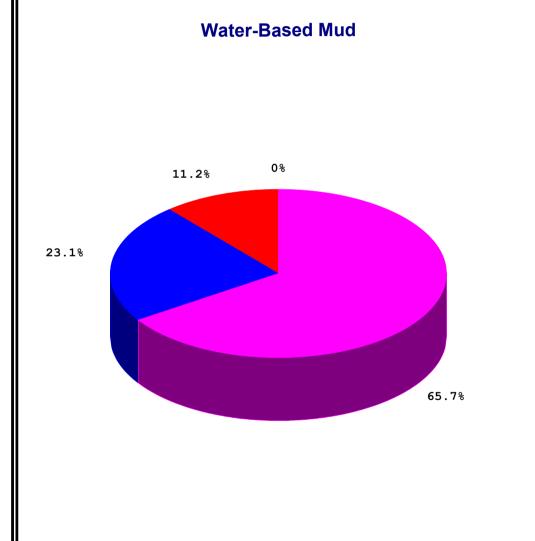
BREAKDOWN OF COST BY PRODUCT GROUP 17/11/2004 - 20/11/2004, 0 - 1510 m

Water-Based Mud Products	\$	%
1-Common Chemicals	173.12	0.5
2-Encapsulator	85.80	0.2
3-Lubricant	4895.00	12.9
4-Visc/Fluid Loss	11300.43	29.7
5-Weight Material	21630.00	56.8

PRODUCT SUMMARY

Operator :Santos Ltd.Field/Area :Otway BasinWell Name :Amrit-1Description :ExplorationContractor :TransoceanLocation :Victoria/ P52

SUMMARY OF PRODUCT USAGE	FOR INTERVAL	21/11/2004 -	- 22/11/2004,	1510- 1835 m
WATER-BASED MUD	SIZE	AMOUNT	UNIT COST	PROD COST
			(\$)	(\$)
1 - M-I BAR BULK	1 MT BK	99	210.00	20790.00
2 - M-I GEL	1 MT BK	32	228.67	7317.44
3 - Ex-Callister WBM	1 BL BK	440	0.00	0.00
4 - M-I LUBE	55 GA DM	8	445.00	3560.00
SUB TOTAL:				31667.44
TAX:				0.00
WATER-BASED MUD TOTAL COST:				31667.44
TOTAL MUD COST FOR INTERVAL:				31667.44


Operator: Santos Ltd.
Well Name: Amrit-1
Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52

Cost Analysis

BREAKDOWN OF COST BY PRODUCT GROUP 21/11/2004 - 22/11/2004,

1510 - 1835 m

Water-Based Mud Products	\$	%
1-Common Chemicals	0.00	
2-Lubricant	3560.00	11.2
3-Visc/Fluid Loss	7317.44	23.1
4-Weight Material	20790.00	65.7

Water-Based Mud Total Cost: \$

31667.44

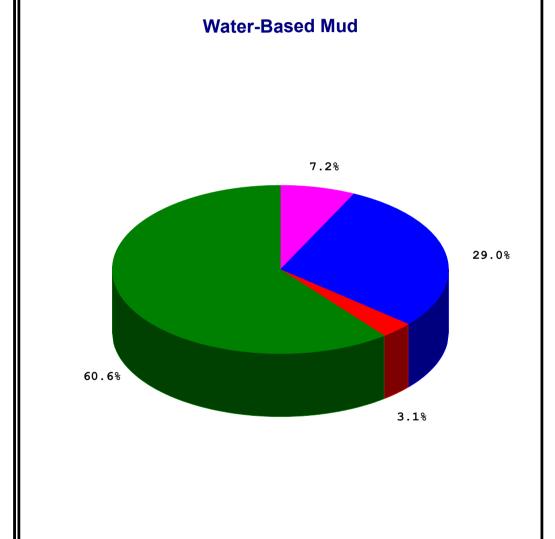
100.0

L.L.C.

PRODUCT SUMMARY

Operator :Santos Ltd.Field/Area :Otway BasinWell Name :Amrit-1Description :ExplorationContractor :TransoceanLocation :Victoria/ P52

SUMMARY OF PRODUCT USAGE FOR INTERVAL		23/11/2004 - 2/12/2004,		1823 - 2459 m
WATER-BASED MUD	SIZE	AMOUNT	UNIT COST	PROD COST
			(\$)	(\$)
1 - M-I BAR BULK	1 MT BK	60	210.00	12600.00
2 - SODA ASH	25 KG BG	14	13.04	182.56
3 - KCl 99% (BIG BAG)	1 MT BG	70	430.06	30104.20
4 - CALCIUM CHLORIDE	25 KG BG	26	11.54	300.04
5 - DEFOAM A (NAPCO)	5 GA CN	8	68.59	548.72
6 - DUO-VIS	25 KG BG	161	227.00	36547.00
7 - POLYPAC UL	25 KG BG	157	90.00	14130.00
8 - OS-1	25 KG BG	12	33.54	402.48
9 - CITRIC ACID	25 KG BG	20	36.79	735.80
10 - PHPA POLYPLUS	25 KG BG	64	85.80	5491.20
11 - SODIUM BICARBONATE	25 KG BG	22	10.64	234.08
12 - GLYDRIL MC	200 KG DM	42	371.49	15602.58
13 - GLYDRIL LC	55 GA DM	100	575.81	57581.00
SUB TOTAL:				174459.66
TAX:				0.00
WATER-BASED MUD TOTAL COST:				174459.66
TOTAL MUD COST FOR INTERVAL:				174459.66


Operator : Santos Ltd. Well Name : Amrit-1 Field/Area: Otway Basin **Description: Exploration** Location : Victoria/ P52

Cost **Analysis**

BREAKDOWN OF COST BY PRODUCT GROUP 23/11/2004 - 2/12/2004,

1823 - 2459 m

Water-Based Mud Products	\$	%
1-Common Chemicals	105691.46	60.6
2-Encapsulator	5491.20	3.1
3-Visc/Fluid Loss	50677.00	29.0
4-Weight Material	12600.00	7.2

Water-Based Mud Total Cost: \$ 174459.66 100.0

PRODUCT SUMMARY

Operator :Santos Ltd.Field/Area :Otway BasinWell Name :Amrit-1Description :ExplorationContractor :TransoceanLocation :Victoria/ P52

SUMMARY OF PRODUCT USAGE F	OR INTERVAL	3/12/20	04 - 12/12/2004,	2459 - 1557 m
WATER-BASED MUD	SIZE	AMOUNT	UNIT COST	PROD COST
			(\$)	(\$)
1 - M-I BAR BULK	1 MT BK	183	210.00	38430.00
2 - KCI 99% (BIG BAG)	1 MT BG	31	430.06	13331.86
3 - DEFOAM A (NAPCO)	5 GA CN	4	68.59	274.36
4 - DUO-VIS	25 KG BG	34	227.00	7718.00
5 - POLYPAC UL	25 KG BG	12	90.00	1080.00
6 - OS-1	25 KG BG	32	33.54	1073.28
7 - CITRIC ACID	25 KG BG	20	36.79	735.80
8 - SODIUM BICARBONATE	25 KG BG	10	10.64	106.40
9 - GLUTE 25	25 LT CN	23	93.68	2154.64
10 - GLYDRIL MC	200 KG DM	74	371.49	27490.26
SUB TOTAL:				92394.60
TAX:				0.00
WATER-BASED MUD TOTAL COST:				92394.6
TOTAL MUD COST FOR INTERVAL:				92394.6

Operator: Santos Ltd. Well Name : Amrit-1 Field/Area: Otway Basin **Description: Exploration** Location : Victoria/ P52

Cost **Analysis**

BREAKDOWN OF COST BY PRODUCT GROUP 3/12/2004 - 12/12/2004, 2459 - 1557 m

Water-Based Mud Products	\$	%
1-Common Chemicals	45166.60	48.9
2-Visc/Fluid Loss	8798.00	9.5
3-Weight Material	38430.00	41.6

Water-Based Mud 41.6% 48.9% 9.5%

Water-Based Mud Total Cost: \$ 92394.60 100.0

DRILLING FLUIDS RECAP FOR SANTOS LIMITED AMRIT 1

DAILY VOLUME SUMMARY SHEET

Santos Ltd. Amrit-1

30" Casing Jetting with Seawater/PHG Sweeps

Hole volumes (sea water) not included in this section.

		Mu	d Volume St	atus bbl			Mud Volume Built bbl				Mud Volume Lost bbls						
Date	Depth	Hole	Surf	Res	Total	Water	Mud	Mud	Daily	Cum	Solids	Surf	Dump	Hole	Sweeps	Daily	Cummul
2004			Active		Vol		Received	Built	Total	Built	Equip				Plugs	Total	Lost
18-Nov	0	0	0	2855	2855	1456	1368	31	2855	2855						0	0
19-Nov	0	0	0	3319	3319	392		42	464	3319						0	0
20-Nov	1460	0	0	3624	3624	331		19	474	3793			55		114	169	169

26" Hole Seawater/PHG sweeps/ Glydril displacement fluids

Hole volumes (sea water) not included in this section.

		Mu	d Volume St	atus bbl			Mud Volume Built bbls						Mud V	olume Lost b	bls		
Date	Depth	Hole	Surf	Res	Total	Water	Mud	Mud	Daily	Cum	Solids	Surf	Dump	Hole	Sweeps	Daily	Cummul
2004			Active		Vol		Received	Built	Total	Built	Equip				Plugs	Total	Lost
21-Nov	1758	0	0	3495	3495	924	3624	235	4931	4931					1436	1436	1436
22-Nov	1835	0	0	480	480	223	440	5	668	5599			417		634	3683	5119

17.5" Hole KCI/PHPA/3% Glydril

		Mud	d Volume Sta	itus bbls			Mud Volume Built bbls						Mud V	olume Lost b	obls		
Date	Depth	Hole	Surf	Res	Total	Water	Mud	Mud	Daily	Cum	Solids	Surf	Dump	Behind	Form.	Daily	Cummul
2004			Active		Vol		Received	Built	Total	Built	Equip			Csg		Total	Lost
23-Nov	1825		460	1975	2435		480	2435	2915	2915			480			480	480
24-Nov	1825			2804	2804			369	369	3284						0	480
25-Nov	1825			2966	2966	131		31	162	3446						0	480
26-Nov	1825			3087	3087	13		108	121	3567						0	480
27-Nov	1825		540	2894	3434	347			347	3914						0	480
28-Nov	2045	2224	587	1579	4390	1321		52	1373	5287	417					417	897
29-Nov	2370	2641	975	785	4401	478		68	546	5833	140		395			535	1432
30-Nov	2459	2754	842	1049	4645	625			625	6458	320		61			381	1813
1-Dec	2459	2830	853	908	4591			20	20	6478	54	20				74	1887
2-Dec	2459	2724	877	891	4492				0	6478			99			99	1986
3-Dec	2459	2145	401	1443	3989				0	6478			277	131	95	503	2489

12.25" Hole KCL/PHPA/5% Glydril

Mud received from 17.5" section: 3989 bbl

		Mud	d Volume Sta	ıtus bbls			Mud Volume Built bbls					Mud Volume Lost bbls							
Date	Depth	Hole	Surf	Res	Total	Water	Mud	Mud	Bar	Daily	Cum	Solids	Surf	Dump	Form.	Left in	Backload	Daily	Cummul
2003			Active		Vol		Received	Built		Total	Built	Equip		Inject		hole		Total	Lost
4-Dec	2468	2057	877	1466	4400	411	3989			4400	4400							0	0
5-Dec	2696	2178	951	1199	4328					0	4400	72						72	72
6-Dec	2866	2267	782	993	4042					0	4400	104		182				286	358
7-Dec	2979	2326	729	743	3798					0	4400	104		140				244	602
8-Dec	2979	2332	436	809	3577			77		77	4477			298				298	900
9-Dec	2979	2269	501	807	3577					0	4477							0	900
10-Dec	2386	2070	728	542	3340					0	4477					237		237	1137
11-Dec	1557	0	279	542	821					0	4477					2519		2519	3656
12-Dec	1557	0			0					0	4477			821				821	4477

DRILLING FLUIDS RECAP FOR SANTOS LIMITED AMRIT 1

TOTAL
MATERIAL
COST

M-I L.L.C.

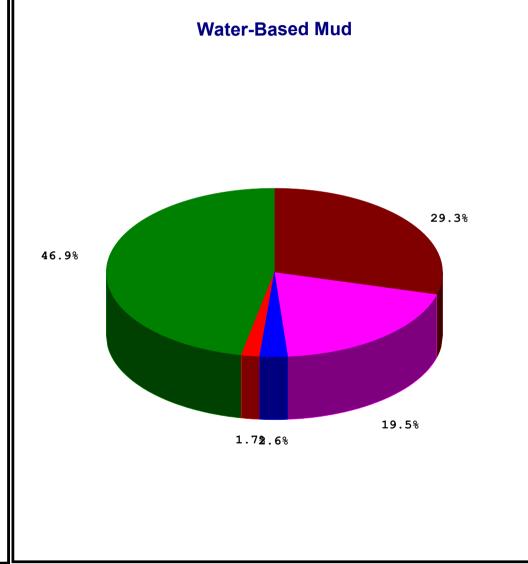
PRODUCT SUMMARY

16075

Operator :Santos Ltd.Field/Area :Otway BasinWell Name :Amrit-1Description :ExplorationContractor :TransoceanLocation :Victoria/ P52

SUMMARY OF PRODUCT USAGE I	FOR INTERVAL	17/11/2	2004 - 12/12/2004	1, 0 - 1557 n
WATER-BASED MUD	SIZE	AMOUNT	UNIT COST	PROD COST
			(\$)	(\$)
1 - M-I BAR BULK	1 MT BK	445	210.00	93450.00
2 - M-I GEL	1 MT BK	61	228.67	13948.87
3 - CAUSTIC SODA	25 KG CN	4	20.46	81.84
4 - SODA ASH	25 KG BG	21	13.04	273.84
5 - KCI 99% (BIG BAG)	1 MT BG	101	430.06	43436.06
6 - CALCIUM CHLORIDE	25 KG BG	26	11.54	300.04
7 - DEFOAM A (NAPCO)	5 GA CN	12	68.59	823.08
8 - DUO-VIS	25 KG BG	212	227.00	48124.00
9 - POLYPAC UL	25 KG BG	178	90.00	16020.00
10 - OS-1	25 KG BG	44	33.54	1475.76
11 - CITRIC ACID	25 KG BG	40	36.79	1471.60
12 - PHPA POLYPLUS	25 KG BG	65	85.80	5577.00
13 - SODIUM BICARBONATE	25 KG BG	32	10.64	340.48
14 - GLUTE 25	25 LT CN	23	93.68	2154.64
15 - GLYDRIL MC	200 KG DM	116	371.49	43092.84
16 - Ex-Callister WBM	1 BL BK	1808	0.00	0.00
17 - M-I LUBE	55 GA DM	19	445.00	8455.00
18 - GLYDRIL LC	55 GA DM	100	575.81	57581.00
SUB TOTAL:				336606.05
TAX:				0.00
WATER-BASED MUD TOTAL COST:				336606.05
TOTAL MUD COST FOR INTERVAL:				336606.05

DRILLING FLUIDS DATA MANAGEMENT SYSTEM



Operator: Santos Ltd. Well Name : Amrit-1 Field/Area: Otway Basin **Description: Exploration** Location : Victoria/ P52

Cost **Analysis**

BREAKDOWN OF COST BY PRODUCT GROUP 17/11/2004 - 12/12/2004, 0 - 1557 m

Water-Based Mud Products	\$	%
1-Common Chemicals	149555.42	46.9
2-Dispersants	5577.00	1.7
3-Lubricant	8455.00	2.6
4-Visc/Fluid Loss	62072.87	19.5
5-Weight Material	93450.00	29.3

DRILLING FLUIDS RECAP FOR SANTOS LIMITED AMRIT 1

HYDRAULICS REPORT

HYDRAULICS SUMMARY

Operator : Santos Ltd.Field/Area : Otway BasinWell Name : Amrit-1Description : ExplorationContractor : TransoceanLocation : Victoria/ P52

Contractor	. Hallsoceal					I. VICIOIIA/			
Date		19/11/2004	23/11/2004			28/11/2004		30/11/2004	1/12/2004
Depth	m		1823	1835	1823	1924	2332	2459	2459
Days Since Spud			4	7	8	9	10	11	12
*RHEOLOGICAL P	ROPERTIES								
Mud Wt	lb/gal	9.0	8.35	8.9	8.8	8.9	9.0	9.2	9.2
Plastic Visc	cP			17	18	15	18	20	22
Yield Point	lb/100ft ²			30	30	18	17	26	30
3-rpm Rdg	Fann deg			8	9	4	4	7	8
np Value		*		.4454	.4594	.5406	.5986	.5208	.509
Kp Value	lb•s^n/100ft²	*		3.1182	2.9179	1.2095	.893	1.9067	2.3203
na Value		*		.3249	.3025	.4289	.4444	.385	.3863
Ka Value	lb•s^n/100ft²	*		5.0241	5.8625	2.1201	2.0675	3.986	4.5457
*FLOW DATA									
Flow Rate	gal/min	0	0	0	43	970	641	893	0
Pump Pressure	psi	0	0	0	0	2430	2900	1900	0
Pump	hhp	-	*	*	-	1375	1085	990	*
*PRESSURE LOSSI						-57.0			
Drill String	psi	*	*	*	85	2320	1600	2116	*
Bit	psi	*	*	*	1	382	169	335	*
Annulus	psi	*	*	*	10	15	14	23	*
Total System	psi	*	*	*	96	2718	1783	2474	*
*BIT HYDRAULICS					70	2/10	1703	27/ 1	
Nozzles	1/32"				20	20	20	20	20
Nozzles	1/32"				3x22	3x22	3x22	3x22	3x22
Bit Pressure	%	*	*	*	*	16	6	18	*
Bit	hhp	*	*	*		216	63	174	*
Bit HSI	(index)	*	*	*		.9	.26	.73	*
Jet Velocity	ft/s	*	*	*	3	67	44	61	*
Impact Force	lbf	*	*	*	2	979	432	857	*
DRILL COLLARS A		•	•		2	919	432	837	·
Velocity	m/s	*	*	*		1			*
Critical Vel	m/s	*	*	*	2	1	1	2	*
	III/S	*	*	*	2	649	247	258	*
Reynolds Number Crit Re (Lam - Tran)		*	*	*		2729		2756	*
		*	*	*	2841	2129	2650	2/30	*
*DRILL PIPE ANNU Velocity		*	*	*					*
Critical Vel	m/s	*	*	*	2	1	1	2	*
	m/s	*	*	*	2 2	1	_	2	*
Reynolds Number		*	*	*	2841	513 2729	209 2650	233 2756	*
Crit Re (Lam - Tran)			-r		2841	2129	2000	2/30	*
*HOLE CLEANING		*	*	*					*
Slip Velocity	m/s	*	*	*					*
Rising Velocity	m/s	*	*	*	227	7.4	50	77	*
Lifting Capacity	%	*		*	-226	74	52	77	*
Cutting Conc	%		*		0.0	2.87	3.07	0.0	
Penetration Rate	m/h	0	0	0	0	30	15	0	0
CASING SHOE PRE		*	*	*	0.02	0.04	0.02	0.27	*
ECD ECD Himan	lb/gal	*	*	*	8.83	8.94	9.03	9.27	*
ECD+Cuttings	lb/gal	7	*	7	8.83	9.28	9.39	9.27	*
TOTAL DEPTH PRI		*	*	*	0.02	0.04	0.02	0.27	*
ECD+Cuttings	lb/gal	*	*	*	8.83 8.83	8.94 9.28	9.03 9.4	9.27 9.27	*
ECD+Cuttings	lb/gal	·							
M-I L.L.C.	16075		DRIL	LING FLUID	OS DATA MA	ANAGEME	NT SYSTEM	1	

HYDRAULICS SUMMARY

Operator : Santos Ltd.Field/Area : Otway BasinWell Name : Amrit-1Description : ExplorationContractor : TransoceanLocation : Victoria/ P52

Date		2/12/2004	3/12/2004	4/12/2004	5/12/2004	6/12/2004	7/12/2004	8/12/2004	9/12/2004
Depth	m	2459	2459	2462	2696	2866	2979	2979	2979
Days Since Spud		13	14	15	16	17	18	19	20
*RHEOLOGICAL P	ROPERTIES	13		10	10	- 1	10		
Mud Wt	lb/gal	9.2	9.3	9.3	9.5	9.5	9.5	9.6	9.6
Plastic Visc	cP	22	21	21	21	23	24	22	23
Yield Point	lb/100ft²	34	33	26	25	30	30	29	29
3-rpm Rdg	Fann deg	8	8	7	8	8	8	8	8
np Value	Tunn deg	.478	.4739	.5329	.5425	.52	.5305	.5174	.5284
Kp Value	lb•s^n/100ft²	3.0311	2.9988	1.8072	1.6654	2.2082	2.1072	2.1597	2.0563
na Value		.4041	.4041	.3953	.3361	.3769	.3133	.3769	.3769
Ka Value	lb•s^n/100ft²	4.4154	4.4154	3.9192	4.9333	4.6156	5.1204	4.6156	4.6156
*FLOW DATA									
Flow Rate	gal/min	0	0	1000	0	748	0	0	0
Pump Pressure	psi	0	0	2320	0	2700	0	0	0
Pump	hhp	*	*	1354	*	1178	*	*	*
*PRESSURE LOSSE									
Drill String	psi	*	*	1911	*	1418	*	*	*
Bit	psi	*	*	1053	*	602	*	*	*
Annulus	psi	*	*	71	*	80	*	*	*
Total System	psi	*	*	3034	*	2099	*	*	*
*BIT HYDRAULICS									
Nozzles	1/32"		6x14	6x14	6x14	6x14			
Nozzles	1/32"								
Bit Pressure	%	*	*	45	*	22	*	*	*
Bit	hhp	*	*	614	*	263	*	*	*
Bit HSI	(index)	*	*	5.21	*	2.23	*	*	*
Jet Velocity	ft/s	*	*	108	*	81	*	*	*
Impact Force	lbf	*	*	1712	*	978	*	*	*
DRILL COLLARS A	NNULUS								
Velocity	m/s	*	*	2	*	1	*	*	*
Critical Vel	m/s	*	*	2	*	2	*	*	*
Reynolds Number		*	*	2287	*	896	*	*	*
Crit Re (Lam - Tran)		*	*	2740	*	2758	*	*	*
*DRILL PIPE ANNU	JLUS								
Velocity	m/s	*	*	2	*	1	*	*	*
Critical Vel	m/s	*	*	2	*	2	*	*	*
Reynolds Number		*	*	1525	*	455	*	*	*
Crit Re (Lam - Tran)		*	*	2740	*	2758	*	*	*
*HOLE CLEANING									
Slip Velocity	m/s	*	*		*		*	*	*
Rising Velocity	m/s	*	*	1	*	1	*	*	*
Lifting Capacity	%	*	*	94	*	88	*	*	*
Cutting Conc	%	*	*	0.0	*	0.0	*	*	*
Penetration Rate	m/h	0	0	0	0	0	0	0	0
CASING SHOE PRE	ESSURES								
ECD	lb/gal	*	*	9.46	*	9.64	*	*	*
ECD+Cuttings	lb/gal	*	*	9.46	*	9.64	*	*	*
TOTAL DEPTH PRI									
ECD	lb/gal	*	*	9.47	*	9.66	*	*	*
ECD+Cuttings	lb/gal	*	*	9.47	*	9.66	*	*	*
M-I L.L.C.	16075		DRIL	LING FLUID	S DATA M	ANAGEMEN	NT SYSTEM	ı	

HYDRAULICS SUMMARY

Operator : Santos Ltd.Field/Area : Otway BasinWell Name : Amrit-1Description : ExplorationContractor : TransoceanLocation : Victoria/ P52

Date	10/12/2004						
Depth m	2979						
Days Since Spud	21						
*RHEOLOGICAL PROPERTIES							
Mud Wt lb/gal	9.6						
Plastic Visc cP							
Yield Point lb/100ft ²	30						
3-rpm Rdg Fann deg							
np Value	.509						
Kp Value lb•s^n/100ft²	2.3203						
na Value	.3863						
Ka Value lb•s^n/100ft²	4.5457						
*FLOW DATA							
Flow Rate gal/min	0						
Pump Pressure psi							
Pump hhp	*						
*PRESSURE LOSSES							
Drill String psi	*						
Bit psi	*						
Annulus psi	*						
Total System psi	*						
*BIT HYDRAULICS							
Nozzles 1/32"							
Nozzles 1/32"							
Bit Pressure %	*						
Bit hhp	*						
Bit HSI (index)	*						
Jet Velocity ft/s	*						
Impact Force lbf	*						
DRILL COLLARS ANNULUS							
Velocity m/s	*						
Critical Vel m/s	*						
Reynolds Number	*						
Crit Re (Lam - Tran)	*						
*DRILL PIPE ANNULUS							
Velocity m/s	*						
Critical Vel m/s	*						
Reynolds Number	*						
Crit Re (Lam - Tran)	*						
*HOLE CLEANING							
Slip Velocity m/s	*						
Rising Velocity m/s	*						
Lifting Capacity %	*						
Cutting Conc %							
Penetration Rate m/h							
CASING SHOE PRESSURES							
ECD lb/gal	*						
ECD+Cuttings lb/gal							
TOTAL DEPTH PRESSURES							
ECD lb/gal	*						
ECD+Cuttings lb/gal							
M-I LLC. 16075		DRILL	ING FLUID	S DATA MA	ANAGEMEI	NT SYSTEM	

DRILLING FLUIDS RECAP FOR SANTOS LIMITED AMRIT 1

DRILLING
FLUIDS
SUMMARY

Field/Area: Otway Basin Operator: Santos Ltd. **Description:** Exploration Well Name: Amrit-1 Contractor: Transocean Location: Victoria/ P52

Date		17/11/2004	18/11/2004	19/11/2004	20/11/2004	21/11/2004	22/11/2004
Depth/TVD	m	/	/	0/0	/	1758/1758	1835/1835
Activity		Running Anchors	M/U BHA	⁷ aiting on Weath	Jet 30"	Drill 26" hole	Running 20" Csg
Mud Type		6	Spud Mud	Spud Mud	Spud Mud	Spud Mud	Spud Mud
Hole Size	in	0	0	0	26	26	26
Circ Volume	bbl	•					
Flow Rate	gal/min	0	0	0	1124	1124	1124
Circ Pressure	psi	0	0	0	3500	3800	3800
Avg ROP	m/hr	0	0	0	0	36.74	36.74
Sample From				Pit 2			
Flow Line Temp	°F						
Mud Weight	lb/gal	@ °F	@ °F	9.0@ °F	@ °F	(a), °F	@, °F
Funnel Viscosity	s/qt	Ò		120+			
PV	cP						
YP	lb/100ft ²						
R600/R300/R200		//	//	//	//	//	//
R100/R6/R3		//	//	//	//	//	//
10s/10m/30m Gel	lb/100ft ²	//	//	//	//	//	//
API Fluid Loss	cc/30 min						
HTHP Fluid Loss	cc/30 min						
Cake API/HT	1/32"	/	/	/	/	/	/
Solids	%Vol						
Oil/Water	%Vol	/	/	/	/	/	/
Sand	%Vol						
MBT	lb/bbl						
pН							
Alkal Mud (Pm)							
Pf/Mf		/	/	/	/	/	/
Chlorides	mg/l						
Hardness Ca	•						
KCl	% wt						
PHPA	ppb						
Glycol	% vol						
Excess Sulphite	mg/L						
Daily Mud Cost	\$	0.00	2891.08	11007.60	24185.67	31210.10	457.34
Cuml Mud Cost	\$	0.00	2891.08	13898.68	38084.35	69294.45	69751.79
Sales Engineer		Nick Co/Paul Ma	Nick Co/Paul Ma	Nick Co/Paul Ma	Nick Co/Paul Ma	Nick Co/Paul Ma	Nick Co/Paul Ma
Products Used			M-I Gel / 12	M-I Gel / 16	M-I Gel / 1	M-I Gel / 30	M-I Gel / 2
			NaOH / 4	soda / 2	DUO-VIS / 6	MI LUBE / 8	DLD WBM / 44
			soda / 5	DUO-VIS / 11	UL / 3	BARBK / 99	
			LD WBM / 136	UL / 6	MI LUBE / 11		
				PHPA / 1	BARBK / 83		
				BARBK / 20			
D=144 D1/0	'						

REMARKS

17/11/2004:

18/11/2004:

19/11/2004:

20/11/2004: Spud Amrit-1. Jet 30" casing.

21/11/2004: Jet to 30" TD at 1510m. Release running tool and POOH.

22/11/2004: Drill to 26" TD. Displace hole x2 with 12.4ppg PHPA/M-I Lube system. POOH and run casing.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator : Santos Ltd.Field/Area : Otway BasinWell Name : Amrit-1Description : ExplorationContractor : TransoceanLocation : Victoria/ P52

Date		23/11/2004	24/11/2004	25/11/2004	26/11/2004	27/11/2004	28/11/2004
Depth/TVD	m	1823/1823	/	/	1835/1835	1823/ 1823	1924/1924
Activity		R/U to run Riser	Running Riser	Running Riser	Nipple up	RIH	Drill ahead
Mud Type		Spud Mud	Spud Mud	Spud Mud	KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl
Hole Size	in	0	0	0	0	17.5	17.5
Circ Volume	bbl	•	•		526	540	2811
Flow Rate	gal/min	0	0	0	0	43	970
Circ Pressure	psi	0	0	0	0	0	2430
Avg ROP	m/hr	0	0	0	0	0	30
Sample From		Drill wat			Pit	FL	FL
Flow Line Temp	°F	n/a					54
Mud Weight	lb/gal	3.35@ ambient °I	@, °F	@ °F	8.9@90 °F	8.8@ 60 °F	8.9@55 °F
Funnel Viscosity	s/qt	26			72		96
PV	cP				17	18	15
YP	lb/100ft ²				30	30	18
R600/R300/R200		//	//	//	64/47/37	66/48/37	48/33/27
R100/R6/R3		//	//	//	25/10/8	26/11/9	18/5/4
10s/10m/30m Gel	lb/100ft ²	//	//	//	8/9/	8/9/	4/6/
API Fluid Loss	cc/30 min				6.0	6.2	6.8
HTHP Fluid Loss	cc/30 min						
Cake API/HT	1/32"	/	/	/	1/	1/	1/
Solids	%Vol					3.0	4
Oil/Water	%Vol	/	/	/	/	/97	/96
Sand	%Vol					Tr	0.5
MBT	lb/bbl						0.0
рН		7.3			8.0	8.3	10
Alkal Mud (Pm)						0.2	0.25
Pf/Mf		/	/	/	/	0.1/0.6	0.15/0.6
Chlorides	mg/l	1300			43000	44000	42000
Hardness Ca	·	150			200	80	320
KCl	% wt					8	7.5
PHPA	ppb				0.8	0.7	0.5
Glycol	% vol				3	3.1	3
Excess Sulphite	mg/L						
Daily Mud Cost	\$	9232.52	11611.62	27325.10	41013.88	2915.40	16529.22
Cuml Mud Cost	\$	78984.31	90595.93	117921.03	158934.91	161850.31	178379.53
Sales Engineer		Nick Co/Paul Ma	Nick Co/Paul Ma	Nick Co/Paul Ma	Mike Mc/Paul Ma	Mike Mc/Paul Ma	Mike Mc/Paul Ma
Products Used		soda / 6	KC1 / 27	KC1 / 3	KCl / 7	UL / 20	soda / 4
		KCl / 10		DUO-VIS / 70	GlyLC / 66	PHPA / 13	KCl / 7
		CaCl2 / 26		UL / 79			DFA / 8
		BICARB / 9		PHPA / 35			DUO-VIS / 18
		Glycol / 12		BICARB / 3			UL / 12
							CA / 20
							BICARB / 10
							GlyLC / 12
							-
DE144 DI/O							

REMARKS

23/11/2004:

24/11/2004:

25/11/2004:

26/11/2004: Continue running riser and slip joint.

27/11/2004: Make up BHA and RIH and prepaare to drill out cement.

28/11/2004: Drill ahead.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator : Santos Ltd.Field/Area : Otway BasinWell Name : Amrit-1Description : ExplorationContractor : TransoceanLocation : Victoria/ P52

Depth/TVD m 2332/2332 2216/2216 2459/2459 2459/2	//2004 //2459 run casin; HPA/GI 7.5 683 0 0 0 0 FL 58 //65 °F 52 19
Activity Drill 17-1/2" hole Drill 17-1/2" hole RIH RIH 'rep. to run casin; 'rep. to Mud Type KCl/PHPA/Gl KCl/PHPA/Gl	HPA/GI 7.5 683 0 0 0 FL 558 0065 °F 52
Mud Type KCl/PHPA/Gl KCl/PHA/Gl KCl/PHA/Gl KCl/PHA/Gl Lee Classed KCl/PHA/Gl ACL	HPA/GI 7.5 683 0 0 0 FL 558 0065 °F 52
Hole Size in 17.5 17.5 17.5 17.5 17.5 1 Circ Volume bbl 3616 3616 3595 3595 3683 3 Flow Rate gal/min 641 641 893 893 0 Circ Pressure psi 2900 2900 1900 1900 0 Avg ROP m/hr 15 15 0 0 0 Sample From Flowline Flowline FL FL Pit Flow Line Temp °F 54 54 58 58 Mud Weight lb/gal 9.0@14 °F 9.0@12 °F 9.2@59 °F 9.2@58 °F 9.2@58 °F 9.2@58 °F	7.5 683 0 0 0 FL 58 065 °F 52
Circ Volume bbl 3616 3616 3595 3595 3683 3 Flow Rate gal/min 641 641 893 893 0 Circ Pressure psi 2900 2900 1900 1900 0 Avg ROP m/hr 15 15 0 0 0 Sample From Flowline Flowline FL FL Pit Pit Flow Line Temp °F 54 54 58 58 Mud Weight lb/gal 9.0@14 °F 9.0@12 °F 9.2@59 °F 9.2@58 °F 9.2@58 °F 9.2@58 °F	0 0 0 FL 58 0)65 °F 52
Circ Pressure psi 2900 2900 1900 1900 0 Avg ROP m/hr 15 15 0 0 0 Sample From Flowline Flowline FL FL Pit Flow Line Temp °F 54 54 58 58 Mud Weight lb/gal 9.0@14 °F 9.0@12 °F 9.2@59 °F 9.2@58 °F 9.2@58 °F 9.2@58 °F	0 0 FL 58 0)65 °F 52
Avg ROP m/hr 15 15 0 0 0 Sample From Flowline Flowline FL FL Pit Flow Line Temp °F 54 54 58 58 Mud Weight lb/gal 9.0@14 °F 9.0@12 °F 9.2@59 °F 9.2@58 °F 9.2@58 °F 9.2@58 °F	0 FL 58 0,65 °F 52
Sample From Flowline Flowline FL FL Pit Flow Line Temp °F 54 54 58 58 Mud Weight lb/gal 9.0@14 °F 9.0@12 °F 9.2@59 °F 9.2@58 °F 9.2@58 °F 9.2@58 °F	FL 58 0,65 °F 52
Flow Line Temp °F 54 54 58 58 58 Mud Weight lb/gal 9.0@14 °F 9.0@12 °F 9.2@59 °F 9.2@58 °F 9.2@58 °F 9.3@	58 0,65 °F 52
Mud Weight 1b/gal 9.0@14 °F 9.0@12 °F 9.2@59 °F 9.2@58 °F 9.2@58 °F 9.3@	065 °F 52 19
	52 19
	19
Funnel Viscosity s/qt 59 54 55 56 61	19 20
	20
R600/R300/R200 53/35/28 49/33/27 66/46/37 56/38/31 74/52/43 58/	39/33
	5/6/4
	2/13
	5.6
HTHP Fluid Loss cc/30 min	1 /
	1/
Solids %Vol 5 4 8 7 7.5	7.5
	89.5
Sand %Vol 1 0.25 1 0.75 0.3).5
	10
pH 9.0 9.3 9.0 9.0 8.5 8 Alkal Mud (Pm) 0.4 0.4 0.35 0.3 0.2	3.9 0.3
	0000
	020
	7.6
	0.3
	3.0
	tr
Excess supplied Ing E	ti .
Daily Mud Cost \$ 28127.16 32104.70 4970.06	
Cuml Mud Cost \$ 206506.69 238611.39 243581.45	
	c/Paul Ma
Products Used KCl / 9 soda / 4 KCl / 1	D/I dui ivia
DUO-VIS / 35 KCl / 6 DUO-VIS / 20	
UL / 30 DUO-VIS / 18	
PHPA / 11 UL / 16	
GlyLC / 22 OS-1 / 12	
PHPA / 5	
Glycol / 30	
BARBK / 57	

REMARKS

29/11/2004: Drill ahead.

30/11/2004: Drill to TD at 2459m and perform wiper trip.

1/12/2004: Wait on accident enquiry. Prepare to run casing.

M-I LLC. DRILLING FLUIDS DATA MANAGEMENT SYSTEM

16075

Operator : Santos Ltd.Field/Area : Otway BasinWell Name : Amrit-1Description : ExplorationContractor : TransoceanLocation : Victoria/ P52

Date		2/12/2004	2/12/2004	3/12/2004	3/12/2004	4/12/2004	5/12/2004
Depth/TVD	m	2459/2459	2459/2459	2459/2459	2459/2459	2462/2462	2696/2696
Activity		Running casing	Running casing	M/U BHA	M/U BHA	Drill 12.25" hole	POOH
Mud Type		KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl
Hole Size	in	17.5	17.5	12.25	12.25	12.25	12.25
Circ Volume	bbl	3601	3601	2546	2546	2934	3129
Flow Rate	gal/min	0	0	0	0	1000	0
Circ Pressure	psi	0	0	0	0	2320	0
Avg ROP	m/hr	0	0	0	0	0	0
Sample From		Pit	Pit	Pit	Pit	FL	FL
Flow Line Temp	°F			n/a	n/a	58	54
Mud Weight	lb/gal	9.2@62 °F	9.2@60 °F	9.3@62 °F	9.3@63 °F	9.3@60 °F	9.5@60 °F
Funnel Viscosity	s/qt	60	58	62	65	60	64
PV	сP	22	22	21	23	21	21
YP	lb/100ft ²	34	31	33	29	26	25
R600/R300/R200		78/56/46	75/53/44	75/54/44	75/52/42	68/47/35	67/46/37
R100/R6/R3		33/11/8	33/10/9	33/11/8	33/10/8	28/9/7	26/10/8
10s/10m/30m Gel	lb/100ft ²	8/16/17	8/15/16	9/17/18	10/17/19	9/14/17	9/16/20
API Fluid Loss	cc/30 min	5.4	5.6	4.4	4.5	5.2	4.4
HTHP Fluid Loss	cc/30 min						
Cake API/HT	1/32"	1/	1/	1/	1/	1/	1/
Solids	%Vol	7.5	7.5	8	8	7.5	8.8
Oil/Water	%Vol	3/89.5	2.5/90	2.7/89.3	2.8/89.2	3/89.5	3.5/87.7
Sand	%Vol	.03	0.2	0.5	0.5	0.25	0.3
MBT	lb/bbl	10.0	10.0	10.5	12.5	10.0	11.0
pH		8.7	8.5	8.5	8.5	8.5	8.5
Alkal Mud (Pm)		0.25	0.3	0.15	0.2	0.3	0.15
Pf/Mf		0.1/0.4	0.05/0.45	1.05/0.3	0.1/0.3	0.05/0.6	0.05/0.6
Chlorides	mg/l	38500	39000	38000	39000	42000	52500
Hardness Ca	0/	1080	1040	1180	1200	840	1200
KCl	% wt	7.7	7.7	7.8	7.8	8	10.4
PHPA	ppb	0.3	0.3	0.25	0.25	0.3	0.25
Glycol	% vol	2.75	2.8	2.8	2.8	5	4.5
Excess Sulphite	mg/L	tr	tr		tr	40	40
Daily Mud Cost	\$	630.00		0.00		44275.16	4243.04
Cuml Mud Cost	\$	244211.45		244211.45		288486.61	292729.65
Sales Engineer	Ψ		Mike Mc/Paul Ma	Mike Mc/Paul Ma	Mike Mc/Paul Ma	Mike Mc/Paul Ma	Mike Mc/Paul Ma
Products Used		BARBK / 3	IVIIKC IVIC/I auI IVIa	IVIIKC IVIC/I auI IVIa	Wilke Wie/1 auf Wia	KCl / 31	DFA / 4
1 Toddets esed		Difficult / 3				DUO-VIS / 17	DUO-VIS / 12
						UL / 12	OS-I / 12
						Glycol / 70	CA / 20
						31,001 / /0	BICARB / 10
							_10.11.0
							_
DE144 DICO		-					

REMARKS

M-I L.L.C.

2/12/2004: Run 13 3/8" casing.

3/12/2004: Land and cement 13-3/8" casing.

4/12/2004: RIH and drill out cement. Perform LOT. 5/12/2004: Drill to 2696 m. POOH for bit.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator : Santos Ltd.Field/Area : Otway BasinWell Name : Amrit-1Description : ExplorationContractor : TransoceanLocation : Victoria/ P52

Date		5/12/2004	6/12/2004	7/12/2004	7/12/2004	8/12/2004	9/12/2004
Depth/TVD	m	2539/2539	2866/2866	2979/2979	2979/2979	2979/2979	2979/2979
Activity		POOH	Circulate hole	Logging	Logging	Logging	P&A
Mud Type		KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl
Hole Size	in	12.25	12.25	12.25	12.25	12.25	12.25
Circ Volume	bbl	3129	3049	3061	3061	2768	2770
Flow Rate	gal/min	0	748	0	0	0	0
Circ Pressure	psi	0	2700	0	0	0	0
Avg ROP	m/hr	0	0	0	0	0	0
Sample From		Pit	FL	Pit	FL	Pit	Pit
Flow Line Temp	°F	54	58	n/a	55		
Mud Weight	lb/gal	9.5@60 °F	9.5@58 °F	9.5@64 °F	9.6@66 °F	9.6@70 °F	9.6@70 °F
Funnel Viscosity	s/qt	61	67	66	65	66	67
PV	сP	20	23	24	24	22	23
YP	lb/100ft²	25	30	30	33	29	29
R600/R300/R200		65/45/34	76/53/42	78/54/33	81/57/45	73/51/43	75/52/44
R100/R6/R3	4	24/9/5	30/10/8	24/10/8	32/11/8	30/10/8	30/10/8
10s/10m/30m Gel	lb/100ft ²	7/13/16	8/17/25	8/18/24	8/18/25	8/19/25	8/20/24
API Fluid Loss	cc/30 min	4.4	5.2	4.8	4.4	4.4	4.8
HTHP Fluid Loss	cc/30 min						
Cake API/HT	1/32"	1/	1/	1/	1/	1/	1/
Solids	%Vol	8.7	8.6	9	9.4	9.4	9.4
Oil/Water	%Vol	3/88.3	3/88.4	4.5/86.5	4.8/85.8	4.2/86.4	4.2/86.4
Sand	%Vol	0.25	0.25	0.25	0.25	0.2	0.2
MBT	lb/bbl	12.5	11.25	11.0	9	11.25	11.5
pH		9.3	8.5	8.5	8.9	8.5	8.5
Alkal Mud (Pm)		0.2	0.1	0.15	0.2	0.15	0.15
Pf/Mf	11	0.05/0.5	0.05/0.55	0.05/0.4	0.05/0.3	0.05/0.45	0.05/0.4
Chlorides	mg/l	53250	52000	50500	48000	49000	51000
Hardness Ca	0/	2000	960	840	800	800	840
KC1	% wt	10.6	10.5	10	9.8	10.0	10.0
PHPA	ppb	0.25	0.25	0.2	0.2	0.2	0.2
Glycol	% vol	4.5	4.5-4.7	4.5	4.8	4.5	4.5 200+
Excess Sulphite	mg/L	40	20	tr	tr	tr	200+
Daily Mud Cost	\$		1135.00	2154.64		10725.96	12640.80
Cuml Mud Cost	\$		293864.65	296019.29		306745.25	319386.05
Sales Engineer	Φ	Mike Mc/Paul Ma			Mike Mc/Paul Ma	/Paul Ma	/Paul Ma
Products Used		Mike Mc/Paul Ma	DUO-VIS / 5	GLUTE / 23	Wilke Mic/Paul Ma	Glycol / 4	OS-I / 20
1 Toducts Osed			D00-V13 / 3	GLUIE / 23		BARBK / 44	BARBK / 57
						DANDK / 44	DAKDK / 3/
DE114 DICO							

REMARKS

6/12/2004: Drll ahead.

7/12/2004: Drill to TD at 2979m. POOH and Log.

8/12/2004: Contin. logging.

9/12/2004: P&A

M-I L.L.C.

DRILLING FLUIDS DATA MANAGEMENT SYSTEM

Operator : Santos Ltd.Field/Area : Otway BasinWell Name : Amrit-1Description : ExplorationContractor : TransoceanLocation : Victoria/ P52

Date		10/12/2004	11/12/2004	12/12/2004			
Depth/TVD	m	2979/2979	1557/1557	/			
Activity		P&A	P&A	P&A			
Mud Type		KCl/PHPA/Gl	KCl/PHPA/Gl	KCl/PHPA/Gl			
Hole Size	in	12.25	0	0			
Circ Volume	bbl	3037	279	279			
Flow Rate	gal/min	0	0	0			
Circ Pressure	psi	0	0	0			
Avg ROP	m/hr	0	0	0			
Sample From	111/111	Pit	· ·	•			
Flow Line Temp	°F	1 10					
Mud Weight	lb/gal	9.6@69 °F	@°F	@ °F			
Funnel Viscosity	s/qt	66	(4)	(6) 1			
PV	cP	22					
YP	lb/100ft ²	30					
R600/R300/R200	10/1001t	74/52/45	SEAWATER / /	//			
R100/R6/R3		31/10/8	JEAWATEK//	//			
10s/10m/30m Gel	lb/100ft ²	8/19/25	//	//			
API Fluid Loss	cc/30 min	4.8	//	//			
HTHP Fluid Loss		4.0					
	cc/30 min 1/32"	1/	1	/			
Cake API/HT		9.4	/	/			
Solids	%Vol	9.4	/	1			
Oil/Water	%Vol	4/86.6	/	/			
Sand	%Vol	0.25					
MBT	lb/bbl	11.5					
pH		8.5					
Alkal Mud (Pm)		0.1	,	,			
Pf/Mf		0.05/0.3	/	/			
Chlorides	mg/l	51000					
Hardness Ca		840					
KC1	% wt	10.0					
PHPA	ppb	0.2					
Glycol	% vol	4.5					
Excess Sulphite	mg/L	100					
Daily Mud Cost	\$	0.00	0.00	17220.00			
Cuml Mud Cost	\$	319386.05	319386.05	336606.05			
Sales Engineer		/Paul Ma	/Paul Ma	/Paul Ma			
Products Used				BARBK / 82			
		<u> </u>					
 			1		1	1	

REMARKS

10/12/2004: P&A.

11/12/2004: P&A. Set final cement plug.

12/12/2004: P&A. Pull riser and BOPs and prepare to cut 20" and 30" casing.

M-I LLC DRILLING FLUIDS DATA MANAGEMENT SYSTEM 16075

DRILLING FLUIDS RECAP FOR SANTOS LIMITED AMRIT 1

PRODUCT CONSUMPTION

	DATES											
Product	Product	Nov	17, 2004	Nov	18, 2004	Nov	19, 2004	Nov 20, 2004		Nov 21, 2004		Page
Name	Price	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Totals
M-I BAR BULK	210.00		0.00		0.00	20	4200.00	83	17430.00	99	20790.00	42420.00
M-I GEL	228.67		0.00	12	2744.04	16	3658.72	1	228.67	30	6860.10	13491.53
CAUSTIC SODA	20.46		0.00	4	81.84		0.00		0.00		0.00	81.84
SODA ASH	13.04		0.00	5	65.20	2	26.08		0.00		0.00	91.28
_LIME	10.06		0.00		0.00		0.00		0.00		0.00	0.00
KCl 99% (BIG BAG)	430.06		0.00		0.00		0.00		0.00		0.00	0.00
GUAR GUM	60.00		0.00		$ \frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$ \frac{0.00}{0.00}$	0.00
POTASSIUM HYDROXIDE PIPE-LAX W	$\frac{31.28}{254.05}$		0.00		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$ \frac{0.00}{0.00}$	$ \frac{0.00}{0.00}$
CALCIUM CHLORIDE	354.95 11.54		<u>0.0</u> 0		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$	$\frac{0.00}{0.00}$
DEFOAM A (NAPCO)	68.59		0.00		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$ \frac{0.00}{0.00}$		$ \frac{0.00}{0.00}$	0.00
MIX II FINE	25.68		0.00		$\frac{0.00}{0.00}$		$\frac{1}{0.00}$		$ \frac{0.00}{0.00}$		0.00	0.00
MIX II MEDIUM	$\frac{1}{26.72}$		0.00		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$ \frac{0.00}{0.00}$		$ \frac{0.00}{0.00}$	0.00
KWICK SEAL F/M/C	28.00		0.00		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$ \frac{0.00}{0.00}$		0.00	0.00
DUO-VIS	$-\frac{20.00}{227.00}$		0.00		$\frac{0.00}{0.00}$	11	+	6			$ \frac{0.00}{0.00}$	3859.00
POLYPAC UL	90.00		0.00		$\bar{0}.\bar{0}\bar{0}$	6	540.00	3	270.00		0.00	810.00
OS-1	33.54		0.00		$\bar{0}.\bar{0}\bar{0}$		0.00		0.00		0.00	-0.00
CITRIC ACID	36.79		0.00		0.00		0.00		0.00		-0.00	0.00
PHPA POLYPLUS	85.80				0.00	1	85.80		0.00		0.00	85.80
SODIUM BICARBONATE	10.64		0.00		0.00		0.00		0.00		0.00	0.00
GLUTE 25	93.68		0.00		0.00		0.00		0.00		0.00	0.00
OMYACARB 40	0.00		0.00		0.00		0.00		0.00		0.00	0.00
GLYDRIL MC	371.49		0.00		0.00		0.00		0.00		0.00	0.00
Conqor A303	380.36		0.00		0.00		$\frac{0.00}{0.00}$		$\frac{0.00}{0.00}$		$ \frac{0.00}{0.00}$	0.00
Ex-Callister WBM	0.00		0.00				$\frac{0.00}{0.00}$		0.00		0.00	0.00
M-I LUBE	$-\frac{445.00}{575.01}$		0.00		$\frac{0.00}{0.00}$		$\frac{1}{2}$	11		8	3560.00	8455.00
GLYDRIL LC	575.81		0.00		0.00		0.00		0.00		0.00	0.00
							+					
							+					
	. _ L											
	· - -						+					
							+					
							+					
	· - -						+					
	· - - ·						+					
							+					
							+					
							+					
							T					
Cumulative Engineering			0.00		0.00		0.00		0.00		0.00	0.00
Daily Product			0.00		2891.08		11007.60	2	24185.67		31210.10	69294.45
Daily Sales Tax			0		0		0		0		0	0.00
Cumulative Product			0.00		2891.08		13898.68	4	38084.35		69294.45	69294.45
Cumulative Cost			0.00		2891.08		13898.68		38084.35		69294.45	69294.45

	DATES												
Product	Previous	Nov	22, 2004	Nov 2	23, 2004	Nov 2	24, 2004	Nov 2	25, 2004	Nov	26, 2004	Page	
Name	Page	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Totals	
M-I BAR BULK	42420.0	-	0.00		0.00		0.00		0.00		0.00	42420.00	
M-I GEL	13491.5	2	457.34		0.00		0.00		0.00		0.00	13948.87	
CAUSTIC SODA	81.84		0.00		0.00		0.00		0.00		0.00	81.84	
SODA ASH	91.28		0.00	6	78.24		0.00		0.00		0.00	169.52	
LIME	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
KCl 99% (BIG BAG)	0.00		0.00	10	4300.60	27		3	1290.18	7	5010.12	20212.82	
GUAR GUM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
POTASSIUM HYDROXIDE	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
PIPE-LAX W	0.00		0.00	2.	0.00		0.00		0.00		0.00	0.00	
CALCIUM CHLORIDE	0.00		0.00	26			0.00		0.00		0.00	300.04	
DEFOAM A (NAPCO)	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
MIX II FINE MIX II MEDIUM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
KWICK SEAL F/M/C	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
DUO-VIS	3859.00		0.00		0.00		0.00	70	15890.00		0.00	19749.00	
POLYPAC UL	810.00		0.00		0.00		0.00	79	7110.00		0.00	7920.00	
OS-1	0.00		0.00		0.00		0.00	,,	0.00		0.00	0.00	
CITRIC ACID	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
PHPA POLYPLUS	85.80		0.00		0.00		0.00	35	3003.00		0.00	3088.80	
SODIUM BICARBONATE	0.00		0.00	9	95.76		0.00	3	31.92		0.00	127.68	
GLUTE 25	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
OMYACARB 40	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
GLYDRIL MC	0.00		0.00	12	4457.88		0.00		0.00		0.00	4457.88	
Conqor A303	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
Ex-Callister WBM	0.00	440	0.00		0.00		0.00		0.00		0.00	0.00	
M-I LUBE	8455.00		0.00		0.00		0.00		0.00		0.00	8455.00	
GLYDRIL LC	0.00		0.00		0.00		0.00		0.00	66	38003.46	38003.46	
Cumulative Engineering			0.00		0.00		0.00		0.00		0.00	0.00	
Daily Product			457.34		9232.52		11611.62	-	27325.10		41013.88	158934.91	
Daily Sales Tax			0		0		0		0		0	0.00	
Cumulative Product		6	59751.79	7	8984.31		90595.93	11	7921.03	1	158934.91	158934.91	
Cumulative Cost		ϵ	59751.79	7	8984.31		90595.93	11	7921.03	1	158934.91	158934.91	

	DATES												
Product	Previous	Nov	27, 2004	Nov 2	28, 2004	Nov 2	29, 2004	Nov 3	30, 2004	Dec	1, 2004	Page	
Name	Page	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Totals	
M-I BAR BULK	42420.0	-	0.00		0.00		0.00	57	11970.00		0.00	54390.00	
M-I GEL	13948.8		0.00		0.00		0.00		0.00		0.00	13948.87	
CAUSTIC SODA	81.84		0.00		0.00		0.00		0.00		0.00	81.84	
SODA ASH	169.52		0.00	4	52.16		0.00	4	52.16		0.00	273.84	
LIME	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
KCl 99% (BIG BAG)	20212.8		0.00	7		9	5070.6.	6	2580.36	1	430.06	30104.20	
GUAR GUM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
POTASSIUM HYDROXIDE	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
PIPE-LAX W	0.00		0.00		0.00		0.00		0.00		0.00	0.00 300.04	
CALCIUM CHLORIDE DEFOAM A (NAPCO)	300.04 0.00		0.00	8	0.00 548.72		0.00		0.00		0.00	548.72	
MIX II FINE	0.00		0.00	0	0.00		0.00		0.00		0.00	0.00	
MIX II MEDIUM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
KWICK SEAL F/M/C	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
DUO-VIS	19749.0		0.00	18	4086.00	35		18	4086.00	20		40406.00	
POLYPAC UL	7920.00	20		12		30		16	1440.00		0.00	14940.00	
OS-1	0.00		0.00		0.00		0.00	12	402.48		0.00	402.48	
CITRIC ACID	0.00		0.00	20	735.80		0.00		0.00		0.00	735.80	
PHPA POLYPLUS	3088.80	13	1115.40		0.00	11	943.80	5	429.00		0.00	5577.00	
SODIUM BICARBONATE	127.68		0.00	10	106.40		0.00		0.00		0.00	234.08	
GLUTE 25	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
OMYACARB 40	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
GLYDRIL MC	4457.88		0.00		0.00		0.00	30			0.00	15602.58	
Conqor A303	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
Ex-Callister WBM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
M-I LUBE GLYDRIL LC	8455.00 38003.4		0.00	12	0.00 6909.72	22	0.00 12667.82		0.00		0.00	8455.00	
GL Y DRIL LC	38003.4		0.00	12	6909.72	22	12007.82		0.00		0.00	57581.00	
Cumulative Engineering			0.00		0.00		0.00		0.00		0.00	0.00	
Daily Product			2915.40	1	6529.22	2	28127.16	3	32104.70		4970.06	243581.45	
Daily Sales Tax			0		0		0		0		0	0.00	
Cumulative Product		1,	61850.31	17	8379.53	21	06506.69	23	88611.39	7	43581.45	243581.45	
Cumulative Cost		10	51850.31	17	8379.53	20	06506.69		88611.39		43581.45	243581.45	

	DATES												
Product	Previous	Dec	2, 2004	Dec	3, 2004	Dec	4, 2004	Dec	5, 2004	Dec 6, 2004		Page	
Name	Page	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Totals	
M-I BAR BULK	54390.0	3	630.00		0.00		0.00		0.00		0.00	55020.00	
M-I GEL	13948.8		0.00		0.00		0.00		0.00		0.00	13948.87	
CAUSTIC SODA	81.84		0.00		0.00		0.00		0.00		0.00	81.84	
SODA ASH	273.84		0.00		0.00		0.00		0.00		0.00	273.84	
LIME	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
KCl 99% (BIG BAG)	30104.2		0.00		0.00	31	13331.86		0.00		0.00	43436.06	
GUAR GUM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
POTASSIUM HYDROXIDE	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
PIPE-LAX W	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
CALCIUM CHLORIDE	300.04		0.00		0.00		0.00	4	0.00		0.00	300.04	
DEFOAM A (NAPCO) MIX II FINE	548.72		0.00		0.00		0.00	4	274.36		0.00	823.08	
MIX II FINE MIX II MEDIUM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
KWICK SEAL F/M/C	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
DUO-VIS	40406.0		0.00		0.00	17		12	2724.00			48124.00	
POLYPAC UL	14940.0		0.00		0.00	12		12	0.00		0.00	16020.00	
OS-1	402.48		0.00		0.00		0.00	12	402.48		0.00	804.96	
CITRIC ACID	735.80		0.00		0.00		0.00	20	735.80		0.00	1471.60	
PHPA POLYPLUS	5577.00		0.00		0.00		0.00		0.00		0.00	5577.00	
SODIUM BICARBONATE	234.08		0.00		0.00		0.00	10	106.40		0.00	340.48	
GLUTE 25	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
OMYACARB 40	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
GLYDRIL MC	15602.5		0.00		0.00	70			0.00		0.00	41606.88	
Conqor A303	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
Ex-Callister WBM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
M-I LUBE	8455.00		0.00		0.00		0.00		0.00		0.00	8455.00	
GLYDRIL LC	57581.0		0.00		0.00		0.00		0.00		0.00	57581.00	
Cumulative Engineering			0.00		0.00		0.00		0.00		0.00	0.00	
•													
Daily Product			630.00		0.00	4	44275.16		4243.04		1135.00	293864.65	
Daily Sales Tax			0		0		0		0		0	0.00	
Cumulative Product		24	14211.45	24	4211.45	23	88486.61	29	92729.65		293864.65	293864.65	
Cumulative Cost			14211.45	24	4211.45		88486.61		92729.65	,	293864.65	293864.65	

	DATES												
Product	Previous	Dec	7, 2004	Dec	8, 2004	Dec	9, 2004	Dec	10, 2004	Dec	11, 2004	Page	
Name	Page	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Totals	
M-I BAR BULK	55020.0	,	0.00	` ,	9240.00	` ,	11970.00	. ,	0.00		0.00	76230.00	
M-I GEL	13948.8		0.00		0.00		0.00		0.00		0.00	13948.87	
CAUSTIC SODA	81.84		0.00		0.00		0.00		0.00		0.00	81.84	
SODA ASH	273.84		0.00		0.00		0.00		0.00		0.00	273.84	
LIME	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
KCl 99% (BIG BAG)	43436.0		0.00		0.00		0.00		0.00		0.00	43436.06	
GUAR GUM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
POTASSIUM HYDROXIDE	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
PIPE-LAX W	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
CALCIUM CHLORIDE	300.04		0.00		0.00		0.00		0.00		0.00	300.04	
DEFOAM A (NAPCO)	823.08		0.00		0.00		0.00		0.00		0.00	823.08	
MIX II FINE	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
MIX II MEDIUM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
KWICK SEAL F/M/C	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
DUO-VIS	48124.0		0.00		0.00		0.00		0.00		0.00	48124.00	
POLYPAC UL	16020.0		0.00		0.00	20	0.00		0.00		0.00	16020.00	
OS-1	804.96		0.00		0.00	20	670.80		0.00		0.00	1475.76	
CITRIC ACID	1471.60		0.00		0.00		0.00		0.00		0.00	1471.60	
PHPA POLYPLUS	5577.00		0.00		0.00		0.00		0.00		0.00	5577.00	
SODIUM BICARBONATE	340.48	22	0.00		0.00		0.00		0.00		0.00	340.48	
GLUTE 25	0.00	23	2154.64		0.00		0.00		0.00		0.00	2154.64	
OMYACARB 40	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
GLYDRIL MC	41606.8		0.00		1485.96		0.00		0.00		0.00	43092.84	
Conqor A303 Ex-Callister WBM	0.00		0.00		0.00		0.00		0.00		0.00	0.00	
M-I LUBE			0.00		0.00		0.00		0.00		0.00	0.00	
GLYDRIL LC	8455.00		0.00		0.00		0.00		0.00		0.00	8455.00 57581.00	
GLYDRIL LC	57581.0		0.00		0.00		0.00		0.00		0.00	3/381.00	
	_												
Cumulative Engineering			0.00		0.00		0.00		0.00		0.00	0.00	
Daily Product			2154.64	1	0725.96		12640.80		0.00		0.00	319386.05	
Daily Sales Tax			0		0		0		0		0	0.00	
Cumulative Product		20	96019.29	20	6745.25	2	19386.05	2	19386.05		319386.05	319386.05	
Cumulative Cost		29	96019.29	30	6745.25	3	19386.05	3	19386.05		319386.05	319386.05	

	DATES												
Product	Previous	Dec	12, 2004									Page	
Name	Page	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Qty	Cost	Totals	
M-I BAR BULK	76230.0	82		_		(.)		(.)		(.)		93450.00	
M-I GEL	13948.8	02	0.00									13948.87	
CAUSTIC SODA	81.84		0.00									81.84	
SODA ASH	273.84		0.00									273.84	
LIME	0.00		0.00									0.00	
KCl 99% (BIG BAG)	43436.0		0.00)								43436.06	
GUAR GUM	0.00		0.00)								0.00	
POTASSIUM HYDROXIDE	0.00		0.00									0.00	
PIPE-LAX W	0.00		0.00									0.00	
CALCIUM CHLORIDE	300.04		0.00									300.04	
DEFOAM A (NAPCO)	823.08		0.00									823.08	
MIX II FINE	0.00		0.00									0.00	
MIX II MEDIUM	0.00		0.00									0.00	
KWICK SEAL F/M/C	0.00		0.00									0.00	
DUO-VIS	48124.0		0.00									48124.00	
POLYPAC UL	16020.0		0.00									16020.00	
OS-1 CITRIC ACID	1475.76 1471.60		0.00									1475.76 1471.60	
PHPA POLYPLUS	5577.00		0.00									5577.00	
SODIUM BICARBONATE	340.48		0.00									340.48	
GLUTE 25	2154.64		0.00									2154.64	
OMYACARB 40	0.00		0.00									0.00	
GLYDRIL MC	43092.8		0.00									43092.84	
Conqor A303	0.00		0.00									0.00	
Ex-Callister WBM	0.00		0.00									0.00	
M-I LUBE	8455.00		0.00									8455.00	
GLYDRIL LC	57581.0		0.00									57581.00	
GET DICE EC	37301.0		0.00	,								37301.00	
				1									
				1									
				1									
				+									
				1									
				1									
				+								1	
				+									
Cumulative Engineering			0.00	1		1		1	1	1		0.00	
Daily Product]	17220.00									336606.05	
Daily Sales Tax			0									0.00	
Cumulative Product		33	36606.05									336606.05	
Cumulative Cost			36606.05									336606.05	

DRILLING FLUIDS RECAP FOR SANTOS LIMITED AMRIT 1

DAILY MUD REPORTS

CIRCULATION DATA

6 X 12.in

Pump Make ILWELL HD-1700F ILWELL HD-1700P

6 X 12.in

Pump Size

Moved onto Amrit-1 location and commenced running anchors.

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

CASING

Surface

30in @1510m (1510TVD)

Well Name: Amrit-1 Contractor: Transocean Report For: Keith Miller

DRILLING ASSEMBLY

Bit Size in

Nozzles 1/32"

Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

(bbl)

110ZZIC3 1/3Z		30III (a) 1310III (13101 VD)		T unip bize		0 A 12.III
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/stk	gal/stk
in	m			Pump stk/min		
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow		gal/min
in	m			Bottoms		
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ T		
in	m			Circulating Pres	sure	
	MUD PR	OPERTIES		PRODUCTS	S USED LAS	T 24 HRS
Sample From				Products		Size An
Flow Line Temp		°F				
Depth/TVD		m				
Mud Weight	11	o/gal				
Funnel Viscosity		s/qt				
Rheology Temp		°F				
R600/R300						
R200/R100						
R6/R3						
PV		cP				
YP		00ft ²				
10s/10m/30m Gel	lb/10	00ft ²				
API Fluid Loss	cc/30	min				
HTHP FL Temp	cc/30	min				
Cake API/HTHP	1	/32"				
Solids	9/	6Vol				
Oil/Water		6Vol				
Sand	9/	6Vol		SOLIDS EQUIP	Siz	
MBT	11:	o/bbl		VSM 300	30/30/10	
рН				VSM 300	120/120/	84/84/3 0
Alkal Mud (Pm)				VSM 300	120/120/	/84/84/3 0
Pf/Mf				VSM 300	120/105/	105/84/ 0
Chlorides		mg/l				
Hardness Ca		mg/l				
KCl	0	% wt				
PHPA		ppb				
Glycol	%	o vol				
Excess Sulphite	n	ng/L				
-				MUD PROPE	RTY SPECI	FICATIONS
				Weight		
				Viscosity	1	
				Filtrate		
DE	MADKE ANI	D TREATMENT		REMARKS	•	· · · · · · · · · · · · · · · · · · ·

MUD VOLUME

Hole

TIME DISTR	Last 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service	24	Oil Added	0	NaCl	/	np/na Values
Drilling		Water Added	0	KCl	/	kp/ka (lb•s^n/100ft²)
Tripping		Mud Received	0	Low Gravity	/	Bit Loss (psi / %)
Non-Productive Tir	m	Dumped	0	Bentonite	/	Bit HHP (hhp / HSI)
		Behind Csg/In hole	0	Drill Solids	/	Bit Jet Vel (m/s)
		Loss to Formation	0	Weight Material	/	Ann. Vel DP (m/s)
		Shakers	0	Chemical Conc	- /	Ann. Vel DC (m/s)
		Other/Solids	0	Inert/React		Crit Vel DP (m/s)
		Centrifuge	0	Average SG		Crit Vel DC (m/s)
		Tripping	0	Carb/BiCarb (m mole/L)	/	

M-I ENGR / PHONE RIG PHONE WAREHOUSE PHONE DAILY COST CUMULATIVE COST
Paul Marshall
Nick Cooper (08) 9325 4822 \$ 0.00 \$ 0.00

 Date
 18/11/2004
 Depth/TVD
 m / m

 Spud Date
 20/11/2004
 Mud Type
 Spud Mud

 Water Depth
 1,396
 Activity
 M/U BHA

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Well Name: Amrit-1 Contractor: Transocean Report For: Keith Miller Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING AS	SEMBLY	CASING	MUD VO	LUME	(bbl)	(CIRCULA"	TION D	ATA
Bit Size in		Surface		Hole		Pump Make	ILWELL H	D-1700F	ILWELL HD-1700P
Nozzles 1/32"		30in @1510m (1510TVD)				Pump Size	6 X 1	2.in	6 X 12.in
Drill Pipe Size	Length	Intermediate	Ac	ctive Pits		Pump Cap		gal/stk	gal/stk
in	m					Pump stk/min			
Drill Pipe Size	Length	Intermediate	Total C	Circulating	g Vol]	Flow Rate		gal/min
in	m					Вс	ottoms Up		
Drill Collar Size	Length	Production or Liner	In	Storage		Total	Circ Time		
in	m			2855		Circulating	g Pressure		
	MIID DD	ODEDTIES			DDOD	ICTE HE		T 24 LIDE	

111	111		2000	Circulating 1 1033		
MUD PROPERTIES			PRODUCTS	USED LAST 24 HRS	S	
Sample From				Products	Size	Amt
Flow Line Temp	°F			M-I GEL	1 MT BK	12
Depth/TVD	m			CAUSTIC SODA	25 KG CN	4
Mud Weight	lb/gal			SODA ASH	25 KG BG	5
Funnel Viscosity	s/qt			Ex-Callister WBM	1 BL BK	1368
Rheology Temp	°F					
R600/R300						
R200/R100						
R6/R3						
PV	cP					
YP	lb/100ft ²					
10s/10m/30m Gel	lb/100ft ²					
API Fluid Loss	cc/30 min					
HTHP FL Temp	cc/30 min					
Cake API/HTHP	1/32"					
Solids	%Vol					
Oil/Water	%Vol					
Sand	%Vol			SOLIDS EQUIP	Size	Hr
MBT	lb/bbl			VSM 300		0
pH				VSM 300		0
Alkal Mud (Pm)				VSM 300		0
Pf/Mf				VSM 300		0
Chlorides	mg/l					
Hardness Ca	mg/l					
	-					
KCl	% wt					
PHPA	ppb					
Glycol	% vol					
Excess Sulphite	mg/L					
_				MUD PROPER	RTY SPECIFICATION	NS
	_			Weight		
				Viscosity		-
				Filtrate		

REMARKS AND TREATMENT

Brought 1368bbls of Polymer mud from Callister-1 off the Lady Caroline for 26" displacement.

Commenced building PHG spud mud and 400bbls of 17ppg Kill Mud.

REMARKS

Set and tensioned anchors. Ballasted down rig, making preparations to spud.

TIME DISTR	Last 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service	24	Oil Added	0	NaCl	/	np/na Values
Drilling		Water Added	1456	KCl	/	kp/ka (lb•s^n/100ft²)
Tripping		Mud Received	1368	Low Gravity	/	Bit Loss (psi / %)
Non-Productive Ti	m	Shakers	0	Bentonite	/	Bit HHP (hhp/HSI)
		Other/Solids	0	Drill Solids	/	Bit Jet Vel (m/s)
		Centrifuge	0	Weight Material	/	Ann. Vel DP (m/s)
		Tripping	0	Chemical Conc	- /	Ann. Vel DC (m/s)
		Evaporation	0	Inert/React		Crit Vel DP (m/s)
		Dumped	0	Average SG		Crit Vel DC (m/s)
		Behind Csg/In hole	0	Carb/BiCarb (m mole/L)	/	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Nick Cooper		(08) 9325 4822	\$ 2,891.08	\$ 2,891.08

Date 19/11/2004 Depth/TVD m / m
Spud Date 20/11/2004 Mud Type Spud Mud
Water Depth 1,396 Activity Waiting on Weather

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Well Name: Amrit-1 Contractor: Transocean Report For: Keith Miller Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING A	SSEMBLY	CASING	MUD VOLUME (bbl)	CIRCULATION DATA
Bit Size in		Surface	Hole	Pump Make ILWELL HD-1700F ILWELL HD-1700F
Nozzles 1/32"		30in @1510m (1510TVD)		Pump Size 6 X 12.in 6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap gal/stk gal/stk
in	m			Pump stk/min
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate gal/min
in	m		_	Bottoms Up
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time
in	m		3319	Circulating Pressure

111	111		3317	Circulating 1 icss	dic	
	MUD PROPE	RTIES		PRODUCTS	USED LAST 24 HRS	3
Sample From		Pit 2@19:00		Products	Size	Amt
Flow Line Temp	°F	•		M-I BAR BULK	1 MT BK	20
Depth/TVD	m	0/0		M-I GEL	1 MT BK	16
Mud Weight	lb/gal	9.0		SODA ASH	25 KG BG	2
Funnel Viscosity	s/qt	120+		DUO-VIS	25 KG BG	11
Rheology Temp	°F			POLYPAC UL	25 KG BG	6
R600/R300				PHPA POLYPLUS	25 KG BG	1
R200/R100						
R6/R3						
PV	cP					
YP	lb/100ft ²					
10s/10m/30m Gel	lb/100ft ²					
API Fluid Loss	cc/30 min					
HTHP FL Temp	cc/30 min					
Cake API/HTHP	1/32"					
Solids	%Vol					
Oil/Water	%Vol					
Sand	%Vol			SOLIDS EQUIP	Size	Hr
MBT	lb/bbl			VSM 300		0
pН				VSM 300		0
Alkal Mud (Pm)				VSM 300		0
Pf/Mf				VSM 300		0
Chlorides	mg/l					
Hardness Ca	mg/l					
KC1	% wt					
PHPA	ppb					
Glycol	% vol					
Excess Sulphite	mg/L					
					RTY SPECIFICATION	NS
				Weight		
				Viscosity Filtrate		

REMARKS AND TREATMENT

Completed mixing spud mud with gel. Weighting up 1st displacement mud with remaining barite on board. Waiting on weather to offload further barite from boats.

Built half of the 2nd displacement fluid volume.

REMARKS

Made up 30" casing with injection assy. Waiting for weather to calm to run in and land

TIME DISTR Last 24 Hrs MUD VOL ACCTG		(bbl)	SOLIDS ANALYSIS (%/lb/bbl)		MUD RHEOLOGY & HYDRAULICS	
Rig Up/Service	4	Oil Added	0	NaCl	/	np/na Values
Drilling		Water Added	392	KCl	/	kp/ka (lb•s^n/100ft²)
Tripping		Mud Received	0	Low Gravity	/	Bit Loss (psi / %)
Non-Productive Ti	m	Shakers	0	Bentonite	/	Bit HHP (hhp / HSI)
Wait on Weather	20	Other/Solids	0	Drill Solids	/	Bit Jet Vel (m/s)
		Centrifuge	0	Weight Material	/	Ann. Vel DP (m/s)
		Tripping	0	Chemical Conc	- /	Ann. Vel DC (m/s)
		Evaporation	0	Inert/React		Crit Vel DP (m/s)
		Dumped	0	Average SG		Crit Vel DC (m/s)
		Behind Csg/In hole	0	Carb/BiCarb (m mole/L)	/	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Nick Cooper		(08) 9325 4822	\$ 11,007.60	\$ 13,898.68

 Date
 20/11/2004
 Depth/TVD
 1510 m / 1510 m

 Spud Date
 20/11/2004
 Mud Type
 Spud Mud

 Water Depth
 1,396
 Activity
 Jet 30"

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morral Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

Troport i oi i	o. monai				
DRILLING A	SSEMBLY	CASING	MUD VOLUME (bbl)	CIRCULA [*]	TION DATA
Bit Size 26 in Smith	MR 3808	Surface	Hole	Pump Make ILWELL H	D-1700F ILWELL HD-1700P
Nozzles 2x22/21/2	20 1/32"	30in @1510m (1510TVD)	240.7	Pump Size 6 X 1	2.in 6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap 4.274	gal/stk 4.274 gal/stk
5 in	1257 m		7	Pump stk/min 96@9	93@97%
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	1124 gal/min
5 in	111 m		240	Bottoms Up	6 min 1575 stk
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time	9 min 2359 stk
9.5 in	39 m		3624	Circulating Pressure	3500 psi

7.5 111	37 III		J02 4	Circulating 1 icss		
	MUD PROPE	RTIES		PRODUCTS	USED LAST 24 HRS	S
Sample From				Products	Size	Amt
Flow Line Temp	°F			M-I BAR BULK	1 MT BK	83
Depth/TVD	m	1510/1510		M-I GEL	1 MT BK	1
Mud Weight	lb/gal			DUO-VIS	25 KG BG	6
Funnel Viscosity	s/qt			POLYPAC UL	25 KG BG	3
Rheology Temp	°Ē			M-I LUBE	55 GA DM	11
R600/R300						
R200/R100						
R6/R3						
PV	cP					
YP	lb/100ft ²					
10s/10m/30m Gel	$lb/100ft^2$					
API Fluid Loss	cc/30 min					
HTHP FL Temp	cc/30 min					
Cake API/HTHP	1/32"					
Solids	%Vol					
Oil/Water	%Vol					•
Sand	%Vol			SOLIDS EQUIP	Size	Hr
MBT	lb/bbl			VSM 300		0
pН				VSM 300		0
Alkal Mud (Pm)				VSM 300		0
Pf/Mf				VSM 300		0
Chlorides	mg/l					
Hardness Ca	mg/l					
KCl	% wt					
PHPA	ppb					
Glycol	% vol					
Excess Sulphite	mg/L					
					RTY SPECIFICATION	NS
				Weight	n/a	
				Viscosity	100+	
				Filtrate	n/a	

REMARKS AND TREATMENT

Weighted up displacement fluids with barite. Started building further fluid for the second displacement.

REMARKS

Commence jetting 30" casing approx 17:20hrs.

Drill with seawater pumping 50bbl hi-vis PHG sweeps at half stand jetted and 50bbl at stand down

TIME DISTR	Last 24 Hrs	MUD VOL A	CCTG	(bbl)	SOLIDS ANALYSIS	S (%/lb/bbl)	MUD RHEOL	OGY & HYDRAULICS
Rig Up/Service	10	Oil Added		0	NaCl	1/	np/na Values	0.619/0.373
Drilling	6.75	Water Added		332	KCl	/	kp/ka (lb•s^n/100f	(t ²) 1.547/5.806
Tripping	2.75	Mud Received		0	Low Gravity	/	Bit Loss (psi / %)	852 / 1
Non-Productive Tir	n	Shakers		0	Bentonite	/	Bit HHP (hhp/HS	SI) 559 / 1
Wait on Weather	4.5	Other/Solids		0	Drill Solids	/	Bit Jet Vel (m/s)	79
		Centrifuge		0	Weight Material	/	Ann. Vel DP (m/s)	
		Tripping		0	Chemical Conc	- /	Ann. Vel DC (m/s)	.24
		Evaporation		0	Inert/React		Crit Vel DP (m/s)	
		Dumped		55	Average SG		Crit Vel DC (m/s)	
		Behind Csg/In h	ole	0	Carb/BiCarb (m mole/L)	/	ECD @ 1955 (lb/g	(al) 9.27

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Nick Cooper		(08) 9325 4822	\$ 24,185.67	\$ 38,084.35

CIRCULATION DATA

Pump Make ILWELL HD-1700F ILWELL HD-1700P

Date 21/11/2004 Depth/TVD 1758 m / 1758 m Spud Mud Drill 26" hole Spud Date 20/11/2004 **Mud Type** Water Depth 1,396 Activity

REMARKS

Jet to 30" TD at 1510m. Released tool from casing and commenced drilling 26"

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

REMARKS AND TREATMENT

Received mud chems. as per Inventory and shaker screens: 16x200XR,

Pumped PHG each 15m. Mixing PHG volume as required for sweeps.

16x180XR mesh. Prepared kill mud in pit #2

Well Name: Amrit-1 **Contractor**: Transocean Report For: S. Morrall

DRILLING ASSEMBLY

Bit Size 26 in Smith MR 3808

Field/Area: Otway Basin **Description**: Exploration **Location :** Victoria/ P52 **M-I Well No.**: 16075

(bbl)

Dit Size 20 in Smith	MK 3808		Surface			поје	Pullip Make			ILWELL I	1D-1/00P
Nozzles 2x22/21/20	0 1/32"	30i	n @1510m (1510	ΓVD)		807.2	Pump Size	6 X 12		6 X :	
Drill Pipe Size	Length		Intermediate	,		Active Pits	Pump Cap	4.274	gal/stk	4.274 §	gal/stk
5 in	1505 m	20i	n @1823m (1823	ΓVD)		2	Pump stk/min	89@9		91@	
Drill Pipe Size	Length		Intermediate		Total	Circulating Vol	F	low Rate		124 gal/m	
5 in	111 m					807	Во	ttoms Up	26.6		00 stk
Drill Collar Size	Length	I	Production or Lin	ner		In Storage	Total C	Circ Time	30.2	min 79	31 stk
9.5 in	39 m					3495	Circulating	Pressure		3800 psi	
	MUD PR	OPE	RTIES				PRODU	ICTS USI	ED LAS	T 24 HR	S
Sample From							Products			Size	Amt
Flow Line Temp		°F					M-I BAR BULK		1	MT BK	99
Depth/TVD		m	1758/1758				M-I GEL		1	MT BK	30
Mud Weight	11:	o/gal					M-I LUBE		55	GA DM	8
Funnel Viscosity		s/qt									
Rheology Temp		°Ē									
R600/R300											
R200/R100											
R6/R3											
PV		cР									
YP	lb/10	00ft²									
10s/10m/30m Gel	lb/10	00ft²									
API Fluid Loss	cc/30	min									
HTHP FL Temp	cc/30										
Cake API/HTHP		/32"									
Solids		loV_0									
Oil/Water		Vol									
Sand		Vol					SOLIDS EQUI	Р	Siz	е	Hr
MBT	11:	/bbl					VSM 300				0
pH							VSM 300				0
Alkal Mud (Pm)							VSM 300				0
Pf/Mf							VSM 300				0
Chlorides		mg/l									
Hardness Ca]	mg/l									
KCl	0	% wt									
PHPA		ppb									
Glycol		vol									
Excess Sulphite	n	ng/L									
						_	MUD PR		SPECI		NS
						4		eight		n/a	
						4		osity		100+	
						4	Fi	ltrate		n/a	
				1							

MUD VOLUME

Hole

CASING

Surface

TIME DISTR	Last 24 Hrs	MUD VOL A	CCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOL	OGY & HYDRA	ULICS
Rig Up/Service	6.25	Oil Added		0	NaCl	/	np/na Values		.509/0.386
Drilling	17.5	Water Added		924	KCl	/	kp/ka (lb•s^n/100f	(t^2) 2	.320/4.546
Tripping		Mud Received		0	Low Gravity	/	Bit Loss (psi / %)		580 / 15.3
Non-Productive Ti	im	Shakers		0	Bentonite	/	Bit HHP (hhp/HS	SI)	380 / .7
Condition Hole	.25	Other/Solids		0	Drill Solids	/	Bit Jet Vel (m/s)	·	79
		Centrifuge		0	Weight Material	/	Ann. Vel DP (m/s)		.17
		Tripping		0	Chemical Conc	- /	Ann. Vel DC (m/s)		.24
		Evaporation		0	Inert/React		Crit Vel DP (m/s)		
		Dumped		0	Average SG		Crit Vel DC (m/s)		
		Behind Csg/In h	ole	0	Carb/BiCarb (m mole/L)	/	ECD @ 1965 (lb/g	gal)	9.27
NA LE	NCD / DUO	VE.	DI	C DUONE	WAREHOUSE	DHONE	DAILY COST	CHMIII ATIV	/E COST

section to 1758m.

M-I ENGR / PHONE **RIG PHONE** WAREHOUSE PHONE DAILY COST **CUMULATIVE COST** Paul Marshall Nick Cooper (08) 9325 4822 \$ 31,210.10 \$ 69,294.45

 Date
 22/11/2004
 Depth/TVD
 1835 m / 1835 m

 Spud Date
 20/11/2004
 Mud Type
 Spud Mud

 Water Depth
 1,396
 Activity
 Running 20" Csg

Operator: Santos Ltd.
Report For: Dave Atkins / Jason Young

Well Name: Amrit-1
Contractor: Transocean

Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

Report For: S. Morrall

DRILLING AS	SSEMBLY	CASING	MUD VOLUME (bbl)	CIRCULAT	ION DATA
Bit Size 26 in Smith	MR 3808	Surface	Hole	Pump Make ILWELL HD	0-1700F ILWELL HD-1700P
Nozzles 2x22/21/2	0 1/32"	30in @1510m (1510TVD)	971.5	Pump Size 6 X 12	in 6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap 4.274 g	al/stk 4.274 gal/stk
5 in	1582 m	20in @1823m (1823TVD)	-165.5	Pump stk/min 89@97	91@97%
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	1124 gal/min
5 in	111 m		806	Bottoms Up	32.6 min 8571 stk
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time	30.1 min 7921 stk
9.5 in	39 m		480.5	Circulating Pressure	3800 psi

9.5 in	39 m		480.5	Circulating Pressu	re 3800 psi	
	MUD PROPE	RTIES		PRODUCTS I	JSED LAST 24 HRS	3
Sample From				Products	Size	Amt
Flow Line Temp	°F			M-I GEL	1 MT BK	2
Depth/TVD	m	1835/1835		Ex-Callister WBM	1 BL BK	440
Mud Weight	lb/gal					
Funnel Viscosity	s/qt					
Rheology Temp	°F					
R600/R300						
R200/R100						
R6/R3						
PV	cP					
YP	lb/100ft ²					
10s/10m/30m Gel	lb/100ft ²					
API Fluid Loss	cc/30 min					
HTHP FL Temp	cc/30 min					
Cake API/HTHP	1/32"					
Solids	%Vol					
Oil/Water	%Vol					
Sand	%Vol			SOLIDS EQUIP	Size	Hr
MBT	lb/bbl			VSM 300		0
pH				VSM 300		0
Alkal Mud (Pm)				VSM 300		0
Pf/Mf				VSM 300		0
Chlorides	mg/l					
Hardness Ca	mg/l					
KCl	% wt					
PHPA	ppb					
Glycol	% vol					
Excess Sulphite	mg/L					
					TY SPECIFICATION	NS .
				Weight	n/a	
				Viscosity	100+	
				Filtrate	n/a	

REMARKS AND TREATMENT

Built PHG for sweeps as required.
Added 128bbls seawater to first displacement fluid to give correct weight/volume. Recieved 470bbl old Callister#1 mud from Astrid. Commence dumping and cleaning all pits and prepare to mix 17.5" Glydril system.

REMARKS

Drilled ahead to 26" section TD 1836mRT. Pumped remaining PHG as sweep before displacing and POOH to shoe with KCl/polymer Mud. Ran back to bottom and displaced once more with new PHPA/polymer/M-I Lube WBM, followed by 16ppg kill mud while POOH to run casing. Run 20" casing.

TIME DISTR	Last 24 Hrs	MUD VOL ACC	TG (bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLO	GY & HYDRAULICS
Rig Up/Service	7.5	Oil Added	0	NaCl	/	np/na Values	0.509/0.386
Drilling	2.5	Water Added	222.96	KCl	/	kp/ka (lb•s^n/100ft²)	2.320/4.546
Tripping	6	Mud Received	440	Low Gravity	/	Bit Loss (psi / %)	580 / 15.3
Non-Productive Ti	m	Shakers	0	Bentonite	/	Bit HHP (hhp/HSI)	380 / .7
Condition Hole	3	Other/Solids	0	Drill Solids	/	Bit Jet Vel (m/s)	79
Running Casing	5	Centrifuge	0	Weight Material	/	Ann. Vel DP (m/s)	.21
		Tripping	0	Chemical Conc	- /	Ann. Vel DC (m/s)	.24
		Evaporation	0	Inert/React		Crit Vel DP (m/s)	
		Dumped	417	Average SG		Crit Vel DC (m/s)	
		Behind Csg/In hole	2632	Carb/BiCarb (m mole/L)	/	ECD @ 1965 (lb/gal	9.27
MIE	NCD / DUO	VE.	DIC DUONE	WAREHOUSE	DHONE	DAIL V COST	CUMULATIVE COST

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Nick Cooper	(08) 9302 3730	(08) 9325 4822	\$ 457.34	\$ 69,751.79

 Date
 23/11/2004
 Depth/TVD
 1823 m / 1823 m

 Spud Date
 20/11/2004
 Mud Type
 Spud Mud

 Water Depth
 1,396
 Activity
 R/U to run Riser

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING AS	SEMBLY	CASING	MUD VOL	UME	(bbl)		CIRCULA"	TION DATA	
Bit Size in		Surface	I	Hole		Pump Make	ILWELL H	D-1700F	ILWELL HD-1700P
Nozzles 1/32"		30in @1510m (1510TVD)		446		Pump Size	6 X 1	2.in	6 X 12.in
Drill Pipe Size	Length	Intermediate	Acti	ive Pits		Pump Cap		gal/stk	gal/stk
in	m	20in @1823m (1823TVD)				Pump stk/min			
Drill Pipe Size	Length	Intermediate	Total Cir	rculating	g Vol		Flow Rate		gal/min
in	m	13.375in @2454m (2454TVD)				В	ottoms Up		-
Drill Collar Size	Length	Production or Liner	In S	Storage		Total	Circ Time	•	·
in	m		2	2414		Circulating	g Pressure		
	MILLE	ODEDTIES				DDOD	LOTO LIO		T O4 LIDO

			2414			
OPE	RTIES			PRODUCTS	USED LAST 24 HRS	3
	Drill wat@13:(Products	Size	Amt
°F	n/a			SODA ASH	25 KG BG	6
m	1823/1823			KCl 99% (BIG BAG)	1 MT BG	10
b/gal	.35@ambient°			CALCIUM CHLORIDE	25 KG BG	26
s/qt	26			SODIUM BICARBONA	TE 25 KG BG	9
°ĥ				GLYDRIL MC	200 KG DM	12
					Size	Hr
b/bbl						0
	7.3					0
						0
	1200			VSM 300		0
mg/l	150					
% wt						
ppb						
6 vol			- - -			
				MUD PROPER	RTY SPECIFICATION	JS.
6 vol					RTY SPECIFICATION	NS
6 vol				Weight	n/a	NS
6 vol						NS
	°F mb/gal s/qt °F cP 000ft² 000ft² 0 min 0 min 1/32" 6Vol 6Vol 6Vol b/bbl mg/l mg/l	°F n/a m 1823/1823 b/gal .35@ambient° s/qt 26 °F cP 00ft² 0 min 0 min 1/32" 6Vol 6Vol 6Vol 6Vol b/bbl 7.3 mg/l 1300	Drill wat@13:("F n/a m 1823/1823 b/gal .35@ambient" s/qt 26 "F CP 00ft² 00ft² 0 min 0 min 1/32" 6/Vol 6/Vol 6/Vol b/bbl 7.3 mg/l 1300 mg/l 150	Drill wat@13:(OF	PRODUCTS Products SODA ASH KC1 99% (BIG BAG) CALCIUM CHLORIDE SODIUM BICARBONA GLYDRIL MC SOLIDS EQUIP SOLIDS EQUIP SOLIDS EQUIP VSM 300 Mg/l 1300 Mg/l 150 Mg/l 150	PRODUCTS USED LAST 24 HRS

REMARKS AND TREATMENT

Charged off Calcium Chloride used in cementing 20" casing. Cleaned pits and started building KCl/polymer/Glydril WBM for next section.

REMARKS

TIME DISTR	Last 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service	7.5	Oil Added	0	NaCl	/	np/na Values
Drilling		Water Added	2387	KCl	/	kp/ka (lb•s^n/100ft²)
Tripping	6.25	Mud Received	0	Low Gravity	/	Bit Loss (psi / %)
Non-Productive Tin	n	Shakers	0	Bentonite	/	Bit HHP (hhp/HSI)
Condition Hole	0.5	Other/Solids	0	Drill Solids	/	Bit Jet Vel (m/s)
Running Casing	7.25	Centrifuge	0	Weight Material	/	Ann. Vel DP (m/s)
Cementing	2.5	Tripping	0	Chemical Conc	- /	Ann. Vel DC (m/s)
-		Evaporation	0	Inert/React		Crit Vel DP (m/s)
		Dumped	350	Average SG		Crit Vel DC (m/s)
		Behind Csg/In hole	130	Carb/BiCarb (m mole/L)	/	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Nick Cooper	(08) 9302 3730	(08) 9325 4822	\$ 9,232.52	\$ 78,984.31

CIRCULATION DATA

6 X 12.in

Pump Make ILWELL HD-1700F ILWELL HD-1700P

6 X 12.in

 Date
 24/11/2004
 Depth/TVD
 1823 m / 1823 m

 Spud Date
 20/11/2004
 Mud Type
 Spud Mud

 Water Depth
 1,396
 Activity
 Running Riser

Pump Size

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Continued mixing WBM for next section when possible.

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall DRILLING ASSEMBLY

Bit Size in

Nozzles 1/32"

Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

(bbl)

11022105 1/32		30m (a) 1310m (13101	10)	110		0 71 12.111	0 21	
Drill Pipe Size	Length	Intermediate		Active Pits	Pump Cap	gal/stk		gal/stk
in	m	20in @1823m (1823T	VD)		Pump stk/min			
Drill Pipe Size	Length	Intermediate		Total Circulating Vol	Flow Rate			
in	m	13.375in @2454m (2454	4TVD)		Bottoms Up		_	
Drill Collar Size	Length	Production or Lin	er	In Storage	Total Circ			
in	m			2726.8	Circulating Pr	essure		
	MUD PF	ROPERTIES			PRODUC	TS USED LA	ST 24 HR	S
Sample From					Products		Size	Amt
Flow Line Temp		°F			KCl 99% (BIG BAG)	1 MT BG	27
Depth/TVD		m			·			
Mud Weight]	lb/gal						
Funnel Viscosity		s/qt						
Rheology Temp		°F						
R600/R300								
R200/R100								
R6/R3								
PV		cP						
YP		100ft ²						
10s/10m/30m Gel		100ft ²						
API Fluid Loss		0 min						
HTHP FL Temp		0 min						
Cake API/HTHP		1/32"						
Solids		%Vol						
Oil/Water		%Vol						
Sand		%Vol			SOLIDS EQUIP	Si	ze	Hr
MBT		lb/bbl			VSM 300			0
pН					VSM 300			0
Alkal Mud (Pm)					VSM 300			0
Pf/Mf					VSM 300			0
Chlorides		mg/l						
Hardness Ca		mg/l						
W.OI		0/ /						
KCl		% wt						
PHPA		ppb						
Glycol		% vol						
Excess Sulphite		mg/L			MUD DDO	EDTV CDC	HEICATIO	NC.
					Weig	PERTY SPEC		CV
					Viscos		n/a 100+	
					V ISCOSI Filtra		n/a	
					Filtra	ile	п/а	
	14 DICO 11	ID TREATMENT			REMARI	10		

MUD VOLUME

Hole

446

CASING

Surface

30in @1510m (1510TVD)

TIME DISTR	Last 24 Hrs	MUD VOL ACCT	G (bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOL	OGY & HYDRAULICS
Rig Up/Service	22	Oil Added	0	NaCl	/	np/na Values	
Drilling		Water Added	283.93	KCl	/	kp/ka (lb•s^n/100ft	2)
Tripping		Mud Received	0	Low Gravity	/	Bit Loss (psi / %)	
Non-Productive Tir	m	Shakers	0	Bentonite	/	Bit HHP (hhp/HS)	1)
Testing	2	Other/Solids	0	Drill Solids	/	Bit Jet Vel (m/s)	
Running Casing		Centrifuge	0	Weight Material	/	Ann. Vel DP (m/s)	
Cementing		Tripping	0	Chemical Conc	- /	Ann. Vel DC (m/s)	
-		Evaporation	0	Inert/React		Crit Vel DP (m/s)	
		Dumped	0	Average SG		Crit Vel DC (m/s)	
		Behind Csg/In hole	0	Carb/BiCarb (m mole/L)	/		
MILE	NCD / DUO	u=	DIC DUONE	WAREHOUSE	DHONE	DAILV COST	CUMULATIVE COST

Ran riser to 537m, pressure testing each 10 joints.

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Nick Cooper	(08) 9302 3730	(08) 9325 4822	\$ 11,611.62	\$ 90,595.93

 Date
 25/11/2004
 Depth/TVD
 1823 m / 1823 m

 Spud Date
 20/11/2004
 Mud Type
 Spud Mud

 Water Depth
 1,396
 Activity
 Running Riser

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING ASSEMBLY **MUD VOLUME CIRCULATION DATA CASING** (bbl) Bit Size in Hole Pump Make ILWELL HD-1700F ILWELL HD-1700P Surface Nozzles 1/32" 30in @1510m (1510TVD) 446 Pump Size 6 X 12.in 6 X 12.in Drill Pipe Size Length Intermediate **Active Pits** Pump Cap gal/stk gal/stk 20in @1823m (1823TVD) Pump stk/min m Drill Pipe Size Length Intermediate **Total Circulating Vol** Flow Rate gal/min 13.375in @2454m (2454TVD) Bottoms Up in m Drill Collar Size Length Production or Liner In Storage Total Circ Time

Dilli Collai Size	Length	roduction of Lines	III Storage	Total Circ 11		
in	m		2882.5	Circulating Pressu		
	MUD PROPE	RTIES		PRODUCTS	USED LAST 24 HRS	S
Sample From				Products	Size	Amt
Flow Line Temp	°F			KCl 99% (BIG BAG)	1 MT BG	3
Depth/TVD	m			DUO-VIS	25 KG BG	70
Mud Weight	lb/gal			POLYPAC UL	25 KG BG	79
Funnel Viscosity	s/qt			PHPA POLYPLUS	25 KG BG	35
Rheology Temp	°F			SODIUM BICARBONA	TE 25 KG BG	3
R600/R300						
R200/R100						
R6/R3						
PV	cP					
YP	lb/100ft ²					
10s/10m/30m Gel	lb/100ft ²					
API Fluid Loss	cc/30 min					
HTHP FL Temp	cc/30 min					
Cake API/HTHP	1/32"					
Solids	%Vol					
Oil/Water	%Vol					
Sand	%Vol			SOLIDS EQUIP	Size	Hr
MBT	lb/bbl			VSM 300	10/84/84/120/12	0
pН				VSM 300	84/84/120/120/3	0
Alkal Mud (Pm)				VSM 300	84/84/120/120/3	0
Pf/Mf				VSM 300	105/105/84/120/	0
Chlorides	mg/l					
Hardness Ca	mg/l					
KCl	% wt					
PHPA	ppb					
Glycol	% vol					
Excess Sulphite	mg/L					
	-			MUD PROPER	TY SPECIFICATION	NS
				Weight	alap	
				Viscosity	15-18	
				Filtrate	<6	

REMARKS AND TREATMENT

Continued mixing of WBM for next section.

REMARKS

Continued with riser running operations (currently at 1324m).

TIME DISTR	Last 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service	20.5	Oil Added	0	NaCl	/	np/na Values
Drilling		Water Added	131.64	KCl	/	kp/ka (lb•s^n/100ft²)
Tripping		Mud Received	0	Low Gravity	/	Bit Loss (psi / %)
Non-Productive Ti	m	Shakers	0	Bentonite	/	Bit HHP (hhp/HSI)
Testing	3.5	Other/Solids	0	Drill Solids	/	Bit Jet Vel (m/s)
Running Casing		Centrifuge	0	Weight Material	/	Ann. Vel DP (m/s)
Cementing		Tripping	0	Chemical Conc	- /	Ann. Vel DC (m/s)
-		Evaporation	0	Inert/React		Crit Vel DP (m/s)
		Dumped	0	Average SG		Crit Vel DC (m/s)
		Behind Csg/In hole	0	Carb/BiCarb (m mole/L)	/	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Nick Cooper	(08) 9302 3730	(08) 9325 4822	\$ 27,325.10	\$ 117,921.03

 Date
 26/11/2004
 Depth/TVD
 1823 m / 1823 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Nipple up

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING AS	SEMBLY	CASING	MUD V	OLUME	(bbl)	CIF	RCULATION	DATA	
Bit Size in		Surface		Hole		Pump Make IL	WELL HD-170	OF ILWELL F	ID-1700P
Nozzles 1/32"		30in @1510m (1510TVD)		446		Pump Size	6 X 12.in	6 X 1	12.in
Drill Pipe Size	Length	Intermediate	1	Active Pits		Pump Cap	gal/st	k s	gal/stk
in	m	20in @1823m (1823TVD)		526		Pump stk/min			
Drill Pipe Size	Length	Intermediate	Total	Circulatin	g Vol	Flo	ow Rate	gal/m	in
in	m	13.375in @2454m (2454TVD)		526		Botte	oms Up		
Drill Collar Size	Length	Production or Liner		In Storage		Total Cir	rc Time		
in	m			2463		Circulating P	Pressure		
	MUD PR	OPERTIES				PRODUC	CTS USED L	AST 24 HR	S
Sample From		Pit@15:00				Products		Size	Amt
Flow Line Temp		oE _				KC1 90% (BIG BA)	G)	1 MT RG	7

MUD PROPERTIES								
Sample From		Pit@15:00						
Flow Line Temp	°F							
Depth/TVD	m	1835/1835						
Mud Weight 1	b/gal	8.9@90°F						
Funnel Viscosity	s/qt °F	72						
Rheology Temp	°F	120						
R600/R300		64/47						
R200/R100		37/25						
R6/R3		10/8						
PV	cР	17						
YP 1b/1	00ft²	30						
10s/10m/30m Gel lb/1	00ft²	8/9/						
API Fluid Loss cc/30) min	6.0						
HTHP FL Temp cc/30) min							
Cake API/HTHP	1/32"	1/						
Solids	%Vol							
Oil/Water	%Vol							
Sand	%Vol							
	b/bbl							
pH		8.0						
Alkal Mud (Pm)								
Pf/Mf								
Chlorides	mg/l	43000						
Hardness Ca	mg/l	200						
KCl	% wt							
PHPA	ppb	0.8						
Glycol	% vol	3						
Excess Sulphite	mg/L							

PRODUCT	S USED LAST 24	HRS
Products	Size	Amt
KCl 99% (BIG BAG)	1 MT B	G 7
GLYDRIL LC	55 GA D	OM 66
SOLIDS FOUIP	Size	Hr
SOLIDS EQUIP	Size 30/4 x 84	Hr 0
VSM 300	30/ 4 x 84	0
VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84	0
VSM 300 VSM 300 VSM 300	30/ 4 x 84	0
VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0
VSM 300 VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0
VSM 300 VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0
VSM 300 VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0
VSM 300 VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0
VSM 300 VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0
VSM 300 VSM 300 VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0 0
VSM 300 VSM 300 VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0 0
VSM 300 VSM 300 VSM 300 VSM 300 VSM 900 Weigl	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0 0
VSM 300 VSM 300 VSM 300 VSM 300	30/ 4 x 84 30/ 4 x 84 30/ 4 x 84 30/ 4 x 84 30/ 4 x 84	0 0 0 0

REMARKS AND TREATMENT

Continue to prepare KCl/PHPA/Glycol system.

Note: The mud check reported was on an unsheared pit sample and does not represent the entire system. A full representative mud check will be carried out and reported once circulation has taken place and drilling commenced.

REMARKS

Continue to run riser and slip joint. Nipple up. Operations suspended due to LTA.

TIME DISTR	Last 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service	24	Oil Added	0	NaCl	/	np/na Values
Drilling		Water Added	13	KCl	/	kp/ka (lb•s^n/100ft²)
Tripping		Mud Received	0	Low Gravity	/	Bit Loss (psi / %)
Non-Productive Tir	m	Shakers	0	Bentonite	/	Bit HHP (hhp/HSI)
Testing		Other/Solids	0	Drill Solids	/	Bit Jet Vel (m/s)
Running Casing		Centrifuge	0	Weight Material	/	Ann. Vel DP (m/s)
Cementing		Tripping	0	Chemical Conc	- /	Ann. Vel DC (m/s)
		Evaporation	0	Inert/React		Crit Vel DP (m/s)
		Dumped	0	Average SG		Crit Vel DC (m/s)
		Behind Csg/In hole	0	Carb/BiCarb (m mole/L)	/	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 41,013.88	\$ 158,934.91

Amt 20 13

 Date
 27/11/2004
 Depth/TVD
 1825 m / 1825 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 RIH

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING ASSEMBLY		CASING	MUD VOLUME (bbl)	CIRCULAT	TION DATA
Bit Size 17.5 in Reed	d T11C	Surface	Hole	Pump Make ILWELL HI	D-1700F ILWELL HD-1700P
Nozzles 20 /3x22 /	1/32"	30in @1510m (1510TVD)	2013.6	Pump Size 6 X 12	2.in 6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap 4.274	gal/stk 4.274 gal/stk
5 in	1544 m	20in @1823m (1823TVD)	540.4	Pump stk/min 10@9	7%
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	43 gal/min
5 in	111 m	13.375in @2454m (2454TVD)	2554	Bottoms Up	1871.2 min 18712 stk
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time	2494.6 min 24946 stk
9.5 in	34 m		2800	Circulating Pressure	psi

	MUD PROPE	RTIES	<u> </u>	PRODUCTS	USED LAST 24 HR	S
Sample From		FL@18:00		Products	Size	A
Flow Line Temp	°F			POLYPAC UL	25 KG BG	2
Depth/TVD	m	1823/1823		PHPA POLYPLUS	25 KG BG	1
Mud Weight	lb/gal	8.8@60°F				
Funnel Viscosity	s/qt					
Rheology Temp	°F	120				
R600/R300		66/48				
R200/R100		37/26				
R6/R3		11/9				
PV	cP	18				
YP	lb/100ft ²	30				
10s/10m/30m Gel	lb/100ft ²	8/9/				
API Fluid Loss	cc/30 min	6.2				
HTHP FL Temp	cc/30 min					
Cake API/HTHP	1/32"	1/				
Solids	%Vol	3.0				
Oil/Water	%Vol	/97				
Sand	%Vol	Tr		SOLIDS EQUIP	Size	H
MBT	lb/bbl			VSM 300	30/ 4 x 84	0
рН		8.3		VSM 300	30/ 4 x 84	0
Alkal Mud (Pm)		0.2		VSM 300	30/ 4 x 84	0
Pf/Mf		0.1/0.6		VSM 300	30/ 4 x 84	0
Chlorides	mg/l	44000				
Hardness Ca	mg/l	80				
KCl	% wt	8				
PHPA	ppb	0.7				
Glycol	% vol	3.1				
Excess Sulphite	mg/L					
	_				RTY SPECIFICATIO	NS
				Weight	alap	
				Viscosity		
				Filtrate	<6	

REMARKS AND TREATMENT

Complete preparation of KCl / PHPA / Glycol mud. Mud properties confirmed once system is sheared and drilling commenced.

REMARKS

Make up BHA. RIH. Prepare to displace well to mud and drill out cement.

TIME DISTR	Last 24 Hrs	MUD VOL A	CCTG (bbl)	SOLIDS ANALYSIS	6 (%/lb/bbl)	MUD RHEOL	OGY & HYDRAULICS
Rig Up/Service	10	Oil Added	0	NaCl	./ .	np/na Values	0.459/0.303
Drilling		Water Added	347	KCl	3.6/ 32.1	kp/ka (lb•s^n/100f	(t ²) 2.918/5.862
Tripping	12.5	Mud Received	0	Low Gravity	.8/ 6.9	Bit Loss (psi / %)	1 / 1
Non-Productive Ti	m	Shakers	0	Bentonite	./ .	Bit HHP (hhp/HS	SI) / 1
Condition Hole	1.5	Other/Solids	0	Drill Solids	.3/ 2.7	Bit Jet Vel (m/s)	3
		Centrifuge	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)	.02
		Tripping	0	Chemical Conc	- / 4.5	Ann. Vel DC (m/s)	.02
		Evaporation	0	Inert/React	-	Crit Vel DP (m/s)	2
		Dumped	0	Average SG	2.6	Crit Vel DC (m/s)	2
		Behind Csg/In ho	ole 0	Carb/BiCarb (m mole/L)	2./ 50.2	ECD @ 1825 (lb/g	gal) 8.83
N/ LE	NCD / DUO	VE.	DIC BUON	E WAREHOUSE	PHONE	DAILY COST	CUMULATIVE COST

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 2,915.40	\$ 161,850.31

 Date
 28/11/2004
 Depth/TVD
 2045 m / 2045 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Drill ahead

Operator: Santos Ltd.

Report For: Dave Atkins / Jason Young

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING ASSEMBLY CASING			MUD VOLUME (bbl)		CIRCULATION	DATA
Bit Size 17.5 in Reed	T11C	Surface	Hole	Pump Make	ILWELL HD-1700	F ILWELL HD-1700P
Nozzles 20 /3x22 / 1	1/32"	30in @1510m (1510TVD)	2223.6	Pump Size	6 X 12.in	6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	4.274 gal/stk	4.274 gal/stk
5 in	1764 m	20in @1823m (1823TVD)	587.4	Pump stk/min	76@97%	76@97%
Drill Pipe Size	Length	Intermediate	Total Circulating Vol		Flow Rate	970 gal/min
5 in	111 m	13.375in @2454m (2454TVD)	2811	В	ottoms Up 91.	5 min 20768 stk
Drill Collar Size	Length	Production or Liner	In Storage	Total	Circ Time 121	.7 min 27629 stk
9.5 in	34 m		1469	Circulatin	g Pressure	2430 psi
	MIID DD	ODEDTIES		PPOD	ICTS LISED I	ST 24 HDS

	MUD PROPE	RTIES	
Sample From		FL@18:00	
Flow Line Temp	°F	54	
Depth/TVD	m	1924/1924	
Mud Weight	lb/gal	8.9@55°F	
Funnel Viscosity	s/qt °F	96	
Rheology Temp	°Ē	65	
R600/R300		48/33	
R200/R100		27/18	
R6/R3		5/4	
PV	cР	15	
YP	lb/100ft ²	5/4 15 18	
10s/10m/30m Gel	lb/100ft ²	4/6/	
API Fluid Loss	cc/30 min	6.8	
HTHP FL Temp	cc/30 min		
Cake API/HTHP	1/32"	1/	
Solids	%Vol	4	
Oil/Water	%Vol	/96	
Sand	%Vol	0.5	
MBT	lb/bbl	0.0	
pН		10	
Alkal Mud (Pm)		0.25	
Pf/Mf		0.15/0.6	
Chlorides	mg/l	42000	
Hardness Ca	mg/l	320	
KCl	% wt	7.5	
PHPA	ppb	0.5	
Glycol	% vol	3	
Excess Sulphite	mg/L		

Circulating Pressu		2430 psi	
PRODUCTS (USED		5
Products		Size	Amt
SODA ASH		25 KG BG	4
KCl 99% (BIG BAG)		1 MT BG	7
DEFOAM A (NAPCO)		5 GA CN	8
DUO-VIS		25 KG BG	18
POLYPAC UL		25 KG BG	12
CITRIC ACID		25 KG BG	20
SODIUM BICARBONA	ГЕ	25 KG BG	10
GLYDRIL LC		55 GA DM	12
SOLIDS EQUIP		Size	Hr
VSM 300	1	0/ 4 x 84	0
VSM 300	1	0/ 4 x 84	0
VSM 300	1	0/ 4 x 84	0
VSM 300		10 x 2	0
MUD PROPER	TY SP	ECIFICATIO	NS_

alap

 $15 - \bar{1}8$

< 6.0

\$ 178,379.53

REMARKS AND TREATMENT

Displace hole to KCl / polymer / glycol mud. Losses at shakers of unsheared / cold mud. By-pass same. Add brine / glycol premix to decrease polymer concentration / viscosity. Treat active with citric acid / sodium bicarbonate for cement contamination. Continue to loose at shakers with 12deg. C flowline temp. Build additional volume. Maintain Vol with premix of varying polymer conc. Attempting to regain properties to specifications with premix.

Paul Marshall Mike McKay

REMARKS

\$ 16,529.22

Weight

Filtrate

Viscosity

Displace while slip and cut. Displace kill / choke / booster lines. Test. Drill-out. Make 3 m. new hole. LOT to 9.6+ ppg EMD. Drill ahead to 2045m.

TIME DISTR L	ast 24 Hrs	MUD VOL ACC	TG (bbl)	SOLIDS ANALYSIS (%/lb/bbl)		MUD RHEOLO	GY & HYDRAULICS
Rig Up/Service		Oil Added	0	NaCl	.2/ 2.2	np/na Values	0.541/0.429
Drilling	19.5	Water Added	1326	KCl	3.1/27.7	kp/ka (lb•s $^n/100ft^2$)	1.209/2.120
Tripping		Mud Received	0	Low Gravity	1./ 8.7	Bit Loss (psi / %)	382 / 1
Non-Productive Tim		Shakers	417	Bentonite	./ .	Bit HHP (hhp/HSI)	216 / 1
Condition Mud	4.5	Other/Solids	0	Drill Solids	.5/ 4.8	Bit Jet Vel (m/s)	67
		Centrifuge	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)	.37
		Tripping	0	Chemical Conc	- / 4.5	Ann. Vel DC (m/s)	.56
		Evaporation	0	Inert/React	-	Crit Vel DP (m/s)	1
		Dumped	0	Average SG	2.6	Crit Vel DC (m/s)	1
		Behind Csg/In hole	0	Carb/BiCarb (m mole/L)	2.9/ 1.5	ECD @ 2045 (lb/gal	8.94
M-I ENGR / PHONE		RIG PHONE	RIG PHONE WAREHOUSE		DAILY COST	CUMULATIVE COST	

(08) 9325 4822

(08) 9302 3730

 Date
 29/11/2004
 Depth/TVD
 2370 m / 2370 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Drill 17-1/2" hole

Operator : Santos Ltd.Field/Area : Otway BasinReport For : Dave Atkins / Patrick KingDescription : ExplorationWell Name : Amrit-1Location : Victoria/ P52

Contractor: Transocean M-I Well No.: 16075 Report For: S. Morrall

DRILLING AS	SSEMBLY	CASING	MUD VOLUME (bbl)	CIRCULATION DATA			
Bit Size 17.5 in Reed	d T11C	Surface	Hole	Pump Make ILWELL H	D-1700F ILWELL HD-1700P		
Nozzles 20 /3x22 /	1/32"	30in @1510m (1510TVD)	2640.6	Pump Size 6 X 1	2.in 6 X 12.in		
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap 4.274	gal/stk 4.274 gal/stk		
5 in	2089 m	20in @1823m (1823TVD)	975.4	Pump stk/min 70@9	97% 80@97%		
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	641 gal/min		
5 in	111 m	13.375in @2454m (2454TVD)	3616	Bottoms Up	131.2 min 24672 stk		
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time	182.2 min 35527 stk		
9.5 in	34 m		654	Circulating Pressure	2900 psi		

7.5 111	J 1 III			031	Circulating 1 1055		
	MUD PROPE	RTIES			PRODUCTS	USED LAST 24 HF	₹S
Sample From		lowline@20:0	lowline@10:0		Products	Size	Amt
Flow Line Temp	°F	54	54		KCl 99% (BIG BAG)	1 MT BG	9
Depth/TVD	m	2332/2332	2216/2216		DUO-VIS	25 KG BG	35
Mud Weight	lb/gal	9.0@14°F	9.0@12°F		POLYPAC UL	25 KG BG	30
Funnel Viscosity	s/qt	59	54		PHPA POLYPLUS	25 KG BG	11
Rheology Temp	°F	62	64		GLYDRIL LC	55 GA DM	22
R600/R300		53/35	49/33				
R200/R100		28/19	27/18				
R6/R3		6/4	4/3				
PV	cP	18	16				
YP	lb/100ft ²	17	17				
10s/10m/30m Gel	lb/100ft ²	5/7/7	4/6/7				
API Fluid Loss	cc/30 min	5.4	5.5				
HTHP FL Temp	cc/30 min						
Cake API/HTHP	1/32"	1/	1/				
Solids	%Vol	5	4				
Oil/Water	%Vol	2.5/92.5	3/93				
Sand	%Vol	1	0.25		SOLIDS EQUIP	Size	Hr
MBT	lb/bbl	7.5	5		VSM 300	10/ 4 x 165	24
pH		9.0	9.3		VSM 300	10/ 4 x 84	24
Alkal Mud (Pm)		0.4	0.4		VSM 300	10/ 4 x 84	24
Pf/Mf		0.05/0.55	0.1/0.5		VSM 300	10/ 4 x 120	24
Chlorides	mg/l	39000	41000				
Hardness Ca	mg/l	880	680				
KCl	% wt	8.1	7.8				
PHPA	ppb	0.5	0.5				
Glycol	% vol	3	3				
Excess Sulphite	mg/L						
						RTY SPECIFICATION)NS
					Weight	alap	
					Viscosity	15-18	
					Filtrate	< 6.0	
I		I					

REMARKS AND TREATMENT

Build replacement volume. Dump sandtraps on connections and as necessary to contain mud weight increase. Marginal flow properties run due to shaker limitations. No indications of tight hole on connections. ECD stabilised with mud weight at 9.0 ppg. Prepare and pump high vis. pills with good cuttings returns. Change up or replace all shaker screens to finest possible. Received 12.25" mud chemicals and backloaded Lime and M-I Lube.

REMARKS

	Last 24 Hrs	MUD VOL A	CCTG	(bbl)	SOLIDS ANALYSIS (%/lb/bbl) MUD RHEOLOGY & HYD		DRAULICS			
Rig Up/Service		Oil Added		0	NaCl		.1/ 1.4	np/na Values		0.599/0.444
Drilling	22	Water Added		478	KCl		2.8/ 25.2	kp/ka (lb•s^n/100f	(t²)	0.893/2.067
Tripping		Mud Received		0	Low Gra	avity	3.1/28.6	Bit Loss (psi / %)		169 / 1
Non-Productive Tin	n	Shakers		140	Bentonit	te	.6/ 5.4	Bit HHP (hhp/HS	SI)	63 / 1
Condition Hole	2	Other/Solids		0	Drill So	lids	2./ 18.7	Bit Jet Vel (m/s)	•	44
		Centrifuge		0	Weight	Material	NA/ NA	Ann. Vel DP (m/s)		.23
		Tripping		0	Chemica	al Conc	- / 4.5	Ann. Vel DC (m/s)		.29
		Evaporation		0	Inert/Re	act	2.2111	Crit Vel DP (m/s)		1
		Dumped		395	Average	SG	2.6	Crit Vel DC (m/s)		1
		Behind Csg/In h	ole	0	Carb/Bi	Carb (m mole/L)	1./ 5.	ECD @ 2370 (lb/g	gal)	9.03
	MI ENOD / BUONE			DIO DIIONE		WARFHOUGE	DUONE	DAIL V COOT	01114111	A TIVE OCCT

Drill ahead.

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 28,127.16	\$ 206,506.69

 Date
 30/11/2004
 Depth/TVD
 2459 m / 2459 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 RIH

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING ASSEMBLY		CASING	MUD VOLUME (bbl)	CIRCULA	TION DATA
Bit Size 17.5 in Reed	1 T11C	Surface	Hole	Pump Make ILWELL H	D-1700F ILWELL HD-1700P
Nozzles 20 /3x22 /	1/32"	30in @1510m (1510TVD)	2753.5(Tot)/2174.9(Bit)	Pump Size 6 X 1	2.in 6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap 4.274	gal/stk 4.274 gal/stk
5 in	1684 m	20in @1823m (1823TVD)	841.5	Pump stk/min 64@9	97% 48@97%
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	893 gal/min
5 in	111 m	13.375in @2454m (2454TVD)	3016.4	Bottoms Up	97.3 min 20337 stk
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time	141.9 min 29651 stk
9.5 in	34 m		906	Circulating Pressure	1900 psi

7.5 III	J= 111		
	MUD PROPE	RTIES	
Sample From		FL@20:30	FL@09:00
Flow Line Temp	°F	58	58
Depth/TVD	m	2459/2459	2459/2459
Mud Weight	lb/gal	9.2@59°F	9.2@58°F
Funnel Viscosity	s/at	55	56
Rheology Temp	°F	62	65
R600/R300		66/46	56/38
R200/R100		37/27	31/26
R6/R3		9/7	6/4
PV	cР	20	18
YP	1b/100ft ²	26	20
10s/10m/30m Gel	lb/100ft ²	7/14/15	5/7/8
API Fluid Loss	cc/30 min	5.2	5.6
HTHP FL Temp	cc/30 min		
Cake API/HTHP	1/32"	1/	1/
Solids	%Vol	8	7
Oil/Water	%Vol	3/89	3/90
Sand	%Vol	1	0.75
MBT	lb/bbl	10	7.5
pH		9.0	9.0
Alkal Mud (Pm)		0.35	0.3
Pf/Mf		0.05/0.4	0.1/0.4
Chlorides	mg/l	38500	39000
Hardness Ca	mg/l	1200	1020
KCl	% wt	7.6	7.6
PHPA	ppb	0.5	0.5
Glycol	% vol	3	3
Excess Sulphite	mg/L	tr	tr
	-		

PRODUCTS U		LAST 24 HR	S
Products		Size	Amt
M-I BAR BULK		1 MT BK	57
SODA ASH		25 KG BG	
KCl 99% (BIG BAG)		1 MT BG	4
DUO-VIS		25 KG BG	18
POLYPAC UL		25 KG BG	16
OS-1		25 KG BG	12
PHPA POLYPLUS		25 KG BG	5
GLYDRIL MC		200 KG DM	30
SOLIDS EQUIP	10	Size	Hr 12
VSM 300		0/4 x 165	
VSM 300 VSM 300	1	0/ 4 x 165 0/ 4 x 84	12 12
VSM 300	1 1	0/4 x 165	
VSM 300 VSM 300 VSM 300	1 1	0/ 4 x 165 0/ 4 x 84 0/ 4 x 84	12 12 12
VSM 300 VSM 300 VSM 300	1 1	0/ 4 x 165 0/ 4 x 84 0/ 4 x 84	12 12 12
VSM 300 VSM 300 VSM 300	1 1 1 (0/ 4 x 165 0/ 4 x 84 0/ 4 x 84 0/ 4 x 120	12 12 12 12
VSM 300 VSM 300 VSM 300 VSM 300	1 1 1 (0/ 4 x 165 0/ 4 x 84 0/ 4 x 84 0/ 4 x 120	12 12 12 12

REMARKS AND TREATMENT

Prepare additional premix. Mix and pump high vis. sweeps to reduce cuttings load and concomitant ECD. Dump and dilute circulating system to contain mud weight. At TD (2459m), pumped out of hole to shoe and circulated from 1818m with high vis (50bbl) & weighted (50bbl@ 12.0ppg) pills, returning considerable cuttings volume and losses over the shakers. Currently preparing additional pre-mix and weighting 400bbl pre-mix to 11.5ppg to provide contingent hole stability. Replace worn shaker screens.

REMARKS

Filtrate

< 6.0

Drill ahead. Occassionally circulate and work pipe to reduce ECD as shown on the annular pressure while drilling tool - maximum ECD = 9.6 ppg EMD, average = 9.48 ppg EMD. TD. Circulate. Flow check. Pump 120 bbl sweep. Circulate hole clean. POOH. Circulate and pump sweeps at 20" shoe and run to bottom.

TIME DISTR L			(bbl)	(bbl) SOLIDS ANALYSIS (%			(%/lb/bbl) MUD RHEOLOG		GY & HYDRAULICS	
Rig Up/Service		Oil Added		0	NaCl		.1/ .7	np/na Values		0.521/0.385
Drilling	8	Water Added		625	KCl		2.8/ 25.4	kp/ka (lb•s^n/100f	ft²)	1.907/3.986
Tripping	5.25	Mud Received		0	Low Grav	vity	4./ 36.6	Bit Loss (psi / %)		335 / 1
Non-Productive Tim	n	Shakers		468	Bentonite	;	.8/ 7.2	Bit HHP (hhp/HS	SI)	174 / 1
Condition Hole	10.75	Other/Solids		0	Drill Soli	ds	2.7/ 24.8	Bit Jet Vel (m/s)		61
		Centrifuge		0	Weight N	Saterial	NA/ NA	Ann. Vel DP (m/s)		.34
		Tripping		0	Chemical	Conc	- / 4.5	Ann. Vel DC (m/s)		.4
		Evaporation		0	Inert/Rea	ct	2.2089	Crit Vel DP (m/s)		2
		Dumped		61	Average	SG	2.6	Crit Vel DC (m/s)	_	2
		Behind Csg/In h	ole	0	Carb/BiC	arb (m mole/L)	1./ 5.	ECD @ 1965 (lb/g	gal)	9.27

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 32,104.70	\$ 238,611.39

 Date
 1/12/2004
 Depth/TVD
 2459 m / 2459 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Prep. to run casing

Operator :Santos Ltd.Field/Area :Otway BasinReport For :Dave Atkins / Patrick KingDescription :ExplorationWell Name :Amrit-1Location :Victoria/ P52

Contractor: Transocean M-I Well No.: 16075
Report For: S. Morrall

DRILLING ASSEMBLY		CASING	MUD VOLUME (bbl)	CIR	CULATION DA	ATA
Bit Size 17.5 in Reed	d T11C	Surface	Hole	Pump Make ILV	WELL HD-1700F	ILWELL HD-1700P
Nozzles 20 /3x22 /	1/32"	30in @1510m (1510TVD)	2830.4	Pump Size	6 X 12.in	6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/stk	gal/stk
5 in	m	20in @1823m (1823TVD)	852.1	Pump stk/min		
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flov	w Rate	gal/min
5 in	m	13.375in @2454m (2454TVD)	852.1	Botto	ms Up	_
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ	c Time	
9.5 in	m		765	Circulating Pr	ressure	

7.5 III	111			103	Circulating 1 1055		
	MUD PROPE	RTIES			PRODUCTS	USED LAST 24 HRS	S
Sample From		Pit@22:00	FL@09:00		Products	Size	Amt
Flow Line Temp	°F		58		KCl 99% (BIG BAG)	1 MT BG	1
Depth/TVD	m	2459/2459	2459/2459		DUO-VIS	25 KG BG	20
Mud Weight	lb/gal	9.2@58°F	9.3@65°F				
Funnel Viscosity	s/qt	61	52				
Rheology Temp	°F	58	68				
R600/R300		74/52	58/39				
R200/R100		43/31	33/25				
R6/R3		10/8	6/4				
PV	cР	22	19				
YP	lb/100ft ²	30	20				
10s/10m/30m Gel	lb/100ft ²	8/16/24	6/12/13				
API Fluid Loss	cc/30 min	4.8	5.6				
HTHP FL Temp	cc/30 min						
Cake API/HTHP	1/32"	1/	1/				
Solids	%Vol	7.5	7.5				
Oil/Water	%Vol	3/89.5	3/89.5			·	
Sand	%Vol	0.3	0.5		SOLIDS EQUIP	Size	Hr
MBT	lb/bbl	12.5	10		VSM 300	10/ 4 x 165	13
pH		8.5	8.9		VSM 300	10/ 4 x 84	13
Alkal Mud (Pm)		0.2	0.3		VSM 300	10/ 4 x 84	13
Pf/Mf		0.05/0.5	0.1/0.4		VSM 300	10/4 x 120	13
Chlorides	mg/l	38000	39000				
Hardness Ca	mg/l	1040	1020				
	-						
KCl	% wt	7.7	7.6				
PHPA	ppb	0.3	0.3				
Glycol	% vol	3	3.0				
Excess Sulphite	mg/L	tr	tr				
						RTY SPECIFICATION	NS
					Weight	alap	
					Viscosity	15-18	
					Filtrate	< 6.0	

REMARKS AND TREATMENT

Continue to build replacement volume. Mix and pump high vis / high density sweep. Add Duovis directly to active to increase carrying capacity.

REMARKS

Circulate on bottom. Sweep 50 barrels high vis / high density mud. Wait on accident enquiry while circulating. POOH and prepare to run casing.

TIME DISTR L	ast 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYD	RAULICS
Rig Up/Service	6	Oil Added	0	NaCl	.1/ .9	np/na Values	
Drilling		Water Added	0	KCl	2.7/ 24.8	kp/ka ($lb \cdot s^n/100ft^2$)	
Tripping	6	Mud Received	0	Low Gravity	4.1/ 37.	Bit Loss (psi / %)	
Non-Productive Tim	12	Centrifuge	0	Bentonite	1.1/10.1	Bit HHP (hhp/HSI)	
		Tripping	2	Drill Solids	2.4/ 21.9	Bit Jet Vel (m/s)	
		Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)	
		Dumped	0	Chemical Conc	- / 5.	Ann. Vel DC (m/s)	
		Behind Csg/In hole	0	Inert/React	1.5575	Crit Vel DP (m/s)	
		Loss to Formation	0	Average SG	2.6	Crit Vel DC (m/s)	
		Sweeps	0	Carb/BiCarb (m mole/L)	1./ 15.8		

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 4,970.06	\$ 243,581.45

 Date
 2/12/2004
 Depth/TVD
 2459 m / 2459 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Running casing

Operator : Santos Ltd.Field/Area : Otway BasinReport For : Dave Atkins / Patrick KingDescription : ExplorationWell Name : Amrit-1Location : Victoria/ P52

Contractor: Transocean M-I Well No.: 16075 Report For: S. Morrall

DRILLING AS	SEMBLY	CASING	MUD VOLUME (bbl)	CIRCULA	TION DATA
Bit Size 17.5 in		Surface	Hole	Pump Make ILWELL H	D-1700F ILWELL HD-1700P
Nozzles 1/32"		30in @1510m (1510TVD)	2724.1(Tot)/2424.2(Bit)	Pump Size 6 X 1	2.in 6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/stk gal/stk
5 in	1174 m	20in @1823m (1823TVD)	876.9	Pump stk/min	
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	gal/min
13.375 in	1029 m	13.375in @2454m (2454TVD)	3301.2	Bottoms Up	
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time	·
in	m		748	Circulating Pressure	

111	111			740	Circulating Flessi	ii e	
	MUD PROPE	RTIES			PRODUCTS	USED LAST 24 HR	S
Sample From		Pit@21:30	Pit@10:00		Products	Size	Amt
Flow Line Temp	°F				M-I BAR BULK	1 MT BK	3
Depth/TVD	m	2459/2459	2459/2459				
Mud Weight	lb/gal	9.2@62°F	9.2@60°F				
Funnel Viscosity	s/qt	60	58				
Rheology Temp	°F	60	60				
R600/R300		78/56	75/53				
R200/R100		46/33	44/33				
R6/R3		11/8	10/9				
PV	cР	22	22				
YP	lb/100ft ²	34	31				
10s/10m/30m Gel	1b/100ft ²	8/16/17	8/15/16				
API Fluid Loss	cc/30 min	5.4	5.6				
HTHP FL Temp	cc/30 min						
Cake API/HTHP	1/32"	1/	1/				
Solids	%Vol	7.5	7.5				
Oil/Water	%Vol	3/89.5	2.5/90				
Sand	%Vol	.03	0.2		SOLIDS EQUIP	Size	Hr
MBT	lb/bbl	10.0	10.0		VSM 300	10/ 4 x 165	14
pH		8.7	8.5		VSM 300	10/ 4 x 84	14
Alkal Mud (Pm)		0.25	0.3		VSM 300	10/ 4 x 84	0
Pf/Mf		0.1/0.4	0.05/0.45		VSM 300	10/ 4 x 120	0
Chlorides	mg/l	38500	39000				
Hardness Ca	mg/l	1080	1040				
KC1	% wt	7.7	7.7				
PHPA	ppb	0.3	0.3				
Glycol	% vol	2.75	2.8				
Excess Sulphite	mg/L	tr	tr				
						TY SPECIFICATIO	NS
					Weight	alap	
					Viscosity	15-18	
					Filtrate	< 6.0	

REMARKS AND TREATMENT

Prepare for 12-1/4" open hole interval. Cement volumes, spacer 85 bbls + lead 327 bbls = tail 81 bbls = 493 bbls. Barytes used in cement spacer.

REMARKS

Prepare to run casing. Rig-up and run 13-3/8" casing.

TIME DISTR	Last 24 Hrs	MUD VOL A	CCTG	(bbl)	SOLIDS ANALYSIS	S (%/lb/bbl)	MUD RHEOL	OGY & HYDRAULICS
Rig Up/Service		Oil Added		0	NaCl	.1/ 1.2	np/na Values	0.478/0.404
Drilling		Water Added		0	KCl	2.7/ 24.8	kp/ka (lb•s^n/100f	(t ²) 3.031/4.415
Tripping	7	Mud Received		0	Low Gravity	4./ 36.7	Bit Loss (psi / %)	/ 1
Non-Productive Ti	m	Centrifuge		0	Bentonite	.8/ 7.3	Bit HHP (hhp/HS	SI) / 1
Running Casing	18	Tripping		0	Drill Solids	2.7/ 24.4	Bit Jet Vel (m/s)	
		Evaporation		0	Weight Material	NA/ NA	Ann. Vel DP (m/s)	
		Dumped		0	Chemical Conc	- / 5.	Ann. Vel DC (m/s)	
		Behind Csg/In h	ole	0	Inert/React	2.1667	Crit Vel DP (m/s)	2
		Loss to Formation	on	0	Average SG	2.6	Crit Vel DC (m/s)	2
		Sweeps		0	Carb/BiCarb (m mole/L)	2./ 19.9	ECD @ 2203 (lb/g	(gal) 9.2
B4 1 E	NCD / DUO	VE.	DIC	C DUONE	WAREHOUS	E DUONE	DAILY COST	CUMULATIVE COST

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 630.00	\$ 244,211.45

 Date
 3/12/2004
 Depth/TVD
 2459 m / 2459 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 M/U BHA

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING ASSEMBLY		CASING	MUD VOLUME (bbl	l)	CIF	RCULATION D	ATA
Bit Size 12.25 in HT	TC HCM606	Surface	Hole		Pump Make IL'	WELL HD-1700F	ILWELL HD-1700P
Nozzles 6x14 / 1/32	2"	30in @1510m (1510TVD)	2145.4		Pump Size	6 X 12.in	6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits		Pump Cap	gal/stk	gal/stk
5 in	m	20in @1823m (1823TVD)	400.6		Pump stk/min		
Drill Pipe Size	Length	Intermediate	Total Circulating Vol		Flo	w Rate	gal/min
6.625 in	111 m	13.375in @2454m (2454TVD)	400.6		Botto	oms Up	-
Drill Collar Size	Length	Production or Liner	In Storage		Total Cir	rc Time	
8 in	114 m	in @2797m (2797TVD)	1300		Circulating P	ressure	
	MIID DE	ODEDTIES			DBODILO	TO LIGED I AG	ST 24 HDG

	MUD PROPE	RTIES	
Sample From		Pit@21:30	Pit@07:00
Flow Line Temp	°F	n/a	n/a
Depth/TVD	m	2459/2459	2459/2459
Mud Weight	lb/gal	9.3@62°F	9.3@63°F
Funnel Viscosity	s/qt °F	62 60	65
Rheology Temp	°F	60	68
R600/R300		75/54	75/52
R200/R100		44/33	42/33
R6/R3		11/8	10/8
PV	cP	21 33	23 29
YP	lb/100ft ²	33	
10s/10m/30m Gel	$1b/100ft^{2}$	9/17/18	10/17/19
API Fluid Loss	cc/30 min	4.4	4.5
HTHP FL Temp	cc/30 min		
Cake API/HTHP	1/32"	1/	1/
Solids	%Vol	8	8
Oil/Water	%Vol	2.7/89.3	2.8/89.2
Sand	%Vol	0.5	0.5
MBT	lb/bbl	10.5	12.5
рН		8.5	8.5 0.2
Alkal Mud (Pm)		0.15	0.2
Pf/Mf		1.05/0.3	0.1/0.3
Chlorides	mg/l	38000	39000
Hardness Ca	mg/l	1180	1200
KCl	% wt	7.8	7.8
PHPA	ppb	0.25	0.25
Glycol	% vol	2.8	2.8
Excess Sulphite	mg/L		tr

	USED LAST 24 HI	_
Products	Size	Am
		_
SOLIDS EQUIP	Size	Hr
		12
VSM 300	10/ 4 x 165	12
VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84	12 12
VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84	12 12 0
VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84	12 12
VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84	12 12 0
VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84	12 12 0
VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84	12 12 0
VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84	12 12 0
VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84	12 12 0
VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84	12 12 0
VSM 300 VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84 10/ 4 x 120	12 12 0 0
VSM 300 VSM 300 VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84 10/ 4 x 120 RTY SPECIFICATIO	12 12 0 0
VSM 300 VSM 300 VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84 10/ 4 x 120 RTY SPECIFICATION 9.4 - 10.2	12 12 0 0
VSM 300 VSM 300 VSM 300 VSM 300 VSM 300	10/ 4 x 165 10/ 4 x 84 10/ 4 x 84 10/ 4 x 120 RTY SPECIFICATIO	12 12 0 0

REMARKS AND TREATMENT

No apparent loss on running casing or while pumping cement. Approx. 95bbl lost sub-surface loss on displacing cement. Mud left behind casing 131 bbls. Dump and clean sand traps / active suction pit. Mud carried to 12-1/4" open hole interval = 4566 bbls. Prepare for 12-1/4" open hole interval. Commence preparation of KCl brine to raise system KCl to 12% and glycol to 5%.

REMARKS

Land and set 13-3/8" casing at 2454 m. without any problems. Set seal assembly. Test BOPs. Make up 12-1/4" BHA.

TIME DISTR	Last 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service		Oil Added	0	NaCl	.1/ .9	np/na Values
Drilling		Water Added	0	KCl	2.7/ 24.7	kp/ka (lb•s^n/100ft²)
Tripping	14.5	Mud Received	0	Low Gravity	4.8/ 43.6	Bit Loss (psi / %)
Non-Productive Tir	n	Centrifuge	0	Bentonite	.8/ 7.	Bit HHP (hhp/HSI)
Cementing	9.5	Tripping	0	Drill Solids	3.5/31.6	Bit Jet Vel (m/s)
-		Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)
		Dumped	277	Chemical Conc	- / 5.	Ann. Vel DC (m/s)
		Behind Csg/In hole	131	Inert/React	2.6737	Crit Vel DP (m/s)
		Loss to Formation	95	Average SG	2.6	Crit Vel DC (m/s)
		Sweeps	0	Carb/BiCarb (m mole/L)	21./ 332.8	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 0.00	\$ 244,211.45

 Date
 4/12/2004
 Depth/TVD
 2468 m / 2468 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Drill 12.25" hole

Operator :Santos Ltd.Field/Area :Otway BasinReport For :Dave Atkins / Patrick KingDescription :ExplorationWell Name :Amrit-1Location :Victoria/ P52

Contractor: Transocean M-I Well No.: 16075
Report For: S. Morrall

DRILLING ASSEMBLY		CASING	MUD VOLUME (bbl)	CIRCULA	ATION DATA
Bit Size 12.25 in HTC HCM606		Surface	Hole	Pump Make ILWELL I	HD-1700F ILWELL HD-1700P
Nozzles 6x14 / 1/32	"	30in @1510m (1510TVD)	2057.3	Pump Size 6 X	12.in 6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap 4.274	gal/stk 4.274 gal/stk
5 in	2212 m	20in @1823m (1823TVD)	876.7	Pump stk/min 83@	97% 83@97%
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	1000 gal/min
6.625 in	111 m	13.375in @2454m (2454TVD)	2934	Bottoms Up	80.7 min 18878 stk
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time	123.2 min 28835 stk
8 in	114 m	in @2797m (2797TVD)	1323	Circulating Pressure	2320 psi

8 in	114 m	in @2797m (2797TV)	D)	1323	Circulating Pressu	re 2320 psi	
	MUD PRO	PERTIES			PRODUCTS USED LAST 24 HRS		
Sample From		FL@21:00			Products	Size	Amt
Flow Line Temp	C	F 58			KCl 99% (BIG BAG)	1 MT BG	31
Depth/TVD		m 2462/2462			DUO-VIS	25 KG BG	17
Mud Weight	lb/g	al 9.3@60°F			POLYPAC UL	25 KG BG	12
Funnel Viscosity	s/	qt 60			GLYDRIL MC	200 KG DM	70
Rheology Temp	C	ŶF 60					
R600/R300		68/47					
R200/R100		35/28					
R6/R3		9/7					
PV	C	P 21					
YP	lb/1001						
10s/10m/30m Gel	lb/1001	t ² 9/14/17					
API Fluid Loss	cc/30 m	in 5.2					
HTHP FL Temp	cc/30 m	in					
Cake API/HTHP	1/32						
Solids	%V	ol 7.5					
Oil/Water	%V	01 3/89.5					
Sand	%V	0.25			SOLIDS EQUIP	Size	Hr
MBT	lb/b	bl 10.0			VSM 300	10/ 4 x 165	8
pH		8.5			VSM 300	10/ 4 x 84	8
Alkal Mud (Pm)		0.3			VSM 300	10/ 4 x 84	4
Pf/Mf		0.05/0.6			VSM 300	10/4 x 120	4
Chlorides	mg	/1 42000					
Hardness Ca	mg						
KC1	% v	vt 8					
PHPA	pr	ob 0.3					
Glycol	% v	ol 5					
Excess Sulphite	mg/	L 40					
					MUD PROPER	TY SPECIFICATION	NS
					Weight	9.4 - 10.2	
					Viscosity	10-12	
					Filtrate	< 6.0	

REMARKS AND TREATMENT

Build new KCl brine and Glydril MC volume to be bled to active system over a circulation while drilling ahead to raise KCl to 12% and Glydril to 5% by primary target. Increase KCl and Glydril concentration in reserve mud. Sustained shaker losses with cold gelled mud on first bottoms up when back on bottom. Treat system for cement contamination with Sod.bicarb. and citric acid. Received 20x1mt KCl, polymers and chemicals as per Inventory.

REMARKS

M/u BHA. P/u additional drill pipe and RIH. Drill-out cement. Make 3 m. new hole. Perform FIT (13.3ppg EMW) Drill ahead.

	Last 24 Hrs	MUD VOL A	CCTG	(bbl)	SOL	IDS ANALYSIS	(%/lb/bbl)	MUD RHEOL	OGY & HY	DRAULICS
Rig Up/Service		Oil Added		0	NaCl		.1/ 1.1	np/na Values		0.533/0.395
Drilling	1	Water Added		455	KCl		3./ 27.1	kp/ka (lb•s^n/100f	(t²)	1.807/3.919
Tripping	18	Mud Received		0	Low Gra	avity	4.5/41.3	Bit Loss (psi / %)		1053 / 1
Non-Productive Tin	n	Centrifuge		0	Bentonit	te	.7/ 6.7	Bit HHP (hhp/HS	SI)	614 / 1
Cementing		Tripping		0	Drill Sol	lids	3.3/ 29.6	Bit Jet Vel (m/s)	•	108
Testing	1	Evaporation		0	Weight	Material	NA/ NA	Ann. Vel DP (m/s)		.96
Condition Hole	4	Dumped		0	Chemica	al Conc	- / 5.	Ann. Vel DC (m/s)		1.38
		Behind Csg/In h	ole	0	Inert/Re	act	2.6307	Crit Vel DP (m/s)		2
		Loss to Formation	on	0	Average	SG	2.6	Crit Vel DC (m/s)		2
		Sweeps		0	Carb/Bio	Carb (m mole/L)	1./ 15.8	ECD @ 2468 (lb/g	gal)	9.47
M LENOR / BUONE			DIO BUONE		WARFHOUGE	DUONE	DAIL V COOT	01114111	A TIVE OOOT	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 44,275.16	\$ 288,486.61

 Date
 5/12/2004
 Depth/TVD
 2696 m / 2696 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 POOH

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING AS	SEMBLY	CASING	MUD VOLUME	(bbl)	CIRCULATION DATA			
Bit Size 12.25 in HTC	C HCM606	Surface	Hole		Pump Make ILWELL HD-1700F ILWELL HD			
Nozzles 6x14 / 1/32"		30in @1510m (1510TVD)	2177.9	1	Pump Size	6 X 12.in	6 X 12.in	
Drill Pipe Size	Length	Intermediate	Active P	ts	Pump Cap	gal/stk	gal/stk	
5 in	2440 m	20in @1823m (1823TVD)	951.1		Pump stk/min			
Drill Pipe Size	Length	Intermediate	Total Circulat	ing Vol	Fl	ow Rate	gal/min	
6.625 in	111 m	13.375in @2454m (2454TVD)	3129		Bott	toms Up	-	
Drill Collar Size	Length	Production or Liner	In Storag	ge	Total Ci	irc Time		
8 in	114 m	in @2797m (2797TVD)	1056		Circulating 1	Pressure		
	MUD PROPERTIES				DDUDITE HEED I VET 34 HDS			

	MUD PROPERTIES									
Sample From		FL@20:30	Pit@09:00							
Flow Line Temp	°F	54	54							
Depth/TVD	m	2696/2696	2539/2539							
Mud Weight	lb/gal	9.5@60°F	9.5@60°F							
Funnel Viscosity	s/qt °F	64	61							
Rheology Temp	°F	60	60							
R600/R300		67/46	65/45							
R200/R100		37/26	34/24							
R6/R3		10/8	9/5							
PV	cP	21 25	20 25							
YP	lb/100ft ²	25								
10s/10m/30m Gel	lb/100ft ²	9/16/20	7/13/16							
API Fluid Loss	cc/30 min	4.4	4.4							
HTHP FL Temp	cc/30 min									
Cake API/HTHP	1/32"	1/	1/							
Solids	%Vol	8.8	8.7							
Oil/Water	%Vol	3.5/87.7	3/88.3							
Sand	%Vol	0.3	0.25							
MBT	lb/bbl	11.0	12.5							
pН		8.5	9.3							
Alkal Mud (Pm)		0.15	0.2							
Pf/Mf		0.05/0.6	0.05/0.5							
Chlorides	mg/l	52500	53250							
Hardness Ca	mg/l	1200	2000							
KCl	% wt	10.4	10.6							
PHPA	ppb	0.25	0.25							
Glycol	% vol	4.5	4.5							
Excess Sulphite	mg/L	40	40							

Circulating Pressu	ire		
PRODUCTS I	USED	LAST 24 HR	S
Products		Size	Amt
DEFOAM A (NAPCO)		5 GA CN	4
DUO-VIS		25 KG BG	12
OS-1		25 KG BG	12
CITRIC ACID		25 KG BG	20
SODIUM BICARBONA	ГЕ	25 KG BG	10
COLUDE FOLUD		0:	11-
SOLIDS EQUIP	10/	Size	Hr
VSM 300	10/	2 x 165, 2x	24
VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165	24 24
VSM 300 VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165 0/ 4 x 165	24 24 18
VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165	24 24
VSM 300 VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165 0/ 4 x 165	24 24 18
VSM 300 VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165 0/ 4 x 165	24 24 18
VSM 300 VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165 0/ 4 x 165	24 24 18
VSM 300 VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165 0/ 4 x 165	24 24 18
VSM 300 VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165 0/ 4 x 165	24 24 18
VSM 300 VSM 300 VSM 300	10	2 x 165, 2x 0/ 4 x 165 0/ 4 x 165	24 24 18
VSM 300 VSM 300 VSM 300 VSM 300	10	2 x 165, 2x)/ 4 x 165)/ 4 x 165)/ 4 x 165)/ 4 x 120	24 24 18 18
VSM 300 VSM 300 VSM 300 VSM 300 VSM 300	10	2 x 165, 2x)/ 4 x 165)/ 4 x 165)/ 4 x 165)/ 4 x 120	24 24 18 18
VSM 300 VSM 300 VSM 300 VSM 300 VSM 300	10	2 x 165, 2x)/ 4 x 165)/ 4 x 165)/ 4 x 165)/ 4 x 120 ECIFICATIO 9.4 - 10.2	24 24 18 18
VSM 300 VSM 300 VSM 300 VSM 300 VSM 300	10	2 x 165, 2x)/ 4 x 165)/ 4 x 165)/ 4 x 165)/ 4 x 120	24 24 18 18

REMARKS AND TREATMENT

Continue to add concentrate premix to active prior to intersecting primary target. Change to finer mesh shaker screens. Used 6 new 165 mesh screens. Add oxygen scavenger and defoamer. Add XCD for carrying capacity. Moderate losses at shakers on sand returns. Note: Adjustment to Polyplus usage and cummulative cost. Additional KCl will be added to the active to achieve 12% on delivery.

Paul Marshall

Mike McKay

REMARKS

\$ 4,243.04

\$ 292,729.65

Circulate hole clean at 2477 m. Perform second LOT with leak-off at 11.0 ppg EMD. Assume previous LOT at 13.0 ppg. EMD as erroneous. Drill ahead to 2696 m. Slow ROPs. Circulate. Pump-out to shoe. Circulate.

TIME DISTR	Last 24 Hrs	MUD VOL ACC	TG (bbl)	SOLIDS ANALYSIS (%/lb/bbl)		(%/lb/bbl)	MUD RHEOL	.OGY & HYI	DRAULICS
Rig Up/Service		Oil Added	0	NaCl		3/ -4.2	np/na Values		0.543/0.336
Drilling	17.75	Water Added	0	KCl		4.6/41.2	kp/ka (lb•s^n/100f	(t²)	1.665/4.933
Tripping	2	Mud Received	0	Low Gra	vity	4.6/ 42.	Bit Loss (psi / %)		/ 1
Non-Productive Tir	n	Centrifuge	0	Bentonit	e	.9/ 7.8	Bit HHP (hhp/HS	SI)	/ 1
LOT	1.5	Tripping	0	Drill Sol	ids	3.2/ 29.2	Bit Jet Vel (m/s)	•	
Circulate	1.75	Evaporation	0	Weight I	Material	NA/ NA	Ann. Vel DP (m/s)		
Flow check	1	Dumped	0	Chemica	ıl Conc	- / 5.	Ann. Vel DC (m/s)		
		Behind Csg/In hole	0	Inert/Rea	act	2.3606	Crit Vel DP (m/s)		2
		Loss to Formation	0	Average	SG	2.6	Crit Vel DC (m/s)		2
		Sweeps	0	Carb/Bio	Carb (m mole/L)	1./ 15.8	ECD @ 2696 (lb/g	gal)	9.5
M-I ENGR / PHONE		RIG PHONE	RIG PHONE WAREHOUSE		PHONE	DAILY COST	CUMULA	ATIVE COST	

(08) 9325 4822

(08) 9302 3730

 Date
 6/12/2004
 Depth/TVD
 2866 m / 2866 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Circulate hole

Operator :Santos Ltd.Field/Area :Otway BasinReport For :Dave Atkins / Patrick KingDescription :ExplorationWell Name :Amrit-1Location :Victoria/ P52

Contractor: Transocean M-I Well No.: 16075
Report For: S. Morrall

DRILLING AS	SEMBLY	CASING	MUD VOLUME (bbl)	CIRCULATION DATA			
Bit Size 12.25 in HT	C HCM606	Surface	Hole	Pump Make ILWELL	HD-1700F ILWELL HD-1700P		
Nozzles 6x14 / 1/32'	"	30in @1510m (1510TVD)	2267	Pump Size 6 X	12.in 6 X 12.in		
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap 4.27	4 gal/stk 4.274 gal/stk		
5 in	2610 m	20in @1823m (1823TVD)	782	Pump stk/min 88(a	0.97% 87@97%		
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rat	e 748 gal/min		
6.625 in	111 m	13.375in @2454m (2454TVD)	3049	Bottoms U	p 94 min 20716 stk		
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Tim	e 134.3 min 29964 stk		
8 in	114 m	in @2797m (2797TVD)	850	Circulating Pressur	e 2700 psi		

8 in	114 m in @2797m (2797TVD)		850	Circulating Pressure 2700 psi		
	MUD PROPE	RTIES		PRODUCTS USED LAST 24 HRS		
Sample From		FL@22:00		Products	Size	Amt
Flow Line Temp	°F	58		DUO-VIS	25 KG BG	5
Depth/TVD	m	2866/2866				
Mud Weight	lb/gal	9.5@58°F				
Funnel Viscosity	s/qt	67				
Rheology Temp	°F	59				
R600/R300		76/53				
R200/R100		42/30				
R6/R3		10/8				
PV	cР	23				
YP	$lb/100ft^2$	30				
10s/10m/30m Gel	lb/100ft ²	8/17/25				
API Fluid Loss	cc/30 min	5.2				
HTHP FL Temp	cc/30 min					
Cake API/HTHP	1/32"	1/				
Solids	%Vol	8.6				
Oil/Water	%Vol	3/88.4				
Sand	%Vol	0.25		SOLIDS EQUIP	Size	Hr
MBT	lb/bbl	11.25		VSM 300	10/2 x 165, 2x1	9
pН		8.5		VSM 300	10/4 x 180	9
Alkal Mud (Pm)		0.1		VSM 300	10/2 x 180, 2x	9
Pf/Mf		0.05/0.55		VSM 300	10/2 x 180, 2x	9
Chlorides	mg/l	52000				
Hardness Ca	mg/l	960				
KCl	% wt	10.5				
PHPA	ppb	0.25				
Glycol	% vol	4.5-4.7				
Excess Sulphite	mg/L	20				
					TY SPECIFICATION	NS
				Weight	9.4 - 10.2	
				Viscosity	10-12	
				Filtrate	< 6.0	

REMARKS AND TREATMENT

Received bulk bentonite (41 mt) from "Lady Astrid". Received KCl and mud balance from "Lady Caroline". Maintain active vol. with 12%KCl / 5%Glydril premix. Change shakers to finest possible given current flow rates.

REMARKS

Continue to circulate at shoe. POOH. Dump log info. P/u new bit RIH. Junk in hole decide to drill ahead at ROPs up to 80-85m/hr. Circulate riser for ECD reduction.

	Last 24 Hrs	MUD VOL ACC	TG (bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLO	GY & HYDRAULICS
Rig Up/Service		Oil Added	0	NaCl	./ .6	np/na Values	0.520/0.377
Drilling	7.75	Water Added	0	KCl	3.8/ 34.5	kp/ka (lb•s^n/100ft²)	2.208/4.616
Tripping	11.5	Mud Received	0	Low Gravity	4.8/43.3	Bit Loss (psi / %)	602 / 1
Non-Productive Ti	m	Centrifuge	0	Bentonite	.9/ 7.9	Bit HHP (hhp/HSI)	263 / 1
Circulate	4	Tripping	0	Drill Solids	3.3/ 30.4	Bit Jet Vel (m/s)	81
P&A	0.75	Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)	.63
		Dumped	104	Chemical Conc	- / 5.	Ann. Vel DC (m/s)	.86
		Behind Csg/In hole	0	Inert/React	2.4007	Crit Vel DP (m/s)	2
		Loss to Formation	0	Average SG	2.6	Crit Vel DC (m/s)	2
		Sweeps	0	Carb/BiCarb (m mole/L)	1./ 15.8	ECD @ 2866 (lb/gal	9.66
M LENCE / DUONE		DIC DUONE	WAREHOUSE	DHONE	DAILV COST	CUMULATIVE COST	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 1,135.00	\$ 293,864.65

 Date
 7/12/2004
 Depth/TVD
 2979 m / 2979 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Logging

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

	0										
DRILLING ASSEMBLY CASING			MUD VOLUME (bbl)	CIRCULATION DATA							
Bit Size 12.25 in H	ГС НСМ606	Surface	Hole	Pump Make	LWELL HD-1700F	ILWELL HD-1700P					
Nozzles 1/32"		30in @1510m (1510TVD)	2331.8	Pump Size	6 X 12.in	6 X 12.in					
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/stk	gal/stk					
5 in	m	20in @1823m (1823TVD)	729.2	Pump stk/min							
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	F	low Rate	gal/min					
6.625 in	m	13.375in @2454m (2454TVD)	729.2	Bo	ttoms Up						
Drill Collar Size	Length	Production or Liner	In Storage	Total C	Circ Time						
8 in	m	in @2797m (2797TVD)	600	Circulating	Pressure						
	MIID DE	ODEDTIES		PPODI	DDODLICTS LISED LAST 24 HDS						

	MUD PROPE	RTIES	
Sample From		Pit@20:30	FL@04:00
Flow Line Temp	°F	n/a	55
Depth/TVD	m	2979/2979	2979/2979
Mud Weight	lb/gal	9.5@64°F	9.6@66°F
Funnel Viscosity	s/qt °F	66	65
Rheology Temp	°F	65	66
R600/R300		78/54	81/57
R200/R100		33/24	45/32
R6/R3		10/8	11/8
PV	cP	24 30	24 33
YP	$1b/100ft^{2}$		
10s/10m/30m Gel	$1b/100ft^{2}$	8/18/24	8/18/25
API Fluid Loss	cc/30 min	4.8	4.4
HTHP FL Temp	cc/30 min		
Cake API/HTHP	1/32"	1/	1/
Solids	%Vol	9	9.4
Oil/Water	%Vol	4.5/86.5	4.8/85.8
Sand	%Vol	0.25	0.25
MBT	lb/bbl	11.0	9
pН		8.5	8.9
Alkal Mud (Pm)		0.15	0.2
Pf/Mf		0.05/0.4	0.05/0.3
Chlorides	mg/l	50500	48000
Hardness Ca	mg/l	840	800
	-		
KCl	% wt	10	9.8
PHPA	ppb	0.2	0.2
Glycol	% vol	4.5	4.8
Excess Sulphite	mg/L	tr	tr

PRODUCTS USED LAST 24 HRS	Circulating Pressu	re		
SOLIDS EQUIP Size Hr				
SOLIDS EQUIP Size Hr VSM 300 10/2 x 165, 2x 8 VSM 300 10/4 x 180 8 VSM 300 10/2 x 180, 2x 8 VSM 300 TO	Products	S	Size	Amt
VSM 300	GLUTE 25	25	LT CN	23
VSM 300				
VSM 300	SOLIDS EQUIP	Size		Hr
VSM 300				
MUD PROPERTY SPECIFICATIONS Weight 9.4 - 10.2 Viscosity 10-12	VSM 300	10/4 x	180	8
MUD PROPERTY SPECIFICATIONS Weight 9.4 - 10.2 Viscosity 10-12	VSM 300	10/ 2 x 18	0.2x	8
MUD PROPERTY SPECIFICATIONS Weight 9.4 - 10.2 Viscosity 10-12	VSM 300	10/ 2 x 18	0 2x	8
Weight 9.4 - 10.2 Viscosity 10-12	, DIVI 200	10/ 2/11/0	0, 2	
Weight 9.4 - 10.2 Viscosity 10-12				
Weight 9.4 - 10.2 Viscosity 10-12				
Weight 9.4 - 10.2 Viscosity 10-12				
Weight 9.4 - 10.2 Viscosity 10-12				
Weight 9.4 - 10.2 Viscosity 10-12				
Weight 9.4 - 10.2 Viscosity 10-12		1		
Weight 9.4 - 10.2 Viscosity 10-12	MIID PROPER	TV SPECIFI	CATIONS	•
Viscosity 10-12				,

REMARKS AND TREATMENT

Add biocide (Glute 25) to active to prevent microbial contamination while e-logging. Dump and clean pits and sand traps. Retain active and reserve voume.

REMARKS

Drill to total depth at 2979.43 m. MD / 2978.94 m. TVD. Maximum BHCT = 25 deg.C. ECD = 9.96 ppg. Maximum gas = 145 unit at 2928 m. Inflow test. Circulate. POOH. Rig up and Log.

TIME DISTR	Last 24 Hrs	MUD VOL ACC	ΓG (bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULIC	SS
Rig Up/Service		Oil Added	0	NaCl	./1	np/na Values	
Drilling	3.5	Water Added	0	KCl	3.8/ 33.9	kp/ka (lb•s^n/100ft²)	
Tripping	8.5	Mud Received	0	Low Gravity	4.8/43.8	Bit Loss (psi / %)	
Non-Productive Tir	n	Centrifuge	0	Bentonite	.8/ 7.5	Bit HHP (hhp/HSI)	
Circulate	5	Tripping	0	Drill Solids	3.4/ 31.3	Bit Jet Vel (m/s)	
Wireline Logs	7	Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)	
-		Dumped	68	Chemical Conc	- / 5.	Ann. Vel DC (m/s)	
		Behind Csg/In hole	0	Inert/React	2.5307	Crit Vel DP (m/s)	
		Loss to Formation	0	Average SG	2.6	Crit Vel DC (m/s)	
		Sweeps	0	Carb/BiCarb (m mole/L)	1./ 15.8		

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
Mike McKay	(08) 9302 3730	(08) 9325 4822	\$ 2,154.64	\$ 296,019.29

 Date
 8/12/2004
 Depth/TVD
 2979 m / 2979 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 Logging

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 Contractor: Transocean Report For: S. Morrall Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

	0					
DRILLING A	SSEMBLY	CASING	MUD VOLUME (bbl)	CIRCULATION DATA		
Bit Size 12.25 in H	TC HCM606	Surface	Hole	Pump Make	ILWELL HD-1	700F ILWELL HD-1700P
Nozzles 1/32"		30in @1510m (1510TVD)	2331.8	Pump Size	6 X 12.ir	6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/	/stk gal/stk
5 in	m	20in @1823m (1823TVD)	436.2	Pump stk/min		
Drill Pipe Size	Length	Intermediate	Total Circulating Vol		Flow Rate	gal/min
6.625 in	m	13.375in @2454m (2454TVD)	436.2	В	ottoms Up	_
Drill Collar Size	Length	Production or Liner	In Storage	Total	Circ Time	
8 in	m	in @2797m (2797TVD)	666	Circulatin	g Pressure	·
	MUD PE	OPERTIES		PROD	UCTS USED	LAST 24 HRS

	MUD PROPE	_	
Sample From		Pit@22:00	
Flow Line Temp	°F	<u> </u>	
Depth/TVD	m	2979/2979	
Mud Weight	lb/gal	9.6@70°F	
Funnel Viscosity	s/qt °F	66	
Rheology Temp	°F	68	
R600/R300		73/51	
R200/R100		43/30	
R6/R3		10/8	
PV	cP	22 29	
YP	lb/100ft ²	29	
10s/10m/30m Gel	lb/100ft ²	8/19/25	
API Fluid Loss	cc/30 min	4.4	
HTHP FL Temp	cc/30 min		
Cake API/HTHP	1/32"	1/	
Solids	%Vol	9.4	
Oil/Water	%Vol	4.2/86.4	
Sand	%Vol	0.2	
MBT	lb/bbl	11.25	
pH		8.5	
Alkal Mud (Pm)		0.15	
Pf/Mf		0.05/0.45	
Chlorides	mg/l	49000	
Hardness Ca	mg/l	800	
KCl	% wt	10.0	
PHPA	ppb	0.2	
Glycol	% vol	4.5	
Excess Sulphite	mg/L	tr	
	_		

PRODUCTS	USED	LAST 24 HRS	3
Products		Size	Amt
M-I BAR BULK		1 MT BK	44
GLYDRIL MC		200 KG DM	4
			I
SOLIDS EQUIP		Size	Hr
VSM 300	10/	2 x 165, 2x	0
VSM 300		0/ 4 x 180	0
VSM 300		2 x 180, 2x	0
VSM 300		2 x 180, 2x	0
		,	

MUD PROPERTY SPECIFICATIONS							
Weight	9.4 - 10.2						
Viscosity	10-12						
Filtrate	< 6.0						

REMARKS AND TREATMENT

Continue cleaning pits. Weight up pit #2 to 17ppg. Note adjustment to Glydril MC usage.

REMARKS

Continue e-logging. Logging tool stood up at 2945m on each of the two runs. Primary and secondry targets successfuly logged. Rig up to run Log #3.

TIME DISTR L	ast 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS	
Rig Up/Service		Oil Added	0	NaCl	./4	np/na Values	
Drilling		Water Added	0	KCl	3.7/ 33.1	kp/ka (lb•s^n/100ft²)	
Tripping		Mud Received	0	Low Gravity	5.7/ 52.	Bit Loss (psi / %)	
Non-Productive Tim		Centrifuge	0	Bentonite	.7/ 6.8	Bit HHP (hhp/HSI)	
Circulate		Tripping	0	Drill Solids	4.4/ 40.2	Bit Jet Vel (m/s)	
Wireline Logs	24	Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)	
_		Dumped	298	Chemical Conc	- / 5.	Ann. Vel DC (m/s)	
		Behind Csg/In hole	0	Inert/React	3.1749	Crit Vel DP (m/s)	
		Loss to Formation	0	Average SG	2.6	Crit Vel DC (m/s)	
		Sweeps	0	Carb/BiCarb (m mole/L)	1./ 15.8		

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
	(08) 9302 3730	(08) 9325 4822	\$ 10,725.96	\$ 306,745.25

Amt

57

20

Hr

0

0

 Date
 9/12/2004
 Depth/TVD
 2979 m / 2979 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 P&A

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 Contractor: Transocean Report For: K.Miller Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING ASSEMBLY		CASING	MUD VOLUME (bbl)	CIRCULAT	ON DATA	
Bit Size 12.25 in H	TC HCM606	Surface	Hole	Pump Make ILWELL HI	D-1700F ILWELL HD-1700P	
Nozzles 1/32"		30in @1510m (1510TVD)	2269(Tot)/2066(Bit)	Pump Size 6 X 12	2.in 6 X 12.in	
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/stk gal/stk	
5 in	2425 m	20in @1823m (1823TVD)	500.6	Pump stk/min		
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	gal/min	
6.625 in	m	13.375in @2454m (2454TVD)	2566.6	Bottoms Up	_	
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time		
8 in	m	in @2797m (2797TVD)	666	Circulating Pressure		

OIII	111 111	$(\omega_{2}/2/111)(2/2/11)$	vD)	000	Circulating 1 10550	arc		
MUD PROPERTIES		RTIES			PRODUCTS USED LAST 24 HRS			
Sample From		Pit@21:30			Products	Size	A	
Flow Line Temp	°F				M-I BAR BULK	1 MT BK	5	
Depth/TVD	m	2979/2979			OS-1	25 KG BG	2	
Mud Weight	lb/gal	9.6@70°F						
Funnel Viscosity	s/qt	67						
Rheology Temp	°F	68						
R600/R300		75/52						
R200/R100		44/30						
R6/R3		10/8						
PV	cP	23						
YP	lb/100ft ²	29						
10s/10m/30m Gel	lb/100ft ²	8/20/24						
API Fluid Loss	cc/30 min	4.8						
HTHP FL Temp	cc/30 min							
Cake API/HTHP	1/32"	1/						
Solids	%Vol	9.4						
Oil/Water	%Vol	4.2/86.4						
Sand	%Vol	0.2			SOLIDS EQUIP	Size	H	
MBT	lb/bbl	11.5			VSM 300	10/ 2 x 165, 2x	0	
pH		8.5			VSM 300	10/ 4 x 180	0	
Alkal Mud (Pm)		0.15			VSM 300	10/ 2 x 180, 2x	0	
Pf/Mf		0.05/0.4			VSM 300	10/ 2 x 180, 2x	0	
Chlorides	mg/l	51000						
Hardness Ca	mg/l	840						
KC1	% wt	10.0						
PHPA	ppb	0.2						
Glycol	% vol	4.5						
Excess Sulphite	mg/L	200+						
						TY SPECIFICATION	NS	
					Weight	9.4 - 10.2		
					Viscosity	10-12		
					Filtrate	< 6.0		

REMARKS AND TREATMENT

Inhibit circulating system and write off balance of barite. Propose backloading Gel and leaving on board the remaining Duovis, Guar Gum, Soda Ash and Caustic Soda.

REMARKS

P&A. Set EZSV packer and prepare to pump cement plug #1, 2386-2490m.

	Last 24 Hrs	MUD VOL AC	CTG (bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOG	Y & HYDRAULICS
Rig Up/Service		Oil Added	0	NaCl	./ .3	np/na Values	0.528/0.377
Drilling		Water Added	0	KCl	3.7/ 33.4	kp/ka (lb•s^n/100ft²)	2.056/4.616
Tripping		Mud Received	0	Low Gravity	5.6/ 50.8	Bit Loss (psi / %)	/ 1
Non-Productive Tir	m	Centrifuge	0	Bentonite	.8/ 7.2	Bit HHP (hhp/HSI)	/ 1
P&A	16	Tripping	0	Drill Solids	4.2/ 38.5	Bit Jet Vel (m/s)	
Wireline Logs	8	Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)	
_		Dumped	0	Chemical Conc	- / 5.	Ann. Vel DC (m/s)	
		Behind Csg/In hol	e 0	Inert/React	2.9796	Crit Vel DP (m/s)	2
		Loss to Formation	0	Average SG	2.6	Crit Vel DC (m/s)	2
		Sweeps	0	Carb/BiCarb (m mole/L)	1./ 15.8	ECD @ 2425 (lb/gal)	9.6
M LENCE / BUONE		DIC BUONE	WAREHOUSE	DHONE	DAIL V COST	CUMULATIVE COST	

M-I ENGR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall				
	(08) 9302 3730	(08) 9325 4822	\$ 12,640.80	\$ 319,386.05

 Date
 10/12/2004
 Depth/TVD
 2979 m / 2979 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 P&A

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 Contractor: Transocean Report For: K.Miller Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

			_				
DRILLING ASSEMBLY		CASING	MUD VOLUME (bbl)	C	IRCULATION D	ION DATA	
Bit Size 12.25 in		Surface	Hole	Pump Make	LWELL HD-1700F	ILWELL HD-1700P	
Nozzles 1/32"		30in @1510m (1510TVD)	2308.7	Pump Size	6 X 12.in	6 X 12.in	
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/stk	gal/stk	
5 in	m	20in @1823m (1823TVD)	728.3	Pump stk/min			
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	F	low Rate	gal/min	
6.625 in	m	13.375in @2454m (2454TVD)	728.3	Bot	ttoms Up		
Drill Collar Size	Length	Production or Liner	In Storage	Total C	Circ Time		
8 in	m	in @2797m (2797TVD)	399	Circulating	Pressure		
	MIID DE	ODEDTIES		PPODI	ICTS LISED I AS	ST 24 HDS	

	MUD PROPE	RTIES	
Sample From		Pit@21:00	
Flow Line Temp	°F	<u> </u>	
Depth/TVD	m	2979/2979	
Mud Weight	lb/gal	9.6@69°F	
Funnel Viscosity	s/qt	66	
Rheology Temp	°F	67	
R600/R300		74/52	
R200/R100		45/31	
R6/R3		10/8	
PV	cP	22 30	
YP	lb/100ft ²	30	
10s/10m/30m Gel	lb/100ft ²	8/19/25	
API Fluid Loss	cc/30 min	4.8	
HTHP FL Temp	cc/30 min		
Cake API/HTHP	1/32"	1/	
Solids	%Vol	9.4	
Oil/Water	%Vol	4.0/86.6	
Sand	%Vol	0.25	
MBT	lb/bbl	11.5	
рН		8.5	
Alkal Mud (Pm)		0.1	
Pf/Mf		0.05/0.3	
Chlorides	mg/l	51000	
Hardness Ca	mg/l	840	
KCl	% wt	10.0	
PHPA	ppb	0.2	
Glycol	% vol	4.5	
Excess Sulphite	mg/L	100	

PRODUCTS	USED LAST 24 HF	RS
Products	Size	Amt
SOLIDS EQUIP	Size	Hr
VSM 300	10/2 x 165, 2x	0
VSM 300	10/ 4 x 180	0
VSM 300	10/ 2 x 180, 2x	0
VSM 300	10/ 2 x 180, 2x	0
MUD PROPER	RTY SPECIFICATION	NS
Weight	9.4 - 10.2	

10-12

< 6.0

REMARKS AND TREATMENT

Backload chemicals as per inventory. Balance to be backloaded on L. Astrid and will appear on report #25. Duovis and Guar gum to remain on board.

REMARKS

Viscosity Filtrate

P&A. Cement plug #1 (TOC 2386m). RIH and pull w/bushing. Prepare to RIH and cut 13 3/8" casing below mud line.

TIME DISTR	Last 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service		Oil Added	0	NaCl	./ .3	np/na Values
Drilling		Water Added	0	KCl	3.7/ 33.5	kp/ka (lb•s^n/100ft²)
Tripping		Mud Received	0	Low Gravity	5.6/ 50.8	Bit Loss (psi / %)
Non-Productive Tir	n	Centrifuge	0	Bentonite	.8/ 7.2	Bit HHP (hhp/HSI)
P&A	24	Tripping	0	Drill Solids	4.2/ 38.6	Bit Jet Vel (m/s)
Wireline Logs		Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)
-		Dumped	0	Chemical Conc	- / 5.	Ann. Vel DC (m/s)
		Behind Csg/In hole	0	Inert/React	2.9832	Crit Vel DP (m/s)
		Loss to Formation	0	Average SG	2.6	Crit Vel DC (m/s)
		Sweeps	0	Carb/BiCarb (m mole/L)	1./ 15.8	

M-I ENG	GR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall					
		(08) 9302 3730	(08) 9325 4822	\$ 0.00	\$ 319,386.05

Date 11/12/2004 Spud Date 20/11/2004 Depth/TVD 1557 m / 1557 m KCI/PHPA/Glycol P&A Mud Type Water Depth Activity 1,396

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 **Contractor**: Transocean Report For: K.Miller

Field/Area: Otway Basin **Description**: Exploration **Location :** Victoria/ P52 **M-I Well No.**: 16075

DRILLING ASSEMBLY		CASING	MUD VOLUME (bbl)	CIRCULA	TION DATA	
Bit Size in		Surface	Hole	Pump Make ILWELL	HD-1700F ILWELL HD-1700P	
Nozzles 1/32"		30in @1510m (1510TVD)	1702.4	Pump Size 6 X	12.in 6 X 12.in	
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/stk gal/stk	
5 in	m	20in @1823m (1823TVD)	278.6	Pump stk/min		
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	gal/min	
6.625 in	m	13.375in @2454m (2454TVD)	278.6	Bottoms Up		
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time		
8 in	m	in @2797m (2797TVD)	399	Circulating Pressure		
	MUD PF	ROPERTIES		PRODUCTS U	SED LAST 24 HRS	

MUD PROPERTIES				PRODUCTS USED LAST 24 HRS			
Sample From					Products	Size	A
Flow Line Temp	°F						
Depth/TVD	m	1557/1557					
Mud Weight	lb/gal						
Funnel Viscosity	s/qt						
Rheology Temp	°F						
R600/R300							
R200/R100							
R6/R3							
PV	cP						
YP	lb/100ft ²						
10s/10m/30m Gel	lb/100ft ²						
API Fluid Loss	cc/30 min						
HTHP FL Temp	cc/30 min						
Cake API/HTHP	1/32"						
Solids	%Vol						
Oil/Water	%Vol						
Sand	%Vol				SOLIDS EQUIP	Size	Н
MBT	lb/bbl				VSM 300	10/ 2 x 165, 2x	0
pН					VSM 300	10/ 4 x 180	0
Alkal Mud (Pm)					VSM 300	10/ 2 x 180, 2x	0
Pf/Mf					VSM 300	10/ 2 x 180, 2x	0
Chlorides	mg/l						
Hardness Ca	mg/l						
KCl	% wt						
PHPA	ppb						
Glycol	% vol						
Excess Sulphite	mg/L						
						TY SPECIFICATIO	NS
					Weight	9.4 - 10.2	
					Viscosity	10-12	
					Filtrate	< 6.0	

Weight	9.4 - 10.2
Viscosity	10-12
Filtrate	< 6.0

Amt

Hr

0 0

REMARKS AND TREATMENT

Backload chemicals as per Inventory. Received 82 MT of Barite- to be disposed.

REMARKS

Set balanced plug f/1557-1460m. Pull back and displace riser and kill and choke to seawater and dump returns. Prepare to pull riser and BOPs.

TIME DISTR L	ast 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service		Oil Added	0	NaCl	./	np/na Values
Drilling		Water Added	0	KCl	/	kp/ka (lb•s^n/100ft²)
Tripping		Mud Received	0	Low Gravity	/	Bit Loss (psi / %)
Non-Productive Tim		Centrifuge	0	Bentonite	/	Bit HHP (hhp/HSI)
P&A	24	Tripping	0	Drill Solids	/	Bit Jet Vel (m/s)
Wireline Logs		Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)
-		Dumped	2758	Chemical Conc	- /	Ann. Vel DC (m/s)
		Behind Csg/In hole	0	Inert/React		Crit Vel DP (m/s)
		Loss to Formation	0	Average SG		Crit Vel DC (m/s)
		Sweeps	0	Carb/BiCarb (m mole/L)	/	

	566	o curo, z	reare (iii iiieie/2)		
M-I ENG	R / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall					
		(08) 9302 3730	(08) 9325 4822	\$ 0.00	\$ 319,386.05

 Date
 12/12/2004
 Depth/TVD
 1557 m / 1557 m

 Spud Date
 20/11/2004
 Mud Type
 KCI/PHPA/Glycol

 Water Depth
 1,396
 Activity
 P&A

Operator: Santos Ltd.

Report For: Dave Atkins / Patrick King

Well Name: Amrit-1 Contractor: Transocean Report For: K.Miller Field/Area: Otway Basin
Description: Exploration
Location: Victoria/ P52
M-I Well No.: 16075

DRILLING AS	SEMBLY	CASING	MUD VOLUME (bbl)	CIRCULA	TION DATA
Bit Size in		Surface	Hole	Pump Make ILWELL H	D-1700F ILWELL HD-1700P
Nozzles 1/32"		30in @1510m (1510TVD)	1702.4	Pump Size 6 X 1	2.in 6 X 12.in
Drill Pipe Size	Length	Intermediate	Active Pits	Pump Cap	gal/stk gal/stk
5 in	m	20in @1823m (1823TVD)	278.6	Pump stk/min	
Drill Pipe Size	Length	Intermediate	Total Circulating Vol	Flow Rate	gal/min
6.625 in	m	13.375in @2454m (2454TVD)	278.6	Bottoms Up	,
Drill Collar Size	Length	Production or Liner	In Storage	Total Circ Time	<u> </u>
8 in	m	in @2797m (2797TVD)	399	Circulating Pressure	
	MILE DE	ODEDTIES		DDODLIGTO HO	

	MUD PROPER	RTIES		PRODUCTS USED LAST						
Sample From				Products	Size	Amt				
Flow Line Temp	°F			M-I BAR BULK	1 MT BK	82				
Depth/TVD	m									
Mud Weight	lb/gal									
Funnel Viscosity	s/qt									
Rheology Temp	°F									
R600/R300										
R200/R100										
R6/R3										
PV	cР									
YP	lb/100ft ²									
10s/10m/30m Gel	lb/100ft ²									
API Fluid Loss	cc/30 min									
HTHP FL Temp	cc/30 min									
Cake API/HTHP	1/32"									
Solids	%Vol									
Oil/Water	%Vol									
Sand	%Vol			SOLIDS EQUIP	Size	Hr				
MBT	lb/bbl			VSM 300	10/ 2 x 165, 2x	0				
pH				VSM 300	10/ 4 x 180	0				
Alkal Mud (Pm)				VSM 300	10/ 2 x 180, 2x	0				
Pf/Mf				VSM 300	10/ 2 x 180, 2x	0				
Chlorides	mg/l									
Hardness Ca	mg/l									
KCl	% wt									
PHPA	ppb									
Glycol	% vol									
Excess Sulphite	mg/L									
					TY SPECIFICATION	NS				
				Weight						
				Viscosity						
				Filtrate						
1			1							

REMARKS AND TREATMENT

82 mt Barite to be used for other and 138 mt Gel to be backloaded to L.Caroline. 48 sx of Soda ash and 24 drms Caustic soda to be received and with 67sx Guar gum and 45 sx Duovis will remain on board. Laboratory testing equipment and reagents, along with monitor, printer and computer wil be backloaded to Santos base in Portland to await shipping instructions.

REMARKS

Pull riser and BOPs. Pits #2, 3 & 4 to be dumped.

TIME DISTR	Last 24 Hrs	MUD VOL ACCTG	(bbl)	SOLIDS ANALYSIS	(%/lb/bbl)	MUD RHEOLOGY & HYDRAULICS
Rig Up/Service		Oil Added	0	NaCl	./	np/na Values
Drilling		Water Added	0	KCl	/	kp/ka (lb•s^n/100ft²)
Tripping		Mud Received	0	Low Gravity	/	Bit Loss (psi / %)
Non-Productive Tin	n	Centrifuge	0	Bentonite	/	Bit HHP (hhp/HSI)
P&A		Tripping	0	Drill Solids	/	Bit Jet Vel (m/s)
Wireline Logs		Evaporation	0	Weight Material	NA/ NA	Ann. Vel DP (m/s)
_		Dumped	0	Chemical Conc	- /	Ann. Vel DC (m/s)
		Behind Csg/In hole	0	Inert/React		Crit Vel DP (m/s)
		Loss to Formation	0	Average SG		Crit Vel DC (m/s)
		Sweeps	0	Carb/BiCarb (m mole/L)	/	

M-I ENG	GR / PHONE	RIG PHONE	WAREHOUSE PHONE	DAILY COST	CUMULATIVE COST
Paul Marshall					
		(08) 9302 3730	(08) 9325 4822	\$ 17,220.00	\$ 336,606.05

Santos	Well Completion Report Volume 1 Basic
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY
	SECTION 11:- CASING & CEMENTING SUMMARY

CASING AND CEMENTING REPORT

FORM DMS F220

Well Name: Amrit 1

	aiiie.		_			-					
Casing Type:	Surfac	ace Casing Originated B		By: J.	Young	Checked By: J.Young		D	Date: 23 Nov 2004		lov 2004
Hole Size:	20.00iı	1	Total Depth	: 18	322.7m	GL-RT:			ontractor:	Halli	burton
PRE-FLUSH 2	20.0bbl @	8.60ppg				SPACER Obbl @ Oppg					
Additives:	Dyed Seaw	vater				Additives:					
CEMENT							<u>ADDITIVES</u>		%	Amount	Units
LEAD SLURRY:			16	62sx							
Brand / Class:			AB	C/G			Econolite			21	gal/10b
Slurry Yield:			2.2	23ft³/sx			NF-6			0.25	gal/10b
Mixwater Req't:			13	.13gal/sx							
Actual Slurry Pump	ped:		66	0.0bbl							
Density:			12	.50ppg							
Cement Top (MD):	:		14	25.0m							
TAIL SLURRY:			71	7sx							
Brand / Class:			AB	C/G			CaCl2			1	%BWO
Slurry Yield:			1.1	9ft³/sx			NF-6			0.25	gal/10b
Mixwater Req't:			5.2	8gal/sx							
Actual Slurry Pump	ped:		15	1.0bbl							
Density:			15	.80ppg							
Cement Top (MD):	:		16	72.0m							
DISPLACEMENT					Fluid: Seawa	ter @ 8.60ppg					
Theoretical Displ.:			148.0bbl		Bumped Plug with: Opsi						
Actual Displ.:			148.0bbl @	9gpm Pressure Tested To: Opsi							
Displaced via:			Halliburton	Pumps	umps Bleed Back: Obbl				bbl		
ACTIVITY		Time/Date		Returns to Surface: 0bbl mud, 0bbl cmt							
Start Running csg.		17:15								ent : No Action	
Casing On Bottom	1	11:30		Taken							
Start Circulation		12:50		Top Up Job run: No Osx of class							
Start Pressure Tes	st	12:57		Wiper Plug Top: No							
Pump Preflush		13:03		Wiper Plug Bottom: No							
Start Mixing		13:12		Plug Set: Manufacturer: No Plugs Type: No Plugs							
Finish Mixing		15:10		Centraliz	Centralizer Type: Bow Spring Centralizer Placement Depth: - 2 centralisers of the first 3 in inter-						isers on each of
Start Displacing		15:11		the first 3 joints.							
Stop Displ./Bump		15:28					- '	1 centraliser of	n each join	for the next 2	21 joints.
Pressure Test											
			CASING AND	EQUIPMEN	NT DETAILS						
				Stick Up						0m	
No. Joints	OD		Wt	Grade	Com	nment	Thread	Lengt	h	From	То
1	0in	Ol	bs/ft			ressure wellhead sing.	E60/MT	11.26r	n	0m	11.26m
1	21.50ir	133	Blbs/ft	X-56	Wellhead to	casing XO.	E-60/MT - RL-4S	11.80r	n	11.26m	23.06m
31	21.50ir	133	Blbs/ft	X-56	Ca	sing	RL-4S	367.01	m	23.06m	390.07m
1	21.50ir	133	Blbs/ft	X-56	Casin	g Shoe	RL-4S	11.74r	n S	390.07m	401.81m
Theoretical Bouye	d wt. of ca	sing:	L	15	51.0klb	Bradenhead Hei	ght above GL:	t .		0m	
Casing wt. prior to	landing c	sg:		10	60.0klb	Bradenhead Des	scription / Leng	ıth:		/ 0m	l
Actual wt. of casing	g (last join	t run-block w	t):	18	50.0klb	Tubing Spool Size:					
Landing wt. (after cementing and pressure bleed off): Oklb					Setting Slips: Oklb						
Landing wt. (after t	cementing	ana procoan	Cementing Job Remarks: After 87 bbls of displacement, caught up v								

CASING AND CEMENTING REPORT

FORM DMS F220

Well Name: Amrit 1

Well Name:		Amrit 1									
Casing Type:	Type: Intermediate Casing		ing Originated By: P.King		Checked By:	D. Atkins	Date	e:	03 D	ec 2004	
Hole Size:	17.50ir	1	Total Depth:	24	159.0m	GL-RT:		Con	Contractor: Hallibu		burton
PRE-FLUSH	Obbl @ Opp	og	<u>SPACER</u> 85.0bbl @ 10.80ppg								
Additives:						Additives:	Halliburton Tun	ed Spacer + Fl	E-2 + Barite	е	
CEMENT						1	ADDITIVES		%	Amount	Units
LEAD SLURRY:			810	sx			<u> </u>				
Brand / Class:			ABO	C/G			Econolite			528	gal
Slurry Yield:			2.23	3ft³/sx			HR-6L			101	gal
Mixwater Req't:			13.	I0gal/sx			NF-6			6	gal
Actual Slurry Pu	mped:		327	.0bbl							
Density:			12.	50ppg							
Cement Top (MI	O):		0m								
TAIL SLURRY:			380	SX							
Brand / Class:			ABO	C/G			HR-6L			204	gal
Slurry Yield:			1.18	3ft³/sx			Halad 413L			160	gal
Mixwater Req't:			5.28	Bgal/sx			NF-6			2	gal
Actual Slurry Pu	mped:		81.0	Obbl							
Density:			15.8	ВОррд							
Cement Top (MI	O):		0m								
DISPLACEMEN	I				Fluid: 573	@ 9.20ppg					
Theoretical Disp	l.:		573.0bbl	Bumped Plug with:			700	psi			
Actual Displ.:			573.0bbl @	0gpm	n Pressure Tested To: 2000			0psi			
Displaced via:			Cement Unit	(90 bbl); R	00 bbl); Rig (483 bbl) Bleed Back: 0bbl						
ACTIVITY		Time/Date		Returns t	o Surface: 976.0b	bl mud, Obbl cmt					
Start Running cs	sg.				ction During P	reflush : No Actio	n Taken Cem	ent : No Action	Taken	Displaceme	ent : No Action
Casing On Botto	om			Taken							
Start Circulation		01:25		Top Up Job run: No Osx of class							
Start Pressure T	est	01:31		Wiper Plug Top: Yes							
Pump Preflush		01:41		Wiper Plug Bottom: Yes							
Start Mixing		02:07			Plug Set: Manufacturer: Weatherford Type: SSR						
Finish Mixing		03:01		Centralize	Centralizer Type: Centralizer Placement Depth: 2449, 2444, 2439, 2434 2423, 2413, 2409, 2399, 2374, 2349, 2323, 2298, 227						
Start Displacing		03:26						6, 1811, 1799,		,, ,,	,,
Stop Displ./Bum	р	04:20									
Pressure Test											
	'	С	ASING AND	EQUIPMEN	NT DETAILS						
				Stick Up						0m	
No. Joints	OD	V	Vt	Grade	Con	nment	Thread	Length	F	-rom	То
0	5.00in	Olb	s/ft		Landin	g String		1422.21m		0m	1422.21m
1	13.38in	olb	s/ft		13-3/8" ca	sing hanger	BTC	2.91m	142	22.21m	1425.12m
1	13.38in	68lk	os/ft	L80	TER x BT	C No- cross	BTCxTER	12.71m	142	25.12m	1437.83m
75	13.38in	68lk	os/ft	L80			TER	955.09m	143	87.83m	2392.92m
1	13.38in	68lk	os/ft	L80	X-0	Over	TERxBTC	12.59m	239	92.92m	2405.51m
1	13.38in	68lk	os/ft	L80	Floa	t Joint	BTC	12.52m	240)5.51m	2418.03m
2	13.38in	681	os/ft	L80	Intermed	liate Joints	BTC	23.90m	241	8.03m	2441.93m
1	13.38in	681	os/ft	L80	Casin	g Shoe	BTC	12.56m	244	11.93m	2454.49m
Theoretical Bouy	yed wt. of ca	sing:		Ok	«lb	Bradenhead He	eight above GL:	1	1	0m	
Casing wt. prior	to landing co	sg:		Ok	db	Bradenhead De	escription / Length	1:		/ 0m	
Actual wt. of cas	ing (last join	t run-block wt)	:	Ok	klb	Tubing Spool S	Size:				
_anding wt. (afte	er cementing	and pressure	bleed off):	Ok	кlb	Setting Slips:				0klb	
Cementing Joh I		anu pressure			ure bled off. Floats	• .	ns after annroy 43	85 hhl into displ	acement 0		

Plug bumped but pressure bled off. Floats held. Lost returns after approx. 435 bbl into displacement. 95 bbl lost to formation.

Cementing Job Remarks:

SECTION 12:- MUDLOGGING WELL REPORT

(Including Mudlog 1:500 & D-Exponent Log)

END OF WELL REPORT

Santos Ltd

AMRIT 1

20th November – 12th December 2004

by

BAKER HUGHES INTEQ

The information, interpretations, recommendations, or opinions contained herein are advisory only and may be rejected. Consultant does not warrant their accuracy or correctness. Nothing contained herein shall be deemed to be inconsistent with, nor expand, modify or alter consultant's obligation of performance as provided for in a written agreement between the parties, or, if none, in consultant's most recent price list.

Amrit 1

Final Well Report

Section 1	Well Su	ummary
Section 2	Drilling 2.1 2.2	and Engineering Bit Run Summaries Casing and Cementing Summaries
Section 3	Geolog 3.1 3.2	ly and Shows Geology Summary and Shows Sampling Summary and Record of Distribution
Section 4		re Evaluation Pore Pressure Evaluation Fracture Pressure Evaluation
Tables	Time D	le Iraulics Table Jepth Curve re Summary

Appendices

Surveys

Formation Evaluation Log 1:500
Drilling Data Plot 1:2500
Pressure Evaluation Plot 1:2500
Gas Ratio Analysis Plot 1:500

Santos Amrit 1

SECTION 1

WELL SUMMARY

1. Well Summary

1.1 Well Data

Well Name Amrit 1

Rig Name: MODU Jack Bates

Rig Type: Semi-submersible

Drilling Contractor: Transocean Sedco Forex

Drilling Datum: Rotary Table

Drill Floor Elevation: 29.0m above MSL

Water Depth: 1396 mRT

Surface Co-ordinates: 38° 56' 05.20" S Latitude

141° 44' 07.08" E Longitude

Block: Vic/P52

Well Type: New Field Wildcat

Spud Date: 20th November 2004

Total Depth: 2979 m

TD Date: 7th December 2004

Primary Objective: K-94 / K93 Top Paaratte Deltaic Formation

Well Status: Plugged & Abandoned

Baker Hughes INTEQ Crew:

Data Engineers: Duane Hatton Steve Phillips

Andrew MacQueen

Mudloggers: Toto Rukmobroto Andrew Hurley

1. Well Summary

1.2 Well Summary

Amrit 1 was spudded on the 20th of November 2004. The main objective of the well was the K-94 / K-93 Top Paaratte Delataic Section with a secondary target of the K-91 Intra-Paaratte Nullawarre Amplitude Anomaly. Amrit 1 was drilled as an oil-prospect, but with a possibility that gas was to be encountered in the reservoir.

A 762mm (30") conductor and 660mm (26") bit was jetted in to spud the well. It was jetted from 1425m to 1510m. The 660mm (26") hole section was then drilled from 1510m to 1835m the section was drilled riserless, using seawater with regular PHG and Gel sweeps. The 508mm (20") casing was then run with the shoe set at 1822m and cemented in place.

After drilling through cement and the casing shoe, the 445mm (17½") hole was drilled to the section TD at 2459m in one bit run. On a number of occasions when the ECD was seen to increase to 9.48 – 9.6 ppg, the string was picked up off bottom and the hole circulated clean. Hi-vis sweeps and a 100bbl hi-vis polymer pill were used, increased cuttings were observed at the shakers. From 2440m to section TD at 2459m the rate of penetration was controlled due to an observed increase in the ECD. At section TD the well was flow checked and a 120bbl hi-vis sweep pumped to clean the hole. Upon pulling out of the hole a tight spot was encountered at 2402m. The TDS was made up and the string pumped out of the hole as far as the shoe where a 60bbl hi-vis sweep followed by a 60bbl hi-weight sweep were pumped and circulated out. Continued to circulate the hole clean whilst operations were suspended following a DPI Inspectors on-site investigation. Approval was given to RIH to bottom to maintain open-hole integrity, weight was taken at 2445m so the TDS was made up and the string washed to bottom. The hole was circulated clean whilst working the pipe and a 50bbl hi-weight/hi-vis sweep was pumped and circulated out whilst working the pipe. Approval was given to pull out of the hole, the string was pulled without problems and the drill floor made ready to run the 340mm (13 3/8") casing. The 340mm (13 3/8') casing shoe was cemented at 2454.59mRT.

The 311mm (12½") hole section was drilled from 2459m to 2695m and 2695m to 2979m in two bit runs with PDC bits on a rotary assembly with a mud motor for performance. Prior to performing a Leak Off Test (LOT) the well was circulated to condition the mud. The LOT was taken in open hole at a depth of 2477mRT and yielded a value of 1.32sg EMW. New hole was then drilled with the first of the 311mm (12½") bits to 2695m, where due to drop in the ROP the bit was pulled out. Whilst tripping for the bit change the string had to be pumped out of the hole when overpull in the region of 20klbs was encountered. A new bit was RIH and new formation drilled. At 2866mRT the ECD was observed to increase to 1.24sg, torque and pump pressure increases were also observed, the string was picked off bottom and the hole circulated clean. Drilling continued to Amrit-1's TD at 2979mRT, which was reached at 03:20 on 7th December 2004. Due to observed overpull the bit was pumped out of hole and wireline logging commenced. Once wireline logging had been completed the well was plugged and abandoned and the BOP & Marine Riser were pulled on 12th December 2004, after which the BHI unit was released prior to pulling anchors and handing over to Woodside.

SECTION 2

DRILLING & ENGINEERING

2.1 Bit Run Summaries

762mm (30") / 660mm (26") Hole Section

20th - 22nd November 2004

Bit Run No. 1 Summary

Bit No. NB1

Bit Size 660 mm (26")
Bit Type Smith MSDS
Serial Number MR3808

IADC Code 111

Jets 2 x 22, 1 x 21, 1 x 20

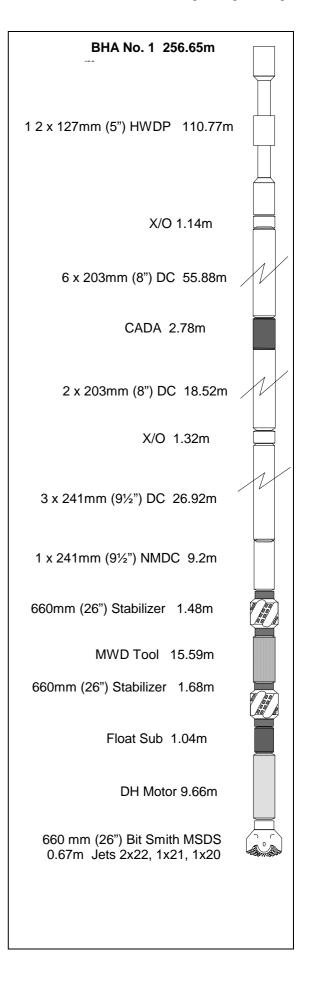
Depth In 1425 mRT
Depth Out 1835 mRT
Metres Drilled 410 m
Hours 18.7 hrs
Total Bit Revolutions 154.7 krevs
Rotating Hours 35.7 hrs
Average ROP 21.9 m/hr

Bit Grading 1-1-WT-A-E-I-NO-TD

Drilling Parameters

WOB 0 - 73 klbs
RPM 0 - 128
Torque 0 - 12.6 kftlbs
Pump Pressure 75 - 4486 psi
Flow In 0 - 1162 gpm

Mud


SW / PHG sweeps 1.03 sg

Lithology

Returns to seabed

Drilling Summary

NB1 was made up on a rotary BHA, inside the 762mm (30") conductor and run in the hole, tagging the seabed at 1425mRT. Amrit 1 was spudded at 17:15 hrs on November 20th 2004. The conductor was jetted in and landed out at 1510m. After waiting for the conductor to settle, the bit was released from the CADA tool and new hole was drilled to 1835mRT, with seawater and hi-vis sweeps. At TD, 250 bbls of PHG was circulated to clear cuttings from the open-hole section. The bit was then pumped out of the hole to 1510m with 50% hole volume excess of 12.4 ppg PHPA mud being circulated. The bit was run back to bottom and then the string pumped out of the hole again to 1550mRT with 50% hole volume excess of 'activity' 12.4 ppg PHPA/MI-lube mud. 400 bbls of 16.0ppg mud was then spotted in open hole. The assembly was then pulled to surface and the BHA racked back in the derrick.

Santos Amrit 1 6

445 mm (17 1/2") Hole Section 28th – 30th Nov 2004

Bit Run No. 2 Summary

Bit No. NB2

Bit Size 445 mm (17 ½")
Bit Type Reed T11C
Serial Number J65053
IADC Code 115

Jets 3 x 22, 1 x 20
Depth In 1835mRT
Depth Out 2459mRT
Metres Drilled 624m
Hours 32.2 hrs
Total Bit Revolutions 384 krevs
Rotating Hours 87.9 hrs

Bit Grading 2-2-BT-A-E-I-NO-TD

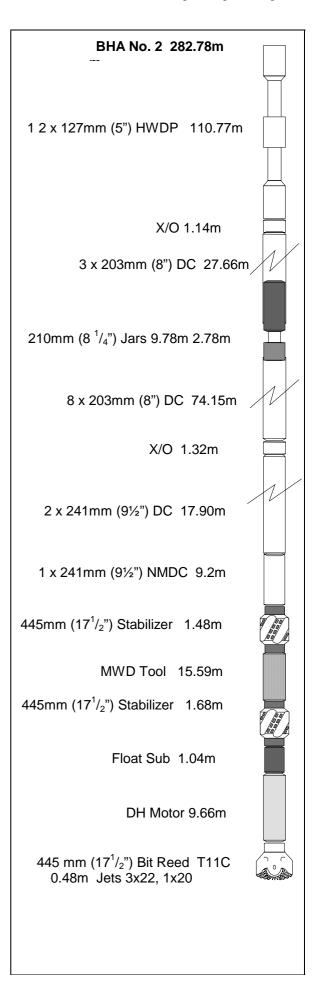
19.4 m/hr

Drilling Parameters

Average ROP

WOB 6 - 54 klbs RPM 152 - 223 Torque 3.1 - 11.4 kftlb Pump Pressure 1431 - 3337 psi Flow In 749 - 992 gpm

Mud


KCL/PHPA/Glycol/Seawater & Hi-vis sweeps 1.06 – 1.09 sg

Lithology

Siltstone and Claystone of the Wangerrip Formation and Claystones of the Timboon Sandstone.

Drilling Summary

NB2 was made up on a mud motor BHA and RIH. The top of the cement was tagged at 1807mRT. The hole was circulated to KCL/PHPA mud prior to drilling out the cement. The float and the shoe track of the 508mm (20") casing was drilled out and 3m of new hole was made from 1835mRT to 1838mRT. The hole was circulated and the mud system was conditioned prior to performing the LOT, which resulted in a 9.6ppgEMW. Drilled 171/2" hole from 1838m-1894mRT where the bit was picked up off bottom and circulated whilst losses at the shakers were controlled. Drilled ahead to 2001mRT where a positive drill break was flowchecked, the well was static. Drilling continued with regular hi-vis sweeps being pumped and circulated when the ECD was observed to be increasing. ECD readings of between 9.48 and 9.6ppg were observed. At 2318mRT a 100bbl hi-vis polymer pill was circulated to assist hole cleaning. Drilling continued, with a controlled ROP due to increasing ECD, to section TD at 2459mRT. At each stand down throughout the bit run the hole had been reamed and a survey taken.

Santos Amrit 1 7

311 mm (12 1/4") Hole Section 4th – 5th December 2004

Bit Run No. 3 Summary

Bit No. NB 3

Bit Size 311 mm (12 1/4") Bit Type Hughes HCH606

Serial Number 7003752 IADC Code M323 Jets 6 x 14 Depth In 2459mRT Depth Out 2695 mRT Metres Drilled 236 m Hours 14.4 **Total Bit Revolutions** 156.7 krevs

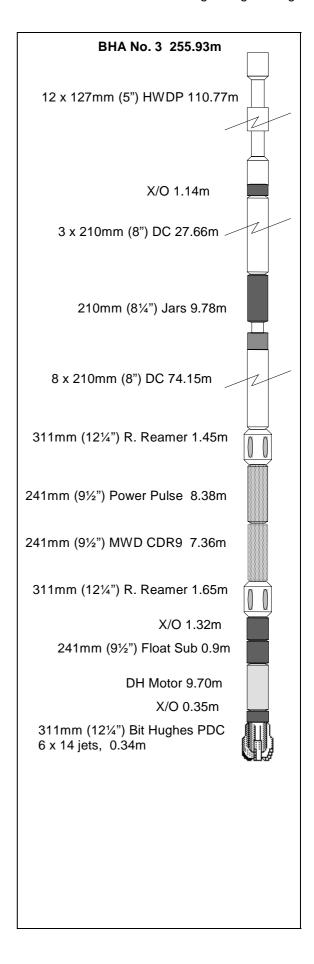
Rotating Hours 156.7 krev Average ROP 156.7 krev 38.5 hrs 16.4m/hr

Bit Grading 0-0-BU-N-X-I-ER-PR

Drilling Parameters

WOB 0.5 - 39 klbs
RPM 145 - 221
Torque 3.1 - 17.2 kftlb
Pump Pressure 2308 - 3563 psi
Flow In 659 - 874 gpm

Mud


KCI/PHPA/Glycol 1.11 - 1.14 sg

Lithology

Claystone, Siltstone, Sandstone

Drilling Summary

NB3 was made up with a mud motor, MWD tool and RIH. The top of the cement was tagged at 2414mRT and the shoetrack, plugs and floats were drilled to 2454mRT. The rat hole was reamed to 2459mRT while conditioning the mud system. 3m of new hole was drilled to 2462mRT where the mud in hole was conditioned and bottoms up circulated. At 2462mRT the bit was pulled inside the shoe and a LOT was performed. The LOT was conducted but the results were not satisfactory, the decision was taken to drill ahead to stand down at 2477mRT and perform an open hole LOT. A resulting EMW of 1.32 sg was observed. New hole was then drilled to 2695m, where due to penetration rates that were below expectation, the bit was pulled out and upon inspection it was found to be badly balled.

311 mm (12 1/4") Hole Section 6th – 7th December 2004

Bit Run No. 4 Summary

Bit No. NB 4

Bit Size 311 mm (12 1/4")
Bit Type Reed DSX104

Serial Number 108439 IADC Code M323 Jets 5 x 15 Depth In 2695.0 mRT Depth Out 2979.0 mRT Metres Drilled 284 mRT Hours 6.1 hrs Total Bit Revolutions 66.8 krevs Circulating Hours 20.3 hrs Average ROP 46.6 m/hr

Bit Grading 0-1-BU-A-X-I-BF-TD

Drilling Parameters

WOB 3.8 - 33.6 klbs Surface RPM 16 - 97

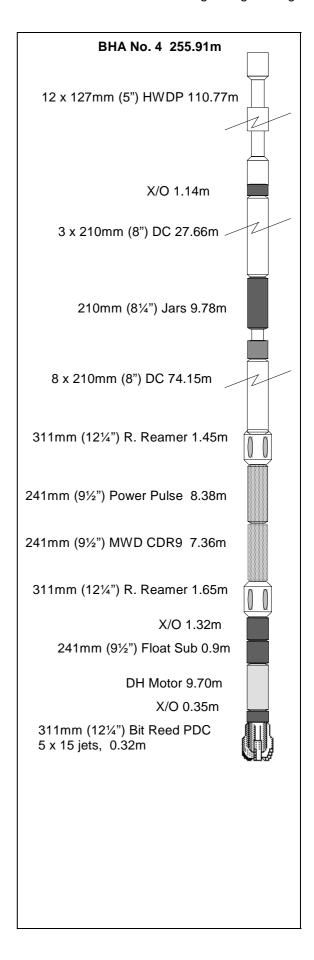
Torque 3.4 – 18.0 kftlb Pump Pressure 333 - 3747 psi Flow In 61 – 847 gpm

Mud

KCI/PHPA 1.14 – 1.15 sg

Lithology

Sandstone, Siltstone, Claystone


Drilling Summary

NB4 was made up with the down-hole motor and MWD tool from the previous bit run. Drilling then commenced from 2695m to 2866m where an increase in ECD to 1.24sg, and torque & pump pressure were observed. Drilling ceased whilst the hole was circulated clean and losses were taken at shakers. Drilling continued then 2979mRT(TD). The hole was circulated prior to taking a TD survey, and a static inflow test was undertaken and the well seen to be static. Bottoms-up was then circulated with a maximum gas level of 147 units being recorded, prior to pumping out of the hole, due to overpull, to the shoe. The bit was then pulled to surface and the rig floor made ready to run the Schlumberger wireline.

The following runs were made:

- 1. PEX-HALS-DSI-CNL-TLT-LDT
- 2. VSP
- 3. CSJ-GR

Rig operations then moved to the Plug & Abandonment program.

2.2 Casing Summary

760mm (30") Conductor

20th November 2004

Hole Size 760 mm (30") Depth 1510m

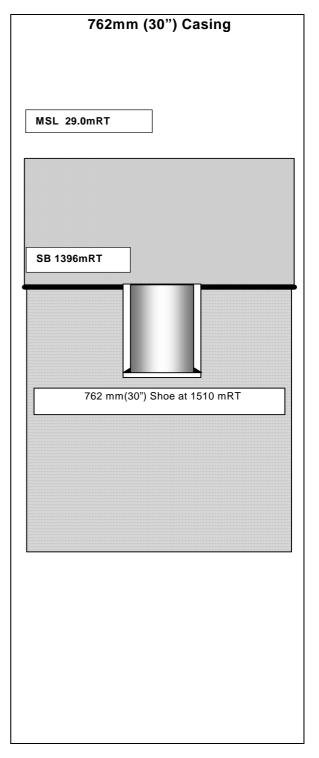
Casing 1x 30" jetting shoe

5x Joints 1x X/O

1x 30" x 3"WHH

ID 685mm (27") / 711mm (28")

Weight 456 lb/ft / 309 lb/ft


Grade X-52 Shoe Depth 1510m

Cement Details

No cement job done

Summary

The casing was run with the 26" drilling assembly locked inside using a CADA tool, the bit was proud of the casing. The casing was jetted in from 1425m to 1440m with 600gpm at which point the flow rate was increased to 1000gpm. The pipe was worked intermittently to reduce the friction on the casing and increase ROP. At TD, 1510mRT, a 150 bbl hi-vis sweep was pumped and the casing allowed to soak. No cement was planned for this section.

508mm (20") Casing

22nd - 23rd November 2004

Hole Size 660mm (26") Depth 1835m

Casing 1x 508mm Shoe

31 x 508mm Casing Joints

1x 508mm XO Joint

ID 476mm Weight 133 lb/ft Grade X-56

Shoe Depth 1822m

Cement Details:

Lead Slurry

Sacks 2235 Type "G"

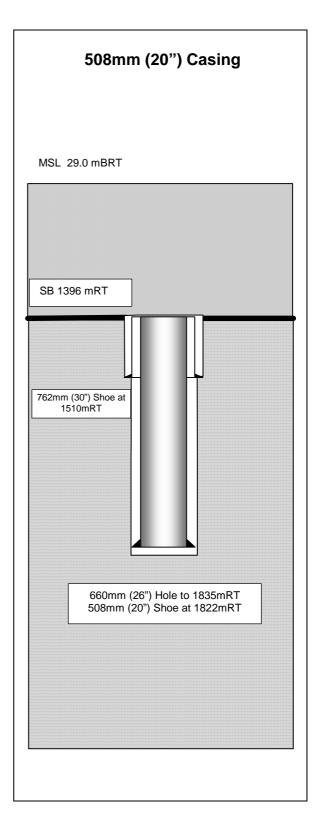
Mixwater 13.1 gal/sx

Additives 0.625 gal/sx Econolite

0.003 gal/sx NF-6

Weight 1.5 sg Yield 2.23 ft³/sx Volume 660 bbls

Tail Slurry


Sacks 266 Type "G"

Mixwater 5.28 gal/sx Additives 0.003 gal/sx NF-6

Weight 1.89sg Yield 1.19 ft³/sx Volume 151 bbls

Summary

A total of 34 joints 20" casing were run with the shoe landing at 1822.5mRT. Prior to cementing 10bbls of dyed sea water was pumped before the cement lines were rigged up and tested to 2000psi. After pumping 10bbls of dye spacer the lead and tail slurry followed. The cement was displaced with 148bbls of seawater. Good visual returns to the seabed were observed by the ROV throughout the cement job.

340mm (13 3/8") Casing

1st - 2nd December 2004

Hole Size 445mm $(17^{1}/_{2}")$

Depth 2459m

Casing 1x 340mm Shoe

2x Intermediate Joint 1x Float Collar Joint 76x 340mm Casing Joints

1x 340mm Hanger

ID 12.415" Weight 68 lb/ft Grade L-80 Shoe Depth 2454.49m

Cement Details:

Lead Slurry

Sacks 810 Type "G"

Mixwater 13.026 gal/sx

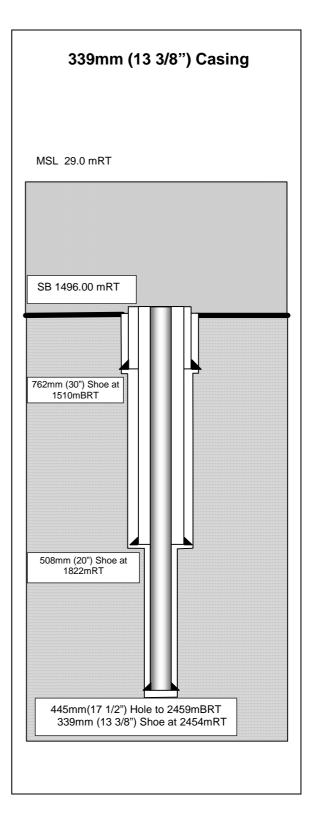
Additives 0.628 gal/sx Econolite

0.126 gal/sx HR-6L 0.003 gal/bbl NF-6

Weight 12.5 ppg Yield 2.23 ft³/sx Volume 327 bbls

Tail Slurry

Sacks 380 Type "G"


Mixwater 5.304 gal/sx Additives 0.038 gal/sx HR-6L

> 0.003 gal/bbl NF-6 0.253 gal/sx Halad-413L

Weight 15.8 ppg Yield 1.18 ft³/sx Volume 80 bbls

Summary

A total of 81 joints of 13-3/8" casing were run with the shoe landing at 2454.49mRT. The cement lines were rigged up and the cement lines were tested to 3000 psi. The bottom plug was displaced and sheared with 82bbls of tuned spacer. The lead and tail slurry's were pumped, the top plug was displaced and sheared with 4bbls of cement slurry, followed by 86bbls of drill mud. The rig pumps pumped a further 483bbls to bump the plug. Good bump pressure was observed, however, whilst displacing and following 12 minutes of steady pit levels sudden and complete loss of returns was observed. Returns were eventually restored after a total of 95bbls lost to the hole.

Abandonment Program

9th 11th December 2004

Cement Details:

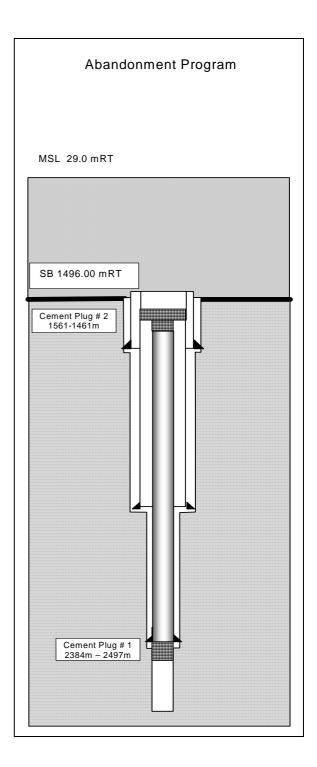
Plugs 1:

Sacks 256 "G" Neat Type Mixwater 5.13gal/sx

Additives 20gal/10bbl HALAD-413L

> 0.061gal/sx HR-6L 0.003gal/bbl NF-6

15.8 ppg


Weight Yield 1.16 ft³/sx Volume 55bbls

Plug 2:

382 Sacks "G" Neat Type Mixwater 5.28gal/sx Weight 15.8 ppg Yield 1.19 ft³/sx Volume 81bbls

Summary

Ran in hole with a 13 3/8" EZSV on 5" drill pipe. The EZSV was set at a depth of +/- 2435mRT and pressure tested to 1100 psi with 1.15 sg mud. Injection rates of 3 bbl/minute were established by the cement unit at which point the drill pipe was un-stung from the EZSV packer. Cement was pumped via the cement unit, 30bbls were squeezed below and 25bbls were pumped on top. The string was then pulled to 2350mRT, approximately 35m above the top of the cement. Using the rig pumps +/- 400 bbls of inhibited mud was pumped from 2350m to 1507mRT. The string was pulled and the EZSV running tool laid out. The wear bushing was then pulled before the 13 3/8" casing was cut from 1511m to 82mBML. The hanger was released from the wellhead and flowchecked for 10 minutes before pulling out with the cutter assembly and the 13 3/8" casing. The mule shoe was then run in on 5" drill pipe to 1561m, the bag closed and the well bore tested to 250psi. A balanced cement plug was set from 1561m up to 1461m, the string was then pulled up to 1450m to displace the riser and the choke and kill lines to seawater, all returns were dumped.

SECTION 3

GEOLOGY AND SHOWS

3.1 Geology and Shows

3.1 Geology and Shows

Geological logging for Amrit 1 commenced at 1835mRT below the 508mm (20") casing shoe at 1822mRT to the total depth of 2997mRT.

During the course of the well, all gas equipment was checked and calibrated regularly, and spot samples were taken at drilling breaks and other changes in drilling parameters to better assess lithological change. Calcimetry analyses were undertaken every 25m from 1835m to 2997m.

The Lithology as logged in Amrit 1 is described below. For further detailed descriptions, see Appendix 1, Formation Evaluation Log.

Samples were collected at the following intervals:

Amr	<u>it 1</u>
1835m - 2455m	5m
2455m - 2459m	4m
2459m - 2463m	4m
2463m - TDm	3m

Missed samples were due to either screen changing or the shakers being bypassed : 1865m, 1870m, 1890m, 1895.

Lithological Descriptions:

1835m to 1993m: MARL interbedded with CALCAREOUS CLAYSTONE, CALCILUTITE.

MARL: Very light grey to light greenish grey, very argillaceous, trace quartz fragments, very soft to dispersive, sticky, occasionally firm, amorphous, occasionally sub-blocky.

CALCAREOUS CLAYSTONE: Light olive grey to greenish grey, grading to Marl in places, trace foraminifera, moderately hard to hard, sticky, minor amorphous.

CALCILUTITE: Light grey to greenish grey, common silt grains, moderate soft to firm, sub-blocky

There were no shows in this section.

The section from 1835m to 1993m was drilled with an average ROP of 24.59m/hr and ranged from 4.73m/hr to 51.98m/hr.

Total Gas	C1	C2			NC4	IC5	NC5
Units	ppm	ppm	Ppm	ppm	Ppm	ppm	ppm
0.12 - 41.0	13 - 8782	0 - 0	0 – 3	0	0	0	0

1993m to 2046m: WANGERRIP GROUP: T20
SANDSTONE interbedded with CLAYSTONE, CALCAREOUS CLAYSTONE

SANDSTONE: Translucent to transparent, light grey, loose clean quartz grains, predominantly fine to medium grain size, commonly coarse, very coarse in-part, poor to moderately well sorted, sub-rounded to rounded, occasionally sub-angular, common quartz overgrowths, trace white calcareous cement, light grey

3.1 Geology and Shows

argillaceous matrix, trace disseminated pyrite, abundant glauconite aggregated, poor to fair inferred porosity, no show

CLAYSTONE: predominantly brownish grey to dark brown, grading to SILTSTONE in-part, non calcareous, trace micro pyrite, trace black carbonaceous inclusions, sticky, commonly homogeneous, amorphous, dispersive in-part, sub-blocky

CALCAREOUS CLAYSTONE: Light olive grey to greenish grey, grading to Marl in-part, trace fossile fragments, moderately hard to hard, sticky, minor amorphous, sub blocky

There were no shows in this section.

The section from 1993m to 2046m was drilled with an average ROP of 45.73m/hr and ranged from 22.24m/hr to 99.31m/hr.

Total Gas	C1	C2	C3	IC4	NC4	IC5	NC5
Units	ppm	Ppm	Ppm	Ppm	Ppm	ppm	ppm
1.83 - 10.0	517 - 2608	0 - 0	0 – 1	0	0	0	0

2046m to 2154m: <u>BASE TERTIARY (TOP TIMBOON)</u>: T1 CLAYSTONE interbedded with thin SANDSTONE layer

CLAYSTONE: Dominantly olive brown to dark brown, occasionally pale yellowish brown, grading to SILTSTONE in-part, non calcareous, trace micro pyrite, trace black inclusions, sticky, commonly homogeneous, amorphous, dispersive in-part, sub-blocky, plastic in-part

SANDSTONE: Commonly light brown aggregated, occasionally clear to translucent, loose quartz grains. The grain size ranges from fine to coarse at the top of the formation, fine to medium grained throughout out remainder of the formation, with occasional to minor amounts of coarse grains. The sandstone is moderately to poorly sorted, sub rounded to rounded with occasional sub angular grains. The sandstone is predominantly loose with no cement, although traces of pyrite cement was seen in the lower section of the formation. There was an argillaceous matrix, silty in parts. Traces of glauconite, quartz overgrowths, trace pyrite, black inclusions, mica and pyrite overgrowths. Poor to fair inferred porosity, no shows.

There were no shows in this section.

The section from 2046m to 2154m was drilled with an average ROP of 33.78m/hr and ranged from 14.14m/hr to 50.97m/hr.

Total Gas	C1	C2	C3	IC4	NC4	IC5	NC5
Units	ppm	Ppm	ppm	ppm	ppm	ppm	ppm
0.98 – 17.5	391 - 4263	0 - 10	0 - 3	0	0	0	0

2154m to 2551m: <u>TIMBOON MUDSTONE</u>: K99 CLAYSTONE interbedded with SILTSTONE

CLAYSTONE: Commonly moderate brown to dark yellowish brown, grading to SILTSTONE in-part, trace pyrite, very soft to soft, sub-blocky, streaky, amorphous, homogeneous.

SILTSTONE: Brown to dark brown, dark grey to dark brownish grey, abundant argillaceous, grading to CLAYSTONE in part, non calcareous, trace pyrite nodules, trace glauconite, trace lithic fragments, soft, amorphous, dispersive in part, sub-blocky.

There were no shows in this section

3.1 Geology and Shows

The section from 2154m to 2551m was drilled with an average ROP of 20.22/hr and ranged from 1.47m/hr to 78.31m/hr.

Total Gas	C1	C2	C3	IC4	NC4	IC5	NC5
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm
1.02 - 24.8	272 – 5863	0 - 24	0 - 6	0 -2	0 - 5	0	0

2551m to 2997m: PAARATTE FORMATION: K94 SILTSTONE interbedded with SANDSTONE and trace LIMESTONE

SANDSTONE: clear-translucent, white, yellowish brown, loose quartz grains. The grain size ranges from medium to coarse, rare very coarse, occasionally fine grains, poorly sorted, sub rounded to rounded with occasional sub angular grains. The sandstone is predominantly light grey argillaceous matrix, slightly siliceous cement, moderately strong calcareous cement in part, trace pyritic, silty in parts. Traces of glauconite, quartz overgrowths, trace pyrite, black carbonaceous specks inclusions, mica, pyrite overgrowths and coal, moderately hard to hard friable in part, Poor to fair inferred porosity, no shows.

There were shows in this section.

In SANDSTONE (2551m – 2559m): trace dull to moderate bright yellow fluorescence, no cut, thin residual ring.

In SANDSTONE (2558m - 2580m): trace to rare fluorescence, trace dull to moderate bright yellow fluorescence, no cut, thin residual ring.

SILTSTONE: Dominantly light brownish grey to light brown, olive grey to brownish grey, arenaceous, grading to a very fine to fine SANDSTONE in the upper part of the formation, argillaceous, grading to CLAYSTONE in parts of the lower formation, non to slightly calcareous, trace fine to medium sand grains, trace black specks, traces of carbonaceous material, rare light brown hard dolomite crystals, traces of very hard LIMESTONE, rare pyrite overgrowths, soft to firm, sticky in parts, dispersive in parts, amorphous to sub blocky

LIMESTONE: Cream to greyish brown, orange in-part, micritic to sparitic, micro-crystaline, trace pyrite nodules, very hard

The section from 2551m to 2997m was drilled with an average ROP of 44.12m/hr and ranged from 4.36m/hr to 152.36m/hr.

Total Gas	C1	C2	C3	IC4	NC4	IC5	NC5
Units	ppm	Ppm	ppm	ppm	ppm	ppm	ppm
2.8 – 145.8	20 - 24921	0 - 663	0 - 214	0 - 52	0 - 41	0 - 16	0 - 10

3.2 Sampling Summary

3.2 Sampling Summary and Record of Distribution

Samples were collected at the following intervals for Amrit 1

Amrit 1							
1835m – 2459m	5m						
2459m - 2979m	3m						

Total Number of Boxes: 4

			COMPOSTITION	Packing Details	
SAMPLE TYPE	No. of	Sample	Depth Interval (m)		and notes
	Sets	Box No	From	То	
washed and dried	-	-	-	-	Samples sent to Perth
Samplex Tray	3	1	1438	2979	each set pack in 1 box
Mud Samples	1	1	-	-	1 small box

Sample Destination:

Due to time limitations imposed by Transocean contractual obligations the washed and air dried samples were boxed and shipped to the BHI office in Perth, WA for processing. Distribution to follow. Set 1 to be sent to DPI (c/o address below). Sets 2- 6 to be sent to Santos Core Library (address below) for onward distribution.

Set 1 (100g Cuttings Sample) sent to:

DPĬ

c/o Santos Core Library Ascot Transport 30 Francis Street Port Adelaide, SA 5015

Set 2 (200g Cuttings Sample) sent to:

Geoscience Australia Attn:Challenger Geology Services Ascot Transport 30 Francis Street Port Adelaide, SA 5015

Sets 3-5 (100g Cuttings Sample) sent to:

Santos Partners c/o Santos Core Library Ascot Transport 30 Francis Street Port Adelaide, SA 5015

Set 6 (Samplex Trays) sent to:

Santos Ops. Geology, Adelaide c/o Santos Core Library Ascot Transport 30Francis Street Port Adelaide, SA 5015 3.2 Sampling Summary

Set 7 (Mud samples) sent to:

Santos Ops. Geology, Adelaide c/o Santos Core Library Ascot Transport 30 Francis Street Port Adelaide, SA 5015

Set 8 (Miscellaneous Samples/worksheets/charts etc.) sent to:

Santos Core Library Ascot Transport 30 Francis Street Port Adelaide, SA 5015

Samples shipped from Transocean Jack Bates in container # 41329

Additional:

Sidewall cores - Handcarried by Santos WSG Palynology Sample Set - Handcarried by Santos WSG

SECTION 4

PRESSURE EVALUATION

4.1 Pressure Evaluation

4.1 Pore Pressure Evaluation

Amrit 1

On Amrit 1, a water density of 1.04sg was assumed as normal saline pressure gradient for all calculations. The equivalent depth method was applied in the Dxc analysis, with all relevant drilling data, such as connection gas, trip gas, background gas, hole condition and mud flowline temperature all taken into consideration in the analysis of the formation pore pressure.

660mm (26") Hole Section: 1425 - 1835mRT

This hole section was drilled riserless, with seawater and gel sweeps, using a normal seawater density of 1.04sg, therefore pore pressure analysis is based upon drilling parameters, hole condition and observation by the ROV for the presence of shallow gas. The hole condition remained good throughout this section, and no shallow gas observations were made. The Dxc trend is initially widely scattered in the top portion of the hole, where upper unconsolidated sediments were essentially jetted rather than drilled, but after the setting of the surface conductor, the Dxc trend was normal - right trending, indicative of a normal formation pressure. The Dxc intercept calculates at 0.04320 and the Dxc slope trends at 0.000231 Dxc/ft. This, together with the lack of other indicators of abnormal pressure, means that this section can be assumed to be normally pressured to 1.04sg.

445mm (17 1/2") Hole Section: 1835 - 2459mRT

This hole section was also drilled in one bit run using a Reed mill tooth bit and a mud motor for drilling performance. The mud weight used for this section was initially 1.06ppg, rising to 1.11 by the end of the section due to increasing drilled solids within the mud system. The use of a mud motor makes Dxc analysis problematic at best, however the Dxc trend is predominantly good, with a clear, normal, right-hand trend. The Dxc intercept calculates at 0.509 and the Dxc slope trends at 0.000048 Dxc/ft for this normal trend. There are deviations that can be explained by formation changes. No pressure cavings were observed returning to the surface while drilling, or while cleaning the hole. Standard flow-checks were static and no connection gasses were recorded. The background gas levels remained low and showed no discernable increase that was not related to penetration rate (which itself remained reasonably consistent.) The mud temperature profile remained generally unchanging, due mainly to the cooling effect of the long riser interval, no abnormal increases were observed. Analysis with Geopress evaluation software suggests a pore pressure varying between 1.03sg to 1.06sg, but essentially trending to 1.04sg. This hole section was therefore taken to be normally pressured.

311mm (12 1/4") Hole Section: 2459 – 2979mRT(TD)

This section was drilled using a motor and two bit runs, both PDC, with the mid section bit change being made due to lower than expected penetration rate. An initial mud weight of 1.11sg was used, with this being increased to 1.14ppg by the end of the first section in anticipation of an expected ramping up of the formation pressure towards the end of the section. The Dxc trend of the first bit run can be considered to be normal, with variations due to changes in formation, such as the intersection of the primary sands. The Dxc intercept calculates at 0.08105 and the Dxc slope trends at 0.000135 Dxc/ft for this normal trend. However, towards the end of the bit run, a clear swing to the right can be seen, normally indicative of a dull character, and although this bit was not found to have worn cutters, it was found to be balled. This 'Dull' character had the effect of masking any indications Dxc might have had at this point. Again no connection gasses were recorded while drilling with the first bit run, and likewise no abnormal temperature increases were noted. Also no pressure cavings were observed, however there was an increase in background gas during this run, beginning at the intersection of the primary target, however, this increase was minor and associated with target sands. It is interesting to note that a deceasing trend in resistivity was observed towards the base of this first bit run. Geopress evaluation software suggests a pore pressure trend of 1.06sg through the first bit run of this section.

4.1 Pressure Evaluation

The second bit run was drilled again with a PDC bit, and with a mud weight that was held mostly to 1.14sg, rising to 1.15sg in the final stages of the hole. The formation consisted predominantly of siltstone and the observed Dxc trend shows a slight left-hand trend indicative of an increasing pore pressure. No abnormal changes in mud temperature were observed, but it is likely the cooling effect of the long riser section would negate effects on temperature. Likewise no pressure cavings were observed at surface. Higher than previous rates of penetration and the associated higher levels of recorded gas made the assessment of connection gasses problematic. It was likely that there were some mild connection gasses, but the nature of the fluctuating gas readings throughout a stand made their positive identification impossible. It should be noted that the background gas levels increased substantially over the course of the final bit run. Even after the higher rate of penetration was considered, this can be assumed to be indicative of a higher formation pressure. Geopress evaluation software shows an increase in pore pressure to 1.09sg through the upper section of this final bit run, before increasing to 1.11sg at about 2890mRT and 'ramping up' to 1.13sg by the base of the section.

It is concluded that this section was abnormally pressured and that the formation pressure was increasing when well TD was reached.

4.2 Pressure Evaluation

4.2 Fracture Pressure Evaluation

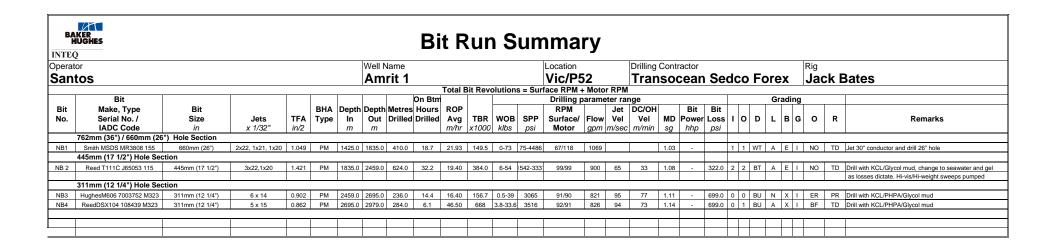
The 762 mm (30") and the 660mm (26") holes were drilled with seawater and PHG sweeps with returns to the seabed. No loss of circulation was reported by the ROV while observing returns.

After drilling out the 660mm (20") casing shoe, 3m of new 445mm (17 1/2") hole was drilled to 1838mRT where a Leak Off Test (LOT) was performed. The test was achieved with 210 psi surface pressure using 1.06 sg mud density, giving an integrity test of 1.11 sg EMW. Heavy surface losses at the shakers may have disguised some minor down-hole losses, however the well was found to be static when surface losses were controlled and any increase in trend could be matched to increased flow over blinded shakers, therefore full returns were assumed while drilling this section. ECD was calculated for this interval to be 1.08sg for most of this interval, rising up to 1.11sg from 2235mRT. The ECD did not exceed the fracture pressure, which was calculated as being 1.11sg, rising to 1.13sg near the end of the section.

While cementing the 13-3/8" casing the bottom plug was displaced with tuned spacer, the lead and tail slurry's were pumped. However, when the rig pumps were used to displace the cement, pit levels stabilized with no losses for 12min before returns were lost completely. The well was monitored on the trip tank, and returns were again seen after a total of 95bbls was lost to the hole.

An attempt to conduct a LOT was made after drilling out the 311mm (12 ¼") shoe, but this failed to leak-off even though formation was observed in returns. A second attempt was performed in the 311mm (12-1/4") hole after drilling 18m of new formation from 2459m to 2477m. The test was performed with 710 psi surface pressure using 1.11 sg mud weight giving an EMW of 1.32 sg. The mud weight whilst drilling was kept between 1.14 and 1.15 sg, which produced an ECD of up to 1.17 sg. Full returns were observed while drilling this section. Poor hole cleaning in the lower section of the 311mm (12 ¼") hole produced an observed ECD of 1.24 sg, drilling ceased whilst the hole was circulated clean, the only losses encountered were at surface, which at times were substantial. Calculated fracture pressures ranged from 1.38sg initially, increasing with depth to 1.42sg by well TD, with the calculated fracture pressure at all times exceeding the ECD by a clear margin.

At no time during the drilling of the Amrit 1 well did the ECD exceed the known or calculated formation fracture pressures.


The following is a summary of the leak off tests conducted in this well:

Hole Diameter	Hole Depth	Casing	Shoe Depth	Pressure	Mud Weight	EMW
445mm (17½ ")	1838mRT	20"	1822 m	210 psi	1.06 sg	1.11 sg
311mm $(12^{-1}/_{4})$	2477mRT	13-3/8"	2454 m	710 psi	1.11 sq	1.32 sq

Table 1: Bit Run Summary

Tables

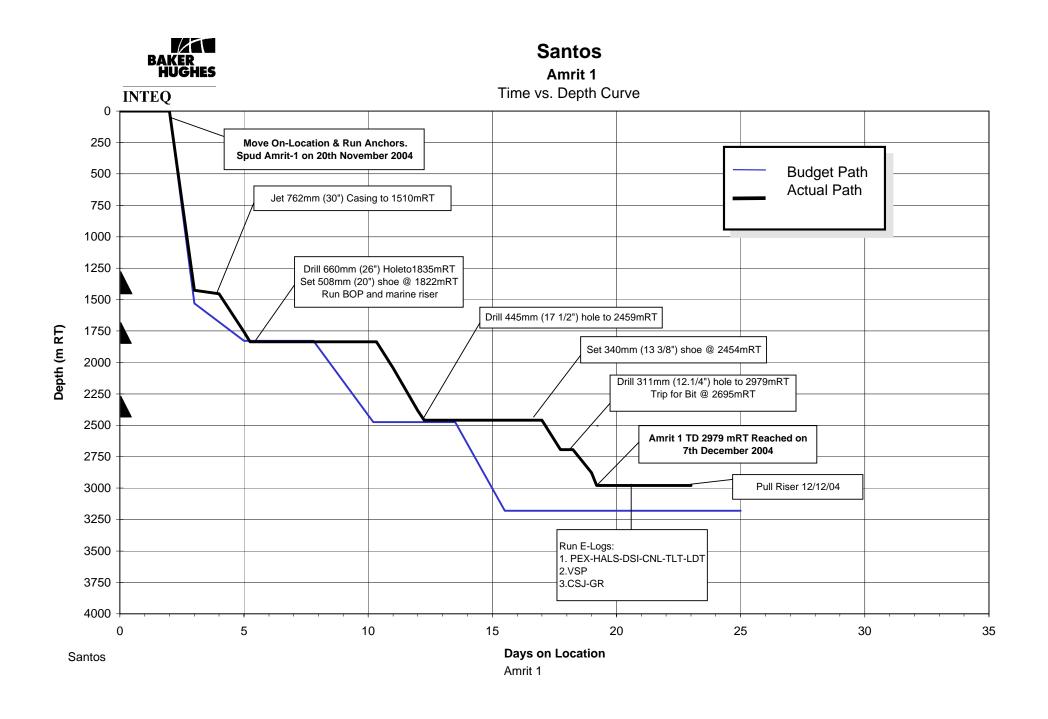

Santos Amrit 1

Table 2: Bit Hydraulics Summary

BA H INTEC	V/44 KER UGHES				E	Bit F	lyc	dra	ulic	s S	Sun	nma	ry							
Operator					Well Name					Location		Drilling Co	ntractor				Rig			
Santos		Amrit 1								Vic/P5	52	Trans		Sed	co F	orex		ates		
Drillstring	Abbrevia	tions							Hvdraul	ics Mode		1110110			<u> </u>	<u> </u>				
Ň	Normal MWD	Р	Positive Displacement M Adjustable Gauge Stabili		C	Core			,	Robertso	on-Stiff mo	odel used for o sed for coring			a water					
																		Ann	ular Velo	ocities
Bit	Depth	Hole	Jets	Drill	Mud	Mud		YP	Flow	Jet		Hydraulic	Power/	Bit	Bit	Pipe	ECD	DP	DC	DC
No.	AHD	Size		String	Type	Density	PV	lbs/100	Rate	Vel	Force	Power	Area	Loss	Loss	Loss		ОН	ОН	Critical
	(m)	in	x 1/32"	Type		sg	сP	ft sq	gpm	m/sec	lb/in2	hhp	hp/sq in	Psi	%	Psi	sg	m/min	m/min	m/min
		ole Section																		
NB 2	1835	445mm (17 1/2")	3 x 22, 1 x 20	PM	KCI / PHPA	1.03	20	26	950	65	4	1716.3	0.8	322	9.7	1187	1.12-1.15	25	33	-
		ole Section			1			,												
NB3	2468	311mm (12 1/4")	6 x 14	PM	KCI / PHPA	1.11	21	26	740	263	8	1163.7	1.9	500	18.5	840	1.13	42	86	-
NB3	2695	311mm (12 1/4")	6 X 14	PM	KCI / PHPA	1.11	21	25	875	311	11	1831.5	3.1	699	19.4	1193	1.13	52	109	-
NB4	2878	311mm (12 1/4")	5 x 14	PM	KCI / PHPA	1.14	23	30	828	308	11	1671.2	2.9	699	20.2	1165	1.15	49	103	-
NB4	2878	311mm (12 1/4")	5 x 14	PM	KCI / PHPA	1.14	23	30	830	308	10	1734.0	2.9	702	19.6	1251	1.16	49	103	-
														,				,		
	•		•	•	•	•	•		•	•		•	•		•	,				•

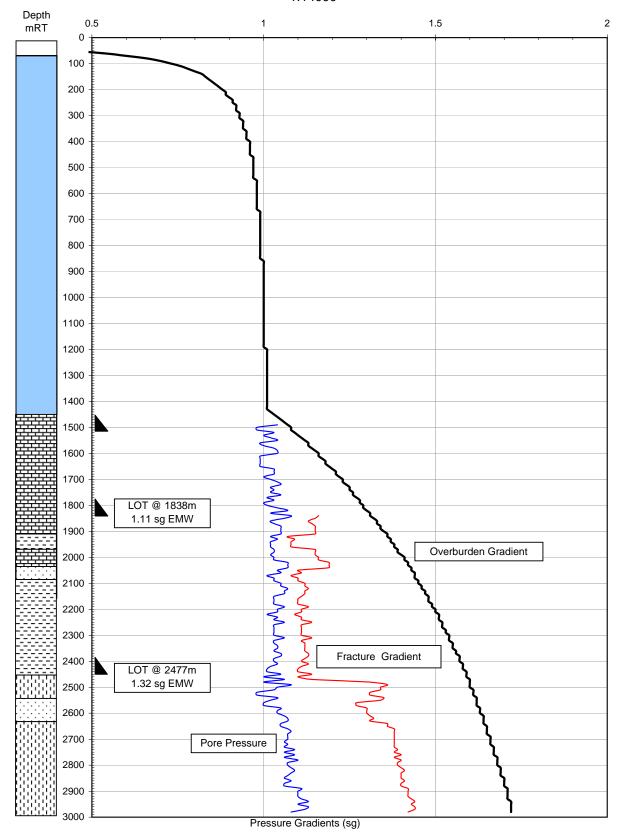

Santos Amrit 1

Table 3: Time vs Depth Curve

Pressure Summary Plot Amrit 1

1:14000

Santos Amrit 1

Table 5: Surveys Tables

Surveys: All serveys were conducted using an Anadrill MWD tool.

Amrit 1 Final Survey Report

Report Date: December 7, 2004
Client: Santos-Unocal-Inpex

Field: AMRIT
Structure / Slot: Amrit / Amrit
Well: Amrit 1
Borehole: Amrit 1

UWI/API#:

Survey Name / Date: Actual MWD Survey / November 20, 2004

Tort / AHD / DDI / ERD ratio: 11.755° / 16.39 m / 2.801 / 0.006

Grid Coordinate System: GDA94/MGA94 Zone 54

Location Lat/Long: S 38 56 5.200, E 141 44 7.080

Location Grid N/E Y/X: N 5690204.160 m, E 563729.701 m

Grid Convergence Angle: -0.46210403° Grid Scale Factor: 0.99965001 Survey / DLS Computation Method: Minimum Curvature / Lubinski Vertical Section Azimuth: 216.840°

Vertical Section Origin: N 0.000 m, E 0.000 m
TVD Reference Datum: Rotary Table
TVD Reference Elevation: -29.0 m relative to MSL
Sea Bed / Ground Level Elevation: 1395.000 m relative to MSL

Magnetic Declination: 10.485°
Total Field Strength: 61097.114 nT
Magnetic Dip: -70.233°
Declination Date: November 20, 2004
Magnetic Declination Model: BGGM 2003

North Reference: Grid North
Total Corr Mag North -> Grid North: +10.947°
Local Coordinates Referenced To: Well Head

Comments	Measured Depth	Inclination	Azimuth	TVD	Vertical Section	NS	EW	Closure	Closure Azimuth	DLS	Tool Face
	(m)	(deg)	(deg)	(m)	(m)	(m)	(m)	(m)	(deg)	(deg/30 m)	(deg)
Tie-In	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-125.67M
	1425.49	0.59	234.33	1425.46	7.00	-4.28	-5.96	7.34	234.33	0.01	-64.11M
	1454.01	1.07	295.89	1453.98	7.19	-4.25	-6.32	7.62	236.09	0.99	129.33M
	1487.29	0.97	129.33	1487.26	7.26	-4.29	-6.38	7.69	236.08	1.83	56.64M
	1510.95	0.86	56.64	1510.92	7.10	-4.32	-6.08	7.46	234.60	1.38	-56.22M
	1539.34	0.80	303.78	1539.31	6.91	-4.09	-6.07	7.32	235.99	1.46	-44.03M
	1568.02	0.85	315.97	1567.98	6.89	-3.83	-6.38	7.44	239.03	0.19	-51.43M
	1595.59	0.53	308.57	1595.55	6.85	-3.60	-6.62	7.54	241.45	0.36	-55.62M
	1624.12	0.56	304.38	1624.08	6.86	-3.44	-6.84	7.66	243.29	0.05	-61.11M
	1653.18	0.34	298.89	1653.14	6.87	-3.32	-7.03	7.78	244.73	0.23	-54.97M
	1681.34	0.26	305.03	1681.30	6.89	-3.24	-7.16	7.86	245.63	0.09	-40.44M
	1709.52	0.31	319.56	1709.48	6.87	-3.15	-7.26	7.91	246.56	0.09	-48.33M
	1737.89	0.40	311.67	1737.85	6.85	-3.02	-7.38	7.98	247.73	0.11	-60.22M
	1766.33	0.35	299.78	1766.29	6.85	-2.92	-7.53	8.08	248.85	0.10	-98.73M
	1809.32	0.26	261.27	1809.28	6.94	-2.86	-7.74	8.26	249.70	0.15	-129.00M
	1849.73	0.23	231.00	1849.69	7.08	-2.93	-7.90	8.42	249.65	0.10	-166.30M
	1878.02	0.37	193.70	1877.98	7.22	-3.05	-7.96	8.53	249.02	0.25	-136.02M
	1908.10	0.34	223.98	1908.06	7.40	-3.21	-8.05	8.67	248.24	0.19	-94.43M
	1935.76	0.18	265.57	1935.72	7.51	-3.28	-8.15	8.78	248.11	0.26	-107.09M
	1963.97	0.17	252.91	1963.93	7.57	-3.29	-8.23	8.87	248.21	0.04	-155.60M
	1991.95	0.12	204.40	1991.91	7.63	-3.33	-8.29	8.93	248.11	0.14	-129.00M
	2020.87	0.20	231.00	2020.82	7.71	-3.39	-8.34	9.00	247.88	0.11	-136.80M
	2049.42	0.23	223.20	2049.37	7.82	-3.46	-8.41	9.10	247.64	0.04	-145.26M
	2077.78	0.26	214.74	2077.73	7.94	-3.56	-8.49	9.21	247.27	0.05	-176.25M
	2105.32	0.33	183.75	2105.27	8.07	-3.69	-8.53	9.29	246.63	0.19	176.46M
	2134.71	0.29	176.46	2134.66	8.19	-3.85	-8.53	9.36	245.74	0.06	-156.66M
	2162.92	0.22	203.34	2162.87	8.30	-3.97	-8.55	9.42	245.11	0.15	-179.63M
	2192.60	0.14	180.37	2192.55	8.39	-4.06	-8.57	9.48	244.68	0.11	145.56M
	2217.09	0.08	145.56	2217.04	8.41	-4.10	-8.56	9.49	244.42	0.11	-156.80M
	2220.68	0.29	203.20	2220.63	8.42	-4.11	-8.56	9.50	244.37	2.14	-139.95M
	2248.46	0.15	220.05	2248.41 2277.17	8.53	-4.20	-8.62	9.59	244.00	0.16	-176.11M
	2277.22 2306.21	0.31 0.34	183.89 216.07	2306.16	8.63 8.78	-4.31	-8.65 -8.70	9.66 9.78	243.51 242.88	0.22 0.19	-143.93M -174.93M
	2306.21	0.34	185.07	2306.16		-4.46 -4.62	-8.70 -8.76		242.88 242.19	0.19	-174.93M -138.92M
	2334.13	0.40	221.08	2334.08	8.95 9.12	-4.62 -4.78	-8.83	9.90 10.04	242.19	0.22	-138.92W
	2390.55	0.37	232.85	2390.50	9.12	-4.78 -4.90	-8.83 -8.95	10.04	241.55	0.26	-127.15W
	2390.55	0.33	232.85	2390.50	9.29	-4.90 -5.03	-8.95 -9.05	10.21	241.29	0.09	-159.80W
	2419.57	0.32	200.20	2419.52	9.45	-5.03 -5.09	-9.05 -9.07	10.35	240.93	0.19	-151.41M -125.65M
	2433.15	0.24	208.59	2433.10	9.52	-5.09 -5.28	-9.07 -9.27	10.40	240.71	0.20	-125.65IVI -143.40M
	2524.29	0.30	234.33	2524.24	10.12	-5.26 -5.51	-9.27 -9.52	11.00	239.94	0.21	-143.40M
	2649.13	0.33	195.11	2649.08	10.12	-6.19	-9.84	11.63	237.83	0.13	-160.21M
	2762.85	0.37	199.79	2762.79	11.42	-6.76	-10.02	12.08	237.03	0.03	-160.21W
	2878.16	0.23	199.79	2878.10	11.42	-7.20	-10.02	12.44	234.60	0.04	140.59M
	2950.00	0.23	140.59	2949.94	12.01	-7.20 -7.47	-10.14	12.44	233.40	0.01	140.59M
projected to TD	2979.00	0.26	140.59	2978.94	12.01	-7.47 -7.57	-9.98	12.53	232.80	0.09	0.00M

Survey Type: Raw Survey

Survey Error Model: SLB ISCWSA version 16 *** 3-D 95.00% Confidence 2.7955 sigma

Surveying Prog:

 MD From (m)
 MD To (m)
 EOU Freq Survey Tool Type

 0.00
 2979.00
 Act-Stns SLB_MWD-STD

Santos Amrit 1

FORMATION EVALUATION LOG

DRILLING DATA PLOT

PRESSURE EVALUATION PLOT

GAS RATIO PLOT

Santos	Well Completion Report Volume 1 Basic
	Well completion respect volume 1 Busic
	SECTION 13:- RIG POSITIONING REPORT

REPORT FOR THE JACK BATES RIG MOVE TO THE AMRIT-1 LOCATION

FUGRO SURVEY JOB NO. - P0144

Client : Santos Limited

Level 10, Santos House

91 King William Street

Adelaide 5000

South Australia

Date of Survey : 12 – 22 November 2004

0	Final			30 November 2004
Rev	Description	Checked	Approved	Date

This document is confidential. The copyright © therein is vested in Fugro Survey Pty Ltd. All rights reserved. Neither the whole, nor any part of this document may be disclosed to any third party nor reproduced, stored in any retrieval system or transmitted in any form nor by any means (electronic, mechanical, reprographic, recording nor otherwise) without the prior written consent of the copyright owner.

CONTENTS

		PAGE NO.
ABS	TRACT	i
1.0	INTRODUCTION	1-1
1.1	Scope of Work	1-1
1.2	Sequence of Events	1-1
2.0	RESULTS	2-1
2.1	Final Position	2-1
2.2	Rig Heading	2-1
2.3	Anchor Positions	2-2
3.0	SAFETY	3-1
4.0	SURVEY PROCEDURES	4-1
4.1	Mobilisation	4-1
4.2	General Survey Procedures	4-1
4.3	Demobilisation	4-1
5.0	EQUIPMENT CALIBRATIONS	5-1
5.1	DGPS Navigation Integrity Check	5-1
5.2	Gyro Compass Calibration	5-1
6.0	SURVEY PARAMETERS	6-1
6.1	Geodetic Parameters	6-1
6.2	Differential GPS Reference Stations	6-2
6.3	Project Coordinates and Tolerances	6-2
7.0	EQUIPMENT AND PERSONNEL	7-1
7.1	Equipment Listing	7-1
7.2	Vessels	7-1
7.3	Personnel	7-1
8.0	CONCLUSIONS	8-1
9.0	DISTRIBUTION	9-1

FIGURES			
FIGURE 1-1 : GENERAL LOCATION DIAGRAM	1-2		
FIGURE 7-1 : EQUIPMENT FLOW DIAGRAM – MODU <i>JACK BATES</i>	7-2		
FIGURE 7-2 : EQUIPMENT FLOW DIAGRAM – AHVS	7-3		
FIGURE 7-3 : VESSEL OFFSET DIAGRAM – JACK BATES	7-4		
FIGURE 7-4 : VESSEL OFFSET DIAGRAM – LADY ASTRID	7-5		
FIGURE 7-5 : VESSEL OFFSET DIAGRAM – LADY CAROLINE	7-6		
TABLES			
TABLE 2-1 : GEOGRAPHICAL POSITIONS FOR AMRIT-1	2-1		
TABLE 2-2 : GRID COORDINATES FOR AMRIT-1	2-1		
TABLE 2-3 : RIG HEADING	2-1		
TABLE 2-4 : ANCHOR POSITIONS	2-2		
TABLE 5-1 : DGPS NAVIGATION INTEGRITY CHECK	5-1		
TABLE 6-1 : TRANSFORMATION PARAMETERS	6-1		
TABLE 6-2 : DGPS REFERENCE STATIONS	6-2		
TABLE 6-3 : PROJECT DESIGN COORDINATES	6-2		
ADDENDICES			

APPENDICE

APPENDIX A: DAILY OPERATIONS REPORTS
APPENDIX B: FINAL POSITIONING DATA
APPENDIX C: DGPS AND GYRO CHECKS

APPENDIX D: PROJECT COORDINATE LISTING AND PROCEDURES

ABSTRACT

Between 12 and 22 November 2004, Fugro Survey Pty Ltd (Fugro) provided equipment and personnel for the semi-submersible Mobile Offshore Drilling Unit Jack Bates, rig move from Callister-1 to the Amrit-1 location in Permit Vic/P 52 Bass Strait, Australia.

Surface positioning was achieved utilising Fugro's MRDGPS and Starfix. Seis Navigation Software.

The final position for the drill stem derived from DGPS observations at the Amrit-1 location is:

Location Name:	Amrit-1
Easting (m):	563729.57
Northing (m)::	5690204.12
Latitude:	38° 56' 05.201" S
Longitude:	141° 44' 07.075" E
Rig Heading:	217.3° (True)

This position is 2.9m on a bearing of 338.7° (True) from the proposed Amrit-1 location.

All coordinates in this report are quoted in GDA94 datum and MGA, Zone 50 (CM 141° E) projection, unless otherwise stated.

1.0 INTRODUCTION

Fugro Survey Pty Ltd (Fugro) was contracted by Santos Limited (Santos) to provide navigation and positioning survey services on board the semi-submersible Mobile Offshore Drilling Unit (MODU) *Jack Bates*, during the rig move to the Amrit-1 location in Permit Vic/P 52 Bass Strait, Australia.

A general location diagram is shown as Figure 1-1.

This report details the equipment used, survey parameters adopted, procedures employed and the results achieved. A section on safety is included in Section 3.0 of this report.

1.1 Scope of Work

Personnel and equipment were provided on a 24 hour per day basis for:

- Calibration and function testing of the survey equipment on board the rig and the two Anchor Handling Vessels (AHVs).
- Surface navigation for the *Jack Bates*, using Fugro's multiple reference station Differential GPS (DGPS) and Starfix.Seis Navigation Software.
- Surface navigation for AHVs during anchoring operations, using Starfix VBS DGPS, WOMBAT and Starfix. Seis navigation software.
- Final rig surface positioning for the Amrit-1 location using DGPS observations.
- Final reporting of the positioning results.

1.2 Sequence of Events

On 12 November 2004, M. Elmslie and L. Clark departed Perth for Melbourne. On the same day M. Elmslie and L. Clark joined the *Jack Bates* at the Callister-1 location. After performing equipment calibrations, the anchors were recovered on 16 November 2004, and the rig tow to Amrit-1 commenced. Between 17 and 18 November 2004, the rig was positioned on location at Amrit-1. Fugro personnel departed the rig on 19 and 22 November 2004.

Further details of Fugro's involvement in the rig move are presented in the Daily Operations Reports included in Appendix A.

2.0 RESULTS

2.1 Final Position

The final position of the *Jack Bates* drill stem was established by calculating the mean position from one hour of DGPS data logged between 18:19 and 19:19 on 21 November 2004. During this period, calculated drill stem coordinates from the primary and secondary positioning systems were logged at five second intervals in Starfix.Seis. Data from the primary positioning system was used for the final position calculation.

Differential GPS corrections were derived using a multi-reference solution with base station data from Cobar, Ceduna, Melbourne and Bathurst.

GDA94 geographical positions for the Amrit-1 location are shown in Table 2-1.

GDA94					
Position Method Latitude Longitude					
Drill Stem at Surface	MRDGPS	38° 56' 05.201" S	141° 44' 07.075" E		
Proposed Location	-	38° 56' 05.290" S	141° 44' 07.120" E		

TABLE 2-1: GEOGRAPHICAL POSITIONS FOR AMRIT-1

GDA94 grid coordinates (CM 141° E) for Amrit-1 location are shown in Table 2-2.

GDA94, MGA, CM 141°E					
Position Method Easting (m) Northing (m)					
Drill Stem at Surface	MRDGPS	563729.57	5690204.12		
Proposed Location	-	563730.64	5690201.38		

TABLE 2-2: GRID COORDINATES FOR AMRIT-1

This position is 2.9m at a bearing of 338.7° (True) from the design location.

A copy of the original rig position field report is contained in Appendix B.

2.2 Rig Heading

The heading of the *Jack Bates* was established by calculating the average heading during one hour of corrected gyro compass readings logged between 18:19 and 19:19 on 21 November 2004. During this period gyro readings were logged at five second intervals in Starfix.Seis.

The Jack Bates' heading is shown in Table 2-3.

Description	Method	True	Grid
Rig Heading	Gyro	217.3°	217.7°
Proposed Heading	-	215.0°	215.5°

TABLE 2-3: RIG HEADING

2.3 Anchor Positions

The approximate locations of the Jack Bates' anchors are shown in Table 2-4.

GDA94, MGA, CM 141°E						
Anchor	Easting (m)	Northing (m)	Azimuth	Deployed By		
1	561734	5689320	245.1°	Lady Astrid		
2	561739	5690662	282.7°	Lady Astrid		
3	562723	5691882	328.2°	Lady Astrid		
4	563963	5692588	5.4°	Lady Caroline		
5	565549	5691020	64.9°	Lady Caroline		
6	565548	5689787	102.7°	Lady Caroline		
7	564895	5688331	147.3°	Lady Caroline		
8	563543	5688065	184.8°	Lady Caroline		

TABLE 2-4: ANCHOR POSITIONS

The approximate seabed locations of the *Jack Bates*' anchors were calculated from the position of the AHV stern at the time of deployment, together with the bearing to the anchor and distance calculations obtained from chain paid out from the rig's chain counters and corrected for catenary.

3.0 SAFETY

All work undertaken by Fugro personnel during the project was performed within the guidelines of Fugro's Safety Policy, as defined in Fugro's Safety Manual (SMS-P01) and Offshore Survey Safety Practices (SMS FSP26).

Fugro personnel worked within all project safety guidelines and plans adopted by Santos and Transocean International.

No safety incidents involving Fugro personnel were reported during the project.

Fugro personnel attended a vessel induction and muster drill whilst on board.

A Project Specific Safety Plan was developed for positioning services on board the *Jack Bates* for the Amrit-1 rig move.

4.0 SURVEY PROCEDURES

4.1 Mobilisation

Mobilisation commenced with departure of the survey team from Perth on 7 November 2004. Fugro personnel then transferred to the *Jack Bates*, which was at the Callister-1 location. Following a rig induction, the survey equipment was mobilised, powered up and systems and function tests completed.

4.2 General Survey Procedures

The tow was conducted with the *Lady Astrid* connected to the main tow bridle.

The Lady Astrid manoeuvred the rig onto the Amrit-1 location using an approach 'run-in' line of two nautical miles extended from the Anchor #4 drop point through to the proposed well location. After Anchor #4 had been deployed by the Lady Caroline, the Lady Astrid continued towing and positioned the rig over the proposed Amrit-1 location.

After establishing that Anchor #4 was holding and the rig was maintaining its position over the Amrit-1 location, the *Lady Caroline* ran Anchors #8, #5, #6 and #7. The *Lady Astrid* subsequently ran Anchors #1, #2 and #3.

Once all anchors were laid, the *Jack Bates* applied tension to the anchor wires.

During the deployment of each anchor, the AHVs were provided with a waypoint and the corresponding run line via the Wombat telemetry system. The AHVs then ran out the anchor chain along this line to the desired drop point. The anchor chain was then stretched out and the anchor lowered to the seabed. After confirming that the anchor was holding, the vessel then stripped the chain chaser back to the rig.

The *Jack Bates* was positioned over the Amrit-1 location with all anchoring and pretensioning complete at 11:20 on 18 November 2004. Final position data was logged between 18:19 and 19:19 on 21 November 2004. A rig positioning field report was issued to the Santos Survey QC representative and the Santos Company Representative (refer Appendix B).

4.3 Demobilisation

All navigation systems on board the *Jack Bates* and AHVs were left powered up during demobilisation and left on board the vessels for the anchor recovery at Amrit-1.

Fugro personnel departed the rig and returned to Perth on 19 and 22 November 2004.

5.0 EQUIPMENT CALIBRATIONS

5.1 DGPS Navigation Integrity Check

In order to check the correct operation of the navigation systems installed on board the *Jack Bates*, DGPS data was logged for 10 minutes on 13 November 2004, while the rig was located at Callister-1.

A comparison of the primary and secondary DGPS was also conducted. The results from both of these tests are provided in Table 5-1.

GDA94, MGA, CM 141°E						
	Latitude	Longitude	Easting (m)	Northing (m)		
Established Well Coordinates	38° 31' 59.689" S	141° 28' 23.463" E	541241.78	5734911.33		
Observed Coordinates	38° 31' 59.596" S	141° 28' 23.589" E	541244.85	5734914.18		
Differences			-3.10	-2.80		
Primary Navigation	38° 31' 59.596" S	141° 28' 23.589" E	541244.85	5734914.18		
Secondary Navigation	38° 31' 59.635" S	141° 28' 23.558" E	541244.10	5734913.00		
Differences			0.75	1.18		

TABLE 5-1: DGPS NAVIGATION INTEGRITY CHECK

The DGPS check described above demonstrated that the navigation systems on board the *Jack Bates* were set up and working correctly. Details of the DGPS check are provided in Appendix C.

A positioning check list was completed for the Callister-1 location to confirm the proposed rig position and to ensure that the correct geodetic datum, transformation and projection parameters were being used. Geodetic calculations were performed using both Starfix.Seis and the off-line geodetic calculation package GEO. This checklist (FSHY48-1) is shown in Appendix C.

5.2 Gyro Compass Calibration

The calibration of the survey gyro compass was carried out on 9 October 2004, whilst the rig was under tow to the Callister-1 location.

A series of observations were made to the sun from which the rig heading was calculated. The calculated values were then compared to the observed gyro compass values logged in Starfix. Seis and a mean C-O value of -180.1° was determined. This correction was applied in the navigation suite.

Details of the observations and gyro calibration reduction results are enclosed in Appendix C.

Because the gyro compass had been left powered up it was deemed not necessary to conduct another calibration on arrival at Amrit-1.

6.0 **SURVEY PARAMETERS**

Geodetic Parameters 6.1

All coordinates are referenced to the Geocentric Datum of Australia 1994 (GDA94) unless otherwise noted. The Global Positioning System (GPS) operates on the World Geodetic System 1984 (WGS84) datum. Fugro's Differential GPS Reference Stations are currently defined in the International Terrestrial Reference Frame 2000 (ITRF2000 Epoch 2004.75) datum. Due to the continual refinement of the WGS84 reference frame, for all cases, the transformation parameters indicate that the WGS84 and ITRF2000 reference frames are essentially identical.

Datum World Geodetic System 1984 (WGS84)

Reference Spheroid World Geodetic System 1984

Semi Major Axis 6378137.000m Inverse flattening 298.257223563

Geocentric Datum of Australia 1994 (GDA94) Datum Reference Spheroid

Geodetic Reference System 1980 (GRS80)

Semi Major Axis 6378137.000m Inverse flattening 298.257222101

The following seven parameter datum transformation (Table 6-1) will be used in Fugro's software, to transform WGS84 (ITRF2000 Epoch 2004.50) coordinates to These parameters are calculated from the 14 parameter GDA94 coordinates. transformation defined by Geoscience Australia. Fugro follows the Coordinate Frame Rotation convention (as defined by UKOOA) for datum transformations.

Transforma	Transformation Parameters from WGS84 (ITRF2000 Epoch 2004.50) to GDA94					
dX	-0.0266m	rX	+0.0134"			
dY	-0.0303m	rY	+0.0124"			
dΖ	-0.0339m	rZ	+0.0140"			
		dS	+0.0055ppm			

TABLE 6-1: TRANSFORMATION PARAMETERS

The proposed drilling location and all project coordinates are grid coordinates on the Map Grid of Australia.

Map Grid of Australia (MGA) Grid

Projection Transverse Mercator

Latitude of Origin 0°

Central Meridian 141° E (UTM Zone 54)

Central Scale Factor 0.9996 False Easting 500000m False Northing 10000000m Units Metres

6.2 Differential GPS Reference Stations

Fugro's Differential GPS Reference Stations are currently defined in the ITRF2000 (Epoch 2004.75) datum and shown in Table 6-2.

ITRF 2000, EPOCH 2004.75						
Station	ld	Latitude	Longitude	Height (m)	Uplink	
Melbourne	385	37° 48' 29.010" S	144° 57' 48.028" E	82.061	Optus/APSat	
Bathurst	336	33° 25' 46.884" S	149° 34' 01.968" E	756.657	Optus/APSat	
Ceduna	355	32° 07' 03.054" S	133° 41' 22.848" E	7.269	Optus	
Cobar	316	31° 29' 57.436" S	145° 50' 20.343" E	270.16	Optus/APSat	

TABLE 6-2: DGPS REFERENCE STATIONS

6.3 Project Coordinates and Tolerances

Project target coordinates and surface tolerance for Amrit-1 location were supplied by Santos and are shown in Table 6-3.

GDA94, MGA, CM 141°E				
Location Easting (m) Northing (m) Tolerances				
Amrit-1	563730.64	5690201.38	10m radius	

TABLE 6-3: PROJECT DESIGN COORDINATES

7.0 EQUIPMENT AND PERSONNEL

7.1 Equipment Listing

Survey equipment used for the positioning of the *Jack Bates* was as follows:

Jack Bates

- 2 x Starfix satellite DGPS (1 Optus link, 1 APSat link)
- 2 x Trimble 4000 series GPS receivers
- 2 x Pentium III computers, running Fugro's Starfix.Seis navigation software suite (1 spare)
- 4 x 15" monitors (2 Seis, 1 Helm, 1 spare)
- 1 x SG Brown gyro compass
- 2 x Un-interruptible power supply units (UPS)
- 1 x Teledesign radio/modem
- 1 x Marine Sextant
- 1 x Printer

AHVs (complete system per vessel, plus one complete set of spares)

- 1 x Pentium computers, running Starfix Display/Wombat
- 1 x Monitors
- 1 x Starfix VBS units
- 1 x Fluxgate compasses
- 1 x Teledesign radio/modems

All systems were provided complete with all necessary cabling, connectors, power supplies, antennae, accessories, manuals and consumables.

Refer to Figure 7-1 for an equipment flow diagram for the *Jack Bates* and Figure 7-2 for the equipment flow diagram for the AHVs.

7.2 Vessels

The vessels used for anchor handling and towing the *Jack Bates* were the *Lady Astrid* and the *Lady Caroline*. Refer to Figure 7-3, Figure 7-4 and Figure 7-5 for the vessel offset diagrams.

7.3 Personnel

Fugro personnel involved in the rig move and positioning operations were as follows:

M. Elmslie Party Chief/Surveyor 12 – 22 November 2004
 L. Clark Technician 12 – 19 November 2004

Santos was represented during the rig move by:

J. Herkenhoff Survey QC Representative 12 – 22 November 2004

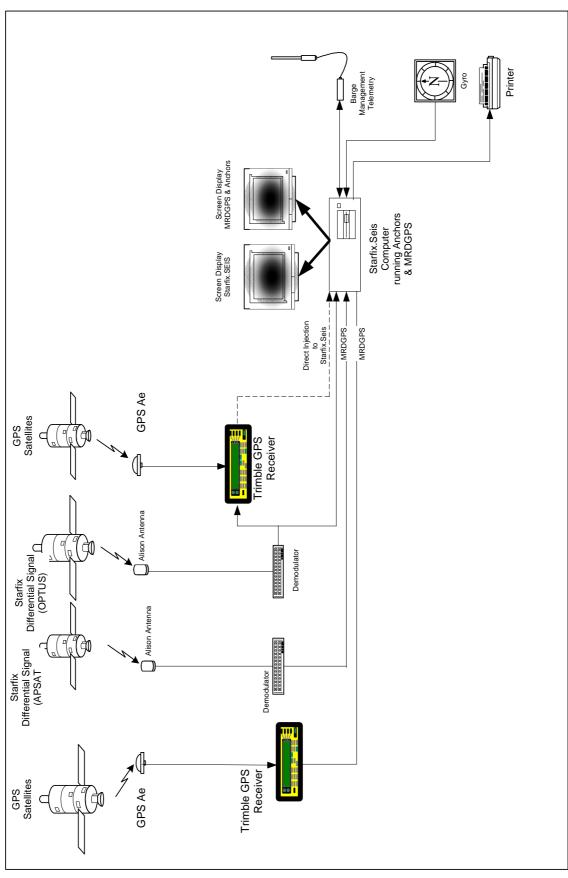


FIGURE 7-1: EQUIPMENT FLOW DIAGRAM - MODU JACK BATES

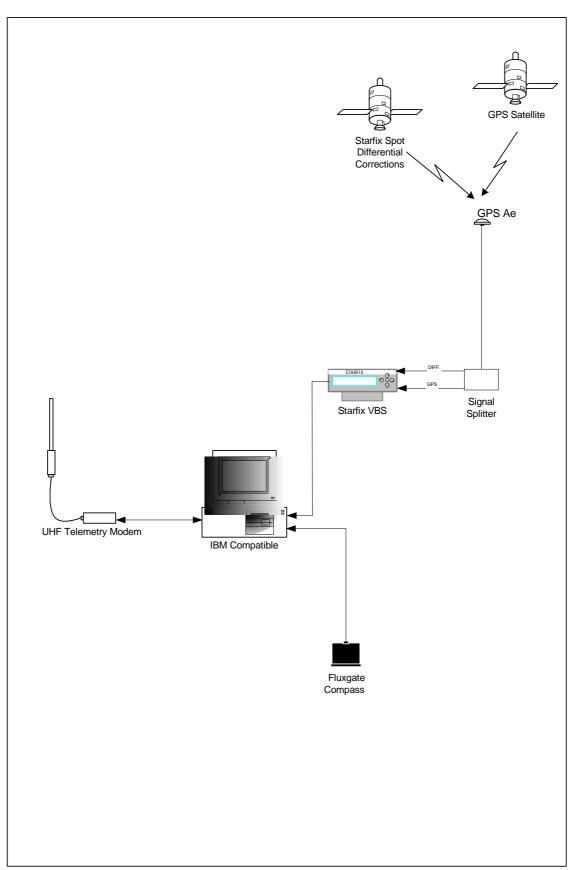
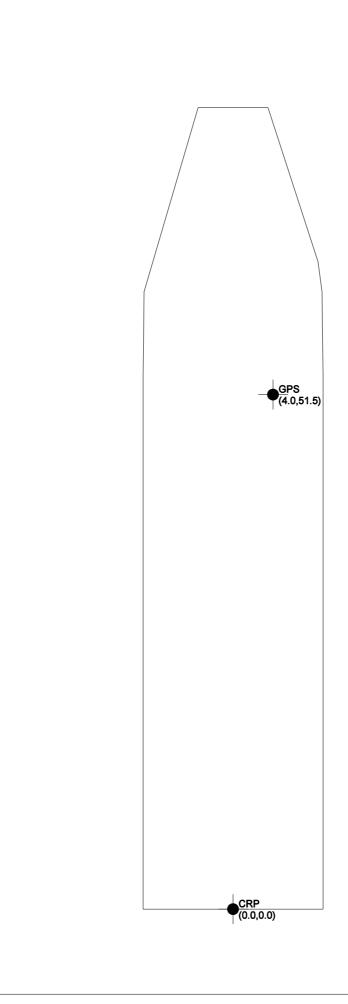



FIGURE 7-2: EQUIPMENT FLOW DIAGRAM - AHVS

u:\p0144\report\figures\figure7-3.dgn

u:\p0144\report\figures\figure7-4.dgn

u:\p0144\report\figures\figure7-5.dgn

8.0 CONCLUSIONS

On reviewing the rig move and positioning operations undertaken by Fugro the *Jack Bates* was successfully positioned at the Amrit-1 location.

9.0 DISTRIBUTION

Copies of this report have been distributed as follows:

Santos Limited : 3 paper copies Attn: Ole Moller : 1 electronic copy

Fugro Survey Pty Ltd : 1 paper copy

: 1 paper copy: 1 electronic copy

APPENDIX A DAILY OPERATIONS REPORTS

CLIENT: SA	ANTOS			LO	CATIO	N: AMRIT-1	DATE: 12/11/2004			
PROJECT:	Rig Move	to Amri	t-1	VESSE	L: JAC	CK BATES	JOB NO: P0144			
FROM	то			SL	MMAR	Y OF OPERATIONS				
0850	1215	Fugro	personnel tra	nsit from I	Perth to	Melbourne.				
1440	1550	Fugro	personnel tra	nsit form l	Essedoi	n to Jack Bates.				
1600		L.C a	attends rig induction.							
1630		Main	navigation PC	operation	al.					
1700		Fugro	personnel on	standby.						
2359		Fugro	personnel on	standby.						
							·			
		,								
				-						
-										
RIG EQUIP	MENT	NO.	AHV EQUIP	MENT	NO.	PERSONNEL	TITLE			
Starfix DGPS	3	2	Starfix.Seis (Remote)	2	M.Elmslie	Surveyor / PC			
Starfix.Seis		1	Starfix.VBS		2	L.Clark	Technician			
Demodulator	•	2	Telemetry M	odem	2					
Gyro Compa	ss	1	Monitor		2					
Monitor		3								
Sextant		1								
							ì			
VEHICLES:					-					
CONSUMAE	BLES:									
ACCOMMO	DATION: AI	BOARD I	RIG							
AUTHORISE	ED CONTRA	ACT CHA	NGES / COMI	MENTS:						
Pa	rty Chief S	ignature		Client	Repres	entative Signature:	D O R Number			
\mathbb{N}	All			ge	/Jen	Lenloff	P0144-01			
				/ /		7/10				

-LILITI, UM	NTOS			LO	CATIC	N: AMRIT-1	DATE: 13/11/2004		
PROJECT: I	Rig Move	to Amr	it-1	VESSE	L: JA	CK BATES	JOB NO: P0144		
FROM	то			SUMMARY OF OPERATIONS					
0000	0959	Fugr	o personnel on						
0959	1009	Cond	duct Check fix.						
1009	1860	Fugr	o personnel on	standby.					
1860	1900	Fugr	o personnel atte	end muste	er drill.				
1900	2359	Fugr	o personnel on	standby.					
	······································								
	····	NO.	AHV EQUIP		NO .	PERSONNEL M Fimslie	TITLE Surveyor / PC		
Starfix DGPS	····	2	Starfix.Seis (F		2	M.Elmslie	Surveyor / PC		
Starfix DGPS Starfix.Seis		2	Starfix.Seis (F Starfix.VBS	Remote)	2				
Starfix DGPS Starfix.Seis Demodulator	;	2	Starfix.Seis (F	Remote)	2	M.Elmslie	Surveyor / PC		
Starfix DGPS Starfix.Seis Demodulator Gyro Compas	;	2 1 2	Starfix.Seis (F Starfix.VBS Telemetry Mo	Remote)	2 2 2	M.Elmslie	Surveyor / PC		
Starfix.Seis	;	2 1 2 1	Starfix.Seis (F Starfix.VBS Telemetry Mo	Remote)	2 2 2	M.Elmslie	Surveyor / PC		
Starfix DGPS Starfix.Seis Demodulator Gyro Compas Monitor	SS	2 1 2 1 3 1	Starfix.Seis (F Starfix.VBS Telemetry Mo Monitor	Remote)	2 2 2	M.Elmslie	Surveyor / PC		
Starfix DGPS Starfix Seis Demodulator Gyro Compas Monitor Sextant VEHICLES: CONSUMABI ACCOMMOD	LES:	2 1 2 1 3 1	Starfix.Seis (F Starfix.VBS Telemetry Mo Monitor	odem	2 2 2	M.Elmslie	Surveyor / PC		
Starfix DGPS Starfix.Seis Demodulator Gyro Compas Monitor Sextant VEHICLES: CONSUMABI ACCOMMOD AUTHORISEI	LES:	2 1 2 1 3 1	Starfix.Seis (F Starfix.VBS Telemetry Mo Monitor	Remote) odem	2 2 2	M.Elmslie	Surveyor / PC Technician		

CLIENT: SA	ANTOS			LO	CATIC	N: AMRIT-1	DATE: 14/11/2004
PROJECT:	Rig Move	to Amr	it-1	VESSE	L: JA	CK BATES	JOB NO: P0144
FROM	то			SL	JMMAR	Y OF OPERATIONS	
0000	1200	Fugr	o personnel o	n standby.			
1200	2359		o personnel o				
						<u> </u>	
					,		
-				·			
	,						
	,						
RIG EQUIP	MENT	NO.	AHV EQU	IDMENT	NO.	PERSONNEL	TITLE
Starfix DGPS		2	Starfix.Seis		2	M.Elmslie	Surveyor / PC
Starfix.Seis		1	Starfix.VBS		2	L.Clark	Technician
Demodulator	•	2	Telemetry		2	L.Olaik	Teormoran
Gyro Compa	,	1	Monitor		2		
Monitor		3	Internation	***************************************	_		
Sextant		1	4			-	
VEHICLES:		l			1		
CONSUMAE	BLES:						
ACCOMMO	DATION: A	BOARD	RIG				
AUTHORISE	ED CONTRA	ACT CHA	ANGES / COM	MENTS:			
Pa	rty Chief S	ignature	•	Client	Repres	entative Signature:	D O R Number
M	the	and the second		91	- 16.	Sand M	P0144-03

CLIENT: SA	ANTOS			LO	CATIC	ON: AMRIT-1	DATE: 15/11/2004
PROJECT:	Rig Move	to Amr	it-1	VESSE	L: JA	CK BATES	JOB NO: P0144
FROM	ТО			SU	JMMAR	Y OF OPERATIONS	:
0000	1200	Fugr	o personnel c	on standby.			
1200	2359	Fugn	o personnel c	on standby.			
							-
-					·		
			Miles de la comptanta de la co				
				-			
		_					
						_	
RIG EQUIP		NO.	AHV EQU	IPMENT	NO.	PERSONNEL	TITLE
Starfix DGPS	3	2	Starfix.Seis	(Remote)	2	M.Elmslie	Surveyor / PC
Starfix.Seis		1	Starfix.VBS	}	2	L.Clark	Technician
Demodulator	•	2	Telemetry	Modem	2		1714
Gyro Compa	SS	1	Monitor		2		
Monitor		3					
Sextant		1					
·							
VEHICLES:							
CONSUMAE	BLES:						
ACCOMMO	DATION: AF	30ARD I	RIG				
AUTHORISE	D CONTRA	ACT CHA	ANGES / COM	MMENTS:			
Pa	rty Chief Si	gnature		Client	Repres	entative Signature:	D O R Number
MAF)	A.		15		11 1 . 0.	P0144-04
11.10				-Jer	h /	derhenle III	

CLIENT: SAN	NTOS			LO	CATIO	N: AMRIT-1	DATE: 16/11/2004
PROJECT: R	Rig Move t	o Amri	t-1	VESSE	L: JAC	CK BATES	JOB NO: P0144
FROM	ТО			SU	JMMAR	Y OF OPERATIONS	
0615		Rig s	tarts to de-balla	asting.			
1406		Com	mence anchor	recovery o	operatio	ons.	
1627		De-ba	allasting compl	ete.			4-1
2230		L.Ast	rid connected t	o tow brid	lle.		
				- dry			49.41

					#** * 1 · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , , ,
RIG EQUIPM	IENT	NO.	AHV EQUIP	MENT	NO.	PERSONNEL	TITLE
Starfix DGPS		2	Starfix.Seis (I	Remote)	2	M.Elmslie	Surveyor / PC
Starfix.Seis		1	Starfix.VBS		2	L.Clark	Technician
Demodulator		2	Telemetry M	odem	2		
Gyro Compass	S	1	Monitor		2		
Monitor		3					
Sextant	·	1					
VEHICLES:							
CONSUMABL	.ES:						
ACCOMMODA	ATION: AB	OARD I	RIG				
AUTHORISED	CONTRAC	CT CHA	NGES / COMM	MENTS:			
Part	y Chief Sig	nature		Client	Repres	entative Signature:	D O R Number
N	All			Jole	/ - /2	terhorloff	P0144-05
	,						

CLIENT: SA	ANTOS			LO	CATIC	N: AMRIT-1	DATE: 17/11/2004
PROJECT:	Rig Mov	e to Amr	rit-1	VESSE	L: JA	CK BATES	JOB NO: P0144
FROM	то			3			
0000		Cont	inuing anchor r	ecovery c	peratio	ns.	
0300		Last	anchor off bott	om.			
0600		Rig I	Position 38°38'	45" S 141	°33'14"	E COG 148° DTG	17.6 N m
1000		Rig	at Amrit-1 locati	on.			
1248		Com	mence running	Anchor #	4.		
1415		Ancl	nor #4 on bottor	n 564129	E, 569	4187 E (L.Caroline)	
1940		Anch	nor #8 on bottor	m 563419	E, 568	6692 N (L.Caroline)	
2020		L.As	trid released fro	om tow bri	idle.		
2334		Anch	nor #5 on bottor	n 566753	B E, 569	1572 N (L.Caroline)	
RIG EQUIP Starfix DGPS Starfix.Seis		NO. 2	AHV EQUIF Starfix.Seis (Starfix.VBS		NO. 2 2	PERSONNEL M.Elmslie L.Clark	TITLE Surveyor / PC Technician
Demodulator	Γ	2	Telemetry M	lodem	2		
Gyro Compa	ass	1	Monitor		2		
Monitor	7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	3					
Sextant		1	·				
VEHICLES:							
CONSUMAE	BLES:						
ACCOMMO		ABOARD	RIG				
		-	ANGES / COM	MENTS:		l	
Pa	rty Chief	Signature	:	Client	Repres	entative Signature:	D O R Number
M	ACLI	7		I.		Herberhoff	P0144-06

CLIENT: SA	ANTOS			LO	CATIC	N: AMRIT-1	DATE: 18/11/2004
PROJECT:	Rig Move	to Amri	t-1	VESSE	L: JA	CK BATES	JOB NO: P0144
FROM	то			SL	JMMAR	Y OF OPERATIONS)
0001		Anch	or #1 on botto	m 560223	E, 568	8631 N (L.Astrid)	
0510		Anch	or #6 on botto	m 567298	E, 568	9375 N (L.Caroline)	
0523		Anch	or #2 on botto	m 559974	E, 569	1076 N (L.Astrid)	
0952		Anch	or #7 on botto	n 565596	E, 568	7223 N (L.Caroline)	
1000		Com	mence pre-ten	sioning.			
1034		Anch	or #3 on botto	m 561944	E, 569	3158 N (L.Astrid)	
1120		Pre-to	ensioning com	plete.			
1130	1200	Rig n	noving over loc	cation.			
1258	1308			fix, drillst	tem 2.6	m on a bearing of 42.	7°(T) from the intended
1310	2359		-1 location. o personnel on	standby.			
							`
			,		······		
-							
RIG EQUIP	MENT	NO.	AHV EQUIF	PMENT	NO.	PERSONNEL	TITLE
Starfix DGPS	3	2	Starfix.Seis (Remote)	2	M.Elmslie	Surveyor / PC
Starfix Seis		1	Starfix.VBS		2	L.Clark	Technician
Demodulator	ſ	2	Telemetry M	lodem	2		
Gyro Compa	iss	1	Monitor		2		:
Monitor	,	3					
Sextant	,	1				,	
VEHICLES:			!	·	1		
CONSUMAE	BLES:						
ACCOMMO	DATION: A	BOARD I	RIG				
AUTHORISE	ED CONTRA	ACT CHA	NGES / COM	MENTS:			
Pa	rty Chief S	ignature		Client	Repres	entative Signature:	D O R Number
	MARK	L		John	14	echenhold	P0144-07

CLIENT: SA	ANTOS			LO	CATIC	N: AMRIT-1	DATE: 19/11/2004
PROJECT:	Rig Move	to Amr	it-1	VESSE	L: JA	CK BATES	JOB NO: P0144
FROM	то			SL	JMMAR	Y OF OPERATIONS	3
0000	1200	Fugr	o personnel on	standby.			
1200	1600	Fugr	o personnel on	standby.			
1600		L.Cla	ark departs rig.				
1600	2359	Fugr	o personnel on	standby.			
-							
				<u> </u>			
			, , , , , , , , , , , , , , , , , , ,				
						/,	
RIG EQUIP	MENT	NO.	AHV EQUIP	MENT	NO.	PERSONNEL	TITLE
Starfix DGPS	3	2	Starfix.Seis (Remote)	2	M.Elmslie	Surveyor / PC
Starfix.Seis		1	Starfix.VBS		2	L.Clark	Technician
Demodulator	r	2	Telemetry M	odem	2		
Gyro Compa	iss	1 .	Monitor		2		
Monitor		3					
Sextant		1					
VEHICLES:							
CONSUMAE	3LES:						
ACCOMMO	DATION: AF	30ARD	RIG				
AUTHORISE	ED CONTRA	ACT CHA	ANGES / COMM	MENTS:			
Pa	rty Çhief Si	gnature	:	Client	Repres	entative Signature:	D O R Number
M	1A) ()					P0144-08
	HUM			Jol	- /	erhenla M	

CLIENT: SA	ANTOS			LC	CATIC	N: AMRIT-1	DATE: 20/11/2004
PROJECT:	Rig Move	to Amr	-it-1	VESSE	L: JA	CK BATES	JOB NO: P0144
FROM	то			SI	JMMAR	Y OF OPERATIONS	<u> </u>
0000	1200	Fugr	o personnel on	standby.			
1715		Spuc	dding in of 30' c	asing.			
1913	2013	Conc	duct preliminary	/ fixing.			
2359		Fugr	o personnel on	standby.			
					*		
							
							•
:							
RIG EQUIP	MENT	NO.	AHV EQUIP	MENT	NO.	PERSONNEL	TITLE
Starfix DGPS	3	2	Starfix.Seis (I	Remote)	2	M.Elmslie	Surveyor / PC
Starfix.Seis		1	Starfix.VBS		2	7 V V V V V V V V V V V V V V V V V V V	
Demodulator	•	2	Telemetry M	odem	2		
Gyro Compa	ss	1	Monitor		2		
Monitor		3					
Sextant		1					
VEHICLES:	<u> </u>		<u>-</u>				
CONSUMAB	BLES:						
ACCOMMOD	DATION: AE	30ARD I	RIG				
AUTHORISE	D CONTRA	ACT CHA	ANGES / COMM	MENTS:			
Pa	rty Chief Si	gnature		Client	Repres	entative Signature:	D O R Number
!	MACLI			91	16	1.1.11	P0144-09

CLIENT: SA	ANTOS			LC	CATIC	DN: AMRIT-1	DATE: 21/11/2004
PROJECT:	Rig Move	to Amr		VESSE	L: JA	CK BATES	JOB NO: P0144
FROM	то			Sl	JMMAR	Y OF OPERATIONS	<u> </u>
0000	1200	Fugr	o personnel o				
1200	1820	Fugr	o personnel o	n standby.			
1820	1920	Cond	duct final fixinç	g, drillstem	2.9m or	n a bearing of 338.7°	°(T) from intended location.
1920	2359		o personnel o				
							
							
				- to the second			
RIG EQUIP	MENT	NO.	AHV EQUI	PMENT	NO.	PERSONNEL	TITLE
Starfix DGPS	3	2	Starfix.Seis	(Remote)	2	M.Elmslie	Surveyor / PC
Starfix.Seis		1	Starfix.VBS		2		
Demodulator	•	2	Telemetry N	V lodem	2		
Gyro Compa	ISS	1	Monitor		2		
Monitor		3					
Sextant		1					
VEHICLES:							
CONSUMAE	BLES:						
ACCOMMO	DATION: AF	30ARD	RIG				
AUTHORISE	D CONTRA	ACT CHA	ANGES / COM	IMENTS:			•
Pa	rty Chief Si	gnature	:	Client	Repres	entative Signature:	D O R Number
MA	fll	,		01	11	shoots III	P0144-10

CLIENT: S	ANTOS			LOCATION	ON: AMRIT-1	DATE: 22/11/2004
PROJECT:	Rig Move	to Amı	rit-1 V	ESSEL: JA	CK BATES	JOB NO: P0144
FROM	то			SUMMAF	RY OF OPERATION	S
0000	1200	Fugr	o personnel on sta	indby.		
1200	1800	Fugr	o personnel on sta	ndby.		
1800	1930	M.EI	mslie departs rig a	nd travels to	Melbourne.	
1840	2240	Trav	el from Melbourne	to Perth.		
RIG EQUIP	MENT	NO.	AHV EQUIPME	ENT NO.	PERSONNEL	TITLE
Starfix DGPS	3	2	Starfix.Seis (Ren	note) 2	M.Elmslie	Surveyor / PC
Starfix.Seis		1	Starfix.VBS	2		
Demodulator		2	Telemetry Mode	em 2		
Gyro Compa	ISS	1	Monitor	2		
Monitor		3				
Sextant		1				
			440,000,000,000,000			
VEHICLES:						
CONSUMAE						
ACCOMMO	DATION: A	BOARD	RIG		<u> </u>	
AUTHORISE	ED CONTRA	ACT CHA	ANGES / COMMEN	NTS:		
Pa	rty Chief Si	gnature	: C	lient Repres	entative Signature:	D O R Number
MA	chil		9	Il Her	hwlo!//	P0144-11
			//		70	

APPENDIX B FINAL POSITIONING DATA

RIG POSITION FIELD REPORT

Amrit-1

Client:

Santos Ltd

Job Number :

P0144

Rig:

Jack Bates

Date:

21-Nov-04

Rig Move to Amrit-1

Project:

Attention: J.Herkenhoff

Santos Survey Representative

Copy:

D.Atkins

Santos Company Man

The surface location of the drill stem on the Jack Bates was derived from one hour of observations of the Primary Differential GPS data, between 1819 hrs and 1919 hrs on completion of all anchor pre-tensioning, spudding in of the 30' casing and deployment of the BOP. The results of the observations are as follows:

Geographical	Coordinat	es	Grid Coordinates			
Latitude	38 °	56	•	5.201 " South	Easting	563729.57
Longitude	141	44		07.075 " East	Northing	5690204.12

The drift stem position is

2.9 m at a bearing of 338.7 " True from the design location.

The Client supplied design location for Amrit-1:

Geographical (Coordinates		Grid Coordin	ates	
Latitude	38 °	56 '	5.290 " South	Easting	563730.64
Longitude	141 °	44 '	7 120 " East	Northing	5690201.38

The Jack Bates's rig heading, derived from the mean of one hour's observation

of the gyro heading is:

217-72 NAE

217.26 ° True

-218-25 ° Grid

All coordinates in this field report are quoted in the following coordinate system:

Datum:

GDA 94

Projection:

Spheroid:

MGA

Zone (Central Meridian) 54

141 ° East

The approximate positions of the rig anchors corrected for catenary are as follows:

Anchor	Easting	Northing	Bearing (*)
1	561734	5689320	245.1
2	561739	5690662	282,7
3	562723	5691882	328.2
4	563963	5692588	5.4
5	565549	5691020	64.9
6	565548	5689787	102.7
7	564895	5688331	147.3
8	563543	5688065	184.8

Party Chief/Surveyor:

M.Elmslie

Client Representative:

J. Herkenhoff

DOC: FSHY48-3

REV: 2

PAGE 1 OF 1 DATE: 27/4/01@

DRILLING RIG POSITION

MODU JACK BATES

Location: Amrit-1

FINAL FIX POSITION NOTIFICATION

To:

Ole Moller (Offshore Drilling Manager: Santos Ltd)

Dave Atkins (Company Man: Santos Ltd)

From:

John Herkenhoff (QC Surveyor: Santos Ltd/ECL)

Date:

21/11/04

Time: 2000hrs

DGPS Final Fix

On completion of spudding the well, running of the 30" casing and levelling of the guide base and BOP, 720 Differential GPS position fixes were recorded at 5 second intervals from 1819hrs to 1919hrs on Sunday, 21 November 2004.

Drill-stem location:

Spheroid: GRS80

Datum: GDA94

Projection: UTM, CM 141° E (Zone 54)

Latitude:

038° 56' 05.20" South

Longitude:

141° 44' 07.08" East

Easting :

563 729.6 metres

Northing:

5 690 204.1 metres

This position is 2.9 metres on a bearing of 338.7°(True) from the intended location.

Final Rig Heading: 217.3° (True)

Intended Location:

Latitude

038° 56′ 05.29" South

Easting:

563 730.6 metres

Longitude:

141° 44' 07.12" East

Northing:

5 690 201.4 metres

Notes:

Intended Location from Drilling Program (revision 0: Oct. 04).

Mick Elmslie

Fugro Survey Pty Ltd

John Herkenhoff

ECL Pty Ltd

ECL AUSTRALIA
AN ECL GROUP COMPANY

FINAL CALCULATION SUMMARY SHEET

Client	Santos Ltd
Job No.	P0144
Surveyor	M.Elmslie

DRILLING RIG	Jack Bates
LOCATION	Amrit-1
DATE	21/November/2004

FUGRO

	MGA	
	CRP - Easting	563729.570
1000	CRP - Northing	5690204.120

GDA 94	d	m	s
Latitude	-38	56	5.2013
Longitude	141	44	7.0746
Grid Conv.(DMS)	0	27	43.5711
Grid Conv.(DEC)		0.46	
PSF	0.99	96500	10
Height			0.000

	Vessel Heading	d	m	s
	Heading (True dms)	217	15	36,0000
	Heading (True degs)		217.	26
2000000	Heading (Grid dms)	217	43	19.5711
	Heading (Grid degs)		217.	72

WGS 84	d	m	s
WGS 84 Latitude Longitude	-38	56	5.1825
Longitude	141	44	7.0846
Height			-0.060

Navigation Antenna	Vessel Offsets		Calc'd Bearing & Distance			Distance	MGA			GDA 94		94	WGS 84		84
rtarigation / theolina	X	у	d	m	S	distance	East	North	1	d	m	S	d	m	s
Primary Antenna	9.94	35.43	233	23	37	36.798	563700.03	5690182.18	Lat.	-38	56	5.9208	-38	56	5.9020
									Long.	141	44	5.8550	141	44	5.8651
Secondary Antenna	18.2	37.55	243	34	51	41.728	563692.20	5690185.55	Lat.	-38	56	5.8134	-38	56	5.7945
o doctridary / mitorina		07.00							Long.	141	44	5.5287	141	44	5.5387

3.25" Chain = 91.45 lbs/ft wet 3" Chain = 77.90 lbs/ft wet

Anchor	Fairlead Offs		ead Offsets Grid Bng/Distance Fairlead to Anchor			Calc'd Anchor Position				
	х	у	z	Dec. Deg	distance	East	North			
1	34.25	31.35		245.7	2139.3	561733.570	5689319.942			
2	34.25	25.50		283.2	2000.3	561739.414	5690661.678			
3	34.25	-25.80		328.7	1914.9	562723.435	5691881.689			
4	34.25	-31.70		5.9	2350.2	563963.457	5692587.901			
5	-34.25	-31.70		65.4	1950.2	565549.277	5691020.083			
6	-34.25	-25.80		103.2	1823.6	565547.840	5689787.157			
7	-34.25	25.50		147.8	2165.3	564894.877	5688330.764			
8	-34.25	31.35		185.3	2101.9	563543.323	5688065.417			

			5 Offairi = 77,30 ibs/it wet						
Chain Wt.	(lbs/ft)	77.9	2.75" Chain = 65 lbs/ft wet						
Chain Wire Paid out (ft)	Water Depth (ft)	Chain Tension (lbs)	1/2 Catenary Length	Horizontal Distance to Touchdown	Horizontal Distance to Anchor (ft)	Horizontal Distance to Anchor (m)			
10262	5397.0	381000	6985.6	3742.1	7018.6	2139.3			
9947	5364.0	381000	6712.9	3328.7	6562.7	2000.3			
9868	5020.0	319000	5803.7	2218.2	6282.5	1914.9			
10262	4495.0	339000	6062.6	3511.2	7710.6	2350.2			
9415	4462.0	302000	5336.2	2319.6	6398.4	1950.2			
9927	5095.0	310000	5628.2	8.2 1684.1 5982.9		1823.6			
9898	4806.0	359000	6369.7	3575.5	7103.9	2165.3			
9448	4783.0	383000	6757.5	4205.6	6896.1	2101.9			

APPENDIX C DGPS AND GYRO CHECKS

RIG POSITIONING

GEODESY AND CO-ORDINATE CHECK LIST

Client:

Santos Ltd

Job Number: Date:

P0144

Rig:

Jack Bates

Rig Move to Amrit-1

16/November/2004

1. CONFIRMATION OF PROPOSED RIG COORDINATES and HEADING.

Well Name

Project:

Amrit-1

Ensure agreement with Client onsite prior to any positioning

Well Location – Latitude

38 56 5.290 S

Well Location - Longitude

141 44 7.120 E

Operations. OK (?)(Y) N.

Rig Heading (True)

215 ° T

2. GEODETIC PARAMETERS (WGS84 to LOCAL DATUM)

DATUM: (WGS84 to

Dx -0.02660 -0.03030 Dy

Ensure agreement with Client onsite prior to positioning Operations. OK (?) (Y) N.

Local Datum)

Dz -0.03390

Projection:

Rx 0.013416 Ry 0.012379

Rz 0.013999 Ds 0.00552 ppm

UTM Zone

54

Central Meridian

141 ° East

3. CHECK TRANSFORMATION OF SITE COORDINATES.

Well Location - Easting

563730.64

Ensure agreement with PCNav / Starfix.Seis. OK (?) (Y) N If not, CHECK and RECALC.

Well Location - Northing Convergence at Location 5690201.38 0.46

Rig Heading (° Grid)

215.46

4. MEAS. ANT. OFFSETS from ANT. TO D/STEM (Rel. to Date (Measure two (2) separate directions, verifying closure.)	atum) NAV #1 SYSTEM	NAV #2 SYSTEM
Delta X(m)	9.94	18.2
Delta Y(m)	35.43	37.55
Angle between Rig Centreline and Antenna(s) (Grid)	15.672	25.9
Distance between Drill Stem and Antenna(s)	36.80	41.73

5. MANUAL COORDINATE VERIFICATION FOR ANTENNAS NAV #1 SYSTEM NAV #2 SYSTEM Proposed Drill Stem Position Easting 563730.6 563730.6 **Northing** 5690201.4 5690201.4 Drill Stem to Antenna Proposed Hdg (G) 215.46 215.46 Brg (G) = Prop. Hdg. + Angle btwn centreline and antenna 231.13 241.32 Distance (m) 36.80 41.73 Calculated Antenna Easting 563701.99 563694.03 Coordinates (Local) **Northing** 5690178.29 5690181.35 Latitude 38 56 6.0465 S 38 56 5.9491 S Longitude 141 44 5.9377 E 141 44 5.6061 E

Calculated Proposed Antenna Coords (WGS 84) Latitude 38 56 6.0276 S 38 56 5.9302 S Longitude 141 44 5.9477 E 141 44 5.6162 E

Surveyor:

M.Elmslie

Client Rep

6. POST RIG MOVE - OBSERVED ANTENNA COORD / **Observed WGS84 Antenna Positions** Latitude

M.Elmslie

J.Herkenhoff_ NAV.SYS #1

NAV.SYS #2

Longitude 141 44

38 56 05.957 05-826

38 56 05.847 05.501 141 44 "E

Ensure agreement between datculated and observed coordinates. If NO, check calcs, antenna offsets. OK (?) N Surveyor: Surveyor:

Client Rep &

Date J.Herkenhoff 7

DOC: FSHY48-1

REV: 2

PAGE 1 OF 1 DATE: 8/1/01©

GYRO COMPASS CALIBRATION - CALCULATION SUMMARY

Client: Rig:

Santos

Jack Bates

Job Number: P0144

Date:

9-Oct-04

Deg Min Sec 90 0

Correction Angle (RO to Lubberline)

Range

Project: Rig move to Amrit-1 Bass Strait Victoria, Australia

Obs.		te UTC	Instrument		ıt Position			Calculated Sun Azimuth at		Observed Direction to Sun		Calc'd	Obs'd	Sun Semi	(C-O)								
No.	Date		UTC [UTC	e UTC	• UTC	La	atitud	Э	Lor	ngitu	de			UTC						Vessel Hda	Vessel	Diameter
140.			Deg	Min	Sec	Deg	Min	Sec	Deg	Min	Sec	Dec. Deg	Deg	Min	Sec	Dec. Deg	v cccci i i ag	Hdg	Biamoto	Dograda			
1	8-Oct-04	20:45:12	-36	11	9	136	28	46	94	30	13	94.504	33	50	12	33.837	150.667	330.7	0.2673	-180.03			
2	8-Oct-04	20:47:34	-36	11	19	136	28	55	94	9	22	94.156	34	38	12	34.637	149.519	329.7	0.2673	-180.18			
3	8-Oct-04	20:52:04	-36	11	39	136	28	15	93	30	15	93.504	33	55	0	33.917	149.588	330.0	0.2673	-180.41			
4	8-Oct-04	20:54:47	-36	11	51	136	28	27	93	6	17	93.105	42	9	24	42.157	140.948	320.7	0.2673	-179.75			
5															l								
6															l								
7															ŀ								
8																							
9																							
10				/	h l	\wedge																	

Surveyor:

Client Rep :

M.Elmslie

J.Herkenhoff

Required Starfix.Seis Gyro Correction =

Mean -180.09 0.28 Std. Deviation Maximum -179.75 Minimum -180.41

0.66

Entered During calibration Therefore new correction -180.09°

NOTE:Gyro correction of +0.00°

RIG POSITIONING DGPS CHECK LIST (PRE RIG MOVE)

Client:

Santos Ltd

Job Number:

P0144

Rig:

Jack Bates

Date:

13/11/2004

Project: Rig Move to Amrit-1

1) ESTABLISHED WELL COORDINATES

Observe 10 minutes of DGPS data, logging both Primary and Secondary systems. Establish a mean drill stem position from the primary navigation system and compare against the established well coordinates.

	Easting	Northing
Established Well Coordinates	541241.78	5734911.33
Observed Coordinates	541244.85	5734914.18
Differences	-3.1	-2.8

Ensure agreement OK(?) Y / N

If No, Check and ensure that rig has not moved off location.

2) PRIMARY/SECONDARY NAV SYSTEMS

From the data logged above, compare the observed co-ordinates for both Primary and Secondary navigation systems

	Easting	Northing
Primary Navigation	541244.85	5734914.18
Secondary Navigation	541244.10	5734913.00
Differences	0.75	1.18

Ensure agreement OK(?) Y / N

If No, Check antenna offsets and gyro calibration.

Party Chief/Surveyor:

Client Representative:

DOC: FSHY48-2

REV: 2

PAGE 1 OF 1 DATE: 14/9/00©

APPENDIX D PROJECT COORDINATE LISTING AND PROCEDURES

RIG MOVE PROCEDURES

FOR

TRANSOCEAN "JACK BATES"

FROM: CALLISTER 1

TO: AMARIT 1

OCTOBER 2004

Prepared by:

Offshore Marine Services Pty Ltd

Marine House First Avenue Applecross 6153

Western Australia

Tel: +61 8 6310 5600 Fax: +61 8 6310 5666 Email: info@omsau.com Web: www.omsau.com

	DOCUMENT ISSUE RECORD								
Rev No	Date	Status	Author	Checked	Approved				
00	15/10/04	Draft	IK						
01	26/10/04	Detail load share	IK						
02	26/10/04	Detail Payout Table	IK						
03	27/10/04	Various	IK						
04	28/10/04	Various	IK						

TRANSOCEAN MARINE OPERATION	S
RIG MOVE PROCEDURES	
JACK BATES	
REF:	
Procedures Prepared by:	Capt I. Kerr - OMS
	Oapt I. Iteli - Civic
Procedures Checked by:	
•	Capt A. Morgan – Operations Manager, OMS
Procedures Approved by:	S. Thomson – Rig Manager, Transocean
	·

DISTRIBUTION

Copy No	Issued To	Status
1	Transocean Document Control	Master / Uncontrolled
2	Transocean Tow master/OIM	2 x Uncontrolled
3	OMS	1 x Uncontrolled

CONTENTS

- 1. Introduction
- 2. Personnel Responsibilities
- 3. Location Details
- 4. Preamble
- 5. Support Vessels
- 6. Passage from Callister 1 to Amarit 1
- 7. Anchor Recovery at Callister 1
- 8. Anchor Deployment at Amarit 1
- 9. Insurance Cross Tensioning
- 10. Anchor Slipping
- 11. Additional Mooring Equipment

Appendix 1 – Drawings

- Bathometry layout OMS/JB-Amarit 1-00
- Overall mooring layout OMS/JB-Amarit 1-001
- Initial run in for anchor 4 OMS/JB-Amarit 1-002
- Wire/tension pay out table 4 OMS/JB-Amarit 1-003
- Installation Procedures sheet 1 of 6 OMS/JB-Amarit 1-004
- Installation Procedures sheet 2 of 6 OMS/JB-Amarit 1-005
- Installation Procedures sheet 3 of 6 OMS/JB-Amarit 1-006
- Installation Procedures sheet 4 of 6 OMS/JB-Amarit 1-007
- Installation Procedures sheet 5 of 6 OMS/JB-Amarit 1-008
- Installation Procedures sheet 6 of 6 OMS/JB-Amarit 1-009

1. INTRODUCTION

1.1 General

The purpose of this document is to ensure that the **JACK BATES** rig move operation, from the 'Callister 1' location and subsequent passage to the "Amarit 1", is conducted in a safe and efficient manner, with all personnel involved having due regard to 'Accountability for Safety'. The integrity of any pipelines and sub-sea equipment is of paramount importance and must be safeguarded at all times.

1.2 Passage

Callister 1 to Amarit 1 is approximately 27Nm @ 5.5 knots = 4.9 hours.

1.3 Assumptions

These procedures assume the following:

- The proposed anchorage location is in a water depth of approx 1395 metres.
- The AHT's will be equipped as specified in Section 5.0.
- The tow vessel and support AHT will be manned to allow continuous (24-hour) operation in all respects.

The move will be conducted in accordance with the Transocean Operations Manual.

Where possible, all rig move vessels will be issued with a copy of this rig move procedure prior to departure from port and be briefed by the Towmaster on the procedures. Vessel Masters will be required to review the procedure and comment accordingly. Where a port visit is not possible, procedures will be issued to the vessels offshore.

No anchor handling operations are to be conducted when the rig or AHT are over pipelines or other sub-sea assets.

Weather forecasts shall be obtained prior to each part of the operation and suitable windows identified to allow the anchor recovery and deployment operations to be conducted safely and without interruption. Weather forecasts will be supplied by Santos and sent to the rig daily for the departure and arrival locations, and for the tow route.

The following procedures are for the guidance of all parties involved with the move, but any departure from the procedures is acceptable provided that it has been agreed between the Transocean Senior Representatives, and is made in order to ensure a safe and efficient operation.

2.0 PERSONNEL RESPONSIBILITIES

The following descriptions of responsibility refer to the KEY personnel who will be involved in the rig move of the semi-submersible drilling unit 'JACK BATES'.

2.1 The 'JACK BATES' OIM

Will have total responsibility for the safety of the rig and personnel at all times as per statutory requirements and TRANSOCEAN policy. May delegate some of the rig move duties to a suitably qualified person such as the TRANSOCEAN Towmaster.

Will be the sole point of contact through which all rig move notifications/exterior communications will pass.

Will decide when it is safe and practicable to commence operations within the limitation of the unit's Operations Manual, having consulted with the Transocean Towmaster.

Will ensure the correct placement of competent rig personnel to ensure the safe deployment of anchors and handling of vessel tow gear.

He will be responsible for ensuring that a pre-rigmove meeting is held onboard, and minuted accordingly. An appropriate entry is to be made into the logbook to that effect.

Will be responsible for the conduct and safety of the tow and will give instructions to the towing vessels with regard to tow wire deployment, passage planning, courses and speeds, after consultation with the Transocean Towmaster and vessel Masters.

Will ensure the stability of the rig at all times, including making any adjustments to trim or heel as necessary.

Will ensure that all navigation signals are displayed as appropriate.

2.2 The Transocean Towmaster

Will liaise with and advise the OIM of the requirements for ensuring the integrity of any and all third party assets.

Will liaise with and advise the OIM regarding the correct deployment of vessels associated with the rig move operation.

Will be responsible together with the OIM for ensuring that all marine operations are conducted in such a manner as to safeguard the integrity of all subsea equipment, rig and tow.

Will provide all interested parties with such information and updates on rig activities as they may require.

He will be responsible for conducting the onboard pre-rig move meeting, and briefing the operation in accordance with these guidelines. He will also be responsible for ensuring that the Anchor Handling Vessels (AHT's) have been briefed prior to work commencing.

Will ensure the correct deployment of all-mooring systems and associated equipment.

Will ensure the load sharing methodology for deployment is strictly adhered to.

Will be responsible for the ensuring that all key personnel involved in the rig move receive a detailed briefing prior to the commencement of anchor deployment operations.

Will ensure that all marine equipment i.e., pennants, shackles etc. are in good condition, certificated where required and correctly recorded upon deployment.

Will ensure that all non-used items of mooring equipment are correctly manifested for return to the shore base on completion of the rig move.

Will complete a detailed report including recommendations and suggestions.

2.3 Vessel Masters

Will ensure that appropriate navigation warnings are issued at regular intervals.

Will ensure AUSREP reports as required will issued for tug and tow.

Will be responsible for ensuring all anchor-handling operations are conducted in a safe manner with due regard to safe working practices and the practices of good seamanship.

Will constantly monitor the condition of any mooring equipment and any damage noted is to be immediately relayed to the Transocean Towmaster.

2.4 The Santos Marine Representative

Will liaise and advise the "JACK BATES" Master/OIM of the requirements for ensuring the integrity of all Santos and third party assets.

Will liaise with and advise the Santos Drilling Representative and the "JACK BATES" Master/OIM on all operations associated with the mooring deployment operation.

Will be responsible for ensuring that all key personnel involved in the rigmove receive a detailed briefing prior to the commencement of anchor operations.

Will be responsible for ensuring the Quality Control checks on the navigation equipment have been correctly carried out and will also ensure that any necessary co-ordinate transformations are correctly computed and applied to the data.

Will provide quality control for the rig positioning on behalf of Santos. He will work closely with the OIM, the Transocean Towmaster and the Rig Positioning Contractor to ensure the rig is correctly positioned during anchor deployment operations.

2.5 Contact Numbers

The following numbers are included for use by personnel connected with rig move operations:

Ole Moller - Santos Offshore Drilling Manager

Phone: +(08) 8224 7950 Cell: + 0418 931 607

e-mail: ole.moller@santos.com

John Lohf - Santos Logistics Supervisor (03) 5521-1122 0412 066 642 JohnLohf@bigpond.com

Michelle Stone - Santos Logistics Coordinator Ph: 03 5521 1422 Mob: 0412 321 756 mstone.office@iinet.net.au

Mike Sukudom - Transocean Country Manager Ph: 08 9213 3717

Mobile: 0412 126 458

msukudom@perth.deepwater.com

Sandy Thomson – Rig Manager – "Jack Bates" Ph: 08 9213 3721 Mobile: 0409 232 905 sthomson@perth.deepwatre.com

3.0 LOCATION DETAILS

The present location of the JACK BATES is Callister 1, SSW of Portland, Victoria.

CALLISTER 1

Latitude:

38° 31' 59.73" South

Longitude:

141° 29' 23.29" East

The proposed location for the JACK BATES is Amarit 1, S of Portland, Victoria.

AMARIT 1

Latitude:

38° 56' 05" South

Longitude:

141° 44' 07" East

4.0 PREAMBLE

4.1 General

The purpose of this document is to ensure that the 'JACK BATES' rig move operation, from the "Callister 1" location in 125 m WD to the "Amarit 1" location in 1395m WD is conducted in a safe and efficient manner. The integrity of any / all subsea equipment is of paramount importance and must be safeguarded at all times.

These approved procedures shall be followed as closely as circumstances permit, having due regard for the limitations of the unit and its assisting vessels.

Prior to the commencement of anchor recovery operations at the "Callister 1" location, weather forecasts shall be obtained and suitable weather windows identified to allow the operation of recovery and deployment at the "Amarit 1" location to be safely completed without interruption.

Care should be exercised when handling the secondary anchors close to the rig i.e. transferring to and from AHT's, this is to prevent the anchor falling into the cut away section of the bolster.

All rig move vessels will be issued with a copy of these rig move procedures prior to departure from port, and the Masters and Chief Officers briefed on the rig move operation. The vessel masters will be required to review the procedure and comment accordingly.

A pre-rig move meeting will be held onboard the rig prior to the commencement of operations where all key personnel shall be fully briefed by the Transocean Towmaster prior to the commencement of operations, to ensure a full understanding of the procedures here within.

All interested parties are reminded that poor control of AHT's may result in contact between AHT and rig during critical operations e.g. passing of PCP's. All endeavours should be utilised to ensure that the above scenario does not occur.

Such endeavours should include but not be limited to the following, ensure ship handlers are adequately trained, notify AHT of rig's change of course and changes in thruster use, position of PCPs, etc.

Whilst passing the PCP back to the rig, Masters are advised that towing pins must be retracted before releasing the pennant from the 'Shark's Jaws'/'Karm Forks'.

4.2 Anchor Deployment

Prior to each anchor deployment operation the PCP (and its components) will be thoroughly examined. Particular attention shall be paid to the terminations.

The rig's mooring equipment is to be examined and any damage found to be duly rectified and noted in the rig-move report. The rig wires will also be checked during deployment.

Whilst deploying the primary anchors, extra care must be exercised to ensure the lower fairlead does not flop over. There is a possibility of the fairlead getting stuck in this position and the rig's mooring wire becoming fouled down the side of the sheave.

5.0 SUPPORT VESSELS

5.1 Vessels

In total two AHT's will be provided to assist with the anchor recovery at the Callister 1 location and anchor deployment at the "Amarit 1".

One vessel will tow on the rig's main tow bridle.

All AHT's will have a minimum Bollard Pull of 150 tonnes.

All nominated AHT's (& towing AHT if applicable) will be equipped with the following gear in full working order:

- Joystick/Poscon control.
- A single or double anchor-handling drum.
- Double towing drum.
- Hydraulic towing pins and 'Shark's Jaws' for 3⁹/₁₆" chain and 3¾" wire.
- Open stern with movable roller for anchor decking, etc.
- AHT's are to confirm the tension meters and winches have been tested and calibrated.

In addition one AHT will be fitted with a chain gypsy suitable for handling $3^9/_{16}$ " chain.

All vessels must be suitably manned in accordance with AMSA requirements and be capable of continuous 24-hour operation in all respects.

6.0 PASSAGE FROM CALLISTER 1 TO AMARIT 1

6.1 General

The passage from the Callister 1 location to the Amarit 1 location is approximately 27 Nm. The tow route is direct:

Waypoint	Position	Course	Distance
Callister 1	38° 32.0'S 141° 28.4'E		
Amarit 1	38° 56.1'S 141° 44.1'E	153°	27.1Nm
		Total Distance	27.1 Nm

The above distance does not take into account any deviation required to give safe clearances to other offshore installations during the passage and does not take account of the run-in to location. The passage will be conducted with one AHT towing on the rig's main tow bridle.

Both rig and AHT's will have emergency towing gear ready for immediate deployment at all times while under tow (rig – spare tow bridle).

6.2 Precautions

If for any reason, e.g. stress of weather, the tow is required to be hove to, every effort will be made to steer the tow into an area where there is sufficient depth of water, and clearance from surface and subsea obstructions for the tow to be safely hove to.

If, after due consultation between the Master of the towing vessel, the 'JACK BATES' OIM / Transocean Towmaster, it is considered necessary to anchor the tow for reasons of safety, then all appropriate means should be used to ensure that the seabed in the proposed anchorage is free of subsea equipment and obstructions.

6.3 Notifications

Navigation warnings (if applicable) shall be transmitted at regular intervals throughout the passage to warn other vessels of rig position and progress.

Notification shall be transmitted to, Transocean, Ausrep, and Helicopter Operators:

- Every 12 hours on passage.
- On commencement of anchor recovery at Callister 1.
- On completion of anchoring at Amarit 1.

The Master of the tow vessel will be responsible for transmitting situation reports to Ausrep at the appropriate intervals.

7.0 ANCHOR RECOVERY AT CALLISTER 1

7.1 General

The semi-submersible drilling rig "Jack Bates" is currently moored at the "Callister 1" location to an 8 anchor spread on a heading of 225° (T) in a water depth of 125 metres. A combined chain/wire mooring system has been deployed.

7.2 Recovery Plan

- 7.2.1 Rig will be at transit draft.
- 7.2.2 Secondary anchors (2,3, 6 &7) will be recovered first by both AHT's.
- 7.2.3 Weather permitting both AHT's will recover 2 primary anchors (either 4 & 8 OR 1 & 5).
- 7.2.4 AHT 1 will connect to the tow bridle.
- 7.2.5 AHT 2 will recover one of the bow primary anchors (1 or 8)

7.3 Procedure

- 7.3.1 AHT connects PCP wire into work wire.
- 7.3.2 MODU tensions mooring leg to ~350 kips.
- 7.3.3 Once the chaser has been connected, the AHT begins paying out work wire to 1.2 1.5 times the water depth. The AHT will begin chasing to anchor.
- 7.3.4 Once at the anchor, the AHT will pull against the anchor for 5 minutes to ensure the chaser is at or close to the anchor.
- 7.3.5 The MODU will slack the mooring leg tension to ~250 kips. Note: Reducing the mooring line tension will help to reduce the risk of breaking the ground chain, PCP wire, or work wire. By keeping the mooring leg at a high tension while breaking out the anchor. If the PCP is not at the anchor, there is risk of chain damage, possibly leading to a break at the chain.
- 7.3.6 The AHT will then shorten the work wire to be approximately 100 ft in excess of the water depth.
- 7.3.7 The AHT increases power and pull against the anchor for ~5 minutes.
- 7.3.8 If anchor does not break out, repeat step 7. Heave in 50 ft of work wire each time.
- 7.3.9 Once the anchor is unseated, heave in work wire until the PCP is at the roller.
- 7.3.10 Increase power as necessary until the rig cable clears the bolster.
- 7.3.11 Maintain pull while the rig heaves in the mooring wire.
- 7.3.12 Power may be required to be reduced as the chain/wire transition passes the fairleads, gypsys etc.
- 7.3.13 Rig continues to heave in chain.
- 7.3.14 When the rig has 300 500 feet of chain remaining, the AHT will pay out work wire whilst maintaining position relative to the rig.
- 7.3.15 Tension must be maintained on the work wire throughout this operation.
- 7.3.16 When the chasing collar and anchor shackle is above the bolster the AHT will pay out wire and/or reduce power to allow the anchor shank to rest on the bolster.

- 7.3.17 Once rig has secured the anchor on the bolster the AHT will disconnect the PCP and pass it back to the rig.
- 7.3.18 When the PCP is disconnected and the crane hook secured to the PCP the PCP will be lowered to the roller on a tugger wire until the crane has the load of the PCP on its hook. On the advice of the crane operator, the AHT tugger wire will be disconnected from the PCP.

8.0 ANCHOR DEPLOYMENT AT "AMARIT 1"

8.1 General

The semi- submersible drilling rig 'JACK BATES' is to be moored at "Amarit 1" to an 8-anchor spread on a heading of 215°(T) in a water depth of 1395 metres. (note: the deepest anchor will be in a depth of 1658m) A combined chain/wire mooring system will be used.

Refer to Drawing OMS-JB-001 for proposed anchor positions.

8.2 Anchor Deployment Plan

- 8.2.1 The rig will approach location along the extended line of number 4 anchor. 2nm from #4 drop point the tow vessel (AHT 1) will slow down to allow AHT 2 to pick up #4 PCP. See Drawing No. OMS-JB-002.
- 8.2.2 Once AHT 2 is connected to #4 PCP the AHT will pull the anchor to the roller and check the orientation of the anchor. With the anchor orientated correctly the rig will pay out approx 300m of chain to allow AHT 2 to be towed behind.
- 8.2.3 AHT 1 will then continue towing the rig to location on the reciprocal bearing for #4.
- 8.2.4 When AHT 1 has passed the anchor #4 drop point the rig will continue paying out chain and then wire.
- 8.2.5 AHT 2 will maintain position over the #4 drop point and pay out work wire to 1.2 times the water depth. Power may need to be reduced on both vessels as the crossover transition is made.
- 8.2.6 Once the cross over transition is completed and the wire clear from the rig fairleader AHT 1 will increase pitch and tow the rig onto location with the rig paying out wire.
- 8.2.7 With the required amount of wire payed out, the AHT 2 at the drop point and the rig close to the "Amarit 1" location, the #4 anchor will be put on the bottom. Note: Anchor to be put on the bottom by paying out work wire whilst slowly reducing vessel power.
- 8.2.8 AHT 2 will bring the collar off the anchor and AHT 1 will increase power to seat the anchor.
- 8.2.9 Rig movement and wire tension will be monitored. When the Towmaster is satisfied the #4 anchor is holding, AHT 1 will hold the rig on static tow to allow AHT 2 to strip back and return PCP 4 to the rig.
- 8.2.10 AHT 2 will then proceed to anchor #8
- 8.2.11 AHT 2 will back up to #8 and the rig crane will lower PCP 8 down to stern roller.
- 8.2.12 AHT 2 will then connect the PCP to her work wire. The rig will then pay out approx 100m of chain to allow AHT 1 to bring the anchor to the roller and check the anchor is orientated correctly.

- 8.2.13 With the anchor orientated correctly and with the go ahead from the rig winch operator AHT 2 will commence running # 8. (See Step 1 : "Wire Tension Payout Table 4 OMS/JB-Amarit 1-003")
- 8.2.14 When AHT 2 reaches transition the rig winch operator will instruct AHT 2 to slow down to minimum power to allow the rig to make the cross over transition to wire. Once the crossover transition is completed and clear of the rig fairleader the rig winch operator will give the go ahead to run the anchor to the drop point. (Step 6 : "Wire Tension Payout Table 4 OMS/JB-Amarit 1-003")
- 8.2.15 With the designated amount of wire payed out the rig winch operator will apply the brake. AHT 2 will then stretch the chain / wire and put the anchor on the bottom. (See Step 20 : "Wire Tension Payout Table 4 OMS/JB-Amarit 1-003")
- 8.2.16 Once the anchor is on the bottom the rig winch operator will haul in to allow enough tension to establish that the anchor is holding allowing AHT 2 to strip back to the rig and pass back the PCP.
- 8.2.17 If the weather is favourable then AHT 1 will be released from the tow bridle and assist AHT 2 in running the remainder of the anchors as per the above procedure.
- 8.2.18 Once the 4 primary anchors (5,1,4,8) are set the rig will winch itself onto location prior to running the secondary anchors.
- 8.2.19 Both AHT's will then run the secondary anchors. 2,6,7,3
- 8.2.20 If required the rig can be moved onto location and then all anchors pre-tensioned.

Note: AHT captains must not put excessive weight on the mooring system during cross over.

The attached table provides a guide for operators when monitoring payout lengths, tensions and horizontal distances.

8.3 Load Share Procedure

The general procedure for conventional installation of anchors for the Jack Bates in 1395m WD follows. Each step outlined below has been modeled using the single line catenary analysis program QMOOR. By modeling each step, the change in tension on the MODU and AHT can be monitored, as well as the positioning of the vessels in relation to bollard pull and wire pay out. A table detailing the pay out, tensions, and horizontal distances for each step in the installation for the "Amarit 1" location is contained in Appendix 1 "Wire Tension Payout Table 4 OMS/JB-Amarit 1-003". The recommended installation steps are as follows.

- 8.3.1 The MODU will be towed directly to the new location.
- 8.3.2 After receiving the PCP, the AHT will pay out 100m (300+ ft) and take tension on the wire. Step 1.
- 8.3.3 The rig will drive out chain and ease the anchor off the bolster.
- 8.3.4 The AHT must maintain tension on the work wire to ensure the anchor orientation remains the same.
- 8.3.5 Rig will pay out about 300 ft of chain and stop to change the winch to dynamic mode.
- 8.3.6 Chain pay out speed and AHT bollard pull is monitored so the chain is kept off the bolster.

- 8.3.7 Rig continues to pay out chain to ~3043 ft while the AHT increases bollard pull and horizontal distance away from the rig. Step 6.
- 8.3.8 Once there is a reasonable catenary of chain between the rig and the stern of the AHT, the AHT continues to pay out wire until the cross-over transition is reached.
- 8.3.9 When the 3043-ft of chain is out, the rig makes the crossover transition to wire. The AHT will decrease its bollard pull to reduce the tensions at the fairlead but maintain adequate distance from the rig while the crossover transition is made. (Steps 1-6)
- 8.3.10 Once the crossover transition has been made, the rig pays out wire to about 6500 ft while the AHT moves to the anchor drop location. (Steps 1-6)
- 8.3.11 **Stage 1** The rig has deployed 3043 feet of chain. The AHT has deployed 457 metres (1500 feet) of wire. The anchor is approximately 830 feet below the water level (3747 above the sea bed). The chain is approximately 1000 feet below the water level (3577 feet above the sea bed). The AHT stern is 3944 feet (1202 metres) from the rig. The AHT requires a bollard pull of 85 tonnes to keep the chain clear of the bolster however reduces power while the rig makes the chain/wire transition.
- 8.3.12 The AHT will continue to payout work wire to 1.2 times the water depth in accordance with the "Wire Tension Payout Table 4 OMS/JB-Amarit 1-003". This table has allowed for the rig payout speed to be about twice the vessel payout speed.
- 8.3.13 **Stage 2** The rig has deployed 1500 feet of wire and 3043 feet of chain. The AHT has deployed 2250 feet (686 metres) of wire. The anchor is approximately 1500 feet below the water level and 3077 feet above the sea bed. The chain is approximately 1800 feet below the water level (2777 feet above the sea bed). The stern of the AHT is 5479 feet (1670 metres) from the rig. The tension of the wire at the fairlead is 290 kips. The AHT wire tension is 261 kips (105 tonnes) whilst the bollard pull is 86 tonnes and the fairlead angle is 50° from the horizontal, thus maintaining the mooring wire clear of the pontoon bolster.
- 8.3.14 **Stage 3** The rig has deployed 3000 feet of wire and 3043 feet of chain. The AHT has deployed 3000 feet (914 metres) of wire. The anchor is approximately 2200 feet below the water level and 2377 above the sea bed. The chain is 2700 feet below the water level and 1877 feet above the sea bed. The stern of the AHT is 7003 feet (2134 metres) from the rig. The tension of the wire at the fairlead is 295 kips. The AHT wire tension is 290 kips (132 tonnes) and the bollard pull is 87 tonnes. The angle of the wire at the fairlead is 50° from the horizontal.
- 8.3.15 **Stage 4** The rig has deployed 4500 feet of wire and 3043 feet of chain. The AHT has deployed 3750 feet (1143 metres) of wire. The anchor is approximately 2800 feet below the water level and 1777 feet above the sea bed. The chain is approximately 3500 below the water level and 1077 feet above the sea bed. The stern of the AHT is 8530 feet (2600 metres) from the rig. The tension of the wire at the fairlead is 305 kips. The AHT wire tension is 318 kips (144 tonnes) and the bollard pull is 88 tonnes. The angle of the wire at the fairlead is 50° from the horizontal.
- 8.3.16 **Stage 5** The rig has deployed 6000 feet of wire and 3043 feet of chain. The AHT has deployed 4500 feet (1372 metres) of wire. The anchor is approximately 3400 feet below the water level and 1177 feet above the sea bed. The chain is approximately 4200 below the water level and 377 feet above the sea bed. The stern of the AHT is 10228 feet (3117 metres) from the rig. The tension of the wire at the fairlead is 324 kips. The AHT wire tension is 349 kips (158 tonnes) and the bollard pull is 94 tonnes. The angle of the wire at the fairlead is 50° from the horizontal.

- 8.3.17 Stage 6 Chain touchdown. Anchor at drop point. The rig has deployed 6500 feet of wire and 3043 feet of chain. The AHT has deployed 5492 feet (1372 metres) of wire. The final rig wire payout and AHT work wire payout is dependent on water depth at the individual anchors. This is contained in the accompanying table. The anchor is approximately 3900 feet below the water level and 677 feet above the sea bed. The chain is just touching the bottom.. The stern of the AHT is 11547 feet (3520 metres) from the rig. The tension of the wire at the fairlead is 357kips. The AHT wire tension is 362 kips (164 tonnes) and the bollard pull is 104 tonnes. The angle of the wire at the fairlead is 50° from the horizontal.
- 8.3.18 The AHT must maintain a minimum of 104 mt bollard pull to position itself ~11,547 ft (3520 metres) from the rig while lowering the anchor to the seafloor.
- 8.3.19 The AHT will lower the anchor, when instructed by towmaster, by paying out work wire and reducing power. Power on the opposing vessel will be reduced simultaneously.
- 8.3.20 Once the anchor is on the seafloor, Survey takes a fix of the vessel.
- 8.3.21 The anchor will be given time to soak into the seabed and the rig will tension the mooring line to ensure the anchor is holding.
- 8.3.22 The opposing anchor will then be put on the bottom in a similar fashion.
- 8.3.23 Sufficient tension must be maintained on the anchor wires (300 kips) to enable the AHT to chase back to the rig
- 8.3.24 The AHT then chases back to the rig and passes the PCP wires back to the rig.
- 8.3.25 PCP will be load tested on AHT tugger wire prior to connecting rig crane to PCP.
- 8.3.26 Opposing anchors will be run simultaneously where possible.

9.0 INSURANCE CROSS TENSIONING

When anchor deployment is completed and prior to ballasting down to operational draft, the anchors will be insurance cross-tensioned to ensure adequate holding, with due regard to seabed conditions.

Each pair of opposite anchors (usually commencing with the primary anchors) is tensioned to 450 kips or winch stall (whichever is the lowest). This tension is held for 15 minutes, then slackened down to operating tension (340 Kips)

Anchors will be insurance cross-tensioned in the following opposite pairs:

No. 1 + No. 5

No. 4 + No. 8

No. 2 + No. 6

No. 3 + No. 7

During cross tensioning, winch house tensions will be checked against motor amps and pilot house readouts.

When all anchors have been successfully insurance cross-tensioned, the tensions will be adjusted for remaining at the location.

10.0 ANCHOR SLIPPING

In the event that anchor slippage occurs during insurance cross-tensioning, the anchor should be chased out and hauled to the stern of the AHT to check for fouling and correct orientation. The anchor will then be recovered as required (maintaining chain tensions), and re-run on a bearing 2-3 degrees removed from the original line of run. The anchor will be reset on the bottom and the PCP chased back to the rig.

Any further slippage will result in either running the anchor with additional wire out (to increase the length of ground chain) or deploying additional back-up anchors.

11.0 ADDITIONAL MOORING EQUIPMENT

The following quantities of equipment will be provided as backup:

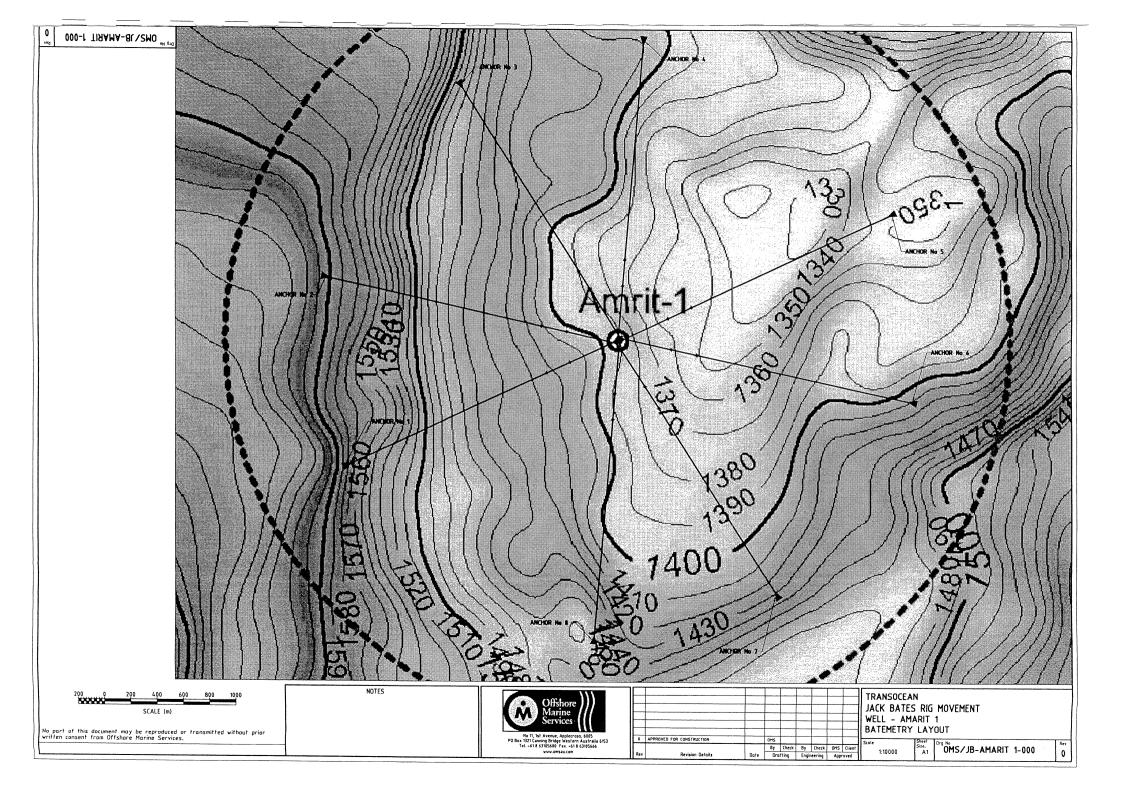
Sufficient Special split pins for use in changing Bruce anchor fluke angles will be provided. (Allow for 8 anchors).

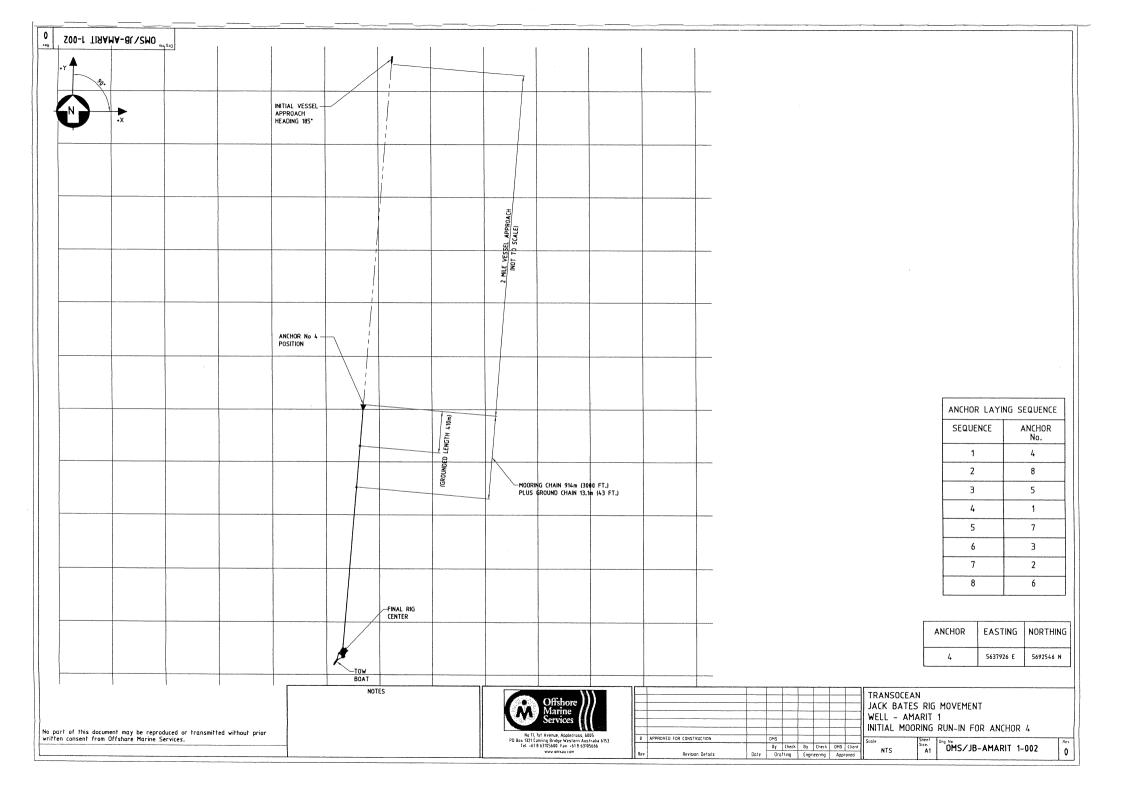
The Transocean Towmaster will ensure that all used equipment is correctly recorded upon recovery and all equipment is correctly manifested for return.

The Masters of the AHT's should keep account of all mooring equipment supplied and the Transocean Towmaster must be kept advised of all equipment utilization and transfer and any damages incurred.

The Transocean Towmaster will, wherever possible, correctly record the I.D. numbers and positions of all equipment deployed, together with the purpose of deployment.

The Transocean Towmaster will record details of any known or apparent damage to additional mooring equipment, rig equipment or AHT's.


AHT's should have adequate burning and welding equipment and a suitably trained operator.


APPENDIX 1

- Bathometry layout OMS/JB-Amarit 1-00
- Overall mooring layout OMS/JB-Amarit 1-001
- Initial run in for anchor 4 OMS/JB-Amarit 1-002
- Wire/tension pay out table 4 OMS/JB-Amarit 1-003
- Installation Procedures sheet 1 of 6 OMS/JB-Amarit 1-004
- Installation Procedures sheet 2 of 6 OMS/JB-Amarit 1-005
- Installation Procedures sheet 3 of 6 OMS/JB-Amarit 1-006
 Installation Procedures sheet 4 of 6 OMS/JB-Amarit 1-007
- Installation Procedures sheet 5 of 6 OMS/JB-Amarit 1-008
- Installation Procedures sheet 6 of 6 OMS/JB-Amarit 1-009

JACK BATES TYPICAL WIRE / TENSION PAYOUT TABLE "AMARIT 1" LOCATION

		STAGE	RIG WIRE OUT (FEET)	RIG CHAIN OUT (FEET)	HORIZONTAL DISTANCE FAIRLEAD TO AHT STERN (FEET)	HORIZONTAL DISTANCE FAIRLEAD TO AHT STERN (METRES)	BOLLARD PULL (TONNES)	FAIRLEAD TENSION (KIPS)	TENSION AT ANCHOR (KIPS)	TENSION AT ANCHOR (TONNES)	AHT WORK WIRE OUT (METRES)	FAIRLEAD ANGLE (FROM HORIZONTAL - NOT TO EXCEED 62*
		1	1	3043	3944	1202	85	293	229	104	457	50
		2	1500	3043	5479	1670	86	290	261	105	686	50
		3	3000	3043	7003	2134	87	295	290	132	914	50
		4	4500	3043	8530	2600	88	305	318	144	1143	50
	ANCHOR	5	6000	3043	10228	3117	94	324	349	158	1372	50
	1	6	6880	3043	12230	3727	100	370	356	161	1974	53
	2	6	6870	3043	12190	3715	100	369	356	161	1962	53
	3	6	6700	3043	11920	3633	102	364	359	136	1836	52
-~~	~	6	6460	3043	11482	3500	105	356	362	164	1644	50
	5	6	6410	3043	11495	3504	106	358	364	165	1632	49
	6	6	6730	3043	11972	3649	102	365	358	162	1863	52
	7	6	6630	3043	11712	3570	102	359	359	163	1758	51
	8	6	6600	3043	11720	3572	103	360	360	163	1750	51

NOTES

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

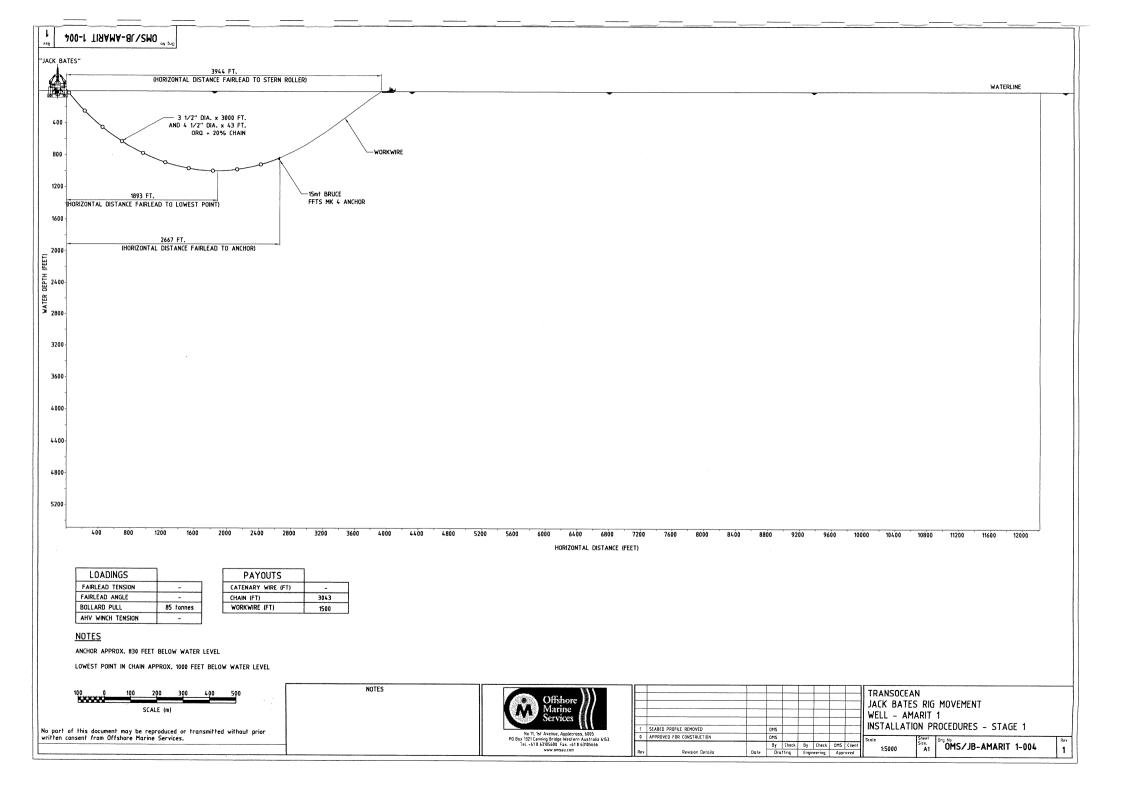
No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

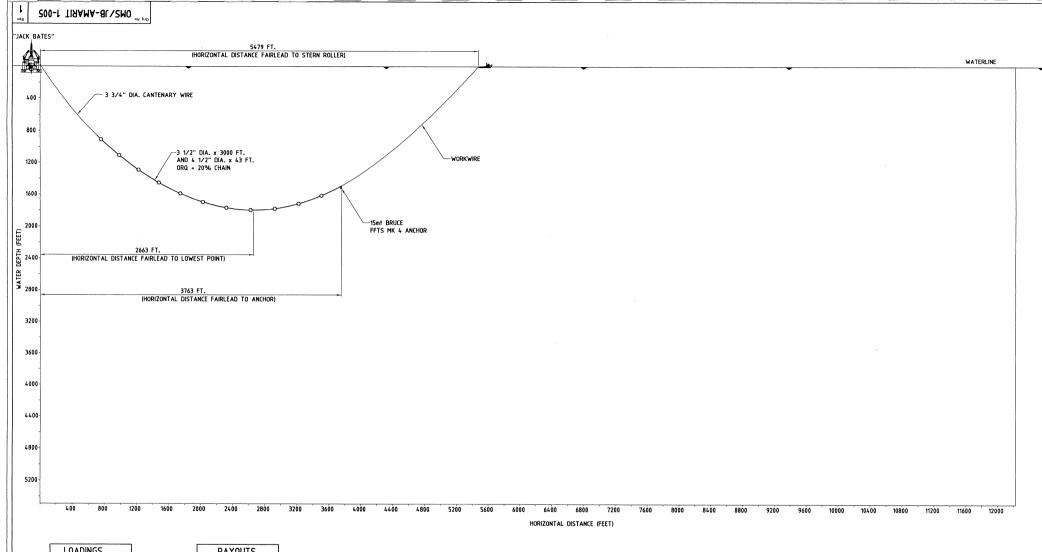
No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.


No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.


No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marries Services.

No part of this document may be reproduced or transmitted without prior written consent from Offshore M

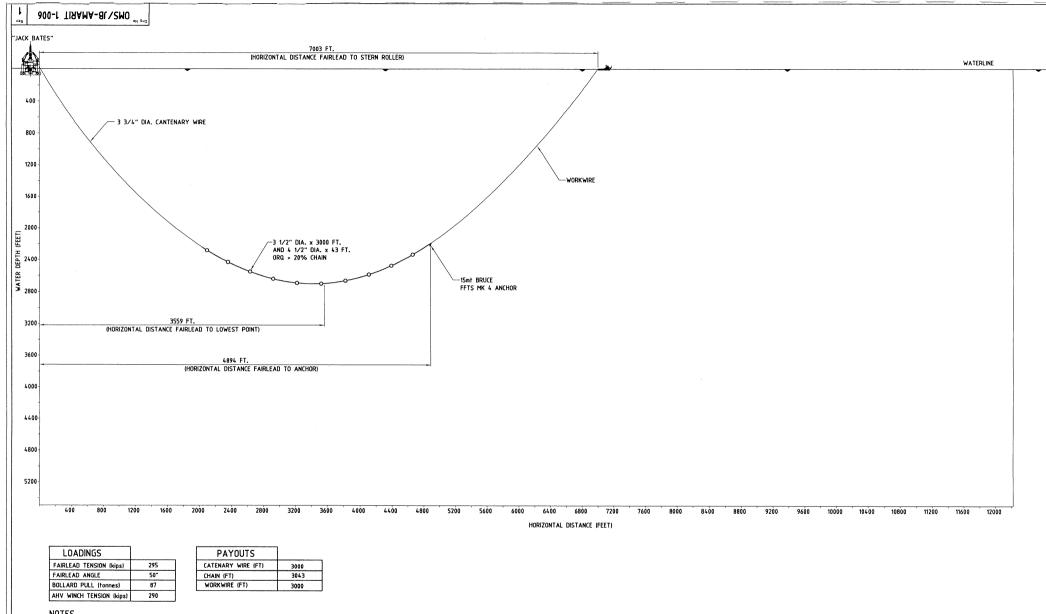
LOADINGS	
FAIRLEAD TENSION (kips)	290
FAIRLEAD ANGLE	50*
BOLLARD PULL (tonnes)	86
AHV WINCH TENSION (kips)	261

PAYOUTS	
CATENARY WIRE (FT)	1500
CHAIN (FT)	3043
WORKWIRE (FT)	2250

NOTES

ANCHOR APPROX. 1500 FEET BELOW WATER LEVEL

LOWEST POINT IN CHAIN APPROX. 1800 FEET BELOW WATER LEVEL



No part of this document may be reproduced or transmitted without prior written consent from Offshore Marine Services.

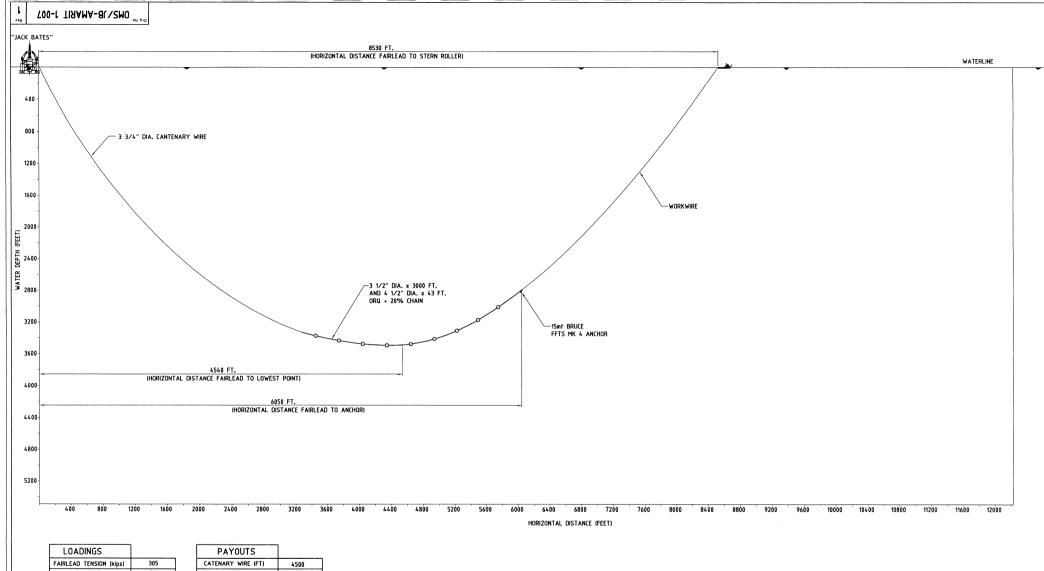
١	Rev	Revision Details	Ogte	By	(heck	By	Check		Client	1
ı	0	APPROVED FOR CONSTRUCTION		OMS						lts
ı	1	SEABED PROFILE REMOVED	1	OMS						1
ı			-					_		
ı	H		-	 				_	_	11
١	<u> </u>		-		-					11

TRANSOCEA JACK BATE: WELL - AM	S RIG ARIT	1			
INSTALLATION PROCEDURES - STAGE 2					
Scale 1:5000	Sheet Size. A1	OMS/JB-AMARIT 1-005			

ANCHOR APPROX. 2200 FEET BELOW WATER LEVEL

LOWEST POINT IN CHAIN APPROX. 2700 FEET BELOW WATER LEVEL

No part of this document may be reproduced or transmitted without prior written consent from Offshore Marine Services.


NOTES

Rev	Revision Details	Date			neering	Approved		
			Ву	Check	Ву	Check	DM5	Clie
0	APPROVED FOR CONSTRUCTION		DMS					
1	SEABED PROFILE REMOVED		DMS					
		-	1				_	\vdash
		+		\vdash			-	H
			 					_
								<u> </u>

TRANSOCEAN JACK BATES RIG MOVEMENT WELL - AMARIT 1 INSTALLATION PROCEDURES - STAGE 3

_	l .		
tos	Scale 1.5000	Sheet Size.	OMS/JB-AMARI

RIT 1-006

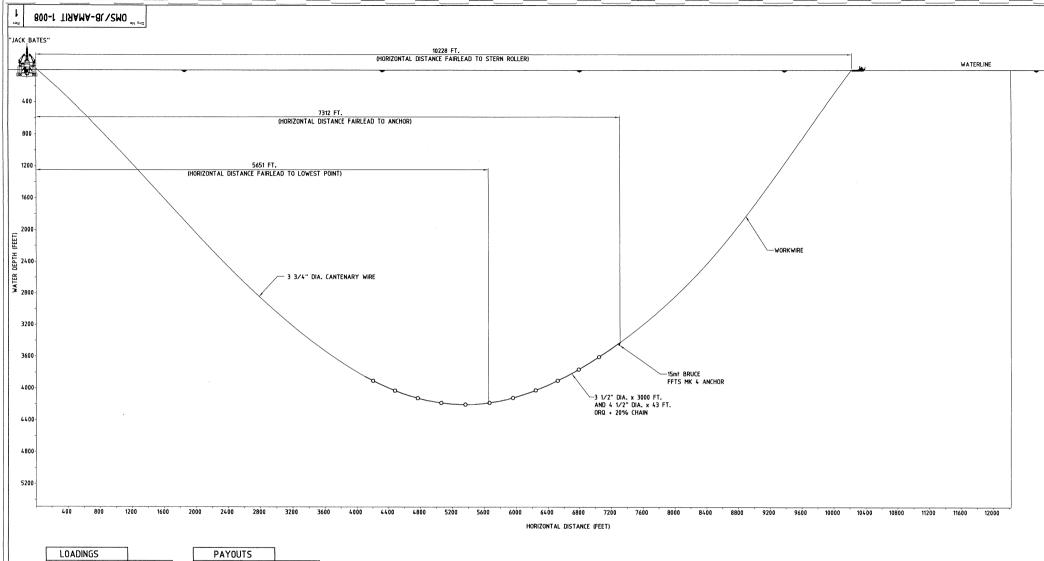
LOADINGS	
FAIRLEAD TENSION (kips)	305
FAIRLEAD ANGLE	50*
BOLLARD PULL (fonnes)	88
AHV WINCH TENSION (kips)	318

PAYOUTS	
CATENARY WIRE (FT)	4500
CHAIN (FT)	3043
WORKWIRE (FT)	3750

NOTES

ANCHOR APPROX. 2800 FEET BELOW WATER LEVEL

LOWEST POINT IN CHAIN APPROX. 3500 FEET BELOW WATER LEVEL



No part of this document may be reproduced or transmitted without prior written consent from Offshore Marine Services.

Rev	Revision Details	tails Date Drafting		fting	Engir	eering	Appr	oved
			Ву	Check	Ву	Check	0M5	Clien
0	APPROVED FOR CONSTRUCTION		DMS					
1	SEABED PROFILE REMOVED	†	OMS					_
		-	<u> </u>	-				-
		1						

WELL – AMA	RIG MOVEMENT RIT 1 I PROCEDURES	- STAGE 4
Scale 1:5000	ze. OMS/JB-/	AMARIT 1-007

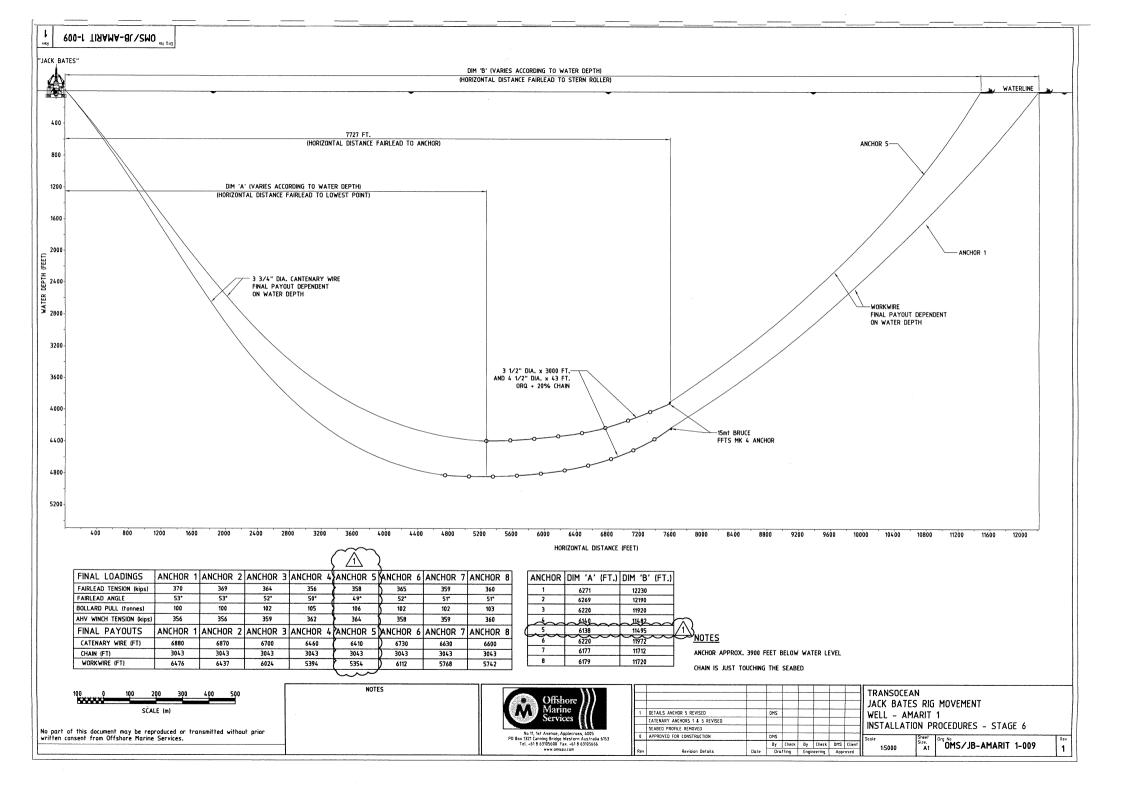
LOADINGS	
FAIRLEAD TENSION (kips)	324
FAIRLEAD ANGLE	50°
BOLLARD PULL (tonnes)	94
AHV WINCH TENSION (kips)	349

PAYOUTS	
CATENARY WIRE (FT)	6000
CHAIN (FT)	3043
WORKWIRE (FT)	4500

NOTES

ANCHOR APPROX. 3400 FEET BELOW WATER LEVEL

LOWEST POINT IN CHAIN APPROX. 4200 FEET BELOW WATER LEVEL


No part of this document may be reproduced or transmitted without prior written consent from Offshore Marine Services.

Rev	Revision Details	Date	Dra	fting	Engi	neering	Appr	oved
Г	I		Ву	Check	Ву	Check	DM5	Client
0	APPROVED FOR CONSTRUCTION		DMS					
1	SEABED PROFILE REMOVED		DMS					
			i					

TRANSOCEAN
JACK BATES RIG MOVEMENT
WELL - AMARIT 1
INSTALLATION PROCEDURES - STAGE 5

1.5000 Size. OMS/JB-AMARIT 1-008

APPENDIX A: FINAL FIX FIELD REPORTS

DRILLING RIG POSITION

MODU JACK BATES

Location: Amrit-1

FINAL FIX POSITION NOTIFICATION

To:

Ole Moller (Offshore Drilling Manager: Santos Ltd)

Dave Atkins (Company Man: Santos Ltd)

From:

John Herkenhoff (QC Surveyor: Santos Ltd/ECL)

Date:

21/11/04

Time: 2000hrs

DGPS Final Fix

On completion of spudding the well, running of the 30" casing and levelling of the guide base and BOP, 720 Differential GPS position fixes were recorded at 5 second intervals from 1819hrs to 1919hrs on Sunday, 21 November 2004.

Drill-stem location:

Spheroid: GRS80

Datum: GDA94

Projection: UTM, CM 141° E (Zone 54)

Latitude :

038° 56' 05.20" South

Longitude:

141° 44' 07.08" East

Easting

563 729.6 metres

Northing:

5 690 204.1 metres

This position is 2.9 metres on a bearing of 338.7°(True) from the intended location.

Final Rig Heading: 217.3° (True)

Intended Location:

Latitude

038° 56' 05.29" South

Easting:

563 730.6 metres

Longitude:

141° 44' 07.12" East

Northing:

5 690 201.4 metres

Notes:

Intended Location from Drilling Program (revision 0: Oct. 04).

Mick Elmslie

Fugro Survey Pty Ltd

John Herkenhoff

ECL Pty Ltd

ECL AUSTRALIA

RIG POSITION FIELD REPORT

Amrit-1

Client:

Santos Ltd

Job Number:

P0144

Rig:

Jack Bates

Date:

21-Nov-04

Project:

Rig Move to Amrit-1

Attention: J.Herkenhoff

Santos Survey Representative

Copy:

D.Atkins

Santos Company Man

The surface location of the drill stem on the Jack Bates was derived from one hour of observations of the Primary Differential GPS data, between 1819 hrs and 1919 hrs on completion of all anchor pre-tensioning, spudding in of the 30' casing and deployment of the BOP. The results of the observations are as follows:

Geographical Coordinates				Grid Coordina	ates	
Latitude	38 °	56	•	5.201 " South	Easting	563729.57
Longitude	141	44	•	07.075 " East	Northing	5690204.12

The drill stem position is

2.9 m at a bearing of

338.7 ° True from the design location.

The Client supplied design location for Amrit-1:

Geographical Coordinates			Grid Coordinate	es		
Latitude	38 °	56	1	5.290 " South	Easting	563730.64
Longitude	141 °	44	•	7.120 " East	Northing	5690201.38

The Jack Bates's rig heading, derived from the mean of one hour's observation of the gyro heading is:

217.26 ° True

218.25 ° Grid

All coordinates in this field report are quoted in the following coordinate system:

Datum:

GDA 94 MGA

Projection:

UTM

Spheroid:

Zone (Central Meridian)

141 ° East

The approximate positions of the rig anchors corrected for catenary are as follows:

Anchor	Easting	Northing	Bearing (°)
1	561734	5689320	245.1
2	561739	5690662	282.7
3	562723	5691882	328.2
4	563963	5692588	5.4
5	565549	5691020	64.9
6	565548	5689787	102.7
7	564895	5688331	147.3
8	563543	5688065	184.8

Party Chief/Surveyor:

Client Representative:

J.Herkenhoff

DOC: FSHY48-3

REV: 2

PAGE 1 OF 1 DATE: 27/4/01©

RIG POSITION FIELD REPORT

Amrit-1

Client:

Santos Ltd

Job Number:

P0144

Rig:

Jack Bates

Date:

20-Nov-04

Project:

Rig Move to Amrit-1

Attention: J.Herkenhoff

Santos Survey Representative

Copy:

D.Atkins

Santos Company Man

The preliminary surface location of the drill stem on the Jack Bates was derived from one hour of observations of the Primary Differential GPS data, between 1913 hrs and 2013 hrs on commencement of jetting in of the 30' casing.

The results of the observations are as follows:

Geographical Coordinates					Grid Coordin	nates
Latitude	38 °	56	•	5.265 " South	Easting	563728.82
Longitude	141	44	•	07.044 " East	Northing	5690202.17

The drill stem position is

2.0 m at a bearing of

293.4 ° True from the design location.

Party Chief/Surveyor:

M.Elmslie

Client Representative:

J.Herkenhoff

DOC: FSHY48-3

REV: 2

PAGE 1 OF 1 DATE: 27/4/01©

Santos Limited	Positioning Quality Contro
APPENDIX B: CONTRACTOR'S PROP	POSED AND AS-LAID ANCHOR CALCULATIONS

FINAL CALCULATION SUMMARY SHEET

Client	Santos Ltd		
Job No.	P0144		
Surveyor	M.Elmslie		

DRILLING RIG	Jack Bates	
LOCATION	Amrit-1	
DATE	21/November/2004	

TUGRO

MGA	
MGA CRP - Easting	563729.570
CRP - Northing	5690204.120

GDA 94	d	m	S
Latitude	-38	56	5.2013
Longitude	141	44	7.0746
Grid Conv.(DMS)	0	27	43.5711
Grid Conv.(DEC)		0.46	
PSF	0.99	996500	10
Height			0.000

Vessel Heading	d	m	s
Heading (True dms)	217	15	36.0000
Heading (True degs)		217.	26
Heading (Grid dms)	217	43	19.5711
Heading (Grid degs)		217.	72

WGS 84	d	m	s
Latitude	-38	56	5.1825
Longitude	141	44	7.0846
Height			-0.060

Navigation Antenna	Vessel	Offsets	Calc'd	Calc'd Bearing & Distance		MG	MGA		GDA 94			WGS 84			
Travigation / tritorina	X	У	d	m	S	distance	East	North		d	m	S	d	m	S
Primary Antenna	9.94	35.43	233	23	37	36.798	563700.03	5690182.18	Lat.	-38	56	5.9208	-38	56	5.9020
1 milary America	0.04	00.40							Long.	141	44	5.8550	141	44	5.8651
Secondary Antenna	18.2	37.55	243	34	51	41.728	563692.20	5690185.55	Lat.	-38	56	5.8134	-38	56	5.7945
Cocondary / Internia	10.2	07.00							Long.	141	44	5.5287	141	44	5.5387

3.25" Chain = 91.45 lbs/ft wet 3" Chain = 77.90 lbs/ft wet

Anchor	Fairlead		ets		/Distance to Anchor	Calc'd Anchor Position			
	х	y z		Dec. Deg distance		East	North		
1	34.25	31.35		245.7	2139.3	561733.570	5689319.942		
2	34.25	25.50		283.2	2000.3	561739.414	5690661.678		
3	34.25	-25.80		328.7	1914.9	562723.435	5691881.689		
4	34.25	-31.70		5.9	2350.2	563963.457	5692587.901		
5	-34.25	-31.70		65.4	1950.2	565549.277	5691020.083		
6	-34.25	-25.80		103.2	1823.6	565547.840	5689787.157		
7	-34.25	25.50		147.8	2165.3	564894.877	5688330.764		
8	-34.25	31.35		185.3	2101.9	563543.323	5688065.417		

Chain Wt.	(lbs/ft)	77.9	2.75" Chain = 65 lbs/ft wet							
Chain Wire Paid out (ft)	Water Depth (ft)	Chain Tension (lbs)	1/2 Catenary Length	Horizontal Distance to Touchdown	Horizontal Distance to Anchor (ft)	Horizontal Distance to Anchor (m)				
10262	5397.0	381000	6985.6	3742.1	7018.6	2139.3				
9947	5364.0	381000	6712.9	3328.7	6562.7	2000.3				
9868	5020.0	319000	5803.7	2218.2	6282.5	1914.9				
10262	4495.0	339000	6062.6	3511.2	7710.6	2350.2				
9415	4462.0	302000	5336.2	2319.6	6398.4	1950.2				
9927	5095.0	310000	5628.2	1684.1	5982.9	1823.6				
9898	4806.0	359000	6369.7	3575.5	7103.9	2165.3				
9448	4783.0	383000	6757.5	4205.6	6896.1	2101.9				

PROPOSED CALCULATION SUMMARY SHEET

Client	Santos Ltd
Job No.	P0144
Surveyor	M.Elmslie

DRILLING RIG	Jack Bates	
LOCATION	Amrit-1	
DATE	16/November/2004	

- FUGRO

MGA	
CRP - Easting	563730.640
CRP - Northing	5690201.380

GDA 94	d	m	S
Latitude	-38	56	5.2899
Longitude	141	44	7.1199
Grid Conv.(DMS)	0	27	43.6005
Grid Conv.(DEC)		0.46	
PSF	0.99	996500	12
Height			0.000

d	m	S
215	0	0.0000
)	215.	
215	27	43.6005
)	215.	46
)	215.0 215 27

WGS 84	d	m	S
Latitude	-38	56	5.2711
Longitude	141	44	7.1299
Height			-0.060

Navigation Antenna	Vessel	Offsets	Calc'd	Calc'd Bearing & Distance		MGA			GDA 94		94	WGS 84		84	
Navigation Antenna	X	У	d	m	S	distance	East	North		d	m	S	d	m	S
Primary Antenna	9.94	35.43	231	8	1	36.798	563701.99	5690178.29	Lat.	-38	56	6.0465	-38	56	6.0276
Primary Antenna	9.94	35.43							Long.	141	44	5.9377	141	44	5.9477
Casandan, Antanna	18.2	37.55	241	19	16	41.728	563694.03	5690181.35	Lat.	-38	56	5.9491	-38	56	5.9302
Secondary Antenna	10.2	37.55	1000100000						Long.	141	44	5.6061	141	44	5.6162

3.25" Chain = 91.45 lbs/ft wet 3" Chain = 77.90 lbs/ft wet

Anchor	Fa	irlead Offse	ets		/Distance to Anchor	Calc'd Anchor Position			
	х	x y z		z Dec. Deg distance		East	North		
1	34.25	31.35		245.5	2200.4	561682.880	5689281.812		
2	34.25	25.50		283.0	2206.7	561537.505	5690695.369		
3	34.25	-25.80		328.0	2245.4	562526.499	5692145.645		
4	34.25	-31.70		5.5	2299.3	563939.913	5692535.919		
5	-34.25	-31.70		65.5	2307.2	565875.717	5691165.573		
6	-34.25	-25.80		103.0	2235.1	565951.677	5689701.254		
7	-34.25	25.50		148.0	2278.3	564952.426	5688229.443		
8	-34.25	31.35		185.5	2274.2	563523.954	5687892.069		

Chain Wt.	(lbs/ft)	77.9		2.7	75" Chain = 65 lbs/ft w	ret
Chain Wire Paid out (ft)	Water Depth (ft)	Chain Tension (lbs)	1/2 Catenary Length	Horizontal Distance to Touchdown	Horizontal Distance to Anchor (ft)	Horizontal Distance to Anchor (m)
9923	5397.0	450000	8007.4	5303.7	7219.3	2200.4
9913	5364.0	450000	7991.1	5317.8	7239.7	2206.7
9743	5020.0	450000	7794.2	5418.0	7366.8	2245.4
9503	4495.0	450000	7469.9	5510.5	7543.6	2299.3
9503	4462.0	450000	7452.3	5518.9	7569.5	2307.2
9773	5095.0	450000	7836.3	5396.4	7333.0	2235.1
9673	4806.0	450000	7674.1	5476.0	7474.9	2278.3
9643	4783.0	450000	7654.7	5473.0	7461.4	2274.2

APPENDIX C: ON-LINE SURVEY PARAMETERS

19/11/2004 11:00:01 LOC *** FUGRO SURVEY STARFIX.SEIS ***

Header: Project Name : Amrit-1 Rig Move Jack Bates P0144
Rig Move
Amrit-1
Santos
J.Herkenhoff, D.Atkins Project Number Project Description Project Location Client Client Representative Client Reference Number

Geophysical Contractor : Fugro
Positioning Contractor : Fugro
Positioning Processing Contractor: Fugro

E. ME, LC 18/11/2004 13:08:03 LOC On Time Source : 9 GPS Raw Data Trimble Time Offset : 11:00 (Using LOC) : Jack Bates Vessel Runline : (None)
Centreline : (None)
Database : (None)
CAD : (None) Files : (None) Waypoint Logging: Directory : C:\Fugro_Projects\\P0144\NonSession\SEIS\ Mode : Time
Start Mode : Manual
Stop Mode : Number Of Fixes = 120
Fix Devices : Fixing : Mode Auto-Fix : Myfixout
Manual : Myfixout
External : (None)
Offset : (None)
MOB : (None)
Fix Interval : 5.000s
Duration : 120 fixes Reset at SOL : No Next Fix No.: 363
Fix Increment: 1
Start FFID: 363
Start Man. Fix: 1 Start Man. Fix: 1
Early Start: 5s
Logging Start: 5s Datum : GDA94 (Australia-ITRF-2004.50)
Spheroid : GRS80
SemiMajor Axis: 6378137.000
1/Flattening : 298.2572221010
Eccentricity^2: 0.006694380022901 Datum 1: Datum Projection : Universal Transverse Mercator Grid Name : Grid Name :
Lat. Origin : 0d00'00.0000"N
Lon. Origin : 141d00'00.0000"E
False East : 500000.000m
False North : 10000000.000m
Scale Factor : 0.9996
Convergence : Australia/New Zealand

> Datum : WGS 84 Spheroid : WGS 84

Datum 2: Datum

```
SemiMajor Axis: 6378137.000
1/Flattening: 298.2572235630
                         Eccentricity^2: 0.006694379990141
 Datum2>1:Parameters : From WGS84 to GDA94 (Australia-ITRF-
 2004.50)
                                                                                                                     RX
                                                           :
                                                                       -0.0270m
 0.0134"
                                                           :
                                                                       -0.0300m
                                                                                                                      RY
                         DY
 0.0124"
                                                           :
                                                                       -0.0340m
                                                                                                                     RZ
                        DZ
 0.0140"
                        D Scale : 0.0055ppm Rot Convention: +RZ=-
 RLongitude
 Sundry: Vertical Datum:
                         Ell. Sep. : 0.0000m
                                                          : Spheroidal
                         Distances
                        Distances : Spherotal
Bearings : True
Units : metres
Conversion : 1.0000000000
                                                              : Jack Bates
 Main Vessel
                                                              : C:\PROGRAM FILES\FUGRO\6.1\SHARED\DATA
 \VESSEL SHAPES\JACK BATES.SVS

      Nav. 1 : System
      : MRDGPS
      (I

      Type
      : Lat - Long
      Priority
      1

      Time-out
      : 5.0s
      Offset Name
      GPS1

      X Offset
      : 9.94m
      Y 0ffset
      35.43m

      Ant. Height
      : 0.00m

      Nav. 2 : System
      : TRIMBLE PRN

      Type
      : Lat - Long

      Priority
      : 2

      Time-out
      : 5.0s

      Offset Name
      : GPS2

      X Offset
      : 18.20m

      Y Offset
      : 37.55m

      Ant. Height
      : 0.00m

      Nav. 3 : System
      : Trimble

      Type
      : Lat - Long

      Priority
      : 3

      Time-out
      : 5.0s

      Offset Name
      : GPS1

      X Offset
      : 9.94m

      Y Offset
      : 35.43m

      Ant. Height
      : 0.00m

      Dead Reckoning: No
      Timeout: 30.0s

                                                           : MRDGPS (In Use)
 Nav. 1 : System
  Gyro 1 : System
                                                           : SGBrown
                                                                                                (In Use)
                         Priority : 1
Time-out : 5.0s
 Time-out : 5.0s
Offset Name : CRP
X Offset : 0.00m
Y Offset : 0.00m
Z Offset : 0.00m
Correction : -180.09 Degrees
Gyro 2 : System : CMG from filter
Priority : 2
Time-out : 3.0s
Offset Name : CRP
```

```
X Offset : 0.00m
Y Offset : 0.00m
Z Offset : 0.00m
Correction : 0.00 Degrees
                                                                  X Y Z
9.94 35.43 0.00
18.20 37.55 0.00
Offsets: Name
                 GPS1
                 GPS2
                                                                X Y Z
34.25 31.35 0.00
34.25 25.50 0.00
34.25 -25.80 0.00
34.25 -31.70 0.00
-34.25 -31.70 0.00
-34.25 -25.80 0.00
-34.25 25.50 0.00
-34.25 25.50 0.00
-34.25 31.35 0.00
Fairlead: Name
                1
                  3
                  4
                  5
                  6
                  7
Secondary Vessel 1 : Lady Caroline : C:\PROGRAM FILES\FUGRO\6.1\SHARED\DATA
\VESSEL SHAPES\LADY CAROLINE.SVS
Nav. 1: System : LADY CAROLINE (In Use)

Type : Lat - Long
Priority : 1
Time-out : 15.0s
Offset Name : CRP
X Offset : 0.00m
Y Offset : 0.00m
Ant. Height : 0.00m
 Dead Reckoning: No Timeout: 30.0s
Gyro 1: System : LADY CAROLINE (In Use)
Priority : 1
Time-out : 15.0s
Offset Name : CRP
X Offset : 0.00m
Y Offset : 0.00m
Z Offset : 0.00m
Correction : 35.00 Degrees
                                       : Lady Astrid
: C:\PROGRAM FILES\FUGRO\6.1\SHARED\DATA
 Secondary Vessel 2
 \VESSEL SHAPES\LADY ASTRID.SVS
Nav. 1: System : LADY ASTRID (In Use)

Type : Lat - Long
Priority : 1
Time-out : 15.0s
Offset Name : CRP
X Offset : 0.00m
Y Offset : 0.00m
Ant. Height : 0.00m
 Dead Reckoning: No Timeout: 30.0s
 Gyro 1: System : LADY ASTRID (In Use)
Priority : 1
Time-out : 15.0s
Offset Name : CRP
                  X Offset : 0.00m
Y Offset : 0.00m
Z Offset : 0.00m
```

Correction : 33.00 Degrees : Steered Point: O/T 0 Shot : O/T 0 PR CRP Flt: Pos Sys: Datum In-Use
PR Lady Caroline Flt: Pos Sys: Datum In-Use
PR Lady Astrid Flt: Pos Sys: Datum In-Use
PR MRDGPS Datum Flt: Pos Sys: Datum In-Use
PR MRDGPS Datum Flt: Pos Sys: MRDGPS Datum
PR TRIMBLE PRN Datu Flt: Pos Sys: TRIMBLE PRN Datum
PR GPS1 Flt: Fxd Off: GPS1
PR FL1 Flt: Frlead : 1 O/T 0 O/T O/T 2 O/T 3 O/T 4 O/T 5 PR GPS1 Flt: Frlead: 1 O/T 6 O/T 7 PR FL1 PR FL2 PR FL3 Flt: Flt: Frlead: Frlead: 3 O/T 8 O/T 9 PR FL4 Flt: Frlead: 4 O/T 10 PR FL5 Flt: Frlead: 5 O/T 11 PR FL6 Flt: Frlead: 6 O/T 12 PR FL7 Flt: Frlead: 7 PR FL8 O/T 13 Flt: Frlead: 8 O/T 14 PR GPS2 Flt: Fxd Off: GPS2 O/T Legend: PR=Print LG=Log SN=Snap to line Waypoint : Amrit-1 Position: 38d56'05.2902"S 141d44'07.1199"E 0.0m 563730.640mE 5690201.380mN 0.0m Printing: Fix mark rate : Weather Device : (None)
Weather Interval: 60 minutes Weather Enabled: No Config Changes : Yes System Timeouts : Yes Concise Header : Software: Starfix Suite 6.1 (Service Pack 1) HF: CODAOut HF1 HF: Nav HF1 HF: PosdbLib HF1 HF: SchlumbergerOut HF1 HF: VesselEditor HF1 HF: WOMBAT HF1 HF: GDA94 Files HF1 Ver 2.08.0018 SeisEngine Ver 2.08.0011 Display Ver 2.14.0006 Ver 3.02.0028 Ver 2.03.0005 Anchors Print

RIG POSITIONING GEODESY AND CO-ORDINATE CHECK LIST

Client:

Santos Ltd

Jack Bates

Job Number:

P0144

Rig:

Date:

16/November/2004

Project:

Rig Move to Amrit-1

1. CONFIRMATION OF PROPOSED RIG COORDINATES and HEADING.

Well Name

Amrit-1

Ensure agreement with Client onsite prior to any positioning

Ensure agreement with Client onsite prior to positioning Operations.

Well Location - Latitude

38 56 5.290 S Operations. OK (?) (Y) N.

Well Location - Longitude

141 44 7.120 E

Rig Heading (True)

215 ° T

2. GEODETIC PARAMETERS (WGS84 to LOCAL DATUM)

DATUM:

-0.02660 Dx

(WGS84 to Local Datum) Dy -0.03030 -0.03390 Dz

OK (?) (Y)/ N.

0.013416 Rx

Projection:

Ry 0.012379

Rz 0.013999 Ds 0.00552 ppm

UTM Zone

54

Central Meridian

141 ° East

3. CHECK TRANSFORMATION OF SITE COORDINATES.

Well Location - Easting

563730.64

Ensure agreement with PCNav / Starfix.Seis. OK (?) (Y)/ N

Well Location - Northing Convergence at Location 5690201.38 0.46

Rig Heading (° Grid)

215.46

4. MEAS. ANT. OFFSETS from ANT. TO D/STEM (Rel. to D	Datum) NAV #1 SYSTEM	NAV #2 SYSTEM
(Measure two (2) separate directions, verifying closure.)		
Delta X(m)	9.94	18.2
Delta Y(m)	35.43	37.55
Angle between Rig Centreline and Antenna(s) (Grid)	15.672	25.9
Distance between Drill Stem and Antenna(s)	36.80	41.73

If not, CHECK and RECALC.

5. MANUAL COORDINAT	E VERIFICATION FOR ANTENNAS	NA\	/ #1 :	SYSTEM	NAV#	2 SYS	TEM
Proposed Drill Stem Position	n Easting	5	6373	30.6	56373	0.6	
	Northing	5	6902	01.4	56902	01.4	
Drill Stem to Antenna	Proposed Hdg (G)		215.	46	215.46	i	
Brg (G) = Prop. Hdg.	+ Angle btwn centreline and antenna		231.	13	241.32	!	
41 10 AV	Distance (m)		36.8	30	41.73		
Calculated Antenna	Easting	5	6370	1.99	56369	4.03	
Coordinates (Local)	Northing	56	39017	78.29	56901	81.35	
	Latitude	38	56	6.0465 S	38	56	5.9491 S
	Longitude	141	44	5.9377 E	141	44	5.6061 E

Calculated Proposed Antenna Coords (WGS 84)	Latitude	38	56	6.0276 S	38	56	5.9302 S
	Longitude	141	44	5.9477 E	141	44	5.6162 E

Surveyor:

M.Elmslie

Client Rep

J.Herkenhoff

6. POST RIG MOVE - OBSERVED ANTENNA COORD

NAV.SYS #1

NAV.SYS #2

Observed WGS84 Antenna Positions

Latitude 38 56 05.951 Longitude 141 44 05.826 "E 05.826

38 56 05 · 847 141 44 05 · 50

Ensure agreement between cardulated and observed coordinates. If NO, check calcs, antenna offsets.OK (?) ON

Surveyor:

M.Elmslie

Client Rep

Geoperla Date : J.Herkenhoff 2

DOC: FSHY48-1

REV: 2

PAGE 1 OF 1 DATE: 8/1/01©

RIG POSITIONING DGPS CHECK LIST (PRE RIG MOVE)

Client:

Santos Ltd

Job Number:

P0144

Rig:

Jack Bates

Date:

13/11/2004

Project: Rig Move to Amrit-1

1) ESTABLISHED WELL COORDINATES

Observe 10 minutes of DGPS data, logging both Primary and Secondary systems. Establish a mean drill stem position from the primary navigation system and compare against the established well coordinates.

	Easting	Northing
Established Well Coordinates	541241.78	5734911.33
Observed Coordinates	541244.85	5734914.18
Differences	-3.1	-2.8

Ensure agreement OK(?) Y / N

If No, Check and ensure that rig has not moved off location.

2) PRIMARY/SECONDARY NAV SYSTEMS

From the data logged above, compare the observed co-ordinates for both Primary and Secondary navigation systems

	Easting	Northing
Primary Navigation	541244.85	5734914.18
Secondary Navigation	541244.10	5734913.00
Differences	0.75	1.18

Ensure agreement OK(?) Y / N

If No, Check antenna offsets and gyro calibration.

Party Chief/Surveyor:

Client Representative :

DOC: FSHY48-2

REV: 2

PAGE 1 OF 1 DATE: 14/9/00© APPENDIX D: SURVEY GYROCOMPASS CALIBRATION

GYRO COMPASS CALIBRATION - CALCULATION SUMMARY

Client: Rig:

Santos

Jack Bates

Job Number: P0144

Date:

9-Oct-04

Deg Min Sec 90

Correction Angle (RO to Lubberline)

Project:

Rig move to Amrit-1 Bass Strait Victoria, Australia

Obs.	Date	UTC		Instru		t Posi	tion ngitud	40	Calcul		Sun /	Azimuth at	Obs	erved	Direct	ion to Sun	Calc'd	Obs'd Vessel	Sun Semi	(C-O)
No.	Duto	0,0	Deg	_	-				Deg			Dec. Deg	Deg	Min	Sec	Dec. Deg	Vessel Hdg	Hag	Diameter	Degrees
1	8-Oct-04	20:45:12	-36	11	9	136	28	46	94	30	13	94.504	33	50	12	33.837	150.667	330.7	0.2673	-180.03
2	8-Oct-04	20:47:34	-36	11	19	136	28	55	94	9	22	94.156	34	38	12	34.637	149.519	329.7	0.2673	-180.18
3	8-Oct-04	20:52:04	-36	11	39	136	28	15	93	30	15	93.504	33	55	0	33.917	149.588	330.0	0.2673	-180.41
4	8-Oct-04	20:54:47	-36	11	51	136	28	27	93	6	17	93.105	42	9	24	42.157	140.948	320.7	0.2673	-179.75
5																				
6																				
7																				
8																				
9																				
10							2													

Surveyor:

M.Elmslie

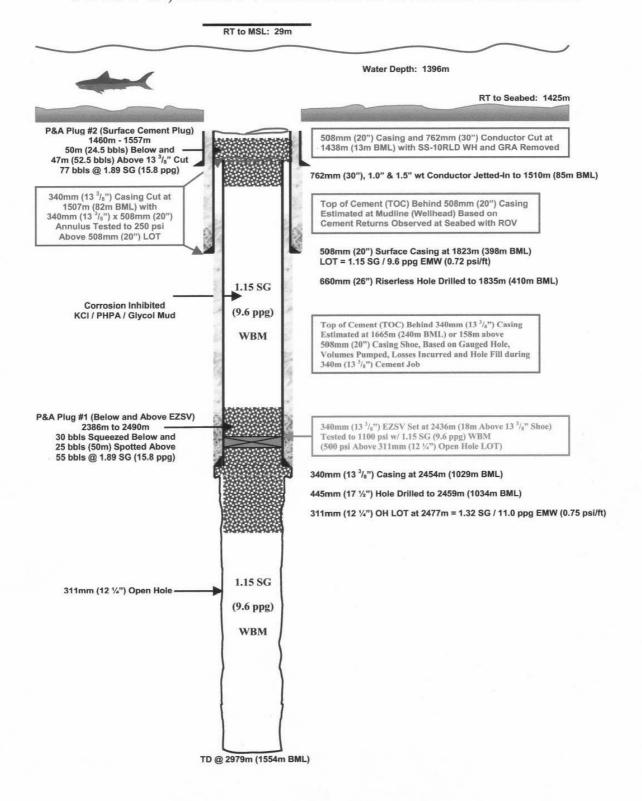
Client Rep :

Required Starfix.Seis Gyro Correction =

NOTE:Gyro correction of +0.00° **Entered During calibration**

Therefore new correction -180.09°

Mean -180.09 0.28 Std. Deviation -179.75 Maximum Minimum -180.41 0.66 Range


APPENDIX E: SANTOS ENERGY WELL DATA SHEET

1. WELL DATA SUMMARY

	ic/P52	Budget Status 2004 Budget Item	,	56' 05.29" S	
EQUITY:	Voting (%)	Commitment well Permit Year 2 Investment (A\$)	Seismic Reference: OS	° 44' 07.12" 02 3D Surve	у
INPEX ALPHA Ltd	33.333%	INPEX ALPHA Ltd A\$7.16 million	Est. Water Depth: 139	104, XL1967 5m	
Santos Ltd	33.333%	Santos Ltd A\$7.16 million	Sea Level 0m		
Unocal South Asean	Ltd 33.333%	Unocal South Asean Ltd A\$7.16 million	Proposed Total Depth: -29	n (To be con 50 mSS (Dry 50 mSS cor	(Hole)
TOTAL:	100%	TOTAL: A\$21.46 million P&A		k Bates	illigerit)
Resource Estimate ((Recoverable)		Cost Estimates		
Untruncated Origina		1150 mmstb	P&A A\$21.55 million	1	
Mean Truncated Suc Mean Expected Volu		397 mmstb 9.0 mmstb	C&S NA Cost Code 5738056		
EMV:	ine.	A\$ 25.0 million (oil price / standalone)	00310000		
Objectives/Fluid Co	ntacts		Stratigraphic Prognosis		
Primary		Secondary	Formation	Depth (m-RT)	Depth (m-SS)
Paaratte Sandstone (Intra-Paaratte & Nullawarre Equivalent	RT	0	
K94, approximately 2 (-2545m)	om above K93	(Oil/Gas)	Sealevel Seabed (Tertiary Ooze)	29 1424	0 -1395
(20 1011)			Wangerrip (T20)	1849	-1820
20			Wangerrip (T15)	1994	-1965
			Base Tertiary (T1) Upper Timboon Sst (K101)	2042 2079	-2013 -2050
			Timboon Mdst (K99)	2154	-2125
			Paaratte Fm (K94) Paaratte Fm (K93)	2574 2594	-2545 -2565
			Paaratte Fm (K91)	2824	-2795
			TD (no significant shows)	2979	-2950
Formation Evaluation			TD (contingent) Hole Design / Drilling Issue	3179	-3150
Wireline Logging:	711		Hole Design / Drilling Issue:	5	
The wireline logging s Standard Gamma Ra	y/ Resistivity/Soni	finalised but is likely to include c from 20" casing to TD sity/Neutron over primary target interval.	Well Class: Exploration Hole Size: Casing Size	on ("Finder V	Vell")
Image log contingent			Jet-In 30" @ 153 26" Riserless 20" @ 182	1m TVD RT 9m TVD RT	
FEWD		+ ♥	17 ½" 13 ³ / ₈ " @ 2	474m TVD F	?T
GR-Resistivity LWD f	rom spud to TD		8% KCI / PHPA / Glycol Polyr	ner WBM	
SWC's:	nles Determ CWC	No excellente if years in a	Deviation Town		
Two guils 2 x 30 sam	iples. Holary SWC	s available if required.	Sub-Surface Targets: Amrit-1 is a vertical well. An a	accuracy of -	-100m
MDT's:			radius from seismic reference		
20 point pressure sur + Pump Out Module v		Samples using PVT Multi-sampler onitoring.	Other Information / Hazards		
Velocity Survey:			Shallow Gas is unlikely within		
	oints every 50m fro	om TD, contingent upon well results.	with a small possibility from the CO ₂ may be encountered with		
Mudlogging:			secondary objectives. H ₂ S is unlikely, but should foll	ow standard	
Full Mudlogging Serv	ices from spud.		monitoring and safety proced		l:
No samples from surf			Overpressure is expected to be		
5m samples from 20" 3m samples from 13			towards TD, around 3050mS		
om samples from 13	Gro casing since to	0.15	shallow as 2750 mSS. Pressu follow a disequilibrium gradier		
Formation Testing:			Formation pressure is anticipa	ated to be in	the order
No open hole testing	programme.	•	of 3885 psia (~200 psi above event of a gas-discovery. In t		
Coring:			case, a Formation Pressure u	p to 4800 ps	ia could
No full hole cores pro	grammed		be encountered, but this is co	naiuerea uni	ikely.
REMARKS / RECOM			Nearby Wells and Duration:		
vveil to be continually	monitored for CO	₂ with reporting on mudlog.	Hill-1 17 days (TD 2575mK	B)

Santos	Well Completion Report Volume 1 Basic
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS
SECTION 14:- WELL AF	BANDONMENT AND PLUG REPORTS

VIC/P-52, Amrit-1 WELL ABANDONMENT DIAGRAM

SECTION 15:- DEVIATION SUMMARY