W807 WCR-VOLIMEZ WHITING -1 (W807)

INTERPRETED DATA

ESSO EXPLORATION AND PRODUCTION AUSTRALIA INC.

WELL COMPLETION REPORT WHITING-1 VOLUME II 1 3 NOV 1985 INTERPRETED DATA

> GIPPSLAND BASIN VICTORIA

ESSO AUSTRALIA LIMITED

Compiled by: P.A.ARDITTO/G.F.BIRCH/J.ROCHE NOVEMBER, 1985

WHITING-1

WELL COMPLETION REPORT

VOLUME II (Interpreted Data)

CONTENTS

Geological and Geophysical Interpretation 1.

FIGURES

1. Stratigraphic Table (Dwg. 2174/0P/1)

APPENDICES

1. Foraminiferal Analysis

1. see 3. s

- 2. Palynological Analysis
- 3. Quantitative Log Analysis
- 4. "Global" Evaluation
- 5. Wireline Test Report
- 6. Production Test Report
- 7. Geochemical Report

8. Synthetic Seismogram

ENCLOSURES

1.	Structure Map - Top of "Coarse Clastics"	Dwg. 2262/0P/4
2.	Structure Map - Upper <u>L</u> , <u>balmei</u> Seismic	
	Marker	Dwg. 2262/0P/8
3.	Structure Map - Lower L. <u>balmei</u>	Dwg. 2262/0P/9
4.	Geological Cross-Section	Dwg. 2262/0P/18
5.	Well Completion Log	•
6.	Time Depth curve (added bu	D.N.RE on 13/5

- 2 -

INTRODUCTION

Whiting-1 was drilled to assess the hydrocarbon potential of a small closure on the Barracouta-Snapper trend, 17km east of Barracouta-4. Whiting has no closure at the Top of the Latrobe, but closure is attained at the intra-Latrobe levels by minor reversal along the axis of the trend.

The well was programmed to -2600 metres, but porosity and good hydrocarbon indications below this level provided the incentive to extend the well 400 metres below the projected T.D.

PREVIOUS DRILLING HISTORY

No previous wells have been drilled on the Whiting Prospect but the Barracouta and Snapper Fields, to the west and east respectively, have major gas accumulations at the top of the Latrobe Group and a number of small intra-Latrobe oil accumulations.

GEOLOGICAL INTERPRETATION

Structure

Post-drill mapping in the Whiting area has modified the pre-drill interpretation. The mapped top of the Latrobe Group, was in fact the "coarse clastics", whereas the <u>P</u>. <u>asperopolus</u> and <u>M</u>. <u>diversus</u> coal markers came in 12 metres and 14 metres low to prediction respectively. The basic shape of the structure has, however, not changed. Seismic quality does not permit reliable mapping below the Upper <u>M</u>. <u>diversus</u>, but it appears that structural relief increases with depth.

Although there is no closure at the top of the Latrobe, there is 46 metres of closure at the <u>P</u>. <u>asperopolus</u> seismic marker and and this increases to 64 metres at the Upper <u>L</u>. <u>balmei</u> level and to approximately 100 metres at the Lower L. balmei horizon.

Faulting in the upper Latrobe at Whiting is minor, but structuring increases below the Upper <u>L</u>. <u>balmei</u> where a number of transverse faults intersect the feature. It appears, however, that these faults have no effect on reservoir communications within the prospect and may be beneficial in migrating hydrocarbons into the structure.

STRATIGRAPHY

Stratigraphic Summary

AGE	UNIT/HORIZON		DEPTH	
		PREDICTED	DRILLED	THICKNESS
		mКВ	mКВ	mSs
Pleistocene to				
Middle Miocene	Gippsland Limestone	74	74	53
Middle to Early				
Miocene	Lakes Entrance Fm.	971	1164	1143
Middle to Early		1070	1000	10/1
Miocene	LATROBE GROUP	1269	1282	1261
	Gurnard Fm.			
	"coarse clastics"	1000	1287	1266
	"CUAISE CLASULCS"	1289	1207	1700
Lata Cratagonus	TOTAL DEPTH	2621	3011	2990
Late Cretaceous	IUTAL DEFIN	2021		2770

Latrobe Group

į.

The stratigraphy at Whiting-1 is generally as predicted, however there are some discrepancies in the deeper lithologies.

.

- 4 -

The interval from T.D. to -2504 metres consists of thinly bedded sandstone, snale and coal. Sands may range up to 10 metres in thickness, but generally the section within the bottom nalf of the Lower L. balmei and Upper T. longus indicates a marked increase in shale content compared to the equivalent section in the Wirran prospect. Whiting-1 penetrated 19 metres of volcanic material within the Lower L. balmei zone from -2617 to -2636 metres. Electric log response is diagnostic of a typical volcanic washout interval - very low gamma-ray and a marked decrease in sonic velocity.

Between -2504 and -2379 metres, sand thickness increases significantly, ranging up to 15 metres. The section is a sequence of stacked blocky sand units, interbedded with thin shales and coals. Logs show a "fining upward" character, possibly braided to point bar channel sands.

A repetitive sequence of shales with thin sand and coal units occur from -2379 to -1929 metres. The quantity of sandstone throughout the Upper L. balmei is similar to that of the <u>T</u>. longus section. Sandstone thickness is generally less than 10 metres and it is possibly associated with areally limited point bar sands and lower delta plain deposists.

From -1929 to -1439 metres, a series of thick braided stream and point par sands separated by relatively thin alluvial shales and coals, occur throughout the <u>M. diversus</u> and <u>P. asperopolus</u> zones. This unit is considered to be stratigraphically equivalent to the Wirrah and Snapper reservoirs.

The interval from -1439 metres to the eroded top of the Latrobe Group is interpreted to be lower delta plain sediments, consisting of thinly interbedded sandstone, snale and coal. The proportion of coal significantly increases throughout the <u>P</u>. <u>asperopolus</u> and lower <u>N</u>. <u>asperus</u> zones, suggesting a proximal marsh to back swamp environment.

At the top of the Latrobe Group, the glauconitic Gurnard Formation is 5 metres thick in Whiting-1, compared to about 20 metres in the adjacent Barracouta, Snapper and Wirrah Fields. This suggests that the greater portion of the Gurnard Formation at the Whiting-1 locality may have been eroded.

- 5 -

Seaspray Group

The Gippsland Limestone and Lakes Entrance Formation comprises limestone and calcareous siltstone as predicted. A major unconformity representing at least 15 million years, that is all of the Oligocene and part of the Early Miocene, separates the Lakes Entrance Formation from the Latrobe Group. The lowermost portion of the Lakes Entrance appears to be strongly re-crystallised, due possibly to exposure during the 15 million year hiatus.

HYDROCARBONS

Whiting-1 was suspended as a new hydrocarbon discovery after penetrating 26 oil and gas zones between P. asperopolus and \underline{T} . longus in the Latrobe Group.

The main oil accumulation (P250) was a 13.5m gross column from -1460.5 to -1474 metres at the <u>P</u>. <u>asperopolus</u> level. The oil-water contact is clearly defined from logs at -1474m and is used for the resource calculations whereas the pressure data defines the 0.W.C. at -1475m. The only other oil encountered was a gas-oil accumulation (L410) at the Upper <u>L</u>. <u>balmei</u> level. This consists of a 29m gross gas column overlying a 3m gross oil column between -1858.25 and -1890.25 metres. A gas accumulation (L460) from -2382.5 to -2456 metres has a pressure inferred gross column of 73.5 metres at the <u>L</u>. <u>balmei</u> level. In addition, four smaller gas intervals were also encountered in the well.

P250 Zone: The P250 zone consists of 2 sands of the same fluid system, exhibiting a common oil-water contact at -1474 metres. Whiting-l encountered 9.5 metres of net oil sand. A production test over the perforated interval -1462 to -1465 metres flowed oil at the rate of 5323 MSTB/D day and gas at the rate of 1.2 GSCF/D.

<u>M100 Zone</u>: A hydrocarbon accumulation over the interval -1714.5m to -1718.0m was interpreted from logs. Although untested, resistivity and neutron-density character is suggestive of oil rather than gas.

(a) A set of the se

- 6 -

L410 Zone:

The L410 zone consists of two sands at the top of the Upper <u>L</u>. <u>balmei</u>. The sands are from -1858.25 metres to the GOC at -1887 metres and from the GOC to the OWC at -1890.25 metres. Net gas sand thickness is 14 metres and net oil sand thickness is 3.25 metres. RFT pressure data indicate these sands are probably in communication.

L450 and L455 Zones:

A further two minor gas columns occur within the Upper <u>L</u>. <u>balmei</u>, designated L450 and L455. These have net sand thicknesses of 4.25 metres and 8.50 metres respectively, however no log contact is observed for either zone. Extropolated RFT gas-water contacts for each zone are -2310 metres and -2382 metres.

L460 Zone:

The main gas accumulation consists of four sands at the Lower <u>L</u>. <u>balmei</u> from -2382.5 metres to the GWC at -2456 metres - a gross column of 74 metres. Based on RFT pressures, the gas sands are interpreted to be in communication. An RFT sampled 124 cu. ft. gas from -2397 metres.

T510 Zone:

÷

A 22 metre gross gas interval consisting of two sands interpreted to be in pressure communication occur within the Upper <u>T</u>. longus zonule. No GWC is observed, however an RFT gas-water contact at -2804 metres is inferred.

GEOPHYSICAL INTERPRETATION

Post-drill mapping over Whiting was carried out on a 1 km grid comprising G74A lines, reprocessed and migrated in 1980-81. These data were available for the pre-drill mapping. Data quality is good down to and including the middle <u>M</u>. <u>diversus</u> seismic marker, below which the signal to noise ratio decreases markedly.

and the second secon

The top of the Latrobe Group in Wniting-1 was penetrated at -1256m, 8m low to prediction. Examination of the synthetic seismic trace suggests that the reflector mapped as top of Latrobe originates from an accoustic impedance contrast at the top of "coarse clastics", as was the case in the Wirrah area. A revised seismic interpretation was carried out on photographically-squeezed sections and tied to the wells. Seismic lag between the synthetic trace and the seismic was 5 ms.

Time ties for the <u>P</u>. <u>asperopolus</u> and middle <u>M</u>. <u>diversus</u> seismic markers are consistent with the synthetic seisomogram, therefore the existing time interpretation of A. J. Young (1982) was carried unchanged.

A seismic event in the Upper $_$. <u>balmei</u> zone at 1.449 s two-way was tied by the synthetic seismogram to the top of a coal at -1940m. Interpretation was carried out at this horizon on a grid of photographically-squeezed lines.

Velocity interpretation was done using A. J. Young's picked scattergram $V_{\rm NMO}$ values at top Latrobe (i.e. now "coarse clastics") level as the most likely case. Profiles were constructed through the scatter of the $V_{\rm NMO}$ data to provide maximum and minimum volume cases for intra-latrobe horizons.

A depth conversion to the top of "coarse clastics" was made by multiplying one-way time and $V_{\rm NMU}$ and by a conversion factor of 0.941 to tie the well. Depth maps for the <u>P</u>. <u>asperopolus</u> and Upper <u>L</u>. <u>balmei</u> horizons were constructed using a constant interval velocity to isopach down from the top of "coarse clastics". Interval velocities used were 2818 ms⁻¹ and 3149 ms⁻¹ respectively, derived from the Whiting-1 well data.

0809L ·

- 8 -

FIGURES

WHITING – 1 Stratigraphic table

			T						
MM YEARS	ЕРОСН	SERIES	F	ORMATION HORIZON	PALYNOLOGICAL Z'ONATION SPORE – POLLEN ASSEMBLAGE ZONES A.D.PARTRIDGE/H.E.STACE		DRILL DEPTH (METRES)	SUBSEA DEPTH (METRES)	THICKNES (METRES
			<u> </u>	SEAFLOOR			74	53	
- 0 -	PLEIST	<u></u> ш		SEAFLOUR		A 1			
				GIPPSLAND		A 2 A 3			
- 5 -	PLIO	 				A 4 B 1			1090
10		LATE	GROUP	LIMESTONE		B 2			1000
- 10 -			PRAY	//?///		С	////	?	///
	ш	MIDDLE	SPR				\sim		
- 15 -	MIOCENE	N	SEA	·?		<u>D2</u> E1	——1164——	1143	
	MIO			LAKES		E 2			117 5
- 20		۲,		ENTRANCE		G			113-5
		EARLY		FORMATION			~1277.5~	~~12565~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
						НІ			
- 25 -					<u>P. tuberculatus</u>	H 2			
		LATE				II			
- 30 -	ENE	1	$\langle \rangle$			12			
	OLIGOCENE					JI			
		Z					and show		
- 35 -		EARLY	//	الممكم كمركم المرار		- J 2	1282	/ 1271	
		ш	<u> </u>	GURNARD FM.	Upper <u>N. asperus</u>	K	hh?~h	~~~~~~	~?'~~
- 40		LATE			Middle <u>N. asperus</u>	-	128,7	I 2 <u>6</u> 6	
- 45	EOCENE	MIDDLE	0		Lower <u>N. asperus</u>				
	ЕÓ		GROUP		P. asperopolus				
- 50-	· · · · · ·	'n	GR	COARSE	Upper <u>M. diversus</u>	-			
		EARLY	ΒE	OUAROL	Middle <u>M. diversus</u> Lower <u>M. diversus</u>				1724 +
- 55 -			LATROBE	CLASTICS		-			
00		LATE	ΓA		Upper <u>L. balmei</u>	-			
	ENE	Ľ.							
- 60	PALEOCENE				Lower <u>L. balmei</u>				
	PAL	EARLY							
- 65 -	R OUS							2990	
	UPPER RETACEOUS	LATE			<u>T. longus</u>		(T.D.)	(T. D.)	
	- H	•			T. lilliei				

*² It is not possible to determine palynologically whether the upper part of the Gurnard Formation is of Upper <u>N. asperus</u> or P. <u>tuberculatus</u> age.

FORAMINIFERAL ANALYSIS, WHITING-1

GIPPSLAND BASIN

by

J.P. Rexilius

Esso Australia Ltd Palaeontology Report: 1983/25. 0525L

July 18, 1983.

INTERPRETATIVE DATA

INTRODUCTION SUMMARY TABLE GEOLOGICAL COMMENTS DISCUSSION OF ZONES REFERENCES FORAMINIFERAL DATA SHEET TABLE 1 : INTERPRETATIVE DATA - WHITING-1

INTRODUCTION

.

Twenty four (24) sidewall core samples were processed for foraminiferal analysis in Whiting-1, from 805 to 1288m. Only the planktonic foraminifera have been scrutinised. Adequate planktonic foraminiferal faunas occur in most samples of Gippsland Limestone (exception: SWC's 93, 130 and 131) and Lakes Entrance Formation (exception: SWC 82). With the exception of SWC 81 at 1280.4m, all samples of Gurnard Formation were barren of foraminifera. Sidewall core 81 only contained agglutinated foraminifera.

Tables 1 and 2 provide a summary (Basic and Interpretative) of the palaeontological analysis in Whiting-1. A summary of the biostratigraphic breakdown of the stratigraphic units in Whiting-1 is given below.

AGE	UNIT	ZONE	DEPTH (m)
Recent/Early Pliocene	?	(not sampled)	(seafloor to 805m)
			······································
Early Pliocene/		B-1	805-898m
Late Miocene	Gippsland	Indeterminate	923m
Late Miocene	Limestone	B-2	953m
Mid Miocene		D-1/D-2	978-1168m
	log break at l	.173m	
Early Miocene	Lakes	F	1219m
Early Miocene	Entrance	G	1255-1272m
-	Formation	Indeterminate	1276.6m
	log break at l	.277.5m	
_ ·	Gurnard Formation	Indeterminate	1280.4-1284m
	log break at l	.287m	
-	Latrobe Group	Indeterminate	1288m
	(coarse clastic	es)(not sampled)	(1288m-TD)

SUMMARY

GEOLOGICAL COMMENTS

Log character indicates that the base and top of the Gurnard Formation is at 1287m and 1277.5m. The Gurnard Formation in Whiting-1 cannot be age dated using foraminifera or spore pollen. The age of the basal part of the Lakes Entrance Formation is Early Miocene and is assignable to Zone G. The Lakes Entrance Formation rests disconformably on the Gurnard Formation at the Whiting-1 location. The lowermost sample of Lakes Entrance Formation in Whiting-1 (SWC 82 at 1276.6m) is strongly recrystallised. Recrystallisation at the base of the carbonate section in the Gippsland Basin is widespread.

On the basis of lithological and faunal character, the boundary between the Gippsland Limestone (prograding shelf carbonates) and the Lakes Entrance Formation (pelagic carbonate) is placed between ll68m and l219m. Sidewall core 88 at l219 is Zone F in age and consists essentially of a planktonic foraminiferal ooze. Planktonic foraminifera in this uppermost sample of Lakes Entrance Formation are abundant, well preserved and represent a dominant element (greater than 90%) of the foraminiferal assemblage. Sidewall core 89 at ll68m is a calcareous siltstone with bryozoan fragments and has been assigned to Zones D-1/D-2. Planktonic foraminifera in this lowermost sample of Gippsland Limestone are impoverished and poorly preserved. The boundary between the Gippsland Limestone and the Lakes Entrance Formation cannot be adequately picked on the basis of log character in Whiting-1. The boundary has been tentatively placed at ll73m on the basis of a subtle log change.

The absence of Zone C in Whiting-1 may indicate a possible disconformity or maybe the result of a gap in sampling.

A significant increase in the proportion of large, well rounded quartz grains was noted in SWC 131 at 923m. The sample consists of fine grained calcarenite (normal lithology of the Gippsland Limestone) but contains an anomalously high proportion of quartz (approximately 10% of the washed residue). The sample is not age diagnostic but on the basis of superposition can be assigned to Zones B-1 or B-2. The high proportion of quartz at 923m may reflect a relative fall in sea-level. Vail's Tertiary Global Cycle Chart indicates a type-1 unconformity at 6.6 Ma. This event coincides approximately with the boundary between Zones B-1 and B-2 in the Gippsland Basin. It is possible that a disconformity occurs at about this time in the Gippsland Basin but it cannot be confirmed by micropalaeontological evidence because its duration is beyond the biostratigraphic resolution of the local planktonic foraminiferal zonation.

- 4 -

DISCUSSION OF ZONES

The Tertiary biostratigraphy in Whiting-1 is based on the Gippsland Basin planktonic foraminiferal zonal scheme of Taylor (in prep).

Indeterminate Interval : 1276.6 - 1284m.

Sidewall cores at 1276.6, 1280.4 and 1284m cannot be age dated using planktonic foraminifera. Sidewall core 82 at 1276.6m contains indeterminate planktonics while samples at 1280.4 and 1284m are barren of planktonic foraminifera.

Zone G : 1255 - 1272m.

The uphole appearance of <u>Globigerinoides trilobus</u> at 1272m defines the base of Zone G in Whiting-1. The presence of advanced forms of <u>Globigerinoides</u> <u>trilobus</u> and <u>Globorotalia miozea miozea</u> indicates that SWC 83 at 1272m is high in Zone G. The top of the zone is defined by the evolutionary appearance of Globigerinoides bisphericus from <u>G. trilobus</u> at 1219m.

Zone F : 1219m.

A typical zone F planktonic foraminiferal assemblage comprising <u>Globigerinoides bisphericus</u> without the <u>Praeorbulina-Orbulina</u> plexus occurs in SWC 88 at 1219m.

Zones D-1/D-2 : 978 - 1168m.

The appearance of <u>Orbulina</u> <u>universa</u> at 1168m defines the base of Zone D-2 in Whiting-1. The extinction of <u>Globorotalia</u> <u>miozea</u> <u>miozea</u> at 978m defines the top of Zone D-1.

Zone B-2 : 953m.

The association of <u>Globorotalia</u> acostaensis and <u>G</u>. miotumida miotumida in SWC 97 at 953m indicates that the sample is assignable to Zone B-2.

Indeterminate Interval : 923m.

Sidewall core 131 at 923m is recrystallised and only contains an impoverished assemblage of indeterminate planktonic foraminifera.

Zone B-1 : 805 - 898m.

The presence of <u>Globorotalia</u> <u>miotumida</u> <u>conomiozea</u> s.s. in the absence of <u>Globorotalia</u> <u>puncticulata</u> in this interval defines Zone B-l in Whiting-l.

 $\langle \rangle$

REFERENCES

TAYLOR, D.J. (in prep). Observed Gippsland biostratigraphic sequences of planktonic foraminiferal assemblages.

MACPHAIL, M.K., 1983. Palynological analysis, Whiting-1, Gippsland Basin. Esso Australia Ltd., Palaeontology Report, 1983/27.

. ·

•••••

MICROPALEONTOLOGICAL DATA SHEET

	l nai	N: <u>GIH</u> ME: WHI	ITING-1					L DEPTH:		1.0m CL: 011m.		
			1		EST D	АТ		17		ST D	A T	 A
	GE	FORAM. ZONULES	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	1	Alternate Depth	Rtg	Two V Tin
IS-		Al										
PLEIS-	ľ	A2										
		A ₃										
PLIO- CENE		A4										
дО		Bl	805	1				898	1			
	LATE	B ₂	953	1				953	<u> </u>		L	
		С										
ப	ы - Г	Dl	978	1								
E N		D ₂				•		1168	1			
υ	П П	El						ļ				
о I	Σ	^E 2										
Σ	ĸ	F	1219	0				1219	0			
	EARLY	G	1255	0				1272	0			
	لتا 	н Н Н										
	Ľ٦	H ₂										
ENE	A T	¹ 1 т										
OLIGOCENE		1 ₂						l				
IIO	ARLY	J 1 J 2						 				
]												
EOC- ENE	-	K Pre-K		$\left\{ \right\}$								
	INIENT									a gap in		
	FIDEN VTING		SWC or C	Core – Core –	Complete as: Almost comp Close to zont Complete as: Incomplete a depth suspici	olete ile ch sembl sseml	assemblage ange but a age (low c blage, nex	e (high confi ble to interp onfidence). t to uninterp	dence). oret (low	confidence).		
NOT	E ·	rating shoul then no enti	d be entered, ry should be r	if pos nade,	if dence rating sible. If a sar unless a range nd the lowest p	, an nple of zo	alternative cannot be : nes is giver	e depth with assigned to c n where the	one part	icular zone ,	·	
				• - ·								
		ORDED BY:	J.P. R.					DATE:		83.		

Ì

TABLE-1 SUMMARY OF PALAEONTOLOGICAL ANALYSIS, WHITING-1, GIPPSLAND BASIN

- 8 -

INTERPRETATIVE DATA

NATURE							
OF	DEPTH	MICROFOSSIL		·			
SAMPLE	(M)	YIELD	PRESERVATION	DIVERSITY	ZONE	AGE	
SWC 102	805	Low	Moderate	Low	8-1	Early Pliocene/Late Miocene	
SWC 132	841	Moderate	Moderate	Moderate	B-1	Early Pliocene/Late Miocene	
SWC 100	872	Very low	Poor	Low	B-1	Early Pliocene/Late Miocene	
SWC 99	898	Moderate	Moderate	Low	B-1	Early Pliocene/Late Miocene	
SWC 131	923	Very low	Poor	Very low	Indeterminate	-	
SWC 97	953	Low	Poor	Moderate	B-2	Late Miocene	·
SWC 96	978	Low	Moderate/poor	Moderate	D-2/D-2	Mid Miocene	
SWC 95	1003	Moderately low	Moderate/poor	Moderately low	D-1/D-2	Mid Miocene	
SWC 94	1038	Moderately low	Moderate/poor	Moderate	D-1/D-2	Mid Miocene	
SWC 93	1069	Low	Poor	Low	Indeterminate		
SWC 92	1095	High Mary law	Moderate	Moderate	D-1/D-2	Mid Miocene	
SWC 130	1114	Very low	Very poor	Very low	Indeterminate D–1/D–2	– Mid Miocene	
SWC 90 SWC 89	1148 116	Moderate Very low	Moderate/poor Poor	Moderate Low	?D-1/D-2	? Mid Miocene	
SWC 88	1219	High	Good	Moderate	:D-1/D-2 F	Early Miocene	
SWC 87	1255	High	Good	Moderate	G	Early Miocene	
SWC 86	1259	High	Good	High	G	Early Miocene	
SWC 85	1264	High	Moderate/good	Moderate	G	Early Miocene	
SWC 84	1268	High	Good	High	G	Early Miocene	
SWC 83	1272	High	Good	Moderate	G	Early Miocene	
SWC 82	1276.6		Very poor	Very low	Indeterminate	_	Sample recrystallised
SWC 81		Barren	-	-	-	-	Agglutinated foraminifer
SWC 80	1284	Barren	_	-	-	_	Fish teeth
SWC 79	1288	Barren	-		_	-	

BASIC DATA

TABLE-2 : FORAMINIFERAL DATA, WHITING-1. RANGE CHART : TERTIARY PLANKTONIC FORAMINIFERA

.

. 1

.

.

- 10 -

TABLE-2 SUMMARY OF PALAEONTOLOGICAL ANALYSIS, WHITING-1, GIPPSLAND BASIN. BASIC DATA

NATURE					
OF	DEPTH	MICROFOSSIL			
SAMPLE	(M)	YIELD	PRESERVATION	DIVERSITY	COMMENTS
SWC 102	805	Low	Moderate	Low	
SWC 132	841	Moderate	Moderate	Moderate	
SWC 100	872	Very low	Poor	Low	
SWC 99	898	Moderate	Moderate	Low	
SWC 131	923	Very low	Poor	Very low	
SWC 97	953	Low	Poor	Moderate	
SWC 96	978	Low	Moderate/poor	Moderate	
SWC 95	1003	Moderately low	Moderate/poor	Moderately 1	.OW
SWC 94	1038	Moderately low	Moderate/poor	Moderate	
SWC 93	1069	Low	Poor	Low	
SWC 92	1095	High	Moderate	Moderate	
SWC 130	1114	Very low	Very poor	Very low	
SWC 90	1148	Moderate	Moderate/poor	Moderate	
SWC 89	116	Very low	Poor	Low	
SWC 88	1219	High	Good	Moderate	
SWC 87	1255	High	Good ,	Moderate	
SWC 86	1259	High	Good	High	
SWC 85	1264	High	Moderate/good	Moderate	
SWC 84	1268	High	Good	High	
SWC 83	1272	High	Good	Moderate	
SWC 82	1276.6	Low	Very poor	Very low	Sample
					recrystallise
SWC 81	1280.4	Barren	_	-	Agglutinated
					foraminifera
SWC 80	1284	Barren	-	_	Fish teeth
SWC 79	1288	Barren	_	-	

.

-

.1

·

. .

PALYNOLOGICAL ANALYSIS Whiting-1, gippsland basin

by

M.K. Macphail.

Esso Australia Ltd. Palaeontology Report 1983/28. 0535L

.....

. •

July 1983.

,

INTRODUCTION

Sixty eight (68) sidewall cores, two conventional core and three cuttings samples were processed and examined for spore-pollen and dinoflagellates. Recovery was mostly low to fair but, with the exception of the Paleocene section, preservation and diversity of the palynofloras were adequate to obtain reliable age-determinations.

Palynological zones and lithological facies divisions from the base of the Lakes Entrance Formation to the total depth of the well are given below. Occurrences of spore-pollen and dinoflagellate species are tabulated in the accompanying range chart. Anomalous and unusual occurrences of taxa are listed at the end of the Biostratigraphy Section (see Table 2).

UNIT/FACIES	ZONE	DEPTH (m)
Lakes Entrance Formation	P. tuberculatus	1276.6
	log break at 1277.5m	
Gurnard Formation	Indeterminate (mixed <u>P</u> . <u>tuberculatus</u> and Upper-Middle <u>N</u> . <u>asperus</u> Zone palynofloras).	1280.4 - 1284.0
	log break at 1287m	
Latrobe Group	Middle N. asperus	1301.2
Coarse Clastics	Lower N. <u>asperus</u>	1317.8 - 1437.0
	P. asperopolus	1456.0 - 1542.0
		149010 194210
	Upper <u>M. diversus</u>	1577.5 - 1676.3
	Upper M. diversus	1577.5 - 1676.3
	Upper <u>M. diversus</u> Middle <u>M. diversus</u>	1577.5 - 1676.3 1715.8
	Upper <u>M. diversus</u> Middle <u>M. diversus</u> Lower <u>M. diversus</u>	1577.5 - 1676.3 1715.8 1734.0 - 1859.1

SUMMARY

3011 T.D.

- 2 -

GEOLOGICAL COMMENTS

- The Whiting-1 well contains a continuous sequence of sediments from the Late Cretaceous Upper <u>T</u>. <u>longus</u> Zone to at least the Middle Eocene uppermost Lower N. asperus Zone.
- 2. The recrystallised limestone, at 1276.6m and close to the picked base of the Lakes Entrance Formation (1277.5m; Rexilius 1983), is Oligocene-Early Miocene in age, probably the latter based on foraminiferal data from 1272.0m (Rexilius <u>ibid</u>). Elements of an Early Eocene palynoflora have been reworked into this stratum.
- 3. Spore-pollen recovered from the Gurnard Formation, picked on lithological and log characteristics as occurring between 1277.5 to 1287.0m (Rexilius ibid), are mostly <u>P. tuberculatus</u> Zone species. This is inconsistent with the age of the formation in the Barracouta-4 and 1 wells (Middle <u>N. asperus</u>) and Snapper-3 well (Lower <u>N. asperus</u>). Moreover species which range no higher than the Upper <u>N. asperus</u> Zone also occur within the Gurnard Formation in Whiting-1, suggesting that mixing by bioturbation of <u>P. tuberculatus</u>, Upper <u>N. asperus</u> and Middle <u>N. asperus</u> Zone floras has occurred. In this context it is noted that traces of glauconite extend from 1287 to 1292m. Although the Gurnard Formation cannot therefore be assigned to a particular zone, its age is likely to be Late Eocene/Early Oligocene.
- 4. Whilst it is not clear whether there is an age break between the greensands and the top of the underlying coarse clastics at about 1288m, the latter are unlikely to be younger than Middle <u>N. asperus</u> Zone in age. Below 1317.8m, the sediments are certainly Lower <u>N. asperus</u> Zone or older in age.
- 5. Unlike in the Gurnard Formation, dinoflagellates are rare or absent in the top 73m Latrobe Group coarse clastics (1287-1359.5m) but become common to abundant at 1374.0m and 1415.2m. The highest coal occurs at 1349.0m and the highest major thickness of coal at approximately 1370m. Because preservation of the palynofloras varies across this interval, it is not clear from the data at what depth the transition from a marine to a terrestrial environment occurs, but because of low dinoflagellate species diversity it is likely that the samples at 1374.0m and 1415.2m record marginal marine environments rather than marine transgressions per se.

• • •

- 6. Two marine transgressions are recorded: 1) within the P. asperopolus Zone section at 1527.5m; and 2) at the base of the Lower M. diversus Zone at 1859.0m. The former is represented by abundant Homotryblium tasmanensis and is likely to correlate with the P. asperopolus Zone marine transgression recorded by Partridge (1974) for the Barracouta-4 well. The presence of Sapotaceoidaepollenites rotundus at 1527.5m in Whiting-1 indicates the marine transgression is Middle rather than Early Eocene in age and therefore more likely to correspond to the second (Wetzeliella edwardsii Zone) of the two P. asperopolus Zone transgressions recognised by Partridge (1976). The second (Lower M. diversus Zone) marine transgression is recorded by a spore-pollen and dinoflagellate assemblage virtually identical to that recorded from the Rivernook Bed of the onshore Princetown Section, Otway Basin (Cookson & Eisenack 1967) and is likely to represent the same (Apectodinium hyperacantha Zone) event. Paleocene spore-pollen have been reworked by the transgression into the siltstone at 1859.0m in Whiting-1.
- 7. The Lower N. asperus Zone and Upper M. diversus Zone seismic markers lie within sections dated as Lower N. asperus and Upper M. diversus Zone in age respectively. The P. asperopolus Zone seismic marker lies approximately 13m within the Lower N. asperus Zone section.
- Because of poor sample control in the adjacent Barracouta and Snapper wells, it is difficult to ascertain whether the relatively thick (approximately 469m) Upper <u>L. balmei</u> Zone section in Whiting-1 is a feature of the Gippsland Basin in this general area.
- 9. The well bottomed in Maastrichtian Upper <u>T</u>. <u>longus</u> Zone sediments. This is consistent with Barracouta-1. The Barracouta-3 and Snapper-3 wells appear to have bottomed in Lower <u>T</u>. <u>longus</u> or <u>T</u>. <u>lilliei</u> Zone sediments (see attached revised palynology data sheets).

BIOSTRATIGRAPHY

The zone boundaries have been established using the criteria of Stover & Evans (1973), Stover & Partridge (1973) and subsequent proprietary revisions.

Upper Tricolpites longus Zone : 2993.5 - 2767.0m.

Samples within this section contain diverse but poorly to very poorly preserved palynofloras. The lowest sample able to be age-determined is at 2993.5m and is no older than Upper <u>T</u>. <u>longus</u> Zone in age <u>if</u> the specimens of

<u>Tetracolporites verrucosus</u> and <u>Stereisporites punctatus</u> are <u>in situ</u>. This is uncertain since 1) the sample lacks species restricted to the Late Cretaceous and 2) contains an unusually high number of <u>Lystiepollenites balmei</u> pollen for a Late Cretaceous sample. Although the base of the zone has been provisionally placed at 2993.5m, a more reliable base is at 2958.0m, defined by the simultaneous occurrence of <u>I. verrucosus</u> and <u>S. punctatus</u> with <u>Tricolpites longus</u>, <u>Proteacidites gemmatus</u>, <u>P. otwayensis</u> and <u>P. reticuloconcavus</u> in a <u>Gambierina rudata</u> – dominated assemblage. These taxa and <u>Tricolpites waiparensis</u>, <u>Proteacidites clinei</u> and <u>Tricolporites lilliei</u> occur infrequently up to 2767.0m. The top of the zone, at 2767.0m is defined by the highest occurrence of Proteacidites reticuloconcavus.

Lower Lygistepollenites balmei Zone : 2738.5 - 2402.8m.

Most of the samples from this and the overlying Upper L. <u>balmei</u> Zone contained palynofloras dominated by gymnosperms (including the nominate species) and <u>Proteacidites</u> spp. Other general L. <u>balmei</u> Zone marker species, eg. <u>Polycolpites langstonii</u> and frequent to abundant <u>Australopollis obscurus</u> were uncommon. The base of the zone is picked at 2738.5m. This sample contains <u>Tetracolporites multistrixus</u>, a species which ranges no lower than the Lower L. <u>balmei</u> Zone in the Bass Basin, in an assemblage lacking taxa which range no higher than the <u>T. longus</u> Zone. <u>Tetracolporites verrucosus</u>, which ranges no higher than the Lower L. <u>balmei</u> Zone, occurs in cuttings at 2680-85m and 2635-40m but not in the sidewall core samples until 2585.5m. The top of the zone is placed at 2402.8m, based in the highest occurrence of <u>T. verrucosus</u>.

Upper Lygistepollenites balmei Zone : 2358.5 - 1889.5m.

The zone is defined by the constant occurrence of <u>Verrucosisporites</u> <u>kopukuensis</u> in association with (usually) frequent to abundant <u>Lygistepollenites balmei</u> and (less frequently) other species which range no higher than the Upper <u>L</u>. <u>balmei</u> Zone, eg. <u>Australopollis obscurus</u> and <u>Nothofagidites endurus</u>. As noted in Table 2, much of the section contains apparently anomalous occurrences of Late Cretaceous, Early Paleocene or, at 1889.5m, Eocene species. The top of the zone is provisionally picked at 1889.5m, based on the highest occurrence of frequent <u>Lygistepollenites</u> <u>balmei</u>. <u>Verrucosisporites kopukuensis</u>, which first appears in thie Zone, does not occur in the Upper <u>L</u>. <u>balmei</u> Zone sediments above 2141.2m. The presence of abundant <u>Australopollis obscurus</u> at 2010.5m demonstrates this sample is certainly no younger than Upper <u>L</u>. <u>balmei</u> Zone in age. Surprisingly, <u>Haloragacidites harrisii</u> which first appears in the Lower <u>L</u>. <u>balmei</u> Zone was not recorded below this depth in the Whiting-l well.

Lower <u>Malvacipollis diversus</u> Zone : 1859.1 - 1734.0m. This zone is represented by three sidewall cores separated by barren intervals. The lowermost, at 1859.1m contains a diverse spore-pollen assemblage in which <u>Spinizonocolpites prominatus</u> and <u>Malvacipollis diversus</u> are common to abundant and <u>Crassiretitriletes venraadschoovenii</u>, <u>Polypodiaceoisporites varus</u> and <u>Proteacidites pachypolus</u> are present. Dinoflagellates are frequent but very poorly preserved and only <u>Cordosphaeridium bipolare</u> could be identified with confidence. Reworked specimens of the Late Cretaceous-Paleocene species <u>Lygistepollenites balmei</u> and <u>Gambierina rudata</u> are present. The upper two samples, at 1780.5m and 1734.0m, contain species which first appear in this zone, eg. <u>Cupanieidites</u> <u>orthoteichus</u>, <u>Ilexpollenites anguloclavatus</u>, <u>Ischyosporites irregularis</u>, <u>Proteacidites biornatus</u> and <u>Schizocolpus marlinensis</u>. The top of the zone, at 1734.0m, is defined by <u>Cyathidites gigantis</u>, a species which ranges no higher than the Lower <u>M. diversus</u> Zone.

Middle Malvacipollis diversus Zone : 1715.8m.

The Middle <u>M</u>. <u>diversus</u> Zone is represented by one sample only. The age determination is based on the occurrence of species which first appear in this zone, eg. <u>Anacolosidites acutullus</u> and <u>Proteacidites tuberculiformis</u>, in an assemblage lacking Upper <u>M</u>. <u>diversus</u> Zone indicator species.

Upper Malvacipollis diversus Zone : 1676.3 - 1577.5m.

Samples within this interval contain diverse palynofloras dominated by <u>Malvacipollis</u> spp. including <u>M. diversus</u>, <u>Haloragacidites harrisii</u>, <u>Gleicheniidites circinidites</u> and <u>Proteacidites</u> including species such as <u>P. ornatus</u>, <u>P. tuberculiformis</u> and <u>P. kopiensis</u> which typically range no lower than the Middle <u>M. diversus</u> Zone. The base of the zone, at 1657.5m is defined by the first appearance of <u>Bysmapollis emaciatus</u>. The presence of <u>Crassiretitriletes vanraadshoovenii</u> demonstrates this sample is no younger than Upper <u>M. diversus</u> Zone in age. The top of the zone at 1577.5m is defined by <u>Myrtaceidites tenuis</u>, <u>Proteacidites pachypolus</u> and <u>Kuylisporites</u> <u>waterbolkii</u> in an assemblage containing <u>Malvacipollis diversus</u> but lacking Proteacidites asperopolus.

Proteacidites asperopolus Zone : 1542.0 - 1456.0m.

Samples within this interval are dominated by <u>Haloragacidites harrisii</u> and <u>Proteacidites</u> spp. The base of the zone is defined by the first occurrence of <u>Proteacidites asperopolus</u> in association with <u>Myrtaceidites tenuis</u> at 1542.0m. This sample contains the only <u>frequent</u> occurrence of <u>Proteacidites</u> pachypolus in the well. The sidewall core sample at 1527.5m contains numerous

- 6 -

dinoflagellates including <u>Apectodinium hyperacantha</u> and (common) <u>Homotryblium</u> <u>tasmanensis</u> in addition to <u>P. pachypolus</u>, <u>P. asperopolus</u> and <u>M. tenuis</u>. The top of the zone is picked at 1456m, the highest sample containing <u>Proteacidites asperopolus</u> in a <u>Proteacidites</u>-dominated assemblage (30 %). Occurrences of <u>Milfordia hypolaenoides</u> and <u>Sapotaceoidaepollenites rotundus</u> indicate this sample is close to <u>P. asperopolus</u>/Lower <u>N. asperus</u> Zone boundary.

Lower Nothofagidites asperus Zone : 1437.0 - 1317.8m.

The zone is characterised by samples containing <u>Proteacidites asperopolus</u> with common to abundant <u>Nothofagidites</u> pollen separated by intervals of low spore-pollen recovery in which swollen palynomorphs suggest prolonged saturation with liquid hydrocarbons. The base of the zone, at 1437.0m, is defined by the presence of <u>Periporopollenites vesicus</u>, a species which first appears in this zone and a marked increase in abundance of <u>Nothofagidites</u> (to 39%). <u>Tricolporites simatus</u> occurs at 1417.0m, <u>Proteacidites asperopolus</u>, <u>P. pachypolus</u> and <u>Periporopollenites vesicus</u> occur at 1415.2m in an assemblage containing the dinoflagellate species <u>Deflandrea flounderensis</u> and (caved) <u>Vozzhenikovia extensa</u>. The top of the zone is defined by the last appearance of <u>Proteacidites asperopolus</u>. The presence of <u>Nothofagidites falcatus</u> and <u>Verrucatosporites attinatus</u> indicate that this sample is close to the Lower/Middle <u>N. asperus</u> Zone boundary.

Middle Nothofagidites asperus Zone : 1301.2m.

The interval between 1317.8 and 1288.0m is characterised by very low to negligible spore-pollen and dinoflagellate recovery. One sample only, at 1301.2m, is provisionally assigned a Middle <u>N</u>. <u>asperus</u> Zone age on the basis of very rare <u>Vozzhenikovia extensa</u> in a sparse <u>Nothofagidites</u> spp. - dominated palynoflora.

Proteacidites tuberculatus Zone : 1276.6m.

The occurrence of <u>Cyatheacidites annulatus</u> and <u>Foveotriletes lacunosus</u> confirm a <u>P. tuberculatus</u> Zone age for the glauconite-free calcareous sample at 1276.6m. <u>C. annulatus</u> also occurs in samples at 1280.4m and 1284.0m, since the latter sample contains a single well preserved grain of <u>Proteacidites</u> <u>crassus</u> which is not known to range above the Lower <u>N. asperus</u> Zone and the former <u>Ischyosporites gremius</u>, which ranges no higher than the Upper <u>N.</u> <u>asperus</u> Zone, the interval from 1280.4 to 1284.0 cannot be reliably dated. A corroded specimen of the Middle to late Eocene species <u>P. tuberculiformis</u> occurs at 1276.6m. The occurrence of <u>Beaupreadites elegansiformis</u> is consistent with this sample being no younger then Early Miocene in age.

REFERENCES

COOKSON, T.C. & EISENACK, 1967. Microplankton from the Paleocene Rivernook Bed, Victoria. <u>Proc. Roy. Soc. Vict.</u>, 80:247-258.

PARTRIDGE, A.D. 1974. Palynological analysis, Barracouta-4, Gippsland Basin. Esso Australia Ltd. Palaeontological Report, 1977/16.

PARTRIDGE, A.D., 1976. The geological expression of eustacy in the Early Tertiary of the Gippsland Basin. <u>Apea</u> (<u>1976</u>):73-79.

REXILIUS, J.P., 1983. Micropalaeontological analyses of Whiting-1, Gippsland Basin, Victoria. <u>Esso Australia Ltd., Palaeontological</u> Report 1983/25.

STOVER, L.E. & EVANS, P.R., 1973. Upper Cretaceous spore-pollen zonation, offshore Gippsland Basin, Australia. Spec. Publ. Geol. Soc. Aust., <u>4</u>, 55-72.

STOVER, L.E. & PARTRIDGE, A.D., 1973. Tertiary and Late Cretaceous spores and pollen from the Gippsland Basin, Southeastern Australia. <u>Proc. Roy.</u> <u>Soc. Vict., 85</u>, 237-86.

-9-	
-----	--

					INTERPRETATIVE	DATA		
SAMPLE	DEPTH		DIVERSITY				CONFIDENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
	<u>.</u>							
SWC 82	1276.6	Good	Fair	Calci. stst.	P.tuberculatus		0	C.annulatus
SWC 81	1280.4	Good	Low	Calci.stst,glau.	Indeterminate		2	C.annulatus, I.gremius
SWC 80	1284.0	Low	Fair	Calci.stst.glau?	Indeterminate		2	C.annulatus, P.crassus
SWC 79	1288.0	Barren	-	Ss., glau	-		-	
SWC 78	1292.0	V. low	Low	Ss.	Indeterminate		-	Nothofagidites common
SWC 77	1301.2	V. low	Fair	Ss.	Middle N.asperus		2	V.extensa
SWC 76	1304.9	Varren	-	-			-	
SWC 75	1317.8	Good	High	Ss.	Uppermost Lower	Middle Eocene	0	P.vesicus, T.simatus, P.asperopolus,
-			5		N.asperus			V.attinatus
SWC 74	1322.5	Low	Low	Ss.	Uppermost Lower	Middle Eocene	1	V.attinatus, P.asperopolus, T.simatus
•					N.asperus			
SWC 72	1332.0	V. low	V. low	Ss.	Indeterminate		-	
SWC 70	1341.5	Barren	-	Ss.	-		-	
SWC 69	1342.5	Low	V. low	Ss.	Lower N.asperus	Middle Eocene	1	N.falcatus
SWC 67	1359.5	Moderate	Fair	Calci.slt.	Lower N.asperus	Middle Eocene	1	Nothofagidites common, P.asperopolus
SWC129	1374.0	Moderate	High	Slst.,carb.	Lower N.asperus	Middle Eocene	2	Senegalium asymmetricum, Deflandrea obliquipes, D.oebisfeldensis.
SWC 65	1382.5	V. low	Low	Ss.	Lower N.asperus	Middle Eocene	2	Frequent Nothofagidites, T.cf.simatus
SWC 63	1415.2	Good	High	Clyst.	Lower N.asperus	Middle Eocene	0	Abundant Nothofagidites, P.vesicus,
			Ū	·				P.asperopolus, P.pachypolus, D.flounderensis,
SWC 62	1417.0	Moderate	High	Ss.	Lower N.asperus	Middle Eocene	1	T.simatus, Nothofagidites common.
SWC 61	1437.0	V. good 🖇	V. high	Slst.	Lower N.asperus	Middle Eocene	0	Nothofagidites abundant (39%), P.vesic
SWC 60	1456.0	Good	Fair	Slst.	P.asperopolus	Middle Eocene	I	P.asperopolus, Proteacidites, common (30%) Nothofagidites, uncommon (13%) M.hypolaenoides, S.rotundus.
CWC ED	1461.0	Moderate	Fair	Ss.	P.asperopolus	Middle Eocene	2	
SWC 59 SWC 58	1461.0	Barren	-	coal	-	-	-	H.harrisii
SWC 58	1478.5	Barren	-	Ss.	_	_	-	
				ss.	- P.asperopolus	Middle Eocene	0	P.asperopolus, frequent M.tenuis,
SWC 56	1525.0	Moderate	High	5.		FILIGITE LOCEILE	v	abundant Proteacidites.

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS WHITING-I, GIPPSLAND BASIN.

- 10 -

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS WHITING-I, GIPPSLAND BASIN.

INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF I DENCE	COMMENTS
NO.`	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
	<u></u>							
SWC 50	1527.5	Moderate	High	Slst.,carb.	P.asperopolus	Middle Eocene	0	P.asperopolus, M.tenuis, S.rotundus, P.rugulatus, Apectodinium hyperacant Homotriblium tasmaniensis common.
SWC 49	1542.0	Good	High	Ss.	P.asperopolus	Early/Middle Eocene	0	P.asperopolus, M.tenuis, B.verrucosus
SWC 48	1577.5	Low	Fair	Clyst.	Upper <u>M.diversus</u>	Early Eocene	I	<u>M.tenuis, M.diversus, P.pachypolus,</u> K.waterbolkii.
SWC 47	1590.3	V. good	V. high	Ss.	Upper <u>M.diversus</u>	Early Eocene	0	Frequent M.tenuis & M.diversus, P.pachypolus, K.waterbolkii.
SWC 46	1604.5	Barren	-	Ss.	-	-	-	
WC 45	1640.7	Low	Fair	Ss.	Upper M.diversus	Early Eocene	2	M.diversus common.
SWC 44	1657.5	Low	High	Slst.	Upper M.diversus	Early Eocene	2	B.emaciatus, G.divaricatus, P.leightonii, P.ornatus.
SWC 54	1665.5	Moderate	High	Slst.	No older than Middle M.diversus	Early Eocene	-	I.gremius, P.ornatus, P.tuberculiform
SWC 53	1668.0	V. Iow	V. Iow	Slst.	No older than Middle M.diversus	Early Eocene	-	T.paenestriatus
WC 43	1676.3	Good	High	Slst.	Upper M.diversus	Early Eocene	2	B.emaciatus, A.acutullus, D.delicatus P.tuberculiformis
SWC 42	1715.8	Good	V. high	Slst.	Middle <u>M.diversus</u>	Early Eocene	I	A.acutullus, P.tuberculiformis, T.moultonii
SWC 41	1734.0	Good	Fair	Clyst.	Lower M.diversus	Early Eocene	0	C.gigantis, I.irregularis, P.biornatu
WC 52	1739.0	Barren	-	Ss.	-	-	-	
WC 40	1756.0	Barren	-	Slst.	-	-	-	-
WC 39	1780.5	Good	High	Slst.,carb.	Lower <u>M.diversus</u>	Early Eocene	I.	C.orthoteichus, I.anguloclavatus, I.irregularis, S.marlinensis.
SWC 38	1802.5	Barren	-	Slst.	-	-	-	
WC 36	1859.1	Good	Fair	Clyst.	Lower M.diversus (A.hyperacantha)	Early Eocene	0	C.vanraadshoovenii, P.varus, P.pachypolus, abundant <u>S.prominatus</u> A.hyperacantha, C.bipolare

1.

۰.

- 11 -

,

•

.

٠

.

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS WHITING-1, GIPPSLAND BASIN.

INTERPRETATIVE DATA

SAMPLE	DEPTH		DIVERSITY				CONF I DENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
		<u></u>						
SWC 35	1889.5	V. low	Fair	Slst.	Upper L.balmei	Paleocene	i	L.balmei, V.kopukuensis
SWC 34	1925.0	Low	V. low	Ss., carb.	L.balmei	Paleocene	-	L.balmei
SWC 33	1950.5	V. low	V. low	Slst.	L.balmel	Paleocene	-	L.balmei, T.tuberculiformis
SWC 32	1980.5	V. low	V. low	Slst.	L.balmei	Paleocene	-	A.obscurus, P.angulatus
SWC 31	2010.5	Low	Fair	Sist.	Upper L.balmei	Paleocene	2	L.balmei, A.obscurus, P.prodigus
SWC127	2042.0	Barren	-	Slst.	-	-	-	
SWC124	2141.2	Moderate	Fair	Sist.,carb.	Upper L.balmei	Paleocene	l l	L.balmei, V.kopukuensis
SWC120	2233.0	Good	Fair	Slst.	L.balmei	Paleocene	-	T.cf.verrucosus, frequent N.endurus
SWC 20	2358,5	Good	High	Sist. carb.	Upper L.balmei	Paleocene	1	L.balmei, V.kopukuensis
SWCI16	2402.8	Good	High	Clyst.	Lower L.balmei	Paleocene	ł	Frequent T.verrucosus, L.balmei
SWC 18	2457.0	V. low	V. Iow	Clyst.	L.balmei	Paleocene	-	L.balmei
SWC 17	2486.5	Good	Fair	SI. carb.	Lower L.balmei	Paleocene	L	T.verrucosus, B.mutabilis
SWC 15	2551.0	Good	High	Ss.	Lower L.balmei	Paleocene	I.	Frequent T.verrucosus, & L.balmei
стѕ	2545-50	Low	Fair	-	Lower L.balmei	Paleocene	3	
SWC 14	2585.5	Good	Fair	Sist.	Lower L.balmei	Paleocene	2	T.verrucosus, common A.obscurus
CTS	2585-90	Low	Fair	-	Lower L.balmei	Paleocene	3	
CTS	2635-40	Low	Fair	-	Lower L.balmei	Paleocene	3	T.verrucosus, P.catastus
SWC II	2678.0	Low	V.low	Sist.	Indeterminate	-	-	L.balmei, T.confessus
стѕ	2680-85	Low	Low	-	Lower L.balmei	Paleocene	3	T.verrucosus, caved Eocene species
Core	2687.87	V. low	Low	-	Indeterminate		-	P.angulatus common, L.balmei
Core	2689.04	V. low	Low	-	Indeterminate	-	-	L.balmei, Stereisporites sp. common
SWCIII	2717.0	Negligible	V. low	Sist.	Indeterminate	-	-	
SWC 9	2738.5	Low	Low	Coal	Lower L.balmel	Paleocene	2	L.balmei, T.multistrixus
SWCIIO	2749.0	Barren	-	Ss.		-	-	·····
SWC 8	2767.0	Good	Fair	Clyst. carb.	Upper T.longus	Maastrichtian	ł .	P.reticuloconcavus, common T.verruco T.cf.lilliei
SWC108	2793.0	Low	Low	Clyst. carb.	Upper T.longus	Maastrichtian	I	T.IIIIiei, S.punctatus
SWC107	2801.5	Barren	_	Ss.	····	-	-	
- 12 -

-

TABLE I : SUMMARY OF PALYNOLOGICAL ANALYSIS WHITING-1, GIPPSLAND BASIN.

INTERPRETATIVE DATA

.

SAMPLE	DEPTH		DIVERSITY				CONF I DENCE	COMMENTS
NO.	(m)	YIELD	SPORE POLLEN	LITHOLOGY	ZONE	AGE	RATING	
SWC 6	2827.1	Barren	_	Sist.	_	_		
SWC106	2887.0	Moderate	Fair	Sh.,carb.	Upper T.longus	Maastrichtian	i	T.verrucosus, P.clinei, T.waiparensis
SWC 3	2926.5	V. Iow	Fair	Slst.,carb.	Upper T.longus	Maastrichtian	1	T.verrucosus, P.otwayensis, R.mallatus, abundant G.rudata
SWC 2	2958.0	Moderate	Fair	Slst.,carb.	Upper T.longus	Maastrichtian	0	T.longus, P.gemmatus, P.otwayensis, P.reticuloconcavus, T.verrucosus, S.punctatus, frequent G.rudata
SWC I	2993.5	V. Iow	Fair	Slst.	Upper T.longus	Maastrichtian	I.	T.verrucosus, S.punctatus, P.angulatus
SWC103	2998.0	Barren	-	Ss.	-	-	-	

- 13 -

TABLE	2.
-------	----

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WHITING-I.

		(CONFIDENCE		· · ·
SAMPLE NO.	DEPTH(m)	ZONE RATING)	TAXON .	COMMENTS
SWC 82	1276.6	P. tuberculatus (0)	Lygistepollenites florinii	Abundant
SWC 82	1276.6	P. tuberculatus (0)	Beaupreadites elegansiformis	Uncommon in Early Miocene
SWC 82	1276.6	P. tuberculatus (0)	Podocarpidites ostentatus	Uncommon in Early Miocene
SWC 80	1284.0	P. tuberculatus (I)	Latrobosporites crassus	= <u>L.</u> cf. <u>crassus</u> (Stover & Partridge 1973)
SWC 80	1284.0	P. tuberculatus (1)	Proteacidites crassus	Not known above Lower <u>N. asperus</u> Zone
SWC 78	1292.0	Indeterminate	T. reticulatus Cookson 1947	Rare species
SWC 77	1301.2	N. asperus	Erdtmanipollis sp.	Rare species
SWC 75	1317.8	Uppermost Lower <u>N. asperus</u> (0)	Dodonaea, tricolporate Cunoniaceae, Umbelliferae	Essentially modern taxa
SWC 75	1317.8	Uppermost Lower <u>N. asperus</u> (0)	Elphredripites notensis	Rare species
SWC 75	1317.8	Uppermost Lower <u>N. aperus</u>	Verrucosisporites cristatus	Not recorded below Uppermost Middle <u>N.</u> <u>asperus</u> Zone
SWC 63	1415.2	Lower N. asperus (0)	Tricolporites gigantis	Ms. species (Macphail)
SWC 63	1415.2	Lower N. asperus (0)	Milfordia hypolaenoides	Rare species
SWC 62	1417.0	Lower N. asperus (1)	Rhamnaceae	Modern taxon
SWC 61	1437.0	Lower <u>N. asperus</u> (0)	Proteacidites callosus	Rare species
SWC 60	1456.0	P. asperopolus (1)	Schizocolpus rarus	Rare species
SWC 56	1525.0	P. asperopolus (0)	Gemmatricolporites divaricatus	Rare species
SWC 56	1525.0	P. asperopolus (0)	Tricolpites reticulatus Cookson	Rare species
SWC 49	1542.0	P. asperopolus (0)	Proteacidites callosus	V. rare species
SWC 49	1542.0	P. asperopolus (0)	Proteacidites alveolatus	V. rare species

 z_{i}

.

•

- 14 -

.

,

TABLE 2.

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WHITING-1.

			(CONF IDENCE		
SAMPLE NO.	DEPTH(m)	ZONE	RATING)	TAXON	COMMENTS
		<u> </u>		· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SWC 49	1542.0	P. asperc	opolus (0)	Proteacidites xestoformis	Rarely recorded in this zone (also at 1527.5m)
SWC 49	1542.0	P. asperd	opolus (0)	Tricolporites palisadus	Ms. species (Macphail)
SWC 47	1590.3	Upper <u>M</u> .	diversus (0)	Tricolpites inclsus	Not recorded below P. asperopolus Zone
SWC 45	1640.7	Upper <u>M</u> .	diversus (2)	Proteacidites sp.	Transitional between P. annularis and P. callosus
SWC 44	1657.5	Upper <u>M</u> .	diversus (2)	Matonisporites ornamentalis	Rare below Lower N. asperus Zone
SWC 44	1657.5	Upper <u>M</u> .	diversus (2)	Palycolpites aff. P. langstonii	Species resembling P. langstonii but less than 40u leng
SWC 44	1657.5	Upper <u>M</u> .	diversus (2)	Tricolporites circumlumenus	Ns. species (Macphail)
SWC 44	1657.5	Upper <u>M</u> .	diversus (2)	Triporopollenites cf. spinosus	
SWC 43	1673.3	Upper <u>M</u> .	diversus (2)	Basopollis mutabilis, B. otwayensis	Not recorded above Lower M. diversus Zone
SWC 43	1673.3	Upper <u>M</u> .	diversus (2)	Polycolpites aff. P. langstonii	Not recorded above Lower M. diversus Zone (40u)
SWC 42	1715.8	Middle <u>M</u> .	diversus	Basopollis otwayensis	Possibly reworked.
SWC 41	1734	Lower M.	diversus (0)	Tricolporites moultonii	Not recorded below Middle <u>M. diversus</u> Zone
SWC 39	1780.5	Lower M.	diversus (1)	Basopollis otwayensis	Frequent in assemblage
SWC 39	1780.5	Lower M.	diversus (1)	Foveosporites balteus	Not recorded below Upper <u>M. diversus</u> Zone
SWC 39	1780.5	Lower M.	diversus (1)	Peromonolites vellosus	Not recorded below Middle <u>M. diversus</u> Zone
SWC 39	1780.5	Lower M.	diversus (1)	Tricolpites gigantis	Ms. species (Macphail)
SWC 35	1889.5	Upper <u>L</u> .	balmei (I)	Banksieacidites arcuatus	Not recorded below uppermost Lower M. diversus Zone
SWC 35	1889.5	Upper <u>L</u> .	balmei (1)	Ischyosporites irregularis	Not recorded below Lower M. diversus Zone
SWC 35	1889.5	Upper <u>L</u> .	balmei (I)	Proteacidites amolosexinus	Not recorded above Lowermost Lower L, balmei Zone
SWC 32	1980.5	(Upper) <u>L</u>	<u>balmei</u>	Proteacidites angulatus	Not recorded above Lower L. balmei Zone

7. j

.

Т	F	١E	3L	E	2	

- 15 -

ANOMALOUS AND UNUSUAL OCCURRENCES OF SPORE-POLLEN TAXA IN WHITING-I.

			(CONF IDENCE		
SAMPLE NO.	DEPTH(m)	ZONE	RATING)	TAXON	COMMENTS
SWC 31	2010.5	Upper <u>L</u> .	balmei (2)	Tricolpites gigantis	Ms. species (Macphail)
SWC 124	2141.2	Upper <u>L</u> .	balmei (I)	Proteacidites gemmatus	Rarely recorded above Lower L. <u>balmei</u> Zone
SWC 124	2141.2	Upper <u>L.</u>	balmei (I)	Tubulifloridites truswellii	Ms. species (Macphail). Not recorded above <u>T. longus</u> Zone
SWC 120	2233	Upper <u>L</u> .	balmei (2)	Nothofagidites endurus	Abundant in sample
SWC 20	2358.5	Upper <u>L.</u>	balmei (I)	Proteacidites angulatus	Not recorded above Lower L. balmei Zone
SWC 116	2402.8	Lower L.	balmei (1)	Tricolporites marginatus	Ms. species (Stover & Evans 1969)
SWC 15	2551.0	Lower L.	balmei (I)	Uvatisporites	Rare species
SWC 15	2551.0	Lower L.	balmei (I)	Tricolporites marginatus	Rare species
Core	2687.9	? Lower L	. balmei	Tricolpites gigantis	Ms. species (Macphail

•

WELL NAME: WHITING-1 PALYNOLOGICAL HIGHEST DF O ZONEC Preferred Alternate					n	LOWEST DATA					
			H E		АТ. Т	A Two Way		WE.	S T D Alternate	A T #	
A	ZONES	Depth	Rtg	Depth	Rtg	Time	Depth	Rtg	Depth	Rtg	Two V Tim
	T. pleistocenicus		1							1	
ы	M. lipsis										
NEOGENE	C. bifurcatus										
NEO	T. bellus						· · · · · · · · · · · · · · · · · · ·				
	P. tuberculatus	1276.6	0				1276.6	0			
	Upper N. asperus								· · · · · · · · · · · · · · · · · · ·		
	Mid N. asperus	1301.2	2				1301.2	2			
回	Lower N. asperus	1317.8	0				1437.0	0			
GEN	P. asperopolus	1456.0	1				1542.0	0			
PALEOGENE	Upper M. diversus	1577.5	1				1676.3	2	1590.3	0	
ЪР	Mid M. diversus	1715.8	1				1715.8	1			
	Lower M. diversus	1734.0	0				1859.1	0			
	Upper L. balmei	1889.5	2				2358.5	1			
	Lower L. balmei	2402.8	1				2738.5	2	2551.0	1	
	T. longus	2767.0	1				2993.5	1			
SUOS	T. lilliei										
ACE	N. senectus										
CRETACEOUS	U. T. pachyexinus										
-	L. T. pachyexinus										
LATE	C. triplex										
	A. distocarinatus										
•	C. paradoxus										
CRET	C. striatus										
	F. asymmetricus										
EARLY	F. wonthaggiensis										
<u> </u>	C. australiensis										
	PRE-CRETACEOUS								•		
ОМ	MENTS:										
RATING: 1: SWC or 0 2: SWC or 0 3: Cuttings or both.		ore, <u>Excellen</u> ore, <u>Good Co</u> ore, <u>Poor Con</u> Fair Confiden No Confidenc	nfiden fideno ce, a	<u>ce</u> , assembla <u>ce</u> , assembla ssemblage wit	ige wi [.] ge wit h zone	th zone spe h non-diag species of	cies of spores gnostic spores, either spores	and polle and po	ollen or micr n and/or mic ollen or micr	oplank roplan oplank	ton. kton.
OTI	entered, if possi unless a range o limit in another	ble. If a sam f zones is give	nple c n whe	annot be assig re the highest	ned to	one partic	ular zone, the	en no e	entry should l	oe mad	le,
ATA RECORDED BY: M.K. Macphail						DA	TE: Ju	ne 2	7, 1983.		
DATA REVISED BY:					*****	DA	TE:				

BA	SIN:	GIPPSLAN				EL	EVATION	: KB:		GL:	<u></u>	
WELL	NAME:	SNAPPER-	3			TO	TAL DEP	TH:				
ы	PALYNO	DLOGICAL	HIG	ΗЕ	ST D	AT.	A	LC	WES	ST D2	AT 2	7
A G	ZC	ONES	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time	Preferred Depth	Rtg	Alternate Depth	Rtg	Two Way Time
	T. pleis	tocenicus									1	
щ	M. lipsi	1. lipsis		1								
NEOGENE	C. bifur	catus										
	T. bellu	S										
	P. tuber	culatus								<u></u>		
	Upper N.	asperus										
	Mid N. a	sperus									-	
ы	Lower N.	asperus										
GEN	P. asper	opolus										
PALEOGENE	Upper M.	diversus										
ΡA	Mid M. d.	iversus										
	Lower M.	diversus								<u></u>		
	Upper L.	b almei	5970	1				6306	2			
	Lower L.	balmei	7274	2				8934	2			
	T. longu	S	9948	1				9948	1			
sno	T. lilli	ei									·	
CRETACEOUS	N. senec	tus										
RET	U. T. pa	chyexinus								······		
-	L. T. pac	chyexinus										
LATE	C. triple	эx										
н	A. disto	carinatus										
	C. parado	oxus										
CRET	C. stria	tus										
	F. asymme	etricus										
EARLY	F. wontha	aggiensis										
EA	C. austra	aliensis										
	PRE-CRETA	ACEOUS										
сом	MENTS:	Revision (of Paleoce	ene-L	ate Cretad	ceous	s sectio	ons only.	Depth	s in feet	. Re	vision
	_	based on o	original d	lata	sheets of	L.E.	Stover	c & A.D. 1	Partri	dge 1971.	Th	.e
		sample at	9948' is	Uppe	r T. longu	ıs Zo	one in a	age and tl	ne int	erval bet	ween	
		10,102' to	b 10,253'	no o	lder than	т. 1	illiei	Zone in a	age.			
	TIDENCE O				fidence, assem ice, assembla							
	2	SWC or C	ore, <u>Poor Co</u>	nfiden	<u>ce</u> , assembla	ge wit	h non-dia	gnostic spore	s, poller	n and/or mic	roplan	kton.
	3 :	cuttings, or both.	Fair Confide	<u>псе</u> , а	ssemblage wit	h zone	species of	f either spore	s and po	ollen or micro	oplank	ton,
	4		No Confidenc	ce, ass	semblage with	non-o	liagnostic	spores, polle	n and/o	r microplank	ton.	
NOTE	er ur	ntered, if poss	ible. If a sar of zones is give	nple c	ence rating, an annot be assig are the highest	ned to	one parti	cular zone, t	hen no e	ntry should b	e mad	le,
DATA	RECORDED	BY: I	.E. Stove	r/A.	D. Partric	lge	D#	ATE: Ju	ne 19	71/Decemb	er 1	971.
DATA	REVISED	BY: M	1.K. Macph	ail.			D#	ATE: JI	11y 29	, 1983.		

1

And Pairwological 2008 H I G H E S T D A T A L O W E S T D A T A Pairwological 2008 H I G H E S T D A T A L O W E S T D A T A Main 11psis Petered Depth Rtg Alternate Depth Rtg Time Petered Depth Rtg Alternate Depth Rtg Petered Depth Rtg Alternate Rtg Time M. 11psis Image: Construction of the state of		S I N: <u>GIPPSLAN</u> NAME: BARRACOU					EVATION	-	+31 1	GL:		
O Defined Performed Rig Depth Rig Rig Depth Rig		I										
4 20085 Topid Reg Depth Reg Time Depth Reg Time 8 11psis Depth Reg Time Depth Reg Time 9 C. bifurcatus Depth Reg Time Depth Reg Time 9 C. bifurcatus Depth Reg Depth Reg Depth Reg Depth 9 C. bifurcatus Depth Reg Depth Reg Depth Reg Depth 9 Asperus Depth Reg Reg Depth Reg Dept	ы С	PALYNOLOGICAL		H E	·····	A T T			W E		AT I	
M. lipsis	4 4	ZONES		Rtg		Rtg	1 1		Rtg	1	Rtg	1 '
C. bifurcatus	EN	T. pleistocenicus							+		+	<u> </u>
P. tuberculatus Image: Structure Structu	E	M. lipsis										
P. tuberculatus Image: Structure Structu	NEOGENE	C. bifurcatus										
Upper N. asperus Mid N. asperus Lower N. asperus P. asperopolus Wid N. diversus Upper M. diversus Upper M. diversus Upper L. balmei Lower I. balmei Lower I. balmei Upper L. balmei Lower I. balmei Status T. longus 7748 I. T. pachyexinus L. Striatus F. wonthaggiensis G. astriatus R. D. Mulholland (1969). The sample at 7748' is Upper T.longus Zone in age and that at 8414' Lower T.longus Zone in age. The sample at 844' is ONTUBENCE O' O' Coer Lower Confidence, asemblage with non-diagnotic sports, pollen amicroplankon. 2: SWC or Coek, Lower Confidence, asemblage with	NEC	T. bellus										
Mid N. asperus		P. tuberculatus										
Image: Second		Upper N. asperus				ļ						
P. asperopolus		Mid N. asperus										
Idea a. diversus Idea a. diversus Upper L. balmei Idea a. diversus Idea a. diversus Idea a. diversus Upper L. balmei 6300 T. longus 7748 T. pachyexinus Idea a. diversion I. T. pachyexinus Idea a. diversion C. striatus Idea a. diversion F. asymmetricus Idea a. diversion F. asymmetricus Idea a. diversion F. wonthaggiensis Idea a. diversion OMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheats of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper T. longus Zone in age and that at 8414' Lower T. longus Zone in age. The sample at 8844' is IOS Offer Cree, Coed Confidence, assemblage with none-diagnotic of prees, pollen and microplankton. Store Cree, Coed Confidence, ass	E	Lower N. asperus		<u> </u>					ļ			
Idea a. diversus Idea a. diversus Upper L. balmei Idea a. diversus Idea a. diversus Idea a. diversus Upper L. balmei 6300 T. longus 7748 T. pachyexinus Idea a. diversion I. T. pachyexinus Idea a. diversion C. striatus Idea a. diversion F. asymmetricus Idea a. diversion F. asymmetricus Idea a. diversion F. wonthaggiensis Idea a. diversion OMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheats of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper T. longus Zone in age and that at 8414' Lower T. longus Zone in age. The sample at 8844' is IOS Offer Cree, Coed Confidence, assemblage with none-diagnotic of prees, pollen and microplankton. Store Cree, Coed Confidence, ass	ШЭO	P. asperopolus				<u> </u>						
Idea a. diversus Idea a. diversus Upper L. balmei Idea a. diversus Idea a. diversus Idea a. diversus Upper L. balmei 6300 T. longus 7748 T. pachyexinus Idea a. diversion I. T. pachyexinus Idea a. diversion C. striatus Idea a. diversion F. asymmetricus Idea a. diversion F. asymmetricus Idea a. diversion F. wonthaggiensis Idea a. diversion OMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheats of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper T. longus Zone in age and that at 8414' Lower T. longus Zone in age. The sample at 8844' is IOS Offer Cree, Coed Confidence, assemblage with none-diagnotic of prees, pollen and microplankton. Store Cree, Coed Confidence, ass	ALE(Upper M. diversus			·							
Upper L. balmed 6300 2 Iower L. balmed 6300 2 T. longus 7748 1 Weyer L. balmed 6300 2 T. longus 7748 1 Weyer L. balmed 8844 2 N. senectus 1 1 U. T. pachyexinus 1 1 L. T. pachyexinus 1 1 C. triplex 1 1 A. distocarinatus 1 1 C. striatus 1 1 F. wonthaggiensis 1 1 C. australiensis 1 1 PRE-CRETACEOUS 1 1 OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Muholland (1969). The sample at 7748' is Upper T.longus Zone in age and that at 8414' Lower T.longus Zone in age. The sample at 8844' is No Older Ehan T. HILLEI Zone in age but may be younger. O. S or Core. Good Confidence, assemblage with non-diagnostic spores, pollen and 'or microplankton. 2: SWC or Core. Good Confidence, assemblage with non-diagnostic spores, pollen and'or microplankton.	Ρi	Mid M. diversus										
Lower L. balmei 6300 2 T. longus 7748 1 T. lilliei 8844 2 N. senectus 1 1 U. T. pachyexinus 1 1 L. T. pachyexinus 1 1 C. triplex 1 1 A. distocarinatus 1 1 C. striatus 1 1 P. asymmetricus 1 1 PRE-CRETACEOUS 1 1 OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). T		Lower M. diversus										
T. longus 7748 1 8414 1 T. lilliei 3844 2 1 1 1 N. senectus 1 1 1 1 1 U. T. pachyexinus 1 1 1 1 1 L. T. pachyexinus 1 1 1 1 1 L. T. pachyexinus 1 1 1 1 1 A. distocarinatus 1 1 1 1 1 F. agymmetricus 1 1 1 1 1 F. wonthaggiensis 1 1 1 1 1 C. australiensis 1 1 1 1 1 PRE-CRETACEOUS 1 1 1 1 1 1 OMMENTS: Revision of Paleocene-Late Cretaceous sections only. 1 1 1 1 1 ONTENER Revision of Paleocene-Late Cretaceous sections only. 1 1 1 1 1 1 ONTENERS: Revision of Paleocene-Late Cretaceous sections only. 1 1		Upper L. balmei										
T. 1111iei 8844 2		Lower L. balmei	6300	2								
L. T. pachyexinus	S		7748	1				8414	1			
L. T. pachyexinus	CRETACEOUS	T. lilliei	8844	2					_			
L. T. pachyexinus												
G. triplex A. distocarinatus A. distocarinatus A. distocarinatus C. paradoxus A. distocarinatus C. striatus A. distocarinatus C. australiensis A. distocarinatus PRE-CRETACEOUS A. distocarinatus OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper T.longus Zone in age and that at 8414' Lower T.longus Zone in age. The sample at 8844' is no older than T.1111ei Zone in age but may be younger. NONFIDENCE S.C. God Confidence, assemblage with zone species of spores, pollen and icroplankton. 2: SWC or Core, Cood Confidence, assemblage with zone species of spores, pollen and/or microplankton. 3: Cuttings, Fair Confidence, assemblage with zone species of spores, pollen and/or microplankton. 4: Cuttings, No Confidence, assemblage with zone species of spores	CRE											
A. distocarinatus A. distocarinatus C. paradoxus A. distocarinatus C. paradoxus A. distocarinatus C. striatus A. distocarinatus C. striatus A. distocarinatus C. striatus A. distocarinatus F. asymmetricus A. distocarinatus F. asymmetricus A. distocarinatus F. wonthaggiensis A. distocarinatus C. australiensis A. distocarinatus PRE-CRETACEOUS A. distocarinatus OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper T.longus Zone in age and that at 8414' Lower T.longus Zone in age. The sample at 8844' is no older than T.Tilliei Zone in age but may be younger. O. S. c. work-watenerworkneence, assemblage with one species of spores and pollen or microplankton. 2: SWC or Core, <u>Cood Confidence</u> , assemblage with zone species of spores and pollen or microplankton. 3: Cuttings, <u>Fair Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and recoplankton. 5: Cuttings, No Confidence, assemblage with non-diagnostic spores, p	ы											
C. paradoxus	LATE								<u> </u>			
C. striatus F. asymmetricus F. asymmetricus F. wonthaggiensis C. australiensis F. wonthaggiensis PRE-CRETACEOUS F. Evision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper T.longus Zone in age and that at 8414' Lower T.longus Zone in age. The sample at 8844' is no older than T. Hillei Zone in age but may be younger. ONFIDENCE O. S. or Core, Good Confidence, assemblage with zone species of spores, pollen and microplankton. 2: SWC or Core, Good Confidence, assemblage with zone species of either spores and pollen or microplankton. 3: Cuttings, Fair Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 5: A arge of none is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a s		·····										
F. asymmetricus F. wonthaggiensis G. australiensis F. wonthaggiensis C. australiensis F. wonthaggiensis PRE-CRETACEOUS F. Wonthaggiensis OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper T.longus Zone in age and that at 8414' Lower T.longus Zone in age. The sample at 8844' is no older than T.lilliei Zone in age but may be younger. S.C. or over, <u>uxcaent-continence</u> , assemblage with zone species of spores, pollen and microplankton. 2: SWC or Core, <u>Cood Confidence</u> , assemblage with zone species of spores, pollen and/or microplankton. 3: Cuttings, <u>Fair Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 3: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and microplankton. 6: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969. <td>E.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u> </td> <td>·····</td> <td></td> <td></td>	E.								<u> </u>	·····		
F. wonthaggiensis F. wonthaggiensis C. australiensis FRE-CRETACEOUS OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper <u>T.longus</u> Zone in age and that at 8414' Lower <u>T.longus</u> Zone in age. The sample at 8844' is no older than T.HILLE Zone in age but may be younger. O.S. or Gore <u>Cood Confidence</u> , assemblage with zone species of spores, pollen and microplankton. 2: SWC or Core, <u>Cood Confidence</u> , assemblage with zone species of spores and pollen or microplankton. 3: Cuttings, <u>Fair Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 3: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.	CRET							····	┼┼			
PRE-CRETACEOUS OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper <u>T.longus</u> Zone in age and that at 8414' Lower <u>T.longus</u> Zone in age. The sample at 8844' is no older than T.lilliei Zone in age but may be younger. ONFIDENCE O. S or Generatem-Generation assemblage with zone species of spores, pollen and microplankton. 2: SWC or Core, <u>Good Confidence</u> , assemblage with zone species of spores and pollen or microplankton. 2: SWC or Core, <u>Good Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 3: Cuttings, <u>Fair Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.	শ্											
PRE-CRETACEOUS OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper <u>T.longus</u> Zone in age and that at 8414' Lower <u>T.longus</u> Zone in age. The sample at 8844' is no older than T.lilliei Zone in age but may be younger. ONFIDENCE O. S or Generatem-Generation assemblage with zone species of spores, pollen and microplankton. 2: SWC or Core, <u>Good Confidence</u> , assemblage with zone species of spores and pollen or microplankton. 2: SWC or Core, <u>Good Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 3: Cuttings, <u>Fair Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.	EARLY							·····				
OMMENTS: Revision of Paleocene-Late Cretaceous sections only. Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper <u>T.longus</u> Zone in age and that at 8414' Lower <u>T.longus</u> Zone in age. The sample at 8844' is no older than T.lillel Zone in age but may be younger. ONFIDENCE ONFIDENCE O. S or orcere. <u>Good Confidence</u> , assemblage with zone species of spores, pollen and microplankton. 2: SWC or Core, <u>Good Confidence</u> , assemblage with zone species of spores, pollen and/or microplankton. 2: SWC or Core, <u>Good Confidence</u> , assemblage with zone species of either spores and pollen or microplankton. 3: Cuttings, <u>Fair Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October	щ								┼──┤			
Depths in feet. Revision based on original data sheets of P.R. Evans & R.D. Mulholland (1969). The sample at 7748' is Upper <u>T.longus</u> Zone in age and that at 8414' Lower <u>T.longus</u> Zone in age. The sample at 8844' is no older than T.lilliei Zone in age but may be younger. O. S or Core, <u>Cood Confidence</u> , assemblage with zone species of spores, pollen and microplankton. 1: SWC or Core, <u>Good Confidence</u> , assemblage with zone species of spores and pollen or microplankton. 2: SWC or Core, <u>Good Confidence</u> , assemblage with zone species of either spores and pollen or microplankton. 3: Cuttings, <u>Fair Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 6: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.		PRE-CRETACEOUS]				···· - ···· - ··· - ···				
R.D. Mulholland (1969). The sample at 7748' is Upper T.longus Zone in age and that at 8414' Lower T.longus Zone in age. The sample at 8844' is no older than T.lilliei Zone in age but may be younger. O. S. or correction correction assemblage with zone species of spores, pollen and microplankton. 1: SWC or Core, Good Confidence, assemblage with zone species of spores, pollen and microplankton. 2: SWC or Core, Poor Confidence, assemblage with zone species of spores and pollen or microplankton. 3: Cuttings, Fair Confidence, assemblage with zone species of either spores and pollen or microplankton. 4: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 6: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 6: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 6: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 6: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and/or microplankton. 6: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and microplankton. 6: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and microplankton. 6: Cuttings, No Confidence, assemblage with non-diagnostic spores, pollen and microplankton. 7: OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be made, unle	сом	MENTS: Revision	of Paleoce	ene-l	Late Creta	.ceou	s sectio	ons only.				
and that at 8414' Lower T.longus Zone in age. The sample at 8844' is no older than T.lilliei Zone in age but may be younger. S.corr corr, <u>Lacenen-Contacence</u> , assemblage with zone species of spores, pollen and microplankton. RATING: I: SWC or Core, <u>Good Confidence</u> , assemblage with zone species of spores and pollen or microplankton. 2: SWC or Core, <u>Poor Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. 3: Cuttings, <u>Fair Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton, or both. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.		Depths in	n feet. Re	evis	ion based	on o	riginal	data shee	ets o	f P.R. Eva	ans	&
 no older than T.lilliei Zone in age but may be younger. S or ore the energy en		R.D. Mull	nolland (19	969)	. The sam	ple	at 7748	' is Upper	<u> </u>	ongus Zone	e in	age
 RATING: 1: SWC or Core, <u>Good Confidence</u>, assemblage with zone species of spores and pollen or microplankton. 2: SWC or Core, <u>Poor Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton. 3: Cuttings, <u>Fair Confidence</u>, assemblage with zone species of either spores and pollen or microplankton. 4: Cuttings, <u>No Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. 		and that	at 8414' I	lowei	<u>T.longus</u>	Zon	e in age	e. The sa	mple	at 8844'	is	
 RATING: 1: SWC or Core, <u>Good Confidence</u>, assemblage with zone species of spores and pollen or microplankton. 2: SWC or Core, <u>Poor Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton. 3: Cuttings, <u>Fair Confidence</u>, assemblage with zone species of either spores and pollen or microplankton. 4: Cuttings, <u>No Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. 	ONE	no older TIDENCE O S., رب	than T.li	lie	L ZONE in Hidence, assem	age iblage	but may with zone	be younge species of spe	er. pres. p	ollen and mic	ropla	nkton.
 3: Cuttings, <u>Fair Confidence</u>, assemblage with zone species of either spores and pollen or microplankton, or both. 4: Cuttings, <u>No Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: <u>P.R. Evans/R.D. Mulholland</u>. DATE: <u>October 1969</u>. 	RΛ											
or both. 4: Cuttings, <u>No Confidence</u> , assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: <u>P.R. Evans/R.D. Mulholland</u> . DATE: <u>October 1969</u> .												
 4: Cuttings, <u>No Confidence</u>, assemblage with non-diagnostic spores, pollen and/or microplankton. OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: <u>P.R. Evans/R.D. Mulholland.</u> DATE: <u>October 1969.</u> 			, <u>Fair Confider</u>	nce, a	ssemblage wit	h zon	e species o	f either spores	and p	ollen or micro	oplanl	cton,
OTE: If an entry is given a 3 or 4 confidence rating, an alternative depth with a better confidence rating should be entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.			, No Confidenc	e, as	semblage with	non-	diagnostic	spores, poller	and/a	or micronlank	ton.	
entered, if possible. If a sample cannot be assigned to one particular zone, then no entry should be made, unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.	IOTE									-		ld be
unless a range of zones is given where the highest possible limit will appear in one zone and the lowest possible limit in another. ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.												
ATA RECORDED BY: P.R. Evans/R.D. Mulholland. DATE: October 1969.		unless a range	of zones is give									
	ንልጥፖ	_	-	R.D.	Mulhollan	d.	עט	ATE: C	otoh	er 1969		
ATA REVISED BY: M.K. Macphail. DATE: July 29, 1983.	*****											
	ATA	REVISED BY: M.	K. Macphai	1.			DA	ATE:	uly	29, 1983.		

ΒА	SIN:	GIPPSLAN	D			EL	EVATION:	KB: +	·3lft.	GL:		
WELL	NAME :	BARRACOU	TA-1			TO	TAL DEPI	'н:				
щ	PAL	YNOLOGICAL	HIG	ΗE	ST D	AT.	A	LO	WES	ST D	A T 2	A
0 I		ZONES	Preferred		Alternate		Two Way	Preferred		Alternate		Tw
A		istocenicus	Depth	Rtg	Depth	Rtg	Time	Depth	Rtg	Depth	Rtg	T
ENE	M. lip	urcatus	·····									
NEOGENE	T. bel											
Ĩ	J	erculatus							-	· · · · · · · · · · · · · · · · · · ·		
				<u> </u>								<u> </u>
		N. asperus asperus	. <u></u>									
ENE	h	N. asperus eropolus										
PALEOGENE		M. diversus										
PAL		diversus							+			
		M. diversus										
		L. balmei	ECEO					ECED	2			
		L. balmei	<u> </u>	2 3	6450	1		5653 7251	2			
	T. long		7708	3	7722	2		8700				
SU	T. 111		7708	3	1122	2		8700	┼┷┥	······································		
CEO	N. sen							······	┼──┤	<u></u>		
CRETACEOUS		pachyexinus						······	┼──┤	·······		
_		pachyexinus							┼──┤			
LATE	C. trij											
I.P		tocarinatus			<u></u>				++			
	C. para							<u></u>	+			
CRET.	C. str					†			+			
C	F. asyr	mmetricus							+			_
EARLY		thaggiensis							┼──┼			
EAF	C. aust	traliensis				+		<u></u>	++			
	PRE-CRI	ETACEOUS							++			
		<u>-</u>		1		<u>I</u> .			.L		1	
СОМ	IMENTS:	Depths	in feet.	Pal	eocene-Lat	e Cr	retaceou	s section	s rev	rised usir	ıg	
		data sh	eets (L.E	. St	over/A.D.	Part	ridge l	971). Al	1 T.1	ongus Zor	le	
		samples	are Uppe	rТ.	longus Zor	ne ir	n age.		-			
	FIDENCE	O: SWC or Coll: SWC or Collins	ore, <u>Excellen</u>	t Con nfider	fidence, assem nce, assembla	iblage	with zone and	species of species	ores, po	ollen and mic	roplai	nkto
		2: SWC or C	ore, <u>Poor Cor</u>	fiden	<u>ce</u> , assembla	ge wit	h n on-dia g	nostic spores	, polle	n and/or mic	roplar	hkto
		 Cuttings, or both. 	Fair Confider	ice, a	ssemblage wit	h zone	species of	either spore:	and po	ollen or micro	oplank	ct on
			No Confidenc	e, as	semblage with	non-c	liagn <i>os</i> tic s	pores, poller	n and/c	r microplank	ton.	
NOT	E:	If an entry is giv										
		entered, if possi unless a range of										
		limit in another.				E 20010		ppear m	2 201		. cot p	
DAT	A RECORD	ED BY: T	E. Stove	r/D	D. Partric	lae	DA	TE: ,TII	ne 10	71, Decem	her	19.
		<u>_</u>	· · · · · · · · · · · · · · · · · · ·	L/A.	v. raiti	40		––- Ju	11 C 13		wer	17

WHITING - 1 QUANTITATIVE LOG ANALYSIS

Whiting-1 wireline logs have been analysed for effective porosity and water saturation over the interval 1250-3010m KB. Analysis was carried out using a reiterative technique which incorporates hydrocarbon correction to the porosity logs, density-neutron crossplot porosities, a Dual Water saturation relationship, and convergence on a preselected grain density window by shale volume adjustment.

Logs Used and Log Quality

LLD, LLS, MSFL, GR, Caliper, RHOB (LDT), PHIN (CNL).

Resistivity, gamma ray and neutron porosity logs were corrected for borehole and environmental effects.

The corrected resisitivity logs were then used to derive Rt and invasion diameter.

Coals and carbonaceous shales were edited for an output of:

VSH = 0, PHIE = 0, and Swe = 1.

The LDT/CNL log exhibits excessive apparent crossover in water sands. Crossplots indicate the CNL derived porosity is less than both LDT and Sonic porosities in clean water sands. To remedy this .03 pu has been added to the environmentally corrected CNL log.

Apart from this, log quality is good.

Analysis Parameters

Apparent shale density and shale neutron porosity values were derived from crossplots of the density and neutron logs. Shale resistivities were read directly from the logs.

The apparent connate water salinities used and the method by which they were obtained will be discussed later in the text.

Table 1 summarises the analysis parameters.

Shale Volume

An initial estimate of VSH was calculated from the GR assuming a linear response between shale and clean sand:

$$VSH = \frac{GRlog - GRmin}{GRmax - GRmin} - 1$$

Total Porosities

1

Total porosity was initially calculated from a density-neutron logs using the following algorithms:

$$h = 2.71 - RHOB + PHIN (RHOF - 2.71) - 2$$

if h is greater than O, then

if h is less than O, then

apparent matrix density, RHOMa = 2.71 - 0.64h - 4

Total porosity: PHIT =
$$\frac{RHOMa - RHOF}{RHOMa - RHOF}$$
 - 5

where RHOB = environ. corrected bulk density in gms/cc PHIN = environ. corrected neutron porosity in limestone porosity units. RHOF = fluid density (1.0 gms.cc)

Bound Water Resistivities (Rwb) and Saturation of Bound Water (Swb)

Rwb and Swb were calculated using the following relationships:

$$Rwb = \frac{RSH * PHITSH^{m}}{a} - 6$$

where PHITSH = total porosity in shale from density-neutron crossplots. RSH = Rt in shales.

Free Water Resistivities (Rw) and Salinities

Apparent free water resistivities and salinities were calculated using the following relationships:

$$Rw = \frac{Rt * PHIT^{m}}{a} - 8$$

where a = 1, m = 2, and PHIT = total porosity determined from density-neutron logs using equations 2 and 3.

Salinity (ppm) =
$$\begin{bmatrix} \frac{300,000}{Rw(Ti + 7) - 1} \end{bmatrix}^{1.05} - 9$$

where Ti = formation temperature in OF.

It should be emphasised that the calculated salinities are apparent salinities. It is not absolutely essential that true free water salinities be used in water saturation calculations for the following reasons:

- (a) in order to obtain true free water salinities appropriate a and m values must be known or obtained and this data is generally not available.
- (b) the calculated water saturation values using the apparent salinities are virtually similar to those obtained using true salinities as long as the appropriate a, m and n are used in the calculations.

The sands in the interval 1250 - 1850m have been subjected to fresh water flushing making precise determination of apparent free water salinities difficult. The apparent salinities in the water bearing sands are very variable. They not only vary from sand to sand but also within individual sand intervals. An attempt was made to "normalise" the variable salinities within the sand intervals by using the following relationship:

$$Rw = \frac{Ro * PHIT^{m} * Rwb (Swb - 1)}{Ro * PHIT^{m} * (Swb - Rwb)} -10$$

where Ro = Rt in water bearing sands

and salinities were calculated using equation 9. The salinities were then averaged for each sand. As for the hydrocarbon bearing zones within the interval the apparent free water salinities (or connate water salinities) were taken to be the salinities of the sands, below the limit of fresh water flushing. The adjacent fresh water aquifer salinities were not used in the saturation calculations for the following reasons:

- (i) water saturations obtained using fresh water salinities tended to be high and inconsistent with hydrocarbon recoveries.
- SP deflections opposite hydrocarbon bearing sands suggest that the free water salinities are higher than the aquifer salinities and probably closer to mud filtrate salinities.
- (iii) in Tarwhine-l and Wirrah-l where fresh water flushing is present hydrocarbon bearing sands calculate to be water bearing if adjacent fresh water aquifer salinities are used.

Free water salinities are summarised in Table 2.

Water Saturations

Water saturations were determined from the Dual Water model using the following relationships:

$$\frac{1}{Rt} = SwT^{n} * \left(\frac{PHIT^{m}}{aRw}\right) + SwT^{(n-1)} \left[\frac{Swb * PHIT^{m}}{a} \left(\frac{1}{Rwb} - \frac{1}{Rw}\right)\right] -11$$

and

$$\frac{1}{R \times o} = SwT^{n} * \left(\frac{PHIT^{m}}{aRw}\right) + SwT^{(n-1)} \left[\frac{Swb * PHIT^{m}}{a} \left(\frac{1}{Rwb} - \frac{1}{Rmf}\right)\right] -12$$

where SwT = total saturation in the virgin formation SxoT = total saturation in the invaded zone Rmf = resistivity of mud filtrate n = saturation exponent

Hydrocarbon Corrections

Hydrocarbon corrections to the environmentally corrected density and neutron logs were made using the following relationships:

RHOBHC	=	RHOB + 1.07 PHIT (1-SxoT) [(1.11-0.15P) RHOF - 1.15 RHOH]	-13
PHINHC	=	PHIN + 1.3 PHIT $(1-SxoT) \left[\frac{RHOF (1-P) - 1.5 RHOH + 0.2}{RHOF (1-P)} \right]$	-14

where RHOBHC = hydrocarbon corrected RHOB
PHINHC = hydrocarbon corrected PHIN
RHOH = hydrocarbon density (0.25 gms/cc for gas, 0.7 gms/cc for oil)
P = mud filtrate salinity in parts per unity

Grain Density

Grain density (RHOG) was calculated from the hydrocarbon corrected density and neutron logs using the following relationships:

$$RHOBC = \frac{RHOBHC - VSH * RHOBSH}{1 - VSH} -15$$

$$PHINC = \frac{PHINHC - VSH * PHINSH}{1 - VSH} -16$$

and equations 2, 3 and 4 are then used to compute RHOG.

where RHOBSH = environ, corrected bulk density of shale PHIN = environ, corrected neutron porosity of shale The calculated grain density was then compared to the upper and low limits of the grain densities and if it fell within the limits, effective porosity (PHIE) and effective saturation (Swe) were calculated as follows:

Swe = $1 - \frac{PHIT}{PHIE} (1-SwT)$

If the calculated grain density fell outside the limits, VSH was adjusted in small increments or decrements and PHIT, SwT, SxoT and RHOG were then recalculated.

All zones with VSH greater than 60%, Swe, was set to 1 and PHIE set to 0. The results of the analysis are summarised in Tables 3 and 4.

Comments

- 1. Below the limit of fresh water flushing (approximately 1850m) water bearing sands with apparent free water salinities of 25000 ppm and 15000 ppm are present. An apparent free water salinity of 25000 equivalent was chosen for the hydrocarbon zones within the interval of fresh water flushing.
- 2. A comparison analysis using an apparent free water salinity of 15000 ppm, for the hydrocarbon bearing zones within the interval of fresh water flushing was carried out and the Swe range and average Swe for each zone is listed in Table 5. The comparison shows that there are only minor differences between Swe values obtained using the two different free water salinities.

11451/41

± /

-18

ANALYSIS PARAMETERS

TABLE 1

	1250-1475m KB	1475-1835m KB	1835-2365m KB	2365-2685m KB	2685-2700m KB	2700-3015m KB
a	1	1	1	1	1	1
m	2	2	2	2	2	2
n	2	2	2	2	2	2
Bulk density of shale (gm/cc)	2.490	2,520	2.640	2.640	2.640	2.670
Neutron Porosity of Shale	0,365	0,335	0,335	0,335	0,335	0,330
RSH (ohmm)	20.000	20,000	12,000	25,000	40.000	60,000
Rmf (ohmm) @ 17 ⁰ C	0,158	0.158	0.158	0.158	0.158	0,158
Grain density – lower limit (gm/cc)	2,650	2,650	2,650	2.650	2.650	2,650
Grain density – upper limit (gm/cc)	2,670	2,670	2,670	2,670	2.670	2,670
GR Maximum api units	180,000	180,000	180,000	180.000	180,000	180,000
GR Minimum api units	25,000	25,000	25,000	25,000	25,000	25,000
Invaded zone fluid density (gm/cc)	1,000	1.000	1.000	1.000	1.000	1.000

÷

,如此是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一个人,也是一

<u>Depth Interval</u> (m KB)

Apparent Free Water Salinity (ppm)

1429.25 - 1430.50 1437.75 - 1438.75 1458.25 - 1464.75 1468.00 - 1472.00 1481.50 - 1488.75 1493.00 - 1495.00 1495.00 - 1500.75 1502.25 - 1513.75 1514.25 - 1522.00 1524.75 - 1527.00 1535.75 - 1541.75 1542.25 - 1542.75 1543.25 - 1554.75 1555.75 - 1567.50 1568.00 - 1577.00 1579.50 - 1589.75 1591.25 - 1604.25 1608.50 - 1610.00 1611.00 - 1621.00 1621.75 - 1623.50 1634.25 - 1640.50 1641.25 - 1643.50 1658.75 - 1661.75 1670.50 - 1671.00 1678.25 - 1698.50 1716.75 - 1723.75 1725.75 - 1726.25 1735.50 - 1739.00 1739.25 - 1747.00 1757.50 - 1763.00 1763.00 - 1778.50 1784.25 - 1793.25 1804.50 - 1812.75 1820.50 - 1833.75 1850.00 - 2000.00 2000.00 - 2515.00 2515.00 - 2615.00 2615.00 - 2650.00 2650.00 - 3010.00

 \bigcirc

* Calculated from below the limit of fresh water flushing. All salinities are apparent salinities.

WHITING #1 SUMMARY OF RESULTS

TABLE 3

(i) Hydrocarbon Bearing Sands

Deoth Interval (m KB)	Gross Thickness (m)	Net Porous Thickness (m)	Porosity Range	*Porosity Average	Sw Range	*SW Average	Hydrocarbon Type	
1481.50 - 1488.75	7.25	7.25)	.104292	.235	.017426	.080	Oil	DWC - 1495
1493.00 - 1495.00	2.00	2.00 J9*25	.149294	.262	.055260	.166	Oil <i>U</i>	
1658.75 - 1661.75	3.00	3.00	.216320	.290	.075157	.111	Gas	
1716.75 - 1724.00	7.25 {gas	7.00	.143287	.248	.085377	.180	Gas	
1735.50 - 1739.00	3.50 [oil	3.50	.119281	.227	.151291	.207	0il 0	wc - 1739
1757.50 - 1763.00	5.50]⊊∞⊿	5.25	.141295		.060238	.159	Gas 9	wc - 1763
1804.50 - 1812.75	8.25] <i>fina</i>	8.00	.118282	.232	.106437	.191	Gas	
1854.75 - 1855.25	.50]	.50	.240250	.245	.316460	.371	Gas	
1879.25 - 1883.75	4.50]	4.50	.117316	.220	.126473	.221	Gas,	
1897.50 - 1908.00 1908.00 - 1911.25 1940.50 - 1947.00	10.50] c M 3.00] ^{0, L} 6.50]	9.75 3.00 6.50	.134286 .217296 .161281	.240 .250 .229	.237634 .458670 .324585	.399 .567 .440	Gas C Oil Gas	GOC- 1908 OWC- 1911.25
<pre>② 2114.00 - 2125.00 2146.00 - 2156.50</pre>	11.50] 10.50 ຯ	10.25 9.00 ×	.103230 .118253	.168 .180	.248665 .480-1.00	.489 .722 ∝	Gas Gas	ewc 2156.5
2203.00 - 2205.00	2.00	1.50	.166216	.189	.266409	.343	Gas	
2297.00 - 2301.50	4.50	4.25	.109248	.192	.135640	.341	Gas	
2342.00 - 2356.25	14.25	8.50	.103204	.103	.090600	.384	Gas	
2403.50 - 2419.50	16.00	11.50	.101228	.161	.115425	.323	Gas	
2423.75 - 2430.25	6.50	4.75	.101209	.151	.242510	.412	Gas	
2439.25 - 2451.50	12.25	11.25	.100222	.158	.085398	.247	Gas	
2466.00 - 2477.00	11.00	9.50	.110210	.181	.190795	• .358	Gas G	wc - 2477

11451/48

:

WHITING #1 SUMMARY OF RESULTS

TABLE 3 (cont.)

(i) Hydrocarbon Bearing Sands

2685.50 - 2692.00 6.50 × 5.50 × .110194 .134 .573862 .721 Gas 2698.50 - 2702.00 3.50 3.50 .108188 .146 .331758 .567 ✓ Gas 2610.75 .671.00 .05 .05 .107.100 .101 .720 .721 .721	
2961.25 - 2965.00 3.75 3.75 .103232 .173 .255505 .411 Gas	c - 2868.71 - 2948.71 wc - 2999.5

* Refers to net sand with porosities greater than 10%.

(ii) <u>Water Bearing Sands</u>

Depth Interval	Gross	Net Porous	Porosity	*Porosity
(m KB)	Thickness	Thickness	Range	Average
	(m KB)	(m KB)		
1307.75 - 1343.00	35.25	34.00	.134310	.252
1352.25 - 1373.75	21.50	16.50	.162299	.237
1400.25 - 1406.25	6.00	5.50	.210292	.265
1458.25 - 1472.00	13.75	10.75	.179339	.287
1495.00 - 1527.25	32.25	27.75	.160313	.270
1535.75 - 1604.25	68.50	63.50	.106373	.276
1608.50 - 1621.00	12.50	11.50	.102297	.232
1634.25 - 1643.50	9.25	8.75	.127297	.253
1678.25 - 1698.50	20.25	20.25	.216307	.273
1739.00 - 1747.00	8.00	8.00	.259311	.290
1763.00 - 1778.50	15.50	15.50	.189310	.253
1783.75 - 1793.25	9.50	9.00	.143284	.222
1818.75 - 1834.00	20.25	13.25	.152316	.259
1911.25 - 1934.00	22.75	20.50	.106305	.195
2003.25 - 2009.00	5.75	4.75	.102275	.220
2066.25 - 2069.75	3.50	3.50	.107237	.183
2156.50 - 2161.25	4.75	3.00	.155255	.201
2235.25 - 2239.00	3.75	2.25	.117209	.157
2255.75 - 2261.25	5.50	4.50	.102208	.166
2477.00 - 2482.00	5.00	5.00	.124222	.167
2489.50 - 2499.50	10.00	9.50	.102201	.161
2506.75 - 2513.00	6.25	1.00	.104155	.125
2518.25 - 2523.00	4.75	2.75	.127202	.159
2535.50 - 2539.00	3.50	2.50	.100140	.123
2600.00 - 2603.25	3.25	2.00	.105163	.126
2906.50 - 2910.75	4.25	2.00	.103146	.117

.

11451/50

-

,

FLUID CONTACTS

TABLE 4

Depth (m KB)	Type of Contact
1495.00	OWC
1739.00	OWC
1763.00	GWC
1908.00	GOC
1911.25	OWC
2156,50	GWC
2477.00	GWC
2868.75	GWC
2948,75	GWC
2999,50	GWC

TABLE 5

<u>Depth</u> (m KB)	Swe Range	Swe Average
1481,50 - 1488,75	.020432	.093
1493.00 - 1495.00	.077276	,208
1658.75 - 1661.75	.100198	.144
1716.75 - 1723.75	.113476	.234
1725.75 - 1726.25	.390493	.450
1735.50 - 1739.00	.201383	,276
1757.50 - 1763.00	.083470	,208
1804.50 - 1812.75	.134669	.254

Water saturations using connate water salinity of 15,000 ppm NaCl equiv.

* Refers to porosities greater than 10%.

APPENDIX 3 WHITING-1 QUANTITATIVE LOG ANALYSIS

Interval:	2	1250-30]	Om	KΒ
Analyst :	;	W.J. Muc	lge	
Date :		August,	198	33

ļ,

•

.

APPENDIX 4

AN EVALUATION OF WHITING-1 "GLOBAL"

Analysis by Schlumberger

STATE OF STREET

K. Kuttan W.J. Mudge

August, 1983

¢., .

AN EVALUATION OF WHITING-1 "GLOBAL" ANALYSIS

Schlumberger were requested to perform a "Global" analysis on Whiting-1 after the well was completed.

Global is one of Schlumberger's sophisticated log interpretation programs which has the following features:

- uses all available information as many log measurements as there are available, geological constraints and local knowledge
- (ii) uses a error model to relate tool responses to petrophysical parameters such as porosity, lithology and fluid saturation.
- (iii) uses probability concepts to compute a maximum likelihood solution
- (iv) provides a quality control curve that indicates how well the answer fits a chosen model and also whether the model is inadequate, or if insufficient information is available to solve the interpretation problem.

To carry out the analysis Schlumberger was provided the following data:

(i) all logs

(ii) mudlog

ALL STATES AND ALL STATES

(iii) RFT pressures and recoveries

Two passes of Global were carried out by Schlumberger. The only difference between the two passes is that in the second pass, the amount of dolomite interpreted from the LDT log is reduced.

A detailed inhouse log analysis of Whiting-l using the dual water model was carried out and the following is a discussion of the comparison between the two analysis.

- 1. Formation Salinities, Water Saturations and Porosities
 - (a) Table 1 summarises the formation salinities used in Global and the inhouse analysis, for the various intervals. Schlumberger assumed that the connate water salinities of the hydrocarbon zones in the interval 1250-1850m to be the same as the adjacent aquifer sands which have been subjected to fresh water flushing. We feel that this is an incorrect assumption for the following reasons:
 - (i) The fresh water sands have strongly developed positive SP, whereas opposite the hydrocarbon bearing zones, SP is significantly suppressed or not developed (Fig. 1). Schlumberger may argue, that the suppression or poor development of SP is due to hydrocarbon effect. However, examination of numerous Gippsland logs where good SP logs were obtained no evidence of SP suppression by hydrocarbons could be found. This would imply that the SP suppression or lack of development is due to the connate waters in the hydrocarbon zones being more saline than the adjacent aquifer waters.

T	A	B	LE	1	

- 2 -

Global		Inhou	se
Depth (m)	Salinity (ppm)	Depth (m)	Salinity (ppm)
1250 - 1800 1800 - 1850 1850 - 2793 2793 - 3000	2800 8900 15000 6200	1250 - 1850 1850 - 2000 2000 - 2515 2515 - 2615 2615 - 2650 2650 - 3010	25000 (for Hydrocarbon zones) 25000 15000 25000 15000 6500

- (ii) The oil sand in the interval 1481-1495m has calculated porosities of 28-30%. Water saturation from Global is 25-30% (Fig. 2). A production test in this oil sand proved the sand has permeabilities of the order of 1.8 darcys relative to oil. Reservoirs with similar petrophysical properties have been shown elsewhere in the Gippsland Basin, from capillary pressure data, to have water saturation of the order of 10%. To calculate water saturations of this magnitude the connate water salinities in the hydrocarbon bearing sands must be more saline than the adjacent aquifer waters.
- (iii) A gas bearing sand is present in the interval 1716-1724m. Within this sand, over the interval 1721-1723m Global calculates an average porosity of 20% and an average water saturation of 75% (Fig. 3). We feel that the water saturation value is inconsistent with the calculated porosity and with the fact that gas is present above and below this interval. Similar inconsistencies in Global, are seen over intervals 1736-1737.5m and 1757-1759m. These inconsistencies indicate that the connate salinities within the hydrocarbon zones are probably more saline than the adjacent fresh water aquifer.

 $\langle \cdot \rangle$

. • •

. .

İ

 $C_{\rm eff}$

Figure 1 Whiting-1 DLL MSFL GR SP Log

"你们,你**没要**找你的。"

Figure 2 Whiting-1 'Global' Analysis

a share a share a sh

Fri Contra

Sw = Water Saturation PHIE = Effective Porosity

6.5

Sw = Water Saturat PHIE = Effective Porosity

Figure 3 Whiting-l 'Global' Analysis

and the second second

Zone with anomalous Sw

19<u>67 - 1997 - 19</u>87 -

Below 1850m (below the limit of flushing), gas sands are (iv) present over the intervals 2298-2304m, 2340-2356m, 2403-2419m, 2440-2452m and 2466-2477m. Taking the cleanest zones, (ie. with very low shale content) porosities from Global are of the order 20-25% and average water saturations of 15-25%. These sands have similar resistivity profiles to the gas sands within the interval of fresh water flushing. However the gas sands in the interval of fresh water flushing have porosities of the order 25-32% and water saturations of 25-60%. It seems very odd that sands that are clean and with higher porosities appear to have higher saturations. In our opinion these upper sands have better petrophysical properties (high porosities, higher permeabilities and low shale content) and therefore ought to have at least similar or more probably lower saturations than the gas sands below 1850m. This again suggests that the connate water salinities of the hydrocarbon sands are probably more saline than the adjacent aquifer waters.

The inhouse analysis has used the apparent connate water salinities from the water bearing sands below the zone of flushing for calculating water saturations in the hydrocarbon zones within the interval of flushing. believe the inhouse analysis results are consistent with the petrophysical properties of these upper sands and with the hydrocarbon recoveries.

- (b) The interval 1850-2650m is very similar in both analysis. This is due to similar salinities being used over the interval. Porosities over the interval are generally in good agreement.
- (c) Over the interval 1619-1621m, which is the base of a sand, Global indicates the presence of movable hydrocarbons (water saturations of the order 20%). It seems very strange that hydrocarbons should be trapped at the base of a water bearing sand (Fig. 4).
- (d) Below 2650m, the analyses differ mainly in water saturation determinations and this is mainly due to the different salinities that were used to compute water saturations. In Global, salinities of 15000 ppm and 6200 ppm were used over the intervals 2650-2793m and 2793-3010m respectively. The inhouse analysis used a salinity of 6500 ppm from 2650-3010m. Using all available information (mud log shows, resistivity and porosity profiles) we believe the apparent connate water salinities are constant from 2650-3010m and is probably 6500 ppm. .
- (e) Below 2793m, both analyses used similar salinities for connate water. The inhouse analysis indicates the presence of fluid contacts at 2948.75m and 2999.5m whereas Global does not show any of these contacts to be present. Further, a hydrocarbon sand with a fluid-water contact, over the interval 2995-3000m, identified by the inhouse analysis is absent in the Global analysis.

TAN LON

211

STATES STREET

Ne de la contra de

(a) State of the second s second sec second sec

6.5

Porosities

Overall, Global porosities are between 1-3 porosity units higher than the inhouse analysis. However, Global porosities in gas bearing sands are consistently higher (up to 6 porosity units) than, the adjacent (or underlying clean water bearing sands (Fig. 3). This is most pronounced over the interval 1250-1850m. We believe that it is highly unlikely that these gas sands have better porosities than the surrounding water sands. The inhouse analysis calculates comparable porosities in both gas and water sands.

Hydrocarbon Type

- Oil zones are present over the intervals 1735-1739m and 1908-1911m.
 Both these zones have been identified by Global as being gas bearing.
- (ii) The hydrocarbon content of the sands in the intervals 2297-2302m, 2400-2477m, 2685-2702m appear to have been correctly identified by Global. However, all other hydrocarbon zones below 2000m, appear to have been identified by Global as having oil. We believe this is incorrect, and in fact most of them are gas bearing.

Lithology

Most of the sands have been described by Global as having a dolomitic component and in fact some sands have been interpreted to have a large proportion of dolomite matrix (Fig. 5). We believe this interpretation is incorrect and in fact, except for a few sands, most of the sands are dolomite free (Fig. 6).

Recommendations

÷.

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF

We recommend that Schlumberger look at some of the obvious interpretation errors that we have identified and refine the Global analysis. However, it must be emphasised that the aim of the refinement should not be to produce an analysis that is identical to the inhouse analysis. We would also like Schlumberger to provide a written report with the analysis.

1

a an an the second s The second sec

C.V.

۹...

.

ł

APPENDIX 5

APPENDIX 5

.....

WIRELINE TEST REPORT

WHITING-1 RFT TEST PROGRAM

J.M. Brown August 1983

.

.

....

إحصادتها بساحاتها

معرفين مر

WHITING-1 RFT TESTS

Summary

A series of RFT tests were conducted on the Whiting-1 exploration well over the period April 9 to April 12, 1983. The tests were carried out after drilling 12-1/4 inch hole to TD at 3011 m. Results from this RFT program confirm the presence of three main hydrocarbon zones with good sample recoveries in two of these zones.

The first major accumulation was a 15 m gross oil interval located at the P. Asperopolus from 1481 m MDKB to the OWC at 1496 m MDKB. To further evaluate this zone, a production test was later carried out and the well was perforated over the interval 1483-1486 m MDKB.

The second main hydrocarbon zone consists of four gas sands at the Upper L. Balmei from 2403 m MDKB to the GWC at 2477 m MDKB with a gross gas column of 74 m. Based on RFT pressure data these four gas sands are interpreted to be in communication.

The third main hydrocarbon zone consists of two sands at the Top of the Upper L. Balmei from 1879 m MDKB to the GOC at 1908 m MDKB and from the GOC to the OWC at 1913 m MDKB. Gross gas and oil vertical thickness were 29 m and 5 m respectively. These two sands have been shown to be in communication from RFT pretest data.

No other significant hydrocarbon columns were confirmed by RFT pretest data.

Results and Discussion

A total of six RFT runs were conducted over the interval 1401-2987.5 m MDKB as follows:

Run Number	Pretests	Interval (m MDKB)
l	4	2987.5-2688.0
2	39	2537.0 - 1401.0
3	1	1482.0
4	l	2801.5
5	10	2910.0-2418.0
6	1	1401.0

Of the 56 pretests attempted, 55 were successful in providing formation pressures and one pretest (with seat at 2510 m MDKB) was tight. Gross errors were encountered with the Schlumberger strain gauge reading on seat numbers 2/6 to 6/56 inclusive and all strain gauge data during and after seat no 2/6 are considered invalid. Pressure data from the Hewlett-Packard gauge are considered valid and were used for all subsequent analyses. Run numbers 3 and 5 were sample runs consisting of a 22.7 litre (6 gallon) chamber, and a 3.8 litre (1 gallon) chamber set at 1482.0 m and 2418.0 m respectively. Run 3 recovered oil while run 5 recovered gas samples. Run numbers 4 and 6 were also sample runs, but a 10.4 litre (2-3/4 gallon) chamber was used in place of the 3.8 litre chamber. Both runs 4 and 6 taken at 2801.5 m MDKB and 1401 m MDKB respectively recovered water and small amounts of gas. Full details of pretest and sample data are given in Tables 1 and 2.

(4444f)

The main results which are illustrated in Figures 1, 2, 3 and 4 are as follows:

- 1. The presence of a 15 m gross vertical oil column identified on logs was confirmed. The oil column located at the P. Asperopolus extends from 1481 m MDKB to the OWC at 1496 m. Net vertical thickness is 10 m and an average oil gradient of 0.87 psi/m (0.27 psi/ft) was measured. Sample run number 3 (1482 m MDKB) recovered 16.9 litres of 58.5° API oil with a GOR of 144 SCF/STB. Details of pressure data are plotted in the attached Figure 2.
- 2. The presence of a gas accumulation from 2403 m-2477 m MDKB with a gross vertical closure of 74 m at the L. Balmei was confirmed. Average pressure gradient over the above interval was 0.32 psi/m (0.10 psi/ft). The logs indicate this interval consists of four discrete sand units and pretest data indicated these sands to be in hydraulic communication with each other. Sample run No. 5 (@ 2418 m MDKB) recovered 124.1 cu ft gas and 1.7 litres of filtrate and mud. A condensate to wet gas ratio of 21.8 STB/million SCF (53°API) was measured. Details of pressure data are plotted in the attached Figure 3.
- 3. The presence of a 29 m gross vertical gas column (1879-1908 m MDKB) with a measured gas gradient of 0.44 psi/m (0.13 psi/ft) overlying a 5m gross vertical oil column (1908-1913 m MDKB) with a measured oil gradient of 0.92 psi/m (0.28 psi/ft) was confirmed by pretest data. These two hydrocarbon columns have a common GOC at 1908 m MDKB confirmed by two pressure seats taken within the gas column and one pressure seat taken in the oil column. These pressure data are plotted in the attached Figure 4.
- 4. As shown in Figure 1, there is a discontinuity in the water gradient at around 2520 m MDKB. Below this depth, the average water gradient of 1.78 psi/m was measured. This was considerably higher than the Gippsland Basin average of 1.42 psi/m. Above 2520 m MDKB the measured pressure gradient of 1.45 to 1.42 psi/m was similar to the Gippsland Basin average 1.42 psi/m.

(4444f)

ABLE

RFT PRETEST PRESSURES - WHITING 1

SERVICE COMPANY: Schlumberger		RUN NO: 1, 2		DATE:	. 09/4/83		OBSERVERS: A.Lindsay, P.Priest, S.T.Koh						
SEAT	DEPTH	DEPTH	REASON 1	GAUGE 2	TEMP 3	UNITS 4	I	-P	FM. F	PRESS	FHP		TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR.	0.1210	psi	ppg	psi	ppg	psi	ppg	
1/1	2987.5	2966.5	PT	HP SCH	Y Y	A G	4995.7	9.78	4879 . 6 4861	9.61	4997.7	9.78	Valid, Super- charged.
1/2	2871	2850	PT	HP SCH	Y Y	A G	4808.7 4786	9.79	4243.0 4221	8.70	4808.8 4785	9.79	Valid
1/3	2801.5	2780.5	PT	HP SCH	Y Y	A G	4698.0 4675	9.80	4150.2 4128	8.72	4697 . 8 4676	9.81	Valid
1/4	2688	2667	PT	H P SCH	Y Y	A G	4513.2 4492	9.81	3908 . 5 3887	8.56	4514.3 4493	9.82	Valid
2/5	2537	2516	PT	HP SCH	Y Y	A G	4263.0 4241	9.81	3645.6 3625	8.46	4263.2 4241	9.82	Valid
2/6	2510	2489	PT	HP SCH	Y Y	A G	4219 . 7 4062	9.82	-	-	4220.0 4071	9.83	Tight
2/7	2481.7	2460.7	PT	HP SCH	Y Y	A G	4171.0 4058	9.82	3550.9 3449	8.42	4170.8 4060	9.83	Valid

Note: From 2/6 had problems with strain gauge, hence errors in strain gauge reading.

1.	Pressure Test = PT Sample & Pressure = SPT	3.	Yes = Y No = N
2.	Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard	4.	PSIA = A PSIG = G

(4444f)

a a ser
1 1 Letht

RFT PRETEST PRESSURES - WHITING 1

SERVIO	CE COMPAN	Y: Schlu	mberger	RUN	NO: 2	DATE:	09/04/8	3	OBSER	VERS: A.	Lindsay, P	.Priest,	S.T.Koh
SEAT NO.	DEPTH (m)	DEPTH (SS) (m)	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	I psi	HP	ملت ملك بين بر خلاي بين بر اين جري ما الملك	PRESS	FHP		TEST RESULT
							hər	ppg	psi	ppg	psi	ppg	
2/8	2467	2446	PT	HP SCH	Y Y	A G	4147.5 4034	9.82	3542 . 3 3432	8.45	4149.1 4035	9.84	Valid
2/9	2451.	2430	PT	HP SCH	Y Y	A G	4122.8 4009	9.82	3537 . 4 3426	8.50	4124.4 4009	9.83	Valid
2/10	2441.7	2420.7	PT	HP SCH	Y Y	A G	4110 . 1 3993	9.83	3536.6 3423	8.53	4111 . 1 3994	9.83	Valid
2/11	2428	2407	PT	HP SCH	Y Y	A G	4086.7 3973	9.83	3618.0 3505	8.77	4087 . 9 3973	9.85	Valid
2/12	2418.0	2397.0	РТ	HP SCH	Y Y	A G	4070.6 3956	9.83	3526 . 7 3412	8.59	4071.7 3956	9.85	Valid
2/13	2403.6	2382.6	PT	HP SCH	Y Y	A G	4048.7 3934	9.84	3536.2 3422	8.66	4048.2 3933	9.85	Valid
2/14	2354	2333	PT	HP SCH	Y Y	A G	3966 . 2 3851	9.84	3421.4 3308	8.56	3966.1 3851	9.84	Valid

1. Pressure Test = PT Sample & Pressure = SPT 3. Yes = Y No = N

2. Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard

4. PSIA = A PSIG = G

(4444f)

TADLE 1 (cont.)

RFT PRETEST PRESSURES - WHITING 1

SERVIO	CE COMPAN	Y: Schlu	mberger	RUN	NO: 2	DATE:	09/4/83		OBSER	VERS: A.	Lindsay, F	.Priest,	S.T.Koh
SEAT NO.	DEP ['] TH (m)	DEPTH (SS) (m)	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4		P		PRESS	FHP		TEST RESULT
							psi	ppg	psi	ppg	psi	ppg	
2/15	2346.5	2325.5	РТ	HP SCH	Y Y	A G	3952 . 8 3838	9.83	3419 . 3 3306	8.58	3952.6 3837	9.83	Valid
2/16	2300	2279	PT	HP SCH	Y Y	A G	3876.4 3762	9.84	3322.6 3209	8.51	3876.9 3762	9.86	Valid
2/17	2259	2238	PT	HP SCH	Y Y	A G	3807 . 1 3694	9.84	3231.8 3118	8.43	3807 . 3 3693	9.84	Valid
2/18	2238	2217	РТ	HP SCH	Y Y	A G	3770.6 3656	9.84	3204.4 3091	8.43	3770.6 3656	9.84	Valid
2/19	2203.2	2182.2	PT	HP SCH	Y Y	A G	3710.3 3594	9.83	3168.7 3056	8.47	3710.3 3594	9.83	Valid
2/20	2193.0	2172.0	PT	HP SCH	Y Y	A G	3692 . 6 3577	9.83	3167.0 3051	8.51	3691 . 9 3576	9.84	Valid
2/21	2157.5	2136.5	РТ	HP SCH	Y Y	A G	3636.0 3520	9.84	3091.4 2978	8.44	3635.9	9.84	Valid
		Test = PT Pressure =	SPT			:	3. Yes No	= Y = N					
2. (Gauges = =		umberger Str ett Packard	ain Gauge				A = A G = G					

(4444f)

.

•

٠.

.

TITLE Information

RFT PRETEST PRESSURES - WHITING 1

SERVICE COMPANY: Schlumberger		nberger	RUN NO:	RUN NO: 2 DATE: 10/4/83				OBSERVERS: A.Lindsay, P.Priest, S.T.Koh					
SEAT NO.	DEPTH (m)	DEPTH (SS) (m)	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	I psi	P Ppg	FM. F	PRESS ppg	FHP psi	ppg	TEST RESULT
2/22	2147.2	2126.2	PT	HP SCH	Y Y	A G	3616.8 3503	9.83	3081.1 2968	8.45	3617.6 3502	9.85	Valid
2/23	2124.2	2103.2	РТ	HP SCH	Y Y	A G	3580.1 3466	9.84	3053 . 1 2940	8.47	3580.0 3466	9.84	Valid
2/24	2115.4	2094.5	PT	HP SCH	Y Y	A G	3564.8 3451	9.84	3051.9 2939	8.50	3564 . 5 3450	9.84	Valid
2/25	2006.0	1985.0	PT	HP SCH	Y Y	A G	3378.3 3264	9.83	2860 . 2 2749	8.85	3378.0 3262	9.84	Valid
°° 2/26	1946.0	1925.0	PT	HP SCH	Y Y	A G	3274.8 3161	9.82	2773 . 4 2660	8.40	3274.8 3160	9.82	Valid
2/27	1921.0	1900.0	PT	HP SCH	Y Y	A G	3232.0 3115	9.82	2736.1 2621	8.40	3231.2 3114	9.84	Valid
2/28	1910.0	1889.0	PT	HP SCH	Y Y	A G	3219 . 1 3103	9.83	2721.2 2607	8.40	3219.1 3102	9.83	Valid
		Test = PT Pressure =	SPT					= Y = N					
2. (umberger Str ett Packard	ain Gauge				A = A G = G					

(4444f)

· '}-

.

TABLE 1 (cont.)

RFT PRETEST PRESSURES - WHITING 1

SERVICE COMPANY: Schlumbe	erger <u>RU</u>	<u>1 NO:</u> 2	DATE: 10/4/83			OBSERVERS: A.Lindsay, P.Priest, S.T.Koh				
	REASON 1 GAUGE 2 FOR TEST	TEMP 3 CORR.	UNITS 4	I	-P	FM. F	PRESS	FHP		TEST RESULT
	FOR TEST	CORK.		psi	ppg	psi	ppg	psi	ppg	
2/29 1901.0 1880.0	PT HP SCH	Y Y	A G	3202 . 7 3087	9.83	2717.0 2603	8.43	3202 . 9 3086	9.83	Valid
2/30 1880.0 1859.0	PT HP SCH	Y Y	A G	3166.2 3051	9.83	2713 . 4 2599	8.51	3165.9 3048	9.83	Valid
2/31 1825.0 1804.0	PT HP SCH	Y Y	A G	3071.4 2955	9.82	2591 . 9 2477	8.37	3070.9 2953	9.82	Valid
2/32 1812.5 1791.5	PT HP SCH	Y Y	A G	3048.2 2931	9.81	2581.2 2466	8.40	3047.8 2930	9.81	Valid
2/33 1807.0 1786.0	PT HP SCH	Y Y	A G	3044 . 3 2984	9.83	2580.8 2458	8.42	3043.8 2917	9.83	Valid
2/34 1771.0 1750.0	PT HP SCH	Y Y	A G	2980.7 2854	9.82	2517 . 1 2392	8.38	2980.6 2852	9.82	Valid
2/35 1745 1724	PT HP SCH	Y Y	A G	2935 . 2 2807	9.81	2477.8 2352	8.37	2934.8 2806	9.84	Valid
l. Pressure Test = PT Sample & Pressure = SF	τ		3	3. Yes No						
2. Gauges = SCH = Schlumb = HP = Hewlett			L		A = A G = G					

(4444f)

.

TABLE 1 (CONC.)

RFT PRETEST PRESSURES - WHITING 1

SERVICE COMPANY: Schlumberger			nberger	RUN NO: 2 DATE: 10/04/83		3	OBSERVERS: A.Lindsay, P.Priest, S.T.Koh				S.T.Koh		
SEAT NO.	DEPTH (m)	DEPTH (SS) (m)	REASON 1 FOR TEST	GAUGE 2	TEMP 3 CORR.	UNITS 4	I psi	+P ppg	FM.F	PRESS ppg	FHP psi	ppg	TEST RESULT
2/36	1718	1697	PT	HP SCH	Y Y	A G	2891.7 2767	9.82	2451.8 2329	8.42	2891.6 2766	9.82	Valid
2/37	1659	1638	PT	HP SCH	Y Y	A G	2790.0 2664	9.81	2357.6 2233	8.38	2789 . 9 2664	9.81	Valid
2/38	1575	1554	PT	HP SCH	Y Y	A G	2645.5 2518	9.79	2227.0 2102	8.34	2644.9 2516	9.82	Valid
2/39	1500	1479	PT	HP SCH	Y Y	A G	2516.5 2393	9.78	2124.4 2003	8.36	2516.1 2392	9.81	Valid
2/40	1493.5	1472.5	PT	HP SCH	Y Y	A G	2504.1 2381	9.77	2115.4 1995	8.36	2503.6 2379	9.80	Valid
2/41	1486	1465	PT	HP SCH	Y Y	A G	2494.9 2370	9.78	2109.0 1987	8.38	2494.5 2369	9.82	Valid
2/42	1482	1461	PT	HP SCH	Y Y	A G	2487 . 3 2362	9.78	2105.1 1983	8.39	2487.5 2361	9.78	Valid
	essure T	ad Strain est = PT Pressure =	Gauge probl SPT	ems to 2/43	•	:		= Y = N					
2. Ga			umberger Str ett Packard	ain Gauge				A = A G = G					

(4444f)

.

.

_

TABLE 1 (CONT.) RFT PRETEST PRESSURES - WHITING 1

SERVI	CE COMPAN	Y: Schlu	mberger	RUN	<u>NO:</u> 2, 3,	, 4, 5 <u>D</u>	ATE: 10-	-11/4/83	<u>(</u>	OBSERVERS:	A.Linds	ay, P.Pri	est, S.T.Koh
SEAT	DEPTH	DEPTH	REASON 1	GAUGE 2	TEMP 3	UNITS 4	<u> </u>	P	FM. F	PRESS	FHP		TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR.		psi	ppg	psi	ppg	psi	ppg	
2/43	1401	1380	PT	HP SCH	Y Y	A G	2349.0 2224	9.77	1987.7 1868	8.38	2349.0 2222	9.77	Valid
3/44	1482	1461.0	SPT	HP SCH	Y Y	A G	2525 . 7 2506	9.93	2105.4 2079	8.39	2524.1 2504	9.92	Valid
4/45	2801.5	2780.5	SPT	H P SCH	Y Y	A G	4721.5 4700	9.85	4151.3 4131	8.73	4716.3 4690	9.84	Valid
5/46	2910.0	2889.0	PT	HP SCH	Y Y	A G	4888.5 4869	9.82	4311.2 4293	8.73	4887.2 4868	9.82	Valid
5/47	2836	2815	PT	HP SCH	Y Y	A G	4764 . 7 4748	9.82	4261.0 4245	8,85	4764.8 4747	9.82	Valid, Super– charged
5/48	2785	2764	PT	HP SCH	Y Y	A G	4683 . 8 4667	9.83	4140.1 4124	8.76	4684 . 4 4667	9.84	Valid
5/49	2701	2680	PT	HP SCH	Y Y	A G	4548.8 4532	9.83	3937 . 7 3922	8.59	4549 . 2 4532	9.85	Valid
Note:	No Pro	blems with	Strain Gaug	e from 3/44	•								
		Test = PT Pressure =	SPT				3. Yes No	= Y = N					
2.			umberger Str ett Packard	ain Gauge			PSI	A = A G = G'					
							•						

(4444f)

.

and a second
and the second second

. .

.

1

and a strain of the state of the state of the strain of th

TADLE 1 (cont. 7

RFT PRETEST PRESSURES - WHITING 1

•

SERVIO	CE COMPAN	I <u>Y:</u> Schlu	mberger	RUN	<u>NO:</u> 5,6	DATE:	11-12/4	/83	OBSER	VERS: A.	Lindsay, F	.Priest,	S.T.Koh
SEAT	DEPTH	DEPTH	REASON 1	GAUGE 2	TEMP 3	UNITS 4	I	₽	FM. I	PRESS	FHP		TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR.		psi	ppg	psi	ppg	psi	ppg	
5/50	2623.5	2602.5	PT	HP SCH	Y Y	A G	4429.4 4405	9.86	3970 . 3 3943	8.92	4428.3 4404	9.87	Valid, Super- charged
5/51	2603	2582	PT	HP SCH	Y Y	A G	4393.6 4372	9.86	3730 . 5 3712	8.45	4393 . 5 4372	9.87	Valid
5/52	2537	2516	PT	HP SCH	Y Y	A G	4282.8 4264	9.86	3647 . 6 3630	8.48	4285.6 4266	9.88	Valid
5/53	2494	2473	PT	HP SCH	Y Y	A G	4212.8 4194	9.87	3569 . 7 3552	8.44	4213.5 4193	9.88	Valid
5/54	2428	2407	PT	HP SCH	Y Y	A G	4102.6 4085	9.87	3637 . 8 3621	8.84	4102.3 4085	9.88	Valid
5/55	2418	2397	SPT	'HP SCH	Y Y	A G	4083.7 4068	9.86	3524.7 3510	8.60	4085.7 4067	9.88	Valid
6/56	1401	1380	SPT	HP SCH	Y Y	A G	2352.0 2334	9.78	1988.7 1969	8.43	2350.6 2332	9.77	Valid
		Test = PT Pressure =	SPT				3. Yes No						
2. 0	auges = : =		umberger Str ett Packard	ain Gauge				A = A G = G					

(4444f)

.

OBSERVER: A. L	•	AMPLE TEST DATE: 1		RUN NO: 3	
SEAT NO.	LIIUSay	44			4
DEPTH		1482	.0 m	148	2.0 m
		AMBER 1 (22	.7 lit	.) CHAMBER 2 (3.8 lit.)
A. RECORDING T		77 75 00	la a		
Tool Set		03-35-00 03-35-00	hrs		
Pretest Open Time Open		03-41-00	hrs hrs	03-56-00	hrs
Chamber Open		03-41-00	hrs	03-56-30	hrs
Chamber Full		03-49-00	hrs	03-57-00	hrs
Fill Time		8-00	min	1-00	min
Start Build u		03-49-00	hrs	03-57-00	hrs
Finish Build		03-55-00	hrs	04-00-00	hrs
Build Up Time		6-00	min	3-00	min
Seal Chamber Tool Retract	ι)3-55-00	hrs	04-00-00 04-01-00	hrs
Total Time			min	26-00	hrs min
B. SAMPLE PRESS	URES	ps			sia
IHP		2525 . 7	<u> </u>	<u>p</u> .	
ISIP		2105.4		2105.0	
Initial Flowi	ng Press.	2003.2		1987.8	
Final Flowing		1992.1		. 1984.0	
Sampling Pres	s. Range	11.1		3.8	
FSIP FHP		2105.0		2105.0	
Form.Press.(F	lorner)			2524.1	
C. TEMPERATURE					
Depth Tool Re	ached	1510	m	1510	m
Max.Rec. Temp		75	oC	75	OC
Time Circ. St			hrs	10/04/83 @ 19.30) hrs
Time since Ci		8.5	hrs	8.5	hrs
Form. Temp.(H D. SAMPLE RECOV			oC		00
Surface Press		320	psia		psia
Amt Gas	G10	15.3	cu ft		lit.
Amt Oil		16.85	lit.		lit.
Amt Water			lit.		lit.
Amt Others -		0.65	lit.		lit.
E. SAMPLE PROPE					
Gas Compositi Cl		59,200	000		200
C2		3,750	ppm ppm		ppm ppm
C3		1,700	ppm		ppm
1C4/nC4		240	ppm		ppm
C5		40	ppm		ppm .
C6		40	ppm		ppm
CO2/H2S		0.4/tr	ppm		ppm
Oil Properties Colour		5 ⁰ API @ 6 ⁰ d brown			
Fluorescence	Bright blue				
GOR cf/bbl	STIGHT DIG	144 Scf/	′Stb		•
Water Propertie	s				
Resistivity	0	.33 @ 20	oC		oC
NaCl Equivale	nt	20,000	ppm		ppm
Cl-titrated		8,000	ppm		ppm
pH/Nitrates Est. Water Ty	פר	8.5/66.5 Mud	ppm		ppm
Mud Properties		Mud			
Resistivity	0.1	92 @ 34	оС	0.192 @ 34	oC
NaCl Equivale		28,000	ppm	28,000	ppm
Cl-titrated		17,800	ppm	17,800	ppm
pH/Nitrates		-	ppm	-	ppm
Calibration		~~ ~			
Hewlett Packar		876			•
Calibration Pr			psig Oc		psig
Calibration Te Mud Weight		9.7	00 00	0 7	00 DDG
Calc.Hydrosta		9.93	ppg psig	9.7 9.92	ppg psig
RFT Chokesize		0.030		0.03	
REMARKS:	Lower Chamber			Upper Chamber	
	Small leak or	n 6 gallon		for analysis	
(4444f)	transport va	Lve		RFS AD 1116	

,

	TABLE 2 (c			
, <u>RFT</u>	SAMPLE TEST REPO	DRT - WH		
OBSERVER: A. Lindsay SEAT NO.	DATE: 11-04 45	-83	RUN NO: 4 45	
DEPTH	2801.5 CHAMBER 1 (22.7	m lit.)	2801.5 CHAMBER 2 (10.4	m lit.)
A. RECORDING TIMES	UNAMDEN I (22.7	11C•/		TTC•/
Tool Set	08-43-00	hrs		
Pretest Open Time Open	08-43-00 08-48-00	hrs hrs		
Chamber Open	08-48-00	hrs	10-27-00	hrs
Chamber Full Fill Time	10-13-00 85-00	hrs min	11 - 03-00 36-00	hrs min
Start Build up	10-13-00	hrs	11-03-00	hrs
Finish Build up	10-27-00	hrs	11-07-00 4-00	hrs min
Build Up Time Seal Chamber	14-00 10-13-00	min hrs	4-00 11-03-00	hrs
Tool Retract		min	11-07-00	hrs
Total Time B. SAMPLE PRESSURES	90 - 00 psia	min	54-00 psia	min
IHP	4721.5			
ISIP Initial Flowing Proc	4151.3 s. 111.8		4151.2 529.6	
Initial Flowing Pres Final Flowing Press.			3821.0	
Sampling Press. Rang	e 2061.9		3291.4 4150.3	
FSIP FHP	4151.2		4716.3	
Form.Press.(Horner)				
C. <u>TEMPERATURE</u> Depth Tool Reached	2810	m	2810	m
Max.Rec. Temp.	110	oC	110	oC
Time Circ. Stopped Time since Circ.	10/04/83 @ 19.30 13.5	hrs hrs	10/04/83 @ 19.30	hrs hrs
Form. Temp.(Horner)	10.0	0C		0C
D. SAMPLE RECOVERY	0	ncia	0	psig
Surface Pressure Amt Gas	0 0.66	psig cu ft	0,38	
Amt Oil		lit.	0.00	lit.
Amt Water/Filtrate Amt Others	19.50	lit. lit.	9.00	lit. lit.
E. SAMPLE PROPERTIES				
Gas Composition Cl	55,750	ppm	99,306	ppm
C2	47,000	ppm	14,100	ppm
C3 1C4/nC4	38,360 10,680	ppm	11,081 3,944	ppm ppm
C5	1,600	ppm ppm	1,318	ppm
C6+	80 Nil/Nil	ppm	288 4%/0	ppm
CO2/H2S Oil Properties	OAPI @ OC	ppm	4%/0	ppm
Colour				
Fluorescence GOR cf/bbl				
Water Properties		00		00
Resistivity NaCl Equivalent	0.133 @ 22	oC bbw	0.122 @ 24 50,000	o _C
Cl-titrated	15,000	ppm	15,500	ppm
pH/Nitrates	· 8/22 ph = 8	ppm	8/30 ph = 8	ppm
Est. Water Type Mud Properties	μι – ο		·	
Resistivity	0,192 @ 34	0C	0.192 @ 34	0C
NaCl Equivalent Cl - titrated	28,000 17,800	ppm ppm	28,000 17,800	ppm ppm
pH/Nitrates	· ,	ppm	,	ppm
Calibration Hewlett Packard Gaug	e No. 876			
Calibration Press.		psig		psig
Calibration Temp. Mud Weight	9.7	oc ppg	9.7	oc ppg
Calc.Hydrostatic	9.85	psig	9.85	psig
RFT Chokesize	0.030		0.020	
	chamber opened. 'rom transport val	ve	Upper Chamber oper	ieu
(4444f)	·			

.....

I

1 ------ n, si, Q S

.

	TABLE 2 (c	cont.)		
RF	T SAMPLE TEST REP	ORT - WI	HITING 1	
OBSERVER: A. Lindsay SEAT NO.	DATE: 12-4 55	-83	RUN NO: 5 55	
DEPTH	2418.0	m	2418.0	m
	CHAMBER 1 (22.7	lit.)	CHAMBER 2 (3.8	lit.)
A. <u>RECORDING TIMES</u> Tool Set	00-22-00	hrs		
Pretest Open	00-22-00	hrs		
Time Open	00-30-00	hrs	00-42-00	hrs
Chamber Open	00-30-00	hrs	00-42-00	hrs
Chamber Full Fill Time	00-35-00 5-00	hrs min	00-43-00 1-00	hrs min
Start Build up	00-35-00	hrs	00-43-00	hrs
Finish Build up	00-41-00	hrs	00-46-00	hrs
Build Up Time	6-00	min	3-00	min
Seal Chamber	00-41-00	hrs	00-46-00 00-47-00	hrs hrs
Tool Retract Total Time	19-00	min	6-00	min
B. SAMPLE PRESSURES	psia		psia	
IHP	4083.7			
ISIP	3524.7		3525.0	
Initial Flowing Pres Final Flowing Press			3325.0 3416.0	
Sampling Press. Ran			91.0	
FSIP	3525.0		3525.4	
FHP			4085.7	
Form.Press.(Horner) C. TEMPERATURE				
Depth Tool Reached	2935	m	2935	m
Max.Rec. Temp.	116	оС	116	оС
Time Circ. Stopped	10/04/83 @ 19.30		10/04/83 @ 19.30	
Time since Circ. Form. Temp.(Horner)	29.0	hrs oc	29.0	hrs °C
D. SAMPLE RECOVERY		U		0
Surface Pressure	1,800	psia		psia
Amt Gas	124.1	cu ft		lit.
Amt Oil Amt Water	Nil 1.30	lit. lit.		lit. lit.
Amt Others - Mud	0.42			lit.
E. SAMPLE PROPERTIES				
Gas Composition Cl	219,341 p	m	n	pm
C2		om Om		pm
C3	11,827 pr	om		pm
1C4/nC4		m		pm
C5 C6+	***	m Cm		pm pm
CO2/H2S		om m		pm
Oil Properties	53 ^o api @ 16 ^o C			
	Colourless			
Fluorescence { GOR (Bbl condensate,	Blue white /mcf) 21.8			
Water Properties				
Resistivity	0.92 @ 19	oC		oC
NaCl Equivalent Cl - titrated	7,000 3,500	ppm		ppm
pH/Nitrates	7.5/8	ppm ppm		ppm ppm
Est. Water Type/ph	ph = 7.5			
Mud Properties (In Hole)) 0.192 @ 34	оС	0.192 @ 34	oC
Resistivity NaCl Equivalent	28,000	ppm	0.192 @ 34 28,000	ppm
Cl-titrated	17,800	ppm	17,800	ppm
pH/Nitrates		ppm	•	ppm
Calibration Strain Gauge Hewlett Packard Gaug				
Calibration Press.	JU 110. 070	psig		psig
Calibration Temp.		oC		oC
Mud Weight	9.7	ppg	9.7	ppg
Calc.Hydrostatic RFT Chokesize	9.86 0.030	psig	9.86 0.03	1 0
	amber Opened	,	Upper Chamber Sea	
			preserved for anal	
(ሏሏሏልዮ)			RFS AD 1129	

	TABLE 2 (c			
Rf	T SAMPLE TEST REPO			
OBSERVER: A. Lindsay SEAT NO.	DATE: 12-04 56	4-83	RUN NO: 6 56	
DEPTH	1401	m	1401	m
	CHAMBER 1 (22.7	lit.)	CHAMBER 2 (10.4	lit.)
A. <u>RECORDING TIMES</u> Tool Set	19-03-00	hrs		
Pretest Open	19-03-00	hrs		
Time Open	19-07-00 19-07-00	hrs hrs	19 - 19-00 19-19-00	hrs hrs
Chamber Open Chamber Full	19-14-00	hrs	19-22-00	hrs
Fill Time	7-00	min	3-00	min
Start Build up Finish Build up	19 - 14-00 19 - 17-00	hrs hrs	19-22-00 19-25-00	hrs hrs
Build Up Time	3-00	min	3-00	min
Seal Chamber	19-17-00	hrs	19-25-00 19-26-00	hrs
Tool Retract Total Time	14-00	min min	19 - 28-00 9 - 00	hrs min
B. SAMPLE PRESSURES	psia		psia	
	2352.0		1988.5	
ISIP Initial Flowing Pre	1988.7 ess. 1973.0		1988.5	
Final Flowing Press	s. 1974.0		1974.2	
Sampling Press. Ram	nge 1.0 1988.5		2.0 1988.5	
FSIP FHP	1900.0		2350.6	
Form.Press.(Horner))			
C. <u>TEMPERATURE</u> Depth Tool Reached	1503	m	1503	m
Max.Rec. Temp.	76	öC	76	οC
Time Circ. Stopped			12/04/83 @ 11.45 7	hrs hrs
Time since Circ. Form. Temp.(Horner)) 7	hrs OC	/	0C
D. SAMPLE RECOVERY				
Surface Pressure Amt Gas	. 590 0.85	psig cu ft	200 0.37	psig cu ft
Amt Oil		lit.	0.27	lit.
Amt Water/Filtrate	21.30	lit.	10.00	lit.
Amt Others E. SAMPLE PROPERTIES	Medium brown gre	зy	Medium brown	grey
Gas Composition			Insufficient Gas Sam	•
C1 C2	54,450 . 16,270	ppm		ppm ppm
C3	14,520	ppm ppm		ppm
1C4/nC4	2,910	ppm		ppm
C5 C6+	. 270 trace	ppm ppm		ppm ppm
CO2/H2S	2% / 50	ppm		ppm
Oil Properties	OAPI @ OC			
Colour Fluorescence				
GOR cf/bbl				
Water Properties Resistivity	0.493 @ 21	oC	0.718 @ 21	oC
NaCl Equivalent	13,000	ppm	8,500	ppm
Cl-titrated	6,000	ppm	4,300	ppm
pH/Nitrates Est. Water Type	8.5/trace Filtrate/Formation	ppm H2O	7.5/Nil Formation W	ppm later
Mud Properties				
Resistivity	0.145 @ 17	0C	0.145 @ 17 58,000	00
NaCl Equivalent Cl-titrated	58,000 17,500	ppm ppm	17,500	ppm ppm
pH/Nitrates	,	ppm	•	ppm
Calibration Hewlett Packard Gau	uge No. 876			
Calibration Press.		psig		psig
Calibration Temp.	~ 7	OC _	~ ~	00
Mud Weight Calc.Hydrostatic	9.7 9.86	ppg ppg	9.7 9.86	ppg ppg
RFT Chokesize	0.030		0.030)
REMARKS: Lower	r chamber opened		Upper Chamber oper	ned .
(4444f)				

1

.

I

SERVIC	E COMPAN	Y: Schlur	mberger	RUN	NO: 1, 2	DATE:	09/4/83		OBSER	/ERS: A.	Lindsay, P	.Priest,	S.T.Koh
SEAT	DEPTH	DEPTH	REASON I	GAUGE 2	TEMP 3	UNITS 4	I	-IP	FM. F	RESS	FHP		TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR.		psi	ppg	psi	ppg	psi	ppg	
1/1	2987.5	2966.5	PT	HP SCH	Y Y	A G	4995.7	9.78	4879.6 486 1	9.61	4997.7	9.78	Valid, Super- charged.
1/2	2871	2850	PT	HP SCH	Y Y	A G	4808.7 4786	9.79	4243.0 4221	8.70	4808.8 4785	9.79	Valld
1/3	280 . 5	2780.5	PT	HP SCH	Y Y	A G	4698.0 4675	9.80	41 50.2 41 28	8.72	4697 . 8 4676	9.81	Valid
1/4	2688	2667	PT	HP SCH	Y Y	A. G	4513.2 4492	9.81	3908.5 3887	8.56	4514. 3 4493	9.82	Valid
2/5	2537	2516	PT	HP SCH	Y Y	A G	4263.0 4241	9.81	3645.6 3625	8.46	4263.2 4241	9.82	Valid
2/6	2510	2489	PT	HP SCH	Y Y	A G	4219.7 4062	9.82			4220.0 4071	9.83	Tight
2/7	2481.7	2460.7	РТ	HP SCH	Y Y	A G	4171.0 4058	9.82	3550 . 9 3449	8.42	4170.8 4060	9.83	Valid

×.

RFT PRETEST PRESSURES - WHITING I

Note: From 2/6 had problems with strain gauge, hence errors in strain gauge reading.

 1. Pressure Test = PT
 3. Yes = Y

 Sample & Pressure = SPT
 No = N

 2. Gauges = SCH = Schlumberger Strain Gauge
 4. PSIA = A

 = HP = Hewlett Packard
 PSIG = G

SERVIC	E COMPANY	(: Sch∣ur	nberger	RUN	NO: 2	DATE:	09/04/83	5	OBSER	VERS: A.	Lindsay, P	.Priest,	S.T.Koh
SEAT	DEP TH	DEPTH	REASON 1	GAUGE 2	TEMP 3	UNITS 4	1)	I P	FM. F	RESS	FHP	,	TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR.		psi	ppg	psi	ppg	psi	ppg	
2/8	2467	2446	PT	HP	Y	A	4147.5	9.82	3542.3	8.45	4149.1	9.84	Valid
				SCH	Y	G	4034		3432		4035		
2 /0	0454	2470	DT	HP	Y	A	4122.8	9.82	3537.4	8.50	4124.4	9.83	Valid
2/9	2451	2430	PT	SCH	Y	G	4009		3426		4009		Valiu
				HP	Y	А	4110.1	9.83	3536.6	8.53	4111.1	9.83	
2/10	2441.7	2420.7	PT	SCH	Y	G	3993		3423		3994		Valld
				HP	Y	А	4086.7	9.83	3618.0	8.77	4087.9	9. 85	
2/11	2428	2407	PT	SCH	Ŷ	G	3973		3505		3973		Valid
				HP	Y	А	4070.6	9.83	3526.7	8.59	4071.7	9.85	
2/12	2418.0	2397.0	PT	SCH	Y	G	3956	9.05	3412	0.55	3956	9.09	Valid
							1010 7		7574 0	0.66	1010 0	0.05	
2/13	2403.6	2382.6	PT	HP SCH	Y Y	A G	4048.7 3934	9.84	3536.2 3422	8.66	4048.2 3933	9.85	Valld
2/14	2354	2333	PT	HP SCH	Y Y	A G	3966.2 3851	9.84	3421.4 3308	8.56	3966.1 3851	9.84	Valid
				3CH	I	6	2021		500		1001	•	
	- ·	T I					7 V	- v					
		Test = PT Pressure =	SPT	<u>.</u>				= Y = N					
	•												
2. (-		umberger Sti ett Packard	rain Gauge				A = A G = G					

RFT PRETEST PRESSURES - WHITING 1

SERVIC	CE COMPANY	: Schlur	nberger	RUN	NO: 2	DATE:	09/4/83		OBSER	VERS: A.	Lindsay, P	.Priest,	S.T.Koh
SEAT	DEPTH	DEPTH	REASON I	GAUGE 2	TEMP 3	UNITS 4	1	P	FM. F	PRESS	FHP	, 	TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR.		psi	PPg	psi	ppg	psl	PPg	
2/15	2346.5	2325.5	PT	HP SCH	Y Y	A G	3952 . 8 3838	9.83	3419.3 3306	8.58	3952.6 3837	9.83	Valid
2/16	2300	2279	РТ	HP SCH	Y Y	A G	3876.4 3762	9.84	3322.6 3209	8.51	3876 . 9 3762	9.86	Valid
2/17	2259	2238	PT	HP SCH	Y Y	A G	3807 . 3694	9.84	3231.8 3118	8.43	3807.3 3693	9.84	Valid
2/18	2238	2217	РТ	HP SCH	Y Y	A G	3770.6 3656	9.84	3204.4 3091	8.43	3770 . 6 3656	9.84	Valid
2/19	2203.2	2182.2	PT	HP SCH	Y Y	A G	3710.3 3594	9.83	3168.7 3056	8.47	3710.3 3594	9.83	Yalld
2/20	2193.0	2172.0	РТ	HP SCH	Y Y	A G	3692 . 6 3577	9.83	3167.0 3051	8.51	369 1. 9 3576	9.84	Val id
2/21	2157.5	2136.5	PT	HP SCH	Y Y	A G	3636 . 0 3520	9.84	309 1. 4 2978	8.44	3635,9	9.84	Valid
	Pressure T Sample & P		SPT					= Y = N					
2. (-		umberger Str ett Packard	aln Gauge				A = A G = G					

RFT PRETEST PRESSURES - WHITING 1

SERVIC	CE COMPAN	Y: Schlu	mberger	RUN NO:	2	DATE:	10/4/83		OBSERVE	RS: A.LIn	dsay, P.Pr	lest, S.T	T.Koh
SEAT	DEPTH	DEPTH	REASON I	GAUGE 2	TEMP 3	UNITS 4	1	HP	FM. I	PRESS	FHP)	TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR .		psi	ppg	psi	ppg	psl	ppg	
2/22	2147.2	2126.2	PT	HP	Y	A	3616.8	9.83	3081.1	8.45	3617.6	9.85	Valid
2722	214742	212012		SCH	Y	G	3503		2968		3502		Vario
2/23	2124.2	2103.2	РТ	HP	Y	А	3580.1	9.84	3053 . I	8.47	3580.0	9.84	Vali d
				SCH	Y	G	3466		2940		3466		
2/24	2115.4	2094.5	PT	HP SCH	Y Y	A .	3564.8	9.84	3051.9	8.50	3564.5	9.84	Valid
				300	I	G	3451		2939		3450		
2/25	2006.0	1985.0	РТ	HP	Y	Α	3378.3	9.83	2860.2	8.85	3378.0	9.84	Valid
				SCH	Y	G	3264		2749		3262		
2/26	1946.0	1925.0	PT	HP	Y	Α	3274.8	9.82	2773.4	8.40	3274.8	9.82	Valid
2,20	• • • • • •			SCH	Y	G	3161		2660		3160		
2/27	1921.0	1900.0	РТ	HP	Y	А	3232.0	9.82	2736.1	8.40	3231.2	9.84	
2/27	1921.0	1900.0	ΡI	SCH	Y	G	3115		2621		3114		Valld
2 /20	1010.0	1880.0	DT	HP	Y	A	3219.1	9.83	2721.2	8.40	3219.1	9.83	·
2/28	1910.0	1889.0	PT	SCH	Y	G	3103		2607		3102		Valld
		Test = PT Pressure =	SPT					= Y = N					
·	omhio a	11055010 -	511				On	- 14					

RFT PRETEST PRESSURES - WHITING I

2. Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard 4. PSIA = A PSIG = G

•

-1

SERVIC	E COMPAN	Y: Schlu	mberger	RUN	NO: 2	D/	<u>ATE:</u> 10,	/4/83	<u>(</u>	DBSERVERS	: A.Linds	ay, P.Pri	lest, S.T.Koh
SEAT	DEPTH	DEPTH	REASON I	GAUGE 2	TEMP 3	UNITS 4	1	₽	FM. F	RESS	FHP		TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR.		psl	ppg	psi	ppg	psl	PPg	
2/29	1901.0	880.0	PT	HP	Y	A	3202.7	9.83	2717.0	8.43	3202.9	9.83	Valld
2727	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			SCH	Y	G	3087		2603		3086		WIN
2/70	1000 0	1050.0	DT	HP	Y	A	3166.2	9.83	2713.4	8.51	3165.9	9.83	
2/30	1880.0	1859.0	РТ	SCH	Y	G	3051		2599		3048		Valid
0 /71	1005 0	1004.0	57	HP	Y	A	3071.4	9,82	2591.9	8.37	3070.9	9,82	
2/31	1825.0	1804.0	PT	SCH	Y	G	2955		2477		2953		Valid
0 /70	1010 5	4704 5	5T	HP	Y	А	3048.2	9.81	2581.2	8.40	3047.8	9.81	
2/32	1812.5	1791.5	PT	SCH	Y	G	2931		2466		2930		Valid
o (77	4000 0	1704 0		HP	Y	Α	3044.3	9.83	2580.8	8.42	3043.8	9.83	
2/33	1807.0	1786.0	PT	SCH	Y	G	2984		2458		2917		Valld
				HP	Y	A	2980.7	9.82	2517.1	8.38	2980.6	9.82	
2/34	1771.0	1750.0	PT	SCH	Y	G	2854		2392		2852		Valid
				HP	Y	A	2935.2	9.81	2477.8	8.37	2934.8	9.84	
2/35	1745	1724	PT	SCH	Y	G	2807		2352		2806	-	Valld

RFT PRETEST PRESSURES - WHITING I

1.	Pressure Test = PT Sample & Pressure = SPT	3.	Yes = Y No = N
2.	Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard	4.	PSIA = A $PSIG = G$

.. I.,

. 1

•

SERVIC	CE COMPAN	I <u>Y:</u> Schlu	ımbərgər	RUM	<u>NO:</u> 2	DATE:	10/04/8	3	OBSER	VERS: A.	Lindsay, F	P.Priest,	S.T.Koh
SEAT	DEPTH	DEPTH	REASON I	GAUGE 2	TEMP 3	UNITS 4	I	HP	FM.	PRESS	FHF)	TEST RESULT
NO.	(m)	(SS) (m)	FOR TEST		CORR.		psi	ppg	psl	ppg	psi	PPg	
2/36	1718	1697	PT	HP	Y	A	2891.7	9.82	2451.8	8.42	2891.6	9.82	Valid
27 50	1110	1097		SCH	Y	G	2767		2329		2766		10110
2/37	1659	1638	PT	HP	Y	A	2790.0	9.81	2357.6	8.38	2789.9	9.81	Valid
				SCH	Y	G	2664		2233		2664		
2/38	1575	1554	РТ	HP	Y	А	2645.5	9.79	2227.0	8.34	2644.9	9.82	Valid
2750	()/)	1774		SCH	Y	G	2518		2102		2516		10110
2/39	1500	1479	PT	HP	Y	A	2516.5	9.78	2124.4	8.36	2516.1	9.81	Valid
21 39	1500	(4/9	FI	SCH	Y	G	2393		2003		2392		10110
0 (40	1407 5		DT	HP	Y	A ·	2504.1	9.77	2115.4	8.36	2503.6	9.80	V - 4 1 J
2/40	493.5	472.5	РТ	SCH	Y	G	2381		995		2379		Valid
- ())				HP	Y	A	2494.9	9.78	2109.0	8,38	2494.5	9.82	
2/41	1486	1465	РТ	SCH	Y	G	2370		1987		2369		Valid
				HP	Y	A	2487.3	9.78	2105.1	8.39	2487.5	9.78	
2/42	J482	1461	PT	SCH	Υ,	G	2362	- • • •	1983		2361		Valid
Note:			n G <mark>auge</mark> prob	lems to 2/4	3.		7 V						
		Test = PT Pressure =						; = Y = N					
•	compile u		·					••					

.1,

RFT PRETEST PRESSURES - WHITING I

2. Gauges = SCH = Schlumberger Strain Gauge = HP = Hewlett Packard 4. PSIA = APSIG = G

. .

SEAT	DEPTH	DEPTH	REASON	GAUGE 2	TEMP 3	UNITS 4	11	₽	FM. I	PRESS	FHF	•	TEST RESUL
10.	(m)	(SS) (m)	FOR TEST		CORR.		psl	ppg	psi	ppg	psl	ppg	
5/50	2623.5	2602.5	РТ	HP SCH	Y Y	. A G	4429.4 4405	9.86	3970.3 3943	8.92	4428 . 3 4404	9.87	Valld, Super- charged
5/51	2603	2582	PT	HP SCH	Y Y	A G	4393 . 6 4372	9.86	3730.5 3712	8.45	4393 . 5 4372	9.87	Valld
5/52	2537	2516	РТ	HP SCH	Y Y	A G	4282.8 4264	9.86	3647.6 3630	8.48	4285.6 4266	9.88	Valid
5/53	2494	2473	PT	HP SCH	Y Y	A G	4212.8 4194	9.87	3569 . 7 3552	8.44	4213 . 5 4193	9.88	Valid
5/54	2428	2407	РТ	HP SCH	Y Y	A G	4102.6 4085	9.87	3637 . 8 3621	8.84	4102.3 4085	9.88	Valid
5/55	2418	2397	SPT	HP SCH	Y Y	A G	4083.7 4068	9.86	3524.7 3510	8.60	4085 . 7 4067	9.88	Valid
6/56	1401	1380	SPT	HP SCH	Y Y	A G	2352.0 2334	9.78	1988.7 1969	8.43	2350 . 6 2332	9.77	Valid
		Test = PT Pressure =	SPT					= Y = N					

RFT PRETEST PRESSURES - WHITING I

11191/18-25

SERVIC	CE COMPAN	Y: Schlu	mberger	RUN	<u>NO:</u> 2, 3	, 4, 5 <u>D</u> /	ATE: 10-	-11/4/83	-	OBSERVERS	: A.Linds	ay, P.Pr	lest, S.T.Koh
SEAT	DEPTH	DEPTH	REASON	GAUGE 2	TEMP 3	UNITS 4		₽	FM. I	PRESS	FHP)	TEST RESULT
•0•	(m)	(SS) (m)	FOR TEST		CORR.		psl	ppg	psi	ppg	psl	ppg	
2/43	1401	1380	PT	HP	Y	A	2349.0	9.77	1987.7	8.38	2349.0	9 .77	Valld
2/45	1401	1000	FI	SCH	Y	G	2224		1868		2222		Vario
3/44	1482	1461.0	SPT	HP	Y	А	2525.7	9.93	2105.4	8.39	2524.1	9.92	Valld
5/44	1482	1401.0	561	SCH	Y	G	2506		2079		2504		Valla
4 / 4 5	2001 5	2700 5	DT	HP	Y	A	4721.5	9.85	4151.3	8,73	4716.3	9.84	Valid
4/45	2801.5	2780.5	PT	SCH	Y	G	4700		4131		4696		Vallo
- 140	2010.0	2000 0		HP	Y	A	4888.5	9.82	4311.2	8.73	4887.2	9.82	Valld
5/46	2910.0	2889.0	PT	SCH	Y	G	4869		4293		4868		Valio
- / 4 -	2076	2015	oT	HP	Y	A	4764.7	9.82	4261.0	8.85	4764.8	9.82	Valid, Super-
5/47	2836	2815	PT	SCH	Y	G	4748		4245		4747		charged
- 110	0705	0764	07	HP	Y	A	4683.8	9.83	4140.1	8.76	4684.4	9.84	V - 1 1 J
5/48	2785	2764	PT	SCH	Y	G	4667		4124		4667		Valld
- / 4 0	0701	0.000	07	HP	Ŷ	A	4548.8	9.83	3937.7	8.59	4549.2	9.85	
5/49	2701	2680	PT	SCH	Y	G	4532		3922		4532		Valld
Note:	No Pro	blems with	Strain Gau	ge from 3/4	4.								
1. 1	Pressure	Test = PT					3. Yes	= Y					
1	Sample &	Pressure =	· SPT				No	= N					
2. (Gauges =	SCH = Schl	umberger Sti	rain Gauge			4. PSI	A = A					
	=	HP = Hewl	ett Packard				PSI	G = G					

RFT PRETEST PRESSURES - WHITING |

.

· . . .

and the second second representative second second

.

APPENDIX 6

WHITING-1

PRODUCTION TEST NO. 1R

I.D. Palmer/S.T. Koh August 1983

WHITING-1 PRODUCTION TEST NO. 1R REPORT

Interval 1483-1486 m KB (1462-1465 m SS)

- A. SUMMARY
- B. BACKGROUND AND OBJECTIVES
- C. TEST DESCRIPTION
- D. RESULTS AND INTERPRETATION
 - 1. Reservoir Pressure
 - 2. Reservoir Volume
 - 3. Build-up Analysis
 - 4. Productivity Index

TABLES

- 1. Summary of Test Results
- 2. Reservoir/Fluid Properties

FIGURES

1. Wellhead and Bottomhole Pressures Versus Time Plots

2. Horner Plot

APPENDIX

- Sample Details

.....

- Otis Services - Well Test Report

A. SUMMARY

Production Test No. 1R was carried out on the Whiting-1 exploration well over the interval 1483-1486 m KB (1462-1465 m SS) on April 23/24, 1983. Immediately prior to Test No. 1R, Production Test No. 1 over the same interval recovered 99.7 st kL (627 STB) of oil at an average rate of 340 st kL/D (2141 STB/D), but bottomhole pressure data could not be obtained. The interval tested lies within the major oil zone discovered by Whiting-1 extending from 1481 m KB to the OWC at 1496 m KB.

During Test No. 1R, the well flowed at a stabilised rate of 846 st kL/D (5323 STB/D) through a 25.4 mm positive choke with FWHP and FWHT of 2682 kPa(g) (389 psig) and 45.5°C (114°F) respectively. The gravity of produced oil was 58° API with a measured GOR of 40.6 m³/st kL (228 SCF/STB). No water was produced to the surface during the nine hours of major flow period. Measured productivity index for the well was 4.47 st kL/D/kPa (194 STB/D/psi). The static bottomhole pressure of 14, 415 kPa (2090.6 psia) at run depth 1475 m measured at the end of the initial build-up period was 11 kPa (1.7 psi) lower than the average final shut-in bottomhole pressure of 14,426 kPa (2092.3 psia). This pressure difference is not considered significant.

Analysis of the build-up pressure data (from HP gauge) by the Horner Plot indicated a formation permeability of 1840 md assuming an effective contributing sand thickness of 10 m (32.8 ft). Due to phase redistribution during the ETR and other wellbore effects, the MTR was only observed after 70 minutes of shut-in period which reduced the MTR pressure build-up to within 14 kPa (2 psi). This rendered the bottomhole Amerada pressure data unsuitable for build-up analysis. A flattening off of the Horner Plot to an average pressure of 14,426 kPa (2092.3 psia) was observed after five hours of pressure build-up. Extrapolated pressure (P*) of the MTR slope to infinite shut-in was 14,438 kPa (2094 psia). The lack of pressure depletion and the pressure drawdown seen relative initial Gippsland aquifer pressures suggest that pressure support from the aquifer can be expected.

A summary of the test results are given in the attached Table 1. Details of data gathered during Production Test No. 1 and Test No. 1R are given in the attached Otis Services Well Test Report.

B. BACKGROUND AND OBJECTIVES

Open hole wireline logs indicated the presence of oil in the interval from 1481 to OWC at 1496 m KB. This interval was interpreted to contain 10 m of net oil sand with an average porosity and water saturation of 24 percent and 20 percent respectively. Prior to production testing, an RFT survey was conducted in the interval and confirmed the presence of oil with the recovery of 16.85 litres of 58.5° API oil. Pressure seat No. 2/42 at 1482 m KB gave a formation pressure of 14,515 kPa (2105.1 psia). The RFT pressure data also confirmed the OWC at 1496 m KB.

The objectives of the production test were to:

- (i) determine the producing characteristics of the formation;
- (ii) determine fluid properties and obtain further samples for composition and PVT analysis; and
- (iii) investigate flow boundaries and drive mechanism.

C. TEST DESCRIPTION

Production Test No. 1 (1483-1486 m KB)

Production Test No. 1 commenced when the interval 1483-1486 m KB was perforated underbalanced (with diesel) using the Schlumberger 2-1/8 inch enerjet at 13 shots per metre. On April 21, 1983, the well was opened for initial flow and clean-up for 63 minutes. It was then shut-in at the choke manifold for initial build-up and subsequent running of bottomhole Amerada pressure gauges. As the Schlumberger Hewlett-Packard pressure gauges malfunctioned, only the Otis Amerada pressure gauges were run to bottom. The well was re-opened for the final flow period during which flow was directed through the separator to measure oil, gas and water rates. Cumulative oil production during Production Test No. 1 was 99.7 st kL (627 STB) at an average rate of 340 st kL/D (2141 STB/D). The well was then shut-in at the surface for final build-up during which time the 0.092 inch wireline holding the downhole Amerada gauges broke. All recorded bottomhole flowing and build-up pressures were lost as the downhole Amerada gauges were not recovered. With no pressure data and because of suspected plugging in the perforations during the major flow period, it was decided to repeat the production test and the original interval 1483-1486 m KB was re-perforated. Prior to conducting Test No. 1R, new Schlumberger Hewlett-Packard pressure gauges were sent to the rig and function tested successfully.

Production Test No. 1R (1483-1486 m KB)

The well was opened for initial flow and clean-up between 0833 and 0923 on April 23, 1983 and recovered an estimated 25.6 st kL (161 STB of oil). At the end of the initial build-up period, the Hewlett-Packard gauge in tandem with Amerada gauges were run to bottom and hung at 1475 m KB. Prior to opening the well for final flow, the measured static bottomhole pressure was 14,415 kPa (2090.6 psia).

The well was opened for the final flow period at 1540 hours on April 23 on 9.5 mm (24/64 inch) choke increasing to 25.4 mm (1 inch) positive choke at 1500 hours. The well was still in the process of cleaning-up and the flow stabilising when it was shut-in at 1647 hours for 54 minutes to allow the burner nozzles to be unplugged. At 1741 hours, flow was re-established through 25.4 mm (1 inch) positive choke and quickly stabilised. At 1801 hours, the flow was directed to the test separator and the oil and gas rates measured. Average measured oil rate was 846 st kL/D (5323 STB/D) with a GOR of 40.6 m³/st kL (228 SCF/STB) and an oil gravity of 58° API. Prior to shutting-in the well at 0030 hours on April 24, separator oil and gas samples were taken for PVT and compositional analysis. Details of samples taken are given in the attached appendix (D-15: Separator Sample Data).

After approximately five hours of major build-up the measured bottomhole pressure appeared to have stabilised at 14,426 kPa (2092.3 psia). It was monitored for a further 4-1/2 hours without discerning any additional pressure build-up and Test No. 1R was concluded at 1000 hours on April 24. Two gradient stops were made at 1444 and 1414 m KB which gave an oil gradient of 0.97 psi/m (0.30 psi/ft).

للاستها ستناديها دالله بالع ولايد

، جد مر د

(4477f)

.

D. RESULTS AND INTERPRETATION

1. Reservoir Pressure

Figure 1 shows the wellhead and bottomhole pressures and Figure 2 is a Horner plot of the BHP data.

The static bottomhole pressure at the end of the initial build-up period was 14,415 kPa (2090.6 psia) at run depth 1475 m KB. This was 11 kPa (1.7 psi) lower than the average final static bottomhole pressure of 14,426 kPa (2092.3 psia) and 23 kPa (3.4 psi) lower than the extrapolated build-up pressure (P*) of 14,438 kPa (2094 psia). These small pressure differences are not considered significant. The RFT Hewlett-Packard pressure taken within the test interval and adjusted to the gauge depth of 1475 m KB gave a reservoir pressure of 14,468 kPa (2098.3 psia). Relative to the measured final build-up pressure of 14,426 kPa (2092.3 psia), the RFT reservoir pressure was higher by 41 kPa (6 psi). This pressure difference may have been due to measurement differences such as the use of a different Hewlett-Packard pressure gauge during the RFT survey or other factors such as the drift in aquifer pressure in the two week period between the two pressure surveys. The reservoir is believed to be in good hydraulic communication with the Gippsland Aquifer since the measured final static bottomhole pressure of 14,426 kPa (2092.3 psia) was drawndown by 366 kPa (53 psi) relative to the original Gippsland Aquifer pressure and because no pressure depletion was detected during the test.

2. Radius of Investigation

The radius of investigation at the end of the MTR was approximately 920 m (3020 ft) and corresponds to a drainage area of 266 hectares (657 acres). Based on the current Whiting structure map, the OWC extends to about about 1050 m (3445 ft) from the Whiting-1 exploration well. The pore volume examined in the test is 2440 ML (15 MB).

3. Build-up Analysis

÷

The early-time bottom hole pressure data was observed to be dominated by wellbore effects and phase segregation until approximately 70 minutes after shut-in. Approximately 90 percent of the observed total build-up of 165 kPa (24 psi) occurred within this ETR period. The remainder 14 kPa (2 psi) of build-up data occurred within the MTR period.

The MTR Horner Plot lies reasonably well on a straight line with a slope of 4.4 psi/cycle (see Figure 2). The permeability-thickness product calculated from the Horner Plot was 60350 md-ft which gave a permeability (relative to oil) of 1840 md assuming a total net sand contributing thickness of 10 m. A negative skin factor of 1.7 with a corresponding damage ratio of 0.8 was calculated; indicating near wellbore stimulation. The wellbore stimulation was probably because the test interval 1483-1486 m KB was perforated twice at 13 shots per metre using the Schlumberger 2-1/8 inch Enerjet gun.

Due to the 14 kPa pressure build-up during the MTR and small flowing bottomhole pressure drawdown, the sensitivity of the Amerada gauges was considered too low for useful build-up interpretation.

4. Productivity Index

Based on the extrapolated MTR pressure (P*) of 14,438 kPa (2094 psia), the productivity index measured during the test was 194 STB/D/psi. The measured PI is higher than the theoretical PI determined from the permeability data by about 14 percent. This confirmed the negative skin calculated from the Horner build-up analysis method which indicated the well was stimulated by up to 24 percent with a flow efficiency of 1.24. Calculation steps for the theoretical PI of 170 STB/D/psi are shown below:

į.

$$PI = \frac{.00708 \text{ kh}}{B \times u (\ln (\frac{re}{rw}) - 0.5)}$$

$$PI = \frac{.00708 \times 1840 \times 32.8}{1.18 \times 0.26 \times (\ln (\frac{3027}{0.5}) - 0.5)} = 170 \text{ STB/D/psi}$$

TABLE 2

ROCK AND FLUID PROPERTIES

1.	API Gravity	58°	Measured during test.
2.	GOR	228 SCF/STB	Measured during test @ 1758 kPa (g) (255 psig) and 56.1°C (133°F).
3.	Porosity Ø	24	Log Interpretation - avg. for interval.
2.	Water Saturation	20%	Log interpretation – avg. for interval.
5.	Compressibility, ct	18.4x10 ⁻⁶ psi	-lAssumes: Co = 18.5x10 ⁻⁶ psi ⁻¹ (Seahorse PVT Analysis) Cw = 3.0x10 ⁻⁶ psi ⁻¹ Cf = 3.5x10 ⁻⁶ psi ⁻¹
6.	Viscosity,	uo = 0.26 cp	Ct = Cf + Sw Cw + (1-Sw) Co Source: Exxon Well Testing Manual assumptions: GOR = 230 Scf/STB temperature = 215°F Oil viscosity compares reasonably with the Seahorse (52° API, 151°F 1000 Scf/STB) viscosity of 0.21 cp.
7.	Oil Formation Volume Factor, B _O	1.18	Source: Standing Correlation

(4477f)

-

-

.

TABLE |

SUMMARY OF WHITING-I WELL PRODUCTION TEST NO. IR RESULTS

Test	Date	Perforation Interval (m RKB)	Production Fluid Time (-/Hrs)		Flowing WHP [kPa (Gauge)]	Stabilised Production Rate (st kL/D)	Initial Reservoir (kPa (abs)]	Flowing BHP (kPa (abs)]	Maximum BHT (°C)	Damage Ratio	Productivity Index (ST kL/D/kPa)	Permeability Thickness (md-ft)	Permeability (md)
I R	23-24 April 1983	I 483-I 486	011/9.00	25.4 (inch)	2682 (389 psig)	846 (5323 STB/D)	4466 (2098 psia)@ 475 m KB	•	@ 475 m	0.8	4.47 (194 STB/D/ psi)	60350	I 840

Notes:

 $\hat{\Box}$

(1) All depths relative to KB (KB Southern Cross = 21 m above MSL).

(2) The damage ratio of 0.8 indicates the wellbore or near wellbore region was stimulated. This corresponds to a skin factor of -1.7.

APPENDIX

1. Sample Details

2. Otis Services - Well Test Report

. . . .

. .

SEPARATOR SAMPLE DATA

1

Well WHITING 1	Test	IR	Date24/4/8	33
Producing Interval 1483-				
Initial Reservoir Pressure	•	iA@ 1482m TV		
Reservoir Temperature	15°F	@ <u>1474 m</u>	(maximum)	
	Liq	uid	Gas	3
	Sample No. 1	Sample No. 2	Sample No. 1	Sample No. 2
Time Sampled	2315-2345		_2315-2345_	
Length of Time Well was Produced	8 HRS	8.5 HRS	8 HRS	8.5 HRS
Container No. (OTIS)	WIA 4869	<u>79A2779</u>	<u>P348177</u>	<u>P345536</u>
Container Volume	<u>1020 CC</u>	<u>1150 CC</u>	<u>11.4 LITRES</u>	<u>11.4 LITR</u> ES
Separator Pressure PSIG	255	255	255	255
Separator Temperature $^{ m O}{ m F}$	133	134	133	
Wellhead Pressure PSIG	387	389	387	389
Wellhead Temperature (°F)	114	120	114	120
Flowing Bottom-hole Pressure (psi) A	2065.9	2066.2	2065.9	2066.2
Flowing Bottom-hole Temperature (°F)	214.7	214.7	214.7	214.7
Separator Rate (Sep. bb1/D)*	6391	6345	6391	6345
Separator Gas Rate (MSCF/D)	1.245	1.252	1.245	1.252
Separator GOR (SCF/Sep. bb1)	195	197	195	197
Well Rate (STB/D) ⁺	5228	5190	5228	5190
Well GOR (SCF/STB) ⁺	238	241	238	241
Full Wellstream Water Cut	NIL	NIL	NIL	NIL
How Outage was Taken on Lie	quid Samples _	3" OIL LIN	NE UPSTREAM O	<u>F ROTRON ME</u> TER

Gas Sampling Method	PUF	RGING								•
Liquid Sampling Method	BRI	NEDI	SPL	ACEN	MENT		r.			•
Special Instruction for	Lab	MAX.	OF	25	PPM	H2S	MEASURED	FROM	SEPARATOR	GAS.

_•

ار می می رو می می رو می میرید

Sampled by <u>OTIS</u>.

* Rates based on Meter Readings corrected for Meter Factor Only. +Rates corrected to Stock-Tank Conditions as per Form D-7. D-15

APPENDIX

7

APPENULX /

APPENDIX 7

GEOCHEMICAL REPORT

WHITING-1 WELL, GIPPSLAND BASIN, VICTORIA.

bу

J.K. Emmett

Sample Handling and Analyses by:

D.M. Hill) D.M. Ford .) Esso Australia Ltd. J. Maccoll)

Exxon Production Research Company, Geochem Laboratories.

Esso Australia Ltd. Geochemical Report. 0624L

October 1983.

CONTENTS

- 2 -

List of Tables.

- 1. C₁₋₄ Headspace Cuttings Gas Data.
- 2. Total Organic Carbon Report.
- 3. Vitrinite Reflectance Report.
- 4. Kerogen Elemental Analysis Report.
- 5. Kerogen Elemental Atomic Ratios Report.
- 6. Rock Eval Pyrolysis Results.
- 7. C₁₅₊ Liquid Chromatography Results.
- 8. Whiting-1 Oil, RFT 3, 1482 M(KB), C₄₋₇ Data.
- 9. Whiting-1 Oil, RFT-3, 1482 m(KB), Liquid Chromatography and Carbon Isotope Results.

List of Figures.

- 1. C₁₋₄ Headspace Cuttings Gas Log.
- 2. C_{4-7} Gasoline-Range Hydrocarbon Geochemical Log.
- 3. Vitrinite Reflectance vs. Depth.
- 4. Atomic H/C vs. Atomic O/C Modified Van Krevelen Plot.
- 5. Principal Products of Kerogen Evolution.
- 6. Rock-Eval Maturation and Organic Matter Type HI vs. T_{max}.
- 7. C₁₅₊ Saturate Chromatogram, Whiting-1, 995-1010m(KB).
- 8. C₁₅₊ Saturate Chromatogram, Whiting-1, 1670-1685m(KB).

9. C₁₅₊ Saturate Chromatogram, Whiting-1, 1940-1955m(KB).

10. C₁₅₊ Saturate Chromatogram, Whiting-1, 2300-2315m(KB).

11. C₁₅₊ Saturate Chromatogram, Whiting-1, 2570-2585m(KB).

- 12. C₁₅₊ Saturate Chromatogram, Whiting-1, 2990-3005m(KB).
- 13. Whiting-1 oil, RFT-3, 1482 m(KB) Whole oil chromatogram and sulphur compound trace.

14. Whiting-1, oil, RFT-3, 1482 m(KB), C₁₅₊ Saturate Chromatogram.

Appendices.

1. C_{A-7} Detailed Data Sheets.

2. Detailed Vitrinite Reflectance and Exinite Fluorescence Data by A.C. Cook.

INTRODUCTION

Various geochemical analyses were performed on samples of canned cuttings, sidewall cores and conventional core, collected during drilling of the Whiting-1 well. Canned cuttings composited over 15 metre intervals were collected from 200 metres (KB) down to 3011 metres (KB) ie. total depth (TD). Alternate 15-metre intervals were analysed for C_{1-4} headspace hydrocarbon gases between 950 m(KB) and T.D. Succeeding alternate 15-metre intervals were analysed for C_{4-7} gasoline-range hydrocarbons between 965 m(KB) and 3005 m(KB). Selected samples were handpicked for more detailed analyses such as Total Organic Carbon (T.O.C.), Rock-Eval pyrolysis, kerogen isolation and elemental analysis and C_{15+} liquid and gas chromatography. Vitrinite Reflectance \bar{R}_{v} max was measured by Professor A.C. Cook of Wollongong.

An oil sample (RFT-3 at 1482 m(KB)) was analysed for API gravity and % sulphur, and by liquid chromatography, carbon isotopes, whole oil -, C_{4-7} - and C_{15+} -gas chromatography.

DISCUSSION OF RESULTS.

The detailed headspace C_{1-4} hydrocarbon cuttings gas analysis data are listed in Table 1 and for convenience, pertinent information has been plotted in Figure 1. The C_{1-4} gas content is fairly lean down to the Top of the Latrobe Group sediments, below which it increases significantly and remains uniformly moderately-rich to rich down to T.D. (3011m). The amount of wet gas (C_{2+}) components in the cuttings gas is generally low throughout the well (usually less than 30%). Wet gas values in the 30% - 60% range were obtained between 1445 m(KB) and 1670 m(KB) which may be related to the oil shows encountered in this section of Whiting-1. On the basis of cuttings gas values, the Gippsland Limestone and Lakes Entrance Formations rate as having poor-fair hydrocarbon source potential, compared to the underlying Latrobe Group sediments which have good to very good potential to source hydrocarbons.

The detailed C_{4-7} gasoline-range hydrocarbon data sheets are given in Appendix-1 and again pertinent information has been plotted in Figure 2. Total gasoline values in the Gippsland Limestone and Lakes Entrance Formations are generally lean, confirming poor hydrocarbon source potential. Values in the Latrobe Group sediments are rich to very rich and generally contain a significant amount of C_{6+} components (particularly below about 2,000 m(KB)), indicating a very good oil source potential for this unit.

- 3 -

The Latrobe Group sediments also have fairly good T.O.C. values (average T.O.C. = 1.41% - Table 2) particularly when compared to the poor values of the Gippsland Limestone (average T.O.C. = 0.35%) and the Lakes Entrance Formation (average T.O.C. = 0.32%).

Vitrinite Reflectance (\bar{R}_{V} max) data are presented in Table 3 and have been plotted against depth in Figure 3. There is some spread in the data points caused by the \bar{R}_{V} max values from the coal samples being higher than values determined on dispersed organic matter (D.O.M.) in sediment samples. However, using the approximate line of best fit shown in Figure 3, the top of the organic maturity window for significant hydrocarbon generation (taken to

be \bar{R}_{v} max = 0.65%) occurs in the Latrobe Group section at about 2,500 m(KB). Detailed vitrinite reflectance and exinite fluorescence data are given in Appendix-1 (Report by A.C. Cook).

In Table 4, the elemental analyses of selected kerogen samples are listed. Approximate Hydrogen : Carbon (H/C); Oxygen : Carbon (O/C) and Nitrogen : Carbon (N/C) atomic ratios for these samples are given in Table 5. These ratios are labelled 'approximate' since the oxygen % is calculated by difference, and the naturally occurring organic sulphur %, which may be upto a few percent, was not determined. Figure 4 is a modified Van Krevelen Plot of atomic H/C ratio versus atomic O/C ratio, on which fields corresponding to the basic kerogen types have also been delineated. Comparison of Figure 4 with Figure 5, a similar plot which shows the principal products of kerogen evolution indicates that although Type III organic matter (ie. woodyherbaceous) predominates in the Latrobe Group Sediments, there is a significant amount of intermediate Type II-III kerogen present (ie. with higher H/C atomic ratio), and these sediments therefore have good potential to be a source of both oil and gas.

Table 6 lists the results of a suite of Whiting-1 sidewall core samples (all having T.O.C. values of 0.5% or more) which were analysed by Rock-Eval Pyrolysis. In Figure 6, Hydrogen Index (HI) has been plotted against $T_{max}(^{O}$ C), and again fields delineating the basic kerogen types and their degree of maturation (indicated by equivalent vitrinite reflectance values) are also shown. Figure 6 confirms that the Latrobe Group sediments contain a suitable organic matter type to have good oil and gas potential, and have reached maturity below about 2500m(KB).

- 4 -

The C₁₅₊ liquid chromatography results from selected canned cuttings are listed in Table 7. The total extract values for the Gippsland Limestone Formation sample is poor and the high amount of asphaltenes indicates that this sample is presently immature. The corresponding C_{15+} gas chromatogram (Figure 7) shows that the sample contains predominantly marine derived organic matter as indicated by the prominent envelope of lower molecular weight $(C_{18}-C_{25})$ n-alkanes which maximise about n-C₂₂ and below which there is an obvious unresolved hump of naphthenic compounds. Some non-marine input is also indicated by the odd-over-even predominance seen in the higher molecular weight n-alkanes. Total extract values for the Latrobe Group samples are fairly rich and the greater amounts of hydrocarbons present in the deeper samples (again below about 2500m) shows that these samples are probably mature as well as having good potential to source oil as well as gas. The corresponding C_{15+} gas chromatograms for the Latrobe Group samples are shown in Figures 8-12. These chromatograms indicate predominantly non-marine or terrestrial derived organic matter becoming more mature with increasing depth. This is primarily evident by the reduction in odd-over-even predominance in the deeper samples and the movement of the n-alkane maxima from n-C $_{29}$ in the shallowest sample down to n-C $_{24}$ in the deepest sample.

Table 8 shows the C_{4-7} gasoline-range hydrocarbon analysis data for an oil sample obtained from Whiting-1, ie. RFT-3 at 1482m. Liquid chromatography and hydrocarbon fraction carbon isotope results for the same oil are given in Table 9.

A 'whole oil' gas chromatogram, together with sulphur compound trace of this oil are shown in Figure 13, and the corresponding C_{15+} saturate fraction chromatogram is given in Figure 14. The Whiting-1 oil is a mature, very light (API gravity = 57.8[°] at 60[°]F) paraffinic based crude (Table 9, Figures 13 and 14) composed predominantly gasoline-range compounds (Table 8).

- 5 -

CONCLUSIONS

- The top of organic maturity in Whiting-1 occurs in the Latrobe Group section at about 2,500 m(KB).
- 2. The Latrobe Group sediments have the best hydrocarbon source potential of the units penetrated. These sediments are rated as having good-very good potential to source both oil and gas.
- Oil discovered in Whiting-1 is a very light, mature paraffinic-based crude.

ESSO AUSTRALIA LTD.

20/10/83

72656 J

2340.00

27599

3725

1077

214

165

5182

32781

84. 11.

1 .

1.

C1-C4 HYDROCARBON ANALYSES Table 1. BASIN - GIPPSLAND REPORT A - HEADSPACE GAS - WHITING 1 WELL GAS CONCENTRATION (VOLUME GAS PER MILLION VOLUMES CUTTINGS) GAS COMPOSITION (PERCENT) SAMPLE 10. DEPTH METHANE ETHANE PROPARE IBUTANE NBUTANE WET TOTAL WET/TOTAL ---- TOTAL GAS ----- WET GAS ----62 C 1 C 3 • IC4 E C4 C2-C4 C1 - C4PERCENT М Ē P IB NE Ρ. TB NB 72639 R 965.00 1313 59 20 Q 117 1430 92. 88. <u>n</u> 2. 50. 69. 8.18 4. 25.17. 1. 8. 72639 T 72639 V 1. ġ, 68 638 16 8 98 786 16. 12.47 1. 8. 6 1. 6. 5. 1025.00 341 30 6 6 2 44 385 11.43 89 8 ŝ. 68. 14. 14. 1. 68. 37. 24. 28. 61. 20. 12. 72639 X 1055.00 1085.00 1115.00 55 405 36 42 554 149 26.90 632 16 73. 10. 8. 3. 11. 72639 Z 72644 B 5595 230 76 24 376 2664 14.11 ģ. 46 86. ς. 1. 6. 4700 307 113 28 91. 42 490 9 44 6**.** 1. 1. 6. 72644 D 1105.00 21 39 2078 216 86 · 33 356 2434 85. 9. 61. 14.63 4. 24. 1. 1175.00 1. 6. 72644 F 6703 470 137 .43 9.59 91. 2. 689 7472 20 25 6. 68. 72644 H 1. 1. 6. 5441 368 1.46 21 ŚŚ. 577 6018 0. 4. 6 4. 90. 0. 67. 1235.00 72644 J 275 2450 131 40 498 2958 16.84 83. 9. 4. 2. 46. 14. 14. 17. 1. 55. 26. 10. 8. 1265.00 72644 L 174 55 55 63 33 380 205 54.21 9 į 31. 16. 1295.00 1325.00 1355.00 72644 N 192 1347 124 134 26.67 3 40 490 1837 7. 39. 39, 25, 27, 42, 27, 21, 73. 10. 7. à, 72644 P 179 1233 114 90 44 427 1710 75.10. 5. 10. 72644 R 31045 6533 690 254 7509 2. 1. 3. 0. 3. 0. 87. 32 38554 19.48 9 3 81. 17. 0. 0. 72644 11 1400.00 24079 3833 776 82 47 4738 28817 16.44 81.16. 79.18. 84. 13. 0. 5. 1. 7894 72644 V 1430.00 45141 205 56171 1761 170 10030 17.86 82.14. 0. 0. 5. §. 72644 Y 1440.00 2156 5621 1322 57.22.13. 57.17.15. 58.22.13. Δ1Δ 386 4278 9899 43.55 50. 4. 4. 31. 10. 72652 D 72652 F 72652 F 1505.00 4692 2669 819 700 SéS 222 5. 2023 43.12 6. 40.35. 11. 14. 1535.00 42243 15825 9618 2948 3. 2068 30459 72707 52. 32. **7**. 41.89 4. 10, 1565.00 7519 4031 3488 ŭ3, 700 7. 37. 1223 9442 16961 55.67 44. 24. 21. 4. 7. 13. 1575.00 72652 3560 1325 1388 320 7579 426 4019 45. 35 53.03 4. 6. 7. 8. 12. 72652 N 1625.00 1631 093 1068 200 318 2579 4260 60.54 5. 41. 8.12. 1670.00 12308 5103 2551 295 8637 59. 588 20945 41.24 3. 30. 5. 72652 P 36518 1700.00 153848 49208 9911 1197 1582 203056 24.23 1. ĩ. 74. ŻŌ. 5. 3. 72652 R 72652 T 1730.00 122259 24510 7686 21.88 22.33 18.08 821 1224 34241 156500 72. 55 1. 1. 1760.00 128578 26645 7729 1533 36972 1065 165550 72. 21. 726552250 726552250 726555 4. 1. 1. 1790.00 29367 176540 7463 701 945 38975 215516 82. 14. 7. 70. 21. 7. 62. 24. 10. Ô. 0. 19. 3. 5. 1820.00 27230 2008 2805 383 567 11837 39067 30.30 68 24 63 26 65 25 1. 1. 8157 3387 582 12940 37.65 27.57 25.33 814 34371 Ś. Ş. 4. 6. 1880.00 15516 3-341 1432 P 2 R 355 21424 1 . 4. 6. 5. 1910.00 4166 18535 1585 217 321 6289 3. 24824 75. 17. 6. 66. 25. 1. 1. 72655 F 4499 1940.00 31271 5896 1043 153 196 37167 15.86 3. 76. 18. 3. 3. 84. 12. 0. 1. 72655 H 72655 J 432 1970,00 155101 16085 78. 3575 466 20553 142749 14.40 86. 11. 0. 0. 5060.00 35637 3447 795 243 128 89 4613 41450 11.13 Ŝ. 17. 8. 0. 1. 72655 L 72655 N 72655 P 3. 2030.00 12993 56316 4501 785 1066 19345 75661 25.57 67. 74.17. 6. 1. 23. 4 1. 6. 1254 14. 17. 6. 57. 24. 13. 86. 11. 3. 79. 15. 2. 90. 8. 2. 85. 11. 3. 2060.00 42.55 14.48 10.76 2950 2185 8877 660 144 127 5135 57. 7. 30. 3. 5. 6. 5080.00 .52439 1586 248 61312 70107 331 76. 4. 726555 PRTV 7265555 VX 7265555 VX 726555555 726556 726556 0. 18. 1. 2120.00 62562 6063 1188 160 134 7545 Õ. 80. 16. 0 5 ื 30025 5603 1887 254 21.16 315 8059 38084 23. 1. 1. 70. 4. 2180.00 86050 8032 223. 05040 1452 183 9890 Ô. Ó " 10.31 81. 15. 5. 5. 2210.00 36313 4557 1360 191 243 6351 42664 14.89 72. 3. 0. 1. 21. 4. 2240.00 54720 4507 1139 244 161 6051 60771 9.96 90. 7. 74 19 0. 0. 4 3. 2270.00 26490 5889 612 109 12.22 88. 10. เพพงกะ 78 3688 30178 78. 17. ŝ. 0. 0. 72656 D 2300,00 25930 3395 133 30691 38567 1056 177 4761 84. 11. 83. 13. 4. 0. 1. 71. 50. 72656 F 2330.00 32045 4834 16.91 12.36 15.81 158 74 1301 559 6522 0. 4. 1. 72656 H 2360.00 44866 4937 6325 1128 145 115 ź. 78. 18. 72. 21. 51191 88. 10. 0. Ô. 2.

PAGE

4.

3.

ESSO AUSTRALIA LTD.

• •

.

20/10/83

.

.

	IPPSLAND HITING 1		Table	1. RE	PORT A -	CARBON AN HEADSPACE MILLION VI	GAS	TTINGS)	G	AS CO	MPOSI	TION	(PERCE	NT)			
SAMPLE NO.	DEFT4	METHANE C1	ETHANE C2	PROPANE C3	IBUTANE IC4	NBUTAHE C4	WET C2-C4	TOTAL C1-C4	WET/TOTAL PERCENT	 M	TOT/	LGA	S IB NB			AS IB NI	3
72265566 722665566 722665566 722665566 72266556 722665577 722665577 72265577 72265577 72265577 7226557777 7226557777777777	2450.000 450.0000 450.000000 450.0000 450.00000000 450.00000000000000	212452 12452 12452 12452 12452 1255 1252 1255 1252 1255 1252 1255 1252 1255	$\begin{array}{c} 4308359\\ 43028359\\ 1715526983699\\ -2152658499\\ -21526584999\\ -21526584999\\ -352725265\\ -3527572526\\ -352755268\\ -4053\\ -4$	167688 10780501 20479428320048244 21479488244482 211755444429 2131255444429 114377588 114377588 114377588	21112111 757467077369766768686 111211 423424042812 125786976868686 125786976868686	389537051260 829037739840008499112621 6346363671528 528 634636363621 528 528 528 528 528 528 528 528 528 528	67807780788 7807780788 996609378966093 12267965398 165009378 165009378 165009378 11778 1690730 1216977 126225 1955 1955 1955 1955	$\begin{array}{c} 273264\\ 2634923\\ 887632\\ 20278\\ 202778\\ 202778\\ 1290959\\ 1310979\\ 1310979\\ 5679959\\ 1310979\\ 5687179\\ 25687179\\ 2881179\\ 2881179\\ 286159\\ 11392\\ 20139\\ 286159\\ 286179$	244 274 274 274 274 274 274 274 274 274	7682599231798759055693 677787987787759055693	11111 111221 11111121 15558371111821 11111121	659726943662645888684 11		665676665466410312758 665466447676666666666666666666666666666	741710175690835820765 203725590835820765	5344456428222	

PAGE

. .

•

ESSO AUSTRALIA LTD.

•

PAGE 1

							FAUE.
]	Table 2. TOTAL ORGANIC C	ARBON REPORT			
ASIN - ELL -	GIPPSLAND WHITING 1						
* * * * * * * * *	** ******		****	AN ***	TOC% AN TOC ****** *******	% AN TOC% * *******	DESCRIPTION *****
72639 S 72639 U 72639 W 72639 Y 72644 C 72644 C 72644 C	$\begin{array}{c} 980 \\ 1010 \\ 001 \\ 000 \\ 1040 \\ 000 \\ 1070 \\ 001 \\ 1100 \\ 001 \\ 1150 \\ 001 \\ 1150 \\ 001 \\$) HID-LATE HIOC HID-LATE HIOC HID-LATE HIOC HID-LATE HIOC HID-LATE HIOC HID-LATE HIOC HID-LATE HIOC HID-LATE HIOC	ENE GIPPSLAND LIMESTON ENE GIPPSLAND LIMESTON ENE GIPPSLAND LIMESTON ENE GIPPSLAND LIMESTON ENE GIPPSLAND LIMESTON ENE GIPPSLAND LIMESTON ENE GIPPSLAND LIMESTON	ติติติติติติ ออกการเลีย ออกการเลือ	.48 .17 .23 .40 .53 .39 .27		LT OL-MED GRY MUDST.CALC OL-LT OL GRY SLTY LMST. LT-MED LT GRY SLTY LMST. OL-LT OL GRY MUDST.CALC. MED DK GRY MUDST.CALC. MED GRY MUDST.V CALC. MED-MED LT GY MUDST.CALC
=====	DEPTH :	.00 TO 117	3.00 METRES, <=== I ===>	AVERAGE TOC :	.35 % EXCLUDI	NG VALUES GRE	ATER THAN 10.00 % <===
72644 G 72644 I 72644 K	1190.00 1220.00 1250.00) EARLY DIOCENE) EARLY DIOCENE) EARLY DIOCENE	LAKES ENTRAMCE LAKES ENTRAMCE LAKES ENTRAMCE 7.50 METRES. <=== I ===>	2	• 36 • 27 • 32		OL-LT OL GY MUDST.V CALC OL-LT OL GY MUDST.V CALC OL-LT OL GY MUDST.V CALC
~~~~	DEPTH : 1	173.00 TO 127	7.50 METRES. <=== I ===>	AVERAGE TOC :	.32 % EXCLUDI	NG VALUES GRE	ATER THAN 10.00 % <===
===>	DEPTH : 1	1277.50 TJ 128	LATROBE GROUP-GURN 7.00 METRES. <=== I ===> '	AVERAGE TOC :	.30 % EXCLUDI	NG VALUES GRE.	ATER THAN 10.00 % <===
00XSCVUXHGMA00ZSUZYTA 666666666666666666666666666666666666	$\begin{array}{c} 1359.5(\\ 1374.0(\\ 1374.0)\\ 1374.0(\\ 1399.8)\\ 1445.0(\\ 1520.0)\\ 1550.0(\\ 1646.3)\\ 1676.3\end{array}$	PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP	LATROBE GROUP LATROBE GROUP	221211222222222222222222222222222222222	31 40 07 30.00 2.74 5.48 45.90 2.11 .03 1.26 .66 .03 1.97 55.40 2.28 1.99 32.28 1.99		LT OL GRY MUDST. V CALC. LT OL GRY MUDST. CALC. M-DK GRY SST MICA BLACK CCAL.ARGILL. OL/GRY SLTST COALY M OL/GRY SLTST COALY M OL/GRY SST OL/GRY CLST MICA BLACK COAL.GRY BLK SHALE LAM M GRY SST/DK GY CLST LT OL GRY MUDST.CALC. PINK'GY-V LT GY SST. M OL/GRY SLTST PYR S OL LT OL GY MUDST.CALC. OL/GRY SLTST COALY STRKS COAL.CARB GRY'BLK SHALE. U/GRY SLTST COALY STRKS COAL.GRY SLTST COALY STRKS COAL.GRY SLTST COALY STRKS COAL.GRY SLTST COALY STRKS COAL.GRY SLTST COALY STRKS LT OL-DK GRY MUDST.MICA.

. .

.

# ESSO AUSTRALIA LTD.

### PAGE 2

.

# Table 2 cont. TOTAL ORGANIC CARBON REPORT

BASIN - GIPPSLAND WELL - WHITING 1

ANDLE NT. 00074 AN TOCK AN TOCK AN TOCK AN TOCK OF TOC
THE DEPTH . 1997 AA TH KAAS AA METORS AFE T THE AVERAGE TOO - A #4 & EVELUSTION AND AND AND AND AND AND AND AND AND AN

.

# ESSO AUSTRALIA LTD.

# Table 3. VITRINITE REFLECTANCE REPORT

•

### BASIN - GIPPSLAND WELL - WHITING 1

SAMPLE NO.	DEPTH	AGE	FORMATION	AN MA	X. RO FLUOR. COLOL		
72628 N	2141.20	PALEOCENE PALEOCENE PALEOCENE LATE CRETACEOUS LATE CPETACEOUS	LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP	55555	49 GRN-DULL BRN 49 YEL-OR 76 YEL-OR 84 YEL-SRN 69 YEL-BRN	20 13 25 21 20	V>E>>I,COAL I>E>V,DOM COMMON V>I>E,DOM ABUNDANT V=E,NO I,COAL I>V>E,DOM ABUNDANT

PAGE

# ESSO AUSTRALIA LTD.

### 12/10/83

÷.,

•

# Table 4. KERUGEN ELEMENTAL ANALYSIS REPORT

BASIN - GIPPSLAND WELL - WHITING 1

.

SAMPLE NO.	0.EPTH	SAMPLE TYPE		LEMENTA	L % (AS	SH FREE	)		COMMENTS	
	•		N %	C %	Н%	S %	0%	ASH%		
72636 7 72637 F 72637 E 72636 X 72639 C 72636 U	1342.50 1317.60 1322.50 1359.50 1374.00 1415.20	SWC SWC SWC SWC SWC SWC SWC		65.67 63.94 66.96 66.11 66.00 65.17	4 952 4 827 4 93 4 93 4 93 4 91	.00 .00 .00 .00 .00	289.5551 289.288.5551 288.899.11 288.899.11 288.899.11 288.899.11	8.97 12.60 7.50 9.82 7.08 5.62	HIGH ASH	
72266336 7722663366 7722663366 7722663366 7722663366 7722663366 7722663366 7722663355 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 77226633555 7722665355 777777777777777777777777777777777	$\begin{array}{c} 1456 \\ 1567 \\ 200 \\ 15427 \\ 200 \\ 1590 \\ 300 \\ 16557 \\ 500 \\ 16557 \\ 500 \\ 1655 \\ 500 \\ 1780 \\ 500 \\ 1859 \\ 100 \\ 1859 \\ 100 \\ 1859 \\ 100 \\ 1859 \\ 100 \\ 1859 \\ 100 \\ 1859 \\ 100 \\ 1859 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\$	S & C S & C	1.03 .94 .95 .88 .99 1.07	71.44 68.65 71.14 72.08 70.79 74.95 74.95 76.42	5.51 5.466 5.20 5.830 5.30 5.30 5.30 5.30 5.30 5.30	00 00 00 00 00 00 00 00 00	2555 255 255 255 255 255 255 255 255 25	7.664 9.692 4.20 10.38 3.590 7.55	HIGH ASH	
72263355 722663355 722663355 722663355 722663355 722663355 722663355 722663355 722663355 722663355 722663355 722663355 722663355	1000 1000 1000 1000 1000 1000 1000 100	SWC SWC SWC SWC SWC SWC SWC SWC SWC SWC	90 999 1.18 1.227 1.622 1.622 1.720 1.40	76.14 81.39 81.32 75.75 82.67 82.67 82.65 82.65 82.65	5.13 6.40 5.90 5.40 5.46 5.44	- 0 0 - 0 -	17.82 10.22 11.07 11.87 17.76 11.00 10.65 10.15 11.66	2.275357 8.89 7.22677 4.557 4.557 6.5 9.43		
7226633554554663355 77226633554555455 77226633554555455 77226633555 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 7722663355 772266355 77777777777226 77777777777777226 77777777	2681.00 2687.04 2717.00 2735.50 2743.00 2743.00 2793.00 2925.00 2993.50	SWC COPE COPE SWC SWC SWC SWC SWC SWC	1.14 97756239 1.1239 1.329 1.329 1.331 1.425	85.21 77.27 864.07 867.681 87.681 87.681 865.10 865.10 865.11	4.25 5.35 4.5.15 4.76 4.724 4.74 4.18		9,41 12,71 16,70 8,99 25,95 12,28 8,58 7,87 8,58 7,87 8,46	1523 1523 1523 1523 1523 1523 1523 1523	HIGH ASH	

PAGE 1

. .

۲

•

.

# ESSO AUSTRALIA LTD.

.

•

# Table 5. KEROGEN ELEMENTAL ANALYSIS REPORT

BASIN - GIPPSLAND WELL - WHITING 1

SAMPLE NO.         DEPTH         SAMPLE TYPE         AGE         FORMATION         ATOMIC RATIOS         COMMENTS           726567         1347-50         SWC         PALEOCENE         LATROBE GROUP         -31         -33         11           726577         1347-50         SWC         PALEOCENE         LATROBE GROUP         -01         -55         02         HIGH ASH           726577         1359-50         SWC         PALEOCENE         LATROBE GROUP         -00         -55         02         HIGH ASH           72636         1356-60         SWC         PALEOCENE         LATROBE GROUP         -00         -30         -02         -01           72636         14155-00         SWC         PALEOCENE         LATROBE GROUP         -90         -30         -01           72636         1415-00         SWC         PALEOCENE         LATROBE GROUP         -90         -77         011           72636         1456-00         SWC         PALEOCENE         LATROBE GROUP         -90         -77         011           72636         1456-70         SWC         PALEOCENE         LATROBE GROUP         -90         -77         011           72636         1466-730         SWC         PAL	والمراقبة	""""""""""""""""""""""""""""""""""""""			
72636 7       1342-50       SWC       PALEOCENE       LATROBE GROUP       91       33       01         72637 F       1317.80       SWC       PALEOCENE       LATROBF GROUP       90       35       02         72637 F       1374.00       SWC       PALEOCENE       LATROBE GROUP       90       35       01         72636 Y       1352.00       SWC       PALEOCENE       LATROBE GROUP       90       32       01         72636 V       1374.00       SWC       PALEOCENE       LATROBE GROUP       90       32       01         72636 V       1374.00       SWC       PALEOCENE       LATROBE GROUP       90       32       01         72636 V       1456.00       SWC       PALEOCENE       LATROBE GROUP       93       23       01         72636 V       1567.00       SWC       PALEOCENE       LATROBE GROUP       93       23       01         72636 V       1567.50       SWC       PALEOCENE       LATROBE GROUP       92       24       01         72636 V       1567.50       SWC       PALEOCENE       LATROBE GROUP       93       23       01         72636 V       146560       SWC       PALEOCENE       LATROB	SAMPLE NO. DEPTH SAMP	PLE TYPE AGE		ATOMIC RATIOS	COMMENTS
726346       7       1342.50       SWC       PALEOCENE       LATROBE GROUP       91       33       01         726357       F       1377.60       Suc       PALEOCENE       LATROBE GROUP       90       35       02         726357       F       1372.50       Suc       PALEOCENE       LATROBE GROUP       90       32       01         726357       F       1372.50       Suc       PALEOCENE       LATROBE GROUP       90       32       01         726357       F       1372.50       Suc       PALEOCENE       LATROBE GROUP       90       32       01         7263561       1374.20       Suc       PALEOCENE       LATROBE GROUP       90       32       01         7263561       1542.00       Suc       PALEOCENE       LATROBE GROUP       90       32       01         726356       1542.00       Suc       PALEOCENE       LATROBE GROUP       90       22       01         726357       Suc       PALEOCENE       LATROBE GROUP       93       26       01         726356       F       1542.00       Suc       PALEOCENE       LATROBE GROUP       64       22       01         726357       T<					29. 雪山 48. 49. 19. 19. 19. 19.
72636       X       1332       50       SWC       PALEUCEME       LATROBE GROUP       90       32       01         72637       01       1445       20       SWC       PALEOCENE       LATROBE GROUP       90       34       01         72636       1145       20       SWC       PALEOCENE       LATROBE GROUP       90       34       01         72636       F1456       00       SWC       PALEOCENE       LATROBE GROUP       90       27       01         72636       F1590       SWC       PALEOCENE       LATROBE GROUP       92       24       01         72636       SWC       PALEOCENE       LATROBE GROUP       92       24       01         72636       SWC       PALEUCENE       LATROBE GROUP       93       26       01         72636       L       1665       SWC       PALEUCENE       LATROBE GROUP       89       26       01         72636       L       1665       SWC       PALEOCENE       LATROBE GROUP       89       27       01         72636       L       1665       SWC       PALEOCENE       LATROBE GROUP       83       18       01         72637       T <th></th> <th></th> <th></th> <th></th> <th>•</th>					•
72638 M 2717.00 SWC PALEDCENE LATROBE GROUP .58 .07 .01 72635 G 2738.50 SWC PALEUCEDE LATROBE GROUP .82 .08 .01	72637       F       1317.80       SWC         72637       F       1322.50       SWC         72636       X       1352.50       SWC         72636       X       1357.4.00       SWC         72636       H       1415.20       SWC         72636       H       1425.20       SWC         72636       H       1425.20       SWC         72636       R       1456.00       SWC         72636       R       1457.20       SWC         72636       R       1457.20       SWC         72636       R       1457.00       SWC         72636       R       1457.50       SWC         72636       S       1657.50       SWC         72636       R       1459.10       SWC         72636       R       14759.50       SWC         726375       T       1359.10       SWC         72638       X       2141.20       SWC         72638       X       2145.20       SWC         726375       L       2356.00       SWC         72638       X       2145.00       SWC         726355       J	PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE PALEUCEENE	LATROBE GROUP LATROBE GROUP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
72638 J 2793-00 SWC LATE CRETACEOUS LATROBE GROUP -70 -11 -01 HIGH ASH	72639 L. 2689.04 CÓRE 72638 M. 2717.00 SWC 72635 G. 2738.50 SWC 72635 F. 2767.00 SWC	PALEDCENE PALEUCENE	LATROBË GROUP Latrobë group	.83 .16 .01 .58 .07 .01	HIGH ASH

PAGE

•

### ESSO AUSTRALIA LTD.

PAGE 1

#### ROCK EVAL ANALYSES -----BASIN - GIPPSLAND WELL - WHITING 1 REPORT A - SULPHUR & PYROLYZABLE CARBON Table 6. ----SAMPLE NO. DEPTH SAMPLE TYPE AGE S 1 ΤΜΑΧ SS S3 PI \$2/\$3 ---------------72639 C 72636 U 72636 H 1374.0 SUC 1415.2 SVC 1527.2 SVC PALEOCENE PALEOCENE PALEOCENE 407. 408. 420. 44 1.40 4.36 17.24 3.83 -35 -66 -43 $\begin{array}{c} .09 \\ .08 \\ .08 \\ .08 \\ .14 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09 \\ .09$

CUHAZWTXTNLNFJDC84 77226665558855585555586555586555588555558666666	13745.23 58400 13745.23 58400 15745.55 14527.45 15775.55 12537 157755 12537 12537 1253 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 1255 125	PALLEOCCENNE PALLEOCCENNE PALLEOCCENNE PALLEOCCENNE PALLEOCCENNE PALLEOCCENNE PALLEOCCENNE PALLEOCCENE PALLEOCCENE PALLEOCCENE PALLEOCCENE PALLEOCCENE LATE LATE LATE LATE LATE LATE LATE LAT	407 408 4207 4225 4127 4225 4127 4225 4127 4225 4127 4230 4331 4435 4440 4444	44 1 402 627 1 02355 4 305 4 305 4 300 7 70 3 401 1 06430	$\begin{array}{c} 4 & 36 \\ 17 & 2835 \\ 4 & 171 \\ 3 & 8955 \\ 4 & 171 \\ 1 & 9937 \\ 3 & 4 & 090 \\ 18 & 805 \\ 18 & 805 \\ 18 & 805 \\ 18 & 805 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 & 575 \\ 18 &$	56390682406386070	08420049712258904	52030053759738505 26828068396076805 106828068396076805 29816836076805 2981683607	.40 1.55 .370 .43429 .551 11.0551 1.188 .20 1.188	
72635 Å	2993.5 SWC	LATE CRETACEOUS	441	-53	- 35	• <del>7</del> 0 • 1 4	- 24 - 47	5.58	.05	

T _C. = Total organic carbon, wt. \$ S1 = Free hydrocarbons, mg HC/g of rock

S2 = Residual hydrocarbon potential (mg HC/g of rock)

COMMENTS

-----

- S3 = CO2 produced from kerogen pyrolysis (mg CO2/g of rock)
- PC* = 0.083 (S1 + S2)

Hydrogen

PC

- Index = mg HC/g organic carbon
- Oxygen Index = mg CO2/g organic carbon
- PI = SI/SI+S2

Tmax = Temperature Index, degrees C.

PI=PRODUCTIVITY INDEX	PC=PYROLYZABLE CARBON	TC=TOTAL CARBON	HI=HYDROGEN INDEX	OI=OXYGEN INDEX	
		***********************			-

PI=PRODUCTIVITY INDEX

#### ESSO AUSTRALIA LTD. -----

### ROCK EVAL ANALYSES

OI HI/OI

BASIN - GIPPSLAND WELL - WHITING 1 Table 6 cont. REPORT B - TOTAL CARBON, H/O INDICES SAMPLE NO. DEPTH SAMPLE TYPE FORMATION TC HI ------

72639       C       1374.0       SMC       LATROBE       GROUP       2.74       159.1       12.13.25         72636       U       1415.2       SMC       LATROBE       GROUP       2.11       181.20       20.05         72636       H       1527.2       SMC       LATROBE       GROUP       2.11       181.20       20.05         72636       A       1676.3       SMC       LATROBE       GROUP       1.26       75.30       2.50         72636       A       1676.3       SMC       LATROBE       GROUP       1.26       75.30       2.50         726355       M       1740.5       SMC       LATROBE       GROUP       1.26       75.48       30.48       3.40         726355       M       1744.5       SMC       LATROBE       GROUP       1.97       210.210       25.11       184.00         726355       M       1744.5       SMC       LATROBE       GROUP       1.97       210.210       25.11       10.59         726355       T       1859.1       GROUP       1.56       1944       32.66       3.89         726355       L       2466.5       SMC       LATROBE       GROUP       7.48						******		
72638       J       2793.0       SMC       LATROBE       GROUP       200       93       8       11.63         72635       D       2856.0       SMC       LATROBE       GROUP       3.25       374       6       62.33         72635       C       2926.5       SMC       LATROBE       GROUP       1.78       85       9       9.44         72635       E       2954.0       SAC       LATROBE       GROUP       63       407       31       13.13	72636 U 141 72636 H 152 72636 H 157 72635 Z 171 72635 Z 171 72635 T 185 72635 T 185 72635 T 285 72638 T 285 72638 T 285 72635 N 24 72635 N 24	57.65.55 57.65.55 57.65.55 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91 50.91	LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP LATROBE GROUP	5.481 2.2079 1.2079 1.558 6685 2.6685 2.6685 2.6685 2.6685 2.6685 2.6685 2.6685 2.6685 2.6685 2.6685 2.6685 2.6685 2.679 2.68685 2.6795 2.68685 2.6795 2.68685 2.699 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.9995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.6995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.9995 2.99955 2.99955 2.99955 2.99955 2.99955 2.99955 2.99955 2.999555 2.999555 2.9995555 2.9995555555555	314 181 75 210 233 194 243 140 2364 126	1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200	26.17 9.05 2.50 10.59 6.68 29.50 128.40	
72635 C 2926.5 SUC LATROBE GROUP 1.78 85. 9 9.44 72635 B 2956.0 SNC LATROBE GROUP .63 407. 31. 13.13	72638 J 279 72635 D 285	3.0 SMC 6.0 SMC	LATROBE GROUP LATROBE GROUP	2.00	93.	8.	11.63	
	72635 6 295	SALO SWC	LATROBE GRUUP	1.78	85.407.	31.	9 44 13 13	

- lotal organic carbon, wt. 🖇 = Free hydrocarbons, mg HC/g of rock

- 51 S2 = Residual hydrocarbon potential (mg HC/g of rock) Sł
- = CO2 produced from kerogen pyrolysis (mg CU2/g of rock) PC* = 0.083 (S1 + S2)

#### Hydrogen

τc

COMMENTS

-------

	=	mg HC/g organic carbon
Oxygen		
Index	=	mg CO2/g organic carbon
РI	Ŧ	SI/SI+S2
Tmax	Ξ	Temperature Index, degrees C
	Index Oxygen Index PI Tmax	Oxygen Index = PI =

PAGE

1

HI=HYDROGEN INDEX

OI=OXYGEN INDEX

.

PC=PYROLYZABLE CARBON TC=TOTAL CARBON 

## ESSO AUSTRALIA LTD.

								ANALYSES
WELL	-	GIPPSLAND WHITING 1	Table	••		EXTRACT	DATA	(PPM)
			ی بروی مربع میں براہ براہ <del>میں</del> براہ میں ا		 	 ********	• •• •• •• ••	

										-				
SAMPLE NO.	рертн	TYPE	AN	AGE	TUTAL EXTRACT	* HY SATS.	DROCARBO AROMS.	NS TOTAL H/CARBS	ASPH.	ELUTED NSO	NON-HYDR( NON-ELT NSO	TOTAL		TOTAL NON/HCS
72639 U 72652 U 72655 G 726556 E 72656 W 72656 W 72657 Y	1010.00 1695.00 1955.00 2315.00 2585.00 3005.00		กงางงาง	MID-LATE NIOCENE PALEUCENE PALEUCENE PALEUCENE PALEUCENE LATE CRETACEOUS	253. 612. 805. 406. 846. 947.	0. 23. 35. 73. 177. 205.	0 71. 95 74 171 214	0 94 130 147 348 419	202 405 561 189 360 330	0 102 90 51 110 93	0 12 12 10 57	0. 108. 102. 63. 120. 150.	0. 4. 12. 7. 19. 48.	202. 517. 675. 259. 499. 528.

17/10/83

# ESSO AUSTRALIA LTD.

C15+ EXTRACT ANALYSES REPURT B - EXTRACTS % OF TOTAL

BASIN - GIPPSLAND WELL - WHITING 1

	*********						• •			
SAMPLE 10.	DEPTH FORMATION	*HYDROC SAT_%		*- NON- NSO. %	ASPH.%		* SAT/AR		* COMMENTS	* * * * * * * * * * * * * * * * * * * *
72639 U 72652 O 72655 G 72656 F 72656 W 72657 Y	1010.00 GIPPSLAND LIMESTONE 1685.00 LATPOBE GROUP 1955.00 LATROBE GROUP 2315.00 LATROBE GROUP 2585.00 LATROBE GROUP 3005.00 LATROBE GROUP	0 3 8 4 3 18 0 20 9 21 6	0 11.6 11.8 18.2 2.0.2 22.6	17.6 12.7 15.5 14.2 15.8	79.8 66.2 69.7 46.6 42.6 34.8	0 7 1.5 1.7 2.2 5.1	* .0 * .3 * .4 * 1.0	* • • • • • • • • • • • • • • • • • • •	* IMMATURE * IMMATURE * IMMATURE	MAINLY MARINE NON-MARINE NON-MARINE NON-MARINE SURE, NON-MAR. DN-MARINE

PAGE 1

PAGE 1

Table 8.

C4-C7 OIL

16 JUN 83

76631	AUSTRALIA,	WHITING-1,	GIPPSLAND BASIN,	1482 METERS	3
METHA ETHAN PROPA IBUTA NBUTA PENT 22-DM CPENT 23-DM 2-MP 3-MP NHEXA MCP 22-DM	E 0.000 NE 0.172 NE 0.350 NE 0.841 ANE 1.411 ANE 2.004 B 0.094 B 0.094 B 0.094 B 0.094 B 0.094 B 0.094 B 0.094 B 0.095 I.913 0.981 NE 3.476 0.857 P 0.000	1.27 $3.12$ $5.85$ $7.28$ $0.35$ $0.18$ $1.12$ $6.95$ $3.56$ $12.62$ $3.11$ $0.00$	CHEX 33-DMP 11-DMCP 2-MHEX 23-DMP 3-MHEX 1C3-DMCP 1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH ECP	1.4490.3851.3060.4000.3400.5920.0000.0004.5940.0624.4610.218	$2.64 \\ 0.00 \\ 0.55 \\ 5.26 \\ 1.40 \\ 4.74 \\ 1.45 \\ 1.24 \\ 2.15 \\ 0.00 \\ 16.68 \\ 0.22 \\ 16.20 \\ 0.79 $
24-DMI 223-TI			BENZENE TOLUENE	0.031 0.073	0.11 0.26
		TOTALS	SIG COMP RAT	IOS	
		27.713 27.541	C1/C2 3.0 A /D2 6.1 D1/D2 0.0 C1/D2 5.2 PENT/IPENT CH/MCP 0.	18 08	

PARAFFIN	INDEX	1	2.068
PARAFFIN	INDEX	2	31.891

INTERPRETER - R.E. METTER

### Table 9.

# WHITING-1 OIL, RFT-3, 1482m(KB

Liquid Chromatography and Carbon Isotope Results.

%	Saturate Hydrocarbons	= 73.5
%	Aromatic Hydrocarbons	= 6.6
%	N, S, O.	= 2.7
%	Sulphur	= 0.08
%	Non-eluted	= 16.8
%	Asphaltenes	= 0.4

Sec.

¹³ C Saturate	Hydrocarbons	(vs.	PDB)	=	-26.5 ⁰ /00
¹³ C Aromatic	Hydrocarbons	(vs.	PDB) -	=	-26.1 ⁰ /00

alla, Satur Martin Stranger Constants n an star a s A star er a sport of the second - Andrew Berger April and a second and . . . hereis Aid deutied DE601296 and the second states of the second n a Stalad and the second 

A Latter water

is a set of the state of the



This is an enclosure indicator page. The enclosure PE601296 is enclosed within the container PE902572 at this location in this document.

The enclosure PE60 ITEM_BARCODE =	)1296 has the following characteristics: = PE601296
CONTAINER_BARCODE =	= PE902572
NAME =	= Geochemical log
BASIN =	= GIPPSLAND
PERMIT =	= VIC/L2
TYPE =	= WELL
SUBTYPE =	= WELL_LOG
DESCRIPTION =	- Gasoline Range Geochemical log
	(enclosure from WCR vol.2) for
	Whiting-1
REMARKS =	• .
DATE_CREATED =	-
DATE_RECEIVED =	= 13/11/85
W_NO =	= W807
WELL NAME =	- Whiting-1
CONTRACTOR =	= ESSO
CLIENT_OP_CO =	= ESSO

(Inserted by DNRE - Vic Govt Mines Dept)

### PE601297

n (jan) O'Mangapeti (jantianis)

Regular Contraction

Fallender Mart 1997 - 1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 Berlinder and Fallender - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1 Berlinder - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1

This is an enclosure indicator page. The enclosure PE601297 is enclosed within the container PE902572 at this location in this document.

an in the second se Second 
- industry of the

asis (kasis

The enclosure PE	503	1297 has the following characteristics:
ITEM_BARCODE	=	PE601297
CONTAINER_BARCODE	=	PE902572
NAME	=	C1-4 Cuttings Gas Log
BASIN	=	GIPPSLAND
PERMIT	=	VIC/L2
TYPE	=	WELL
SUBTYPE	=	WELL_LOG
DESCRIPTION	=	Headspace C1-4 Cuttings Gas Log
		(enclosure from WCR vol.2) for
		Whiting-1
REMARKS	=	
DATE_CREATED	=	
DATE_RECEIVED	=	13/11/85
W_NO	=	W807
WELL_NAME	=	Whiting-1
CONTRACTOR	=	ESSO
CLIENT_OP_CO	=	ESSO

(Inserted by DNRE - Vic Govt Mines Dept)





Dwg. 2174/0P/7



FIG. 4



Figure 5.



C₁₅₊ Paraffin-Naphthene Hydrocarbons GeoChem Sample No. E561-001 Exxon Identification No. 72639-U



Figure 7, Whiting-1, 995-1010m(KB), Gippsland Limestone Fm.



Figure 8, Whiting-1, 1670-1685m(KB), Latrobe Group.



540 1555m(RD); Lacrobe

÷.,



Figure 10, Whiting-1, 2300-2315m(KB), Latrobe Group.



Exxon Identification No. 72656-W




Figure 12, Whiting-2, 2990-3005m(KB), Latrobe Group.





Figure 13, Whiting-1 oil, RFT-3, 1482m(KB), whole oil chromatogram and sulphur compound trace.



# APPENDIX-1

Detailed C₄₋₇ Gasoline-Range Hydrocarbon Data Sheets

		NORM PERCENT		TOTAL PRB	NORM PERCENT
METHANE	O " O ·		1T3-DMCP	· 9.8	1.37
ETHANE	O " O		1T2-DMCP	8.5	1.19
PROPANE	0.0		3-EPENT	0.0	0.00
IBUTANE	32.1	4.49	224-TMP	0.0	0.00
NBUTANE	34.5	4.82	NHEPTANE	36.5	5.09
IPENTANE .		26.82	1C2-DMCP	0.0	0.00
NPENTANE		13.07	M101-	17.0	2.38
22-DMB	4.5	0.63			
CPENTANE	4.6	0.65			
23-DMB	7.6	1.06			
2-MP	68.7	9.59			
3-MP	28.7	4.00			
NHEXANE	55.3	7.72			
MCP	55.6	7.76			
22-DMP	0.0	0.00			
24-DMP	2.7	0.37			
223-TMB	0.0	0.00			
CHEXANE	11.4	1.59			
33-DMP ,	0.0	0.00			
	0.0	0.00 2.64			
2-MHEX ,	18.9	1.24			
23-DMP ,	8.9	1.24			
3-MHEX,	14.1	1.56			
103-0MCP	11.2	1			
	TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
ALL COMP	716.		C1/C2 0.56		
GASOL INE	716.		A /D2 6.53		
NAPHTHENES	118.	16.49	C1/D2 3.37		
C6-7	250.	34.88	CH/MCP 0.21 PENT/IPENT,	0.49	
	PFB	NC	RM PERCENT		
MCP	55.6		66.2		•
CH	11.4		13.6		
MCH	17.0		20.3		
TOTAL.	84.0		100.0		
PARAFFIN I	11" F" V 4	1.119			

72639U AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 995-1010 M.

	IETHANE	O . O	NORM PERCENT	1T3-DMCP	TOTAL PPB 6.5	NORM PERCENT 1.39
	THANE	Ο.Ο		1T2-IMCP	9.5	2.02
•	ROPANE	O . O		SHEPENT	Ο "Ο	0.00
	BUTANE	17.4	3,70	224-TMP	O " O	0.00
	IBUTANE	27.4	5.84	NHEPTANE	40,3	8.57
	PENTANE		18.13	1C2-DMCP	0.0	0.00
	PENTANE		11.00	MCH	42.3	9.01
	2-DMB		0.00			
	PENTANE	3.0	0.65			
	3-DMB	4.2	0.89			
	-14P	33.4	7.12			
	-MP	16.0	3.41			
	HEXANE	36.4	7.75			
	CP 	35.7	7.60			
	2-DMP	0.0	0.00			
	4-DMP	9.3	1.97			
	23-TMB	0.0	0.00			
	HEXANE	9.3	1.97			
	3-DMP,	0.0	0.00			
	1-DMCP	0.0 13.8	0.00 2.93 -			
	-MHEX , 3-DMP ,	10.0	1.76			
	-MHEX,	10.6	2.25			
	C3-DMCP	9.6	2,04			
7.		2° 8 33	and a strend.			
		TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
	ALL COMP	470.		C1/C2 1.07		
	GASOLINE	470.		A 702 7.26		
	NAPHTHENES		24.68	C1/D2 6.19		
	C6-7	231.	49.26	CH/MCP 0.26		
		atua "aa" ala "t	d a' 19 alawa (ang)	PENT/IPENT,	0.61	
				I have I to I don't have I to P	an a san a	
		PPB	NOF	RM PERCENT		
	MCP	35.7		40.9		
	CH	9.3		10.6		
	MCH	42.3		48.5		
	TOTAL	87.3		100.0		
	PARAFFIN 1	NDEX 1	0.950			
	PARAFFIN 1		26.836			

72639W AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1025-1040 M

METHANE ETHANE PROPANE IBUTANE NBUTANE IPENTANE NPENTANE 22-DMB CPENTANE 23-DMB 2-MP 3-MP NHEXANE MCP 22-DMP 24-DMP 24-DMP 223-TMB CHEXANE 33-DMP , 11-DMCP 2-MHEX, 33-DMP, 3-MHEX, 1C3-DMCP	0.0 0.0 0.0 14.9 21.2	NORM PERCENT 2.78 3.96 7.30 9.85 0.00 1.15 1.01 8.44 4.09 8.55 9.67 0.00 0.38 0.00 1.55 0.00 1.55 0.00 1.55 0.00 2.95 1.48 3.20 3.31	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 12.3 12.7 0.0 0.0 41.0 0.0 42.6	NORM PERCENT 2.30 2.37 0.00 0.00 7.67 0.00 7.97
	TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
ALL COMP GASOLINE NAPHTHENES C6-7	535. 535. 152. 275.	28.33 51.41	C1/C2 0.71 A /D2 5.08 C1/D2 3.90 CH/NCP 0.16 PENT/IPENT,	0.57	
MCP CH MCH TOTAL	PPB 51.8 8.3 42.6 102.7	NOł	RM PERCENT 50.4 8.1 41.5 100.0	•	· ·
PARAFFIN II Paraffin II		0.770 23.389			

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
1ETHANE	Ö, O		1T3-DMC		3.08
THANE	0.0		1T2-DMC		2.07
ROPANE	0.0		3-EPENT	0.0	0.00
BUTANE	74.9	5,42	224-TMP	0.0	0.00
IBUTANE	93.5	6.76	NHEPTAN		6.46
PENTANE	135.4	9.79	1C2-0MC		1.13
IPENTANE	118.9	8.60	MCH	97.4	7.04
		0.62	110	>/ ₌ <del>*</del> †	7 . U4r
2-DMB	10.1	0.73			
PENTANE		1.48			
:3-DMB	20.4				
2-MP	149.1	10.78			
-MP	61.5	4,44			
IHEXANE	105.9	7.66			
	159.8	11.54			
2-DMP	0.0	0.00			
4-DMP	6.7	0.48			
23-TMB	5.0	0.36			
HEXANE	20.4	1.48			
¦3-DMP ,	O . O	0,00			
1-DMCP	$O_e O$	0.00			
-MHEX ,	40.8	2.25			
З-ОМР ,	22.6	1.64			
HMHEX ,	32.1	2.32			
C3-DMCP	44.3	3.20			
	TOTALS PPB	S NORM PERCENT	SIG COMP RA	FIOS	
ALL COMP	1384.		C1/C2 0.	, 55	
GASOLINE	1384.		A /D2 6.	0S ·	
NAPHTHENES	s 419.	30.27	C1/D2 4.	93	
C6-7	711.	51.41	CH/MCP 0.	13	
			PENT/IPENT	0.88	
	PPB	NO	RM PERCENT		
MCP	159.8		57.6		
CH	20.4		7.4		
MCH	97.4		35.1		
TOTAL	277.6		100.0		

72

72644A

(

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1085-1100 M

METHANE ETHANE PROPANE I BUTANE NBUTANE	0.0 0.0 0.0 69.4 55.9	NORM PERCENT 7.96 6.42 20.73 8.61 0.58 0.57 1.16 9.58 4.02 7.32 8.15 0.00 0.51 0.00 1.65 0.00 1.65 0.00 2.77 1.47 2.06 2.04	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 11.2 11.6 0.0 51.8 4.9 46.0	NORM PERCENT 1.29 1.33 0.00 0.00 5.95 0.57 5.28
	TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
ALL COMP GASOLINE NAPHTHENES C6-7	871. 871. 182. 352.	20.87 40.38	C1/C2 0.72 A /D2 6.44 C1/D2 4.71 CH/MCP 0.20 PENT/IPENT,	0.42	
MCP CH MCH TOTAL	PPB 71.0 14.4 46.0 131.4	NO	RM PERCENT 54.1 10.9 35.0 100.0	٩	
	NDEX 1 NDEX 2	1.036 24.938			•

-	FOTAL · PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	O.O.	•	1T3-DMCP	. 7.4	1.73
ETHÂNE	0.0		1T2-DMCP	6.5	1.52
PROPANE	0.O		S-EPENT	0.0	0.00
IBUTANE	O # O	0.00	224-TMP	Ο,Ο	0.00
NBUTANE	24.4	5.67	NHEPTANE	41.3	9.58
IPENTANE	50.7	11.77	1C2-DMCP	0 <b>.</b> 0	0.00
NPENTANE	49.2	11.42	MCH	32.1	7.45
22-DMB	2.ŭ	0.46			
CPENTANE	2.6	0.60			
23-DMB	5.3	1.24			
2-MP	51.8	12.04			
3-MP	23.9	5.54			
NHEXANE	47.2	10.96			
MCP	33.4	7.77			
22-DMP	0.0	0.00			
24-DMP	1.4	0.32			
223-TMB	0.0	0.00			
CHEXANE	8.9	2.06			
33-DMP ,	Ο.Ο	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	16.0	3.72			
23-DMP ,	6.8	1,52			
З-МНЕХ ,	11.0	2.56			
1C3-DMCP	8.7	2.01			•
	TOTALS PPB	NORM PERCENT	SIG COMP RATIO	3	
ALL COMP	431.		C1/C2 1:02		
GASOLINE	431.		A /D2 8.03		•
NAPHTHENES	100.		C1/D2 5.17		
C6-7	221.		CH/MCP 0.27		
A.4 648 A	ga and ga and a set		PENT/IPENT,	0.97	
					,
	PPB	NC	RM PERCENT		
MCP	33.4		44.9		
СH	8.9		12.0		
HCH	32.1		43.1		
TOTAL.	74.4		100.0		

72

j.

72644E AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1145-1160 M

	OTAL PPB I	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	0.0	1411 ( GEL ) 9 1	1T3-DMCP	0.0	0.00
ETHANE	0.0		1T2-DMCP	0.0	0.00
PROPANE	0.0		3-EPENT	0.0	0.00
IBUTANE	0.0	0.00	224-TMP	ŏ.ŏ	0.00
NBUTANE	0.0	0.00	NHEPTANE	0.0	0.00
IPENTANE	0.0	0.00	1C2-0MCP	õ. õ	0.00
NPENTANE	0.0	õ. 00	MCH	0.0	· 0.00
22-DMB	0.0	0.00			
CPENTANE	0.0	0.00			
23-DMB	0.0	0.00			
2-11P	0.0	0.00			
3-MP	0.0	0.00			
NHEXANE	0.0	0.00			
MCP	0.0	0.00			
22-DMb	Ο.Ο	0.00			
24-0时户	Ο.Ο	0.00		10 <u>-</u>	
223-TMB	O . O	0.00			
CHEXANE	0.0	0.00			
зз-рмр ,	O " O	0.00			
11-DMCP	0.0	0.00			
2-11HEX ,	0.0	0.00			
23-DNP ,	0 . O	0.00			
S-MHEX,	0.0	0.00			
1C3-DMCP	0.0	0.00			
	TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
ALL COMP	Ο.		C1/C2 999.99		
GASOLINE	Ŏ.		A /D2 999.99		
NAPHTHENES	Ō.,	0.00	C1/D2 999.99		
C6-7	Ō.	0,00	CH/MCP 999.99		
			PENT/IPENT, 99	9,99	
	PPB	NC	RM PERCENT		
MCP	0.0		0.0		
CH	0. Ŭ		0.0		
MCH	0.0		0.0		
TOTAL	0.0		0.0	9	
PARAFFIN IN	DEX 1	0.000			
PARAFFIN IN	DEX 5	0,000			

4ETHANE         0.0         1T3-DMCP         0.0         0.           ETHANE         0.0         1T2-DMCP         0.0         0.           ETHANE         0.0         0.0         1T2-DMCP         0.0         0.           PROPANE         0.0         0.00         224-TMP         0.0         0.0           UBUTANE         0.0         0.00         NHETANE         0.0         0.0           USUTANE         0.0         0.00         NHETANE         0.0         0.0           VENTANE         0.0         0.00         MCH         0.0         0.0           SPENTANE         0.0         0.00         MCH         0.0         0.0           22-DMB         0.0         0.00         23-DMB         0.0         0.00           22-DMP         0.0         0.00         24-DMP         0.0         0.00           22-DMP         0.0         0.00         22-DMP         0.0         0.00           22-DMP         0.0         0.00         22-DMP         0.0         0.00           22-DMP         0.0         0.00         23-DMP         0.0         0.00           23-DMP         0.0         0.0         0.00		TOTAL PPB	NORM PERCENT		•	TOTAL PPB	NORM PERCEN
THANE       0.0       1T2-DMCP       0.0       0.         ROPANE       0.0       3-EPENT       0.0       0.0         IBUTANE       0.0       0.00       224-TNP       0.0       0.0         IBUTANE       0.0       0.00       NHEPTANE       0.0       0.0         IPENTANE       0.0       0.00       NHEPTANE       0.0       0.0         IPENTANE       0.0       0.00       MCH       0.0       0.0         12-DMB       0.0       0.00       MCH       0.0       0.0         12-DMB       0.0       0.00       MCH       0.0       0.0         13-DMB       0.0       0.00       MCH       0.0       0.0         14-PP       0.0       0.00       MCH       0.0       0.0         12-DMP       0.0       0.00       MCH       0.0       0.0         12-DMP       0.0       0.00       MCH       0.0       100         12-DMP       0.0       0.00       MCH       0.0       100         12-DMP       0.0       0.00       MCH       0.0       100         12-DMP       0.0       0.00       0.00       100       100	THANE			173	-DMCP	0.0	0.00
ROPANE         0.0         3-EPENT         0.0         0.           BUTANE         0.0         0.00         224-TNP         0.0         0.           BUTANE         0.0         0.00         NHEPTANE         0.0         0.           PENTANE         0.0         0.00         NHEPTANE         0.0         0.0           PENTANE         0.0         0.00         MEH         0.0         0.0           PENTANE         0.0         0.00         MEH         0.0         0.0           2-DMB         0.0         0.00         MEH         0.0         0.0           2-DMB         0.0         0.00         MEH         0.0         0.0           S-DMB         0.0         0.00         MEH         0.0         0.0           S-DMB         0.0         0.00         -ME         -ME         -ME         -ME           2-DMP         0.0         0.00         -ME         -ME         -ME         -ME           2-DMP         0.0         0.00         -ME         -ME         -ME         -ME           2-DMP         0.0         0.00         -ME         -ME         -ME         -ME           3-DMP				•			0.00
BUTANE 0.0 0.00 224-TMP 0.0 0. BUTANE 0.0 0.00 NHEFTANE 0.0 0. PENTANE 0.0 0.00 1C2-DMCP 0.0 0. PENTANE 0.0 0.00 MCH 0.0 0. PENTANE 0.0 0.00 - 3-DMB 0.0 0.00 - -MP 0.0 0.00 - -MP 0.0 0.00 - -MP 0.0 0.00 - 2-DMP 0.0 0.00 - 2-DMP 0.0 0.00 - 23-TMB 0.0 0.00 - 23-TMB 0.0 0.00 - 23-TMB 0.0 0.00 - -MHEX, 0.0 0.00 - -MHEX, 0.0 0.00 - -MHEX , 0.0 0.00 - 							0.00
BUTANE 0.0 0.00 NHEPTANE 0.0 0. PENTANE 0.0 0.00 IC2-DMCP 0.0 0. PENTANE 0.0 0.00 MCH 0.0 0. 2-DMB 0.0 0.00 MCH 0.0 0. 2-DMB 0.0 0.00 - MCH 0.0 0. 3-DMB 0.0 0.00 - MCH 0.0 0. -MP 0.0 0.00 - MCH 0.0 0.00 - MCH 0.0 0. PENTANE 0.0 0.00 - MCH 0.0 0.00 - MCH 0.0 0.00 - MEXANE 0.0 0.00 - MEXANE 0.0 0.00 - MEXANE 0.0 0.00 - MHEX - 0.0 0.00 - 0.00 - 0.00 - MHEX - 0.0 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -			0,00				0,00
PENTANE 0.0 0.00 1C2-DMCP 0.0 0. PENTANE 0.0 0.00 MCH 0.0 0. 2-DMB 0.0 0.00 PENTANE 0.0 0.00 3-DMB 0.0 0.00 -MP 0.0 0.00 HEXANE 0.0 0.00 CP 0.0 0.00 2-DMP 0.0 0.00 22-DMP 0.0 0.00 23-TMB 0.0 0.00 3-DMP 0.0 0.00 C3-DMCP 0.0 0.00 C3-DMCP 0.0 0.00 C3-DMCP 0.0 0.00 MCH 0.0 0.00 C4 0.0 0.0 MCH 0.			0.00				0.00
PENTANE 0.0 0.00 MCH 0.0 0. 2-DMB 0.0 0.00 PENTANE 0.0 0.00 S-DMB 0.0 0.00 -MP 0.0 0.00 -MP 0.0 0.00 CP 0.0 0.00 2-DMP 0.0 0.00 2-DMP 0.0 0.00 2-DMP 0.0 0.00 2-DMP 0.0 0.00 2-DMP 0.0 0.00 S-DMP, 0.0 0.00 S-DMP, 0.0 0.00 -MHEX, 0.0							0.00
2-DMB         0.0         0.00           PENTANE         0.0         0.00           PMP         0.0         0.00           -MP         0.0         0.00           2-DMP         0.0         0.00           2-DMP         0.0         0.00           2-DMP         0.0         0.00           2-TMB         0.0         0.00           23-TMB         0.0         0.00           3-DMP         0.0         0.00           3-DMP,         0.0         0.00           S-DMP,         0.0         0.00           -MHEX,         0.0         0.00           -MHEX,         0.0         0.00           C3-DMCP         0.0         0.00           C3-DMCP         0.0         0.00           GASOLINE         0.         0.00           C6-7         0.00         C1/C2         999.99           C6-7         0.00         C1/D2         999.99           C6-7							0.00
PENTANE       0.0       0.00         3-DMB       0.0       0.00         -MP       0.0       0.00         -MP       0.0       0.00         -MP       0.0       0.00         HEXANE       0.0       0.00         2-DMP       0.0       0.00         23-TMB       0.0       0.00         23-TMB       0.0       0.00         23-TMB       0.0       0.00         3-DMP       0.0       0.00         3-DMP,       0.0       0.00         -MHEX,       0.0       0.00         -MCP       0.0 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>	•					· · · · · · · · · · · · · · · · · · ·	
3-DMB       0.0       0.00         -MP       0.0       0.00         -MP       0.0       0.00         HEXANE       0.0       0.00         22-DMP       0.0       0.00         22-DMP       0.0       0.00         22-DMP       0.0       0.00         23-TMB       0.0       0.00         23-TMB       0.0       0.00         HEXANE       0.0       0.00         3-DMP       0.0       0.00         S-DMP,       0.0       0.00         S-DMP,       0.0       0.00         S-DMP,       0.0       0.00         S-DMP,       0.0       0.00         -MHEX,       0.0       0.00         S-DMCP       0.0       0.00         S-DMCP       0.0       0.00         C3-DMCP       0.0       0.00         C3-DMCP       0.0       0.00         C4LL COMP       0.       0.00       C1/C2 999.99         GASOLINE       0.       0.00       C1/D2 999.99         C6-7       0.       0.00       CH/MCP 999.99         C6-7       0.00       0.0       0.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
-MP       0.0       0.00         -MP       0.0       0.00         HEXANE       0.0       0.00         2-DMP       0.0       0.00         2-DMP       0.0       0.00         2-DMP       0.0       0.00         23-TMB       0.0       0.00         23-TMB       0.0       0.00         3-DMP       0.0       0.00         S-DMP,       0.0       0.00         -MHEX,       0.0       0.00         C3-DMCP       0.0       0.00         GASOLINE       0.       0.00         NAPHTHENES       0.       0.00         C6-7       0.       0.00         PPB       NORM PERCENT         MCP       0.0       0.0         CH       0.0       0.0         MCH       0.0       0.0							
-MP         0.0         0.00           HEXANE         0.0         0.00           CP         0.0         0.00           4-DMP         0.0         0.00           23-TMB         0.0         0.00           23-TMB         0.0         0.00           23-TMB         0.0         0.00           23-TMB         0.0         0.00           3-DMP         0.0         0.00           -MHEX         0.0         0.00           -MLCP         0.0         0.00           -MHEX         0.0         0.00           C3-DMCP         0.0         0.00           C3-DMCP         0.0         0.00           ALL COMP         0.0         0.00           GASOLINE         0.0         0.00           NAPHTHENES         0.00         0.00           C4-7         0.00         0.00           PPB         NORM PERCENT							
HEXANE 0.0 0.00 CP 0.0 0.00 2-DMP 0.0 0.00 4-DMP 0.0 0.00 23-TMB 0.0 0.00 3-DMP 0.0 0.00 1-DMCP 0.0 0.00 -MHEX , 0.0 0.00 -MHEX , 0.0 0.00 -MHEX , 0.0 0.00 -MHEX , 0.0 0.00 C3-DMCP 0.0 0.00 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 0. 0.00 C1/C2 999.99 GASOLINE 0. 0.00 C1/D2 999.99 C6-7 0. 0.00 C1/D2 999.99 PENT/JPENT, 0.0 CH 0.0 0.0 MCH 0.0 0.0							
CP       0.0       0.00         2-DMP       0.0       0.00         4-DMP       0.0       0.00         23-TMB       0.0       0.00         23-TMB       0.0       0.00         3-DMP       0.0       0.00         1-DMCP       0.0       0.00         -MHEX       0.0       0.00         -ML       0.0       0.00         C3-DMCP       0.0       0.00         ALL COMP       0.       0.1/C2       999.99         GASOLINE       0.       0.00       C1/C2       999.99         NAPHTHENES       0.       0.00       C1/D2       999.99         C6-7       0.       0.00       CH/MCP       999.99         PFB       NORM PERCENT       999.99       PENT/IPENT, 999.99         MCP       0.0       0.0       0.0       0.0         CH       0.0       0.0       0.0       0.0         MCH       0.0       0.0       0.0       0.0							
2-DMP       0.0       0.00         4-DMP       0.0       0.00         23-TMB       0.0       0.00         3-DMP       0.0       0.00         1-DMCP       0.0       0.00         -MHEX       0.0       0.0         -MHEX       0.0       0.0         -MHEX       0.0       0.0         -MEX       0.0       0.0         -MEX       0.0       0.0<						-	
4-DMP       0.0       0.00         23-TMB       0.0       0.00         23-TMB       0.0       0.00         3-DMP       0.0       0.00         3-DMP       0.0       0.00         -MHEX       0.0       0.00         -MHEX       0.0       0.00         -MHEX       0.0       0.00         3-DMP       0.0       0.00         -MHEX       0.0       0.00         C3-DMCP       0.0       0.00         C3-DMCP       0.0       0.00         ALL COMP       0.       C1/C2       999.99         ALL COMP       0.       0.00       C1/D2       999.99         NAPHTHENES       0.       0.00       C1/D2       999.99         C6-7       0.0       0.00       CH/MCP       999.99         MCP       0.0       0.0       0.0       CH         CH       0.0       0.0       0.0       CH							
23-TMB       0.0       0.00         HEXANE       0.0       0.00         3-DMP       0.0       0.00         1-DMCP       0.0       0.00         -MHEX       0.0       0.00         3-DMP       0.0       0.00         -MHEX       0.0       0.00         3-DMP       0.0       0.00         -MHEX       0.0       0.00         C3-DMCP       0.0       0.00         C3-DMCP       0.0       0.00         ALL COMP       0.       C1/C2       999.99         GASOLINE       0.       0.00       C1/D2       999.99         NAPHTHENES       0.       0.00       C1/D2       999.99         C6-7       0.       0.00       C1/MCP 999.99       PENT/IPENT, 999.99         PPB       NORM PERCENT       0.0       0.0       CH         MCP       0.0       0.0       0.0       CH         MCH       0.0       0.0       0.0       CH         TOTAL       0.0       0.0       0.0       CH							
HEXANE       0.0       0.00         3-DMP       0.0       0.00         1-DMCP       0.0       0.00         -MHEX       0.0       0.00         3-DMP       0.0       0.00         3-DMP       0.0       0.00         3-DMP       0.0       0.00         3-DMP       0.0       0.00         -MHEX       0.0       0.00         S3-DMCP       0.0       0.00         C3-DMCP       0.0       0.00         C3-DMCP       0.0       0.00         C3-DMCP       0.0       0.00         C4-7       0.0       0.00         C4-7       0.0       0.00         C4-7       0.00       0.00         C4-7       0.00       0.00         PPB       NORM PERCENT         MCP       0.0       0.0         CH       0.0       0.0         MCH       0.0       0.0         TOTAL       0.0       0.0							
3-DMP ,       0.0       0.00         1-DMCP       0.0       0.00         -MHEX ,       0.0       0.00         3-DMP ,       0.0       0.00         -MHEX ,       0.0       0.00         -MHEX ,       0.0       0.00         -MHEX ,       0.0       0.00         -S-DMCP       0.0       0.00         C3-DMCP       0.0       0.00         ALL COMP       0.       C1/C2 999.99         GASOLINE       0.       0.00         NAPHTHENES       0.       0.00         C6-7       0.       0.00         PFB       NORM PERCENT         MCP       0.0       0.0         CH       0.0       0.0         MCH       0.0       0.0         TOTAL       0.0       0.0							
1-DMCP       0.0       0.00         -MHEX       0.0       0.00         3-DMP       0.0       0.00         -MHEX       0.0       0.00         C3-DMCP       0.0       0.00         ALL COMP       0.       C1/C2       999.99         GASOLINE       0.       0.00       C1/D2       999.99         NAPHTHENES       0.       0.00       C1/D2       999.99         C6-7       0.       0.00       C1/D2       999.99         PFB       NORM PERCENT       999.99         PFB       NORM PERCENT       999.99         MCP       0.0       0.0       0.0         CH       0.0       0.0       0.0         MCH       0.0       0.0       0.0         MCH       0.0       0.0       0.0							
-MHEX , 0.0 0.00 3-DMP , 0.0 0.00 -MHEX , 0.0 0.00 C3-DMCP 0.0 0.00 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 0. C1/C2 999.99 GASOLINE 0. A /D2 999.99 0. 0.00 C1/D2 999.99 C6-7 0. 0.00 C1/D2 999.99 PENT/IPENT, 999.99 PENT/IPENT, 999.99 PFB NORM PERCENT MCP 0.0 0.0 CH 0.0 0.0 MCH 0.0 0.0							
3-DMP ,       0.0       0.00         -MHEX ,       0.0       0.00         C3-DMCP       0.0       0.00         TOTALS NORM PERCENT       SIG COMP RATIOS         ALL COMP GASOLINE O.       0.1/C2 999.99         GASOLINE O.       0.000         NAPHTHENES O.       0.000         C6-7       0.000         PPB       NORM PERCENT         MCP O.0       0.00         CH       0.0         MCH       0.0         NCH       0.0         O.0       0.0         NCH       0.0         O.0       0.0							
-MHEX         0.0         0.00         0.00           C3-DMCP         0.0         0.00         0.00           TOTALS         NORM         SIG COMP RATIOS           PPB         PERCENT         C1/C2         999.99           ALL COMP         0.         C1/C2         999.99           GASOLINE         0.         0.00         C1/D2         999.99           NAPHTHENES         0.         0.00         C1/D2         999.99           C6-7         0.         0.00         C1/MCP         999.99           C6-7         0.         0.00         CH/MCP         999.99           PENT/IPENT,         999.99         PENT/IPENT,         999.99           MCP         0.0         0.0         0.0           CH         0.0         0.0         0.0           MCH         0.0         0.0         0.0           TOTAL         0.0         0.0         0.0							
C3-DMCP         0.0         0.00           TOTALS PPB         NORM PERCENT         SIG COMP RATIOS PERCENT           ALL COMP GASOLINE         0. 0.         C1/C2 A /D2 0.         999.99 0.           NAPHTHENES C6-7         0. 0.00         C1/D2 C1/D2 C1/D2 C1/D2 C6-7         999.99 0.           PFB         0.00 CH/MCP PENT/IPENT, 999.99 PENT/IPENT, 999.99           MCP         0.0 0.0 CH         0.0 0.0 0.0           MCH         0.0 0.0         0.0 0.0							
TOTALS PPBNORM PERCENTSIG COMP RATIOSALL COMP GASOLINE0.0.C1/C2 999.99 A /D2 0.000NAPHTHENES C6-70.0.000 0.000C1/D2 P99.999 C1/D2 PENT/IPENT, 999.999MCP CH MCH TOTAL0.00.00 0.000.00 0.00							
PPB         PERCENT           ALL COMP GASOLINE         0.         C1/C2         999.99           NAPHTHENES         0.         0.000         C1/D2         999.99           C6-7         0.         0.000         CH/MCP         999.99           C6-7         0.         0.000         CH/MCP         999.99           PFB         NORM PERCENT         999.99         99           MCP         0.0         0.0         0.0           CH         0.0         0.0         0.0           MCH         0.0         0.0         0.0           TOTAL         0.0         0.0         0.0	3-DMCP	0.0	0,00				
GASOLINE       0.       A /D2       999.99         NAPHTHENES       0.       0.00       C1/D2       999.99         C6-7       0.       0.00       CH/MCP       999.99         PPB       NORM PERCENT         MCP       0.0       0.0         CH       0.0       0.0         MCH       0.0       0.0         TOTAL       0.0       0.0				SIG COM	IP RATIOS		
NAPHTHENES         O.         O. O. OO         C1/D2         999.99           C6-7         O.         O. OO         CH/MCP         999.99           PENT/IPENT,         999.99           PPB         NORM PERCENT           MCP         O.O         O.O           CH         O.O         O.O           MCH         O.O         O.O           TOTAL         O.O         O.O	ALL COMP	C	) _u	C1/C2	999.99		
C6-7       O.       O.OO       CH/MCP 999.99         PPB       NORM PERCENT         MCP       O.O       O.O         CH       O.O       O.O         CH       O.O       O.O         MCH       O.O       O.O         TOTAL       O.O       O.O						•	
PENT/IPENT,         999.99           PPB         NORM PERCENT           MCP         0.0           CH         0.0           MCH         0.0           TOTAL         0.0		C					
PPB         NORM PERCENT           MCP         0.0         0.0           CH         0.0         0.0           MCH         0.0         0.0           TOTAL         0.0         0.0	C6-7	0	• O • O •				
MCP0.00.0CH0.00.0MCH0.00.0TOTAL0.00.0				PENT/I	PENT, 9	99.99	
CH     0.0     0.0       MCH     0.0     0.0       TOTAL     0.0     0.0		PPB	NC	ORM PERCE	NT		
MCH 0.0 0.0 Total 0.0 0.0	MCP	0.0		Ο,Ο			
TOTAL 0.0 0.0							
	TOTAL	Ο.Ο		Q., Ö			
PARAFFIN INDEX 1 0.000	PARAFFIN I	NDEX 1	0.000				
PARAFFIN INDEX 2 0.000							

4

:

726441 AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1205-1220 M

METHANE ETHANE PROPANE IBUTANE NBUTANE IPENTANE 22-DMB CPENTANE 23-DMB 2-MP S-MP NHEXANE MCP 22-DMP 24-DMP 223-TMB CHEXANE 33-DMP , 11-DMCP 2-MHEX , 23-DMP , 3-MHEX ,	TOTAL PPB 0.0 0.0 11.7 26.2 36.1 35.8 0.0 4.3 1.9 20.7 11.9 20.7 11.9 33.8 14.0 0.0 0.0 0.0 0.0 0.0 0.0 4.3 1.9 20.7 11.9 33.8 14.0 0.0 0.0 0.0 4.3 1.9 20.7 11.9 33.8 14.0 0.0 0.0 0.0 4.3 1.9 20.7 11.9 33.8 14.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 4.3 1.9 20.7 11.9 33.8 14.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NORM PERCENT 4.12 9.23 12.71 12.61 0.00 1.50 0.67 7.28 4.18 11.91 5.62 0.00 0.00 2.19 0.00 2.19 0.00 2.19 0.00 2.92 0.00 2.14	1TS-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 0.0 0.0 0.0 36.2 0.0 28.9	NORM PERCENT 0.00 0.00 12.74 0.00 10.17
1C3-DMCP	0.0	0.00			
	TOTALS PPB	Í NORM PERCENT	SIG COMP RATIOS		•
ALL COMP GASOLINE NAPHTHENES C6-7	284. 284. 55. 135.	19.49 47.70	C1/C2 2.72 A /D2 11.51 C1/D2 7.14 CH/MCP 0.39 PENT/IPENT,	0.99	•
MCP CH MCH TOTAL	PP8 16.0 6.2 28.9 51.1	NO	RM PERCENT 31.3 12.2 56.5 100.0		
PARAFFIN 1N PARAFFIN IN		0.000 42.242			

· · · ·	TOTAL · PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	0.0		1T3-DMCP	· 8.1	0.76
ETHANE	0.0		1T2-DMCP	12.2	1.15
PROPANE	O . O		3-EPENT	O "O	0.00
IBUTANE	33.0	3.09	224-TMP	Ο.Ο	0.00
NBUTANE	51.9	4.86	NHEPTANE	133.0	12.46
IPENTANE	81.8	7.66	1C2-DMCP	0.0	0.00
NPENTANE	148.3	13.89	MCH	67.4	6.31
22-DMB	3.6	0.33	· ·		· · · · · · · · · · · · · · · · · · ·
CPENTANE	2.9	0.27			
23-DMB	8.4	0.79			•
2-MP	103.1	9.65			
3-MP	44.8	4.19			·
	116.1	10.88			
MCP	110.9	10.39			
22-DMP	Ο.Ο	0.00			· ·
24-DMP	2.1	0.20			
223-TMB	0.0	000			
CHEXANE	64.3	6.02			
33-DMP ,	0.Ŭ	0.00			
11-DMCP	0.0	0.00			
2-MHEX,	27.5	2.58			
23-DMP ,	15.3	1.43			
3-MHEX,	22.3	2.09			
1C3-DMCP	10.7	1.00			•
	TOTAL: PPB	B NORM PERGENT	SIG COMP RATIOS		•
ALL COMP	1068.		C1/C2 1.12		
GASOLINE	1068.		A /D2 11.19		
NAPHTHENES			C1/D2 7.15		
C6-7	590,		CH/MCP 0.58 PENT/IPENT,	1.81	
	FFB	NC	IRM PERCENT		
MCP	110.9		45.7		
CH	64.3		26.5		
NCH	67.4		27.8		
TOTAL	242.6		100.0		
PARAFFIN I	NDEX 1	1.601			
PARAFFIN II		36,858			

264411	AUSTRALIA,	WHITING-1	, GIPPS	LAND BAS	SIN, 126	5-1280 M	•
	TOT4 PPE					TOTAL PPB	NORM PERCENT
METHAN	IE O.	0		173-	-DMCP	26.9	1.97
ETHANE	O.	0		1T2-	DMCP	19.8	1.45
PROPAN	IE O.	0		3-EF	ENT	0.0	0.00
IBUTAN	E 16.	6 1.21		224-	TMP	0.0	0.00
NBUTAN	IE 27.	5 2.0:	l.	NHEF	TANE	90.5	6.62
IPENTA	NE 33.	6 2.40	ù.	102-	DMCP	8.1	0.59
NPENTA				MCH		193.5	14.15
22-DMB	9.						
CPENTA							
23-DMB							
2-11P	103.						
3-MP	187.						
NHEXAN	E 146.	1 10.69	)				
hicp:	90.	7 6.63	ł				
22-DMP	О.	0 0.00	)				
24-DMP	21.	1 1.54					
223-TM	в о.	0 0.00	)				
CHEXAN			)				
33-DMP	, О.	Ó 0.00	)				
11-DMC	P O.	0 0.00	)				
2-MHEX	, 45.	0 3.29	/				
23-DMP	. 69.	1 5.05	ł				
З-МНЕХ	. 64.	3 4.70	)				
1C3-DM	СР 34.	4 2.51		-			
	•		IRM. : CENT	SIG COMP	RATIOS		
	COMP	1367.		C1/C2	1.65		
	OLINE	1367.		A /D2	3.68		
	HTHENES		.90	Ci/D2	4.62		
C6'			.49	CH/MCP	0.65		
	<b>,</b>	tan'intina'∎ 'antina'		PENTZIP		2.30	
		PPB	NORI	M PERCEN	т		•
MCP	9	0.7		26.4			
CH	51	8.7		17.1			
MCH	19	3.5		56.4			
тоти	AL 34	2.9	• :	100.0		٠	
	AFFIN INDEX AFFIN INDEX		348				
i rafAr	OF THE THEFT	પ્રતિક્રો, તેર	sa sub-ut				. · ·

7264411

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	0 " Ŭ		1TS-DMCP	72.4	6.51
ETHANE	O., O		1T2-DMCP	10.8	0.97
PROPANE	O.O		3-EPENT	O.O	0,00
IBUTANE	7.9	0.71	224-TMP	() " ()	0.00
NBUTANE	14.4	1.29	NHEPTANE	113.2	10.19
IPENTANE .	16.9	1.52	1C2-DMCP	5.4	0.49
NFENTANE	17.3	1.56	MCH	145.0	13.06
22-DNB	0.0	0.00			
CPENTANE	<b>0.0</b>	0.00			
23-DMB	0.0	0.00			
2-MP	53.7	4.83			
3-MP	155.6	14.01			
NHEXANE	100.9	9.09 3.46			
MCP So swo	38.5	3.46			
22-DMP 24-DMP	0.0 28.7	2.59			
223-TMB	2.6	0.23			
CHEXANE	37.7	3.39			
33-DMP ,	0.0	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	40.3	5.43			
23-DMP ,	99.0	8.92			
3-MHEX ,	91.9	8.27			
1C3-DMCP	38.5	3.47			
	TOTALS PPB	NORM PERCENT,	SIG COMP RATIOS		•
ALL COMP	1111.	·	C1/C2 1.47		
GASOLINE	1111.	e	A /D2 2.33		
NAPHTHENE:			C1/D2 2.65		
C6-7	845.		CH/MCP 0.98		
	the states	శిస్తు 8 రాహాయా	PENT/IPENT,	1.03	
	tere" teres" fires"	1. J	pre, j. J		
1- 4 ,***, F***,	PPB	NU	RM PERCENT		
MCP	38.5		17.4 17.0		
CH MCH	37.7 145.0		65.6		
TOTAL	221.2		100.0		
{ ¹ ¹ } f ^{**} 15	ation atom at an atom.		al an an an an an		
PARAFFIN		1.251			
PARAFFIN 1	NNEY 2	16.921			•

METHANE 0.0 1T3-DMCP 22.5 2.51 ETHANE 0.0 1T2-DMCP 9.3 1.04 METHANE 0.0 3-EPENT 0.0 0.00 UBUTANE 17.3 1.93 224-TMP 0.0 0.00 WBUTANE 23.0 2.56 NHEPTANE 74.3 8.28 IPENTANE 33.3 3.71 1C2-UMCP 2.4 0.27 WFENTANE 39.9 4.45 MCH 81.2 9.06 22-DMB 16.4 1.83 CPENTANE 0.0 0.00 22-DMB 54.4 6.07 2-MP 68.4 7.62 3-MP 166.6 18.79 VHEXANE 67.5 7.52 MCP 30.4 3.39 22-DMP 0.0 0.00 24-DMP 15.3 1.70 223-TMB 0.0 0.00 24-DMP 0.0 0.00 24-DMP 0.0 0.00 23-DMF 54.2 6.04 33-DMP 0.0 0.00 24-DMP 55.1 2.80 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 897. A /D2 3.89 NAPHTHENES 195. 21.74 C1/D2 3.80 C3-7 476. 53.05 CH/MCP 0.79 PENT/IPENT, 1.20 PPB NORM PERCENT MCP 30.4 22.4 CH 24.0 17.7 MCH 81.2 59.9 TOTAL 135.6 100.0 PAROFEN INDEX 1 1.224		TOTAL. PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
PROPARE         0.0         3-EPENT         0.0         0.00           IBUTANE         17.3         1.93         224-TMP         0.0         0.00           NBLTANE         23.0         2.56         NHEPTANE         74.3         6.28           NENTANE         33.3         3.71         102-DMCP         2.4         0.27           NPENTANE         39.9         4.45         MCH         81.2         9.06           22-DM8         16.4         1.83         EPENTANE         81.2         9.06           22-DM8         54.4         6.07         2.4         9.06           23-DM8         54.4         6.07         2.4         9.06           23-DM9         0.0         0.00         2.4         9.06           22-DM9         0.0         0.00         2.4         9.06           22-DMP         0.0         0.00         2.4         3.2           22-DMP         0.0         0.00         2.4         3.4           22-DMP         0.0         0.00         2.4         3.4           22-DMP         0.0         0.00         2.4         3.5           22-DMP         0.0         0.00         2.4	1ETHANE	0.O				
IBUTANE       17.3       1.93       224-TMP       0.0       0.00         NBUTANE       23.0       2.56       NHEPTANE       74.3       8.28         IPENTANE       33.3       3.71       1C2-DMCP       2.4       0.27         NPENTANE       39.9       4.45       MCH       81.2       9.06         22-DMB       16.4       1.83       CPENTANE       81.2       9.06         22-DMB       54.4       6.07       9.06       9.06       9.06         23-DMB       54.4       6.07       9.06       9.06       9.06         23-DMB       54.4       6.07       9.06       9.06       9.06         23-DMB       54.4       6.07       9.06       9.06       9.06         22-DMP       0.0       0.00       2.000       2.25       1.27         2-MHEX       36.5       4.07       2.27       1.23       1.23         2-MHEX       3	THANE	0.Ö		1TS-DMCP		
NULTANE         23.0         2.56         NHEPTANE         74.3         8.28           IFENTANE         33.3         3.71         1C2-DMCP         2.4         0.27           NPENTANE         39.9         4.45         MCH         81.2         9.06           22-DMB         16.4         1.83         54.4         0.00         23-DMB         54.4         0.07           2-MP         68.4         7.62         3         7         7.52         7           2-MP         0.0         0.00         22-DMB         16.4         3.39         22-DMP         0.0         0.00           22-DMP         0.0         0.00         223-DMP         15.3         1.70         223-TMB         0.0         0.00           223-TMB         0.0         0.00         0.00         2.4         3.39         223-TMB         0.0         0.00           223-TMB         0.0         0.00         0.00         2.4         1.10MCP         0.0         0.00           223-TMB         0.0         0.00         2.4         4.07         1.20         1.10MCP         1.10MCP         1.00         2.5         1.2         1.2         1.2         1.2         1.2 <td< td=""><td>ROPANE</td><td>O . O</td><td></td><td>3-EPENT</td><td></td><td>0,00</td></td<>	ROPANE	O . O		3-EPENT		0,00
ITENTANE       33.3       3.71       1C2-DMCP       2.4       0.27         NPENTANE       39.9       4.45       MCH       81.2       9.06         22-DM8       16.4       1.83       CEPENTANE       0.0       0.00         23-DM8       54.4       6.07       2.4       9.06         2-MP       68.4       7.62       3.39       3.79         SAMP       0.0       0.00       2.4       3.39         22-DMP       0.0       0.00       2.4       3.39         22-DMP       0.0       0.00       2.4       3.39         22-DMP       0.0       0.00       2.4       3.370         23-DMP       54.2       6.04       3.4       3.89         3-MHEX       36.5       4.07       1.02       3.89         NAPHTHENES       195.2       21.74       C1/D2       3.89         NAPHTHENES	BUTANE	17.3	1.93	224-TMP	Ο.Ο	
NEENTANE     39.9     4.45     MCH     81.2     9.06       22-DMB     16.4     1.83       CPENTANE     0.0     0.00       23-DMB     54.4     6.07       24-DMP     168.6     18.79       NHEXANE     67.5     7.52       MCP     30.4     3.39       22-DMP     0.0     0.00       24-DMP     15.3     1.70       223-TMB     0.0     0.00       24-DMP     15.3     1.70       22-DMP     0.0     0.00       24-DMP     0.0     0.00       22-TMB     0.0     0.00       24-DMP     0.0     0.00       22-DMP     0.0     0.00       23-DMP,     0.0     0.00       23-DMP,     54.2     6.04       3-MHEX,     36.5     4.07       103-DMCP     25.1     2.80       TOTALS       NORM     PERCENT       ALL COMP     897.     A /D2       ALL     CMP     30.4       22.4     2.4	IBUTANE	23.0	2.56	NHEPTANE	74.3	8.28
NPENTANE 39.9 4.45 MCH 81.2 9.06 22-DMB 16.4 1.83 CPENTANE 0.0 0.00 23-DMB 54.4 6.07 2-MP 68.4 7.62 3-MP 168.6 13.79 NNEXANE 67.5 7.52 MCP 30.4 3.39 22-DMP 0.0 0.00 24-DMP 15.3 1.70 223-TMB 0.0 0.00 CHEXANE 21.0 2.68 33-DMP, 0.0 0.00 CHEXANE 21.0 2.68 33-DMP, 0.0 0.00 23-DMP, 54.2 6.04 3-MHEX, 33.2 3.70 23-DMP, 54.2 6.04 3-MHEX, 36.5 4.07 103-DMCP 25.1 2.80 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 897. C1/C2 1.54 A/D2 3.89 NAPHTHENES 195. 21.74 C1/D2 3.80 C6-7 476. 53.05 CH/MCP 0.79 PENT/IPENT, 1.20 PPB NORM PERCENT MCP 30.4 22.4 CH 24.0 17.7 MCH 61.2 59.9 TOTAL 135.6 100.0	PENTANE	93.S	3.71	1C2-0MCP	2.4	0.27
22-DMB       16.4       1.83         CPENTANE       0.0       0.00         23-DMB       54.4       6.07         2-MP       68.4       7.62         3-MP       168.6       18.79         WHEXANE       67.5       7.52         4CP       30.4       3.39         22-DMP       0.0       0.00         24-DMP       15.3       1.70         223-TMB       0.0       0.00         24-DMP       15.3       1.70         223-TMB       0.0       0.00         24-DMP       15.3       1.70         223-TMB       0.0       0.00         24-MEX       31.2       3.70         23-DMP       0.0       0.00         24-MEX       36.5       4.07         103-DMCP       25.1       2.80         IC3-DMCP       25.1       2.80         ALL COMP       897.       C1/C2       1.54         AALL       S97.       A /D2       3.89         NAPHTHENES       195.       21.74       C1/D2       3.80         C4-7       476.       53.05       CH/MCP       0.79         PENT/IPENT,       <		39.9	4,45	MCH	81.2	9.06
DPENTANE       0.0       0.00         23-DMB       54.4       6.07         2-MP       68.4       7.62         MP       168.6       18.79         NHEXANE       67.5       7.52         MCP       30.4       3.39         22-DMP       0.0       0.00         24-DMP       15.3       1.70         22-TMB       0.0       0.00         24-DMP       15.3       1.70         23-DMP       0.0       0.00         CHEXANE       21.0       2.68         33-DMP       0.0       0.00         23-DMP       0.0       0.00         23-DMP       54.2       6.04         3-MHEX       36.5       4.07         IG3-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS         PPB       PERCENT         ALL COMP       897.       A /D2       3.89         NAPHTHENES       195.       21.74       C1/C2       1.54         GASOLINE       897.       A /D2       3.89         NAPHTHENES       195.       21.74       C1/D2       3.80         C6-7       30.4       22.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
23-DNB 54.4 6.07 2-MP 68.4 7.62 3-MP 168.6 18.79 WHEXANE 67.5 7.52 4CP 30.4 3.39 22-DMP 0.0 0.00 24-DMP 15.3 1.70 223-TMB 0.0 0.00 CHEXANE 21.0 2.68 33-DMP, 0.0 0.00 2-MHEX, 33.2 3.70 23-DMP, 54.2 6.04 3-MHEX, 36.5 4.07 IC3-DMCP 25.1 2.80 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 897. C1/C2 1.54 GASOLINE 897. A /D2 3.89 NAPHTHENES 195. 21.74 C1/D2 3.80 C6-7 476. 53.05 CH/MCP 0.79 PENT/IPENT, 1.20 PPB NORM PERCENT MCP 30.4 22.4 CH 24.0 17.7 MCH 81.2 59.9 TOTAL 135.6 100.0						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
NHEXANE       67.5       7.52         MCP       30.4       3.39         22-DMP       0.0       0.00         24-DNP       15.3       1.70         223-TMB       0.0       0.00         24-DNP       15.3       1.70         223-TMB       0.0       0.00         23-DMP       0.0       0.00         24-MEX       33.2       3.70         23-DMP       54.2       6.04         3-MHEX       36.5       4.07         23-DMP       54.2       6.04         3-MHEX       36.5       4.07         103-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS         PPB       PERCENT         ALL COMP       897.       C1/C2       1.54         ASSOLINE       897.       A /D2       3.89         NAPHTHENES       195.       21.74       C1/D2       3.80         C5-7       476.       53.05       CH/MCP       0.79         PENT/IPENT,       1.20         PPB       NORM PERCENT         MCP       30.4       22.4         CH       24.0       17.7         MCH<						
MCP       30.4       3.39         22-DMP       0.0       0.00         24-DMP       15.3       1.70         223-TMB       0.0       0.00         223-TMB       0.0       0.00         223-TMB       0.0       0.00         223-TMB       0.0       0.00         S3-DMP       0.0       0.00         23-DMP       0.0       0.00         24-MEX       33.2       3.70         23-DMP       54.2       6.04         3-MHEX       36.5       4.07         IC3-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS         PPB       PERCENT         ALL COMP       897.         GASOLINE       897.         NAFHTHENES       195.         155.       21.74         C1/C2       1.54         A/D2       3.80         C4-7       476.         S3.05       CH/MCP         PENT/IPENT,       1.20         PPB       NORM PERCENT         MCP       30.4       22.4         CH       24.0       17.7         MCH       81.2       59.9				ι.		
22-DMP       0.0       0.00         24-DMP       15.3       1.70         223-TMB       0.0       0.00         223-TMB       0.0       2.68         23-DMP,       0.0       0.00         CHEXANE       21.0       2.68         23-DMP,       0.0       0.00         L1-DMCP       0.0       0.00         23-DMP,       54.2       6.04         3-MHEX,       36.5       4.07         IC3-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS         PPB       PERCENT         ALL COMP       897.         GASOLINE       897.         NAFHTHENES       195.         C6-7       476.         53.05       CH/MCP         PEN       NORM PERCENT         MCP       30.4         22.4       59.9         TOTAL       135.6       100.0						
24-DMP       15.3       1.70         223-TMB       0.0       0.00         223-TMB       0.0       2.68         33-DMP,       0.0       0.00         23-TMCP       0.0       0.00         2-MHEX,       33.2       3.70         23-DMP,       54.2       6.04         3-MHEX,       36.5       4.07         C3-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS         PPB       PERCENT         ALL COMP       \$97.         GASOLINE       \$97.         ALL COMP       \$97.         ACTAL       \$195.         21.74       C1/C2         APHTHENES       195.         C4-7       476.         53.05       CH/MCP         OCH       22.4         C4+       24.0         MCP       30.4         C2.4       17.7         MCH       81.2       59.9         TOTAL       135.6       100.0						
223-TMB       0.0       0.00         CHEXANE       21.0       2.68         33-DMP,       0.0       0.00         2-MHEX,       33.2       3.70         23-DMP,       54.2       6.04         3-MHEX,       36.5       4.07         23-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS PPB         PPB       PERCENT         ALL COMP       897.       C1/C2       1.54         GASOLINE       897.       A /D2       3.89         NAPHTHENES       195.       21.74       C1/D2       3.80         C6-7       476.       53.05       CH/MCP       0.79         PENT/IPENT,       1.20         PPB         NORM PERCENT         MCP       30.4       22.4         CH       24.0       17.7         MCH       81.2       59.9         TOTAL       135.6       100.0						
HEXANE       21.0       2.68         33-DMP ,       0.0       0.00         1-DMCP       0.0       0.00         2-MHEX ,       33.2       3.70         23-DMP ,       54.2       6.04         8-MHEX ,       36.5       4.07         IC3-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS PPB PERCENT         ALL COMP 897.       C1/C2 1.54         GASOLINE 897.       A /D2 3.89         NAPHTHENES 195.       21.74         C3-7       476.         53.05       CH/MCP 0.79         PENT/IPENT,       1.20         PPB       NORM PERCENT         MCP 30.4       22.4         CH 24.0       17.7         MCH 31.2       59.9         TOTAL       135.6       100.0						
83-DMP ,       0.0       0.00         1-DMCP       0.0       0.00         2-MHEX ,       33.2       3.70         23-DMP ,       54.2       6.04         3-MHEX ,       36.5       4.07         23-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS         PPB       PERCENT         ALL COMP       897.       C1/C2       1.54         GASOLINE       897.       A /D2       3.89         NAPHTHENES       195.       21.74       C1/D2       3.80         C6-7       476.       53.05       CH/MCP       0.79         PENT/IPENT,       1.20         PPB         NORM PERCENT         MCP       30.4       22.4         CH       24.0       17.7         MCH       81.2       59.9         TOTAL       135.6       100.0						
1-DMCP       0.0       0.00         2-MHEX ,       33.2       3.70 -         23-DMP ,       54.2       6.04         3-MHEX ,       36.5       4.07         23-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS PERCENT         ALL COMP GASOLINE NORM S97.       C1/C2 1.54         AALL COMP GASOLINE NORM S97.       C1/D2 3.89         NAPHTHENES C6-7       195.       21.74         C1/D2 3.80       CH/MCP 0.79         C6-7       476.       53.05         CH/MCP 0.79       PENT/IPENT, 1.20         PPB       NORM PERCENT         MCP       30.4       22.4         CH       24.0       17.7         MCH       81.2       59.9         TOTAL       135.6       100.0						
2-MHEX ,       33.2       3.70         23-DMP ,       54.2       6.04         3-MHEX ,       36.5       4.07         3C3-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS PERCENT         ALL COMP       897.       C1/C2       1.54         ALL COMP       897.       C1/C2       1.54         ALL COMP       897.       A /D2       3.89         NAPHTHENES       195.       21.74       C1/D2       3.80         C6-7       476.       53.05       CH/MCP       0.79         FENT/IFENT,       1.20         PPB       NORM PERCENT         MCP       30.4       22.4         CH       24.0       17.7         MCH       81.2       59.9         TOTAL       135.6       100.0						
23-DMP ,       54.2       6.04         3-MHEX ,       36.5       4.07         3-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS PPB PERCENT         ALL COMP S97.       C1/C2       1.54         ALL COMP S97.       C1/C2       1.54         ALL COMP GASOLINE S97.       S97.       C1/D2       3.89         NAPHTHENES C3-7       195.       21.74       C1/D2       3.80         C3-7       476.       53.05       CH/MCP       0.79         PENT/IPENT,       1.20         PPB       NORM PERCENT         MCP       30.4       22.4         CH       24.0       17.7         MCH       81.2       59.9         TOTAL       135.6       100.0						
3-MHEX , 36.5       36.5       4.07         1C3-DMCP       25.1       2.80         TOTALS NORM SIG COMP RATIOS PERCENT         ALL COMP GASOLINE GASOLINE NAPHTHENES C6-7       897.         NAPHTHENES C6-7       195.       21.74         C1/C2       1.54         A/D2       3.89         C6-7       195.       21.74         C1/D2       3.80         C6-7       195.       21.74         C1/D2       3.80         C4-7       195.       21.74         C1/D2       3.80         C4-7       195.       21.74         MCP       30.4       22.4         CH       24.0       17.7         MCH       81.2       59.9         TOTAL       135.6       100.0						
C3-DMCP       25.1       2.80         TOTALS PPB       NORM PERCENT       SIG COMP RATIOS SIG COMP RATIOS         ALL COMP GASOLINE NAPHTHENES C6-7       897. 195. 195. 21.74       C1/C2       1.54 A /D2         Solor       195. 21.74       C1/D2       3.80 CH/MCP         C6-7       476.       53.05       CH/MCP       0.79 PENT/IPENT,         MCP       30.4       22.4 CH       17.7 MCH       1.20         MCH       81.2       59.9 TOTAL       59.9         TOTAL       135.6       100.0						
TOTALS PPB         NORM PERCENT         SIG COMP RATIOS           ALL COMP GASOLINE NAPHTHENES         897. 195. 195. 21.74         C1/C2 A /D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2						
PPB         PERCENT           ALL COMP         897.         C1/C2         1.54           GASOLINE         897.         A /D2         3.89           NAPHTHENES         195.         21.74         C1/D2         3.80           C6-7         476.         53.05         CH/MCP         0.79           PENT/IPENT,         1.20           PPB         NORM PERCENT           MCP         30.4         22.4           CH         24.0         17.7           MCH         81.2         59.9           TOTAL         135.6         100.0	C3-DMCP	25.1	2.80			
GASOLINE     897.     A /D2     3.89       NAPHTHENES     195.     21.74     C1/D2     3.80       C6-7     476.     53.05     CH/MCP     0.79       PENT/IPENT,     1.20       PPB     NORM PERCENT       MCP     30.4     22.4       CH     24.0     17.7       MCH     81.2     59.9       TOTAL     135.6     100.0				SIG COMP RATIO	S	
NAPHTHENES         195.         21.74         C1/D2         3.80           C6-7         476.         53.05         CH/MCP         0.79           PENT/IPENT,         1.20           PPB         NORM PERCENT           MCP         30.4         22.4           CH         24.0         17.7           MCH         81.2         59.9           TOTAL         135.6         100.0	ALL COMP	897	II.			
C6-7     476.     53.05     CH/MCP     0.79       PENT/IPENT,     1.20       PPB     NORM PERCENT       MCP     30.4     22.4       CH     24.0     17.7       MCH     81.2     59.9       TOTAL     135.6     100.0	GASOLINE	897	đ			
PPB NORM PERCENT MCP 30.4 22.4 CH 24.0 17.7 MCH 81.2 59.9 TOTAL 135.6 100.0	NAPHTHENE	s 195	. 21.74	C1/D2 3.80		
PPBNORM PERCENTMCP30.422.4CH24.017.7MCH81.259.9TOTAL135.6100.0	C6-7	476	. 53.05	CH/MCP 0.79		
MCP     30.4     22.4       CH     24.0     17.7       MCH     81.2     59.9       TOTAL     135.6     100.0				PENT/IPENT,	1.20	
CH     24.0     17.7       MCH     81.2     59.9       TOTAL     135.6     100.0			NC	IRM PERCENT		
MCH 81.2 59.9 TOTAL 135.6 100.0	MCP	30.4				
TOTAL 135.6 100.0	CH	24.0		17.7		•
	MCH	81.2		52.2		
DADADETNI TNUEY 1 1 228	TOTAL	135.6		100.0		
A LEAD YEAR A THAT A THAT THAT THAT A	PARAFFIN	INDEX 1	1.224			

#### ÀUG

METHANE ETHANE PROPANE IBUTANE IPENTANE IPENTANE 22-DMB CPENTANE 23-DMB 2-MP 3-MP NHEXANE MCP 22-DMP 24-DMP 24-DMP 223-TMB CHEXANE 33-DMP, 11-DMCP 2-MHEX, 33-DMP, 3-MHEX,	TOTAL PPB 0.0 4376.1 21223.4 29698.1 22071.5 43737.6 13702.4 1173.1 2540.7 3342.9 7910.1 6970.7 7745.5 12658.2 0.0 259.2 103.7 11153.0 0.0 1802.3 1979.0 2129.1	NORM PERCENT 15.25 11.33 22.46 7.04 0.60 1.30 1.72 4.06 3.58 3.98 6.50 0.00 0.13 0.05 5.73 0.00 0.13 0.05 5.73 0.00 0.93 1.02 1.09	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB •2446.4 2811.6 0.0 6220.2 209.8 11077.8	NORM PERCENT 1.26 1.44 0.00 0.00 3.19 0.11 5.69
1C3-DMCP	3025.6 TOTALS	1.55 S NORM	SIG COMP RATIOS	i	
ALL COMF GASOLINE NAPHTHEN C6-7	i 194768.	23.58	C1/C2 1:14 A /D2 6.56 C1/D2 11.29 CH/MCP 0.88 PENT/IPENT,	0.31	
NCP CH MCH TOTAL	PPB 12658.2 11153.0 11077.8 34889.0	NO	RM PERCENT 36.3 32.0 31.8 100.0		
PARAFFI PARAFFIN	N INDEX 1 4 INDEX 2	0.475 14.586			

# 05 AUG .83

726448

AUSTRALIA, WHITING-1, GIPPSLAND BASIN,

, 1355-1370 M

72644X.

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1430-1445 M

IBUTANE 2 NBUTANE 3 IPENTANE 3 22-DMB 22-DMB 22-DMB 23-DMB 23-DMB 23-DMB 33-MP 33-MP 34-DMP 323-TMB 223-TMB 223-TMB 223-DMP 311-DMCP 2-MHEX 33-DMP 33-DMP 33-DMP 34-DMP 33-DMP 34-DMP 33-DMP 34-DMP 34	TOTAL PPB 0.0 2738.1 1414.1 21130.6 14458.4 2822.4 17971.9 838.6 750.3 2417.3 16236.3 7752.0 23870.0 1584.9 0.0 404.0 95.3 10835.8 0.0 3057.7 2056.3 2964.2	NORM PERCENT 11.64 7.97 1.56 9.90 0.46 0.41 1.33 8.95 4.27 13.15 6.38 0.00 0.22 0.05 5.97 0.00 0.22 0.05 5.97 0.00 1.68 1.13 1.63	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 2033.3 3312.6 0.0 8334.5 294.3 25998.4	NDRM PERCENT 1.12 1.83 0.00 0.00 4.59 0.16 14.32
1C3-DMCP	2280.2 TOTALS PPB	1.26 8 NORM PERCENT	SIG COMP RATIOS		
ALL COMP GASOLINE NAPHTHENE C6-7	195652. 181500. 57091. 97123.	31.46	C1/C2 2.05 A /D2 10.86 C1/D2 13.46 CH/MCP 0.94 PENT/IPENT,	6.37	
MCP CH MCH TOTAL	PPB 11584.9 10836.8 25998.4 48420.1	NOI	RM PERCENT 23.9 22.4 53.7 100.0		
PARAFFIN PARAFFIN	INDEX 1 INDEX 2	0.790 13.691			

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCEN
ETHANE	0.0		1TS-DMCP	105.5	0.71
THANE	0.0		tT2-DMCP	178.8	1.20
ROPANE	523.0		3-EPENT	Ο.Ο	0.00
BUTANE	545.9	3.66	224-TMP	0.0	0.00
BUTANE	1532.9	10.29	NHEPTANE	625.0	4.20
PENTANE	1898.6	12.75	102-DMCP	9.8	0.07
PENTANE	2430.6	16.32	MCH	844.4	5.67
2-DMB	61.O	0.41			
PENTANE	115.3	0.77			
3-10村田	204.0	1.37			
-MF'	1220.2	8.19			
-MP	613.2	4.12			
HEXANE	1872.9	12.57			
P	972.9	6.53			
2-DMP	0.0	0.00			
-DMP	34.4	0.23			
23-TMB	9.4	0.06			
IEXANE	823.3	5.53			
-DMP ,	O., O	0.00			
-DMCP	0.0	0.00			
-MHEX ,	259.5	1.74			
s-DMP ,	151.5	1.02			
-MHEX ,	276-5	1.86			
C3-DMCP	111.3	0.75			
	TOTAL PPB	S NORM PERCENT	SIG COMP RATIOS		
ALL COMP	15420	ш	C1/C2 1.40		
GASOLINE	14897	#	A /D2 9.03		
NAPHTHENE			C1/D2 6.97		
C6-7	6275	. 42.12	CH/MCP 0.85		
			PENT/IPENT,	1.28	
	PPB	NC	ORM PERCENT		
MCP	972.9		36.8		
CH	823.3		31.2		
MCH	844.4		32.0		
TOTAL	2640.6		100.0	¢	
PARAFFIN	INDEX 1	1.355			

72652M

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1625-1640 M

EPEEPENES FOX4NES1-S-	THANE HANE OPANE OPANE OPANE OPANE OPANE PENTANE PENTANE PENTANE PENTANE OMB MP OMB OMP OMP OMP OMP OMP OMP OMP OMP OMP OMP	TOTA PPE 0. 0. 483. 1306. 1402. 1315. 1745. 322. 140. 135. 778. 385. 1193. 719. 0. 23. 4. 676. 0. 182. 108. 193. 82.	000007328889214059400832	NORM PERCEN 10.82 13.53 10.90 14.47 0.27 1.17 1.13 6.46 3.19 9.89 5.96 0.00 0.19 0.04 5.61 0.00 1.52 0.90 1.60 0.68		1T3-1 1T2-1 3-EP1 224- NHEF 1C2-1 MCH	DMCP ENT TMP TANE	TOTAL PPB 78.7 136.4 0.0 455.4 8.9 728.6	1	NORM ERCENT 0.65 1.13 0.00 0.00 3.77 0.07 6.04
.tv **			TOTALS PPB	· NOR PERC		SIG COMP	RATIOS			
	ALL COMP GASOLINE NAPHTHENE C6-7		12548. 12065. 2571. 4592.	21. 33.		C1/C2 A /D2 C1/D2 CH/MCP FENT/IP9	1:55 8:53 8:22 0:74 ENT,	1.33		
	MCP CH MCH TOTAL	71 67 72	PPB 9.4 6.4 8.6 4.4		NCI	RM PERCEN 33.9 31.8 34.3 100.0	T			
	PARAFFIN PARAFFIN			1.2 17.2						

726520 A	USTRA	LIA,	WHITI	NG-1,	GIPP	SLAND E	BASI	[N, 167)	0-1685	М		
		TOTAL PPB		NORM PERCEN					TOTAL PPB		NOF PERCE	INT
METHANE		O.C						JMCP	125.2		1.07	
ETHANE		0.0						MCP	99.0		0,85	
PROPANE		336.4		4 <b>25</b> - 26			-EPE		0.0		0.00	
IBUTANE		225.3		10.49			:4-1 		464.4		3.98	
NBUTANE		468.4		12.57				TANE MCP	8.4		0.07	
IPENTANE		247.5		10.68				440	728.5		- 6.24	
NPENTANE		685.3		14.43 0.29		MC			120.0		Cellin	ŕ
22-DMB		34.(								1		
CPENTANE		142.(		1.22								
23-DMB		132.0		1.13								
2-MP		777.3		6.65								
3-MP		385.2		3.30 10.34								
NHEXANE MCP		207.1 727.0		6.23								
22-DMP		о( О(		0.00								
24-DMP		23.9		0.20								
223-TMB				0.05								
CHEXANE		625.4		5.35								
33-DMP ,		0.0		0.00								
11-DMCP		Ō. C		0.00								
2-MHEX ,		207.3		1.77								
23-DMP ,		91.9		0.79								
3-MHEX ,		184.1		1.58								
1C3-DMCP		84.3	3	0.72			-					
	•	-	FOTALS PPB	NOR PERCI		SIG CC	MP	RATIOS				
ALL C	OMP	i	2017.			C1/C2	,	1.49				
GASOL			1681.			A /D2		9.08				
NAPHT			2540.	21.	75	C1/D2		8.48				
C6-7			4584.	39.:	24	CH7MC	P	0.86				
						PENT/	'IPE	ENT,	1.35			
		F	>PB		NO	RM PERC	ENT					•
MCP		727				35.0						
CH		625				30.0						
MCH		728				35.0						
TOTAL		2081				100.0			٠			
PARAF	FIN I	NDEX	1	1.2	68							
PARAF				17.7								

ZGUZM HUDI	RHL.1H; WD11	INO-IS OIFF	OTHIND DHOTING INO	0	
	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	O " Ö		1TS-DMCP	. 70.3	0.75
ETHANE	Ο., Ο		1T2-DMCP	126.2	1.25
PROPANE	246.8		3-EPENT	O " O	0.00
IBUTANE	655.O	7,02	224-TMP	0.0	0.00
NBUTANE	776.6	8.33	NHEPTANE	487.8	5.23
IPENTAME	1054.1	11.30	1C2-DMCP	8.7	0.09
NPENTANE	1183.0	12.68	MCH	731.7	7.84
22-DMB	45.0	0.48			
CPENTANE	79,9	0.86			
23-0MB	126.1	1.35			
2-MP	794.9	8.52			
3-MP	391.2	4.19			
NHEXANE	1027.6	11.02			
MCP	560.2	6.O1			
22-DMP	0.0	0.00			
24-DMP	35,3	0.38			
223-TMB	5.9	0.06			
CHEXANE	520.2	5.58			
33-DMP ,	0.0	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	247.2	2.65			
23-DMP ,	100.0	1.07			
G-MHEX ,	233.1	2.50			
1C3-DMCP	67.3	0.72			
and the former of the former the	Teres & H Tanat	the of a state			
	TOTAL PPB	S NORM PERCENT	SIG COMP RATIOS		
ALL COMP	9574		C1/C2 1,80		
GASOLINE			A /02 6.50		
NAPHTHEN			C1/D2 6.43		
C6-7	4221		CH/MCP 0.93		
1	The second	n article states	PENT/IPENT,	1.12	
				L n L M.	
	. PPB	NE	IRM PERCENT		•
MCP	560.2	1.55	30.9		
CH	520.2		28.7		
MCH	731.7		40,4		
TOTAL	1812.1		100.0		
·	un ere aus stand ti sin				
PARAFFIN	INDEX 1	1.820			
PARAFFIN		18,880			•

726520

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1700-1715 M

 $\left( \left[ \right] \right)$ 

726528 AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1730-1745 M

METHANE ETHANE PROPANE IBUTANE NBUTANE NPENTANE 22-DMB CPENTANE 23-DMB 2-MP 3-MP NHEXANE MCP 22-DMP 24-DMP 24-DMP 24-DMP 24-DMP 24-DMP 23-TMB CHEXANE 33-DMP, 11-DMCP 2-MHEX, 23-DMP, 3-MHEX, 1C3-DMCP	TOTAL PPB 0.0 6936.5 39430.0 70855.8 146813.3 112425.4 121867.4 4971.2 17909.4 0.0 110865.7 41600.8 135121.2 75229.5 0.0 3271.0 922.3 111871.3 0.0 0.0 40941.5 13861.7 36807.6 4830.3	NORM PERCENT 5.11 10.59 8.11 8.79 0.36 1.29 0.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 7.99 3.00 9.74 5.42 0.00 7.99 3.00 9.74 5.42 0.00 0.24 0.00 0.24 0.00 0.24 0.00 2.95 1.00 3.07 0.00 7.99 3.00 0.24 0.00 0.24 0.00 2.95 1.00 3.07 0.00 7.99 3.00 0.24 0.00 0.24 0.00 3.00 0.24 0.00 0.24 0.00 0.00 3.00 0.24 0.00 0.24 0.00 0.00 0.24 0.00 0.00	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 9588.2 20283.1 0.0 130910.0 622.4 175420.0	NORM PERCENT 0.69 1.46 0.00 0.00 9.44 0.04 12.65
	TOTAL PPB	S NORM PERCENT	SIG COMP RATI	08	
ALL CG GASOLI NAPHTH C&-7	NE 1,386,987	. 29.98	C1/C2 2.9 A /D2 7.2 C1/D2 8.9 CH/MCP 1.4 PENT/IPENT,	3 2	
MCP CH MCH TOTAL	PPB 75229.5 111871.3 175420.0 362520.7	NC	DRM PERCENT 20.8 30.9 48.4 100.0		
	IN INDEX 1 IN INDEX 2	2.241 24.042			

726520

Č.

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1760-1775 M

METHANE ETHANE PROPANE IBUTANE NBUTANE IPENTANE 22-DMB CPENTANE 23-DMB 2-MP 3-MP NHEXANE MCP 22-DMP 24-DMP 24-DMP 223-TMB CHEXANE 33-DMP, 11-DMCP 2-MHEX, 23-DMP,	TDTAL PPB 0.0 17745.3 41042.1 82357.7 80564.9 107275.0 3638.8 12713.3 0.0 91817.0 36084.8 120408.6 43077.7 0.0 3234.3 737.1 81061.0 0.0 28868.5 12738.7	NORM PERCENT 7.69 7.52 7.52 10.01 0.34 1.19 0.00 8.57 3.37 11.24 5.89 0.00 0.30 0.07 7.57 0.00 0.00 0.00 2.69 1.19	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB -8621.4 16995.9 0.0 94247.6 709.9 111871.7	NORM PERCENT 0.80 1.59 0.00 0.00 8.80 0.07 10.44
3-MHEX , 103-DMCP	26234.0 7423.2	2.45 0.69			
ALL COM GASOLIN NAPHTHE C6-7	E 1071245	S NORM PERCENT	SIG COMP RATION C1/C2 2.22 A /D2 8.18 C1/D2 8.45 CH/MCP 1.29 PENT/IPENT,	9 3 3	
MCP CH MCH TOTAL PARAFFI PARAFFI	PPB 63077.7 81061.0 111871.7 256010.4 N INDEX 1 N INDEX 2	NO 1.669 24.287	RM PERCENT 24.6 31.7 43.7 100.0	•	

TOTAL         NORM         TOTAL         NORM           PFB         PERCENT         PBB         PERCENT         PERCENT           METHANE         45130.3         1T3-DMCP         S3287.9         0.73           ETHANE         45130.3         3-EPENT         0.0         0.00           IBUTANE         1223791.8         3-EPENT         0.0         0.00           NBUTANE         342215.8         7.63         NHEPTANE         3627223.6         8.07           IBUTANE         34239.2         9.50         1C2-DMCP         3491.1         0.0         0.00           NPENTANE         440422.2         9.67         MCH         751183.9         16.50           22-DMB         0.0         0.00         0.00         3491.1         0.08           NPENTANE         490242.4         10.97         MCH         751183.9         16.50           22-DMP         0.0         0.00         0.00         14         141.97         10.97           MCP         2391.7         0.74         233-DMP         6.05         0.00         14.50           22-DMP         0.0         0.00         0.00         14.100PT         10.2         14.53           <	72652Y AU	STRALIA, WHIT	ING-1, GIF	PSLAND BASIN, 1	820-1835 M	
METHANE       0.0       1T3-BMCP       33267.9       0.73         ETHANE       45130.3       1T2-DMCP       8020.7       1.78         PROPANE       223791.8       3-EPENT       0.0       0.00         JBUTANE       162568.2       3.57       224-TMP       0.0       0.00         NBUTANE       347215.8       7.63       NHEPTANE       367223.6       8.07         IFENTANE       43439.2       9.50       1C2-DMCP       3491.1       0.08         NPENTANE       4364.6       0.43       0.0       0.00         22-DMB       0.06.0       2-MP       29017.3       4.55         3-MP       1.55412.8       3.63       NHEXANE       499242.4       10.97         MCP       230907.7       5.07       22-DMP       0.0       0.00         24-DMP       0.0       0.00       0.00       11-DMCP       0.0       0.00         11-DMCP       0.0       0.00       0.00       1.4       1.4       1.4         CHEXANE       344139.2       7.56       33-2       3.18       6ASOLINE       45209.8       1.37         3-MHEX       102491.3       2.25       1.172       1.4       1.4						
ETHANE 45130.3 112-DMCP 20820.7 1.78 PROPANE 223791.8 3-EPENT 0.0 0.00 IBUTANE 4558.2 3.57 2.24-THP 0.0 0.00 NBUTANE 347215.8 7.63 NHEPTANE 367223.6 5.07 IPENTANE 432439.2 9.50 1C2-DMCP 3491.1 0.08 NPENTANE 440422.2 9.67 MCH 751183.9 16.50 22-DM8 19664.6 0.43 CFENTANE 3552.3 0.77 23-DM8 0.0 0.00 2-MP 298121.3 6.55 3-MP 1.65412.8 3.63 NHEXANE 499242.4 10.97 MCP 230907.7 5.07 22-DMP 0.0 0.00 24-DMP 33912.7 0.74 223-TMB 7295.3 0.16 CHEXANE 344139.2 7.56 33-DMP, 6.209.8 1.37 3-MHEX, 106476.9 2.33 24-DMCP 0.0 0.00 24-MHEX, 102491.3 2.25 1C3-DMCP 29459.5 0.65 TOTALS NORM PERCENT ALL COMP 4821638. C1/C2 3.18 GAS0LINE 455277. A /D2 8.45 NAPHTHENES 1508322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IFENT, 1.02 PER NORM PERCENT MCP 230907.7 17.4 CH 344139.2 2.5 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454	METHANE			173-1MCP		
PROPANE       223791.8       3-EPENT       0.0       0.00         IBUTANE       142548.2       3.57       224-TMP       0.0       0.00         NBUTANE       347215.8       7.63       NHEPTANE       367223.6       8.07         IPENTANE       432439.2       9.50       102-DMCP       3491.1       0.08         NPENTANE       440422.2       9.67       MCH       751183.9       16.50         22-DMB       12664.6       0.43       0.00       22-DMB       16.50         22-DMB       0.0       0.00       2       751183.9       16.50         22-DMB       0.0       0.00       2       751183.9       16.50         22-DMB       0.0       0.00       2       756       3       7         3-HP       1.5412.8       3.63       7       7       7       7         MCP       230907.7       5.07       2       7       7       7       7         22-DMP       0.0       0.0       0.00       1       1       1       1       1         22-DMP       0.0       0.00       0       0       0       0       1       1         22-DMP						
IBUTANE       162568.2       3.57       224-TMP       0.0       0.00         NBUTANE       347215.8       7.63       NHEPTANE       367223.6       8.07         IFENTANE       432439.2       9.50       102-DMCP       3491.1       0.08         NPENTANE       432439.2       9.67       MCH       751183.9       16.50         22-DMB       19664.6       0.43       0.00       0.00         2-DMB       0.0       0.00       0.00       2.4       0.55         3-HP       155412.8       3.63       0.16       0.00         2-MP       29097.7       5.07       22-DMP       0.0       0.00         24-EMP       33912.7       0.74       233-3       0.16       0.00         24-EMP       33912.7       0.74       2.33       0.16       0.00         25-DMP       0.0       0.00       0.00       0.00       0.00         2-MHEX       106176.9       2.33       2.37       3.418       0.42209.8       1.37         35-DMCP       29459.5       0.65       1.37       A /D2       8.455       0.455         FPB       PERCENT       A /D2       8.455 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
NBUTANE     347215.8     7.43     NHEPTANE     367223.6     8.07       IFENTANE     440422.2     9.50     102-DMCP     3491.1     0.08       NPENTANE     440422.2     9.67     MCH     751183.9     16.50       22-IMB     19644.6     0.43     0.00     102-DMCP     3491.1     0.08       CPENTANE     35052.3     0.77     23-DMB     0.0     0.00       2-MP     298121.3     6.55     3.43     16.50       SHEXANE     499242.4     10.97     16.50       MCP     230907.7     5.07     22-DMP     0.0     0.00       24-DMP     33912.7     0.74     223-TMB     7298.3     0.16       CHEXANE     344137.2     7.56     33-DMP,     0.0     0.00       24-DMP     0.0     0.00     0.00     11-DMCP     0.0     0.00       24-DMP,     6209.8     1.37     3.4137.2     2.5     1.63       35-DMP,     62209.8     1.37     3.42     2.5     1.63       1C3-DMCP     29459.5     0.65     1.42     2.11     1.40       TOTALS     NORM     SIG COMP RATIOS       PPB     PERCENT     A /D2     8.45       NAPHTHENES     <			3 57			
IPENTANE       432439.2       9.50       1C2-DMCP       3491.1       0.08         NPENTANE       440422.2       9.67       MCH       751183.9       16.50         22-DMB       19644.6       0.43       0       0.0       0.00         22-DMB       0.0       0.00       0.00       0.00         2-MP       298121.3       6.55       3.43         NHEXANE       499242.4       10.97       MCP       230907.7       5.07         22-DMP       0.0       0.00       0.00       24-DMP       33912.7       0.74         22-DMP       0.0       0.00       0.00       24-DMP       33912.7       0.74         22-DMP       0.0       0.00       0.00       24-DMP       33912.7       0.756         33-DMP,       0.0       0.00       0.00       2-MHEX,       106176.9       2.33         23-DMP,       6.2099.8       1.37       3-MERCENT       A/D2       8.45         IC3-DMCP       29459.5       0.65            ALL       COMP       4821638.       C1/C2       3.18       C1/D2       1.45         MCP       250907.7       17.4       A/D2       8.						
NPENTANE       440422.2       9.67       MCH       751183.9       16.50         22-DMB       19664.6       0.43         CPENTANE       35052.3       0.77         23-DMB       0.0       0.00         2-MP       298121.3       6.55         3-MP       165412.8       3.63         NHEXANE       499242.4       10.97         MCP       230907.7       5.07         22-DMP       0.0       0.00         24-DMP       33912.7       0.74         223-TMB       7299.3       0.16         CHEXANE       344139.2       7.56         33-DMP,       0.0       0.00         11-DMCP       0.0       0.00         23-DMP,       62209.8       1.37         3-MHEX,       102491.3       2.25         1C3-DMCP       29459.5       0.65         TOTALS         PPB       PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02       EPB       NORM						
22-DM8       19664.6       0.43         CPENTANE       35052.3       0.77         23-DM8       0.0       0.00         2-MP       298121.3       6.55         3-MP       165412.8       3.43         NHEXANE       499242.4       10.97         MCP       230907.7       5.07         22-DMP       0.0       0.00         24-DMP       33912.7       0.74         223-TMB       7298.3       0.16         CHEXANE       344139.2       7.56         33-DMP       0.00       0.00         21-DMP       0.0       0.00         22-MP       0.0       0.00         23-DMP       0.00       0.00         24-DMP       0.0       0.00         23-DMP       0.0209       1.37         3-MHEX       106176.9       2.33         23-DMP       4.2209.8       1.37         3-MHEX       102491.3       2.25         1C3-DMCP       29459.5       0.65         TOTALS       NORM SIG COMP RATIOS         PPB       PERCENT       A/D2       8.45         NAPHTHENES       1506322.3.13       C1/D2       1.172<						
CPENTANE 35052.3 0.77 23-DMB 0.0 0.00 2-MP 298121.3 6.55 3-MP 165412.8 3.63 NHEXANE 499242.4 10.97 MCP 230907.7 5.07 22-DMP 0.0 0.00 24-DMP 33912.7 0.74 223-TMB 7298.3 0.16 CHEXANE 344137.2 7.56 33-DMP, 0.0 0.00 11-DMCP 0.0 0.00 2-MHEX, 106176.9 2.33 23-DMP, 62209.8 1.37 3-MHEX, 102491.3 2.25 IC3-DMCP 29459.5 0.65 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 4821638. C1/C2 3.18 GASOLINE 4552717. A /D2 8.45 NAPHTHENES 1506322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PFB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454				110-11	a na di di bahad di c	المراجية هاجيا بل
23-DMB 0.0 0.00 2-MP 298121.3 4.55 3-MP 165412.8 3.63 NHEXANE 499242.4 10.97 MCP 230907.7 5.07 22-DMP 0.0 0.00 24-DMP 33912.7 0.74 223-TMB 7298.3 0.14 CHEXANE 344139.2 7.56 33-DMP, 0.0 0.00 2-MHEX, 106476.9 2.33 23-DMP, 62209.8 1.37 3-MHEX, 106476.9 2.33 23-DMP, 62209.8 1.37 3-MHEX, 106476.9 2.55 1C3-DMCP 29459.5 0.65 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 4821638. C1/C2 3.18 GASOLINE 4552717. A /D2 8.45 NAPHTHENES 1508322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PPB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
2-MP 298121.3 6.55 3-MP 135412.8 3.63 NHEXANE 499242.4 10.97 MCP 230907.7 5.07 22-DMP 0.0 0.00 24-DMP 33912.7 0.74 223-TMB 7298.3 0.16 CHEXANE 344139.2 7.56 33-DMP, 0.0 0.00 2-MHEX, 106176.9 2.33 23-DMP, 62209.8 1.37 3-MHEX, 102491.3 2.25 1C3-DMCP 29459.5 0.65 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 4821638. C1/C2 3.18 GASOLINE 4552717. A /D2 8.45 NAPHTHENES 1508322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PPB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
3-MP       165412.8       3.43         NHEXANE       499242.4       10.97         MCP       230907.7       5.07         22-DMP       0.0       0.00         24-BMP       33912.7       0.74         223-TMB       7298.3       0.16         CHEXANE       344137.2       7.56         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         23-DMP       62209.8       1.37         3-MHEX       106176.9       2.33         23-DMP       62209.8       1.37         3-MHEX       102491.3       2.25         IC3-DMCP       29459.5       0.65         TOTALS NORM SIG COMP RATIOS PPB PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PEB       NORM PERCENT       MCP       230907.7       17.4         CH       344139.2       25.9       9       56.6         MCH       751183.9						
NHEXANE       499242.4       10.97         MCP       230907.7       5.07         22-DMP       0.0       0.00         24-DMP       33912.7       0.74         223-TMB       7298.3       0.14         CHEXANE       344137.2       7.56         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         23-DMP       62209.8       1.37         3-MHEX       102491.3       2.25         IC3-DMCP       29459.5       0.65         TOTALS NORM SIG COMP RATIOS PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.49         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PE         NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0         PARAFFIN INDEX 1       1.4						
MCP       230907.7       5.07         22-DMP       0.0       0.00         24-DMP       33912.7       0.74         233-TMB       7298.3       0.16         CHEXANE       344137.2       7.56         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         23-DMP       40.0       0.00         23-DMP       62209.8       1.37         3-MHEX       106176.9       2.33         23-DMP       62209.8       1.37         3-MHEX       102491.3       2.25         1C3-DMCP       29459.5       0.65         TOTALS NORM SIG COMP RATIOS         PPB       PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PPB       NORM PERCENT       1.02         MCP       230907.7       17.4         CH       344139.2       25.9         MCH						
22-DMP       0.0       0.00         24-DMP       33912.7       0.74         223-TMB       7298.3       0.14         CHEXANE       344137.2       7.56         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         23-MHEX       106176.9       2.33         23-DMP       62209.8       1.37         3-MHEX       102491.3       2.25         1C3-DMCP       29459.5       0.45         TOTALS NORM SIG COMP RATIOS         PPB       PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       1.172         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PB         NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0         PARAFFIN INDEX 1       1.454						
24-DMP       33912.7       0.74         223-TMB       7298.3       0.16         CHEXANE       344139.2       7.56         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         2-MHEX       106476.9       2.33         23-DMP       62209.8       1.37         3-MHEX       106476.9       2.33         23-DMP       62209.8       1.37         3-MHEX       102491.3       2.25         1C3-DMCP       29459.5       0.65         TOTALS NORM SIG COMP RATIOS PPB PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02       PENT/IPENT,       1.02         PB       NORM PERCENT       1.7.4       CH       344139.2       25.9         MCH       751183.9       55.6       707AL       1326230.7       100.0         PARAFFIN INDEX 1       1.454       1.454       1.454       1.454 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
223-TMB       7298.3       0.16         CHEXANE       344139.2       7.56         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         2-MHEX       106176.9       2.33         23-DMP       62209.8       1.37         3-MHEX       102491.3       2.25         1C3-DMCP       29459.5       0.65         TOTALS NORM SIG COMP RATIOS PPB PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PPB NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0         PARAFFIN INDEX 1       1.454						
CHEXANE 344137.2 7.56 33-DMP, 0.0 0.00 11-DMCP 0.0 0.00 2-MHEX, 10476.9 2.33 23-DMP, 62209.8 1.37 3-MHEX, 102491.3 2.25 1C3-DMCP 29459.5 0.65 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 4821638. C1/C2 3.18 GASOLINE 4552717. A /D2 8.45 NAPHTHENES 1508322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PPB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
33-DMP ,       0.0       0.00         11-DMCP       0.0       0.00         2-MHEX ,       106176.9       2.33         23-DMP ,       62209.8       1.37         3-MHEX ,       102491.3       2.25         1C3-DMCP       29459.5       0.65         TOTALS NORM SIG COMP RATIOS PPB PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PPB NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0         PARAFFIN INDEX 1       1.454						
11-DMCP 0.0 0.00 2-MHEX , 106176.9 2.33 23-DMP , 62209.8 1.37 3-MHEX , 102491.3 2.25 1C3-DMCP 29459.5 0.65 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 4821638. C1/C2 3.18 GASOLINE 4552717. A /D2 8.45 NAPHTHENES 1508322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PPB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
2-MHEX , 106176.9 2.33 23-DMP , 62209.8 1.37 3-MHEX , 102491.3 2.25 1C3-DMCP 29459.5 0.65 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 4821638. C1/C2 3.18 GASOLINE 4552717. 33.13 C1/D2 8.45 NAPHTHENES 1508322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PPB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
23-DMP , 62209.8 1.37 3-MHEX , 102491.3 2.25 1C3-DMCP 29459.5 0.65 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 4821638. GASOLINE 4552717. NAPHTHENES 1508322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
3-MHEX , 102491.3 2.25 1C3-DMCP 29459.5 0.65 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 4821638. GASOLINE 4552717. NAPHTHENES 1508322. 33.13 C1/D2 11.72 C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PPB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
1C3-DMCP       29459.5       0.65         TOTALS       NORM       SIG COMP RATIOS         PPB       PERCENT       ALL COMP         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PB       NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0						
TOTALS PPB         NORM PERCENT         SIG COMP RATIOS           ALL COMP         4821638.         C1/C2         3.18           GASOLINE         4552717.         A /D2         8.45           NAPHTHENES         1508322.         33.13         C1/D2         11.72           C6-7         2651824.         58.25         CH/MCP         1.49           PENT/IPENT,         1.02           PB         NORM PERCENT           MCP         230907.7         17.4           CH         344139.2         25.9           MCH         751183.9         56.6           TOTAL         1326230.7         100.0						
PPB       PERCENT         ALL COMP       4821638.       C1/C2       3.18         GASOLINE       4552717.       A       A       D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PB       NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0         PARAFFIN INDEX 1       1.454	103-0401-	29459.5	0.65			
GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PPB       NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0         PARAFFIN INDEX 1       1.454				SIG COMP RATI	03	•
GASOLINE       4552717.       A /D2       8.45         NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PPB       NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0         PARAFFIN INDEX 1       1.454	ALL CO	MP 4821638	t.	C1/C2 3.1	8	
NAPHTHENES       1508322.       33.13       C1/D2       11.72         C6-7       2651824.       58.25       CH/MCP       1.49         PENT/IPENT,       1.02         PPB       NORM PERCENT         MCP       230907.7       17.4         CH       344139.2       25.9         MCH       751183.9       56.6         TOTAL       1326230.7       100.0         PARAFFIN INDEX 1       1.454	GASOL II	NE 4552717				
C6-7 2651824. 58.25 CH/MCP 1.49 PENT/IPENT, 1.02 PPB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
PENT/IPENT, 1.02 PPB NORM PERCENT MCP 230907.7 17.4 CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
MCP         230907.7         17.4           CH         344139.2         25.9           MCH         751183.9         56.6           TOTAL         1326230.7         100.0           PARAFFIN INDEX 1         1.454						
MCP         230907.7         17.4           CH         344139.2         25.9           MCH         751183.9         56.6           TOTAL         1326230.7         100.0           PARAFFIN INDEX 1         1.454			ЬI	TOM CEOPENT		
CH 344139.2 25.9 MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454	1×11 ⁻¹ E2		144.			
MCH 751183.9 56.6 TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
TOTAL 1326230.7 100.0 PARAFFIN INDEX 1 1.454						
PARAFFIN INDEX 1 1.454						
,	1 Sec. 1 1 House	ala matalan ini dina ini katalar 1		a, sur sur a sur		
•	PARAFF	TH THNEX 1	1 454			
				•		
			999 9 44 75 97 7669 75 44			

AUG 

METHANE ETHANE PROPANE IBUTANE NBUTANE IPENTANE NPENTANE 22-DMB 2-MP 3-MP NHEXANE MCP 22-DMP 24-DMP 223-TMB CHEXANE 33-DMP , 11-DMCP 2-MHEX, 23-DMP, 3-MHEX, 1C3-DMCP	TOTAL PPB 0.0 3284.5 852.4 1072.6 18635.2 24263.1 869.9 3134.7 3016.7 19300.7 9955.1 32205.6 20127.0 0.0 715.8 197.5 31425.1 0.0 7430.6 4704.6 7673.4 3543.5	NORM PERCENT 0.28 0.35 6.15 8.00 0.29 1.03 0.99 6.37 3.28 10.62 6.64 0.00 0.24 0.07 10.36 0.00 0.24 0.07 10.36 1.55 2.53 1.17	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 3811.5 7510.3 0.0 28786.5 709.0 73276.2	NORM PERCENT 1.26 2.48 0.00 0.00 9.49 0.23 24.17
	TOTAL PPB	S NORM PERCENT	SIG COMP RATIO	)S	
ALL COM GASOLIN NAPHTHE C6-7	E 303217	. 47.34	C1/C2 3.14 A /D2 7.95 C1/D2 14.61 CH/MCP 1.56 PENT/IPENT,	5 · ·	
MCP CH MCH TOTAL	PPB 20127.0 31425.1 73276.2 124828.3	NC	RM PERCENT 16.1 25.2 58.7 100.0		
PARAFFI PARAFFI		1.016 17.118			

72655A

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1850-1865 M

72655E

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 1910-1925 M

METHANE ETHANE PROPANE IBUTANE IBUTANE IPENTANE IPENTANE 22-DMB CPENTANE 23-DMB 2-MP 3-MP NHEXANE MCP 22-DMP 24-DMP 223-TMB CHEXANE 33-DMP 11-DMCP 2-MHEX, 33-DMP, 3-MHEX, 103-DMCP	TOTAL PPB 0.0 969.1 2844.6 2622.5 7362.5 10171.6 12531.3 437.4 1294.2 1417.2 9142.2 4616.9 14926.1 8031.6 0.0 387.1 91.0 11673.6 0.0 3429.2 1964.0 3406.5 1201.0	NORM PERCENT 1.93 5.42 7.49 9.23 0.32 0.95 1.04 6.73 3.40 10.99 5.91 0.00 0.29 0.07 8.60 0.00 2.53 1.45 2.51 0.88	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 1374.2 2672.0 0.0 12346.3 773.3 23935.7	NORM PERCENT 1.01 1.97 0.00 0.00 9.09 0.57 17.62
	TOTAL. PPB	S NORM PERCENT	SIG COMP RATIO	3	
ALL COM GASOLIN NAPHTHE C6-7	E 135807	. 37.52	C1/C2 2.78 A /D2 8.01 C1/D2 11.46 CH/MCP 1.45 PENT/IPENT,		
MCP CH MCH TOTAL	PPB 8031.6 11673.6 23935.7 43640.9		RM PERCENT 18.4 26.7 54.8 100.0	•	
PARAFFI PARAFFI	N INDEX 1 N INDEX 2	1.303 19.913			

	TOTAL · PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
1ETHANE	0.0		1T3-DMCP	• 74.2	1.23
ETHANE	0.0		1T2-DMCP	67.6	1.13
PROPANE	178.2		3-EPENT	0.0	0.00
	236.4	3.73	224-TMP	0.0	0.00
	576.0	9.59	NHEPTANE	460.3	7.66
	614.5	10.23	1C2-DMCP	5.1	0.08
JPENTANE .	709.8	11.81	MCH	581.9	9.69
2-DMB	16.1	0.27			
PENTANE	71.5	1.19			
23-DMB	67.9	1.13			
	401.7	6.69			
	214.1	3.56			
	669.8	11.15			
	396.1	6.59			
22-DMP	0.0	0.00			
24-DMP	17.6	0.29			
23-TMB	2.8	0.05			
	400.4	6.66			
S-DMP ,	0.0	0,00			
.1-DMCP	0.0	0.00			
	161.8	2.69			
	67.9	1.13			
	144.2	2.40			
.C3-DMCP	50.5	0.84			
, hannan dari dinasi	`````	*=* # *a* 1			
	TOTAL: PPB	S NORM PERCENT	SIG COMP RATIOS		·
ALL COMP	6187		c1/c2 1.93		
GASOLINE	6008		A /D2 7.83		
NAPHTHENES			C1/D2 7.93		
C6-7	3100		CH/MCP 1.01		
		a	PENT/IPENT,	1.15	
	•		t has 13 to get head 13 of	ate la active	
	PPB	NC	RM PERCENT		
MCP	396.1		28.7		
CH	400.4		29.0		
MCH	581.9		42.2		
TOTAL	1378.4		100.0		
PARAFFIN I	NDEX 1	1.592			
PARAFFIN I		22.912			

-7	26551 AUST	RALIA, WHIT	FING-1, GIP	PSLAND BASIN, 197	0-1985 M	
		TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
	METHANE	0.0	E ELEXANDER E	1T3-DMCP	274.1	1,91
	ETHANE	0.0		1T2-DMCP	188.3	
	PROPANE	212.0		3-EPENT		1.31
	IBUTANE	180.3	4 02	224-TMP	0.0	0.00
			1.26		0.0	0.00
	NBUTANE	438.1	3.05	NHEPTANE	2059.1	14.35
	IPENTANE	630.6	4.39	102-DMCF	7.5	0.05
	NPENTANE	1154.7	8.04	MCH	886.8	6.18
	22-DMB	30.6	0.21			
	CPENTANE	99.9	0.70			
	23-DMB	153.1	1.07			
	2-MP	1088.2	7.58			
	3-MP	304.7	4.21			
	NHEXANE	2352.9	16.39			
	MCP	1040.5	7.25			
	22-DMP	Ο.Ο	0.00			
	24-DMP	96.7	0.67			
	223-TMB	15.7	0.11			
	CHEXANE	962.8	6.76		•	
	ss-DMP ,	0.0	0,00			
	11-DMCP	0.0	0.00			·
	2-MHEX ,	799.0	5.57			
	23-DMP ,	377.3	2.63		•	
	3-MHEX ,	733.9	s			
	1C3-DMCP	172.1	1.20			
	T COD THAT COL.	A Z A H	.i. =			
		TOTAL PPB	S NORM PERCENT	SIG COMP RATIOS		
	ALL COMP GASOLINE NAPHTHENE C6-7	14354	. 25.35	C1/C2 1.58 A /D2 6.01 C1/D2 3.62 CH/MCP 0.93 PENT/IPENT,	1.83	
		PPB	NC	RM PERCENT		
	MCP	1040.5		95 <b>.</b> 9		
	CH	969.8		33.S		
	MCH	886.8		30.6		
	TOTAL	2897.1		100.0		
	PARAFFIN		2.416 31.873			

#### 05 ÁUG 83

2655K (	AUSTRALIA,	WHITING-	1, GIPPS	LAND BASI	IN, 2000	0-2015 M	
	TOTA PPB		ORM CENT		•	TOTAL PPB	NORM_ PERCENT
METHANE	Ο.			173-1	DMCP	158.0	0.35
ETHANE	Q_(	0		172-1	MCP	108.1	0.24
PROPANE	1315.			3-EPB	ENT	Ο.Ο	0.00
IBUTANE	1510.		38	224-7	rmp	0.0	0.00
NBUTANE	1727.			NHEPT	TANE	1356.8	З.ОЗ
IPENTAN			44	102-1	OMCP	4.9	0.01
NPENTAN				MCH		712.9	1.59
22-DMB	121.						
CPENTAN							
23-DMB	486.'						
2-11P	3683.1						
3-MP	16618.						
NHEXANE	6128.						
MCP	1367,:						
22-DMP	O.,		•				
24-DMP	130.						
223-TMB							
CHEXANE	791.						
33-DMP							
11-DMCP							
2-MHEX			51 -				
23-0MP .							
3-MHEX							
1C3-DMCF			23				
			NORM ERCENT	SIG COMP	RATIOS		
ALL (	- nac	46051.		C1/C2	1.25		
GASOL		44736.		A /D2	13.47		
	THENES		7.90	C1/D2	3.92		
06-7			27.70	CH/MCP	0.58		
00-7		i i i i i i i i i i i i i i i i i i i	6/s/9	PENT/IPE		1.38	
		PPB	NUR	M PERCENT	r		
MCP	1361		1 1 1 1 1	47.6	•		•
CH		1.5		27.6			
MCH		2.9		24.8			
TOTAL				100.0			
PARAF	FIN INDEX	1	3.333				
PARAF	FIN INDEX	2 23	8.616				

#### 

AUG

METHANE ETHANE PROPANE IBUTANE NEUTANE IPENTANE 22-DMB CPENTANE 23-DMB 2-MP 3-MP NHEXANE MCP 22-DMP 24-DMP 24-DMP 223-TMB CHEXANE 33-DMP, 11-DMCP 2-MHEX, 23-DMP, 3-MHEX, 3-MHEX, 1C3-DMCP	TOTAL PPB 0.0 46.5 74.9 106.6 285.2 354.3 15.9 29.7 56.7 404.1 218.8 638.8 318.9 0.0 25.5 3.8 277.9 0.0 25.5 3.8 277.9 0.0 0.0 203.5 76.1 185.7 52.0	NORM PERCENT 1.68 2.39 6.38 7.93 0.36 0.67 1.27 9.04 4.90 14.30 7.14 0.00 0.57 0.09 6.22 0.09 6.22 0.00 0.55 1.70 4.16 1.16	1TS-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 72.5 63.6 0.0 492.0 4.0 507.2	NORM PERCENT 1.42 0.00 0.00 11.01 0.09 11.35
ς.	TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
ALL_COMP GASOLINE NAPHTHENES C6-7	4514. 4468. 3 1326. 2921.	29.67	C1/C2 1.93 A /D2 6.09 C1/D2 5.32 CH/MCP 0.87 PENT/IPENT,	1.24	
MCP CH MCH TOTAL	PPB 318.9 277.9 507.2 1104.0	NOI	RM PERCENT 28.9 25.2 45.9 100.0	•	
PARAFFIN I PARAFFIN I		2.069 25.487			

72655M

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 2030-2045 M

ETHANE 0.0 1T2-EMCP 69.8 1 PROPANE 284.4 3-EPENT 0.0 0 IBUTANE 138.4 2.39 224-TMP 0.0 0 IBUTANE 745.4 12.87 NHEPTANE 391.9 4 IPENTANE 475.1 8.20 1C2-DHCP 5.5 0 NFENTANE 784.2 13.54 MCH 657.2 11 CPENTANE 47.2 0.81 22-DMB 12.2 0.21 CPENTANE 47.2 0.81 23-DMB 56.7 0.98 24-MP 197.1 3.40 NHEXANE 624.5 10.78 MCP 334.4 5.77 22-DMP 0.0 0.00 24-DMP 19.3 0.33 223-TMB 3.6 0.06 CHEXANE 329.5 5.69 33-DMP, 0.0 0.00 24-DMP, 0.0 0.00 24-DMP, 164.9 2.88 23-DMP, 67.3 1.16 3-MHEX, 154.9 2.67 IC3-DMCP 53.4 0.92 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 6078. C1/C2 2.11 GASOLINE 5793. A /D2 6.56 NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3			NORM PERCENT			TOTAL PPB	NORM PERCENT
PROPANE       284.4       3-EPENT       0.0       0         IBUTANE       138.4       2.39       224-TMP       0.0       0         NBUTANE       745.4       12.87       NHEPTANE       391.9       4         IPENTANE       745.4       12.87       NHEPTANE       391.9       4         IPENTANE       745.4       12.87       NHEPTANE       391.9       4         IPENTANE       745.2       13.54       MCH       657.2       11         22-DMB       12.2       0.21       2-DMCP       5.5       0         23-DMB       56.7       0.98       2-MP       374.8       6.47         23-DMB       56.7       0.98       2-MP       374.8       6.47         23-DMB       56.7       0.98       2-MP       374.8       6.47         23-DMP       0.0       0.00       24-DMP       197.1       3.40         NMEXANE       624.5       10.78       40       40         223-DMP       0.0       0.00       223-DMP       0.0       0.00         23-DMP,       0.0       0.00       0.00       2.47       10.5         PPB       PERCENT       S16	THANE						1.45
IBUTANE       138.4       2.39       224-TMP       0.0       0         NBUTANE       745.4       12.87       NHEPTANE       391.9       6         IPENTANE       475.1       8.20       1C2-DHCP       5.5       0         NPENTANE       784.2       13.54       MCH       657.2       11         22-DMB       12.2       0.21       0.81       23-DMB       56.7       0.98         23-DMB       56.7       0.98       34.4       5.77       22-DMP       0.60       0.00         23-DMB       56.7       0.98       34.4       5.77       22-DMP       0.0       0.00         24-DMP       197.1       3.40       0.33       223-TMB       3.6       0.06         CHEXANE       329.5       5.69       33-DMP       0.0       0.00       24-DMP       19.3       0.33         223-DMP       0.0       0.00       0.00       1-DMCP       0.0       0.00         23-DMP       0.0       0.00       0.00       2.88       23-DMP       67.3       1.16         3-MHEX       154.9       2.67       1.12       2.11       3.16       3.16         GASOLINE       579.3	HANE			1T2-DM	CP		1.21
NBUTANE         745.4         12.87         NHEPTANE         391.9         4           IPENTANE         475.1         8.20         1C2-DHCP         5.5         0           NPENTANE         784.2         13.54         MCH         657.2         11           CPENTANE         784.2         0.21         657.2         11           CPENTANE         47.2         0.81         7         12           23-DMB         56.7         0.98         7         7           2-MP         374.8         6.47         7         7           3-MP         197.1         3.40         7         7           NHEXANE         624.5         10.78         7         7           MCP         334.4         5.77         7         7           22-DMP         0.0         0.00         1         7           33-DMP         0.0         0.00         1         10           11-DMCP         0.0         0.00         1         10           23-DMP         67.3         1.16         16         16           3-MHEX         154.9         2.67         102         4.56           GASOLINE         5793.	(OPANE	284.4		3-EPEN	Т	0.0	O , OO
IPENTANE       475.1       8.20       1C2-DMCP       5.5       0         NPENTANE       784.2       13.54       MCH       657.2       11         22-DMB       12.2       0.21       0.21       12       12         CPENTANE       47.2       0.81       23-DMB       56.7       0.98         23-DMB       56.7       0.98       2-MP       374.8       6.47         3-MP       197.1       3.40       NHEXANE       624.5       10.78         MCP       334.4       5.77       22-DMP       0.0       0.00         24-DMP       19.3       0.33       23-DMP,       0.0       0.06         CHEXANE       329.5       5.69       33-DMP,       0.0       0.00         23-DMP,       0.0       0.00       0.00       2.47       0.53       2.47         103-DMCP       0.0       0.092       2.53       4.0.92       2.51       3.4       0.92         TOTALS NORM SIG COMP RATIOS         PPB       PECENT       A /D2 & 6.56       3.4       3.5         ALL COMP       6078.       C1/C2 2.11       3.4       3.6         APD2       6.54       3.13 <t< td=""><td>UTANE</td><td>138.4</td><td>2.39</td><td>224-TM</td><td>P</td><td>O"Ö</td><td>0.00</td></t<>	UTANE	138.4	2.39	224-TM	P	O"Ö	0.00
NPENTANE         784.2         13.54         MCH         657.2         11           22-DMB         12.2         0.21         0.81         12         11           CPENTANE         47.2         0.81         11         11         11           23-DMB         56.7         0.98         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11	UTANE	745.4	12.87	NHEPTA	NE	391.9	6.77
22-DMB       12.2       0.21         CPENTANE       47.2       0.81         23-DMB       56.7       0.98         2-MP       374.8       6.47         3-MP       197.1       3.40         NHEXANE       624.5       10.78         MCP       334.4       5.77         22-DMP       0.0       0.00         24-DMP       197.3       0.33         223-TMB       3.6       0.06         CHEXANE       329.5       5.69         33-DMP,       0.0       0.00         24-DMP       10.0       0.00         24-STMB       3.6       0.04         CHEXANE       329.5       5.69         33-DMP,       0.0       0.00         23-DMP,       0.0       0.00         24-DMCP       0.0       0.00         23-DMP,       47.3       1.16         3-MHEX,       154.9       2.67         1C3-DMCP       53.4       0.92         ALL COMP       6078.       C1/C2       2.11         GASOLINE       5793.       A /D2       4.56         NAPHTHENES       1581.       27.29       C1/D2       7.45<	ENTANE .	475.1	8.20	1C2-DH	CP	5,5	0.09
CPENTANE       47.2       0.81         23-DMB       56.7       0.98         2-MP       374.8       6.47         3-MP       197.1       3.40         NHEXANE       624.5       10.78         MCP       334.4       5.77         22-DMP       0.0       0.00         24-DMP       19.3       0.33         223-TMB       3.6       0.06         CHEXANE       329.5       5.69         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         23-DMP       47.3       1.16         3-MHEX       164.9       2.88         23-DMP       47.3       1.16         3-MEP       53.4       0.92         XIC3-DMCP       53.4       0.92         XALL COMP       6078.       C1/C2       2.11         ALL COMP       6078.       C1/D2       7.45         C6-7       2962.       51.13       A /D2       6.56         NAPHTHENES       1581.       27.29       C1/D2       7.45         C6-7       2962.       51.13       CH/MCP       0.99         PENT/IPENT,       1.45	ENTANE	784.2	13.54	MCH		657.2	11.34
23-DMB 56.7 0.98 2-MP 374.8 6.47 3-MP 197.1 3.40 NHEXANE 624.5 10.78 MCP 334.4 5.77 22-DMP 0.0 0.00 24-DMP 19.3 0.33 223-TMB 3.6 0.06 CHEXANE 329.5 5.69 33-DMP , 0.0 0.00 11-DMCP 0.0 0.00 2-MHEX , 166.9 2.88 23-DMP , 67.3 1.16 3-MHEX , 154.9 2.67 1C3-DMCP 53.4 0.92 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 6078. C1/C2 2.11 ALL COMP 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.45	-DMB	12.2	0.21				
2-MP 374.8 6.47 3-MP 197.1 3.40 NHEXANE 624.5 10.78 MCP 334.4 5.77 22-DMP 0.0 0.00 24-DMP 19.3 0.33 223-TMB 3.6 0.06 CHEXANE 329.5 5.69 33-DMP , 0.0 0.00 11-DMCP 0.0 0.00 2-MHEX , 164.9 2.88 23-DMP , 67.3 1.16 3-MHEX , 154.9 2.67 1C3-DMCP 53.4 0.92 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 6078. C1/C2 2.11 A /D2 6.56 NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT	ENTANE	47.2	0.81				
3-MP       197.1       3.40         NHEXANE       624.5       10.78         MCP       334.4       5.77         22-DMP       0.0       0.00         24-DMP       19.3       0.33         223-TMB       3.4       0.00         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         23-DMP       67.3       1.16         3-MHEX       154.9       2.67         1C3-DMCP       53.4       0.92         TOTALS NORM PERCENT         ALL COMP       6078.       C1/C2       2.11         GASOLINE       5793.       A /D2       6.56         NAPHTHENES       1581.       27.29       C1/D2       7.45         C6-7       2962.       51.13       CH/MCP       0.99         PENT/IPENT,       1.65         PEB         MCP       334.4       25.3 <td>-DMB</td> <td>56.7</td> <td>0.98</td> <td></td> <td></td> <td></td> <td>•</td>	-DMB	56.7	0.98				•
NHE XANE       624.5       10.78         MCP       334.4       5.77         22-DMP       0.0       0.00         24-DMP       19.3       0.33         223-TMB       3.4       0.06         CHEXANE       329.5       5.69         33-DMP,       0.0       0.00         11-DMCP       0.0       0.00         2-MHEX,       164.9       2.88         23-DMP,       67.3       1.16         3-MHEX,       154.9       2.67         1C3-DMCP       53.4       0.92         TOTALS NORM PERCENT         ALL COMP       6078.       C1/C2       2.11         ALL COMP       6078.       C1/D2       7.45         C6-7       2962.       51.13       CH/MCP       0.99         PENT/IPENT,       1.45         PEB         MCP       334.4       25.3	MP	374.8	6.47				
MCP       334.4       5.77         22-DMP       0.0       0.00         24-DMP       19.3       0.33         223-TMB       3.6       0.06         CHEXANE       329.5       5.69         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         2-MHEX       166.9       2.88         23-DMP       67.3       1.16         3-MHEX       154.9       2.67         1C3-DMCP       53.4       0.92         TOTALS PPB         PB       NORM PERCENT         ALL COMP       6078.       C1/C2       2.11         GASOLINE       5793.       A /D2       4.56         NAPHTHENES       1581.       27.29       C1/D2       7.45         C6-7       2962.       51.13       CH/MCP       0.99         PENT/IPENT,       1.45         MCP       334.4       25.3	MP	197.1	3.40				
22-DMP       0.0       0.00         24-DMP       19.3       0.33         223-TMB       3.6       0.06         CHEXANE       329.5       5.69         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         2-MHEX       166.9       2.88         23-DMP       67.3       1.16         3-MHEX       154.9       2.67         1C3-DMCP       53.4       0.92         TOTALS PERCENT         ALL COMP       6078.         GASOLINE       5793.         NAPHTHENES       1581.         27.29       C1/C2       2.11         A/D2       6.56         MAPHTHENES       1581.       27.29         C1/D2       7.45         C6-7       2962.       51.13         CH/MCP       0.99         PENT/IPENT,       1.45	EXANE	624.5	10.78				
24-DMP 19.3 0.33 223-TMB 3.6 0.06 CHEXANE 329.5 5.69 33-DMP , 0.0 0.00 11-DMCP 0.0 0.00 2-MHEX , 166.9 2.88 23-DMP , 67.3 1.16 3-MHEX , 154.9 2.67 1C3-DMCP 53.4 0.92 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 6078. GASOLINE 5793. NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3	P	334.4	5.77				
223-TMB       3.6       0.06         CHEXANE       329.5       5.69         33-DMP       0.0       0.00         11-DMCP       0.0       0.00         2-MHEX       166.9       2.88         23-DMP       67.3       1.16         3-MHEX       154.9       2.67         1C3-DMCP       53.4       0.92         TOTALS PPB PERCENT         ALL COMP GO78.       C1/C2         GASOLINE       5793.         NAPHTHENES       1581.         27.29       C1/D2       7.45         C6-7       2962.       51.13         CH/MCP       0.99         PENT/IPENT,       1.45	-DMP	0.0					
CHEXANE 329.5 5.69 33-DMP, 0.0 0.00 11-DMCP 0.0 0.00 2-MHEX, 166.9 2.88 23-DMP, 67.3 1.16 3-MHEX, 154.9 2.67 1C3-DMCP 53.4 0.92 TOTALS NORM SIG COMP RATIOS PPB PERCENT C1/C2 2.11 A /D2 6.56 GASOLINE 5793, NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3	-DMP	19.3	0.33				
33-DMP ,       0.0       0.00         11-DMCP       0.0       0.00         2-MHEX ,       164.9       2.88         23-DMP ,       67.3       1.16         3-MHEX ,       154.9       2.67         1C3-DMCP       53.4       0.92         TOTALS PPB PERCENT         ALL COMP 6078.       C1/C2 2.11         GASOLINE S793.       A / D2 6.56         NAPHTHENES 1581.       27.29         C6-7       2962.         51.13       CH/MCP 0.99         PENT/IPENT,       1.65         MCP       334.4	S-TMB	3.6	0.06				
11-DMCP 0.0 0.00 2-MHEX, 166.9 2.88 23-DMP, 67.3 1.16 3-MHEX, 154.9 2.67 1C3-DMCP 53.4 0.92 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 6078. GASOLINE 5793. NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.45 PPB NORM PERCENT MCP 334.4 25.3	EXANE	329.5	5.69				
2-MHEX , 164.9 2.88 23-DMP , 67.3 1.16 3-MHEX , 154.9 2.67 1C3-DMCP 53.4 0.92 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 6078. GASOLINE 5793. NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3	-IMP ,	0.0	0.00				
23-DMP , 67.3 1.16 3-MHEX , 154.9 2.67 1C3-DMCP 53.4 0.92 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 6078. GASOLINE 5793. NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3	-DMCP	0 " O	0.00				
3-MHEX ,       154.9       2.67         1C3-DMCP       53.4       0.92         TOTALS NORM SIG COMP RATIOS PERCENT         ALL COMP       6078.       C1/C2       2.11         ALL COMP       6078.       A /D2       6.56         GASOLINE       5793.       A /D2       6.56         NAPHTHENES       1581.       27.29       C1/D2       7.45         C6-7       2962.       51.13       CH/MCP       0.99         PENT/IPENT,       1.65         MCP       334.4       25.3	MHEX ,	166.9	2.88				
3-MHEX ,       154.9       2.67         1C3-DMCP       53.4       0.92         TOTALS NORM SIG COMP RATIOS PERCENT         ALL COMP       6078.       C1/C2       2.11         ALL COMP       6078.       A /D2       6.56         GASOLINE       5793.       A /D2       6.56         NAPHTHENES       1581.       27.29       C1/D2       7.45         C6-7       2962.       51.13       CH/MCP       0.99         PENT/IPENT,       1.65         MCP       334.4       25.3	-DMP ,	67.3	1.16				
1C3-DMCP       53.4       0.92         TOTALS PPB       NORM PERCENT       SIG COMP RATIOS PERCENT         ALL COMP GASOLINE GASOLINE NAPHTHENES       6078. 5793. 1581. 27.29       C1/C2 A /D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2 C1/D2	MHEX ,		2.67				
PPB         PERCENT           ALL COMP         6078.         C1/C2         2.11           GASOLINE         5793.         A /D2         6.56           NAPHTHENES         1581.         27.29         C1/D2         7.45           C6-7         2962.         51.13         CH/MCP         0.99           PPB         NORM PERCENT         1.65           MCP         334.4         25.3	3-BMCP	53.4	0.92				
PPB         PERCENT           ALL COMP         6078.         C1/C2         2.11           GASOLINE         5793.         A /D2         6.56           NAPHTHENES         1581.         27.29         C1/D2         7.45           C6-7         2962.         51.13         CH/MCP         0.99           PPB         NORM PERCENT         1.65           MCP         334.4         25.3			·				
ALL COMP 6078. C1/C2 2.11 GASOLINE 5793. A /D2 6.56 NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3				SIG COMP R	ATIUS		·
GASOLINE 5793. A /D2 6.56 NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3			r cruccia i				
GASOLINE 5793. A /D2 6.56 NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3	ALL COMP	A078		r1/r2 ·	> 11		
NAPHTHENES 1581. 27.29 C1/D2 7.45 C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3			۵				
C6-7 2962. 51.13 CH/MCP 0.99 PENT/IPENT, 1.65 PPB NORM PERCENT MCP 334.4 25.3			97 99				
PPB NORM PERCENT MCP 334.4 25.3							
PPB NORM PERCENT MCP 334.4 25.3		stin of his star it	·' .a. a'			1.45	
PPB NORM PERCENT MCP 334.4 25.3				I LATTI DI BATT			
		PPB	NO	RM PERCENT			
	MCP			25.3			
CH 329.5 24.9	CH	329.5		24.9			
NCH 657.2 49.7		657.2		49.7			
TOTAL 1321.1 100.0	TOTAL.	1321.1		100.0			
PARAFFIN INDEX 1 1.553 PARAFFIN INDEX 2 19.845					•		

72

#### OS AUG 83

726550

6

Ç.

<u>____</u>

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 2090-2105 M

E P H Z H Z N C N N N D N H Z N N N N O N H N N N N O N H N N N N D N H N N N N N N N N N N N	BUTANE BUTANE PENTANE 2-DMB PENTANE 3-DMB -MP -MP HEXANE 2-DMP 4-DMP 23-TMB HEXANE 3-DMP , 1-DMCP -MHEX , 3-DMP , -MHEX ,	0.0 2136.8 11216.8 8723.7 16483.0 14420.8 14333.1 334.5 1167.8 1316.1 8970.4 3795.2 11887.2	NORM PERCENT 7.36 13.90 12.16 12.09 0.28 0.98 1.11 7.56 3.20 10.02 4.55 0.00 0.27 0.05 5.22 0.00 0.27 0.05 5.22 0.00 0.00 2.04 1.07 1.81 0.61	1T3-DMCP 1T2-DMCP 3-EPENT 224-TMP NHEPTANE 1C2-DMCP MCH	TOTAL PPB 817.9 1322.0 0.0 7436.7 103.4 8957.0	NORM PERCENT 0.69 1.11 0.00 0.00 6.27 0.09 7.55
		TOTALS PPB	: NORM PERCENT	SIG COMP RATIOS		
	ALL COMP GASOLINE NAPHTHENI C6-7	118597.	20.81	C1/C2 2.10 A /D2 8.99 C1/D2 8.18 CH/MCP 1.15 PENT/IPENT,	0.99	· •
	MCP CH MCH TOTAL	PPB 5394.8 6189.9 8957.0 20541.7		RM PERCENT 26.3 30.1 43.6 100.0		
	PARAFFIN PARAFFIN		1.597 23.764			

2655S AUST	RALIA, WHI	TING-1, GIFF	PSLAND BASIN, 212	:0-2135 M	•
	TOTAL PPB	NORM PERCENT		TOTAL. PPB	NORM PERCENT
METHANE	0.0		1T3-DMCP	675.3	1.37
ETHANE	0.0		1T2-DMCP	1034.4	2.10
PROPANE	425.6		3-EPENT	O.O	0.00
IBUTANE	1215.2	2.47	224-TMP	Ο.Ο	0.00
NBUTANE	2325.6	4.72	NHEPTANE	4893.3	9,93
IPENTANE	1765.9	3.58	1C2-DMCP	107.9	0.22
NPENTANE	2712.4	5.50	MCH	8450.8	17.15
22-DMB	80.2	0.16			
CPENTANE	516.4	1.05			
23-DMB	538.1	1.09			•
2-MP	3630.9	7.37			
3-MP	1707.0	3,46			
NHEXANE	5685.9	11.54			
MCP	3824.3	7.76			
22-DMF	0.0	0.00			
24-DMP	183.5	0.37			
223-TMB	28.9	0.06			
CHEXANE	5253.5	10.66			
33-DMP ,	0.0	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	1624.9	3.30			
23-DMP ,	967.9	1.96			
S-MHEX ,	1467.2	2.98			
1C3-DMCP	584.4	1.19			
	TOTA		SIG COMP RATIOS	i	•
ALL COMP	4969	0	C1/C2 2.46		
GASOLINE		•	A /D2 7.21		
NAPHTHEN			C1/D2 10.45		
C6-7	3478		CH/MCP 1.37		
	·····	abauαt c'na ti'nan's'	PENT/IPENT,	1.54	
	PPB	NC	ORM PERCENT		
MCP'	3824.3		21.8		
CH	5253.5		30.0		
MCH	8450.8	·	48.2		
TOTAL	17528.6		100.0		
PARAFFIN	INDEX 1	1.348			
PARAFFIN	INDEX 2	19.611			

		TOTA PPI		NORM PERCENT				TOTAL PPB		NORM PERCENT	I-
MET	HANE		.0	I hat the hard I	1 7	13-TI	MCP	· 389.7		0.96	•
ETH		о. О.				2-D		684.9		1.69	
		935.				-EPE		0.0		0.00	
	PANE			~ / /		24-T		0.0		0.00	
	TANE	1079.		2.65							
	TANE	3267.		8.05		HEPT		2783.3		6.86	
	NTANE	3798.		9.35		:2-D	1*])(_, <del> ~</del> '	64.2		0.16	
	NTANE	4692.		11.56	MC	.1-1		5590.3		13.77	
22-1		99.		0.25							
	NTANE	522.		1.29							
23-)		447.		1.10							
2-M		2641.		6.50							
3-MI	<b></b> t	1320.		3.25							
NHE	XANE	4182.	<b>.</b> 4	10.30							
MCP		2976.	28	7.33							
22-1	DMF	О,	" Ŭ	0.00							
24-1	OMP	76.	.2	0.19							
223	-тмв	19.	. 1	0.05							
	XANE	3473.		8.56							
	DMP ,		. O	0.00							
•••••••	INCP	0.		0.00							
	HEX,	820,		2.02							
	OMP ,	479.		1.18							
	HEX ,	793.		1.95							
	-DMCP	398.		0,98							
			TOTALS PPB	NORM PERCENT	SIG CO	MP	RATIOS				
	AL 1										
	ALL COMP		41535.	9	C1/C2						
	GASOLINE		40600.	ant, 24 antis, 1984,	A /D2		8.78				
	NAPHTHENE	:5	14100.		C1/D2		12.47	•			
Ę	36-7		22733.	55.99	CH/MC		1.17				
					PENT/	'IPE	NT,	1.24	/		
			PPB	NO	RM PERC	ENT					
	1CP		76.8		24.7						
	CH		73.6	×	28.8						
	4CH		20.3		46.4						
-	TOTAL	1204	40.7		100.0						
	PARAFFIN			1.096							
F	PARAFFIN	INDEX	< 2	18.057							

726550

ź

ť,

Č,

с. С.

AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 2150-2165 M
· · ·	TOTAL PPB	NORM PERCENT	·	TOTAL PPB	NORM. PERCENT
METHANE	0.0		1T3-DMCP	150.6	1.22
ETHANE	0.0		1T2-DMCP	262.2	2.12
PROPANE	113.4		3-EPENT	Ο.Ο	0.OO
IBUTANE	168.0	1.36	224-TMP	Ο.Ο	0.00
NBUTANE	413.6	3.35	NHEPTANE	1298.8	10.51
IPENTANE	862.7	6.98	1C2-DMCP	38.2	0.31
NPENTANE	966.4	7.82	MCH	2341.3	18.95
22-DMB	35.2	0.28	_		
CPENTANE	81.2	0.66			
23-DMB	128.8	1.04			
2-MP	864.1	6.99			
2-MP		3.48			• •
	430.2				
	1376.1	11.14			
MCP	797.3	6.45			
22-DMP	0.0	0.00			
24-DMP	41.8	0.34			
223-TMB	11.0	0.09			
CHEXANE	977.4	7.91			
S3-DMP,	0.0	0.00			
11-DMCP	0.0	0.00			
2-МНЕХ ,	383.6	3.10 -			
23-DMP ,	219.0	1.77			
з-MHEХ,	372.1	3.01			
1C3-DMCP	136.4	1.10			
	TOTAL PPB	_S NORM PERCENT	SIG COMP RATIOS		
ALL COMP	12470	'n	C1/C2 2.67		
GASOLINE	12356		A /D2 7.19		
NAPHTHENES			C1/D2 9.95		
C6-7	9 4700 8404		CH/MCP 1.23		
	6.00 °T \27 %	่∦ แม่ใหม่สาม/ หม่≀	PENT/IPENT,	1.12	
	PPB	NC	RM PERCENT		
MCP	797.3		19.4		
CH	977.4		23.7		•
MCH	2341.3		56.9		
TOTAL	4116.0		100.0		
PARAFFIN ]	INDEX 1	1.376			·
PARAFFIN 1	NDEX 2	21.149			

Ý

.

2655Y	AUSTRAL	IA, WH	ITING-1	, GIP	PSLAN	D BAS	31N, 22	10-2225	М		
METHANE ETHANE		0TAL PPB 0.0 0.0	NOI PERCI			1T2-	DMCP DMCP	TOTAL PPB 2660.8 5809.1	}	NORM PERCEN 0.91 1.99	
PROPANE		36.2	2.50			S-EF		0.0		0.00	
		01.0	2.00 4.11					0.0 37326.2		0.00 12.76	
IPENTAN		13.2	4.3				DMCP	0.0		0.00	
NPENTA		91.7	5.8			MCH		62554.5		21.39	
22-DMB	6	95.9	0.24	ŀ							
CPENTA		0.O	O . O(								
23-DMB		42.7	0.39								
2-MP o Mo		75.8 06.7	7.90 3.22			,					
3-MP NHEXANE		00.9									
MCP		10.7	5.47								
22-DMP		0.0	0.00								•
24-DMP	3	55.1	O.12	2							
223-TME		65.7	0 <b>.</b> 04								
CHEXANE		15.8	8.52								
33-DMP		0.0	0.00								
11-DMCF 2-MHEX		0.0 63/2	0.00 3.27								
23-DMP		77.7	1.50								
3-MHEX		91.9	3.07								
1C3-DMC	:P 18	93.1	0.65								
		TOTA		)RM (CENT	SIG	COMP	RATIO	3			
			· / ()	(							
ALL	COMP	29389	28.		C1.	/02	3.68				
	I.INE	29246				/02	7.91				
	THENES	11384		8.93		/02	10.79				
C6-7	\$	20842	24. 71	.27		MCP	1.56	a			
					F'E1	VT/IP	ENI,	1.34			
		PPB		Nľ	ORM PI	FRCEN	т				
MCP	1.	6010.7			15.		•				
CH		4915.8			24.					•	
MCH		2554.5			60,						
TOTA	н. 10)	3481.0			100.	, ()					
PARA	FEIN IN	DEX 1	1.	791							
	FFIN IN			610							

05 ÁUG 83

72655Y

(

****____

ر م

Ę

دي، محمو

.

	TOTAL PPB	NORM	• •	TOTAL PPB	NORM PERCEN
METHANE	0.0		1T3-DMCP	52.8	1.20
ETHANE	208.5		1T2-DMCP	52.7	1.20
PROPANE	144.7		3-EPENT	0.0	0.00
IBUTANE	244.6	5,56	224-TMP	0.0	0,00
NBUTANE	465.5	10.58	NHEPTANE	240.2	5.46
IPENTANE	608.9	13.84	1C2-DMCP	0.0	ō. 00
NPENTANE	514.5	11.70	MCH	288.6	6.56
22-DMB	8.1	0.18	1 1 2 1 1	and the fact of the fact	
CPENTANE	39.8	0.91			
23-DMB	55.6	1.26			
2-MP	392.3	8.92			
3-MP	172.4	3.92			
NHEXANE	404.5	9.20			
MCP	322.8	7.34			
22-DMP	0.0	0.00			
24-DMP	10.4	0.24			
223-TMB	0.0	0. ÕO			
CHEXANE	183.8	4.18			
33-DMP ,	0.0	0.00			
11-DMCP	Ô.Ô	<u>, oo</u>			
2-MHEX ,	145.5	3.34			
23-DMP ,	47.7	1.08			
З-ИНЕХ,	100.9	2.29			
103-DMCP	47.4	t.os			
	TOTAL PPB	S NORM PERCENT	SIG COMP RATIOS		
ALL COMP	4752		C1/C2 1.30		
GASOLINE	4399		A /D2 6.39	•	
· NAPHTHENE			C1/D2 6.12		
C6-7	1897	. 43.13	CH/MCP 0,57		
			PENT/IPENT,	<b>0.</b> 84	
	PPB	NC	RM PERCENT		
MCP	322.8		40.6		
CH	183.8		23.1	•	
MCH	288.4		36.3		
TOTAL	795.2		100.0		
PARAFFIN	INDEX 1	1.612			

ţ

.

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCEN
METHANE	0.0		1T3-DMCP	13.6	0.64
ETHANE	62.8		1 T2-DMCP	21.1	1.00
PROPANE	161.4		3-EPENT	0.0	0.00
IBUTANE	89.1	4.21	224-TMP	Õ,Õ	0.00
NBUTANE	283.4	13.39	NHEPTANE	93.6	4.42
IPENTANE	234.3	11.07	1C2-DMCP	0,0	0.00
NPENTANE	302.7	14.30	MCH	101.9	4
22-DMB	4,O	0.19		44 '' 44 BP 8'	i il "an" that
CPENTANE	32.8	1.55			
23-DMB	23.0	1.09			
2-MP	154.5	7.30			
3-MP	73.0	3.45			
NHEXANE	209.2	9.89			
1CP	159.2	7.52			
22-DMP	0.0	0.00			
24-DMP	110.6	5.22			
223-TMB	0.0				
CHEXANE		0.00 5.22			
BS-DMP ,	110.6 0.0				
LI-DMCP	0.0	0.00			
2-MHEX ,	34.2	0.00 1.62			
23-DMP,	17.5	0.83			
B-MHEX ,	30.7				
LC3-DMCP	17.2	1.45			
	1. / = 21.	0.81	-		
	TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
ALL COMP	2341.		C1/C2 1.17		
GASOL INE	2116.		A /D2 9.86		
NAPHTHENES		21.57	C1/D2 8.03		
C6-7	919.	43.44	CH/MCP 0.69		
			PENT/IPENT,	1.29	
	PPB	NO	RM PERCENT		
MCP	152.2		42.8		
CH	110.6		29.7		
MCH	101.9		27.4		
TOTAL	371.7		100.0	۵	
PARAFFIN I	NDEX 1	1.250		-	
	NDEX 2	21,260			

	TOTAL. PPB	NORM PERCENT		TOTAL PPB	NORM PERCEN
METHANE	Ö " Ö		1T3-DMCP	16.6	1.02
ETHANE	0 . Ŭ		1T2-DMCP	19.1	1.18
PROPANE	O "O		3-EPENT	0.0	O,OO
IBUTANE	Ο.Ο	000	224-TMP	0.0	0.00
NBUTANE	76.8	4.72	NHEPTANE	146.5	9.03
IPENTANE	100.1	6.17	102-DMCP	0.0	0,00
NPENTANE .	183.5	11.31	MCH	135.4	8.34
22-DMB	4.0	0.24			
CPENTANE	12.8	0.79			
23-DMB		1.43			
2-MP	169.1	10.42			
3-MP	88.2	5.44			
NHEXANE	231.2	14.24			
MCP	127.2	7.84			
22-DMP	0.0	0.00			
24-DMP	6.3	0.39			
223-TMB	0.0	0.00			
CHEXANE	101.5	6.26			
33-DMP ,	0.0	0.00			
11-0MCP	0.0	0.00			
2-MHEX ,	78.7	4.85			
23-DMP ,	27.8	1.71			
S-MHEX ,	54.0	3.33			
1C3-DMCP	21.1	1.30			
	TOTAL: PPB	8 NORM PERCENT	SIG COMP RATIOS		
ALL COMP	1623.		C1/C2 1.72		
GASOL INE	1623.		A/D2 6.99		
NAPHTHENES			C1/D2 5.84		
C6-7	965.	59.49	CH/MCP 0.80	4	
			PENT/IPENT,	1.83	
	PPB	NO	RM PERCENT		
MCP	127.2		34.9		
CH	101.5		27.9		
MCH	135.4		37.2		
TOTAL	364.1		100.0		
PARAFFIN I	NDEX 1	2.342			

ł

	TOTAL PPB	NORM PERCENT		•	TOTAL. PPB	NORM PERCENT
METHANE	0.0		1T3-D	MCP	0.0	0.00
ETHANE	78.1		1T2-D	MCP	8.4	0.70
PROPANE	43.9		3-EPE	NT	O "Ō	0.00
IBUTANE	11.6	0.96	224-T		0 <b>.</b> 0	0.00
NBUTANE	78.3	6.46	NHEPT		336.5	27.75
IPENTANE	35.2	2.20	102-0	MCP	6.8	0.56
NPENTANE	130.9	10.79	MCH		100.9	8.32
22-DMB	1.4	0.11				
CPENTANE 23-DMB	o.y 6.5	0.49 0.54				
25-MP	6.9 55.9	0.04 4.61				
2-MP	29.9	2.47				
NHEXANE	145.9	12.03				
	44.5	3.67				
22-DMP	0.0	0.00				
24-0MP	7.7	0.63				
223-TMB	0.0	0.00				
CHEXANE	31.5	2.63				
33-DMP ,	0.0	0.00				
11-DMCP	õ.Õ	0.00				
2-MHEX ,	82.1	6.77				
23-DMP ,	14.7	1.22				
з-МНЕХ ,	70.8	5.84				
1C3-DMCP	6.5	0.54				
	TOTALS PPB	NORM PERCENT	SIG COMP	RATIOS		
ALL COMP	1334.		C1/C2	3.25		
GASOLINE	1213.		A 7D2	6.81	•	
NAPHTHENES			C1/D2	3.03		
C6-7	857.	70.67	CH/MCP PENT/IPE	0.72 NT,	3.72	
	PPB	NC	RM PERCENT			
MCP	44.5		25.1			•
CH	31.9		18.0			
MCH	100.9		56.9			
TOTAL.	177.3		100.0			
PARAFFIN I	NDEX 1	10.213				
PARAFFIN II		51.618				

	TOTAL	NORM		TOTAL	NOR
L	PPB	PERCENT		PPB	PERCE
METHANE	0.0		1T3-DMCP	2371.2	1.07
ETHANE	2017.2		1T2-DHCP	3551.1	1.61
PROPANE	13645.5		3-EPENT	Ο.Ο	0.00
IBUTANE	18329.1	8.29	224-TMP	0.0	0.00
NBUTANE	28592.4	12.94	NHEPTANE	9624.5	4.35
IPENTANE	32256.0	14.59	1C2-DHCP	321.6	0.15
NPENTANE	23808.0	10.77	NCH	13874.9	6.28
22-DMB		0.14			
CPENTANE	3256.2	1.47			
23-DMB	2104.4	0.95			
2-MP	21387.2	9.68			
3-MP	7659.0	3.47			
VHEXANE	15547.0	7.03			
1CP	14806.8	6.70			
22-DMP	0.0	0.00			
24-DMP	466.1	0.21			
223-TMB	57.5	0.03			
CHEXANE	9289.5	4.20			
83-DMP ,	Ο.Ο	0.00			
1-DMCP	Ο.Ο	0.00			
2-МНЕХ ,	4484.8	2.03			
23-DMP ,	2716.5	1.23			
з-мнех ,	3633.9	1.64			
.C3-DMCP	2556.0	1.16			
	TOTALS	NORM	SIG COMP RATIOS		
	PPB	PERCENT			
ALL COM			C1/C2 1.17		•
GASOLINE			A /D2 6.93		
NAPHTHE	NES 50027.		C1/D2 7.61		
C6-7	8330i.	37.69	CH/MCP 0.63		
			PENT/IPENT,	0.74	
	PPB	NO	RM PERCENT		
MCP	14806.8		39.0		
CH	9289.5		24.5		
MCH	13874.9		36.5		
TOTAL_	37971.2		100.0	_	
DADADET	N INDEX 1	0.958		-	

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCEN
METHANE	0.0		1TS-DMCP	210.7	1.17
ETHANE	193.0		1T2-DMCP	373.7	2.10
PROPANE	258.6		3-EPENT	0.0	0.00
IBUTANE	315.9	1.75	224-TMP	0.0	0.00
NBUTANE	1111.0	6.17	NHEPTANE	1428.4	7.93
IPENTANE	1419.2	7.88	1C2-DMCP	36.9	0.20
NPENTANE	1882.2	10.45	MCH	2784.2	15.46
22-DMB	42.2	0.23			
CPENTANE	173.4	0.96			
23-DMB	198.4	1.10			
2-11P	1226.1	6.81			
3-MP	619.2	3.44			
NHEXANE	1860.9	10.33			
MCP	1292.0	7.18			
22-DMP	0.O	Ó.OO			
24-DMP	46.0	0.26			
223-TMB	10.3	0.06			
CHEXANE	1618.9	8.99			•
SS-DMP ,	0.0	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	440.6	2.45			,
23-DMP ,	274.8	1.53			
з-мнех ,	431.6	2.40			
1C3-DMCP	204.5	1.14			
	TOTAL PPB	S NORM PERCENT	SIG COMP RATIOS		
ALL COMP	18458	_	C1/C2 2.28		
GASOLINE	18006		A /D2 7.62		
NAPHTHEN			C1/D2 11.22		
C6-7	11019		CH/MCP 1.25		
			PENT/IPENT,	1.33	
	PPB	NC	RM PERCENT		
MCP	1292.0		22.7		
CH	1618.9		28.4		
MCH	2784.2		48.9		ана. Стала стала ста Стала стала стал
TOTAL	5695.1		100.0		e
PARAFFIN	INDEX 1	1.099			
PARAFFIN	INDEX 2	18.378			

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	Ő, Ö		1T3-DMCP	9.9	0.72
ETHANE	148.0		1T2-DMCP	18.1	1.32
PROPANE	59.4		3-EPENT	0 " O	0.00
IBUTANE	32.5	2.36	224-TMP	Ŏ"Ŏ	0.00
NBUTANE	120.8	8.80	NHEPTANE	113.0	a.23
IPENTANE	105.9	7.71	1C2-DMCP	Ο.Ο	0.00
NPENTANE ·	182.7	13.31	MCH	155.3	11.31
22-DMB	3.1	0.23			
CPENTANE	9.O	0.65			
23-DMB	15.0	1.10			
2-MP	115.1	8,38			• •
3-MP	59.9	4.36			
NHEXANE	165.1	12.03			
MCP	80.1	5.83			
22-DMP	0.0	0.00			
24-DMP					
	6.7	0.49			
223-TMB	0.0	0.00			
CHEXANE	63.2	4.60			
SS-DMP ,	0.0	0.00	. ,		
11-DMCP	0.0	0.00			
2-MHEX ,	41.8	3.04			
23-DMP,	17.3	1.26			
S-MHEX ,	42.1	3.07			
1C3-DMCP	16.5	1.20			. •
	TOTAL PPB	.S [.] NORM PERCENT	SIG COMP RATIOS		
ALL COMP	1580	) _a	C1/C2 · 2.09		
GASOLINE	1373		A /D2 6.61		
NAPHTHENE:	3 352	2. 25.64	C1/D2 6.18		
C6-7	729	2. 53.10	CH/MCP 0.79	•	
			PENT/IPENT,	1.73	
	PPB	hir	ORM PERCENT		
MCP	80.1	1 11	26.8		
CH	63.2		21.2		
MCH	155.3		52.0		
TOTAL	228.6		100.0		
PARAFFIN ]	INDEX 1	1.887			
PARAFFIN 1	NHEX 2	23.686			

	TOTAL. PPB	NORM PERCENT		• •	TOTAL PPB	NORI PERČEI
METHANE	O . O		1 T 3 - I		91.0	1.46
ETHANE	262.3		1T2-I		61.9	1.00
PROPANE	100.3		3-EPE		0.0	0.00
IBUTANE	63.4	1.02	224-1		0.0	0.00
NBUTANE	306.2	4.93	MHEP.		1472.6	23.69
IPENTANE	261.6	4.21	102-1	IMCP	5.6	0,09
NPENTANE	529.1	8.51	MCH		740.4	11.91
22-DMB	4.9	O.OS				
CPENTANE	26.1	0.42				
23-0MB	32.4	0.52				
2-MP	291.4	4.69				
3-MP	144.1	2.32				
NHEXANE	752.8	12.11				
MCP	218.5	3.51				
22-DMP	O.O	Ô.OO				
24-DMP	41.3	0.67				
223-TMB	23	0.04				
CHEXANE	195.2	3.14				
33-DMP ,	7.8	0.13				
11-DMCP	0.0	0,00				
2-MHEX ,	459.9	7.40				
23-DMP ,	83.1	1.34				
S-MHEX,	371.0	5.97				
1C3-DMCP	54.2	0.87				
	TOTAL PPB	S NORM PERCENT	SIG COMP	RATIOS		
ALL COMP	6579		C1/C2	3.25		
GASOLINE	6217		A /D2	6.OO		
NAPHTHENE			C1/D2	3.78		
C6-7	4558	. 73.31	CH/MCP	0,89		
			PENT/IPE	NT,	2.02	
	PPB	NO	RM PERCENT			
MCP	218.5		18.9			· · ·
CH	195.2		16.9			
MCH	740.4		64.2			
TOTAL_	1154.1		100.0			
PARAFFIN		4.012				

Ĩ.

•

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCEN
METHANE	Ο.Ο		1T3-DMCP	35.1	1.29
ETHANE	24.9		1T2-DMCP	36.8	1,35
PROPANE IBUTANE	103.4 68.9	2.53	3-EPENT 224-TMP	0.0 0.0	0.00
NBUTANE	270.6	2.95	NHEPTANE	218.4	8.03
IPENTANE	264.4	9.72	1C2-DMCP	4.1	0.15
NPENTANE	322.8	11.87	ИСН		14.76
22-DMB	3,8	0.14			
CPENTANE	16.8	0.62			
53-DMB	24.5	0.90			
2-MP	185.2	6.81			
3-MP	25.2	3,50			
NHEXANE	268.7	9.88 			
MCP	146.5	5.38			
22-DMP	0.0	0.00			
24-DMP 223-TMB	9.0 0.0	0.33 0.00			
CHEXANE	128.1	4.71			
33-DMP ,	0.0	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	89.9	3.31			
23-DMP ,	32.8	1.21			
3-MHEX ,	69.0	2.54	· .		
1C3-DMCP	28.1	1.03	-		
	TOT: PPI		SIG COMP RATIOS	i .	
ALL COMF			C1/C2 2.47		
GASOLINE			A /D2 7.06		
NAPHTHEN	4ES / 146	97. <u>29.30</u>	C1/D2 8.98 CH/MCP 0.87		
C6-7	T ~+ C	8. 53.97	CH/MCP 0.87 PENT/IPENT,	1.22	
	PPB	NJ:	ORM PERCENT		
MCP	146.5		21.7		
CH	128.1		18.9		
HCH	401.5		59.4		
TOTAL	676.1		100.0		

Ę

	TOTAL. PPB	NORM		TOTAL PPB	NORM PERCEN
METHANE	0 . O		1T3-DMCP	185.1	1.17
ETHANE	111.7		1T2-DMCP	293.8	1.85
PROPANE	460.4		3-EPENT	0.0	0.00
IBUTANE	643.7	4.06	224-TMP	0.0	0.00
NBUTANE	1657.1	10.45	NHEPTANE	835.0	5.27
IPENTANE	2041.7	12.88	tC2-DMCP	29.5	0.19
NPENTANE .	1865.2	11.77	MCH	1698.9	10.72
22-DMB	23.6	0.15			
CPENTANE	173.4	1.09	,		
23-DMB	155.0	0.98			
2-MP	1358.0	8.57			
3-MP	560.1	3.53			
NHEXANE	1304.1	8.24			
MCP	1035.4	6.53			
22-DMP	0 . O	0.00			
24-DMP	23.4	0.15			
223-TMB	3.5	0.02			
CHEXANE	886.6	5.52			
33-DMP ,	0.0	0.00			
11-DMCP	0.0	0,00			
2-MHEX ,	368.2	2.32			
23-DMP ,	194.9	1.23			
3-MHEX ,	316.5	2.00			
1C3-DMCP	196.2	1.24			
	TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
ALL COMP	16423.		C1/C2 .1.70		
GASOLINE	15851.		A /D2 6.77		
NAPHTHENE			C1/D2 9.33		•
C6-7	7373.	46.52	CH/MCP 0.86 PENT/IPENT,	0.91	
	PPB	NO	RM PERCENT		
MCP	1035.4		28.6		* .
CH	886.6		24.5		
MCH	1698.9		46.9		
TOTAL	3620.9		100.0		
PARAFFIN PARAFFIN		1.014 16.784	•		

Ć

METHANE	PPB	NORM PERCENT		TOTAL PPB	. NORI PERCEN
permanent of the stress	0.0		1T3-DMCP	120.7	1.78
ETHANE PROPANE	38.6 14.4		1T2-DMCP 3-EPENT	191.2 0.0	2.82
IBUTANE	26.8	0.40	224-TMP	0.0	0.00
NBUTANE	SO.6	1.19	NHEPTANE	656.7	9.69
IPENTANE	321.3	4.74	102-DMCP	12.4	0.18
NPENTANE	493.2	7.28	MCH	865.8	12.78
22-DМВ	8.5	0.13			
CPENTANE	82.5	1.22			
23-DMB	72.7	1.07			
2-MP	627.0	9.25 4 of			
3-MP	285.4 813.5	4.21 12.00			
NHEXANE MCP	673.7	9.94			,
22-DMP	0.0	ó. 00			
24-0MP	20.3	0.30			
223-TMB	2.1	0.03			
CHEXANE	587.5	8.67			
33- <u>D</u> MP ,	O . O	0.00			
11-DMCP	Ο.Ο	0.00			
2-МНЕХ ,	316.0	4.66			
23-DMP ,	113.4	1.67			
3-MHEX,	285.1	4.21			·
1C3-DMCP	120.3	1.78		•	
	TOTAL PPB	S NORM PERCENT	SIG COMP RATIOS		
ALL COMP	6830		C1/C2 1.58		
GASOLINE	6777		A /D2 5.16		
NAPHTHENE			C1/D2 6.21		
C6-7	4779	. 70.52	CH/MCP 0.87		
			PENT/IPENT,	1.53	
	PPB	ЫС	RM PERCENT		
MCP	673.7		31.7		
CH.	587.6		27.6	•	
MCH	865.8		40.7		
TOTAL	2127.1		100.0		
PARAFFIN PARAFFIN		1.391 20.164			

,

Ę

.

72657A AUS	TRALIA, WHIT	ING-1, GIPF	SLAND BASIN,	2630-2645 M	1
METHANE	TOTAL PPB 0.0	NORM	1 T3-DMCF	TOTAL. PPB 8849.1	NORM PERCENT 1.04
ETHANE	Ο.Ο		1T2-DMCF 3-EPENT		2.07
PROPANE I BUTANE	393.5 1897.4	0.22	224-TMP	0.0	0.00
NBUTANE	7526.4	0.88	NHEPTANE		9.78
IPENTANE	24906.0	2.92	1C2-DMCF		0.08
NPENTANE 22-DMB	38799.5 1624.0	4.54 0.19	. MCH	113585.6	13.30
CPENTANE	6467.4	0.76			an a
23-DMB	0.0	0.00			."
2-MP	52771.9	6.18			
3-MP :	223011.8	26.12			
NHEXANE	81580.7	9.55			
MCP	52442.3	6.14			
22-DMP	0.0	0.00			
24-DMP 223-TMB	1902.6 551.5	0.22 0.04			
CHEXANE	69390.0	8.13			
33-DMP ,	0.0	0.00			
11-DMCP	O.O	0.00			
Z-MHEX ,	24109.2	2.62			
23-DMP ,	12010.0	1.41 2.71			
3-MHEX, 1C3-DMCP	23105.1 7423.2	0.87			
	2 Taka tari pada	na a sur e	-		
	TOTAL PPB	S NORM PERCENT	SIG COMP RAT	108	
ALL COM	P 854286	_	C1/C2 2.	38	
GASOLIN				15	
NAPHTHEI	NES 276573	. 32.39	C1/D2 8.	96	
C6-7	496889	. 58.19	CH/MCP 1. PENT/IPENT,	32 1.56	
	PPB	NÜ	RM PERCENT		•
MCP	52442.3		22.3		<b>,</b>
СH	69390 <b>.</b> 0		29.5		
MCH	113585.6		48.2		
TOTAL.	235417.9		100.0	•	
PARAFETI	N INDEX 1	1.389			
	N INDEX 2	23.220			

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	Ŏ.Ŏ		1TS-DMCP	41.1	1.93
ETHANE	0.0		1T2-DMCP	27.8	i.30
PROPANE	Ô"Ŏ		3-EPENT	O.O.	0.00
IBUTANE	O,O	O.OO	224-TMP	0.0	0.00
NBUTANE	Ο.Ο	0.00	NHEPTANE	350.1	16.39
IPENTANE	65.3	3.06	1C2-DMCP	Ο.Ο	0.00
NPENTANE	142.3	6.66	MCH	336.2	15.74
22-DMB	3.0	O.14			
CPENTANE	18.8	0.88			
23-DMB	22.4	1.05			
2-MP	141.1	6.61			
3-MP	90.3	4.23			
	320.i	14.99			
MCP	163.6	7.66			
22-DMP	Ö.Ö	Ó.OO			
24-DMP	8.1	0.38			
223-TMB	O . O	0.00			
	172.2	8.11			
33-DMP ,	0.0	0.00			
11-0MCP	0.0	0.00			
2-MHEX,	93.9	4.39			
23-DMP ,	38.0	1.78			
3-MHEX,	76.8	3.59			
1C3-DMCP	23.7	1.1.1			
	TOTAL.S PPB	3 NORM PERCENT	SIG COMP RATIOS		
ALL COMP	2136.		C1/C2 2.35		
GASOLINE	2136.		A /D2 8.73		•
. NAPHTHENES			C1/D2 7.86		
C6-7	1653.	77.37	CH/MCP 1.06		
			PENT/IPENT,	2.18	
	FFB	NO	RM PERCENT		
MCP	163.6		24.3		
CH	173.2		25.7		
MCH	334.2		50.0		
TOTAL	673.0		100.0		
PARAFFIN I	NDEX 1	1.842			
PARAFFIN I	NDEX 2	30.159			
PARAFFIN I	NDEX 2	30.159			

		NORM PERCENT		TOTAL PPB	NOR) PERCEN
METHANE	Ο.Ο		1T3-DMCP	108.1	3.04
ETHANE	0.0		1TZ-DMCP	78.i	2.20
PROPANE	Ο.Ο		3-EPENT	0.0	0.00
IBUTANE	0.0	0.00	224-TMP	Ο.Ο	0.00
NEUTANE	16.7	0.47	NHEPTANE	483.4	13.59
IPENTANE	31.1	0.87	1C2-DMCP	9.1	0.26
NFENTANE	81.2	2.28	MCH	790.9	22.25
22-DMB	2.2	0.06			
CPENTANE	19.9	0.56			
23-DMB	26.1	0.74			
2-MP	200.2	5.63			
3-MP	118.2	3.32			
NHEXANE	424.8	11.95			
MCP	327.1	9.20			
22-DMP	Ο.Ο	0.00			
24-DMP	12.5	0.35			
223-TMB	0.0	0.00			
CHEXANE		11.79			
33-DMP ,	0.0	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	110.7	3.11			
23-DMP ,	87.2	2.45			
З-МНЕХ ,	138.5	3.89			
103-DMCP	70.2	1.98	-		
· ·	TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		
ALL COMP	3555.		c1/C2 2.23		
GASOLINE	3555.		A/D2 6.56		
NAPHTHENES	: 1823.	51.27	C1/D2 9.54		
C6-7	3060.	86.05	CH/MCP 1.28		
			PENT/IPENT,	2.61	
	PPB	NO	RM PERCENT		
MCP	327.1		21.3		
CH	419.2		27.3		
MCH	790.9	•			
TOTAL	1537.2	•	100.0	•	
PARAFFIN J	NDEX 1	0.972			

( 

	ТОТА РРВ		NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	rro O.u		7" ELEXANDER F	1T3-DMCP .	631.9	1,64
ETHANE	70.:			1T2-DMCP	1133.4	2,25
FROPANE	38.			3-EFENT	0.0	0.00
IBUTANE	23.		0.06	224-TMP	0,0	0.00
NBUTANE	195.:		0.51	NHEPTANE	5147.7	13.38
IPENTANE	799.		2.08	1C2-DMCP	116.0	0.30
NPENTANE .	1769.		4.60	MCH	7175.6	18.66
22-DMB	38.		0.10	1 10-21 1	/ all / said states	at the a survey
	457.		0.10 1.19			
CPENTANE						
23-DMB	300.4		0.78			•
2-MP	2713.		7.06			
3-MP	1282.(		3.33			
NHEXANE	4860.		12.64			
MCP	3508.3		9.12			
22-DMP	0.1		0.00			
24-DMP	94.:		0.25			
223-TMB	15.		0.04			
CHEXANE	4167.3		10.83			
33-DMP ,	() . (		0.00	. *		
11-DMCP	),(		0.00			
2-MHEX ,	1329.		3.45			
23-0MP ,	833.1		2.17			
S-MHEX ,	1265.4		3.29			
1C3-DMCP	604.:	3	1.57			•
		TOTALS PPB	NORM PERCENT	SIG COMP RATIOS		•
or contan				ci/c2 · 2.1i		
ALL COMP		38570.	5	A / D2 - 7.91		
GASOLINE NAPHTHENE		38461.		A /D2 /.91 C1/D2 10.01		
		17794. 30883.		CH/MCP 1.19		
C6-7	•	30555.	<u>ov.</u> ov	PENT/IPENT,	2.21	
				CENTATI FURIA	all a all d	
	1	PPB	1.4F	ORM PERCENT		
MCP	3508	8.2		23.6		
CH	4161	7.2		28.1		
MCH	7175			48.3		
TOTAL	1485			100.0		
PARAFFIN	TEITOTV	4	1.095			
PARAFFIN			23.096			

.

(

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	O.O		1 TS-DMCP	73.7	1.12
ETHANE.	O.O		1T2-DMCP	133.7	2.03
PROPANE	0.O		3-EPENT	O . O	0.00
IBUTANE	Ο.Ο	0.00	224-TMP	0.0	0.00
NBUTANE	0 . O	0.00	NHEPTANE	1130.8	17.20
IPENTANE	111.0	1.69	1C2-DMCP	7.1	0.11
NPENTANE	400.4	6.09 0.12	MCH	696.6	10.60
22-DMB CPENTANE	7.6 61.3	0.12			
23-DMB		0.87			
2-MP	483.7	7.36			
3-MP	255.0	3.88			
NHEXANE	1309.3	19.92			
MCP	503,3	7:66			
22-DMP	0.O	0.00			
24-DMP	31.0	0.47			
223-TMB	Э.О	0.05			
CHEXANE	469.3	7.15			
33-DMP ,	0.0	0.00		*	
11-DMCP	0.0	0.00			
2-MHEX , 23-DMP ,	348.8 97.3	5.31 1.48			
3-MHEX,	320.0	4.87			
1C3-DMCP	72.0	1.10			
	TOTAL: PPB	S NORM PERCENT	SIG COMP RATIOS		
ALL COMP			C1/C2 1.92		
GASOLINE	6573		A /D2 7.63		
NAPHTHEN			C1/D2 4.74		
06-7	5196	, 79.06	CH/MCP 0.93 PENT/IPENT,	3.61	
•	PPB	NC	IRM PERCENT		
MCP	503.3		30.1		
CH	469.8		28.1		
MCH TOTAL	696.6 1669.7		41.7 100.0		
			a waxa wa		
PARAFETN	INDEX 1	2.394			

	TO: PP	PB P	NORM PERCENT			TOTAL PPB	NOR† PERCEN
METHAN		0.0		173-1	OMCE	942.7	2.03
ETHANE		0.0		1T2-I	DMCP	1726.0	3.72
PROPAN	e (	0.0		3-EPB	ENT	0.0	0.00
IBUTAN		0.0	0.00	224-1	ГMР	Ο.Ο	0.00
NBUTAN		5.5	0.14	NHEP	TANE	8945.7	19.28
IPENTA		.8	0.45	102-1	OMCP	198.8	0.43
NPENTA	VE 599	2.0	1.29	HCH		11747.8	25.32
22-DMB	e	8.1	0.02				
CPENTA	NE 272	2.4	0.59				
23-DMB	183	3.8	0,40				
2-MP	1803	8.6	3.89				
3-MP	990	).1	2.13				
NHEXAN	E 4552	2,4	9.81				
MCP	3475	2.3	7.50				
22-DMP	(	0.0	0.00				
24-DMP	93	3.2	0.20				
223-TM	3 9	2.7	0.02				
CHEXÁNI		8.8 t	0.25				
33-DMP	, (	0.0	0.00	•			
11-DMCR	• C	)"Ö	0.00				
2-MHEX	, 1886	5.5	4.07				
23-0MP	, 1191	. 2	2.57			• *	
З-МНЕХ	, 1854	1.2	4.00				
1C3-DM0	SP 877	4.3	1.89	-			
	•	TOTALS PPB	NORM PERCENT	SIG COMP	RATIO	8	
ALL.	COMP	46392.		C1/C2	2.55		
GASC	)LINE	46392.		A /D2	7.28		
NAPI	ATHENES	23998.	51.73	C1/D2	9.92		
C6-7	\$	42259.	91.09	CH/MCP	1.37		
				PENT/IPE	ENT,	2.84	
		<b>F</b> FB	NC	ORM PERCENT	Г		
MCP		79.3		17.4			
CH		753.8		23.8			
MCH		47.8		58.8			
TOTA	н. 195	80.9	•	100.0		•	
DAD/	YFFIN INDE	X 1	1.055				
	AFFIN INDE		26.369				

726570 AUSTR	ALIA, WHIT	ING-1, GJPF	SLAND BASIN, 284	0-2855 M	
	TOTAL PPB	NORM PERCENT		TOTAL PPB	NORM PERCENT
METHANE	0.0		1TS-DMCP	74.6	2.17
ETHANE	0,0		1T2-DMCP	64.4	1.37
PROPANE	0.0		3-EPENT	0.O	0.00
IBUTANE	22.0	0.64	224-TMP	0.0	0.00
NBUTANE	108,4	3.15	NHEPTANE	380.8	11.06
IPENTANE	146.9	4.27	1C2-DMCP	8.4	0.24
NPENTANE	233.1	6.77	ИСН	802.6	23.32
22-048	3.1	0.09			
CPENTANE	23.3	0.68			· _
23-DMB	30,0	0.87			
2-MP	216.8	6.30			
3-MP	117.0	3.40			
NHEXANE	345.5	10.04			
MCP	223.0	6.48			
22-DMP	0.0	O " O O			
24-DMP	11.0	0.32			
223-TMB	O . O	0.00			
CHEXANE	260,1	7.36		, <b>.</b>	
B3-DMP ,	O . O	0.00			
11-DMCP	0 . O	0.00			
2-МНЕХ ,	137.6	4.00			1 
23-DMP ,	63.5	1.85			
з-мнех ,	121.7	3.53			
103-DMCP	48.4	1.41	-		
	TOTAL PPB	S NORM PERCENT	SIG COMP RATIOS		
ALL COMP	3442		C1/C2 2.87		
GASOLINE	3442		A/D2 5.97		
NAPHTHENE			C1/D2 9.86		
C6-7	2542	, 73.84	CH/MCP 1.17		
			PENT/IPENT,	1.59	
	PPB	NC	RM PERCENT		
MCP	223.0		17.3		
CH	260.1		20.2		
MCH	802.6		62.4		
TOTAL	1285.7		100.0		
ምክ ለአደማ ምም ም ት i	T F17077 V 4	1.383		•	
PARAFFIN		1.383 19.490			
PARAFFIN	LINDEA 2	1: Z = 41 Z V J			

•

ł

.

:

•

	TOTAL PPB	NORM PERCENT	•	TOTAL PPB	NQRI PERCEI
METHANE	0.0		1T3-DMCP	3446.2	1.15
ETHANE	185.9		1T2-DMCP	6309.6	2.11
PROPANE	362.O		3-EPENT	O " O	0.00
IBUTANE	919.2	0.31	224-TMP	Ο.Ο	0.00
NBUTANE	5845.2	1.95	NHEPTANE	40526.2	13.53
IPENTANE	16872.0	5.63	1C2-DMCP	711.8	0.24
NPENTANE	27448.6	9.17	村ご日	42561.0	14.21
22-DMB	326.6	0.11			
CPENTANE	3944.6	1.32			
23-DMB	2476.4	0,83			
2-11P	26769.8	8.94			
3-MP	11604.8	3.88			
NHEXANE	42340.8	14.14			
MCP	18754.9	5.26 0.00			
22-DMP	0.0	0.00			
24-DMP	529.9	0.18			
223-TMB	67.3	0.02			
CHEXANE	23490.5	7.84 0.00			
33-DMP , 11-DMCP	0.0 0.0	0.00			
2-MHEX ,	8357.5	2.79			
23-DMP ,	5593.6	1.87			
S-MHEX ,	7667.8	2.56			
1C3-DMCP	2893.7	0.97			
	TOTA PPB		SIG COMP RATIO	DS .	
ALL COM	P 30000	14	ci/c2 2.3	>	
GASOLINE			A /D2 10.83		
NAPHTHE			C1/D2 9.70		
C6-7	20325		CH/MCP 1.25		
			PENT/IPENT,	1.63	
	PPB	ы	ORM PERCENT		
MCP	18754.9		22.1		
СН	23490.5		27.7		
MCH	42561.0		50.2		
TOTAL	84806.4		100.0		
PARAFFI	N INDEX 1	1,267			

a 1,41

.

METHANE	TOTAL PPB 0.0	NORM PERCENT	1T3-DMCP	TOTAL PPB 132.5	NORM PERCENT 1.62 2.75
ETHANE	0.0		1T2-DMCP 3-EPENT	224.2 0.0	0.00
PROPANE IBUTANE	0.0 0.0	0.00	224-TMP	0.0	0.00
NEUTANE	0.0	0.00	NHEPTANE	1334.8	16.36
IPENTANE	47.3	0,58	1C2-DMCP	17.3	0.21
NPENTANE	220.0	2.70	MCH	1348.2	16.52
22-DMB	3.2	0.04	·		
CPENTANE	73.6	0.90			
23-DMB	59.6	0.73			
2-MP	52i.O	6.39			
3-MP	295.0	3.62		1	
NHEXANE	1241.1	15.21			
MCP	709.5	8.70			
22-DMP	O.O	0.00			
24-DMP	31.2	0.38			
223-TMB	3.0	0.04			<b>،</b>
CHEXANE	865.0	10.30			- -
33-DMP,	0.0	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	365.3	4.48			
23-DMP ,	212.4 348.4	2.60 4.27			
3-MHEX , 103-DMCP	106.4	1.30	-		
	TOTAL: PPB	8 NORM PERCENT	SIG COMP RATIOS		
ALL COMP	8159.		ci/c2 2.17		
GASOLINE	8159.		A /D2 7.39		
NAPHTHENE			C1/D2 7.40		
C6-7	6939.		CH/MCP 1.22		
			PENT/IPENT,	4.65	
	PPB	NC	IRM PERCENT		•
MCP	709.5		24.3		
CH	865.0		29.6		
MCH TOTAL	1348.2 2922.7		46.1 100.0		
PARAFFIN		1.541		•	
PARAFFIN		27.036			

Ć

	TOTAL PPB	NORM PERCENT		TOTAL PPB	NOR† PERCEN
METHANE	0.0		1T3-DMCP .	85.4	1.59
ETHANE	ΟΟ		1T2-DMCP	153.7	2.87
PROPANE	0.0		3-EPENT	0.O	0.00
IBUTANE	0.0	0.00	224-TMP	0.0	0.00
NBUTANE	0.0	0.00	NHEPTANE	1040.9	19.41
IPENTANE	37.0	0.69	1C2-DMCP	13.0	0.24
NPENTANE .	144.2	2.69	MCH	1055.0	19.68
22-DMB	3.1	0.06			
CPENTANE	48.2	0.90	•		
23-0MB	31.6	0.59			
<u>2-MP</u>	265.8	4.96			
З-МР	159.1	2.97			
NHEXANE	751.7	14.02			
MCP	409.9	7.64			
22-DMP	0.O	0.00			
24-DMP	18.6	0.35			•
223-TMB	Ο.Ο	0.00			
CHEXANE	465.7	8.69			
зз-рмр ,	0.0	0.00			
11-DMCP	0.0	0.00			
2-MHEX ,	244.0	4.55			
23-DMP ,	114.4	2.13			
з-MHEX ,	240.5	4.49			
1C3-DHCP	80.0	1.49			
	TOTAL: PPB	S [.] NORM PERCENT	SIG COMP RATIOS		•
ALL COMP	5362		C1/C2 · 2.38		
GASOLINE	5362.		A /D2 7.45		
NAPHTHENES			C1/D2 7.34		
C6-7	4673.	. 87.15	CH/MCP 1.14		
			PENT/IPENT,	3.90	
	PPB	NC	RM PERCENT		
MCP	409.9		21.2		
CH	465.7		24.1		
MCH	1055.0		54.6		
TOTAL	1930.6		100.0		
PARAFFIN I		1.519			
PARAFFIN I		29.915			

	TOTAL PPB	NORM PERCENT	. •	TOTAL PPB	NORI PERCEI
METHANE	O.Ö		1T3-DH0		1.25
ETHANE	0.0		1T2-DMC		2.26
PROPANE	O " ()		3-EPEN		0.00
IBUTANE	100.8	0.33	224-TMF		0.00
NBUTANE	234.2	0.76	NHEPTA		13.11
IPENTANE	985.3	3.19	1C2-DM0		0.22
NPENTANE	2066.2	6.70	MCH	5446.5	17.65
22-DMB	53.3	0.17			· . ·
CPENTANE	311.8	1.01			
23-DMB 2-MP	303.2	0.98 7.39			
	2278.8	3.84			
3-MP	1185.0				
NHEXANE	4305.6	13.96			
MCP 22-DMP	2067.7 0.0	0.00			
22-DMP		0.39			
223-TMB	121.3 21.0	0.07			
CHEXANE	3097.8	10.04			
33-DMP,	0.0	0.00			· · · ·
11-DMCP	0.0	0,00			
2-MHEX ,	1048.3	3.40			
23-DMP ,	697.5	2.26			
З-МНЕХ ,	1021.1	3.31			
1C3-DMCP	308.5	1.00			
	TOTAI PPB	LS NORM PERCENT	SIG COMP RA	ATIOS .	
ALL COMP	3085	ц . п	C1/C2 2	2.72	
GASOLINE				3.18	
NAPHTHEN				9.39	
C6-7	2333:	2. 75.63		50	
			PENTZIPENT	F, 2.10	
	PPB	N	DRM PERCENT		
MCP	2067.7		17.5		
CH	3097.8		22.2		•
MCH	5446.5		51.3		
TOTAL.	10612.0		100.0		
PARAFFIN		1.485			
	INDEX 2	24.142			

.

<u>.</u> •

72657Y AUSTRALIA, WHITING-1, GIPPSLAND BASIN, 2990-3005 M TOTAL NORM TOTAL NORM **PPB** PERCENT **FPB** PERCENT 49.1 Ŏ.Ŏ METHANE 1T3-DMCP 1.56 ETHANE 0.0 1T2-DMCP 37.9 1.20 0.0. PROPANE 3-EPENT 0.0 0.00 IBUTANE 55.6 1.76 224-TMP 0.0 0.00 2.30 375.5 ii.90 NBUTANE 72.5 NHEPTANE IPENTANE 124.0 3,93 1C2-DMCP 4.1 0.13 9.72 NPENTANE 306.7 MCH 589.1 18.67 22-DMB 4.4 0.14 32.4 CPENTANE 1.03 23-0MB 25.8 0.82 2-MP 189.7 6.01 3-MP 3.49 110.0 NHEXANE 435.7 13.81 MCP 200.3 6.35 22-DMP 0.O 0.00 24-DMP 9.3 0.29 223-THB 0.0 0.00 259.2 CHEXANE 8.22 33-DMP , 0.0 0.00 11-DMCP  $\circ$ . $\circ$ 0.00 2-MHEX , 96.0 3.04 23-DMP , 41.6 1.32 З-МНЕХ , 105.2 3.33 1C3-DMCP 30.2 0.96 TOTALS NORM SIG COMP RATIOS PPB PERCENT ALL COMP 3155. 2.94 C1/C2GASOLINE 3155. A /02 7.71 NAPHTHENES 38.12 1202. C1/D28.98 CH/MCP C6-7 2233. 70.80 1.29 PENT/JPENT, 2.47 FPB NORM PERCENT 19.1 MCP 200.3 ĽН 259.2 24.7 589.1 MCH 56.2 TOTAL. 1048.6 100.0 PARAFFIN INDEX 1 1.715 PARAFFIN INDEX 2 23.709

### APPENDIX-2

# Detailed Vitrinite Reflectance and Exinite Fluorescence Data

by A.C. Cook.

## Appendix 2.

#### WHITING No.1

						· · · · · ·
KK No	Esso No.	Depth m	R max	Range R max V X	N	Exinite fluorescence . (Remarks)
17751	BS/726 36-₽	1478.5 SWC	0.49 .	0.43-0.55	20	Abundant liptodetrinite, common sporinite, yellow to orange, common resinite, green to dull orange, abundant ?bituminite dull brown. (Coal, clarite consisting of densinite/desmocollinite with abundant ?bituminite. V>E>>1, fungal sclerotinite the only form of I. E 20%-40%, 5%-10% excluding bituminite. ?Marcasite common.)
17752	BS/726 38-X	2141.2 SWC	0.49	0.41-0.56	13	Common sporinite and cutinite, yellow to orange. Siltstone and claystone, d.o.m. common, I>E>V. Inertinite common, exinite common, vitrinite sparse. Sparse pyrite, some iron oxides.)
17686	726 28-A	2682.28 Core	0.76	0.58-0.86	25	Abundant resinite, yellow to orange, common cutinite, orange. (Coaly sandstone, sandy coal. Coal vitrite, clarite and inertite. D.o.m. abundant, V>I>E, all macerals abundant. Most of the inertinite is semifusinite or fusinite. Moderate green oil cut from some of the inertinite. Some of the vitrinite shows moderately strong greenish brown fluorescence, but only a very weak oil cut. Some carbonate present in the sandstone.)
17753	BS/726 35-F	2767 SWC	0.84	0.79-0.89	21	Common sporinite, cutinite, yellow to orange, sparse resinite, orange to brown. (Coal and sparse claystone. Coal consists of massive telocollinite with minor micrinite and no other macerals present. Claystone contains abundant d.o.m., V=E, no I. Vitrinite and exinite abundant. The reflectance of the telocollinite spans a restricted range, is likely to be above the trend for a normal coal seam, and markedly above the trend for d.o.m. Sparse siderite present in the coal.)
17754	BS/726 35-B	2958 SWC	0.69	0.58-0.87	20	Rare sporinite and cutinite, yellow orange to brown, rare resinite, orange. (Siltstone, d.o.m. abundant to dominant, I>V>E. Inertinite abundant, vitrinite sparse to common, exinite rare. Much of the vitrinite of low reflectance has

bltumens.)

weak but distinct fluorescence and may contain butuminite or suberinite or contain absorbed

.

いたのであるとうない あいろう ちょうちょう

112/00

A1/1

APPENDIX

L

T

#### APPENDIX 8







a Maria na kalandar ana kalandar da ka Maria Mari 12000 1.5 i sidalah and is Se Second . And set and share the second depth of the thirty is a set of the set of the set A. Sala Take Sector Sector alahat dan Balan terdengkan dengkat dan perioda dan seberah dan bertakan dan seberah dan seberah dan seberah da Balan dan dan bertak dan seberah dan se a dan Bartan dan baran dan dan dan dan dan bertan dan bertan dan bertan dan bertan dan bertan dan bertan dan b Angele dan bertan dan bertan dan bertan dan bertan bertan bertan bertan bertan bertan bertan bertan bertan berta in appen the biogeneers at the Sec.1 463-652 DE902574 1. A. A. PE902574

This is an enclosure indicator page. The enclosure PE902574 is enclosed within the container PE902572 at this location in this document.

	2574 has the following characteristics:
$ITEM_BARCODE =$	PE902574
CONTAINER_BARCODE =	PE902572
NAME =	Structure Map Top of Coarse Clastics
BASIN =	GIPPSLAND
PERMIT =	VIC/L2
TYPE =	WELL
SUBTYPE =	HRZN_CNTR_MAP
DESCRIPTION =	Structure Map Top of Coarse Clastics
	(most likely case) for vol.2 of WCR
	Whiting-1
REMARKS =	
$DATE_CREATED =$	31/12/84
$DATE_RECEIVED =$	13/11/85
W_NO =	W807
WELL_NAME =	Whiting-1
CONTRACTOR =	ESSO
CLIENT_OP_CO =	ESSO
(Inserted by DNRE -	Vic Govt Mines Dept)

#### PE902573

New March 1997

This is an enclosure indicator page. The enclosure PE902573 is enclosed within the container PE902566 at this location in this document.

. . .

1.5.5

and a straight of the second se

The enclosure PE9	02	573 has the	fol	lowing	characte	eristics:
ITEM_BARCODE :	=	PE902573				
CONTAINER_BARCODE :	=	PE902572				
NAME :	=	Structure Ma	p -	Upper	Lbalmei	Seismic
		Marker				
BASIN :	=	GIPPSLAND				
PERMIT :	=	VIC/L2				
TYPE	=	WELL				
SUBTYPE :	=	HRZN_CNTR_MA	Р			
DESCRIPTION :	=	Structure Ma	р-	Upper	Lbalmei	Seismic
		Marker				
REMARKS :	=					
DATE_CREATED :	=	1/12/84				
DATE_RECEIVED :	=	13/11/85				
W_NO :	=	W807				
WELL_NAME :	=	Whiting-1				
CONTRACTOR :	=	ESSO				
CLIENT_OP_CO :	=	ESSO				

PE902575

المستحجين أتعبر سرقي

na senta da seria da ser Seria da ser

 $(\phi,\phi,\phi) \in [0,\infty)$ 

and and a second se

This is an enclosure indicator page. The enclosure PE902575 is enclosed within the container PE902572 at this location in this document.

The enclosure PE90	2575 has the following characteristics:
ITEM_BARCODE =	PE902575
CONTAINER_BARCODE =	PE902572
NAME =	Structure Map - Lower Lbalmei
BASIN =	GIPPSLAND
PERMIT =	VIC/L2
TYPE =	WELL
SUBTYPE =	HRZN_CNTR_MAP
DESCRIPTION =	Structure Map - Lower Lbalmei
	(enclosure from WCR vol.2) for
	Whiting-1
REMARKS =	
$DATE_CREATED =$	31/12/84
DATE_RECEIVED =	13/11/85
W_NO =	W807
WELL_NAME =	Whiting-1
CONTRACTOR =	ESSO
$CLIENT_OP_CO =$	ESSO

S. M. Oak Strate duce)( and for the state of the state PE902576

This is an enclosure indicator page. The enclosure PE902576 is enclosed within the container PE902572 at this location in this document.

902576 has the following characteristics: = PE902576 = PE902572
= Geological Cross section
= GIPPSLAND
V = VIC/L2
: = WELL
= CROSS_SECTION
= Geological Cross section A-A'
(enclosure from WCR vol.2) for
Whiting-1
=
= 31/01/85
= 13/11/85
= W807
a = Whiting-1
= ESSO
= ESSO
- E220

-

a colorado national and a state of the second 1888 Sec. · Store LER ANY a segura a secola ana ang sana ang san Sana ang sana ver avgala. As a working PE601298 Actor and a second s

This is an enclosure indicator page. The enclosure PE601298 is enclosed within the container PE902572 at this location in this document.

The enclosure PE601298 has the following characteristics: ITEM_BARCODE = PE601298CONTAINER_BARCODE = PE902572 NAME = Well Completion Log BASIN = GIPPSLAND PERMIT = VIC/L2TYPE = WELLSUBTYPE = COMPLETION_LOG DESCRIPTION = Well Completion Log (enclosure from WCR vol.2) for Whiting-1 REMARKS =  $DATE_CREATED = 28/04/83$  $DATE_RECEIVED = 13/11/85$  $W_NO = W807$ WELL_NAME = Whiting-1 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$