

FINAL REPORT Attachment to wcr WEST FORTESCUE - I W866

OIL and GAS DIVISION

WEST FORTESCUE NO. 1

2 9 AUG 1984 ESSO AUSTRALIA LTD.

FINAL WELL REPORT

CORE LABORATORIES AUSTRALIA (QLD.) LTD.

15th June 1984

Mr S. Twartz
Esso Australia Ltd.
(Geology Department)
Esso House
127 Kent Street
Sydney
N.S.W. 2001

Dear Mr Twartz,

Please find enclosed the original well report plus five (5) copies, for the well WEST FORTESCUE NO. 1.

If you have any enquiries concerning the report please do not hesitate to contact us.

Yours very truly, CORE LABORATORIES AUSTRALIA (QLD.) LTD.

T. CHARLES
Unit Supervisor

ARC:pc

INDEX

- 1. INTRODUCTION
- 2. RIG SPECIFICATIONS
- 3. WELL INFORMATION, PROGRESS AND HISTORY
- 4. LITHOLOGY AND CORE-O-GRAPHS
- 5. EXTENDED SERVICE PACKAGE :
 - A. INTRODUCTION
 - B. EQUIPMENT
 - C. MONITORING EQUIPMENT
- 6. ESP PLOT DESCRIPTIONS AND CONCLUSIONS
- 7. B.H.T. ESTIMATION
- 8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT
- 9. GAS ANALYSES :
 - A. COMPOSITION GRAPHICS
 - B. SIDEWALL CORES
- 10. CORELAB DATA SHEETS :
 - A. BIT RECORDS
 - B. MUD DATA
 - C. R.F.T. DATA

COMPUTER DATA LISTINGS :

BIT RECORD AND INITIALIZATION DATA HYDRAULIC ANALYSES
DATA LIST A DATA LIST B DATA LIST C DATA LIST D

APPENDED PLOTS :

DRILL DATA PLOT TEMPERATURE PLOT PRESSURE PLOT GEOPLOT GRAPHOLOG

INTRODUCTION

WEST FORTESCUE NO. 1 was drilled by Esso Australia Ltd. in the Bass Strait, Australia.

Well co-ordinates were:

Latitude : 38° 21' 56.47" S Longitude : 148° 14' 25.43" E

The well was drilled by South Seas Drilling Company's semi-submersible rig "Southern Cross", and monitored by Core Laboratories Extended Service Field Laboratory 2007.

WEST FORTESCUE NO. 1 was spudded on 30th April 1984 and reached a total depth of 2671 metres on 10th May 1984, a total drilling time of 11 days. The main objective of the well was to test and develop an oil accumulation in the Fortescue FM-11 sand on the northwestern flank of the Fortescue field.

Elevations were:

All depths used in this report and accompanying lgos refer to depth below rotary kelly bushings (RKB).

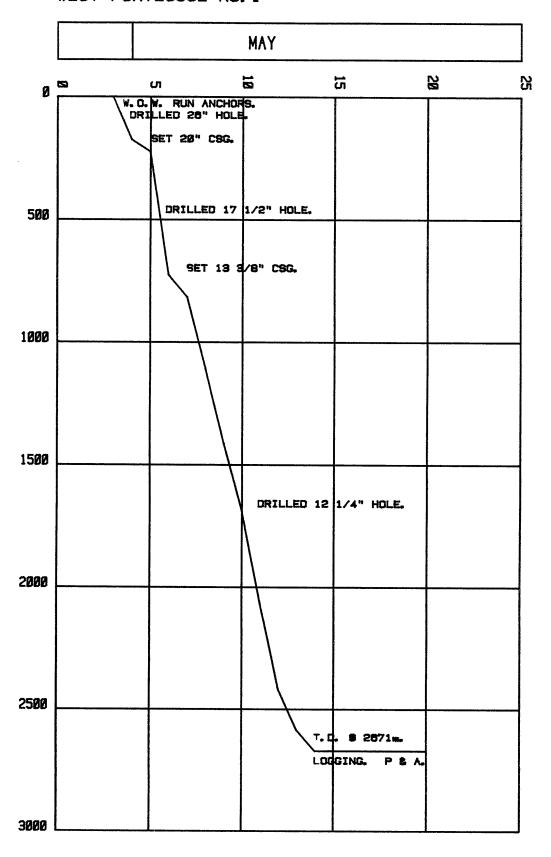
Core Laboratories personnel involved in the logging of WEST FORTESCUE NO. 1 were as follows:

TONY CHARLES - Unit Supervisor
BRYAN PAULET - Pressure Engineer
BOB GIFTSON - Logging Crew Chief
PAUL LANDRY - Well Logger
KHIAM OOI - Well Logger
ANDY HIGGS - Well Logger
DON MACKAY - Well Logger

2. RIG SPECIFICATIONS

7/1/K-1 K-1 P2		RIG INFORMATION SHEET
MANAMIN'I I		ESSO AUSTRALIA LTD.
LAB	COMPA	WEST FORTESCUE NO. 1
עטווייש	WELL.	WEST FORTESCUE NO. I
OWNER		SOUTH SEAS DRILLING COMPANY
NAME AND NUMBE	н	SOUTHERN CROSS (Nº 107)
TYPE		SEMI-SUBMERSIBLE , TWIN HULLED.
DERRICK, DRILL F		DERRICK: LEE C MOORE, 152° HIGH X 40° AT BASE.
& SUBSTRUCTURE		LOAD CAPACITY OF 1 000 000 lbs
	ľ	
		DELWELL F BODD DOTHER DA G OF BED ELECTORS COTORS
DRAWWOHKS	ļ	DILWELL E-2000 DRIVEN BY 2 GE 752 ELECTRIC MOTORS.
	İ	
00000		LEE C MOORE 27458 C. CAPACITY 500 SHORT TONS.
CROWN BLOCK		OILWELL A 500
TRAVELING BLOCK	^	DILWELL PC 425
SWIVEL ELEVATORS		BYRON JACKSON MODEL GG CAPACITY 350 TON
KELLY & KELLY SE	PINNER	DRILLCO 54"x 50' HEX KELLY
ROTARY TABLE		DILWELL A 37 SINGLE ELECTRIC MOTOR
ROTARY SLIPS		VARCO DCS-L
MUD PUMPS		TWO DILWELL A 1700PT. RATED AT 1600HP
		FOUR MUD TANKS HAVING A TOTAL CAPACITY OF 1200 BBL, AND ONE PILL
	1	TANK HAVING A CAPACITY OF 105 BBL.
MUD SYSTEM	Ì	TWO MUD HOPPERS POWERED BY 2 MISSION 6x8" CENTRIFUGAL BY TWO 100
	ì	HP ELECTRIC MOTORS.
	1	DESANDER : 1 DEMCO 4 CONE 12" MODEL Nº 124
	1	DESILTER : 1 DEMCO 4"-16H 16 CONE
	1	DEGASSER : 1 SWACO MODEL NO 36
BLOW OUT PREVE	VICES	SHALE SHAKERS : 2 BRANDT DUAL UNIT TANDEM - GHI DUAL UNIT. THREE SHAFFER L.W.S. 182" - 10 000 psi
SCOM OUT PREVE	MIONS	TWO HYDRIL G.L. 182" - 5000 psi
	1	INC (IIOUTE G.C. 107 - 2000 h21
		FOUR VALV CON ACCUMULATORS. 2" - 10 000ps
WELL CONTROL E	QUIP.	CHOKES:2 C.I.W. ABJ H2 2 1/16" - 10 000 psi,1 SWACO SUPER CHOKE
TUBULAR DRILLIN		DC: $6\frac{1}{4}$ " x 2 13/16" (4" IF TJ)
EQUIPMENT	1	8 " x 2 13/16" (6 5/8" H9D TJ)
		9 ³ " x 3" (7 5/8" H90 YJ)
	Ì	HWDP : 5" 501b/ft GRADE G (62" DD 42" IF TJ)
]	Į	DP : 5" 1921b/ft GRADE G&E(6 3/8" DD 42" IF TJ)
AF1.5		MALL TOURT ON A CONTROL
CEMENTING UNIT		HALLIBURTON HT-400 UNIT
MONITORING EQUIPMENT	ł	MARTIN DECKER : MUD VOLUME TOTALIZER
		6 CHANNEL DRILLING RECORDER 4 PRESSURE GAUGES
	}	. 4 PRESSURE GAUGES FLOWSHOW INDICATOR
POWER SUPPLY		2 EMD MD 18 DIESEL ENGINES RATED AT 1950 HP EACH
		1 EMD MD 12 DIESEL ENGINE RATED AT 1500 HP
DIRECTIONAL EQU	JIP.	
MISCELL ANEOUS (I.D. COMPENICATION CARTENA PURE PAGE TO THE P

RISER: REGAN FC-7 TELESCOPIC 21" ID. PLUS FLOW DIVERTOR.


CASING POWER TONGS: ECKEL 13 3/8"(20 000 ft 1bs),20" (35 000 ft 1bs)
CMT BULK TANKS: 3x1570cu ft.RISER TENSIONER: 6WESTERN GEAR, 50'STROKE, 80 0001bs.
MUD BULK TANKS: 3x1570cu ft.GUIDE LINE TENSIONERS: 4 WESTERN GEAR 16 000 1bs,40'STROKE

7520-485 (CL 1151)

3. WELL INFORMATION, PROGRESS AND HISTORY

	7							WEL	L INFORM	OITAI	N SHE	EET	
V(Y(\\II)) C		NN ESS	SO ATISTRA	עLIA ד.יייח	١.								
NAMKINA	-1		A EUBuro	SCILE NO	·			_	CL ·	No	1		
TANTIAN	WELL .	W.D.C	- 1 OILIL										
WELL NAME	WEST FO	RTESCUE	NO. 1										
OPERATOR	ESSO EX	 ŒLORAͲΤΩ	N AND P	RODUCTTO	N A	AUSTI	RALTA	INC.		_			
PARTNERS					1								
	р.п.Р.	THUNDIEL	44										
RIG	OWNER	T	SOUTH ST	EAS DRTT	LT	ŊG C	OMPANY	_(SANTA	FE)				
		MBER											
NAME WEST FORTESCUE NO. 1													
LOCATION		:)	380 21'	56.47"	S		LONGITU	JDE (Y)			13" E		
	FIELD						AREA						
	COUNTY						STATE		VICTORIA	1			
	COUNTRY		AUSTRAL	IA									
	DESCRIPTION	1	EXPLORA'	TION/WIL	DCA	AT							
DATUM	Ground Elevati	ion					RKB to G	Fround Level					
POINTS	Mean Water De	epth					RKB to W	Vater Level					
DATES							<u> </u>		10TH MAY	1,984			
HOLE						No. o		<u> </u>	Date To	Case	ed L	.ogged	
SIZES								30/04/8	4 01/05/8	34		N	
		l				ļ						<u>N</u>	
	816	2671	121/4	3		<u> </u>	0	04/05/8	<u>4 10/05/8</u>	54	N	<u> </u>	
			-			<u> </u>							
			-			 					-+		
	ļI	 	-	 		-		 	+				
		 	+	 		 		<u></u>		+-			
DRILLING	Depth From M	Depth To M	Weights	DDC	Tve)e		L					
FLUID							יתיי∆						
								DRT1.1.DR	SOLTES M	JD			
			·				: 						
			 										
				то	L								
				то	L								
					匚								
WIRELINE	Depth FromM		Hole Size ¹⁸			Logs							
LOGGING	2660	2350	121/4	11/05/8		 		LDL-CNL	-NGT				
	2350	799	121/4	11/05/8		+	L MSFL	ı–GR	- GR				
	2666	799	121/4	11/05/8			IC-GR						
		2434	121/4	11/05/8		 	T NO.		70				
	2632	2434	124	11/05/8				2 PRETES	TS				
	0555	2436.9	121/4	12/05/8			T NO.		···				
	2550	800	121/4	12/05/8		+		SURVEY			······································		
nice c	2569.2	2671	121/4	13/05/8	1		T NO.	T	Date Run	Cement	Stages	Fycor	
RISER, CASING &	Depth From M	4	 	+	we	ight	Grade	Threads		Sement	o rages	LACESS	
LINER	96	86		21	+-),).	VEO	TI DOT	RISER	1'G'		Logged N N Y	
	86	208		19.124		4.4		JV BOX	01/05/81			 -	
	86	799	<u> </u>	12.615	1-5	4.5	<u> </u>	BUTT	03/05/81		 	-	
		1	 	1			t	 					
		T	1		†					L	L	L	
					Γ								

PROGRESS LOG ESSO AUSTRALIA LTD. WEST FORTESCUE No. 1

WELL HISTORY .

- 27TH APRIL 1984. The "Southern Cross" was towed to the location of "WEST FORTESCUE NO. 1", but the anchors were not run due to bad weather. The tow-line parted, in the late morning, and the rig drifted eastwards.
- 28th April 1984. The tow-line was re-connected successfully at 10:00 hours, and the rig was towed in the general direction of "WEST FORTESCUE", but due to the strong winds, no headway was made. (In fact the rig was slipping backwards, due east, at the rate of half a knot, despite the towing vessel being at 90% power).
- 29th April 1984. The winds subsided a little (down to 30 knots), so progress was made towards "WEST FORTESCUE".
- 30th April 1984. Arrived on location. Set anchors. Spudded in around 20:45 hours. Drilled 26" hole to 175 metres.
- 1st May 1984. Drilled 26" hole to the 20" casing point. Ran and set the 20" casing, followed by the stack and riser.
- 2nd May 1984. Nippled up; tested the stack; RIH with a $17\frac{1}{2}$ " bit (HTC OSC 3AJ) and drilled through the cement, shoe and into new formation (Gippsland Limestone).
- 3rd May 1984. Drilled to 816 metres where the bit was pulled to run 13-3/8" casing. The 13-3/8" was then run and cemented with the shoe at 799 metres.
- 4th May 1984. The cement and casing shoe were drilled out and a P.I.T. was carried out. No leak off was obtained after pressuring to 1500 psi, giving an equivalent mud weight of 20.0 ppg. Drilling was then recommenced, drilling a 124" hole to 1109 metres.
- 5th May 1984. Drilled ahead to 1415 metres.
- 6th May 1984. Drilled ahead to 1478 metres where pump pressure was lost indicating a wash out. A wiper trip was performed to the shoe, by which time, the washout had been located. Drilling recommenced and the depth at midnight was 1694 metres.
- 7th May 1984. New hole was drilled to 1858 metres where a bit change was required. A HTC J1 (3 x 18) was run into the hole and new formation drilled to 2068 metres.
- 8th May 1984. Drilling was continued to 2418 metres where a bit change was made.
- 9th May 1984. A new bit was run into the hole (J22, 3 x 18) and new formation was drilled to 2585 metres.
- 10th May 1984. The well was drilled to 2671 metres this being the total depth of the hole. A wiper trip was made prior to running the DLL-MSFL-LDL-CNL-NGT log.

11th May 1984. Continued to run logs. BHC-GR, RFT Nos. 1 and 2.

12th May 1984. A wiper trip was made to the bottom of the hole experiencing tight hole below 2300 metres. RFT No. 3 and the Velocity survey were then run.

13th May 1984. A C.S.T. run was made and the first cement plug of the abandonment program was set.

14th May 1984. P & A continued.

15th May 1984. P & A continued; pulled B.O.P. and riser.

16th May 1984. P & A.

4. LITHOLOGY AND CORE-O-GRAPHS

LITHOLOGY SUMMARY

The above well was spudded on 30th April 1984. Returns after 20" casing, set at 208 metres, showed a limestone/calcarenite sequence, (the Gippsland Limestone), typified by tan, grey and white Limestone. hard with abundant fossils; and loose sands, coarse grained, clear to opaque, and sub-rounded to rounded. The limestone was gradually replaced by increasing percentages of calcarenite finally making up only 10% of the sample at 370 metres, much of this may well have been cavings. Below 370 metres calcarenite predominated, a light grey, coarse-grained, subrounded - subangular sandstone with calsic cement. At 430 metres this was replaced by calcisiltite; a light grey, soft, calsic siltstone. These two lithologies formed the dominant rock types for this first section of the well; they interbedded regularly until 1200 metres when Marl appeared in significant quantities. The Marl was light grey, soft and sticky and it gradually increased until at 1600 metres when it made up 90% of the collected sample. Marl and Calcarenite then interbedded from 1200 metres to 2160 metres when calcisiltite reappeared,

This was probably the top of the Lakes Entrance unit and was typified by long sections of persistant calcisiltite with minor Marls and Calcarenites.

At 2420 metres the lithology abruptly changed to sandstone, this marked the top of the Latrobe unit and the start of the hydrocarbon bearing zones. This consisted of two different sands: Type One Sandstone - light grey, fine-medium grained, subrounded to subangular, moderately well sorted and cemented; Type Two consisting of clear to opaque quartz grains, poorly cemented, coarse to very coarse, moderately well sorted. Within these sands interbedded coals were developed - black, bituminous in parts, with a concoidal fracture.

The Latrobe ended at 2488 metres, below which a series of small units were developed. These units were mainly delineated by altering percentages of sands, silts and coals.

FM-1.2 extended from 2488 metres to 2510 metres and were marked by the first coal stringer. The coal reaches 20% of the sample before dying away at 2510 metres.

The next 5 metres were a poorly developed shale and marked the base of the FM-1.2 unit.

The next coal stringer represented the cap of the FM-1.3 unit; extending from 2510 to 2550 metres. The unit is an interbedded calcisiltite, (white, light grey, silica cement, clay-silt matrix, occasionally pyritic) and calcarenite (white, light grey, fine to medium grained (occasionally coarse), moderately well sorted and cemented, occasionally pyritic). Within this sequence calcarenite predominated.

The top of the next unit FM-1.4 was marked by a big increase in calcisiltite at 2550 metres with interbedded coals and sands. The calcisiltite was white to light grey, brown, firm, silt clay matrix, occasionally micromicaceous and pyritic. In parts it graded to a very fine grained sandstone.

The base of FM-1.4 was marked by the end of the coals at 2585 metres. A 15 metres section of 80% clacisiltite and 20% calcarenite formed the M-1.0.1 unit. This extended to 2595 metres where coals again formed the top of the M-1.0.2 unit. These coals built rapidly to form 70% of the sample by 2610 metres. The bulk of this section was calcisiltite, grey/brown, fine grained grading to sandstone; it was also occasionally micromicaceous, pyritic, and carbonaceous.

Below the biggest development of the coals the final unit started. This was the M-1.1.1 unit, running from 2610 metres and extending to T.D. at 2671 metres. It consisted of mainly calcisiltite grading to a fine grained sandstone, and in the final 15 metres of the hole showed a poorly developed white, soft kaolinite.

No cores were cut on WEST FORTESCUE NO. 1.

5. EXTENDED SERVICE PACKAGE

EXTENDED SERVICE INTRODUCTION

The Core Laboratories Extended Service Package includes sensors, recorders and computer facilities useful in the drilling operation, for the detection of abnormal formation pressure, and the optimization of drilling.

Presented graphically on Core Laboratories E.S. logs (discussed individually in the following section of this report) are the various functions necessary for well control, abnormal formation pressure detection and drilling optimization.

Other available services include electric log interpretation programs for the wellsite geologist, hydraulics (synthesis and analysis), well kill, cost per foot, bit nozzle selection, swab and surge created by pipe movement, and bit performance programs for the drilling engineer.

Core Laboratories E.S. logs include the following:

E.S. PRESSURE LOG

Information plotted on this log includes formation pore pressure, mud weight in and formation fracture pressure. This is plotted on linear graph paper at a vertical scale of 1:5000. The formation pore pressure and fracture pressure gradients are based on all available information. This is the conclusion log, therefore the information may be modified by results from formation drill stem tests, data from adjacent wells, kicks, R.F.T.'s, and formation breakdown tests.

CORE LAB DRILL DATA PLOT

This plot, which is drawn while drilling is in progress, is the primary tool by which formation overpressure is detected. Drawn on a 1:5000 scale it is particularly useful in that five plots are drawn side by side, and thus any trend can be readily recognised.

The main plot is that of the corrected "d"exponent, which is presented on a logarithmic scale. The "d" exponent was first developed by Jorden and Shirley in 1966 to assist in interpreting rate of penetration data by normalizing for rotary speed and weight-on-bit per inch of bit diameter.

The modified "dc" exponent was proposed by Rhem and McClendon to compensate for increases in mud weight. This involves multiplying the standard "d" exponent value by the inverse ratio of the mud weight. A multiple of 9 ppg was used for convenience to return the magnitude of the "dc" to a comparable value of it's uncorrected state. In this case, a multiplier of 10 ppg was used. The equation for "dc" is therefore:

Deviations from the normal "dc"s trend may be interpreted as being due to a change in formation pore pressure. An equation derived by Eaton is used in an attempt to evaluate pore pressure from deviations in the "dc"s plot. This method of overpressure detection can be fairly accurate for homogeneous shales, but where the sand/silt/shale ratio varies a great deal, inaccuracies often occur.

The other main plots are a logarithmic rate of penetration, which complements the "dc"s plot and a linear plot of total mud gas.

Shale densities are also plotted on a linear scale in order to show up a decreasing density trend, and hence a possible transition into abnormally pressured shales. The points are determined by measuring the density of air-dried shale samples in an accurately calibrated liquid density column.

An interpreted lithology column is also included on the log, as is a plot of mud density in , to assist in interpretation. All relevant information, such as casing points, bit runs, etc. are also included.

E.S. GEO-PLOT LOG

This is plotted by the computer while drilling is in progress. At a later date this plot can be re-run on different scales to suit the client. The data is stored on magnetic tape during the drilling operations. Functions plotted on this log are: rate of penetration, corrected "d" exponent, break-even analysis, formation pore pressure, mud density in and formation fracture pressure.

A Geo-plot is included in this report, at a scale of 1:5000.

E.S. FLOWLINE TEMPERATURE, FLOWLINE TEMPERATURE END-TO-END PLOTS

Flowline temperature and end-to-end plot of flowline temperature are the two main plots relating to the temperature of the returning drilling fluid. These are plotted on a vertical scale of 1:5000. The use of these plots as an indicator of the presence of over-pressure takes secondary role to the E.S. drill log. Continuous observation of flowline temperature may indicate an increase in geothermal gradient. Factors affecting temperature are noted on the log, such as new bit runs, changes in the circulation rates, circulating cuttings out and the addition of water and chemicals to the active mud system. Since the goal of the end-to-end plot is to provide a representation of the geothermal gradient, all surface changes which would cause artificial changes in the flowline temperature are disregarded.

ELECTRIC LOG PLOT

A plot of shale resistivity (ohm-metres squared/metre), sonic travel time (microseconds per foot), bulk density (gm/cc) and neutron porosity (%), may be made using data supplied by Schlumberger. Two-cycle semi-log paper is used, with a vertical scale of 1:10000. As far as possible only clean shale points are selected and plotted. The relatively compressed vertical scale makes deviations from the normal compaction trend easier to identify.

PROGRESS LOG

This is the traditional presentation of footage against elapsed time in days. It shows actual drilling time from spud to total depth.

DATA RECORDING

Data is recorded on tape while drilling, both as raw input numbers and computer calculated numbers. This data can be accessed later for use in interpretative programs or to review data. Comprehensive data lists are included in this report.

MUD DATA SHEETS

These are a record of the mud properties while drilling, and are derived from the mud engineer's daily report.

DRILLING PARAMETER PLOT

The drilling parameter plot shows : rate of penetration, weight-on-bit, rotary speed, pump pressure, hydraulic horsepower, impact force and jet velocity. This plot is drawn by the computer and is designed to aid the drilling engineer in drilling optimization. The scale chosen here is 1:5000.

HYDRAULIC ANALYSES

During drilling, routine hydraulic analyses are calculated by the computer, and these are made available to the drilling engineer. This report includes a sample hydraulics for each 100 metres.

GAS COMPOSITION ANALYSIS

For each significant gas show the chromatograph results are analysed using two techniques :-

- 1. Log plot
- 2. Triangulation plot

Both plots are included in this report.

GRAPHOLOG

This is plotted on the industry-standard form on a vertical scale of 1:500. Rate of penetration is plotted in metres per hour, together with mud gas chromatography results. Total gas is also plotted, and a percentage lithology log is drawn. A lithology description is presented in an abbreviated form. All relevant drilling data is included, as is bit and mud data.

MISCELLANEOUS

Various data collected from this well are also included in this report for reference. These include formation leak-off test data, R.F.T. and well test data where appropriate.

CORE LABORATORIES EQUIPMENT

Core Laboratories Field Laboratory 2007 monitoring equipment includes the following:

A. MUD LOGGING

- 1. T.H.M. total gas detector and recorder. 2. F.I.D. (Flame Ionization Detector) chromatograph and recorder.
- Cuttings gas detector.
- 4. Gas trap and support equipment for the above.
- 5. Pit volume totalizer and recorder.
- 6. Digital depth counter.
- 7. Two integrated pump stroke counters.
- 8. Ultra-violet fluoroscope.
- 9. Binocular microscope.
- 10. Calcimeter.
- 11. Steam-still gas analyzer.

B. EXTENDED SERVICE PACKAGE

- 1. HEWLETT PACKARD 9825B desktop computer.
- 2. HEWLETT PACKARD 9872B plotter
- 3. HEWLETT PACKARD 2631A printer.
- 4. Two HEWLETT PACKARD 2621P visual display units, (one located in the client's office).
- Hookload/weight-on-bit transducer and recorder.
- 6. Rotary speed sensor and recorder.
- Stand-pipe pump pressure transducer and recorder.
- 8. Mud flow out sensor and recorder.
- 9. Mud temperature sensors and recorders (in and out).
- 10. Mud conductivity sensors and recorders (in and out).
- 11. Mud density sensors (in and out) and recorders.
- 12. Rotary torque sensor and recorder.
- 13. Shale density apparatus.
- 14. Hydrogen sulphide gas detector.
- 15. Carbon dioxide gas detector.
- 16. DATALOGGER computer, monitor and impact printer.
- 17. DIGITAL remote paging display (located in the client's office).
- 18. Casing pressure transducer and recorder.

All the above sensors and gas detectors have displays on the DATALOGGER monitors except the Cuttings gas detector and steam-still.

CORE LABORATORIÉS MONITORING EQUIPMENT

DEPTH

Depth registered every 0.1 metres and rate of penetration calculated each metre (or every 0.2m while coring); ROP displayed on the computer monitor and chart.

WEIGHT-ON-BIT

A DeLaval 0-5000 psi, solid state pressure transducer is connected to the rig's deadline anchor. The weight-on-bit is calculated in the Datalogger, and displayed (with hookload) on the computer monitor and recorder chart.

ROTARY SPEED

This is a proximity limit switch which pulses once for every revolution of the rotary drive shaft. The value is displayed on the computer monitor and a recorder chart.

PUMP PRESSURE

This is a DeLaval 0-5000 psi transducer mounted on the stand-pipe manifold. The pressure is displayed on the computer monitor and recorder chart.

CASING PRESSURE

This is a DeLaval 0-5000 psi transducer mounted on the choke manifold. The signal is displayed on the computer monitor and on a recorder chart.

PIT VOLUME

Four individual pits are displayed on the monitor. The pit volume total is calculated by the Datalogger and displayed on the monitor. The sensors are vertical floats triggering magnetic switches accurate to +/-1 barrel.

In addition, a sensor is fitted to the rig's trip tank, so that hole fill-up during trips may be closely monitored. A recorder chart displays the levels of the active pits, the pit volume total, and the trip tank.

PUMP STROKES

These are the limit switch type, counting individual strokes. The pump rates per minute are displayed on the monitor.

ROTARY TORQUE

An American Aerospace Controls bi-directional current sensor is clamped over the power cable of the rotary table motor. Torque is displayed on the computer monitor and recorder chart.

MUD TEMPERATURE

This is a platinum probe resistance thermometer, and an electronics module calibrated 0--100~deg.C. Temperature in and out is displayed on the monitor and recorder.

MUD CONDUCTIVITY

A Balsbaugh electrode-less conductivity sensor contains two toroidally—wound coils and a thermistor enclosed in a donut-shaped housing. Current is induced into the mud by the primary coil and is sampled by the secondary coil, the amplitude of the current being directly proportional to the conductivity of the mud.

MUD DENSITY

Two density sensors (in and out) located in the possum belly and in the pit room, operate on a system of differential pressure. This function is displayed on both chart and monitor.

All the sensors are 12 to 36V DC powered with the exception of the air driven gas trap. Along with monitoring and maintaining the above equipment, Core Lab performed other duties...

CUTTINGS

Microscopic and ultra-violet inspection of cuttings samples at predetermined intervals. Samples were washed, dried, sacked and boxed where necessary. Geochemical samples were canned and boxed.

GAS

- 1.Flame Ionization Total Hydrocarbon gas detector.

 The T.H.M. accurately determines hydrocarbon concentrations up to 100% saturation.
- 2.Flame Ionization Detector chromatograph.

 The F.I.D. is capable of accurate determination of hydrocarbon concentration from C1 to C6+.
- 3.Cuttings gas detector (Wheatstone Bridge type).
 An auxiliary system for total gas detection.
- 4. Hydrogen Sulphide detector.

 Two sensors are located at the shale-shakers and in the pit room, linked to a TAC 404B H2S monitor, to detect H2S emanating from the drilling fluid.
- 5.Carbon Dioxide detector.

 An Infra-red gas analyzer determines the percentage of CO2 present in gas samples broken out of the mud by the gas trap.

SHALE DENSITY

Manual determination of shale density in an accurately calibrated variable density liquid column.

6. ESP PLOT DISCUSSIONS AND CONCLUSIONS

ESP PLOT DESCRIPTIONS AND CONCLUSIONS (with particular reference to Pore Pressure)

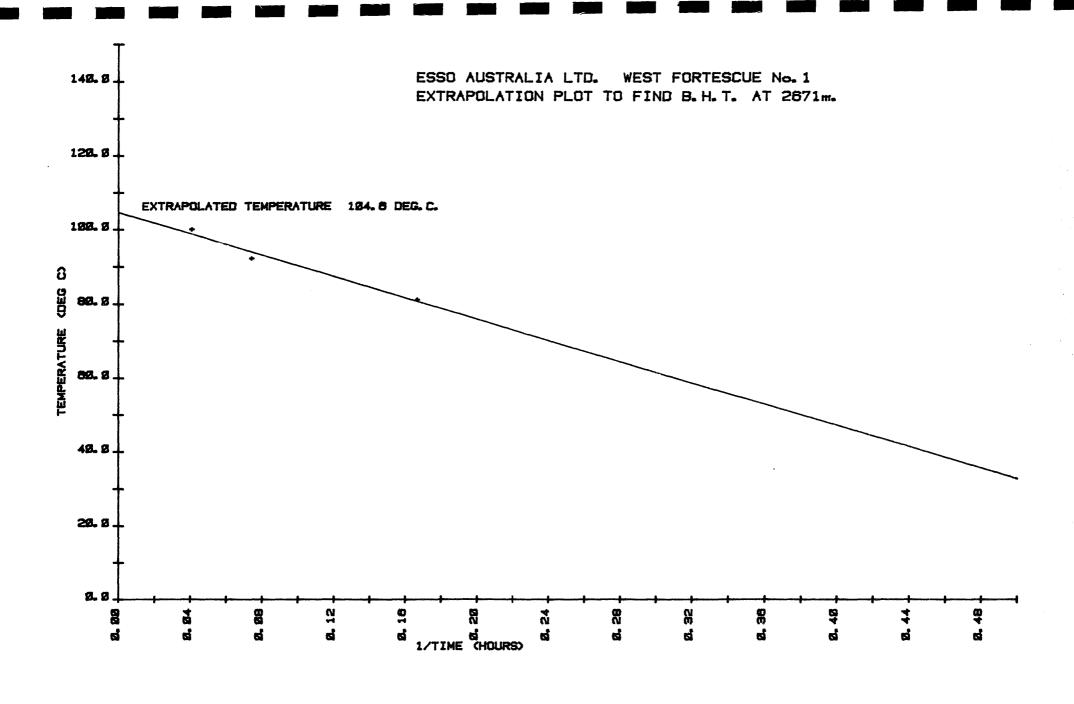
A prime aim during the drilling of WEST FORTESCUE NO. 1 was utilization of data collected by Core Laboratories DL2007 to provide an estimation of formation pressures. This is described in detail below.

The main pressure indicators that were used while drilling the well were those of rates of penetration, gas levels, 'd'c exponent, mud weight flowline temperature, and lithology.

The "Drill Data Plot" (see attached plots inside back cover) shows the rate of penetration, corrected 'd' exponent and mud density plotted against lithology. This plot indicates a normal pressure profile throughout the well. Minor variations in the 'd'c exponent and gas levels are due to lithology changes. No connection gas was observed and no shale density measurements were performed due to the lack of large shale sequences encountered.

The "Temperature Plot" displays the flowline temperature in and out and their differential plotted against depth. The plot shows a normal trend with depth only deviating from this at points where the mud system was being altered to meet specifications. The temperature plot of WEST FORTESCUE NO. 1 indicates a temperature gradient of 2.77 F/100 feet. The bottom hole temperature was extrapolated using the Horner method to give 220.3 F (104.6 C) at 2671 metres from wireline logging data.

The "Pressure Plot" summarizes the pressures found in the drilling of WEST FORTESCUE NO. 1. On this plot pore pressure is plotted along with mud weight and fracture gradient in pounds per gallon. The pore pressure of the well is drawn from pressure observations made while drilling and information from RFT pretests. The pore pressure profile of the well is set out below:


DEPTH INTERVAL (M)	PORE PRESSURE (PPG)	PORE PRESSURE (PSI/FT)
86 - 2400	8,2	0,426
2440 - 2516	8.1	0.421
2516 - 2558	7.8	0,401
2558 - 2671	8.1	0,421

The subnormal pressures are most likely due to a depletion of the reservoir by nearby commercial recoveries.

As shown by the mud density curve the well was drilled with an overbalance of 0.5 to 1.6 pounds per gallon throughout.

The Fracture Gradient curve is based on the U.S. Gulf Coast curve and offset to match local data.

7. B.H.T. ESTIMATION

CORE LAB

STRAIGHT LINE LEAST SQUARES BEST FIT

1/TIME ON A LINEAR SCALE AGAINST TEMP ON A LINEAR SCALE

ENTERED DATA:

DATA SET	#	1/TIME	TEMP
	1	0.1667	81.1
		0.0741	92.2
	. i	0,0408	100.0

COEFFICIENT & CONSTANT:

Y = M.X + c where M = -1.4361416E 02 and C = -1.0458058E 02

INTERPOLATED DATA:

1/TIME TEMP

0.0000 104.6

8. OVERBURDEN GRADIENT CALCULATIONS AND PLOT

OVERBURDEN PLOT DESCRIPTION AND CONCLUSIONS

An Overburden Plot for West Fortescue could not be plotted due to there being insufficent data. This was due to Density logs being run over the interval 2660 \pm 2350m only.

9. GAS ANALYSES

GAS COMPOSITION ANALYSIS

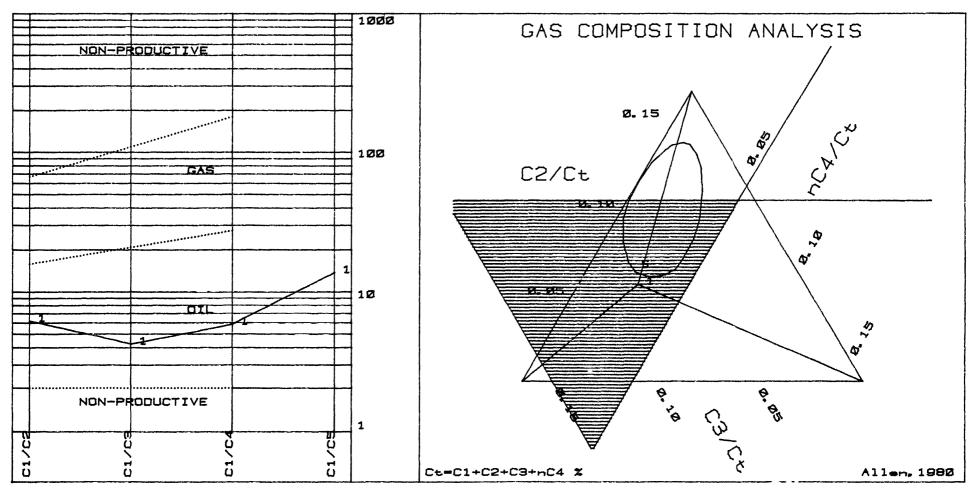
The composition of entrained reservoir gas in the mud is significant in determining the origin and the value of a show. Two graphical methods are employed for processing the mud gas chromatography results. These techniques however are empirical and by no means definitive.

LOG PLOT

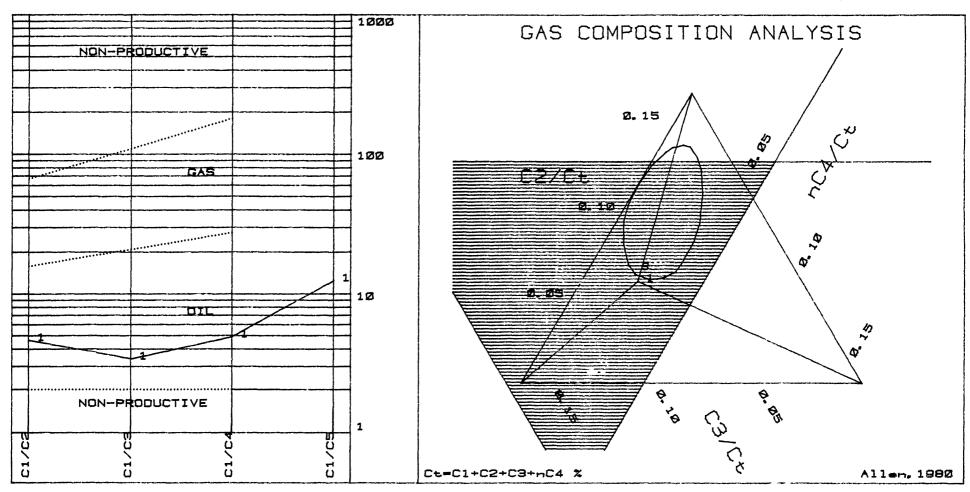
The ratios of C1/C2, C1/C3, C1/C4, C1/C5, and C1/C6 are plotted on three-cycle log paper for each hydrocarbon show. The plots can be evaluated by the following criteria :

- 1. Productive dry gas zones may show only C1, but abnormally high shows of C1 are usually indicative of saltwater.
- 2. A ratio of C1/C2 between approximately 2 and 15 indicates oil and between 15 and 65, gas. If the C1/C2 ratio is below about 2, or above about 65, the zone is probably non-productive.

The actual values of the gas/oil/water limits will vary from area to area.


- 3. If the C1/C2 ratio is low in the oil section and the C1/C4 ratio is high in the gas section, the zone is probably non-productive.
- 4. If any ratio (with the exception of C1/C5, if oil is used in the mud) is lower than the preceding ratio, the zone is probably non-productive.
- The ratios may not be definitive for low permeability zones; however, steep ratio plots may indicate a tight zone.

TRIANGULATION PLOT


The triangulation diagram is obtained by tracing lines on three scales at 120 degrees to each other, corresponding respectively to the ratios of C2, C3 and normal C4 to the total gas (C1 to C4). The scales are arranged in such a way that if the apex of the triangle is upward, a gas zone is indicated, while if the apex points downward, an oil zone is suggested.

A large triangle plot represents dry gas or low GOR oil, while small triangles represent wet gases or high GOR oils. The homothetic centre of the plot should fall inside the top part of the triangle, otherwise the heavier hydrocarbon is abnormal and may indicate a dead show, (or coal gas).

CORE LAB. INTL. LTD. Client: ESSO AUSTRALIA LTD. Well: WEST FORTESCUE No. 1

C1/C2 C1/C3 C1/C4 C1/C5 NO. DEPTH C1 CS СЭ 1C4 nC4 C5 C6 % 8 14 1 2434 Ø. Ø48 Ø. ØØ8 0.011 0.004 Ø. ØØ4 0.004 0. 002 Ø. Ø72 8 CONCLUSION: OIL ZONE, GOOD POROSITY

NO. DEPTH C1 C2 СЭ 1C4 nC4 C5 C6 % C1/C2 C1/C3 C1/C4 C1/C5 0. 011 1 2438 Ø. Ø51 Ø. Ø15 0.005 0.005 0.004 0.002 Ø. Ø82 5 3 5 12 CONCLUSION: OIL ZONE, GOOD POROSITY.

CORE	I AII

SIDEWALL CORE GAS ANALYSIS DATA SHEET

SHEET# 1

COMPANY ESSO AUSTRALIA LTD.

LOGGING SUITE NO. _

WELL

WEST FORTESCUE NO. 1

Nº DEPTH		СІ	C 2	C3	C4	C5	C 6	COMMENTS
		PPM	PPM	PPM	PPM PPM		PPM	
1	2569.2	1118.9	413,2	183.2	52.8	TR	_	
2	2565.6	3743.2	1561.2	1176.1	366.7	TR	-	
3	2560.2	716.1	564.8	659.5	349.1	TR	TR	
14	2549.0	1139.26	640.5	709.9	317.37	82.2	TR	
5	2531.0	70.7	28.7	23.38	18.32	30.84	12.7	
6	2532.0	1546.1	619.9	641.2	250.37	24.6	TR	
7	2516.1	21.8	5.4	4.58	6.64	4.4	TR	
8	2513.7	40.17	26.6	17.17	23.3	10.7	7.2	
9	2512.0	11.6	11.4	6.8	4.408	15.1	-	
10	2510.0	NIL	_	_	_	***	_	
11	2508.1	133.7	175.6	274.8	193.9	41.9	TR	
12	2502.8	15.2	17.2	11.4	13.2	17.73	TR	
13	2499.1	34.5	11.4	14.6	8.8	TR	-	
14	2495.1	20.3	10.6	15.1	13.22	TR	-	
15	2488.1	NIL	_	-	_	_	-	
16	2486.6	92.0	69.1	32.0	5.9		_	
17	2485.0	15.2	5.74	9.16	4.8	-	_	
18	2484.0	44.24	11.4	11.4	5.7	-	-	
19	2479.7	NIL	-	-	-	, -	-	
20	2477.6	30.51	8.6	6.8	4.8	TR	_	
21	2473.5	45.7	31.5	13.9	TR	-	-	
22	2465.2	15.2	2.87	3.4	-	-	-	
23	2460.3	71.7	28.7	38.9	24.2	• 5.1	TR	
24	2454.3	55.9	28.7	29.1	22,0	46.7	21.5	
25	2447.1	533.0	295.0	293.1	137.4	39.78	10.9	
26	2446.1	81.3	103.3	171.75	134.4	48.8	10.9	
27	2439.2	122.0	166.4	58.3	59.9	25.7	TR	
28	2438.0	463.8	688.8	3664.0	6643.7	5658.1	3383.4	
29	2436.7	97.6	137.7	403.0	1022.6	1480.3	641.6	
30	2436.0	1525.8	459.2	872.0	2539.0	2631.6	2100.0	
31	2431.0	61.0	71.1	659.5	1586.8	904.6	1633.4]
32	2429.7	40.6	22.9	99.3	2221.6	318.6	204.1]
33	2428.1	91.5	40.1	22.9	17.6	23.1	32.8	1
-34	2427.5	81.3	97.5	158.0	125.6	59.1	32.8	1
35	2425.2	61.0	25.8	25.1	33.0	23.13	14.5	1

		 		 		_
CORE LAN	SIDEMYLI		ANALYSIS		SHEET# 2	

COMPANY ___ESSO AUSTRALIA LTD.

LOGGING SUITE NO.

WELL WEST FORTESCUE NO. 1

NQ.	DEPTH	СІ	C S	С3	C4	C5	C 6	COMMENTS
	(M)	PPM	PPM	PPM	PPM	PPM	PPM	
36	2424.2	93.0	60.2	77.8	59•5	21.5	10,9	
37	2423.0	21.3	11.4	13.0	33.06	26.9	13.8	
38	2421.3	NIL	Name	_	_		_	
39	2420.2	116.9	17.2	18.3	19.8	10.2		
40	2419.2	457.7	71.7	73.28	145.4	57.3	36.4	
41	2418.6	320.4	54.5	55.1	46.2	21.3	29.1	
42	2417.5	167.8	37.3	50.6	46.2	20.56	TR	
43	2416.4	72.2	20.0	29.7	50.69	12.8	TR	
44	2413.5	185.6	28.7	32.06	28.6	15.4	TR	
45	2411.1	355.6	45.9	45.8	44.0	21.0	TR	
46	2406.6	310.4	45.9	43.5	41.0	24.6	_	
47	2402.1	263.4	37.3	33.2	33.0	16.7	-	
48	2400.0	469.4	54.5	43.5	47.16	25.7	-	
49	2396.6	376.3	45.9	41.2	59.5	33.7	-	
50	2374.5	233.9	25.8	22.9	39.6	20.56	-	
51	2366.2	508.6	48.7	49.2	46.2	15.6	-	
·····							****	
	1							
						,		
		ļ						
						•		
				,				
			 					
	 	 						
			1					

	 		-			 		

10. CORELAB DATA SHEETS

SIT RECORD

BIT SIZE Inches

BIT COST Australian dollars

JET SIZE Thirty-seconds of an inch

DEPTHS Metres

HOLE MADE. Metres

DRILLING TIME, Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

BIT RECORD

MILAB

ESSO AUSTRALIA LTD.

		WELL	V	VEST FO	ORTESCUE NO	1						Sheet No1
Bit No.	Make	Туре	IADC Code	Size ¹¹	Jets	Depth In	Hole Made ^M	Drilling Time	On Bottom Hours	Turns K	Condition T B G	Remarks
RR 1	HTC	OSC 3AJ +26" H/O	111	26	20/20/20	86		5-3/4	3.38	17.8		PULLED AT THE 20" CASING
												POINT.
NB 1	HTC	J1	111	17½	20/20/16	223	593	15½	10.01	89.6	_	PULLED AT 13-3/8" CASING
												POINT.
2	HTC	J1	116	12½	18/18/18	816	1042	67-3/4	55.64	490.7	5-3-I	PULLED DUE TO HIGH HOURS.
3	НТС	J1	116	12½	18/18/18	1858	560	25½	18.58	167.2	5-8-I	PULLED DUE TO HIGH TORQUE.
4	HTC	J22	517	121/1	18/18/18	2418	253	321/1	26.35	102.1	3-2-1	8T.D.
									ļ 			
										· · · · · · · · · · · · · · · · · · ·		
												and the second s
									-,			
									1			
		 										
					 							
						<u></u>						

7520 487 (CL 1153)

BIT RECORD

LAB

ESSO AUSTRALIA LTD.

COMPANY WEST FORTESCUE NO. 1

Sheet No. 1

s/Nos.										
LJ	321									
VE	246									
CD	528									
CD	617									
ZF	232									

	MATC		WELL		MEDI 1	OUTEDOG	DE NO. I		•							1 110
_	Bit N o.	Make	Type	IADC Code	Size "	Cost A\$	Jets	Depth In M	Depth Out	Hole M Made	Drilling Time	On Bottom Hours	Turns K	Average ROP	Average Cost/ m	Condition T B G
	RR 1	HTC	OSC 3AJ +26"H/O	111	26	0	20/20/20	86	223	137	5-3/4	3.38	17.8	40.5	156.74	3-4-I
	NB 1	HTC	OSC 3AJ	111	17½	4857	20/20/16	223	816	593	15岁	10,01	89.6	59.2	92.61	
	2	HTC	J1	116	124	2694	18/18/18	816	1858	1042	67-3/4	55.64	490.7	18.7	215.02	5-3-I
	3	HTC	J1	116	124	2694	18/18/18	1858	2418	560	25½	18.58	167.2	30.1	152.55	5-8-I
	4	HTC	J22	517	124	8516	18/18/18	2418	2671	253	321/4	26.35	102.1	9.6	481.91	3-2-1/8
	1001															
													<u> </u>			
										<u> </u>						
								19/1/20/20								

												· · · · · · · · · · · · · · · · · · ·				
														-		
					-										-	
								<u> </u>								
		-												-		
													-			
			<u> </u>			<u> </u>						<u> </u>				<u> </u>

MUD INFORMATION SHEETS

DEPTH Metres

MUD WEIGHT Pounds per gallon

FUNNEL VISCOSITY . . . A.P.I.seconds

PLASTIC VISCOSITY. . . Centipoise

YIELD POINT. Pounds/100 square feet

GEL : INITIAL/10 min . Pounds/100 square feet

FILTRATE A.P.I. c.c.

CAKE THICKNESS . . . Thirty-seconds of an inch

SALINITY : Ca/C1 . . . ppm

SOLIDS/SAND/OIL. . . Percentage

MUD INFORMATION SHEET [⟨]LAB COMPANY_ ESSO AUSTRALIA LTD. WELL_ WEST FORTESCUE NO. 1 Sheet No. 1 (M) 223 697 816 1054 1366 1680 2046 DEPTH 30/04/84 DATE 02/05/84 03/04/84 04/05/84 06/05/84 07/05/84 05/05/84 TIME S 23:00 04:00 21:00 23:00 20:00 23:00 WEIGHT Ε 9.0 9.2 9.1 9.1 9.0 9.1 FUNNEL VISCOSITY Α 33 34 31 32 30 30 4/17 PV/YP W 3/17 2/9 2/7 1/5 1/5 N/K .25/4.38 Α .20/5.69 .24/2.45 .29/1.48 .22/1.50 .22/1.50 GEL: INITIAL/10 MIN T 6/15 5/11 1/6 2/5 1/3 Ε 9.4 9.4 9.6 9.7 9.6 9.5 FILTRATE: API/API HTHP CAKE SALINITY (PPM) 19,000 17,000 19,000 19,000 19,000 19,000 SAND SOLIDS OIL ITRATES (PPM) REMARKS: 20" 17岁" 12½" HOLE HOLE HOLE SPUD 2579 (M) 2393 2671 DEPTH 2671 2671 08/05/84 09/05/84 10/05/84 11/05/84 12/05/84 DATE TIME 15:00 23:00 13:30 13:00 08:30 WEIGHT 9.2 9.5 9.3 9.4 9.3 46 FUNNEL VISCOSITY 48 37 50 46 PV/YP 11/25 7/19 8/22 3/12 8/20 .26/2.91 .34/3.58 .34/3,05 N/K .38/3.27 .36/2,92 8/26 GEL: INITIAL/10 MIN 10/25 6/10 11/30 7/23 10.3 10.2 10.8 10.7 10,6 FILTRATE: API/API HTHP 7.4/23.2 10.1/28.6 6.8/23 7.1/24.6 7.2/28.3CAKE 2 SALINITY 21,000 20,000 20,000 20,000 20,000 SAND TR TR 0.5 TR TR SOLIDS 5 7 6 6 6 OIL 240 160 NITRATES (PPM) 200 160 160 REMARKS: 12七" T.D. LOGGED HOLE

R.F.T. DATA SHEETS

CORE PRESSURE DATA SHEET

COMPANY: ESSO AUSTRALIA LTD. DATA FROM RFT'S

WELL: WEST FORTESCUE No. 1

DEPTH (FROM RKB)	DEPTH (FROM MSL)	PORE PRESS	PORE PRESS GRADIENT E.M.W.(MSL)	PORE PRESS GRADIENT
METRES	TVD, METRES	PSIA	PPG	PSI/M
2632.0	2611.0	3 638,70	8.169	1.394
2627.0	2606.0	3630.40	8.166	1,393
2616.7	2595.7	3612.20	8.157	1.392
2505.0	2564.0	3516.00	8.038	1.371
2558.0	2537.0	3372.30	7.792	1.329
2544.0	2523.0	3362.00	7.811	1,333
2535.0	2514.0	3350.90	7.811	1.333
2516.5	2495.5	3330.00	7.822	1.334
2498,0	24 77 .0	3424,80	8.104	1.383
2475.0	2454.0	3392.00	8.102	1,382
2457.5	2436.5	3368.40	8.104	1 382
2452.5	2431.5	3359.80	8.099	1,382
2441.7	2420.7	3409.50	8.256	1.408
2440.0	2419.0	3407.80	8.258	1.409
2437.0	2416.0	3403.60	8.258	1.409
2434.0	2413.0	3401.10	8.262	1.409
2431.0	2410.0	3397.70	8.264	1.410

COMPANY ESS WELL WES			Ę	R.F.T. SAM	PLING DATA SHEET Sheet No.1
RUN No.	1	1	3	3	
SEAT No.	1		28	28	
CHAMBER CAPACITY (GAL)	6	1	12	1	
DEPTH (metres)	2434	2434	2436.9	2436.9	
RECOVERY VOLUMES	<u> </u>		11		
GAS (Cu Ft)	3.96	P	0.53		
OIL (cc)	17600	R	30600	8300	
WATER/FILTRATE (cc)	1750	E	13750	 გ30	
OTHER (cc)		S			
SURFACE PRESSURE (PSI)	150	E	100	100	
GAS COMPOSITION	<u> </u>	R			
C1 (PPM)	121779	V			
C2 (PPM)	36636	F			
C3 (PPM)	34007	D			
C4 (PPM)	21824	-			
C5 (PPM)	5932				
C6 (PPM)	883	····			
CO2 (%)					
H25 (PPM)	0				
DIL PROPERTIES					
DENSITY API	40.5		38.5	39.3	
COLOUR	DR BRN				
FLUORESCENCE					
POUR POINT (OC)					
WATER PROPERTIES			•		
RESISTIVITY (Qm)			·243@ 62 F	.243@ 62 F	
Cl (frm resis) (PPM)					
Cl (frm titrat) (PPM)	18000		20000	57000	
NITRATES (PPM)	50		40	20	
pH	8.5		7.5	7.0	
COMMENTS					
SAMPLES SHIPPED (Include quantity and , volume of containers).	1 X 1 GAI PLASTIC 1 X 5 GAI JERRY CAN		1 X 1 GA 1 x 5 GA 1 x 1 GA	9.	

APPENDICES

COMPUTER DATA LISTINGS

Data is fed to the computer while drilling is in progress, using the DRILL program and is stored on a tape at 10, 5, 1, or 0.2m intervals. This data is then available at a later date for use in other programs (for example KICK, SURGE, COST, OPTBIT, and HYDRL).

The data can also be accessed by the REPORT program, which allows the operator to list both raw and calculated data in various formats. Either detailed data or data averaged over any particular depth interval, may be listed.

In addition, the data may be plotted in various formats, at any scale the operator desires.

the following data lists have been made for this well:

- (a). Bit record and bit initialization data
- (b). Hydraulic analyses
- (c). Data list A
- (d). Data list B
- (e). Data list C
- (f). Data list D

COMPUTER PLOTS

Using the REPORT program, hte following plots have been drawn for this well :

GEOPLOT - 1:5000 SCALE - 2m averages

Since all the data is stored on tape, further data lists or plots are available at any time on request.

(a), BIT RECORD AND BIT INITIALIZATION DATA

BIT SIZE Inches

BIT COST Australian dollars

JET SIZE , , , , , . Thirty-seconds of an inch

DEPTHS Metres

HOLE MADE. , , , . . . Metres

DRILLING TIME, Hours

AVERAGE ROP. Metres/hour

AVERAGE COST/METRE . . Australian dollars

BIT CONDITION. . . . Teeth

Bearings

Gauge . . . Inches

WELL: WEST FORTESCUE NO.1

BIT IADC No. CODE	MAKE & TYPE	SIZE	COST	NOZZLES	DEPTH IN	DEPTH OUT	BIT Run	TOTAL HOURS	AROP	TRIP TIME	CCOST		CONDITION T B G
1 111	HTC OSC3AJ+26"HO HTC OSC3AJ HTC J1	17,500	4857.00		223.0		593.0	10.01	59.2	3.7	92.62	89575	3 4 0.000 0 0 0.000 5 3 0.000

WELL: WEST FORTESCUE No.1

BIT RECORD

RIT IADC No. CODE MAKE & TYPE	SIZE	COST	NOZZLES	DEPTH IN	DEPTH OUT	RIT Run	TOTAL HOURS	AROP	TRIP TIME	ccost	 CONDITION T B G
3 116 HTC J1 4 517 HTC J22											5 8 0.001 3 2 0.125

TOTT NUMBER: 1 TADO CODE 111	нто овоз	AJ+26"HO	
STARTING DEPTH	86.0 0.00 2.5 26.000	3652.00	
NOZZLES	22.30 65.99 83.57 0.00 0.119 1.20 8.2 0.00 0.40 10.0	20 9.750 8.000 5.000 5.000 0.000 0.119	20 3.062 2.813 3.125 4.276
FINISHING DEPTHCUMULATIVE HOURS, TURNS	223.0 3.38 T 3	17844 B 4	G 0.000
BIT NUMBER: 1 IADC CODE 111			
	HTC OSC3	AJ	
STARTING DEPTH	223.0 4857.00 3.7 17.500 20 21.26 120.01	3652,00 20 9.750 8.000	16 3.062 2.813 3.125
STARTING DEPTH	223.0 4857.00 3.7 17.500 20 21.26	3652,00 20 9,750	3.062

BIT NUMBER: 2 TADO CODE 116	HTC J1		
STARTING DEPTH		3652.00	
BIT DIAMETER		18	1 8)
DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID		7.750 5.000	
DRILL PIPE OD, ID	799.00	5.000 12.615	4.276
RISER LENGTH, ID	86,00 0,119	21.000 0.119	
	1.20 8.2 0.00		
STRESS RATIO MODIFIER	0.40		
CUTTINGS DIAMETER, DENSITY		2.20	
	1858.4 55 <u>.64</u>		
BIT CONDITION OUT	T 5	B 3	G 0.000

BIT NUMBER: 3 IADC CODE 116	HTC JT3		
STARTING DEPTH BIT COST, RIG COST/HOUR TRIP TIME BIT DIAMETER NOZZLES DRILL COLLAR LENGTH, OD, ID HW DRILL PIPE LENGTH, OD, ID DRILL PIPE OD, ID CASING DEPTH, ID RISER LENGTH, ID PUMP VOLUMES 1 AND 2 PORE PRESSURE CALC EXPONENT NORMAL PORE PRESSURE OVERBURDEN GRADIENT MODIFIER STRESS RATIO MODIFIER "d" EXPONENT CORRECTION FACTOR	1858.0 2694.00 3.8 12.250 18 168.42 83.53 799.00 86.00 0.119 1.20 8.2 0.00 0.40	3652.00 18 7.750 5.000 5.000 12.615 21.000 0.119	18 2.813 2.813 4.276
CUTTINGS DIAMETER, DENSITY	2,0 2418.0	2,30	
CUMULATIVE HOURS, TURNS	18.58 T 5	167237 B 8	G 0.000
BIT NUMBER: 4 IADC CODE 517 STARTING DEPTH	HTC J22		
DIT COCT DIC COCT/UNUD	2418.0		
BIT COST, RIG COST/HOUR,, TRIP TIME BIT DIAMETER	2418.0 8516.00 4.7 12.250	3652.00	
TRIP TIME	8516.00 4.7	3652.00 18 7.750 5.000 5.000 12.615 21.000 0.119	18 2.813 2.813 4.276

(b), HYDRAULIC ANALYSIS

Data listed from the tape every 100m for each bit run.

DEPTH, Metres

FLOW RATE. Rate of mud flow into the well, in gallons per minute.

ANNULAR VOLUMES. . . . Barrels, Barrels/metre

ANNULAR VELOCITIES . . Metres/minute

CRITICAL VELOCITIES. . The annular velocity above which the flow becomes turbulent

SLIP VELOCITY, , , , The rate of slip of cuttings in the annulus under laminar flow

ASCENT VELOCITY, . . . The rate of ascent of cuttings in the annulus under laminar flow

PRESSURE UNITS . . . Pounds per square inch

IMPACT FORCE The impact force at the bit, in foot-pounds per second squared.

 $\mathsf{H},\mathsf{H},\mathsf{P}$, , , , , , . Hydraulic horsepower at the bit

JET VELOCITY The velocity of mud through the bit nozzles, in metres per second.

DENSITY UNITS. . . . Pounds per gallon

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 100,0 AND TVD 100,0

SPM 1 89 SPM 2 84 FLOW RATE 863

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOLZ	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP ¢ VEL	SCEND	PRESSURE DROP
нирсион	1.851	41	1.7	12	LAMINAR	1	1 ()	0,0
DCZOH	1.950	129	11	12	LAMINAR	1	1.0	0.0
HWDP/OH	2.074	24	10	11	LAMINAR	1	9	0.0
TOTAL	. VOLUME	194			TOTAL	PRESSURE	DROP	0.0

LAG: 9.4 MINUTES 838 STROKES #1 AND 794 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 704.9 HHP 355 IMPACT FORCE 1170 % SURFACE PRESSURE 63.5 HHP/sqin 0.67 JET VELOCITY 91

PRESSURE BREAKDOWN:

SURFACE 44.6 STRING 168.7 BIT 704.9 ANNULUS 0.0

TOTAL 918.3 PUMP PRESSURE 1110.0 % DIFFERENCE 17.3

BOTTOM HOLE PRESSURES:

	UNITS	UNITS
CIRCULATING:	WEIGHT 8.70 ECD 8.70 MARGIN 0.00 WEIGHT 8.70	HYDROSTATIC PRESSURE 148.4 CIRCULATING PRESSURE 148.4 ESTIMATED SWAB 0.0 BOTTOM HOLE PRESSURE 148.4

DENSITY

PRESSHRE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 200,0 AND TVD 200.0

SPM 1 99

SPM 2 102 FLOW RATE 1007

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	VEL.	CRIT	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
нмрсхон	1.851	41	13	12	TURBULENT			0.8
DC/OH	1.950	129	12	12	TURBULENT			0.0
HWDP/OH	2.074	173	12	11	TURBULENT			0.0
DP/OH	2.074	58	12	11	TURBULENT			0.0
TOTA	L VOLUME	402			TOTAL	PRESSUR	E DROP	0.0
160 07 0	Same Sala and Impar		200, 1000 \$100, 2000 \$ 2 \$1000 \$1					

LAG: 16.8 MINUTES 1662 STROKES #1 AND 1713 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP	958.4	HHP	563	IMPACT FORCE	1591
% SURFACE PRESSURE	69.3	HHP/sqin	1.06	JET VELOCITY	107

PRESSURE BREAKDOWN:

SURFACE 58.8 341.7 STRING BIT 958.4 ANNULUS 0.0

> TOTAL 1358.9 PUMP PRESSURE 1383.3 % DIFFERENCE 1.8

	DENSITY UNITS	PRESSURF UNITS
CIRCULATING:	WEIGHT 8.70 ECD 8.70 MARGIN 0.00 WEIGHT 8.70	HYDROSTATIC PRESSURE 296.8 CIRCULATING PRESSURE 296.9 ESTIMATED SWAB 0.0 BOTTOM HOLE PRESSURE 296.8

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS	CALCUL	ATIONS	ΑT	DEPTH	300.0	AND	TVD	300.1	0

SPM 1 99 SPM 2 97 FLOW RATE 980

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SL.IP VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH DC/OSG DC/CSG HWDP/CSG HWDP/RIS DP/RIS	0.673 0.772 0.961 1.085 1.325	14 55 47 79 14	35 30 24 21 18	14 14 13 12	TURBULENT TURBULENT TURBULENT TURBULENT TURBULENT TURBULENT			0 · 0 0 · 1 0 · 0 0 · 0 0 · 0
TOTAL	VOLUME	309			TOTAL	PRESSUR	E DROP	0,2

LAG: 13.3 MINUTES 1312 STROKES #1 AND 1286 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1172.1 HHP 670 IMPACT FORCE 1712 % SURFACE PRESSURE 52.7 HHP/sqin 2.79 JET VELOCITY 118

PRESSURE BREAKDOWN:

SURFACE 56.0 STRING 469.1 BIT 1172.1 ANNULUS 0.2

TOTAL 1697.4 PUMP PRESSURE 2224.0 % DIFFERENCE 23.7

	DENSITY UNITS	PRE	ESSURE UNITS
CIRCULATING:	WEIGHT 8.70	HYDROSTATIC PRESSURE	445.3
	ECD 8.70	CIRCULATING PRESSURE	445.5
	MARGIN 0.01	ESTIMATED SWAB	0.4
	WEIGHT 8.69	BOTTOM HOLE PRESSURE	444.9

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 400.0 AND TVD 400.0

SPM 1 101

SPM 2 100

FLOW RATE 1006

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL.	FLOW	VEL	VEL.	DR OP
HWDCZOH	0.673	1.4	36	15	TURBULENT			$0 \cdot 0$
DC/OH	0.772	93	31	14	TURBULENT			0.1
HWDP/OH	0.896	45	27	1.3	TURBULENT			0.0
HWDP/CSG	1,085	36	22	1.3	TURBULENT			0.0
DP/CSG	1,085	97	22	13	TURBULENT			0.0
DP/RIS	1.325	114	18	12	TURBULENT			0.0
TOTAL	VOLUME	399			TOTAL	PRESSUR	E DROP	0.3

LAG: 16.6 MINUTES 1684 STROKES #1 AND 1667 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1237.3 HHP 727 IMPACT FORCE 1808 % SURFACE PRESSURE 49.9 HHP/sqin 3.02 JET VELOCITY 121

PRESSURE BREAKDOWN:

SURFACE 58.8 STRING 526.4 BIT 1237.3 ANNULUS 0.3

TOTAL 1822.7 PUMP PRESSURE 2479.9 % DIFFERENCE 26.5

BOTTOM HOLE PRESSURES:

		UNITS		UNITS
NOT CIRCULATING: MUD	WEIGHT	8.70	HYDROSTATIC PRESSURE CIRCULATING PRESSURE	593.7
CIRCULATING:	ECD	8.70		594.0
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN	0.01	ESTIMATED SWAB	0.6
	WEIGHT	8.69	BOTTOM HOLE PRESSURE	593.1

DENSITY

PRESSURE

CORE LAB *** *** *** *** *** *** ***

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 500.0 AND TVD 500.0

SPM 1 100

SPM 2 100

FLOW RATE 1001

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
HWDC/OH DC/OH HWDP/OH DP/OH DP/CSG DP/RIS	0.673 0.772 0.896 0.896 1.085	14 93 75 60 132 114	35 31 27 27 22 18	14 13 13 13	TURBULENT TURBULENT TURBULENT TURBULENT TURBULENT TURBULENT			0.0 0.1 0.1 0.0 0.0
TOTAL	VOLUME	488			TOTAL	PRESSUR	E DROP	Σ , θ

LAG: 20.5 MINUTES 2049 STROKES #1 AND 2055 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1238.7 HHP IMPACT FORCE 1810 JET VELOCITY 121 724 % SURFACE PRESSURE 48.4 HHP/sqin 3.01

PRESSURE BREAKDOWN:

SURFACE 58.8 STRING 560.2 BIT 1238.7 ANNULUS 0.3

> TOTAL 1858.0 PUMP PRESSURE 2561.6 % DIFFERENCE 27.5

	DENSITY UNITS	1 17 Land 20 (11) EL
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT 8.80 ECD 8.80	(1, %), (2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
PULLING OUT: TRIP EFFECTIVE MUD	1	ESTIMATED SWAR 0.7 BOTTOM HOLE PRESSURE 750.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 600.0 AND TVD 600.0

SPM 1 98 SPM 2 100 FLOW RATE 990

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
HWDC/OH	0.673	14	35	126	LAMINAR	0	35	0,4
DC/OH	0.772	93	31	125	LAMINAR	0	30	1.6
HWDP/OH	0.896	75	26	124	LAMINAR	0	26	0.8
DP/OH	0.896	150	26	124	LAMINAR	0	26	1.5
DP/CSG	1.085	132	22	123	LAMINAR	0	22	0.9
DP/RIS	1.325	114	18	123	LAMINAR	0	18	0.5
TOTAL	VOLUME	578			TOTAL	PRESSURE	DROP	₩.8

LAG: 24.5 MINUTES 2406 STROKES #1 AND 2451 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1238.6 HHP 716 IMPACT FORCE 1810 % SURFACE PRESSURE 47.1 HHP/sqin 2.97 JET VELOCITY 119

PRESSURE BREAKDOWN:

SURFACE 77.4
STRING 782.1
BIT 1238.6
ANNULUS 5.8

TOTAL 2103.9 PUMP PRESSURE 2628.0 % DIFFERENCE 19.9

	DENSITY UNITS	PRESSURE UNITS
CIRCULATING: PULLING OUT: TRIP	WEIGHT 9.00 ECD 9.06 MARGIN 0.11	HYDROSTATIC PRESSURE 921.3 CIRCULATING PRESSURE 927.0 ESTIMATED SWAB 11.5
EFFECTIVE MUD	WEIGHT 8.89	BOTTOM HOLE PRESSURE 909.7

CORE LAB ::: ::: ::: ::: ::: ::: ::: :::

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 700.0 AND TVD 700.0

SPM 1 102

SPM 2 101 FLOW RATE 1013

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP 6 VEL	VEL.	PRESSURE DROP
HWDCZOH	0.673	14	36	125	LAMINAR	0	35	0 . 4
DCZOH	0.772	93	31	124	LAMINAR	0	31	1 . 6
HWDP/OH	0.896	75	27	123	LAMINAR	0	27	0.8
DP/OH	0.896	23 9	27	123	LAMINAR	0	27	2.5
DP/CSG	1.085	132	22	122	LAMINAR	0	22	0.9
DP/RIS	1.325	114	18	122	LAMINAR	0	18	0.5
TOTAL	. VOLUMF	668			TOTAL	PRESSURE	T DROP	6.7

LAG: 27.7 MINUTES 2824 STROKES #1 AND 2785 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1310.4 HHP 774 IMPACT FORCE 1914 HHP/sqin 3.22 % SURFACE PRESSURE 48.4 JET VELOCITY 122

PRESSURE BREAKDOWN:

81.3 SURFACE 868.7 STRING BIT 1310.4

ANNULUS 6.7

TOTAL 2267.2 PUMP PRESSURE 2708.3 % DIFFERENCE 16.3

	DE	NSITY UNITS	ţ	PRESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT ECD	9.10 9.16	HYDROSTATIC PRESSURE	1086.7 1093.5
PULLING OUT: TRIP	MARGIN	0.11	ESTIMATED SWAB	13.5
EFFECTIVE MUD	WEIGHT	8.99	BOTTOM HOLE PRESSURE	1073.3

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 800.0 AND TVD 800.0

SPM 1 100

SPM 2 100

FLOW RATE 999

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
нирсион	0.673	1.4	35	125	LAMINAR	0	35	(i , 4)
DC/OH	0.772	93	31	124	LAMINAR	0	31	1.6
HWDP/OH	0,896	75	27	123	LAMINAR	0	26	0.8
DPZOH	0.896	329	27	123	LAMINAR	0	26	3.4
DP/CSG	1,085	132	22	122	LAMINAR	0	22	0,9
DP/RIS	1.325	114	18	122	LAMINAR	0	13	0.5
TOTAL	VOLUME	757			TOTAL	PRESSURE	DROP	7.6

LAG: 31.8 MINUTES 3175 STROKES #1 AND 3187 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1275.4 1-11-1b 743 IMPACT FORCE 1863 % SURFACE PRESSURE 46.0 HHP/sqin 3.09 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE

79.4 STRING 893.6

BIT

1275.4 ANNULUS 7.6

> 2256.0 PUMP PRESSURE 2774.9 % DIFFERENCE 18.7 TOTAL

BOTTOM HOLE PRESSURES:

	DENSI.		PRESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT 9. ECD 9.	en i de la compania del compania del compania de la compania del la compania de la compania de la compania del la compania	
PULLING OUT: TRIP	MARGIN 0.	11 ESTIMATED SWAB	15.3
EFFECTIVE MUD	WEIGHT 8.	99 BOTTOM HOLE PRESSU	RE 1226.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 900.0 AND TVD 900.0

SPM 1 99 SPM 2 94 FLOW RATE 964

ANNULAR HYDRAULICS:

ANNULUS	VOL./		NNA	CRIT	TYPE OF	SLIP 6	ASCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL	VEL	DROP
DC/OH	0.287	29	80	127	LAMINAR	0	8.0	4,4
DC/CSG	0.316	21	73	127	LAMINAR	0	72	2.6
HWDP/CSG	0,427	36	54	125	LAMINAR	0	54	1.7
DP/CSG	0.427	240	54	125	L.AMINAR	0	54	11.5
DP/RIS	1,325	114	17	122	LAMINAR	0	17	0.5
TOTAL	. VOLUME	440			TOTAL	PRESSURE	E DROP	20.8

LAG: 19.2 MINUTES 1895 STROKES #1 AND 1803 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1400.6 HHP 788 IMPACT FORCE 1883 % SURFACE PRESSURE 47.3 HHP/sqin 6.68 JET VELOCITY 126

PRESSURE BREAKDOWN:

SURFACE 74.4 STRING 1084.3 BIT 1400.6 ANNULUS 20.8

TOTAL 2580.1 PUMP PRESSURE 2960.5 % DIFFERENCE 12.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: 9.10 MUD WEIGHT HYDROSTATIC PRESSURE 1397.2 CIRCULATING: 9.24 CIRCULATING PRESSURE ECD 1418.0 TRIP MARGIN PULLING OUT: 0.27 ESTIMATED SWAB 41,6 EFFECTIVE MUD WEIGHT 8.83 BOTTOM HOLE PRESSURE 1355.6

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1000.0 AND TVD 1000.0

SPM 1 98 SPM 2 91 FLOW RATE 944

ANNULAR HYDRAULICS:

VOLZ CRIT TYPE OF SLIP ASCEND PRESSURE ANNULUS ANN VEL. TYPE UNIT VOL VEL. FLOW VEL. VEL DROP 48 78 127 0 78 7.3 DC/OH 0,287 LAMINAR 56 0.7 0.39813 56 125 0 HWDP/OH LAMINAR 0.427 53 125 52 1.0 HWDP/CSG 22 LAMINAR 0 52 13.5 DP/CSG 0.427 283 53 125 LAMINAR 0 122 17 0.5DP/RIS 1.325 114 17 LAMINAR 0 TOTAL PRESSURE DROP 23.1 TOTAL VOLUME 480

LAG: 21.4 MINUTES 2083 STROKES #1 AND 1950 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1342.9 HHP 739 IMPACT FORCE 1806 2 SURFACE PRESSURE 45.9 HHP/sqin 6.27 JET VELOCITY 123

PRESSURE BREAKDOWN:

SURFACE 71.6 STRING 1085.3 BIT 1342.9 ANNULUS 23.1

TOTAL 2522.9 PUMP PRESSURE 2927.9 % DIFFERENCE 13.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS 1552.5 NOT CIRCULATING: 9,10 HYDROSTATIC PRESSURE MUD WEIGHT 9.24 CIRCULATING: ECD CIRCULATING PRESSURE 1575.60.27 PULLING OUT: TRIP MARGIN ESTIMATED SWAR 46.3 EFFECTIVE MUD WEIGHT 8.83 BOTTOM HOLE PRESSURE 1506.2

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1100.0 AND TVD 1100.0

SPM 1 97 SPM 2 89 FLOW RATE 932

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DC/OH	0,287	48	77	127	LAMINAR	0	77	7.3
HWDP/OH	0.398	33	56	125	LAMINAR	0	55	1.8
DP/OH	0,398	20	56	125	LAMINAR	0	35	1.1
DP/CSG	0.427	305	52	125	LAMINAR	0	52	14.5
DP/RIS	1,325	114	17	122	LAMINAR	()	17	0.5
TOTAL.	VOLUME	520			TOTAL	PRESSURE	DROP	25.3

LAG: 23.4 MINUTES 2283 STROKES #1 AND 2084 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1309.6 HHP 712 IMPACT FORCE 1761 % SURFACE PRESSURE 44.6 HHP/sqin 6.04 JET VELOCITY 122

PRESSURE BREAKDOWN:

SURFACE 70.0 STRING 1101.4 BIT 1309.6 ANNULUS 25.3

TOTAL 2506.3 PUMP PRESSURE 2934.7 % DIFFERENCE 14.6

BOTTOM HOLE PRESSURES:

	UNITS		UNITS
CIRCULATING:	WEIGHT 9.10	HYDROSTATIC PRESSURE	1707.7
	ECD 9.23	CIRCULATING PRESSURE	1733.0
	MARGIN 0.27	ESTIMATED SWAB	50.6
	WEIGHT 8.83	BOTTOM HOLE PRESSURE	1657.1

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1200.0 AND TVD 1200.0

SPM 1 95 SPM 2 88 FLOW RATE 916

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP	ASCEND	PRESSURF
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL	VEC.	DROP
DC/OH	0.287	48	76	92	LAMINAR	1	75	3.9
HWDP/OH	0.398	33	55	91	LAMINAR	f)	54	1.0
DP/OH	0.398	59	55	91	L.AMINAR	0	54	1,8
DP/CSG	0.427	305	51	91	LAMINAR	0	51	7.8
DP/RIS	1.325	114	16	89	LAMINAR	0	16	0 . 3
TOTAL	L VOLUME	560			TOTAL	PRESSUR	RE DROP	14.6

LAG: 25.7 MINUTES 2436 STROKES #1 AND 2266 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1266.0 HHP 677 IMPACT FORCE 1702 % SURFACE PRESSURE 43.2 HHP/sqin 5.74 JET VELOCITY 120

PRESSURE BREAKDOWN:

SURFACE 59.1 STRING 964.2 BIT 1266.0

ANNULUS 14.6

TOTAL 2304.0 PUMP PRESSURE 2928.5 % DIFFERENCE 21.3

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.10 HYDROSTATIC PRESSURE 1862.9 CIRCULATING: ECD 9.17 CIRCULATING PRESSURE 1877.6 PULLING OUT: TRIP MARGIN 0.14 ESTIMATED SWAB 29.3 EFFECTIVE MUD WEIGHT 8.96 BOTTOM HOLE PRESSURE 1833.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1300.0 AND TVD 1300.0

SPM 1 88 SPM 2 93 FLOW RATE 904

ANNULAR HYDRAULICS:

ANNULUS	VOLZ		ANN	CRIT	TYPE OF	SLIP 6	SCEND	PRESSURE
TYPE	TINU	VOL.	VEL.	VEIL.	FLOW	VEL.	VEL.	DKOh
DC/OH	0.287	48	25	92	LAMINAR	1	74	3.9
HWDPZOH	0,398	33	54	91	L.AMINAR	0	54	1.0
DP/OH	0.398	99	54	91	LAMINAR	0	54	2.9
DP/CSG	0.427	305	50	91	L.AMINAR	0	50	7.7
DP/RIS	1.325	114	16	89	LAMINAR	0	16	0.3
TOTAL	VOLUME	599			TOTAL.	PRESSURI	DROP	15.8

LAG: 27.9 MINUTES 2456 STROKES #1 AND 2581 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1231.3 HHP 649 IMPACT FORCE 1656 % SURFACE PRESSURE 42.1 HHP/sqin 5.51 JET VELOCITY 118

PRESSURE BREAKDOWN:

SURFACE 57.7 STRING 973.6 BIT 1231.3 ANNULUS 15.8

TOTAL 2278.3 PUMP PRESSURE 2923.2 % DIFFERENCE 22.1

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS MUD WEIGHT NOT CIRCULATING: 9.10 HYDROSTATIC PRESSURE 2018,2 CIRCULATING: ECD 9.17 CIRCULATING PRESSURE 2033,9 PULLING OUT: TRIP MARGIN 0.14 ESTIMATED SWAR 31.5 EFFECTIVE MUD WEIGHT 8.96 BOTTOM HOLE PRESSURE 1986.7 CORE LAB **** **** **** **** **** **** **** ****

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1400.0 AND TUD 1399.9

SPM 1 89 SPM 2 90894 FLOW RATE

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP 4 VEL	NSCEND VEL	PRESSURE DROP
DC/OH	0.287	48	74	69	TURBULENT			2.8
HWDP/OH	0.398	33	53	67	LAMINAR	1	53	0.6
DP/OH	0.398	139	53	67	LAMINAR	1	53	2.5
DP/CSG	0.427	305	50	66	LAMINAR	0	49	4.6
DP/RIS	1.325	114	16	62	LAMINAR	0	16	0.1
TOTAL.	VOLUME	639			TOTAL	PRESSURE	DROP	10.6

LAG: 30.0 MINUTES 2658 STROKES #1 AND 2714 STROKES #2

BIT HYDRAULICS:

HHP 636 HHP/sqin 5.39 PRESSURE DROP 1218,7 IMPACT FORCE 1639 % SURFACE PRESSURE 41.8 JET VELOCITY

PRESSURE BREAKDOWN:

SURFACE 57.1 STRING 996,5 BIT 1218.7 ANNULUS 10.6

TOTAL 2283.0 PUMP PRESSURE 2913.9 % DIFFERENCE 21.7

BOTTOM HOLE PRESSURES:

	DENSITY UNITS	PRESSURE UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT 9.20 ECD 9.24	HYDROSTATIC PRESSURE 2197.3 CIRCULATING PRESSURE 2207.9
PULLING OUT: TRIP	***************************************	ESTIMATED SWAB 21.3
EFFECTIVE MUD	WEIGHT 9.11	BOTTOM HOLE PRESSURE 2176.0

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1500.0 AND TVD 1499.9

SPM 1 88 SPM 2 87 FLOW RATE 873

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOI	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.287	48	73	69	TURBULENT			2.7
HWDP/OH	0.398	33	52	67	LAMINAR	1	52	0.6
DP/OH	0.398	179	52	67	LAMINAR	1	52	3.2
DP/CSG	0.427	305	49	66	LAMINAR	Ö	48	4.6
DP/RIS	1.325	114	16	62	LAMINAR	0	16	0,1
TOTAL	L VOLUME	679			TOTAL	PRESSURE	DROP	11.2

LAG: 32.7 MINUTES 2865 STROKES #1 AND 2842 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1163.0 HHP 593 IMPACT FORCF 1564 % SURFACE PRESSURE 40.6 HHP/sqin 5.03 JET VELOCITY 114

PRESSURE BREAKDOWN:

SURFACE 54.7 STRING 787.0 BIT 1163.0 ANNULUS 11.2

TOTAL 2215.9 PUMP PRESSURE 2866.4 % DIFFERENCE 22.7

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.20 HYDROSTATIC PRESSURE 2354.2 CIRCULATING: ECD 9.24 CIRCULATING PRESSURE 2365.3 0.09 PULLING OUT: TRIP MARGIN ESTIMATED SWAB 22.3 EFFECTIVE MUD WEIGHT 9.11 2331.8 BOTTOM HOLE PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1600.0 AND TVD 1599.9

SPM 1 87 SPM 2 87 FLOW RATE 872

ANNULAR HYDRAULICS:

ANNULUS	VOL.Z		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	UNIT	VOL.	VEL	VEL	FLOW	VEL.	VEL	DR Ob
DC/OH	0.287	48	72	69	TURBULENT			2 - 6
HWDP/OH	0.398	33	52	67	LAMINAR	1	52	06
HOVAG	0.398	219	52	67	LAMINAR	1	52	3. 9
DP/CSG	0.427	305	49	66	L.AMINAR	0	48	4.6
DP/RIS	1.325	114	16	62	LAMINAR	0	16	0,1
TOTAL.	VOLUME	719			TOTAL	PRESSURE	DROP	11.9

LAG: 34.6 MINUTES 3021 STROKES #1 AND 3021 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1160.2 HHP 591 IMPACT FORCE 1560 % SURFACE PRESSURE 39.8 HHP/sqin 5.01 JET VELOCITY 114

PRESSURE BREAKDOWN:

SURFACE 54.6 STRING 1016.3 BIT 1160.2 ANNULUS 11.9

TOTAL 2243.0 PUMP PRESSURE 2913.8 % DIFFERENCE 23.0

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS HYDROSTATIC PRESSURE 2511.1 9.20 NOT CIRCULATING: MUD WEIGHT 2523.0 CIRCULATING PRESSURE CIRCULATING: ECD 9.24 23.7 TRIP MARGIN 0.09 ESTIMATED SWAB PULLING OUT: BOTTOM HOLE PRESSURE 2487,4 9.11 EFFECTIVE MUD WEIGHT

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1700.0 AND TVD 1699.9

SPM 1 88 SPM 2 85 FLOW RATE 865

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP ¢ VEL	VEL.	PRESSURE DROP
DC/OH	0.287	48	72	70	TURBULENT			2.6
HONPZOH	0.398	33	52	67	LAMINAR	1	51	0.6
DP/OH	0,398	259	52	62	LAMINAR	1	51	4.6
DP/CSG	0.427	305	48	67	L.AMINAR	0	48	4.6
DP/RIS	1,325	114	16	63	LAMINAR	0	15	0.1
TOTAL	. VOLUME	759			TOTAL	PRESSURE	DROP	12.5

LAG: 36.9 MINUTES 3249 STROKES #1 AND 3128 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1127.1 HHP 568 IMPACT FORCE 1516 Z SURFACE PRESSURE 39.0 HHP/sqin 4.82 JET VELOCITY 113

PRESSURE BREAKDOWN:

SURFACE 53.3 STRING 1021.9

BIT 1127.1

ANNULUS 12.5

TOTAL 2214.7 PUMP PRESSURE 2886.7 % DIFFERENCE 23.3

BOTTOM HOLE PRESSURES:

UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.10 HYDROSTATIC PRESSURE 2639,0 9.14 CIRCULATING PRESSURE 2651.5 CIRCULATING: ECD TRIP MARGIN 0.09 ESTIMATED SWAB 25.0 PULLING OUT: EFFECTIVE MUD WEIGHT 9.01 BOTTOM HOLE PRESSURE 2614.1

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1800.0 AND TVD 1799.9

SPM 1 87 SPM 2 84 FLOW RATE 854

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	70L	VEL.	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DC/OH	0.287	48	71	70	TURBULENT			2.5
HWDP/OH	0.398	33	51	67	LAMINAR	1	50	0.6
DPZOH	0.398	298	51	67	LAMINAR	1	50	F 7
DP/CSG	0.427	305	48	67	LAMINAR	0	47	4.6
DP/RIS	1.325	114	15	83	LAMINAR	U	3.5	(1, 1)
TOTAL	VOLUME	799			TOTAL	PRESSURE	DROP	13.1

LAG: 39.3 MINUTES 3426 STROKES #1 AND 3285 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1099.0 HMP 547 IMPACT FORCE 1478 % SURFACE PRESSURE 37.9 HMP/sgin 4.64 JET VELOCITY 112

PRESSURE BREAKDOWN:

SURFACE 52.1 STRING 1029.0 BIT 1099.0

ANNULUS 13.1

TOTAL 2193.2 PUMP PRESSURE 2900.0 % DIFFERENCE 24.4

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: 9.10 2794.3 MUD WEIGHT HYDROSTATIC PRESSURE CIRCULATING: 9.14 ECD CIRCULATING PRESSURE 2807.4 PULLING OUT: TRIP MARGIN 0.09 ESTIMATED SWAR 26,2 EFFECTIVE MUD WEIGHT 9.01 BOTTOM HOLE PRESSURE 2768.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 1900.0 AND TVD 1899.9

SPM 1 87 SPM 2 82 FLOW RATE 846

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	V01	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	ASCEND VEL	PRESSURE DROP
DC/OH	0.287	48	70	70	TURBULENT			2.5
HWDP/OH	0.398	33	51	67	LAMINAR	1	50	0.6
DP/OH	898.0	338	51	67	LAMINAR	1	50	5.9
DP/CSG	0.427	305	47	67	LAMINAR	1	47	4.6
DP/RIS	1.325	114	15	63	LAMINAR	0	15	0.1
TOTAL	. VOLUME	838			TOTAL	PRESSURE	EDROP	13.7

LAG: 41.6 MINUTES 3631 STROKES #1 AND 3415 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1080.3 HHP 533 IMPACT FORCE 1453 % SURFACE PRESSURE 36.1 HHP/sqin 4.53 JET VELOCITY 111

PRESSURE BREAKDOWN:

SURFACE 51.3 STRING 1042.7 BIT 1080.3

ANNULUS

TOTAL 2188.0 PUMP PRESSURE 2988.4 % DIFFERENCE 26.8

BOTTOM HOLE PRESSURES:

13.7

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: 2949.6 MUD WEIGHT 9.10 HYDROSTATIC PRESSURE CIRCULATING: 9.14 2963.3 ECD CIRCULATING PRESSURE PULLING OUT: TRIP MARGIN 0.08 ESTIMATED SWAR 27.4 EFFECTIVE MUD WEIGHT 9.02 BOTTOM HOLE PRESSURE 2922.1

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2000,0 AND TVD 1999.9

SPM 1 84 SPM 2 83 FLOW RATE 834

ANNULAR HYDRAULICS:

ANNULUS VOLZ ANN CRIT TYPE OF SLIP ASCEND PRESSURE TYPE UNIT VOL. VEL VEL. FLOW VEL VEL. DROP DC/OH 0.287 69 702.4 48 LAMINAR 1 68 HWDP/OH 0.398 49 33 50 67 θ , δ LAMINAR 1 DP/OH 0,398 378 50 67 LAMINAR 1 49 6.6 4.5 DP/CSG 0,427 305 46 67 LAMINAR 1 46 DP/RIS 1,325 114 15 63 LAMINAR 0 15 0.1TOTAL VOLUME 878 TOTAL PRESSURE DROP 14.3

LAG: 44.2 MINUTES 3720 STROKES #1 AND 3661 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1048.0 HHP 510 IMPACT FORCE 1409 % SURFACE PRESSURE 36.1 HHP/sqin 4.33 JET VELOCITY 109

PRESSURE BREAKDOWN:

SURFACE 49.9 STRING 1043.4

BIT 1048.0 ANNULUS 14.3

TOTAL 2155.6 PUMP PRESSURE 2904.4 % DIFFERENCE 25.8

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9.10 HYDROSTATIC PRESSURE 3104.8 CIRCULATING: ECD 9.14 CIRCULATING PRESSURE 3119.1 PULLING OUT: TRIP MARGIN 0.08 ESTIMATED SWAB 28.6 EFFECTIVE MUD WEIGHT BOTTOM HOLE PRESSURE 9.02 3076.2

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2100.0 AND TVD 2099.9

SPM 1 85 SPM 2 80 FLOW RATE 823

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DCZOH	0,287	48	68	70	LAMINAR	1	67	2.4
HWDP/OH	0.398	33	49	67	LAMINAR	1	49	0.6
DP/OH	0.398	418	49	67	LAMINAR	1	49	7.3
DP/CSG	0.427	305	46	67	LAMINAR	0	45	4.5
DP/RIS	1,325	114	15	63	LAMINAR	0	15	0.1
TOTAL	VOLUME	918			TOTAL	PRESSURE	TROP	14.9

LAG: 46.9 MINUTES 3962 STROKES #1 AND 3754 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 1020.8 HHP 490 IMPACT FORCE 1373 Z SURFACE PRESSURE 35.1 HHP/sqin 4.16 JET VELOCITY 108

PRESSURE BREAKDOWN:

SURFACE 48.7 STRING 1047.1 BIT 1020.8

ANNULUS 14.9

TOTAL 2131.5 PUMP PRESSURE 2906.8 % DIFFERENCE 26.7

BOTTOM HOLE PRESSURES:

PRESSURE DENSITY UNITS UNITS 3260.0 NOT CIRCULATING: MUD WEIGHT 9.10 HYDROSTATIC PRESSURE CIRCULATING: ECD 9.14 CIRCULATING PRESSURE 3275.0 29.9 PULLING OUT: TRIP MARGIN 0.08 ESTIMATED SWAB EFFECTIVE MUD WEIGHT 9.02 BOTTOM HOLE PRESSURE 3230.2 CORE LAB ::: ::: ::: ::: ::: ::: :::

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2200.0 AND TVD 2129.9

SPM 2 82 FLOW RATE 805 SPM 1 79

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCEND	PRESSURE
TYPE	TINU	VOL	VEL	VEL.	FL.OW	VEL.	VEL.	DROP
DC/OH	0.287	48	67	9 (1	LAMINAR	1	66	4.0
HWDP/OH	0.398	33	48	85	LAMINAR	0	48	0.9
DP/OH	0.398	458	48	85	LAMINAR	()	48	12.6
DP/CSG	0.427	305	45	84	LAMINAR	0	45	7.1
DP/RIS	1,325	114	14	78	LAMINAR	Û	14	0.2
TOTAL	_ VOLUME	958			TOTAL	PRESSURE	DROP	24.7

3972 STROKES #1 AND 4079 STROKES #2 LAG: 50.0 MINUTES

BIT HYDRAULICS:

458 IMPACT FORCE 1313 HHP 976.5 PRESSURE DROP JET VELOCITY 105 HHP/sqin 3.89 % SURFACE PRESSURE 34.0

PRESSURE BREAKDOWN:

53.8 SURFACE STRING 1186.7 976.5 BIT ANNULUS 24.7

% DIFFERENCE 22.0 PUMP PRESSURE 2874.0 TOTAL 2241.8

BOTTOM HOLE PRESSURES:

DENSITY UNITS UNITS HYDROSTATIC PRESSURE 3415.3 9.10 MUD WEIGHT NOT CIRCULATING: 3440.0 CIRCULATING PRESSURE 9.17 ECD CIRCULATING: 49.5 ESTIMATED SWAB TRIP MARGIN 0.13 PULLING OUT: BOTTOM HOLE PRESSURE 3365.8 8.97 EFFECTIVE MUD WEIGHT

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2300.0 AND TVD 2299.9
--

SPM 1 78 SPM 2 81 FLOW RATE 796

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	V01	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP VEL	ASCEND VEL	PRESSURE DROP
DCZOH	0.287	48	66	89	LAMINAR	1	45	4.0
HWDP/OH	0.398	33	48	84	LAMINAR	Ð	47	0.9
DP/OH	0.398	498	48	84	LAMINAR	0	47	13.6
DP/CSG	0.427	305	44	84	L.AMINAR	0	44	7.1
DP/RIS	1.325	114	14	77	LAMINAR	0	14	0.2
TOTAL	VOLUME	998			TOTAL.	PRESSUR	E DROP	25.7
							n /4	

LAG: 52.6 MINUTES 4121 STROKES #1 AND 4264 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 966.0 HHP 449 IMPACT FORCE 1299 % SURFACE PRESSURE 32.7 HHP/sqin 3.81 JET VELOCITY 104

PRESSURE BREAKDOWN:

SURFACE 53.2 STRING 1204.6 BIT 966.0 ANNULUS 25.7

TOTAL 2249.5 PUMP PRESSURE 2954.1 % DIFFERENCE 23.9

BOTTOM HOLE PRESSURES:

	UNITS		UNITS
CIRCULATING:	WEIGHT 9.20	HYDROSTATIC PRESSURE	3609.7
	ECD 9.27	CIRCULATING PRESSURE	3635.5
	MARGIN 0.13	ESTIMATED SWAB	51.5
	WEIGHT 9.07	BOTTOM HOLE PRESSURE	3558.3

DENSITY

PRESSURE

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2400.0 AND TVD 2399.9

SPM 1 75 SPM 2 80 FLOW RATE

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL/ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND VEL	PRESSURE DROP
DC/OH	0.287	48	65	88	LAMINAR	1	64	3.9
HWDP/OH	0.398	33	46	84	LAMINAR	0	46	0.9
DP/OH	0.398	537	46	84	LAMINAR	0	46	14.6
DP/CSG	0.427	305	43	83	LAMINAR	0	43	7.0
DP/RIS	1.325	114	1.4	77	LAMINAR	0	14	0.2
TOTAL	VOLUME	1038			TOTAL	PRESSURE	DROP	26.8

778

LAG: 56.0 MINUTES 4214 STROKES #1 AND 4506 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 931.8 HHP 423 IMPACT FORCE 1253 % SURFACE PRESSURE 32.2 HHP/sqin 3.59 JET VELOCITY 102

PRESSURE BREAKDOWN:

SURFACE 51.4 STRING 1194.5 BIT 931.8

ANNULUS 26.6

TOTAL 2204.3 PUMP PRESSURE 2895.1 % DIFFERENCE 23.9

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: 9.30 MUD WEIGHT HYDROSTATIC PRESSURE 3807.6 CIRCULATING: ECD 9.36 CIRCULATING PRESSURE 3834,2 PULLING OUT: TRIP MARGIN 53.2 0.13 ESTIMATED SWAR EFFECTIVE MUD WEIGHT 9,17 BOTTOM HOLE PRESSURE 3754,4

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2500.0 AND TVD 2499.9

SPM 1 75 SPM 2 78 FLOW RATE 764

ANNULAR HYDRAULICS:

ANNULUS TYPE	VOL./ UNIT	VOL.	ANN VEL	CRIT VEL	TYPE OF FLOW	SLIP A VEL	SCEND	PRESSURE DROP
DCZOH	0.287	48	63	105	LAMINAR	0	63	4,9
HWDPZOH	0.398	33	46	102	LAMINAR	0	45	1.2
DP/OH	0.398	577	46	102	LAMINAR	0	45	21.1
DP/CSG	0.427	305	43	102	LAMINAR	0	42	9,6
DP/RIS	1.325	114	14	99	LAMINAR	0	14	0.3
TOTAL	. VOLUME	1078			TOTAL	PRESSURE	DRUB	37.2

LAG: 59.2 MINUTES 4435 STROKES #1 AND 4620 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 894.8 HMP 399 IMPACT FORCE 1203 % SURFACE PRESSURE 31.1 HMP/sqin 3.38 JET VELOCITY 100

PRESSURE BREAKDOWN:

SURFACE 46.9 STRING 1114.9 BIT 894.8

ANNULUS 37.2

TOTAL 2093.7 PUMP PRESSURE 2874.4 % DIFFERENCE 27.2

BOTTOM HOLE PRESSURES:

DENSITY PRESSURE UNITS UNITS NOT CIRCULATING: MUD WEIGHT 9,25 HYDROSTATIC PRESSURE 3945.0 CIRCULATING: 9.34 ECD CIRCULATING PRESSURE 3982.1 74.3 PULLING OUT: TRIP MARGIN 0.17 ESTIMATED SWAB EFFECTIVE MUD WEIGHT 9.08 BOTTOM HOLE PRESSURE 3870.7

HYDRAULICS ANALYSIS PROGRAM

HYDRAULICS CALCULATIONS AT DEPTH 2600.0 AND TVD 2599.8

SPM 1 75 SPM 2 79 FLOW RATE 772

ANNULAR HYDRAULICS:

ANNULUS	VOL./		ANN	CRIT	TYPE OF	SLIP A	SCFND	PRESSURE
TYPE	TINU	VOL.	VEL	VEL	FLOW	VEL	VEL.	DROP
DC/OH	0.287	48	64	104	LAMINAR	0	64	4,9
HWDP/OH	0.398	33	46	102	LAMINAR	Ŋ	46	1.2
DP/OH	0.398	617	46	102	L.AMINAR	0	46	22.6
DP/CSG	0.427	305	43	101	LAMINAR	0	43	9.6
DP/RIS	1.325	114	1.4	98	LAMINAR	0	14	Σ , 0
TOTAL	VOLUME	1117			TOTAL	PRESSURE	DROP	38.7

LAG: 60.8 MINUTES 4587 STROKES #1 AND 4803 STROKES #2

BIT HYDRAULICS:

PRESSURE DROP 927.3 HHP 417 IMPACT FORCE 1247 % SURFACE PRESSURE 31.9 HHP/sqin 3.54 JET VELOCITY 101

PRESSURE BREAKDOWN:

SURFACE 48.3 STRING 1177.3 BIT 927.3 ANNULUS 38.7

TOTAL 2191.5 PUMP PRESSURE 2903.6 % DIFFERENCE 24.5

BOTTOM HOLE PRESSURES:

As the first that the first the transfer of the transfer of the transfer of		ISITY JNITS		PRESSURF UNITS
NOT CIRCULATING: MUD CIRCULATING:	WEIGHT ECD	9,40 9,49	HYDROSTATIC PRESSURCIRCULATING PRESSUR	
PULLING OUT: TRIP EFFECTIVE MUD	MARGIN WEIGHT	0.17 9.23	ESTIMATED SWAB BOTTOM HOLE PRESSUR	77.4 E 4091.8

(c): COMPUTER DATA LISTING : LIST A

INTERVAL	:				ŧ	ı	,	All depth records (data not averaged)
DEPTH	•	,	,	1	,		,	Well depth, in metres
ROP		,		,	,	,		Rate of penetration, in metres/hour
WOB	,	,	ı		,	r	,	Weight-on-bit, in thousands of pounds
RPM			,	,	•	,	ı	Rotary speed, in revolutions per manute
MW ,	,	,	,	,	,	į	,	Mud weight in, in pounds per gallon
'dc'	ı	•	•	•	•			Calculated 'd' exponent, corrected for variations in mud weight in, using a correction factor of 10 ppg.
HOURS	•			r	19 1		*	Cumulative bit hours. The number of hours that the bit has actually been on bottom, recorded in decimal hours.
TURNS		•			•	,	•	Cumulative bit turns. The number of turns made by the bit, while actually on bottom
ICOST			t	٠	1	,		Incremental cost per metre, calculated from the rate of penetration, in Australian dollars.
ccost	,	,	1		ı	•	,	Cumulative cost per metre, calculated from the drilling time, in A dollars.
PP			•	•		•	•	Pore pressure gradient, in equivalent pounds per gallon. The pressure exerted by the fluid in the pore spaces of the formation.
FG	,		,	ı	ı	•	,	Fracture gradient, in equivalent pounds per gallon. The pressure required to fracture the formation, calculated by the DRILL programusing Eaton's equation.
								It is dependent on the pore pressure, the overburden gradient and the matrix stress. this value may be modified by leak-off

information.

86.0-IADC CODE 111 INTERVAL 223.0 HTC OSC3AJ+26"HO SIZE 26,000 NOZZLES 50 50 50 COST 0.00TRIP TIME 2.5 BIT RUN 137.0 TOTAL HOURS 3.38 TOTAL TURNS 17844 T3 B4 G0,000 CONDITION MW "d"c DEPTH ROP WOB RPM HOURS TURNS ICOST CCOST p pFC 87.0 51.4 0.1 52 8.7 0.34 0.02 71 61 9201 8.2 13.9 88.0 25.4 0.1 58 8.7 0.43 0.06 198 4673 144 8.2 13.9 89,0 14.1 0.1 8.7 0.51 63 0.13 465 259 3201 8.2 13.9 90.0 8.7 0.46 0.1635.3 0.2 82 604 103 2427 8.2 13.9 34,3 8.7 0.45 91.0 0.1 92 0.19 765 107 1963 8.2 13.9 92.0 32.1 0.397 8.7 0.52 0.22 946 1655 8.2 13.9 114 94.0 175.4 0.192 8.7 0.23 0.26 1009 21 1246 13,9 8.2 96.0 194.6 93 8.7 0.30 0.5 0.24 19 14.0 1066 1001 8.2 98.0 232,3 93 8.7 0.23 0.1 0.25 1114 15.72 836.50 8.2 14,0 91 43.9 100.0 8.7 0.42 0.10.29 728.88 1365 83.18 8.2 14.0 102.0 76 8.7 0.34 120.0 0.6 0.31 1440 30,43 641,58 8.2 14.0 56.7 104.0 0.591 8.7 0.46 0.35 1632 64.42 522,45 8.2 14,0 106.0 122.0 0,1 91 8.7 0.30 0.36 1721 29.93 522,70 8.2 14.0 108.0 85.7 0.8 85 8.7 0.42 0.39 42.61 479.05 1840 8.2 14.0 110.0 35.8 8.7 0.52 (i,4 92 0.44 447.63 2149 101.95 8.2 14.0 0.28.7 0.43 112.0 45.3 0.49 83 2369 80.65 419,40 8.2 14.0 114.0 211.8 0.9 21 8.7 0.30 0.50 2421 17,25 390.67 8.2 14.0 116.0 96.0 1.0 89 8.7 0.42 0.52 2532 38.04 367.16 8.2 14.0 118.0 97.3 1.1 86 8.7 0.42 0.54 2637 37,53 346,56 8.2 14.1 120.0 8.7 0.53 1.0 0.58 46.8 90 2868 78.11 330.77 8.2 14.1 8.7 0.53 122.0 49,3 1.3 81 0.62 74.05 14.1 3064 316.51 8.2 8.7 0.36 124.0 124.1 1.0 76 0.64 3138 29.42 301.40 8.2 14.1 100.0 8.7 0.41 126.0 1.4 76 0.66 3229 36,52 288.15 8.2 14.1 128.0 91.1 8.7 0.42 1.2 76 0.68 3329 40.07 276.34 8.2 14.1 130.0 8.7 0.53 35.1 1.1 0.74 103.98 268,51 64 3547 8.2 14.1 8.7 0.37 132.0 124.1 1.0 80 0.75 3625 29.42 258.11 8.2 14.1 0.77 134.0 8.7 0.40 128,6 1.6 85 3704 28.40 248.54 8.2 14.1 8.7 0.34 136.0 160.0 0.78 1.0 83 3766 22.83 239.51 8.2 14.1 138.0 133.3 1.8 8.7 0.39 0.79 80 3838 27,39 231.35 8.2 14.1 34.3 2.0 8.7 140.0 87 0.63 0.85 4143 106.52 226.73 8.2 14.2 0.87 142.0 150.0 1,0 83 8.7 0.35 4209 24,35 219,50 8.2 14.2 110.8 8.7 0.43 144.0 2.0 80 0.88 4296 32.97 8.2 14.2 213.07 146.0 65.5 1.0 908.7 0.48 0.91 55.79 207.83 4462 8.2 14.2 148.0 34.0 1.5 78 8.7 0.59 0.97 4738 107.53 204.59 8.2 14.2 150.0 124.1 2.5 68 8.7 0.39 0.99 4803 29,42 199,12 8.2 14.2 8.7 0.50 152.0 86.7 2.6 88 1.01 4924 42,10 194,36 8.2 14.2 154.0 77.4 3,4 85 8.7 0.53 14.2 1.04 5056 47.17 190,03 8.2 8.7 156.0 43,9 2.2 14.2 87 0.601.08 5292 83.18 186.98 8.2 57.6 158.0 2.5 8.7 83 0.56 1.12 5466 63.40 183.54 8.2 14.2 2.5 8.7 0.45 160.0 118.0 90 30.94 179.42 1.14 5557 8.2 14.2 162.0 86.7 2.5 93 8.7 0.51 42.10 175.81 1.16 5686 8.2 14.3 98.6 2.5 8.7 0.49 164.0 95 1.18 5801 37.03 172.25 8.2 14.3 2.5 166.0 54.1 75 8.7 0.55 1,22 5967 67,46 169,63 8.2 14.3

BIT NUMBER

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	PP	FG
168.0 170.0 172.0 174.0 176.0 178.0 179.0 180.0 182.0 184.0	118.0 112.5 30.3 45.0 28.3 27.1 32.1 35.3 35.0 36.2	2.5 2.5 3.4 0.9 0.4 0.6 1.0 0.7 0.8	90 82 95 86 90 91 92 89	8.7 8.7 8.7 8.7 8.7 8.7 8.7	0.45 0.44 0.72 0.53 0.54 0.58 0.59 0.55 0.55	1.23 1.25 1.32 1.36 1.43 1.51 1.54 1.57 1.62	7712 7867 8172	32.46 120.72 81.16 128.83 134.92 113.62 103.47	166.25 163.06 162.08 160.24 159.54 159.00 158.52 157.93 156.82	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3
186.0 188.0 190.0 192.0 194.0 196.0 198.0 200.0 202.0 204.0	39.6 52.6 22.8 14.1 9.7 27.8 24.7 23.0 12.2	1.0 1.4 1.1 1.9 1.8 0.3 1.3 1.2 1.7	95 96 92 78 86 95 94 95	8.7 8.7 8.7 8.7 8.7 8.7	0.56 0.55 0.65 0.75 0.83 0.66 0.66 0.80	1.73 1.77 1.85 2.00 2.20 2.27 2.35 2.44 2.60 2.75	11190 11603 12066 12558 13493	69.49 160.28 259.19 375.34 131.37 148.11 158.76	158.29 158.30 160.71	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	14,4 14,4 14,4 14,4 14,4 14,4 14,4
206.0 208.0 210.0 212.0 214.0 216.0 218.0 220.0 222.0	10.6 55.0 51.8 17.0 42.4 42.6 46.8 66.1 47.4 24.3	3,9 5,5 6,8 3,2 2,1 2,3 3,6 2,8	92 95 94 94 89 98 98 98	8.7 8.7 8.7 8.7 8.7 8.7	0.92 0.66 0.69 0.92 0.64 0.62 0.61 0.59 0.75	2.94 2.97 3.03 3.13 3.18 3.22 3.27 3.30 3.34 3.38	15316 15523 15741 16404 16658 16931 17182 17359 17608 17844	344.91 66.45 70.50 215.06 86.23 85.72 78.11 55.29 77.10	165.50 163.87 167.37 163.20 162.00 160.83 159.57 158.02 156.83 156.78	8.2 8.2 8.2 8.2 8.2 8.2 8.2	14.4 14.5 14.5 14.5 14.5 14.5 14.5 14.5
BIT NUMB HTC OSC3 COST TOTAL HO	AJ 485		9 T	IZE RIP 1	TIME	111 17,500 3,7 89575	NOZ BIT	TERVAL ZZLES RUN ZDITION		E:	0 16 93.0
DEPTH	ROP	WOB	RPM	MW	"d "c:	HOURS	TURNS	ICOST	ccost	рþ	۳G
224.0 225.0 226.0 227.0 228.0 229.0 230.0 232.0 234.0 236.0	74.2		76 75 84 75 75 94 91 92 93	8.7 8.7 8.7 8.7 8.7 8.7 8.7	0.23 0.43 0.80 0.44 0.34 0.38 0.72 0.59 0.59	0.00 0.01 0.03 0.04 0.04 0.05 0.05 0.07 0.07	10 36 162 191 208 225 298 375 455 559	8 21 91 23 14 11 49 25 26 34	18378 9199 6163 4628 3706 3090 2655 2071 1699 1443	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	14.5 14.5 14.5 14.5 14.5 14.5 14.5 14.6

.

DEPTH	ROP	wor r	RPM M	₩ "d"c	HOURS	TURNS	ICOST	ccost	РP	FG
240.0 242.0 244.0 246.0 250.0 252.0 252.0 258.0 259.0		10.5 1 5.6 1 5.4 1 6.8 1 7.8 1 9.7 1 9.6 1 11.2 1	150 8. 150 8. 150 8. 150 8. 150 8. 150 8.	7 0.60 7 0.49 7 0.51 7 0.58 7 0.58 7 0.58 7 0.53 7 0.59 7 0.58	0.14 0.15 0.15 0.17 0.17 0.18 0.19 0.20 0.24	734 804 884 981 1061 1144 1211 1296 1642 1682	14.20 16.23 19.78 16.23 16.74 13.70 17.25 35.12	1110 994,42 901,26 824,61 759,94 704,89 657,22 615,93 549,55	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.7
260.0 262.0 263.0 264.0 267.0 268.0 269.0 270.0 272.0 273.0	90.0 81.8 120.0 171.4 102.9 171.4 225.0 240.0	10.3 1 11.4 1 12.0 1 12.7 1 4.8 1 7.6 1 10.1 1 13.7 1 14.0 1 10.7 1	150 8, 150 8, 150 8, 150 8, 150 8, 150 8,	7 0.55 7 0.81 7 0.84 7 0.76 7 0.56 7 0.64 7 0.62 7 0.62 7 0.77	0.25 0.27 0.28 0.29 0.31 0.32 0.32 0.33 0.33	1717 1917 2027 2102 2260 2347 2400 2440 2515 2605	40.58 44.64 30.43 21.30 35.51 21.30 16.23 15.22	520.67 496.05 484.76 473.68 442.84 433.79 424.82 416.12 399.76 392.50	8.2 8.2 8.2 8.2 8.2 8.2 8.2	14.7 14.7 14.7 14.7 14.7 14.7 14.7 14.7
274.0 275.0 276.0 277.0 278.0 279.0 280.0 281.0 283.0	200.0 85.7 163.6 225.0 257.1 257.1 80.0 163.6	12.0 14.0 9.2 13.2 16.4 16.4 15.0 11.0 13.6 13.7	150 8. 150 8. 150 8. 150 8. 150 8. 150 8.	7 0.66 7 0.65 7 0.69 7 0.64 7 0.61 7 0.69 7 0.69 7 0.69	0.35 0.35 0.37 0.37 0.38 0.38 0.40 0.40	2657 2702 2807 2862 2902 2937 2972 3085 3140 3195	18.26 42.61 22.32 16.23 14.20 14.20 45.65 22.32	385,22 378,16 371,83 365,36 359,01 352,85 346,91 341,72 336,30 331,07	8.22.22 8.22.22 8.22.22 8.22.22	14.7 14.7 14.7 14.7 14.7 14.7 14.7
284.0 286.0 287.0 288.0 290.0 291.0 293.0 293.0 294.0 296.0	43.9 138.5 156.5 171.4 124.1 144.0 45.6	10.2	150 8. 150 8. 150 8. 150 8. 150 8. 150 8.	7 0.98 7 0.95 7 0.69 7 0.67 7 0.74 7 0.72 7 0.95 7 0.46	0.43 0,48 0.49 0.50 0.51 0.52 0.55 0.55	3400 3810 3875 3932 4037 4110 4172 4370 4437 4491	83.18 26.38 23.33 21.30 29.42 25.36 80.14 27.39	327.01 319.27 314.69 310.21 301.58 297.58 293.64 290.59 286.88 279.32	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8
297.0 298.0 299.0 300.0 301.0 302.0 305.0 305.0 306.0	257.1 92.3 105.9	15.0 12.5 11.5 14.8 18.5 16.0 8.8	150 8. 150 8. 150 8. 150 8. 150 8. 150 8. 150 8.	7 0.44 7 0.57 7 0.39 7 0.33 7 0.35 7 0.60 7 0.76 7 0.68	0.56 0.56 0.56 0.57 0.57 0.57 0.59 0.60	4511 4543 4568 4585 4598 4610 4645 4840 4928	12.84 10.25 7.01 5.07 5.07 14.20 39.56 34.49	275.65 272.15 268.70 265.30 261.97 258.72 255.66 250.39 247.79 245.09	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	14.8 14.8 14.8 14.8 14.8 14.8 14.8 14.8

DEPTH	ROP	WOB RPM	MW "d"c	HOURS	TURNS	ICOST	ccost	pр	FG
308.0 309.0 310.0 311.0 312.0 313.0 314.0 315.0 316.0	189.5 225.0 112.5 112.5 211.8 200.0 171.4 225.0	13.9 150 14.3 150 14.2 150 10.6 150 13.6 150 13.6 150 14.4 150 11.0 150 8.4 150	8.7 0.66 8.7 0.62 8.7 0.75 8.7 0.74 8.7 0.63 8.7 0.65 8.7 0.56	0.64 0.65 0.65 0.66 0.66	5033 5080 5120 5200 5280 5323 5368 5420 5460 5525	19.27 16.23 32.46 32.46 17.25 18.26 21.30 16.23	242.47 239.88 237.30 234.98 232.70 230.31 227.98 225.73 223.48 221.38	8.222222 8.22222 8.22222 8.222 8.222 8.222 8.2222 8.2222 8.2222 8.2222 8.2222 8.2222 8.2222 8.2222 8.2222 8	14.9 14.9 14.9 14.9 14.9 14.9 14.9
318.0 319.0 320.0 322.0 323.0 324.0 325.0 326.0 327.0 328.0	225.0 180.0 205.7 225.0 124.1 150.0 225.0 257.1	14.9 150 15.9 150 16.2 150	8.7 0.63 8.7 0.68 8.7 0.66 8.7 0.64 8.7 0.63 8.7 0.63	0.68 0.68 0.69 0.70 0.71 0.71 0.72	5570 5610 5660 5748 5788 5860 5920 5960 5995 6028	16.23 20.29 17.75 16.23 29.42 24.35 16.23	219.24 217.13 215.10 211.11 209.16 207.38 205.59 203.75 201.93 200.13	8.22222 8.2222 8.2222 8.222	14.7 14.9 14.9 14.9 14.9 14.9 14.9
329.0 330.0 332.0 334.0 335.0 337.0 338.0 339.0 340.0 343.0	240,0 257.1 180.0 257.1 257.1 225.0 180.0	18.0 15 19.1 15 17.8 15 8.3 15 11.3 15 12.1 15 12.5 15 12.2 15 13.3 15 2.9 15	8.7 0.65 8.7 0.66 8.7 0.66 8.7 0.56 8.7 0.56 8.7 0.66 8.7 0.66	0.73 0.74 0.75 0.75 0.76 0.77 0.77 0.77	6063 6100 6170 6270 6305 6375 6415 6465 6508	15,22 14,20 20,29 14,20 14,20 16,23 20,29	198.38 196.67 193.32 190.20 188.63 185.57 184.10 182.68 181.27	8.22.22.22.22.22.22.22.22.22.22.22.22.22	14.9 14.9 15.0 15.0 15.0 15.0 15.0
344.0 345.0 346.0 347.0 348.0 350.0 352.0 353.0 354.0 355.0	240.0 276.9 257.1 248.3 232.3 133.3 40.4		0 8.7 0.50 0 8.7 0.50 0 8.7 0.50 0 8.7 0.60 0 8.7 0.60 0 8.7 0.60 0 8.7 0.70	0.81 0.81 6.0.82 7.0.82 1.0.83 0.83 0.84 7.0.85	6760 6795 6833 6865 6900 6973 7050 7118 7340 7400	14.20 15.22 13.19 14.20 14.71 15.72 27.39	2 166.11	8.22 8.22 8.22 8.22 8.22 8.22	15.0 15.0 15.0
356.0 357.0 359.0 359.0 360.0 362.0 363.0 364.0 365.0	211.8 39.1 150.0 211.8 77.4 62.1 102.9	15.1 15 15.9 15 11.4 15 15.4 15 16.5 15 11.5 15 10.4 15 12.8 15 2 10.3 15 3 14.8 15	0 8.7 0.6 0 8.7 1.0 0 8.7 0.7 0 8.7 0.6 0 8.7 0.8 0 8.7 0.8 0 8.7 0.8	5 0.89 1 0.91 3 0.92 6 0.92 5 0.95 8 0.97 0 0.98 5 0.99		17.25 93.35 24.35 17.25 47.15 58.84 35.5 52.75	5 159.75 5 158.71 7 157.10 4 156.40	8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.0 15.0 15.1 15.1 15.1 15.1 15.1 15.1

DEPTH	ROP	MUB	RPM	MM	"d"c	HOURS	TURNS	ICOST	CCOST	pp	FG
367.0 368.0 369.0 370.0 372.0 373.0 374.0 375.0 376.0 377.0	189.5 211.8 64.3 75.0	16.8 14.7 15.1 13.2 15.8 15.9	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.64 0.69 0.68 0.86 0.65 0.65 0.91 0.86	1.00 1.00 1.01 1.01 1.04 1.05 1.05 1.06	8503 8543 8595 8645 8865 8913 8955 9095 9215 9343	16.23 21.30 20.29 44.64 19.27 17.25 56.81 48.69	152,90 151,96 151,07 150,18 148,76 147,90 147,03 146,44 145,80 145,19	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.1 15.1 15.1 15.1 15.1 15.1 15.1
378.0 379.0 380.0 381.0 382.0 383.0 384.0 385.0 385.0	138.5 130.2 124.1 37.5 211.8 211.8 211.8	14.5 16.0 12.4 16.8 16.9 16.5	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.85 0.75 0.76 0.79 1.04 0.66 0.66 0.66	1.10 1.11 1.12 1.13 1.15 1.16 1.16 1.17 1.17	9455 9520 9589 9662 9902 9944 9987 10029 10079	28.05 29.42 97.39 17.25 17.25 17.25 20.29	144.55 143.79 143.05 142.33 142.05 141.27 140.50 139.74 139.01 138.78	8.22.22 8.22.22 8.32.22 8.32.22	15.1 15.1 15.1 15.1 15.1 15.1 15.2 15.2
388.0 389.0 390.0 391.0 392.0 393.0 394.0 395.0 396.0	112.5 124.1 144.0 180.0 133.3	17.0 14.5 11.7 12.2 13.3 12.9 14.3	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.74 0.72 0.80 0.87 0.77 0.76 0.72 0.68 0.74	1.21 1.22 1.24 1.25 1.25 1.26 1.27 1.27	10389 10442 10522 10649 10729 10802 10864 10914 10982 11107	21.30 32.58 51.74 32.46 29.42 25.36 20.29 27.39	138.08 137.38 136.25 136.25 135.63 135.01 134.37 133.70 133.09	8.22 8.22 8.22 8.22 8.22 8.22 8.22	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
398.0 399.0 400.0 401.0 402.0 403.0 404.0 405.0 407.0	156.5 61.0 92.3 97.3 56.2 189.5 124.1 180.0	15.0 15.0 14.6 12.3 16.7 14.8	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.82 0.73 0.96 0.85 0.83 0.94 0.69 0.77 0.71	1.30 1.31 1.32 1.33 1.34 1.36 1.37 1.37	11209 11267 11414 11512 11604 11764 11812 11884 11934	23,33 59,85 39,56 37,53 64,92 19,27 29,42	132,09 131,48 131,07 130,56 130,64 129,68 129,07 128,52 127,93	8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2
408.0 409.0 410.0 411.0 412.0 413.0 414.0 415.0 416.0 417.0	154.2 135.6 140.6 140.9 257.1 257.1 257.1 240.0 276.9 225.0	17.5 18.5 15.3 20.7 19.8 18.9 19.7	150	8.7 8.7 8.7 8.7 8.7 8.7	0.76 0.78 0.78 0.75 0.64 0.63 0.63 0.65 0.61	1.39 1.40 1.41 1.42 1.42 1.43 1.43 1.43	12053 12119 12183 12247 12282 12317 12352 12370 12422 12462	26.93 25.97 25.92 14.20 14.20 15.22	126.80 126.27 125.73 125.20 124.61 124.03 123.46 122.89 122.32 121.78	8.2222222 8.2222222 8.2222	15.2 15.2 15.2 15.3 15.3 15.3 15.3 15.3

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
419.0 420.0 421.0 422.0 423.0 424.0 425.0 426.0 427.0 428.0	225.0 257.1 109.3 92.3 138.5 180.0 189.5 163.6 145.6 100.5	17.6 18.5 13.7 14.1 17.2 19.3 19.5	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7	0.63 0.62 0.85 0.84 0.74 0.71 0.75 0.77	1.45 1.45 1.46 1.47 1.48 1.48 1.50 1.50	12542 12577 12659 12757 12822 12872 12919 12974 13036 13126	33.41 39.56 26.38 20.29 19.27 22.32 25.08	120.70 120.16 119.72 119.32 118.85 118.36 117.87 117.40 116.95 116.56	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
429.0 430.0 431.0 432.0 433.0 435.0 435.0 436.0 438.0	60.0 100.0 116.1 102.9 116.1 61.0 81.8	16.2 14.5 18.9 18.2 18.6	150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7 8.7	0.87 0.88 0.95 0.83 0.83 0.87 0.85 1.04	1,53 1,54 1,55 1,56 1,57 1,58 1,59 1,61 1,62	13243 13348 13498 13588 13666 13753 13831 13978 14088 14241	42.61 60.87 36.52 31.45 35.51 31.45 59.85 44.64	116.22 115.87 115.60 115.22 114.82 114.06 113.80 113.48 113.24	8.2 8.2 8.2 8.2 8.2 8.2	15.3 15.3 15.3 15.3 15.3 15.3 15.3 15.3
439.0 440.0 441.0 442.0 443.0 444.0 445.0 446.0 448.0	90.0 78.3 120.0 92.3 92.3	20.3 20.9 19.5 20.6 19.1 16.9	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7 8.7	1.07 0.92 0.96 0.84 0.92 0.90 1.04 0.86 0.89	1.66 1.67 1.68 1.69 1.70 1.71 1.73 1.74 1.75	14418 14518 14633 14708 14806 14903 15056 15141 15243 15323	40.58 46.66 30.43 39.56 39.56 61.88 34.49 41.59	113.05 112.71 112.41 112.04 111.71 111.38 111.16 110.81 110.51	8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4
449.0 450.0 451.0 452.0 453.0 454.0 455.0 456.0 458.0	128.5 100.5 109.6	17.9 19.2 16.3 21.2 23.2 20.5 18.9	150 150 150 150 150 150 150	8.7 8.7 8.7 8.7 8.7 8.7 8.7	1.20 0.81 0.80 0.82 0.79 0.83 0.83 0.87 0.84	1.81 1.82 1.83 1.84 1.84 1.85 1.86 1.88		29,42 27,39 33,48 24,35 26,38 28,42 36,34 33,33	110.45 110.09 109.73 109.40 109.03 108.67 108.32 108.01 107.69 107.42	8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4
459.0 460.0 461.0 462.0 463.0 464.0 465.0 466.0 467.0 468.0	46.8 85.7 105.9 94.7 144.0 112.5 97.3 62.1	19.7 18.5 22.7	150 150 150 150 150 150 150	8.8 8.8 8.8 8.8 8.8 8.8	0.93 1.02 0.90 0.86 0.88 0.80 0.86 0.88	1.90 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99	16585 16778 16883 16968 17063 17125 17295 17298 17443 17608	78.11 42.61 34.49 38.55 25.36 32.46 32.46 37.53 58.84	107,19 107,07 106,80 106,50 106,21 105,88 105,58 105,30 105,11 104,95	8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.4 15.4 15.4 15.4 15.4 15.4 15.5 15.5

DEPTH	ROP	нан	RPM	MI.I	"d "c	HOURS	TURNS	ICOST	CCOST	pр	r r
469.0 470.0 471.0 472.0 473.0 474.0 475.0 476.0 477.0 478.0	225.0 150.0 120.0 87.8 138.5 150.0 124.1 102.9	22.3 22.9 21.3 18.2 23.7 24.8 21.0	150 150 150 150 150 150 150	8.8 8.8 8.8 8.8 8.8 8.8	0.68 0.80 0.84 0.89 0.82 0.81 0.83 0.84 0.87	2.02 2.02 2.03 2.04 2.05 2.06 2.06 2.07 2.08 2.10	17648 17708 17783 17885 17950 18010 18083 18170 18260 18415	16.23 24,35 30.43 41.59 26.38 24.35 29.42 35.51 36.52	104.59 104.26 103.97 103.72 103.41 103.09 102.80 102.53	888.22222222 8888888222 88888888	FG 15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.
479.0 480.0 481.0 482.0 483.0 484.0 485.0 486.0 488.0	112.5	21.0 20.1 19.5 23.2 25.4 21.2 16.2	150 150 150 150 150 150	8.8 8.8 8.8 8.8 8.8 8.8	0.77 0.72 0.80 0.87 0.79 0.84 0.99 0.86 1.05	2.11 2.12 2.13 2.14 2.14 2.15 2.17 2.18 2.20	18478 18525 18591 18681 18739 18805 18880 19047 19127 19340	19.27 26.75 36.52 23.33 26.85	101.82 101.50 101.21 100.96 100.66 100.38 100.11 99.99 99.73 99.68	8.22.22.2 8.22.22.2 8.88.8	15.5 15.5 15.5 15.5 15.5 15.5 15.5 15.5
489.0 490.0 491.0 492.0 493.0 494.0 495.0 496.0 497.0 498.0	$\frac{105.9}{67.9}$	20.3 25.3 25.3 18.5 14.3 21.6 20.2	150 150 150 150 150 150 150	8.8 8.8 8.8 8.8 8.8	1.03 0.91 0.98 1.02 0.78 0.81 1.04 0.73 0.91	2.22 2.23 2.25 2.26 2.27 2.30 2.30 2.32	19507 19592 19725 19850 19902 19977 20199 20249 20351 20429	67.97 34.49 53.77 50.72 21.30 30.33 90.03 20.29 41.59 31.45	99.56 99.32 99.15 98.97 98.68 98.43 98.40 98.11 97.91	8.22 8.22 8.22 8.22 8.23	15.5 15.5 15.5 15.5 15.6 15.6 15.6 15.6
499.0 500.0 501.0 502.0 503.0 514.0 515.0 516.0 517.0 518.0	83.7 109.1 142.0 184.6 138.5 180.0 211.8 128.6 240.0	20.5 21.2 25.5 23.9 6.2 24.0 19.3 21.3	150 150 150 150 150 150 150	8.8 8.8 8.8 8.9 8.9	0.91 0.86 0.80 0.76 0.83 0.57 0.70 0.80 0.70	2.34 2.35 2.35 2.36 2.37 2.43 2.43 2.44 2.44	20536 20619 20682 20731 20796 21346 21388 21458 21503 21541	43.62 33.48 25.72 19.28 26.38 20.29 17.25 28.40 18.26 15.22	97.47 97.24 96.98 96.70 96.45 93.57 93.31 93.09 92.84 92.57	8.22.22 8.22.22 8.22.22 8.22.22	15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
519.0 520.0 521.0 522.0 523.0 524.0 525.0 526.0 527.0 528.0	46.2 64.3 60.0 58.1	20.5 24.0 20.0 18.4 17.7	150 150 150 150 150 150 150	8.9 8.9 8.9 8.9 8.9 8.9	1.01 0.82 0.69 0.86 1.10 1.04 1.02 1.04 1.04	2.47 2.48 2.49 2.52 2.54 2.56 2.57 2.62	21738 21813 21854 21943 22181 22376 22516 22666 22821 23058	80,14 30,31 16,74 36,16 96,37 79,13 56,81 60,87 62,90 96,37	92.53 92.32 92.07 91.88 91.89 91.85 91.74 91.63 91.54	8.22.22 8.22.22 8.22.22 8.22.2	15.6 15.6 15.6 15.7 15.7 15.7 15.7

DEPTH	ROP WO	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
529.0 530.0 531.0 532.0 533.0 534.0 535.0 536.0 537.0 538.0	53.7 20.8 64.3 23.7 78.3 24.1 65.5 20.8 42.4 19.4 62.1 21.3 66.7 21.3 39.6 23.3 70.6 26.3	9 150 150 8 150 6 150 6 150 9 150 9 150 3 150	8.9 1.04 8.9 1.02 8.9 0.97 8.9 0.99 8.9 1.09 8.9 1.01 8.9 0.99 8.9 1.16 8.9 1.02	2.64 2.65 2.68 2.70 2.72 2.73 2.74 2.77 2.79	23226 23366 23481 23618 23831 23976 24111 24338 24466 24578	67.97 56.81 46.66 55.76 86.23 58.84 54.78 92.31 51.74 45.65	91.48 91.37 91.22 91.11 91.09 90.99 90.87 90.88 90.75	8.2 8.2 8.2 8.2 8.2 8.2	15.7
539.0 540.0 541.0 542.0 543.0 544.0 545.0 546.0 547.0 548.0	53.7 28.4 94.7 27.3 34.3 30.4 46.8 26.6 58.1 22.6 64.3 25.6 39.6 28.6 97.3 27.6 28.6 31.6 102.9 26.6	3 150 150 2 150 2 150 3 150 3 150 3 150 3 150	8.9 1.12 8.9 0.95 8.9 1.27 8.9 1.14 8.9 1.04 8.9 1.20 8.9 0.94 8.9 0.94 8.9 0.92	2.80 2.81 2.84 2.87 2.88 2.90 2.92 2.93 2.93	25296 25451 25591 25818 25911	67.97 38.55 106.52 78.11 62.90 56.81 92.31 37.53 127.82 35.51	90.54 90.37 90.42 90.30 90.30 90.20 90.04 90.15 89.99	8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7
549.0 550.0 551.0 552.0 553.0 554.0 555.0 556.0 557.0	24.2 29. 92.3 27. 75.5 22. 86.9 19. 80.0 24. 53.7 28. 65.5 27. 75.0 26. 69.2 27. 67.9 27.	1 150 3 150 3 150 3 150 1 150 1 150 9 150 6 150	8.9 1.36 8.9 0.96 8.9 0.97 8.9 0.97 8.9 1.12 8.9 1.05 8.9 1.01 8.9 1.04 8.9 1.05	3.02 3.03 3.04 3.06 3.07 3.10 3.11 3.13	26686 26783 26903 27006 27119 27286 27424 27544 27674 27806	151.15 39.56 48.37 42.03 45.65 67.97 55.79 48.69 52.75 53.77	90.17 90.02 89.89 89.75 89.61 89.55 89.45 89.32 89.21	8.22 8.22 8.22 8.22 8.22 8.22 8.22	15.7 15.7 15.8 15.8 15.8 15.8 15.8 15.8
559.0 560.0 561.0 562.0 563.0 564.0 565.0 566.0 568.0	70.6 27. 60.0 26. 75.0 23. 30.8 24. 33.6 20. 63.2 22. 47.4 22. 39.6 23. 60.0 22. 29.8 22.	2 150 7 150 0 150 2 150 3 150 3 150 1 150 4 150	8.9 1.04 8.9 1.07 8.9 0.98 8.9 1.23 8.9 1.15 8.9 1.01 9.0 1.08 9.0 1.14 9.0 1.02	3.16 3.17 3.19 3.22 3.25 3.27 3.27 3.31 3.33	28204 28496 28764 28906 29096 29324 29474		89,00 88,91 88,79 88,88 88,94 88,85 88,81 88,82 88,74 88,84	8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8
569.0 570.0 571.0 572.0 573.0 574.0 575.0 576.0 576.0	54.5 21. 44.6 22. 45.8 20. 48.6 19. 45.6 20. 62.1 23. 75.0 23. 50.7 24. 48.0 22. 40.9 23.	2 150 6 150 8 150 6 150 6 150 6 150 2 150 2 150	9.0 1.04 9.0 1.07 9.0 1.07 9.0 1.07 9.0 1.07 9.0 1.02 9.0 0.97 9.0 1.08 9.0 1.07 9.0 1.08	3,38 3,40 3,45 3,47 3,48 3,50 3,52 3,54 3,56	29941 30143 30339 30524 30722 30867 30987 31164 31352 31572	66.95 81.88 79.71 75.07 80.14 58.84 48.69 72.03 76.08 89.27	88.78 88.76 88.73 88.69 88.67 88.58 88.47 88.42 88.39	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.8 15.8 15.8 15.8 15.8 15.8 15.8 15.8

DEPTH	ROP WO	OB RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	pр	F(;
579.0 580.0 581.0 582.0 583.0 584.0 585.0 586.0 587.0 588.0	22.6 25 51.4 21 19.8 21 27.5 21 39.6 24 27.3 26 33.3 23 66.7 26 51.4 27 52.2 24	.8 150 .8 150 .7 150 .8 150 .2 150 .8 150 .5 150	9.0 1.32 9.0 1.05 9.0 1.30 9.0 1.22 9.0 1.16 9.0 1.27 9.0 1.19 9.0 1.03 9.0 1.11 9.0 1.07	3.61 3.68 3.71 3.74 3.77 3.80 3.82 3.84 3.86	32144 32599 32927 33154 33484	161.30 71.01 184.63 132.89 92.31 133.91 109.56 54.78 71.01 69.96	88.60 88.55 88.82 88.95 89.07 89.13 89.03 88.98 88.93	8.2	15.8 15.9 15.9 15.9 15.9 15.9
589.0 590.0 591.0 592.0 593.0 594.0 595.0 596.0 597.0	41.1 23 40.9 22 40.0 21 55.4 28 52.2 24 83.7 27 34.0 27 43.4 24 52.2 25 50.2 25	.2 150 .9 150 .1 150 .3 150 .0 150 .1 150 .8 150 .4 150	9.0 1.14 9.0 1.12 9.0 1.10 9.0 1.10 9.0 1.08 9.0 0.97 9.0 1.22 9.0 1.13 9.0 1.09 9.0 1.10	3.88 3.91 3.93 3.95 3.97 3.98 4.01 4.03 4.05	34456 34676 34901 35063 35236 35343 35608 35816 35988 36168	88.86 89.27 91.30 65.94 70.00 43.62 107.53 84.20 70.00 72.75	88.93 88.94 88.88 88.83 88.70 88.76 88.74 88.69 88.65	8.2 8.2 8.2 8.2	15.9 15.9 15.9 15.9
599.0 600.0 601.0 602.0 603.0 604.0 605.0 606.0 607.0 608.0	51.4 26 48.6 24 57.1 26 46.8 24 53.7 26 60.0 26 78.3 27 43.9 27 46.8 27 38.3 23	.6 150 .6 150 .4 150 .8 150 .6 150 .8 150 .0 150 .3 150	9.0 1.10 9.0 1.10 9.0 1.07 9.0 1.11 9.0 1.09 9.0 1.06 9.0 1.06 9.0 1.15 9.0 1.15	4.09 4.11 4.13 4.15 4.17 4.19 4.20 4.22 4.24	36343 36528 36685 36878 37045 37195 37310 37515 37708 37943	71.01 75.07 63.91 78.11 67.97 60.87 46.66 83.18 78.11	88.60 88.57 88.50 88.47 88.35 88.24 88.23 88.23	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	15.9 15.9 15.9 15.9 15.9 15.9 15.9
609.0 610.0 611.0 612.0 613.0 614.0 615.0 616.0 617.0 618.0	52.2 25 53.7 23 60.0 26 56.2 26 57.1 23 78.3 28 41.9 28 65.5 28 50.7 25 72.0 26	.0 150 .4 150 .7 150 .2 150 .2 150 .3 150 .4 150 .6 150	9.0 1.08 9.0 1.05 9.0 1.08 9.0 1.04 9.0 1.00 9.0 1.18 9.0 1.05 9.0 1.10	4,29 4,31 4,32 4,34 4,36 4,37 4,40 4,41 4,43	38115 38283 38433 38593 38750 38865 39080 39218 39395 39520	70,00 67,97 60,87 64,92 63,91 46,66 87,24 55,79 72,03	88,17 88,12 88,05 87,99 87,93 87,82 87,82 87,74 87,70	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15.9 15.9 15.0 16.0 16.0 16.0 16.0
619.0 620.0 621.0 622.0 623.0 624.0 625.0 626.0 627.0 628.0	51.4 23 54.5 20 52.9 26 72.0 25 69.2 27 41.4 28 97.3 27 69.2 28 51.4 24 42.9 27	.9 150 .1 150 .1 150 .6 150 .6 150 .7 150 .0 150 .9 150	9.0 1.07 9.0 1.03 9.0 1.09 9.0 1.00 9.0 1.03 9.0 1.19 9.0 0.94 9.0 1.03 9.0 1.09 9.0 1.16	4.53 4.55 4.56 4.58 4.60	39695 39860 40030 40155 40285 40503 40595 40725 40900 41110	71.01 66.95 68.98 50.72 52.75 88.26 37.53 52.75 71.01 85.21	87.56 87.51 87.47 87.37 87.29 87.29 87.17 87.08 87.04	8.222 8.222 8.222 8.222 8.222	16.0 16.0 16.0 16.0 16.0 16.0 16.0

DEPTH	ROP WOE	RPM	MW "d"	c HOURS	TURNS	TCOST	CCOST	рþ	FG
629.0 630.0 631.0 632.0 633.0 634.0 635.0 636.0 637.0 638.0	80.0 26.8 63.2 29.9 49.3 29.9 63.2 29.1 48.6 28.5 59.0 29.9 62.1 30.1 58.8 25.6 93.9 26.8 38.7 25.3	7 150 7 150 7 150 7 150 7 150 8 150 8 150	9.0 0.9 9.0 1.0 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.0 9.0 1.0 9.0 0.9 9.0 1.1	8 4.65 5 4.67 7 4.69 4 71 0 4.72 8 4.74 6 4.75 4 77		45.65 57.82 74.05 57.82 75.07 61.88 58.84 62.11 38.89 94.34	86.93 86.86 86.83 86.76 86.73 86.67 86.60 86.54 86.43	88.22.22.22 88.22.22.22 88.22.22.22 88.83.22	16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0
639.0 640.0 641.0 642.0 643.0 644.0 645.0 646.0 647.0 648.0	63.2 26.9 28.1 29.6 54.5 28.8 43.4 27.7 64.3 28.4 54.5 29.7 53.2 29.7 55.4 29.0 60.0 27.7	3 150 3 150 2 150 4 150 5 150 2 150 1 150 2 150	9.0 1.0 9.0 1.3 9.0 1.1 9.0 1.3 9.0 1.0 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.1	1 4.85 1 4.86 6 4.89 6 4.90 2 4.92 2 4.94 1 4.96 7 4.97		57.82 129.85 66.95 84.20 56.81 66.95 68.65 65.94 60.82 73.04	86.38 86.44 86.43 86.36 86.31 86.27 86.22 86.17	88888888888888888888888888888888888888	16.0 16.0 16.0 16.1 16.1 16.1 16.1 16.1
649.0 650.0 651.0 652.0 653.0 654.0 655.0 656.0 657.0 658.0	67.9 28.0 87.8 28.3 64.3 28.9 41.4 29.4 55.4 28.2 44.4 29.5 42.2 26.6 26.5 26.3 44.4 25.3	3 150 2 150 3 150 2 150 3 150 1 150 3 150	9.0 1.0 9.0 0.9 9.0 1.0 9.0 1.1 9.0 1.1 9.0 1.1 9.0 1.2 9.0 1.1	7 5.02 6 5.04 9 5.06 0 5.08 7 5.10 6 5.12 8 5.14 3 5.18	45211 45413 45626	53.77 41.59 56.81 68.26 65.94 82.17 86.54 137.67 82.17 90.29	86.06 85.95 85.89 85.85 85.84 85.84 85.96 85.96	88888888888888888888888888888888888888	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
659.0 660.0 661.0 662.0 663.0 664.0 665.0 666.0 667.0 668.0	48.6 26.5 38.3 25.1 44.4 27.7 52.9 27.2 45.0 26.3 46.2 26.2 45.0 27.0 28.3 29.3 60.0 29.9	1 150 2 150 2 150 3 150 2 150 1 150 1 150 2 150	9.0 1.1 9.0 1.1 9.1 1.0 9.1 1.1 9.1 1.1 9.1 1.1 9.1 1.0 9.1 1.0	7 5.26 6 5.28 9 5.30 3 5.32 2 5.34 3 5.36 0 5.38 8 5.39	46811 47013 47183 47383 47578 47778 47893	75.07 95.36 82.17 68.98 81.16 79.13 81.16 46.66 60.87 56.81	85.93 85.96 85.95 85.91 85.90 85.88 85.87 85.78	8.22.22 8.22.22 8.22.22 8.22.22	16.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1
669.0 670.0 671.0 672.0 673.0 674.0 675.0 676.0 677.0 678.0	44.4 28.3 60.0 27.6 46.2 27.7 42.9 25.6 48.0 26.6 42.8 25.4 43.2 24.7 26.7 25.4 46.8 26.2 41.9 24.0	5 150 7 150 3 150 3 150 3 150 7 150 4 150 2 150	9.1 1.1 9.1 1.0 9.1 1.1 9.1 1.1 9.1 1.1 9.1 1.1 9.1 1.2 9.1 1.2	6 5.45 3 5.47 3 5.51 3 5.51 3 5.56 6 5.60 1 5.62	48731 48941 49128 49338 49547 49884 50077	84.54 136.95 78.11	85.65 85.60 85.58 85.56 85.56 85.56 85.66 85.66	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.1 16.1 16.1 16.1 16.2 16.2 16.2 16.2

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рp	FG
679.0 680.0 681.0 682.0 683.0 684.0 685.0 686.0 687.0 688.0	27.5 34.3 43.9 37.9 25.7 45.6 45.6 48.0 80.0	23.5 25.7 26.5 24.3 27.0 24.3 26.7 23.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.21 1.17 1.12 1.17 1.25 1.13 1.10 1.03 1.07 0.93	5.68 5.73 5.76 5.80 5.84 5.88 5.88	50619 50882 51087 51324 51674 51874 52072 52212 52399 52512	132.89 106.52 83.18 96.37 142.02 81.16 80.14 56.81 76.08 45.65	85.76 85.81 85.80 85.83 85.95 85.94 85.93 85.86 85.84	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	16.2 16.2 16.2 16.2 16.2 16.2 16.2
689.0 690.0 691.0 692.0 693.0 694.0 695.0 696.0 697.0	47.4 37.1 35.6 36.2 35.0 39.5 32.1 35.0 37.9 53.7	27,0 26,1 22,5 22,6 21,9 22,0 22,5 22,1	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.13 1.18 1.19 1.14 1.15 1.17 1.17 1.15 1.15	5.91 5.94 5.97 5.99 6.02 6.05 6.11 6.13 6.15	52702 52944 53197 53445 53703 53930 54210 54468 54705 54873	77.10 98.40 102.46 100.88 104.34 92.43 113.62 104.49 96.37 67.97	85.74 85.76 85.80 85.87 85.87 85.98 85.94 85.98 86.00	8.2 8.2 8.2 8.2 8.2 8.2 8.2	16.2 16.2 16.2 16.2 16.2 16.2 16.2 16.2
699.0 700.0 701.0 702.0 703.0 704.0 705.0 706.0 707.0	49.3 32.4 32.7 40.9 28.8 40.9 38.7 46.2 64.3 62.1	23.4 23.3 24.1 22.8 24.2 24.6 25.8 25.6	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.06 1.18 1.13 1.20 1.13 1.15 1.11 1.02	6.17 6.20 6.23 6.26 6.29 6.32 6.34 6.36 6.38	55055 55333 55608 55828 56140 56360 56593 56728 56928 57073	74.05 112.60 111.59 89.27 126.81 89.27 94.34 79.13 56.81 58.84	85.94 86.00 86.05 86.04 86.14 86.15 86.17 86.15 86.03	8.2 8.2 8.2 8.2 8.2 8.2 8.2	16.2 16.2 16.2 16.2 16.2 16.2 16.3 16.3
709.0 710.0 711.0 712.0 713.0 714.0 715.0 716.0 717.0 718.0	46.2 63.2 48.0 42.2 49.7 40.4 32.7 42.9 40.0 30.8	25.5 26.3 25.4 22.9 25.8 26.5 26.2 26.1	150 150 150 150 150 150		1.09 1.02 1.11 1.13 1.06 1.15 1.21 1.14 1.15	6.42 6.45 6.45 6.50 6.52 6.55 6.58 6.68	57268 57410 57598 57811 57992 58215 58490 58700 58925 59217	79.13 57.82 76.08 86.54 73.55 90.29 111.59 85.21 91.30 118.69	86.02 85.96 85.94 85.92 85.93 85.98 85.98 85.99 86.05	8.22 8.22 8.22 8.22 8.22 8.22	16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3
719.0 720.0 721.0 722.0 723.0 724.0 725.0 726.0 727.0 728.0	51,4 43,9 39,0 40,0 31,6 27,1 29,0 23,2 23,7 24,5	26.2 24.2 24.6 25.8 25.5 25.4 23.9	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.08 1.13 1.14 1.13 1.20 1.26 1.24 1.29 1.27	6.65 6.68 6.70 6.73 6.76 6.80 6.83 6.87 6.92	59392 59597 59828 60053 60338 60671 60981 61368 61748 62116	71.01 83.18 93.64 91.30 115.65 134.92 125.79 157.24 154.20 149.12	86.02 86.03 86.04 86.10 86.20 86.28 86.42 86.56 86.68	8.222222 8.22222 8.22222 8.22222	16.3 16.3 16.3 16.3 16.3 16.3 16.3

DEPTH	ROP WOJ	RPM	MW "d"	c HOURS	TURNS	ICOST	CCOST	рþ	FG
729.0 730.0 731.0 732.0 733.0 734.0 735.0 736.0 737.0 738.0	25.4 24.3 16.0 25.3 45.0 24.0 20.4 29.3 29.3 30.0 20.2 30.3 25.4 31.0 21.6 32.3 31.3 31.3	3 150 1 150 3 150 1 150 2 150 3 150 4 150 4 150	9.1 1.2 9.1 1.3 9.1 1.3 9.1 1.3 9.1 1.3 9.1 1.3 9.1 1.4 9.1 1.2	9 7.06 0 7.08 8 7.13 8 7.16 9 7.21 5 7.25 0 7.30 8 7.33	63033 63233 63675 63982 64427 64782 65200 65487	144.05 228.25 81.16 179.22 124.78 180.57 144.05 169.41 116.66 143.04	86.79 87.07 87.06 87.24 87.31 87.50 87.61 87.77 87.82	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.3 16.3 16.3 16.3 16.3 16.3 16.3 16.3
739.0 740.0 741.0 742.0 743.0 744.0 745.0 745.0 747.0 748.0	30.0 31.0 22.4 31.7 30.5 30.7 35.6 31.7 33.0 32.7 32.4 29.3 23.8 24.0 29.5 25.3 34.0 26.4	150 150 150 150 150 150 150 3 150	9.1 1.3 9.1 1.2 9.1 1.2 9.1 1.2 9.1 1.2 9.1 1.2 9.1 1.2 9.1 1.2	7 7.45 7 7.48 4 7.51 7 7.54 5 7.67 7 7.61 3 7.65 7 7.67	66542 66837 67090 67362 67640 68017 68322 68567	121.73 163.33 119.70 102.46 110.57 112.60 153.18 123.76 99.42 107.53	88.00 88.14 88.20 88.27 88.32 88.32 88.44 88.51 88.53	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
749.0 750.0 751.0 752.0 753.0 754.0 755.0 756.0 757.0 758.0	28.6 27.3 34.3 26.0 36.4 27.3 36.7 26.3 38.3 25.3 41.9 25.3 35.6 27.3 28.1 24.3	150 150 2150 3150 3150 3150 4150 750	9.1 1.2 9.1 1.1 9.1 1.1 9.1 1.1 9.1 1.1 9.1 1.1 9.1 1.2 9.1 1.2	0 7.77 9 7.79 8 7.82 6 7.85 4 7.87 6 7.90 0 7.93	69410 69657 69902 70137 70352 70587 70840 71160	127.82 106.52 100.43 99.42 95.36 87.24 95.36 102.46 129.85	88.64 88.70 88.72 88.73 88.73 88.74 88.77 88.84	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4
759.0 760.0 761.0 762.0 763.0 764.0 765.0 766.0 767.0 768.0	33.6 24.3 28.3 23.3 52.9 24.3 38.7 24.3 40.0 24.3 30.5 25.3 30.0 24.3 28.6 24.3 26.3 24.3	7 150 7 150 8 150 5 150 2 150 2 150 5 150 1 150	9.1 1.1 9.1 1.2 9.1 1.0 9.1 1.1 9.1 1.2 9.1 1.2 9.1 1.2 9.1 1.2	2 8.05 6 8.07 4 8.10 4 8.12 2 8.16 1 8.19 3 8.22 4 8.26	71997 72167 72400 72625 72920 73220 73535 73877	108.55 128.83 68.98 94.34 91.30 119.70 121.73 127.82 138.98 112.60	88.91 88.98 88.95 88.96 89.02 89.08 89.15 89.24	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.4 16.4 16.4 16.4 16.4 16.4 16.4
769.0 770.0 771.0 772.0 773.0 774.0 775.0 776.0 777.0 778.0	35.6 26.3 34.0 26.3 33.3 26.3 33.6 27.6 25.6 27.5 25.6 23.4 25.6 23.8 24.6 37.1 27.6 30.0 22.3 37.9 26.3	3 150 5 150 6 150 7 150 8 150 4 150 1 150 5 150	9.1 1.1 9.1 1.2 9.1 1.2 9.1 1.2 9.1 1.3 9.1 1.3 9.1 1.1 9.1 1.1	1 8.35 1 8.38 2 8.41 5 8.45 0 8.49 8 8.53 9 8.56 9 8.59	74672 74942 75210 75537 75922 76300 76542 76842		89.31 89.34 89.38 89.41 89.49 89.61 89.73 89.74 89.80	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.4 16.4 16.5 16.5 16.5 16.5 16.5 16.5

DEPTH	ROP	WOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP FG	;
779.0 780.0 781.0 782.0 783.0 784.0 785.0 786.0 787.0 788.0	34.5 29.3 30.8 25.9 32.4 42.4 48.0 39.1	24.3 24.7 24.4 25.5 26.2 27.2 25.5 25.5 25.1	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.17 1.18 1.22 1.22 1.28 1.22 1.13 1.10 1.15	8.65 8.68 8.71 8.74 8.78 8.81 8.84 8.86 8.88	77598 77905 78198 78545	104.34 105.79 124.78 118.69 141.01 112.60 86.23 76.08 93.33 84.20	89.84 89.87 89.98 90.07 90.11 90.10 90.08 90.09	8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5	
789.0 790.0 791.0 792.0 793.0 794.0 795.0 796.0 797.0 798.0	33.0 24.7 31.9 27.7 26.3 28.1 25.9	21.8 23.0 22.7 21.3 22.2 23.5 24.6 23.2 22.9 26.4	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.22 1.17 1.17 1.23 1.17 1.22 1.25 1.25 1.22	8.94 8.97 9.00 9.05 9.08 9.11 9.15 9.19 9.22	80280 80553 80918 81200 81525 81868 82188 82535	141.01 110.57 110.57 148.11 114.63 131.88 138.98 129.85 141.01 115.65	90.16 90.20 90.24 90.38 90.38 90.45 90.54 90.61 90.69	8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5	
799.0 800.0 801.0 802.0 803.0 804.0 805.0 806.0 807.0	24.2 35.3 36.7 20.5 40.4 28.3 23.1 34.3	25.1 23.8 26.9 27.3 26.0 27.8 27.1 27.5 25.9 22.8	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.29 1.26 1.20 1.19 1.34 1.17 1.26 1.32 1.32	9.30 9.34 9.37 9.40 9.45 9.55 9.55 9.55	83580 83835 84080 84520 84743 85060 85450 85713	178,54	90.85 90.96 90.99 91.15 91.15 91.32 91.35 91.53	8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.5 8.2 16.6	
809.0 810.0 811.0 812.0 813.0 814.0 815.0	25.0 20.1 22.4 20.6 26.5 15.7	23.6 22.9 22.5 24.0 24.5 24.8 23.8 23.4	150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.32 1.24 1.30 1.29 1.32 1.35 1.38	9.68 9.72 9.77 9.82 9.87 9.91 9.97	87030 87478 87880 88318 88658 89230	189.70 146.08 181.59 163.33 127.53 137.96 232.31 139.99	91,70 91,79 91,95 92,07 92,21 92,29 92,53 92,61	8.2 16.6 8.2 16.6 8.2 16.6 8.2 16.6 8.2 16.6 8.2 16.6 8.2 16.6	; ;
BIT NUMBE HTC J1 COST TOTAL HOU	26	2 94.00 55.64	9 T	ADC (BIZE RIP TOTAL		116 12.250 5.0 490747	B1. NO:	TERVAL ZZLES T RUN NDITION		0- 1858.4 18 18 18 1042.4 B3 G0.000	?
DEPTH	ROP	MOB	RPM	мы	"d"c	HOURS	TURNS	ICOST	CCOST	PP FG	\ 2
817.0 818.0		20.0 22.5	70 70		1.21	0.06 0.12	251 4 91	219 209	21173 10691	8,2 16,6 8,2 16,8	

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	pр	FG
819.0 820.0 821.0 822.0 823.0 824.0 825.0 825.0 827.2	23.7 17.9 24.3 34.5 31.3 40.9 24.2	22.5 24.2 22.4 27.2 30.0 27.4 27.8 24.5 32.1 32.2	70 70 70 70 70 70 119 120 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.36 1.17 1.23 1.20 1.13 1.13 1.05 1.33 1.39	0.20 0.25 0.30 0.34 0.37 0.40 0.43 0.47 0.51	860 1037 1272 1445 1566 1701 1803 2098 2410 2506	320 154 204 150 106 117 89 151 132 162	7234 5464 4412 3702 3188 2804 2502 2267 2039 1990	8.22 8.22 8.22 8.22 8.22 8.22	16.8 16.6 16.6 16.6 16.6 16.6 16.6 16.6
827.7 828.0 829.0 830.0 831.0 832.0 833.0 834.0 835.0	56.8 48.0 36.4 34.3 30.8 21.8 44.4	30.9 32.3 31.0 30.5 31.5 29.8 28.2 26.1 30.6 30.3	120 120 120 120 120 120 120 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.24 1.16 1.20 1.28 1.31 1.33 1.41 1.17 1.26	0.53 0.54 0.56 0.59 0.61 0.65 0.69 0.72 0.72	2540 2578 2728 2926 3136 3370 3700 3862 4044 4240	86 64 76 100 107 119 167 82 92	1957 1910 1769 1650 1547 1457 1382 1309 1245 1188	8.2 8.2 8.2 8.2 8.2 8.2 8.2	16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6
837.0 838.0 839.0 840.0 841.0 842.0 843.0 844.0 845.0	44,4 42,4 36,4 66,7 39,1 36,7 43,4	31.2 29.6 30.8 26.8 29.9 26.2 28.3 29.9 29.2	120 120 120	9.1 9.1 9.1 9.1 9.1 9.1	1.39 1.21 1.24 1.24 1.09 1.21 1.25 1.22 1.19	0.81 0.83 0.85 0.88 0.89 0.92 0.95 0.97	4510 4672 4842 5040 5148 5332 5528 5694 5846 6008	93.33 99.42 84.20 77.10	1138 1090 1046 1007 968.80 935.13 904.18 874.89 847.38 821.88		16.6 16.6 16.7 16.7 16.7 16.7 16.7
847.0 848.0 849.0 850.0 851.0 852.0 853.0 854.0 855.0	34.3 41.9 41.4 38.3 25.5 18.5 24.3 28.8	30.6 30.3 30.9 29.1 29.7 30.5 23.9 23.9 20.1	120 120 120 120 120 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.14 1.30 1.24 1.23 1.26 1.39 1.40 1.32 1.27	1.03 1.06 1.08 1.11 1.13 1.17 1.23 1.27 1.30 1.35	6516 6690 6878 7160 7550 7846 8096	106.52 87.24 88.26 95.36 143.04 197.82	687.53 673.38 659.37	8.2 8.2 8.2 8.2 8.2 8.2	16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7
857.0 858.0 859.0 860.0 861.0 862.0 863.0 864.0 865.0	14.0 19.7 19.7 20.2 20.3 22.1 34.3 26.3	24.3 25.6	120 120 120 120 120 120 120 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.26 1.49 1.38 1.38 1.38 1.40 1.40 1.27 1.37	1.38 1.45 1.50 1.55 1.60 1.65 1.70 1.73 1.76	9520 9886 10242 10596 10922 11132 11406	185.64 185.64 180.57 179.56 165.35 106.52 138.98	625.05 614.83 605.08 595.64 586.60 577.63 567.82	8.222222 8.22222 8.222 8.222	16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7

DEPTH	ROP	MUB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	p p	FG
867.0 868.0 869.0 870.0 871.0 872.0 873.0 874.0 875.0	33.0 28.6 23.1 27.9 21.7 24.0 17.2 26.3	30.4 29.3 29.1 28.5 28.8 30.1 31.4 31.7 31.2 32.1	120 120 120 120 120 120 120	9.1 9.1 9.1 9.1 9.1 9.1	1.41 1.30 1.34 1.40 1.34 1.42 1.53 1.53	1.84 1.87 1.91 1.95 1.99 2.03 2.07 2.13 2.17 2.20	12192 12444 12756 13014 13346 13646 14064 14338	149.12 110.57 127.82 158.25 130.86 168.40 152.17 212.02 138.98 124.78	534.48 526.81 519.98 512.91 506.76 500.53 495.56 489.52	8.22 8.22 8.22 8.22 8.22 8.32	16.7 16.7 16.7 16.7 16.7 16.7 16.7 16.7
877.0 878.0 879.0 880.0 881.0 882.0 883.0 885.0 885.0	32.7 32.7 33.6 38.7 33.3 48.6 36.5 26.7	28.1 30.0 31.6 30.8 28.9 33.3 37.6 34.4 34.5	120 120 120 120 120 120 120 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.39 1.31 1.33 1.31 1.24 1.24 1.27 1.33 1.43	2.25 2.28 2.31 2.34 2.36 2.39 2.41 2.51 2.55	15108 15328 15542 15728 15944 16092 16487 16757	109.56	472.13 466.41 460.81 455.18 449.94 444.35 434.37 430.12	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8
888.0 889.0 890.0 891.0 892.0 893.0 894.0 895.0 896.0	20.0 21.7 26.9 31.3 30.5 38.7 40.9 37.5	34.0 34.0 32.2 32.0 31.5 31.3 31.2 30.4 30.7		9.1 9.1	1.52 1.52 1.47 1.40 1.34 1.35 1.25 1.25	2.60 2.65 2.70 2.77 2.80 2.83 2.85 2.88	17461 17821 18153 18421 18651 18887 19073 19249 19441 19657	89,27 97,39	419.84 416.44 412.70 408.80	8.2222 8.222 8.22 8.22 8.22 8.22	16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8
878.0 899.0 900.0 901.0 902.0 903.0 904.0 905.0 906.0 907.0	34.3 25.4 28.1 31.6 40.0 32.4 19.8 18.9	31.3 30.6 29.7 29.7 29.6 29.6 28.1 28.2	120 120 120 120 120 120 120 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.29 1.30 1.38 1.35 1.32 1.24 1.31 1.44 1.46	2.94 2.97 3.01 3.04 3.07 3.10 3.13 3.18 3.23	20347 20603 20831 21011 21233 21597 21977	106.52 144.05 129.85 115.65	380.11 377.17 374.13 370.88 367.94 365.88 363.96	8.22222 8.2222 8.22 8.22	16.8 16.8 16.8 16.8 16.8 16.8 16.8
908.0 909.0 910.0 911.0 912.0 913.0 914.0 915.0 916.0 917.0	25.4 27.7 24.3 17.6 23.7 39.6 29.5 22.8	28.3 27.6 29.6 29.6 29.6 28.4 28.7 29.2 29.4 28.9	120 120 120 120 120 120 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.38 1.36 1.36 1.40 1.50 1.24 1.33 1.42	3.33 3.37 3.40 3.45 3.50 3.54 3.57 3.60 3.68	22959 23219 23515 23925 24229 24411 24655 24971	150,14 144,05 131,88 150,14 207,96 154,20 92,31 123,76 160,28 124,78	357.57 355.17 353.01 351.50 349.47 346.84 344.59 342.75	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	16.8 16.8 16.8 16.8 16.8 16.9 16.9 16.9

DEPTH	ROP WO	B RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	рp	r.c
918.0 919.0 920.0 921.0 922.0 923.0 924.0 925.0 926.0 927.0	51.4 29.3 35.3 31.3 32.1 32.3 22.8 31.3 28.1 32.3 20.3 32.3 18.9 32.3 17.0 29.3 21.6 33.2 22.9 34.3	7 120 7 120 7 120 5 120 7 120 7 120 8 120	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.31 1.35 1.44 1.39 1.49 1.52 1.51	3.70 3.73 3.76 3.80 3.84 3.89 3.94 4.00 4.05	27849	113.62 160.28 129.85 179.56	335.67 333.53 331.88 329.98 328.57 327.32 326.29 324.86	8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22	16.9
928.0 929.0 930.0 931.0 932.0 933.0 934.0 935.0 936.0 937.0	23.2 30. 28.1 30. 32.4 31. 31.3 30. 28.3 30. 24.3 32. 19.6 31. 18.4 32. 16.8 31.	3 120 1 120 8 120 7 120 0 120 8 120 1 120 8 120	9.1 9.1 9.1 9.1 9.1 9.1	1.42 1.36 1.33 1.33 1.37 1.43 1.49 1.52 1.54	4.13 4.17 4.20 4.23 4.27 4.31 4.36 4.41 4.47 4.56		129.85 112.60 116.66 128.83 150.14 186.66	314.99 313.58 312.51 311.55 310.76	8.2 8.2 8.2	16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9
938.0 939.0 940.0 941.0 942.0 943.0 944.0 945.0 946.0 947.0	32.4 36. 39.6 35. 44.4 36. 41.9 36. 34.0 36. 31.3 35. 34.6 37. 29.3 37. 24.3 37.	7 120 8 120 6 120 2 120 8 120 0 120 0 120 2 123	9,1 9,1 9,1 9,1 9,1 9,1	1.32	4.59 4.61 4.64 4.66 4.69 4.72 4.75 4.83 4.83	31923 32085 32257 32469 32699 32907 33153 33455	92.31 82.17 87.24 107.53 116.66 105.50 124.78 150.14	309.09 307.32 305.51 303.76 302.21 300.74 299.22 297.87 296.73 295.76	8.2 8.2 8.2 8.2 8.2 8.2 8.2	16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9
948.0 949.0 950.0 951.0 952.0 953.0 954.0 955.0 955.0	31.0 36. 33.6 36. 32.4 34. 29.5 36. 32.9 41. 34.6 38. 46.8 39. 50.0 41. 41.2 38. 34.3 32.	2 150 1 150 5 150 7 150 9 150 7 150 2 150 0 150	9.1 9.1 9.1 9.1 9.1 9.1	1.45	4.90 4.93 4.96 5.00 5.02 5.07 5.07 5.12 5.15	34430 34708 35013 35250 35510 35703 35883 36101	108.55 112.60 123.76 96.37 105.50 78.11 73.04 88.64	294.41 293.01 291.67 290.42 289.00 287.66 286.14 284.60 283.20 281.95	8.22 8.22 8.22 8.22 8.22	17.0
958.0 959.0 960.0 961.0 962.0 963.0 964.0 965.0 966.0 967.0	40.4 36. 25.9 31. 24.0 30. 28.8 32. 26.1 31. 24.3 32. 25.7 32. 26.1 31. 16.6 30. 28.8 37.	1 150 0 150 1 150 9 150 5 150 3 150 5 150 6 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.48 1.45	5.17 5.25 5.29 5.33 5.37 5.41 5.44 5.50	37309 37621 37966 38336 38686 39031 39574	141.01 152.17 126.81 139.99 150.14 142.02 139.99 220.13	280.60 279.63 278.74 277.69 276.75 275.89 274.98 274.08 273.72 272.75	8.2 8.2 8.2 8.2 8.2 8.2 8.2	17.0

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
968.0 969.0 970.0 971.0 972.0 973.0 974.0 975.0 976.0	42,4 49,3 31,0 30,3 46,2 36,7 26,1 27,7	37.1 38.1 40.3 38.7 36.9 41.2 38.1 36.8 37.0 38.4	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.47 1.39 1.37 1.50 1.49 1.40 1.44 1.54	5.57 5.59 5.61 5.65 5.70 5.73 5.77 5.80 5.84	40376 40559 40849 41146 41341 41586 41931 42256	86.23 74.05 117.68 120.72 79.13	269.20 268.23 267.28 266.08 265.03 264.24 263.41	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	17.0 17.0 17.0 17.0 17.0 17.0 17.0
978.0 979.0 980.0 981.0 982.0 983.0 984.0 985.0 986.0 987.0	31.9 21.6 27.5 30.0 30.3 30.5 27.5	37.4 37.5 29.8 39.3 39.4 39.4 40.1 39.8	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.48 1.51 1.55 1.52 1.52 1.52 1.55 1.55	5.88 5.91 5.95 5.99 6.02 6.06 6.12 6.16 6.19	43199 43616 43944 44244 44541 44841 45136 45464	135.94 114.63 169.41 132.89 121.73 120.72 121.73 119.70 132.89 122.75	260.91 260.35 259.58 258.75 257.92 257.11 256.30 255.57	88888888888888888888888888888888888888	17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0
988.0 989.0 990.0 991.0 992.0 993.0 994.0 995.0 996.0	32.1 27.5 26.9 26.3 25.4 36.0 29.8 24.7	40.1 40.0 40.3 40.5 40.7 40.8 38.9 39.9 37.5 36.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1,55 1,57 1,58 1,59 1,60 1,46 1,53 1,57	6.23 6.26 6.30 6.37 6.41 6.44 6.47 6.51	46364 46691 47026 47369 47724 47974 48276 48641	128.83 113.62 132.89 135.94 138.98 144.05 101.44 122.75 148.11 154.20	253.25 252.56 251.90 251.25 250.65 249.81 249.10 248.54	8.22 8.22 8.22 8.22 8.22	17.0 17.1 17.1 17.1 17.1 17.1 17.1 17.1
998.0 999.0 1000.0 1001.0 1002.0 1003.0 1004.0 1005.0 1006.0	22.9 28.6 27.3 27.1 25.4 27.7 27.1 26.5	36.6 36.6 36.0 36.1 36.2 37.3 36.5 35.8	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.53 1.58 1.51 1.51 1.52 1.52 1.53 1.52 1.55	6.59 6.64 6.71 6.74 6.78 6.82 6.86 6.90	49756 50071 50401 50734 51089 51414 51746 52086	138,98 159,27 127,82 133,91 134,92 144,05 131,88 134,92 137,96 149,12	246.29 245.68 245.09 244.55 243.95 243.37 242.82	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1
1008.0 1009.0 1010.0 1011.0 1012.0 1013.0 1014.0 1015.0 1016.0	24.8 33.0 30.5 33.3 31.9 34.6 41.9 47.4	35.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.59 1.56 1.45 1.48 1.45 1.46 1.41 1.36 1.31	6.98 7.02 7.05 7.11 7.14 7.17 7.20 7.22 7.25	53214 53486 53781 54051 54334	77.10	241.41 240.74 240.12 239.45 238.82	8.222222222222222222222222222222222222	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1

DEPTH	ROP WOE	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рÞ	FG
1018.0 1019.0 1020.0 1021.0 1022.0 1023.0 1024.0 1025.0 1026.0	24.3 38.4 37.9 38.1 55.4 35.8 36.0 36.7 23.4 38.0 29.0 39.2 30.0 37.9 30.3 36.7 40.0 38.3 29.0 40.3	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.58 1.43 1.28 1.43 1.59 1.51 1.51 1.49 1.42	7.29 7.33 7.36 7.40 7.44 7.53 7.53	55846 56009 56259 56644 56954 57254 57551 57776	65.94 101.44 156.22 125.79 121.73 120.72	234.78 233.95 233.31 232.93 232.42 231.88 231.35 230.69	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	17.1 17.1 17.1 17.1 17.1 17.1 17.1 17.1
1028.0 1029.0 1030.0 1031.0 1032.0 1034.0 1035.0 1036.0 1037.0	9.2 40.0 14.5 39.2 26.1 37.6 31.9 37.4 30.0 38.0 29.5 38.2 30.0 38.3 27.9 37.5 26.3 38.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.93 1.77 1.55 1.48 1.51 1.52 1.51 1.53 1.55	7.67 7.74 7.78 7.81 7.84 7.88 7.91 7.95 7.98	59681 60026 60309 60609 60914 61214 61536 61879	395.63 251.58 139.99 114.63 121.73 123.80 121.73 130.75 138.98 124.28	231.07 230.64 230.10 229.60 229.11 228.62 228.17 227.77	8.22.22.22.22.22.22.22.22.22.22.22.22.22	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2
1038.0 1039.0 1040.0 1041.0 1042.0 1043.0 1044.0 1045.0 1046.0	27.5 38.2 29.8 38.1 32.1 37.9 26.5 37.9 18.8 39.6 19.4 38.0 20.3 39.1 20.3 39.2 23.1 39.1	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.51 1.48 1.55 1.69 1.65 1.65 1.66	8.05 8.09 8.12 8.16 8.21 8.26 8.31 8.36 8.40 8.45	62816 63096 63436 63916 64381 64824 65266 65656	132.89 122.75 113.62 137.96 194.77 188.69 179.56 179.56 158.25	226.41 225.90 225.51 225.38 225.22 225.02 224.82 224.53	8	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2
1048.0 1049.0 1050.0 1051.0 1052.0 1053.0 1054.0 1055.0 1056.0	18.2 39.6 17.9 39.9 18.3 40.0 24.0 35.7 25.9 38.3 18.9 36.6 18.5 34.2 20.6 34.3 21.4 34.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.70 1.71 1.70 1.55 1.56 1.64 1.62 1.58 1.57	8.50 8.56 8.61 8.69 8.75 8.85 8.90 8.95	67069 67561 67936 68284 68759 69246 69684 70104	200.86 203.90 199.85 152.17 141.01 192.74 197.82 177.53 170.43 186.66	224.10 223.99 223.69 223.34 223.21 223.10 222.91 222.69	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2
1058.0 1059.0 1060.0 1061.0 1062.0 1063.0 1064.0 1065.0 1066.0	22.4 34.3 22.8 34.3 23.7 34.1 32.1 36.0 27.3 36.2 14.4 38.3 28.3 38.4 29.8 36.6 37.9 36.0 33.3 35.7	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1,56 1,55 1,54 1,46 1,52 1,53 1,50 1,41 1,45	8,99 9,04 9,08 9,11 9,15 9,25 9,25 9,31 9,34	71361 71741 72021 72351 72976 73294 73596 73834		222.04 221.76 221.32 220.97 221.10 220.73	8.22.22.22.22.22.22.22.22.22.22.22.22.22	17.2 17.2 17.2 17.2 17.2 17.2 17.2 17.2

--

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	FG
1068.0		36.7			1.47	9.37			218.97		17.3
1069.0		36.8			1.43	9.40 9.44		100.88			17.3 - 17.3
1070.0 1071.0		35.8 36.8			1.53 1.55	9.48		144.05			17.3
1072.0		36.9			1.48	9.51			217.51		17.3
1073.0		36.9			1.47	9.54		111.59			17.3
1074.0	30.5	36.9	150		1.49	9.57		119.70			17.3
1075.0		36.7			1,44	9.60			216.28		17.3
1076.0		36.3			1.40	9.63 9.65		92.31 98.40			17.3 17.3
1077.0	57.1	35,8	100	у. 1	1.41	7:03	70700	3 60 1 ml (t	Eli A sil a silsil	(2) 8.	X / 1 (3
1078.0	35.0	36.4	150		1.44	9.68		104.49			17.3
1079.0		33.8			1.53	9.72			214.70		17.3
1080.0		38.0			1.52	9.76 9.79		130.88	214.37		17.3 17.3
1081.0 1082.0		38.6 37.9			1.54	9.77 9.82		100.00			17.3
1083.0		37.2			1.43	9.85			213,20		17.3
1084.0		37.4			1,42	9.88	78916	96.37	212.77		17.3
1085.0		38.0			1.50	9.91		119.70			12.3
1086.0		38.5			1.56	9.95			212.15		17.3 17.3
1087.0	25.9	38.5	150	У.1	1.56	9.99	77703	141.01	211.89	0 + #	7 \ 1.73
1088.0	26.9	37.5	150		1.54	10.02			211.61		17.3
1089.0		38.3			1.53	10.06		128.83			17.3
1090.0		38.7			1,55	10.09 10.13			211.02		$\frac{17.3}{17.3}$
1091.0 1092.0		38.5 38.5			1.53 1.53	10.16			210.42		17.3
1093.0		38.6			1.53	10.20			210.11		17.3
1094.0		38.6			1.56	10.24			209,85		17.3
1095.0		38.9			1.58	10.28			209.63		12.3
1096.0		38.9			1.56	10.32			209.38 209.21		17.3 - 17.3
1097.0	೭೭.೮	39.2	100	7 . 1	1.62	10.36	00200	100.20	E. U 7 + Z., 8	Oir.	A 7 7 53
1098.0	19.4				1.64	10.41	83731	188.69	209.13	8.2	17.3
1099.0						10.55				8.2	17.3
1100.0		36.9			1,75	10.62 10.69			210.39 210.46		$\frac{17.3}{17.3}$
1101.0 1102.0		36.8 38.3			1.70 1.65	10.74			210.38		17.3
1103.0		39.0			1.69	10.79			210.34		17.3
1104.0		38.4		9.1	1.70	10.85			210.36		17.3
1105.0		38.1			1.63	10.90			210.24		17.3
1106.0		38.5			1.64	10.95			210.13 210.10		17.3 17.3
1107.0	161.0	34.1	1.00	7.1	1.62	11.00	07001	177100	2.10.10	Uir.	X / 15.
1108.0		37.8			1.61	11.05			209.94		17.3
1109.0		37.0			1.59	11.09			209.77 209.59		17.3 17.4
1110.0 1111.0		7 37.1 3 <mark>37.</mark> 4			1.58	11.13 11.18			209.47		17.4
1112.0		37.4			1.62	11.23			209.36		17.4
1113.0	19.8	37.7	150	9.1	1.64	11.28			209.28		17.4
1114.0		37.8			1.69	11.34			209,29		17.4
1115.0		38.2			1.68 1.61	11.40 11.44			209.26		17.4 17.4
1116.0 1117.0		37.3 33.6			1.47				208.87		17.4
							•				

DEPTH	ROP WOB	крм м	w "d"c	HOURS	TURNS	rcost	ccost	bb kC
1118.0 1119.0 1120.0 1121.0 1122.0 1123.0 1124.0 1125.0 1126.0 1127.0	19.0 39.8 21.6 41.3 19.9 41.8 20.7 41.9 21.2 42.1 19.0 42.2 20.9 42.3 19.3 42.7 20.3 40.1 26.3 39.6	150 9. 150 9. 150 9. 150 9. 150 9. 150 9. 150 9.	1 1.68 1 1.68 1 1.71 1 1.68 1 1.72	11.53 11.58 11.63 11.67 11.72 11.77 11.82 11.87 11.96	94216 94668 95103 95528 96001 96431 96898 97341	191.73 169.41 183.61 176.51 172.46 191.73 174.48 189.70 179.56 138.98	208.68 208.60 208.49 208.38 208.32 208.21 208.15 208.06	8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4
1128.0 1129.0 1130.0 1131.0 1132.0 1133.0 1134.0 1135.0 1136.0	21.6 38.2 21.1 37.1 28.3 36.9 29.8 36.7 31.3 36.4 30.8 36.7 28.3 36.6 28.8 37.3 22.9 36.0	150 9. 150 9. 150 9. 150 9. 150 9. 150 9. 150 9.	1 1.51 1 1.50 1 1.47 1 1.48 1 1.51 1 1.51	12.01 12.06 12.09 12.12 12.16 12.19 12.22 12.26 12.30 12.35	98528 98846 99148 99436 99728 100046 100358	169.41 173.47 128.83 122.75 116.66 118.69 128.83 126.81 159.27	207.40 207.35 207.08 206.80 206.52 206.28 206.03 205.88	8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4
1138.0 1139.0 1140.0 1141.0 1142.0 1143.0 1144.0 1145.0 1146.0	17.8 31.1 21.7 36.2 20.7 36.2 20.2 35.6 21.2 37.4 21.3 37.8 25.5 37.7 18.8 35.5 22.9 38.0	7 150 9. 2 150 9. 5 150 9. 7 150 9. 7 150 9. 6 150 9.	1 1.59 1 1.60 1 1.61 1 1.62 1 1.62 1 1.56 1 1.63 1 1.64	12.40 12.45 12.50 12.55 12.59 12.64 12.68 12.73 12.78 12.83	102078 102513 102958 103383 103806 104158 104636 105028	204.92 168.40 176.51 180.57 172.46 171.44 143.04 193.76 159.27	205.64 205.55 205.47 205.37 205.26 205.08 205.04	8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.4
1148.0 1149.0 1150.0 1151.0 1152.0 1153.0 1154.0 1155.0 1155.0	18.2 38.5 19.3 38.6 20.6 38.5 19.0 38.6 15.9 38.5 17.1 38.5 17.4 37.6 16.7 39.2 22.5 38.5	5 150 9. 5 150 9. 3 150 9. 5 150 9. 6 150 9. 2 150 9. 7 150 9.	1 1.68 1 1.66 1 1.64 1 1.67 1 1.73 1 1.70 1 1.68 1 1.72 1 1.68		106433 106871 107343 107908 108433 108951 109488	189.70 177.53 191.73 229.26 213.03 209.99 218.11 162.31	204.81 204.77 204.69 204.65 204.75 204.76 204.80 204.68 204.68	8.2 17.4 8.2 17.4 8.2 17.4 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5
1158.0 1159.0 1160.0 1161.0 1162.0 1163.0 1164.0 1165.0 1166.0	17.7 39.4 17.8 39.2 17.5 39.3 18.8 39.3 18.2 39.3 19.6 37.3 23.8 38.0 21.2 39.4 21.2 39.4	2 150 9 3 150 9 1 150 9 3 150 9 5 150 9 0 150 9 4 150 9 2 150 9	1 1.70 1 1.70 1 1.71 1 1.68 1 1.69 1 1.64 1 1.58 1 1.64		111388 111903 112383 112878 113338 113716 114141	204.92 208.98 194.77 200.86 186.66 153.18 172.46	204.66 204.67 204.64 204.63 204.58 204.43 204.34 204.25 204.14	8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5 8.2 17.5

DEPTH	ROP WO:	3 RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	рр	FG
1168.0 1169.0 1170.0 1171.0 1172.0 1173.0 1174.0 1175.0 1176.0	20.5 39.1 17.1 39.1 16.7 39.1 19.3 39.1 24.8 39.1 24.8 37.1 16.7 39.1 21.8 39.1 17.6 39.1	5 150 7 150 9 150 4 150 1 150 7 150 7 150 3 150	9.1 1.65 9.1 1.72 9.1 1.73 9.1 1.68 9.1 1.59 9.1 1.56 9.1 1.73 9.1 1.64 9.1 1.71 9.1 1.61	13.93 13.99 14.05 14.10 14.14 14.18 14.24 14.29 14.35 14.35	115943 116481 116948 117311 117673 118211 118623 119136	178.54 214.05 218.11 189.70 147.09 147.09 218.11 167.38 207.96 157.24	204.10 204.10 204.10 203.78 203.78 203.72 203.72 203.73	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
1178.0 1179.0 1180.0 1181.0 1182.0 1183.0 1184.0 1185.0 1186.0	18.2 39.3 20.9 39.3 19.5 39.3 18.2 39.3 9.6 40.3 14.4 40.3 15.9 40.3 14.4 40.3 27.9 39.3 22.4 39.3	7 150 3 150 2 150 5 150 6 150 6 150 6 150 4 150	9.1 1.70 9.1 1.65 9.1 1.68 9.1 1.70 9.1 1.79 9.1 1.75 9.1 1.75 9.1 1.79 9.1 1.55 9.1 1.62	14.44 14.49 14.54 14.60 14.70 14.77 14.83 14.90 14.94 14.98	120448 120911 121406 122341 122966 123531 124156	200.86 174.48 187.67 200.86 379.40 253.61 229.26 253.61 130.86 163.33	203.51 203.47 203.46 203.94 204.08 204.15 204.28	8.2 : 8.2 : 8.2 : 8.2 : 8.2 : 8.2 : 8.2 : 8.2 :	17.5 17.5 17.5 17.5 17.5 17.5 17.5
1188.0 1189.0 1190.0 1191.0 1192.0 1193.0 1194.0 1195.0 1196.0	28.8 39.5 12.7 40.5 17.8 40.5 22.0 37. 26.3 38. 23.7 36. 32.4 34.5 27.9 34.5 27.7 35.3	5 150 5 150 1 150 1 150 0 150 5 150 7 150 8 150	9.1 1.54 9.1 1.83 9.1 1.72 9.1 1.60 9.1 1.55 9.1 1.56 9.1 1.44 9.1 1.49 9.1 1.50 9.1 1.53	15.02 15.10 15.15 15.20 15.24 15.28 15.31 15.35 15.35	125903 126408 126818 127161 127541 127818 128141 128466	126.81 288.10 204.92 166.37 138.98 154.20 112.60 130.86 131.88	203.99 203.99 203.89 203.72 203.59 203.35 203.16 202.97	8.2 : 8.2 : 8.2 : 8.2 : 8.2 : 8.2 : 8.2 :	17.5 17.5 17.5 17.5 17.5 17.6 17.6
1198.0 1199.0 1200.0 1201.0 1202.0 1203.0 1204.0 1205.0 1206.0 1207.0	18.4 35.5 17.9 36.5 25.4 35.5 14.6 36.5 13.6 37.5 11.5 37.5 13.4 36.5 17.7 36.6 15.5 36.5	1 150 5 150 7 150 1 150 8 150 7 150 5 150	9.1 1.64 9.1 1.65 9.1 1.73 9.1 1.76 9.1 1.76 9.1 1.76 9.1 1.66 9.1 1.69	15.48 15.53 15.57 15.64 15.71 15.80 15.87 15.93 16.00	129818 130173 130791 131451 132233 132903 133411 133993	198.83 203.90 144.05 250.57 267.81 317.52 271.87 205.93 236.37 223.18	202.81 202.66 202.78 202.95 203.25 203.42 203.43 203.52	8.2 1 8.2 1 8.2 1 8.2 1 8.2 1 8.2 1	17.6 17.6 17.6 17.6 17.6 17.6 17.6
1208.0 1209.0 1210.0 1211.0 1212.0 1213.0 1214.0 1215.0 1216.0 1217.0	17.6 36.1 18.9 36.6 20.0 36.6 22.3 35.6 24.5 36.7 14.5 36.7 17.1 37.1 18.1 37.1 17.3 37.1	5 150 1 150 1 150 2 150 2 150 1 150 1 150 3 150	9.1 1.67 9.1 1.64 9.1 1.62 9.1 1.57 9.1 1.55 9.1 1.74 9.1 1.68 9.1 1.68 9.1 1.68	16.11 16.17 16.22 16.26 16.30 16.37 16.43 16.48 16.54 16.60	135528 135978 136382 136749 137369 137894 138392 138912	201.87	203.55 203.49 203.39 203.26	8.2 1 8.2 1 8.2 1 8.2 1 8.2 1 8.2 1 8.2 1	17.6 17.6 17.6 17.6 17.6 17.6

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рp	FG
1218.0 1219.0 1220.0 1221.0 1222.0 1223.0 1224.0 1225.0 1226.0	22.1 19.3 15.8 20.7 17.6 20.6 23.1 14.5	36.2 36.6 36.0 37.3 37.2 37.5 37.6 37.1 38.3 37.7	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.59 1.63 1.71 1.62 1.68 1.63 1.58 1.76	16.64 16.69 16.74 16.80 16.85 16.91 16.96 17.00 17.07	140212 140679 141249 141684 142194 142632 143022 143644	142.02 165.35 189.70 231.29 176.51 206.95 177.53 158.25 252.60 214.05	203.21 203.18 203.25 203.18 203.19 203.13 203.02 203.14	8.	17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6
1228.0 1229.0 1230.0 1231.0 1232.0 1233.0 1234.0 1235.0 1236.0 1237.0	14.3 12.4 15.2 21.7 18.9 14.3 11.4	37.7 36.6 33.6 33.1 34.2 34.6 34.9 35.0 34.9	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.74 1.74 1.74 1.66 1.55 1.61 1.71 1.78 1.82	17.19 17.26 17.35 17.41 17.46 17.51 17.58 17.67 17.77	145414 146142 146734 147149 147624 148254 149042	248.54 255.64 295.20 240.42 168.40 192.74 255.64 319.55 357.08 348.97	203.40 203.62 203.71 203.63 203.60 203.73 204.00 204.37	8.2288.2888.2888.2888.28	17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6
1238.0 1239.0 1240.0 1241.0 1242.0 1243.0 1244.0 1245.0 1246.0	21.2 10.4 10.8 11.7 12.6 13.3 14.5	34.5 34.5 35.7 34.7 35.4 35.4 35.4 35.4 35.2	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.69 1.58 1.83 1.80 1.76 1.74 1.71 1.66	17.93 17.98 18.07 18.16 18.25 18.33 18.40 18.47 18.53 18.53	151809 152674 153507 154274 154989 155664 156287	244.48 172.46 351.00 337.81 311.43 290.13 273.90 252.60 216.08 195.79	204.73 205.07 205.39 205.64 205.83 205.99 206.10 206.12	8.2 8.2 8.2 8.2 8.2 8.2 8.2	17.6 17.6 17.7 17.7 17.7 17.7 17.7 17.7
1248.0 1249.0 1250.0 1251.0 1252.0 1253.0 1254.0 1255.0 1256.0	12.7 12.8 12.9 8.2 12.5 9.4 10.6	34.3 36.5 37.5 37.4 37.7 37.6 37.6 37.6 37.6	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.71 1.77 1.79 1.78 1.94 1.79 1.89 1.85 1.84	18.66 18.74 18.81 19.01 19.09 19.20 19.30 19.39 19.47	158657 159359 160059 161159 161879 162842 163689		206.42 206.60 206.78 207.33 207.52 207.94	8.22 8.22 8.22 8.22 8.22 8.22	17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7
1258.0 1259.0 1260.0 1261.0 1262.0 1263.0 1264.0 1265.0 1267.0	13.7 14.3 17.8 23.1 18.9 19.1 16.5 11.3	37.0 36.4 36.4 35.8 34.9 36.1 36.4 37.0 35.8	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.79 1.75 1.73 1.66 1.57 1.62 1.63 1.69 1.82	19.55 19.63 19.70 19.75 19.79 19.85 19.90 19.96 20.05 20.12	166662 167289 167794 168184 168659 169129 169674 170469	292.16 266.80 254.63 204.92 158.25 192.74 190.72 221.15 322.59 277.96	209.09 209.19 209.18 209.07 209.03 208.99 209.02 209.27	8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22	17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	рþ	FG
1268.0 1269.0 1270.0 1271.0 1272.0 1273.0 1274.0 1275.0 1276.0 1277.0	14.8 12.9 10.8 10.5 10.2 10.4 9.3 11.5	37.0 36.9 37.1 37.5 37.5 37.5 37.5 37.6 34.6	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.78 1.73 1.78 1.84 1.85 1.85 1.85 1.89	20.20 20.27 20.35 20.44 20.54 20.63 20.73 20.84 20.93 20.98	172474 173174 174007 174862 175744 176609 177574 178357	288.10 247.52 284.04 337.81 346.94 358.10 351.00 391.58 317.52 187.67	209.68 209.85 210.13 210.43 210.75 211.06 211.45 211.68	8.222222 8.22222 8.22222	17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.7
1278.0 1279.0 1280.0 1281.0 1282.0 1283.0 1284.0 1285.0 1286.0 1287.0	13.5 10.4 11.2 10.6 11.9 11.5 12.2 8.3	34.2 32.9 31.8 31.6 31.6 31.7 31.7 31.7	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.72 1.70 1.76 1.74 1.76 1.72 1.73 1.71	21.05 21.13 21.22 21.31 21.41 21.49 21.58 21.66 21.78 21.87	180164 181027 181829 182682 183439 184222 184959 186044	274.91 270.86 349.98 325.64 345.93 307.38 317.52 299.26 440.27 348.97	211.89 212.19 212.43 212.72 212.92 213.15 213.33 213.81	8.222222 8.2222 8.222 8.222	17.7 17.7 17.7 17.7 17.7 17.7 17.7 17.8 17.8
1288.0 1289.0 1290.0 1291.0 1292.0 1293.0 1294.0 1295.0 1296.0	11.8 10.7 12.9 13.1 13.3 14.6 16.1	35.9 35.9 36.1 35.9 36.0 36.0 34.2 35.4 35.9	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.81 1.79 1.82 1.76 1.75 1.75 1.72 1.66 1.62	21.96 22.05 22.14 22.22 22.30 22.37 22.44 22.50 22.55 22.61	188474 189319 190014 190699 191374 191992 192552	326.65 310.42 342.88 282.02 277.96 273.90 250.57 227.24 186.66 206.95	214.54 214.81 214.95 215.09 215.21 215.28 215.31 215.25	8.2 8.2 8.2 8.2 8.2 8.2 8.2	17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8
1298.0 1299.0 1300.0 1301.0 1302.0 1304.0 1305.0 1306.0 1307.0	15.2 13.8 13.3 12.2 12.1 13.8 10.6 15.1	36.1 36.4 36.6 36.7 36.7 36.6 34.5 37.2	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.67 1.71 1.75 1.76 1.79 1.75 1.80 1.73	22.67 22.73 22.81 22.88 22.96 23.05 23.12 23.21 23.28 23.36	194637 195289 195967 196702 197444 198094 198942	264.77 274.91 298.25 301.29 263.76 343.90	215.28 215.38 215.50 215.67 215.85 215.95 216.21 216.26	8.22.22 8.22.22 8.22.22 8.32.22	17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8
1308.0 1309.0 1310.0 1311.0 1312.0 1313.0 1314.0 1315.0 1316.0 1317.0	11.7 12.4 12.9 14.0 14.9 15.6 13.7	37.6 38.0 37.9 38.0 38.2 38.1 37.2 38.8 37.8	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.77 1.82 1.80 1.79 1.77 1.74 1.72 1.78	23.43 23.52 23.60 23.68 23.75 23.81 23.88 23.95 24.02 24.09	201694 202419 203114 203759 204362 204939 205597 206227	270.86 313.46 294.19 282.02 261.73 244.48 234.34 266.80 255.64 237.38	216.72 216.88 217.01 217.10 217.15 217.19 217.29 217.36	8.2 8.2 8.2 8.2 8.2 8.2 8.2	17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	TCOST	CCOST	pp	F.C
1318.0 1319.0 1320.0 1321.0 1322.0 1323.0 1324.0 1325.0 1326.0 1327.0	13.7 16.1 14.9 11.4 10.6 12.3 11.6	37,7 37,8 37,8 37,8 38,1 38,2 38,2 38,6 38,5	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.2 9.2	1.72 1.77 1.71 1.74 1.83 1.86 1.79 1.81 1.78	24.15 24.22 24.28 24.35 24.44 24.53 24.62 24.70 24.78 24.86	208037 208594 209197 209989 210839 211572 212347 213057	231.29 265.78 226.22 244.48 321.58 344.91 297.23 314.48 288.10 277.96	217.53 217.54 217.60 217.80 218.05 218.21 218.40 218.54	8.22 8.22 8.22 8.22 8.22 8.22	17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8
1328.0 1329.0 1330.0 1331.0 1332.0 1333.0 1334.0 1335.0 1336.0	13.2 11.5 11.4 10.7 11.3 10.1 12.2	38.5 38.7 38.7 39.0 38.9 38.3 38.0 36.1 36.1	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.73 1.77 1.82 1.83 1.84 1.82 1.85 1.76 1.71	24.92 25.00 25.09 25.18 25.27 25.36 25.46 25.54 25.61 25.67	215037 215817 216609 217449 218249 219139 219879 220514	248.54 276.94 316.51 321.58 340.85 324.62 361.14 300.28 257.67 213.03	218.82 219.01 219.21 219.45 219.65 219.93 220.08 220.15	9.22 9.22 9.22 9.22 9.22 9.22 9.22	17.8 17.8 17.8 17.8 17.9 17.9 17.9 17.9
1338.0 1339.0 1340.0 1341.0 1342.0 1343.0 1344.0 1345.0 1346.0	13.1 12.4 12.9 12.3 17.9 13.0 13.4	37.6 39.1 39.3 39.3 38.5 40.4 41.0 40.8 41.0	150 150 150 150 150 150 150	9,2 9,2 9,2 9,2 9,2 9,2	1.74 1.78 1.80 1.79 1.79 1.69 1.81 1.80	25.74 25.82 25.90 25.97 26.06 26.11 26.19 26.26 26.34 26.41	222384 223109 223804 224534 225037 225729 226402 227124	266.80 278.97 294.19 282.02 296.22 203.90 281.00 272.89 293.17 229.26	220.34 220.48 220.60 220.74 220.71 220.82 220.92 221.06	8.22 8.22 8.22 8.22 8.22 8.22	17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9
1348.0 1349.0 1350.0 1351.0 1352.0 1353.0 1354.0 1355.0 1356.0	14.8 14.6 16.5 14.3 14.3 17.6	40.8 40.9 40.8 41.0 37.8 41.0 41.4 40.9 41.5	150 150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.75 1.77 1.77 1.73 1.73 1.78 1.81 1.80 1.83	26.47 26.54 26.61 26.67 26.74 26.81 26.88 26.94 27.02 27.11	228892 229507 230052 230679 231309 231989 232499 233214	249.55 221.15 254.63 255.64 275.93 206.95	221.16 221.21 221.21 221.28 221.34 221.44 221.41 221.54	8.2 8.2 8.2 8.2 8.2 8.2 8.2	17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9
1358.0 1359.0 1360.0 1361.0 1362.0 1363.0 1364.0 1365.0 1366.0	10.9 11.7 10.7 12.4 12.5 16.7 20.5	41.7 41.7 41.5 39.9 39.3 38.8 38.5 39.1	150 150 150 150 150 150 150	9,2 9,2 9,2 9,2 9,2 9,2	1.86 1.88 1.86 1.81 1.81 1.70 1.62 1.77	27.20 27.29 27.37 27.47 27.55 27.63 27.69 27.74 27.81 27.89	235614 236382 237224 237949 238669 239207 239647 240304	318.54 334.77 311.43 341.87 294.19 292.16 218.11 178.54 266.80 296.22	222.11 222.28 222.50 222.63 222.75 222.75 222.66 222.74	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9

DEPTH	ROP MUB	RPM	MW "	d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
1368.0 1369.0 1370.0 1371.0 1372.0 1374.0 1375.0 1376.0 1377.0	8.5 39.2 7.9 39.0 7.5 39.7 10.1 38.1 13.5 39.6 14.0 39.4 11.5 39.7 10.3 39.7 13.7 42.2	150 150 150 150 150 150 150	9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1	.95 .98 .85 .78 .76 .83	28.01 28.13 28.27 28.37 28.44 28.51 28.60 28.70 28.77 28.84	242089 243224 244432 245989 245989 246432 247417 248289 248244 249554	460.56 489.98 361.14 270.86	223.68 224.16 224.41 224.49 224.56 224.72 224.76 225.03	8.2 8.2 8.2 8.2 8.2 8.2 8.2	17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9
1378.0 1379.0 1380.0 1381.0 1382.0 1383.0 1384.0 1385.0 1386.0	13.8 43.8 14.2 43.9 14.7 42.7 15.8 44.1 15.6 43.9 20.3 43.7 19.9 43.5 15.3 44.1 15.8 44.1	150 150 150 150 150 150 150	9.2 1 9.2 1 9.2 1	.,82 .,79 .,78 .,79 .,69 .,70	28.91 28.98 29.05 29.11 29.17 29.22 29.27 29.34 29.40 29.49	253039 253492 254082 254652	256.65 248.54 231.29 234.34 179.56 183.61 239.41	225.19 225.23 225.25 225.26 225.18 225.11 225.13 225.14	8.2 8.2 8.2 8.2 8.2 8.2	17,9 12,9 18,0
1388.0 1389.0 1390.0 1391.0 1392.0 1394.0 1395.0 1396.0	10.6 44.5 16.4 44.7 16.4 45.2 12.4 44.9 13.8 45.3 14.6 44.8 15.9 44.7 16.9 44.6 17.1 44.8	150 150 150 150 150 150 150	9.2 1 9.2 1 9.2 1 9.2 1 9.2 1	. 78	29.59 29.65 29.71 29.79 29.86 29.93 29.99 30.05 30.11	256846 257396 258121 258771 259388 259953 260486	344.91 223.18 223.18 294.19 263.76 250.57 229.26 216.08 214.05 233.32	225.52 225.51 225.63 225.70 225.74 225.75 225.73 225.71	8.2288888888888888888888888888888888888	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0
1398.0 1399.0 1400.0 1401.0 1402.0 1403.0 1404.0 1405.0 1406.0	18.1 44.8 29.2 45.2 14.4 45.7 11.7 43.6 10.6 42.6 10.9 42.8 12.0 42.6 14.5 42.3 18.1 42.4	150 150 150 150 150 150 150	9,2 1 9,2 1 9,2 1 9,2 1 9,2 1 9,2 1 9,2 1 9,2 1	1.58 1.84 1.88 1.90 1.89 1.86 1.79	30.23 30.26 30.33 30.42 30.51 30.60 30.69 30.75 30.81 30.87	262394 263019 263786 264634 265456 266204 266824 267321	201.87 125.11 253.61 311.43 343.90 333.75 303.32 251.58 201.87 217.09	225.51 225.56 225.71 225.91 226.09 226.22 226.22	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0
1408.0 1409.0 1410.0 1411.0 1412.0 1413.0 1414.0 1415.0 1416.0	22.9 39.2 20.5 42.0 21.1 41.9 21.7 41.9 19.5 42.7 16.4 42.6 15.6 42.6 15.9 42.8 14.6 42.9	150 150 150 150 150 150 150	9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1	1.67 1.66 1.65 1.69 1.75 1.77	30.91 30.96 31.01 31.06 31.11 31.17 31.23 31.30 31.36 31.43	268689 269116 269531 269994 270544 271121 271689 272304	159.27 178.54 173.47 168.40 187.67 223.18 234.34 230.28 249.55 256.65	226.02 225.93 225.83 225.77 225.76 225.78 225.78 225.82	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	ccost	рþ	FG
1418.0 1419.0 1420.0 1421.0 1422.0 1423.0 1423.0 1425.0 1426.0 1427.0	14.2 15.3 10.9 11.0 16.6 17.1 15.2 21.3	41.0 43.5 43.3 43.4 43.3 43.3 41.9 42.3 41.9	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.78 1.81 1.79 1.90 1.90 1.76 1.76 1.76	31.50 31.57 31.64 31.73 31.82 31.88 31.94 32.00 32.05 32.11	274196 274786 275609 276424 276966 277491 278064 278486	253.61 257.67 239.41 333.75 330.71 220.13 213.03 232.31 171.44 222.16	225.97 226.00 226.17 226.35 226.34 226.31 226.32 226.23	88888888 88888888888888888888888888888	18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0
1428.0 1429.0 1430.0 1431.0 1432.0 1433.0 1434.0 1435.0 1436.0	19.7 16.8 14.5 15.7 20.6 16.9 17.4 20.3	46.0 45.8	150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.64 1.72 1.78 1.84 1.82 1.72 1.78 1.70	32.15 32.20 32.26 32.33 32.39 32.44 32.50 32.56 32.61 32.65	279841 280376 280999 281574 282011 282544 283061 283504	216.08	226.02 226.01 226.05 226.06 225.99 225.97 225.94 225.87	88888888888888888888888888888888888888	18.0 18.0 18.1 18.1 18.1 18.1 18.1 18.1
1438.0 1439.0 1440.0 1441.0 1442.0 1443.0 1444.0 1445.0 1446.0	20.8 18.9 21.2 21.6 26.5 28.3 23.1 21.1	42.6 44.9 43.9 43.1 42.8 42.2 42.3 43.2 43.1	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.71 1.70 1.72 1.67 1.66 1.58 1.56 1.64 1.67	32.70 32.75 32.80 32.85 32.90 32.97 33.01 33.06 33.12	284771 285246 285671 286089 286429 286746 287136 287564	172,46 169,41 137,96 128,83 158,25	225.61 225.55 225.47 225.38 225.24 225.09 224.98 224.90	88888888888888888888888888888888888888	18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1
1448.0 1449.0 1450.0 1451.0 1452.0 1453.0 1454.0 1455.0 1455.0	16.1 15.8 17.0 17.6 17.8 16.7 14.8 22.5	44.9 45.2 45.1 44.8 44.8 44.9 45.4 42.6 44.6	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.78 1.79 1.80 1.77 1.75 1.75 1.77 1.82 1.64	33.18 33.25 33.31 33.37 33.42 33.48 33.54 33.61 33.65 33.71	289244 289814 290344 290854 291359 291896 292504 292904	219.12 226.22 231.29 215.06 206.95 204.92 218.11 246.51 162.31 192.74	224.91 224.91 224.88 224.85 224.83 224.87 224.77	8,22 8,22 8,22 8,22 8,22 8,22 8,22 8,22	18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1
1458.0 1459.0 1460.0 1461.0 1462.0 1463.0 1465.0 1465.0 1466.0	19.8 20.2 15.2 12.2 13.1 15.9 14.5 16.2		150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.70 1.69 1.68 1.79 1.86 1.83 1.77 1.78	33.75 33.80 33.85 33.92 34.00 34.08 34.14 34.21 34.27 34.33	294274 294719 295311 296046 296734 297299 297919 298474	178.54 184.63 180.57 240.42 298.25 278.97 229.26 251.58 225.21 203.90	224.59 224.54 224.66 224.74 224.75 224.79 224.79	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1

.

DEPTH	ROP	WOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	pp	FG
1468.0 1469.0 1470.0 1471.0 1472.0 1473.0 1474.0 1475.0 1476.0	16.5 17.1 22.5 27.6 30.4 26.5 21.5		150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.72 1.66 1.72 1.63 1.56 1.58 1.60 1.66	34.38 34.45 34.50 34.55 34.62 34.62 34.65 34.70 34.75 34.81	300036 300563 300963 301289 301585 301924 302343 302754	120.13 137.81 169.86	224.73 224.62 224.62 224.48 224.32 224.18 224.10 224.02	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1
1478.0 1479.0 1480.0 1481.0 1482.0 1483.0 1484.0 1485.0 1486.0	18.4 18.6 16.8 17.6 21.4 22.2 18.0 17.8		150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.69 1.71 1.72 1.78 1.77 1.69 1.74 1.77	34.86 34.92 34.97 35.03 35.09 35.14 35.18 35.24 35.29 35.37	304293 304778 305313 305825 306245 306650 307150 307655	202.89 198.83 196.80 217.09 207.96 170.43 164.34 202.89 204.92 294.19	223.94 223.89 223.87 223.79 223.70 223.67 223.64	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.1 18.1 18.1 18.2 18.2 18.2 18.2 18.2
1488.0 1489.0 1490.0 1491.0 1492.0 1493.0 1494.0 1495.0 1496.0	13.3 15.5 16.1 19.3 21.4 16.7 22.2 19.4	43.7 43.5 44.2	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.85 1.85 1.80 1.79 1.72 1.67 1.67 1.67	35.45 35.52 35.59 35.65 35.70 35.75 35.85 35.85 35.90	309730 310310 310870 311338 311758 312295 312700	272.89 274.91 235.35 227.24 189.70 170.43 218.11 164.34 188.69 217.09	223.89 223.91 223.92 223.87 223.79 223.78 223.69 223.64	8.22 8.22 8.22 8.22 8.22 8.22	18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
1498.0 1499.0 1500.0 1501.0 1502.0 1503.0 1504.0 1505.0 1506.0	21.2 19.8 23.7 21.1 17.1 13.7 15.4 14.5	44.2	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.71 1.69 1.71 1.64 1.69 1.77 1.86 1.81 1.83	36.01 36.06 36.11 36.15 36.20 36.26 36.33 36.40 36.47 36.54	314573 315028 315408 315835 316363 317020 317605 318228	181.59 172.46 184.63 154.20 173.47 214.05 266.80 237.38 252.60 250.57	223.49 223.44 223.26 223.25 223.31 223.33 223.38	8.22 8.22 8.22 8.22 8.22 8.22	18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
1508.0 1509.0 1510.0 1511.0 1512.0 1513.0 1514.0 1515.0 1516.0	15.1 15.9 16.2 17.7 11.1 12.0 14.6 14.2	45.5 45.4 45.6 45.7 45.7 44.1 46.3 46.3	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.82 1.82 1.80 1.79 1.76 1.91 1.84 1.85 1.80	36.60 36.73 36.79 36.85 36.94 37.02 37.09 37.16 37.22	320043 320610 321150 321658 322465 323213 323828 324463	243.47 242.45 230.28 219.12 205.93 327.67 303.32 249.55 257.67 226.22	223.49 223.48 223.45 223.45 223.71 223.75 223.80	8.22 8.22 8.22 8.22 8.22 8.22 8.22	18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2

DEPTH	ROP WOI	RPM	MW "d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
1518.0 1519.0 1520.0 1521.0 1522.0 1523.0 1524.0 1525.0 1526.0 1527.0	17.6 45.5 18.5 46.3 23.1 46.4 24.0 44.0 19.8 45.3 18.8 46.3 18.7 46.3 19.6 46.6	150 150 150 150 150 150 150 150 150 2 150	9.2 1.77 9.2 1.76 9.2 1.68 9.2 1.64 9.2 1.72 9.2 1.76 9.2 1.76 9.2 1.74 9.2 1.83 9.2 1.81	37.28 37.33 37.42 37.47 37.52 37.57 37.63 37.69 37.75	326020 326410 326785 327240 327720 328203 328663 329250	207.96 197.82 158.25 152.17 184.63 194.77 195.79 186.66 238.39 227.24	223.74 223.65 223.55 223.49 223.45 223.41 223.36 223.38	8.22.22.22 8.22.22.22 8.22.22.22	18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
1528.0 1529.0 1530.0 1531.0 1532.0 1533.0 1534.0 1535.0 1536.0	14.9 46.1 15.9 47.1 16.2 46.1 15.5 45.1 18.8 44.1 20.3 45.1 21.7 45.1 16.9 45.1 15.5 44.1	7 150 7 150 4 150 5 150 2 150 4 150 4 150 7 150	9.2 1.84 9.2 1.82 9.2 1.81 9.2 1.81 9.2 1.73 9.2 1.71 9.2 1.69 9.2 1.78 9.2 1.80 9.2 1.86	37.82 37.88 37.95 38.01 38.06 38.11 38.16 38.22 38.28 38.36	330980 331535 332118 332595 333038 333453 333985 334568	245.50 229.26 225.21 236.37 193.76 179.56 168.40 216.08 236.37 275.93	223.43 223.45 223.45 223.41 223.35 223.27 223.26 223.28	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.2 18.2 18.2 18.2 18.2 18.3 18.3 18.3
1538.0 1539.0 1540.0 1541.0 1542.0 1543.0 1544.0 1545.0 1546.0	14.3 44. 14.6 44. 11.5 44. 15.0 44. 15.3 44. 14.0 44. 14.5 45. 12.6 45. 16.2 44.	5 150 3 150 7 150 4 150 6 150 1 150 2 150 9 150	9.2 1.83 9.2 1.82 9.2 1.90 9.2 1.81 9.2 1.80 9.2 1.83 9.2 1.83 9.2 1.88 9.2 1.78	38.43 38.50 38.58 38.65 38.72 38.79 38.86 38.94 39.00	336495 337280 337880 338468 339110 339733 340445	255.64 250.57 318.54 243.47 238.39 260.71 252.60 289.12 225.21 226.22	223.43 223.56 223.59 223.61 223.66 223.70 223.79 223.79	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3
1548.0 1549.0 1550.0 1551.0 1552.0 1553.0 1554.0 1555.0 1557.0	19.8 45. 15.9 45. 19.5 45. 16.4 45. 17.4 45. 15.7 45. 15.9 45. 13.8 45. 14.3 45.	3 150 6 150 5 150 1 150 7 150 8 150 6 150		39.11 39.22 39.28 39.34 39.41 39.47 39.54 39.61 39.68	342578 343040 343590 344108 344683 345248 345200 346530	229.26 187.67 223.18 209.99 233.32 229.26 264.77 255.64	223.74 223.75 223.70 223.68 223.70 223.70 223.76 223.80 223.85	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3
1558.0 1559.0 1560.0 1561.0 1562.0 1563.0 1564.0 1565.0 1566.0	12.2 45. 11.6 44. 14.0 45. 18.6 46. 17.2 47. 19.5 47. 21.2 47. 25.2 47. 20.7 47.	8 150 6 150 4 150 0 150 2 150 2 150 0 150 3 150	9.2 1.90 9.2 1.90 9.2 1.85 9.2 1.76 9.2 1.75 9.2 1.75 9.2 1.66 9.2 1.73 9.2 1.73	39.76 39.85 39.92 39.98 40.03 40.03 40.13 40.17 40.22	348688 349333 349818 350340 350803 351228 351585 352020	315.49 261.73 196.80 212.02 187.67 172.46 145.07	223,95 224,08 224,09 224,07 224,03 223,96 223,85 223,79 223,72	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PР	F (3
1568.0 1569.0 1570.0 1571.0 1572.0 1573.0 1574.0 1575.0 1576.0	21.4 18.8 17.1 13.9 15.5 14.5 14.3	42.3 45.4 45.9 46.6 46.6 46.1 45.9	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.62 1.69 1.74 1.78 1.86 1.85 1.85 1.76	40.31 40.36 40.41 40.47 40.54 40.60 40.67 40.74 40.80 40.85	353238 353718 354243 354890 355470 356093 356723 357220	152.17 170.43 194.77 213.03 262.74 235.35 252.60 255.64 201.87 198.83	223.55 223.50 223.55 223.57 223.61 223.65 223.62	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3
1578.0 1579.0 1580.0 1581.0 1582.0 1583.0 1584.0 1585.0 1586.0	12.0 13.3 14.9 18.7 18.9 16.3 13.5	45.2 46.3 45.6 45.6 45.5 46.3 46.3	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.86 1.91 1.87 1.83 1.74 1.79 1.87 1.95	40.93 41.01 41.09 41.15 41.21 41.26 41.32 41.39 41.46 41.56	359120 359798 360403 360885 361360 361913 362580 363208	266.80 305.35 274.91 245.50 195.79 192.74 224.19 270.86 254.63 359.11	223.75 223.85 223.85 223.77 223.77 223.83 223.83	8.2 8.2 8.2 8.2 8.2 8.2 8.3	18.3 18.3 18.3 18.3 18.3 18.3 18.3 18.3
1588.0 1589.0 1590.0 1591.0 1592.0 1593.0 1594.0 1595.0 1596.0	13.3 12.7 16.2 16.2 17.1 17.2 17.1	45.9 46.4 46.1 46.2 46.2 46.3 46.3	150 150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.83 1.87 1.89 1.80 1.78 1.78 1.78	41.63 41.71 41.78 41.85 41.91 41.97 42.02 42.08 42.16 42.25	365378 366088 366643 367198 367725 368248 368773 369445	247.52 273.90 288.10 225.21 225.21 214.05 212.02 213.03 272.89 353.03	224.14 224.22 224.23 224.21 224.20 224.18 224.25	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.7 18.4 18.4 18.4 18.4 18.4 18.4 18.4
1598.0 1599.0 1600.0 1601.0 1602.0 1603.0 1604.0 1605.0 1606.0	14.3 15.1 15.7 11.9 12.4 10.6 11.3	46.0 47.3 47.3 47.4 47.2 47.7 46.4 45.2	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.81 1.86 1.83 1.93 1.91 1.97 1.92	42.32 42.39 42.45 42.52 42.60 42.68 42.78 42.87 42.99	371523 372120 372693 373450 374175 375023 375818 376420	254.63 242.45 232.31 307.38 294.19 343.90 322.59	224.60 224.69 224.84 224.97 224.99	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4
1608.0 1609.0 1610.0 1611.0 1612.0 1613.0 1614.0 1615.0 1616.0	18.8 19.3 19.3 19.6 16.4 15.4	45.0 42.8 44.0 44.4 45.2 45.2 45.2	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.69 1.71 1.72 1.72 1.71 1.77 1.80 1.85 1.80	43.04 43.19 43.19 43.25 43.31 43.37 43.45 43.51	377845 378313 378780 379240 379788 380373 381035 381595	171.44 193.76 189.70 189.70 186.66 222.16 237.38 268.83 227.24 222.16	224.87 224.78 224.73 224.73 224.74 224.80 224.80	8.2 8.2 8.2 8.2 8.2 8.2 8.2 2 8.2 2	18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4

′

DEPTH	ROP 6	IOB RPA	і мы	"d "c	HOURS	TURNS	ICOST	ссовт	рp	FG
1618.0 1619.0 1620.0 1621.0 1622.0 1623.0 1624.0 1625.0 1626.0	15.1 45 17.2 46 14.1 46 10.6 46 12.0 46 12.9 46 15.3 46 13.8 46 18.3 46	5.8 15(5.7 15(5.8 15(5.8 15(5.8 15(5.2 15(5.4 15(9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.81 1.79 1.86 1.96 1.92 1.89 1.83 1.86 1.76	43.63 43.69 43.76 43.86 43.94 44.02 44.08 44.16 44.21 44.27	383260 383900 384753 385505 386203 386790 387440 387933	241.44 212.02 259.70 345.93 305.35 283.03 238.39 263.76 199.85 230.28	224.80 224.85 225.00 225.10 225.17 225.19 225.23 225.23	8.228.288.288.88.88.888.888.8888.8888.	18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4
1628.0 1629.0 1630.0 1631.0 1632.0 1633.0 1634.0 1635.0 1636.0 1637.0	13.4 47 13.3 47 15.1 47 15.0 46 16.1 47 13.6 46 18.4 47 16.7 46 13.0 45	7,1 15; 2,0 15; 5,9 15; 2,0 15; 6,7 15; 6,0 15; 5,7 15	9.2 9.2 1 9.2 1 9.2 1 9.2 1 9.2 1 9.1	1.84 1.81 1.87 1.72	44.35 44.49 44.56 44.62 44.69 44.75 44.81 44.88 44.96	389845 390443 391043 391600 392260 392750 393288 393978	271.87 273.90 242.45 243.47 226.22 267.81 198.83 218.11 279.99 277.96	225.35 225.35 225.37 225.37 225.42 225.39 225.38 225.45	8.222222 8.22222 8.2222	18.4 18.4 18.4 18.4 18.4 18.4 18.4 18.4
1638.0 1639.0 1640.0 1641.0 1642.0 1643.0 1644.0 1645.0 1646.0	13.8 45 14.2 45 15.9 45 13.4 45 13.4 45 13.4 45 13.4 45 16.9 45 16.2 45	5.6 15 5.6 15 5.4 15 5.7 15 5.7 15 5.6 15 5.8 15	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.82 1.88 1.88 1.89 1.89	45.03 45.10 45.16 45.23 45.38 45.45 45.51 45.57 45.64	395945 396513 397080 397750 398423 399093 399625 400180	263.76 256.65 230.28 230.28 271.87 272.89 271.87 216.08 225.21 233.32	225.60 225.61 225.66 225.72 225.78 225.76 225.76	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.4 18.4 18.4 18.4 18.4 18.4 18.5 18.5
1648.0 1649.0 1650.0 1651.0 1652.0 1653.0 1654.0 1655.0 1656.0	12.7 44 13.1 44 13.8 44 12.4 44 12.2 4 17.2 4 16.7 4 17.6 4 16.9 4	6.3 15 6.2 15 6.2 15 6.5 15 3.0 15 4.6 15 4.5 15	0 9.1 0 9.1 0 9.1 0 9.1 0 9.1 0 9.1	1.88 1.89 1.92 1.88 1.78	45.71 45.79 45.86 45.94 46.02 46.10 46.16 46.22 46.34	402150 402800 403478 404205 404943 405465 406005	287.09 278.97 263.76 274.91 295.20 299.26 212.02 219.12 207.96 216.08	225.91 225.96 226.01 226.10 226.18 226.17 226.16 226.14	8.2 8.2 8.2 8.2 8.2 8.2 8.2 2	18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5
1658.0 1659.0 1660.0 1661.0 1662.0 1663.0 1664.0 1665.0 1666.0	17.1 4 16.6 4 15.5 4 14.0 4 12.1 4 12.7 4 12.5 4 13.0 4 13.0 4	4.5 15 4.6 15 5.1 15 5.6 15 5.2 15 5.3 15 5.5 15	0 9.1 0 9.1 0 9.1 0 9.1 0 9.1 0 9.1	1.82 1.86 1.92 1.89 1.90	46.39 46.45 46.52 46.59 46.67 46.75 46.83 46.91 46.99 47.05	408118 408698 409340 410083 410790 411513 412205 412895	279.99	226.10 226.11 226.15 226.24 226.32 226.39 226.46	8.2 8.2 8.2 8.2 8.2 8.2 8.2	

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	TCOST	CCOST	рþ	FG
1668.0 1669.0 1670.0 1671.0 1672.0 1673.0 1674.0 1675.0 1676.0	13.9 11.7 12.5 24.8 19.1 16.6 13.0	45.1 45.6 45.6 44.1 44.7 45.2 44.5 44.6	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.83 1.86 1.93 1.90 1.65 1.74 1.80 1.87	47.12 47.19 47.28 47.36 47.40 47.45 47.51 47.58 47.58 47.73	414738 415505 416225 416588 417058 417600 418290 418955	238.39 262.74 311.43 292.16 147.09 190.72 220.13 279.99 269.84 275.93	226.60 226.70 226.78 226.68 226.64 226.63 226.70 226.75	8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5
1678.0 1679.0 1680.0 1681.0 1682.0 1683.0 1684.0 1685.0 1686.0	14.5 13.9 18.2 15.9 14.9 14.2 12.3	43,2 46,9 45,5 44,4 44,7 44,5 44,6	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.90 1.87 1.89 1.77 1.81 1.83 1.85 1.85	47.82 47.89 47.96 48.02 48.08 48.15 48.22 48.30 48.38 48.45	421045 421693 422188 422755 423358 423990 424720 425405	319.55 252.60 262.74 200.86 230.28 244.48 256.65 296.22 277.96 282.02	226.94 226.95 226.96 226.98 227.01 227.09 227.15	8.22 8.22 8.22 8.22 8.22 8.20	18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5
1688.0 1689.0 1690.0 1691.0 1692.0 1693.0 1694.0 1695.0 1696.0	14.3 13.5 15.8 16.6 17.2 16.0 17.7 13.8	44.8 45.0 45.1 43.4 44.8 44.7 44.7 44.6 44.8	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1	1.77 1.85 1.87 1.79 1.80 1.81 1.81 1.77 1.86	48.51 48.58 48.65 48.72 48.78 48.93 48.90 48.95 49.03	427233 427898 428468 429010 429533 430095 430603 431255	204.92 254.63 269.84 231.29 220.13 212.02 228.25 205.93 264.77 258.68	227.27 227.27 227.26 227.25 227.25 227.22 227.27	8.22 8.22 8.22 8.22 8.22 8.2	18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5
1698.0 1699.0 1700.0 1701.0 1702.0 1703.0 1704.0 1705.0 1706.0	16.7 13.6 13.6 13.8 15.0 18.7 13.7	45.5 45.4 44.6 44.0 41.6 41.5 41.7 42.1 42.3	150 150 150 150 150 150	9.1	1.86 1.80 1.86 1.85 1.82 1.79 1.71 1.82 1.86 1.75	49.17 49.23 49.30 49.37 49.45 49.51 49.57 49.64 49.72	433073 433733 434394 435047 435647 436129 436784 437502	259.70 219.12 267.81 268.53 264.77 243.47 195.79 265.78 291.15 211.00	227.37 227.42 227.46 227.46 227.45 227.45 227.49 227.56	8.22 8.22 8.22 8.22 8.22 8.23	18.5 18.5 18.5 18.6 18.6 18.6 18.6
1708.0 1709.0 1710.0 1711.0 1712.0 1713.0 1714.0 1715.0 1716.0	20.7 19.3 17.9 15.3 12.2 19.9	41.9 42.4 42.3	150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.75 1.69 1.69 1.71 1.74 1.80 1.88 1.71 1.94	49.84 49.89 49.93 49.99 50.04 50.11 50.19 50.24 50.27	439002 439437 439904 440407 440997 441732 442184 442684	189.70 203.90 239.41 298.25 183.61	227.48 227.42 227.38 227.35 227.36 227.44 227.40 227.37	8.22.22.22.23.23.23.23.23.23.23.23.23.23.	18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	рр	FG
1718.0 1719.0 1720.0 1721.0 1722.0 1723.0 1724.0 1725.0 1726.0	25.5 33.6 16.1 16.2 18.1 19.3 22.0 21.2	42.8 42.2 39.4 42.0 43.0 43.0 43.0 42.9 43.1	150 150 150 150 150 150 150			50.42 50.46 50.49 50.55 50.61 50.67 50.72 50.77 50.85	444182 444449 445009 445564 446062 446529 446939 447364	227.24 225.21 201.87	227.29 227.15 227.15 227.15 227.12 227.08 227.02 226.96	8.2222222 8.22222 8.2222	18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6
1728.0 1729.0 1730.0 1731.0 1732.0 1733.0 1734.0 1735.0 1736.0	19.5 39.1 30.5 31.3 38.7 46.8 46.8	42.8 42.0 43.1 43.5 44.7 45.7 47.8 48.6	150 150 150 150 150 150 150		1.64 1.70 1.48 1.57 1.57 1.51 1.46 1.47	50.89 50.95 50.97 51.00 51.04 51.06 51.11 51.13		119.70 116.66 94.34 78.11 79.13 75.07	226.74 226.59 226.47 226.35 226.21	88888888 88888 88888	18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6
1738.0 1739.0 1740.0 1741.0 1742.0 1743.0 1744.0 1745.0 1746.0	44.4 45.6 29.3 35.6 28.6 23.8 26.3	49.3 44.8 45.9 44.8 45.3 45.3 45.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.65 1.47 1.61 1.53 1.61 1.67 1.64 1.63	51.18 51.21 51.23 51.26 51.29 51.32 51.37 51.40 51.44 51.48	450879 451077 451384 451637 451952 452329 452672	80.14 124.78 102.46 127.82	225.30 225.15 225.04 224.91 224.80 224.72 224.63 224.54	88888888 88888888888888888888888888888	18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6
1748.0 1749.0 1750.0 1751.0 1752.0 1753.0 1754.0 1755.0 1756.0	25.4 29.5 37.1 31.9 36.0 32.7 32.4 25.7	45.78 45.45.45 45.77 45.79 46.0	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.62 1.63 1.60 1.52 1.57 1.56 1.57 1.65	51.51 51.55 51.59 51.61 51.65 51.67 51.70 51.74 51.77	454017 454322 454564 454847 455097 455372 455649 455999	123.76	224.25 224.15 224.01 223.90 223.65 223.65 223.53 223.44	8.22.22 8.22.22 8.22.22 8.22.2	18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6
1758.0 1759.0 1760.0 1761.0 1762.0 1763.0 1764.0 1765.0 1766.0	34.3 33.6 36.0 30.8 36.7 34.3 34.3	44.7 45.8 46.1 45.9 46.4 46.2 46.2 46.3	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.62 1.55 1.56 1.54 1.60 1.53 1.56 1.56 1.62	51.84 51.87 51.90 51.93 51.96 51.99 52.01 52.04 52.11	456847 457114 457364 457657 457902 458164 458427 458739	106.52 106.52 126.81	223.09 222.97 222.84 222.73 222.60 222.48 222.36	8.22 8.22 8.22 8.22 8.22 8.22	18.6 18.6 18.7 18.7 18.7 18.7 18.7 18.7

DEPTH	ROP	MOB	RPM	ММ	"d"c	HOURS	TURNS	ICOST	CCOST	рþ	FG
1768.0 1769.0 1770.0 1771.0 1772.0 1773.0 1774.0 1775.0 1776.0	27.5 31.3 21.3 32.1 32.7 29.5 24.5 24.2	46.5 46.9 44.5 44.5 45.0 45.3 45.1 45.2	150 150 150 150 150 150 150 150	9.1 9.1 9.1	1.56 1.64 1.57 1.70 1.56 1.66 1.66 1.67	52.14 52.18 52.21 52.26 52.29 52.35 52.35 52.39 52.44 52.47	459644 459932 460354 460634 460909 461214 461582 461954	107.53 132.89 116.66 171.44 113.62 111.59 123.76 149.12 151.15 113.62	221.94 221.83 221.78 221.67 221.55 221.45 221.38 221.30	88.22.22.22.22.22.22.22.22.22.22.22.22.2	18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7
1778.0 1779.0 1780.0 1781.0 1782.0 1783.0 1784.0 1785.0 1786.0	28.8 30.8 24.2 25.9 29.5 26.7 31.3 25.9	45.7 46.1 45.7 46.6 46.6 46.1 46.1 44.3 45.6	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.62 1.62 1.59 1.68 1.66 1.61 1.64 1.59 1.63	52.50 52.54 52.57 52.61 52.65 52.72 52.72 52.75 52.79 52.82	462862 463154 463527 463874 464179 464517 464804 465152	127.82 126.81 118.69 151.15 141.01 123.76 136.95 116.66 141.01 117.68	221.00 220.89 220.82 220.73 220.63 220.55 220.44 220.36	88888888888888888888888888888888888888	18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7
1788.0 1789.0 1790.0 1791.0 1792.0 1793.0 1794.0 1795.0 1796.0	29.5 22.4 27.9 25.9 29.5 24.2 33.0 29.8	45.8 46.2 47.1 46.7 46.6 46.6 46.6 46.6 45.4	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.55 1.61 1.72 1.63 1.66 1.61 1.69 1.57 1.59	52.85 52.89 52.93 52.97 53.01 53.04 53.08 53.11 53.14 53.18	466009 466412 466734	104.52 123.76 163.33 130.86 141.01 123.76 151.15 110.57 122.75 110.57	220.04 219.98 219.89 219.71 219.64 219.53 219.43	8.2 8.2 8.2 8.2 8.2	18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7
1798.0 1799.0 1800.0 1801.0 1802.0 1803.0 1804.0 1805.0 1806.0	30.8 31.3 29.8 25.4 31.0 32.7 30.0 39.6	45.6	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.51 1.59 1.58 1.61 1.66 1.58 1.57 1.59 1.49	53.20 53.23 53.27 53.30 53.34 53.37 53.40 53.43 53.48	469419 469722 470077 470367 470642	118.69 116.66 122.75 144.05 117.68 111.59 121.73 92.31	218.98 218.89 218.81 218.71 218.60	88.22 88.22 88.22 88.22 88.23	18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7
1808.0 1809.0 1810.0 1811.0 1812.0 1813.0 1814.0 1815.0 1816.0	30.0 24.0 24.2 26.1 29.3 22.6 25.9 27.3	45.9	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.61 1.61 1.68 1.65 1.65 1.61 1.68 1.68	53.52 53.55 53.59 53.63 53.67 53.71 53.75 53.79 53.82 53.86	471979 472354 472727 473072 473379 473777 474124 474454	119.70 121.73 152.17 151.15 139.99 124.78 161.30 141.01 133.91 145.07	218.04 217.98 217.91 217.83 217.74 217.68 217.61 217.52	8.2 8.2 8.2 8.2	18.7 18.7 18.7 18.7 18.7 18.7 18.7 18.7

рертн	k 0b	MOB	RPM	МЫ	"d "c	HOURS	TURNS	ICOST	CCOST	рp	FG
1818.0 1819.0 1820.0 1821.0 1822.0 1823.0 1824.0 1825.0 1826.0 1827.0	18.5 25.0 27.3 27.9 26.5 27.3 29.5	46.0 47.2 47.1 47.0 47.2 46.8 45.1 44.9 46.0	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1	1.79 1.68	53.91 53.96 54.00 54.04 54.11 54.15 54.18 54.22 54.25	475697 476057 476387 476709 477049 477379 477684 477992	161.30 197.82 146.08 133.91 130.86 137.96 133.91 123.76 124.78 130.86	217.37 217.30 217.22 217.13 217.06 216.97 216.88 216.79	8.22 8.22 8.22 8.22 8.22 8.22	18.7 18.7 18.7 18.7 18.8 18.8 18.8 18.8
1828.0 1829.0 1830.0 1831.0 1832.0 1833.0 1834.0 1835.0 1837.0	22.9 25.5 26.5 35.0 33.0 29.5 24.0 21.4	46.8 46.6 47.0 46.8 46.3 44.7 43.8 44.7 43.5	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.64 1.70 1.67 1.65 1.55 1.56 1.66 1.68	54.29 54.37 54.41 54.44 54.45 54.55 54.55 54.64	479034 479387 479727 479984 480257 480562	123,76 152,17 170,43	216.57 216.49 216.42 216.31 216.20 216.11	8.2 8.2 8.2 8.2 8.2 8.2	18.8 18.8 18.8 18.8 18.8 18.8 18.8
1838.0 1839.0 1840.0 1841.0 1842.0 1843.0 1844.0 1845.0 1846.0	23.7 22.9 26.7 29.5 22.2 21.6 33.0 25.0	43.8 44.1 44.2 44.0 43.8 42.3 44.4 44.2 44.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.58	54.68 54.72 54.76 54.80 54.83 54.93 54.96 55.00	482502 482894 483232 483537 483942 484359 484632 484992	136.95 123.76 164.34 169.41 110.57	215.82 215.77 215.69 215.60 215.55 215.51 215.41 215.34	8.22 8.22 8.22 8.22 8.22	18.8 18.8 18.8 18.8 18.8 18.8 18.8
1848.0 1849.0 1850.0 1851.0 1852.0 1853.0 1854.0 1855.0 1856.0	21.8 26.1 21.7 24.3 22.9 16.7 19.6 15.9 22.0	45.3 45.2 45.2 45.3 46.3 46.3 46.0 46.0 7	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.67 1.70 1.64 1.71 1.68 1.69 1.82 1.76 1.84	55.08 55.17 55.21 55.25 55.30 55.36 55.41 55.47 55.52	486177 486522 486937 487307 487699 488239 488699 489264	152.17 167.38 139.99 168.40 150.14 159.27 219.12 186.66 229.26 166.37	215.18 215.11 215.06 215.00 214.94 214.95 214.92 214.93	8.2 8.2 8.2 8.2 8.2 8.2	18.8 18.8 18.8 18.8 18.8 18.8 18.8
1858.0 1858.4		47.1 32.4			1.84	55.58 55.64		227.24 519.90	214.90 215.02		18.8 18.8

BIT NUMBER 3 HTC J1 COST 2694.00 TOTAL HOURS 18.58	IADO CODE SIZE TRIP TIME TOTAL TURNS	116 12.250 3.8 167237	INTERVAL NOZZLES BIT RUN CONDITION	1958.0- 2418.0 18 18 18 560.0 75 88 60.000
DEPTH ROP WOB	RPM MW "d"c	HOURS	TURNS ICOST	CCOST PP F6
1859.0 14.8 36.2 1860.0 25.9 34.5 1861.0 18.9 32.5	150 9.1 1.72 150 9.1 1.51 150 9.1 1.59	0.07 0.11 0.16	610 248 958 141 1433 193	14819 8.2 18.8 8480 8.2 18.8 5718 8.2 18.8
1862.0 19.8 31.8 1863.0 26.3 34.2 1864.0 30.0 39.1 1865.0 34.6 39.2 1866.0 27.7 41.0 1867.0 34.3 39.8 1868.0 34.6 39.4 1869.0 32.7 40.1 1871.0 36.7 36.3	150 9.1 1.56 150 9.1 1.50 150 9.1 1.52 150 9.1 1.48 150 9.1 1.48 150 9.1 1.48 150 9.1 1.48 150 9.1 1.50 150 9.1 1.50	0.21 0.25 0.28 0.31 0.35 0.38 0.40 0.43 0.47	1888 185 2230 139 2530 122 2530 102 25790 106 3115 132 3378 107 3638 106 3913 112 4195 115 44440 99	4334 8.2 18.8 3495 8.2 18.8 2933 8.2 18.8 2529 8.2 18.8 2229 8.2 18.8 1994 8.2 18.8 1805 8.2 18.8 1651 8.2 18.8 1523 8.2 18.8
1872.0 32.4 39.4 1873.0 33.3 39.4 1874.0 29.3 40.2 1875.0 40.9 39.9 1876.0 38.3 39.4 1877.0 33.0 39.4 1878.0 33.3 40.1 1880.0 33.0 36.9 1881.0 31.9 38.7	150 9.1 1.50 150 9.1 1.49 150 9.1 1.54 150 9.1 1.43 150 9.1 1.49 150 9.1 1.49 150 9.1 1.50 150 9.1 1.50 150 9.1 1.45 150 9.1 1.45	0.52 0.55 0.59 0.61 0.67 0.70 0.73 0.76 0.79	4718 113 4988 110 5295 125 5515 69 5750 111 6023 111 6293 109.56 6528 95.36 6800 110.57 7083 114.63	1320 8.2 18.8 1240 8.2 18.8 1170 8.2 18.8 1106 8.2 18.8 1050 8.2 18.8 256.25 8.2 18.8 915.25 8.2 18.8 828.68 8.2 18.8
1882.0 33.0 40.6 1883.0 29.8 40.0 1884.0 35.6 39.2 1885.0 27.5 39.5 1886.0 29.8 39.7 1887.0 31.6 39.2 1888.0 32.7 39.4 1889.0 35.3 39.0 1890.0 36.4 39.8 1891.0 39.6 38.3	150 9.1 1.51 150 9.1 1.53 150 9.1 1.46 150 9.1 1.56 150 9.1 1.50 150 9.1 1.50 150 9.1 1.50 150 9.1 1.46 150 9.1 1.46	0.82 0.85 0.88 0.92 0.95 0.98 1.01 1.04 1.07	7355 110.57 7658 122.75 7910 102.46 8238 132.89 8540 122.75 8825 115.65 9100 111.59 9355 103.47 9603 100.43 9830 92.31	814.84 8.2 18.8 787.15 8.2 18.8 760.82 8.2 18.9 715.61 8.2 18.9 694.92 8.2 18.9 675.47 8.2 18.9 657.02 8.2 18.9 639.63 8.2 18.9 623.04 8.2 18.9
1892.0 34.3 39.0 1893.0 33.6 39.4 1894.0 30.0 39.8 1895.0 35.3 39.5 1896.0 37.9 39.4 1897.0 33.6 39.8	150 9.1 1.49 150 9.1 1.53	1.12 1.15 1.18 1.21 1.24	10093 106.52 10360 108.55 10660 121.73 10915 103.47 11153 96.37 11420 108.55	607.85 8.2 18.9 593.58 8.2 18.9 580.48 8.2 18.9 567.59 8.2 18.9 555.19 8.2 18.9 543.73 8.2 18.9
1898.0 35.0 38.3 1899.0 32.7 39.0 1900.0 34.3 39.2 1901.0 37.9 39.7		1.30 1.33 1.36 1.38	11678 104.49 11953 111.59 12215 106.52 12453 96.37	532.75 8.2 18.9 522.48 8.2 18.9 512.58 8.2 18.9 502.90 8.2 18.9

-

П

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	pр	FG
1902.0 1903.0 1904.0 1905.0 1906.0 1907.0 1908.0 1909.0 1910.0	33.3 46.2 37.1 35.6 39.1 42.4 40.9 47.4	39.8 38.0	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.43 1.50 1.38 1.46 1.47 1.44 1.39 1.40	1.41 1.44 1.46 1.52 1.52 1.54 1.56 1.59	12680 12950 13145 13388 13640 13870 14083 14303 14493 14740	79.13 98.40 102.46 93.33 86.23 89.27	485.03 476.21 468.17 460.55 453.06 445.72 438.73 431.78	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9
1912.0 1913.0 1914.0 1915.0 1916.0 1917.0 1918.0 1919.0 1920.0	39.6 40.0 40.4 37.5 36.4 36.0 40.0	38.4 38.5 38.3 38.4 38.7 37.3 39.3 39.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.46 1.42 1.42 1.41 1.44 1.45 1.43 1.41	1.67 1.69 1.72 1.74 1.77 1.80 1.82 1.85	15223 15448 15670 15910 16158 16408 16633 16853	91.30 90.29 97.39 100.43 101.44 91.30	413.61 407.85 402.28 397.03 392.00 387.16 382.31 377.58	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9
1922.0 1923.0 1924.0 1925.0 1926.0 1927.0 1928.0 1929.0 1930.0	37.5 30.8 35.0 39.6 35.0 35.3 32.1 21.4	39.6 38.8 38.1	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.48 1.45 1.52 1.48 1.43 1.45 1.65	1.93 1.96 1.99 2.02 2.04 2.07 2.10 2.13 2.18 2.23	17608 17900 18158 18385 18643 18898 19178 19598	105.50 97.39 118.69 104.49 92.31 104.49 103.47 113.62 170.43 183.61	364.87 361.14 357.31 353.41 349.80 346.28 343.01 340.61	8.2 8.2 8.2 8.2 8.2 8.2	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9
1932.0 1933.0 1934.0 1935.0 1936.0 1937.0 1938.0 1939.0 1940.0	25.0 19.9 21.4 21.3 22.5 35.0 27.3 28.6	36.2	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.59 1.65 1.65 1.65 1.65 1.58 1.45 1.54	2.27 2.31 2.36 2.41 2.46 2.50 2.53 2.56 2.60 2.63	20800 21253 21673 22095 22495 22753 23083 23398	146.08 183.61 170.43 171.44 162.31 104.49 133.91 127.82	331.52 329.43 327.40 325.31 322.55 320.22	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9
1942.0 1943.0 1944.0 1945.0 1946.0 1947.0 1948.0 1949.0 1950.0	31.6 28.6 35.6 27.1 30.8 32.7 31.3	39.0 39.7 40.2 39.4	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.59 1.50 1.53 1.46 1.53 1.51 1.50 1.52 1.48 1.47	2.67 2.71 2.74 2.77 2.81 2.84 2.87 2.90 2.93	24353 24668 24920 25253 25545 25820 26108 26373	152,17 115,65 127,82 102,46 134,92 118,69 111,59 116,66 107,53 102,46	311.22 309.08 306.71 304.76 302.67 300.54 298.52	8.2 8.2 8.2 8.2	18.9 18.9 18.9 18.9 18.9 18.9 18.9

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
1952.0 1953.0 1954.0 1955.0 1956.0 1957.0 1958.0 1959.0 1960.0	27.5 29.8 29.5 26.5 29.5 29.5 32.4 31.9	39.8 39.7 39.2 38.8	150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.62 1.55 1.52 1.53 1.57 1.54 1.53 1.50 1.50	3.00 3.04 3.07 3.11 3.14 3.18 3.21 3.24 3.27 3.30	27345 27648 27953 28293 28598 28903 29180 29463	159.27 132.89 122.75 123.76 137.96 123.76 123.76 112.60 114.63 102.46	291.24 289.48 287.77 286.25 284.60 283.00 281.31 279.67	8.222222 8.22222 8.2222	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0
1962.0 1963.0 1964.0 1965.0 1966.0 1967.0 1969.0 1970.0	27.5 26.3 42.9 35.6 31.0 32.1 32.7 32.7		150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.56 1.58 1.42 1.47 1.52 1.51 1.50 1.50	3.34 3.37 3.41 3.43 3.46 3.53 3.56 3.56 3.56	30905 31158 31448 31728 32003	132.89 138.98 85.21 102.46 117.68 113.62 111.59	272.08 270.51 269.10 267.69 266.28	8.22 8.22 8.22 8.22 8.22 8.22	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0
1972.0 1973.0 1974.0 1975.0 1976.0 1977.0 1978.0 1979.0 1980.0	35.0 36.0 34.8 37.9 37.1 31.6 29.8 30.5	39.4 39.5 40.0 40.2 40.3 40.0 40.0 40.5 40.8	150 150 150 150 150 150 150	9.1 9.1 9.1	1.51 1.47 1.47 1.48 1.46 1.51 1.54 1.59	3.64 3.67 3.70 3.73 3.76 3.81 3.85 3.85	33050 33300	104.94 96.37 98.40 115.65 122.75 119.70	260.72 259.34 258.03 256.66 255.33 254.16	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0
1982.0 1983.0 1984.0 1985.0 1986.0 1987.0 1988.0 1989.0 1990.0	27.3 38.7 34.3 28.3 29.8 32.7 26.5	41.2	150 150 150 150 150 150 150	9.1	1.48 1.57 1.45 1.54 1.58 1.55 1.52 1.52	3.95 3.98 4.01 4.04 4.07 4.11 4.14 4.17 4.21	35841 36074 36336 36654 36956 37231 37571 37871	100.43 133.91 94.34 106.52 128.83 122.75 111.59 137.96 121.73 113.62	248.92 247.69 246.58 245.66 244.71 243.69 242.88 241.96	8.22.22.22 8.22.22.22 8.22.22	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0
1992.0 1993.0 1994.0 1995.0 1996.0 1997.0 1998.0 1999.0 2000.0	28.8 21.1 21.4 23.1 24.7 25.5 27.5 27.5	41.3 41.3 42.0 42.0 41.7 42.4 42.6 42.6 42.5	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.56 1.56 1.68 1.67 1.64 1.63 1.62 1.59	4.27 4.31 4.36 4.40 4.45 4.49 4.53 4.56 4.60	38776 39204 39624 40014 40379 40731 41059 41381	126.81 126.81 173.47 170.43 158.25 148.11 143.04 132.89 130.86 131.88	239.30 238.82 238.32 237.74 237.10 236.42 235.69 234.95	88.22.22.22 88.22.22.22 88.88.88	19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0

DEPTH	ROP WOB	ррм мы	"d "c	HOURS	TURNS	ICOST	ccost	pr FG
2002.0 2003.0 2004.0 2005.0 2005.0 2007.0 2008.0 2009.0 2010.0 2011.0	32.7 43.6 23.2 43.8 37.1 41.5 36.0 41.3 36.0 41.7 34.6 42.1	150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1	1.54 1.67 1.48 1.48 1.49 1.51 1.60 1.55 1.50	4.66 4.71 4.73 4.76 4.79 4.82 4.86 4.89 4.92	41981 42369 42611 42861 43111 43371 43711 44004	111.59 157.24 98.40 101.44 101.44 105.50 137.96 118.69 104.49	233.38 232.85 231.93 231.05 230.17 229.33 228.72 228.00	8.2 19.0 8.2 19.0 8.2 19.0 8.2 19.0 8.2 19.0 8.2 19.0 8.2 19.0 8.2 19.0 8.2 19.0
2012.0 2013.0 2014.0 2015.0 2016.0 2017.0 2018.0 2019.0 2020.0 2021.0	31.0 41.8 34.0 42.3	150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1	1.44 1.62 1.51 1.54 1.52 1.49 1.52 1.48 1.51	4.97 5.01 5.03 5.07 5.10 5.12 5.15 5.18 5.21 5.24	45311 45601 45866 46111 46381 46624 46889	146.08 105.50 117.68 107.53 99.42 109.56	224.09 223.41 222.68 221.90 221.20 220.44 219.74	8.2 19.0 8.2 19.0 8.2 19.0 8.2 19.0 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1
2022.0 2023.0 2024.0 2025.0 2026.0 2027.0 2028.0 2029.0 2030.0 2031.0	36.0 42.9	150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1		5.27 5.30 5.32 5.35 5.40 5.43 5.46 5.48 5.51	47669 47881 48106 48356 48606 48856	86.23 91.30 101.44 101.44 105.50 90.29	217.66 216.87 216.12 215.44 214.76 214.10	8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 17.1 8.2 17.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1
2032.0 2033.0 2034.0 2035.0 2036.0 2037.0 2038.0 2039.0 2040.0	36.7 43.4 31.0 43.6 34.0 43.5 32.7 43.7 37.5 43.6 30.8 43.8 36.0 43.6 36.0 43.1 26.9 43.4 34.6 45.3	150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1	1.50 1.56 1.53 1.54 1.50 1.57 1.51 1.50	5.60 5.63 5.66 5.69 5.72 5.74	50384 50659 50899 51191 51441 51691 52026	117.68 107.53 111.59 97.39 118.69 101.44 101.44	211.44 210.91 210.32 209.76 209.13 208.62 208.03 207.44 207.05 206.49	8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1
2042.0 2043.0 2044.0 2045.0 2046.0 2047.0 2048.0 2049.0 2050.0 2051.0	30.8 44.3 34.3 44.1 27.9 41.3 30.5 42.1 30.8 43.7 34.0 43.9 26.3 44.2 25.5 44.9 33.6 39.8 33.6 38.3	150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1 150 9.1	1.57 1.53 1.63	5.84 5.87 5.91 5.94 5.97 6.00 6.04 6.11 6.14	52841 53164 53459 53751 54016 54359 54711 54979	106.52 130.86 119.70 118.69 107.53 138.98 143.04 108.55	206.02 205.48 205.08 204.62 204.16 203.65 203.31 203.00 202.50 202.02	8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1 8.2 19.1

.

DEPTH	ROP	WOB	RPM	ММ	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2052.0 2053.0 2054.0 2055.0 2056.0 2057.0 2058.0 2059.0 2060.0	28.6 28.1 36.7 32.4 34.6 30.0 41.4 26.5	39.8 39.8 40.2 39.6 39.8 39.7 39.5 41.6 40.5	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.49 1.55 1.56 1.46 1.50 1.48 1.53 1.42 1.59	6.17 6.20 6.24 6.27 6.30 6.33 6.36 6.38 6.42 6.45	55826 56146 56391 56669 56929 57229 57446	112.60 105.50 121.73 88.26 137.96	201.15 200.79 200.27 199.83 199.36 198.97 198.42	8.00.00.00.00.00.00.00.00.00.00.00.00.00	19.1 19.1 19.1 19.1 19.1 19.1 19.1
2062.0 2063.0 2064.0 2065.0 2066.0 2067.0 2068.0 2069.0 2070.0	35.3 37.9 33.0 29.0 34.0 40.4 32.7 31.0	41.7 39.5 41.1 41.3 41.7 41.3 41.1 40.8 42.2	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.44 1.47 1.46 1.51 1.56 1.51 1.51 1.55	6.48 6.50 6.53 6.56 6.59 6.62 6.65 6.71	58771 59044 59354 59619 59841 60116 60406	103.47	196,21 195,80 195,46 195,04 194,54 194,15 193,79	8.22 8.22 8.22 8.22 8.22 8.22 8.22 8.22	19,1 19,1 19,1 19,1 19,1 19,1 19,1 19,1
2072.0 2073.0 2074.0 2075.0 2076.0 2077.0 2078.0 2079.0 2080.0 2081.0	34.3 34.6 43.4 48.0 34.0 36.4 26.7 30.5	41.1 41.6 42.6 44.3 44.2 44.3 42.2 41.3 41.8	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.50 1.51 1.45 1.42 1.54 1.54 1.59 1.55	6.77 6.80 6.83 6.85 6.87 6.90 6.93 6.97 7.00	61186 61446 61654 61841 62106 62354 62691 62986	107.53 100.43 136.95 119.70	192.56 192.15 191.66 191.13 190.74 190.33	8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1
2082.0 2083.0 2084.0 2085.0 2086.0 2087.0 2088.0 2089.0 2090.0	40.9 38.7 34.3 30.8 37.9 18.9 30.5 35.0	42.0 41.7 41.5 41.5 41.5 41.7 41.7	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.50 1.44 1.46 1.50 1.54 1.47 1.72 1.55	7.06 7.08 7.11 7.14 7.17 7.20 7.25 7.28 7.31 7.34	63759 63791 64254 64546 64784 65259 65554 65811	89.27 94.34 106.52 118.69 96.37 192.74 119.70 104.49	189.08 188.64 188.22 187.86 187.56 187.16 187.18 186.89 186.54	8.22.22.22 8.22.22.22 8.22.22.22 8.22.22	19.1 19.1 19.2 19.2 19.2 19.2 19.2 19.2
2092.0 2093.0 2094.0 2095.0 2096.0 2097.0 2098.0 2100.0 2101.0	34.6 38.3 40.4 35.6 36.0 43.1 36.4	34.1 40.8 40.3 41.4 40.9 42.9 42.8 44.8 45.2	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.41 1.49 1.45 1.45 1.48 1.48 1.50	7.37 7.43 7.45 7.48 7.53 7.56 7.59 7.61	66604 66839 67061 67314 67564 67772 68020 68270	102.46 101.44 84.71 100.43	185.52 185.14 184.74 184.39 184.05 183.63	8.22.22.22.22.22.22.22.22.22.22.22.22.22	19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2

.

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	ccost	pр	FG
2102.0 2103.0 2104.0 2105.0 2106.0 2107.0 2108.0 2109.0 2110.0 2111.0	37.5 38.3 35.6 40.4 35.0 33.6 38.7 37.9	45.9 45.0 44.9 44.5 44.3 46.7 46.9 45.2	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.51 1.50 1.50 1.52 1.52 1.57 1.57 1.57	7.63 7.66 7.69 7.71 7.74 7.80 7.82 7.85	70175 70407 70645	97.39 95.36 102.46 90.29 104.49 108.55 94.34	180.78 180.48 180.19 179.85 179.51	8.222222 8.22222 8.2222	19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
2112.0 2113.0 2114.0 2115.0 2116.0 2117.0 2118.0 2119.0 2120.0 2121.0	48.6 46.8 54.5 53.7 23.8 35.3 43.9 31.9	43.4 44.4 46.7 46.4 45.9 44.1 45.4 45.3	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.41 1.45 1.40 1.68 1.52 1.46 1.57	7.91 7.93 7.95 7.97 7.99 8.03 8.06 8.06 8.11	71385 71577 71742 71910 72287 72542 72747	78.11 66.95 67.97 153.18 103.47 83.18 114.63	178.58 178.19 177.76 177.33 177.24 176.95 176.59	80.22 80.22 80.22 80.22 80.22	19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
2122.0 2123.0 2124.0 2125.0 2126.0 2127.0 2128.0 2129.0 2130.0 2131.0	34.0 43.4 45.6 36.7 41.4 37.1 41.9 38.3	44.2	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1	1.44 1.56 1.46 1.44 1.51 1.42 1.46 1.42	8.16 8.19 8.21 8.23 8.26 8.29 8.31 8.34 8.36	73442 73707 73915 74112 74357 74575 74817 75032 75267 75462	107.53 84.20 80.14 99.42 88.26 98.40 87.24 95.36	175.65 175.40 175.05 174.70 174.42 174.10 173.82 173.50 173.21	8.22.22.23.23.23.23.23.23.23.23.23.23.23.	19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
2132.0 2133.0 2134.0 2135.0 2136.0 2137.0 2138.0 2139.0 2140.0 2141.0	25.2 31.9 33.3 50.7 32.4 49.3 41.4 35.3	40.9 38.6 37.8 44.0 40.0 43.4 42.8 42.7	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.49 1.57 1.49 1.47 1.39 1.51 1.40 1.45 1.51	8.41 8.45 8.48 8.51 8.53 8.57 8.59 8.61 8.64	76080 76362 76632 76810 77087 77270 77487	112.60 74.05 88.26 103.47	172.52 172.31 172.08 171.72 171.51 171.16 170.87	8.2 8.2 8.2 8.2 8.2 8.2	19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2
2142.0 2143.0 2144.0 2145.0 2146.0 2147.0 2148.0 2149.0 2150.0	36,4 35,0 36,7 30,5 35,6 40,0 38,3 44,4	42.6 43.5 43.1 43.2	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.49 1.50 1.52 1.56 1.56 1.51 1.48 1.48	8.69 8.72 8.75 8.81 8.83 8.86 8.89 8.91	78720 78965 79260	100.43 104.49 99.42 119.70 102.46 91.30 95.36 82.17	169.63 169.39 169.21	8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.2 19.2 19.2 19.2 19.2 19.2 19.2 19.2

į

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	icost	ccost	рþ	FG
2152.0 2153.0 2154.0 2155.0 2156.0 2157.0 2159.0 2159.0 2160.0 2161.0	36.4 32.1 27.5 37.5 38.3 40.0 41.9 43.9	43.2 43.3 44.2 44.6 44.6 44.1 44.0 43.8 43.9	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.44 1.50 1.56 1.62 1.51 1.49 1.48 1.46	8.96 8.98 9.02 9.05 9.08 9.10 9.13 9.15 9.18	80615 80862 81142 81470 81710 81945 82170 82385 82590 82800	100.43 113.62 132.89 97.39 95.36 91.30 87.24 83.18	167.22	8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.2 19.2 19.2 19.3 19.3 19.3 19.3
2162.0 2163.0 2164.0 2165.0 2167.0 2167.0 2169.0 2169.0 2170.0	41.9 55.4 34.6 48.6 42.9 46.8 41.9 40.4	45.7 45.0 44.8 47.3 45.9 46.9 46.4 46.4	150 150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.47 1.37 1.56 1.43 1.45 1.45 1.50	9.23 9.25 9.27 9.30 9.32 9.34 9.36 9.39 9.41	83052 83267 83430 83690 83875 84085 84277 84492 84715 84937	65.94 105.50 25.07 85.21 78.11 87.24 90.29	165.11 164.79 164.60 164.31	8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3
2172.0 2173.0 2174.0 2175.0 2176.0 2177.0 2178.0 2179.0 2180.0	48.0 40.4 50.7 50.0 53.7 42.9 45.6 43.5		150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1	1.54 1.43 1.48 1.41 1.42 1.39 1.48 1.46 1.47	9.46 9.49 9.51 9.53 9.55 9.57 9.64 9.64	85185 85372 85595 85772 85952 86120 86330 86527 86734 86951	76.08 90.29 72.03 73.04 67.97 85.21 80.14 83.95	162.86 162.35 162.07 161.79 161.50 161.26 161.00 160.77	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.3 19.3 19.3 19.3 19.3 19.3 19.3
2182.0 2183.0 2184.0 2185.0 2186.0 2187.0 2188.0 2189.0 2190.0 2191.0	43.4 53.7 35.3 33.3 38.7 38.7 58.1 43.4	46.6 44.6 45.7 46.3 46.5 46.1 45.2 44.5	150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.46 1.46 1.39 1.55 1.57 1.52 1.51 1.36 1.46	9.68 9.71 9.73 9.75 9.78 9.81 9.84 9.85 9.88	87151 87358 87526 87781 88051 88283 88516 88671 88878 89058	84.20 67.97 103.47 109.56 94.34 94.34 62.90 84.20	160.29 160.06 159.78 159.61 159.45 159.25 159.06 158.77 158.54 158.29	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3
2192.0 2193.0 2194.0 2195.0 2196.0 2197.0 2198.0 2199.0 2200.0	51.4 39.1 51.4 36.0 43.9 52.2 46.8 52.2		150 150 150 150 150 150 150	9.1 9.1 9.1 9.1 9.1 9.1 9.1	1.46 1.40 1.51 1.41 1.54 1.48 1.42 1.45	9.92 9.94 9.96 9.98 10.01 10.03 10.05 10.05	89271 89446 89676 89851 90101 90306 90478 90671 90843 91036	71.01 93.33 71.01 101.44 83.18 70.00 78.11 70.00	158.07 157.81 157.62 157.36 157.20 156.98 156.72 156.49 156.24 156.01	88888888888888888888888888888888888888	19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3

.

DEPTH	ROP WO	r RPM	MW "d"c	HOURS	TURNS	ICOST	ccost	PP	FG
2202.0 2203.0 2204.0 2205.0 2205.0 2207.0 2208.0 2209.0 2210.0 2211.0	40,0 44,3 52,9 45,5 52,2 45,6 55,4 46,5 45,6 46,5 46,8 47,5 42,9 47,3 60,0 46,4 61,0 46,6 32,1 45,9	7 150 5 150 6 150 6 150 6 150 8 150 8 150 5 150	9.1 1.48 9.1 1.40 9.1 1.38 9.1 1.46 9.1 1.46 9.1 1.46 9.1 1.36 9.1 1.35 9.1 1.57	10.14 10.16 10.18 10.20 10.22 10.24 10.26 10.28 10.30	91261 91431 91603 91766 91963 92156 92366 92516 92663 92943	68.98 70.00 65.94 80.14 78.11 85.21 60.87	155.82 155.57 155.32 155.07 154.85 154.63 154.43 154.17 153.90 153.78	8.2 1 8.2 1 8.2 1	19.3 19.3 19.3 19.3 19.3 19.3
2212.0 2213.0 2214.0 2215.0 2216.0 2217.0 2218.0 2219.0 2220.0 2221.0	50.0 45.3 48.0 46.6 37.9 48.0 33.0 48.2 27.7 45.5 26.7 45.5 39.6 45.4 35.3 47.5 22.2 46.3) 150 150 150 150 150 150 150	9.2 1.40 9.2 1.42 9.2 1.52 9.2 1.57 9.2 1.61 9.2 1.62 9.2 1.48 9.2 1.54 9.2 1.59 9.2 1.51	10.35 10.37 10.39 10.42 10.46 10.50 10.52 10.55 10.60	94483 94711 94966	76.08 96.37 110.57 131.88 136.95	153.00 152.95 152.79 152.65 152.68	8.2 1 8.2 1 8.2 1 8.2 1 8.2 1 8.2 1 8.2 1	19.3 19.3 19.3 19.3 19.3 19.3
2222.0 2223.0 2224.0 2225.0 2226.0 2227.0 2228.0 2229.0 2230.0 2231.0	23.8 45.2 29.5 44.4 30.5 45.3 36.0 44.5 36.0 43.5 31.6 44.4 31.0 44.1 28.8 43.3 20.7 44.4 43.4 42.5	150 150 150 150 150 150 150 150	9.2 1.66 9.2 1.57 9.2 1.57 9.2 1.51 9.2 1.55 9.2 1.55 9.2 1.55 9.2 1.69 9.2 1.42	10.67 10.70 10.73 10.76 10.79 10.82 10.85 10.85 10.89	96313 96608 96858 97108 97393 97683 97996	153.18 123.76 119.70 101.44 101.44 115.65 117.68 126.81 176.51 84.20	152.47 152.39 152.25 152.11 152.01 151.92 151.85	8.2 1 8.2 1 8.2 1 8.2 1 8.2 1 8.2 1	19.3 19.3 19.3 19.3 19.4 19.4
2232.0 2233.0 2234.0 2235.0 2236.0 2237.0 2238.0 2239.0 2240.0 2241.0	30.3 43.5 40.0 44.1 34.6 43.6 34.3 44.4 24.8 45.1 27.3 45.6 32.4 44.4 24.5 45.3 34.3 44.4 42.9 43.3	150 3 150 3 150 1 150 3 150 4 150 3 150 3 150	9.2 1.55 9.2 1.46 9.2 1.51 9.2 1.52 9.2 1.64 9.2 1.61 9.2 1.65 9.2 1.65 9.2 1.43	10.99 11.02 11.05 11.08 11.12 11.15 11.18 11.22 11.25 11.28	99161 99421 99683 100046 100376 100653	91.30 105.50 106.52 147.09 133.91 112.60 149.12 106.52	151.25 151.24 151.19 151.09	8.2 1 8.2 2 8.2 2 8.2 2 8.2 2 8.2 2 8.2 2 8.2 2 8.2 2	19.4 19.4 19.4 19.4 19.4 19.4
2242.0 2243.0 2244.0 2245.0 2246.0 2247.0 2249.0 2250.0 2251.0	32.7 43.7 27.7 44.6 27.7 44.1 32.1 43.4 27.7 43.3 27.7 43.3 28.0 43.3 30.2 43.3 32.1 46.3	9 150 1 150 3 150 3 150 3 150 2 150 5 150 3 150	9.2 1.53 9.2 1.59 9.2 1.53 9.2 1.58 9.2 1.58 9.2 1.58 9.2 1.55 9.2 1.55 9.2 1.55	11.31 11.34 11.38 11.41 11.45 11.55 11.55 11.56	102093 102418 102698 103023 103348 103669 103967 104247	111.59 131.88 131.88 113.62 131.88 131.88 130.43 120.93 113.62 114.63	150.65 150.60 150.50 150.45 150.41 150.35 150.28 150.19	8.2 : 8.2 : 8.2 : 8.2 : 8.2 : 8.2 : 8.2 : 8.2 :	19,4 19,4 19,4 19,4 19,4 19,4

DEPTH	ROP	WOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
2252.0 2253.0 2254.0 2255.0 2256.0 2257.0 2258.0 2259.0 2260.0 2261.0	38.3 41.4 40.9 38.3 35.0 29.5 24.5 29.0	46.3 48.1 46.8 45.2 45.1 46.1 46.9 46.8 47.0 47.1	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.57 1.52 1.48 1.47 1.49 1.53 1.60 1.66 1.61	11.65 11.67 11.70 11.72 11.75 11.88 11.85 11.88 11.91	104812 105047 105265 105485 105720 105977 106282 106650 106960	88.26 89.27 95.36 104.49 123.76 149.12 125.79	149.87 149.71 149.56 149.42 149.31 149.25	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4
2262.0 2263.0 2265.0 2265.0 2266.0 2267.0 2268.0 2269.0 2270.0 2271.0	41.9 47.4 64.3 38.7 43.9 48.0 42.4 45.3	45.6 45.4 43.9 41.7 43.6 44.3 39.0 56.8 50.0 48.9	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.39 1.46 1.40 1.28 1.47 1.43 1.35 1.57	11.93 11.95 11.98 11.99 12.02 12.04 12.06 12.08 12.11	107377 107592 107782 107922 108155 108360 108547 108760 108959	87.24 77.10 56.81 94.34 83.18 76.08 86.23	148.87 148.72 148.54 148.31 148.18 148.02 147.85 147.70 147.54	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4
2272.0 2273.0 2274.0 2275.0 2276.0 2277.0 2278.0 2279.0 2280.0 2281.0	69.2 37.9 43.4 65.5 43.4 38.7 31.0	48.2 47.3 47.9 48.6 48.3 43.5	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.55 1.41 1.30 1.52 1.48 1.33 1.43 1.46 1.53	12.16 12.18 12.20 12.22 12.25 12.25 12.29 12.31 12.34 12.37	109481 109654 109784 110021 110229 110366 110574 110806 111096	52.75 96.37 84.20 55.79 84.20 94.34 117.68	147.15 146.92 146.80 146.65 146.43 146.29 146.16 146.09	888888888 8888888888888888888888888888	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4
2282.0 2283.0 2284.0 2285.0 2286.0 2287.0 2288.0 2289.0 2290.0	27,1 31,0 31,9 25,7 26,9 26,9 22,1 28,8	41.8 42.2 41.2 41.7 40.9 41.1 41.4 42.4 41.5 42.7	150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2 9.2	1.48 1.58 1.52 1.51 1.58 1.57 1.57 1.65 1.70	12.40 12.44 12.47 12.50 12.54 12.58 12.62 12.66 12.70	111949 112239 112521 112871 113206 113541 113949 114261	102.46 134.92 117.68 114.63 142.02 135.94 135.94 165.35 126.81	145.88 145.74 145.73 145.71 145.68 145.73 145.69	88888888888888888888888888888888888888	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4
2292.0 2293.0 2294.0 2295.0 2296.0 2297.0 2298.0 2299.0 2300.0	21.4 26.1 23.7 23.4 22.8 25.4 24.7 27.1	43.4	150 150 150 150 150 150 150	9.22 9.22 9.22 9.22 9.22 9.22	1.57 1.66 1.60 1.62 1.62 1.65 1.61 1.61	12.78 12.83 12.87 12.91 12.95 13.00 13.04 13.08 13.11	115476 115821 116201 116586 116981 117336 117701 118034	139.99 154.20 156.22 160.28 144.05	145.81 145.80 145.82 145.84 145.88 145.87 145.88 145.85	8.22.22.22.22.22.22.22.22.22.22.22.22.22	19.4 19.4 19.4 19.4 19.4 19.4 19.4 19.4

- -

DEPTH	ROP WOB	RPM	MW "d"c	HOURS	TURNS	ICOST	ccost	рp	FG
2302.0 2303.0 2304.0 2305.0 2306.0 2307.0 2308.0 2309.0 2310.0 2311.0	30.0 43.3 32.1 45.3 27.5 43.6 27.1 43.5 23.8 43.1 20.0 42.0 21.3 41.5 17.8 40.3 21.2 39.9 25.2 39.8	150 150 150 150 150 150 150	9.2 1.55 9.2 1.55 9.2 1.59 9.2 1.63 9.2 1.68 9.2 1.65 9.2 1.65 9.2 1.67 9.2 1.57	13.19 13.22 13.26 13.29 13.33 13.38 13.43 13.49 13.53	118971 119299 119631 120009 120459 120881	121.73 113.62 132.89 134.92 153.18 182.60 171.44 204.92 172.46 145.07	145.72 145.67 145.69 145.77 145.83 145.96	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	
2312.0 2313.0 2314.0 2315.0 2316.0 2317.0 2318.0 2319.0 2321.0	19.8 40.5 22.6 40.9 19.5 41.0 32.1 42.0 31.0 40.6 25.5 40.9 22.0 42.2 25.7 42.2 36.7 42.2	150 150 150 150 150 150 150	9.2 1.66 9.2 1.62 9.2 1.67 9.2 1.52 9.2 1.51 9.2 1.58 9.2 1.65 9.2 1.65 9.2 1.47 9.2 1.63	13.62 13.67 13.78 13.78 13.82 13.87 13.91 13.93	123021 123484 123764 124054 124407 124817	117.68 143.04 166.37 142.02	146.13 146.22 146.15 146.09 146.08 146.13	8.2222222 8.222222 8.32222 8.3222	19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
2322.0 2323.0 2324.0 2325.0 2326.0 2327.0 2329.0 2329.0 2330.0 2331.0	27.7 44.2 25.0 43.9 29.3 43.9 40.9 43.3 35.3 48.3 23.2 46.1 31.9 47.4 26.3 47.5 28.3 47.5	150 150 150 150 150 150 150	9.2 1.59 9.2 1.62 9.2 1.57 9.2 1.45 9.2 1.55 9.2 1.67 9.2 1.65 9.2 1.65 9.2 1.63	14.01 14.05 14.09 14.11 14.14 14.18 14.21 14.25 14.25 14.29	126462	114.63 138.98 128.83	145.99 145.95 145.83	8.22 8.22 8.22 8.22 8.22 8.22 8.22	19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
2332.0 2333.0 2334.0 2335.0 2336.0 2337.0 2338.0 2339.0 2340.0 2341.0	25.9 47.4 23.4 47.4 22.4 47.8 20.2 46.0 30.0 46.2 20.5 45.6 26.7 44.1 22.6 45.1 24.2 44.5 23.7 44.5	150 150 150 150 150 150 150	9.2 1.65 9.2 1.69 9.2 1.71 9.2 1.72 9.2 1.59 9.2 1.60 9.2 1.67 9.2 1.67 9.2 1.65	14.36 14.45 14.50 14.53 14.58 14.62 14.66 14.75	129637 130039 130484 130784 131224 131562 131959 132332	141.01 156.22 163.33 180.57 121.73 178.54 136.95 161.30 151.15	145.63 145.67 145.74 145.69 145.76 145.74 145.77	8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
2342.0 2343.0 2344.0 2345.0 2346.0 2347.0 2348.0 2349.0 2350.0 2351.0	21.6 45.5 22.5 45.4 22.2 45.4 21.2 44.0 24.5 46.0 27.9 47.0 26.7 47.8 25.4 47.8 24.3 47.8 22.4 48.2	150 150 150 150 150 150 150 150	9.2 1.69 9.2 1.68 9.2 1.68 9.2 1.65 9.2 1.65 9.2 1.65 9.2 1.65 9.2 1.66 9.2 1.68	14.79 14.84 14.88 14.93 14.97 15.01 15.04 15.12 15.17	133529 133934 134359 134727 135049 135387 135742 136112	169.41 162.31 164.34 172.46 149.12 130.86 136.95 144.05 150.14	145.89 145.92 145.98 145.98 145.95 145.94	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.5 19.5

DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2352.0 2353.0 2354.0 2355.0 2356.0 2357.0 2358.0 2359.0 2360.0 2361.0	24.0 15.0 19.6 23.7 18.8 19.1 19.9 22.6		150 150 150 150 150 150 150	9.2 9.2 9.2 9.2 9.2 9.2	1.62 1.69 1.79 1.68 1.65 1.73 1.72 1.71	15.20 15.25 15.31 15.36 15.41 15.51 15.56 15.61 15.66	137207 137807 138267 138647 139127 139597 140049	152.17 243.47 186.66 154.20 194.77 190.72 183.61	146.15 146.23 146.25 146.34 146.43 146.51	8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
2362.0 2363.0 2364.0 2365.0 2366.0 2367.0 2368.0 2369.0 2370.0	22.0 15.9 22.0 21.3 18.8 18.8 17.9 18.7	44.2	150 150 150 150 150 150 150	9.2 9.3 9.3 9.3 9.3 9.3	1.65 1.68 1.76 1.65 1.68 1.71 1.70 1.69 1.69	15.71 15.75 15.82 15.86 15.91 15.96 16.01 16.07 16.12	141769 142337 142747 143169 143649 144127 144629 145112	230.28 166.37 171.44 194.77 193.76 203.90	146.73 146.89 146.98 147.08 147.17 147.28 147.37	8.22 8.22 8.22 8.22 8.22 8.22 8.23	19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5
2372.0 2373.0 2374.0 2375.0 2376.0 2377.0 2378.0 2379.0 2380.0 2381.0	16.7 17.3 16.9 16.6 22.2 17.4 18.0	47.9 48.5 44.6 45.2 45.5 45.5 45.5 47.3 49.1	150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3 9.3	1.82 1.80 1.74 1.76 1.76 1.66 1.75 1.74	16.25 16.31 16.37 16.42 16.48 16.53 16.59 16.64 16.70	146767 147287 147819 148362 148767 149284 149784 150257	233.32 219.12 211.00 216.08 220.13 164.34 209.99 202.89 191.73 203.90	148.21 148.24 148.36 148.47 148.55	8.2 8.2 8.2 8.2 8.2 8.2 8.2	19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.6 19.6
2382.0 2383.0 2384.0 2385.0 2386.0 2387.0 2388.0 2389.0 2390.0 2391.0	26.7 23.2 23.5 23.5 18.8 22.2 19.5 15.5	46.0 47.0 47.3 47.9 48.2 47.4 46.8 47.4 46.7	150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3	1.74 1.62 1.67 1.67 1.68 1.74 1.68 1.73 1.81	16.81 16.84 16.89 16.93 16.97 17.02 17.07 17.12 17.12	151591 151979 152361 152744 153221 153626 154089 154671	200.66 136.95 157.24 155.21 155.21 193.76 164.34 187.67 236.37	148.73 148.75 148.76 148.86 148.89 148.96 149.12	88.22.22.22.22.22.22.22.22.22.22.22.22.2	19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
2392.0 2393.0 2394.0 2395.0 2396.0 2397.0 2398.0 2399.0 2400.0	25.4 13.9 14.9 17.4 25.2 21.7 19.4 19.3	43.8 44.4	150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3 9.3	1.71 1.62 1.78 1.78 1.74 1.62 1.69 1.74 1.73	17.28 17.32 17.39 17.46 17.51 17.55 17.60 17.65 17.70	155846 156494 157099 157616 157974 158389 158854 159321	2 09.99 145.07	149.18 149.39 149.57 149.68 149.67 149.71 149.78	88888888888888888888888888888888888888	19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6

-

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PР	FG
2402.0 2403.0 2404.0 2405.0 2406.0 2407.0 2408.0 2409.0 2410.0	10.6 17.6 24.2 20.1 23.5 24.7 20.3 22.0 24.0 36.0	26.8 43.8 47.8 47.9 48.2 47.4 48.0 50.1 48.9	150 150 150 150 150 150 150 150	9.3 9.3 9.3 9.3 9.3 9.3	1.64 1.73 1.66 1.73 1.65 1.73 1.68	17.84 17.90 17.99 18.03 18.07 18.12 18.16 18.21	160551 161064 161436 161884 162266 162631 163074 163482 163857 164107	345.93 207.96 151.15 181.59 155.21 148.11 179.56 165.69 152.17	150.22 150.33 150.38 150.39 150.39 150.44 150.47 150.47		19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6
2412.0 2413.0 2414.0 2415.0 2416.0 2417.0 2418.0	17.3 13.7 14.3 14.4 6.4 10.2	48.7 49.1 47.7 47.9 50.8 50.0	150 150 150 150 150 150 150	9.3 9.3 9.2 9.3 9.3 9.3	1.80 1.89 1.85 1.85 2.18 1.99	18.29 18.36 18.43 18.50 18.66 18.76 18.85		211.00 266.80 254.63 253.61 568.09 358.04 354.56	150,49 150,70 150,89 151,07 151,82 152,19 152,55	8.2 8.2 8.2 8.2 8.2 8.2	19.6 19.6 19.6 19.6 19.6 19.6

4 IADC CODE 517 INTERVAL 2418.0- 2671.0 BIT NUMBER 12.250 18 18 18 HTC J22 SIZE NOZZLES TRIP TIME 253.0 4.7 BIT RUN 8516.00 COST T3 B2 G0.125 102049 TOTAL TURNS CONDITION TOTAL HOURS 26.35 FG pp DEPTH ROP WOB RPM MW "d"c HOURS TURNS ICOST CCOST 1044 424 26104 8.2 19.6 8.6 29.0 150 9.2 1.75 0.12 2419.0 8.2 19.6 3292 912 13508 9.2 1.90 0.37 2420.0 4.0 25.0 150 4579 522 9180 8.2 19.6 2421.0 7.0 27.9 150 9.2 1.79 0.51 5782 488 7007 8.2 19.6 2422.0 7,5 27,4 150 9.3 1.76 0.64 5736 8.2 19.6 5.6 30.2 150 9.3 1.90 7397 655 2423.0 0.828.2 19.6 9.2 2.11 9989 4956 3.5 33.3 150 1.11 1052 2424.0 9.3 1.73 19.6 10854 351 4298 8.2 2425.0 10.4 31.2 150 1.21 8.2 19.6 10.2 27.9 9.3 1.68 11739 359 3806 2426.0 150 1.30 1.42 3429 8.2 19.6 2427.0 8.8 31.7 150 9,21,79 12757 413 1.46 8.2 19.6 2428.0 23.2 27.0 64 9.3 1.16 12922 157 3101 9.3 1.63 1.50 13316 160 2834 8.2 19.6 2429.0 22.9 43.0 150 8.2 19.6 9.3 0.97 1.54 13474 2610 2430.0 25.0 13.6 66 146 23.7 40.5 9.2 1.31 1,59 13635 154 2421 8.2 19.6 2431,0 64 2260 8.2 19.6 2432.0 22.6 41.2 64 9.3 1.33 1.63 13805 161 1.69 17.6 38.9 9.3 1.33 13989 207 2123 8.2 19.6 54 2433.0 1.73 8.2 19.6 9.3 1.30 159 2000 14151 2434.0 22.9 40.1 62 1.79 8.2 19.6 16.8 40.8 1895 62 9.3 1.42 14373 217 2435.0 8.2 19.6 9.3 1.32 1.83 14540 1799 2436.0 22.6 40.7 63 161 8,2 19.6 9,21,50 1.91 14821 271 1718 2437.0 13.5 41.3 63 8.2 19.6 14.5 41.2 9.3 1.48 1.98 15085 253 1645 2438.0 63 () **4** 2.09 8,2 19,6 2439.0 8.9 42.4 9.2 1.66 15515 410 1586 8.2 19.6 6.8 41.8 9.3 1.74 2.24 16081 534 1539 2440.0 64 11.8 41.8 2,32 9.3 1.55 16400 310 1485 8.2 19.6 2441.0 63 8.2 19.6 2442.0 10.4 41.8 58 9.3 1.57 2,42 16737 351 1438 9.3 1.52 2.51 1394 8.2 19.6 2443.0 10.6 43.2 49 17014 345 8.2 19.5 2444.0 7.8 43.6 50 9.2 1.63 2.64 17400 471 13595.3 44.5 9.2 1.79 2.83 17994 690 1334 8.2 19.6 2445.0 52 9.3 1.41 2.90 257 1295 8.2 19.6 2446.0 14.2 42.1 50 18203 16.4 41.4 52 9.3 1.37 2.96 18393 223 1258 8.2 19.6 2447.0 22.2 43.1 9.3 1.33 3.01 18555 164 1222 8.2 19.6 60 2448.0 8.2 19.6 9.3 1.39 3.06 18757 197 1189 2449.0 18.6 41.5 63 1159 8.2 19.6 2450.0 14.8 41.7 54 9.3 1.42 3.13 18978 247 8.2 19.6 2451.0 12.0 42.6 50 9.3 1.48 3.21 19230 304 1134 8.1 19.7 9.3 1.42 3.28 19444 1108 14.0 42.2 50 262 2452.0 20.8 42.1 175 8,1 19,7 9.2 1.35 3.33 19623 1081 2453.0 62 8.1 19.7 9.2 1.44 1057 16.3 42.0 3,39 19851 224 2454.0 62 8.1 19.7 2455.0 16.0 42.2 63 9.3 1.45 3,45 20086 228 1035 8.1 19.7 2456.0 12.9 44.2 63 9.2 1.54 3.53 20377 282 1015 16.9 42.5 9.3 1.44 3.59 20600 216,08 994.72 8.1 19.7 2457,0 63 8.1 19.7 13.0 42.8 9.3 1.53 3.67 20888 281.00 976.87 2458.0 62 8.1 19.7 2459.0 22.0 41.1 53 9.2 1.28 3.71 21034 166.37 957.10 2460.0 9.3 1.19 3.74 8,1 19.7 21151 104.49 936.80 35.0 39.6 68 8.1 19.7 9.2 1.18 2461.0 36.7 41.0 67 3,77 21260 99,42 917,33

DEPTH	ROP	MOB	RPM	MW	"d "c	HOURS	TURNS	ICOST	CCOST	PP	FG
2462.0 2463.0 2464.0 2465.0 2466.0 2467.0 2468.0 2469.0 2470.0 2471.0	38.3 27.9 27.1 36.7 38.3 21.8	39.9 40.0	66 60 62 61 62 62 53 63	9,3 9,3 9,2 9,3 9,3 9,3	1.23 1.15 1.24 1.24 1.14 1.17 1.34 1.29 1.32	3.80 3.83 3.96 3.90 3.93 3.95 4.00 4.05 4.09	21475 21605 21742 21842 21939 22109 22267 22443	130.86 134.92	881.14 864.83 849.30 833.67 818.61 805.58 793.33 781.35	8.1 8.1 8.1 8.1 8.1 8.1	19.7 19.7 19.7 19.7 19.7 19.7 19.7
2472.0 2473.0 2474.0 2475.0 2476.0 2477.0 2478.0 2479.0 2480.0 2481.0	16.6 18.2 22.0 16.6	42.4 42.9 44.2 44.5 44.9 46.2 40.3	63 61 654 555 555 62 62 62	9.2 9.3 9.3 9.3 9.3 9.3	1.23 1.24 1.36 1.54 1.57 1.42 1.40 1.32 1.43	4.17 4.20 4.25 4.34 4.44 4.50 4.55 4.60 4.71	22855 23032 23323 23635 23832 24012 24180 24403	119.70 123.76 166.37 330.71 346.94 220.13 200.86 165.69 220.13 188.69	746.13 735.77 728.67 722.09 713.58 705.03 696.19 688.51	8.1 8.1 8.1 8.1 8.1 8.1	19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7
2482.0 2483.0 2484.0 2485.0 2486.0 2487.0 2488.0 2489.0 2491.0	16.5 23.8 18.0 23.5 21.7 47.4 31.9 20.8 19.3 14.2	45.4 44.5 43.9 43.2 46.9 42.9 43.7 44.6	61 62 65 65 63 63 65 63	9.32 9.33 9.33 9.22 9.33	1.45 1.33 1.43 1.35 1.32 1.32 1.22 1.39 1.42	4.77 4.81 4.87 4.91 4.96 4.98 5.01 5.11 5.18	24969 25178 25342 25523 25603 25721 25908 26109	221.15 153.18 202.89 155.21 168.40 77.10 114.63 175.50 189.70 256.65	665,40 658,39 650,88 643,78 635,57 628,13 621,75 615,75	8.1 8.1 8.1 8.1 8.1 8.1	19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7
2492.0 2493.0 2494.0 2495.0 2496.0 2497.0 2498.0 2499.0 2500.0		44.7 44.9 45.4 44.6 43.2 42.6 40.6	49 63 63 64 21 64 69 70 68	9.33 9.22 9.23 9.33 9.33 9.33		5.24 5.30 5.41 5.46 5.80 5.85 5.90	26777 26994 27183 27385 27616 28216 28431 28640		589.89 584.81 585.87 585.68 580.81 575.94	8.1 8.1 8.1 8.1 8.1 7.8 7.8	19.7 19.7 19.7 19.7 19.7 19.7 19.8 19.8
2502.0 2503.0 2504.0 2505.0 2506.0 2507.0 2508.0 2509.0 2510.0 2511.0	4,4	39.5 40.6 40.0 41.5 41.7 40.8 39.6 39.8	70 70 70 64 61 59 67 61 59 60	9.2 9.2 9.3 9.3 9.3 9.3	1.24 1.49 1.23 1.86 1.62 1.46 1.35 1.41 1.49	5.98 6.05 6.18 6.41 6.52 6.59 6.64 6.70 6.78	29253 29822 30695 31097 31343 31529 31759 32049	121.73 251.58 498.09 823.73 402.73 255.64 169.41 229.26 297.23 253.61	561.93 561.19 564.21 562.37 558.92 554.60 551.02 548.26	7.8 7.8 7.8 7.8 7.8 7.8 7.8	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8

DEPTH	ROP	WOR	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	рp	FG
2512.0 2513.0 2514.0 2515.0 2516.0 2517.0 2518.0 2519.0 2520.0 2521.0	14.3 13.8 12.6 20.2 8.2 13.4 5.8 12.1	42.9 43.2 43.1 41.8	60 61 63 59 60 65 64 71 72 74	9.3 9.3 9.3 9.3 9.4 9.4 9.4	1.48 1.49 1.54 1.34 1.68 1.50 1.79 1.57 1.48	6.92 6.99 7.07 7.12 7.24 7.32 7.49 7.54 7.78	32553 32817 33117 33290 33726 34016 34679 35033 35315	255.64 264.77 289.12 180.57 445.34 271.87 633.01 302.30 239.41 512.29	542.02 539.10 536.49 532.82 531.93 529.30 530.34 528.08 525.25	7.8 7.8 7.8 7.8 7.8 7.8 7.8	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
2522.0 2523.0 2524.0 2525.0 2526.0 2527.0 2528.0 2529.0 2530.0 2531.0	13.0 12.0 10.2 14.2 12.4 14.2 11.4 21.3	45.8 46.2 46.0 46.4 43.1 44.7 48.5 47.2 45.2	74 74 71 70 72 78 69 67 64 65	9,4 9,4 9,4 9,4 9,4 9,4	1.39 1.60 1.61 1.66 1.52 1.58 1.56 1.62 1.37	7.82 7.90 7.98 8.08 8.15 8.23 8.30 8.39 8.39	36465 36821 37234 37539 37881 38171 38525 38707	155.21 279.99 304.33 357.08 257.67 295.20 257.67 321.58 171.44 255.64	519.27 517.24 515.75 513.36 511.35 509.05 507.36 504.36	7.8 7.8 7.8 7.8 7.8 7.8 7.8	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
2532.0 2533.0 2534.0 2535.0 2536.0 2537.0 2538.0 2539.0 2540.0	15.1 15.9 18.6 13.7 15.7 13.5 14.8	45.0 45.8 44.6 45.3 48.5 40.9 40.9 40.5	65 64 62 63 66 67 68 67 67	9,4 9,4 9,4 9,4 9,4 9,4	1.55 1.49 1.45 1.41 1.56 1.44 1.49 1.46 1.47	8.59 8.65 8.71 8.77 8.84 8.91 8.98 9.05 9.12	39547 39780 39984 40272 40527 40827 41099 41382	291.15 242.45 229.26 196.80 266.80 233.32 269.84 246.51 258.68 163.33	498.07 495.75 493.19 491.27 489.11 487.28 485.29 483.43	7.8 7.8 7.8 7.8 7.8 7.8 7.8	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
2542.0 2543.0 2544.0 2545.0 2546.0 2547.0 2548.0 2549.0 2550.0	25.7 8.7 4.9 7.3 7.9 18.8 14.0	40.7 38.8 42.7 43.3 42.1 40.3 41.4 40.7 40.5 41.0	67 71 69 65 62 55 66 67 67	9,4 9,4 9,4 9,4 9,4 9,4	1.44 1.28 1.67 1.85 1.68 1.60 1.38 1.48 1.55		41987 42463 43257 43763 44183 44392 44680 45043	233.32 142.02 422.01 744.60 499.11 463.60 193.76 261.73 329.69 318.54	476.14 475.71 477.83 477.99 477.88 475.70 474.06 472.97	7.8 7.8 7.8 7.8 7.8 7.8 7.8	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
2552.0 2553.0 2554.0 2555.0 2556.0 2557.0 2558.0 2559.0 2560.0	12.8 14.3 13.0 12.0 3.9 4.3 4.0 13.6	41.6 43.4 42.4 42.2 42.2 42.7 42.7 42.5 41.9	66 63 64 64 65 65 64 64	9,4 9,4 9,4 9,4 9,4 9,4	1.57 1.53 1.47 1.51 1.53 1.91 1.88 1.90 1.49	10.24 10.32 10.39 10.47 10.55 10.81 11.04 11.30 11.37	46059 46323 46619 46940 47942 48849 49814 50097	338.82 285.06 254.63 281.00 303.32 943.43 854.16 921.12 268.83 356.07	469.44 467.86 466.50 465.31 468.75 471.51 474.70 473.25	7.8 7.8 7.8 7.8 7.8 7.8 8.1	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8

DEPTH	ROP	MOB	RPM	ММ	"d"c	HOURS	TURNS	ICOST	CCOST	pр	FG
2562.0 2563.0 2564.0 2565.0 2566.0 2567.0 2568.0 2569.0 2570.0	5.7 4.1 10.2 6.5 5.3 5.4 6.0 5.9	43.3 42.8 43.3 41.9 42.9 42.9 42.1 42.9 42.4	64 61 64 63 63 63 63 63 63	9.4 9.4 9.4 9.4 9.4 9.4 9.4	1.86 1.77 1.90 1.58 1.74 1.82 1.79 1.77	11.68 11.86 12.10 12.20 12.36 12.55 12.73 12.70 13.07 13.18	51949 52884 53256 53839 54558 55260 55897 56534	790.25 643.16 891.70 358.10 562.00 693.88 678.66 613.74 614.75 400.71	475.80 478.64 477.82 478.39 479.84 481.16 482.04 482.92	8.1 8.1 8.1 8.1 8.1 8.1 8.1	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
2572.0 2573.0 2574.0 2575.0 2576.0 2577.0 2578.0 2579.0 2580.0 2581.0	12.4 6.2 6.9 4.7 5.4 7.9 6.2	42.6 40.1 43.6 43.6 43.6 43.7 42.9 43.1 43.4 41.2	63 58 63 63 65 65 66 65 66	9.4 9.4 9.4 9.4 9.4 9.4 9.4	1.63 1.46 1.76 1.72 1.86 1.79 1.81 1.69 1.77	13.29 13.37 13.53 13.68 13.89 14.06 14.25 14.37 14.54	57379 57661 58270 58819 59635 60297 61023 61522 62159 62461	295.20 587.36 528.53 785.18 617.80 673.59 464.62	480.74 481.42 481.72 483.64 484.48 485.67 485.53 486.19	8.1 8.1 8.1 8.1 8.1 8.1 8.1	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
2582.0 2583.0 2584.0 2585.0 2586.0 2587.0 2589.0 2589.0 2590.0	6.2 6.3 6.6 7.2 5.0 11.3 6.5 4.7	42.0 43.4 44.1 43.6 43.5 42.8 43.4 43.9	65 63 63 63 62 62 62 56	9.4 9.4 9.4 9.4 9.4 9.4 9.4	1.46 1.76 1.77 1.74 1.83 1.55 1.55	14.68 14.84 15.00 15.15 15.29 15.49 15.58 15.73 15.94 16.12	63325 63928 64506 65038 65781 66112 66683 67471	241.44 587.36 579.25 553.89 510.27 733.44 324.62 559.97 770.98 650.26	484.07 484.64 485.06 485.21 486.68 485.72 486.16 487.81	8.1 8.1 8.1 8.1 8.1	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
2592.0 2593.0 2594.0 2595.0 2596.0 2597.0 2598.0 2599.0 2600.0	6.2 6.6 5.8 8.1 5.8 5.1 6.3	43.7 43.8 42.2 44.3 42.5 43.8 46.9 46.4	44 45 57 46 61 44 46 50 44	9,4 9,4 9,4 9,4 9,4 9,4 9,4	1.75 1.65 1.69 1.69 1.64 1.65 1.73 1.72 1.74	16.35 16.51 16.66 16.83 16.95 17.13 17.32 17.48 17.65 17.87	69087 69603 70086 70536 70995 71540 72013 72525	821.70 585.33 552.87 633.01 450.41 628.96 718.23 578.23 630.98 801.41	491,21 491,56 492,36 492,12 492,88 494,14 494,60 495,35	8.1 8.1	19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8
2602.0 2603.0 2604.0 2605.0 2606.0 2607.0 2608.0 2609.0 2610.0	6.4 6.6 4.7 10.9 6.7 7.1 8.1	51.5 51.5 51.7 51.0 51.4 51.5 51.5	4555555558 444444455	9.4 9.4 9.4 9.4 9.4 9.4 9.4	1.72 1.73 1.72 1.84 1.53 1.71 1.69 1.65 1.54	18.02 18.18 18.33 18.55 18.64 18.78 18.92 19.05 19.14	73937 74351 74930 75177 75580 75961 76297 76547	776.05 333.25	498.02 499.50 498.62 498.85 498.91 498.66 497.82	8.1 8.1 8.1 8.1 8.1 8.1	19.8 19.9 19.9 19.9 19.9 19.9 19.9 19.9

· -

DEPTH	ROP	WOB	RPM	мш	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2612.0 2613.0 2614.0 2615.0 2616.0 2617.0 2618.0 2619.0 2620.0 2621.0	4.3 10.2 9.0 4.7 9.7 5.3 6.1	47.6 48.4 47.8 47.7 48.4 47.8 48.4 48.6 52.3	51 46 46 48 48 47 61 61 62	9.4 9.4 9.4 9.4 9.4 9.4 9.4	1.87 1.84 1.54 1.59 1.82 1.56 1.87 1.82	19.41 19.64 19.74 19.85 20.06 20.17 20.36 20.52 20.58 20.68	77991 78263 78580 79193 79487 80187 80794 81001	857,21 848,08 358,10 405,78 783,15 377,37 693,88 600,55 204,92 364,19	499.52 498.80 498.32 499.76 499.15 500.62 499.16	8.1 8.1 8.1 8.1 8.1 8.1	19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9
2622.0 2623.0 2624.0 2625.0 2626.0 2627.0 2629.0 2630.0 2631.0	9.0 17.1 16.3 16.6 16.7 9.0 10.4 16.8	54.7 55.4 54.6 54.8 55.3 55.8 55.3	61 61 61 61 61 61 61 67	9.4 9.4 9.4 9.4 9.4 9.4 9.4	1.63 1.76 1.52 1.54 1.53 1.76 1.71 1.53	20.76 20.87 20.93 20.99 21.05 21.11 21.22 21.31 21.37 21.45	82026 82240 82465 82686 82906 83317 83669 83886	288.10 406.79 213.03 224.19 220.13 219.12 406.79 349.98 217.09 282.02	497.02 495.64 494.33 493.01 491.70 491.30 490.63 489.34	8.1 8.1	19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9
2632.0 2633.0 2634.0 2635.0 2636.0 2637.0 2639.0 2640.0 2641.0	5.1 6.6 4.4 4.2 5.7 15.1 17.4	57.8 51.4 49.6 49.9 50.3 49.9 49.2 48.4 47.5 44.2	59 60 61 61 58 60 60 60 59	9,4 9,4 9,4 9,4 9,4 9,4	1.70 1.91 1.80 1.96 1.95 1.55 1.51	21.54 21.74 21.89 22.12 22.35 22.53 22.59 22.65 22.71 22.80	85182 85736 86578 87405 88037 88277 88485 88706	329.69 710.11 549.83 833.87 865.32 636.06 242.45 209.99 229.26 312.45	488.66 488.94 490.53 492.25 492.90 491.77 490.49 489.31	8.1 8.1 8.1 8.1 8.1 8.1	19.9 19.9 19.9 19.9 19.9 19.9 19.9
2642.0 2643.0 2644.0 2645.0 2646.0 2647.0 2648.0 2649.0 2650.0	6.0 9.0 10.5 5.9 10.5 9.0 9.0 4.4	42.5 42.9 42.1 44.0 43.8 43.7 43.7	61 40 61 61 61 61 61 61 61	9.3 9.3 9.3 9.3 9.3 9.3	1.52 1.63 1.63 1.57 1.59 1.65 1.65 1.65	22.88 23.05 23.25 23.42 23.52 23.63 23.74 23.97 24.06	89710 90113 90462 91083 91433 91840 92247 93058	293.17 611.71 403.75 348.97 618.81 347.95 403.75 403.75 829.82 359.11	488.20 487.83 487.21 487.79 487.18 486.82 486.46 487.94	8.1 8.1 8.1 8.1 8.1 8.1	19.9 19.9 19.9 19.9 19.9 19.9 19.9
2652.0 2653.0 2654.0 2655.0 2656.0 2657.0 2658.0 2659.0 2660.0 2661.0	10,2 6,2 5,8 6,3 6,7 4,0 7,9 8,2	41.7 41.7 42.3 42.3 42.1 45.4 41.9 40.3 39.5	61 61 61 62 62 62 61 61	9.3 9.3 9.3 9.3 9.3 9.3	1.56 1.58 1.75 1.77 1.76 1.80 1.95 1.67	24.16 24.25 24.42 24.59 24.75 24.90 25.15 25.27 25.39	94112 94703 95330 95926 96484 97415 97877 98323	335.78 359.11 590.41 626.93 581.28 545.77 910.97 464.62 446.36 241.44	486.20 486.64 487.23 487.62 487.87 489.63 489.53 489.35	8.1 8.1 8.1 8.1 8.1 8.1	19.9 19.9 19.9 19.9 19.9 19.9 19.9

	,										
DEPTH	ROP	MOB	RPM	MW	"d"c	HOURS	TURNS	ICOST	CCOST	PP	FG
2662.0	14.1	39.7	61	9.3	1,45	25.53	98823	258.68	487,39	8.1	19.9
2663.0	15.1	39.6	61	9.3	1.42	25.60	99064	242,45	486.39	8.1	19.5
2664.0	15.3	39.6	61	9.3	1.42	25,66	99302	239,41	485.38	8.1	19.9
2665.0	13.5	40.2	61	9.3	1.47	25.74	99573	270.86	484.51	8.1	19.9
2666.0	14.8	39.7	61	9.3	1,43	25,81	99819	246.51	483,55	8.1	19.9
2667.0	12.7	40.1	61	9.3	1.49	25.88	100106	287.09	482.77	8.1	19.9
2668.0	12.3	37.8	61	9.3	1,47	25,97	100403	296.22	482,02	8.1	19.9
2669.0	14.1	39.5	66	9.3	1.47	26.04	100683	259.20	481.13	8.1	19.9
2670.0	11.2	35.0	71	9.3	1.52	26.13	101065	326.65	480,52	8.1	19.9
2671.0	4,4	35.8	72	9.3	1.83	26.35	102049	831.84	481,91	8.1	19.9

(d), COMPUTER DATA LISTING : LIST B

INTERVAL .		ŧ		•	,	•	10m averages.
DEPTH	,	•	ı	•			Well depth, in metres.
ROP	,	r	ı	1	,	ı	Rate of penetration, in metres per hour.
BIT RUN	,		,	,	,		Depth interval drilled by the bit, in metres.
HOURS	r	,	•		•	•	Cumulative bit hours. The number of hours that the bit has actually been 'on bottom', recorded in decimal hours.
TURNS	ı		ı	•	•		Cumulative bit turns. The number of turns made by the bit, while actually 'on bottom'.
TOTAL COST	ı	1	,	ı	,		Cumulative bit cost, in A dollars.
icost		,	•	•	,	•	Incremental cost per metre, calculated from the drilling time, in A dollars.
CCOST	•	,		•	•	•	Cumulative cost per metre, calculated from the drilling time, in A dollars.
IC	•	•	•	•	•	•	ICOST minus CCOST, expressed as a positive or negative sign. When the bit becomes worn, (and therefore uneconomic), this should change from negative to positive.

BIT NUMBER HTC OSC3AJR COST TOTAL HOURS	-26"HO 0.0	SIZ O TRI	C CODE E P TIME TAL TURNS	26.000 2.5	NOZZLES BIT RUN	
DEPTH	ROP B	IT RUN	HOURS	TURNS	TOTAL COST	icost coost i-c
90.0 100.0 110.0		4.0 14.0 24.0	0.16 0.29 0.44			144 2427 - 49.71 728.88 - 53.87 447.63 -
120.0 130.0 140.0 150.0 160.0 170.0 190.0 200.0	72.6 64.3 85.1 73.0 68.4 87.0 31.8 34.6 17.0	34.0 44.0 54.0 64.0 74.0 84.0 94.0 104.0 114.0	0.58 0.74 0.85 0.99 1.14 1.25 1.57 1.85 2.44	2868 3547 4143 4803 5557 6146 7867 9468 12558 15741	11246.18 11814.27 12243.38 12743.50 13277.10 13697.08 14845.43 1 15900.27 1	50.32 330.77 - 56.81 268.51 - 42.91 226.73 - 50.01 199.12 - 53.36 179.42 - 42.00 163.06 - 14.84 157.93 - 105.48 152.89 - 214.56 158.30 +
220.0 223.0	35.1 36.0	134.0 137.0	3.30 3.38	17359 17844		04.08 158.02 - 01.51 156.78 -
BIT NUMBER HTC OSC3AJ COST TOTAL HOURS		SIZ O TRI	C CODE E P TIME AL TURNS	17.500 3.7	NOZZLES BIT RUN	223.0- 816.0 20 20 16 593.0 TO BO GO.000
DEPTH	ROP B	IT RUN	HOURS	TURNS	TOTAL COST	TCOST CCOST I-C
230.0 240.0 250.0 260.0 270.0 280.0 290.0 300.0	117.2 131.4 219.5 156.9 124.6 169.0 84.5 164.3	7.0 17.0 27.0 37.0 47.0 57.0 67.0	0.06 0.14 0.18 0.25 0.33 0.38 0.50	298 734 1144 1717 2440 2972 4037 4585	18587.59 18865.55 19031.92 19264.70 19557.87 19773.95 20206.10 20428.43	31 2655 — 28 1110 — 16.64 704.89 — 23.28 520.67 — 29.32 416.12 — 21.61 346.91 — 43.22 301.58 — 22.23 265.30 —
310.0 320.0 330.0 340.0 350.0 360.0 370.0 380.0	168.2 166.7 204.5 220.9 193.5 105.6 109.8 95.3	87.0 97.0 107.0 117.0 127.0 137.0 147.0	0.62 0.68 0.73 0.78 0.83 0.92 1.01	5120 5660 6100 6508 6973 7825 8645 9589	20645.53 20864.65 21043.19 21208.54 21397.23 21743.15 22075.89 22459.00	21.71 237.30 - 21.91 215.10 - 17.85 196.67 - 16.54 181.27 - 18.87 168.48 - 34.59 158.71 33.27 150.18 - 38.31 143.05 -

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost	I-0
410.0	117.1	187.0	1.41	12183	23511.60	31.19	125.73	***
420.0	228.5	197.0	1.45	12577	23671.43	15.98	120.16	
430,0	116.7	207.0	1.54	13348	23984.37	31.29	115.87	****
440.0	76.9	217.0	1.67	14518	24459.13	47,48	112.71	
450.0	68.7	227.0	1.81	15828				
460.0	94.8	237.0			24990.70	53.16	110.09	***
470.0	96.8	247.0	1.92	16778	25375.88	38.52	107.07	****
480.0	110.1	257.0	2.02 2.11	17708	25753.25	37.74	104.26	•••
490.0				18525	26084.97	33.17	101.50	•••
	84.3	267.0	2.23	19592	26517.98	43.30	99.32	••••
500.0	87.7	277.0	2.35	20619	26934.56	41.66	97.24	***
520.0	150.7	297.0	2.48	21813	27419.19	24.23	92.32	•••
530.0	58.0	307.0	2.65	23366	28049.31	63.01	91.37	
540.0	61.0	317.0	2.81	24841	28647.79	59.85	90.37	•••
550.0	46.3	327.0	3.03	26783	29436.01	78.82	90.02	****
560.0	69.2	337.0	3.17	28084	2 9 963.64	52.76	88. 9 1	••••
570.0	43.7	347.0	3.40	30143	30799.25	83.56	88,76	
580.0	45.0	357.0	3,63	32144	31611.39	81,21	88.55	••••
590.0	35.6	367.0	3.91	34676	32638.57	102.72	88.93	· { -
600.0	48.6	377.0	4.11	36528	33389.98	75.14	88.57	•••
610.0	51.3	387.0	4.31	38283	34102.12	71.21	88.12	****
					APP A APPA 1 A for		VAVD 1 A 1	
620.0	57.1	397.0	4.48	39860	34742,24	64.01	87.51	••••
630.0	59.8	407.0	4.65	41365	35352.93	61.07	86,86	
640.0	51.4	417.0	4.85	43116	36063.61	71.07	86,48	
650.0	57.2	427.0	5.02	44691	36702.37	63.88	85,95	••••
660.0	42.5	437.0	5.26	46811	37562,65	86.03	85.96	· (-
670.0	52.2	447.0	5.45	48536	38262.61	70.00	85.60	••••
680.0	38.4	457.0	5,71	50882	39214,61	95.20	85.81	4
690.0	43.6	467.0	5.94	52944	40051.53	83.69	85.76	*
700.0	37.7	477.0	6.20	55333	41020.75	96.92	86.00	-4-
710.0	43.3	487.0	6.43	57410	41863.75	84.30	85.96	
						10 1 1 10 10	00170	
720.0	41.2	497.0	6.68	59597	42751,19	88.74	86.02	+
730.0	26.2	507.0	7,06	63033	44145.35	139,42	87.07	٠,
740.0	25.6	517.0	7.45	66542	45569,29	142.39	88.14	+
750.0	31.4	527.0	7.77	69410	46732.86	116.36	88.68	٠,
760.0	34.8	537.0	8.05	71997	47782.81	105.00	88.98	,
770.0	33.6	547.0	8.35	74672	48868,27	108.55	89.34	+
780.0	30.8	557.0	8.68	77598	50055.31	118.70	89.87	+
790.0	33.6	567.0	8.97	80280	51143.81	108.85	90.20	·\$-
800.0	27.3	577.0	9.34	83580	52482,88	133.91	90.96	+
810.0	26.1	587.0	9.72	87030	53882.81	139.99	91.79	4
				ARC 6 36 36 36	sor sor sor bottom 1 to 2	2427177	/21//	•
816.0	21.2	593.0	10.01	89575	54915.52	172.12	92.61	٠,

BIT NUMBER HTC J1 COST TOTAL HOURS	2694	.00 TR	DC CODE ZE ZIP TIME STAL TURNS	117 12.250 5.0 490747	NOZZLES BIT RUN		6.0- 185 18 18 104 5 83 60	8 18 42.4
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	1-C
820.0	16.2	4.0	0.25	1037	21855.81	225	5464	
830.0	29.5	14.0	0.59	2926	23093.04	124	1650	
840.0	34.1	24.0	0.88	5040	24165.31	107	1007	•••
850.0	43.6	34.0	1.11	6690	25002.23	83.69	735.36	***
860.0	22.5	44.0	1.55	9886	26623.31	162.11	605.08	****
870.0	25.1	54.0	1.95	12756	28079.04	145.57	519,98	****
880.0	25.8	64.0	2.34	15542	29492.16	141.31	460.81	
890.0	27.6	74.0	2.70	18153	30816.51	132.44	416.44	****
900.0	32.8	84.0	3.01	20347	31929.36	111.28	380.11	••••
910.0	25.1	94.0	3.40	23219	33386.10	145.67	355,17	****
920.0	28.1	104.0	3.76	25785	34687 .63	130.15	333.53	•••
930.0	22.7	114.0	4.20	28951	36293.50	160.59	318,36	****
940.0	23.0	124.0	4.64	32085	37883.13	158.96	305.51	
950.0	30.4	134.0	4.96	34708	39 083.22	120.01	291.67	***
960.0	34.6	144.0	5.25	37309	40138.63	105.54	278.74	•••
970.0	27.7	154.0	5.61	40559	41457,41	131.88	269,20	
98 0 .0	29.4	164.0	5.95	43616	42698,07	124.07	260,35	****
990.0	29.3	174.0	6.30	46691	43945.84	124.78	252.56	•
1000.0	26.6	184.0	6.67	50071	45317.37	137.15	246.29	••••
1010.0	26.4	194.0	7,05	53486	46703.10	138.57	240.74	••••
1020.0	35.7	204.0	7.33	56009	47726.67	102.36	233.95	•••
1030.0	22.4		7.78	60026	49356.89	163.02	230.64	****
1040.0	29.3	224.0	8.12	63096	50602.54	124.57	225.90	***
1050.0	20.2	234.0	8.61	67561	52414.34	181.18	223,99	
1060.0	21.5		9.08	71741	54110,49	169.62	221.76	***
1070.0	27.8	254.0	9,44	74973	55421,99	131.15	218.20	•••
1080.0	31.2	264.0	9.76	77861	56593.68	117.17	214.37	••••
1090.0	29.8	274.0	10.09	80883	57820.14	122.65	211.02	
1100.0	18.9	284.0	10.62	85641	59750,63	193.05	210.39	
1110.0	19.6	294.0	11.13	90243	61618.22	186.76	209.59	•••
1120.0	20.3	304.0	11.63	94668	63413.79	179.56	208,60	***
1130.0	21.5	314.0	12.09	98846	65108.92	169.51	207.35	•••
1140.0	24.5	324.0	12.50	102513	66597.11	148.82	205.55	****
1150.0	20.7	334.0		106871	68365.29	176.82	204.69	
1160.0	17.9	344.0		111903	70407.37	204.21	204.67	••-
1170.0	19.7	354.0		116481	72264.81	185.74	204,14	••••
1180.0	20.3	364.0		120911	74062.41	179.76	203,47	
1190.0	16.4	374.0		126408	76293.17	223.08	203,99	4
1200.0	23.9	384.0		130173	77820,93	152.78	202.66	••••
1210.0	15.5	394.0		135978	80176.47	235.55	203.49	-
1220.0	19.1	404.0		140679	82084,13	190.77	203.18	
1230.0	16.5	414.0		146142	84300.69	221.66	203.62	-\$-
1240.0	13.8	424.0	18.07	152674	86951.43	265.07	205.07	+

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1250.0	13.5	434.0	18.81	159359	00//4 0/	goog goog at goog a	MS 20 1 1 20	
1260.0	11.3	444.0	19.70	167289	89664.06	271.26	206.60	•출.
1270.0	15.3	454.0	20.35		92881.88	321.78	209.19	· } -
1280.0	11.5	464.0	21.22	173174	95269.88	238.80	209.85	4.
1290.0	10.9	474.0	22,14	181027	98456.25	318.64	212.19	- { ·
1300.0	15.1	484.0	22.81	189319	101821.16	336.49	214.81	- f -
1310.0	12.6	494.0		195289	104243.65	242.25	215.38	· f -
1320.0	14.6	504.0	23.60	202419	107136.85	289.32	216.88	-∳-
1330.0	12.5	514.0	24.28 25.09	208594	109642.53	250.57	217.54	4.
1340.0	12.3	524,0	25.90	215817	112573.26	293.07	219.01	· / -
101010	2 for 1 4.2	V37	6.57.70	223109	115532.39	295.91	220.48	+
1350.0	14.1	534.0	26.61	229507	118128.35	259.60	221,21	+
1360.0	13.1	544.0	27.37	236382	120918.08	278.97	222.28	
1370.0	11.2	554.0	28.27	244432	124184.59	326.65	224.16	+
1380.0	12.8	564.0	29,05	251449	127032,13	284.75	225,23	-4-
1390.0	15.1	574.0	29.71	257396	129444,99	241.29	225.51	-ģ.
1400.0	16.0	584.0	30.33	263019	131726.81	228.18	225.56	· † ·
1410.0	14.8	594.0	31.01	269116	134201.04	247.42	225.93	· +
1420.0	15.9	604.0	31,64	274786	136501.80	230.08	226.00	÷
1430.0	16.1	614.0	32.26	280376	138770.10	226.83	226.01	· -
1440.0	18.5	624.0	32.80	285246	140746.24	197.61	225.55	
4 6 200 75 75	. m. m.						1111 NO 1 NO 10	
1450.0	19.7	634.0	33.31	289814	142599.63	185.34	224,92	••••
1460.0	18.3	644.0	33.85	294719	144589,97	199.03	224,52	•••
1470.0	15.4	654.0	34.50	300563	146961.15	237,12	224.71	+
1480.0	21.4	664.0	34.97	304778	148671,55	171.04	223,90	
1490.0	16.3	674.0	35.59	3103 10	150916.52	224,50	223.91	· t -
1500.0	19.1	684.0	36,11	315028	152830.77	191.43	223.44	•••
1510.0	16.1	694.0	36.73	320610	155096.03	226.53	223.48	-∳-
1520.0	15.5	704.0	37.38	326410	157449,54	235,35	223.65	- {·
1530.0	17.6	714.0	37.95	331535	159529,15	207.96	223.43	••••
1540.0	15.7	724.0	38.58	337280	161860.34	233.12	223,56	4.
1550.0	15.6	734.0	39.22	343040	164197.62	233.73	223.70	- ∳·
1560.0	14.3	744.0	39.92	349333	166750.98	255.34	224.13	
1570.0	20.5	754.0	40,41	353718	168530,31	177.93	223,52	
1580.0	14.8	764.0	41.09	359798	170997.44	246.71	223,82	+
1590.0	14.3	774.0	41.78	366088	173549,79	255.23	224,22	. .
1600.0	14,9	784.0	42,45	372120	175997.64	244.79	224.49	·
1610.0	14.5	794.0	43.14	378313	178510,42	251.28	224.82	· -{-
1620.0	16.1	804.0	43.76	383900	180777.70	226,73	224.85	·
1630.0	13.8	814.0	44,49	390443	183432,50	265.48	225.35	- ķ -
1640.0	14.8	824.0	45.16	396513	185895.57	246.31	225.60	.ţ.
1650.0	14.3	834.0	AE DI	400000				
1660.0	15.3	844,0	45.86 46.52	402800	188446.90	255.13	225.96	+
1670.0	13.2	854.0		408698	190839.98	239.31	226.11	-}-
1680.0	14.5	864.0	47,28	415505	193602.31	276.23	226.70	4
1690.0	14.5	874.0	47,96	421693	196113.06	251.08	226.98	+
1700.0	15.4	884,0	48.65 49.30	427898	198630.91	251.79	227.27	+
1710.0	15.8	894.0		433733	200998.62	236.77	227.37	4.
1720.0	18.0	904.0	49.93 50.49	439437	203313.29	231.47	227,42	+
1730.0	20.8	914.0	50.49	444449	205347,25	203.40	227,15	••••
1740.0	39.1	924.0	51,23	448777	207103.25	175.60	226.59	***
** ****	(37 ; X	× 1.77 ; U		451077	208036.54	93.33	225,15	•••

· · · -

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I = C
1750.0	27.7	934.0	51.59	454322	209353.29	131.67	224.15	
1760.0	32.2	944.0	51,90	457114	210486,42	113.31	222.97	•••
1770.0	31.9	954.0	52,21	459932	211629.70	114.33	221.83	
1780.0	27.9	964.0	52.57	463154	212937.32	130.76	220.89	****
1790.0	27.6	974.0	52.93	466412	214259.14	132.18	219.98	
1800.0	29,9	984.0	53.27	469419	215479.52	122.04	218.98	***
1810.0	30.7	994.0	53.59	472354	216670,48	119,10	217.98	
1820.0	24.3	1004.0	54.00	476057	218172,87	150.24	217.30	***
1830.0	27.0	1014.0	54.37	479387	219524.11	135.12	216.49	***
1840.0	25.7	1024.0	54.76	482894	220947.38	142.33	215.77	••••
1850.0	24.8	1034.0	55.17	486522	222419,33	147.20	215.11	••••
1858.4	17.9	1042.4	55,64	490747	224133.75	204.10	215.02	****

BIT NUMBER HTC J1 COST TOTAL HOURS		00 TRI	OC CODE ZE IP TIME FAL TURNS	116 12.250 3.6 167237	NOZZLES BIT RUN		8.0- 241 18 19 56 5 88 60.	18
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST	I-C
1860.0 1870.0	18.8 27.8	2.0 12.0	0.11 0.47	958 4195	16960.13 18273.84	194 131	8480 1523	
1880.0	34.5	22.0	0.76	6800	19330.89	105.71	878.68	****
1890.0	32.1	32.0		9603	20468.08	113.72	639.63	••••
1900.0	34.4	42.0	1.36	12215	21528.18	106.01	512.58	****
1910.0	39.5	52.0	1.61	14493	22452.33	92.42	431.78	
1920.0	38.1	62.0	1.87	16853	23409.97	95.76	377.58	****
1930.0	32.8	72.0	2.18	19598	24523.83	111.39	340.61	
1940.0	23.7	82.0	2.60	23398	26065.79	154.20	317.88	
1950.0	30.3	92.0	2.93	26373	27272.97	120.72	296.45	
1960.0	29.1	102.0	3,27	29463	28526,83	125.39	279.67	
1970.0	32.0	112.0	3.59	32278	29669.09	114.23	264.90	
1980.0	34.0	122.0	3.88	34921	30741.81	107.27	251,98	
1990.0	30.5	132.0	4.21	37871	31938.86	119.70	241.96	
2000.0	25,6	142.0	4.60	41381	33363.14	142.43	234.95	****
2010.0	31.3	152.0	4.92	44261	34531,78	116.86	227.18	****
2020.0	34.3	162.0	5.21	46889	35597.96	106.62	219.74	***
2030.0	36.7	172.0	5,48	49339	36592.12	99.42	212.74	
2040.0	33.5	182.0	5.78	52026	37682.64	109.05	207,05	••••
2050.0	30.5	192.0	6.11	54979	38880.70	119.81	202.50	
2060.0	32.1	202.0	6.42	57786	40019.92	113,92	198.12	
					41083.06	106.31	193.79	
2070.0	34.4	212.0	6.71	60406				
2080.0	34.9	222.0	7,00	62986	42129.97	104.69	189.77	****
2090.0	31.9	232.0	7.31	65811	43276.29	114.63	186.54	
2100.0	36.6	242.0	7.59	68270	44274,00	99,77	182.95	
2110.0	37.9	252.0		70645	45237.72	96.37	179.51	••••
2120.0	37.7	262.0	8.11	73030	46205.50	96.78	176.36	
2130.0	40.2	272.0	8.36	75267	47113.43	90,79	173.21	
2140.0	36.4	282.0	8.64	77742	48117.73	100.43	170.63	
				80175	49104.78		168.17	
2150.0	37.0	292.0	8.91			98.71		
2160.0	37.3	302.0	9.18	82590	50084.73	98,00	165.84	
2170.0	42.4	312.0	9.41	84715	50947.01	86,23	163.29	****
2180.0	44.6	322.0	9.64	86734	51766.44	81.94	160.77	
2190.0	42.0	332.0	9,88	88878	52636.32	86,99	158.54	****
2200.0	45.8	342.0	10.09	90843	53433.68	79,74	156.24	
2210.0	49.5	352.0	10.30	92663	54172.19	73,85	153.90	••••
2220.0	33.2	362.0	10.60	95371	55270.84	109.86	152.68	***
2230.0	29.4	372.0	10.94	98431	56512.52	124,17	151,92	••••
2240.0	31.6	382.0		101283	57670.00	115.75	150.97	
2250.0	30.4	392.0		104247	58872.90	120.29	150.19	••••
2260.0	33.2	402.0		106960	59973.57	110.07	149.19	
2270.0	45.0	412.0		108959	60784.59	81,10	147.54	
				111096	61651.94	86.74	146.09	
2280.0	42.1	422.0	X 7 1 32 29	111000	0100177	WW 17 m	170107	

DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	ccost i-c
2380.0	28.4 23.9 23.8 25.0 28.5 24.0 23.8 20.8 19.3	442.0 452.0 462.0 472.0 482.0 492.0 502.0 512.0	12.70 13.11 13.53 13.93 14.29 14.70 15.12 15.61 16.12	114261 118034 121811 125412 128574 132332 136112 140447 145112 150257	62936.23 64467.03 65999.85 67460.80 68744.08 70268.79 71802.63 73561.67 75454.63 77542.35	128.43 153.08 153.28 146.10 128.33 152.47 153.38 175.90 189.30 208.77	145.69 - 145.85 + 146.02 + 146.02 + 145.64 - 145.79 + 145.94 + 146.54 + 147.37 + 148.55 +
2410.0	20.4 19.4 19.8 12.3	532.0 542.0 552.0 560.0	17.19 17.70 18.21 18.85	154671 159321 163857 169693	79333.66 81220.53 83061.07 85429.24	179.13 188.69 184.05 296.02	149.12 + 149.85 + 150.47 + 152.55 +
BIT NUMBER HTC J22 COST TOTAL HOURS		.00 TR	DC CODE ZE IP TIME ITAL TURN	517 12.250 4.7 S 102049	NOZZLES BIT RUN		8.0- 2671.0 18 18 18 253.0 3 B2 G0.125
DEPTH	ROP	BIT RUN	HOURS	TURNS	TOTAL COST	ICOST	CCOST I-C
2420.0 2430.0 2440.0 2450.0 2460.0 2470.0	5.5 8.5 14.5 11.2 16.3 28.4	2.0 12.0 22.0 32.0 42.0 52.0	0.37 1.54 2.24 3.13 3.74 4.09	3292 13474 16081 18978 21151 22443	27016.20 31320.15 33847.47 37101.81 39345.76 40630.28	668 430 253 325 224.40 128.45	13508 - 2610 - 1539 - 1159 - 936.80 - 781.35 -
2480.0 2490.0 2500.0 2510.0 2520.0 2530.0 2540.0 2550.0 2560.0	17.7 22.2 12.6 11.4 11.6 12.5 14.7 10.6 7.7	62.0 72.0 82.0 92.0 102.0 112.0 122.0 132.0 142.0	4.66 5.11 5.90 6.78 7.64 8.44 9.12 10.06 11.37	24403 26109 28640 32049 35315 38707 41382 45043 50097 56534	42687.81 44334.26 47227.45 50440.20 53575.85 56488.32 58978.78 62431.95 67200.85 73403.16	205.75 164.64 289.32 321.27 313.56 291.25 249.05 345.32 476.89 620.23	688.51 615.75 575.94 548.26 525.25 504.36 483.43 472.97 473.25 +- 482.92 +-
2580.0 2590.0 2600.0 2610.0 2620.0 2630.0 2640.0 2650.0 2670.0	6.8 7.1 5.8 6.7 7.0 12.6 7.5 8.0 7.0	162.0 172.0 182.0 192.0 202.0 212.0 222.0 232.0 252.0	14.54 15.94 17.65 19.14 20.58 21.37 22.71 23.97 25.39 26.13	62159 67471 72525 76547 81001 83886 88706 93058 98323 101065	78762,47 83903,68 90153,67 95581,96 100829,68 103739,11 108627,72 113201,85 118422,18 121091,18	535.93 514.12 625.00 542.83 524.77 290.94 488.86 457.41 522.03 266.90	486.19 + 487.81 + 495.35 + 497.82 + 499.16 + 489.34 - 489.31 - 487.94 - 489.35 + 480.52 -

DEPTH ROP BIT RUN HOURS TURNS TOTAL COST ICOST CCOST I-C 2671.0 4.4 253.0 26.35 102049 121923.03 831.84 481.91 +

(e), COMPUTER DATA LISTING : LIST C

INTERVAL	10m averages.
DEPTH	Well depth, in metres.
FLOW RATE	Mud flow into the well, in gallons per minute.
PSP	Pump pressure, in pounds per square inch.
PBIT	Bit pressure drop, in pounds per square inch.
%PSP	Percentage of surface pressure dropped at the bit.
н.н.р	Bit hydraulic horsepower.
HHP/SQ IN , .	Bit hydraulic horsepower per square inch of bit diameter.
IMPACT FORCE	Bit impact force, in foot-pounds per second squared.
JET VELOCITY	Mud velocity through the bit nozzles, in metres per second.

BIT NUMBER HTC OSC3AJ COST TOTAL HOUR	0H" 6S+7	SI .00 TR	DC CODE ZE IP TIME TAL TURNS	111 26.000 2.5 17844	NOZZ BIT	RVAL LES RUN DITION	20	223.0 20 20 137.0 G0.000
DEPTH	FLOW RATE	pSp	тляч	%PSP	HHP	HHP/ sain	IMPACT FORCE V	
90.0 100.0 110.0	898 863 984	806.5 1110.0 1240.5	762.3 704.9 916.6	94.5 63.5 73.9	3 99 355 526	0.75 0.67 0 .99	1266 1170 1522	95 91 104
120.0 130.0 140.0 150.0 160.0 170.0 180.0 190.0 200.0	1005 1016 989 1018 1024 1019 1010 1018 1007	980.9 683.0 587.6 1286.7 1358.1 1382.1 1396.4 1421.0 1383.3 1415.5	976.9	97.4 143.0 157.5 76.2 73.0 71.0 69.0 69.0 69.3	560 579 534 582 592 584 568 583 563 575	1.06 1.09 1.01 1.10 1.12 1.10 1.07 1.10	1586 1622 1537 1627 1646 1630 1600 1629 1591 1614	107 108 105 108 108 107 103 107
220.0 223.0	1020 1020	1444.0 1445.0	983.2 984.5	68.1 68.1	585 586	1.10 1.10	1632 163 4	108 108
BIT NUMBER HTC OSC3A. COST TOTAL HOUR	j 4857	5.00 T	IZE	111 17.500 3.7 89575	NOZ:	ERVAL ZLES RUN DITION	2	816.0 0 20 16 593.0 G0.000
HTC OSC3A: COST	j 4857	S.00 TI	IZE RIP TIME	17,500 3,7 89575	BIT CON	ZLES RUN DITION HHP/	T0 B0	0 20 16 593.0 G0.000 JET
HTC OSC3A. COST TOTAL HOUI	j 4857 RS 10 FLOW	S.00 TI	IZE RIP TIME OTAL TURNE	17,500 3,7 89575	BIT CON	ZLES RUN DITION HHP/	TO BO	0 20 16 593.0 G0.000 JET

	FLOW					HHP/	IMPACT	JET
DEPTH	RATE	pgp	PRIT	%PSP	ННЬ	sqin		VELOCITY
D11 111	15 17 1 1	1 (3)	1 20 20 1	mi Gi	11711	25 74 77 11	1 (21) (21)	VELOUSE 1
410.0	1005	2475.0	1232.7	49.8	722	3.00	1801	121
420.0	1010	2512.2	1245.8	49.6	734	3.05	1820	122
430.0	1000	2481.2	1220.5	49.2	712	2.96	1783	120
440.0	998	2496.8	1217.0	48.7	709	2.95	1778	120
450.0	1008	2544.4	1240.6	48.8	729	3,03	1812	
460.0	1009	2558.3	1257.5	49.2	740	3.08	1837	
470.0	1009	2582.0	1258.5	48.7	741	3.08	1839	
480.0	1001	2547.7	1238.0	48.6	723	3.01	1809	
490.0	1012	2598.5	1265.8	48.7		3.11	1849	
500.0	1001	2561.6	1238.7	48.4	724	3.01	1810	121
,	<i>200</i> , 200, pres	, , , , , , , , , , , , , , , , , , ,						
520.0	985	2538.0	1211.3	47.7	696	2.89	1770	119
530.0	1020	2568.1	1299.2	50.6	773	3.21	1898	123
540.0	1011	2702.0	1276.8	47.3	753	3.13	1865	122
550.0	1001	2657.0	1250.8	47.1	730	3.04	1827	120
560.0	1000	2658.3	1249.8	47.0	729	3.03	1826	120
570.0	1005	2650.0	1275.2	48.1	747	3.11	1863	121
580.0	1001	2678.1	1265.1	47.2	739	3.07	1848	120
590.0	1014	2742.8	1300.2	47.4	769	3.20	1899	
600.0	990	2628.0	1238.6	47.1	716	2.97	1810	
610.0	996	2584.5	1254.6	48.5	729	3.03	1833	120
620.0	1020	2727.4	1313.6	48.2	781	3,25	1919	123
630.0	1004	2655.8	1273.8	48.0	746	3.10	1861	121
640.0	992	2653,4	1242.7	46.8	719	2.99	1815	119
650.0	1006	2723,4	1277.9	46.9	750	3.12	1867	121
660.0	993	2617.2	1245.6	47.6	722	3.00	1820	
670.0	995	2614.6	1265.3	48.4	735	3,05	1848	
680.0	1004	2738,8	1286.7	47.0	753	3.13	1880	
690.0	1007	2755.4	1296.8	47.1	762	3.17	1895	
700.0	1013	2708.3	1310.4	48.4	774	3.22	1914	
710.0	1004	2697.5	1287.5	47.7	754	3.14	1881	121
720.0	1013	2777.8	1310.3	47.2	774	3,22	1914	122
730.0	997		1270.1	47.0	739	3.07	1855	120
740.0	1000	2700.3	1278.2	47.3	746	3,10	1867	120
750.0	1006	2756.0	1292.4	46.9	758	3.15	1888	121
760.0	1010	2795.2	1303.7	46.6	768	3.19	1905	122
770.0	1002	2779.0	1281.7	46.1	749	3.11	1872	121
780.0	1000	2756.8	1277.6	46.3	745	3.10	1867	120
790, 0	1008	2809.7	1297.9	46.2	763	3.17	1896	121
800.0	999	2774.9	1275.4	46.0	743	3.09	1863	120
810.0	1010	2843.8	1303.6	45.8	768	3.19	1904	122
816.0	1010	2843.9	1304.1	45.9	769	3.20	1905	122

BIT NUMBER 2 IADC CODE 116 INTERVAL 816.0 - 1858.4HTC J1 SIZE 12,250 NOZZLES 18 18 18 COST 2694.00 TRIP TIME 5.0 BIT RUN 1042.4 TOTAL HOURS 55,64 TOTAL TURNS CONDITION 490747 T5 B3 G0.000 FLOW HHP/ IMPACT JET DEPTH RATE PSP PRIT %PSP HHP sain FORCE VELOCITY 820.0 950 2825.0 1359.8 48.1 253 6.39 1829 124 830.0 967 2881,6 1410.0 48.9 795 6,75 1896 127 840,0 964 2886.3 1402.4 48.6 789 6.69 1886 126 850.0 960 2874,7 1390.2 48,4 779 6.61 1869 126 860.0 559 992.1 471.6 47.5 154 1.31 634 73 870.0 2953.6 969 1416,0 47.9 801 6.79 1904 127 880,0 974 2989.0 1430.0 47.8 812 6.89 1923 127 890.0 966 2963.1 1406.0 47.5 792 6,72 1891 126 900.0 964 2960,5 1400.6 47.3 788 6,68 1883 126 910.0 970 2982,4 1418.3 47.6 803 6.81 1907 127 920.0 962 2955,9 1395.7 47.2 783 6,65 1877 126 930.0 960 2954,8 1389,6 47.0 778 6.60 1869 126 940.0 977 2991.1 1438.2 48,1 819 6,95 1934 128 950,0 973 3013.6 1426.7 47.3 810 6.87 1919 127 960.0 951 2936,2 1363.3 46.4 756 6,42 1833 124 970.0 960 2977,5 1389,5 46.7 778 6.60 1868126 980.0 951 1983.1 1362.7 68.7 756 6.41 1832 124 990.0 939 2897.7 1329,5 45.9 728 6.18 1788 123 1000.0 944 2927,9 1342.9 45,9 739 6.27 1806 123 1010.0 939 2899,6 1329.6 45.9 728 6.18 1788 123 1020.0 2908.0 937 1323.9 45.5 724 6,14 1780 123 2891.7 1030.0 936 1321,4 45.7 722 1777 6,12 122 1040.0 937 2905,5 1323.5 45.6 723 6.14 1780 123 1050.0 942 2957.2 1338.8 45.3 736 6.24 1800 123 939 1060.0 2936.3 1329.1 45.3 728 6.18 1787 123 1070.0 921 2860.9 1278.3 44.7 687 5,83 1719 120 1080.0 929 2913.1 1302.4 44.7 706 5,99 1751 122 1090.0 925 2914.2 1289,3 44.2 696 5.90 1734 121 1100.0 932 2934,7 1309,6 44.6 712 6.04 1761 122 1110.0 928 2931.3 1299.4 44.3 704 5,97 1747 121 1120.0 923 2904,9 1284.3 44,2 691 5.87 1727 121 1130.0 1299.6 928 2931.9 44.3 704 5.97 1748 121 1140.0 923 2921.2 1284.6 44.0 692 5.87 1727 121 1150.0 928 2936.4 1298,4 44.2 703 5,96 1746 121 2906.1 1160.0 920 1276.0 43.9 685 5.81 1716 120 1170.0 922 2925.5 1281.0 43.8 689 5.84 1723 121 1180.0 919 2920.9 1273.8 43.6 683 5.80 1713 120 1190.0 915 2904.8 1263,4 43.5 675 5.72 1699 120 1200.0 916 1266.0 2928,5 43.2 677 5.74 1702 120 1210.0 2926.0 910 1247.7 42.6 662 5,62 1678 119 1220.0 912 2926.4 1254.8 42.9 668 5.67 1687 119 1230.0 910 2915.0 1249.1 42.8 663 5.63 1680 119 1240.0 911 2927.4 1251,2 42.7 665 5.64 1683 119

DEPTH	FLOW RATE	PSP	PBIT	%PSP	ннр	HHP/ sgin	IMPACT FORCE	JET VELOCITY
1250.0 1260.0 1270.0	589 905 906	1228.4 2919.3 2930.6	522.6 1234.4 1237.7	42.5 42.3 42.2	180 652 654	1.52 5.53 5.55	703 1660	77 118
1280.0 1280.0 1290.0	907 621	2943.7 1375.8	1241.5 582.4	42.2 42.3	657 211	5.58 1.79	1664 1669 783	119 119 81
1300.0	904	2923.2	1231.3	42.1	649	5.51	1656	118
1310.0	903	2930.5	1230.4	42.0	648	5.50	1654	118
1320.0	899	2910. 0	1217.8	41.8	639	5,42	1638	118
1330.0	906	2960.6	1250.3	42.2	661	5,61	1681	118
1340.0	8 9 9	2916.2	1231.3	42.2	646	5,48	1656	116
1350.0	905	2966.8	1248.8	42.1	659	5.60	1679	118
1360.0 1370.0 1380.0	900 896 898	2941.7 2907.7 2948.7	1236.1 1223.6 1229.9	42.0 42.1 41.7	649 640 645	5.51 5.43 5.47	1662 1645 1654	118 117
1390.0 1400.0	892 894	2901.6 2913.9	1212.2	41.8 41.8	631 636	5.35 5.39	1630 1639	118 117 117
1410.0	923	2909.8	1299.7	44.7	700	5.94	1748	121
1420.0	938	2872.3	1342.6	46.7	735	6.24	1805	123
1430.0	950	2843.6	1374.7	48.3	762	6.46	1849	124
1440.0	597	1041.7	542.6	52.1	189	1.60	730	78
1450.0	594	1021.6	537.7	52.6	186	1.58	723	78
1460.0	998	2860.6	1519.8	53.1	885	7.51	2044	131
1470.0	1005	2694.0	1538.5	57.1	902	7.65	2069	131
1480.0	862	2892.0	1132.6	39.2	570	4.83	1523	113
1490.0	876	2898.1	1169.6	40.4	598	5.07	1573	115
1500.0	873	2866.4	1163.0	40.6	593	5.03	1564	114
1510.0	878	2913.6	1175.6	40.3	602	5.11	1581	115
1520.0 1530.0	877 874	2881.2 2879.2	1172.9	40.7 40.5	600 594	5.09	1577 1567	115
1540.0	874	2904.1	1164.5	40.1	594	5.04	1566	114
1550.0	875	2879.9	1167.8	40.6	596	5.06	1570	115
1560.0	876	2897.9	1169.8	40.4	598	5.07	1573	115
1570.0	874	2895.3	1164.5	40.2	594	5.04	1566	114
1580.0	873	2870.7	1162.5	40.5	592	5.03	1563	114
1590.0	8 7 5	2901.9	1168.0	40.2	596		1571	115
1600.0	872	2913.8	1160.2	39.8	591	5.01	1560	114
1610.0	872	2880.3		40.3	590	5.01	1560	114
1620.0	879	2941.3	1178.1	40.1	604	5.13	158 4	115
1630.0	880	2949.3	1181.9	40.1	607	5.15	158 9	115
1640.0	877	2922.7	1159.5	39.7	593	5.03	1559	115
1650.0	877	2915.8	1159.4	39.8	593	5.03	1559	115
1660.0	877	2932.9	1159.3	39.5	593	5.03	1559	115
1670.0	872	2900.2	1145.5	39.5	582	4.94	1540	114
1680.0	878	2942.7		39.5	596	5.05	1563	115
1690.0	871	2913.2	1144.8	39.3	582	4.94	1539	114
1700.0	865	2886.7	1127.1	39.0	568	4.82	1516	113
1710.0 1720.0 1730.0	865 863 859	2897.2 2898.5 2893.8	1127.6 1123.3 1113.6	38.9 38.8 38.5	569 566 558	4.83 4.80 4.74	1516 1510 1497	113 113
1740.0	862	2928.8	1119.3	38.2	563	4.77	1505	112

· ••

DEPTH	FLOW RATE	PSP	PBIT	%P SP	ННР	HHP/ sain	IMPACT FORCE	VELOCITY JET
1750.0	864	2946.0	1124.7	38.2	567	4.81	1512	113
1760.0	857	2907.0	1106.5	38.1	553	4.69	1488	112
1770.0	862	2925.3	1120.6	38.3	564	4.78	1507	113
1780.0	859	2920.7	1112.1	38.1	557	4.73	1495	112
1790.0	857	2928,9	1106.8	37.8	553	4.69	1488	112
1800.0	854	2900.0	1099.0	37.9	547	4,64	1478	112
1810.0	860	2960.9	1115.1	37.7	559	4.75	1499	113
1820.0	858	2928.7	1111.1	37.9	556	4.72	1494	112
1830.0	856	2940.5	1105.5	37.6	552	4.69	1487	112
1840.0	851	2910.3	1090.8	37.5	541	4.59	1467	111
1850.0	852	2935.6	1094.0	37.3	544	4.61	1471	111
1858.4	773	2428.8	902.0	37.1	407	3.45	1213	101

HTC J1 SIZE 12.250 NOZZLES 18 18 18 COST 2694.00 TRIP TIME 3.8 BIT RUN 560.0 TOTAL HOURS 18.58 TOTAL TURNS 167237 CONDITION T5 B8 G0,000 FLOW HHP / IMPACT JET DEPTH psp RATE PRIT XP SP HHP FORCE VELOCITY sain 848 2975.3 1860.0 1085.0 36.5 4.56 537 1459 111 1870.0 844 1075.0 37.5 2868.8 530 4.49 1446 110 1880.0 855 2929.3 1101,2 37.6 549 4.66 1481 112 1890.0 851 2959.7 1093.2 36.9 543 1470 4.61 111 1900.0 2988.4 36.1 1453 846 1080,3 533 4.53 111 1910.0 855 2963.8 1101.6 37.2 549 4.66 1481 112 2957.1 859 1920.0 37.7 558 1113.4 1497 4.74 112 1930.0 854 2961.8 1099.4 548 4.65 37.1 1478 112 1940.0 845 2944.9 1077.1 36.6 531 4,51 1448 111 1950.0 843 2868.7 1072.8 37.4 528 4,48 1443 110 1960.0 852 2934,8 1094.2 37.3 544 4.61 1471 111 1970.0 835 2862.8 1050.5 36.7 512 4.34 1413 109 1980.0 838 2852.8 1059.6 37.1 518 4,40 1425 110 1990.0 2901,3 836 1054.1 514 4.36 36.3 1417 109 2000.0 834 2904.4 1048.0 36.1 510 4.33 1409 109 2010.0 842 2899,4 1067.9 36.8 524 4,45 1436 111 2020.0 838 2875.5 1059.1 36.8 518 4.39 1424 110 839 2890.4 2030.0 1060.6 36.7 519 4.40 1426 110 2891.3 2040.0 838 1057.8 36.6 517 4.39 1422 110 2903.8 2050.0 836 1053.7 36,3 514 4.36 1417 109 2060.0 2949,4 35.9 838 1058.1 517 4.39 1423 110 2070.0 2849.9 35.7 821 1016.7 487 1367 4.13 107 2080.0 836 2912,9 1053.0 36.1 513 4,36 1416 109 2090.0 833 2957.6 1046.5 509 35,4 4.32 1407 109 2100.0 823 2906.8 1020.8 35.1 490 4.16 1373 108 2110.0 823 2889,2 1020.6 35.3 490 4,16 1372 108 2120.0 829 2911.9 1037.3 35.6 502 4.26 1395 109 2130.0 2914,2 823 1020.7 35.0 490 4.16 1373 108 2953.1 2140.0 820 1014.1 34.3 485 4.12 107 1364 997.0 2150.0 2905.5 813 34.3 473 4.01 1341 106 2160.0 816 2916.6 1004.9 34.5 479 4,06 1351 107 975.8 2170.0 804 2892.5 33.7 458 3,89 1312 105 976.4 2180.0 805 2926.0 33,4 458 3,89 1313 105 2190.0 800 2888,6 965.5 33.4 451 3,82 1298 105 805 2874.0 2200.0 976.5 34.0 458 3,89 1313 105 2210.0 809 2900.0 986,2 34.0 465 3,95 1326 106 2220.0 808 2904.0 995.2 34,3 469 3.98 1338 106 2230.0 800 2906.5 974.9 33.5 455 3.86 1311 105 987.8 805 2893.2 2240,0 34.1 464 3.94 1328 105 2250.0 796 2900.7 965.1 33.3 448 3.80 1298 104 2260.0 801 2901,2 978.2 33,7 457 3.88 1315 105 2270.0 805 2945.0 987,1 33.5 3.93 1327 463 105 2280,0 797 969.0 2965.8 32.7 451 3.82 1303 104

BIT NUMBER

3

IADC CODE

116

INTERVAL

1858.0- 2418.0

DEPTH	FLOW	PSP	PBIT	%PSP	ННР	HHP/ sain	IMPACT FORCE	JET VELOCITY
2290.0 2300.0 2310.0 2320.0 2330.0 2340.0 2350.0 2360.0 2370.0 2380.0	799 796 788 789 789 785 792 674 794 771	2971.4 2934.1 2939.5 2965.8 2934.8 2970.0 2155.2 3003.4 2874.7	972.1 966.0 947.8 946.4 949.2 939.8 955.8 693.4 970.4	32.7 32.7 32.3 32.2 32.0 32.0 32.2 32.2 32.3	453 449 436 435 437 430 442 273 449 413	3.84 3.81 3.70 3.69 3.71 3.65 3.75 2.31 3.81 3.50	1307 1299 1275 1273 1276 1264 1265 1305 1233	104 104 103 103 103 104 88 104 104
2390.0 2400.0 2410.0 2418.0	778 778 775 765	2899.2 2895.1 2900.0 2876.0	933.5 931.8 924.9 901.1	32.2 32.2 31.9 31.3	424 423 418 402	3.60 3.59 3.55 3.41	1255 1253 1244 1212	102 102 101 100
BIT NUMBER HTC J22 COST TOTAL HOURS	8516 3 26	.00 TI	ADC CODE IZE RIP TIME DTAL TURNS	517 12.250 4.7 102049	NOZ: BIT	ERVAL ZLES RUN DITION		- 2671.0 18 18 18 253.0 2 G0.125
DEPTH	FLOW RATE	PSP	PBIT	%PSP	ннр	HHP/ sqin	IMPACT FORCE	JET VELOCITY
2420.0 2430.0 2440.0 2450.0 2460.0 2470.0 2500.0 2500.0	747 694 766 769 762 765 765 764 764	2868.3 2405.0 2912.1 2902.6 2835.0 2896.0 2877.0 2885.7 2874.4 2936.9	856.2 738.0 899.4 905.6 890.0 901.1 897.4 894.1 894.8 918.2	29.8 30.7 30.9 31.2 31.4 31.1 31.1 31.3	373 299 402 406 396 402 401 398 399 415	3.17 2.53 3.41 3.45 3.36 3.41 3.40 3.38 3.38 3.52	1151 992 1209 1218 1197 1212 1207 1207 1203 1235	98 91 100 101 100 100 100 100
2520.0 2530.0 2540.0 2550.0 2560.0 2570.0	773 773 772 655 779 778	2924.2 2945.4 2931.5 2106.4 2966.2 2956.3	931.1 931.6 927.7 668.9 944.1 941.8	31.8 31.6 31.6 31.8 31.8 31.9	420 420 418 256 429 427	3.56 3.57 3.54 2.17 3.64 3.63	1252 1253 1247 899 1270 1266	101 101 101 86 102 102
2580.0 2590.0 2600.0 2610.0 2620.0 2630.0 2640.0 2650.0 2670.0	761 776 772 771 771 774 615 831 650 709	2846.8 2943.0 2903.6 2906.7 2898.0 2927.6 1884.7 1735.5 2288.3 2971.9	902.2 938.1 927.3 925.5 925.3 932.9 586.7 1064.0 651.8 773.9	31.7 31.9 31.8 31.9 31.9 31.9 31.1 61.3 28.5 26.0	401 425 417 416 416 421 210 516 247 320	3.40 3.54 3.53 3.53 3.57 1.79 4.38 2.71	1213 1261 1247 1245 1244 1255 789 1431 876 1041	100 102 101 101 101 101 80 109 85 93

DEPTH	RATE	PSP	PRIT	%PSP	ННР		IMPACT FORCE	JET VELOCITY
2671.0	708	2928.2	772.2	26.4	319	2.71	1038	93

(f). COMPUTER DATA LISTING : LIST D

INTERVAL .	•			•		10m averages.
DEPTH		,	1	,	• :	Well depth, in metres.
SPM1			,		• ,	Stroke rate per minute, for Pump no.1
SPM2		ı				Stroke rate per minute, for Pump no.2.
FLOW RATE		•			•	Mud flow rate into the well, in gallons per minute.

ANNULAR VELOCITIES: (in metres per minute)

DC/OH - Between drill collars and the open hole.

DC/CSG - Between drill collars and casing.

HW/OH - Between heavyweight drill pipe and the open hole.

HW/CSG - Between heavyweight drill pipe and casing.

DP/OH - Between drill pipe and open hole.

DP/CSG - Between drill pipe and casing.

DP/RIS - Between drill pipe and riser.

BIT NUMBER HTC OSC3AJ COST TOTAL HOUR	0 . 00 OH" 65+	SIZ TRI	C CODE E P TIME AL TURN	26	111 .000 2.5 7844	INTER NOZZL BIT R CONDI	.ES :UN	86. T3		0 20 37.0
DEPTH	SPM1 S		FLOW RATE	DC/ OH	DC/ DC/		HW/ CSG		DP/ CSG	DP/ RIS
90.0 100.0 110.0	89	91 84 101	898 863 984	11 11 12		10 10 11				
120.0 130.0 140.0 150.0 150.0 170.0 180.0 190.0 200.0	99 96 99 101 101 101	104 102 105 104 102 101	1005 1016 989 1018 1024 1019 1018 1018 1007	12 12 12 13 13 12 12 12		12 12 12 12 12 12 12 12		12 12 12 12		
220.0 223.0			1020 1020	12 12		12 12		12 12		
BIT NUMBER HTC OSC3AJ COST TOTAL HOUR	4857.00	SIZ TRI	C CODE E P TIME AL TURN		3.7	NOZZI. BIT F			.0- 8 20 2 5 B0 G0	0 16 93.0
DEPTH	SPM1 S			DC/ OH	DC/	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
230.0 240.0 250.0 260.0 270.0 280.0 290.0 300.0	100 86 74 71 65 100 101	102 102 95 98 103 95 100	1009 939 846 846 837 976 1006 980	31 29 26 26 26 30 31 30	25 23 21 21 21 24 25 24		22 21 19 19 18 21 22 21			18 17 15 15 15 18 18
310.0 320.0 330.0 340.0 350.0 360.0 370.0 380.0 390.0	99 101 102 98 103 102 103 101 101	101 102 102 97 103 101 101 99 100	1000 1014 1017 975 1029 1013 1019 1000 1000	31 31 30 32 31 31 31 31	25 25 25 24	27 27 27 27 27 27 27	22 22 21 23 22 22 22 22		22 22 22 22 22 22 22 22 22 22 22	18 18 18 18 18 18 18

The state of the s

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	√9 α H0	DP/ CSG	DP/ RIS
27 1 1 1 1 1	W 111	W1 115	13 17 1 1	2011	C-1313	On	Cats	Un	Lab	C J. 78
410.0	101	100	1005	31		27	22		22	18
420.0	101	101	1010	31		27	22		22	18
430.0	101	99	1000	31		27	22		22	18
440.0	100	100	998	31		27		27	22	18
450.0	101	100	1008	31		27		27	22	18
460.0	102	100	1009	31		27		27	22	18
470.0	101	101	1009	31		27		27	52	18
480.0	100	100	1001	31		27		27	22	18
490.0	101	101	1012	31		27		27	22	18
500.0	100	100	1001	31		27		27	22	18
520.0	96	101	985	30		26		26	22	18
530.0	102	102	1020	31		27		27	22	18
540,0	101	101	1011	31		27		27	22	18
550.0	103	98	1001	31		27		27	22	18
560.0	103	98	1000	31		27		27	22	18
570.0	99	102	1005	31		27		27	22	18
580.0	99	101	1001	31		27		27	22	18
590.0	102	101	1014	31		27		27	22	18
600.0	98	100	990	31		26		26	22	18
610.0	99	100	996	31		26		26	22	18
620.0	103	101	1020	31		27		27	22	18
630.0	101	100	1004	31		27		27	22	18
640.0	98	100	992	31		26		26	22	18
650.0	101	100	1006	31		27		27	22	18
660,0	99	100	993	31		26		26	22	18
670.0	99	100	995	31		26		26	22	18
680.0	101	100	1004	31		27		27	22	18
690.0	101	100	1007	31		27		27	22	18
700.0	102	101	1013	31		27		27	22	18
710.0	100	101	1004	31		27		27	22	18
720.0	101	101	1013	31		27		27	22	18
730.0	100	99	997	31		26		26	22	18
740.0	101	100	1000	31		27		27	22	18
750.0	101	100	1006	31		27		27	22	18
760.0	101	101	1010	31		27		27	22	18
770.0	101	100	1002	31		27		27	22	18
780.0	100	100	1000	31		27		27	22	18
790.0	101	101	1008	31		27		27	22	18
800.0	100	100	999	31		27		27	22	18
810.0	101	101	1010	31		27		27	22	18
	101	101	1010	31						

.

DEPTH	SPM1	SPM2	FLOW RATE	DC\ DC\	nc. oso	Η₩/ ΟΗ	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
1250.0 1260.0 1270.0 1280.0 1290.0 1310.0 1310.0 1320.0 1330.0	118 92 89 89 124 88 89 90 89	0 89 92 92 0 93 92 90 91	589 905 906 907 621 903 899 906 899	49 777 75 777 777 777 777		35 54 54 54 54 54 54 54		35 54 54 57 54 54 54 54 54 54 54 54 54 54 54 54 54	33 50 51 35 50 50 50	11 16 16 16 11 16 16 16
1350.0 1360.0 1370.0 1380.0 1390.0 1400.0 1410.0 1420.0 1430.0	89 89 89 88 89 92 93 119	92 92 91 91 90 93 95 95	905 900 896 898 892 894 923 938 950	75 75 74 75 77 77 78 79 50		54 54 54 55 55 55 57 6		54 54 54 55 55 55 57 67 67	50 50 50 50 51 52 53	16 16 16 16 16 17 17
1450.0 1460.0 1470.0 1480.0 1490.0 1500.0 1510.0 1520.0 1530.0	119 99 99 87 89 88 88 88	0 100 102 86 86 87 87 87 87	594 998 1005 862 876 873 878 877 874	49 83 72 73 73 73 73 73		35 60 60 52 52 52 52 52		35 60 52 52 52 52 52 52	33 56 48 49 49 49 49	11 18 18 15 16 16 16 16
1550.0 1560.0 1570.0 1580.0 1590.0 1600.0 1610.0 1620.0 1630.0	89 88 87 87 88 87 88 89 88	86 87 87 87 87 86 87 88	875 876 874 873 875 872 879 887	73 73 73 73 73 72 72 73 73		52 52 52 52 52 53 53 53 53		52255255555555555555555555555555555555	49 49 49 49 49 49 49	16 16 16 16 16 16 16
1650.0 1660.0 1670.0 1680.0 1690.0 1700.0 1710.0 1720.0 1730.0	89 89 89 89 88 88 88 87 88	86 87 85 85 85 85 84 85	877 877 872 878 871 865 865 863 859 862	73 72 72 72 72 72 72 72 72		52 52 52 52 52 52 51 51		52 52 52 52 52 52 52 51 51	49 49 49 49 48 48 48	16 16 16 16 16 16 16 15

DEPTH	SPMI	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP / OH	DP/ CSG	DP/ RIS
1750.0	88	85	864	72		52		52	48	1.5
1760.0	86	85	857	71		51		51	48	15
1770.0	87	85	862	72		52		52	48	15
1780.0	88	84	859	71		51		51	48	15
1790.0	88	84	857	71		51		51	48	15
1800.0	87	84	854	71		51		51	48	15
1810.0	88	84	860	71		51		51	48	15
1820.0	87	84	858	71		51		51	48	15
1830.0	89	82	856	71		51		51	48	15
1840.0	89	81	851	71		51		51	47	15
1850.0	87	83	852	71		51		51	47	15
1858.4	75	79	773	64		46		46	43	14

BIT NUMBER HTC J1	;	3	IADC CODE SIZE		116 2.250		ERVAL ZLES	1856	3.0- 24 18 1	18.0 8 18
COST	2694.0		TRIP TIME		3.8		RUN			560.0
TOTAL HOURS	18.5	8	TOTAL TUR	NS 16	57237	CONI	NOITIC	T	B8 G(000,
DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ OH	DP/ CSG	DP/ RIS
1860.0	84	85 84	848	70		51 = 0		51	47	15
1870.0 1880.0	85 88	83	844 855	70 71		50 51		50 51	47 48	15 15
1890.0	88	82	851	71		51		51	47	15
1900.0 1910.0	87 89	82 82	846 855	フ0 フ1		51 51		51 51	47 48	15 15
1920.0	90	82	859	71		51		51	48	15
1930.0	88	83	854	71		51		51	48	15
1940.0	87	82	845	70		51		51	47	15
1950.0	86	82 82	843 852	70 71		50 51		50 51	47 47	15 15
1960.0 1970.0	88 84	83	835	7) 69		50		50	47	15
1980.0	84	83	838	70		50		50	47	15
1990.0	84	83	836	69		50 EA		50	47	15
2000.0 2010.0	84 85	83 83	834 842	69 70		50 50		50 50	46 47	15 15
2020.0	84	84	838	70		50		50	47	15
2030.0	84	84	839	70		50		50	47	15
2040.0	84	83	838	70		50		50	47	15
2050.0 2060.0	84 85	83 83	836 838	69 70		50 50		50 50	47 47	15 15
2070.0	83	81	821	68		49		49	46	15
2080.0	84	83	836	69		50		50	47	15
2090.0	84	83	833	69 40		50		50	46	15 15
2100.0 2110.0	85 84	80 81	823 823	68 68		49 4 9		49 49	46 46	15
2120.0	84	82	829	69		50		50	46	15
2130.0	84	80	823	68		49		49	46	15
2140.0	84	80	820	68		49		49	46	15
2150.0 2160.0	83 83	80 80	813 816	68 68		49 49		49 49	45 45	15 15
2170.0	82	79	804	67		48		48	45	14
2180.0	79	82	805	67		48		48	45	14
2190.0	79 79	81 82	800 805	66 67		48 48		48 48	45 45	14 14
2200.0 2210.0	77 81	81	809	67 67		48		48	45 45	15
2220.0	80	81	808	67		48		48	45	15
2230.0	78	82	800	66		48		48	45	14
2240.0	80	81	805	67		48		48	45	14
2250.0 2260.0	79 79	80 81	796 801	66 67		48 48		48 48	44 45	14 14
2270.0	79 79	82		67		48		48	45	14
2280.0	79	81	797	66		48		48	44	14

DEPTH	SPM1	SPM2	FLOW RATE	DC/ OH	DC/ CSG	HW/ OH	HW/ CSG	DP/ HO	DP/ CSG	DP/ RIS
2290.0 2300.0 2310.0	79 78 78	80 81 80	799 796 788	66 66 65		48 48 47		48 48 47	44 44 44	14 14 14
2320.0 2330.0 2340.0	78 78 78	79 80 79	788 789 785	65 66 65		47 47 47		47 47 47	44 44 44	14 14 14
2350.0 2360.0 2370.0	78 82 80	80 53 79	792 674 794	66 56 66		47 40 47		47 40 47	4 4 38 4 4	14 12 14
2380.0	74	80	771	64		46		46	43	14
2390.0 2400.0 2410.0 2418.0	75 75 75 75 75	80 80 80 78	778 778 775 765	65 65 64 64		47 46 46 46		47 46 46 46	43 43 43 43	14 14 14 14
BIT NUMBER HTC J22 COST TOTAL HOUR	8516 S 26	. 0 0	IADC CODE SIZE TRIP TIME TOTAL TUR	1 7	517 2.250 4.7 02049	NOZZ BIT	ERVAL ZLES RUN DITION			18 18 253.0
			FLOW	DC/	DCZ	HW/	HW/	DP/	DP/	DP7
DEPTH	SPM1	SPM2	RATE	OH	ČSG	HO	csc	ОН	CSG	RIS
2420.0 2430.0	74 69	76 70	747 694	62 58		45 41		45 41	42 39	13 12
2440.0 2450.0	76 76	77 78	766 769	64 64		46 46		46 46	43 43	14 14
2450.0 2470.0	76 76	76 77	762 765	63 64		46 46		46 46	42 43	14
2480.0 2490.0	76 75	77 77	765 764	64 63		46 46		46 46	43 43	14 14
2500.0 2510.0	75 75	78 79	764 774	63 64		46 46		46 46	43 43	14 14
2520.0 2530.0	75 75	79 79	773 773	64 64		46 46		46 46	43 43	14 14
2540.0 2550.0	75 33	79 98	772 655	64 54		46 39		46 39	43 37	14 12
2560.0 2570.0	76 76	80 79	779 778	65 65		47 46		47 46	43 43	14
2580.0 2590.0	74 75	78 80	761 776	63 64		45 46		45 46	42 43	14
2600.0 2610.0	75 76	79 79	772 771	64 64		46 46		46 46	43 43	14
2620.0 2630.0	76 76	78 79	771 774	64 64		46 46		46 46	43 43	14 14
2640.0 2650.0	64 81	59 85	615 831	51 69		37 50		37 50	34 46	11 15
2660.0 2670.0	48 73	82 69	650 709	54 59		39 42		39 42	36 39	12 13

DEPTH	SPM1	SPM2	FLOW RATE					
2671.0	73	68	708	59	42	42	39	13

This is an enclosure indicator page. The enclosure PE603887 is enclosed within the container PE905502 at this location in this document.

The enclosure PE603887 has the following characteristics:

ITEM_BARCODE = PE603887
CONTAINER_BARCODE = PE905502

NAME = Temperature Plot

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = TemperaturePlot for West Fortescue-1

REMARKS =

DATE_CREATED = 10/05/84 DATE_RECEIVED = 29/08/84

 $W_NO = W886$

WELL_NAME = WEST FORTESCUE-1
CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603888 is enclosed within the container PE905502 at this location in this document.

The enclosure PE603888 has the following characteristics:

ITEM_BARCODE = PE603888
CONTAINER_BARCODE = PE905502

NAME = Drill Data Plot

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Drill Data Plot from West Fortescue-1

REMARKS =

DATE_CREATED = 10/05/84 DATE_RECEIVED = 29/08/84

 $W_NO = W886$

WELL_NAME = WEST FORTESCUE-1
CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603889 is enclosed within the container PE905502 at this location in this document.

The enclosure PE603889 has the following characteristics:

ITEM_BARCODE = PE603889
CONTAINER_BARCODE = PE905502

NAME = Pressure Plot

BASIN = GIPPSLAND

PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Pressure Plot for West Fortescue-1

REMARKS =

 $DATE_CREATED = 10/05/84$

DATE_RECEIVED = 29/08/84

 $W_NO = W886$

WELL_NAME = WEST FORTESCUE-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603890 is enclosed within the container PE905502 at this location in this document.

The enclosure PE603890 has the following characteristics:

ITEM_BARCODE = PE603890

CONTAINER_BARCODE = PE905502

NAME = Geo-plot

BASIN = GIPPSLAND PERMIT = VIC/P1

TYPE = WELL

SUBTYPE = WELL_LOG

DESCRIPTION = Geo-plot for West Fortescue-1

REMARKS =

 $DATE_CREATED = 10/05/84$

 $DATE_RECEIVED = 29/08/84$

 $W_NO = W886$

WELL_NAME = WEST FORTESCUE-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE603891 is enclosed within the container PE905502 at this location in this document.

The enclosure PE603891 has the following characteristics:

ITEM_BARCODE = PE603891

CONTAINER_BARCODE = PE905502

NAME = Grapholog

BASIN = GIPPSLAND

PERMIT = VIC/P1 TYPE = WELL

SUBTYPE = MUD_LOG

DESCRIPTION = Grapholog for West Fortescue-1

REMARKS =

 $DATE_CREATED = 10/05/84$

 $DATE_RECEIVED = 29/08/84$

 $W_NO = W886$

WELL_NAME = WEST FORTESCUE-1

CONTRACTOR = CORE LABORATORIES

CLIENT_OP_CO = ESSO AUSTRALIA LIMITED