

WCR (vol. 1) Kipper - I (W930)

독신 것 더 이름다 달려 가가소, 그는 이가는 말가 하려고 가려졌다. (1994년 - 1995년 - 종일 종립종 김종(종) 등

138 pages. 8 ENCLOSURES PHIMOLOGICAL (FTF 5 PAGE

WELL COMPLETION REPORT KIPPER-1 W930 VOLUME I BASIC DATA 13 AUG 1986 PETROLEUM DIVISION

GIPPSLAND BASIN VICTORIA

ESSO AUSTRALIA LIMITED

Compiled by: M.E.FITTALL

1

· ۲

JULY.1986

WELL COMPLETION REPORT

VOLUME 1

CONTENTS

- 2. Operations Summary
- 3. Casing Data
- 4. Cement Data
- 5. Samples, Conventional Cores, Sidewall Cores
- 6. Wireline Logs and Surveys
- 7. Summary of Formation Test Programme
- 8. Temperature Record

FIGURES

- 2. Well Progress Curve
- 3. Well Bore Schematic
- 4. Abandonment Schematic
- 5. Horner Temperature Plot Suite 2
- 6. Horner Temperature Plot Suite 3

APPENDICES

- 1. Lithological Descriptions
- 2. Core Descriptions
- 3. Sidewall Core Descriptions
- 4. RFT Results
- 5. Production Test Data
- 6. Velocity Survey Report

ENCLOSURES

2307L/49

PE 6033999 CHECKSHOT DATA SYNDIEDE SEISMOGRAM PE 603400 PE 603401 SEISMIC CALIBRATION LOG MAE- DEPTH CURVE PE 9 06045 PE 906046 ** •• PE 906047 PALYNOLOLY 1 04 3 PE 90 6048 ۰. 2 0:5 3 0:5 3 3 PE 906049 ..

ESSO AUSTRALIA LTD

2/

COMPLETION REPORT

1. WELL DATA		
<u>WELL</u>	:	KIPPER-1
LOCATION	:	Latitude : 380 10' 35.855"S. Longitude : 148 ⁰ 35' 46.777"E. X = 639821.23ME Y = 5,773,368.93MN Map Projection: UTM AMG Zone 55 CM 147 ⁰ E. Geographical Location: Bass Strait, Victoria Field: Kipper.
PERMIT	:	Vic/Pl9
ELEVATION	•	21MKB
WATER DEPTH	:	94m
TOTAL DEPTH	:	2875т КВ
PLUG BACK TYPE	•	Cement Plug.
REASONS FOR PLUGGING BACK	:	Plug and Abandon.
MOVE IN	:	5th March 1986 ·
SPUDDED	:	5th March 1986
REACHED T.D.	:	28th March 1986
RIG RELEASED	:	llth April 1986
OPERATOR	:	Esso Exploration and Production Australia Inc.
PERMITTEE OR LICENCEE	:	Shell Development (Australia); The News Corporation Limited; TNT Management Pty Ltd; Crusader (Victoria) Pty Ltd; and Mincorp Offshore Pty Ltd.
ESSO INTEREST	:	25%.
OTHER INTEREST	:	BHP Petroleum (Australia) Pty Ltd: 25%; Shell Development (Australia) 20%; The News Corporation Limited: 10%; TNT Management Pty Ltd: 10%; Crusader (Victoria) Pty Ltd: 7.5%; Mincorp Offshore Pty Ltd: 2.5%.
CONTRACTOR	:	South Seas Drilling Company.
RIG NAME	:	Southern Cross.
EQUIPMENT TYPE	•	Semi Submersible.
TOTAL RIG DAYS	:	38.
DRILLING AFE NO.	:	236176; Production Test AFE No. 236177.
TYPE COMPLETION	:	Plug and Abandonment.
WELL CLASSIFICATION	:	Before Drilling New Field Wildcat After Drilling New Field Discovery

2307L/50

۲

Ì

OPERATIONS SUMMARY

KIPPER-1

Moving/Mooring

Under tow by the Lady Sally, the Southern Cross departed the Leatherjacket-1 location at 1345 hours on March 4, 1986 and arrived at the Kipper-1 location at 1630 hours the same day. The 10 nautical mile tow was completed in 2.75 hours at an average speed of 3.6 knots. Anchor No. 8 was dropped by the rig on approach to the locations. The remaining seven anchors were run by the Torrens Tide and Lady Sally in a record 4.75 hours. All anchors were pretensioned to 200 kips.

The final rig location was:

Latitude	:	38° 10' 35.86" S
Longitude	:	148° 35' 46.78" E
Х	=	639,821m E
Y	=	5,773,369m N

AMG Zone 55, Universal Transverse Mercator Projection, Australian Geodetic Datum.

The rig was located 7.38m at 293° from the called location and approximately 67 km at 120° from Lakes Entrance, Victoria.

Drill 26" Hole for 20" Casing

The drilling template was run and landed at a seafloor depth of 115m. The 26" hole was drilled to 256m using seawater and high viscosity gel slugs to clean the hole. A wiper trip was made to the seafloor and the hole was displaced with 350 bbls of high viscosity gel mud. The 20" casing was run and cemented with the casing shoe at 238m. The BOP stack was run and the collet connector and casing were tested to 500 psi against the shear rams.

Drill 17-1/2" Hole for 13-3/8" Casing

The cement and 20" casing shoe were drilled and the 17-1/2" hole drilled to 846m using a seawater/gel mud system. After a wiper trip to the shoe, the sonic log was run to the well TD. Poor weather conditions prevented the running of the 13-3/8" casing for 8/75 hours. Another wiper trip was performed before the 13-3/8" casing was run and cemented at 830m.

Drill 12-1/4" Hole to 2875m

The 13-3/8" casing float collar and cement were drilled out to 825m before the casing was tested to 1500 psi. The remaining cement, shoe and 6m of new hole were drilled before a Phase II PIT was run to 1100 psi, indicating a leak off of 16.8 ppg EMW. The 12-1/4" hole was drilled to 2875m, 754m deeper than the original programmed depth. The mud weight remained at 9.2 ppg to a depth of 1730m, where it was increased to 9.6 ppg because of a predicted 165m closure at 1883m. Six plastic sleeve cores were cut in Latrobe and intra-Latrobe sands in the interval of 1427.5m to 1871m.

Beneath an unpredicted 96m volcanic section from 1893m to 1989m, a thick gas sand was penetrated with the 9.7 ppg mud. During a wiper trip at 2140m, gas was swabbed into the wellbore. The gas influx was circulated out without difficulties. The mud weight was raised to 10.5 ppg prior to running intermediate logs. An RFT pretest gave a 9.7 ppg EMW pore pressure at the top of the gas sand. The mudweight remained at 10.3 to 10.5 ppg until the well reached TD at 2875m. During TD logging an RFT pretest at 2845m gave a pore pressure of 9.8 ppg EMW. This sand is thought to be abnormally pressured. After logs, 9-5/8" casing was run to 2861m for the one production test. Below the Top of Latrobe, the hole showed little washout and averaged 12-3/4" diameter to TD. No unusual hole problems were encountered during the well.

Plug and Abandonment

After the test zone was abandoned, the 9-5/8" casing was cut with a Pengo cutter at 370m. The 4 joints of 10-3/4" casing and 9-5/8" casing stub were retrieved with a casing spear. A cement plug was set from 420m to 329m across the 9-5/8" casing stub. The plug was tagged with a junk basket and pressure tested to 1500 psi. A 13-3/8" bridge plug was set at 300m, just above the cement plug.

The 13-3/8" casing was cut at 220m with a Pengo cutter and retrieved with a spear. A cement plug was set from 255m to 150m across the 13-3/8" casing cut. The plug was pressure tested to 500 psi and the BOP stack was pulled. A 3.9kg explosive charge was run on drillpipe below the wellhead running tool and severed the 20" casing at 127m. The pile joint assembly, template and four post guidebase were retrieved with the running tool.

Pull Anchors

After the rig waited on workboats for 20 hours, the Swan Tide and Lady Caroline pulled all anchors in 17-1/2 hours. The Kipper-1 well was completed at 2400 hours on April 11, 1986. All Esso and 3rd party personnel departed the rig before the Lady Caroline began towing the rig to Eden for demobilization.

Rig Demobilization

The Southern Cross was towed to Twofold Bay at Eden, NSW by the Lady Caroline in 31.5 hours. The rig arrived on location at 0730 hours on April 13, 1986 after the 128 nautical mile tow. The No. 1 anchor was dropped by the rig while the remaining seven anchors were run by the Swan Tide and Lady Caroline.

Both boats were backloaded with all remaining Esso and third party contractor equipment except for the diving gear. The two workboats then returned to BBMT. The diving equipment was removed from the cellar deck and placed on the rig Texas deck for backloading. Deep swells delayed the movement of the gear to and from the rig.

South Seas' rig equipment which had been stored at BBMT was transported to Eden by truck. This gear was loaded onto an Esso leased barge at Eden and offloaded on the rig once the swells subsided. The diving equipment was backloaded to the barge for truck transportation back to BBMT and Sale. The rig was released from Esso's service at 1500 hours on 21 April, 1986. Total time for the rig demobilization was 9.62 days of which 4.81 days were lost due to waiting on weather.

2191L/70-71

KIPPER 1 CASING DATA

CSG O.D. in.	CSG WT. ppf	CSG GRADE	CSG Conn.	CSG LGTH mtrs.	CENTRALIZER POSITION.	SHOE DPTH mRKB	REMARKS
20	94	X-52	JV	13.24		238	Float Shoe Jnt
20	94	X-52	JV	88.26			7 Jnts
, 20	129	K-55	JV/CC	13.24			Crossover Jnt
24	670		CC	11.00			Wellhead No. EP2-1-2-3
13-3/8	54.5	K-55	Butt.	12.70	-	830	Float Shoe Jnt.
13-3/8	54.5	K-55	Butt.	11.70	One Above Float Collar	806	Float Collar Jnt.
13-3/8	54.5	K-55	Butt.	693.90	Across Collars on First 7 Jnts		57 Jnts.
13-3/8			Butt.	0.72	· · · ·		Hanger No. EHW36. Seal Assy No. ESW35.
9-5/8	47.0	N-80	Butt.	11.63	Middle of Jnt.	2,861	Float Shoe Jnt.
9-5/8	47.0	N-80	Butt.	12.13	Above Float Collar	2,837	Float Collar Jnt With Baffle Plate In Collar.
9-5/8	47.0	N-80	Butt.	826.67	Across Collars On First 3 Jnts.		71 Jnts.

 $\sqrt{\sigma}$

3.

.

.

KIPPER 1 CASING DATA

CSG O.D. in.	CSG WT. ppf	CSG GRADE	CSG Conn.	CSG LGTH mtrs.	CENTRALIZER POSITION.	SHOE DPTH mRKB	REMARKS
9-5/8	47.0	N-80	Butt.	2.90	Across 3 Collars b/n 2150-1900m.	2,011	Pup Jnt.
9-5/8	47.0	N-80	Butt.	152.22			13 Jnts.
9-5/8			Butt.	0.91	Across 3 Collars above & below.	1,856	Stage Collar.
9-5/8	47.0	N-80	Butt.	1,696.64			145 Jnts.
10-3/4	51.0	N-80	Butt.	0.71			9-5/8"x10-3/4" Csg Swedge.
10-3/4	51.0	N-80	Butt.	46.84	•		4 Jnts.
10-3/4			Butt.	0.71			Hanger.

;

б

KIPPER 1 CEMENT DATA

CEMENT JOB Type	CEMENT TOP mRKB	CEMENT BTM mRKB	CEMENT ADDITIVES	CEMENT Volume sxs	CE MEN T Weight Ppg	REMARKS
20" Csg.	115	163	2.2% gel w/ 182bbls Seawater	750	12.8	Lead slurry.
20" Csg.	163	238	42bbls Seawater	350	15.8	Tail slurry.
13-3/8" Casing	346	830	125 bbls Seawater	1,050	15.8	Displace w/ 358 bbls. Did not bump plug.
9-5/8" Casing	1,897	2,861	1.4% HR6L w/112 bb1s Freshwater	937	15.8	1st. Stage. Bump Plug w/2500 psi.Float Held.
9-5/8" Casing	1,310	1,856	0.6% HR6L w/61 bb1s Freshwater	515	15.8	2nd. Stage. Closed Collar w/1800 psi.
P&A Plug No. 1	1,960	2,020	1.0% HR6L w/12 bb1s Freshwater	100	15.8	Squeezed 6 bbls into Perforations w/3500psi.
P&A Plug No. 2	329	420	10 bbls Seawater	180	15.8	Pressure tested to 1500ps1. Tagged w/Junk Basket.
P&A Plug No. 3	150	255	58 bbls Seawater.	485	15.8	Pressure tested to 500psi.

CLASS 'G' CEMENT USED.

4.

WELL: KIPPER-1

5.

SAMPLES, CONVENTIONAL CORES, SIDEWALL CORES

8/

INTERVAL

TYPE

260-2875m Cuttings samples - 3 sets of washed and oven dried and l set of bagged and air dried cuttings. Sampled from 260-1300m at 10m intervals. Sampled from 1300-1427.5m; 1455.3-1813.2m; 1822.9-1832.2m; and 1851.1-2875m at 5m intervals.

260-2875m Unwashed canned samples for geochemistry, collected at 15m intervals.

1427.5-1436.Om Core No. 1, Plastic sleeve, recovered 100% (9.1m).

1436.0-1445.5m Core No. 2, Plastic sleeve, recovered 100% (9.5m).

1445.5-1455.3m Core No. 3, Plastic sleeve, recovered 91% (8.9m).

1813.2-1822.9m Core No. 4, Plastic sleeve, recovered 76% (7.4m).

1832.2-1841.6m Core No. 5, Plastic sleeve, recovered 91% (8.6m).

1841.6-1851.1m Core No. 6, Plastic sleeve, recovered 100% (9.5m).

1412.5-2862m CST Run 1 shot 60, recovered 47. CST Run 2 shot 51, recovered 45.

2191L/38

WELL: KIPPER-1

6.

7

WIRELINE LOGS AND SURVEYS

9/

Type and	Scale	,	From	To
		<u>Suite 1</u>		
SDT-GR	1:200 1:500		834.8	238m
		Suite 2		
DLTE-MSFL-GR-AMS-SP IN COMBINATION WITH	1:200 1:500		2135	1196
LDTC-CNTH-GR-AMS	1:200 1:500		2128.3	1370m
RFT-HP (PRETESTS) RFT-GR (PRETESTS AND SAMPLES)	RUN 1 RUNS 1-6			
		Suite 3		
DLTE-MSFL-GR-SP	1:200 1:500		2869	1980m
IN COMBINATION WITH LDTC-CNTH-GR	1:200 1:500		2862.8	1980m
SDT-GR IN COMBINATION WITH	1:200 1:500		2860.4	832m
DITE-GR	1:500		2871.5	832m
HDT-GR	1:200		2870.5	1350m
RFT-HP (PRETESTS) RU	N 7			
RFT-GR (PRETESTS + SA	MPLES) RUNS	7-12		
WST-GR (CHECK SHOT SU	RVEY) SHOT]	4 LEVELS	2871	421m
CST-GR RUN 1 SHOT 6 LOST 3	O; MISFIRES •	10; RECOVERED 47;	2862	1412.5m
RUN 2 SHOT 5 LOST 3		3; RECOVERED 45;		

2191L/39

SUMMARY OF WIRELINE FORMATION TEST PROGRAMME - KIPPER-I

RECOVERY (LITRES) TEST & DEPTH FORMATIO						RES) Formation	MUD		T-PACKARD ON PRESSURE		TT-PACKARE ATIC PRESS	-
SEAT NO.	(METRES)	CHAMBER	<u>01L</u>	COND.	GAS	WATER	FILTRATE	MPaa	Psia	MPaa	<u>Psia</u>	REMARKS
	<u>K.B.</u>	Litres	Litres	s Litres	m ³	Litres	Litres					
171	2113.0	Pretest						22.67	3287.8	26.57	3854.0	Valid
1/2	2055.5	Pretest						22.56	3271.5	25.88	3753.7	Valid
/3	2124.0	Pretest						22.68	3289.5	26.73	3876.8	Valid
/4	2117.2	Pretest						22.68	3289.9	26.67	3868.1	Valid
1/5	2028.5	Pretest						22.50	3263.7	25.61	3713.9	Valid
1/6	2006.5	Pretest							-	25.33	3673.9	Seal Failure
1/7	2006.4	Pretest						22.42	3252.1	25.34	3675.1	Terminated Early/Packer Reset
1/8	2006.4	Pretest						22.48	3260.3	25.35	3677.1	Valid
1/9	1992.7	Pretest						22.43	3253.6	25.17	3650.2	Valid
1/10	1890.0	Pretest						18.79	2724.7	23.89	3465.5	Valid
1711	1855.8	Pretest						18.45	2675.3	23,48	3405.2	Valid
1/12	1842.5	Pretest						18.31	2656.1	23.31	3380.7	Valid
1/13	1832.0	Pretest						18.24	2645.3	23.17	3361.1	Valid
1/14	1823.5	Pretest						-	-	23.07	3346.4	Tight – abandoned
1/15	1823.4	Pretest						18.15	2633.0	23.07	3346.3	Valid
1/16	1816.0	Pretest						18.05	2617.5	22.98	3332.9	Valid
1/17	1812.0	Pretest						18.01	2612.1	22.93	3325.3	Valid
1/18	1814.0	Pretest						18.03	2615.2	22.95	3329.2	Valid
1/19	1801.0	Pretest						17.92	2599.6	22.79	3304.8	Valid
1/20	1782.0	Pretest						17.68	2564.8	22.55	3270.5	Valid
1/21	1745.5	Pretest						17.33	2513.2	22.10	3205.2	Valid
1/22	1736.6	Pretest						17.25	2501.7	21.99	3189.2	Valid
1/23	1719.0	Pretest						17.06	2474.4	21.76	3156.2	Valid
/24	1474.9	Pretest						14.60	2117.6	18.70	2712.1	Valid
1/25	1459.3	Pretest						14.46	2097.0	18.51	2684.9	Valid
1/26	1446.5	Pretest						-	-	18.35	2661.8	Tight – Abandoned
1/27	1440.0	Pretest						-	-	18.27	2650.1	Tight – Abandoned
1/28	1437.7	Pretest						14.29	2072.3	18.24	2646.2	Valid
/29	1428.8	Pretest						14.39	2086.8	18.13	2629.2	Invalid
1/30	1433.3	Pretest						-	-	18.18	2637.4	Tight - Abandoned

्õ

7.

.

SUMMARY OF WIRELINE FORMATION TEST PROGRAMME - KIPPER-I

TEST &	DEPTH			RECOVER	<u>RY (LITR</u>	ES) Formation	MUD	the second s	T-PACKARD On pressure		TT-PACKARD ATIC PRESS	
SEAT NO.		CHAMBER	<u>01L</u>	COND.	GAS	WATER	FILTRATE	MPaa	Psia	MPaa	Psia	REMARKS
	<u>K.B.</u>	Litres	Litres	Litres	m ³	Litres	Litres					
1/31	1439.9	Pretest								18.27	2649.2	Tight – Abandoned
								MPag	<u>Psig</u> *	MPag	Psig*	*Schlumberger gauge used for samples.
2/32	2028.4	45.44 3.8	-	0.65	7.9	-	0.65	22.40	3249	25.46	3693	Valid Pretest – sample taken Sample preserved
3/33	1823.2	45.44 10.4	34.5	-	1.91	-	0.5	18.05	2618	22.88	3319	Valid Pretest - sample taken Sample preserved
4/34	1801.4	45.44 3.8	28.0	-	3.96	· _	1.75*	17.84	2587	22.58	3275	Valid Pretest – sample taken 3.8 litres sample preserved *Mud and filtrate.
5/35	1736.5									21.77	3157	Seal failure
5/36	1736.5	45.44 3.8	40.0	-	1.05	-	0.1	17.15	2487	21.77	3158	Valid Pretest - sample taken Sample preserved
6/37	1437.7	45.44 10.4	18.0	-	0.69	-	23.75	14.19	2058	18.01	2612	Valid Pretest - sample taken Sample preserved
								MPaa	<u>Psia</u> *	MPaa	Psia*	*HP gauge used for pretests.
7/38	2845.5	Pretest						32.68	4740.4	35.16	5099.7	Valid
7/39	2834.5	Pretest							-	35.00	5076.1	Tight, abandoned
7/40	2834.5	Pretest						-	-	35.01	5078.0	Tight, abandoned
7/41	2833.0	Pretest						-	-	34.98	5073.8	Tight, abandoned
7/42	2834.0	Pretest							-	34.98	5073.6	Tight, abandoned
7/43	2475.0	Pretest						25.24	3661.3	30.59	4436.2	Valid, possibly supercharged
7/44	2457.0	Pretest						24.85	3604.2	30.39	4407.5	Valid
7/45	2448.0	Pretest						24.70	3582.2	30.29	4392.9	Valid
7/46	2390.0	Pretest						24.30	3524.3	29.58	4289.8	Valid
7/47	2276.5	Pretest						22.99	3334.2	28.21	4091.0	Valid
7/48	2269.5	Pretest						22.97	3330.9	28.13	4079.9	Valid
7/49	2249.0	Pretest						22.94	3327.4	27.88	4043.9	Valid, possibly supercharged
7/50	2231.5	Pretest						22.89	3320.2	27.68	4014.3	Valid
7/51	2213.5	Pretest						22.85	3314.8	27.46	3983.4	Valid
7/52	2196.0	Pretest						22.81	3309.0	27.26	3954.1	Valid

SUMMARY OF WIRELINE FORMATION TEST PROGRAMME - KIPPER-I

TECT Ø	οερτμ			RECOVER	Y (LITRE		MUD	entringenting successive to	T-PACKARD ON PRESSURE		TT-PACKARD ATIC PRESS	
<u>TEST &</u> SEAT NO.	<u>DEPTH</u> (METRES)	CHAMBER	OIL	COND.	GAS	FORMATION WATER	MUD FILTRATE	MPaa	<u>Psia</u>	MPaa	<u>Psia</u>	REMARKS
	<u>K.B.</u>	Litres				Litres	Litres					
7/53	2157.0	Pretest						22.74	3298.4	26.77	3883.3	Valid
7/54	2124.0	Pretest						22.68	3288.8	26.39	3827.0	Valid
7/55	2006.4	Pretest						22.46	3257.3	24.93	3615.2	Valid
7/56	2338.0	Pretest						-	-	29.04	4212.3	No seal
7/57	2338.0	Pretest						-	-	29.04	4212.7	Tight, abandoned
7/58	2336.0	Pretest						25.00	3626.4	29.02	4208.9	Tight, supercharged
								MPag	Psig*	MPaa	Psig*	*Schlumberger gauge used for samples
8/59	2845.5	45.44 3.8	Tr	-	6.38	-	4.5	32.62	4731	35.20	5105	Valid Pretest - Sample taken
9/60	2276.5									28.17	4086	Sample preserved
9/61 9/61	2276.5	- 45.44	-	- Tr	- 0.44	-	_ 32.0	22.91	3323	28.17	4085	Tight - sampling abandoned
9/01	2270.4	49.44		Tr		-		22.91)) <u>/</u>)	20.17	4065	Tight - poor sample
10/22	2260 E		-		0.35	-	5.3	22.00	7710.0	20.07	4071	Sampling abandoned early
10/62	2269.5	45.44 10.4	-	Tr	1.81	-	34.5	22.88	3319.0	28.07	4071	Tight sample taken, abandoned early Sample preserved
11/63	2221.5	45.44	-	.09	7.77	-	-	22.78	3304.0	27.44	3980	Valid Pretest - sample taken
		3.8										Sample preserved
12/64	2157.0	45.44 3.8	-	0.50	8.03	-	1.25	22.66	3286.0	26.63	3863	Valid Pretest - sample taken Sample preserved.

a

2191L/49-51

.

8.		TEMF	PERATURE RECORD - KIF	PPER-1		
LOGGING RUN	THERMOMETER DEPTH (m)	MAX. RECORDED TEMPERATURE (Cº)	CIRCULATION TIME (t _k) (hours)	TIME AFTER CIRCULATION STOPPED (t)	HORNER TEMPERATURE (Cº)	GEOTHERMAL GRADIENT (Cº/km)
Suite 1						
SDT-GR	834.8	44.0	1	3.58 hrs		
Suite 2						
DLTE-MSFL-GR-AMS-SP in combination with LDTC-CNTH-GR	2139.5	71.0	4.15	5.0 hrs		
RFT-GR (pretest & sample:	5) 2124.0	75.4	4.15	9.17 hrs	82.3	32.91
Suite 3						
DLTE-MSFL-GR-SP in combination with LDTC-CNTH-GR	2869.0	82.0	2.0	5.0	120.0	38.13
RFT-GR (pretest & samples	s) 2845 . 5	96.5	2.0	13.5		
SDT-DITE-GR	2871.5	115.5	2.0	50.0		
HDT-GR	2870.5	115.5	2.0	56.0		
WST-GR	2870 .0	118.5	2.0	60.5		

.

2

2191L/40

Figures

FIGURES

LOCALITY MAP KIPPER-1

SCALE 1:250000

KIPPER 1 PROGRESS CURVE

 ∇

FIGURE 2

16,

FIGURE 3

FIGURE 4

1/

KIPPER-1 85 HORNER TEMPERATURE PLOT 84 WIRELINE LOGGING SUITE 2 tk = circulation time 4.15hrs 83 Δt = time since circulation Geothermal Gradient = .0329°C/m = 32.91°C/km 82 HORNER TEMPERATURE 81 KB height = 21m= 82.3⁰C Sea Bottom Temperature =15^oC 80 Water Depth = 95m 79 78 77 76 75 74 73 72 71 70 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.0 1.1 $\frac{tk+\Delta t}{\Delta t}$

্জ

TEMPERATURE°C

÷

FIGURE 5

TEMPERATURE°C

ā,

فہر ا

Appendix ./

•

٠

-

KIPPER-1

20/

Lithology Descriptions

Depth	<u>%</u>	Descriptions
		20" CASING SHOE AT 238.0m
260 - 270m	50	CALCARENITE: light grey to olive grey, hard, skeletal remains, occasional glauconite inclusions, moderately calcareous.
	50 trace	CEMENT. FOSSILS: bryozoans, forams, pelecypods.
270 - 280m	60 40 trace trace	CEMENT. CALCARENITE: as above. FOSSILS: as above. QUARTZ FRAGMENTS.
280 - 290m	70 30 trace trace	CALCARENITE: as above. CEMENT: as above. FOSSILS: as above. QUARTZ FRAGMENTS.
290 - 300m	70 30 trace trace	CALCARENITE: as above; skeletal. CEMENT. FOSSILS: as above. CALCILUTITE: white, soft, moderately calcareous.
300 - 310m	70 30 trace	CALCARENITE: as above; becoming clayey. CEMENT. FOSSILS: as above.
310 - 320m	60	CALCARENITE: white to buff brown, light grey, moderately hard, fine grained, moderately to extremely calcareous, carbonaceous matter, occasional glauconite.
	30 10	CALCILUTITE: white to buff brown, very soft, calcareous. CEMENT.
	trace	FOSSILS: as above.
320 - 330m	50 50	CALCARENITE: as above; sparry and micritic, ooids in part, skeletal, pellets. CALCILUTITE: as above; arenaceous.
	trace trace	CEMENT. FOSSILS: as above.
330 - 340m	60	CALCILUTITE: medium grey, sandy, micritic,
	40	foram and pelletal inclusions, soft. CALCARENITE: as above; grades into
	trace trace	calcisiltite. FOSSILS: forams, bryozoans. QUARTZ FRAGMENTS.
340 - 350m	100 trace trace	CALCARENITE: as above; highly micritic. CALCILUTITE: as above. FORAMS.
350 - 360m	80	CALCILUTITE: as above; glauconite and sandy inclusions.
	20 trace	CALCARENITE: as above. FORAMS.

21

360 - 370m	50 50 trace	CALCILUTITE: as above. CALCARENITE: as above; highly glauconitic in part. FORAMS.
370 - 380m	50 50 trace	CALCILUTITE: as above. CALCARENITE: as above; micritic, grades into calcisiltite and calcilutite. FORAMS.
380 - 390m	80 20	CALCILUTITE: as above; very soft, very sandy, carbonaceous flecks. CALCARENITE: as above; soft, micritic.
390 - 400m	50 50 trace	CALCARENITE: as above. CALCILUTITE: as above. FOSSILS.
400 - 410m	70 30 trace trace	CALCILUTITE: as above. CALCARENITE: as above. GLAUCONITE. FORAMS.
410 - 420m	50 50 trace	CALCILUTITE: as above. CALCARENITE: as above; sparry in part dominantly micritic. FORAMS.
420 - 430m	100 trace trace trace	CALCARENITE: buff brown, moderately hard, skeletal, sparry and micritic, glauconitic, occasional carbonaceous flecks. CALCILUTITE: as above. PYRITE. FORAMS.
430 - 440m	60 40 trace	CALCILUTITE: white to buff brown, very soft, sandy, carbonaceous flecks, glauconitic inclusions. CALCARENITE: as above; becoming sparry. FORAMS.
440 - 450m	50 50 trace trace	CALCILUTITE: as above. CALCARENITE: as above. FORAMS. FOSSIL FRAGMENTS: mostly bryozoans.
450 - 460m	70 30 trace trace	CALCARENITE: as above. CALCILUTITE: as above. FOSSIL FRAGMENTS: as above. FORAMS.
460 - 470m	. 50 50 trace	CALCARENITE: as above. CALCILUTITE: as above. FORAMS.
470 - 480m	70 30 trace trace	CALCARENITE: as above; grading into calcisiltite. CALCILUTITE: as above. FOSSIL FRAGMENTS. FORAMS.

- 2 -

ľ

}

22/

480 - 490m	40	CALCISILTITE: buff brown to pale brown, hard,
		sparry, occasional carbonaceous flecks.
	40	CALCILUTITE: light grey to pale brown, soft,
		sandy and glauconitic inclusions.
	20	CALCARENITE: as above.
	trace	FORAMS.
490 - 500m	90	CALCISILTITE: as above; very sparry, extremely
490 - 50011	90	hard.
	10	CALCILUTITE: as above.
	trace	FOSSILS: bryozoans dominant.
	trace	FORAMS.
500 - 510m	70	CALCISILTITE: as above; very hard, sparry.
	30	CALCILUTITE: as above.
	trace	CALCARENITE: as above.
	trace	FORAMS.
510 - 520m	40	CALCISILTITE: as above.
•	40	CALCILUTITE: as above.
	20	CALCARENITE: as above.
	trace	FOSSILS.
520 - 530m	70	
520 - 530m	30	CALCISILTITE: as above; sparry. CALCILUTITE: as above.
	trace	CALCILOTTE: as above. CALCARENITE: as above.
	trace	SPARITE.
	trace	FORAMS.
	01 000	
530 - 540m	90	CALCISILTITE: as above.
	10	CALCARENITE: as above.
	trace	SPARITE: becoming common.
	trace	PYRITE.
	trace	FORAMS.
	trace	BRYOZOANS.
	70	
540 - 550m	70 20	CALCISILTITE: as above. CALCARENITE: as above.
	10	CALCILUTITE: as above.
	trace	FORAMS.
	trace	SPARITE.
	01 400	
550 - 560m	90	CALCISILTITE: as above; micritic, sparry.
	10	SPARITE: translucent calcite, occasional
		pellets.
	trace	FORAMS.
	trace	CALCILUTITE: as above.
560 - 570m	80	CALCISILTITE: as above.
	20	CALCILUTITE: as above.
	trace	FORAMS.
	trace	SPARITE.
570 - 580m	70	CALCISILTITE: as above.
373 300m	30	CALCILUTITE: as above.
	trace	CALCARENITE: as above.
	trace	FORAMS.
580 - 590m	100	CALCILUTITE: as above.
	trace	CALCISILTITE: as above.
	trace	FORAMS.
	trace	PYRITE.
F00 (00-	5.0	
590 - 600m	50	CALCILUTITE: as above.
	50	CALCISILTITE: as above.
	trace	FORAMS.

ļ

23/

600 - 610m	90 10	CALCISILTITE: as above; grades into biosparite. CALCILUTITE: as above.
	trace	CALCARENITE: as above.
	trace	FOSSILS.
	trace	FORAMS.
610 - 620m	80	CALCILUTITE: medium grey, very soft, highly
		calcareous, occasional glauconite inclusions.
	20	CALCISILTITE: as above; sandy inclusions,
	trace	micritic in part, dominantly sparry. CALCARENITE: as above.
	trace	FOSSILS.
	crace	
620 - 630m	60	CALCILUTITE: as above.
	40	CALCISILTITE: as above.
	trace	FORAMS.
	trace	FOSSIL FRAGMENTS.
(20) (40-		
630 - 640m	80	CALCILUTITE: as above.
	20	CALCISILTITE: as above; but micritic rather
	trace	than sparry. CALCARENITE: as above.
	crace	CARCARENTIE. as above.
640 - 650m	70	CALCILUTITE: as above.
	30	CALCISILTITE: as above.
	trace	FORAMS.
650 - 660m	40	CALCILUTITE: as above.
	40 20	CALCISILTITE: as above. CALCARENITE: as above.
	trace	FORAMS.
		l'olumb.
660 - 670m	100	CALCILUTITE: as above.
	trace	CALCISILTITE: as above.
670 - 680m	70	CALCILUTITE: as above.
	30	CALCISILTITE: as above.
680 - 690m	70	CALCISILTITE: pale brown, moderately hard to
		very hard, occasional sandy and small
		carbonaceous inclusions, micritic cement,
		occasional sparry calcite.
	30	CALCILUTITE: pale brown, very soft, minor
		carbonaceous flecks, highly calcareous.
	trace	FORAMS. PYRITE: mostly as pyritised shell fragments.
	trace	PYRITE: mostly as pyritised shell fragments.
690 - 700m	80	CALCILUTITE: as above.
	20	CALCISILTITE: as above.
	trace	FORAMS.
	trace	PYRITE.
700 - 710m	50	CALCILUTITE: as above.
	50	CALCISILTITE: as above. FORAMS.
	trace	FORANS.
710 - 720m	50	CALCILUTITE: as above.
	50	CALCISILTITE: as above.
	trace	FORAMS.
720 - 730m	70	CALCILUTITE: as above.
	30 traco	CALCISILTITE: as above. FORAMS.
	trace	runnis.

24/

730 - 740m	60	CALCILUTITE: as above.
	40	CALCISILTITE: as above.
740 – 750m	60	CALCILUTITE: as above.
	40	CALCISILTITE: as above.
	trace	FORAMS.
750 700	20	CALLETTER of charge becoming sticky
750 - 760m	80 20	CALCILUTITE: as above; becoming sticky. CALCISILTITE: as above.
	20	CALCISILITIE: as above.
760 - 770m	80	CALCILUTITE: light grey to predominantly pale
700 770m	00	brown, very soft, sticky, sand and silt
		inclusions.
	20	CALCISILTITE: pale brown to light grey, soft,
		highly calcareous, occasional carbonaceous
		flecks.
	trace	FORAMS.
770 780-	90	CALCILUTITE: as above.
770 – 780m	90 10	CALCISILTITE: as above.
	trace	FORAMS.
	LLACE	
780 - 790m	70	CALCILUTITE: as above.
	30	CALCISILTITE: as above.
	trace	FORAMS.
	trace	CALCITE.
790 - 800m	50 50	CALCILUTITE: as above. CALCISILTITE: as above.
	trace	FORAMS.
	ci ace	rokans.
800 - 810m	80	CALCISILTITE: yellow grey to pale brown, soft,
		clayey, blocky cuttings.
	20	CALCILUTITE: as above.
	trace	FORAMS.
010 000-	70	CALCISILTITE: as above.
810 - 820m	70 30	CALCILUTITE: as above.
	trace	CALCITE.
	trace	FORAMS.
820 - 830m	60	CALCILUTITE: as above.
	40	CALCISILTITE: as above.
	trace	FORAMS.
000 040-	50	CALCILUTITE: as above.
830 - 840m	50 50	CALCISILTITE: as above.
	trace	CALCITE.
	trace	FORAMS.
	01.000	
		13-3/8" CASING SHOE AT 830M.
040 050	100	CEMENT
840 - 850m	100	CEMENT.
850 - 860m	80	CALCISILTITE: pale brown, soft to moderately
	÷ -	hard, blocky cuttings, occasional sandy
		inclusions, clayey in parts.
	20	CEMENT.
	trace	FORAMS.
960 970-	80	CALCISILTITE: as above; but slightly more
860 - 870m	80	CALCISILTITE: as above; but slightly more sandy.
	20	CEMENT.
	trace	FORAMS.

.

- 5 -

870 - 880m	90	CALCISILTITE: as above; becoming less
		calcareous.
	10 trace	CEMENT. FORAMS.
880 - 890m	100	CALCISILTITE: as above; decreasing calcareous content with no change in appearance; becoming a calcareous siltstone/marl.
	trace	FORAMS.
890 - 900m	100 trace	CALCISILTITE: as above. FORAMS.
900 - 910m	100	CALCAREOUS SILTSTONE: pale brown to medium grey, soft to moderately hard, subrounded cuttings, very fine sandy inclusions, slightly to moderately calcareous, similar in appearance to the above calcisiltite but decreasing calcareous content, no major lithology change.
	trace	FORAMS.
910 - 920m	100 trace	CALCAREOUS SILTSTONE: as above.
920 - 930m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.
930 - 940m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.
940 - 950m	100 trace trace	CALCAREOUS SILTSTONE: pale brown, moderately hard, blocky cuttings, slight to moderately calcareous, occasional very fine sandy inclusions, rare dark green glauconite and carbonaceous flecks. CALCITE. FORAMS.
950 - 960m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.
960 - 970m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.
970 - 980m	100	CALCAREOUS SILTSTONE: as above; occasional forams.
980 - 990m	100	CALCAREOUS SILTSTONE: as above; occasionally grading to very fine grained calcarenite; occasional forams.
990 - 1000m	100	CALCAREOUS SILTSTONE: medium light grey to medium grey, firm to occasionally moderately hard, slightly calcareous to moderately calcareous, occasionally grading to calcarenite (very fine grained); trace forams and ostracod.
1000 - 1010m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.
1010 - 1020m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.

ſ

25/

1020 - 1030m CALCAREOUS SILTSTONE: as above. 100 CALCAREOUS CLAYSTONE. trace FORAMS. trace CALCAREOUS CLAYSTONE: as above. 1030 - 1040m 100 trace FORAMS. CALCAREOUS SILTSTONE: 1040 - 1050m 100 as above. trace FORAMS. 1050 - 1060m 100 CALCAREOUS SILTSTONE: as above. FORAMS. trace CALCAREOUS SILTSTONE: medium grey, firm to 1060 - 1070m 100 moderately hard, moderately calcareous. FORAMS. trace 100 CALCAREOUS SILTSTONE: as above. 1070 - 1080m FORAMS. trace 1080 - 1090m 100 CALCAREOUS SILTSTONE: as above. FORAMS. trace 1090 - 1100m 100 CALCAREOUS SILTSTONE: dominantly soft; otherwise as above. FORAMS. trace 1100 - 1110m 100 CALCAREOUS SILTSTONE: dominantly soft; otherwise as above. FORAMS. trace 1110 - 1120m 100 CALCAREOUS SILTSTONE: as above. FORAMS. trace 1120 - 1130m 100 CALCAREOUS SILTSTONE: medium grey, greyish brown, soft to firm, commonly blocky, occasionally fissile, moderately calcareous, occasionally grading to very fine quartzose calcareous sandstone. FORAMS. trace PYRITE: aggregates. trace 1130 - 1140m 100 CALCAREOUS SILTSTONE: as above. trace FORAMS. trace GLAUCONITE NODULES. 1140 - 1150m 100 CALCAREOUS SILTSTONE: medium grey only; otherwise as above. trace FORAMS. 1150 - 1160m 100 CALCAREOUS SILTSTONE: medium grey only; otherwise as above. FORAMS. trace 1160 - 1170m 100 CALCAREOUS SILTSTONE: as above. FORAMS. trace GLAUCONITE NODULES. trace 1170 - 1180m 100 CALCAREOUS SILTSTONE: as above. trace FORAMS. GLAUCONITE NODULES. trace

26/

27/

1180 - 1190m	100	
1100 - 11900	100	CALCAREOUS SILTSTONE: medium light grey, medium grey, firm, blocky, very slightly glauconitic (more so than previous samples).
	trace	FORAMS.
1190 - 1200m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.
1200 - 1210m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.
1210 - 1220m	100 trace	CALCAREOUS SILTSTONE: as above. FORAMS.
1220 - 1230m	90	CALCAREOUS SILTSTONE: as above; becoming
	10	clayey. CLAYSTONE: light grey to medium grey, very soft, water sensitive, slightly calcareous.
	trace	FORAMS.
1230 - 1240m	70 30	CALCAREOUS SILTSTONE: as above. CLAYSTONE: as above; gummy.
1240 - 1250m	80	SILTY CLAYSTONE: medium grey, soft to firm, blocky cuttings, silty, occasional glauconite
	20	inclusions, grades into true claystone. CLAYSTONE: as above; gummy, slightly to moderately calcareous.
1250 - 1260m	90	SILTY CLAYSTONE: as above; becoming silty
	10 trace	again. CLAYSTONE: as above. GLAUCONITE.
1260 - 1270m	90 10	SILTY CLAYSTONE: as above. CLAYSTONE: as above.
1270 - 1280m	70 30	SILTY CLAYSTONE: as above. CLAYSTONE: as above.
1280 - 1290m	100	CLAYSTONE: light to medium grey, very soft to firm, slightly to moderately calcareous, rare carbonaceous flecks.
1290 - 1300m	100	CLAYSTONE: as above; slightly more gummy in parts.
1300 - 1305m	100 trace	CLAYSTONE: as above; about 30% gumbo. CALCAREOUS SILTSTONE: as above.
1305 - 1310m	100	CLAYSTONE: as above.
1310 - 1315m	100	CLAYSTONE: as above.
1315 - 1320m	100	CLAYSTONE: as above; about 20% gumbo.
1320 - 1325m	100	CLAYSTONE: light to medium dark grey, gummy and very soft to firm, slightly to predominantly moderately calcareous, silty in parts, no fossils seen.
1325 - 1330m	100	CLAYSTONE: as above; becoming more silty.
1330 - 1335m	100	CLAYSTONE: as above; increasing silt content.

.

I

28/

- 9 -

1335 - 1340m	100	CLAYSTONE: as above.
1340 - 1345m	100	CLAYSTONE: as above.
1345 - 1350m	100	CLAYSTONE: light to medium grey, soft to firm, gummy in parts, moderately calcareous.
1350 - 1355m	100	CLAYSTONE: as above; except siltier.
1355 - 1360m	100	CLAYSTONE: as above.
1360 - 1365m	100	CLAYSTONE: as above.
1365 - 1370m	100	CLAYSTONE: as above; about 40% gumbo.
1370 - 1375m	100	CLAYSTONE: as above.
1375 - 1380m	100	CLAYSTONE: as above; about 40% gumbo, very consistent lithology.
1380 - 1385m	100	CLAYSTONE: as above.
1385 - 1390m	100	CLAYSTONE: as above; except becoming siltier.
1390 - 1395m	100	CLAYSTONE: as above; with 40% gumbo, silty.
1395 - 1400m	100	CLAYSTONE: as above; with 30% gumbo, silty.
1400 - 1405m	100	SILTSTONE: medium grey, medium dark grey, soft to firm, occasionally puggy, moderately calcareous, 20% gumbo.
1405 - 1410m	100	SILTSTONE: light to medium grey; otherwise as above.
1410 - 1415m	100	CLAYSTONE: light to medium grey, soft to firm.
1415 - 1420m	100	CLAYSTONE: as above; with trace translucent, coarse grained sand.
1420 - 1425m	60	CLAYSTONE: light to medium grey, soft to firm, slightly silty texture.
	20	SILTSTONE: dark grey, occasionally light to medium grey, also ochre coloured in part, firm, trace gumbo, slightly calcareous.
	20	SANDSTONE: ochre to translucent, loose, unconsolidated grains, coarse grained, well rounded, subrounded to rounded, well sorted.
		POOH AND CUT 3 CORES FROM 1427.5m TO 1455.4m
1455 - 1461m	40 40	BOTTOMS UP SAMPLE SILTSTONE: brownish grey, carbonaceous flecks, moderately hard, grading to very fine sandstone. SANDSTONE: milky to clear quartz, loose
		grains, subrounded to occasionally well rounded, coarse to very coarse grained,
	20	moderate sorting; no shows. COAL: black, shiney, blocky, brittle,
	trace	conchoidal fracture. PYRITE: aggregates.

. - 10 -

•

T

1461 - 1465m	60	SANDSTONE: as above; quartz grains commonly pitted; no shows.
	30	COAL: as above.
	10	CARBONACEOUS SILTSTONE: greyish red, brownish
		grey, firm, grading to coal as above, earthy
		lustre; trace dull, yellow fluorescence on coal, giving a bright, blue-white instantaneous
		cut that continues to stream for several
		minutes.
	trace	PYRITE AGGREGATES.
1465 - 1470m	80	SANDSTONE: more subangular, medium to very coarse grained, poorly sorted; otherwise as
		above; no shows.
	10	CARBONACEOUS SILTSTONE: as above; occasionally
		shaley.
	10	COAL: as above.
1470 - 1475m	100	SANDSTONE: clear to milky quartz, loose
14/0 - 14/510	100	grains, medium to very coarse grained,
		predominantly coarse grained, subangular to
		subrounded, predominantly subangular; poorly
		sorted; no shows.
	trace	COAL: as above.
	trace trace	SILTSTONE: as above. PYRITE.
	LLACE	FIRJIE.
1475 - 1480m	60	SANDSTONE: as above; no shows.
	40	COAL: as above.
1480 - 1485m	90	SANDSTONE: as above.
	10	COAL: as above; occasionally pyritised.
	trace	PYRITE: aggregates.
1485 - 1490m	100	SANDSTONE: clear to translucent, occasionally
		milky quartz, loose grains, medium to very
		coarse, dominantly coarse, subangular, poorly
	.	sorted; no shows.
	trace	COAL: commonly pyritised. PYRITE: aggregates.
	trace	rikile. aggregates.
1490 - 1495m	100	SANDSTONE: as above; no shows.
	trace	COAL: pyritised, with trace dull yellow
		fluorescence giving slow streaming blue-white cut.
	trace	PYRITE: aggregates.
1495 - 1500m	90 10	SANDSTONE: as above; no shows. COAL: grading to carbonaceous shale.
	trace	PYRITE: aggregates.
1500 - 1505m	60	COAL: black, shiney, conchoidal fracture,
	30	brittle, moderately hard to hard. SANDSTONE: as above; no shows.
	10	SHALE: brownish grey, grading to coal.
	0.0	COAL, as shown, and ing to combanassing shale
1505 - 1510m	90 10	COAL: as above; grading to carbonaceous shale. SHALE: greyish red, firm.
	10	
1510 - 1515m	80	COAL: as above; occasionally pyritised.
	10	SILTSTONE: reddish brown, firm, commonly with
		carbonaceous laminae, occasionally grading to very fine sandstone.
	10	SANDSTONE: as above; no shows.

SANDSTONE: clear to translucent, occasionally 1515 - 1520m 60 milky quartz, loose grains, subangular to subrounded, predominantly subrounded, coarse to very coarse grained, well sorted. COAL: as above; moderately hard; trace dull, 30 orange-yellow fluorescence giving slow streaming blue-white cut. SILTSTONE: as above; but also buff. 10 PYRITE: as above. trace COAL: as above; moderately hard to firm; 1520 - 1525m 60 grading to carbonaceous shale. SANDSTONE: as above; occasionally well 30 rounded; no shows. SILTSTONE: as above. 10 PYRITE: as above. trace SANDSTONE: clear to translucent quartz, loose 1525 - 1530m 70 grains, medium to coarse grained, subangular to subrounded; no shows. COAL: as above; moderately hard to firm; trace 20 shows as per interval 1515.0m to 1520.0m; grading to carbonaceous shale. 10 SILTSTONE: as above. PYRITE. trace SANDSTONE: as above. 40 1530 - 1535m 30 COAL: as above. SHALE: light grey, carbonaceous specks, firm 20 to soft. SILTSTONE: as above. 10 as above; no shows. SANDSTONE: 1535 - 1540m 70 SILTSTONE: 10 as above. 10 COAL: as above. SHALE: as above. 10 trace PYRITE. SANDSTONE: 2 types: Type (1) - clear to 1540 - 1545m 60 translucent, loose grains, medium to very coarse grained, subangular to subrounded, poorly sorted. Type (2) - medium grained aggregates, subangular, well sorted; moderate visible porosity. 30 COAL: black, shiney, brittle, conchoidal fracture, splintery, occasionally grading to carbonaceous shale. SILTSTONE: greyish red, firm, carbonaceous 10 laminae. SANDSTONE: Type (1) - predominantly coarse 90 1545 - 1550m grained, subrounded to rounded, moderately sorted; no shows; otherwise as above. 10 COAL: as above. SILTSTONE: as above. trace Type (1) - predominantly coarse SANDSTONE: 1550 - 1555m 100 grained, subrounded to rounded, moderately sorted; no shows; otherwise as above. SILTSTONE: as above. trace

31/

1555 - 1560m	90 10	SANDSTONE: clear to translucent quartz, occasionally milky, loose grained, coarse to very coarse grained, subrounded to occasionally rounded, poorly sorted; no shows. COAL: as above.
	trace trace	SILTSTONE: as above. PYRITE.
1560 - 1565m	80	SANDSTONE: as above; no shows.
	10 10	SILTSTONE: as above. COAL: as above.
1565 – 1570m	100	SANDSTONE: clear to milky white, loose grains, coarse to very coarse grained, subrounded to well rounded, moderately sorted; little inferred matrix and cement; no shows.
	trace	SILTSTONE: as above.
	trace trace	COAL: as above. PYRITE.
1570 – 1575m	90	SANDSTONE: translucent, loose grains, medium to very coarse grained, angular to subangular, moderately well sorted; no shows.
	10	COAL: black, very hard, vitrinite rich,
	trace	occasionally fissile. SILTSTONE.
1575 - 1580m	90	SANDSTONE: as above; no shows.
	10	COAL: as above.
	trace trace	SILTSTONE. PYRITE.
1580 - 1585m	80	SANDSTONE: translucent, loose grains, coarse to very coarse, subangular to rounded, moderately sorted; no shows.
	10	COAL: as above.
	10	SILTSTONE: brownish grey, soft to firm,
	trace	micaceous, carbonaceous laminae. PYRITE.
1585 - 1590m	90	SANDSTONE: translucent, loose grains, medium to very coarse grained, angular to rounded, moderately to poorly sorted; no shows.
	10	SILTSTONE: as above.
	trace	PYRITE.
1590 - 1595m	100	SANDSTONE: as above; except better sorted and rounded; no shows.
	trace	SILTSTONE: as above.
	trace	COAL. PYRITE.
1595 - 1600m	90	SANDSTONE: as above; no shows.
	10 trace	SILTSTONE: as above. COAL.
1600 - 1605m	60	SILTSTONE: brownish grey, soft to firm, micaceous, carbonaceous.
	20	COAL: black, hard, vitrinite rich, subfissile in parts.
	20	CLAYSTONE: buff to light brown, very soft, sticky.
	trace	SANDSTONE: as above; no shows.

SILTSTONE: brownish grey to occasionally 1605 - 1610m 50 brown, predominantly soft, slightly carbonaceous, grades into claystone. SANDSTONE: translucent, loose grains, medium 20 to very coarse grained, angular to subangular, poorly sorted; no shows. CLAYSTONE: off white to tan brown, very soft, 20 occasionally sticky. COAL: black, very hard, grades into 10 carbonaceous siltstone. 1610 - 1615m 80 SANDSTONE: translucent, loose grains, very coarse grained, well sorted, subangular to subrounded; excellent inferred porosity; no shows. 20 SILTSTONE: as above; except more carbonaceous. trace COAL: as above. PYRITE. trace SANDSTONE: translucent to milky white, very 1615 - 1620m 100 coarse grained, subangular, moderately well sorted; excellent inferred porosity. SILTSTONE: as above. trace COAL: as above. trace CLAYSTONE: as above. trace PYRITE. trace 100 SANDSTONE: as above; no shows. 1620 - 1625m trace COAL: as above. SILTSTONE: as above. trace 1625 - 1630m 100 SANDSTONE: translucent, loose grains, coarse grained, subangular to subrounded, moderately well sorted, inferred clay matrix; no effective cement; no shows. SILTSTONE: as above; less carbonaceous. trace CLAYSTONE: as above. trace 80 SANDSTONE: as above; no shows. 1630 - 1635m pale brown, brownish grey, dark 20 SILTSTONE: brown, soft to occasionally firm, slightly to highly carbonaceous, subrounded cuttings, grades into coal. COAL: as above. trace CLAYSTONE: as above. trace 1635 - 1640m 80 SANDSTONE: as above; no shows. 10 SILTSTONE: as above. 10 CLAYSTONE: as above. trace COAL: as above. SILTSTONE: as above. 1640 - 1645m 40 CLAYSTONE: off white, very soft, water 30 sensitive, minor sandy and carbonaceous inclusions. SANDSTONE: as above; no shows. 20 10 COAL: as above. trace PYRITE. 1645 - 1650m 40 CLAYSTONE: white to pale brown, very soft, sticky, water sensitive. SILTSTONE: medium grey, pale brown, dark 30 brown, soft to firm, carbonaceous laminae in parts, blocky cuttings. SANDSTONE: as above; no shows. trace

.
1650 - 1655m 70 CLAYSTONE: off white to brownish grey, very soft, sticky in parts, occasionally becomes subfissile. 30 COAL: as above. SILTSTONE: as above. trace trace SANDSTONE: as above; no shows. trace PYRITE. 1655 - 1660m 70 CLAYSTONE: as above; grades into a shale. 20 SANDSTONE: as above; no shows. 10 SILTSTONE: as above. 1660 - 1665m 50 SILTSTONE: pale brown, browny black, grey brown, soft, blocky cuttings, very slightly to highly carbonaceous, micaceous in parts, subfissile. 20 SANDSTONE: translucent, loose grains, coarse to very coarse grained, subangular, moderately sorted, moderate to excellent inferred porosity. 20 COAL: as above. CLAYSTONE: as above. 10 trace PYRITE. 1665 - 1670m COAL: black, soft to hard, subfissile in 40 parts, earthy lustre, grades into a carbonaceous siltstone. 30 SILTSTONE: as above. 20 CLAYSTONE: as above. 10 SANDSTONE: as above; no shows. 1670 - 1675m 50 SANDSTONE: as above; no shows. 30 CARBONACEOUS SHALE: dark browny black, soft, fissile, highly carbonaceous, carbonaceous laminae in part, grades into coal. 20 COAL: as above. trace CLAYSTONE: as above. 1675 - 1680m 80 SANDSTONE: translucent to milky white, loose grains, angular to subangular, medium to very coarse grained, angular quartz fragments, possibly a pebbly sandstone, moderately sorted, good visible porosity; no shows. CARBONACEOUS SHALE: as above. 10 10 COAL: as above. PYRITE. trace 1680 - 1685m 50 CARBONACEOUS SILTSTONE: dark browny black, soft, micaceous, carbonaceous, subfissile, grades into a fissile carbonaceous shale. 40 SANDSTONE: translucent, grey, milky white, loose grains, medium to very coarse grained, probably pebbly, angular to subrounded, poorly sorted, fair to good inferred porosity; no shows. COAL: as above. 10 trace PYRITE. 1685 - 1690m 30 COAL: black, vitreous to earthy lustre, brittle, subconchoidal fracture. 30 CARBONACEOUS SHALE: as above; fissile. 30 SANDSTONE: as above; no shows. 10 SILTSTONE: pale brown, red brown, browny grey, soft to firm, carbonaceous and micaceous in parts. trace PYRITE.

34

		- 15 -
1690 - 1695m	70 10 10 trace	SANDSTONE: clear, translucent, milky, grey, loose grains, medium to very coarse grained, coarse dominant, subangular to occasionally subrounded, poorly sorted; good visible porosity; no shows. CARBONACEOUS SHALE: as above. COAL: as above. SILTSTONE: as above. PYRITE.
1695 - 1700m	100 trace	SANDSTONE: as above; no shows. PYRITE.
1700 - 1705m	100	SANDSTONE: dominantly very coarse grained; no shows; otherwise as above.
1705 - 1710m	100	SANDSTONE: clear to translucent, milky quartz, loose grains, medium to very coarse grained, subangular to subrounded, poorly sorted; good visible porosity; no shows.
1710 - 1715m	100	SANDSTONE: dominantly very coarse grained; no shows; otherwise as above.
1715 - 1720m	100 trace	SANDSTONE: dominantly very coarse grained; no shows; otherwise as above. CARBONACEOUS SHALE: as above.
_	crace	GARDONAGLOOD DIMILL. UD UDOVC.
1720 - 1725m	90 10 trace	SANDSTONE: translucent, clear, milky, loose grains, medium grained to granular, dominantly very coarse grained, angular to subangular, occasionally subrounded, very poorly sorted; good visible porosity; no shows. CARBONACEOUS SHALE: very dark grey to black, firm, grading to coal. COAL: as above.
1725 - 1730m	100 trace	SANDSTONE: dominantly coarse grained; no shows; otherwise as above. PYRITE.
1730 - 1735m	80 20	SANDSTONE: clear to translucent, loose grains, medium to very coarse grained; dominantly medium grained, subangular to subrounded, moderately sorted; moderate inferred porosity; trace dull, orange-yellow fluorescence, giving a slow, streaming, blue-white crush cut only. CARBONACEOUS SHALE: as above.
1735 - 1740m	80 20	SANDSTONE: as above; with 10-20% dull, orange-yellow fluorescence, giving a slow, streaming, blue-white crush cut. SILTSTONE: grey, greyish red, carbonaceous flecks, firm.
1740 - 1745m	80 20	SANDSTONE: as above; with 10% fluorescence and cut as above. SILTSTONE: as above.
1745 - 1750m	90 10	SANDSTONE: clear to translucent, loose grains, occasional aggregates, coarse to very coarse, angular to subangular, poorly sorted; trace shows as above. SHALE/CARBONACEOUS SILTSTONE: grey, greyish mod firm laminated
1	trace	red, firm, laminated. PYRITE.

1750 - 1755m 90 SANDSTONE: coarse aggregates, trace of shows as above; otherwise as above. 10 SHALE: grey, firm to hard, occasionally carbonaceous. COAL: ?cavings. trace 1755 - 1760m 90 SANDSTONE: as above; no shows. 10 CARBONACEOUS SHALE: as above. 1760 - 1765m 90 SANDSTONE: as above; no shows. CARBONACEOUS SHALE: as above. 10 1765 - 1770m 60 SANDSTONE: as above; no shows. 20 SILTSTONE: medium grey, greyish red, firm, carbonaceous. CARBONACEOUS SHALE: very dark grey, firm. 20 PYRITE. trace 1770 - 1775m 80 SANDSTONE: clear to translucent, milky, loose grains, coarse to very coarse grained, subangular to subrounded, moderately sorted; less than 10% dull, orange-yellow fluorescence with slow, blue-white streaming crush cut. 10 CARBONACEOUS SHALE: very dark grey, firm to occasionally hard. 10 SANDSTONE: grey, greyish red, light grey, carbonaceous laminations, firm; no shows. trace PYRITE. 1775 - 1780m 80 SANDSTONE: clear to translucent, fine to coarse grained, dominantly medium grained, subangular to subrounded, poorly sorted; poor inferred porosity; trace shows as above. 10 SHALE: as above. 10 SILTSTONE: as above. trace PYRITE. 1780 - 1783m90 SANDSTONE: as above; no shows. (Bottoms up 10 SILTSTONE: as above. sample) trace PYRITE. 1783 - 1785m 90 SANDSTONE: as above; no shows. CARBONACEOUS SHALE: as above. 10 1785 - 1790m 90 SANDSTONE: as above; no shows. CARBONACEOUS SHALE: as above. 10 1790 - 1795m 70 COAL: black, vitreous, blocky, conchoidal fracture to fissile. CARBONACEOUS SHALE: as above. 20 10 SANDSTONE: as above; no shows. 1795 - 1800m 60 CARBONACEOUS SHALE: dark grey brown, soft, fissile to occasionally non fissile, highly carbonaceous. 30 SANDSTONE: translucent, very coarse loose grains, medium to very coarse grained, angular to subrounded, moderately sorted; very good inferred porosity; trace dull, yellow and blueish fluorescence; no cut; no visible oil stain. 10SILTSTONE: light grey to pale brown, soft, non

fissile, blocky to subrounded cuttings, slightly carbonaceous in parts.

trace PYRITE. COAL: as above. trace

- 16 -

1800 - 1805m	80	SANDSTONE: translucent, loose grains, medium to very coarse grained, angular to subrounded, dominantly subangular, moderately well sorted; excellent inferred porosity; 10% moderately bright, yellow and blue fluorescence; no stain or residue.
	20 trace	SILTSTONE: light grey to dominantly dark grey brown, soft, blocky cuttings, non fissile to occasionally subfissile, highly carbonaceous in part. PYRITE.
	Lrace	PINILE.
1805 - 1810m	80 20 trace trace	SANDSTONE: translucent to milky white, loose grains, very coarse grained, subangular to subrounded, well sorted; excellent inferred porosity; 10% moderately bright, yellow fluorescence; weak diffuse cut; no visible stain; trace fluorescence from desander sample. SILTSTONE: as above; more carbonaceous. CARBONACEOUS SHALE: as above. PYRITE.
1813.5m (Bottoms up)	100	SANDSTONE: translucent to milky white, all loose grains, very coarse to granule sized, angular to dominantly subrounded, very well sorted; excellent inferred porosity; 10% bright blue and yellow fluorescence; very weak diffuse to occasional streaming white cut; no stain or residue.
	trace	SILTSTONE: as above.
		PULLED OUT OF HOLE TO CUT CORE NO. 4
		CORE NO. 4 FROM 1813.2M TO 1822.9M
1823 - 1825m		Contaminated sample. Cavings from Lakes Entrance Formation.
1825 - 1830m	50	SANDSTONE: clear to translucent, loose grains, medium to coarse grained, poorly sorted; good inferred porosity; less than 10% dull, yellow fluorescence giving very slow streaming, milky white cut.
	30 20	SILTSTONE: brownish grey, firm, carbonaceous. COAL: black, earthy, firm, fissile, grading to carbonaceous shale.
1832m (Bottoms up sample)	90	SANDSTONE: clear to translucent, milky quartz, loose grains, medium to very coarse grained, moderately sorted, good inferred porosity; 20% dull, yellow fluorescence giving a very slow,
	10	weak, milky white cut. SHALE: carbonaceous in part, grading to greyish red siltstone (carbonaceous).
		PULLED OUT OF HOLE TO CUT CORES NO. 5 AND 6.
		CORE NO. 5 FROM 1832.2M TO 1841.6M. CORE NO. 6 FROM 1841.6M TO 1851.1M.
1851 - 1855m	80	CAVINGS: especially from Lakes Entrance Formation.

1855 - 1860m	80 20	SANDSTONE: clear, translucent, milky, loose grains, medium to very coarse grained, angular to subangular, very poorly sorted; good inferred porosity; no shows. CARBONACEOUS SILTSTONE: brownish grey, carbonaceous flecks throughout, subfissile, firm.
		Still abundant cavings from Lakes Entrance Formation.
1860 - 1865m	90	SANDSTONE: as above; except coarse to granule sized grains, subrounded to angular; moderate inferred porosity; no shows.
	10 trace	CARBONACEOUS SILTSTONE: as above. PYRITE: aggregates.
1865 - 1870m	80 20	SANDSTONE: translucent, milky quartz, loose grains, coarse to very coarse grained, angular to subangular, poorly sorted; no shows. CARBONACEOUS SILTSTONE: abundant carbonaceous,
	20	laminae; otherwise as above.
1870 - 1875m	90 10	SANDSTONE: as above; no shows. CARBONACEOUS SHALE: very dark grey, hard; grading to carbonaceous siltstone as above; with carbonaceous laminae.
	trace	COAL: black, blocky, conchoidal fracture, brittle.
1875 - 1880m	1.00	SANDSTONE: clear, translucent, milky, loose grains and occasional aggregates, medium to very coarse grained, angular to subangular, poorly sorted; no shows.
	trace	COAL: as above.
1880 - 1885m _.	100	SANDSTONE: coarse to very coarse grained; no shows; otherwise as above.
1885 - 1890m	80	SANDSTONE: clear, grey, translucent, milky quartz, loose grains, coarse grained to granular, dominantly granular, angular, very poorly sorted; good inferred porosity; no shows.
	20	SILTSTONE: greyish red, light grey, abundant
	trace	carbonaceous specks. COAL: as above.
1890 - 1895m	100	SANDSTONE: as above; quartz fragments - probably conglomeratic sandstone; no shows.
	trace trace	SILTSTONE: as above. PYRITE.
1895 - 1900m	60 20	SANDSTONE: as above; no shows. VOLCANICS: basic: dark grey to black, firm to hard, traces of quartz and feldspar, biotite.
	20	CLAYSTONE: cream to yellow brown, soft, quartz and feldspar inclusions, weathered feldspar changing to clay, likely volcanic origin.
	trace	PYRITE.

SANDSTONE: as above; no shows. 50 1900 - 1905m 50 VOLCANICS: altered: cream, yellow brown, dark grey, soft to moderately hard, clayey, altered feldspar, quartzose, greeny tinge to clay suggests abundant ferromagnesians in original volcanics, likely basic composition, abundant acicular crystals of unidentifiable minerals. CARBONACEOUS SILTSTONE: as above. trace 1905 - 1910m 80 VOLCANICS: altered: red brown, light green, yellow brown, soft to moderately hard, clay replacing feldspar, chlorite replacing ferromagnesians, occasional quartz (small inclusions); iron oxide staining becoming common; basic composition origin, fine texture, probable extrusive or quenched margin of intrusive; biotite, acicular minerals. 20 SANDSTONE: as above; no shows. PYRITE. trace 1910 - 1915m 90 VOLCANICS: altered: as above; red brown and green becoming more common, chloritic, clayey, occasional large primary quartz fragments. 10 SANDSTONE: as above; no shows. trace PYRITE. 100 VOLCANICS: altered: as above. 1915 - 1920m SANDSTONE: as above; no shows. trace PYRITE. trace VOLCANICS: 1920 - 1925m 100 altered: as above. 1925 - 1930m 100 VOLCANICS: altered: as above; becoming less altered with depth, chloritic, basic volcanics. 100 VOLCANICS: altered: as above. 1930 - 1935m VOLCANICS: altered: as above; ferromagnesians 1935 - 1940m 100 becoming less altered and coarser texture. 1940 - 1945m 100 VOLCANICS: altered: as above. 1945 - 1950m 100 VOLCANICS: altered: as above; dominantly emerald green to black, abundant ferromagnesians, chloritic, abundant primary quartz fragments, basic to intermediate composition. VOLCANICS: 100 altered: as above. 1950 - 1955m 100 **VOLCANICS:** altered: 1955 - 1960m as above. 1960 - 1965m 100 **VOLCANICS:** altered: as above. 100 **VOLCANICS:** 1965 - 1970m altered: as above. 100 **VOLCANICS:** 1970 - 1975m altered: as above. 1975 - 1980m 100 VOLCANICS: altered: as above. 1980 - 1985m 100 VOLCANICS: altered: white, pale brown, emerald green, black, soft to extremely hard, clayey, common ferromagnesians, feldspar

crystals, chloritic when altered, occasional primary quartz fragments and thin quartz veining, basic to intermediate composition.

- 19 -

and the second

1985 - 1990m	100	VOLCANICS: altered: 5% bright, white fluorescence, mostly mineral fluorescence, one grain gave a very weak diffuse cut.
1990 – 1995m	70 30	VOLCANICS: altered: as above. SANDSTONE: translucent to milky white, loose grains, medium to predominantly very coarse grained, subrounded, poorly sorted; fair to good inferred porosity; 5% bright, white to yellow fluorescence, mostly mineral fluorescence, few grains gave a weak diffuse white cut.
1995 - 2000m	70	SANDSTONE: translucent to milky white, loose grains medium to very coarse grained, predominantly coarse grained, angular to subangular, poorly sorted, probably pebbly; poor to fair inferred porosity; 10% mineral fluorescence; no cut; no shows.
	30	VOLCANICS: altered: as above.
2000 - 2005m	80	SANDSTONE: as above; fair inferred porosity; 10% mineral fluorescence; no shows.
	10	VOLCANICS: altered: as above.
	10	SILTSTONE: dark brown, soft to moderately hard, carbonaceous flecks and laminae, blocky cuttings.
	trace	PYRITE.
	trace	COAL: as above.
		CBU AT 2009M
2010m	80	SANDSTONE: as above; no shows.
(Bottoms up	20	SILTSTONE: as above.
sample)	trace	VOLCANICS: altered: as above.
	trace trace	COAL: as above; nearly 5%. PYRITE.
	LI ALE	FIRIIG.
2010 - 2015m	90	SANDSTONE: clear, translucent, coarse grained to granular, predominantly very coarse grained, angular, poorly sorted; 10% mineral fluorescence.
	10	COAL: black, vitreous lustre, blocky,
	trace	conchoidal fracture, brittle. VOLCANICS: altered: as above.
	trace	PYRITE.
2015 - 2020m	90	SANDSTONE: as above; no shows; trace mineral fluorescence.
	10	SILTSTONE: brownish grey, carbonaceous flecks, hard, grading to very fine grained sandstone.
	trace trace	COAL: as above. VOLCANICS: altered: as above.
	<u>.</u>	volomitob. alterea, ab above.
2020 - 2025m	100	SANDSTONE: clear, translucent, grey, medium to very coarse grained, predominantly coarse, angular to subangular, moderately sorted; trace mineral fluorescence.
	trace trace	SILTSTONE: as above. COAL: as above.
	trace	VOLCANICS: altered: as above.
	LLALE	

49

2025 - 2030m	100 trace	SANDSTONE: 2 types: Type (1) - 80% clear, translucent, grey, coarse grained to granules, predominantly coarse, angular to subangular, moderately sorted; trace mineral fluorescence. Type (2) - 20% brownish red, very fine grained, grading to silt, well sorted, carbonaceous flecks, moderately hard. COAL: as above.
	trace	VOLCANICS: altered: as above.
2030 - 2035m	100	SANDSTONE: Type (1) as above: no shows (less than 10%).
	trace trace	SILTSTONE: as above. VOLCANICS: altered: as above.
2035 - 2040m	90	SANDSTONE: clear, grey, translucent, medium to very coarse grained, very poorly sorted; trace mineral fluorescence.
	10	VOLCANICS: altered: cavings.
	trace	COAL: less than 10%.
2040 - 2045m	80	SANDSTONE: milky, clear, translucent, occasionally rose pink, grey, medium to very coarse grained, very poorly sorted; trace mineral fluorescence.
	10	VOLCANICS: altered: as above.
	10 trace	COAL: as above. PYRITE.
2045 - 2050m	90	SANDSTONE: as above; trace mineral fluorescence.
	10	SILTSTONE: as above.
	trace trace	VOLCANICS: altered: cavings. COAL: as above.
2050 - 2055m	90	SANDSTONE: clear, translucent, grey, loose grains, medium to very coarse grained, angular, very poorly sorted; trace mineral fluorescence.
	10	CLAYSTONE: very dark grey, very hard.
	trace	SILTSTONE: as above.
	trace trace	VOLCANICS: altered; cavings. PYRITE: as above.
	crace	FINITE. as above.
2055 - 2058m	90	SANDSTONE: as above.
(Bottoms up	10	CLAYSTONE: as above.
sample)	trace trace	VOLCANICS: altered: as above. PYRITE.
	er de e	111110.
2058 - 2060m	80	SANDSTONE: clean, grey, translucent, loose grains, coarse grained to granule, angular,
	10	very poorly sorted; no shows. SILTSTONE: buff, brownish grey, firm to hard.
	10	VOLCANICS: altered: as above; cavings.
	trace	PYRITE.
2060 - 2065m	80	SANDSTONE: as above.
	20	SILTSTONE: as above.
	trace	VOLCANICS: altered: as above.
	trace	COAL: as above.

41

2065 - 2070m	100	SANDSTONE: clear, translucent, grey, milky,
		coarse to very coarse grained angular to
		subrounded, predominantly subangular, very
		poorly sorted; no shows.
	trace	CLAYSTONE: very dark grey, indurated (possibly
	trace	clast from within sandstone). COAL: as above.
	trace	VOLCANICS: altered: as above.
	crace	VONGANICS. alleled. as above.
2070 - 2075m	80	SANDSTONE: as above; no shows.
	10	CLAYSTONE: as above.
	10	SILTSTONE: brownish grey, medium grey,
		carbonaceous specks, firm.
	trace	VOLCANICS: altered: as above.
	trace	COAL: as above.
	trace	PYRITE.
2075 - 2080m	100	SANDSTONE: as above; no shows.
2073 - 2000	trace	CLAYSTONE: as above.
	trace	COAL: as above.
2080 - 2085m	90	SANDSTONE: clear, milky, translucent, fine
		grained to granular, predominantly coarse
		grained, very poorly sorted, angular; no shows.
	10	VOLCANICS: altered: as above; ?cavings.
	trace	CLAYSTONE: as above.
	trace	PYRITE.
2085 - 2090m	90	SANDSTONE: milky, clear to translucent, coarse
		grained to granular, very poorly sorted,
		angular; no shows.
	10	CONGLOMERATE/PEBBLY SANDSTONE: loose grains
		comprising grey black chert.
	trace	VOLCANICS: altered: ?cavings.
2090 - 2095m	80	SANDSTONE: as above; no shows.
2000 2000	10	CONGLOMERATE/PEBBLY SANDSTONE: as above; also
		indurated siltstone.
	10	SILTSTONE: buff, firm, carbonaceous specks.
	trace	PYRITE.
2005 2100-	90	CANDETONE, or chosen as these
2095 - 2100m	80 20	SANDSTONE: as above; no shows. SJLTSTONE: as above; also greyish red.
	trace	LITHICS: as above.
	trace	COAL: as above.
2100 - 2105m	70	SANDSTONE: as above; no shows.
	20	CONGLOMERATE/PEBBLY SANDSTONE: consisting of
	10	broken rounded lithic clasts.
	10	SILTSTONE: as above.
2105 - 2110m	50	SANDSTONE: clear, translucent, milky, grey,
		loose grains, medium grained to granular, very
		poorly sorted, angular (some splintery); no
		shows.
	30	CONGLOMERATE/PEBBLY SANDSTONE: consisting of
		broken, rounded clasts of black chert,
		indurated shale and siltstone; green, red,
	20	orange volcanics and quartz. SILTSTONE: as above; also greyish red.
	trace	PYRITE.
2110 - 2115m	50	SANDSTONE: as above; no shows.
	40	CONGLOMERATE/PEBBLY SANDSTONE: as above.
	10	SILTSTONE: as above; but also greyish red.
	trace	PYRITE.

2115 - 2120m 80 SANDSTONE: medium to very coarse grained; otherwise as above. CONGLOMERATE/PEBBLY SANDSTONE: as above. 20 2120 - 2125m 70 SANDSTONE: as above; no shows. CONGLOMERATE/PEBBLY SANDSTONE: as above. 20 SILTSTONE: as above. 10 2125 - 2130m 60 SANDSTONE: as above; no shows. CONGLOMERATE/PEBBLY SANDSTONE: as above. 30 10 SILTSTONE: as above. 70 SANDSTONE: clear, grey, milky, loose grains, 2130 - 2135m coarse grained to granular, angular, occasionally splintery, very poorly sorted; no shows. 20 CONGLOMERATE/PEBBLY SANDSTONE: as above. 10 SILTSTONE: as above. PYRITE. trace 2135 - 2140m 70 SANDSTONE: as above. CONGLOMERATE/PEBBLY SANDSTONE: as above. 30 PYRITE. trace PULLED OUT OF HOLE FOR WIRELINE LOGGING 2143m 60 VOLCANICS: altered: emerald green, pale brown, greeny black, pale green, resembles the shallower volcanics, hard to very hard, chloritic, clay replacing feldspars, ferromagnesians still unaltered in parts, possibly cavings or large cobbles within a polymictic conglomerate. 30 SILTSTONE: pale brown to dark brown, firm, tabular to blocky cuttings, carbonaceous in parts. CALCISILTITE: cavings. 10 SANDSTONE: very coarse loose grains. trace trace COAL: cavings. MINERALISED QUARTZ: vein quartz containing trace intercrystalline pyrite. PYRITE. trace 2140 - 2145m altered: as above; occasional 60 VOLCANICS: cherty fragments, possibly cavings. 20 SILTSTONE: as above. 20 CALCISILTITE: cavings. trace SANDSTONE: no shows. PYRITE. trace LIGNITE. trace 2145 - 2150m 60 SILTSTONE: pale brown to dark brown, soft to firm, tabular to blocky cuttings, occasional carbonaceous flecks, occasional carbonaceous laminae. 20 CALCISILTITE: cavings. VOLCANICS: altered: as above; probably 20 cavings. trace SANDSTONE: no shows. PYRITE. trace

- 23 -

. ...

- 24 -

2150 - 2155m	70 20 10 trace trace	SANDSTONE: translucent, loose grains, medium to coarse grained, angular to subangular, occasionally subrounded, moderately to poorly sorted, probably pebbly; moderate to good inferred porosity; trace dull to moderately bright, white fluorescence with a weak, diffuse, white cut; no oil stain. SILTSTONE: as above. ALTERED VOLCANICS AND CALCISILTITE CAVINGS: mostly very large cuttings. PYRITE. COAL: as above.
2155 - 2160m	70	SANDSTONE: as above; pebbly.
	20 10	SILTSTONE: as above. VOLCANICS: altered: as above; probably clasts within a conglomerate, large volcanic cuttings coming over shakers, chert also present.
	trace	COAL: as above.
	trace	PYRITE.
2160 - 2165m	90	SANDSTONE: as above; no shows.
	10	SILTSTONE: as above.
	trace	VOLCANICS: altered: cavings.
2165 - 2170m	80	SANDSTONE: as above; no shows.
	10	SILTSTONE: as above.
	10	VOLCANICS: altered: cavings.
2170 - 2175m	90	SANDSTONE: as above; no shows; pebbly.
21/0 21/Jm	10	VOLCANICS: altered: cavings.
0175 0100-		
2175 - 2180m	80 10	SANDSTONE: as above; no shows. SILTSTONE: as above.
	10	VOLCANICS: altered: cavings.
0100 0105		
2180 - 2185m	70 30	SANDSTONE: as above; no shows. SILTSTONE: as above.
	50	SILTSTONE: as above.
2185 - 2190m	70	SANDSTONE: clear, translucent, milky, loose grains, coarse to very coarse grained, angular to subangular, moderately sorted; moderately good inferred porosity; no shows.
	30	SILTSTONE: as above.
	trace	CAVINGS.
	trace	PYRITE: aggregates.
2190 - 2195m	70	SANDSTONE: as above; no shows.
	30	SILTSTONE: greyish red, medium dark grey,
		buff, firm to hard, flat cuttings, carbonaceous
	trace	in part. CAVINGS: volcanics.
	trace	PYRITE.
	_ .	
2195 - 2200m	60 40	SILTSTONE: as above. SANDSTONE: as above; no shows.
	trace	CAVINGS: volcanics.
	trace	PYRITE.
2200 - 2205m	50	SANDSTONE: as above; no shows.
2200 - 7.20JM	50	SILTSTONE: as above.
	trace	CAVINGS: volcanics.
	trace	PYRITE.

+3/

44

2205 - 2210m	50	SANDSTONE: as above; no shows.
	50	SILTSTONE: as above.
2210 - 2215m	60	SILTSTONE: dark grey, carbonaceous, firm,
2210 - 22150	00	platey, occasionally grading to very fine
		sandstone.
	40	SANDSTONE: 2 types: Type (1) - 30% clear,
		translucent, milky, loose grains, coarse to
		very coarse grained, angular to subangular, moderately sorted; moderately good inferred
		porosity; no shows.
		Type (2) - 10% quartz aggregates, very fine to
		fine grained, excellent sorting, in a dolomitic
		cement (very dull, yellow fluorescence and slow
		reaction with HCl), hard; no shows.
2215 - 2220m	60	SILTSTONE: buff, dark grey, firm to hard,
		platey; dark grey variety is carbonaceous; buff
		variety grades to very fine sandstone in silty
	<i>(</i>)	matrix.
	40	SANDSTONE: 2 types: Type (1) - 30% as above; no shows.
		Type (2) - as above; no shows (mineral
		fluorescence).
	trace	VOLCANICS: cavings.
2220 - 2225m	50	SANDSTONE: 2 types: Type (1) - 40% clear,
	0.0	translucent, milky, loose grains, medium to
		very coarse grained, subangular to subrounded,
		very poorly sorted; no shows.
		Type (2) - 10% quartz aggregates, very fine to fine grained, excellent sorting, in a dolomitic
		cement (very dull, yellow fluorescence and slow
		reaction with HCl), hard; no shows.
	30	SILTSTONE: as above.
	20	CARBONACEOUS SHALE: firm, very dark grey to black.
	trace	COAL: black, blocky, subfissile, brittle.
	trace	VOLCANICS: cavings.
2225 - 2230m	70	SANDSTONE: 2 types: Type (1) - 60% as above;
	, 0	no shows.
		Type (2) - 10% as above; no shows.
	20	SILTSTONE: as above.
	10 trace	CARBONACEOUS SHALE: as above. COAL: as above.
	trace	PYRITE.
2230 - 2235m	80	SANDSTONE: 2 types: Type (1) - 70% coarse to
		very coarse grained; otherwise as above; no shows.
		Type (2) – 10% as above; no shows.
	10	SILTSTONE: as above.
	10	COAL: as above; with conchoidal fracture.
2235 - 2240m	80	SANDSTONE: 2 types: Type (1) - 60% coarse to
		very coarse grained; trace dull, yellow
		fluorescence giving very weak, diffuse, milky
		crush cut; otherwise as above.
	10 10	Type (2) - 20% as above; no shows.
	10	SILTSTONE: greyish-brown, pale brown to buff, carbonaceous specks.
	trace	VOLCANICS: cavings.
	trace	PYRITE.

45

. 2240 - 2245m 100 SANDSTONE: translucent to milky white, occasionally smokey grey, medium to very coarse grained, angular to subangular, moderately sorted, probably pebbly, abundant quartz fragments; fair to good inferred porosity; no shows. SILTSTONE: as above. trace trace COAL: as above. trace CHERT. DOLOMITIC SANDSTONE. trace 2245 - 2250m 90 SANDSTONE: as above; pebbly; no shows. 10 SILTSTONE: as above. trace COAL: as above. 2250 - 2255m 90 SANDSTONE: as above; but poorly sorted, pebbly; no shows. 10 SILTSTONE: as above. PYRITE. trace trace COAL: as above. trace CHERT. 2255 - 2260m 90 SANDSTONE: as above; pebbly, medium grained to granule sized quartz fragments; no shows. 10 SILTSTONE: as above. trace COAL: as above. trace PYRITE. CHERT. trace 90 2260 - 2265m CONGLOMERATE: translucent, clear, smokey grey, milky white, loose grains and fragments, coarse to granule sized, angular fragments dominate, poorly sorted; poor to fair inferred porosity; no shows. SILTSTONE: as above. 10 trace CHERT. trace COAL: as above. 2265 - 2270m 80 CONGLOMERATE: as above; no shows. 20 SILTSTONE: as above. CLAYSTONE. trace 90 2270 - 2275m CONGLOMERATE: as above; no shows. 10 SILTSTONE: dark grey-black, firm, blocky cuttings, highly carbonaceous, occasional very fine sandy inclusions. 2275 - 2280m 90 CONGLOMERATE: as above; no shows. 10 SILTSTONE: as above. trace CLAYSTONE. trace CHERT. COAL: as above. trace 2280 - 2285m 90 CONGLOMERATE: as above; no shows. SILTSTONE: as above. 10 CHERT. trace CLAYSTONE. trace 2285 - 2290m 80 CONGLOMERATE: as above. 20 SILTSTONE: as above. CLAYSTONE. trace

46/

2290 - 2295m	40 trace	milky, grey quartz, loose grains, coarse grained to granular, angular (often splintery), very poorly sorted; moderate to poor inferred porosity; no shows. SILTSTONE: as above. COAL: as above.
2295 - 2300m	80 20	SILTSTONE: as above; also buff. SANDSTONE/PEBBLY SANDSTONE: clear, translucent, milky, coarse grained to granular, angular to subangular, poorly sorted; moderate to poor inferred porosity; trace dull, yellow fluorescence giving a slow, milky, white streaming cut.
2300 - 2305m	90 10	<pre>SILTSTONE: as above; also buff. SANDSTONE: 2 types: Type (1) - dominantly clear, translucent, milky, coarse grained to granular, angular to subangular, poorly sorted; moderate to poor inferred porosity; trace dull, yellow fluorescence giving a slow, milky, white streaming cut. Type (2) - very fine to fine grained quartz aggregates, subangular to subrounded, excellent sorting; dolomitic cement (very dull, yellow/green mineral fluorescence); hard; tight; no cut.</pre>
	trace	COAL: as above.
2305 - 2310m	100 trace	SILTSTONE: as above; also buff. SANDSTONE: Type (1) as above; no shows.
2310 - 2315m	90 10 trace	SILTSTONE: as above; also buff. SANDSTONE/PEBBLY SANDSTONE: Type (1) - as above. COAL: as above.
2315 - 2320m	100 trace	SANDSTONE: as above; also buff. SANDSTONE/PEBBLY SANDSTONE: as above.
2320 - 2325m	100 trace	SILTSTONE: as above. COAL: as above.
2325 - 2330m	100 trace	SILTSTONE: as above. SANDSTONE: as above; no shows.
2330 - 2335m	100	SILTSTONE: dark to light grey and off-white, soft to firm, blocky to rounded cuttings; finely divided carbonaceous fragments common; some very fine grained sand occurs in the harder siltstone.
2335 - 2340m	100	SILTSTONE: light to dark grey and off-white, very soft to firm, blocky to rounded cuttings; finely divided carbonaceous fragments and laminae common; minor very fine grained sand in
	trace	a silty matrix; no shows. SANDSTONE: clear to opaque, loose grains, coarse to very coarse grained, subangular
	trace	quartz; no shows. COAL: black, vitreous, with a subconchoidal fracture.

- 27 -

2290 - 2295m 60 CONGLOMERATE/SANDSTONE: clear, translucent,

,

100 SILTSTONE: as above; very fine grained sand 2340 - 2345m becoming more common. 2345 - 2350m 90 SILTSTONE: as above. SANDSTONE: clear to opaque, firm to friable, 10 fine to very fine grained, subrounded to rounded, quartz aggregates, silica cemented with minor silt matrix; tight; no shows. SILTSTONE: as above; except dark grey more 2350 - 2355m 60 dominant. 40 SANDSTONE: clear, translucent, opaque (?heavy minerals), very fine to fine grained quartz aggregates, subangular to subrounded, excellent sorting, dolomitic cement, hard, very tight; no shows. trace COAL: black, vitreous lustre, blocky, hard. 2355 - 2360m 50 SILTSTONE: as above; except dark grey more dominant. 30 SANDSTONE: as above; no shows. SHALE: dark grey, thin platelets, firm, very 20 carbonaceous. trace COAL: as above. trace PYRITE: aggregates. 2360 - 2365m SILTSTONE: as above; except dark grey more 60 dominant. 30 SANDSTONE: as above; no shows. 10 SHALE: as above. COAL: as above. trace 50 2365 - 2370m SANDSTONE: as above; no shows. SILTSTONE: as above; except dark grey dominant. 50 COAL: as above. trace 2370 - 2375m 60 SANDSTONE: 2 types: Type (1) - 40% clear, translucent, opaque, very fine to fine grained quartz aggregates, subangular to subrounded, excellent sorting, dolomitic cement, hard, very tight; no shows. Type (2) - 10% clear, translucent, loose quartz grains, medium to coarse grained, subangular to angular, poorly sorted; no shows. 30 SILTSTONE: as above; except dark grey dominant. 10 COAL: as above. 2375 - 2380m 70 SANDSTONE: 2 types: Type (1) - 50% as above; no shows. Type (2) - 20% as above; no shows. 20 SILTSTONE: as above. 10 SHALE: as above. trace COAL: as above. 2380 - 2385m 40 SILTSTONE: as above. 40 SANDSTONE: Type (1) - as above; no shows. 10 SHALE: medium grey to dark grey, firm, flat cuttings. 10 black, subfissile, flat cuttings, firm COAL: to moderately hard, earthy to vitreous.

2385 - 2390m	50	<pre>SANDSTONE: 2 types: Type (1) - 60% white, firm to friable, very fine to medium grained, subrounded to rounded, quartz aggregates, moderately to poorly sorted with dominantly silica and minor dolomite cement; poor to no porosity; no shows. Type (2) - 40% clear to opaque, loose, medium to coarse grained, angular to subrounded quartz</pre>
	40	grains; no shows. SILTSTONE: dark to light grey and off-white, hard to soft cuttings, blocky, rounded; fine carbonaceous fragments and laminae common; noncalcareous.
	10	SHALE: dark to light grey, hard to firm, platey cuttings.
2390 - 2395m	50	SANDSTONE: Type (1) - 70% as above. Type (2) - 30% as above; no shows.
	50	SILTSTONE: as above.
2395 - 2399m	70	SANDSTONE: Type (1) - 80% as above; with more dolomite cement and minor coarse grained quartz. Type (2) - 20% as above; no shows.
	30	SILTSTONE: as above.
		PULLED OUT OF HOLE FOR BIT CHANGE.
2399 - 2405m	60 30	SILTSTONE: as above. SANDSTONE: Type (1) - 20% as above; no shows. Type (2) - 10% as above; no shows.
	10	SHALE: medium to dark grey, firm, flat
	trace	cuttings. COAL: as above.
2405 - 2410m	50	SILTSTONE: as above.
	30	SANDSTONE: Type (1) - as above; no shows.
	20	SHALE: as above. COAL: as above.
	trace	COAL. AS above.
2410 - 2415m	70	SILTSTONE: brownish grey, medium grey, light grey, blocky, flat and rounded cuttings, firm, carbonaceous flecks and laminae abundant.
	20	<pre>SANDSTONE: 2 types: Type (1) - 10% grey to light grey, very fine to fine grained, quartz aggregates with opaque grains (?heavy minerals), moderately hard, dolomitic cement; no shows. Type (2) - 10% milky quartz, loose grains, angular (splintery), coarse grained to granule, very poorly sorted, possible a pebbly</pre>
	10	sandstone; no shows. SHALE: as above; also brownish grey.
	trace	COAL: as above.
2415 - 2420m	50	SILTSTONE: as above.
	40	SANDSTONE: Type (1) - 20% as above; no shows. Type (2) - 20% as above; no shows.
	10 trace	SHALE: as above. COAL: as above.
2420 - 2425m	60	SILTSTONE: dominantly dark grey; otherwise as
	30	above. SANDSTONE: Type (1) - 20% as above; no shows.
	10	Type (2) - 10% as above; no shows.
	10 trace	SHALE: as above. COAL: as above.

2425 - 2430m	40	SILTSTONE: dominantly dark grey; otherwise as above.
	30	SANDSTONE: Type (1) - 20% as above; no shows. Type (2) - 10% as above; no shows.
	20	SHALE: as above.
	10	COAL: black, vitreous, blocky, subfissile, hard.
2430 - 2435m	60	SILTSTONE: dominantly dark grey; otherwise as above.
	20 20	SHALE: as above. SANDSTONE: 2 types: Type (1) - more than 10% grey to light grey, very fine to fine grained, quartz aggregates with opaque grains (?heavy minerals), moderately hard, dolomitic cement; no shows. Type (2) - less than 10% clear, translucent, milky, loose quartz grains, coarse to very coarse grained, angular to subangular, very poorly sorted; no shows.
2435 - 2440m	50	SHALE: medium to dark grey, firm to hard, blocky to flat cuttings, carbonaceous.
	40	SILTSTONE: as above.
	10	SANDSTONE: Type (1) - as above; no shows.
2440 - 2445m	60	SILTSTONE: as above.
	30	SANDSTONE: Type (1) - as above: no shows
	10	Type (2) - as above; no shows. SHALE: as above: rarely pyritised
	trace	SHALE: as above; rarely pyritised. PYRITE.
2445 - 2450m	70	SILTSTONE: medium to dark grey, occasionally light grey, flat to blocky cuttings, firm to occasionally hard, carbonaceous flecks and laminae abundant.
	20	SANDSTONE: Type (1) - 20% as above; no shows. Type (2) - trace as above; no shows.
	10	SHALE: brownish grey, flat cuttings, firm, carbonaceous.
2450 - 2455m	60	STITSTONE
	40	SILTSTONE: as above. SANDSTONE: 2 types: Type (1) - 60% light grey to off-white, firm to friable, fine to medium grained, subangular to rounded quartz aggregates, poor to moderately sorted with silica and dolomitic cement; poor to no porosity; no shows. Type (2) - 40% clear to opague, medium to very
		quartz grained, subangular to subrounded, loose quartz grains, moderately to poorly sorted.
	trace	good inferred porosity; no shows. SHALE: as above.
2455 - 2460m	60	SANDSTONE: 2 types: Type (1) - 30% as above; no shows. Type (2) - 70% as above;
	40	Type (2) - 70% as above; no shows. SILTSTONE: as above.
2460 - 2465m	50	SANDSTONE: Type (1) - 50% as above; no shows.
	50	Type (2) - 50% as above; no shows. SILTSTONE: as above.

· · · ·

49

•

. .

59

2465 - 2470m	60 40	SILTSTONE: as above. SANDSTONE: Type (1) - 70% as above; no shows. Type (2) - 30% as above; no shows.
2470 - 2475m	70 30 trace	SANDSTONE: Type (1) - 50% as above; no shows. Type (2) - 50% as above; no shows. SILTSTONE: as above. PYRITE: angular fragments of medium grained crystal aggregates and as cement and matrix in the sandstone [Type(2)].
2475 - 2480m	60 40 trace	SANDSTONE: as above; no shows. SILTSTONE: as above. PYRITE: as above.
2480 - 2485m	60 40 trace trace	<pre>SILTSTONE: as above. SANDSTONE: 2 types: Type (1) - 60% as above; no shows. Type (2) - 40% as above; no shows. PYRITE: as above; also occurs as matrix for the Type (2) coarse grained sandstone. COAL: black, hard, vitreous lustre,</pre>
2485 - 2490m	60 40 trace	<pre>subconchoidal fracture. SANDSTONE: 2 types: Type (1) - 40% as above; no shows. Type (2) - 60% as above; no shows. SILTSTONE: as above. PYRITE: as above.</pre>
2490 - 2495m	60 40	SANDSTONE: 2 types: Type (1) - 70% as above; no shows. Type (2) - 30% as above; no shows. SILTSTONE: as above.
2495 - 2500m	50 50	SANDSTONE: 2 types: Type (1) - 70% as above; no shows. Type (2) - 30% as above; no shows. SILTSTONE: as above.
2500 - 2505m	60 40 trace	SILTSTONE: as above. SANDSTONE: 2 types: Type (1) - 70% as above; no shows. Type (2) - 30% as above; no shows. PYRITE: as above.
2505 - 2510m	70 30 trace	SILTSTONE: as above. SANDSTONE: 2 types: Type (1) - 80% as above; no shows. Type (2) - 20% as above; no shows. PYRITE: as above.
2510 - 2515m	80 20 trace	SILTSTONE: as above. SANDSTONE: 2 types: Type (1) - 80% as above; no shows. Type (2) - 20% as above; no shows. COAL: as above.
2515 - 2520m	90 10	SILTSTONE: as above. SANDSTONE: Type (1) - as above; no shows.
2520 - 2525m	80 20 trace	SILTSTONE: as above. SANDSTONE: Type (1) - as above; no shows. PYRITE.

•

- 31 -

.

• . ..

2525 - 2530m 50 SILTSTONE: as above. 40 SHALE: dark grey, firm to hard, platey, carbonaceous. 10 SANDSTONE: Type (1) - as above; no shows. SILTSTONE: as above. 60 2530 - 2535m 30 SHALE: as above. SANDSTONE: Type (1) - as above; no shows; 10 rarely with pyritised matrix. COAL: as above. trace 2535 - 2540m 70 SILTSTONE: as above. SANDSTONE: Type (1) - as above; no shows. 20 10 SHALE: as above. trace COAL: as above. SILTSTONE: medium dark to dark grey, blocky to 2540 - 2545m 70 flat cuttings, firm to moderately hard, abundant carbonaceous flecks and laminae. 20 SHALE: as above. SANDSTONE: Type (1) - as above; no shows; 10 rarely with pyritised matrix. 80 SILTSTONE: as above. 2545 - 2550m SHALE: as above. 20 SANDSTONE: Type (1) - as above; no shows. trace 2550 - 2555m 50 SHALE: as above. SILTSTONE: as above. 50 SANDSTONE: Type (1) - as above; no shows. trace 50 SHALE: as above. 2555 - 2560m SILTSTONE: as above. 40 SANDSTONE: Type (1) - 100% as above; no shows. 10 trace PYRITE: as above. 2560 - 2565m 40 SILTSTONE: grey to dark grey, firm to hard, blocky to tabular cuttings with common carbonaceous flecks and laminae. 30 SANDSTONE: light grey to off-white, firm to friable, very fine to fine grained, occasionally medium grained, subangular to rounded quartz aggregates, grading into a lithic sandstone with feldspar, coal and other rock fragments, poorly sorted; silica and dolomite cement; tight; no shows. 30 SHALE: dark grey, platey, subfissile fracture, carbonaceous. 2565 - 2570m 40 SANDSTONE: as above; no shows. SILTSTONE: as above. 40 20 SHALE: as above. SPOT SAMPLE (TOTAL GAS = 79 UNITS) 60 SANDSTONE: as above; no shows. 2573m SILTSTONE: as above. 30 10 SHALE: as above. 60 SANDSTONE: as above; no shows. 2570 - 2575m 40 SILTSTONE: as above. SHALE: as above. trace

52

•

2575 - 2580m	60	SANDSTONE: as above; no shows.
	40	SILTSTONE: as above.
2580 - 2585m	60	SILTSTONE: as above.
	40	SANDSTONE: as above; no shows.
2585 - 2590m	50	SANDSTONE: as above; no shows.
	50	SILTSTONE: as above.
2590 - 2595m	70	SANDSTONE: as above; no shows.
	30	SILTSTONE: as above.
2595 - 2600m	50	SANDSTONE: as above; no shows.
	50	SILTSTONE: as above.
0.000	5.0	
2600 - 2605m	50	SILTSTONE: as above.
	40	SANDSTONE: as above; no shows. SHALE: as above.
	10	SHALE: as above.
2605 - 2610m	60	SILTSTONE: as above.
2005 - 2010	40	SANDSTONE: as above; no shows.
	40	DANDDIONE. 25 20046, NO SNOWS.
2610 - 2615m	60	SILTSTONE: as above.
2020 201.5.	40	SANDSTONE: as above; no shows.
	trace	COAL: black, vitreous, conchoidal fracture.
		,,
2615 - 2620m	70	SILTSTONE: light to medium dark grey, firm to
		moderately hard, blocky to rounded cuttings,
		very carbonaceous.
	30	SANDSTONE: light grey to off-white, aggregates
		of quartz (dominant) and opaque minerals, fine
		grained, dolomitic in part, moderately hard; no
		shows.
2620 - 2625m	50	SILTSTONE: as above.
	50	SANDSTONE: as above; no shows.
	trace	COAL: as above.
2625 2620-	70	
2625 - 2630m	70 20	SILTSTONE: as above.
	30	SANDSTONE: as above; no shows.
2630 - 2635m	70	SILTSTONE: as above.
2030 - 20351	30	SANDSTONE: as above; no shows.
	50	Simpsioni. as above, no snows.
2635 - 2640m	80	SILTSTONE: as above.
	20	SANDSTONE: as above; traces of dull yellow
		mineral fluorescence; no shows.
	trace	mineral fluorescence; no shows. COAL: as above.
	trace	•
2640 - 2645m	trace 90	•
2640 - 2645m		COAL: as above.
	90	COAL: as above. SILTSTONE: as above.
2640 - 2645m 2645 - 2650m	90 10 90	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above.
	90 10	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows.
	90 10 90	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above. SANDSTONE: as above; no shows.
	90 10 90	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above.
2645 - 2650m	90 10 90 10	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above. SANDSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE
	90 10 90 10 80	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE SILTSTONE: as above.
2645 - 2650m	90 10 90 10 80 10	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above; no shows.
2645 - 2650m	90 10 90 10 80	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE SILTSTONE: as above.
2645 - 2650m	90 10 90 10 80 10	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE SILTSTONE: as above. SANDSTONE: as above. SANDSTONE: as above; no shows.
2645 - 2650m 2650 - 2655m	90 10 90 10 80 10 10	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE SILTSTONE: as above. SANDSTONE: as above; no shows. CAVINGS: various lithologies.
2645 - 2650m 2650 - 2655m	90 10 90 10 80 10 10 80	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE SILTSTONE: as above. SANDSTONE: as above; no shows. CAVINGS: various lithologies. SILTSTONE: as above.
2645 - 2650m 2650 - 2655m	90 10 90 10 80 10 10 80	COAL: as above. SILTSTONE: as above. SANDSTONE: as above; no shows. SILTSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE SILTSTONE: as above. SANDSTONE: as above; no shows. CAVINGS: various lithologies. SILTSTONE: as above.
2645 - 2650m 2650 - 2655m 2655 - 2660m	90 10 90 10 80 10 10 80 20	COAL: as above. SILTSTONE: as above; no shows. SILTSTONE: as above; no shows. SILTSTONE: as above; no shows. PULLED OUT OF HOLE FOR BIT CHANGE SILTSTONE: as above. SANDSTONE: as above; no shows. CAVINGS: various lithologies. SILTSTONE: as above. SANDSTONE: as above.

- 33 -

I

- 34 -

2665 - 2670m	90 10	SILTSTONE: dark to light grey, tabular, firm, carbonaceous and micromicaceous cuttings. SANDSTONE: light grey to off-white, very fine to medium grained, subangular to rounded quartz aggregates, plus minor feldspar and rock fragments, poorly sorted; dolomitic and silica cemented; tight; no shows.
		cemented, cigne, no bnows.
2670 - 2675m	90	SILTSTONE: as above; minor feldspathic fragments.
	10	SANDSTONE: as above; no shows.
2675 - 2680m	90 10	SILTSTONE: as above. SANDSTONE: as above; no shows.
2680 - 2685m	90	SILTSTONE: as above.
2000 - 2005m	10	SANDSTONE: as above; no shows.
2685 - 2690m	100	SILTSTONE: as above; grading to shale with a significant decrease in carbonaceous matter.
2690 - 2695m	90 10	SILTSTONE: as above. SANDSTONE: as above; more feldspar, coal and lithic fragments in the aggregates, still very fine to medium grained; tight; no shows.
2695 - 2700m	90 10	SILTSTONE: as above. SANDSTONE: as above; no shows.
2700 - 2705m	90	SILTSTONE: as above; grading into dark silty shale.
	10	SANDSTONE: as above.
		GRAB SAMPLE AT 2706M - DRILLING BREAK
2706m	50	SANDSTONE: light grey to off-white, very fine to medium grained, subangular and rounded quartz aggregates and subordinate feldspar, coal and other rock fragments, poorly sorted; dolomite and silica cemented; tight; no shows.
	50	SILTSTONE: as above.
2705 - 2710m	60	SANDSTONE: as above; argillaceous matrix; no shows.
	40	SILTSTONE: as above.
2710 - 2715m	80 20	SILTSTONE: as above. SANDSTONE: as above; no shows.
2715 - 2720m	70	SILTSTONE: as above;
	30	SANDSTONE: as above; no shows.
2720 - 2725m	90 10	SILTSTONE: as above; grading to shale. SANDSTONE: as above; no shows.
2725 - 2730m	80	SILTSTONE: as above; minor shale.
1,110 2,00m	20	SANDSTONE: as above; no shows.
2730 - 2735m	90	SILTSTONE: as above.
2730 - 2733m	10	SANDSTONE: as above; no shows.
2735 - 2740m	80	SILTSTONE: as above.
	20	SANDSTONE: as above; no shows.

1	2740 - 2745m	60 40	SILTSTONE: as above. SANDSTONE: as above; no shows.
-	2745 - 2750m	50 50	SANDSTONE: as above; no shows. SILTSTONE: as above.
-	2750 - 2755m	60 40	SILTSTONE: as above. SANDSTONE: as above; no shows.
	2755 - 2760m	80 20	SILTSTONE: as above. SANDSTONE: as above; no shows.
•	2760 - 2765m	80 20	SILTSTONE: as above. SANDSTONE: as above.
	2765 - 2770m	50 50	SANDSTONE: as above; no shows. SILTSTONE: as above.
	2770 - 2775m	70 30	SILTSTONE: as above. SANDSTONE: as above; no shows.
	2775 - 2780m	90 1.0	SILTSTONE: as above. SANDSTONE: as above; no shows.
1	2780 - 2785m	90 10	SILTSTONE: as above. SANDSTONE: as above; no shows.
	2785 - 2790m	90 10	SILTSTONE: as above. SANDSTONE: as above; no shows.
	2790 - 2795m	80 20	SILTSTONE: as above. SANDSTONE: as above; no shows.
•	2795 - 2800m	90 10	SILTSTONE: as above. SANDSTONE: as above; no shows.
	2800 - 2805m	100 trace	SILTSTONE: as above; grading to shale. SANDSTONE: as above; no shows.
	2805 - 2810m	100	SILTSTONE: light to dark grey, firm to hard, blocky to tabular cuttings containing finely divided carbonaceous material, micromicaceous, noncalcareous; grading to shale.
		trace	SANDSTONE: light grey to off-white, firm to hard, very fine to medium grained, subangular to rounded quartz aggregates, with subordinate feldspar, coal and other rock fragments, poorly sorted; dolomitic and silica cemented; minor argillaceous matrix; tight; no shows.
		trace	COAL: black, hard, fissile, blocky to tabular cuttings, vitreous lustre.
[2810 - 2815m	100 trace trace	SILTSTONE: as above. SANDSTONE: as above; no shows. COAL: as above.
1	2815 - 2820m	80 20 trace	SILTSTONE: as above. SANDSTONE: as above; no shows. CARBONACEOUS SILTSTONE: black, hard, subconchoidal fracture with very fine grained pyritic lamina.
	2820 - 2825m	90 10 trace	SILTSTONE: as above; slightly more shale. SANDSTONE: as above; no shows. CARBONACEOUS SILTSTONE: as above.

- 35 -

54/

55/

2825 - 2830m	70 30 trace	SILTSTONE: as above. SANDSTONE: as above; no shows. COAL: black, hard, vitreous, conchoidal fracture.
2830 - 2835m	60 40 trace	SILTSTONE: as above. SANDSTONE: as above; no shows. COAL: as above.
2835 - 2840m	70 30 trace	SANDSTONE: as above; no shows. SILTSTONE: as above. COAL: as above.
		C.B.U. PRIOR TO PULLING OUT OF HOLE FOR NEW BIT
2840 - 2845m	60 40 trace	SANDSTONE: as above; no shows. SILTSTONE: as above. COAL: as above.
		50% OF TOTAL SAMPLE CONSISTS OF CAVINGS
2845 - 2850m	60	SANDSTONE: light grey to off-white, firm to hard, very fine to medium grained with minor coarse grained, subangular to rounded quartz aggregates, feldspar, coal and other rock fragments, poorly sorted; dolomitic and silica cemented; minor argillaceous matrix; tight; no shows.
	30	SILTSTONE: light to dark grey, firm, tabular cuttings with finely divided carbonaceous
	10	matter, noncalcareous. COAL: black, hard, vitreous lustre, conchoidal fracture; exinite with yellow fluorescence and slow cut.
2850 - 2855m	70 30	SANDSTONE: 2 types: Type (1) - 60% as above; no show. Type (2) - 40% clear to translucent, coarse to very coarse grained, subangular to subrounded, loose grains of quartz; good inferred porosity; no shows. SILTSTONE: as above.
	trace	COAL: as above.
2855 - 2860m	50 50 trace	SANDSTONE: as above; no shows. SILTSTONE: as above. COAL: as above.
2860 - 2865m	70	SANDSTONE: as above; no shows; still same proportions of the 2 types of sandstone.
	30	SILTSTONE: as above.
2865 - 2870m	50 50	SANDSTONE: as above; no shows. SILTSTONE: as above.
2870 - 2875m	50	SANDSTONE: as above; coarse grained sandstone may be fragments of pebbles in the finer grained sandstone; tight; no shows.
	50	SILTSTONE: as above.
		C.B.U. PRIOR TO PULLING OUT OF HOLE TO LOG 28/03/86

2191L/1-36

- 36 -

Appendix

2

APPENDIX 2

.

· • • • • • •

Core No. 2	Well : KIPPER-1
Interval Cored:1436.0 - 1445.5mCut:9.5mBit Type:RC 476Described by:S. WATTS	Recovered: 9.5m(100%)Bit Size: 9-7/8"Date: 10/03/86 - 11/03/86
Depth & Int. ROP Graphic Shows (m) (m/hr)	P.V.C. SLEEVE Descriptive Lithology
<u>1436</u> <u>111111111</u> <u>111111111</u> <u>111111111</u> <u>111111111</u> <u>111111111</u> <u>111111111</u> <u>111111111</u> <u>111111111</u> <u>111111111</u> <u>1111111111</u>	1436.0m SILTY SANDSTONE - dark browny black, hard, very fine to medium grained, angular to subangular, moderately sorted, silty matrix,
	carbonaceous; iron stained sand grains;
<u>1438</u> <u>1438</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>11111</u> <u>11111</u> <u>11111</u> <u>11111</u> <u>11111</u> <u>1111</u> <u>1111</u> <u>1111</u> <u>111</u>	1437.0m SANDY SILTSTONE - dark brown, very hard, fine to coarse sandy inclusions, subangular, very poorly sorted, tight, micaceous, carbonaceous; 10% patchy, very dull yellow
$\frac{1439}{111111111111111111111111111111111111$	fluorescence; weak slow yellow cut. <u>1438.0m</u> SILTY SANDSTONE - browny grey, hard, very fine to medium grained,
$\frac{1440}{111111111111111111111111111111111$	subrounded, poorly sorted, slightly siliceous, occasional glauconite, carbonaceous flecks and large sand grains; tight; 70% dull to predominantly moderately bright yellow fluorescence, instantaneous moderately strong white cut.
	<u>1439.0m</u> SANDSTONE - pale to dark brown, friable, very fine to fine grained,
1442 1444 14444 1444 1444 1444 1444 1444 1444 1444 1444 1444 1444	moderately sorted, subangular, argillaceous matrix, micaceous, carbonaceous inclusions; 100% even , moderately bright yellow fluorescence; instantaneous, very strong streaming to
	blooming yellowy white cut; slight dark brown oil staining; moderate to good visible porosity.
1444	<u>1440.0m</u> SANDSTONE - pale brown to grey, moderately hard, fine grained, poorly sorted, very silty, silty matrix, carbonaceous inclusions; poor visible porosity; 60% patchy, moderately bright to bright yellow fluorescence; slow streaming milky white cut.
<u>1445</u> <u>11111</u>	5

5 (

58

Core No. 2 co	nt'd	Well	: KIPPER-]	
Cut : Bit Type :	1436.0 - 1445.5m 9.5m RC 476 S. WATTS	Recovered Bit Size Date	: 9.5m : 9-7/8" : 10/03/86	(100%) - 11/03/86
		<u>P.</u>	V.C. SLEEVE	
		Descrip	otive Lithol	.ogy

<u>1445.5m</u> SILTY SANDSTONE - as above; carbonaceous, argillaceous and siltstone inclusions, bioturbated, glauconitic; poor visible porosity; 70% even to patchy, dull to moderately bright, yellow fluorescence; slow weak streaming white cut.

N.B: - Majority of the core is interbedded very fine sand and siltstone, mainly tight, few thin fine sands with porosity.

- Lithology change at about 1438.Om probably represents the base of the Gurnard Formation.

n Narek e kular - a trad**ukakita**r a tabut a taka a partitu jukitu e

and a second second second

Core No.

5 cont'd

Well

: KIPPER-1

Interval Cored	:	1832.2 - 1841.6m
Cut	:	9.4m
Bit Type	:	RC 476
Described by	:	STEVE WATTS

Recovered Bit Size Date

: 8.6m (91%) : 9-7/8" : 13/03/86 - 14/03/86 62

the second states and second

P.V.C. SLEEVE

Descriptive Lithology

1838.4m SILTY SANDSTONE - dark grey, moderately hard to occasionally hard, very fine to fine grained, occasionally medium grained, angular to subrounded, poorly sorted, carbonaceous and silty matrix/cement, micaceous; 40% patchy, bright, yellow fluorescence; slow streaming to diffuse white cut; no staining; poor visible porosity.

1839.4m CARBONACEOUS SHALE - black to dark grey, very hard, fissile, micaceous, highly carbonaceous, coaly inclusions.

<u>1840.5m</u> CARBONACEOUS SHALE - black to dark grey as above; sandy bands, silty in part; up to 90% patchy to even, bright yellow fluorescence in sand at about 1840.4m; slow to moderately fast streaming white cut.

<u>1840.8m</u> SANDY SILTSTONE - medium to dark grey, hard, sandy, small scale cross laminations in very fine sandy interbeds, carbonaceous laminae; tight; up to 20% patchy, bright, yellow fluorescence; slow diffuse cut.

1840.8 - 1841.6m NO RECOVERY.

Interval Cored : Cut : Bit Type : Described by :	1841.6 - 1851.1m 9.5m RC 476 PAUL FELL	Recovered Bit Size Date	: 9.5m (100%) : 9-7/8" : 14/03/86	
Depth & Int. ROP (m) (m/hr)	Graphic Shows		.V.C. SLEEVE iptive Lithology	
1841 1 1 1842 1 1 1842 1 1 1843 1 1 1843 1 1 1844 1 1 1844 1 1 1844 1 1 1844 1 1 1844 1 1 1845 1 1 1846 1 1 1847 1 1 1848 1 1 1849 1 1 1849 1 1 1849 1 1 1849 1 1 1849 1 1 1849 1 1 1849 1 1 1 1849 1 1 1 1849 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		translucent, grained, fri subangular t good inferre <u>1842.0m</u> SAN medium to co <u>1843.0m</u> SAN angular to s sorted; mode porosity; ra occasional p <u>1844.0m</u> SAN medium grain very coarse moderate to coal fragmen claystone). <u>1845.0m</u> PEB medium grey, milky quartz hard, medium angular to si sorted; mode porosity; pel rounded, blad angular quar accessory li present throu <u>1846.0m</u> SAN grey, clear, friable to me grained, suba sorted; good accessory we (claystone), <u>1847.0m</u> SAN except fine t angular to su	DSTONE - as above; except arse, angular to subangu DSTONE - as above; except Ubangular, very poorly rate to good inferred re coal fragments and	and ange sent. tz, ell

والمحاف المراجع والمراجع فأستعم والمراجع والمراجع والمراجع

And a constant of a

64

Core No. 6	со	nt'd	Well	: KIPPER-1	
Interval Cored <u>Cut</u> Bit Type Described by	:	1841.6 - 1851.1m 9.5m RC 476 PAUL FELL	Recovered Bit Size Date		00%)
			<u>P.</u>	V.C. SLEEVE	
			Descri	ptive Litholog	У
				STONE – light ood fragments	
			clear to tran to very coars subangular, v	STONE – browni slucent quartz e grained, ang ery poorly sor s and plant ma	, very fine ular to ted, silty,
			grey, hard, c	STONE – medium arbonaceous, m e quartz withi rix.	inor coarse
			<u>1851.1m</u> SILT quartz grains	STONE – as abo •	ve; except no

.

Appendix 3

.

APPENDIX 3 . Reality

The second s

-

65

KIPPER-#1

SIDEWALL CORE DESCRIPTIONS

<u>No.</u>	Depth	<u>Rec.</u> (mm)	<u>Rock</u> Type	Description
1	2862.0	30	SANDY SILTSTONE:	Dark grey with off-white bands of firm, very fine to silt grain size; subrounded to rounded; moderately sorted quartz sandstone with silica and trace dolomite cement and clay matrix; tight, no shows: slightly calcareous, finely divided carbonaceous material common; well bedded.
2	2845.0			MISFIRED
3.	2839.0	15	SANDY SILTSTONE	As above; moderately calcareous cement in the sandy beds; trace yellow-white fluorescence; no shows.
4	2824.0			LOST
5	2786.5			MISFIRED
6	2773.0	20	SILTSTONE	Brown to grey, firm to soft, argillaceous siltstone with very fine grained sand particles; massive, no apparent bedding; non calcareous, mildly water sensitive.
7	2756.5	20	LIMESTONE	Black, light brown and grey, mottled colour, hard, coarse to granular grain sized, very angular clasts and fragments of coal, siltstone, and carbonaceous sandstone in a very coarse grained carbonate cement; discontinuous to chaotic, angular bedding.
8	2730.0			MISFIRED
9	2709.0	20	SILTSTONE	Dark grey, firm, with finely divided carbonaceous matter, non calcareous massive, with minor beds of very fine grained sandstone; tight, no shows.
10	2697.0	28	SHALE	Brown to grey, subfissile fracture, soft, slightly carbonaceous, massive, non calcareous.
11	2686.0	28		MISFIRED
12	2661.0	20	CALCAREOUS SANDSTONE	Grey, soft to firm, moderately bedded, finely laminated and sandy in part, very calcareous; minor carbonaceous matter.
13	2657.0	23	CALCAREOUS SANDSTONE	Off white, friable, very fine to fine grained, subrounded to rounded, quartz grains in a calcareous and argillaceous matrix, moderately sorted, poor to non visible porosity; trace yellow mineral fluorescence; trace hydrocarbon odour, less than 5ppm HC gas.
14	2651.3			MISFIRED

				-
15	2617.0	25	SILTSTONE	Dark grey and off-white bands of finely laminated-carbonaceous siltstone and very fine grained sandstone; tight, no shows.
16	2601.0	20	SILTSTONE	Grey, hard to very hard, massive, discontinuously layered siltstone with minor finely divided carbonaceous matter; non calcareous, micaceous.
17	2599.0			MISFIRED
18	2559.0	25	SHALE	Grey, firm, massive to finely bedded, slightly carbonaceous, non calcareous with thin (1mm) bands of coarser siltstone.
19	2538.0	25	SHALE	As above - no siltstone bands.
20	2533.0			MISFIRED
21	2500.0	28	SHALE	Dark grey, firm, massive, carbonaceous, non calcareous, slightly water sensitive.
22	2483.0			LOST
23	2480.0			MISFIRED
24	2451.0	20	SHALE	Grey firm, massive, non calcareous; slightly water sensitive.
25	2442.0	28	SILTSTONE	Grey to light grey, firm, massive to very finely bedded, minor finely divided carbonaceous matter; non calcareous.
26	2438.3			MISFIRED
27	2396.0	25	SILTSTONE	Dark grey and off white, finely banded, carbonaceous and slightly sandy; non calcareous.
28	2381.0			LOST
29	2378.0			MISFIRED
30	2342.5	30	SILTSTONE/ CARBONACEOUS SHALE	Light grey to black bands of firm to soft siltstone and carbonaceous shale; slightly calcareous, and water sensitive.
31	2320.0	20	SILTSTONE	Grey, firm, massive, non calcareous.
32	2296.5	20	SILTSTONE	Grey, soft to friable, finely bedded to massive, with very fine grained sand; non calcareous.
33	2280.0	30	VOLCANICLASTIC	Light grey-white firm to friable, very coarse to granular grain sized sub-angular to angular quartz in an extensive white clay and silica matrix; angular feldspar crystals of similar grain size also occur; non calcareous.

- 2 -

660

.
- 3 -34 2276.5 36 SANDSTONE White, firm to friable, very coarse to medium grained, sub-angular to rounded quartz in a white clay matrix with minor silica cement; non calcareous; 15% blue white patchy fluorescence, no cut, no crush cut, no residue; poor visible porosity. 35 2270.0 25 SANDSTONE As above; with faint blue white fluorescence, no cut, no crush cut no residue; poor visible porosity; some quartz clasts in excess of 5mm - rounded. 2245.5 32 SANDSTONE Grey, firm to friable, fine to coarse grained, angular to subrounded quartz, with 15% feldspar clasts and lesser amounts of lithic fragments; poorly sorted, with a white clay matrix; poor visible porosity no shows. 2234.0 20 SILTY SHALE Grey, firm massive, silty in part; non calcareous. 2227.0 20 SANDSTONE Grey to white, friable, very coarse to medium grained (some grains in excess of 5mm) angular to subrounded quartz, minor feldspar and rock fragments; poorly sorted with extensive clay matrix, non calcareous; trace, blue-white fluorescence, no cut; fair to poor porosity. 2221.5 20 CONGLOMERATE White with clear, black and pink clasts; dominantly fine grained quartz and white clay matrix with large subrounded to angular clasts of quartz, coal, and pink volcanic clastics; poorly sorted, tight, with faint blue white fluorescence, no cut. 2209.5 25 SHALE Light to olive grey, firm to soft, non calcareous, massive. 2196.5 CARBONACEOUS 20 Black, soft to fine massive, extensively SILTSTONE carbonaceous with a bed of white, friable, fine to medium grained subrounded quartz sandstone; moderately sorted with extensive white clay matrix, poor to fair porosity, trace blue white fluorescence, no cut. 2192.0 25 CARBONACEOUS As above, very thin (less than 1mm) bands SILTSTONE of very fine grained sandstone; no shows. 2187.5 20 SILTSTONE Dark grey firm to friable carbonaceous, massive, non calcareous. SANDSTONE 2181.0 22 Light grey, firm to friable, fine to very coarse grained angular to subrounded quartz, with minor feldspar and rock

fragments in a clay matrix with some silica cement; fair porosity; faint blue white fluorescence, no cut; poorly sorted.

36

37

38

39

40

41

42

43

44

				- 4 -
45	2173.0	15	SANDSTONE	As above, porosity fair to moderate.
46	2158.0	16	SANDSTONE	As above, moderate porosity, dominantly medium grained and better sorted.
47	2155.0	30	SILTSTONE	Grey, firm, massive with finely divided carbonaceous matter, non calcareous.
48	2148.0	24	SANDSTONE	White, friable, fine to very coarse grained, angular to subrounded, quartz in a white matrix; poorly sorted, non calcareous, poor porosity; trace blue white fluorescence; no cut.
49	2143.0	28	SHALE	Dark to olive grey, massive, firm, non calcareous shale.
50	2128.0	15	CONGLOMERATE	Grey, firm to friable, very coarse to pebble sized quartz and subordinate rock fragments in a clay matrix; poorly sorted with minor, faint blue white fluorescence, no cut.
51	2122.0	30	SANDSTONE	White to light grey, firm, fine to medium grained subangular to rounded quartz with minor feldspar and rock fragments in a clay matrix and minor silica cement; poor porosity, faint blue white fluorescence, no cut.
52	2098.0	35	SANDSTONE	White to light grey, firm to friable, fine to medium with minor coarse grained, subangular to rounded quartz and minor feldspar in a clay matrix; poor to fair porosity, fair sorting, trace blue white fluorescence, no cut.
53	2088.0	15	SILTSTONE	Grey, firm to soft, massive, micaceous, non calcareous.
54	2052.0	30	SILTY SANDSTONE	Grey, soft to friable, very fine to fine grained and silty rounded quartz and clay in very fine laminated beds; micromicaceous with minor carbonaceous matter; non calcareous; tight, no shows.
55	2028.0	25	GRANULAR SANDSTONE	Grey, friable, medium to granular grain size angular to subrounded quartz and minor rock fragments with some clay matrix; good porosity, trace blue white fluorescence, no cut.
56	2025.0	34	SANDSTONE	Light grey, friable to firm, very fine to fine grained, subangular to rounded, quartz and subordinate feldspar in a clay matrix; non calcareous, fair to poor porosity; no shows.
57	2008.0	20	SANDSTONE	Grey, friable, fine to coarse grained, subangular to rounded quartz moderately sorted, minor clay matrix and carbonate cement; fair to good porosity, trace blue white fluorescence, no cut.

- 4 -

68

.

					-
	58	1998.0	20	SANDSTONE	Grey, friable, fine to granular grain sized, angular to rounded, quartz and minor rock fragments with minor clay matrix; poorly sorted, fair to good porosity, non calcareous; no shows.
·	59	1993.0	36	SANDSTONE	Grey, friable, medium to very loose grained subangular to rounded quartz with very little clay matrix, no cement, moderately sorted; good porosity, faint blue-white fluorescence, strong hydrocarbon odour; no cut.
	60	1990.0	30	SANDSTONE	As above.
	61	2845.0	29	SANDSTONE	White, firm to friable, fine to coarse grained angular to subrounded quartz in a clay matrix with trace of carbonate cement; faint blue-white fluorescence, no cut.
	62	2824.0	26	SILTSTONE	Grey, firm, finely laminated to massive, water sensitive, non calcareous.
	63	2805.0	40	SHALE	Very dark grey, soft to firm, massive, very carbonaceous and water sensitive, non calcareous.
	64	2794.0	25	SHALE	As above.
	65	2730.0	25	SILTSTONE	Dark grey, soft to firm, massive to finely laminated, carbonaceous and mildly water sensitive, non calcareous.
	66	2686.0	24	SHALE	Dark grey firm, massive, carbonaceous and water sensitive; non calcareous.
	67	2640.0	20	SILTSTONE	Dark grey, soft to friable, massive, carbacaceous and water sensitive; non calcareous.
	68	2635.5	25	SANDSTONE	White to light grey, firm to friable, very fine to medium grained subrounded to rounded quartz sand with clay matrix, tight; thin laminae of carbonaceous material common; faint, blue-white fluorescence; no cut.
	69	2581.5	26	SILTSTONE	Dark grey, firm, very carbonaceous massive, non calcareous.
	70	2519.5	23	SILTSTONE	As above.
	71	2493.0	21	SILTSTONE	As above.
	72	2483.0	20	SILTSTONE	As above, finely laminated to massive beds.
	73	2460.0	25	SILTSTONE	As above, very dark, carbonaceous with very fine bands of sand; non calcareous.
	74	2420.0	18	CARBONACEOUS SHALE	Dark grey brown, friable, massive, non calcareous.

- 5 -

64/

				- 0 -
75	2408.0	16	SILTSTONE	Dark grey, firm, carbonaceous, with fine sand layers; non calcareous.
76	2381.0	12	SANDSTONE	Light grey to dark grey, banded, firm to soft very fine to fine grained, subrounded to rounded quartz in a clay matrix, poor porosity, no show; carbonaceous laminae common.
77	2357.0	22	SANDSTONE	As above, less dark grey carbonaceous bands, porosity poor to fair; no shows.
78	2307.0	20	SANDY SILTSTONE	Grey very fine grained sand in silty, non calcareous matrix; poor porosity, moderately bedded.
79	2095.0	30	SANDSTONE	White, firm, very fine to fine grained well rounded quartz in a white clay matrix, large clasts of pyrite crystals common.
80	1973.0			LOST
81	1910.0	32	VOLCANICLASTIC	Red and green, firm to very hard, quartz, mica and amorphous ironoxides; chloritic in part.
82	.1888.5			MISFIRE
83	1883.0			LOST
84	1872.0	35	SANDSTONE	White to light grey, friable, fine to medium grained subangular to subrounded quartz in a clay matrix, non calcareous, poor porosity.
85	1814.0	25		MISFIRE
86	1805.0	25	SILTY SANDSTON	Light to dark grey, firm to friable, very fine grained well rounded quartz in a silty and carbonaceous matrix; well banded & bedded; non calcareous, poor to no porosity; no show.
87	1797.0	30	SANDSTONE	Light grey, friable, very fine to fine grained, subrounded to well rounded quartz with very little clay matrix or cement; fair porosity, 10-15% even yellow-white fluorescence - very slow diffuse cut.
88	1787.0			MISFIRE
89	1760.0	38	SILTSTONE	Grey, firm, laminated to massive, slightly carbonaceous; non calcareous.
90	1743.0	40	SANDSTONE	Grey, very friable, medium to very coarse grained, subangular to subrounded moderately sorted quartz partially cemented with pyrite otherwise, good porosity; no shows.

- 6 -

۳

70/

91	1733.5	22	CARBONACEOUS SILTSTONE	Black, soft to firm, very carbonaceous silt to almost coal, with very coarse grained subangular quartz within the beds; trace yellow white fluorescence with slow diffuse cut.
92	1727.0	30	SILTSTONE	Grey, firm massive, micaceous with isolated coarse to very coarse grained subangular quartz grains; no shows.
93	1688.5	40	SANDSTONE	Light grey, friable, medium to coarse grained, subangular to subrounded; quartz; little or no matrix or cement, good visible porosity; no shows.
94	1682.0			EMPTY
95	1674.0	34	SANDSTONE	Grey, firm to friable, medium to coarse grained, subangular to subrounded quartz, minor clay matrix and cement; good porosity, no shows.
96	1646.0	43	SHALE	Light grey massive, micaceous non calcareous; slightly water sensitive.
97	1627.0	36	SANDSTONE	Light grey, medium grained subrounded to rounded quartz with little or no matrix or cement; good porosity; no shows.
98	1603.0	40	CARBONACEOUS SHALE	Black to brown-black, firm to friable massive carbonaceous shale grading to coal; earthy lustre.
99	1579.6	43	SANDSTONE	Olive grey, friable, fine to medium grained subrounded, quartz with minor clay matrix with fair to good porosity; no shows.
100	1562.5	25	SILTSTONE	Grey, soft to firm, massive non calcaneous.
101	1544.0	30	SANDSTONE	Grey-brown, friable, loose coarse to very coarse grained rounded to well rounded quartz with minor clay matrix; trace carbonate; excellent porosity; no shows.
102	1524.0	26	SANDSTONE	Grey, friable well bedded, very fine to fine grained rounded quartz, moderate clay matrix, fair to poor porosity; no shows.
103	1506.0	36	SILTSTONE	Light brown, soft to firm, massive, non calcareous siltstone.
104	1493.0	22	SANDSTONE	Green to grey, friable, massive fine to medium grained subangular to rounded quartz with lesser amounts of glauconite, pyrite and clay; slightly calcareous; poor porosity; no shows.
105	1486.5	20	SILTY SANDSTONE	Light grey, friable banded very fine to fine grained, rounded quartz with minor carbonaceous matter and glauconite; silica cemented, fair to poor porosity; no shows.

no shows.

- 7 -

]

106	1478.0	30	COAL	Black, friable, earthy to sub-vitreous lustre finely banded.
107	1464.0	30	SILTY SANDSTONE	Grey, friable, bedded, very fine to fine grained, rounded, quartz with thin bands of carbonaceous matter and common silty matrix; non calcareous, no shows.
108	1457.5	36	SANDSTONE	Tan, friable to loose, very fine grained rounded quartz; good to very good porosity, no shows.
109	1421.0	30	GLAUCONITIC SANDSTONE	Dark green to grey, firm, medium to coarse grained, subrounded quartz, glauconite and clay; tight; no shows.
110	1418.0	38	GLAUCONITIC SILTSTONE	Dark green, yellow, and red silt, glauconite and medium to coarse grained subrounded quartz grains; tight.
111	1412.5	43	CLAYSTONE	Grey, firm, banded and very calcareous claystone.

2191L/62-69

1

- 8 -

Appendix 4

,

.

APPENDIX 4

. مراجع ا

Page <u>1</u> of <u>8</u>

WELL: <u>KIPPER-1</u> DATE: <u>17/3/86</u>

.

GEOLOGIST/ENGINEER: P. FELL/E. C.Ie

LONG NOSE PROBE / STANDARD PACKER

RFT Run/:			pth m TVDSS KB=21	Initial Hydros HP / RFT gau psia / psig		e Minimum Flowing Pressure psia	Formation Pres HP / RFT gau psia / psig		Temp °C	Time Retract	-	atic Comments uge
	RFT TYPE			MPa/g	ppg	(Pretest)	MPa/g	ppg			MPa/g	ppg
1/1	PT	2113.0	2092.0	3853.99/3842 26.57	10: 10.7	57 1142.68	3287.78/3273 22.67	9.2	75.4	10:59	3856.47/3844	Good test 10.7 Moderate perm.
1/2	РТ	2055.5	2034.5	3753.67/3741 25.88	11: 10.7	.3 2359.34	3271.51/3258 22.56	9.4		11:22	3755.6/3742	Good test 10.7 Moderate perm.
1/3	PT	2124.0	2103.0	3876.76/3863 26.73	11: 10.7	33 3137.68	3289.51/3275 22.68	9.2		11:39	3880.12/3866	Good test 10.7 Good perm.
1/4	PT	2117.2	2096.2	3868.08/3854 26.67	11: 10.7	54 2839.46	3289.9/3273 22.68	9.2		11:59	3870.24/3857 26.68	Good test 10.7 Moderate perm. 12.2 Md
1/5	PT	2028.5	2007.5	3713.9 /3697 25.61	12: 10.7	24 3003.04	3263.71/3249 22.50	9.5	73.8	12:30	3713.90/3699	Good test 10.7 Good perm.
1/6	PT	2006.5	1985.5	3673.93/3660 25.33	12: 10.7	40			73.8	12:43		Seal Failure.
1/7	РТ	2006.4	1985.4	3675.08/3661 25.34	12: 10.7	47 968.91	3252.12/3234 22.42	9.5	73.8	12:54	3678.19/3660	Long build-up/aborted 10.7 Moderate perm.
1/8	PT	2006.4	1985.4	3677.05/3661 25.35	12: 10.7	57 2122.48	3260.32/3243 22.48	9.5	73.8	13:04	3678.91/3661	Good test 10.7 Moderate perm.
1/9	PT	1992.7	1971.7	3650.24/3636 25.17	13: 10.7	11 2766.15	3253.57/3238 22.43	9.7	73.7	13:16	3651.63/3636	Good test 10.7 Moderate perm.

Page <u>2</u> of <u>8</u>

WELL: <u>KIPPER-1</u> DATE: <u>17/3/86</u> GEOLOGIST/ENGINEER: P. Fell / E. C.Ie

RFT N Run/S			pth m TVDSS KB=21	Initial Hydros HP / RFT gau psia / psig		Time Set	Minimum Flowing Pressure	Formation Pres HP / RFT gau psia / psig		Temp °C	Time Retract	Final Hydrost HP / RFT ga psia / psig		Comments
	RFT TYPE			MPa/g	ppg		psia (Pretest)	MPa/g	ppg			MPa/g	ppg	
/10	PT	1890.0	1869.0	3465.48/3452 23.89	10.7	13:31	2664.87	2724.72/2709 18.79	8.5	72.2	13:37	3468.7/3452	10.7	Good test Good perm.
'11	PT	1855.8	1834.8	3405.19/3391 23.48	10.7	13:47	2647.76	2675.30/2662 18.45	8.5	72.9	13:49	3405.73/3390		Good test Excellent perm.
/12	PT	1842.5	1821.5	3380.68/3366 23.31	10.7	13:55	2603.57	2656.11/2643 18.31	8.5	72.8	13:58	3381.45/3365		Good test Excellent perm.
/13	PT	1832.0	1811.0	3361.06/3347 23.17	10.7	14:06	2637.35	2645.30/2632 18.24	8.5	72.6	14:14	3363.10/3347		Good test Excellent perm.
14	PT	1823.5	1802.5	3346.37/3332 23.07	10.7	14:20				72.2	14:21			Tight / Aborted.
15	PT	1823.4	1802.4	3346.27/3332 23.07	10.7	14:26	2410.83	2633.00/2619 18.15	8.5	72.2	14:34	3347.7/3332		Good Test Good perm.
16	PT	1816.0	1795.0	3332.91/3318 22.98	10.7	14:39		2617.48/2603 18.05	8.5	72.2	14:43	3333.14/3318		Good test Moderate perm.
/17	PT	1812.0	1791.0	3325.25/3311 22.93	10.7	14:49	2376.80	2612.07/2599 18.01	8.5	72.2	14:52	3326.1/3311		Good test Good perm.
18	PT	1814.0	1793.0	3329.17/3315 22.95	10.7	14:57	2576.16	2615.20/2601 18.03	8.5	72.2	15:04	3330.3/3315		Good test Moderate perm <i>.</i>

Page <u>3</u> of <u>8</u>

V

WELL: <u>KIPPER-1</u> DATE: <u>17/3/86</u>

GEOLOGIST/ENGINEER: P. Fell / E. C.Ie

RFT N Run/S			pth m TVDSS KB=21	Initial Hydros HP / RFT gau psia / psig		et Flowin Press	ng	Formation Pres HP / RFT gau psia / psig		Temp °C	Time Retract	Final Hydrost HP / RFT ga psia / psig		Comments
	RFT TYPE			MPa/g	ppg	psia (Pret	est)	MPa/g	ppg			MPa/g	ppg	
1/19	PT	1801.0	1780.0	3304.81/3291 22.79	19 10.7	5:11 2585.	21	2599.56/2587 17.92	8.5	72.1	15:13	3305.38/3292 22.79	10.7	Good test Good perm. k = 287.5 md
1/20	PT	1782.0	1761.0	3270.48/3257 22.55	15 10.7	5:21 2521.3	29	2564.84/2552 17.68	8.5	71.7	15:27	3271.79/3257	10.7	Good test Very good perm. k = 85.4 md
1/21	РТ	1745.5	1724.5	3205.18/3191 22.10	19 10.7	5:37 2465.3	32	2513.15/2499 17.33	8.5	71.6	15:40	3205.77/3191		Good test Good perm. k = 86.2 md
1/22	PT	1736.6	1715.6	3189.21/3176 21.99	19 10.7	5:47 398.	0	2501.71/2487 17.25	8.5	71.6	15:50	3189.55/3174		Good test Good perm.
1/23	PT	1719.0	1698.0	3156.17/3143 21.76	19 10.7	5:58 2124.	59	2474.38/2461 17.06	8.5	71.6	16:00	3156.87/3142		Good test Good perm.
1/24	РТ	1474.9	1453.9	2712.05/2699 18.7	10 10.7	6:18 1975.	65	2117.58/2104 14.60	8.5	68.7	16:21	2712.81/2699		Good test Good perm. k = 29.1 md
1/25	PT	1459.3	1438.3	2684.89/2671 18.51	10 10.7	6:27 2061.	30	2097.02/2084 14.46	8.5	68.7	16:30	2685.51/2671	10.7	Good test Good perm.
1/26	РТ	1446.5	1425.5	2661.83/2649 18.35	10 10.7	6:36				68.6	16:37	2663.4/2647		Very tight / Aborted.

Page <u>4</u> of <u>8</u>

5

WELL: <u>KIPPER-1</u> DATE: <u>17/3/86</u>

GEOLOGIST/ENGINEER: P. Fell / E. C.Ie

RFT N Run/S			pth m TVDSS KB=21	Initial Hydrost HP / RFT gaug psia / psig		Time Set	Minimum Flowing Pressure psia	Formation Pres HP / RFT gau psia / psig		Temp °C	Time Retract	Final Hydrost HP / RFT ga psia / psig		Comments
	RFT TYPE			MPa/g	ppg		(Pretest)	MPa/g	ppg			MPa/g	ppg	
1/27	PT	1440.0	1419.0	2650.08/2637 18.27	10.7	16:44	40.15			68.6		2650.6/2636	10.7	Very tight / Aborted.
1/28	PT	1437.7	1416.7	2646.15/2633 18.24	10.7	16:50	34.63	2072.27/2058 14.29	8.5	68.4	16:54	2646.51/2633		Good ∙test Fair perm.
1/29	PT	1428.8	1407.8	2629.24/2616 18.13	10.7	17:00 /	23.06	2086.78/2073 14.39	8.6	68.1	17:08	2630.2/2616	10.7	Test invalid Tight (abnormally high F.P.)
1/30	РТ	1433.3	1412.3	2637.37/2625 18.18	10.7	17:14 7				68.1				Tight / Aborted.
1/31		1439.9	1418.9	2649.16/2637 18.27		17:23	27.54			68.1	17:25	2650.42/2637		Tight / Aborted.

Page <u>5</u> of <u>8</u>

GEOLOGIST/ENGINEER: P. Fell / E. C.Ie

WELL: <u>KIPPER-1</u> DATE: <u>17/3/86</u>

MARTINEAU PROBE

RFT M Run/S			pth m TVDSS KB=21	HP	ial Hydro: / RFT gau / psig		Time Set	Minimum Flowing Pressure	HP	nation Pres / RFT gau u / psig		Temp °C	Time Retract	HP	1 Hydros / RFT ga / psig		Comments
	RFT TYPE			MPa/	ė	ppg		psig (Pretest)	MPa/	'g	ppg			MPa/	'e	ppg	
2/32	SPT	2028.4	2007.4	_	/3693 25.46	10.7	20:46	3047		/3249 22.40	9.5	82.5	21:04	_	/3696		Good test Good perm.
3/33	SPT	1823.2	1802.2	-	/3319 22.88	10.7	12:35	2467	-	/2618 18.05	8.5	78.5	01:43	-	/3324		Fair to poor perm. Valid. Sample taken.
4/34	SPT	1801.4	1780.4	-	/3275 22.58	10.7	04:35	2511.0	-	/2587.0 17.84	8.5	77.9	04:58	-	/3276		Good test Good perm.
5/35	SPT	1736.5	1715.5	-	/3157 21.77	10.7	08:22					76.8	08:23				Loss of seal / Abort.
5/36	SPT	1736.5	1715.5	-	/3158 21.77	10.7	08:25	1789	-	/2487.0 17.15	8.5	76.8	09:55	-	/3159		Valid test Good perm. Sample taken.
6/37	SPT	1437.7	1416.7	-	/2612 18.01	10.6	11:55	1989	-	/2058.0 14.19	8.5	68.2	12:25	-	/2613		Valid test Good perm. Sample taken.

4

Page <u>6</u> of <u>8</u>

WELL: KIPPER-1

DATE: 29/3/86

GEOLOGIST/ENGINEER: R. Newport/J. Brown

LONG NOSE PROBE / STANDARD PACKER

RFT N Run/S				Initial Hydros HP / RFT gau psia / psig		Time Set	Minimum Flowing Pressure psia	Formation Pres HP / RFT gau psia / psig	ıge	Temp °C	Time Retract	Final Hydrost HP / RFT ga psia / psig		Comments
	RFT TYPE			MPa/g	ppg		(Pretest)	MPa/g	ppg			MPa/g	ppg	
7/38	PT	2845.5	2824.5	5099.7/5097 35.16	10.5		3990.0	4740.4/4727 32.68	9.8	96.4	01:59	5102.4/5095		k=7md Good Pretest.
7/39	PT	2834.5	2813.5	5076.1/5072 35.00	10.5	02:23	46.0			93.0	02:25			Tight.
7/40	PT	2834.5	2813.5			02:26	28.0			93.0	02:28	5078.0/5072 35.01	10.5	Tight.
7/41	PT	2833.0	2812.0	5073.8/5069 34.98	10.5	02:35	17.0			91.8	02:37	- /5069	10.5	Tight.
7/42	PT	2834.0	2813.0	5073.6/5071 34.98	10.5	02:48	25.0			91.8	02:52	5081.0/5070	10.5	Tight.
7/43	PT	2475.0	2454.0	4436.2/4435 30.59	10.5	03:24	340.0	3661.3/3657 25.24	8.7	84.1	03:39	4442.0/4438		Valid test. k=1.4md Possibly supercharged.
7/44	PT	2457.0	2436.0	4407.5/4407 30.39	10.5	03:51	2658.0	3604.2/3601 24.85	8.6	84.9	04:00	4411.6/4408	10.5	Valid test. k=5md
7/45	PT	2448.0	2427.0	4329.9/4392 30.29	10.5		3349.0	3582.2/3581 24.70	8.6	84.8	04:18	4395.6/4394	10.5	Valid test. k=20md
7/46	PT	2390.0	2369.0	4289.8/4289 29.58	10.6		1384.0	3524.3/3520 24.30	8.7	84.8	04:45	4291.8/4290	10. 6	Valid test. k=2md

09

Page <u>7</u> of <u>8</u>

GEOLOGIST/ENGINEER: R. Newport/J. Brown

WELL: <u>KIPPER-1</u>

DATE: 29/3/86

LONG NOSE PROBE / STANDARD PACKER

RFT N Run/S			pth m TVDSS KB=21			Time Set	Minimum Flowing Pressure psia	Formation Pres HP / RFT gau psia / psig		Temp °C	Time Retract	Final Hydrost HP / RFT ga psia / psig		Comments	
	RFT TYPE			MPa/g	ppg		(Pretest)	MPa/g	ppg			MPa/g	ppg		
7/47	PT	2276.5	2255.5	4091.0/4090 28.21	10.6	05:10	2289.0	3334.2/3331 22.99	8.6	84.2	05:18	4092.8/4090	10.6		k=4md
7/48	PT	2269.5	2248.5	4079.9/4080 28.13	10.6	05:30	3054.0	3330.9/3328 22.97	8.6	84.4	05:34	4480.7/4080	10. 6	Valid test.	k=15md
7/49	PT	2249.0	2228.0	4043.9/4045 27.88	10.5	05:47	12.0	3327.4/3322 22.94	8.7	84.2	05:57	4046.7/4045		k=1md Possibly sup	ercharged.
7/50	PT	2231.5	2210.5	4014.3/4015 27.68	10.5	06:07	3149.0	3320.2/3317 22.89	8.7		06:16	4016.2/4015	10.6	Valid test.	k=33md
7/51	PT	2213.5	2192.5	3983.4/3983 27.46	10.5	06:27	3091.0	3314.8/3312 22.85	8.8	84.1	06:36	3985.5/3986	10.6	Valid test.	k=25md
7/52	PT	2196.0	2175.0	3954.1/3954 27.26	10.5	06:46	3107.0	3309.0/3308 22.81	8.8	84.1	06:49	3954.1/3954	10.6		k=12md
7/53	PT	2157.0	2136.0	3883.3/3884 26.77	10.5	07:02	3106.0	3298.4/3296 22.74	9.0	83.5	07:11	3885.7/3885	10.6	Valid test.	k=31md
7/54	PT	2124.0	2103.0	3827.0/3828 26.39	10.5	07:24	3165.0	3288.8/3289 22.68	9.1	83.4	07:28	3827.7/3829	10.6	Valid test.	k=42md
7/55	PT	2006.4	1985.4	3615.2/3617 24.93	10.5	07:48	2861.0	3257.3/3258 22.46	9.6	82.2	07:58	3616.7/3619		Valid test.	k=24m d
7/56	PT	2338.0	2317.0	4212.3/4214 29.04	10.5	08:32				85.8	08:34			Seal failure	

Page <u>8</u> of <u>8</u>

GEOLOGIST/ENGINEER: <u>R. Newport/J. Brown</u>

WELL: <u>KIPPER-1</u> DATE: 29/3/86

LONG NOSE PROBE / STANDARD PACKER : MARTINEAU PROBE/STANDARD PACKER FOR SAMPLES

RFT N Run/S			pth m TVDSS KB=21	HP	ial Hydrost / RFT gaug / psig		Time Set	Minimum Flowing Pressure psia	HP	tion Pres / RFT gau / psig		Temp °C	Time Retract	HP	l Hydrost / RFT ga / psig		Comments
	RFT TYPE			MPa/g	5	ppg		(Pretest)	MPa/g	5	ppg			MPa/;	g	ppg	
7/57	PT	2338.0	2317.0	4212. 29.	.7/4214 .04	10.5	08:35					85.8	08:36				Tight.
7/58	PT	2336.0	2315.0	4208. 29.	.9/4211 .02	10.5	08:45	259		4/3626 00	9.1	85.8	08:58	4211	.8/4212		Tight. Pressure-not stabilized Supercharged Fm
8/59	SPT	2845.5m	n 2824.5m	-	/5105 35.20	10.5	12:21	3977	-	/4731 32.62	9.8	97.1	14:13	-	/5099		Segregated sample, build up not complete.
9/60	SPT	2276.5	2255.5	-	/4086 28.17	10.5	17:42 5	196				91.0	17:46	-	/4088	10.5	Tight.
9/61	SPT	2276.4	2255.4	-	/4085 28.17	10.5	17:50 5	2997	-	/3323 22.91	8.6	91.0	19:57	_	/4085	10.6	Tight - Poor Sample.
10/62	2 SPT	2269.5	2248.5	-	/4071 28.07	10.5	23:04 5	3126	-	/3319 22.88	8.7	92.3	01:12	-	/4068	10.6	Tight - Fair Sample.
11/63	3 SPT	2221.5	2200.5	-	/3980 27.44	10.5	03:52 5	2861	-	/3304 22.78	8.8	91.8	04:55	-	/3980	10.6	Sample taken. Good per
12/64	4 SPT	2157.0	2136.0	-	/3863 26.63	10.5	98:05	3170	-	/3286 22.66	9.0	90.7	08:26	-	/3861	10.6	Sample taken.

2191L/41-48

P

RFT SAMPLE TEST REPORT

81

<u>OBSERVER</u> : C. Ie / S. Watts <u>DATE</u> : 17/03/86 <u>RUN NO.</u> : 2

		CHAMBER 1 (45	4 lit.)	CHAMBER 2 (3.8 lit
SEAT	NO.	2/32		2/32	
DEPI		2028.4	<u>m</u>	2028.4	m
١.	RECORDING TIMES	······································			
	Tool Set	20.46	hrs	21.01	hrs
	Chamber Open	20.49	hrs	21.02	hrs
	Chamber Full	20.55	hrs	21.02	hrs min
	Fill Time	6	mins	121.02	hrs
	Finish Build Up	20.59	hrs mins	1	
	Build Up Time	4	hrs		hrs
	Tool Retract Total Time			3	
3.	SAMPLE PRESSURE	<u>. </u>			
.).	Initial Hydrostatic	3693	psig		psi
	Initial Form'n Press.	3249	psig	3249	psi
	Initial Flowing Press.	2890	psig	3082	psi
	Final Flowing Press.	2908	psig	3249	psi
	Final Formation Press.	3249	psig	3249	psi
	Final Hydrostatic		psig	3696	psi
;.	TEMPERATURE		1		
	Max. Tool Depth	2080	m		m
	Max. Rec. Temp	82.5	deg C		deg
	Length of Circ.	4.25	hrs		hrs
	Time/Date Circ. Stopped	0100 hrs	17/03/86	hrs	/ /
	Time since Circ.	19 hrs	46 mins		hrs
).	SAMPLE RECOVERY		L		
	Surface Pressure	2175	psig		psi
	Amt Gas	278.8	cu ft		cu
	Amt Oil		lit		lit
	Amt Mud	0.65	lit		lit
	Amt Condensate	0.65	lit		<u> </u>
<u>.</u>	SAMPLE PROPERTIES				
	Gas Composition				
	<u>C1</u>	161793	ppm		ppm
	<u>C2</u>	<u>10068</u> 2995	ppm		ppm ppm
	<u>C3</u> C4	962	ppm		ppm
	C5	829	ppm ppm		ppm
	C6+	104	ppm		ppm
	C07C07	7 / Nil	%/ppm		%/pj
11	Properties	54.1 deg API@	16 deg C	deg API@	deg
11	Colour	Light Brow			
	Fluorescence	Pale Blue	<u></u>		
	GOR				
	Pour Point	below room to	emp.		
late	er Properties				
	Resistivity	ohm-m @	deg C	ohm-m @	deg
	NaCl Equivalent		ppm		ppm
	Cl-titrated		ppm		ppm
	Tritium		DPM		DPM
	рН				
	Est. Water Type	Mud			
•	MUD FILTRATE PROPERTIES				
	Resistivity	.205 ohm-m @	19 deg C	ohm-m@	deg
	NaCl Equivalent	35000	ppm		ppm
	Cl-titrated	17000	ppm		ppm
	рН	10.5	l		
	Tritium (in Mud)	N/A	DPM		DPM
i.	GENERAL CALIBRATION				
	Mud Weight	10.5	ppg		ppg
	Calc. Hydrostatic	3616	psi		psi
	Serial No. (Preserved)			1116 RFSAD	
	Choke Size/Probe Type	0.030 / Martin		0.030 / Martin	eau
EM/	ARKS	Very good perme condensate is s		Preserved	

RFT SAMPLE TEST REPORT

82

<u>OBSERVER</u> : S. Watts / C. Ie <u>DATE</u> : 18/03/86 <u>RUN NO.</u> : 3

		CHAMBER 1 (45.	4 lit.)	CHAMBER 2 (]	<u>U.4 lit</u>
	r NO.	3/33	<u>_</u>	3/33 1823.2	~
DEP		1823.2	m	1823.2	m
١.	RECORDING TIMES	00.25		01:25	hrs
	Tool Set	00.35	hrs	01:25	hrs
	Chamber Open	00.38	hrs	01:31	hrs
	Chamber Full		hrs mins	5	
	Fill Time Finish Build Up	 	hrs	01:41	hrs
	Build Up Time		mins	10	mins
			hrs	0143	hrs
	Tool Retract	50	mins	18	mins
<u> </u>	Total Time SAMPLE PRESSURE			10	
3.		3319	psig		psi
	Initial Hydrostatic Initial Form'n Press.	2618	psig		psi
	Initial Flowing Press.	90	psig	724	psi
	Final Flowing Press.	2504	psig	731	psi
	Final Flowing Press. Final Formation Press.	2_04	psig	2618	psi
	Final Hydrostatic		psig	3324	psi
			pare		psi
		1880	<u></u>		m
	Max. Tool Depth	78.5	deg C		deg
	Max. Rec. Temp Length of Circ.	4.25	hrs		hrs
	Time/Date Circ. Stopped		17/03/86	hrs	/ /
		23 hrs	35 mins	111.5	hrs
	Time since Circ.		<u> </u>		
)	SAMPLE RECOVERY	1400	psig		psig
	Surface Pressure	<u>1400</u> 67.3	cu ft		cu f
	Amt Gas		lit		lit
	Amt Oil	34.5			lit
	Amt Water (Total)	0.5	11t		
	Amt Others				<u> </u>
Ξ.	SAMPLE PROPERTIES		I		
	Gas Composition	017060			nnm
	<u>C1</u>	<u>317368</u> 57231	ppm		ppm
	C2	27648	ppm		ppm ppm
	<u>C3</u>	7700	ppm		ppm ppm
	<u> </u>	2404	ppm		ppm
		768	ppm ppm		ppm ppm
	<u>C6+</u> C02/H2S	2 / 0	%/ppm		%/ppi
1 1		43 deg API@	16 deg C	deg API@	deg
<u>)11</u>	Properties	Dark Brown		deg Arie	ueg
	Colour	Cream	<u> </u>		
	Fluorescence	336.5 cub.	ft/hhl		
	GOR Pour Point	Below Room Te			
7		Derow Koom re			
vat	er Properties	hm m Q	dog C I	ohm-m @	deg C
	Resistivity	ohm-m@ Insufficier	deg C	9 11-1110	
	NaCl Equivalent				ppm ppm
	Cl-titrated		ppm DPM		ppm DPM
	Tritium				DPM
	pH	<u> </u>	l		
	Est. Water Type	Filtrate			
7.	MUD FILTRATE PROPERTIES		10 3 0	ahm - A	A
	Resistivity	.205 ohm-m @	19 deg C	ohm-m @	deg
	NaCl Equivalent	35000	ppm		ppm
	Cl-titrated	17000	ppm		ppm
	pH	10.5			שמת
	Tritium (in Mud)	N/A	DPM		DPM
3.	GENERAL CALIBRATION		ļ		
	Mud Weight	10.5	ppg	10.5	ppg
	Calc. Hydrostatic	3265.9	psi	3265.9	psi
	Serial No. (Preserved)	-		<u>RFS AE 1289</u>	
	Choke Size/Probe Type	.030/Martineau		.030/Martineau	1
REM	ARKS	Poor perm, did no build up. Insuff	icient	Chamber preserve	

Ï

Ì

RFT SAMPLE TEST REPORT

83

<u>OBSERVER</u> : S. Watts / C. Ie <u>DATE</u> : 18/03/86 <u>RUN NO.</u> : 4

		CHAMBER 1 (45	<u>.4 11t.) </u>	CHAMBER 2 (3.8 lit
SEAT	NO.	4/34		4/34	
DEPI	TH	1801.4	m	1801.4	m
١	RECORDING TIMES				
	Tool Set	04:35	hrs	04:52	hrs
	Chamber Open	04:39	hrs	04:52	hrs
·	Chamber Full	04:47	hrs	04:54	hrs
	Fill Time	8	mins	<u> </u>	min hrs
	Finish Build Up	<u>04:50</u> 3	hrs mins	04:551	min
	Build Up Time	3	hrs	04:58	hrs
	Tool Retract Total Time		mins	6	
3.	SAMPLE PRESSURE	1/			
<u>. </u>	Initial Hydrostatic	3275	psig		psi
	Initial Form'n Press.	2587	psig	_	psi
	Initial Flowing Press.	2051	psig	2450	psi
	Final Flowing Press.	2587	psig	2444	psi
	Final Formation Press.	-	psig	2587	psi
	Final Hydrostatic		psig	3276	psi
	TEMPERATURE				
	Max. Tool Depth	1835			m
	Max. Rec. Temp	77.9	deg C		deg
	Length of Circ.	4.25	hrs		hrs
	Time/Date Circ. Stopped	0100 hrs	17/03/86	hrs	11
	Time since Circ.	27 hrs	35 mins		hrs
).	SAMPLE RECOVERY				
	Surface Pressure	1225	psig		psig
	Amt Gas	139.7	cu ft		cu f
	Amt Oil	28.0	lit		lit
	Amt Water & Mud	1.75	lit		lit
	Amt Others		lit		lit
	SAMPLE PROPERTIES				
	Gas Composition				
	C1	339763	ppm		ppm
	C2	63590	ppm		ppm
	C3	37325	ppm		ppm
	C4	10588	ppm		ppm
	C5	3150	ppm		ppm
	C6+	990	ppm		ppm
	CO2/H2S	1/0	%/ppm		%/pp
)i1	Properties	53 deg API@	<u>16 deg C </u>	deg API@	deg
	Colour	Dark Greeny B	rown		
	Fluorescence	Cream			
	GOR	793.3 cu			
	Pour Point	Well below room	temp.		
late	er Properties				
	Resistivity	.308 ohm-m @	20 deg C	ohm-m @	deg C
	NaCl Equivalent	22000	ppm		ppm
	Cl-titrated	17000	ppm		ppm
	Tritium	2535	DPM		DPM
	pH	7.6			
	Est. Water Type	Filtrate/Mu	<u>a l</u>		
•	MUD FILTRATE PROPERTIES		10 4 0	-h 0	 اد
	Resistivity	.205 ohm-m @	19 deg C	ohm-m @	deg
	NaCl Equivalent	35000	ppm		ppm
	Cl-titrated	17000	ppm		ppm
	pH	10.5			MUU
	Tritium (in Mud)	3444	DPM		DPM
; .	GENERAL CALIBRATION	70 F		10 F	
	Mud Weight	10.5	ppg	10.5	ppg
	Calc. Hydrostatic	3234.4	psi	<u>3234.4</u>	psi
	Serial No. (Preserved)			RFS AD 1129 .030/Martinea	
		DOD/Montin		11211/200951000	11
	Choke Size/Probe Type ARKS	.030/Martin	eau l	.030/Marcinea	<u></u>

.

84

.

RFT SAMPLE TEST REPORT

OBSERVER : P. Fell

<u>DATE</u> : 18/03/86 <u>RUN NO.</u> : 5

		CHAMBER 1 (45.	4 lit.)	ويتحدث والأعلى بإدخارها ويدعدهم ومنتجد الترابي فيترافي والمتعادين ويتراجها والمتقاد والمتعادين والمتعادين والم	3.8 lit
	r NO.	5/36		5/36	
DEP:		1736.5	m	1736.5	m
<u>۹.</u>	RECORDING TIMES				
	Tool Set	0822	hrs	0851	hrs
	Chamber Open	0828	hrs	0851	hrs
	Chamber Full	0848	hrs	0954	hrs
	Fill Time	20	mins	3	mir
	Finish Build Up	0850	hrs	0954	hrs
	Build Up Time	2	mins		min
	Tool Retract		hrs	0955	hr
	Total Time	29	mins	4	miı
	SAMPLE PRESSURE				
	Initial Hydrostatic	3158	psig		ps
	Initial Form'n Press.	2487	psig		ps
	Initial Flowing Press.	83	psig	449	ps
	Final Flowing Press.	2485	psig	2485	ps
	Final Formation Press.		psig	2487	ps
			psig	3159	ps
	Final Hydrostatic		p_1R		23
•	TEMPERATURE	1745			m
	Max. Tool Depth				m deg
	Max. Rec. Temp	76.8	deg C		
	Length of Circ.	4.25	hrs		hrs
	Time/Date Circ. Stopped	0100 hrs	17/03/86	hrs	<u> </u>
	Time since Circ.	31 hrs	22 mins		hrs
)	SAMPLE RECOVERY	L		·	
	Surface Pressure	600	psig		psi
	Amt Gas	37.0	cu ft		cu
	Amt Oil	40.0	lit		lit
	Amt Water (Total)	_	lit		lit
	Amt Others (mud)	less than 0.1	lit		lit
	SAMPLE PROPERTIES				
	Gas Composition	L			
	C1	355942	ppm		ppm
	<u>C2</u>	47163	ppm		ppm
	C3	18432			ppm
			ppm		
	<u>C4</u>	7220	ppm		ppm
	<u>C5</u>	3730	ppm		ppm
	<u>C6+</u>	1472	ppm		ppm
	CO2/H2S	2 / Nil	%/ppm		%/p
)il	Properties	34.5 deg API@	16 deg C	deg API@	deg
	Colour	Dark brown, gre	<u>en tinge</u>	j	
	Fluorescence	Cream			
	GOR	147.1 cub.	ft/bbl		
	Pour Point	less than room	a temp.		
Jat	er Properties				
	Resistivity	ohm-m @	deg C	ohm-m @	deg
	NaCl Equivalent		ppm		ppm
	Cl-titrated		ppm		ppm
			DPM DPM		DPM
	Tritium	l		<u></u>	
	pH		l		
	Est. Water Type	1			
•	MUD FILTRATE PROPERTIES	•		• •	
	Resistivity	ohm-m@	deg C	ohm-m @	deg
	NaCl Equivalent		ppm		ppm
	Cl-titrated		ppm	L	ppm
	pH				
	Tritium (in Mud)		DPM		DPM
;.	GENERAL CALIBRATION				
	Mud Weight	10.5	ppg	10.5	ppg
	Calc. Hydrostatic	3117.9	psi	3117.9	psi
	Serial No. (Preserved)	<u></u>	<u>F**</u>	RFS AD 1157	<u>F</u> 5 1
	DELIGI NU. VELEDELVEU/	l			
		1 030/ Mantin	10911 1	0307696116090	
	Choke Size/Probe Type	<u>.030/ Martin</u>		.030/Martineau	to
REM		Chamber built u	ip to	Chamber built up	
REM	Choke Size/Probe Type		ip to		re

RFT SAMPLE TEST REPORT

85/

Well : KIPPER-1 OBSERVER : P. FELL

Ĩ

<u>DATE</u> : 18/03/86

<u>RUN NO.</u> : 6

.

		CHAMBER 1 (45	<u>.4 11C.) </u>	CHAMBER 2 (] 6/37	10.5 110
	<u>T NO. </u> TH	<u> </u>	m _	1437.7	m
<u>)E</u> P	المحدث فسيست فتعادد فالمجملة كالناب المجران المتمراجي ويستعمله الماكم كالمستجد بتبع فلمتك البالية القاصل بفاجهم			1437.1	
<u></u>	Tool Set	1155	hrs		hrs
	Chamber Open	1157	hrs	1219	hrs
	Chamber Full	1213	hrs	1223	hrs
	Fill Time	16	mins	4	min
	Finish Build Up	1218	hrs	1224	hrs
	Build Up Time	5	mins		min
	Tool Retract		hrs	1225	hrs
	Total Time	24	mins	6	min
3	SAMPLE PRESSURE				
	Initial Hydrostatic	2612	psig		psi
	Initial Form'n Press.	2058	psig		psi
	Initial Flowing Press.	119	psig	2057	psi
	Final Flowing Press.	2052	psig	2056	psi
	Final Formation Press.		psig	<u> 2058 </u>	psi
	Final Hydrostatic	2613	psig	2013	psi
<u>].</u>	TEMPERATURE	1.470			
	Max. Tool Depth Max. Rec. Temp	<u>1470</u> 68.2	mdeg C		m deg
	Length of Circ.	4.25	hrs		hrs
	Time/Date Circ. Stopped	4.25 0100 hrs	17/03/86	hrs	/ /
	Time since Circ.	0100 hrs	55 mins	111.0	hrs
).	SAMPLE RECOVERY	54 111 5	<u> </u>		111.0
·	Surface Pressure	650	psig		psig
	Amt Gas	24.3	cu ft		cu f
	Amt Oil	18.0	lit		
	Amt Water (Total)	23.75	1it		lit
	Amt Others	2.7.7	lit		
	SAMPLE PROPERTIES		<u></u>		<u> </u>
<u> </u>	Gas Composition		L		
	C1	444928	ppm		ppm
	C2	16560	ppm		ppm
	C3	5184	ppm		ppm
	C4	6242	ppm		ppm
	C5	2486	ppm		ppm
	C6+	600	ppm		ppm
	CO2/H2S	Nil / Nil	%/ppm		%/pp
i1	Properties	47 deg API@	16 deg C	deg API@	deg
	Colour	dark brown, gre			
	Fluorescence	cream			
	GOR	215 cu ft/	'bbl		
	Pour Point	less than room	n temp.		
lat	er Properties				
	Resistivity	.260 ohm-m @	20 deg C	ohm-m@	deg_C
	NaCl Equivalent	35000	ppm		ppm
	Cl-titrated	19000	ppm		ppm
	Tritium	av 2922	DPM		DPM
	рН	10.7			
	Est. Water Type	Mud Filtra	ite		
•	MUD FILTRATE PROPERTIES				
	Resistivity	.205 ohm-m @	19 deg C	ohm-m @	deg
	NaCl Equivalent	23000	ppm		ppm
	Cl-titrated	17000	ppm		ppm
	рН	10.5			
	Tritium (in Mud)	3280	DPM		DPM
•	GENERAL CALIBRATION		1		
	Mud Weight	10.5	ppg	10.5	ppg
	Calc. Hydrostatic	2581.4	psi	2581.4	psi
	Serial No. (Preserved)		l	RFS AD 1284	
	Choke Size/Probe Type	.030/Martine	au	.030/Martineau	
				Preserved	
EM.	ARKS	Chamber full		Chamber full	

RFT SAMPLE TEST REPORT

86/

OBSERVER : R. Newport DATE : 29/03/86 RUN NO. : 8

		CHAMBER 1 (45.4	4 lit.)	CHAMBER 2 (3.8 lit.
	T NO.	8/59		8/59	
DEP		2845.5	m	2845.5	m
<u>A.</u>		1 12:20:50	b -= -		h
	Tool Set	12:20:59	<u>hrs</u>		hrs
	Chamber Open	12:24:00	hrs	13:51	hrs
	Chamber Full	12:42:00	hrs	13:53	hrs
	Fill Time	18:00	mins	2	mins
	Finish Build Up		hrs	14:10	hrs
	Build Up Time		mins	_	mins
	Tool Retract	13:50	hrs	14:11 / 14:1	<u>3 hrs</u>
	Total Time	-	mins		mins
Β.	SAMPLE PRESSURE			· ·	
	Initial Hydrostatic	5105	psig		psig
	Initial Form'n Press.	4731	psig	4703*	psig
	Initial Flowing Press.	84	psig	1707	psig
	Final Flowing Press.	3020	psig	1559	psig
	Final Formation Press.		psig	4703*	psig
	Final Hydrostatic	1		5099	
<u> </u>			psig		psig
<u>C.</u>	TEMPERATURE				
	Max. Tool Depth	2855	m		
	Max. Rec. Temp	97.1	deg C		deg C
	Length of Circ.	2.0	hrs		hrs
	Time/Date Circ. Stopped		28/03/86	hrs	<u> </u>
	Time since Circ.	24 hrs	36 mins		hrs
D.	SAMPLE RECOVERY				
	Surface Pressure	1780	psig	······································	psig
	Amt Gas	225.2	cu ft		cu ft
	Amt Oil	Scum			lit
	Amt Water (Total)	4.5	lit		
	Amt Others	<u> </u>	lit		lit
5	SAMPLE PROPERTIES	1	<u> </u>		<u> </u>
<u>E.</u>		1			
	Gas Composition		ļ		
	<u>C1</u>	418611	ppm	۱۹۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰ - ۲۰۰۰	ppm
	<u>C2</u>	45926	ppm		ppm
	C3	10816	ppm		ppm
	C4	4008	ppm		ppm
	C5	1248	ppm		ppm
	C6+	474	ppm	-	ppm
	CO2/H2S	15 /-	%/ppm		%/ppm
0i1	Properties Refract *	36.5 deg API@ 15	.5 deg C	deg API@	deg C
	Colour	light brown			<u>q</u>
	Fluorescence	yellow whit			
	GOR		<u> </u>		
	Pour Point		l		
Wet-		L			
wate	er Properties		A. 7		
	Resistivity	0.215 ohm-m @ 20		ohm-m @	deg C
	NaCl Equivalent	32000	ppm		ppm
	<u>Cl-titrated</u>	21000	ppm		ppm
	Tritium	3008	DPM		DPM
	рН	6.8			
	Est. Water Type	Filtrate			
F.	MUD FILTRATE PROPERTIES		I	*******	484+8×4
	Resistivity	0.184 ohm-m @ 24	.5 deg C	ohm-m @	deg C
	NaCl Equivalent	32000	ppm	<u> </u>	ppm
·····,···	Cl-titrated	22000			
	pH	10.5	ppm		ppm
	Dritium (in Mud)	يستا سبيه بيهدي وريادي فينبسيه منها والبينية سيدو والمنافع فالمراجع والمراجع			0.04
		3169	DPM		DPM
	GENERAL CALIBRATION				
	Mud Weight		ppg		ppg
	Calc. Hydrostatic		psi		psi
	Serial No. (Preserved)		I		
	Choke Size/Probe Type	0.040"		0.030"	
REMA	RKS	Stopped at 13:50.	Filled	* Not stabilized	
		at 40psi/min. Dro		Build up 2psi/mi	
		30psi/min @ 3000ps		Pulled tool off	
		Terminated test ea		sticking.	
		avoid sticking.		Chamber preserve	4

•

RFT SAMPLE TEST REPORT

OBSERVER : J. Brown

R

<u>DATE</u> : 29/03/86 <u>RUN NO.</u> : 9

BSERVER : J. Brown	DATE :	29/03/86	<u>RUN NU.</u> : 9	
	CHAMBER 1 (45.	4 lit.)	CHAMBER 2 (10).4 lit
SEAT NO.	9/61		9/61	
DEPTH	2276.4	m	2276.4	m
A. RECORDING TIMES				
Tool Set	17:50	hrs	-	hrs
Chamber Open	17:54	hrs	19:19	hrs
Chamber Full	-	hrs	19:28	hrs
Fill Time	Not Full	mins	Not Full	min
Finish Build Up	-	hrs	-	hrs
Build Up Time	-	mins	-	min
Tool Retract	19:17	hrs	19:55/19:57	hrs
Total Time		mins	2:07	min
B. SAMPLE PRESSURE				
Initial Hydrostatic	4085	psig	-	psig
Initial Form'n Press.	3323	psig	3309	psig
Initial Flowing Press.	11	psig	650	psi
Final Flowing Press.	700-800	psig	279	psig
Final Formation Press.		psig	1532*	psi
Final Hydrostatic	-	psig	4085	psi
C. TEMPERATURE	1	<u> </u>		
Max. Tool Depth	2277.0	m	1	m
Max. Rec. Temp	91	deg C	1	deg (
Length of Circ.	2.0	hrs		hrs
Time/Date Circ. Stopped		28/03/86	hrs	/ /
Time since Circ.	30 hrs	5 mins	<u> </u>	hrs
D. SAMPLE RECOVERY	1 30 11 3	5 111115	······································	111.9
Surface Pressure	500	psig	1050	psig
Amt Gas	15.7	cu ft	1030	cu fi
Amt Oil	<u> </u>	lit	1	lit
Amt Water (Total)	32.0		5.3	
		lit		lit
Amt Others(prob. cond.) E. SAMPLE PROPERTIES	Trace/Scum	<u> </u>	Trace/Scum	lit
Gas Composition	<u></u>		1	
Cl	388710		402660	
C1 C2	59904	ppm	403660	ppm
C2 C3	18171	ppm		ppm
<u>C3</u>		ppm	17305	ppm
C4 C5	6485	ppm	5345	ppm
فالمتعادية بهاري ويهيها المتحدية بيرياد المتحدين ببيبية القاليان بيان المتحد أثرا التكر كالمتارية المتكر المتكر	2159	ppm	1928	ppm
<u>C6+</u>	767	ppm	590	ppm
CO2/H2S	7.5/0	%/ppm	7.0/0	%/ppn
Oil Properties	- deg API@	- deg C		- deg (
Colour	clear		clear	
Fluorescence	pale white	9	pale white	
GOR			ļ	
Pour Point				
Water Properties				
Resistivity		20 deg C		deg C
NaCl Equivalent	31500	ppm	31500	ppm
Cl-titrated	22000	ppm	21500	ppm
Tritium	3213	DPM	2939	DPM
рН	7.6		7.1	
Est. Water Type	Filtrate		Filtrate	
F. MUD FILTRATE PROPERTIES	•		1	
Resistivity	0.184 ohm-m @ 24	4.5 deg C	0.184 ohm-m @ 24.	5 deg (
NaCl Equivalent	32000	ppm	32000	ppm
Cl-titrated	22000	ppm	22000	ppm
рН	10.5		10.5	
Tritium (in Mud)	3475	DPM	3475	DPM
G. GENERAL CALIBRATION			l	
Mud Weight	İ	ppg	ĺ	ppg
Calc. Hydrostatic	<u></u>	psi	L	psi
Serial No. (Preserved)	J		L	P_1
Choke Size/Probe Type	0.040"		0.030"	
REMARKS	Probably condens	sate	*Building at approx	40nei/
	recovered.		Tool pulled to avoid	
			sticking.	*
	1		ISCICKING.	

88/

·

<u>DATE</u> : 29.03.86

RFT SAMPLE TEST REPORT

<u>RUN NO.</u> : 10

CEAT NO		CHAMBER 1 (45.	<u>4 11t.)</u>	CHAMBER 2 (10.4 lit		
	T NO.	<u> 10/62</u> 2269.5		<u>10/62</u> 2269.5	m	
)EP		2269.5	<u>m</u>	2209.5		
١.	RECORDING TIMES	23:04	hrs		hrs	
	Tool Set Chamber Open	23:04	hrs	0:26	hrs hrs	
	Chamber Full	23.11	hrs	0:31	hrs	
	Fill Time	25.114	mins	5	mins	
	Finish Build Up	00:21*	hrs	01:08	hrs	
	Build Up Time		mins		mina	
	Tool Retract	00:22	hrs	01:10/01:12	hrs	
	Total Time			2hrs		
3.	SAMPLE PRESSURE					
	Initial Hydrostatic	4071	psig		psi	
	Initial Form'n Press.	3319	psig	3315	psi	
	Initial Flowing Press.	9	psig	704	psi	
	Final Flowing Press.	3003*	psig	3224*	psi	
	Final Formation Press.		psig	3314	psi	
	Final Hydrostatic		psig	4068	psi	
3.	TEMPERATURE		<u>F = - 0 </u>			
	Max. Tool Depth	2269.5	n		m	
	Max. Rec. Temp	92.3	deg C		deg	
	Length of Circ.	2.0	hrs		hrs	
	Time/Date Circ. Stopped	11:45 hrs	28/03/86	hrs	/ /	
	Time since Circ.	35 hrs	19 mins		hrs	
).	SAMPLE RECOVERY					
<u> </u>	Surface Pressure	1625	psig		psig	
	Amt Gas	64.0	cu ft		cu f	
	Amt Oil		lit		lit	
	Amt Water (Total)	34.5	lit		lit	
	Amt Others(prob. cond.)	Scum	lit		lit	
Ξ.	SAMPLE PROPERTIES		<u></u>			
	Gas Composition					
	C1	269107	ppm		ppm	
	C2	35942	ppm		ppm	
	C3	16872	ppm		ppm	
	C4	3340	ppm		ppm	
	C5	1620	ppm		ppm	
	C6+	501	ppm		ppm	
	CO2/H2S	12 /-	%/ppm		%/ppi	
)i1	Properties Refract*	41.5 deg API@ 1	5.6 deg C	deg API@	deg	
	Colour	clear light				
	Fluorescence	translucent				
	GOR					
	Pour Point		Ī			
lat	er Properties					
	Resistivity	0.184 ohm-m @ 24	.5 deg C	ohm-m @	deg C	
	NaCl Equivalent	30200	ppm		ppm	
	Cl-titrated	21500	ppm		ppm	
	Tritium	3061	DPM		DPM	
	pH	7.1				
	Est. Water Type	Filtrate	I			
۲.	MUD FILTRATE PROPERTIES		I			
-	Resistivity	0.217 ohm-m @	20 deg C	ohm-m @	deg	
	NaCl Equivalent	32000	ppm		ppm	
	Cl-titrated	22000	ppm		ppm	
	pH	10.5				
	Tritium (in Mud)	3475	DPM		DPM	
3.	GENERAL CALIBRATION					
- •	Mud Weight		ppg		ppg	
	Calc. Hydrostatic		psi		psi	
	Serial No. (Preserved)		<u>F=-</u>		<u>F</u> . <u>-</u>	
	Choke Size/Probe Type					
FM	ARKS	Terminated	earlv I	Terminated early	fillin	
		filling at		at less than 10		

RFT SAMPLE TEST REPORT

82

Well : KIPPER-1

OBSERVER : J. Brown

<u>DATE</u> : 30/03/86 <u>RUN NO.</u> : 11

		CHAMBER 1 (45.4	it.)		.8 lit
	T NO.	11/63		11/63	
DEP		2221.5	<u> </u>	2221.5	m
<u>A.</u>	RECORDING TIMES	03:52	hrs		hrs
	Tool Set	03:52		04:44	hrs
	Chamber Open	03:56	hrs h	04:44	hrs
	Chamber Full	00:13	hrs mins	00:02	min
	Fill Time	00:13	hrs	00:02	hrs
	Finish Build Up	00:33	mins	00:04	min
	Build Up Time		hrs	04:52/04:55	hrs
	Tool Retract	04:42	mins	04.32704.33	min
	Total Time SAMPLE PRESSURE	L,			
<u>B.</u>		3980	psig		psi
	Initial Hydrostatic	3304	psig	3301	psi
	Initial Form'n Press.	146		1228	psi
	Initial Flowing Press.	the second state of the se	psig	2156	
	Final Flowing Press.	1479	psig		ps
	Final Formation Press.	3601	psig	3300	ps
	Final Hydrostatic		psig	3979	psi
]	TEMPERATURE		<u> </u>		
	Max. Tool Depth	2221.5		2221.5	
	Max. Rec. Temp	91.8	deg C	91.8	deg
	Length of Circ.	2.0	hrs		hrs
	Time/Date Circ. Stopped		28/03/86	<u>hrs</u>	<u>/ /</u>
	Time since Circ.	40 hrs	7 mins		hrs
).	SAMPLE RECOVERY		L		
	Surface Pressure	2000	psig		psi
	Amt Gas	274.4	cu ft		cu :
	Amt Oil	-	lit		lit
	Amt Water (Total)		lit		lit
	Amt Condensate	0.09	lit		lit
	SAMPLE PROPERTIES				
	Gas Composition				
	C1	358809	ppm		ppm
	C2	95846	ppm		ppm
	C3	16926	ppm		ppm
	C4	6931	ppm		ppm
	C5	1869	ppm		ppm
	C6+	676	ppm		ppm
		13 / 0	%/ppm		%/p
	CO2/H2S			deg API@	deg
11	Properties	46.6 deg API@ 15		deg AFIC	ueg
	Colour	translucent - lig	nt brown		
	Fluorescence	pale white			
	GOR	<u> </u>			
	Pour Point	L			
lat	er Properties	l			
	Resistivity	ohm-m@	deg C	ohm-m@	deg
	NaCl Equivalent		ppm		ppm
	Cl-titrated	ĺ	ppm		ppm
	Tritium		DPM		DPM
	рН				
	Est. Water Type				
•	MUD FILTRATE PROPERTIES				
	Resistivity	0.184 ohm-m @ 24	.5 deg C	ohm-m @	deg
	NaCl Equivalent	32000	ppm		ppm
	Cl-titrated	22000	ppm		ppm
	pH	10.5			
	Tritium (in Mud)	T0.2	DPM		DPM
	GENERAL CALIBRATION				<u> </u>
•	•		nna		nng
	Mud Weight		ppg		ppg pgi
	Calc. Hydrostatic		psi		psi
			1		
	Serial No. (Preserved)				
	Choke Size/Probe Type				
EM			L _	Chamber Preserve	

99

RFT SAMPLE TEST REPORT

OBSERVER : J. Brown

<u>DATE</u> : 30/03/86 <u>RUN NO.</u> : 12

DSERVER . 5. DIOWN				
	CHAMBER 1 (45.4	lit.)	CHAMBER 2 (3.8 lit
SEAT NO.	12/64		12/64	
DEPTH	2157.0	m l	2157.0	m
A. RECORDING TIMES	L			
Tool Set	08:05	hrs		hrs
Chamber Open	08:09	hrs	08:22	hrs
Chamber Full	08:18	hrs	08:23	hrs
Fill Time	00:09	mins	00:01	min
Finish Build Up	08:21	hrs	08:24	hrs
Build Up Time	00:03	mins	00:01	min
Tool Retract	08:21	hrs	08:25/08:26	hrs
Total Time	00:16	mins	00:04	mir
. SAMPLE PRESSURE				
Initial Hydrostatic	3863	psig		psi
Initial Form'n Press.	3286	psig	3283	psi
Initial Flowing Press.	1154	psig	3193	psi
Final Flowing Press.	3128	psig	3194	psi
Final Formation Press.	3281	psig	3282	psi
	<u>5201</u>	psig	3861	psi
Final Hydrostatic	_	<u>psig</u>		pa1
. TEMPERATURE				
Max. Tool Depth	2157.0	m	2157.0	<u>m</u>
Max. Rec. Temp	90.7	deg C	90.7	deg
Length of Circ.	2.0	hrs		hrs
Time/Date Circ. Stopped		28/03/86	hrs	<u> </u>
Time since Circ.	44 hrs 2	20 mins		hrs
. SAMPLE RECOVERY		<u>_</u>		
Surface Pressure	2025	psig		psig
Amt Gas	283.6	cu ft		cu i
Amt Oil		lit		lit
Amt Water (Total)	1.25	lit		lit
Amt Condensate	0.5	lit		lit
. SAMPLE PROPERTIES	<u></u>	i		
Gas Composition				
C1	379740	ppm		ppm
C2	59904	ppm		ppm
<u>C3</u>	20766	ppm		ppm
C4	7896	ppm		ppm
C5	3084	ppm		ppm
C3 C6+	1092	ppm		ppm
		%/ppm		<u> </u>
CO2/H2S			deg API@	deg
il Properties	48.7 deg API@ 15.		deg AFIQ	ueg
Colour	Translucent to v.]	LC Drown		
Fluorescence	pale white			
GOR		<u>.</u>		
Pour Point		l_		
ater Properties	4			-
Resistivity		deg C	ohm-m @	deg
NaCl Equivalent	30000	ppm		ppm
Cl-titrated	22000	ppm		ppm
Tritium	2363	DPM		DPM
рН	7.6	i		
Est. Water Type	Filtrate	I		
. MUD FILTRATE PROPERTIES				
Resistivity	0.184 ohm-m @ 24.	5 deg C	ohm-m @	deg
NaCl Equivalent	32000	ppm		ppm
Cl-titrated	22000			ppm
	10.5	ppm		<u>bbu</u>
pH Traitium (in Mud)				DPM
Tritium (in Mud)	3475	DPM		DPM
GENERAL CALIBRATION				
Mud Weight	10.5	ppg		ppg
	L	psi		psi
Calc. Hydrostatic		1		
Calc. Hydrostatic Serial No. (Preserved)				
Calc. Hydrostatic Serial No. (Preserved) Choke Size/Probe Type				•
Serial No. (Preserved) Choke Size/Probe Type	 			<u>.</u>
Serial No. (Preserved)	 		Chamber Preser	ved

2191L/52-61

Appendix 5

APPENDIX 5

ź

TABLE 1

91

KIPPER-1 PRODUCTION TEST RESULTS SUMMARY

	KIPPER-1 PRODUCTION TE	ST	RESULTS SUMMARY
TEST	DATA:		
1.	Interval : 2005-2013 mMDKB. (TCP	, 6	SPF, 60 degrees phasing)
2.	Average Porosity within perforated interval	:	20.9%
3.	Estimated formation permeability	:	484 md
4.	Estimated cumulative production	:	11.41 million SCF GAS 235.9 STB condensate 7.0 BBLS formation water
5.	Average stabilised gas rate	:	24.9 MSCF/D
6.	Choke size	:	64/64 inch fixed choke
7.	Average FWHP	:	1205 psig
8.	Average FWHT	:	116° F
9.	Average separator pressure	:	565 psig
10.	Average separator temperature	:	91°F
11.	Length of flow during major flow period	:	11.57 hours
12.	Gravity of gas	:	0.74 (AIR = 1.0)
13.	Gravity of condensate	:	54.6° API @ 60°F
14.	Condensate to gas ratio	:	21.4 STB/million SCF
15.	Average watercut	:	2.9%
16.	Chlorides of formation water	:	800 PPM (titration)
17.	Hydrogen sulphide	:	nil
18.	Carbon dioxide	:	14.5%
19.	Initial pressure @ 1980.3 mMDKB	:	3246.4 psia (H.P.)
20.	Average flowing pressure	•	2995 psia (H.P.) above DHSIT flow area 3199.8 psia (Amerada) below DHSIT flow area
21.	Skin above DHSIT/below DHSIT	45	/2.5
22.	Maximum BHT	:	206°F
23.	Average shut-in WHP	:	2690 psig
24.	Separator samples taken		
	20 LITRES 1000CC SEPARATOR SEPARATOR GAS CONDENSATE		SENT TO
	1 1 1 1 1 1		Analysis, CORELAB, ADELAIDE Analysis, FLOPETROL, ADELAIDE Spare, FISHER CONTROL, SALE
25.	Atmospheric samples taken: 6 x 25 litres jerry cans st 13 x 1 gallon plastic bottl	ock e t	k tank condensate formation water.
(0244	1F:30)		

Ϋ́

÷

. . .

1

. .

2.20

TABLE 2

.

92/2

KIPPER-1 PRODUCTION TEST SEQUENCE OF EVENTS SUMMARY

TIME	DATE	PERIOD (HOURS)	COMMENTS
0639	6 April, 1986	-	Perforate 2005-2013 mMDKB with Schlumberger TCP gun 6 SPF, 60 degrees phasing. Note well was perforated with approximately 840 psi underbalance.
0645-0815	6 April, 1986	1.50	Initial flow and well clean-up period.
0815-1430	6 April, 1986	6.25	Initial shut-in period and rig up to run downhole shut-in tool (DHSIT) and HP/AMERADA pressure gauges.
1430-1512	6 April, 1986	0.70	Major flow.
1512-1556 1556-2138	6 April, 1986 6 April, 1986	0.73 5.70	Well S.I. to re-seat DHSIT in receptacle. Continue major flow. Flow through separator @ 1630 hours.
2138-0025	6-7 April, 1986	2.78	Well S.I. and attempted to re-seat DHSIT. Lost HP signal @ 2230 hours. Attempted to POH DHSIT. Believed wireline entangled below stuffing box.
0025-0535	7 April, 1986	5.17	Continue major flow. Flow through separator @ 0055 hours. Took separator gas and condensate samples from 0400-0530 hours.
0535-0800	7 April, 1986	2.42	Well S.I. for final build-up prior to killing and abandoning the well.

.

TABLE 3

93

,

COMPARISON OF MEASURED BOTTOMHOLE PRESSURES BETWEEN H.P. GAUGE AND AMERADA GAUGE

	Pressures (psig)								
	H.P. @ 1980.3mKB	AMERADA ¹ @ 1983.6mKB	CORRECTED ² AMERADA @ 1983.6mKB						
Initial Pressure	3231.7	3265.7	3231.7						
First FBHP during Major Flow	3124.8	3213.3	3179.3						
First S.I. at Wellhead	3220.4	3264.2	3230.2						
Second FBHP during Major Flow	2980.3	3219.1	3185.1						
Second S.I. at Wellhead	3231.3	3262.6	3228.6						
Third FBHP during Major Flow	N.A. ³	3214.8	3180.8						
Third (final) S.I. at Wellhead	N.A. ³	3262.6	3228.6						

Notes:

- 1. Amerada pressure data uncorrected for error due to zero base line calibration error on scratch chart (i.e. stylus did not return to zero base line when the Amerada gauge was at surface).
- 2. Corrected Amerada pressure based on -34 psi correction for zero base line calibration error to adjust Amerada initial reservoir pressure to H.P. initial reservoir pressure.
- 3. No H.P. data available after 2230 hours April 6, 1986 when the H.P. failed.

(U244F:32)

1

1

;

į

', 1

đ

- 1 - 1

· · ·

.

н.

D-1

			COMPL	ETION D	ATA					
Well	KIPPER-1	Tes	t	1		Da	te	4 APRIL 19	86	
Comp	any Supervisor <u>TON</u>	1 REES/DAVE	EDLEN							
	Engineer D.L. SMI									
1.	Interval2005-20)13m KB (KB	= 21.0m)	······						
2.	Well loading fluid	DIES	EL (47 BBL) WAT	ER (1.6 E	3BL)				
3.	Approximate Differ	ential (pf-	pw)84	0	_ (psi)					
4.	Type of perforatin	g gun	T.C.P	•						
5.	Perforation densit	у6	(sp:	£) ⁶⁰	degrees	phas:	ing			
6.	Mud weight	10.	.4 (pp)	g)						
7.	Cl of filtrate	20,00	00 (ppr	n)						
8.	Cl of mud filtrat	e at time o	f drilling	17	,500	(pp	n)			
9.	Casing: Size ^{95/} 8" (10.	Liner: Size		(in.)	11.	Tubing Size _	: 3½"		(in.)
	Weight47 (Inside	Diameter	2.750	(in.)
	Grade <u>N-80</u>		Grade					12.95		
ſ	Capacity (bb1/ft)	Capacity _		(bb1/ft)		Grade	L-80		
	Shoe (m)	Тор		(ft)			0.00742	2	(bbl/ft
•			Shoe		(ft)		Connec	tions	;	
12.	Plugged back total	depth	2835	_ (m)K	В		Burst	pressure <u>1</u>	.5000	lb
13.	Depth of packer	1996.1		(m) K	В					
14.	Tubing volume	48.6		_ (bb1)						
15.	Volume between pac	ker and low	est perfora	ation	4.1	(bb]	.)			
16.	Rathole volume	197		_ (bbl)						
17.	Depth of tailpipe			(ft)						
18.	Location of pressu	re gauges:HI	Pdepth 1980 DP 1983.6	.3m KB	ga	uge r	umber	766		
1	AMERADA	AS bottom		.4 m KB	E] ga	uge r	t No. 3	38439 32041		
19.	Initial WHP before	well open	850 p	sig						

96 D-1A

PERFORATION

.

ell	KIPPER-1 Tes	st <u>1</u>	Perfor	ration 2005-	-2013mKB Date	6/4/86
•	Geologist(s):	P. FELL				
•	Test Engineer(s):	D.L. SMIT	H/K.J. FAG	G/S.T. KOH		
•	Service Company/E	ngineer: SC	HLUMBERGEF	{		
•	Distance between	CCL and top	of gun: _	T.C.P. USEI)	Ĺt
•	Number of Runs:	1				
	Wellhead pressure	bled down t	o zero bet	ore periorat	ting?	
	(Yes)	(No)			
	Wellhead pressure	before perf	orating:		0	ps ig
	Time of perforati	on: 6:3				
	After perforating first 10 minutes	, record pre and every 5	ssure vers minutes th	us time even ereafter unt	ry minute for til pressure s	the tabilizes.
	Time (Local)	WHP (PSIG)	Annulus Pressure	Time (Local)	WHP (PSIG)	Temperat 55°F
	06:39 0643	800 850	3020		:	-
	06:40 0644	850 850				: :
	06:41 0645	850 850			·	
	06:42	850				
	Other perforating	READINGS C runs:	N D-5			
	Time	Run	Int	erval	WHP	

.

INITIAL FLOW PERIOD DATA*

Well KIPPER-1 Test 1 Perforations 2005-2013m Date 6/4/86 1. Wellhead pressure prior to opening well _____ 850 ____ (psi) 2. Time well opened 0645 (6/4/86) 3. Initial choke size 32/64 (64ths) 4. Well response: Well (flowed, 3433) Time gas surfaced 0707 Time mud surfaced 0704 Time formation fluid surfaced _____0707____ 5. Well data just prior to shut in Flowing wellhead pressure _____995 (psi) Choke size 76 (64ths) Pressure downstream of the choke _____ (psi) Rate 25 (BXB, MCFD) (BSASSASSA, estimated) 6. Time of shut in 0815 7. Total length of initial flow _____ 90 (min, XX) 8. Cumulative production 1 (BBX, MSCF) (meansioned, estimated) 9. Description of produced fluids: _____ °API 0il <u>0</u> % C1 (ppm) Water 0 % Gas: Sp Gr _____0.75

* If extended initial flow (clean up) is run, enter production data at 30 min intervals on Production Test Data sheet (D-5).

If well is swabbed, fill out swab report (D-3).

INITIAL BUILDUP DATA

Well KIPPER-1

Test _____1____

Date <u>6/4/86</u>

Shut-in Time (min)*	DWT WHP (psig)
0815	Shut-in 995
0816 .	2650
0817	2680
0818	2685
0819	2685
0820	2685
0825	2680

Shut-in Time (min)	DWT WHP (psig)

* Record WHP at 15 min intervals.

If pressure gauges are run on wireline, make stop at Kelly bushing; record: DWT 2630 psig

Time 1226 hrs 6/4/86 WHP 2628 psia (HP)

If stops are made while running pressure gauges in the hole, record:

Stop	Time	Depth

Stop	Time	Depth
<u>}</u>		

Time gauges reached bottom: _____

Other events ____

PRODUCTION	TEST	DATA	SHEET
111000011011			

WELL KIPPER-1 TEST 1 PERFORATIONS 2005-2013m KB DATE 6/4/86

1	2	3	4	5	6	7.	8	9	10	11	12	13	'14	15
		EAD	AD 'URE	ш Ш			CUMULATIVE PRODUCTION			RATES		SATE TIO	GRA	VITY
DATE TIME	REMARKS	WELLHEAD PRESSURE PSI	WELLHEAD TEMPERATURE ^o F	CASING PRESSURE PSI	СНОКЕ 64T Н	COND. STB	WATER BBLS	GAS MSCF	COND. STB/D	WATER B/D	GAS MSCF/D	CONDENSATE GAS RATIO	COND. °API@ 60°	GAS AIR = 1
0639	Perforate Well													
0645	Flow Well	835	55		10									
0646		835	55		10									
0647		835	55		10									
0648	Increase choke	845	55		24									
0649		860	55		24									
0650		880	55		24									
0651	Increase choke	880	57		28									
0655	Increase choke	1010	61		32									
0700		1476	70	300	32									
0704	Mud at Surface	2450	85		32									
0705		2450	86		32									
0707	Gas to Surface	2490	90		32									
0710		2545	85		32									
0713	Increase choke	2600	80		48									
0715		1970	80	440	48									

op/ D-5/1

1

TEST

PRODUCTION TEST DATA SHEET

WELL KIPPER-1

•

PERFORATIONS 2005-2013m KB

1	2	3	4	5	6	7	8	9	10	11	12	13	'14	15
		EAD IRE	AD 'URE	л Ш Слас	ш					RATES		SATE	GRA	VITY
DATE TIME	REMARKS	WELLHEAD PRESSURE PSI	WELLHEAD TEMPERATURE °F	CASING PRESSURE PSI	СНОКЕ 64T Н	COND. STB	WATER BBLS	GAS MSCF	COND. STB/D	WATER B/D	GAS MSCF/D	CONDENSATE GAS RATIO	COND. °API@ 60°	GAS AIR = 1
0720		1975	85		48						26 (EST)		
0721	Increase choke	1270	90		64									
0725		1280	93		64						26 (EST	}		
0726	Change to 1" fixed choke	1220	93		64F									
0730		1250	96		64F									
0735		1255	99		64F									
0740	Sample taken	1255	100		64F									0.728
0745		1250	98	380	64F						25 (EST	2		
0750	Change to variable choke	1005	98		76									
0755	Sample taken	985	100		76		ļ							0.75
0800		995	95	400	76									
0805		990	95		76									
0810		995	95		76									
0815	Well shut-in	995	95		76			1			25 (EST)		
0816		2650												
0817		2680												

6 C)-**5** /2
WELL KIPPER-1

PRODUCTION TEST DATA SHEET

TEST

PERFORATIONS 2005-2013m KB

1

1	2	3	4	5	6	7	8	9	10	11	12	13	'14	15
		EAD JRE	AD FURE	G RE	ш_	CL PF	JMULATIN RODUCTIC	/E DN		RATES	-	SATE TIO	GRA	VITY
DATE TIME	REMARKS	WELLHEAD PRESSURE PSI	WELLHEAD TEMPERATURE °F	CASING PRESSURE PSI	СНОКЕ 64T Н	COND. STB	WATER BBLS	GAS MSCF	COND. STB/D	WATER B/D	GAS MSCF/D	Hacondensate Gas ratio	OIL °API@ 60°	GAS AIR = 1
0818		2685	100									MSCF		
0819		2685		340										
0820		2685												
0825		2680	98											
0830	SI Master valve to R/U	BHPG	& DHS	I tool										
1225	Open Master valve	2630	58											
1230	RIH	2630		300										
1245		2630	58	300										
1300		2630	58	300										
1315		2642	58	280										
1330		2640	58	280					+					
1345		2640	58	280					1					
1345)) SEE D - 5A				S.I	•								
1430)	 				+						-	1	
1430	Flow well for major flow	1910	62	240	32A									

D-5/3

p

WELL KIPPER-1 1 2005-2013m KB DATE 6/4/86

1	2	3	4	5	6	7	8	9	10	11	12	13	'14	15
		EAD IRE	AD TURE	а НЕ	ш_					RATES		ENSATE RATIO	GRA	/ITY
DATE TIME	REMARKS	WELLHEAD PRESSURE PSI	WELLHEAD TEMPERATURE °F	CASING PRESSURE PSI	СНОКЕ 64TH	STB	WATER BBLS	GAS MSCF	STB/D	WATER B/D	GAS MSCF/D	CONDENSATE GAS RATIO	OIL ºAPI @ 60º	GAS AIR = 1
1512) SI to Re-seat DHSIT					14		0.7						
1545)													
1556	Open Well				32A	14		0.7						
1630	Flow through separator	1087	105	230	64F									
1745		1149	109	200		50 (ESI)	2.5(ESI)				54.9	
1800	First rates taken	1148	109	210	64F	52.6	-	2.75	249	-	24.0	10.4	55.1	0.750
1830		1140	109	340	64F	64.0	-	3.24	548	-	23.8	23.1	54.9	
1900		1145	112	340	64F	74.6	-	3.73	511	-	23.7	21.6	56.1	
1930		1140	112	390	64F	85.0	3 (EST)	4.22	498	-	23.7	21.1	55	0.744
2000		1142	113	410	64F	95.6		4.71	510	-	23.7	21.6	55.1	
2030		1144	113	440	64F	106.2		5.21	510	_	23.7	21.6	54.7	
2100		1147	113	220	64F	116.6	4	5.70	498	16	23.7	21.0	54.7	0.740
2130						126.5		6.20	473		23.8	19.9	54.7	
2138	Well SI @ choke W/L &	DHSI	unsea	ted										
2139		2550	113	220	SI									
2140		2700	116		SI									

102 D-5/4

WELL KIPPER-1 TEST 1 PERFORATIONS 2005-2013 DATE <u>6/4/86</u>

1	2	3	4	5	6	7	8	9	10	11	12	13	'14	15
		EAD	AD 'URE	ы Ш С	ш		IMULATIN RODUCTIO			RATES		SATE TIO	GRA	VITY
DATE TIME	REMARKS	WELLHEAD PRESSURE PSI	WELLHEAD TEMPERATURE °F	CASING PRESSURE PSI	СНОКЕ 64T Н	COND STB	WATER BBLS	GAS MSCF	OIL STB/D	WATER B/D	GAS MSCF/D	CONDENSATE GAS RATIO	OIL ºAPI @ 60º	GAS AIR = 1
2130						126.5		6.20	473		23.8	19.9	54 . 7	
2138	Well S.I @ Choke W/L & D	HSI Ur	nseate	d										
2139		2550	113	220	SI									
2140		2700	116		SI					*				
2145		2700	116		SI									
2150		2680	106		SI									
2200		2682	102	220	SI									
2230	Lost HP while bleeding c	ff WHI	to 2	000psi						ļ				
2240	Attempted to POH BHPG.pu	lled t	to 646	4ft be	lieve	W/L e	ntangl	ed belo	w stuff	ing bo	x			
		2665	75	300	SI									
0025	7 April 1986. Open Well	2660	66		24A									
0030		2630	69	180	32A								<u> </u>	
0035		2580	79		48A									
0037		1870	83		64A		ļ		ļ				ļ	ļ
0040		1235	92		64F			<u> </u>					ļ 	
0045	Flow to Sep @ 0055 Hrs	1210	97	300	64F									

vy D-5/5

WELL KLIPPER -1 TEST 1 PERFORATIONS 2005-2013 DATE 6/4/86

1	2	3	4	5	6	7	8	9	10	11	12	13	' 1 4	15
		EAD	AD TURE	ы В Е	ш		JMULATIN RODUCTIO			RATES		ENSATE RATIO	GRA	/ITY
DATE TIME	REMARKS	WELLHEAD PRESSURE PSI	WELLHEAD TEMPERATURE ^o F	CASING PRESSURE PSI	СНОКЕ 64TH	COND STB	WATER BBLS	GAS MSCF	OIL STB/D	WATER B/D	GAS MSCF/D	CONDENSATE GAS RATIO	OIL ºAPI @ 60º	GAS AIR = 1
0100		1215	108	430	64F	136.9		6.72	-		25.0	-	54.8	0.740
0130		1220	110	320	64F	147.8		7.25	523		25.2	20.1	54.6	0.740
0200		1218	111	410	64F	159.7		7.77	573		24.9	23.0	54.6	0.740
0230		1211	113	500	64F	170.1	5	8.29	498	16	24.8	20.1	54.5	0.740
0300		1212	113	250	64F	181.2		8.81	535		24.9	21.5	54.6	0.740
0330		1206	116	250	64F	192.9		9.33	560		24.8	22.6	54.4	
0400	started first Sep sample	s1205	117	240	64F	203.8	6	9.85	523	16	24.9	21.0	55.1	
0430	started second Sep Sampl	es "	114	200	64F	214.4		10.37	510		24.9	20.5	-	
0500	started third Sep sapmle	s "	116	420	64F	225.3		10.89	523		24.9	21.0	-	
0530	end sampling	1207	116	210	64F	235.9	7	11.41	510	16	24.9	20.5	-	
0532	By pass seperator													
0535	S.I at surface	1206												
0536		2670												
0537		2710												
0538		2705	118											
0539		2700												

00∱ **D-5**∕₀

	WELL <u>KIPPER-1</u>	TEST	1	····	PEF	RFORATI	ons <u>20</u>	05-2013	3 MIKB		DA	TE <u>7/4</u>	/86	
1	2	3	4	5	6	7	8	9	10	11	12	13	'14	15
		EAD JRE	EAD TURE	л В Ш	۳	C P		/E DN		RATES		OR SATE VTIO	GRA	 VITY
DATE TIME	REMARKS	WELLHEAD PRESSURE PSI	WELLHEAD TEMPERATURE ^o F	CASING PRESSURE PSI	CHOKE 64TH	OIL STB	WATER BBLS	GAS MSCF	OIL STB/D	WATER B/D	GAS MSCF/D	GOR OR CONDENSATE GAS RATIO	OIL ºAPI @ 60º	GAS AIR =
0540		2700	T .											
0541		2695			 							 		ļ
0542		2695												
0543		2695	ļ											
0544		2693												
0545		2690	112	300										
0550		2688												
0600		2688												
												ļ		

D-5/7

RIG-FLOOR	AND BOTTOMHO	DLE DATA
1110 1 20011		

.

WELL	KIPPER -1	TEST	1		_ PERFC	RATIONS	200	5-2013	MKB	DATE6	/4/86		PAGE	OF	2
1	2	3	4	5	6			1	2		3	4	5	6	
TIME LOCAL	REMARKS	WHP PSIG	WHT DEG. F	CAS. PRESS.	СНОКЕ 6411	BHP PSIA	oF	TIME LOCAL	REMARKS		WHP PSIG	WHT DEG. F	CAS. PRESS.	СНОКЕ 64тн	BHP PSIA
1346	DHSI Tool @ bottom					3272	191	2000			1142				2997.2
1347	Closed DHSI tool					3272	194	2030			1144			ļ	2997.2
1352	Start bleed down to	2640	58	280	S.I	3259.7	196	2100			1147				2996.3
1335	press test DHSI tool	2600	58		bleed			2130							2995.8
1358		2000			SI			2138	S.I. Choke						
1400						3236	198	2140							3246.1
1405					ļ	3235.6	194	2145						_	3249.4
1410						3240.8	192.3	2150	· · · · · · · · · · · · · · · · · · ·						3247.0
412					<u> </u>	3242.4	191.9	2155							3245.0
1414						3243.6	191.7	2200							3244.6
1416						3244.6	191.5	2215						<u> </u>	3245.6
1418						3245.	191.4	2230	Bleed off to t	est and	l lost	HP si	qnal		
1419						3245.	191.4								
1420			_			3245.	191.	4					_		
1421			<u></u>	ļ		3245.	\$ 191.4								
1422						3246.	191.		-					_	
1423			ļ	ļ		3246.2	2 191.								
1424			<u> </u>	ļ	_	3246.	4 191.								ļ
1425	Start pump MEOH			ļ			-								
1426	Open OTIS Choke	2100	62		24A		4								
1430	Open DHSI tool to Flow well	1910	62	240	32A	3246.	B 191.	5							
1435	Flow thru 2 burners	2420	66		48A	3270.	199.	8							
1437		2075	75		64A										
1439		2045	78		64F	3238.	9 204								

100

D-5A

D-5A

RIG-FLOOR AND BOTTOMHOLE DATA

.

1	2	3	4	5	6			1	2		3	4	5	6	
TIME LOCAL	REMARKS	WHP PSIG	WHT DEG. F	CAS. PRESS.	СНОКЕ 64ТН	BHP PSIA		TIME LOCAL	REMAR	IKS	WHP PSIG	WHT DEG. F	CAS. PRESS,	CHOKE 64TH	BHP PSIA
L445		2048	90		64F	3222.7									
1452	Bypass heater	1250	96		64F	3209.5	206.5				ļ		ļ		
1500		1155	95			3144.1	205.7								
1512	DHSI tool released.	S.I. @	choke	manif	pld								<u> </u>		
1546	DHSI tool reseated					3248.8	203				ļ		l		
1556	Flow well open DHSI				32A								ļ	ļ	
1607					64F								ļ		
1610		1140	95			3036.7	206								
1615		1120	98	290		3037.0	203.8								
1630	Flow thru seperator	1087	105	230		3056.5	202.3						ļ		
1645	Diff 0-200 out of	1075	107	240		3063						ļ			
1700	range changed diff	1079	108	240		3063.5	5								
1715	and calibrate to	1080	109	210		3062.9	204								
1730	0-400 completed 1745	1149	109	200		3025.4	4				_				
1745	flow cond. to test	1149	109	210		3009.2	2						-	ļ	
	tank						,								
1800		1148				3004.9	9								ļ
1830		1140				3002.2	2								
1900		1145]	2999.8	В								
1930		1140				3000.0	D								ļ
					ļ										ļ
															ļ
											_			_	

for the second s

WELL	KIPPER -	• 1

SEPARATOR DATA SHEET

1

TEST

DATE _____6/4/86 Page 1 of 2

1	2	3	4	5	6	7	8	9	10	11	12	13
DATE	SEPAF	ATOR	Tank		WATEF Tar	; 1BBL 1k	GAS METEF	GAS METE DIA. 3.82	R DATA		GAS	
TIME	PRESS PSIG	TEMP °F	READING inch	∆BBLS conden- sate	READING BBLS	ΔBBLS	STATIC PSIA	DIFF. IN. H ₂ O	TEMP °F	PLATE IN.	GRAVITY	REMARKS
1745						And and a second se						
1800	530	84	18.0	2.595			545	236	84	3.0	0.750	INI.Tank=13 inches
1830	530	87	40.0	11.418			545	232	87	3.0	0.750	
1900	530	90	60.5	10.64			545	232	90	3.0	0.750	
1930	530	90	80.5	10.38	3 (est)		545	232	90	3.0	0.744	
2000	530	90	11.5/32	10.64			545	232	90	3.0	0.744	
2030	530	90	52.5	10.64			545	232	90	3.0	0.744	
2100	530	90	72.5	10.38	4	1	545	232	90	3.0	0.740	
2130	530	90	11/30	9.86			545	234	90	3.0	0.740	
0100	565	82	38(INIT) –			580	236	82	3.0	0.740	
0130	570	87	59	10.9			585	240	87	3.0	0.740	
0200	565	89	82	11.9			580	238	89	3.0	0.740	
0230	565	91	12/32	10.4	5	1	580	238	91	3.0	0.740	
0300	565	91	53.5	11.2			580	240	91	3.0	0.740	
0330	565	92	76	11.7			580	238	92	3.0	0.740	. P
0400	565	92	10.5/31.	5 10.9	6	1	580	240	92	3.0	0.740	<u>م</u>

20%

WELL	KIPPER -1	

SEPARATOR DATA SHEET

тезт ____1

DATE 6/4/86 Page 2 of 2

Ś

1	2	3	4	5	6	7	8	9	10	11	12	13
DATE	SEPAF	ATOR	TAI	NK	WATE	a 1BBL Fank	GAS METEF	GAS METE DIA. <u>3.82</u>	R DATA	Daniel Snr	GAS	
TIME	PRESS PSIG	TEMP °F	READING inch (13)	∆BBLS conden- sate	READING BBLS	ΔBBLS	STATIC PSIA	DIFF. IN. H ₂ O	TEMP °F	PLATE IN.	GRAVITY	REMARKS
0430	565	92	52	10.6			580	240	92	3.0	0.740	
0500	565	92	73	10.9			580	240	92	3.0	0.740	
0530	565	92	11.5/32	10.6	7	1	580	240	92	3.0	0.740	
	_											
	•											
					ļ							
												<u> </u>
						<u> </u>						5

OIL RATE CALCULATIONS

6/4/86 Page 1 of 2 1 KIPPER - 1 DATE TEST WELL _ 7 10 12 13 14 8 9 11 2 1 3 4 5 6 CORRECTED VALUES CONDENSATE DATE Δ REMARKS TIME TIME Test 1 - ^{BSW} \triangle . PROD TEMP GRAVITY METER RATE LGR Δ TEMP. SHRINKAGE READING % STB STB/D ٥F ^oAPI @ 60º BBLS FACTOR CORR. STB/MSCF inch condensate 249 10.4 1.0 2.595 18.0 2.595 1.0 1.0 1.0 1800 15 60 55.1 1.0 1.0 11.418 548 23.1 1.0 11.418 1.0 60 54.9 40 1830 30 511 21.6 1.0 1.0 1.0 1.0 10.64 1900 30 60 56.1 60.5 10.64 21.1 498 1.0 1.0 1.0 10.38 10.38 1.0 30 60 55 80.5 1930 21.6 1.0 10.63 510 0.9994 11.5/32 1.0 1.0 61 55.1 10.64 2000 30 21.6 1.0 0.9988 1.0 10.63 510 52.5 10.64 1.0 62 54.7 30 2030 21.0 1.0 0.9988 1.0 10.37 498 1.0 62 54.7 72.5 10.38 30 2100 9.85 473 19.9 1.0 0.9988 1.0 11/30 9.86 1.0 2130 30 62 54.7 _ ----_ 38(initial) -_ ---62 54.8 _ -----0100 523 20.8 1.0 1.0 0.9994 1.0 10.9 54.6 59 10.9 61 0130 30 1.0 573 23.0 0.9994 11.9 11.9 1.0 1.0 82 0200 30 61 54.6 20.1 0.9994 1.0 10.4 498 1.0 61 10.4 1.0 0230 30 54.5 12/32 0.9994 1.0 11.2 535 21.5 1.0 61 54.6 53.5 11.2 1.0 30 0300 22.6 11.7 560 11.7 1.0 1.0 0.9994 1.0 76.0 30 61 54.4 0330 10.5/31.\$10.9 0.9994 1.0 10.9 523 21.0 1.0 1.0 61 55.1 0400 30 10.6 510 20.5 1.0 0.9994 1.0 1.0 0430 30 61 -----52 10.6 D 0.9994 1.0 10.9 523 21.0 61 10.9 1.0 1.0 73 0500 30 -J

10/

OIL RATE CALCULATIONS

1	2	3	4	5	6	7	8	9	10	11	12	13	14
DATE	Δ		- -	L	CONDEN	ISATE	<u> </u>			COR	RECTED VAL	LUES'	
TIME	TIME	TEMP °F	GRAVITY ^o API @ 60º		∆ BBLS condensa:	METER FACTOR	SHRINKAGE	TEMP. CORR.	1 - ^{BSW} %	∆ . prod stb	RATE STB/D	LGR STB/MSCF	REMARKS
0530	30	61	_	11.5/32	10.6	1.0	1.0	0.9994	1.0	10.6	510	20.5	
											-		
			-										
	1		1						-				7

WELL KIPPER -1

GAS RATE CALCULATIONS

TEST

DATE 6/4/86 Page 1 of 2

E,

1	2	3	4	5	6	7	8	9	10	11	12
DATE TIME	STATIC (p _f) PSIA	GAS M DIFF. (h _w) IN H ₂ O	ETER TEMP ^o F	PLATE IN.	BASIC ORIFICE FACTOR F _b	FLOWING TEMP FACTOR F _{tf}	SPECIFIC GRAVITY FACTOR F _g	SUPER- COMPRES IBILITY F _{pv}	ORIGINAL CONSTANT C' = F _b ·F _{tf} ·F _g ·F _{pv}	RATE Q = .024 C' x $\sqrt{h_w p_f}$ (Mcf/D)	REMARKS
1800	545	236	84	3.0	2315.562	0.9777	1.155	1.065	66886.7	24.0	Ø=0.750 Y2=1.0013
1830	545	232	87	11	19	0.9750	11	1.063	66809.2	23.8	
1900	11	11	90	f1	11	0.9723	1.159	1.061	66544.6	23.7	0.744 "
1930	11	11	11	11	11	11	11	1.061			
2000	11	11	11		TI	It	11	11	89	11	
2030	17	57	11		11	11	11	"	19	u	
2100	11		11	11	11	11	1.162	1.060	66676.7	n	0.740
2130	11	234	11	"	58	11	11	11	66677.5	23.8	
0100	580	236	82		11	0.9795	1.162	1.068	67676.7	25.0	0.740 1.0012
0130	585	240	87		11	0.9750		1.066	67253.5	25.2	u
0200	580	238	89	11	11	0.9732	1.162	1.065	67032.0	24.9	0.740
0230	580	238	91	11	"	0.9715	1.162	1.064	66852.4	24.8	
0300	580	240	91	11	II	11	11	11	66853.1	24.9	0.740
0330	580	238	92	11	11	0.9706	N	1.063	66763.3	24.8	
0400	580	240	92	11	18	11	11	11	66764.0	24.9	0.740
0430	580	240	92	11	11	11	11	II	33	11	

WELL KIPPER - 1

TEST _____1

DATE 6/4/86 Page 2 of page 2

.

ويكم

1	2	3	4	5	6	7	8	9	10	11	12
DATE TIME	STATIC (p _f) PSIA	GAS M DIFF. (h _w) IN H ₂ O	TEMP °F	PLATE IN.	BASIC ORIFICE FACTOR F _b	FLOWING TEMP FACTOR F _{tf}	SPECIFIC GRAVITY FACTOR Fg	SUPER- COMPRES IBILITY F _{pv}	ORIGINAL CONSTANT C' = F _b ·F _{tf} ·F _g ·F _{pv}	RATE Q = .024 C' x $\sqrt{h_w p_f}$ (Mcf/D)	REMARKS
0500	580	240	92	3.0	2315.562	0.9706	1.162	1.063	66764.0	24.9	
0530	580	240	92	3.0	2315.562	0.9706	1.162	1.063		24.9	
	+										
											D8

GAS RATE CALCULATIONS

114 D-9

LIQUID SAMPLE FIELD ANALYSIS RECORD

· .

WELLKII	PPER -1		EST	1			DATE	6/4/86		-
1	2	3	4	5	6	7	8	9	10	
TIME	SAMPLE POINT	S Cond. Colour	HAKE OU WATER	BS&W	API ^o @ 60 ^o F	CI [~] (ppm) TITRA	WATER RES(Ωm) /TEMP	рH	Cond. T (°F)	DI
1715	Separator	tan-bro	wn		54.1	<u></u>			68.9	1
1745	Separator	Light-t	an		54.9					1
1800	11	11			55.1				63.3	
1830	11	"			54.9				61.0	1
1900	11	Gold ye	llow be	coming	56.1	1300	1.93/71	6.4	64.4	0.
		clearer					·			1
1930	Ŧ	Gold ye	llow cl	ear	55	1300	1.92/70	6.5	65.3	0
2000	11	11	11		55.1	1650	1.64/79	6.5	64.4	4.
2030	H	Pale ye	11ow "		54.7	1350	1.67/80	6.4	63.5	0
2100	11	Pale ye	llow cl	ear	54.7		1.90/73		65.3	0
2130	11	11	п	11	54.7		1.91/73	<u></u>	63.5	11
0100	"	11	11	11	54.8	850		6.3	62.6]
0130	11	11	11	11	54.6				64.4	1
0200	11	"	11	11	54.6		Nil		64.4]
0230	11	11		11	54.5				62.6	
0300	11	"	11	11	54.6	850		6.3	64.4	1
0330	11	11	11	17	54.4	800	2.47/81	6.2	60.8	0
0400	11	11	11	17	55.1	750	2.46/75	6.2	64.2	0
								· · · · · · · · · · · · · · · · · · ·		

GAS SAMPLE FIELD ANALYSIS RECORD

.

115

D-10

WELL	KIPPER -1		TEST	11	,,,,,,,	DATE_	6/4/86		-
1	2	3	4	5	6	7	8	9	-
TIME	SAMPLE			С	OMPONEN				
SAMPLED	POINT	C ₁	C ₂	C ₃	C ₄	^C 5/C 5	H ₂ S mag	CO2 (%)	्रिव
0716	Choke Manifold	232,927	76,155	102,154	52 , 556	11,935 3,367	. 0	10%	
0740	11	304,988	67,922	24,658	4,286	1459/526	0	17%	٥.
0755	11	301,400	61,747	25,010	5 , 964	1652/605	0	12%	0.
1445	Choke	306420	61850	22020	5590	1657/394	0	12	
1515	11	418611	66560	35225	5184	1768/575	0	14	
1615	11	504832	69120	27200	3168	2184/656	0	15]
1645	"	455987	66560	23116	4659	1761/657	0	14.9	1
1715	Sep.Gas	397681	56601	25098	5824	1906/575	0	13.5	1
1745	11	384225	61747	21135	5125	2984/526	0	13.3	1
1800	"	373760	85417	44032	6173	3480/395	0	16.3	0.
1830	"	405155	63034	23337	6552	1657/370	0	14.4	1
1900	11	375255	54029	24328	6405	2072/740	0	13.9	0.
1930	"	363295	53514	22456	6962	1741/719	0	15	1
2000	11	367780	52999	22456	5707	2072/526	0	15	1
2030	11	366285	53514	17833	5008	1179/740	0	14.4	1
2100	11	366285	40136	24327	7920	2735/543	0	13.3	0.
0100	"	388710	61747	26419	6552	2072/575	0	14.4	0.
0130	11	388710	61747	26419	7056	2072/574	0	14.1	1
0200	11	381235	63033	26639	7280	2797/986	0	14.2	0.
0230	"	373760	61747	25318	6988	2072/983	0	13.8	1
0300	11	381235	61747	26419	6552	2175/698	0	14.0	٥.
0330	11	381235	62004	26419	6406	2175/575	0	13.9	
0400	-								1

116 D-13

PRODUCTION TEST SUMMARY

·

I

Well	KIPPER -1 Test 1	Date	7/4/86	
Test Da	ta:			
1.	Interval 2005-2013			
2.	Produced fluid			
3.	Cumulative production11.41	(MS	CF)	
4.	Stabilized rate24.9	(MSCF	/D)	
5.	Length of flow period	(hr)	(42+342+3	LO mins)
6.	Choke 64	(64t	hs)(Fixed)	
7.	Gravity of oil or condensate54.6		_(°API @ 6	0°F)
8.	Condensate - Gas Ratio21.4	(ST	B/MSCF)	
9.	Water cut 2.9	(%))	
10.	Chlorides 800	(pp	om)	
11.	H ₂ S <u>Nil</u>	(%,	, ppm)	
12.	^{CO} ₂ <u>14.5</u>	(%))	
13.	Stabilized flowing wellhead pressure 1205	(ps	ig) (DWT)	
14.	Stabilized flowing wellhead temperature16	(°F	`)	
15.	Wellhead pressure at end of buildup	(ps	ig) (DWT)	
16.	Initial reservoir pressure <u>3246.4</u> (psi	A) (d	1980.3	(MKB)
17.	Final flowing pressure 2995 (psi	A) (î	1980.3	(MKB)
18.	Productivity index 89 RB/D/psi		-	
19.	Maximum bottom-hole temperature206(°F	r) @ _	1980.3	(MKB)
20.	Samples taken: <u>3x20 & Sep Gas</u> , 3x1 & Sep.Cond	l		
	6x25 & Jerry cans cond. 13x1 G	al Sep	p.Water	
21.	Remarks: $M = Million$, $K = Thousand$, GAS FVF	= 0.9	0 RB/KSCF	

117 **D-14**/1

	BUILDUP ANALYSIS FOR SHUT-IN PERIOD
_	BETWEEN 2138-0025 HOURS APRIL 6, 1986
	Rate $q = 23 \cdot 2$ (XXXX; MSCF/D) (FOR 1556-2138 HOURS)
2.	Horner Time: $\frac{\text{Cumulative production}}{\text{Last rate}} = 24 \times \frac{(\$\$)}{(\$\$b/d)} = \frac{5.70}{(342 \text{ mins})} (hr)$
3.	Fluid and reservoir properties
	Viscosity: $\mu = 0.02$ (cp) $\forall g = 0.74$ $(g = 225 \times 10^{-6} \text{ psi}^{-1}$
	Compressibility factor (for gas wells): $z = 0.871$
	Compressibility: $c_t = \frac{212 \times 10^{-6}}{(1/psi)}$
	Volume factor: $B_g = 0.901$ (RB/kSCF) at pressure of 3246 (psi)A
	Thickness: $h = $ (ft)
	Perforated thickness: $h_p = 26.2$ (ft)
	Porosity: $\phi = 20.9$ (%)
	Wellbore radius: $r_w = 0.40$ (ft)
	Bottom-hole temperature: $T = 206$ (°F)
4.	Initial pressure: p _i = <u>3246.4</u> (psi)A @ 1980.3m KB
5. 6.	Flowing bottom-hole pressure $p_{wf} = 3199.8$ (psi)A @ 1983.6m KB (AMERADA) downstream of DHSIT flow area Wellbore storage: $\alpha = 1.19 \times 10^{-2}$ (RB/psi)
7.	End of afterflow: $\Delta t_{af} = 22$ (min)
8.	Middle time region slope: $m = 5.5$ (psi)/cycle
9.	Extrapolated pressure: p* = (psi)
10.	Ideal buildup pressure at $\Delta t = 1$ hr: $p_{wl} = $ (psi)
11.	Permeability-thickness product: $kh = \frac{162.6 \text{ q}\mu\text{B}}{\text{m}}$
	$kh = \frac{162.6 (23800) (0.02) (0.901)}{(5.5)} = \underline{12679} (md-ft)$
12.	Permeability: $k = \frac{kh}{h} = \frac{(12679)}{(26.2)} = -484$ (md)
	Pg 1 of 3

ł

l

E

13. Diffusivity: $n = \frac{2.637 \times 10^{-4} \text{ k}}{\phi \mu c}$

$$= \frac{2.637 \times 10^{-4} (484)}{(0.209) (0.02) (212 \times 10^{-6})} = \underline{144027} (ft^2/hr)$$

14. Average permeability:
$$\bar{k} = \frac{141.2 \text{ quB} \ln (r_e/r_w)}{h (p^* - p_{wf})}$$
 (ln $r_e/r_w \approx 6.0-8.0$

$$\bar{k} = \frac{141.2 \ (23800) \ (\ 0.02) \ (\ 0.901) \ \ln \ (\ 672 \ / \ 0.40)}{(\ 26.2 \) \ ((3246.6) \ - \ (3199.8))} = \underline{369} \ (\text{md})$$

$$R_{ib} = \sqrt{4\eta\Delta t} = \sqrt{4(144027)(22/60)} = 460$$
 (ft)

16. Skin factor:
$$s = 1.151 \left[\frac{p_{wl} - p_{wf}}{m} - \log \left(\frac{k}{\phi \mu c r_w^2} \right) + 3.23 \right]$$

$$s = 1.151 \left[\frac{((3246.5) - (3199.8))}{(5.5)} - \log \frac{(484)}{(0.209(0.02)(212x)(0.4)^2} + 3.23 \right]$$

$$s = 1.151 (8.49 - 9.53 + 3.23)$$

$$s = 2.5$$

$$10^{-6}$$

$$\Delta p_s = 0.87 \text{ ms} = 0.87 (5.5) (2.5) = 12 (psi)$$

18. Flow efficiency:
$$E = \frac{p^* - p_{wf} - \Delta p_s}{p^* - p_{wf}}$$

$$E = \frac{(3246.4) - (3199.8) - (12)}{(3246.4) - (3199.8)} = -0.74$$

19. Damage ratio:
$$DR = \frac{1}{E} = \frac{1}{(0.74)} = \frac{1.35}{1.35}$$

20. Productivity index:
$$J = \frac{q}{p^* - p_{wf}} = \frac{(23800 \times 0.901)}{((3246.4) - (3199.8))} = \frac{460}{(RB/D)/psi}$$

22. Radius of investigation at $\Delta t = 47$ mins R = 672 ft

Pg 2 of 3

118 0-14/2

D-14/3

13. Diffusivity: $n = \frac{2.637 \times 10^{-4} \text{ k}}{\phi \mu \text{ c}}$

$$= \frac{2.637 \times 10^{-4} (484)}{(0.209) (0.02) (212 \times 10^{-6})} = \frac{144027}{(0.207) (0.02) (212 \times 10^{-6})}$$

14. Average permeability:
$$\overline{k} = \frac{141.2 \text{ quB} \ln (r_e/r_w)}{h (p^* - p_{wf})} (\ln r_e/r_w \approx 6.0-8.0)$$

$$\overline{k} = \frac{141.2 \ (23800) \ (0.02) \ (0.901) \ \ln \ (672 \ / \ 0.40)}{(26.2) \ ((3246.4) \ - \ (2995))} = \frac{68}{68}$$
(md)

15. Radius of investigation beginning of MTR:

$$R_{ib} = \sqrt{4 \eta \Delta t} = \sqrt{4 (144027) (22/60)} = \underline{460} \quad (ft)$$
16. Skin factor: $s = 1.151 \left[\frac{p_{w1} - p_{wf}}{m} - \log \left(\frac{k}{\phi \mu c r_w^2} \right) + 3.23 \right]$

$$s = 1.151 \left[\frac{((3246.4) - (2995))}{(5.5)} - \log \frac{(484)}{(0.209 (0.02) (212 x) (0.4)^2} + 3.23 \right]$$

$$s = \underline{45} \qquad 10^{-6}$$
17. Pressure drop due to skin:

$$\Delta p_s = 0.87 \text{ ms} = 0.87 (5.5) (45) = \underline{215} \quad (psi)$$

18. Flow efficiency:
$$E = \frac{p^* - p_{wf} - \Delta p_s}{p^* - p_{wf}}$$

$$E = \frac{(3246.4) - (2995) - (215)}{(3246.4) - (2995)} = -0.14$$

19. Damage ratio:
$$DR = \frac{1}{E} = \frac{1}{(0.14)} = \frac{6.9}{(0.2800 \times 0.901)}$$

20. Productivity index: $J = \frac{q}{p^* - p_{wf}} = \frac{(23800 \times 0.901)}{((3246.4) - (2995))} = \frac{85}{(RB/D)/psi}$
21. Closest possible boundary: $L_{cb} = \frac{--}{--}$ (ft)

Pg 3 of 3

1¹20 D-15

SEPARATOR SAMPLE DATA

Well <u>KIPPER -1</u> Producing Interval 2005-2			Date <u>7/4/86</u>	5
Initial Reservoir Pressure		1980.3	(MKB)	
Reservoir Temperature			- (MKB)	
		AS	- T.T	QUID
	Sample No. 1		Sample No. 1	Sample No. 2
		<u></u>		
Time Sampled	0400-0430	0430-0500	0400-0430	0430-0500
Length of Time Well was Produced	10.3 hrs	10.8 hrs	10.3 hrs	10.8 hrs
Container No.	A 11034	A 11028	79A 2779	80A6
Container Volume (CC)	20000	20000	1135	1110
Separator Pressure (psig)	565	565	565	565
Separator Temperature (O F)	92	92	64	64
Wellhead Pressure (psig)	1205	1205	1205	1205
Wellhead Temperature (°F)	117	114	117	114
Flowing Bottom-hole Pressure (psi)		NOT AVAILA	3LE	
Flowing Bottom-hole Temperature (°F)		NOT AVAILA	3LE	
Separator Rate (Sep. bb1/D)*			_	<u></u>
Separator Gas Rate (MSCF/D)	24.9	24.9	24.9	24.9
Separator GOR (SCF/Sep. bb1)	_	-		-
Well Rate (STB/D) ⁺	510	523	510	523
Well GOR (SCF/STB) ⁺	20.5	21.0	20.5	21.0
Full Wellstream Water Cut ⁽⁹	8) 3.5	3.0	3.0	3.0
How Outage was Taken on Lie meter.	quid Samples _	Between sepera	tor oil line o	utlet and oil
Gas Sampling Method Evac	lated			•
Liquid Sampling Method Bri	ne displacemer	nt to 90% with	further 5% for	gas cap.
Special Instruction for Lab				

_•

Sampled by _Otis__

. ;

.

* Rates based on Meter Readings corrected for Meter Factor Only.

*Rates corrected to Stock-Tank Conditions as per Form D-7.

.

SEPARATOR SAMPLE DATA

Well KIPPER -1	Test 1	Date <u>7/4/86</u>
Producing Interval 2005-2013 MKE		
Initial Reservoir Pressure 3246.4	psiA@980.3	
Reservoir Temperature206	°F @ <u>1980.3</u>	

	GAS	5	LI	QUID
	Sample No. 3	Sample No. 4	Sample No. 3	Sample No. 4
Time Sampled	0500-0530		0500-0530	
Length of Time Well was Produced	11.3 hrs	-	11.3 hrs	-
Container No.	A 12449	_	79A 2732	_
Container Volume (CC)	20000	-	1145	_
Separator Pressure (psig)	565	_	565	
Separator Temperature (O F)	92	_	64	_
Wellhead Pressure (psig)	1205		1205	
Wellhead Temperature (°F)	116		116	
Flowing Bottom-hole Pressure (psi)				
Flowing Bottom-hole Temperature (°F)	_	_	<u></u>	
Separator Rate (Sep. bbl/D)*			-	-
Separator Gas Rate (MSCF/D)	24.9	_	24.9	_
Separator GOR (SCF/Sep. bb1)		_	-	_
Well Rate (STB/D) ⁺	510	_	510	_
Well GOR (SCF/STB) ⁺	20.5		20.5	
Full Wellstream Water Cut	3.0		3.0	
How Outage was Taken on Liq	uid Samples <u>E</u>	Between seperat	or oil line ou	tlet and oil
meter.				•
Gas Sampling Method	ited			•

_•

Liquid Sampling Method Brine displacement to 90% with further 5%

Special Instruction for Lab For gas cap. No H2S measured.

Sampled by Otis

* Rates based on Meter Readings corrected for Meter Factor Only. + Rates corrected to Stock-Tank Conditions as per Form D-7.

D-15

Appendix

¢

Schlumberger

J.

126

ESSO AUSTRALA LIMITED GEOGRAM PROCESSING REPORT

KIPPER - 1

FIELD	:	WILDCAT
STATE	:	VICTORIA
COUNTRY	:	AUSTRALIA
LOCATION	:	GIPPSLAND BASIN
COORDINATES	:	038° 10' 35.855" S 148° 35' 46.77" E
DATE OF SURVEY	:	31-MARCH-1986
REFERENCE NO.	. :	560401

CONTENTS

Introduction
 Data Acquisition
 Check Shot Data
 Sonic Calibration
 Sonic Calibration Processing
 GEOGRAM Processing
 Summary of Geophysical Listings

0

Fig. 1Wavelet polarity conventionFig. 2Gun Geometry Sketch

Well Seismic Computation Request Well Seismic Field Report

Geophysical Airgun Report Drift Computation Report Sonic Adjustment Parameter Report Velocity Report Time Converted Velocity Report Synthetic Seismogram Table

Raw and Stacked Checkshot data 11 inch Seismic Calibration Log 22 inch Seismic Calibration Log Geogram

1.0 INTRODUCTION

A velocity check shot survey was conducted in the Kipper - 1 well on 31 March 1986. Fifteen levels from 421 metres to 2871 metres below DF were shot using an airgun source. Fourteen levels have been used in the calibration of the sonic log.

The shot times and calibrated sonic times have been corrected to the seismic reference datum at mean sea level.

2.0 DATA ACQUISITION

Table 1 Field Equipment and Survey Parameters

Elevation SRD 0.0 metres AMSL Elevation KB 21.0 metres AMSL Elevation DF 20.7 metres AMSL Elevation GL -95.0 metres AMSL No. of Levels 15 Well Deviation Nil Total Depth. 2875 metres below DF Energy Source Airgun Source Offset 45.9 metres Source Depth 9.1 metres below MSL Reference Sensor Accelerometer Sensor Offset 45.9 metres Sensor Depth 9.1 metres below MSL Downhole Geophone Geospace HS-1 High Temp. $(350^{\circ}F)$ Coil Resist. $225\Omega \pm 10 \%$ Natural Freq. 8-12 hertz Sensitivity 0.45 V/in/sec Maximum tilt angle 60°

Recording was made on the Schlumberger Cyber Service Unit (CSU) using LIS format.

2.1 Survey Details

The survey was shot as a standard offshore velocity survey. A hydrophone was recorded in the moonpool in order to calculate the source offset. No major problems were noted during the survey.

3.0 CHECK SHOT DATA

NAME OF BRIDE

No.

٤.

A total of 14 checkshot levels have been used in the sonic calibration processing. The level at 421 metres below DF was shot going into and coming out of the well. The transit times from both sets of data were similar, however for consistency, only the transit times from the data shot coming up the well have been included. All good shots have been included in the final stack.

A plot of the stacked check shot data is displayed at plot 5 of the 'Raw and Stacked Checkshot Data'.

Level Depth	Stacked	Rejected	Quality	Comments		
(metres below DF)	Shots	Shots				
115.7	•	-	Good [.]	Imposed shot - sea floor		
245	-		Good	Imposed shot - top of sonic		
421	7	1	Good	Shot going down		
421	5	0	Good	-		
838	6	0	Good			
1200	5	1	Good			
1420	5	0	Good			
1690	5	1	Good			
1795	4	2	Good			
1893	5	0	Good			
1990	3	2	Good			
2150	6	0	Good			
2280	5	0	Good			
2500	6	0	Good			
2700	5	3	Good			
2845	5	1	Good			
2870	18	5	Good			
2871	1	1	Good	Omitted		

Table 2 Checkshot levels

4.0 SONIC CALIBRATION

A 'drift' curve is obtained using the sonic log and the vertical check level times. The term 'd is defined as the seismic time (from check shots) minus the sonic time (from integration of ed sonic). Commonly the word 'drift' is used to identify the above difference, or to identify gradient of drift verses increasing depth, or to identify a difference of drift between two le

The gradient of drift, that is the slope of the drift curve, can be negative or positive.

For a negative drift $\frac{\Delta drift}{\Delta depth} < 0$, the sonic time is greater than the seismic time over a cert section of the log.

For a positive drift $\frac{\Delta drift}{\Delta depth} > 0$, the sonic time is less than the seismic time over a cert section of the log.

The drift curve, between two levels, is then an indication of the error on the integrated sonic an indication of the amount of correction required on the sonic to have the TTI of the correc sonic match the check shot times.

Two methods of correction to the sonic log are used.

- 1. Uniform or block shift This method applies a uniform correction to all the sonic val over the interval. This uniform correction is applied in the case of positive drift and is average correction represented by the drift curve gradient expressed in μ sec/m.
- 2. ΔT Minimum In the case of negative drift a second method is used, called Δt minimum. This applies a differential correction to the sonic log, where it is assumed that the great amount of transit time error is caused by the lower velocity sections of the log. Over a give interval the method will correct only Δt values which are higher than a threshold, Δt_{min} . Values of Δt which are lower than the threshold are not corrected. The correct is a reduction of the excess of Δt over Δt_{min} , $\Delta t - \Delta t_{min}$.

 $\Delta t - \Delta t_{min}$ is reduced through multiplication by a reduction coefficient which rem r constant over the interval. This reduction coefficient, named G, can be be defined as:

$$G = 1 + \frac{drift}{\int (\Delta t - \Delta t_{min})dZ}$$

Where drift is the drift over the interval to be corrected and the value $\int (\Delta t - \Delta t_{min})$ is the time difference between the integrals of the two curves Δt and Δt_{min} , only over t intervals where $\Delta t > \Delta t_{min}$.

Hence the corrected sonic: $\Delta t = G(\Delta t - \Delta t_{min}) + \Delta t_{min}$.

5.5 Sonic Calibration Results

EXIST

 \bigcirc

The top of the sonic log (245 metres below DF) is chosen as the origin for the calibration drift curve. The drift curve indicates a number of corrections to be made to the sonic log. A list of shifts used on the sonic data is given below.

12

Depth Interval (metres below DF)	Block Shift µsec/m	Δt_{min} $\mu sec/m$	Equiv Block Shift µsec/m
245-930	12.99	. e	12.99
930-1666	9.51		9.51
1666-2097	4.64	-	4.64
2097-2443	•	229.36	-5.78
2443-2870	4.68	•	- 4.68

7

•	Table 3	3	Sonic	Drift

The adjusted sonic curve is considered to be the best result using the available data.

6.0 GEOGRAM PROCESSING

GEOGRAM plots were generated using 20, 25, 35 and 40 hertz ricker minimum phase and zero phase wavelets. The presentations include both normal and reverse polarity on a time scale of 3.75 in/sec.

120

GEOGRAM processing produces synthetic seismic traces based on reflection coefficients generated from sonic and density measurements in the well-bore. The steps in the processing chain are the following:

Depth to time conversion

Reflection coefficients

Attenuation coefficients

Convolution

Output.

8.1 Depth to Time Conversion

Open hole logs are recorded from the bottom to top with a depth index. This data is converted to a two-way time index and flipped to read from the top to bottom in order to match the seismic section.

6.2 Primary Reflection Coefficients

Sonic and density data are averaged over chosen time intervals (normally 2 or 4 millisecs). Reflection coefficients are then computed using:

$$R = \frac{\rho_2 . \nu_2 - \rho_1 . \nu_1}{\rho_2 . \nu_2 + \rho_1 . \nu_1}$$

where

 ρ_1 = density of the layer above the reflection interface

 ρ_2 = density of the layer below the reflection interface

 $\nu_1 =$ compressional wave velocity of the layer above the reflection interface

 $\nu_2 = \text{compressional wave velocity of the layer below}$ the reflection interface

This computation is done for each time interval to generate a set of primary reflection coefficients without transmission losses.

Transmission loss on two-way attenuation coefficients are computed using:

 $A_n = (1 - R_1^2) \cdot (1 - R_2^2) \cdot (1 - R_3^2) \dots (1 - R_n^2)$

A set of primary reflection coefficients with transmission loss is generated using:

 $Primary_n = R_n . A_{n-1}$

6.4 Primaries plus Multiples

Multiples are computed from these input reflection coefficients using the transform technique from the top of the well to obtain the impulse response of the earth. The transform outputs primaries plus multiples.

6.5 Multiples Only

By subtracting previously calculated primaries from the above result we obtain multiples only.

6.6 Wavelet

A theoretical wavelet is chosen to use for convolution with the reflection coefficients previously generated. Choices available include:

Klauder wavelet

Ricker zero phase wavelet

Ricker minimum phase wavelet

Butterworth wavelet

User defined wavelet.

Time variant butterworth filtering can be applied after convolution. Polarity conventions are shown in Figure 1. These GEOGRAMS were generated using minimum phase and zero phase ricker wavelets.

8.7 Convolution

Standard procedure of convolution of wavelet with reflection coefficients. The output is the synthetic seismogram.

7.0 SUMMARY OF GEOPHYSICAL LISTINGS

Six geophysical data listings are appended to this report. Following is a brief description of the format of each listing.

7.1 Geophysical Airgun Report

- 1. Level number : the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from DF : dkb, the depth in metres from derrick floor .
- 3. Vertical depth from SRD : dsrd, the depth in metres from seismic reference datum.
- 4. Vertical depth from GL : dgl, the depth in metres from ground level.
- 5. Observed travel time HYD to GEO : tim0, the transit time picked from the stacked data by subtracting the surface sensor first break time from the downhole sensor first break time.
- 6. Vertical travel time SRC to GEO : *timv*, is corrected for source to hydrophone distance and for source offset.
- 7. Vertical travel time SRD to GEO : *shtm*, is *timv* corrected for the vertical distance between source and datum.
- 8. Average velocity SRD to GEO : the average seismic velocity from datum to the corresponding checkshot level, derd entry.
- 9. Delta depth between shots : $\Delta depth$, the vertical distance between each level.
- 10. Delta time between shots : $\Delta time$, the difference in vertical travel time (*shtm*) between each level.
- 11. Interval velocity between shots : the average seismic velocity between each level, $\frac{\Delta depth}{\Delta time}$.

7.2 Drift Computation Report

- 1. Level number : the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from DF : the depth in metres from derrick floor .
- 3. Vertical depth from SRD : the depth in metres from seismic reference datum.
- 4. Vertical depth from GL : the depth in metres from ground level.
- 5. Vertical travel time SRD to GEO : the calculated vertical travel time from datum to downhole geophone (see column 7, Geophysical Airgun Report).
- 6. Integrated raw sonic time : the raw sonic log is integrated from top to bottom and listed at each level. An initial value at the top of the sonic log is set equal to the checkshot time at that level. This may be an imposed shot if a shot was not taken at the top of the sonic.
- 7. Computed drift at level : the checkshot time minus the integrated raw sonic time.
- 8. Computed blk-shft correction : the drift gradient between any two checkshot levels $\left(\frac{\Delta drift}{\Delta depth}\right)$.

7.3 Sonic Adjustment Parameter Report

1. Knee number : the knee number starting from the highest knee. (The first knees listed will generally be at SRD and the top of sonic. The drift imposed at these knees will normally be zero.)

13

- 2. Vertical depth from DF : the depth in metres from derrick floor .
- 3. Vertical depth from SRD : the depth in metres from seismic reference datum.
- 4. Vertical depth from GL : the depth in metres from ground level.
- 5. Drift at knee : the value of drift imposed at each knee.
- 6. Blockshift used : the change in drift divided by the change in depth between any two levels.
- 7. Delta-T minimum used : see section 4 of report for an explanation of Δt_{min} .
- 8. Reduction factor : see section 4 of report.
- 9. Equivalent blockshift : the gradient of the imposed drift curve.

7.4 Velocity Report

- 1. Level number : the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth from DF : the depth in metres from derrick floor .
- 3. Vertical depth from SRD : the depth in metres from seismic reference datum
- 4. Vertical depth from GL : the depth in metres from ground level
- 5. Vertical travel time SRD to GEOPH : the vertical travel time from SRD to downhole geophone (see column 7, Geophysical Airgun Report)
- 6. Integrated adjusted sonic time : the adjusted sonic log is integrated from top to bottom. An initial value at the top of the sonic is set equal the checkshot time at that level. (The adjusted sonic log is the drift corrected sonic log.)
- 7. Drift=shot time-raw son : the check shot time minus the raw integrated sonic time.
- 8. Residual=shot time-adj son : the check shot time minus the adjusted integrated sonic time. This is the difference between calculated drift and the imposed drift.
- 9. Adjusted interval velocity : the interval velocity calculated from the integrated adjusted sonic time at each level.

7.5 Time Converted Velocity Report

The data in this listing has been resampled in time.

1. Two way travel time from SRD : This is the index for the data in this listing. The first value is at SRD (0 millisecs) and the sampling rate is 2 millisecs.

132

- 2. Measured depth from DF : the depth from DF at each corresponding value of two way time.
- 3. Vertical depth from SRD : the vertical depth from SRD at each corresponding value of two way time.
- 4. Average velocity SRD to GEO : the vertical depth from SRD divided by half the two way time.
- 5. RMS velocity : the root mean square velocity from datum to the corresponding value of two way time.

$$v_{rms} = \sqrt{\Sigma_1^n v_i^2 t_i / \Sigma_1^n t_i}$$

where v_i is the velocity between each 2 millisecs interval.

- First normal moveout : the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 3000 feet).
- 7. Second normal moveout : the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 4500 feet).
- 8. Third normal moveout : the correction time in millisecs to be applied to the two way travel time for a specified moveout distance (default = 6000 feet).
- 9. Interval velocity : the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.

7.6 SYNTHETIC SEISMOGRAM TABLE

- 1. Two way travel time from SRD : This is the index for the data in this listing. The first value is at the top of the sonic. The default sampling rate is 2 millisecs.
- 2. Vertical depth from SRD : the vertical depth from SRD at each corresponding value of two way time.
- 3. Interval velocity : the velocity between each sampled depth. Typically, the sampling rate is 2 millisecs two way time, (1 millisec one way time) therefore the interval velocity will be equal to the depth increment divided by 0.001. It is equivalent to column 9 from the the Velocity Report.
- 4. Interval density : the average density between two successive values of two way time.
- 5. Reflect. coeff. : the difference in acoustic impedance divided by the sum of the acoustic impedance between any two levels. The acoustic impedance is the product of the interval density and the interval velocity.
- 6. Two way atten. coeff. : is computed from the series

$$A_n = (1 - R_1^2) \cdot (1 - R_2^2) \cdot (1 - R_3^2) \cdot \dots (1 - R_n^2)$$

7. Sythetic seismo. primary : the product of the reflection coefficient at each depth and the two way attenuation coefficient up to that depth.

133

$Primary_n = R_n A_{n-1}$

- 8. Primary + multiple : a transform technique is used to calculate multiples from the input reflection coefficients.
- 9. Multiples only : (Primary + multiple) (Synthetic seismo. primary)

SCHLUMBERGER (SEG-1976) WAVELET POLARITY CONVENTION

Figure 1

Ś

. . .

.

ý

136

WELL	SEISMIC	SERVICE	COMPUTATION	REQUEST
------	---------	---------	-------------	---------

COMPANY: ESSO AUST.		. LEF	. 1	NUMBER OF	COPIES OF RE	SULTS (CLIE	NT)
WELL:KIPPER-1			PRODUCT	REPORT	S PLOT TRANSP	PLOT PRINT	TAP
WELL:			WSE	6	1	6	# 1 x
FIELD/COUNTRY: WILDCAT/	/AUSTRALIA						
LOCATION/DIVISION: VEA/			WSC	б	l	6	1# 2 x
DATE WST JOB:31/3	3/86		GEO				
DATE SENT:			420	6	l	6	
BY:RAMI	I AH		VSP				
DATA SUPPLIED FOR INTERV	ALS TO BE PRO	DCESSED	UNITS:		FEET 🗍	M	etres 🗵
	FROM	TO			TAPI	E#1	TAPE#2
A. LOGS : DENSITY	2862.2	1370.0	CLIENT	TAPE:	FORMAT: SEC	GY 🖾	LIS 🗵
SONIC	2860.0	238.5					
B. SHOTS	2870.0	471.0		Į	DENSITY:1600	3PI 🗌 16	00 BPI
IS A WELL SEISMIC EDIT (WS		IC CALIBRA		VST (WSC	C) URGE	ENT? YES [
(WSE IS RECOMMENDED WH					,		
REQUESTED TIME ORIGIN (SP	•	METRES ABOV	E/BELOW ME	AN SEA LEVI	EL (MSL)		
STATIC CORRECTION TO BE	APPLIED : -		ĺ	LAYER	VELOCITY	FROM	то
				1	·····	-	
MILLISECOND	DS FROM GROUI	ND LEVEL	OR	2		1	
		ما يا ∀ ينزيا حمره .	~	3	· · · · · · · · · · · · · · · · · · ·	1	
TRUE VERTICAL DEPTH (TVD)) CORRECTION?	YES 🗍	NO 🗔 (T		MMENDED IF DE		05500 50
DEVIATION DATA SUPPLIED?			· ·	VD IS RECUI	MMENDEDIFDE	EVIATIONEX	CEEDS 5°)
DEVIATION DATA SUPPLIED?		YES 🗌	NO	······			
11 INCH WSC DISPLAY DEPTH	H SCALES TO BE	YES 🗌 E USED (UP TO	NO 🛛	1/5000 🗌	1/1000		
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DI	H SCALES TO BE	YES D E USED (UP TO TIME FUNCTIO	NO 🖾 TWO) NN? (T – DEF	1/5000	1/1000 TY) YES 🗌 I		OTHER C
11 INCH WSC DISPLAY DEPTH	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO	YES D E USED (UP TO TIME FUNCTIO	NO 🖾 TWO) NN? (T – DEF	1/5000	1/1000		OTHER C
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DI 22 INCH WIDE GEOLOGICAL II	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO	YES D E USED (UP TO TIME FUNCTION CITY DISPLAY?	NO 🖾 TWO) NN? (T – DEF	1/5000	1/1000 TY) YES I I EOLOGICAL MA		DTHER
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DI 22 INCH WIDE GEOLOGICAL IF SPECIAL SCALES TO BE USEI FREQUENCY TEST TO BE SUF	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE	YES D E USED (UP TO TIME FUNCTION CITY DISPLAY?	NO IN TWO) DN? (T – DEF YES II DGRAM	1/5000 PTH/VELOCI NO G	1/1000 TY) YES I I EOLOGICAL MA URGEI	NO D VEL	DTHER
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DI 22 INCH WIDE GEOLOGICAL II SPECIAL SCALES TO BE USEI	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE	YES D E USED (UP TO TIME FUNCTION CITY DISPLAY?	NO IN TWO) DN? (T – DEF YES II DGRAM	1/5000 PTH/VELOCI NO G G THS) Y T FREC	1/1000 TY) YES I I EOLOGICAL MA URGEI ES I NO	NO D VEL ARKERS SUP NT? YES D	DTHER
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DI 22 INCH WIDE GEOLOGICAL IF SPECIAL SCALES TO BE USEI FREQUENCY TEST TO BE SUF	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE	YES USED (UP TO TIME FUNCTIC CITY DISPLAY? GE(E FINALIZATION	NO X TWO) DN? (T - DEF YES D DGRAM (8 BAND WIDT (8 BAND WIDT WAVELE KLAUDER	1/5000 PTH/VELOCI NO G G THS) Y T FREC	1/1000 TY) YES I I EOLOGICAL MA URGEI ES NO 2. T. T. LOW	NO D VEL ARKERS SUP NT? YES D	DTHER
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FREQUENCY TEST TO BE SUM FINAL GEOGRAM PARAMETE	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : -	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC E FINALIZATION TH POLARITIES	NO ⊠ TWO) N? (T – DEF YES □ DGRAM (8 BAND WIDT WAVELE	1/5000 □ PTH/VELOCI NO □ G THS) Y T FREC □ ♀ 20,;	1/1000 TY) YES I I EOLOGICAL MA URGEI ES NO 2. T. T. LOW V	NO D VEL ARKERS SUP NT? YES D	DTHER C OCITY C PPLIED C
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DI 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USEN -REQUENCY TEST TO BE SUN FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DI	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS :	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC FINALIZATION TH POLARITIES LTIPLES,	NO X TWO) DN? (T – DEF YES D DGRAM (8 BAND WIDT (8 BAND WIDT (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE OTHER: C	1/5000 □ PTH/VELOCI NO □ G T FREC □ 〒 20, : 30, :	1/1000 TY) YES I I EOLOGICAL MA URGEI ES NO 2. T. T. LOW V 25 F	NO D VEL ARKERS SUP NT? YES D T. HIGH F. L	OTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USEN FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DI FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET /	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - NSPLAYS IN BOT RIMARIES + MUI SION LOSS, MUL AND T.V.F.)	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC E FINALIZATION TH POLARITIES LTIPLES, TIPLES ONLY	NO X TWO) DN? (T – DEF YES D DGRAM (8 BAND WIDT (8 BAND WIDT (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE OTHER: C	1/5000 □ PTH/VELOCI NO □ G T FREC □ 〒 20, : 30, :	1/1000 TY) YES I I EOLOGICAL MA URGEI ES NO 2. T. T. LOW V	NO D VEL ARKERS SUP NT? YES D T. HIGH F. L	OTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET A	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - NSPLAYS IN BOT RIMARIES + MUI SION LOSS, MUL AND T.V.F.)	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC FINALIZATION TH POLARITIES LTIPLES,	NO X TWO) DN? (T – DEF YES D DGRAM (8 BAND WIDT (8 BAND WIDT (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE OTHER: C	1/5000 □ PTH/VELOCI NO □ G THS) Y T FREC □ 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	1/1000 TY) YES I I EOLOGICAL MA URGEI ES NO 2. T. T. LOW V 25 F	NO D VEL ARKERS SUP NT? YES D T. HIGH F. L	OTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET / DIP OPTION SEISMIC LINE NUMBER	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - NSPLAYS IN BOT RIMARIES + MUI SION LOSS, MULT AND T.V.F.)	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC E FINALIZATION TH POLARITIES LTIPLES, TIPLES ONLY NO NO	NO X TWO) DN? (T – DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE ZERO PHASE OTHER: SCALE C	1/5000 □ PTH/VELOCI NO □ G THS) Y T FREC □ 20, 30, IS 10 CM/SE TB	1/1000 TY) YES I I EOLOGICAL MA URGEI ES NO 2. T. T. LOW V 25 F EC + ONE OTHE d DRTH	NO VEL ARKERS SUP NT? YES T. HIGH F. L R – SPECIFY	OTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET A DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION N	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : HSPLAYS IN BOT RIMARIES + MUL SION LOSS, MUL AND T.V.F.) YES MAP VERSUS SE	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC E FINALIZATION TH POLARITIES LTIPLES, TIPLES ONLY NO NO	NO X TWO) DN? (T – DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE ZERO PHASE OTHER: SCALE C	1/5000 □ PTH/VELOCI NO □ G THS) Y T FREC □ 20, 30, IS 10 CM/SE TB	1/1000 TY) YES I I EOLOGICAL MA URGEI ES NO 2. T. T. LOW V 25 F EC + ONE OTHE d DRTH	NO D VEL ARKERS SUP NT? YES D T. HIGH F. L	OTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PR PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET A DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION M DISTANCE BETWEEN TRACES	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - HSPLAYS IN BOT RIMARIES + MUI SION LOSS, MULT AND T.V.F.) YES HAP VERSUS SE	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC E FINALIZATION TH POLARITIES LTIPLES, TIPLES ONLY NO NO	NO X TWO) DN? (T – DEF YES D DGRAM (8 BAND WIDT (8 BAND WIDT (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE OTHER: C	1/5000 TH/VELOCI NO G HS) Y T FREC Q 20, X 30, IS 10 CM/SE B C NC d	1/1000 TY) YES I I EOLOGICAL MA URGEI ES NO 2. T. T. LOW V 25 F EC + ONE OTHE d DRTH	NO VEL ARKERS SUP NT? YES T. HIGH F. L R – SPECIFY	OTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET A DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION N	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - HSPLAYS IN BOT RIMARIES + MUI SION LOSS, MULT AND T.V.F.) YES HAP VERSUS SE	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC E FINALIZATION TH POLARITIES LTIPLES, TIPLES ONLY NO NO	NO X TWO) DN? (T – DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE ZERO PHASE OTHER: SCALE C	1/5000 TH/VELOCI NO G HS) Y T FREC Q 20, X 30, IS 10 CM/SE B C NC d	1/1000 TY) YES ☐ I EOLOGICAL MA URGEI ES ☐ NO 2. T. T. LOW 2. T. T. LOW 2. F EC + ONE OTHE d ORTH ∝ (CLO	NO VEL ARKERS SUP NT? YES T. HIGH F. L R – SPECIFY	OTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PR PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET A DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION M DISTANCE BETWEEN TRACES	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : NSPLAYS IN BOT RIMARIES + MUL SION LOSS, MUL AND T.V.F.) YES MAP VERSUS SE S	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC E FINALIZATION TH POLARITIES LTIPLES, TIPLES ONLY NO NO	NO X TWO) DN? (T – DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE ZERO PHASE OTHER: SCALE C	1/5000 TH/VELOCI NO G HS) Y T FREC Q 20, X 30, IS 10 CM/SE B C NC d	1/1000 TY) YES ☐ 1 EOLOGICAL MA URGEI ES ☐ NO 2. T. T. LOW V 25 F EC + ONE OTHE d ORTH ∝ (CLO ELL	NO VEL ARKERS SUP NT? YES T. HIGH F. L R – SPECIFY	OTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FREQUENCY TEST TO BE SUM FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DI FOR EACH OF, PRIMARIES, PR PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET / DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION N DISTANCE BETWEEN TRACES SECTION PERSPECTIVE: SEED	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : NISPLAYS IN BOT RIMARIES + MUI SION LOSS, MUL AND T.V.F.) YES YES KAP VERSUS SE SAFROM A FROM B	YES USED (UP TO TIME FUNCTION CITY DISPLAY? GEC E FINALIZATION TH POLARITIES LTIPLES, TIPLES ONLY NO NO	NO X TWO) DN? (T - DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE OTHER: SCALE SEISIN	1/5000 TH/VELOCI NO G THS) Y T FREC 20,7 30,7 IS 10 CM/SE B NC d WI	1/1000 TY) YES □ 1 EOLOGICAL MA URGEI ES □ NO 2. T. T. LOW V 25 F CC + ONE OTHE CC + ONE OTHE CC + CLO ELL A	NO VEL ARKERS SUP NT? YES T. HIGH F. L R – SPECIFY	DTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FREQUENCY TEST TO BE SUM FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DI FOR EACH OF, PRIMARIES, PR PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET / DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION N DISTANCE BETWEEN TRACES SECTION PERSPECTIVE: SEED	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - HSPLAYS IN BOT RIMARIES + MUL SION LOSS, MUL AND T.V.F.) YES MAP VERSUS SE S FROM A FROM B	YES USED (UP TO USED (UP TO TIME FUNCTIC CITY DISPLAY? GEC FINALIZATION IH POLARITIES LTIPLES, TIPLES ONLY NO USESMIC LINE) CESMIC LINE	NO X TWO) DN? (T - DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE OTHER: SCALE SCALE SCALE F SESMIC PR	1/5000 TH/VELOCI NO G THS) Y T FREC 20,7 30,7 IS 10 CM/SE B NC d WI	1/1000 TY) YES □ 1 EOLOGICAL MA URGEI ES □ NO 2. T. T. LOW V 25 F CC + ONE OTHE CC + ONE OTHE CC + CLO ELL A	O NO VEL ARKERS SUP NT? YES T. HIGH F. L R – SPECIFY O CKWISE)	DTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FREQUENCY TEST TO BE SUM FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DI FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET A DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION N DISTANCE BETWEEN TRACES SECTION PERSPECTIVE: SEED	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - NISPLAYS IN BOT RIMARIES + MUI SION LOSS, MUL AND T.V.F.) YES MAP VERSUS SE S FROM A FROM B V STS WILL BE SE	YES USED (UP TO TIME FUNCTIC CITY DISPLAY? GEC FINALIZATION TH POLARITIES LTIPLES, TIPLES ONLY NO SISMIC LINE) CESMIC LINE	NO X TWO) DN? (T - DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE OTHER: SCALE SCALE SCALE F SESMIC PR	1/5000 TH/VELOCI NO G THS) Y T FREC 20,7 30,7 IS 10 CM/SE B NC d WI	1/1000 TY) YES □ 1 EOLOGICAL MA URGEI ES □ NO 2. T. T. LOW V 25 F CC + ONE OTHE CC + ONE OTHE CC + CLO ELL A	O NO VEL ARKERS SUP NT? YES T. HIGH F. L R – SPECIFY O CKWISE)	DTHER CONTY
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FREQUENCY TEST TO BE SUP FINAL GEOGRAM PARAMETER ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET / DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION N DISTANCE BETWEEN TRACES SECTION PERSPECTIVE: SEED SPECIAL REQUESTS:	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS :	YES VES VES VES VES VES VES VES VES VES VES VES	NO X TWO) DN? (T - DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE ZERO PHASE OTHER: SCALE SCALE SESM EISMIC PR ALLY 3 D	1/5000 □ PTH/VELOCI NO □ G HS) Y T FREC □ 20,3 30,3 IS 10 CM/SE B C UNE NC d WH OFILE	1/1000 TY) YES □ I EOLOGICAL MA URGEI ES □ NO 2. T. T.LOW V 25 F CC + ONE OTHE d ORTH ∝ (CLO ELL A URGEI 7 □	Image: constraint of the second state of the second sta	DTHER [.OCITY [?PLIED]] NO [.OW F.HK [3.75in
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FREQUENCY TEST TO BE SUP FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION N DISTANCE BETWEEN TRACES SECTION PERSPECTIVE: SEED SPECIAL REQUESTS: UP TO 3 VELOCITY FILTER TES SPECIFY NUMBER OF TRACES	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - NSPLAYS IN BOT RIMARIES + MUI SION LOSS, MUL AND T.V.F.) YES MAP VERSUS SE S FROM A FROM B STS WILL BE SE S IN WINDOW RI TO BE APPLIED O	YES USED (UP TO USED (UP TO TIME FUNCTIC CITY DISPLAY? GEC FINALIZATION IH POLARITIES LTIPLES, TIPLES ONLY NO SISMIC LINE) EISMIC LINE) FRETICAL SI EQUIRED ON FINAL DISPL	NO X TWO) DN? (T - DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE ZERO PHASE OTHER: SCALE SCALE SESM EISMIC PR ALLY 3 D	1/5000 □ PTH/VELOCI NO □ G HS) Y T FREC □ 20,3 30,3 IS 10 CM/SE B C UNE NC d WH OFILE	1/1000 TY) YES □ I EOLOGICAL MA URGEI ES □ NO 2. T. T.LOW V 25 F CC + ONE OTHE d ORTH ∝ (CLO ELL A URGEI 7 □	Image: constraint of the second state of the second sta	DTHER [.OCITY] PLIED] .OW F. HIC .OW F. HIC
11 INCH WSC DISPLAY DEPTH 22INCH WIDE TIME/DEPTH DIS 22 INCH WIDE GEOLOGICAL IN SPECIAL SCALES TO BE USED FREQUENCY TEST TO BE SUM FINAL GEOGRAM PARAMETE ONE GEOGRAM INCLUDES DIS FOR EACH OF, PRIMARIES, PE PRIMARIES WITH TRANSMISS FOR THE CHOSEN WAVELET A DIP OPTION SEISMIC LINE NUMBER ENCLOSE WELL LOCATION N DISTANCE BETWEEN TRACES SECTION PERSPECTIVE: SEED SPECIAL REQUESTS: IP TO 3 VELOCITY FILTER TES SPECIFY NUMBER OF TRACES	H SCALES TO BE SPLAY SPECIAL NTERVAL VELO D? SPECIFY PPLIED BEFORE RS : - NSPLAYS IN BOT RIMARIES + MUI SION LOSS, MUL AND T.V.F.) YES MAP VERSUS SE S FROM A FROM B STS WILL BE SE S IN WINDOW RI TO BE APPLIED O	YES USED (UP TO USED (UP TO TIME FUNCTIC CITY DISPLAY? GEC FINALIZATION IH POLARITIES LTIPLES, TIPLES ONLY NO SISMIC LINE) EISMIC LINE) FRETICAL SI EQUIRED ON FINAL DISPL	NO X TWO) DN? (T - DEF YES D DGRAM (8 BAND WIDT WAVELE KLAUDER MIN PHASE ZERO PHASE ZERO PHASE OTHER: SCALE SCALE SESM EISMIC PR ALLY 3 D	1/5000 □ PTH/VELOCI NO □ G HS) Y T FREC □ 20,3 30,3 IS 10 CM/SE B C UNE NC d WH OFILE	1/1000 TY) YES □ I EOLOGICAL MA URGEI ES □ NO 2. T. T.LOW V 25 F CC + ONE OTHE d ORTH ∝ (CLO ELL A URGEI 7 □	Image: constraint of the second state of the second sta	DTHER [.OCITY] PLIED] .OW F. HIC .OW F. HIC

COMPA	NY	WELL	DA	TE	LOCATION	ENGINEE	B WITNE	SSED BY
ESS	 G	KIPPEI	x-1 31		VEA	RAMI	· · · · · · · · · · · · · · · · · · ·	. RCMANIK
		IACK LIP) SHIP		LAND	E L	
	METRES 🐼	PLATFOR	RM F.	SEMI-SUE			WEATH	HER.
	MBERGER ZE EASURED FR		ICK FLO	A SR م	T ELEVATION			S.R.D.: SCHLUMBERGER ZERO:
DRILLI	NG MEASURI	ED FROM:		A ۱	T ELEVATION	<u>ا</u>	RELATIVE TO	SCHLUMBERGER ZERO
		SOURCE			TIDAL INFO			STANCE HOUR DA
	YPE ME1_×_			11	TIDE LEVEL			
				APING KIT FI	(RECORD II			
				APING KIT LT	MORE THA	-	2S	
				SECONDS	DURING SU	IRVEY)		
					CSU SOFTW	ARE VERS		X. HOLE DEV: AZIN
	NO.	TE: SHOTS HI	GHLY RECO	MMENDED AT	TD, TOP EACH	SONIC, AB	OVE AND BELOW BA	D HOLE INTERVALS
	·····			٩U		RESULTS	Quality: G =	Good, P = Poor, U = Unsati
	DEPTH	STACK / SHOT No.	FILTERS	TRANSIT TIME	HOUR	FILE	STACKED SHOTS	QUALITY/REMARKS
	20.7	1		26.7		1	4-7	MOONPOOL SHOT
	421.0	22		207.8		11	13-15	
	2870.0	5		974.8		3	37-40	
	2845.0	6		969.3		3	42-46	
	2700.0	7		934.0		3	48-54	
	2500.0	88		884.5		44	55-60	
	2280.0	9		832.0		4	61-65	
····	2150.0	10		798.1		44	66-71	
	1990.0	11		753.3		4	72-76	
	1893.0	12		724.6		4	77-81	
	1795.0	13		695.0		4	83-87	
	1690.0	<u>14</u> 15		664.1		4	89-93	
	1420.0	15		<u>575.6</u> 495.6		4	<u>94-98</u> 100-104	
	838.0	17		364.3		4	105-110	
	421.0	18		208.0		5	111-115	······································
	20.7	19		0.0		5	116-120	ACCELEROMETER CHE
ļ	ļ							
ļ	 							
<u> </u>								
<u> </u>								
<u> </u>								+
L								
1	1			•		1		

U . 3 PAGE WELL : KIPPER - 1 : ESSO AUSTRALIA LTD COMPANY . . DELTA INTERV AVERAGE DELTA VERTIC VERTIC OBSERV VERTIC VERTIC MEASUR VELOC TIME LEVEL VELOC DEPTH TRAVEL TRAVEL TIME TRAVEL DEPTH DEPTH DEPTH BETWEEN BETWEEN NUMBER BETWEEN SRD/GEO TIME TIME FROM FROM FROM SHOTS SHOTS SHOTS HYDIGEO SRCIGEO SRD/GEO GL SRD M/S KВ MS 14 M/S MS MS MS M М М ι. 1480 58.03 64.18 Ó 65.80 95.00 115.70 1983 1 129.30 65.19 1734 129.38 126.00 123.23 129.30 245.00 224.30 81.37 2163 2 176.00 1899 210.75 204.60 305.30 206.00 400.30 2642 421.00 3 417.00 157.82 2213 368.56 362.42 722.30 363.00 817.30 2759 838.00 362.00 131.20 4 2360 499.77 494.00 493.62 1084.30 1179.30 2748 1200.00 80.07 5 220.00 2413 579.84 574.00 573.69 1304.30 1399.30 1420.00 30.66 33.06 5 270.00 2499 667.90 661.75 662.00 1669.30 1574.30 3335 7 1690.00 105.00 31.02 2539 698.91 692.77 1679.30 693.00 1774.30 3378 1795.00 20.02 8 93.00 2572 727.93 721.78 . 722.00 1872.30 1777.30 29.01 3343 1893.00 9 97.00 2602 750.79 756.94 751.00 1874.30 1969.30 3554 1990.00 45.02 10 160.00 2655 801.96 796.00 795.81 2129.30 2034.30 2150.00 34.01 3822 11 130.00 2703 835.98 829.83 830.00 2259.30 2164.30 4149 12 2280.00 53.02 220.00 2789 889.00 882.85 883.00 2334.30 2479.30 4080 2500.00 49.01 13 200.00 2856 933.01 931.86 932.00 2679.30 2584.30 2700.00 4142 35.01 14 145.00 2903 967.00 966.87 973.02 2729.30 2824.30 2845.00 4977 5.00 15 25.00

971.87

972.00

2754.30

2849.30

2870.00

16

2913

S 0

978.02

This is an enclosure indicator page. The enclosure PE603399 is enclosed within the container PE906044 at this location in this document.

The enclosure PE603399 has the following characteristics: ITEM_BARCODE = PE603399 CONTAINER_BARCODE = PE906044 NAME = Checkshot Data BASIN = GIPPSLAND PERMIT = VIC/P19 TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Raw and stacked checkshot data (from appendix 6 of WCR vol.1) for Kipper-1 REMARKS = $DATE_CREATED = 07/04/1986$ $DATE_RECEIVED = 13/08/1986$ $W_NO = W930$ WELL_NAME = KIPPER-1 CONTRACTOR = SCHLUMBERGER CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603400 is enclosed within the container PE906044 at this location in this document.

The enclosure PE60	3400 has the following characteristics:
ITEM_BARCODE =	PE603400
CONTAINER_BARCODE =	= PE906044
NAME =	Synthetic Seismogram (Geogram)
BASIN =	GIPPSLAND
PERMIT =	VIC/P19
TYPE =	WELL
SUBTYPE =	SYNTH_SEISMOGRAPH
DESCRIPTION =	Geogram (synthetic seismogram), from
	appendix 6 of WCR vol.1, for Kipper-1
REMARKS =	:
DATE_CREATED =	07/04/1986
DATE_RECEIVED =	: 13/08/1986
W_NO =	• W930
WELL_NAME =	KIPPER-1
CONTRACTOR =	SCHLUMBERGER
CLIENT_OP_CO =	ESSO AUSTRALIA LIMITED
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE906045 is enclosed within the container PE906044 at this location in this document.

The enclosure PE9 ITEM_BARCODE		5045 has the following characteristics: PE906045
CONTAINER_BARCODE	=	PE906044
NAME	=	Seismic Calibration Log
BASIN	=	GIPPSLAND
PERMIT	=	VIC/P19
TYPE	=	WELL
SUBTYPE	=	VELOCITY_CHART
DESCRIPTION	=	Seismic Calibration Log (Adjusted
REMARKS	=	Continuous Velocity Log) from appendix 6 of WCR vol.1.for Kipper-1 This item is clearly titled a Seismic Calibration Log, yet, appears more like a Time Depth Curve.
DATE_CREATED	=	7/04/86
DATE_RECEIVED	=	13/08/86
W_NO	=	W930
WELL_NAME	=	KIPPER-1
CONTRACTOR	=	SCHLUMBERGER
CLIENT_OP_CO	=	ESSO AUSTRALIA LIMITED

This is an enclosure indicator page. The enclosure PE906046 is enclosed within the container PE906044 at this location in this document.

The enclosure PE906046 has the following characteristics: ITEM_BARCODE = PE906046 $CONTAINER_BARCODE = PE906044$ NAME = Time-Depth Curve BASIN = GIPPSLAND PERMIT = VIC/P19 TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Time-Depth Curve (from appendix 6 of WCR vol.1) for Kipper-1. REMARKS = $DATE_CREATED = 10/04/1986$ $DATE_RECEIVED = 13/08/1986$ $W_NO = W930$ WELL_NAME = KIPPER-1 CONTRACTOR =CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603401 is enclosed within the container PE906044 at this location in this document.

The enclosure PE603401 has the following characteristics: ITEM_BARCODE = PE603401 $CONTAINER_BARCODE = PE906044$ NAME = Seismic Calibration Log BASIN = GIPPSLAND PERMIT = VIC/P19 TYPE = WELL SUBTYPE = VELOCITY_CHART DESCRIPTION = Seismic Calibration Log (Adjusted continuous velocity log), from appendix 6 of WCR vol.1, for Kipper-1 REMARKS = $DATE_CREATED = 07/04/1986$ DATE_RECEIVED = 13/08/1986 $W_NO = W930$ WELL_NAME = KIPPER-1 CONTRACTOR = SCHLUMBERGER CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE906047 is enclosed within the container PE906044 at this location in this document.

The enclosure PE90	6047 has the following characteristics:
ITEM_BARCODE =	· PE906047
CONTAINER_BARCODE =	PE906044
NAME =	Palynological Chart
BASIN =	GIPPSLAND
PERMIT =	· VIC/P19
TYPE =	WELL
SUBTYPE =	DIAGRAM
DESCRIPTION =	Palynological Chart (1 of 3) for
	Kipper-1
REMARKS =	:
DATE_CREATED =	30/09/1986
DATE_RECEIVED =	27/02/1987
W_NO =	· W930
WELL_NAME =	KIPPER-1
CONTRACTOR =	
CLIENT_OP_CO =	ESSO AUSTRALIA LIMITED
(Inserted by DNRE -	Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE906048 is enclosed within the container PE906044 at this location in this document.

The enclosure PE906048 has the following characteristics: ITEM_BARCODE = PE906048 CONTAINER_BARCODE = PE906044 NAME = Palynological Chart BASIN = GIPPSLAND PERMIT = VIC/P19 TYPE = WELL SUBTYPE = DIAGRAM DESCRIPTION = Palynological Chart (2 of 3) for Kipper-1 REMARKS = $DATE_CREATED = 30/09/1986$ $DATE_RECEIVED = 27/02/1987$ $W_{NO} = W930$ WELL_NAME = KIPPER-1 CONTRACTOR = CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE906049 is enclosed within the container PE906044 at this location in this document.

The enclosure PE9 ITEM BARCODE	06049 has the following characteristics: = PE906049
CONTAINER_BARCODE	
	= Palynological Chart
	= GIPPSLAND
PERMIT	= VIC/P19
TYPE	= WELL
SUBTYPE	= DIAGRAM
DESCRIPTION	= Palynological Chart (3 of 3) for
	Kipper-1
REMARKS	
DATE_CREATED	= 30/09/1986
DATE_RECEIVED	= 27/02/1987
W_NO	= W930
WELL_NAME	= KIPPER-1
CONTRACTOR	=
CLIENT_OP_CO	= ESSO AUSTRALIA LIMITED
(Inserted by DNRE	- Vic Govt Mines Dept)