

WELL COMPLETION REPORT

.

KINGFISH-6

Esso Australia Ltd.

July, 1975

7

١

E 8 9 M

ESSO AUSTRALIA LIMITED

WELL COMPLETION REPORT

KINGFISH-6

P.V. KEMP February, 1975 ð,

ESSO AUSTRALIA LIMITED

WELL COMPLETION REPORT

KINGFISH-6

LIST OF CONTENTS

SECTION

1.	Well	Data	Record	

- 2. Initial Production Test (Not Applicable) (Not Applicable)
- 3. Perforating Record
- 4. Casing Record
- 5. Cement Record
- 6. Subsurface Completion Equipment (Not Applicable)
- 7. Samples, Conventional Cores, Sidewall Cores
- 8. Wireline Logs and Surveys
- 9. Formation Tops/Zones
- 10. Geological Analysis

APPENDICES

1.	Sample Descriptions
2.	Sidewall Core Descriptions
3.	Micro-Palaeontological Report
4.	Palynological Report
5.	F.I.T. Results
6.	Well Log Analysis Report & BARDID Mud Loc
7.	Core Description, Petrography and Bulk Density
8.	Velocity Survey Report

PLATES

I	Structure Map, Top of Latrobe Coarse Clastics, Kingfish-6
II	Geological Cross-Section A-A', Post Kingfish-6
III	Time-Depth Curve
IV	Well Velocity Record
V	Well Completion Log

FORMATION ٧١ TESTER - A, B

ESSO STANDARD OIL (AUSTRALIA) LTD.

COMPLETION REPORT

I WELL DATA RECORD

Date 5/2/75

LOCATION

WELL NAME	STATE		PERMIT or	LICENC	E	GEOL	OGICAL H	BASIN	FIELD
KINGFISH-6	VIC. OFF	SHORE	VIC.I	L/7		GIP	PSLAND		KINGFISH
CO-ORDINATES Lat. 38 ⁰ 35'40.0 Surface & Eottom Hole	Long.)16"S 148° 14'	00.8		Y	MAP PROJECTI AMG/AGE ZONE 55 N	EON)	GEOGRAPI DESCRIP 1.1 mil	FION	E Kingfish-
			ELEVA	CIONS &	DEPTHS				
ELEVATIONS Mean Sea Level KB 28'	WATER	258'			TOTAL DE M.D. 8 T.V.D.	386'			Avg.Angle .ght hole
RT Braden Head Top Deck Platform	PLUG BACK DEPTH 350'				REASONS Aband			afacily (), (1), (2), (2), (2), (2), (2), (2), (2), (2	
				DATES					
MOVE IN 30/12/74]	RIG U	P 31/12/	74	2	SPUDD) 1	ED L/1/75		
RIG DOWN COMPLETE 28/1/75	[RIG R	ELEASED 29/1/	75	F	PROD.	UNIT - S	tart Rigg	ging Up
PROD.UNIT - Rig Dow	on Complet	te		I.P	. ESTABI	ISHE	D		
		****	MIS	SCELLAN	EOUS			*****	_
OPERATOR	PERMIT	TTEE .	or LICENCE	Ε	ESSO I	NTER	EST	OTHER IN	EREST
ESSO	ESSO	- HEI	MATITE			50%		HEMATIT	E 50%
CONTRACTOR .		RIG	NAME	<u></u>		EQUII	PMENT TY	PE 4	
ATWOOD OCEANICS P/	L	REC	GIONAL END	EAVOUR		FI	LOATING	D/V	
TOTAL RIG DAYS	DRILLING	AFE 1	NO.	COMPLE	TION NO.		TYPE	COMPLET	ON
29.06	234-106								
LAHEE WELL	Bei	orel	Drilling	FIELD	OUTPOST				
CLASSIFICATION	Aft	er l	Drilling	UNSUC	CESSFUL	OUTPC	OST		

P. KEMP

	INITIAL	PRODUCTION TE	ST		7
WELL (Oil W	COMPLETION A	S:Gas	Well	Dry Hole	
ch			Calcula	ted P.I.	
			Calcula	ted A.O.F	
				tions	
			Shut-In	BHP	·····
			Flowing	BHP	
D			Shut-In	Tubing Press	· · ·
			Flowing	-Tubing Press	
			Flowing	Temper- ature	
PERFORATI	ING RECORD (1				
HPF	TOTAL SHOTS	SERV. CO.	DIFF. PRESS.	PERFORATION FLUID	SIZE AND TYPE GUN
	Oil Wa	WELL COMPLETION A Oil Well nch	WELL COMPLETION AS: Oil Well Gas	Oil Well Gas Well Ich Calcula Calcula Perfora Shut-In Flowing PD Shut-In Flowing PERFORATING RECORD (Prod.test, Completion, DS TOTAL DIFF.	WELL COMPLETION AS: Oil Well Gas Well Dry Hole ich Calculated P.I. ich Calculated A.O.F Calculated A.O.F Perforations Perforations Shut-In BHP PD Shut-In Tubing Press P Shut-In Tubing Press P Flowing-Tubing Press PERFORATING RECORD (Prod.test, Completion, DST, FIT) TOTAL DIFF.

			Å	
	>pLI	CA		

Engineer

·

ġ.	NELL:	KINGFISH-6	•	· .		•		
	IV	• •	•	CASI	NG-LINER-T	UBING RECORD		
	Туре	Size `	Weight	Grade	Thread	No. Joints	Amount	Depth
		KB ELEVATI	ON ABOVI	E CASING H	EAD		277.00	277.00
		24" Pi	le Joint	:	,		35.35	312.35
		20''	129 <i>∦</i> .	X52LP	JV-CC	1	28.75	341.1
		20''	94#	X52LP	JV	9	310.34	651.44
-		. 20''	129#	X52LP	JV	1 casing + shoe	24.30	675.74
								. <u>.</u>
		KB ELEVA	TION ABC	DVE HANGER			283.00	283.00
		10-3/4"	40.5#	J-55	Butt	61	2453.81	2736.81
		10-3/4"	40.5#	J55	Butt .	1 + Float Collar + Float Shoe	40.17	2776.98
		13-3/8"x 		·	Butt	X/Over & Pup	5.13	2782.11
		10-374	-			1.4m - 1.1	•	
	į			•			:	
-						:		
						· · · · · · ·		
			B	A		S 1	C	
	v			ę	CEMENT RI	ECORD		; ;
	String	•			20!'	10-3/4"		
						650 sks Aust N + 2	250	
	Number	Cement		sks_Aust.	N+2%CaC1	sks Aust N+1% CaC	i	
			<u>()</u>		133	1062		
		•	Slurry					
•	Cement			Sea_Flo			····	.
		Tested with		 7	psi	1500 psi 10		··· ·· ·
		of Scratche				_		
1		********						
		ollar, etc.						
	Remarks	•		•	-	Tested formation 13.5 ppg mud equi held.		
			I	•.	·····	1	<u>_</u>	
•]	•			• •	• •	•		
9 1 -	•			4 .	. 4*	•	97W~	12.
		•	•	•			Engineer	

	VI	SUBSURFACE COMPLETION EQUIPMEN	r .	
		DA	TE COMPLETED	
	Schematic	Equipment Description	Length	Depth
				· · · · · · · · · · · · · · · · · · ·
	· · · ·			
				A
		TAPPLIC	ABL.	
			4	
			· ·	
			ļ	·····
Peter-				

.

	SA	MPLES, CONVENT	IONAL CORES, SW CC	RES	
INTERVAL	TYPE	RECOVERED	INTERVAL	TYPE	RECOVER
	5 sets wash-		8312-7419	30 SWC's	29
1840-2350	ed and dried samples and one unwashed	30' "	7612-2857.	3 0 SWC's	30
1 1	sack.	30' "	CONVENTIONAL COP	r #1	
2530-4000		30' "	5657-5690	Cut 33	33
4000-5655		20' "			
5690-7200		20' "		-	
7200-7590		10' "	-		
7600-7700		10' "			
7700-8386		20' "			
c	One composite canned cutt- ings sample	e Every 100'			
VIII	WI	RELINE LOGS AND	SURVEYS Incl. FIT)	
Type & Scale		From To	Type & Se	cale	From To
ISF 2" & 5" SONIC 2" & 5" FDC 2" & 5" GR 2" & 5" ISF 2" ISF 2" ISF/Sonic 5" FDC/CNL/GR		$2815 - 678^{-}$ $2816 - 678^{-}$ $2821 - 678^{-}$ $2812 - 291^{-}$ $8332 - 2787^{-}$ $8331 - 2787^{-}$ $8331 - 7519^{-}$ $8329 - 5514$			ł
CNL HDT VELOCITY SURVEY 11 levels F.I.T. #1 F.I.T. #2		827 <u>1</u> - 2508 8130 7707			
HDT VELOCITY SURVEY 11 levels F.I.T. #1		8130			

P. KEMP

Geologist

•

WELL KINGFISH-6

IX		FORMAT	CION TOPS/Zone:	 S	[_]	
NAME	Tops		Gross	Net	Pay (ft).	REMARKS
NAME	M.D.	Sub-sea	Interval (ft)	Gas	011	
GIPPSLAND LST.	286	- 258	6315			
LAKES ENTRANCE FM.	6601	-6573	1006			
LATROBE GROUP LTRB.COARSE CLA	7607 ST.7611	-7579 -7583	779+			
Mid <u>M.diversus</u> Unconformity	7646	-7618				
т.D.	8386	-8358				
		anni an da anna an da anna an da				
	NT	ERP		ATI	VE	

X

GEOLOGIC ANALYSIS (Pre Drilling prognosis Vs actual results)

PRE-DRILL

Kingfish-6 was drilled in a seismically interpreted crestal position on the southern lobe 4 of the eastern extension of the Kingfish field. It was anticipated that Kingfish-6 would intersect approximately 50' of high quality reservoir sands at the top of the Latrobe Group, above the field oil/water contact at 7566 feet subseq.

POST DRILL

The Latrobe Group was penetrated at 7579 feet subsea, 63 feet low to prediction and 13 feet below the Kingfish field oil/water contact 7566 feet subsea. Although this has resulted in a slight reduction of the south-east flank of the Kingfish field, as mapped following the drilling of Kingfish-5, it has established the presence of the East Kingfish extension.

The deviation from pre-drill depths predicted by seismic interpretations is the result of 0.8% error in seismic velocity determination within the complex channelling of the upper Miocene section.

Lithological predictions were generally proved correct with the Latrobe Group consisting of predominantly coarse to very coarse grained, friable sandstones with generally good porosity.

The Mid <u>M.diversus</u> unconformity is interpreted by log character as occurring at 7618 feet subsea, only 39 feet below the top of Latrobe Group. This is significantly thinner than the equivalent sections in Kingfish-5 (150 feet thick) and in Kingfish-1 (155 feet thick). In the east Kingfish area, this unconformity appears to mark the abrupt change from non-marine braided stream deposits immediately below the unconformity, to a more marine-shoreface environment immediately above.

Please note that in the logging of this well Schlumberger have used a cable with incorrectly spaced depth markers. The error was not discovered until after the logging of this well and Flounder-5 was completed. The depths used in this report have been corrected for this error by the addition of 2.5 feet/1,000 feet.

ESSO AUSTRALIA LIMITED

WELL COMPLETION REPORT

KINGFISH-6

APPENDIX 1

•

SAMPLE DESCRIPTIONS

. .

•

`

SAMPLE DESCRIPTIONS

Page 1 of 18

P.B. EDWARDS

۰

DEPTH	%	DESCRIPTION
790 - 820	100	Detrital Limestone, shelly and bryozoan fragments, grey to white, sparry calcite few forams. <5% medium to coarse rounded clear quartz.
820-850	100	As above, very coarse
850-880	100	As above
880-910	100	As above
910-940	100	As above Rare rounded brown shale grains.
940-970	100	As above
970-1000	100	As above
1000-1030	100	As above
1030-1060	100	As above
1060-1090	100	Detrital Limestone, shelly and bryozoan, very coarse fragments, grey to white, sparry calcite fragments. Rounded to subangular. <5% coarse rounded clear quartz.
1090-1120	100	As above
1120-1150	100	As above
1150-1180	100	As above
1180-1210	100	As above
1210-1240	100	Detrital Limestone, shelly and bryozoan fragments. Some grey to white sparry fragments, subangular to rounded. Rare rounded coarse quartz grains.
1240-1270	100	As above
1270-1300	100	As above
1300-1330	100	As above
1330-1360	100	As above
1360-1390	100	As above
1390-1420	100	As above
1420-1840		No return (too fine?) probably as below
1840-1870	100	Calcarenite medium grained, white to grey, friable, bryozoan fragments common. (5% coarse shelly material and quartz probably cavings).
1870-1900	100	As above
1900-1930	. 100	As above
1930-1960	100	As above

٠

•

SAMPLE DESCRIPTIONS

2/18

P.B. EDWARDS

7 January, 1975

•

DEPTH	%	DESCRIPTION
1960-1990	100	As above
1990-2020	100	As above
2020-2050	100	Calcarenite, white to grey, medium grained, friable, many bryozoan fragments (5% assorted shelly fragments, and rounded quartz probably cavings).
2050-2080	100	As above
2080-2120	100	As above
2120-2140	100	As above
2140-2170	100	As above
(~1.70-2200	100	As above
200-2230	100	As above
2230-2260	100	As above
2260-2290	100	As above
2290-2320	100	Calcarenite, becoming finer and better consolidated. Shelly cavings. Friable grey-white.
2320-2350	100	Fine grained calcarenite, as above
2350-2410		No recovery
2410-2440	70 30	Calcarenite, as above Shell fragments, coarse, subrounded, some forams, quartz grains.
(40-2530		Mudded up. Increase mud weight cleaned hole & returns consisted of large quantities of cavings.
530-2560	30 70	Calcarenite, as above Fragments as above, note comment above, may be cavings.
2560-2590	50 50	Calcarenite, pale grey, fine to medium grained, semiconsol: (more than before) clay choked. Detritus shell, bryozoan, foram fragments, some sparry
		calcite, quartz grains, very coarse, subangular, Cavings (
2590-2620	60 40	Calcarenite, as above. Detritus as above
2620-2650	75 25	Calcarenite, as above. Detritus as above
2650-2680	75 25	Calcarenite, as above Detritus as above
2680-2710	50 50	Calcarenite, as above Detritus as above
2710-2740	- 50 50	Calcarenite as above Detritus as above Sample puggy
2740-2770		Insufficient sample return - would not separate

KINGF1SH-6

`

. (

SAMPLE DESCRIPTIONS

P.B. EDWARDS 7 January, 1975

•

3/18

DEPTH	%	DESCRIPTION
2770-2800		As above
2800-2830	٨	As above
2830-2850		Very poor returns - mostly gumbo like material.
2850-2890		As above
2890-2920		As above
2920-3010		As above, no returns in part. Very poor samples
3010-3040		Sample condition still too poor for description, grey gummy mud.
30 40 - 30 70		As above
70-3100		As above
5100-3130		As above
3100-3130		As above
3130-3160		As above
3160-3190		As above
3190-3220		As above
3220-3250		As above
3250-3270		As above
3280-3310		As above
3310-3340		As above, mostly cavings with gummy mud (probably swollen)
340-3370		As above
3370-3400		As above
3400-3430		As above
3430-3460		As above
3460-3490		As above
3490-3520	100	Light grey to brown, calcareous <u>siltstone</u> , few forams, still with gummy mud as above.
3520-3550	100	Light grey-brown, calcareous muddy siltstone, as above
3550-3580		As above
3580-3610		As above
3610-3640	100	Light brown-grey, calcareous <u>siltstone</u> , firm high clay content, few forams.
3640-3670	100	As above
3670-3700	100	Siltstone, as above

KTROLIDIL O

•

4/18

P.B. EDWARDS 7 January, 1975

•

DEPTH	%	DESCRIPTION
3700-3730	100	As above
3730-3760	100	As above
3760-3790	100	As above
4790-3820	100	As above
3820-3850	100	As above
3850-3880	100	As above
3880-3910	100	Light grey-brown calcareous <u>siltstone</u> firm, few forams, high clay content, varies to fine <u>sandstone</u> .
39 10 - 39 40	100	As above
40-3970	100	As above
9 70-4000	100	As above
4000-4020	100	As above
4020-4040	100	As above
4040-4060	100	As above
4060-4080	100	As above
4080–4100 4100–4 12 0	100 100	As above As above
4120-4140	100	As above
4140-4160	100	Light grey-brown, calcareous <u>siltsone</u> , glauconitic, few forams, firm, varies to fine <u>sandstone</u> .
5 0-4180	100	As above, glauconite, finely divided, some disseminated pyrite.
4180-4200	100	As above
4200-4220	100	As above
4220-4240	100	As above
4240-4260	100	As above
4260-4280	100	As above
4280-4300	100	As above
4300-4320	100	As above
4320-4340	100	As above
4340-4360	100	As above
4360-4380	100	As above
4380-4400	100	As above

.

		P.B. EDWARDS
• •		SAMPLE DESCRIPTIONS 5/18 7 January, 1975
		· · · ·
DEPTH	%	DESCRIPTION
4400-4420	100	Grey to brown <u>siltstone</u> , slightly glauconitic, firm.
4420-4440	100	As above
4440-4460 !)	100	As above
4460-4480	100	As above
4480-4500		As above with occasionally more clayey portions.
4500-4560		As above
4560-4640		As above, with minor amounts of very clayey pale grey siltstone
4640-4660		As above, mostly cavings, milling on junk
4660-4720	100	As above, Siltstone, very rare arenaceous marls.
4/20-4760		As above
4760-4780		As above
4780-4820		As above
4820-4860		As above
(
1	l i	
		-

SAMPLE DESCRIPTIONS

N-40

•

6/18

DEPTH	%	DESCRIPTION
4860-4880	100	Siltstone, medium grey, very calcareous, firm, unbedded Trace fossil fragments
4880-4900	100	<u>Siltstone</u> , medium grey, very calcareous, firm Trace <u>fossil fragments</u>
4900–4920	100	<u>Siltstone</u> , as above Trace <u>fossil fragments</u>
4940–4960	100	Siltstone, as above Trace fossil fragments
4960-4980	100	<u>Siltstone</u> , as above Trace <u>Marl</u> , light grey, very calcareous, soft Trace <u>fossil fragments</u>
49 80-5000	100	Siltstone, light to medium grey as above, some glauconite Trace fossil fragments Trace Pyrite
5000–5020	90 10	<u>Siltstone</u> , as above <u>Coal</u> , black, dull, earthy, soft Trace <u>fossil fragments</u> , bryzoa Trace <u>Marl</u> , light grey, very calcareous, soft
РОН 5020-5080	80 20	<u>Siltstone</u> , as above <u>Marl</u> , as above Trace <u>Coal</u> Trace <u>fossil fragments</u>
5080-5100	50 50	Siltstone, as above Marl, light grey, very calcareous, soft, some glauconite Trace Coal Trace fossil fragments
5100-5120	15 80 5	Sandstone, white - light grey, very fine grained glauconitic, very calcareous, firm Siltstone, medium grey, very calcareous, firm, unbedded <u>Marl, light grey, soft, very calcareous</u> Trace <u>Coal</u> , as above Trace <u>fossil fragments,</u> as above
5120-5140	20 80	Sandstone, as above poorly sorted Siltstone, as above Trace Sandstone, fine-medium grained, very glauconitic, calcareous light grey-green. Trace Marl Trace fossil fragments
5140-5160	30 70	Sandstone, light grey, very fine grained as above Siltstone, as above Trace <u>Sandstone</u> , glauconitic, as above Trace <u>fossil fragments</u> Trace <u>Coal</u>
5160-5180	50 50	Sandstone, very fine grained, poorly sorted,glauconitic, calcareous white-light grey Siltstone, medium grey as above Trace fossil fragments

.

SAMPLE DESCRIPTIONS

7/18

5180-5200 5200-5220 5220-5240	50 50 50 50	<u>Sandstone</u> , as above <u>Siltstone</u> , as above Trace <u>Sandstone</u> , fine-medium grained, very glauconitic Trace <u>fossil fragments</u> Trace <u>Coal</u> Sandstone, as above
		Sandstone, as above
5220-5240		<u>Siltstone</u> , as above Trace <u>Marl</u> , light grey, very calcareous, soft Trace <u>fossil fragments</u> , related forams, votaloid bryoza Trace <u>Sandstone</u> , fine grained, grey green, very glauconitic, calcareous
	50 50	Sandstone, very fine-fine grained, white-light grey, poorly sorted firm Siltstone, as above Trace Marl, as above Trace fossil fragment, as above Trace Sandstone, fine-medium grained, grey green, very
5240-5260	40 60	glauconitic, calcareous, poorly sorted. <u>Sandstone</u> , as above <u>Siltstone</u> , as above Trace <u>Marl</u> , as above Trace <u>fossil fragments</u> , as above, some gastropods Trace <u>Coal</u>
5260–52 <u></u> 80	50 50	<u>Sandstone</u> , as above <u>Siltstone</u> , as above Trace <u>Marl</u> , as above Trace fossil fragments, as above Trace <u>Sandstone</u> , very glauconitic, grey green, medium grained Trace <u>Coal</u>
5280-5300	50 50	<u>Sandstone</u> , as above <u>Siltstone</u> , as above Trace <u>Marl</u> , as above Trace <u>Glauconitic Sandstone</u> , as above Trace <u>fossil fragments</u> , as above Trace <u>Coal</u>
5300-5320	60 40	<u>Silstone</u> , as before, with carbonaceous specks <u>Sandstone</u> , as above, silty-very fine grained, calcaroues Trace 5% coarse shell fragments Trace <u>Glauconitic Sandstone</u> , fine-occasionally medium grained, as above
5320-5340	70 25 5	<u>Siltstone</u> , as above <u>Sandstone</u> , as above <u>Coal</u> Trace <u>shell fragments</u> Rare <u>quartz grain</u> , coarse grained, rounded
5340-5360	60 40	Siltstone, as above Sandstone, as above Trace Coal
5360-5380	70 30	Siltstone, as above Sandstone, as above Trace 5% Coal

`-...

8/18

•

SAMPLE DESCRIPTIONS

DEPTH	%	DESCRIPTION
5380-5400	70 30	Siltstone, as above Sandstone, as above Trace Coal
5400-5420	70 25 5	Siltstone, as above Sandstone, as above Shell fragments, pyrite and occasional quartz grains, coal, as above
5420-5440	80 20	Siltstone, as above Sandstone, as above
5440-5460	80 20	Siltstone, as above Sandstone, as above
(5460-5480	70 25 5	Siltstone, as above Sandstone, as above Coal, as above Trace fossil fragments
5480-5500	70 30	Siltstone, medium grey, calcareous, glauconitic, hard Sandstone, white-light grey, calcareous, very fine-fine grained, silty, carbonaceous, glauconitic, subangular
5500-5520	- 60 30 10	Siltstone, as above Sandstone, as above Coal, black, dull, soft, earthy
5520-5540	70 30	Siltstone, as above, some very glauconitic Sandstone, as above Trace <u>Coal</u> , as above Trace <u>fossil fragment</u> , bryzoa, brivalves
5540-5560	70 30	Siltstone, as above Sandstone, as ab ove Trace <u>Coal</u> , as above
5560-5580	80 20	<u>Siltstone</u> , as above <u>Sandstone</u> , as above Trace <u>Coal</u> Trace <u>fossil fragments</u> , bivalves, benthonic foram
5580-5600	60 40	<u>Siltstone</u> , as above <u>Sandstone</u> , as above Trace <u>Coal</u> Trace <u>fossil fragments</u> , gastropods, bivalves
. 5600–5620	60 40	<u>Siltstone,</u> as above, some very glauconitic <u>Sandstone</u> , as above
5620-5640	70 30	<u>Siltstone</u> , as above <u>Sandstone</u> , as above Trace ? <u>Limestone</u> , light brown, very hard, dense calcareous, very fine grained
5640-5690	30 70	Sandstone, as above Siltstone, as above

SAMPLE DESCRIPTIONS

••••• •

DEPTH .	%	DESCRIPTION	
5690-5720	60 10 30	Siltstone, very calcareous, as above Sandstone, very fine grained, silty, very calcareous Limestone, silty, very hard as in Core #1, as above	. •
5720-5740	60 40	Siltstone, as above Limestone, as above Trace shell fragments and coal	
5740-5760	60 40	Limestone, as above Siltstone, as above	
5760-5780	60 40	Siltstone, as above Limestone, as above Trace Coal and shell fragments	
5780-5800	60 40	<u>Siltstone</u> , as above <u>Limestone</u> , as above	
5800-5820	70 30	<u>Siltstone</u> , as above <u>Limestone</u> , as above	•
5820-5840	70 30	<u>Siltstone</u> , as above <u>Limestone</u> , as above	
5840–5860	30 65 5	Limestone, as above Siltstone, as above Coal Trace shell fragments	· .
5860-5880	100	Calcareous Siltstone or Silty Micritic Limestone	
5880-5900	100	<u>Siltstone</u> , as above	
5900-5920	100	<u>Siltstone,</u> as above	
5920-5940	70 30	<u>Siltstone,</u> as above <u>Limestone</u> , as above	
5940-5960	70 30	<u>Siltstone</u> , as above <u>Limestone</u> , as above	
5960-5980	60 40	Siltstone, medium grey, firm Limestone, hard, dense, micritic, silty Trace <u>Coal</u> , as above	
5980-6000	50 50	Siltstone, firm, medium grey, calcareous Limestone, hard, dense, micritic, silty	
6000-6020	70 30	Limestone, as above)' ? Base of Channel Siltstone, as above)	
	60 40	Limestone, as above <u>Siltstone</u> , mixture of hard and soft siltstone, medium gr calcareous, glauconitic Trace <u>Marl</u> , light grey, soft, glauconitic	ey,

9/18

Â,

\$

. . .

.

SAMPLE DESCRIPTIONS

`-**.**.

•

10/18.

,

DEPTH	%	DESCRIPTION
6040-6060	60 40	<u>Siltstone</u> , mixture of hard and soft, as above <u>Limestone</u> , as above Trace <u>Marl</u> , as above Trace <u>Coal</u> , as abov e
6060-6080	60 40	<u>Siltstone</u> , as above <u>Limestone</u> , as above Trace 5% <u>Marl</u> , as above
6080-6100	55	Siltstone, becoming mainly soft siltstone, medium grey, calcareo glauconitic
	30 15	Limestone, as above Marl, soft, light grey, calcareous, glauconitic
6100-6120	70 30	Limestone, as above <u>Siltstone,</u> as above, firm Trace <u>Marl</u>
6120-6140	60 40	<u>Siltstone</u> , as above <u>Limestone</u> , as above
6140-6160	40 40 20	Marl, as above Siltstone, as ab ove Limestone, as above
6160-6180	. 70 20 10	Marl, as above Siltstone, as above, firm and soft siltstone Limestone, as above
6180-6200	90 10	<u>Marl</u> , as above <u>Siltstone</u> , as abov e <u>Trace Sandstone</u> , medium grained very glauconitic, calcareous Trace <u>Limestone</u> , as above
6200-6220	10 90	<u>Siltstone</u> , mainly soft <u>Marl</u> , as above
6220-6240	100	<u>Marl,</u> as above Trace <u>Siltstone</u> , as above
6240-6260	90 10	Marl, as above Siltstone, as above
6260-6280	80 20	Marl, as above Siltstone, soft to firm, calcareous, glauconitic
6280-6300	70 30	<u>Marl</u> , as above <u>Siltstone</u> , as above
6300-6320	60 40	<u>Marl</u> , as above <u>Siltstone</u> , as above Trace <u>glau</u> conitic <u>Sandstone</u>
6320-6340	70 30	<u>Marl</u> , as above <u>Siltstone</u> , as above
6340-6360	80 10 10	<u>Marl,</u> as above <u>Siltstone</u> , as above <u>Shale-Mudstone</u> , subfissile, soft-firm, medium grey, very calcared slightly silty Trace <u>Coal</u>

•

`~**~**•

DEPIH	%	DESCRIPTION	
6360-6380	70 10 10 10	<u>Marl</u> , as above <u>Siltstone</u> , as above <u>Shale</u> , as above <u>Coal</u>	•
6380-6400	100	<u>Shale</u> , medium grey, firm, very calcareous, micromicaceous, subfissile, slightly pyritic, slightly carbonaceous, Trace <u>glauconite</u> , <u>microfossils</u> Trace <u>Coal</u> Trace <u>Foram</u> - round <u>Miliolina</u> : <u>Glomospira</u>	
6400-6420	100	<u>Shale</u> , as above	•
6420-6440	100	<u>Shale</u> , as above	
6440-6460	100	<u>Shale</u> , as above	
6460-6480	100	<u>Shale</u> , as above	
6480-6500	100	<u>Shale</u> , as above <u>Foram</u> - rotalid	
6500-6520	100	<u>Shale</u> , as a bove	
6520-6540	, 100 ,	Shale, as above Foram, rotalid-benthonic	
6540-6560	100	Shale, as above	
6560-6580	100	<u>Shale</u> , as above	
6580-6600	100	Shale, as above Numerous small calcareous <u>benthonic forams</u>	·
6600-6620	100	Shale, as above Trace forams, numerous small benthonic forams calcareous	
6620–6640	100	<u>Shale</u> , as above Trace <u>Forams</u> , as above	•
6640–6660	90 10	Shale, as aboveSiltstone, as aboveTrace Forams, as above	
6660-6680	100	<u>Shale</u> , as above Trace <u>Forams</u> , as above	
6680-6700	100	<u>Shale</u> , as above	
6700-6720	80 20	<u>Shale,</u> as above <u>Siltstone</u> , as above, firm	
6720-6740	80 10 10	<u>Shale</u> , as above <u>Siltstone</u> , as above <u>Sandstone</u> , fine grained, light grey, silty, firm, calcareous	•

SAMPLE DESCRIPTIONS

--

`~~`

12/18

DEPTH	%	DESCRIPTION
6740-6760	80 10 10	<u>Shale,</u> as above <u>Siltstone</u> , as above <u>Sandstone</u> , as above
6760–6780	60 15 15 10	<u>Shale</u> , as above <u>Siltstone</u> , as above <u>Coal</u> , black, firm, silty <u>Sandstone</u> , as above
6780-6800	80 10 10	<u>Shale</u> , as above <u>Siltstone</u> , as above <u>Marl</u> , as above Trace <u>Sandstone</u> , as above Trace <u>Coal</u> , as above
6800-6820	80 10 10	<u>Shale</u> , medium grey, subfissile, calcareous, silty, glauconitic, pyritic, carbonaceous, fossiliferous <u>Siltstone</u> , light to medium grey, calcareous, glauconitic <u>Forams</u> , small calcareous benthonic forams some planktonic-like forams, <u>Miliolina</u>
6820-6840	90 10	<u>Shale</u> , as above <u>Siltstone</u> , as above Trace Forams, as above
6840-6860	- 90 10	<u>Shale</u> , as above, foram rich <u>Siltstone</u> , as above Trace Forams, as above
6860-6880	90 10	<u>Shale</u> , as above <u>Siltstone</u> , as above Trace Forams, Nodosoria, as above
6880-6900	100	<u>Shale</u> , as above Trace <u>Sandstone</u> , fine grained, poorly sorted, slightly glauconitic calcareous Trace <u>Pyrite</u> Trace <u>Forams</u> , as above
6900–6920	100	Shale, as above Trace Sandstone, as above Trace Forams, as above
6920-6940	100	<u>Shale</u> , as above Trace <u>Sandstone</u> , as above, glauconitic Trace <u>Forams</u> , as above
6940-6960	100	Shale, as above Trace <u>Sandstone</u> , as above Trace <u>Forams</u> , as above with <u>Ammodiscus</u>
6960-6980	100	<u>Shale</u> , medium dark grey, very carbonaceous, foram rich, glauconit slightly pyritic, subfissile, firm Trace <u>Sandstone</u> , fine grained, light grey, quartz, calcareous Trace <u>Forams</u> , calcareous benthonic? Cibicides
69 80 - 7000	100	<u>Shale</u> , as above Trace <u>Forams</u> , as above, abundant

•

•

SAMPLE DESCRIPTIONS

`•**••**•

DEPTH	%	DESCRIPTION
7000-7020	100	<u>Shale</u> , as above Trace <u>forams</u> - abundant
7020-7040	100	<u>Shale</u> , as above Trace <u>Forams,</u> as above Trace <u>Sandstone</u> , as above
7040-7060	100	Shale, as above, micaceous Trace <u>Forams</u> , as above
7060-7080	100	<u>Shal</u> e, as above Trace <u>Pyrite</u> Trace <u>Sandstone</u> , as above Trace <u>Forams,</u> some nodosarids, ? <u>Margulina</u>
7080-7100	100	<u>Shale</u> , as above Trace <u>Sandston</u> e Trace <u>Forams</u> , nodosarids, small calcareous benthonics
7100-7120	100	<u>Shale</u> , as above
7120-7140	100	Shale, as above
7140-7160	100	<u>Shale,</u> as ab ove, some green grey
7160-7180	100	<u>Shale</u> , as above Trace <u>Forams</u> - Milolina, nodosarids, rotalids
7180-7200	100	<u>Shale</u> , as above
7200-7210	100	Shale, as above
7210-7220	100	<u>Shale</u> , as above
7220-7230	90 10	<u>Shale</u> , as above <u>Siltstone</u> , light grey, very calcareous
7230-7240	90 10	<u>Shale</u> , as above <u>Siltstone</u> , as above Abundant loose <u>forams</u> (5%)
7240-7250	90 10	Shale, as above
7250-7260	85 10 5	<u>Shale</u> , as above <u>Siltstone</u> , as above Loose <u>forams</u>
7260–7270	85 10 5	Shale, as above Siltstone, as above Forams
7270-7280	100	<u>Shale</u> , as above
7280-7290	95 5	<u>Shale</u> , as above <u>Siltstone</u> , as above
7290-7300	100	<u>Shale</u> , as above Loose <u>Forams</u>

13/18

		SAMPLE DESCRIPTIONS
DEPTH	%	DESCRIPTION
7300-7310	100	Shale, as above
7310-7320	80 20	<u>Shale</u> , as above <u>Siltstone</u> , as above
7320-7330	80 20	<u>Shale</u> , as above <u>Siltstone</u> , as above
7330-7340	80 15 5	<u>Shale</u> <u>Siltston</u> e Loose <u>forams</u>
7340-7350	75 25	<u>Shale,</u> as above <u>Siltstone</u> , as above
7350-7360	80 20	<u>Shale</u> <u>Siltstone</u>
7367' CIRC	75 15 10	<u>Shale</u> <u>Siltstone</u> Loose <u>forams</u>
7367'NB (X	3A)	
7367-7370	100 •	<u>Shale</u> , very silty, calcareous, light grey to medium grey, firm subfissile, trace <u>fossils</u> , tending to calcareous siltstone, tr <u>coal</u> (?), black, granular in part
7370-7380	100	<u>Silty Shale</u> , very silty, pyritic Trace <u>Coal</u> , conchoidal fracture in part Trace <u>Siltstone</u> , quartzose, light brown grey, calcareous
7380-7390	100	Silty <u>Shale</u> , light grey to medium grey, pyritic, calcareous, Trace <u>Coal</u> , as above Trace <u>Siltstone</u> , as above, foraminifera present
7390-7400	100	Silty <u>shale</u> , very silty, very light grey to medium grey, calca Trace <u>Coal,</u> as above Trace <u>Siltstone</u> , as above
7400-7410	100	Silty <u>Shale</u> , as above, foraminifera present, slightly pyritic Trace <u>Coal</u> Trace <u>Siltstone</u> , as above
7410-7420	80-90 10-20	Silty <u>Shale</u> , as above, trace calcareous <u>fossils</u> <u>Coal</u>
7420-7430	60 20 20	Silty <u>Shale</u> , as above <u>Siltstone</u> , as above, single subangular, broken quartz grain <u>Coal</u>
7430-7440	60 20-30 10-20	Silty <u>Shale</u> , as above <u>Siltstone</u> , as above, rare quartz grain <u>Coal</u>
7440-7450	80 10 10	<u>Silty Shale</u> , as above, rare quartz grain <u>Siltstone</u> , as above, rare calcareous fossil <u>Coal,</u> as above
7450-7460	50 40 10	Silty <u>Shale</u> , as above <u>Siltstone</u> , as above, trace <u>pyrite</u> , foraminifera present Coal

.

SAMPLE DESCRIPTIONS

`~a¥ ,

forminifera present30Silistone, light to very light grey, non-fissile, quartzose, calcareous, rare quartz fragments, subangular10Coal, conchoidal fracture in part, lightic in part7490-750060Sility Shale, as above Solitatone, as above7500-751060Sility Shale, as above Silitatone, as above, rare sub-rounded quartz grain, slightly pyritic7500-751060Sility Shale, as above Silitatone, as above Trace coal7510-752060Sility Shale, as above Silitatone, as above Trace coal7520-753080Sility Shale, as above Silitatone, as above Trace Coal7530-754060Sility Shale, as above Silitatone, as above Trace Coal7530-754060Sility Shale, as above Silitatone, as above Trace Coal7540-755050Sility Shale, as above Silitatone, as above Trace Coal7540-755050Sility Shale, as above Trace Sandstone, as above7540-7550100Sility Shale, tending to silitatone, light to medium grey, sub-f in part, trace pyrite Trace Sandstone, as above7560-7570100Sility Shale, tending to silitatone, as above, foraminifera prese glauconific, rare quartz grain Trace Sandstone, as above7570-7580100Sility Shale, tending to silitatone, as above, foraminifera prese glauconific, rare quartz grain Trace Sandstone, as above7580-7590100Sility Shale, tending to silitatone, as above, foraminifera prese glauconific, rare quartz grain Trace Sandstone, as above7580-7590100Sility Shale, tending to silitatone,	DEPTH	%	DESCRIPTION
30 Silistone, as above 7480-7490 60 511rstone, light to wery light grey, non-fissile, quartzose, clacareous, rare quartz fragments, subangular 30 Goal 11 30 11 Goal careous, rare quartz fragments, subangular 10 Goal, conchoidal fracture in part, lightic in part 7490-7500 60 30-40 Silistone, as above 30-40 Silistone, as above 7500-7510 60 30-40 Silistone, as above 30-40 Silistone, as above 7510-7520 60 60 sility Shale, as above 7510-7520 60 60 sility Shale, as above 7520-7530 80 Silistone, as above 7530-7540 60 511stone, as above 7540-7550 50 511stone, as above 7540-7560 50 511stone, as above 7540-7560 50 511stone, as above 7560-7570 100 511ry Shale, tending to siltstone, as above, foraminifera prese glauconific, rare quartz	7460-7470	20-30	<u>Siltstone</u> , as above
30 forminifera present 31 Siltstone, light to very light grey, non-fissile, quartzose, calcareous, rare quartz fragments, subangular 10 Coal, conchoidal fracture in part, lightic in part 7490-7500 60 Silty Shale, as above 30-40 Siltstone, as above 5-10 Coal 7500-7510 60 30-40 Siltstone, as above 30-40 Siltstone, as above 30-40 Siltstone, as above 7500-7510 60 30-40 Siltstone, as above 7510-7520 60 311stone, as above 7510-7520 60 311stone, as above 7520-7530 80 Silty Shale, as above 7530-7540 60 Silty Shale, as above 7540-7550 50 Silty Shale, as above 7550-7560 100 Silty Shale, as above 7560-7570 100 Silty Shale, tending to siltstone, light to medium grey, sub-fing part, trace syndstone, as above 7560-7570 100 Silty Shale tending to Siltstone, as above, foraminifera prese	7470-7480	30	<u>Siltstone</u> , as above
30-40 5-10Siltstone, as above Coal7500-751060 30-40Silty Shale, as above, rare sub-rounded quartz grain, slightly pyritic Coal7510-752060 40silty Shale, as above Siltstone, as above Trace coal7520-753080 80 811tstone, as above Siltstone, as above Trace Coal7520-753080 811tstone, as above Siltstone, as above Siltstone, as above Siltstone, as above Trace Coal7530-754060 811ty Shale, as above Siltstone, as above Trace Coal7530-754060 811ty Shale, as above Trace Sandstone, as above Trace Sandstone, as above Siltstone, as above Trace Sandstone, as above Siltstone, as above Trace Sandstone, as above Siltstone, as above Silty Shale, tending to siltstone, alight to medium grey, sub-f in part, trace Sandstone, as above Siltstone, as above7560-7570100Silty Shale, tending to Siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7570-7580100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above, glauconitic in pa silty Shale, tending to siltstone, as above, glauconitic in pa	7480–7490	30	Siltstone, light to very light grey, non-fissile, quartzose, calcareous, rare quartz fragments, subangular
30-40Siltstone, as above, rare sub-rounded quartz grain, slightly pyritic Coal7510-752060silty Shale, as above Siltstone, as above Trace coal7520-753080Silty Shale, as above Siltstone, as above Trace Sandstone, light grey, quartzose, glauconitic, pyritic, fine grained Trace Sandstone, as above7530-754060Silty Shale, as above Siltstone, as above Trace Sandstone, as above Trace Sandstone, as above7540-755050Silty Shale, as above Siltstone, as above Trace Sandstone, as above7540-755050Silty Shale, as above Siltstone, as above Trace Sandstone, as above7550-7560100Silty Shale, tending to siltstone, light to medium grey, sub-f in part, trace pyrite Trace Sandstone, as above7560-7570100Silty Shale tending to Siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7570-7580100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7570-7580100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above	7.490-7500	30-40	Siltstone, as above
40Siltstone, as above Trace coal7520-753080Silty Shale, as above Siltstone, as above Trace Sandstone, light grey, quartzose, glauconitic, pyritic, fine grained Trace Coal7530-754060Silty Shale, as above Siltstone, as above Trace Sandstone, as above Trace Sandstone, as above Siltstone, as above Trace Sandstone, as above Siltstone, as above siltstone, as above frace Sandstone, as above siltstone, as above frace Sandstone, as above siltstone, as above siltstone, as above frace Sandstone, as above7540-755050Silty Shale, as above Siltstone, as above siltstone, as above7550-7560100Silty Shale, tending to siltstone, light to medium grey, sub-f in part, trace gyrite Trace Sandstone, as above7560-7570100Silty Shale tending to Siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7570-7580100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above	7500-7510	30-40	Siltstone, as above, rare sub-rounded quartz grain, slightly pyritic
20Siltstone, as above Trace Sandstone, light grey, quartzose, glauconitic, pyritic, fine grained Trace Coal7530-754060Silty Shale, as above Siltstone, as above Trace Sandstone, as above7540-755050Silty Shale, as above Siltstone, as above7550-7560100Silty Shale, tending to siltstone, light to medium grey, sub-f in part, trace pyrite Trace Sandstone, as above7560-7570100Silty Shale tending to Siltstone, as above7560-7570100Silty Shale tending to Siltstone, as above7570-7580100Silty Shale, tending to Siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7570-7580100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above, glauconitic in pa race Sandstone, as above	7510-7520	40	<u>Siltstone</u> , as above
40Siltstone, as above Trace Sandstone, as above7540-755050Silty Shale, as above Siltstone, as above, rare quartz grain Trace Sandstone, as above7550-7560100Silty Shale, tending to siltstone, light to medium grey, sub-f in part, trace pyrite Trace Sandstone, as above7560-7570100Silty Shale tending to Siltstone, as above7560-7570100Silty Shale tending to Siltstone, as above7570-7580100Silty Shale tending to Siltstone, as above7570-7580100Silty Shale, tending to siltstone, as above7580-7590100Silty Shale, tending to siltstone, as above7580-7590100Silty Shale, tending to siltstone, as above	7520-7530		Silty Shale, as above Siltstone, as above Trace Sandstone, light grey, quartzose, glauconitic, pyritic, very fine grained
50Siltstone, as above, rare quartz grain Trace Sandstone, as above7550-7560100Silty Shale, tending to siltstone, light to medium grey, sub-f in part, trace pyrite Trace Sandstone, as above7560-7570100Silty Shale tending to Siltstone, as above7560-7570100Silty Shale tending to Siltstone, as above7570-7580100Silty Shale, tending to siltstone, as above7570-7580100Silty Shale, tending to siltstone, as above7580-7590100Silty Shale, tending to siltstone, as above7580-7590100Silty Shale, tending to siltstone, as above7580-7590100Silty Shale, tending to siltstone, as above	7530-7540		<u>Siltstone</u> , as above
in part, trace pyrite Trace Sandstone, as above7560-7570100Silty Shale tending to Siltstone, as above, foraminifera prese glauconitic, rare quartz grain Trace Sandstone, as above7570-7580100Silty Shale, tending to siltstone, as above glauconitic, rare quartz grain Trace sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above glauconitic, rare quartz grain Trace sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above	7540-7550		Siltstone, as above, rare quartz grain
glauconitic, rare quartz grain Trace Sandstone, as above7570-7580100Silty Shale, tending to siltstone, as above, foraminifera pres glauconitic, rare quartz grain Trace sandstone, as above7580-7590100Silty Shale, tending to siltstone, as above	7550-7560		
glauconitic, rare quartz grain Trace <u>sandstone</u> , as above 7580-7590 100 Silty <u>Shale</u> , tending to <u>siltstone</u> , as above, glauconitic in pa	7560-7570	100	
	7570-7580	100	
7600-depth corr No Sample	7 580–7590	100	Silty <u>Shale</u> , tending to <u>siltstone</u> , as above, glauconitic in part
	<u>7600-depth</u>	corr. No	Sample

15/18 .

. ,

•

SAMPLE DESCRIPTIONS

16/18

.

DEPTH	%	DESCRIPTION
7600-7610	100	<u>Silty Shale</u> tending to <u>siltstone</u> , very pyritic in part, rare rounded quartz grain, light brown colour Trace glauconitic <u>siltston</u> e tending very fine grained <u>sandstone</u>
7620-7630	100	<u>Silty Shale</u> , tending to <u>siltstone</u> , as ab ove, 10-20 large (approximately lmm) quartz grains, some with pyrite, white to a subangular to subrounded Trace <u>Sandstone</u> , very fine grained, glauconitic
Drilling	Break Starte	ed 7630'
7630-7640	70	Sand, coarse to very coarse grained (maximum dimension 2mm), frosted to clear, mostly subrounded to well rounded some grains broken, slightly pyritic, grains sub-spherical to elongated
•	30	Shale to siltstone, as above
7640-7650	80 20	Sand, as above Shale to siltstone, as above
7650-7660	90 10	<u>Sand,</u> as above <u>Shale to siltstone,</u> as above Trace glauconitic s <u>iltstone</u>
7660–7670	80 20	<u>Sand</u> , as above, some granule size grains (i.e., 2-4mm) <u>Shale to siltstone</u> , as above
7670-7680	80 20	Sand, as above, tracé pink quartz grains Shale to siltstone, as above, pyritic
7680-7690	90 10	Sand, as above, trace <u>glauconite</u> Shale to siltstone, as above, trace <u>glauconite</u>
7690-7700	90 10	Sand, as above Shale to Siltstone, as above
Change to	20' samples	
7700-7720	90-100 0-10	<u>Sand</u> , as above <u>Shale to siltstone</u> , as above
7720-7740	100	Sand, quartzose, white, frosted, medium to very coarse and gran rounded to well rounded, unconsolidated
		<u>No show</u> " Trace silty <u>shale</u> cavings
7740-7760	100	<u>Sand</u> , as above Trace <u>glauconite</u> , trace silty <u>shale</u> cavings, slightly pyritic
7760-7780	100	<u>Sand</u> , as above Trace <u>glauconit</u> e, trace silty <u>shale</u> cavings
<u>NB J-22</u>	7826	· •
7780-7820 (L.A.T.)	20	Sand, unconsolidated, medium to granular, quartz, clear to fro trace pyrite, rare glauconite, subrounded to well rounded, fai good sorting, no show Silty Shale) Silty Shale) as previously, probably cavings
	10	<u>Siltstone</u>) as previously, probably cavings

•

SAMPLE DESCRIPTIONS

· · · •

1.41

-

17/18

DEPTH	%	DESCRIPTION
7820-7840	100	Sand, medium to very coarse, trace pyrite, glauconite, (possibl trace greensand), clear, unconsolidated, no show
7840–7900	100	<u>Sand,</u> as above Trace <u>Sandstone</u> , very fine grained, glauconitic, pyritic (possi "greensand") Trace silty <u>Shale</u> , probably cavings
7900-8000	100	Sand, trace grey <u>chert</u> , quartzose, clear to white, subangular t rounded, medium to very coarse grained, loose clean, <u>no show</u>
8000-8020	100	<u>Sand</u> , white to clear, frosted, very coarse to medium granule si subrounded, sub-spherical to elongate, trace <u>glauconite</u> , loose, <u>no shows</u> . Trace silty <u>Shale</u> - cavings
8020-8040	100	Sand, as above
8040-8060	100	Sand, as above
8060-8080	90 10	<u>Sand</u> , as above silty <u>Shale</u> Trace <u>Sandstone</u> , white to light grey, fine grained, poorly ceme quartzose, fairly well sorted, poor porosity, <u>no show</u>
8080-8100	90 10	<u>Sand</u> , as above Silty <u>Shale</u> Trace <u>Sandstone</u> , as above
8100-8120	80 10 10	Sand, as above Silty Shale Sandstone, white to medium grey, fine to medium grained, poorly cemented, quatzose, fairly well sorted, poor porosity, no show subangular to subrounded, moderately firm, Trace <u>Mica</u> Trace <u>Glauconite</u>
8120-8140	80 20	Sand, as above Siltstone, shaly, light brown grey to grey, slightly calcareous quartzose, moderately firm. Trace Sandstone, as above
8140-8180	100	Sand, quartzose, medium to very coarse grained, subangular to r fair sorting, loose, clean, good porosity, no show, occassional pyrite, cherty quartz Trace <u>Coal</u> , black, lignitic, slightly firm
8180-8200	90 5 5	Sand, as above Silty Shale Coal, lignitic
8200-8220	100	Sand, pyritic in part, clear to grey, slightly cherty in part, coarse to granular, rounded, well sorted, loose, clean, good porosity, no show
8220-8240	100	<u>Sand</u> , medium to very coarse, fair to good sorting, subangular t rounded, good porosity, no show, trace <u>pyrite</u>
8240-8260	100	Sand, medium to very coarse grained, tends to be bimodal with medium grains and very coarse to medium granule grains, fair to good sorting, subrounded to subangular, good porosity, no show Trace Silty <u>Shale</u>

SAMPLE DESCRIPTIONS

		SAMPLE DESCRIPTIONS	18/18
DEPTH	%	DESCRIPTION	•
8260-8280	100	<u>Sand</u> , as above Trace <u>Pyrite</u>	
8280-8300	100	Sand, very pyritic, more angular, py clear to grey	vritic cement, silty in part
8300-8320	80 20	Sand, pyritic, white to grey Siltstone, shaly, pyritic in part, g green-grey in part), calcareous	grey (slight brown-grey and
8320-8340	80 10 10	<u>Sand</u> , slightly pyritic, as above <u>Sandstone</u> , slightly silty, fine, mod slightly glauconitic, poor to fair p Silty <u>Shale</u>	lerately cemented quartzose, porosity, no show
8340-8360	50 50	<u>Sand</u> , as above <u>Siltstone</u> , very sandy tending to sar firm, poor to fair porosity, no show calcareous, pyritic in part Trace <u>glauconite</u>	ndstone, brown grey, slightl ws, quartzose, very slightly
8360-8386	60	Sand, clear to grey quartz, medium t rounded, fair to good sorting, good	to very coarse, subrounded t porosity, common glauconite
	40 •	trace <u>pyrite</u> , no show <u>Siltstone</u> tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in	, brown grey, slightly firm, part, pyritic
-		Siltstone tending to fine Sandstone,	, brown grey, slightly firm, part, pyritic
-		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	, brown grey, slightly firm, part, pyritic
		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	, brown grey, slightly firm, part, pyritic
		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	, brown grey, slightly firm, part, pyritic
		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	brown grey, slightly firm, part, pyritic
		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	brown grey, slightly firm, part, pyritic
		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	brown grey, slightly firm, part, pyritic
		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	brown grey, slightly firm, part, pyritic
		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	brown grey, slightly firm, part, pyritic
		Siltstone tending to fine <u>Sandstone</u> , glauconitic, slightly calcareous in T.D. 8386 feet Circulate BU	brown grey, slightly firm, part, pyritic

ESSO AUSTRALIA LIMITED

WELL COMPLETION REPORT

KINGFISH-6

APPENDIX 2

SIDEWALL CORE DESCRIPTION

â,

			·		ROCK	MODIFIERS			INDUR	GRAIN	• *		DISS			FLOU	RESCENCE		CUT F	LUOR.		ESIDUE		PROB	
59	N	NO.	DEPTH	REC	TYPE		CAL	COLOR	DEG	SIZE	SRTG	RND	CLAY	STAIN	%	DISTR	INTEN	COLOR	INTEN	COLOR	QUAN	COLOR	SHOW	PROD	REMARKS - GAS
	1	ta	1	2	3	4	5	6	7	8	ទ	10	11	12	RK	14	15	16	17	18	19	20	21	22	23
1	-1-/-		8292 8312	<u>3/4'</u>	Silty Sandst one	Quartzose, tr.glauc- onite, mica shale streaks		medium grey brown clay	sli. firm	silty to fine grain	fair	s.a s.r	clay mat- rix	no	-									-	Poor-fair_porcsity_
9	DATE		8260 8281 8137	1"	Sand- stone	Quartzose, very pyritic quartz, silt matri	non x	light- medium grey	soft- friab le	medi- um - very coarse	to fair	w.r.		no											fair_to_good porosity
	-	3	8117 8076	1,11	P.O. Silty sand- stone	occasional	non	light •grey	slight ly firm	silty to fine	r			no											
	RUN NO	5	8096 7997 8017	3/4''	SS	quartz Quartzose glauconitic	sli	light green grey	sli. firm - friable	fine to gran-	poor	s.r. to r	ninor	no	tr				slow weak						fair-good porosity C ₁ - 50ppm
14 LTD.	SWC R	· • • • •		3/4"		Quartzose, glauconitic micaceous		gy sp eckled	fsli. 1 firm	slt- fine	fair		minœ	no									-		C1 - 200ppm
JSTRALI	2	7	7882 7902	1"	Sand- stone	Quartzose, glauconitic micaceous, quartz silt		light grey	slight ly firm	fine to very coarse	poor	r r	minor	no	-										C <u>1</u> - 200ppm
ESSO AUSTRALIA LTD. SIDEWALL CORE DESCRIPTIONS	RUN NO	8	7818 7838	14"	Sand- stone	matrix, Glauconitic pyritic	nor	green grey	sligh ly fir	fine n very coars	fair	sa		no	tr	sptty	weak	yellow	weak	yellow white			-		fair-good porosity C ₁ - 100ppm
	IES	9	7695 7714	3/4'	stone	Qtz silt matrix, tr. glauconite	nor	lt gy m gy	very friable	m-vc	fáir			no		patchy	dul1	yellow	slow weak	faint					
	1	10	7684 7703	14"	Sand- stone	clean, qtzose			ext. friable	m-vc	fair			no		nil			nil						very good porosity C ₁ - 300ppm
6 - KEMP	BE	11	7675 7694	1-3/1-"		minor qtz silt ma, tr glauconite			friable			sa- sr	minor	no		nil									C ₁ - 200ppm
NGFISH- McKAY	SC	12	7630 7649	3/4'	Silty	dtzose, tr. glauconite, tr. pyrite	nor	white n -1t g	e sli. y firm- friable	f-vc	p-f	sa		no		patchy even	mod.	yellow	weak	faint					fair-good porosity C ₁ - 300ppm
WELL KII	SERVICE CO		PLEAS	SE NO	OTE :	CORRECT DE	PTHS	UNDER	SCORED	- COI	RECTI	ED FO	OR SC	HLUMBI	ERGE	R DEPI	H ERRO	DRS							•
3 U	ا ھ	FOR	MR 257 3/7	2		- N						- I							J				- <u> </u>		

...

. .

					ROCK	MODIFIERS			INDUR	GRAIN			DISS			FLOL	IRESCENCI	E ·		LUOR.	CUTR			PROB	
5	59	NO,	DEPTH	REC	TYPE		1	COLOR	DEG	SIZE	SRTG	RND	CLAY	STAIN	%	DISTR	INTEN	COLOR	INTEN	COLOR	QUAN	COLOR	SHOW	PROD	REMARKS - GAS
Ц Ц	0	1 a	1	2	3	4 017 000 00-	5	6	7 el firm	8	9	10	11	12	RK	14	15	16	17	18	19	20	21	22	23
-0 E	ы В Ш	13	7621	3⁄4''	SS	Qtz,occ. c. qtz grs, py	rsli	.md.gy	friable	v.f.	f	sr- r		no	tr	spatty			nil						fair porosity C ₁ - 200ppm
	17		<u>7640</u>			tr. glauc.																			
2	60 4/1	14	7614	1"	SS	qtz. slt.	a1.	lt.gy	v.fri- able		£	sa			1										fair-good porosity
	5	14	7633	- <u>-</u>	- 55	ma	STT	md.gy	abie	m-vc	<u>1-p</u>	sr	mi	no											C ₁ - 400ppm
щ	ш				silty	rare c.qtz.		1tm	v. fri-	cilty		69													fair-good porogity
PAGE	ATT DAT	15	7609	1"	SS	gr. tr. pyr	.non	gy	v.fri- able	-f.	g	sa sr	-	no		spotty	weak	yellow	nil						fair-good porosity C1 - 600 ppm
	· ·		7628			tr. glauc.																			
		16	7607	3/4"	SS	qtzose,tr. pyr. tr.gau	non	1+.9V	v.fri-	f-vc	g	sa	_			spotty	weak	yellow	nil						fair-good porosity C1 - 300ppm
			7626	[<u> </u>		8	abie			34				sporty	weak	yerrow		+				+	<u>C1 - 300ppm</u>
	0				siltv	rare c.qtz.			sli.	silt-			ļ												· · · · · · · · · · · · · · · · · · ·
	NS RUN NO	17	7600	3/4"	ŝŝ	rare c.qtz. gr, tr.pyr. tr. glauc.	non	lt.gy	firm- friable	m	f-p	sa	minar		tr										C ₁ -200ppm
	SS IN		<u>7619</u>						1																
1 7.1	ESSO ACCENTIONS LINE LUC	18	7597	1"	SS	qtz slt ma, tr. glauc,	non	lt.gy	friable - sli.	f-vc	p-f	sa- sr	mina	no	tr	spotty	weak	dull yellow	v.sli						fair porosity C ₁ - 100ppm
5	RIP S		7616			tr. glauc, tr. pyr. tr mica	•		firm									<i>p</i>				-		1	<u>1</u>
	ESC			+			-										1	+							
10						clean qtz		lt.gy				sr				patchy	7	yellow	slow						good perecity
311	S S S	19		1"	SS	<u>slt matrix,</u> gtzose	non	v.lt gy	friable	f-vc	p-f	-r	<u> </u>	no		-even	mod	white	weak	yellow					good porosity C ₁ - 50ppm
< <			<u>7614</u>			-																			
S		20	7590	14"	SS	qtz.slt.ma,	non	ltm gy	sli. firm	m-vc	p-f	sa	mina	no		patchy	mod	yellew white	fain	tyellow					fair porosity C1 - 100 ppm
2	SIDE RUN		7609			tr.py, tr. glauconite					<u>P</u> #					pacen		1						1	
	ES					rare m.qtz. grn, heavil	hie	grn-1	sli.			+						yellow		yellow white					
	_	21	7588	3/4"	SLTST	grn, heavil glauc. pyr.	<u>yht</u> y	gy	firm	silt	v.p.	sa	mod			patchy	mod	white	fair	white					
		L	7607		07 077			4				ļ			_										· · · · · · · · · · · · · · · · · · ·
		22	7584	2''	SLTY SH	s.fissile, silty	mod	ol.gy	firm	slt- clay	σ														
:		23	7580	11."		s. fissile, silty		ol.gy	sli.	slt- clay	-														
	GE	23	7599	1.2	_5п	- SILLY		oregy		Clay	p	+													
9	T McKAY/KEMP SO SCHLUMBERGER			+		s.fissile, tends to	-	01.gy	sli. firm														l		· · · · · · · · · · · · · · · · · · ·
SH-	Y/k	24		_	' SH	tends to	mod	l dk.gy	firm	clay	g	<u> </u>													
EL	KA		7595			claystone																			
NG	SC	25	7570	2''	SILT	Ys.fissile,tr pyr. tends to clyst.	sli	ol.gy	mod.	silt-	f-n														
KJ	sт со		7589	+	<u>5</u> п	to clyst.		dk.gy		cray_	<u>- P</u>														
	C IS.				SLTY	s.fissile	•	md-dk	mod.	silt-															
بـ		26	7562		<u>ŠĦ</u>	tends to claystone	mod	gy	firm	clay	f-p														
MELI	GEOLOGIST SERVICE CO		7581					25																	
	- <i>.</i> ,	FOR	M R 257 3/7	2	PLEA	SE NOTE :-	CORF	RECT DE	PTHS U	NDERS	ORED	– C	ORREO	TED F	OR	SHCLIM	BERGER	DEPTH	ERROR	S					
	,																								

,

۰.

. .

24

.

					ROCK	MODIFIERS			INDUR	GRAIN			DISS	· · ·		FLOU	RESCENCE		CUT F	LUOR.	CUT R	ESIDUE	· ·	PROB	,
5 59	: 1	NO. 1 a	DEPTH	REC 2	TYPE 3	Δ	CAL 5	COLOR 6	DEG 7	SIZE 8	SRTG 9	RND	CLAY	STAIN 12	% RK	DISTR 14	INTEN	COLOR 16	INTEN 17	COLOR 18	QUAN 19	COLOR 20	SHOW 21	PROD	REMARKS - GAS 23
OF .			7552		-	non-fissile minor slt		md.gy	mod	silt- clay	-											- 20	- 21		
E.	1.7	21	7552	13_	CHIDI		Inold		<u>llrm</u>	Clay	<u>+</u>														
3 60	4	28		11."	SLTY	non-fissile rare dk ang	hi-	md ov	mod.	clay- slt															
9		20	7557	1-2	01131	ular v.c. qtz. grs.	y y	ma · gy	* * * L I III	V.C.	v.p.	4			-										
РАGЕ АТТ	DATE					<u>quz. grs.</u>												<u> </u>							
P/		29	7500	11,11	CLYST	non-fissile rare sl.slt	hi o.	m-dk gy	mod firm	clay- silt	f		·												
			7519		04101	forams	hly	. 87		00					-										
												1													
	NO	30	7400	14"	SH	sub-fissile sl.slty,tends	highly	m.gy lt.ol	sli. firm	clay silt	f				-							•			
e, s	ξ		7419			to clyst.		gy																	
110N	SWC 1	Gun	2																					1	
ESSO AUSTRALIA LTD. SIDEWALL CORE DESCRIPTIONS		31	7593	1_''	SS	heavily pyr tr.glauc.	mod	white -m.gy	fria- ble-sli	m-vc	р	a- sa	minor	no											good porosity C1 - 100ppm
RAL			7612			4	1		1																
<i>JST</i> ORE		32	7300	3/4"	SH	sub-fissile tends to	hi- gh Iy	lt.ol	sli. firm	clay	g.														
тг о 17 (0		7318			clyst				01-078.		-													
SSC SSC	RUN NO	33	7200	1"	CLYST	non-fissile rare fgr.	hly	lt.ol gy	firm	f.gr.	f	w.r qtz													
SIL	ES RL		7218			qtz.grain			mad			0.0								ļ					
	ш	34	7100	1-3/4"	CLYST	sub-fissile tends to sh rare fgrqt	-hly	gy	firm	clay& f.gr.	f	sr qtz	ļ												
			7118			non-fissile			1																
	:	35	7000	15"	CLYST	tr. mi.	11	lt.ol gy	soft	<u>clay</u>	g						ļ								
	ER		7018			non-fissile		11.01	mod	0100-											- <u>-</u>				
6 EMP	IBERGER	36	6900 6917	12"	CLYST	tr mi, tr.		gy	mod. firm	<u>slt</u>	f_									+					
Y-K	UNB		0917			present							-							ļ <u> </u>					
KINGFISH-6 Ist McKAY-KEMP	SCHLUM					sub-fissile	2 11	1t.0	sli.															-	
W		37	6750 6767	12"	CLYST	tends to sh trace mica	<u>1</u>	gy	firm	clay	g_														
I	E CO			11.11	OT VOT	non-fissile	2	1t.01	sli.	clav															
GEOLOGIST	SERVICE	38	6595 6611	12"	CLYST	sli.silty	- 11	gy *	sli. firm	clay- slt	f	+									<u> </u>				
ME GE	SEI	FOR	M R 257 3/7	2		<u> </u>	<u> </u>	<u> </u>		<u> </u>				I			1	<u> </u>	<u> </u>			1		<u> </u>	

PLEASE NOTE :- CORRECT DEPTHS UNDERSCORED - CORRECTED FOR SCHLUMBERGER DEPTH ERRORS

 ~ 1

.

.

.04

.

~

25 11 255 11	6591 11:01 12:01		1 a	1	REC 2	RÖCK TYPE 3	MODIFIERS 4 non-fissile	5	COLOR 6 1t.01	INDUR DEG 7 mod.	GRAIN SIZE 8	SRTG 9	RND 10	DISS CLAY 11	STAIN	% RK	DISTR	IRESCENCI INTEN 15	COLOR 16	. CUT F INTEN 17	ELUOR.	CUT R QUAN 19	ESIDUE COLOR 20	SHOW 21	PROB PROD 22	REMARKS - GAS
40 500 by SR tende to dyst dy mod. Sympy solution dy mod. to display dy mod. solution dy mod. to display dy mod. to display <thdy mod.<br="">to display</thdy>	40 500 14% St. Case 29-may St. Case 29-may St. Case 20-may 20-may <th< td=""><td></td><td></td><td></td><td>1.2</td><td>CLYST</td><td>sli-silty</td><td>-hly</td><td>gy</td><td>firm</td><td>šĨť'</td><td>f</td><td>-</td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				1.2	CLYST	sli-silty	-hly	gy	firm	šĨť'	f	-													
4 6010 (4 1/2 (1) 1/2	Sing Sing Sing Sing Sing Sing 41 6400 14" CLYST sub-fissile " It.ol. mod. Clay 8	747			1-:3/4"	SH	sub-fissile	, II	lt.ol	soft	clav	g	+								-					
6416 non-fissile ift of im difficulty ift of im difficulty 43 6200 14" control is ift of im difficulty ift of im difficulty 43 6201 ift of im difficulty ift of im difficulty ift of im difficulty 43 6201 ift of im difficulty ift of im difficulty ift of im difficulty ift of im difficulty 43 6201 ift of im difficulty 6216 ift of im difficulty 6216 ift of im difficulty 6115 ift of im difficulty 45 5990 14" ift of im difficulty ift of im dim difficulty ift of im dim difficulty <	6416 non-fissile it.clay g 6216 silty firm-silt g silty 6216 silty firm-silt g silty silty 6216 silty firm-silt g silty silty silty 6216 silty firm-silt g silty silty silty silty 6216 silty firm-clay g silty		1	6516			· · · · · · · · · · · · · · · · · · ·		lt.ol	mod. firm		1														•
42 6300 1×" CLYST rr,ni,sli. " groot. firm +silf g 43 6200 1×" CLYST rr, nica " groot. firm class g 43 6200 1×" CLYST rr, nica " groot. firm class g 6216 non-fissile " groot. firm class g image: class g 6216 non-fissile " tr, nica " firm class g image: class g 6415 non-fissile " tr, nica " firm class g image: class g 6115 non-fissile " tr, firm class g image: class g image: class imag	42 6300 lk" (CIXST tr, mi, sli. " kyol. firm -slift g istic			6416																						
10111 10111 11111 11111 11111 111111 111111 111111 111111 111111 111111 111111 111111 111111 1111111 1111111 1111111 1111111 1111111 1111111 111111111 11111111 11111111111111111111111111 11111111111111111111	Jose Jose <thjose< th=""> Jose Jose <thj< td=""><td></td><td>42</td><td>6300</td><td>14"</td><td>CLYST</td><td>tr.mi.sli.</td><td></td><td>gy-ol.</td><td>firm</td><td>clay -silt</td><td><u>g</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td></thj<></thjose<>		42	6300	14"	CLYST	tr.mi.sli.		gy-ol.	firm	clay -silt	<u>g</u>												 		
6216 87 <	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				11.11		non-fissile			mod.																-
44 6100 12" curve tissile 11. cl. firm clay g	44 6100 14" CLYST non-fissile " try fim clay g 6115 900 14" CLYST non-fissile " " mod. g	o N			12	CLIST	tr. mica		gy-01. gy	firm		g														<u></u>
45 5990 12" CLYST non-fissile " " firm clay g	45 5990 12" CLYST non-fissile " " firm clay g		44	6100 6115	14"	CLYST	non-fissile sub-fissile	11		sli. firm- soft	clay	g														
6005	6005 Image: site of the si	NS .	45	5990	14"	CLYST	non-fissile	. "	11	mod. firm	clay	g														
5990 glauconite	<u>5990</u> <u>5990</u> <u>glauconite</u>			6005																						
47 5900 14" CLYST non-fissile " " firm clay g	47 5900 14" CLYST non-fissile " " firm clay g		46			CLYST	non-fissile silty, tr.	· "	11	mod. firm	clay slt	f														
1 48 5750 3/4" CLYST non-fissile " " slit.	48 5750 3/4" CLYST non-fissile " " firm clay f 48 5764 " " firm clay f	o N						11	11	şli.																
46 570 574 CLISI tr.glauc. " " firm clay r 49 5500 3/4" CLYST sub-fissile " " mod. g	46 3730 3/4 CLISI tr.glauc. n n firm clay r 5764 tr.silt nod. n <td>NUN</td> <td>_47</td> <td></td> <td>15</td> <td>CLYST</td> <td>non-Ilssile</td> <td></td> <td></td> <td>tirm</td> <td>clay</td> <td>g</td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td>	NUN	_47		15	CLYST	non-Ilssile			tirm	clay	g														· · · · · · · · · · · · · · · · · · ·
49 5500 3/4" CLYST sub-fissile tr. glauc. " " mod. firm clay g	49 500 3/4" CLYST sub-fissile tr. glauc. " " mod. firm clay g	IES	48		3/4''	CLYST	non-fissile tr.glauc. tr. silt	11	TT	sli. firm	slt& clay	f										· · · ·				
51 5000 3/4" SLTY v.slty, tr. " sli.	51 5000 3/4" SLTY V.Slty, tr. sli. sli	····	49	5500		CLYST		2 11	11	mod. firm	clay															
51 5000 3/4" SLTY v.slty, tr. " sli.	51 5000 3/4" SLTY V.Slty, tr. sli. sli		50	5300 5313	1_''' 2	CLYST		2 II	11	sli. firm	clay -slt	f														
	8 5012 glauconite soft soft	T-O-T-T					tr. silt																			
		: 1	51		3/4'	SLTY'T	sub-fissile v.slty, tr.	11	11	sli. firm-	slt- clay	f-p														· · · · · · · · · · · · · · · · · · ·

2

۰.

.

 $\sim \sim$

59	NO.	DEPTH	REC	ROCK	MODIFIERS			INDUR	GRAIN			DISS	-		FLOU	JRESCENC	E	CUT F	LUOR.		ESIDUE		PROB	
-	1 a	1	2	3	4	CAL	COLOR	DEG	SIZE	SRTG	1	CLAY	STAIN	%	DISTR	INTEN	COLOR	INTEN	COLOR	QUAN	COLOR	SHOW	PROD	REMARKS - GAS
REC	 		.	l		1	- v 1+	7 cli	8 slt=	9	10	11	12	RK	14	15	16	17	18	19	20	21	22	23
	52	4825	1"	SLTST	v. clayey, tr. glauc.	hly	-v.lt. gy	sli. firm	clay	f-p		mod												
1/7		4837																				1		
							1				1		• •											<u> </u>
60 24	52	4560	1_''	CT TCT	clayey, tr. glauconite		lt.gy- 1t.ol.	sli. firm	slt-					$\left - \right $										
Ш	55		4	20121	glauconite	11		firm	_clay	f		mod					ļ		ļ					
ATT DAT		4571					ву				ļ		·····											
			_		-1																			•
	54	4350	1_''	SLTST	clayey, tr. glauconite	11	lt.gy	sli. firm	slt- clay	f		mod											<u> </u>	
		4361			0			<u></u>	<u>ciu</u>	·····		inc/ci	····											
NO			-				+																	
					sltv. non-		lt.01.	ali	clav-		<u> </u>													
PTIONS SWC RUN	55	3995	1"	CLYST	slty, non- fissile		gy-1t.	_firm_	clay- slt	f														
PTIC SWC		4005					gу																	
CRI																								
DES	56	3600	3//,"	STTST	clayey, tr. glauconite	11	11	mod. firm	slt- clay	~ ~	1								<u> </u>				<u> </u>	
RE	- 30	3609	- 3/ 4	01101	grauconice			rirm	_c_ay	f		mod		┼{										· · · · · · · · · · · · · · · · · · ·
8																ļ								
SIDEWALL CORE DESCRIPTIONS RUN NOSWC RU					alayov tr	_		- 7 - 2																
SIDEWAL RUN NO	57	3487	3/4"	SLTST	clayey, tr. glauconite	11	11	sli. firm	slt- clay			mod												
		3496																	[
IES																								
	50	3250	11.11		clayey, tr.		11	sli. firm	slt- clay8		sa													
	10	3258	17	SLIST	clayey, tr. glauc. rare fgr qtz.	₽ <u></u>		firm	<u>clay</u> 8 f.sano	<u>р</u>	sa qtz	mod												
		5250								•														
KEMP MBERGER	L				- 1	_																		
KEMP MBER(59	3050	1"	SLTST	clayey, tr. glauconite	11	11	mod. firm	slt- clay	f		mod												
H E		3058																						
IcKAY-I SCHLUI						1																		
SC SC		0.050				+		mod.																
4		2850	12	SLTST	tr.glauc.	11	11	mod. firm	slt	g		minor												
tis⊤ ≣ co		2857											······································											
Loc														. [······································
GEOLOGIST MCKAY-							4	1																· · · · · · · · · · · · · · · · · · ·
• o •	FOR	A R 257 3/7	2		PLEASE NOTE	:	CORREC'	Г ДЕРТІ	AS TIND	ERSCO	RED	- 00	RRFCTF	ייד תי	אם פרש	יקסאוז ז		ייד גווויכו		l	l		I	
												00	STROIT.		on 300	LUTIDE	GER DE	rin Eb	KUKS					
																~								
							1																	
													.B4											

APPENDIX 3

Micropalaeontology

Foraminiferal Biostratigraphy and Environmental Analysis of Kingfish #6

by David Taylor

Paleontology Report 1975/2

February 3, 1975.

By : David Taylor February 3, 1975.

÷

Forty samples of side wall cores were examined from the Kingfish #6 sequence between 7607' and 2857'*. The "greensand" half of SWC 7607' (this SWC was split as it contained 2 distinct lithologies with "greensand" and calc. shale) was barren of foraminifera, as was the sample at 4571'. The calc. shale at 7607' and the SWC at 7603' contained indeterminate faunas, apparently due to solution, either syngenetic or diagenetic. Two sheets of distribution charts accompany this report; one showing planktonic distribution and biostratigraphy (Sheet 1), whilst the other shows distribution of key bethonic forms and other features which delineate the environmental sequence.

OLIGOCENE to EARLY MIOCENE - 7599' to 6516'

The oldest identifiable fauna was at 7599' containing <u>Globigerina</u> <u>angioporoides</u> which suggests Zone J, but the nondescript associated fauna does not permit further subdivision. The two samples below this, at 7603' and 7607' have poorly preserved planktonic faunas, commented on above. The fauna at 7595' is distinctively Zone J-1, as it includes <u>Globorotaloides</u> <u>testarugosa</u>. The highest J-1 fauna at 7589' is a poor one, while the base of I-1 at 7581' is very clear though more representative of the top of I-1 because of the presence of <u>Globoquadrina dehiscens</u> (<u>S.I.</u>). There may well be a missing time interval between 7589' and 7581'; certainly Zone I-2 is missing as in most deepwater Gippsland sequences. If this break in deposition is real, then it occurred in all the Kingfish sequences I have examined. The sample at 7571' contains an excellent specimen suite of the complex, <u>Globoquadrina dehiscens</u> (<u>S.L.</u>), possibly including <u>G.praedehiscens</u>.

The top of I-1 and the base of H-2 (at 7419'), are distinctive and characteristic but the higher H-2 faunas are typically poor. The appearance of <u>Globigerina</u> <u>connecta</u>, <u>Globorotalia zealandica</u>, <u>G. praescitula</u>, and <u>G. kugléri</u> dramatically mark the base of H-1 with an increase in specific diversity. Zones G and F are present although there may be some abbreviation. It should be noted that Zones G and F are probably or possibly absent in Kingfish #1, #2, and #5, whilst they are present in Kingfish #3, #A-1, #B-1, and in this sequence.

(Note : * All depths used in this report are corrected sidewall core depths).
KINGFISH #6

../3

LATE MIOCENE (= mid Miocene) - 6416' to 2857'

The base of the late Miocene is taken at the base of Zone E with the appearance of <u>Praeorbulina curva</u>. Both samples at 6416' and 6316' contain this species. However, <u>Orbulina suturalis</u> was not recognised in the sequence although it was probably present in the unsampled interval between 6316' and the appearance of <u>O</u>. <u>universa</u> at 6216'. The interval between 6416' and 6316' obviously represents the basal part of Zone E; i.e., E-2. Zone D-2 has a high specific diversity which decreases at the base of D-1 at 5514'. A problem has arisen regarding the definition of the D-1/C boundary which could be placed at 3258' due to the sudden and abundant appearance of <u>Globorotalia conomiozea</u>. If this is the correct position, then it is lower than that picked in any of the other Kingfish sequences. This whole question must be left in abeyance until the thoroughly sampled Flounder #5 sequence has been analysed. For the present the side wall core at 3496' is definitely D-1, whilst the sample at 2857' is definitely C.

ENVIRONMENTAL SEQUENCE

The environmental trend in Kingfish #6 is broadly similar to that in the other Kingfish sequences I have examined. This trend is from the abrupt transition from a "greensand" to a deepwater carbonate sequence, with up-sequence progradation of the continental slope with heavy scouring and slumping during Zone D times, and finally the ultimate establishment of the continental shelf and stable conditions at the top of D-1 and/or C. The other feature which is obvious in all of the Kingfish sequences is that the earliest calcareous faunas (i.e., Zone J) are heavily corroded and most of the specimens may well have been dissolved as the faunas are dominated by arenaceous foraminifera. This dissolution could be due to the fact that deposition took place at or below the C.C.D. (= Calcium Carbonate Dissolution de th). However, what calcareous faunas there are, are usually encrusted and distorted which implies diagenesis and compaction, thus the significance of these deplete faunas is impossible to interpret for it is difficult to distinguish between the syngenetic and diagenetic cause and effect.

Page 3

KINGFISH #6

However, there are subtle environmental differences between Kingfish #6 and other Kingfish wells. This applies especially to those wells which have a gap in the sequence with Zones G, F, and E missing; such as Kingfish #1, #2, and #5. For example, in Kingfish #5, there is an outstanding discordance between the benthonic faunas of the continental rise and those of the outer shelf or upper slope, without any evidence of the intervening normal slope environment. Also in Kingfish #5, a continental rise environment is apparent up to the base of Zone G, whilst in Kingfish #6 the continental rise deposits are confined to Zones J and I. This may imply that the progradation of the slope was faster in Kingfish #6 than in #5, and that the slope may have developed as a series of protruding fans. Also the biostratigraphic and environmental discordance in Kingfish #5 could have been due to the fact that the slope was too steep and thus unstable to support a benthonic community or retain any planktonic foraminifera which fell onto it. On the other hand, the discordance could have been due to subsequent slumping and/or canyon cutting. If either surmise is correct, then the continental slope in Kingfish #6 was more gentle and stable, for it certainly sustained a diverse benthonic fauna and retained planktonic assemblages.

Benthonoc diversity decreases in Zone D, with size and shape sorting of both planktonic and benthonic specimens. These features are also associated with orange stained, reworked planktonic foraminifera and quartz. The interval between 6216' and 4005' in Kingfish #6 has all the indications of slope instability with slumping of sediment from the shelf edge and strong down slope current action. Whether this interval can be described as "canyon fill" is disputable.

Core-1 at 5657' to 5690' within this interval is to be examined in greater detail from an environmental aspect and will be presented as a separate report. This work will not have any effect on the age dating of the section.

BASI	N	GIPPSLAN	ID	BY	DA	VID TAYLOR			rm K 195 C	
WELL	NAI	ME <u>KINGFIS</u>	<u>вн #6</u>	DAT	re Fe	eb. 28, 19 <u>7</u> 5	ELEV	•	K.B. +	-30'
Fora	m Z	onules		1 5		,	,			I
			Highest Data	Quality	2 Way Time	Lowest Data		Quality	2 Way Time	
	A	Alternate								
	5									
	В	Alternate								
1	С		2857	1		2857		1		
	Ľ	Alternate								
	n		*3058	2		5514		0		
	D ₁	Alternate	3609	0		L				
	D.		5764	0		6115		0		
	2	Alternate								
	Е		**6215	0		6215		0		
	Ľ	Alternate		<u> </u>		<u> </u>				
I.	F		6316	0		6416		0		
MIOCENE	Ľ	Alternate								
ΙĔ	G		6516	1		6611		1		
	19	Alternate		1	1	1				

2 7218 7419 1 Alternate 0 7519 7571 0 Alternate OLIGOCENE Alternate 7581 1 7603 2 7589 $\overline{\mathbf{0}}$ Alternate 7595 0 2 Alternate EOC. Alternate Pre K

2

1

6767

6917

*The boundary between zones C & D is in process of revision due to Flounder 5. **Zone E is represented by only one sample and this belongs to E2 the lower subdivision. SWC at 7603' is indeterminant while SWC at 7599' contains only J fauna, but both put in J1 on spore-pollen.

COMMENTS: SWC at 7607' contained two lithologies; a green-sand with NNF and a calcareous shale with indeterminant fauna.

Note: If highest or lowest data is a 3 or 4, then an alternate 0, 1, 2 highest or lowest data will be filled in if control is available.

If a sample cannot be interpreted to be one zonule, as apart from the other, no entry should be made.

0 SWC or Core - Complete assemblage (very high confidence). 1 SWC or Core - Almost complete assemblage (high confidence). 2 SWC or Core - Close to zonule change but able to interpret (low confidence). - Complete assemblage (low confidence). 3 Cuttings - Incomplete assemblage, next to uninterpretable or SWC with depth suspicion (very low confidence). 4 Cuttings

Date Revised

Ву ____

0

7118

Alternate

Alternate

side wall cores in feet	2857	3258	3496	3605	4005	4501 4571	4837	- 5012		- 5514	- 5/04	- 5990	- 6005	-6115	- 6216 - 6316	- 6416	-6516	629	2929	~ 6917	▼7018			A741	751 7	V 757	758:	758	N 759 7 759		N7607	
ANKTONICS		11	المحجب				لہ ما				•																					ſ
. Orbulina universa	I	II			I		I	I			Iø.		I	I.																		
2. Globorotalia puncticulata														?																		1
3. G. conomiozea		. і																														
4. G. conica	•					ł	1	I	1				I	Ι.																	N	
5. Globigerina bulloides		I				Č.)				I																				0	
5. G. quinqueloba						. 1	,																								F	
7. Globigerinoides rubra		•				I C	ģ																								F O S	
3. Globigerina woodi			•	I		I	5	-	I	т	т	. т	т	τ.	тт	т	т	тт		т	T I	I I	I	T							s	
-				1				+	1	+	-		+	÷ .	• •	-	-		•	-											I	1
9. Globorotalia miocenica				•			с. 5		•				_																		L	1
D.G. mayeri mayeri							-			•	_		•		-																s	1
1. G. peripheroronda						1	F				•			•																	F	
2. G. miozea conoidea						1	b U				•	•		•																	0	1
3. G. miotumida							N					•	·																		U	
4. Globigerinoides trilobus						1	D					•	•					<u>.</u>													N	
5. Globorotalia miozea miozea													•	•	• •			•	•	•											D	
6.G. miotumida explicationis														•																		1
1.G. premenardii															•	•	•	•	•													
8. Praeorbulina glomerosa															•																	
9. P. curva															•	•			Ŧ			+										
0. Globoquadrina dehiscens (S.S.)																۰	۰	•	I		•	Ŧ										
l. Globigerinoides bisphericus																•	•.															
2. Globorotalia bella																	٠				•											
3. Globoquadrina advena																		•								•						
4. Globigerina angustiumbilicata																			•			÷										
5.G. connecta																				·	I	I						•				
6. Globorotalia zealandica																				·	•											1
7.G. praescitula																				•	•	•				n						ł
3.G. kugleri																						•										
9.G. obesa																						:										
). Globigerina praebulloides																								•	I	r I						
l. G. trilocularis																								•	•	. .			•			
2. Gloquadrina dehiscens (S.L.)																								•	I	1 I						
3. Globigerinoides apertasuturalis																																
4. Globigerina cuapertura																				ł					I	1 1	-		•			1
5. dloborotalia munda																				ł					٠	•						
6.G. opima																									•	• •						
v7. G. nana nana																						1				•						
8. G. increbescens																											·		•			
9. Subbotina angioporoides																											·	•	• •			
0. Globorotaloides testarugosa																												•	•			
1. Globigerina spp. (indet)															_					<u> </u>		1		r	_		<u> </u>			· • •	·	-
and and a state of the second state of the sec											IT								1	ŧ		1	1	- 1	- 1		1		11		1	
													D -			E,	F	G		1	- 1	1	н.	_1		[-1		J-1	1 !	, , , ,	2	1

.

2

.

alian Alian

side wall cores in feet	5058 5058 5058 5258 5258 5496	2609 25005	4361 4571 4837	5012 5313 5514	5764	6005 6005 6115	6216 6316	6416 6516	6591	10/0/ 10/0/		- 7318	- 7419 - 7519 - 7557	-757] -758]	- 7589 - 7595 - 7595	-7599 -7603 -7607	4
ENTHONICS																	
2. Euuvigerina miozea	II	I,			II												
3. Cibicides lobatulus		•			•	I								_			
4. Sphaeroidina bulloides		•			IJ		•	• •	•	• •	• •	•••	• •	Ι.			
5. Gyroidinoides subzelandica			2	•••													
6. "Textularia"					•												
7. Globocassidulina cuneata						•	•			• •	•						
B. Lenticulina spp.						•		••		• •	•••	•••	• •	•			
9. Cassidulina laevigata				•			•••								,		
). Quinqueloculina spp.								•		•••	•	•	•	•			
. Euuvigerina maynei				•				•	•••	• •	•••				l		
2. Cibicides pseudoungerlanus								•••									
3. Anomalinoides procolligera									•								
4. Pullenia spp.									•	•••	_		•	•			
5. Globobulimina sp.										•	•						
5. Gyroidinoides zelandica		•											•				
7. Cibicides thiara													•	I			
B. Siphonina australis															1		
9. Alabamina sp.																	
). Haplophragmoides								L							+		
l. Textularia sp.	•																
2. Alveophragmium sp.															.		
3. Martinotiella communis															.		
. Ammodiscus (clear)																	
• Cibicides cf. lobatulus															1		
• Astrononion																•	
• Vulvulina granulosa																•	
. Trifarina bradyi																	
• Karreriella bradyi																•	
). K. sp?																	
. Annosphaeroidina															1		
2. Discammina sp.			T					1			<u></u>			*******			
% PLANKTONIC FORAMINIFERA	90					50	7	1	80	85	90	60	80	70	90	< 10	
SIZE & SHAPE SORTING	X		хх		ххх	хх	хх										х
REWORKED FAUNA and/or QUARTZ				х	х		Х										
GLAUCONITE **																v v v	x
SOLUTION of CaCO3			1					1								x x x	

Sheet 2 of 2

APPENDIX 4

PALYNOLOGY REPORT ON KINGFISH-6,

GIPPSLAND BASIN.

by

Alan Partridge

Palaeontology Report 1975/3

March 17, 1975.

č,

SUMMARY

Unfortunately only one sample from the Latrobe Group gave a datable assemblage. This was from SWC-1 at 8312 feet * and it is referrable to the Lower L. balmei Spore-Pollen Zone and the Eisenackia crassitabulata Dinoflagellate Zone. The next datable sample above this was from above the top of Latrobe unconformity at 7603' and referrable to the P. tuberculatus Zone. This leaves an undatable interval of 700 feet.

The 'coal' fraction, which was separated from the clastic fraction by flotation in carbon tetrachloride from cuttings at 7410-20 feet and 8160-80 feet contained only North American type Tertiary spore - pollen and is thus interpreted as exclusively drilling mud contamination. This interpretation probably applies to all the 'coal' identified in the cutting descriptions.

ANALYSES

1. Lower L. balmei Zone

SWC-1 at 8312 feet contains the only fossils extracted from the Latrobe Group in this well and these can be referred to the Lower *L. balmei* Zone and given a confidence rating of one. The sample also contained dinoflagellates referrable to the *E. crassitabulata* Dinoflagellate Zone or marine incursion. The assemblage from this sample is listed below:

Spore-Pollen

Australopollis obscurus Dilwynites australis Ericipites scabratus Gleicheniidites circinidites Ilexpollenites anguloclavidites Integricorpus antipodus Lygistepollenites balmei Lygistepollenites florinii Nothofagidites brachyspinulosus Periporopollenites polyoratus Phyllocladidites mawsonii Stereisporites antiquisporites Ttricolpites gillii

Dinoflagellates

Deflandrea dilwynensis Eisenackia crassitabulata Epicephalopyxis identata Spiniferites ramosus

2. Barren Interval

The eleven sidewall cores processed in the interval 7603 to 8312 feet were either barren or contained only black angular pieces of solid organic matter which is known as mineral charcoal. The only exception was SWC 21 at 7607 feet. This SWC at or very close to the actual unconformity contained two lithologies. It was half "greesand" and half calcareous shale and on preparation yeilded fairly large fragments of translucent amophous kerogen but no fossils.

* All depths used in this report are corrected sidewall core depths.

ð

3. P. tuberculatus Zone

Three sidewall cores processed from the Lakes Entrace Formation were referrable to this zone. They contained good assemblages including the important indicator species *Cyatheacidites annulatus*. The species identified in these samples are listed below. - - -

ě.

 $^{\rm b}$ 67

Spores & Pollen	SWC 24 7595'	SWC 23 7599'	SWC 22 7603'
Araucariacites australis	x	x	x
Cyatheacidites annulatus	x	x	x
Dilwynites granulatus	X		
Foreotriletes lucunosus			x
Foreotriletes palaequetrus	X		
Haloragacidites harrisii	x	x	x
Herkosporites elliottii			x
Ischyosporites irregularis	x	x	x
Lygistepollenites florinii	x	x	X
<i>Myrtaceidites parvus</i>			x
Nothofagidites brachyspinulosus	x		
Nothofagidites emarcidus	x	x	x
Nothofagidites falcatus			x
'Phyllocladus' palaeogenicus	x		
Phyllocladidites mawsonii	x		x
Stereisporites antiquisporites	x		
<u>Dinoflagellates</u>			
Hystrichokolpoma rigaudae		x	x
Lingulodinium machaerophorum	x	x	
Nematosphaeropsis sp.l	x	x	x
Operculodinium centrocarpum	x	x	x
Operculodinium spp.	x	x	x
Polysphaeridium fibrosum	x		
Spiniferites spp.	x	x	x

LIST OF SAMPLES PROCESSED

Sample_	Depth ir Corrected	<u>feet</u> (Uncorrected)	Zone
SWC 24	7595	(7576)	P. tuberculatus Zone
SWC 23	7599	(7580)	11
SWC 22	7603	(7584)	**
SWC 21	7607	(7588)	Unidentifiable Kerogen
SWC 20	7609	(7590)	Barren
SWC 17	7619	(7600)	Barren
SWC 14	7633	(7614)	Barren
SWC 13	7640	(7621)	Barren
SWC 8	7838	(7818)	Barren
SWC 7	7902	(7882)	Barren
SWC 6	7976	(7956)	Mineral charcoal only
SWC 5	8017	(7997)	Barren
SWC 4	8096	(8076)	Mineral charcoal only
SWC 2	8281	(8260)	Mineral charcoal only
SWC 1	8312	(8292)	Lower L. balmei Zone

R.

"Coal" fraction extracted from cuttings

at:	7410-20	feet	Mud.	Contamination
	8160-80	feet	11	11

<u> </u>	трр	CT /	4ND
. U.	LFF	سرى	und.

DATE

BASIN	

1

KINGFISH-6

ELEVATION K.B. + 30 feet

,

VELL	NAME	KIN	GFISH-6			ELE	VATION	<u> </u>	+ 30) feet		
			HI	GHEST	DATA			LOW	EST I	DATA	<u></u>	
AGE		NOLOGIC	Preferred Depth	Rtg.	Alternate Depth	Rtg.	2 way time	Preferred Depth	Rtg	Alternate Depth	Rtg.	2 way time
-01 [P. tube	erculatus	7595	0				7603	0			
<u> </u>	U. <u>N</u> . <u>a</u>	asperus										
	M. <u>N</u> .a	asperus										
	L. <u>N</u> . <u>a</u>	asperus		 								ļ
NE	<u>P. aspe</u>	eropolus										
EOCENE	U. <u>M</u> .g	liversus										·
	<u>м. м. с</u>	liversus										
	L. <u>M</u> . <u>d</u>	liversus						[
NE	U. <u>L</u> . <u>E</u>	<u>balmei</u>										
PALE	L. <u>L</u> . <u>t</u>	<u>palmei</u>	8312	0				8312	_0_			
PA]	<u>T. long</u>	gus										
	<u>T</u> . <u>1i1</u>	liei										
I T CRETALEOUS	<u>N</u> . sene	ectus										
EI AV	<u>C</u> . trij	p./ <u>T.pach</u>		 								
CR	<u>C</u> . <u>dist</u>	tocarin.				·						
	<u>T. pann</u>	nosus										
EA	ARLY CRE	FACEOUS										
PI	RE-CRETA	CEOUS										
COM	ÆNTS:		·······		ta Dinoflag d SWC dept		te Zone	is present	at 8	3312'; ra	ting	(1)
RAT	1 2 3 4	<pre>pollen ; SWC or pollen ; SWC or and/or ; CUTTIN pollen ; CUTTIN microp</pre>	and micro CORE, GOO or microp CORE, POO microplan GS, FAIR C or microp GS, NO CON lankton.	plankt D CONH lankto R CONH kton. ONFIDH lankto FIDENO	Con. <u>FIDENCE</u> , as <u>FIDENCE</u> , as <u>ENCE</u> , assem <u>Dn</u> , or both <u>CE</u> , assembl	sembl sembl ablage age v	lage wit lage wit e with z with non	e with zone h zone spec h non-diagn one species -diagnostic	ies osti of spo	of spores c spores, either spo res, polle	and polle pre an n and	en 1d 1/or
NOTI	Also	, if an e er confid	ntry is gi ence ratin	ven a g shou	3 or 4 con 11d be ente	fider	nce rati		rnat	e depth wi	be ma th a	ıde.
DAT.	A RECORD	ED BY:	Alan Part	ridge			DATE	28. Feb.	1975	5.		
	A REVISE						DATE					·

ESSO AUSTRALIA LIMITED WELL COMPLETION REPORT

KINGFISH-6

APPENDIX 5

F.I.T. RESULTS

Š,

4

-		F.I.T. RECORD	WELL: KINGFIS	I-6 .
			GEOLOGIST: BR	- The state of the second s
			DATE: 24th Ja	
	F.I.T. No. 1 @ 8130'	_FEET (IES LOG DEPTH)		
	MUD DATA:			
	Rmf0_75	^o F, Equiv. Cl ⁻ 78	379 ppr	n (Resistivity)
	C1 ⁻ ppm	NO3.	ppm (Ti	tration)
	SAMPLE TAKEN AT END O	F LAST CIRCULATION.		
	RECOVERY (MAIN CHAMBER):			
		cft. GAS		
		cc OIL		
	105	cc WATER		
	Brieflanger, and an 	cc MUD		
		cc SAND		
	PROPERTIES:			
			C ₅ H ₂	S
	GAS C ₁ C	C ₂ C ₃ C ₄ M M	С ₅ Н ₂	0
			••••••••••••••••••••••••••••••••••••••	
	OILOAPI @ _	oF		· · ·
	Pour Point	oF	• •	
	G.O.R.			• • •
	WATER Rmf 0.26 @		<u>13940</u> ppm	• • • •
	C1 ⁻ <u>16500 p</u>	0	ppm (Titra	tion)
-	NaCl equiv23 PRESSURES:	3000 ppm.		-
	Schlumberg		new Amerada	Hewlett Packard *
	Sampling (psi) 3500	3502	NOT	3496
	Final Shut-in (psi) 3500	3502	RUN	3501
	Hydrostatic (psi) 4200	4227		4221
	Sampling Time (Min.) 4 ¹ / ₂			TTNAL 4015
	Shut-in Time (Min) 9			FINAL 4213
		Corrected for Atmospher	ric pressure.	
	TEMPERATURES: (max.recorded)	⁰ F,	o _F	
	MAX. DEPTH TOOL REACHED:	- <u>Ft</u>		
	TIME SINCE CIRCULATION:	<u> </u>		· · ·
	a and a star and a star and a star	. Tool open 13 ¹ ₂ mins.		
		ecorder very successful odour. 1 glass bottle		

			GEOLOGIST: <u>BR</u> DATE: Janua	UCE McKAY ry 24-25, 1975
			Janua Janua	1y 24-23, 1975
F.I.T. No	2@7707'_FEE	T (IES LOG DEPTH)		
MUD DATA:				·
Rmf_0.	4675° _F ,	Equiv. Cl	7879 ppm	(Resistivity)
C1 ⁻	ppm	NO3	ppm (Ti	tration)
SAMPLE	TAKEN AT END OF LA	ST CIRCULATION.		
RECOVERY (MAIN	I CHAMBER) ·			
		cft. GAS		
		cc OIL		
	10500	 cc WATER		
		ccMUD		
		ccSAND		
PROPERTIES:				C
GAS	C ₁ C ₂	C ₃ C ₄	С ₅ H ₂	5
	MM	M		 . ·
OIL	•Abi @	oF		
	Pour Point	o _F		
	G.O.R.			· ·
WATER	Rmf 0.3 0 7	9 ^o F, Equiv.Cl	<u>11500</u> ppm	(Resistivity)
	C1 ⁻ <u>12700</u> ppm NaC1 equiv. 19000	NO ₃	48 ppm (Titra	tion)
PRESSURES:	Naci equiv	***************************************		~
	Schlumberger	Ag Amerada	new Amerada	Hewlett Packa
Sampling (psi) 3350 3350	3309	Not	Not
Final Shut-in	(psi)	3314	Run	Working
Hydrostatic (3998		
Sampling Time			•	
Shut-in Time (ected for Atmosphe	ric pressure	
TEMDEDATIDEC.(max.recorded)	<u> </u>	o _F	
MAX. DEPTH TOO		ft.		
TIME SINCE CIR	CULATION:	Hrs.		
			tly.Successful	

			GEOLOGIST: BR	
			DATE: JANU	ARY 25, 1975
F.I.T. No	<u>3</u> @ <u>7613</u> FEB	ET (IES LOG DEPTH)		
MUD DATA:				
Rmf0.4	6 @ <u>75</u> °F,	Equiv. Cl7	<u>750 pr</u>	m (Resistivity)
C1_	ppm	NO3	ppm (1	itration)
SAMPLE T	AKEN AT END OF LA	AST CIRCULATION.		
RECOVERY (MAIN	CHAMBER):			
VECOMENT GALIN		cft. GAS		
		cc OIL		
	· 10500	cc WATER		
		cc MUD		
		cc SAND		
PROPERTIES:	C C	c C	C F	₂ S
GAS	С ₁ С ₂ М М	С ₃ С ₄	C ₅ H	
		· ·	· · · · · · · · · · · · · · · · · · ·	· ·
OIL _	•API @	0F		
	Pour Point			
	G.O.R.		1- 7150	(Desistivity)
	Rmf 0.5 @	<u>74</u> •F, Equiv.C NO ₃ 1		(Resistivity)
	C1 6300ppm WaC111800	opm	12 ppm (Titr	
PRESSURES:			gnew	-
:	Schlumberger	Amerada	Amerada	Hewlett Pack
Sampling (psi)	3250	3267	NOT	3266
Final Shut-in (3272	RUN	
Hydrostatic (ps				
Sampling Time (M	2		,	
Shut-in Time (Mi		ected for Atmosphe	eric pressure.	
TEMPERATURES: (ma		° _F ,	oF	
MAX. DEPTH TOOL		Ft.		
TIME SINCE CIRCU		Hrs.		
REMARKS: Too	1 open 8 min. No	o trace of fluores	cence. Lost sea	1 opening

.

AGNEW-GO-WESTERN PTY, LTD. P.O. Box 380 Sale, Victoria, 3850

ESSO AUSTRALIA LIMITED

KINGFISH

KINGFISH NO. 6 January 24, 1975

ð,

Obtain subsurface pressures with Amerada gauge run in tandem with Schlumberger Formation Interval Tester. Purpose:

Amerada 0-10,500 psi Element Serial No. 9403 12 hour clock Run in conjunction with Quartz Pressure Gauge. Tools used:

F. I. T. No. 1 @ 8,130'

HOURS	PSIG	REMARKS
1821 1957 1958 1959 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009	4227.3 3501.7 3501.7 3501.7 3501.7 3501.7 3501.7 3501.7 3501.7 3501.7 3501.7 3501.7 3501.7	Run in hole Initial hydrostatic Set Packer Open Tool
2010 2011 2012 2013 2014 2015 2016	3501.7 3501.7 3501.7 3501.7 3501.7 3501.7 3501.7	Seal tool Unseat packer
	4227.3	Final hydrostatic

ker ostatic

ESSO AUSTRALIA LIMITED

WELL COMPLETION REPORT

KINGFISH-6

APPENDIX 6

WELL LOG ANALYSIS REPORT

1

AGNEW-GO-WESTERN PTY. LTD. P.O. Box 380 Sale, Victoria 3850

ESSO AUSTRALIA LIMITED

KINGFISH

KINGFISH NO. 6 January 24-25, 1975

Ċ.

Purpose:

Obtain subsurface pressures with Amerada gauge run in tandem with Schlumberger Formation Interval Tester.

Tools used:

Amerada 0-10,500 psi Element Serial No. 9403 12 hour clock Run in conjunction with Quartz Pressure Gauge.

F. I. T. No. 2 @ 7,707

HOURS	PSIG	REMARKS
2 255		Run in hole
	4008.0	Initial hydrostatic
0001		Set packer
0002	3308.7	Open tool
0004	· 3308.7	
0006	3308.7	
8000	3308.7	
0010	3313.9	
0012	3313.9	
0014	3313.9	
0016	3313.9	
0018	3313.9	
0020	3313.9	Seal tool
0021	3313.9	
0022		Unseat packer
0023		-
~ ~	3997.5	Final hydrostatic

F. I. T. No. 3 @ 7,613'

HOURS	PSIG	REMARKS
0200		Run in hole
-	3934.9	Initial hydrostatic
0249		Set packer
0251		Open tool
0252	3267.0	•
0253	3267.0	
0254	3267.0	
0255	3267.0	
0256	3272.2	
0257	3272.2	
0258	3272,2	
0259	3272.2	Seal tool - lost seal
	3945.3	Final hydrostatic

WELL LOG ANALYSIS REPORT

0	P	F	R	Α	т	O	R
~		-	••	-	••	-	••

(

7674-78

(4')

24.2

26.8

-

Page 1

đ

PERATOR ESSO	AUSTRALIA LTD.	WELL KINGFISH-	-6 DATE March 27, 1975
		STATE VICTORIA	A ELEV. KB +28'
DEPTH INTERVAL	POROSITY ESTIMATE	WATER SAT. ESTIMATE	REMARKS
7611-12 (1') 7612-16 (4') 7616-18 (2') 7618-21 (3') 7621-24 (3') 7624-26 (2') 7626-37 (11') 7637-41 (4') 7641-43 (2') 7644-45 (1') 7546-54 (8') 7655-57 (2') 7659-66 (7') 7666-74 (8')	$ \begin{array}{r} 16.3\\ 19.1 - 19.9\\ 20.2 - 21.1\\ 16.5 - 18.5\\ 19.1 - 21.6\\ 23.1 - 23.5\\ 17.5 - 19.9\\ 16.1 - 17.1\\ 13.5 - 14.3\\ 15.1\\ 19.0 - 22.8\\ 18.1 - 18.3\\ 16.5 - 17.4\\ 18.0 - 19.7\\ 21.0 - 23.2 \end{array} $		

	FIL 7 FIT 1		7707	`	D		water				
- TES	STS: FIT #	1/-7	8130	`							
	7769-78	(9')		23.8	-	26.9			 	 	 · <u> </u>
-	7738-69	(31')		20.1	-	24.6					
	7729-38	(9')		19.6	-	21.7	1				
	7727-29	(2')		23.5	-	23.6					
<i>i</i> .	7717-24 7 724-27	(7') (3')		23.5	-	20.0					
	7715-17	(2')		21.7 23.3	-	22.2 26.6					
	7706-15	(9')		23.0	-	24.6		l			
	7703-06	(3')		20.7	-	22.9					
	7700-02	(2')		23.8	-	24.0					
	7696-7700			20.7	-	22.7					
	7692-96	(4')		24.6	-	27.0					
	7689-92	(3')		23.3		23.9					
	7679-88	(9')		19.9	-	24.1					

FORMATION:

LATROBE GROUP

COMMENTS:

Porosities in this analysis are computer derived from the FDC log. Water saturations are taken at 100%: the actual computer derived values on a foot-by-foot basis range from 79-138%.

NB. Corrected Depths used.

hrekay BRUCE MCKAY

ΒY

LOGS:

HDT CST FIT-

ISF-SLK GR-FDC-CNL

		<u>.</u>	WELL KINGFISH-6
DEPTH INTERVAL	POROSITY ESTIMATE	WATER SAT. ESTIMATE	REMARKS
7778-81 (3') 7781-90 (9') 7790-93 (3') 7793-98 (5') 7798-7802'(4') 7802-19 (17') 7819-25 (6') 7825-28 (3') 7828-31 (3') 7831-34 (3')	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	100%	
7837-38 (1')	13.8		
7840-44 (4')	14.5 - 16.5		· .
7848-57 (9') 7857-58 (1')	16.9 - 19.9 12.7		
7859-60 (1') 7860-72 (12') 7872-76 (4') 7876-79 (3') 7879-84 (5') 7884-87 (3') 7887-96 (9') 7896-7900 (4')	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
$\begin{array}{c} 7905-06 & (1') \\ 7906-08 & (2') \\ 7908-11 & (3') \\ 7911-15 & (4') \\ 7915-22 & (7') \\ 7922-25 & (3') \\ 7925-29 & (4') \\ 7929-32 & (3') \\ 7932-41 & (9') \\ 7941-45 & (4') \\ 7945-48 & (3') \\ 7948-52 & (4') \\ 7958-63 & (7') \\ 7956-63 & (7') \\ 7963-66 & (3') \\ 7969-72 & (3') \end{array}$	16.5 $21.1 - 21.3$ $17.4 - 18.4$ $20.4 - 22.2$ $17.3 - 19.6$ $20.5 - 21.4$ $17.0 - 19.4$ $22.5 - 23.1$ $17.5 - 19.8$ $20.3 - 20.9$ $17.1 - 18.8$ $15.2 - 16.5$ $16.8 - 17.4$ $13.6 - 15.9$ $16.2 - 18.5$ $20.5 - 20.9$ $23.2 - 26.0$		A
7972-73 (1')	20.7		
			· · ·
· · ·			
	ı	1	

ESSO AUSTRALIA LIMITED

WELL COMPLETION REPORT

KINGFISH-6

APPENDIX 7

4

CORE DESCRIPTION, PETROGRAPHY AND BULK DENSITY

ESSO STANDARD OIL (AUSTRALIA) LTD.

1

CORE DESCRIPTION

Core No. 1

					WELL:	KINGFISH-6
Interval Cored 5657'-5690' fi	t., Cut	33 ft.,	Recovered	33 ft. ,	(100	%) Fm. Lakes Entrance
Bit Type <u>C 20</u> , Bit	Size 8	3-15/32	in., Desc. by	DGB/LGE	D	ate 18/1/75

	Depth & Coring Rate (min./ft.)	Graphic (1" = 5')	Shows	Interval (ft.) Descriptive Lithology
57 60 65 70 75 80 85 90			NIL	<pre>5657-5690' SILTY MICRITIC LINESTONE Light grey-medium grey, hard to very hard, uniform lithology with numerous irregular carbonate cemented zones. These zones are the more bioturbated zones, fossiliferous (forams & bivalves) glauconitic, slightly micaceous. BEDDING - horizontal - wavy parallel, some contorted. STRUCTURES - light grey areas tend to be highly bioturbated, darker areas are less so, load casts, flame structures with some cut and fill are present at the boundaries of the horizontal - wavy parallel bedding and the highly bioturbated areas. </pre>
-	SYMBOLS MM C & &	SILTS CALCA GLAUC PELEC FORAM	REOUS ONITE YPODS	REMARKS: Samples taken for palaeontological examination:at 5657', 5660', 5663', 5666', 5669', 5672', 5675',5678' 5681', 5684', 5687', 5690' (Total 12)

PETROGRAPHY AND BULK DENSITIES OF TWELVE CORE SAMPLES

1. SUMMARY

The rocks are partially recrystallized, fine-grained foraminiferal mudstones, grainstones and packstones containing minor amounts of phyllosilicates, detrital quartz and feldspar, accessory amounts of zeolite, pyrite and carbonaceous material, and trace amounts of detrital heavy mineral grains.

(a)

- (b) The general appearance of the rocks suggests that they probably formed in an "open shelf" type marine environment which was presumably reducing as the rocks also contain accessory amounts of framboidal pyrite and carbonaceous matter.
- (c) The presence of "illitic-micaceous" phyllosilicates, possible glauconite and zeolite in the rocks indicates that they have suffered diagenesis.

Within the suite studied, the degree of dolomitization appears to increase gradually with depth.

Although matrix carbonate is somewhat recrystallized in most sections, it is generally possible to work out whether the rocks were mudstones, packstones or grainstones. Salient features are precied below.

Thin Section	Rock Type	Comments
13879-80	mudstone	matrix is somewhat recrystallized
● ¹³⁸⁸¹⁻⁸²	grainstone	crystal regrowths obscure fossil fragments
13883-84	grainstone	minor matrix recrystallization
13885-86	packstone	minor matrix recrystallization
13887-88	packstone or grainstone	packstone suggested by minor patches of un-recrystallized micrite
13889-90	grainstone	extensively recrystallized
13891–92	packstone	much evidence of grain to grain pressure solution; contains (?) "horse-tail" stylolites

	•	
Thin Section	Rock Type	Corments
13893-94	packstone	evidence of grain to grain pressure dissolution; broken and skeletal grains
		present
13895-96	grainstone	much evidence of pressure solution
13897-98	packstone	much evidence of pressure solution
13899-900	packstone	partially recrystallized
13901-02	packstone	partially recrystallized
	3902 are moderately dolo y weakly dolomitized.	cmitized whereas the other
	ns if they have porositi	are compatible with their ies of 10-20%. Such porosities).
	• • •	
	References	
Murray, R.C. (1960). Or vol. 30, pp 59-84		oonate rocks. Jour. Sed. Pet.,
	rosity through dolomitiz ur. Sed. Pet., vol. 30,	ation - conservation-of-mass pp 85-90.
	2. PROCEDURES AND ABBRE	EVIATIONS

- (a) Thin sections are labelled "A" and "B". Sections "A" were cut parallel to the bedding and sections "B" were cut perpendicular to it.
- (b) The predominance of calcium carbonate in the samples was confirmed by staining the sections with alizarin red-S solution.
- (c) X.R.D. data indicate that both calcite and dolomite are present in the rocks. The calcite appears to be pure (i.e. it does not contain dolomite in solid solution).
- (d) The following X.R.D. analysis symbols are applied:-

-	dominant
	sub-dominant
	accessory
8-19-1	trace
	-

3. PETROGRAPHIC AND X.R.D. DATA

Hand Specimens:

In hand specimen all samples are light grey, fine-grained, weakly laminated limestones.

Rock Names:

All rocks are foraminiferal limestones which have undergone diagenesis.

Sample: S155; TSC13879-80

Thin Section:

An optical estimate of the constituents gives the following:-

Calcite 75-80		%
D-1	Calcite	75–80
Dolomite 5-10	Dolomite	5-10
Phyllosilicates 5-10	Phyllosilicates	5-10
Quartz 3-5	Quartz	3–5
Feldspar 2-3	Feldspar	2-3
Zeolite v1	Zeolite	∿ 1
Opaques v1	Opaques	ぃ 1

This is a partially recrystallized foraminiferal calcareous mudstone composed largely of calcite and dolomite associated with minor amounts of phyllosilicates, quartz and feldspar, plus traces of zeolite and opaques. Calcareous foraminiferal microfossils make up much of the section.

Calcite and lesser dolomite occur largely as anhedral 0.01-0.05 mm sized grains which make up the bodies of the 0.1-0.4 mm sized microfossils and constitute most of the matrix material between them.

Phyllosilicates, largely forming 0.1-0.3 mm sized anhedral patches and flakes, make up a small proportion of the section. Some of the patches are green to brown in colour and may possibly be glauconitic in nature. Independent X.R.D. analysis indicated the presence of minor amounts of "micaceous and/or illitic" phyllosilicates.

Quartz and lesser feldspar (mainly sodic plagioclase) are present as highly angular, evenly dispersed detrital grains which range in size from 0.01-0.1 mm.

Zeolite (identified by X.R.D. analysis as clinoptilolite) is present in accessory to trace amounts, largely forming microcrystalline 0.01-0.05 mm sized interstitial patches.

Opaques constitute about 1% of the section and occur both as minute (<0.002 nm sized) evenly disseminated sphereules and as dusty 0.02-0.2 nm sized patches. In detail the dusty patches represent areas which are heavily seived with extremely fine-grained pyrite and (?) carbonaceous material, whereas the sphereules consist of (?) framboidal pyrite (the presence of pyrite was detected in one X.R.D. trace).

Although bedding is quite evident in hand specimen, in the sections it is rather indistinct and mainly recorded by the sub-parallel alignment of elongated microfossil fragments.

Much of the calcareous matrix "mud" has been recrystallized and although the voids in some foram casts are still open, most have been filled with calcite.

X.R.D. analysis of the rock indicated the following:-

<u>Mineral</u>	Proportion
Calcite Dolomite Mica and/or illite Quartz Feldspar Clinoptilolite	D A A Tr Tr Tr
-	

No attempt was made to identify the genera (or species) of forams present; however, if they are benthonic forms an experienced micropalaeontologist may be able to estimate the conditions of deposition.

Sample: S156; TSC13881-82

hin Section:

An optical estimate of the constituents gives the following:-

·	%
Calcite plus lesser dolomite Phyllosilicates	80-85 5-8
Quartz, lesser feldspar	58
Zeolite	~ 1
Opaques	∿ 1

Both texturally and mineralogically the sections of this sample very closely resemble those of the above described sample; however, they contain several 0.1-0.3 mm sized snail-like (?) foram shells and a few broken (?) foram shells and a few broken (?) echinoderm spines which range up to 0.5 mm in length. Core zones of the latter have been filled with calcite, whereas the solid parts appear to have been replaced by zeolite.

Sample: S157; TSC13883-84

Thin Section:

An optical estimate of the constituents gives the following:-

5.

	%
Calcite plus lesser dolomite	∿80
Quartz, lesser feldspar	∿10
Phyllosilicates	.5-8
Zeolite	∿1
Opaques	√1

Both texturally and mineralogically the sections very closely resemble those of the first described sample; however,

(a) gently curved, elongate foraminiferal microfossils predominate;

(b) quartz is more abundant.

Sample: S158; TSC13885-86

Thin Section:

An optical estimate of the constituents gives the following:-

· .	
Calcite plus minor dolomite	75-80
Quartz	3–5
Phyllosilicates	5-10
Zeolite	2-3
Opaques	1-2

Both texturally and mineralogically these sections very closely resemble those of the first sample, although foraminiferal microfossils are less abundant.

9

Sample: S159; TSC13887-88

Thin Section:

An optical estimate of the constituents gives the following:-

Calcite plus minor dolomite	∿ 85
Phyllosilicates	3–5
Quartz	35
Opaques	1–2
Zeolite	1–2

Both texturally and mineralogically these sections very closely resemble those of the first described sample.

%

6.

Sample: S160; TSC13889-90

Thin Section:

An optical estimate of the constituents gives the following:-

Calcite plus minor dolomite	· 85
Quartz	35
Phyllosilicates	3–5
Zeolite	1-2
Opaques	1-2

Both texturally and mineralogically these sections very closely resemble those of the first described sample.

Sample: S161; TSC13891-92

Thin Section:

An optical estimate of the constituents gives the following:-

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Calcite plus minor dolomite	∿ 75
Quartz	~ 10
Phyllosilicates	5-10
Zeolite	2-3
Opaques	1-2

Both texturally and mineralogically the sections resemble those of the first described sample.

Fine bedding is clearly evident in one thin section and this is caused by subtle fluctuations in the proportions of phyllosilicates and (?) carbonaceous opaques.

Sample: S162; TSC13893-94

### Thin Section:

An optical estimate of the constituents gives the following:-

Calcite plus minor dolomite Quartz Phyllosilicates	√ 80 510 35
Zeolite -	. 1-2
.Opaques	2-3

Both texturally and mineralogically the sections resemble those of the first described sample, although fine bedding, similar to that seen in one section of Sample S162, is clearly evident.

#### Sample: S163; TSC13895-96

hin Section:

An optical estimate of the constituents gives the following:-

Calcite plus minor dolomite	· 85
Quartz	5-10
Phyllosilicates	3–5
Zeolite	1-2
Opaques	2-3

Both texturally and mineralogically these sections resemble those of the first described sample; however, opaques are more abundant.

Independent X.R.D. analysis of the sample indicated the following:-

<u>Mineral</u>	Proportion
Calcite	D
Quartz	A
Mica-illite	A
Dolomite	A
Clinoptilolite	A-Tr
Pyrite	Tr

#### Sample: S164; TSC13897-98

Thin Section:

An optical estimate of the constituents gives the following:-

%

9

Calcite plus minor dolomite	∿ 85
Phyllosilicates	3–5
Quartz	3-5
Zeolite	1-2
Opaques	1-2

Both texturally and mineralogically these sections closely resemble those of the first described sample; however, they are slightly coarser-grained and contain a type of 0.2-0.3 mm sized radial, segmented (?) foram which is not seen in the other sections.

### ample: S165; TSC13899-900

Thin Section:

An optical estimate of the constituents gives the following:-

	<u></u>
Calcite plus minor dolomite	v 80
Phyllosilicates	5-10
Quartz plus minor feldspar	58
Zeolite	1-2
Opaques	1-2

Both texturally and mineralogically these sections closely resemble those of the first described sample, although the proportion of opaques and phyllosilicates is greater.

X.R.D. analysis indicated the following:-

#### <u>Mineral</u>

### Proportion

%

·	
Calcite	D
Dolomite	A–SD
Mica-illite	А
Quartz	А
Feldspar	Tr(?)
Clinoptilolite	Tr

### Sample: S166; TSC13901-02

### Thin Section:

An optical estimate of the constituents gives the following:-

Calcite plus minor dolomite	∿ 85
Quartz plus minor feldspar	3–5
Phyllosilicates	5-10
Zeolite	1-2
Opaques	2-3

%

Texturally and mineralogically these sections closely resemble the previous two sections.

Footnote:

All sections contain traces of detrital epidote, rutile, sphene, tourmaline and monazite.

.

.

#### 4. BULK DENSITY DATA

Sample No.	Density (gm/cm ³ )
\$155	2.44 +0.01
S156	2.51 "
S157	<b>2.</b> 32 "
S158	2.29 "
S159	2.49 "
<b>S160</b>	2,42 "
S161	2.05 "
<b>S</b> 162	2.23 "
S1 <u>6</u> 3	2,24 "
S164	2,11 "
S165	2.12 "
<b>S</b> 166	2.48 "

Mean bulk density of the suite = 2.31

8

and which the set

ŧ

and the second se

-

### 5. DISCUSSION ON BULK DENSITY DATA

In the case of a non-porous rock of mean composition:-

Mineral	%	S.G. (assumed)
Calcite	. 68	2.7
Dolomite	10	2.8
Phyllosilicates	8	2.8
Quartz	8	2.7
Feldspar	3	2.6
Zeolite	2	2.2
Pyrite	1	4.9

The calculated bulk density is about 2.7 gm/cm³.

The mean perosity of the suite can be roughly estimated by applying the simple formula:-

Porosity (%) = 
$$\frac{100 (D_1 - D_2)}{D_1 - D_p}$$

= density of solid parts of rock

bulk density of rock

density of pores

In this case,

D

^D2

D_p

Porosity (%) = 
$$\frac{100 (2.7 - 2.3)}{2.7 - D_p}$$

if the pores are devoid of liquid, D = 0 and porosity = 15%; however, if the pores are half filled with water,  $D_p = 0.5$  and porosity = 18.2%. Such values for porosity in carbonate rocks are not unusual, but actual porosity values could be determined at Amdel if required.

ESSO AUSTRALIA LIMITED WELL COMPLETION REPORT <u>KINGFISH-6</u>

.

APPENDIX 8

VELOCITY SURVEY REPORT

•

.

	Shothole	information	:-Eleva	ition, Dis	tance &	Direction fr	om Well							<u>.</u>		ation Tota					LOCATI	0 N
										oratio A INC.		Well	SH-6			k Floor) QZ	86' 3	Coordi 30 35' 3 ⁰ 13'	40.54	5'S (	Gipps1	hip, Ronge County Area or Field and Basin, Victoria S.L.
ord Shotho nber Numb	r Time of Shot	Dgm	Ds	tus	tr	Reading	F Pokarity Gr	Dgs	н	TAN I	Cos i	Tgs	∆sd	∆sd V	Tgd	Tgd Average	Dgđ	$\Delta$ D gd	∆Tgd	Vi Interval Velocity	V a Average Velocit y	Elevation Shothole
0	1850	2508	33	.007	027		i	G 2447	133	0010	9998	324	33	007	· ·	.331	2480				7492	De
$\frac{1}{1}$	1852	1000	00		.027		D	G Offse	1 100	t sim	ifican	+	15	100/			400	361	.035	10,314	1452	Elevation Shat
81-	1840	2869	33	.007		.358	$\frac{D}{D}$	G		L SIgn		.359				.366	2011	-			7762	Elevation Shatt
		12005	- 55	1.00/								. 559	+	┼╴┈┠		. 300	2841	624	.058	10,759	7762	$+$ $\setminus$ $  $ $ $ $ $
9	1842	<b> </b>			.027	. 359		F						<b>├</b> ── <b>-</b>				ļ			1	
1	1425	3493_	33	.007				G.			ļ	.417				.424	3465	2001	.158	12,665	8172	
2	1428				.025	.417		G										2001	.130	12,003	1	S Digm Dg
3	1455	5504	33	.007		.574	DO	G				.575				.582	5476	105	0.17		9409	
ļ į	1457				.028		D	G										497	.041	12,122		
	1818	6001	37	.007	028	616	D	p			1	.616				627	5077	1			0507	
7	1820	TOODT	-22	-00/	.027		D					.010	+	┼─╂	······	1.025	5973	600	.060	10000	9587	
;	1820	6601	77	007								6.76				607		-		,		
		6601		.007			D					.676					6573	527	.054	9759	9624	Dgm = Geophone depth measured from well elevat
	1755	7128	35	.007	.026	./30	D					.730		ļļ.		.737	7100	479	.049	9776	9634	Dgs = ≠ ≠ • • shot ►
2	1730	7607	33.	.007			D					.779	I			.786	7579		• • • • •	5770	9642	Dgd = • • • • datum •
5	1735				.029			3										37	.006	6167	L	Ds = Depth of shot
5	1518				.026	.779	D   (	G										1 3/	.0005	0107		De = Shothole elevation to datum plane
5	1520				.027	.779	D (	3										<u> </u>	j			H = Harlzontal distance from well to shotpain
)	1725	7644	33	.007	.030	.785	DO	G				.785				.792	7616		j		9616	S = Straight line travel path from shot to well ge
1	1727				.029	. 785		<u> </u>							<u>.                                    </u>			353	.028	12,607		tus = Uphole time at shotpoint
5	1650	7997	33	.007		.813						.813		╞──╂		.820	7969				9718	T = Observed time from shotpoint to well geophone
7	1555	8271										÷ · · · ·	+	<b>├</b> ┣-				274	.023	11931		tr = • • to reference geophane.
		04/1	33	.007					_			.836				.843	8243				9778	$\Delta e$ = Difference in elevation between well & shotpo
+	1558				.026	.835		G				ļ	<b> </b>	<b> </b> -			ļ	<u> </u>				△sd = """"""""""""""""""""""""""""""""""""
<u>                                     </u>		L																<u> </u>				∆sd = Ds-De
<u> </u>																						$Dgs = Dgm - Ds \pm \Delta e$ ; $tan i = \frac{H}{D_{res}}$
																						Dgs Tgs = cos i T= Vert.travel time from shot elev to ge
																						$T_{gd} = T_{gs} \pm \frac{\Delta_s d}{M} = " " datum plane .$
	T										1		<u> </u>									Dgd = Dgm – Δmd
1	1	t																				$V_{i} = \text{Interval velocity} = \frac{\Delta D g d}{\Delta T g d}$
		<u> </u>									<u> </u>		+	├								
†													<b> </b>									Va = Average = <u>Dgd</u> Tgd
																						Surveyed by: Velocity .Data
<b> </b>											ļ		ļ									Date:
<b> </b>	ļ																					
<b> </b>																						Weathering Data :
L					T																	
									-				1							ł		
1											· · · · ·		1									Casing Record
1		<u>├</u> ───							-+				+	<b> </b>			<u>├</u>					2785 KB

# DWG 1107/08/3

1

### VELOCITY SURVEY REPORT

WELL:	Kingfish-6
BASIN:	Gipps1and

1.

### INTRODUCTION

Esso Personnel:	J.F. Davis, G.J. Blackburn						
Contractor:	Velocity Data Pty. Ltd.,						
Seismic Observer:	J. Larsen						
Marine Shooter:	M. Reveleigh						
Assembled at:	Sale, Victoria on 22/1/75						
Boarded Rig:	"Regional Endeavour" on 22/1/75						
Date of Survey:	23/1/75 .						
Casing Depth:	2785' KB						
T.D. When Shot:	8386' KB FTD: 8386' KB						
Water Depth:	258' KB						

### SURVEY PROCEDURE

<u>Weather</u> :	8	o, no swell.
Hydrophones:	Number: 2 Depth below sea-level: 1 Position: 1) 5' above gu	l) 24 ft. 2) 30 ft. In spark, 2) in the moonpool.
Seismic source:	Gas Gun: Gas pressures 2 Oxygen 90 psi,	
<u>Shots</u> :	Number of levels shot: Number of shots: Number of pops per level:	21
<u>Time</u> :	Time of first shot: Time of last shot: Rig time:	

### RESULTS

Quality of Records: 18 good 2 fair 1 poor

Comparison of Interval Times with Sonic Log:

/△/average 10.5 microsec/foot
/△/maximum 81.1 microsec/foot
/△/average 2.7 microsec/ft. (neglecting max.value)

12

Refer to attached table for further details.

#### COMMENTS

In spite of the relatively rough sea conditions, no significant noise occurred on the records, so that seismic events could be determined to an accuracy approaching 1 millisecond. By neglecting the small section between 7560' and 7597' KB the overall average for the sonic-velocity error is 2.7 microsec/foot so that the resulting information is considered reliable. The following delays occurred during the survey:

 snapped screws on the cable gear shaft drive - delay 20 mins.
 gas gun misfire due to short-circuiting of the ignition line. time 1605 delay 25 mins time 1705 delay 20 mins

As the gas gun was lifted from the water on both occasions slight variations in the observed time from the shot point to reference geophone were recorded but this is unimportant due to the insignificance of the offset.

### SPECIAL NOTE

In logging this well Schlumberger used a cable with incorrectly spaced depth markers. This error was not discovered until after the completion of Kingfish-6 and Flounder-5. The depths given in this report are corrected for this error by the factor of +2.5ft/1000ft. from KB (corrected depths greater than original depths). VELOCITY SURVEY ERROR CHECK

KINGFISH-6

	·····					·		
SHOT DEPTH (Ft.subsea) Corrected	Av.Vertical Travel Time (check shots)	Ti Check Shots (sec.)	Ti Sonic Log (sec.)	Difference (Millisecs.)	Depth Interval (ft.)	Error (Microsec.) per ft.		
2480	. 331							
2841	. 366	.035	.034	+ 1 ms	361	+2.8		
2841	. 366	0.50	0.50					
3465	.424	.058	.058	0	624	0		
3465	.424							
5476	.582	.158	.157	+-1 ms	2011	+ 0.5		
5476	.582	0.11	0					
5973	.623	.041	.037	+ 4 ms	497	+ 8.0		
5973	.623	060	0.00	0	(00)			
6573	.683	.060	.060	0	600	0		
6573	.683	054	054	0				
7100	.737	.054	.054	0	527	0		
7100	.737	.049	.046	+ 3 ms	479	+ 6.3		
7579	.786	.049	.040	- J III5	479	+ 0.3		
7579	.786	.006	.003	+ 3 ms	37	+ 81.1		
7616	.792					+ 01.1		
7616	. 792	028	.028 .0	028	.029	- 1 ms	757	
7969	.820	.028	.029	- 1 105	353	- 2.8		
7969	.820	027	.023	.022	+ 1 ms	274	. 7 7	
8243	.843	.025	.022		274	+ 3.7		
						5		
		-						
		-						
		-						
		_						
-	ł	1	1	l	I	1		
This is an enclosure indicator page. The enclosure PE902294 is enclosed within the container PE902291 at this location in this document.

The enclosure PE902294 has the following characteristics:  $ITEM_BARCODE = PE902294$ CONTAINER BARCODE = PE902291 NAME = East Kingfish Field Extension Geological Cross Section A-A' BASIN = PERMIT = Vic/L7 TYPE = WELL SUBTYPE = map DESCRIPTION = East Kingfish Field Extension Geological Cross Section A-A' REMARKS = DATE CREATED = 01/02/1975DATE RECEIVED = W NO = W683WELL NAME = Kingfish-6 CONTRACTOR = ESSOCLIENT_OP_CO = ESSO (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE902295 is enclosed within the container PE902291 at this location in this document. CONTRACTOR

The enclosure PE902295 has the following characteristics:  $ITEM_BARCODE = PE902295$ CONTAINER BARCODE = PE902291NAME = Structure Map Top of Latrobe M-1 Reservoir BASIN = PERMIT = Vic/L7 TYPE = WELL SUBTYPE = map DESCRIPTION = Structure Map Top of Latrobe M-1 Reservoir REMARKS =  $DATE_CREATED = 01/02/1975$ DATE_RECEIVED = W NO = W683 WELL NAME = Kingfish-6 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$ 

(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE903320 is enclosed within the container PE902291 at this location in this document.

The enclosure PE903320 has the following characteristics: ITEM BARCODE = PE903320CONTAINER BARCODE = PE902291NAME = Kingfish 6 Time depth curve BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC/L7TYPE = WELL SUBTYPE = VELOCITY DESCRIPTION = Kingfish 6 time depth curve REMARKS = DATE CREATED = DATE_RECEIVED = W NO = W683WELL NAME = Kingfish 6 CONTRACTOR = Velocity Data Pty Ltd CLIENT_OP_CO = Esso Australia Ltd (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE902296 is enclosed within the container PE902291 at this location in this document.

The enclosure PE902296 has the following characteristics:  $ITEM_BARCODE = PE902296$ CONTAINER BARCODE = PE902291 NAME = Well Velocity Record BASIN = PERMIT = Vic/L7TYPE = WELLSUBTYPE = graph DESCRIPTION = Well Velocity Record REMARKS = DATE CREATED = DATE RECEIVED = W NO = W683WELL NAME = Kingfish-6 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$ (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE601430 is enclosed within the container PE902291 at this location in this document.

The enclosure PE601430 has the following characteristics:  $ITEM_BARCODE = PE601430$ CONTAINER BARCODE = PE902291 NAME = Well Completion Log BASIN = PERMIT = Vic/L7TYPE = WELLSUBTYPE = well log DESCRIPTION = Well Completion Log REMARKS = DATE CREATED = 29/01/1975DATE RECEIVED = W NO = W683WELL NAME = Kingfish-6 CONTRACTOR = ESSO $CLIENT_OP_CO = ESSO$ (Inserted by DNRE - Vic Govt Mines Dept)

. ....

This is an enclosure indicator page. The enclosure PE601962 is enclosed within the container PE903317 at this location in this document.

The enclosure PE601962 has the following characteristics:  $ITEM_BARCODE = PE601962$ CONTAINER BARCODE = PE903317 NAME = Kingfish 6 bariod ppm log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC/L7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Kingfish 6 bariod ppm log REMARKS = DATE CREATED = 22/01/75DATE_RECEIVED = W NO = W683WELL  $N\overline{A}ME = Kingfish 6$ CONTRACTOR = Bariod Well Logging Services CLIENT_OP_CO = Esso Australia Ltd (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603506 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603506 has the following characteristics: ITEM BARCODE = PE603506CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELLSUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 2 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603507 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603507 has the following characteristics: ITEM_BARCODE = PE603507CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON_OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 3 of 25 REMARKS = DATE_CREATED = 31/07/1975DATE RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROIDCLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603508 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603508 has the following characteristics:  $ITEM_BARCODE = PE603508$ CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 4 of 25 REMARKS = DATE_CREATED = 31/07/1975DATE RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROIDCLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603509 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603509 has the following characteristics: ITEM BARCODE = PE603509CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELLSUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 5 of 25 REMARKS =  $DATE_CREATED = 31/07/1975$ DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603510 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603510 has the following characteristics: ITEM BARCODE = PE603510CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELLSUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 6 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

-----

_____

This is an enclosure indicator page. The enclosure PE603511 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603511 has the following characteristics: ITEM BARCODE = PE603511CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 7 of 25 REMARKS = DATE_CREATED = 31/07/1975DATE RECEIVED = W NO = W683WELL_NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603512 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603512 has the following characteristics: ITEM BARCODE = PE603512CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 8 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603513 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603513 has the following characteristics: ITEM BARCODE = PE603513 CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON_OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOG DESCRIPTION = Mud Log for Kingfish-6 9 of 25 REMARKS = DATE_CREATED = 31/07/1975DATE RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT OP CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

. .....

This is an enclosure indicator page. The enclosure PE603514 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603514 has the following characteristics: ITEM BARCODE = PE603514CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 10 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683 WELL NAME = KINGFISH-6 CONTRACTOR = BAROIDCLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603515 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603515 has the following characteristics: ITEM BARCODE = PE603515CONTAINER BARCODE = PE902291NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 11 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603516 is enclosed within the container PE902291 at this location in this document.

~

The enclosure PE603516 has the following characteristics: ITEM BARCODE = PE603516CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 12 of 25 REMARKS = DATE_CREATED = 31/07/1975DATE RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603517 is enclosed within the container PE902291 at this location in this document.

-

The enclosure PE603517 has the following characteristics: ITEM BARCODE = PE603517CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELLSUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 13 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603518 is enclosed within the container PE902291 at this location in this document.

-

The enclosure PE603518 has the following characteristics: ITEM BARCODE = PE603518 CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON_OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 14 of 25 REMARKS = DATE_CREATED = 31/07/1975DATE RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROIDCLIENT OP CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603519 is enclosed within the container PE902291 at this location in this document.

-

The enclosure PE603519 has the following characteristics: ITEM BARCODE = PE603519CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 15 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603520 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603520 has the following characteristics: ITEM BARCODE = PE603520CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 16 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603521 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603521 has the following characteristics: ITEM BARCODE = PE603521CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 17 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603522 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603522 has the following characteristics: ITEM BARCODE = PE603522CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 18 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

a. 🖷

This is an enclosure indicator page. The enclosure PE603523 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603523 has the following characteristics: ITEM_BARCODE = PE603523CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON_OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 19 of 25 REMARKS = DATE CREATED = 31/07/1975DATE RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT OP CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603524 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603524 has the following characteristics: ITEM BARCODE = PE603524 CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 20 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603525 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603525 has the following characteristics: ITEM BARCODE = PE603525CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 21 of 25 REMARKS = DATE_CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL_NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603526 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603526 has the following characteristics: ITEM BARCODE = PE603526CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 22 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603527 is enclosed within the container PE902291 at this location in this document.

-----

The enclosure PE603527 has the following characteristics:  $ITEM_BARCODE = PE603527$  $CONTAINER_BARCODE = PE902291$ NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND  $ON_OFF = OFFSHORE$ PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOG DESCRIPTION = Mud Log for Kingfish-6 23 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT OP CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE603528 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603528 has the following characteristics:  $ITEM_BARCODE = PE603528$ CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOG DESCRIPTION = Mud Log for Kingfish-6 24 of 25 REMARKS = DATE CREATED = 31/07/1975DATE_RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROIDCLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

-----

This is an enclosure indicator page. The enclosure PE603529 is enclosed within the container PE902291 at this location in this document.

The enclosure PE603529 has the following characteristics: ITEM BARCODE = PE603529CONTAINER BARCODE = PE902291 NAME = Kingfish 6 Mud Log BASIN = GIPPSLAND ON OFF = OFFSHORE PERMIT = VIC L/7TYPE = WELL SUBTYPE = LOGDESCRIPTION = Mud Log for Kingfish-6 25 of 25 REMARKS = DATE CREATED = 31/07/1975DATE RECEIVED = W NO = W683WELL NAME = KINGFISH-6 CONTRACTOR = BAROID CLIENT_OP_CO = ESSO AUSTRALIA LIMITED (Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE902292 is enclosed within the container PE902291 at this location in this document.

The enclosure PE902292 has the following characteristics: ITEM BARCODE = PE902292CONTAINER BARCODE = PE902291 NAME = Formation Tester BASIN = PERMIT = Vic/L7 TYPE = WELLSUBTYPE = tester DESCRIPTION = Formation Tester REMARKS = DATE_CREATED = 26/01/1975DATE_RECEIVED = W NO = W683WELL_NAME = Kingfish-6 CONTRACTOR = Schlumberger  $CLIENT_OP_CO = ESSO$ 



(Inserted by DNRE - Vic Govt Mines Dept)

This is an enclosure indicator page. The enclosure PE902293 is enclosed within the container PE902291 at this location in this document.

The enclosure PE902293 has the following characteristics: ITEM BARCODE = PE902293CONTAINER BARCODE = PE902291NAME = Formation Interval Test BASIN = PERMIT = Vic/L7TYPE = WELLSUBTYPE = tester DESCRIPTION = Formation Interval Test REMARKS = DATE_CREATED = 24 + 25/1/75DATE_RECEIVED =  $W_NO = W683$ WELL NAME = Kingfish-6 CONTRACTOR = Agnew Go Western CLIENT_OP_CO = ESSO



(Inserted by DNRE - Vic Govt Mines Dept)