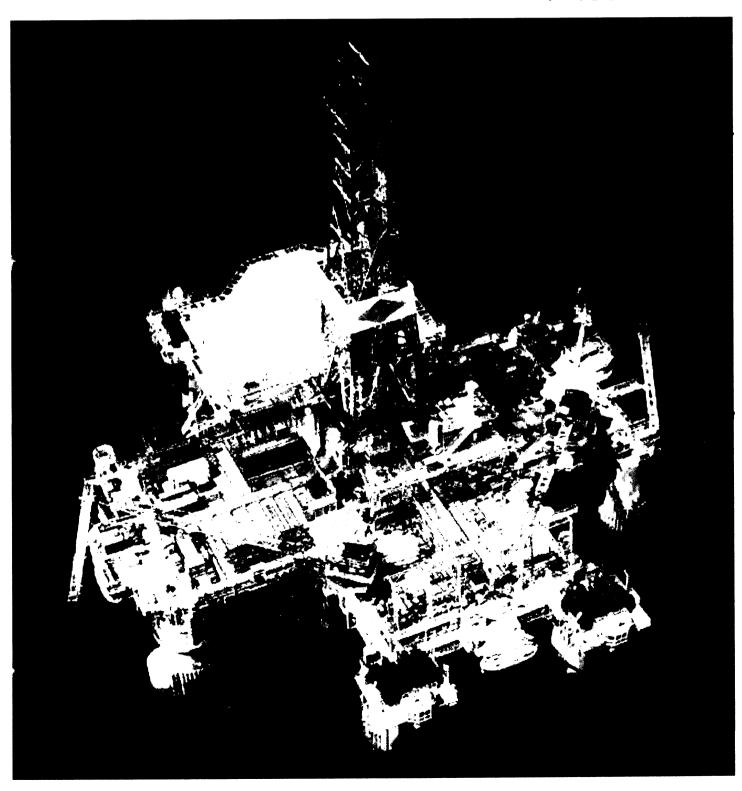


Esso Australia Pty Ltd

913714 001

WELL COMPLETION REPORT PAGE 1 OF 113 **BEARDIE-1 VOLUME 2 INTERPRETIVE DATA** FEBRUARY 2003



913714 002

WELL COMPLETION REPORT BEARDIE-1 VOLUME 2 INTERPRETIVE DATA FEBRUARY 2003

1 1 FEB 2003

WELL COMPLETION REPORT BEARDIE -1

VOLUME 2 INTERPRETIVE DATA

GIPPSLAND BASIN VICTORIA

ESSO AUSTRALIA PTY LTD

Compiled by Andy Zannetos, Sheryl Sazenis February 2003

WELL COMPLETION RPEORT BEARDIE- 1

VOLUME 2:

INTEPRETATIVE DATA

CONTENTS

- 1. INTRODUCTION
- 2. SUMMARY OF WELL RESULTS
- 3. GEOLOGICAL DISCUSSION
 Overview
 Regional Setting
 Stratigraphy
 Structure
 Hydrocarbon distribution
- 4. GEOPHYSICAL DISCUSSION Geophysical Data Time Interpretation Depth Conversion

TABLES

1. PREDICTED VS ACTUAL FORMATION TOPS

FIGURES

- 1. LOCALITY MAP
- 2. STRATIGRAPHIC TABLE
- 3. PRESSURE vs DEPTH PLOTS

ENCLOSURES

- 1. STRUCTURAL CROSS SECTION
- 2. POST DRILL DEPTH STRUCTURE MAPS
- 3. SYNTHETIC SEISMOGRAM/SEISMIC TIE
- 4. REGIONAL TIME STRUCTURE MAPS

ATTACHMENTS

1. COMPOSITE WELL LOG

(cont'd)

WELL COMPLETION RPEORT BEARDIE -1

VOLUME 2:

INTEPRETATIVE DATA (cont'd)

APPENDICIES

- 1. MDT ANALYSIS
- 2. QUANTITATIVE FORMATION EVALUATION
- 3. PALYNOLOGICAL ANALYSIS
- 4. GEOCHEMSTRY
- 5. VELOCITY SURVEY REPORT

1. INTRODUCTION

The Beardie-1 well was drilled as a wildcat exploration well, approximately 4 km west of Whiting-1 (Figure 1). The well was located in 51 metres of water, within the VIC/L2 licence area of the Gippsland Basin, and was drilled to a TD of 1880m TVDss.

The well spudded on 26th July 2002, and TD was reached on the 4th August 2002. The well was plugged and abandoned, and the rig was released on the 10th August 2002.

The Beardie-1 well targeted hyrdrocarbons in the fluvial reservoirs within the upper Latrobe Group (*N.asperus - L.balmei* age). A four way dip closure was mapped on the eastern part of the Barracouta anticline. The primary risk for the Beardie-1 well was closure adequacy with a secondary risk of fault seal adequacy was also identified.

2. SUMMARY OF WELL RESULTS

A comparison of prognosed versus actual formation tops penetrated in Beardie 1 is summarised in Table 1, and the relevant stratigraphy is summarised in Figure 2. The prognosed stratigraphy was based on adjacent well data within the Whiting and Barracouta fields.

The well intersected the Top of Coarse Clastics 12m deep to prognosis and the first prognosed reservoir, the N1.6, 20m deep to prediction. The two main targets the N2 and M1 were 21m and 45m, respectively, deep to prediction. The well found a total of 4.6 net metres of oil in thin sands within the N2 seal section. The oil bearing sands were intersected within the intervals (1407.8-1409mRT, 1410.3-1411.5mRT and 1413.5-1417mRT). No clear hydrocarbon contacts were seen on the log data, with all these oil intervals being oil on rock. These hydrocarbons are interpreted to be within the same system with a predicted oil water contact of 1401m TVDss (Fig 3).

No oil was found in the predicted main reservoirs and the well was assessed as uneconomic, then plugged and abandoned.

3. GEOLOGICAL DISCUSSION

OVERVIEW

Exploration in the Gippsland basin has historically focussed on the upper Latrobe, most of the large fields are Top Latrobe closures sealed by overlying Lakes Entrance Formation marine shales. Some large intra-Latrobe fields are also present such as the Tuna T-1 and Halibut/Cobia reservoir that are sealed by coastal plain shales. Within the greater Barracouta, Whiting and Snapper area there are several medium to small size intra-Latrobe hydrocarbon accumulations sealed by coastal plain shales and each of these fields has produced oil from the M.diversus section and above.

The G99A Barracouta3D seismic survey was aquired to progress delineation of the Barracouta gas field. The survey extends across all of Barracouta and includes the Wirrah-3 well. Interpretation of the Barracouta3D survey highlighted an intra-Latrobe closure near the eastern extent of the Barracouta field.

A 3D near trace stack dataset from the G02 Northern Fields3D seismic survey was used in the post-drill evaluation of Beardie-1.

REGIONAL SETTING

The initial formation of the Gippsland Basin was associated with rifting and subsidence that extended along the southern margins of Australia during the Jurassic to Early Cretaceous. During this period, deposition of predominantly volcanoclastic successions occurred in alluvial and fluvial environments, in NE trending en-echelon graben systems (Otway and Strzelecki groups). A phase of structuring and localised uplift of the Strzelecki Group occurred around 100-95Ma.

A renewed phase of Late Cretaceous (approximately 90 Ma) rifting coincided with the onset of Tasman seafloor spreading to the east of Tasmania. This resulted in the rapid development of extensional basins in the Gippsland area, with active extensional faults oriented WNW/ESE (oblique to the earlier extensional event). A thick (overall coarsening-up) succession was deposited in these tectonically active depocentres (Emperor-Golden Beach Groups). Initial rift deposition included marine and lacustrine shales in distal parts of the basin, while deltaic successions and alluvial fans developed along basin margins. The rift fill succession gradually evolved into a fluvial-dominated system. The upper parts of the Golden Beach Group (eg. Kipper sub-volcanic reservoir section) were predominantly braided fluvial to delta plain in

3. GEOLOGICAL DISCUSSION (CONT'D)

character. As the northward migrating Tasman spreading centre passed by the Gippsland Basin around 85-80Ma, the eruption of mafic volcanics and emplacement of related intrusions occurred across the Gippsland Basin. These volcanics form the topseal for several hydrocarbon accumulations (eg. the Kipper volcanics).

The active rift phase in the Gippsland Basin ceased at approximately 80 Ma, as the Tasman Rift proceeded to migrate further northwards towards Queensland. From this time onwards, the Gippsland Basin evolved into essentially a failed arm of the Tasman Rift system. The Latrobe Group was deposited in this sag phase basin setting, with fault controlled subsidence continuing until the Late Paleocene. Most of the Latrobe Group was deposited in a non-marine setting behind a NE-SW tending beach-barrier complex. As sedimentation rates declined, the strandline moved to the northwest, depositing thin Eocene-aged glauconitic green sands over a wide area (Gurnard Formation).

Two major phases of canyon cutting occurred during the Tertiary. The Early Eocene Tuna/Flounder Channel was cut and then filled with predominantly marine sediments of the Flounder Formation. The Marlin Channel was cut during the Middle Eocene and partially filled with distal marine sediment of the Turrum Formation. Erosion associated with the top of Latrobe Group unconformity resulted in the formation of many of the hydrocarbon traps in the basin.

The end of the Latrobe Group is marked by deposition of marl and calcareous siltstone of the Lakes Entrance Formation in response to continued marine transgression in the Oligocene. Prograding limestone and calcareous siltstone wedges of the Gippsland Limestone result in the formation of the present day shelf.

Compressional events in the late Eocene to mid-Miocene caused selective inversion of faults around the basin and the establishment of the major ENE-WSW anticlinal trends in the basin.

3. GEOLOGICAL DISCUSSION (CONT'D)

STRATIGRAPHY

The actual stratigraphic section intersected is very close to predicted and is shown in Figure 2. The well intersected a thick succession of limestones and marls of the Gippsland Limestone, the Lakes Entrance Formation and a thick Latrobe clastic package. The Top Latrobe Coarse Clastics to the Cretaceous/Tertiary Flooding Surface (*N. asperuss* to the upper *L. balmei* age) section is comprised of thick braided fluvial non-marine deposits and marginal marine estuarine and bayhead delta deposits. Stacked sandstone channel facies sequence are interbeded with thin shales and coals, with laterally continous coals beds ranging up to 25m thick. Some dolomitisation has occurred within sandstones in this section.

The primary objective of the Beardie-1 well was to test the oil potential of the Eocene age upper Latrobe sands (*N.asperus to L.balmei* age) The main targets the N2 and M1 reservoirs came in 21m and 45m, respectively, deep to prognosis (1424m MD and 1658m MD). The secondary targets the N1.6, N1.7 and N4 were 20m, 21m and 25m, respectively, deep to prediction.

The Top of Coarse Clastics was 12m deep to prognosis (1195.7m MD). In the original Beardie-1 AtoD the Top of Coarse Clastics was incorrectly labelled as the Top of Latrobe this has been corrected in the Well Completion Report. All depth conversions pre-drill and post-drill were made to the Top of Coarse Clastics.

STRUCTURE

The Beardie area is part of the larger Barracouta-Whiting-Snapper anticlinal trend. The structure was formed by compressional deformation during the Eocene with several subsequent compressional episodes during the miocene. Like the Whiting structure the Beardie NS roll is formed by the reactivation of older normal faults that have undergone reversal during compression.

3. GEOLOGICAL DISCUSSION (CONT'D)

HYDROCARBON DISTRIBUTION

The Beardie 1 well intersected one reservoir system within the pre-drill interpreted N2 seal that at Whiting-2 had been observed to be a good sealing shale. At Beardie-1 several thin high quality sands exist in the basal part of the N2 shale that contain 4.6m of net oil. This system contains oil bearing sands within the intervals (1407.8-1409mRT, 1410.3-1411.5mRT and 1413.5-1417mRT). MDT pressure data gives an estimated oil gradient of 1.04psi/m with a predicted OWC at 1401m TVDss. This predicted contact is 3.5m deeper than the Top of the N2 reservoir where no hydrocarbons were intersected. It is therefore thought that this accumulation is stratigraphically trapped but still in pressure communication with the N2 sands.

4. GEOPHYSICAL DISCUSSION

GEOPHYSICAL DATA

The Beardie-1 prospect was highlighted by the G99A Barracouta survey. The prospect had been observed previously on 2D data but due to the limited coverage and depth conversion risk was not pursued. The seismic data quality on the Barracouta G99A is very good with improved multiple suppression and signal-to-noise ratio compared to previous 2D data.

The initial Barracouta G99A interpretation effort was directed at the N-1 gas at Top Latrobe and involved identifying and interpreting DHI's related to the original and current gas water contacts. Further work pursued the M-1 intralatrobe oil accumulation beneath the Barracouta N-1 gas which lead to the revisiting of the Beardie Prospect.

Five wells in the survey area were tied to the seismic data using synthetic seismograms these were Barracouta-1, 3, 4, 5 and Wirrah-3. In addition the Whiting-1 and 2 wells were tied in using G92 2D data.

After the drilling of Beardie-1 a larger seismic dataset became available, the G02 Northern Fields Near Trace Cube, that extended across the previously poorly controlled Whiting field. To better understand the nature, distribution and effect of Miocene channels on the depth conversion and structure a larger number of wells were used together with the Northern Fields 3D Near Trace Stack data. The wells included Seahorse-1 and 2, Harlequin-1, Wirrah-1,2 and 3, Snapper-3, 4, 5 and 6, Barracouta-1 and 4, Whiting-1 and 2, as well as Beardie-1.

TIME INTERPRETATION

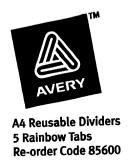
Time interpretations were completed on three Miocene horizons (HVC1, HVC2 and HVC3), the Top of Coarse Clastics, N2 and M1. The three Miocene horizons were observed to have significant velocity breaks or velocity gradient changes and were tied and correlated semi regionally through the area. The second Miocene horizon (HVC2) erodes down into the underlying Miocene sequence in the vicinity of Beardie-1 and the Whiting field (Encl. 4). The Top of Coarse Clastics was also carried semi regionally to give control to the overall depth conversion. The N2 and M1 were carried only around the eastern edge of Barracouta, across Beardie-1 and through the Whiting field. A synthetic produced from the Beardie-1 VSP, sonic and density logs produces a very good tie to the seismic data (Encl. 2). The time position of all key horizons were correctly interpreted pre-drill.

4. GEOPHYSICAL DISCUSSION (CONT'D)

DEPTH CONVERSION

New depth conversions were explored post-drill using the new G02 near trace stack seismic data, seismic velocities, additional wells and semi-regional miocene horizons. The time horizons were ported into Geodepth along with first pass velocity picks from the northern margin 3D that were spaced 500m apart. The depth conversion technique that produced the minimum error to the Top of Coarse Clastics at the wells was one that used seismic velocities to the Top of Coarse Clastics gridded using geostatistical gridding with the second miocene channel (HVC2) as control.

Depth conversion to the N2 was done by using smoothed interval velocities between TCC and the N2 calculated from seismic velocities which were used to isopach down to the N2. Depth conversion to the M1 was achieved by using a constant velocity of 3000m/s to build down from the final N2 depth map.


The final N2 and M1 depth maps display little or no closure at the Beardie-1 location.

It is interpreted that the time closure at Beardie-1 is almost entirely related to time pull up produced by lateral velocity variations within the miocene, mainly attributed to the channel formed by HVC2. On a regional time structure map through this area it is observed that the central axis of HVC2 extends over the Whiting-1 well, this produces a large time distortion on the TCC time map (Encl. 4). A feeder channel also extends over Beardie-1 also producing time pull-up.

The new depth conversion shows that little or no closure exists at the N2 and M1

levels at Beardie-1 (Encl. 3). The hydrocarbons intersected within the N2 seal are interpreted to be stratigraphically trapped across the eastern part of the Barracouta anticline

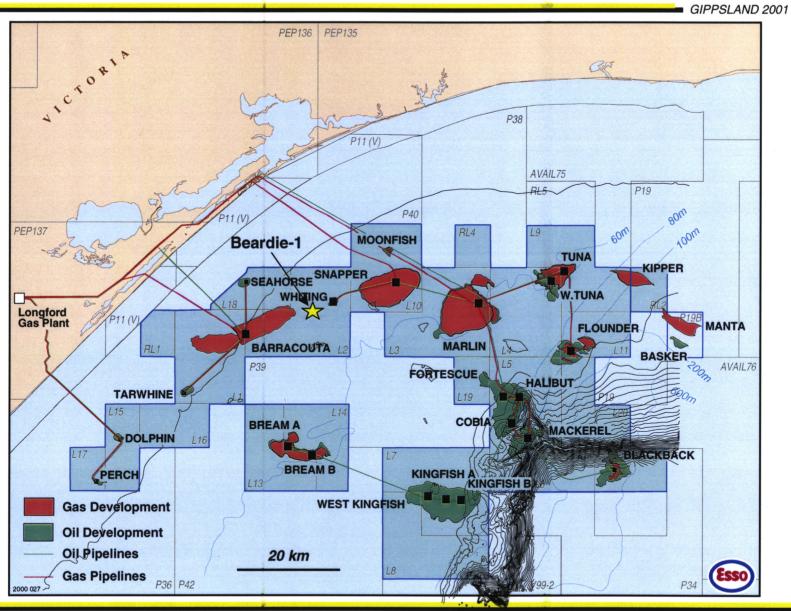
Tables

FORMATION RESERVOIR TOPS

Formation/ Zone	MtvDSS			mMDRT
	Predicted	Actual	Difference	
Top Lakes Entrance Fm	-1129	-1151	22m high	1176
Top Coarse Clastics	-1159	-1170.7	12m low	1195.7
N1.6	-1243	-1263	20m low	1288
N1.7	-1321	-1342	21m low	1367
N2	-1378	-1398	21m low	1423
N4	-1440	-1465	25m low	1490
M1	-1588	-1633	45m low	1658
Top L. Balmei	-1822	-1791	31m high	1816
		:		
TOTAL DEPTH	-1880	-1880	0	1905

Table 1.

Figures



A4 Reusable Dividers 5 Rainbow Tabs Re-order Code 85600

FIGURES

Figure 1. BEARDIE-1 LOCATION MAP

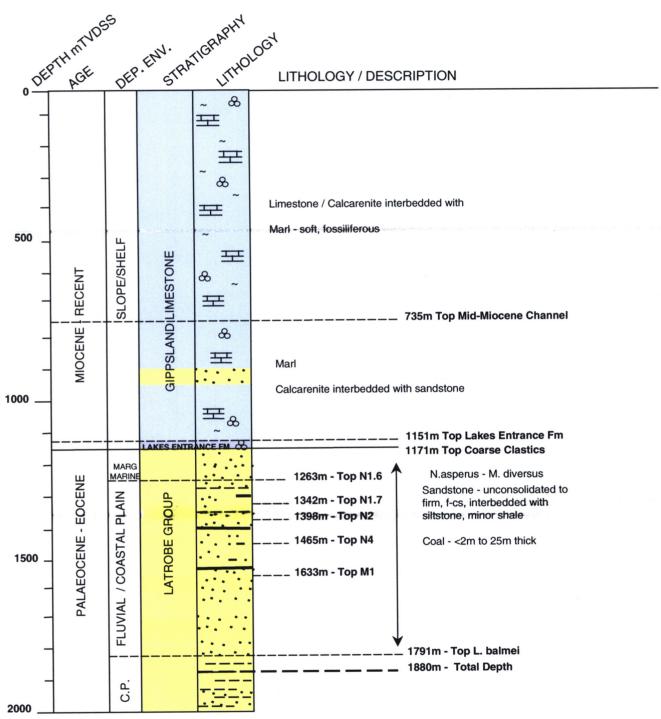


Figure 2.

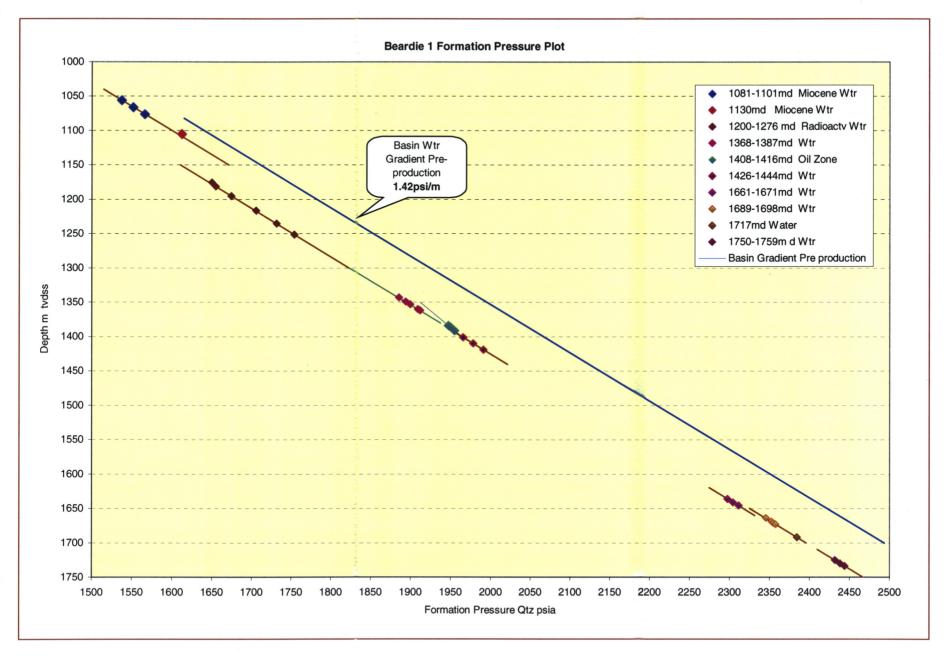



Fig. 3

Enclosures

ENCLOSURE 1 STRUCTURAL CROSS SECTION

PE913651

This is an enclosure indicator page. The enclosure PE913651 is enclosed within the container PE913714 at this location in this document.

The enclosure PE913651 has the following characteristics: ITEM_BARCODE = PE913651 CONTAINER_BARCODE = PE913714 NAME = Beardie-1 Structural Cross-section BASIN = GIPPSLAND ONSHORE? = NDATA_TYPE = WELL DATA_SUB_TYPE = WELL_CORRELATION DESCRIPTION = Beardie-1 Structural Cross-section, (Encl. 1 from Beardie-1 Well Completion Report, Vol. 2), By Andy Zannetos and Paul Owen, Esso Australia Ltd, February 2003. REMARKS = $DATE_WRITTEN = 04-FEB-2003$ DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Esso Australia Ltd WELL_NAME = Whiting-2 CONTRACTOR = AUTHOR = ORIGINATOR = Esso Australia Ltd TOP_DEPTH = BOTTOM DEPTH = ROW_CREATED_BY = FH11_SW

(Inserted by DNRE - Vic Govt Mines Dept)

ENCLOSURE 2

POST DRILL DEPTH STRUCTURE MAP

PE913652

This is an enclosure indicator page.

The enclosure PE913652 is enclosed within the container PE913714 at this location in this document.

The enclosure PE913652 has the following characteristics:

ITEM_BARCODE = PE913652
CONTAINER_BARCODE = PE913714

NAME = Beardie-1 Depth Maps, Gippsland Basin

BASIN = GIPPSLAND

ONSHORE? = N

DATA_TYPE = SEISMIC

DATA_SUB_TYPE = HRZN_CONTR_MAP

DESCRIPTION = Beardie-1 Depth Maps, Top M1, Top N2

and Top Coarse Clastics, Gippsland Basin, Victoria, (Encl. 2 from

Beardie-1 Well Completion Report, Vol. 2), By Andy Zannetos, Esso Australia

Ltd, February 2003.

REMARKS =

DATE_WRITTEN = 04-FEB-2003

DATE_PROCESSED =

DATE_RECEIVED =

RECEIVED_FROM = Esso Australia Ltd

WELL_NAME = Beardie-1

CONTRACTOR =

AUTHOR = Andy Zannetos

ORIGINATOR = Esso Australia Ltd

TOP_DEPTH = BOTTOM_DEPTH =

ROW_CREATED_BY = FH11_SW

(Inserted by DNRE - Vic Govt Mines Dept)

ENCLOSURE 3 SYNTHETIC SEISMOGRAM

PE913653

This is an enclosure indicator page.

The enclosure PE913653 is enclosed within the container PE913714 at this location in this document.

The enclosure PE913653 has the following characteristics:

ITEM_BARCODE = PE913653
CONTAINER_BARCODE = PE913714

NAME = Beardie-1 Synthetic, Gippsland Basin

BASIN = GIPPSLAND

ONSHORE? = N DATA_TYPE = WELL

DATA_SUB_TYPE = SYNTH_SEISMOGRAM

DESCRIPTION = Beardie-1 Synthetic, Contains:

Synthetic Seismogram and Interp.
Seismic Section, Gippsland Basin,
Victoria (Fngl. 3 from Beardie-1

Victoria, (Encl. 3 from Beardie-1 Well Completion Report, Vol. 2), By Andy Zannetos, Esso Australia Ltd, February

2003.

REMARKS =

DATE_WRITTEN = 04-FEB-2003

DATE_PROCESSED =

DATE_RECEIVED =

RECEIVED_FROM = Esso Australia Ltd

WELL_NAME = Beardie-1

CONTRACTOR =

AUTHOR = Andy Zannetos

ORIGINATOR = Esso Australia Ltd

TOP_DEPTH =

BOTTOM_DEPTH =

ROW_CREATED_BY = FH11_SW

(Inserted by DNRE - Vic Govt Mines Dept)

ENCLOSURE 4 REGIONAL TIME STRUCTURE MAPS

PE913654

This is an enclosure indicator page.

The enclosure PE913654 is enclosed within the container PE913714 at this location in this document.

The enclosure PE913654 has the following characteristics: ITEM_BARCODE = PE913654 CONTAINER_BARCODE = PE913714 NAME = Beardie-1 Time Structure Maps BASIN = GIPPSLAND ONSHORE? = NDATA_TYPE = SEISMIC DATA_SUB_TYPE = ISOCHRON_MAP DESCRIPTION = Beardie-1 Time Structure Maps, Top Coarse Clastics and High Velocity Channel 2 Time Structure Maps, Gippsland Basin, Victoria, (Encl. 4 from Beardie-1 Well Completion Report, Vol. 2), By Andy Zannetos, Esso Australia Ltd, February 2003. REMARKS = DATE_WRITTEN = 04-FEB-2003 DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Esso Australia Ltd WELL_NAME = Beardie-1 CONTRACTOR = AUTHOR = Andy Zannetos ORIGINATOR = Esso Australia Ltd TOP_DEPTH =

(Inserted by DNRE - Vic Govt Mines Dept)

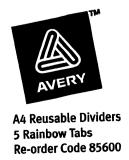
BOTTOM_DEPTH =

ROW_CREATED_BY = FH11_SW

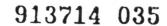
Attachments

A4 Reusable Dividers 5 Rainbow Tabs Re-order Code 85600

ATTACHMENT 1 COMPOSITE WELL LOG


PE651036

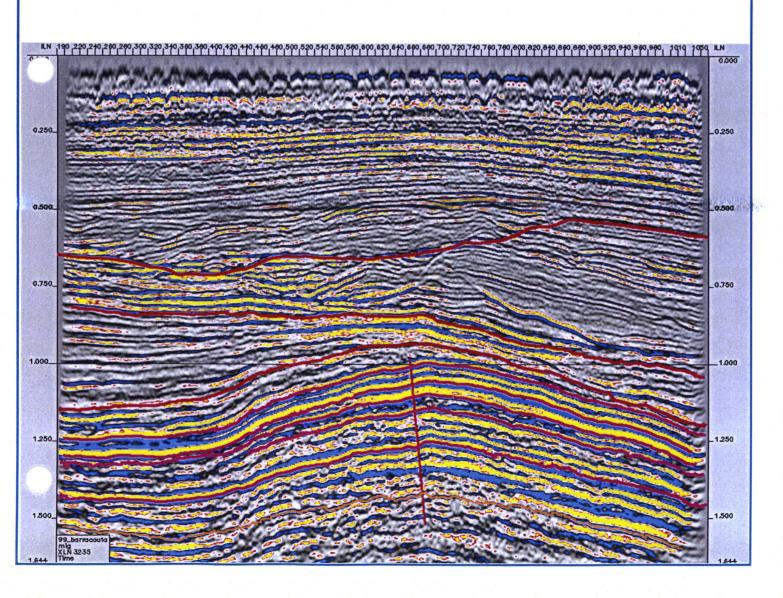
This is an enclosure indicator page. The enclosure PE651036 is enclosed within the container PE913714 at this location in this document.


The enclosure PE651036 has the following characteristics: ITEM_BARCODE = PE651036 CONTAINER_BARCODE = PE913714 NAME = Beardie-1 Well Completion Log, 1:200 BASIN = GIPPSLAND ONSHORE? = NDATA_TYPE = WELL DATA_SUB_TYPE = COMPLETION_LOG DESCRIPTION = Beardie-1 Well Completion Log, Scale 1:200, Gippsland Basin, Victoria, (Attachment 1 from Beardie-1 Well Completion Report, Vol. 2), Esso Australia Resources Ltd., August 2002. REMARKS = DATE_WRITTEN = 10-AUG-2002 DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Esso Australia Resources Ltd. WELL_NAME = Beardie-1 CONTRACTOR = AUTHOR = ORIGINATOR = Esso Australia Resources Ltd. $TOP_DEPTH = 76$ BOTTOM_DEPTH = 1905 ROW_CREATED_BY = FH11_SW

(Inserted by DNRE - Vic Govt Mines Dept)

Appendices

APPENDIX 1 MDT ANALYSIS


Esso Australia Pty Ltd Exploration Department

BEARDIE 1

WIRELINE FORMATON TESTING

KUMAR KUTTAN

January 2003

SUMMARY	3
OPERATIONAL SUMMARY	4
DDESSIDE DATA OBSEDVATIONS AND INTERPRETATION	5

SUMMARY

Schlumberger's MDT was used in obtaining formation pressures and fluid samples in Beardie 1. A total of 33 pressure tests and 1 fluid sample ware attempted. All the pressure tests were successful but the attempted sample recovery failed due to the probe plugging.

The pressure data suggests that there are at least 3 aquifer pressure systems. The data also indicates that all the sands are drawn down from the original basin gradient, the least drawn down being the Miocene sands. The lower pressures are a reflection of the effects of production in the Basin. The Miocene sands are drawn down about 30 psi whereas the Latrobe sands are drawn down about 100 psi, The calculated water gradients vary from 1.37psi/m to 1.44psi/m and in general appear to be lower than the established basin water gradient of 1.42 psi/m. The differences could be ascribed to slight inaccuracies in the measured pressure data.

All the tested reservoirs are water bearing except for three thin sands in the interval 1407 – 1417m RT. The pressure data indicates the presence of an oil column in these sands. The oil gradient is estimated to be 1.04 psi/m and the data suggested the three reservoirs belong to one pressure system. The OWC for this oil system is estimated to be at 1401m TVDss.

1.0 Operational Summary

Schlumberger's MDT (Modular Dynamic Tester) was used to obtain formation pressures and fluid samples in the Beardie 1 exploration well. The tool was run with the following modules:

Single large area probe with large area packer Pump-out Optical Fluid Analyser (OFA) 2 X Multi-chamber module (MRMS) 1-gallon chambers

One run with the MDT run was made. A total of 33 pressure tests were attempted and all were successful. An attempt was made to take a sample at 1689mRT. After pumping for 40 minutes the tool became plugged and a decision was made to abandon further sampling due to absence of hydrocarbons in the sample at 1689mRT and the other target sands. Fine sand is thought to be responsible for the plugging of the sample probe.

2.0 Pressure Data Observation and Interpretation

The MDT data is presented in Tables 2.1. Fig.2.1 is a plot of the pressure data from the top of the Miocene sands at 1080mRT (1055mSS) down to the base of the M-111 sands at 1760mRT (1735mSS). The pressure data indicates that are at least 3 aquifer pressure systems. All the reservoirs are clearly drawn down from the original basin gradient and this is a reflection of the effects of the production in the Basin. The draw down in the Miocene sands is about 30 psi whereas that in the Labtrobe sands is about 100psi. The calculated gradients in the aquifer pressure systems vary from 1.37psi/m to 1.44psi/m and appears to be less than the established basin gradient of 1.42psi/m. The variability and differences could be ascribed to slight inaccuracies in the measured pressures. For the purposes of drawing gradient lines and calculating fluid contact a water gradient of 1.42psi/m has been assumed.

The pressure data indicates that all the tested sands are water bearing except for three thin sands in the interval are 1407mRT - 1417mRT (1382mSS - 1392mSS). The calculated gradient is 1.04psi/m suggesting the fluid reservoired is oil and this supported by oil shows in the sidewall cores. The data also suggest that the three sands are in one pressure system. A OWC for the system is interpreted to be at 1401mSS (1426mRT) (Fig.2.2).

ESSO AUSTRALIA PTY LTD

Well: Beardie - 1
Date 5th August 2002
Tool Type (MDT-GR-LEHQT)
Gauge Type: CQG
Pressure units (psia, psig)

Geologist-Engineer Bruce Menzel / Cliff Menhennitt

25.0 KB (metres): Probe type Large
Temperature units (degF, degC) Deg C

				Strain	Gauge			Qu	uartz Gauge			strain	··. qtz					1		Gradio	ent Lines
Sample No	Depth mMD	Depth mTVDSS	Hydrostatic before	PPG	Reservoir psig	PPG	before psia C			Mobility	Calc. Gradiient	Known Gippsland Water Graidient	Intercept	Contacts tvdss	Detph	Pressure					
1	1081.00	1056.00	1833.10	10.0	1521.50	8.4555	1848.77	10.0	1537.21	8.54	59.80	1521.50			5610.0					1040	
2	1091.00	1066.00	1850.50	10.0	1536.30	8.4576	1878.52	10.1	1551.70	8.54	61.10	1850.30		20cc DD	2181.9	1.439	1.42	37.9		1150	1670.9
3	1101.00	1076.00	1867.40	10.0	1550.00	8.4538	1893.90	10.1	1566.00	8.54	61.00	1867.00	1881.70	20cc DD	115.5						
4	1130.00	1105.00	1916.40	10.0	1596.70	8.4799	1939.17	10.1	1611.86	8.56	61.90	1916.30	1927.50	20cc DD	8.5						
	1000 00	1175.00				-									4.2					1150	4640.4
5	1200.00	1175.00	2034.50	9.9	1631.10	8.1465	2055.76	10.1	1649.75	8.24	62.80 65.01	2034.40		20cc DD 20cc DD	1903.7					1300	
7	1206.00	1181.00	2044.40	9.9	1638.60	8.1424	2060.02	10.D	1654.46 1674.16	8.22	66.00	2044.70	***************************************	20cc DD	834.9					1300	1023.1
8	1241.00	1195.00 1216.00	2068.00 2103.40	9.9 9.9	1659.10 1690.10	8.1477 8.1566	2083.66 2118.44	10.0	1705.15	8.22 8.23	66.40	2103 60		20cc DD	271.3	1.418					
9	1260.00	1235.00	2135.70	9.9	1716.20	8.1551	2149.79	10.0	1731.17	8.23	67.24	2135.40		20cc DD	1430.2	1.410					
10	1276.00	1251.00	2162.20	9.9	1738 50	8.1554	2177.00	10.0	1753.52	8.23	67.90	2162.20	***************************************	20cc DD	4457.7		1.42	-22.9			
11	1368.00	1343.00	2317.00	9.9	1871 40	8.1775	2331.14	10 0	1885.95	8.24	69.17	2317.20	2224.24	20cc DD Correlate before pretest	1149.8						
12	1374.00	1349.00	2317.00	9.9	1879.70	8.1772	2341.39	10.0	1894.35	8.24	69.60	2317.20		20cc DD,	4335.7					1300	1823.74
13	1374.00	1353.00	2334.00	9.9	1885 20	B.1769	2348.13	10.0	1899.93	8.24	70.31	2327.20	2348 13	20cc DD,	6095.6	1.382	1.42	-22.26		1380	
14	1385.00	1360.00	2345.70	9.9	1894.70	8.1758	2359 97	10 D	1909.50	8.24	71.22	2345.70	2359 87	20cc DD	3317.9	1.302	1.42	-22.20		1300	1337.34
15	1387.00	1362.00	2349.20	9.9	1897.50	8.1759	2363.23	10.0	1912.24	8.24	71.75	2349.30	2363 37	20cc DD	3200.6						
17	1387.00	1302.00	2349.20	3.3	1097 50	0.1759	2303.23	10.0	1312.24	0.24	. 71.75	2345.30	2303 37		3200.0						
16	1408.50	1383.50	2385.10	9.9	1932.70	8.1981	2399.47	10.0	1947.32	8.26	72.50	2385.60	2399 33	20cc DD	136.8	1.045		501.0081		1350	1912.3367
17	1411.00	1386.00	2389.90	9.9	1935.50	8.1952	2403.79	10.0	1950.03	8.26	72.90	2398.70		20cc DD	496.1					1400	-
18	1416.00	1391.00	2398.20	9.9	1940 70	8.1877	2412.00	10.0	1955.18	8.25	73.58	2398.10		20cc DD	343.7						
19	1426.00	1401.00	2415.10	9.9	1951.40	8.1741	2429.07	10.0	1965.92	8.23	74.00	2415.00	0400.00	20cc DD	2583.8					1390	1949.97
20	1435.00	1410.00	2430.30	9.9	1964 00	8.1743	2444.13	10.0	1978.37	8.23	74.50	2415.00	2443.62		4030.3	1.389	1.42	-23.83	1401.1697	1440	
21	1444.00	1419.00	2445.30	9.9	1964 00	8.1746	2459.11	10.0	1990 92	8.23	75.00	2445.40	2459.03	20cc DD	3619.9	1.303	1.42	-23.03	1401.1037	1440	2020.37
	1444.00	1415.00	2445.30	9.9	1976.00	0.1740	2459.11	10.0	1990 92	0.23	75.00	2445.40	2455.03	2000 00	3013.3						
22	1661.00	1636.00	2808.90	9.9	2283.10	8.1898	2823.01	10.0	2297.68	8.24	76.90	2809.50	2823.21	20cc DD GR Correlate before prefes	1837.2			 		1620	2274.61
23	1666.00	1641.00	2817.50	9.9	2290.10	8.1899	2831.30	10.0	2304.43	8.24	78.60	2817.60	2831.22	20cc DD	3707.5	1.381	1.42	-25.79		1660	
24	1671.00	1646.00	2826.30	9.9	2297.20	8.1903	2839.98	10.0	2311.49	8.24	79.80	2826.20	2839.54	20cc DD	465.3						
									-												
25	1687.00	1662.00	2853.10	9.9		0	2866.70	10.0		0.00	81.11	2853.40	2867.15							4050	2005.45
26	1689.00	1664.00	2856.80	9.9	2331.40	8.1977	2870.57	9.9	2345.44	8.25	82.00	2857.10		20cc DD	326.0 3856.6					1650 1700	
27 28	1694.00 1696.00	1669.00 1671.00	2865.40	9.9	2338.30	8.2121	2878.75	10.0	2352.19 2354.94	8.26 8.27	82.70 83.50	2865.60		20cc DD 20cc DD	4949.7	1.375	1.42	-17.88		1/00	2396.12
29	1698.00	1673.00	2868.80	9.9	2341.10 2344.00	8.2219	2882.10 2885.72	10.D	2354.94	8.27	83.96	2868.90 2872.60		20cc DD	1660.3	1.3/5	1.42	-17.00			
	1098.00	1073.00	2872.60	9.9	2344.00	8.2223	2005 72	10.0	2357.69	0.27	03.90	2072.60	2005.00	2000 DD	1000.3			1			
30	1717.00	1692.00	2904.40	9.9	2370.70	8.2226	2917.39	10.0	2384.38	8.27	84.39	2904.60	2917.60	20cc DD	4501.8		1.42				
31	1750.00	1725.00	2969.80	10.0	2418.20	8.2268	2972 70	10.0	2431.84	8.27	84.89	2969.70	2972.60	20cc DD	657.3					1710	2409.85
32	1755.00	1730.00	2968.20	9.9	2424.90	8.2258	2980.99	10.0	2438.34	8.27	85.66	2968.30		20cc DD	1403.4					1750	2466.65
33	1759.00	1734.00	2975.00	9.9	2430.50	8.2258	2988.00	10 7	2443.93	8.27	85.90	2975.00	2987.90	20cc DD	4273.1	1.397	1.42	-18.35			
Racin (-	adient Pre	1400.00				-	***		2067.00							1.422					
production		1700.00							2493.60						-	1.722					

Table 2.1

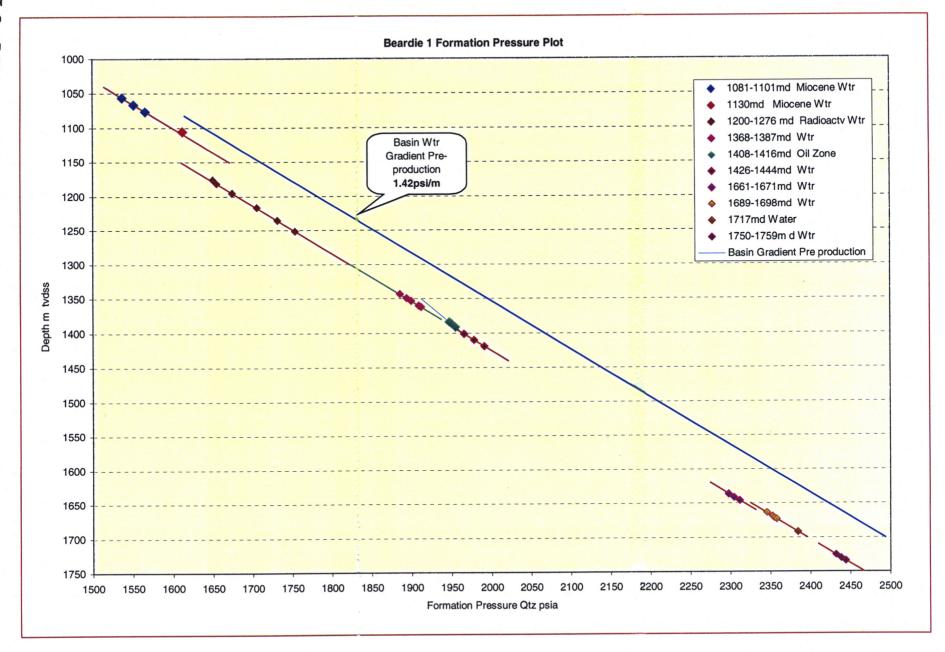
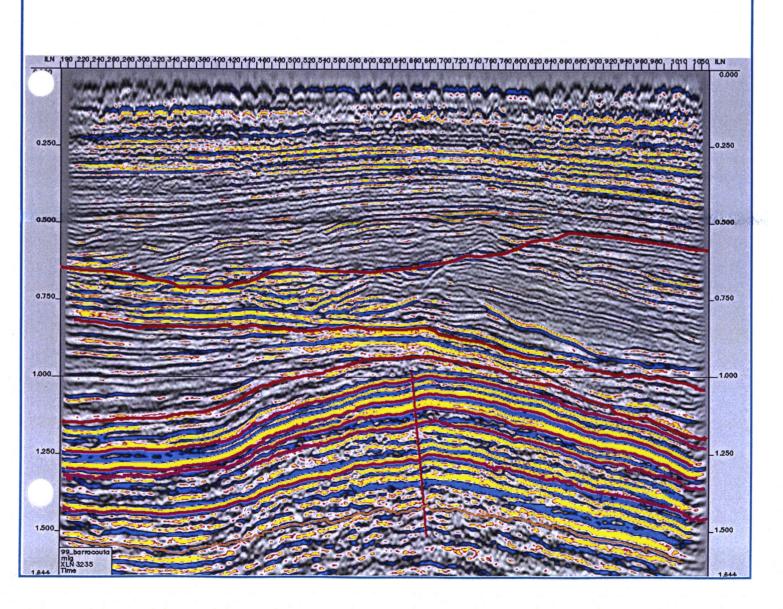


Fig. 2.1

Fig. 2.2

APPENDIX 2 QUANTITATIVE FORMATION EVALUATION

913714 043


Esso Australia Pty Ltd
Exploration Department

BEARDIE-1

QUANTITATIVE PETROPHYSICAL INTERPRETATION

KUMAR KUTTAN

January 2003

SUMMARY

The Beardie-1 near field wildcat exploration well, located in VIC/L2, was drilled to test the oil potential of the Eocene to Palaeocene aged fluvial reservoirs within a mapped four-way dip closure along the Barracouta anticlinal trend.

With the exception of three thin sands over the interval 1407 - 1417mRT all the target reservoirs were found to be water bearing.

The average effective porosities in the reservoirs range from 14% to 29%, the majority being greater than 20% and are very similar to those in the equivalent reservoirs in Barracouta and Whiting fields.

The three thin sands in the shale above the N2 reservoir interval (1407.8 - 1409mRT, 1410.3 - 1411.5mRT and 1413.5 - 1417mRT) are interpreted to be oil bearing. This interpretation is supported by sidewall core shows and MDT pressure tests. The average effective porosities and water saturations range from 16 - 21% and 37 - 48%. The net oil pay is estimated to be about **4.6m** based on a porosity cut-off of 12%.

Residual hydrocarbons are interpreted in the interval 1687 - 1698mRT and the hydrocarbons are interpreted to be oil, based on the sidewall core and mud log shows.

TABLE OF CONTENTS

SUMMARY	2
INTRODUCTION	4
DATA	5
QUANTITATIVE INTERPRETATION	6
NET PAY	7

APPENDIX 1

Beardie-1 Elan+ Model

Enclosure 1

Beardie-1 Petrophysical Evaluation 1180 - 1900m

1.0 Introduction

1.1 General

The Beardie-1 near field wildcat exploration well, located in VIC/L2 (Fig. 1.1) was drilled to test the oil potential of the Eocene to Palaeocene aged fluvial reservoirs within a mapped four-way dip closure along the Barracouta anticlinal trend. The well was spudded on the 26th of July 2002, drilled to a total depth of 1905mRT (Driller) 1909.5mRT (Logger) and plugged and abandoned. The primary objective of this quantitative petrophysical interpretation was to evaluate the reservoirs for porosity, water saturation and net pay.

Note: All depths quoted in this report are logged mRT unless otherwise specified

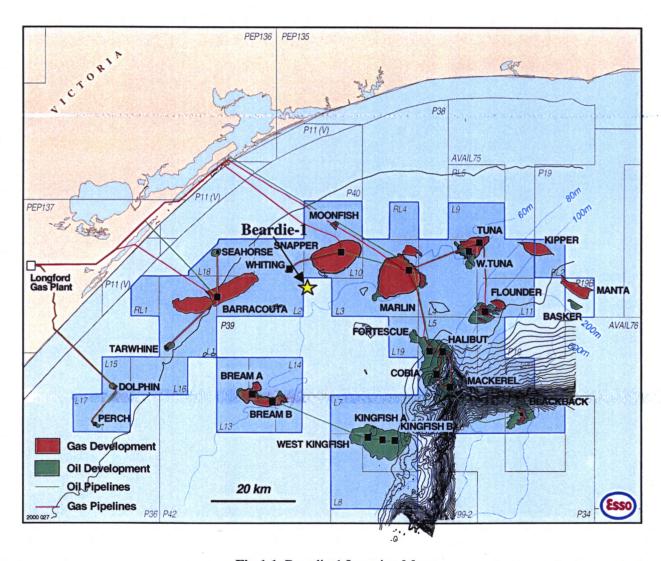


Fig 1.1 Beardie-1 Location Map

2.0 Data

2.1 Wireline Logs

The open hole logs run in the well are listed in Table 2.1.

Survey /Log	Company	Top (m MDRT)	Bottom (m MDRT
Suite 1			
Run at 1909.5m MDRT			
MWD Survey	Anadrill	907.95	1905
Gyro Survey	Scientific Drilling	185	845
DUAL AXIS DENSITY-PEX-	Schlumberger	850.5	1909.5
HALS-LEHQT	Johnamoorger	GR to Sea Floor	
FMI-DSI-HNGS-GR-LEHQT	Schlumberger	850.5	1909.5
MDT-GR-LEHQT	Schlumberger	1081.0	1759.0
DUAL CSAT-VSP	Schlumberger	138.0	1900.0
CST-GR4	Schlumberger	1070.0	1887.0
DSI (in casing)	Schlumberger	76.2	849.1

Table 2.1 Summary of Wireline Logs

2.2 Logging Suite 1

The PEX density-neutron and GR logs were acquired in high-resolution mode from 1909.5m to 850.5m at 1800ft/hr. In addition to the PEX density, an LDT density (the combination being referred to as Dual-Axis density) was also run with the PEX. The reason for running the additional density was to ensure that good bulk density data was acquired in zones over which the borehole may have been elliptical or washed out in one direction. The only problems encountered with the logging job were:

- failure of the logging engineer to record compressional sonic data from the casing shoe to the sea-floor, which required an additional run with the DSI
- the plugging of the MDT probe while sampling at 1689m
- the 15 sidewall misfires

2.3 Log Quality and Log Responses

The overall data quality of the resistivity, density-neutron logs and the MDT pressure data appear to be good and the calibration data appear to be acceptable. From a log response standpoint, one observation that is worth noting is that all the GRs including the HCGR (HNGS GR that has been corrected for the potassium in the mud) recorded with the various logs appear to be high (60 API) over the sands. Similar sands in the nearby Whiting and Barracouta fields have lower GR levels (<40 API). These sands are generally clean and predominantly (>95%) quartz rich. Another observation is that in Beardie-1 all the sands below 1280m show separation between the bulk density and TNPH and NPHI curves (less with NPHI than with TNPH). The separation suggest that these sands are either shaly or have complex mineralogy which is inconsistent with the density-neutron response in similar reservoirs in the nearby Whiting and Barracouta Fields where the sands are clean and show very little density-neutron separation. Further, in these reservoirs the predominant mineral is quartz with low clay content and very low amounts of feldspars. It is more than likely that the

separation is not due to the bulk density data being in error since the calculated density porosities are similar to those in the nearby fields. It is likely that the neutron data is in error. One possible source of the error could be due to one or several of the environmental corrections applied at wellsite. However, it is difficult to determine which correction is in error and the approach that we have taken to adjust the neutron log is discussed in section 2.4 (Data Processing).

Based on the GR and the density-neutron responses, the reservoir interval 1196 - 1280m is clearly different from those below 1280m. The reservoir probably has complex mineralogy as indicated by the high GR over several zones within this interval. Similar responses have not been observed in the nearby Whiting and Barracouta Fields and it is likely this reservoir interval is not present in these fields.

2.4. Data Processing

The standard resolution (6 inch samples) was selected for the final petrophysical evaluation. The NPHI was chosen as the neutron log and the following correction was applied to it so that in most of the sands below 1280m it overlaid the bulk density when the two logs are plotted on a sandstone compatible scale (Bulk Density 1.85 - 2.85g/cc; Neutron 0.45 - -0.15m³/m³):

$$NPHIadjus = NPHI - 0.025$$

Given the fact that most of the reservoirs are predominantly quartz, the measured PEFZ values appear to be high and therefore the following adjustment was made:

$$PEFZadjus = PEFZ - 0.25$$

It must be emphasized that higher than expected PEF values have been observed in clean quartz sands in many other Gippsland reservoirs whenever they have been logged with Schlumberger's nuclear density logs.

The HCGR was chosen as the base log for depth matching purposes. The RHOZ and other bulk density measurements (PEFZ, SSOZ, HCAL etc) were first depth matched to the HCGR. The HLLD, HLLS, RXOZ were then depth matched to HCGR-depth matched RHOZ. The adjusted NPHI and associated neutron measurements (TNPH, CFTC, CNTC, TRNA etc) were depth matched to the HCGR-depth-matched RHOZ. The volumetric photoelectric factor U was computed using the following relationship:

$$U = PEFZ * ((RHOZ + 0.1883)/1.0704)$$

3.0 Quantitative Interpretation

3.1 Methodology

Schlumberger's Geoframe ELAN+ module was used to determine mineral volumes, Total Porosity, (PHIT) and Effective Porosity (PHIE or PIGN). The total porosity, effective porosity and clay volumes from ELAN+ were then used to derive total water saturation (SWT) and effective water saturation (SWE) using the Dual Water saturation model. Net reservoir and net pay were then calculated using a PHIE cut-off of 0.10 (10%).

The ELAN+ model and input parameters are described in Appendix 1

3.2 Logs Used

The logs used in the ELAN+ model were HCGR, HLLD, RXOZ, RHOZ, NPHI, U and HFK. The HFK was only used in the interval 1196 - 1280m as the HCGR was considered inappropriate for this interval because of the high gamma ray values.

3.3 Formation Salinities and Input Porosities

The formation water salinities were calculated using the RWA method for the water bearing intervals. An m=2, a=1 and a BHT=90° C (estimated from the MDT pressure testing run) were used in the calculations. The following table lists the salinities and input porosities for computing the zone parameters in ELAN+

Depth Int	Zone Name	Sand Salinity(ppm)	Clay Salinity(ppm)	Tot. Por. Sand	Tot. Por. Clay	Mid Zone Depth	Temp ⁰ C
1196 - 1280	N-1.5	4000	3000	0.30	0.30	1238	61
1280 - 1640	N-1.6-N4	2000	3000	0.27	0.20	1460	71
2640 - 1820	M-1	1200	3000	0.27	0.17	1730	82.5
1820 - 1900	L-1	18000	10000	0.25	0.15	1860	88.2

A salinity of 18000 ppm was used in the hydrocarbon bearing zones in the interval 1407 – 1417m for calculating SWT. This was based on the fact that in Gippsland, the connate waters in hydrocarbon zones underlain by fresh water aquifers tend to be saline (formation water salinities are of order 18000-20000 ppm)

3.1 Results

Except for three thin hydrocarbon bearing sands in the interval 1407 - 1417m all other reservoir quality sands are water bearing. Average effective porosities range from 14% to 29% with the majority being over 20%. The hydrocarbons in the three thin sands in the above interval are interpreted to be oil. This is based on the MDT pressure data and oil shows recorded in the sidewall cores. In these three sands the average effective porosities range from 16% to 21% and the effective water saturation range from 34% to 48%. The only other zone of interest is the sand in the interval 1687 - 1697.8m (M-110 sand). The quantitative interpretation suggests that it has residual hydrocarbons which are interpreted to be oil, based on the mud log and sidewall core shows.

4.0 Net Reservoir and Net Pay

4.1 General

Net reservoir and net pay were determined using an effective porosity cut-off of 12%. Table 4.1 is a summary of the results of the analysis.

The total net oil pay in Beardie-1 is estimated to be **4.6m**. The contribution to this net pay from the three thin oil bearing sands is as follows:

Interval (m)	Net Pay (m)
1407.9 - 1409.0	0.8
1410.3 - 1411.5	1.1
1413.5 – 1416.9	2.7

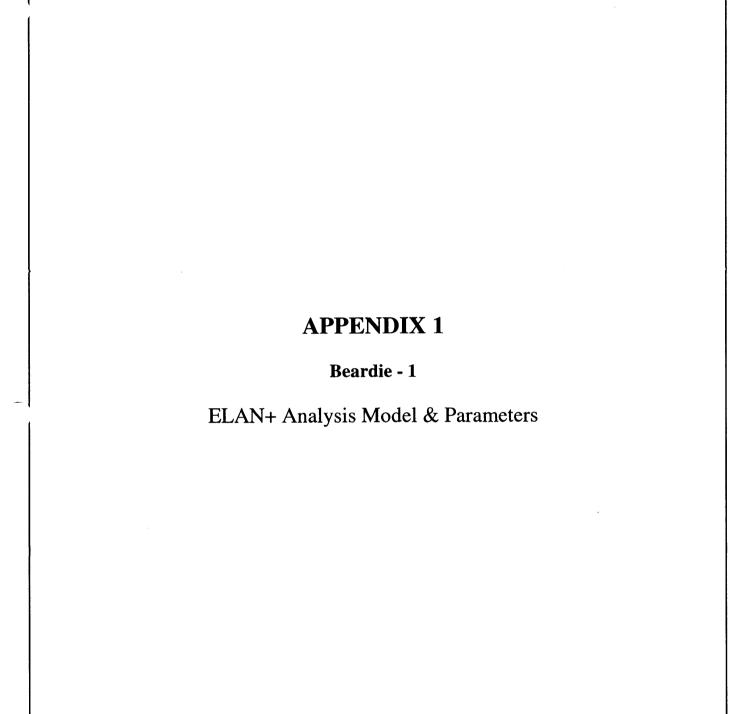
BEARDIE 1

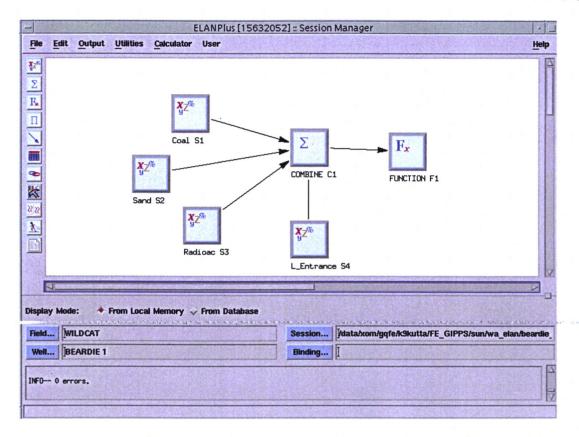
Petrophysical Analysis Summary 1180 - 1900m

Net Thickness is based on a PHIE Cut-off >

:0.12 volume per volume

Depth Reference


mRT


Mean PHIE, Mean VSH, Mean SWE is of Net Thickness interval

Y= yes N= no

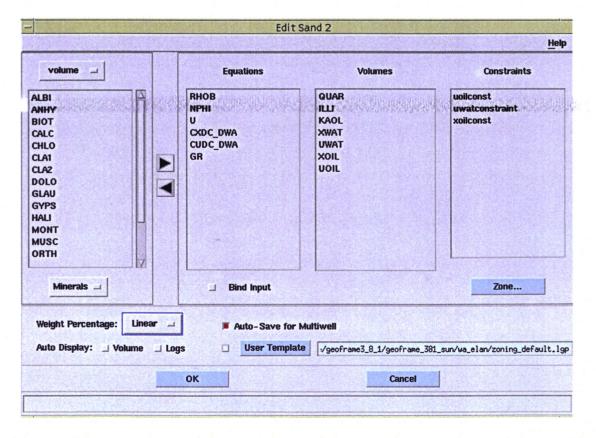
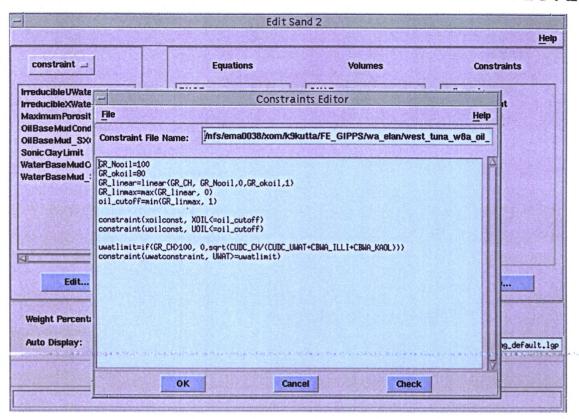
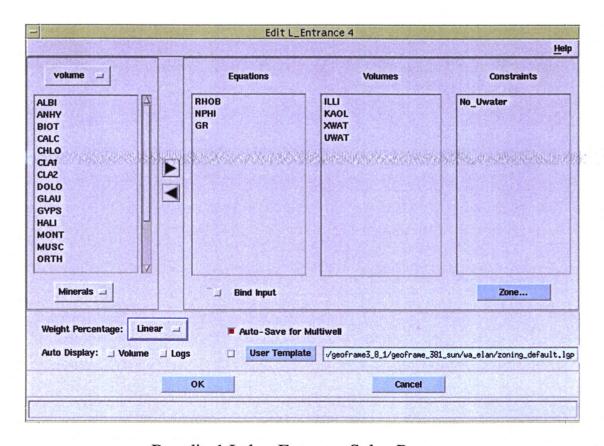
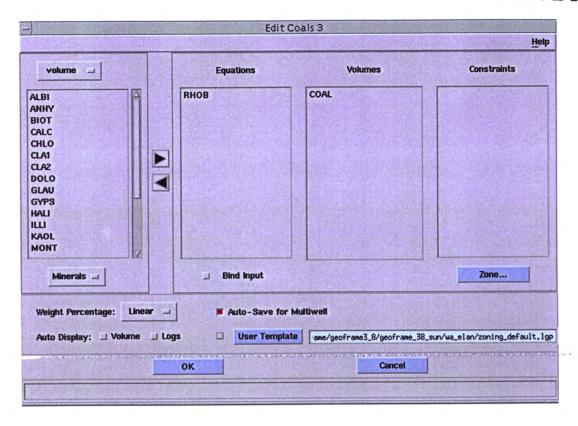
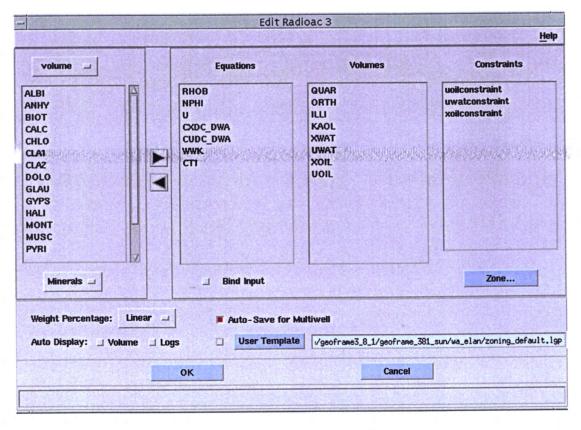

Top Depth	Bottom Depth	Gross Thickness	Net Thickness	Net/Gross Ratio	Mean VSH	Mean PHIE	Mean SWE	Comments	Net Pay
1195.99	1277.01	81.0	73.7	0.910	0.220	0.231	1.000	Water bearing	
1280.82	1308.92	28.1	27.9	0.991	0.160	0.256	1.000	Water bearing	
1311.15	1316.97	5.8	5.5	0.940	0.288	0.216	1.000	Water bearing	
1318.77	1336.45	17.7	17.5	0.989	0.123	0.288	1.000	Water bearing	
1365.23	1378.69	13.5	13.3	0.986	0.122	0.266	1.000	Water bearing	
1383.31	1387.68	4.4	4.2	0.950	0.110	0.270	1.000	Water bearing	
1397.71	1399.34	1.6	1.2	0.752	0.282	0.193	1.000	Water bearing	
1407.87	1409.04	1.2	0.8	0.684	0.340	0.162	0.481	Oli bearing	Y
1410.29	1411.51	1.2	1.1	0.922	0.328	0.213	0.345	Oil bearing	Y
1413.54	1416.86	3.3	2.7	0.821	0.275	0.203	0.378	Oli bearing	Y
1422.33	1485.24	62.9	61.1	0.971	0.105	0.266	1.000	Water bearing	
1488.90	1501.85	13.0	12.8	0.987	0.089	0.251	1.000	Water bearing	
1504.80	1513.51	8.7	8.5	0.972	0.080	0.244	1.000	Water bearing	
1515.77	1524.08	8.3	6.3	0.753	0.297	0.185	1.000	Water bearing	
1530.78	1543.36	12.6	12.2	0.970	0.161	0.249	1.000	Water bearing	
1546.99	1561.31	14.3	14.3	0.997	0.130	0.252	1.000	Water bearing	
1568.12	1574.65	6.5	6.4	0.972	0.108	0.243	1.000	Water bearing	
1576.33	1581.86	5.5	5.3	0.958	0.094	0.235	1.000	Water bearing	
1597.56	1610.41	12.9	12.5	0.972	0.136	0.234	1.000	Water bearing	
1633.30	1637.39	4.1	3.6	0.880	0.236	0.222	1.000	Water bearing	
1642.34	1644.42	2.1	2.0	0.974	0.207	0.202	1.000	Water bearing	
1657.23	1672.44	15.2	14.8	0.971	0.087	0.245	1.000	Water bearing	
1687.15	1689.43	2.3	1.8	0.789	0.241	0.181	0.829	Water bearing, residual oil	
1691.49	1697.84	6.3	6.3	1.000	0.063	0.264	0.814	Water bearing, residual oil	
1712.42	1717.78	5.4	5.2	0.973	0.184	0.203	1.000	Water bearing	
1735.15	1737.34	2.2	1.6	0.708	0.277	0.150	1.000	Water bearing	
1740.87	1760.55	19.7	16.8	0.851	0.162	0.217	1.000	Water bearing	
1762.61	1766.50	3.9	3.7	0.938	0.101	0.242	1.000	Water bearing	
1771.09	1785.95	14.9	14.5	0.976	0.121	0.238	1.000	Water bearing	
1799.85	1812.72	12.9	10.9	0.843	0.213	0.194	1.000	Water bearing	
1822.86	1824.46	1.6	1.0	0.625	0.181	0.205	1.000	Water bearing	
1846.18	1868.73	22.5	19.2	0.852	0.125	0.222	1.000	Water bearing	
1871.65	1877.90	6.3	5.9	0.944	0.110	0.227	1.000	Water bearing	
1880.64	1882.24	1.6	1.1	0.688	0.194	0.200	1.000	Water bearing	
1897.26	1898.55	1.3	0.5	0.388	0.285	0.135	1.000	Water bearing	

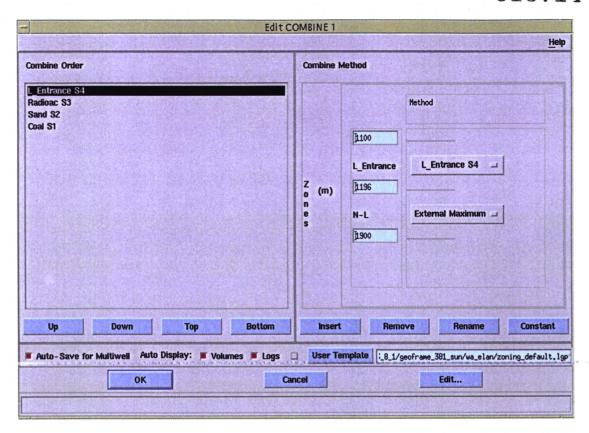
Table 4.1 Petrophysical Summary 1180 - 1900m

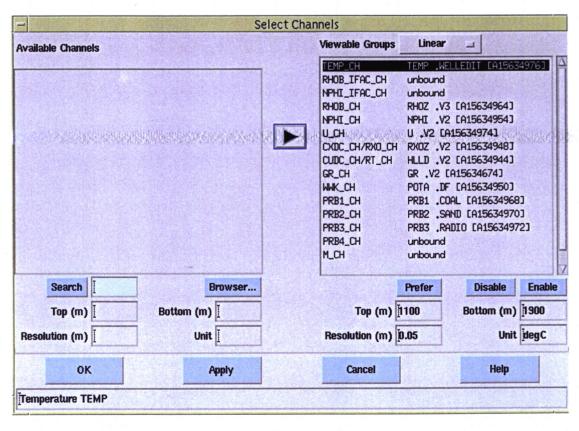



Beardie-1 Elan + Model


Beardie-1 Sand Solve Process


Beardie-1 Sand Solve Process Constraint


Beardie-1 Lakes Entrance Solve Process

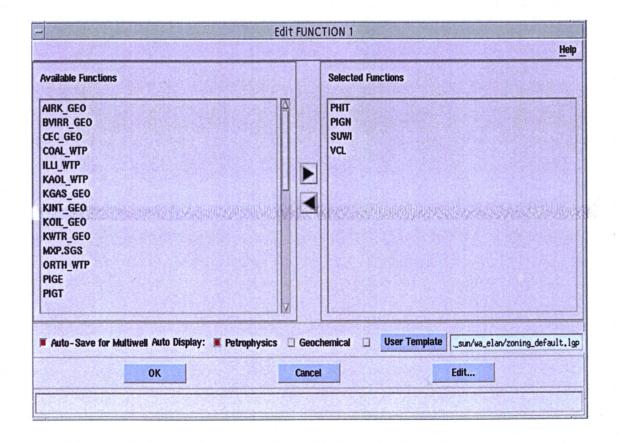

Beardie-1 Coal Solve Process

Beardie-1 Radioactive Solve Process (1197 - 1280m)

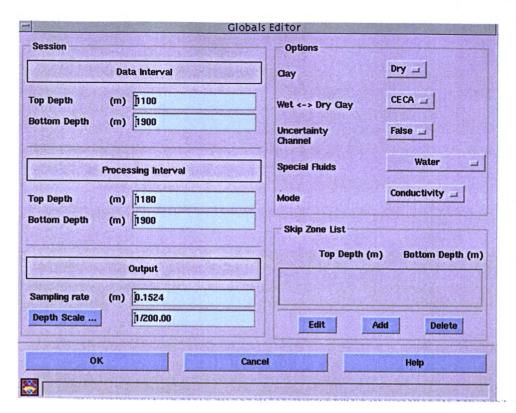
Beardie-1 Combine Process

Beardie-1 Logs Used in Interpretation

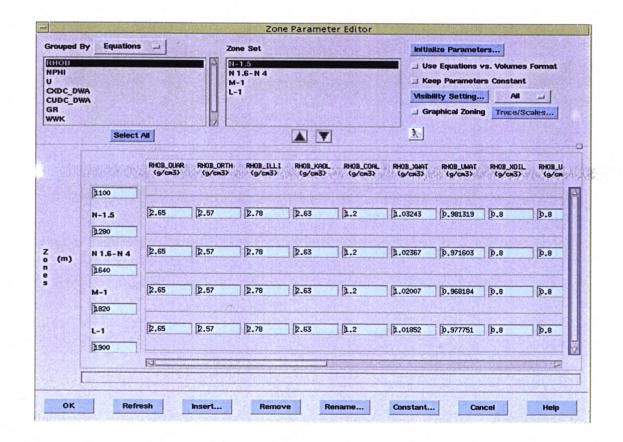
 $PRB1.COAL = FLAG_COAL$

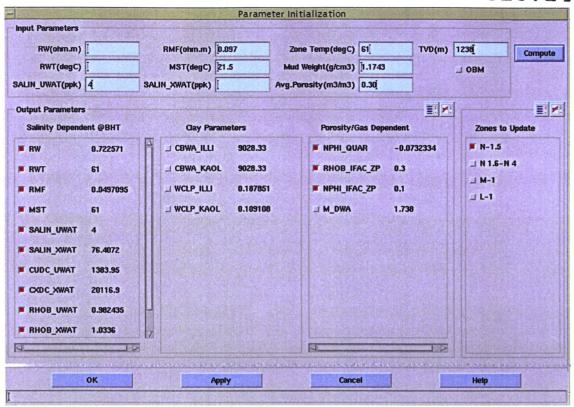

PRB2.SAND = IF ((DEPT >1280) AND (PRB1.COAL==0) AND (FLAG.RADIOAC ==0), 1,0)

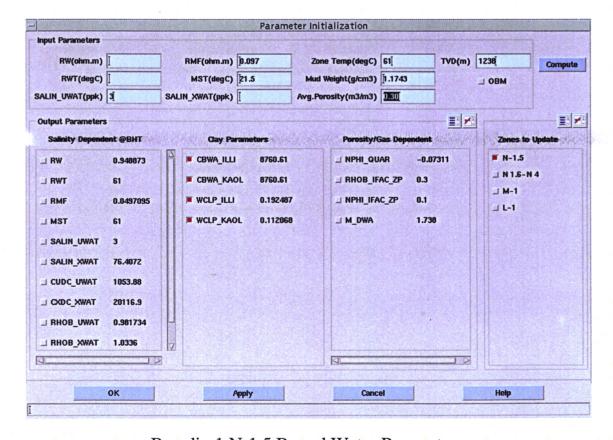
PRB3.RADIOA=IF ((DEPT<1280) AND (PRB1.COAL==0) AND (FLAG.RADIOAC ==1), 1,0)


Beardie-1 Probability Functions used in the Combine Process

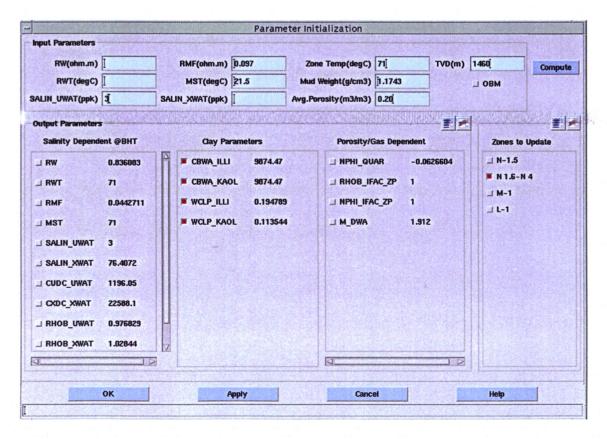
Equation for Constant Tool (CT1)

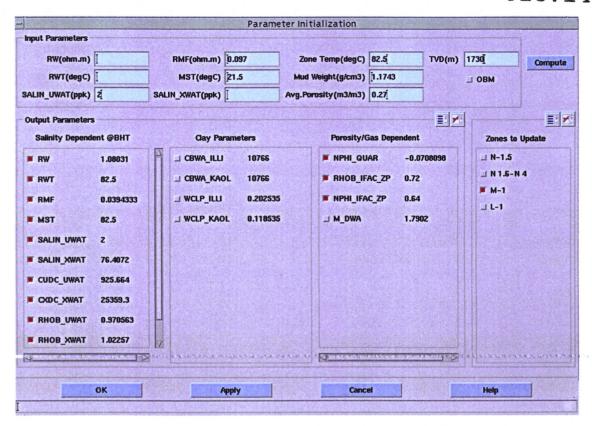

0.1QUARTZ - ORTH = 0


Beardie-1 Function Process

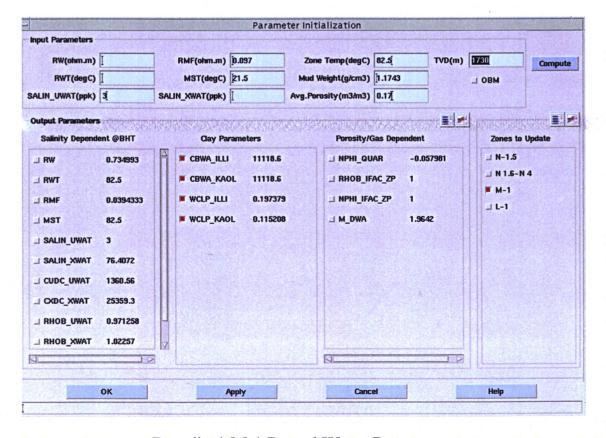

Beardie-1 Globals

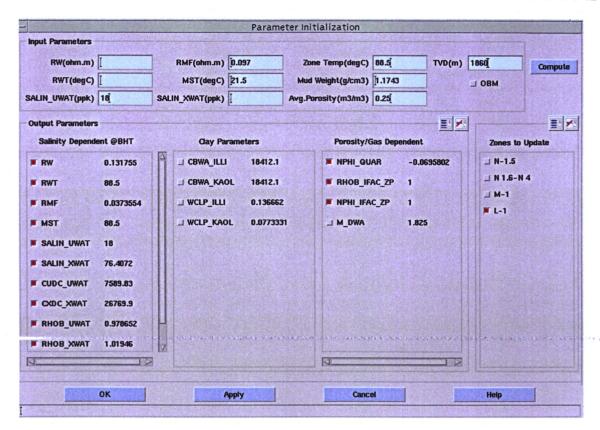
Beardie-1 Zones

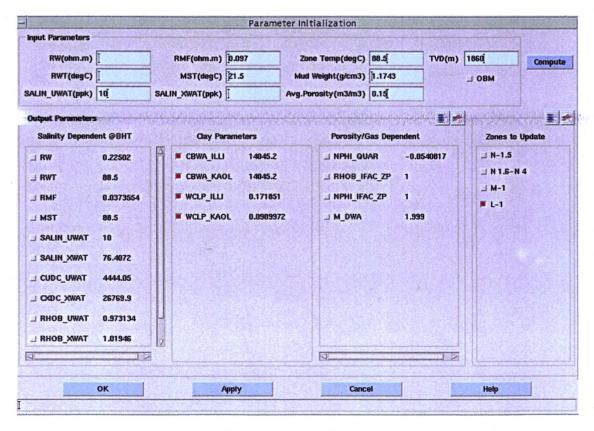

Beardie-1 N-1.5 Free Water Parameters


Beardie-1 N-1.5 Bound Water Parameters

FRWT 71		MST(degC) JN_XWAT(ppk) Clay Par	I	Mud Weight(g/cm3) 1. Avg.Porosity(m3/m3) 0. Porosity/Gas NPHI QUAR	21 v v v v v v v v v v v v v v v v v v v	Zones to U	Comput
Salinity Dependent @ 1.23	N				Dependent	Zones to U	
FRW 1.23	N						Jpdate
CCDC_UWAT 813 CCCC_XWAT 225 CRHOB_UWAT 0.9	.4072 3.15 598.1 17613	□ CBWA_KAO □ WCLP_ILLI □ WCLP_KAO	0.199893	■ RHOB_IFAC_2	_ZP 0.72	⊒ N-1.5 ■ N1.6-N · ⊒ M-1 ⊒ L-1	


Beardie-1 N-1-- N4 Free Water Parameters


Beardie-1 N-1-- N4 Bound Water Parameters


Beardie-1 M-1 Free Water Parameters

Beardie-1 M-1 Bound Water Parameters

Beardie-1 L-1 Free Water Parameters

Beardie-1 L-1 Bound Water Parameters

PE651037

This is an enclosure indicator page. The enclosure PE651037 is enclosed within the container PE913714 at this location in this document.

The enclosure PE651037 has the following characteristics:

ITEM_BARCODE = PE651037
CONTAINER_BARCODE = PE913714

NAME = Petrophysical Interpretation Log, 1:500

BASIN =

GIPPSLAND

ONSHORE? = N

DATA_TYPE = WELL
DATA_SUB_TYPE = WELL_LOG

DESCRIPTION = Beardie-1 Petrophysical Interpretation

Log, Scale 1:500, Victoria, (Enclosure from Appendix 2 of Beardie-1 Well Completion Report, Vol. 2), Exxon

Mobile, August 2002.

REMARKS =

DATE WRITTEN = 04-AUG-2002

DATE_PROCESSED =
 DATE RECEIVED =

RECEIVED_FROM = Exxon Exploration Company

WELL_NAME = Beardie-1

CONTRACTOR =

AUTHOR =

ORIGINATOR = Exxon Exploration Company

TOP_DEPTH = 1180 BOTTOM_DEPTH = 1905 ROW_CREATED_BY = FH11_SW

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 3 PALYNOLOGICAL ANALYSIS

PALYNOLOGY OF

BEARDIE-1

GIPPSLAND BASIN, AUSTRALIA

 \mathbf{BY}

ROGER MORGAN

913714 065

PALYNOLOGY OF

BEARDIE-1

GIPPSLAND BASIN, AUSTRALIA

CONT	ENTS		PAGE
1	SUMN	MARY	3
2	INTRO	ODUCTION	4
3	PALY	NOSTRATIGRAPHY	8
4	REFE	RENCE	12
Table 1		Summary Palynological Data : Beardie-1	
Figure 1	l	Tertiary Zonation Scheme (Partridge 1976 and pers. comm. us of Haq et al)	ing time scale
Figure 2	2	Maturity Profile : Beardie-1	
Append	ix 1	Palynological Data Charts	

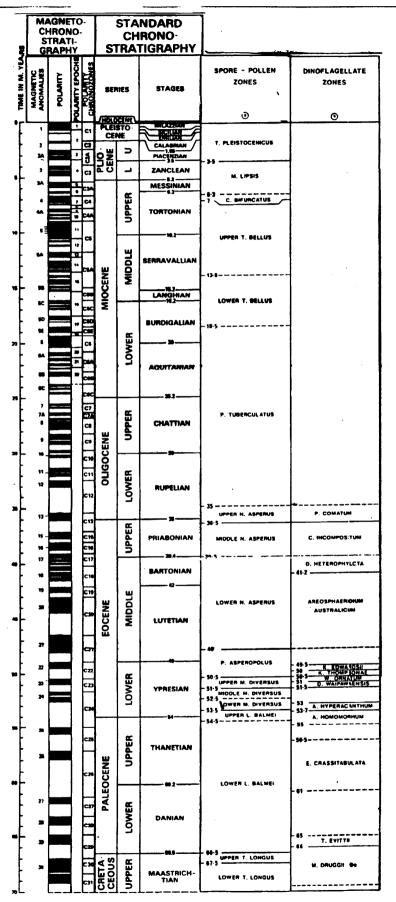
1 SUMMARY

913714 066

- 1226.0 m (swc) 1544.0 m (swc): *P. asperopolus* upper *M. diversus* Zones: Early Eocene: non-marine lacustrine to very marginal marine: marginally mature for oil
- 1657.0 m (swc) 1793.0 m (swc) : middle *M. diversus* Zone : Early Eocene : non-marine lacustrine to very marginal marine : marginally mature for oil
- 1795.0 m (swc) 1845.0 m (swc): indeterminate (almost barren of palynomorphs)
- 1870.0 m (swc) 1877.0 m (swc) : upper *L. balmei* Zone : Paleocene : non-marine lacustrine : early mature for oil

Palynological results for Beardie-1 is based on 16 sidewall core samples submitted by Paul Owen and summarised on Table 1.

The zonation scheme used (Figure 1) is essentially that of Partridge (1976 and pers. comm.). All informal names are shown in quotation marks. Names are given in full when first mentioned in the text, but only the genus initial and full species name is given when subsequently mentioned.


Maturity data were generated in the form of Spore Colour Index, and are plotted on Figure 2 Maturity Profile: Beardie-1. The oil and gas windows on Figure 2 follow the general consensus of geochemical literature. The oil window corresponds to spore colours of light-mid brown (Staplin Spore Colour Index of 2.7) to dark brown (3.6), equivalent to vitrinite reflectance values of 0.6% to 1.3%. Geochemists argue variations on kerogen type, basin type and basin history. The maturity interpretation is thus open to reinterpretation using the basic colour observations as raw data. However, the range of interpretation philosophies is not great, and probably would not move the oil window by more than 200 m.

Raw palynological data are included in Appendix 1. The data are based on a 100+ specimen count where possible from which an indication of marine microplankton to terrestrial palynomorph proportions can be derived. The microplankton percentages are listed in Table 1, which also summarize other palynological details. Environmental assessments are derived from the palynomorph counts using content and diversity of saline taxa (dinoflagellates and spiny acritarchs), other microplankton (mostly freshwater algae), and terrestrial spores and pollen. Within non-marine environments, content and diversity of freshwater algae, spores (mostly ferns) and pollen (mostly gymnosperm but including flowering plants) are used for detailed environmental assessment. The criteria for these assessments are defined in Table 1. In running text, frequency of taxa is discussed in the following intervals: Very rare = <1%, Rare = 1-3%, Frequent = 4-10%, Common = 11-29%, Abundant = 30-49%, Super-abundant = 50-100%.

TABLE 1

SUMMARY OF PALYNOLOGICAL DATA - BEARDIE-1

			EX LOW	LOW	MODERATE	HIGH	VERY HIGH		1877.0	1870.0	1845.0	1795.0	1793.0	1657.0	1544.0	1504.0	1489.0	1468.0	1422.0	1410.0	1382.0	1354.0	1315.0	1226.0	(m)	LOG
					(1)			*1 DIVERSITY	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	SWC	TYPE	SAMPLE
			1-4 SPECIES	5-9 SPECIES	10-19 SPECIES	20-29 SPECIES	30+ SPECIES	RSITY	MODERATE	MODERATE	NEAR BARREN	NEAR BARREN	EX LOW	EX LOW	EX LOW	EX LOW	EX LOW	EX LOW	EX LOW	EX LOW	EX LOW	EX LOW	EX LOW	EX LOW	AIRTD	MICROFOSSIL
	NON-MARINE (UNDIFF	BRACKISH	MARGINAL MARINE	VERY NEARSHORE MARINE	NEARSHORE MARINE	SHELFAL MARINE	OFFSHORE MARINE	*2 ENVIRONMENTS	PALEOCENE	PALEOCENE	INDETERMINATE	INDETERMINATE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	EARLY EOCENE	AGE	
	Ð			ARINE	3				=	11			19	21	75	78	82	75	62	68	60	52	35	23	PRESIDENTER	
	NO SALIN	LOW SALI	<1104	5 to 10	11 to 33	34 to 66	67 to 100	SALINE M	0	0			0	0	0	0	0	0	0	0	0	0	0	-	ACRITARCHS	
	NO SALINE MICROPLANKTON, LOW FRESHWATER ALGAE	LOW SALINE ACRTIARCHS ONLY						SALINE MICROPLANKTON CONTENT %)	0	0			0	<1	4	0	0	0	0	. 0	<1	3	0	6	DINOCYSTS	PERCENIAGE
	ON, LOW FRE	ONLY						CONTENT	2	40		ŀ	48	13	11	8	4	8	14	20	13	22	35	54	SPORE	
	SHWATER A							8	16	35	-		21	15	3	10	10	9	21	7	12	12	24	4	POLLEN	
	LGAE N	L	L.	M	×	Н	۷۱	s,	œ	14		٠	12	51	5	5	4	œ	u	5	15	Ξ	6	12	POLLEN	
		EXTREMELY LOW	LOW-VERY LOW	MODERATE-LOW	MODERATE	HIGH	VERY HIGH	SALINE MICROPLANI	NIL	NIL	NIL	NIL	NIL	EX LOW	EX LOW	NIL	NIL	NIL	NIL	NIL	EX LOW	EX LOW	NIL+LOW	MOT	MICROPLANKTON	I. I HOWAAIG
		;						NKTON DIVERSITY	MOD	MOD	NIL	LOW	LOW	LOW	LOW	LOW	EX LOW	LOW	MOT	LOW	LOW	LOW		WOJ	SPORES	
LACUSTRINE:		SWAMP MARGIN:			FLOODPLAIN:	FLUVIAL:	RECOGNISED ON BIN		UPPER L. BALMEI	UPPER L. BALMEI	INDETERMINATE	INDETERMINATE	MIDDLE M. DIVERSUS	MIDDLE M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	P. ASPEROPOLUS - UPPER M. DIVERSUS	ZONE (SUBZONE)	
MINOR FRESHWATER ALGAE 10%. MINOR FRESHWATER ALGAE 10%. RICH, FRESHWATER ALGAE 10%.+, POLLEN USUALLY DOMINANT, SPORES SUBDROINATE W USUALLY DOMINANT, SPORES SUBDROINATE W	SPORES VERY DIVERSE, MINOR FRESHWATER ALGAE < 10%	RICH, POLLEN AND SPORES CO-DOMINANT	FRESHWATER ALGAE	SUBORDINATE AND DIVERSE, NO OR VERY FEW	RICH, POLLEN DOMINANT, SPORES	LEAN, SANDY, POLLEN DOMINANT	RECOGNISED ON BINT & HELBY (1988) CRITERA, NAMELY	THE NON-MARINE ENVIRONMENTS ARE							DIVERSUS	35	•									
AICH, SPURES DOMINANT AND LOW DIVERSITY, MINOR FRESHWATER ALGAE 10% NICH, FRESHWATER ALGAE 10%,+, POLLEN ISUALLY DOMINANT, SPORES SUBORDINATE WITH SUALLY DOMINANT, SPORES SUBORDINATE WITH	MINOR FRESHWATER	RES CO-DOMINANT,		'ERSE, NO OR VERY FEW	VT, SPORES	DOMINANT	A, NAMELY		NON-MARINE (LAKE)	NON-MARINE (LAKE)	INDETERMINATE	INDETERMINATE	NON-MARINE (LAKE)	VERY MARGINAL MARINE	VERY MARGINAL MARINE	NON-MARINE (LAKE)	VERY MARGINAL MARINE	VERY MARGINAL MARINE	NON-MARINE (LAKE)	VERY MARGINAL MARINE	ENVIRONMENT *2	The street of th				

TERTIARY ZONATION SCHEME (Partridge 1976 and pers. FIGURE 1 comm. using time scale of Haq et al)

4.32

913714 070

FIGURE 2 MATURITY PROFILE : BEARDIE-1

		1		FIGU				URIT									
					mma	ture	I ###	<u> </u>	natu			dry ga		Gas	/Con	den	sate
Age	Zone	Depth(m)		nmatu			marg mat.	mati	ıre	po		matu	+		Oil		
ď	Ž)eb		yellow	<u> </u>		light	rown	\ dari	7	1	black			Colou	ır	
			0.5	1.0	1.5	2.0	2.5	3.0	3.5	4	.0	4.5	5.0		TAI		
			•														
	į						l	. •									
]							•			:
	Ì						Ì										
ļ		1000															
		1000						i									
	Ļ																
	mid P. aspero- M. diver u. M. div						•		ĺ								
Early Eocene	Ø ≥							,									
-} Ee	nid diver								İ				•				
Ea	_ ₹									_							
Paleo	L. balm	2000						•		İ							
, dioc		2000						•	l								
									1								
									1	- 1							
					-	j											
				~				•	ļ								
										ĺ							
		3000															
		-]							
}										ı							
1												- ·			•	•	
										l							
		4000								İ							
		4000															
										Ì							
																	٠.
				•						ĺ							
		-															
			,														
		5000															

3 PALYNOSTRATGRAPHY

3.1 1226.0 m (swc) – 1544.0 m (swc) : *P. asperopolus* – upper *M. diversus* Zones

Organic yields are very good in this interval, but the recovered kerogen is dominated by plant debris (mostly cuticle and inertinite with significant amorphous organic matter (AOM) in some samples) with rare but well preserved palynomorphs. The presence of rare and intermittent *Proteacidites pachypolus* indicates the *P. asperopolus* or upper *M. diversus* Zones, but too few taxa were seen to be more precise. Abundant are *Botryococcus* spp. indicating freshwater environments. Frequent to common are *Cyathidites* spp. and *Falcisporites similis* and intermittently frequent are *Laevigatosporites ovatus*, *Haloragacidites harrisii* and *Podosporites microsaccatus*. Rare and intermittent taxa include *Beaupreadites verrucosus*, *Nothofagidites* spp., *Phyllocladidites mawsonii*, *Proteacidites grandis*, *Proteacidites kopiensis*, *P. pachypolus*, *Proteacidites incurvatus*, *Proteacidites leightonii*, *Proteacidites ornatus* and *Proteacidites tuberculiformis*. Since these markers are so rare and intermittent, the base of this interval must be considered approximate.

Dinoflagellates are very rare and intermittent in a few samples and include *Deflandrea flounderensis*, consistent with the spore-pollen assignment, but not sufficient for assignment to the dinoflagellate zones shown in Partridge (1976). The shallowest sample (1226 m) has more dinoflagellates than the others, but cannot be assigned to any zone.

Environments vary, but are all in the range of non-marine mostly lacustrine, to very marginal marine, as described below.

1226.0 m (swc): Minor dinoflagellates and microforaminifera indicate slight saline influence in very marginal marine environments. Freshwater algae are very common, suggesting flushing of nearby lakes. Amongst the spore-pollen, fern spores are dominant suggesting nearby swamps. Plant debris (cuticle and inertinite) is abundant. A nearshore lagoon with some tidal flow or similar seems likely. Plant debris (cuticle and inertinite) is abundant.

1315.0 m (swc): The absence of saline markers indicates non-marine environments and very common freshwater algae (*Botryococcus*) indicates lake environments. Saccates and spores are in subequal proportions suggesting some distance from the lake shore. Dominant plant debris (inertinite) and significant amorphous organic

matter (AOM) suggest anoxic bottom conditions. A stagnant lake or similar seems likely.

1354.0 m (swc): Trace dinoflagellates (of a single species) indicate very marginal marine (to possibly brackish) environments. Abundant freshwater algae suggests strong freshwater influence. This could be caused by flushing of nearshore lakes, or by intermittent tidal washover into a nearshore lagoon. Saccates and spores are in subequal proportions. Plant debris (cuticle and inertinite) is dominant. A reduced salinity nearshore lagoon or similar seems likely.

1382.0 m (swc): A single dinoflagellate specimen indicates very minor marginal marine (or possibly brackish) influence. Abundant freshwater algae suggests strong freshwater influence. Saccates and spores are in subequal proportions, suggesting that fern dominated swamps are not nearby. Plant debris (cuticle and inertinite) is dominant. A nearshore lagoon with minor tidal washover or similar seems likely.

1410.0 m (swc): The absence of saline markers indicates non-marine environments. Abundant freshwater algae (*Botryococcus*) indicates lake environments. Spores are more frequent than saccate pollen suggesting nearby lake shoreline fern swamps. Plant debris (cuticle and inertinite) is dominant. A large freshwater lake, relatively near to shore, or similar, seems likely.

1422.0 m (swc): The absence of saline markers indicates non-marine environments. Abundant freshwater algae (*Botryococcus*) indicates lake environments. Spores and saccate pollen are in subequal proportions, suggesting that lake shoreline fern dominated swamps are not nearby. Plant debris (cuticle and inertinite) is dominant. A large freshwater lake or similar, is likely.

1468.0 m (swc): The absence of saline markers indicates non-marine environments. Abundant freshwater algae indicates lake environments. Spores and saccate pollen are in subequal proportions, suggesting that fern dominated swamps are not nearby. Plant debris (cuticle and inertinite and AOM) is dominant and the common AOM suggests anoxic bottom environments. A large bottom stagnant freshwater lake or similar, seems likely.

1489.0 m (swc): The absence of saline markers indicates non-marine environments. Abundant freshwater algae indicates lake environments. Spores and saccate pollen are in subequal proportions, suggesting that fern dominated swamps are not nearby. Plant debris (cuticle and inertinite and AOM) is dominant and the common AOM

suggests anoxic bottom environments. A large bottom stagnant freshwater lake or similar, seems likely.

1504.0 m (swc): The absence of saline markers indicates non-marine environments. Abundant freshwater algae indicates lake environments. Spores and saccate pollen are in subequal proportions, suggesting that fern dominated swamps are not nearby. Plant debris (cuticle and inertinite) is dominant. A large freshwater lake or similar, seems likely.

1544.0 m (swc): Very rare dinoflagellates (of one species) suggests very marginal marine (or possibly brackish) environments. Abundant freshwater algae suggest significant freshwater influence either by flushing of large lakes, or by saline incursion into a freshwater lagoon. Spores outnumber saccate pollen suggesting nearby fern swamps. Plant debris (cuticle and AOM) is dominant suggesting anoxic bottom conditions. A large lagoon, relatively close to the lake shore, with occasional tidal washover, or similar, seems likely.

Light brown spore colours indicate marginal maturity for oil, but immaturity for gas/condensate.

3.2 1657.0 m (swc) – 1793.0 m (swc) : middle *M. diversus* Zone

Organic yield continues to be very high, but with totally dominant plant debris and only very rare spores and pollen. Assignment is on oldest *Proteacidites ornatus* at the base, and the absence of younger markers (especially *P. pachypolus*) at the top. The extreme scarcity of distinctive pollen does reduce confidence, and it is possible that this section might be slightly younger, with the younger markers undetected due to their scarcity. *Botryococcus* is common in both samples. Common at 1657.0 m are *Dilwynites granulatus* and *H. harrisii* with frequent *F. similis* and *Dilwynites pusillum*. At 1793.0 m common are *Araucariacites australis* and *Cyathidites* spp. with frequent *Dictyophyllidites* spp., *Proteacidites* spp. and *Vitreisporites pallidus*. Rare elements include *M. subtilis, Nothofagidites* spp., *P. mawsonii, Proteacidites clarus, P. grandis, P. ornatus* and *Peninsulapollis gillii*.

Environments are very nearshore marine or non-marine, as discussed below.

1657.0 m (swc): A single dinoflagellate specimen indicates very marginal marine (or brackish) environments. Very common freshwater algae suggests major freshwater influence perhaps by flushing from large lake systems, or by occasional

tidal washover into a nearshore lagoon. Spores and saccate pollen occur in subequal proportions suggesting that fern swamps were not nearby. Plant debris (AOM) is dominant, suggesting anoxic bottom conditions. A stagnant bottom nearshore lagoon with occasional tidal washover, or similar, seems likely.

1793.0 m (swc): The absence of saline markers indicates non-marine environments. Common freshwater algae indicate lake environments. Spores outnumber saccate pollen suggesting that shoreline fern swamps are nearby. Plant debris (cuticle and inertinite) are dominant. Lake environments, relatively close to the lake shore, or similar, are likely.

Light brown spore colours indicate marginal maturity for oil but immaturity for gas/condensate.

3.3 1795.0 m (swc) – 1845.0 m (swc) : indeterminate

Organic yields are still very high, but plant debris is totally dominant with cuticle, tracheid and inertinite the major components. Too few palynomorphs were seen for valid age or environmental conclusions to be drawn.

3.4 1870.0 m (swc) – 1877.0 m (swc) : L. balmei Zone, upper subzone

Organic yields are low in contrast to the overlying section, but palynomorphs are frequent components with plant debris less dominant. Zonal assignment is confident, based on common Lygistepollenites balmei in both samples and oldest Proteacidites grandis to the interval base. At 1870.0 m, common are L. balmei, Laevigatosporites ovatus and F. similis, with frequent Cyathidites, Dictyophyllidites, Nothofagidites and Proteacidites. At 1877.0 m (swc), abundant are Cyathidites, with common L. balmei and L. ovatus and frequent Dilwynites granulatus and F. similis. Rare elements include H. harrisii, P. grandis, P. gillii and Stereisporites punctatus.

Environments are non-marine as detailed below.

1870.0 m (swc): The absence of saline markers indicates non-marine environments. Common freshwater algae indicates lake environments. Spores and saccate pollen are in subequal proportions, suggesting shoreline fern swamps are not nearby. A medium sized lake or similar, seems likely.

1877.0 m (swc): The absence of saline markers indicates non-marine environments. Common freshwater algae indicates lake environments. Dominant spores suggests nearby shoreline fern swamps. A medium sized lake, but near the lake shore, seems likely.

Light to mid brown spore colours indicate early maturity for oil and early marginal maturity for gas/condensate.

4 REFERENCE

Partridge, A.D. (1976) The geological expression of eustacy in the early Tertiary of the Gippsland Basin APEA J. 16 (1), 73-79

PE913656

This is an enclosure indicator page.

The enclosure PE913656 is enclosed within the container PE913714 at this location in this document.

The enclosure PE913656 has the following characteristics:

ITEM_BARCODE = PE913656
CONTAINER_BARCODE = PE913714

NAME = Beardie-1 Palynology Distribution Chart

BASIN =

GIPPSLAND

ONSHORE? = N

DATA_TYPE = WELL

DATA_SUB_TYPE = BIOSTRAT

DESCRIPTION = Beardie-1 Palynology Distribution

Chart, % Abundance Histogram, Scale 1:5000, 1226 - 1877m, (Enclosure from Appendix 3 of Beardie-1 Well Completion Report, Vol. 2), By Roger Morgan of Morgan Palaeo Associates for Esso

Australia, October 2002.

REMARKS =

DATE_WRITTEN = 21-OCT-2002

DATE_PROCESSED =

DATE_RECEIVED =

RECEIVED_FROM = Esso Australia

WELL_NAME = Beardie-1

CONTRACTOR =

AUTHOR = Roger Morgan ORIGINATOR = Esso Australia

TOP_DEPTH = 1226 BOTTOM_DEPTH = 1877 ROW_CREATED_BY = FH11_SW

(Inserted by DNRE - Vic Govt Mines Dept)

APPENDIX 4

GEOCHEMISTRY

Report to follow

APPENDIX 5 VELOCITY SURVEY REPORT

Schlumberger Oilfield Australia Pty Limited A.C.N. 003 264 597 Level 5, 256 St. George's Tce. Perth WA 6000 Ph: (09) 9420 4800 Fax: (09) 9420 4715

Esso Australia Pty Lt.

WELL SEISMIC PROCESSING REPORT

VSP

Beardie-1

FIELD: Offshore Exploration

COUNTRY: Australia, offshore VIC, Permit VIC/L9

COORDINATES: Latitude: 38" 15' 16.214" S

: Longitude: 147" 48' 24.643" E

DATE OF VSP SURVEY: 5-AUG-2002

REFERENCE NO: DS 0402-003

INTERVAL: 119.9-1900.0 mRT

Prepared by: Y. Solovyov

CONTENTS

2.	Data	Acquisi	tion		4
3.	Well	Seismic	Edit	1	6
	3.1	Data d	quality	(6
	3.2	Transi	it Time Measurement	•	6
	3.3	Stacki	ng	ı	6
4.	VSP F	Process	ing Chain		7
	4.1	Pre Pr	rocessing		7
		4.1.1	Transit Time Correction to Datum		7
		4.1.2	Spherical Divergence Correction		7
		4.1.3	Bandpass Filter	:	8
		4.1.4	Trace Normalization	;	8
	4.2	VSP P	rocessing	;	8
		4.2.1	Wavefield Separation	:	8
		4.2.2	Waveshaping Deconvolution		8
		4.2.3	Corridor Stack		9
5.	Pola	rity Con	vention		9
6.	Shea	r Veloc	ities from VSP		9
0	•	0 1			2
Summ	•		sical Listings		23
	A1	Well S	Seismic Report	;	23

1.

Introduction

List of I	igures	
	1 Amplitude Spectrum	10
	2 X Component Stack	11
	3 Y Component Stack	12
	4 Z Component Stack	13
	5 Downgoing Wavefield after VELF	14
	6 Upgoing Wavefield after VELF	15
	7 Downgoing Wavefield after WSF	16
	8 Upgoing Wavefield after WSF	17
	9 Enhanced Upgoing Wavefield after WSF in TWT	18
	10 Composite Display	19
	11 Velocity Crossplot	20
	12 Parametric Wavefield Decomposition	21
	P and S Velocities from VSP vs. Sonic	22
Attach	ment 1. Transit Time Picking Algorithms	38
List of	ables	
Table 1	Survey Parameters	5
VSP/Ge	ogram PLOTS	
Plot 1 Plot 2	Composite Display Velocity Crossplot	
Listing	of Deliverables	37

1. Introduction

A borehole seismic survey was recorded in one run in vertical well Beardie-1 on 5-th of August 2002. This survey included both rig source VSP and additional checkshot measurements. The data were acquired using a Dual Combinable Seismic Acquisition Tool (CSAT-B) downhole and a cluster of 2 G-Guns suspended from the rig.

This report describes the techniques used, the parameter choices and presents the results of the checkshot and VSP data processing.

2. Data Acquisition

The data were acquired in one logging run in both open and cased hole, using the three component Dual Combinable Seismic Acquisition Tool (CSAT-B), fitted with GAC accelerometer. A cluster of 2 G-guns with 150 cu in capacity each used as the source, was fired at 2000 psi air pressure. The gun cluster was positioned 5.5 m below the SRD sea level. Hydrophone was positioned 2 m above the gun. Recording was made on the Schlumberger Maxis 500 Unit using DLIS format .

The VSP levels were acquired from 1900 mKB to 228 mKB with additional checkshot levels from 198 mKB to 123 mKB. VSP levels were recorded with 15.12 m interval. 5 shots were recorded for each VSP level and 3 shots for each checkshot level.

Table 1. Survey Parameters

51 .: (1/5	
Elevation of KB	25 m
Elevation of DF	25 m
Elevation of GL	-51.2 m
Well Deviation	0.58 (vertical)
Energy Source	2x150 cu in. G-guns
Source Offset	61 M
Source Depth	5.5 M below Sea Level
Reference Sensor	Hydrophone
Hydrophone Offset	61 M
Hydrophone Depth	3.5 M below Sea Level
Source & Hyd. Azimuth	104 Deg.
Tool Type	Dual CSAT-B
Tool Combination	CSAT-B+GR
De-coupled Sensors	Yes
Shaker Fitted	Yes
Number of Axis	3
	3
Sensor Type	GAC – Geophone Accelerometer
Frequency Response (GAC)	3-200 Hz
	0 200 112
Sampling Rate	1 ms.
Recording Time	6.0 sec.
Acquisition Unit	MAXIS
Recording Format	DLIS

3. Well Seismic Edit

The data for both VSP and the checkshot intervals were prepared using the same methods.

Each shot of the raw GAC integrated data was evaluated and edited to remove bad traces. The hydrophone data were also evaluated for signature changes and timing shifts.

The good shots at each level were stacked, using a median stacking technique, to increase the signal to noise ratio of the data. The transit time of each trace was re-computed after stacking.

The following subsections describe the main aspects of the well seismic edit phase:

- Data Quality
- Transit Time Measurement
- Stacking

3.1 Data Quality

The data quality is good apart from the levels at 1596.9 mKB, 1599.9 mKB, 1642 mKB and 1654.9 mKB. Levels at 1596.9 mKB, 1599.9 mKB and 1642 mKB are located below coal layers and recorded signal interfere strongly with coals. Level at 1654.9 mKB was recorded in washed out interval, no good contact with formation, interference from above coal layer is also present. These levels and double level at 1580 mKB were removed from VSP processing.

3.2 Transit Time Measurement

The transit time measured, corresponds to a difference between arrivals recorded by surface and downhole sensors. The reference time (zero time) is the physical recording of the source signal by accelerometers on the gun or sensors positioned near the source. In this case, a hydrophone positioned 3.5 m below the sea level was used as the reference. An inflection point tangent first break picking algorithm was used on both the hydrophone and the geophone data, see Attach. 1.

3.3 Stacking

After reordering and selecting the raw shots, a median stack was performed on the three component data. In this method of stacking, at each sample time, the amplitudes of the input traces are read and sorted in ascending order. The output is the median amplitude value from this ordering. If an even number of traces are input, the first is dropped and a median calculated. Then the last is dropped and another median found. The final output is the average of these two median values. The surface sensor (hydrophone) breaks are used as the zero time for stacking. The break time of each trace is recomputed after stacking. X, Y and Z component median stacks presented in Figure 2,3,4. There is a downgoing shear velocity component observable on X component.

4. VSP Processing Chain

The vertical component of the VSP data was processed using the conventional zero offset processing chain. The following subsections describe the main aspects of the processing chain:

Well Seismic Edit:

- load data
- · edit bad records
- pick break time
- Z component median stack

Pre processing:

- · transit time correction to datum
- · spherical divergence correction
- · bandpass filter
- trace normalization

VSP Processing:

- wavefield separation
- · waveshaping deconvolution
- corridor stack

4.1 Pre Processing

4.1.1 Transit Time Correction to Datum

Seismic Reference Datum (SRD) is at Mean Sea Level.

The source was positioned 5.5 meters below sea surface. The reference hydrophone was located 2 meters above the G-Guns cluster, 3.5 m below sea level. Correction to SRD was calculated using a water layer velocity of 1524 m/s.

4.1.2 Spherical Divergence Correction

To correct the recorded amplitudes for the loss of energy due to spherical divergence, a time varying gain function of the exponential form:

$$Gain(T) = \left(\frac{T}{T_0}\right)^{\alpha}$$

where T is the recorded time, T_0 is the first break time and a = 1 was applied.

4.1.3 Bandpass Filter

The effective bandwidth of the recorded data is evaluated by examining the amplitude spectrum of the stacked vertical component presented in Figure 1. Zero phase Butterworth Bandpass filter was applied to the data limiting the bandwidth to 5-120 Hz.

4.1.4 Trace Normalization

Trace equalization was applied by normalizing the RMS amplitude of the first break to correct for transmission losses of the direct wave. A normalization window of 200 milliseconds used.

4.2 VSP Processing

4.2.1 Wavefield Separation

A velocity filter (coherency) technique was used to separate upgoing and downgoing wavefields.

The downgoing coherent compressional energy is estimated using three levels median velocity filter parallel to the direct arrival curve. The 7, 5 and 3 level velocity filter were tested. 3 level filter produced the best resolution for thin coal bed layers. The filter array is moved down one level after each computation and the process is repeated level by level over the entire dataset. The downgoing wavefield is displayed in one way time (Figure 5).

The residual wavefield is obtained by subtracting the estimated downgoing coherent energy from the total wavefield. The residual wavefield is dominated by reflected compressional events (Figure 6).

4.2.2 Waveshaping Deconvolution

The waveshaping process shortens the seismic pulse within races and for zero phase centers their amplitude peak on the reflector. This improves the resolution of the seismic data and helps to clarify the correlation of the seismic events. It is also applied to collapse the recorded multiples.

The waveshaping deconvolution operator is a double-sided Wiener-Levinson waveshaping filter. The operator is computed for each level of the downgoing wavefield using a design window length of 2 s starting 20 ms before the picked break times in order to include the wavelet precisely. The designed outputs were chosen to be zero phse with a bandwidth of 5-80 Hz. Once the design is made upon the downgoing wavefield, it is applied to the both downgoing and upgoing wavefields at the same level. The upgoing compressional wavefield is then enhanced using 5 level median coherency velocity filter as shown in Figure9. The same wavefield before enhancement displayed in Fig. 8

The downgoing wavefield is displayed in one way time (Figure 7).

4.2.3 Corridor Stack

A corridor stack was computed on the data after zero phase waveshaping deconvolution by designing a constant 100 ms timing window along the to-way time depth curve and stacking the data onto a single trace. The deepest 7 traces are stacked entirely. The resulting trace under normal circumstances satisfies the assumption of one dimentiality and provides the best seismic representation of borehole. This corridor stack is displayed in Figure 10 along with the enhanced upgoing wavefield in two way time. First track displays enhanced upgoing wavefield, second-corridor stack within 100 ms, third-the same corridor stack phase rotated by –90 degree.

5. Polarity Convention

An increase in acoustic impedance gives a positive reflection coefficient, is written to tape as a negative number and is displayed as a white trough under normal polarity. Polarity conventions are displayed in Figure 14.

6. Shear Velocities from VSP

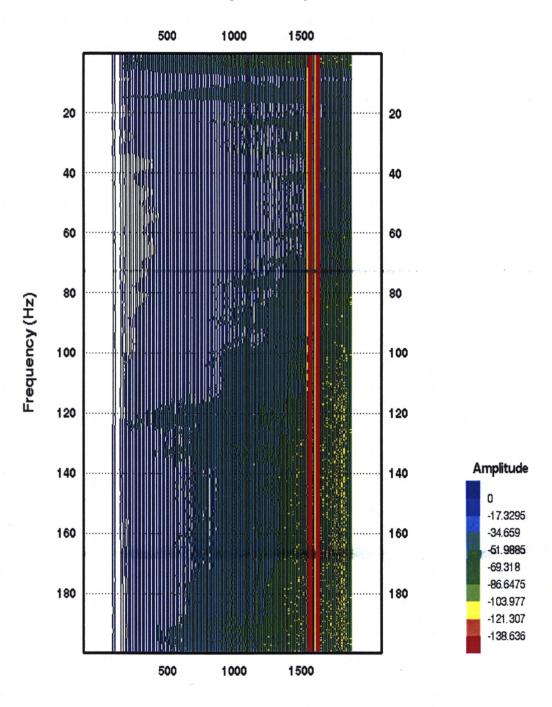
Despite of near-vertical angle of incidence in rig source VSP, fairly strong converted wave S energy was generated from coal layers. That made possible to attempt S wave extraction in this case using the Parametric Wavefield Decomposition method.

After stacking, the X, Y and Z components need to be rotated into direction of maximum downgoing compressional energy arrival (TRY), which is very similar to vertical Z component in vertical well and maximum horizontal energy arrival (HMX). A polarization analysis using hodograms of the first arrival energy on the 3 components is used to perform these rotations.

Parametric Wavefield Decomposition is used to generate 4 wavefields: Down P, Down S, Up P and Up S. The technique of wavefield decomposition used in this module is a parametric least-squares minimization where the data are modeled locally in a given time window as a superposition of plane-wave events. The data at each depth level are modeled as superposition of down-going and up-going P waves and down-going and up-going S waves. Each wave is modeled by defining its local velocity, its angle of incidence and its waveform.

The technique was developed in Schlumberger by C. Esmersoy. More information can be found in: Inversion of P and SV waves from multicomponent offset VSP's, C. Esmersoy, Geophysics January 1990

Figure 12 shows a snapshot of resulting processing window after executing the parametric wavefield separation.


The inverted slownesses and an incidence angles have been used to produce the vertical shear and comprressional velocity logs shown in Figure 11.

A good match is achieved between P and S slowness derived from VSP and sonic slowness from DSI (Figure 13).

913714 088

Schlumberger

Amplitude Spectrum

RECEIVER_POSITION_Z (m)

Figure 1. Amplitude Spectrum

913714 089

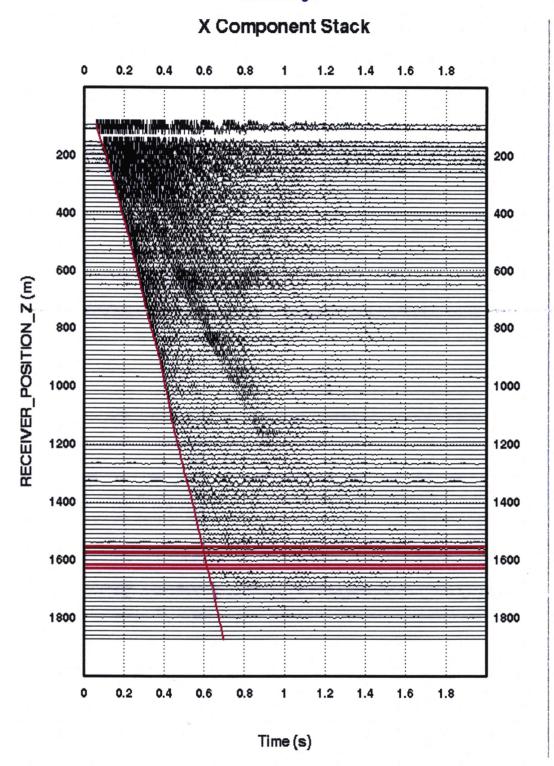


Figure 2. X Component Stack

Y Component Stack

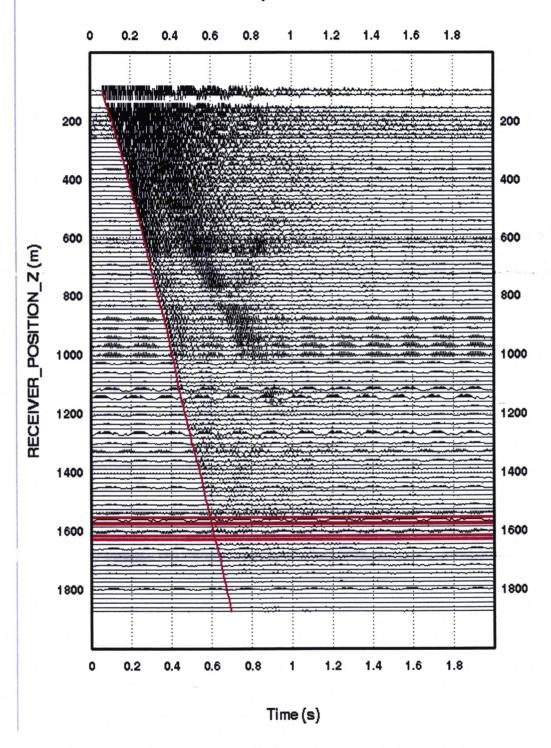


Figure 3. Y Component Stack

Z Component Stack

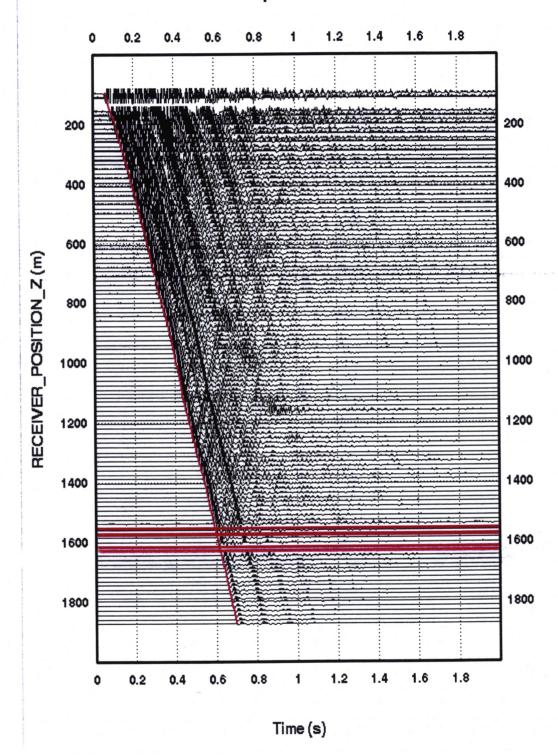


Figure 4. Z Component Stack

Schlumberger Downgoing Wavefield after VELF

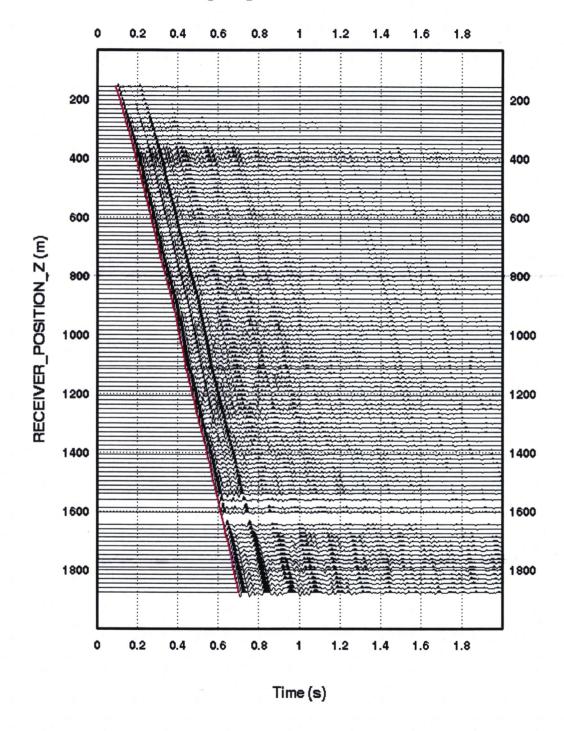


Figure 5. Downgoing Wavefield after VELF

Upgoing Wavefield after VELF

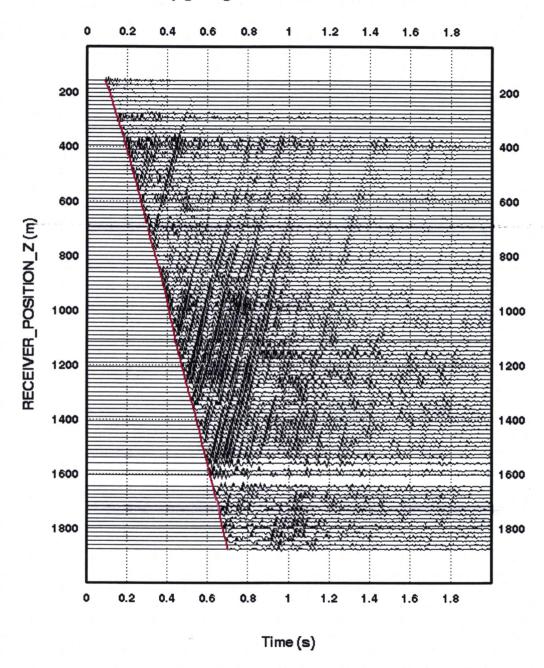


Figure 6. Upgoing Wavefield after VELF

Downgoing Wavefield after WSF

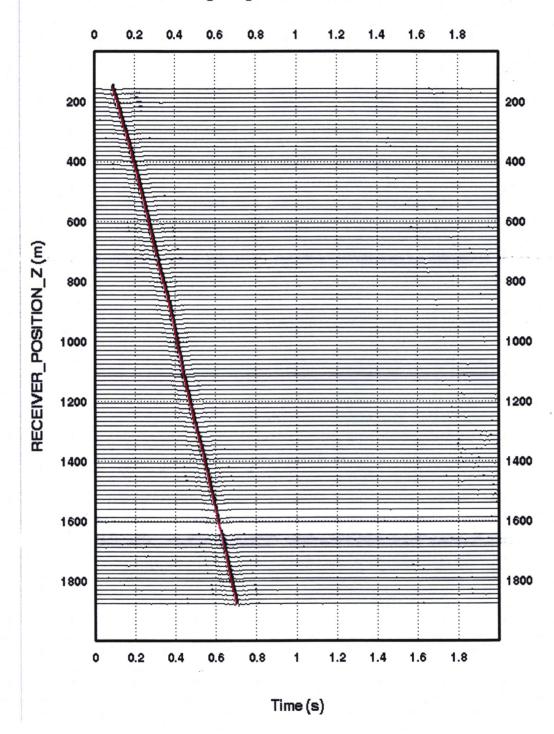


Figure 7. Downgoing Wavefield after WSF

913714 095

Schlumberger

Upgoing Wavefield after WSF

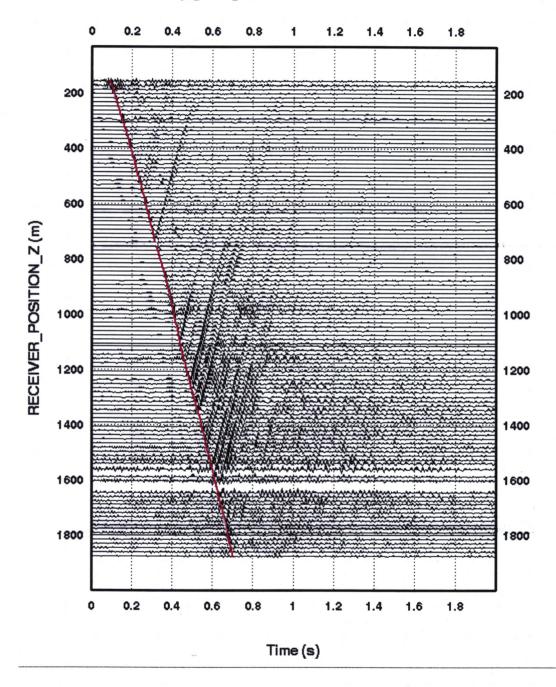


Figure 8. Upgoing Wavefield after WSF

Enhanced Upgoing Wavefield after WSF (TWT)

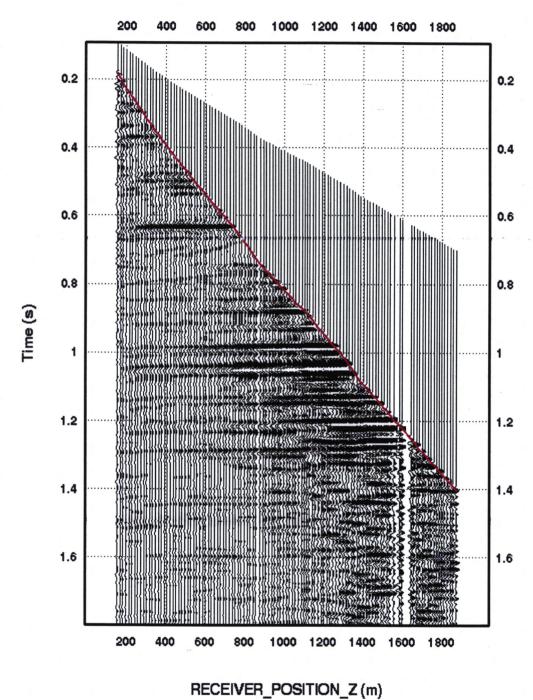
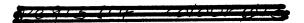



Figure 9. Enhanced Upgoing Wavefield after WSF in TWT

913714 097

Schlumberger

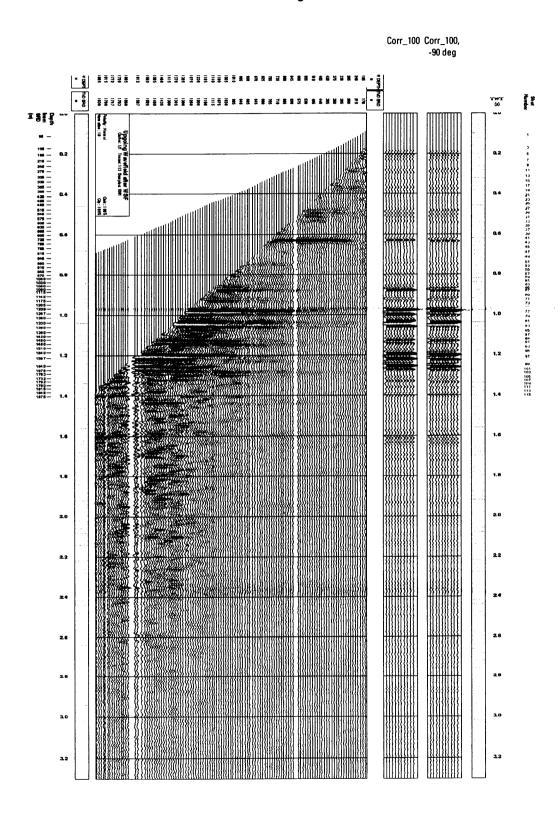


Figure 10. Composite Display

Page 19

913714 098

Schlumberger

Finally, a velocity crossplot was created, using interval, average and RMS velocities, Figure 11.

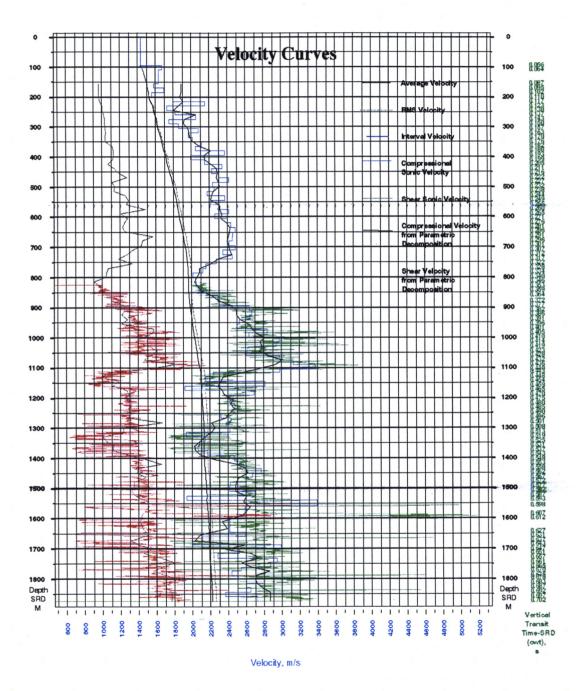


Figure 11. Velocity Crossplot

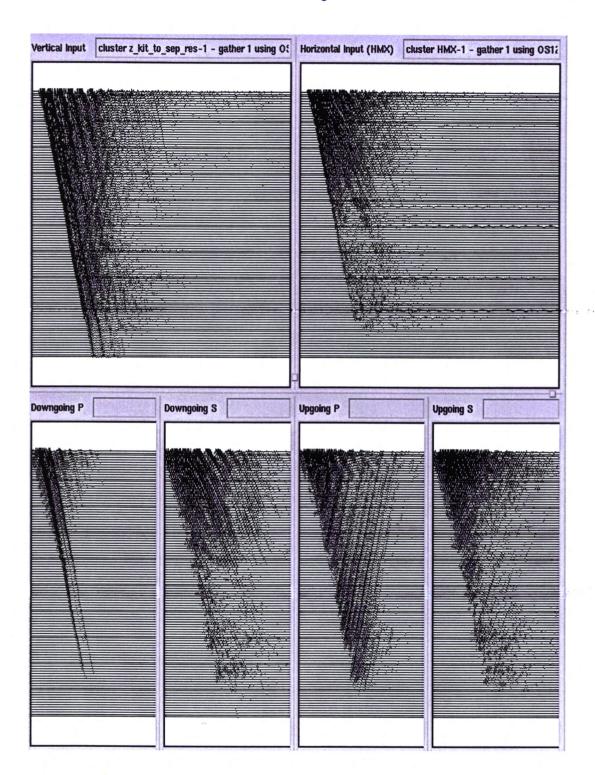


Figure 12. Parametric Wavefield Decomposition

913714 100

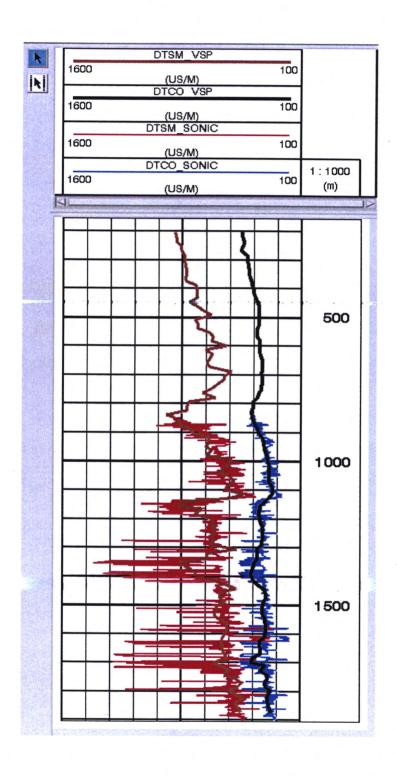


Figure 13. P and S Velocities from VSP vs. Sonic

Summary of Geophysical Listings

One geophysical data listing appended to this report. Following is a brief description of the format.

A1 Check Shot Data

- 1. Level number: the level number starting from the top level (includes any imposed shots).
- 2. Vertical depth form SRD: dsrd, the depth in metres from seismic reference datum.
- 3. Measured depth from KB: dkb, the depth in metres from kelly bushing.
- 4. Observed travel time HYD to GEO: *tim*0, the transit time picked form the stacked data by subtracting the surface sensor first break time from the downhole sensor first break time.
- 5. Vertical travel time SRD to GEO: shtm, is time vertical time, corrected for the vertical distance between source and datum.
- 6. Delta depth between shots: $\Delta depth$, the vertical distance between each level.
- 7. Delta time between shots: $\Delta time$, the difference in vertical travel time (shtm), between each level.
- 8. Interval velocity between shots: the average seismic velocity between each level, $\Delta depth/\Delta time$
- 9. Average velocity SRD to GEO: the average seismic velocity from datum to the corresponding checkshot level, shtm dsrd.

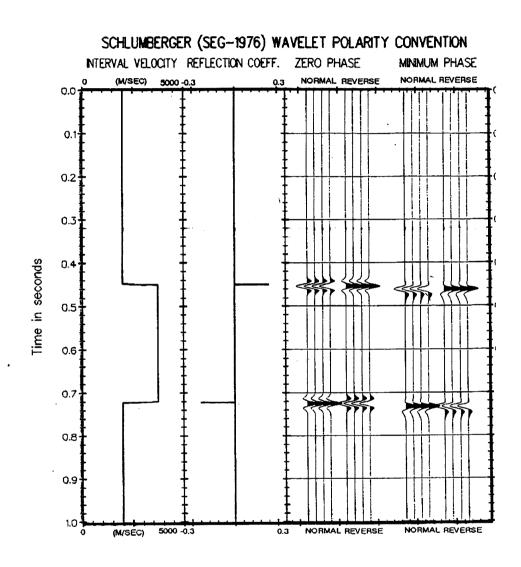


Figure 14. Schlumberger Wavelet Polarity Convention

A-1 Well Seismic Report

Client and Well Information

Country

Australia

State

Victoria

Logging Date

5-Aug-2002

Company

Esso Australia Ltd.

Field

Offshore Exploration

Well

Beardie-1

Check Shot Data

LEVEL		MEASURED	OBSERVED	Vertical	DELTA	ı		SEISMIC
NUMBER		DEPTH	TRAVEL	Transit		TIME	INTERVAL	
	FROM	FROM KB	TIME	Time-SRD			VELOCITY	VELOCITY
	SRD		(owt)	(owt)		_	m/s	m/s
	m	m	S	S	m	S	m/s	HI/S
1	0.0			0.0000			1606	
		1100	0.0620	0.0550			1696	1606
2	94.9	119.9	0.0620	0.0559	16.1	0.0076	1002	1696
	1100	1250	0.0601	0.0625	15.1	0.0076	1992	1722
3	110.0	135.0	0.0681	0.0635	110	0.0001	1046	1732
	1540	150.0	0.0002	0.0066	44.9	0.0231	1946	1790
4	154.9	179.9	0.0883	0.0866	151	0.0000	1077	1789
	1500		0.0050	0.0046	15.1	0.0080	1877	1706
5	170.0	195.0	0.0958	0.0946	140	0.0074	2020	1796
			- 1006	0.1000	14.9	0.0074	2020	1012
6	184.9	209.9	0.1026	0.1020	15.1	0.0000	1050	1812
				0.1100	15.1	0.0082	1850	1815
7	200.0	225.0	0.1104	0.1102	140	0.0070	2142	1815
		2200	0.1160	0.1171	14.9	0.0070	2142	1025
8	214.9	239.9	0.1169	0.1171	17.1	0.0050	2500	1835
	220.0	2550	0.1004	0.1220	15.1	0.0059	2580	1870
9	230.0	255.0	0.1224	0.1230	14.8	0.0072	2060	1870
10	244.9	260.9	0.1293	0.1302	14.8	0.0072	2000	1881
10	244.8	269.8	0.1293	0.1302	15.1	0.0070	2167	1001
1.1	250.0	2040	0.1260	0.1271	13.1	0.0070	2107	1895
11	259.9	284.9	0.1360	0.1371	140	0.0061	2457	1073
12	2740	2000	0.1410	0.1422	14.9	0.0061	2437	1010
12	274.8	299.8	0.1418	0.1432	1.7.1	0.0070	2000	1919
	200.0	2140	0.1400	0.1504	15.1	0.0072	2090	1927
13	289.9	314.9	0.1488	0.1504	14.0	0.0065	2210	1927
		2200		0.1571	14.9	0.0067	2218	1040
14	304.8	329.8	0.1554	0.1571	150	0.0061	2402	1940
<u></u>			0.1616	0.1622	15.2	0.0061	2493	1060
15	320.0	345.0	0.1613	0.1632	<u> </u>	L		1960

5cniumberger									
					14.8	0.0063	2352		
16	334.8	359.8	0.1674	0.1695				1975	
					15.2	0.0063	2409		
17	350.0	375.0	0.1736	0.1758				1990	
					14.9	0.0059	2530		
18	364.9	389.9	0.1794	0.1817				2008	
					15.1	0.0062	2447		
19	380.0	405.0	0.1854	0.1879				2022	
					14.9	0.0052	2843		
20	394.9	419.9	0.1905	0.1931				2045	
					15.1	0.0063	2380		
21	410.0	435.0	0.1968	0.1995				2055	
					14.8	0.0058	2570		
22	424.8	449.8	0.2024	0.2052				2070	
					15.2	0.0054	2813		
23	440.0	465.0	0.2078	0.2107				2089	
					14.8	0.0055	2667		
24	454.8	479.8	0.2132	0.2162				2104	
					15.1	0.0055	2766		
25	469.9	494.9	0.2186	0.2217				2120	
	,				14.9	0.0051	2903		
26	484.8	509.8	0.2237	0.2268				2138	
					15.2	0.0057	2681		
27	500.0	525.0	0.2293	0.2325				2151	
					14.8	0.0055	2705		
28	514.8	539.8	0.2347	0.2379				2164	
					15.2	0.0058	2610		
29	530.0	555.0	0.2405	0.2438				2174	
					14.9	0.0052	2848		
30	544.9	569.9	0.2456	0.2490				2188	
					15.1	0.0057	2655		
31	560.0	585.0	0.2513	0.2547				2199	
					14.9	0.0054	2753		
32	574.9	599.9	0.2566	0.2601				2210	
					15.1	0.0052	2901		
33	590.0	615.0	0.2618	0.2653				2224	
					14.8	0.0055	2709		
34	604.8	629.8	0.2672	0.2708				2234	
					15.1	0.0052	2883		
35	619.9	644.9	0.2724	0.2760				2246	
					14.9	0.0051	2926		
36	634.8	659.8	0.2775	0.2811				2258	
					15.2	0.0051	2989		
37	650.0	675.0	0.2825	0.2862				2271	
					14.9	0.0050	2956		
38	664.9	689.9	0.2875	0.2912				2283	
					15.1	0.0051	2947		
39	680.0	705.0	0.2926	0.2963				2295	
					14.8	0.0051	2903		
40	694.8	719.8	0.2977	0.3014	İ			2305	
	1				15.2	0.0051	2990		
41	710.0	735.0	0.3027	0.3065				2316	
· · · ·	1				14.9	0.0053	2819		
42	724.9	749.9	0.3080	0.3118		1		2325	
·	1		1	1	15.1	0.0051	2949		
43	740.0	765.0	0.3131	0.3169				2335	
<u> </u>	, , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	1 0.0 10 1	1	L				

Schlumberger									
					14.9	0.0055	2732	T	
44	754.9	779.9	0.3185	0.3224				2342	
					15.1	0.0058	2587		
45	770.0	795.0	0.3243	0.3282				2346	
<u> </u>		7,200			14.9	0.0059	2545		
46	784.9	809.9	0.3302	0.3341	1	10.000	20.0	2350	
	701.5	007.7	0.5502	0.55 11	15.1	0.0063	2411	- 2300	
47	800.0	825.0	0.3364	0.3403	13.1	0.0003	2411	2351	
	800.0	823.0	0.3304	0.5405	14.8	0.0061	2442	2331	
48	814.8	839.8	0.3424	0.3464	14.6	0.0001	2442	2352	
48	014.8	839.8	0.3424	0.3404	15.0	0.0062	2454	2332	
40	020.0	955.0	0.2496	0.2526	15.2	0.0062	2454	2254	
49	830.0	855.0	0.3486	0.3526	140	0000	2404	2354	
					14.8	0.0060	2484		
50	844.8	869.8	0.3546	0.3585				2356	
					15.2	0.0059	2592		
51	860.0	885.0	0.3604	0.3644				2360	
					19.8	0.0072	2747		
52	879.8	904.8	0.3676	0.3716				2367	
					15.2	0.0055	2768		
53	895.0	920.0	0.3731	0.3771			-	2373	
					14.8	0.0047	3177		
54	909.8	934.8	0.3777	0.3818				2383	
					15.1	0.0047	3212		
55	924.9	949.9	0.3824	0.3865				2393	
	72	3.3.3	0.302	0.2002	15.0	0.0047	3177		
56	939.9	964.9	0.3871	0.3912	13.0	0.00.7		2403	
	757.7	704.7	0.5071	0.5712	15.1	0.0050	3047	 	
57	955.0	980.0	0.3920	0.3961	13.1	0.0030	30-17	2411	
37	933.0	900.0	0.3920	0.5701	14.8	0.0049	3014	2711	
58	969.8	994.8	0.3969	0.4011	14.6	0.0049	3014	2418	
30	909.6	994.0	0.3909	0.4011	15.2	0.0044	3424	2410	
50	005.0	1010.0	0.4014	0.4055	13.2	0.0044	3424	2420	
59	985.0	1010.0	0.4014	0.4055	140	0.0045	2176	2429	
	0000	10040	0.4060	0.4100	14.8	0.0047	3176	2420	
60	999.8	1024.8	0.4060	0.4102	1.5.0		2.500	2438	
					15.2	0.0042	3590		
61	1015.0	1040.0	0.4102	0.4144				2449	
					14.9	0.0042	3546		
62	1029.9	1054.9	0.4144	0.4186				2460	
					15.1	0.0048	3161		
63	1045.0	1070.0	0.4192	0.4234				2468	
					14.9	0.0048	3133	<u> </u>	
64	1059.9	1084.9	0.4239	0.4281				2476	
					15.1	0.0042	3596		
65	1075.0	1100.0	0.4281	0.4323				2487	
					14.8	0.0039	3781		
66	1089.8	1114.8	0.4320	0.4362				2498	
					15.1	0.0037	4086		
67	1104.9	1129.9	0.4357	0.4399		1		2512	
- 	1101.7	1127.7		1	9.9	0.0028	3595		
68	1114.8	1139.8	0.4384	0.4427		3.0020	3075	2518	
 00	1117.0	1137.0	0.7307	0.772/	15.1	0.0056	2684	+ 23.10	
69	1129.9	1154.9	0.4440	0.4483	13.1	0.0050	2004	2520	
09	1129.9	1134.9	0.4440	0.4403	15.0	0.0058	2578	2320	
70	11440	11/00	0.4400	0.4541	13.0	0.0038	4310	2521	
70	1144.9	1169.9	0.4499	0.4541	15 1	0.0045	2202	2521	
	11600	11050	0.4512	0.4506	15.1	0.0045	3393	2520	
71	1160.0	1185.0	0.4543	0.4586		L		2530	

Schlumberger									
					14.9	0.0065	2294		
72	1174.9	1199.9	0.4608	0.4651				2526	
					15.1	0.0047	3240	1	
73	1190.0	1215.0	0.4654	0.4697		1		2533	
	1170.0	1213.0	0.1051	0057	14.8	0.0051	2917	1	
74	1204.8	1229.8	0.4705	0.4748	11.0	0.0031	2711	2537	
/	1204.0	1227.0	0.4703	0.4746	15.2	0.0052	2904	2331	
75	1220.0	1245.0	0.4757	0.4800	13.2	0.0032	2304	2541	
/3	1220.0	1243.0	0.4737	0.4800	14.8	0.0050	2976	2341	
-	1224.0	1250.0	0.4907	0.4950	14.0	0.0030	29/0	2546	
76	1234.8	1259.8	0.4807	0.4850	15.0	0.0051	2007	2546	
	10500	10550	0.4055	0.4001	15.2	0.0051	3007	2551	
77	1250.0	1275.0	0.4857	0.4901	160	0.0064		2551	
				<u> </u>	16.9	0.0061	2782		
78	1266.9	1291.9	0.4918	0.4961				2553	
					15.1	0.0052	2926		
79	1282.0	1307.0	0.4970	0.5013				2557	
					17.9	0.0063	2852		
80	1299.9	1324.9	0.5032	0.5076				2561	
					15.1	0.0052	2911		
81	1315.0	1340.0	0.5084	0.5128				2564	
	,				14.9	0.0065	2310		
82	1329.9	1354.9	0.5149	0.5192				2561	
					15.1	0.0059	2569		
83	1345.0	1370.0	0.5207	0.5251				2561	
					14.8	0.0059	2495		
84	1359.8	1384.8	0.5266	0.5310				2561	
					15.1	0.0061	2470		
85	1374.9	1399.9	0.5328	0.5371		1 1		2560	
	137.115	10000	0.002		15.0	0.0058	2607		
86	1389.9	1414.9	0.5385	0.5429				2560	
	100515	7.1.	3.000		15.1	0.0051	2960	· · · · · · · · · · · · · · · · · · ·	
87	1405.0	1430.0	0.5436	0.5480		1		2564	
	1103.0	1 130.0	0.5 150	0.5 100	14.8	0.0049	3000		
88	1419.8	1444.8	0.5485	0.5529	1	0.0017	2000	2568	
	1117.0	1111.0	0.5 105	0.5525	15.2	0.0049	3098		
89	1435.0	1460.0	0.5534	0.5578	13.2	0.00.5	3050	2572	
- 67	1433.0	1400.0	0.5554	0.5570	14.8	0.0044	3340	10,12	
90	1449.8	1474.8	0.5579	0.5623	17.0	0.0044	3340	2578	
100	1447.0	14/4.0	0.5577	0.3023	15.2	0.0047	3217	1 2370	
91	1465.0	1490.0	0.5626	0.5670	13.2	0.00+7	3217	2584	
91	1403.0	1470.0	0.3020	0.5070	14.8	0.0047	3129	1-250.	
92	1479.8	1504.8	0.5673	0.5717	17.0	0.007/	J 141)	2588	
<u> </u>	1.7.5		1	1	15.2	0.0052	2908		
93	1495.0	1520.0	0.5725	0.5770				2591	
1 33	1773.0	1320.0	0.5725	0.5110	14.9	0.0051	2898	2001	
94	1509.9	1534.9	0.5777	0.5821	17.7	0.0031	2070	2594	
74	1309.9	1334.9	0.3111	0.3021	15.1	0.0046	3249	1 23,74	
95	1525.0	1550.0	0.5823	0.5867	13.1	0.0040	J477	2599	
''	1525.0	1330.0	0.3623	0.5607	14.9	0.0064	2315	2379	
96	1520.0	1564.9	0.5887	0.5932	17.7	0.0004	2313	2596	
70	1539.9	1304.9	0.5007	0.3732	19.9	0.0048	4104	2330	
07	1550.0	15040	0.5026	0.5000	19.9	0.0048	4104	2608	
97	1559.8	1584.8	0.5936	0.5980	27.2	0.0007	2111	2006	
	1507.0	1612.0	0.6022	0.000	27.2	0.0087	3111	2615	
98	1587.0	1612.0	0.6023	0.6068	14.0	0.0048	2072	2615	
	16010	1606.0	0.6071	0.6116	14.8	0.0048	3073	2610	
99	1601.8	1626.8	0.6071	0.6116	L	l		2619	

	2cununa. Asi										
					43.2	0.0149	2897				
100	1645.0	1670.0	0.6220	0.6265				2626			
					14.9	0.0048	3122				
101	1659.9	1684.9	0.6268	0.6313				2629			
					15.1	0.0060	2532				
102	1675.0	1700.0	0.6327	0.6372				2629			
					12.8	0.0054	2385				
103	1687.8	1712.8	0.6381	0.6426				2626			
					15.2	0.0042	3612				
104	1703.0	1728.0	0.6423	0.6468				2633			
					13.8	0.0046	3028				
105	1716.8	1741.8	0.6469	0.6514	<u> </u>			2636			
				ļ	15.2	0.0056	2739	ļ			
106	1732.0	1757.0	0.6524	0.6569				2637			
					14.8	0.0042	3558	ļ			
107	1746.8	1771.8	0.6566	0.6611				2642			
					15.2	0.0044	3464				
108	1762.0	1787.0	0.6609	0.6655				2648			
					12.8	0.0042	3054				
109	1774.8	1799.8	0.6651	0.6697				2650			
					15.1	0.0052	2929	2.55			
110	1789.9	1814.9	0.6703	0.6748				2652			
					9.9	0.0033	3018				
111	1799.8	1824.8	0.6736	0.6781				2654			
				0.6006	15.1	0.0045	3375	2650			
112	1814.9	1839.9	0.6780	0.6826	110		2122	2659			
		10010		0.6050	14.9	0.0048	3123	2662			
113	1829.8	1854.8	0.6828	0.6873	150	0.0040	0106	2662			
				0.6001	15.2	0.0048	3186	2666			
114	1845.0	1870.0	0.6876	0.6921	14.6	0.0050	2042	2666			
11.5	10500	10010	0.6020	0.6052	14.8	0.0052	2842	2667			
115	1859.8	1884.8	0.6928	0.6973	15.0	00045	2001	2667			
116	1055	1000.6	0.6051	0.7000	15.2	0.0046	3281	2671			
116	1875.0	1900.0	0.6974	0.7020		 		2671			
L	L	l	<u> </u>	1	<u> </u>	lL					

Listing of Deliverables

- 1. VSP/Geogram Processing Report in PDF format
- 2. Graphics in PDS format, 34" plots:

Plot 1. Composite Display Plot 2. Velocity Crossplot

3. SEGY Deliverables

```
Vertical_Component.sqv
Corr_100_minus_90_deq_rot.sgy
Corr_100_minus_90_deg_rot.txt
                                      Vertical_Component.txt
Corr_100_Zero_Phase.sgy
Corr_100_Zero_Phase.txt
                                      WSF_DOWN.sgy
Downgo ing_P.sgy
                                      WSF_UP.sgy
Downgo ing_P. txt
                                      WSF_UP.txt
                                      WSF_UP_before_enh.sgy
WSF_UP_before_enh.txt
Downgoing_S.sgy
Downgoing_S.txt
Horizontal_Component.sgy
                                      X_Component_Stack.sqy
                                      X_Component_Stack.txt
Horizontal_Component.txt
Surface_Hydrophone.sgy
Surface_Hydrophone.txt
                                      X_Geophone.sgy
                                      X_Geophone.txt
Upgoing_P.sgy
                                      Y_Component_Stack.sgy
Upgoing_P.txt
                                      Y_Component_Stack.txt
                                      Y_Geophone.sgy
Upgoing_S.sgy
Upgoing_S.txt
                                      Y_Geophone.txt
VELF_DOWN.sqy
                                      Z_Component_Stack.sgy
                                      Z_Component_Stack.txt
VELF_DOWN. txt
VELF_UP.sgy
VELF_UP.txt
                                      Z_Geophone.sgy
Z_Geophone.txt
```

4. Listings and Logs

Beardie_1_Checkshot_Report.xls — Checkshot Report in EXELL format.

Beardie_1_VSP_vel_SRD.zip — P and S VSP velocities from Parametric Decomposition.

Attachment 1. Transit Time Picking Algorithms

The time picking can be broken down into several tasks:

First of all focus on the relevant parts of a data trace by selecting time intervals in form of constraints. To this end the user can select velocity, time header and/or initial guess constraints.

Detect a signal or a first break using a detection algorithm.

Tune on a particular phase of the event (e.g. zero-crossing, peak, trough, etc). It should be clear that tuning is only happening if a pick was either detected by an algorithm or retrieved from a header as initial guess.

Despike the picked transit time curve in order to eliminate mispicks either by median filtering or by cross-correlation. The cross-correlation option does not only have filtering features but also allows to pick correlated events within a section after having picked only one event.

Detection algorithm

Energy break: the algorithm determines the maximum of the so-called energy function, which is the integrated signal energy within a sliding time window normalized by the total energy accumulated since the first time of data.

For a trace S(t) an energy function F(•) is calculated with algorithm proposed by (Coppens, 1985)

Geophone break: finds the first break of a downhole sensor. The algorithm compares amplitudes and slopes in consecutive arches. Input parameters are the center frequency of the data to be picked, a linear fit gate time which should be about half a wavelet period, and a detection threshold between 0.0 and 0.5.

Hydrophone break: provides the first break of a downhole sensor. The routine finds the global minimum and maximum amplitude along a trace, takes the smaller one of the corresponding sample indices and outputs the time of the preceding zero-crossing as the first break. The zero-crossing time is determined by linear regression over a selected length (linear fit gate time).

Tuning:

Peak: finds the time of the closest local maximum amplitude in the vicinity of an input break time.

Trough: finds the time of closest local minimum amplitude in the vicinity of an input break time.

Zero-crossing: finds the time of the closest zero-crossing in the vicinity of an input break time. The routine stores the sign of the derivative at the zero-crossing which can be passed on for the tuning of the following trace. Thus artifacts created by cycle skipping can be reduced.

Inflection: finds the time of the closest inflection point in the vicinity of an input break time. The routine stores the sign of the derivative at the inflection point which can be passed on for the tuning of the following trace. Thus artifacts created by cycle skipping can be reduced.

Inflection point tangent: finds the time of the closest inflection point in the vicinity of an input break time. The tuned break time is the zero-crossing time of the corresponding tangent at this inflection point. The routine stores

the sign of the derivative at the inflection point which can be passed on for the tuning of the following trace. Thus artifacts created by cycle skipping can be reduced.

Cross-correlation

This option allows to tune transit times by considering the picked phase of a selected reference trace. The cross-correlation gate in time or length units can be specified in the Motif parameter panel of this option. The default

value for the gate is three times the estimated center frequency of the first five traces of the seismic section to be picked. The window is put symmetrically around the transit times of the two traces to be cross-correlated if the option Use Existing Picks for the Gate Center Time is enabled and the transit times are not absent.

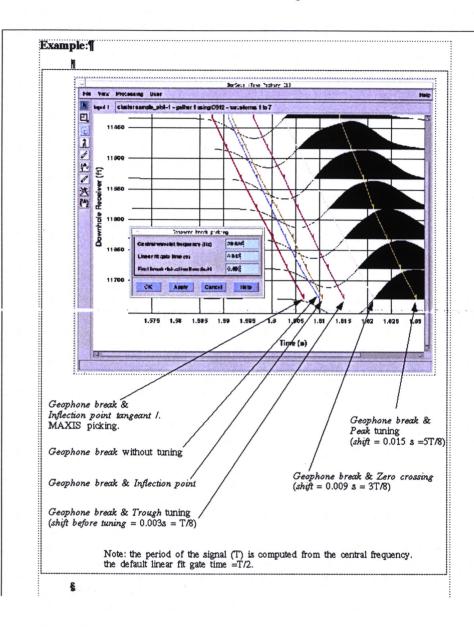
If the option Use Existing Picks for the Gate Center Time is disabled then the cross-correlation is started with the ambient traces around the reference trace. Those two traces, in turn, will be taken to set the time gates for the following ones, and so on. Thus an automatic picking can be provided after having picked only the reference trace.

Retuning can be selected to follow the cross-correlation. In this case the cross-correlation serves as a transit time curve despiker.

The cross correlation process can be stopped automatically if the picking quality degrades. This happens if the time difference between the break of the current and the previous trace exceeds a threshold value derived from a user-specified apparent velocity.

A polynomial amplitude interpolation is proposed in order provide "real" extreme values instead of extreme values at the nearest sample. The algorithm works as follows: the global extreme values are detected with the gate together with the corresponding sample indices. A minimum and maximum amplitude tuning provides an exact time estimate of these amplitudes. Polynomial interpolation determines the amplitudes at these times which generally fall in between samples.

There are a variety of selectable and non-exclusive constraints available in order to stabilize the time picking process . The objective is to extract only the relevant part of the trace for the detection, tuning and/or cross-correlation process using.


Reference:

Coppens, F., 1985, First arrival picking on common offset trace collections for automatic estimation of static corrections, Geophys. Prosp. 33, 1212-1231.

Lee, D. and Morf, M., 1980, A novel innovations based time -domain pitch detection.

913714 111

PE651038

This is an enclosure indicator page. The enclosure PE651038 is enclosed within the container PE913714 at this location in this document.

The enclosure PE651038 has the following characteristics: ITEM_BARCODE = PE651038 CONTAINER_BARCODE = PE913714 NAME = Vertical Seismic Profile Composite BASIN = GIPPSLAND ONSHORE? = NDATA_TYPE = WELL DATA_SUB_TYPE = VELOCITY DESCRIPTION = Beardie-1 Vertical Seismic Profile Composite Display, Scale 20cm/s, Airgun source, 61m offset, Victoria, (Enclosure from Appendix 5 of Beardie-1 Well Completion Report, Vol. 2), Processed by Schlumberger for Esso Australia Pty. Ltd. REMARKS = DATE_WRITTEN = DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Esso Australia Pty Ltd WELL_NAME = Beardie-1

CONTRACTOR =

AUTHOR =

ORIGINATOR = Esso Australia Pty Ltd

TOP_DEPTH =

BOTTOM_DEPTH = ROW_CREATED_BY = FH11_SW

(Inserted by DNRE - Vic Govt Mines Dept)

PE913655

This is an enclosure indicator page.

The enclosure PE913655 is enclosed within the container PE913714 at this location in this document.

The enclosure PE913655 has the following characteristics: ITEM_BARCODE = PE913655 CONTAINER_BARCODE = PE913714 NAME = Beardie-1 VSP Velocity Cross Plot BASIN = GIPPSLAND ONSHORE? = NDATA_TYPE = WELL DATA_SUB_TYPE = VELOCITY DESCRIPTION = Beardie-1 Vertical Seismic Profile Velocity Cross Plot, Depth Scale 1:5000, Airgun source, 61m offset, Victoria, (Enclosure from Appendix 5 of Beardie-1 Well Completion Report, Vol. 2), Esso Australia Pty. Ltd. REMARKS = DATE_WRITTEN = DATE_PROCESSED = DATE_RECEIVED = RECEIVED_FROM = Esso Australia Pty Ltd WELL_NAME = Beardie-1 CONTRACTOR = AUTHOR = ORIGINATOR = Esso Australia Pty Ltd TOP_DEPTH = BOTTOM_DEPTH = ROW_CREATED_BY = FH11_SW

(Inserted by DNRE - Vic Govt Mines Dept)